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Zusammenfassung

Im Rahmen der vorliegenden Doktorarbeit wurden strukturierte Zellumgebungen entwi-
ckelt, mit welchen es ermöglicht wird, quantitative Versuche mit geringer Variabilität durch-
zuführen. Im Speziellen wurden die Aufnahme von Partikeln durch Zellen, Genexpression,
Zellmechanik und die Migration von Zellverbänden studiert.

Im ersten Teil dieser Doktorarbeit wurde eine neue Methode etabliert, um die Aufnah-
me von Nanopartikeln (NP) durch Zellen mit höherer Genauigkeit zu untersuchen. Mit
dieser Methode können homogene und reproduzierbare Verteilungen von einzelnen Quan-
tenpunkten auf Ober�ächen erreicht werden. Im Gegensatz zu anderen Methoden werden
die Quantenpunkte auf die Ober�äche aufgebracht, bevor diese mit Zellen inkubiert wird.
Da die Ober�äche als natürliche Referenzebene dient, können NP, die von Zellen aufgenom-
men wurden, dadurch nachgewiesen werden, dass diese NP sich oberhalb dieser be�nden
müssen. Es ist zu beobachten, dass nach der Anfangsphase des Versuchs, in welcher die
NP lediglich aufgenommen werden, die Zellen auch beginnen die NP wieder auszuschei-
den. Es entsteht ein Gleichgewicht zwischen beiden Prozessen, sodass die Gesamtanzahl
aufgenommener NP ab einem bestimmten Zeitpunkt um einen konstanten Wert �uktu-
iert. Die Untersuchungen zur Aufnahme der NP zeigen auÿerdem eine Abhängigkeit dieser
von der Beschichtung der Ober�äche. Mit der gleichen Methode wird die Aufnahme von
Gentransferkomplexen untersucht.

Im zweiten Teil der Arbeit wurden kleine Gruppen von Epithelzellen studiert, welche
in quadratischen Mikrostrukturen eingeschlossenen wurden. Es stellt sich heraus, dass die
Zellen sich in stabilen Kon�gurationen anordnen, die nach Symmetrie und Anzahl der
Zellen klassi�ziert und statistisch ausgewertet wurden. Die experimentellen Daten wurden
mit theoretischen Modellen in Zusammenarbeit mit Karen Alim aus der Gruppe von Er-
win Frey, LMU München, verglichen. Es zeigt sich, dass das existierende Modell erweitert
werden muss und neben der Kontraktilität des Zellkortex und der interzelluläre Adhäsion
auch die Anisotropie der Zellform zu berücksichtigen ist. Eine wichtige Eigenschaft die-
ser oligozellularen Arrays ist die reduzierte Anzahl an Freiheitsgraden im System, was die
Berücksichtigung von sämtlichen vorkommenden Kon�gurationen möglich macht.

In einem weiteren Teil wurde die Dynamik von kleinen Zellgruppen in runden adhäsi-
ven Inseln untersucht. Es stellte sich heraus, dass die Zellen in einem bestimmten Zustand
übergehen können, in welchem sie sich kollektiv zu drehen beginnen. Die Winkelgeschwin-
digkeit bleibt dabei konstant und hängt von der Anzahl der Zellen pro Insel ab; je mehr
Zellen sich drehen, desto langsamer ist die Geschwindigkeit. Wechsel in der Drehrichtung
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wurden dabei nur selten und meist in Zusammenhang mit einer Zellteilung beobachtet. Der
Moment indem die Zellen zu rotieren beginnen, stellt dabei einen Symmetriebruch dar. Ein
solcher wurde in drei unterschiedlichen Formen beobachtet: die intrinsische Asymmetrie des
kortikalen Aktinzytoskeletts, eine kontakt-induzierte Persistenz in Richtung der Zellmigra-
tion und Zellpolarität in der Ebene des Epithels. Diese experimentelle Methode ist von
groÿem Vorteil, da die de�nierten Randbedingungen und die kleine Anzahl an Zellen es
erlauben, das Phänomen der kollektiven Zellmigration besser zu studieren.

Oligozellulare Systeme vereinfachen die Anwendung theoretischer Modelle, wobei die
daraus gewonnenen Erkenntnisse dennoch auch in komplexeren Systemen ihre Gültigkeit
behalten.

Im Weiteren wurde die zellulare Selbstorganisation in Zellarrays von einzelnen Zel-
len untersucht. Neu entwickelte, mikrostrukturierte Substrate, wurden erzeugt, auf denen
sich Zellen bevorzugt innerhalb adhäsiver Inseln aufhalten aber auch auf der Ober�äche
zwischen diesen migrieren können. Die Migrationseigenschaften der Zellen auf solchen Sub-
straten wurde untersucht.

Schlieÿlich wird eine Methode zur Herstellung mikrostrukturierter, multifunktionaler
Substrate beschrieben, welche aus drei verschiedenen Ober�ächenbeschichtungen bestehen.
Zum Beispiel können damit Geometrien erzeugt werden, die verschiedene Ober�ächenbe-
schichtung am Rand und im Inneren aufweisen.



Summary

Within this thesis, de�ned cell microenvironments, which enable quanti�cation and re-
duce experimental variability, have been developed to study particle internalisation, gene
expression, cell mechanics and collective cell migration.

In the �rst part of the thesis, a novel approach to study nanoparticle (NP) internaliza-
tion is established. For the �rst time, the problems of NP aggregation and number density
�uctuation are circumvented. Homogeneous and reproducible distributions of single quan-
tum dots are achieved by seeding NP onto solid substrates prior to incubation with cell
medium and seeding of cells. This approach enables the detection of internalized NPs
because the solid surface represents a natural reference frame. NPs that are taken up by
the cells are reliably measured as those being lifted above this reference plane. Time-lapse
microscopy reveals that after an initial period of time in which only NP internalization
takes place, an equilibrium between NPs entering and leaving cells is established and the
e�ective number of internalized nanoparticles �uctuates around a constant value. The rel-
ative internalization rates from surfaces precoated with di�erent extra-cellular molecules
were assessed revealing the in�uence of the surface modi�cation on uptake rates. The same
approach has been applied to the uptake of gene delivery particles.

In the second part of this thesis, small groups of epithelial cells con�ned to adhesive
islands are studied. It is found that stable cell packing con�gurations appear in square ad-
hesive islands. The packing states are classi�ed according to number of cells and symmetry,
and their frequency of occurrence is measured. In the next chapter, experimental data are
compared to theoretical modeling in collaboration with Karen Alim from the group of Er-
win Frey, LMU, Munich. Here, oligocellular arrays unravel new contributions to epithelial
cell packing and the current vertex model is extended to account for cell shape anisotropy
in addition to cell-cortex contractility and cell-cell adhesion. The dynamic of the system
is studied by means of time-lapse microscopy. An important feature of oligocellular arrays
is that the reduced degrees of freedom of the system allow for the full assessment of the
entire con�guration space.

Next, the dynamics of small groups of cells in circular adhesive islands is described. It
is found that cells can enter states where they collectively rotate. The constant angular
velocity dependents on the number of cells per island and decreases with increasing number
of cells. Changes in the direction of rotation occur rarely, mostly in correspondence with
cell division events and occasionally spontaneously. The onset of collective rotation is a
symmetry breaking event. Cellular symmetry breaking is manifested in three experimental
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observations: the intrinsic asymmetry the cortical network, a contact-induced persistence in
the directionality of cell migration and cell polarization in the plane of the epithelium. This
experimental approach is valuable because the de�ned boundary conditions and the reduced
number of cells enable a better characterization of the observed phenomena. Oligocellular
tissues make theoretical modeling amenable and the knowledge gained here can help to
understand collective cell migration in more elaborated systems such as wound healing
assays and morphogenesis.

The process of cellular self-organisation in single cell arrays is also investigated. A
novel kind of patterned substrates are developed which provide adhesive islands that are
preferred for permanent cell adhesion and repellent areas on which cells can migrate. The
migrational behavior of cells in such substrates is studied.

Lastly, a novel fabrication process that allows multifunctional patterns consisting of
three di�erent surface functionalizations is described. These ternary substrates open a
new �eld of experimentation. For example, squares with di�erent functionalities at the rim
and the interior can be created.



Chapter 1

Introduction

A living cell is the basic unit of life even though it is a highly complex system. In a
fully developed organism, despite the fact that all cells carry identical genetic codes, cells
exhibit well-di�erentiated phenotypes and are distinguishable in both form and function.
In culture, cell behavior can vary greatly from cell to cell within the same population in
a culture dish, exhibiting a wide variety of shapes, number of neighbors and stage of the
cell cycle. It also has to be taken in account, that cells are not static systems and change
their shape, restructure their contact to neighboring cells, and readjust internal compo-
sition and structure continuously in response to external stimuli [1]. Shortly, within the
same population of cells we encounter a huge variety of cell initial states, what leads to
heterogeneous responses at the single cell level. Conventional cell assays measure average
responses of large cell populations, implicitly assuming that the average is representative
of a typical cell within the population. An excellent counter-example for that is gene
expression, where the cell population typically exhibits all-or-none responses. Single cell
time-lapse analysis reveals that no individual cell will exhibit the response level predicted
by the average population [2], [3]. Instead, because gene expression is an stochastic pro-
cess [4], cells become activated asynchronously and there are expressing and non expressing
cells. While the average population response increases gradually, single cell responses are
more abrupt and exhibit a broad distribution of gene expression onset times [2]. Single cell
assays are valuable because they enable to quantify the distribution of behaviors amongst a
population of individual cells, however they don�t allow to study cell-cell interactions and
collective phenomena such as epithelial cell packing or cohort migration. Gaining insight
into the biophysics of the cell through conventional living cell assays is thus challenging.
For this reason, living cell assays have to be improved in two critical aspects; the ability
to control the local cell environment and/or the delivery of stimuli, generating uniform
initial experimental conditions, and the capability to measure cellular responses [3]. Ho-
mogeneous experimental conditions together with de�ned cell microenvironments would
facilitate quantitative measurements, automated image processing and the development of
high-throughput screening platforms.

Micopatterning techniques give us control over the local protein environment of the
cell and have already been proved successful in maintaining cell populations in speci�c
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Figure 1.1: Schematic diagram of the work.

shapes on predetermined positions [5], [6], and in controlling individual cell behavior, such
as switching between apoptosis and growth [7] or determining the direction of cell migra-
tion [8]. On top of that, they o�er not yet fully appreciate advantages. Micropatterned
substrates can be used to impose de�ned boundary conditions to multicellular systems and
to prevent cell extension by con�nement, what in turn could be used to synchronize pop-
ulations of cells by contact inhibition of cell division. Hence, micropatterning techniques
are appropriated to de�ne the cellular microenvironment and generate controlled cellular
�initial states�.

In nature, there is a small beautiful system which contains very much valuable infor-
mation about cell behavior. The Drosophila compound eye is composed of about 800 unit
eyes, called ommatidia, which are arranged in a precise honeycomb-like array as seen in
Fig.1.2. Each ommatidium is a precise assembly of 20 cells: four cone cells are surrounded
by two primary pigment cells, which are as well surrounded by six secondary and three
tertiary pigment cells, and three bristle cells. All ommatidia have exactly the same cell
packing, see Fig.1.2, which is indispensable for correct vision. From this system we learn
that groups of cells try to minimize the total surface area, similar to soap bubbles [9], as
shown in Fig.1.2, and that di�erent types of cells sort out as immiscible liquids would do.

Inspired in this natural system, here, small groups of epithelial cells are con�ned all
together within an adhesive island and their collective behavior is studied. It is shown
that imposing constrictions to multicellular systems enables the study of phenomena that
do not appear at the single cell level and are too complex to analyze at the full tissue
level. The de�ned boundary conditions and the reduced number of cells enable a better
characterization of the observed phenomena.
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Figure 1.2: Ommatidia in the drosophila retina. The precise honeycomb like cell
packing in ommatidia contains very much valuable information about epithelial cell me-
chanics. For example, cone cells behave similar to soap bubbles and adopt a con�guration
that minimizes the total surface area. Reprinted with permission from Macmillan Publish-
ers Ltd: Nature [9], copyright 2004

This thesis is structured as follows:

The second chapter will �rst give an introduction to basic cell biology concepts, for
those lectors which are not familiarized with them, and later will compile the experimental
and theoretical foundation needed to understand cell behavior in tissues.

In the third chapter the internalization of nanoparticles by cells is studied and an
e�cient and reproducible strategy of presenting nanoparticles to cells is developed. This
approach not only assures uniform and controlled densities of NPs to be presented to the
cell, but it also enables uptake quanti�cation. In the next chapter, the knowledge gained
here is applied to gene delivery particles.

Chapter 5 begins with a description of standard patterning techniques such as micro-
contact printing (�CP) and microscale plasma-initiated patterning (�PIP). Here, the �PIP
technique is re�ned, enabling to create de�ned cellular microenvironments easily, fast and
with high reproducibility. With the introduced improvements, long range patterned sur-
faces which provide preferred adhesive areas with predetermined sizes and shapes can be
created. This patterned substrates will be used in the following chapters to study epithelial
cell packing and collective migration.

In chapter 6 epithelial cell packing in square adhesive islands is studied. The funda-
mental characteristics of the observed packing states and their experimental distribution
are elucidated. In the next chapter, theoretical modeling in collaboration with Karen Alim
from the group of Erwin Frey, LMU, Munich, is applied in order to explain the experimen-
tal distribution of packing states. Here, oligocellular arrays unravel new contributions to
epithelial cell packing and the current vertex model is extended.

In chapter 8, preliminary results regarding the collective rotation of small groups of
MDCK cells in circular adhesive islands are presented and symmetry breaking events are
investigated. The basis for a theoretical framework for modeling collective cell rotation
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taking in account biochemical cell coupling is proposed.
In chapter 6 it is revealed that cell con�nement is not enough to trigger contact in-

hibition of cell division. Instead, cells are expelled from overpopulated adhesive islands
and are able to migrate to neighboring empty adhesive islands, crawling over the repellent
parts of the patterns. This novel substrate property is investigated in chapter 9 with the
goal of creating single cell arrays by cellular self-organisation.

During the course of this thesis, the limitations of the patterning techniques presented
in chapter 5 become evident and continuous e�ort was made in order to overcome technical
hurdles and develope new patterning approaches. The results of this work are summarized
in chapter 10. In this chapter, a fabrication process that allows multifunctional patterns
consisting of three di�erent surface functionalizations is described.

In each chapter a detailed introduction to the treated theme is given.



Chapter 2

Fundamental concepts

2.1 Cellular biomechanics

Cells are the basic units of life and still biologically complex systems: they are soft and
wet, and their internal composition and structure changes continuously in response to
external stimuli [1]. Here, the physical attributes of cells, such as their basic structural
elements, and basic cellular processes, such as cell-cell adhesion, cell-substrate adhesion,
endocytosis, cell migration and polarization, are brie�y described for those lectors which
are not familiarized with these concepts.

From the mechanical point of view, the properties of a cell are de�ned by the cytoskele-
ton, the plasma membrane and the volume occupied by the cell.

Membranes are found throughout the cell, enclosing the nucleus, individual organelles
and the cell itself. They are dynamic, �uid and inhomogeneous lipid bilayers containing a
variety of specialized proteins. The plasma membrane is the interface between cells and
their environment, but it is not only a physical barrier, uptake of nutrients, cell-substrate
adhesion and all communication among cells occurs through this interface. It creates a
barrier for selective transport of substances, what permits the cell to maintain cytosolic
constituents and conditions, as optimum ph level, di�erent from those in the surrounding
environment and stable despite variations in this environment. The plasma membrane is
so important that loss of membrane integrity is related to cell death.

The cytoskeleton is an elaborated network of protein �laments that extends throughout
the cytoplasm, and it is the primary source of mechanical strength inside cells [1]. It gives
the cell form, allows it to move, helps organize cellular contents, to anchor cells to its
substrate and neighbors, and speeds the transport of materials within certain types of
cells. It is composed of three types of protein �laments:

� intermediate �laments have great tensile strength and bear the mechanical stress that
occurs when cells are stretched. They typically surround the nucleus and extend out
to the cell perifery, where they are indirectly connected to the extracellular matrix
and neighbor cells through hemidesmosomes and desmosomes.
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� microtubules are long and relatively sti� hollow tubes of protein. They serve as struc-
tural components within cells and are involved in many cellular processes including
mitosis, cytokinesis, and vesicular transport. They grow out from the centrosome
extending towards the perifery of the cell and show structural polarity.

� the actin cytoskeleton consists of functionally di�erent subsets of actin �lament ar-
rays that contribute to cell migration, shape changes, adhesion, and uptake of ex-
tracellular and plasma membrane components. Although actin �laments are dis-
tributed throughout the cell, actin is concentrated in a layer just beneath the plasma
membrane, called cell cortex, that reinforces it. Actin �laments in the cortex are
crosslinked by actin-binding proteins where myosin motors generate contractility.
Polymerization and depolymerization of cortical actin contributes to the extension
of cell protrusions and cell locomotion. The actin cytoskeleton is connected to the
extracellular matrix and neighbor cells through integrins and adherent junctions re-
spectively.

2.1.1 Cell-substrate adhesion

Upon contact to a medium containing serum, the bare surface of a material is rapidly (usu-
ally in seconds) covered with adhesion proteins that are absorbed from it. The chemistry of
the underlaying substrate, particularly wettability and surface charge, controls the nature
of the adherent protein layer, which gives the substrate its biological identity. Normally,
these proteins arrive to the surface much faster than cells do. Cell adhesion to this protein
layer is mediated by receptors in the cell membrane, most integrins, and is a dynamic
process, where cell-surface and matrix-associated molecules interact with each other in a
spatially and temporally regulated manner. In vivo, these interactions play a major role
in tissue formation and cellular migration [10].

To understand the cell-substrate interaction it is necessary to learn about the extracel-
lular materials that form the cell�s substrate.

The extracellular matrix

The extracellular matrix (ECM) is very complex and consists of a large number of highly
specialized macromolecules. These macromolecules are found in essentially all tissues and
are fundamental for our normal growth and health. ECM molecules have biological activi-
ties that range from structural support to the regulation of transcription activity. It is not
a mere sca�old between cells but rather an information-rich supra-molecular structure that
provide cells with signals that regulate cell growth, di�erentiation, and apoptosis. Cells
read the barcode-like signals written in the matrix with a variety of cell surface receptors
and determine whether they should grow or di�erentiate. Any attempt to make a sophis-
ticated, functional surface for biointeractions must take into account the highly developed
ability of biological systems to recognize specially designed features on the molecular scale
[11].
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Some of the most important components of the ECM are:

� Collagen comprises a family of �brous proteins that impart structure and rigidity to
a tissue, being responsible for tensile tissue strength. It is the most common protein
in the body. There exist nearly 20 di�erent types, which can be classi�ed in �brillar,
the most abundant, and non �brillar collagens. Some examples of them are:

� collagen type I forms large structural �bre bundles in tendons, ligaments and
other tissues exposed to mechanical load

� collagen type IV forms x shapes complexes that associate together to create
highly interconnected �brous network, it's abundant in the basement membrane

� collagen type VI widely distributed throughout the ECM and help cells to form
attachments to the surrounding matrix.

� As the name indicates, elastin gives elasticity and resilience to tissue as, unlike col-
lagen, it can be stretched. It is present in the walls of arteries, lungs, skin, hearth
valves and intervertebral disks.

