
    

 

Aus der Abteilung für Strahlenzytogenetik des Helmholtz Zentrums München 

Head Prof. Dr. Horst Zitzelsberger 

Identification of radiation-induced alterations in the  

proteome and miRNAome of the endothelial cell line  

EA.hy926 

Dissertation 

zum Erwerb des Doktorgrades der Humanbiologie 

an der Medizinischen Fakultät der 

Ludwig-Maximilians-Universität München 

Vorgelegt von 

Arundhathi Sriharshan 

Vom 

Hassan, Indien 

Jahr 

2012 
 



    

 

Mit Genehmigung der Medizinischen Fakultät 
der Universität München 

Berichterstatter:     Prof. Dr. Horst Zitzelsberger 

Mitberichterstatter:    Priv. Doz. Dr. Anna Friedl 

       Prof. Dr. Werner Rühm 

Mitbetreuung durch den 

promovierten Mitarbeiter:    

Dekan: Prof. Dr. med. Dr. h. c. M. Reiser,  
FACR,FRCR 

Tag der mündliche Prüfung:   20.12.2012 

 
  



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

To my Father, Mother, and Husband 
 
 
 

 
  



Table of Contents 

 II 

Contents 
1. Summary ..................................................................................................................................... 1 

2. Zusammenfassung ....................................................................................................................... 3 

3. Introduction ................................................................................................................................. 5 

History .......................................................................................................................................... 5 

Effects of ionising radiation on health .......................................................................................... 5 

Endothelial cell biology ................................................................................................................ 7 

Proteins and ionising radiation ..................................................................................................... 9 

miRNA and ionising radiation .................................................................................................... 10 

Objectives ................................................................................................................................... 11 

4. Materials .................................................................................................................................... 13 

4.1. Abbreviations .................................................................................................................. 13 

4.2. Chemicals ........................................................................................................................ 15 

4.3. Instruments and lab wares ............................................................................................... 19 

4.4. Cell culture ...................................................................................................................... 20 

4.4.1 Cryopreservation medium ....................................................................................... 20 

4.4.2 DMEM medium ...................................................................................................... 20 

4.4.3 SILAC media ........................................................................................................... 21 

4.4.4 Buffers & solutions ................................................................................................. 21 

4.4.5 Experimental kits ..................................................................................................... 27 

4.4.6 Human endothelial cell line (EA.hy926) ................................................................. 28 

4.4.7 Immunoblotting antibodies ...................................................................................... 28 

4.4.8 RNA oligonucleotides ............................................................................................. 29 

4.4.9 Software and databases............................................................................................ 29 

5. Methods ..................................................................................................................................... 30 

5.1. Cell culture ...................................................................................................................... 30 

5.1.1 Maintenance culture of human endothelial cell line EA.hy926 .............................. 30 

5.1.2 In vitro labelling (SILAC) ....................................................................................... 30 

5.1.3 Cryopreservation ..................................................................................................... 31 

5.1.4 Thawing cryopreserved cells ................................................................................... 31 

5.1.5 Irradiation of cells ................................................................................................... 32 

5.1.6 Harvesting cells for proteomic studies .................................................................... 32 

5.2. Functional analysis .......................................................................................................... 32 

5.2.1 Cell growth kinetics ................................................................................................. 32 

5.2.2 Clonogenic survival assay ....................................................................................... 32 



Table of Contents 

 III 

5.3. Proteomic studies ............................................................................................................ 33 

5.3.1 SILAC ..................................................................................................................... 33 

5.3.2 2D-DIGE ................................................................................................................. 38 

5.3.3 Immunoblotting ....................................................................................................... 44 

5.4. microRNA analysis ......................................................................................................... 47 

5.4.1 Total RNA isolation ................................................................................................ 47 

5.4.2 Estimation of purity and concentration of RNA ...................................................... 47 

5.4.3 microRNA profiling ................................................................................................ 47 

5.4.4 Transfection of cells with Pre-miRTM and Anti-miRTM ........................................... 49 

5.5. Bioinformatic analysis .................................................................................................... 49 

5.5.1 Identification of protein interactions and biological pathways ............................... 49 

5.5.2 Functional classification: ......................................................................................... 50 

5.5.3 miRNA target search analysis ................................................................................. 50 

6. Results ....................................................................................................................................... 51 

6.1. Effects of irradiation on the growth of the cell line EA.hy926 ....................................... 51 

6.1.1 Colony forming ability after exposure to ionising radiation ................................... 51 

6.1.2 Effects of low and high doses of irradiation on cellular proliferation ..................... 52 

6.2. Proteomic alterations in EA.hy926 observed after exposure to 2.5 Gy ionising radiation

 53 

6.2.1 Protein expression changes identified by the SILAC strategy ................................ 54 

6.2.2 Protein expression changes identified by 2D-DIGE strategy .................................. 61 

6.2.3 Functional correlation of the affected proteins ........................................................ 64 

6.2.4 Deciphering affected biological pathways by bioinformatic analysis ..................... 67 

6.2.5 In Silico analysis to establish the relationship between deregulated microRNAs and 

proteins ................................................................................................................................ 78 

6.3. Effect of low dose (200 mGy) ionising radiation on the endothelial cell line EA.hy926 82 

6.3.1 Proteomic alterations ............................................................................................... 82 

6.3.2 Analysis of miRNAome of the EA.hy926 cells in response to 200 mGy irradiation

 85 

6.4. Validation of proteomic and bioinformatic analysis by immunoblotting ....................... 94 

7. Discussion ................................................................................................................................. 98 

7.1. Establishment of the in vitro SILAC technique for the EA.hy926 cells for use with 

irradiation ................................................................................................................................... 99 

7.2. Endothelial cellular growth in response to irradiation .................................................. 100 

7.3. Response of the endothelial cell line EA.hy926 to irradiation ...................................... 101 



Table of Contents 

 IV 

7.3.1 High Dose-exposure at 2.5 Gy .............................................................................. 101 

7.3.2 Low Dose effects on the proteome after 200 mGy ................................................ 107 

7.3.3 miRNA expression analysis .................................................................................. 109 

7.3.4 Validation of proteomics data ............................................................................... 112 

8. Bibliography ............................................................................................................................ 114 

9. Curriculum vitae ...................................................................................................................... 123 

10. Acknowledgements ................................................................................................................. 128 

 

  



  Table of Figures 

 V 

Figure 1: Pattern of functions of vascular endothelium under normal and pathological conditions. Under normal 

conditions endothelial cells produce substances which control constriction or dilation of blood vessels, 

anti-thrombotic and anti-inflammatory substances. These substances regulate permeability, adhesion and 

proliferation (top right). In pathological conditions endothelial dysfunction leads to alteration of the 

modulators produced by endothelial cells, thus resulting in increased inflammation, vasoconstriction, 

coagulation etc. (bottom right). Modified source: (Rodriguez-Feo and Pasterkamp, 2007). ......................... 8 
Figure 2: Schematic presentation of in vitro labelling in cell culture ................................................................... 31 
Figure 3: Schematic representation of SILAC workflow starting from labelling till mass spectrometric analysis35 
Figure 4: Representative gel picture showing colloidal coomassie staining ......................................................... 37 
Figure 5: Schematic representation of 2D-DIGE work flow ................................................................................. 39 
Figure 6: Schematic representation of immunoblot aperture. ............................................................................... 45 
Figure 7: Survival curve of EA.hy926 cells after 0, 1, 2, 3, 4 and 6 Gy of γ-irradiation. The colonies were 

counted after 16 days. The graph represents a survival curve and shows 10 % (D37), 37 % (D0) and 50 % 

(SF2) survival fractions. ............................................................................................................................... 51 
Figure 8: Cellular growth rate. Growth rate of sham irradiated (blue box), and 200 mGy irradiated EA.hy926 

cells (red box) followed for 180 h with identical seeding densities. ............................................................ 52 
Figure 9: Cellular growth rate. Growth rate of sham irradiated (blue box), and 2.5 Gy irradiated EA.hy926 cells 

(red box) followed for 240 h using identical seeding densities. ................................................................... 53 
Figure 10: The “Christmas tree” model of all quantified proteins by SILAC. This figure shows normalised 

protein ratios plotted against summed peptide intensities. Spots to the right of y-axis (= 1) represent 

proteins with increased abundance and spots to the left of the y-axis (= 1) are proteins with decreased 

abundance. Unaltered proteins are clustered on the y-axis where the ratio (H / L) is equal to 1. ................ 54 
Figure 11: Typical 2D-DIGE gels of pH range 3-11 showing the EA.hy926 endothelial cell proteome. a: Gel 

picture of the irradiated sample after 4 h. Positions of the deregulated protein spots with corresponding spot 

numbers are indicated with arrows. b: Gel picture of the irradiated sample after 24 h. Positions of the 

deregulated protein spots with corresponding spot numbers are indicated with arrows. The deregulated 

proteins with the spot numbers were identified and they are listed in Table 10 (4 h) and Table 11 (24 h).. 63 
Figure 12: Biological functions associated to the proteins found to be deregulated at 4 h after irradiation. 

Differentially regulated proteins were analysed for “functional categories” using the UniProt knowledge 

database and the PANTHER classification system. ..................................................................................... 65 
Figure 13: Functional classification of differentially expressed proteins at 24 h after irradiation. Categorisation 

according to the biological functions of deregulated proteins was done using the UniProt knowledge 

database and the PANTHER classification system. Red and green arrows in the figure represent increase or 

decrease of the functions in comparison to that of the 4 h time point respectively. ..................................... 66 
Figure 14: The most significant network obtained from bioinformatic analysis for proteins found to be altered at 

4 h after radiation. The network represents 23 proteins involved in “cell morphology, cellular function and 

maintenance, DNA replication, recombination, and repair”. All coloured molecules are the molecules 

identified to have differential expression values, green representing down-regulation and red up-regulation. 

Dotted lines indicate indirect interactions and solid line represents direct interactions and loops represent 

self-regulation. ............................................................................................................................................. 70 



  Table of Figures 

 VI 

Figure 15: The second most significant network obtained from bioinformatic analysis for proteins found to be 

altered 4 h after 2.5 Gy irradiation (coloured molecules; green - down-regulation and red up-regulation). 

The network represents 13 proteins involved in “cellular compromise, morphology, death”. Dotted lines 

indicate indirect interactions and solid line represents direct interactions and loops represent self-

regulation. .................................................................................................................................................... 71 
Figure 16: DNA repair by non-homologueous end joining (NHEJ) pathway affected at 4 h after irradiation. The 

figure shows the Ku-heterodimers involved in the DNA repair pathway by the non-homologous end joining 

method. The Ku-heterodimers Ku70 / Ku80 that were found to be down-regulated at 4 h after 2.5 Gy 

irradiation are represented as green coloured molecules of the Ku-heterodimer (Ku70 and Ku80). Modified 

from source Ingenuity Pathway Analysis (www.Ingenuity.com). ............................................................... 72 
Figure 17: Synthesis and degradation of ketone bodies affected at 4 h after irradiation. The figure shows the 

synthesis and degradation of ketone bodies, representing the two proteins from this pathway the ACAT-1 

down-regulated (green-2.3.1.9) and the up-regulated HMG-CoA synthase (red-2.3.3.10) found to be 

differentially expressed at 4 h after 2.5 Gy irradiation. Modified from source Ingenuity Pathway Analysis 

(www.Ingenuity.com). ................................................................................................................................. 73 
Figure 18: Proteins of oxidative phosphorylation altered at the 24 h time point after irradiation. The figure 

represents the electron transport chain and the coloured molecules (green – down-regulated and red – up-

regulated) were found to be differentially expressed in the EA.hy926 cells by either SILAC or 2D-DIGE 

strategy at 24 hours after 2.5 Gy irradiation. The differentially regulated proteins include 2 subunits and 1 

isoform of complex I, 1 subunit of complex III and 2 subunits of complex V. Modified from source 

Ingenuity Pathway Analysis (www.Ingenuity.com). ................................................................................... 75 
Figure 19: The radiation response on glycolysis / gluconeogenesis at the 24 h time point. Five of the 10 enzymes 

involved in the glycolytic pathway were found to be up-regulated (red coloured molecules) at 24 h after 

exposure to 2.5 Gy radiation. An increased expression of enolase, glyceraldehyde-3-phosphate 

dehydrogenase, fructose-bisphosphate aldolase, 6-phosphofructokinase and hexokinase was found. 

Modified from source Ingenuity Pathway Analysis (www.Ingenuity.com). ............................................... 76 
Figure 20: Actin-based mobility by Rho related proteins. The figure shows proteins that were differentially 

expressed in the Actin-based mobility pathway. Differentially regulated proteins (green: down-regulated 

and red: up-regulated) are cofilin 1, myosin light chain 6 (MLC), profilin 1, and RhoA. Modified from 

source Ingenuity Pathway Analysis (www.Ingenuity.com). ........................................................................ 77 
Figure 21: Association of deregulated miRNAs and differentially expressed proteins 4 hours after the exposure 

to irradiation. MiRNA data obtained from the study by Kraemer et al. (Kraemer et al., 2011) were 

combined with proteomic alterations found in this study either by SILAC or 2D-DIGE technology to 

analyse putative regulation and association between the miRNAs and proteins. Molecules coloured in 

green indicate down-regulation and red colour represents up-regulation of expression. Solid line arrows 

represent direct interactions. ........................................................................................................................ 80 
Figure 22: Correlation between deregulated miRNAs and differentially expressed proteins at 24 hours after the 

exposure to irradiation. The network represents the correlation between the deregulated miRNAs and 

proteins, miRNA data obtained from the Kraemer et al. (Kraemer et al., 2011) study. Molecules coloured 

in green indicate down-regulation and red colour represents up-regulation of expression. Solid line arrows 

represent direct interactions. ........................................................................................................................ 81 



  Table of Figures 

 VII 

Figure 23: Biological functions associated with the deregulated proteins after the radiation dose of 200 mGy. 

Functional classification of proteins was done using the UniProt knowledge database and the PANTHER 

classification system. Biological functions of proteins found to have altered expression levels at 4 hours 

after a 200 mGy radiation dose. ................................................................................................................... 84 
Figure 24: miRNAs showing altered expression levels at 4 h after a 200 mGy radiation dose. The columns 

represent mean values of at least two of the three biological replicates. A total of 24 miRNAs with 

differential expression levels having a p < 0.05 (∗) / < 0.01 (∗∗) and n fold change > + 1.5. 6 miRNAs were 

down-regulated (green) and 18 were up-regulated (red). ............................................................................. 86 
Figure 25: All deregulated miRNAs 24 hours after a 200 mGy radiation dose. The columns represent mean 

values of at least two of the three biological replicates. Of the 15 deregulated miRNA 9 were up-regulated 

(red) and 6 down-regulated (green) with a significance of p < 0.05 (*) / < 0.01 ( **) and a fold change 

> + 1.5. ......................................................................................................................................................... 87 
Figure 26: Venn diagram representing the total number and overlap of deregulated miRNAs at the time points 4 

and 24 hours after a dose of 200 mGy. Of the total 24 (4 h) and 15 (24 h) deregulated miRNAs two were 

found at both time points. miR-7 was up-regulated at both time points and miR-923 was 4.15-fold up-

regulated at 4 hours but -6.67-fold down-regulated at 24 hours. ................................................................. 88 
Figure 27: Alterations in the HMGA2 protein level as a function of mir-let-7c expression. Immunoblot analysis 

using the HMGA2 antibody in cells exposed to 0 Gy or 200 mGy, 1 and 4 hours after irradiation. A. Non-

transfected cells showed a slight down-regulation of the HMGA 2 expression 1and4 hours after irradiation. 

B. Immunoblot analysis of control inhibitor transfected cells exposed 0 Gy or 200 mGy 1 h or 4 hours post-

irradiation. A trend for down-regulation is seen at 4 h after 200 mGy. C. Cells transfected with precursor 

let-7c resulted in complete knock-down of the HMGA2 expression irrespective of irradiation. D. Cells 

transfected with let-7c inhibitor showed an up-regulation of the HMGA2 protein irrespective of irradiation.

 ..................................................................................................................................................................... 89 
Note: The un-transfected (A) and the transfected (C) were loaded on the same gel, similarly the scrambled B, 

and the transfected let-7c inhibitor (D) were loaded on the same gel. ......................................................... 89 
Figure 28: Merge of the 2 most significant networks obtained from deregulated proteins and miRNAs. The 

network represents a total of 27 deregulated molecules (proteins and miRNAs) involved in “cancer, 

developmental disorder” and “cell cycle, cell death, DNA replication, recombination and repair”. All 

coloured molecules are molecules with differential expression values (molecules in green represent down-

regulation and red represents up-regulation. Arrows in orange represent interaction between the network 1 

and network 2). Dotted lines indicate indirect interactions and solid line represents direct interactions and 

loops represent self-regulation. .................................................................................................................... 92 
Figure 29: Two most significant networks obtained from proteins and miRNAs deregulated 24 hours after 

exposure to a radiation dose of 200 mGy. The network A represents a total of 35 molecules (proteins and 

miRNAs) of which 10 were found to be differentially regulated after irradiation. The molecules are 

involved in “cancer, cell death and necrosis”. The network B shows a total of 35 molecules 5 of which 

were deregulated after irradiation and were involved in “cancer and hematological disease”. All coloured 

molecules are molecules with differential expression values (molecules in green represent down-regulation 

and the red ones represent up-regulation). Dotted lines indicate indirect interactions and solid line 

represents direct interactions and loops represent self-regulation.. .............................................................. 93 



  Table of Figures 

 VIII 

Figure 30: Immunoblot validation of differentially expressed proteins. Irradiated samples (4 h / 24 h, 2.5 Gy) and 

respective controls were separated on 1D SDS-PAGE gels. Relative expression ratios (as indicated in 

Table 23) were calculated after background subtraction with either ImageQuant 5.2 or TotalLAB TL100 

softwares and normalised to the expression level of actin. The columns correspond to the mean values of 

three technical replicates of two biological samples ± SD. Asterisk on the bars represent p-values (** 

corresponds to p < 0.01, * corresponds to p < 0.05). P-values were calculated using student’s t-test. ........ 95 
Figure 31: Immunoblot analysis of 5 OXPHOS subunits (24 h after irradiation). Analysis using total OXPHOS 

rodent antibody cocktail revealed a significant down-regulation of four subunits NDUFB8 (C-I-20), C-III-

core2, C-IV-I and C-V-α. 30µg of total cell lysate was loaded in each lane of a 12 % gel (* corresponds to 

p < 0.05). A: relative expression change between controls and treated cells. B: Representative images of 

the blots. C: Fold differences between control and treated samples normalised to tubulin are indicated in 

the form of a table; “C” represents control and “T” represents treated samples. P-values were calculated 

using student’s t-test. ................................................................................................................................... 97 
Figure 32: Venn diagram representing deregulated proteins identified with 2D-DIGE and SILAC methods 

deregulated at 4 h and 24 h after irradiation. Five proteins were shared between the 2D-DIGE and SILAC 

methods all at 24 h after 2.5 Gy irradiation. No overlap was seen in the deregulated proteins between the 

two methods. One protein, desmoplakin was found to be differentially expressed at both 4 h (down-

regulated) and 24 h (up-regulated) by 2D-DIGE method. ......................................................................... 103 

  



Index of Tables 

 IX 

Table 1: List of Antibodies (* represents cocktail containing several antibodies) ................................................ 28 
Table 2: List of miRNA inhibitors ........................................................................................................................ 29 
Table 3: List of Pre-miRNAs ................................................................................................................................ 29 
Table 4: Depicts the number of irradiated cells, feeder cells and their respective doses used in clonogenic assays.

 ..................................................................................................................................................................... 33 
Table 5: Protocol used for IEF (isoelectric focussing) .......................................................................................... 41 
Table 6: Protocol for setting filters during image acquisition ............................................................................... 42 
Table 7: Represents the steps involved in silver staining ...................................................................................... 43 
Table 8: Composition of the reaction mixture for a RT-PCR ............................................................................... 48 
Table 9: Experimental setup for the RT-PCR reaction ......................................................................................... 48 
Table 10: List of deregulated proteins 4 h after 2.5 Gy irradiation identified and quantified by SILAC with 

significance. ................................................................................................................................................. 55 
Table 11: List of deregulated proteins 24 h after 2.5 Gy irradiation identified and quantified by SILAC with 

significance. ................................................................................................................................................. 56 
Table 12: A list of all (27) deregulated proteins 4 h after irradiation identified and quantified by 2D-DIGE. 

Corresponding spot numbers on the gels are indicated in the table. ............................................................ 62 
Table 13: List of deregulated proteins 24 h after irradiation identified and quantified by 2D-DIGE with 

significance (** = p ≤ 0.01). Corresponding spot numbers on the gels are indicated in the table. .............. 63 
Table 14: The most significant networks and functions of the deregulated proteins. ........................................... 68 
Table 15: Ingenuity names, protein names, UniProt ID and fold deregulation of proteins in the top two networks 

of the molecules in Figure 14 and Figure 15. ............................................................................................... 68 
Table 16: Biological pathways associated with deregulated proteins 4 h after irradiation. .................................. 72 
Table 17: Most significant networks and functions associated with the deregulated proteins at the 24 h time point 

after irradiation. ........................................................................................................................................... 74 
Table 18: Biological pathways associated with the deregulated proteins at the 24-hour time point after 

irradiation. .................................................................................................................................................... 74 
Table 19: List of the significantly deregulated proteins 4 hours after irradiation with the 200 mGy dose identified 

and quantified by SILAC. ............................................................................................................................ 83 
Table 20: List of significantly deregulated proteins 24 h after irradiation with a 200 mGy dose identified and 

quantified by SILAC. ................................................................................................................................... 83 
Table 21: Most significant networks and functions associated with the deregulated proteins. ............................. 90 
Table 22: Most significant networks and functions associated with the differentially expressed proteins 24 hours 

after a radiation dose of 200 mGy. ............................................................................................................... 91 
Table 23: The relative expression ratios of proteins chosen by immunoblotting .................................................. 96 
Table 24: List of the deregulated proteins found using both 2D-DIGE and SILAC at 24 h after irradiation. 

Corresponding spot numbers for proteins found to be deregulated by 2D-DIGE are indicated in the table.

 ................................................................................................................................................................... 102 
Table 25: miRNAs found to be deregulated in endothelial cell / cell lines after irradiation in different studies. 111 

 
  



 Summary 

 1 

1. Summary 

Endothelial cells are highly sensitive to high doses of ionising radiation, the cellular response 

leads to acute damages on the endothelium. Epidemiological data suggest that even moderate 

doses (> 500 mGy to 1 Gy) may increase the risk of cardiovascular disease. At lower doses 

endothelial cell stress and vascular damage may still occur, but the relevance of these effects for 

long-term tissue damage is unknown. 

The aim of this study was to analyse the effect of low- (200 mGy) and high-dose (2.5 Gy) Cs137 γ 

–radiation (dose rate = 500 mGy / min) on the EA.hy926 cells which serve as a good model 

mimicking the functions of the endothelial cells in vivo. The effect of ionizing radiation on the 

proteome of the endothelial cells were analysed at 4 h and 24 h after exposure. For the high dose 

proteomic studies two complementary proteomic strategies namely ‘stable isotope labeling by 

amino acids in cell culture’ (SILAC) and 2D-DIGE analysis were used. The low dose analysis 

was performed using the SILAC method only. Further, after exposure to low dose radiation the 

alterations in the miRNAome was analysed using TaqMan® Low Density Array Human 

MicroRNA Panel A v2.1 and TaqMan® Array Human MicroRNA B Card v2.0 to obtain a broader 

perspective of the cellular response. 

The high-dose exposure triggered considerable alterations in the endothelial protein expression. 

The deregulated proteins were mainly categorised in four key pathways: (i) glycolysis / 

gluconeogenesis (ii) oxidative phosphorylation, (iii) Rho-mediated cell motility and (iv) non-

homologous end joining (NHEJ). After exposure to high dose radiation an immediate down-

regulation was seen in the Ku70/Ku80 heterodimer and proliferating cell nuclear antigen (PCNA) 

proteins belonging to the NHEJ DNA repair pathway. Later time point showed significant 

decrease in the expression levels of proteins of the oxidative phosphorylation (OXPHOS) pathway 

along with a significant expression increase in the enzymes of the glycolytic pathway. These 

alterations might result in damaging the endothelial cells further leading to the dysfunctioning of 

the endothelium, a condition where an imbalance in the vasodilatory and vasoconstricting 

products of the endothelium are observed. This may result in the damage of the vascular system. 

The alterations in the proteome level after exposure to low dose radiation (200 mGy) were subtle 

when compared to that of the higher dose. Consistent increase in protein expression was observed 

for translation proteins only. Pronounced alterations in the expression levels of miRNAs 

(microRNA) were observed at the earlier time point (4 h) after irradiation which subsided after 24 
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h. The let-7 family miRNAs namely the let-7b, let-7c, let7d and let-7g were found to be radiation 

responsive. In contrast to the high dose radiation study the data from the low dose radiation 

experiments also indicated a transient stress response that occurs immediately after irradiation and 

subsides with time. Further, this study could show that SILAC is a robust method and can be 

successfully used for studying proteomic effects of in vitro irradiation studies. 
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2. Zusammenfassung 

Endothelzellen reagieren sehr empfindlich auf hohe Dosen ionisierender Strahlung. Ein 

Hauptgrund für die akute schädliche Wirkung auf das Endothel nach Bestrahlung ist der Zelltod 

der Endothelzellen. Epidemiologische Daten weisen darauf hin, dass moderate Dosen (> 500 mGy 

bis 1 Gy) das Risiko kardiovaskulärer Erkrankungen erhöhen. Bei geringeren Strahlendosen 

könnten zwar auch endothelialer Zellstress und vaskuläre Schäden stattfinden, aber die Relevanz 

dieser Strahlenwirkungen für einen langfristigen Gewebeschaden ist bislang unbekannt.  

Das Ziel dieser Arbeit war, die Wirkung niedriger (200 mGy) und hoher (2,5 Gy) Dosen Cs137 γ- 

Strahlung (Dosisleistung = 500 mGy / min) auf Endothelzellen zu analysieren. Hierfür wurde die 

Endothelzelllinie EA.hy926 verwendet, die ein geeignetes Zellkultur-Modell darstellt, um 

proteomische Veränderungen in Endothelzellen zu verschiedenen Zeitpunkten (4h und 24h) nach 

in vitro-Bestrahlung zu untersuchen. Für die Untersuchung proteomischer Veränderungen bei 

hohen Dosen wurden zwei komplementäre Methoden, die sog. ‚stable isotope labelling amino 

acids in cell culture’ (SILAC) Methode und die 2D-DIGE Analyse, benutzt. Die Analyse von 

Effekten bei niedrigen Dosen wurde nur mit der SILAC Methode durchgeführt. Allerdings 

wurden hier auch Veränderungen auf der miRNA Ebene untersucht, um einen besseren 

mechanistischen Einblick in die zelluläre Strahlenantwort bei niedrigen Dosen zu bekommen. 

