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1 Introduction 
 

Cancer is a group of diseases which is defined as the change from normal cells inside 

the body to a malignant neoplasm [1]. Malignant neoplastic cells show uncontrolled 

growth, invasion of adjacent tissues, and metastatic potential. Jointly, they lead to the 

destruction of healthy organs, and finally to the death of the organism. The change 

from a normal cell to a cancer cell is the result of genetic factors in interaction with 

external factors which are mainly the exposure of the organism to chemical, physical 

or biological carcinogens, such as asbestos, ultraviolet and ionizing radiation, or 

chronic infections from viruses and bacteria [1]. In addition, the risk for developing 

cancer increases with age and an unhealthy lifestyle [2]. 

Cancer is still one of the biggest scourges of mankind as it is the second leading cause 

of disease related deaths worldwide (around 13% of all deaths), just exceeded by 

cardiovascular diseases [2]. The International Agency for Research on Cancer reported 

12.7 million new cancer cases and 7.6 million cancer deaths in 2008 worldwide [3]. 

And the World Health Organization (WHO) expects the cancer burden to almost 

double by 2030, due to the growth and aging of world population and the increasing 

western lifestyle in developing countries [2]. The aging effect can already be observed 

in Germany, where the Robert Koch Institute reports more than 400,000 new 

incidences for 2006 (about 57% more than in the early 1980s) with a growing fraction 

of elderly and a shrinking fraction of young people [4]. However, the mortality in 

Germany decreased by more than 20% in the same time frame. This is mainly due to 

increased early detection rates and better treatment of cancers, especially of prostate 

and breast cancer, the two most common cancer types in Germany for men and 

women, respectively. 

The example of Germany shows that mortality in cancer patients can be reduced 

dramatically if cases are detected early and treated appropriately. Early detection and 

monitoring markers such as the prostate-specific-antigen (PSA) for prostate cancer or 

new treatment strategies like the monoclonal antibody trastuzumab for treatment of 

breast cancers demonstrates the usefulness of molecular markers and the importance 

of acquiring more knowledge about cancer and its molecular mechanisms.  
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Among all cancer related deaths, gastric cancer is of high clinical importance as it takes 

the third rank, worldwide [2]. The reason for this high lethality – the 5-year survival 

rate is below 30% – is that most patients are diagnosed at an advanced stage, where 

treatment options are limited [2]. Thus, new early stage detection techniques, 

treatment options and knowledge about the molecular mechanisms of gastric cancer 

are needed to improve the outcome for gastric cancer patients. 

In this context, the aim of this thesis was to investigate gastric cancer at a molecular 

level using MALDI imaging mass spectrometry. MALDI imaging mass spectrometry, 

short MALDI imaging, is a novel technology which assesses the spatial distributions of 

proteins and other molecules in tissue sections [5]. The conservation of the natural 

context of the tissue sections (morphology) combined with mass spectrometry allows 

an untargeted analysis of the molecular content of tissues resulting in cell-type 

specific molecular patterns. 

MALDI imaging has demonstrated its versatility for analyzing morphological complex 

tissues in several research areas like plant tissues [6], complex cell cultures [7], animal 

surfaces [8], or human biological systems, like the human ocular lens [9]. However, the 

application of MALDI imaging has been focused since its beginning on biomedical 

questions with the focus on cancer research. There, MALDI imaging has been applied 

in numerous clinical and preclinical studies to a variety of tumor types, amongst 

others brain, breast, lung, ovarian, prostate, and gastrointestinal cancers [10, 11].  

In this thesis, tissue sections from human gastric cancer samples were analyzed to 

discover diagnostic and prognostic protein patterns for gastric cancer which might 

enable the determination of more effective therapies. 
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1.1 Gastric cancer 

1.1.1 Epidemiology 

In 2008 gastric cancer was the fourth most common cancer-related malignancy in the 

world which led to the death of about 738,000 people taking the third rank in cancer 

related deaths (Figure 1-1) [2]. The ratio between men and women is about 2:1 [12]. 

In addition, there is a strong international imbalance with about 72% of the new cases 

happening in developing countries with highest rates in countries from East Asia and 

South America [2]. Explanations for these differences may be due to different cultural 

alimentation habits, with high consumption of salty foods and low consumption of 

fresh fruit and vegetables being associated with increased risk for stomach cancer [13, 

14]. In contrast, there has been a steady decline in stomach cancer rates in the last 

decades in developed countries such as North America and Europe [2]. Similarly, in 

Germany the incidence and mortality rate have decreased in the last 30 years, too, 

making up nowadays about 3–4% of all cancer diseases and about 5% of all cancer 

related deaths [4]. 

 

Figure 1-1 Estimated new cancer cases and deaths worldwide for the year 2008 in leading 
cancer sites. Gastric cancer was the fourth most common cancer malignancy in the world which 
led to the death of about 738,000 people taking the third rank in cancer related deaths. 
Modified from [2]. 

Despite this decline, gastric cancer is still of high clinical relevance as the five-year 

survival rate of patients in western countries remains very low with most rates below 

30%; in the US the rate is 26%, in Europe about 25%, and in Germany around 30% [2, 

4]. This is mainly due to the late detection of already advanced cancers — if the cancer 

is diagnosed at an early stage the survival rate may increase to over 60% — and the 
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lack of effective therapy options [2]. Unfortunately, less than 25% of stomach cancers 

are diagnosed at an early stage in the US and around 30% in the region of Munich and 

surroundings [15, 16]. The reason for the late detection of cancers is the absence of 

specific symptoms in the patients, the lack of sensitive serum markers and difficulties 

in detecting early stage cancers during diagnostic endoscopy; early stage cancers are 

often overlooked in a diagnostic endoscopy as they are very similar to a normal or 

inflamed stomach mucosa [17]. 

 

1.1.2 Stomach anatomy and histology 

For understanding gastric cancer it is necessary to be familiar with the anatomy and 

histology of the healthy stomach. 

The stomach is a muscular, hollow and J-shaped organ of the digestive system. It is 

located between the esophagus and the small intestine and can be divided into four 

regions: the cardia (food entry), the fundus, the body, and the pylorus (food exit) 

(Figure 1-2, A). The stomach is responsible for the mechanical and chemical disruption 

of ingested food before passing it for nutrient absorption to the intestine. The 

stomach wall is organized into four sections: the lumen-facing mucosa, the 

submucosa, the muscularis propria, and the serosa (Figure 1-2, B). The mucosa is 

separated from the underlying submucosa by a thin basal membrane. While the 

muscle layers of the muscularis propria contribute to the mixing and mechanical 

breakdown of the food, the chemical digestion is done by secretion of acids and 

proteolytic enzymes through the gastric mucosa [18]. 
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Figure 1-2 Stomach anatomy and mucosa histology. The stomach is divided into cardia, fundus, 
body, and antrum/pylorus (A). The stomach wall is structured into several layers: the epithelial 
mucosa, the submucosa, and the muscle layers muscularis and serosa (B). A magnification of 
the mucosa shows its cellular components according to which three layers can be 
distinguished: the surface epithelium, the mucosal neck, and the glandular base (C). Modified 
from [19, 20]. 

The mucosa can be divided roughly into three layers: the epithelial layer, the glandular 

neck, and the glandular base (Figure 1-2, C). The epithelial layer endues the inner 

surface of the stomach forming shallow depressions, so called gastric pits (foveolae 

gastricae). The foveolae are made up of epithelial cells which produce a carpet of 

mucus and undergo a continual replacement through division, in order to protect the 

mucosa against the aggressive contents (acids, enzymes) of the stomach. Each pit 

connects to several gastric glands that extend deep into the bottom of the mucosa. 

The layer between the gastric glands and the foveolae is called neck. The gastric gland 

is made up of different cell types [21]. The chief cells, most prominent in the base of 

the glands, secrete the proteolytic enzyme pepsin. The endocrine cells produce 

gastrins, serotonins and histamines, all of which stimulate and inhibit the production 

of the chief cells. The parietal cells are common in the neck of the glands and are 

responsible for production of hydrochloric acids which regulate the pH in the stomach. 

The regeneration of the mucosa is done by stem cells which are located at the top of 

the glandular neck. They renew the epithelial layer within 4–8 days and the glandular 
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base within 1–2 years [20]. The functional role of gastric stem cells in the pathogenesis 

of gastric tumors is not fully understood yet [21]. 

 

1.1.3 Histopathology and tumor classification  

More than 90% of malignant tumors in the stomach are adenocarcinomas, i.e. cancers 

that originate from the glands of an epithelium (see epithelial mucosa in Figure 1-2) 

[1]. Less frequent tumors of the stomach include lymphomas (4%), carcinoids (3%), 

and gastrointestinal stromal tumors (2%) [1]. Gastric adenocarcinomas are biologically 

and genetically very heterogeneous which is reflected by their broad morphological 

diversity [22]. Therefore, classification systems based on histopathological features 

have been established by which the different types of adenocarcinomas can be 

distinguished. The most common classification schemes are those of the WHO and 

Laurén [23]. 

The WHO distinguishes five categories: tubular, papillary, mucinous, signet-ring cell, 

and mixed carcinomas. While tubular and papillary tumors differ in their shapes and 

architecture of tumor cell populations, mucinous tumors are defined as being made up 

of at least 50% of extracellular mucinous pools [22]. Signet-ring cell carcinomas consist 

mostly of malignant cells containing high levels of intracytoplasmic mucin which 

pushes their nuclei against the cell membranes creating a classical signet ring cell 

appearance [23]. Mixed carcinomas display a mixture of tubular, papillary, and signet-

ring cells.  

Another widely accepted classification system is the Laurén classification [15]. 

According to Laurén, lesions are classified as intestinal, diffuse, or mixed-type tumors 

[24]. The intestinal-type gastric carcinoma is histologically moderately to well-

differentiated showing well defined glandular structures. Tumor cells are large, and 

nuclei are polymorphic and anisochromatic (Figure 1-3, A) [12]. In contrast, diffuse-

type adenocarcinomas are histologically undifferentiated. They proliferate non-

cohesively (diffuse) without gland formation (Figure 1-3, B) [25]. The diffuse-type 

resembles the mucinous and signet-ring cell tumor types of the WHO [23]. In general, 

the Laurén classification has proven useful in clinical management of patients (surgical 

therapy) and in evaluating the natural history of gastric carcinoma, especially with 

regard to its association with environmental factors, incidence trends and its 

carcinogenesis [23]. 
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Figure 1-3 Main histological gastric cancer subtypes according to Laurén. The intestinal-type 
gastric carcinoma is histologically moderately differentiated showing polypus-like expansive 
growth (A). Diffuse-type carcinoma is undifferentiated showing diffuse infiltrative growth (B). 

Mixed-type carcinomas contain tumor populations of both intestinal and diffuse-type. 

Carcinomas of the above mentioned categories which are confined to the mucosa or 

submucosa are called early stage gastric cancers. 

 

1.1.4 Etiology and carcinogenesis 

The main two tumor types according to Laurén (diffuse and intestinal) differ in both 

their etiology as well as their carcinogenesis [26]. 

The development of intestinal-type gastric cancer has been associated with certain 

dietary factors like high intake of salty and smoke-preserved foods, and low intake of 

fruit and vegetables [15, 22]. Additional risk factors include smoking and a previous 

partial gastrectomy [15]. 

Major risk factor, however, is the infection with the bacterium Helicobacter pylori (H. 

pylori) which may provoke a chronic gastritis in the stomach [1]. The gastritis develops 

as a result of the combined influence of enzymes and toxins secreted by the bacterium 

and the release of noxious chemicals by the recruited neutrophils [1]. In this context, 

cancer risk increases with inflammatory intensity which depends on the 

aggressiveness of the H. pylori strain and on genetic factors in the host, e.g. 

polymorphisms in cytokine genes which may increase sensitivity to inflammation [25]. 
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It has been proposed that the intestinal-type cancer develops, after initial chronic 

gastritis, through a sequence (Correa sequence) of precursor lesions (atrophic 

gastritis, intestinal metaplasia, and dysplasia) toward cancer (Figure 1-4) [12]. 

Histologically, chronic gastritis is characterized by a diffuse infiltration of the gastric 

mucosa by white blood cells with a good preservation of mucosal glands [27]. Loss of 

glands (atrophy) and their replacement by fibrous tissue is the next step toward 

neoplasia, and is called atrophic gastritis [27]. Next, at the stage of intestinal 

metaplasia, glands and the foveolar epithelium are replaced by metaplastic cells that 

resemble the morphology of the small intestinal or colonic mucosa [27]. Importantly, 

up to this point cells show normal cytological appearance [27]. Subsequent dysplasia 

features atypical changes in nuclear morphology and tissue architecture. Usually, cells 

of the dysplastic epithelium are enlarged, hyperchromatic, irregular in shape, and 

devoid of polarity [27]. The tissue architecture shows irregular structures, frequently 

forming adenomas with irregular lumens [27]. If a dysplasia breaks through the basal 

membrane into the submucosa, it is considered a carcinoma [22]. 

 

Figure 1-4 Correa sequence of precursor gastric cancer lesions. The sequence shows the 
proposed development of intestinal-type gastric cancer through a series of sequential 
precursor lesions which are histologically depicted from left to right: normal mucosa, chronic 
gastritis, mucosal atrophy, intestinal metaplasia, dysplasia, and finally intestinal-type 
carcinoma. Modified from [12]. 

In contrast, the carcinogenic pathway for diffuse-type gastric cancer is believed to 

develop through a shorter, still unidentified sequence of events from gastric epithelial 

cells [25]. 

Crucial for the development and progression of cancer is the accumulation of genetic 

defects. Genetic changes that happen during cancer development have been reported 

(Figure 1-5) [25]. Chronic infection might trigger the expression of important proteins 
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such as CDX2. This is a transcription factor that is important for the early 

differentiation and maintenance of intestinal epithelial cells which was found to be 

associated with the formation of intestinal metaplasia [28]. Further alterations for 

development of intestinal-type gastric cancer include loss or mutations in APC [29] 

and KRAS [30], and hypermethylation of promoter regions of mismatch repair proteins 

such as MLH1 [31]. Loss of TP53 could be found in both Laurén types [25]. Dysfunction 

of E-cadherin, an epithelial cell adhesion protein, is present in 50% of diffuse-type 

carcinomas [32]. Inherited mutations in the E-cadherin gene CDH1 are responsible for 

1–3% of gastric cancers, called hereditary diffuse-type gastric cancer [12]. 

 

Figure 1-5 Models of the gastric carcinogenic pathway. Different sequences of events for 
developing intestinal or diffuse type gastric carcinoma have been proposed by Yuasa [25]. 
While defects in E-cadherin function are specifically associated with diffuse-type gastric cancer, 
non-hereditary carcinomas usually involve Helicobacter pylori infection. Subsequent 
inflammatory response and regeneration processes, together with genetic aberrations, may 
finally induce the carcinogenic sequence. Taken from [25]. 

Other molecular or genetic events drive the further behavior of the tumor. For 

instance, amplification of the HER2 gene which is frequent in about 7–34% of gastric 

cancers was found to be correlated with a poorer prognosis and liver metastases [33, 

34]. On the contrary, loss or mutation of the PTEN gene was found in 20–30% of 

patients associated with metastatic gastric cancer [31]. 
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1.1.5 Diagnosis and staging 

Symptoms and diagnosis 

In early stage gastric cancer symptoms are vague and therefore unrecognizable by the 

patient for several months or years [15]. Symptoms of advanced gastric cancer show 

pain in the abdominal region, stool bleeding, dysphagia, and vomiting. Systemic 

symptoms like aversion to meat and weight loss indicate disseminated disease. Thus, 

80–90% of patients with symptoms presenting themselves to the physician have 

advanced cancer [23]. In some cases, the physician can detect the palpable advanced 

cancer (transmural tumor extension or enlarged lymph nodes) by body examination 

[15]. Serum based tumor markers like CEA, CA125, CA19-9, and CA72-4 have shown 

not to be reliable for diagnosis or staging [15]. Endoscopy of the upper gastrointestinal 

tract in combination with histological evaluation of biopsies is regarded the most 

sensitive and specific diagnostic method for detection of the tumor [23]. 

Staging 

After detection, correct staging of the tumor is the most important requisite for an 

optimal therapy of the patient. The most widely used staging system for most tumor 

entities is the tumor-node-metastasis (TNM) classification system that is maintained 

by the Union for International Cancer Control (UICC), which is in its seventh edition 

[35]. The T category describes the extent of the primary tumor, N the status of 

regional lymph node metastasis, and M the absence or presence of distant metastasis. 

The degree of disease extent for each class is indicated by a tailing number, where a 

higher number correlates with an advanced disease stage. For practical purposes, 

TNM combinations can be condensed into stage groups which differ in their prognosis 

and appropriate treatment. In the TNM system, classification rules have been 

established for carcinomas of the stomach (Table 1-1). 
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Table 1-1 TNM classification system for gastric cancer 

TNM categories Stage T N M 

Extension of the primary tumor (T) 

 

IA T1 N0 M0 

 

Tis Carcinoma in situ: intraepithelial tumor, high grade dysplasia 

 

IB T1 N1 M0 

 

T1a Tumor invades lamina propria or muscularis mucosae 

  

T2 N0 M0 

 

T1b Tumor invades submucosa 

 

IIA T1 N2 M0 

 

T2 Tumor invades muscularis propria 

  

T2 N1 M0 

 

T3 Tumor invades subserosa 

  

T3 N0 M0 

 

T4a Tumor perforates serosa 

 

IIB T1 N3 M0 

 

T4b Tumor invades adjacent structures 

  

T2 N2 M0 

Metastasis of regional lymph nodes (N) 

  

T3 N1 M0 

 

NO No regional lymph node metastasis 

  

T4a N0 M0 

 

NX Less than 16 investigated lymph nodes 

 

IIIA T2 N3 M0 

 

N1 1–2 regional lymph nodes affected 

  

T3 N2 M0 

 

N2 3–6 regional lymph nodes affected 

  

T4a N1 M0 

 

N3a 7–15 regional lymph nodes affected 

 

IIIB T3 N3 M0 

 

N3b 16 or more regional lymph nodes affected 

  

T4a N2 M0 

Distant metastases (M) 

  

T4b N0/N1 M0 

 

M0 No distant metastasis 

 

IIIC T4a N3 M0 

 

M1 Distant metastasis present 

  

T4a N2/N3 M0 

    

IV any any M1 

 

For practical assessment of TNM categories before surgery, different methods are 

employed. The depth of infiltration of the tumor (T category) can be best evaluated by 

endoscopic ultrasound [15]. This procedure may be also employed to determine near 

lymph node involvement (N category) [15]. More distant affected lymph nodes may be 

detected by X-ray computed tomography (CT) [12]. CT and other imaging modalities 

like abdominal sonography or positron emission tomography (PET) can be used to 

identify distant metastasis in the body (M category) [15]. 

Other histopathological categories have been introduced which require a tissue 

sample either from a surgery or bioptic analysis. A staging based on a pathological 

classification of a tissue sample is considered the most reliable classification and is 

indicated by a leading ‘p’ in the TNM nomenclature, e.g. pT1N1. 

The grading category (G) classifies the carcinomas according to their grade of 

differentiation into the classes G1 to G4, where a higher number indicates a less 

differentiated tissue with regard to the healthy glandular structure. The differentiation 
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of a tumor is also reflected in the Laurén system, where diffuse type tumors represent 

poor differentiated carcinomas.  

