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Abstract

The introduction of a so-called dark sector in cosmology resolved many inconsistencies be-
tween cosmological theory and observation, but it also triggered many new questions. Dark
Matter (DM) explained gravitational effects beyond what is accounted for by observed lumi-
nous matter and Dark Energy (DE) accounted for the observed accelerated expansion of the
universe. The most sought after discoveries in the field would give insight into the nature of
these dark components. Dark Matter is considered to be the better established of the two,
but the understanding of its nature may still lay far in the future.

This thesis is concerned with explaining and eliminating the discrepancies between the
current theoretical model, the standard model of cosmology, containing the cosmological
constant (Λ) as the driver of accelerated expansion and Cold Dark Matter (CDM) as main
source of gravitational effects, and available observational evidence pertaining to the dark
sector. In particular, we focus on the small, galaxy-sized scales and below, where N-body
simulations of cosmological structure in the ΛCDM universe predict much more structure
and therefore much more power in the matter power spectrum than what is found by a range
of different observations. This discrepancy in small scale power manifests itself for example
through the well known “dwarf-galaxy problem” (e.g. Klypin et al., 1999), the density profiles
and concentrations of individual haloes (Donato et al., 2009) as well as the properties of voids
(Tikhonov et al., 2009). A physical process that would suppress the fluctuations in the dark
matter density field might be able to account for these discrepancies.

Free-streaming dark matter particles dampen the overdensities on small scales of the
initial linear matter density field. This corresponds to a suppression of power in the linear
matter power spectrum and can be modeled relatively straightforwardly for an early decoupled
thermal relic dark matter particle. Such a particle would be neutrino-like, but heavier; an
example being the gravitino in the scenario, where it is the Lightest Supersymmetric Particle
and it decouples much before neutrinos, but while still relativistic. Such a particle is not
classified as Hot Dark Matter, like neutrinos, because it only affects small scales as opposed
to causing a suppression at all scales. However, its free-streaming prevents the smallest
structures from gravitationally collapsing and does therefore not correspond to Cold Dark
Matter. The effect of this Warm Dark Matter (WDM) may be observable in the statistical
properties of cosmological Large Scale Structure.

The suppression of the linear matter density field at high redshifts in the WDM scenario
can be calculated by solving the Boltzmann equations. A fit to the resulting linear matter
power spectrum, which describes the statistical properties of this density field in the simple
thermal relic scenario is provided by Viel et al. (2004). This linear matter power spectrum
must then be corrected for late-time non-linear collapse. This is rather difficult already in the
standard cosmological scenario, because exact solutions the the evolution of the perturbed
density field in the nonlinear regime cannot be found. The widely used approaches are to the
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Abstract

halofit method of Smith et al. (2003), which is essentially a physically motivated fit to the
results of numerical simulations or using the even more physical, but slightly less accurate
halo model. However, both of these non-linear methods were developed assuming only CDM
and are therefore not necessarily appropriate for the WDM case.

In this thesis, we modify the halo model (see also Smith & Markovič, 2011) in order to
better accommodate the effects of the smoothed WDM density field. Firstly, we treat the
dark matter density field as made up of two components: a smooth, linear component and a
non-linear component, both with power at all scales. Secondly, we introduce a cut-off mass
scale, below which no haloes are found. Thirdly, we suppress the mass function also above
the cut-off scale and finally, we suppress the centres of halo density profiles by convolving
them with a Gaussian function, whose width depends on the WDM relic thermal velocity.
The latter effect is shown to not be significant in the WDM scenario for the calculation of
the non-linear matter power spectrum at the scales relevant to the present and near future
capabilities of astronomical surveys in particular the Euclid weak lensing survey.

In order to determine the validity of the different non-linear WDM models, we run cosmo-
logical simulations with WDM (see also Viel et al., 2012) using the cutting edge Lagrangian
code Gadget-2 (Springel, 2005). We provide a fitting function that can be easily applied to
approximate the non-linear WDM power spectrum at redshifts z = 0.5 − 3.0 at a range of
scales relevant to the weak lensing power spectrum. We examine the simple thermal relic
scenario for different WDM masses and check our results against resolution issues by varying
the size and number of simulation particles.

We finally briefly discuss the possibility that the effects of WDM on the matter power spec-
trum might resemble the analogous, but weaker and larger scale effects of the free-streaming
of massive neutrinos. We consider this with the goal of re-examining the Sloan Digital Sky
Survey data (as in Thomas et al., 2010). We find that the effects of the neutrinos might just
differ enough from the effects of WDM to prevent the degeneracy of the relevant parameters,
namely the sum of neutrino masses and the mass of the WDM particle.
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Zusammenfassung

Mit der Einführung eines so genannten “dunklen Sektors” in der Kosmologie konnten zwar
Ungereimtheiten zwischen kosmologischer Theorie und Beobachtungen gelöst werden - er
wirft allerdings auch viele neue Fragen auf. Dunkle Materie (DM), erklärt gravitative Ef-
fekte, die nicht durch die beobachtete leuchtende Materie verursacht werden können. Dun-
kle Energie (DE) erklärt die beobachtete beschleunigte Expansion des Universums. Zu den
begehrenswertesten Entdeckungen des gesamten Feldes gehören jene, die unser Verständnis
bezüglich der Dunklen Materie und Dunklen Energie erweitern. Obwohl die Dunkle Materie
die etabliertere der beiden Theorien ist, steckt unser Verständnis auch ihrbezüglich noch in
den Kinderschuhen.

Diese Doktorarbeit befasst sich mit der Erklärung und Beseitigung von Unstimmigkeiten
zwischen dem gängigen theoretischem Modell, dem ΛCDM-Modell - welches die kosmologische
Konstante (Λ) als Ursache für die beschleunigte Ausbreitung des Universums und kalte dun-
kle Materie (CDM) als die Quelle für Gravitationseffekte beinhaltet - und den verfügbaren
Beobachtungsdaten ergeben. Dabei wird der Schwerpunkt auf kleine Maßstäbe - Galax-
iengröße und kleiner - gelegt, wo N-Teilchensimulationen der kosmologischen Strukturbildung
im ΛCDM-Modell viel mehr Struktur und folglich viel mehr Leistung im Materieleistungsspek-
trum voraussagten, als viele andere Beobachtungen. Diese Unstimmigkeiten im Leistungspek-
trum auf kleinen Maßstäben äußern sich zum Beispiel im so genannten Zwerggalaxienproblem
(z.B. Klypin et al., 1999), in der Konzentration und den Dichteprofilen individueller Halos
(Donato et al., 2009) und auch in den Eigenschaften so genannter Voids, großer Leerräume im
Universum. (Tikhonov et al., 2009). Diese Ungereimtheiten könnten durch einen physikalis-
chen Prozess erklärt werden, welcher die Schwankungen des DM-Dichtefeldes zu unterdrücken
vermag.

Frei ströhmende dunkle Materieteilchen dämpfen auf kleinen Abständen das ursprüngliche
lineare Materiedichtefeld. Dies deckt sich mit einer Unterdrückung der der Leistung im Leis-
tungsspektrum und erlaubt eine relativ einfache Erstellung von Modellen von früh abgekoppel-
ten thermischen Reliktteilchen. Solche Teilchen wären neutrinoähnlich, allerdings schwerer.
Ein Beispiel wäre das Gravitino in einem Szenarium wo es das leichteste supersymmetrische
Teilchen ist und sich viel früher abkoppelte als Neutrinos, aber noch während es sich in einem
relativistischen Zustand befand. Diese Teilchen können nicht wie Neutrinos als heiße dunkle
Materie klassifiziert werden, da sie nur auf kleinen und nicht auf allen Abständen einen Ein-
fluss auf das Leistungsspektrum haben. Allerdings bewahrt das freie Strömen dieser Teilchen
die kleinsten Strukturen vom Gravitationskollaps, womit sie auch nicht in die Kategorie der
kalten dunklen Materie fallen können. Der Einfluss dieser warmen dunklen Materie kann in
den statistischen Eigenschaften von kosmologischen Strukturen beobachtet werden.

Die Unterdrückung des linearen Materiedichtefeldes bei hohen Rotverschiebungen im WDM-
Szenarium kann durch Lösen der Boltzmann-Gleichungen berechnet werden. Ein Fit an das
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Zusammenfassug

resultierende lineare Materieleistungsspektrum, welches die statistischen Eigenschaften dieses
Materiedichtefeldes im einfachen thermischen Reliktszenarium beschreibt, wird von Viel et al.
(2004) bereitgestellt. Dieses lineare Materieleistungsspektrum muss als nächstes korrigiert
werden um die nichtlineare Strukturbildung im heutigen Universum miteinzubeziehen. Dies
erweist sich als schwierig, da schon im kosmologischen Standard-Modell exakte Lösungen
für die Entwicklung von gestörten Dichtefeldern im nichtlinearen Regime nicht analytisch
berechenbar sind. Die weitverbreiteten Ansätze sind die halofit-Methode von Smith et al.
(2003), welche einen physikalisch motivierten Fit an die Ergebnisse von numerischen Simu-
lationen vornimmt, oder das noch physikalischere, jedoch weniger akurate Halomodel. Beide
nichtlinearen Methoden wurden jedoch nur unter der Annahme von kalter dunkler Materie
entwickelt und sind daher nicht unbedingt für den Fall der warmen dunklen Materie anwend-
bar.

In dieser Doktorarbeit wird das Halomodel abgeändert (siehe auch Smith & Markovič,
2011) um die Auswirkungen eines geglätteten WDM-Dichtefeldes miteinzubeziehen. Erstens
wird das dunkle Materiedichtefeld in zwei Hauptkomponenten geteilt: einen geglätteten lin-
earen Bestandteil und einen nichtlinearen Bestandteil, wobei jedoch beide Leistung auf allen
Skalen haben. Zweitens wird eine Mindestmasse vorgeschlagen unter welcher keine Halos ge-
funden werden können. Drittens wird die Massenfunktion auch überhalb der Mindestmasse
unterdrückt. Viertens werden die Zentren der Halodichteprofile durch eine Faltung mit einer
Gaußschen Funktion geglättet, dessen Breite von der thermische WDM-Geschwindigkeit bes-
timmt wird. Es wird gezeigt, dass im WDM-Szenarium der letztere Effekt nicht relevant für
die Berechnung des nichtlinearen Materie-Leistungsspektrums ist, auf allen Skalen relevant
für aktuelle astronomische Surveys, insbesondere das Euclid Weak-Lensing-Survey.

Um die Gültigkeit der verschiedenen nichtlinearen WDM-Modelle zu überprüfen, wur-
den mit Hilfe des innovativen Lagrange-Code Gadget-2 (Springel, 2005) kosmologische N-
Teilchensimulationen durchgefürt (siehe auch Viel et al., 2012). Diese Arbeit stellt eine leicht
zu benutzende Fitfunktion zur Verfügung, welche das nichtlineare WDM-Leistungsspektrum
bei Rotverschiebungen zwischen z = 0.5−3.0 und im Bereich der für Weak-Lensing relevanten
Skalen approximiert. Dabei wird das einfache thermische Reliktszenarium für verschiedene
WDM-Massen untersucht und mit unseren Ergebnissen auf Aspekte der Auflösungskraft durch
Variation der Größe und Zahl der simulierten Teilchen überprüft.

Die Doktorarbeit endet mit einer Diskussion der Möglichkeit, dass die WDM-Effekte auf
das Materie-Leistungsspektrum Ähnlichkeiten aufweisen können mit den schwächeren und
großskaligeren Effekten von freiströmenden massiven Neutrinos. Dies dient dem Ziel, die
Daten des Sloan Digital Sky Survey daraufhin zu untersuchen (wie in Thomas et al.,
2011). Es wird ermittelt, dass Neutrinoeffekte sich gerade genug von WDM-Effekten unter-
scheiden um eine Entartung von relevanten Parametern - die Summe der Neutrinomassen und
die WDM-Masse - zu verhindern.
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The Life of our Universe

This chapter corresponds closely to a public talk I gave1

at the AND Festival
www.andfestival.org.uk,

entitled The Life of Our Universe,
on the 30th of September, 2011

at the Scandinavian Seamans Church in Liverpool, UK.

The First Hour

Inflation

Here is a story, pieced together by physicists, called Cosmology about a continuously expand-
ing and cooling universe.

The very first memory of our universe is of rapidly inflating space. This means that dif-
ferent points in space flew away from each other unbelievably quickly, distances grew and
coordinate systems expanded. This inflation was fueled by a strange energy field that per-
meated the entire embryonic universe.

This energy field is cleverly called the inflaton field and it had very unusual properties. Its
temperature at the moment of this first memory would have been a bit less than a hundred
million trillion trillion degrees. The field was also super dense: if you took everything that
you see in the observable universe today, back then, it would have been squished into a tiny
subatomic space with the size of what we call the Planck Length. If you walked in Planck
Length paces, you would have to make a hundred million trillion trillion paces to walk just
one millimetre!

The pressure of the inflaton field was negative. This is very weird to imagine: a substance
with positive pressure contracts if you squeeze it, whereas if it has negative pressure, squeezing
it makes it bigger! So, what happened was, as gravity tried to pull this incredibly dense
universe together, the already expanding universe expanded even faster. In other words, the
negative pressure of the inflaton field caused the inflation of space to continuously accelerate.

In the mean time, because of the quantum nature of our universe, the inflaton field
also fluctuated. Its density decreased very slowly and it was nearly perfectly uniform, but
not quite. Instead of the slight fluctuations in the field eventually canceling each other
out, because of the rapid expansion, the slight density inhomogeneities remained and even
expanded in size. So, what we had now was a nearly uniform universe, filled with a strange

1Multimedia resources can be found at http://www.usm.uni-muenchen.de/people/markovic/docs.html.
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Figure 0.1: Inflation.
Image source: A doodle by Katarina Markovic.

energy field, which was a little bumpy at all different length scales, the bumps constantly
emerging and growing as the universe expanded.

As the bumps were being pulled apart by the expanding space, before they could annihilate
each other and fluctuate out of existence, the rapid expansion caused the universe to cool down
to a “mere” thousand trillion trillion degrees. In other words the density of the universe
dropped. Because of this, the inflaton field couldn’t fuel the acceleration any longer, and the
speed of the expansion of space gradually became constant.

Reheating and Baryogenesis

Inflation happened in a tiny fraction of a second. In the time it takes me to say the word
inflation, the entire process could replay itself at least a hundred million trillion trillion times!
In this tiny fraction of a second the universe was obviously a very strange place. At very
very early times, in the so called Planck Epoch, when the universe is of the size of Planck
Length, the four forces of nature are believed to have been all one and the same. These
forces were, and still are: gravity that holds planets in their orbits and us on the ground,
the strong nuclear force that hold atomic nuclei together, the weak nuclear force that
causes radioactive decay and the electromagnetic force that governs all of chemistry and
sends electricity down wires. They ruled over the infinitely dense, infinitesimally small realm
that was occupied by the embryo of our observable universe.

It was probably before or maybe during inflation that gravity differentiated itself from
the other three forces, which was just one of many so-called phase transitions in the history
of the universe and marked the end of the Planck Epoch. This transition was one of many
moments in history when symmetries broke and therefore enabled the diversity of phenomena
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Figure 0.2: Reheating.
Image source: A doodle by Katarina Markovic.

we observe in our universe, from supernovae explosions, to black holes, to life. A tiny fraction
of a second later, the strong nuclear force also became distinct and different from the weak
and electromagnetic forces. This transition is called the Grand Unification Transition or
GUT, poetically.

This early, short and strange epoch has inspired many physics theories ranging from
strange to mad. But the two leading candidates for the explanation of infant universe physics
are String Theory and Loop Quantum Gravity. These models go beyond what I want to talk
about today. They postulate about the nature of spacetime and the sources of the properties
of elementary particles. They can be made to explain some of the observed particle physics
phenomena, but they have not yet given any testable predictions. In other words, they do
not postulate any phenomena that could falsify them, which means that, for now, they are
little more than mathematical toys.

So, the universe had undergone the Planck Epoch, Grand Unification as well as inflation
and was expanding and slowly cooling down. This made the inflaton field oscillate. But
oscillation in a field is nothing else than waves. And because of particle-wave duality, we know
that wave in a field means particles. This way the oscillation of the inflaton field produced
vast numbers of inflaton particles. But this oscillation was non-uniform in space. Where
quantum fluctuations produced bumps in the field during inflation, slightly more particles
were produced, because the oscillation was a little out of phase from the rest of the universe.
In this way, initial bumps in the inflaton field resulted in physical bumps in the density of
inflaton particles. The inflaton particles were the big and heavy granddaddies of everything.
But they were really unstable and as the universe cooled even more, they decayed into a
myriad of new, lighter, fundamental particles, some of which are still around today and which
make up the stars, the planets and you and me. With the inflaton field nearly gone, the
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Figure 0.3: Curvature of the universe.
Image source: http://map.gsfc.nasa.gov/media/030639

energy of the new particles could now only fuel an expansion of space that was slowing down.

The new fundamental particles produced from the decay of inflaton particles were particles
but also antiparticles. In other words matter and an equal amount of antimatter, which co-
existed in equilibrium until the still expanding universe cooled down enough to destabilise the
equilibrium. Now something very strange happened! A symmetry was broken! And as matter
and antimatter annihilated each other in at least two distinct violent eruptions of energy a
little bit of matter was left over.

Evidence for Inflation

What? You don’t believe me? But it’s a fact that this is by far the simplest way of explaining
observational evidence! Why does the universe look the same in every direction? Why are
the galaxies in the sky distributed in exactly the same pattern as far as we can see? How
could the different sides of the sky possibly have become the same? These incredibly distant
regions used to occupy a tiny space at the beginning of inflation. That’s why they look the
same, they were right next to each other at the beginning!

Why is the universe flat? You all know that if you add all the angles in a triangle together,
you get 180 degrees, right? On a flat piece of paper? And if you draw it on the surface of a
sphere? You get 270 degrees. This is because the surface of a sphere is curved, unlike a flat
piece of paper. This is why maps of the whole world get stretched out on top and bottom as
opposed to globes. So, we’ve drawn angles as big as the entire visible universe and they add
up to 180 degrees. Precisely 180. This means that space is exactly flat. Why is that? Well,
the universe needn’t have always been flat. Inflation stretched it out. The universe expanded
so much, we don’t see the curvature anymore. It’s analogous to looking at the flatness of the

4
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Earth’s surface. From our perspective it looks flat, right? But we all know that really its
very nearly spherical, which means that it has a positive curvature.

We’ve also measured the statistics of the distances between the peaks of matter density
today. In other words we’ve measured the distances between the places in the universe,
where high concentrations of objects like galaxies can be found. They correspond exactly to
the statistics of distances between the bumps in the inflaton field during inflation! Where
there are more galaxies today, there would have been more inflaton particles in the early
universe.

Of course what I’ve just told you is a postulated sequence of events at the very beginning
of the life of the universe. And the physics of this early inferno are not very well understood.
I’ve presented you with a theory about how the universe began for which there is a lot of
evidence. But this evidence is not conclusive. At least not yet. Cosmology is a very young
science and our capabilities in acquiring data and developing theoretical models are increasing
drastically every decade.

The Electroweak Phase Transition

Now let’s talk about a regime of physics that we can describe with more confidence, an
environment, we can reproduce here, on Earth in our particle physics experiments like the
Large Hadron Collider in Geneva.

We’ve just undergone the two waves of annihilation of antimatter and nearly all matter.
The universe was cooling and expanding at a constant rate. Now the universe was filled with
a plasma made of quarks and leptons - the building blocks of everything - and gauge
bosons - the messenger particles that carry the strong, weak and electromagnetic force
and hold the building blocks together. These particles, quarks, leptons and gauge bosons, are
all of the fundamental particles of the so-called Standard Model of particle physics and are,
in the simplest picture, all you need to build the universe we see today.

In particular, there are six different types of quarks, six different types of leptons and four
different gauge bosons. The most familiar gauge boson is the photon, the particle of light, the
carrier of the electromagnetic force. The most common leptons are the negatively charged
electrons that, if sent through wires, give us electricity. Another omnipresent lepton is the
very weakly interacting neutrino, of which there are trillions passing through us every second,
most originating from the Sun.

In the not-so-simple picture there are at least three extra particles that you need to explain
what we observe today: the graviton, which carries the gravitational force, the Higgs boson
that appears at the next stage of the evolution of the universe I will talk about or the next
phase transition and a dark matter particle, which I will also talk about later.

The immense release of energy at the brutal annihilation of matter and anti-matter gave
the remaining matter particles a burst of kinetic energy, which made them speed up and by
whizzing around very quickly the particles were able to constantly exchange energy and kept
each other in equilibrium. If by coincidence a particle-antiparticle pair was produced, the
antiparticle was very quickly annihilated by another particle.

This chaotic plasma of fundamental particles could only exist for another tiny fraction of
a second. This short time was already orders of magnitude longer than the Planck Epoch or
the GUT phase, but it was still very very short. In particular, if your heart needed such a
tiny fraction of a second to beat once, it would beat a hundred thousand million times per
second.
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Figure 0.4: Standard model of particle physics.
Image source: http://web.infn.it/sbuser/index.php/en/physics

At this point in cosmic time, the universe underwent another phase transition: the Elec-
troweak Phase Transition, when the electromagnetic and weak nuclear forces finally became
different. Now the four fundamental forces were distinct and the universe looked a little more
familiar. This was also the time when the mysterious Higgs particles were produced. These
particles are essential for our theory of particle physics, but they have perhaps been detected
only recently. Their importance comes from their coupling to normal matter, which causes
the quarks, leptons and some of the gauge bosons to attain mass at the Electroweak Phase
Transition, but not photons. Photons remain masseless. Without the Higgs, we would
not be here today.

Creation of Hadrons and Nucleosynthesis

A millionth of a second later the universe cooled down so much that the quarks didn’t have
enough energy to exist separately anymore. They huddled together like penguins in the winter
and joined in threesomes into protons and neutrons, jointly called baryons. The temperature
of the new plasma was ten trillion degrees and falling. The contents of the new plasma
remained in equilibrium for a whole second! But this was not a boring equilibrium. The
leptons, i.e. electrons and neutrinos took part in reactions in which protons changed into
neutrons and vice versa.

After now a whole a second the temperature dropped to ten billion degrees, which meant
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Figure 0.5: Phase transitions.
Image source: http://www.gauss-centre.eu/quarks

that neutrinos could no longer take part in those reactions. This meant that the maximum
number of neutrons was fixed, because neutrons can decay into protons, but protons are stable
and do not decay. Now, the plasma was made up of mostly electrons - which are leptons,
protons - which are baryons and are made up of quarks and photons - which are massless
gauge bosons and are the particles of light.

Now jump with me to about a minute and a half later, when at a billion degrees, the
universe was cool enough for some of the protons and all of neutrons to join together into
atomic nuclei of Deuterium, the heavier brother of Hydrogen. Hydrogen has only one proton
for a nucleus and in an everyday environment an electron orbits around the proton. The
nucleus of a Deuterium atom however, contains a proton and neutron and is, just as in
Hydrogen, orbited by an electron. So, once enough Deuterium nuclei were produced, they
could start fusing into Helium nuclei, some of which fused into Lithium nuclei. This stage
in the evolution of the universe is called nucleosynthesis and it ends, when the
universe is about three minutes old.

We know this, because we know the properties of protons, neutrons and electrons very well,
from observing them in physics laboratories. We can also observe the universe and measure
the proportions of baryonic matter. It consists of roughly 75 percent Hydrogen and 25 percent
Helium. Lithium and other elements are present in very very small quantities. Such a large
amount of Helium could not have been produced in the stars that we observe. There would
have to be a lot more of them and so, the night sky would have to look a lot brighter. Such
an amount of Helium could only have been produced in the primordial universe.
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The First 400,000 Years

Radiation-dominated Era and Baryonic Acoustic Oscillations

When the universe was only 3 minutes old, or rather, when the universe had 3 minutes of
memory, it was permeated by a plasma containing mostly electrons and protons, or Hydrogen
nuclei and some Helium nuclei, made up of a proton and a neutron, but by far the most
dominant particles at that time were photons.

Photons are in fact a form of radiation. You are all familiar with the dangers of UV
radiation from the Sun? Well UV radiation is nothing but relatively high frequency photos. In
particular, their frequency lies in the Ultra-Violet part of the electromagnetic spectrum, which
is just above our visual range which goes from red to violet - the rainbow. On the other side
of the range is Infra-Red light, whose frequency is just too low for humans to see. The entire
electromagnetic spectrum, going from low to high frequency consists of the following types of
radiation: radio-waves, with the longest wavelengths and smallest frequencies, the microwaves,
infrared light, visible light, ultraviolet light, X-rays and finally, the most energetic, highest
frequency and shortest wavelength: Gamma-rays.

Another, entirely unrelated frequency spectrum, we are all familiar with is the spectrum
of sound. Whereas a photon (or a light wave) is an oscillation of the electromagnetic field - a
very fundamental phenomenon, sound is a (longitudinal) compression wave in the motion of
particles in a medium, like water or air - or plasma. A sound wave can displace a membrane,
like an eardrum for example.

The photon-baryon plasma that ruled the universe after the first three minutes
was loud. Remember the bumps in the inflaton field? Remember that they produced over-
densities in the numbers of inflaton particles? And remember that these particles decayed
into familiar particles of regular matter that make up Hydrogen and Helium? Well, in fact,
the over-densities or bumps, however you want to call them, were preserved through these
first three minutes. Now that physics had time to kick in, these bumps realised that they
were immensely over-pressurised and turned into explosive sound waves in the plasma that
was made up of mostly photons and baryons (or nuclei).

The reason why the bumps became sound waves, was because the overdensity of the
bumps caused them to start collapsing under gravity, but the very quickly moving particles
in the plasma were too energetic to allow the collapse. So, as the bumps tried to contract,
the pressure from the plasma particles caused them to expand, which created an outwardly
propagating wave, sort-of like when you drop a stone into a pond (only that there was only
one wave-front). In fact the universe was full of bumps of different sizes, which meant that the
outwardly propagating spherical sound waves made it looked like a three dimensional pond
into which many metaphorical pebbles of different sizes were dropped at the same time.

The Cosmic Microwave Background and the Size of the Sound Horizon

The (interference) pattern in the photon-baryon plasma resulting from these spherical sound
waves propagated through the universe and didn’t die down for four hundred thousand years.
If you look at the three-dimensional wave pattern resulting from one bump or one pebble,
you can calculate how far the wave front could have propagated in this time. It’s simply
the speed of the sound times the time. Sound speed in those times was, because of the high
energies, nearly equal to the speed of light; well, about fifty percent. So, the distance the wave
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Figure 0.6: The Cosmic Microwave Background Anisotropy.
Image source: http://map.gsfc.nasa.gov/media/101080

front travelled in those four hundred thousand years, was approximately fifty percent of four
hundred thousand light years; so, two hundred thousand light years. An added complication
was that the universe was still expanding, so in the end, this means that the size of the entire
spherical wave front is about a million light years across. This means that the universe was
filled with spherical shells of overdensity in the photon-baryon plasma. You can imagine this
as millions of overlapping bubbles of equal size, filling all of space and expanding with time.

After four hundred thousand years, the universe cooled down to about three thousand
degrees Kelvin, which is approximately the melting point of diamond. This meant that
electrons in the plasma no longer had enough energy to travel freely. They quickly had to
find a lower energy state, meaning that they had to combine with the Hydrogen and Helium
nuclei, to form Hydrogen and Helium atoms! This marked another important transition in
the life of the universe.

Electrons, as you might know, are negatively charged, whereas nuclei are positively charged,
due to the presence of protons. When electrons combined with nuclei to form atoms, there
were no more charged particles traveling freely through the universe. This meant that the
photons, who would normally be absorbed by such charged particles, suddenly became free.
The universe went from being filled with a glowing fog to being completely transparent and
dark. There were no new photons produced and no old ones were destroyed. The photons
released at this transition travelled freely from then on.

From then on, these photos of ancient light were unobstructed, their life was uninteresting.
They propagated freely and slowly cooled down as the universe expanded. You can imagine
this cooling as a stretching of the light’s wavelength by the expanding universe, because
low energy or low temperature always corresponds to a larger wavelength. This light from
the infant universe is still traveling through the universe today. We’ve all seen it. Well
if you are over 20 years old, you probably have. A few percent of the white noise in old
television sets came from this very cold, very long wavelength radiation. In particular, the
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Figure 0.7: The Sky at Different Wavelengths.
Image source: http://www.stfc.ac.uk/resources/image/jpg/planckfirstlight.jpg

temperature today is about three degrees Kelvin or three degrees above absolute zero or minus
two hundred and seventy degrees Celsius. This can be interpreted as the temperature of outer
space, which is today a nearly perfect vacuum filled with extremely rarefied gas as well as
ancient light. The wavelength of such low temperature radiation falls in to the microwave
part of the electromagnetic spectrum and for this reason we call it the Cosmic Microwave
Background or CMB for short.

CMB light was first detected and identified in 1964 by two radio astronomers called Arno
Penzias and Robert Wilson, who serendipitously found a very long wavelength, very uniform
and regular glow of exactly the same intensity coming from all directions in the sky. This
was very conclusive evidence for some parts of what was called The Big Bang Theory, or the
theory that postulates a universe starting out very small and then expanding.

Almost two decades later, in 1992, a satellite called The Cosmic Background Explorer or
COBE was able to make such a precise measurement of this Microwave Background, that it
was able to increase the contrast in image by a factor of a hundred thousand. Once they
did this, the scientists, John Mather and George Smoot, saw the bubbles from the expanding
sound waves and won the Nobel Prize! This measurement showed that our theories of inflation
and sound bubbles in the primordial baryon-photon plasma were correct!

As the photons were freed, when the universe was about four hundred thousand years
old, the walls of the bubbles blown by the primordial pressure of the baryon-photon plasma,
were a little more dense and therefore, had a little bit more gravitational pull. When the
released photons had to climb out of these gravitational wells into which they were being
pulled, they lost energy. And because the photons have been traveling freely ever since, the
photons coming from the points in the sky where the bubbles were located, have a little less
energy than other photons, that escaped from outside these bubbles. For this reason, when
looking at the Cosmic Microwave Background image, having increased the contrast by one
hundred thousand, we can see little overlapping blobs, whose size turns out to correspond
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exactly to what we calculated a minute ago: a million light years! The bubbles turn out to
be exactly the size our theory predicted!

The First 10 Billion Years

Dark Ages and Reionisation: The First Stars

So, we left off in a universe that was transparent and dark and whose fuzzy reddening light
was slowly fading. It remained so for the next hundred million years! This epoch in the life of
the universe is cheerfully called the Dark Ages. The universe was now undergoing a slowing
expansion and cooling. The Hydrogen atoms soon became too cold to remain completely free
and some of them combined in pairs into Hydrogen, or H2 molecules. Luckily however, the
cold darkness did not remain.

Before the Dark Ages, when the massless photons left the bubble walls, the inertia of
the remaining heavy baryons stalled the bubble growth. The bubble sizes were frozen; the
pressure supplied by the energy of the photons no longer could push the electrons, because
now they were bound to nuclei into neutral atoms. This also meant that over-densities could
suddenly be overcome by gravity. The bubble walls started to fragment into separate clouds
of gas and collapse. At first, these clouds collapsed gently and slowly. They slowly became
denser, smaller and hotter. But because of slight inhomogeneities in the collapse, the in-fall
of gas caused it to become turbulent. Moreover, as gas turbulently flew into the centres of
clouds, it accelerated, like any object falling under gravity.

Finally, in majestic swirls the clouds collapsed into extremely dense objects, whose cen-
tres were under so much pressure and at such high temperatures, that in these centres, the
conditions from a much earlier time in the life of the universe were recreated. Hydrogen
molecules broke up and electrons were again stripped away from atomic nuclei. The cores of
these hot, dense objects ignited in nuclear fusion and the nuclei of Hydrogen and Helium from
the primordial universe started joining into nuclei of heavier elements, like Carbon, Nitrogen
and Oxygen! These objects were nothing but the first stars!

The first stars formed a hundred million years after the emission of the Cosmic
Microwave Background. They were very different from the stars we see today; their
masses were hundreds of times that of our Sun and they were very pure! They contained
only Hydrogen and Helium (perhaps also a tiny bit of Lithium). They lived short and violent
lives at the end of which they exploded as fantastic hypernovae and filled the universe with
fireworks of Gamma radiation made up of high-frequency photons. And most importantly,
they expelled the Carbon, Nitrogen and Oxygen out of their cores into the inter-stellar gas!

The appearance of the first stars lit up the universe and ended the the Dark Ages. The new
light consisted of plenty of new, energetic photos that diffused into the surrounding Hydrogen
and Helium gas. These photons heated up the gas, which re-ionized it. In other words, the
temperature went up enough for hot gas pockets to form around the stars. The gas in these
pockets was hot enough for electrons inside to become free from atomic nuclei again.

Matter-dominated Era and Non-linear Collapse: Dark Matter

The first stars were created first and in largest numbers inside the over-densities in the
primordial Hydrogen and Helium gas. In particular, they formed inside the walls of the
pressure bubbles originating from the very early universe. But they also formed in the centres
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Figure 0.8: Population III Stars.
Image source: http://www.mpa-garching.mpg.de/mpa/conferences/stars99

of these bubbles. It turns out, that the whole time, since the beginning of the universe, there
was something else present. An elusive and strange type of matter, which did not let itself be
known to the leptons, quarks and gauge bosons. It did not interact with any of these regular
particles. It hid in the background, giving the rest of the universe a gentle gravitational tug.

The expansion of the universe diluted the density of this strange matter more slowly than
that of the photons. And as the universe cooled down, it’s gravitational influence became
more and more important, until it overpowered the gravitational pull of the bubble walls and
lured most of the baryonic matter back into the centres of the primordial bumps. At the
same time, the mass of the baryonic matter in the bubble walls also attracted a little bit of
this matter to itself.

The strange matter does not interact with electromagnetic radiation, in other words it is
completely transparent to light and does not emit any either. For this reason we call it
Dark Matter. And even though we don’t see it, we know it’s there. Its gravitational pull is
unmistakeable.

With time, the gentle gravitational tug of Dark Matter grew into a fierce pull and all
matter gushed towards the ancient bumps of over-density and the much less pronounced
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Figure 0.9: The Dark Matter Web.
Image source: http://www.mpa-garching.mpg.de/galform/virgo/millennium

bubble walls. The gravitational instability sourced by Dark Matter over-densities caused all
matter to collapse into majestic web-like structures, at whose nodes great gravitational wells
formed and became cradles in which the first galaxies were born.

Because Dark Matter is undetectable directly, scientist use its gravitational effect to map
out its web-like structure. Firstly, we know that regular matter, so, atomic nuclei and electrons
feel gravitational attraction to the Dark Matter. Luckily this regular matter does interact
with light. In fact, stars generate light and other matter disperses it, for this reason such
matter is also referred to as luminous matter and most importantly, therefore we can see it.
Consequently, if we follow the distribution of luminous matter, we can infer the underlying
Dark Matter structure!

In addition, we can try to find the signature of the bubble walls and compare their promi-
nence to the densities of the primordial bumps. This, of course, depends on how much Dark
Matter there is in the universe. The more the Dark Matter, the more the luminous matter
getts pulled from the bubble walls, towards the bubble centres, where the bumps are located.
And if there were no Dark Matter at all, there would only be bubbles!

Finally there is gravitational lensing. Normally photos of light travel on straight lines.
However, according to the theory of Albert Einstein, any kind of massive matter distorts
space by curving all its paths. Therefore, close to massive objects in the universe, light
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cannot travel in straight lines any longer and is therefore deflected or lensed. This causes
the images of distant bright objects, from which this deflected light is coming from, to be
distorted, as if we were looking through a lens! But Dark Matter structures are the most
massive objects in our universe and therefore can be detected by looking for the distortions
in the images of far-away luminous objects like galaxies!

In the early universe, Dark Matter mysteriously lurked in the background, slowly creating
gravitational cradles in which regular matter could safely collapse, without being blown away
by it’s own pressure. These Dark Matter cradles or haloes as they are better known, started
out small. They first formed by collapsing around the smallest and most abundant density
bumps in the universe. As time went by, these small haloes started moving closer together and
clustering around larger bumps until these larger bumps collapsed into larger haloes, which
then clustered and collapsed around even larger bumps. This process is known as non-linear
collapse of structure and is, to an extent, still going on today. The largest haloes that have
had time to collapse in such a way, cradle groups of hundreds of galaxies and are called galaxy
clusters. They are the largest gravitationally bound objects today. But this process is now,
after fourteen billion years (or fourteen gigayears), starting to halt. Why this is the case, I
will keep secret for a little longer.

Galaxy Formation and Active Galactic Nuclei

The baryonic gas of Hydrogen and Helium from the early universe collapsed gradually. Like
Dark Matter it started off with the smallest objects. This is because in the short time from
the emission of the Cosmic Microwave Backgroud, when photos became free and baryons no
longer were pushed around by them, until the beginning of collapse, only the very smallest
objects had time to form. These were the giant primordial starts, who lived violently and
died young in a spectacular fashion. As time went on, like in the case of Dark Matter, larger
clouds of gas had time to collapse, protected in the wells of the forming Dark Matter haloes.
However, unlike Dark Matter, baryonic or regular matter collapsed spectacularly.

So, in the first billion years after the first giant stars formed, the collapsing gas clouds
formed protogalaxies. These protogalaxies were very diverse, taking different forms due to the
turbulent nature of the collapsing gas. Gravity was pulling these vast amounts of material
towards the centre of the gravitational wells. At the same time, the in-falling gas heated
up, because it was moving faster and faster and becoming denser and denser. This heating
sometimes caused it to emit photons, who took away some of its energy, which cooled it down.
Sometimes it was not able to cool down so well and its pressure just increased. This created
magnificent shock waves that travelled through the gas clouds. Sometimes these shock waves
caused such instability in the clouds, that they fragmented further and collapsed into stars.

Some of the protogalaxies had exactly the right properties and environments for this star
formation to happen relatively quickly. This means that once the stars appeared, lived their
lives and died, there was nothing left to happen in the galaxy. The galaxies remained “cloud
shaped”, with no particular interesting features. Their stars at the beginning were born and
enthusiastically emitted high energy photos for a while. High energy photons carry high
frequency light. In other words, stars emitting high energy photons appear blueish. So, these
galaxies shone bright and blue for a short amount of time. Then the stars started running
our of fuel, started getting old and so only could emit lower frequency, reddish light. These
are elliptical galaxies and when observed through something like the Hubble Space Telescope,
they still appear, thirteen billion years later, as featureless, fuzzy reddish blobs.
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Figure 0.10: Barred Spiral Galaxy.
Image source: http://hubblesite.org/gallery/album/galaxy/pr2005001a/

Other galaxies were not so good at creating regions of star formation. These had time
to collapse more gradually and could therefore form discs with beautiful spiral arms of gas,
dust and stars. As the spiral arms rotate around the centre of the galaxy, they create shock
waves that trigger star formation over and over again. Because young, bright stars are always
present, such galaxies appear somewhat blue. Furthermore, because all the material is present
in an ordered disc, there are sometimes giant dust clouds obscuring parts of the galaxy,
creating morphologies that make each spiral galaxy as unique as a snowflake.

