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Abstract

Boosting is an iterative algorithm for functional approximation and numerical op-
timization which can be applied to solve statistical regression-type problems. By
design, boosting can mimic the solutions of many conventional statistical models,
such as the linear model, the generalized linear model, and the generalized additi-
ve model, but its strength is to enhance these models or even go beyond. It enjoys
increasing attention since a) it is a generic algorithm, easily extensible to exciting
new problems, and b) it can cope with “difficult” data where conventional statistical
models fail. In this dissertation, we design autoregressive time series models based
on boosting which capture nonlinearity in the mean and in the variance, and propose
new models for multi-step forecasting of both.

We use a special version of boosting, called componentwise gradient boosting,
which is innovative in the estimation of the conditional variance of asset returns by
sorting out irrelevant (lagged) predictors. We propose a model which enables us not
only to identify the factors which drive market volatility, but also to assess the specific
nature of their impact. Therefore, we gain a deeper insight into the nature of the
volatility processes. We analyze four broad asset classes, namely, stocks, commodities,
bonds, and foreign exchange, and use a wide range of potential macro and financial
drivers. The proposed model for volatility forecasting performs very favorably for
stocks and commodities relative to the common GARCH(1,1) benchmark model.
The advantages are particularly convincing for longer forecasting horizons. To our
knowledge, the application of boosting to multi-step forecasting of either the mean
or the variance has not been done before.

In a separate study, we focus on the conditional mean of German industrial
production. With boosting, we improve the forecasting accuracy when compared to
several competing models including the benchmark in this field, the linear autoregres-
sive model. In an exhaustive simulation study we show that boosting of high-order
nonlinear autoregressive time series can be very competitive in terms of goodness-of-
fit when compared to alternative nonparametric models.

Finally, we apply boosting in a spatio-temporal context to data coming from
outside the econometric field. We estimate the browsing pressure on young beech
trees caused by the game species within the borders of the Bavarian Forest National
Park “Bayerischer Wald,” Germany. We found that using the geographic coordinates
of the browsing cases contributes considerably to the fit. Furthermore, this bivariate
geographic predictor is better suited for prediction if it allows for abrupt changes in
the browsing pressure.
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Zusammenfassung

Boosting ist ein iterativer Algorithmus zur Funktionsapproximation und numerischen
Optimierung, der zur Losung statistischer regressions-dhnlicher Probleme eingesetzt
werden kann. Per Konstruktion weist Boosting grofe Ahnlichkeiten zu den Losungen
klassischer statistischer Modelle wie z.B. dem linearen Modell, dem generalisierten
linearen Modell oder dem generalisierten additiven Modell auf, seine Stéirke liegt
jedoch in der Erweiterung dieser Modelle. Boosting erlangt zunehmende Aufmerk-
samkeit, da es a) ein generischer Algorithmus ist, der leicht auf neue spannende
Problemstellungen erweitert werden kann und es b) mit “schwierigen” Daten umge-
hen kann, an denen herkémmliche statistische Modelle scheitern. Mittels Boosting
entwickeln wir in dieser Dissertation autoregressive Zeitreihenmodelle, die Nichtli-
nearitdt im Mittelwert und in der Varianz erfassen, und schlagen neue Modelle fiir
Mehrschritt-Prognosen vor.

Wir betrachten eine spezielle Version des Boosting, die “componentwise gradi-
ent boosting” genannt wird. Dieses Verfahren kann auf innovative Weise die fiir die
bedingte Varianz irrelevanten (verzogerten) Pradiktoren aus dem Modell entfernen.
Wir schlagen ein Modell vor, das Einflussfaktoren auf die Marktvolatilitéit identifi-
ziert und schétzt. Dadurch bietet sich ein tiefer Einblick in die Form des Volatilitéts-
prozesses. Unter Verwendung einer breiten Auswahl von Makro- und Finanzfaktoren
analysieren vier Anlageklassen: Aktien, Rohstoffe, Anleihen und Wechselkurse. Das
vorgeschlagene Modell iibertrifft das Benchmarkmodell GARCH(1,1) in der Progno-
se der Volatilitit von Aktien und Rohstoffen. Die Uberlegenheit ist fiir lingerfristige
Prognosen besonders deutlich. Nach unserem Kenntnisstand wird Boosting in dieser
Arbeit erstmals auf Mehrschritt-Prognosen des Mittelwerts und der Varianz ange-
wendet.

Ein weiterer Teil dieser Arbeit setzt den Schwerpunkt auf die Modellierung des
bedingten Mittelwerts der deutschen Industrieproduktion. Mittels Boosting léasst sich
die Vorhersagequalitéit im Vergleich zu mehreren Alternativmodellen verbessern, ein-
schlieflich dem linearen autoregressiven Modell, das als Benchmarkmodell in diesem
Bereich dient. In einer umfassenden Simulationsstudie zeigen wir, dass Boosting nich-
linearer Zeitreihen hoherer Ordnung hinsichtlich der Anpassungsgiite sehr konkur-
renzfahig gegeniiber nichtparametrischen Modellen ist.

Schlieflich wenden wir Boosting auf zeitlich-raumlich strukturierte Daten aufier-
halb des Okonometriebereichs an. Wir schitzen die Intensitit von Wildverbiss an
jungen Buchen im Gebiet des Nationalparks “Bayerischer Wald”, Deutschland. Ein
Ergebnis dieser Studie ist, dass die Beriicksichtigung der geographischen Koordi-
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naten entscheidend zur Anpassungsgiite beitridgt. Weiter eignet sich der bivariate
geographische Préadiktor besser zur Vorhersage, wenn er plotzliche Anderungen der
Verbissintensitat zulésst.



Acknowledgments

I share the credit of my work with many people who deserve sincere appreciation for
their direct or indirect support. I am indebted to:

e Torsten Hothorn and Stefan Mittnik for their excellent guidance and remark-
able influence on my research. Particularly, I am grateful to Torsten Hothorn
for valuable insights into the world of boosting, to Stefan Mittnik for the right
directions in the field of econometrics, and to both of them for encouraging me
to combine these.

e Thomas Kneib for the external evaluation of this work.

e Matthias Schmid for insightful discussions about boosting.

e Martin Spindler for tireless co-authoring support and friendly help.
e Christian Groll for careful reading and critical notes.

e Esther Herberich for countless patient answers.

o All colleagues with whom I have collaborated in the essays of this thesis in-
cluding Benjamin Hofner, Andreas Mayr, and Gerhard Tutz.

e My colleagues in the Department of Statistics at the University of Munich and
especially to Andreas Fuest, Fabian Spanhel, Serkan Yener, and Tina Yener.

e My parents Teodora and Rumyan for their support, joy, worry, care, and un-
conditional love.

e My wife Milena and daughter Andrea to whom I dedicate this work...

“Andrea, I wish you a good start in life.” @






Contents

Acknowledgments v
1 Introduction 1
2 Gradient Boosting 9
2.1 The Objective of Boosting . . . . . . . ... ... ... ... ..... 10
2.2 Steepest Descent . . . . . . . ... 12
2.3 Componentwise Boosting . . . . . . . ... ... 0L 15
2.4 Loss Functions . . . . . . . ... 17
24.1 Continuous Response . . . . . . ... ... ... ... ... .. 18

2.4.2 Binary Response . . . . . . . ... 000 20

2.4.3 Additional Parameters in the Loss Function . . . ... .. .. 21

2.5 Discussion . . . . ... 22
2.5.1 Stopping condition . . . . ... ... 22

2.5.2 Regularization . . . . . . ... L oo 24

253 Bias . . .. 25

254 Forwardness . . . . . . . ... 25

2.5.5 Sparsity . . ... 26

2.5.6 Inference . . . . . . . . ..o 27

2.5.7 Baselearners . . . . . . . . 28



viii CONTENTS
3 Nonlinear Time Series Models 31
3.1 Imtroduction . . . . . . . .. .. 32
3.2 Linear and Additive Boosting . . . . .. ... ... ... ... ... 34
3.2.1 Componenwise Linear Base Learner . . . . . . . .. ... ... 35

3.2.2 Componentwise P-spline Base Learner . . . . . . . ... ... 36

3.3 Simulation Study . . . . .. ... 37
3.4 Economic Forecasting with Boosting . . . . . . ... ... ... ... 42
3.4.1 Forecasting Principles . . . . . . . .. .. ... L. 43

3.4.2 Univariate Forecasting of Industrial Production . . . . . . .. 44

3.4.3 Forecasting Industrial Production with Exogenous Variables 46

3.5 Concluding Remarks . . . . . ... .. ... ... 52
3.6 Computational Details . . . . . . . ... ... ... ... ... ..., 53

4 Boosting the Anatomy of Volatility 55
4.1 Introduction . . . . . . . ... 55
4.2 Volatility Boosting Approach . . . . ... ... 0oL 58
4.2.1 Proposed Model . . . . . . ... 58

4.2.2  An Illustration . . . .. .. ... .o 61

4.3 An Empirical Application to Four Asset Classes . . . . . . . ... .. 65
4.3.1 TheData . . .. . . ... . 65

4.3.2 Analyzing the Predictive Performance . . . . . . . . . . . . .. 68

4.4 Empirical Results . . . . . . ... o0 o 69
4.4.1 Forecast Evaluation . . . . .. .. ... o000 70

4.4.2 The Driving Factors . . . . . .. ... ... ... ... 74

4.5 Conclusions . . . . . .. . 79



CONTENTS ix
5 Boosting for Estimating Spatially Structured Additive Models 83
5.1 Imtroduction . . . . . . . ... 83
5.2 Methods . . . . . . .. 85
5.2.1 Spatio-Temporal Structured Additive Models . . . . . . . . .. 86

5.2.2 Tree Based Learners . . . . .. .. ... .. ... ....... 89

5.2.3 Generalized Additive Model . . . . . .. ... ... ... ... 91

53 Results . . . . . . 92
5.3.1 Spatial Estimates . . . . .. . ... ... ... ... ... ... 92

5.3.2 Model Comparison . . . . . . ... ... ... 96

5.4 Discussion . . . . . .. 98

6 Summary and Conclusion 101
A The Choice of Leading Indicators 103
References . . . . . . . . .. 105



CONTENTS




Chapter 1

Introduction

Knowledge discovery in data concerns both the statistical and the machine learning
communities. Often, the practical usefulness of this effort is twofold: uncovering
an existing relationship between input and output variables (interpretation), and
foretelling the output values conditioned on the observed input variables (prediction).
Even though the communities disagree on how conclusions should be drawn from the
data, see, e.g., Breiman (2001b) “Statistical Modeling: The Two Cultures,” there exist
algorithms which enjoy popularity in both fields. One such algorithm is boosting,
and it is the methodological focus of this dissertation.

Boosting originated from the machine learning community (Freund and Schapire,
1996). Later, it was adopted in the statistical community by Friedman, Hastie, and
Tibshirani (2000) and Friedman (2001) and is nowadays a versatile and realistic
problem solving utility. It enjoys an ever increasing popularity since a) it is a generic
algorithm, applicable in many situations, which addresses exciting new problems, and
b) it can cope with “difficult” data where conventional statistical models fail. The
latter is remarkable since correlated or ultra high-dimensional data situations are ill-
posed problems for classical statistical estimation. Boosting is an algorithmic solution
to such situations which does not sacrifice either of the two objectives mentioned
above: interpretation and prediction.

Boosting was originally intended to solve two-class classification problems by
maximizing the confidence of some predictive algorithm, in this case a binary classi-
fier, but in a different context it can also be a regression. It suffices that the algorithm
performs only slightly better than random guessing, in order to achieve an arbitrarily
high accuracy. Therefore, it is called a weak learner or, as it is referred to in this
dissertation, a base learner.



2 1. Introduction

A base learner is typically, but not necessarily, a well-known regression-type sta-
tistical model, such as linear regression, GAM, or regression tree which models the
connection between the response and the covariates. Boosting iteratively builds up
the solution in small steps, where each step is based on the previous ones. This
is done by repeatedly training the base learners on slightly changing versions of the
original data until no signal remains in the data. In Chapter 2 we propose the formal
definition of the generic algorithm and discuss several of its extensions.

In this dissertation, we use a special version of boosting called componentwise gra-
dient boosting, which allows many base learners to individually specify the connec-
tion between the (groups of) covariates and the response. The algorithm repeatedly
updates a small subgroup of the original base learner candidates in a series of itera-
tions. Provided that the algorithm terminates reasonably soon, the variables which
have been considered up to that termination point form an active set of variables.
This implies an implicit exclusion of the remaining ones and, therefore, this version
of boosting proposes a built-in component selection mechanism. Such data-driven
decision on the relevance of variables is useful for model selection and is invaluable
in the context of ultra high-dimensional data.

For the most part of this thesis, we apply boosting to time series with random
output variables Y; whose equally spaced observations are denoted by y;,t =1,...,T,
where T is the sample size. As stated in Tsay (2005, p. 31) a purely stochastic time
series Y; is said to be linear if it can be represented as the moving average function
of present and past error terms, also called innovations or shocks, &,

Y;g :N+Zbi5t—ia (11)
=0

where p is a constant, by = 1, b;,7 > 1 are real numbers, and ¢; are independent and
identically distributed random variables from a continuous distribution with finite
mean and variance. Provided V(&) = o2 and 02 ) ;2, b7 < oo, then the first and
the second moments of Y; are time invariant, i.e., it is weakly stationary. Often, this
infinite moving average can be represented by a low order autoregressive process or a
combination of an autoregressive and a moving average part, but any stochastic pro-
cess that does not satisfy (1.1) is said to be nonlinear (Tsay, 2005, p. 154). Assuming
linearity in the time series models has often been found too restrictive since economic
and financial systems naturally exhibit structural or behavioral changes. Therefore,
modeling nonlinearity in financial and macroeconomic data is often desirable and is

the practical focus of this dissertation.

The above definition of nonlinearity is too general to be of any practical use, so



we focus on nonlinearity in the first and in the second conditional moments of Y;.
Let F;_; denote the o-field generated by the information available at some earlier
time point ¢t — 1. This information is typically represented by a combination of the
autoregressive elements Y;_;, the innovations, and some exogenous variables. Then,
the conditional mean and variance of Y; given F;_; are

e =E Y| F) = u(Fo1) and of =V (Yi|F) = v(Fi1), (1.2)

respectively. If w(-) is nonlinear, Y; is said to be nonlinear in mean. Boosting
extensions for modeling such a kind of nonlinearity are proposed in Chapter 3. If v(+)
is nonlinear, Y; is said to be nonlinear in variance or heteroskedastic. In Chapter 4
we propose boosting techniques for modeling the dynamics of such hereroskedastic
time series.

Most nonlinear time series models are concerned with the conditional mean in
(1.2). These nonlinear models are divided into two groups: parametric and nonpara-
metric. Nonlinear parametric models have one substantial drawback, which is the
reason for their varying performance. They require an a priori choice of parametric
functions, which are believed to be appropriate in certain situations. This approach
is used mainly in financial applications, when we have sufficient knowledge to spec-
ify the nonlinear structure between the covariates and the response. Examples are
models which assume different dynamics in different states of the world, or regimes,
such as the threshold autoregressive (TAR) model (Tong, 1978), the smooth transi-
tion autoregressive (STAR) model' (Chan and Tong, 1986), or the Markov switching
model (Hamilton, 1989). The bilinear model of Granger and Andersen (1978), which
includes interactions between the times series and the innovations, is another para-
metric extension of Equation (1.1).

In contrast, the nonparametric time series models on which we focus are methods
which estimate the mean nonlinearity in a data driven way. Examples are Friedman’s
(1991) multivariate adaptive regression spline (MARS) model applied to a time se-
ries context by Lewis and Stevens (1991), or the nonlinear additive autoregressive
(NAAR) model proposed by Chen and Tsay (1993). Still, component selection,
multicollinearity, or high-dimensionality of the input space plague these methods.
By applying componentwise boosting to nonparametric autoregressive models with
potentially many endogenous and exogenous lags (Chapter 3), we address these prob-
lems in a framework with minimal subjective requirements.

INot to be confused with the structured additive regression (STAR) model (Fahrmeir, Kneib,
and Lang, 2004).
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Figure 1.1: Estimating nonlinearity in the mean. In this example we show several es-
timations (solid lines) of a mean nonlinear autoregressive process given in Section 3.3,
Table 3.1 (the NLAR2c model). The lag influence on the true mean dynamics are
represented by the dotted lines, i.e., the relevant lags are one and three.

The simulation in Figure 1.1 shows, by example, the flexibility of our method.
It depicts the estimation results of thirty simulations of a nonlinear autoregressive
process. The exact definition of this process is deferred until Section 3.3, but for the
illustrative purpose of this introduction we consider the relevant lags which are one
and three, denoted by the circled lines. All other lags up to ten do not contribute to
the mean dynamics, and are included in the model for checking robustness against
false detection. The a priori information is the additive lag structure and neither
the relevant lag nor their functional form are provided to the model. The proposed
boosting method recovered the true underlying dynamics fairly closely, as shown by
the solid lines estimated in a series of repetitions. Although not completely ignored,
the redundant lags 2,4-10 were estimated close to zero. This resulted in an overall
strong goodness-of-fit performance when compared to several competing methods.

Understanding the variance, or the volatility, seems to be an equally exciting
topic as the mean. The interest in variance modeling started mostly with the sem-
inal works of Engle (1982) and Bollerslev (1986) and has since become an intensely
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Figure 1.2: Estimating nonlinearity in the variance. An example in which the volatil-
ity of Y; is driven by three factors. The dark lines indicate the estimated 95% in-
terquantile range, the lighter ones show the estimated tails. The true data generating
process is defined in Chapter 4, Equation 4.6.

researched field in financial econometrics since it is our tool for measuring risk. The
importance of understanding and adequately modeling financial market risk is widely
recognized and has again become evident during recent turbulences in the markets.
Volatility forecasts are used for risk management purposes, for example, to project
risk measures, such as Value at Risk (VaR) and Expected Shortfall (ES), or to decide
on hedging or other risk mitigation strategies. They are also used for dynamic asset
allocation decisions that are not just based on asset specific risk but also on the
dependence between assets, expressed in terms of time varying, volatility dependent
measures, such as correlations or betas.

Using the well established GAM framework, as in the NAAR model for example,
implies that the conditional distribution of the response belongs to the exponential
family. Assuming an exponential family we generally have the advantage of flexibly
modeling the conditional mean but we “sacrifice” the role of the conditional variance
since exponential families rarely allow modeling of parameters other than the mean.
It is, however, possible to obtain general expressions for the mean and for the variance
of exponential family distributions, in terms of their dispersion (or scale) parameter
and their family specific functions. But at some point we are confronted with the



6 1. Introduction

limitations of the exponential family assumption.

Therefore, we used componentwise boosting, which is tailor made for estimating
the conditional variance of asset returns and sorting out irrelevant (lagged) predic-
tors. We propose a model which answers whether and, if so, how, macro factors
influence the volatility of asset prices. By boosting, we gain deeper insight into
the nature of the volatility processes. As will be shown, boosting techniques enable
us not only to identify the factors driving market volatility, but also to assess the
specific nature of their impact (see for example Figure 1.2) and, ultimately, help to
improve prediction. Employing a broad set of potential macroeconomic and financial
variables, we specify a flexible model that is capable of capturing their linear and
nonlinear influences on volatility.

Finally, we apply boosting in a spatio-temporal context. The focus in Chapter 5
is the estimation of the conditional browsing probabilities in the Bavarian Forest
National Park “Bayerischer Wald,” Germany. Forest regeneration is hindered at a
very early stage by the browsing damage caused by various game species. In middle
Europe, especially, roe and red deer are the most common species browsing on young
trees. The consequences of excessive browsing often lead to forest growth retardation
and homogenization. Developing precise measures to reflect the true condition of the
forest’s regeneration is thus crucial and nontrivial.

In summary, this dissertation is organized as follows:

Chapter 2. In this section we explain the underlying idea and give a detailed insight into
the technicalities of boosting. We further consider several topics (personally
preferred but not entirely arbitrarily selected) which emphasize existing prob-
lems of boosting. We also comment on several improvements of the boosting
algorithm and on existing connections to other related methods. Section 2.4 is
based in part on Hofner, Mayr, Robinzonov, and Schmid (2012), “Model-based
boosting in R: A hands-on tutorial using the R package mboost,” Computational
Statistics, 1-33.

Chapter 3. By letting the covariates be lagged values of a time series, we apply boosting
to identify the relevant lags and forecast the conditional mean. An exhaustive
simulation study shows that boosting high-order autoregressive time series can
be very competitive in terms of dynamics estimation. Furthermore, we conduct
a forecasting comparison over the monthly growth rates of German industrial
production. The inclusion of different exogenous variables (leading indicators)
improved the forecasting performance. Chapter 3 is based on Robinzonov,



Chapter 4.

Chapter 5.

Tutz, and Hothorn (2012), “Boosting techniques for nonlinear time series mod-
els,” AStA Advances in Statistical Analysis 96, 99-122.