Eine Bestrahlung mit der hohen Dosis hatte beträchtliche Veränderungen im Proteom der 

Endothelzellen zur Folge. Die deregulierten Proteine nach Bestrahlung konnten folgenden vier 

Hauptklassen zugeordnet werden: (i) der Glykolyse/Glukoneogenese (ii) der oxidativen 

Phosphorylierung, (iii) der Rho-vermittelten Zellmotilität und (iv) der Nicht-homologen 

Endverknüpfung  (NHEJ). Nach 2,5 Gy Cs137 γ-Strahlung war bereits nach vier Stunden eine 

deutliche Herunterregulierung der Expression der Untereinheiten des Ku-Heterodimers (Ku70 und 

Ku80) und des Proliferating Cell Nuclear Antigen (PCNA) nachzuweisen. Alle drei Proteine 

besitzen eine wichtige Funktion innerhalb des NHEJ DNA-Reparatursignalweges. Im Gegensatz 

dazu nahm zu einem späteren Zeitpunkt (24 h) die Expression von Proteinen der oxidativen 

Phosphorylierung (OXPHOS) und von wichtigen Enzymen der Glykolyse zu. Diese 

Proteinveränderungen könnten zu einer Schädigung der Endothelzellen und in weiterer Folge zu 

einer Dysfunktion des Endothels führen; letztere könnte dann infolge eines Ungleichgewichts 

vasodilatorischer und vasokonstriktorischer Produkte des Endothels zu einer Schädigung des 

vaskulären Systems führen. 
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Die Proteomveränderungen, die nach der geringeren Strahlendosis von 200 mGy zu beobachten 

waren, waren deutlich weniger im Vergleich zu den nachgewiesenen Veränderungen bei 2,5 Gy. 

Eine gleichbleibende Zunahme der Expression konnte nur für Proteine der Translation 

nachgewiesen werden. Es konnten jedoch bei der niedrigeren Dosis auch signifikante 

Veränderungen der miRNA-Expression zum früheren Zeitpunkt (4 h) nach Bestrahlung 

nachgewiesen werden. Zum späteren Zeitpunkt (24 h) nach Bestrahlung waren diese miRNA-

Expressionsänderungen weniger stark ausgeprägt. Für die miRNAs der let-7 Familie (let-7b, let-

7c, let-7d und let-7g) konnte gezeigt werden, dass sie durch Strahlung reguliert wird. Somit 

zeigen die Daten, dass nach einer Bestrahlung mit einer geringeren Dosis eine transiente 

Stressantwort in Endothelzellen stattfindet, die innerhalb der untersuchten Zeitspanne bereits 

nachlässt. Weiter konnte die vorliegende Doktorarbeit zeigen, dass SILAC eine zuverlässige 

Methode darstellt, um proteomische Effekte nach in vitro Bestrahlung von Endothelzellen 

nachzuweisen. 
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3. Introduction 

History 

Ionising radiation was applied for therapeutic purposes soon after the discovery of x-rays by 

William Roentgen in 1895 (Durovic and Spasic-Jokic, 2008). In the early 1900’s the use widened 

with applications in clinical diagnostics, and treatment of diseases, use of radiation therapy to cure 

cancer in the 1920’s was to some extent successful (O'Farrell, 1975, Perluigi et al., 2009, Preston 

L.Dale 1994). Apart from therapeutic applications ionising radiation has been used for 

occupational purposes in the form of radium painting of luminous watch dials, nuclear panels, 

aircrafts etc (Herrera et al., 2010). One other non-therapeutic breakthrough in the field of ionising 

radiation was the development of nuclear power generation plants. The first reported adverse 

effects of radiation were noticed to be skin lesions after exposure (Gilchrist, 1897). The adverse 

consequences of all of these applications have come to the forefront, as in the case of over- 

exposure during radiation therapy, atomic bomb explosions or in the case of nuclear accidents 

(Chernobyl). The harmful effects of exposure to ionising radiation are dependent on the quality 

and dose of ionising radiation received (Beebe, 1982). 

Effects of ionising radiation on health 

i) Cancer  

As the therapeutic application of radiation for non-lethal diseases (mostly skin lesions and thyroid 

disorders) increased, cases of cancer in long term survivors were reported (Takahashi and 

Kitabatake, 1965, Valentini et al., 2011). A classical example for the fatality of non-therapeutic 

application was occupational exposure to ionising radiation leading to illness and death by 

malignancies in x-ray workers and women who painted dials with radium to produce “glow in the 

dark clocks” and watch dials (Carnes et al., 1997).  

Increased risks of several types of cancer have been reported in Japanese atomic bomb survivors 

as a late effect of exposure to radiation (Preston et al., 2007, Preston et al., 2004). Furthermore the 

Chernobyl nuclear power plant accident released huge amounts of ionising radiation into the 

environment, leading to a significant increase of several types of cancer (Sarin, 2011, 

www.who.int) in thyroid cancer in exposed children and youth (Prisyazhiuk et al., 1991, Kazakov 

et al., 1992, Baverstock et al., 1992), and cataracts in clean-up workers. First signs of leukaemia 

were observed in exposed children and clean-up workers (Ivanov et al., 1993, Ivanov et al., 2006). 
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Further a non-significant trend was observed in the increase of breast cancer in exposed 

individuals (Pukkala et al., 2006, Bogdanova et al., 2010).  

ii) Vascular diseases 

Research on pathological non-cancer effects of ionising radiation is a relatively new field. This 

has given the first indications that diseases such as hypertension and myocardial infarction, 

digestive and respiratory diseases may accompany radiation exposure. 

Ionising radiation increases the morbidity and mortality from cardiovascular (CVD) and 

cerebrovascular diseases (CBVD) (Azizova et al., 2010b, Azizova et al., 2010a, Preston et al., 

2003). According to Shimizu et al. an increased risk of CVD was seen in atomic bomb survivors. 

They showed that doses above 0.5 Gy lead to an increased risk of heart diseases in A-bomb 

survivors. (Shimizu et al., 2010).  

Therapeutic use of radiation has also been associated with an increased risk for CVD. Darby et al. 

showed an increased mortality from heart diseases after radiation therapy in breast cancer patients 

of the 1970’s and early 1980’s (Darby et al., 2005). A comparative study between the general 

population and a cohort of 7033 Hodgkin’s disease patients treated with radiation therapy 

revealed an increased risk of mortality risk by myocardial infraction(Swerdlow et al., 2007). 

Increased risk for mortality from coronary heart diseases was also observed in patients treated 

with radiation therapy for peptic ulcer (Carr et al., 2005) and in childhood cancer patients who had 

received a dose of > 5 Gy to the heart (Tukenova et al., 2010).  

The damaging effects of high-dose radiation (> 5 Gy) on the vasculature of the heart was 

demonstrated histopathologically by Hoving et al. (Hoving et al., 2008). High doses of ionising 

radiation causes damage to the coronary arteries and cardiac microvasculature and diffused 

fibrotic injury to the pericardium and myocardium; endothelial damage was also observed in all 

these cases (Demirci et al., 2009, Adams et al., 2003). Even though there are no ideal 

radiobiological models for local heart irradiation a few animal model studies have been carried 

out in the recent past. Alterations in the bovine and rat aortic endothelial cells and mouse cardiac 

endothelial cells after irradiation have been observed (Jelonek et al., 2011, Gajdusek et al., 2001). 

Studies using mouse models by Stewart et al. (Stewart et al., 2006) suggest that high doses of 

radiation (> 8 Gy) accelerate the formation of inflammatory, macrophage rich atherosclerotic 

plaques in the carotid arteries of atherosclerotic prone ApoE (- / -) mice. Further, Stewart et al. 

(Stewart et al., 2010) showed that in a C57B1 / 6 mouse model, local heart irradiation ranging 

from 2-16 Gy induced progressive structural damage to the myocardium and the 
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microvasculature. Although local irradiation of the heart with 16 Gy was lethal only modest 

changes in the cardiac function were observed before animals succumbed. 

The blood vessels of the cardiovascular system are lined with thin continuous monolayer of 

ovaloid endothelial cells. This thin layer of endothelial cells lining the blood vessels is called the 

vascular endothelium. The vascular endothelium plays an essential role in the normal functioning 

of the circulatory system. 

Endothelial cell biology 

The endothelium secretes products such as antithrombotic factors, clotting agents, growth factors, 

and vasodilators that function as mediators of endothelial functioning (Michiels, 2003). The 

endothelium regulates homeostasis, is responsible for the smooth blood flow inside the lumen and 

functions as a barrier between the circulating blood and the subendothelial matrix (Marsden et al., 

1991). It also plays a major role in vascular wall remodelling, inflammation, thrombosis, 

vasodilatation and vasoconstriction (Michiels, 2003, Luscher et al., 1990, Furchgott and 

Zawadzki, 1980). 

Upon endothelial injury for example during physiological stress condition some of its vital 

functions such as fibrinolysis, angiogenesis, and synthesis of enzymes and cytokines are either 

inhibited or nullified (Fajardo, 2008). Endothelial dysfunction (a condition where in an imbalance 

in the vasodilatory and vasoconstricting products of the endothelium are observed), as an end 

point for several conditions such as alterations in inflammatory mediators, vasodilatory factors 

and matrix products, has been observed in several vascular disorders (Forgione et al., 2000). 

Figure 1 represents the alterations in the endothelial cell functions seen under pathological 

conditions or injury. 
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Figure 1: Pattern of functions of vascular endothelium under normal and pathological conditions. Under normal conditions endothelial cells produce substances 
which control constriction or dilation of blood vessels, anti-thrombotic and anti-inflammatory substances. These substances regulate permeability, adhesion and 
proliferation (top right). In pathological conditions endothelial dysfunction leads to alteration of the modulators produced by endothelial cells, thus resulting in 
increased inflammation, vasoconstriction, coagulation etc. (bottom right). Modified source: (Rodriguez-Feo and Pasterkamp, 2007). 
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Biological data indicate that the vascular endothelium is very sensitive to ionising radiation. 

Endothelial cells produce excessive amounts of eicosanoids (prostaglandins, prostacyclins, 

thromboxanes and leukotrienes) after exposure to radiation. This may further contribute to the 

prothrombotic status and vascular disruption (Stewart et al., 2010, Michalowski, 1994). Oxidative 

stress triggered by ionising radiation may also lead to additional endothelial cell damage and 

vascular diseases, leading further to cardiovascular damage (Coyle and Kader, 2007).  

Even though the molecular and biological mechanisms of the endothelial cell response to high and 

low doses of ionising radiation may differ, it has been shown that radiation, irrespective of dose 

causes alterations that may damage the vasculature. In the case of injury or stress to cells the 

damage may occur at different molecular levels, including damages to the proteins. Nylund et al. 

and Pluder et al. have shown significant alterations at the proteomic level in endothelial cells after 

exposure to ionising radiation (Nylund and Leszczynski, 2006, Pluder et al., 2011).  

Proteins and ionising radiation 

Proteins are macromolecular and building blocks that are essential for normal cellular function. 

Based on their biological activity proteins can be classified into several functional classes such as 

enzymes, structural or support proteins, transport proteins, antibodies, peptide hormones, 

metabolic, mechanical and contractile proteins (Jeremy M Berg, 2002).  

Ionising radiation causes structural and chemical alterations in proteins such as alterations in 

amino acids, changes in the formation and breakage of disulfide bonds, fragmentation and 

decarboxylation have all been observed (Chapelier et al., 2001, Weik et al., 2002). Expression 

level changes of proteins involved in cell cycle regulation, cytoskeleton maintenance, stress 

response, and tumor metastasis have been observed in irradiated human liver cells (Zuo et al., 

2010). In a literature review Marchetti et al. reported 173 proteins that were found to be altered 

either in an immediate or late response to high doses of ionising radiation. They reported that the 

most common radiation influenced changes seen in multiple primary cell lines, primary cells and 

tissues were in proteins involved in apoptosis and DNA repair, oxidative stress, cell signalling, 

metabolism, signal-transduction, post-translational modifications and degradation (Marchetti et 

al., 2006).   

Oxidative stress caused by ionising radiation due to the impaired respiration results in elevated 

levels of reactive oxygen species (ROS), especially in the mitochondria (Durovic and Spasic-

Jokic, 2008, Barjaktarovic et al., 2011, Azimzadeh et al., 2011). This leads to DNA damage, 

protein oxidation, genomic instability, and mitochondrial dysfunctioning of the cell.   
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ROS are highly reactive radicals that include organic and inorganic oxygen ions, peroxides and 

free radicals. ROS are produced during normal oxygen metabolism and play a significant role in 

several cell signalling pathways. Oxidation by ROS can cause degenerative effects to amino acids, 

proteins, lipids and DNA thereby affecting the normal functioning of the cell (Shacter, 2000). 

ROS disturbs the redox reactions that are relevant in metabolic pathways and homeostasis (Galli 

et al., 2005). In unstable hamster fibroblast cell lines exposed to 10 Gy irradiation, Miller et al. 

observed increased ROS production along with alterations in the expression levels of acetyl-CoA-

acetyltransferase as well as proteins involved in the tricarboxylic acid (TCA) cycle and oxidative 

phosphorylation (Miller et al., 2008). Alterations in the expression levels of acetyl-CoA-

acetyltransferase, cofilin, and Rho GDP dissociation inhibitor factor were observed in a human 

endothelial cell line after exposure to a low gamma dose of 200 mGy (Pluder et al., 2011). 

Other important proteins influenced by ROS are pro-apoptotic proteins such as cytochrome c and 

apoptosis-inducing factors. Increased levels of ROS have also been associated with activation of 

NF-κB (Luscher et al., 1990). Further, there are evidences for radiation-induced alterations in 

proteins of the metabolic pathways such as glycolysis / gluconeogenesis, fatty acid metabolism, 

and ketogenesis but the exact mechanisms are unclear (Sriharshan et al., 2012).  

miRNA and ionising radiation 

Among the regulators of protein expression are microRNAs (miRNAs), a class of small 22 

nucleotide long non-coding RNAs. The discovery of their role in the modification of the protein 

expression levels has given a completely new insight into the regulatory processes of the cell 

(Victor, 2001). So far, 1527 putative human miRNA sequences have been discovered 

(www.mirbase.org). They are important components of the post-transcriptional regulation of gene 

expression and play a significant role in several signalling pathways as well as in cell 

proliferation, homeostasis, and cell death (Ambros, 2004).  

Only recently the field of miRNA research has elucidated the role of these molecules as 

responsive targets to external and internal stimuli. Dickey et al. (Dickey et al., 2011) showed that 

miRNAs play a critical role in human artificial 3D tissue systems (with close resemblance to 

epithelial tissues). The human artificial 3D tissue systems were irradiated with doses ranging from 

200 mGy-2 Gy (Dickey et al., 2011). In this study the let-7 microRNA family, miR-21, miR-20a, 

miR 24, miR-26b, miR-29a, miR-29c, miR-103, miR-223, and miR-663 were shown to be altered 

and radiation responsive.   
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In Jurkat and TK6 cells the expression levels of miRNAs belonging to the let-7 family were found 

to be deregulated by ionising radiation (Chaudhry, 2009). Studies on primary human dermal 

microvascular endothelial cells showed alterations in the expression levels of 11 miRNAs after 

exposure to a gamma dose of 2 Gy. A functional analysis on the biological function of miR-189, 

let-7g and miR-20a revealed that alterations influenced the cell survival, proliferation, endothelial 

cell radiosensitivity and angiogenesis (Wagner-Ecker et al., 2010). Kraemer et al. (Kraemer et al., 

2011) established a functional correlation between miRNAs, apoptosis and cell cycle checkpoint 

activation in the endothelial cell line EA.hy926 after exposure to a gamma dose of 2.5 Gy ionising 

radiation. Vincenti et al. showed that HUVECs (human umbilical vein endothelial cells) after 

exposure to an x-ray dose of 1 Gy exhibited deregulation of the miR-17-92 cluster and miR-221 / 

222. The expression levels of the micro RNAs in the miR-17-92 cluster were correlated with a 

transient increase in c-Myc-mRNA accumulation and an increase of the transcription factor c-Myc 

in the nucleus (Vincenti et al., 2011).  

MiRNAs are further known to be key players in the regulation of vascular diseases, cancer, 

neurological diseases and inflammatory diseases (Esteller, 2011). Urbich et al. (Urbich et al., 

2008) in a review showed that miR-21, miR-155, miR-126 and miR-17-92 cluster might play an 

important role in modulation of vascular diseases. They also reported miR-17-92 cluster, miR-

150, miR-424, miR-17-5p, miR- 20a, miR-106a and miR-146 as important candidates for 

inflammatory responses that occur during vascular diseases.  

Objectives 

Even though there is some knowledge on ionising radiation-induced alterations in protein 

expression, the research has so far been limited to only particular groups of proteins (Zuo et al., 

2010, Marchetti et al., 2006, Durovic and Spasic-Jokic, 2008). Furthermore, only some biological 

mechanisms are well understood. In order to gain deeper understanding of the molecular 

mechanisms of radiation-induced alterations it is necessary to analyse changes in the total 

proteome. Proteomic studies include information on global expression and modification changes 

of proteins and their functions, protein networks and interactions with one another and with other 

molecules. 

Several techniques have been established for proteomic studies. One of the earliest and most 

popular methods is 2DE (two dimensional gel electrophoresis), developed in the 1950’s with 

continuous improvement of the technique until the invention of 2D-DIGE (two dimensional 

differential gel electrophoresis) in the 1970’s (Miller et al., 2008, O'Farrell, 1975). The 

development of mass spectrometry (MS) based proteome analysis has enabled the generation of   
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large amounts of data, with information about the interactions and functions of the proteins. 

Recently developed proteomic studies are based on differential protein or peptide labelling. 

Different strategies that were used for MS based proteomic analysis are Isotope-Coded Protein 

Label (ICPL) (Preston et al., 2004), Isobaric Tags for Relative and Absolute Quantitation 

(ITRAQ) (Chaudhry, 2009) and Stable Isotope Labelling with Amino Acids in Cell Culture 

(SILAC) (Ong et al., 2002).  

The goal of this study was to elucidate response of endothelial cells high and low dose ionising 

radiation, the interaction of proteins and miRNAs in this response and their role in the aetiology 

of cardiovascular diseases. In this thesis, the human endothelial cell line EA.hy926 was used as an 

in vitro model for radiation induced proteome alterations. The cellular proteome was investigated 

to identify radiation-regulated proteins using 2D-DIGE and SILAC strategies. SILAC is a mass 

spectrometry based method used to analyse the proteome of a cell (Ong et al., 2002, Soufi et al., 

2010, Ong et al., 2003, Zhang et al., 2008). SILAC technique uses heavy isotopes of carbon and 

nitrogen of lysine and arginine amino acids to label cellular proteins biosynthetically in one pair 

of cell culture either control or treated. By comparing the abundance of isotopically labelled 

proteins with unlabelled proteins it is possible to identify and quantify regulated proteins. The 

proteomes were analysed post irradiation to a clinically relevant gamma dose of 2.5 Gy and a 

lower gamma dose of 200 mGy at 4 and 24 h. MiRNA profiling was also done for the low dose 

(200 mGy) at 4 and 24 h post irradiation.  
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4. Materials  

4.1. Abbreviations 

APS Ammonium persulfate 

AA Acrylamid 

Bp Base pairs 

BSA Bovine serum albumin 

°C Degree celsius 

CHAPS 3-(3-cholamide-propyl) 
dimethylammonio-l-
propanesulfonate 

Da Dalton 

Dist. Distilled 

DMEM Dulbecco’s Modified Eagle 
Medium 

DMSO Dimethyl sulfoxide 

DNA Deoxyribonucleic acid 

DTT Dithiothreitol 

ECL Enhanced chemiluminescence 

EDTA Ethylenediaminetetraacetic acid 

ESI Electrospray ionisation 

FCS Foetal Calf Serum 

g Gram 

Gy Gray 

h Hours 

HAT Hypoxanthine, aminopterin and 
thymidine (selection media) 

HPLC High-performance liquid 
chromatography 
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IPG  Immobilised pH-Gradient 

IR Ionising radiation 

Kg Kilogram 

kDa Kilo Dalton 

l Liter 

M Molar  

m Milli (10-3) 

min Minutes 

miRNA microRNA 

NHEJ Non-homologous end joining  

PAGE Polyacrylamide gel electrophoresis 

PBS Phosphate buffered saline  

PCR Polymerase chain reaction 

PI Propidiumiodide 

PMSF Phenylmethylsulfonyl fluoride 

RNA Ribonucleic acid 

RNase Ribonuclease 

rpm Revolutions per min 

RT Room temperature 

RT-PCR Real-time PCR 

SDS Sodium dodecyl sulfate 

sec Seconds 

Ser Serine 

SILAC Stable isotope labelling by amino 
acids in cell culture 

snoRNAs Small nucleolar RNAs 

SSB Single strand break 
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TEMED Tetramethylethylenediamine 

Thr Threonine 

Tris Tris(hydroxymethyl)aminomethane 

Triton X-100 2-[4-(2,4,4-trimethylpentan-2-
yl)phenoxy]ethanol 

Tween 20 2,3-dihydroxypropyl octanoate 

Tyr Tyrosine 

UV Ultraviolet 

V Volt 

vol Volume 

v / v Volume per volume 

W Watt 

wt Weight 

w / v Weight per volume 

4.2. Chemicals 

10x Roti Block  ROTH GmbH, Karlsruhe 
13C6 15N4 L-Arginine-HCl Thermo scientific, Pierce research 

products, USA 

2-Mercaptoethanol Merck KG aA, Darmstadt 

Acetic acid Merck KG aA, Darmstadt 

Acrylamid / BisAA 30 % / 0.8 % (ProtogelTM), National 
Diagnostics, Atlanta, USA 

40 % / 19:1, Biozym, Hess. Oldendorf 

Agarose Biozym, Hess. Oldendorf 

Ammonium acetate Merck KG aA, Darmstadt 

Ammonium chloride SIGMA-Aldrich Chemie GmbH, 
Deisenhofen 

Ammonium sulphate Carl Roth GmbH & Co. KG, Karlsruhe 
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Ampicillin Serva, Heidelberg 

APS Merck KG aA, Darmstadt 

beta-Mercaptoethanol Merck KG aA, Darmstadt 

Bidest. water GibcoBRL, Karlsruhe 

Boric acid Merck KG aA, Darmstadt  

Bradford-Reagent SIGMA-Aldrich Chemie GmbH, 
Deisenhofen 

Bromphenol blue Roche Molecular Diagnostics, Mannheim 

BSA SIGMA-Aldrich Chemie GmbH, 
Deisenhofen 

Calcium chloride Merck KG aA, Darmstadt 

CHAPS SIGMA-Aldrich Chemie GmbH, 
Steinheim; AppliChem, Darmstadt 

CyDye DIGE Fluor, Cy2 minimal dye GE Healthcare, Uppsala, Sweden 

CyDye DIGE Fluor, Cy3 minimal dye  GE Healthcare, Uppsala, Sweden 

CyDye DIGE Fluor, Cy5 minimal dye  GE Healthcare, Uppsala, Sweden 

Dipotassium phosphate (phosphoric acid) Merck KG aA, Darmstadt 

Disodium hydrogen phosphate Merck KG aA, Darmstadt 

DMEM with glutamine PAA Laboratories, Linz, Austria 

DMSO SIGMA-Aldrich Chemie GmbH, 
Deisenhofen 

DTT GE Healthcare, Uppsala, Sweden 

EDTA SIGMA-Aldrich Chemie GmbH, 
Deisenhofen 

Ethanol absolute Merck KG aA, Darmstadt 

Ethidiumbromide SERVA, Heidelberg 

FCS PAA Laboratories, Linz, Austria 

Formamide SIGMA-Aldrich Chemie GmbH, 
Deisenhofen 
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Glucose Merck KG aA, Darmstadt  

Glycerine SIGMA-Aldrich Chemie GmbH, 
Deisenhofen 

HAT (50x) Biochrom AG, Berlin 

HEPES SIGMA-Aldrich Chemie GmbH, 
Deisenhofen 

Hydrochloric acid Merck KG aA, Darmstadt 

Imidazole AppliChem, Darmstadt 

Immobiline Dry Strip pH 3-11 NL, 24 cm GE Healthcare, Uppsala, Sweden 

Iodoacetamide GE Healthcare, Uppsala, Sweden 

Isopropanol Merck KG aA, Darmstadt 

Lipofectamine™ 2000 Invitrogen, Karlsruhe 

Lipofectamine™ RNAiMax Invitrogen, Karlsruhe 

Magnesium chloride SIGMA-Aldrich Chemie GmbH, 
Deisenhofen 

Magnesium sulphate Merck KG aA, Darmstadt 

Methanol Merck KG aA, Darmstadt 

Nonidet-P40 Roche, Basel, Switzerland 

NOV SIGMA-Aldrich Chemie GmbH, 
Deisenhofen 

Phenol / Chloroform  SIGMA-Aldrich Chemie GmbH, 
Deisenhofen 

Phosphatase Inhibitor Cocktail  Roche, Basel, Switzerland 

Phosphate buffered saline (PBS Dulbecco 
Ca2+ and Mg2+free) 

Biochrom  

PMSF SIGMA-Aldrich Chemie GmbH, 
Deisenhofen 

Ponceau-S-Red  SIGMA-Aldrich Chemie GmbH, 
Deisenhofen 

Potassium chloride Merck KG aA, Darmstadt 
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Potassium dihydrogen phosphate Merck KG aA, Darmstadt 

Potassium hydroxide Merck KG aA, Darmstadt 

Propidiumiodide SIGMA-Aldrich Chemie GmbH, 
Deisenhofen 

Protease Inhibitor Cocktail 1 Roche, Basel, Switzerland 

Protease Inhibitor Cocktail 2 Roche, Basel, Switzerland 

ProtoGel® 30 %  National Diagnostics, Atlanta, Georgia 

Restore™ Western Stripping Buffer  Pierce, Rockford, USA 

RNaseA SIGMA-Aldrich Chemie GmbH, 
Deisenhofen 

Roti®-Blue ROTH, Karlsruhe 

SDS Serva, Heidelberg; GE Healthcare, 
Uppsala, Sweden 

Silver nitrate AppliChem, Darmstadt 

Skimmed milk powder ROTH GmbH, Karlsruhe 

Sodium acetate Merck KG aA, Darmstadt 

Sodium chloride Merck KG aA, Darmstadt 

Sodium citrate ROTH GmbH, Karlsruhe 

Sodium thiosulphate AppliChem, Darmstadt 

Sucrose Merck KG aA, Darmstadt  

TEMED Pharmacia Biotech GmbH, Freiburg 

Thiourea SIGMA-Aldrich Chemie GmbH, 
Deisenhofen 

Trichloroacetic acid Merck KG aA, Darmstadt 

Tris Merck KG aA, Darmstadt 

Trisodium citrate Merck KG aA, Darmstadt 

Triton X-100 Merck KG aA, Darmstadt 

Trypan Blue Stain 0,4 %  GibcoBRL, Karlsruhe 
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TrypLE™ Express GibcoBRL, Karlsruhe 

