
 

 

  

Components of aging:  

Neurophysiological markers of age-related changes                             

in visual attention 

 

 

 

Dissertation  

at the Graduate School of Systemic Neurosciences 

Ludwig-Maximilians-Universität, Munich, Germany 

 

Submitted by 

Iris Wiegand 

from Melle, Germany 

 

  



ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Date of Oral Examination: March 28
th

, 2013 

 

 

Supervisors:    Prof. Dr. Hermann J. Müller 

PD Dr. Kathrin Finke 



iii 

 

Acknowledgements 

 

I am very grateful for the contribution of many people without whom I would not have been 

able to write this dissertation. 

First of all, I would like to thank Hermann Müller, who offered me the opportunity to work in 

the much appreciated scientific and collegial environment at the General and Experimental 

Psychology Unit, LMU Munich. I also want to thank Hermann for his professional and 

experienced supervision, which improved my work in many ways.  

My deepest gratitude goes to Kathrin Finke, who supported and advised my work and PhD 

studies within the last three years in all respects. Besides her skilled proficiency and guidance, 

at each level of this project, she always encouraged me in going this way.  

I would like to thank Thomas Töllner for being very precise with designing and conducting 

ERP experiments and for his help and profound methodological knowledge in analyzing and 

interpreting the data.  

Thanks go to my colleagues at Copenhagen University, Thomas Habekost and Mads 

Dyrholm, for their methodological and theoretical help and support with analyzing and 

interpreting my TVA data, and for being so appreciative of my studies. 

Martina, Janine, Dodo, Jane, Wera, and Julia, thank you for being, or becoming, and staying 

my friends in the last three years. Thank you also for proof-reading parts of this thesis.  

Very special thanks go to my family, Gerhild and Norbert, Malina, Christiane, and Sophie. 

You are a constant source of support and strength in my life.  

Most importantly, I thank Clemens, for his patience and understanding in three busy years. 

Thank you for sharing all small and big moments with me, and thank you for your love and 

belief in me. 

 

  



iv 

 

Summary 

Age-related cognitive decline has been linked to a reduction in attentional resources 

that are assumed to result from alterations in the aging brain. A core ability that is subject to 

age-related decline is visual attention, which enables individuals to select the most important 

information for conscious processing and action. However, visual attention is considered a 

conglomerate of various functions and the specific components underlying age differences in 

performance remain little understood. The present PhD project aimed at dissociating age 

effects on several (sub-) components that concur in visual attention tasks within a 

neurocognitive approach. Established and theoretically grounded psychological paradigms 

that allow separating various attentional components were combined with event-related 

potentials (ERPs), which provide a temporally fine-graded dissociation of cognitive processes 

involved in a task.  

 

1st Project 

The first project was designed to determine the origin(s) of age-related decline in 

visual search, a key paradigm of attention research. To pursue this goal on a micro-level, 

response time measures in a compound-search task, in which the target-defining feature of a 

pop-out target (color/shape) was dissociated from the response-defining feature (orientation), 

were coupled with lateralized ERPs. Several ERP components tracked the timing of 

processing stages involved in this task, these being (1) allocation of attention to the target, 

marked by the posterior-contralateral negativity (PCN), (2) target analyses in vSTM, marked 

by the sustained posterior-contralateral negativity (SPCN), (3) response selection, marked by 

the stimulus-locked lateralized readiness potential (LRP) and (4) response execution, marked 

by the response-locked LRP. Slowed response times (RT) in older participants were 

associated with age differences in all analyzed ERPs, indicating that behavioural slowing 

accrues across multiple stages within the information processing stream. Furthermore, 
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behavioral data and ERPs were analyzed with respect to age and carry-over effects from one 

trial to the next. The intertrial analyses revealed relatively automatic processes – such as 

dimension weighting facilitating the early stage of visual selection, and response weighting 

facilitating the late stage of response execution – to be preserved in older age. By contrast, 

more controlled processes – such as the flexible stimulus-response (S-R) (re-) mapping across 

trials on the intermediate stages of response selection - were particularly affected by aging. 

This indicates that besides general slowing, specific age decrements in executively controlled 

processes contribute to age-related decline in visual search. 

  

2nd Project 

The second project explored neural markers of individual and age differences in 

attention parameters formally integrated in Bundesen’s computational Theory of Visual 

Attention (TVA). According to the model, two parameters of general visual attention 

capacity, perceptual processing speed C and visual short-term memory (vSTM) storage 

capacity K are defined and can be modeled mathematically independently for a particular 

individual. More recently, the neural interpretation of the model (NTVA) suggested that the 

two functions (at least partly) rely on distinct brain mechanisms. To test this assumption in an 

empirical approach, individual TVA-based estimates were derived in a standard TVA whole 

report task, and ERPs of the same participants were recorded in an adapted EEG-compatible 

version of the task. In the first study of the second project, we explored neurophysiological 

markers of interindividual differences in the two functions in younger participants. The results 

revealed distinct ERP correlates to be related to the parameters:  Individuals with higher 

compared to lower processing speed C had significantly smaller posterior N1 amplitudes, 

suggesting that the rate of object categorization is associated with the efficiency of early 

visual processing. Individuals with higher compared to lower storage capacity showed 

stronger contralateral delay activity (CDA) over visual areas, indicating that the limit of 
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vSTM relies on topographically-organized sustained activation within the visual system. 

These results can be regarded as direct neuroscientific evidence for central assumptions of the 

theoretical framework. 

In the second study of the second project, the same approach was pursued to 

investigate whether and how TVA attentional capacity parameters and their neural markers 

change with aging. First, the same ERP correlates of processing speed and storage capacity 

indexing individual differences in younger participants (i.e., the posterior N1 marked 

differences in processing speed C and the CDA marked differences in storage capacity K, 

respectively) were found to be valid also in the older group. In addition to this, two further 

components marked performance differences in the parameters exclusively within the older 

group: Older participants with lower processing speed showed smaller anterior N1 amplitudes 

relative to faster older and all younger participants, suggesting a selective loss of resources 

supporting early control of attentional guidance. Older participants with higher storage 

capacity exhibited a stronger right-central positivity than older participants with lower storage 

capacity and all younger participants. This pattern is indicative of compensatory recruitment 

of additional neural resources in high-functioning older individuals, presumably related to 

enhanced executive control fostering sustained activation of vSTM representations. Again, 

these findings strongly support the NTVA framework, proposing distinct neural mechanisms 

underlying processing speed and storage capacity. Furthermore, they show that distinct 

mechanisms of attentional control determine the two functions in older age. 
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1.1. Aging research in cognitive neuroscience  

The cognitive status of aging individuals determines their independence, quality of 

life, and further physical and psychological development (e.g., Fillit et al., 2002; Harada, 

2010). Therefore, it is of paramount importance to understand the mechanisms involved in 

cognitive aging. From the perspective of cognitive neuroscience, aging processes are 

investigated in the context of their neurobiological underpinnings. A main goal in this 

research field is to link behavioral phenomena to underlying, latent psychological and 

neurophysiological factors.  

One cognitive domain with a major influence on every-day life functioning in older 

age is visual attention (Madden, 1990; Suto & Kumada, 2010). Essentially, visual attention is 

the ability to cope with the visual information overload we are constantly exposed to. It 

enables the observer to select the relevant information and determines the processing of this 

information according to the observer’s states and goals (Allport, 1989; Duncan, 1984; Posner 

& Petersen, 1990). Thus, visual attention is a crucial basis for intelligent interaction with our 

environment, and its integrity ensures confidence and safety when navigating through the 

overwhelming visual surrounding (Das et al., 2007; Hartley, 1992). Accordingly, attentional 

functions have been suggested to act as a mediator of age-related decline in various complex 

cognitive abilities (e.g., Craik, 2006). However, attention is considered as a set of various 

processes, and there is still no consensus on the exact nature and origins of the attentional 

resource limitations. A higher degree of specificity could be achieved by identifying neural 

correlates of distinct attentional components or resources, which might be differentially 

affected by aging. The aim of the present PhD thesis was to specify the nature of diverse 

attentional resource limitation(s) by dissociating several attentional components on the 

behavioral and neuronal level. In particular, psychological paradigms that allow disentangling 

processes involved in visual attention tasks were combined with ERPs in order to isolate brain 

activity related to the diverse processes.  
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In the following, I will give an overview of theories that influenced aging research in 

the last decades with a special focus on the role of (visual) attention functions in these 

models. First, earlier theories based on behavioral observations will be outlined. Second, these 

will be integrated with more recent developments ensuing from the availability of neuro-

cognitive methods. Following this, the method of event-related potentials (ERPs) will be 

introduced with particular emphasis on its application in the study of cognitive aging and 

visual attention. The last section of the introduction deals with theoretical frameworks of 

visual attention that, in combination with ERPs, were utilized to target the present work’s 

research questions.   

 

1.2  Neuro-cognitive theories of aging 

Age-related changes in cognition are not uniform: most, but not all functions are 

subject to decline, and different abilities are affected to varying degrees. Nevertheless, 

regularities are observable across tasks, sensory modalities, and cognitive domains (Figure 

1.1).  

 

Figure 1.1: Schematic illustration of age-related decline in different cognitive abilities during adulthood (adapted 

from Park et al., 2002). 
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Age decrements are generally more marked in tasks that require flexible on-line 

processing and rely heavily on attentional control (e.g., Grady, 2008). Furthermore, 

impairments become more severe with increasing difficulty or complexity of the task (Craik 

& Salthouse, 2000). In contrast, when operations are based on relatively easy implicit or 

automatic processes, performance is often preserved in older age (Jennings & Jacoby, 1993).  

 

1.2.1 One-factor models of cognitive aging 

In the 1980s and 1990s, several unitary frameworks have been developed that 

attributed age-related cognitive impairments to one central capacity limitation in the 

processing system (Cabeza et al., 2005). A prominent example is the ‘resource deficit theory’, 

which claims that a general reduction in the amount of available (attentional) resources with 

age accounts for the observable performance decline in various tasks (Craik, 1982). 

Consequently, deficits are assumed to become more marked when a larger amount of 

resources is required, such as under difficult, or complex, task conditions. In contrast, age 

effects would be absent, or relatively small, in easy tasks requiring fewer resources (e.g., 

McDowd & Craik, 1988).  

Subsequent approaches specified the mechanisms that might underlie reduced 

attentional capacity or resources in older age more precisely. For instance, the ‘inhibition 

deficit theory’ (Hasher & Zacks, 1988), states that age-related cognitive decline results from a 

central deficit in suppressing irrelevant representations or response tendencies, which leads to 

interference in further processing operations. The original framework mainly focused on the 

role of inhibition in controlling the contents of working memory, but more recent 

developments have proposed that the inhibition deficit already affects stages earlier in the 

processing stream, such as (pre-)attentional selection (Johnson et al., 2004). 

According to the ‘processing speed deficit theory’, cognitive decline is attributable to 

a general age-related reduction in mental speed. In fact, behavioral slowing is one of the most 
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ubiquitous findings in aging research, and explains a large amount of variance in age effects 

across multiple cognitive tasks (Cerella, 1985; Salthouse, 1996). A contentious point in aging 

research, however, is whether age-related slowing is specific to particular processes (sensory, 

cognitive, or motor processes) or reflects widespread, unspecific influences (e.g., Salthouse, 

2000; Wei et al., 2011). Related to this, general slowing has also been suggested to be a 

confounding factor in aging studies that potentially superimposes specific age-effects (e.g., 

Faust et al., 1999).  

Finally, the pattern of cognitive impairments in older age has been linked to a specific 

deficit in executive functions or ‘supervisory attentional functions’, such as mental flexibility, 

inhibition and control (e.g., Andrès & Van der Linden, 2000; Norman & Shallice, 1986; West, 

1996). In particular, age effects are more marked under complex experimental task conditions, 

which require participants to switch between task sets, or which induce response conflicts 

(e.g., Eriksen flanker task, Simon task, and Go-NoGo task; Verhaegen & Cerella, 2002; 

Verhaegen, 2011). For example, the flexible handling of stimulus-response (S-R) mappings in 

the tasks mentioned is assumed to be executively controlled and therefore prone to age-related 

decline (e.g., Castel et al., 2007; Hommel et al., 2011). However, it is difficult to decide 

whether age deficits indeed arise from this (or another) processing component, since a number 

of cognitive operations are involved in these or comparably complex tasks. Furthermore, it 

has been argued that simply this higher degree of task complexity but not executive processes 

per se cause larger age decrements, and deficits resulting from age-related decline in core 

cognitive abilities, such as processing speed or working memory span, would accumulate 

across mental operations involved in a task (e.g., Verhaegen, 2011). 

 

1.2.2 Cognitive neuroscience of aging 

The aging brain undergoes substantial anatomical and structural changes (e.g., 

Kemper, 1994). It is generally assumed that age decrements in cognitive functioning are 
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intimately linked to these alterations, and especially to a predominant decomposition of brain 

networks involving frontal areas (Moscovitch & Winocur, 1992; West, 1996). Accordingly, 

the attentional resource reduction in older age is suggested to stem from less efficient 

frontally-mediated attentional control functions (Craik & Byrd, 1982; Raz et al., 1999). 

Structural neuroimaging studies have confirmed that the pre-frontal cortex, and areas highly 

connected to it, are more susceptible to age-related reduction in brain volume and white 

matter deterioration compared with primary (e.g., visual) areas (Raz, 2000; Raz et al., 2005; 

Resnick et al., 2003). Furthermore, the dopaminergic system, which is known to regulate the 

efficiency of pre-frontal functions (Mattay et al., 2002), is particularly prone to age-related 

decline (e.g., Volkow et al., 2000).  

Functional neuroimaging provides a fruitful means to examine the relationship 

between cognitive and cerebral aging more directly by measuring brain activity while 

participants are engaged in a cognitive task (e.g., Grady, 2008, 2012). Task-related age 

differences in brain activity were has been shown to be most pronounced in frontally-

mediated circuits supporting executively controlled processes (e.g., Cabeza et al., 2002), 

whereas brain activity underlying automatic processes (e.g., implicit memory, priming) is 

comparable in younger and older age (e.g., Soldan et al., 2008). Importantly, findings from 

functional imaging studies have further shifted the view on aging from a one-sided focus on 

decline to a multifaceted picture of reorganization (e.g., Fabiani, 2012; Grady, 2012). In 

particular, aging can have opposing effects on brain activity, with activity being sometimes 

reduced and sometimes enhanced in older as compared to younger individuals. A decrease in 

activity with age is typically interpreted to reflect deficient processing due to neural loss in 

older adults (e.g., Grady et al., 1995), whereas an increase in brain activity can have multiple 

implications. It may indicate dedifferentiation, that is, less selective recruitment of resources 

that is unrelated to performance or potentially hampers cognitive functioning (e.g., Li & 

Lindenberger, 1999). On the contrary, higher activity in older compared to younger 
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participants may reflect compensatory recruitment in order to counteract degeneration effects 

(e.g. Cabeza et al., 2002).  

 

Figure 1.2: Possible explanations for age differences in brain activity. 

a) Higher activity and equal performance in older relative to younger participants. b) Similar or higher activity but 
worse performance in older relative to younger participants; a) and b) have been interpreted as evidence of less 
efficient neural processing. c) Additional activity and equal performance in older relative to younger participants 
could be either related to compensatory or non-selective recruitment. d) Additional activity correlated with 
performance only in older participants is evidence of compensatory activity (adapted from Grady, 2008). 

 

This ambiguity can only be solved by evaluating individuals’ brain activity according 

to their achievements in cognitive tasks. This way, it is possible to dissociate brain activity 

patterns related to retained performance levels in older age from those associated with 

significant cognitive decline (Grady, 2012; Reuter-Lorenz & Park, 2010; Figure 1.2). This 

line of research revealed fronto-parietal areas in the attention network to critically determine 

brain-behavior relationships during aging (e.g., Cabeza, 2002; Valessi et al., 2011). In 

general, increase in activity in frontal areas associated with better performance in the elderly 

is taken as evidence for compensatory recruitment (e.g., Davis et al., 2008; McIntosh et al., 
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1999). Specifically in visual attention tasks, effective attentional control in elderly has been 

demonstrated to correlate with increased activity in fronto-parietal areas (Madden et al., 

2007). 

To sum up, attentional capacity or resources supported by fronto-cortical structures 

appear to mediate cognitive performance especially in older age (e.g., Craik, 2006). However, 

there is as yet no clarification about the characteristics and origins of the attentional resource 

limitations and whether and how they contribute to age-related changes in performance.  A 

higher degree of specificity could be achieved by unveiling neural correlates of distinct 

attentional components or resources being differentially affected by aging.  

  

1.3 Event-related potentials in the study of cognitive aging 

Brain-behavior relationships in cognitive aging have mainly been inferred from 

functional magnetic resonance imaging (fMRI) and positron emission tomography (PET) 

data, which provided valuable insights into the anatomical locus of age-related changes in 

brain processes (e.g., Grady, 2008, 2012). However, owing to their reliance on inherently 

slow hemodynamic responses, these methods are inappropriate to map contemporaneous 

processes within a short period of time (e.g., Fabiani et al., 2012). Critically, the fate of visual 

input is assumed to be jointly determined by multiple attentional components within the first 

second after information is encountered (Posner & Boies, 1971). Thus, in order to dissociate 

age effects on different sub-components of attention, a method with high temporal precision is 

favorable.  

 

1.3.1 Separating processing components of visual attention with ERPs 

ERPs have an excellent temporal resolution that permits to neurophysiologically 

separate cognitive processes on a millisecond scale (Luck, 2005). They are extracted from the 
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ongoing signal of the electroencephalogram (EEG) by averaging signals that are linked in 

time to a repeated physical or mental event (Figure 1.3). By this means, characteristic mean 

voltage deflections (ERP components) marking sensory as well as higher-level cognitive 

processes have been identified. In general, ERP latencies track the timing of a sequence of 

consecutive processes and their amplitudes index the amount of neural resources engaged in 

the respective processes (e.g., Luck et al., 2000; Polich, 2007). Latencies, amplitudes and 

topography of ERP components vary across different task conditions or states of the observer, 

and also between different subject groups, such as younger and older participants. In either 

case, changes in the appearance of the ERP indicate alterations in the underlying generator 

networks. Although it is technically impossible to reconstruct the exact intracranial source of 

a scalp-recorded EEG signal, EEG source localization methods and fMRI/PET data have been 

successfully used to delineate generators of ERP components in many cases (e.g., Pascual-

Marqui et al., 2002). 

 

 

Figure 1.3: Schematic illustration of ERP acquisition.  

EEG is recorded while the participant performs a cognitive task. The ongoing signal is amplified and later 
segmented according to the event of interest. ERP waves are the average of all trial segments time-locked to the 
event (e.g., presentation of the visual stimulus). 
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ERPs have substantially contributed to a better understanding of the neural 

mechanisms underlying visual attentional functions. Distinct components have been shown to 

be sensitive to attentional effects on various stimulus-related stages, as well as on response-

related stages (e.g., Töllner et al., 2008). Thus, ERPs can be used to isolate and track the 

timing of several operations involved in visual attention (Luck et al., 2000; Table 1.1).  

 

Table 1.1: Overview of ERP components marking different processes involved in attention tasks.  

For a detailed description, quantification, analyses and interpretation of the components see sections below (and 
see Eimer, 1996; Eimer & Coles, 2003; Hillyard et al., 1998; Luck et al., 2000; Polich, 2007; Vogel & Luck, 2000) 

 

ERP Component  Process 

P1 Perceptual stimulus processing  

Posterior N1  Discrimination of visual stimuli 

Anterior N1 Voluntary attentional guidance 

Central Positivity (P3) Attentional processing of stimuli 

PCN (N2pc) Spatial allocation of attention to visual stimulus 

SPCN (CDA) Analyses and storage of visual information in visual 
short-term memory 

sLRP Selection of motor response 

sLRP Execution of motor response 

 

1.3.2 Mapping age-related changes with ERPs 

The latencies of several ERP components are typically prolonged for older relative to 

younger participants (e.g., Curran et al., 2001; Falkenstein et al., 2006). These latency delays 

are interpreted to index the slowing of sensory, cognitive, and motor processes due to aging 

(e.g., Fabiani et al., 2007). Amplitudes can be enhanced, or reduced, or unaffected by age, 

depending on the task and the component of interest (e.g., Friedman, 2003). Furthermore, the 

topographical distribution of some components systematically differs between age groups, 

indicative of changes in sources that generate the scalp potential (e.g., Fabiani, 2012). 
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Generally, age differences in ERPs indicate that the neural resources allocated to different 

processing components engaged in a task vary with age. The cognitive mechanisms 

underlying these age-related changes apparent in ERPs can be approached by combining EEG 

recordings with behavioral measures. Thus, together with appropriate experimental 

paradigms, ERPs are a promising tool to separate and identify distinct components of visual 

attention functions in older age (Braver et al., 2009). 

 

1.4 Theoretical frameworks and rationale of the studies 

The present PhD project aimed at providing a characterization of the complex neural 

mechanisms underlying age-related changes in visual attention. To achieve this goal, we 

combined the ERP technique with psychophysical tasks that allow the disentangling of 

attentional processing components in a highly specific manner. The studies were based on 

influential theoretical concepts and established paradigms in visual attention research, which 

will be briefly outlined in the following section. First, the ‘Dimension Weighting Account’ 

(DWA; Found & Müller, 1996) will be introduced, and how attentional processes involved in 

visual search can be interpreted according to the framework. Second, the ‘Theory of Visual 

Attention’ (TVA; Bundesen, 1990) will be outlined, and how distinct parameters of general 

attentional can be quantified according to the framework. 

.  

4.1 Separating attentional processes in visual search based on the ‘Dimension 

Weighting Account’ 

The first project was based on the DWA (Found & Müller, 1996; Müller et al., 1995), 

which interprets visual selection mechanisms in terms of allocation of capacity-limited 

attentional resources, or ‘weights’ (cf. Duncan & Humphreys, 1989). More precisely, 

attentional weights are assumed to be allocated to various basic visual dimensions (such as, 

color, shape, or size), with the total attentional weight being limited (e.g., Found & Müller, 
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1996). The efficiency of attentional selection can be measured by performance in visual 

search, a task that requires an individual to scan the visual environment for a particular object 

(the target) among other objects (non-targets). Target-selection in search tasks is assumed to 

be limited by the nature of required discriminations between different features or dimensions 

of stimulus attributes (Allport, 1971). Thereby, search performance on a given trial n is 

modulated by attributes of the preceding trial n-1, which has been explained by implicit 

memory traces that influence processing from one trial episode to the next (e.g., Found & 

Müller, 1996; Maljkovic & Nakayama, 1994). For instance, in a simple visual pop-out search 

task, in which the target automatically ‘pops out’ from the visual scene by differing from the 

non-targets by a unique feature, response times (RT) are faster if the target is defined in the 

same feature dimension as on the previous trial (i.e., color – color) compared to when the 

target-defining dimension changes across trials (i.e., color – shape; left panel of Figure 1.4). 

According to DWA, detection of a target requires that attentional weight is allocated to its 

defining dimension, amplifying its signal on an integrating overall saliency map of the visual 

display, which guides attentional selection (see also Wolfe, 1994). If a target in a given trial is 

defined by the same dimension as in the previous trial, stimulus selection is assumed to be 

faster due to enhanced coding of feature contrast of the already weighted dimension onto the 

saliency map, which speeds up the allocation of focal selective attention. In contrast, if the 

dimension of the target-defining feature changes across trials, a time-consuming re-weighting 

from the old to the new dimension is required, and target selection is therefore slowed (Found 

& Müller, 1996; Müller et al., 1995).  

 

Processing components in visual compound search  

Search performance can be considered a superposition of a sequence of processes, 

with the specific operations involved depending on the specific requirements of a given task 

(e.g., Töllner et al., 2012). In a compound search paradigm (Duncan, 1985), the observer has 
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to find a pop-out target among non-targets (e.g., defined by a unique color or shape), and has 

to respond to another (not target-defining) feature of the target (e.g., its orientation; right 

panel of Figure 1.4). In this case, one processing cycle consists of the following stages: target 

selection based on the target-defining feature, discrimination of the response-relevant target-

feature, response selection based on this discrimination, and finally, the execution of the 

selected response (e.g., Töllner, et al., 2008).  

 

 

Figure 1.4: Intertrial effects in visual search.  

Sequence of trials in a pop-out search task (left panel) and a compound search task (right panel). In both tasks, 
the pop-out target is defined either by a unique color or size, with the target-defining dimension varying randomly 
across trials. In the compound search task, the required motor response depends on the orientation of the target 
(triangle points up- or downwards), with the orientation also varying randomly across trial episodes and being 
statistically independent from changes/repetitions in the target-defining dimension. 

 

Furthermore, different types of intertrial effects are inherent in this task, which are 

suggested to operate at different stages of the processing cycle (e.g., Töllner et al., 2012; 

Zehetleitner et al., 2012). First   according to DWA   repetition of the target-defining 

dimension is assumed to facilitate the guidance of focal attention by enhanced saliency coding 
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of a target at pre-attentive processing stages. In contrast, in case of a change, attentional 

weight would have to be shifted from the old to the new target-defining dimension. Second    

analogously to the process postulated for dimension changes in DWA     repetition of the 

motor response is suggested to facilitate response execution on motor production stages by 

carrying over activation from the previous trial reducing the threshold at which the response is 

executed. In contrast, a change of the response is assumed to require a time-consuming shift 

from the old to the new response needing a stronger motor signal to reach the execution 

threshold (see Töllner et al., 2010, for ‘Response Weighting Account’). Finally, the 

association of the target-defining dimension and executed response can be either changed or 

repeated across trials, referred to as S-R mapping. The adaptation of S-R mappings across 

trial episodes is assumed to be an attentionally controlled mechanism (e.g., Hommel et al., 

2004) governed by stages supporting S-R transmission processes, which are intermediate to 

stimulus selection and response execution stages (Töllner et al., 2008; Pollmann et al., 2006; 

Figure 1.5). 