The absence or presence of residual tumor after surgery is described by the symbol R. 

R0 indicates full resection of tumor, R1 and R2 microscopic and macroscopic residual 

tumor, respectively [35]. Resection status strongly influences prognosis and thus 

further procedures after initial treatment [12, 36]. 

The TNM staging and its supplemental categories are the most important factors for 

an adaptation of the therapy to the individual situation of the patient. However, 

prognosis varies widely among patients of the same stage [37]. Thus, the complete 

applied therapy has to consider also other parameters such as the histopathological 

classification of the tumor, like Laurén subtypes, or molecular factors such as HER2 

expression status, in order to apply optimal treatment for each patient. 

 

1.1.6 Therapy 

Surgery 

Surgical therapy is the main pillar of gastric cancer treatment. The aim of this therapy 

is always the complete removal of primary tumor and affected lymph nodes, as 

incomplete resections, i.e. residual tumor at the resection margins (R1 or R2), worsen 

prognosis for the patients dramatically [15]. The appropriate surgical treatment 

depends on the previously determined tumor stage. Early stage gastric cancers (stage 

Ia) are mainly removed by endoscopic or laparoscopic surgery dependent on tumor 

differentiation and size [12]. In locally advanced cancers (stages Ib–IIIa) the chance of 

lymph node metastasis is already high. Thus, besides full resection (R0) of the tumor 

by full or partial gastrectomy, extended lymph node excision is recommended [15]. As 

mentioned before, the degree of resection is also determined by the histological type 

of tumor; a diffuse type cancer needs a more radical resection than intestinal type 

[15]. Patients suffering from advanced cancers (stages IIIb–IV) have infiltration of 

neighbor organs and/or distant metastasis which may not be surgically removed. In 

these cases, radio-chemotherapeutic approaches or treatment with biological agents 

like antibodies become important. 
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Neoadjuvant and adjuvant therapy 

It seems likely that surgical therapy for local tumor control  can – at least in developed 

countries – only be marginally improved [12]. Therefore, the effect of additional 

treatments by different cytostatic drugs (chemotherapy) in combination with 

radiotherapy is under strong investigation. Preoperative therapy actions are called 

‘neoadjuvant’, and postoperative actions ‘adjuvant’. It has to be mentioned at this 

point that existing guidelines for treatment of gastric cancer differ. In consequence, 

the following description will embrace, and not differentially explain, current 

treatment strategies for gastric cancer. 

The rationale behind neoadjuvant therapies is three-fold: (i) it increases the 

probability for the application of the appropriate therapy (compliance) [15], (ii) the 

treatment is expected to downsize the tumor, thus facilitating a full surgical resection 

(R0) [12, 15], and (iii) this systemic preoperative therapy is the earliest way to delay 

systemic tumor spread [15]. The effect of neoadjuvant chemotherapy has been 

investigated in several studies which reported a beneficial effect for patients 

undergoing multimodal therapy [38, 39]. Consequently, this treatment option has 

been implemented in several national gastric cancer treatment guidelines [15, 36]. 

Initial studies on preoperative exposure of patients to radiation only or in combination 

with chemotherapy have shown promising results which have to be confirmed in 

larger patient cohorts [15].  

Adjuvant approaches also include chemo- or radiotherapy. Present consent in 

guidelines is the application of combined chemoradiotherapy in a postoperative 

setting for locally advanced tumors and/or incomplete tumor resection [12, 36, 40]. 

Chemotherapy only is mostly considered when tumor is at an unresectable stage [37]. 

However, not all patients respond to chemotherapeutic pre- or postoperative 

treatment [15]. Thus, it would be useful to predict which patient will benefit from such 

a treatment and which not, as identified non-responders would not suffer from 

delayed surgical actions and chemotherapeutic side effects. One way that is believed 

to address this problem is the employment of molecular biomarkers [41]. One part of 

the thesis is dealing with the determination of such molecular markers, which is 

described in the results chapter 2.4. 

Novel approaches 

Despite all the above mentioned treatment options and strategies, the five-year 

survival rate of patients in western countries remains mostly below 30% [2]. Thus, 
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novel therapeutic agents, mostly in combination with established chemotherapeutic 

regimens, are being investigated in several clinical trials for advanced gastric cancers. 

Amongst them are also biological agents like the anti-EGFR antibody panitumumab 

(ClinicalTrials.gov Identifier: NCT00824785) or the EGFR inhibitor cetuximab 

(ClinicalTrials.gov Identifier: NCT00678535). Others include the tyrosine kinase 

inhibitor lapatinib (ClinicalTrials.gov Identifier: NCT00486954), the multi-targeted 

receptor tyrosine kinase inhibitor sunitinib [42], and the therapy with histone 

deacetylase inhibitors such as vorinostat (ClinicalTrials.gov Identifier: NCT01045538). 

HER2 targeted therapy 

The fact that patients can benefit from an additional treatment by biological agents, 

like antibodies, has been proven recently by the results of the ToGA Phase III trial [33]. 

This study investigated the effect of safety and efficacy of trastuzumab (trade name 

‘Herceptin’, Hoffman-La Roche, Basel, Switzerland) in combination with regular 

chemotherapy in patients with HER2-positive, advanced gastric cancer [33]. Previous 

studies have identified HER2 overexpression to be associated with a poor outcome of 

patients with gastric cancer [43, 44]. HER2 overexpression is found in about 20% of 

gastric cancer patients with a significant bias toward intestinal type [37, 45]. 

Trastuzumab is a monoclonal antibody specifically targeting HER2 (also known as 

ERBB2), a human epidermal growth factor receptor. The therapeutic effect by 

trastuzumab is not fully understood yet, but it is believed to inhibit proliferation by 

blocking signaling pathways (Figure 1-6) [37]. 
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Figure 1-6 Protein signaling pathway involved in trastuzumab response. Trastuzumab (trade 
name ‘Herceptin’) is an antibody that recognizes HER2 and inhibits proliferation by blocking the 
down-stream signaling pathways. Taken from [46]. 

The ToGA trial provided evidence of a significant higher median survival for patients 

assigned to the trastuzumab treated arm (13.8 vs. 11.1 months; hazard ratio 0.74; 95% 

confidence interval: 0.60-0.91; p<0.0046) (Figure 1-7) [33]. 
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Figure 1-7 Overall survival benefit of trastuzumab treated patients with HER2-positive 
advanced gastric or gastro-esophageal junction cancer. Median overall survival (13.8 months) 
in those assigned to trastuzumab plus chemotherapy was significantly higher (hazard ratio 
0.74; p=0.0046) than compared with those assigned to chemotherapy alone (11.1 months). 
Taken from [33]. 

In breast cancer, treatment with antibodies has been established as a standard option 

for HER2-positive patients. Likewise, new guidelines for gastric cancer treatment now 

recommend routine evaluation of HER2 status in gastric cancer specimens [36, 47]. 

HER2 testing 

It is important that trastuzumab can only be used when the cancer has been shown to 

overexpress HER2. Currently, two testing methods are approved by the U.S. Food and 

Drug Administration for HER2 expression testing in cancer tissues in a clinical setting: 

immunohistochemical analysis (IHC) and fluorescence in situ hybridization (FISH). A 

modified breast cancer HER2 scoring system has been proposed for gastric cancer 

[48]. The differences are due to a different membrane staining pattern, a more 

frequent heterogeneity of HER2 positivity in gastric cancer and a less stringent 

correlation between HER2 amplification and protein overexpression [49]. According to 

this scoring system, a patient was only considered HER2-positive with a score of IHC3+ 

and/or a FISH-positive result, which is defined as HER2/centromer 17 ratio >2.2 or an 
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average HER2 gene copy number greater than six [48].However, both HER2 testing 

procedures, IHC and FISH, suffer from several disadvantages [50-52].  

A mass spectrometry based approach may complement the two standard techniques 

because it offers multiplexing capability, i.e. the simultaneous measurement of several 

parameters at the same time. This is especially interesting in breast cancer where 

HER2, estrogen and progesterone receptor status are currently determined 

sequentially. Proof of an accurate HER2-status determination was provided by a study 

on basis of proteomic expression profiles obtained by MALDI imaging mass 

spectrometry [53]. In this work, the combination of seven mass signals was able to 

accurately define HER2-positive from HER2-negative breast cancer tissues, highlighting 

the potential of other analytical methods for tissue diagnostics (Figure 1-8) [53].  

The example of HER2 shows that molecular prognostic factors can also act as novel 

therapeutic targets for either chemotherapeutics or biological agents like antibodies 

[37]. Thus, the aim should be to identify novel molecular markers with clinical 

relevance. 
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Figure 1-8 HER2 status correlated protein pattern in breast cancer. MALDI imaging was used to 
analyze 30 HER2 predefined breast cancer specimens which led to the discovery of a 7-signal 
protein pattern (top) which strongly correlated with the HER2 status of patients, as the 
hierarchical clustering on the 30 patients showed only two false positives (bottom, 93% 
accuracy). Taken from [53]. 
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1.2 Proteomics for biomarker discovery 

1.2.1 Biomarkers 

The morphology based TNM staging system remains useful, but there is a variety in 

outcomes for patients with cancers of the same type or stage [54]. New factors like 

individual molecular markers or patterns may therefore subdivide traditional tumor 

classes into subsets that behave differently from each other [54]. Such biomarkers 

may aid in risk assessment, diagnosis of cancer, or monitor recurrence [55]. With 

regard to therapy they may act as prognostic indicator of disease progression or 

predict therapy response; thus, help establishing a personalized therapy for each 

patient. The different applications of biomarkers in stages of clinical evolution of 

cancer are depicted in Figure 1-9 [54]. In addition, these markers and their respective 

pathways may be starting points for further investigations which may lead to new 

therapeutic agents. 

 

Figure 1-9 Use of biomarkers in stages of clinical evolution of cancer (A). Before diagnosis, 
markers might be used for risk assessment and screening. At diagnosis, markers can assist with 
staging, grading, and selection of initial therapy. Later, they can be used to monitor therapy, 
select additional therapy, or monitor for recurrent disease. As example, used clinical methods 
and biomarkers for breast cancer are listed in (B). Taken from [54]. 
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Grouping of biomarkers 

Regarding clinical application, most biomarkers fall into one of the following 

categories: 

 Diagnostic markers: are used to detect cancer in a person and may thus also 

be used as monitoring marker after therapy or as screening marker 

 Prognostic markers: are used to predict the course of disease and thus 

influence the aggressiveness of therapy 

 Predictive markers: are used to predict whether a patient will respond to an 

applied therapy (mostly chemotherapy or targeted therapy) 

In addition, biomarkers can be grouped also according to their biochemical molecule 

class. To account for the molecular complexity of tumors, markers have been searched 

on all molecular levels including: 

 DNA-based markers: single nucleotide polymorphisms (SNPs), chromosomal 

aberrations, DNA copy numbers, microsatellite instability, and differential 

promoter-region methylation  

 RNA-based markers: differential expression of mRNAs or regulatory RNAs 

like microRNAs 

 Protein-based markers: differential expression of proteins or their post-

translational modifications, such as proteolytic processing, acetylation, 

phosphorylation, or glycosylation, all of which are important processes in 

determining protein function 

 Other molecular classes such as lipids, saccharides, or hormones 

 Signatures: represent patterns of the above listed molecular entities (mostly 

RNA or protein expression profiles) 

Requirements for biomarkers 

The ideal features of a tumor marker or signature depend on the clinical question. 

However, in general an ideal biomarker should meet the following requirements: (i) 

high sensitivity and specificity for determination of clinical conclusion e.g. diagnosis; 

(ii) a cheap, rapid, and reproducible measurement; (iii) easy (best: non-invasive) access 

to the site of marker assessment such as plasma, serum or other body fluids [56]. 
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It is a general agreement that combinations of multiple biomarkers may increase 

sensitivity and specificity, especially if positive and negative biomarkers are included 

into the signature [56]. In addition, a combination of these molecular species may not 

only increase general accuracy, but would remain more robust at a statistically 

significant level, as it has been reported that individual markers may vary for a variety 

of reasons [57]. Signatures are mostly combined to a classifier by statistical methods 

like decision trees, support vector machines, or clustering algorithms (for details see 

chapter 4.2.2 in statistical methods). 

The proteome as biomarker source 

In my studies presented here, I focused on the analysis of proteins as markers. The 

rationale is that proteins execute and control the vast majority of biological processes 

and thus reflect both the intrinsic genetic information of the cell as well as the 

influence of its environment [58]. The variety of proteins expressed in humans 

surpasses the number of protein-encoding genes by an order of magnitude (not 

considering their modifications) [58]. Furthermore, it has been realized that studying 

biological systems solely by mRNA expression is not sufficient as there is no absolute 

correlation between mRNA and corresponding protein levels [59]. In consequence, 

one of the best ways complex biological system are reflected is by proteins where the 

differences between various states of a biological system are reflected in the different 

amounts, activities, localizations and interactions of proteins [60]. All proteins present, 

including their modifications, in an organism or biological system at a certain state 

(disease, stress, normal circumstances), is called ‘proteome’. 

 

1.2.2 Sources of protein biomarkers 

In an organism, protein markers can be produced either by the tumor itself or by other 

cells in response to the presence of the cancer, like inflammatory cells [41]. The 

markers are, therefore, expected to be present at highest concentration at the site of 

tumor or near reactive tissue, but may be also found in smaller concentrations in 

biological fluids, human excrements or secretions like plasma, serum, urine, stool, 

saliva, pancreatic juice etc. However, the most common sources used for biomarker 

discovery are blood and tumor tissues [55]. Other used sources for biomarker 

discovery may be cancer cell lines or animal models which are discussed more in detail 

by Kulasingam et al. [55]. 
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Blood derived fluids 

The main advantage of using blood derived fluids is that it can be obtained easily 

through a minimal invasive procedure, it is abundantly available, and that some blood 

components reflect several pathological states [55]. However, the protein 

concentrations in plasma differ in more than ten orders of magnitude (22 proteins 

make up 99% of the plasma proteome), making untargeted protein analyses very 

difficult [55, 61]. In addition, untargeted protein analyses on fluids have shown in the 

past that the proteins which were detected were often not tumor specific or even not 

reproducible, which may be due to active proteases, lipids, and other compounds 

which may depend on sample preparation variations [55, 56, 62, 63]. 

Tissues 

Tumor tissues are more difficult to obtain as they must be removed invasively during 

surgery or during biopsy removal. However, they are considered a promising source 

for marker discovery. The rationale is that tissue samples contain higher 

concentrations of candidate proteins originating from tumor tissue that could 

subsequently be measured by targeted, and thus more sensitive, approaches in the 

bloodstream [55, 64]. Of importance, one has to consider that tissue may be 

extremely heterogeneous both in its cellular and molecular composition. Thus, a 

differentiated analysis of tissues can only be performed by technologies that take this 

complexity into account. 

 

1.2.3 Proteomics for tissue analysis 

In general, methods for the analysis of tissues can be divided into two groups: on the 

one hand lysate-based methods where structural information of the tissue is lost and 

on the other hand in situ methods that conserve the morphology, i.e. the tissue 

structure. 

Classical in situ methods for studying proteins like the immunohistochemistry enable 

to study the spatial distribution of molecules within in tissue sections. However, they 

are not suitable for screening of biomarkers, as they require the labeling of the target 

molecules in advance by specifically binding dyes or antibodies in combination with 

chromophores or fluorophores [65]. In addition, only a few features can be labeled at 

the same time. 
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In contrast, lysate-based methods can analyze the molecular content of tissue without 

previous knowledge in a multiplex approach and are therefore technically very 

suitable for screening purposes, i.e. for de novo biomarker discovery. However, the 

unlabeled analysis of the proteome puts high demands on the analytical techniques as 

the human proteome is very complex. It is predicted to contain up to 1 million 

proteins resulting from the over 300 known post-translational modifications that can 

occur in different combinations with the different splice variants during expression 

[66]. In addition the proteins have a wide dynamic range in abundances (10
10

, as 

shown for the plasma proteome) [61]. 

The technology for the large-scale study of the proteome is called ‘proteomics’ in 

analogy with large-scale genomics or transcriptomics initiatives. In proteomics, several 

lysate-based techniques have been established for the large-scale study of proteins 

with regard to their expression, structure, and function (Figure 1-10) [60]. 
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Figure 1-10 Technologies for proteomics. The figure shows the proteomic workflow from 
sample extraction to protein quantification. For each step in the workflow, a variety of 
techniques exist that are used for the large-scale study of proteins, termed proteomics. Taken 
from [60]. 

Especially mass spectrometry has become a key technology in proteomics as it offers 

an unlabeled high-throughput analysis of the molecular content of samples, ranging 

from small molecules over macromolecules, such as proteins, to modifications of 

proteins. Other techniques, such as the two-dimensional gel electrophoresis and the 

protein microarrays, fail to achieve the depth of informative proteome analysis as 

seen with mass spectrometry [67].  

Nevertheless, in lysate-based analyses of tissues the localization of the analytes 

remains unknown. This makes interpretation of the results difficult, as the results may 

be blurred by the morphological complexity of the tissue. 
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In order to reduce this morphological complexity while maintaining cellular specificity 

of molecular analysis, laser capture microdissection (LCM) can be performed to isolate 

cells and tissue components of interest prior to analysis [64]. However, LCM is a highly 

tedious process while yielding low number of cells [55]. Consequently, the final 

amount of material puts even more sensitivity demands on analytical approaches [63]. 

One novel technology that overcomes this process is imaging mass spectrometry. 

Imaging mass spectrometry is an in situ technique with the advantages of lysate-based 

approaches. It offers mass spectrometry based analyses of the molecular content of 

tissue sections while preserving their morphological integrity. One of the most 

commonly employed imaging mass spectrometry techniques is MALDI imaging mass 

spectrometry, as it allows to measure large and small molecules at a reasonable 

spatial resolution with a simple technological set-up (in comparison to other imaging 

mass spectrometry technologies). 

 

1.2.4 MALDI imaging mass spectrometry for tissue analysis 

MALDI imaging is a mass spectrometry based approach which allows investigating the 

spatial distribution of proteins, lipids, drugs and other molecules in their 

morphological context of tissue sections (Figure 1-11). Conversely, it allows allocating 

molecular profiles to histomorphological entities, such as tumor areas etc. For this, 

MALDI mass spectra are acquired as pixels across a tissue section. A more detailed 

technological description of its principle, its workflow, advantages and limitations, can 

be found in the technical appendix of this thesis (chapter 4.1). 
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Figure 1-11 Technical principle of MALDI imaging mass spectrometry. A tissue section is coated 
with matrix before multiple MALDI experiments are performed in a predefined raster across 
the tissue section. After measurement, the intact section can be stained and digitally scanned 
for co-registration to the spatially resolved mass spectrometric data. This allows visualizing the 
distribution of masses within their morphological context of the analyzed tissue section. 
Abbreviations used: m/z, mass-to-charge-ration; MALDI, matrix-assisted laser 
desorption/ionization. Taken from [68]. 