Using monthly data, we rely on boosting techniques based on regression trees as
base learners to identify relevant volatility drivers as well as the functional form
of their influence. We analyze the determinants of volatility in the four broad
asset classes of stocks, commodities, bonds, and foreign exchange, making use of
a wide range of potential macro and financial drivers. Using realized volatility
as a proxy for the unobserved volatility we conduct an out-of-sample forecasting
study in which we show that boosting performs very well for stocks and com-
modities relative to the common GARCH(1,1) benchmark model. Chapter 4
is based on Mittnik, Robinzonov, and Spindler (2012), “Boosting the Anatomy
of Volatility,” http://epub.ub.uni-muenchen.de/12976/.

We evaluate and compare several boosting models on binary data in a spatio-
temporal context. The objective is to estimate a surface representing the brows-
ing probabilities on young beech trees within the borders of the Bavarian Forest
National Park “Bayerischer Wald” in southern Germany. In our model selection
procedure, we found that the spatial component and the height of the trees do
contribute considerably to the goodness-of-fit. Furthermore, we found that a
spatial component which allows for abrupt changes in the browsing pressure is
better suited for prediction than the smooth bivariate P-spline tensor product
alternative. This is mostly due to the irregular distribution of the tree regener-
ation areas. Chapter 5 is based on Robinzonov and Hothorn (2010), “Boosting
for estimating spatially structured additive models,” in Statistical Modelling
and Regression Structures. Festschrift in Honour of Ludwig Fahrmeir, edited
by Kneib and Tutz, pp. 181-196.

Chapter 6 This chapter gives our conclusions.
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Chapter 2

Gradient Boosting

Boosting, in its original form as proposed by Freund and Schapire (1996), was in-
tended to solve two-class classification problems by maximizing the confidence, or
the “margins,” of a binary classificator. The AdaBoost algorithm, as it is called,
is nowadays the most well known boosting algorithm. Excellent explanations of its
algorithmic details can be found in Friedman et al. (2000); Bithlmann and Hothorn
(2007a); Hastie, Tibshirani, and Friedman (2009a) and Bithlmann and van De Geer
(2011) among others.

In summary, the purpose of AdaBoost is to enhance the predictive accuracy of
some, already existing, classification algorithm, e.g., classification tree (Breiman,
Friedman, Olshen, and Stone, 1984). This classification algorithm will be called a
weak learner because it suffices that it performs only slightly better than random
guessing in order to attain arbitrarily good accuracy (Kearns and Valiant, 1994;
Schapire, Freund, Bartlett, and Lee, 1998). AdaBoost repeatedly applies the weak
learner on successively changing versions of the original data. The changes are in-
tended to re-weight the observed data in a way that misclassified observations receive
more attention in the next iteration. To do this, the algorithm increases their weights
in dependence on the training error, while the weights of the unproblematic ones are
decreased. Therefore, the “hard cases” receive more attention by the weak learner
and we iterate this M times. The number of iterations is the main tuning parameter
for boosting and we will comment on this in Section 2.5, but for now we assume that
we know the optimal M. Finally, we get an ensemble of M predictions which are
suitably aggregated so that more accurate predictions have a larger contribution.

Combining rules to form an ensemble and to aggregate it in a final decision
lies at the heart of ensemble learning techniques. Boosting is a special kind of
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sequential-ensemble learning. This can be very advantageous since boosting preserves
interpretation—a property which does not apply to other parallel-ensemble learning
techniques, such as bagging or random forests that yield “black box” predictions.

Boosting was placed in a regression framework by Friedman (2001) who explained
it as a functional gradient descent (FGD) technique. This interpretation of boosting
is also shared by Breiman (1998, 1999); Mason, Baxter, Bartlett, and Frean (2000);
Biithlmann and Yu (2003); Rosset, Zhu, and Hastie (2004); Biihlmann and Hothorn
(2007a) and many others. In these references, boosting is interpreted as a function
optimization approach strikingly similar to the well known steepest descent opti-
mization and we adhere to that interpretation in this thesis. Note, however, that
any estimation process which recursively improves its predictive accuracy in small
steps fits into the framework of boosting. It has, therefore, many variants, e.g., likeli-
hood based boosting (Tutz and Binder, 2006) or forward stagewise additive modeling
(Hastie et al., 2009a, Chapter 10). Likelihood based boosting has a different update
and component selection mechanism, while forward stagewise additive modeling uses
a slightly different way of regularization.

2.1 The Objective of Boosting

The objective of boosting is to estimate a function 7 that links a random outcome
Y, (or response) to an r dimensional random vector of covariates Z; by minimizing
the expectation of a loss function L, such that

7 = argminE [L(Y;, n(z))] (2.1)
7

where Y;|Z;, = z; are considered independent and, in time series analysis, Z; usu-
ally includes lagged values of Y; in addition to other, previously observed, exogenous
variables and eventually some deterministic covariates. Once observed, it makes no
difference for the methodology whether the covariates in Z; are random or deter-
ministic. Its observations are denoted by z; = (211, 22,... ,zt,r)T € R" and are
observed backwards in time. For example, if we consider two lagged response val-
ues (y;—1,%:—2)" and two additional exogenous variables which are lagged only once
(:c§1_)1,x§3’1), we have r = 4 and z; = (241,...,214) = (yt,l,yt,z,a:gl_)l,xg)l)T. The
exact structure of z;, i.e., the lag length, the number of exogenous variables, the
inclusion of seasonal components etc., is very general and depends on the research
question and the available data. Therefore, it is specified in the relevant places of
the remaining chapters. Without loss of generality, we assume in this section that
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the intercept is zero. The regularization techniques which we discuss later usually
do not penalize the intercept term and this assumptions is also made for simplicity.
In addition, L is assumed to be differentiable and convex with respect to 7.

Seeking for a solution in function space, (2.1) is flexible and certainly advanta-
geous for prediction but too general and especially difficult of interpretation. This
suggests that we often need a more specific and admittedly more restrictive solution
by introducing some structure in 7 through parameters 3. We substitute the original
function space solution for a parameter space solution in the following way;,

0= arg;ninE [L(Y;,n(ze; B))] (2.2)

where 3 is a finite- or infinite-dimensional parameter. Therefore, gradient boosting
is applicable, but not restricted to, generalized linear models (GLM, McCullagh and
Nelder, 1989). In this context, a finite-dimensional B = (34,...,,)" is represented
by

ne =1(2ze;8) = Brzeg + -+ B2y
or in generalized additive models (Hastie and Tibshirani, 1990)

Ny = fl(zt,l;ﬁl) + -+ fr(zt,r;ﬁr)

with k(n;) = &(Y3|Z; = z), k being a specified response function,! ¢ is any de-
sired characteristic of the conditional density, e.g., {(Y;|Z; = z;) = E (Y| Z, = z),
fj»3 =1...,r are unknown functions, and 3;,j = 1,...,r are vectors. The exponen-
tial family—which is a central assumption in GLM—is by no means mandatory for
gradient boosting and one can even estimate functionals of distribution-free condi-
tional densities similar to median regression by suitably specifying the loss function
L (see Section 2.4). The infinite-dimensional case of 3 is imaginable for regression
trees with 3; describing the split points, and the constant values assigned to the
response.

In practice, the solution must be found in the space spanned by the data. By the
law of large numbers, the average of the loss function (the empirical loss or the empir-

ical risk) converges to the expectation as T' increases, i.c., & S L(Yi,n(z B)) SN

E [L(Y:, n(z¢))], where 2, denotes convergence in probability. Therefore, we ap-
proximate the theoretical and unknown expectation in (2.2) by

T
7 = arg min%ZL(yt,n(zt;,@)), (2.3)

n t=1

!The response function is usually denoted by h, rather than by k. Since h indicates the base
learner procedure (see below) we simply avoid ambiguity at this point.



12 2. Gradient Boosting

YZO'

Figure 2.1: Steepest descent

where y; denotes the observation of Y;. The solution of (2.3) is found by successively
reducing the empirical loss in a steepest-descent like algorithm. A careful specifica-
tion of the loss function, L, leads to an estimation of the desired characteristic of
the conditional distribution and is the main reason for boosting’s versatility. We will
consider several specifications of the loss function in the following sections.

2.2 Steepest Descent

As a short review of the pure steepest descent algorithm, let us consider the following
example. Suppose we are to minimize the function L(yi,v.) = 1.5y + 2y3. The
negative gradient is

This gradient shows the direction which reduces L most. For the steepest descent
algorithm, we arbitrarily choose a starting point, e.g., yl¥) = (—1.5,2), and update
the new position through y!!l = ¢ +0.1- g(y!”) = (=1.05,1.2). This initial step is
shown in Figure 2.1(a). The step length was chosen small, in this case 0.1, and we
iterate y¥) = yl*=1 1-0.1. g(y*~1) until the changes are small enough, Figure 2.1(b).
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Similarly, boosting iteratively builds up the solution in small steps, where each
step is based on the previous one. It favors the direction that reduces the empiri-
cal loss most, i.e., the direction specified by the negative gradient. Since we seek a
solution in the data space, we repeatedly fit the covariates against the negative gra-
dient. It is in essence the steepest descent optimization technique of a T-dimensional
function with one major difference: the negative gradient is estimated. Since the di-
mensionality of the gradient depends on the sample size T', it can be regarded as an
infinite-dimensional function. Therefore, we do not use the gradient itself, but rather
take the direction of the greatest current correlation so that when new observations
arrive, we would improve in terms of out-of-sample predictive accuracy.

Recall that the objective is to minimize (2.3). Given any current estimate Blm=1l
(or 1(z¢; B™~1)), we compute the negative gradient,

m 0
g£ p— [8_L(yt’ 77)] A t=1,...,T, (2.4)
N n=n(zy;Bm 1)

which, similarly to the red line in Figure 2.1(a), gives the direction of steepest descent.
Then, we estimate that gradient by some statistical model h,

5l — arg min [(z;7) = 31" (2.5)
v
and update 7,
n(zi; B™) = 0z B ) v bz M), t=1,.. T, (2.6)
—_——
estimated
gradient

o™
Note that the statistical model (or smoother) h is the base learner and v is the step
size or shrinkage parameter (Biihlmann and Hothorn, 2007a). A small shrinkage
parameter, typically v =~ 0.1, can be interpreted as a local regularization parameter
since the current improvement is only a small step away from the previous one. In
this way we “cure” the typical instability of forward selection methods (Breiman,
1996). Forward selection methods are called “greedy” since they aim at maximal
improvement of the objective function with each step, regardless of the impact on
model complexity (Zhao and Yu, 2007). In Section 2.5, we discuss this aspect in
more detail.

The base learner is typically, but not necessarily, a wellknown regression type
statistical model, such as linear regression, GAM, or regression tree, which models
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the connection between the response and the covariates. This, in addition to the loss
function specification, is the key for the versatility of boosting. The combinations of
base learners and loss functions are diverse and wide ranging and motivate plenty of
new model definitions. But behind the scenes, we have the same generic algorithm—
the iteration of (2.4)—(2.6)—which is called boosting (Friedman, 2001).

If we rewrite 7(z; B[m}) and the gradient g,{"” in vector notation, i.e., #l™ =

R . T
(2 B, n(azs 8| and giml = [B(zi A, bz A)] T we can rep-
resent (2.6) as an additive sum of the form

M
AM =) " vgh, (2.7)
m=1

where M is an optimal stop number of iterations. In addition, we have the same
additive structure in the parameters

M
M= "4, (2.8)
m=1

Therefore, the final parameter estimates can be expressed as an additive sum of the
former estimates. This recursive aggregation of the parameter estimates explains the
motivation behind referring to boosting as a forward stagewise additive technique
(Hastie et al., 2009a). The additive structure here should not be confused with the
similarly labeled additive structure of the basis expansion in GAM. Note also that
Hastie et al. (2009a) do not use a fixed step-size v but instead estimate an optimal
step size vI™ for each iteration.?

The parameter M is regarded as the primary tuning parameter which controls
the bias—variance tradeoff. It is usually chosen via some cross-validating assessment
aiming for optimal out-of-sample prediction. Below we discuss several strategies for
estimating M. In summary, the boosting algorithm is as follows:

1. Initialize the vector estimate §l°, e.g., for L = Ly (defined in Section 2.4),
0 =g-(1,...,1)" withg= 23"
n g-(1,..., with g = ->", .

2. Set m = 0.

3. Increase m by one.

2In their original notation, the step size is denoted by ayy,.
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4. (a) Evaluate 7™~ and compute the negative gradient (2.4).
(b) Estimate the negative gradient as in Equation (2.5) which yields §i™!.
(c) Update A™ = flm=1 + v . gl Equation (2.6).

5. Iterate Steps 3 and 4 until a final step M determined by some stopping condi-
tion.

2.3 Componentwise Boosting

The algorithm can be further refined by tweaking step (2.5). We make an individual
model choice for each covariate-response pair® in a way which is believed to best
describe their relationship. These r individual models represent r base learners, or
equivalently weak learners, and we can think of them as r isolated subsolutions of
the original optimization problem. This is called componentwise gradient boosting
(Bithlmann and Yu, 2003). Instead of fitting all covariates at once, they are fitted
separately against the gradient. At each boosting step, only one covariate is included,
namely the one which most correlates with the negative gradient. This covariate is
gradually updated until some other covariate gets more correlated in magnitude with
the gradient. The new covariate is in turn smoothly blended into the model, and
so on. This is another way of keeping the learner “weak” by simply restraining a
complex structure with many parameters. The relationship between the covariates
and the response is, as in regression modeling, an expert decision.

During the iterations, we repeatedly update a small subgroup of the original base
learner candidates. Provided the algorithm terminates reasonably soon, the active
set of variables, i.e., those with nonzero parameters, implies an implicit exclusion of
the remaining ones. This is called early stopping and the result is a built in variable
selection and model choice (Biithlmann and Yu, 2003; Kneib, Hothorn, and Tutz,
2009).

To formalize the component selection process, we assume the following structure
n(2:) = 25— fi(z1;) where r is the number of (groups of) covariates. The additional

3We do not necessarily have to isolate each single covariate since we could also group them and
pair the groups with the response.
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selection step modifies (2.5) in the following way:

,ij[m} = arg min [fj(zt,j;fyj), — gim]] . j=11,...,r} (2.5 a)
i
T 2
S = argmin (9" = fi(z5:9™)) (25 b)

jE{l,...,T} t=1

The modification implies that we first optimize with respect to the individual base
learner parameters which results in r estimations ’Aygm], e ,'Ay?[«m]. Then, according to
the sum of the squared residuals criterion, we optimize with respect to the index j,
ie., 8m € {1,...,r}, and the update vector is 4™ = (0,... ,o,&g’:},o, ...,0)T with
zeros for all but the §,,th component and

Blml — gim=11 4,4 bm]

.
_ ( gm—”,...,ﬁimflg (0,04 0, 0)T

Sm

m—1 m m—1 T
=v- (Z/yy],...,Z’yéi,...,Z’yﬂ) . (2.9)
i=1 i=1 i=1
Therefore, the update (2.6) becomes
n(z; B™) = n(z B ) 4 v - fo, (23, t=1,. T (2.10)

We can combine different base learners for different variables. These individ-
ual specifications offer great flexibility. Furthermore, due to the additive update in
(2.9), the estimate of a function f; at iteration m has the same structure as the cor-
responding base learner. Depending on the circumstances, we could easily combine
established statistical models into one, and the structural assumption of the model
will be specified by the base learners. Many base learners can be represented as
simple penalized least squares models with a general notation of the form

g = X(XTX 4+ AK) X g™ = Sgl™, (2.11)

where the hat-matrix is defined by § = X(X "X + AK)'X ", with design matrix X,
penalty parameter A\, and penalty matrix K (the index j is omitted for convenience).
The design and penalty matrices depend on the type of the base learner and this

notation allows for linear, categorical, smooth, or even spatial effects (see Hofner,
Hothorn, Kneib, and Schmid, 2011; Hofner et al., 2012, for details). Specifically,
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given that the covariate is continuous, (2.11) represents a P-spline estimation (Eilers
and Marx, 1996), otherwise, if it is discrete, (2.11) represents a ridge regression (see
Hoerl and Kennard (1970) for nominal and Gertheiss and Tutz (2009) for ordinal
categories). A penalty parameter A = 0 results in unpenalized estimation. Other
learners such as regression trees, considered in Chapters 4 and 5, are also possible.
In summary, the componentwise boosting algorithm is the following;:

1. Initialize the vector estimate A%, e.g., for L = Ly, Y = - (1,...,1)T with
_ T
Yy = % Zt:l Ye-

2. Set m = 0. Specify the set of base learners and denote the number of base
learners by r.

3. Increase m by one.

[m—1]

4. (a) Evaluate 0 and compute the negative gradient (2.4).

(b) Estimate the negative gradient as in Equation (2.5 a) which yields r vector

estimations, i.e., ggm], g

(c) Select the base learner s, € {1,...,r}, Equation (2.5 b), that most corre-
lates with the %;radient according to the residual-sum-of-squares criterion.
Therefore, ggﬁ = fi,,(z;4™) is the selected estimate of the gradient

vector.
(d) Update Al™ = glm=1 4 . ggﬁ, Equation (2.10).

5. Iterate Steps 3 and 4 until the final step, as determined by the stopping con-
dition.

2.4 Loss Functions

Depending on the specification of the loss function, we can estimate any desired
characteristic of the conditional distribution of the response. This, coupled with the
large number of base learners, guarantees a rich set of models that can be fitted using
boosting. We can specify the connection between the response and the covariates in
a fairly modular way, such as

Eylz) = fr -+ [, (2.12)
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having on the right hand side any desired combination of base learners. On the
left hand side, £(-) describes some characteristic of the conditional distribution. In
the following subsections, we discuss the major aspects related to the choice of the
family.

2.4.1 Continuous Response

In the case of a Gaussian continuous response, our assumption is that Y| Z is normally
distributed and the loss function is the negative Gaussian log-likelihood, which is

equivalent to the Lo loss
1

L(y,n) = 5y —n)*

(see Figure 2.2(a)). The corresponding negative gradient is simply (y — 1), which
turns out to be the residuals vector.

By boosting, we can also implement a distribution-free, median regression ap-
proach especially useful for long-tailed error distributions. In this case, we use the
L; loss defined as

Ly, f) = ly —

and shown in Figure 2.2(b) which means that we are interested in the median of the
conditional distribution. Note that the L loss is not differentiable at y = n and the
value of the negative gradient at such points is fixed at zero. Since the probability of
a real-valued random variable to result in exactly zero is zero, this means that this
is neither a theoretical nor an empirical issue.

A compromise between the L; and the Ly loss is the Huber loss function shown
in Figure 2.3(a). It is defined as

L(y, n:6) = (y —n)*/2 if [y —nl <0,
o o(ly —nl—06/2) if ly—n|>o

where the parameter ¢ limits the outliers which are subject to absolute error loss.
The Huber loss can be seen as a robust alternative to the Lo loss. One can either
specify ¢ subjectively, e.g., d = 2, or leave it to be adaptively chosen by the boosting
algorithm. An adaptive specification of §, proposed by Friedman (2001), means that
each boosting step produces a new 6™ matching the actual median of the absolute
values of the residuals, i.e.,

6™ = median <‘yz — pm=(g)

z:1n>
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Loss function Loss function
3 -
7.5
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y—-n y—n
(a) Ly loss function (b) Ly loss function

Figure 2.2: The loss function allows flexible specification of the link between the
response and the covariates. The figure on the left hand side illustrates the Ly loss,
the figure on the right hand side shows the L loss function.

Another alternative for settings with continuous response is modeling the con-
ditional quantiles through quantile regression (Koenker, 2005; Fenske, Kneib, and
Hothorn, 2011). The main advantage of quantile regression is (beyond its robust-
ness towards outliers) that it does not rely on any distributional assumptions on the
response or the error terms. The appropriate loss function here is the check func-
tion shown in Figure 2.3(b). The special case of the 0.5 quantile leads to median
regression.

If we are interested in the conditional variance, we can model it through the
exponential link function, i.e., k(n:) = exp(n(z:)) = V (Y;|Z; = z,). Assuming that
Yi|Z; ~ N(0,e™) is reasonable, the negative conditional log-likelihood function is
used as loss the function and the result is

1 v
L = — — 2.13
t= 5 {Ut‘F e”t] (2.13)

(after some simplifications) with the corresponding negative gradient given by



20 2. Gradient Boosting

Loss function Loss function
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(a) Huber loss function (b) Quantile regression

Figure 2.3: The Huber loss function on the left hand side is useful when robustness
is a concern. It adaptively changes the limit for L; penalization of outliers. The
figure on the right hand side illustrates several examples of the check function loss
with different quantiles (7 = 0.5 is the default).

See Chapter 4, which is based on Mittnik, Robinzonov, and Spindler (2012), for
further details.

2.4.2 Binary Response

Analogously to Gaussian regression, the probability parameter of a binary response
can be estimated by minimizing the negative binomial log-likelihood

L(y,n) = — [y log(m(n)) + (1 —y) log(1 —7(n))]
= log(1 + exp(—2yn)) (2.15)

where g = 2y—1 and w(n) = P(Y = 1|z). In Equation (2.15), the gn are the so-called
margin values (depicted in Figure 2.4) which are, roughly speaking, the equivalent of
the continuous residuals y — 7 for the binomial case. This recoding means that the
negative binomial log-likelihood loss and the exponential loss (defined below) coincide
in their population minimizer (see Bithlmann and Hothorn, 2007a, Section 3). For
further details or examples of boosting with the negative binomial log-likelihood loss
function, see Chapter 5 or Robinzonov and Hothorn (2010).
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Loss function

47 Binomial
----/AdaExp

Figure 2.4: The negative binomial log-likelihood loss and the exponential loss as
functions of the marginal values gn. Since § € {—1, 1}, a positive product between
y and half the estimated log-odds ratio 7 means correct categorical discrimination.