Trypsin  GibcoBRL, Karlsruhe 

Urea Merck KG aA, Darmstadt; GE 
Healthcare, Uppsala, Sweden 

4.3. Instruments and lab wares 

 
137Cs-γ-source HWM-D 2000, Waelischmüller, 

Germany 

7900HT Fast Real-Time PCR System Applied Biosystems, Darmstadt 

Alpha Innotech FluorChem HD2  Alpha Innotech 

Cell culture flasks Greiner Labortechnik GmbH, 
Frickenhausen 

Centrifuges Biofuge pico, Heraeus, Hanau; 
Eppendorf Centrifuge 5415R, 
Eppendorf, Hamburg; Minifuge RF, 
Heraeus, Hanau; Multifuge 3SR, 
Heraeus, Hanau Sigma 1K15, Sigma 
Laborzentrifugen GmbH, Osterode 
am Harz 

Centrifuge tubes (15 ml and 50 ml) BD FalconTM, Heidelberg 

Countess™ automated cell counter  Invitrogen, Karlsruhe 

Countess™ cell counting chamber slide Invitrogen, Karlsruhe 

Cuvette Brand, Wertheim  

Cryotube™ vials (1 ml) Nunc A / S, Langenselbold 

Disposable plastic gel Cassettes (1.5mm) Invitrogen, Karlsruhe 

Ettan Dalt II system Amersham Pharmacia, Freiburg 

Incubation chamber Heraeus, Hanau 

Invert-Microscope IMT2 Olympus, Hamburg 

Laminar airflow cabinet, Laminair® HBB 
2472S 

Heraeus, Hanau 

Liquid Nitrogen tank biostor 5 Statebourne, Washington Tyne & 
Wear 

Petri dishes Greiner Labortechnik GmbH, 
Frickenhausen 

pH-Meter InoLab pH Level 1, UK 
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Photometer BioPhotometer, Eppendorf, Hamburg 

4700 Proteomics Analyser (MALDI-TOF 
/ TOF) 

Applied Biosystems, Darmstadt 

Scanner Umax, PowerLook 1000, Willich
  

Shaker Thermomixer comfort, Eppendorf, 
Hamburg; Infors AG, Bottmingen, 
Schweiz 

StepOnePlus™ Real-Time PCR System Applied Biosystems, Darmstadt 

Typhoon Trio™ Scanner GE Healthcare, Freiburg  

Voltage source Biorad, München 

Water bath GFL, Großburgwedel 

Z1 Coulter Particle Counter tubes Beckman Coulter, Fullerton, CA 

Z1 Coulter Particle Counter Beckman Coulter, Fullerton, CA 

4.4.  Cell culture 

4.4.1 Cryopreservation medium 

DMEM / DMEM heavy  /  DMEM Light 25 ml 

FCS / DFBS  2.5 ml (10 %) (v / v) 

DMSO 2.5 ml (10 %) 

HAT medium (50x) [Biochrom AG] 10 ml  

4.4.2 DMEM medium 

DMEM [PAA Laboratories] 500 ml 

Foetal calf serum [PAA Laboratories]  50 ml (10 %) 

HAT medium (50x) [Biochrom AG] 10 ml (1x) 
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4.4.3 SILAC media 

Light medium  

DMEM medium [Fischer Scientific] 500 ml 

Dialysed foetal bovine serum [Fischer Scientific]  50 ml (10 %) 
12C6 L-lysine-2HCl [Fischer Scientific]  50 mg 
12C6 14N4 L- arginine-HCl [Fischer Scientific]  50 mg 

HAT medium (50x) [Biochrom AG] 10 ml (1x) 

Heavy medium 

DMEM medium [Fischer Scientific] 500 ml 

Dialysed foetal bovine serum [Fischer Scientific]  50 ml (10 %) 
13C6 L-lysine-2HCl [Fischer Scientific] 50 mg 
13C6

15N4 L-arginine [Fischer Scientific] 50 mg 

HAT medium (50x) [Biochrom AG] 10 ml (1x) 

4.4.4 Buffers & solutions 

0.5 % Agarose (2D-DIGE) 

Agarose 0.5 g 

1x Running buffer  100 ml 

Microwave until the agarose is fully dissolved  

Blocking buffer (Western blotting)  

Skimmed milk powder 8 % Dissolve in 1x 
TBST 
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Electrophoresis buffer (10x concentration for 1 Liter) 

Trizma Base 30.2 g   

Glycine 144 g 

Dest. water 850 ml  

pH 8.3 

Dest. Water up to 1 litre 

Equilibration buffer-1 

1.5 M Tris-HCl, pH 8.8 6.7 ml (50 mM) 

Urea 72.07 ml (6 M) 

Glycerol (87 %) 69 ml (30 %) 

SDS 4.0 g (2 %) 

Bromophenol blue a few grains 

Double distilled water up to 200 ml 

To 50 ml of the above solution add DTT  0.5 g (1 %) 

Equilibration buffer-2 

1.5 M Tris-HCl, pH 8.8 6.7 ml (50 mM) 

Urea 72.07 ml (6 M) 

Glycerol (87 %) 69 ml (30 %) 

SDS 4.0 g (2 %) 

Bromophenol blue a few grains 

Double distilled water up to 200 ml 

To 50 ml of the above solution add iodoacetamide 1.2 g (2.5 %) 
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Laemlli buffer (4x) 

Tris-HCL, pH 6.8 240 mM 

SDS 8 % 

Glycerine 40 % 

Bromphenolblue 0.08 % 

beta-Mercaptoethanol 20 % 

Lysis buffer I (SILAC) 

(W / V) SDS 4 % 

Tris HCL, pH 7.6 100 mM (0.1 M) 

DTT  100 mM (0.1 M) 

Protease inhibitor cocktail tablets 1 per 10 ml 

Phosphatase inhibitor cocktail tablet 1 per 10 ml 

Phosphatase inhibitor cocktail 2 1 per 10 ml 

Lysis buffer II (2D-DIGE) 

Tris HCL, pH 7.6 25 mM  

NaCl 120 mM  

Triton X-100 0.3 % 

Protease inhibitor cocktail tablets 1 per 10 ml 

Phosphatase inhibitor cocktail tablets 1 per 10 ml 

PBS 

NaCl 9 g 

Bidest. Water Add 10000 ml 

Autoclave  

  



 Materials and Methods 

 24 

Rehydration buffer – 1 

Urea 0.841 mg (7 M) 

Thiourea 0.3045 mg (2 M) 

CHAPS 0.04 mg (4 %) 

Tris 30 mM 

 Rehydration buffer – 2 

Urea 0.841 mg (7 M) 

Thiourea 0.3045 mg (2 M) 

CHAPS 0.04 mg (4 %) 

Bromophenol blue  a few grains 

DTT 0.024 mg (1 %) 

IPG 0.024 mg (1 %) 

Replacing solution 

1.5 M Tris-HCl (pH 8,8) 25 ml 

50 (v / v) Glycerine 58 ml 

Bromophenol blue  a few grains 

MilliQ Water 17 ml 

Resuspending buffer 

Urea 0.841 mg (7 M) 

Thiourea 0.3045 mg (2 M) 

CHAPS 0.04 mg (4 %) 

Tris 0.0036 mg (30 mM) 



 Materials and Methods 

 25 

Separating gel (12 %) (For 1D-SDS PAGE x 5 gels) 

Acrylamide / Bisacrylamide 30 / 1 40.0 ml 

1.5 M Tris-HCl, pH 8.8 25.0 ml 

MilliQ water 32.9 ml 

SDS (10 %) 1.0 ml 

APS (10 %) 1.0 ml 

TEMED (0.1 %) 0.1 ml 

Separating gel (12 %) (for 2D-DIGE x 10 gels) 

Acrylamide / Bisacrylamide 30 / 1 
400 ml 

1.5 M Tris-HCl, pH 8.8 250 ml 

MilliQ water 
329 ml 

SDS (10 %) 
10 ml 

APS (10 %) 
5.0 ml 

TEMED (0.1 %) 
0.5 ml 

Stacking gel (4 %) 

Acrylamide / Bisacrylamide 30 / 1 1.3 ml 

0.5M Tris-HCl, pH 6,8 2.24 ml 

MilliQ water 6.1 ml 

SDS (0.1 %) 0.1 ml 

APS (10 %) 0.05 ml 

TEMED (0.01 %) 0.01 ml 
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TBST (10x concentration for 1 liter) 

Trizma Base 24.2 g 

NaCl 87.6 g 

Dest. water  up to 1 liter 

pH  7.6 

 Tween 10 ml 

TE (10 x concentration for 1 liter) 

1 M Tris-Base 50 ml 

0.5 M EDTA 10 ml 

Dest. Water 500 ml 

Towbin buffer 

Trizma Base 3 g 

Glycine 14.4 g 

Dest. water 700 ml 

Ethanol 200 ml 

Dest. water up to 1 liter 

Transfer buffer (for 1 liter) 

Trizma Base 31.2 g 

Glycin 28.8 g 

Methanol 200 ml 

pH 8.3-8.4 
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Tris (1 M) 

Trizma Base 121.1 g 

Dest. water up to 1 liter 

Adjust the pH with HCl  

Wash solution for colloidal Coomassie blue staining per gel 

Methanol 99,8 %   25 ml  

Dest. water 75 ml  

4.4.5 Experimental kits 

2D-Clean-Up-Kit Roche Molecular Diagnostics, 
Mannheim 

ECL™ Advance Western-Blotting Detection Kit Amersham Biosciences, USA 

Megaplex RT Primer Human Pool A V 2.1 Applied Biosystems, New 
Jersey, USA 

Megaplex RT Primer Human Pool B V 2.0 Applied Biosystems, New 
Jersey, USA 

SILAC Protein Quantitation Kit Thermo scientific, Pierce 
research products, USA  

TaqMan® Micro RNA Assay Applied Biosystems, New 
Jersey, USA 

TaqMan® MicroRNA Reverse Transcription Kit  Applied Biosystems, Foster City, 
CA 

TaqMan® Universal PCR Master Mix,  
AmpErase® UNG 

Applied Biosystems, New 
Jersey, USA 

Restore™ Plus Western-Blot Stripping Buffer Thermo Scientific, Rockford, 
USA 

High Molecular Weight Protein Standard  Biorad, München 

Precision Plus Protein™ Dual Colour Standard Biorad, München 
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4.4.6 Human endothelial cell line (EA.hy926) 

The EA.hy926 is a continuous cell line. This cell line was derived by PEG mediated fusion of a 

thioguanine-resistant clone of A549 (human alveolar type II-like epithelial) cells with primary 

HUVEC (human umbilical vein endothelial cells). These cells are maintained in HAT medium 

(Edgell et al., 1983) 

4.4.7  Immunoblotting antibodies  

Table 1 shows primary and respective secondary antibodies used to validate the data obtained by 

SILAC or 2D-DIGE with corresponding dilutions. All secondary antibodies were obtained from 

Santa Cruz. 

Table 1: List of Antibodies (* represents cocktail containing several antibodies) 

Antigen detected Species Source 
Primary 
antibody 

Primary 
antibody 
dilution 

Secondary 
antibody 
dilution 

NDUFC2 Goat Santa Cruz 
Biotechnology 

1:200-1:500 1:10000 

NFκB p50 Goat Santa Cruz 
Biotechnology 

1:500 1:10000 

Phospho ERK 1 / 2 Rabbit Cell Signaling 1:1000 1:10000 

ERK 1 / 2 Rabbit Cell Signaling 1:1000 1:10000 

Desmoplakin Mouse Santa Cruz 
Biotechnology 

1:200 1:10000 

HSP 90 Rabbit  Cell Signaling 1:1000 1:10000 

Cofilin Rabbit Cell Signaling 1:1000 1:10000 

Actin  Sigma-Aldrich 1:1000 1:10000 

Tubulin Mouse  Sigma-Aldrich 1:5000 1:10000 

Total OXPHOS Rodent WB 
antibody cocktail * including 
antibodies 

Mouse MitoSciences  1:250 1:10000 

CI subunit NDUFB8     

CII     

CIII-Core protein 2     

CIV subunit I     

CV alpha subunit     
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4.4.8 RNA oligonucleotides 

4.4.8.1 miRNA inhibitors 

Table 2: List of miRNA inhibitors 

miRNA inhibitors Sequence Source  

miRNA inhibitor control GTGTAACACGTCTATACGCCCA Exiqon, Woburn, USA 

hsa-let7c-inhibitor UGAGGUAGUAGGUUGUAUGGUU Exiqon, Woburn, USA 

4.4.8.2 Precursor-miRNA 

Table 3: List of Pre-miRNAs 

Pre-miRNAs Stem-loop sequence (5´-3´) Source  

Pre-let-7c GCTCCAAGGAAAGCTAGAAGGTTGTACAGTTAACTCCCAGGGTGTAACTCT
AAACCATACAACCTACTACCTCAACCCGGATGCCTATAGTGAGTCGTATTA 

Ambion, New 
York, USA 

4.4.9 Software and databases  

Softwares Source 

4000 Series Explorer software Applied Biosystems, New Jersey, USA 

Adobe Photoshop CS  Adobe Inc., San Jose, California 

Adobe Illustrator CS Adobe Inc., San Jose, California 

DAVID  http: /  / david.abcc.ncifcrf.gov /  

DeCyder™ 2D Software GE health care life sciences 

Image Quant GE health care life sciences 

ImageMaster (TotalLab TL100) TotalLab 

Ingenuity Pathway analysis Ingenuity Systems 

MaxQuant software http: /  / maxquant.org /  

Panther http: /  / www.pantherdb.org /  

Peptide calibration standard III Proteochem, Inc. 

ProteinPilot™ Software 4.0 AB SCIEX 

Software Alpha View Protein simple 

UniProt http: /  / www.uniprot.org /  

 
  



 Materials and Methods 

 30 

5. Methods 

5.1. Cell culture 

5.1.1 Maintenance culture of human endothelial cell line EA.hy926 

The cell line EA.hy926 was initially established by fusing primary human umbilical vein 

endothelial cells (HUVEC) with the human lung carcinoma cell line A549 (Edgell et al., 1983). 

EA.hy926 cells were grown in D-MEM medium supplemented with 10 % dialysed foetal bovine 

serum and HAT (1x) and maintained in culture flasks at 37° C with 11 % CO2 in air. Cells were 

passaged every 5-7 days when confluence was achieved. Medium was aspirated from cell culture 

plates and the monolayer was rinsed with 10 ml PBS (prewarmed at 37o C). The PBS was 

aspirated and 2.5 ml Trypsin-EDTA solution was added and incubated at 37o C for 2-5 min. 

Culture flasks were observed under the microscope to ensure that all the cells were detached from 

the culture plates and no clumps were formed. The trypsinisation reaction was stopped by the 

addition of 10 ml complete media (prewarmed at 37o C). Cells were counted with a Coulter 

Counter and cell suspension was then gently centrifuged at 1400 g for 5 min at room temperature. 

The supernatant was discarded and the pellet resuspended in either 5 ml or 10 ml of fresh media 

and seeded into either T 25 or T 75 flasks (T 25 flasks were seeded with 1 x 106 cells and T 75 

flasks with 2 x 106 cells), respectively.  

5.1.2 In vitro labelling (SILAC) 

For SILAC labelling the natural 12C 14N amino acids were replaced with 13C and 15N. EA.hy926 

cells were grown in SILAC D-MEM (Fischer Scientific) medium supplemented with 12C6 L-

lysine-2HCl, 12C6 14N4 L-arginine-HCl (light medium-the natural isotope), or in SILAC medium 

supplemented with 13C6 L-lysine-2HCl, 13C6
15N4 L-arginine (heavy medium containing the stable 

isotope). The light and heavy lysine and arginine amino acids were added to an amino acid 

deficient media to obtain a final concentration of 0.1 mg / ml. Both media (light and heavy 

medium) were supplemented with 10 % dialysed foetal bovine serum, HAT (1x) and sterile 

filtered. Cells were passaged for at least 6 doublings to achieve maximum labelling. For 

experimental studies the cells were placed in culture flasks or in 10 cm Petri dishes (for radiation 

experiments) as described in section (5.1.1). A schematic presentation of the labelling protocol is 

shown in Figure 2. 
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Figure 2: Schematic presentation of in vitro labelling in cell culture 

5.1.3 Cryopreservation 

Cryopreservation is a process in which cells are preserved in a viable state by slowly cooling and 

stored at -196oC in liquid nitrogen. In order to prevent damage during freezing and thawing 

(retrieval to room temperature) a cryoprotectant (DMSO) was used. For cryopreservation of the 

EA.hy926 cells, ~ 5 x 106 cells in rapid growth phase were harvested by trypsinisation followed 

by centrifugation at 1400 g for 5 min. The supernatant was discarded and the cell pellet was 

resuspended in cryopreservation media (described in section 5.1.3) to achieve a concentration of 1 

x 106 cells / ml. 1 ml aliquot of this cell suspension was transferred to each cryogenic storage vial. 

Since the mammalian cells are very sensitive to rapid freezing the vials were placed in a Nalgene 

Cryo 1°C Freezing Container (cooling rate = 1oC / min) and stored overnight at -80oC. The vials 

were then transferred and stored at -196oC in liquid nitrogen.  

5.1.4 Thawing cryopreserved cells 

Cells that are cryopreserved are fragile and become highly sensitive to cryoprotectants (DMSO). 

Therefore, the cells were thawn quickly and centrifuged gently to remove cryoprotectants prior to 

plating. Cryopreserved vials containing EA.hy926 cells were taken out of the liquid nitrogen tank 

and placed in to a warm water bath. Complete media was prewarmed at 37oC water bath for about 

15 min. The contents of the cryopreservation vials were transferred to 15 ml centrifuge tubes, to 

which 5 ml of complete media was added and centrifuged at ~1400 g for 5 min. The supernatant 

was discarded and the pellet gently resuspended in 10 ml complete media and transferred to a 

medium sized culture flask (T 75).   
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5.1.5 Irradiation of cells  

Cells grown on Petri dishes as described in 5.1.2 were irradiated using a single γ-ray (Cs-137) 

dose of either to 200 mGy or 2.5 Gy. Control cells were sham-irradiated by treating them exactly 

in a similar way as irradiated cells, except that the radiation source was not turned on.  

5.1.6 Harvesting cells for proteomic studies 

Prior to harvesting the culture medium was discarded and the cells were rapidly rinsed once with 

PBS (prewarmed at 37oC). Once the PBS was removed by aspiration, cells were harvested by 

scraping with a cell scraper with 500 µl of lysis buffer (4.4.4). 

5.2.  Functional analysis 

5.2.1 Cell growth kinetics 

For the growth rate analysis (Krueger and Northrop, 1930), cells were harvested, irradiated in 

suspension (200 mGy and 2.5 Gy) and immediately seeded in 16 culture flasks. The cells were 

harvested and counted after 5 h, 24 h, 29 h, and 48 h and so on up to 250 h.   

5.2.2 Clonogenic survival assay 

Clonogenic assays were performed to determine the numbers of proliferatively competent cells 

after exposing to radiation (Rosenblum et al., 1975, Dahm-Daphi et al., 1994, Dahm-Daphi and 

Dikomey, 1994). EA.hy926, as some other mammalian cells, requires a layer of viable and 

bioactive cells which are in growth and differentiation arrest (feeder cells) to permit colony 

development. The clonogenically in activate feeders were prepared by irradiating the EA.hy926 

cells at 50 Gy with γ-rays (Co-60). The feeder cells were plated in T 25 flasks and were placed in 

the incubator overnight at 37o C. Cells used for growth rate determination were irradiated with 

different doses ranging from 0 – 7 Gy with γ-rays (Cs-137) and plated on the flasks seeded with 

feeder cells. Number of irradiated cells, feeder cells and their respective doses are shown in the 

Table 4.  
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Table 4: Depicts the number of irradiated cells, feeder cells and their respective doses used in clonogenic assays. 

Dose Feeder cells / flask Number of irradiated cells / flask 

0.0 3.33 x 104 200 

1.0 3.33 x 104 250 

2.0 3.33 x 104 450 

3.0 3.33 x 104 900 

4.0 3.33 x 104 2000 

6.0 3.33 x 104 5000 

The cells were incubated at 37oC for 20 days. The medium was discarded and the dishes were 

rinsed twice with PBS. The colonies formed were stained with diluted Giemsa stain (1:20 in 

PBS). The cells were then fixed by incubation in 100 % Ethanol for 15 min followed by a 2nd 

incubation for 10 min in Giemsa stain. The stained cells were washed with water and the flasks 

allowed to dry overnight. The colonies with a minimum of atleast 50 cells were counted under the 

binocular microscope. 

5.3. Proteomic studies  

5.3.1 SILAC 

Cells were grown in media containing stable isotopes of lysine and arginine instead of their 

natural form (5.1.2). The cells were maintained in culture for ~6-8 doublings and then checked for 

complete incorporation of amino acids by mass spectrometry. Completely labelled cells were used 

for experiments or for cryopreservation. Two independent biological replicates were used for 

analysis. In the first biological replicate, the cells with natural isotopes served as controls and the 

heavy labelled cells were irradiated and in the second biological replicate the heavy labelled cells 

served as controls and the cells with natural isotopes were irradiated (label swapping). A detailed 

description of the experimental procedure follows in 5.3.1.1 and 5.3.1.8. In general for protein 

analysis cell lysates of both the experimental and control samples were mixed equally (1:1 wt / 

wt) and separated on a 1D polyacrylamide gel. Bands on the polyacrylamide gel were cut out and 

tryptic digested. Mass spectrometric identification of the digested bands was carried out. 

Quantification of changes in the proteome changes caused by irradiation was based on the 

difference in mass between every lysine / arginine peptide that contains either 12C6 L-lysine-2HCl, 
12C6 14N4 L-arginine-HCl or 13C6 L-lysine-2HCl, 13C6 15N4 L-arginine-HCl incorporated. A 

schematic representation of the SILAC technique is shown in Figure 3.  
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5.3.1.1 Lysis  

To obtain the protein extract for SILAC analysis cells were prepared as described in section 5.1.6 

and the lysate from Petri dishes was transferred to a 1 ml reaction tube and vortexed for 10-15 min 

at room temperature. The lysate was then briefly sonicated to reduce DNA viscosity and 

centrifuged at 13000 g and 4oC for 10 min. The pellet obtained was discarded and the supernatant 

served as protein extract.  

For immunoblotting protein extracts were prepared as described above except that the incubation 

in lysis buffer (4.4.4) was carried out on ice for 20-30 min and without sonication.  

5.3.1.2 Precipitation 

Precipitation was carried out using acetone in order to concentrate and purify the protein samples. 

Protein extract obtained by lysis was precipitated in acetone (volume 1:5) at -20°C overnight, 

followed by centrifugation at 13000 g at 4oC for 5 min. The supernatant was discarded and the 

protein pellet was allowed to air dry for 1 min before being resuspended in an appropriate buffer 

(4.4.4). 

5.3.1.3 Estimation of protein concentration 

The concentration of protein in a sample was estimated by the Bradford assay (Bradford, 1976). 

The assay is based on the binding of Coomassie Brilliant Blue G-250 dye to proteins in a 

stochiometric manner. Under acidic conditions the dye is brownish red in colour and has an 

absorbance maximum of 470 nm. On binding of the dye to the proteins, the brownish red colour 

of the dye is converted to a deep blue colour with an absorbance maximum of 595 nm. The 

absorbance of the sample was measured at 595 nm against a standard curve. A standard curve was 

prepared using bovine serum albumin (BSA) at concentrations of 0.1 mg / ml, 0.5 mg / ml, 0.25 

mg / ml and 1 mg / ml. Lysis buffer was added to the BSA standard dilutions so that the same 

volume of lysis buffer was present in the standards and the samples. MilliQ water with the same 

amount of lysis buffer was used as a reagent blank. To the standards and samples 250 µl of 

Bradford reagent was added. The reactions were incubated for 5 min at room temperature before 

the absorption was measured at 595 nm. The protein concentrations were calculated based on the 

standard curve. 
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Figure 3: Schematic representation of SILAC workflow starting from labelling till mass spectrometric analysis 
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5.3.1.4 Resolving proteins on 1D-SDS-PAGE  

For mass spectrometric analysis by SILAC and for immunoblotting of proteins, the protein lysates 

were resolved on 1D PAGE gels. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis 

(SDS-PAGE) uses the detergent SDS to form a complex with proteins that allows the separation 

of protein complexes according to their MW (Laemmli, 1970). In this study a discontinuous SDS-

PAGE system was used. The discontinuous system comprised of a long separating gel overlaid by 

a short porous stacking gel. The stacking gel is more acidic when compared to that of the 

separating gel and also has less cross-linking due to a lower acrylamide concentration.  

Gels were cast in disposable plastic cassettes. The separating gels were cast first using the 

volumes of solutions as shown in (4.4.4). Isopropanol was sprayed on top of separating gel and 

incubated for 1 h for polymerisation. This was followed by casting of the stacking gel with 

volumes of solutions as shown in (4.4.4). A comb of 1 mm thickness with 10 or 15 wells was 

placed into the stacking gel. The gel casts were wrapped in wet tissue to prevent dehydration and 

stored overnight at 4oC to achieve complete polymerisation. The combs were gently removed and 

wells rinsed with electrophoresis buffer. The gels were placed in an electrophoresis chamber with 

1x concentrated electrophoresis buffer (4.4.4). 1x Laemmli buffer (4.4.4) was added to the protein 

extracts with predetermined concentrations and incubated at 95oC for 15 min to denature proteins. 

The protein lysate was resolved on a combination of 4 %: 12 % (stacking gel: separating gel). 

5.3.1.5 Electrophoresis 

The protein extracts were loaded into wells and submerged in buffer for conductivity. A voltage 

of 90 V was applied to the gels for the first ~15 min (until the blue dye moved out of the stacking 

gel). Thereafter, the voltage was increase to 120 V. The run was stopped when the blue front 

reached the bottom of the gel. For SILAC based mass spectrometric analysis each well with 50 µg 

of proteins from both irradiated and sham-irradiated cell lysates was loaded.  

5.3.1.6 Colloidal Coomassie staining of protein gels that were used for mass 

spectrometric analysis  

Colloidal Coomassie staining is a very sensitive staining method, compared to traditional 

Coomassie staining. The colloidal Coomassie blue G-250 dye forms microprecipitates (Candiano 

et al., 2004, Neuhoff et al., 1988) in acidic solutions containing ammonium sulphate, thus 

reducing the amount of free dye, available for non specific binding. Colloidal Coomassie Blue G-

250 is five times more sensitive than that of the traditional Coomassie staining. After 
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electrophoresis, the 1D PAGE gels were incubated for 2 h in Colloidal Coomassie Blue G-250 on 

a shaker. The gels were covered with wash solution (4.4.4) for 5 min on a shaker and transferred 

to a clean container and stored in water until further analysis. A representative gel after staining is 

as shown in Figure 4. 