Initially, two important studies gave evidence for the usefulness of direct MALDI tissue 

analysis to obtain meaningful protein signatures with clinical relevance from disease 

tissues. The first study, published in The Lancet, was able to distinguish different lung 

cancer histological entities, regional and distant metastasis, and finally survival of non-

small-cell lung cancer patients by protein signatures [69]. Similarly, Schwartz and 

coworkers identified protein patterns that correlated with tumor histology and patient 

survival using a data set of 108 glioma patients [70]. Subsequently, MALDI imaging has 

been applied in numerous clinical and preclinical studies to a variety of tumor types, 

amongst others brain, breast, lung, ovarian, prostate, and gastrointestinal cancers 

[10]. These studies investigated tumor protein profiles obtained from tissues by 

MALDI imaging for correlation with clinical endpoints, like disease stage, survival, 

tumor recurrence, or therapy response [11, 71-74]. 

The spatially resolved data obtained by MALDI imaging also facilitates to investigate 

intra-sample molecular details such as tumor-normal interface zones or tumor 

heterogeneity in combination with the histomorphological information [75, 76]. 
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With regard to the topic of this thesis, a summary of proteomic studies in diseases of 

the human lower and upper gastrointestinal system is presented in Table 1-2. 

Although the studies conducted are so far low in sample number, they illustrate the 

potential of histology-based analyses by MALDI imaging to provide novel biomarkers 

or patterns for a variety of different clinical purposes. 
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Table 1-2 Proteomics studies in gastrointestinal diseases using MALDI imaging mass 

spectrometry. Taken from [77] 

Disease Publication Protein Mass [Da] Clinical purpose Validation 

Barrett's 
cancer 

Elsner et al. [78] 61-protein signature - Carcinogenesis - 

 COX7A2 6720 Carcinogenesis 
/Prognosis 

IHC 

 S100-A10 11185 " IHC 

 28-protein signature - Marker for regional 
lymph node metastasis 

- 

 TAGLN2 22262 Marker for regional 
lymph node 
metastasis/Prognosis 

IHC 

Stomach 
cancer 

Kim et al. [79] 73-protein signature - Tumor detection - 

 DEFA1 3439 " - 

 DEFA2 3368 " - 

 S100-A8 10840 " - 

 S100-A9 13158/12694 " - 

 17-protein signature - Early vs. advanced 
stage 

- 

Balluff et al. [80] 7-protein signature - Prognosis in intestinal 
type gastric cancer 

- 

 DEFA1 3445 " IHC 

 CRIP1 8406 " IHC 

 S100-A6 10098 " IHC 

Liver cancer Le Faouder et al. [81] 13-protein signature - Tumor marker - 

 Ubiquitin 8565 " IHC, PCR 

Liver 
autoimmune 
diseases 

Bowlus et al. [82] 10-protein signature - Distinction of 
autoimmune hepatitis 
and primary sclerosing 
cholangitis 

- 

Pancreatic 
cancer 

Djidja et al. [83] Grp78 72288 Tumor marker IHC 

Colon 
colitides 

M'Koma et al. [84] 5-protein signature - Distinction of ulcerative 
colitis and Crohn's 
colitis 

- 

Colon 
cancer 

Meding et al. [85] 50-118 protein signature - Classification of cancer 
of unknown primary 
(liver metastasis from 
primary colon cancer) 

- 

Meding et al. [86] FXYD3 9264 Marker for regional 
lymph node metastasis 

IHC 

  S100-A11 11646 " IHC 

 

Some of the studies performed in gastric cancer will be explained more in detail in the 

following subsection. 

Applications in gastric cancer 

The potential of MALDI imaging for diagnostic purposes to detect gastric cancer has 

been investigated on endoscopic biopsies. Kim et al. used histology-directed MALDI 

profiling to analyze 63 gastric cancer and 43 healthy endoscopic biopsies. They found a 

protein profile which classified samples cancerous or healthy samples in the validation 

set with high predictive values: sensitivity and specificity were 93.8% and 95.5%, 
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respectively [79]. Signals overexpressed in tumors were identified as α-defensin-1, α-

defensin-2, calgranulin A, and calgranulin B. Furthermore, a second protein profile 

could distinguish pathologic AJCC (American Joint Committee on Cancer) stage Ia from 

more advanced stage patients (Ib or higher). This may be potentially useful in 

identifying as patients with stage Ia that may be eligible for endoscopic treatments 

instead of surgical therapy [36]. 

This study shows that useful molecular profiles can be obtained by MALDI analyses 

from even smallest amounts of unprocessed fresh frozen tissue samples like biopsies 

for assisting in the diagnosis of cancers. 

Human gastric cancer tissues are known to be very heterogeneous [87]. This may be 

due to the intrinsic heterogeneity of solid tumors based on e.g. distinct grades of 

differentiation, local differences in metabolic activity, the local inflammatory 

response. [88]. 

MALDI imaging may allow assessing this complexity. This has been shown in a first 

study by Deininger et al. on ten sections of gastric cancer patients which were 

subjected to MALDI imaging analyses. The in situ proteome expression profiles were 

analyzed by hierarchical clustering and were found in good correlation with the 

histological structure of the samples (Figure 1-12). But more interestingly, this 

examination revealed also histologically invisible distinct tumor areas. This shows that 

MALDI imaging may detect phenotypic differences in tissues, such as tumor subclones, 

that are invisible by conventional morphology based methods [88]. 
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Figure 1-12 MALDI imaging for the detection of tumor heterogeneities beyond histology. The 
application of a hierarchical clustering to single spectra of a stomach tumor sample measured 
by MALDI imaging is shown. In (D) the top three branches of the clustering show the solid 
tumor in blue, as visualized in (C); pixels are colored according to the color of the dendrogram 
nodes. Expansion of the tumor branches of the clustering tree lead to a more detailed 
clustering of the spectra in the solid tumor (F), revealing phenotypic differences beyond 
histology (E), for example, tumor subclones. Taken from [88]. 

The applicability of MALDI imaging to FFPE tissue microarrays, which might enable 

high-throughput analyses, has been shown in a very small study (n=12). Formalin-fixed 

paraffin-embedded tissue microarrays comprising nine gastric cancer and three 

normal stomach tissue cores have been analyzed by Morita et al. After tryptic digest, 

they found 14 signals to distinguish gastric cancer samples of different differentiation 

grades and 54 signals to separate healthy from cancer tissues [89]. Tandem mass 

spectrometry identified one of the signals as histone H4, which was remarkably 

strongly expressed in poorly differentiated cancer tissues [89]. 
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1.3 Aims of thesis 
The overall aim of my thesis was to discover novel biomarkers in different 

gastrointestinal cancers (colon, gastric, and Barrett’s cancer) with the focus on gastric 

cancer. 

Biomarkers might enrich the possibilities to aid in early detection, prediction of 

therapy response, prognosis or potential to metastasize in patients with cancer. 

Molecular biomarkers can be searched on a genetic, transcriptomic, proteomic, or 

epigenetic level (DNA methylation, histone modifications) in tissues or body fluids. 

With the intention to search for biomarkers on a protein and epigenetic level in tissue 

samples of patients, I set up own studies in gastric cancer and participated in studies 

of colon and Barrett’s cancer. 

In gastric cancer, matrix-assisted laser desorption/ionization (MALDI) imaging mass 

spectrometry (“MALDI imaging”) was used for the morphologically differentiated 

analysis of tissues in order to acquire cell type specific (such as from tumor cell 

populations, inflammatory cells, etc.) protein expression patterns that can be 

correlated with clinical endpoints of the patients. 

A major challenge faced by clinicians treating patients with gastric cancer is how to 

best assess patient outcome and predict the clinical course of the disease in order to 

apply the most appropriate treatment regimen. Thus, in one study, the tumor protein 

profiles obtained by MALDI imaging were used to discover novel protein biomarkers in 

human gastric cancer tissues that indicate the overall survival of patients. In another 

study, tumor protein profiles were used for generating a classifier that determines 

HER2 status in gastric cancer patients. The HER2 expression status is important for 

therapy selection with regard to the administration of Herceptin. This study was based 

on our previous results where HER2-status could be reliably predicted in breast cancer 

patients [53]. 

Importantly, the selection of samples from a tissue collection is crucial for the success 

of a research study. In both studies this selection has been performed carefully. This 

includes histological evaluation and matching for clinical parameters (as good as 

possible) except the one that is investigated, while maintaining the number of samples 

in the study cohort high in order to guarantee sufficient statistical power. 
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In the study of prognostic markers, 63 frozen tissue samples were left after matching 

for the tumor progression status (T=2) and histological filtering to intestinal-type 

gastric cancers. This can be regarded a high sample number, as follow-up clinical 

information (survival data) must be available for patient samples, which is often 

limited in frozen research samples. A similar situation was given in the HER2 

classification study, where HER2 status was only available for few samples. The reason 

is that at the time of my study, the HER2 status was not routinely evaluated in gastric 

cancer patients. 

Finally, one important aim was to test the results on an independent patient set in 

order to confirm their validity and reproducibility [90]. For validation of the proposed 

markers, immunohistochemistry was performed on large patient cohorts using tissue 

microarrays (TMA) [64]. Also here, the selection of samples was performed carefully. 

In collaborative research, I also aimed to find clinically relevant markers in colon and 

Barrett’s cancer. While MALDI imaging was applied in both cancer types to find 

markers for the potential of the tumor to metastasize, epigenetic analyses were 

performed in colon cancer samples only. In the latter, DNA methylation of candidate 

genes was tested for the ability to predict therapy response prediction or to detect the 

presence of tumor precursors. 
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2 Published results 
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2.1 Summary of presented publications 
In the presented publications, matrix-assisted laser desorption/ionization (MALDI) 

imaging mass spectrometry was used for the proteomic analysis of gastric cancer 

tissue samples, with the aim of 

 Identifying proteins that predict disease outcome of patients with intestinal-

type gastric cancer after surgical resection 

 Generating a proteomic classifier that determines HER2-status in order to 

aid in therapy decision with regard to trastuzumab (Herceptin) 

administration. 

In the first study, a seven-protein signature was found to be associated with an 

unfavorable overall survival independent of major clinical covariates after analyzing 63 

intestinal-type primary resected gastric cancer samples by MALDI imaging. Of these 

seven proteins, three could be identified as CRIP1, HNP-1, and S100-A6, and validated 

immunohistochemically on tissue microarrays of an independent validation cohort 

(n=118). While HNP-1 and S100-A6 were found to further subdivide early (UICC-I) and 

late stage (UICC-II-III) patients into different prognostic groups, CRIP1, a protein 

previously unknown in gastric cancer, was confirmed as a novel and independent 

prognostic factor for all patients in the validation cohort. The protein pattern 

described here serves as a new independent indicator of patient survival 

complementing the previously known clinical parameters in terms of prognostic 

relevance.  

In the second study, we hypothesized that MALDI imaging mass spectrometry may be 

useful for generating a classifier that may determine HER2-status in gastric cancer. 

This assumption was based on our previous results where HER2-status could be 

reliably predicted in breast cancer patients [53]. Here, 59 gastric cryo tissue samples 

were analyzed by MALDI imaging and the obtained proteomic profiles were used to 

create HER2 prediction models using different classification algorithms. Astonishingly, 

the breast cancer proteomic classifier from our previous study was able to correctly 

predict HER2-status in gastric cancers with a sensitivity of 65% and a specificity of 92%. 

In order to create a universal classifier for HER2-status, breast and non-breast cancer 

samples were combined, which increased sensitivity to 78%; specificity was 88%. This 

study provides evidence that HER2-status can be identified on a proteomic level across 
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different cancer types suggesting that HER2 overexpression may constitute a widely 

spread molecular event independent of the tumor entity. 
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2.2 Zusammenfassung der veröffentlichten 

Arbeiten 
Im Rahmen dieser Doktorarbeit wurden zwei Arbeiten publiziert, in denen die 

bildgebende Massenspektrometrie als zentrale Methode zur proteomischen Analyse 

von Magenkarzinomgeweben eingesetzt wurde. Dabei wurden folgende Ziele verfolgt:  

 Identifizierung prognostischer Proteinmarker für Patienten mit intestinalem 

Magenkarzinom 

 Generierung eines proteomischen Klassifikators zur Bestimmung des HER2-

Status zur Entscheidungshilfe für eine Behandlung mit Trastuzumab 

(Herzeptin) 

In der ersten Studie wurde eine Signatur bestehend aus sieben Proteinsignalen 

gefunden, deren Überexpression unabhängig von anderen klinischen Parametern ein 

schlechtes Gesamtüberleben der Patienten indizieren. Hierzu wurden 63 

Gewebeproben von Patienten mit Magenkarzinom intestinalen Typs mittels MALDI 

Imaging analysiert. Drei der sieben Proteinsignale konnten als CRIP1, HNP-1 und S100-

A6 identifiziert werden. Diese wurden anschließend an einem unabhängigen 

Patientenkollektiv (n=118) immunhistochemisch anhand von Tissue Microarrays 

validiert. Dabei zeigte sich, dass die beiden Proteine HNP-1 und S100-A6 bestehende 

klinische Gruppen nach ihrem Risiko weiter aufstratifizieren konnten; HNP-1 

Magenkarzinompatienten im frühen Stadium (UICC I) und S100-A6 Patienten im 

fortgeschrittenen Stadium (UICC II-III). Darüber hinaus konnte CRIP1 als unabhängiger 

prognostischer Faktor für alle Patienten des Validierungskollektives bestätigt werden. 

Perspektivisch könnte die hier beschriebene Proteinsignatur vorhandene klinische 

Parameter als neuer und unabhängiger Indikator für das Überleben von 

Magenkrebspatienten ergänzen. 

In der zweiten Studie wurden Proteinexpressionsmuster benutzt, um den HER2-Status 

in Magenkrebsgeweben vorauszusagen; denn seit kurzem ist der epidermale 

Wachstumsfaktor-Rezeptor HER2 eine wichtige tumorbiologische Zielstruktur bei der 

Behandlung von Magenkrebspatienten mit dem therapeutischen Antikörper 

Trastuzumab. In einer vorherigen Studie konnten wir die Machbarkeit der HER2-

Status-Bestimmung durch MALDI Imaging erfolgreich anhand von Brustkrebsproben 

demonstrieren [53]. Unter der Annahme, dass der HER2-Überexpression –  

unabhängig vom Tumortyp – charakteristische molekulare Veränderungen zugrunde 
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liegen, wurde untersucht, ob eine Bestimmung des HER2-Status in 

Magenkrebspatienten mit Hilfe von Proteinexpressionsmustern aus 

Brustkrebspatienten erfolgen kann. Hierzu wurden, zusätzlich zu den bereits 

vorhandenen 48 Brustkrebsgeweben, 59 Magenkrebsfälle mittels MALDI Imaging 

analysiert und verschiedene HER2-Klassifikationsmodelle erstellt und verglichen. Der 

HER2-Status in Magenkrebsfällen konnte mit einem Mammakarzinom-spezifischen 

Profil mit einer Sensitivität von 65% und einer Spezifität von 92% bestimmt werden. 

Zusätzlich wurden die Expressionsprofile aller vorhandenen Tumorarten 

zusammengeführt, um einen universellen HER2-Klassifikator zu erstellen. Dies führte 

zu einer verbesserten Vorhersagequalität (Sensitivität: 78%, Spezifität: 88%). Dass sich 

der HER2-Status über verschiedene Tumorentitäten hinweg auf proteomischer Ebene 

bestimmen lässt, legt nahe, dass die Überexpression von HER2 ein unabhängiges 

molekulares Ereignis darstellt, ungeachtet der Herkunft des Tumors. Zudem 

unterstreichen die Ergebnisse das diagnostische Potential der bildgebenden 

Massenspektrometrie zur schnellen und zuverlässigen Bestimmung von 

tumorbiologischen Zielstrukturen, wie HER2. 
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2.3 MALDI imaging identifies prognostic seven-

protein signature of novel tissue markers in 

intestinal-type gastric cancer 
 

Balluff B, Rauser S, Meding S, Elsner M, Schöne C, Feuchtinger A, Schuhmacher C, 

Novotny A, Jütting U, Maccarrone G, Sarioglu H, Ueffing M, Braselmann H, 

Zitzelsberger H, Schmid RM, Höfler H, Ebert MP, and Walch A.  

Am J Pathol. 2011 Dec;179(6):2720-9. 

 

2.3.1 Journal description and standing 

The American Journal of Pathology (ISI abbreviation: Am J Pathol) publishes papers on 

the cellular and molecular biology of diseases. Focus is given on work that advances 

basic and translational knowledge of the pathogenesis, classification, diagnosis, and 

mechanisms of diseases, with preference for studies which consider morphology. 

The American Journal of Pathology is indexed by Thomson Reuters in the category 

Pathology. With an impact factor of 5.224 and a 5-year impact factor of 5.971 in the 

2010 Journal Citations Reports it takes rank four of 76 journals within its category.  

 

2.3.2 Abstract 

Proteomics-based approaches allow us to investigate the biology of cancer beyond 

genomic initiatives. We used histology-based matrix-assisted laser 

desorption/ionization (MALDI) imaging mass spectrometry to identify proteins that 

predict disease outcome in gastric cancer after surgical resection. 

A total of 181 intestinal-type primary resected gastric cancer tissues from two 

independent patient cohorts were analyzed. Protein profiles of the discovery cohort 

(n=63) were directly obtained from tumor tissue sections by MALDI imaging. A seven-

protein signature was found to be associated with an unfavorable overall survival 

independent of major clinical covariates (HR=4.03; 95% CI: 1.69 - 9.61; P=0.002). The 

prognostic significance of three individual proteins identified (CRIP1, HNP-1, and S100-
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A6) was validated immunohistochemically on tissue microarrays of an independent 

validation cohort (n=118). While HNP-1 and S100-A6 were found to further subdivide 

early (UICC-I) and late stage (UICC-II-III) patients into different prognostic groups 

(P=0.024, P=0.013), CRIP1, a protein previously unknown in gastric cancer, was 

confirmed as a novel and independent prognostic factor for all patients in the 

validation cohort (HR=1.57; 95% CI: 1.01-2.44; P=0.044). 

The protein pattern described here serves as a new independent indicator of patient 

survival complementing the previously known clinical parameters in terms of 

prognostic relevance. These results show that this tissue-based proteomic approach 

may provide clinically relevant information that might be beneficial in improving risk 

stratification for gastric cancer patients. 

 

2.3.3 Introduction 

Although the incidence of gastric cancer has declined worldwide over the past 30 

years, especially in Western countries, it remains the second leading cause of cancer-

related death and accounts for 9.7% of cancer deaths globally [3, 91]. Despite complex 

treatment regimens and further understanding of its biology and possible causes, 

surgery is the only potentially curative treatment for gastric cancer [92]. Patients with 

stage I disease have a good prognosis, whereas those with stage IV disease show a 

poor prognosis. Interestingly, the prognosis varies widely in patients with stage II or III 

disease for as of yet undetermined biologic reasons [93]. 