Alternatively, one can also use the exponential loss function L(y,n) = exp(—yn).
This basically leads to the famous AdaBoost algorithm by Freund and Schapire
(1996). As can be seen in Figure 2.4, this loss function is similar to the negative
binomial log-likelihood loss.

2.4.3 Additional Parameters in the Loss Function

The estimation algorithm presented so far is applicable in various circumstances,
mainly due to the freedom in the choice of the loss function. We could easily use
the same algorithm for count data by postulating the negative Poisson log-likelihood
with the natural link function log(u) = 1 as the loss function. Alternatively, the
negative binomial distribution can be used to model overdispersed data by utilizing
the negative of its density as the loss function. Note, however, that this distribu-
tion introduces one additional parameter, which extends the algorithm by a further
optimization step. The extra parameter that accounts for overdispersion is opti-
mized additionally within each boosting iteration m. This means that after Equa-
tion (2.5 b), one minimizes the empirical risk w.r.t. the overdispersion parameter ¢

given the current boosting estimate ‘yém]

T
o = arg minz L <yt, ﬁ(zm;%m], 5)) . (2.5 ¢)
B

t=1
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A thorough treatment of this additional tweak in the algorithm can be found in
Schmid, Potapov, Pfahlberg, and Hothorn (2010).

We may even go further, by using gradient boosting for this additional parameter
0. It can be dynamically updated in parallel with the already progressing ~ opti-
mization. Therefore, two boosting procedures run in parallel for each parameter and
this could be extended to arbitrarily many density parameters p € N. Given a fixed
size of observations T and covariates r, we have an O(MP) complexity, where M is
the optimal step number. This technique was inspired by the Generalized Additive
Models for Location Scale and Shape (Righy and Stasinopoulos, 2005) and proposed
by Mayr, Fenske, Hofner, Kneib, and Schmid (2012). Strategies for how to estimate
an optimal stop number are proposed in the next section.

2.5 Discussion

This section is intended to briefly discuss the remaining component pieces of boost-
ing. The choice of topics is largely a personal one, with an emphasis on the existing
problems of componentwise gradient boosting. Several relevant aspects—deferred
in the discussion so far—are addressed: the stopping condition; the regularization
amount; the model’s parsimony; inference; and others. We also review several im-
provements of the boosting algorithm and elucidate existing connections to other
methods. Some difficulties which prohibit statistical inference, but also references to
existing theoretical solutions, are included as well. Finally, we summarize the merits
of boosting.

2.5.1 Stopping condition

The number of updates M is the parameter of primary interest in boosting. Each
additional boosting step increases the complexity of the model and we should stop
reasonably soon in order to avoid overfitting. An intriguing property of boosting is
that it overfits slowly. Biithlmann and Yu (2003) showed that the increase in com-
plexity is not linear, and depending on the base learner specification it can diminish
exponentially as the iterations grow.

The term early stopping refers to the appropriate number of steps after which
we solely continue to fit noise. The variable selection property of componentwise
boosting crucially depends on early stopping since boosting forever would inevitably
include all predictors. Therefore, we generally have two strategies for the final step
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determination: analytical solution via the model complexity or some numerical de-
vice.

The existing analytical solutions are, however, problematic. They use the trace of
the hat matrix as a complexity measure, as in the AIC (Akaike, 1973), its corrected
version AIC, (Hurvich, Simonoff, and Tsai, 1998), or the gMDL selection criterion
(Hansen and Yu, 2001). The latter is at the heart of Sparse Boosting (Biithlmann and
Yu, 2006). The concern is that we do not have an exact model complexity measure

as the effective degrees of freedom in the classical regression analysis (Hastie and
Tibshirani, 1990; Hastie et al., 2009a).

The hat matrix in boosting is (Bithlmann, 2006; Bithlmann and Hothorn, 2007a)
Himy =1 — (I —vHE) (I — v HIEN) (T — v A, (2.16)

where the H[*] are the single hat matrices resulting from the gradient fit at each step
m, and [ is the identity matrix. Hastie (2007) showed that the complexity measure
df(m) = tr(Hm)) underestimates the true degrees of freedom due to the selection
process. Treating the complexity as if the selected components had been given in
advance happens to be highly misleading. The intuition behind this phenomenon is
that once several covariates are selected, but still not fully estimated, their estimates
are about to randomly progress to the final solutions. The instant model is, therefore,
more complex than the formula suggests, and underestimating the true model com-
plexity leads to overfitting (Hastie, 2007). Biithlmann and Hothorn (2007b) propose a
correction for the degrees of freedom for linear base learners which takes the number
of selected covariates into account. The active set of covariates df,ciset(m) represents
the number of covariates selected up to step m. This appears to be a better approx-
imation for the true degrees of freedom, but still, both df,ciset(m) and df(m) remain
random variables and, therefore, cannot be regarded as classical degrees of freedom.

The determination of an optimal step number M can be done via some cross-
validating assessment and this is the recommended stop solution. First, we choose
a sufficiently large Miage that is expected to fulfill M < Miage. Then, we resample
the data set using cross-validation, bootstrapping, or subsampling, to name a few.
With k-fold cross-validation we split the data set into & disjoint, equally large parts.
We leave one part for validation (validation sample) and fit the boosting model with
Marge steps on the remaining data points (learning sample). We do this & times,
until each part has been used as validation sample. As a result, we collect k out-of-
sample loss function estimates for the steps 1 through Mise.. The optimal step M
is the one with the smallest empirical loss on average. The idea behind subsampling
is similar to cross-validation, with the sole difference that the parts are allowed to
intersect and in bootstrapping we sample with replacement.
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2.5.2 Regularization

Imputing a penalty to the parameters is a common regularization device for variable
selection. The benefit of shrunken parameters is usually observable in the improved
out-of-sample predictive accuracy. For example, penalizing the number of parameters
is used in many information criteria, such as the AIC or BIC. Another example is
Lasso (Tibshirani, 1996), which minimizes the Ly loss function with an L; penalty,
but it is generally unclear which regularization criterion optimizes boosting (Zhao
and Yu, 2007). A small step size v coupled with early stopping is the regularization
device of boosting. This algorithmic constraint leaves many mathematical questions
open.

For very special cases, however, there exist some theoretical explanations. Efron,
Hastie, Johnstone, and Tibshirani (2004) showed that having orthogonal predictors
and linear base learners, boosting with infinitesimally small step-size, or the for-
ward stagewise linear regression? (FSLR) as they call it, is equivalent to the Lasso.
Biihlmann and van De Geer (2011, p. 388) state that:

There is a striking similarity between gradient based boosting and the
Lasso in linear or generalized linear models. Thus, despite substantial
conceptual differences, boosting-type algorithms are implicitly related to
L;-regularization.

This is also confirmed by Zhao and Yu (2007), who show that in even more general
situations, one can get the Lasso solution via boosting. They implement an additional
backward elimination step which removes the irrelevant variables accumulated by the
forward run.

Meinshausen and Biithlmann (2010) address the problem of proper regularization
in variable selection methods with their method, called stability selection. Stability
selection is not an alternative model for variable selection but it is rather an ad-
ditional step which extends already existing selection methods. The main idea is
to randomize the learning algorithm by subsampling the original data and simulat-
ing the selection probabilities of all variables. From these, only the most frequent
variables—above some threshold level—are included in the final model. The authors
show that the method is not sensitive to a reasonably varied threshold level. They
also provide an upper bound for the false discovery rate, which means that one can
control the number of false selections. The upper bound, however, is guaranteed un-
der the nontrivial assumption that the false variables compete among themselves at

4FSLR is a slightly modified, scale-variant version of boosting for linear models.
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random, i.e., their distribution is exchangeable (Meinshausen and Biihlmann, 2010,
Theorem 1 and the discussion).

2.5.3 Bias

Stronger regularization leads to sparser and better interpretable models. This prop-
erty, however, is in conflict with the objective of an unbiased parameter estimation.
The latter is sacrificed by boosting for the efficiency of model interpretability and
out-of-sample prediction.’

The parameter estimates made by boosting are typically underestimated due to
the parameter regularization via early stopping. The algorithm starts with initial zero
estimates, gradually increases them, and stops before convergence. This is typical
for shrinkage methods in finite samples, where the parameters usually have smaller
magnitudes than the unregularized solutions and the bias vanishes with an increasing
sample size. Such methods prove to show better out-of-sample performance than fully
estimated, unregularized models.

Biased estimates are, therefore, typical for high-dimensional models in which
variable selection is desired. If not stopped early, the algorithm converges to the
full parameter estimates. Achieving both variable selection and unbiased parameter
estimations can be heuristically set up in a two-step procedure: first regularize in
order to detect influential variables and second allow for fully converged estimates
with these selections. In the same vein Fan and Lv (2008) propose independence
screening to reduce the computation in ultra-high dimensional variable selection (see
also Fan and Lv, 2010, for further details). One should, however, acknowledge that
the estimation of finite-sample distributions of such post-model-selection estimators
is infeasible (Leeb and Potscher, 2005).

2.5.4 Forwardness

Boosting only works in a forward fashion. It falls into the category of the so called
greedy methods which strive to reduce the empirical loss at each step and are not
able to adjust the previous steps. Forward selection methods, which are also greedy,
tend to be unstable in out-of-sample prediction (Breiman, 1996).

5One algorithm that satisfies both properties is the smoothly clipped absolute deviation (SCAD)
model proposed by Fan and Li (2001).
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This is especially true when the predictors are correlated. As an explanatory
example, Efron et al. (2004) take the forward stepwise regression (Weisberg, 1980),
but the intuition is similar for more general methods, e.g., the backfitting algorithm
(Hastie and Tibshirani, 1990). Forward stepwise regression performs simple linear
regression of the response on the predictor with the highest correlation in magnitude.
After the fit, the new residual vector substitutes the response and the algorithm seeks
for the next correlated candidate. The previously selected predictor is therefore
excluded, since it is now orthogonal to the new response, but so are all predictors
which are correlated with it. Therefore, the algorithm automatically eliminates them
from the selection process.

The main difference between forward stepwise regression and forward stagewise
regression (or boosting) is that the greediness of the first algorithm is somewhat
reduced by the inclusion of the shrinkage factor in the second. Boosting gradually
blends the predictors in the model instead of including them all at once. Therefore,
even correlated predictors can compete for inclusion in the model as long as they are
equally correlated with the gradient.

2.5.5 Sparsity

Models are sparse if only a small subset of the potential variables are truly relevant.
Sorting out the substantial variables is beneficial both for interpretation and for
prediction, and is the main reason why sparse models are so appealing. Boosting
solutions are sparse, but in linear settings not as sparse as Lasso for example (Zhao
and Yu, 2007). Therefore, some additional modifications are necessary in order to
achieve sparser models.

A modification of boosting with better selection properties is the twin boosting
proposed by Biihlmann and Hothorn (2010). Twin boosting consists of two rounds.
The first one is the classical componentwise boosting as discussed so far. The second
round takes the parameter estimates from the first round into account and rescales
the components in the selection process (2.5 b). Roughly speaking, the correlation
between the gradient and the components is increased proportionally to the esti-
mates, so that components with bigger coefficients are preferred for selection. They
show that for special cases the selection of twin boosting is equivalent to the adaptive
Lasso proposed by Zou (2006).

The aforementioned stability selection method (Meinshausen and Biihlmann,
2010) generally leads to sparser models in Lasso but is not always better for boost-
ing than trivial cross-validation. Further, the backward step in stagewise Lasso (also
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called BLasso from boosting Lasso, Zhao and Yu, 2007) leads to sparser models when
compared to the classical linear boosting.

2.5.6 Inference

The mathematical theory for high-dimensional statistics is still largely under devel-
opment. An excellent overview of the computational and mathematical advances in
this field can be found in Hastie et al. (2009a); Fan and Lv (2010) Bithlmann and
van De Geer (2011). Boosting, in particular, is a provably consistent estimator for
linear regression models (Zhang and Yu, 2005; Biithlmann, 2006).

Classical statistical inference, however, cannot be applied to high-dimensional
problems. One technical reason is that having more variables than observations®
leads to a lower-rank design matrix and consequently to ill-posed test problems.
Proper statistical inference is also hindered by the estimation bias and the lack of
appropriate degrees of freedom as previously discussed.

The culprit is the selection process, whose result cannot be regarded as if it had
been given in advance. Earlier, we mentioned the negative impact of this assumption
on the model’s complexity, but it can be even worse with respect to the finite sample
distributions of the estimators. Leeb and Potscher (2005) show that even relying on a
consistent model selection procedure, we cannot simply use the standard asymptotic
distributions which we would have applied in the absence of model selection. Fur-
thermore, the authors warn that the true asymptotic properties of these estimators
heavily depend on the true, unknown parameter values. Therefore, it is by no means
guaranteed the asymptotics occur at all, regardless of the sample size. On the other
hand, the finite-sample distributions of the estimators are typically complicated, but
their dependence on the unknown parameters motivates Leeb and Potscher (2005,
p. 23) to make the following statement:

Estimation of these finite-sample distributions is “impossible” (even in
large samples). No resampling scheme whatsoever can help to alleviate
this situation.

As a final remark, it should be mentioned that under the assumptions of suffi-
ciently large parameter values and orthogonal design, the concerns raised by Leeb

6In componentwise boosting one can get a larger number of selected covariates than observa-
tions. In contrast, Lasso allows at most min (7, r) non-zero parameters (Biihlmann and van De Geer,
2011).
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and Potscher (2005) no longer apply. Moreover, the bootstrap provides a consistent
estimator for the finite-sample distributions of the estimators and is commonly used
to quantify the variability of the estimators in practice.

2.5.7 Base learners

The generic structure of gradient boosting allows any regression-type statistical
model to be used as a base learner, e.g., linear regression, logistic regression, (bivari-
ate) P-spline regression, classification, regression trees, and many more. A detailed
overview and practical implementation (with R) of several base learners can be found
in Hofner (2012) and Hofner et al. (2012). Having particular problems at hand, we
will present several base learners in the subsequent sections.

As a final note, we summarize the merits of componentwise gradient boosting.

Component selection: Least open to objection is the need for a statistical
technique to select the most informative variables out of a large set of predic-
tors. Complex financial markets, modeled by an exhaustive set of macro and
financial drivers, offer a challenge in sorting out irrelevant predictors, or some
of their lags. For example, the price or the volatility of a stock depends not only
on its past values, but also on the past values of other, exogenous variables.
Therefore, the number of variables that influence asset prices or their volatility
can be huge. Furthermore, selecting the relevant predictors when their number
exceeds the number of observations is surely a nontrivial task.

Model selection: A related problem is to select the functional dependence
between the relevant variables and the response (Kneib et al., 2009). This is
called model choice and occurs in most regression-type problems, regardless of
the number of variables. For example, a continuous covariate could be included
in a statistical model using linear, non-linear, or interaction effects with other
predictors.

Versatility: A generalized additive model is specified as the combination of
a distributional assumption and a structural assumption. The distributional
assumption specifies the conditional distribution of the outcome through the
loss function (see Section 2.4). The structural assumption specifies the types
of effects that are to be used in the model (base learners). The loss function
is independent of the estimation of the base learners, hence one can freely
combine structural and distributional assumptions to tackle new estimation
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problems. This modular specification of the dependence between any distribu-
tional characteristic and some, initially unknown, subset of predictors is what
makes boosting versatile and a realistic problem solving utility.

Interpretability: Even though in statistics it is natural and obvious for a pre-
diction model to be interpretable, in machine learning this is less true. “Black
box” algorithms such as bagging, and especially random forests (Breiman,
2001a), are prominent examples of strong prediction algorithms which lack
interpretatibility. Due to the additive update in (2.9), the estimate of a func-
tion f; at the final iteration M has the same structure as the corresponding
base learner. Depending on the circumstances, we could easily combine estab-
lished statistical models into one, and the structural assumption of the model
will be specified, and therefore perfectly interpretable, by the base learners.

Prediction accuracy: Boosting is optimized with respect to the out-of-
sample predictive accuracy. This, in addition to the shrinking effect of the
estimates towards zero, usually results in a strong forecasting performance.
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Chapter 3

Boosting Techniques for Nonlinear
Time Series Models

Many of the popular nonlinear time series models require a prior:i the choice of para-
metric functions which are assumed to be appropriate in specific applications. This
approach is mainly used in financial applications, when sufficient knowledge is avail-
able about the nonlinear structure between the covariates and the response. One
principal strategy to investigate a broader class on nonlinear time series is the Non-
linear Additive AutoRegressive (NAAR) model. The NAAR model estimates the lags
of a time series as flexible functions in order to detect non-monotone relationships be-
tween current and past observations. Robinzonov, Tutz, and Hothorn (2012) consider
linear and additive models for identifying nonlinear relationships which is presented
in this chapter. A componentwise boosting algorithm is applied for simultaneous
model fitting, variable selection, and model choice. Thus, with the application of
boosting for fitting potentially nonlinear models we address the major issues in time
series modeling: lag selection and nonlinearity. By means of simulation we compare
boosting to alternative nonparametric methods. Boosting shows a strong overall
performance in terms of precise estimations of highly nonlinear lag functions. The
forecasting potential of boosting is examined on German industrial production (IP);
to improve the model’s forecasting quality we include additional exogenous variables.
Thus we address the second major aspect in this chapter which concerns the issue of
high-dimensionality in models. Allowing additional inputs in the model extends the
NAAR model to a broader class of models, namely the NAARX model. We show
that boosting can cope with large models which have many covariates compared to
the number of observations.
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3.1 Introduction

In modeling of times series we often deal with two issues, linear modeling in case of
nonlinear structures, and high-dimensionality. Boosting is a way to address both.
Linear time series models encounter various limitations and are applicable only under
very restrictive conditions. Some of these constraints have been relieved in the past
two decades. In particular, the nonparametric regression was adapted for time series,
allowing more flexibility than linear modeling (e.g., Lewis and Stevens, 1991; Chen
and Tsay, 1993; Huang and Yang, 2004). A leading aspect to be explored throughout
this chapter is the nonparametric modeling of time series and the resulting forecasting
techniques.

The second major aspect concerns the issue of high-dimensionality in the models,
i.e., models taking potentially many covariates into account. Boosting, one of the
most influential strategies that deal with high-dimensional models, has its roots in
machine learning. The idea has undergone significant evolution in the past decade.
It has been successfully applied to statistical model fitting (e.g., Bithlmann and
Hothorn, 2007a). Audrino and Bithlmann (2003) are the first to introduce boosting
in a financial context. They apply boosting with tree based learners for volatil-
ity estimation of heteroskedastic time series. Audrino and Biihlmann (2009) fur-
ther propose boosting with multivariate B-splines for volatility estimation in a het-
eroskedasticity type of model. Boosting of GARCH models can be found in Audrino
and Barone-Adesi (2006), Matias, Febrero-Bande, Gonzalez-Manteiga, and Reboredo
(2010) among others. In the present work we focus on lag selection, detection of non-
linear relationships between the return, its lagged values and exogenous components,
as well as forecasting.

Due to the frequent use of the simple univariate autoregressive model (AR), we
draw on it as a benchmark in the application part to follow. For a substantially
broader discussion on times series, see Hamilton (1994). In addition we consider the
vector autoregressive (VAR) model. The VAR model suggests that every variable is a
linear combination of its past observations and the past observations of supplemental
variables. In practice such assumptions enjoy great popularity. Multivariate time
series are considered in greater depth by Liitkepohl (1991; 2006).

The literature offers a great amount of nonlinear modeling tools. Many of them
are developed in the spirit of nonlinear parametric models. They require an a pri-
ori choice of parametric functions, which are assumed to be appropriate in specific
situations. That approach is used mainly in financial applications, when sufficient
knowledge is available about the nonlinear structure between the covariates and the
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response. However, the appropriateness of such assumptions is usually hard to justify
in practice.

In contrast to parametric nonlinear models, nonparametric techniques are not
restricted to a particular choice of parametric functions. One principal strategy is
to study the times series counterpart of the additive model; the so-called Nonlinear
Additive AutoRegressive (NAAR) model (Chen and Tsay, 1993). When further
(exogenous) variables are available, we suitably extend the model with more functions
and call it NAARX (Chen and Tsay, 1993). Thus, NAARX encompasses linear
regressive models and many nonlinear models as special cases.

The literature on nonlinear additive models is extensive, therefore, we concentrate
on nonparametric approaches. Huang and Yang (2004) introduced a method that
attracted much attention because of appealing lag-selection properties for univari-
ate nonlinear time series. It essentially represents an additive version of the linear
stepwise procedure using truncated splines, or B-splines, as base expansions of the
predictors. The proposed base functions are not penalized. Instead, a formula is
suggested which determines a relatively small number of evenly spaced knots. In
terms of lag selection, the proposed method performed quite well with simulated
time series. However, no results were provided that show the goodness-of-fit of the
models. We will use some of the artificial times series, provided by Huang and Yang
(2004) in Section 3.3 and will shed light upon the goodness-of-fit as well.