  

 

Figure 1.5: Schematic illustration of processing times across stages in a compound search task.  

The inferred processing times (black and gray lines) required by successive stages are depicted for each 
combination of intertrial effects in the task. The summed processing times of the three stages yield the overall 
reaction time for a given condition. sDsR = same dimension/same response; sDdR = same dimension/different 
response; dDsR = different dimension/same response; dDdR = different dimension/different response (adapted 
from Töllner et al., 2008). 

 

Rationale of the 1st project 

The first study was designed to examine the origins of age-related slowing in visual 

search. In addition, we aimed to dissociate general slowing from potential task-specific age 
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effects. The approach was built on the DWA, which has been proven to provide a theoretical 

framework for interpreting brain correlates of several capacity-limited attentional components 

(e.g., Pollmann et al., 2000; Weidner et al., 2002). To dissociate age effects on distinct 

processing components involved in visual search we used a compound search paradigm, 

which is an extremely simple task that allows separating processes with potentially differing 

sensitivity to aging. Combined with neuro-cognitive methods, the paradigm permits to isolate 

the brain mechanisms underlying these diverse processes
1
 (e.g., Pollmann et al., 2006; Töllner 

et al., 2008; 2012). Specifically, response times (RT) were coupled with ERP latency 

measures that index the speed of various stimulus- and response-related stages and, thus, can 

mark age-related slowing on the respective stages. First, we wanted to measure whether one 

or several stages are specifically slowed in older age, or whether all stages within one 

processing cycle contribute to the overall slowing, as it was proposed by one-factor models 

(Brinley, 1965; Salthouse, 1996). Furthermore, besides the general slowing factor, we aimed 

at dissociating between brain processes underlying relatively automatic from those underlying 

more attentionally controlled processes. In particular, analyses of intertrial effects were 

assumed to reveal whether aging would affect flexible re-mapping of S-R associations more 

than rather automatic weighting of a previously selected dimension or executed response, as it 

was proposed by models of aging that assume specific age decrements in executively 

controlled processes (e.g., West, 1996).  

 

1.4.2  Separating attentional parameters based on the ‘Theory of Visual Attention’ 

The second project was based on the TVA, which is a computational framework that 

allows partitioning attentional components into distinct mathematically defined parameters 

                                                           
1
 Note that the processes cannot be disentagled based on behavioral measures. RTs in compound tasks typically 

show an interactive pattern of trial-to-trial changes in the target defining dimension and response (Figure 1.5). 

The fastest RTs occur with full repetitions, whereas RTs are slowest when one feature repeats and the other 

changes, termed partial-repetition costs (PRCs; e.g., Müller & Krummenacher, 2006; Töllner et al., 2008).  
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(Bundesen, 1990). Similar to the biased competition model (Desimone & Duncan, 1995), 

TVA assumes that elements in the visual field race in parallel and compete to become 

encoded (Figure 1.6). In TVA, selection or categorization of an object equals encoding into 

visual short-term memory (vSTM) and is described in the form of ‘element x belongs to 

category i’, where x is an object in the visual field, and i is a perceptual category. 

 

 

Figure 1.6: Encoding process in TVA. 

At a first stage, each object in a visual field is weighted according to its importance of being attended. Based on 
the weights, processing capacity is distributed, which determines each object’s speed/propability of becoming 
encoded into vSTM, before it has been filled up with other items and/or the effective exposure duration has 
expired (adapted from Shibuya & Bundesen, 1988). 

 

The storage capacity of vSTM is limited to a number of K elements, and 

categorization requires that space in the limited vSTM is available. Thus, only those objects 

that complete processing fastest will enter vSTM. An element’s processing rate ( ) is 

determined by the amount of processing capacity allocated to it. The way processing capacity 

is distributed among the elements is determined by a combination of the objects’ sensory 

strength (), the observers’ perceptual decision bias (i) associated with a certain category 

and the relative attentional weight (wx) of object x relative to attentional weights across all 

objects in the visual field (S). Attentional weights of objects are derived from pertinence 

values (j), a measure of the importance of attending to objects that belong to category j. 

These processes are expressed in the two central equations of TVA:  
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1. Weight equation: computation of attentional weights ‘w’  

 

          

     

 

 
R: set of perceptual categories;  (x, j): strength of the sensory evidence that element x belongs to 

category j; j: pertinence value (importance of attending to elements that belong to category j). 

 

 

2. Rate equation: probability ‘ ’ of an object to be encoded into vSTM  

             

  

        
 

 
S: elements in the visual field; (x, i): strength of the sensory evidence that element x belongs to 

category i; i:  perceptual decision bias associated with category i (0<i <1); wx and wz : attentional 

weights of elements x and z (expresses the relative attentional weight of element x)  

 

The Neural Theory of Visual Attention 

More recently, correspondences between central equations of TVA and neuronal 

activity in the visual system have been proposed within the ‘Neural Theory of Visual 

Attention’ (NTVA, Bundesen et al., 2005, 2011). NTVA assumes that the total activation 

representing an object is proportional to both the number of neurons representing this 

categorization (pertinence i) and the firing rates of the neurons coding this objects’ features 

(bias i). Sensory information in the striate cortex is used for computing pertinence values 

within higher areas of the visual system. Based on these signals, a ‘priority map’ of 

attentional weights is configured, which determines the processing resources allocated to 

objects in the visual field. The pulvinar nucleus of the thalamus has been proposed as its most 

probable anatomical locus, but other areas linked to processing of visual relevance were also 

considered, such as the inferior parietal lobe and the lateral intraparietal area (Bundesen & 

Habekost, 2008). On the following selective stage, attentional capacity is distributed towards 

cortical visual areas based on the dispatched weight signals, which are multiplied by bias 

values. The product is used to instantiate a vSTM map of location. The vSTM map is 
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suggested to be located within the thalamic reticular nucleus, a topographically organized, 

highly interconnected area. The race of objects in the visual field starts when the vSTM map 

is initialized. Representations that ‘won’ the race and, thus, become encoded into vSTM, are 

maintained via reverberating circuits between the thalamus and cortical areas (Figure 1.7). 

Notably, NTVA is a fairly general neurophysiological interpretation of the theoretical model, 

and proposed anatomical implementation should be considered tentatively (Bundesen & 

Habekost, 2008). 

 

 

Figure 1.7: Simplified illustration of the brain mechanisms underlying visual categorization proposed by NTVA.  

For more detailed illustrations of the mechanisms see Bundesen et al. (2005, 2011). TRN: thalamic reticular 
nucleus; Pul: pulvinar nucleus; LGN: lateral genicular nucleus. 

 

Parameter modeling based on TVA 

The equations of the TVA model can be used to analyze behavioral data derived from 

simple experimental tasks. Specifically, in the TVA whole report, a number of letters are 

briefly presented and the participant is required to name as many letters as possible. The 

probability of encoding letter stimuli (measured by number of correct reports) develops 
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systematically as a function of exposure duration (see Duncan et al., 1999). The exposure 

duration of the display is varied, typically covering a range from the individual’s perception 

threshold to presentation time that allows filling up vSTM to its limit. The analysis of 

performance in this task yields individual estimates of central parameters of visual capacity. 

First, parameter visual processing speed C refers to the limited amount of information that can 

be processed within a given time and is expressed as the number of objects encoded as a 

function of time. In displays with multiple elements, C equals the sum of processing rates of 

all objects (C =   ). Second, parameter vSTM storage capacity K refers to the maximum 

number of objects that can be perceived at one point in time. The upper limit of the visual 

apprehension span is a well replicated finding that has also been found by using other 

paradigms (e.g., change detection; Luck & Vogel, 1997), and is about four items for young, 

healthy subjects. The reliability of TVA-based modeled parameters can be evaluated in terms 

of measurement errors (‘goodness-of-fit’), which can be considered minimal given testing 

conditions are appropriate (Finke et al., 2005). TVA-based assessment is further an 

exceptionally valid measurement, being grounded on an established theoretical framework. 

Most importantly, TVA provides unique specificity by defining and analyzing C and K 

mathematically independent of each other, which is a critical advantage over conventional 

neuropsychological test procedures in which the influence of both components is not 

dissociable. The general capacity parameters processing speed C and storage capacity K are 

considered fundamental attentional resources that jointly determine performance across a 

broad range of cognitive tasks (e.g., Cowan, 2001; Deary, 2010). Furthermore, they have been 

suggested to reflect attentional limitations that account for age-related changes in various 

cognitive abilities (e.g., Salthouse, 2000). The fact that NTVA has also proposed distinct 

brain mechanisms underlying the two parameters bears the potential to link the independent 

estimates to separate neurophysiological variables.  
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Rationale of the 2nd project 

TVA-based assessment permits to quantify age-related changes in a uniquely specific 

manner (e.g., Habekost et al., 2012; McAvinue et al., 2012). Furthermore, NTVA provides a 

basis for interpreting the neural mechanisms underlying age-related changes in visual 

perceptual processing speed C and vSTM storage capacity K, respectively. However, an 

empirical neuro-cognitive approach that allows measuring brain processes underlying the two 

central limitations of visual attention directly has not yet been established. Particularly in the 

context of aging, it would be promising to dissociate brain activity patterns related to 

attentional decline from those related to reserved abilities in older age.  

Therefore, with the second project we pursued two goals: In the first study of the 

second project, we aimed to develop an experimental setup that permits to directly test the 

neuronal separability of processing speed and storage capacity by dissociating neural markers 

of individual performance differences in the two functions. In the second study of the second 

project, we aimed to apply the approach evolved in the pioneering work to define the neural 

underpinnings of age-related alterations in attentional capacity parameters. Specifically, we 

combined TVA-based assessment with ERPs in an ‘interindividual differences’ design. 

Participants were grouped according to their behavioral performance, separately for C and K. 

In the initial study, ERP responses of subgroups of younger participants according to their 

performance level were compared twice: First, brain activity that marks individual levels of 

processing speed C was isolated by comparing ERPs of participants with relatively fast and 

slow processing speed. Second, brain activity that marks individual levels of storage capacity 

K was isolated by comparing ERPs of participants with relatively high and low storage 

capacity. In the following aging study, ERPs of younger and older participants, with each 

group being again separated according to performance level in processing speed and storage 

capacity, respectively, were compared. This way, we examined whether the same neural 

correlates of individual differences in processing speed and storage capacity would be 
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replicated in an older sample and mark age-related decline in the respective parameter 

estimates. Furthermore, the design permitted to pinpoint additional neural markers of specific 

age-related decline   or reserve   in the two parameters, which may differentiate between 

higher- and lower performing elderly. 
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2.1 Event-related potentials dissociate perceptual from response-

related age effects in visual search 

2.1.1 Abstract 

Attentional decline plays a major role in cognitive changes with aging. However, 

which specific aspects of attention contribute to this decline is as yet little understood. To 

identify the contributions of various potential sources of age decrements in visual search, we 

combined response time measures with lateralized event-related potentials of younger and 

older adults performing a compound-search task, in which the target-defining dimension of a 

pop-out target (color/shape) and the response-critical target feature (vertical/horizontal 

stripes) varied independently across trials. Slower responses in older participants were 

associated with age differences in all analyzed event-related potentials from perception to 

response, indicating that behavioral slowing originates from multiple stages within the 

information-processing stream. Furthermore, analyses of carry-over effects from one trial to 

the next revealed repetition facilitation of the target-defining dimension and of the motor 

response – originating from preattentive perceptual and motor execution stages, respectively – 

to be independent of age. Critically, we demonstrated specific age deficits on intermediate 

processing stages when intertrial changes required more executively controlled processes, 

such as flexible stimulus-response (re-)mapping across trials.  
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2.1.2 Introduction 

One essential daily task that becomes slower with age is visual search: our ability to 

discern and react upon a visually more or less distinctive item in a cluttered scene (Madden et 

al., 2004). Age-related slowing in the performance of visual search tasks might be attributable 

to a selective stage in the information-processing cycle, or it might originate from several 

stages and accrue across the sequential processes making up the cycle. Candidate stages are 

the selection of task-relevant sensory information, the identification of response-critical 

information, and/or the selection and execution of the required motor response (e.g., Kok, 

2000; Salthouse, 2000). The present study was designed to examine this question at the 

micro-level of separable processing stages. 

Performance in visual search tasks is known to be influenced by recently encountered 

stimuli and actions performed in response to them, within a sequence of trial episodes (e.g., 

Maljkovic & Nakayama, 1994; Müller et al., 2010). A special instance that might pose 

particular problems for older adults is the re-mapping of previously encoded stimulus-

response (S-R) associations across such episodes (Hommel et al., 2011). Presumably, the fast 

adaptation processes involving flexible S-R re-mapping from one trial episode to the next 

require a higher degree of executive control processes, which are particularly age-sensitive 

(e.g., Park, 2000). 

Using a cognitive neuroscience approach (e.g., Grady, 2008; Reuter-Lorenz & Park, 

2010), we examined behavioral performance together with lateralized event-related potentials 

(ERPs) of younger and older adults in order to determine the relative contributions of 

separable sources to age-related decrements in the performance of a visual pop-out search 

task. A pop-out target differs from distractors in a simple feature, providing a strong bottom-

up signal for focal-attentional selection (Treisman & Gormican, 1988; Wolfe, 1994). Thus, 

this task is highly suitable for assessing the effects of aging, because the underlying cognitive 

architecture and the processing stages involved – perceptual selection, perceptual 
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identification, response selection, response execution – are clearly defined (e.g., Müller & 

Krummenacher, 2006; Töllner et al., 2012b). Performance of a simple pop-out search task can 

be assumed to be relatively unaffected by strategies. This is a critical advantage compared to 

more complex search tasks, which are prone to search strategies that might systematically 

differ between younger and older adults (e.g., more careful search in older adults; see 

Hommel et al., 2004). Accordingly, age differences in pop-out search can be relatively 

unequivocally attributed to the well-defined processing stages involved. 

 

 

Figure 2.1: Stimuli and intertrial effects in the compound search task.  
Left: Illustration of search arrays in the present compound-search task. The target was equally likely defined by a 
unique color (upper panel) or a unique shape (lower panel). The task was to discriminate the orientation of the 
singleton target’s surface stripes (horizontal vs. vertical), which was independent of its defining dimension. Right: 

Illustration of the four resulting intertrial effect conditions. sDsR = same dimension/same response; sDdR = same 
dimension/different response; dDsR = different dimension/same response; dDdR = different dimension/different 
response. 

 

Here, we used a variation of the classic pop-out paradigm, the so-called compound-

search task (e.g., Bravo & Nakayama, 1992; Duncan, 1985), in which the selection- and the 

response-defining target features vary independently of each other across consecutive trials. 

The pop-out target was defined, variably across trials, by a unique feature in either the color 
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dimension: a single red (striped) circle within a display of yellow (striped) circles, or in the 

shape dimension: a yellow (striped) square among yellow (striped) circles. Thus, target 

selection depended on detecting a salient color or, respectively, shape difference in the search 

array. Independently of this, the response was defined by the orientation of the pop-out 

target’s stripes: ‘vertical’ or ‘horizontal’ orientation was responded to by a left or, 

respectively, right mouse button press (Figure 2.1). 

By analyzing carry-over effects from one trial to the next in this task (repetition vs. 

change of the target-defining dimension, repetition vs. change of the response-defining 

feature), we were able to compare the influence of recently encountered selection- and 

response-specific information between age groups. If a target on a given trial n is defined by 

the same feature or in the same dimension as the target on the preceding trial n-1, attentional 

guidance is facilitated, due to featural/dimensional ‘priming’ or ‘weighting‘ (e.g., Found & 

Müller, 1996; Maljkovic & Nakayama, 1994, 2000; see also Töllner et al., 2009, for 

‘modality-weighting’): responses are faster compared to when the search-critical feature or 

dimension changes across trials (e.g., a color target preceded by a color target vs. a color 

target preceded by a motion target). Note that featural/dimensional weighting operates largely 

implicitly and automatically. For instance, with regard to dimension weighting, this is 

evidenced by the fact that prioritization of the target-defining dimension on the preceding trial 

cannot be completely overcome by top-down control processes (Müller et al., 2003; Töllner et 

al., 2010) and is not dependent on explicit memory of the trial history (Müller et al., 2004). 

Critically, repetition facilitation has been shown to be largely spared from age-related decline 

(Kumada & Hibi; 2004; Madden et al., 2004; McCarley et al., 2004). However, in compound-

search tasks, response times (RT) also vary with changes in the to-be-performed motor 

response across trials, more critically, with changes (vs. repetitions) of the S-R mapping (e.g., 

Lamy et al., 2010; Töllner et al., 2008). Although changes in the target-defining dimension 

and the response-defining feature are statistically independent of each other, an interactive RT 
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pattern (e.g., Müller & Krummenacher, 2006) indicative of partial repetition costs (PRCs; 

e.g., Hommel, 2004) is typically observed: Responses are faster when both the dimension- 

and response-defining attributes are repeated or when both change, and slower when only one 

of the two attributes changes while the other one is repeated (e.g., Pollmann et al., 2006; 

Töllner et al., 2008). The magnitude of such PRCs has been suggested to depend on an 

individual’s ability to flexibly break up the S-R association established on the previous trial 

and configure a new linkage – that is, essentially, the efficiency of executive control processes 

(Colzato et al., 2006; Hommel et al., 2011). It has previously been suggested that age-related 

changes in executive control processes, which are known to be particularly affected by aging, 

critically contribute to over-proportional RT costs in elderly when stimulus-response re-

mappings over trial sequences are required, as, for example, in the Simon Task (e.g., Castel et 

al., 2007) or in task-switching paradigms (e.g., Mayr, 2001). In particular, it has been 

proposed that control over response selection might be a crucial determinant of age effects 

(Hartley, 2001) and could be localized best by using tasks involving the control of more 

general or primitive sets of S-R-mapping (Castel et al., 2007). On this basis, we tested 

whether PRCs in a simple compound-search task would also be particularly marked in older, 

in comparison with younger, adults. 

By examining lateralized ERP responses in combination with RT measures (Posner, 

2005), it becomes possible to disentangle the effects of aging, including their interactions with 

intertrial effects, on distinct stages of processing in visual search, in particular: those of (1) 

preattentive perceptual, (2) post-selective perceptual, (3) response selection, and (4) response 

production processing (Mazza et al., 2009; Perron et al., 2009; Töllner et al., 2011b). Pursuing 

this approach (Figure 2.2), we analyzed the following lateralized ERP components: the 

Posterior Contralateral Negativity (PCN; this component is traditionally referred to as N2-

Posterior-Contralateral (N2pc); however, we prefer the term PCN to emphasize its 

independence from the non-lateralized N2; see e.g., Shedden & Nordgaard, 2001; Töllner et 
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al., 2011a); the Sustained Posterior Contralateral Negativity (SPCN; also referred to as 

Contralateral Delay Activity, CDA; see Vogel and Machizawa, 2004); the stimulus-locked 

Lateralized Readiness Potential (sLRP); and the response-locked LRP (rLRP). 

The first parameter of interest, the PCN component, is a negative-going deflection 

elicited over lateral parieto-occipital sites contralateral to the location of an attended stimulus 

in the time window approximately 175-300 ms post-stimulus (e.g., Luck & Hillyard, 1994; 

Woodman & Luck, 1999). The PCN is generally thought to reflect focal-attentional selection 

of task-relevant target objects amongst distracter items in visual space (e.g., Eimer, 1996; 

Woodman & Luck, 1999). It has been demonstrated that its latency varies markedly 

depending on a variety of top-down (e.g., featural task set: Eimer & Kiss, 2008; dimensional 

set: Töllner et al., 2010, 2012a), bottom-up (e.g., stimulus intensity: Brisson et al., 2007; 

stimulus saliency: Töllner et al., 2011a), and intertrial factors (e.g., dimensional target identity 

of the previous trial: Töllner et al., 2008). Thus, given that the deployment of focal-attention 

is guided by the outcome of early sensory feature-contrast computations, the timing of the 

PCN can be used as a temporal marker of the transition from the preattentive perceptual 

coding of the whole search array to the focal attentional processing of the selected (target) 

stimulus (e.g., Luck et al., 2006). Recently, a delayed PCN has been found to index age-

related slowing in visual attentional selection (Lorenzo-Lopez et al., 2008).  

Another lateralized posterior component manifesting at somewhat longer, 300–700 

ms, post-stimulus latencies (e.g., Jolicoeur et al., 2006; Perron et al., 2009), the SPCN, is 

assumed to reflect active visual short-term memory (vSTM) maintenance (e.g., Jolicoeur et 

al., 2006). This component is generated in visual attention tasks, including pop-out search 

(Mazza et. al., 2007), which require detailed analysis of the selected target in vSTM (e.g., 

Dell’Acqua et al., 2006; Mazza et al., 2009). Thus far, the SPCN has not been examined for 

age-related changes in visual search tasks. However, in change detection tasks, especially in 

older age, the SPCN amplitude is modulated by the timing and efficiency of prior, 
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attentionally controlled selection processes (Jost et al., 2010; Sander et al., 2011).  

Finally, the LRP is a negative-going deflection over the motor areas contralateral to 

the side of a unimanual response and has been linked to the activation and execution of 

effector-specific motor responses (e.g., Coles, 1989; Kutas & Donchin, 1980). The LRP onset 

calculated relative to stimulus onset (sLRP) indicates the point in time at which one of several 

possible responses is preferred – thus, reflects the time required to initiate an effector-specific 

motor activation (i.e., response selection) after the completion of stimulus-response 

translation processes (e.g., Töllner et al., 2012b). By contrast, the LRP computed relative to 

response onset (rLRP) reflects the time demands required to produce and execute this 

response (e.g., Miller et al., 1998). Recently, age-related slowing in speeded RT tasks has 

been found to be related to prolonged and enhanced amplitudes of the rLRP – indicating that 

older adults require higher activation levels for motor execution, which are time-consuming to 

build up (Falkenstein et al., 2006; Yordanova et al., 2004). 

In a pioneering study on young adults, Töllner et al. (2008) were able to attribute 

presumably automatic intertrial repetition facilitation and more controlled S-R (re-)mapping 

effects in a compound-search task to distinct sub-stages of processing, based on combined 

PCN, sLRP, and rLRP analyses. The authors found, irrespective of motor response changes, 

repetitions (relative to changes) of the target-defining dimension to produce shorter latencies 

of the PCN, indicating that (at least part of) the dimension-specific intertrial facilitation 

originates at the preattentive stage of saliency coding. In turn, irrespective of dimension 

changes, repetitions (relative to changes) of the generated motor response reduced amplitudes 

of the rLRP, indicating that response-specific intertrial facilitation originates at the stage of 

motor-response production. Importantly, the sLRP was found to be modulated interactively 

by dimension and response changes versus repetitions: its onset latencies were delayed for 

partial repetitions, that is, when either only the dimension or only the response changed, 

compared with complete repetitions or changes. Thus, the sLRP latencies showed a PRC-type 
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pattern, indicative of time-consuming S-R (re-)mapping processes at stages of response 

selection as the main source of the PRC effect found in the RT. Accordingly, assuming that S-

R re-mapping across trials is particularly affected in older age, this should show up in 

alterations of this stage concerned with response selection (Figure 2.2). 

 

 

Figure 2.2: Schematic illustration of the inferred intertrial and age effects.  
Upper row: processing stages involved in performing a compound-search task; the shaded arrow represents the 
assumed slowing with age that accumulates over successive stages. Middle row: ERP components from which 
potential effects on each of the processing stages may be derived (PCN = posterior contralateral negativity; 
SPCN = sustained posterior contralateral negativity; sLRP = stimulus-locked lateralized readiness potential; rLRP 
= response-locked lateralized readiness potential). Lower row: processes underlying intertrial effects on each 
processing stage; arrows indicate, for younger (solid arrows) and older adults (dotted arrows), the hypothesized 
influence of intertrial effects on each processing stage and the explored intertrial effects on post-selective 
processing stages (grey arrow). 

 

Taken together, the present study was designed to provide a complete and 

comprehensive picture of age-related changes in visual (pop-out) search by combining 

measures of (behavioral) response speed with those of event-related lateralizations. First, we 

examined separable stages of processing in task performance that might, selectively or 

additively, contribute to age-related slowing: (1) slower allocation of focal-attention in older 

compared with younger adults should be reflected in prolonged PCN latencies; (2) less 

effective target analysis in vSTM should be reflected in attenuated SPCN amplitudes; (3) 

retarded response selection should be reflected in delayed sLRPs (over and above any PCN 

latency difference); and (4) slowed motor response execution should be reflected in prolonged 
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rLRPs. Second, we examined whether older adults would show particular decrements in S-R 

(re-)mapping across trials: Based on previous reports with young adults (Töllner et al., 2008), 

we assumed increased behavioral PRCs in older adults to originate at processing stages 

concerned with S-R transmission. In particular, finding more prolonged sLRP latencies for 

partial repetitions vs. complete repetitions/changes in older, compared with younger, adults 

would argue that the age deficit is attributable to stages of response selection. Further, we 

examined whether SPCN amplitudes would be modulated by PRCs and age. A critical 

involvement of this component would support the functional interpretation relating the SPCN 

to the identification of response-critical target attributes during post-selective maintenance of 

visual object information (e.g., Eimer & Kiss, 2010), indicative of post-selective perceptual 

processing contributing to age-related decline in S-R (re-)mapping.  