The clinical and biological behavior of individual gastric cancer patients cannot be 

understood through the analysis of individual or small numbers of genes, so cDNA 

microarray analysis has been used with some success to simultaneously investigate 

thousands of RNA expression levels and attempt to identify patterns associated with 

biological characteristics [94-96]. However, mRNA expression is often poorly 

correlated with levels of protein expression, and such analyses cannot detect 

important post-translational modifications of proteins such as proteolytic processing, 

phosphorylation, or glycosylation, all of which are important processes in determining 

protein function [97]. Accordingly, comprehensive analysis of protein expression 

patterns might improve our ability to understand the molecular complexities of tumor 

tissues. 
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Matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry, or 

MALDI imaging, is a powerful tool for investigating protein patterns through the direct 

(in situ) analysis of tissue sections [5]. Similarly to immunohistochemistry, MALDI 

imaging has advantages over other assay methods (i.e., those requiring 

homogenization) because it is morphology driven [98]. This characteristic allows to 

directly evaluate tumor cells, to determine correlations with other morphologic 

features, and to assay smaller patient tumor tissue specimens, such as surgical or 

endoscopic biopsy specimens [79]. These features make it an interesting tool for tissue 

analysis and molecular histology [99]. In addition, MALDI imaging can determine the 

distribution of hundreds of compounds in a single measurement without any need for 

labeling [100]. The great potential of a highly sensitive and molecularly specific 

technology such as MALDI imaging to the field of oncology is currently being realized. 

Until now, this technique has been successfully applied to various types of cancer 

tissues, including human non-small cell lung cancer, gliomas, and ovarian, prostate, 

and breast cancer [69, 70, 72, 101-103]. Analysis of the resulting complex mass 

spectrometry data sets using modern biocomputational tools has resulted in the 

identification of both disease state, response prediction, and patient prognosis-

specific protein patterns [69-71]. 

To explore the possibility of using tissue-based proteomic analysis as a predictor of 

outcome in resected gastric cancer, we used MALDI imaging for direct tissue analysis 

of protein expression to identify proteins that predict disease outcome in patients 

with intestinal gastric cancer. 

 

2.3.4 Material and methods 

Study Population and Tissues 

All tissues investigated in this study were obtained from patients (n=181) who 

underwent gastrectomy between 1991 and 2005 at the Surgery Department at the 

Technische Universität München. Histological classification was performed according 

to the WHO and the TNM classification systems designed by the International Union 

Against Cancer (UICC) [23, 104]. All tumors analyzed in this study were intestinal type 

tumors according to Lauren’s classification system [24]. Follow-up data were available 

for all patients, and the overall survival was calculated from the date of surgical 

resection to the date of death or last follow-up. This study was approved by the 

Institutional Review Board and the Ethics Committee of the Faculty of Medicine of the 
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Technische Universität München with informed consent from all subjects and patients. 

The clinicopathological data of all patients are listed in Table 2-1. 

Table 2-1 Correlation of spectral features and their respective identified proteins with 

clinicopathological parameters for the patient series 

  Discovery cohort (n=63) Validation cohort (n=118) 

   MALDI imaging m/z signals  Immunohistochemistry antigens 

  No. of 

patients 

3445 6278 8406 8453 10098 11353 11613 No. of 

patients 

HNP-1 CRIP1 S100-A6 

  (HNP-1)  (CRIP1)  (S100-A6)   (m/z 3445) (m/z 8406) (m/z 10098) 

Sex *  0.257 0.348 0.953 0.383 0.002 0.579 0.951  0.448 0.092 0.259 

 Male 46        89    

 Female 17        29    

Age †  0.114 0.220 0.159 0.564 0.039 0.290 0.947  0.009 0.152 0.678 

Primary tumor †  — — — — — — —  0.248 0.375 0.224 

 pT1 0        15    

 pT2 63        54    

 pT3 0        44    

 pT4 0        5    

Regional lymph nodes †  0.730 0.572 0.059 0.396 0.081 0.400 0.305  0.016 0.964 0.023 

 pN0 18        36    

 pN1 24        35    

 pN2 16        35    

 pN3 5        9    

 pNx 0        3    

Distant metastasis ‡  0.976 0.321 0.089 0.687 0.005 0.036 0.616  0.517 0.779 0.038 

 M0 54        87    

 M1 9        31    
Resection 

status ‡  0.675 0.238 0.055 0.129 0.011 0.448 0.150  0.196 0.624 0.361 

 R0 53        81    

 R1 9        26    

 Rx 1        11    

Grading †  0.389 0.685 0.720 0.389 0.227 0.033 0.104  0.168 0.388 0.018 

 G1 0        1    

 G2 16        36    

 G3 47        81    

Overall survival §  0.075 0.009 0.018 0.022 0.013 0.012 0.026  0.086 ¶ 0.016 0.077 ** 

Bold print values indicate that the P value is < 0.05. 

* P value calculated by t-test. 

† P value calculated by Spearman’s rank correlation. 

‡ P value calculated by Mann-Whitney U test. 

§ P value calculated by univariate Cox proportional hazard regression. 

¶ Union Internationale Contre le Cancer (UICC) stage I. 

** UICC stages II and III. 

 

Discovery cohort  

Fresh-frozen tissue samples were obtained from 63 primary resected gastric 

carcinoma patients that were matched to UICC-T status (T=2). Patients were on 

average 66.5 years old (range: 33–85), and their median overall survival time was 33.1 

months (range: 0–53.4). The tissues were snap-frozen and stored in liquid nitrogen. 

This discovery cohort was used for tissue-based proteomic analysis by MALDI imaging. 
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Validation cohort  

The patient cohort of the validation set was comprised of 118 tumor samples and was 

provided in triplicate in formalin-fixed paraffin-embedded tissue microarrays from the 

Institute of Pathology of the Technische Universität München. The clinicopathological 

data of this independent sample set are also included in Table 2-1. The patients’ 

median overall survival time was 54.7 months (range: 0–135.5), and their mean age 

was 66.4 years (range: 41–80). The validation of the proteins was performed in this 

independent patient cohort by immunohistochemical analyses. 

MALDI imaging for the discovery of survival-related proteins 

Frozen tissue sections from the discovery cohort were cut on a cryostat (CM1950, 

Leica Microsystems, Wetzlar, Germany) at a 12 µm thickness onto indium-tin-oxide 

coated glass slides (Bruker Daltonics, Bremen, Germany). After brief washing in both 

70% and 100% ethanol pro analysis solutions, slides were coated with sinapinic acid 

matrix solution (Sigma-Aldrich, Taufkirchen, Germany) at 10 mg/ml in 

water/acetonitrile 40:60 (v/v) with 0.2% trifluoroacetic acid pro analysis (TFA) by an 

automated spraying device (ImagePrep, Bruker Daltonics).  

For mass spectrometric measurements, tumor areas were defined using the 

FlexControl 3.0 and FlexImaging 2.1 software packages (both Bruker Daltonics). 

Spectra were acquired using the Ultraflex III MALDI-TOF/TOF (Bruker Daltonics) in 

positive linear mode, whereas ions were detected in a mass range of m/z 2,500–

25,000 with a lateral resolution of 70 µm. A ready-made protein standard was 

employed for spectra calibration (Bruker Daltonics).  

Following the MALDI experiments, the glass slides were incubated in 70% ethanol to 

elute the matrix and then stained with hematoxylin and eosin. Finally, the stained 

slides were scanned with a digital slide scanning system (Mirax Desk, Carl Zeiss 

MicroImaging, Göttingen, Germany) and co-registered to the MALDI imaging results to 

align mass spectrometric data with the histological features of the very same sections. 

Tumor specific spectra were selected using the FlexImaging software (Bruker 

Daltonics). Eighty spectra per case were picked randomly and were imported into the 

ClinProTools 2.2 software (Bruker Daltonics), upon which the data underwent 

normalization, recalibration (both to enable comparability of measurements), and 

peak picking. After processing, the data were exported for further statistical analyses. 
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Protein identification 

Ten cryosectioned slices (25 µm each) of three different tissue specimens underwent 

protein extraction with aqueous 0.1% TFA and ultrasonication. The extracted proteins 

were separated on an mRP-C18 column (Agilent Technologies, Santa Clara, CA, USA), 

and the fractionated aliquots were collected in a 96-well-plate. The HPLC fractions 

were manually spotted onto a PAC target (Bruker Daltonics) and analyzed by MALDI-

MS (Ultraflex I, Bruker Daltonics) in order to locate fractions containing the m/z 

species of interest. Fractions of interest underwent tryptic digestion, and the resulting 

peptides were separated on a nano-RP-HPLC column (PepMap, LC Packings, 

Sunnyvale, CA, USA), which was connected to a linear quadrupole ion trap mass 

spectrometer (LTQ Orbitrap XL, Thermo Scientific, Waltham, MA, USA) equipped with 

a nano-ESI ion source. All obtained MS/MS spectra were searched in the NCBInr 

human sequence database using Mascot (v2.2.06, Matrix Science, London, UK). The 

final evaluation of the protein/peptide identification results was done using the 

Scaffold 3 software framework (Proteome Software, Portland, OR, USA). 

Validation of proteins by immunohistochemistry 

Immunohistochemical staining of the 3 µm tissue microarray sections was carried out 

using an automated stainer (Discovery XT) and a DAB Map kit (both, Ventana Medical 

Systems, Tucson, AZ, USA). The dilutions used for primary antibodies against HNP-1 

(BMA Biomedicals, Augst, Switzerland), CRIP1 (AbD Serotec, Oxford, UK), and S100-A6 

(Thermo Scientific) were 1:400, 1:100, and 1:100, respectively.  

The analysis of the immunohistochemical staining was conducted with an image 

analysis platform (Definiens Enterprise Image Intelligence Suite, Definiens AG, Munich, 

Germany). For this purpose, all stained slides were scanned at 20X objective 

magnification by a digital slide scanner (Mirax Desk, Carl Zeiss MicroImaging), and the 

images were imported into the image analysis software. Specific rule sets were then 

defined to detect and quantify the immunohistochemical staining intensities of 

semantic classes. While the quantified parameter for CRIP1 and S100-A6 staining was 

the brown intensity of the tumor cells, the area of the peptide expressing granulocytes 

was the quantified parameter for HNP-1. 

Statistical Analysis 

Correlations between the investigated parameters and clinicopathological features 

were determined as outlined in Table 2-1. 
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M/z species associated with overall survival, obtained by MALDI imaging, were 

identified by corrected multiple testing using the Significance Analysis of Microarrays 

(SAM) package with a maximum false discovery rate of 0.1 [105]. To investigate the 

predictive power of the combined MALDI imaging signals, all patients were clustered 

into two groups by hierarchical clustering. The dendrogram was calculated using the 

Ward linkage method based on a weighted Euclidean distance. Each weight 

corresponded to the reciprocal of the respective m/z species' univariate P value. The 

correct classification rate of this protein pattern to one of the groups was tested by 

establishing a classification model based on a support vector machine, running with 

standard parameters (kernel=radial, cost=1) and a 10-fold cross-validation. 

Multivariate analyses for the assessment of clinical parameter influences were done 

by Cox regression with p-values calculated by the Wald test. Kaplan-Meier curves were 

calculated by defining favorable and unfavorable prognostic groups using an intensity-

based threshold score, which maximized overall survival differences between both 

respective groups while minimizing imbalances in group sizes. Differences between 

the curves were assessed using the log-rank test. 

All statistical analyses were performed within the R statistical environment (R 

Foundation for Statistical Computing, Vienna, Austria), in which P values <0.05 were 

considered statistically significant and values between 0.05 and 0.1 were considered 

trends. 

 

2.3.5 Results 

MALDI imaging reveals seven survival-associated proteins 

To detect protein signals associated with overall survival in gastric cancer, we acquired 

the cancer protein profiles of 63 patients utilizing MALDI imaging mass spectrometry 

in the discovery cohort. This strategy allowed the histology-directed acquisition of 

cancer cell-specific protein spectra from the measured tissue samples. On average, we 

could resolve between 150 and 200 peaks per case within the mass range of m/z 2,500 

to 25,000 and a mass accuracy of +/-3 m/z. For example, a representative tumor peak 

(m/z species) and the morphological features of an individual patient’s tissue sample 

are shown in Figure 2-1. 
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Figure 2-1 MALDI imaging reveals cell type-specific profiles, as shown in this comparison of 
gastric carcinoma (red) and normal gastric mucosa (green) from an individual patient’s tissue. 
In this study, one example of differentially expressed masses (m/z 8406), exclusively present in 
cancer cells (right insert, red visualization), was found to correlate significantly with the 
patients’ overall survival. 

After setting the false discovery threshold to 0.1 and excluding correlated features, we 

found seven m/z species at an average of m/z 3445, m/z 6278, m/z 8406, m/z 8453, 

m/z 10098, m/z 11353, and m/z 11613, which were associated with patient survival 

(see Supplemental Figure 2-1). Correlations to clinicopathological parameters are 

listed in Table 2-1. 

The influence of each m/z species on survival was then studied in more detail. 

Univariate Cox regression showed that, with the exception of m/z 3445 (P=0.075) 

which indicates a prognostic trend, all signals exhibit a strong non-favorable effect on 

survival. M/z 6278 (P=0.009) has the highest prognostic value, followed by m/z 11353 

(P=0.012), m/z 10098 (P=0.013), m/z 8406 (P=0.018), m/z 8453 (P=0.022), and m/z 

11613 (P=0.026) (Table 2-1). Setting intensity thresholds for each single m/z signal 

resulted in poor and good prognosis groups which all differed significantly in terms of 

overall survival (all P<0.05). A selection of Kaplan-Meier graphs for the long-and short-
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term survivor groups are depicted in Figure 2-2, A and B, and Figure 2-3, A (for all 

Kaplan-Meier graphs see Supplemental Figure 2-2). 

Multivariate Cox regression models of each respective m/z species, with nodal and 

resection status as well as distant metastasis status as covariables, showed that m/z 

6278, m/z 8453, m/z 10098, and m/z 11613 are independent prognostic factors (all 

P<0.05), whereas m/z values of 3445 (P=0.063) and 8406 (P=0.07) showed slight 

dependencies (Table 2-2). In contrast, m/z 11353 does not exert an independent 

influence on survival (P=0.16).  
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Figure 2-2 M/z 3445 and 10098, as measured by MALDI imaging and identified as HNP-1 and 
S100-A6 correlate with the survival of patients (A, B). Kaplan-Meier analyses in the 
immunohistochemical validation confirmed their prognostic value, although this effect was 
only observed in UICC-stage I patients (C, n=29) for HNP-1 and in UICC-stages II-III for S100-A6 
(D, n=68). 
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Table 2-2 Multivariate survival analyses 

    Covariable Hazard ratio 95% Confidence interval P value 

MALDI imaging    

 m/z 3445 (HNP-1) 1.032 0.998 - 1.070 0.063 

  Nodal status 2.304 1.382 - 3.840 0.001 

  Distant metastasis 0.724 0.163 - 3.220 0.670 

   Resection status 1.398 0.273 - 7.160 0.690 

 m/z 6278 1.332 1.088 - 1.630 0.006 

  Nodal status 2.869 1.661 - 4.960 0.000 

  Distant metastasis 0.661 0.165 - 2.640 0.560 

   Resection status 0.531 0.092 - 3.080 0.480 

 m/z 8406 (CRIP1) 1.458 0.970 - 2.190 0.070 

  Nodal status 2.477 1.459 - 4.210 0.001 

  Distant metastasis 0.521 0.109 - 2.490 0.410 

   Resection status 0.772 0.116 - 5.160 0.790 

 m/z 8453 3.626 1.275 - 10.31 0.016 

  Nodal status 2.579 1.527 - 4.360 0.000 

  Distant metastasis 0.760 0.185 - 3.130 0.700 

   Resection status 0.643 0.121 - 3.420 0.600 

 m/z 10098 (S100-A6) 1.219 1.012 - 1.470 0.037 

  Nodal status 2.522 1.469 - 4.330 0.001 

  Distant metastasis 0.407 0.078 - 2.130 0.290 

   Resection status 1.042 0.171 - 6.350 0.960 

 m/z 11353 1.177 0.939 - 1.480 0.160 

  Nodal status 2.091 1.231 - 3.550 0.006 

  Distant metastasis 0.585 0.138 - 2.480 0.470 

   Resection status 1.668 0.326 - 8.530 0.540 

 m/z 11613 1.694 1.082 - 2.650 0.021 

  Nodal status 2.570 1.529 - 4.320 0.000 

  Distant metastasis 0.584 0.121 - 2.820 0.500 

   Resection status 0.867 0.137 - 5.470 0.880 

 Seven-protein signature 4.031 1.691 - 9.610 0.002 

  Nodal status 2.501 1.521 - 4.110 0.000 

  Distant metastasis 0.725 0.183 - 2.870 0.650 

    Resection status 1.165 0.260 - 5.220 0.840 

Immunohistochemistry    

 CRIP1 (m/z 8406) 1.570 1.012 - 2.440 0.044 

  Primary tumor 1.660 0.939 - 2.950 0.081 

  Nodal status 1.670 1.045 - 2.670 0.032 

  Distant metastasis 1.090 0.437 - 2.720 0.860 

   Resection status 1.030 0.363 - 2.950 0.950 

 S100-A6 (m/z 10098) * 3.800 1.130 - 12.81 0.031 

  Primary tumor 1.720 0.611 - 4.860 0.300 

  Nodal status 2.190 0.865 - 5.570 0.098 

  Distant metastasis 1.120 0.310 - 4.050 0.860 

  Resection status 1.670 0.355 - 7.830 0.520 

Data are calculated by Cox proportional hazard regression. Bold print indicates that the P value is < 0.05. 

*Union Internationale Contre le Cancer (UICC) stages II and III only. 

 

Identification of three survival-related protein markers: HNP-1, CRIP1, and 

S100-A6 

Protein identification of m/z 3445 was performed by tissue extraction and 

fractionation followed by bottom-up tandem mass spectrometry. Human neutrophil 
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peptide-1 (HNP-1) was identified with a Mascot Score of 109. Protein scores above 56 

indicate identity or extensive homology (P<0.05) (see Supplemental Figure 2-3). 

Additionally, this mass has already been reported as HNP-1 in several other studies 

[71].  

Signal m/z 8406 (+/-3 m/z) has previously been identified by our group as Cysteine-

rich intestinal protein 1 (CRIP1) [53]. Similarly, the signal at m/z 10098 corresponds to 

the calcium binding protein, S100-A6, as previously shown by Schwartz et al. [70] 

The other four molecular species have remained unidentified and require further 

elucidation efforts.  

Validation on an independent patient cohort by immunohistochemistry 

confirms the prognostic relevance of the identified protein markers 

Based on the results of the discovery study, we validated the predictive power of the 

identified proteins CRIP1, S100-A6, and HNP-1 using an independent test cohort 

comprised of 118 patients. 

Although univariate analysis indicated a significant correlation of CRIP1 (P=0.016) on 

patient survival for all UICC stages, slight associations were found for HNP-1 and S100-

A6 for certain subgroups. S100-A6 slightly reflected the survival in UICC stages II-III 

(P=0.077) and HNP-1 slightly the survival in UICC stage I patients (P=0.086). These 

findings are in line with the Kaplan-Meier analyses, as shown in Figure 2-2. Next, the 

global prognostic value of CRIP1 was further investigated in a multivariate analysis. 

CRIP1 was found to be the strongest variable, besides nodal status (P=0.032), to 

indicate the outcome of patients (P=0.044), therefore confirming its high predictive 

power (Table 2-2). This finding is also shown in the Kaplan-Meier analyses together 

with immunohistochemical examples of low and high expression of CRIP1 in Figure 

2-3. Similarly, S100-A6 has a significant independent effect on the survival of stage II 

and III patients (P=0.031). 
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Figure 2-3 CRIP1, a previously unknown protein in gastric cancer, was found by MALDI imaging 
as a novel prognostic factor in the discovery cohort (A, C). Immunohistochemical validation 
confirmed this by showing a strong relationship between the high expression of CRIP1 (E) and 
poor survival (B) and vice versa (B, D), as calculated by Kaplan-Meier analysis (n=114). 