Multivariate Adaptive Regression splines (MARS) were introduced by Friedman
(1991). An excellent overview of the method is available in Hastie et al. (2009a,
Chapter 9), an application of MARS in a time series context is provided by Lewis
and Stevens (1991). The last nonparametric model that we consider is the BRUTO
procedure (Hastie and Tibshirani, 1990, Chapter 9). BRUTO combines inputs se-
lection with backfitting by using smoothing splines. It was applied to time series
by Chen and Tsay (1993). See Hastie and Tibshirani (1990, p. 90-91) for details
concerning backfitting and Hastie and Tibshirani (1990, p. 262) for the BRUTO
algorithm.

We proceed as follows. In Section 3.2, we introduce the general ideas behind
our model. Exemplified by two different types of base learners, we examine the
structure of the boosting algorithm for continuous data. The first base learner is the
simple linear model, the second one is a penalized B-spline (Eilers and Marx, 1996).
Section 3.3 examines the results of a simulation study. We analyze the performance
of boosting with P-spline base learners in Monte Carlo simulations with six artificial,
nonlinear, autoregressive time series. We compare the outcomes of boosting to the
outcomes obtained through alternative nonparametric methods. Their performances
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are considered in terms of lag selection and goodness-of-fit. In Section 3.4 we apply
boosting with both learners to real world data in terms of a direct forecasting. The
target variable is German industrial production. We compare boosting, along with
other methods, to the simple univariate autoregressive model.

3.2 The Model

The statistical framework developed by Friedman (2001) interprets boosting as a
method for direct function estimation. He shows that boosting can be interpreted
as a basis expansion, in which every single basis term is iteratively refitted. Still,
some care must be taken in interpreting boosting as a basis expansion. In contrast
to conventional basis expansions, where the basis functions are known in advance,
the basis’s members and also their number are iteratively determined by the fitting
procedure. Our notation is as follows:

Z; = (YtTa XtT)T = (yt*17 <o Yt—py xl(tl—)lv T 7m§£)p7 T 7375/(1—)17 T 7$§g)p)T S R(ﬁl)p
denotes the p-lagged vector of explanatory variables representing the lagged values
Y, = (Y1, .., ¥1—p) " € RP of the endogenous variable y; € R and the lagged values
of ¢ exogenous variables x; € R%. The proposed model is then

E(y|z:) = Zfz Yi—i +Zf =Tt i) "'+Zfi(q)(x§g)i)
—Zfz Ye—i) "‘ZZJC]) xtz =:1(2t). (3.1)

7j=1 =1

The objective is to obtain an estimate 7 of the function . With real data one wants
to minimize
n= arg min — Z L(ye, n(z4))- (3.2)
t=1

where L is some loss function. One of the frequently employed loss functions is the
squared-error loss Lo

Ly (20)) = 50— ()% 3.3

which is also chosen in this work. A discussion of the specification of several loss
functions can be found in Section 2.4, as well as in Hastie et al. (2009a, chap. 10),
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Biithlmann and Hothorn (2007a), Friedman (2001), and in particular in Lutz, Kalisch,
and Biithlmann (2008). We further introduce the parameters 3 that will facilitate
interpretation later on and reformulate the problem as

A

i=n(-:8) = argmin - 3™ Ly, (e B). (3.4)

n t=1

The final solution of (3.4) is expressed in terms of a sum over M base learners h,
the mth of which depends on a parameter vector 4:

M

(- BM) = " vh(-;4M) (3.5)

m=0

where 4% is an arbitrary chosen start vector of parameters, v € (0, 1) is the shrinkage
parameter and the parametric function h represents the base learner. See Chapter 2
for details regarding the optimization of (3.4). Further, we specify the base learners

h(-;4).

3.2.1 Componenwise Linear Base Learner

When many predictors are available, a fruitful strategy is componentwise boosting.
Originally proposed by Bithlmann and Yu (2003) and further developed by Bithlmann
(2006), the key idea of this method is to exercise the base learner upon one variable
at a time and to pick out only this component with the largest contribution to the
fit. Thus, we keep the learner “weak” enough by restraining a complex structure with
many parameters.

The simplest base learner is linear. For this learner 4™ = (0,...,4;5,,...,0)7
is a (¢ + 1)p-dimensional vector with zeros for all but the §,,th component, where
S$m € {1,2,...,(q+1)p} denotes the respective component at the mth boosting step.
The definition of the base learner is as follows:

componentwise linear base learner

Wz 4™) = 2] A where 4™ = (0,...,45,.,...,0)" € ROTIP 5. e R

Y;=OLS(v;), Vi€ J:={L2,...,(¢+1)p} (3.6)
T
Sm = argmin > (g"(z,) — h(z;4V))?, (3.7)

e
R
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where OLS(7;) is the Ordinary Least Squares Estimator of ; with the negative gra-
dient being used as a pseudo-response. Thus, the base procedure fits a simple linear
regression (¢ + 1)p times as shown in (3.7), and the chosen component §,, is the one
which fits to this pseudo-response best. We refer to this procedure as GLMBoost
later on.

3.2.2 Componentwise P-spline Base Learner

We now refer to the flexible structure defined in (3.1) and employ P-splines with
evenly spaced knots as base learners. That means that the base learner is represented
by a Generalized Additive Model with P-splines (Eilers and Marx, 1996). Note that
the term additive expansion can be used in two different contexts. Here we suggest
an initial additive expansion of the covariates, which should be clearly distinguished
from the interpretation of boosting as an additive expansion itself. Thus, the f’s in
(3.1) are represented by the sum of B known basis functions b, [ = 1,..., B.

In the previous section we defined a componentwise selection of linear predictors.
In the current section, likewise, we do the same with more flexible learners. The
essential modifications concern 4™ = (07, ..., 4/ ..., 0")T € RUTVPB having ¢pB
zeros, ¥s, = (71,--.,78) € RP and 0 = (0,...,0)" € R? and the base learner
being a P-spline instead of a straight line. Subsequently, the estimations ~; , are
obtained through the penalized least squares estimator and not through the OLS-
Estimator. The base procedure is as follows:

componentwise P-spline base learner

h(zi; ™) = 2] 4"

4, =PLSE(y,), VieJ:={1,2,...,(¢+1)p} (3.8)
T

$m = argmin (9" () — h(z;A7))? (3.9)
t=1

where Z; € RUtDPE is the basis expansion of z;, PLSE(y;) is the Penalized Least
Squares Estimator of «; with the negative gradient being used as a pseudo response.
This procedure is referred to as GAMBoost.

Essentially, we estimate two components at each stage: all candidate parameters
for the update (3.8), and the index of the “best” candidate (3.9). Since the negative
gradient indicates the direction of the locally greatest decrease in loss, the most
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“valuable” covariate has the highest correlation with the negative gradient and is
therefore chosen for fitting. The final model fit typically depends on a subset of the
original (¢ + 1)p covariates.

The price for increased flexibility is the inclusion of additional parameters. One
should consider not only an appropriate stopping value M and a shrinkage factor v,
but also a smoothing parameter A\, and a number of evenly spaced knots. Schmid and
Hothorn (2008) carried out an analysis of the effect of these parameters and showed
that M is essentially the single parameter that matters. All others are regarded
as hyper-parameters since the algorithm is robust to their alteration. It is worth
emphasizing the effect of \ for determining the degrees of freedom (df) of the weak
learner. High values of A lead to low degrees of freedom which is preferable in order
to keep the learner highly biased but with a low variance. Schmid and Hothorn
(2008) proposed df € [3,4] as a suitable amount for the degrees of freedom. We
follow these prescriptions and remind that the reasonable altering of this parameter
reflects solely in the computational time.

3.3 Simulation Study

In this section we investigate the performance of boosting an additive model in
Monte Carlo simulations with six artificial nonlinear autoregressive time series. We
compare the outcomes of boosting to the outcomes obtained through alternative
nonparametric methods. These are the method by Huang and Yang (2004), referred
to as the acronym HaY, BRUTO, and MARS. Their performance is considered in
terms of in-sample goodness-of-fit. The dynamics of the simulated processes are
shown in Table 3.1 where ¢, are independent and identically distributed N(0,1)
random variables. NLAR1U1 and NLAR1U2 have one lag and were used by Huang
and Yang (2004). Besides, there are three models with two lags: NLAR2b-NLAR2d.
All but NLAR2c two-lag models were originally used by Tschernig and Yang (2000),
NLAR2c was used by Chen and Tsay (1993). The last NLAR4 model has four lags
and was used by Shafik and Tutz (2009).

All models from Table 3.1 have been simulated 100 times with sizes 400 + N,
the first 400 values discarded and N = p + T, with p = 10 pre-sample values and
T = 50,100, 200 in-sample observations. Such partitioning of the time series values
is convenient in order to ensure same sample size of T" for each covariate at a given
period and to simplify the notation. As p suggests, the maximum lag length has
been limited to ten.
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Table 3.1: Dynamics of six artificial time series.

Model Function

NLARIUL g = —0.4(3 — 2 ,)/(1 + 42 ,) +0.1¢,
NLARIU2 g = 0.6(3 — (y1—2 — 0.5)*)/(1 + (y1—2 — 0.5)*) 4+ 0.1¢,
NLAR2b  y; = (0.4 — 2exp(—50y? ¢))ys—6 + (0.5 — 0.5 exp(—50y2 10))yi—10 + 0.1€;
NLAR2c  y; = 0.81log(1 4 3y? ;) — 0.6log(1 + 3y? 5) + 0.1¢,
NLAR2d  y; = (0.4 — 2 cos(40y,_¢) exp(—30y7 ¢))yi—6 +
(0.55 — 0.55sin(40y;_19) sin(40y;_10)) exp(—=10y2 ;o) + 0.1¢;
NLAR4 vy = 0.9((m/8)ys—4) — 0.75sin((7/8)ys—s5) + 0.52sin((7/8)y_¢)+
0.38sin((7/8)y:—7) + 0.1¢;

In simulations we can measure how precisely a fitting procedure reflects the true
dynamics of a simulated process. In case of a linear time series, a convenient measure
is the Euclidian distance between the true parameter vector and the estimated one.
When dealing with nonparametric models, we need a more complex accuracy measure
for the discrepancy between functions. We consider the squared residuals between
the true partial functions (or lag functions) centered to mean zero and the estimated
functions.

Let f, denote the kth true lag function after centering it to mean zero, i.e.,
subtracting its mean value. Then the mean squared prediction error is

n

1 ~ S

MSPE; = — ) — fu(20))? 3.10

= 3 LUz — itz (3.10)

where fk is the estimated counterpart of fz. We choose a total number of n = 200
evenly spaced observations z; which are located between the 5th and 95th quantile

of the empirical distribution of 1;_,. The accuracy measure is the average of the
individual MSPE’s

1 p
MSPE = - > " MSPE;. (3.11)
p k=1

Figures 3.1 and 3.2 reflect a typical result of the estimation repetitions. We
depict the true process dynamics (circled lines) along with the estimated ones (solid
lines). This visual excerpt gives the satisfying impression of boosting being capable
of discovering the truth.
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Figure 3.1: Boosting estimations of the lag functions of NLAR1U2. True lag is 2
(circled line), estimated lags are depicted as solid lines. The functions are mean zero
centered.

The results of the median MSPE across all 100 simulation runs are summarized in
Table 3.2. The rows contain the simulated series, the columns represent the different
modeling techniques. NLAR1U and NLAR1U2 yield the most parsimonious models.
Their dynamics seems to be explained very well by MARS, HaY and GAMBoost,
while BRUTO performed very poorly. For NLAR1U2, we notice that despite overfit-
ting in sense of selected lags, boosting estimated the relevant function quite precisely,
e.g., T'=50,100. This suggests that the redundant functions were considered close
to zero. It is reassuring to see the apparently zero estimations of the redundant lags
in NLAR1U2 (Figure 3.1).

The literature on nonparametric regression for dependent data is relatively sparse,
especially when related to boosting. Strong serial dependence might mislead the
fitting procedure to produce erroneous transformations. For instance, this is evident
for boosting of NLAR2¢, shown in Figure 3.2, where the second and the seventh lag
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Figure 3.2: Boosting estimations of the lag functions of NLAR2c. True lags are 1
and 3 (circled lines), estimated lags are depicted as solid lines. The functions are
mean zero centered.

were overfitted rather strongly.

With an increasing number of significant covariates both BRUTO and GAM-
Boost improved their performance. The boxplots shown in Figure 3.3 propose a
visual confirmation of this observation. They represent the MSPE of each modeling
strategy which occurred throughout the repetitions. The exclusion of significant co-
variates by the non-boosting methods was, on balance, more counterproductive than
the inclusion of redundant ones by boosting. GAMBoost showed, overall, strong
estimation properties. It was superior to its rivals in the larger model specifications
and was evidently competitive even in the small ones. It is worth mentioning, that
in the small sample sizes the advantage of boosting was more evident. Therefore,
GAMBoost showed good prediction accuracy when the information content of the
data decreased, i.e., where a low signal-to-noise ratio was observed.
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Figure 3.3: Boxplots of the Monte-Carlo simulations.
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Table 3.2: Simulation results of the median MSPE of 100 simulation runs multiplied
by 100. Boldface numbers indicate the best model performance for each setup.

Model T GAMBoost BRUTO MARS HaY

NLAR1U1 50 0.0228  0.0895  0.0093 0.0027
100 0.0141  0.0508  0.0039 0.0020
200 0.0080  0.0278  0.0016 0.0014
NLAR1U2 50 0.4035 2.5098  0.4288 0.7184
100 0.2380 1.6916  0.3381  0.7289
200 0.1789  0.9420  0.3049 0.1622

NLAR2b 50 0.0201 0.0443  0.0393 0.0470

100 0.0123 0.0349  0.0140 0.0455
200 0.0074 0.0084  0.0078  0.0358
NLAR2¢ 50 0.0065 0.0077  0.0120 0.0072
100 0.0049 0.0074  0.0084  0.0067
200 0.0028 0.0054  0.0058  0.0042
NLAR2d 50 0.1154 0.0886 0.1375 0.1260
100 0.0925 0.0786 0.0877  0.0766
200 0.0788  0.0704 0.0672 0.0699
NLAR4 50 0.0181 0.0247  0.0278  0.0301

100 0.0133 0.0176  0.0197  0.0278
200 0.0077 0.0085 0.0104 0.0147

3.4 FEconomic Forecasting with Boosting

In this section boosting, along with other parametric and nonparametric models, are
applied to real data. The target variable is German industrial production (IP) with
176 observations for the time period 1992:01 — 2006:08. In order to circumvent any
structural breaks due to the reunification, the data before 1991 was omitted. Data
from 1991 is not included either, because some of the exogenous variables used here,
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such as ZEW Economic Sentiment, FAZ Indicator, have only been available after
1992. The series was obtained from Deutsche Bundesbank! and is seasonally and
workday adjusted. The data, as well as the leading indicators from Section 3.4.3,
were also used by Robinzonov and Wohlrabe (2010). The exact monthly growth
rates are taken to eliminate non-stationarity which is

P, — 1P, 4
A(IP;) = ———.
(IPy) P,
Forecasting of IP is frequently performed in practice. Contributions to the fore-

casting of German industrial production include Hiifner and Schroder (2002), Benner
and Meier (2004), Dreger and Schumacher (2005) among others.

Historically, the focus in forecasting has been on low-dimensional univariate or
multivariate models, all sharing the common linearity in the parameters. Recently,
additional studies exist that investigate the forecasting performance of nonlinear time
series models, e.g., Clements, Franses, and Swanson (2004), Terasvirta, van Dijk, and
Medeiros (2005), Claveria, Pons, and Ramos (2007), Elliot and Timmermann (2008).
Audrino (2010) use boosting with various base learners, e.g., regression trees among
others, for one-period ahead forecasting of U.S. 3-month Treasury bill rates. The
application of boosting by means of economic forecasting is the major novelty in the
present work.

3.4.1 Forecasting Principles

Given that the set of observations z; is called an information set, our objective
is to use the information set to predict the unobserved outputs y;1,. We use a
direct forecasting strategy (e.g., Marcellino, Stock, and Watson, 2006; Chevillon and
Hendry, 2005). The idea is to use a horizon-specific estimation model, where the
response is the multi-period horizon. The direct forecasting approach is apparently
a good choice under the presence of exogenous variables.

We need a cost function with which we can to evaluate the predictive accuracy.
The choice of a cost function seems to be a large topic on its own. Hyndman and
Koehler (2006) widely discussed and compared different measures of accuracy of
times series forecasts. The references therein point the reader to different studies
with often controversial conclusions about the “best” forecasting measure. Still, the
literature being inconsistent, the MSE withstands the time proof and remains one

1Series USNAOL.
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of the most popular out-of-sample measures. Therefore, minimizing the quadratic

expected cost
T+n

MSE = % Z [ytJrh -E (yt+h|zt)] i (3.12)

t=T+1

is set as the predictive accuracy measure. Expression (3.12) is known as the mean
squared error, associated with the forecast g1, = E (y;1n|z:) for horizon h and n
forecasts in total.

Time series do not contain repeated measurements, therefore, a time series spe-
cific resampling scheme is needed in order to predict out-of-sample. One such scheme
is the recursive scheme for forecasting. In that scheme, the starting point of the infor-
mation set is fixed, usually at the beginning of the observed period. Then, we choose
an initial time window for the information set and start to gradually increase its size.
At the same time, we generate new forecasts for the unseen observations beyond that
window. Therefore, our strategy is to combine the direct type of forecasting with a
recursively enlarging information set.

3.4.2 Univariate Forecasting of Industrial Production

We apply GLMBoost, GAMBoost, BRUTO, and MARS to German industrial pro-
duction. The univariate autoregressive model (AR) offers one of the simplest and
most commonly used techniques for forecasting. It is easily applicable and therefore
is often used as a benchmark model. The underlying assumption is that every al-
ternative method should be at least as good as the autoregressive model in order to
justify an increase in model’s complexity.

The promising technique by Huang and Yang (2004) is omitted because Section
3.4.3 extends the available data set with exogenous variables, the so called leading
indicators, and determines how the additional information affects the performance of
the models. The inclusion of exogenous variables and their lags rapidly increases the
number of covariates, forming a high-dimensional modeling problem. In this context,
the method of Huang and Yang (2004) is no longer applicable.

We have a total number of 176 observations for IP. The initial information set is
defined from the beginning 1992:01 until 2003:12, thus containing 144 observations.
The maximum number of lags is limited to twelve. Therefore, the recursive scheme
works as follows. At the first step twelve forecasts are calculated, i.e., prognoses for
2004:1-2004:12 are obtained. At the next step, the information set is enlarged by one
and the horizons are re-estimated. We continue in this fashion until 2005:8 where
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Table 3.3: Average squared forecast errors, multiplied by 103, of IP for 1, 6 and
12-periods ahead forecasts of the monthly industrial production growth rates in Ger-
many. The results are based on 20 forecasts. Testing the null hypothesis that “the AR
model is superior to the competing forecasting model” has been carried out by the
Modified Diebold-Mariano Test (Harvey et al., 1997) and the results are represented
by the p-values in parentheses.

Horizon AR GLMBoost GAMBoost BRUTO MARS
1 0668 0648 100 0698 0713 0704 781 -0916 (g900)
6 1052 0808 (0_002) 0848 (<0.001) 1037 (0.357) 0892 (<0.001)
12 1214 1220 (0.992) .1093 (0.363) 1161 (0.166) .1014 (0.058)

the information set reaches its maximum. Thus, we complete twenty steps in total,
i.e., n=201in (3.12).

Table 3.3 gives a summary of the average squared forecast errors for IP, obtained
by the methods. It is apparent, that in short term forecasting the standard autore-
gressive model is quite a hard one to overcome. This simple, yet powerful, model
is superior to BRUTO, MARS, and GAMBoost for short-term forecasting. On the
other hand, GLMBoost seems to be more accurate in short term forecasting. With
increasing forecasting horizon, all alternative models provide better forecasts for the
monthly German industrial production growth rates, compared to AR. Both boost-
ing methods prove to be efficient in forecasting, especially the linear boosting in short
and middle-term forecasting, where it offers the smallest prediction error in average.
For the longest horizon GLMBoost remains at least as good as AR, but performs rel-
atively poorly in comparison to GAMBoost, BRUTO, and MARS. Figure 3.4 depicts
the differences between the models of the prediction squared errors.

We employ the modified Diebold-Mariano test (Harvey et al., 1997) to check
whether the outcome in Table 3.3 is due to chance. Harvey et al. (1997) proposed
a finite sample correction of the original asymptotic test by Diebold and Mariano
(1995a). We tested the null hypotheses “the AR model is superior to the competing
forecasting strategy” in a series of pairwise comparisons with all models and the
resulting p-values are shown in parentheses in Table 3.3. In addition, we report that
both boosting techniques estimated quite large models (selected lags not shown),
which is consistent with the results of the simulation study.