Because Dark Matter cradles or haloes exist in many different sizes, some contain a little
bit of lonely gas, some contain little dwarf galaxies, some contain whole, large galaxies and
a few even contain and protect large galaxy clusters. Galaxies always feel gravitational at-
traction towards the centres of these large haloes and orbit around it, like the Moon orbits
the Earth. Often there is a large elliptical galaxy present in the centre of such a Dark Matter
halo and other, smaller galaxies orbit around them. Every few billion years, somewhere in
the universe, two galaxies follow dangerous paths and collide into each other. This is a rare
and beautiful event that triggers new star formation and often turns beautiful spiral galaxies
into chaotic ellipticals and lasts billions and billions of years.

After violently exploding into majestic hypernovae, the most ancient giant stars collapsed
into black holes. These black holes may today be travelling through space, hidden from sight
in their darkness or they may have been caught in the swirls of the largest early collapsing
clouds and ended up seeding the formation of galaxies and may today be resting in the
centres of these galaxies, slowly swallowing up the surrounding gas and stars growing into
super-massive black holes. It is believed that most galaxies contain super-massive black holes
in their centres, which are millions of times heavier than our Sun. If two such galaxies collide,
their central black holes may merge in one of the most violent events possible in the universe
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today. Moreover, when some of these giant black holes first formed, billions of years ago,
in the violent rotating in-fall of material, gigantic jets of photons and other particles were
emitted perpendicularly out of the host galaxy.

So, the primordial baryonic bumps fragmented into giant clouds, when the universe was
about half a billion years old. These clouds then collapsed, protected in gravitational wells
of Dark Matter, into the gigantic and magnificent objects occupied by tens of billions of stars
as well as clouds of gas and dust. On really dark nights, we can see a few of these, the ones
that are very close by, as fuzzy bright spots in the sky. But the closest one of them dominates
our night view upwards. Its arm is the home of our Solar System, the beautiful spiral galaxy,
the Milky Way.

The Universe Today

Supernovae and Redshift

For the next eight billion years not much changed. Galaxies kept rotating, stars kept form-
ing and they kept dying in brilliant supernovae explosions. These explosions could be seen
extremely far away, since they, originating from single stars, could outshine an entire galaxy
of billions of stars! But they could also be seen for a long time. In a way they could be seen
for a time much longer than how long it took them to burn out. This is a strange idea. But
in a way, it makes sense, let me try to explain why.

Photons of light are massless particles. They are infinitely light and so, they are allowed by
physics to travel at the fastest speed possible through a vacuum. The fastest speed anything
can ever travel at. Particles and objects that have mass are forbidden from travelling so fast,
by one of Albert Einstein’s famous calculations. This speed is therefore called the speed of
light in a vacuum and equals six hundred and seventy million miles per hour or three hundred
thousand kilometres per second. However, even though this speed is large, it is not infinite.
This means that even though light travels human distances instantaneously, it takes a while
to traverse astronomical distances. For example, it takes light eight minutes to travel from
the Sun to Earth. It takes it about a day to get from the Sun to the cold, icy, rock populated
edge of our Solar System, about four years to get to our closest star, Proxima Centauri and
twenty five thousand years to get to the centre of our galaxy. The closest galaxy to us is the
Andromeda. If our Sun went nova, the alien astronomers of Andromeda galaxy would only
see it two and a half million years later!

For this reason, any bright event, like a supernova explosion, which only last a few weeks,
is seen forever, its photons travelling farther and farther into the unknown, distant universe,
becoming more and more rarefied and losing energy. And more importantly, for this
reason, the further away we look, the further we look into the past! The fur-
thest observable distance is in the earliest visible event in the past: the Cosmic Microwave
Background, which is what our universe looked like in the last brief epoch before it became
transparent.

Since inflation, the universe has been expanding rapidly. At first its expansion accelerated
exponentially; then it suddenly decelerated to a constant speed whilst inflaton particles were
produced. Then, as radiation and matter dominated it, its expansion slowed, but never ceased!
Photons traveling through such an expanding space, become stretched out in wavelength and
their frequency becomes lesser, it goes from the blue part of the spectrum towards the red. In
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Figure 0.11: Supernova Remnant, the Crab Nebula.
Image source: http://hubblesite.org/gallery/album/star/supernova/pr2002024a/

other words, as if they were becoming tired from having to cross growing distances, photons
loose energy and therefore become red-shifted. The longer a photon has had to travel through
expanding space, the more energy it looses, the more redshifted it becomes. This is why we
say, the universe is cooling down. As the photons loose energy, they become more redshifted
and cooler.

Conveniently, the phenomenon of redshift enables us to measure distances in the universe
even for objects of unknown sizes as long as they emit, diffuse or absorb some light. Ob-
jects like galaxies and supernovae have typical frequency signatures, which are also known
as spectra. As photons from these objects move through the expanding universe and lose
energy, their signatures shift red-wards. Measuring this redshift then means measuring how
long the photon has been traveling through the universe, which, knowing the speed of light,
immediately betrays the distance the photon has travelled from the object to Earth!

As always however, there is a further complication. Redshift can be cosmological, as I
have just described, but it can also come from the motions of bright objects. This effect is
analogous to the Doppler effect, which causes the wavelength of the sound of an approaching
siren have a higher frequency and so a higher pitch than the sound of a siren that is moving
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Figure 0.12: The Energy Budget of our Universe.
Image source: http://planetquest.jpl.nasa.gov/images/darkMatterPie-590.jpg

away. Therefore if a bright object travels towards us, its light becomes Doppler shifted and
it appears bluer. Conversely, if it is moving away from us, it appears redder! So, when
measuring redshift, there are two competing effects, cosmological red-shifting and Doppler
red-shifting. These can in some cases be disentangled and even used to uncover underlying
physical processes in our universe.

In fact, supernovae make very good so-called standard candles, because their intrinsic
brightness is easily predicted. Knowing the intrinsic brightness means having a distance
measure independent from redshift. This is because, as we all know, as things go further
away, they only become dimmer and dimming has nothing to do with wavelength. So if we
know the distance to a supernova, we can figure out how quickly it is moving away from us!

Accelerated Expansion, Dark Energy and the Energy Budget of our
Universe

Non-linear structure collapse is a process in which smaller Dark Matter haloes cluster together
and contribute to the collapse of larger haloes. Until today, when the universe is fourteen
billion years old, this happened in a fractal fashion; the smallest haloes clustered into mid-
sized ones, mid-sized haloes clustered into large ones and so on and so forth. But lately, for
the past few billion years, something strange has been happening. Five billion years ago,
when the universe turned nine billion years old, the giant clusters of galaxies became unable
to collapse. Anything larger that a cluster, started feeling like it’s being pulled apart. This
pull grew with time as the universe gradually re-started its accelerated expansion.

You see, as the universe expanded, the density of radiation fell most rapidly, this is because
unlike ordinary matter, radiation lost additional energy, because the expansion stretched out
its wavelength. The density of ordinary matter, as well as Dark Matter also fell, as you would
expect, if you expand a container without injecting new matter into it. But as the densities
of matter and radiation fell, one density, initially very low and hidden, now started emerging
and becoming more important. Another form of strange energy emerged. Some call it
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vacuum energy and some simply call it Dark Energy. Its most important feature is
that its density has stayed constant, since the beginning of time, even though the universe
has undergone many epochs of expansion. Five million years ago, the density of this energy
became greater than the densities of matter and radiation.

Today, it is starting to dominate the budget of the universe. More than seventy percent
of stuff around us is Dark Energy ; nearly thirty percent is Dark Matter ; only a few percent
is made up of what is familiar, ions, atoms and molecules, stuff you can see, hear, smell and
touch. Like the inflaton field, which caused the very early accelerated inflation, Dark Energy
also has the strange property of negative pressure. Like the inflaton, it also pushes apart as
it gets pulled together by gravity and just like the strange inflaton in the very early universe,
Dark Energy today causes the expansion of space to accelerate!

The accelerated expansion can be seen by observing distant supernovae. In a universe
expanding with a constant speed, doubling the distance, doubles the speed of recession. In
other words, a galaxy cluster a hundred million light-years away will be receding from us twice
as fast as a cluster at only half that distance, so fifty million light-years away. However, if we
look at bright supernovae, whose light reaches us across the furthest distances and whose light
signature is so well known that we can be confident about their speed of recession and whose
distance is also betrayed by their brightness, because they are standard candles, it becomes
clear that they are not receding linearly! Observing such supernovae proves the present day
accelerated expansion of our universe.

The Future of the Universe

The Big Freeze

As time passes, and the universe expands, the already diminishing density of radiation and
matter will disappear. Galaxies will merge and spiral towards their central black holes. Star
formation will cease. As the expansion of space accelerates, it will be able to pull apart any
gravitationally bound objects. First galaxy clusters will fly away from each other, then they
will be ripped apart. All stars will die in novae and turn into dark dwarfs, neutron stars or
black holes. Then individual galaxies will be ripped into pieces. After that stellar remnants
will dissolve into space. Eventually all matter will either fall into black holes or become so
diluted, it will disappear. The universe will become cold and dark, the only objects around
will be extremely rare black holes that will be slowly radiating away their bodies.

And the universe will just keep expanding. Forever.
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Figure 0.13: Merging Galaxies.
Image source: http://hubblesite.org/gallery/album/galaxy/interacting
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CHAPTER 1
The Background Universe

In the introduction, this thesis will deal with the canonical model of cosmology. This model
consists most importantly of two main ideas. The first says that our universe can be de-
scribed mathematically by the Friedman-Lemaitre-Robertson-Walker metric quantifying the
geometric properties of the space-time manifold . The second says that the energy-momentum
tensor (EM) sources this geometry and describes four distinct types of “matter”:

radiation - relativistic matter,

baryonic matter - confusingly called so, this is matter made up of non-relativistic particles
of the standard model (SM) of particle physics, to which baryons contribute most in
energy density,

dark matter (DM) - weakly or non-interacting unknown matter as well as some standard
model particles in the case where their perfect fluid pressure is zero and

Λ - a property or substance that drives the accelerated expansion of space.

These types of “matter” are classified according to their cosmological effects and not their
microscopic properties. We will define these effects and justify this classification below.

In this chapter we derive the equations governing the universe as a whole. These equations
assume a fundamental premise, which is named after Nicolaus Copernicus, who was one of the
more important proponents of the idea that the Earth is not at the centre of the universe. In
the context of cosmology this principle is generalised to say that we do not occupy a special
place in the universe. This is referred to as the Copernican Principle. Together with the
observed isotropy of the sky, we can deduce the third important assumption: homogeneity.
We will use these principles as absolute in this chapter, but we will weaken them to only
statistical homogeneity and isotropy in the following chapters. These assumptions are in fact
to a large extent justified by observation, but the discussion of probing homogeneity and
isotropy of the universe is beyond the scope of this text.
The principles and the equations we derive for the dynamics of the universe are needed to
later understand the evolution equations for the structures in our universe, which are the
topic of this thesis.
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1.1 Basic geometry of the spacetime continuum

1.1.1 Ricci Calculus

The mathematical objects called tensors are governed by the formalism formulated by Ricci &
Levi-Civita (1901) and are reviewed for example by Kay (1988) (but it does utilise a slightly
outdated notation).

Generally, in geometry, a metric tensor can be written down as the invariant infinites-
imal space-time interval (or generally a “line element”), ds2 = gµνdx

µdxν , using Einstein
summation convention, gµν being a symmetric covariant metric tensor1. Note that unlike in
non-relativistic physics, spatial distances are not invariant under coordinate transformations
nor is there an absolute time! In relativity2, the invariant quantity to rely upon becomes the
infinitesimal space-time interval, ds2.

Let us first define partial and covariant derivatives in a curved geometry, respectively:

Aµν,α ≡ ∂αAµν ≡ ∂Aµν
∂xα

and

Aµν;α ≡ ∇αAµν ≡ Aµν,α − ΓτµαAτν − ΓτναAµτ , (1.1)

where we have introduced three new mathematical objects:

1. Christofel symbol (generally, the Levi-Civita connection) is not a tensor:

Γλµν =
1

2
gλα (gµα,ν + gνα,µ − gµν,α) , (1.2)

where gλα is the contravariant form of the metric.

2. The Riemann tensor, Rκλµν , defines the curvature of a manifold. It is dependent on
the non-commutativity of covariant differentiation and vanishes if the order of two
differentiations along different directions is unimportant. With these considerations it
can be derived, but here, we simply write it down:

Rκλµν ≡ Γκλν,µ − Γκλµ,ν + ΓαλνΓκµα − ΓαλµΓκνα. (1.3)

3. Contracting the Riemann tensor, which means summing over two of its indices, gives
the Ricci tensor , δµκRκλµν = Rκλκν = Rλν . Contracting again gives the Ricci scalar,

δνιg
ιλRλν = δνιR

ι
ν = R, where we have used the contravariant metric to raise the

tensorial index of the Ricci tensor to prepare it for the contraction. Both of these
entities; a rank-2 and a rank-0 tensor, tell us about the properties of the manifold:

Rλν = Γκλν,κ − Γκλκ,ν + ΓαλνΓκκα − ΓαλκΓκνα

R = gλνRλν . (1.4)

1We could also take the Minkowski metric of Special Relativity, ηµν and treat gravity as a spin-2 field, hµν
on the space described by this metric, but let us leave that for next time.

2This is the case in Special (Einstein, 1905) as well as General (Einstein, 1916) Relativity.
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1.1. Basic geometry of the spacetime continuum

With respect to the Ricci scalar, R, we can define an extrinsic curvature of the n-dimensional
manifold:

K =
R

n(n− 1)
, (1.5)

which, taking n = 4, describes our universe. For example, Minkowski space gives K = 0 and
(anti-)de-Sitter space gives K = ±1. Here we have taken the Minkowskian metric signature
of (+,−,−,−). This quantity is related to the spatial 3-d curvature, k that we will briefly
discuss below.
The above objects all have interesting symmetries, including the Bianchi identities of the
Riemann tensor.

Extremising the invariant interval, ds2 according to the variational principle yields the
Euler-Lagrange equations of motion in the space described by the metric gµν , which describe
so-called geodesics, shortest paths through space-time3:

d2xµ

ds2
+ Γµαβ

dxα

ds

dxβ

ds
= 0 , (1.6)

where s is the affine parameter and increases monotonically along the path.
For massless particles these paths must be “null” geodesics, where ds2 = 0. Massive particles
travel on time-like geodesics, which in our signature convention ds2 > 0 if no external forces
act on them. If there exist external forces, massive particles travel on time-like world-lines.

1.1.2 Einstein’s theory

The fundamental theory of the modern canonical cosmology is defined by the Einstein field
equations: a set of nonlinear coupled partial differential equations for the components of
the metric, sourced by the components of the EM tensor. The theory is called General
Relativity (Einstein, 1916) and it contains the two above-mentioned central objects of the
canonical cosmology: the metric and the EM tensor. There exist three central premises
for this theory. Firstly, the theory must be coordinate independent or covariant . In fact,
the so-called Principle of General Covariance follows from the Principle of Equivalence of
gravitation and inertia (e.g. Weinberg, 1972, ch. 4). Secondly, the equation of motion must be
made up of terms 2nd order in derivatives of the metric to ensure the equations of gravity not
vary with scale (e.g. Weinberg, 1972, ch. 7). And thirdly, the EM tensor must be covariantly
conserved, which is only true for all types of matter, if the Einstein tensor (defined below, in
eq. 1.16) is also covariantly conserved.

The field equations are derived from the Principle of Least Action applied to the so-called
Einstein-Hilbert action, by varying the metric, δgµν :

δS = δSHilbert + δS“matter” = δ

∫
d4x
√
−g

(
c4

16πG
R+ L“matter”

)
= 0 , (1.7)

where the Ricci Scalar, R, gives the Lagrangian density for gravitation (giving the so-called
Hilbert action),

LGR =
√
−g R =

√
−g gµνRµν , (1.8)

3This equation can also be derived for example by considering a coordinate transformation of the equations
of motion of a free particle in Cartesian coordinates, d2xµ/ds2 = 0
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g = det(gµν) is the determinant of the metric tensor (see also Levi-Civita, 1999) and the final
expression is called also the Palatini Lagrangian.

The S“matter” variation with respect to the metric gives the EM tensor. One can calculate
the conserved Noether current resulting from the invariance of the GR action under global
coordinate transformations. Such a current yields an energy-momentum tensor, but it turns
out not to correspond to observables and does not equal the EM tensor for General Relativity.
However the two mathematical objects are indeed related via spatial averaging as is discussed
in Maggiore (2007, sec. 2.1.1).
The reason for using the Ricci scalar as the (kinetic term only) Lagrangian is beyond the
scope of this thesis and will be discussed another time4.

The field equations are then:

Gµν ≡ Rµν −
1

2
gµνR− gµνΛ =

8πG

c2
Tµν , (1.9)

where Gµν is the so-called Einstein tensor , which vanishes in a vacuum, Tµν is the energy-
momentum (EM) tensor, describing the properties of the contents of the universe and Λ is the
cosmological constant, which can be put on the RHS of the equation, absorbed into the EM
tensor and treated like a strange kind of matter, which is what we choose in this thesis5. From
now on, we will deal mostly with so-called mixed form tensors, because their components are
often simpler and less metric-component-dependent, namely Gµν and Tµν . So, let us write the
field equations in a more practical form:

Gµν = 8πGTµν . (1.10)

As already mentioned, a result of the symmetries of the Einstein tensor it is covariantly con-
served through Bianchi identities and the field equations imply local conservation of energy-
momentum:

Gαν;α = 0 ⇒ Tαν;α = 0 . (1.11)

Several possible solutions to the field equations have been found. In a spherically sym-
metric system for example, with a mass at the origin of the coordinates, the Schwarzschild
solution holds (Schwarzschild, 1916). This is often used to describe the space around black
holes.

1.2 Homogeneous background evolution of the FLRW metric

For a universe following the Copernican principle of spatial homogeneity as well as isotropy
and allowing for curvature of the space-time, the solution to the Einstein field equations
is the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric (Friedmann, 1924; Lemaıtre,
1927; Robertson, 1935; Walker, 1935). We will see later that the universe is indeed spatially
“Copernican” if viewed by a far-sighted, Hubble-sized giant i.e. on the largest scales, the
universe is accurately described by this metric. On smaller scales, we will have to deal with
small perturbations first, which on their own would not disturb Copernicus, but that will
at late times, to our fortune, grow under gravitational instability to the structures that we
inhabit today.

4But we will refer to Lovelock (1972) and Misner et al. (1973) for future reading.
5We will also choose to work in natural units from now on, where we set c = 1.
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1.2. Homogeneous background evolution of the FLRW metric

Because this thesis is only concerned with a spatially flat, expanding universe, we will not
use the most general FLRW metric; we will set the spatial curvature, k = 0. We will only
be concerned with what could be considered a “temporal curvature”6, quantified by the scale
factor, a(t), which quantifies the expansion of the universe, is normalised to a(t = ttoday) = 1
and a(t = 0) = 0 at the time of the “Big Bang”. A spatio-temporally curved metric describing
such a space-time manifold as seen by the far-sighted giant can thus be written as:

ds2 = c2dt2 − a2(t)

(
dr2

1− kr2
+ r2dθ2 + r2 sin2(θ)dφ2

)
= dt2 − a2(t)

(
dr2

1− kr2
+ r2dΩ

)
(1.12)

with c = 1 being the speed of light in natural units and xi ∈ {r, θ, φ} the standard 3-
dimensional spherical coordinates with dΩ being the solid angle7.

The metric in eq. 1.12 already assumes many properties for the spacetime it describes.
Namely, it is clear that the metric is symmetric, moreover the off-diagonal components equal
zero. Note also that the so-called metric signature we have chosen here is Minkowskian, i.e.
the spatial part of the metric is negative. Had we chosen the temporal term in the metric to
be negative, this would not have changed our calculations at all.

Note that, in terms of components, for example, the flat, spatially homogeneous and
isotropic metric in Cartesian coordinates can can be written in component form:

gµν =


1 0 0 0
0 −a2(t) 0 0
0 0 −a2(t) 0
0 0 0 −a2(t)

 , (1.13)

alternatively, gµν = diag(1,−a2(t),−a2(t),−a2(t)), with the conjugate, contravariant form
being gµν = diag(1,−a−2(t),−a−2(t),−a−2(t)), whereas as a line element it becomes:

ds2 = dt2 − a2(t)δijdx
idxj , (1.14)

where δij can be regarded as the Kroenecker delta, but also as the flat, 3-d Euclidean metric
representing the spatial components of the full metric. As here, in most of this thesis, we set
k = 0, thereby choosing a flat universe, which is a good assumption as the curvature has been
measured to be close to zero (e.g. Komatsu et al., 2011)! However, if k > 0, the curvature is
positive and the universe is finite or closed. Conversely, if k < 0, we get a hyperboloid space
with negative curvature, which is infinite or open. However, for a little while, we keep k in
our equations for the sake of generality. Here r is comoving, meaning that the corresponding
physical distance, x = a(t)r. The 4-d coordinates can generally be denoted as xµ ∈ {t, r, θ, φ}.

Actually, this thesis will only be interested in the contents of the energy-momentum tensor.
We will use the results from this section throughout the work, but we will leave the more
subtle considerations of geometry for next time.

6Briefly, in conformal coordinates, i.e. using conformal time, η as the time coordinate, without spatial
curvature, the space-time interval in Cartesian spatial coordinates with setting c = 1 (natural units) becomes
ds2 = a2(η)

(
dη2 − dx2 − dy2 − dz2

)
. In fact, if we set a(η) = 1, thus ignoring the “temporal curvature”

(extrinsic curvature), we obtain the Minkowski metric, which is used in Special Relativity and contains the
Euclidean metric to describe space, plus an extra time-like dimension.

7Sometimes defined as dΩ2 = dθ2 + sin2(θ)dφ2 in literature.
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1.2.1 The Friedmann equations

Let us now attempt to solve Einstein eqns for homogeneous, isotropic, curved (for generality)
metric. Using the FLRW metric from eq. 1.12 and finding its Ricci tensor and scalar using
eq. 1.4,

Rµν = diag(R0
0, R

i
j) = diag

(
−3

ä

a
, δij

[
ä

a
+ 2

ȧ2

a2
+ 2

k

a2

])
R = −6

(
ä

a
+
ȧ2

a2
+

k

a2

)
, (1.15)

we can try to solve the field equations (eq. 1.10) for the individual metric components, which
are parametrised by the time dependent scale factor, a(t) and the spatial curvature, k. Note
that we use the Latin alphabet to denote spatial indices only going as i ∈ {1, 2, 3} and dots
denote derivatives with respect to time, i.e. ȧ ≡ (∂a/∂t) ≡ ∂0a ≡ a,0.

We can now find the LHS of the field equations; we can calculate the purely temporal, 00,
and the spatial, ij, components of the Einstein tensor in mixed form8:

Gµν ≡ Rµν −
1

2
δµνR , (1.16)

having moved the Λ term over onto the RHS of the field equations, into the EM tensor.

However, in order to solve the field equations, we need to find the appropriate EM tensor.
As a first guess, it is convenient to assume that the “matter” described by this tensor behaves
like a perfect fluid and hence, the mixed form EM tensor gains the form of9:

Tµν = (ρ+ P )UµUν − Pδµν , (1.17)

ρ and P being the energy density and pressure and Uµ = dxµ/
√
−ds2 being the 4-velocity,

usually Uµ = diag(1, vi) for massive particles generally and Uµ = diag(1, 0, 0, 0) in the rest
frame of the fluid particles. For this reason we can simplify the EM tensor of a perfect fluid to
Tµν = diag(ρ,−δijP ), which remains useful in other frames, because it transforms as a tensor.
In fact, this is by far not a very general EM tensor, but it is a reasonable assumption in most
regimes relevant for cosmology, because all the major components happen to behave as perfect
fluids on large scales. However, going back in time, as the temperature increases, there exist
regimes in the extreme, early universe, where a more general matter Lagrangian, L“matter”

must be used. The most general meaning the full Lagrangian, describing all the fields and
interactions of the Standard Model (SM) of particle physics. In intermediate regimes, we can
use the full phase space (momentum-position) distribution for only a few individual particle
species, which we do in sec. 2.2.4.

We can now write down the Einstein field equations, where the universe is spatially ho-
mogeneous, isotropic and filled with a single (or dominant) perfect fluid, for now assuming

8Noting that for any metric gµαgαν = δµν = δµν = δµν , the Kroenecker delta.
9Derivation may be found in Landau & Lifshits (1975).
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1.2. Homogeneous background evolution of the FLRW metric

that ρ and P are global, but time dependent properties of the fluid:

G0
0 = 3

ȧ2

a2
+ 3

k

a2
= 8πGρ (1.18)

Gij = δij

(
ä

a
+ 2

ȧ2

a2
+ 2

k

a2

)
− 3δij

(
ä

a
+
ȧ2

a2
+

k

a2

)
= δij

(
−2

ä

a
+
ȧ2

a2
+

k

a2

)
= −8πGδijP , (1.19)

which can be rearranged in the following way to obtain the equation of motion for the FLRW
universe:

eq. 1.18⇒
(
ȧ

a

)2

=
8πG

3
ρ− k

a2
, (1.20)

eq. 1.19 & eq. 1.18⇒ ä

a
=

4πG

3
(ρ+ 3P ) . (1.21)

These are called the Friedmann and acceleration equations and can be combined into
a conservation (fluid or continuity) equation, which also directly follows from the EM
conservation, Tαν;α = 0; the component with ν = 0:

eq. 1.11 ⇒ ρ̇+ 3
ȧ

a
(ρ+ P ) = 0 , (1.22)

which is valid for individual components, x, of the “matter” in the universe as well as for the
total density of all “matter” combined.

1.2.2 Redshift

As briefly mentioned in the sec. 1.1.2, massless particles travel on ‘null’ geodesics. These
geodesics change with time however, due to the expansion of space. We would like to described
the changes in the characteristics of the massless particles (namely photons) induced by this
expansion. For this reason, we define the 4-momentum for massless particles10:

Pµ ≡ dxµ

ds
, (1.23)

where s is still the affine parameter and the 4-momentum components are Pµ = (E, pi), where
pi is the physical momentum.We also note that

d

ds
=
dx0

ds

d

dx0
= E

d

dt
, (1.24)

from the definition of the 4-momentum. We know that the magnitude of the 4-momentum
for massless particles is zero (e.g. Peiris, 2009) and therefore,

|P |2 = PµPµ = gµνP
µP ν

= E2 − a2δijp
ipj = 0

⇒ |p|2 = E2a−2 , (1.25)
10Nota bene that this and sec. 2.2.4 are the only sections in this thesis, where P denotes momentum and

in most of the rest of the work, P will always stand for pressure.
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where we have defined the magnitude of the comoving 3-momentum vector in flat space as
|p|2 = δijp

ipj , because we consider only flat space, k = 0 and therefore the spatial metric
is Euclidean, δij . We now use these results to calculate the 0th component of the geodesic
equation (eq. 1.6) for a massless particle:

0 = E
dP 0

dt
+ Γ0

ijp
ipj

= E
dE

dt
+ ȧa |p|2

⇒ 0 =
1

E

dE

dt
+
ȧ

a
, (1.26)

and so

E ∝ 1

a
, (1.27)

meaning that as a→∞, E → 0 i.e. as the universe expands, massless particles loose energy.
We know from quantum mechanics that the energy of photons, E = λ−1, where λ is the
wavelength and we are using natural units (c = ~ = 1). This means that the expansion of the
universe stretches the wavelength of photons linearly, λ ∝ a and we can define a “redshift”:

z ≡ λobserved − λemitted

λemitted
=
aobserved − aemitted

aemitted
(1.28)

and assuming we observe this photon today, when a = 1 then

aemitted =
1

1 + z
. (1.29)

1.2.3 Distances

Let us finally take the opportunity here to discuss the cosmological horizons, in reference
to Mukhanov (2005, ch. 2) and Hogg (1999). A comoving distance is the distance between
points on an imaginary comoving grid, which expands together with the universe. In order to
convert it to a physical or proper distance, we must multiply by the scale factor, a. We have
used x1 = r, the comoving distance, which makes x = a(t)r for example, a proper distance.
Because a distance is a shortest path between two points, which can be characterised by
photon paths through space, we can set ds2 = 0 and integrate eq. (1.14) to find a distance:

r =

∫ r

0
dr̃ =

∫ t

tinit

dt

a(t)
, (1.30)

where we have chosen to integrate along the path of the photon (i.e. we’ve set dr parallel
to the path, setting the angular part of eq. (1.14). This is the first time we have made a
choice of coordinates, but we will do this once again in the next section, in the context of
perturbation theory. Noting eq. (1.33), we can re-write the above equation in therms of the
Hubble parameter:

r =

∫ a

ainit

da

aH
. (1.31)
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Since a is dimensionless, we can now note that in terms of units, [r] = [cH−1] = [ctH ] and
in recent times, when a ∼ 1, it is also the case that r ∼ H−1, where as before we set c = 1.
This defines a so-called Hubble scale, rH = H−1 and the Hubble time, tH . The Hubble scale
can be interpreted to characterise the size of the local inertial frame (Mukhanov, 2005, p.40),
because it is of the order of the 4-curvature, K. We can see this by looking at equations (1.5)
and (1.15), considering only regimes, where the acceleration of the expansion of the universe
is small.

Secondly, taking into account the finiteness of the age of the universe, tage ≈ 15 Gyrs, we
should realise, that the maximal distance light could have travelled from its starting point
is also finite. For this reason we can define horizons. The particle horizon is said to define
volume in the universe from which we can receive information. Without taking into account
the expansion of the universe a rough guess of the size of the particle horizon might then be
tagec ≈ 15 million light years. In order to calculate the horizon at time, t more precisely, one
should integrate the following over the different eras of expansion from the section above:

r(t) =

∫ a(t)

a=0

da

aH(a)
. (1.32)

In the following sections, we will refer to a “Hubble horizon” several times. By this we
will simply mean that we are approximating the particle horizon by the Hubble scale, because
the exact value is not relevant to our calculations.

1.3 Contents of the universe: ΛCDM

So far we have only spoken abstractly of the EM tensor, density and pressure of the perfect-
fluid-like “matter” in the universe. We should now discuss the three main substances: rela-
tivistic “matter” or radiation, non-relativistic pressureless matter and the strange cosmo-
logical constant in order to describe the dynamics of the universe11.

As suggested in sec. 1.1.2, we will consider the geometry to conform to standard GR
and classify the cosmological constant as a substance and as a part of the EM tensor.
There is a large volume of research concerned with the nature of this substance (see for e.g.
Carroll (2003); Padmanabhan (2008); Amendola et al. (2012); Carroll (2001); Li et al. (2012);
Perlmutter et al. (1999); Riess et al. (1998)). It is more generally known as dark energy ,
which implies a wider variety of possible properties. Even more general is quintessence,
which allows for a time varying equation of state. Modified gravity on the other hand leaves
the unknown strangeness on the geometry side of the field equations. Finally, some believe
that the observed accelerated expansion of the universe is an illusion due to the incorrect
use of the homogeneous FLRW metric in a nonlinearly inhomogeneous universe, known as
backreaction. We will leave the discussion of this dark riddle for some other time.

The substance central to this thesis is dark matter (DM). We will not discuss the evidence
for its existence, since this is one of our primary assumptions, but we will mention the work
of Zwicky (1933), who was one of the first to discover the necessity for an unseen source
of gravity to explain the dynamics of observed luminous objects within the framework of
General Relativity. Much further evidence exists, among which the previously discussed
Cosmic Microwave Background anisotropy contributes strongly. All this is discussed in many

11References for much of this and other chapters are Bergström & Goobar (2006); Börner (2004); Dodelson
(2003); Kolb & Turner (1994); Mukhanov (2005); Peacock (1998); Peebles (1993).
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papers, reviews and books, we refer the reader to the extensive review of Bertone et al. (2005),
for example. We discuss in some detail the thermodynamics of particle species of DM in the
next chapter. Let us for now treat it in the simplest way possible, as made up of heavy
particles at rest with respect to the coordinate grid and as absolutely non-interacting. This
means that it is completely pressureless.

Baryons are often treated either as radiation or as dark matter in the cosmological
context, but we will not concern ourselves with details about baryon physics at this stage
either.

1.3.1 Evolution of energy density

The Friedmann eq. (1.20), acceleration eq. (1.21) and fluid eq. (1.22) can be solved if the
total density, ρtot =

∑
x ρx and pressure, Ptot =

∑
x Px, are known12. Most simply, if a single

species, x has a much larger density, ρx than all the others combined. For convenience, we
introduce the following functions of the scale factor, a:

the Hubble parameter: H(a) =
ȧ

a

the critical density for flatness, k = 0: ρcrit(a) =
3H2

8πG

the density parameter for species x: Ωx(a) =
ρx(a)

ρcrit(a)
. (1.33)

Having assumed the cosmological constant, Λ into the EM tensor in sec. 1.1.2, we can
define its density parameters. In analogy we can define density parameters for the curvature,
although they don’t have a very physical meaning:

ρΛ =
Λ

8πG
& ΩΛ(a) =

ρΛ(a)

ρcrit(a)
=

Λ

3H2
(1.34)

ρk(a) = − 3k

8πGa2
& Ωk(a) =

ρk(a)

ρcrit(a)
= − k

H2a2
. (1.35)

From now on, we assume a flat universe for simplicity and since the principles explored in
this thesis are not deeply connected to the curvature of space. Thus we set k = ρk = Ωk = 0.

In the previous section we’ve shown that the equation of state for species x can be written
down as wx = Px/ρx. We can rewrite the fluid (eq 1.22) as:

ρ̇x + 3Hρx(1 + wx) = 0 . (1.36)

For radiation, wr = 1/3 and we find the solution:

ρr(a) = ρr,0a
−4 , (1.37)

where ρx,0 = ρx(a = 1) is the density of species x today. For pressureless matter wm = 0
and so:

ρm(a) = ρm,0a
−3 . (1.38)

12Note that ρx and Px are not tensors. The index x merely implies a species of “matter”. Secondly, beware
that Px is the pressure of species x, pi is the 3-momentum and Pµ is the 4-momentum of a single particle.
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1.3. Contents of the universe: ΛCDM

Finally, the cosmological constant has the equation of state wΛ = −1 , which we can see
from the following consideration, keeping in mind that it must remain a constant with time
and therefore with a and so ρΛ must be constant too (eq. 1.34):

ρΛ(a) = ρΛ,0a
−3(1+wΛ) = ρΛ,0 . (1.39)

In the generalised case of dark energy, this equation of state parameter can be wde 6= −1.

1.3.2 The eras of evolution: radiation, matter and Λ domination

We wish to solve eq. 1.20 to understand how the scale factor evolves with time, t. If species
x dominates the dynamics, ρx � ρy (for all y 6= x) and so ρtot(a) ∼ ρx(a). In such a case
the Friedmann equation can be solved easily. We can find the eras of time, when each of the
three species dominates13:

Big Bang: ⇒ a0 ∼ 0

R.D.: ρr(a)� ρm(a) ⇐⇒ Ωr(a)� Ωm(a) ⇒ ar.d. � Ωr,0/Ωm,0

M.D.: ρm(a)� ρΛ ⇐⇒ Ωm(a)� ΩΛ ⇒ am.d. � (Ωm,0/ΩΛ)1/3

today: ⇒ atoday ∼ 1 , (1.40)

where we have already assumed that 0 < Ωr,0 < Ωm,0 < ΩΛ, which we know from observations
that we will briefly discuss in sec. 2.2.1 (also Larson et al., 2011). Note also that the time,
teq when Ωm(aeq) = Ωr(aeq) is often called the time of equality.

With this in mind we can finally return to the Friedmann equation (eq. 1.20) and by using
eq. 1.33, rewrite it as:

H2 =
8πG

3

∑
x

ρx(a)

⇒ 1 =
∑
x

Ωx(a) as well as (1.41)

⇒ H2 =
8πG

3

(
ρr,0a

−4 + ρm,0a
−3 + ρΛ

)
(1.42)

where the curvature parameter, k = 0 and H0 ≡ H(a = 1). Therefore eq. 1.20 can also be
written as

H2 = H2
0

(
Ωr,0a

−4 + Ωm,0a
−3 + ΩΛ

)
, (1.43)

where the present time Hubble parameter is often written as H0 = 100h km s−1 Mpc−1 for
historical reasons (e.g. Overbye, 1991). The dimensionless Hubble parameter is today known
to have the value of around h = 0.71 (Komatsu et al., 2011).

13Nota bene that Ωx,0 = ρx,0/ρcrit,0 6= ρx,0/ρcrit(a) and Ωx(a) = ρx(a)/ρcrit(a) 6= ρx(a)/ρcrit,0!
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This equation can be solved to obtain

R.D.: ar.d. ≈ t1/2
(
H2

0 Ωr,0

)1/4
M.D.: am.d. ≈ t2/3

(
H2

0 Ωm,0

)1/3
de Sitter space or Λ.D.: aΛ.d. ≈ exp

{
t
√
H2

0 ΩΛ

}
, (1.44)

having used that a(t = 0) = 0 in the integration. The fate of the universe can be deduced
from these equations.

1.3.3 Thermodynamics

In the previous sections we have made the simplifying assumption that the only relevant
thermodynamical properties of matter in calculating the dynamics of spacetime are density
and pressure. This is indeed almost certainly a good assumption in many cases. For example,
the large scale distribution of matter can for the most part be described in terms of the perfect
fluid approximation, because we can neglect particle free-streaming and diffusion (Liddle
& Lyth, 1993). Let us now find the relationship between density and pressure and justify
the perfect fluid assumption.

The requirement for local thermodynamic equilibrium (LTE) in an expanding universe is
that the interaction rate between the particles (often denoted by Γ(t)) must be much greater
than the rate of the expansion of the universe, H(t). For a relativistic (mx � TD) or non-
relativistic (mx � TD) species that decouples from the heat bath14 while still in equilibrium,
the distributions function remains self-similar with expansion. This is not the case with semi-
relativistic species for which mx ∼ TD. Fortunately not many cosmologically relevant species
fall into the last category.

A perfect fluid

A perfect fluid fully characterised by ρ(x, t), S(x, t) and V (x, t), its energy density distribu-
tion, its entropy per unit mass and its vector field of 3-velocities (see also ch. 6 of Mukhanov,
2005). Assuming that it is in thermal equilibrium gives the equation of state for the perfect
fluid, which describes the relationship between these three quantities: P = P (ρ, S). Taylor
expanding the perturbed pressure to linear order,

P0 + δP = P (ρ+ δρ, S + δS) , (1.45)

yields the familiar

δP = c2
sδρ+ σδS , (1.46)

where clearly

c2
s ≡

∂P

∂ρ

∣∣∣∣
S

and σ ≡ ∂P

∂S

∣∣∣∣
ρ

. (1.47)

14The gas of species that are still interacting with each other.
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1.3. Contents of the universe: ΛCDM

The additional assumption that the matter in the universe can be described as an adiabatic
perfect fluid, means that δS = 0, i.e. no perturbations in the total entropy. This results
in that for a perfect fluid, to linear order, w ≈ c2

s . The assumption of adiabaticity in an
expanding volume is correct for a species in true thermal equilibrium, which can be shown by
the consideration of the first and second laws of thermodynamics (see for example sec. 3.4 in
Kolb & Turner, 1994).