Seven-protein signature predicts the outcome of patients independently of 

clinical parameters 

To improve prognostic ability further, all seven markers were combined to establish a 

survival prediction model. Therefore, unsupervised clustering was applied to 

discriminate patients into two groups according to their seven-protein signature 

(Figure 2-4, A). The difference in patient outcome between both groups was assessed 

by univariate Kaplan-Meier analysis (P=0.002) (Figure 2-4, B) and multivariate Cox 

regression (P=0.002) (Table 2-2). This analysis indicated the strong predictive value of 

the signature independent of nodal or distant metastasis and resection status.  

The discriminatory power of this pattern (Figure 2-4, C) between the two tumor 

subgroups was assessed by cross-validation of a classification model (support vector 

machine), which achieved a classification accuracy of 98% (95% CI: 91% to 100%). 
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A combination of mass signals representing the three identified proteins was found 

sufficient to be a significant indicator for patient survival, and even independent from 

clinical parameters. However, the full signature adds significantly more prognostic 

information (see Supplemental Figure 2-4). 

 

Figure 2-4 The prognostic power of a combined pattern was investigated by clustering all 
patients according to the seven protein signals (A, C). The main two branches of the tree were 
found to represent a good (blue) and a poor prognosis group (red) (B). Moreover, this pattern 
predicts patient outcome independently of major clinicopathological parameters (Table 2-2). 

 

2.3.6 Discussion 

Previous studies have defined prognostic subsets of gastric cancer based on gene or 

microRNA expression patterns [94-96, 106]. However, mRNA expression cannot 

always indicate which proteins are expressed or how their activity might be 

modulated after translation [107, 108]. Accordingly, analysis of the proteome in tumor 
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tissues might better reflect the underlying pathological state of cancers than gene 

expression patterns. A few tissue-based reports in gastric cancer have shown that 

proteomic patterns with surface-enhanced laser desorption/ionization-TOF can 

distinguish cancer patients from non-cancer patients [109, 110]. A very recent report 

in gastric cancer demonstrated that protein profiles obtained from endoscopic biopsy 

samples via MALDI imaging can distinguish pathologic early stage tumors from more 

advanced tumors [79]. However, none of the mentioned studies performed prognostic 

evaluations of the protein patterns. This study is the first to show that tissue-based 

proteomic profiling by MALDI imaging is able to identify protein patterns that predict 

patient survival in intestinal-type gastric cancer. Previously known and, more 

importantly, previously unknown protein biomarkers were identified, amongst them 

HNP-1, CRIP1, and S100-A6. Interestingly, both HNP-1 and CRIP1 have been described 

in the context of the immune system [111, 112]. It is known from clinical and 

experimental studies that the immune system is a significant determinant of epithelial 

tumorigenesis and further development [113]. 

Cysteine-rich intestinal protein 1 (CRIP1), a so far unknown protein in gastric cancer, 

was found in this study as an independent prognostic factor in the validation cohort 

(Table 2-2). Human CRIP1 belongs to the LIM family and is a tissue-specific 

developmentally regulated protein which is involved in protein–protein interactions 

during transcription [114-117]. CRIP1 has been suggested to play a role in the host 

defense system, too, and differential expression of CRIP1 can change cytokine 

patterns and the immune response [112]. In this context, an elevated level of CRIP1 in 

tumor cells may be sensible as it has been proposed that immune cells are actively 

recruited by tumors to exploit their pro-angiogenic and pro-metastatic effects. This is 

supported by gene expression analyses where mRNA of CRIP1 has been found to be 

overexpressed in various tumor types, including colorectal, pancreatic, prostate, 

breast, and cervical cancers [118-122]. However, this is the first study that describes 

CRIP1 to affect patient survival. No other significant correlations to major clinical 

parameters were found for CRIP1 in our study. Since the functional characterization of 

CRIP1 is currently inadequate, the precise role of CRIP1 in cancer cells is unclear and 

requires further investigation. 

HNP-1 is an antimicrobial peptide that is expressed in human neutrophils of the innate 

immune system and found to be present in a variety of tumor types, including gastric 

and colon cancer [110, 111, 123]. The link between a chronic active inflammatory 

process, where neutrophils make up a significant portion of the inflammatory cell 
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infiltrate, and the onset of carcinoma has been convincingly demonstrated at the 

gastric and intestinal mucosal level [124]. It has been shown in cancers that a strong 

presence of infiltrating innate immune cells, such as neutrophils, correlates with 

increased angiogenesis and poor prognosis, whereas an abundance of infiltrating 

lymphocytes correlates with favorable prognosis [113]. This is reflected in several 

serum based studies that investigated the ratio between neutrophils and lymphocytes 

in different cancer types like in renal cell carcinoma or breast cancer [125, 126]. 

However, this study is the first to show the prognostic significance of HNP-1 in gastric 

cancer tissues. The results of this study underscore the assumptions that the immune 

system and associated proteins, represented here by HNP-1 and CRIP1, take a key role 

in tumor behavior and therefore clinical outcome for the patients. 

In contrast, S100-A6, a calcium binding protein, has not been reported to be linked to 

the immune system. Amongst many versatile functions of S100-A6, it has been mainly 

described to be involved in cytoskeleton rearrangement since actin binding proteins, 

like annexins, have been identified as its target (see Supplemental Figure 2-5) [127]. In 

this context, interactions with tumor associated proteins like annexin A2 and p53 may 

indicate a role of S100-A6 in cancer progression and metastasis [128, 129]. And 

indeed, increased levels of S100-A6 have been found to be associated with metastasis 

or survival in colon and pancreatic cancer, respectively [130, 131]. Similarly, our study 

showed a significant correlation of S100-A6 expression with clinical parameters such 

as regional lymph node metastasis, distant metastasis, tumor cell differentiation, and 

prognosis. This is highly concordant with a recent study in gastric cancer 

demonstrating the association between S100-A6 expression and various 

clinicopathological features including clinical patient outcome [132]. Unfortunately, 

little is still known about the exact mechanism of S100-A6 with regard to an aggressive 

tumor phenotype. Nevertheless, our observations support the general findings that 

S100-A6 plays an important role in the progression and prognosis in gastric cancer 

patients. 

The other four molecular species have remained unidentified so far and require 

further elucidation efforts. Since there is so far no universal strategy in MALDI imaging 

proteomics for identifying the molecular nature of a peak, each protein requires an 

individual identification approach and elaborate protocol adaptations [60, 133]. 

We shifted the emphasis of our study to the combination of these molecular species 

that are directly related to prognosis as it has been reported that individual markers 

may vary for a variety of reasons, but at a statistically significant level, a signature 
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would remain more robust [57]. The seven-protein signature described was found to 

be a new independent indicator of patient survival and may complement the 

previously known clinical parameters such as lymph node metastasis and stage in 

terms of prognostic relevance.  

Importantly, the amount of tissue required for MALDI imaging is much smaller than 

any other available method using molecular profiling techniques such as array-based 

gene expression profiling. Thus, our study shows that protein profiles can be obtained 

from smallest amounts of unprocessed fresh frozen tissue samples, which are readily 

collectable in a clinical setting, to accurately predict prognosis. Since such small tissue 

samples can be used, it would be of great interest to analyze the protein expression 

patterns of tissue samples from small endoscopic biopsies or attempt to derive 

patterns associated with response to specific treatments and correlate these findings 

with the risk of progression to cancer. If these data are confirmed in larger numbers of 

patients, tissue-based proteomics profiling by MALDI imaging could have implications 

for the clinical management of patients with gastric cancer. 
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2.3.7 Supplementary material 

Supplemental Figure 2-1 

 

Supplemental Figure 2-1 A: Significance Analysis of Microarrays (SAM) plot. Circles in plot 
represent individual m/z species. Dashed lines delimit the area of random effect. Red circles 
indicate that higher expression correlates with a higher risk. The inset lists the m/z species 
together with their individual q-values (indirectly related to the false discovery rate, which was 
set to a maximum of 10%). B: Correlation coefficients between m/z species. Correlation 
coefficients were calculated by Spearman's rank correlation. Values above 0.8 were considered 
highly correlated. Thus, the correlated signals with the lower q-values (m/z 6226, m/z 8418, 
and m/z 11,655) were excluded from further consideration. 
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Supplemental Figure 2-2 

 

Supplemental Figure 2-2 Kaplan-Meier graphs for MALDI imaging m/z species 3445, 6278, 8406, 
8453, 10098, 11353, and 11613. 



57 
 

Supplemental Figure 2-3 

 

Supplemental Figure 2-3 Fragment spectra of HNP-1 identification. Neutrophil defensin 1 was 
identified with a Mascot score of 109 (P < 0.05). Neutrophil defensin 1 is cleaved into the 
peptides HNP-1 or HNP-2 (see Uniprot entry: P59665). HNP-2 differs from HNP-1 by the 
absence of one amino acid residue. Theoretical mass calculations from the resulting peptides 
identified m/z 3445 as HNP-1 and m/z 3373 as HNP-2. 
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Supplemental Figure 2-4 

 

Supplemental Figure 2-4 Comparison of seven- and three-signal protein signature. Seven-signal 
(left) and three-signal (right) protein signatures obtained by MALDI imaging were compared 
with regard to their prognostic information. Therefore, patients were first clustered on basis of 
the respective signature (upper panels: see Materials and Methods in main manuscript) and 
the resulting groups were then compared by Kaplan-Meier analyses (lower panels) (A). 
Multivariate survival analyses by COX regression were performed in the MALDI imaging data 
set to assess the prognostic value of the three-signal protein signature in comparison with 
major clinical parameters (B, top) and with the seven-signal signature (B, bottom). Both 
analyses show that the three-protein signature is sufficient to be a significant indicator for 
patient survival, and even independent from clinical parameters. However, the full signature 
adds significant prognostic information. 
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Supplemental Figure 2-5 

 

Supplemental Figure 2-5 Known and predicted interactions of S100-A6 (S100A6) with other 
proteins. This functional protein association network was obtained by searching the STRING 
online database (http://string-db.org) for the entry “S100A6,” Interestingly, S100-A6 binds 
directly to proteins such as p53 (TP53) and annexin 2 (ANXA2), which have been extensively 
described in the context of cancer. 
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2.4 Classification of HER2/neu status in gastric 

cancer using a breast-cancer derived proteome 

classifier 
 

Balluff B, Elsner M, Kowarsch A, Rauser S, Meding S, Schuhmacher C, Feith M, 

Herrmann K, Röcken C, Schmid RM, Höfler H, Walch A, and Ebert MP. 

J Proteome Res. 2010 Dec 3;9(12):6317-22.  

Reproduced with permission from the American Chemical Society, Copyright 2010. 

 

2.4.1 Journal description and standing 

The Journal of Proteome Research (ISI abbreviation: J Proteome Res) publishes content 

encompassing all aspects of global protein analysis and function, emphasizing the 

synergy between physical and life sciences resulting in a multidisciplinary approach to 

the understanding of biological processes.  

The journal is indexed by Thomson Reuters in the category Biochemical Research 

Methods. With an impact factor of 5.460 and a 5-year impact factor of 5.617 in the 

2010 Journal Citations Reports it takes rank nine of 71 journals within its category. 

However, it ranks second in journals focusing on proteomics topics. 

 

2.4.2 Abstract 

HER2-testing in breast and gastric cancers is mandatory for the treatment with 

trastuzumab. We hypothesized that imaging mass spectrometry (IMS) of breast 

cancers may be useful for generating a classifier that may determine HER2-status in 

other cancer entities irrespective of primary tumor site. 

A total of 107 breast (n=48) and gastric (n=59) cryo tissue samples were analyzed by 

IMS (HER2 was present in 29 cases). The obtained proteomic profiles were used to 

create HER2 prediction models using different classification algorithms. 



61 
 

A breast cancer proteome derived classifier, with HER2 present in 15 cases, correctly 

predicted HER2-status in gastric cancers with a sensitivity of 65% and a specificity of 

92%. In order to create a universal classifier for HER2-status, breast and non-breast 

cancer samples were combined, which increased sensitivity to 78%, specificity was 

88% respectively. 

Our proof of principle study provides evidence that HER2-status can be identified on a 

proteomic level across different cancer types suggesting that HER2 overexpression 

may constitute a unique molecular event independent of the tumor site. Furthermore, 

these results indicate that IMS may be useful for the determination of potential 

drugable targets, as it offers a quicker, cheaper and more objective analysis than the 

standard HER2-testing procedures immunohistochemistry and fluorescence in situ 

hybridization. 

 

2.4.3 Introduction 

Overall prognosis in patients with advanced gastric cancer is poor [134]. Recently, 

Bang and coworkers reported the first results from a phase III trial which compared a 

systemic chemotherapy with cisplatin and capecitabine with and without trastuzumab 

in patients overexpressing human epidermal growth factor receptor 2 (HER2) in gastric 

cancers [33]. In this trial, patients with trastuzumab exhibited a significant 

improvement of progression free and overall survival. This is the first phase III trial 

demonstrating the efficacy of a targeted drug in a subgroup of gastric cancers 

exhibiting overexpression of the respective target [135]. 

In this context, the identification of drugable targets in this and other cancers is an 

important approach in order to develop new treatment strategies [136]. Inasmuch as 

numerous trials with all types of targeted drugs are now being conducted in almost all 

cancer types, identifying a strategy to find and rapidly confirm the presence of 

(multiple) targets in a cancer sample may facilitate the selection of the targeted drug 

that can be successfully administered. 

Matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) 

allows the specific acquisition of proteomic profiles from histopathological interesting 

features like tumor cell populations through the direct analysis of thin tissue sections 

[137]. In recent years, IMS has been used to profile different cancers and has been 

shown to allow for the classification of different clinical features of cancers, such as 
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prognosis, lymph node metastasis and response prediction [69, 72, 99, 138-140]. 

Recently, we demonstrated that this modality can also be used to identify a proteomic 

signature that separates breast cancers based on HER2 status [53]. These findings 

underscored the potential of IMS in tissue diagnostics, especially since the two 

standard procedures for HER2 testing, based on immunohistochemistry (IHC) and 

fluorescence in situ hybridization (FISH), are either less accurate or time and cost 

expensive [50-52]. In contrast, IMS provides an objective classification compared to 

IHC, which suffers from observer variability, while consuming less money and time 

(several hours) compared to FISH (1–2 days). In addition, IMS allows, as a label-free 

and multiplexing approach, to determine several clinical parameters at once.  

In an aim to facilitate the identification and rapid confirmation of potentially drugable 

targets in gastric cancer, we hypothesized that the previously identified breast-cancer 

derived proteomic algorithm may also be able to predict HER2 status in gastric or 

other cancers types. 

 

2.4.4 Material and methods 

Tissue specimens 

Human tissue samples were collected, after obtaining informed consent from patients 

undergoing gastrectomy at the University Hospital of Berlin (gastric cancer test set) 

and the University Hospital of Munich (gastric cancer training set), Germany. Samples 

were snap-frozen during surgery and stored at -80° C until analysis. A total of 59 tissue 

samples, 45 from gastric cancer test set and 14 from gastric cancer training set, were 

analyzed.  

HER2 status was determined in 2000 breast cancer patients. 48 samples of these 

patients were selected for this study according to the following criteria: breast cancer 

of type Invasive Ductal Carcinoma with clear HER2 status, availability of cryo material, 

and strong presence of tumor cell populations in the respective cryo tissue section. 

This set has been previously divided into a discovery (breast cancer training set) and a 

validation set (breast cancer test set), consisting of 30 and 18 cases, respectively [53].  

An overview of all sample sets and the subsequent experimental workflow is depicted 

in Figure 2-5. Clinical and histological characteristics of all patients, including UICC 

staging, Laurén classification, estrogen/progesterone status, and HER2 status are 
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summarized in Table 2-3. This study was approved by the Ethics Committee of the 

Technische Universität München. 

Table 2-3 Clinical and molecular characteristics of the patient series 

Set characteristics Gastric Cancer Breast Cancer 

 
Training set Test set Training set Test set 

Patients 14 45 30 18 

Mean age (range) 64.9 (42–84) 67.9 (40–85) 60.1 (38–91) 61.4 (36–84) 

HER2-IHC 
    

 
IHC 3+/2+ 4/0 4/3 13/2 6/0 

 
IHC 1+/0 1/9 12/26 2/13 6/6 

HER2-FISH 
    

 
positive 4 n.a. 15 n.a. 

 
negative 10 n.a. 15 n.a. 

UICC stage - T 
    

 
pT1 0 1 12 1 

 
pT2 11 21 16 11 

 
pT3 3 18 1 1 

 
pT4 0 5 1 0 

 
pTx 0 0 0 5 

UICC stage - N 
    

 
pN negative 3 4 17 6 

 
pN positive 11 41 12 7 

 
pNx 0 0 1 5 

Laurén type (HER2+) 
    

 
intestinal 10 (4) 28 (4) n.a. n.a. 

 
diffuse 4 (0) 11 (0) n.a. n.a. 

 
mixed 0 6 (0) n.a. n.a. 

ER / PR status 
    

 
ER + n.a. n.a. 14 5 

 
ER - n.a. n.a. 16 13 

 
PR + n.a. n.a. 9 13 

 
PR - n.a. n.a. 21 5 

Abbreviations: HER2 = human epidermal growth factor receptor 2; IHC = immunohistochemistry; FISH 
= fluorescence in situ hybridization; ER = estrogen receptor; PR = progesterone receptor; n.a. = not 
available 

 

Assessment of HER2 status 

HER2 status was evaluated in tumor tissue samples from 2000 breast cancers patients 

and 110 gastric cancer patients by both fluorescence in situ hybridization (FISH) and 

immunohistochemistry (IHC) on formalin-fixed, paraffin-embedded tissue blocks. 

Determination of HER2 status was performed according to the guidelines of the 

American Society of Clinical Oncology for HER2 testing for breast cancer, where a 

positive HER2 result is an IHC staining of 3+, a negative result is a staining of 0 or 1+. In 

case a staining was 2+, FISH was performed. A FISH ratio >2.2 (polysomy ratio) is 

considered HER2 positive; otherwise negative [141]. 
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In case paraffin-embedded tissue blocks were not available HER2 status was assessed 

on the respective cryo tissues by IHC only (both test sets), according to the subsequent 

protocol. 10 µm thick sections were incubated with the primary antibody (anti-human 

c-erbB2 polyclonal antibody, Dako Denmark; dilution 1:300) at room temperature for 

one hour. The final immunohistochemical staining was carried out using an automated 

staining platform (Discovery XT, Ventana Medical Systems) according to the 

recommendations of the manufacturer. For cryo section staining, HER2 status was 

regarded positive with an IHC staining of 3+ (uniform membranous staining of >20% of 

tumor cells); conversely, HER2 status was regarded negative if IHC staining was 

classified as 0, 1+, or 2+, as reported by Bang et al. for gastric cancer patients not 

benefitting significantly from HER2 treatment [33]. 