� Proteoglycans are long chained polysaccharides called glycosaminoglycan(GAGs) that
are covalently bound to proteins. They are highly hydrophilic and therefore can ab-
sorb and retain large amounts of water.The most common proteoglycans are heparan
sulfate, found in the basal lamina, chondroitin sulfate and dermatan sulfate.

� Hyaluran is a free GAG, not bound to protein, but that can associate non-covalently
to ECM proteins. Its large size and strong negative charge allow it to bind a large
amount of water, forming a viscous gel. This component keeps a tissue hydrated,
provide resilience and lubricates.

� Adhesion proteins permit cells attachment to and movement within the ECM. The
most important are:

� laminin is a key component of the basement membrane and binds to collagen
IV and other matrix components, and cell surface integrins.

� �bronectin posses speci�c binding domains for collagen, cell surface integrins and
heparin sulfate. It is ubiquitous, the all purpose glue of the ECM, and plays a
crucial role guiding and promoting cell migration during embryonic development
and wound healing.

Integrins

As mentioned before, cell-substrate attachments are mostly mediated by integrins, in form
of focal adhesions and hemidesmosomes. Integrins receive this name because they �inte-
grate� the function of the cell with the outside world, this is the ECM. Formation of focal
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adhesion depends on the cell substrate and it is promoted by ECM adhesion proteins at-
tached to it. Integrins are transmembrane proteins that exist in cells as heterodimers of
two distinct polypeptides called �− and �−integrin. In focal adhesions, one domain of
the integrin molecule is exposed on the cell surface, and binds for example to �bronectin,
while the cytoplasmic domain forms an attachment site for actin �laments [1]. In this way,
the cytoskeleton becomes mechanically linked to the ECM, and the integrin molecule can
transmit stress from the matrix to the cytoskeleton. Focal adhesion formation requires the
side-by-side association of integrin molecules to form a cluster in the membrane, signaling
molecules, and mechanical tension. Focal adhesions are dynamic structures which assem-
ble, disperse and recycle during cell migration. They transmit force or tension to maintain
strong attachment to the ECM and act as signaling centers regulating many intracellular
pathways of di�erent cell functions. Since integrins act as the �feet� of a migrating cell
by supporting adhesion to the ECM or other cells and by linking via adapters with actin
�laments on the inside of the cell, they naturally constitute a major family of migration-
promoting receptors [12]. In hemidesmosomes, as told at the beginning of this section,
integrins link intermediate �laments to the matrix. For a more detailed description on
integrin functions see [13].

Cell adhesion to surfaces

Putting it all together, cell adhesion to surfaces comprises a cascade of �ve e�ects:

� absorption of serum proteins from the medium to the surface,

� approach of cells to the surface and initial cell attachment,

� cell spreading,

� organization of actin cytoskeleton

� and formation of focal adhesions.

2.1.2 Cell-cell adhesion

Epithelial cell adhesion is initiated with the formation of apical adherens junctions, which
are composed of cadherin adhesion molecules interacting in a dynamic way with the cortical
actin cytoskeleton.

Cells usually establish the initial contact via membrane protrusions, such as �lopodia
and lamellipodia. These �rst physical contacts are then stabilized by classic cadherins,
which stop di�using freely in the membrane and become immobilized, presumably by
anchoring to actin. Homophilic ligation of cadherins triggers actin cytoskeleton rearrange-
ment, expanding the surface of contact, which matures into a full adherens junction, and
stabilizing it [14].

Other types of cell-cell junctions are:
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� tight junctions create a seal between adjacent cells to limit the di�usion of ions and
small molecules

� gap junctions have the opposite role than tight junctions, providing channels for the
exchange of small molecules between cells

� desmosomes are also formed by cadherins but they are linked to the intermediate
�laments

2.1.3 Cell shape

Animal cells, in the absence of forces from other cells and the substrate, present a spherical
shape. This shape is primarily dictated by the forces generated in the actomyosin cortex,
which prevent cytoplasmic expansion. Current physical models for shape and shape change
of isolated cells assume the cytoplasm to be a viscoelastic material. Shape change is driven
by polymerization and contraction of the cortex, and is usually assumed to occur without
local or global changes in cytoplasmic volume [15].

Cell anchoring and spreading on a surface involve cell shape deformation. As focal
adhesions are formed, the cytoskeleton is connected at these discrete points to the ECM
and the cell acquire a �attened shape. Adherent cells have been proposed to be tensegrity
structures. Tensegrity is a form of tensile architecture that uses tension and compression
in a combination that yields strength and resilience beyond the sum of their components.
In cells, microtubules act as struts while contractile micro�laments provide tension, acting
like stretched rubber bands that compress the microtubules and pull on the extracellular
matrix through adhesion points [16], [17], [18], [19].

2.1.4 Portals of entry into the cell

Endocytosis encompasses several diverse mechanisms by which cells internalize macro-
molecules and particles into transport vesicles derived from the plasma membrane[20].
Two sets of endosomes can be distinguished; early endosomes, just beneath the plasma
membrane and late endosomes, near the nucleus. Uptake mechanisms fall into two broad
categories:

� phagocytosis, which acts for the uptake of large particles and is restricted to special-
ized cells,

� pinocytosis, which can be carried out by all cells using at least four mechanisms:
macropinocytosis (particles up to 1�m), clathrin-mediated endocytosis (≈120nm),
caveolin-mediated endocytosis (≈60 nm) and clathrin and caveolin independent en-
docytosis (≈90nm) [21], [20].
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2.1.5 Cell migration

Cell migration plays an essential role in a wide variety of biological phenomena as immune
response, wound healing, tissue maintenance, and morphogenesis, as well as pathological
events including vascular disease, chronic in�ammatory diseases and tumor metastasis.

Cell migration fundamentally polarized process, in which the dynamic assembly and
disassembly of focal adhesions plays a central role. It is a cyclical process that starts
with cell polarization, which implies a clear distinction between the cell front and its rear,
followed by the formation of a protrusion in the direction of movement. Next, integrins
bind to the ECM ligands, forming adhesion sites that serve as traction points for migration
and also stabilize the protrusion via structural connections to actin �laments. Finally,the
rear edge of the cell contracts toward the nucleus and the adhesion receptors are released
from the cytoskeleton, detaching the cell from the previous attachment sites [12].

It is clear that both, the establishment of strong and weak adhesion, inhibit migration.
Strong adhesion hinders rear release while weak adhesion does not support traction. Thus,
cell migration is fastest at optimum adhesion strength: strong enough to support traction
but weak enough to allow rapid detachment of the rear of the cell.

2.1.6 Cell behavior in tissues

A tissue can be considered as a building, where form and stability are determined through
a dynamic equilibrium of physical forces [22]. In this building, cells are bricks and the
extracellular matrix is a �exible armature that provides stability. An enormous di�erence
between buildings and tissues is that the �rsts are constituted by rigid substructures while
in a tissue the elemental components, cells, are soft and able to change their shape and
internal structure.

Animal tissues are diverse, in osseous tissue the extracellular matrix is abundant and
mineralized, what makes the tissue very rigid and resistant against traction and com-
pression, and direct attachments between cells, which are sparsely distributed within the
matrix, are relatively rare. In epithelial tissue, cells are tightly bound together, through
epithelial cell-cell junctions, into sheets called epithelia. The extracellular matrix is ex-
iguous, forming a thin layer, called basement membrane, underlying the epithelium [23].
In the following, we will talk about epithelial cell sheets, that cover internal and external
body surfaces.

There are various types of epithelia, shown in Fig.2.2, which are classi�ed according to
cellular morphology and the number of cell layers. In a simple epithelium the cells form
a single layer and are all attached to the basement membrane. A strati�ed epithelium
consists of multiple layers of cells in which only the basal layer is attached to the base-
ment membrane. Simple epithelia are typically classi�ed based on the morphology of the
component cells: squamous (�at), cuboidal, and columnar, see Fig.2.1. Columnar cells can
have cilia or microvilli. The name of a strati�ed epithelium is determined from the shape
of the apical layer of cells. The shape of the nucleus usually corresponds to the cell form
and helps to identify the type of epithelium.
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a b c

Figure 2.1: Types of epithelial cells. Schematic representation of a) squamous b)
cuboidal and c) columnar cells

Simple cuboidal epithelium (Fig.2.2 a) consists of boxy (cuboidal) cells, that are iso-
metric in vertical section and polygonal when sectioned horizontally [24], see Fig.2.1 b.
Each cell has a spherical nucleus in the centre. Cuboidal epithelium is commonly found in
secretive or absorptive tissue.

Simple squamous epithelium (Fig.2.2 b) consists of a single, very thin layer �attened
(squamous) polygonal cells that �t closely together, providing a smooth, low-friction surface
over which �uids can move easily. Squamous cells tend to have horizontally �attened,
elliptical nuclei, as sketched in Fig.2.1 a. Classically, squamous epithelia are found lining
surfaces utilizing simple passive di�usion such as the alveolar epithelium in the lungs.

a
b

c d

Figure 2.2: Types of epithelium. a) simple squamous b) simple cuboidal c) simple
columnar d) pseudostrati�ed

Simple columnar epithelium (Fig.2.2 c) consists of a single layer of tall (columnar)
cells. They have height to width ratios signi�cantly greater than one, and like cuboidal
cells, are polygonal when sectioned horizontally, see Fig.2.1 c. Simple columnar epithelium
is usually involved in active specialized secretion and/or absorption of material across the
single cell layer, or, if ciliated, in movement along the surface. Their nuclei are elongated
and are usually located near the basement membrane. Some columnar cells are specialized
for sensory reception such as in the nose, ears and the taste buds of the tongue.
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There is another variety of epithelium, called pseudostrati�ed epithelium and depicted
in Fig.2.2 e, where the cell nuclei are positioned in di�erent layers, suggesting a strati�ed
epithelia, but in reality is composed of a single cell layer since all cells are in contact with
basement membrane.

In this work, two cuboidal epithelium cell lines, human hepatocarcinoma cells, Huh 7,
and Madin-Darbey canine kidney cells, MDCK, were used.

2.1.7 Epithelial cell polarisation: symmetry breaking

A fundamental feature of epithelial cells is that they have polarity in terms of their morphol-
ogy and orientation. Together with apico-basal polarity, most epithelia are also polarized
in a second axis, in the plane of the epithelium. This phenomenon is known as planar cell
polarity or tissue polarity. Planar polarity coordinates cell behavior across the epithelium
and is clearly visible in the epidermis of animals. For example, the scales, bristles, and
hairs of insects are typically aligned along the major body axis [25].

tight junction

apical membrane

basal membrane
basement membrane

actin belt

Figure 2.3: Epithelial polarisation is triggered by an asymmetric distribution of cell-
cell and cell-substrate adhesion points.

Apico-basal polarity

Apico-basal polarity is triggered by an asymmetric distribution of external cues, in terms of
cell-cell and cell-substrate adhesion points, that generates asymmetries within the plasma
membrane. As we mentioned before, epithelial sheets line the cavities and surfaces of
all structures throughout the body, this means that the upper side of the cell faces the
free surface, or lumen, the bottom side faces the basal lamina and contains cell-substrate
adhesion points, and the lateral sides are in contact with adjacent cells, and contain cell-cell
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adhesion points, see Fig.2.3. This spatial polarity implies the organization of the plasma
membrane into structurally and functionally distinct domains: the part of the plasma
membrane facing the lumen is called apical domain, the part facing the basal lamina is
called basal domain, and the rest is the lateral domain.

Polarized epithelial cells are characterized by [26]:

� proteins and lipids in the plasma membrane are distributed in three distinct surface
domains: apical, lateral and basal.

� the apical and lateral surface domains are separated by tight junctions, which form
barriers to intercellular di�usion of ions and macromolecules.

� cell adhesion molecules form cohesive cell-cell interactions and a highly-developed
junctional complex consisting of tight junctions, desmosomes and gap junctions.

� cytoplasmic organelles and cytoskeleton are polarized distributed within the cell.

It is important to point out that both processes, lateral cell-cell adhesion and cell-
substrate adhesions on one side of the cells, are necessary for successful epithelial cell
polarisation [27], [28]. Cell-cell adhesion establishes a "landmark" on the cell surface,
which de�nes a domain of the plasma membrane that is di�erent from the rest of the
plasma membrane not in contact with another cell, while the plasma membrane assumes
apical character wherever no adhesive interactions take place.

Planar cell polarity

Planar cell polarity (PCP) is a property of multicellular tissues that demonstrates a coordi-
nation of cell behavior across a two-dimensional sheet, orthogonal to the axis of apical-basal
polarity. This global property of tissue structure requires the establishment of asymmetry
within cells and the alignment of these asymmetries in cells located dozens or hundreds
of cells apart [29]. The spatial information that organizes planar polarity is transmitted
locally from one cell to the next in form of an asymmetric cortical distribution of core PCP
proteins [30]. These proteins �attract� each other across cell boundaries, while each locally
inhibits the presence of the others within a cell [31], as depicted in Fig.2.4. Input from
neighboring cells can in�uence the behavior of individual cells as well as the orientation of
groups of cells that respond as a unit to directional cues [29]. PCP is also involved in cell
migration during morphogenesis, in processes such as the elongation of the body axis or
collective rotation in ommatidia [29], [30].

2.2 Physical models of tissues

In this section, simple models which describe tissues as physical systems are presented.
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Figure 2.4: Schematic of PCP protein asymmetric distribution. The spatial
information that organizes planar polarity is transmitted locally from one cell to the next in
form of an asymmetric cortical distribution of core PCP proteins. These proteins �attract�
each other across cell boundaries, while each locally inhibits the presence of the others
within a cell. The asymmetric distribution of PCP proteins introduces a directionality in
the cell, illustrated with arrows. Adapted from [31].

2.2.1 Tissue surface tensions: the di�erential adhesion hypothesis

In the �rst half of the last century, during his tenure as professor in the university of Munich,
Johannes Holtfreter disaggregated cells of a neurula-stage embryo, mixed them together
randomly and observed their extensive capacity to sort out, to selectively adhere, and to
reconstitute well-organized tissues similar to those of the intact embryo. Together with
Townes [32], he came to the conclusion that the transformation of a single fertilized egg in
a patterned body was due to tissue a�nity. These observations could not be completely
explained until in 1964 Steinberg proposed the di�erential adhesion hypothesis (DAH).
The hearth of this hypothesis is that cell aggregates show striking similarities with �uids
and soap bubbles, as proposed by Thompson in his book �On growth and form� [33]. First,
cells tend to aggregate in clusters in which the surface area of contact with the surrounding
environment is minimized. Second, di�erent cell populations can become sorted into two
phases like immiscible �uids, maximizing the binding energy. The DAH thus proposes that,
since they are composed of motile cohesive subunits, tissues can be treated as newtonian
liquids at long time scales. A noteworthy di�erence between cells and liquid molecules is
that cells show active locomotion instead of brownian motion. By analogy to liquids, it
is possible to de�ne a tissue surface tensions that would determine the mutual interaction
of the tissues. The DAH further proposes that tissue interfacial tensions increase linearly
with the expression level of adhesion molecules, such as cadherins, on the cell surface [34],
and that di�erences in intercellular adhesion guide tissue segregation, mutual envelopment
and the sorting of embryonic tissues [35]. The implications of the DAH can be summarized
as follows:

� the minimal surface con�guration of a tissue is equivalent to a state of adhesion
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maximization. Comparably to a liquid it is achieved by rounding up to a sphere.

� a heterogeneous mixture of cells will sort out according to the relative surface tensions
of the constituent cells. The cell population possessing a higher surface tension will
form a compact sphere that will be surrounded by the less cohesive cell group.

Cell sorting of cells according to the di�erences in cellular cadherin expression of cells
is illustrated Fig.2.5.

a b c

Figure 2.5: Di�erential adhesion hypothesis. L cells expressing P-cadherin (red) or
E-cadherin (green) sort out only when they di�er in cadherin expression level. a. Cells
expressing P-cadherin at a higher level form stronger cell-cell contacts and become sur-
rounded by E-cadherin expressing cells. b. Cells expressing the same levels of P-cadherin
and E-cadherin do not sort out. c. Cells expressing P-cadherin segregate externally, sur-
rounding cells expressing E-cadherin at a higher level. Reprinted from [36], Copyright
2003, with permission from Elsevier.

2.2.2 Cell and tissue shape: interplay of cortical tension and cell-

cell adhesion

Minimizing total surface area is, however, not enough to explain cell packing in ommatidia
[37]. As explained in section 2.1.3, the shape of isolated cells is primarily dictated by cortical
tension and, thus, cortical tension is an important ingredient of cell surface tension. To
a �rst approximation, cadherin and the cortical tension have opposite contributions to
interfacial tension; while adhesion interactions tend to increase the surface of contacts
between apposed cells, cortical tension due to the formation of a contractile acto-myosin
network at the zone of contact reduces the contact surface. Yet, adhesion and cortical
tension are not independent because both are supported by actin �laments [38]. As showed
by Käfer et al. [37], it is necessary to take in account the e�ect of the cortical cytoskeleton
to completely explain ommatidia topology and geometry.
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2.2.3 Vertex models

Mathematical modeling approaches have recently been applied to explain the properties
and structure of epithelial tissue [37], [39], [40], [41], [42]. Vertex models are based in two
hypothesis:

� since actin cortex and cell junctions are mostly restricted to a region 1� thick just
below the apical membrane, it is considered that the basal region of the cells responds
passively to cell deformation, occurring in the plain of adherens junctions, and has a
minor mechanical role [42].

� cells are subjects to the laws of thermodynamic, and their tendency is to adopt the
most stable, lowest energy con�guration [40]

Making this two assumptions, cell networks can be considered as two-dimensional sheets
de�ned by two-dimensional polygons representing cells, straight lines representing cell
walls, and vertex points representing cell wall junctions. Such a model describes the forces
that act to displace vertices and obtains cell packing states, considered to be stable and
stationary network con�gurations, by minimizing a potential energy function.

Current models de�ne the homeostatic tissue state to be determined by the interplay
of cortical actin contractile forces, contact favoring adhesion forces and elastic forces. Reg-
ulation of these balancing forces determines cell packing geometry and drives large scale
reordering of cells within tissues during development.

As described by [37], any stable and stationary con�guration of the network corresponds
to a local minimum of the following energy function:

E =
N∑
i=1

⎧⎨⎩�(Ai − A0)2 + �P 2
i − �

∑
j∈�(i)

Li,j

⎫⎬⎭ (2.1)

The �rst term takes in account cell elasticity by a elastic coe�cient � . Any deviation
from the cell area Ai with respect to the preferred cell area A0 increases the energy of the
system. The preferred area is determined by cell height and volume and, thus, the height
of the cell is indirectly considered in this term.

The second term describes the contractility of the cell perimeter Pi in terms of the
contractility coe�cient �. As we described before, the cortical tension generated in the
actin-myosin ring acts to minimize cell perimeter.

Adhesion between cells tends to extend their contact length Li,j. This is contemplated
through the adhesion coe�cient � in the third term.