Then, for the linear but nonrelativistic case, P � ρc2 and the speed of sound, cs � c
and effectively wm ≈ 0.

In everyday, Newtonian physics, the pressure, P , depends on the 3-velocity via the Euler
equation, which describes movement of fluid in a gravitational potential (Mukhanov, 2005,
p.267, eqn. 6.8) and the gravitational potential, φ, depends on ρ via the Poisson equation,
which describes how mass sources the gravitational potential (Mukhanov, 2005, eqn. 6.10).
Together with the continuity equation, which describes how matter flows and conservation
of entropy , which describes the conservation of entropy if we neglect dissipation (Mukhanov,
2005, eqns. 6.3 and 6.9), these five equations form a complete set of equations describing a
perfect fluid.

The Euler equation, the continuity equation and conservation of entropy all emerge from
the conservation of the energy-momentum tensor, which is a consequence of intrinsic property
called the Bianchi identity that emerges from the symmetries of the Riemann curvature tensor
that we encountered in the previous sections. The Poisson equation is a combination of the
0 − 0 and the integrated 0 − i component of the perturbed Einstein field equations. Such
perturbed equations will be described in the next chapter. The equation of state is the
only equation here that does not directly emerge from Einstein’s theory, but requires the
assumption of the ideal gas (perfect fluid).

Phase space distribution

In order to see what happens in the relativistic case, we must extend our analysis to the phase
space15 distribution of particles of our perfect fluid. Generally, for a spatially homogeneous
weakly-interacting fluid of particles with g internal degrees of freedom, we write down (Kolb
& Turner, 1994, sec. 3.3):

ρ =
g

(2π)3

∫
E(pi)f0(pi)dpi

P =
g

(2π)3

∫
|p|2

3E
f0(pi)dpi , (1.48)

where pi = dxi/ds is the physical momentum as defined in the previous section (eq 1.23), f0

is the homogeneous one-particle phase space distribution function and E = P 0 is the energy
of the particles of the fluid. As before, we can calculate the magnitude of the 4-momentum,

|P |2 = PµP
µ = E2 − a2|p|2 = m2 , (1.49)

|p|2 = δijp
ipj being the magnitude of the physical momentum and m being the mass of the

particles making up the fluid and as always, the speed of light c = 1. Neglecting for the

15The phase space for a system of N particles is the 6N-dimensional space of positions and momenta of all
the particles.
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moment the expansion of the universe16, a = 1, this yields the familiar expression:

E2 = |p|2 +m2 . (1.50)

In thermal equilibrium, the phase space function is given by either the Fermi-Dirac or
Bose-Einstein distribution, depending on whether the particles are fermions or bosons re-
spectively:

f0(pi) =
1

exp {(E − µ)/T} ± 1
, (1.51)

where T is the temperature of the gas of fermions (+1) or bosons (−1) and µ is its chemical
potential.

For a relativistic gas of either fermions or bosons not interacting chemically (T � µ),
inserting eq. (1.51) into eq. (1.48) yields the equation of state wr = 1/3, since relativistic
means that T � m, yielding P = ρ/3. Not spending too much time on the details let us
also mention that from the above equations one finds that for a non-degenerate17 relativistic
species of matter, the energy density also found from multiplying the number density of
particles by the average energy per particle, 〈E〉 is

ρ ∝ n 〈E〉 ∝ gT 4 . (1.52)

In fact, in a universe dominated by relativistic species, we can characterise the temperature
by referring to the energy densty (or vice versa):

ρr =
π2

30
g∗T

4 , (1.53)

where we have replaced the number of the degrees of freedom, g for different species by the
summation over all the relativistic species, n to get the effective number of relativistic degrees
of freedom:

g∗(T ) =
bosons∑
x

gx

(
Tx
T

)4

+
7

8

fermions∑
x

gx

(
Tx
T

)4

. (1.54)

The factor of 7/8 arises from simplifying eq. (1.48) for a relativistic fermion species. Note
that this equation is different in characterising the relation between pressure and temperature
if the contribution of non- and semi-relativistic species is significant.

We have already shown that for a nonrelativistic gas the equation of state is vanishing,
but let us note here that the expressions in eq. (1.48) simplify the same way regardless of
whether the gas is made up of bosons or fermions.

We will use these results in the sec. 1.3.1 and revisit the phase space distribution without
assuming homogeneity in sec. 2.2.4.

1.3.4 Decouplings and the evolution of temperature

We have shown in sec. 1.3.3 the intuitive rule that temperature falls with density as the
universe expands. Similarly, the rate for the any kind of interaction, Γint,x ≡ nx 〈σint,x|vx|〉,

16Alternatively, we can specify that we are stating our equations in this section in a comoving frame.
17A degenerate form of matter is the counterpart to the perfect fluid and it implies that all particles are in

the lowest possible energy state.
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1.3. Contents of the universe: ΛCDM

which depends on the number density of the interacting particles, n, the interaction cross-
section, σ and the particle speed, |v|, decreases with the expanding universe. This leads to
three important thermodynamic events for any particle species (see also Kolb & Turner, 1994,
ch. 3 and 5), assuming of course that it is completely stable, i.e. that it does not decay into
other species:

Decoupling from the heat bath, when a species no longer is in local thermodynamic
equilibrium. This means it no longer interacts with the other species in the heat bath
and therefore does not receive the transference of entropy from other species. This
means that its temperature is no longer related to the number of relativistic degrees
of freedom, g∗, but rather redshifts as Tx ∝ 1/a. Specifically, in the adiabatic early
universe it can be shown that before decoupling, the entropy, S = g∗T

3a3 = const.,

meaning that aT ∝ g−1/3
∗ (T being the temperature of the heat bath). Once decoupled,

by considering the equilibrium distribution we can show that:

Tx =

{
TD,x(aD,x/a) ultra-relativistic, Ek ∝ E ∝ 1/a
TD,x(aD,x/a)2 non-relativistic, Ek ∝ |p|2 ∝ 1/a2 .

(1.55)

The temperature, TD at the time of decoupling, tD therefore fully determines the tem-
perature of the species in the future and depends entirely on the number of relativistic
degrees of freedom and the scale factor at decoupling via:

aDTD,x ∝
1

g
1/3
∗ (tD,x)

. (1.56)

Since g∗ decreases with time as more and more species in equilibrium become nonrela-
tivistic, an early decoupling means that the temperature of the species, Tx will be low.
Such is the assumption in ΛCDM; cold dark matter is defined by its low temperature
and hence early decoupling. On the other hand massive neutrinos are one of the last
species to decouple from the photon-baryon plasma. For this reason they can be consid-
ered hot dark matter (HDM). Any species with properties between these two extremes
is considered to be warm dark matter (WDM).
The phase space distribution function for a species that decoupled while relativistic
and in equilibrium is given by eq. (1.51).

Freeze-out is characterised by the cessation of the processes that keep a matter species
in thermal equilibrium with itself18. Similarly to the case of LTE, if a species is in
equilibrium with itself when it becomes nonrelativistic, its abundance is exponentially
suppressed. This reflects the fact that the species’ abundance, Ωx is determined by
its time of freeze-out. The important factors in calculating the freeze-out time are
the particle mass, the cross-section for annihilation in the case of a so called cold relic.
However in the case of a hot or warm relic, these factors are irrelevant and the abundance
can be calculated from the effective number of relativistic degrees of freedom at freeze-
out, g∗,fo, the particle mass for the species, mx and the effective number of the degrees
of freedom for the species, gx (Kolb & Turner, 1994, eq. 5.31):

Ωxh
2 ≈ 70

[
gx
g∗,fo

]( mx

keV

)
. (1.57)

18In other words, the species decouples from itself, but this process is not known as decoupling to avoid
confusion.

35



The Background Universe

We meet this equation again in sec. 2.3.3. Let us just note here that a mx ∼ keV
weakly interactive particle would match the measured abundance, if it froze out when
g∗,fo ∼ 500gx.
In this thesis, we assume that we know this abundance to be as measured by the
WMAP satellite (Dunkley et al., 2009), which we discuss a bit more in the next chapter
(sec 2.2.1).

Becoming nonrelativistic means that the temperature of the species, Tx drops to Tx �
mx. A transfer of entropy that can heat up the heat bath occurs if a massive species be-
comes nonrelativistic while still in LTE and therefore its density becomes exponentially
suppressed, n ∝ exp(−m/T ). This can be calculated from eq. (1.48) for nonrelativistic
particles. We consider the effects of particles that become nonrelativistic later than
regular CDM in sec. 2.3.3.

It is important to note that even though many simplifications can be made, in order
to treat the process of decoupling and other non-equilibrium dynamics, one should use the
full, covariant Boltzmann equation to describe the evolution of the phase space distribution
function, f(Pµ, xµ):

L̂[f ] = C[f ] , (1.58)

where L̂ is the Liouville operator in the nonrelativistic case becomes:

L̂nr =
d

dt
+ v ·∇x +

F

m
·∇c , (1.59)

and in the fully covariant, relativistic case:

L̂ = Pµ
∂

∂xµ
− ΓµνκP

νP κ
∂

∂Pµ
, (1.60)

where Γµνκ is now as previously the Christoffel symbol. We revisit the Boltzmann equation
in sec. 2.2.4.

The matter distribution in our universe starts out almost completely uniform, but in the
era of gravitation, gravitational instability amplifies initial tiny fluctuations into structure.
This is the topic of the next two chapters.
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CHAPTER 2
The Early, Linear Structure

In the previous chapter we considered the time-varying, spatially-flat, absolutely homogeneous
and isotropic FLRW metric (eq 1.14) as a solution to the nonlinear Einstein field equations
(eq 1.10). We found the equations for the dynamics of our spacetime (eq 1.44) by solving for
the components of the spatially constant FLRW metric.
This is a relatively straightforward solution to the field equations, but it is far from most
general. As in many systems of equations, the perturbative approach can be attempted to
solve the field equations in the local case, where the components of the metric depend not
only on time, but also vary with position. It is clear that such solutions are necessary in order
to describe the real universe in which structure exists. In this chapter we will write down
the result of using the simplest perturbative extension to the homogeneous FLRW metric.
We will still make many assumptions to facilitate the calculations. In particularly, we will
only consider the regime in which only the first order perturbations to the FLRW metric are
considered. This is a reasonable assumption in some regimes, in particular at early times and
on large scales. We will attempt to justify why in the following sections.

2.1 Perturbing the field equations

We have shown how the Einstein field equations can be solved fairly straightforwardly with a
homogeneous and isotropic FLRW metric (eq 1.12) to describe the geometric LHS (eq 1.10),
sourced by the perfect fluid EM tensor on the RHS (eq 1.17).
We now wish to drop the assumption that the field equations are constant in space and
reintroduce spatial dependence of the EM and the Einstein tensors (eqns. 1.16 and 1.17).
Finding solution in this case is very difficult and in fact has not yet been achieved without the
use of approximating assumptions and numerical methods. The method we use in this chapter
is cosmological perturbation theory, which makes small perturbations around the analytically
obtained homogeneous solutions.

2.1.1 The perturbed FLRW metric

We start by generalising the metric:

g̃µν = gµν + δgµν , (2.1)
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The Early, Linear Structure

where gµν is still the homogeneous metric given in eq. (1.14) and δgµν is the space-dependent
perturbation, which at this point needs not be small yet. Let us then start by writing a general
perturbed metric using the 3+1 splitting or ADM splitting (Alcubierre, 2008; Arnowitt et al.,
1962):

ds2 = N2dt2 − γij
(
dxi −N idt

) (
dxj −N jdt

)
, (2.2)

where N i(t, xi) is the spatial shift vector and the N(t, xi) is the time lapse function.
We now make the explicit assumption that any perturbations in the metric are small,

i.e. δgµν � gµν . As usual, the smallness of the perturbations ensures that the equations of
motion, i.e. the field equations can be linearised and therefore utilised and interpreted fairly
straightforwardly. Now we can state explicitly the most general form of a symmetric metric
with only the scalar perturbations ∈ {ψ, φ, b, h}1:

ds2 = (1 + 2ψ)dt2 − 2b,iadx
idt− a2

[
(1− 2φ)δij + 2h,ij)

]
dxidxj . (2.3)

Relating this to eq. (2.2) means that we set the lapse, N = N̄(1 + ψ), the shift, Ni = −a2b,i
and the spatial metric, γij = a2 [(1− 2φ)δij + 2h,ij ], with N̄ = 1 for a proper time coordinate,
t and N̄ = a if we wish to start using conformal time, τ as we do later on.

We wish to be able to work with the perturbed metric components explicitly, however in
order to do this, we need to first specify a coordinate system. This, seemingly trivial issue
is in fact crucial in writing down our observables. Any choice of coordinates introduces a set
of redundant degrees of freedom or gauge. We can see this by realising that the symmetric
Einstein field equations in eq. (1.10) are a set of 10 algebraically independent equations and
that the metric similarly has 10 independent components. This might mean that the Einstein
field equations suffice to determine all 10 metric components. However, the Bianchi identities
(eq 1.11) constrain a further 4 component field equations, leaving us with 4 redundant degrees
of freedom, the gauge. These degrees of freedom are determined by a choice of 4 conditions
defining the coordinate system. We refer the reader to Mukhanov (2005, sec. 7.1.2) and to
Weinberg (1972, sec. 7.4) for a further cosmologically relevant explanation of gauge theory2.
We simply state that in this thesis, for the reason of a simple connection to Newtonian gravity,
we choose to give our equations in conformal Newtonian gauge (as also in Dodelson (2003) for
example). This means that we choose our coordinates t and xi such that b = h = 0, regaining
a purely diagonal and therefore also obviously symmetric metric:

ds2 = (1 + 2ψ)dt2 − a2(1− 2φ)δijdx
idxj . (2.4)

In this gauge it is reasonable to refer to φ and ψ as gravitational potentials, which are of
course dependent on all, t and xi.

Let us redefine our time variable to make our equations a little simpler. We now start using
conformal time, which re-defines the time interval to be dτ = a dt and the time-derivative to
be ∂τ = a−1∂t and is denoted by a dash, e.g. ∂τa ≡ a′. The Hubble parameter then becomes
H ≡ ȧ/a = ∂τa, we can define a new parameter H ≡ a′/a and we write the metric as:

ds2 = a2
[
(1 + 2ψ)dτ2 − (1− 2φ)δijdx

idxj
]

. (2.5)

1For example, Mukhanov (2005) treats vector and tensor perturbations as well. Tensor perturbations
give gravitational waves. Vector perturbations result from strange inflation theories and are often omitted.
Note furthermore that the “scalar perturbations” only behave as scalars under spatial rotations and not under
general coordinate transformations!

2This was also dealt with in some detail in my essay (Markovič, 2009), submitted as a part of my masters
degree at Cambridge and therefore will not be discussed further here.
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2.1.2 The perturbed perfect fluid: the EM tensor

In order to still conform to the Einstein field equations, clearly the EM tensor must also
become position dependent. Analogously to the metric, we can write it down as the homoge-
neous and isotropic background EM tensor, plus a local perturbation:

T̃µν = Tµν + δTµν , (2.6)

where δTµν now evolves with time but also depends on the position. We can write down
the temporal and spatial components of the local perturbation in a form that anticipates the
insertion into the field equations, but remains general:

δT 0
0 = δρ

δT 0
i = −(ρ+ P )vi

δT ij = −δijδP + Πi
j , (2.7)

where we have split the spatial, ij component into a trace, δijδP and a traceless part, Πi
j .

We can also define a scalar stress variable, σ = −[∂i∂
j − δji/3]Πi

j/(ρ + P ), as in Ma &
Bertschinger (1995). It turns out that these perturbations can be interpreted in an intuitive
manner: ρ̃(τ, xi) = ρ(τ) + δρ(τ, xi) is the space and time dependent perturbed density, δP
is similarly the perturbation in the pressure and vi is the coordinate fluid velocity. The Πi

j

is an anisotropic shear perturbation. The density perturbation is a crucial quantity in this
thesis and it is convenient to here define another related variable, the fractional density
perturbation for a “matter” species, x: δx = δρx/ρx.

2.2 Linearised solutions

Having generalised the FLRW metric by making the assumptions that its newly introduced
spatial dependence only generates scalar degrees of freedom and that the metric remains
symmetric as well as choosing our gauge, we can now again attempt to solve the field equations
(eq 1.10) for the metric components.

2.2.1 Small anisotropy in the Cosmic Microwave Background

It has been known for many decades, since the discovery in 1965 that the most exact black-
body radiation known reaches us nearly perfectly isotropically from the entire sky (Dicke et al.,
1965; Peebles, 1965; Penzias & Wilson, 1965; Silk, 1967). This black body radiation can be
explained by the presence of an opaque fluid in the very early, “fireball” universe, distributed
homogeneously and in local thermal equilibrium3 with the radiation. Having expanded and
cooled, the fluid would have decoupled and the universe would have become transparent to
the radiation which would then have cooled drastically with the expansion of the universe
until reaching a frequency distribution4 corresponding to a black body with T ∼ 3K. Such
a history would imply that our universe must have been very nearly homogeneous at some
point, justifying using the homogeneous FLRW solution from eq. (1.14) at least as a reasonable
approximation.

3The condition for thermal equilibrium in an expanding universe is that the rate of the relevant interaction
is greater than the Hubble rate, H (eq 1.33), i.e. the rate of the expansion of the universe.

4The mean number of photons with a certain frequency, f for a black body with temperature, T is given
by the Planck distribution, where n̄ ∝ (exp{2πf/T} − 1)−1.
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Figure 2.1: The black-body spectrum of the CMB on a logarithmic scale from the Lawrence Berkeley
National Lab’s COBE-FIRAS display. This is the most perfect black body curve found in
nature and suggests that the early universe was in thermal equilibrium, whose temperature can
be straightforwardly defined and calculated by taking into account the cosmological redshift
(sec 1.2.2). Today it corresponds to a temperature of 2.728K.
Figure source: LBNL

Some decades later, new measurements were made5. NASA’s COBE satellite first mea-
sured the entire black-body curve very precisely (see fig. (2.1) and Mather et al., 1991, 1994)
and then for the first time discovered minuscule variations or anisotropies in temperature
of this background radiation (Smoot et al., 1992, see also fig. 2.2). The DMR instrument
on the COBE satellite looked at microwave frequencies, where the background radiation is
strongest compared to the foreground emission from the gas in our Milky Way galaxy (Smoot
et al., 1991), giving it the name Cosmic Microwave Background or CMB. NASA launched
a new satellite about a decade later called WMAP, which measured CMB anisotropy even
more precisely (Komatsu et al., 2011) and is still taking measurements today. In addition,
in 2009, the European Space Agency launched the Planck satellite designed to repeat and
improve these measurements (e.g. Ade et al., 2011).

Even though we will leave the discussion of deriving the precise properties of the density
field from the observation of temperature anisotropies for another time, roughly, we can see, by
considering the Stefan-Boltzmann law that the energy density of radiation ρr ∝ T 4. Therefore
we may conclude that the observations of the very small CMB anisotropy in the temperature
support the idea that the universe is nearly homogeneous, with small perturbations in
the density. And hence, it may be useful to solve our local Einstein field equations using

5See also Bergström & Goobar (2006, ch.11)
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2.2. Linearised solutions

Figure 2.2: 4th year COBE-DMR map of the CMB anisotropy from NASA’s COBE web page shows the
tiny fluctuations in the 3 K background radiation. The fluctuations in temperature are at
10−5 level, as can be seen from the colour legend, seemingly justifying the treatment of the
universe as nearly homogeneous.
Figure source: NASA

pertubation theory . The origin of these small perturbations is again far beyond the scope of
this thesis, but we do refer the reader to the concept of inflation discussed in detail in many
texts, for example in Mukhanov (2005) as well as Bergström & Goobar (2006, appendix E)
as well as briefly mentioned again in sec. 2.3.

2.2.2 Linearised field equations

We assume that the perturbation quantities defined in equations (2.5) and (2.7) are much
smaller than their background values in order to solve the Einstein field equations perturba-
tively (initially by Lifshitz, 1946). In particular, if the metric only has small perturbations,
we can calculate the Einstein tensor to linear order, since higher orders in the metric pertur-
bations will become negligible: G̃αβ = Gαβ + δGαβ + . . . , where all the terms in δGαβ must
be linear in the metric perturbation. Having similarly split up the EM tensor, we can now
write down the general field equations for the perturbations only:

δGαβ + · · · = 8πGδTαβ , (2.8)

which written in the linearised form becomes:

δGαβ = 8πGδTαβ , (2.9)

which corresponds to equation (7.34) in Mukhanov (2005) and is the linear perturbation of
eq. (1.10). We then simply write down the components of the covariant form of the local
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Einstein tensor given in eq. (1.16):

δG0
0 =

2

a2
∇2φ− 6

a2
H
(
φ′ +Hψ

)
δG0

i =
2

a2

(
φ′ +Hψ

)
,i

δGij(pure diagonal) = − 2

a2

[
φ′′ +H(2φ+ ψ)′ + (2H′ +H2)ψ +

1

2
∇2(ψ − φ)

]
δij

δGij(pure derivative) =
1

a2
δik (ψ − φ),kj , (2.10)

where finding these equations is a matter of relatively simple but longwinded algebra that
requires at every step to neglect the term that contain either of the perturbation variables at
larger than first order (see for e.g. Challinor, 2009; Kodama & Sasaki, 1984; Lyth & Liddle,
2009; Mukhanov, 2005; Weinberg, 2008, etc.). Furthermore, we can easily see that φ = ψ in
the case of the perfect fluid, which does not have any anisotropic stress, Πi

j = σ = 0, by
equating the pure derivative parts of the field equations only:

−1

2
δik (ψ − φ),kj = 8πGΠi

j = 0 . (2.11)

We can now insert the first order perturbations to the Einstein tensor (eq 2.10) as well
as those to the EM tensor (eq 2.7) into the first order field equations (eq 2.9) and substitute
ψ = φ (eq 2.11). Furthermore, we can re-write the density perturbation as the fractional
perturbation multiplying the background density, δρ = ρδ. Finally, we can write down the
three separate components of the first order field equations.

Combining the 00 and the 0i components of eq. (2.10), gives us the equivalent of what
we know as the Poisson equation in regular, Newtonian gravity . Note that the velocity, v
where vi = v,i = ∂iv and we have performed an integral over space assuming the perturbations
decay at infinity (c.f. to eq. (8.35) in Lyth & Liddle, 2009):

∇2φ = 4πGρ(δ − 3H(1 + w)v) . (2.12)

In order to simplify the ij component, we refer to sec. 1.3.3 and consider that for an
adiabatic perfect fluid, there are no entropy perturbations, δS = 0 and so δP = c2

sδρ, where
cs is the speed of sound. Substituting this into the ij component of the linear-order perturbed
field equations and using eq. (2.12) to replace the ρδ, we can write down the ij component of
the linearised field equations as:

φ′′ + 3φ′H(1 + c2
s ) + (2H′ +H2(1 + 3c2

s )− c2
s∇2)φ = 0 , (2.13)

an equation of motion for the gravitational potential, φ.

2.2.3 Linearised conservation equation

In the previous section we derived the dynamical equation governing the evolution of the
gravitational field as well as the equation describing how the perturbation in the energy den-
sity of the “matter” in the universe sources the gravitational potential. We derived these
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2.2. Linearised solutions

from the first order perturbed Einstein field equations. These form a redundant set of equa-
tions together with the Bianchi identities, which result in the conservation equations for the
Einstein and the EM tensors eq. (1.11).

We first take the ν = 0 component of the EM conservation, Tµν;µ = 0 and find that the
zeroth order terms, meaning that they contain only the background variables, return the
continuity equation (eq 1.22) as we would expect (e.g. Ma & Bertschinger, 1995). The
first order terms on the other hand give:

δ′ + (1 + w)
(
∂iv

i − 3φ′
)

+ 3H
(
c2

s − w
)
δ = 0 , (2.14)

where we could insert the divergence of the spatial velocity6, θ = ∂iv
i = ∂ivi, the equation

of state, w = P/ρ and the speed of sound, c2
s = δP/δρ . In fact, we can write the speed of

sound as c2
s = dP/dρ = w + ρdw/dρ. Therefore, for a constant equation of state, c2

s −w = 0.
Now turning our attention to the ν = i component of the conservation equation, we

similarly find that:

v′i +H(1− 3w)vi +
w′

1 + w
vi +

c2
s

1 + w
∂iδ + ∂iφ = 0 , (2.15)

for no anisotropic stress, where the second term represents the slowing due to cosmic expansion
(Kodama & Sasaki, 1984).

2.2.4 The full phase-space treatment: the Boltzmann equation

We have so far used the EM tensor for a perfect fluid simply and straightforwardly. This
is applicable for a limited range of fluids. One must use the full energy-momentum phase
space distribution function in order to describe other fluids, which need more than only their
density and pressure to be described.

In this section we reexamine the perturbed densities in the early universe. We throw
away the assumptions that all matter is non-relativistic and non-interacting. In essence, this
section is a brief review of the perturbed Boltzmann equation of the early thermal universe
before recombination and follows closely sections 5 and 8 in the work of Ma & Bertschinger
(1995).

We can describe the evolution of the perturbations in the cold dark matter as well as the
baryon density fields in the early universe by a simple non-relativistic fluid treatment (as in
sec. 2.2). However, the relativistic photons and neutrinos can only be described accurately by
the full relativistic treatment of their distribution function in phase space. In addition, in the
simple treatment of perturbations in sec. 2.2, we only take into account non-interacting fluids.
Taking into account the momentum transfer due to interactions, we must add an extra term
into the equations describing the evolution of the perturbations. Most importantly, photons
couple to the baryonic fluid via Thompson scattering before recombination, at which time
the un-ionised particles stop interacting with the photons.

In order to describe a relativistic fluid in a perturbed spacetime, as pointed out in sec. 1.3.4
it is insufficient to describe it with the perfect fluid formalism, instead one must consider the
full phase space of 3 spatial coordinates and their 3 corresponding momenta. The Boltzmann
equation (eq 2.18) is a differential equation that describes the evolution of this phase space

6The following is equivalent since it is clear from eq. 1.14 that gijg
ik = a2δija

−2δik = δkj .
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distribution function, f
(
xi, Pj , τ

)
with time. The components of the energy-momentum ten-

sor for relativistic species depend on the phase space distribution in the following manner:

Tµν =

∫
dPj√
−g

PµPν
P 0

f
(
xi, Pj , τ

)
, (2.16)

where as before, xi are the spatial coordinates, Pj its Hamiltonian conjugate, τ = x0 is the
conformal time, Pµ is the full 4-momentum and f(xµ, Pν) is the full phase space distribution
(noting also that |P | = PµPµ = 0 or m2, the squared particle mass), which can be decomposed
into a zeroth-order and perturbed term:

f
(
xi, Pj , τ

)
= f0(q)

[
1 + Ψ(xi, q, nj , τ)

]
, (2.17)

and where we have decomposed the momentum Pi = api(1 − φ) = qi(1 − φ) and qi = qni,
with ni being the component of an orthogonal, normalised direction vector. The Boltzmann
equation then gives the evolution of this phase space distribution and can be written in terms
of the here-relevant variables as:

df

dτ
=
∂f

∂τ
+
dxi

dτ

∂f

∂xi
+
dq

dτ

∂f

∂q
+
dni

dτ

∂f

∂ni
=

(
∂f

∂τ

)
coll

, (2.18)

where the right-hand-side depends only on collisional terms and vanishes for dark matter and
neutrinos.

We leave out the algebra, which is described in detail in Ma & Bertschinger (1995) from
equation (36) onwards, and skip right to the resulting linearised differential equations de-
scribing the evolution of the individual matter and radiation species with significant densities
before recombination.

We wish to make a comparison in the Newtonian gauge between the species, by writing
down the scalar perturbations, δx (overdensity), θx (divergence of velocity, ∂iv

i
x), δPx (over-

pressure) and σx (anisotropic stress), to the energy-momentum tensor of each species in
Fourier space (where k is the wavenumber). Note that as in sec. 2.1, φ and ψ are the scalar
metric perturbations. From now on we also work in Fourier space, where a divergence,
∂i → −iki and the Laplacian ∂i∂

i → −k2, k being the wavenumber .
Then for cold dark matter, a pressureless, perfect fluid:

δ′cdm = −θcdm + 3φ′ and

θ′cdm = −Hθcdm + k2ψ , (2.19)

with other perturbations being zero. These are exactly (2.14) & ∂i(2.15) in Fourier space,
with the equations of state, w = 0 and the speed of sound, c2

s = 0.
For the massless neutrinos the collisionless Boltzman equation is used to find:

F ′ν0 = δ′ν = −4

3
θν + 4φ′ ,

3

4
kF ′ν1 = θ′ν = k2

(
1

4
δν − σν

)
+ k2ψ and

F ′νl =
k

2l + 1

[
lFν(l−1) − (l + 1)Fν(l+1)

]
for l ≥ 2 , (2.20)

where the Fνl(k, τ) are the coefficients of the Legendre expansion of the Fourier trans-
formed neutrino phase space function, Fν(k, n̂, τ), and Fν2 = 2σν . The explicit momentum-
dependence happens to vanish, because for masseless particles, the momentum equals the
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2.2. Linearised solutions

total energy, q = ε (in natural units, where c = 1). In addition, unlike in the equations above,
the stress, σ does not vanish. This means these equations do not directly correspond to (
2.14) & ∂i(2.15) in Fourier space. We would need to include a non-zero Πi

j into our algebra
as they have in Ma & Bertschinger (1995) to find the exact correspondence.

Then in the case of collisionless, massive neutrinos, the perturbation to the phase space
function introduced in eq. (2.17) is expanded in terms of Legendre polynomials and so:

δPh and δρh ↔ Ψ′h0 = −qk
ε

Ψh1 − φ′
d ln f0

d ln q
,

θh ↔ Ψ′h1 =
qk

3ε
(Ψh0 − 2Ψh2)− εk

3q
ψ
d ln f0

d ln q
and

σh ↔ Ψ′hl =
qk

(2l + 1)ε

[
lΨh(l−1) − (l + 1)Ψh(l+1)

]
for l ≥ 2, (2.21)

where we label massive neutrinos with a subscript of ‘h’, because they represent hot dark
matter (HDM). In order to relate these perturbative quantities to the perturbations in den-
sity, pressure etc. indicated above, we must integrate over the comoving momentum, q, as
in equations (55) of Ma & Bertschinger (1995). If we define a new integrand variable for
integrating over the perturbation to the phase space function from eq. (2.17) for the sake of
clarity:

dQl = q2dqf0(q)Ψl , (2.22)

and considering that the comoving energy, ε =
√
q2 +m2a2 , we find that generally:

δ =
4π

ρ
a−4

∫
ε dQ0

δP =
4π

3
a−4

∫
q2

ε
dQ0

θ =
4πk

(ρ+ P )
a−4

∫
q dQ1

σ =
8π

3(ρ+ P )
a−4

∫
q2

ε
dQ2 . (2.23)

Let us take note here of the two extremes: the cold, presureless, non-relativistic dark matter
and the hot, relativistic massive neutrinos. The treatment of anything in between, what we
call warm dark matter, must be treated to how relativistic it is in the era and regime of
interest as well as how long the particle stays relativistic. We discuss this in detail below, in
sec. 2.3.3.

The three species discussed here, cold dark matter, massless and massive neutrinos, couple
together only via φ and ψ. We forego describing in detail the evolution of perturbations in
the baryonic and photonic density fields as this is not within the scope of this thesis. But
we do note that each of their perturbation evolution equations receives an additional term,
which depends on the perturbation in the energy-momentum tensor of the other species.
This comes from the constraint that when coupled, the combined momentum of photos and
baryons must be conserved. So, even though baryons are very non-relativistic after neutrino
decoupling, they get a transfer of momentum from the relativistic photons. We can calculate
the adiabatic sound speed for baryons as

c2
s,b =

∂Pb

∂ρb
=
P ′b
ρ′b

. (2.24)
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In addition, the photons receive two sets of perturbation equations, one for either polar-
isation state. The two sets differ only in the additional term due to Thompson scattering.
Note that before recombination the photons and baryons act together like a single fluid. In
order to calculate the evolution of their density perturbations the so-called “tight-coupling
approximation” can be used (e.g. Ma & Bertschinger, 1995).

The above equations that describe the evolution of perturbations in EM tensors of the
different species can be simplified and solved analytically for the times before the so-called
“horizon entry” of the individual, independent k-modes. However once kτ & π, the Fourier
mode corresponding to k can only be calculated taking into account the full perturbation
equations, because it “comes into causal contact”. The full equations can then only be solved
numerically, especially if we want to realistically sum over all of the relevant species: dark
matter, massive neutrinos, photons and baryons. We discuss the relevant regimes in the
following sections.

2.2.5 Evolution of perturbations

Even though generally, Newtonian gauge is more intuitive in many contexts when discussing
large scale structure in the universe, it is very often more convenient to work in the syn-
chronous gauge. In the synchronous gauge, the particles of regular cold dark matter are the
tracers of metric perturbations and so the velocity, v = 0.

It is now that we unfortunately must plunge into the synchronous gauge for the treacherous
reason of convenience. In this gauge, the linear perturbed metric from eq. (2.2) becomes:

ds2 = dt2 − a2
[
δij + 2hij)

]
dxidxj , (2.25)

if N̄ = 1 for proper time, Ni = 0 and γij = a2[δij + 2hij ] and the perturbations need not only
be scalar, but must be small. Or comparing to eq. (2.3), φ = b = 0, φ = −(h− hscalar)/6 and
h,ij = hscalar/2. Here we have performed a standard scalar-vector-tensor (SVT) decomposition
for a general tensor, Aij . If Di is a general derivative in a curved spacetime:

Aij = 1
3δ
i
jA︸ ︷︷ ︸

trace part

+
(
DiDj + 1

3δ
i
j∆
)
Ascal︸ ︷︷ ︸

anisotropic scalar part

+DiAvect
j +DjA

i
vect︸ ︷︷ ︸

vector part

+ AT i
j︸ ︷︷ ︸

irreducible tensor

, (2.26)

with conditions that DiA
i
vect = 0 and the final, “transverse” term is trace free and DiA

T i
j = 0

as well. And in conformal time, we get:

ds2 = a2
[
dτ2 −

[
δij + 2hij)

]
dxidxj

]
. (2.27)

Solving the perturbed momentum conservation equation gives the synchronous gauge equiv-
alent to eq. (2.19), which is extremely convenient, because it relates the trace metric pertur-
bation directly to the perturbation in the CDM density: δcdm = −h/2.

Let us now re-write the general equations for the evolution of perturbations eq. (2.14) and
eq. (2.15) in the synchronous gauge variables (see also eqns. (29) in Ma & Bertschinger,
1995) for a multicomponent perfect fluid with a constant equation of state, w:

δ′ + (1 + w)

(
∂iv

i +
h′

2

)
= 0

v′i +H(1− 3w)vi +
w

1 + w
∂iδ = 0 , (2.28)
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2.3. Features of the linear power spectrum

where δ =
∑

x δx and v =
∑

x vx, each component of the fluid denoted by x.

In eq. (1.40) we defined the eras of radiation, matter and Λ domination. In 1.3 generally,
we calculated how the background density, ρx of each of these components evolves with the
scale factor, a and how the scale factor evolves with time. Assuming we are far away in time
from the transitions between these eras, we can say that the density of the dominating species
equals the total density. We have also hinted towards the evidence that the early universe
was radiation dominated. This radiation domination is measured to have ended at a redshift
(see 1.29) of approximately zeq ≈ 3200 (Komatsu et al., 2011). One can integrate eq. (1.43)
from a short time after a(t = 0) = 0 to a(teq) = 1/(1 + zeq) to find that radiation dominates
for around 100.000 years from the time of the initial singularity.

2.3 Features of the linear power spectrum

The solution to the origin of structure was found in the 1980s, when firstly Starobinskǐi (1979)
developed the theory of the quantum fluctuations in the primordial scalar field and then
secondly, Guth (1981) realised that the flatness, monopole and horizon problems are resolved
by an early de-Sitter-like phase of extremely rapid expansion of space called inflation. Many
pedagogical texts show that for a single scalar field driving this early inflation, we expect
to see nearly perfectly scale invariant curvature perturbations with a Gaussian probability
function (Challinor, 2009; Mukhanov, 2005; Mukhanov et al., 1992; Weinberg, 2008, are just
a few examples). As in for example Markovič (2009), we should define a gauge invariant
curvature variable in terms of the conformal Newtonian gauge variables φ and v:

ζ = φ+Hv , (2.29)

where φ and H are defined in eq. ( 2.5) as the metric perturbation (and the Newtonian
gravitational potenital) and the conformal time Hubble parameter encoding the speed of
expansion. The fluid velocity, v is defined in the context of eq. (2.12). Let us mention here
that eq. (2.12) has a special form if we choose a different “comoving” gauge, where as in the
synchronous gauge, the peculiar velocities are null, v = 0. This results in a Poisson equation
that matches in its form the Poisson equation from simple Newtonian physics:

∇2φ = 4πGρδcomo . (2.30)

It is possible to show that in the case of adiabaticity and no anisotropic stress, ζ ′ = 0,
on scales larger than the Hubble horizon7, in other words the gauge-invariant curvature is
constant. Setting v = 0 in our special gauge as above gives ζ ∝ φ.

The physical (dimensionless) density power spectrum for this variable can be written as

∆2
ζ(k) = ∆2

ζ(k0)

(
k

k0

)ns(k0)−1

∝ ∆2
φ , (2.31)

where the scalar spectral index ns−1 ≡ d lnP 2
ζ

d ln k and k0 is a pivot scale. Therefore for a perfectly
scale-invariant or fractal spectrum, ns = 1. This spectral index has indeed been measured

7At the end of inflation most scales relevant today are outside the Hubble horizon of inflation.
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to be very close to, but distinctly different than one (e.g. Larson et al., 2011). And very
impressively emerges from the theory of inflation (see e.g. Dodelson, 2003, p.184).

Note that the power spectrum is defined8 as the Fourier space two-point correlator,〈
φ(τ,k)φ(τ, k̃)∗

〉
=

2π2

k3
∆φ(τ, k)δ(k − k̃) ∝ k−3 , (2.32)

since ∆φ ∝ const. Now comparing the above to eq. (2.12), we can see that in Fourier space,
∇2φ ∝ δ gives −k2φ ∝ δ. This means that the two-point correlator is

k4
〈
φ(τ,k)φ(τ, k̃)∗

〉
∝
〈
δ(τ,k)δ(τ, k̃)∗

〉
=

2π2

k3
∆δ(τ, k)δ(k − k̃) ∝ k , (2.33)

So the scale dependence of the power spectrum of energy density perturbations can be written
down with reference above:

∴ ∆δ(τ, k) ≡ k3P (τ, k)

2π2
∝ k4 . (2.34)

2.3.1 The transfer function from radiation domination

In order to find the linear matter power spectrum that has evolved through radiation dom-
ination and has therefore been suppressed on scales that have entered the Hubble horizon
in practice, one may use the fitting function from equation (7) in Ma (1996), which is
based on the functional form of Bardeen (1985), but taking into account the effects of bary-
onic oscillation that prevent collapse on small scales before recombination. The coefficients
α1 = 2.34, α2 = 3.89, α3 = 16.1, α4 = 5.46, and α5 = 6.71 from Bardeen (1985) are used.
Alternatively one can use α1 = 2.205, α2 = 4.05, α3 = 18.3, α4 = 8.725, and α5 = 8.0 and
Γ = Ωmh. Error comparing to numerical simulations using these is smaller than 1% for
k < 40hMpc−1. Then the transfer function is:

Tr(q) =

(
ln(1 + α1q)

α1q

)
1

[1 + α2q + (α3q)2 + (α4q)3 + (α5q)4]1/4
(2.35)

where

q =
k

Γh
and Γ = e−2Ωb,0hΩm,0h (2.36)

with wavenumbers going from k = 10−4 → 104 hMpc−1. In paper Ma (1996) this is
multiplied by

√
a , which is here taken into account with the growth factor. In this case it

is important to note that Tr(q)→ 1 as k → 0. Also in eq. (2.36) we are dividing k/h, however
we omit the 1/h for the case where the unit of k is hMpc−1.