Based on the averaged errors in Table 3.3 and the given boxplots in Figure 3.4,
it is rather challenging to announce a winning modeling strategy. It seems that the
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Figure 3.4: Boxplots of the average squared forecast errors (multiplied by 10?) for 1,
6 and 12-periods ahead forecasts of the univariate IP, based on 20 forecasts.

models assimilate the information, based solely on IP, efficiently. Therefore, in order
to improve the models prediction quality we supply them with additional information
in the following section.

3.4.3 Forecasting Industrial Production with Exogenous Vari-
ables

Forecasting of industrial production is based on the assumption that different leading
indicators should relate significantly with the response, and therefore positively in-
fluence its prediction. There are many leading indicators, however, that “claim” such
an appealing property. Usually, one indicator is taken and its forecasting potential
is judged by a bivariate autoregressive model, e.g., Dreger and Schumacher (2005)
compared four indicators. The additional dimension does not necessarily improve
the forecasting quality. On the contrary, in case of an “inappropriate” extra variable,
it can even worsen the forecasting accuracy.

We collect the nine most commonly used indicators and investigate how they
affect forecasting. The objective is to investigate if it is still possible to obtain good
forecasts, despite the presence of probably redundant variables. Table 3.4 contains
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Table 3.4: Leading Indicators.

Indicator Provider Label
Ifo Business Climate Ifo Institute ifo
ZEW Economic Sentiment ZEW Institute zew
OECD Composite leading indicator for Germany OECD oecd
Early Bird Indicator Commerzbank com
FAZ Indicator FAZ Institute faz
Interest Rate: overnight IMF rovnght
Interest Rate: spread IMF rspread
Employment Growth Bundesbank emp
Factor Bundesbank factor

a list of the nine frequently used leading indicators on forecasting German IP (see
Appendix A for a detailed description of the indicators).

The vector autoregressive model has evolved as a standard tool in econometrics
for analysing multivariate times series. Therefore, we will consider nine bivariate
models, each consisting of the IP and one leading indicator from Table 3.4 in its
restricted (VARr) and unrestricted (VAR) form. The restrictions are obtained via
standard statistical t-tests.

The inclusion of one exogenous variable means that we fit a model with 24 covari-
ates, i.e., twelve for the IP and twelve for the exogenous variable. The forecasting
outcome is documented in Table 3.5. Every triplet shows the average performance
of the corresponding models, respectively for 1, 6 and 12-periods ahead forecasts.
In addition, it is indicated whether the forecast quality increased or decreased with
respect to the univariate forecasts in Table 3.3. The change in the forecasting quality
of both VAR and VARTr is relative to the AR.

To allow for an easier comparison, Figure 3.5 visualizes Table 3.5; additionally
the dashed red line shows the MSE of the AR model. Below, we give a summary of
the empirical results:

(a) The out-of-sample forecasting results from Table 3.5 suggest that both boosting
techniques remain robust to the impact of the exogenous variables. GLMBoost
remains almost immune to redundant variables. Apparently, in five cases of
middle to long-term forecasting (ifo, zew, oecd, faz and rovnght) GLMBoost
did not consider the exogenous variable at all. This explains why these forecasts
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Table 3.5: Average squared forecast errors of the monthly industrial production
growth rates in Germany, with one leading indicator as an exogenous variable. The
results are based on 20 forecasts, multiplied by 103. The symbol Aindicates forecast
improve with respect to Table 3.3 and Vindicates decreased forecasting quality.

Indicator  Horizon VAR VARr GLMBoost GAMBoost BRUTO MARS
ifo 1 0.1101v  0.0914v 0.0647 A 0.0675A4  0.0845V  0.0892A
6 0.1191v  0.1291v 0.08084A 0.0826a  0.1029a  0.0899V

12 0.0947a  0.1215V 0.1220A 0.1093a  0.1168v  0.1169V

zZew 1 0.0742v  0.0724v 0.0643A 0.0754v  0.0766v  0.0826A
6 0.1116v  0.1058V 0.0808A 0.0855v  0.1157v  0.0893V

12 0.0984A 0.1151A 0.1220A 0.1076A 0.1155a  0.1164V

oecd 1 0.0697v  0.0697V 0.0650Vv 0.0727v ~ 0.0557A  0.1041v
6 0.1055v  0.1058V 0.0808A 0.0852v  0.1245v  0.0829A

12 0.1588v  0.1141A 0.1220A 0.1100v ~ 0.1117a  0.1188V

com 1 0.0862v  0.0840V 0.0704v 0.0751v ~ 0.0789v  0.0764A
6 0.0981a 0.0813A 0.08034A 0.0850v  0.1093v  0.0909v

12 0.1546v  0.1163A 0.1226A 0.1093a  0.1064a  0.1069V

faz 1 0.0698v  0.0655A 0.0648A 0.0737v  0.0830v  0.0916A
6 0.3062v  0.3203V 0.08084A 0.0848a  0.1642v  0.0895V

12 0.2156v  0.1218Vv 0.1220A 0.1093a  0.1389v  0.1047v

rovnght 1 0.0604a 0.0605A 0.0648A 0.0731v  0.0717v  0.0910a
6 0.0958v  0.1054V 0.0808A 0.0853v  0.1111v  0.0895V

12 0.1015A 0.1151A 0.1220A 0.10934A 0.1163v  0.1017v

rspread 1 0.0648A 0.0581aA 0.0634A 0.0701v ~ 0.0742v  0.0927v
6 0.1010v  0.1058v 0.0808A 0.0848v ~ 0.1005a  0.0890A

12 0.1049A  0.1150A 0.1219a 0.1093a  0.1038a  0.1052V

emp 1 0.0671v  0.0792v 0.0632a 0.0696a  0.0704a  0.0916A
6 0.0976A  0.1004A 0.1036V 0.0946v  0.1396v  0.0919v

12 0.1090A  0.1250V 0.1356V 0.1190v ~ 0.1361v  0.1082Vv

factor 1 0.0514a 0.0519A 0.0550A 0.0684A  0.0558A  0.0948v
6 0.0988A  0.1004A 0.0861V 0.0823a  0.0990v  0.0914v

12 0.1088Aa  0.1077A 0.1209v 0.1161v ~ 0.1034a  0.1147v

are identical to the univariate case in Table 3.3. Transferred to the indicators,
this interpretation suggests that they have only a short term effect on IP. In
one-period ahead forecasting the exogenous variable exerted negative impact
on GLMBoost in two cases only (zew, com) and outperformed AR in all cases
except for the Early Bird indicator by the Commerzbank (com). In general,
substantial changes of GLMBoost, compared to the univariate forecasting, were
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not found. That implies that linear boosting considered IP with its own lags
to a larger extent than the remaining covariates. As a result, it showed a very
strong overall performance and outperformed most of the models for one and
six-periods ahead forecasts.

(b) The addition of exogenous variables changed the prediction power of GAM-
Boost, BRUTO, and MARS with varying success. Most notably GAMBoost
and MARS show good and stable performance for six and twelve-periods ahead
forecasts. This is best seen by the illustration in Figure 3.5. BRUTO improved
its short term forecasting performance with almost every variable (except for
the FAZ indicator), but in general remained worse than AR. In longer horizons,
it showed a rather erratic behaviour.

(c) There are four leading indicators, which proved to have good forecasting quality
in terms of bivariate linear autoregression. These are zew, faz, rspread, and
factor which increased the forecasting precision of IP compared to AR. More-
over, the restricted bivariate autoregressive model with factor and faz provided
the best short-term forecasts, but was easily outperformed for longer horizons.
It is also evident that the restricted model is superior to the unrestricted one
in most of the cases.

(d) From a computational point of view, MARS (2.3 sec.)?, VAR (5.1 sec.) and
VARr (9.8 sec.) were the fastest procedures. Closely followed by GLMBoost
(17.5 sec.) and BRUTO (27.6 sec.) they all perform comparably fast. Boosting
with P-spline weak learners (493.9 sec.) was more computationally demanding.
It is probably worth nothing, that each additional covariate contributes to the
boosting time linearly and, therefore, long computational times in boosting are
inherited by computationally demanding base learners and should not be taken
as evidence against the high-dimensional capabilities of boosting.

From the selection process (results are not shown) we gained and additional
indication of the forecasting relevance of the indices. When selecting covariates,
GLMBoost considered com, emp and factor more frequently than the others. Ifo,
zew, oecd, and rspread seemed to have a short-term impact on the IP with their first
lag being regularly selected. Still, IP with its own lags was dominant in the selection
process. Boosting with P-spline weak learners was consistent with GLMBoost in
terms of index-relevance but was prone to large models. BRUTO was the single

2User time measured on Linux, version 2.6.35-23-generic, 2 x Intel(R) Core(TM)2 Duo CPU
T5750, 2.00GHz.
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Figure 3.5: Average squared forecast errors of the monthly industrial production
growth rates in Germany, with one leading indicator as an exogenous variable.
Dashed red-line shows the value of the univariate autoregressive model. The results
are based on 20 forecasts, multiplied by 103.

modeling strategy, which repeatedly considered more exogenous than endogenous
lags. The indicators’ dominance which occurred in this modeling strategy explains
its erratic forecasting behaviour.

Again, testing whether the results in Figure 3.5 are due to chance is worth consid-
ering. The forecasting performance of AR was tested against each of the alternative
methods. Rejecting the null hypothesis is interpreted as an evidence of the superior
forecasting potential of the competing strategy. The results in terms of p-values
are shown in Table 3.6. GLMBoost seems to be as good as the AR in the short-
term forecasts, while being clearly superior in middle-term forecasts. Note that the
equal p-value outcomes in the boosting strategies are due to the selecting property
of boosting. A long-term forecasting horizon leads to a decrease in the information
contributed by the exogenous variables and they are, therefore, disregarded by the
selection mechanism.
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Table 3.6: Pairwise comparisons of forecasts between the AR and the proposed. Test-
ing the null hypothesis that “the AR model is superior to the competing forecasting
model” has been carried out by the Modified Diebold-Mariano Test (Harvey et al.,
1997) and the results are represented by the p-values.

Indicator VAR VARr GLMBoost GAMBoost BRUTO MARS
Horizon = 1

ifo 0.989 0.921 0.101 0.598 0.877 0.956
Zew 0.627 0.478 0.218 0.854 0.679 0.780
oecd 0.665 0.665 0.111 0.694 0.304 0.953
com 0.906 0.891 0.776 0.843 0.874 0.766
faz 0.579  0.410 0.101 0.721 0.772 0.991
rovnght 0.560  0.562 0.101 0.740 0.719 0.989
rspread 0.349 0.144 0.201 0.723 0.680 0.982
emp 0.097  0.980 0.071 0.713 0.781 0.991
factor 0.012  0.005 0.060 0.296 0.126 0.972

Horizon = 6

ifo 0.578  0.917 0.002 < 0.001 0.478 0.001
zew 0.030 0.334 0.002 < 0.001 0.982 < 0.001
oecd 0.017  0.334 0.002 < 0.001 0.978 < 0.001
com 0.307  0.121 < 0.001 < 0.001 0.366 < 0.001
faz 0.849 0.825 0.002 < 0.001 1.000 < 0.001
rovnght < 0.001 0.285 0.002 < 0.001 0.663 < 0.001
rspread < 0.001 0.334 0.002 < 0.001 0.300 < 0.001
emp 0.276  0.207 0.336 0.031 0.954 < 0.001
factor 0.222  0.207 < 0.001 < 0.001 0.156 0.013

Horizon = 12

ifo 0.172  0.694 0.992 0.363 0.458 0.769
zew 0.037  0.230 0.992 0.191 0.518 0.659
oecd 0.553  0.091 0.992 0.409 0.499 0.589
com 0.758  0.164 0.992 0.363 0.024 0.142
faz 0.864 0.591 0.992 0.363 0.729 0.163
rovnght < 0.001  0.230 0.992 0.363 0.271 0.073
rspread 0.004 0.230 0.992 0.363 0.008 0.031
emp 0.294  0.356 0.993 0.777 0.535 0.095
factor 0.156  0.087 0.962 0.397 0.186 0.542

In conclusion, we found evidence that boosting can be very competitive in the
forecasting of the industrial production in Germany. Particularly, boosting with lin-
ear base learners forecasts better than the linear autoregressive model. The increased
flexibility of the nonparametric models does not seem to pay-off in short term forea-
casting, but manages to improve the prediction quality when the information content
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decreases. This is typically observed in long-period forecasts. The endogenous lag
effects had the biggest contribution to the forecasting quality, while the exogenous
information affects essentially the short-term forecasts. In our analysis, the bench-
mark is the AR model and superiority is checked against this model. If one wants
to select the best prediction model among all models the confidence set approach
(Hansen, Lunde, and Nason, 2010) provides a strong tool.

3.5 Concluding Remarks

In this work, several parametric and nonparametric modeling techniques for autore-
gressive time series are compared, with particular focus on boosting methods. By
letting the covariates be lagged values of a time series, we have applied various
strategies to identify relevant lags, estimates, and forecasts. In Section 3.3 we pro-
posed componentwise boosting of additive autoregressive model with P-spline weak
learners. Alternative modeling strategies were also applied on several nonlinear au-
toregressive time series. It is evidenced that boosting of high-order autoregressive
time series can be very competitive in terms of dynamics estimation. Unlike regres-
sion analysis, however, the serial dependence in time series data might mislead the
fitting procedure to produce erroneous transformations. Care must be taken in using
boosting algorithms in time series with strong serial correlation of the data. Further
study on the use of boosting in time series context is needed to justify the general
use of this procedure.

Another boosting strategy with parametric weak learners (GLMBoost) was in-
cluded in order to perform a forecasting comparison, based on real world data in
Section 3.4. The forecasting comparison was conducted over the monthly growth
rates of German industrial production (IP). Both boosting strategies managed to
outperform the benchmark in macroeconomic forecasting, namely the linear autore-
gressive model. Moreover, it became clear that GLMBoost was the most successful
strategy in terms of short and middle-term forecasting.

Additionally, the model was extended with different exogenous variables (leading
indicators). We had nine indicators available and we included each of them sepa-
rately, in addition to the target variable, the industrial production. Our intention
was to investigate whether these variables do indeed improve the forecasting quality
of the industrial production and how boosting handles these high-dimensional mod-
els. Thus, having formed nine high-dimensional models, we forecasted the monthly
growth rates of IP. Linear bivariate autoregressive models were also considered as
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standard tools for forecasting. Our approach, using componentwise linear and addi-
tive models in a function gradient descent algorithm, improves upon likelihood based
boosting applied to nonlinear autoregressive times series models (Shafik and Tutz,
2009) in two respects. First, more flexible regression functions can be estimated
using our approach (linear effects, decompositions of linear and smooth effects or
interaction effects (Kneib et al., 2009)). Second, further research established alter-
native characteristics of the response to be regressed on lags or exogenous variables,
most importantly quantile regression approaches implemented via componentwise
functional gradient descent (Fenske et al., 2011).

The variables’ impact on the forecasting quality had debatable success, since in
many of the cases their inclusion worsened the forecasting performance, compared
to the univariate case. GLMBoost, on the other hand, was almost immune to re-
dundant variables by performing at least as good as in the univariate case. In one-
period ahead forecasting, GAMBoost was affected by the additional variables rather
strongly, which was counterproductive for its overall performance, when compared
to the univariate case. The increased flexibility of GAMBoost was useful, however,
in middle and long term forecasting, where the information content of the data is
very low, i.e., it has low signal-to-noise ratio.

Another crucial topic for further development addresses the multivariate general-
ization of boosting. The first steps toward high dimensionality in the response were
made by Lutz et al. (2008), who provided theoretical grounds and empirical evidence
for its usability. Applying this approach would open new perspective for forecasting
with boosting, based on iterative forecasts of multivariate models.

3.6 Computational Details

All data analyses presented in this work have been carried out using the R system
for statistical computation (R Development Core Team, 2009). There are several
implementations of boosting techniques, available as addon packages for R. Pack-
age mboost (Hothorn, Buehlmann, Kneib, Schmid, and Hofner, 2009) provides an
implementation of gradient boosting with a large choice of base learners.

Our simulations were carried out with mboost. As weak learner we use P-splines,
provided by the function bbs() and fitted by the gamboost () function. We use 20
knots (knots = 20), we set M = 500 (mstop = 500) as an upper bound for boosting
and set the degrees of freedom to 3.5, i.e., degree = 3.5. The optimal number of
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steps is evaluated via the corrected AIC criterion provided by the AIC() function.
For all other options we use the default values.

Further on, we considered the method proposed by Huang and Yang (2004),
which uses spline fitting with BIC. Their approach was manually implemented since
it is currently not available as an extension package for R or in any other statisti-
cal software. We used unpenalized cubic splines from mgcv package (Wood, 2006,
2009) to implement their method. The maximum number of candidate variables was
equalled to the maximum number of lags.

An implementation of BRUTO can be found in package mda (Hastie, Tibshirani,
Leisch, Hornik, and Ripley, 2009b). The corresponding function bruto() has a
tuning parameter cost which specifies the cost per degree-of-freedom change. It was
empirically investigated by Huang and Yang (2004) that a value of log(n) provides
much better results than the default value of two, where n indicates the sample size.
Therefore, in our application cost was set to log(n) too.

An implementation of MARS is available in package mda and the corresponding
function ismars (). It has a tuning parameter which charges a cost per basis function,
denoted by penalty. This tuning parameter was also set to log(n).

The estimation of AR is carried out via the ar() function in package stats with
AIC criterion. The package vars (Pfaff, 2008) provides an implementation of the
vector autoregressive model. We used a modified version of the function VAR in order
to obtain direct forecasts.



Chapter 4

Boosting the Anatomy of Volatility

Financial risk, commonly represented by the volatility of asset prices, plays a major
role in investment decisions. Therefore, understanding and predicting the volatility
of financial instruments, asset classes, or financial markets in general, is of great
importance for individual and institutional investors as well as financial regulators.
In this work, based on Mittnik et al. (2012), we investigate a new strategy for un-
derstanding and predicting financial risk. We use componentwise gradient boosting
techniques to identify the financial and macroeconomic factors that drive financial
market risk and to assess the specific manner in which these factors affect future
volatility. Componentwise boosting is a sequential learning method, which has the
advantage that it can handle a large number of predictors and—in contrast to other
machine learning techniques—gives rise to interpretable estimation results.

Adopting an EGARCH framework and employing a wide range of potential risk
drivers, we derive monthly volatility predictions for stock, bond, commodity, and
foreign exchange markets. Comparisons with alternative benchmark models show
that these boosting techniques improve out-of-sample volatility forecasts, especially
for medium- and long-run horizons. Moreover, we find that a number of risk drivers
affect the volatility in a nonlinear fashion.

4.1 Introduction

The importance of understanding and adequately modeling financial market risk is
widely recognized and has again become evident during the recent market turbu-
lences. Volatility forecasts are used for risk management purposes, for example, to
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project risk measures, such as Value at Risk (VaR) and Expected Shortfall (ES),
or to decide on hedging or other risk mitigation strategies.! They are also used for
dynamic asset allocation decisions that are not just based on asset-specific risk but
also on the dependence between assets, expressed in terms of time varying, volatility
dependent measures, such as correlations or betas.

Although there has been a long history of efforts to predict asset returns (cf.
Goyal and Welch, 2003; Welch and Goyal, 2008; Cochrane and Piazzesi, 2005; Lustig,
Roussanov, and Verdelhan, 2011), the interest in volatility modeling started mostly
with the seminal works of Engle (1982) and Bollerslev (1986) and has since become
an intensely researched field in financial econometrics. However, only relatively few
studies analyze the usefulness of financial and macroeconomic variables for volatility
prediction. Schwert (1989) analyzes the relation of stock volatility and macroeco-
nomic factors, such as GDP fluctuations, economic activity, and financial leverage,
by employing autoregressive models. Engle, Ghysels, and Sohn (2008) use inflation
and industrial production by combining a daily GARCH process with a mixed data
sampling polynomial applied to monthly, quarterly, and bi-annual macroeconomic
variables. Paye (2012) and, especially, Christiansen, Schmeling, and Schrimpf (2012)
consider extended sets of macroeconomic factors as well as asset classes. Both use
conventional linear models with log-transformed realized volatility as a normalized
response and include lagged volatility, financial, and macroeconomic factors as regres-
sors. Christiansen et al. (2012) employ Bayesian model averaging, but also restrict
themselves to the family of linear models. In view of these competing approaches
and given the range of alternative volatility concepts available, such as GARCH type,
stochastic, implied, or realized volatility, it is no surprise that there is little or no
general agreement on the application of financial and macroeconomic variables to
volatility prediction.

The question of whether and, if so, how macro factors influence the volatility
of asset prices is the focus of this work. To address this question, we use boosting
techniques, a special machine learning method, to gain deeper insight into the nature
of volatility processes. As will be shown, boosting techniques enable us not only to
identify the factors driving market volatility, but also to assess the specific nature of
their impact and, ultimately, help to improve prediction. Employing a broad set of
potential macroeconomic and financial variables, we specify a flexible model, which
is capable of capturing their—linear and nonlinear—influences on the volatility. In

LA comparison of alternative VaR forecasting strategies is given in Kuester, Mittnik, and
Paolella (2006). For a discussion of the importance of volatility beyond economics, see Ander-
sen, Bollerslev, Christoffersen, and Diebold (2006).
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contrast to most of the existing literature, which focuses on stock market volatility
(an exception is Christiansen et al., 2012), we analyze four diverse asset classes:
stocks, bonds, commodities, and foreign exchange. We contribute to the existing
literature on volatility modeling in several ways. We analyze the volatility of a range
of relevant asset classes; we consider a broad set of possible macrodrivers; and, by
employing boosting techniques, gain deeper insight into the nature of the forces
driving asset price volatility.