 

Figure 4: Representative gel picture showing colloidal coomassie staining 

5.3.1.7 Processing of gel-resolved proteins and tryptic digestion 

For the identification of proteins, each SDS-PAGE lane was cut into 10 slices. These were 

subsequently digested as described previously by Sarioglu et al. (Sarioglu et al., 2008). Briefly, 

the gel pieces were destained and rinsed with buffer containing 50 mM NH4HCO3 in 30 % 

acetonitrile (ACN). The gel pieces were then equilibrated in 10 mM NH4HCO3 prior to 

proteolytic digestion. Gel pieces were shrunk in 100 % v / v ACN and rehydrated in 10 mM 

NH4HCO3. This treatment was repeated, followed by the addition of 0.1-0.2 µg of modified 

trypsin (Sigma, proteomics grade) per gel piece (1 / 50 µg). Digestions were carried out overnight 

at 37° C. The supernatant was collected and combined with the eluates of subsequent elution steps 

in 80 % v / v ACN, 1 % v / v TFA. The combined eluates were dried in a SpeedVac centrifuge. 

The dried samples were dissolved in 20 µl 5 % v / v ACN, 0.5 % v / v TFA for subsequent high-

performance liquid chromatography (HPLC) separation. 

5.3.1.8  Mass spectrometry and data analysis 

The trypsin fragmented peptides were separated by reversed phase HPLC (PepMap, 15 cm x 75 

µm ID, 3 µm / 100Å pore size, LC Packings) operated on a nano-HPLC (Ultimate 3000, Dionex) 

with a nonlinear gradient 170 min using 2 % ACN in 0.1 % formic acid in water and 0.1 % formic 

acid in 98% acetonitrile as eluents with a flow rate of 250 nl / min. The gradient settings were, 2 

% ACN: 0-140 min: 2-30 %, 140-150 min: 31-98 %, 151-160 min: continually 98 %. The nano-  
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LC was connected to a linear quadrupole ion trap (LTQ Orbitrap XL) mass spectrometer 

(ThermoFischer, Bremen, Germany) equipped with a nano-ESI source. The mass spectrometer 

was operated in the data-dependent mode to automatically switch between Orbitrap-MS and LTQ-

MS / MS acquisition. Survey full scan MS spectra (from m / z 300 to 1500) were acquired in the 

Orbitrap with resolution R = 60000 at m / z 400 (after accumulation to a target of 1000000 

charges in the Orbitrap). The method used allowed sequential isolation of maximally ten most 

intense ions, depending on signal intensity, for fragmentation on the linear ion trap using 

collision-induced dissociation at a target value of 100000 ions. High resolution Orbitrap-MS scans 

and LTQ-MS / MS scans were performed in parallel. The normalised collision energy for 

collision-induced dissociation was set to a value of 35 and the resulting fragments were detected 

with normal resolution in the linear ion trap. The lock mass option was activated and the 

background signal with a mass of 44512002 was used as lock mass. Every ion selected for 

fragmentation was excluded for 30 seconds by dynamic exclusion. For SILAC experiments, all 

acquired spectra were processed and analysed using the MaxQuant software 10 (version 

1.0.13.13) in combination with Mascot 2.3.02 (Boldt et al., 2011) and the human specific IPI 

database version 3.52 date: 29.7.2009 with 34115559 residues and 83947 sequences 

(www.maxquant.org/). Cysteine carbamidomethylation was selected as the fixed modification; 

methionine oxidation and protein acetylation were allowed as variable modifications. Both the 

peptide false discovery rate and the protein false discovery rate were set to 1 %. Contaminants 

such as keratins were rejected from the list of deregulated proteins. Only proteins identified and 

quantified by at least 2 unique peptides with a variability of less than 50 % were taken into 

account. Each SILAC experiment consisted of 2 biological replicates. In the first replicate cells 

labelled with heavy isotope were treated with radiation and in the second biological replicate the 

cells labelled with light isotope were treated (swapped labelling approach). Proteins were 

considered to be significantly deregulated if the fold change in protein expression between sham- 

and irradiated samples was ≥ ± 1.3 and p ≤ 0.01. 

5.3.2 2D-DIGE 

2D-DIGE is a gel based method used to analyse complex protein mixtures (O'Farrell, 1975, Klose, 

1975). In this technique proteins are separated in two consecutive steps, first dimensional 

isoelectric focussing (IEF) followed by a second dimensional SDS-PAGE. In IEF proteins are 

separated based on the isoelectric points and in SDS-PAGE by molecular weights. A schematic 

representation of the 2D-DIGE workflow is shown in Figure 5.  
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Figure 5: Schematic representation of 2D-DIGE work flow 
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5.3.2.1 Lysis for 2D-DIGE  

For 2D-DIGE protein extract was prepared as described in section 5.3.1.1 except that the cells 

were incubated in lysis buffer (4.4.4) on ice for 20-30 min with no sonication.  

5.3.2.2 Precipitation for 2D-DIGE  

Protein precipitation for 2D-DIGE protein extracts was carried out with the 2D Clean-up Kit. 250 

µl of protein extract was transferred to a 1.5 ml reaction tube and 750 µl of precipitating agent 1 

was added. Samples were mixed well by vortexing and incubated on ice for 15 min. To this 300 

µl precipitating agent 2 was added, samples were vortexed again and incubated on ice for 15 min. 

The tubes were then centrifuged at 13000 g for 5 min to form a tight pellet. The supernatant was 

gently removed with a micro pipette and discarded. The pellet was centrifuged again and residual 

liquid was carefully removed with a micro pipette. To the pellet 40 µl of wash reagent 1 was 

added and the suspension was mixed and centrifuged at 13000 g for 5 min. Supernatant was 

discarded and 25 µl of MilliQ water was added to the pellet. The tubes were vortexed for 10–20 s. 

1 ml of wash reagent 2 (prechilled at -20° C) and 5 µl of wash 2 additive was added and the 

solution was vortexed for 1 min. The tubes were incubated at -20o C for 2 h with vortexing at 10 

min intervals. After incubation the tubes were centrifuged at 13000 g at 4o C for 5 min. 

Supernatant was discarded and the protein pellet was allowed to air dry for 1 min and was 

resuspended in a compatible buffer (4.4.4). The resuspended protein extract was used directly for 

IEF in IPG strips. Remaining protein sample was stored at -80° C for later analysis. Protein 

concentrations were determined in triplicate by Bradford assay using bovine serum albumin as 

standard (see 5.3.1.3) 

5.3.2.3 Labelling and rehydration 

Labelling is done with three dyes Cy 3-control, Cy 5 – treated and Cy 2 – internal standard, a 

mixture of control and treated (O'Farrell, 1975, Klose, 1975). The optimal pH range for DIGE 

labelling is 8.5, hence pH levels of the samples were checked and adjusted to 8.5. The CyDye’s 

which are in powder form were reconstituted in dimethylformamide (DMF) yielding a final 

concentration of the 1 nmol / µl. The reconstituted dyes were stored at -20o C. Just before 

labelling the CyDye’s were taken out of the -20o C freezer. For every 50 µg of protein extract 333 

pmol of reconstituted Cy3 (control) or Cy5 (treated) labelling reagent was added. An internal 

standard was prepared by mixing 25 µg of treated and control protein extracts and labelled using 

333 pmol of Cy2 fluorescence dye. After addition of dyes, each sample was incubated in the dark 
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on ice for 45 min. The reaction was stopped by the addition of 1 µl of 10 mM lysine and 

incubated in the dark on ice for 15 min. 

5.3.2.4 Rehydration  

The volume of labelled sample mixture was adjusted to 450 µl with IEF rehydration buffer 

(4.4.4). The rehydrating sample was distributed evenly in strip holders of a reswelling tray, 

avoiding the formation of air bubbles. IPG strips 24 cm, pH 3-11 were placed on top of the 

rehydrating sample in between the electrodes in such a way that the gel side of the strip was 

touching the rehydrating sample. The strips were covered with Dry Strip Cover Fluid (mineral 

oil). The samples were rehydrated for a period of 12-16 h. 

5.3.2.5 First dimension electrophoresis- isoelectric focussing (IEF) 

The rehydrated gel strips were transferred from the reswelling tray to the manifold of the Ettan 

IPGphor 3 Isoelectric Focussing system. Damp paper electrodes were placed on the acidic and 

basic ends of the gel. The gel strips were covered with 108 ml of Dry Strip Cover Fluid (mineral 

oil) and an electric field was set on. The run was performed at room temperature with settings as 

described in Table 5. Total duration of the run was approximately 18 h with a total voltage of 

82850 V.  

Table 5: Protocol used for IEF (isoelectric focussing) 

Duration Step Volts 
3 h Step 300 
4 h Gradient 1000 
2:30 h Gradient 3500 
3:30 h Gradient 10000 
5 h Step 10000 

5.3.2.6 Equilibration of the gel strips 

After the first dimensional isoelectric electric focussing the gel strips were equilibrated in 

equilibration solutions 1 and 2 (10 ml / gel) (4.4.4). The gel strips were incubated for 20 min in 

each solution by agitation (www.bioinformatics2.wsu.edu/).  

5.3.2.7 Second dimension gel electrophoresis- SDS PAGE  

12 % bisacrylamide stock solution for 8 gels was prepared without TEMED and APS. The stock 

solution was degassed using a vacuum pump until no air bubbles were seen in the solution. The 

gel caster was assembled and appropriate amounts of APS and TEMED (see 4.4.4) were added to   



 Materials and Methods 

 42 

the stock solution. The solution was poured into cassettes in such a way that there was 2 cm 

empty space on top. Isopropanol was sprayed on top of the gels and they were incubated 2 h at 

room temperature and then over night at 4o C. The caster was disassembled and to polymerise the 

gels were placed in racks. The IEF strips were placed on the gel in such a way that they just rested 

on the gels and there were no air bubbles between the gel and strip. A thin layer of molten 

lukewarm 0.5 % agarose was slowly pipetted onto the surface of the gel to fix the strips in place. 

The gels were placed in an Ettan Dalt II 2D PAGE system and the bottom of the tank was filled 

with 1x running buffer and the top with 2x running buffer. The proteins were resolved for ~1 h at 

25o C and 0.5 W for each gel and then for 4 h 30 min at 25o C and 15 W per gel till the 

Bromophenol Blue elution front reached the bottom of the gel. 

5.3.2.8 Image acquisition 

The gels were scanned immediately after using the Typhoon Trio Scanner with 100 µm 

resolution. The scan parameters were set as shown in Table 6 and the gel images were saved for 

analysis with the DeCyderTM software.  

Table 6: Protocol for setting filters during image acquisition 

Dyes Laser Filter 
Cy2 Blue (488 nm) 520 nm BP 40 
Cy3 Green (532 nm) 580 nm BP 30 
Cy5 Red (633 nm) 670 nm BP 30 

5.3.2.9 Image analysis  

The scanned gels were analysed with the DeCyderTM software version 5.0. The spots were 

processed by the DIA (Differential In-gel Analysis) module with the estimated number of spots of 

the DIA module set to 100000. After detection of the spots by the DIA module the corresponding 

data were analysed with BVA (Biological Variation Analysis). During the BVA analysis the spots 

were assigned to groups based on whether they were internal standards, controls or treated 

samples followed by comparing replicates of each. The fold change and the significance obtained 

by the DeCyderTM for the deregulated spots were then manually checked for false positives. 

Protein spots were considered to be deregulated with a fold change > +1.3 and p < 0.01. The gels 

were then stained as described in 5.3.2.10 and the spots of interest were picked and identified by 

either MALDI-TOF / TOF or LC MS / MS. 
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5.3.2.10  Silver staining for 2D-DIGE 

Silver staining is one of the most sensitive protein staining techniques. The principle of this 

technique is that the silver ions bind to proteins and form complexes with proteins enabling the 

visualisation of proteins (Chevallet et al., 2006). The staining was carried out as described in the 

Table 7. After staining the spots of interest were manually and individually excised from the gels 

with 1000 µl pipette tips and stored in 1 ml reaction tubes containing double distilled water until 

further analysis. 

Table 7: Represents the steps involved in silver staining 

 Composition for 2 gels Duration 

Fix 50 % Methanol 
12 % Acetic acid 

100 ml Methanol 
24 ml Acetic acid 
76 ml double distilled 
 water 

1 h / Over 
night 

Wash 50 % Ethanol 150 ml Ethanol 
150 ml double distilled. 
 water 

3 x 20 min 

Sensitize 0.2 g / l 
 Sodium thiosulphate (Na2S2O3) 

20 mg Na2S2O3 
100 ml double distilled 
 water 

1 min 

Wash 100 % double dist.Water  1 min 

Silver 
stain 

2 g / l Silver nitrate (AgNO3) 200 mg AgNO3 
100 ml water 

30 min -1 h 

Wash 100 % double dist. Water  1 min 

Develop 30 g / l Sodium carbonate (Na2CO3) 
1.25 mg / l Sodium thiosulphate (Na2S2O3) 
0.025 % Formaldehyde (37%) 

30 g Na2CO3 
999.625 ml double distilled 
 water 
125µl of 10% Na2S2O3  
solution 

Till visible 
(> 10 min) 

Stop 50 % Methanol 
12 % Acetic acid 

100 ml Methanol 
24 ml Acetic acid 
76 ml double distilled water 

10 min 

Store 1 % Acetic acid 10 ml Acetic acid 
1990 ml double distilled 
 water 

> 20 min 
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5.3.2.12 Mass spectrometric analysis 

The spots were digested as described in section 5.3.1.6. After tryptic digestion the samples were 

analysed by either LC MS / MS or MALDI-TOF / TOF. 

MALDI-TOF / TOF 

After digestion the mass spectra were acquired using a 4700 Proteomics Analyser (MALDI-TOF / 

TOF) with a 355 nm Nb: YAG laser in positive reflector mode and a 20 kV acceleration voltage. 

Mass range (m / z 900−4000) calibration was done externally using peptide calibration standard 

III (Applied Biosystems). 3000 laser shots were aggregated for every MS and MS / MS spectrum. 

Tandem mass spectrometry was performed by CID with air as the collision gas. Precursor masses 

were selected in a data-dependent manner using the 8 most abundant ions excluding trypsin 

autolytic and common keratin peptide masses. Two missed tryptic cleavages per peptide were 

allowed and a mass accuracy of 65 ppm was used for the searches and within 0.3 Dalton for MS / 

MS. Spectra acquisition and processing was done automatically with the 4000 Series Explorer 

software (version 3.6, Applied Biosystems). 

The acquired MS / MSMS spectra were analysed with Protein Pilot 3.0 software. Database 

searches were performed with MASCOT (version: 2.2.06) using the human UniRef100 version 

from 20090718 (selected for Homo sapiens) and Swiss-Prot databases (Swiss-Prot version from 

20090212) (Sarioglu et al., 2008, Pluder et al., 2011, Azimzadeh et al., 2010).  

LC-MS / MS 

The spots which could not be identified with MALDI-TOF / TOF due to the low abundance were 

analysed with LTQ Orbitrap as described in 5.3.1.8. 

5.3.3 Immunoblotting 

For immunoblot analysis 20 µg-30 µg protein extracts were loaded onto the wells. Different 

concentrations of gels were used depending on the molecular weight of the proteins to be 

resolved. Either 8 % or 12 % gels were used to detect the antibody depending on the molecular 

weight. Electrophoresis was carried out as described in 5.3.1.5. The proteins resolved on the gel 

were transferred onto a nitrocellulose membrane using the blotter XCell II™ Blot Systems 

(Towbin et al., 1992).  
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5.3.3.1 Processing of SDS-PAGE gels before transfer 

The gel cassette was carefully opened and the stacking gel was excised from separating gel. The 

stacking gel, nitrocellulose membrane and 4 Whatman filter papers were equilibrated in 1 x 

Towbin buffer (4.4.4) for a period of 20 min. Figure 6 depicts the arrangement of the blot 

aperture. The transfer was carried out for 60-90 min at 15 V. 

 

Figure 6: Schematic representation of immunoblot aperture (modified from Bio-Rad website). 

5.3.3.2 Staining of the nitrocellulose membrane 

After the proteins were transferred onto the nitrocellulose membrane, they were stained with 

Ponceau-S for 5 min and the membranes were rinsed with double dist. water to remove all the 

excess stain. 

5.3.3.3 Blocking of the membrane  

In order to prevent non-specific binding of the antibodies, the membranes were blocked either 

with Roti block solution or 8 % skimmed milk for a minimum of 1 h under room temperature with 

light agitation. 
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5.3.3.4 Antibody detection and tissue epitopes 

Primary antibodies were diluted either in Roti block or 8 % skimmed milk as shown in. After 

blocking, the membranes were incubated with primary antibodies over night at 4o C. During over 

night incubation the membranes were continuously agitated. Following this incubation the 

membranes were rinsed with TBST for 15 min. This step was repeated three times to remove all 

the unbound primary antibody. 

5.3.3.5 Secondary antibody 

Secondary antibodies were diluted either in Roti block or 8 % skimmed milk as shown in. The 

membranes were incubated with the secondary antibody for a minimum of 1 h and again rinsed 

with TBST for 15 min; this was repeated twice. 

5.3.3.6 Chemiluminescent detection 

To visualise the probes that were labelled and bound to the protein of interest we used 

chemiluminescence detection. For this, the membranes were incubated for 1 min in a mixture of 

Luminogen A and Luminogen B (ratio 1:1) solutions and the chemiluminescence was detected 

using the Alpha Innotech FluorChem HD2 and the Software Alpha View.  

5.3.3.7 Analysis / quantification of the protein of interest 

The quantification of the protein bands obtained was carried out using ImageQuant 5.2 software 

or ImageMaster (TotalLab TL100). The ratio between the loading control and the protein of 

interest was calculated and used as a normalisation factor. Finally the fold change of the protein of 

interest was calculated by comparing the control vs. treated. 

5.3.3.8 Stripping 

In order to reuse a nitrocellulose membrane for detection of a different primary antibody the 

membranes were stripped. Stripping was done by incubating the membrane in 10-15 ml of the 

stripping buffer for 15-20 min at room temperature. The membranes were then rinsed several 

times in TBST to remove the entire stripping buffer and blocked as described above. 
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5.4. microRNA analysis 

5.4.1 Total RNA isolation 

Extraction of total RNA from cells was done using the mirVana isolation kit. The cells were 

trypsinised and pellets obtained as described in 5.1.1. The pellets were resuspended in lysis buffer, 

and homogenous lysates were obtained. 1 / 10 volume of miRNA homogenate additive was adder 

to the lysate and incubated on ice for 10 min. In order to extract the organic phase, acid-phenol 

chloroform equal to the volume of lysate was added and vortexed for 30-60 seconds followed by 

centrifugation at 10,000 x g for 10 min. The aqueous upper phase was transferred to a new tube 

without disturbing the lower phase. Equal volumes of 100 % ethanol were added to the aqueous 

phase to precipitate the RNA that was transferred to a filter cartridge and centrifuged at 10000 x g 

for ~20 seconds. The flow-through was discarded and the filter was washed with 700 µl miRNA 

wash solution 1 and centrifuged ~20 seconds. The flow-through was discarded and the filter was 

washed twice with 500 µl wash solution 2 / 3. Each time the filter cartridges were centrifuged ~20 

seconds and flow through discarded. The filter cartridge was transferred to a fresh collection tube 

and the RNA was eluted with 40-50 µl of nuclease free water (preheated at 95oC). 

5.4.2 Estimation of purity and concentration of RNA 

Concentration of RNA in a sample corresponds to the absorbance at 260 nm 

spectrophotometrically (A260) and that of proteins to 280 nm (A280). Purity of RNA was 

measured by calculating the ratio between A260:A280. A pure RNA extract has a ratio between 

1.8 and 2 whereas a lower ratio indicates protein contaminants.  

5.4.3 microRNA profiling 

i) Reverse transcription (RT) 

Expression analysis of miRNA was carried out using TaqMan Low Density Array® (TLDA) 

Human MicroRNA Panel A v2.1 and TaqMan® Array Human MicroRNA B Card v2.0 containing 

378 and 384 miRNA assays, respectively. Four endogenous controls, namely snoRNA, U6, 

RNU44, and RNU48 were also included in the assays for normalisation purposes. The cDNA 

required for the PCR amplification was prepared using 300 ng of the total RNA with specific 

Multiplex reverse transcriptase stem-loop primer as described in the manufacturer’s protocol. The 

multiplex reverse transcription was carried out using TaqMan® microRNA reverse transcription 

kit and RT-primers from the primer pool Megaplex RT Primer Human Pool A V 2.1 and Pool B V 

2.0. The RT- reaction mixture was prepared as described in Table 8 and the reaction settings as 

described in Table 9. The cDNA obtained was used for RT PCR or stored under -20o C.  
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Table 8: Composition of the reaction mixture for a RT-PCR 

Composition volume 
100mM dNTPs (with dTTP) 0.2 µl 

  MultiScribe™ Reverse Transcriptase, 50 U / µl 1.5 µl 
  10 X Reverse Transcription Buffer 0.8 µl 
 RNase Inhibitor, 20 U / µl 0.1 µl 
 Nuclease-free water 0.2 µl 
 Primer 0.8 µl 

RNA (200 ng / µl) 3.0 µl 
Total volume 7.5 µl 

Table 9: Experimental setup for the RT-PCR reaction 

Cycles Time in min Temperature in oC 
40 2 16 
40 1 42 
40 1 50 
1 5 85 

 
ii) Quantitative real time PCR 

Quantitative real time PCR is a method in which small quantities of RNA samples are measured. 

This was done by mixing 6 µl cDNA and 444 µl RNase free water with 450 µl TaqMan 2 x 

Universal PCR Master Mix. The solution was loaded onto Multi Fluidic Cards. The measurement 

of the gene expression was carried out with ABI Prism 7900HT Systems. 

The miRNA-expression was quantified using the ∆∆Ct-method, also known as Ct method, 

(threshold cycles). Ct represents the number of cycles after which the fluorescence developed in 

the reaction pass over the threshold at a statistically significant point above the baseline. The 

∆∆Ct-method was used to quantify the miRNA-expression values as it helped to perform data 

analysis by considering individual amplification efficiencies. Normalisation was done using RNA 

RNU 6b and RNU 44 endogenous control. The following steps were used to calculate the 

miRNA-expression value: 

 
ΔCt (control) = Ct (miRNA) – Ct (snoRNA) 

ΔCt (irradiated) = Ct (miRNA) – Ct (snoRNA) 

∆∆Ct = ΔCt (irradiated)-ΔCt (control) 

Expression value = 2-(ΔC
t
 (irradiated)-(ΔC

t
 (Control) = 2-(∆∆Ct) 
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5.4.4 Transfection of cells with Pre-miRTM and Anti-miRTM  

1.5 x 105 cells were seeded into 6 cm Petri dishes 24 h prior to transfection. This was followed by 

adding 2 ml of fresh media into the Petri dishes. 10 µM stock solution of miR control, Pre-miRTM 

and Anti-miRTM were diluted in 500 µl of DMEM media without FCS. 5 µl of the transfection 

reagent LipofectamineTM RNAiMax was diluted in 500 µl of DMEM media without FCS. The 

transfection reagent was combined with the control, Pre – miRTM or Anti – miRTM and the 

solutions were incubated at room temperature for 20 min. To each Petri dish 2 µl miR control or 

Pre-miRTM or Anti- miRTM was added.  

The cells were incubated at 37o C for 4 h followed by removal of medium from Petri dishes and 

addition of fresh complete medium. The Petri dishes were incubated at 37o C and cells harvested 

after 24 h for further experiments. 

5.5. Bioinformatic analysis 

5.5.1 Identification of protein interactions and biological pathways 

Ingenuity Pathway Analysis (IPA) is a knowledge database generated from peer-reviewed 

scientific publications that enables discovery of highly represented functions and pathways (p < 

0.001) from large, quantitative data sets. To obtain information of relationships, biological 

mechanisms, functions and pathways all differentially regulated proteins (focus molecules) with 

their corresponding Swiss-Prot accession numbers and fold change were imported into the IPA 

(www.Ingenuity.com, Mayburd et al., 2006).  

Network analysis 

A network generated by ingenuity software represents the interactions of the focus molecules (the 

deregulated molecules are called focus molecules). The networks generated after analysis was 

considered significant based on the score generated for each network. The significance of a 

biological function or network according to IPA is determined by calculating the p-value using 

Fischer’s exact test (p < 0.05). The p-value thus calculated is used to generate a significance score 

for each network. The score is displayed as the negative log of the p-value and implies that the 

assignment of a set of molecules to a particular network is by random chance. A score of 2 

represents that there exists a 1 in 100 chance that a set of focus molecules are in a network due to 

random chance. A score of > 2 indicates a confidence of 99% and that the network is not being 

generated by a random chance alone (Prisyazhiuk et al., 1991). In other words the score is a 

numerical value to approximate the degree of relevance and size of a network to the molecules in 

the given dataset. In this work a network was considered to be significant if the score was > 10 
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this indicates that the focus molecules were assigned to a particular network randomly by 

approximately a chance of 10-10. In the network analysis the molecules which were not identified 

by proteomic studies but were found in the network analysis by IPA to be either potential targets 

or molecules related to the identified molecules are called nodal molecules. 

Canonical pathway generation 

Generation of a detailed signalling cascade of the focus molecules (molecules found to be 

deregulated after irradiation in this study) in a network is enabled by the canonical pathways of 

the Ingenuity Pathway system (Prisyazhiuk et al., 1991). The canonical pathway generated was 

considered significant if a particular pathway (signalling cascade) had a p-value < 0.05 (Fischer’s 

exact test). 

5.5.2 Functional classification: 

To classify the proteins based on their biological functions, the set of differentially expressed 

proteins were imported in to the PANTHER (Protein ANalysis THrough Evolutionary 

Relationships) classification system (www.pantherdb.org/). PANTHER was unable to classify 

some proteins due to database limitations. In such cases UniProt knowledge database 

(www.uniprot.org) was used to assign functional classification. The deregulated proteins and the 

functions to which they were assigned to, were imported into the Microsoft excel and a pie chart 

was generated. Each part of the pie chart represents the number of proteins found to be 

deregulated in a particular biological function. 

5.5.3 miRNA target search analysis 

To find the potential targets of the miRNAs found to be deregulated after irradiation a target 

search was performed. Potential targets of miRNAs were found by searching either the target scan 

(www.targetscan.org) and microRNA.org (www.microrna.org) databanks. One of the criterions to 

choose a plausible target was that the mature mRNA transcript of this target was highly conserved 

in either the 5´ untranslated region (UTR) or 3´ UTR regions  
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6. Results 

6.1. Effects of irradiation on the growth of the cell line EA.hy926 

6.1.1 Colony forming ability after exposure to ionising radiation 

In general endothelial cells are very sensitive to high doses of ionising radiation. In order to 

establish the radiosensitivity of the endothelial cell line EA.hy926 the colony forming assay was 

performed by exposing the cells to 0, 1, 2, 3, 4, and 6 Gy of ionising radiation (Cs137 γ-rays). The 

colonies were analysed after 16 days. A dose versus survival rate curve was plotted and the values 

of D10, and was calculated to be 5.54 Gy. D10 represents the dose at which 10 % of the cells 

survive. The values were calculated using the curve equation SF = e (-0.078*D -0.061*D2) (Figure 

7). A clear change in colony forming was observed even at the lowest dose of 1 Gy. The survival 

rate of the EA.hy926 cells started dipping at a dose of less than 1 Gy indicating the high 

sensitivity of the cells to radiation. 