Chapter 3

Towards a de�ned presentation of

nanoparticles to cells

In this chapter, an original approach to study NP-cell interactions is established: NPs
are immobilized onto surfaces prior to cell exposure and cells are seeded on top of the NP
layer. This proceeding separates particle preparation on the surface from incubation in cell
medium, preventing NP aggregation and allowing well-de�ned particle number densities
to be presented to the cells. Besides, the surface on which NPs initially lay provides
a reference that enables internalization assessement and quanti�cation. In addition, NP
internalization routes and end-locations inside cells have been studied with transmission
electron microscopy (TEM). This approach has been developed for one type of NPs, but
it can be optimized for screening all kinds of particles with di�erent sizes, shapes, and
physicochemical properties, and improved to allow accurate quanti�cation. The results
presented in this chapter have been published in [43].

3.1 Motivation

Understanding the interactions between nanoparticles (NPs) and cells, in particular NP
uptake, is a very important task for assessing nanotoxicity and can help to gain a better
understanding of cellular uptake mechanisms, which are a key aspect in developing e�cient
gene and drug delivery systems[44]. However, the small size and the colloidal nature of
NPs cause major experimental hurdles. Most nanotoxicity studies handle NP dispersions
as molecular solutions, even though they immediately destabilize when mixed with an
electrolyte rich solution such as cell growth medium. NPs coagulate and precipitate onto
the cells and real particle size and exposure concentration remain undetermined. This
phenomenon can have dramatic consequences for cells, as we observe when trying to study
NP internalization of 4nm gold particles with TEM (see Fig.3.1), and lead to distorted
results in nanotoxicity assays.

When incubated with cells, NPs attach everywhere on the uneven cell surface. In a
�rst approximation, it can be considered that all particles that contact the cell surface
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Figure 3.1: Nanoparticle aggregation. When colloidal nanoparticles come in contact
with cell medium they collapse and coagulate, forming macroscopic aggregates. Immediate
consequences of that are that not all cells in a culture are exposed to the same amount
of nanoparticles, as can be seen in TEM micrographs, and that some cells become buried
under macroscopic aggregates. Scale bars correspond to 50 nm.

will be internalized if the interaction time is long enough. This approximation may be
adequate for long incubations times, however, the number of internalized particles will
be highly overestimated for short incubation times and, for this reason, it is necessary
to discriminate NPs just sitting on the cell membrane from those which have just been
internalized. When it comes to this point, NP size arises as an inconvenient, since NP sizes
fall well below of the optical resolution limit of conventional microscopes. For this reason,
accurate quanti�cation of taken up NPs still remains a challenge.

Assays which take in account the colloidal character of NPs need to be developed. Only
such an assay can guarantee that all cells in the culture are exposed to the same amount
of NPs, assuring reproducibility, and provide truthful results regarding NP toxicity, as well
as the in�uence that NP size has on it and on uptake rates.

3.2 Introduction

During the last decades, it turned out that not only the chemical composition of a material
determines its physicochemical properties. Surface and quantum mechanical e�ects cause
nanomaterials to behave di�erently than bulk materials [45]. For example, a cube with
an edge length of 1 cm presents 6 cm2 surface area, while one cubic centimeter of closely
packed hard spheres with a diameter of 6 nm, have a total surface area of 740 m2 and thus
present approximately 10000 fold enhanced chemical reactivity. The most popular example
of quantum induced properties is the fact that the band gap of a semiconductor nanocrystal
depends not only on the material but also on the particle size, the smaller the size of the
crystal, the lager the band gap. This is because the con�nement of the electrons in all
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three spatial directions results in a quantized energy spectrum. Another result of quantum
con�nement e�ect is the appearance of magnetic moments in NPs of materials that are
non-magnetic in bulk, such as gold, platinum, or palladium. These exceptional properties
have triggered a rapid development of nanotechnology and the commercial use of NPs
has increased dramatically, we found them in food products, sunscreens, toothpastes, skin
care products, antibacterial silver coatings and paints. Although humans have always been
exposed to nanomaterials in form of dust storms, volcanic ash or combustion products, and
industrial nanoparticles constitute a tiny but signi�cant pollution source [46], this rapid
development of nanotechnology has raised concerns about potential toxicity and long term
environmental issues [47], [48].

Up to date there are numerous studies that investigate the toxicity of prototype NPs
such as TiO3 [49], C60 [50], quantum dots [51], carbon nanotubes [52] and gold [53], [54].
It has been established that toxic e�ects are related to the ability of NPs to catalyze the
production of reactive oxygen species [47], [28] and to bind irreversibly to membranes or
DNA [55]. This causes interference at multiple levels of cellular metabolism, signaling
and genetic alterations. All studies, so far, point towards a majority of intracellular rather
than extracellular, interferences making the question of how NPs enter the cells is of utmost
importance. Despite its signi�cance, the uptake and internalization of nanoscale particles
into cells is not completely understood [21]. Due to their small size, a priori, all uptake
mechanisms (described in section 2.1.4) could be involved in the internalization process.
Receptor-mediated internalization of NPs has been shown to be strongly size-dependent,
with optimal uptake for NPs with a radius of around 25 nm [56], [57], [58], [59].

Important aspects that can in�uence NP toxicity are NP size, charge, surface modi�-
cation and core material. Nevertheless, as explained in section 2.1.1, cells do no interact
directly with a surface but with the protein layer which absorbs to it. This means that,
unless the surface modi�cation of NPs is protein repellent, proteins will associate with
NPs, leading to a protein �corona�, and it is this protein �corona� who gives NPs their
biological identity [60]. Di�erent surface modi�cations can lead to di�erent amount and
composition of the protein �corona�, but it is important to keep in mind, that it is this
protein �corona� with which cells interact. The absorption of proteins on NPs, not only
changes their biological activity but it can lead to NP aggregation.

NPs in solution form stable colloidal systems. That means dispersions where the NPs
are �nely distributed in a medium and they resist �occulation and aggregation, and exhibit
a long shelf-life. This depends upon the balance of the repulsive and attractive forces that
exist between NPs as they approach one another. If all the NPs have a mutual repulsion
then the dispersion will remain stable. However, these repulsive electrostatic forces are
screened if, for example, charged polymers or ions are present in the solution, as happens
in biological �uids, resulting in NP coagulation and sedimentary deposition onto the cells.

Let�s think carefully about the consequences of NP aggregation and sedimentation.
First and trivial, when NPs aggregate they just stop being NPs and start to be large NP
networks. The in�uence that particle size has on NP toxicity can thus not be studied.
Second, when NPs sediment, cells become a NP dose that is much higher than pretended,
as cells interact at once with all NPs present in solution, while not all cells in the culture



20 3. Towards a de�ned presentation of nanoparticles to cells

interact with the same amount of NPs, as can be seen in Fig.3.1. Thus, an important aspect
of NP toxicity, in contrast to molecular toxicity, is the fact that the preparation and way
of administration of the NPs plays a crucial role. The importance of NP characterization
before conducting experiments for in vitro toxicity assessments has been emphasized in
several recent reports [60], [61], [62], [63]. For such assays, NPs should be prepared as a
monodisperse and stable colloidal dispersion.

3.3 The de�ned presentation of nanoparticles to cells an

their surface controlled uptake

In this section, a novel approach to study NP internalization is proposed: NPs are immobi-
lized onto surfaces prior to cell exposure and cells are seeded on top of the NP layer. In this
way, the problem of NP aggregation and number density �uctuation is circumvented, as
NPs are substantially separated on the surface preceding cell medium exposure. Moreover,
using micro�uidic channels and low salt bu�er solutions, homogeneous and reproducible
distributions of single quantum dots on surfaces are achieved. In addition, since the solid
surface represents a natural reference frame (z=0), NPs that are taken up by the cells can
be de�ned as those being lifted above the reference plane (z > 0), resulting in reliable
detection of internalized NPs, as opposed to NP deposition on top of the cells.

3.3.1 Model system

CdSe/ZnS quantum dots were chosen as solid model NPs. Fundamentally, these particles
have a CdSe core which has been coated with a ZnS shell, in order to improve its optical
properties, and are made water soluble by means of a polymer coating, in this case with
a COOH terminal group. Due to their high quantum yield, great photostability [64],
and the fact that the photoluminescence intensity of a single QD �uctuates with time, a
phenomenon called blinking [65], it is possible to identify single particles even if they are
well below the microscope optical resolution limit.

Quantum dot size was characterized by means of �uorescence correlation spectroscopy
and transmission electron microscopy (TEM). Figure 3.2 shows the autocorrelation curve
measured for QDs in water solution. They are not aggregated and their hydrodynamic ratio
is rℎ=(14,9±0,4)nm, consistent with the core size measured with TEM, rc= (4,8±0,5) nm,
and an extra polymer shell.

3.3.2 Preparation of surfaces with a certain amount of well dis-

persed NPs

In order to achieve homogeneous and controlled particle densities on a solid surface, mi-
cro�uidic channels and low salt bu�er solution were used. Uniform distributions of NPs
(Fig.3.3 b) and cells (Fig.3.3 c) at the bottom of a micro�uidic channel are possible because
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Figure 3.2: Particle characterisation. NP hydrodynamic radius and agglomeration
states where studied with FCS. The autocorrelation curve is shown. The hydrodynamic
radius for the QDs in water is found to be rℎ=(14,9±0,4)nm. NP core size and shape where
determined with TEM. NPs are monodispersed, oval and have a mean size rc= (4,8±0,5)
nm.

sedimentation occurs undisturbed by meniscus e�ects. Fig.3.3 a depicts the principle of
NP preparation. To obtain a homogeneous distribution of single NPs, a very thin solution
of NPs is �lled in the channel. NP sedimentation time and concentration in solution can be
combined to achieve distinct well-de�ned number densities of NPs at the surface, as shown
in Figures 3.3 d,e and f. In fact, for a certain incubation time, the number of immobilized
NPs/mm2 is directly proportional to the initial concentration as seen in Fig.3.4.

Once the particles are on the surface, the solution is exchanged and cells are seeded
followed by homogeneous spreading as shown in Fig.3.3 c. Note that NPs at the surface
are not aggregated and remain in place after medium exchange, causing cells to receive a
controlled, uniform and reproducible exposure to NPs.

With this simple setup the problem of nanoparticle aggregation, and subsequent un-
determined exposure dose and experimental variability all over the cell culture, is circum-
vented. In addition, in the next section, it will be evidenced that it is possible to asses NP
internalization by means of z-scan �uorescence microscopy.

3.3.3 Visualization of NP internalization

As depicted in Fig.3.5, the solid surface represents a natural reference frame (z=0) were
initially all NPs lay. Single QDs can be identi�ed because of their blinking properties. NPs
that are taken up by the cells, leave the reference surface and move upwards into the cell.
Consequently, it is possible to de�ne taken up particles as those being lifted above the
reference plane (z > 0). Starting from this surface, NP uptake can be studied monitoring
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a

b

c

d

e

f

Figure 3.3: Schematic representation of the nanoparticle surface preparation.
a Particles are injected and sedimented inside a �-channel in order to avoid meniscus
e�ects. b,c Homogeneous distributions of NP (b) and cells (c) are achieved all along
the channel. Scale bars correspond to 50 �m. d,f,e NP surface density with varying
nanoparticle concentration in solution (d) 12,5 pM, (e) 25 pM and (f) 100 pM. Scale bars
correspond to 5 �m.
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Figure 3.4: The number of ab-
sorbed NP per surface area vs.
the NP solution concentration.
For low concentrations and �xed in-
cubation time we observe a linear
dependence. Particle concentration in solution(pM)
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Figure 3.5: Z-scan �uores-
cence imaging of NP up-
take. Initially NPs lay on the
substrate surface (z=0). NPs
taken up are identi�ed by their
location above the reference
plane (z>0).

Z=0

Z=0

Z>0

the position of NPs in a stack of z-scans.

Experimentally, �rst of all, the reference surface containing the NPs has to be identi�ed.
Then, starting from this surface, z=0, �uorescent micrographs with increasing z, Δz =
0.5�m, are acquired, covering the whole height of the cell, z≈ 8�m. This distance between
z-planes was taken because, even if it is enormous in comparison with the NP size, it
represents a good compromise between taking on all internalized particles and skipping
multiple counts due to out-of-plane �uorescence.

For image analysis an intensity threshold is established, so that out-of-plane �uorescence
is blended, and z-scans are projected in the z plane using the ImageJ Grouped ZProjector
pluggin. The projected image is cross-checked with each single image to assure that two
di�erent particles with the same XY position but di�erent Z were not projected on the
same spot. Whenever this happened, the aforesaid particles were counted separately, as
explained in the next section.

In Fig.3.6 a the �uorescent micrograph shows a cell in green, NPs on the surface in red
and internalized NPs, in the range 2 �m<z <8 �m, in blue. In Fig.3.6 b and c, NPs at
the surface (red) and internalized NPs (blue), along with the outlines of the nuclear and
cytoplasmic membranes of a cell (black) can be seen. From this example, two conclusions
can be extracted, �rst it is immediately evident that the blue spots are much larger than
the red spots, indicating NP aggregation and formation of clusters inside cells, and second
we �nd internalized particles entering the nucleus.
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a

b

c
Figure 3.6: Surface con-
trolled nanoparticle up-
take. Fluorescence micro-
graphs showing: a Green:

GFP-expressing BEAS-2B
cells. Red: QDs absorbed
to the surface z=0. Blue:

taken-up NPs (projection of
image planes 2 �m<z <8 �m).
b Red: Qds absorbed to the
surface Black: cell contour
c Blue: internalized QDs
Black: cell contour. Scale bars
correspond to 5�m
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Figure 3.7: NPs aggregate in-
side cells. a Size distribution of
absorbed NPs on the surface show
a normal distribution of sizes (see
�tted line). b Size distribution of
NPs and aggregates inside the cell.
Insets show representative �uores-
cence images for demonstration. Particle size (pixels)
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3.3.4 Quanti�cation

Before uptake, all NPs are deposited on the reference surface and show clear spatial sepa-
ration, as can be seen in Figures 3.3 d,e and f, and 3.6 b, and single QDs can be identi�ed
because of their blinking properties. The typical di�raction limited image of a QD is a 3x3
pixel area where the central pixel presents the highest intensity, see the inset in Fig.3.7 a.
In this �gure, the frequency of NP sizes on the surface is shown, exhibiting a normal dis-
tribution. After internalization, NPs form clusters inside cells, as seen from a larger image
area in the inset in Fig.3.7 b, and mostly do not blink, due to the presence of multiple QDs
in one spot. Since QDs are well below the optical resolution limit of the microscope, it is
not possible to directly infer the number of NPs in a cluster.

However, it is possible to make an estimation of the number of NPs per cluster in terms
of the �uorescent area of the cluster and the mean NP area. For this task, the following
procedure was used:

� a threshold was chosen for the reference surface image, so that the maximal number
of NPs is considered

� the resulting image was binarized

� the Particle Analysis plugin from ImageJ was applied, excluding spots bigger than
15 pixels

� the mean area size value of a particle on the reference surface was extracted from the
obtained distribution of sizes
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� the number of NPs in a cluster is then estimated dividing the total �uorescent area
of the cluster by the mean NP area size.

It has to be pointed out, that this number does not represent the exact number of
QDs in the cluster and it is only an approximation. A method to accurately quantify the
number of QDs per cluster is suggested in section 3.6. For particles that do not blink, the
number of taken up NPs can be quanti�ed by counting the number of NPs that disappear
from the surface after a certain incubation time. For QDs it was not possible to use this
approach because the number of taken up particles is very small and in the range of QD
blinking. That means that the number of particles which are in the dark state at a certain
time is comparable to the number of taken up particles and it is not possible to determine
how many particles leave the surface.

3.3.5 Surface dependent uptake

To investigate how the modi�cation of the surface a�ects NP internalization, surfaces
were coated with collagen or poly-l-lysin (PLL) prior to NP immobilization. Figure 3.8
shows the percentage of NPs taken up as a function of the surface functionalization of the
microchannel. NP internalization rates show a clear dependence on the surface coating: on
collagen 30 out of 900 particles were taken up; on bare surfaces, uptake is at 35 out of 900,
while a PLL coating suppresses uptake almost completely (1 particle of 900). Improved
NP internalization could be explained in terms of enhanced cell adhesion to the substrate
or weaker NP-substrate interactions. None of these e�ects are expected to happen in
the case of collagen, since it neither posses speci�c cell adhesion sites nor more negative
charge than the bare surface. In the case of PLL, enhanced adhesion is neither expected but
uptake suppression has an easy explanation in terms of the electrostatic attraction between
the NPs and the surface. NPs are carboxyl-terminated and thus negatively charged in
aqueous solution. Collagen- and plasma-treated surfaces are slightly negatively-charged
under physiological conditions, while PLL has a strong positive charge. The adherence
of carboxyl QDs on PLL surfaces is hence expected to be stronger than on collagen- or
plasma-treated surfaces.

Consequently, cellular uptake of NPs can be considered as being controlled by a compe-
tition between NP-surface attraction and NP-cell interaction. This assay also proves that
surface-mediated uptake involves cellular activity since surface forces and gravity obviously
act against uptake.

3.3.6 Time dependent uptake: NP exocytosis

Following the internalized NP-cluster count over a longer period of time reveals remarkable
�uctuations, which must be attributed to biological activity rather than to image processing
inaccuracies. Fig.3.9 shows a time course that clearly indicates a stable increase in NP
clusters within the �rst 5h, after which the cluster count stars to oscillate. While an
increase in NP number can be attributed to pure NP uptake from the surface, the reason
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Figure 3.8: Surface depen-
dent uptake.The percentage of
internalized NPs with respect to
the number of available NPs in
z=0 is represented. NP up-
take from surfaces involves cellu-
lar activity and can be hindered
if the strength of the adhesion
between NPs and the surface is
high enough.
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for the loss of NP clusters is less obvious. Following the total �uorescent area and the total
number of �uorescent clusters inside the cell, we can distinguish cluster fusion from cluster
loss. During cluster fusion, the total area remains constant and the number of clusters
diminishes, while in cluster loss, both observables decrease simultaneously. For this case,
we consider exocytosis of NPs as the most plausible explanation. NPs have already been
observed leaving cells [59] and exocytosis/endocytosis equilibrium can explain previously
reported cell-population averaged saturation curves for NP uptake [57].

3.4 Determining NP internalization routes and end-location

by TEM

Complementary to the surface-controlled uptake experiments, NP internalization routes
and end-location inside cells were studied with TEM. In this case, the reverse approach
could no be applied due to experimental impediments. Sample preparation for TEM re-
quires cell cultivation on smooth porous membranes which are not suitable to achieve
uniform distributions of NPs on their surface. For these experiments, gold nanoparticles
with the same size and surface modi�cation than the QDs were used. The NP-cell interac-
tion is expected to be equivalent for all NPs With the same size and surface modi�cation,
independently of the core material. Sample preparation is described in A.6

3.4.1 Internalization routes

At the beginning of this chapter it was mentioned that, due to their small size, NPs
are expected to enter cells through all endocytotic mechanisms and even to freely di�use
across the plasma membrane. Actually, without any further surface modi�cations, NPs
should be able to enter the cell only via non receptor mediated endocytosis routes such
as macropinocytosis. Experimentally it was found that, in e�ect, several portals of entry
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Figure 3.9: Time dependent uptake.During the �rst �ve hours we observe pure uptake
of NPs from the cell surface, with the number of NP clusters and total �uorescent area
increasing continuously. Oscillations after this time point can be explained as equilibrium
between particles entering and leaving cells (endocytosis/exocytosis). When the number of
NP clusters diminishes and the total �uorescent area remains constant (▼) we have cluster
fusion, in contrast, when both diminish at a time (△) we have exocytosis.

are used. In some cases, NPs that were not trapped in endosomes were observed in imme-
diate proximity of the plasma membrane, indicating possible passive di�usion across this
membrane, as shown in Fig.3.10.