 

Figure 2-5 Experimental workflow. Three cancer (CA) collectives were evaluated for HER2 
expression by IHC and/or FISH (top). Appropriate cryo tissues were subjected to IMS analysis 
(center). For HER2 status prediction, data were arranged in different set-ups, named A–D 
(Table 2-4), into either the training or test set, indicated by dashed lines in orange and green, 
respectively (bottom). 
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MALDI imaging mass spectrometry experiments and image processing 

Tissue samples were cryosectioned (12 µm) onto conductive glass slides and prepared 

for measurement as outlined before [53]. Spectra were acquired using the Ultraflex III 

MALDI-TOF/TOF in positive linear mode (Bruker Daltonik), in a mass range of m/z 

2,500–25,000 and a sampling rate of 0.1 GS/s. The lateral resolution for MALDI-IMS 

was set to 150 µm for the gastric cancer test set and the breast cancer training set. 

The second gastric cancer sample set and the breast cancer validation set were 

measured at 70 µm. 200 laser shots were accumulated per pixel at constant laser 

power. For calibration of spectra a ready-made protein standard was employed 

(Bruker Daltonik).  

Following MALDI-IMS experiments, glass slides were washed for matrix removal in 

70% ethanol, stained with hematoxylin and eosin, and scanned with a digital slide 

scanning system (Mirax Desk, Carl Zeiss MicroImaging). Finally, the tissue scans and 

MALDI-IMS results were superimposed to correlate mass spectrometric data with the 

histological features of the same section. This allowed for a direct, and therefore 

specific, on tissue selection of tumor related mass spectra. 

Data processing and statistical analysis 

Through all patients, spectra associated with tumor areas were selected using the 

FlexImaging 2.1 software (Bruker Daltonik). A total of 400 tumor spectra per patient 

were imported to the ClinProTools 2.2 software for data processing (Bruker Daltonik). 

This processing includes normalization according to the total ion count of each 

spectrum, peak identification, and alignment of spectra to correct for mass shifts 

between measurements.  

For classification and statistical data exploration, the processed data were exported to 

the R statistical software (R Foundation for Statistical Computing). HER2 status 

prediction on cancer samples was implemented using two classification algorithms, 

namely either a Support Vector Machine (e1071 package) or a Random Forest 

(randomForest package). Both classification algorithms have proven their suitability 

for a variety of high-dimensional classification problems in biomedicine, amongst 

others also for proteomic data sets [53, 142-147]. In our study, we explored the ability 

of these classifiers to predict HER2 expression status using different training and test 

set combinations, as listed in Table 2-4. An m/z species was included into the 

prediction model if its area under curve (AUC) exceeded either 0.7 or 0.8, as calculated 

by receiver operating characteristic (ROC) analyses between HER2-positive and HER2-

negative samples in the training set [148]. Moreover, training sets were chosen to 
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have close to equal parts of HER2 positive and negative samples in order to ensure 

sensitivity for infrequent HER2 positivity [149]. 

Due to computational limitations in spectra processing, 40 spectra were selected at 

random for each patient. As the Random Forest algorithm produces non-deterministic 

outcomes [150] and to reduce effects on our results due to random spectra selection, 

we repeated the spectra selection, processing, and classification ten times. Thus, the 

evaluation criteria sensitivity, specificity, accuracy, and their respective confidence 

intervals (CI) were averaged over all ten classification runs for each class prediction 

model. 

Classification models were compared by calculating the Mann–Whitney U test (two-

sided) on the three evaluation criteria across the ten runs. P-values <0.05 were 

considered statistically significant. These results are provided in detail as 

supplementary material. 

 

2.4.5 Results 

Imaging mass spectrometry for HER2 classification on human tissue samples 

Breast cancer samples (training set n=30, test set n=18), and non-breast cancer 

samples (gastric adenocarcinomas; training set n=14, blinded test set n=45) 

underwent mass spectrometric analysis utilizing MALDI-IMS. The obtained mass 

spectra, labeled as either HER2-positive or HER2-negative by IHC and/or FISH, were 

used to arrange training and test set data (see Materials and Methods for a detailed 

description). 

In the following, we report the prediction quality for HER2 status using two 

classification algorithms, namely a Support Vector Machine (SVM) and a Random 

Forest classifier, focusing on the results with an AUC threshold of 0.8 for the feature 

selection (for results with AUC=0.7 see Supplemental Table 2-1). The classification 

models were trained and tested in four different combinations, named A to D as listed 

in Table 2-4. 
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Table 2-4 Training set – test set line-ups 

Setting Training set (HER2+/HER2-) Test set (HER2+/HER2-) 

A Gastric Cancer (4/10) Gastric Cancer (4/41) 

B Breast Cancer (15/15) Gastric Cancer (4/41) 

C Gastric + Breast Cancer (19/25) Gastric Cancer (4/41) 

D Gastric + Breast Cancer (19/25) Gastric + Breast Cancer (10/53) 

Sample sets as referred in Table 2-3 are combined to different training and test set scenarios (A–D). 
The numbers in parenthesis indicate the number of HER2-positive versus HER2-negative samples in 
the respective sets. 

 

In a first attempt (Table 2-4, A), the classifiers should make use of the HER2 associated 

proteomic patterns from gastric cancer samples only to predict HER2 status in gastric 

cancer samples. We achieved a high accuracy for the SVM (91%; 95% confidence 

interval (CI-95%): ±0%), but both methods perform poorly as we obtained sensitivities 

of 0% (Table 2-5, A). This may be due to susceptibilities of the models to class 

distribution imbalances and the small number of samples in the training set. 

Next, we investigated the classificatory capability when proteomic data originating 

from one cancer type is employed for prediction in another cancer type. Here, spectral 

data from breast cancer was used to predict the HER2 status in all gastric cancer 

samples (Table 2-4, B). The SVM based classifier was able to detect 65% of the HER2 

positive patients (CI-95%: ±8%) while maintaining a high specificity of 92% (CI-95%: 

±2%; Table 2-5, B).  

Generation and testing of a universal HER2 classifier 

In an effort to generate and evaluate a universal HER2 classifier, the next training set 

combined the profiles of different cancer types. Therefore, non-breast cancer samples 

were added to the previous training set. The classification performance was assessed 

twice; first on a test set consisting just gastric cancer samples (Table 2-4, C), and 

secondly on a mix of breast and gastric cancer samples (Table 2-4, D). 

While there is no significant improvement in overall accuracy for the models in setting 

C, the Random Forest’s sensitivity benefitted significantly from the addition of the 

gastric cancer samples in the training set (from 28% to 50%; CI-95%: ±7%; p=0.004; 
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Table 2-5, C; Supplemental Table 2-3). Similarly, the sensitivity of the Support Vector 

Machine slightly increased to 73% (CI-95%: ±5%). 

Finally, in order to test the classifiers for universal classificatory power, also breast 

cancer patients were added to the test set (Table 2-4, D). Because of the high 

prevalence of breast cancer cases in the training set, all classifiers gain in sensitivity 

(p<0.05; Supplemental Table 2-3), even though with a little drawback in specificity 

(p<0.05; Supplemental Table 2-3). This finally results in sensitivities of 70% (CI-95%: 

±3%) and 78% (CI-95%: ±3%) for the Random Forest and SVM with specificities of 87% 

(CI-95%: ±2%) and 88% (CI-95%: ±1%), respectively (Table 2-5, D). 

Table 2-5 Classification results for training set – test set line-ups A–D 

Setting Random Forest Support Vector Machine 

  
Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy 

A Mean 0% 40% 37% 0% 100% 91% 

 
CI-95% ±0% ±4% ±4% ±0% ±0% ±0% 

B Mean 28% 95% 89% 65% 92% 90% 

 
CI-95% ±9% ±0% ±1% ±8% ±2% ±1% 

C Mean 50% 93% 89% 73% 91% 89% 

 
CI-95% ±7% ±2% ±2% ±5% ±1% ±1% 

D Mean 70% 87% 84% 78% 88% 87% 

 
CI-95% ±3% ±2% ±2% ±3% ±1% ±1% 

Prediction performances of the two classification algorithms - Random Forest and Support Vector 
Machine - were evaluated according to their sensitivity, specificity, and accuracy within their 95% 
confidence intervals (CI) for each setting as described in Table 2-4. 

 

2.4.6 Discussion 

In breast cancers overexpression of HER2 is present in approximately 10%–34% of 

invasive breast cancers, and overexpression is known to be associated with a more 

aggressive biology of the tumor leading to a poor prognosis and response to 

chemotherapy [151]. Therefore, HER2 expression status is routinely evaluated for 

every patient with newly diagnosed primary breast cancer by two testing methods: 

immunohistochemical analysis and fluorescence in situ hybridization. Positively tested 

patients are eligible for treatment with trastuzumab, a monoclonal antibody directed 

to HER2, where breast cancer patients benefit from a higher survival rate [152, 153]. 

The efficacy of this therapy has led to investigate the role of HER2 expression in other 

cancer types, including gastric and gastroesophageal adenocarcinomas. 
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In gastric cancer about 20% of the patients also show overexpression of HER2, with an 

imbalance in occurrence which favors intestinal (~24%) versus diffuse type (~5%) 

tumors [37, 48]. Recent studies also indicate that HER2 may be of prognostic 

significance in gastric and esophageal cancers, where HER2 overexpression is 

associated with a poor survival [37]. Furthermore, anti-tumor activity of trastuzumab 

has been documented on gastric cancer cell lines [154-157] and xenograft models 

[158, 159]. On the basis of these results, clinical studies have started to explore the 

therapeutic effect of trastuzumab on HER2-positive gastric cancer patients. The 

extensive phase III ToGA trial provided the first evidence that targeting HER2 results in 

a demonstrable survival benefit for patients [33].  

Thus, based on the relevance of determining the HER2 status in breast cancers and 

gastric cancers with regard to the selection of trastuzumab, we hypothesized that the 

HER2 status of a cancer may constitute a unique molecular feature that results from a 

range of specific molecular alterations that are independent of the site of the tumor 

and that might be reflected at the proteome level. 

In order to test this hypothesis we used imaging mass spectrometry (IMS), which 

allows the development of proteome classifiers which can separate cancers of specific 

clinical and molecular characteristics [69, 72, 140]. IMS leads to the specific acquisition 

of proteomic profiles from histopathological interesting features like tumor cell 

populations through the direct analysis of thin tissue sections [137]. Because IMS 

combines the advantages of label-free mass spectrometry with histology, it has 

developed rapidly throughout the last years in profiling of diseased tissues [99, 138, 

139]. Recently, we reported that IMS may generate a proteomic signature which 

correlates with HER2 expression and could be used to accurately define HER2-positive 

from HER2-negative breast cancer tissues [53]. In continuative, not-published 

experiments, we also proved the separability of gastric cancer according to HER2 

status on cell lines (data not shown). 

Based on these findings and the importance of rapid detection and confirmation of 

drugable targets in these cancers, we hypothesized that a breast cancer derived 

proteomic algorithm could also be used in gastric adenocarcinomas in order to predict 

HER2 status. Prediction of HER2 status by IMS is thereby based on the detection of 

masses which reflect molecular alterations that underlie HER2 overexpression. 

We explored the quality of HER2 status prediction by two different classification 

algorithms on various training and test set combinations. In our first setting, classifiers 
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were trained on spectra derived from non-breast cancer in order to predict HER2 

status in gastric cancer patients. However, in line with other studies [37, 48, 157], we 

observed a very low frequency of HER2-positive gastric cancers. This leads to the 

assumption that the training set may not be representative and balanced enough to 

become sensitive for HER2 positivity. In this scenario none of the classifiers achieved a 

good classification performance.  

In an innovative approach we used the expression profiles of the fully balanced breast 

cancer set from Rauser et al. in order to predict HER2 status in non-breast cancers 

[53]. Interestingly, the classification models obtained sensitivities of 65% (SVM: 

AUC=0.8) and 50% (Random Forest: AUC=0.7) while keeping specificities over 90%. 

The reason for the increase might be two-fold. First, the capability of the two 

algorithms to generalize to situations not presented in the training sets (over-fitting 

robustness), in our case the classification of gastric cancer samples by a breast cancer 

trained model. Second, the emphasis of the training set on m/z species that better 

reflect HER2 status. This would support our main hypothesis. In the previous scenario 

the very same m/z species showed the same trend, but were overshadowed by signals 

that may be associated with some other unknown feature (Figure 2-6). 



71 
 

 

Figure 2-6 Proteomic profiles of breast and gastric cancer tissues. A classifier based solely on 
the low-number gastric cancer training set may be biased by signals that are not associated 
with HER2 status (e.g. signals: b, d). Employing the well-characterized breast cancer training set 
will strengthen those m/z species in the classification model that are known to be HER2 specific 
(signals: a, c). 

As a next step, spectral data of breast and non-breast cancer were combined in an aim 

to construct a universal HER2 classifier. The performance of this classifier was tested 

both on a non-breast cancer set (setting C) as well as on a mixed cancer set (breast 

and gastric cancer in setting D). 

The SVM showed a significantly higher accuracy in the last setting (D) than the 

Random Forest approach (p=0.025; Supplemental Table 2-1). This may be linked to the 

better fit of the SVM to the training data (p=0.003, see Supplemental Table 2-1). 

However, the Random Forest showed similar results at an AUC=0.7 (see Supplemental 

Table 2-1). Thus, together with other advantages, like little parameterization and 

internal feature selection, it is an attractive alternative to the SVM [160]. 
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In both settings C and D, the two classifiers benefit from this addition by obtaining 

high sensitivity values of up to 70% and 78% (D). Together with high values for 

specificity (87% and 88%), both models offer an accurate classification of mixed cancer 

groups for HER2 expression status. 

In summary, in our pre-clinical study we found that HER2 status of gastric cancer could 

be predicted accurately by protein patterns originated from breast cancer, yielding 

accuracies above 90% independent of the prediction method. Although these results 

must be validated in larger series and can only be regarded as proof of principle, our 

findings indicate that – based on a proteome based classifier – molecular 

characteristics of cancers can be identified that are independent of the site of the 

tumor and may, therefore, reflect unique molecular and genetic alterations that help 

to identify drugable targets across different cancer types. 
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2.4.7 Supplementary material 

Supplemental Table 2-1 

 

Supplemental Table 2-1 Comparison of classification performances between Random Forest 

(RF) and Support Vector Machine (SVM) 

Minimum 

AUC – 

setting 

                         Performance values (mean)              Comparison: RF vs. SVM 

Random Forest (RF) 

Support Vector Machine 

(SVM) P-values (Wilcoxon test) 

Sensitiv

ity 

Specific

ity 

Accura

cy 

Sensitiv

ity 

Specific

ity 

Accura

cy 

Sensitiv

ity 

Specific

ity 

Accura

cy 

0.7 – A 0.0 42.7 38.9 0.0 100.0 91.1 - 0.000 0.000 

B 50.0 95.1 91.1 77.5 40.0 43.3 0.020 0.010 0.000 

C 47.5 89.8 86.0 72.5 40.7 43.6 0.000 0.000 0.000 

D 69.0 86.0 83.3 86.0 44.7 51.3 0.000 0.000 0.000 

0.8 –  A 0.0 40.5 36.9 0.0 100.0 91.1 - 0.000 0.000 

B 27.5 95.1 89.1 65.0 92.2 89.8 0.000 0.001 0.150 

C 50.0 92.9 89.1 72.5 91.0 89.3 0.001 0.064 0.903 

D 70.0 86.6 84.0 78.0 88.3 86.7 0.002 0.318 0.025 
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Supplemental Table 2-2 

 

Supplemental Table 2-2 P-values (Wilcoxon U test) of statistical comparison of classification 

performances between 0.7 and 0.8 AUC thresholds 

Setting 
Accuracy Sensitivity Specificity 

RF SVM RF SVM RF SVM 

A 0.394 - - - 0.381 - 

B 0.027 0.001 0.004 0.046 0.676 0.035 

C 0.180 0.000 0.648 1.000 0.209 0.000 

D 0.606 0.000 0.648 0.010 0.753 0.000 

 

Supplemental Table 2-3 

 

Supplemental Table 2-3 P-values of statistical comparison (Wilcoxon U test) of classification 

performances between the settings A–D 

Minimum AUC 
Settings Accuracy Sensitivity Specificity 

to compare RF SVM RF SVM RF SVM 

0.7 A vs. B 0.000 0.000 0.000 0.001 0.000 0.000 

0.7 B vs. C 0.015 0.196 0.648 0.048 0.033 0.132 

0.7 C vs. D 0.196 0.167 0.000 0.002 0.209 0.380 

0.8 A vs. B 0.000 0.105 0.000 0.000 0.000 0.000 

0.8 B vs. C 0.714 0.556 0.004 0.167 0.049 0.164 

0.8 C vs. D 0.001 0.023 0.002 0.013 0.002 0.016 
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3 Conclusion and outlook 
 

The aim of my thesis was to search for molecular markers associated with clinically 

relevant questions such as prognosis or therapy prediction in patients with 

gastrointestinal cancers. In the results presented in this thesis, I showed protein 

expression profiles and single markers identified by MALDI imaging that are correlated 

with the overall survival and the HER2 expression status of gastric cancer patients. 

These marker profiles enable a stratification of patients with regard to survival and 

trastuzumab therapy selection which allows a more individual adaption of the 

treatment strategy. In comparison to other MALDI imaging studies, both published 

studies involved a large number of patient samples (181 for the survival study and 107 

for the HER2 study), thereby raising the confidence of the results. 

In the first study (section 2.3), a seven-protein signature was found to be correlated 

with the overall survival of intestinal-type gastric cancer patients, independently of 

major clinical parameters. Identification and immunohistochemical validation of three 

proteins confirmed their prognostic value for the stratification of existing clinical 

patient groups which might benefit from a different treatment. Future experiments 

for the functional characterization of the three proteins in gastric cancer cell lines have 

to evaluate their role in gastric cancer and their potential of new therapeutic targets. 

The protein identification rate, however, shows that one bottleneck in MALDI imaging 

is still the protein identification. New approaches are being developed that employ 

other mass analyzer technologies than TOF, such as Fourier transform based 

analyzers, together with alternative sample preparation protocols to achieve higher 

identification rates of m/z species [161, 162].  

Even though a protein can be identified, there is no guarantee that it can be measured 

and therefore validated by other techniques. This is especially true for combinatorial 

protein modifications that can easily be detected by mass spectrometry but hardly be 

discovered by other approaches [163]. Such modifications can harbor clinical relevant 

information, which has also been shown in the same study, where a peak belonging to 

a single acetylated histone H4 could also be correlated with a reduced survival of the 

63 gastric cancer patients (data was not included in publication). This modification, 

which is frequent on histones, belongs to the epigenetic effects which regulate gene-

expression through chromatin remodeling [164]. As a multitude of new epigenetic 
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drugs are being developed, one can imagine the application of MALDI imaging to 

directly measure both, the drug’s distribution, as well as the effects on its target 

molecules (“pharmacoproteomics”) [165]. 

In the second presented study (section 2.4), protein expression profiles from gastric 

and breast cancers were used for the classification of the HER2 status of tumors, 

which is important for therapy decision making. As the MALDI imaging approach is 

more specific and less sensitive than the standard HER2 testing procedures, one may 

speculate if the reported protein classifier may detect all responders compared to the 

standard HER2 testing procedures, which can result in false-positive rates of up to 20% 

[166]. However, this hypothesis has to be tested in subsequent studies with clinical 

response data available. Interestingly, the HER2 classifier appeared to be applicable 

across different adenocarcinoma types, including breast and gastric cancer, and even 

cancer of the gastro-esophageal junction (data not shown). This suggests that HER2 

overexpression might be based on common molecular events irrespective of the 

tumor type and that data obtained by MALDI imaging can be combined and compared 

across different cancers and studies. A subsequent project from a colleague extended 

this idea and combined the data from six tumor types in order to determine the 

primary tumor of metastatic tumors [85]. 