 

Figure 7: Survival curve of EA.hy926 cells after 0, 1, 2, 3, 4 and 6 Gy of γ-irradiation. The colonies were 
counted after 16 days.  
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6.1.2 Effects of low and high doses of irradiation on cellular proliferation 

To investigate the effects of low to high doses of ionising radiation on cellular proliferation, the 

cells were exposed to either 200 mGy or 2.5 Gy of Cs137 γ-rays. Cell proliferation rates of 

EA.hy926 sham irradiated, and EA.hy926 (200 mGy and 2.5 Gy) irradiated cells with identical 

seeding densities were plotted as shown in Figure 8 and Figure 9.  

The cells were counted up to 200 h after irradiation and the approximate doubling time was 30 h. 

The t-test value for the variability between the sham-irradiated and the irradiated cells in case of 

200 mGy irradiation was calculated to be -0.30366. Since a t-test value of > 2.0 is required to give 

a significant value of p < 0.05, no significant changes between the control and exposed cells were 

observed (Figure 8). Cells irradiated with 2.5 Gy showed a deviation from that of the sham-

irradiated cells. Statistical analysis (t-test) of the growth rates in sham-irradiated and irradiated 

cells showed a significant difference. T-test value for the difference between the slopes was 

calculated to be 9.06 (p < 0.05), indicating that radiation had a negative effect on the cellular 

growth, probably due to apoptosis (Figure 9). 

 

Figure 8: Cellular growth rate. Growth rate of sham irradiated (blue box), and 200 mGy irradiated EA.hy926 
cells (red box) followed for 180 h with identical seeding densities.  
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Figure 9: Cellular growth rate. Growth rate of sham irradiated (blue box), and 2.5 Gy irradiated EA.hy926 cells 
(red box) followed for 240 h using identical seeding densities. 

6.2. Proteomic alterations in EA.hy926 observed after exposure to 2.5 Gy 

ionising radiation 

To evaluate the proteomic alterations in the endothelial cells after exposure to Cs137 γ-irradiation 

two proteomic strategies, namely SILAC and 2D-DIGE were used. The cells were exposed to a 

clinically relevant dose of 2.5 Gy ionising radiation followed by harvesting at 4 and 24 hours after 

irradiation. The harvested cells were lysed and processed further as described in section 5.3.  

At 2.5 Gy the proteomic alterations were observed using both SILAC and 2D-DIGE strategies. 

Two biological SILAC replicates were analysed. In the first replicate the sham-irradiated cells 

were labelled with light isotopes and the irradiated cells with heavy isotopes. In the second 

replicate the labelling was done in the opposite way (sham-irradiated carried the heavy label and 

irradiated the light label) (“label swap”) were analysed at two time points (4 h and 24 h) post 

irradiation. For 2D-DIGE the analysis of four replicates (3 biological replicates and one technical 

replicate of the 3rd biological replicate) at both time points (4 h and 24 h) was carried out. For both 

techniques the analysis was performed as described in the materials and methods section 5.3. 
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6.2.1 Protein expression changes identified by the SILAC strategy 

Using the SILAC strategy a total of 3076 unique proteins were identified at 4 h and 24 h after 

irradiation. Of these, 2572 and 2391 proteins were quantified at 4 h and 24 h, respectively. 2274 

proteins were identified and quantified at both time points after irradiation. A graph representing 

normalised protein ratios (heavy cells vs. light cells) of all of the identified proteins by SILAC 

plotted against summed peptide intensities is shown in Figure 10. This type of graphical 

representation of the identified proteins has been shown by Cox et al. (Cox and Mann, 2008). The 

proteins represented by data points lying close to the y-axis (y-axis = 1) did not show any 

expression changes compared to non-irradiated cells. Significantly differentially expressed 

proteins were defined as those with a differential expression that had a p-value < 0.01, variability 

less than 50 % between biological replicates, and were identified by a minimum of 2 unique 

peptides. 

 

Figure 10: The “Christmas tree” model of all quantified proteins by SILAC. This figure shows normalised 
protein ratios plotted against summed peptide intensities. Spots to the right of y-axis (= 1) represent proteins with 
increased abundance and spots to the left of the y-axis (= 1) are proteins with decreased abundance. Unaltered 
proteins are clustered on the y-axis where the ratio (H / L) is equal to 1. 

Four hours after irradiation 31 proteins were differentially regulated (Table 10). Of these 12 were 

up-regulated and 19 showed decreased abundance. The fold changes ranged from 1.82 to -1.90; 

the protein showing the largest up-regulation was the splicing factor, arginine / serine-rich 12 and 

the protein showing most decreased abundance was a retinol dehydrogenase homologue. At 24 h, 

122 proteins were found to be significantly deregulated (Table 11). 45 were up-regulated and 77 

down-regulated: several of these proteins showed more than 2-fold deregulation. Fold changes 

ranged between 2.08 (PRP4 kinase) and -2.34 (nuclear transport factor 2). Further, some proteins   



 Results 

 55 

showed a non-significant deregulation at the 4 h time point that became significant at 24 h or vice 

versa, examples being MHC class I antigen (4 h: 1.32**; 24 h: 1.20), death-associated 

transcription factor 1 (4 h: 1.38**; 24 h: 1.436), toll interacting protein (4 h: 2.84; 24 h: 1.704**) 

and phosphohexokinase (4 h: 1.22; 24 h: 2.04**)(** = p ≤ 0.01). This suggests that the radiation-

induced response of some proteins was rapid and transient, whereas that of others was slow and 

persistent.  

Table 10: List of deregulated proteins 4 h after 2.5 Gy irradiation identified and quantified by SILAC with 
significance. 

Proteins UniProt Fold 
change 

Functions 

Retinol dehydrogenase homologue RDHL Q9Y2P9 -1.9** Oxidation reduction 
Alpha actinin 4 short isoform  D6PXK4 -1.7** Apoptosis, Hypoxia 

 Protein AATF Apoptosis-antagonizing transcription 
f t   

Q9NY61 -1.63** Cell cycle, Progression 
Glucosamine-fructose-6-phosphate aminotransferase 
2  

O94808 -1.61** Metabolism 
RNA-binding protein 7  Q9Y580 -1.52** Cell cycle, progression 
Ubiquinone biosynthesis protein COQ4 homologue  Q9Y3A0 -1.52** Metabolism 
Alpha-N-acetylgalactosaminidase B  P17050 -1.47** Metabolism 
Plectin-1  Q15149-3 -1.46** Apoptosis 
Lin-7 homologue C  Q9NUP9 -1.42** Exocytosis 
Phosphatidate cytidylyltransferase 2  O95674-1 -1.42** Metabolism 
AMP deaminase 2  Q01433-1 -1.41** Metabolism 
Glutathione peroxidase 1  P07203 -1.4** Apoptosis 
Histone RNA hairpin-binding protein  Q14493 -1.4** Replication 
Lymphocyte antigen 6K  Q17RY6 -1.4** Cell growth 
3-ketoacyl-CoA thiolase Acetyl-CoA acyltransferase  P09110 -1.39** Metabolism 
Tripeptidyl-peptidase 1  O14773-1 -1.39** Apoptosis, Metabolism 
ATP-dependent RNA helicase DDX54  Q8TDD1 -1.34** Transcription 
Ras-related protein Rab-23 Q9ULC3 -1.33** Signalling  
All-trans-retinol 13,14-reductase  Q6NUM9 -1.32** Metabolism 
Death-inducer obliterator 1  Q9BTC0-4 1.32** Apoptosis, Transcription 
Zyxin Q15942 1.33 Signal transduction 
5'(3')-deoxyribonucleotidase, Cytosolic type Q8TCD5-1 1.34** Metabolism 
Ubiquinone biosynthesis methyl-transferase COQ5  Q5HYK3-1 1.34** Metabolism 
Hematopoietic lineage cell-specific protein  P14317 1.35** Signalling,Cell 

proliferation 
Ribonucleoside-diphosphate reductase subunit M2  P31350 1.37** DNA replication 
Golgi reassembly-stacking protein 2  Q9H8Y8-1 1.38** Golgi organisation 
MHC class I antigen Leucocyte antigen A  A5I8L1 1.38** Immune response 
Hydroxymethylglutaryl-CoA synthase  Q01581 1.44** Metabolism 
Epidermal growth factor receptor substrate 15  P42566 1.49** Cell proliferation 
Coiled-coil-domain-containing protein 137  Q6PK04 1.51** Hypothetical protein 
Retinol dehydrogenase homologue RDHL Q8WXA9-2 1.82** Transcription 

* = p ≤ 0.05, ** = p ≤ 0.01 (p = significance calculated as described by Cox et al. (Cox and Mann, 2008)).   
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Table 11: List of deregulated proteins 24 h after 2.5 Gy irradiation identified and quantified by SILAC with 
significance. 

Proteins UniProt Fold 
change 

Function 

Nuclear transport factor 2  P61970 -2.34** Signalling 

UPF0727 protein C6orf115  Q9P1F3 -2.15** Translation 

Putative uncharacterized protein SH3 domain-binding 
glutamic acid-rich-like protein 3  

Q86Z22 -2.09** Metabolism 

Cystatin-B stefin-B  P04080 -2.07** Gene expression 

BolA-like protein 2  Q9H3K6-1 -1.93** Translation 

Transcription elongation factor B polypeptide 1  Q15369 -1.93** Gene expression 

U6 snRNA-associated Sm-like protein LSm8  O95777 -1.9** Metabolism 

Thioredoxin domain-containing protein 17  Q9BRA2 -1.86** Electron transport, 
Metabolism 

ATP synthase subunit delta, Ml F-ATPase delta 
subunit  

P30049 -1.85** Metabolism, Vesicular 
trafficking 

MORF4 family-associated protein 1  Q9Y605 -1.85** Metabolism 

Phosphoprotein enriched in astrocytes 15  B1AKZ3 -1.82** Apoptosis 

Histidine triad nucleotide-binding protein 1  P49773 -1.77** Metabolism 

Nucleobindin-1 CALNUC  Q02818 -1.77** Gene expression 

14 kDa phosphohistidine phosphatase 1  Q9NRX4 -1.76** Stress response 

Huntingtin-interacting protein K Huntingtin yeast 
partner K  

Q9NX55-1 -1.74** Hypothetical protein 

Myosin light polypeptide 6  P60660-2 -1.72** DNA repair 

BRCA1-A complex subunit MERIT40  Q9NWV8 -1.71** Apoptosis, Signalling, Cell 
proliferation 

Brain protein 16  Q9BTY7 -1.69** Mitochondrion degradation 

D-dopachrome decarboxylase-dopachrome 
tautomerase phenylpyruvate tautomerase II  

P30046 -1.68** Hypothetical protein 

Replication protein A 14 kDa subunit  P35244 -1.68** Electron transport, 
Metabolism 

Tax1-binding protein 3  O14907 -1.67** Hypothetical protein 

Cytochrome b5  P00167-1 -1.66** Metabolism 

U6 snRNA-associated Sm-like protein LSm5  Q9Y4Y9 -1.65** Hypothetical protein 

Ml import inner Mm translocase subunit Tim13  Q9Y5L4 -1.64** DNA repair, Replication 

S100 calcium-binding protein A11, calgizzarin  P31949 -1.6** Apoptosis 
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Proteins UniProt Fold 
change 

Function 

S100 calcium-binding protein A6, calcyclin  P06703 -1.6** Electron transport 

TRM112-like protein  Q9UI30 -1.6** Electron transport 

Acyl-CoA-binding protein diazepam-binding inhibitor  P07108-2 -1.59** Metabolism 

Ubiquilin-1; Protein linking IAP with cytoskeleton 1  Q9UMX0-
1 

-1.58** Metabolism 

Prefoldin subunit 5 C-myc-binding protein Mm-1  Q99471 -1.57** DNA repair, Replication 
Apoptosis Transcription 

60S acidic ribosomal protein P2  P05387 -1.56** DNA repair Transcription 

SH3 domain-binding glutamic acid-rich-like protein  O75368 -1.56** Post- translational 
modification, Metabolism 

Transgelin smooth muscle protein 22-alpha  Q01995 -1.55** Apoptosis, Transcription 
regulation 

7-dehydrocholesterol reductase Sterol Delta(7) SR-2  Q9UBM7 -1.54** Metabolism, Gene 
expression 

cDNA FLJ75174, highly similar to Homo sapiens 
calmodulin 1, mRNA Calmodulin  

A8K1M2 -1.54** Stress response, Translation 

Barrier-to-autointegration factor  O75531 -1.53** Gene expression 

40S ribosomal protein S21ribosomal protein S21  P63220 -1.52** Apoptosis, Translation, Cell 
proliferation 

Superoxide dismutase [Cu-Zn]  P00441 -1.52** Post-translational 
modification 

Translationally-controlled tumor protein P13693 -1.52** Gene expression 

Programmed cell death protein 5  O14737 -1.51** Stress response, Signalling, 
Apoptosis 

Elongation factor 1-beta  P24534 -1.5** Hypothetical protein 

Histidine triad nucleotide-binding protein 2  Q9BX68 -1.5** Metabolism 

Nuclear pore complex protein Nup107  P57740 -1.5** Gene expression 

Putative uncharacterized protein UBE2D3 † A6NJB1 -1.5** Metabolism Apoptosis 

Eukaryotic translation initiation factor 1  P41567 -1.49** Apoptosis, Transcription 
regulation 

Prefoldin subunit 1  O60925 -1.49** Signalling 

Putative uncharacterized protein COMMD8 COMM 
domain-containing protein 8  

A8MQB6 -1.49** Apoptosis, Metabolism 

Eukaryotic translation initiation factor 3 subunit F  O00303 -1.48** Metabolism 

Nuclear pore glycoprotein p62  P37198 -1.48** DNA Repair Replication 

Small glutamine-rich tetratricopeptide repeat-
containing protein alpha  

O43765 -1.48** Transcription regulation, 
DNA repair, replication 

Peptidyl-prolyl cis-trans isomerase-like 3; cyclophilin 
J  

Q9H2H8-1 -1.47** Hypothetical protein 
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Proteins UniProt Fold 
change 

Function 

V-type proton ATPase subunit F  Q16864 -1.47** Apoptosis 

Tyrosine-protein kinase receptor UFO  P30530-1 -1.46** Apoptosis 

Deoxyuridine 5'-triphosphate nucleotidohydrolase, Ml 
dUTP pyrophosphatase  

P33316-1 -1.45** Protein Translocation 

RING finger protein 114; Zinc finger protein 313  Q9Y508 -1.45** Protein Translocation 

Transgelin-2 SM22-alpha homologue  P37802 -1.45** Protein Translocation 

Glutaredoxin-related protein 5  Q86SX6 -1.44** Cell cycle 

Ml import inner Mm translocase subunit Tim9  Q9Y5J7 -1.44** Regulatory 

Acyl carrier protein, Ml  O14561 -1.43** Transcription 

Ml import receptor subunit TOM22 homologue  Q9NS69 -1.43** Electron transport 

Stathmin  P16949 -1.43** Electron transport 

Ubiquitin-conjugating enzyme E2 A  P49459 -1.43** DNA Replication, Cell 
cycle, Proliferation 

Dynein light chain 1  P63167 -1.41** Cell cycle regulation, 
Metabolism 

Acyl-protein thioesterase 2; lysophospholipase II  O95372 -1.4** Apoptosis, Signalling, 
Metabolism 

Signal recognition particle 9 kDa protein  P49458 -1.4** Protein Translocation 

Nuclear autoantigenic sperm protein isoform 2 variant  Q53H03 -1.39** Gene expression 

Haloacid dehalogenase-like hydrolase domain-
containing protein 1A Protein GS1  

Q08623 -1.38** Metabolism 

cDNA FLJ33995 fis, clone DFNES2008160, highly 
similar to Monoglyceride lipase  

B3KRC2 -1.37** Transcription 

Eukaryotic translation initiation factor 5A-1  P63241-2 -1.37** Metabolism 

Ubiquitin-conjugating enzyme E2 variant 1 Q13404-1 -1.37** Apoptosis 

Galectin-1  P09382 -1.36** Cell progression 

Profilin-1  P07737 -1.36** Transcription 

S-phase kinase-associated protein 1 Transcription 
elongation factor B  

P63208-1 -1.35** Chaperone 

UPF0404 protein C11orf59  Q6IAA8 -1.35** Signalling 

DNA-directed RNA polymerases I, II, and III subunit, 
DNA-directed RNA polymerase II subunit H  

P52434 -1.34** Transcription 

Zinc finger protein ZPR1  O75312 -1.33** Apoptosis 

UDP-N-acetylhexosamine pyrophosphorylase  Q16222-1 -1.3** Hypothetical protein 
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Proteins UniProt Fold 
change 

Function 

Tumor protein D54 O43399 -1.25** Signalling 

Catenin alpha-1 cadherin-associated protein  P35221-1 1.31** Signalling 

Polymerase I and transcript release factor  Q6NZI2-1 1.31** Hypothetical protein 

Transforming protein RhoA  P61586 1.32** Signalling, Apoptosis, 
Metabolism 

Core histone macro-H2A.1 H2A.y  O75367-1 1.34** Oxidation reduction 

High mobility group protein B1  P09429 1.34** Signalling, Metabolism 

cDNA FLJ53329, highly similar to NADPH: 
adrenodoxin oxidoreductase, Ml  

B4DHX5 1.35** Signalling, Endocytosis, 
Metabolism 

Histone H4  P62805 1.35** Metabolism 

FK506-binding protein 3Peptidyl-prolyl cis-trans 
isomerase  

Q00688 1.36** Signalling 

Heterogeneous nuclear ribonucleoprotein G  P38159 1.36** DNA repair, Replication, 
Cell cycle regulation 

Apoptosis inhibitor 5  Q9BZZ5-2 1.38** Cell cycle 

Histone H3  Q5TEC6 1.38** Transcription 

U2 small nuclear ribonucleoprotein A' SNRPA1 
protein  

P09661 1.38** Hypothetical protein 

Dolichyl-phosphate mannosyltransferase polypeptide 
1, catalytic subunit  

Q5QPK0 1.4** Hypothetical protein 

Ras-related protein Rab-1A  P62820-1 1.4** Transcription, Signalling, 
Translation 

Ras-related protein Rab-7a  P51149 1.41** Chaperone 

Squalene synthetase Farnesyl-diphosphate 
farnesyltransferase FPP 

P37268 1.41** Cell cycle, progression, 
Signalling, Transcription 

Endothelial plasminogen activator inhibitor 1 P05121 1.42** Metabolism 

Inhibitor of nuclear factor kappa-B kinase-interacting 
protein  

Q70UQ0-1 1.43** Signalling, Cell cycle 

40S ribosomal protein S540S, ribosomal protein S5 P46782 1.45** Apoptosis Metabolism 

Lamin-A / C; 70 kDa lamin  P02545-2 1.48** Signalling 

Protein NipSnap homologue 1  Q9BPW8 1.5** Signalling 

Cytochrome b-c1 complex subunit 8  O14949 1.51** Inflammatory response 
Signalling 

UBX domain-containing protein 4UBX domain-
containing protein 2; Erasin  

Q92575 1.51** Transcription Gene 
expression 

3-hydroxyisobutyryl-CoA hydrolase, Ml 3-
hydroxyisobutyryl-coenzyme A hydrolase  

Q6NVY1-
1 

1.52** Signalling 

Hexokinase-2  P52789 1.55** Hypothetical protein 
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Proteins UniProt Fold 
change 

Function 

DNA topoisomerase 2-alpha  P11388-4 1.56** Protein Translocation 

Myosin-Ic Myosin I beta  Q4LE56 1.56** Signalling 

Ras-related protein R-Ras p23  P10301 1.56** Hypothetical protein 

Ras-related protein Rap-1b  P61224 1.59** Cell proliferation, cell-
cycle regulation 

Cleavage signal-1 protein Ki-ras-induced actin-
interacting protein  

P28290-1 1.61** Signalling 

Histone H1x  Q92522 1.61** Gene expression 

Nucleolar protein 7; nucleolar protein of 27 kDa  Q9UMY1-
1 

1.64** Transcription  

NADH dehydrogenase ubiquinone 1 alpha 
subcomplex  

Q8WXC9 1.68** Transcription 

Toll interacting protein variant Toll-interacting 
protein  

Q59FB9 1.7** Apoptosis 

Chitinase domain-containing protein 1 stabilin-1-
interacting chitinase-like protein  

Q9BWS9-
1 

1.74** DNA repair 

SERPINE2 Protease inhibitor 7  B2R6A4 1.75** Signalling 

39S ribosomal protein L22, Ml MRP-L25  Q9NWU5-
1 

1.76** Hypothetical protein 

FAS-associated factor 2 UBX domain-containing 
protein 3B  

Q96CS3 1.82** Metabolism, Post 
translational modification 

CDGSH iron sulfur domain-containing protein 2 ER 
inter membrane small protein  

Q8N5K1 1.9** Metabolism, Signalling, 
Cell growth 

Phosphohexokinase; phosphofructo-1-kinase isozyme 
A  

Q6ZTT1 2.05** Hypothetical protein 

NADH dehydrogenase [ubiquinone] 1 subunit C2  O95298 2.06** Protein translocation 

Serine / threonine-protein kinase PRP4 homologue 
PRP4 kinase  

Q13523 2.08** Signalling, Cell 
proliferation 

* = p ≤ 0.05, ** = p ≤ 0.01 (p = significance calculated as described by Cox et al. (Cox and Mann, 2008)). 

Hypothetical protein: A protein whose in vivo function and expression have not been predicted. 
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6.2.2 Protein expression changes identified by 2D-DIGE strategy 

Protein extracts obtained from the EA.hy926 cells 4 hours and 24 hours after exposure to 2.5 Gy 

ionising radiation were analysed with 2D-DIGE strategy as described in the section 5.3.2. All 

deregulated spots identified by DeCyderTM software (p-value < 0.01, variability < 50 % between 

biological replicates, identification based on at least 2 unique peptides) are shown in Figure 11. 

All corresponding proteins were identified with MALDI-TOF / TOF (abundant) and or ESI LC 

MS / MS (non-abundant). Twenty seven proteins were found to be differentially regulated at 4 h 

after irradiation (Table 12), all 27 proteins showed decreased abundance. The protein with 

maximum fold change was cDNA FLJ54776, highly similar to cell division control protein 42 

homologue with -3.24 fold down-regulation. At 24 h after irradiation 18 proteins were found to be 

significantly deregulated (Table 13). Of these 10 were up-regulated and 8 down-regulated, fold 

changes ranging from 1.71 to -2.06. The protein showing largest deregulation was cofilin1 (-2.06). 
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Table 12: A list of all (27) deregulated proteins 4 h after irradiation identified and quantified by 2D-DIGE. 
Corresponding spot numbers on the gels are indicated in the table. 

Proteins UniProt Fold 

change 

Functions 

cDNA FLJ54776, highly similar to cell division control 
protein 42 homologue (spot 1) 

Q1HE25 -3.24** Apoptosis 

Protein-glutamine gamma-glutamyltransferase 2 (spot 14) P23526 -2.19** Metabolism 

Alpha-actinin-1 (spot 18) P23526 -2.08** Metabolism 

Proteasome 26S subunit, 2 (spot 15) A1L0V1 -2.03** Apoptosis 

Desmoplakin (spot1 3) B4DVY2 -2** Actin mechanics 

Eukaryotic translation initiation factor 3 subunit K (spot 2) B4E1U9 -1.86** Cell cycle 

Tropomyosin 2 (beta) (spot 8) B4DPD5 -1.8** Metabolism 

cDNA, FLJ95650, highly similar to Homo sapiens 
karyopherin (importin) beta 1 (KPNB1), mRNA (spot 9) 

B4DIT7 -1.78** Phagocytosis 

Adenosylhomocysteinase (spot 27) A8K7J7 -1.77** Metabolism 

cDNA FLJ58187, highly similar to protein-glutamine 
gamma-glutamyltransferase 2 (spot 13) 

A8K7F6 -1.77** RNA metabolism 

cDNA FLJ54184, highly similar to tropomyosin alpha-4 
chain tropomyosin 3 (spot 4) 

B2RBR9 -1.76** Apoptosis 

Actinin alpha 1 isoform b (spot 21) C1QBP -1.71** Immune response 

Complement component 1 Q subcomponent-binding protein, 
(spot 5) 

P15924 -1.71** Apoptosis 

X-ray repair cross-complementing protein 5 (spot 21) Q9UBQ5 -1.68** RNA metabolism 

Leucine-rich PPR motif-containing protein, mitochondrial 
(spot 20) 

P08238 -1.67** Stress response, 
Metabolism, Signalling 

Putative uncharacterized protein DKFZp686J1372 
tropomyosin 3 (spot 3) 

P42704 -1.67** Metabolism 

Proliferating cell nuclear antigen (Fragment) (spot 6) P42704 -1.66** Metabolism 

cDNA FLJ56307, highly similar to ubiquitin thioesterase 
protein OTUB1 (spot 7) 

Q6FHF5 -1.63** Cell cycle, DNA repair, 
Gene expression 

X-ray repair cross-complementing protein 6 (spot 25) Q53XQ4 -1.6** Cell cycle, Apoptosis, 
Signalling 

X ray or Heat shock protein 75 kDa, mitochondrial (spot 23) P21980 -1.58** Phagocytosis 

Adenosylhomocysteinase (spot 24) Q5HYB6 -1.57** Actin mechanics 

cDNA FLJ78173, highly similar to Homo sapiens hexokinase 
1 (spot 26) 

Q5TCU3 -1.54** Actin mechanics 

Heat shock protein HSP 90-beta (spot 15) Q12931 -1.54** Stress response 

Leucine-rich PPR motif-containing protein, mitochondrial 
(spot 19) 

P13010 -1.52** DNA repair, Gene 
expression 

X-ray repair cross-complementing protein 6 (spot 22) P12956 -1.51** DNA repair, Gene 
expression 

cDNA FLJ78244, highly similar to Homo sapiens eukaryotic 
translation initiation factor 4A, isoform 1 (EIF4A1) (spot 11) 

P12956 -1.5** DNA repair, Gene 
expression 

** = p < 0.01 p-value was obtained by two way ANOVA t-test, peptide false discovery rate and the protein false discovery rate 
were set to 1 %. 
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Table 13: List of deregulated proteins 24 h after irradiation identified and quantified by 2D-DIGE with 
significance (** = p ≤ 0.01). Corresponding spot numbers on the gels are indicated in the table. 