Figure 3.11 a depicts the portals of entry into the cells. Figures 3.11 b and c show
gold NPs entering the cell via macropinocytosis, �gures 3.11 d and e show entry through
clathrin and caveolae mediated endocytosis respectively, and �gure 3.11 e shows clathrin
and caveolin independent endocytosis.

3.4.2 End-location inside cells

Once inside cells particles were found trapped in endosomes, mostly free in the cytoplasm,
and less frequently forming small clusters free inside the cell nucleus. The histogram in
Fig.3.12 a shows the frequency of occurrence of the distinct en-locations inside cells. More
than 60% of the particles are found free, without being envolved with any membrane, in
the cytoplasm, as represented in Fig.3.12 d. Around 20% of the NPs are found trapped
in endosomes, see Fig.3.12 b, and 15% are found forming clusters inside the cell nucleus,
as shown in Fig.3.12 c. This con�rms the results obtained in section 3.3.3 which indicated
that NPs without any speci�c surface modi�cation are able to translocate into the cell
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Figure 3.10: Di�usion through
the cell membrane. This picture
shows free NPs inside the cytoplasm
(1), NPs that seem to di�use into the
cell (2) and NPs trapped in endo-
somes (3).
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3.5 Conclusions

In this chapter it has been shown that surface-controlled NP uptake is an e�cient and
quanti�able approach to study NP-cell interactions, particularly NP uptake. Major ad-
vantages of this novel approach are the separation of NP preparation from cell incubation,
which prevents NP aggregation in cell medium while allowing well-de�ned NP number
densities presented to the cells, and the establishment of a reference surface, that allows
to discern NP internalization. Hence, the reverse uptake assay improves on an important
aspect for a standardized toxicity assessment. Making use of this approach made possible
to evidence that NPs aggregate after internalization, forming cluster inside cells and that
the presence of extra-cellular components at the surface a�ects cell behavior and thus NP
uptake. The fact that some surface coatings hinder NP internalization suggests that this
assay could be employed to test the safety of NP coatings in fridges and clothes. In sections
3.3.3 and 3.4.2 it was revealed that NPs, without any for this purpose intended surface
modi�cation, are able to translocate into the cell nucleus an can thus interact with DNA.
This suggests the possibility of employing NPs as gene carrier vehicles. It was also shown,
that NPs are able to enter and exit cells, but there is always a remaining part of them inside
them. This observation arises concerns about possible toxicity due to bioaccumulation and
related long term adverse e�ects.

3.6 Limitations and solutions

In this chapter, it has been demonstrated that the surface-controlled uptake approach
presents important advantages with respect to the conventional manner of studying NP-
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Figure 3.11: Portals of entry into the cell. Scale bars correspond to 100 nm.

cell interactions. However, it showed up that QD accurate quanti�cation still remains a
challenge. Nevertheless, it is possible to localize single �uorescence point sources with a
precision several times greater than the resolution limit of the microscope by means of
superresolution microscopy. Promising superresolution techniques in this case are inde-
pendent component analysis (ICA) [66] and superresolution optical �uctuation imaging
(SOFI) [67]. Both techniques are intrinsically similar to �uorescence correlations spec-
troscopy (FCS), but instead of analyzing the �uctuations of the signal caused by emitters
that move in an out of the confocal volume, they analyze the intensity �uctuations of the
signal produced by emitters that are spatially �xed but switch between di�erent emission
states. Both techniques require non-gaussian emitters that exhibit two di�erent emission
states and are mutually independent. QDs are ideal candidates because of their blinking
behavior. Since these blinking processes can be assumed to be statistically independent
for each emitter, information about each individual �uorophore is encoded in the form of
its temporal intensity �uctuations. Both techniques have been successfully applied to sep-
arate emmiters and localize single QDs immobilized on glass slides [66], [67], and actually
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Figure 3.12: End-location of NPs inside cells.

SOFI has been employed to generate superresolution images of cells labeled with QDs. All
these indicates that both techniques could be easily exploited to quantify the number of
internalized QDs in living or �xed cells.
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Chapter 4

Surface controlled gene delivery

In the last chapter, the surface-controlled NP uptake assay was introduced and it was
shown that it o�ers several advantages with respect to traditional approaches. In this
chapter, this method is applied to gene delivery complexes. The process of introducing
nucleic acids into eukaryotic cells by non-viral methods is de�ned as transfection. For a
transfection experiment to be successful, gene delivery particles not only have to be taken
up by the cells, they have to escape from the endosomes, travel all the way to the nucleus,
DNA and transfection reagent have to dissociate and the DNA has to be incorporated in
the chromosomes, so that the cells start to synthesize the protein of interest. The whole
process is inherently noisy, and thus cell transfection assays are very sensitive to variations
in experimental conditions and cell state. There are two classes of noise, intrinsic noise,
due to stochastic events during the process of gene expression, and extrinsic noise, due
to di�erences between cells, either in their local environment or in the concentration or
activity of any factor that a�ects gene expression [68]. Extrinsic noise is the primary
source of variability in gene expression. This kind of noise can be reduced if uniform and
controlled experimental conditions are provided. As it happens with nanoparticles, gene
delivery complexes are not stable in cell medium. The consequence of complex aggregation
is that cells in the same culture are exposed to di�erent amounts of plasmid-DNA. Here, the
surface-controlled approach is applied in order to generate homogeneous and reproducible
distributions of gene delivery complexes.

4.1 Introduction

The method of reverse transfection was �rst published by Ziauddin and Sabatini [69] as
a microarray-based assay for high throughput screening. In contrast to normal forward
transfection, where the DNA of interest is in solution and given together with transfection
chemicals on top of cells, in the reverse transfection a solution containing gelatin and the
DNA of interest is spotted on a glass surface that later is dried. The transfection reagent is
added directly in the samples or alternatively in an additional incubation step interposed
before transfection. This microarray of spotted constructs is then covered with a layer of
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adherent cells, resulting in the transfection of only cells growing on top of the DNA spots
and thus expression of speci�c proteins in spatially distinctive groups of cells

The advantages of reverse transfection against conventional transfection are:

� the addition and attachment of target cells to the DNA-loaded surface can lead to
higher probability of cell-DNA contact, potentially leading to higher transfection
e�ciencies

� smaller amounts of vectors are needed, what reduces cytotoxic e�ects

� it is suitable for high-throughput research. One single slide can contain a set of
hundreds of di�erent samples, which are all transfected at the same time and under
the same conditions

In this chapter, the surface-controlled approach developed in the last chapter for NPs
is applied to gene delivery complexes, which are absorbed on a surface in a controlled
way. Later, the cells are seeded onto them. In principle, it is very similar to the lipid-DNA
method introduced by Ziauddin and Sabatini, but the transfection complexes are not mixed
with gelatin and then spotted on a glass surface. Instead, the complexes are absorbed on
the surface making use of closed channeled chambers, what avoids the meniscus e�ect and
renders homogeneous distributions of particles and cells. Thus surface-controlled transfec-
tion experiments occur under a more uniform environment than reverse transfection and
direct transfection experiments, achieving the same conditions for all cells in the experi-
ment. In addition, in the surface controlled transfection experiments, complex preparation
is completely separated from cell incubation, what means that transfection complexes can
be handled with the adequate bu�er for a longer time.

a b

Figure 4.1: FuGENE®/pEGFP-N1 complex polydispersity and transfection
rates are bu�er dependent. Fluorescence micrographs showing EGFP expressing cells
after transfection and insets showing Cy5-pEGFP labeled complexes. Complexes formed
in water (a) present signi�cant less polydispersity and transfection e�ciency than the same
complexes formed in cell growth medium (b)
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4.2 Results

Gene delivery experiments are very sensitive and there is a wide range of factors, such as
amount of DNA, transfect reagent/DNA ratio, incubation time, and bu�ers, which have
to be optimized for di�erent cell lines. When using the reverse transfection method, the
optimization is even more elaborate, since as we saw in the last chapter, the characteristics
of the substrate and the interactions between transfection complexes and this substrate play
an important role in particle delivery from it. In all experiments, pEGFP-N1, a plasmid
that encodes a red-shifted variant of wild-type GFP and which has been optimized for
brighter �uorescence and higher expression in mammalian cells, was used as reporter gene
for transfection rate analysis. Transfection e�ciency is de�ned as:

%Transfection =
number of fluorescent cells

total number of cells
(4.1)

The experiments were repeated at least two times and the mean e�ciency values are
shown.

4.2.1 Protocol optimization

In this section, reverse transfection protocols for di�erent transfection reagents, FuGENE®

and l-PEI, and cell lines, Beas 2B and Huh 7, are optimized in order to achieve maximal
transfection e�ciency.

The �rst task was to determine which bu�er is better suited for reverse transfection for
both FuGENE® and l-PEI. For both transfection reagents, cell medium rendered higher
transfection rates in direct transfection. As can be seen in Fig.4.1, cell medium showed
the best results in reverse transfection for FuGENE®, even if the complexes showed higher
polydispersity.

l-PEI/pEGFP-N1 complexes were made in cell medium, water, HBG and HBS bu�er.
Which bu�er is used for particle formation has a dramatic e�ect in this case. Only com-
plexes that have been made in HBS bu�er are able to reverse transfect cells. When using
HBS bu�er, transfection complexes can be observed on the surface, as can be seen in Figure
4.2. However, when using medium, water or HBG for forming the complexes those were
not visible on the surface and e�cient transfection didn�t take place.

In �gure 4.3 the results of a serie of optimization experiments for reverse transfection
with FuGENE®:pEGFP-N1 and Huh7 cells are shown. The graphs have to be carefully
interpreted since they can lead to erroneous conclusions. The percentage of transfected
cells has to be weighted with the total number of adherent cells, since, for example, high
FuGENE®:pEGFP-N1 ratios can be toxic for the cells, resulting in few adherent cells
which are transfected and thus apparently render high e�ciency. The major number of
transfected cells for the major number of adherent cells(less toxicity) was achieved with
a FuGENE®:pEGFP-N1 ratio of 9:2 and 400 ngr of pEGFP-N1 per well. The incuba-
tion time of the complexes prior to absorption to the substrate has no clear in�uence in
transfection rates. For Beas-2B cells, a ratio of 4:2 rendered higher transfection e�ciency.
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a b

Figure 4.2: Reverse transfection with l-PEI/pEGFP-N1 complexes. Successful
transfection is only achieved using HBS bu�er for complex formation. The gene delivery
complexes are observe on the substrate as small black points.a 48h. b 72h.

Figure 4.4 shows the results obtained for experiments with l-PEI/pEGFP-N1 complexes
after 48h of incubation. A N/P ratio of 12 seems to render higher e�ciency but the number
of impaired cells is very high. For this reason, the ratio N/P=10 was chosen as the best,
representing the balance between high transfection rates and low toxicity.

4.2.2 Surface dependent reverse transfection

In analogy to the NP surface controlled approach, optimized reverse transfection experi-
ments were performed on surfaces with di�erent coatings.

For FuGENE®:pEGFP-N1 complexes PLL and �bronectin were used as surface modi-
�cations. Figure 4.5 shows the transfection rates for three di�erent experiments performed
under identical conditions in di�erent days. A �bronectin coating improves transfection
e�ciency in all cases and a PLL coating reduces it. The fact that the relative behavior be-
tween substrates is conserved from experiment to experiment, indicates that the in�uence
of the substrate in successful gene expression is very robust. The absolute transfection
e�ciency remains variable, indicating that there are still some sources of noise which are
not completely controlled.

In the case of l-PEI:pEGFP-N1 complexes,�bronectin and gelatin surface coatings were
used. In this case, only one experiment, shown in Fig.4.6, was performed and thus the
results are not meaningful. The �bronectin coating seems to slightly reduce the amount of
transfected cells, however it reduced the toxicity notably since cells looked healthier in the
pictures. Surprisingly, the gelatin coating reduces dramatically the amount of transfection.

4.3 Conclusions

In this chapter, the surface-controlled approach was applied and tested in an inherently
noisy an thus sensitive system. After optimization and in experiments that assure homo-
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Figure 4.3: Reverse transfection with FuGENE®/pEGFP-N1 and Huh7 cells.
Graphs showing the in�uence of FuGENE®:pEGFP-N1 ratio, complex density, and incu-
bation time on transfection e�ciency.
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Figure 4.4: Reverse transfection with l-PEI/pEGFP-N1 and Huh7 cells. Graph
showing the dependence of transfection e�ciency with the N/P ratio. A N/P ratio of 10
supposes the balance between maximal transfection and major number of adherent cells
(lowest toxicity).
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Figure 4.5: Transfection e�ciency dependence on surface modi�cation. Beas-
2B cells were transfected with FuGENE®/pEGFP-N1 (4:2) on bare, PLL and Fn coated
surfaces. The in�uence of the surface modi�cation is very robust and thus the relative
behavior is conserved from experiment to experiment.
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Figure 4.6: Transfection e�ciency dependence on surface modi�cation. Huh 7
cells were transfected with l-PEI/pEGFP-N1 (N/P=10) on bare, Fn and gelatin coated sur-
faces. The experiment was performed only once and thus the results are not representative.
The gelatin coating deteriorates the gene transfer process notably.

geneous conditions all over the cell population, transfection e�ciencies were never higher
than 40%.

As in the case of NPs, it appears that the characteristics of the surfaces on which
cells grow, determined by the layer of proteins absorbed to it, have a great in�uence in
the outcome of the experiment. In future experiments it should be determined if the
di�erent transfection e�ciencies obtained for di�erent surface modi�cations are only due
to a reduction/enhancement in complex internalization rates, in analogy to what happens
with NPs, or the are other underlaying mechanisms.

In this chapter, it becomes evident that complementary to e�ciency measurements,
cell viability assays have to be performed in order to �nd out the optimal experimental
conditions representing the balance between maximal e�ciency and lower toxicity.
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Chapter 5

Surface patterning techniques

In this chapter, the patterning approaches needed to fabricate the structured substrates
used in the following four chapters are described. During the course of this thesis, the
limitations of these techniques became evident and continuous e�orts were made in order
to overcome technical impediments and improve the patterned substrates. However, for
the experiments presented in the next chapters only the spatial con�nement of cells to
de�ned geometries is needed and the techniques presented here are su�cient. In chapter
10, new patterning approaches which enable better control over pattern geometries and
surface modi�cations are developed.

5.1 Microcontact printing

Microcontact printing (�CP) was introduced by Kumar et. al. [70] at the Withesides lab
in 1993 and is one of the �rst and maybe the most important technique used to pattern
surfaces and engineer the cellular microenvironment. The working principle is very easy, an
elastomeric stamp is formed from a solid template called master. Molecules are immobilized
onto this stamp by inking techniques and are subsequently transferred to a substrate by
printing. With this simple procedure surfaces with almost any desired geometrical patterns
can be created with high precision,≈ 1�m. For living cell assays, the �empty space� between
the patterned regions is generally back�lled with a second molecular system. This back�ll
is used to passivate those background areas to ensure that the cells adhere only on the
patterns [71].

In order to successfully structure a surface, the physico-chemical properties of both
surface and ink have to be taken in account. Following the principle �similis similibus

solvuntur � hydrophobic surfaces are better suited for hydrophobic inks and hydrophilic
surfaces are better suited for hydrophilic ones. Proteins, in general, absorb better and
irreversibly to hydrophobic substrates, and polymers and other charged molecules, such
as DNA and PLL, absorb to surfaces with opposite electrical charge. DNA can also be
absorbed onto hydrophobic surfaces by means of the hydrophobic e�ect, but single stranded
DNA is better suited for that [72]. Cells would also preferentially adhere onto hydrophilic
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surfaces avoiding hydrophobic ones.
In the case of microcontact printing, the characteristics of the stamp, the surface, and

the ink have to be chosen so that the ink absorbs to the stamp, but still the substrate
is preferred to the stamp for adhesion. After a serie of experiments, the best results for
�bronectin printing were obtained with slightly hydrophilized PDMS substrate, hydrophyl-
ized stamps and a Pluronic® F-127 back�ll (for detailed protocols see appendix ??).

If simple, �CP protocols for cell patterning are tedious, since �rst the protein of interest
has to be absorbed onto the stamp, then transferred to the surface, and last the free areas
have to be back�lled with some protein repellent cell molecule, such as PEG, to prevent cell
adhesion. Other critical parameters are the pressure applied to the stamp, then to much
pressure would distort the pattern, and that the stamp has to be retired very carefully from
the surface, since sliding or further contact would lead again to distorted pattern features
or unintended double patterning. Given the handicaps of �CP, and especially since all of
them, proteins, polymers, and cells can be selectively absorbed to a surface by means of
di�erential wettability or charge, plasma induced patterning was mostly used to structure
the surfaces in this work.

5.2 Microscale plasma-initiated patterning

The microscale plasma-initiated patterning (�PIP) method was introduced by Langowski
[73] in 2005. This novel technique enables to easily create biomolecular micropatterns
of varying complexity on several types of hydrophobic polymer substrates. Figure 5.1
depicts the principles of �PIP. A PDMS stamp is used as a mask to preferentially expose
or protect areas of an underlying polymer substrate from oxygen plasma. After plasma
treatment, the protected regions of the substrate remain hydrophobic while the plasma-
exposed areas become hydrophilic. When the substrate is immersed in a biomolecular
ink, molecules preferentially absorb to the hydrophilic or hydrophobic substrate regions,
depending on the ink characteristics. It is important to point out that in order to create
the hydrophilic areas, the plasma has to be in direct contact with the surface, and because
of that only patterns of alternative hydrophobic and hydrophilic lines or squares with
varying hydrophilicity can be created. Probably for this reason, in spite of its simplicity
this method is rarely applied.

5.2.1 Plasma induced patterning using a TEM grid as a mask

As mentioned above, the principal disadvantage of �PIP is the given limitation in pattern
geometries. To overcome this handicap, the easiest answer is to use stencils instead of
PDMS stamps. Hsieh et al. [74] reported an adaptation of the �PIP method using TEM
grids as masks. In this way, hydrophilic/hydrophobic patterns are created on a PDMS sub-
strate. Surprisingly, the areas protected by the grid are proclaimed to become hydrophilic
while the exposed areas remain hydrophobic. Again, the inconvenient of this method is
that only patterns of lines can be created.
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Figure 5.1: Illustration of microscale plasma induced patterning (�PIP). A sub-
strate is selectively exposed to oxygen plasma using a patterned PDMS stamp as protective
mask. After plasma treatment, the substrate is exposed to a biomolecular ink which adsorb
selectively to the hydrophilic parts of the pattern. Reprinted from [73], Copyright 2005,
with permission from the American Chemical Society .

Here, a further modi�cation of �PIP method is introduced, resulting in patterned
surfaces in which the areas exposed to the oxygen plasma become hydrophilic and areas
protected by the grid remain hydrophobic. This method is explained in detail (A.7.1).
Figure 5.2 illustrates the working principle of this method. A critical factor for the good
performance in this technique is the extent of contact between the grid and PDMS surface,
since lack of contact would render protected areas hydrophilic. Exposing the grids to water
vapor prior to surface positioning revealed very useful for achieving complete contact. An
added advantage of �PIP is that the patterned hydrophilic/hydrophobic surface is at the
same time a negatively/neutral patterned surface, that can be exploited for the selective
absorption of positively charged polymers and molecules.