 

2.1.3 Methods 

Participants 

Eighteen ‘young’ and eighteen ‘old’ adults were included in the sample (Table 2.1). 

Two further older participants and one further younger participant were excluded from 

analyses due to excessive amounts of eye movement activity. Further exclusion criteria were 

any history of neurological (e.g., traumatic brain injury, stroke), psychiatric (e.g., depression, 

anxiety disorders), chronic somatic (e.g., hypertension, diabetes), and chronic eye diseases 

(e.g., glaucoma, cataract). All participants had normal or corrected-to-normal vision, with 

visual acuity being 0.63 or better (Snellen, 1868), and were not color blind. The Mini-Mental 

State Examination (MMSE; Folstein et al., 1975) ruled out any symptoms prognostic of 

dementia: all participants achieved a score of 27 points or higher (cut-off: <24). The 

educational level was overall lower in the older compared with the younger participants, 

which is representative for the German post-world-war-II generation. However, the older 

participants achieved significantly higher IQ scores in a test of crystallized intelligence 



39 

 

(Mehrfach-Wortwahl-Test, MWT-B; Lehrl, 1977; Table 2.1). This is a common result, since 

crystallized intelligence measures reflect knowledge based on learning and past experiences, 

which accumulates during aging (e.g., Deary et al., 2010). Given this, the levels of 

intelligence can be considered comparable between the two groups. All participants gave 

informed consent and received payment for participating. 

 
Table 2.1: Group demographics. 

Gender distribution; Mean, SD (in parentheses) and range of age, education, and crystalline IQ; Shi
2
 or T-values 

of group comparisons. F: female; M: male; School: Duration of education (attended school years); MWT-B: 
German Multiple-Choice Vocabulary Test (Lehrl et al., 1977). 
 

 

 

Task and stimuli 

The visual search displays were similar to those used by Töllner et al. (2008): they 

consisted of eight stimuli – seven yellow circles plus one singleton ‘pop-out’ target (see 

below) – equidistantly arranged on the circumference of an imaginary circle (3.3° of visual 

angle in radius) around a central fixation cross (Figure 2.1). On each trial, a singleton, either a 

red circle (color-defined target) or a yellow square (shape-defined target), was presented at 

one of the six lateral positions among the seven yellow circle distracters. Each stimulus 

outline shape contained vertical or horizontal stripes composed of four colored bars separated 

by three black gaps. The orientation of the stripes within the stimuli was balanced on any 

given trial (4 vertical and 4 horizontal). All stimuli were isoluminant (17 cd/m2). Target 

 Younger Adults Older Adults Chi2 or T 

Sex      
(F/M) 

10/8 7/11 Chi² = 1,00; p = .32 

Age     
(years) 

26.18  (3.20) 19-30 67.39 (3.80) 61-75 t(34) = 35.57; p < .001 

Education 
(years) 

13.00 (0.00) 13-13 11.78 (1.59) 9-13 t(34) = 3.26; p < .005 

IQ            
(MWT-B) 

114.80 (10.42) 101- 130 134.94 (6.31) 118-143 t(34) = 7.87; p <.001 
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position, target-defining dimension (color, shape), and orientation of the stripes inside the 

target stimulus (horizontal, vertical) were randomized across trials.  

 

Procedure 

Participants were seated in a dimly lit, sound-attenuated, and electrically shielded 

cabin (IAC). They viewed the stimuli from a distance of approximately 65 cm on a 17” CRT 

monitor (1280 x 1024 pixels resolution; 100-Hz refresh rate). To control for task proficiency, 

all participants took part in a practice session some 5–10 days before the EEG session. They 

performed two to four practice blocks of trials until they achieved a minimum of 90% correct 

responses and a mean reaction time below 1000 ms. Participants who were unable to reach 

these criteria were not admitted to the EEG experiment (1 of 40 participants). The EEG 

experiment consisted of 12 experimental blocks of 72 trials each. A trial started with a white 

fixation cross presented centrally for 500 ms, followed by the search display presented for 

200 ms. The following blank display was terminated by the participant’s response or after a 

maximum (time-out) duration of 2000 ms. The subsequent intertrial interval, during which a 

central white fixation cross was presented, lasted randomly 950, 1000, or 1050 ms. 

Participants were instructed to maintain central eye fixation throughout the experiment. They 

were asked to produce a speeded 2-alternative-forced-choice response indicating the 

orientation, horizontal vs. vertical, of the singleton target’s stripes. In case of an incorrect 

response or a response latency longer than 2000 ms, the word ‘FALSCH’ (German word for 

‘INCORRECT’) appeared centrally for 1000 ms. Participants responded (‘vertical’ or 

‘horizontal’) by mouse button press, using their left or their right thumb, respectively. Initial 

orientation to mouse button assignments were counterbalanced across participants and 

reversed for each participant after the first experimental half (6 blocks, 72 trials each). To 

ensure correct S-R mapping, participants performed at least one practice block prior to the 

start of each experimental half. Participants were instructed to maintain a reasonably low error 
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rate, of 5% to 10% errors. This was done to ensure similar error rates across the two age 

groups, that is, to rule out differential response criteria and speed-accuracy trade-offs, which 

could have had an influence on RT and ERP patterns especially in the older adults 

(Rinkenauer et al., 2004; Wild-Wall et al., 2008). After each block, participants received 

feedback about their mean response accuracy and mean RTs. 

 

EEG data acquisition  

The EEG was continuously digitized from 64 active Ag/AgCl electrodes (actiCap 

System, Brain Products, Munich) at 1 KHz. Electrodes were mounted on an elastic cap (Easy 

Cap, FMS, Munich, Germany), placed according to the International 10/10 system (American 

Electroencephalographic Society, 1994). All electrophysiological signals were referenced to 

FCz and re-referenced off-line to averaged mastoids. Horizontal eye movements were 

recorded by means of electrodes F9 and F10 and vertical eye movements were recorded from 

Fp1 and an electrode placed beneath the left eye. EEG and electrooculogram were amplified 

by BrainAmp amplifiers (BrainProducts) using a 0.1–250-Hz bandpass, and filtered off-line 

using a 0.5-Hz high-pass filter (Butterworth zero phase, 24 dB/Octave). Next, the EEG data 

was visually inspected in order to detect and manually remove epochs of non-stereotypical 

artifacts. This was followed by an Infomax Independent Component Analysis, as 

implemented in the Brain Vision Analyzer software (BrainProducts, Munich), run to identify 

and back-transform ocular artifacts (blinks and horizontal eye movements) before the EEG 

was segmented into stimulus-locked (see PCN, SPCN, and sLRP analyses below) and 

response-locked epochs (see rLRP analysis below). Trials involving incorrect behavioral 

responses or artifacts – defined as any signals exceeding ± 60 µV on any electrode, ± 30 µV 

on electrodes F9 and F10, bursts of electromyographic (permitted maximal voltage 

steps/sampling point of 50 µV) – were excluded from the averages.  

For the PCN and SPCN analyses, EEG was averaged starting 200 ms prior to the onset 
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of the target display until 600 ms post display onset, baseline corrected based on the 200-ms 

pre-stimulus period. The components were quantified by subtracting ERPs at electrodes 

PO7/PO8 ipsilateral to the side of the target in the search array from the contralateral ERPs. 

The PCN latencies were determined as the maximum negative deflection within the 170–320-

ms time window post-stimulus. Analyses of the SPCN were conducted on mean amplitudes 

for the 350–600 ms post-stimulus interval.  

For the LRP analysis, stimulus- and response-locked waveforms were extracted from 

the EEG data by subtracting ERPs at electrodes C3/C4 ipsilateral to the side of uni-manual 

hand responses from contralateral ERPs. Stimulus-locked waveforms were epoched into 800-

ms segments following the onset of the search display, relative to a 200-ms prestimulus 

baseline. Response-locked LRPs were extracted by segmenting waveforms from 800 ms 

before to 200 ms after response onset. Onset latencies of sLRP and rLRP were determined 

according to Ulrich and Miller’s (2001; see also Miller et al., 1998) jackknife-based scoring 

method, defining LRP onset as the point in time at which the amplitude reaches a specific 

criterion relative to the baseline period. As suggested by Miller et al. (1998), we used 50% for 

sLRPs and 90% for rLRPs as optimal criteria to determine the onset latencies. Amplitudes of 

rLRPs were defined as averaging five sample points before and after the maximum deflection 

obtained in the time window 100–20 ms before response onset. 

 

Statistical analyses  

Behavioral data and ERP components were examined using the same statistical 

analyses. For ERP and RT analyses, we excluded trials on which observers made an incorrect 

response and trials on which the RT was excessively low (< 200 ms) or high (> 1200 ms). We 

excluded trials with RTs more than ±2.0 standard deviations from each participant’s condition 

mean. To control for overall age-related slowing effects, we examined individually z-

transformed RTs (Faust et al., 1999). In this analysis, for each individual, the overall mean 
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was subtracted of each condition’s mean, and divided by the standard deviation of the 

condition means; these z-scores then entered the ANOVAs. This z-transformation rescales the 

differences between conditions relative to each individual’s performance and eliminates mean 

differences in RT between individuals, including age-related differences. 

Analyses of variance (ANOVAs) were used for all statistical tests and all probability 

values were adjusted applying the Greenhouse-Geisser epsilon correction for nonsphericity 

(Jennings & Wood, 1976) whenever appropriate. Behavioral data and ERP waveforms were 

subjected to three-way ANOVAs with the between-subject factor Age (younger, older) and 

the within-subject factors Dimension Change (same, different) and Response Change (same, 

different). The magnitudes of potential PRCs were examined by calculating the difference 

between the mean for partial repetitions [same dimension and different response (sDdR), or 

vice versa, different dimension and same response (dDsR)] and the mean for complete 

repetitions (sDsR) and complete changes (dDdR). Note that PRCs are immune to possible 

main effects of dimension or response changes (see Hommel et al., 2011). Age differences in 

PRCs were examined by planned dependent t tests comparing the magnitude of PRCs of 

younger and older adults.  

 

2.1.4 Results 

Behavior 

Raw response times. The ANOVA on RTs showed that, in general, older participants 

responded more slowly than younger participants (703 vs. 566 ms) [main effect Age: F(1,34) 

= 38.01; p<.001]. Further, intertrial effects followed an interactive pattern, which varied with 

age [main effect Dimension Change: F(1,34) = 15.96; p<.001; Dimension Change * Response 

Change interaction: F(1,34) = 72.05; p<.001; Dimension Change * Response Change * Age 

interaction: F(1,34) = 8.81; p<.01]. In particular, the PRC pattern – characterized by lower 

RTs on trials on which both the dimension and response were repeated (sDsR) or both 
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attributes changed (dDdR), and higher RTs on trials on which only one attribute changed 

(sDdR, dDsR) – was more pronounced for older participants [t(34) = -2.10; p<.05)] (Figure 

2.3). 

 

Figure 2.3: Behavioral data.  

Raw response times (upper panel), z-transformed response times (central panel), and error rates (lower panel) as 
a function of the target-defining dimension and the motor response on the previous trial, for younger and for older 
adults. Error bars indicate standard error of the means. 

 

Standardized response times. The ANOVA on transformed RT data revealed similar 

effects as the analysis of the raw RTs [main effect Dimension Change: F(1,34)  =  17.19; 
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p<.005; interaction Dimension Change * Response Change: F(1,34) = 69.89; p<.001; 

Dimension Change * Response Change * Age interaction: F(1,34) = 4.55; p<.05], but no main 

effect of age [F(1,34) = 0.89]. Importantly, however, the PRCs were revealed to be larger in 

older than in younger adults in the transformed data, too [t(34) = -2.13; p<.05)] – 

demonstrating that the increase in PRCs with age was not simply a concomitant effect of the 

general age-related slowing. 

Error rates.  Similar to the RTs, error rates varied as function of the attributes of the 

target on the previous trial and of age [Dimension Change * Response Change interaction: 

F(1,34) = 31.51; p<.001; Dimension Change * Response Change * Age interaction: F(1,34) = 

5.37; p<.05]. Again, PRCs in terms of error rates – that is, the increase in error rates for 

partial- vs. complete-repetition trials – were more marked for older participants [t(34) = - 

2.32; p<.05] (Figure 2.3). Given that the overall error rates did not differ between younger 

and older participants (p=.67) and that the error rates and RTs showed a similar pattern 

overall, the reported effects are not attributable to speed-accuracy trade-offs. 

 

Electrophysiology 

PCN. For both age groups, a solid PCN was triggered in all conditions (sDsR, sDdR, 

dDsR, dDdR) – as can be seen from more negative- (i.e., less positive-) going deflections over 

contra- compared with ipsilateral parieto-occipital sites (PO7/PO8) relative to the side of the 

target. Comparison of the waveforms shows that, while the PCN was equally pronounced in 

both age groups, it was markedly delayed in older compared with younger adults (262 vs. 233 

ms) [main effect Age: F(1,34) = 26.17; p<.001]. Furthermore, independent of the observers’ 

age, the PCN latencies were shorter when the target-defining dimension was repeated across 

trials (sDsR, sDdR: 240 ms) compared with when it changed (dDsR, dDdR: 254 ms) [main 

effect Dimension Change: F(1,34) = 81.48; p<.001]. Accordingly, PRCs did not affect PCN 

latencies [t(35) = - .62; p=.54] and did not differ between age groups [t(34) = -.21; p=.83] 
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(Figure 2.4).    

SPCN.  A sustained lateralized activity followed the PCN component in both age 

groups, though it appeared to rise later and to be less pronounced in older adults (Figure 2.4). 

Given the clearly visible age differences in time course, we included the factor Time Window 

(350–400 ms, 400–450 ms, 450–500 ms, 500–550 ms, 550–600 ms) in the ANOVA of the 

SPCN amplitudes, besides the standard factors Age, Dimension Change, and Response 

Change. This analysis revealed the SPCN to differ between age groups in terms of both time 

course and intertrial effects [main effect Age: F(1,34) = 8.12; p<.01; Time Window * Age 

interaction: F(4, 136) = 5.29; p<.001;  Dimension Change * Response Change * Age 

interaction: F(1,34) = 4.23; p<.05; Time Window * Dimension Change * Response Change * 

Age interaction: F(4,136) = 3.57; p<.01]. The SPCN amplitudes were significantly reduced 

for older adults in all conditions for early time windows (350-400 ms, 400–450 ms, 450–500 

ms; all t(34) > 1.69; p<.05), but not the later windows (500–550 ms, 550–600; all t(34) < 

1.69; p>.05). Given these age differences in time course, we conducted follow-up ANOVAs 

on adjusted time windows (each 150 ms in length) within which the SPCN deflection was 

maximal: 350–500 ms for younger and 450–600 ms for older adults. An ANOVA with the 

standard factors Age, Dimension Change, and Response Change revealed the three-way 

interaction to be significant. The SPCN was overall more pronounced for younger than for 

older adults and differentially modulated by intertrial effects between the two age groups 

[main effect Age: F(1,34) = 6.46; p<.05; Dimension Change * Response Change * Age 

interaction: F(1,34) = 5.00; p<.05]. With respect to PRCs, we found the SPCN to be enhanced 

for partial repetition trials (sDdR, dDsR), compared with complete repetition/change trials 

(sDsR, dDdR), only in younger adults [t(17) = -2.26; p<.05] (Figure 2.4). In older adults, by 

contrast, no such difference between complete- and partial-repetition trials was evident [t(17) 

= 0.32; p=.75]. This differential pattern manifested in significant differences in the PRC 

magnitudes between the two age groups [t(34) = -2.24; p<.05], in this case, characterized by 
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larger PRCs in the younger, compared with the older, group.  

 

 

Figure 2.4: Electrophysiological data.  

Grand averaged ERP difference waveforms as a function of the target-defining dimension and the motor 
response on the previous trial, for younger (left panels) and for older participants (right panels). Upper row: 

PCN/SPCN difference waves elicited in the 600-ms interval following stimulus onset at electrode positions 
PO7/PO8. Central row: sLRP difference waves elicited in the 800-ms interval following stimulus onset at electrode 
positions C3/C4. Lower row: rLRP difference waves elicited in the 800-ms interval prior to response onset at 
electrode positions C3/C4.  

 

Stimulus-locked LRP.  Motor-related lateralization (C3/C4), with stronger negativity 

over areas contralateral versus ipsilateral to the side of the required uni-manual response, was 

clearly evident in both age groups. For the sLRP, the difference waves were overall prolonged 

(375 vs. 449 ms) for older compared with younger adults [main effects Age: F(1,34) = 12.66; 

p<.001]. Note that this latency difference was substantially larger than that observed for the 

PCN (29 ms; see above). Furthermore, for both age groups, the sLRP onset latencies were 

modulated by an interaction of the previous target’s dimensional and response attributes (Fig. 
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4) [main effect Dimension Change: F(1,34) = 3.88; p<.05; main effect Response Change: 

F(1,34) = 8.40; p<.001; interaction Dimension Change * Response Change: F(1,34) = 26.31; 

p<.001], reflecting that sLRP onsets were delayed in partial repetition trials (sDdR, dDsR), 

compared with complete repetition/change trials (sDsR, dDdR), in both younger adults [t(17) 

= -2.61; p<.01] and older adults [t(17) = -4.67; p<.001]. Based on our hypothesis, we further 

examined age differences in PRCs (in terms of prolonged sLRP onset latencies), even though 

the Age x PRC interaction did not reach statistical significance. Post-Hoc analyses revealed 

only a trend [t(34) = -1.52; p=.07], suggestive of PRCs  being more pronounced  in older than 

in younger adults (50 vs. 29 ms). 

Response-locked LRP. The rLRP was more pronounced (-3,2 vs. -2,2 µV) and 

prolonged (relative to response onset) for older than younger participants (-137 vs. -116 ms) 

[main effects of Age on latencies: F(1,34) = 4.35; p<.05, and on amplitudes: F(1,34) = 8.96; 

p=.005]. Moreover, in both age groups, a change in the motor response across trials caused a 

prolonged and more negative-going deflection compared with a response repetition [main 

effect Response Change on latencies: F(1,34) = 4.8; p<.05, and amplitudes: F(1,34) = 39.54; 

p<.001]. In contrast to the SPCN and sLRP components, no interactions of the factors Age, 

Dimension Change, and Response Change were obtained for the rLRP. Accordingly, PRCs 

did not differ between age groups [latencies: t(34) = 1.11; p=.14; amplitudes t(34) = - .04; 

p=.97] and did not modulate rLRP onset latencies [t(35) = - .18; p=.42] and amplitudes [t(35) 

= - .99; p=.33] at all (Figure 2.4).  

 

2.1.5 Discussion 

The present study was designed to examine age-related changes in visual search by a 

combined analysis of behavioral RTs and lateralized ERP components recorded while 

younger and older participants performed a compound-search task. There was a marked 

general effect of age on behavioral response speed, in line with previous visual search studies 
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(e.g., Hommel et al., 2004; Madden et al., 2004). Our results show that this RT cost is 

associated with age differences at all dissociable sub-stages of processing, in particular: 

preattentive perception, post-selective perception, response selection, and response 

production. This is indicative of a general, non-specific factor of aging being responsible for 

the slowing of multiple processes within task performance, as expected on ‘one-dimensional’ 

accounts of cognitive aging (e.g., Brinley, 1965; Cerella, 1994). However, our analyses of 

intertrial effects revealed a specific age deficit in the re-mapping of S-R associations across 

consecutive trials. This finding indicates that a comprehensive picture of cognitive aging 

includes predominant age decrements in more executively controlled processes, in addition to 

a generalized slowing of cognitive processing (e.g., Reuter-Lorenz & Park, 2010) (Figure 

2.2). 

 

Preserved dimension and response weighting in older age 

Older participants showed considerably longer PCN latencies (on average 29 ms) 

compared with younger participants, adding further evidence that older adults require 

generally more time to focally select task-relevant target objects in visual space (Lorenzo-

Lopez et al., 2008). However, similar to the younger adults in the present and previous studies 

(Töllner et al., 2008, 2010), repetitions (vs. changes) of the target-defining dimension (for 

feature-repetition effects, see Mazza et al., 2009) across trials were associated with shorter 

PCN latencies and faster RTs also in older adults. Thus, our results show that implicit 

attentional guidance based on primed or weighted target attributes (Fecteau & Munoz, 2003; 

Found & Müller, 1996; Gramann et al., 2007, 2010; Maljkovic & Nakayama, 1994, 2000) – 

resulting in faster allocation of attention – operates independently of age. Given this, our 

results complement previous behavioral findings (Kumada & Hibi; 2004; McCarley et al., 

2004; Rybash, 1996) by providing electrophysiological evidence of preserved implicit 

memory guidance in older age. 
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Similarly, a global effect of age-related slowing but spared intertrial response 

repetition facilitation was found in the rLRP. Older compared with younger participants 

displayed enhanced and prolonged rLRPs in all conditions, showing that older adults need 

more time to execute the response after completion of response selection. Similar changes 

have been observed in a variety of tasks and are indicative of a general dysregulation of 

motor-response production in older adults, requiring stronger and temporally extended 

activations of the contralateral motor cortex for executing a selected response (Falkenstein et 

al., 2006; Wild-Wall et al., 2008; Yordanova et al., 2004). However, response changes (vs. 

repetitions) across trials enhanced and prolonged rLRPs in a similar manner for both age 

groups (replicating the Töllner et al.’s, 2008, results for younger adults in older adults). 

Crucially, this indicates that for older as well as for younger adults, response changes required 

additional motor activation and time-consuming (cross-hemisphere) shifting processes in 

order to reach the threshold for activating and executing the response. Accordingly, response 

repetition facilitation at the stage of motor-response execution is not subject to age-related 

decline.  

Together, the PCN and rLRP results clearly demonstrate that facilitation of 

performance by repetition of a previously critical (target-defining) dimension or, respectively, 

a previously executed action, which are likely to operate via relatively direct, automatic 

pathways, remains largely unimpaired during aging. This corroborates findings from brain 

imaging studies showing that reductions in neural activity associated with repetition 

facilitation are preserved in older age (Lustig & Buckner, 2004; Soldan et al., 2008). 

 

Age-related decline in stimulus-response re-mapping  

Despite the statistical independence of dimension and response changes across trials in 

our compound-search task, the behavioral results indicate that the cognitive processes 

associated with dimension and response changes do not operate independently. Rather, they 
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are interdependent, and this dependency becomes more marked with age. Replicating findings 

on younger adults (e.g., Pollmann et al., 2006; Töllner et al., 2008), we observed behavioral 

RTs to follow an interactive pattern: there was repetition facilitation only if both target- and 

response-defining attributes remained the same across trials. By contrast, PRCs were evident 

when only one attribute was repeated from the previous trial while the other one changed, 

compared with complete repetitions or changes (e.g., Lamy et al., 2010; Müller & 

Krummenacher, 2006). As we expected, the behavioral PRCs were more pronounced in older 

compared with younger adults. This new result confirms our idea that older adults’ 

performance is characterized by an increased ‘stickiness’ to previously established S-R 

mappings, that is: their performance is more reliant on (implicit) expectations of a constancy 

of the S-R mapping, and/or they show a reduced flexibility in breaking up an established S-R 

association and re-link a changed response to a repeated dimension or a changed dimension to 

a repeated response across consecutive trials.  

As hypothesized, this age-dependent decrement in S-R re-mapping was associated 

with changes in lateralized ERPs related to processing stages intermediate between 

preattentive perceptual target processing and motor response execution. First of all, the SPCN 

component – which is likely to reflect in-depth analysis of the response-critical target 

information following target selection (i.e., in the present experiment, the orientation of the 

stripes) in vSTM (e.g, Eimer and Kiss, 2010; Hilimire et al., 2011; Mazza et al., 2007, 2009) 

– was flattened and ascended later in older compared with younger adults. This result 

corroborates findings of SPCN amplitudes being reduced with age in change detection 

paradigms, especially in earlier time windows (Jost et al., 2010; Sander et al., 2011), and 

might reflect the well-established reduction of vSTM capacity in older age (e.g., Cowan et al., 

2006). Furthermore, the slower rise of SPCN activity displayed by older adults in the present 

experiment suggests that perceptual analysis of the selected stimulus in vSTM is impeded by 

delayed, and/or less efficient, attentional selection of the target in the first instance (Gazzaley 
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et al., 2008; Jost et al., 2010; Sander et al., 2011), as also indicated by the age effects on PCN 

latencies that we established. However, as amplitudes are not directly related to speed of 

processing, caution is advised in inferring a contribution from hampered post-selective 

processes of target analysis to age-related slowing. Nevertheless, the observed SPCN 

amplitude modulation may at least in part account for the age-related increase in PRCs 

evident in the RTs as well as in the error rates. For younger adults, the SPCN amplitude was 

enhanced on partial-repetition, compared with complete-repetition, trials. Although, 

admittedly, there is as yet no definite functional interpretation of the SPCN in visual search 

(Hilimire et al., 2011; Mazza et al., 2007), we cautiously interpret this pattern as suggesting 

that more vSTM resources are required for in-depth analysis of the selected stimulus if 

previously linked target- and response-defining attributes change across trials (see discussion 

below). Critically, we further observed that this SPCN modulation by changes of associated 

stimulus- and response-defining target features does change with age: for the older 

participants, intertrial effects had virtually no effect at all on SPCN amplitudes, which is in 

contrast to the pattern displayed by the younger adults. Combined with the finding that older 

adults show enhanced PRCs, this suggests that, in younger adults, the re-mapping of S-R 

associations benefits from an increased availability of processing resources on post-selective 

perceptual stages. 