In our analysis we use a version of the so-called componentwise, gradient boosting
(see Biithlmann and Yu, 2003; Bithlmann and Hothorn, 2007a), which is designed to
simultaneously select relevant factors and to model the specific nature of their impact.
Boosting methods are especially suitable in applications where there are a large
number of different but possibly “similar” predictors, as it handles multicollinearity
problems by shrinking effects towards zero—a feature expected to be advantageous
in out-of-sample predictions.

Volatility modeling with gradient boosting was first proposed by Audrino and
Bithlmann (2003), who adopted a GARCH-type prediction model. They assume a
stationary return process of the form y; = oue4, 4 ~ N(0,1), and a rather general
dependence structure between o, and past returns. Their approach is, however,
mainly suited for prediction, as it lacks any interpretability of the estimates. A fairly
similar model with neural networks as base learners was proposed by Matias et al.
(2010). Biihlmann and McNeil (2002) developed an alternative nonparametric first-
order GARCH solution. They propose another strategy for GARCH(1,1) modeling
which gives rise to interpretable estimates.

Although boosting has been proven to be a useful approach in many empirical
applications, it has more or less been ignored in empirical economics or finance.
Among the very few exceptions are Bai and Ng (2009), who use it for predictor se-
lection and forecasting macroeconomic variables, and, as mentioned above, Audrino
and Bithlmann (2009), who apply it to model the daily volatility of stock market in-
dices. Our model differs from Audrino and Bithlmann (2009) in several respects, two
of which we regard as particularly relevant. First, we go beyond the GARCH(1,1)
specification by allowing both longer histories and exogenous factors to enter the
model. The latter, as it turns out, clearly improves our understanding of volatil-
ity processes. Second, we employ componentwise predictor selection instead of the
componentwise knot selection in tensor—spline estimation. This leads to genuinely
different models and has the attractive feature that subjective decisions, such as the
order of penalized B-splines, are avoided. Finally, given our goal to better under-
stand the impact of macrofactors on volatility, we conduct our analyses at a monthly
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rather than daily frequency.

This chapter is organized as follows. Section 4.2 details and briefly illustrates the
specific boosting algorithm we adopt. Section 4.3 describes the volatility measures
and predictor variables used in the analysis and also the way the multistep forecasting
comparisons are conducted. The empirical results for each of the four asset classes
are presented in Section 4.4. Section 4.5 concludes.

4.2 Volatility Boosting Approach

In this section we give in detail the specific volatility boosting strategy used in the
empirical application. We first present the underlying model specification and the
particular boosting algorithm we adopt. Then we illustrate our approach using a
small simulation study.

4.2.1 Proposed Model

Our volatility model corresponds to the exponential ARCH framework put forth by
Nelson (1991), but allows the inclusion, in a rather flexible way, of risk drivers that
can affect the volatility. In addition to a large number of drivers, we also include
seasonal components, so that the total number of predictors is potentially very large
and may even exceed the sample size. The proposed model is of the form

Y = exp("/2)e,
= 60 + ftime(t> + fyear(nt) + fmonth(mt) =+ Z fj(ytfj) + Z Z fj(k) (36&)]) (41)
j=1 k=1 j=1
- U(Zt)7

where y; denotes logarithmic returns, i.e., y, = log(P,/P,_1), with Pi,..., Pr de-
noting the observed asset prices, and ¢, ~ N(0,1). The r dimensional vector z, =

1 1 .
(L, t, e, Mgy Y1y - Yis, xgjl, e x,g,)p, el x@l, ceey ng,g)p)T, with r = s+ gp + 4,
contains the predictor realizations available at or prior to time ¢ — 1. The func-
tion fuontn(me), my € {1,2,...,12} captures the possible deterministic seasonal

patterns in the volatility; fyear(n:), n¢ describes the typical annual fluctuations,
which occur throughout the sample period; fime(t), t € {1,...,T}, models the
volatility trend; f;(yi—;),7 = 1,...,s, capture the influence of past returns; and

f](k) (xgli)j),j = 1,...,p are functions of the lagged factor k € {1,...,q}.
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All the f(.) functions in (4.1) are specified as regression trees. Regression trees
are a nonparametric technique that can handle complex and abruptly varying forms
of dependence by recursively partitioning the predictor domain into groups with
similar response values and assigning a constant value to the response within each
group.? Specifically, we use conditional inference trees (Hothorn, Hornik, and Zeileis,
2006). Therefore, the model can be interpreted as a regime-dependent volatility—
response model, which partitions the predictor space according to the magnitude
with which the conditional volatility responds. Both linear estimation and non-
parametric, smooth estimation of f(.), as well as a combination of the two, can be
specified.?

We estimate (4.1) via componentwise, gradient boosting, which derives the final
model by sequentially combining a series of individual predictor components. To
avoid overfitting in the first step, we control the bias variance tradeoff by using
a low-variance/high-bias model. In subsequent steps this bias will be iteratively
reduced, with the variance increasing at a slower rate (Biithlmann and Yu, 2003).
Our estimation minimizes the expectation of some loss function, L, such that

7 = arg min EL(y;, n(z)) (4.2)
n

and exp (1(z¢)) = V (y|z:), with L being differentiable with respect to 7. To obtain
a solution in the data rather than function space, we parameterize n by

T

1
i) = arg min > Ly, n(z:; 8)). (4:3)
t=1

n

The solution to (4.3) is derived by reducing the empirical loss in successive steps
as described in Chapter 2. To estimate the desired characteristic of the conditional
distribution (here, the conditional variance), the loss function, L, needs to be ap-
propriately specified. We do so by assuming y;|z; ~ N(0,€"), so that the negative
conditional log-likelihood function is the empirical loss function, i.e.,

1 Yi

giving rise to the negative gradient

gr = = .

ent

2For a detailed treatment of the algorithms behind regression trees, see Breiman et al. (1984).
3For an implementation, we refer to the R addon package mboost (R Development Core Team,
2012; Hothorn, Buehlmann, Kneib, Schmid, and Hofner, 2011).
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As explained in Chapter 2, boosting favors the direction given by the largest
reduction in the empirical loss, i.e., the direction specified by the negative gradient.
This means that we seek the solution in the data space by fitting the covariates
against the negative gradient.

Instead of jointly fitting all covariates, they are fitted individually through base
learners. Therefore, we get r individual models for the covariates. As individual
models, we choose the conditional inference regression trees (Hothorn et al., 2006)
with two nodes, also called “stumps.” Modeling the dependence between the response
and the covariate in terms of two constants assigned to disjoint groups is naturally
inflexible and cannot fit the complete signal in a single step. This bias is reduced
due to the iterative nature of the algorithm, which slowly adapts to the underlying
signal.

In addition, we shrink the coefficient towards zero, as proposed by Friedman
(2001). Shrinkage helps to dampen the “greediness” of the gradient technique, which
may otherwise be prone to neglect correlated predictor candidates, and “cures” the
typical instability of forward selection methods (Breiman, 1996). The “right” amount
of shrinkage is determined empirically and can safely vary between 1% and 10%. The
specific choice mainly affects the computational time only. Fitting the base learner
will modify evaluation of the gradient in the next step, and, with each step, the
covariates and gradients become more and more orthogonal.

Note that we can choose any statistical model for the base learners. In our
applications, a specification via stumps turned out to be a better choice than, for
example, smooth P-splines or a simple linear model. This seems largely due to the
abrupt changes we observe in the volatility.

Without stopping, boosting with stumps will inevitably overfit and ultimately
lead to a perfect fit, making the model useless for prediction. Therefore, an ap-
propriate stopping rule is essential. The optimal number of boosting steps can be
determined by bootstrapping, where we sample (with replacement) from the data
with probability 1/ as if they originated from a multinomial distribution. Thus,
each sample uses roughly 64% of the original data for training and the remaining,
unselected, data points are used for evaluation. We repeat this twenty-five times
for a large number of boosting steps and choose the step number that produces the
lowest average out-of-sample loss.

To summarize, the boosting algorithm which we employ consists of the following
steps:

1. Initialize the function estimate ﬁio] = log <ﬁ ZtT:l(yt — @)2) Y = % 23:1 Yt
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t=1,...,T.

2. Specify the set of base learners in terms of regression trees: f(z;) = ijl Yilr; (2t),
Vz € z;. We use stumps, so each tree has only J = 2 leaves. Denote the num-
ber of base learners by r and set m = 0.

3. Increase m by one.

4. (a) Compute the negative gradient (5.10) and evaluate 4™ (z,), t = 1,...,T.

(b) Estimate the negative gradient, using the stumps specified in Step 2. This
yields r vectors, where each vector is an estimate of the gradient.

(c) Select the base learner fm that correlates most with the gradient accord-
ing to the residual sum of squares criterion.

(d) Update the current estimate by setting 7™ = ™= 4 v fml where v is
regarded as a shrinkage parameter or as a step size.

5. Repeat Steps 3 and 4 until the stopping condition applies.

4.2.2 An Illustration

To illustrate our volatility boosting approach, we run a small simulation using the
data generating process

yr = exp(™/2)e;
me=01+2-2" +2 Tgy05 @) - 2 —0.6-To5 _0n@)+ (4.6)
0z +0- 27 +0- 2%,

with ¢, ~ N(0,1), and xﬁ)l being the (¢ — 1)-th observation of X; ~ U[—0.5,0.5],
i=1,...,6,t =1,...,7, with T" = 400 and [4(-) denotes the indicator function,
such that I4(z) = 1, if x € A C R, and [4(z) = 0, otherwise. Note that only
the first three covariates contribute to the volatility—the first linearly, the second
linearly only for X, € [0.1,0.5], the third in the form of a step function. The last
three covariates, X, through Xg, do not contribute, and are included for checking
the robustness against false detection. We choose linear base learners for all but the
second and third predictors, which are fitted with regression-tree base learners. The
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model for boosting is then given by

Y = exp(™/2)e;
Jl J2

ne = Bo + /lel(fl—)l + Z 7]('2)11{;2) ($§2—)1) + Z 7]('3)1;3;3) (x1(52—)1)) + 645”@1 + 555”91 + 565U§(i)17
j=1 j=1

(4.7)

where R;z) and Rj(?’) denote the estimated partitions in the domain of X5 and Xj.
The splitting decisions are made by using the permutation test (Strasser and Weber,
1999), which measures the level of dependence between the gradient and the corre-
sponding covariate. Its test statistic is maximized among all possible split positions
(see also Hothorn et al., 2006).

Ideally, the algorithm will recover the 8 and v® parameter values specified in
(4.7). This means that X4, X5 and Xg should not be selected, i.e., B4 = 85 = s = 0,
and that the domain of X3 should be partitioned into the defined regions with only
interval X3 € [—0.5,—0.2] affecting volatility. Regarding X, although having a
linear form X, € [0.1,0.5] and zero impact otherwise, we intentionally chose an
“incorrect” base learner, namely a step function, to see whether the influences can
still be adequately approximated.

Figure 4.1 shows the simulated, driver-specific return components (upper panel)
and the estimated partial volatility impacts in a log scale (lower panel). The influence
of the underlying volatility drivers turns out to be captured reasonably well. The
parameter estimate Bl = 1.463 is underestimated due to parameter regularization
via early stopping. This is typical for shrinkage methods in finite samples, where
the parameter estimates usually have smaller magnitudes than the unregularized
solutions, and the bias vanishes as the sample size increases. The advantage of
early stopping is that the redundant predictors are never selected, i.e., 34 = Bg, =
Be‘ = 0. Furthermore, X3 has the largest jumps near the right border of the interval
[—0.5,—0.2], and the linear structure of X, € [0.2,0.5] is also captured reasonably
well despite the moderate sample size chosen for purposes of illustration.

The results shown in Figure 4.1 are typical in the sense that the deviations of
several hundred repetitions were small. If we translate the log scale from Figure 4.1
into the standard deviation, we obtain an estimate of the whole conditional density.
Figure 4.2 (upper panel) shows the estimated partial densities for the first three
covariates with the central 95% interquantile range (darker color). Figure 4.2 (lower
panel) also shows the empirical conditional density for simulated return observations.
Visual inspection reveals that the variation in the volatility is closely captured, a
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Figure 4.1: Partial returns (upper panel) simulated from (4.6) indicate how they
are affected by drivers X; through Xg. Estimated partial volatility (lower panel) for

model (4.6). The volatility 7, is measured on the log scale.
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Figure 4.2: Partial conditional density estimation (upper panel) affected by X
through X3 in model (4.6). The dark lines indicate the estimated 95% interquan-
tile range, the lighter ones show the estimated tails. Partial returns (lower panel,
black lines) indicate how they are affected by drivers X; through X4. The blue lines
represent the 95% interquantile range of the conditional density.

finding that is confirmed by the fact that estimates produce a coverage rate of 95.75%
for the 95% interquantile range. The partial contribution of each covariate is readily
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obtained in an interpretable way: an increase in X; causes larger variance; X is
positively correlated with the variance for X, € [0.2,0.5]; the variance contribution
markedly decreases for X3 € [—0.5,—0.2]; all other components have no effect, so
that the conditional density remains invariant with respect to Xy, X5 or Xg.

By providing such detailed and interpretable insight into the the nature of volatil-
ity processes, the volatility boosting strategy proposed here should help to improve
our understanding about the risk drivers in financial markets. To what extent this
insight translates into better risk predictions in practice is the focus of the next
section.

4.3 An Empirical Application to Four Asset Classes

In this section, we present an empirical application of our approach to volatility
prediction considering four diverse asset classes. First, we briefly describe the data
employed, i.e., the data for the assets to be modeled as well as the financial and
macroeconomic factors entertained as the potential volatility drivers. Then, we will
discuss the procedure we use to evaluate the predictive performance.

4.3.1 The Data

We investigate the predictability of volatility of four asset types, namely, stocks,
bonds, commodities, and foreign exchange, for each of which we select a representa-
tive index. The equity market is represented by a S&P 500 futures contract traded
on the Chicago Mercantile Exchange; for the bond market, we use 10-year treasury
note futures contracts traded on the Chicago Board of Trade; the commodity market
is represented by Standard & Poor’s GSCI commodity index; and we use a trade-
weighted currency portfolio provided by the Federal Reserve Bank of St. Louis to
proxy foreign currency investments. The latter is a weighted average of the foreign
exchange value of the U.S. dollar against a broad set of currencies that circulate
widely outside their countries of issue, including the Euro Area, Canada, Japan,
the United Kingdom, Switzerland, Australia, and Sweden. The data set covers the
period from February 1983 to September 2010 and consists of 332 months in total.
Various summary statistics for the four return series and the logarithmic realized
volatility. Series are given in Tables 4.1 and 4.2, respectively.

As potential volatility drivers over that period, we consider a fairly exhaustive
set of 26 financial and macroeconomic factors, which are listed in Table 4.3. It
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Table 4.1: Descriptive statistics for the return series.

Mean Std Dev Skewness Kurtosis ARI1

Stock  0.0062 0.0457 -1.0116 5.8971 0.0661
Commodity  0.0057 0.0578 -0.6082 6.6808 0.1958
Bond 0.0016 0.0204 0.0504 3.8869 0.0501

FX -0.0015 0.0213 0.0734 3.5620 0.0743

Table 4.2: Descriptive statistics for the log realized volatility series.

Mean Std Dev Skewness Kurtosis ARI1

Stock -6.3278 0.9254 0.8149 2.0479 0.6669
Commodity -6.1654 0.9327 0.3341 0.0438 0.7797
Bond -8.0330 0.7128 -0.0012 0.0987 0.5807

FX -8.0280 0.6943 0.0503 0.4122 0.5613

includes the explanatory variables (resp. transformations thereof) used by Welch
and Goyal (2008) for predicting stock market returns, namely, book to market ratio,
net equity expansion, term spread, relative T-Bill rate, relative bond rate, long-term
bond return, and default spread (see Table 4.3 for more details). In addition, we
include the three Fama—French factors: the U.S. market excess return, the size, and
the value factor.

The set of predictors also contains the Pastor and Stambaugh (2003) liquidity
factor, the return on the MSCI world index, the TED spread (i.e., the difference
between the three-month LIBOR rate and the T-Bill rate), the Cochrane and Piazzesi
(2005) bond factor, the return on the CRB spot index, the carry trade factor as in
Lustig et al. (2011), the return on dollar risk factor introduced by Lustig et al. (2011),
and the FX average bid-ask spread (Menkhoff et al., 2011).

In addition, the set of potential drivers includes various macroeconomic variables:
M1 growth, the purchasing manager index, housing starts, inflation, U.S. industrial
production growth, and new orders of consumer goods and materials. Finally, we
also consider the Financial Stability Index (FSI) for the U.S., which was developed
by the International Monetary Fund (Cardarelli, Elekdag, and Lall, 2009).
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Figure 4.3: Time series plots of the monthly realized volatility (in logarithms) as
defined in Equation (4.8).

4.3.2 Analyzing the Predictive Performance

Volatility is inherently unobservable, so that measuring volatility is a challenge. In
this paper, we follow the tradition of French, Schwert, and Stambaugh (1987) and
Schwert (1989) and use monthly realized volatility, calculated from daily returns, as
proxy for volatility, and for evaluating the predictive performance of our volatility
models.* The realized volatility for asset i in month ¢, denoted by RV;;, is defined
by

My
RViy=log)» r?,., t=1...T, (4.8)
T=1
where 7;, . denotes the 7th daily return of asset ¢ in month ¢; and M, is the number
of trading days in month t. Figure 4.3 shows the resulting realized volatility time
series for the asset under investigation.

The predictive performance is examined over the period June 2002 to September
2010. We use a rolling window scheme for forecasting. Starting with a history of 230

4For a review of the realized-volatility concept, we refer to Andersen et al. (2006).
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months, we move the fixed-length window forward month by month, re-estimate, and,
for each asset class, generate a sequence of one-step-ahead forecasts over a period of
100 months.® Applying a direct forecasting approach,® we also produce multi-step
forecasts for horizons of up to six months.

We include the first and second lag of all 26 factors as predictors, so that, in
(4.1), ¢ = 26 and p = 2. In addition, we include lags one and two of the realized
volatility (s = 2), to capture the state dependence and any autoregressive behavior
in volatility. Allowing also for seasonal components, we have a total of r = 58
predictors.

As volatility is latent, it is common to use the squared returns y? as a proxy.
However, as this estimator is very noisy, we follow another approach. We evaluate
the forecasting performance in terms of the mean squared error between the “true”
(realized) volatility, as defined in (4.8), and our forecasts for n.,. Doing so, the
h-step squared prediction error for asset i is given by’

ERR¢n = (RV;,Hh - 77t+h)2- (4-9)

We derive direct h-step forecasts by adapting (4.1) to the forecasting horizon of
interest, i.e.,

Yirh = exp(’?t+h/2)5t+h, fOI“ h = 1, Ce ,6,

s—1 q p—1
Nt+h = 60 + ftime(t + h) + fyear(nt+h) + fmonth(mt—i-h) + Z fj(yt—j) + fk,j(xk,t—j)
j=0 k=1 j=0

= nn(2t).
(4.10)

Next, the empirical results will be discussed.

4.4 Empirical Results

In discussing the empirical results we focus on the questions which factors drive
realized volatility and to what extend they do so. One finding is that the driving

5Two observations are “lost” due to lagged variables.

SFor direct forecasting via boosting in a nonlinear time series context, see Robinzonov et al.
(2012).

“For a detailed comparison and discussion of different forecast evaluation criteria for realized
volatility see Patton (2011).
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Table 4.4: Out-of-sample forecast evaluation.

Theil’s U

Out-of-sample R?

Hor. Stock Commodity Bond FX Stock Commodity Bond  FX
1 0.99 1.07  1.04 1.03 0.00 -0.15  -0.09 -0.06
2 0.98 0.86 1.01 1.01 0.02 0.25 -0.03 -0.02
3 0.89 0.92 1.00 0.91 0.20 0.14 0.00 0.15
4 0.85 0.90 0.98 0.93 0.27 0.18 0.03 0.13
5 0.87 0.79 0.94 0.96 0.24 0.37 0.11 0.06
6 0.83 0.71 0.88 0.95 0.30 0.49 0.21 0.08

factors exert a highly nonlinear influence on volatility. This is evident when compar-
ing the forecasting performance based on linear base learners to that derived from
(nonlinear) regression trees, as linear base learners give rise to a lower forecasting
accuracy.

To assess the predictive performance, we compare multi-step, out—of-sample fore-
casts from the proposed boosting procedure to those of a GARCH(1,1) benchmark
model.® Clearly, there are many potential alternatives that could serve as bench-
marks.” However, in the spirit of the article “A forecast comparison of volatility
models: does anything beat a GARCH(1,1)?” by Lunde and Hansen (2005), the
GARCH(1,1) model can be regarded as a natural and challenging benchmark model
in this context.