Using TEM grids as masks supposes an important improvement since with them it
is possible to create hydrophilic islands of di�erent geometries (squares, circles, hexagons,
and lines) and it enables creating long range sharply de�ned micro-patterned surfaces rapid
and e�ciently. A major inconvenient of the protocol introduced here is that the pattern
features, such as hole size and distances between holes, are limited by the �nite existence
of commercial available grids.

At this point, the patterned hydrophilic/hydrophobic surfaces can be used to directly
pattern cells on them, since as mentioned above they will selectively attach onto the hy-
drophilic islands, as shown in chapter 6. Another inconvenient of this technique is however
that the cell surface onto which cell attach can not yet be further modi�ed, and cell ad-
hesion occurs on an unde�ned surface. The patterned surfaces can also be employed for
selective absorption of proteins onto the hydrophobic areas of the pattern. These protein
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Figure 5.2: Plasma induced patterning. In this case , a TEM grid is used as pro-
tective mask to selectively expose a PDMS substrate to an oxygen plasma, creating hy-
drophilic/hydrophobic patterns of desired geometries. Inset shows selective water vapor
deposition onto the hydrophilic parts of the pattern.

modi�ed surfaces can however not be used to create patterns of cells, since the cells would
attach on both protein coated and hydrophilic areas of the pattern.

Along this work, much e�ort has been put into overcoming technical hurdles and de-
veloping new patterning approaches which are presented in chapter 10.



Chapter 6

Oligocellular arrays: towards de�ned

mechanical states

In vitro cell culture is performed either on ensembles of thousands of cells seeded on a
relatively large �at substrate or in single cell arrays. Beyond single cell and full tissue level,
systems constituted by few cells under de�ned boundary conditions are good candidates as
assays with reduced cell-to-cell variability and maintained cell-cell communication. This
chapter institutes the novel concept of oligocellular arrays, which are micron-sized adhesion
patches inhabited by few cells under de�ned boundary conditions. Experiments on Huh 7
cells growing in square adhesive islands with ℓ ≈57�m are presented. These cells relax into
homeostatic packing states, which distribution is observed with high reproducibility. This
work was made in collaboration with Karen Alim from the group of Erwin Frey, LMU,
Munich.

6.1 Cells in con�nement arrange into stable packing states

Here, experiments on Huh 7 cells growing on structured thin PDMS �lms are described.
By means of plasma induced patterning (see chapter 5), hydrophilic squares which provide
preferred adhesion areas for cell growth are created and the natural characteristics of PDMS
are exploited to inhibit cell adhesion in between, see Fig.5.2. When cells are seeded onto the
micro-structured surface, they are found to distribute and spread onto the adhesive square
patches. Figure 6.1 shows a typical overview of cell populations living in con�nement.
The number of cells per adhesive area, N, is random due to the stochastic nature of the
sedimentation process (see also chapter 9) and depends on the total cell concentration.
The adhesive islands can be thus populated by one, two, three or four cells and, although
the size of the adhesive islands was tuned to house no more than four cells, ℓ ≈57�m, in
some cases one island is found to be occupied by up to seven cells.

A single cell per square tries to wet and �ll the entire square. However, it will be
successful only if it posses enough mass. This may occur when cells are close to cell
division.
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Figure 6.1: Living under con�nement. Cells are found to distribute and spread
onto the adhesive areas. The number of cells per adhesive area, N, is random due to the
stochastic nature of the sedimentation process.

time

Figure 6.2: Time evolution. Cells arrive to the adhesive patch, spread, relax and are
able to divide. After cell division, cells reorganize and relax into a new cell arrangement.
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In the competitive situation with more than one cell per square, cells are found to
arrange themselves into con�gurations with the total adhesive area being equally shared
between cells. We call this con�gurations stable packing states, because they are long
lasting compared to the time of cell division and stable state formation. Obviously, with
proceeding time, cells will divide, what supposes the most evident perturbation responsible
for loss of stable cell packing. When cells divide increase their mass and therefore their
need of growth area, what results in increased pressure over the neighbor cells, who are
pushed towards the rims of the squares, as can be seen in Fig.6.2. This �gure also shows
that, after cell division, cells rearrange and relax into new packing states of higher cell
number. This cycle continues until the patches become overpopulated and, as revealed by
time-lapse microscopy, cells are expelled from the adhesion "islands". Expelled cells are
able to crawl over the hydrophobic parts of the patterns and migrate to neighboring empty
adhesive islands, as shown in Fig.6.3. Unfortunately, cell con�nement per se is not enough
to trigger contact inhibition of cell division.

Figure 6.3: Migration between �elds. Cell con�nement into adhesive islands is not
enough to promote contact inhibition of cell division. Cells keep dividing until the adhesive
islands become overpopulated. Super�uous cells are expelled from the adhesive islands and
migrate towards empty patches crawling over the hydrophobic parts of the pattern.

It has to be pointed out that, not all cells are simultaneously in stable packing states,
as can be seen in Fig.6.1, since, as just explained, stable packing is a�ected by cell division.
However, the emergence of relaxed packing states after cell division is found consistently
over the entire assay and is a reproducible hallmark of the cell array described here. Notice
that increasing number of habitants per island increases the probability of cell division and
shortens the duration of stable packing states.
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6.2 Stable packing states

As explained in the last section, cell relax into homeostatic packing states, which distri-
bution is observed with high reproducibility. In the �uorescence micrographs in Fig.6.4,
the most prominent packing states are shown. Considering what we said in this section
and observing these micrographs, we can conclude that all stable packing states share the
following features:

� they are long lasting compared to the scale of cellular processes, as cell division, and
stable state formation.

� constituting cells share the available adhesive area equally

� cells show spatial polarisation, evidenced by nuclei displacement towards the centre
of the square (and not in the centre of the cells) and polymerized actin at the opposite
side, with actin �bers parallel to the rims of the square.

� in some cases nuclei are strongly deformed, as can be seen in Fig.6.7

According to number of cells and symmetry, the stable packing states are categorized in
classes as represented in Fig.6.4. Within each class, packing states are sorted from minimal
cell perimeter (pmin), to maximal cell-cell contact (cmax), as indicated by the arrows.

There is only one possible arrangement for two cells, which lay side-by-side, dividing the
square into two congruent areas with the same area and perimeter, marked in light green in
Fig.6.4. We denote this class 2II . As can be observed in Fig.6.4 a, the orientation of the cell-
cell contact line relative to the square can vary from 0 to 45°. In fact, a broad distribution of
angles around a mean value of ⟨#⟩=(21±13)° is experimentally founded. This distribution
is represented in the histogram in Fig.6.4 a, where each column comprehends nine degrees.

Three cells face a geometric problem, since it is not possible to divide a square into
three congruent parts, sharing the same area, perimeter, and length of contact lines to
the neighbors. For this reason, they are obliged to arrange into states non congruent in
cell-cell contact, marked in dark green in Fig.6.4 b . There are three possible classes of
arrangements, 3II , 3T and 3Y , named according to the shape of the cell-cell contact lines.
Fig.6.4 b shows the frequency of occurrence of each class. Surprisingly the 3II states are
very rarely observed. In addition we �nd that there is only one 3Y state, while for the
classes 3II and 3T the orientation of the cell contact lines relative to the edges of the
adhesion square can vary from minimal cell perimeter to maximal cell-cell contact.

Clearly, four cells could arrange into two di�erent classes 4II , with states non congruent
in cell-cell contact, and 4X . However, experimentally, the 4II class is never observed, and
the 4X class appears in a distorted form, 4X� , where the symmetry is broken because cells
avoid the formation of four cells junctions. In this class, cells adopt states where two three
cell junctions are separated by a small distance �. By introducing this � distance, symmetry
is broken because, arranged in this way, two cells have only two neighbors while the other
two have three. The length � of the contact line with the additional third neighbor is short
compared to the square length. The experiments show indeed a rather sharp distribution
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and symmetry.
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of � centered on ⟨�⟩=(0.12±0.04)�m, as can be seen in Fig.6.5. The rare arrangements
where the length � is below the resolution limit and could not be estimated are grouped
into a class denoted 4X0 .
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Figure 6.5: Distribution of � distances between 3-cell junctions. Experimentally,
the symmetry of four cell arrangements is broken, since cells avoid the formation of four cells
junctions. Instead, cells adopt packing states where two three cell junctions are separated
by a small distance �. The experimental distribution of � is very sharp.

6.3 Edge-induced planar polarity

As it was mentioned in the last section, an important feature of stable packing states is
the asymmetric distribution of cell components, which is a common feature for all packing
states. In this section, this spatial polarisation of cells, is discussed in more detail. In order
to investigate internal cell organisation, Huh 7 cells expressing GFP-actin were used and
cell nuclei were labeled with DAPI.

Among the dense network of actin �bers throughout individual cells, actin stress �bers
are pronounced along the edges of the squares. Also cell-cell contact lines show distinct
di�use actin density, which can be attributed to the actin cortex where actin is not poly-
merized. While a roundish nucleus is placed in the cell centre for a single cell per square, it
is always o�-centered towards cell-cell contact lines for several cells per square, as observed
in the �uorescence micrographs in Fig.6.4 and in Figures 6.6 and 6.7. Nuclei position is
independent of cell shape. For example, in the diagonal oriented state of the 3T class, see
Fig.6.7 b, the nucleus is in all cases o�-centered towards cell-cell contact lines, being in the
corner of a triangular cell in one case and along the edge of a triangular cell in the neigh-
boring cell. Nucleus position is also independent of the geometry of the adhesive patch.
Fig.6.6 shows square, circular and hexagonal islands. In all cases, nuclei are displaced
towards the cell-cell contact lines, often acquiring their shape.

Nuclei often exhibit a deformed shape, assimilating a form that seems to be dictated
by the contour of cell-cell contact lines and re�ects cellular shape, as typical for epithelial
cells. Deformed nuclei acquire an elongated shape for N=2, a heart-like shape for N=3 and
a triangular shape for N=4, as can be seen in Figures 6.7 and 6.8.
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a b c

Figure 6.6: Nuclear position is independent of patch geometry. Fluorescence
micrographs show that on square a, circle b or hexagon c, nuclei are always o�-centered
towards cell-cell contact lines. In green the actin cytoskeleton of gene modi�ed Huh 7 cells
can be seen. The cell nucleus has been stained with DAPI (blue). Scale bars correspond
to 20 �m.

Figure 6.7: Nuclear deformation. Phase contrast micrographs showing nuclei defor-
mation following the distribution of cell-cell contact lines for two a, three a and four cells
c on a square adhesive patch. Scale bars correspond to 20 �m.
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To understand internal structure in packing states we have to remember that apico-
basal polarisation is a essential property of epithelial cells, for more details see section 2.1.7,
which is triggered by an asymmetric distribution of cell-substrate and cell-cell adhesion
points. By creating adhesive islands, we are imposing arti�cial edges to the cells and
creating a lateral surface in the cell, that is di�erent from the other lateral surfaces, due to
the absence of cell-cell contacts. The presence of this extra free surface seems to trigger cell
polarisation in the plane of the epithelium. Figure 6.8 shows the analogy with apico-basal
epithelial polarity.

a

b c

Figure 6.8: Edge induced planar cell polarisation. a. In analogy to apico-basal
polarity, the existence of free edges triggers polarization in the plane of the epithelium.
Apico-basal polarity is triggered by an asymmetric distribution of cell-substrate and cell-
cell adhesion points. The imposed arti�cial environment in oligocellular arrays introduces
an assymetry in the distribution of adhesion sites, which triggers polarity in the plane.
In both cases, the adhesion free edge is reinforced with actin cables and the nucleus is
displaced in the opposite direction. In epithelial cells the shape of the nucleus typically
re�ects the shape of the cell, as illustrated here. Phase contrast b and �uorescence c
micrographs show the polarized distribution of actin and nuclei in a 4X0 cell arrangement.
Scale bars correspond to 20 �m.

In natural conditions, there is a typical situation in which epithelial cells will encounter
an extra free surface: namely a wound. This edge-induced cell polarisation is likely part
of the tissue response to wounding and has been already observed in cells along the free
boundary of the culture in typical wound healing assays. In fact, a high polarised shape
seems to be a prerequisite for the formation of �leader� cells [75].
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6.4 Discussion

In this chapter, it has been shown that cells in oligocellular arrays relax into stable packing
states. The packing state distribution is highly reproducible what suggests to apply the-
oretical modeling in order to explain the various geometric outcomes as a function of the
number of cells N per square and gain access to mechanisms governing tissue mechanics,
what will be done in chapter 7.

Oligocellular packing states exhibit remarkable distinct polarization of the constituent
cells . Cell nuclei are o�-centered towards neighboring cells and often are even deformed
to assimilate the shape of the cell-cell contact line. Recent studies [76], [77], [78] report
nucleus position adverse to high focal adhesion density and close to cell-cell contacts.
Remarkably all oligocellular arrangements observed here are indeed oriented from cell-
cell adhesion sites towards the boundaries of the adhesive patch. This aspect renders
oligocellular arrays distinct from locally isotropic polygonal tissue structures and possibly
allows to study epithelial planar polarization in more detail. Since polarity is intrinsic to
a migrating cell [12] and a hallmark of leader cells [79], oligocellular arrays could represent
a useful tool to gain new insights in epithelial collective cell migration, as will be shown in
chapter 8.

Oligocellular arrays represent an important advance towards more physiological assays
but still with reduced cell-to-cell variability. In oligocellular arrays cell-cell interactions
are conserved, permitting cell to interact with the neighbors and the study of epithelial
collective phenomena, while simultaneously, the reduced number of cells and the de�ned
boundary conditions impart uniformity and order in the system. Each packing state is
constituted by N cells which present the same area and intracellular distribution, such
as nucleus position and actin cytoskeleton organisation. Moreover, an oligocellular array
constituted by two cells represents a two near identical cell system with conserved cell-
cell interactions. The simultaneous presence of di�erent packing states in an assay should
not represent a major problem, since each square can be considered as an independent
experiment and packing states of interest can be analyzed separately. Hence, oligocellular
arrays may be the basis for standardized toxicity and gene transfer assays with reduced
cell-to-cell variability.

The patterned surface presented here exhibits a novel property, if well adhesive islands
are preferred for permanent adhesion cells can still migrate over the repellent parts of the
pattern. This property invites to study cellular self-organisation into single cell arrays and
suggests to look after further surface modi�cations accomplishing the properties described
here. This aspect of oligocellular arrays will be explored in chapter 9.
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Chapter 7

Oligocellular arrays: a novel approach

to study cell mechanics

The fact that cells on the square adhesion sites form reproducible, characteristic and highly
symmetric packing states invites to employ oligocellular arrays to study tissue mechanics
and to compare the experimental distribution of packing states with the results of theo-
retical modeling. Theoretical calculations were made by Karen Alim from the group of
Erwin Frey, LMU, Munich. A vertex model in which cell packing geometries correspond
to stable and stationary network con�gurations is used for theoretical modeling. Vertex
models were introduced in section 2.2.3.

7.1 Mechanical equilibrium model of cell packing states

In the following, the current standard vertex model, discussed in chapter 2.2.3, will be
applied in order to explain the observed packing states. Since for a certain number of
cells all cells present the same area, the model can be simpli�ed introducing the constraint
Ai=ℓ

2/N= const, being ℓ the side length of the adhesive area and N the number of cells.
Homeostatic packing states are then dicted only by the interplay of cell-cell adhesion and
cell cortex contractility and described by the minimum of the energy function:

E =
N∑

i∈cells

⎧⎨⎩�P 2
i − �

∑
j∈�(i)

Li,j

⎫⎬⎭ , witℎ Ai = ℓ2/N = const. (7.1)

where � denotes the cell cortex contractility, P is the perimeter of the cell, � stands for
cell-cell adhesion, and L is the length of the cell-cell contact line, as depicted for N=2 in
Fig.7.1 a.

Notice that membrane undulations have been neglected and �uctuations are incorpo-
rated in the e�ective parameters � and �.

Next, the predictions of this energy function for states with straight cell boundaries are
discussed:
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Two cell arrangements are described by just a single parameter, the angle # between
the horizontal axis through the square's centre and the contact line between the two cells,
pictured in Fig.7.1 b. Obviously, # = 0,±�

2
, � is the stable con�guration for dominating

contractility, as it minimizes the perimeter, while # = ±�
4
,±3�

4
is the solution for pre-

vailing cell-cell adhesion, because it maximizes the length of the contact line. In general
the competition between both contributions is given by the ratio �/ℓ� and the energy
minimization leads to a stable con�guration with:

cos# =
1

1
2
�
�ℓ
− 2

(7.2)

Hence, the characteristic angle in cell packing states is directly related to the ratio of
cell-cell adhesion and cell contractility strength. The experimental angle distribution for
two cells yielded ⟨#⟩=(21±13)° and therefore a ratio �/ℓ� = 6.14.

The experiments showed a broad distribution of angles, therefore we argue that the
relative probability of �nding two distinct packing states with mechanical energy ES1 and
ES2 is given by:

P (ES1)/P (ES2) ∝ e−�(ES1
−ES2) (7.3)

in analogy to Boltzmann distributed states in statistical physics with an e�ective inverse
temperature �. This approach will prove useful as it allows to rationalize the relative
abundance of observed cell packing states, shown in Figure 6.4.

Fitting the experimental angle distribution with this function yields �/ℓ� = 6.08 and
an e�ective temperature scale � = 6.0�−1ℓ−2. The theoretical distribution function is
represented by the solid black line in Fig.6.4 a.

As explained in section 6.2, three cells arrange into three classes of non-congruent
packing states: 3II , 3Y , and 3T . Using the value of the parameter �/� obtained from the
case N = 2 for calculating the energies of these states, the 3II state renders 10% lower
total energy than the 3T and hence the mechanical model predicts parallel ordering to
be more probable than T-shaped, in contradiction with experimental observations. The
assumption that cell states are only governed by cell-cell contact and contractility seems
to be too restrictive to describe the prevalence of T-shaped states.