Then as discussed in sec. 2.3,

P initial
δ (k) = Akns and Pδ(k) = P initial

δ (k)T 2
r (t, k), (2.37)

(note that A here is only a normalisation constant, which differs from the below by A =
As/k

ns
pivot for α = 0).

8This definition is based on statistical homogeneity and isotropy (see e.g. Challinor, 2009).
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It is possible to include the running, α, of the scalar spectral index, ns, and so the
primordial (initial) matter power spectrum becomes:

P initial
δ (k) = As

(
k

kpivot

)ns+
α
2

ln

(
k

kpivot

)
now with As = P initial

cdm (kpivot). (2.38)

with commonly assumed values kpivot = 0.05 and As = 3× 106kpivot. In this thesis however,
we set α = 0.

2.3.2 Growth factor in the matter dominated era

The present-day, linear-theory power spectrum is found by multiplying the primordial matter
power spectrum found in eq. (2.37) by the growth factor squared, D2

+(z), found with the full
differential equation of the evolution of matter perturbations in the matter era:

δ′′m +H(τ)δ′m − 4πGa2ρm(τ)δm = 0 , (2.39)

which can be derived from the Poisson equation combined with eq. (2.13), the evolution of
the metric perturbation, assuming that the comoving frame moves with matter and that the
pressure is negligible in the matter dominated era. We have wrote down this equation again
in the Newtonian gauge in order to be compatible with the literature. The solution to this
equation, δm(τ) is normalised to equal one today. Equivalently, this equation can be derived
by linearising the perturbed Newtonian equations for the evolution of the density field, namely
the Poisson, continuity and Euler equations.

Now we have the linear matter power spectrum at any redshift. In order to have a picture
of what the matter distribution looks like today (and at low redshift in general), we need
to account for effects of non-linear structures as well. This is especially significant on small
scales (where the effects of free-streaming of WDM leave their signature) and it unfortunately
causes a significant loss of information. We will attempt this calculation in the next chapter.

2.3.3 Hot and warm dark matter effects

Neutrinos decouple when the temperature of the primordial soup (or heat bath), T ∼ 1 MeV
and a ∼ 10−10 and become non-relativistic when Th ∼ mh/3kB

9. Dark matter decouples
and becomes non-relativistic much earlier in both the cold and warm dark matter (WDM)
cases. If warm dark matter has a simple thermal history, analogous to neutrinos, but with a
larger particle mass, we can calculate its free-streaming. Such a dark matter particle is called
a thermal relic, because it decouples out of equilibrium as has been discussed in sec. 1.3.4.

The Jeans length10 can be calculated for a perfect fluid and denotes the limit on which
the gravitational effect balance out the thermal effects. For collisionless fluids like the dark
matter and neutrino fluids, we define the analogous free-streaming length, which tells how
far the fast-moving particles can travel within the gravitational time-scale i.e. in the time of

9As a quick reference, the Boltzmann constant, kB = 8.617× 10−5 eV K−1.
10See Bond & Szalay (1983) for a discussion of Jeans lengths for collisionless particles.
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free-fall:

kfs(a) =
√

4πGρ̄
a

vx,median

=

√
3

2a
H0

1

vx,median

(relativistic) =

√
3

2a
H0

(non-relativistic) =

√
3

2a
H0

amx

3kBT0,x
, (2.40)

where vx = 1, when the particles are relativistic. When they go non-relativistic (i.e. when
3kBT0,x . mx),

vx =
3kBT0,x

amx
(2.41)

and then kfs → ∞ as a → 1 and T → 0, which is the case for cold dark matter very early
on, and therefore, the effects of free-streaming are pushed to very very large k, i.e. very very
small scales. This means that the damping of the overdensity field becomes insignificant!

The most basic model of WDM particles is to say that they are thermal relics. This means
that they were in equilibrium at some point. When their temperature and density dropped,
they went out of equilibrium (e.g. Bond & Szalay, 1983). This means DM particles decoupled
from each other.

Theoretically there would have been another kind of decoupling. This would have been
when DM particles and baryons were in an extremely dense environment and so there would
have been a significant interaction rate between them. We know very little about this regime,
because we would have to know the mass and interaction cross-section of DM particles, but
we don’t even know the nature (and even existence) of the interaction between DM particles
and other types of matter.

However, it’s most likely that these two decouplings happened at the same time, because
any self-interaction of DM is likely to involve the weak, strong or electromagnetic force, which
means this self-interaction would necessarily involve baryons. Were this not the case, it may
be that the interaction between baryons and DM particles is weaker than the interaction
among DM particles. In this case the decoupling from baryons would happen at an earlier
time than decoupling of DM out of equilibrium.

The last important scale feature in the linear matter power spectrum is the suppression
by dark matter free-streaming. In the WDM model the scale of suppression is called the free-
streaming scale, kfs and corresponds to the mode that enters the horizon at the time when
WDM partcles become non-relativistic, trel. For CDM on the other hand, this happens very
early and so kfs � 1h−1Mpc and it’s cosmological effects can be neglected. A species can
become non-relativistic while still in thermal equilibrium or after it decouples (Bode et al.,
2001; Bond & Szalay, 1983; White et al., 1987). If it is after, we say that DM particles
decouple while non-relativistic. This is what we assume in this thesis because exploring many
different particle models is out of our scope.

From Bond & Szalay (1983), eqn. (1), we get the temperature of WDM relative to that
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2.3. Features of the linear power spectrum

of the photons:

Twdm =

(
3.9

g∗

) 1
3

Tγ ⇒ g∗ = 3.9

(
Tγ
Twdm

)3

(2.42)

Ωwdm = 1.1h−2
(gwdm

1.5

)(100

g∗

)(mwdm

1 keV

)
(2.43)

= 1.1

(
100

3.9

)
h−2

(gwdm

1.5

)(Twdm

Tγ

)3 (mwdm

1 keV

)
, (2.44)

where g∗ is the number of all relativistic degrees of freedom at WDM decoupling, Tγ is the
present day photon temperature and Twdm is the temperature of WDM. This matches the
results from sec. 1.3.4. We can calculate the degrees of freedom:

gwdm =

{
Nwdm bosons
3
4Nwdm fermions ,

(2.45)

where Nwdm are the number of spin degrees of freedom . Then determining Ωdm = Ωwdm gives
a direct relationship between Twdm and mwdm. Otherwise must introduce a new parameter
fwdm = Ωwdm/Ωdm, the fraction of warm dark matter. This parameter becomes relevant
when we start to consider mixed dark matter models.

In addition we can calculate the velocity dispersion of WDM particles relative to that of
the neutrinos (Bond et al., 1980):√

〈v2〉ν = 6 km s−1

(
30 eV

mν

)
(1 + z) , (2.46)

Rescaling for warm dark matter, if it has decoupled while relativistic:√
〈v2〉wdm =

√
〈v2〉ν

(
Twdm

mwdm

)(
mν

Tν

)
. (2.47)

If particles decouple while non-relativistic,
√
〈v2〉wdm . cm s−1, so the damping is completely

insignificant.

Power spectrum suppression from free-streaming

In the case of warm dark matter, the initial matter power spectrum emerging from radiation
domination is modified by an additional transfer function due to free streaming. Viel et al.
(2005) found this fitting function, but it can be calculated very accurately with a numerical
Boltzmann equation solver code, like for example CMBFAST (Seljak & Zaldarriaga, 1996), CAMB
(Lewis et al., 2000) or CLASS (Blas et al., 2011). For now we use the fitting function with
ν = 1.12 like in Viel et al. (2005) (the alternative is ν = 1.2 like in Bode et al. (2001)). Then
the scale break parameter is:

α = 0.049
(mwdm

1 keV

)−1.11
(

Ωwdm

0.25

)0.11( h

0.7

)1.22

(2.48)

which is used in calculating the linear matter power spectrum by multiplying with the fol-
lowing warm transfer function:

Twdm(k) =
(
1 + (αk)2ν

)−5/ν
and so Pwdm(k) = Pcdm(k)T 2

wdm(k) (2.49)
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The Early, Linear Structure

Figure 2.3: The linear matter power
spectra for five different WDM models
and standard CDM. The particle masses,
mwdm ∈ {0.3, 0.5, 0.7, 1.0, 1.4} keV are
color coded with blue, cyan, green, red and
magenta respectively. The crosses corre-
spond to the free-streaming wavenumber,
kfs, for each model of WDM. The wiggles
at k ∼ 0.1 are due to baryonic acous-
tic oscillations and the peak at k ∼ 0.01
corresponds to radiation-matter equality.
on the left hand side of this peak, the
slope corresponds to the fractal primor-
dial power spectrum from inflation, where
Pδ(k) ∝ k.

(see Boyanovsky et al. (2008) for a calculation of the transfer function for a general initial
thermal distribution of DM particles - cold WIMP dark matter, thermal fermionic or bosonic
dark matter). The linear power spectrum, Pwdm(k), must then be normalised to ensure the
value σ2

8 at k = 1/8hMpc−1 (see also Bardeen, 1985). Finally we now can plot the linear
matter power spectra in fig. (2.3). The lightest WDM particle mass shown (250 eV) causes
the linear theory matter power spectrum to fall dramatically at a wavenumber significantly
above 1 hMpc−1. The matter power spectrum of WDM starts to turn off well above the free-
streaming scale, which changes the slope of the power spectrum to fall much more steeply than
neff = logP (k)/ log k = −3, which is the slope for standard, bottom-up structure formation
(Knebe et al., 2003; White & Frenk, 1991).

In fact the above seemingly artificial scale break, α relates to the free-streaming length of
thermal relic warm dark matter particles (Zentner & Bullock, 2003):

λfs ' 0.11

[
Ωwdmh

2

0.15

]1/3 [mwdm

keV

]−4/3
Mpc , (2.50)

which of course is related to the free-streaming scale:

kfs = 5 Mpc
(mwdm

keV

)( Tν
Twdm

)
, (2.51)

which is plotted in fig. (2.3) and around which the significant suppression of the power in the
linear matter power spectrum begins.

Now that we are familiar with the effects of WDM on the linear matter density field we
must discuss the standard model of structure formation. In the matter dominated era, the
density contrast grows and eventually reaches unity. From this point on, standard perturba-
tion theory is no longer appropriate and we must employ approximation methods as exact
solutions to the Einstein field equations no longer exist. We discuss this in the next chapter.
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CHAPTER 3
The Present-day Structure

Being present day astronomers Klypin et al. (1999) noticed a discrepancy in the observed
numbers of the smallest galaxies, assumed to reside within dark matter haloes with masses
Mdwarf ≤ 109M� and what they expected these numbers to be from running their numerical
simulations of structure formation (see also 3.2). The proposed that the numerical models
used to run the simulations might be modified to account for this discrepancy, which has
become known as the dwarf galaxy problem or missing satellite problem. To an extent this
has been the case, since the N-body codes have improved significantly in the past two decades
(e.g. Benitez-Llambay et al., 2012). In addition, modern surveys have found new faint objects
(see this review of the problem Bullock, 2010, and references within). The gap in the numbers
of small objects has therefore been closing from above an below.

One could therefore perhaps feel at ease that the issue will solve itself with better numerical
prescriptions for the complex baryonic processes (see e.g. Brooks et al., 2012), if it weren’t
for several other issues. The density profiles and concentrations of individual haloes (Donato
et al., 2009) as well as the properties of voids (Tikhonov et al., 2009) don’t seem to match what
one would expect from pure ΛCDM theory in that the theory again predicts too much power.
It is unlikely that baryonic processes are responsible for the lack of power in voids, as the
density there is too low for baryonic pressure of any kind to influence the total gravitational
potentials.

An elegant solution would be to introduce a simple ΛWDM model with one additional pa-
rameter, which would explain all of these discrepancies at once. Because of its free-streaming,
WDM is capable to dampen the density field on small scales without any changes to the large
scale behaviour of structure or to the dynamical evolution of spacetime. For this reason we
wish to now consider how to calculate nonlinear corrections to predict the statistical proper-
ties of cosmological structure as would be observed today. This is not a straightforward task,
but nonetheless, in the following chapters, we attempt to develop a prescription valid also in
ΛWDM models that may be used one day to account for the discrepancies in the small scales
of ΛCDM, by comparison with galaxy and weak lensing surveys.

The theories of the origin, contents and dynamics of the universe we follow today are able to
paint a relatively accurate analytical picture of the universe between shortly after the Big Bang
until the end of linearity. At those times the universe is well described as filled with more-
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The Present-day Structure

or-less homogeneous distribution of matter and radiation. However, as anyone can clearly
observe, the place and time we live in could hardly seem further from this description. When
we observe the sky we see planets, stars, galaxies, arranged into galaxy clusters, superclusters,
filaments and sheets. And only on the largest scales, if we recall the far-sighted Hubble
giant, has the universe not changed much and remains describable by mere perturbations
in the density. Unfortunately, astronomers only exist today; at a time when a perturbative
description can no longer be used to describe the distribution of matter on, in fact, most
scales relevant to astronomy.

In the previous chapter (ch 2), we’ve discussed how to describe the universe up until
around the time of matter-radiation equality. Up until this time, the radiation dominates
the contents of the universe and dictates the expansion of the background metric. This in
turn determines the evolution of the amplitudes of the perturbations in the density of the
matter components (δi). So far, we have been able to describe the universe by considering
its homogeneous contents with linear perturbations in the density added on top. However, as
the matter-radiation equality approaches at:

1 ≡
ρ̄m,0a

3
eq

ρ̄r,0a4
eq

⇒ aeq =
ρ̄m,0

ρ̄r,0
=

1

1 + zeq
, (3.1)

which follows from the background evolution equation or Friedmann Equation, eq. (1.20), the
linear approximation becomes less and less appropriate.

3.1 The halo model

The halo model is a way to account for nonlinear structure growth. It is based on the spherical
collapse model, where the overdensities of the matter density field collapse as spherically
symmetric objects. In the most rudimentary form, the halo model assumes that all matter
can be found within dark matter haloes, which merge into larger and larger haloes with
time, stopping only around the present time, when further nonlinear collapse is halted by the
domination of Dark Energy and the re-start of accelerated expansion.

In order to describe non-linear structure with the halo model, we first need to find some of
the parameters derived from spherical collapse, which determine the density contrast needed
for collapse. These can be found with fitting functions collected in Henry (2000), where

δc(Ωm,0, z) =
3(12π)2/3

20

[
1− 0.0123 log(1 + x3)

]
with x ≡

(
Ω−1

m,0 − 1
)1/3

1 + z
(3.2)

is the linear overdensity needed for the collapse of a spherical perturbation at redshift z.
Note that this is not the same δc(c), which equals the square brackets in eq. (3.27), and is a
function of the halo concentration parameter, c(M, z) from eq. (3.19). The density contrast
of collapsed objects is:

∆(Ωm,0, z) = 18π(1 + 0.4093x2.71572) , (3.3)

being the ratio of the average density of a halo to the background density at the virialization
redshift. Therefore the average halo density ρ̄h(z) = ∆(z)ρm(z), assuming we observe the
halo at approximately the virialization redshift.
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3.1. The halo model

Today, for the WMAP7 value of Ωm,0 = 0.266, we get δc(z = 0) ≈ 1.659 and ∆(z = 0) ≈
115. Note here that this does not change the results much in comparison with the closed
model (Ωm,0 = 1), where δc(1, z) ≈ 1.686 and ∆(1, z) ≈ 177.7.
However, the value used for ∆(z) really only depends on the convention used in the simulations
that yielded the mass functions! See for example figure (5) in White (2002)1 or Hu & Kravtsov
(2003), which indicated that taking ∆ = 180 seems to match the simulations Sheth-Tormen
the best. Therefore if using such theoretical mass functions it seems consistent with convention
to use this last value for the density contrast.

Root-mean-square fluctuation

A further parameter we should consider is the ‘variance of the smoothed matter density field,
σ(R). It is a function of comoving length, R, which is defined by the size of the smoothing
function, in this case a top-hat window function:

W (x) =
3(sin(x)− x cos(x))

x3
. (3.4)

Then the rms fluctuation of a Gaussian field described by it’s power spectrum P(k), calculated
in eq. (2.37), is:

σ2(R) =

∫
P (k, z = 0) |W (Rk)|2 k

3

2π
d ln k . (3.5)

In order to associate particular halos with particular values of σ(R), we need to connect the
size of the window function, R, to the halo mass, M. For this we should realise that R is the
size of the comoving region (i.e. the region at present times), which contains the amount of
matter accounting fully for the mass of the associated halo. A comoving region will always
contain the same of matter as it expands with the dilution of the density.

R(M) =

(
3M

4πρm,0

) 1
3

with ρm,0 = Ωm,0 ρcrit,0 . (3.6)

Since we used the present-day matter power spectrum in eq. (3.5), we need to multiply σ(R)
by the growth factor (sec 2.3.2) in order to account for its dependence on redshift. So,
σ(R, z) = σ(R)D+(z). Furthermore there should be no need to normalise this to σ(R =
8hMpc−1) = σ8, since the power spectrum is normalised already.

Mass functions

Unfortunately there exist several naming conventions for mass functions in literature, so let

us first clear up our definitions:
∣∣∣dn(<M)

dM

∣∣∣ dM = n(M)dM .

We use the Sheth & Tormen (1999) semi-analytic equations as an improvement to the
Press & Schechter (1974) formalism to find the mass functions.

There are several different papers that contain the Sheth-Tormen equation. Unfortunately
all their conventions differ slightly, so it is difficult to check for consistencies. The equation
used is from Vale & Ostriker (2004):

n(M)dM = A

(
1 +

1

ν2q

)√
2

π

ρm,0

M

dν

dM
e−ν

2/2dM with ν =
√
a

δc

D+(z)σ(M)
, (3.7)

1As suggested by Masahiro Takada online: http://cosmocoffee.info/viewtopic.php?t=367&postdays=

0&postorder=asc&highlight=virial+radius&start=15.
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The Present-day Structure

where A is not the same as in the matter power spectrum calculation and is taken to be
A = 0.353 as in Jenkins et al. (2001). Also, a = 0.73 and q = 0.175. D+(z) above is the
linear growth factor found in sec. 2.3.2 and for σ(M) is found with eq. (3.5). Also note that
one needs to calculate:

dν

dM
= − ν

M

d lnσ

d lnM
. (3.8)

Alternatively one may use Takada & Jain (2003), where

n(M)dM =
ρm,0

M
A
[
1 + (aν)−p

]√
(aν) e−aν/2

dν

ν
with ν =

(
δc(z)

D+(z)σ(M)

)2

(3.9)

and p = 0.3, a = 0.707 and A ≈ 0.129, which comes from the normalisation of the mass
function

∫∞
0 dνf(ν) = 1, where

νf(ν) ≡ n(M, z)
M2

ρm,0

dlnM

dlnν
⇔ n(M)dM = νf(ν)

dν

ν

ρm,0

M
, (3.10)

is the relation given in the original paper, Sheth & Tormen (1999), together with the following
version of the relation:

νf(ν) = A
(
1 + ν ′−p

)(ν ′
2

)1/2 e−ν
′/2

√
π

, (3.11)

where, for example, in Seljak (2000) the factor of
√

2π gets absorbed into the constant A.
Also, here, ν is as above and ν ′ = aν, a = 0.707, p = 0.3 (these are the Sheth-Tormen fitting
parameters). Also note that only in eq. (3.7) we have stated the fitting parameters from
Jenkins et al. (2001). After equation eq. (3.9) we have stated the original parameters as in
Sheth & Tormen (1999).

An interesting question may be whether one should normalise the mass function (as is
recommended in Seljak (2000)):

1

ρm,0

∫
dn

dM
MdM =

∫
f(ν)dν = 1 . (3.12)

If yes, here we must normalise the mass function to the present-day matter density, since
the mass function is defined per unit comoving density. However, since it is not accurate to
assume that all matter is found within halos (today there should be > 50% of mass within
halos, but < 100%), it is better to avoid normalisation of the mass functions. In fact, since
the size of halos is determined somewhat arbitrarily, in most cases normalisation of mass
functions would be incorrect. We discuss this further in the second part of this thesis.

Bias

From Takada & Jain (2003) we can calculate the halo bias:

b(M) = 1 +
aν − 1

δc
+

2p

δc (1 + (aν)p)
with ν =

(
δc(z)

D+(z)σ(M)

)2

, (3.13)

which must be normalised according to Seljak (2000) as
∫
b(ν)f(ν)dν = 1. Note that the

convention for ν here is the same as in eq. (3.25) above.
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3.1. The halo model

Figure 3.1: The overdensity required for the col-
lapse of a halo, δc (eq 3.2) and the root-mean-square
fluctuation at the scale of the radius of a spherical vol-
ume containing the mass, M , σ(M) (eq 3.5) against
mass in solar masses, M�.
Figure source: Barkana et al. (2001).

Non-linear mass scale

The non-linear mass scale is defined to be the maximum mass that is undergoing non-linear
collapse at a given redshift. Then have from Seljak (2000) for example:

ν(M∗) =

(
δc(z)

D+(z)σ(M∗)

)2

= 1 . (3.14)

Distances and comoving volume

The equations for cosmological distances are from Hogg (1999) and sec. 1.2.3. Firstly one
needs the Hubble distance, dH = c[ km s−1]/H0[ km s−1 Mpc−1], where square brackets indi-
cate the units. Then to find the line-of-sight comoving distance, which in the flat case equals
the transverse comoving distance, dM and the comoving angular diameter distance :

d = dH

∫ z

0

dz′

E(z′)
= dM (3.15)

where the function E(z) is defined as:

E(z) ≡
√

Ωm,0(1 + z)3 + Ωk,0(1 + z)2 + Ωde,0 , (3.16)

for the case, where w = −1. From this we calculate the angular diameter distance:

dA =
dM

(1 + z)
. (3.17)

Furthermore, we shall need the differential comoving volume to multiply the mass functions,
which are defined per unit comoving volume:

dV

dΩ dz
= dH

(1 + z)2d2
A

E(z)
. (3.18)

Here dΩ denotes the increment in the solid angle.
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Concentration parameter

Seljak (2000) parametrise the concentration parameter dependence on the halo mass as:

c(M) = c0

(
M

M∗

)β
, (3.19)

where to combine with Sheth-Tormen mass functions, they set c0 = 10 and β = −0.2 and M∗
is calculated in eq. (3.14). Note however that they set ∆ = 200 to be the density contrast
defining the span of halos, whereas we use the function for ∆(z) from Henry (2000), or as it
turns out to be best, ∆ = 180 (see beginning of this chapter). Furthermore Seljak (2000) warns
that: “both PS and ST assume that each mass element belongs to only one halo, counting
only the isolated halos. This is certainly a valid description on large scales, where the total
halo mass determines the white noise amplitude of the power spectrum. On small scales the
clumpiness caused by subhaloes within the halos may become important. Recent numerical
simulations have in fact shown that most of the small halos that merge into larger ones are
not immediately destroyed, but stay around for some time until they are finally merged on the
dynamical friction time scale. In such a case a given mass particle can be part of more than
one halo at any given time. Because on very small scales the correlation function is dominated
by the small halos it may make a difference whether the mass is smoothly distributed within
the halos or some fraction of it is in the subhaloes. However, the contribution to the total
mass of the halo coming from the subhaloes is below 10%. Recently, the mass function for
subhaloes from high resolution simulations was determined and it was shown that it is an
order of magnitude below the one for isolated halos.”

We use a modified redshift-dependent concentration parameter as in Cooray et al. (2000):

c(M, z) = a(z)

(
M

M∗(z)

)b(z)
, (3.20)

where a(z) = 10.3(1+z)−0.3 and b(z) = 0.24(1+z)−0.3, reproducing the final power spectrum
to within 20% for wavenumbers 0.0001 < k < 500 Mpc−1 for redshifts, z < 1.

Virial radius

The virial radius defining the halo sizes:

rv(M, z) =

(
3M

4π∆(z)ρm(z)

)1/3

(3.21)

and converted into an angle on the sky by dividing with the comoving distance to the halo:
θv(M, z) = rv(M, z)/d(z). Note that we use ∆(z) = ∆ = 180!

NFW halo profile

The NFW density profile is:

ρ(r) =
ρs

r
rs

(
1 + r2

r2
s

) with rs(M, z) =
rv(M, z)

c(M, z)
(3.22)
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3.1. The halo model

and

ρs(M, z) =
∆(z)ρm(z)

3

c(M, z)3[
ln(1 + c(M, z))− c(M,z)

1+c(M,z)

] , (3.23)

where ∆(z) is calculated using eq. (2.39). The parameter rs determines where the NFW halo
density profile changes from a power law. The above must correspond to a halo mass:

M =
4πρsr

3
v

c3

[
ln(1 + c(M, z))− c(M, z)

1 + c(M, z)

]
=

4πr3
v

3
∆(z)ρm(z) . (3.24)

3.1.1 The halo model nonlinear power spectrum

We use the Sheth-Tormen (Sheth & Tormen, 1999) mass function (see also Seljak, 2000;
Takada & Jain, 2003)):

n(M)dM =
ρm,0

M
A
[
1 + (aν)−p

]√
(aν) e−aν/2

dν

ν
with ν =

(
δc(z)

D+(z)σ(M)

)2

,

(3.25)
where A = 0.353 as in Jenkins et al. (2001). Also, a = 0.73 and p = 0.175. D+(z) above
is the linear growth factor and σ(M) is root-mean-square fluctuation in a sphere of volume
containing a mass M in a smooth universe, calculated from the linear power spectrum. δc is
the critical threshold for a linear density fluctuation to collapse to form a halo (see eq. 3.2),
calculated from spherical collapse.

From Takada & Jain (2003) the bias consistent with the Sheth-Tormen mass functions:

b(M) = 1 +
aν − 1

δc
+

2p

δc (1 + (aν)p)
with ν =

(
δc(z)

D+(z)σ(M)

)2

, (3.26)

which must be normalised according to Seljak (2000).
The non-linear mass scale, M∗(z) is defined to be the maximum mass that is undergoing

non-linear collapse at a given redshift. As mentioned above, we require the threshold for the
linear density perturbations to collapse and form a halo. This was given by Henry (2000)
above. The density contrast of collapsed objects to the background mass density is taken to
be ∆(Ωm,0, z) = 180. The halo density profile is taken to be the Navarro-Frenk-White (NFW,
Navarro et al., 1997) profile and halo mass is defined as:

M =
4πr3

v

3
180ρm(z) . (3.27)

The NFW profile, like other ingredients of the halo model is calculated from ΛCDM models.
Other halo profiles have been explored by e.g. Alam et al. (2002). The halo profile is a
function of the halo concentration parameter, c(M,z).

In order to calculate the full power spectrum characterising the statistics of the density
field (see also app. A), one can then use the equations given for example in equations (45)
and (49) of Smith et al. (2003) (but also Cooray et al., 2000; Seljak, 2000, etc.):

PP
nl(k, z) =

1

(2π)3

∫
dM

dn

dM

[
ρ̃(k,M, z)

ρm,0

]2

(3.28)

PC
nl(k, z) = Plin(k, z)

[∫
dM

dn

dM
b(M, z)

ρ̃(k,M, z)

ρm,0

]2

, (3.29)
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Figure 3.2: Dimensionless
matter power spectra using
the two different methods; the
halofit method by Smith et al.
(2003) and the full halo model,
z = 0.0.

where ρ̃(k,M, z) is the 3D Fourier transform of the NFW halo density profile. Note that
to get the full non-linear power spectrum we must add the 1-halo and 2-halo contributions:
Pnl(k, z) = PP

nl(k, z) + PC
nl(k, z). This is plotted in fig. 3.2.

3.1.2 The halofit formula

The non-linear matter density power spectrum in its dimensionless form

dσ2

d ln k
≡ ∆2

nl(k) =
k3Pnl(k)

2π2
, (3.30)

can be calculated using the fitting function found by Smith et al. (2003), which improves
on the previous fit by Peacock & Dodds (1996). It is a fit to N-body simulations based on
the halo model and so, the power spectrum is decomposed into the “quasilinear” and “halo”
terms:

∆2
nl(k) = ∆2

Q(k) + ∆2
H(k) , (3.31)

where the general fitting functions in terms of the variable y ≡ k
kσ

and the function f(y) =
y
4 + y2

8 are:

∆2
Q(k) = ∆2

lin(k)

[
(1 + ∆2

lin(k))βn

1 + αn∆2
lin(k)

]
e−f(y) (3.32)

and

∆2
H(k) =

1

1 + µny−1 + νny−2

[
any

3f1(Ω)

1 + bnyf2(Ω) + [cnf3(Ω)y]3−γn

]
. (3.33)
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3.2. Numerical methods

The fitting coefficients are:

αn = 1.3884 + 0.3700n− 0.1452n2 (3.34)

βn = 0.8291 + 0.9854n+ 0.3401n2 (3.35)

γn = 0.8649 + 0.2989n− 0.1631C (3.36)

log10 µn = −3.5442 + 0.1908n (3.37)

log10 νn = 0.9589 + 1.2857n (3.38)

as well as

log10 an = 1.4861 + 1.8369n+ 1.6762n2 + 0.7940n3 + 0.1670n4 − 0.6206C (3.39)

log10 bn = 0.9463 + 0.9466n+ 0.3084n2 − 0.9400C (3.40)

log10 cn = −0.2807 + 0.6669n+ 0.3214n2 − 0.0793C (3.41)

and for a flat universe with Ωm + ΩΛ = 1,

f1(Ωm) = Ω−0.0307
m , f2(Ωm) = Ω−0.1423

m and f1(Ωm) = Ω0.0725
m . (3.42)

The parameters of the spectrum are calculated in terms of the Gaussian-filtered spectral
variance,

σ2
G(R) ≡

∫
∆2

lin(k)e−k
2R2

d ln k (3.43)

are the following: kσ is defined by σG(k−1
σ ) ≡ 1, n in the above equations is the effective

spectral index calculated from the slope of the power spectrum and C is the second derivative
and is the spectral curvature

neff ≡ −3−
d lnσ2

G(R)

d lnR

∣∣∣∣
σG(R)=1

& C ≡ −
d2 lnσ2

G(R)

d lnR2

∣∣∣∣
σG(R)=1

, (3.44)

and ∆2
lin(k) is the dimensionless linear matter power spectrum.

3.2 Numerical methods

In the above sec. 3.1, we have seen an attempt of describing the evolution of density pertur-
bations in the universe. In order to solve eq. (2.9) we have however had to make some severe
simplifying assumptions. These assumptions have restricted us to only the simplest systems,
treating a density perturbation as a single, highly symmetrical object that collapses. In order
to be able to not only find better descriptions of the collapse of individual objects, but to also
to truly understand their clustering, we need to do better.

Therefore, we must be able to calculate the evolution of the linear power spectrum through
the non-linear regime. We still can make some simplifying assumptions: we know that col-
lapsing matter is non-relativistic (ρ � P ) and we know that collapse is only possible on
sub-horizon scales (k � aH). This means that in ΛCDM, we can stick to the non-relativistic,
Newtonian perturbation equations and so, the collisionless Boltzmann equation (eq 2.18):

df

dt
=
∂f

∂t
+ v

∂f

∂x
− ∂Φ

∂r

∂f

∂v
(3.45)
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and the non-relativistic version of the Poisson equation, which becomes the below, since in
this regime, our coordinates are comoving with the fluid and hence the velocity term from
eq. (2.12) vanishes:

∇2Φ(r, t) = 4πG

∫
f(r,v, t)dv (3.46)

should be solved (Springel et al., 2001). It is difficult to achieve this simply with finite
difference methods, so Monte Carlo like N-body simulations are employed to integrate the
Boltzmann equations of N particles populating the phase space, using the method of charac-
teristics2.

The dynamics of any group of collisionless particles interacting only through gravity can
be described by the following Hamiltonian, H(p1...pN ,x1...xN , t):

H =

N∑
i

p2
i

2mia2(t)
+

1

2

N∑
ij

mimjϕ(xi − xj)

a(t)
, (3.47)

where the Newtonian potential is a sum over the discretised potentials, ϕ:

φ(x) =

N∑
i

miϕ(x− xi) . (3.48)

Here, the xi are position vectors and pi = a2(t)mivi are the canonical momenta, vi being the
peculiar velocity of the individual particle i and we have switched back from conformal time,
τ to cosmic time t for convenience.

A periodic boundary condition means that our cosmological box is surrounded by identical
cosmological boxes for the sake of calculating forces on particles coming from beyond the
simulation box. Assuming such a boundary condition in a box with a side L enables us to
rewrite the Poisson equation in a discreet form as:

∇2ϕ = 4πG

(
− 1

L3
+
∑
n

δ̃(x− nL)

)
, (3.49)

where the sum goes over all direction, n and δ̃ is the “density” field of a single simulation
particle, i.e. a delta-function, convolved with a particular softening kernel , characterised by
a comoving length, ε.

3.2.1 The N-body code: GADGET-2

We want to in particular consider the descendant of the widely used GADGET code (Springel
et al., 2001), called GADGET-2 (Springel, 2005). In fact for simplicity and relevance to the
topics covered in this thesis, we only consider the GADGET-2 N-body code for DM-only simu-
lations and for now ignore its capability to model baryonic physics through smoothed particle
hydrodynamics (SPH).

2The method of characteristics is a way of solving partial differential equations by reducing them to a set
of ordinary differential equations and integrating from a set of initial conditions. In other words the partial
differential equations are solved by integration along characteristic curves, in this case the characteristic curves
of the collisionless Boltzmann equation.
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3.2. Numerical methods

GADGET is a Lagrangian code, meaning that it does not calculate physical parameters, like
pressure and density and their evolution at points on a mesh, but rather it assigns values
of mass and force to individual particles that are then able to move through the comoving
volume as well as generally through phase-space. In other words, Lagrangian codes discretise
the mass rather than space and work with fluid particles. This has been chosen, because
GADGET was written purposefully for the simulation of structure formation, where highly
nonlinear inhomogeneities are relevant in most regimes and so it is highly advantageous that
in Lagrangian codes, the resolution automatically increases with density. On the other hand,
Eulerian, mesh-based approaches are significantly faster for near-homogeneous conditions and
are often very useful especially when it comes to hydrodynamical calculations, for which the
adaptive mesh refinement technique has been developed relatively recently (Bryan & Norman,
1997).

The main classification of GADGET is that it is a TreePM code, which means that it is
a mixture of the two main approaches to summing the forces on the particles. The first
approach is the hierarchical tree algorithm, the second is the particle-mesh.

The “tree” grouping algorithm is used in GADGETover alternatives, because it requires
less internal memory storage and because its geometric properties mean that it can be used
as a range-searching tool. Finally, it corresponds well with the space filling Peano-Hilbert
curve used for splitting up the simulation, so it can run on many computer cores in parallel
(parallelisation).

On the other hand, the particle-mesh method is a very fast scheme, but suffers from reso-
lution issues for scales smaller than a mesh cell. Unlike the particle-mesh, the tree approach
does not have an intrinsic resolution limit, but can be significantly slower. One possible im-
provement on the resolution of particle-mesh codes is adaptive refinement. However in the
case of GADGET, the tree algorithm is utilised on small scales and the particle-mesh approach
is applies on larger scales in order to achieve optimal synergy between the two methods.

The power of the tree-algorithm is to simplify the calculation of the potential field when the
gravitational force acts over long distances (Appel, 1985). The tree is constructed with the BH
algorithm (Barnes & Hut, 1986), in which the field of N simulation particles is divided in to
nodes and sub-nodes, called branches and leaves. The “root” node is the entire simulation box
and it is successively divided into eights until there is either one or no particles in the sub-node
cube (see fig. 3.3). This tree is then used to sum over remote groups of particles, so that their
gravitational force can be approximated as that coming from a single body at their centre of
mass at the lowest order. This reduces the number of computations of force for N simulation
particles to be ∼ O(N logN) as opposed to N2 in direct force summation. Accuracy can be
increased by including higher multipole moments of the gravitational potential field, however
at some point it becomes more reasonable to consider the separate sub-nodes. In GADGET-2,
after discarding the empty nodes, each node of this oct-tree either contains only one particle
or is a progenitor to further nodes (or siblings), in which case the monopole moments of the
gravitational potential field due to all the node’s particles are calculated and stored.

The gravitational force is computed on a particle by walking the tree, which means for
each particle the influences of the entire box are taken into account by decomposing it into
nodes and finally expanding in multipoles of the gravitational potential as described above.
In particular, a condition is defined for when further nodes must be opened as opposed to
when the node is far enough to proceed with multipole expansion. This condition depends
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Figure 3.3: The tree-algorithm of Barnes & Hut (1986) in two dimensions. The root node on the left is
subdivided into quarters until each sub-node contains either one or no particles. The nodes
containing no particles are discarded.
Figure source: Springel et al. (2001)

on a user-defined opening angle, θ and is3

r >
l

θ
, (3.50)

where r is the distance from the particle in question to the centre of the node and l is the
length of the side of the node. If this criterion if fulfilled, the tree walk is terminated and
multipole expansion follows. If not, the walk is continued by opening the node and its siblings.
Both force computation inaccuracy and speed increase for larger values of the opening angle,
θ. Therefore regulating this parameter regulates the efficiency of the code and yields the
errors on the force calculations.

GADGET-2 in fact uses a relative node-opening criterion, which adjusts to the dynamical
state of the siimulation, where

θ =

√
α
|a|r2

GM
, (3.51)

where |a| is the acceleration in the last timestep of the simulation α is an adjustable tolerance
parameter and M is the total mass contained in the node.

As mentioned above, GADGET is a TreePM code (Bagla & Ray, 2003), meaning that it
splits the potential field and hence the force calculation in Fourier space into a long-range,
φ̃long(k) and short-range, φ̃short(k), term (as seen in fig. 3.4). The Fourer transform of eq. (
3.48) can then be written as,

φ̃(k) = φ̃long(k) + φ̃short(k) where

φ̃long(k) = φ̃(k) exp{−k2r2
s }

and

φshort(x) = −G
∑
i

mi

ri
erfc

(
ri
2rs

)
, (3.52)

3θ used to mean the divergence of the fluid velocity in the previous chapters, but is here in no way connected
to that.