In the following subsections, we evaluate the forecast performance of the boosting
approach and discuss in some detail the driving factors of each market.

4.4.1 Forecast Evaluation

To evaluate the out-of-sample forecasts, we compute Theil’s U and out-of-sample R?
statistics for horizons ranging from one to six months. Theil’s U is defined as the
ratio of the root mean squared error (RMSE) of our model and to that of the bench-
mark model. A value smaller than unity indicates that our model outperforms the
benchmark model in terms of forecasting accuracy. The out-of-sample R?, proposed

8The multi-step GARCH forecasts are made recursively. We also carried out direct h-step ahead
GARCH forecasts by estimating GARCH models for each corresponding frequency. However, these
noniterative forecasts performed rather poorly.

9Christiansen et al. (2012) use, for example, an autoregressive model for realized volatility as a
benchmark.
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Table 4.5: Modified Diebold-Mariano test results. *,**,*** denote significance at 10%),
5%, and 1%, respectively.

Horizon Stock Commodity Bond FX

1 0.490 0.790 0.858 0.630
2 0.441 0.011 ** 0.633 0.555
3 0.104 0.114 0.501 0.215
4 0.052 *  0.071 * 0.357 0.288
) 0.050 ** 0.016 ** 0.154 0.370
6 0.011 ** 0.009 *** 0.030 ** 0.355

by Campbell and Thompson (2008) has an interpretation that is similar to that of
Theil’s U. Letting in market 7, n% 41 and nft 41 denote the forecasts from our model
and those of the benchmark, respectively, the out-of-sample R? is defined by

L RV — M)

= 5 (4.11)
tTZE%, (RVz‘,tH - 7755“)

RQOOS =1-

where T denotes the total sample size, and R the initialization period. Positive
(negative) values of R%, indicate that the boosting approach provides a superior
(inferior) forecasting accuracy relative to the benchmark.

The estimation results for all markets are shown in Table 4.4. For stock-market
volatility, we find that the boosting approach outperforms the benchmark over all
horizons. For the other markets, the benchmark produces better one—step and in case
of bonds and foreign exchange also better two—step predictions. In all other cases,
especially for predictions beyond two months, the boosting approach dominates.
For commodities and stocks, and to a lesser extend, for bonds, the medium-term
performance is considerably better, whereas for FX volatility the difference seems to
be negligible.

Finally, we apply the Diebold-Mariano test (Diebold and Mariano, 1995b) in the
modified version of Harvey et al. (1997) to assess forecasting accuracy. The null hy-
pothesis of the test is that the benchmark model’s forecasting error is smaller than
that of the proposed model. Therefore, rejection of the null hypothesis favors our
approach. Table 4.5 reports the p-values of the modified Diebold—Mariano test for
all six forecasting horizons. The results are in line with those indicated by Theil’s
U and the out-of-sample R? statistics. Inclusion of exogenous factors as well as the
regime—dependent estimation in the boosting approach help to improve medium-—
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and long-term volatility forecasting—especially for commodity and stock markets.!®
Overall, the forecasting comparisons suggest that boosting leads to short-term fore-
casts that are of similar quality as those of a GARCH(1,1) model but considerably
more accurate in the medium— and long-term. Here, an important observation is
that, in general, the GARCH forecasts have a wider MSE range measured by their
central 75%—quantiles. Thus, it seems that boosting delievers more robust forecasts.
Boxplots of the mean squared errors (MSEs) from both forecasting approaches and
for all 100 forecasts are shown in Figure 4.4. Referring to the MSE results shown
in Figure 4.4 and the statistics reported above the forecasting results for each of the
four markets can be summarized as follows.

Stock Market

The MSEs for the stock market (upper panel in Figure 4.4) are in line with the
forecasting statistics reported above. For the one- and two-period ahead forecasts,
the GARCH model produces a lower median MSE. For horizons three to six, boosting
produces lower median MSEs. However, for all horizons, the GARCH forecasts have
a higher dispersion, as is reflected in the boxplots by their central 75%—quantiles.
Thus, not only does the boosting approach provide better medium- and long-term
volatility predictions for the S&P 500, its predictions are more robust for all horizons
leading to less extreme MSEs than the GARCH benchmark.

Commodity Market

As the boxplots (second from top in Figure 4.4) show, for all horizons, out-of-sample
boosting forecasts outperform, on average, those of the GARCH model. Theil’s U
(see above) supports this result. For all horizons, except the first, Theil’s U is below 1.
For six-month-ahead forecasts, Theil’'s U decreases to 0.714. This indicates that the
boosting model strongly outperforms the GARCH model, especially for medium and
long horizons. The modified Diebold and Mariano (1995b) test confirms this.

Bond Market

For the short-term prediction MSEs for the bond market (third panel in Figure 4.4)
there is a neck and neck race, while, for the longer horizons, boosting tends to

107t should be noted that, when reverting the hypothesis (i.e., the null states boosting performs
better than the benchmark), we obtain insignificant results in all cases.
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deliver better forecasts on average. This also follows from Table 4.4: Theil’s U
is smaller than unity for horizons four, five, and six. However, according to the
modified Diebold-Mariano test (Table 4.5), only in the six-month horizon boosting
significantly outperforms GARCH.

Foreign Exchange Market

In line with the literature (e.g. Jorion, 1995; Nowak and Treepongkaruna, 2008), it
appears to be difficult to provide a useful model to predict FX volatility. This is
especially true for the lower frequency involved in using monthly observations. The
low signal-to-noise ratio makes longer horizons in this market unpredictable. Still,
boosting predictions are on the same level as those of the GARCH model forecasts
(bottom panel in Figure 4.4). For horizons of three to six months, Theil’s U is
below 1, but none of the tests were significant. However, for all six horizons boosting
leads to lower 75% MSE-quantiles, clearly suggesting a higher robustness of boosting
forecasts.

4.4.2 The Driving Factors

From an economic viewpoint it is of interest to identify the financial and macroeco-
nomic factors that drive financial market risk and to assess the specific manner in
which these factors affect volatility.

A better knowledge about the driving forces for market volatility could be used
for early warnings about market instabilities as well as for developing stabilization
strategies. Therefore, the interpretation we gain is particularly advantageous when
compared to the black-box nature of the GARCH framework. The following insights
into the nature of volatility are based on a single one-period ahead model—as defined
in Equation (4.1)—and are based on the whole data set. The driving forces will be
summarized next, for each of the four markets.

Stock Market

Modeling the volatility of the S&P 500 with regression trees, we identify as the
main drivers (lagged) IMS’s U.S. financial stress index (FSI), the relative bond rate
(RBR), lagged volatility, returns, the U.S. market excess return, and the CRB spot
index. Figure 4.5 shows the impact of three relevant factors lagged once and twice.
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Figure 4.5: Three highly relevant volatility drivers for the S&P 500. Each row shows

the coefficients for the first and the second lag of the FSI, RV, and S&P 500 returns,
respectively.

The built-in variable (and lag) selection in our approach excluded all other poten-
tial drivers. Note that not all lags of the variables included are considered to be
influential. For example, the lagged returns, the U.S. market excess return and the
CRB spot index enter only through their first lag, whereas the FSI and the realized
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volatility have a greater, longer-lived impact, entering also with an additional second
lag.

The IMF Financial Stress Index for the U.S. aggregates seven variables capturing
market stress in three financial market segments, namely, banking, securities mar-
kets, and foreign exchange markets. Its motivation and composition are discussed in
Cardarelli et al. (2009). Figure 4.5 (upper panel) clearly shows regime-dependence
of for the FSI’s impact on volatility. FSI-values above 7.5 increase next month’s
stock market volatility (in log scale) by about 0.3, which corresponds to an increase
of about 16%. FSI-values below 7.5 do not affect next month’s volatility. As for
the second lag, our results indicate that positive (negative) FSI-values moderately
increase (decrease) volatility in two months in a more or less symmetric fashion.

Another finding is that (log) realized volatility depends nonlinearly on past re-
alized volatility. As shown (middle panel in Figure 4.5), small values of realized
volatility, i.e., RV < —7 or exp(RV) < 0.03, cause a decrease in next month’s volatil-
ity. From approximately RV > —6 onward, the influence becomes positive, i.e., the
volatility is expected to increase in a highly nonlinear fashion. As Figure 4.5 suggests,
the two-month impact is also nonlinear. Values of RV < —7 will reduce volatility by
about 10% and values of RV > —6.3 result in an increase of about 5%.

Furthermore, we find that positive changes in the S&P 500 index slightly decrease
volatility, whereas small negative changes (between —10% and 0%) moderately in-
crease volatility (Figure 4.5, bottom panel). On the other hand, large negative re-
turns (below —10%) increase volatility by about 10%. Finally, the relative bond rate
(RBR) entails a considerable increase in volatility by about 28%, when it increases
above one percent. Positive U.S. market excess returns have a moderate calming
effect on the market, whereas values below —2.5% increase the volatility by 2%.

Commodity Market

The volatility of the commodity market is influenced by the past realized volatility,
the net equity expansion, the Cochrane Piazessi factor, and the U.S. market excess
returns. The Cochrane Piazessi factor impacts through both the first and the second
lag, whereas the net equity expansion influences only through the second lag.

Figure 4.6 (upper panel) reveals that realized volatility depends in a highly non-
linear fashion on its first lag. Highly negative values of lagged realized volatility
(below —6.5) dampen volatility by roughly 0.2 on the log scale which translates to
a drop in volatility by about 10%. Values above —6.5 lead to an increase of the
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Figure 4.6: Three highly relevant volatility drivers in the commodity market. Each
row shows the first and the second lag of the RV, net equity expansion, and the U.S.

market excess return, respectively.

volatility in the commodity market. At —4 there is a jump, beyond which volatil-
ity increases by about 60%. Net equity expansion (Figure 4.6, center panel) has
an increasing effect on volatility, if it is below —3%; otherwise it slightly decreases
volatility. U.S. market excess returns above —2% dampen volatility, values below
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that increase volatility (Figure 4.6, bottom panel). The pattern is similar for the
Cochrane Piazessi factor, except that the threshold there is at 2%.

Bond Market

When modeling the base functions with regression trees, we find that in the bond
market volatility is driven by the default spread, the change of the money supply
(M1), the changes in the purchasing manager index, net equity expansion, the relative
bond rate, the change in consumer sentiment, and the book-to-market ratio.*!

For the influence of the default spread (Figure 4.7, top panel), we find two clearly
distinct regimes: a default spread above 1.1% tends to increase volatility by 7% in
the following month, and values below that threshold reduce volatility by roughly
4%. The relative bond rate has an effect on volatility only if it exceeds 1%, in which
case it increases bond volatility by 10%. A change in consumer sentiment or the
book—to—market ratio produces a similar pattern: below a certain threshold—>5% for
consumer sentiment and 0.72 for the book—to—market ratio—they have no influence
on volatility. Only if they exceed these thresholds they induce a rise in volatility.
Sizable increases in M1 (above 5%) let volatility grow by approximately 10%. Smaller
expansions or reductions in M1 decrease the volatility by 6.8% (Figure 4.7, center
panel).

Foreign Exchange Market

A large number of factors seem to drive FX volatility. They include the FSI, the
default spread, realized volatility, the TED spread, the U.S. market excess return,
the long-term rate of return, and changes in M1. Periods of high financial stress,
with the FSI assuming values above five, drive up volatility by 12%, whereas low
financial stress reduces it, though, by a much smaller amount, namely less than 1%
(Figure 4.8, top panel). Similar to the other markets, once-lagged realized volatility
below —7 on the log scale, or 6% < 3%, lowers volatility marginally (Figure 4.8,
center panel). Values above this cutoff boost volatility by 15%. U.S. market returns
seem to influence volatility only if they are below —10%, in which case they increase
the volatility.

"Bond return volatility has not been extensively studied in the literature. Two exceptions are
Huang, Lu, and Wu (2011) and Viceira (2012).
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Figure 4.7: Three highly relevant volatility drivers in the bond market. Each row
shows the first and the second lag of the default spread, change of M1, and the net
equity expansion, respectively.

4.5 Conclusions

We have analyzed the determinants of volatility in four broad asset classes, namely,
stocks, commodities, bonds, and foreign exchange, employing a wide range of poten-
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Figure 4.8: Three highly relevant volatility drivers in the Foreign Exchange market.
Each row shows the first and the second lag of the FSI, RV, and the TED spread,
respectively.

tial macro and financial drivers. Using monthly data, we adopted boosting techniques
based on regression trees as base learners to identify relevant volatility drivers as well
as the functional form of their influence. Specifically, we used componentwise boost-
ing, which is tailor-made for sorting out irrelevant (lagged) predictors. First— and
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second—order lags of all drivers were included—along with some (seasonal) determin-
istic components—in a regression—type model.

Our empirical results give insight into the “anatomy” of volatility by identifying
small groups of influential drivers for each market and by estimating driver—specific
thresholds, which partition its domain into areas with similar impacts on volatility.
By doing so, nonlinear dependencies can be identified. We do, indeed, find highly
nonlinear influences of financial drivers on volatility. This contrasts the existing
literature, which has almost exclusively concentrated on linear volatility dynamics.

Out-of-sample forecast using realized volatility as a proxy for the unobserved
volatility suggests that the boosting approach performs very favorable for stocks and
commodities relative to the common GARCH(1,1) benchmark model. The advan-
tages are particularly convincing for longer forecasting horizons. For the bond and
foreign exchange markets, boosting offers a similar short—term and a marginally bet-
ter medium— to long—term accuracy. In all cases, however, boosting leads to more
robust, i.e., less outlier—prone prediction errors than the GARCH benchmark.

Our findings suggest that boosting is well suited for a unified framework to pre-
dictor selection and estimation of volatility models in the presence of many potential
(and possibly highly correlated) risk drivers. An advantage of the approach is that it
can cope with “wide” data situations (Hastie et al., 2009a), i.e., situations in which
the number of predictors exceed the number of observations.!> Models obtained in
this fashion can be a starting point for more detailed nonlinear model specifications,
but could also be used in certain financial applications, such as dynamic portfolio
optimization or option valuation.

12In the application presented here, we typically had 58 predictors and 230 observations.
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Chapter 5

Boosting for Estimating Spatially
Structured Additive Models

Spatially structured additive models offer the flexibility to estimate regression rela-
tionships for spatially and temporally correlated data. Here, we focus on the esti-
mation of conditional deer browsing probabilities in the National Park “Bayerischer
Wald.” The models are fitted using a componentwise boosting algorithm. Smooth
and nonsmooth base learners for the spatial component of the models are compared.
A benchmark comparison indicates that browsing intensities may be best described
by nonsmooth base learners, allowing for abrupt changes in the regression relation-
ship. This chapter is based on Robinzonov and Hothorn (2010).

5.1 Introduction

Biological diversity and forest health are major contributors to the ecological and
economic prosperity of a country. This is what makes the conversion of mono-species
into mixed-species forests an important concern of forest management and policy in
Central Europe (Knoke, Ammer, Stimm, and Mosandl, 2008). Recent research shows
that there are not only positive ecological effects of mixed-species forests (e.g. Fritz,
2006) but also positive economic consequences (Knoke and Seifert, 2008). Like any
other living environment, the development of forests is strongly conditioned on a
balanced and consistent regeneration. Whether natural or artificial, the regenera-
tion is hindered at a very early stage by browsing damage caused by various game
species. In middle Europe, especially, roe and red deer are the most common species
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Figure 5.1: The National Park “Bayerischer Wald.” The southern gray colored region
is the district of “Rachel-Lusen” where our studies take place.

browsing on young trees. This activity is certainly natural by definition. However,
the eradication of large predators, the conversion of the landscape, and the fostering
of trophy animals have given rise to increased numbers of deer and so to intensified
browsing pressure over the past centuries. The consequences of excessive browsing
often lead to retardation and homogenization of forest growth (Eiberle and Nigg,
1987; Eiberle, 1989; Ammer, 1996; Motta, 2003; Weisberg, Bonavia, and Bugmann,
2005).

Forest regeneration is monitored on a regular basis by the Bavarian Forest Ad-
ministration (Forstliches Gutachten, 2006). This Bavarian-wide survey is conducted
every three years and takes place in all 745 game management districts (Hegegemein-
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schaften) in Bavaria. Preventive measures are proposed following the survey’s results.
In case of an estimated browsing quota above the specified thresholds, the local au-
thorities consider how to protect the most vulnerable areas. An often used practice
is to recommend intensified deer harvesting in the corresponding areas. Whether the
impact of game on the forest regeneration is correctly measured remains a matter
of debate (e.g. Prien, 1997; Riiegg, 1999; Moog, 2008). Developing precise mea-
sures which reflect the true condition of the forest’s regeneration is thus crucial and
nontrivial.

Our focus is on surveys conducted to estimate the local conditional probability
of a young tree to be affected by deer browsing, as recommended for monitoring of
the influence of game on forest regeneration (Riiegg, 1999). For the beech species
(Fagus sylvatica) this quantity reflects the exposure to deer browsing and is the basis
for subsequent management decisions. Here, we are concerned with the estimation
of such conditional browsing probabilities. We evaluate and compare boosting algo-
rithms for fitting structured additive models (Fahrmeir et al., 2004) to deer browsing
intensities. This research aims to make, in a brief presentation, a comparison of
smooth and nonsmooth model components for capturing the spatio-temporal varia-
tion in such data. Our investigations are based on two surveys conducted in 1991
and 2002 in the district of “Rachel-Lusen,” the southern part of the National Park
“Bayerischer Wald” depicted in Figure 5.1.

5.2 Methods

The main purpose of a deer browsing survey is to estimate the probability of deer
browsing on young trees. More specifically, the conditional probability of a young
tree of a certain species at a given location to suffer from deer browsing is the quantity
of interest. The tree height is an important exploratory variable for deer browsing
and thus needs to be included in the model. In addition, unobserved heterogeneity in
the browsing damage will be considered by allowing for spatial and spatio-temporal
components to enter the model. Commonly, other covariates describing the forest
ecosystem are not measured and are thus not included in our investigations. For
the sake of simplicity, we restrict our attention to beeches. Below we will sketch our
model in (5.1), giving a general view of the estimation strategy. In the subsequent
sections we will consider the component pieces of three possible approaches meant
to accomplish this strategy.

The general idea of our modeling strategy is as follows. The logit transformed
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conditional probability of browsing damage is linked to the tree height, the spatial,
and spatio-temporal, effects by the regression function f such that

logit(P(Y = 1|height, space, time)) = f(height, space, time) (5.1)
= fueignt(height) + fipatiai(space)

+ fspatemp(Space, time),

where the predictor space represents a two-dimensional covariate of northing and
easting, height is a one-dimensional continuous variable representing tree height, and
time is an ordered factor with levels 1991 and 2002.

Therefore, we differentiate between three types of variability: that caused by
tree height and captured by fheight, solely spatial variability explained by the two-
dimensional smooth function fypatial, and time-dependent heterogeneity modeled by
the multi-dimensional smooth function fsatemp-

5.2.1 Spatio-Temporal Structured Additive Models

The estimation of the first two models is carried out by boosting. Kneib et al. (2009)
introduce smooth P-spline tensor products in the context of boosting. We apply
this idea below and compare it to a new proposition for spatial estimation based on
regression trees.

These two boosting methods differ solely in the choice of their spatial and spatio-
temporal base procedures. The first boosting method is a structured additive regres-
sion (GAMBoost) model for describing the probability of browsing damage:

logit(P(Y = 1|height, space, time)) = f.(height, space, time) (5.2)
= fbheight(height) + fbspatial(space)
+ fospatemp (SPace, time)

where foneigne is an additively structured, P-spline function of height, fyospatial is an
additively structured, bivariate P-spline tensor function of easting and northing (or,
for short, space), and fuspatemp 1 essentially the same as fispatiar but applied only
for the year 2002 (see (5.7) below). The objective is to obtain an estimate fy, of
the function f,. In theory, this approximation is usually based on the expectation
of some prespecified loss function L(y, 7 (fs.)); in practice we aim at minimizing its
empirical version

. -
fstr = argfmln E Z L(yza 7T"i(fs‘cr)) (53)
str i=1
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where m;(fs:) = logit ™' (f..(height,, space;, time;)) denotes the inverse of the logit
function. The object is to minimize the negative log-likelihood

L(yiyﬂi(fstr)) = _<yi 1Og(7ri<fstr)) (1 - yl) log( (fstr))) (54)

As mentioned above, each function in (5.2) has an additive structure. This means,
in particular, that the model can be decomposed into

Foneigns (height) = v Z hyry (height) (5.5)
m=0
fbspaml(space =v Z hspatlal (space) (5.6)

fbspatemp(space time) = v Z hspatemp(space, time)

m=0
M
h space time = 2002
_ szzjo spatlal( p )7 Im ’ (57)
0, time = 1991,

where the base learner A™,  is a smooth penalized B-spline function (P-spline, Eilers

height
and Marx, 1996), hgpa},tlal is a smooth bivariate P-spline based surface and v € (0, 1)
is the shrinkage parameter. Thus, our choice of base learners are basis expansions of

the form

hLel]ght height) = Z ’yhelght . bi(height) (5.8)
K1 K>

théltlal Space Z Z Vs[gla]ceklykz bk17k2 (Space) (59)
k=1 ko=1

where the b;’s represent K completely known univariate basis functions, by, x, tensor
product functions with

b, k, (space) = by, i, (easting, northing) = by, (easting)by, (northing)

and Yjeigne and Ygpace are regression coefficients which scale these basis functions

(see Wood, 2006; Kneib et al., 2009). 'yl[mght and 'ybpace are arbitrarily chosen start
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vectors of parameters. Note that the time-dependent effect in (5.7) is interpreted as
the spatial difference between the years 1991 and 2002. It should be further noted
that K, K1, and K, are known in advance (specified by the user), and M is the major
tuning parameter for boosting which we discuss below.