A fundamental di�erence between the classes 3II and 3T is the aspect ratio of the
individual cells, which are very elongated in the 3II state and rather roundish in the 3T

state, see Fig.7.1 c. This and the fact that Huh 7 cells are cuboidal epithelium cells and
thus they natural phenotype should be isometric in vertical section, as depicted in Fig.2.1 b,
suggests that the current standard model should be extended to account for cell anisotropy.
De�ning the size-independent anisotropy of an individual cell as the normalized variance
of the eigenvalues �1,2 of the second moment of area, the standard model is extended by
an additional term proportional to cell anisotropy with elastic constant �:
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Figure 7.1: Mechanical model. a. The geometry of a cell packing is described by each
cell's perimeter P and the cell-cell contact line L. Both measure the contributing mechanical
forces. While cell cortex contractility promotes small perimeters P the opposing cell-cell
adhesion favors large cell-cell contact L. b. In the symmetric cell packing of two cells on
a square a single angle # gives the competition between minimal perimeter caused by cell
cortex contractility and maximal cell-cell contact line favored by cell-cell adhesion. The
resulting angle depends on the ratio of both contributions only. c. While in the 3II class
cells are highly elongated they are rather roundish in the 3T class. Only additional elastic
forces that counteract cell anisotropy are able to explain the dominance of the 3T class
consistently. d. Four cells on a square arrange asymmetrically with two 3-cell junctions
separated a distance � apart. The graphics for N=3,4 cells depict the maximal contact
state only.
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a b

c d

Figure 7.2: Cell anisotropy and energy landscapes of cell packing states in the
current standard and extended model. These graphs show the energy landscape as a
function of the angle # predicted by the current standard model, E1(#), and the extended
model, E2(#), as well as the contribution of the anisotropy term, Δ(#), for the classes 2II ,
4X� , 3

II and 3T . Note that although the qualitative behavior of the anisotropy is similar in
all cases, the scale is strongly di�erent.
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E =
N∑

i∈cells

⎧⎨⎩�P 2
i − �

∑
j∈�(i)

Li,j +
�

N

(
�i,1 − �i,2
�i,1 + �i,2

)2

⎫⎬⎭ , witℎ Ai = ℓ2/N = const. (7.4)

The eigenvalues of the second moment of area, �1,2, are calculated in Appendix B.
Notice that while positives � favors cell isotropy, negative � promotes an elongated cell

shape.
In order to obtain the mechanical parameters for the extended model, the distribu-

tion of 2II states is �tted again this time using Eq.7.4. The �tted distribution yields
�/ℓ� = 5.10, � = 2.1�−1ℓ−2 and �/ℓ2� = 2.0. and is represented by the dashed black line
6.4. A considerable small positive � renders parallel ordering less probable than T-shaped
one, in agreement with experiments. In addition, inside the 3T class, the energy values
predict increasing probability of the packing states with increasing angle, in agreement
with observations. Besides qualitative predictions, the model enables quantitative state-
ments, for example predicting

∑
P (E3II )/

∑
P (E3T ) = 0.2 and P (E3Y )/P (E3T

#=45∘
) = 1,

in agreement with the experimental distribution of states.
Turning to an arrangement of N = 4 cells, the validity of the extended model may now be

further tested. Remember, that as explained in section 6.2, the 4II states are not observed
experimentally, and four cells typically arrange in a distorted 4X class, the 4X� , where two
3-cell junctions are separated by a small distance �. Experimentally, a bimodal distribution
of 4X� states, with peaks centered around states with maximal cell-cell contact and states
with minimal perimeter is observed, see Fig.6.4 c. The current standard model predicts
parallel ordering 4II as the most stable con�guration, and between the 4X� states, as shown
in Fig.7.2 b, this model predicts a single stable state, characterized by maximal cell-cell
contact, for the measured �/�ℓ, as most probable. Thus, the current standard model is not
able to explain experimental �ndings. In contrast, the anisotropy term strongly disfavors
the 4II states, in agreement with experiments, and the extended model correctly captures
a bimodal distribution, since as can be seen in Fig.7.2 b, it energetically favors both
con�gurations, those with maximal cell-cell contact and those with minimal cell perimeter,
because both of them exhibit lower cell anisotropy.

Remarkably, the strongly peaked distribution of � distances centered around ⟨�⟩ =
0.12ℓ can neither be explained with the current standard model nor with the extended
model. Both models energetically support a 4-cell junction instead of the observed two
3-cell junctions. This suggests that the mechanical model is not yet complete and further
factors need to be incorporated. One intriguing hypothesis is to consider the statistical
weight of states, directly related to their statistical entropy, which would clearly favor two
3-cell junctions over the singular state of a 4-cell junction.
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7.2 Transitions between equivalent stable cell packings

In the last section, the stationary distribution of packing states according to a mechanical
energy landscape was described. This section is focused in the dynamics of the two cell sys-
tem. As outlined in section 6.2, a broad distribution of angles # was found experimentally,
which allowed the introduction of a statistical weight in section 7.1. Due to the rotational
symmetry of the adhesion patch, and the mirror symmetry of the two cells, the energy
function has eight equivalent minima, according to eight degenerate stable packing states
per patch. Time lapse microscopy revealed �uctuations between equivalent 2II states, see
Fig.7.3 a, where a 18h time lapse movie of a two cell arrangement is shown. In Fig.7.3 b
the time course of the cell contact angle, for �ve di�erent two cell systems is represented,
showing �uctuation around the mean angle and, in some cases, transitions between equiv-
alent states passing the corners of the adhesion patch. Fig.7.3 c shows the distribution of
angles over time, exhibiting a distinct maximum in each quadrant, which corresponds to
the mean angle extracted from the 2II packing ensemble shown in Fig.6.4 a and discussed
in the sections 6.2 and 7.1. The red line shows the predictions of the extended model. The
predicted probability of states matches experimental �ndings, only states with contact
lines extending from corner to corner, #= 45°, occur more often than predicted. The �tted
time distribution yields �/ℓ� = 5.12, � = 10.1�−1ℓ−2 and �/ℓ2� = 2.0. Remarkably, the
ratios �/ℓ� and �/ℓ2� agree with the previous considerations derived from the ensemble
distribution in section 7.1. However, the e�ective temperatures in the ensemble and time
average di�er. As both averages cover di�erent scales in time, the di�erence might well
re�ect distinct stochastic dynamics of the underlying cytoskeletal network.

7.3 Conclusions

The observation of distinct classes of highly regular homeostatic cell arrangements sug-
gested to employ the current model of cell mechanics in tissues. This model could not
explain the characteristic distribution of cell packing states for two, three, and four cells
on a square adhesion patch and was thus extended. An important feature of oligocellular
arrays is that the reduced degrees of freedom of the system allow for the full assessment of
the entire con�guration space.

The case of two cells is charming because it is characterized by the contact angle as the
single and easily quanti�able observable that serves to gauge parameters in a mechanical
model. While the case of two cells is still well described by the current vertex model [37],
[39], [40], [41], [42] the arrangement of three cells on a square is more evolved and adopts
more complex cell arrangements. Here, the enhanced abundance of T-states could not be
explained consistently within the current vertex model. The model was, hence, extended
by introducing an elastic cell anisotropy term. This extended model captures correctly the
abundance of the three cell fork state and the bimodal distribution of four cell states.

Another important aspect of the oligocellular array is that all homeostatic states in
the di�erent packing classes are subject to considerable �uctuations. The experimental
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Figure 7.3: Transitions between equivalent stable cell packings. Over the course
of time cell arrangements �uctuate around their stable state and also undergo transitions to
mutually equal stable states related by mirror symmetry along the diagonal of the square,
as shown by the time line of phase contrast micrographs a and by angle tracking in b. The
rotational and mirror symmetry of two cells on a square allows for in total eight equivalent
stable cell packing states. Following the time line of the angle the cell-cell contact line
encloses with the horizontal axis enables the quanti�cation of angle distributions c. The
observed distribution is in agreement with our extended model predictions, �t shown in
red. Scale bars correspond to 20 �m.
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distribution of states was �tted in analogy to the Boltzmann distribution and well cap-
tured. This yields an "e�ective temperature" as a measure for the strength of �uctuations.
For living cells the e�ective temperature can be attributed to stochastic dynamics of the
cytoskeleton mainly caused by the underlying activity of molecular motors. The mod-
eling approach suggests the intriguing hypothesis that these stochastic �uctuations are
strong enough to counteract the elastic forces, thus rendering 4-cell junctions non-existent.
However, the fact that internal cell structure could determine the distance between 3-cell
junctions can not be excluded. Probable candidates are elastic forces due to the presence
of cell nuclei in the proximity of cell contact lines.



Chapter 8

Collective cell migration

In general, an epithelium will not tolerate a free edge.

H. W. Rand, 1915 ([80])

In this chapter, experiments on Madin-Darby canine kidney (MDCK) cells on 75�m di-
ameter circular islands are described. Because of their reliably epithelial character, MDCK
cells are one of the most extensively used cell lines in epithelial cell biology and a major
model system for studying numerous epithelial functions. Surprisingly, MDCK cells seeded
onto circular adhesive islands do not relax into stable packing states, after a time, they
spontaneously start to rotate around the geometric center of the cell system in a coordi-
nated manner. The onset of coordinated cell rotation is a symmetry breaking event. In
this chapter, preliminary results regarding collective rotation are presented and symme-
try breaking events are investigated. The basis for a theoretical framework for modeling
collective cell rotation is proposed.

8.1 Introduction

8.1.1 Collective cell migration

During morphogenesis, tumor metastasis and wound healing, cells move together and co-
ordinately change their shape [81], [82]. These cells maintain strong cell�cell adhesion and
so the mechanic of these movements displays properties di�erent from those of individual
cells. Wound healing assays show that the existence of a free boundary triggers a shape
transformation in a subset of cells that become highly motile �leaders�. As seal, leading
cells are intrinsically bipolar, as their front faces the tissue substrate while their rear re-
gion remains engaged with neighboring cells [79]. Once leader cells are formed, they begin
moving outward, normal to the free boundary at a generally constant velocity. Behind
the front of cells, submarginal cells respond by moving collectively in complex patterns
that resemble the dynamics of a sheared viscous �uid, including the formation of vortices
with a diameter around 100 �m [75](see Fig.8.8). For a long time, the origin of the global
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motion, whether it is coordinated by `leader' cells pulling on cells behind or by internal
pressure due to cell proliferation and active migration of submarginal cells that would ex-
pand cell sheets outwards, remained an open question. Recent studies [81], [83] revealed
that the force generation necessary for wound closure is distributed from the wound edge
to a distance of at least several cell widths parting from this edge. Moreover, submarginal
cells were found to extend `cryptic' lamellipodia basally under cells in front of them and
crawl actively against the substratum while maintaining cell-cell contacts and apico-basal
polarity [83]. These results suggest the possibility that cells can sense their location in
a cell sheet and respond accordingly without being directly adjacent to the sheet edge.
Two possible explanations for positional sensing are that submarginal cells may be able
to generate force and initiate migration by sensing a lowered resistance to movement in
one direction, or that the presence of a free edge itself generates signals that submarginal
cells also receive. These two ideas are not mutually exclusive, and cells in a sheet may be
coupled both mechanically and chemically in terms of motility [81].

MDCK cells seeded in oligocellular arrays exhibit coordinated cell rotation and thus can
be employed to study collective cell movements under de�ned geometries. The patterned
substrate imposes arti�cially de�ned edges to small groups of cells which can be considered
as arti�cial wounds. The reduced degrees of freedom of the system and its de�ned geometry
allow to better characterize the collective motion of the cells and may help to better
understand collective cell migration during wound healing and morphogenesis.

8.1.2 Symmetry breaking in collective cell migration

Individual cells on a two-dimensional substrate intrinsically move in a random walk-like
fashion. For the emergence of collective cell migration, the isotropy of random walk motility
has to be broken and this involves at least a symmetry breaking event [84], [85]. Sponta-
neous symmetry breaking has already been observed in form of the coordinated rotation of
pairs of endothelial cells spatially constrained to an adhesive island. Theoretical modeling
showed that three minimal requirements are su�cient for collective rotation to occur:

� spatial constraint of migration

� a long persistence time of the random walk

� physical contact between cells(coupling)

8.2 Results

8.2.1 Collective rotation

Here, the collective motion of few cells con�ned in isotropic circular adhesive islands,
� = 75�m is investigated. Qualitative and quantitative aspects of the collective movement
are described. The objective is to answer simple questions such as:
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� does the collective rotation starts immediately after cell spreading?

� there are changes in the direction of rotation? If yes, when do they occur?

� do the rotating cells exhibit any special characteristics?

� is there a preferred direction of rotation?

� is the rotation velocity constant?

� is the rotation velocity dependent on the number of cells per island?

To answer these questions MDCK cells were monitored with time-lapse microscopy dur-
ing periods of time up to 75h. Experiments show that after a initial period of randomness
of around 24h, MDCK cells spontaneously start to rotate around the geometric center of
the cell system in a coordinated manner. Rotation can be clockwise and anticlockwise,
and also changes in the direction of rotation can occur, as depicted in Figure 8.1. These
changes are generally triggered by cell division but occasionally occur spontaneously and,
apparently, without external disturbance. Spontaneous changes in the direction of rotation
are generally preceded by a brief period of stillness. Huge lamellipodia, with a dimension
of several cell lengths, are observed to spread in the direction of rotation surrounding the
cell ensemble.

In Figure 8.2, an ensemble of four cells, constituted three marginal cells and a sub-
marginal cell, can be observed. Marginal cells exhibit highly polarized shape and well
developed lamellipodia, which are typical characteristics of leader cells [81], [75]. Time-
lapse microscopy reveals that for e�ective rotation in one direction, the lamellipodia of all
marginal cells have to extend simultaneously in this direction. For better visualization, on
the right picture spreading lamellipodia have been marked in black and the direction of
spreading is indicated by arrows.

In order to obtain quantitative statements, the position of the migrating cells relative
to its initial position was tracked. Figure 8.3 shows the time evolution of three MDCK
cells on a � = 75�m adhesive island. Taking the middle point of the adhesive island as
reference, the angle comprehended by the imaginary line that joints this point with the
cell nucleus relative to its initial position is represented. Figure 8.3 a shows the number
of turns against the time and Fig.8.3 b shows the same curves but the data have been
redimensioned to one turn for better visualization of the coordinated movement. In both
graphs, the time intervals in which cells divide have been marked in gray and changes in
the direction of rotation are indicated by arrows. In Fig.8.3 b it can be seen that initially
cells move in the same direction but still show some randomness. After 24h cells start to
rotate coordinately, with the same angular velocity and eventually changing the direction
of rotation simultaneously, as re�ected by the parallel straight trajectories. Three changes
in the direction of rotation, indicated by arrows, can be clearly identi�ed, two of them are
triggered by cell division and one occurs without external disturbance.

From a total of 191 observed adhesive islands where rotation arose, 31% rotated an-
ticlockwise, 54% clockwise and only 15% exhibited changes in the direction of rotation.
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Figure 8.1: Collective rotation. Time-lapse microscopy reveals that after a initial
period of randomness, MDCK cells spontaneously start to rotate around the geometric
center of the cell system in a coordinated manner. The phase contrast micrographs show
the collective rotation of an ensemble of seven cells on a � = 75�m adhesive island. In the
upper row, the cell ensemble rotates clockwise. The same ensemble rotates anticlockwise
in the bottom row. The change in the direction of rotation is preceded by a brief period
of stillness. Huge lamellipodia, with a dimension of several cell lengths, are observed to
spread in the direction of rotation during coordinated movement.

Figure 8.2: Marginal cells exhibit leader cell characteristics. In these micrographs,
three marginal cells and a submarginal cell are observed. Marginal cells exhibit highly
polarized shapes and well developed lamellipodia. For e�ective cell rotation all lamellipodia
have to extend together in the same direction. Spreading lamellipodia have been marked
in black and the direction of spreading is indicated by arrows.
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Figure 8.3: Time evolution of collective rotation. The time evolution of three
MDCK cells on a � = 75�m adhesive island is shown. a shows the number of turns against
the time and Fig.8.3 b shows the same curves but the data have been redimensioned to one
turn for better visualization. The time intervals in which cells divide have been colored in
gray. After a initial period of randomness coordinated cell rotation appears.
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This corroborates the fact that the coordinated migration is very robust. The velocity of
rotation seems to depend on the number of cells per adhesive island. In �gure 8.4, the
trajectory of one cell belonging to a group of two cells is compared to the trajectory of
a cell pertaining to a six cell group during one turn of coordinated rotation. Fitting the
trajectories to straight lines renders a constant average velocity of 1.5 °/minute for the two
cell system and 0.7 °/minute for the six cell system. Both velocities are well below the 3-6
°/minute observed for endothelial cells by Huang et al. [84].
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Figure 8.4: Rotation velocity depends on the number of cells per adhesive
island. A two cell system shows a constant average velocity of 1.5 °/minute. The six cell
is heavier and cells rotate with half this velocity.

8.2.2 Symmetry breaking events

In this section, the symmetry breaking events are investigated by means of time-lapse
microscopy. The behavior of single cells on circular adhesive islands of di�erent sizes is
studied.

Intrinsic symmetry breaking

A motile cell, which initially has a more or less round shape, can lose its symmetry sponta-
neously even in a homogeneous environment and start moving in random directions. This
involves an intrinsic symmetry breaking event, attributed to polarized forces generated by
the myosin motors in the cortical actin network [86], [85]. There are two mutually non-
exclusive hypotheses, distinguished by the source of polarity, to explain this directional
force. One is that the actin �lament substrate for myosin is intrinsically polarized and
the other is that asymmetry is provided by an extrinsic source of polarity, for example
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asymmetric cell adhesion. The fact that the actin substrate in already migrating cells has
intrinsic polarity has already been shown, but the strength of cell�substratum adhesions
and cell traction is also asymmetric in cells that have initiated migration and thus the
initial cause of asymmetry remains undetermined [85].

Here, GFP-actin expressing Huh 7 cells con�ned to � = 35�m islands are studied.
Epithelial cells constrained to such an island spread covering the entire surface and can
not migrate.

Figure 8.5: Single cell actin polymerization on a circular adhesive island. Cells
trapped in adhesive island which are smaller than themselves can not migrate. Actin
polymerization exhibits two distinct behavior phases. There is a polarized phase, where
the cell body is close to one edge of the adhesive island and lamellipodia are extended
in the opposite direction and an isotropic phase where lamellipodia are extended in all
directions.

Time-lapse microscopy reveals two di�erent phases of cell behavior, as depicted in
Fig.8.5. A polarized phase, in which the cell body is close to one edge of the adhesive
island and lamellipodia are extended only towards the opposite direction and an isotropic
phase, with the cell nucleus in the middle of the cell and lamellipodia being simultaneously
extended in all directions. Thus, it can be concluded, that as expected, there exists an
intrinsic asymmetry in the cortical actin network.

Directional symmetry breaking

In a second experiment, epithelial cells were constrained to � = 75�m adhesive islands,
which allow single cell migration. Time-lapse microscopy reveals again two alternating
phases of cell behavior, shown in Fig.8.6. In the isotropic phase, cells spread and try to
cover the entire adhesive area, moving slowly in a random walk-fashion, as shown in Figure
8.7 a.
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Figure 8.6: Single cell migrational behavior on a circular adhesive island. Time-
lapse microscopy reveals two alternating phases of cell behavior. The isotropic phase is
characterized by fully spread cells which move slowly in a random walk fashion. In the
polarized phase, cells exhibit clearly a typical migrating cell polarity, with a front and a
back, and move very fast. The barrier introduces a directionality in cell movement causing
the cell to move in a loop along one diameter of the circle for long periods of time.
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In the polarized phase, cells exhibit clearly a typical migrating cell polarity, with a front
and a back, and move very fast. Astonishingly, the direction of polarity is inverted in less
than 15 minutes after contacting the edge of the adhesive island. Cells are re�ected by
this �barrier�, what introduces a directionality in individual cell motion, which losses its
isotropic character. The re�ected cell moves in the opposite direction of the encountered
barrier and becomes trapped during long periods of time in a cyclic movement along one
diameter of the circle. This oscillatory behavior is captured in Fig.8.7 b. Cell velocities
reach amazingly values, close to 16 �m/minute, during this phase. For comparison, �brob-
lasts move at up to 1 �m/minute [87], enhanced myoblast migration (almost 3 times faster
than normal) reaches also 1 �m/minute [88] and MDCK cells migrating at the leader edge
of a wound reach maximal velocities of 0.3 �m/minute [89]. Since the presence of an edge
have been shown to be in itself a signal that causes activation of the epidermal growth
factor receptor [90], which in many epithelia is a central event in induction of motility, this
cell behavior could be explain as a feedback loop.