Proteins UniProt Fold 
change 

Function 

Cofilin-1 (spot 1) P23528 -2.06** Signalling 
Eukaryotic translation initiation factor 5A-1 (spot 3) P63241-2 -1.53** Apoptosis, Translation, 

Cell proliferation 
Stathmin (spot 2) P16949 -1.47** Signalling, Cell cycle 
Protein SET (Phosphatase 2A inhibitor I2PP2A) 

  
Q01105 -1.4** DNA replication 

T-complex protein 1 subunit zeta (spot 12)  P40227 -1.37** Chaperone 

Tumor protein D54 (spot 6) O43399 -1.37** Cell proliferation, cell-
cycle regulation 

Vimentin (spot 9) P08670 -1.36** Structural protein 

Translationally-controlled tumor protein (spot 5) P13693 -1.33** Signalling 
Annexin A1(spot 13) P04083 1.3** Signalling 
Fructose-bisphosphate aldolase A (spot 15) P04075 1.31** Metabolism Glucose 
Glyceraldehyde-3-phosphate dehydrogenase (spot 16) P04406 1.31** Metabolism Glucose 
Protein disulfide-isomerase A3 Precursor (spot 18) P30101 1.32** Chaperone 
Alpha-enolase (spot 14) P06733 1.33** Glucose metabolism  
Desmoplakin (spot 11) P15924 1.38** Cell cycle 
Annexin A2 (spot 17) P07355 1.39** Signalling 
Eukaryotic translation initiation factor 1A (spot 4) P47813 1.39** Chaperone 
Heterogeneous nuclear ribonucleoprotein K (spot 7) P61978 1.43** Transcription 
Inhibitor of nuclear factor kappa-B kinase (spot 10) Q70UQ0-1 1.71** Apoptosis 

** = p < 0.01 p-value was obtained by two way ANOVA t-test, peptide false discovery rate and the protein false discovery 
rate were set to 1 % 

 

Figure 11: Typical 2D-DIGE gels of pH range 3-11 showing the EA.hy926 endothelial cell proteome. a: Gel 
picture of the irradiated sample after 4 h. Positions of the deregulated protein spots with corresponding spot 
numbers are indicated with arrows. b: Gel picture of the irradiated sample after 24 h. Positions of the 
deregulated protein spots with corresponding spot numbers are indicated with arrows. The deregulated proteins 
with the spot numbers were identified and they are listed in Table 10 (4 h) and Table 11 (24 h). 
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6.2.3 Functional correlation of the affected proteins 

To categorise the proteins according to their biological functions, all deregulated proteins at 4 h 

and 24 h after 2.5 Gy irradiation, obtained from SILAC and 2D-DIGE corresponding to either 4 h 

or 24 h time points were analysed by a database search using UniProt, Swiss-Prot and PANTHER. 

The analysis revealed several radiation-induced biological processes (Figure 12 and Figure 13). 

At 4 h after 2.5 Gy irradiation 16 processes and at 24 h after irradiation 20 processes were found 

to be affected. Of these 8 were affected at both time points. At 4 h, changes in DNA repair and 

replication, cell cycle and proliferation, stress response, apoptosis and general metabolic activity 

were more pronounced than at the 24 h time point; whereas alterations in cellular signalling and 

transcriptional activity were more pronounced at 24 h than that at 4 h. The red and green arrows in 

the Figure 13 (functions of proteins at 24 h after 2.5 Gy irradiation) represent either increase or 

decrease (in the number of proteins involved in a particular function) respectively compared to the 

4 h time point functions. Some functions were time dependent i.e. the immune response and 

alteration of the Golgi proteome were altered only at 4 h. In contrast glucose metabolism, 

inflammatory response, mitochondrial degradation and electron transport, protein translocation, 

posttranslational modification and translational activation were processes found to be altered only 

at 24 h.  
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Figure 12: Biological functions associated to the proteins found to be deregulated at 4 h after irradiation. Differentially regulated proteins were analysed for 
“functional categories” using the UniProt knowledge database and the PANTHER classification system. 
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Figure 13: Functional classification of differentially expressed proteins at 24 h after irradiation. Categorisation according to the biological functions of deregulated 
proteins was done using the UniProt knowledge database and the PANTHER classification system. Red and green arrows in the figure represent increase or 
decrease of the functions in comparison to that of the 4 h time point respectively. 
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6.2.4 Deciphering affected biological pathways by bioinformatic analysis 

In order to analyse protein-protein interactions, protein networks and the biological pathways 

involved in the radiation response, significantly differentially expressed proteins at 4 h and 24 h 

were separately imported into the Ingenuity Pathway Analysis (IPA) software. The top scoring 

networks (as described in section 5.5.1) with most significant p-values and their respective 

biological pathways were considered to be radiation responsive. 

i) Early-response biological networks and pathways 

A total of 59 proteins were identified as being significantly differentially expressed using both 

SILAC and 2D-DIGE at the 4-hour time point. All these proteins were loaded into the IPA and the 

biological networks and pathways were analysed. The top network functions associated with the 

proteins found to be deregulated at 4 h after irradiation are shown in Table 14. The top 2 

significant networks affected were “cell morphology, cellular function and maintenance, DNA 

replication, recombination and repair” (Figure 14) and “cellular compromise, cell morphology, 

cell death” (Figure 15) with highly significant score (as defined in section 5.5.1) of 56 and 23 

respectively. The definition and calculation of the score and p-value of a network are as described 

in section 5.5.1. A network score of 10 would have the probability of occurring 10-10 randomly 

and hence a score of 10 and above was considered to be significant (Prisyazhiuk et al., 1991). The 

first network represents 23 and the second 13 focus molecules (focus molecules are proteins 

showing altered expression levels in our study). The proteins involved in these networks are 

indicated with their IPA names and fold changes in Table 15. Some pre-eminent nodal molecules, 

i.e. proteins that were not found to be altered but were either targets or interacting with focus 

molecules of the radiation-responsive networks include nuclear factor NF-kappa-B (NF-κB) 

complex, histone 4 (H4), caspase 3, Rho GDI and retinoblastoma (pRB tumour suppressor). All of 

which are thematically radiation responsive. 

Top biological pathways found to be associated with the differentially expressed proteins were 

DNA repair by non-homologous end joining (NHEJ) and synthesis / degradation of ketone bodies 

as depicted in Table 16. The Ku-heterodimers were both found to be down-regulated (Ku70, = -

1.68** and Ku80 = -1.60**) thus affecting DNA repair by NHEJ pathway (Figure 16). Further, a 

differential expression of two proteins of the ketone body synthesis: HMG-CoA synthase (1.44**) 

and acetyl-CoA-acetyltransferase (ACAT 1) (-1.39**) (Figure 17) were significantly deregulated 

at 4 h after irradiation. (** = p < 0.01).  
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Table 14: The most significant networks and functions of the deregulated proteins. 

Associated network functions  Number of 

deregulated proteins 

Score 

Cell morphology; Cellular function and maintenance; DNA replication, recombination, 
repair (Figure 14) 

23 56 

Cellular compromise; Cell morphology; Cell death (Figure 16) 13 23 

Score is defined in section 5.5.1. A score of 10 indicates that there exists an approximate chance of 10-10 that a particular set 
of molecules were assigned to a network randomly (www.Ingenuity.com). 

Table 15: Ingenuity names, protein names, UniProt ID and fold deregulation of proteins in the top two networks 
of the molecules in Figure 14 and Figure 15. 

Ingenuity 
Name 

Proteins involved in “cell morphology; cellular function and maintenance; 
DNA replication, recombination, repair” 

UniProt 
ID 

Fold change 

CDC42 cDNA FLJ54776, highly similar to cell division control protein 42 
 

B4E1U9 -3.24** 
TGM2 Protein-glutamine gamma-glutamyltransferase 2  P21980 -2.19** 
DSP Desmoplakin P15924 -2.00** 
TPM2 Tropomyosin 2 (Beta)  Q5TCU3 -1.8** 
TPM4 cDNA FLJ54184, highly similar to tropomyosin alpha-4 chain 

i  
B4DVY2 -1.76** 

ACTN1 Actinin alpha 1 isoform b Q1HE25 -1.71** 
C1QBP Complement component 1 Q subcomponent-binding protein, 

i h d i l 
C1QBP -1.71** 

XRCC5 X-ray repair cross-complementing protein 5  P13010 -1.68** 
TPM3 Putative uncharacterised protein DKFZp686J1372 tropomyosin 3  Q5HYB6 -1.67** 
PCNA Proliferating cell nuclear antigen (Fragment)  Q6FHF5 -1.66** 
OTUB1 cDNA FLJ56307, highly similar to ubiquitin thioesterase protein OTUB1 B4DPD5 -1.63** 
GFPT2 Glucosamine-fructose-6-phosphate aminotransferase [isomerizing] 2 O94808 -1.61** 
TRAP1 X ray or Heat shock protein 75 kDa, mitochondrial  Q12931 -1.58** 
HSP90AB

 
Heat shock protein HSP 90-beta  P08238 -1.54** 

XRCC6 X-ray repair cross-complementing protein 6  P12956 -1.51 / -
** PLEC Plectin-1  Q15149-

 
-1.46** 

GPX1 Glutathione peroxidase 1  P07203 -1.40** 
DDX54 ATP-dependent RNA helicase DDX54  Q8TDD1 -1.34** 
Zyx Zyxin Q15942 1.33** 
HCLS1 Hematopoietic lineage cell-specific protein  P14317 1.35** 
RRM2 Ribonucleoside-diphosphate reductase subunit M2  P31350 1.37** 
HMGCS1 Hydroxymethylglutaryl-CoA synthase  Q01581 1.44** 
SREK1 Splicing factor, arginine / serine-rich 12  Q8WXA

 
1.82** 

 Proteins involved in “cellular compromise; cell morphology; cell death”   
DHRS9 Dehydrogenase / reductase (SDR family) member 9 Q9NY61 -1.90** 
AHCY Adenosylhomocysteinase P09110 -1.77** 
AATF Apoptosis antagonizing transcription factor P23526 -1.63** 
HK1 Hexokinase 1 Q01433 -1.54** 
EIF4A1 Eukaryotic translation initiation factor 4A1 Q9Y2P9 -1.5** 
AMPD2 Adenosine monophosphate deaminase 2 Q9BTC0 -1.41** 
ACAA1 Acetyl-CoA acyltransferase 1 A8K7F6 -1.39** 

  



 Results 

 69 

Ingenuity 
Name 

Proteins involved in “cellular compromise; cell morphology; cell death” UniProt 
ID 

Fold change 

TPP1 Tripeptidyl peptidase I P42566 -1.39** 
RETSAT Retinol saturase (all-trans-retinol 13,14-reductase) A8K7J7 -1.32** 
DIDO1 Death inducer-obliterator 1 A5I8L1 1.32** 
HLA-A Major histocompatibility complex, class I, A Q6NUM9 1.38** 
EPS15 Epidermal growth factor receptor pathway substrate 15 O14773 1.49** 

** = p ≤ 0.01. 

For SILAC (p = significance calculated as described by Cox et al. (Cox and Mann, 2008)). 

For 2D-DIGE p-value was obtained by two way ANOVA t-test, peptide false discovery rate and the protein false discovery 
rate were set to 1 %.  
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Figure 14: The most significant network obtained from bioinformatic analysis for proteins found to be altered at 4 h after radiation. The network represents 23 proteins involved in 
“cell morphology, cellular function and maintenance, DNA replication, recombination, and repair”. All coloured molecules are the molecules identified to have differential 
expression values, green representing down-regulation and red up-regulation. Dotted lines indicate indirect interactions and solid line represents direct interactions and 
loops represent self-regulation. 
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Figure 15: The second most significant network obtained from bioinformatic analysis for proteins found to be altered 4 h after 2.5 Gy irradiation (coloured 
molecules; green - down-regulation and red up-regulation). The network represents 13 proteins involved in “cellular compromise, morphology, death”. Dotted 
lines indicate indirect interactions and solid line represents direct interactions and loops represent self-regulation.  



 Results 

 72 

Table 16: Biological pathways associated with deregulated proteins 4 h after irradiation. 
 Biological Pathways  p-value 

1. DNA double-strand break repair by non-homologous end joining (Figure 16) 0.000697 

2. Synthesis and degradation of ketone bodies (Figure 17) 0.00104 
Score is defined in section 5.5.1. A score of 10 indicates that there exists an approximate chance of 10-10 that a particular set 
of molecules were assigned to a network randomly (www.Ingenuity.com). 

 

Figure 16: DNA repair by non-homologueous end joining (NHEJ) pathway affected at 4 h after irradiation. The 
figure shows the Ku-heterodimers involved in the DNA repair pathway by the non-homologous end joining 
method. The Ku-heterodimers Ku70 / Ku80 that were found to be down-regulated at 4 h after 2.5 Gy irradiation 
are represented as green coloured molecules of the Ku-heterodimer (Ku70 and Ku80). Modified from source 
Ingenuity Pathway Analysis (www.Ingenuity.com). 
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Figure 17: Synthesis and degradation of ketone bodies affected at 4 h after irradiation. The figure shows the 
synthesis and degradation of ketone bodies, representing the two proteins from this pathway the ACAT-1 down-
regulated (green-2.3.1.9) and the up-regulated HMG-CoA synthase (red-2.3.3.10) found to be differentially 
expressed at 4 h after 2.5 Gy irradiation. Modified from source Ingenuity Pathway Analysis 
(www.Ingenuity.com). 
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ii) Late-response biological networks and pathways 

At 24 h, a total of 136 proteins were found to be significantly deregulated proteins using a 

combination of both SILAC and 2D-DIGE approach. The most significant networks represented 

by these proteins were “carbohydrate metabolism, molecular transport, nucleic acid metabolism”, 

“DNA replication, recombination, repair, cellular growth and proliferation, lipid metabolism” and 

“cell to cell signalling and interaction, tissue development, cardiovascular development” with 

scores of 57, 45, 35 respectively (Table 17). Some important nodal molecules revealed by the 

network analysis were nuclear factor NF-kappa-B (NFκB), ubiquitin, ROCK and F-actin. The 

biological pathways associated with the deregulated proteins are depicted in Table 18. 

In the oxidative phosphorylation pathway several subunits of the mitochondrial complexes were 

found to be differentially expressed (Figure 18). These included two subunits and one isoform of 

complex I, one subunit of complex III and two subunits of complex V. 

Furthermore, 6 enzymes belonging to the glycolytic pathway were also found to be affected. 

These were enolase, glyceraldehyde-3-phosphate dehydrogenase, fructose-bisphosphate aldolase, 

6-phosphofructokinase, and hexokinase (Figure 19).  

Proteins identified to be differentially regulated in the Rho pathway which regulates the actin 

based motility were cofilin 1, myosin light chain 6, profilin 1, and RhoA (Figure 20). 

Table 17: Most significant networks and functions associated with the deregulated proteins at the 24 h time point 
after irradiation. 

 Associated network functions Score 

1. Carbohydrate metabolism, Molecular transport, Nucleic acid metabolism 57 

2. DNA replication, recombination, repair, Cellular growth and proliferation, Lipid metabolism 45 

3. Cell to cell signalling and interaction, Tissue development, Cardiovascular development 35 

Score is defined in section 5.5.1. A score of 10 indicates that there exists an approximate chance of 10-10 that a particular set 
of molecules were assigned to a network randomly (www.Ingenuity.com). 

Table 18: Biological pathways associated with the deregulated proteins at the 24-hour time point after 
irradiation. 

 Biological pathways p-value 

1. Oxidative phosphorylation (Figure 18) 0.00059 

2. Glycolysis / Gluconeogenesis (Figure 19) 0.0012 

3. Regulation of actin based motility by Rho (Figure 20) 0.00022 
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Figure 18: Proteins of oxidative phosphorylation altered at the 24 h time point after irradiation. The figure represents the electron transport chain and the coloured 
molecules (green – down-regulated and red – up-regulated) were found to be differentially expressed in the EA.hy926 cells by either SILAC or 2D-DIGE strategy 
at 24 hours after 2.5 Gy irradiation. The differentially regulated proteins include 2 subunits and 1 isoform of complex I, 1 subunit of complex III and 2 subunits of 
complex V. Modified from source Ingenuity Pathway Analysis (www.Ingenuity.com). 
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Figure 19: The radiation response on glycolysis / gluconeogenesis at the 24 h time point. Five of the 10 enzymes involved in the glycolytic pathway were found to 
be up-regulated (red coloured molecules) at 24 h after exposure to 2.5 Gy radiation. An increased expression of enolase, glyceraldehyde-3-phosphate 
dehydrogenase, fructose-bisphosphate aldolase, 6-phosphofructokinase and hexokinase was found. Modified from source Ingenuity Pathway Analysis 
(www.Ingenuity.com). 
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Figure 20: Actin-based mobility by Rho related proteins. The figure shows proteins that were differentially 
expressed in the Actin-based mobility pathway. Differentially regulated proteins (green: down-regulated and red: 
up-regulated) are cofilin 1, myosin light chain 6 (MLC), profilin 1, and RhoA. Modified from source Ingenuity 
Pathway Analysis (www.Ingenuity.com). 
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6.2.5 In Silico analysis to establish the relationship between deregulated 

microRNAs and proteins 

To analyse the effect of 2.5 Gy irradiation on regulation of the EA.hy926 cell where miRNA may 

be involved, our lab (Kraemer et al., 2011) carried out miRNA expression profiling using TLDA 

Human MicroRNA Panel A v2.1. Alterations in the expression of 22 miRNAs each at 4 and 24 h 

after exposure to a radiation dose of 2.5 Gy were reported. At 4 hours 8 miRNAs were up-

regulated and 14 down-regulated and at 24 hours 4 were up-regulated and 18 down-regulated in 

the endothelial cell line EA.hy926. Two of the 22 miRNAs were common to both time points. 

In order to establish a potential association between these differentially expressed miRNAs and 

the proteins found in this study to be altered after irradiation (2.5 Gy), all deregulated molecules 

were imported and analysed with the ingenuity software. The ingenuity software delivers the 

possible targets of the miRNAs based on the TarBase, TargetScan, and miRecords databases. In 

the analysis the interactions showing an increase in the miRNA expression level and decrease in 

proteins and vice versa were considered as plausible targets, whereas interactions containing the 

miRNAs and proteins with similar expression patterns were excluded. Figure 21 and Figure 22 

represent the correlation between the changes observed in deregulated miRNAs and differentially 

expressed proteins at 4 h and 24 h respectively. The networks indicate possible interactions 

between the miRNAs and proteins. 

At 4 h, of the 22 miRNAs and 59 proteins that were examined in networks, interactions were 

predicted between 10 microRNAs and 6 proteins. Examples of miRNA protein interactions 

predicted include interaction between: 

a) hsa-miR-146a () and LIN7C () 

b) hsa-let-7c (), and hsa-miR-331 () with RRM2 () 

c) hsa-miR-101 () with DIDO1 () 

d) hsa-miR-515 (), hsa-miR-526a (), and hsa-miR-515 () with RAB23 () 

e) hsa-miR-124 () with SREK1 () 

f) hsa-miR-323 () with HMGCS1 () 

() () represent down- and up-regulation, respectively. 

At 24 hours, all the deregulated miRNAs and proteins the predicted network indicates plausible 

interaction between 4 miRNAs and 23 proteins. In Figure 22 (deregulated molecules of 24 hours 

after irradiation) the hsa-miR-105-5p, hsa-miR-323 and hsa-miR-539-3p formed central nodes 
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and the deregulated proteins branched out of these central nodes. The predicted interactions are as 

follows: 

a) hsa-miR-105-5p () with FDFT1, HMGB1, MRLP22, AP15, FAF2, CISD2, HK2, 

PRPF4B (all) 

b) hsa-miR-323 () with PRPF4B, IKBIP, RAP1B, CTNNA1, HK2 (all) 

c) hsa-miR-539-3p () with RAP1B and RHOA (both) 

d) hsa-miR-628-5p () with CALM1, MYL 6 (both) 

() () represent down- and up-regulation respectively. 

Both the networks showed that in all of these cases the miRNAs with a predicted direct 

interaction and the corresponding protein showed opposite regulation i.e. if the miRNA was up-

regulated the protein interacting with it was down-regulated and vice versa. 
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Figure 21: Association of deregulated miRNAs and differentially expressed proteins 4 hours after the exposure to irradiation. MiRNA data obtained from the 
study by Kraemer et al. (Kraemer et al., 2011) were combined with proteomic alterations found in this study either by SILAC or 2D-DIGE technology to analyse 
putative regulation and association between the miRNAs and proteins. Molecules coloured in green indicate down-regulation and red colour represents up-
regulation of expression. Solid line arrows represent direct interactions.  
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Figure 22: Correlation between deregulated miRNAs and differentially expressed proteins at 24 hours after the exposure to irradiation. The network represents the 
correlation between the deregulated miRNAs and proteins, miRNA data obtained from the Kraemer et al. (Kraemer et al., 2011) study. Molecules coloured in 
green indicate down-regulation and red colour represents up-regulation of expression. Solid line arrows represent direct interactions. 
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6.3. Effect of low dose (200 mGy) ionising radiation on the endothelial cell 

line EA.hy926 

EA.hy926 cells were exposed to 200 mGy γ (Cs137) radiation and alterations in the proteome 

using and miRNAome were analysed after 4 h and 24 h. This allows comparison of high and low 

doses. 

6.3.1 Proteomic alterations 

Proteomic alterations in the EA.hy926 cell line were analysed in three biological replicates using 

the SILAC strategy 4 and 24 hours after the exposure to a single acute radiation dose of 200 mGy 

(Cs137 γ). Proteins were considered to be significantly deregulated if they were quantified with at 

least 2 peptides; the p-value for replicates was < 0.05 and variability less than 50 % in at least two 

of the three biological replicates.  

At the 4 hour time point, 15 proteins were found to be differentially expressed when compared to 

the sham-irradiated cells. Table 19 shows the proteins deregulated at this time point. The 

maximum deregulated low-dose radiation-responsive proteins were mitochondrial 3-

hydroxyisobutyrate dehydrogenase (-1.329 *), and survival-promoting peptide protein (-5.94**) 

(* represents p < 0.05 and ** represents p < 0.01).  

Twenty-four hours after irradiation only 4 proteins were found to be differentially regulated as 

represented in Table 20. Three of the 4 proteins found to be differentially regulated, namely 40S 

ribosomal protein S11 (1.904*), 40S ribosomal protein S13 (3.128*) and glutamine-hydrolysing 

asparagine synthetase or cell cycle control protein TS11 (1.470*) showed an increase in 

abundance (* represents p < 0.05 and ** represents p < 0.01). Nicotinamide N-methyltransferase 

was down-regulated (-1.453). Consistent with the results at 2.5 Gy there was no overlap between 

the deregulated proteins between the two time points. Gelsolin, which was significantly down-

regulated at the 4-hour time point, was also down-regulated 24 hours after irradiation but this did 

not reach the significance cut off. 

Prominent functions of the 15 proteins found to be deregulated at 4 hour time point were 

oxidoreductase activity, translation regulation, stress response, apoptotic process and immune 

response. Further, the differentially expressed proteins were classified using the UniProt and 

PANTHER databases. Figure 23 represents the functional classification of the deregulated 

proteins Due to the small number of differentially expressed proteins at the 24 hour time point 

functional classification of the proteins was difficult. However, 2 of the 4 proteins were 

translation regulators.  
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Proteins involved in the protein translational were found to be up-regulated at both time points 

based on this analysis 

Table 19: List of the significantly deregulated proteins 4 hours after irradiation with the 200 mGy dose identified 
and quantified by SILAC. 

Proteins UniProt Fold 
change Functions 

Preproteolysin; Survival-promoting peptide P81605 -5.94** Defense response 
Transmembrane protein 205 Q6UW68 -1.536* Hypothetical protein  

Gelsolin P06396-1 -1.475* Apoptotic process; Actin 
polymerisation; Signalling;  

Transmembrane and coiled-coil domain-containing protein 1 Q9UM00-1 -1.439* Hypothetical protein 
NADH dehydrogenase [ubiquinone] 1 alpha subcomplex 
subunit 7 

O95182 -1.414* Electron transport; 
Respiratory chain 

Putative uncharacterised protein GLIPR2; Glioma 
pathogenesis-related protein 2 

A8MWQ4 -1.396** Hypothetical protein 

Uncharacterized protein C9orf142 Q9BUH6-1 -1.365* Hypothetical protein 
3-hydroxyisobutyrate dehydrogenase, mitochondrial P31937 -1.329* Oxidoreductase 
Ubiquitin / ISG15-conjugating enzyme E2 L6; Retinoic acid-
induced gene B protein 

O14933-1 -1.303* Immune response, Ligase 
activity 

Calcineurin-like phosphoesterase domain-containing protein 1 Q9BRF8-1 1.375** Hydrolase activity; Metal ion 
binding 

60S ribosomal protein L22-like 1 Q6P5R6 1.377* Translation 

Small nuclear ribonucleoprotein polypeptide C variant Q53G33 1.426* Protein, nucleic acid, mRNA 
and zinc ion binding 

Leucine-rich repeat-containing protein 20 Q8TCA0-1 1.463** Hypothetical protein  

40S ribosomal protein S18;Ke-3 P62269 1.604* Translation; RNA binding; 
Metabolism 

40S ribosomal protein S25 P62851 1.743* Translation; RNA binding; 
Metabolism 

* = p ≤ 0.05, ** = p ≤ 0.01 (p = significance calculated as described by Cox et al. (Cox and Mann, 2008)). 

Hypothetical protein: A protein whose in vivo function and expression have not been predicted. 

Table 20: List of significantly deregulated proteins 24 h after irradiation with a 200 mGy dose identified and 
quantified by SILAC. 

Proteins  UniProt Fold 
change 

Functions 

Nicotinamide N-methyltransferase P40261 -1.453* Xenobiotic metabolic process 

Asparagine synthetase [glutamine-hydrolysing]; 
Cell cycle control protein TS11 

P08243 1.470* Negative regulation of apoptosis; Glucose 
starvation response; metabolic process 

40S ribosomal protein S11 P62280 1.904* Translation; RNA binding; Metabolism 

40S ribosomal protein S13 P62277 3.128* Translation; RNA binding; Metabolism 

* = p ≤ 0.05 (p = significance calculated as described by Cox et al. (Cox and Mann, 2008)). 

Hypothetical protein: A protein whose in vivo function and expression have not been predicted. 
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Figure 23: Biological functions associated with the deregulated proteins after the radiation dose of 200 mGy. Functional classification of proteins was done using 
the UniProt knowledge database and the PANTHER classification system. Biological functions of proteins found to have altered expression levels at 4 hours after 
a 200 mGy radiation dose. 
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6.3.2 Analysis of miRNAome of the EA.hy926 cells in response to 200 mGy 

irradiation 

In order to understand the effect of irradiation on the miRNA profile, alterations in the expression 

levels of miRNAs were analysed using TLDA Human MicroRNA Panel A v2.1 and TaqMan® 

Array Human MicroRNA B Card v2.0 at 4 h and 24 h after 200 mGy irradiation. To identify the 

potential protein targets of the candidate miRNAs in silico analysis was performed followed by 

either inhibition or over-expression of the candidate miRNAs and validating the protein 

expression by immunoblotting.  

6.3.2.1 Analysis of miRNA expression levels after low dose radiation (200 mGy) 

The cells were irradiated with a γ dose of 200 mGy and harvested 4 h and 24 hours after 

irradiation. At each time point 3 biological replicates were analysed, both treated and control 

miRNA values were normalised using an endogenous control RNU 6 a small nucleolar RNA 

(snoRNA). After normalisation, changes in the expression levels of miRNAs were calculated by 

comparing them to the sham-irradiated control cells (as described in 5.4.3.). Expression level 

changes were considered to be significant if the fold-change was + 1.5 in at least 2 of the three 

biological replicates at each time point.  