Furthermore, we found overall age-related changes in the sLRPs: older adults showed 

a substantial delay in the sLRP onset latencies, which was much more marked than the delay 

they exhibited in the preceding PCN. This pattern indicates that, over and above a slowing in 

perceptual processing, older adults also needed more time for deciding upon the appropriate 

response to the selected (target) stimulus. The present results concur with the idea that this 

slowing of response selection results from impaired visuo-motor transmission due to age-

related loss in brain connectivity (Van der Lubbe & Verleger, 2002), especially under 

conditions in which response selection is based on detailed analysis of stimulus features. In 
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addition to this general age-related slowing, there was a trend for partial (vs. complete) 

repetitions/changes to prolong sLRP latencies more for older than for younger adults. This 

suggests that, besides deficient processing on post-selective perceptual stages, part of the 

increased PRCs in older age appear to arise on stages involved in response selection. In older, 

compared with younger, adults, the initiation of a repeated motor response might have been 

particularly difficult under conditions that required the re-setting of dimensional weights from 

the previous to the current selection-relevant dimension. Additionally, the initiation of a 

changed motor response seems to be especially difficult following the selection of a target 

that was defined within the same dimension as that on the previous trial, thus reinforcing the 

dimensional weight setting. This interpretation is more general in line with previous aging 

studies that adopted paradigms traditionally used to study executive control. For instance, in 

task-switching paradigms, the disproportional increase of switch costs in older age was 

assumed to arise from the predominant age-related decline in executive functions governing 

constant updating of internal control settings, and, specifically, deficient reconfiguration of S-

R assignments across trial episodes (Mayr, 2001; Wasylyshyn et al., 2011). Correspondingly, 

ERP studies that employed tasks assumed to influence S-R re-mappings across trials (see 

Hommel, 2004), such as the Eriksen Flanker and Simon tasks, also reported prolonged sLRPs 

in older compared with younger participants (Van der Lubbe & Verleger, 2002; Wild-Wall et 

al., 2008). It is likely that the inherent PRCs in this task provoked the differential age-related 

decline in response selection processes (e.g., Castel et al., 2007). By contrast, no age 

differences in the sLRP onset were found in simple visual selection tasks (Falkenstein et al., 

2006; Yordanova et al., 2004). 

Finally, several accounts have been proposed to explain PRCs in younger adults, 

which all share the assumption that the human system implicitly assumes, or builds up, a 

linkage between two or more attributes on a given trial, even if this contravenes the actual 

event statistics (e.g., Müller & Krummenacher, 2006; Töllner et al., 2008). Such associations 
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(between target-defining dimension and response-defining feature), possibly stored as ‘linked 

expectancies’ or higher-level memory representations, may be automatically retrieved when 

participants are subsequently encountering one or more of the previously bound attributes 

(Hillstrom, 2000; Hommel, 2004; Huang et al., 2004; Kingstone, 1992). In contrast, when one 

of the previous trial’s attributes changes while the other one is repeated, the previously 

established binding is found to be contravened and a new one has to be actively (re-) 

configured, which results in PRCs. The present findings indicate that, in older adults, the 

cognitive system is especially hampered by such inconsistencies, as it is set to ‘prefer’ a 

change of both attributes to a change of just one across trials. Accordingly, dealing with 

partial repetitions would require increased involvement of higher-order functions, such as 

inhibition and cognitive flexibility. These are core functions of the executive system that are 

known to be particularly vulnerable to age-related decline (e.g., Park, 2000). Thus, in the 

present experiment, reduced flexibility in the older participants may have impeded processes 

involved in the un-binding of previously established S-R associations and the (re-)formation 

of a new association. Presumably, this is related to predominant age-dependent changes in 

frontal and parietal brain structures (e.g., Grady, 2008) affecting parts of the fronto-parietal 

attentional network that underlies S-R (re-)mapping across trials (Pollmann et al., 2006). 

Similar to our interpretation, it has been suggested that poorer executive control in individuals 

with lower, compared with higher, fluid intelligence (Colzato et al., 2006) and of older, 

compared with younger, age compromises the ability to flexibly handle episodic events that 

involve the binding of perceptual and response features, resulting in increased PRCs in such 

individuals (Hommel et al., 2011). 

 

2.1.6 Conclusions 

In conclusion, the present findings show that age-related slowing originates from 

several processing stages in visual search, which accrue to result in the final behavioral output 
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slowing. However, our findings also demonstrate that one-dimensional accounts – on which 

slowing is attributable to a general, non-specific factor of aging (e.g., Brinley, 1965; Cerella, 

1994) – are insufficient. As revealed by our intertrial analyses, older adults’ performance was 

particularly affected when the S-R mapping did change across trials. This is probably due to 

predominant age-related decline in executive functions, such as inhibition of the automatic 

reactivation of the previously encountered S-R association and controlled re-mapping of the 

current S-R association. Given this, our results lend support to recent models of neuro-

cognitive aging proposing that general as well as specific factors jointly contribute to 

cognitive changes in aging (e.g., Reuter-Lorenz & Park, 2010). 
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3.1 Distinct neural markers of TVA-based visual processing speed and 

short-term storage capacity parameters 

3.1.1 Abstract 
 

According to the Neural Theory of Visual Attention (NTVA; Bundesen et al., 2005, 

2011), an individual’s attentional capacity is characterized by two parameters that reflect 

distinct brain mechanisms: visual perceptual processing speed C (rate of object 

categorization) and visual short-term memory (vSTM) storage capacity K (maximum number 

of objects). Estimates of these parameters can be obtained from mathematical modeling of 

performance in a whole report task. Using an interindividual difference approach, the present 

study was designed to establish the respective ERP correlates of these two parameters. 

Participants with higher as compared to lower processing speed were found to show 

significantly smaller visual N1 responses, indicative of higher efficiency in early visual 

processing. By contrast, for participants with higher as compared to lower vSTM storage 

capacity, contralateral delay activity over visual areas was enhanced while overall non-

lateralized delay activity was reduced, indicating that holding (the maximum number of) 

items in vSTM relies on topographically specific sustained activation within the visual 

system. Taken together, our findings show that the two main aspects of visual attentional 

capacity are reflected in separable neurophysiological markers, validating a central 

assumption of NTVA. 

 



64 

 

3.1.2 Introduction  

Interindividual differences across a broad range of different tasks have been suggested 

to reflect variations in a set of fundamental abilities or processing resources (e.g., Spearman, 

1904; Vernon, 1983). In the visual system, two such key functions jointly determine an 

individual’s capacity for processing information: First, visual processing speed, the amount of 

visual information that can be processed within a certain time (Deary et al., 2010; Duncan et 

al., 1999). Second, the capacity limit of visual short-term memory (vSTM), the maximum 

number of objects that can be perceived at one point in time (Cowan, 2001; Sperling, 1960).   

The Theory of Visual Attention (TVA, Bundesen, 1990) provides a mathematical 

framework for disentangling these general capacity parameters. A unique feature of TVA is 

the explicit modeling of the parameters visual processing speed C and visual short-term 

memory (vSTM) storage capacity K. The theory’s neural interpretation (NTVA; Bundesen et 

al., 2005, 2011) further suggests distinct brain mechanisms underlying the two components. 

In close relation to the biased competition model of Desimone and Duncan (1995), (N)TVA 

assumes a race among objects in the visual field that are processed in parallel and compete for 

selection. An individual encountering multiple visual elements will encode up to K objects 

into vSTM in the order of which they complete processing. The speed of visual 

categorizations
2
 is determined by both the sensory strength of competing objects and 

attentional biases of the observer. At the single-cell level, encoding speed is assumed to be 

proportional to both the number and firing rates of neurons that code for specific features of 

the objects in the visual field. In contrast, the number of objects stored in vSTM depends on 

activity in neurons coding the K ‘winner’ elements that are sustained via recurrent thalamo-

cortical feedback loops (Bundesen et al., 2005).  

TVA-based assessment permits the quantification of these parameters for a particular 

individual using the simple psychophysical ‘whole report’ task. The procedure yields 

                                                           
2
 In TVA, the categorization of an object is synonymous to its encoding into vSTM 
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mathematically independent estimates of the two functional components by modeling the 

amount of information that can be consciously perceived and reported from a briefly 

presented visual display as a function of exposure duration
3
. Empirically, however, C and K 

typically correlate moderately across individuals (e.g., Finke et al., 2005; Habekost & 

Starrfelt, 2009). This indicates that both parameters might be influenced by a shared general 

cognitive efficiency factor (perhaps related to intelligence), but it also implies that they reflect 

distinct processing components to a certain extent. Psychophysical, pharmacological, and 

patient studies support this functional separability. First, enhancement of phasic alertness by 

the use of warning cues has been shown to influence processing speed C, but not storage 

capacity K (Matthias et al., 2010). Second, the psychostimulant methylphenidate enhances 

processing speed (Finke et al., 2010), the cholinergic neurotransmitter nicotine slows 

processing speed (Vangkilde et al., 2011), whereas storage capacity is not affected by either 

drug. Finally, behavioral TVA-based assessment of different patient groups has revealed a 

double dissociation: While adult dyslexics exhibited a significantly reduced processing speed 

but a preserved storage capacity compared to normal matched individuals (Stenneken et al., 

2011), the reverse pattern was found in adult attention deficit hyperactivity disorder patients, 

who displayed a deficit in storage capacity with preserved processing speed (Finke et al., 

2011). However, in patients with circumscribed acquired brain lesions, reductions of 

processing speed and storage capacity typically co-occur (Bublak et al., 2005; Duncan et al., 

2003). This covariance indicates that the two functions depend on partly overlapping neural 

structures that probably include areas in the extrastriate, parietal, and frontal cortices as well 

as the basal ganglia (Habekost & Starrfelt, 2009). Lesion size might be a critical confounding 

factor here, with larger lesions increasing the probability of impairments in both components 

(Peers et al., 2005).  

                                                           
3
 A detailed formal description of the equations can be found in Bundesen (1990).   
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A more appropriate way to disentangle distinct brain processes underlying the two 

components might be the examination of healthy individuals’ brain activity measured while 

they are performing a visual attention task. In particular, it has been argued that assumptions 

about basic parameters of attention and working memory may be validated by an individual-

difference approach establishing associations and dissociations between cognitive measures 

and neurophysiological measures (Vogel & Awh, 2008; Rypma & Prabhakarank, 2009). Such 

neurophysiological indices could be identified by means of event-related potentials (ERPs). 

ERPs have been proven to provide online markers of multiple independent but overlapping 

subcomponents of cognition engaged in one task (Luck, 2005). Recently, based on their 

reliability across repeated measurements and tasks, ERPs have even been designated as 

neuronal trait markers of individual cognitive abilities (Cassidy et al., 2012).   

To identify potential correlates of the attention capacity parameters postulated by 

NTVA, we focus on ERP components that are already established as neural markers of 

cognitive operations involved in visual attention and vSTM processing. The early visual P1 

and N1 are candidate components for depicting individual differences in the visual processing 

speed parameter. Their amplitudes are enhanced when selective attention is directed to a 

visual stimulus (e.g., Heinze et al., 1990; Hillyard et al., 1998; Luck et al., 1990). The P1 

attention effect is associated with enhanced sensory stimulus coding (Gramann et al., 2010; 

Johannes et al., 1995). In addition to this, N1 amplitudes have been suggested to index 

attention-related facilitation of object identification (Vogel & Luck, 2000). In within-subject 

designs, the N1 increases with increasing difficulty of visual discriminations (Kiefer, 2001; 

Tanaka et al., 1999). Given this, we hypothesize that under task conditions with controlled 

(constant) levels of difficulty, amplitudes of early visual components reflect the relative 

amount of an individual’s limited attentional resources required for object discrimination. In 

accordance with TVA, this efficiency of resource allocation determines the rate of 
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information uptake expressed in parameter C (Bundesen & Habekost, 2008)
4
. In attempting to 

identify electrophysiological correlates of the individual storage capacity K, we focused on 

‘delay activity’ (McCollough et al., 2007) subsequent to stimulus presentation. The overall 

delay activity is assumed to reflect vSTM maintenance as well as more general, non-

mnemonic processes, such as arousal or response preparation; that is, its amplitude has been 

related to the general amount of resources required to retain visual information (LaBerge, 

1997; Mecklinger & Pfeiffer, 1996; Rushkin et al., 1995). Processes more directly related to 

vSTM storage can be isolated in tasks with lateralized presentation of to-be-attended (and 

stored) information in bilateral stimulus arrays (Klaver et al., 1999). Calculating the 

difference between activity contra- and ipsilateral to the attended hemifield cancels out the 

task-general activity (Gratton, 1998). The amplitude of the resulting difference wave, the 

Contralateral Delay Activity (CDA: Vogel & Machizawa, 2004; also referred to as Sustained 

Posterior Contralateral Negativity, SPCN: Jolicoeur et al., 2006), systematically increases 

with the number of objects that have to be maintained and level off when the individual 

vSTM capacity limit is reached. This sensitivity to interindividual differences qualifies the 

CDA as a potential correlate of TVA parameter storage capacity K. Furthermore, recent 

studies have revealed a CDA in other visual attention tasks requiring vSTM, such as 

attentional blink (Jolicoeur et al., 2006) and visual search (Perron et al., 2009; Wiegand et al., 

2013), suggesting that the component might mark the latent storage capacity limit underlying 

visual operations in various tasks.  

                                                           
4
 It should be noted that this definition of processing speed is at variance with previous ERP approaches which 

rather focused either on the point in time at which the waveforms of two conditions start to differ in an 

component-independent manner (e.g., Thorpe et al., 1996), or on component timing differences (e.g., Töllner et 

al., 2011, 2012)  
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Figure 3.1: Experimental procedures.  

a) Procedure used for TVA parameter assessment. Four equidistant letters arranged in a half circle were 
presented (randomly changing) either in green or red, and either on the left or right side of the display, for three 
different individually adjusted exposure durations. Letter arrays were masked in half of the trials. b) Procedure 
used for the EEG acquisition. On each trial, letters were presented for 200 ms on the left and the right of the 
fixation cross. The to-be-attended side was indicated by a central arrow pre-cue. Letters in one hemifield were 
green and those in the other hemifield red (randomly changing). 

 

In the present study, we aim to test and validate the assumption of neurally distinct 

attentional capacity mechanisms by identifying electrophysiological correlates of visual 

processing speed C and storage capacity K. Using a standard behavioral whole report task 

(see Duncan et al., 1999; Finke et al., 2005), we assessed estimates of each participant’s 

parameters. Letters were used as objects and the task was to report as many letters as possible 

per stimulus array. Additionally, we recorded the EEG of the same participant sample during 

a cued ‘EEG whole report’ task that allowed for analyses of lateralized and non-lateralized 

ERP components (Figure 3.1). In the EEG whole report, the task was to report as many letters 

as possible from the cued hemifield while ignoring the letters presented in the un-cued 

hemifield. Participants were assigned to groups based on a median split of their attentional 

parameter estimates derived from the standard behavioral procedure (Table 3.1).  
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Table 3.1: Descriptive statistics of parameter estimates.  
Descriptive statistics of the TVA parameters K and C, for all participants and separately for high and low 
performers (based on a median split for parameters K and C, respectively), along with statistical tests of the high 

vs. low performer group differences.  
 

 All Participants High Performers Low Performers F-values* 

K Median (Range) 

3.44 (2.31 – 3.84) 

Mean 

3.61 

Mean 

2.99 

F(20,1) = 26.11 

p < .001 

C 
Median (Range) 

30.80 (17.53 – 90.04) 

Mean 

64.6 

Mean 

24.5 

F(20,1) = 28.27 

p < .001 

 
* Group differences were examined by ANOVAs with the between-subject factor C-level (high vs. low processing 
speed) and K-level (high vs. low storage capacity). 

 

We hypothesized that the ERP correlates of visual attention capacity parameters C and 

K would be specific in the sense that processing speed relates to amplitudes of early visual 

ERP components whereas storage capacity relates to CDA during maintenance after the 

perceptual stimulation had expired. The specificity of the ERP correlates of each parameter 

was tested by comparing amplitudes of the P1, N1, and delay activity of high and low 

performers with regard to visual processing speed C and storage capacity K, respectively. 

Furthermore, we tested the continuity of an identified relationship via correlation analyses of 

individual parameter values and ERP amplitudes across all participants.  

 

3.1.3 Methods 

Participants 

Twenty-five right-handed healthy young volunteers, 13 of them female and 12 male, 

with a mean age of 25.9 years (SD: 3.01; range: 19-30) took part in the study. All participants 

had normal or corrected-to-normal vision, and none of them suffered from color blindness. 

The participants were naïve to the procedure of the TVA based experiments. Three 

participants were excluded from analyses due to systematic eye movements to the cue in the 

EEG-experiment. Written informed consent according to the Declaration of Helsinki II was 
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obtained from all participants. All participants received payment. The study was approved by 

the Ethics Committee of the Faculty of Psychology, LMU Munich. 

  

Experimental Design  

Setup and task. Participants completed two test sessions: first the standard TVA whole 

report and 5–10 days later the EEG whole report task (Figure 3.1). Daytime of testing, testing 

chamber, equipment, viewing distance, background and stimulus type, size, positions, and 

luminance were the same in both sessions. The PC-controlled tests were conducted in a dimly 

lit room with stimuli presented on a 17-inch monitor (1024 x 768 pixel screen resolution; 70 

Hz refresh rate) and viewed at a distance of 65 cm. Participants were instructed to report as 

many letters as possible from a briefly presented array with four target letters. They were told 

to report only those target letters that they were fairly certain to have recognized. The verbal 

report was performed without stress on response speed. The experimenter entered the 

responses on the keyboard and started the next trial. Letters were chosen from a pre-specified 

set {ACEHJOPRSTWX}. Participants fixated on a central white cross (0.7° of visual angle in 

size) on a black background. Four letters (1.1° in size) appeared at positions on an imaginary 

circle with a radius of 2.5° of visual angle around central fixation.   

Standard whole report procedure. Prior to the parameter assessment procedure, we 

identified the most appropriate individual exposure durations in a pre-test consisting of 24 

masked trials. The presentation time at which a participant could report, on average, one letter 

per trial correctly (i.e., 25% report accuracy) was chosen as intermediate exposure duration, 

together with a shorter (half as long) and a longer (twice as long) exposure duration (mean 

intermediate exposure duration: 54.9 ms; range: 24–90 ms). In this way, we ensured 

maximum reliability of parameter estimation by obtaining a broad range of performance 

scores (dependent on exposure duration) for each individual, from around perceptual 

threshold to asymptotic vSTM storage performance. Note that the (variation in) exposure 
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durations provide(s) a means for optimal TVA based modeling of an individual’s performance 

score, rather than being a determinant of the TVA parameters themselves.  

In each trial, the fixation cross was presented for 300 ms, then a blank screen of 100 

ms, then the letter array. The letter array consisted of four isoluminant letters, randomly 

chosen to be either red or green. All four letters were presented either on the left or the right 

side of central fixation. A given letter appeared only once in each trial display. In half of the 

trials, the letter array was followed by a mask with a duration of 500 ms at each stimulus 

location, which consisted of a square box outline filled with a ‘+’ and an ‘x’ overlaid (1.2° in 

size) (Figure 3.1). Exposure durations were effectively prolonged in unmasked compared to 

masked conditions, owing to visual afterimage persistence (Sperling, 1960): The combination 

of the presence/absence of masks with three exposure durations (short, intermediate, long) 

resulted in six different ‘effective’ exposure durations. Exposure duration (short, intermediate, 

long), masking (masked, non-masked), and letter array hemifield (left, right) varied randomly, 

resulting in 12 conditions equally frequent across 6 blocks of 40 trials each. The first block 

consisted of 40 practice trials, and data were modeled based on the 200 remaining trials, 

including at least 16 trials of each condition. 

Whole report procedure in the EEG experiment. In the EEG experiment, the classical 

whole report paradigm was adapted to be suitable for analyzing lateralized and non-lateralized 

ERP components. To ensure a balanced physical stimulation in both hemifields on each trial, 

we presented two letter arrays bilaterally, with the to-be-attended hemifield indicated by a 

100% valid arrow pre-cue, with the cued side varying randomly from trial to trial (based on 

the classical lateralized vSTM paradigm, e.g., Vogel & Machizawa, 2004). The same letter 

was presented only once in a given trial display, either as to-be-reported target letters (cued 

hemifield), or as task-irrelevant filler letters (un-cued hemifield). To aid target letter selection 

(in face of the presentation of additional stimuli), target and filler letters were different in 

color, that is: either all target letters were green and all filler letters red, or vice versa, in a 
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randomly changing fashion. Each trial started with the central fixation cross presented for 100 

ms, followed by the arrow cue for 200 ms. Then the letter array was presented for 200 ms (not 

masked). After a delay of 900 ms with a blank screen, a question mark appeared in the center, 

prompting the verbal report (Figure 3.1). After a practice block of 16 trials, EEG recording 

was started and a total of 240 trials were run. 

 

Parameter Estimation 

The accuracy of letter report as a function of effective exposure duration derived in the 

standard procedure was modeled according to TVA using a maximum likelihood fitting 

procedure (Kyllingsbæk, 2006; Dyrholm et al., 2011). The modeling was based on estimating 

four parameters defining the psychometric function depicted in Figure 3.2 (see also Bundesen, 

1990): (1) parameter t0, the minimal effective exposure duration (in ms) below which 

information uptake from the display is assumed to be zero; (2) parameter μ, the persistence of 

the visual afterimage on unmasked trials (i.e., effective exposure prolongation in ms, 

estimated from performance differences between unmasked and masked trials); (3) parameter 

C, the visual processing speed, the 'fixed capacity' sum of speed values across stimulus 

positions (estimated as number of elements processed per second); and (4) parameter K, the 

storage capacity (estimated as the expected value of the maximum number of elements that 

can possibly be represented simultaneously in vSTM). C reflects the slope of the exponential 

psychometric (growth) function at its origin t0, and K reflects the asymptote of the function. In 

the current study, parameters t0 and μ were mainly estimated in order to obtain valid estimates 

of the two parameters of focal interest, C and K. Estimates of t0 and μ did not significantly 

differ between participants with higher and lower processing speed C and between 

participants with higher and lower storage capacity K [all F<1.40, p>.25]. 

An additional measure of top-down control, parameter α, defined as the fraction of 

processing capacity allocated to the fillers, was estimated by a further parameter fitting 
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procedure in which trials from the EEG session, in addition to trials from the standard 

experiment, were included in the model. A low α-value (close to zero) indicates a good ability 

to prioritize task-relevant objects in the processing. An α-value of zero would imply that the 

participant was able to use the spatial cue to completely ‘filter out’ the fillers. An α-value 

significantly higher than zero would indicate imperfect top-down control, with filler letters 

potentially interfering with the report of the cued target letters. We systematically examined, 

on the individual participant level, whether attentional resources were allocated to filler items 

by testing the significance of α (i.e., whether letters presented as fillers on the un-cued side in 

the EEG paradigm received a significant amount of attentional weighting) by means of 

Likelihood Ratio tests
5
.   

 

EEG data acquisition   

The EEG was recorded from 64 active Ag/AgCl electrodes (actiCap System, Brain 

Products, Munich), placed according to the International 10/10 system (American 

Electroencephalographic Society, 1994). EEG and electrooculogram were amplified by 

BrainAmp amplifiers (BrainProducts, Munich) using a 0.1 – 250-Hz bandpass filter. The data 

was sampled at 1 kHz, and filtered offline with a 0.5 Hz high-pass filter (Butterworth zero 

phase, 24 dB/Octave). An Infomax Independent Component Analysis (Bell & Sejnowski, 

1995), as implemented in the Brain Vision Analyzer software (BrainProducts, Munich), was 

run to identify and backtransform ocular artifacts (blinks and horizontal eye movements; see 

also Jung et al., 2000). All electrodes were recorded with reference to FCz, and re-referenced 

offline to averaged mastoids. Horizontal eye movements were recorded by electrodes F9 and 

F10 and vertical eye movements were recorded from Fp1 and an electrode placed beneath the 

left eye. Before the EEG was segmented into epochs for ERP analyses, the signal was filtered 

                                                           
5
 The fits of two models were compared. One model treated fillers as 'distractors' that competed for vSTM 

storage but were not to be reported, the second model assumed fillers as absent. Note that all analyses involving 

parameters C and K were based on the fitting including only trials of the standard procedure. The distractor 

model used one extra degree of freedom per fit, and the test was to see if this resulted in a significantly better fit. 
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with a 40 Hz low-pass filter (Butterworth zero phase, 24 dB/Octave). Trials with artifacts — 

defined as any signal exceeding ± 60 µV on any of the electrodes, ± 30 µV on electrodes F9 

and F10, and bursts of electromyographic activity (permitted maximal voltage steps/sampling 

point of 50 µV) — were excluded from the averages.  