Edge-induced symmetry breaking

In chapter 6 it was evidenced that the presence of an edge triggers cell polarisation in
the plane of the epithelium. For the establishment of this polarization it is necessary that
both, neighbor cells and a free side are present. This supposes a third symmetry breaking
event.

8.2.3 Planar cell polarity, edges and collective movements

Here two possible not mutually exclusive causes for biochemical positional sensing are
proposed. First, as already mentioned, the presence of an edge in itself generates a signal
that causes activation of the epidermal growth factor receptor, EGF, [90] which in turn is a
central event in induction of cell motility. Positional sensing could thus also be explained
in terms of a gradient of epidermal growth factor that is produced by marginal cells and
di�uses inside the tissue inducing cell motility in submarginal cells. Second, it has been
shown that the presence of edges triggers polarization in the surface plane. This polarizing
signal could be transmitted from the border cells to submarginal cells, which become
accordingly polarized, in analogy to planar cell polarity signaling (PCP) (see section 2.1.7).
The polarizing signal triggered by the presence of a free edge would be then responsible for
positional sensing in submarginal cells and cell migration beginning. Theoretical modeling
of PCP [31] has shown that starting from a randomly distributed PCP con�guration,
defects in the form of vortices remain after system equilibration. Figure 8.8 b shows the
equilibrated system of polarity vectors and its striking similarity with the velocity �elds
of migrating cells in a wound healing assay, depicted in Fig.8.8 a. The wound induces
cell polarization in the direction perpendicular to it and cells start to move outwards in
this direction (parallel or antiparallel to the direction of polarization). If the tissue was
initially not polarized or polarized in another direction, polarization has to be reordered to
point in the direction of the new polarizing signal, and defects appear in form of vortices,
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Figure 8.7: Symmetry breaking by con�nement. Graphs representing the coordi-
nates of cell movement versus the time. Constriction of cell migration breaks the symmetry
of the cellular random walk, shown in a and introduces a directionality in cell migration.
The cell moves in opposite direction of the encountered barrier. Being con�ned in a circle,
cell movement becomes cyclic, with the cell moving in a loop along one perimeter of the
circle during long periods of time, as shown in b.
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in analogy to Fig.8.8 b. This vortices could explain the vortices observed in the velocity
�elds of migrating cells in wound closure assays. The fact that epithelial wound repair is
regulated by the PCP signaling pathway [91] supports this hypothesis.

a b

Figure 8.8: Velocity and planar polarity vector �elds in epithelia. a Repro-
duced from [75],Copyright (2007) National Academy of Sciences, U.S.A. The experimental
velocity �elds obtained in wound closure assays exhibit stricking simmilarities with the
distribution of planar polarity vectors obtained from theoretical modeling of PCP starting
from a randomly distributed con�guration [31], shown in b.

This hypothesis can be used to explain the onset of rotation in circular adhesive islands
and the extension of huge lamellipodia in the direction of rotation. Cells in small circular
islands receive to opposite polarizing signals, the one generated by the presence of the edge
and one transmitted by the neighboring cells, which points in the opposite direction, as
sketched in Fig.8.9 for the case of two cells. Each cell responds to this signals trying to
move in the correct position, between the edge and the neighbor cell and creates a vortice
which is unstable.

Figure 8.9: Opposite polarizing signals could be responsible for collective rota-
tion. Cells in small circular islands receive to opposite polarizing signals, the one generated
by the presence of the edge and one transmitted by the neighboring cells, which points in
the opposite direction. Each cell responds to this signals trying to move in the correct
position, between the edge and the neighbor cell and creates a vortice.
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8.3 Conclusions

In this chapter, the collective rotation of MDCK cells in circular adhesive islands has been
studied. It has been shown, that cells rotate with constant velocity which depends on
the number of cells per island, decreasing with increasing number of cells. Changes in
the direction of rotation occur mostly in correspondence with cell division events but can
also occur spontaneously. Spontaneous changes in the direction of rotation re�ect the fact
that oligocellular tissues are subjected to considerable �uctuations, as it was shown in
chapter 7. In this chapter, the strength of these �uctuations was captured as an "`e�ective
temperature"' of the cell system.

Three symmetry breaking events have been identi�ed: the intrinsic asymmetry the
cortical network, a contact-induced persistence of cell migration and cell polarization in
the plane of the epithelium, manifested by the position of the cell nucleus.

Two possible not mutually exclusive mechanisms of biochemical positional sensing have
been proposed. In one hand, the polarizing signal generated by the edge could be transmit-
ted from cell to cell, in analogy to PCP, giving positional information to submarginal cells
in wound healing assays and being the origin of collective rotation in circular oligocellular
tissues. In the other hand, a gradient of epidermal growth factor, produced by marginal
cells and di�using inside the tissue, would also give positional information to submarginal
cells and could induce cell motility several rows behind the wound. The combination of this
two mechanisms would assure that each cell in the tissue receives positional information
but the signal inducing motility, in form of a EGF gradient, is damped far away from the
wound.

In order to validate these hypothesis, further experiments and theoretical model are nec-
essary. Theoretical modeling should take in account all possible mechanisms of positional
sensing mentioned here. Submarginal cells may sense a lowered resistance to movement in
one direction and/or biochemical signaling in form of PCP signaling or epidermal growth
factor gradients could give directional information. Theoretical model of PCP already ex-
ists in the form of vertex [31] and reaction di�usion [92] models. These models are for
equilibrium systems and should be adapted for dynamic systems with adequate boundary
conditions. Experiments with cells expressing GFP-tagged proteins involved in polarization
processes would help to discern if actually the polarizing signal triggered by the presence
of edges per se can be transmitted from cell to cell. It would be interesting to �nd out the
range of action of this polarizing signal. This task could be accomplished using adhesive
islands of increasing size and cell expressing proper GFP-tagged proteins.

While in the last chapter, human hepatocarcinoma cells, Huh 7, relaxed into stable
packing states, here, MDCK cells contradictorily exhibit collective rotation. Since theoret-
ical modeling showed that cell-cell coupling is a minimal requirement for the establishment
of collective rotation [84], the di�erences in the behavior of these cell lines could be ex-
plained in terms of di�erences in cell-cell adhesion. Cancer cells are known to exhibit less
cadherin expression and thus the level of cell coupling may be insu�cient to e�ciently
promote collective movements.



Chapter 9

Cellular self-organisation in single cell

arrays

In this chapter, for the �rst time, the fascinating possibility of creating a single cell array
by cellular self-organisation is explored. Cellular self-organisation on a patterned substrate
requires that if well adhesive islands are preferred for permanent adhesion cells can still
migrate over the repellent parts of the pattern. In chapter 6, hydrophilic/ hydrophobic
patterned PDMS was proved to be an optimal substrate for this task. Here,�CP is applied
in order to create alternative patterned substrates accomplishing these characteristics.

9.1 Introduction

Single cell arrays are interesting because they enable to quantify the distribution of behav-
iors amongst a population of individual cells under uniform conditions. This is important
because parameters that are measured as averages of large populations can be mislead-
ing. For instance, an apparently linear response to a signal could, in fact, re�ect an
increasing number of cells in the population that have switched from �o�� to �on�, rather
than a graded increase in response by all the cells [93]. Gene expression, for example,
involves a series of single molecule events and belies a deterministic description. As each
of these molecular events is subject to signi�cant thermal �uctuations, gene expression
is best viewed as a stochastic process. Even in cases where population measurements are
regular and reproducible, single-cell measurements display signi�cant heterogeneity [4], [2].
Another advantage of single cell arrays is that automated image analysis becomes much
easier, since cells are con�ned to predetermined positions and exhibit �xed shapes enabling
high-throughput analysis of single cell behavior.

The most common approach to generate a single cell array on a previously microstruc-
tured surface is to seed cells in excess onto it. After a short incubation time, the pattern is
rinsed in order to eliminate overabundant cells. The di�culty lies in adjusting the initial
concentration of cells, so that after the washing process only one cell per adhesive spot
is left. Due to the stochastic nature of the sedimentation process, the initial distribution
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of trapped cell numbers per adhesive island is highly dependent on cell seeding density.
Studies using single cell array systems have shown that the numbers of trapped cells per
adhesive spot follow a Poisson distribution [94] and that not more than 40% of the adhe-
sive spots are occupied by single cells. So, the single cell array results in a combination
of adhesive islands containing a broad distribution of numbers of cells, as shown in Figure
9.1. A possible choice to the rinsing method would be positioning every single cell of the
array onto the correspondent adhesive island by means of inkjet printing. Here, for the �rst
time, substrates that promote cellular self-organisation in single cell arrays are created.

Figure 9.1: Single cell array. Due to the stochastic nature of the sedimentation process,
seeding cells in excess onto a patterned surface leads to a broad distribution of numbers of
cells per adhesive island.

9.2 Musical chairs: single cell arrays by cellular self-

organization

In chapter 6 it was demonstrated, that cells con�ned to the adhesive parts of a patterned
PDMS surface are able to crawl over the hydrophobic areas if they are expulsed from the
adhesive islands. This substrate property is rare and simultaneously charming. It is rare,
because cells are not fussy and if the surface o�ers a minimal chance for adhesion, cells will
adhere to it. It is charming because it invites to play musical chairs with cells and study
their self-organisation on the substrate, as well as to explore novel surface modi�cations
which support cell crawling but not permanent cell adhesion. Figure 9.2 shows a sequence
of pictures illustrating self-organisation of cells on a structured PDMS substrate. Free
standing �chairs� have been outlined in white and the directions of cell migration have
been marked with arrows.

Obviously, there are two critical parameters when creating a single cell array by cellular
self-organisation. First, the size of the adhesive islands has to be tuned so that the provide
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Figure 9.2: Self-organisation of cells on a structured PDMS surface. When
adhesive islands become overpopulated, super�uous cells are expulsed and migrate towards
empty islands self-organizing into a more ordered array.

enough space for one cell but still super�uous cells are expulsed from it. Second, as
mentioned above, the non-adhesive parts of the pattern must support cell crawling but
not permanent cell adhesion. Non-treated, medium-exposed hydrophobic PDMS proves to
be an optimal substrate for this task. However, there are not commercial available grids
which render the optimal size of the adhesive islands for single cell assays, experimentally
found to be ≈ 30�m, and �CP patterning techniques must be applied at this point. The
problem would be immediately solved if it was possible to print �bronectin islands on
a native PDMS substrate. Nevertheless, repeated experiments showed that in order to
achieve reproducible good quality �bronectin patterns on a PDMS surface, this surface
has to be slightly hydrophilized. This is enough to support permanent cell adhesion and
destroy the cell patterns a short time following cell adhesion. For this reason, the PDMS
surface has to be passivated with a back�ll. A serie of experiments was carried out in
order to �nd a back�ll that supports cell migration but is rejected against �bronectin for
permanent adhesion. The results of these experiments are summarized in table9.1. For
example, a BSA back�ll exhibited initial cell con�nement to the �bronectin islands but cell
spreading over the back�lled areas after 18h. With a PLL back�ll, cells showed the same
a�nity for the �bronectin stamped and the PLL back�lled ones. A mixture of Pluronic®

F-127 and �bronectin, used as back�ll with the �nality of introducing sparsely distributed
adhesion cues all over the passivated surface in order to facilitate cell migration, displayed
no di�erences when compared with the pure Pluronic® back�ll. Finally, a mixture of
Pluronic® with a 0.05% PLL rendered a back�ll with the desired features.

As proof of principle, �gure 9.3 shows a single cell array on such a surface, with 30�m
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Figure 9.3: Self-organisation of cells on a �bronectin printed surface with
Pluronic®/PLL back�ll. Huh 7 cells were seeded on 30�m printed �bronectin islands.
After initial adhesion on the �bronectin islands (a), cells start to migrate and self-organize
on the surface. With increasing time, the array becomes more ordered. Notice the di�er-
ence between 2h, b and 24h, c
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Back�ll Concentration Adhesion Migration
BSA 0.2/2/10 mg/ml yes yes
Casein 10 mg/ml yes yes
PLL 50 �g/ml yes yes

Plu F-127® 0.5/1/2 mg/ml no no

Plu F-127®+BSA 1/0.5 mg/ml + 10 mg/ml no no

Plu F-127®+FN 10 mg/ml + 2.5 �g/ml no no

Plu F-127®+PLL 10 mg/ml + 1.25 �g/ml no no

Plu F-127®+PLL 10 mg/ml + 5 �g/ml no yes

Table 9.1: Summary of the results obtained for di�erent back�ll strategies

printed square �bronectin islands and Pluronic®/PLL back�ll. In Fig.9.3 a, it can be seen
that cells initially adhere to the �bronectin islands. We found islands with one, two or three
cells. Super�uous cells, such as those marked with yellow circles, start to migrate looking
for empty islands. After two hours, there is already some degree of self-organisation, as can
be observed in Fig.9.3 b. After 24h, Fig.9.3 c, the number of occupied islands is notably
increased.

9.3 Conclusions and outlook

In this chapter, it has been demonstrated that it is possible to tune the adhesive properties
of a patterned surface in order to create a single cell array by cellular self-organisation. In
order to standardize the assay, further parameters, such as initial cell concentration and
distance between adhesive islands must be adjusted. In future work, it would be interesting
to establish the adequate magnitudes to describe such a system. For example, an order
parameter, S, can be de�ned to characterize the degree of organization of the system. A
possible de�nition of the order parameter is:

S =
No −Ni

No +Ni

(9.1)

. being No the number occupied adhesion islands and Ni the number of interstitial cells.
Given that the adhesive and non adhesive surfaces have the same area, this parameter

would be zero at the beginning and increase as cells seek adhesive islands and occupy them
while the number of interstitial cells decreases. It is expected to reach a maximum, after
which the system becomes again disordered, since the number of cells increases steadily
due to cell division and the number of adhesive islands remains constant. The number of
occupied adhesive islands can be captured in a occupation number, de�ned as �o = No/N ,
being N the total number of adhesive islands. Such magnitudes would permit to apply
statistical analysis in order to describe the system.



80 9. Cellular self-organisation in single cell arrays



Chapter 10

Multifunctional spatially controlled

patterning

In chapter 5, �PIP technique was re�ned rendering an easy, fast and reproducible method to
achieve patterned hydrophobic/hydrophilic substrates. Major inconvenients of this method
are that the features of the pattern are limited to the availability of grid masks, and that
the surface modi�cation of the adhesive island can not be controlled. In this chapter,
new experimental approaches which enable better control of both, surface modi�cation
and pattern features are developed. For the �rst time, multifunctional patterned surfaces
consisting of three di�erent surface functionalizations are fabricated.

10.1 Plasma induced patterning with back�lling

In this section, the back�lling technique, usually applied after �CP, is utilized to improve
�PIP. The �rst goal is to passivate the hydrophobic parts of the patterns and in this way
gain control over the surface modi�cation of the hydrophilic ones. The best alternative to
passivate an hydrophobic background are Pluronic® block copolymers [71]. These consist
of ethylene oxide (EO) and propylene oxide (PO) blocks arranged in a basic A�B�A struc-
ture: EOx�POy�EOx [95]. Figure 10.1 depicts the working principle of this technique.
The hydrophilic/hydrophobic patterned surface is incubated with a PLL solution, which
adsorbs only to the hydrophilic negatively charged parts of the pattern. The hydrophobic
parts of the pattern are then back�lled with Pluronic® F-127, to block unspeci�c attach-
ment of proteins and cells to them. The �uorescence micrograph shows an example of
selective adsorption on hydrophilic/hydrophobic patterns. In this case, the pattern is fur-
ther incubated with a Cy5 labeled plasmid DNA solution, which attach only onto the PLL
squares and produces the registered �uorescence signal.

This method is however not adequate to create adhesive squares modi�ed with ex-
tracellular matrix proteins, such as �bronectin and collagen, since they preferentially ad-
sorb to hydrophobic substrates. Thus, a back�ll which adsorbs to hydrophilic surfaces is
needed. A good candidate is poly-L-lysine grafted PEG (PLL-g-PEG). PLL-g-PEG is a
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Figure 10.1: Microscale plasma induced patterning with Pluronic® F-127 back-
�ll. An hydrophilic/hydrophobic patterned surface is created by �PIP using a TEM grid
as a mask. The substrate is incubated with PLL, which selectively adsorbs onto the hy-
drophilic negatively charged parts of the pattern. The rest of the pattern is passivated with
Pluronic® F-127. The �uorescence micrograph shows PLL adsorption con�ned to the hy-
drophilic squares, back�lling with Pluronic® and posterior adsorption of a Cy5-labeled
plasmid on the PLL squares. Scale bar corresponds to 100 �m
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graft copolymer composed of PEG chains grafted onto a polycationic PLL backbone. It
is spontaneously attracted to negatively charged surfaces as a result of the polycationic
PLL backbone, which acts as anchoring group through electrostatic interactions with the
surface, while the PEG side chains stretch into the bulk aqueous solution to generate
a brushlike conformation, acting a passivating agent [96]. Using PLL-g-PEG as back�ll
enables not only the control over the surface modi�cation but also the control over the
pattern features. To create a pattern of �bronectin squares with a PLL-g-PEG back�ll
we need to protect the squares from the plasma and expose the rest of the pattern to it.
Obviously, this can not be achieved with a TEM grid as mask, but we can use a PDMS
stamp. The squares in contact with the surface, protect it from the plasma, while the open
structure enables the plasma access to the space between the squares, rendering them hy-
drophilic. Figure 10.2 depicts this method and shows a �uorescence micrograph as proof
of principle. First the PDMS stamp is brought in contact with the substrate. After oxygen
plasma exposure, the squares remain hydrophobic and the rest of the surface is rendered
hydrophilic. Since it is known that PLL-g-PEG can also adsorb onto hydrophobic sub-
strates, mainly due to the hydrophobic interaction between the PLL backbone and the
surface [96], [97], the stamp is left in place during PLL-g-PEG adsorption. The PLL-g-
PEG solution is micromolded, adsorbing exclusively to the hydrophilic negatively charged
parts of the pattern. Then the pattern is incubated with the protein of interest,in this
case Alexa�uor488-Fibronectin, which adsorbs only on the hydrophobic squares, as can be
seen in the �uorescence micrograph. In this case an hydrophobic Topas substrate was used
instead of PDMS.

10.2 Multifunctional spatially controlled patterning

In the last section, improvements to the �PIP technique introduced by Langowski [73]
which enable complete control over the characteristics of the patterned surface, such a size
and shape of the adhesive islands and surface modi�cation, have been introduced. However,
the patterned substrates still present a restriction: only two di�erent surface modi�cations
can be produced. At this stage, one can think of taking advantage of the use of stamps as
protective masks for the plasma treatment to bring an additional surface modi�cation on
the substrate, as illustrated in �gure 10.3.