64



3.2. Numerical methods

Figure 3.4: This figure plots the summed force (in
the upper panel) and the error on the force (lower panel)
against the distance between the particle and the node
as a fraction of the box size. The split between the long-
and short-range force is denoted by a vertical dashed
line at rs and the vertical doted line in the bottom panel
denotes the mesh scale. In the upper panel on small
scales, the dot-dashed line uses the tree set up and on
large scales the solid line is calculated using the particle-
mesh approach.
Figure source: Springel (2005)

where ri = min(|x − ri − nL|) ensuring that only the closes version of each source of the
same gravitational potential is counted in the periodic set up. The cumulative error function
in this equation governs the transition into the short-range regime and the sum utilises the
above described tree algorithm in real space. Note also that the split-scale, rs � L.

Time evolution of the simulation

The Hamiltonian for an N-body problem can usually be separated into a kinetic and a po-
tential part: H = Hk + Hp. The time evolution of these separate terms can be computed
exactly and can be described in terms of the drift and kick operators, where:

drift Dt(∆t) :

{
xi → xi + pi

mi

∫ t+∆t
t a−2dt

pi → pi
(3.53)

kick Kt(∆t) :

{
xi → xi

pi → pi −
∑

jmimj
∂φ(xij)
∂xi

∫ t+∆t
t a−2dt .

(3.54)

Now one can apply this operator splitting to approximate the total time evolution operator
with either the drift-kick-drift (DKD) or kick-drift-kick (KDK) leapfrog integrator:

U(∆t) =

{
D(∆t/2)K(∆t)D(∆t/2) DKD
K(∆t/2)D(∆t)K(∆t/2) KDK .

(3.55)

Because in cosmological simulations the needed precision in the time integral varies depending
on the density field, which has a very large dynamical range, it is useful to selectively apply
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Figure 3.5: The leapfrog scheme of time stepping with short- and long- range kicks, and drifts to the point
of the synchronisation.
Figure source: Springel (2005)

time steps of different lengths to different sets of particles in the simulation. This can be
done with either individual time steps, which may induce a large overhead in memory or
with adaptive time steps, which depend on the local density. Such time steps of course need
to be synchronised every so often, which can be done most efficiently, if the time steps are
discretised in a power of 2 hierarchy (see also fig. 3.5). Note also that the KDK leapfrog
integration scheme turns out to be more numerically stable over several time steps.

Parallelisation of the code

It is beyond the scope of this thesis to discuss the details of parallelisation of computer
programs, but it may be interesting to consider it in passing. The GADGET-2 code is a
massively parallel code, meaning that it treats the individual central processing units (CPU)
of the multi-core computer as separate computers and assigns them all parts of the simulation
volume to evolve, whilst trying to minimise the necessary amount of communication between
the cores. This means that an appropriate domain-decomposition scheme must be used.

In the case of GADGET-2, the fractal, space-filling Peano-Hilbert curve is used to map the
3-dimensional simulation volume onto a 1-dimensional curve in order to insure any force error
to be independent of the number of CPU (see fig. 3.6). Importantly and interestingly, any
points that lie close to each other in the 1D curve are also located close to each other in the
original 3D volume. Moreover, the Peano-Hilbert decomposition is very closely related to the
BH oct-tree described above in that dividing the BH node into eight sub-nodes usefully yields
the same particle grouping as dividing the Peano-Hilbert curve into eight equal lengths. Note
also that the division of the volume needs not consist of equal parts, all the benefits of using
this fractal curve are still applicable.

Performance

Finally be would like to briefly discuss the performance demands of this code in particular
the CPU-time needed for cosmological simulation and the amount of memory consumed. The
amount of RAM important to consider in the context deciding how many particles to use in
the simulations. We refer to tab. (3.1) for two examples of needed CPU times.

It is also important to note that each dark matter particle in the simulation is described
by 20 variable, which means for single precision, we use 20× 4 bytes = 80 bytes per particle.
In addition there are 12 variables per node and 4 additional variables for a secondary data
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Figure 3.6: The fractal space-filling Peano-Hilbert curve is used for domain decomposition for the purpose
of the parallelisation of the GADGET-2 code. In the top panel is the 3D, in the bottom panel is
the 2D curve.
Figure source: Springel (2005)

Boxsize (2563 parts.) 256h−1Mpc 64h−1Mpc

timesteps 2648 5794
time 60600 s 173700 s
tree walk 52.8 % 41.0 %
tree construction 4.5 % 6.4 %
tree walk communication 0.9 % 1.6 %
work-load imbalance 6.7 % 14.4 %
domain decomposition 13.0 % 15.2 %
PM force 4.4 % 4.9 %
particle and tree drifts 5.3 % 4.9 %
kicks and timestepping 1.4 % 1.1 %
peano and ordering 8.0 % 7.8 %
other 2.9 % 2.6 %

Table 3.1: A table showing the CPU-time consumption for two example cosmological simulations running
down to present time (z=0). Table source: Springel (2005)

structure. Typically 0.65 nodes per particle are needed, which means we add 42 bytes to the
memory needed for each particle. In addition 4 variables per mesh-cell are needed for the PM
part, needing up to 16 bytes per mesh-cell.

67



The Present-day Structure

3.2.2 Hydrodynamics

It is significantly more complicated to describe the evolution of the density field of baryonic
matter. This is because the assumption of the collisionless Boltzmann equation is no longer
valid. The dynamics of the baryonic gas are modeled in Gadget with smoothed particle
hydrodynamics (SPH). This is a common approach used by many Lagrangian codes (codes
that model the density field as a fluid of discrete particles), because compared with mesh-
based codes, they are better suited for the high dynamic range required by cosmological
simulations.

The continuous quantities in the discretised simulation are then found by interpolation.
A continuous function f(r) is approximated by using a smoothing kernel, W (or window
function):

f̃h(r) =

∫
f(r′)W (r − r′, h)d3r′ , (3.56)

with the smoothing length, h determining the width of the kernel, W . Besides being nor-
mailsed of course, the condition should hold that W → δD, the Dirac delta, as h → 0. To
calculate the interpolated continuous density then, for example, we sum as:

ρ(r) =
∑
n

mnW (r − rn, h) . (3.57)

The simplest, usual form of the kernel is a cubic spline function, which is made to only depend
on |r − r′| i.e. a radial kernel.

In order to model the hydrodynamics one needs to use the perfect fluid Lagrangian to
obtain the Euler equation and the first law of thermodynamics to describe the evolution of
entropy. So far this all seems very familiar and is indeed related to what is done in purely
dark matter simulations. The difference and complication can for example be seen in the
Euler equation in Lagrangian form:

dv

dt
= −∇P

ρ
+ F , (3.58)

where F entails gravitational, but also magnetic forces for example and where the first term
indicates that the fluid is accelerated by pressure gradients, which is not the case in pure dark
matter simulations.

This is an enormous topic and is far beyond the scope of this humble thesis, but if one
wished to discuss it in more detail, we recommend for example the pedagogical review of
Rosswog (2009). However, we should, for the sake of the coming discussion in ch. 6 briefly
explain here that on top of including additional forces and pressure effect into the dynamical
simulations, other physical processes may have to be included, depending on the system
modeled.

For example, when considering the formation of cosmological structures, radiative cooling
and heating as well as certain feedback processes can become extremely relevant, especially
on the smallest scales in cosmological structure. This is the case so much so, that through
gravitational effect, these processes can influence even the distribution of the dominant dark
matter. A useful example of such processes may be that implemented by Viel et al. (2004),
which models the radiative cooling by Hydrogen and Helium in the intergalactic medium
(IGM) as well as a basic star formation mechanism. The star formation mechanism simply
converts the gas particles whose temperatures are sufficiently low and whose densities are
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sufficiently high into collisionless stars. The cooling prescription follows that of Katz et al.
(1996).

It has also recently been reported by the authors of the OWLS simulations (Semboloni
et al., 2011; van Daalen et al., 2011, etc.) that the effects of baryonic processes, in particular
the feedback from active galactic nuclei (AGN) can become dominant on scales that are
significant to cosmology. This is certainly important issue to consider in the future.
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3.3 Gravitational lensing by cosmological structures: cosmic
shear

We have mentioned above that the presence of matter causes the spacetime to be curved.
This means that the geodesic, i.e. light paths are not longer straight lines, causing a lens-like
effect when looking at distant images of galaxies. This gravitational lensing lends itself to an
interesting possibility of mapping out the 3D field of otherwise invisible dark matter density
field, without relying much on an assumed relationship between the distribution of visible
and dark matter in the universe. In particular, the very weak gravitational lensing induced
in the background distribution of distant galaxy images is known as cosmic shear and is only
detectable statistically. For this reason we wish to describe in this section how to theoretically
calculate the weak lensing angular power spectrum, given a 3D dark matter power spectrum
found in the previous sections (see also Bartelmann & Schneider, 2001). We are particularly
interested in the future weak lensing survey Euclid (Amendola et al., 2012; Refregier et al.,
2010). In fact we would like to consider how to find weak lensing power spectra from theory
for when in several years the data becomes available. This is also useful for making predictions
for constraints and measurements, which is what we do in the following chapters in this thesis.

3.3.1 Lensing by a single object

Let us first consider the contribution to cosmic lensing from a single object by looking at its
projected density profile.

Critical surface density

At the distance to the centre of the lens halo, projected on the 2D sky-sphere and converted
to an angle, θ, the lensing convergence, κ(θ) is obtained via the density profile of halos (NFW
in this case), projected onto the sky-sphere, divided by the critical surface density, Σcrit:

Σcrit =
c2

4πG

ds

dldls

1

(1 + zl)
, (3.59)

where c here is the speed of light, the subscript l denotes a quantity related to the lensing
halo and s to the source galaxy and the distances are comoving angular distances, which as
mentioned above (fig 3.1), are equal to line-of-sight comoving distances in flat space.

2D projection of the NFW profile

In order to calculate the projected mass density Σ(r⊥) one needs to integrate ρ(r) (see eq. 3.22)
over the line of sight i.e. along the component of the radial vector, perpendicular to the line
of sight. In order to do this integral, rewrite r as a dimensionless variable x = r

rs
& dr = rsdx

and decompose it into a perpendicular x⊥ = r⊥
rs

and a parallel component x‖ =
r‖
rs

:

Σ(x⊥) =

∫
halo

ρ
(√

x2
⊥ + x2

‖

)
dx‖ = ρsrs

∫
halo

dx‖√
x2
⊥ + x2

‖

(
1 +

√
x2
⊥ + x2

‖

)2 (3.60)

70



3.3. Gravitational lensing by cosmological structures

! !"!!# !"!$ !"!$# !"!% !"!%#
$!

$%

$!
$&

$!
$'

$!
$#

$!
$(

$!
$)

!

"
*!
+

%,-.!/!0-12/345647-89./-74:0;6<-12/=;.4-!-62>:59647?

-

-

5<.;:72;59.-.4:0

@A@

BCD

Figure 3.7: The projected density of
three different halo density profile mod-
els, truncated at the virial radius and pro-
jected along the line-of-sight (see eq. 3.61).

Integrating over the entire halo means truncating the integral at the virial radius. We do

the integral directly, with the limit becoming xlimit
‖ =

√
c2 − x2

⊥ , since rlimit
‖ =

√
r2
v − r2

⊥
and c = rv/rs. Then the solution is (as in Takada & Jain (2003)):

Σ(x⊥) = 2ρsrs ×



−
√
c2−x2

⊥
(1+c)(1−x2

⊥)
+ 1

(1−x2
⊥)3/2 arccosh

(
x2
⊥+c

x⊥(1+c)

)
(if x⊥ < 1)

(c+2)
√
c−1

3(c+1)3/2 (if x⊥ = 1)

√
c2−x2

⊥
(1+c)(x2

⊥−1)
− 1

(x2
⊥−1)3/2 arccos

(
x2
⊥+c

x⊥(1+c)

)
(if c > x⊥ > 1)


,

(3.61)
which we plot in fig. (3.7) along two simpler density profile models. Finally we find κ(θ):

κ(θ,M, zl) =
Σ (cθ/θv)

Σcrit(zl, zs)
, (3.62)

where zl is the redshift of the lensing halo and zs is the redshift of the source galaxies.
Furthermore, θ = r⊥/dl and note that c here is the concentration parameter.

2D Fourier transform of the NFW density profile

The solution to the x⊥ = 0 case is undefined since the integral diverges at the lower limit of
x‖ = 0 & x⊥ = 0. As we can safely assume that the infinite density at the centre of a halo
would be unphysical, we can assume it is somehow smoothened. Fortunately the entire 3D
integral of the NFW density converges as we integrate over ∼ ρ(r)r2dr. So in the integral
over θ = x⊥rs/d for the Fourier transformation of κ(θ) converges at 0:

κ̃(l) = 2π

∫ θv

0
κ(θ)J0

((
1

2
+ l

)
θ

)
θdθ (3.63)
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The J0 is the two-dimensional Bessel function of order 0. This is integrated numerically using
the trapezium rule with 500 steps in θ, between θ = 0 → θv, the angular virial radius from
eq. (3.21), which has been deemed to be accurate enough4.

3.3.2 The weak lensing power spectrum

The power spectrum is made up of 2 terms, the 1-halo (or Poisson) term and the 2-halo (or
correlations) term:

CP
κ (l) =

∫ zs

0
dz

d2V

dzdΩ

∫ Mmax

Mmin

dM
dn(M, z)

dM
[κ̃(l,M, z)]2 (3.64)

and

CC
κ (l) =

∫ zs

0
dz

d2V

dzdΩ
P

(
l

d
, z

)[∫ Mmax

Mmin

dM
dn(M, z)

dM
b(M, z)κ̃(l,M, z)

]2

, (3.65)

where in order to project the matter power spectrum to 2D, the small angle (Limber, 1953;
LoVerde & Afshordi, 2008) approximation has been made. .

Tomography

In this thesis we consider how to measure the WDM particle mass using observations of
cosmic shear power spectra. From an observer’s point of view, the image of each galaxy in
the Universe is distorted by gravitational lensing effects of all intervening matter. Therefore
the cosmic shear power spectra are closely related to the matter power spectrum integrated
over redshift. Future surveys are expected to use broadband photometry to estimate the
redshifts of the observed galaxies. This should allow shear power spectra to be calculated at
a range of different redshifts, and also allow cross power spectra between redshifts (see Csabai
et al., 2003, for a review).

The above sections assume all sources at the same redshift for simplicity, however we can
expand the calculations to have a source redshift distribution and divide the source galaxies
into redshift determined tomographic bins. We consider a cosmic shear survey which has a
number of galaxies per unit redshift

n(z) = zαe−(z/z0)β , (3.66)

(Smail et al. (1994)) where α = 2, β = 1.5 and z0 = zm/1.412, where zm = 0.9 is the median
redshift of the survey. For example, this is reasonable for a Euclid-like survey (Amara &
Refregier (2007)). We assume a photometric redshift uncertainty of δ(1 + z) = 0.05(1 + z)
and take top-hat photometric redshift bins containing equal numbers of galaxies (as in Amara
& Refregier (2007)). We use 35 galaxies per square arcminute and take fsky, the fraction of
the sky covered by the survey, to be a half. We assume there are no catastrophic outliers.
We calculate power spectra at 20 spherical harmonic multipoles in the range 20 < ` < 20000
(roughly 0.0065 < k < 6.5 at redshift 0.9, or down to scales of order 1 arcminute).

The lensing power spectra are given by

Cij(l) =

∫ χH

0
dχlWi(χl)Wj(χl)χ

−2
l Pnl

(
k =

l

χl
, χl

)
, (3.67)

4See app. B for a detailed calculation.
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where χl(zl) is the comoving distance to the lens at redshift zl and Wi is the lensing weight
in the tomographic bin i :

Wi(zl) = ρm,0

∫ zmax

zl

[
ni(zs)

Σcrit(zl, zs)

]
dzs , (3.68)

where

Σcrit(zl, zs) =
c2

4πG

χs

χlsχl

1

(1 + zl)
, (3.69)

and the subscripts s, l and ls denote the distance to the source, the distance to the lens and
the distance between the lens and source respectively.

In the halo model one can simplify the above equation using some approximations (e.g.
Cooray & Hu, 2001) in the halo model non-linear matter power spectrum so that the lensing
power spectra are made up of one-halo and two-halo terms,

Cij(l) = CP
ij(l) + CC

ij(l) . (3.70)

which are given by

CP
ij(l) =

∫ zmax

0
dz

d2V

dzdΩ

∫ Mmax

Mmin

dM
dn(M, z)

dM
κ̃i(l,M, z)κ̃j(l,M, z)

CC
ij(l) =

∫ zmax

0
dz

d2V

dzdΩ
P

(
l

χ
, z

)
Ti(l, z)Tj(l, z)

Ti(l, z) =

∫ Mmax

Mmin

dn(M, z)

dM
b(M, z)κ̃i(l,M, z)dM , (3.71)

(Cooray et al., 2000): where κ̃i(l,M, z) is the 2-dimensional Fourier transform of the lensing
convergence for which one needs to integrate the NFW halo density profile (Navarro et al.,
1997), truncating the integral at R180, the spherical radius, where the density contrast, ∆ =
180. We use the analytic results given in Takada & Jain (2003). The lensing convergence
signal in redshift bin i is found by the following equation:

κi(θ,M, zl) =

∫ zmax

zl

ni(zs)κ(θ,M, zl, zs)dzs . (3.72)

In Takada & Jain (2004) we get the lensing weight to be:

Wi(χl) =
3

2
Ωm,0H

2
0

χl
al

∫ χi+1

χi

dχs
n(zs)

n̄i

dzs
dχs

χls
χs

for χl ≤ χi+1 and χl ≤ χs ,

(3.73)
where the χ are comoving distances. Alternatively we can write:

Wi(χl) =
3

2
Ωm,0H

2
0

χl
al

∫ zmax

0
ni(zs)

χls
χs
dzs . (3.74)

Then to calculate the cosmic shear (approximately - see Takada & Jain (2004)):

κi(θ) =

∫ χH

0
dχWi(χ)δ(χ, χθ) , (3.75)
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where δ is the matter density perturbation, and define the angular power spectrum:

〈κ̃i(l)κ̃j(l′)〉 ≡ 4π2δDirac(l− l′)Cij(l) . (3.76)

Finally we can find:

Cij(l) =

∫ χH

0
dχWi(χ)Wj(χ)χ−2Pnl

(
k =

l

χ
, χ

)
, (3.77)

where Pnl(k, χ) is the 3D non-inear matter density power spectrum found in sec. 3.1.2 or
sec. 3.1.1 at redshift corresponding to χ and the Limber (flat sky/small angle) approximation
is used to project the 3D power spectrum wavenumbers, k onto multipoles of angular scales,
l.
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CHAPTER 4
Testing Warm Dark Matter with

Cosmic Weak Lensing

This chapter corresponds closely to
Markovic, Bridle, Slosar & Weller,

Constraining Warm Dark Matter with Cosmic Shear Power Spectra,
published in 2011 in the Journal of Cosmology and Astroparticle Physics,

January issue, paper 022 (Markovič et al., 2011).

We are familiar with the effects on the linearly perturbed density field that are caused
by the free-streaming of dark matter particles in the early universe, we have discussed it in
ch. 2. We have described the statistical properties of the perturbed density field in terms of the
power spectrum. The power spectrum of matter in a universe, where the dark matter particles
had large thermal velocities at early times, becomes suppressed on small scales through this
free-streaming (sec 2.3.3).

This chapter examines the methods to calculate the power spectrum of a perturbed density
field after the perturbations have began nonlinear collapse in the matter dominated era, which
we encountered in ch. 3, now in a new context. The measurements of Viel et al. (2008), who
inferred a lower limit on the mass of the thermalised dark matter particle by examining the
small scale power of the linear power spectrum, using Lyα forest data, can be enhanced by
looking at the non-linear power spectrum.

We discuss in this chapter, the possibility of using the the statistical properties of the
field of distortions due to gravitational lensing - the weak lensing power spectrum, which
we discussed in sec. 3.3, to find the traces of the free-streaming of warm dark matter. In
order to make predictions on how well future weak lensing surveys will be able to exclude
or measure the mass of the thermalised dark matter particle, we however must extensively
examine the methods employed in calculating the non-linear correction to our early universe
power spectrum!

At first, in sec. 4.1, we use the established approaches for calculating non-linear corrections
to the matter power spectrum and apply them to the warm-dark-matter-suppressed linear
power spectrum. We begin by describing in more detail the “evaporation” of the seeds for
low mass halos through free-streaming and write down an approximate halo mass limit. We
do not try to develop a new model for non-linear WDM structure yet, we make an attempt
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of this later, in chapters 5 & 6. For now, we implement the halo model as described in
sec. 3.1 into the WDM scenario and extrapolate the fitting formulae to CDM simulations in
order to describe non-linear WDM structure. In sec. 4.2 we calculate the weak lensing power
spectrum for CDM and different models of WDM. Predictions for a Euclid-like survey and the
potential of such a survey to constrain the WDM particle mass are reported in sec. 4.3, where
it is also examined why the standard statistical methods employed in basic forecasting are
inappropriate for the parameter mwdm and an attempt is made at developing an alternative.

We take a flat ΛCDM or ΛWDM Universe throughout, with parameter values of WMAP7
(Larson et al., 2011): the dimensionless Hubble expansion rate parameter, h = 0.71, the
present day baryon density in units of the critical density, Ωb = 0.045, the present day dark
matter density in units of the critical density, Ωm = 0.27, the cosmological constant energy
density in units of the critical density, ΩΛ = 0.73 (all defined in eq. 1.33), the scalar primordial
power spectrum slope, ns = 0.96 (defined in eq. 2.31), and the present day linear theory root-
mean-square density fluctuation in 8h−1Mpc spheres, σ8 = 0.80 (defined in eq. 3.5).

4.1 Non-linear corrections to the suppressed power spectrum

The measurements of the Lyα forest data, they have the advantage of not having to un-
derstand much of the complicated structure formation, but they have the disadvantage of
probing the universe far away, meaning that small scales are not easily resolved and may be
troubled by foreground effects and noise (e.g. Lee, 2012; Viel et al., 2009). In order to avoid
being restricted to only the largest scales of the power spectrum one needs to look at the
universe close by. Close objects that are relatively can obviously be more easily resolved, but
due to the finiteness of the speed of light, they appear in a more advanced stage of evolution.
For this reason, the structure we see relatively close to the Milky Way has become non-linear.
Therefore, it is essential to understand non-linearity in order to examine the small scales of
cosmological structure!

In order to supplement the Lyα constraints on the thermalised dark matter particle mass,
we must look at the cosmological data of objects seen as they are close to the present time.
An example of such a probe is gravitational lensing (see sec. 3.3), being also the only probe
that does not rely on making assumptions about the coupling between dark and luminous
objects.

4.1.1 Halo model with warm dark matter

As introduced in sec. 3.1, the halo model assumes that the Universe is made up of halos with
positions sampled from the linear theory matter distribution. As a result, there are two main
contributions to the non-linear matter power spectrum. Firstly, the two-halo term, which
dominates on large scales, encodes the correlation between different haloes and is equal to
the linear matter power spectrum on large scales. Secondly, the one-halo term refers to the
correlations within a halo and therefore depends on the density profile of the halo. Both terms
depend on the number of halos as a function of halo mass, which can be found to a reasonable
approximation using analytic arguments or more usually measured from numerical simulations
and modified according to the underlying matter power spectrum and in the context of weak
lensing. For reasons of simplicity we retain the assumption of spherical collapse in our halo
model calculations.
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Figure 4.1: The root-mean-square
density fluctuation for CDM (top, solid
line), 1 keV WDM (bottom, dashed) and
5 keV (middle, dashed). The σ(M) flat-
tens off for the smallest halo masses in the
WDM model, as one would expect for any
smoothed field.

We extend the halo model to WDM scenarios by modifying the ingredients. We use the
WDM linear power spectrum described in sec. 2.3.3 to calculate a new mass function using
the Sheth & Tormen (1999) prescription (eq 3.11). We make the conservative assumption
that the halo profiles are unchanged relative to CDM (see also app. B). It is in the one-halo
term of the power spectrum that the effects of free-streaming of WDM are seen most strongly.
This is because of the difference in the root-mean-square fluctuation, σ(R), which becomes
suppressed at small R in a WDM Universe (see eq. 3.5 and fig. 4.1).

We choose not to normalise the mass functions because the result of free-streaming is
the suppression of the formation of small structures, not by accreting the excess matter onto
larger haloes, but rather by resulting in a larger uncollapsed background matter density (see
fig. 4.4). In contrast, we do normalise the halo bias by requiring

1

ρm,0

∫
b(M)

dn

dM
MdM = 1 . (4.1)

This ensures that our model reproduces the linear predictions in the limit of k → 0. We
re-examine the justification for this normalisation in the next chapter (5).

We explore the effect of WDM on the mass functions in fig. 4.3. As expected, the number
density for the smallest haloes is reduced in the case of WDM. This is shown most visibly in the
lower panel of fig. 4.3 which shows the fractional suppression on a linear scale. This is useful
for comparison to the general assumption of the absence of haloes below the free-streaming
halo mass, defined as (Avila-Reese et al., 2001):

Mfs =
4π

3

(
λfs

2

)3

ρm(z) , (4.2)

where ρm(z) is the background matter density at redshift z and λfs is the free-streaming length
defined in eq. 2.50. The quantity of the free-streaming mass is somewhat arbitrary, since it
does not really correspond to a physical halo, since it does not include the density contrast
parameter, ∆ from eq. (3.3) (as it does in Sommer-Larsen & Dolgov, 2001). In fig. 4.5, we
plot the eight-times free-streaming mass against the WDM particle mass, mwdm as well as
the half-mode mass (see also later fig. 5.1).
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Figure 4.2: In the left panels of the above figure we plot the unnormalised (top) and normalised (bottom)
halo bias in two different WDM and the CDM scenarios. On the right we plot the fractional
difference of the WDM to the CDM bias for 2 different WDM particles. Notice the boost
in WDM bias introduced by normalisation. This issue has been re-examined with respect to
simulations by Dunstan et al. (2011); Schneider et al. (2012)

The crosses in fig. (4.3) make a comparison to an N-body simulation of Zavala et al. (2009).
This comparison indicates that the Sheth-Tormen mass functions underestimate the strength
of this suppression. Indeed, comparing the simulated mass function for the 1 keV particle to
the Sheth-Tormen version, we find a very large discrepancy around the free-streaming mass
and below.

The simulated mass function seems to decline much more steeply than the Sheth-Tormen.
This suggests that we underestimate the effect of WDM on the mass functions. This demon-
strates the need for modifications to the halo model, which we attempt in ch. 5 and further
WDM N-body simulations described in ch. 6. Note that we have removed the first three
points in the simulated mass function in the figure for the lowest three halo mass bins. This
is because these are too affected by Poisson noise (Zavala et al., 2009). On the other hand,
there could be unforeseen resolution effects coming from the simulations. However this is
unlikely, since there are usually spurious haloes created in WDM simulations, which increases
the mass function, as seen in fig. 4.3 for masses M . 109M�. Nonetheless this should be
examined in future WDM simulations.
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Figure 4.3: The top figure shows
Sheth-Tormen mass functions suppressed
by free-streaming of WDM particles for
two different warm dark matter scenarios:
1 keV particles (dashed red line), 5 keV
particles (solid green line) and CDM (solid
black line).
The bottom figure shows the fractional dif-
ference between the WDM and CDM mass
functions for the 2 different warm scenar-
ios. The circles mark the halo mass on
the x-axis that corresponds to the free-
streaming radius of each WDM particle
(or the free-streaming mass). Data points
from the simulation by Zavala et al. (2009)
are marked with crosses on the upper
panel: the red crosses correspond to the
same WDM scenario as the red dashed
line (only data points above the limiting
mass of the simulation are shown). The
sudden increase in the WDM mass func-
tion for masses below 109 M� has been re-
moved as it is only a result of spurious
halo formation in simulations due to the
finite size of the particles. The bump at
M ∼ 2 × 1014 M� is probably also a nu-
meric artifact of forcing the presence of a
large structure in the simulation volume.
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Figure 4.4: The two WDM lines
reaching above the dotted zero line demon-
strates the artificial boost in structure
that is introduced by forced normalisa-
tion of the WDM mass functions. This
is because WDM removes power on small
scales, which means small halos are pre-
vented from collapsing. Therefore requir-
ing all matter within haloes forces more
matter into large halos. This is unphysical
since WDM free-streaming causes there to
be more diffused, uncollapsed matter.

4.1.2 Halofit with warm dark matter

In the ΛCDM model, the non-linear evolution of the matter power spectrum can be calculated
from the primordial linear matter power spectrum, using the halofit formula of Smith et al.
(2003), described in sec. 3.1.2. This method is a fitting function based on the halo model

79



Testing WDM with Cosmic Weak Lensing

Figure 4.5: This figure compares
the halo mass that corresponds to the
mass function ratio between WDM and
CDM mass functions falling to a half,
called the half-mode mass and the
eight-times free-streaming halo mass
for WDM particles with masses mwdm.

Figure 4.6: Matter power spectra today (z = 0), suppressed by free-streaming of WDM particles. The
dashed lines are the linear power spectra corresponding to, from left to right in each panel,
250 eV, 500 eV, 1 keV warm dark matter and cold dark matter. The dashed lines are the same
in both plots and represent the linear power spectra. The solid lines are the corresponding
non-linear power spectra. The non-linear power spectrum in the left panel uses the halo model
and that in the right panel was calculated using the halofit formula. The slight excess of
power on large scales in the halo model most likely comes from neglecting the effect of ‘halo
exclusion’ (Smith et al., 2011).

that reproduces very accurately the results of many CDM numerical simulations. It is more
accurate and more general than the fitting function from Peacock & Dodds (1996). For now,
until ch. 6, we make the large extrapolation of assuming that the halofit method is valid for
WDM. In fig. 4.6 we compare non-linear matter power spectra calculated using this method
to power spectra calculated using the halo model approach described in the sec. 4.1.1 above.

Non-linear evolution of the matter power spectrum washes out the difference between
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WDM and CDM on small scales, which is apparent when comparing the linear spectra to
the non-linear spectra in either panel of fig. 4.6. This is likely to be due to the collapse of
structures, which significantly boosts the power on small scales and more than compensates
for any missing structure (Boehm et al., 2005). This same process correlates the power
at different wavenumbers in the power spectrum simply due to the collapse of the physical
dimensions of objects. Furthermore this seems to also be a result of smooth accretion onto
the already formed haloes (Benson et al., 2012).

The information about cosmological parameters contained in the matter power spectrum
is encoded in its shape. If the matter power spectrum is modified (e.g. by non-linear growth)
then some of the information contained in the shape may no longer be available. In particular
on small scales there is very little power to begin with, so when power at different wavenumbers
becomes correlated from non-linear growth, it becomes increasingly difficult to recover the
power from pure linear growth. For any mildly noisy observation therefore the information
originally encoded in the small scales would be much harder to recover after the power has
cascaded down, i.e. information about WDM free-streaming in the non-linear matter power
spectrum would have been lost. This information may however be recovered by examining
these objects individually, most conveniently in real space.

4.2 Shear power spectra with warm dark matter

We use these approaches to calculating the non-linear matter power spectrum to calculate
the weak lensing shear power spectra, cross-correlating 10 bins in redshift (see eq. 3.3.2). We
first use the WDM linear theory matter power spectrum within the full halo model analysis,
and calculate the resulting shear power spectrum, shown by the dashed line in fig. (4.7) for
the case of a 1 keV WDM particle mass, for the autocorrelation of the 5th redshift bin with
itself.

As expected, the shear power spectrum amplitude is reduced on medium to small scales
due to the lack of contributions to the one-halo term from smaller halos. On mid-range scales
the two-halo term is very slightly greater than the CDM power spectrum due to the renor-
malisation of the halo bias given in eq. (4.1). The mass function is decreased on small scales
by WDM and therefore the bias must increase on all scales to satisfy the bias normalisation
constraint (illustrated in fig. 4.2). For the matter power spectrum this exactly preserves the
large scale power. However, the lensing two-halo term weights the halos by their lensing effect
(κ̃ in eq. 3.71), which is largest for high mass halos, where the mass function was unchanged
but the bias is larger. Consequently, as expected, the lensing power spectrum is increased on
larger scales. Note that we consider bias in the WDM model further in the next chapter, but
refer the reader to the more recent work on the WDM halo (Benson et al., 2012; Schneider
et al., 2012).

We then use the linear theory WDM function within halofit to calculate the non-linear
matter power spectrum, which we insert into the lensing power spectrum integrals. This is
shown by the black solid line in fig. (4.8). The effect is similar to that from the halo method
but the deviation from CDM is about half the size.

In using these two different methods we have attempted to somewhat span the range of
possibilities given the theoretical uncertainties of the standard, CDM-based non-linear models.
They all agree surprisingly well, to within a factor of two. To be conservative, we use the
halofit method from now on, unless otherwise stated, because it gives results in lesser WDM
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Figure 4.7: In the upper panels we plot the weak lensing auto-correlation power spectra for tomographic
redshift bin 5, for WDM and CDM. The lower panels show the fractional differences between
WDM and CDM spectra.
On the left side: we show the shear power spectra for CDM (solid black) and three different
WDM particle masses: 250 eV, 500 eV and 1 keV denoted with the dashed (red), dot-dashed
(green) and solid (blue) lines respectively. The effect of the 1 keV particle is not visible on this
plot and the blue line overlaps with the black. These were found using the halofit nonlinear
corrections. In the lower panel we plot fractional differences between the WDM and CDM
power spectra. The (red) circles, the (green) squares and the (blue) diamonds represent the
250 eV, 500 eV and 1 keV particles respectively. Furthermore, here we plot the error bars for
a Euclid-like survey in 20 multipole bins. Note that these error bars are correlated and in
order to find errors one must use the entire correlation matrix as we do in sec. 4.3.
On the right side: the WDM model plotted here is for 1 keV particles for illustration. The
thick solid (black) and the thick dashed (blue) lines were found using the WDM linear theory
matter power spectrum with the non-linear contribution calculated with the halofit method
and the halo model respectively. The thin dashed line was found using halofit with CDM in
upper and lower right panels. However it cannot be seen in the panel above, because it is only
different from the thick (black) line by 1%. Note that the excess of power in the halo model
on large scales is due to the normalisation of the halo bias and is unphysical.

effects in the power spectrum. We have also checked our results against a simple cut-off in
the lower limit of mass integral of equations 3.64 and 3.65. We plot in fig. 4.8 the resulting
fractional differences in the shear bin-5 autocorrelation power spectra similar to those in the
lower right panel of fig. 4.7.

For illustration we show the halofit results for three different WDM particle masses in
the left hand panel of fig. 4.7. As expected, the suppression of the shear power spectrum is
strongest and reaches the largest scales for the lowest DM particle masses. This reflects the
scarcity of low mass lenses in the WDM Universe. The effect of WDM on the shear power

82



4.3. Forecasting constraints

Figure 4.8: We plot fractional differences between WDM and CDM spectra, as above, but here they are
all for a 1 keV WDM using three different approaches. The black line is using the halofit

non-linear power spectrum; the solid dark blue line is the full halo model approach using the
WDM transfer function and finally the dashed cyan line is the halo model again but this time
with the mass integral in eqs. 3.64 and 3.65 simply cut below the free-streaming mass. Note
that the increase on large scales in the halo model lines is due to a renormalization bias. Here
we can see how the effect of damping of small scales by free-streaming of WDM manifests
itself using different methods of calculating non-linear large scale structure. Note also that
the halofit method gives the least effect. Also note that the black solid line (with dots) is
the same as the red solid line in the upper panel of the same figure).

spectrum is more prominent than that on the non-linear matter power spectrum at redshift
zero (fig 4.6). WDM has a greater effect on the linear theory matter power spectrum than
the non-linear matter power spectrum and, therefore, has a greater effect on the non-linear
matter power spectrum at higher redshifts, where there is less nonlinearity. Since the shear
power spectrum is an integral of the matter power spectrum over redshift, WDM has a greater
effect on the shear power spectrum, which probes higher redshifts. We also see that the effect
of halving the WDM particle mass is to more than double the suppression compared to the
CDM power spectrum i.e. the change in the deviation from CDM is nonlinear in the inverse
particle mass. We return to this in the following sections.

We compare the lensing power spectra in fig. 4.7 to predicted statistical uncertainties on
20 logarithmically spaced bins in ` for this redshift bin. Here and in the following section,
we assume a Euclid-like survey with 35 galaxies per square arcminute covering half the sky
with shear measurement error on each galaxy of σγ = 0.35/

√
2 (Refregier et al., 2010). The

comparison is only indicative, since there are strong correlations between ` bins on small
scales and between the 90 different redshift cross power-spectra (not shown). However, we
already see that very high WDM particle masses around 250 eV will be easily ruled out.

4.3 Forecasting constraints on warm dark matter

In this section we forecast constraints on the WDM particle mass for a Euclid-like weak
lensing survey, using a Fisher matrix (FM) analysis (see for e.g. Dodelson, 2003). We vary
four other cosmological parameters in the cosmic shear analysis and compare constraints
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between the halofit and halo model approaches. We then combine the halofit results with
forecast constraints from the CMB (sec 2.2.1).

We use CDM as our fiducial model and place limits on the inverse WDM particle mass so
that our fiducial model has a parameter value of zero, corresponding to an effectively infinite
WDM particle mass (in practice we use mwdm = 100 MeV). We vary the following additional
parameters: the total matter density today, Ωm, the primordial perturbation spectral index,
ns, the primordial spectral amplitude, As and the matter power spectrum shape parameter,
Γ = e−2ΩbhΩmh. We use As instead of σ8 to normalise the matter power spectrum for
convenience when combining with the CMB (sec 2.2.1) constraints. For the CDM linear
theory matter power spectrum we use a fitting formula for the matter power spectrum from
Ma (1996), which uses the shape parameter Γ. Cosmic shear alone is very insensitive to Ωb

and h individually.
The Fisher matrix for cosmic shear is given as:

Fα,β =
∑
l

∑
(i,j),(m,n)

∂Cij(l)

∂φα
[Cov[Cij(l), Cmn(l)]]−1 ∂Cmn(l)

∂φβ
, (4.3)

where Cij is the shear power spectrum of bin i correlated with bin j, φα are the parameters
over which we marginalise and Cov(Cij(l), Cmn(l)) is the covariance matrix of bins i, j, m
and n. We use equation (14) in Takada & Jain (2004) to find the elements of the covariance
matrix, after adding the shot noise term coming from the shear error, σγ :

C̄ij(l) = Cij(l) + δij
σ2
γ

n̄i
, (4.4)

where n̄i is the average number density of galaxies in redshift bin i.
The FM analysis assumes that the first non-vanishing order of the Tayor expansion of the

log-likelihood is quadratic. However taking CDM as the fiducial model, this is not the case
for m−1

wdm (or mwdm) as a parameter. Therefore the standard FM approach breaks down. As
a result, the error found from FM analysis depends on the fiducial model chosen, errors are
asymmetric around the fiducial value, and it turns out that the power spectra are completely
insensitive to the inverse WDM particle mass at small values of m−1

wdm. Therefore it is not
possible to use a very small step size in this parameter when calculating the derivative of the
power spectrum in the Fisher matrix analysis. We discuss how we deal with this below, in
sec. 4.3.1. Briefly, we tune the step size in the inverse WDM particle mass to equal the 1σ
error bar on this parameter.