For the ERP analysis, EEG epochs of 1400 ms (from 400 ms before onset of the letter 

array to 1000 ms after), were averaged separately for attend-left and attend-right conditions.  

Baseline correction was based on the 400-200 ms pre-display period (i.e., the 200 ms that 

preceded the cue). To examine potential relationships between TVA parameters and ERP 

components, we focused on early visual components (P1, N1) and delay activity over 

posterior areas. Time windows for analyses on mean amplitudes were derived from visual 

inspection of the grand-average potentials of these components (Table 3.2). 

 

Table 3.2: Time windows and electrodes used for determining mean amplitudes of ERP components.  

Difference waves were calculated by subtracting ipsilateral from contralateral activity (relative to the attended 
hemifield) at lateral electrodes. 
 

 

Component Time Window (ms) Electrodes 

P1 80 – 110 

P7, Pz, P8 

PO7, POz, PO8 

O1, Oz, O2 

N1 120 – 150 

Contralateral Delay Activity 450 – 600 

Overall Delay Activity 600 – 800 

 

 

Statistical Analyses 

Participants were classified according to their parameter estimates derived in the 

standard procedure. Based on median splits of the C and K values, they were assigned to 

groups of (1) participants having either a relatively high or a low processing speed C, and (2) 

participants having either a relatively high or a low storage capacity K. The relationships 

between the estimated TVA parameters and the ERP components were examined by separate 
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ANOVAs contrasting participants with regard to their C-level (high processing speed / low 

processing speed) and their K-level (high storage capacity / low storage capacity). To examine 

topography and lateralization, we further included the within-subjects factors Attended 

Hemifield (left/right), Electrode Position (left/central/right), and Electrode Site (P/PO/O) in 

the ANOVAs. In case of a significant interaction of Attended Hemifield and Electrode 

Position, we examined lateralized ERPs by calculating difference waves, quantified by 

subtracting ERPs at electrodes ipsilateral from those at electrodes contralateral to the attended 

array. For the sake of brevity, we only report significant main effects and interactions 

including the factors C-level and K-level. Significant main effects and interactions were 

examined using pairwise post-hoc contrasts. Potential relationships between TVA parameters 

and ERPs revealed by ANOVAs were re-examined by calculating Spearman correlation 

coefficients between individual parameter values and the mean amplitudes at electrodes where 

the effect was maximal. 

 

3.1.4 Results 

Parameter Estimation 

For each subject, the accuracy of letter report as a function of effective exposure 

duration was modeled by a TVA-based function representing the best fit of the data according 

to the maximum likelihood method (Dyrholm et al., 2011; Kyllingsbæk, 2006) (Figure 3.2). 

The efficiency of selection guided by the cue was assessed by estimating an attentional weight 

index α to the un-cued hemifield using trials of the EEG experiment in addition to the trials of 

the standard experiment. On the group level, the hypothesis of perfect cue-guided selection 

(i.e., that α is zero) was rejected (
2
(22)=308.9; p<0.01). Individual Likelihood Ratio tests 

revealed that for 12 of the participants, objects on the un-cued side received a significant 

amount of attentional weight (p<.05). On average, however, α-values were very low 

(indicative of highly efficient selection) with a mean of 0.04 (range: 0.00–0.27), that is, on 
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average only 2% of the participants’ processing capacity was allocated to the not-to-be-

attended side (an α-value of 1.00 would indicate a 50/50 split of processing capacity between 

cued and un-cued objects).  

 

Figure 3.2: Performance of representative subjects.  

Mean number of reported letters as a function of the effective exposure duration. Observed performance (dots) 
and performance predicted by the TVA-based fitting procedure (solid grey line) is shown for four representative 
participants. The slope of the functions at their origins (dotted line) provide estimates of the TVA parameter 
perceptual processing speed C, and the asymptote (dashed line) of the parameter storage capacity K. Panel 
headings indicate the respective participant’s assignment to a group of high vs. low performers (based on a 
median split) for the parameters C and K, respectively. The number of participants assigned to each group is 
given in the lower right of each panel. 

 

Overall, there was a close correspondence between the theoretically and the 

empirically obtained mean scores. Goodness-of-fit measures averaged across all participants 

showed that 95% of variance in the observed scores was accounted for by the maximum 

likelihood fits (R² (n = 22) mean: 0.95; range: 0.82-0.99). Estimates of the TVA parameters 

processing speed C and storage capacity K were significantly correlated across participants 

(r=.56, p<.01). 
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Event-related potentials  

 The onset of the stimulus array elicited visual P1 and N1 components, with the latter 

showing substantially higher amplitudes in the individuals with lower processing speed C 

compared to those with higher processing speed C (Figure 3.3). Delay activity started around 

300 ms after the stimulus onset and persisted until the end of the retention period, and was 

more negative over recording sites contralateral than ipsilateral to the attended hemifield. This 

lateralization, particularly within an earlier time range, was more pronounced for the 

individuals with higher storage capacity K compared to those with lower storage capacity K 

(Figure 3.4). In contrast, overall delay activity, strongest over occipital sites later in the 

retention period, was larger in individuals with lower storage capacity K compared to those 

with higher storage capacity K (Figure 3.3).  

P1. The ANOVAs (see above for details) of the P1 amplitudes contrasting participants 

with higher and lower processing speed did not yield a significant main effect of C-level 

[F(1,20)=0.05; p=.82], and no significant interactions involving this factor [F(2,40)<1.44; 

F(4,80)<0.85; all p>.25]. Thus, there was no evidence of a P1 modulation by individuals’ 

level of processing speed.  

The analogous ANOVA including the factor K-level also did not reveal a significant 

main effect [F(21,1)=0.02; p=.88] or interactions involving this factor [F(2,40) <1.99; 

F(2,80)<1.71; all p>.15]. 

N1.  The ANOVA of the N1 amplitudes comparing participants with higher and lower 

processing speed revealed a main effect of C-level to be significant [F(1,20)=5.50; p<.05], as 

well as the interaction of C-level and Electrode Site [F(2,40)=5.04; p<.05]. These effects were 

due to the N1 being more pronounced for participants with lower compared to higher 

processing speed and that these individual differences were more marked at occipital 

[F(1,20)=6.85; p<.05] compared to posterior-occipital [F(1,20)=4.82; p<.05] and parietal 

electrode sites [F(1,20)=3.31; p=.08] (Figure 3.3). This relationship was confirmed by a 
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significant correlation between individual C-values and N1 amplitudes [r=.44; p<.05] (Figure 

3.5). 

 

Figure 3.3: Event-related potentials (non-lateralized).  

a) Grand-averaged ERPs at occipital-central electrodes comparing high performers (black line) and low 
performers (grey line). Left: Participants assigned to groups with high vs. low processing speed C. Right: 
Participants assigned to groups with high vs. low storage capacity K. b) Topographic maps of the difference in 
activity between participants with high and low processing speed C (left) and, respectively, participants with high 
and low storage capacity K (right), in the time range of the visual N1 (upper maps) and that of Delay Activity 

(lower maps). 

 

In contrast, the analogous ANOVA involving the factor K-level did not yield a main 

effect [F(1,20)=2.16; p=.16] or any interactions [all F<1.64; all p>.30] with this factor. 

Individual K-values did not correlate significantly with N1 amplitudes [r=.31; p>.15]. 
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Figure 3.4: Lateralized event-related potentials.  

a) Grand-averaged ERPs ipsi- and contralateral to the attended hemifield, comparing high performers (black line) 
and low performers (grey line). Left: Participants assigned to groups with high vs. low processing speed C. Right: 
Participants assigned to groups with high vs. low storage capacity K. b) Difference waves comparing participants 
with high and low processing speed C and, respectively, participants with high and low storage capacity K.  

 

Contralateral (Early) Delay Activity. The ANOVA comparing delay activity of 

participants with higher and lower storage capacity in the 450-600 ms time window revealed a 

significant interaction of Electrode Side and Attended Hemifield [F(2,40)=28.46; p<.001]: 

activity was higher contralateral to the attended hemifield for all participants. Furthermore, 

there was a significant interaction between Electrode Site, Attended Hemifield, and K–level, 

[F(2,40)=4.07; p<.05], indicating that this lateralization varied with individual storage 

capacity. A follow-up ANOVA on CDA amplitudes revealed the difference between contra- 

and ipsilateral activity to be larger in participants with higher compared to lower storage 

capacity [F(1,20)=4.60; p<.05]. Individual K-values were significantly negatively correlated 

with CDA amplitudes [r=-47; p<.05], confirming that the degree of lateralization 

systematically increased with storage capacity (Figure 3.5). 

In contrast, the analogous ANOVA comparing participants with higher and lower 

perceptual processing speed did neither yield a main effect of C-level on overall delay activity 
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[F(1,20)=0.26, p=.26], nor a main effect of C-level on CDA amplitudes [F(1,20)=0.01; 

p=.93], nor any interactions involving the factor C-level [all F<1.74; all p>.05]. Individual C-

values were not significantly correlated with CDA amplitudes [r=-17; p>.25].  

 

Figure 3.5: Correlations between TVA parameters and ERPs.  
Spearman correlations between individual estimates of perceptual processing speed C and mean amplitudes of 
the visual N1 at electrode Oz in the time window of 120–150 ms (upper panel). Spearman correlations between 
individual estimates of storage capacity K and mean amplitudes of the CDA at electrodes PO7/PO8 in the time 
window of 450–600 ms (central panel). Spearman correlations between individual estimates of storage capacity K 
and mean amplitudes of the overall delay activity at electrode Oz in the time window of 600–800 ms (lower panel).   

 

(Late) Delay Activity. The ANOVA comparing delay activity of participants with 

higher and lower storage capacity in the 600-800 ms time window revealed a significant main 

effect of K-level [F(1,20) = 6.83; p<.05]: overall (non-lateralized) negativity was higher for 

individuals with lower compared to higher storage capacity. Again, a significant interaction of 
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Electrode Site and Attended Hemifield [F(2,40)=49.10; p<.001] demonstrated that attention-

related lateralization across all participants persisted into this late time period. In contrast to 

the earlier time window, K-level did not interact with Electrode Side and Attended Hemifield 

[F(2,40)<1.44; p=.25]. K-values were significantly positively correlated with delay activity in 

this late time window [r=.55; p<.05], corroborating that overall activity increased with lower 

individual storage capacity (Figure 3.5).  

The analogous ANOVA comparing participants with higher and lower perceptual 

processing speed did neither yield to a main effect of C-level [F(1,20)=0.35, p=.56] nor any 

interactions involving this factor [all F<1.37; all p>.25]. Again, individual C-values were not 

correlated with overall delay activity [r=.29; p>.15].  

 

Effects of top-down control in the EEG Experiment 

To control for the influence of attentional weight potentially (mis-)allocated to filler 

letters on the un-cued side in the EEG experiment, we additionally contrasted ERP 

components of participants with perfect and imperfect top-down control (α>0 (n=12) vs. α=0 

(n=10)). We found no significant main effects of α-level or interactions with α-level for any 

of the analyzed ERP components, [all F<1.74; all p>.15]. Individual α-values were also not 

correlated with amplitudes of any of the analyzed ERP components [all p>.25]. 

 

3.1.5 Discussion 

We identified distinct ERP correlates of the two visual attention capacity parameters 

implemented in the formal TVA framework (Bundesen, 1990): visual processing speed C and 

vSTM storage capacity K. Interindividual differences in visual processing speed were 

reflected in smaller posterior N1 amplitudes for participants with higher relative to lower 

encoding rates. In contrast, interindividual differences in storage capacity were related to 

posterior delay activity after the perceptual stimulation had expired. More specifically, 
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participants with higher storage capacity exhibited stronger CDA in the early phase of the 

retention interval, whereas they showed a weaker longer-lasting overall negativity as 

compared to participants with lower storage capacity.  

 

ERP correlates of visual perceptual processing speed C 

The association between the TVA parameter visual processing speed C and N1 

amplitudes complements previous ERP research on visual object processing and is compatible 

with basic assumptions of NTVA. According to NTVA, faster visual information processing 

is associated with increased activity in specific populations of neurons that represent the 

properties of the attended objects. Initially, this may seem to be at variance with our finding 

of larger ERP amplitudes in slower individuals. However, ERPs reflect summated activity of 

large numbers of cortical nerve cells, thus, amplitudes do not depict highly specific neuronal 

activity in single neurons (Bundesen & Habekost, 2008). Rather, they reflect the general 

amount of neural resources activated during a cognitive process (Luck, 2005), with 

(potentially less specific) activation of many neurons manifesting in higher ERP amplitudes. 

Cognitive efficiency theories (e.g., Vernon, 1983), in fact, predict a reversed relationship 

between amplitude and performance level, as we found it in the present study. Less activation 

in higher compared to lower performing individuals is interpreted to indicate more efficient 

brain functioning associated with high cognitive abilities (e.g., Haier et al., 1988; Rypma et 

al., 2002). Processing speed is assumed to be one of several basic determinants of general 

processing efficiency, that is, if cognitive operations can be performed quickly, resource 

allocation may be minimized and performance maximized (e.g., Deary et al., 2010; Neubauer, 

1997). The present ERP variations characterize interindividual differences in this key 

function: Reduced N1 amplitudes for participants with higher as compared to lower 

perceptual processing speed, under the same task demands, indicate that faster individuals 
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recruit a relatively smaller amount of their available neural resources during early object 

processing.  

Several mechanisms may contribute to this ratio between the available and actually 

engaged resources. In general, the N1 component has been related to visual discrimination 

processes within the attentional focus (Hillyard et al., 1998; Vogel & Luck, 2000). Slower 

participants’ signal-to-noise ratio may be decreased in these processes by additional neuronal 

activity involved in unspecific processing of visual input; or it may result from increased 

attentional weight being expended on ‘ghost objects’ (Bundesen & Habekost, 2008). By 

comparison, categorization might be speeded up in faster processing participants by effective 

application of stored internal templates, which match the currently perceived stimuli to a high 

degree (Bundesen et al., 2011). In previous within-subject studies with varying task 

requirements, N1 amplitudes were observed to be less negative when the similarity between 

objects that had to be classified was reduced (Tanaka et al., 1999; Tokudome & Wang, 2011; 

Töllner et al., 2009). This suggests that reduced competition between object templates 

accessed during visual discrimination is accompanied by a weaker electrophysiological 

response. Furthermore, in a study requiring the discrimination of novel stimuli, N1 amplitudes 

were found to decrease with increasing numbers of repetitions of the stimuli (Groh-Bordin et 

al., 2007). Given this, N1 amplitudes may signify the quality of activated internal 

representations of to-be-discriminated objects (Curran et al., 2002). Taken together, consistent 

with NTVA, these findings suggest that the ability to deploy stored templates might have 

contributed to the individual differences in perceptual processing speed and N1 amplitudes 

observed in the present study.  

Finally, our results compare with ERP differences between groups of individuals 

known to differ in visual processing speed, that is: young and elderly adults (McAvinue et al., 

2012). Age-related slowing is associated with larger N1 amplitudes for older relative to 

younger participants in various visual tasks (e.g., Kutas et al., 1994; Yordanova et al., 2004). 
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Presumably, the N1 enhancement in older age is an electrophysiological marker of slowing in 

visual discrimination processes, manifesting in more global age-related performance changes 

(e.g., Cerella, 1991; Salthouse, 1996).  

In contrast to the N1, the earlier visual P1 component did not vary with individual 

differences in visual processing speed. P1 amplitudes are known to vary with physical 

stimulus properties, such as luminance and contrast (Johannes et al., 1995) and might indicate 

changes in the processing rate due to varying sensory strength. The present study, however, 

addressed interindividual differences by keeping objective physical stimulation constant.   

 

ERP correlates of visual short-term memory storage capacity K 

The relationship established between TVA parameter storage capacity K and ERP 

delay activity substantiates previous EEG findings and supports the neural mechanisms 

proposed by NTVA. In particular, NTVA assumes that vSTM storage relies on spatio-

topically organized sustained activity, implemented via recurrent feedback loops between the 

thalamus and sensory neurons in visual cortical areas (Bundesen et al., 2005). The posterior-

contralateral distribution (relative to the hemifield of encoded information) of the delay 

activity associated with storage capacity K supports the visuo-topic organization of this 

recurrent activation. As suggested previously, delay activity during retention periods arises 

from thalamo-cortical activation (Birbaumer et al., 1990; LaBerge, 1997). The present 

findings demonstrate that the overall delay activity and the lateralized proportion of this 

activity are dissociable with respect to their relationship to individual differences in vSTM 

limits: Overall non-lateralized activity was higher in participants with lower storage capacity; 

conversely, CDA amplitudes were larger in participants with higher storage capacity. This 

dissociation suggests that individuals with comparatively high storage capacity are 

characterized by efficient neural recruitment, that is, instantaneous contralateral activity 

specifically associated with the storage of attended information, while minimizing later 
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additional unspecific activity. The latter may involve unprofitable remote activity, processing 

of extraneous noise, or strategic compensational mechanisms during a time period in which 

the vSTM representation would already have started to decay. In contrast to the current study, 

relationships between CDA and individual differences in storage capacity have previously 

been revealed only by varying load conditions (e.g., McCollough et al., 2007; Vogel et al., 

2005). The individual vSTM limit was associated with the relative point at which the CDA 

reached an asymptote; for example, participants with relatively low storage capacity reached 

the CDA asymptote already at low vSTM loads, whereas the CDA amplitude increased 

further with increasing loads for participants exhibiting higher storage capacity. Thus, 

typically, correlations were found between individual behavioral vSTM capacity measures 

and the relative increase of the CDA amplitude from lower loads (e.g., two items) to higher 

loads (e.g., four items) (e.g., McCollough et al., 2007; Vogel et al., 2005). By contrast, we 

were able to establish a systematic relationship between the CDA and storage capacity under 

constant load conditions, likely owing to the highly reliable estimation of the individual TVA 

parameter K. Note that this straightforward correlation was found despite the relatively long 

temporal gap (of 5–10 days) between parameter assessment and EEG recordings. 

Furthermore, we controlled for a critical confound by estimating storage capacity 

independently of visual processing speed outside of the EEG experiment (i.e., in the TVA 

whole report experiment). Usually, vSTM performance and ERPs are assessed under 

conditions of a single, constant presentation time of to-be-encoded stimulus array (e.g., Vogel 

& Machizawa, 2004; but see Sander et al., 2011). Thus, interindividual differences in 

perceptual processing speed potentially influence both storage capacity measures and CDA 

amplitudes. For slower participants especially, the brief presentation times necessary for ERP 

examination in vSTM tasks may have been too short to fill up vSTM to its capacity limit, 

leading to systematic underestimations of the maximum storage capacity for such participants. 

The design of the present study enabled us to control for this factor by parameter estimates of 
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the two attentional capacity limiting components based on the standard procedure with 

varying exposure durations. This way, we can rule out that differences in processing speed 

during the encoding of information into vSTM account for individual differences in CDA 

amplitudes.  

Integrating our results with findings from functional magnetic resonance imaging 

(fMRI) studies permits cautious inferences to be drawn about neural generators underlying the 

identified ERP correlates of storage capacity K. Recently, TVA parameter K has been shown 

to correlate with activity in the middle intraparietal sulcus (IPS), the dorsomedial-prefrontal 

cortex, and the frontal eye fields (Gillebert et al., 2012). Activity in the IPS has previously 

been assumed to be one (of several) generators of the CDA (Todd & Marois, 2004, 2005). 

Thus, individual difference in IPS activity may have also contributed to the present CDA 

modulations. In contrast, task-general fMRI delay activity in the prefrontal cortex has been 

shown to follow a similar pattern as to what we demonstrated for the overall delay activity, 

with greater activity displayed by participants with lower, as compared to higher, storage 

capacity (Rypma et al., 2002). This suggests that the later, un-specific activity may be partly 

driven by frontal brain regions.  

 

Processing of non-attended letters 

The combination of TVA-based parameter assessment with ERPs further contributes 

to an ongoing discussion about the impact of filler items inherent in the lateralized vSTM 

paradigm (e.g., Arend & Zimmer, 2011). Previous studies measuring the CDA have usually 

not systematically assessed whether objects in the not-to-be-attended hemifield receive 

attentional weight that could potentially influence behavioral vSTM measures and EEG 

responses. However, the ability to filter out irrelevant information is a critical determinant of 

interindividual differences in vSTM limits and CDA amplitudes (e.g., Vogel et al., 2005). The 

present approach enabled us to control for this potential influence of letters in the un-cued 
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hemifield. Storage capacity K was estimated based on performance in the standard procedure 

using unilateral arrays when the total attentional weight could be allocated to the target letters. 

Including trials from the EEG session in an extended fit permitted us to estimate the relative 

weights of cued and un-cued letters for each participant, expressed in the TVA top-down 

control parameter α (Kyllingsbæk, 2006). The results indicate that participants allocated the 

largest part of their available attentional weight (98%, on average) to the cued (target) letters. 

ERP activity did not differ between individuals with perfect and imperfect top-down control. 

This makes it unlikely that the processing of letters on the non-attended side accounted for 

individual differences in CDA amplitudes. Thus, in the present study, attentional resources 

allocated to the filler letters appeared to be of negligible impact. However, the general 

(usually implicit) assumption that items on the un-cued side in a lateralized vSTM paradigm 

simply serve as fillers becomes questionable in the face of a measurable amount of attentional 

weight that is (mis-) allocated to letters on the un-cued side, at least for some of the 

participants. In particular, in aging or clinical populations of individuals who suffer from a 

deficit in top-down attentional control, fillers may have a significant distracting impact and 

this should thus be taken into account when interpreting behavioral as well as 

electrophysiological responses. 

 

3.1.6 Conclusions  

In the present study, we used an inter-individual differences approach to provide 

electrophysiological evidence for the neural independence of two distinct latent visual 

attention capacity parameters formally implemented in the NTVA framework (Bundesen et 

al., 2005, 2011): First, faster perceptual processing speed was associated with lower brain 

activity during early object discrimination. Second, higher storage capacity was associated 

with a larger amount of delay activity specifically related to vSTM processing, while overall 

unspecific activity was less negative.  
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The identified ERP correlates of the two TVA parameters may be regarded as general 

neural efficiency measures of separate fundamental abilities and, thus, as a promising tool in 

the study of brain mechanisms underlying individual differences in more complex behavior 

(Cassidy et al., 2012; Neubauer, 1997; Vernon, 1983). Furthermore, if comparable reliability 

of the ERP correlates could be proven in different age groups and patient populations, they 

may have the potential to serve as neural markers disclosing age- and disease-related changes 

in attentional functions. These might then be used to quantify brain-behavior relationships in 

recovery, pharmacological treatment, and rehabilitation training in a highly sensitive manner.  

 

Author contributions 

I.W., K.F., and T.T. designed the study. I.W. programmed and conducted the experiment, 

analyzed the data, and wrote the paper. M.D. programmed the TVA-fitting procedures and 

performed the analyses of the parameter alpha. K.F., H.J.M., T.T., T.H., and M.D. 

commented and revised the manuscript.  



89 

 

3.1.7 References 
 

 

American Electroencephalographic Society, (1994). American Electroencephalographic 

Society. Guideline thirteen, Guideline for standard electrode position nomenclature. 

Journal of Clinical Neurophysiology, 11, 111–113. 

 

Arend, A., & Zimmer, H. (2011). What does ipsilateral delay activity reflect? Inferences from 

slow potentials in a lateralized visual working memory task. Journal of Cognitive 

Neurosciences, 23(12), 4048-4056. 

 

Bell, A., & Sejnowski, T. (1995). An information-maximization approach to blind separation 

and blind deconvolution. Neural Computation, 7(6), 1129–1159. 

 

Birbaumer, N., Elbert T., Canavan, A.G., & Rockstroh, B. (1990). Slow potentials of the 

cerebral cortex and behavior. Physiological Reviews, 70(1), 1-41.  

 

Bublak, P., Finke, K., Krummenacher, J., Preger, R., Kyllingsbæk, S., Müller, H. J., & 

Schneider, W. X. (2005). Usability of a theory of visual attention (TVA) for parameter-

based measurement of attention II: Evidence from two patients with frontal or parietal 

damage. Journal of the International Neuropsychological Society, 11(7), 843–854. 

 

Bundesen, C. (1990). A theory of visual attention. Psychological Review, 97(4), 523–547. 

 

Bundesen, C., Habekost, T., & Kyllingsbæk, S. (2005). A neural theory of visual attention: 

Bridging cognition and neurophysiology. Psychological Review, 112(4), 291–328. 

 

Bundesen, C., & Habekost, T. (2008). Principles of visual attention: Linking mind and brain. 

Oxford: Oxford University Press. 

 

Bundesen, C., Habekost, T., & Kyllingsbæk, S. (2011). A neural theory of visual attention 

and short-term memory (NTVA). Neuropsychologia, 49(6), 1446–1457. 

 

Cassidy, S. M., Robertson, I. H., & O’Connell, R. G. (2012). Restest reliability of event-

related potentials, Evidence from a variety of paradigms. Psychophysiology, 49(5), 659-

664.  

 

Cerella, J. (1991). Age effects may be global, not local: Comments on Risk and Rogers 

(1991). Journal of Experimental Psychology: General, 120(2), 215-223. 

 

Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental 

storage capacity. Behavioral and Brain Sciences, 24(1), 87–185.  