The hearth of this method is to combine �CP and �PIP to create substrates with
three di�erent surface modi�cations. For this task, stamps where only the edges of the
adhesive islands have contact with the substrate, as those shown in �gure 10.3 (in this
case for squares), are needed. The stamp is incubated with one kind of ECM protein.
When the stamp is put onto the substrate, it simultaneously performs two funtions, to
print the protein and to protect the inner parts of the squares from the plasma treatment.
At this point, three di�erent kinds of surfaces have already been created, the hydrophilic
one, the hydrophobic one and the one coated with protein. Now, PLL-g-PEG is adsorbed
to the hydrophilic parts of the pattern (as back�ll) and a second protein of interest is
now be adsorbed to the empty hydrophobic parts of the pattern. As proof of principle, the
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Figure 10.2: Microscale plasma induced patterning with PEG-g-PLL back�ll.
In this approach the hydrophilic parts of the pattern are passivated with PEG-g-PLL
and the hydrophobic parts are functionalized with Fn for cell adhesion. A PDMS stamp
is used as a mask for plasma treatment in order to create an hydrophilic/hydrophobic
pattern on the surface. Leaving the stamp at place, to avoid PEG-g-PLL adsorption on
the hydrophobic squares, the hydrophilic parts of the pattern are passivated with PEG-g-
PLL. After stamp removal, the substrate is exposed to the protein of interest. As proof
of principle, the �uorescence micrograph shows a patterned surface functionalized with
Alexa�uor488-Fibronectin.
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Figure 10.3: Ternary substrates. �CP and �PIP are combined to create a patterned
substrate with a three-fold surface modi�cation. The PDMS stamp used as protective
mask is designed such that only the edges of the adhesive islands touch the substrate.
This stamp is incubated with the protein of interest and deposited onto the substrate.
It accomplishes two functions, simultaneously printing the protein at the edges of the
adhesive spots and protecting their interior from plasma treatment. Without removing
the stamp, the hydrophilic surface is passivated with PEG-g-PLL. After stamp removal,
the substrate is exposed to a second protein which will adsorb only to the empty parts of
the pattern. The �uorescence micrograph shows ternary substrates constituted by printed
Cy5-pEGFP-N1 plasmid at the edges of adhesive circles and Alexa�uor488-Fibronectin
circles.
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�uorescence micrograph shows a ternary substrate fabricated in this way. In this case, Cy5-
pEGFP-N1 plasmid was printed at the edges of the circles and Alexa�uor488-Fibronectin
was adsorbed on the hydrophobic areas.

Such ternary substrates represent an important improvement of micropatterning tech-
niques and could for example be exploit to discern the role that di�erent distributions of
ECM components have on cell shape, function and internal structure.



Chapter 11

Conclusions and outlook

Within this thesis, novel approaches to study several aspects of the biophysics of the cell,
including particle internalisation, gene expression, cell mechanics and collective cell migra-
tion, and new strategies to engineer the cell microenvironment have been developed. It
has been established that de�ned cellular microenvironments not only reduce experimental
variability but improve the capability of quantitatively measure cellular responses. For
example, taking in account the colloidal nature of NPs and separating particle preparation
from cell exposure, it was possible to generate controlled distributions of particles and at
the same time to establish a reference surface for to monitor NP uptake. By imposing
de�ned boundary conditions to small groups of cells it was possible to study phenomena,
such as relaxation into stable packing states and collective movements, that don�t appear
at the single cell level and are too complex to analyze at the full tissue level. Oligocellular
arrays make theoretical modeling amenable and the knowledge gained with them can help
to understand cell behavior at the full tissue level.

Oligocellular arrays also represent an important advance towards more physiological
assays with reduced cell-to-cell variability and for this reason, in future experiments, the
surface controlled approach and the oligocellular arrays will be combined in order to create
standardized nanotoxicity assays.

Single cell arrays can also be combined with surface controlled gene delivery in order
to create an experimental platform in which all cells are exposed to uniform experimental
conditions and in which automated image analysis is much easier, since cells are con�ned to
predetermined positions and exhibit �xed shapes. This may be the basis for future single
cell high-throughput assays.

Ternary substrates open a new �eld of experimentation, because more physiological and
de�ned substrates can be created. An intriguing possibility is to create arti�cial ordered
tissues, with all cells in the same �state� but all in contact throughout the culture, as shown
in Fig.11.1. Cadherin could be printed at the edges of �bronectin hexagons, creating a
substrate that encodes information for cell packing mimicking natural packing in epithelial
sheets. The seeded on this microenvironment will receive cues from the substrate that
signal the possible presence of neighboring cells. It is to expect that in the presence of
other cells, they respect these signals and arrange in the con�gurations encoded by the
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substrate.

Cadherin Fibronectin Cell

Figure 11.1: Arti�cially ordered tissue. The information needed for cell packing
could be encoded in the substrate, in form of a regular pattern of cadherin and �bronectin.

Another possibility would be to discern the roles of cell-cell and cell-substrate adhe-
sion sites play in cell shape and structure making use of engineered substrates in which
cadherin/�bronectin patterns are inverted, as shown in Fig.11.2.

Cadherin

Fibronectin

Figure 11.2: Structural role of cell-cell and cell-substrate adhesions
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Appendix A

Standard procedures

A.1 Cell culture

Cells were grown in medium supplemented medium in a humidi�ed atmosphere, at 37°
with 5% CO2 level. Cells were maintained at 85% con�uence, trypsinized, washed with
PBS, re-suspended in cell medium and counted using a Neubauer counting chamber.

Cell line Organism Tissue Medium Supplements
Huh 7 human liver MEM-F12 10%FBS, 5 mM L-Glutamine
MCDK canine kidney Earle's MEM 10%FBS, 4 mM L-Glutamine
Beas 2B human lung Earle's MEM 10%FBS, 4 mM L-Glutamine

Table A.1: Summary of cell lines used in this work

A.2 Microscopy

NP internalization was studied using a Simple PCI (Compix) controlled motorized inverted
microscope equipped with a temperature-controlled mounting frame. Illumination was
generated using a mercury light source (HBO 100).

The rest of the images were acquired using a motorized Nikon Eclipse Ti microscope
equipped with a temperature-controlled mounting frame, 10x, 20x, 40x and 100x Plan
Fluor objectives, a CCD monochrome camera and a programmable stage. Acquisitions
were controlled through �-Manager open source software. Fluorescence illumination was
generated using an Intensilight lamp.

Fluorescent signals were detected using �lter sets given in table A.2.

For living cell image acquisition, the temperature of the mounting frame temperature
was set to 37°C and supplemented CO2 independent Leibovitz�s L15 cell culture medium
was used.



92 A. Standard procedures

Fluorophore Excitation Re�ector Emission
GFP BP470/40 FT495 BP525/50
DAPI BP360/40 400DCLP BP360/50
QDot BP435/40 FT510 BP655/15

Table A.2: Filter sets used in this work

A.3 �-slide coating

When needed, �-slides were pre-coated with collagen type I, PLL or �bronectin prior to
use. Brie�y, 30 �l of stock solutions (Collagen, 40 �g/ml diluted in 0.2% acetic acid, PLL
0.1 mgr/ml and �bronectin 50 �g/ml) were added into each channel and adsorbed during
one hour. Channels were then rinsed thrice with Millipore water.

A.4 Cell nuclei staining

Cells were �xed during 20 min with 10% of formaldehyde in cell culture medium and rinsed
thrice with PBS bu�er. Then, they were incubated 5 min in a 2 �g/ml 4'6-diamidino-2-
phenylindole (DAPI, Sigma) in PBS and rinsed again thrice with PBS bu�er.

A.5 Experiments with NPs

A.5.1 Nanoparticle characterization

Core size and shape were determined with TEM. NPs were adsorbed onto a Formvar/Carbon
�lm-coated grid and observed with a Jeol 1011 TEM. NPs are monodispersed and oval,
with a mean size rTEM = (4.8± 0.5) nm. Hydrodynamic radius and agglomeration states
were studied with FCS. The confocal volume was calculated using a Rhodamine 6 G solu-
tion. The measured di�usion time was �d = (495 ± 12)�s, giving a hydrodynamic radius
rℎ = (14.9± 0.4) nm for the QDs in water.

A.5.2 Preparation of surfaces with a certain amount of well dis-

persed NPs

Closed channeled chambers (�-slides VI and I, ibidi-GmbH) are used to avoid the meniscus
e�ect and obtain a homogeneous distribution of NPs and cells. These chambers also allow
bu�er interchange, drying e�ect elimination, and subsequent NP distribution irregularities.
The surface is comparable to standard cell culture �asks and Petri dishes. To achieve a
homogeneous distribution of single NPs, a very thin NP solution (c <100 pm) is needed.
Starting from the initial concentration (7.4 �m), successive NP solutions are prepared (until
1 nm) in PBS bu�er without ions. A last dilution is made with PBS containing Ca++ and
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Mg++ ions to help NP settling. 30 �l of this �nal NP solution are introduced into each
channel. An incubation time of 30 min and a 15 pm solution are needed for a standard NP
density of 0.5 NPs/�m2. Channels are rinsed thrice with PBS prior to use. Under these
conditions, the number of adsorbed NPs is proportional to the concentration of NPs (see
Fig.3.4).

A.5.3 NP exposure assay

Beas-2B cells were re-suspended in supplemented MEM to achieve a concentration of 104

cells/ml. 30 �l (100 �l) of this cell suspension was added to each channel in �-slides VI (I).
After 10 min, enough medium was added to �ll the reservoirs. Cells were then incubator
at 37 °C in a humidi�ed atmosphere, 5% CO2 level until image acquisition. For time-lapse
experiments, cells were placed in the incubator for 30 min to allow them to attach to the
surface. Then medium was removed and CO2-independent medium, L-15 (10% FBS), was
added. Cells were immediately placed on the microscope stage at 37 °C.

A.5.4 NP surface dependent uptake

Particles were adsorbed onto bare surfaces and surfaces pre-coated with PLL or collagen.
GFP-expressing BEAS-2B cells were seeded onto the surfaces and incubated overnight at
37 °C in a humidi�ed atmosphere, 5% CO2 level. Two channels per surface type were
prepared and the number of internalized NPs was counted for �ve randomly-selected cells
per channel. Before imaging, channels were rinsed once with PBS and fresh L-15 medium
was added.

A.5.5 NP time-dependent uptake

NPs and cells were prepared as described. Images were acquired during 24 h with a time
interval of 30 min.

A.6 Sample preparation for TEM

Cells were seeded in Transwell membranes with a concentration 4 ∗ 104 cells/well. After
cell spreading they were incubated with NPs.

Day 1: Fixation

3x rinsing with cacodylate pu�er 0,1M pH 7,2.

1x Karnovsky, samples are left overnight in cacodylate bu�er at 4°C.
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Day 2

3x 15 min rinsing with cacodylate bu�er pH 7,2.
Cells are left overnight in cacodylate bu�er to eliminate the glutaraldehyde.

Day 3: Contrasting

The membranes are cut in pieces and stored in labeled eppendorf tubes.
Mix 1:1 :4% Osmium tetroxid and 0,2M cacodylate bu�er(store this solution at 4°C)
Make 3% Kaliumferrocyanide in 0,2M caco bu�er (3 gr/ 100 ml)
Mix both solutions 1:1, it will become brown. Cells are incubated 2h in this solution.
3x 15 min rinsing with cacodylate bu�er 0,1M
Cells are left overnight in cacodylate bu�er at 4°C.

Day 4: Dehydration and �rst embedding

At room temperature and on the shaker
30% Ethanol 20 min.
50% Ethanol 20 min.
75% Ethanol 20 min.
95% Ethanol 30 min.
3x 100% Ethanol 30 min.
2X Propylene oxide 15 min.
2:1 Propylene oxide/resin, 60 min.
1:1 Propylene oxide/resin, overnight.

Day 5: Embedding

At room temperature and on the shaker:
Warm the resin 5 min at 60-70°C.
100% resin, 60 min.
Samples into embedding forms with resin. Bake two days in the oven at 60°C .

A.7 Patterning Protocols

A.7.1 Plasma initiated patterning

We use the patterning technique reported by Hsieh et al.[74] with some modi�cations.
PDMS (Sylgard 184, Dow Corning, Midland, MI, U.S.A.) was prepared in a 10/1 w/w
ratio. The mixture was stirred and degassed for ten minutes. This mixture was spin
coated on an Ibidi �-slide (Ibidi-GmbH, München, Germany) at 2000 rpm for 10 s followed
by 4000 rpm for 30 s. The coated slides were degassed again and the PDMS was cured
in the oven overnight at 50°C. The copper TEM grids were pre-exposed to water vapor
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for 30 s, to create a water bridge between the grid and the PDMS surface as described by
Andruzzi[98], and immediately placed onto the PDMS surface. The samples were exposed
to low pressure oxygen plasma for 2 min (40W 5 cm3/min at 25°C and 2 bar, Femto,
Diener) and, afterwards, sonicated 1 min in 80% ethanol to remove the copper grids and
3 min in water to clean them. Samples were sterilized in 80% ethanol, submerged 15 min
in sterile Millipore water to remove ethanol residues and used immediately. In contrast
with the results obtained in [74], the sample regions that were protected from the plasma
remained hydrophobic while the rest of the sample became hydrophilic, as we expected.

A.7.2 PDMS stamp preparation

PDMS is prepared in a 10/1 w/w ratio. This mixture is stirred, poured onto the silicon
master and degassed for ten minutes. Then, it is baked during 45 minutes at 80°C or
overnight at 50°C.

A.7.3 Microcontact printing

Fibronectin printing on PDMS

First the PDMS stamps are sonicated in ethanol during 20 min and then dried with N2. The
clean stamps are then hydrophilized by 15 min exposure to UV/Ozone or alternatively 30
sec exposure to oxygen plasma (40 W). A drop of �bronectin solution, 25 �gr/ml in H2O is
placed onto the stamp and incubated during 1h. The �bronectin solution is then aspirated
and the stamp dried with N2. The spin coated PDMS substrate is slightly hydrophilized by
8 min exposure to UV/Ozone. The stamp is then carefully placed onto this substrate and
the edges of the stamp are lightly pressed with the tweezers. After two or three minutes
the stamp is carefully removed avoiding further contacts with the substrate.

Fibronectin printing on uncoated �-dishes

Prior to use the PDMS stamp is silanized with per�uorooctyltrichlorosilane. The silanized
stamp is sonicated in ethanol during 15 min and then dried with N2. Then it is incubated
during one hour in a �bronectin solution (25 �gr/ml in H2O), washed once with PBS and
let dry. The coated stamp is carefully placed on the �-dish and the edges of the stamp
are slightly pressed with the tweezers. After two or three minutes the stamp is carefully
removed avoiding further contacts with the substrate.

A.7.4 Back�ll with Pluronic® F-127

For the back�ll the printed substrate is incubated with a Pluronic F-127 solution (10 mg/ml
in H2O). The substrate is then washed three times with PBS.
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A.7.5 Plasma induced patterning with PEG-g-PLL back�ll

A PDMS stamp is placed on a �-dish and exposed to low pressure oxygen plasma for 2
min (40W 5 cm3/min at 25°C and 2 bar, Femto, Diener). Prior to stamp removal, the
hydrophilic parts of the pattern are passivated with a PEG-g-PLL (1 mgr/ml in 10mM
HEPES + 150mM NaCl bu�er, pH 7,4) solution during 30 min. The �-dish is rinsed
throughly three times with H2O and then the stamp is removed. The hydrophobic parts of
the paterns are then functionalized by incubation with a �bronectin solution (50 �gr/ml
in H2O) during 1 hour. The �-dish is then rinsed twice with PBS.

A.7.6 Cell patterning

Cells were re-suspended in supplemented culture medium, seeded on the microstructured
surfaces and incubated at 37°C in a humidi�ed atmosphere, 5% CO2 level. After 20 min,
chambers were rinsed with cell medium in order to remove non-attached cells.

A.8 Transfection protocols

A.8.1 Complex preparation

Prior to complex preparation all media and bu�ers were tempered at 37°C.

FuGENE®

The desired amount of plasmid is diluted in 100 �l of growth medium (or water) and
mixed throughly. Then FuGENE® in the desired ratio is carefully added, taking care of
not touching the eppendorf walls with it. The solution is vortexed and incubated 25 min.

l-PEI

The desired amount of plasmid is diluted in 50 �l of HBS bu�er and and mixed throughly.
The amount of l-PEI necessary to obtain the desired N/P ratio is is diluted in 50 �l of
HBS bu�er. The l-PEI solution is then carefully added to the plasmid solution. The �nal
solution is mixed throughly and incubated 20 min at room temperature.

A.8.2 Reverse transfection in �-slides

When necessary �-slides were precoated as described in A.3. Then, 30 �l of complex
solution were introduced in each channel. After 1 hour of incubation at at 37° with 5%
CO2, channels were rinsed trice with the adequate bu�er and cells were seeded onto the
prepared surface. Transfection e�ciency was monitored after at least 24h.
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A.8.3 Transfection e�ciency assessment

Fluorescence micrographs and their corresponding phase contrast micrographs were ac-
quired in ten randomly selected positions per �-channel. The number of GFP-expressing
cells and the total number of cells were manually counted. Two �-channels per sample
were analyzed.



98 A. Standard procedures



Appendix B

Calculation of cell packing states

These calculations were made by Karen Alim from the group of Erwin Frey, LMU, Munich.

Describing cells as two dimensional polygons, the geometric properties of cell packing
states for N=2,3,4 cells per square adhesion patch of side length ℓ are calculated according
to the vertex positions of individual cells given in Figures B.1 and B.2. Note that the vertex
model neglects cell shape undulations and discusses cell states with straight cell boundaries
only; �uctuations in cell boundaries are incorporated in � and � as e�ective parameters.
States within a packing class vary with respect to the angle # enclosed between the cell-cell
contact lines and the con�ning patch as depicted for each class in Figures B.1 and B.2.
Due to the fourfold rotational symmetry of the square only angles 0°≤ # ≤ 45° denote
mutually di�erent states. Given all n vertices {xi, yi} of a cell, its corresponding perimeter
P is given by

P =
n∑
i=1

√
(xi − xi−1)2 + (yi − yi−1)2 (B.1)

the contact length L forms the according subset. The model presented in Ecuation
7.1 is extended with an additional energy term to account for cell anisotropy. The size-
independent anisotropy of an individual cell is de�ned as the normalized variance of the
eigenvalues �1,2 of the second moment of area.

Δ =
var(�)

⟨�⟩2
=

(
�1 − �2
�1 + �2

)2

(B.2)

The normalization by the mean of the eigenvalues ensures that the anisotropy measure
is independent of the total cell area.

The second moments of area, M, for a simple polygon in the XY plane can be computed
in a generic way by summing contributions from each segment of a polygon. Each segment
is de�ned by two consecutive points of the polygon and a triangle with two corners at these
points and the third corner at the origin of the coordinates is considered. Integration by
the area of that triangle and summing by the polygon segments yields:
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M =

(
mxx mxy

mxy myy

)
(B.3)

mxx =
1

12

n∑
i=1

(
y2i + yiyi+1 + y2i+1

)
(xiyi+1 − xi+1yi) (B.4)

mxy =
1

24

n∑
i=1

(xiyi+1 + 2xiyi + 2xi+1yi+1 + xi+1yi) (xiyi+1 − xi+1yi) (B.5)

myy =
1

12

n∑
i=1

(
x2i + xixi+1 + x2i+1

)
(xiyi+1 − xi+1yi) (B.6)
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Figure B.1: Calculation of cell packing states for N=2,3. In a square normalized to
side length the formula for the coordinates are indicated next to the corresponding vertex
for the packing classes 2T , 3Y , 3II , and 3T .
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Figure B.2: Calculation of cell packing states for N=4 In a square normalized to
side length the formula for the coordinates are indicated next to the corresponding vertex
for the packing class 4X� .
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