We show the resulting parameter constraints on mwdm, Ωm and ns in fig. 4.9, marginalised
over the power spectrum amplitude and shape. The halofit results are shown by the solid
contours and the halo model by the dashed curves. The agreement between the uncertainties
on each parameter is good, with the halo model giving slightly tighter constraints, as expected
from the lensing power spectra shown in fig. 4.7. The degeneracy direction between m−1

wdm

and Ωm is slightly different between the two methods. We have verified that on fixing all other
cosmological parameters the degeneracy direction is extremely similar for the two methods,
so the difference arises from the interplay between changing the WDM mass simultaneously
with other parameters including the large scale amplitude parameter As. The degeneracy
direction between m−1

wdm and ns is as expected: increasing m−1
wdm causes a decrease in power

on small scales, which can be partially compensated by increasing the power spectrum index
ns.
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Figure 4.9: 68 and 95 % confidence likelihood contours for both the halo model (blue dashed) and the
halofit (green solid) approaches, marginalised over the power spectrum amplitude parameter
As and shape parameter Γ. The units on m−1

wdm are eV−1.

The marginalised errors that result from this analysis can be found in tab. 4.1, using a
one-tailed confidence limit for m−1

wdm. We find approximately 30% smaller errors when using
the halo model, compared to the halofit method.

As mentioned above, we use the FM forecast for the Planck CMB experiment (à la
also Colombo et al., 2009; Hamann et al., 2008) and include it into our analysis to predict
combined constraints from both Euclid and Planck. We derive the cosmological constraints
from Planck following the description by the Dark Energy Task Force (DETF Albrecht et al.,
2006). A more detailed discussion can be found in Rassat et al. (2008). For this prediction we
consider only the 143 GHz channel data. This channel has a beam with the full-width-half-
maximum of θfwhm = 7.1′ and is sensitive to anisotropies in the temperature of T = 2.2µK/K
and in polarization of P = 4.2µK/K. We take fsky = 0.80 as the sky fraction in order to
account for having to exclude parts of the sky due to galactic foregrounds (noise from the
Milky Way). We only consider the multipoles in the CMB power spectrum that are larger
than lmin = 30 in order to avoid problems with polarization foregrounds. In other words, we
exclude the small scales from the CMB power spectrum. It is for this reason that we assume
that WDM effects in the CMB power spectrum are negligible and set a flat CMB prior on
the mwdm. In other words, the FM components relating our WDM parameter are set to zero.
This is based on the assumption that the scales affected by WDM with mwdm & 100 eV are
far away from the scales considered. Therefore, while Planck adds quite strong constraints
on the other cosmological parameters, especially on the curvature, the Planck FM does not
add any constraints on m−1

wdm and only contributes to breaking degeneracies

As described in the DETF report (Albrecht et al., 2006), we choose the parameter set to
be: ωm = h2Ωm, θs , lnAs, ωb = h2Ωb, ns, τ , where θs is the angular size of the sound horizon

85



Testing WDM with Cosmic Weak Lensing

! "#$ %#"

&'$!
!(

!

!#)

$

*
+,*

!$
!#"-" !#"-- !#".

!

"#$

%#"

&'$!
!(

!#/-- !#0-( $#!-
!

"#$

%#"

&'$!
!(

*
+
,
*

!
$

!#"-" !#"-- '!#".
!

!#)

$

!
*

!#/-- !#0-( '$#!-

!#"-"

!#"--

'!#".

!
*

!#/-- !#0-( '$#!-
!

!#)

$

1
2

Figure 4.10: 68 and 95 % confidence likelihood contours for the halofit approach using cosmic shear
(thick green solid) and cosmic shear combined with Planck forecasts (red dashed line and
thin black solid contours shaded red). The units on m−1

wdm are eV−1.

at last scattering, lnAs is the logarithm of the primordial amplitude of scalar perturbations
and τ is the optical depth to reionisation. After marginalization over the optical depth and
the physical baryon density, ωb we then calculate the Planck CMB Fisher matrix in the
parameters: Γ, As, ns, Ωm by using the appropriate Jacobian matrix of partial derivatives for
the needed parameter transformation (Eisenstein et al., 1998; Rassat et al., 2008).

The parameter constraints are shown in fig. 4.10 for the halofit method. We see that
the very tight constraint on ns from the CMB breaks the degeneracy between ns and mwdm

from cosmic shear alone, to produce a tighter constraint on mwdm. The single parameter
marginalised results for halofit and the halo model methods are shown in tab. 4.1.

Fiducial value Halo model halofit

Shear only Shear only Shear + Planck

mwdm CDM > 935 eV > 645 eV > 2500 eV

m−1
wdm

[
eV −1

]
10−8(≈ 0) +0.00107 +0.00155 +0.00040

Ωm 0.27 ±0.0011 ±0.0016 ±0.0012

ns 0.96 ±0.031 ±0.035 ±0.002

As [h−3Mpc3] 1.3× 105 ±0.119× 105 ±0.183× 105 ±0.005× 105

Γ 0.18 ±0.0090 ±0.0123 ±0.0005

Table 4.1: Table of 68% confidence limits for a flat ΛWDM cosmology marginalised over 4 other
parameters in each case. The errors on the inverse particle mass, m−1

wdm, are single tailed
limits described in sec. 4.3.1.
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Figure 4.11: Left: The 1σ error calculated from FM (solid black line), but with different differentiation
step sizes, dθ, used to calculate the gradient of the cosmic shear power spectra with respect
to the parameter θ = m−1

wdm. The red circle marks the point when the differentiation step
size equals the 1σ error on the inverse DM particle mass. We fix all other parameters.
Right: The 1-dimensional probability P (m−1

wdm) is plotted with a solid black curve. The dot-
dashed (blue) curve is the Gaussian probability distribution corresponding to the FM error
obtained when using a step size equal to the 1σ error. The vertical dashed lines correspond
to the 68.3% of the probability. The red circle on the left corresponds to the vertical dashed
blue line on the left.

4.3.1 Step sizes in the Fisher matrix

We first perform a simple likelihood analysis, only varying m−1
wdm, assuming all other param-

eters are fixed. We use this to illustrate our proposed method and assess how well it works
in one dimension, where we can compare with the truth.

As discussed in the main text, we choose to use the inverse WDM particle mass as the free
parameter in our FM analysis because it has a non-infinite value for our fiducial model, CDM.
However as m−1

wdm tends to zero the lensing power spectra become completely insensitive to
the exact value, which makes it impossible to perform a traditional numerical FM calculation
in which the step sizes used in calculating the derivatives are very small. This is illustrated
in the left hand panel of fig. (4.11) for the simple case where all other parameters are kept
fixed.

Clearly the choice of step size has a big effect on the result. We propose to use a step size
such that it is equal to the error bar, as illustrated by the intersection of the dark (black)
and light (cyan) lines in the left hand panel of the figure, shown by the (red) circle. Due to
the convex nature of the function this cannot be done by iteration but instead is most simply
done by making the figure we show. This can equally well be carried out in multi-dimensional
space as in one dimension by working with the one-dimensional marginalised error bar.

By working briefly in one dimension we can compare our result to the truth obtained by
plotting the full likelihood as a function of m−1

wdm. This is shown in the right hand panel of
fig. 4.11. The solid line shows the exact likelihood and the dot-dashed line illustrates the FM
error obtained by setting the step size equal to the 1σ error bar. The crosses and vertical
lines show the 68% one-tailed upper limits from each curve. We see that the exact 68% upper
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limit is within a factor of two of the FM limit using our proposal. Our proposal gives a
more conservative result. We can also see from the difference in shape between the solid and
dot-dashed lines quite how non-Gaussian the exact probability distribution is. We proceed
by using this method in multi-dimensional parameter space.

4.4 Summary & discussion

So far, we have made the first estimate of constraints on the WDM particle mass from cosmic
shear power spectra. We compared approaches to estimating the impact of warm dark matter
on cosmic lensing. We found the halofit approach of Smith et al. (2003) more conservative
than the halo model. We comment on the difference below. We also find that the effects on
the mass functions (fig 4.3) reach on mass scales significantly larger than the “free-streaming”
mass. We have made forecasts for parameter constraints from a Euclid-like cosmic shear
survey combined with Planck and found that if the true cosmological model were CDM, we
could place a limit of mwdm > 2.5 keV at 68% confidence.

Our calculations are conservative in several ways. Firstly, we use a transfer function
to relate the CDM linear theory matter power spectrum to the WDM linear theory power
spectrum, from which we calculate the Sheth-Tormen mass function. We showed a comparison
with a mass function from simulations which suggest a much bigger suppression of the number
of lower mass halos. To improve our constraints it would be necessary to have a fitting formula
to simulations giving the mass function as a function of WDM particle mass, extending to
smaller masses than most cosmological CDM simulations. A better physical model for the
non-linear collapse of WDM structures might be developed on the basis of such work. This
has recently been attempted by other authors like Benson et al. (2012); Schneider et al. (2012)
on the basis on the formulation described in ch. 5. In addition, the new WDM models for the
mass functions must be physical enough to translate into the halofit method and explain the
decrease in signal due to WDM in the non-linear power spectrum (Vanderveld et al., 2012).
Furthermore, we assumed that the NFW profile is unaffected by the dark matter particle
mass, whereas at the very least we expect the central core to be smoothed out. We assume
that the effect of this on cosmic shear power spectra is subdominant to the decrease in the
number of small halos. To overcome this limitation we would need to use a replacement for
the NFW which gives the density profile as a function of WDM particle mass and halo mass.
We discuss this somewhat in app. B.

However, our calculations are optimistic, in that we use mass functions and mass profiles
obtained from simulations containing no baryons (Semboloni et al., 2011; van Daalen et al.,
2011). To perform this measurement on real data it would be necessary to use results from
simulations using baryons. These are in only the preliminary stages of development at the
present time, and there is considerable uncertainty on the prescriptions used as well as on
many free parameters that need to enter the calculations. The effect of baryons is to change
the predicted cosmic shear power spectra, and to introduce uncertainty in the predictions.
We assume for the purpose of this prediction that these problems will be solved by the time
we will be analysing a Euclid-like survey. We hope that studies like these will provide extra
motivation to improve the quality of simulations using baryons, which we discuss further in
Chapter 8 with reference to the work of van Daalen et al. (2011) and Semboloni et al. (2011)
and the OWLS hydrodynamical simulations (Schaye et al., 2010) of large scale structure.

We also assume spherical collapse, which is less realistic in describing non-linear structure
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than ellipsoidal collapse, which has additional halo mass dependence in the collapse threshold.
In other words, a further source of suppression of small scales is the decreased amount of
collapse for small haloes, which tend to have higher ellipticity.

Additionally, we normalise the halo bias in order to recover the linear matter power spec-
trum on very large scales. In fact, the correct approach would be to add a third term to the
halo model, which would account for the uncollapsed matter. It would be necessary to specify
the power spectrum and correlation of this uncollapsed matter. We develop this in ch. 5. For
now, we have chosen to normalise the mass-function weighted bias, following convention in
CDM halo model calculations. However, the effect of WDM is to decrease the number of
low mass halos and therefore the bias is increased on all scales to meet the normalisation
condition. This causes an increase in power on mid-range scales.
This may be the reason why the correlations between Ωm and m−1

wdm are inconsistent between
the halo model and halofit (see fig. 4.9). However, these issues only affect the halo model
calculations and do not influence our final constraint from the halofit method. The halo
model for WDM is discussed in great detail in ch. 5.

It is well known that FMs are an approximate method for forecasting uncertainties on pa-
rameters. The formal derivation of the FM states that it gives a lower limit on the parameter
errors. If the predicted data points are non-linearly related to the parameters, then we can
expect likelihood contours in parameter space to be banana shaped, which is not captured
within the FM errors. Even when considering a single parameter the FM approximation
breaks down due to the flatness of the log-likelihood, giving a gradient of zero at the fiducial
value of m−1

wdm = 0.
We find this to be a significant problem for the WDM particle mass. Small changes in WDM
particle mass around our fiducial CDM model make negligible changes in the cosmic shear
power spectra which makes it impossible to sensibly use a derivative taken with small step
sizes in the FM. We use CDM as our fiducial model in order to be able to compare our result
to other methods (Lyα, X-ray). We solve the above problem by using a larger step size, but
the FM method must eventually be replaced by a full Markov-Chain Monte Carlo exploration
of parameter space, which we discuss in ch. 8.

We have assumed that the CMB is insensitive to WDM when we calculated joint con-
straints with Planck, because the effects of WDM are only important on the smallest scales.
We have further assumed that only primary CMB anisotropies from Planck are used for
constraining cosmology. However, gravitational lensing of the CMB itself can be used to
reconstruct single-bin lensing indtomography information on the lensing potential (e.g. see
Lewis & Challinor, 2006). This would enhance the constraints on WDM further, but is not
tackled in this thesis.

Our cosmic shear calculations rest on a linear theory WDM power spectrum fitting for-
mula which assumes dark matter particles are light and thermalised, like for example a light
gravitino. This fitting formula can be straight-forwardly re-expressed for sterile neutrinos and
our lower limit on the thermalised WDM particle can be converted to a lower bound on the
sterile neutrino mass. For our final result using halofit plus Planck forecasts the limit is
mwdm > 2.5 keV which can be translated to msν > 15.5 keV. If dark matter is made of sterile
neutrinos created using the simplest mechanisms then constraints from cosmic shear can be
compared to those from X-ray observations to test the consistency of the model. If cosmic
shear were to place the upper limit we derive, then it would be inconsistent with current
X-ray lower limits and would rule out the simple sterile neutrinos as WDM candidates.

Our forecast constraints for future cosmic shear studies are similar to the upper limits
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already being obtained from observations of the Lyα forest. The main advantage of using
cosmic shear is that it does not rely on hydro-dynamical simulations of the intergalactic
medium. However the Lyα observations are at higher redshift (around z ∼ 3) than the
cosmic shear (which roughly probes mass at z . 1). This is advantageous because the matter
fluctuations are more in the linear regime and there is less reliance on simulations of non-
linear theory. Also the linear theory matter power spectrum is much more sensitive to the
WDM particle mass. A deeper cosmic shear survey would gain from this effect.

Cosmic shear power spectra are just one way to probe dark matter structure using grav-
itational lensing. However, higher order shear statistics such as the bispectrum are more
sensitive to small scale clustering than cosmic shear and therefore would be expected to be
more powerful in constraining the dark matter mass. Furthermore, higher order distortions
of galaxies, such as flexion, also probe smaller scales and would be a better test. Bacon et al.
(2009) find that galaxy-galaxy flexion is sensitive to structure of around 109 solar masses.
The methodology described in this paper could in the future be extended to make predictions
for these statistics.
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CHAPTER 5
An Improved Halo Model for

Warm Dark Matter

This chapter corresponds closely to
Smith & Markovic,

Testing the Warm Dark Matter Paradigm with Large-scale Structures,
published in 2011 in the Physical Review D,

volume 84, issue 6, paper id. 063507 (Smith & Markovič, 2011).

In the previous chapter we discussed the possibility of testing the ΛWDM cosmology using
cosmic weak lensing as a probe for the small-scale-suppressed distribution of dark matter. We
used the halo model of cosmological structure to calculate the non-linear corrections to the
suppressed linear matter power spectrum. We then calculated them with the halofit and
some discrepancies were found.

Besides the discrepancies between halofit approach and the halo model, we discovered
that it was difficult to determine how the halo bias and the halo mass function should be nor-
malised. We suggested that dividing the matter field into a smooth and a clumped component
might clarify this problem. We also found that the mass function derived from the suppressed
linear matter power spectrum according to the Sheth & Tormen (1999) formalism seemed to
yield far too many haloes smaller than the free-streaming length of warm dark matter, when
comparing to N-body simulations of Zavala et al. (2008). We furthermore pointed out that
using standard NFW (Navarro et al., 1997) profiles did not reflect the true shapes of profiles
of warm dark matter haloes.

In this chapter, we describe an attempt at modifying the halo model ingredients that we are
familiar with from sec. 3.1 to better fit the assumptions we make about structure formation in
the warm dark matter scenario. The formalism was developed by Dr. Robert Smith and was
then employed in finding the non-linear corrections, weak lensing power spectra and Fisher
matrices (FM) for the Euclid survey.

The splitting of the matter over-density field into a clumped, structure-like and a smooth,
linear-like component is described in terms of correlation functions in sec. 5.1.1. In sec. 5.1
the calculations of the halo mass function, bias and density profiles are re-examined and
modified according to some assumptions about the formation of haloes in the warm dark
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Figure 5.1: Free-streaming mass (Mfs) as a func-
tion of the mass of the WDM particle mass. The for-
mation of haloes below the black line is suppressed, be-
cause the overdensity field is smoothed by WDM on the
corresponding scales. Haloes in this region may pos-
sibly form through fragmentation. The cross-hatched
red region shows the allowed region from the Lyα for-
est (Boyarsky et al., 2009), where the correspondence
between the thermal relic WDM mass and the sterile
neutrino mass can be found as in for example Viel et al.
(2004).
Figure source: Smith & Markovič (2011)

matter universe. In section 5.2 the resulting power spectra of matter and weak lensing
statistics are presented. Finally, in sec. 5.2.1 the FMs for the Euclid survey are calculated.

5.1 A modified halo model

It became clear in the previous chapter (ch. 4) that the halo model developed in the context
of ΛCDM has some deficiencies in the ΛWDM model. For this reason we reexamine its
ingredients: the mass function, the bias and the halo density profile in the new context. In
fig. 5.1 we show the present constraint on the WDM particle mass in fig. 5.1.

5.1.1 Statistics of the divided matter field

If we describe the inhomogeneous density distribution of matter in the universe with the posi-
tion dependent function ρ(x), we can then attempt to split it up into a smoothly distributed
component, ρs(x) and a component that is made up of many individual object - haloes, with
particular density profiles ρh(r,M). These density profiles depend on the mass of the halo M
and since we assume these profiles to be spherically symmetrical, the distance from the halo
centre, r = |x− x0|. We can then sum over the individual objects to get the total density of
the clumped component, ρc(x), and write the total density distribution in the universe as:

ρ(x) = ρs(x) +

N∑
i=1

Mi uh(|x− x0,i|,Mi) , (5.1)

where uh(r,M) = ρh(r,M)/M is the density profile normalised to the halo mass.
Averaging over the universe, we can define a background density, ρ̄, which can also be

split into a smooth and a clumped component:

〈ρ(x)〉 = 〈ρs(x)〉+ 〈ρc(x)〉 = ρ̄ = ρ̄s + ρ̄c . (5.2)

where we can define the fraction of matter contained within haloes as f = ρ̄c/ρ̄ and therefore
also (1 − f) = ρ̄s/ρ̄. In order to calculate the fraction of matter contained within haloes,
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we integrate over the differential mass function, dn(M)/dM (eq 3.1) and cut the integral at
a lower cut-off mass scale, which we already briefly discussed in ch. 4. This is reasonable
because for now, we assume that no haloes exist with masses smaller than this cut-off, Mcut,
which we equate to the “free-streaming halo mass”, Mfs - the mass of a halo with radius
rfs/2, a half of the free-streaming scale of warm dark matter particles (sec 2.3.3). Now we
can re-write the fraction of matter contained within haloes as:

f =
1

ρ̄

∫ ∞
Mcut

dMM
dn(M)

dM
. (5.3)

We wish to calculate the statistics of clustering in the form of the non-linear matter power
spectrum, so we first start with the two-point correlation function of the matter density field,
which we split into the two components:

〈ρ(x)ρ(x + r)〉 = 〈[ρs(x) + ρc(x)] [ρs(x + r) + ρc(x + r)]〉
= 〈ρs(x)ρs(x + r)〉+ 〈ρc(x)ρc(x + r)〉+ 2 〈ρc(x)ρs(x + r)〉 , (5.4)

where we’ve set 〈ρs(x)ρc(x + r)〉 = 〈ρc(x)ρs(x + r)〉, because we assume statistical homo-
geneity and isotropy in the standard cosmological model, meaning that the correlations in
density between different points in the universe only depend on the distance between these
points.

Now define, as it is common (see also eq. 2.7), the perturbation to the density field for
either component, δi(x), where i ∈ {s, c}, by the equation:

ρi(x) ≡ ρ̄i (1 + δi(x)) , (5.5)

and rewrite equation 5.4, noting that by this definition, 〈δ(x)〉 = 0:

〈ρ(x)ρ(x + r)〉 = ρ̄2 (1 + 〈δ(x)δ(x + r)〉)
= ρ̄2 (1 + ξ(r))

= ρ̄2
s (1 + ξss(r)) + ρ̄2

c (1 + ξcc(r)) + 2ρ̄cρ̄s (1 + ξcs(r)) , (5.6)

where we’ve replaced in the definition of a correlation function as:

ξij(|r|) ≡ ξij(r) ≡ 〈δi(x)δj(x + r)〉 . (5.7)

Note also that the total perturbation is

δ(x) =
ρ(x)− ρ̄

ρ̄
=
ρ̄sδs(x) + ρ̄cδc(x)

ρ̄
= (1− f)δs(x) + fδc(x) . (5.8)

Using the definition of the fraction of clumped matter, we can now rearrange equation 5.6
to obtain:

1 + ξ(r) = (1− f)2(1 + ξss(r)) + f2(1 + ξcc(r)) + 2f(1− f)(1 + ξsc(r))

= 1 + (1− f)2ξss(r) + f2ξcc(r) + 2f(1− f)ξsc(r) , (5.9)

finally arriving to:

ξ(r) = (1− f)2ξss(r) + 2f(1− f)ξsc(r) + f2ξcc(r) . (5.10)

So the total correlation function of the over-density field is just a sum of the correlation
functions and the cross-correlation of the smooth and clumped fields, all weighed by the
fraction of matter contained within haloes, f .
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The halo-halo correlation function

In order to calculate the clump-clump, or “halo-halo” correlations, we need to return to the
standard halo model, already much discussed (sec 3.1). We split up the correlation function
into the over-density correlation within a single halo - the 1-halo or Poission term, ξP

cc and
the correlation between different haloes - the 2-halo term, ξC

cc:

ξcc = ξP
cc + ξC

cc , (5.11)

where the halo model gives these terms as (see also app. A):

ξP
cc(r) =

1

ρ̄2
c

∫ ∞
Mcut

dMM2dn(M)

dM

∫
d3x0 uh(|x1 − x0|,M)uh(|x2 − x0|,M) (5.12)

ξC
cc(r) =

1

ρ̄2
c

∏
i=1,2

[∫ ∞
Mcut

dMiMi
dn(Mi)

dMi

∫
d3x0,i uh(|xi − x0,i|,Mi)

]
ξcent

cc (r0,M1,M2) ,

uh(|x|,M) being the normalised halo density and dn(M)/dM the mass function as above and
now r = |x1−x2|. Here, ξcent

cc (r0,M1,M2) is the correlation function of the field of halo centres
and is a function of the halo masses and r0 = |x1,0 − x2,0|. Assuming that the background
density field dictates the position of haloes via a “local” deterministic bias, the correlation
function of halo centres can be written as in (Fry & Gaztanaga, 1993; Mo & White, 1996;
Smith et al., 2007):

ξcent
cc,R(r,M1,M2) = 〈δR(x)δR(x + r)〉 b1(M1)b1(M2) +

+
1

6

〈
δR(x)δ3

R(x + r)
〉 [
b1(M1)b3(M2) + b3(M1)b1(M2)

]
+

+
〈
δ2
R(x)δ2

R(x + r)
〉 b2(M1)b2(M2)

4
+ . . . , (5.13)

where we have smoothed the density field over the length R and so δR(x) is the smoothed
overdensity distribution and where the non-linear bias parameters bi are defined through the
above assumed relationship between the underlying dark matter density and the positions of
haloes via:

δc,R(x,M) =
∑
i

bi(M)

i!
[δR(x)]i . (5.14)

Assuming only the first order significant in equation 5.13:

ξcent
cc,R(r,M1,M2) ≈ ξR(r)b1(M1)b1(M2) , (5.15)

we can replace the correlation function of halo centres back into eq. 5.12 to finally obtain the
2-halo term:

ξC
cc(r) ≈

1

ρ̄2
c

∏
i=1,2

[∫ ∞
Mcut

dMiMi
dn(Mi)

dMi
b1(Mi)

∫
d3xi,0 uh(|xi − x0,i|,M)

]
ξR(r0) . (5.16)

(compare this also to app. A).
In order to further increase the accuracy of this description of the statistic of the density

field, we should take into account that the smooth component density should go to zero where
the haloes are located. This is left for further work. Additionally, the halo exclusion principle
(Smith et al., 2011, 2007; Takada & Jain, 2004) would ensure that we don’t doubly count the
correlations into the 2-halo term, where the correlation distance, r is smaller than the sum
of the two halo radii, since if this were the case, there would not be two but only one halo.
In this case, the correlation should add to the Poisson term.
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5.1. A modified halo model

The smooth-smooth correlation function

Now in finding the smooth-smooth correlation function, we again assume the smooth density
field is related to the underlying total dark matter field via a local deterministic bias and so
we write again, as in equation 5.14:

δs,R(x) =
∑
i

bs,i
i!

[δR(x)]i . (5.17)

We again make an approximation to relate the total smoothed correlation function to the
correlation function of the smooth component, neglecting non-linear terms, O(bs,2, bs,3, . . . ):

ξss,R(r) ≈ b2s,1 ξR(r) . (5.18)

The smooth-halo cross-correlaton

Finally and equivalently, we find the smooth-clumped cross-correlation function, neglecting
terms of higher order, O(b2, bs,2 . . . ):

ξsc(r) ≈
1

ρ̄c

∫ ∞
Mcut

dMM
dn(M)

dM
b1(M)

∫
d3x0 u(|x1 − x0|,M) bs,1 ξR(|x2 − x0|) . (5.19)

Bias of the smooth, linear-like matter field

Having an idea of how to calculate the first halo bias using the Sheth & Tormen (1999) per-
scription in eq. 3.13, we now need to find the bias factors for the smooth component. If mass
is to be conserved, knowing this halo bias, we can immediately derive the bias of the smooth
component. In other words, fully knowing how the underlying total dark matter distribution
determines the distribution of haloes, we can fully understand the density distribution of the
smooth component without much further effort.

Therefore we first determine the bias of the clumped component, by mass-integrating over
eq. (5.14):∫ ∞

Mcut

dMM
dn(M)

dM
δc,R(x,M) =

∫ ∞
Mcut

dMM
dn(M)

dM

∑
i

bi(M)

i!
[δR(x)]i , (5.20)

where M and R are related as always, through the mass-radius relationship for haloes
(eq 3.21). But we also know, from our definition of f = ρ̄c/ρ̄ and equation 5.3, that mass-
integrating the mass function alone down to a cut-off mass-scale gives us the amount of matter
contained within haloes, therefore:

ρc(x) = ρ̄c [1 + δc(x)]

=

∫ ∞
Mcut

dMM
dn(M)

dM
[1 + δc(x,M)] . (5.21)

Then we can re-write eq. (5.20) and arrive at an expression for δc(x):

δc(x) =
1

ρ̄c

∫ ∞
Mcut

dMM
dn(M)

dM

∑
i

bi(M)

i!
[δR(x)]i , (5.22)
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defining a new, mass-weighed effective bias for the clumped component as:

beff
i =

∫
Mcut

dMM dn(M)
dM bi(M)∫

Mcut
dMM dn(M)

dM

, (5.23)

we get a concise expression for the clumped density perturbation:

δc(x) =
∑
i

beff
i

i!
[δR(x)]i . (5.24)

We can now use this equation together with eq. (5.17), which defines the bias parameters
of the smooth component, insert them into eq. (5.8) and find that:

δ(x) = (1− f)δs,R(x) + fδc(x)

= (1− f)
∑
i

bs,i
i!

[δR(x)]i + f
∑
i

beff
i

i!
[δR(x)]i

=
∑
i

[
(1− f)bs,i + fbeff

i

] [δR(x)]i

i!
. (5.25)

From this, two conditions emerge naturally. Firstly,

1 = (1− f)bs,1 + fbeff
1 , (5.26)

⇒ bs,1 =
1− fbeff

1

1− f
. (5.27)

Secondly, a linearly biased smooth component implies the dissapearance of all non-linear
bias coefficients: ∫

Mcut

dMM
dn(M)

dM
bi(M) = 0 with i 6= 1 . (5.28)

However, if, as in the local model, the smooth component is non-linearly biased, the condition
is less strict:

(1− f)bs,i + fbeff
i = 0 with i 6= 1 , (5.29)

⇒ bs,i = −
fbeff

c,i

1− f
with i 6= 1 . (5.30)

The total power spectrum

Now to obtain power spectra, we must Fourier transform and so the weighted contributions
from the 3 separate correlation combinations, as in eq. (5.10) become:

P (k) = (1− f)2Pss(k) + 2(1− f)fPsc(k) + f2Pcc(k) . (5.31)
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5.1. A modified halo model

Figure 5.2: The nonlinear matter power spectrum
calculated using the modified halo model with mwdm =
0.25 keV (red & blue lines) and the CDM model (black
lines). The solid black and red lines denote the to-
tal CDM and total WDM power spectra. For the
WDM case, the dashed, dot-dash, dotted and triple dot-
dashed lines denote, Pss, Psc, PP, and PC, respectively.
The solid blue line is calculated for the WDM model,
but also taking into account the relic velocities (as also
discussed in app. B).
Figure source: Smith & Markovič (2011)

Fourier transforming our 3 approximate correlation functions from equations (5.11), (5.18)
and (5.19):

Pss(k) = b2s,1PR(k) ,

Psc(k) =
bs,1PR(k)

ρ̄c

∫ ∞
Mcut

dMMb1(M)
dn(M)

dM
ũ(k,M)

Pcc(k) =
PR(k)

ρ̄2
c

[∫ ∞
Mcut

dMMb1(M)
dn(M)

dM
ũ(k,M)

]2

+
1

ρ̄2
c

∫ ∞
Mcut

dM
dn(M)

dM
M2ũ2(k,M) , (5.32)

where ũ(k,M) is the Fourier-transformed, mass-normalised halo density profile and where we
may approximate the smoothed non-linear power spectrum, PR(k) with the WDM suppressed
linear power spectrum (eq 2.49). The two terms in the expression for Pcc corresppond to the
standard two- and one-halo i.e. Poisson and Clustering terms. We plot the final power
spectrum in fig. (5.2) together with the individual components. Note however, that in this
plot the mass function has been modified too as is described below in sec. 5.1.2.

5.1.2 Modified halo model ingredients

We now consider the modification to the mass functions and the halo bias. The halo density
profiles are briefly discussed in app. B.

Mass functions

As discovered in ch. 4, there seems to be an excess in the number of low mass haloes obtained if
the standard Sheth-Tormen approach is used for WDM compared to simulations (Polisensky
& Ricotti, 2010; Zavala et al., 2009). Moreover, considering that the initial density field
becomes strongly smoothed on small scales by WDM free-steaming (sec 2.3.3), it may be
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argued that small haloes should not form on their own and may perhaps only be able to
exist within much larger haloes (Bode et al., 2001; Wang & White, 2007). This comes from
considering peak theory of structure formation (Mo & White, 1996; Press & Schechter, 1974;
Sheth & Tormen, 1999). Namely, if peaks corresponding to short wavenumbers in Fourier
space become suppressed in amplitude, they should only end up as haloes if they are initially
in a high density environment, meaning that they overlap with peaks corresponding to large
Fourier wavenumbers, which still can have large amplitudes.

For this reason we wish to introduce an arguably ad-hoc modification to the mass func-
tions, which suppressed the number of the very smallest haloes to zero. For this reason, we
multiply the calculated Sheth-Tormen mass functions, dn/dM , from our WDM-suppressed
linear matter power spectra by a smoothed step function that depends on the halo mass
rescaled by the free-streaming halo mass, Mfs as defined in eq. (4.2):

dñwdm

d logM
=

1

2

{
1 + erf

[
log10(M/Mfs)

σlogM

]}
dnwdm

d logM
, (5.33)

where we have chosen the smoothing parameter for the step function σlogM = 0.5. Were we
to chose this smoothing parameter to equal zero, our smooth step function would become the
Heaviside step function. The free-streaming mass on the other hand decides the halo mass at
which the suppression is applied. For CDM, Mfs → 0 and so, dñ → dn, since erf(x) → 1 for
x→∞.

We plot the resulting mass functions in fig. (5.3) in comparison with the original Sheth-
Tormen version. We do this for several different WDM particle masses. We also plot the ratio
of the WDM functions to the CDM functions with respect to the rescaled halo mass, M/Mfs.
This step results in suppressing the number of haloes slightly also for haloes with masses in
the range of about Mfs − 100Mfs.

More recently (Schneider et al., 2012) examined this model in comparison to N-body
simulations (discussed generally in sec. 3.2). Figure 5.4 shows their result, plotting the ratio
of the WDM and CDM mass functions. They rescaled the halo masses with respect to the
so-called “half-mode mass”, Mhm ≈ 2.7 × 103Mfs

1, rather than the free-streaming mass as
above. They find the simple fitting formula:

dñwdm

dnwdm
=

(
1 +

M

Mhm

)−α
, (5.34)

to match their simulation results well without the need to apply an artificial step function.
The single fitting parameter, α = 0.6 was able to match the simulations with less than 5%
root-mean-square error. Dunstan et al. (2011) find very similar results.

Halo bias

We make no further modifications to the halo bias here apart from defining new bias variables
relating to the clumped and smooth density field components (sec 5.1.2). A more recent result
from Schneider et al. (2012), who ran WDM simulations and with a halo finder measured the
mass functions, is that the bias prescription from Sheth & Tormen (1999) holds relatively well
for WDM (plotted in the previous chapter in fig. 4.2). This may come across as surprising

1The half-mode mass is defined to be the mass corresponding to he scale where the WDM linear transfer
function (eq 2.49) drops to a value of 0.5.
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5.1. A modified halo model

Figure 5.3: In the left panel we plot the halo mass functions calculated from the WDM suppresed linear
matter power spectra for 5 different WDM (colorful lines) and one CDM model (black line).
The dot-dashed lines correspond to standard Sheth-Tormen mass functions eq. 3.1. The solid
lines on the other hand are the mass functions with an additional suppression to diminish the
number of low mass haloes following eq. (5.33). We use the step-smoothing parameter to be
σlogM = 0.5.
On the right side we plot the ratios between the WDM and CDM mass functions for both
approaches. We lot them against the rescaled halo mass in units of the WDM free-streaming
mass-scale Mfs.
Figure source: Smith & Markovič (2011)

at first, since one would expect that by smoothing out the small scales and hence preventing
the smallest haloes from forming unless located near the larger peaks would result in a larger
bias for the small haloes. This is since the bias describes the dependence of the local number
density of haloes of a certain mass depends on the total local density. However, the reason
why Schneider et al. (2012) saw only slight differences in the bias between WDM and CDM
models is presumably because their cosmological simulations did not reach scales small enough
to probe the relevant halo masses. It should be noted here, that they indeed seem to see an
increase in the halo bias at M ∼ 1011M� for the mwdm = 0.25 keV, however this seems to
largely be a result of spurious halo formation in WDM N-body simulations.

Concentration parameter

We have defined the concentration parameter in eq. (3.20). It describes how concentrated
a halo is at its core. The concentration parameter enters into the definition of the NFW
(Navarro et al., 1997) density via the scale radius, rs in eq. (3.22). We examine the density
profiles in app. B, but do not discuss them in detail here, since the changes in the profiles
induced by WDM free-streaming do not impact the resulting nonlinear matter power spectrum
significantly. We do however note the recent result from Schneider et al. (2012), which seems
to indicate that the profiles of low-mass haloes become much less concentrated, i.e., less cuspy,
in the WDM case. This can be seen in their plot, here fig. 5.5.
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Figure 5.4: Mass function ratios comparing WDM
and CDM halo mass distribution are shown here for 5
different thermal relic WDM particle masses (different
colors). The halo masses are rescaled with respect to
the half-mode mass. The dot-dashed lines are the the-
oretically calculated mass functions using the Sheth-
Tormen formalism starting from a WDM-suppressed
linear matter power spectrum as described in sec. 4.1.1.
The star, triangle, filled square, circle and empty square
shaped points are the results from N-body simulations.
For this finder code has to be run on the simulation re-
sults by the paper authors. The solid lines correspond
to the universal fit from eq. (5.34). It can be seen here
that the shape of the suppression of the mass functions
is independent of the WDM model. The WDM depen-
dence comes in only via the halo mass rescaling, which
is to be expected, because the rescaling is calculated
from the behaviour of the mass function.
Figure source: Schneider et al. (2012)

Figure 5.5: Here plotted are the mass-dependent concentration parameters (eq 3.20) from the study of
Schneider et al. (2012). The different panels show different WDM and CDM models. The
dots with error bars are the results from their cosmological simulations. The grey lines show
the spread in the concentration parameters of the individual haloes from the simulation. The
dashed lines are the fits they found using the model of Bullock et al. (2001) and the dotted
lines in the WDM panels correspond with the theoretical predictions from pure CDM and
match the dashed line of the upper left panel. We can see that the concentration seems to be
suppressed for low-mass haloes in the WDM models.
Figure source: Schneider et al. (2012)
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5.2. Forecasts for non-linear measurements

Figure 5.6: In the upper panels are plotted nonlinear (solid) as well as linear (dashed) matter power
spectra for different WDM models, where the particle masses for a thermal relic, mwdm ∈
{0.25, 0.5, 0.75, 1.0, 1.25} keV. In the lower panels are the ratios between the WDM and
CDM power spectra.
On the left panels are the power spectra calculated assuming the new, modified halo model
described in this chapter. On the right panels are the power spectra plotted using the halofit

prescription, as in ch. 4 for comparison.
Figure source: Smith & Markovič (2011)

5.2 Forecasts for non-linear measurements

We have plotted the nonlinear power spectrum for the mwdm = 0.25 keV case already in
fig. (5.2). In this figure we have seen the power spectra for the separate components of the
cosmological density field: the smooth component, Pss(k); the clumped clustering component,
PC

cc; the clumped Poisson component, PP
cc and the cross-component, Psc(k).

We now plot only the weighted sum of these components, i.e. the total nonlinear matter
power spectrum for different WDM as well as the CDM model in fig. (5.6). We also plot the
ratio of the WDM and CDM nonlinear power. We plot these alongside the analogous linear
matter power spectra and see that through nonlinear collapse power is regenerated. This
matches our conclusions from the previous chapter. We also compare this new modified halo
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model to the halofit approach already used in a similar way in sec. 4.1.2. We can see that
the general trend is similar, but in the halo model the suppression of the power spectrum is
significantly stronger. For example, in the most extreme model, where mwdm = 0.25 keV, the
suppression at the wavenumber, k ∼ 10hMpc−1 is greater than 30%. On the other hand, in
the halofit, the suppression in this same model saturates already at scales k ∼ 10hMpc−1

to a maximum of ∼ 18%.