 

Curran, T., Tanaka, J. W., & Weiskopf, D. M. (2002). An electrophysiological comparison of 

visual categorization and recognition memory. Cognitve, Affective & Behavioral 

Neurosciences, 2(1), 1-18. 

 

Deary, I. J., Penke, L., & Johnson, W. (2010). The neuroscience of human intelligence 

differences. Nature Review Neuroscience, 11(3), 201-211. 

 

http://www.ncbi.nlm.nih.gov/pubmed?term=Birbaumer%20N%5BAuthor%5D&cauthor=true&cauthor_uid=2404287
http://www.ncbi.nlm.nih.gov/pubmed?term=Elbert%20T%5BAuthor%5D&cauthor=true&cauthor_uid=2404287
http://www.ncbi.nlm.nih.gov/pubmed?term=Canavan%20AG%5BAuthor%5D&cauthor=true&cauthor_uid=2404287
http://www.ncbi.nlm.nih.gov/pubmed?term=Rockstroh%20B%5BAuthor%5D&cauthor=true&cauthor_uid=2404287
http://www.ncbi.nlm.nih.gov/pubmed/2404287


90 

 

Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual 

Reviews Neuroscience, 18, 193–222. 

 

Duncan, J., Bundesen, C., Olson, A., Humphreys, G., Chavda, S., & Shibuya, H. (1999). 

Systematic analysis of deficits in visual attention. Journal of Experimental Psychology: 

General, 128(4), 450-478. 

 

Duncan, J., Bundesen, C., Olson, A., Humphreys, G., Ward, R., Kyllingsbæk, S., van 

Raamsdonk, M., Rorden, C., & Chavda, S. (2003). Attentional functions in dorsal and 

ventral simultanagnosia. Cognitive Neuropsychology, 20(8), 675-701. 

 

Dyrholm, M., Kyllingsbæk, S., Espeseth, T., & Bundesen, C. (2011). Generalizing parametric 

models by introducing trial-by-trial parameter variability: The case of TVA. Journal of 

Mathematical Psychology, 55(6), 416-429. 

 

Finke, K., Bublak, P., Krummenacher, J., Kyllingsbæk, S., Müller, H. J., & Schneider, W. X.  

(2005). Usability of a theory of visual attention (TVA) for parameter-based 

measurement of attention I: evidence from normal subjects. Journal of the International 

Neuropsychological Society, 11(7), 832–842. 

 

Finke, K., Dodds, C. M., Bublak, P., Regenthal, R., Baumann, F., Manly, T., & Müller, U. 

(2010). Effects of modafinil and methylphenidate on visual attention capacity: a TVA-

based study. Psychopharmacology, 210(3), 317-329 . 

 

Finke, K., Schwarzkopf, W., Müller, U., Frodl, T., Müller, H. J., Schneider, W. X., Engel, R. 

R., Riedel, M., Möller, H.-J., & Hennig-Fast, K. (2011). Disentangling the adult 

attention-deficit hyperactivity disorder endophenotype: parametric measurement of 

attention. Journal of Abnormal Psychology, 120(4), 890-901. 

 

Gillebert, C. R., Dyrholm, M., Vangkilde, S., Kyllingsbæk, S., Peeters, R., & Vandenberghe, 

R. (2012). Attentional priorities and access to short-term memory: Parietal interactions. 

Neuroimage, 62(3), 1551-1562. 

 

Gramann, K., Töllner, T., & Müller, H. J. (2010). Dimension-based attention modulates early 

visual processing. Psychophysiology. 47(5), 968–978. 

 

Gratton, G. (1998). The contralateral organization of visual memory: A theoretical concept 

and a research tool. Psychophysiology, 35(6), 638–647. 

 

Groh-Bordin, C., Busch, N. A., Hermann, C. S., & Zimmer, H. (2007). Event-related potential 

repetition effects at encoding predict memory performance at test. Neuroreport, 18(18), 

1905-1909. 

 

Habekost, T., & Starrfelt, R. (2009). Visual attention capacity: A review of TVA-based 

patient studies. Scandinavian Journal of Psychology, 50(1), 23–32. 

 

Haier, R. J., Siegel, B. V., Nuechterlein, K. H, Hazlett, E., Wu, J. C., Paek, J., Browing, H. L., 

& Buchsbaum, M. S. (1989). Cortical glucose metabolic rate correlates of abstract 

reasoning and attention studied with positron emission tomography. Intelligence, 12(2) 

199-217. 

 



91 

 

Heinze, H. J., Luck, S. J., Mangun, G. R., & Hillyard, S. A. (1990). Visual event-related 

potentials index focused attention within bilateral stimulus arrays. I. Evidence for early 

selection. Electroencephalography and clinical Neurophysiology, 75(6) 511–527. 

 

Hillyard, S. A., Vogel, E. K., & Luck, S. J. (1998). Sensory gain control (amplification) as a 

mechanism of selective attention, electrophysiological and neuroimaging evidence. 

Philosophical Transactions of the Royal Society of London B, 353(1373), 1257–1267. 

 

Johannes, S., Münte, T. F., Heinze, H. J., & Mangun, G. R. (1995). Luminance and spatial 

attention effects on early visual processing. Cognitive Brain Research, 2(3), 189-205. 

 

Jolicoeur, P., Sessa, P., Dell’Aqua, R., & Robitaille, N. (2006). On the control of visual 

spatial attention, evidence from human electrophysiology. Psychological Research, 

70(6), 414-424. 

 

Jung T.-P., Makeig, S., Westerfield, W., Townsend, J., Courchesne, E., & Sejnowski. T. J. 

(2000). Removal of eye activity artifacts from visual event-related potentials in normal 

and clinical subjects. Clinical Neurophysiology, 111(10), 1745-1758. 

 

Kiefer, M. (2001). Perceptual and semantic sources of category-specific effects in object 

categorization, Event-related potentials during picture and word categorization. Memory 

& Cognition, 29(1), 100-116. 

 

Klaver, P., Talsma, D., Wijers, A. A., Heinze, H. J., & Mulder, G. (1999). An event-related 

brain potential correlate of visual short-term memory. Neuroreport, 10(10), 2001-2005. 

 

Kutas, M., Iragui, V., & Hillyard, S. A. (1994). Effects of aging on event-related brain 

potentials (ERPs) in a visual detection task. Electroencephalography and clinical 

Neurophysiology, 92(2), 126-139. 

 

Kyllingsbæk, S. (2006). Modeling visual attention. Behavioral Research Methods, 38(1), 123-

133. 

 

Kyllingsbæk, S., & Bundesen, C. (2009). Changing change detection: Improving the 

reliability of measures of visual short-term memory. Psychonomic Bulletin & Review 

16(6), 1000-1010. 

 

LaBerge, D. (1997). Attention, awareness, the triangular circuit. Consciousness and 

Cognition, 6(2-3), 149-181. 

 

Luck, S. J., Heinze, H. J., Mangun, G. R., & Hillyard, S. A. (1990). Visual event-related 

potentials index focused attention within bilateral stimulus arrays. II. Functional 

dissociation of P1 and N1 components. Electroencephalography and clinical 

Neurophysiology, 75(6), 528–542. 

 

Luck, S. J. (2005). An introduction to the event-related potential technique. Cambridge (MA): 

MIT Press. 

 

Matthias, E., Bublak, P., Müller, H. J., Schneider, W. X., Krummenacher, J., & Finke, K. 

(2010). The influence of phasic alertness on spatial and non-spatial components of 



92 

 

visual attention. Journal of Experimental Psychology: Human Perception & 

Performance, 36(1), 38–56.  

 

McAvinue, L., Habekost, T., Johnson, K. A., Kyllingsbæk, S., Vangkilde, S., Bundesen, C., & 

Robertson, I. H. (2012). Sustained attention, attentional selectivity, and attentional 

capacity across the lifespan. Attention, Perception & Psychophysics, 74(8), 1570-1582. 

 

McCollough, A. W., Machizawa, M. G., & Vogel, E. K. (2007). Electrophysiological 

measures of maintaining representations in visual working memory. Cortex, 43(1), 77-

94. 

 

Meckliner, A., & Pfeiffer, E. (1996). Event-related potentials reveal topographical and 

temporal distinct neuronal activation patterns for spatial and object working memory. 

Cognitive Brain Research, 4(3), 211-224. 

 

Neubauer, A. C. (1997). The mental speed approach to the assessment of intelligence. In J. 

Kingma, & W. Tomic, (Eds.), Advances in Cognition and Educational Practice: 

Reflections on the Concept of Intelligence (pp. 149–174). Greenwich (CT): JAI Press. 

 

Peers, P. V., Ludwig, C. J. H., Rorden, C., Cusack, R., Bonfiglioli, C., Bundesen, C., Driver, 

J., Antoun, N., & Duncan, J. (2005). Attentional functions of parietal and frontal cortex. 

Cerebral Cortex, 15(10), 1469-1484. 

 

Perron, R., Lefebvre, C., Robitaille, N., Brisson, B., Gosselin, F., Arguin, E., & Jolicoeur, P. 

(2009). Attentional and anatomical considerations for the representation of simple 

stimuli in visual short-term memory, evidence from human electrophysiology. 

Psychological Research, 73(2), 222-232. 

 

Rushkin, D. S., Canoune, H. L., Johnson, R., & Ritter, W. (1995). Working memory and 

preparation elicit different patterns of slow wave event-related brain potentials. 

Psychophysiology. 32(4), 399-410. 

 

Rypma, B., Berger, J. S., & D’Esposito, M. (2002). The influence of working-memory 

demand and subject performance on prefrontal cortical activity. Journal of Cognitive 

Neuroscience, 14(5), 721-731. 

 

Rypma, B., & Prabhakaran, V. (2009). When less is more and more is more: The mediating 

roles of capacity and speed in brain-behavior efficiency. Intelligence, 37(2), 207-222. 

 

Salthouse, T. A. (1996). The processing-speed theory of adult age differences in cognition. 

Psychological Review, 103(3), 403-428.  

 

Sander, M. C., Werkle-Bergner, M., & Lindenberger, U. (2011). Contralateral delay activity 

reveals life-span age differences in top-down modulation of working memory contents. 

Cerebral Cortex, 21(12), 2809-2819. 

 

Spearman, C. (1904). “General intelligence” objectively determined and measured. American 

Journal of Psychology, 15(2), 201-292. 

 

Sperling, G. (1960). The information available in brief visual presentations. Psychological 

Monographs: General and Applied, 74(11), 1-29. 



93 

 

 

Stenneken, P., Egetemeir, J., Schulte-Körne, G., Müller, H. J., Schneider, W. X., & Finke, K. 

(2011). Slow perceptual processing at the core of developmental dyslexia: a parameter-

based assessment of visual attention. Neuropsychologia, 49(12), 3454–3465. 

 

Tanaka, J. W., Luu, P., Weisbrod, M., & Kiefer, M. (1999). Tracking the time course of 

object categorization using event-related potentials. Neuroreport, 10(4), 829-835. 

 

Thorpe, S., Fize, D., & Marlot, C. (1996). Speed of processing in the human visual system. 

Nature, 381(6582), 520-522. 

 

Todd, J. J., & Marois, R. (2004). Capacity limit of visual short-term memory in human 

posterior parietal cortex. Nature, 428(6984), 751–754. 

 

Todd, J. J., & Marois, R. (2005). Posterior parietal cortex activity predicts individual 

differences in visual short-term memory capacity. Cognitive, Affective & Behavioral 

Neuroscience, 5(2), 144–155. 

 

Tokudome, W., & Wang, G. (2011). Similarity dependency of the change in ERP component 

N1 accompanying with the object recognition learning. International Journal of 

Psychophysiology, 83(1), 102-109. 

 

Töllner, T., Gramann, K., Müller, H. J., & Eimer, M. (2009). The anterior N1 as an index of 

modality shifting. Journal of Cognitive Neuroscience, 21(9), 1653-1669.  

 

Töllner, T., Zehetleitner, M., Gramann, K., & Müller, H. J. (2011). Stimulus saliency 

modulates pre-attentive processing speed in human visual cortex. PLoS One, 6(1), 

e16276. 

 

Töllner, T., Rangelov, D., & Müller, H. J. (2012). How the speed of motor-response 

decisions, but not focal-attentional selection, differs as a function of task set and target 

prevalence. Proceedings of the National Academy of Sciences of the United States of 

America, 109, E1990-E1999. 

 

Vangkilde, S., Bundesen, C., & Coull, J. (2011). Prompt but inefficient, nicotine differentially 

modulates discrete components of attention. Psychopharmacology, 218(4), 667–680. 

 

Vernon, P. A. (1983). Speed of information processing and general intelligence. Intelligence, 

7(1), 53-70. 

 

Vogel, E. K., & Luck, S. J. (2000). The visual N1 component as an index of a discrimination 

process. Psychophysiology. 37(2), 190-203. 

 

Vogel, E. K., & Machizawa, M. G. (2004). Neural activity predicts individual differences in 

visual working memory capacity. Nature, 428(6984), 748-751. 

 

Vogel, E. K., McCollough, A. W., & Machizawa, M. G. (2005). Neural measures reveal 

individual differences in controlling access to working memory. Nature, 438(7067), 

500-503. 

 



94 

 

Vogel, E. K., & Awh, E. (2008). How to exploit diversity for scientific gain. Current 

Directions in Psychological Science, 17(2), 171-176.  

 

Wiegand, I., Finke, K., Müller, H. J., & Töllner, T. (2013). Event-related potentials dissociate 

perceptual and response-related age effects in visual search. Neurobiology of Aging, 

34(3),973-985. 

 

Yordanova, J., Kolev, V., Hohnsbein, J., & Falkenstein, M. (2004). Sensorimotor slowing 

with ageing is mediated by a functional dysregulation of motor generation. Brain, 

127(2), 351-362. 

 
 

  



95 

 

3.2 Neural markers of cognitive decline and reserve in visual 

processing speed and visual short-term storage capacity 

3.2.1 Abstract 

Attentional decrements are assumed to be a major determinant of general cognitive 

decline in older age. The present study aimed at identifying neural markers of declined and 

preserved basic visual attention functions based on Bundesen’s formal ‘Theory of Visual 

Attention’ in aging individuals. We investigated the relationship between neurophysiology, 

individual performance and age by (1) contrasting ERPs of higher- and lower-performing 

younger and older participants and (2) conducting correlation analyses of behavioral measures 

and ERPs, separately for TVA parameters visual perceptual processing speed C and vSTM 

storage capacity K. First, in both age groups, the same distinct components marked 

interindividual differences in C and K, respectively: The posterior N1 was augmented for 

participants with higher as compared to lower processing speed and its amplitude correlated 

with individual C-values. For participants with higher relative to lower storage capacity, the 

contralateral delay activity was enhanced, and correlated with individual K-values. Second, in 

older age, both parameters were related to two further distinct ERP correlates: The anterior 

N1 was reduced only for older participants with lower processing and its amplitude correlated 

with individual C-values only in the older sample, indicative of selective loss of attentional 

resources associated with slowed encoding rates in older age. Conversely, only elderly with 

high levels of storage capacity exhibited a right-central positivity, which correlated with 

individual K-values only in the older sample, indicative of compensatory resource recruitment 

fostering reserved storage capacity in older age.  
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3.2.2 Introduction 

Visual attention abilities are known to decline in senescence, affecting performance in 

a variety of daily tasks (Park & Hall Gutchess, 2000). These impairments likely result from 

substantial structural and functional changes in the brain during aging, which affect large 

parts of the visual attention network (e.g., Madden et al., 2007). Aging studies using 

functional neuroimaging techniques provide the opportunity to investigate brain-behavior 

relationships underlying cerebral and cognitive decline by analyzing age differences in task-

related brain activity. In some cases, brain activity is found to be reduced for older compared 

to younger adults, whereas in other cases, it is found to be enhanced (for recent reviews, see 

Fabiani, 2012; Grady, 2012). However, the interpretation of age effects on brain activity is not 

trivial. Age-related variations in neural activation may partly reflect neural loss and cognitive 

decline, but may also comprise neural compensation fostering ‘cognitive reserve’, that is, 

preserved abilities in older age (Stern, 2002, 2009). Furthermore, age differences may result 

from reduced specificity in brain activation. In order to be able to differentiate between age-

related loss, compensation, and dedifferentiation, interindividual differences in older adults’ 

cognitive performance must be taken into account (e.g., Cabeza et al., 2005).  

Interindividual variability in cognitive tasks is assumed to result from variations in 

fundamental cognitive abilities or processing resources that are suggested to account for 

performance in a broad range of cognitive tasks (e.g., Spearman, 1904; Vernon, 1983). 

Similarly, the widespread age-related cognitive decrements have been attributed to a decline 

in basic fluid processing components, in particular, a general slowing of information 

processing (e.g., Cerella, 1994; Deary et al., 2010; Salthouse, 1996) and reduction of short-

term storage capacity (e.g., Baddeley, 2002; Salthouse, 1994). In the visual domain, these key 

functions are formally integrated within the ‘Theory of Visual Attention’ (TVA, Bundesen, 

1990): (1) visual processing speed C, the amount of visual information that can be processed 

per second, and (2) visual short-term memory (vSTM) storage capacity K, the maximum 
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number of objects that can be perceived at one point in time. Based on performance in a 

psychophysical whole report task, the mathematical model permits to quantify these 

parameters for a particular individual (e.g., Duncan et al., 1999). In close relation to the 

‘biased competition model’ (Desimone & Duncan, 1995), TVA assumes a race of multiple 

elements in the visual field that are processed in parallel and compete for selection. Those 

objects that complete processing fastest will be encoded into vSTM
6
. The theory’s neural 

interpretation (NTVA, Bundesen et al., 2005, 2011) further claims that distinct brain 

processes underlie the two components. Recently, in a pioneering study on young, healthy 

participants, this assumption was validated by linking distinct event-related potentials (ERPs) 

to individual differences in the two parameters (Wiegand et al., under review). First, when 

participants were split according to their processing speed level, faster relative to slower 

participants exhibited a significantly smaller posterior N1, with amplitudes being inversely 

correlated with processing speed across all participants. The visual N1 amplitudes are 

assumed to index the amount of neural resource allocated for object discrimination processes 

(Vogel & Luck, 2000). Accordingly, the relation of visual N1 amplitudes to parameter 

processing speed C was interpreted to reflect that faster individuals need to recruit a relatively 

smaller proportion of their available neural resources when categorizing objects. Second, 

when the same individuals were split according to their storage capacity level, those with 

higher relative to lower storage capacity exhibited a significantly larger contralateral delay 

activity (CDA). The CDA amplitude was further correlated with individual storage capacity 

across all participants. The component is quantified by calculating the difference between 

delay activity contra- and ipsilateral to the attended hemifield when attention during encoding 

is directed to only one hemifield of a bilateral stimulus array (Klaver et al., 1999). The 

amplitude of the difference wave has been proven to be a direct measure of the number of 

representations currently held in vSTM (McCollough et al., 2007; Vogel & Machizawa, 

                                                           
6
 In TVA, the categorization of an object is synonymous to its encoding into vSTM 
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2004). Thus, the amount of topographically specific activity was interpreted to mark the 

individual vSTM capacity limits expressed in TVA parameter storage capacity K.  

Combining TVA-based assessment with ERP markers of the distinct visual attention 

capacity parameters is also a promising approach to identify the neural underpinnings of age 

decrements in these functions. As a critical advantage over conventional neuropsychological 

attention tests, the TVA procedure allows estimating age-related decline in processing speed 

and storage capacity in an unconfounded manner on the basis of mathematically independent 

parameter fitting (Duncan et al., 1999; Finke et al., 2005). The assessment is based on 

response accuracy of unspeeded verbal report, and thus, rather unaffected by age-related 

motor slowing or potential speed-accuracy trade-off effects. Furthermore, the simplicity of 

task instructions and the use of short exposure durations render systematic age variations in 

strategy very unlikely. The individually adapted exposure durations further control for 

potential confounding differences in individual perceptual thresholds (Habekost et al., 2012). 

Recently, behavioral TVA-based parameter modeling has been used to quantify age-related 

decline in visual processing speed and storage capacity (McAvinue et al., 2012; Habekost et 

al., 2012). However, a systematic investigation of the neural mechanisms underlying these 

changes has not been carried out yet. Thus, it remains unclear, whether the same neural 

mechanisms underlying interindividual performance differences in younger individuals also 

contribute to age-related decline of the two functions or whether different mechanisms 

account for performance variations in older age. 

In the present study, we used the same methodology as employed by Wiegand et al. 

(under review) to establish age-related changes in distinct electro-cortical markers of visual 

processing speed C and short-term storage capacity K, respectively. In particular, we assume 

that neural markers of processing speed and storage capacity differentiating between young 

individuals with higher and lower parameter levels may also reflect the age-related decline in 

processing speed (by increased N1 amplitudes) and vSTM storage capacity (by decreased 
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CDA amplitudes). In fact, previous EEG findings are largely in agreement with these 

hypotheses. A number of studies showed age-related increases of the posterior N1 in visual 

tasks (e.g., Kutas et al., 1994; Yordanova et al., 2004). Conversely, some studies also reported 

no differences (Falkenstein et al., 2006; Riis et al., 2008) or even a decrease in older relative 

to younger participants (Czigler & Balàsz, 2005). Notably, all these age-effects have been 

obtained ancillary to the main focus of these studies. Thus, they have not been related to 

performance in the employed tasks and were suggested to simply reflect genuine age 

differences in sensory processing (see DeSanctis et al., 2008, for review). The CDA was 

previously found to be reduced in older, as compared to younger, adults. Therefore, it has 

been declared a marker of the age-related reduction in vSTM storage capacity (Jost et al., 

2010; Sander et al., 2011; Wiegand et al., 2013). 

Besides components that distinguished high- and low-performing younger 

participants, it is possible that additional neural correlates specifically differentiate between 

high- and low-performing elderly. In particular, frontally-mediated control processes are 

known to have a rising influence on cognitive abilities with advancing age (e.g., Grady, 2012; 

West, 1996). Accordingly, former ERP studies have demonstrated alterations in activity 

attributable to age-related changes in the attentional control network (e.g., Fabiani et al., 

2012). For example, the anterior visual N1, which has been linked to voluntary shifts of 

spatial- and feature-specific attentional weights (Golomb et al., 2010; He et al., 2004, 2008; 

Töllner et al., 2009), is commonly reduced in older individuals (Curran et al., 2001; Kutas et 

al., 1994; Snyder and Hillyard, 1979). Similarly, a broad centro-parietally distributed 

positivity occurring about 200-400 ms following the presentation of visual stimuli, was found 

to be augmented in older age (e.g., Finnigan et al., 2011; see Kok, 2000 for a review). This 

activity is assumed to mark allocation of attentional resources fostering information encoding 

(e.g., Kok, 2001; Lefèbre et al., 2005). Thus, its reduction in older participants is presumably 

related to the age-related decline in executive control. Based on these previous findings, we 
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assumed that components related to attentional control processes might differ between higher- 

and lower-performing elderly, without necessarily differentiating among younger participants 

with different performance levels. 

By coupling event-related brain responses to individual performance levels in different 

age groups, we aimed at differentiating between activity patterns related to cognitive decline 

and those related to preserved performance levels in aging participants (Daffner et al., 2011; 

Riis et al., 2008; Stern, 2002). Specifically, we compared ERPs of younger and older 

participants, who were divided into subgroups of relatively high and low performers based on 

behavioral TVA parameter estimates of processing speed and storage capacity, respectively. 

The finding of ERP components that differentiate between participants with higher and lower 

performance in both age groups (main effect Performance Level) and between younger and 

older participants (main effect Age) would suggest that the same underlying neural circuits 

determine visual attention abilities in both older and younger participants and that these 

circuits are affected by normal aging. In contrast, ERP variations that differentiate between 

performance levels only in the older sample, but do not differ between higher and lower 

performing younger individuals (interaction of Performance Level and Age), would imply 

that attentional abilities in older age rely on different neural processes than in younger 

individuals. On the one hand, these might be compensatory processes, in support of successful 

task accomplishment. Such compensatory recruitment of resources should become manifest in 

activity changes especially within the high-performing older participants (Old high ≠ Old low 

= Young). On the other hand, neural processes that are generally optimized in younger age 

may exclusively decline in older participants with low performance levels. Such neural 

deterioration processes should become manifest in activity changes only in low-performing 

older participants (Old low ≠ Old high = Young). Finally, age-related activity changes 

unrelated to task performance (Old low = Old high ≠ Young) would rather imply 
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dedifferentiation that does not promote cognitive functioning (e.g., Cabeza et al., 2005; Stern, 

2009). 

 

3.2.3 Methods 

Participants 

Twenty younger participants and twenty older participants were included in the 

sample (Table 3.3). The younger participants were also included in the prior study (Wiegand 

et al., under review). Participants who made systematic eye-movements in the EEG-

experiment or for whom more than 25% of all trials were rejected because of artifacts were 

excluded (four older and three younger participants). None of the participants reported any 

history of neurological (e.g., traumatic brain injury, stroke), psychiatric (e.g., depression, 

anxiety disorders), chronic somatic (e.g., hypertension, diabetes), and chronic eye diseases 

(e.g., glaucoma, cataract). All participants had normal or corrected-to-normal vision, with 

visual acuity being 0.63 or better (Snellen, 1868), and were not color-blind. The Mini Mental 

State Examination (MMSE; Folstein et al., 1975) ruled out any symptoms prognostic of 

dementia: all participants achieved a score of 27 points or higher. The educational level was 

significantly lower in the older group (see Table 3.3), which is representative for the German 

post World War II generation. Notably, IQ scores derived from a test of German vocabulary 

test (Mehrfach-Wortwahl-Test; Lehrl, 1977) indicated comparable levels of crystallized 

intelligence for the two groups. The participants were naïve to the procedure of the TVA 

based experiments. All participants received payment and gave written informed consent 

according to the Declaration of Helsinki II. The study was approved by the Ethics Committee 

of the Faculty of Psychology, LMU Munich. 

