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  Summary  

Summary 

DNA methylation plays a crucial role in the epigenetic control of gene expression during 

mammalian development and differentiation. Whereas the de novo DNA methyltransferases 

(Dnmts), Dnmt3a and Dnmt3b, establish DNA methylation patterns during development; 

Dnmt1 stably maintains DNA methylation patterns during replication. DNA methylation 

patterns change dynamically during development and lineage specification, yet very little is 

known about how DNA methylation affects gene expression profiles upon differentiation. 

Therefore, we determined genome-wide expression profiles during differentiation of severely 

hypomethylated embryonic stem cells (ESCs) lacking either the maintenance enzyme Dnmt1 

(dnmt1-/- ESCs) or all three major Dnmts (dnmt1-/-; dnmt3a-/-, dnmt3b-/- or TKO ESCs), 

resulting in complete loss of DNA methylation, and assayed their potential to transit in and 

out of the ESC state. Our results clearly demonstrate that upon initial differentiation to 

embryoid bodies (EBs), wild type, dnmt1-/- and TKO cells are able to activate differentiation 

processes. However, transcription profiles of dnmt1-/- and TKO EBs progressively diverge 

with prolonged EB culture, with dnmt1-/- EBs being more similar to wild type EBs, indicating a 

higher differentiation potential of dnmt1-/- EBs compared to TKO EBs. Remarkably though, 

after dissociation of late EBs and further cultivation under pluripotency promoting conditions, 

both dnmt1-/- and TKO but not wild type cells rapidly revert to expression profiles typical of 

undifferentiated ESCs. Thus, while DNA methylation is dispensable for the initial activation of 

differentiation programs, it seems to be crucial for permanently restricting the developmental 

fate during differentiation. 

Based on the essential role of Uhrf1 in maintenance DNA methylation, we investigated the 

structurally highly similar second member of the Uhrf protein family, Uhrf2, whose function in 

maintenance methylation or other biological processes is completely unknown. Expression 

analysis of uhrf1 and uhrf2 in various cell lines and tissues revealed a time- and 

developmental switch in transcript levels of both genes with uhrf1 being highly expressed in 

undifferentiated, proliferating cells and uhrf2 being predominately expressed in differentiated, 

non-dividing cells. These opposite expression patterns together with no detectable effect on 

DNA methylation levels upon knock down of uhrf2 suggests that Uhrf2 is rather involved in 

maintaining DNA methylation patterns in differentiated cells and points to non-redundant 

functions of both proteins.  

The discovery of the “6th base” of the genome, 5-hydroxymethylcytosine (5hmC), resulting 

from the oxidation of 5mC by the family of Tet dioxygenases (Tet1-3), once again ignited the 

debate about how DNA methylation marks can be modified and removed. To gain insights 

into the biological function of this newly identified modification, we developed a sensitive 

enzymatic assay for quantification of global 5hmC levels in genomic DNA. Similar to 5mC 

levels, we found that also 5hmC levels dynamically change during differentiation of ESCs to 

EBs, which correlates with the differential expression of tet1-3. Furthermore, we 

characterized a novel endonuclease, PvuRts1I that selectively cleaves 5hmC containing 

DNA and show first data on its application as a tool to map and analyze 5hmC patterns in 

mammalian genomes.  

Finally, we investigated designer transcription activator-like effector (dTALEs) proteins 

targeting the oct4 locus. Our results show that the epigenetic state of the target locus 

interferes with the ability of dTALEs to activate transcriptionally silent genes, which however 

can be overcome using dTALEs in combination with low doses of epigenetic inhibitors.  

In conclusion, this work gives further insights into the biological roles of methylation mark 

writers (Dnmts), readers (Uhrfs) and modifiers (Tets) and advances our understanding on the 

function of DNA methylation in the epigenetic control of gene expression during development 

and cellular differentiation.  
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1. Introduction 

1.1 Epigenetic gene regulation 

“DNA is just a tape carrying Information and a tape is no good without a player. Epigenetics 

is about the tape player.” Bryan Turner (Birmingham, UK). 

The term “epigenetics” was introduced by Conrad Waddington in 1942 referring to the 

molecular mechanisms that translate the genetic information into an observable phenotype 

(Waddington, 1942). Nowadays, epigenetics is used to describe mechanisms that control 

gene function in a potentially heritable way without altering the DNA sequence and thus 

provide a mechanism to maintain cellular identity in a long-term way (reviewed in Bird, 2002). 

During embryogenesis a single zygote gives rise to various cell types, which are genetically 

identically, but show structural and functional differences due to differential gene expression. 

Developmental and environmental signals synergistically activate complex transcription 

factor networks which together with epigenetic modifications induce differentiation programs. 

These epigenetic mechanisms include DNA methylation, histone modifications, histone 

variants and nucleosome remodelling and are crucial for the establishment of specific cell 

lineages and cell types during differentiation (Figure 1).  

 

Figure 1: Overview of epigenetic mechanisms. 

Methylation of DNA occurs at cytosines mostly within a CpG context and is generally associated with gene 

repression. Histones are subjected to various post-translational modifications including among others 

phosphorylation (P), acetylation (Ac), methylation (Me) and ubiquitination (Ub). The modified histones are 

recognized and bound by effector proteins, which translate the marks into specific molecular consequences like 

transcription, repair or condensation. Furthermore, the canonical histones can be replaced by histone variants 

containing different sequences which results in changes in the chromatin structure. In addition, nucleosome 

remodelling e.g. nucleosome eviction, sliding or insertion by ATP dependent chromatin remodelers leads to 

changes in chromatin structure and accessibility. Importantly, all of these processes are highly interconnected. 