It is of importance that the determination of HER2 status has been carried out on the 

mean spectra over cancer regions, i.e. the spatial distribution within data sets was not 

considered. However, this might be problematic in cases where HER2 positive cells 

constitute a minority and thus signals indicating HER2 positivity may be lost in the 

average spectrum [167]. To address this problem, a supervised, pixel-based 

classification of the HER2 status of breast cancers sections was carried out in 

consecutive experiments. This approach facilitated to identify samples with 

heterogeneous HER2 expression. This could be important because intratumoral 

heterogeneity has been identified as a major factor to influence prognosis and therapy 

response of patients [168, 169]. In this context, a high spatial resolution is required in 

order detect even smallest but relevant tissue cell populations.  

An increased spatial resolution could also have extended my studies to diffuse-type 

gastric cancers. These were mostly excluded from my studies because diffuse-type 

gastric cancer is characterized by a non-adhesive growth leading to the wide-spread 

distribution of single cancer cells in a tissue which makes their measurement without 

single cell resolution difficult. Several groups have worked on sample preparation 
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procedures and instrumentation to achieve now measurements at cellular and even 

sub-cellular level [170, 171]. 

Another important practical obstacle in imaging mass spectrometry is still the 

quantification of the signals measured. Solving this issue could facilitate inter-

laboratory comparability and reproducibility, opening possibilities for multicenter 

studies and, therefore, the clinical applicability of MALDI imaging. This has been 

recognized by the MALDI imaging community and is therefore in the focus of recent 

investigations [172]. Although both of my studies included an independent validation 

step, such harmonization would facilitate to test the general applicability of both 

protein signatures in larger multicenter cohorts, also prospectively. If my data are 

confirmed in larger numbers of patients, tissue-based proteomics profiling by MALDI 

imaging could have implications for the clinical management of patients with gastric 

cancer. 

In that way, one could envision the translation of MALDI imaging into clinico-

pathological routine. Especially in gastroenterology, which is significantly based on 

bioptic diagnostics, tissue samples from patients could be tested by MALDI imaging for 

the protein signatures found in my studies (Figure 3-1). This could assist the clinician in 

the clinical management of the patients with regard to therapy decision making and 

survival prediction – thus, making one more step towards a more personalized 

medicine. 
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Figure 3-1 Visionary application of MALDI imaging in a clinical setting (gastroenterology). 
MALDI imaging is able to analyze even smallest tissue samples from patients, such as 
endoscopic biopsies, which are routinely collected in a gastroenterological setting. The 
subsequent MALDI imaging analysis is quick, histology-directed and allows extracting spatially 
resolved, cell type-specific molecular signatures from a wide variety of molecule classes. These 
patterns may, therefore, objectively support the clinician or pathologist in relevant questions 
such as in tissue diagnostics, therapy response prediction, or disease outcome prediction. 
Taken from [77]. 
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4.1 MALDI imaging mass spectrometry 
In the following subsections the basics, the advantages and limitations of mass 

spectrometry will be briefly explained with regard to the relevant issues for MALDI 

imaging. Then, more details will be given on the principle, the workflow and the 

applications of MALDI imaging. 

 

4.1.1 Mass spectrometry 

Mass spectrometry refers to a methodology that ionizes sample molecules and 

separates the ions according to their mass-to-charge (m/z) ratio in high vacuum. The 

result, a mass spectrum, is a graphical plot of measured ion intensity versus its m/z 

value (example: Figure 4-3, B and C) [60]. 

Components of a mass spectrometer 

A mass spectrometer device consists of three major parts: an ion source, where the 

analytes are ionized, a mass analyzer which separates the ions according to their m/z 

ratio, and a detector which records the ion current (Figure 4-1) [173].  

 

Figure 4-1 Principal components of a mass spectrometer. A mass spectrometer device consists 
of an ion source, where the analytes are ionized, a mass analyzer which separates the ions 
according to their m/z ratio, and a detector which records the ion current. The system must be 
under vacuum condition for the unhindered analysis of the analytes. A data analysis system for 
the interpretation of the recorded data is also a basic component. 

There are several techniques for the ionization of an analyte. These can be grouped 

into four basic categories: electron, spray, desorption, and chemical ionization 

techniques [174]. Electron and chemical ionization are suitable for small, volatile 

compounds. In contrast, “soft” ionization techniques like the electrospray ionization 

(ESI) and matrix-assisted laser desorption ionization (MALDI) samples allow measuring 

large labile molecules such as proteins. While ESI ionizes molecules within liquid 
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samples, MALDI is applied for ionization of molecules embedded into a solid matrix 

[173]. Both methods have been crucial for the rapid advance in proteomics [60]. With 

regard to mass spectrometry as an imaging technique, the ionization must be done 

from a solid surface, leaving the desorption methods, such as MALDI, as the only 

choice [174]. 

Matrix-assisted laser desorption/ionization (MALDI) 

Preparation for MALDI experiments requires the sample to be mixed with a low 

molecular weight organic molecule, called ‘matrix’. This matrix has to show high 

energy absorption at the wavelength of the applied laser beam. In addition, each type 

of matrix favors the ionization/desorption of a different type of biomolecules (Table 

4-1) [173]. The most common matrix compounds in proteomic experiments are 2,5-

dihydroxybenzoic acid (DHB), α-cyano-4-hydroxycinnamic acid (CHCA), and sinapinic 

acid (SA) [175]. These compounds are usually dissolved in a 50%–70% acidified organic 

solvent solution which promotes analyte extraction [175]. 

Table 4-1 Common matrices. Taken from [173] 

Analyte Matrix 

Peptides 2,5-Dihydroxybenzoic acid (DHB, gentisic acid) 

 

alpha-Cyano-4-hydroxycinnamic acid (CHCA) 

 

3-Hydroxypicolinic acid (3-HPA) 

 

2,4-Dinitrophenylhydrazine (2,4-DNPH) 

Proteins 2,5-Dihydroxybenzoic acid (DHB, gentisic acid) 

 

alpha-Cyano-4-hydroxycinnamic acid (CHCA) 

 

3,5-Dimethoxy-4-hydroxycinnamic acid (SA, sinapinic acid) 

Oligonucleotides 4,6-Trihydroxyacetophenone (THAP) 

 

3-Hydroxypicolinic acid (3-HPA) 

Lipids 2,5-Dihydroxybenzoic acid (DHB, gentisic acid) 

  2,6-Dihydroxyacetophenone (DHA) 

 

After evaporation of the solvent, analyte molecules are embedded into the crystal grid 

of the matrix (Figure 4-2). Under high vacuum conditions, a pulsed laser beam is 

directed toward the co-crystal. Matrix molecules are excited by the laser energy which 

results in an explosion and transition of matrix and embedded sample analytes into 

the gas phase. During this process ionization of the analyte molecules (M) takes place 

which typically results in single protonation (M+H)
+
 or deprotonation (M-H)

-
; addition 

of a single sodium (M+Na)
+
 or potassium atom (M+K)

+
 is less frequent.  
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Figure 4-2 Principle of matrix-assisted laser desorption/ionization (MALDI). Analytes are co-
crystallized with a light absorbing matrix. A short laser pulse irradiates the matrix surface. The 
matrix absorbs the energy which leads to a desorption process of both matrix and analyte 
molecules. During this process analytes are ionized by protonation which facilitates the 
acceleration of the produced ions by an electrostatic field towards the mass analyzer. Modified 
from [173]. 

MALDI is referred to as “soft” ionization method as most of the energy is absorbed by 

the matrix, leading to less fragmentation of the analyte components. This makes 

MALDI especially suitable for the ionization for larger biomolecules such as peptides or 

proteins which in turn makes it attractive for proteomics research. 

Mass analyzers 

Once the ions have been created they have to be separated in a second step by the 

mass analyzer. This can be done according to the needs of the scientist on the basis of 
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different physical principles. There are plenty of different mass analyzer techniques 

including quadrupole, ion trap, time-of-flight (TOF), Fourier-transform ion cyclotron 

resonance (FT-ICR), or Orbitrap mass analyzers. For a concise overview and 

comparison of these technologies please refer to the literature [67, 174]. Most 

commercial MALDI based mass spectrometers are combined with a time-of-flight 

(TOF) separator.  

Time-of-flight mass analyzer 

Briefly, in the time-of-flight (TOF) approach, the m/z value of a molecule is determined 

by measuring its flight time through a drift tube under high vacuum (Figure 4-3) [11]. 

 

Figure 4-3 Time-of-flight (TOF) separation of MALDI ions. Following acceleration in the MALDI 
ion source, the ions can be separated according to their different times of flight trough a 
vacuum tube which depend on their mass and charge (m/z) (A). The intensities measured by 
the detector depend on the number of ions with the same m/z. A typical mass spectrum in the 
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mass range between m/z 2,000 and 20,000 is shown in (B), with a magnification of the mass 
range between m/z 5,000 and 8,000 (C). Taken from [11]. 

Directly after the molecules having been ionized they undergo, still in the ion source 

device, acceleration in an electrostatic field (Figure 4-2). At the end of the acceleration 

path, all molecules, even of different masses, have gained the same potential energy. 

This corresponds to the amount of kinetic energy that the molecules dispose to 

traverse the subsequent linear field-free drift region:  

                 
        

Formula 1 Energy for traversing TOF drift tube. Abbreviations: z, charge number of the particle; 
e, elementary charge; U, the electric potential for acceleration; m, mass of the particle; v, 
resulting velocity of the particle at the end of acceleration. Taken from [173]. 

The final velocity of a molecule through the flight tube is, thus, determined by its mass 

and charge. Obviously, heavier molecules will be slower than lighter molecules (Figure 

4-3, A). Given a known length for the flight tube, the time to traverse the tube is:  

      

Formula 2 Time for traversing TOF drift tube. Abbreviations: t, time for traversing the TOF drift 
tube; L, length of drift tube; v, velocity of particle. Taken from [173]. 

By measuring the time from laser pulse till ion hit at the detector, the m/z ratio of a 

molecule can be calculated by combining the two previous equations:  

 

 
 

          

  
 

Formula 3 Calculation of mass to charge ratio. Abbreviations: m/z, mass to charge ratio; e, 
elementary charge; U, the electric potential for acceleration; t, time to traverse drift tube; L, 
length of the drift tube. Taken from [173]. 

An important property of a mass analyzer is the mass resolution. The resolution in 

mass spectrometry is the ability to distinguish two peaks with similar mass-to-charge 

ratios [173]. There are effects that reduce the resolution. Molecules of the same mass 

may have an initial kinetic energy spread which may be caused by differences in place 

and time of ionization or differences in amount and direction of initial velocities [176]. 

The introduction of a reflector may correct these differences, thus yielding higher 

mass resolutions [176]. 
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The reflector is made of an electrostatic field that deflects the ion beam at the end of 

the flight tube toward a second detector (Figure 4-4). The depth of penetration into 

the electrostatic field depends on the kinetic energy of the ions; the more energy, the 

deeper the penetration and the longer the total way to reach the final detector. Thus, 

differences in initial energies of equal masses can be corrected by depth of 

penetration into the reflector. However, this is only true for lower m/z values. At 

higher m/z the reflector fails to achieve significant higher resolutions [176]. 

 

Figure 4-4 Principle of TOF based mass spectrometer with reflector. The reflector consists of an 
electrostatic field that deflects the ion beam at the end of the flight tube toward a second 
detector. The depth of penetration into the electrostatic field corrects differences in initial 
energies of equal masses, thus increases the resolution power of the mass spectrometer, 
however only for molecules up to 6kDa. For detection of higher molecular weight molecules 
the electrostatic field of the reflector is disabled and the linear detector is activated. Taken 
from [175]. 

Tandem mass spectrometry 

The reflector is also used to separate fragments of molecules that occur in the area of 

the first drift region. This phenomenon is called post-source-decay (PSD). PSD ions 

cannot be separated by a linear TOF mass analyzer as they have the same kinetic 

energy but different masses. However, the analysis of the PSD fragments delivers 

useful information concerning the structure and identity of the original ion. 

The measurement of PSD fragments of a specific parent ion may be realized by two 

consecutively arranged TOF mass analyzers (TOF/TOF, a.k.a. MS/MS, or tandem MS). 

The first TOF section acts as precursor m/z selector by deflecting other ions than of 

interest. The fragmented ions are then separated and detected by the second TOF 

[177]. Optionally, the precursor ion may be also artificially dissociated by collision gas 
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in an intermediate region, before being transmitted to the second TOF component 

[176]. 

Tandem MS has become one of the major tools for biomolecule analysis in the mass 

range m/z 500– 3,000 [176]. In proteomics, proteins are moved to the MS/MS mass 

range by performing a proteolytic digest, so that the resulting peptides of the proteins 

are actually analyzed. 

Abilities of MALDI-TOF mass spectrometry for proteomics research 

MALDI-TOF based mass spectrometry has become an indispensable tool in proteomics 

research. This is mainly due to its abilities listed below:  

 Soft ionization by MALDI enables measurement of intact large biomolecules 

such as oligonucleotides, peptides, and proteins. 

 Rapid, label-free and simultaneous (multiplexing) acquisition of hundreds to 

thousands of mass signals. 

 Measurement of post-translational modifications (PTM) such as 

phosphorylation, acetylation and methylation, as PTMs alter the mass of a 

protein in a predictable fashion [60]. 

 High sensitivity (down to femtomoles) which allows even small amounts of 

sample volumes to be analyzed [67]. 

 Mass range, which reaches from small (100 Da) to large molecules (>300 

kDa), allowing measurement of small molecules, metabolites, lipids, 

peptides and proteins [175]. 

 Determination of the identity or structure of molecules by analysis of their 

PSD fragments 

Besides these powerful abilities, MALDI-TOF also suffers from several disadvantages: 

 No direct knowledge of molecular identity, but “only” m/z values 

 PSD-based identification best possible on pre-purified (by gel or liquid 

chromatography) small peptides (<4,000 Da) or digested proteins 

 Mass resolution and accuracy drops with higher mass range 
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4.1.2 MALDI imaging mass spectrometry 

MALDI imaging mass spectrometry has been developed in the late 1990s with the idea 

to extend the application of conventional MALDI-TOF experiments to tissue sections to 

incorporate histological information [137]. During an MALDI imaging experiment a 

mass spectrum is acquired for each measuring spot, a so called pixel, in a predefined 

raster across a sample tissue section, resulting in a two dimensional distribution map 

for each measured m/z value (Figure 1-11) [68]. Importantly, as the sample is not 

damaged during the measurements, the very same tissue section can be stained 

conventionally afterwards, digitally scanned, and directly co-registered to the mass 

spectrometric data. This allows studying the spatial distribution of mass signals, 

corresponding to proteins, within their histological context. Furthermore, protein 

signatures can be specifically allocated to certain cell-type, such as tumor cells, 

inflammatory cells, connective tissue, etc. 

MALDI imaging was not the first mass spectrometry based imaging method. Secondary 

ion mass spectrometry (SIMS), introduced in the 1960s, uses an ion beam of high-

energy particles to cause, upon impact onto a sample surface, the emission of 

secondary ions that are then analyzed in a mass analyzer. SIMS instruments achieve 

nanometer size pixels but are usually limited in their mass range to below 1,000 Da 

[178]. 

In contrast to SIMS, MALDI allows investigating higher molecular weight content of 

tissues, such as proteins, peptides, lipids in their histomorphological context, however 

at a lower lateral resolution with typical pixel sizes of 20 to 200 µm available on 

commercial systems [68]. 

Until now, MALDI imaging of tissues is mostly done on cryo-preserved tissues. 

Nevertheless, new protocols are in development which enable the application to 

formalin-fixed, paraffin-embedded (FFPE) or alcohol preserved tissues [179-182]. In 

the next paragraph, the workflow of a typical MALDI imaging experiment is described 

for the well-established analysis of frozen tissues, which has been used in this thesis to 

analyze proteins. 

Sample preparation 

The whole workflow is depicted schematically in Figure 4-5. 

As first step, a native tissue section is placed by cryo-sectioning onto a pre-chilled and 

conductive glass slide. The conductive glass slide, typically realized by indium-tin-oxide 
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coating, facilitates mass spectrometry experiments and histological analysis to be 

done on the very same section. In our studies, slides were previously coated with poly-

L-lysine for better tissue adherence. The samples are then briefly rinsed in an 

increasing alcohol solution series to remove salts and fixate the tissue.  

As in any other MALDI experiment, samples have to be covered with a crystalline 

matrix before mass spectrometry can be performed. The analytes are extracted by the 

solvent in the matrix solution and incorporated into the matrix crystal structure after 

evaporation of the solvent. In direct tissue analysis by MALDI imaging, organic matrix 

solution is placed over the entire tissue section. The matrix deposition needs to be 

homogeneous and reproducible in order to guarantee comparability within and 

between measurements. The matrix can be applied either manually, by robotic 

spotting, nebulization, or sublimation, before laser shots are subsequently performed 

across the tissue sample. Systematic multi-measurement studies should use 

automated devices to guarantee the comparability of different measurements. An 

overview of different matrix application techniques can be found elsewhere [68, 175]. 

 

Figure 4-5 MALDI imaging mass spectrometry workflow. Before measurement a tissue section 

is cut and mounted onto a conductive glass slide and covered by a MALDI compatible matrix, 

which forms analyte-matrix co-crystals (top panel). MALDI mass spectrometry experiments are 
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repeated for all measurement spots on the tissue section (middle panel). The distance between 

the measurement spots defines the spatial resolution (=pixel size) of the resulting MALDI 

image. The intact tissue section can be stained and superimposed to the spatially resolved 

mass spectrometric data. This allows on the one hand visualizing mass signals for correlation 

with the underlying tissue morphology (lower panel, right). On the other hand, cell-type 

specific expression profiles can be obtained from regions of interest within the tissue (lower 

panel, left). Taken from [183]. 

Sample measurement 

After introducing the sample slide into the mass spectrometer, measurement regions 

are defined, which are then analyzed within a user-defined lateral resolution which is 

typically between 20 μm and 200 μm on commercial instrumentation [184]. An even 

higher lateral resolution could be achieved by Chaurand et al. using a custom-built 

mass spectrometer. They were able to perform MALDI imaging measurements of 

phospholipids at a cellular level, reaching resolutions lower than 5 µm [170]. 

The lateral resolution, i.e. the distance between the measurement spot, is limited both 

by the laser focus size as well as the average size of the matrix crystals [185]. 

Automated spotting devices have the advantage to apply small droplets of matrix or 

enzymatic solutions in a precise, uniform and highly reproducible manner. However, 

the droplet size (≥150 μm) determines the maximum lateral resolution. Automated 

spray coaters, like the ImagePrep station (Bruker Daltonik, Bremen, Germany) achieve 

smaller droplet sizes (~20 μm), thus facilitating higher resolution measurements [175]. 

The sample may be analyzed in linear or reflector mode depending on the type of 

analytes and the corresponding m/z range which varies between the different 

matrices. Mass ranges for proteins are usually between 2,000 and 30,000 Da, for 

peptides between 600 and 4,000 Da, and for small molecules between 100 and 800 

Da. 