At 4 hours, a total of 24 miRNAs were found to be deregulated. Eighteen of the 24 deregulated 

miRNAs were up-regulated and 6 down-regulated Figure 24. Consistent with the much lower 

number of differentially expressed proteins at 24 h after 200 mGy irradiation, at 24 h after 

irradiation only 6 miRNAs showed an increased and 9 a decreased abundance, resulting in a total 

of 15 deregulated miRNAs (Figure 25). Two miRNAs, miR-7 and miR-923, were found to be 

differentially expressed at both time point. MiR-7 was 4- and 12-fold up-regulated at the 4-hour 

and 24-hour time points, respectively. MiR-923 was 4.15-fold up-regulated 4 hours after 

irradiation and -6.67 fold down-regulated at the 24-hour time point. A Venn diagram showing the 

total number of deregulated miRNAs and their overlap at the two time points analysed is shown in 

Figure 26. 

.
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Figure 24: miRNAs showing altered expression levels at 4 h after a 200 mGy radiation dose. The columns represent mean values of at least two of the three 
biological replicates. A total of 24 miRNAs with differential expression levels having a p < 0.05 (∗) / < 0.01 (∗∗) and n fold change > + 1.5. 6 miRNAs were 
down-regulated (green) and 18 were up-regulated (red).  
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Figure 25: All deregulated miRNAs 24 hours after a 200 mGy radiation dose. The columns represent mean values of at least two of the three biological replicates. 
Of the 15 deregulated miRNA 9 were up-regulated (red) and 6 down-regulated (green) with a significance of p < 0.05 (*) / < 0.01 ( **) and a fold change > + 
1.5. 
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Figure 26: Venn diagram representing the total number and overlap of deregulated miRNAs at the time points 4 
and 24 hours after a dose of 200 mGy. Of the total 24 (4 h) and 15 (24 h) deregulated miRNAs two were found 
at both time points. miR-7 was up-regulated at both time points and miR-923 was 4.15-fold up-regulated at 4 
hours but -6.67-fold down-regulated at 24 hours. 

6.3.2.1.1 Identification of potential protein targets of the deregulated miRNAs 

At 4 hours after low-dose irradiation (200 mGy) high mobility group AT-hook 2 (HMGA2) 

protein was found to be significantly down-regulated in one of the three biological replicates. 

Immunoblotting with the HMGA2 antibody showed a trend for down-regulation in the protein 

level at this time point (Figure 27 A). Literature research for the HMGA2 protein revealed that 

this protein is regulated by the let-7 family miRNAs. One of the significantly down-regulated 

miRNAs was the hsa-let-7c. A target search for hsa-let-7c carried out as described in section 5.5.3 

revealed HMGA2 as a potential protein target. 

In order to investigate if the alteration in hsa-let-7c leads to changes in the HMGA2 protein level, 

the EA.hy926 cells were transfected with precursor (pre)-let-7c and let-7c inhibitor to achieve 

either over-expression or inhibition of the miRNA, respectively (Figure 27 C and D). After 

transfection the cells were irradiated and alterations in the HMGA2 protein level were measured 

after 4 and 24 hours. Control inhibitor transfected cells served as controls (Figure 27 B). 

In Figure 27 B a trend for down-regulation was seen at 4 h after 200 mGy. Figure 27 C and D 

showed that the cells transfected with precursor let-7c resulted in complete knock-down of the 

HMGA2 expression irrespective of irradiation and cells transfected with let-7c inhibitor showed 

an up-regulation of the HMGA2 protein irrespective of irradiation.  
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Figure 27: Alterations in the HMGA2 protein level as a function of mir-let-7c expression. Immunoblot analysis 
using the HMGA2 antibody in cells exposed to 0 Gy or 200 mGy, 1 and 4 hours after irradiation. A. Non-
transfected cells showed a slight down-regulation of the HMGA 2 expression 1and4 hours after irradiation. B. 
Immunoblot analysis of control inhibitor transfected cells exposed 0 Gy or 200 mGy 1 h or 4 hours post-
irradiation. A trend for down-regulation is seen at 4 h after 200 mGy. C. Cells transfected with precursor let-7c 
resulted in complete knock-down of the HMGA2 expression irrespective of irradiation. D. Cells transfected with 
let-7c inhibitor showed an up-regulation of the HMGA2 protein irrespective of irradiation. 

Note: The un-transfected (A) and the transfected (C) were loaded on the same gel, similarly the scrambled B, 
and the transfected let-7c inhibitor (D) were loaded on the same gel. 
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6.3.2.2 Analysis of pathways and interactions between proteins and miRNAs 

Significantly deregulated proteins and miRNAs at 4 and 24 hours after exposure to a dose of 200 

mGy were separately analysed using the Ingenuity Pathway Analysis software. 

i) Networks and pathways affected at 4 h after exposure to a dose of 200 mGy 

All of the 15 differentially deregulated proteins and the 24 differentially expressed miRNAs were 

uploaded into the IPA software and the interactions, networks and the biological pathways 

involved in radiation response were analysed. The two most significant networks associated with 

the deregulated proteins and miRNAs were “cancer, developmental disorder” and “cell cycle, cell 

death, DNA replication, recombination, and repair” with significant scores of 26 and 25, 

respectively, as shown in Table 21. The top 2 significant networks were put together to obtain a 

single merged network with a total of 27 deregulated molecules (miRNAs and proteins), 

represented in Figure 28. Some of the most important nodal molecules in this network include 

MYC, TP53, DROSHA and hsa--let-7. However, no alterations were seen in the expression levels 

of the proteins MYC, TP53 and DROSHA (in SILAC method). The top significant canonical 

pathways affected are shown in Table 21. In the pathways “EIF2 signalling”,” regulation of eIF4”, 

”p70S6K signalling” and “mTOR signalling” the proteins involved included ribosomal protein 

S18, ribosomal protein L22 like and ribosomal protein S25, all three being up-regulated hence 

indicating an alteration of the respective pathways. 

Table 21: Most significant networks and functions associated with the deregulated proteins. 

 Associated network functions Score 

1. Cancer, developmental disorder 26 

2. Cell cycle, Cell death, DNA replication, recombination and repair 25 

 Canonical Pathways p-value 

1. EIF2 signalling 0.0014 

2. Regulation of eIF4 and p70S6K signalling  
 

0.0014 

3. mTOR signaling 0.022 

Score is defined in section 5.5.1. A score of 10 indicates that there exists an approximate chance of 10-10 that a particular set 
of molecules were assigned to a network randomly  
Fischer's exact test was used to calculate a p-value determining the probability that each canonical pathway to which the 
proteins were assigned were due to a random event. (www.Ingenuity.com). 
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ii) Networks and pathways affected at 24 h after exposure to a dose of 200 mGy 

Four deregulated proteins and 15 differentially expressed miRNAs were analysed by the IPA 

software to understand the interactions, networks and the biological pathways involved in 

radiation response. The networks associated with the deregulated proteins and miRNAs were 

“cancer, cell death, necrosis” and “cancer, hematological disease” with significant scores of 25 

and 11, respectively, as shown in Table 22. The two most significant networks are shown in 

Figure 29. The important nodal molecules in these networks included TNF, MYC, BCL6, EGFR, 

tretinoin and CDK6 which play an important role in differentiation, apoptosis, growth, 

proliferation, cell death, cell cycle progression, G1 phase and morphology. Table 22 represents 

the most significant canonical pathways affected, namely the “regulation of eIF4 and p70S6K 

signalling”, “EIF2 signalling” and “mTOR signalling”. Ribosomal proteins S11 and S13 were 

found to be up-regulated indicating an up-regulation of the above mentioned three pathways.  

Table 22: Most significant networks and functions associated with the differentially expressed proteins 24 hours 
after a radiation dose of 200 mGy. 

 Associated network functions Score 

1. Cancer, cell death, Necrosis 25 
2. Cancer, hematological disease 11 
 Canonical Pathways p-value 
1. Regulation of eIF4 and p70S6K signaling 0.0067 
2. EIF2 signalling 

 
0.0010 

3. mTOR signaling 0.010 
Score is defined in section 5.5.1. A score of 10 indicates that there exists an approximate chance of 10-10 that a particular set 
of molecules were assigned to a network randomly  
Fischer's exact test was used to calculate a p-value determining the probability that each canonical pathway to which the 
proteins were assigned were due to a random event (www.Ingenuity.com). 
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Figure 28: Merge of the 2 most significant networks obtained from deregulated proteins and miRNAs. The network represents a total of 27 deregulated molecules (proteins 
and miRNAs) involved in “cancer, developmental disorder” and “cell cycle, cell death, DNA replication, recombination and repair”. All coloured molecules are molecules 
with differential expression values (molecules in green represent down-regulation and red represents up-regulation. Arrows in orange represent interaction between the 
network 1 and network 2). Dotted lines indicate indirect interactions and solid line represents direct interactions and loops represent self-regulation. 
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Figure 29: Two most significant networks obtained from proteins and miRNAs deregulated 24 hours after 
exposure to a radiation dose of 200 mGy. The network A represents a total of 35 molecules (proteins and 
miRNAs) of which 10 were found to be differentially regulated after irradiation. The molecules are involved in 
“cancer, cell death and necrosis”. The network B shows a total of 35 molecules 5 of which were deregulated 
after irradiation and were involved in “cancer and hematological disease”. All coloured molecules are molecules 
with differential expression values (molecules in green represent down-regulation and the red ones represent up-
regulation). Dotted lines indicate indirect interactions and solid line represents direct interactions and loops 
represent self-regulation..  
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6.4.  Validation of proteomic and bioinformatic analysis by immunoblotting 

From the deregulated proteins obtained at 4 h and 24 h after exposure to a dose of 2.5 Gy, 4 

proteins showing significant deregulation (SILAC / 2D-DIGE) of + 2 fold change were chosen for 

immunoblotting: HSP90 from the 4 hour time point and NDUFC2, cofilin, and desmoplakin from 

the 24 hour time point. Nodal proteins NFκB and Erk 1 / 2 were not identified by SILAC and 2D-

DIGE, but were identified as key participants in the bioinformatic analysis. Therefore the 2 

subunits of NFκB (p50, p105) and phosphorylated forms of Erk 1 / 2 proteins were also quantified 

by immunoblotting at 4 and 24 h after 2.5 Gy irradiation. To estimate the changes if any in the 

phosphorylated form of Erk 1 / 2, the phosphorylated forms were compared with total Erk 1 / 2. 

No change was observed in either of the NFκB proteins or the Erk 1 / 2 forms. NDUFC2 showed 

a significant up-regulation and desmoplakin showed a trend to same deregulation as in proteomics 

studies but this did not reach significance. The expression values of these proteins are represented 

in Figure 30 and Table 23. Since there was a deregulation of some of the OXPHOS proteins (24 h 

after irradiation) immunoblot analysis of the five OXPHOS complexes was conducted as 

described in Materials and Methods. The immunoblotting confirmed a significant down-

regulation of four proteins representing complexes I, III IV, and V of the oxidative 

phosphorylation Figure 31. 

No significant alterations could be validated with the immunoblot technique for the deregulated 

proteins of the 200 mGy dose. This was due to the small number of deregulated proteins and less 

pronounced fold changes observed in comparison to that of the alterations found after exposure to 

2.5 Gy. 
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Figure 30: Immunoblot validation of differentially expressed proteins. Irradiated samples (4 h / 24 h, 2.5 Gy) and respective controls were separated on 1D SDS-
PAGE gels. Relative expression ratios (as indicated in Table 23) were calculated after background subtraction with either ImageQuant 5.2 or TotalLAB TL100 
softwares and normalised to the expression level of actin. The columns correspond to the mean values of three technical replicates of two biological samples ± 
SD. Asterisk on the bars represent p-values (** corresponds to p < 0.01, * corresponds to p < 0.05). P-values were calculated using student’s t-test. 
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Table 23: The relative expression ratios of proteins chosen by immunoblotting 

Proteins  Fold change (2.5 
Gy vs. Control) 

Time after 
Irradiation 

p-value  

HSP 90 0.98 4 h 0.61 

Phospho Erk1 / 2 ; total 
Erk1 / 2 

1.08; 1.022 4 h 0.39 

Cofilin 0.98 24 h 0.66 

Phospho Erk1 / 2 ; total 
Erk1 / 2 

0.97; 0.962 24 h 0.82 

NDUFC2 1.54* 24 h 0.02 

Desmoplakin 1.29 24 h 0.06 

NFkB (p50) 1.18 24 h 0.38 

NFkB (p105) 1.27 24 h 0.16 

* = p < 0.05. 

P-values were calculated using student’s t-test. 
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Figure 31: Immunoblot analysis of 5 OXPHOS subunits (24 h after irradiation). Analysis using total OXPHOS rodent antibody cocktail revealed a significant 

down-regulation of four subunits NDUFB8 (C-I-20), C-III-core2, C-IV-I and C-V-α. 30µg of total cell lysate was loaded in each lane of a 12 % gel (* corresponds 

to p < 0.05). A: relative expression change between controls and treated cells. B: Representative images of the blots. C: Fold differences between control and 

treated samples normalised to tubulin are indicated in the form of a table; “C” represents control and “T” represents treated samples. P-values were calculated 

using student’s t-test. 

 

  



Discussion 

 98 

7. Discussion 

Ionising radiation has a number of medical and non-medical applications. In medicine ionising 

radiation is used in the diagnostic and therapeutic fields. For diagnostic purposes relatively low 

doses (< 200 mGy) of ionising radiation are applied as opposed to radiotherapy deployed in 

cancer treatment. In these conventional radiotherapeutic procedures ionising radiation doses of 

40-60 Gy are applied in multiple smaller fractions (doses of approximately 2-3 Gy / day). The 

main purpose of the fractionation is to temporally and spatially separate the individual radiation 

fields to reduce damage to the normal tissue surrounding the tumour. Tumour hypoxia, a 

condition in which tumour cells are deprived of blood supply and hence oxygen, leads to therapy 

resistance (Vaupel, 2008, Vaupel and Mayer, 2007). A further benefit of fractionation is the re-

oxygenation of hypoxic tumour cells deep within the tumours, as each fraction of the radiation 

exposure destroys a number of normoxic cells, leading to reoxygenation and hence 

radiosensitisation. During therapeutic procedures tissues are damaged (Muriel, 2002), in order to 

optimise the therapeutic and diagnostic protocols there is an increasing need to understand the 

response of cells to low (< 200 mGy) and clinically relevant doses (< 2.5 Gy) of ionising 

radiation.  

Despite the preventive measures designed to protect normal cells, some cell types may still be 

damaged. In particular the vascular endothelial cells are very sensitive to ionising radiation. 

Exposing these endothelial cells to radiation have been shown to cause endothelial 

dysfunctioning, a condition where in an imbalance in the vasodilatory and vasoconstricting 

products of the endothelium are observed (Kazakov et al., 1992). Endothelial cells are important 

components of the blood vessels (as described in section 3). They play a crucial role in 

maintaining the function of the cardiovascular system by producing several substances (described 

in section 3). Hence the aim of this study was to perform a detailed assessment of the response of 

endothelial cells to high (2.5 Gy) and low doses (200 mGy) of ionising radiation. To understand 

the molecular mechanisms of the endothelial cells in response to ionising radiation, alterations in 

the proteome and miRNA expression levels of the endothelial cell line EA.hy926 were studied. 

Proteomic alterations in cells and tissues after exposure to ionising radiation have previously been 

studied using classical techniques such as 2D-DIGE. The 2D-DIGE technology is a gel-based 

analysis which enables detection of proteins as well as of protein isoforms, fragments and 

modifications. Even though the 2D-DIGE technique is a well-established technique, it has some 

limitations, namely the poor resolution of proteins with a hydrophobic character or with very high 

or low molecular weights (Brewis and Brennan, 2010). The SILAC is a straightforward method   
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used for differential quantification of two proteomes (Ivanov et al., 1993). In the present study, in 

order to obtain a broad perspective of the protein alterations of the human endothelial cell line 

EA.hy926, both the SILAC and the 2D-DIGE methods were used. 

7.1. Establishment of the in vitro SILAC technique for the EA.hy926 cells 

for use with irradiation 

The SILAC technique was first established in 2002 by Ong et al (Ong et al., 2002). Over the years 

SILAC has become one of the most adaptable methods for both in vivo and in vitro mass 

spectrometry based proteomic studies. A major hall mark in the stable isotope labelling was the 

production of SILAC mice (Krüger et al., 2008). Mice were completely isotopically labelled by 

developing SILAC diet (Krüger et al., 2008) and these SILAC mice have been successfully used 

for several in vivo studies (Huang et al., 2012, McGeer and McGeer, 2010, Zanivan et al., 2012). 

SILAC has been further used for a number of in vitro comparative studies as it offers accurate and 

global proteome quantification (Swa et al., 2012, Gokhale et al., 2012). Recently SILAC has been 

used in vitro to understand the biochemical aspects of diseases, for example in the cells of breast 

cancer and lymphomas (Deeb et al., 2012, Geiger et al., 2012). Labelling of various B-cell 

lymphomas sub-types by Deeb et al. (Deeb et al., 2012) resulted in extraction of 55 signature 

proteins that segregated the sub-types. Geiger et al. (Geiger et al., 2012) carried out quantitative 

proteomic studies on the breast cancer cells and quantified 7800 proteins. They showed alterations 

in adhesive proteins and metabolic proteins (Geiger et al., 2012). SILAC has been used in 

combination with transcriptomics (Drexler et al., 2011), metabolomics and gene expression 

profiling (Huang et al., 2012) to understand the complete biological process. 

The present study is one of the first studies combining SILAC with ionising radition used to study 

the effect of ionising radiation on the proteome. The in vitro labelling for proteomic analysis is 

described in detail in section 5.1.2 and 5.3.1. Essential amino acids that cannot be synthesised by 

cells must normally be supplied in the form of amino acid tissue culture supplements. Natural, as 

well as isotopically labelled, analogues of these essential amino acids are commercially available. 

The SILAC technique makes use of these amino acids to label the cells. Usage of the essential 

amino acids to label the cells ensures that only the added isotopically labelled amino acids are 

taken up by the cells as they cannot be produced in the cells (Ivanov et al., 1993). The cell 

populations supplemented with amino acids containing either natural isotopes or the isotopically 

labelled analogues are expected to behave exactly the same. In this study the EA.hy926 cells were 

labelled with arginine and lysine amino acids because they serve as cleavage sites for trypsin, 

which is used for digestion of peptides before mass spectrometry. Since this is the first time that 

the 
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EA.hy926 cells were SILAC labelled it was important to know if the cells were completely 

labelled and if the isotopical label caused any unexpected phenotypic alterations. The cells were 

checked for completeness of labelling by mass spectrometry by comparing the two populations, 

one containing the natural isotope and the other isotopically labelled amino acids, without 

irradiation. Once the cells were confirmed to be completely labelled by mass spectrometry, they 

were used for further irradiation experiments. The experiments were designed in such a way that 

in the first biological replicate cells containing natural isotopes served as the control samples and 

their isotopically labelled analogues (biological replicate) were irradiated. In the second biological 

replicate the cells containing the natural isotope were irradiated and their labelled isotopic 

analogues served as non-irradiated controls (called reverse labelled or swapped replicate). For the 

proteins to be significantly quantified as deregulated, the following 4 criterions were considered: 

the minimum number of peptides to be identified had to be > 2, the variability between the 

identified peptides < 50 %, the p-value < to 0.01, and the fold change of + 1.3. The biological 

significance of the cut off of + 1.3 fold change has been shown by Blagoev et al (Blagoev et al., 

2003). The correlation between the two biological replicates was very high confirming that the 

reverse labelling (swapping) had no effect. 

A major constraint was encountered during estimation of the protein concentration in the lysate. 

After the cells were labelled and harvested, in order to lyse the cells a 4 % urea buffer was used 

(as described in section 5.3.1) as the urea buffer enabled complete lysis of the EA.hy926 cells. 

The 4 % urea buffer was not compatible with the Bradford buffer, used in the estimation of 

protein concentration by Bradford technique (described in section 5.3). To overcome the same the 

lysate was precipitated with ice cold acetone overnight. Even though this precipitation enabled 

removal of some of the urea and precipitate most of the proteins, the precipitant still contained a 

huge amount of urea. Therefore the cells were precipitated with the 2D-DIGE-Clean-up-kit 

(Roche molecular diagnostics) which allowed removal of most of the urea and concentrated the 

proteins. 

7.2. Endothelial cellular growth in response to irradiation 

Several studies have shown that ionising radiation significantly affects the growth and 

proliferation of the endothelial cells. Abdollahi et al. have shown that endothelial cells exhibit 

alterations in the cell survival, proliferation and clonogenesis following exposure to ionising 

radiation (Abdollahi et al., 2003). Further, Kraemer et al. (Kraemer et al., 2011) showed a 

significant increase in apoptosis 48 hours after an acute radiation dose of 2.5 Gy in the EA.hy926 

cell line. They were also able to show an increase in the caspase 3 activity 24 h after irradiation. 
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Chronic low dose exposure of primary human umbilical vein endothelial cells (HUVECs) is 

known to cause the loss of replicative capacity at a cumulative dose of 4 Gy. This is accompanied 

by increased expression of the senescence marker senescence-associated beta-galactosidase 

(Yentrapalli personal communication). 

In the present study the EA.hy926 cells showed a significant alteration in the growth rate after 

acute exposure to a dose of 2.5 Gy, resulting in the inhibition of growth of the endothelial cells 

starting at ~75 hours after irradiation. On the other hand, the exposure of the EA.hy926 cells to a 

relatively low acute dose of 200 mGy resulted in no significant change in the growth rate. This 

dose dependency is in accordance with the study by Kantak et al (Kantak et al., 1993). Kantak et 

al. showed that doses lower than or equal to 1 Gy had no effect on either the clonogenic or 

proliferative ability of the pulmonary microvascular endothelial cells (PMEC). 

A prominent influence on the growth rate was observed starting at a dose of 1 Gy (as shown in 

section 6.1.1) whereas doses below 1 Gy did not show any significant effect. Taken together, the 

cellular survival and proliferation indicate that high-dose radiation leads to a death in the 

EA.hy926 cells. The data also indicate that there is a dose, below which no detectable change in 

the growth rate of the EA.hy926 can be observed.  

7.3. Response of the endothelial cell line EA.hy926 to irradiation  

7.3.1 High Dose-exposure at 2.5 Gy 

Substantial alterations in the expression levels of number proteins were observed. SILAC was 

able to detect 31 and 125 deregulated proteins at 4 and 24 h respectively after irradiation. The 2D-

DIGE detected 27 and 18 differentially expressed proteins at the same 4h and 24 h time points 

respectively. Deregulated proteins had differential expression levels between +1.3 and +2 fold at 

both time points and doses. As expected the SILAC method was more sensitive, as can be seen by 

the number of deregulated proteins identified when compared to the 2D-DIGE method. This is 

because the SILAC method allows the identification and quantification of global proteins, 

whereas 2D-DIGE allows the detection of protein isoforms, protein fragments and modified 

proteins. The anticipated complementarity between the two methods is evident from the nature of 

the deregulated proteins identified by the SILAC and the 2D-DIGE techniques. As a result of the 

differential detection modalities a large number of proteins were only identified as being regulated 

by one method, thus increasing the total number of observed protein alterations. Nevertheless, 

some proteins were found to be significantly deregulated by both SILAC and 2D-DIGE at 24 h as 

shown in Table 25 and Figure 32. The direction and magnitude of these protein changes were 

comparable using both methods.  
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Interestingly a comparison of the sets of deregulated proteins between the two time points (4 h 

and 24 h after irradiation) showed little overlap. Some proteins did show a similar but non-

significant trend for deregulation at the 4 h time point, which then became significant at the 24 h 

time point, suggesting that the expression of these proteins was not a rapid but long time effect 

(increased with time after irradiation). A Venn diagram representing the sets of deregulated 

proteins identified by the SILAC and 2D-DIGE approach at both time points is shown in Figure 

32. At 4 h there was no overlap of differentially expressed proteins between the two techniques. 

Twenty-four hours after irradiation, 5 proteins were found to be significantly deregulated by both 

SILAC and 2D-DIGE. These 5 proteins showed similar fold changes using both methods, as 

shown in table 25. Further, no differentially expressed proteins were common to both the 4 h and 

24 h time points. This indicated that the effect on protein expression changes was time-dependent. 

Time-dependent effect was observed only in one protein, desmoplakin, which was down-

regulated at 4 h and later at 24 h became up-regulated. 

Put together the deregulated proteins detected by both the methods, a significant deregulation of a 

total of 58 and 136 proteins was observed at 4 h and 24 h, respectively. A larger number of 

proteins were found to be deregulated at the 24-hour time point compared to that of the 4-hour 

time point, suggesting that the radiation exposure has a relatively slow and prolonged effect on 

the EA.hy926 cells. 

Table 24: List of the deregulated proteins found using both 2D-DIGE and SILAC at 24 h after irradiation. 
Corresponding spot numbers for proteins found to be deregulated by 2D-DIGE are indicated in the table. 

Proteins UnipProt Fold change 
SILAC 

Fold change 
2D-DIGE 

Eukaryotic translation initiation factor 5A-1 (spot 3) P63241-2 -1.37** -1.53* 

Inhibitor of nuclear factor kappa-B kinase-interacting protein (spot 10) Q70UQ0-1 1.43** 1.71** 

Stathmin (spot 2) P16949 -1.43** -1.47** 

Translationally-controlled tumor protein (spot 5) P13693 -1.52** -1.33** 

Tumour protein D54 (spot 6) O43399 -1.25** -1.37** 

For SILAC * = p ≤ 0.05, ** = p ≤ 0.01 (p = significance B calculated as described by Cox et al. (Cox and Mann, 2008)) 

For 2D-DIGE * = p < 0.05 ** = p < 0.01 p-value was obtained by two way ANOVA t-test, peptide false discovery rate and 
the protein false discovery rate were set to 1 %. 
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Figure 32: Venn diagram representing deregulated proteins identified with 2D-DIGE and SILAC methods 
deregulated at 4 h and 24 h after irradiation. Five proteins were shared between the 2D-DIGE and SILAC 
methods all at 24 h after 2.5 Gy irradiation. No overlap was seen in the deregulated proteins between the two 
methods. One protein, desmoplakin was found to be differentially expressed at both 4 h (down-regulated) and 24 
h (up-regulated) by 2D-DIGE method. 

Functions and pathways in which the proteins found to be deregulated at 4 h and 24 h after 

irradiation were involved 

i) Four hour time point 

The 58 proteins found to be deregulated 4 hours after irradiation could be classified into 16 major 

groups (as shown in section 6.2.4). In this study, a down-regulation of three proteins involved in 

DNA repair was found 4 hours after irradiation, namely the Ku protein complex Ku70 (-1.51) / 

Ku80 (-1.68) and the PCNA (-1.66). Bioinformatic studies using Ingenuity pathway analysis 

showed that the non-homologous end joining (NHEJ) DNA repair pathway was the most 

important pathway affected (shown in section 6.2.5). 