5.2.1 Weak lensing power spectra

As in the previous chapter, we again use the methods described in sec. 3.3 together with the
nonlinear power spectra obtained with our new modified halo model to calculate the weak
lensing power spectra with multipoles up to l = 5000. We show these power spectra and
as before, the ratios comparing the convergence2 power spectra of WDM to those of CDM
in fig. 5.7. In addition we again use halofit to find the lensing power spectra and plot
them alongside those found using the new halo model. We see that the effects of WDM are
much stronger in the halo model calculation as would be expected from the nonlinear matter
power spectrum results plotted in fig. (5.6). Note that as in the previous chapter we assume
our lensing survey to be Euclid-like, but here, for simplicity, we take all source galaxies to
be found in a single redshift plane at zs = 1. This simplifies the calculations, but slightly
diminished the constraining power. We take full account of lensing tomography in the next
section in that we again find the full covariance matrix for 10 tomographic redshift bins.

Finally, we repeat the forecast for the proposed Euclid (Refregier et al., 2010) survey.
Because Euclid will include an extensive photometric, as well as a spectroscopic redshift
survey, it will be able to map out the distribution of galaxies in three dimensions. For this
reason we now, as in the previous chapter, extend our analysis into the redshift dimension by
assuming an extended source distribution function in eq. 3.74, G(z), of the same form as in
the previous chapter and in (Markovič et al., 2011). As in ch. 4, we divide it into 10 separate
redshift bins. Our covariance matrix gives covariances between different redshift bins and has
the form of Takada & Jain (2004):

Cov
[
Cobs
l,ij , C

obs
l′,op

]
=

δKl,l′

N(lm, ln)fsky

[
Cobs
l,ioC

obs
l,jp + Cobs

l,ipC
obs
l,jo

]
, (5.35)

ignoring the contribution from higher order spectra and with Cobs
l,ij = Cl,ij + δij

σ2
γ

n̄i
.

Assuming Gaussian errors we then estimate the curvature of the 5-dimensional likelihood
function around its maximum. Hence we find the errors as well as 2-dimensional likelihood
contours in fig. 5.8, centred on our fiducial model. We vary the following set of five parameters:
the inverse WDM particle mass, m−1

wdm, the total matter density today, Ωm, the primordial
perturbation spectral index, ns, the primordial spectral amplitude, As and the matter power
spectrum shape parameter, Γ = e−2ΩbhΩmh.

We choose m−1
wdm as a parameter in order to avoid setting the fiducial model at infinity.

However, redefining this variable does not avoid the strong variation of error on mwdm with
the chosen fiducial model. Furthermore, and most problematically for such an analysis, the
likelihood function is flat with respect to the variation of this parameter around the maximum

2As discussed in sec. 3.3, the magnitude of the weak lensing shear and the lensing convergence are equal.
Therefore the power spectrum of convergence equals that of cosmic shear.
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Figure 5.7: In the upper panels are plotted the weak lensing power spectra using full nonlinear (solid)
as well as linear (dashed) matter power spectra for different WDM models, where the
particle masses for a thermal relic, mwdm ∈ {0.25, 0.5, 0.75, 1.0, 1.25} keV. Note that all
source galaxies are assumed to be found in a slice at z]s = 1. In the lower panels are the ratios
between the WDM and CDM lensing power spectra.
On the left panels are the power spectra calculated assuming the new, modified halo model
described in this chapter. On the right panels are the power spectra plotted using the halofit

prescription, as in ch. 4 for comparison.
Figure source: Smith & Markovič (2011)

likelihood point. For this reason, we fit half a Gaussian curve on top of this likelihood function
and find single tailed errors as in ch. 4 and in Markovič et al. (2011).

In order to compare our results to those obtained with the standard halo model of the
previous chapter, we again apply Planck priors to our lensing forecast. We use the Planck
FM for the fiducial parameter set prescribed by Albrecht et al. (2006). We marginalise over
the optical depth and the baryon density and perform a parameter transformation as in
Eisenstein et al. (1998); Rassat et al. (2008). As before, we assume to have only the 143 GHz
channel CMB data. Furthermore we make the assumption that WDM with particle masses
of the order of a keV does not leave an observable signature in the CMB data and hence set
the corresponding entries in the Planck FM to zero.

We then forecast a minimum limit on the WDM particle mass in the CDM scenario from
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Figure 5.8: We plot 65% and 95% likelihood contours for the Euclid (green) survey as well as Euclid
combined with Planck (blue) for three parameters m−1

wdm, Ωm and ns, while marginalising
over two additional parameters: As and Γ. Our fiducial model is ΛCDM. Also, lmax = 5000.

Euclid as mmin
wdm = 1.4 keV and from combining Euclid and Planck data, mmin

wdm = 1.8
keV. Note that this limit is somewhat less restrictive than the limit found in the previous
chapter. This is because in this analysis we use only multipoles up to lmax = 5000, which at
the median redshift of the Euclid survey, zm = 0.9, corresponds to approximately kmax = 1.6.
We exclude scales smaller than this in order to avoid the range where baryonic effects may
be significant.

5.3 Summary & discussion

In this chapter we have reexamined the phenomenological halo model in the context of WDM.
We discovered in the previous chapter, ch. 4 that because WDM free-streaming prevents the
formation of small haloes it seems that not all matter in the universe can be assumed to
be contained within collapsed structures. For this reason we have tried to develop a new
approach in this chapter, in which we have split the dark matter density field into two separate
components, the smooth and the clumped density field. We have developed the formalism for
calculating the two-point clustering statistic for such a divided field in sec. 5.1.2. We have
shown that in this model, the nonlinear matter power spectrum is made up of four terms: the
smooth field autocorrelation term, Pss(k)

In the process of deriving the new power spectrum, we have defined a new local deter-
ministic bias variablee, bs, which relates the smooth background density field to the total
nonlinear density field. We have assumed the standard peak-background split formulation
for b(M), still being the first order nonlinear bias parameter familiar from the classical halo
model formalism. We have found that the smooth field was anti-biased with respect to the
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total density field. This may reasonably be expected since, as we have mentioned, small
haloes can still form int he WDM, but only in high density environments, which would result
in a stronger biasing of small haloes but an anti bias to the non-collapsed component.

We have suppressed the mass function with a step function in an ad hoc manner, to
find a function more fitting to the assumption that small haloes are nearly erased from the
clumped density field. We have also discussed some more recent N-body simulations by other
authors, who modified our mass function and found a fit to their simulations. They did
this by rescaling the halo mass with respect to the half mode mass, which depends on the
WDM model. This half-mode halo mass is larger for models where the dark matter is colder,
since it is proportional to the free-streaming mass, which can be calculated from the WDM
free-streaming length discussed in sec. 2.3.3. We have found surprisingly that there exists
significant suppression in the number of haloes with masses also slightly above the so-called
“free-streaming” mass. Perhaps this is not so surprising when considering the stochastic
nature of the initial density field and structure formation.

We have briefly discussed the concentration parameter, c(M) as the most significant effect
for the nonlinear matter power spectrum. We will briefly discuss the WDM influence on the
shapes of halo profiles in app. B, but an in-depth discussion of this topic is out of the scope
of this thesis. Note however that density profiles of haloes is an extremely important part
of this field of research (e.g. Avila-Reese et al., 2001; Colin et al., 2000; Maccio et al., 2012;
Vinas et al., 2012).

We then calculated the full nonlinear matter power spectra for five different WDM particle
masses, mwdm ∈ {0.25, 0.5, 0.75, 1.0, 1.25} keV with the new halo model approach and com-
pared them to the CDM power spectrum as well as to the previously found halofit approach.
We found that the halo model, modified or not, predict that WDM has larger effects on cos-
mic nonlinear structure than the halofit approach, which admittedly was developed on the
basis of CDM-only simulations. In particular the nonlinear power spectra become suppressed
by about 10% on scales k ∼ 1hMpc−1 for a WDM particle with mass mwdm = 0.25 keV. If
the WDM particle has a greater mass, e.g. mwdm = 1.0 keV the suppression is much less, in
this case the suppression is & 10% only on scales k & 20hMpc−1.

We finally computed the impact of a set of WDM particle masses on the expected con-
vergence power spectrum from a future weak lensing survey. We also calculated the expected
errors, assuming that each spherical harmonic is an independent Gaussian variable. We found
that, if our halo model is correct, then it would be possible to differentiate between different
WDM candidates with a systematics free, full-sky, weak lensing survey like Euclid (Refregier
et al., 2010) or LSST (Ivezic et al., 2008). Using FM we found a prediction of the limit on
the WDM particle mass for the Euclid survey to be 1.4 keV and when combining Euclid
and Planck FM, the prediction improved to 1.8 keV. This is similar to our results in the
previous chapter, but less constraining, because we chose lmax = 5000 unlike in ch. 4, where
we took lmax = 20000 in order to avoid regimes strongly impacted by baryonic physics.

105



CHAPTER 6
N-body Simulations of Warm Dark

Matter Large Scale Structure

This chapter corresponds closely to
Viel, Markovič, Baldi & Weller,

The nonlinear Mater Power Spectrum in Warm Dark Matter Cosmologies,
published in 2012 in the Monthly Notices of the Royal Astronomical Society,

volume 421, issue 1, pp. 50-62 (Viel et al., 2012).

In the previous chapters we have discussed the nonlinear structure in the warm dark
matter scenario. We have attempted to construct approaches to calculating the nonlinear
corrections to the small-scale suppressed linear matter power spectrum. We have done this
in ch. 4 first by a brute force calculation of the halofit prescription (Smith et al., 2003)
and by using the standard halo model (Cooray & Sheth, 2002, and references within). Then
we attempted to modify the halo model to better account for what we expect from large
scale structure formation in the WDM model in ch. 5. In this chapter we run cosmological
N-body simulations (see 3.2), where we have set up the initial conditions to reflect the small-
scale suppressed power spectra calculated in ch. 2. We also consider briefly the effects of
remnant thermal velocities of the dark matter particles in our WDM models. We show the
results of convergence studies, where we have run several simulations with the same values
of cosmological parameters, i.e. with the same cosmology, but with different volumes and
particle numbers in order to attempt to account for effects coming from too low a resolution.
We finally also briefly considered the effect of baryonic cooling on the underlying dark matter
distribution (see also 3.2.2). We only discuss this briefly, because it is a very complex and
extensive subject that is out of the scope of this thesis. We find a fitting function to the
simulation results for the nonlinear corrections to the WDM suppressed linear matter power
spectrum. We repeat our FM analysis and forecasts for a Euclid-like survey, similarly to
ch. 4and ch. 5. We compare all the approaches: the classic halofit, the new halo model from
ch. 5 and the fit to simulations.
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6.1 The set-up

We use the TreePM N-body code GADGET-2 described in sec. 3.2 to run mostly pure dark
matter simulations. For a few runs we also added baryonic particles into our simulations
for which GADGET-2 uses the SPH (Lagrangian) approach (Springel, 2005). In our runs we
vary the sizes of our cosmological volumes to account for any large scale errors and more
importantly to test the effects of resolution. The issue of spurious halo formation on small
scales has been a long standing one and we want to make sure we are not plagued by such
effects. The gravitational softening is set to be 1/40th of the mean linear inter-particle
separation and is kept fixed in comoving units.

The PM grid, which guides the force calculations on the largest scales in the simulations
was chosen to have the size of the box side divided by the number of particles. In the majority
of the simulations the number of particles is 5123. In the resolution testing simulations this is
of course not the case and the number varies as we report below. Our initial conditions are set
up the have the small scales suppressed by WDM particles with particle masses of mwdm ∼
1 keV. The free-streaming scale below which the power spectrum becomes exponentially
suppressed are of the order of k ∼ 1hMpc−1. We use N-body simulations to try to understand
this suppression in these highly nonlinear scales.

The initial conditions can in practice be generated as in Viel et al. (2005), which means
suppressing the linear matter power spectrum by the WDM transfer function encountered
already in ch. 2, but repeated here for the sake of analogy:

T 2
wdm(k) ≡ Pwdm(k)/Pcdm(k) = (1 + (αk)2ν)−5/ν

α(mwdm) = 0.049

(
1 keV

mwdm

)1.11(Ωwdm

0.25

)0.11( h

0.7

)1.22

, (6.1)

with ν = 1.12. Also note that α has units of h−1Mpc (e.g. Hansen et al., 2002). This fit is
an approximation used often in order to avoid the strange behaviour of the transfer functions
calculated with Boltzmann codes (as also in ch. 7). We use the P-GenIC WDM code (related to
N-GenIC) to generated the initial conditions ICs for the simulation. P-GenIC was written by
Springel et al. (2001) and modified by Viel et al. (2005) to account for the suppression in the
linear matter power spectrum due to WDM. The initial conditions are generated on a mesh
and match the required input files for Gadget-2.

Assuming WDM to be thermal relic fermions, their relic velocities have a Fermi-Dirac
distribution (eq 1.51), which can be added to the proper velocities calculated from the grav-
itational potentials from linear theory. The velocities for some of the WDM models we use
can be found to be: vth ∈ {27.9, 11.5, 4.4, 1.7, 0.7} km s−1 for mwdm ∈ {0.25, 0.5, 1, 2, 4} keV,
respectively. For comparison, the typical rms velocity in a ΛCDM run is vg ∼ 30 km s−1, so
it is significantly larger than any thermal velocities of WDM particles in the models that are
still allowed by for example the Lyα forest (mwdm & 2 keV).

6.2 The nonlinear power spectrum from simulations

We run several simulations, which we list in tab. (6.1) that vary in their volume and WDM
model mainly, but we also run one simulation that includes baryonic cooling. In fig. (6.1) we
show slices from two of the simulations, which are projections of 2.5 Mpc-thick slices through
the 253 Mpc3 simulation volume for the CDM and the 1 keV WDM model. In this simulation
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side of simulation
box

[
hMpc−1

] mwdm[ keV]
softening
[h−1kpc]

12.5 – 0.62
12.5 1 0.62
25a – 1.25
25 1 1.25
50 – 2.5
50 1 2.5
100 – 5
100 1 5
25 0.25 1.25
25 0.5 1.25

25a,b 1 1.25
25 2 1.25
25 4 1.25

12.5 1 0.625
6.25 1 0.33

Table 6.1: This table contains a summary of
all the simulation runs relevant to this chapter.
The lengths of the side of the cosmological box and
the softening length are reported in units comoving
distance. The particle-mesh (PM) grid is chosen to

be equal to N
1/3
DM with NDM = 5123. The subscript

(b) denotes the simulation in which baryonic parti-
cles were included with some rudimentary cooling
prescriptions. Because such simulations are very
computationally demanding they have been run at
a lower resolution of NDM = 3843.
Table source: Viel et al. (2012)

run, we set the number of simulation particles to N = 5122 and the cosmological box side
to L = 25 Mpc, which gives simulations particles the masses of 8.7 × 106M�h

−1, which is
assumed to be sufficiently below the free-streaming mass (eq 4.2).

We analyse the output of our simulations using the code P-Power by Springel et al. (2001),
which uses the particle-mesh with the cloud-in-cell (CIC) algorithm to assign simulation
particles onto the Cartesian grid (e.g. Viel et al., 2010)). This approach is of course in
Fourier space, where the local density on the grid from the CIC mass assignment is Fourier
transformed using the Fastest Fourier Transform in the West (FFTW, Frigo, 1999). FFTW
relates the mass density in the simulation volume in real space to the mass density in Fourier
space and then finds the two point correlation to get the power spectrum.

To begin with we plot the percentage differences between WDM and CDM nonlinear power
spectra found using the above approach together with the so-called folding method (Colombi
et al., 2008; Jenkins et al., 1998) from our simulation results. In fig. ( 6.2) we compare
simulation results with varying resolution. In order to be able to work with a constant
working memory requirement, we do not vary the particle number and keep it constant at
N = 5123. In order to vary the resolution, we vary the simulated cosmological volume between
1003 − 253 Mpc3. We run one simulation with less particles, where N = 3842 and the side of
the simulation box, L = 25 Mpc.

The shot-noise power due to the finiteness of our simulation particles is subtracted from
all the power spectrum estimates made. The shot-noise power becomes comparable to the
real, physical power at z = 0 at k ∼ 150hMpc−1 for the simulation box side of L = 100 Mpc.
For the simulation with L = 25 Mpc in the WDM model with mwdm = 1 keV the matter
power is always larger than the shot-noise power for z < 10 and for k < 20hMpc−1.

It was checked in Viel et al. (2012) that increasing the Particle-Mesh grid by a factor
three impacts the matter power spectrum on scales, k < 100 hMpc−1 negligibly. In this work
a higher resolution simulation was run by increasing the number of particles in a box with
L = 25 Mpc to N = 6403 and yielded a less than 1% difference on scales, k < 100 Mpc. This
is an indicator that spurious halo formation plagues the nonlinear matter power spectrum on
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Figure 6.1: Here are plotted 2.5 Mpc-thick slices of the simulation at redshifts z ∈ {0, 2, 5} from top to
bottom for ΛCDM (left) and mwdm = 1 keV ΛWDM (right). In the present day slice on top,
the clustering is indistinguishable on scales k < 10 Mpc, but at z = 2, 5 the WDM model is
smoothed by WDM free-streaming, which results in a suppression in the power spectrum of
about 5% and 25% (respectively) at k ∼ 10hMpc−1.
Figure source: Viel et al. (2012)
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Figure 6.2: Percentage difference between WDM and CDM nonlinear power spectra from the simulations,
all with mwdm = 1 keV. The blue, black, and green curves correspond to simulation box
sides or L ∈ {100, 50, 25}h−1Mpc respectively. These were all run with the same number of
particles, NDM = 5123. On the other hand, the orange curve is the L = 25h−1Mpc run with
NDM = 3843. The continuous lines represent the large scale estimate of the power, while the
dashed ones describe the small scale power obtained with the folding method (this is not used
in our analysis). The dotted line is the suppression to the linear matter power spectrum from
eq. (6.1).
Figure source: Viel et al. (2012)

relevant scales minimally.

6.2.1 The fitting formula

In analogy to the linear fitting formula in eq. (6.1), which defines a scale-break, α, we find
the following fitting function to the results of our dark-matter only simulations:

T 2
nl(k) ≡ Pwdm(k)/Pcdm(k) = (1 + (αk)νl)−s/ν

α(mwdm, z) = 0.0476

(
1 keV

mwdm

)1.85(1 + z

2

)1.3

, (6.2)

where ν = 3, l = 0.6 and s = 0.4 are the fitting parameters. This function can and is applied
by first calculating the nonlinear matter power spectrum using ΛCDM parameter values in
the halofit and then multiplying with the square of the WDM “transfer function”.

We show the percentage differences between nonlinear power spectra from the simulations
with ΛWDM parameters and those with the simple ΛCDM model in fig. 6.3. We show this
at two different redshifts to note the decrease in the suppression due to initial WDM free-
streaming with time. The suppression is far stronger at z = 5, where it rather close to that
obtained when comparing the effects on the linear matter power spectrum At z = 0 the
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Figure 6.3: Percentage difference between WDM and CDM nonlinear power spectra. The orange, green,
black, blue and red curves are the runs with to mwdm ∈ {0.25, 0.5, 1, 2, 4} keV, respectively.
The continuous lines represent the large scale estimate of the power, while the dashed ones
describe the small scale power obtained with the folding method . The dotted lines represent
the linear suppression (z-independent) from eq. (6.1).
Figure source: Viel et al. (2012)

suppression only remains significant for the extreme WDM models, which have been ruled
out by Lyα forest data (e.g. Seljak et al., 2006; Viel et al., 2005).

6.2.2 Comparison with halofit and WDM halo model

It is necessary to have a robust model of nonlinear structure in order to take full advantage
of future weak lensing data. For this reason we compare the nonlinear matter power spectra
extracted from our simulations with previously derived nonlinear models. The halo model
of nonlinear structure is based on the assumption that large scale structure is made up of
individual objects occupying peaks in the matter overdensity field (Cooray & Sheth, 2002;
Press & Schechter, 1974; Seljak, 2000). The most important elements of this model, the
mass function, the halo bias (Press & Schechter, 1974) and the halo density profile (Navarro
et al., 1997) are based on the assumptions that all dark matter in the universe is found in
haloes and that there is no observable suppression of small scale overdensities from early-times
free-streaming of dark matter particles or late-times thermal velocities.

These are characteristic properties of CDM, but do not apply to WDM. For this reason
we considered a modified halo model by applying a specific prescription to the nonlinear
contribution, in addition to suppressing the initial density field, modeled by applying a transfer
function from eq. (6.1) to the linear matter power spectrum. Such prescription consists of:
i) treating the dark matter density field as made up of two components: a smooth, linear
component and a nonlinear component, both with power at all scales; ii) introducing a cut-off
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mass scale, below which no haloes are found; iii) suppressing the mass function also above
the cut-off scale and iv) suppressing the centres of halo density profiles by convolving them
with a Gaussian function, whose width depended on the WDM relic thermal velocity.

Here, we do not attempt to explore each of these elements with simulations individually,
but rather compare the final matter power spectra found from simulations with those from
the WDM halo model of ch. 5.

Secondly, Smith et al. (2003) compared the standard CDM halo model to CDM simulations
of large scale structure formation and developed an analytical fit to the nonlinear corrections
of the matter power spectrum, known as halofit. We apply these corrections to a linear
matter power suppressed by the Viel et al. (2005) WDM transfer function (eq 6.1).

We show the results of these comparisons in fig. 6.4. As before, we plot the percent
differences between the WDM and CDM matter power spectra obtained from our simula-
tions of WDM only. We show this for particle masses of mwdm=1 keV (left panels) and
mwdm = 0.5 keV (right panels) at redshifts z = 1 (top row) and z = 0.5 (bottom row). We
find that the WDM halo model is closest to simulations at redshift 1 for 1 keV WDM, but
that it over-estimates the suppression effect at redshift 0.5 for 0.5 keV WDM by about 5
percent on scales k > 1. On scales k < 1hMpc−1 however, the halofit nonlinear correc-
tion describes the simulations better than the halo model, even though on smaller scales it
severely underestimates the suppression effect, which becomes worse at lower redshifts. A
further small modification of the WDM halo model will improve its correspondence to the
simulations and allow one to use it at small scales.

As has been shown by many authors (e.g. Casarini et al., 2011; Semboloni et al., 2011;
van Daalen et al., 2011), baryons, making up 17% of the total matter density, affect the
distribution of dark matter on small scales significantly. Delving into detail about this topic
(sec 3.2.2) is beyond the scope of this thesis, but we do briefly discuss one simulation run
by Viel et al. (2012), which includes a prescription for radiative cooling and heating. In
this simulation all the cooling comes from hydrogen and helium (Katz et al., 1996, as in).
Metal cooling is omitted for simplicity. Secondly, the feedback from supernovae and AGN is
also omitted in this particular run. The prescription for modeling the cooling and the star
fromation criterion are described in more detail in Viel et al. (2004) and is called “quick Lyα”,
since it can be used well for quantitative description of the Lyα forest.

We plot in fig. (6.5), the resulting percentage difference between a 1 keV WDM and CDM
nonlinear matter power spectrum, where both come from simulations that include cooling
and heating processes from the ultraviolet background and a simple star formation criterion
mentioned above. This simulation was stopped at z = 1.2 due to limited computational
resources and is therefore plotted at this redshift. It can be seen on fig. (6.5) that the inclusion
of baryonic processes can have a very significant effect on the suppression signal from WDM.
It seems likely that some baryonic processes become more efficient in a collapsing overdensity
field that has been smoothed. Because the baryonic processes affect the power on small scales,
this can erase the suppression from WDM, which is relevant on similar scales Gao & Theuns
(see also 2007) .

6.3 Weak lensing power spectra using the N-body fit

Following chapters 4 and 5, we examine the effect of the fitting function in eq. (6.2) on the
weak lensing power spectrum (sec. 3.3).
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Figure 6.4: The comparison of different nonlinear models at redshifts 1.0 (top panels) and 0.5 (bottom
panels) for WDM particles with masses 1 keV (left panels) and 0.5 keV (right panels). The
blue diamonds represent the fractional differences calculated from DM-only simulations. The
blue solid lines are the corresponding analytical fits from eq. (6.2). The green solid lines
are calculated using the modified halo model, whereas the green dashed line is the standard
halofit. The dotted line is the effect as seen in the linear matter power spectrum.

We use halofit (Smith et al., 2003) to calculate nonlinear corrections to the approximate
linear matter power spectrum (Ma, 1996). We then apply eq. (6.2) to approximate the WDM
effects and find the weak lensing power spectrum (e.g. Takada & Jain, 2004):

Cij(l) =

∫ χH

0
dχlWi(χl)Wj(χl)χ

−2
l Pnl

(
k =

l

χl
, χl

)
, (6.3)

where χl(zl) is the comoving distance to the lens at redshift zl and Wi is the lensing weight
in the tomographic bin i :

Wi(zl) =
4πG

al(zl)c2
ρm,0χl

∫ zmax

zl

ni(zs)
χls(zs, zl)

χs(zs)
dzs , (6.4)

where we assume a flat universe and al(zl) is the scale factor at the redshift of the lens, ρm,0 is
the matter energy density today and ni(zs) is the normalised redshift distribution of sources
in the ith tomographic bin. We bin the multipoles into 20 bins.

In order to asses detectability of WDM by future weak lensing surveys, we calculate pre-
dicted error bars on the weak lensing power spectrum using the covariance matrix formalism
(Takada & Jain, 2004) and assuming errors for a future realistic weak lensing survey as in
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Figure 6.5: Here we plot the percentage differences between the WDM and CDM power spectra. We have
included the power spectra runs that include baryonic cooling due to H and He (blue). The
prescription used for the cooling processes is called “quick Lyα”.
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Figure 6.6: The percentage WDM effect in auto- and cross-correlation power spectra of redshift bins at
approximately z = 1 and z = 1.6, respectively. All the lines are calculated from nonlinear
matter power spectra modified for WDM by the fitting function in eq. (6.2) for WDM particle
masses of 1 keV (left panel) and 0.5 keV (right panel). In addition we plot predicted error
bars for a future weak lensing survey, dividing the multipoles into 20 redshift bins. Note that
the error bars on auto and cross power spectra of different bins are correlated and therefore in
order to fully characterise the detectable differences between the WDM (solid lines) and CDM
(dashed black line at 0) models, one must know the entire covariance matrix for a survey. Note
secondly that the auto power spectra of redshift bins at z = 1 and z = 1.6 have an upturn
around l ∼ 103. This is due to the dominance of shot noise on those scales. This upturn is
not present in the cross power spectrum, because through cross correlation this noise due to
intrinsic galaxy ellipticities is eliminated.
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Figure 6.7: The comparison of the impact of using different models of nonlinear power spectra from fig. 6.4
on the weak lensing power spectrum. As above, the blue line is the fractional difference in
percent between weak lensing power spectra calculated using the fitting function found in
this chapter (eq 6.2). The green solid line is the weak lensing power spectrum calculated
using the halo model modified for WDM. The dashed green line is the same using standard
halofit. The dotted line is calculated by omitting all nonlinear corrections. It is evident
that excluding such corrections causes a significant overestimation of the WDM effect. All the
lines in this plot are calculated from cross power spectra of the 5th and 8th tomographic bins
(corresponding to z = 1.6 and z = 1, respectively) for WDM particle masses of mwdm = 1 keV
(left panel) and mwdm = 0.5 keV (right panel).

chapters4 and5, this time with 8 redshift bins in the range z = 0.5−2.0. We plot the resulting
percentage differences between WDM and CDM weak lensing power spectra in fig. (6.6). It
is important to note that the error bars in the figure do not fully characterise the sensitivity
of the power spectra, since there are additional correlations between the error bars of differ-
ent bin combinations. Additionally, there are correlations in the error bars on large l (small
scales) due to nonlinearities. Further statistical tests using the entire covariance matrix must
be used in order to fully account for the above correlations. For this plot we choose only the
5th and 8th redshift bins, whose source galaxy distributions have the mean at z ∼ 1.0 and 1.6
respectively. These bins are chosen because they represent a range with the maximal WDM
effect as well as lensing signal. Note that the upturn around l ∼ 103 in the auto-correlation
power spectra of bins 5 and 8 is due to the dominance of shot noise on those scales. This
noise is due to intrinsic galaxy ellipticities and can be eliminated by cross-correlating different
redshift bins, as can also be seen in fig. (6.6) (see also Takada & Jain, 2004).

We additionally consider the above models of nonlinear WDM structure to calculate the
weak lensing power spectra in order to explore the significance of using the correct model.
We again plot percentage differences between WDM and CDM weak lensing power spectra in
fig. (6.7). We show only curves representing the cross correlation power spectrum of redshift
bins at z = 1 and z = 1.6 for consistency with fig. (6.6). We again examine WDM models
with particle masses of mwdm = 1 keV (left panel) and mwdm = 0.5 keV (right panel). We
also calculate the weak lensing power spectra without nonlinear corrections to the matter
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power spectrum and note that this severely over-estimates the effect of WDM suppression.
In the lensing calculation, the halofit nonlinear corrections applied to the WDM suppressed
linear matter power spectrum seem to perform better in describing the results of our WDM
simulations than than the WDM halo model. This is most likely due to the fact that the range
of wavenumbers that are better described by the halofit corrections, namely k < 1hMpc−1

are significantly more relevant to the weak lensing power spectrum than the smaller scales
where halofit strongly deviates from the simulation results.

In the right panel of fig. (6.6) we plot the effects of the 0.5 keV particle and since the black
dashed line lies far outside the error bars this is a strong indication that such a particle can be
ruled out (or detected) by a future weak lensing survey. This is consistent with the previous
chapters. In the left panel of fig. (6.6) we plot the effects of a 1 keV WDM particle: in this
case it is more difficult to distinguish from CDM (black dashed line), but the strongly affected
cross power spectra are still significantly different from their expected values in ΛCDM.

In a recent paper, Semboloni et al. (2011) have explored the effect that AGN feedback has
in terms of matter power and weak lensing power spectra finding that there is a suppression
of about 30% at k = 10hMpc−1 when this feedback mechanism is included. Although they
did not investigate WDM models this finding is important, since it shows that this effect
could be much larger than the corresponding WDM induced suppression and comparable at
z = 0 to the mwdm = 0.25 keV case. It is clear that future weak lensing surveys aiming at
measuring the matter power at these scales should carefully consider AGN effects since they
could be degenerate with cosmological parameters such as the mass of the WDM particle.

6.4 Summary & discussion

We have shown in this chapter the results of several cosmological N-body simulations. These
simulations were run using the publicly available N-body code Gadget-2 by Springel (2005).
We have run simulations for several different WDM models as well as the standard, WMAP7
ΛCDM model. We have in addition run resolution studies to show that our results are not
plagued by the effects of Poisson shot noise or spurious halo formation. Finally, we report
on a simulation that included baryonic matter with a so-called “quick Lyα” prescription for
radiative cooling and heating. We find that baryonic physics becomes important on scales
similar to those, which are most affected by the suppression of the density field by WDM free-
streaming. We also give a useful fitting function in eq. (6.2), which can be used to calculate
nonlinear power spectra in the ΛWDM cosmology by first finding those for ΛCDM and then
simply multiplying them with the square of the so-called WDM “transfer function”.

We make a comparison with the methods discussed in the previous chapters and calculate
weak lensing power spectra in order to try to gauge the detectability of the suppression found
in our simulations. We find that the nonlinear corrections to the matter power spectrum
in the WDM scenario obtained from halofit correspond better to the results of the WDM
only simulation at scales k < 10hMpc−1, if compared to the nonlinear corrections of the
halo model from Smith & Markovič (2011). Because these scales are most relevant for weak
lensing power spectra, using halofit yields a better correspondence to the weak lensing
power spectra calculated using our fitting function. However, on scales k > 10hMpc−1, the
halo model performs slightly better in that it better describes the shape of the suppression in
the power spectrum, even if it does overestimate the effect. For this reason we believe that
a further modification to the halo model may be needed, especially for weak lensing power
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spectra calculations. Such modifications have recently been suggested by others, for example
Schneider et al. (2012). As already discussed in ch. 5, they have found a fitting function for
the mass functions, using the results of their own WDM simulations.

An important issue not dealt with in the scope of this thesis is the problem of discreteness
effects. In particular spurious halo formation tends to plague simulations with small scale
smoothing. This is not considered crucial in simulations using CDM only, but is becoming
important in the present time when the computational capabilities are enabling us to run high
resolution cosmological WDM simulations. This issue arises as a purely numerical artefact
and is completely nonphysical. It is possible to check for the importance of these effects
by varying the size of the initial grid, as is briefly done in Viel et al. (2012). An extensive
discussion of discreteness effects in WDM simulations is Wang & White (2007) (they are also
considered by others, e.g. Bode et al., 2001; Pfitzner et al., 1997).

The present state-of-the-art technology is just becoming strong enough to be able to
probe non-standard models of dark matter. Warm dark matter has been explored here with
Lagrangian N-body simulations of the formation of cosmological large scale structure. Warm
dark matter is arguably the simplest extension of CDM, because only one parameter, namely
the dark matter particle mass, mwdm must be added to the parameter space of ΛCDM. Further
extensions might be to consider mixed dark matter models in which some fraction of the dark
matter, fwdm is warm or hot and the rest is made up of a standard cold thermal relic. In
this case, we would be adding 2 additional parameters. We are able to explore this scenario
with existing numerical codes, like Gadget, but this has not been done within the scope of
this thesis for the reason of limited resources and time.

Another extension of the CDM model would be to consider decaying dark matter or
perhaps interacting dark matter . Of course the decay of dark matter cannot occur until
very recently so as not to contradict the constraints from the CMB or large scale structure
observations that nearly seem to match the CDM model. The interacting like decaying dark
matter on the other hand are constrained to only have a very small interaction rate by direct
detection as well as X-ray observation (e.g Boyarsky et al., 2006). Such scenarios, which
involve more than gravitational interactions for the dark matter component would require
modifications to the existing numerical codes. Prescriptions would need to be added to
include such new interactions perhaps with based on the prescriptions used for adding baryonic
particles into these simulations, which we have briefly encountered above. Another extension
to ΛCDM examines the interaction between dark matter and dark energy. The modification
to the Gadget N-body code to account for such exotic interactions has for example been
developed by Baldi et al. (2010).

A final interesting extension would be the very realistic mixed dark matter model in which
we add massive neutrinos to standard CDM or perhaps even WDM. The N-body simulations
using ΛCDM together with massive neutrinos have been explored much more extensively than
the WDM case (Bird et al., 2012, and references therein), because it is clear that massive
neutrinos exist. Furthermore, with present surveys we can constrain and in the future perhaps
even measure the sum of the neutrino masses (Audren et al., 2012; Seljak et al., 2006; Thomas
et al., 2010; Xia et al., 2012; Zhao et al., 2012). This brings us to the topic of the next chapter.
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CHAPTER 7
The Degeneracy of Warm Dark
Matter and Massive Neutrinos

This chapter corresponds to
Markovic, Abdalla, Kilbinger, Weller & Lahav,

Testing Warm Dark Matter and Neutrinos with the SDSS Galaxy Distribution,
(in preparation).

So far we have discussed models in which all dark matter is made up of thermal relic
particles with keV masses. In other words, all dark matter is warm. However a more realistic
picture would be to take into account a component of the dark matter density we know
exists - massive neutrinos. Massive neutrinos have sub-eV masses. In fact most recent
constraints from cosmology put the sum of the 3 neutrino masses of the electron, τ and µ
neutrinos to be somewhere Mν < 0.5 eV (e.g. Audren et al., 2012; Bird et al., 2012; Seljak
et al., 2006; Thomas et al., 2010; Viel et al., 2010; Xia et al., 2012; Zhao et al., 2012). For
this reason we classify neutrinos as HDM (sec 1.3.3). In fact such a mixed dark matter
model can contain many different species, with different temperatures, interactions or decay
mechanisms. However such additional properties of the dark matter density field necessarily
introduce further parameters into the model. Until such addition of parameters is justified
by a physical theory, let us take the next simplest case from what we have discussed now
and examine the combined effect of WDM and massive neutrino free-streaming in the initial
density field on the formation of cosmological structure.

In particular, since the detectability of the WDM signature is still uncertain and since
detecting the neutrino mass is within the possibility of upcoming data, we wish to ensure
that there will be no degeneracy between the two parameters: the sum of neutrino masses,
Mν and the WDM particle mass, mwdm.

In this brief chapter we make a simple calculation to compare the suppression of the power
spectra due to massive neutrinos to that of WDM. We wish to eventually repeat the analysis
of Thomas et al. (2010), but include mwdm as a parameter. They utilise the galaxy clustering
data from the Sloan Digital Sky Survey (SDSS) MegaZ Luminous Red Galaxies (LRG)
sample of Data-Release-7 (DR7) (Abazajian et al., 2009; Thomas et al., 2011) and combine
it with the WMAP 5-year data (Dunkley et al., 2009). They use the CosmoMC package (Lewis
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& Bridle, 2002) to explore the parameter space.

7.1 The linear regime suppression in νΛWDM

We use the Class Boltzmann solver code (Lesgourgues, 2011) to find the transfer functions
that account for the suppression of the primordial power spectra. These transfer functions
account for the suppression of the primordial scale-free power spectra due to early universe
effect. Of course the most dominant suppression effect is that from the decay of the comoving
matter overdensities during radiation domination. But the effects we are interested in here
are due to the free-streaming of non-cold relics like the thermal WDM particle and massive
neutrinos making up a small fraction of the total energy density as HDM. We have discussed
these effects in sec. 2.2.4, where we have made a brief overview of the Boltzmann equations.

The Class code is similar to the previous Camb or CmbFast by Lewis et al. (2000); Seljak &
Zaldarriaga (1996) respectively. The main and very convenient option, new in Class is that
it allows the inclusion of non-cold dark matter relics, which we utilise here. For a detailed
comparison of the Class and Camb codes for the ΛCDM case, see the papers associated with
the newer code, Class Lesgourgues (2011, etc.).

Unlike in the previous chapters where we have calculated our linear matter power spectra
using fitting functions (described in ch. 2)), here we choose to calculate the power spectra by
solving the full Boltzmann equations. We do this for two reasons. Firstly, the fitting function
of Viel et al. (2005) does not explicitly account for the presence of standard active massive
neutrinos. It is important to accurately account for the separate effects of WDM and massive
neutrino free-streaming, because we wish to characterise their similarities and any possible
overlap. Secondly, in the previous chapters we used the fitting function for the linear WDM
transfer function Twdm(k) from Viel et al. (2005), because using Camb or CmbFast resulted in
some seemingly numerical artefacts on small scales that resulted in a power spectrum that
was not differentiable with respect to the wavenumber, k. These artefacts are still present in
the results from Class, but this is no longer a problem, because we use Class’s own nonlinear
correction program (see the next section), which seems to deal with this issue.