All parameters, i.e., all 'Ay[m}s, of this additive expansion will be determined it-
eratively by successively improving (updating) them and accumulating the whole
estimation in fstr. Hence, the step size v can be thought of as an improvement
penalty which prevents the model from taking the full contribution of the updates.

The minimization problem (5.3) is solved iteratively by componentwise boosting
which chooses at each step the “best” base procedure from (5.5)—(5.7), i.e., the one
that most contributes to the fit. One option to attain this is via the steepest-descent
optimization, which relies on the negative gradient

gi = — %L(yi,wi(fstr)) wi=1....n (5.10)
str Jstr=Fstr
being computed at each step and subsequently fitted against each base procedure
separately, i.e., the negative gradient is used as a pseudo-response in each step m.
The negative gradient (5.10) indicates the direction of the locally greatest decrease in
the loss. The most “valuable” covariate has the highest correlation with the negative
gradient and is therefore chosen for fitting.

Schmid and Hothorn (2008) carried out an extensive analysis of the effects of the
main hyper-parameters on boosting, such as the maximum step number M, the step
size v, the smoothing parameters for the P-splines, and the number of knots. Their
results confirmed the common knowledge that there exist a minimum number of nec-
essary knots needed to capture the curvature of the function and that the algorithm
is not sensitive to this choice (20-50 knots should be sufficient). They also found
that v = 0.1 is a reasonable choice for the step size, altering which interacts only
with the computational time, i.e., smaller v increases the computational burden but
does not deteriorate the fitting quality. The same holds for the P-spline smoothing
parameters, which essentially penalize the flexibility of the base procedure through
its degrees of freedom. Choosing larger values leads to fewer degrees of freedom,
which translates into larger bias but smaller variance. This follows the prescriptions
of the recommended strategy for boosting (Bithlmann and Yu, 2003; Schmid and
Hothorn, 2008). Again, reasonable alteration of this parameter solely impacts the
computational time.

Aside from obtaining the stopping condition M (which will be discussed later),
we are ready to summarize componentwise boosting in the following algorithm:
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Componentwise boosting

1. Initialize fstr = offset, set m = 0.
2. m=m+1.
3. Compute the negative gradient: g; = — %L(yi, Wi(fstr))] ; i=1,...,n.
str—Jstr
4. Fit all base procedures to the negative gradient and select the best one according to
Sm = arg min => (9 — BL"‘})?
s€{height, spatial, spatemp} i=1
5. Update f5% := fs" +p hg:j.

6. Iterate 2-5 until m = M.

Researchers in many fields have found the cross-validatory assessment of tuning
parameters attractive. By splitting the original (training) set into k roughly equally
sized parts, one can use k — 1 parts to train the model and the last, kth, part to
test it. This is known as a k-fold cross-validation. A known issue of cross-validation
is the systematic partition of the training set increasing the risk of error patterns.
That is, the training set is not a random sample from the available data, but chosen
to disproportionally represent the classes, especially to over-represent rare classes.
Therefore, we alleviate this to some degree by using the bootstrap algorithm (Efron,
1979). We perform a random sampling with replacement of the original data set,
i.e., the n sample points are assumed to be multinomially distributed with equal
probability 1/n. After the sampling, we have a new training set of size n with some
sample points chosen once, some more than once, and some of them being completely
omitted (usually ~ 37%). Those omitted sample points are regarded as our test set
in order to quantify the performance. We choose some large value for M, say 2000,
and perform 25 bootstrapped samples with each m = 1,..., M. The optimal m is
reported according to the average out-of-sample risk, also referred to as out-of-bag,
minimization of the loss function.

5.2.2 Tree Based Learners

There are regions in the National Park “Bayerischer Wald” which are not affected
by deer browsing and others with disproportionally higher risks of browsing. This
is due to the irregular distribution of regeneration areas in the National Park and
to other environmental factors, e.g., populated regions. Therefore, we might wish
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to reconsider the smooth relationship between the response and the predictors made
so far. We aim to improve the performance of regression setting (5.2) by reconsid-
ering the smooth assumption of the underlying function fi,. Having covariates at
different scales, we find regression trees (Breiman et al., 1984) to be an attractive
way to express knowledge and aid forest decision-making. A “natural” candidate for
a decision tree based learner is the spatio-temporal component due to the different
scales of space and time. The spatial component space is another good option for a
tree based modeling due to the coarse relationship between the space and the brows-
ing probability which we suspect. We let the smooth P-spline based learner Ayeight
remain unchanged. Therefore, we have a similar structure to (5.2)

logit(P(Y = 1]height, space, time)) = f,,(height, space, time) (5.11)
= fbheight(height) + fbbspatial(space)

+ fbbspatemp (Space, time)

with foneignt being exactly the same as in (5.5) and modified learners

fbbSpatlal(space = Vzhspatlaltree<space>7 (512>
i=1
M

Jobspatemp (SPace, time) = v Z hg}ltempme(space, time). (5.13)
i=1

The model (5.11) is referred to as the TreeBoost model. We choose the unbiased
recursive partitioning framework of Hothorn et al. (2006) to grow binary trees. The
spatial component has the additive form

iliga],tialtree Space Z fys[;rgtlaltreej Space € Rgm}) (514)

and the spatio-temporal component is represented by

hg]ﬂtemptree<spaceﬂ time) - Z ’Ays[;gtemptree,j I((Space tlme) € R*[m]) (515)

m]

where [ denotes the indicator function, Rg- ,j =1,...,J are disjoint regions which
collectively cover the space of all joint values of the predictor variables in space (recall

that space = {easting, northing}). The superscript [m] in Rg-m] means that this region
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is defined by the terminal nodes of the tree at the mth boosting iteration. R;[m] are
the respective regions for space and time. Thus, we compute a sequence of simple
binary trees with a maximal depth of, say, five. The task at each step is to find
a new tree to describe the prediction residuals (the gradient) of the preceding tree
succinctly. The next tree will then be fitted to the new residuals and will further
partition the residual variance for the data, given the preceding sequence of trees.

5.2.3 Generalized Additive Model

The last method in our comparison is the generalized additive model (GAM) pro-
posed by Hastie and Tibshirani (1990). Once we are familiar with the underlying
structure of the GAMBoost model, the GAM model can be seen as a simplified spe-
cial case of (5.2) with » = 1, M = 1, and with no componentwise selection carried
out. This means that we have the following structure

logit(P(Y = 1|height, space, time)) = f(height, space, time) (5.16)

= fheignt (height) + fipatial (space)
+ fspatemp(Space, time)

where
. K
fheight(height) = Z’?height,k bk(helght> (517)
k=1
K1 Ko
fspatial(space) = Z Z ':)/spacekl’b bk1,k2 (Space) (518)
k1=1ko=1
K1 Ko
R Vepace b space), time = 2002,
fspatemp(spacevtime) = k1=1 k:zzzlfy PRk o kl’kQ( P ) (519>
0, time = 1991.

The interpretation of the basis function by, b, r, and their scaling parameters remains
the same as in (5.8) and (5.9). A similar model to (5.16) has been proposed by
Augustin, Musio, von Wilpert, Kublin, Wood, and Schumacher (2009). A major
difference between their model and the specification above is the time component
being a continuous predictor smoothly modeled through cubic regression spline basis
functions. This is what they call a 3-d tensor product smoother for space and time. It
is also worth mentioning that their model prescinds from the pure spatial component
fspatial and relies solely on the multi-dimensional function fepatemp to capture the
spatial variability.
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5.3 Results

In this section we apply the three models to spatial data collected from the National
Park “Bayerischer Wald.” We depict the surface of the estimated browsing probability
and indicate the absolute number of browsing cases. In addition, we carry out a model
comparison by means of an out-of-sample prediction of the likelihood function.

5.3.1 Spatial Estimates

In a first step, we visualize the browsing probability estimates obtained by the GAM-
Boost model (5.2), the TreeBoost model (5.11) and the common GAM as in (5.16).
Figure 5.2 illustrates the estimation produced by the GAMBoost model for an av-
erage beech tree 60 cm in height. The light areas indicate regions with higher risk
of browsing damage, the dark regions show areas with lower browsing probability.
Furthermore, we use black circles proportional to the absolute number of damaged
trees found in the corresponding location of the map.

The GAMBoost model proposes the smoothest fit of all the models. This model
detects the risky regions in 2002 rather well, encompassing the black circles with
smooth light regions and fitting the northern high-level areas to low risk probabilities.
However, the relatively even empirical distribution of damaged cases in 1991 leaves
the impression of too smooth a surface, i.e., possible underfitting. The GAMBoost
model is also an example of why fine tuning of the hyper parameters should be
undertaken with greater care in the presence of tensor P-spline base learners. The
claims we made about the informal impact of the step size, the number of knots, and
the smoothing parameters still hold in this case. However, the maximum number of
boosting steps markedly increases if bivariate base learners are considered. One could
falsely choose too small an M for an upper bound of the boosting steps. Therefore,
boosting would continuously improve its prediction power within the proposed values
of M and will always find the optimal M at the border, i.e., at the last step. This
is due to the insufficient degrees of freedom leading to a very modest amount of
progress towards optimality, i.e., the optimal step number is basically never reached.
Therefore, the “standard” amount for degrees of freedom df € (4, 6) for the univariate
P-spline learners is insufficient for tensor P-spline learners. We use df = 12 in order
to speed up the computations and to ensure that M = 2000 is sufficient to find an
optimal number of boosting iterations. Alternatively one could dampen the learning
rate less severely by increasing the step size v or altering the number of spline knots.

Figure 5.3 represents the estimation produced by the TreeBoost model for an
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Figure 5.2: Spatial component space fitted by the GAMBoost model for an average
beech tree at the height of 60 cm in the years 1991 (bottom) and 2002 (top). The
diameter of the black circles is proportional to the absolute number of browsed trees.

average beech tree 60 cm in height. The color codes are the same as in the exam-
ple above. The inherent coarse structure in the fit might look less attractive than
Figure 5.2 but in the next section we will perform a formal bootstrap based model
inference and will compare the predictive power of all the models in fair conditions.
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Figure 5.3: Spatial component space fitted by the TreeBoost model for an average
beech tree 60 cm in height in the years 1991 (bottom) and 2002 (top). The diameter
of the black circles is proportional to the absolute number of browsed trees.

Although not as straightforward as in Figure 5.2, the general pattern for the risky
regions in the central and south-western parts of the National Park in 2002 remains
visible. The final example is depicted in Figure 5.4 representing the GAM model. It
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Figure 5.4: Spatial component space fitted by the Generalized Additive Model for
a average 60 cm tree in the years 1991 (bottom) and 2002 (top). The diameter of
the black circles is proportional to the absolute number of browsed trees.

proposes a similar structure to Figure 5.2 with nicely shaped smooth peaks in the
risky areas. In the next section we carry out a model comparison of the predictive
power of the different models.
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5.3.2 Model Comparison

Eight models were fitted to the beech browsing data. Our three candidate models,
GAMBoost (5.2), TreeBoost (5.11), and GAM (5.16) and their simplified versions,
including several restrictions, are summarized in Table 5.1. The single column which
requires additional clarification is the second column, termed “Label.” The Label
concisely represents the restrictions which we apply to the models. For instance, the
label “A” refers to the simplest and fully constrained model with a single intercept
as a covariate. “B” denotes a model which considers the height variable only, hence
ignoring the spatial and the spatio-temporal effects. “C” means a model with the
height predictor being constrained to zero and “D” denotes the most complex model,
which considers all predictors.

We quantify the predictive power of each model using the out-of-bootstrap em-
pirical distribution of the negative log-likelihood. For the boosting algorithms we,
therefore, bootstrap twice: to find an optimal step number and to validate. For this,
we divide the data set into a training and a validation part. In the first place, we
bootstrap in the training sample, subdividing it into training and validation sub-
sets. Therefore, we estimate the step number without touching the validation set.
Secondly, we evaluate the negative log-likelihood with the estimated step number.

The results of the performance assessment are shown in Figure 5.5. Each boxplot
represents 25 out-of-bootstrap values of the negative log-likelihood function based
on the different models from Table 5.1. The first four light gray colored boxes rep-
resent the common GAM models. The highly constrained models “A” and “B” are
not boosted and are primarily used to strengthen the credibility of the other models.
The distinct risk collapse in all “C” models compared to “A” and “B” suggests the
significant importance of the spatio-temporal effects on the browsing probability. It
is further apparent that the height does contribute to the fit in the smooth specifica-
tions, i.e., “C” has a clearly higher risk than the largest model specification “D” for
GAM and GAMBoost.

Further, we evidenced that boosting the smooth relationship between the re-
sponse and the covariates is superior to the common GAM. This can be seen from
the juxtaposition of the third and fourth light gray boxplots from the left and the
two rightmost boxplots in Figure 5.5. Since all predictors are selected, the better
prediction accuracy is solely explained by the effect of the shrinkage parameter.

It is instantly apparent that the TreeBoost model performs best compared to the
other strategies. Thereupon, we empirically show that the assumption of a smooth
underlying structure does indeed degrade performance in this case.
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Figure 5.5: Out-Of-Bootstrap assessment of the different models defined in Table 5.1.
Each boxplot contains 25 values of negative log-likelihood function.

5.4 Discussion

The focus of this study was on the comparison of three modeling techniques for es-
timating the real forest situation of the beeches in the district of “Rachel-Lusen,”
National Park “Bayerischer Wald.” We specified a structured additive model which
accounts for the trees’ variation in height, as well as for spatial and spatio-temporal
effects. The objective was to estimate a surface representing the browsing proba-
bilities on young beech trees within the borders of the “Rachel-Lusen” district. We
provided a boosted version of the GAM model, i.e., the GAMBoost model, which suc-
ceeded in outperforming the classical GAM model in terms of stronger minimization
of the out-of-sample risk.

We found that the spatial component does contribute to the fit considerably. The
same holds for tree height, which should be considered when estimating the browsing
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probability in regeneration areas.

The assumption of a smooth relationship between the response and the covariates
did not prove to be the most credible one among our model choices. A simple
recursive partitioning of the geographical component via boosting with regression
trees, i.e., the TreeBoost model, proved to obtain by far the smallest out-of-sample
risk. This is mostly due to the irregular distribution of the regeneration areas leading
to abrupt changes of the browsing pressure, especially in the populated regions. In
addition, the TreeBoost model required less computational time.
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Chapter 6

Summary and Conclusion

In this dissertation, we showed how boosting can be used to detect and estimate
the impact of relevant factors on the dynamics of the mean and of the volatility
in autoregressive time series. Specifically, we used componentwise boosting, which
is designed for sorting out irrelevant (lagged) predictors. In the applications, we
focused on multi-period ahead forecasts of the conditional mean and variance. In
the simulation studies, we showed its interpretative potential by recovering the true
dynamics of the simulated stochastic processes. In addition, boosting was also ap-
plied to a spatio-temporal dataset originating from outside the econometric field. In
summary, we found the following strengths of boosting.

1. Evidently, boosting can be very competitive when estimating the conditional
mean and variance of nonlinear high-order autoregressive time series. In a
simulation study, it was superior to several alternative nonparametric methods
in terms of goodness-of-fit.

2. Forecasting the monthly returns of German industrial production was most
successfully carried out via componentwise boosting with linear base learners.
This strategy was compared to the benchmark in macroeconomic forecasting,
namely, the linear (vector) autoregressive model. Moreover, the boosting model
was almost immune to the addition of potentially noninformative variables and
their long history.

3. Forecasting the monthly volatility in the four broad asset classes of stocks,
commodities, bonds, and foreign exchange, by boosting leads to more robust,
i.e., less outlier prone prediction MSEs than does the GARCH benchmark. Our
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boosting approach with regression-tree base learners performed very favorably
for stocks and commodities relative to the common GARCH(1,1) benchmark
model. The advantages are particularly convincing for longer forecasting hori-
ZOns.

4. Our empirical results give insight into the “anatomy” of the volatility by iden-
tifying small groups of influential drivers. We found, indeed, highly nonlinear
relationships between financial drivers and the volatility in stocks and com-
modities. This contrasts with the existing literature, which has almost exclu-
sively concentrated on linear volatility dynamics.

In Chapter 2, we mentioned several inherent problems of boosting, e.g., lack of
inference, estimation bias, false detections, and a computationally costly stopping
condition. The existing solutions seem to have a varying success and further re-
search is desirable. Furthermore, even though boosting is generally useful for fitting
correlated data, these problems are even more severe for dependent covariates. The
serial dependence in time series data might mislead the fitting procedure into pro-
ducing erroneous transformations. Therefore, care must be taken in using boosting
algorithms in time series with strong serial correlation.

Simultaneously modeling the conditional mean and variance in a multi-parameter
framework, similarly to Schmid et al. (2010) and Mayr et al. (2012), is surely worth
consideration. The increase in flexibility, however, raises some of the inherent prob-
lems beyond feasibility, e.g., the stopping condition can potentially get too imprecise
if it should remain computationally solvable.

With regard to the applications of boosting, we showed that it helps to improve
volatility forecasts. The next step is to use these forecasts in an ongoing project for
option valuation and portfolio optimization and to check whether or not superior
results can be achieved.



Appendix A

The Choice of Leading Indicators

The Ifo Business Climate Index is based on about 7,000 monthly survey responses of
firms in manufacturing, construction, wholesaling and retailing. The firms are asked
to give their assessments of the current business situation and their expectations
for the next six months. The balance value of the current business situation is the
percentage difference between “good” and “poor” responses; the balance value of
the expectations is the percentage difference between “more favourable” and “more
unfavourable” responses. The business climate is a transformed mean of both. For
further information see Goldrian (2007). This index was used for forecasting German
IP in Breitung and Jagodzinski (2001); Fritsche and Stephan (2002); Hiifner and
Schroder (2002); Dreger and Schumacher (2005) among others.

The ZEW Indicator of Economic Sentiment is published monthly. Up to 350
financial experts take part in the survey. The indicator reflects the difference between
the share of analysts that are optimistic and the share of analysts that are pessimistic
with regard to the expected economic development in Germany within six months.
For further details and for an application of forecasting IP in terms of a bivariate
VAR model see Hiifner and Schroder (2002); Benner and Meier (2004); Dreger and
Schumacher (2005).

The FAZ indicator (Frankfurter Allgemeine Zeitung) pools survey data and macroe-
conomic time series. It consists of the Ifo index (0.13), new orders in manufacturing
industries (0.56), the real effective exchange rate of the Euro (0.06), the interest
rate spread (0.08), the stock market index DAX (0.01), the number of job vacancies
(0.05) and lagged industrial production (0.11). The Ifo index, orders in manufactur-
ing and the number of job vacancies enter the indicator equation in levels, while the
other variables are measured in first differences. FAZ was used for forecasting IP in
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Breitung and Jagodzinski (2001), Dreger and Schumacher (2005).

The Early Bird indicator, compiled by Commerzbank, also pools different time
series and stresses the importance of international business cycles for the German
economy. Its components are the real effective exchange rate of the Euro (0.35),
the short-term real interest rate (0.4), defined as the difference between the short-
term nominal rate and core inflation, and the purchasing manager index of U.S.
manufactures (0.25).

The OECD composite leading indicator is delivered by using a modified version
of the Phase-Average Trend method (PAT) developed by the US National Bureau
of Economic Research (NBER). The indicator is compiled by combining de-trended
component series in either their seasonally adjusted or raw form. The component
series are selected based on various criteria such as economic significance, cyclical
behaviour, data quality, timeliness and availability. For Germany the following time
series are compiled: Orders inflow or demand: tendency (manufacturing) (% bal-
ance), Ifo Business climate indicator (manufacturing) (% balance), Spread of inter-
est rates (% annual rate), Total new orders (manufacturing), Finished goods stocks:
level (manufacturing) (% balance) and Export order books: level (manufacturing)
(% balance).

Financial indicators, such as overnight interbank interest rate an interest spread,
are used as possible predictors as well. Stock and Watson (2003) have conducted
a thorough case study for different OECD countries by forecasting Gross Domestic
Product (GDP), Inflation and Industrial production. The information on the growth
of the employment in Germany was taken from their paper.

Finally, a factor indicator obtained from a large data set from Germany, is in-
cluded. The data set contains the German quarterly GDP and 111 monthly indicators
from 1992 to 2006.

!The estimated factor was provided by Christian Schumacher and is based on Marcellino and
Schumacher (2007).
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