The Ku proteins play a very significant role in DNA damage repair by stimulating joining the 

DNA end joining (Pukkala et al., 2006). Ionising radiation leads to the damage of DNA by 

causing both single and double strand breaks (DSB) (Bogdanova et al., 2010). Since such DNA 

damage may be lethal to the cells there is an immediate response to damage leading to the 

induction of repair mechanisms (Jackson and Bartek, 2009). The two main repair mechanisms 

adopted by mammalian cells are homologous recombination repair (HRR) and non-homologous 

end joining mechanisms (NHEJ).  
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In the NHEJ repair mechanism the DNA-dependent protein kinase (DNA-PK) is responsible for 

sensing the DSB damage and forming the repair complex (Dobbs et al., 2010). The DNA-PK 

possesses DNA end-binding capacity and contains two fractions, namely the DNA end-binding 

Ku proteins and the DNA-PK catalytic subunit. The proper functioning of DNA-PK requires the 

assembly of Ku proteins at DSB ends (Dobbs et al., 2010). The Ku proteins form a heterodimer 

consisting the subunits Ku70 and the Ku80 (Gottlieb and Jackson, 1993). Ku-dependent DNA 

repair requires the formation of Ku70-Ku80 heterodimer complex. Proliferating cell nuclear 

antigen (PCNA) is also known to be involved in the DNA damage repair. Even though the role of 

PCNA in base excision repair is established in detail, its role in NHEJ is not fully understood. 

Only a few studies give evidence for the mechanism behind the involvement of PCNA in NHEJ. 

Balajee et al. (Balajee and Geard, 2001) showed that PCNA is involved in NHEJ and has a tight 

interaction with the Ku-heterodimers. 

Post-translational modification (ubiquitination) of both Ku70 and Ku80 decreases the non-

ubiquitinated form of Ku70 / Ku80 in favour of the ubiquitinated form (Sawada et al., 2003, 

Gama et al., 2006). Down-regulation of the non-ubiquitinated Ku70 and Ku80, and up-regulation 

of ubiquitinated Ku70 / 80 was observed by Gama et al. in the drug-induced apoptosis of human 

umbilical vein endothelial cells (HUVECs). Further, the Ku proteins have been observed to be 

decreased during cellular senescence in fibroblasts (Salminen et al., 1997). The Ku proteins have 

also shown to increase the susceptibility to anticancer drug-induced apoptosis (Kim et al., 1999). 

Previous study from our group has shown an increase in the apoptosis of the EA.hy926 cells at 48 

h after irradiation with 2.5 Gy irradiation (Kraemer et al., 2011). The colony forming assay shows 

a decrease in colony forming ability and increase cell death at a radiation dose of 2.5 Gy (shown 

in section 6.1.2). This suggests that the EA.hy926 cells were already in apoptotic stress at 4 h after 

irradiation and hence explains the decrease in the Ku-heterodimers. 

From this it can be conclude that the down-regulation of the Ku-heterodimers could be due to 

apoptotic stress. Several studies show that apoptosis of the endothelial cell in the vascular system 

leads to cardiovascular diseases (CVD). As per a review by Stoneman et al. (Stoneman and 

Bennett, 2004) the endothelial cells of the vascular system produce substances for the survival and 

maintenance of other cell types of the vascular system such as the vascular smooth muscle cells. 

They stated that increased apoptosis of the endothelial cells may eventually lead to apoptosis of 

vascular smooth muscle cells as well. Abnormal levels of endothelial cell apoptosis has been 

observed in disease progression of coronary atherosclerosis, myocardial infarction and ischemia-

reperfusion injury (Stoneman and Bennett, 2004). Therefore it can be speculated that ionising 

radiation induces apoptotic stress in endothelial cells which could further lead to CVD.   
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In addition to the changes in the expression levels of the proteins of the DNA repair, alterations in 

the expression levels of HMG-CoA synthase (1.44) and acetyl-CoA-acetyltransferase (ACAT 1) 

(-1.39) were observed 4 hours after irradiation. These two enzymes are involved in fatty acid beta-

oxidation. In the mevalonate pathway ACAT 1 converts acetyl-CoA to acetoacetyl CoA whereas 

HMG-CoA synthase catalyses the reaction in which 3-hydroxy-3-methylglutaryl-CoA (HMG-

CoA) is formed (Theisen et al., 2004). The HMG-CoA synthase that was found to be up-regulated 

at the 4-hour time point was the cytosolic form of the enzyme. Such an up-regulation has also 

been observed in CVD. (Chang et al., 2009, Netherland and Thewke, 2010). Inhibition of ACAT 

has been suggested to increase atherogenesis process (Nissen et al., 2006). Ischemic hearts show 

alterations in both fatty acid beta-oxidation and glycolysis (L.H. Opie, 1996). This shows that 

alterations in the proteins of the fatty acid beta-oxidation in the endothelial cells due to ionising 

radiation may lead to vascular diseases. 

ii)  Twenty Four hour time point  

One hundred and thirty six (136) proteins found to be differentially expressed at 24 h were 

classified into 20 groups (described in section 6.2.4), the oxidative phosphorylation, and 

glycolytic pathway were the most important pathways affected (shown in section 6.2.5). 

In this study with the SILAC method a differential regulation in the expression levels of proteins 

of the oxidative phosphorylation pathway was found at 24 h after 2.5 Gy irradiation. A 

deregulation in the Complex I subunits - NADH dehydrogenase (ubiquinone) 1- alpha (-1.41), and 

two other isoforms, Complex II subunit - ATP synthase (-1.85), and Complex III subunit - 

(ubiquinol) cytochrome c reductase (-1.66) was observed. Immunoblot analysis of the subunits 

representing the five OXPHOS complexes NDUFB8 (C-I-20), Fes (C-II-30), C-III-core2, C-IV-I 

and C-V-α showed a significant down-regulation of all the complexes except Complex II, this 

showed a trend for down-regulation that did not reach the significance cut off. Down-regulation of 

the mitochondrial complex subunits is suggested to lead to an impairment of the complex 

assembly and subsequently to alterations in the OXPHOS pathway (Azimzadeh et al., 2011, 

Barjaktarovic et al., 2011).  

Ionising radiation causes damage to the mitochondria by inducing oxidative stress and leads to 

alterations in the energy production. Mitochondria play an important role in the oxidative 

metabolism. The most important function of the mitochondria is the production of energy in the 

form of ATP from Krebs cycle and oxidative phosphorylation (Gibson, 2005). During production 

of ATP, electrons from the Krebs cycle pass through the electron transport chain (ETC) and 

release energy. This released energy is utilised to generate a proton gradient (Gibson, 2005).   
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Oxidative phosphorylation (OXPHOS) is known to be one of the most radiation-responsive 

pathways (Azimzadeh et al., 2011, Azimzadeh et al., 2012, Tsai et al., 2009). 

In addition, during ischemia the Complex I and Complex III are known to result in the production 

of reactive oxygen species (ROS) (Chen et al., 2003) which in its turn may damage the 

mitochondria (Heather et al., 2010, Chen et al., 2003). In the present study, superoxide dismutase 

[Cu-Zn] was found to be depleted (SILAC) at 24 hours after exposure. Srivastava et al. 

(Srivastava et al., 2007) have shown that the depletion of [Cu-Zn] superoxide dismutase results in 

oxidative stress in rat hearts.  

Increased ROS in the cardiac endothelium leads to oxidation of low density lipoproteins (LDL), 

accumulation of lipids into foam cells, growth of vascular wall intima layer and finally 

atherosclerotic plaque expansion and rupture (Ross, 1999, Bugger et al., 2010, Falk and 

Fernández-Ortiz, 1995). Hatoum et al. (Hatoum et al., 2006) showed that radiation-induced 

oxidative stress, resulting from increased ROS production, leads to endothelial dysfunction, a 

condition where in an imbalance in the vasodilatory and vasoconstricting products of the 

endothelium are observed. In a mouse model Hatoum et al. (Hatoum et al., 2006) demonstrated 

loss of vasodilatory capacity resulting from radiation-induced endothelial dysfunction. 

Nishiki et al. (Nishiki et al., 1979) demonstrated a co-regulation between oxidative 

phosphorylation and glycolytic flux i.e. the rate of oxidative phosphorylation affects the 

glycolytic flux rate and vice versa. In our study an increase in the levels of 5 enzymes of the 

glycolytic pathway namely, enolase, glyceraldehyde-3-phosphate dehydrogenase, fructose-

bisphosphate (aldolase), 6-phosphofructokinase and hexokinase was observed 24 hours after 

irradiation by the SILAC method. 

Glycolysis, a metabolic process converting glucose into pyruvate, includes ten sequential steps. 

Radiation-induced increase was observed in the levels of enzymes corresponding to most of these 

steps: hexokinase, fructose-bisphosphate aldolase, glyceraldehyde-3-phosphate dehydrogenase, 6-

phosphofructokinase, and enolase (section 6.4.1). This indicates a radiation-induced activation of 

the glycolytic pathway. This is in accordance with previous data showing that other stressors also 

result in an increased rate of glycolytic flux (Ralser et al., 2007, Grant, 2008). This phenomenon 

has been associated with accelerated endothelial proliferation (Moreno-Sánchez et al., 2007) 

which is a consequential reaction of endothelial cells exposed to and damaged by radiation 

(Mothersill et al., 1992). It has been shown that hypertrophied hearts display increased rates of 

glycolysis and overall glucose utilisation (Leong et al., 2003). In fact, an alteration in the level of 

a single glycolytic enzyme may be sufficient in raising the risk for coronary heart disease (Leyva 
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et al., 1998, Liu et al., 1996). This suggests that in the EA.hy926 cells there was an increase in the 

activity of the glycolytic pathway at 24 h after exposure. 

The expression levels of several proteins belonging to the Rho pathway were also affected by 

radiation. These proteins included cofilin 1, myosin light chain 6, profilin 1, and RhoA. Rho 

family proteins regulate a broad diversity of cellular functions including cytoskeletal organisation, 

membrane trafficking, cytokinesis, cell proliferation, cell motility and transcriptional regulation. 

Rho pathway (Kuzelova and Hrkal, 2008) has already been shown to be responsive to low-dose 

radiation (200 mGy) (Pluder et al., 2011) and activation of Rho pathway functions as an effective 

triggering factor for cardio vascular diseases (CVD) (Seasholtz and Brown, 2004, Monceau et al., 

2010).  

Based on these observations a conclusion can be drawn that irradiation of endothelial cells with a 

dose of 2.5 Gy can rapidly activate several damage response pathways. Most importantly, a 

pronounced shift in the cellular energy metabolism including activation of the glycolytic pathway 

and alteration of the mitochondrial OXPHOS balance was observed. An alteration in the proteins 

of the DNA repair process was seen as early as 4 hours after irradiation. The activation of the 

glycolysis pathway and alterations in the mitochondrial complexes occurred later (24 h). All these 

alterations suggest that an immediate biological response occurs that is designed by the 

endothelial cells to overcome the radiation-induced stress. This damage may later trigger the 

dysfunctioning of the endothelium, resulting in a late vascular injury leading to cardio vascular 

diseases (CVD). 

7.3.2 Low Dose effects on the proteome after 200 mGy 

After exposure to a dose of 200 mGy the total number of proteins found to be deregulated was 

lower than that observed at the high dose. The extent of the expression changes of the deregulated 

proteins were also subtle in comparison to those observed using the high dose, with the exception 

of two proteins that showed more than 3-fold deregulation. In contrast to the high dose treatment, 

the majority of the protein changes were found at the earliest time point (4 h) in comparison to 

later time point (24h). This may reflect a dose- and time-dependent effect on protein expression, 

i.e. lower doses of irradiation cause less alterations and the alterations that are seen due to 

immediate stress response subside rapidly with time. Further, there was no overlap between the 

high-dose and low-dose induced protein response, suggesting that the changes in protein 

expression were dose-dependent. Similarly, there was no overlap between the deregulated 

proteins at 4 h and 24 h using the low-dose exposure. However, some deregulated proteins at both 

time points belonged to the same functional category, namely translational regulation.   
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Three out of 15 and 2 out of 4 differentially regulated proteins at 4 and 24 hours respectively, 

were ribosomal proteins. All of the differentially expressed ribosomal proteins at both time points 

were up-regulated. At 4 h one large (RPL22) and two small ribosomal protein subunits (RPS18, 

RPS25) were deregulated. Twenty-four hours after irradiation two small subunits (RPS11, RPS 

13) were found to be up-regulated. 

Rapid ribosomal assembly is necessary for an efficient translation (Stelzl et al., 2001). Hence, the 

increased expression of ribosomal subunits by a low-dose ionising radiation may lead to an 

enhanced translation. This is in accordance with a study showing an up-regulation of several 

translational initiation and elongation factors in the primary cardiac-specific endothelial cells, on 

exposure to a dose of 200 mGy (Barjaktarovic personal communication). Pluder et al. (Pluder et 

al., 2011) showed that the irradiation of EA.hy926 cells also with a dose of 200 mGy (Co-60 

gamma) led to an increased expression of the eukaryotic translation initiation factor 5A-1. On the 

contrary, the results from the high-dose exposure shown in section (6.2) show that several 

proteins involved in translational initiation and elongation are down-regulated, indicating that 

high- vs. low-dose endothelial responses are distinct at the level of translational activation. Hence, 

it can be speculated that a low-dose exposure of the EA.hy926 cells induces a stress response 

which in its turn increases translation. 

Gelsolin protein a regulator of actin, was down-regulated at both 4 h after 200 mGy irradiation. 

Alterations in the expression level of gelsolin have been demonstrated in prostate epithelial cells 

exposed to x-ray irradiation of 2 x 2 Gy (Prasad et al., 1997). Some of the main functions of 

gelsolin include regulation of cell motility, apoptosis, and signalling events (Kwiatkowski, 1999). 

This indicates that low-dose radiation causes alterations to the actin binding proteins. This is in 

accordance with the observations at high-doses where additional proteins involved in actin 

mechanics such as profilin, cofilin and transforming protein RhoA were all found to be down-

regulated after 24 hours. 

The down-regulation of a mitochondrial complex 1 enzyme NADH dehydrogenase [ubiquinone] 1 

alpha subcomplex subunit 7 was observed at 4 h after 200 mGy irradiation. Bearing in mind that 

the high-dose radiation also induced a deregulation of some Complex I subunits (by SILAC), 

namely the NADH dehydrogenase (ubiquinone) 1- alpha, alpha / beta and an unknown 

subcomplex. The immune blot analysis showed a general decrease in Complex I amount. Hence, 

the down-regulation of the NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 7 is 

an indicative of the decrease in complex I after a low-dose irradiation. Alterations in the 

OXPHOS proteins were seen at 4 hours after irradiation. This was a transient phenomenon which 

disappeared within 24 hours.  
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Pathways in which the proteins found to be deregulated were involved 

At 4 h and 24 h after exposure to a radiation dose of 200 mGy the EIF 2 signalling, eIF 4 

signalling, and mTOR signalling pathways were the most significantly affected pathways. All the 

deregulated proteins in these pathways showed an increased expression level, indicating an 

activation of these pathways. It has been shown that activation of the mTOR signalling pathway 

in endothelial cells leads to an increased proliferation and angiogenesis (Rafiee et al., 2010). 

Rafiee et al. also showed that the human intestinal microvascular endothelial cells (HIMEC) 

activated mTOR signalling pathways to survive radiation-induced damage. This indicates that a 

dose of 200 mGy increases the activity of proteins involved in the mTOR signalling as a pro-

survival mechanism. 

Taken together, the proteomics data confer that the exposure of the endothelial cell line EA.hy926 

to a radiation dose of 200 mGy causes only slight changes and the changes are mostly immediate, 

observed only 4 hours after radiation. Persistent up-regulation was observed only in the proteins 

of the translational processes at both 4 and 24 h after irradiation. From these observations it can 

be inferred that the low dose exposure evokes a stress response rather than a damage response. 

7.3.3 miRNA expression analysis 

Alterations in the expression levels of miRNAs in response to various doses of ionising radiation 

in cells and tissues, have been widely studied (Kraemer et al., 2011, Maes et al., 2008, Shin et al., 

2009, Simone et al., 2009, Wagner-Ecker et al., 2010, Weidhaas et al., 2007, Vincenti et al., 

2011). In this study miRNA expression level alterations were analysed in the EA.hy926 cell line 4 

and 24 hours after a dose of 200 mGy (γ-irradiation). This dose was used since, in contrast to high 

dose exposures, little is known about the low-dose effect on miRNA expression alterations. In 

addition, it was important to investigate whether the low dose (200 mGy) exposure would cause 

subtle alterations at the miRNA level similar to those seen in protein expression or whether there 

would be a strong miRNA effect leading to a broad cellular response. 

Twenty-four and 15 miRNAs showed altered expression at 4 h and 24 h, respectively, after a dose 

of 200 mGy gamma irradiation (shown in section 6.3.2). At both time points the level of hsa-mir-

7 was up-regulated. The hsa-mir-923 showed a time-dependent effect that is it showed an up-

regulation at 4 h and down-regulation after 24 h after 200 mGy irradiation. No other miRNA was 

regulated over the complete 24 h observation.  
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A larger number of miRNAs were found to be differentially expressed at the 4-hour time point 

when compared to that of the 24-hour time point. This is in agreement with the proteomics data 

showing that 15 and 4 proteins were differentially regulated at 4h and 24 h, respectively at the 200 

mGy dose used. Four hours after irradiation the number of up-regulated miRNAs was greater than 

that of the down-regulated ones. At 24 hours, a majority of the differentially expressed miRNAs 

were down-regulated. MiRNAs are negative regulators of gene expression, i.e. when a miRNA is 

up-regulated the target gene is generally down-regulated (He and Hannon, 2004). Therefore, 

based on the miRNA expression data, a radiation dose of 200 mGy would result in a general 

down-regulation of proteins at 4 hours and, conversely, an enhancement of the amount of up-

regulated proteins at 24 hours. The bioinformatic analysis for target search did not reveal any 

direct interaction between the deregulated miRNAs and differentially expressed proteins. Indeed, 

the proteomics data from the SILAC analysis showed that, at 4 hours, the expression of most 

proteins was down-regulated whereas at 24 h most proteins showed up-regulation. 

Comparison of the miRNAs deregulated in the EA.hy926 cells after 200mGy irradiation with 

other studies investigating radiation induced miRNA response 

Several studies show the miRNA response of endothelial cells and cell lines to ionising radiation. 

Kraemer et al. (Kraemer et al., 2011) showed expression alterations in 22 miRNAs each at 4 and 

24 h in the endothelial cell line EA.hy926 after exposure to a radiation dose of 2.5 Gy. They also 

showed expression alterations in 29 and 17 miRNAs at 4 h and 24 h respectively, in the human 

umbilical vein cells (HUVECs). Vincenti et al. (Vincenti et al., 2011) showed that a total of 23 

miRNAs were differentially expressed at in the HUVECs at 30 min and 1 h after exposure to 

radiation dose of 1Gy. 

A comparison between the miRNA expression level changes in the EA.hy926 and HUVECs after 

exposure to a dose of 2.5 Gy by Kraemer et al. (Kraemer et al., 2011) with data obtained by 

exposure of the EA.hy926 cells to a radiation dose of 200 mGy (present study :section) showed 

the following. A down-regulation of the hsa-let-7d was observed in both EA.hy926 cells and 

HUVECs at 4 h after 2.5 Gy irradiation. The low-dose exposure of the EA.hy926 cells in this 

study resulted in the up-regulation of hsa-let-7d. In the EA.hy926 cells hsa-mir-23a and hsa-mir-

339-5p were down-regulated in the present study after 24 h after low-dose exposure, Kraemer et 

al.(Kraemer et al., 2011) showed the same in both HUVECS and EA.hy926 cells at 4 h after high 

dose exposure. Also in HUVECs the high-dose exposure resulted in down-regulation. The hsa-

mir-636 showed down-regulation in the EA.hy926 cells 24 hours after irradiation independently 

of the dose but was up-regulated at 4 hours after a high-dose exposure in HUVECs. Hence the 

miRNAs let-7d, 23a, 339-5p and 636 may be considered to be universal radiation-responsive   
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miRNAs in endothelial cells. However, this has to be validated by either over-expressing or 

knocking-down the miRNAs in other endothelial cell types and at different radiation doses. 

Shin et al. (Shin et al., 2009) studied the miRNA expression alterations in the lung carcinoma cell 

line A549 (the predecessor cell line to the EA.hy926). They showed a 25-fold down-regulation of 

the hsa-mir-636 and an up-regulation of the hsa-mir-192 after exposure to high doses (20-40 Gy) 

of ionising radiation. Hence, it can also be concluded that these miRNAs show a dose-

independent response to irradiation and this response of the two miRNAs in the EA.hy926 cells 

may partly come from their parental cell lines A549 and HUVECs. Table 25 shows a detailed 

comparison between the radiation responsive miRNAs from this study and other published data 

on endothelial miRNA response to irradiation  

Table 25: miRNAs found to be deregulated in endothelial cell / cell lines after irradiation in different studies. 

miRNAs EA.hy926 200 
mGy (This study) 

EA.hy926 2.5 Gy 
(Kraemer et al., 2011) 

HUVECs 2.5 Gy 
(Kraemer et al., 2011) 

HUVECs 1 Gy 
(Vincenti et al., 2011) 

Hsa-let-7d 2.6 (4 h) -2.3 (4 h) -3.1 (4 h) - 
Hsa-mir-101 2.1 (24 h) -2.7 (4 h) - - 
Hsa-mir-23a -2.2 (24 h) -1.9 (4 h) -3.3 (4 h) - 
Hsa-mir-27a 1.69 (24 h) -  > 1.5 (1 h) 
Hsa-mir-339-5p -10.8 (24 h) -2.1 (4 h) -2.7 (4 h) - 
Hsa-mir-517b -2.5 (4 h) -3.8 (4 h);-4.0(24 h)  - 
Hsa-mir-636 -2.0 (24 h) -3.9 (24 h) 3.54 (4 h) - 

Recent data show that the whole let-7 family of miRNAs may be considered as radiation-

responsive (Dickey et al., 2011). An up-regulation has been observed in three members of the let-

7 family, let-7b, let-7c and let-7d. The let-7 family of miRNA are further known to possess a 

tumour suppressing role (Lee and Dutta, 2006, Zhang et al., 2007). Alterations in the let-7 family 

of miRNAs have been observed in breast cancer (O'Day and Lal, 2010). The let-7 family of 

miRNAs have been shown to be potential candidates for therapy as they regulate the RAS and 

MYC oncogenes (Johnson et al., 2005) and increase radiosensitivity (Hummel et al., 2010). The 

let-7 family of miRNAs also play a critical role in regulation of vascular diseases (Sun and Wang, 

2011). 

To obtain a better understanding of the let-7c family in response to radiation it is important to find 

their transcriptional targets. The target search for the let-7c miRNA using the target scan database 

(www.targetscan.org), revealed the high mobility group protein 2 (HMGA2) as a potential target 

with 8 complementary regions to the let-7c 3`untranslated region (UTR). The HMGA2 is a 

member of the high-mobility group AT-hook protein (HMGA). This group possesses several 

nuclear functions including, regulation of transcription (Reeves, 2001). Monzen et al. (Monzen et 

al., 2008) showed that the HMGA2 protein plays a critical role in cardiogenesis, the development   
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of the heart in the embryo. Alterations in the expression levels of the HMGA2 protein have been 

associated with tumour metastasis, abnormal heart development, and diabetes mellitus (Morshedi 

et al.). 

In several studies it has been shown that the let-7 family regulates the expression of HMGA2 

protein (Lee and Dutta, 2007), the hsa-let-7c is a negative regulator of the HMGA2 protein (Tzur 

et al., 2009, Shell et al., 2007, Peng et al., 2008). In order to check if the hsa-let-7c had any effect 

on the HMGA2 regulation and if this effect was further enhanced by radiation in the EA.hy926 

cells, immunoblot analysis of all samples was performed for HMGA2 antibody (shown in section 

6.3.2). The results clearly showed that the let-7c miRNA negatively regulated the expression of 

HMGA2 protein, confirming that the HMGA2 protein is a target of the let-7c. Further no 

significant effect of irradiation on the HMGA 2 protein level in normal cells or cells over-

expressing or under-expressing the hsa-let-7c miRNA was observed. This can be further be 

explained by the following: For every miRNA there exists about 200 targets (Lewis et al., 2005, 

Carthew, 2006, Krek et al., 2005) similarly the translational of a single product might be regulated 

by more than one miRNA (Wu et al., 2010, Bueno et al., 2011). Thus it can be speculated that, 

regulation of a particular protein is dependent on if it is regulated by just one or more than one 

miRNA. From this we can conclude that even though the HMGA2 protein is a target of the let-7c, 

there exist more miRNAs which regulate the HMGA2 protein. 

7.3.4 Validation of proteomics data 

Validation of the proteomic data was done with immunoblot analysis as described in section 5.3.3. 

The validated proteins are shown in section 6.4. Since the immunoblot analysis is less sensitive 

method for protein expression changes only proteins with a fold regulation of + 2 were chosen for 

validation. Proteins of the OXPHOS pathway could be identified as significantly down-regulated 

by immunoblotting at 24 h after 2.5 Gy irradiation this confirmed the deregulation of OXPHOS 

proteins by SILAC. Immunoblot analysis allowed validation of the some of the proteins also 

found to be deregulated by SILAC in at least two biological replicates. Some proteins showed a 

trend for differential expression similar to that of either the SILAC but did not reach significance 

cut off, due to less fold change expression. No directional discrepancy was observed in the 

expression levels of proteins between SILAC and immunoblot analysis. This confirmed that 

SILAC is a robust and accurate method for quantitative of proteins in large scale proteomic 

studies.  

This was one of the first studies where SILAC was combined with radiation. Therefore it was 

important to exclude the possibility that radiation caused any alteration to the available pools of   
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isotopically labelled amino acids that were incorporated into the cells, resulting in an artificial 

alteration to the proteins. The validation of SILAC identified proteins with immunoblotting 

confirmed that the effects seen for radiation was not due to the isotopically labelled amino acids 

but due to protein abundance. The validation also confirmed that the alterations in the expression 

levels of proteins were solely because of radiation exposure. From this it can be concluded that 

the SILAC method can be successfully used for both in vitro and in vivo studies in combination of 

radiation. Further combining SILAC, (quantitative proteomic) with other strategies like 

transcriptomics, metabolomics to study the effects of ionising radiation, would give a broad 

insight of the complex biological response of the cells to ionising radiation.  

To summarise, in this study it has been shown that high dose (2.5 Gy) of ionising radiation had a 

significant effect on the expression levels of large number of proteins in the endothelial cell line 

EA.hy926. Comparatively the low dose (200 mGy) ionising radiation had mild effects on the 

proteome of the cells. Prominent alterations were seen in the expression levels of miRNAs. 

Further work has to be done to find the potential targets of the other radiation responsive miRNAs 

and their effect on these targets have to be checked and validated. Even though all this data 

indicate damage to the endothelial cell line EA.hy926, a lot of questions remain unanswered. The 

questions that have to be answered yet are: if the effects seen in this endothelial cell line are the 

same seen in primary endothelial cells? What happens in vivo?  
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