We plot the resulting linear matter power spectra for the models: ΛCDM, νΛCDM,
ΛWDM and νΛWDM, in the left panel of fig. (7.1). The model used for WDM is that where
the particle mass is mwdm = 1 keV, for neutrinos we use such parameter values as to get the
energy density fraction for neutrinos to be Ων = 0.025. This density fraction corresponds to
the sum of neutrino masses of Mν ≈ 2.3h2 eV (Bird et al., 2012). The mentioned artefacts
can be seen at scales of k ∼ 5hMpc−1. In this figure, the solid lines are the power spectra
in both ΛWDM models - one with and one with no massive neutrinos. The dotted lines are
models with regular CDM. What we note in this plot is that the suppression of the linear
scales is much stronger when considering WDM, but it reaches much larger scales (smaller k)
if the free-streaming of massive neutrinos is accounted for. Including both, massive neutrinos
and WDM results in a twice suppressed power. The two suppression occur at two different
scales with two different amplitudes. The reason why the suppression is so much stronger in
the ΛWDM model is because in this case all of DM is warm, whereas in the νΛCDM case,
only a tiny fraction of dark matter is mase up of massive neutrinos. The idea of massive
neutrinos making up a significant part of dark matter density was rejected long ago for this
reason, as the suppression would be too strong for these large scales. If neutrinos dominated
the matter energy density, there would be virtually no power in the power spectrum on scales
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k > 0.1hMpc−1 and therefore we would observe no structures in the universe. Note that the
wiggles at k ∼ 0.1hMpc−1 in fig. (7.1) are due to Baryonic Acoustic Oscillations and seem
to not be much influenced by WDM, but loose power when including massive neutrinos with
the “continuous” power spectrum.

7.2 Nonlinear corrections in νΛWDM

Ultimately we wish to compare our models with data. As noted many times in the previous
chapters, the most relevant data for measuring WDM are on the small scales. This means that
we must map out object and structures at low redshifts (nearby), meaning that the overdensity
field that we probe and must be able to describe theoretically has become nonlinear long ago.
As before, we therefore wish to make nonlinear corrections to our linear matter power spectra
described in the previous section. In the future we wish to consider the modified halo model
that matches our WDM N-body simulations from ch. 6. For now we use what is given by the
Class code: the halofit formula (sec 3.1.2).

7.2.1 The halofit prescription

We use the halofit prescription as is given in the Class code. There exists a correction to
the pure, basic ΛCDM halofit, which takes fν = Ων/Ωm, the fraction of the cosmic matter
density made of neutrinos, as a parameter. This correction is based on the N-body simulations
run by Bird et al. (2012) and means adding an additional neutrino-mass-dependent term to
the halofit dimenstionless power spectrum in eq. (3.31). Bird et al. (2012) ran simulations
using a modified version of the Gadget code (Viel et al., 2010). They then added some terms
to the original halofit prescription by fitting the additional parameters to the results of their
simulations. Note that we have had to make a minimal modification to the Class function that
calculates the nonlinear corrections, because it originally assumed the only possible non-cold
dark matter was massive neutrinos. This caused an issue with the above-described additional
terms, but it was relatively easily corrected.

We plot the resulting power spectra in the right panel of fig. (7.1). The color scheme
matches that on the left, where we plotted the linear matter power spectra described in the
previous section. It is immediately obvious that as before, the nonlinear correction erases a
lot of the suppression from the linear regime. As we have discussed in the previous chapters,
this is likely to be a consequence of smooth accretion and general correlation of the small scale
modes by gravitational collapse. On the other hand, the suppression due to neutrinos doesn’t
seem to be much affected by this. The reason is that whereas the scale of suppression due to
WDM is smaller, the scale of the suppression due to neutrinos is larger than the nonlinear
scale, i.e. kwdm > knl > kν .

We have made these calculations in anticipation of later working with the halo model in
order to make theoretical predictions for galaxy clustering. We discuss this in the next and
final section.

7.3 Outlook

Less discussed in this thesis has been the topic of actually measuring the distribution of dark
matter structure in our universe. This is not out main topic, but it is a future goal. For this
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Figure 7.1: We plot the power spectra showing the suppression due to the free-streaming of massive
neutrinos as well as WDM thermal relic particles in the early universe. We use mwdm = 1 keV
and Ων = 0.025 for illustration.
In the left panel we plot the linear matter power spectra. The dotted lines are the CDM
models and the solid lines correspond to WDM. In each of the two sets of lines, the line with
less power has been suppressed by the free-streaming of neutrinos. We note some further
details in the plot below fig. 7.2, where they appear more clearly.
Note also that on very small scales in the WDM suppressed functions become jagged. We
suspect this is a numerical artefact. We have checked and such “wiggles” appear in results
obtained with several Boltzmann-solver codes: Class, Camb and Cmbfast.

Figure 7.2: We plot the ratios of matter power spectra suppressed on small scales by the free-streaming
of non-cold dark matter species. We find ratios of the expected ΛWDM, νΛCDM,νΛWDM
or the standard ΛCDM power spectra. The the blue and magenta lines are the scenarios that
highlight the suppression due to massive neutrinos, the green and dotted red highlight the
suppression due to WDM.
In the left panel we plot only ratios of linear, on the right we plot only spectra. The linear
spectra were calculates using the Class Boltzmann solver. For nonlinear corrections we used
the Halofit prescription within Class. The used nonlinear prescription includes a correction
for the presence of massive neutrinos (à la Bird et al., 2012).
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reason we now briefly describe one measurement that will be done. This measurement relies
on mapping out the 3-dimensional clustering of galaxies. While this relies on knowing how
the distribution of galaxies traces the dark matter density field, it is the most straightforward
way to make a map of the 3D universe.

7.3.1 Galaxy clustering data

The SDSS Data-Release-7 (Abazajian et al., 2009) is the latest and final set of data from
this survey that finds the photometric redshifts of distant galaxies. Because the redshift is
effectively a measurement of the distance of a galaxy (sec 1.2.2), it enables us to reconstruct
their 3D distribution, when combined with their positions on the 2D sky. Acquiring red-
shifts photometrically means measuring galaxy spectra within only 5 wavelength bands and
is therefore less accurate that getting full unbinned spectra. The advantage however lies in the
statistics, because it is much more time efficient, the galaxy catalogue, MegaZ-LRG DR7,
contains ≈ 1.5 million galaxies. The redshifts are calculated by comparing the magnitudes
of the galaxies in the 5 wavelength bands. Because of the large number of target objects,
Thomas et al. (2011) use an Artificial Neural Network code (ANNz by Collister & Lahav, 2004)
for redshift calculation. Of course, the relationship between distance and redshift is not direct
due to individual peculiar velocities of galaxies, the redshift space distribution of galaxies is
distorted. This effect is accounted for when trying to construct the matching cosmological
model - it is known as redshift space distortions.

In order to compare these data to theory, power spectra must be constructed from the
galaxy number density field. This is done by projecting the 3D distribution of galaxies onto
2D spherical surfaces. In order to retain the information coming from the direction parallel
to the line of sight (i.e. the redshift direction), galaxies with similar redshifts are binned
and therefore the galaxy distribution in projected to several spherical shells, increasing in
size. The 2D distribution is decomposed into spherical harmonics to construct an angular
power spectrum, Cl, analogous to the one we encountered in sec. 3.3. This angular power
spectrum can be straightforwardly calculated from the theoretical power spectrum of galaxies
by making the small angle approximation. This can then be connected to the underlying
matter power spectrum via a galaxy bias, bg:

Pg(k) = b2P (k) . (7.1)

For more details on these calculations, one can follow the work of Thomas et al. (2011),
whose resulting angular power spectrum we plot in fig. (7.3). Note that unlike power spectra
plotted in the previous chapters, in this figure, only the y-axis is logarithmic. This figure
also shows that the angular power spectrum can be measured very precisely using galaxy
distribution surveys. The resulting best fit to the data points is plotted with a solid line
and corresponds to a νΛCDM cosmology with a sum of neutrino masses, mν ≤ 0.28 eV.
Of course the figure only plots 4 redshift bins, but the calculation of Thomas et al. (2011)
includes the entire covariance matrix. In order to obtain the above tight constraint on the
sum of neutrino masses, the MegaZ covariance matrix is combined with several other data
sets. These datasets are relatively independent of the galaxy distribution data. They are:
supernovae distances from the Supernova Legacy Survey (Astier et al., 2006), baryonic
acoustic oscillations from SDSS and 2dF (Percival et al., 2007) and the Hubble parameter
measurement by the Hubble Space Telescope (Riess et al., 2009).
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Figure 7.3: This figure shows the angular power spectra for four redshift bins, z ∈ 0.45, 0.50, 0.55, 0.60
(panels 1− 4 respectively) from the MegaZ-LRG DR7 photometric redshift catalogue of the
SDSS. The dots and error bars come from the data and the solid lines are the best fitting
theoretical power spectra. In addition, the dashed lines are the purely linear corresponding
power spectra plotted to explicitly highlight the nonlinear effects. Finally the dotted line in
the main panel is the power spectrum calculated from theory with all but one cosmological
parameters kept the same. The cosmological parameter altered is the sum of neutrino masses,
which is set to Mν = 1 eV. The result of these data set an upper limit on the sum of neutrino
masses of Mν ≤ 0.28 eV (at the 95% confidence limit). This limit comes from the combination
of several types of datasets, namely CMB, supernovae, baryonic acoustic oscillations, the
Hubble parameter with the MegaZ sample.
Figure source: Thomas et al. (2010)

7.3.2 The halo model and galaxies

We wish to repeat and update the above described analysis to include the WDM parameter
in order to check for degeneracies using the full covariance matrix of the SDSS MegaZ
catalogue. Moreover, it would be interesting to use first try the above analysis using the
halofit with the massive neutrino correction of Bird et al. (2012) and ultimately use the full
halo model, which should also be corrected for WDM free-streaming as indicated in ch. 5 as
well as in Dunstan et al. (2011) (but also Benson et al., 2012; Lovell et al., 2012; Schneider
et al., 2012).

Unlike in the previous sections, where we used a custom written code, here, for the com-
parison to the MegaZ catalogue power spectrum, the publicly available nicaea can be used
Kilbinger et al. (2009). However if one wishes to include WDM corrections, custom modifi-
cations to the code must be made once again. The advantages of using nicaea are that it
includes prescriptions for Halo Occupation Distributions (HOD). The simplest HOD is that
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of Hamana et al. (2004), where the number of galaxies in a halo of mass M is given by the
following relation:

Ng(M) =

{ (
M
M1

)α
M > Mmin

0 M < Mmin

, (7.2)

where M1, α and Mmin are free, nuisance parameters. We hope that such modifications will
add to the accuracy of the comparison between data and theory.

Massive neutrinos are very light thermal relic particles that free-streamed in the early
universe. This means that their effects on the primordial density field can be understood
analogously to those of a keV thermal relic. The major differences between their free streaming
effect are manifest in the scales and amplitudes of their suppression of the matter power
spectrum. Because the effects of neutrinos reach larger scales, they remain observable even
in the present day nonlinear distribution of matter. On the other hand, WDM became non-
relativistic much earlier in cosmic time and therefore its free-streaming did not influence
very large scales. However, because it potentially makes up a much larger fraction of the
density, its free streaming could have suppressed the overdensity field to zero. Such effect are
potentially still measurable at low redshifts and should be accounted for when using similar
properties of the power spectrum to constrain other cosmological parameters. It is important
to be careful especially when measuring the neutrino masses, but it is possible that we will
be able to confidently separate the two effects in the future.
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CHAPTER 8
Conclusions

Cosmology today is an impressive science, which provides a deep understanding of the nature
of our universe. However, having answered so many questions over the past few decades it has
also discovered so many curious properties, which have still to be explained. The presence of
Dark Matter and Dark Energy is justified by their power in explaining the gravitational effects
unaccounted for by considering only the matter we can see. Their true nature yet remains a
mystery. The cosmological model containing these two components alongside regular matter
is known as ΛCDM (sec 1.3). This thesis has dealt with a proposed type of dark matter
called warm dark matter . The property of warmness does not entirely specify its particle
physics properties, but it does narrow down to a small range of possibilities. Its advantage
in particular is its potential to explain the small scale discrepancies between observation and
ΛCDM (ch 3).

The most concerning conflict with astronomical data of the ΛCDM model exists at the
smallest cosmological scales in the distribution of structure in the universe. A possible reason
for this issue may lay in the assumption that baryonic matter (luminous and dark) through
its physical processes cannot significantly affect the Dark Matter overdensity field. If it can
do so, it could erase power in the small scale dark matter overdensity field through feedback
processes (van Daalen et al., 2011, and references therein). A further possibility would be
warm dark matter, which can smooth the initial dark matter density field on small scales. An
accurate description of small scales of cosmological structures is essential to utilise the full
precision of future data for the extraction of the true cosmological model.

Both, warm dark matter and neutrinos affects the structures in our universe by suppressing
their formation. This is a result of both types of particles being relativistic for long enough
to erase the perturbations in the cosmological energy density in a potentially observable way.
This suppression is important on a range of scales that depends on the properties of the
particles (sec 1.3.3). Neutrinos make up a very small fraction of the total energy density and
stay relativistic until the present day due to their small, sub-eV masses. This means that
they affect the structure in our universe only mildly, but to relatively large scales. On the
other hand, warm dark matter consists, in its simplest form, of relatively heavy, keV particles,
which become non-relativistic relatively early, but make up all of dark matter, therefore about
25% of the total energy density. This means that warm dark matter suppresses the formation

125



Conclusions

of small structure very strongly, but only up to relatively small scales, which are at present
times described as very non-linear perturbations to the average background density (ch 3).

This thesis has investigated the difficulties in modeling the highly non-linear structure by
modifying existing models (ch 5) as well as running N-body numerical simulations (ch 6). We
have made forecasts for future large scale structure surveys, in particular for the Euclid weak
lensing survey (ch 4). This was done in order to investigate how the free-streaming of warm
dark matter, which smoothes out the sub-0.1 Mpc scales in the linear density field impacts the
present day nonlinear density field. In other words, it is very difficult to describe the present
day, nonlinear density field analytically. This is not only because the full nonlinear Einstein
field equations have not yet been solved (ch 1), but because even the approximation used in
the linear regime (first order perturbation theory) no longer applies. This is the case already
in the standard ΛCDM model. However, many successful approaches have been developed
over the past several decades (ch 3), many of which have not been discussed in this thesis,
because they become too inaccurate on the scales of interest, i.e. on the scales where warm
dark matter can account for the small scale issues of ΛCDM.

The three approaches in this thesis to calculating the nonlinear power spectrum, which
describes the statistics of the present-day density field, have been the halo model , the related
halofit prescription and the full numerical solving of the Newtonian dynamics - N-body
simulations. We have attempted to modify the first two in such a way as to be compatible
with the third.

The halo model modifications we made in ch. 5 were not calibrated here against N-body
simulations and so they slightly overestimated the suppression in the nonlinear power spec-
trum in the ΛWDM scenario. This was done subsequently by other authors, who have sug-
gested a useful prescription for the halo mass function in the WDM scenario (Schneider et al.,
2012). The new “warm” halo model can be useful for a comparison with future galaxy sur-
veys, where in order to compare the galaxy distribution measured from observations, one
must populate the theoretical dark matter density field with galaxies. This is done with a
rather physical motivation by constructing the density field from dark matter haloes, which
act as hosts to galaxies. The prescription for this is known as the halo occupation distribution.
We wish to use this in the near future to compare the ΛWDM model to the galaxy clustering
data of the Sloan Digital Sky Survey MegaZ catalogue of luminous red galaxies (ch 7).

Our modification to the halofit was in the form of an additional WDM transfer function,
which we fit to the results of our N-body simulations (ch 6). We ran these simulations using
a non-modified version of the Gadget-2 code (Springel, 2005). To include the effects of
WDM, we created initial conditions for the simulation, whose statistics were described by a
suppressed linear matter power spectrum (sec 2.3.3). We then ran the unmodified Gadget-2

code, since by the time of gravitational collapse, the WDM particles have lost most of their
thermal energy due to the expansion of the universe. Their velocities have become low enough
to be negligible for the purposes of finding the matter power spectrum on scales larger than
the very centres of our haloes. The fitting function resulting from our simulations is useful
for calculating theoretical WDM power spectra in order to compare them to data of cosmic
structure.

We have made forecasts for the Euclid weak lensing survey and found that WDM particles
with masses of the order of mwdm ∼ keV have a large enough impact on the nonlinear
density field via the initial conditions they create, to be detectable. It would be interesting
furthermore to go away from the power spectrum approach and use the properties of individual
haloes to constrain the properties of dark matter particles. Or vice versa, to show explicitly
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with respect to the abovementioned surveys like, Planck, SDSS and Euclid, but also other
types of observations that WDM does indeed solve the small scale issues of ΛCDM fully.

Finally, we have touched upon the subject of baryonic physics, modeled by hydrodynam-
ical simulations (sec 3.2.2). We ran one simulation that included some baryonic cooling as
well as star formation, which has indicated that such effects affect the nonlinear matter power
spectrum (via gravitational coupling) similarly and on similar scales to WDM. Even though
such numerical prescriptions are yet uncertain, it is clear that before a measurement or con-
straint on the WDM mass is made, one must be familiar with the effects of baryonic physics.
A potential solution to this important degeneracy may be the examination of the evolution
of these effects. Whereas the WDM suppression increases with increasing redshift, the effect
of baryons may have an entirely different signature in redshift. This would be interesting
to model using numerical methods, but it would be a large undertaking as it would require
extensive computational resources.

The small scales of cosmological structures are shaped by several different physical pro-
cesses. Their exact effects are difficult to predict and the field of cosmology concerned with
them is relatively young. Besides baryonic effects a warm dark matter would impact the small
scales by changing the initial conditions. The presence of such dark matter could elegantly
explain some of the conflicts with data that arise when assuming that all dark matter is cold.
Because the upcoming cosmological surveys will be capable of impressive precision, they will
be able to map out the 3D dark matter density field to a resolution achieved never before.
This will give us a chance to test the WDM model by applying the nonlinear prescriptions
developed in this thesis.
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APPENDIX A
Correlation function of haloes

Beginning from Appendix A of Takada & Bridle (2007), we try to write down the correlation
function assuming the entire density field in the universe, ρ(x) is fully made up of virialised
objects (unlike in eq. 5.1) with mass-normalized halo density profile uh(|r|,M), r = |x −
x0| begin the distance from the halo centre at x0, which is enough assuming a spherically
symmetric halo:

ρ(x) =
N∑
i=1

Mi uh(|x− x0,i|,Mi) . (A.1)

From eq. (5.6), we already know that

〈ρ(x)ρ(x + r)〉 = ρ̄2 (1 + 〈δ(x)δ(x + r)〉) . (A.2)

Rewriting and re-expressing this, we can write the correlation function:

ξ(r) = 〈δ(x)δ(x + r)〉

=
〈ρ(x)ρ(x + r)〉 − ρ̄2

ρ̄2
. (A.3)

For now, let’s try to work out the first term, 〈ρ(x)ρ(x + r)〉, using eq. A.1:

〈ρ(x)ρ(x + r)〉 =

〈
N∑
i=1

Mi uh(|x− x0,i|,Mi)
N∑
j=1

Mj uh(|x + r − x0,j |,Mj)

〉

=

〈
N∑
i=1

M2
i uh(|x− x0,i|,Mi)uh(|x + r − x0,i|,Mi)

〉
+

+

〈
N∑
i 6=j

MiMj uh(|x− x0,i|,Mi)uh(|x + r − x0,j |,Mj)

〉
, (A.4)

where we have now split the sums into 2 terms, which will become: the Poisson, or 1-halo
term (i = j) and the Clustering or 2-halo term (i 6= j), obviously, since we are summing over
haloes.
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In the next step we insert some random Dirac delta, δD(x) functions:

〈ρ(x)ρ(x + r)〉 =〈∫
dMd3y

N∑
i=1

δD(M −Mi)δD(y − x0,i)

× M2uh(|x− y|,M)uh(|x + r − y|,M)

〉
+

+

〈∫
dM1dM2 d

3y1d
3y2

N∑
i 6=j

δD(M1 −Mi)δD(M2 −Mj)δD(y1 − x0,i)δD(y2 − x0,j)

× M1M2 uh(|x− y1|,M1)uh(|x + r − y2|,M2)

〉
, (A.5)

and realising that the angular brackets imply an ensemble average over x0,i and Mi, we can
write:

〈ρ(x)ρ(x + r)〉 =∫
dMd3y

〈
N∑
i=1

δD(M −Mi)δD(y − x0,i)

〉
× M2uh(|x− y|,M)uh(|x + r − y|,M) +

+

∫
dM1dM2 d

3y1d
3y2

〈
N∑
i 6=j

δD(M1 −Mi)δD(M2 −Mj)δD(y1 − x0,i)δD(y2 − x0,j)

〉
× M1M2 uh(|x− y1|,M1)uh(|x + r − y2|,M2) , (A.6)

and applying the Ergodic principle (e.g. Weinberg, 2008, in the appendix), the mass function
is just defined as a volume average:

n(M) =

〈
N∑
i=1

δD(M −Mi)δD(y − x0,i)

〉(∫
d3y uh

)
︸ ︷︷ ︸

=1

. (A.7)

Then, using eq. (A.1) and making similar replacements as above, we get similarly to eq. (5.3):

ρ̄ = 〈ρ(x)〉

=

〈
N∑
i=1

Mi uh(|x− x0,i|,Mi)

〉

=

∫
dMd3y

〈
N∑
i=1

δD(M −Mi)δD(y − x0,i)

〉
M uh(|x− y|,M)

=

∫
dM Mn(M) (A.8)

⇒ ρ̄2 =

∫
dM1dM2 d

3y1d
3y2

×

〈
N∑
i=1

δD(M1 −Mi)δD(y1 − x0,i)

〉〈
N∑
j=1

δD(M2 −Mj)δD(y2 − x0,j)

〉
× M1M2 uh(|x− y1|,M1)uh(|x + r − y2|,M2) . (A.9)
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Now let us insert our result from equations (A.9) and (A.6) back into eq. (A.11):

ρ̄2 ξ(r) = 〈ρ(x)ρ(x + r)〉 − ρ̄2

=

∫
dMd3y

〈
N∑
i=1

δD(M −Mi)δD(y − x0,i)

〉
× M2uh(|x− y|,M)uh(|x + r − y|,M) +

+

∫
dM1dM2 d

3y1d
3y2

×

〈
N∑
i 6=j

δD(M1 −Mi)δD(M2 −Mj)δD(y1 − x0,i)δD(y2 − x0,j)

〉
× M1M2 uh(|x− y1|,M1)uh(|x + r − y2|,M2) +

−
∫
dM1dM2 d

3y1d
3y2

×

〈
N∑
i=1

δD(M1 −Mi)δD(y1 − x0,i)

〉〈
N∑
j=1

δD(M2 −Mj)δD(y2 − x0,j)

〉
× M1M2 uh(|x− y1|,M1)uh(|x + r − y2|,M2) , (A.10)

put the last two terms together,

ρ̄2 ξ(r) =

∫
dMd3y n(M)M2uh(|x1 − y|,M)uh(|x2 − y|,M) +

+
∏
i=1,2

[∫
dMiMin(Mi) d

3yi uh(|xi − yi|,Mi)

]
ξcent(r0,M1,M2) (A.11)

where we’ve taken x = x1, r = x2 − x1, r0 = |y1 − y2| and

ξcent(r0,M1,M2)n(M1)n(M2) ≡〈
N∑
i 6=j

δD(M1 −Mi)δD(M2 −Mj)δD(y1 − x0,i)δD(y2 − x0,j)

〉
+

−

〈
N∑
i=1

δD(M1 −Mi)δD(y1 − x0,i)

〉〈
N∑
j=1

δD(M2 −Mj)δD(y2 − x0,j)

〉
, (A.12)

is the correlation function of halo centres. This equaiton makes sense, because ξcent is the
“exces probability” (see also eq. (25) of Smith et al., 2007).

Note that setting y = x0 and Mcut = 0 in eq. (A.11), one recovers eq. (5.11).
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APPENDIX B
Density profile of halos

The halo density profile is taken to be the Navarro-Frenk-White (NFW) profile with rs being
the scale radius defined as the ration of the virial radius and the halo concentration parameter:
rs = rv

c and ρs is the scale density, which ρs = δcρm, where δc = (200/3)c3 [log (1 + c)− c/(1 + c)]−1.

ρ(r) =
ρs(

r
rs

)(
1 + r

rs

)2 (B.1)

The NFW profile, like other ingredients of the halo model is calculated from ΛCDM
models. . In order to asses the effect of this deviation from ΛCDM on the non-linear matter
power spectrum the parameters used to calculate the concentration parameter, c(M, z), have
been readjusted. A further issue is the dependence of the critical overdensity δcrit (n.b.
δcrit 6= δc) on halo mass (Barkana et al., 2001). Furthermore have ∆ = 200 giving the virial
radius, where halos are truncated.

In order to calculate the projected mass density Σ(r⊥) one needs to integrate ρ(r) over
the line of sight i.e. along the component of the radial vector, perpendicular to the line of
sight. In order to do this integral, rewrite r as a dimensionless variable x = r

rs
& dr = rsdx

and decompose it into a perpendicular r⊥ and a parallel component r‖:

Σ(r⊥) =

∫
halo

ρ(r⊥, r‖)dr‖ = ρs

∫
halo

dr‖(√
r2
⊥+r2

‖
rs

)(
1 +

√
r2
⊥+r2

‖
rs

)2 (B.2)

Σ(x⊥) = ρsrs

∫
halo

dx‖√
x2
⊥ + x2

‖

(
1 +

√
x2
⊥ + x2

‖

)2 (B.3)
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B. Density profile of halos

Projected 2D halo density profile - integrated over the line of
sight to infinity

In order to solve the integral, substitute x‖ = x sin θ = x⊥ tan θ & dx‖ = x⊥ sec2 θdθ. Conse-
quently:

x =
√
x2
⊥ + x2

‖ = x⊥
√

1 + tan2 θ =
x⊥

cos θ
(B.4)

and so, the integral becomes:

Σ(x⊥) = ρsrs

∫
halo

x⊥ sec2 θdθ(
x⊥

cos θ

) (
1 + x⊥

cos θ

)2 = ρsrs

∫
halo

cos θdθ

(cos θ + x⊥)2
(B.5)

Now, in order to integrate over the entire profile, here we set the limits to go from r‖ =∞ to
r‖ = −∞, but since the halo profile is symmetric around r = 0, we can multiply the integral
by 2 and set it to go from r‖ = 0→ +∞. For the variable θ this corresponds to θ = 0→ π/2:

Σ(x⊥) = 2ρsrs

∫ π/2

0

cos θdθ

(cos θ + x⊥)2
(B.6)

=
2ρsrs
x2
⊥ − 1

 2√
1− x2

⊥

arctanh

(x⊥ − 1) tan
(
θ
2

)√
1− x2

⊥

+
x⊥ sin θ

x⊥ + cos θ

θ=π/2
θ=0

(B.7)

=
2ρsrs
x2
⊥ − 1

[
1 +

2√
1− x⊥

arctanh

(
−
√

1− x⊥√
1 + x⊥

)]
(B.8)

=
2ρsrs
x2
⊥ − 1

[
1− 2√

1− x⊥
arctanh

(√
1− x⊥√
1 + x⊥

)]
(B.9)

This solution only works for x⊥ 6= 1. We need to solve the integral separately for x⊥ = 1:

Σ(x⊥ = 1) = 2ρsrs

∫ π/2

0

cos θdθ

(cos θ + 1)2
=

2ρsrs
3

(B.10)

Furthermore, in order to avoind complex numbers, we can simplify the above solution in the
case x⊥ > 1, using the known result that

Σ(x⊥ > 1) =
2ρsrs
x2
⊥ − 1

[
1− 2

i
√
x⊥ − 1

arctanh

(
i
√
x⊥ − 1√
x⊥ + 1

)]
(B.11)

=
2ρsrs
x2
⊥ − 1

[
1− 2i

i
√
x⊥ − 1

arctan

(√
x⊥ − 1√
x⊥ + 1

)]
(B.12)

=
2ρsrs
x2
⊥ − 1

[
1− 2√

x⊥ − 1
arctan

(√
x⊥ − 1√
x⊥ + 1

)]
(B.13)

This is exactly the same as in Wright & Brainerd (1999, eq. 11) and Bartelmann (1996).
Note that Wright & Brainerd (1999) say that the convergence κNFW = ΣNFW (r⊥)/Σcrit.
However in order to calculate shear, they say one must calculate the mean density within R,
Σ̄(r⊥ < R).
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Projected 2D halo density profile - integrated over the line of
sight up to the virial radius

The above substitution is less useful if we set the limits of the integral to be the virial radius

of the halo, as (see B.6) then we get θlimit = arctan

√
x2
v

x2
⊥
− 1 and so, must calculate the

tan

arctan

√
x2
v

x2
⊥
−1

2

. Also this way it is hard to account for possible poles in the integration.

For this reason we do the integral directly, with the limit becoming xlimit‖ =
√
c2 − x2

⊥ , since

rlimit‖ =
√
r2
v − r2

⊥ and c = rv/rs:

Σ(x⊥) = ρsrs

∫ √c2−x2
⊥

0

dx‖√
x2
⊥ + x2

‖

(
1 +

√
x2
⊥ + x2

‖

)2 (B.14)

In order to be able to solve this one needs to assume that {c, x‖, x⊥} ∈ R, c > 0, 0 ≤ x‖ ≤ c
and 0 ≤ x⊥ < c (since x⊥ = c makes the integral go to 0). There are 5 different cases of
solution to this integral: x⊥ > 1, x⊥ = 1, x⊥ < 1 with c ≤ 1, x⊥ < 1 with c > 1 and x⊥ = 0
(the last case diverges and is impossible to solve?).

Case 1: 1 < x⊥ < c

Note here the identity: arctan(−x) = − arctan(x). As well as:

arctan(x) =
i

2
ln

(
i+ x

i− x

)
=
i

2
ln

(
1 + x/i

1− x/i

)
=
i

2
ln

(
1− ix
1 + ix

)
(B.15)

Then,

Σ(x⊥ > 1) =
2ρsrs

(1 + c)(x2
⊥ − 1)3/2

F (x⊥ > 1) (B.16)

Mathematica gives:

F (x⊥ > 1 ∨ c ≤ 1) =
√

(c2 − x2
⊥)(−1 + x2

⊥) − (1 + c) arctan


√
c2 − x2

⊥√
−1 + x2

⊥

+G(x⊥ > 1)

(B.17)
where

G(x⊥ > 1) =
i(1 + c)

2
ln

c− i
√

c2−x2
⊥

x2
⊥−1

c+ i

√
c2−x2

⊥
x2
⊥−1

 = (1 + c)
i

2
ln

1− i
c

√
c2−x2

⊥
x2
⊥−1

1 + i
c

√
c2−x2

⊥
x2
⊥−1

 , (B.18)

which simplifies to:

F (x⊥ > 1) =
√

(x2
⊥ − 1)(c2 − x2

⊥)−(1+c) arctan


√
c2 − x2

⊥√
x2
⊥ − 1

+(1+c)arctan


√
c2 − x2

⊥

c
√
x2
⊥ − 1


(B.19)
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B. Density profile of halos

Case 2: x⊥ = 1

This means r‖ = rs. Need to calculate this separately, since need to avoid zeros in denomi-
nators!

Σ(x⊥ = 1) =
2ρsrs(c+ 2)

√
c− 1

3(c+ 1)3/2
(B.20)

Case 3: x⊥ < 1

Here the solution is

Σ(x⊥ < 1) =
−2ρsrs

(1 + c)(1− x2
⊥)3/2

F (x⊥ < 1) (B.21)

where for the case, where c > 1, Mathematica gives:

F (x⊥ < 1) =
1

2i

[
2i
√

(c2 − x2
⊥)(1− x2

⊥) + (1 + c)π+ (B.22)

+ i(1 + c) ln

−1 +

√
c2−x2

⊥
1−x2

⊥

1−
√

c2−x2
⊥

1−x2
⊥

+ i(1 + c) ln

c−
√

c2−x2
⊥

1−x2
⊥

c+

√
c2−x2

⊥
1−x2

⊥


 (B.23)

=
√

(c2 − x2
⊥)(1− x2

⊥) − i

2
(1 + c)π +

i

2
(1 + c) ln(−1) + (B.24)

+
1

2
(1 + c) ln

1 +

√
c2−x2

⊥√
1−x2

⊥

1−
√
c2−x2

⊥√
1−x2

⊥

− 1

2
(1 + c) ln

1 +

√
c2−x2

⊥
c
√

1−x2
⊥

1−
√
c2−x2

⊥
c
√

1−x2
⊥

 (B.25)

=
√

(c2 − x2
⊥)(1− x2

⊥) − i

2
(1 + c)π +

i

2
(1 + c)π + (B.26)

+ (1 + c)arctanh


√
c2 − x2

⊥√
1− x2

⊥

− (1 + c)arctanh


√
c2 − x2

⊥

c
√

1− x2
⊥

 (B.27)

Note that

arctanh(x) =
1

2
ln

(
1 + x

1− x

)
(B.28)

as well as the fact that ln(−a) = ln(−1) + ln(a) = iπ + ln(a).
For the case, where c < 1, the result is equivalent to Case 1, but is here written in a format that

avoids imaginary intermediate results. Note also that we know that X ≡
√

c2−x2
⊥

1−x2
⊥

< c ≤ 1

in the this case.
Therefore,

F (x⊥ < 1) =


√

(1− x2
⊥)(c2 − x2

⊥) + (1 + c)atanh (X )− (1 + c)atanh
(X
c

)
if c < 1√

(1− x2
⊥)(c2 − x2

⊥) + (1 + c)atanh
(

1
X
)
− (1 + c)atanh

(
c
X
)

if c > 1

(B.29)
As for c = 1:

Σ(x⊥ < 1, c = 1) =
−ρsrs

(
1− x2

⊥ + ln(x2
⊥)
)

(1− x2
⊥)3/2

(B.30)
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since limx→1 arctanh(x) =∞.

Case 4: x⊥ = 0

The solution to this case is undefined as the integral diverges at the lower limit of x‖ = 0
& x⊥ = 0. As we can safely assume that the infinite density at the centre of a halo would
be unphysical, we can assume it is somehow smoothened. Fortunately the entire 3D integral
of the NFW density converges as we integrate over ∼ ρnfw(r)r2dr. So in the integral over
θ = x⊥rs/d for the Fourier transformation of κ(θ) converges at 0:

κl =

∫ θv

0
θdθκ(θ)J0

((
1

2
+ l

)
θ

)
(B.31)

These results are exactly the same as eq. (27) in Takada & Jain (2003), but I haven’t
yet managed to show it analytically. However I have plotted them and they look exactly the
same.
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tions. Mathematische Annalen 54:pp. 125–201. URL http://eudml.org/doc/157997.

Riess A.G. et al. (Supernova Search Team) (1998). Observational evidence from supernovae
for an accelerating universe and a cosmological constant. Astron.J. 116:pp. 1009–1038.
arXiv:astro-ph/9805201.

Riess A.G. et al. (2009). A Redetermination of the Hubble Constant with the Hubble Space
Telescope from a Differential Distance Ladder. ApJ699:pp. 539–563. arXiv:0905.0695.

Robertson H. (1935). Kinematics and world-structure. The Astrophysical Journal 82:p.
284.

Schaye J. et al. (2010). The physics driving the cosmic star formation history.
Mon.Not.Roy.Astron.Soc. 402:p. 1536. arXiv:0909.5196.

Schneider A., Smith R.E., Maccio A.V. & Moore B. (2012). Nonlinear Evolution of
Cosmological Structures in Warm Dark Matter Models. Mon.Not.Roy.Astron.Soc 424:pp.
684–698. arXiv:1112.0330.

Schwarzschild K. (1916). On the Gravitational Field of a Mass Point According to Ein-
stein’s Theory. Abh. Konigl. Preuss. Akad. Wissenschaften Jahre 1906,92, Berlin,1907 pp.
189–196.

Seljak U. (2000). Analytic model for galaxy and dark matter clustering.
Mon.Not.Roy.Astron.Soc. 318:p. 203. arXiv:astro-ph/0001493.

Seljak U., Slosar A. & McDonald P. (2006). Cosmological parameters from combining
the Lyman-α forest with CMB, galaxy clustering and SN constraints. JCAP 0610:p. 014.
arXiv:astro-ph/0604335.

Seljak U. & Zaldarriaga M. (1996). A line of sight integration approach to cosmic mi-
crowave background anisotropies. Astrophys.J. 469:pp. 437–444. arXiv:astro-ph/9603033.

Semboloni E., Hoekstra H., Schaye J., van Daalen M.P. & McCarthy I.J. (2011).
Quantifying the effect of baryon physics on weak lensing tomography. Mon. Not. Roy.
Astron. Soc. 417:pp. 2020–2035. arXiv:1105.1075.

144

http://arxiv.org/abs/0810.0003
http://arxiv.org/abs/1001.0061
http://eudml.org/doc/157997
http://arxiv.org/abs/astro-ph/9805201
http://arxiv.org/abs/0905.0695
http://arxiv.org/abs/0909.5196
http://arxiv.org/abs/1112.0330
http://arxiv.org/abs/astro-ph/0001493
http://arxiv.org/abs/astro-ph/0604335
http://arxiv.org/abs/astro-ph/9603033
http://arxiv.org/abs/1105.1075


Bibliography

Sheth R.K. & Tormen G. (1999). Large scale bias and the peak background split.
Mon.Not.Roy.Astron.Soc. 308:p. 119. arXiv:astro-ph/9901122.

Silk J. (1967). Fluctuations in the Primordial Fireball. Nature 215:pp. 1155–1156.

Smail I., Ellis R.S. & Fitchett M.J. (1994). Gravitational lensing of distant field galax-
ies by rich clusters: I. - faint galaxy redshift distributions. ArXiv e-prints arXiv:astro-
ph/9402048.

Smith R. et al. (Virgo Consortium) (2003). Stable clustering, the halo model and nonlinear
cosmological power spectra. Mon.Not.Roy.Astron.Soc. 341:p. 1311. arXiv:astro-ph/0207664.

Smith R.E., Desjacques V. & Marian L. (2011). Nonlinear clustering in models
with primordial non-Gaussianity: the halo model approach. Phys.Rev. D83:p. 043526.
arXiv:1009.5085.

Smith R.E. & Markovič K. (2011). Testing the warm dark matter paradigm with large-scale
structures. Phys.Rev. D84:p. 063507. arXiv:1103.2134.

Smith R.E., Scoccimarro R. & Sheth R.K. (2007). The Scale Dependence of Halo and
Galaxy Bias: Effects in Real Space. Phys.Rev. D75:p. 063512. arXiv:astro-ph/0609547.

Smoot G.F. et al. (1991). Preliminary results from the COBE differential microwave ra-
diometers - Large angular scale isotropy of the cosmic microwave background. Astrophys.J.
Letters 371:pp. L1–L5.

Smoot G.F. et al. (1992). Structure in the COBE differential microwave radiometer first-year
maps. Astrophys.J. Letters 396:pp. L1–L5.

Sommer-Larsen J. & Dolgov A. (2001). Formation of disk galaxies: warm dark matter and
the angular momentum problem. Astrophys.J. 551:pp. 608–623. arXiv:astro-ph/9912166.

Springel V. (2005). The cosmological simulation code GADGET-2.
Mon.Not.Roy.Astron.Soc. 364:pp. 1105–1134. arXiv:astro-ph/0505010, URL
http://www.mpa-garching.mpg.de/gadget/.

Springel V., Yoshida N. & White S.D. (2001). GADGET: A code for collisionless and
gasdynamical cosmological simulations. New Astron. 6:p. 79. arXiv:astro-ph/0003162.
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