 
 
 
 
 
 
 



102 

 

Table 3.3: Demographic variables of the groups.  

Gender distribution; mean and standard deviation (in parentheses) and range of age, education, and crystalline 
IQ; Chi²- and T-values and significance of group comparisons. F: female; M: male; Age: years; Education: 

attended school years; MWT-B: German Multiple-Choice Vocabulary Test (Lehrl et al., 1977). 
 

 Young Old Significance Test 

Sex  

(F/M) 
11/9 10/10 Chi²=.20; p>.50 

Age 
26.30  (3.01)              

19-30 
67.30 (3.89)                

61-75 
t(38) = 36.09; p<.001 

Education  
13.00 (0.00)          

13-13 
11.25 (1.51)             

9-13 
t(38) = 3.28; p<.01 

IQ*  

(MWT-B) 

113.44 (8.94)      
101- 130 

133.76 (7.98) 
107-143 

t(33) = 1.74; p=.09 

 
*MWT-B scores of 5 non-native German-speaking participants (3 younger and 2 older) were excluded 

 
 

Procedure  

Experimental setup and task. Participants completed two test sessions, first the 

standard TVA whole report, and 5–10 days later the EEG whole report task (Figure 3.1). 

Daytime of testing, ambient, equipment, viewing distance, background and stimuli type, size, 

positions and luminance were the same during both sessions. The PC-controlled tests were 

conducted in a dimly lit room with stimuli presented on a 17-inch monitor (1024- by 768-

pixel screen resolution; 85-Hz refresh rate) from a viewing distance of 65 cm. Participants 

were instructed to report as many letters as possible from a briefly presented letter array 

without speed stressing. They were requested to report only those letters they recognized 

‘fairly certain’. The experimenter entered the responses on the keyboard and started the next 

trial. Four letters were chosen from a pre-specified set of well-distinguishable letters 

[ACEHJOPRSTWX] and presented with a size of 1.1° visual angle at lateral positions on an 

imaginary circle around a central white fixation cross of 0.7° visual angle on a black 

background.  

Standard whole report procedure. Prior to the parameter assessment procedure, we 

identified the most appropriate individual exposure durations in a pre-test consisting of 24 
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masked trials. The presentation time at which a participant could report, on average, one letter 

per trial correctly (i.e., 25% report accuracy) was chosen as intermediate exposure duration in 

the assessment procedure, together with a shorter (half as long) and longer (twice as long) 

exposure duration. This provides a means for optimal modeling of parameters by delivering a 

broad range of performances from each individual (from around perceptual threshold to 

maximum storage capacity). The exposure duration by itself, however, is not a determinant of 

the parameters obtained. The mean medium exposure duration was 53.45 ms (range: 24-90) 

for younger and 85.00 ms (range: 60-100) for older participants.  

In the standard TVA whole report experiment, the fixation cross was presented for 300 

ms. After a blank screen of 100 ms, the letter array was presented. Isoluminant letters were 

presented on the left or right side of the central fixation, randomly chosen to be either red or 

green. The same letter appeared only once in each trial. In half of the trials, the array was 

followed by a mask presented for 500 ms at each stimulus location, which consisted of a 

square filled with a ‘+’ and an ‘x’ (1.2° visual angle). Owing to visual persistence, exposure 

durations are effectively prolonged in unmasked compared to masked conditions (Sperling, 

1960). Together with the three varying exposure durations, this resulted in six different 

effective exposure durations. Exposure duration (short, medium, long), masking (masked, 

non-masked), and hemifield (left, right) varied randomly, resulting in 12 equally frequent 

conditions presented in 6 blocks of 40 trials each. The first block consisted of 40 practice 

trials, and data were modeled based on the 200 remaining trials.  

Whole report procedure in the EEG experiment. In the EEG experiment, the classical 

whole report paradigm was adapted to be suitable for analyzing lateralized as well as non-

lateralized ERP responses. Participants were instructed to remain central eye fixation 

throughout the whole experimental blocks. To ensure balanced physical stimulation across 

hemifields, we presented letters bilaterally and the to-be-attended hemifield was indicated by 

a 100%-valid spatial arrow pre-cue with the cued side varying randomly from trial to trial 
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(based on the classical lateralized vSTM paradigm, e.g., Vogel & Machizawa, 2004). Letters 

were presented only once in a given trial, either as target letter (cued hemifield), or as filler 

letter (un-cued hemifield). Target selection in face of additional visual stimulus presentation 

was further facilitated by separating targets and placeholders by color, i.e. either all target 

letters were green and all distractor letters were red, or vice versa, in a randomly changing 

fashion. Each trial started with the central fixation cross, presented for 100 ms followed by 

the cue for 200 ms. Then the letter array was presented for 200 ms. After a delay of 900 ms 

with a blank screen, a question mark appeared in the center, prompting the verbal report 

(Figure 3.1). After a practice block of 16 trials, EEG recording was started and a whole of 240 

trials were run. 

 

Parameter Estimation 

The accuracy of letter report as a function of effective exposure duration derived in the 

standard procedure was modeled according to TVA by the method of maximum likelihood 

(Kyllingsbæk, 2006; Dyrholm et al., 2011). The modeling was based on estimating four 

parameters defining the psychometric function (Bundesen, 1990; see also Figure 3.2): (1) 

parameter t0, the minimal effective exposure (in ms) duration, below which information 

uptake from the display is assumed to be zero; (2) parameter μ, the persistence of the iconic 

memory trace (estimated in ms from performance differences between unmasked and masked 

trials); (3) parameter C, the visual processing speed, the sum of estimated speed values across 

stimulus positions (estimated as number of elements processed per second); and (4) parameter 

K, the storage capacity (estimated as the maximum number of elements represented 

simultaneously in vSTM). C reflects the slope of the exponential at its origin t0, K reflects the 

asymptote of the exponential psychometric function. In the current study, parameters t0 and μ 

were estimated in order to receive valid estimates of the two parameters of main interest, C 
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and K. In accordance with previous reports (McAvinue et al., 2012), t0 was marginally 

significantly longer in older than younger participants [t(38)=1.98; p=.06].  

We estimated parameter top-down control α for each participant by a further fitting 

procedure in which trials from the EEG session, in addition to trials form the standard 

experiment, were included in the model. An α-value of zero would imply that the participant 

was able to use the spatial cue to completely ‘filter out’ the fillers, whereas an α-value 

significantly higher than zero would indicate that attentional weights were allocated to filler 

letters. For each participant, we tested the significance of α (i.e., whether letters presented as 

fillers on the un-cued side in the EEG paradigm received a significant amount of attentional 

weighting) by means of Likelihood Ratio tests
7
.   

 

EEG data acquisition   

The EEG was recorded from 64 active Ag/AgCl electrodes (actiCap System, Brain 

Products, Munich), placed according to the International 10/10 system (American 

Electroencephalographic Society, 1994). EEG and electrooculogram were amplified by 

BrainAmp amplifiers (BrainProducts, Munich) using a 0.1 – 250-Hz bandpass filter. The data 

was sampled at 1 kHz, and filtered offline with a 0.5 Hz high-pass filter (Butterworth zero 

phase, 24 dB/Octave). An Infomax Independent Component Analysis (Bell & Sejnowski, 

1995), as implemented in the Brain Vision Analyzer software (BrainProducts, Munich), was 

run to identify components of the EEG that represent ocular artifacts (i.e., blinks and/or 

horizontal eye movements; see also Jung et al., 2000) and to remove those before back-

projection of the residual components. All electrodes were referenced to FCz, and re-

referenced offline to averaged mastoids. Horizontal eye movements were recorded by 

                                                           
7
 The fits of two models were compared. One model treated fillers as 'distractors' that competed for vSTM 

storage but were not to be reported, the second model assumed fillers as absent. Note that all analyses involving 

parameters C and K were based on the fitting including only trials of the standard procedure. The distractor 

model used one extra degree of freedom per fit, and the test was to see if this resulted in a significantly better fit. 
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electrodes F9 and F10 and vertical eye movements were recorded from Fp1 and an electrode 

placed beneath the left eye. Before the EEG was segmented into epochs for ERP analyses, the 

signal was filtered with a 40 Hz low-pass filter (Butterworth zero phase, 24 dB/Octave). 

Trials with artifacts — defined as any signal exceeding ± 60 µV on any of the electrodes, ± 30 

µV on electrodes F9 and F10, and bursts of electromyographic activity (permitted maximal 

voltage steps/sampling point of 50 µV) — were excluded from the averages.  

 

Table 3.4: Time windows and electrodes used for determining mean amplitudes of the ERP components. 

Component Time Window (ms) Electrodes 

Anterior N1 90-120 F3, Fz, F4                                
FC3, FCz, FC4 

Posterior N1 130-170 
PO7, POz, PO8   

O1, Oz, O2 

Central Positivity 200-350 C3, Cz, C4                   
 CP3, CPz, CP4 

Contralateral Delay Activity 450-650 PO7/PO8  
O1/O2 

 

For the ERP analysis, EEG epochs of 1400 ms (from 400 ms before onset of the letter 

display to 1000 ms after), were averaged separately for attend-left and attend-right conditions.  

Baseline correction was based on the 400-200 ms pre-display period (i.e., the 200 ms pre-cue 

period). The CDA difference waves were quantified by subtracting ERPs at electrodes 

ipsilateral from electrodes contralateral to the attended array. To examine age-related changes 

in ERP correlates of TVA parameters, we focused on the correlates that were previously 

identified as neural indices of differences in processing speed and capacity in younger 

participants, the posterior N1 and CDA, and additional components that showed associations 

with the parameters in older participants, the anterior N1 and central positivity. Mean 

amplitudes and recording sites for analyses were derived from visual inspection of the grand-

average potentials of these components (Table 3.4). 
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Statistical Analyses 

Each age group was divided twice into groups of high and low performers by 

conducting median splits based on their behavioral parameter estimates, first according to 

those of C and second according to those of K. Behavioral differences between age groups 

and between high and low performers were examined by two separate univariate ANOVAs, 

one using parameter C and one on parameter K as dependent variable. Both included the 

between-subject factor Age (younger, older). An additional between-subject factor 

Performance Level contrasted participants with higher and lower processing speed C (C-

level) in the former ANOVA and participants with higher and lower storage capacity K (K-

level) in the latter. The modulation of ERP responses by age and interindividual performance 

differences in older and younger participants were examined as follows: For each component 

of interest, two separate mixed ANOVAs were calculated. Both employed the within-subjects 

factors Electrode Site (anterior, posterior) and Electrode Position (left, central, right) and the 

between-subject factor Age (younger, older). Again, the between-subject factor C-level was 

included in one ANOVA and K-level in the other. Note that the factor Electrode Position was 

not included in CDA analyses, which were performed on (contralateral-minus-ipsilateral) 

difference waves (see above). Following our hypotheses, we were most interested in 

interactions involving Age and Performance Level, which would indicate age-dependent 

differences in neural correlates of TVA parameters. For the sake of brevity, only main effects 

or interactions including the factors Age and/or Performance Level are reported. To further 

explore interactions, subsidiary ANOVAs and pairwise contrast were employed. We 

calculated Spearman correlation coefficients to examine the continuous relationships between 

individual parameter estimates and ERP measures at electrodes where the effect was most 

pronounced (as revealed by topographical analyses). Correlations were performed across the 

whole sample (N=40). In case the ANOVA revealed a significant interaction of Age and 

Performance Level, indicating that the relationship between ERPs and performance differed 
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between younger and older participants, correlation coefficients were further calculated 

separately for the two age groups  

 

3.2.4 Results 

Parameter Estimation 

Attention parameters of visual processing capacity. For each participant, the accuracy 

of letter report as a function of effective exposure duration was modeled by a TVA-based 

function representing the best fit of the data according to the maximum likelihood method 

(Dyrholm et al., 2011; Kyllingsbæk, 2006). Overall, there was a close correspondence 

between the theoretically and the empirically obtained mean scores. Goodness-of-fit measures 

showed that more than 94 % of variance in the observed scores was accounted for by the 

maximum likelihood fits (Young: mean R²=.95; Old: mean R²=.93). Across all participants, 

estimates of the TVA parameters processing speed C and storage capacity K were 

significantly correlated (r=.55, p<.01), however, separate correlation analyses for both age 

groups revealed the correlation only to be significant within the younger (r=.54, p<.05), but 

not the older sample (r=.26; p>.25). The ANOVAs revealed that both parameters were overall 

significantly higher in younger than older participants [main effect Age: both F(1,36)>14.00; 

p<.001], and significantly higher for high than low performing individuals [main effect 

Performance Level: both F(1,36)>8.00; p<.001]. There was further a significant interaction of 

Age and C-level [F(1,36)>16.12, p<.001], reflecting that the difference between younger and 

older participants with relatively high processing speed was larger than the difference 

between younger and older participants with relatively low processing speed (Figure 3.6).    
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Figure 3.6: Behavioral parameter estimates of younger and older participants.  

Mean and standard error of parameter estimates, for groups of all younger and older participants and subgroups 
of higher and lower performing individuals based on the median split of processing speed (left panel) and storage 
capacity (right panel).  

 

Top-down control parameter α. For each participant, we estimated the efficiency of 

selection guided by the cue in the EEG experiment. We calculated the attentional weight 

index α (attentional weight of filler letters dividing by attentional weight of target letters) by 

including trials of the EEG experiment in addition to the trials of the standard experiment in a 

further fitting procedure. Individual Likelihood Ratio tests revealed that for 11 younger and 

for 15 older participants objects on the un-cued side received a significant amount of 

attentional weight (p<.05). Across the whole sample, α-values were rather low with a mean of 

0.07 (SD: 0.10), that is, on average only 3.5% of the participants’ processing capacity was 

allocated to the not-to-be-attended side (an α-value of 1.00 would indicate a 50/50 split of 

processing capacity between cued and un-cued objects). Younger participants (mean: 0.04; 

SD: 0.06) showed a marginally significantly more efficient top-down control α compared with 

older participants (mean: 0.10; SD: 0.12) [t(38)=2.02; p=.05]. Three participants (one younger 

and two older participants) showed individual α-values which exceeded 2.5 standard 

deviations of the whole sample’s mean α, i.e. their top-down control was not representative 

for the participants tested in this study. The remaining participants had almost perfect top-

down control values, indicative of highly efficient selection (Younger participants: mean: 

0.02; SD: 0.03; Older participants: mean: 0.06; SD: 0.05). In order to control for the influence 
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of attentional weight potentially (mis-)allocated to filler letters on the ERP correlates of the 

general capacity parameters C and K, ERP results were verified by repeating the analyses on 

ERP amplitudes without the three outlier participants. 

 

Event-related potentials  

The ERP waveforms averaged time-locked to the onset of the stimulus array showed 

clear visual P1 and N1 components followed by a broadly distributed central positivity. The 

waveforms then devolved into a posteriorly pronounced sustained negativity, which was 

higher over electrodes contra- than ipsilateral to the attended hemifield. In both age groups, 

the posterior N1 response was smaller for participants with higher relative to lower processing 

speed (Figure 3.7). Furthermore, the N1 at frontal sites was larger in older participants with 

faster relative to slower processing speed (Figure 3.8). The lateralized ERPs showed an 

enhanced CDA for participants with higher as compared to those with lower storage capacity 

K in both age groups (Figure 3.9). Additionally, an increased right-central positivity was 

found in older participants with higher as compared to those with lower storage capacity 

(Figure 3.10).  

Posterior N1. C-level: The ANOVA on N1 amplitudes at posterior electrode sites 

revealed a significant main effect of C-level [F(1,36)=10.66; p<.01] and an interaction of 

Electrode Site and C-level [F(1,36)=10.21; p<.01]. These results confirm reduced activation 

levels in faster compared to slower participants across age groups, with the difference being 

more pronounced at occipital [t(38)=3.67; p=.001] than parieto-occipital [t(38)=2.85; p<.01] 

electrode sites. Accordingly, individual C-values were significantly correlated with posterior 

N1 amplitudes at occipital electrodes across the whole sample (r=.41; p<.05; Figure 3.7). The 

main effect of Age [F(1,36)=.002; p=.97] and the interaction of Age and C-level 

[F(1,36)=.95; p=.35] were not significant. 
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Figure 3.7: Posterior N1 as a neural marker of individual differences in processing speed C.  
a) Grand-averaged ERPs for younger participants (upper panel) and older participants (lower panel), for 
participants with higher (black line) and lower processing speed C (grey line) at posterior electrode sites. b) 

Difference maps showing the activity of participants with lower processing speed subtracted from activity of 
participants with higher processing speed in the posterior N1 time range. c) Spearman correlations between 
posterior N1 amplitudes and individual C-values. 

 

Additionally, there was a significant interaction of Electrode Site, Electrode Position 

and Age [F(2,72)=9.88; p<.01], indicating a different topography in older and younger 

participants. Separate follow-up analyses for the two groups revealed a significant main effect 

of Electrode Site for older participants [F(1,19)=40.21; p<.001] which reflected stronger 

deflections at occipital than parieto-occipital sites. In younger participants, this effect was also 

observable [F(1,19)=28.26; p<.001]. Moreover, a significant main effect of Electrode Position 
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[F(2,38)=7.69; p<.01] was found in this group only. A significant interaction between 

Electrode Site and Electrode Position [F(2,38)=8.54; p<.01] reflected that the posterior N1 

was significantly more negative at occipital than parieto-occipital sites only at lateral [both 

t(19)>2.81; p<.01] but not at central electrodes [t(19)=.68; p>.50].  

K-level: The ANOVA revealed the main effect of K-level [F(1,36)=5.43; p<.05] to be 

significant. However, individual K-values were not significantly correlated with posterior N1 

amplitudes (r=.23, p>.15)
8
 and the effect of K-level was smaller than the effect of C-level 

(2.75 vs. 3.70 µV). 

Anterior N1. C-level: The ANOVA on anterior N1 amplitudes revealed a significant 

main effect of Age [F(1,36)=9.61; p<.01], reflecting overall less negative-going deflections in 

older than younger participants [F(1,36)=11.29; p<.01], and a significant interaction of Age 

and C-level [F(4,148)=2.04; p<.05]. The main effect of C-level was not significant 

[F(1,36)=1.10; p=.30]. The anterior N1 was significantly larger in older participants with 

higher than lower processing speed [t(18)=3.68; p<.01]. In contrast, C-level did not 

significantly modulate the anterior N1 in the younger group [t(18)=1.44; p>.15]. There was no 

difference between older and younger participants with relatively high processing speed 

[t(18).=.20; p>.50], but there was a significant reduction for older as opposed to younger 

participants with relatively low processing speed [t(18)=4.26; p<.001] (Figure 3.8). Individual 

C-values were not significantly correlated with anterior N1 amplitudes across the whole 

sample [r=-.23; p=.14] or within the younger group [r=.25; p=.28]. However, a significant 

correlation was obtained in the older group [r=-.58; p<.01] (Figure 3.8). 

K-level: Apart from the main effect of Age [F(1,36)=4.08; p<.05] already documented 

in the previous analysis, the ANOVA did not reveal any further significant main effects or 

interactions involving K-level.  

                                                           
8
 We assume the main effect of K-level to be a side effect of the covariance between both parameters (Finke et 

al., 2005; Habekost & Starrfelt, 2009), which resulted in a large overlap of participants’ group assignments for 

comparisons of high- and low-performers regarding C and K. 
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Figure 3.8: Anterior N1 as a neural marker of age-related decline in processing speed C. a) Grand-averaged 

ERPs of younger participants (upper panel) and older participants (lower panel), for participants with higher (black 
line) and lower processing speed C (grey line) at anterior electrode sites. b) Difference maps showing the activity 

of participants with lower processing speed subtracted from activity of participants with higher processing speed 
in the anterior N1 time range. c) Spearman correlations between anterior N1 amplitudes and individual C-values. 

 

Contralateral delay activity. K-level: The ANOVA on CDA amplitudes gave rise to a 

significant main effect of Age [F(1,36)=4.94; p<.05], reflecting overall higher amplitudes in 

younger compared to older individuals, and a significant main effect of K-level 

[F(1,36)=7.82; p<.01], reflecting enhanced activations for participants with higher relative to 

lower storage capacity across age groups (Figure 3.9). There was no interaction of Age and K-
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level [F(36,1)=.09; p=.76]. Accordingly, across all participants, individual K-values were 

significantly correlated with CDA amplitudes (r=-.55; p<.001; Figure 3.9). 

 

 

Figure 3.9: Contralateral delay activity as a neural marker of individual differences in storage capacity K.  
The CDA in younger participants (upper panel) and older participants (lower panel). a) Grand-averaged ERPs 
(left) ipsilateral (dashed line) and contralateral (solid line) to the attended hemifield and (ipsi-minus-contra) 
difference waves of participants with higher (black line) and lower storage capacity K (grey line) at posterior-
occipital electrodes. b) Spearman correlations between CDA amplitudes and individual K-values 

 



115 

 

C-level: Apart from the main effect of Age [F(1,36)=4.15; p<.05] already documented 

in the previous analysis, the ANOVA did not reveal any further significant main effects or 

interactions including C-level [all F<.50; all p>.50].  

Central positivity. K-level: The ANOVA on central positivity 200-350 ms following 

array onset yielded a significant interaction of Electrode Position, Age, and K-level 

[F(2,72)=4.60; p<.05]. Separate follow-up analyses for the two age groups revealed a 

significant interaction of Electrode Position and K-level in the older group [F(2,36)=4.45; 

p<.01]. The interaction reflected a significantly higher activation for participants with higher 

as compared to lower storage capacity at right-hemispheric electrodes [t(18)=2.61, p<.05] but 

not at central and left electrodes [both t(18)<1.50, p>.15]. In contrast, K-level did not 

significantly modulate the activation level in the younger group [all F<1.15; all p>.25)]. When 

participants with relatively high storage capacity were compared across age levels, the central 

positivity was also significantly more pronounced at right electrodes [t(18)=2.64; p<.05], but 

not at central and left electrodes [both t(18)<1.50; p>.15]. When participants with relatively 

low storage capacity were compared, positivity did not significantly differ between older and 

younger participants, at any electrode position [all t(18)<1.73; all p>.10] (Figure 3.10). 

Across the whole sample, positivity at right electrodes was not significantly correlated with 

individual K-values (r=11; p>.15). Separate analyses for both age groups, however, revealed 

the correlation to be significant for older participants (r=.51; p<.05), but not for younger 

participants (r=.27; p>.15; Figure 3.10). Furthermore, a significant interaction of Site and Age 

[F(1,36)=7.18; p<.05] indicated comparable positivity at both sites in older participants 

[t(19)<1.19; p<.25] while in younger participants, positivity was significantly higher at central 

compared to centro-parietal sites [t(19)=3.10; p<.01]. 
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Figure 3.10: Right-central positivity as a neural marker of age-related reserve in storage capacity K.  

The right-central positivity in younger participants (upper panel) and older participants (lower panel). a) Grand-
averaged ERPs of participants with higher (black line) and lower processing speed C (grey line) at central 

electrode sites. b) Difference maps showing activity of participants with lower storage capacity subtracted from 
activity of participants with higher storage capacity in the time range of the right-central positivity. c) Spearman 
correlations between amplitudes of the right-central positivity and individual K-values. 

 

C-level: The ANOVA revealed no significant main effect or interactions involving C-

level [all F<.3.6; all p>.05], but gave rise to a significant interaction of Electrode Site, 

Electrode Position, and Age [F(2,72)=9.16; p<.01]. For older participants, a significant main 

effect of Electrode Position [F(2,72)=4.46; p<.01] was found, which indicated that positivity 

was amplified at right and central compared with left electrodes [both (t(19)>2.10; p <.05], 
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but did not differ between right and central electrodes [t(19)<.16; p=.87]. In younger 

participants, the main effect of Electrode Site [F(1,36)=9.62; p<.01] and the interaction of 

Electrode Site and Electrode Position [F(2,72)=9.16; p<.01] were significant, reflecting 

stronger positive deflections at centro-parietal than central sites, and that this difference was 

more pronounced at right and midline [both t(19)>2.10; p<.05] than left electrodes 

[t(19)=2.00; p=.06].  

 

Influence of un-cued letters in the EEG experiment on ERP markers of processing 

speed and storage capacity 

We controlled for the influence of attentional weight potentially (mis-)allocated to 

filler letters on the un-cued side in the EEG experiment by repeating all analyses (see above) 

without three outliers with enhanced α-values. In the remaining sample, the ERP correlates 

found for parameters processing speed C and storage capacity K could not be explained by 

individual differences in the efficiency of top-down control (because these are non-existent or 

negligibly small). For all ERP measures (posterior N1, anterior N1, CDA, right-central 

positivity), the same critical main effects and interactions involving the factors Performance 

Level and Age were revealed to be significant.  