Co-registration of stained sample 

One of the great advantages of MALDI imaging is that the tissue sample is not 

destroyed during the measurement. This allows for the precise correlation of mass 

spectrometric imaging data with the morphological features of the very same tissue 

section, as a consecutive section may differ in morphological details. For this, the 

matrix is eluted after the measurement by washing the sample with an alcohol 

solution before staining it with hematoxylin and eosin (H&E) [103]. The slide is then 

scanned with a digital slide-scanner and co-registered to the mass spectrometric data.  
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Data processing and analysis 

After co-registration, the spatial distribution of all m/z values can be assessed within 

the histomorphological features of the tissue (Figure 1-11). 

For clinical studies, the analysis pipeline is usually to extract the mass spectrometric 

data from histological interesting regions with designated states (e.g. healthy tissue, 

tumor tissue, or responder patient). Next, these data usually undergo normalization, 

recalibration (both to enable comparability between measurements), and peak 

picking. After processing, the peaks intensities (=mass signals representing molecules) 

of these spectra are tested for correlation with given biological or clinical endpoints. 

The spectra may also be clustered to investigate the molecular composition of a tissue 

sample without prior knowledge (more details can be found in the chapter 4.2 on 

statistical methods in MALDI imaging). 

Protein identification 

While MALDI imaging allows measuring hundreds of masses at once, it has the 

problem that only the molecular weight of molecules is reported without any name 

associated to them. This makes an additional protein identification step necessary. 

Protocols to identify the names corresponding to the masses are neither standardized 

nor universally applicable. These approaches can be grouped according to their site of 

measurement, on-tissue or extract based, and the application of digest, top-down 

versus bottom-up (Figure 4-6) [98]. 
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Figure 4-6 Workflow of protein identification. Depending on the molecular weight of the 
molecule of interest, either top-down or bottom-up identification has to be performed. For 
smaller molecules (<3.5kDa), a direct ionization and gas phase fragmentation (MS/MS) of the 
protein of interest inside the mass spectrometer can be performed (top-down), whereas the 
analysis of larger molecules involves protease digestion of the protein (bottom-up), usually 
within a mixture of other proteolytic fragments. Thus, additional separation steps by liquid 
chromatography (LC) or gel electrophoresis are necessary. Taken from [98]. 

In the top-down approach, no digestion is performed so that the full protein is 

fragmented and the resulting ions are used for identification. The advantage of the 

top-down approach is that the resulting identity can be directly matched to the mass 

obtained from MALDI imaging.  On-tissue (in situ) identifications are only possible for 

low mass proteins and peptides (<3,500 Da) [186]. Larger proteins cannot be identified 

by top-down on-tissue and have to be first extracted and isolated by gel or liquid 

chromatography steps. The isolation process of tissue extracts, however, is tedious 

and complicated. 

Identifications involving digestion of proteins is called bottom-up identification. The 

bottom-up analysis of tissue extracts provides long lists of identities. However, they 

are difficult to match to the unknown masses from undigested MALDI imaging 

experiments. Successful on-tissue identifications have been achieved in analyzing FFPE 

or frozen tissue sections which underwent previous digestion process. This generated 

hundreds of tryptic peptides in a mass range (m/z 500-3,000) amenable for sequence 
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analysis directly from their location in the tissue [179, 187, 188]. However, with a 

digest the information about the full protein is lost (isoforms, possible modifications 

on the undetected fragments, etc.). 

Taken together, there are examples of successful identifications, either with or 

without application of digest, but a standardized protocol is not available yet. 

Advantages and limitations of MALDI imaging mass spectrometry 

Despite the limitation of not providing directly the identity for each m/z value, MALDI 

imaging constitutes a powerful discovery tool for clinical research in the field of 

proteomics, lipidomics and pharmacokinetics, which has its strengths and limitations 

[98, 99, 133, 189]. 

 Advantages: analysis of smallest sample amounts (biopsies); histology-driven 

analysis;  

label-free; multiplexing; full protein analysis (PTMs); avoids time-consuming 

extraction, purification or separation steps, which have the potential for 

producing artifacts; application to FFPE/frozen tissue micro arrays; high 

throughput 

 Limitations: no direct protein identification; potential ion suppression; 

restricted to low molecular weight (<30 kDa) and soluble proteins 

 

4.1.3 Road map to clinical-relevant markers by MALDI imaging studies 

As shown, MALDI imaging is a powerful proteomic screening tool that may constitute 

the first step for providing specific marker candidates. However, as MALDI imaging 

detects “only” masses, subsequent protein identification approaches have to provide 

the molecular identity of the mass of interest. 

The knowledge of the molecular identity facilitates the validation of the significance of 

the candidate marker. A validation, especially in proteomics or transcriptomics 

studies, by a large number of independent patients is considered of great importance, 

as lots of previously proposed markers have shown not to be reproducible [64, 90, 

190]. For example, a meta-analysis of the most prominent cancer studies using 

expression profiling showed that in five studies the original results could not be 

reproduced [191]. The fact that until 2004 in only 10% of microarray studies an 

independent validation has been performed may explain why only few markers have 
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so far reached the phase of clinical trials or even the integration into clinical practice 

[54, 190]. In this context and for an initial intra-study validation, Meyer et al. favor 

immunohistochemistry using tissue microarrays, as they allow a parallel analysis of 

multiple tissue specimens for statistical validation under marginal methodical 

variances [64].  

In consequence, the validation of a marker candidate by immunohistochemistry on 

tissue microarrays of independent patient cohorts has been incorporated into most 

marker discovery workflows (Figure 4-7) [68]. To exclude subjective observer 

evaluation of staining, objective image evaluation may be performed by digital image 

analysis software.  

 

Figure 4-7 MALDI imaging mass spectrometry based biomarker identification workflow. As an 
unlabeled, multiplexing, morphology-driven approach, MALDI imaging is a powerful method 
for the discovery of protein signals as candidate biomarkers for a given clinical end point. After 
protein analytic identification of a candidate signal, the protein should be validated in an 
independent patient cohort by a different technique such as immunohistochemistry before 
being considered as a reliable tissue biomarker candidate. Taken from [68]. 

In addition, if a tissue marker has proven reliability in the validation cohort, it may be 

considered to check its applicability to serum. In contrast to direct serum studies, the 

depicted road map bypasses the sensitivity problem of traditional serum biomarker 

discovery, which is due to the dynamic range of the serum proteome, by delivering a 

target molecule from the possible origin of the disease [55]. 
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4.2 Statistical methods and considerations in 

MALDI imaging studies 
MALDI imaging analyses result in high-dimensional data sets consisting of several 

thousand of spatially resolved mass spectra, each of which contains hundreds or 

thousands of mass signals [192]. Such data sets are known to suffer the ‘curse of 

dimensionality’ [193]. 

As a consequence, advanced statistical data mining methods are required which take 

into account the nature of MALDI imaging data. Several of these techniques have been 

imported from the gene expression analysis community, which faces similar problems 

[68]. 

With regard to the presented thesis here, deeper explanations will be given on the 

methods applied in these studies. However, it is also intended to provide a general 

overview on the most important aspects of data mining and methods applied in 

MALDI imaging. 

 

4.2.1 Marker discovery/feature selection 

For studies with clinical questions, the first step in the MALDI imaging data analysis 

pipeline is to extract the mass spectrometric data from histological interesting regions 

with designated states (e.g. healthy, tumor, HER2 positive or poor survivor). After 

extraction of the corresponding spectra and subsequent spectra processing, the mass 

signals (features) of these spectra can be tested for correlation with given biological or 

clinical end points.  

Statistical tests 

These tests are performed by classical statistical tests like the Mann-Whitney U test, t 

test, Fisher test, Pearson’s correlation, or the log rank test for survival analysis. 

However, due to the curse of dimensionality, there is a risk of identifying false-positive 

features, as the type I error (error for false-positive discovery) has to be multiplied by 

the number of features that are tested. For instance, by setting the significance level 

of type I error to α=0.05, and testing 100 features, there will be 5 potential type I 

errors, i.e. 5 signals that are expected to be significant by mistake [193]. This multiple-

testing error can be corrected by p-value adjustment procedures like the ones from 

Bonferroni or Benjamini-Hochberg [194]. If not stated otherwise, reported p-values of 
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m/z species in the studies presented here were adjusted by Benjamini-Hochberg 

correction. 

Other techniques to control for the false discovery rate have already been employed 

in the field of MALDI imaging like the permutation t-test [79] or the weighted flexible 

compound covariate method [70]. Similar to the permutation t-test, the widely used 

significance analysis of microarrays (SAM) uses repeated permutations of the data to 

determine if a feature is significantly related to a clinical endpoint [71]. 

Another critical issue is the study size. To improve statistical reliability in preclinical 

MALDI imaging research studies, a minimum number of 50–60 samples have been 

proposed [189]. In both studies conducted for this thesis, the number of involved 

sample surpasses this recommended minimum number: for the study on prognostic 

proteins 63 patient samples have been measured and the HER2 classification study 

involves 107 samples. 

Other selection criteria 

In terms of applicable biomarkers, high values for sensitivity and specificity are of 

importance. A high discriminatory power may be indicated by the significance of a 

statistical test. However, the mutual relationship between sensitivity and specificity is 

best represented graphically by a receiver operating characteristic (ROC) curve (Figure 

4-8). The true positive rate is plotted versus the false positive rate for a varying cut-off. 

The resulting area under the curve (AUC) is an indication for the discriminatory power 

of the marker [41]. The AUC ranges from 0.5 for a total random classification to 1.00 

for a perfect classification, where both sensitivity and specificity have values of 100%. 

 

Figure 4-8 Receiver operating characteristic (ROC) curve. The ROC curve (right panel) is a 
graphical representation of the mutual relationship between sensitivity (true positive rate) and 
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specificity (1 - false positive rate) by varying a cut-off for the separation of two groups (red and 
blue, left panel). The discriminatory power may be represented by the area under the ROC 
curve (AUC), where the area 1 represents maximum discriminatory power and 0.5 is equal to a 
random classification (red dashed curve in the right graph). Taken from [41]. 

Other techniques alter the original representation of the variables by projection 

(principal components analysis) or compression using information theory [195]. The 

principal components analysis (PCA) is mostly used to reduce the number of variables 

to so called principal components while maintaining most of the information.  

In my presented studies, SAM and ROC analyses have been used to identify relevant 

features in terms of prognostic significance and discriminatory power between HER2 

positive and negative samples, respectively. 

 

4.2.2 Classification algorithms 

Classification algorithms are used to group objects according to their differences or 

similarities in a defined feature space. For MALDI imaging data sets, usual objects to 

classify may be single spectra of a tissue section or a representative spectrum taken 

from a region of a sample (e.g. tumor areas). The mentioned feature space can be 

based on all mass signals detected or on a signature of relevant mass signals which 

may had been determined previously by a feature selection process, as explained 

before. 

Two types of classification algorithms can be distinguished: unsupervised or 

supervised. Unsupervised methods can be applied to the objects without prior 

knowledge, making it a discovery tool for identifying molecularly similar groups of 

objects, termed ‘clustering’. In contrast, supervised methods rely on a previous 

training of the classification model by samples with known status (e.g. responder, poor 

survivor). Thus, depending on the combination of classification algorithm and objects 

to classify, different scientific questions can be addressed in MALDI imaging studies 

(Table 4-2). 
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Table 4-2 Types and application of classification algorithms in MALDI imaging 

Classification of spectra … Statistical classification method 

  Unsupervised Supervised 

Within one sample for … 

Investigation of molecular 

composition within one sample 

(e.g. to study tumor heterogeneity) 

by clustering algorithms 

[88] 

Spatially-resolved classification of 

tissue regions (e.g. HER2 status, 

potential metastatic cells) 

[76] 

Between samples for … 

Ad hoc clustering of 

samples/patients with known or 

unknown status into different 

groups (e.g. for discovery of 

cancer subtypes) 

[196] 

Predictive classification of 

samples with unknown status 

after training of the classifier with 

samples of known status (e.g. 

responder, poor survivor) 

[72] 

 

The most important aspects to consider when choosing a certain algorithm are the 

degree of parameterization of the method and its susceptibility to overfit i.e. not being 

able to reproduce the results in another sample set. Both are closely connected. As 

results are prone to vary with increased freedom of parameterization, reproducibility 

is assured by employing algorithms with a very low number of parameters. 

In the following paragraphs, several of the most commonly employed classification 

methods are introduced; however, the focus will be on methods used in this thesis.  

Hierarchical clustering (Unsupervised clustering) 

Unsupervised algorithms group objects according to their distance in a given feature 

space which is defined in MALDI imaging by the selected m/z species. One of the most 

popular unsupervised methods is the hierarchical clustering. The peculiarity of 

hierarchical clustering is that it organizes the single objects and clusters according to 

their similarities in a tree-like structure called dendrogram (see Figure 1-8, B). Clusters, 

represented by nodes in the tree, are built by iteratively grouping single objects or 

clusters according to a defined distance metric until all objects are located in the same 

cluster (root of the tree). 

The advantage of this procedure is that it does not require prior knowledge about the 

number of expected clusters as it finds a whole cluster hierarchy. Disadvantages are 

the memory consumption during calculation and the parameterization, which are the 

distance metric and linkage method.  
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However, this method has extensively been employed in gene-expression analyses 

where profiles have been used to discover new cancer subtypes or to predict survival 

[197, 198]. 

In MALDI imaging, this method has been used by Deininger et al. to assess molecular 

heterogeneities within morphological identical entities of gastric cancer tissue sections 

[88]. Another work by Yanagisawa et al., could distinguish subgroups of non-small-cell 

lung cancer with different disease outcome on basis of clustering MALDI profiles [69]. 

Other unsupervised algorithms 

Similarly, there are also non-tree based clustering algorithms. Importantly, the 

number of expected clusters has to be defined in advance.  

Some of them have been employed to perform spatial segmentation on MALDI 

imaging data sets [199]. Alexandrov et al., for example, used high dimensional 

discriminant clustering (HDDC) to group MALDI imaging spectra whereas the number 

of groups was defined beforehand according to the morphological entities observed in 

the sections [200]. Subsequent super-resolution segmentation was applied to 

artificially increase the resolution of the images for better interpretation [201]. 

Decision tree (Supervised classification) 

Supervised methods, in contrast, make use of additional information that comes with 

the initial data to construct a classifier. This model may then be used to predict the 

unknown status of other data.  

A very intuitive representation of a supervised algorithm is the decision tree. As the 

name says, decisions are organized in a tree where each node represents a decision 

according to a certain feature. For classification of a test object, it has to make its way 

from the root node to one of the leaves which represent the final assignment. An 

example is given as tree 1 from Figure 4-9. As depicted, the decisions of the tree 

define regions in an n-dimensional space where n is the number of involved features.  

The construction of the tree is an iterative process which starts at the root node. At 

each step the optimal feature for division of the remaining objects is selected. The 

process stops at perfect separation of objects or in case no divisive feature is left. 

Main advantage of this method is the easy interpretability of the tree by humans. That 

is why it is commonly used e.g. in medicine for diagnostic or treatment guidelines. 
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Disadvantage is its susceptibility for overfitting, i.e. the lack of generalization capability 

which is recognizable at the strict decision boundaries of tree 1 in Figure 4-9 which are 

localized very closely to the objects. 

Random Forest 

Random Forest can be described as a collection of decision trees with controlled 

variation (Figure 4-9). In contrast to single decision trees, the algorithm is robust to 

overfitting, while yielding high prediction accuracy [145, 202]. It is capable of dealing 

with a large number of input variables, and performance is robust with respect to 

parameterization [145]. 

Overfitting is avoided by introducing several random elements during the learning 

phase of the forest. These include random sample selection for construction of each 

new tree and random feature selection for samples splitting at each node. Thus, the 

major parameters for training are the numbers of trees and features randomly chosen 

at a node [145].  

For classification of a test sample, each tree of the forest is evaluated individually. The 

class label with the highest number in votes is assigned to the test sample. 

In MALDI imaging, Hanselmann et al. have provided evidence that the Random Forest 

classifier can be used for accurate, automated in situ annotation of tissues [145]. 

 

Figure 4-9 The Random Forest classification algorithm. A Random Forest classifier is a collection 
of decision trees where the single trees are constructed from bootstrap samples. Two trees of 
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the forest are shown in detail (left and center panels): at each node, the feature which allows 
for the best class separation is chosen (with respect to the subset of features selected for that 
node). The corresponding partitioning of the objects in the feature space is shown below with 
the decision boundary plotted in purple. On the very right, the decision boundary of the 
combined Random Forest is displayed which is based on the majority vote of the individual 
trees. Taken from [145]. 

Support Vector Machine 

The Support Vector Machine (SVM) is a powerful classifier which has been extensively 

used in a variety of high-dimensional classification problems in biomedicine, amongst 

others also for proteomic data sets [142, 143, 146]. 

Learning of a SVM involves the finding of an optimal hyperplane in the feature space. 

The optimal hyperplane is defined as having the maximum distance from the objects 

of the different classes (Figure 4-10) [193]. The support vectors, which are 

perpendicular to the hyperplane help to find the optimal hyperplane, as they define 

the distance between the objects and the separating plane. This maximum margin 

method guarantees generalizability, and thus less overfitting [193]. Mathematical 

kernels are used to transform the data into a higher-dimensional feature space in 

order to facilitate separability by the plane. 

 

Figure 4-10 The Support Vector Machine (SVM) classification algorithm. The SVM is a 
supervised classification algorithm which is trained by finding the optimal separating 
hyperplane with the maximum distance from the nearest training objects. Here, the SVM finds 
an optimal hyperplane for separating the objects of R1 (red circles) and R2 (grey circles) with the 
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help of the support vectors (dashed lines). The hyperplane constitutes the decision boundary 
to classify an unknown pattern into one of the two regions. Taken from [193]. 

Classification of an unknown object is simple since the hyperplane serves as decision 

boundary [193]. Main disadvantage of a SVM-based classification is the extensive 

parameterization which includes kernel selection, kernel parameterization, and cost 

definition for hyperplane construction violations.  

SVMs have been successfully employed in MALDI imaging studies to classify breast 

cancer samples or prostate carcinomas [53, 103]. 

 

4.2.3 Validation of marker and classifier performance 

Particular care must be given to the validation of potential markers and classifiers 

based on signatures, as the curse of dimensionality may also result in a poor 

generalization capability (overfitting). Overfitting can occur very often in discovery-

based research where large numbers of potential features are used to discriminate a 

small number of samples [190]. As overfitting causes non-reproducible results in 

independent sample collections, the solution to test for overfitting is to assess 

reproducibility [190]. If supervised methods are employed, this may be done initially 

by cross-validation methods. The principle is to iteratively split the available samples 

into a model generation set and a test set. Each time the model is evaluated by the 

test set and the final classification accuracy is averaged across all steps. 

Reproducibility can also be confirmed when different classification algorithms were 

employed on the same problem while reaching the same results. 

However, the application of the classifier or a single marker to an independent test set 

is considered the gold-standard to evaluate reproducibility [193]. Thus, in the here 

presented studies, an independent test set was used to validate the reproducibility of 

the results — where applicable. Otherwise a cross-validation was used to assess the 

classifier’s accuracy. 
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