 

3.2.5 Discussion 

In the present study, we compared ERPs of younger and older participants, who were 

divided into subgroups of relatively high and low performers according to individual TVA 

parameter estimates of visual processing speed C and vSTM storage capacity K, respectively. 

We found distinct ERP responses related to interindividual performance differences in the two 

functions across age groups, and furthermore, we dissociated neural correlates of decline and 

reserve specifically in aging participants.  

. 
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Neural markers of visual processing speed C 

ERP marker of individual differences in processing speed: The posterior N1. Visual 

processing speed C was reduced for older relative to younger participants, which is in 

accordance with age-related slowing that is commonly demonstrated in visual attention and 

many other cognitive tasks (e.g., Birren & Fisher, 1995; Bucur et al., 2008; Salthouse, 1994). 

The ERP marker of interindividual differences in processing speed identified for younger 

participants in the initial study (Wiegand et al., under review) was verified also in the older 

sample: Similar to the younger group, posterior N1 amplitudes were significantly lower in 

faster compared to slower elderly participants. N1 amplitudes have been previously shown to 

index the amount of neural resources required for the discrimination of visual object features 

(Vogel & Luck, 2000). Under conditions with constant task demands as in the present design, 

the component is considered to mark individual differences in the efficiency of visual 

discrimination processes. In particular, we assumed that the posterior N1 amplitude reflects 

the relative amount of available neural resources an individual must engage to discriminate 

the same visual stimuli at a given exposure duration (see also Wiegand et al., under review). 

The present results indicate that this relation is age-invariant. For younger as well as older 

participants, individuals with higher relative to lower encoding rates need to spend less 

attentional capacities for categorizing the letter stimuli successfully.  

In contrast, the general age-related reduction in processing speed was not reflected in 

the posterior N1, i.e., amplitudes were not significantly higher in older than younger 

participants. Previous results are mixed, showing enhanced (e.g., Kutas et al., 1994; 

Yordanova et al. 2004), but also unvarying (Falkenstein et al., 2006; Kolev et al., 2006), or 

even reduced N1 amplitudes in older age (Czigler & Balazs, 2005). Critically, prior studies 

did not test whether age effects on N1 amplitudes are related to age differences in stimulus 

categorization processes, since the quality of visual discrimination (and potential age 

differences in the quality) has not been directly controlled for (DeSanctis et al., 2008). By 
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contrast, in the present whole report task, the effectiveness of conscious encoding and 

processing was directly assessed. In this case, N1 amplitudes marked performance differences 

only between relatively fast and relatively slow participants within, but not across, age 

groups. This result suggests that other mechanisms than the efficiency of resource allocation 

during object categorization, i.e., mechanisms that do not modulate the posterior N1 

amplitudes, contributed to age decrements in processing speed.  

Furthermore, the topography of the posterior N1 differed between age groups. A focal 

maximum at central-occipital sites was found for younger participants, whereas the 

component was more broadly distributed in older participants. These results are in line with 

earlier reports of age variations in the N1 scalp distribution (e.g., Polich, 1997). Specifically, a 

shift of the visual N1 distribution in older age has been previously suggested to indicate 

decline in basic sensory processing (DeSanctis et al., 2008; Plomp et al., 2012). However, the 

present age-related changes in N1 scalp distribution were found in all, faster as well as 

slower, older participants (Old low = Old high ≠ Young). This does not indicate that 

especially participants with a broader distribution of the N1 obtained a loss of distinctiveness 

of object representations; rather, it affected all older participants to a comparable degree. 

Presumably, the topography change is related to general age-related dedifferentiation in the 

visual cortex that might be compensated by only a subgroup of elderly individuals by 

additional mechanisms (see discussion below). Alternatively, it might result from anatomical 

and physical changes unrelated to performance (e.g., Frodl et al., 2001; Raz & Rodriguez, 

2006; Sullivan & Pfefferbaum, 2006). 

ERP marker of age-related decline in processing speed: The anterior N1. 

Interestingly, the anterior N1 was exclusively reduced in slower older participants relative to 

younger participants and older participants with faster processing speed. In addition, its 

amplitude was positively correlated with visual processing speed only in the older participant 

group (Old low ≠ Old high = Young). This pattern suggests that the anterior N1 reduction 
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indexes a selective loss of a speed-critical component of visual attentional functions in the 

elderly. In former studies on younger individuals, the anterior N1 was associated with early 

attentional control mechanisms that optimize stimulus processing, more precisely, voluntary 

attentional weight settings of task-relevant object features (Golomb et al., 2010; He et al., 

2004, 2008; Töllner et al., 2009). Accordingly, sources of the anterior N1 have been localized 

within fronto-parietal areas (Clark et al., 1995; Di Russo et al., 2003) related to attentional 

control functions (Corbetta et al., 1998; Nobre et al., 1997). In former aging studies, a 

decrease of the anterior N1 co-occurred with visual encoding deficits in older participants 

(e.g., Curran et al., 2001; Czigler & Balász, 2005; Kutas et al., 1994; Snyder & Hillyard, 

1979), indicating that the component marks age-related decline of fronto-parietal control 

processes required for visual stimulus encoding. The present results indicate that reduced 

anterior N1 responses are specifically associated with age-related slowing in visual processing 

speed, which results from impaired control of attentional guidance. Such early attentional 

control functions might be generally optimized in (higher and lower-performing) younger 

participants and their availability seems to be preserved in faster processing elderly. This 

interpretation can also be integrated with NTVA: The model assumes that within the N1 time 

range around 100-200 ms, attentional weights for a to-be-encoded stimulus array are 

computed at higher areas in the visual stream in order to prepare the processing system for the 

following information uptake. The lower N1 amplitude in slower older participants might 

reflect deficient setting of weight signals, which results in reduced encoding rates (Bundesen 

& Habekost, 2008).  

 

Neural markers of visual short-term storage capacity K 

ERP markers of individual and age differences in storage capacity level: The 

contralateral delay activity. In line with numerous previous aging studies, storage capacity K 

also significantly declined with age (e.g., Verhaegen et al., 1993). On the electrophysiological 
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level, the storage capacity decrement was associated with lower CDA amplitudes in older 

relative to younger participants. Furthermore, the CDA marked interindividual differences in 

storage capacity irrespective of age, being larger in participants with higher as compared to 

lower storage capacity in both samples. Correspondingly, CDA amplitudes were correlated 

with individual estimates of storage capacity across age groups. According to NTVA, storage 

in vSTM is neurally implemented as visuo-topically organized activation, which is sustained 

via recurrent feedback loops between the thalamus and visual cortical areas (Bundesen et al., 

2005). The timing and topographical distribution of the CDA corresponds well to this 

proposed mechanism (see Wiegand et al., under review, for a detailed discussion). 

The association between CDA magnitude and storage capacity was previously found 

to be weaker in older than in younger participants (Sander et al., 2011; but see Jost et al., 

2010). Notably, in vSTM experiments with a single exposure duration (e.g., Luck & Vogel, 

1997), an individuals’ performance is presumably determined by both functions, storage 

capacity and also processing speed. However, the respective influence of the two components 

cannot be disentangled (e.g., Salthouse, 1994). In contrast, TVA-based assessment allows 

quantifying both parameters independently of each other by systematically varying the 

exposure duration (Duncan et al., 1999; Habekost & Starrfelt, 2009). Accordingly, we suggest 

that in order to obtain a reliable relationship with CDA amplitudes, it is essential to measure 

storage capacity appropriately, that is, unconfounded by processing speed. This is of 

particular relevance in aging studies, when systematic group differences in speed can be 

expected.  

ERP marker of age-related reserve in storage capacity: The right-central positivity. 

Specifically in older individuals, storage capacity was associated with a right-lateralized 

centro-parietal positivity in addition to the (age-independent) CDA. Critically, the positivity 

was significantly larger in older participants with higher storage capacity compared to 

younger participants and also to older participants with lower storage capacity. Furthermore, 
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it correlated with individual storage capacity estimates only within the older group (Old high 

≠ Old low = Young). These findings compare with previous neuroimaging studies reporting 

age-related activity increases that were associated with retained levels of performance (e.g., 

Cabeza et al., 2002; Fabiani et al., 2012). Among these, ERP investigations focused mainly on 

the ‘P3’ component, a centro-parietal positivity that is assumed to be generated within 

multiple areas of the fronto-parietal attention network (e.g., Knight, 1997; Makeig et al., 

1999). In these studies, an augmented P3 was found only for elderly participants with high 

fluid processing abilities, which was interpreted to reflect compensation through enhanced 

attentional or executive control (e.g., Daffner et al., 2011; Riis et al., 2008). In younger 

individuals, specifically a right-distributed positivity has been linked to elaborated encoding 

of visuo-spatial information into vSTM (Müller & Knight, 2002; Polich et al., 1997). The 

present increase of right-central positivity only in elderly with high storage capacity suggests 

that these participants recruit additional resources to optimize their vSTM performance. A 

putative neural specification of such compensational mechanisms can be derived from NTVA. 

The model proposes that storage in vSTM is implemented as recurrent circular activity 

between thalamic, fronto-cortical, and posterior visual areas which initially coded the sensory 

information (Bundesen et al., 2011). In older age, the storage of visual object representations 

may be hampered by a decline in these posterior areas affecting the sustained activations of 

sensory neurons when stimulation itself has vanished (e.g., Faubert, 2002). However, elderly 

individuals with relatively high levels of storage capacity may be able to counteract this 

decrement to a certain degree by executive control mechanisms involved in vSTM storage, 

fostering, e.g., a deeper encoding of the stimulus material (Rypma & D’Esposito, 2000; 

Rypma et al., 2001). This interpretation is in accordance with fMRI studies showing that 

reduced activity in visual areas is compensated by increased frontal activation in high-

performing elderly (e.g., Davis et al., 2008). In contrast, older participants with significant 

vSTM capacity reductions might not be able to call upon such reserve functions. For younger 
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participants, who do not suffer from compromised posterior cortical functions, maintenance 

of vSTM representations might be rather optimal without recruiting frontal control resources 

– and thus, they might not show any vSTM performance-related differences in the right 

central positivity. 

 

Separability of processing speed and storage capacity in older age 

Both TVA parameters, processing speed C and storage capacity K, were shown to 

decline with age (see also Habekost et al., 2012; McAvinue et al., 2012). However, not a 

common constraint seems to limit these abilities, in the sense of cognitive dedifferentiation 

with advancing age (Li et al., 2004). In fact, the inter-parameter correlation of C and K was 

smaller within the older than within the younger sample. Thus, the two parameters influence 

older individuals’ visual attention capabilities rather more independently. In line with this, we 

replicated distinct electrophysiological markers related to processing speed on the one hand 

and storage capacity on the other in older individuals. Critically, additional correlates found 

exclusively in the older participant group, i.e., the anterior N1 in case of processing speed and 

the right-central positivity in case of storage capacity, were also distinct. These findings 

further strengthen the assumption of NTVA that the two general capacity parameters reflect 

discrete entities, which are supported by separate neural mechanism (Bundesen et al., 2005, 

2011). Furthermore, our results imply that the distinctiveness of the two functions is 

preserved (or even increased) in older age.  

 

Processing of non-attended letters 

The ability to filter out irrelevant information is considered to be a critical determinant 

of interindividual differences and age-related decline in vSTM storage capacity (e.g., Jost et 

al., 2010; McCollough et al., 2007). In the present study, we therefore systematically 

controlled for the influence of filler items in the un-cued hemifield inherent in the lateralized 
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vSTM paradigm (e.g., Vogel & Machizawa, 2004) as a potential confound for the results on 

ERP correlates of storage capacity (and also processing speed). Specifically, we included 

trials from the EEG session in an extended, additional, fit to estimate the TVA top-down 

control parameter α, which expresses the relative weights of un-cued relative to cued letters 

(Kyllingsbæk, 2006)
9
. Alpha-values were overall low, indicating that most participants were 

able to use the cue highly effectively. In accordance with previous behavioral studies 

(McAvinue et al., 2012), older participants were nevertheless somewhat less effective than 

younger participants in allocating their available attentional weight to the target letters (95% 

vs. 98%). Critically, the identified ERP correlates of the two general capacity parameters were 

also found after excluding participants with relatively high α-values from the analyses. Thus, 

ERP differences marking age and/or interindividual differences in processing speed and 

storage capacity were verified within a sample of participants, whose distractibility by filler 

letters can be considered minimal. This implies that the identified electro-cortical markers are 

not attributable to differences in processing of the un-cued letters in EEG experiment but 

reflect genuine (attentional capacity) parameter changes.   

 

3.2.6 Conclusions 

In summary, we identified age-independent and age-related neural markers of distinct 

visual attention capacity parameters according to the formal TVA framework. Across age 

groups, interindividual differences in processing speed were associated with the posterior N1 

response, which is assumed to reflect the efficiency of object discrimination processes. 

Interindividual and age differences in storage capacity were indexed by the magnitude of the 

CDA, which marks the amount of information hold in vSTM. In addition, we found distinct 

ERP correlates of both functions exclusively in the older sample. Only older individuals with 

                                                           
9
 Note that processing speed C and storage capacity K were estimated based on performance in the standard 

procedure using unilateral arrays in which the total attentional weight is allocated to the target letters 
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slower processing speed showed reduced anterior N1 amplitudes compared to fast elderly and 

all younger participants, indicating a selective decline in voluntary attentional guidance that 

slows categorization speed. Furthermore, only older participant with high storage capacity 

showed an enhanced right-central positive deflection, compared to low-capacity elderly and 

all younger participants, indicative of compensatory recruitment of attentional resources to 

retain high levels of vSTM performance in these participants. Taken together, our results 

demonstrate that distinct neural mechanisms determine visual attention abilities in older age, 

which depend on the availability and utilization of attentional control mechanisms to a larger 

degree that in younger age. 
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4.1 Aim of the projects 

Several theories of cognitive aging have claimed that a general limitation of attentional 

capacity accounts for a broad range of cognitive changes that occur with advancing age (e.g., 

Craik & Byrd, 1982). Furthermore, this limitation has been suggested to result from a central 

decrement of resources in the aging brain (e.g., West, 1996). While it is tempting to assume a 

single causal factor underlying the pattern of age-related changes in cognitive functioning, 

empirical findings from behavioral and neurocognitive research rather indicate that unitary 

models of cognitive aging lack specificity (e.g., Reuter-Lorenz & Park, 2010). Instead, 

multiple ‘pools’ of attention limitations may concur and explain the manifold pattern of 

cognitive changes in older age (Hartley, 1992; Wickens, 1980). The aim of the present PhD 

thesis was to specify the nature of diverse attentional resource limitations by disentangling 

several attentional components on the behavioral and neuronal level. More precisely, 

psychological paradigms that permit a fine-graded dissociation of attentional processes 

involved in a task were combined with ERPs, which allow separating brain activity that is 

related to these processes.  

 

4.2 Aging and visual search 

4.2.1 Key findings 

In the first project, age-effects on different attentional components in a compound 

search task were electrophysiologically dissociated. Age-related slowing was demonstrated to 

originate at several stages in the processing stream: For older relative to younger participants, 

stimulus selection was slowed, analysis of stimulus features in vSTM was impaired, and 

selection and execution of the motor response was prolonged. In addition, intertrial analyses 

revealed that aging affected automatic and controlled processes in visual search differently: 

Weighting (or priming) of the search-relevant target dimension at the early stage of stimulus 
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selection and weighting of the motor response at the later stage of response execution was 

preserved in older age. In contrast, flexible S-R-mapping across trials on intermediate stages 

of S-R transmission was particularly impaired in older age. 

 

4.2.2 Dissociating generalized slowing from specific factors  

Our findings contribute to a central question in aging research, that is, to which extent 

age-related decline can be attributed to a general underlying factor and how specific factors 

contribute to this pattern (Fisk et al., 1992). In particular, there has been evidence for 

predominant age deficits in executively controlled processes (e.g., Castel et al., 2007; Mayr et 

al., 2001), while automatic processes were shown to be relatively preserved in older age (e.g., 

Kumada & Hibi, 2004; McCarley et al., 2004). However, proponents of uni-dimensional 

‘general slowing’ accounts have argued that a higher degree of complexity simply leads to 

more pronounced age effects in tasks commonly employed to study executive functions, such 

as task-switching, dual-task paradigms, or task conditions that induce conflicts, compared to 

those assessing automatic processes, such as priming tasks (e.g., Cerella, 1980). In particular, 

age deficits are assumed to accumulate with the number of performed cognitive operations, 

and thus, to become more prominent with increasing numbers of operations involved. In the 

present design, the influence of general differences in task complexity on age effects could be 

ruled out by separating more automatic from controlled operations as well as from effects of 

general slowing within one single task.  

In this way, the study of the first project demonstrated that age-related slowing in 

visual search – even when target selection is driven by a strong ‘pop-out’ bottom-up signal – 

already affected early allocation of attention to the target location. Slowing then pervaded 

throughout subsequent processing stages up to the production of the motor response. This 

finding appears to be in line with one-factor models, confirming that overall behavioral 

slowing indeed accrues across multiple stages in the processing stream (e.g., Brinley, 1965; 
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Salthouse, 1996). Possible unspecific deteriorations in the aging brain that may cause this 

general slowing are decelerated neural transmission due to reduced dendritic branching, less 

active synapses, reduction of particular neurotransmitters, or loss of myelin with advancing 

age (e.g., Reuter-Lorenz, 2002; Salthouse, 2000).  

However, the study also demonstrated that general slowing does not fully explain the 

age effects that occur in visual search. The analyses of intertrial effects revealed that 

automatic repetition facilitation was supported by similar neural mechanisms in younger and 

older participants. In contrast, performance of the elderly suffered more when S-R 

associations had to be reconfigured across trials in comparison to younger adults. While 

priming or weighting processes are assumed to be largely independent from the availability of 

attentional resources, the flexible handling of S-R mappings across trial events is assumed to 

rely on resource demanding executively controlled processes (e.g., Hommel, 2004; Johnson et 

al., 2004). Thus, our findings also lend support to aging theories claiming that specific age 

deficits result from pre-dominant decrements in executive functions (e.g., West, 1996). The 

ERP modulations further indicated that this age deficit originated during S-R transmission 

processes, which are assumed to be controlled by fronto-parietal areas in the visual attention 

network (Madden, 2007; Pollmann et al., 2006). Therefore, our results are also in accordance 

with the assumption that age decrements stem from predominant structural and functional 

changes in fronto-cortical brain circuits (Raz et al., 2005; Resnick et al., 2003). One age-

dependent alteration that might specifically impede S-R transmission processes in the elderly 

could be reduced connectivity between fronto-parietal areas that support visuo-motor 

transmission (e.g., Grieve et al., 2009).  In addition, dopaminergic functioning is known to be 

affected by aging (Braver & Barch, 2002; Volkow et al., 2000). Recently, the efficiency of the 

dopaminergic system has been shown to be critical for retrieving S-R bindings (Colzato et al., 

2011); its reduced efficiency in older age may also contribute to the specific deficit in S-R 

mapping processes.  
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In summary, the first study revealed general as well as specific resource limitations to 

contribute to the observable age-related changes in visual search performance. Age-related 

slowing affects processing throughout, but is not tenable as a unitary cause of decline. The 

involvement of processing components with high demands on attentional control, presumably 

relying on fronto-parietal areas within the visual attention network, leads to an additional, 

specific deficit in older age.   

 

4.3 Distinct capacity limitations of visual attention 

4.3.1 Key findings 

In the second project, we identified neural correlates of the two general visual 

attention capacity functions proposed by (N)TVA, visual perceptual processing speed C and 

vSTM storage capacity K. ERP amplitudes were analysed according to individual 

performance levels, separately for each of the two parameters. In the initial study on younger 

participants, distinct ERP markers of individual differences in both functions were identified: 

The posterior N1 was smaller for participants with higher relative to lower processing speed. 

In contrast, the CDA was larger for participants with higher relative to lower storage capacity. 

In the second study, two age groups were compared with the same approach in order to 

investigate age-related changes in attentional parameters and neural markers of these 

processes. The previously identified ERP correlates of individual differences in processing 

speed and storage capacity were also validated in the older group. Furthermore, additional 

ERP components were found to index performance levels in each parameter only within the 

elderly sample: The anterior N1 was significantly reduced in older participants with lower 

processing speed levels relative to faster older participants and younger participants. The 

right-central positivity was enhanced in older participants with higher storage capacity 

relative to older participants with lower storage capacity and younger participants.  
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4.3.2 Neural markers of TVA parameters of attentional processing capacity  

The results of the first study of the second project can be regarded as important 

pioneering work in several aspects. First, the identified neural correlates of processing speed 

C and storage capacity K provide direct empirical evidence for the NTVA assumption that the 

two parameters are related to distinct brain mechanisms (Bundesen et al., 2005, 2011). 

Moreover, our findings underline the specificity and validity of TVA-based assessment, 

which is currently the only way to achieve independent estimates of these two functions 

(Habekost & Starrfelt, 2009). Finally, they demonstrate the procedure’s potential to integrate 

psychological and neurobiological processes within applied neuro-cognitive and clinical 

research in a highly specific manner.  

In future studies, the present approach might be extended to examine further model 

assumptions. For instance, behavioral studies have demonstrated that internal states of the 

observer that can be experimentally manipulated, such as alertness (Matthias et al., 2010), 

arousal (Sørensen & Bundesen, 2011), or expectancy (Vangkilde et al., 2012), have a 

selective influences on TVA parameters. Furthermore, pharamacological studies have proven 

that processing speed C, but not storage capacity K, affected by psychostimulant drugs (Finke 

et al., 2010; Vangkilde et al., 2011). Combining ERPs with such within-subject manipulations 

could be used to investigate the neural mechanisms underlying intraindividual variations in 

attentional functions. In addition, the approach is particularly promising to unveil neural 

underpinnings of developmental- and pathology-related changes in attention abilities. Along 

these lines, we investigated the brain-behavior relationships that characterize attentional 

functioning of (healthy) older individuals in the second study. 

 

4.3.3 Neural markers of age-related changes in TVA parameters  

As expected, processing speed C and storage capacity K declined with age. This 

finding replicates the results of a number of studies showing deficits in mental speed and 
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visual span with aging (e.g., Salthouse, 1994, 1996). Both functions have been denoted as 

mediators of general cognitive abilities in older age (e.g., Verhaegen, 2011). What has been 

questioned is whether deficits in these two functions stem from decline in a single general 

limiting factor, and to what extent specific age-related changes differ from general 

interindividual differences in the functions (e.g., Kühn et al., 2011). The ERP results of the 

second study indicate that in older, similar to younger participants, individual differences in 

processing speed and storage capacity are related to the individuals’ efficiency in 

discriminating object and upholding sustained activation of vSTM representations, 

respectively. In addition, two further mechanisms appearing to determine attention 

performance only in the older group were unveiled. First, deficient voluntary attentional 

weight setting within the first 100 ms after encountering information could be a critical factor 

for reduced encoding rates in older age. Second, elderly individuals who retain high levels of 

vSTM capacity seem to rely on the recruitment of additional resources for storage processes. 

Together, these findings indicate that the older brain is not simply less efficient than the 

younger one; rather, it undergoes reorganization processes that vary across aging individuals. 

In more detail, the specific age effects seem to result from age-dependent changes within 

attentional control functions supported by frontal-parietal areas of the attention network 

(Corbetta & Shulman, 2002). This is generally in accordance with aging theories proposing 

that executive functions mediated by frontal brain areas play a special role in older age (e.g., 

Cabeza, 2002; Raz et al., 2005). Furthermore, the effect of age-related changes in attentional 

control is not reducible to a unitary mechanism, but involves (at least) two distinct 

mechanisms supporting visual attention functions. Most interestingly, the integrity and 

potential for compensation within frontally-mediated control functions appears to be a critical 

determinant of whether attentional abilities decline with aging or are reserved in older 

individuals. Finally, the findings of the second study in the second project again validate the 
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conceptual advantage of the (N)TVA framework and exemplifie the virtue of applying the 

evolved approach to study attentional changes in special populations. 

 

4.4 Multiple components of aging in visual attention 

The present work demonstrates that unitary accounts to date may not suffice to explain 

cognitive aging. Rather, age-related changes in visual attention and their underlying brain 

processes appear to be multifaceted. The results highlight the value of the presently employed 

theory-driven neuro-cognitive approach to resolve this manifoldness. The combination of 

ERP measurements with established psychological paradigms based on theoretical 

frameworks of visual attention permitted to characterize the mechanisms underlying age-

related changes in visual attention in a uniquely fine-graded manner. General and specific 

factors that decrease attentional functioning with aging were dissociated within the same 

participants and the same task; factors that are indivisible based on behavioral measures alone 

(e.g., Salthouse, 2000). Furthermore, the ERP data revealed that (quantitatively) behaviorally 

measured age-related reductions (e.g., of processing speed or visual capacity) are determined 

by qualitative changes in the aging brain. In particular, brain processes underlying separate 

key functions of attentional abilities were disentangled. Importantly, separate neural markers 

of age-invariant individual differences in these functions could be identified along with neural 

markers of declined and preserved abilities in older age. The identification of neural 

mechanisms underlying the integrity of attentional abilities in older age are especially relevant 

in the context of ‘cognitive reserve’ (Stern, 2002, 2009), meaning brain processes that support 

retained performance levels. The present results provide highly selective markers of cortical 

reorganization in support of attentional functions and emphasize the potential of brain 

plasticity as a critical determinant of cognitive functioning in aging individuals (Reuter-

Lorenz & Park, 2010).   
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