Further factors that contribute to epigenetic regulation are non-coding RNAs which for instance play an important 

role during X Chromosome inactivation. Also the nuclear architecture, like the formation of distinct chromatin 

domains, including euchromatin and heterochromatin, is influenced by epigenetic mechanisms. 
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Despite the heritability of epigenetic marks, they can be reprogrammed under specific 

circumstances. On the one hand, reprogramming can be achieved experimentally by 

generating induced pluripotent stem cells (iPSCs) through ectopic expression of various 

transcription factors or on the other hand also naturally by the genome-wide DNA 

demethylation wave occurring during germ cell development. Thus, epigenetic marks fulfill 

dual roles in proliferating cells; they help to preserve cellular identity while concomitantly 

conferring cellular plasticity that is needed to adapt to environmental cues and differentiation 

signals. Moreover, epigenetic abnormalities contribute to the development of diseases like 

e.g. cancer, hence emphasizing the importance of proper epigenetic gene regulation to 

faithfully maintain genomic integrity and function. 

1.1.1 DNA methylation 

DNA methylation is the longest known and probably most studied epigenetic modification. In 

mammals, this post-replicative mark occurs exclusively at the C5 position of cytosine 

residues as 5-methylcytosine (5mC) mainly in the context of CpG dinucleotides and is 

generally associated with stable gene silencing.  

Only around 1 % of total DNA bases consist of 5mC in human somatic cells, which accounts 

for approximately 60-80 % of all CpG dinucleotides being methylated in human and mouse 

(Ehrlich et al., 1982). Methylated sequences are quite diverse and include single copy genes, 

intergenic regions and repetitive sequences. Frequently, CpG dinucleotides are found within 

CpG islands, regions which encompass around 1000 bp with a G+C content of at least 50 % 

and a CpG frequency (observed versus expected) of at least 0.6 (Illingworth and Bird, 2009). 

Remarkably, about 60-70 % of human gene promoters are overlapping with CpG islands, 

which are usually unmethylated during development and in tissues and mostly are located 

within housekeeping genes (Ehrlich et al., 1982; Antequera and Bird, 1993). Only a small 

fraction (4-8 %) of CpG islands become tissue-specifically methylated, leading to stable 

silencing of the associated genes in somatic tissues (De Smet et al., 1999; Shen et al., 2007; 

Illingworth et al., 2008). Methylation of CpG islands plays a crucial role in genomic imprinting 

and X chromosome inactivation and has been linked to developmental diseases and cancer 

(Bird, 2002).  

Interestingly, up to 70 % of tissue-specific DNA methylation has been detected at promoters 

and enhancers containing a low CpG density. Many of these low CpG density regions are 

located close (~2 kb) to CpG islands and hence are referred to as CpG island shores. A 

stronger correlation between gene expression and differentially methylated regions can be 

found at CpG island shores than at CpG islands (Doi et al., 2009; Irizarry et al., 2009; Ji et 

al., 2010). A comparison of DNA methylation between mouse and human revealed that 



  Introduction 

3 
 

differentially methylated regions (DMR) – CpG islands which show tissue specific DNA 

methylation – are highly conserved across species and can even be used to distinguish 

various tissues irrespective of the origin of species (Irizarry et al., 2009).  

DNA methylation occurs not only at promoters and enhancers, but it has also been detected 

at gene bodies, where it - in contrast to promoter methylation - positively correlates with 

transcription (Hellman and Chess, 2007; Rauch et al., 2009). Until today the function of gene 

body methylation is not well understood and several hypotheses have been suggested. On 

the one hand, it could help to dampen transcriptional noise by repressing expression of 

antisense transcripts (Peter A., 1999) or on the other hand, evidence from studies in plants 

indicate that it might influence elongation efficiency (Zilberman et al., 2007). Interestingly, 

increased gene body methylation was found on the active human X chromosome compared 

to the inactive X chromosome and therefore might be involved in the augmented expression 

of X-linked genes and dosis compensation in mammals (Hellman and Chess, 2007).  

Another pivotal function of DNA methylation is the stable silencing of repetitive sequences 

including parasitic sequences like transposons and endogenous retroviruses in the genome 

(Yoder et al., 1997b). Direct evidence that these repetitive sequences are hypermethylated 

and therefore transcriptionally inactive in somatic cells comes from observations in embryos 

lacking Dnmt1, which heavily induce the expression of the transpositionally active family of 

intracisternal A particle (IAP) elements in the mouse genome (Walsh et al., 1998). In cancer 

cells, global hypomethylation at repetitive sequences is observed and it is believed that the 

reactivation of endoparastic sequences contributes to genomic instability (Gaudet et al., 

2003). Therefore, methylation of repetitive sequences plays a crucial role in the 

preseveration of chromosomal integrity and stability as well as in the prevention of 

translocations and gene disruptions (Walsh et al., 1998; Gaudet et al., 2003; Esteller, 2007). 

DNA methylation occurring in a non-CpG context was detected in embryonic stem cells 

(ESCs), where it is especially enriched in gene bodies and depleted in protein binding sites 

and enhancers (Ramsahoye et al., 2000; Lister et al., 2009; Laurent et al., 2010). Non-CpG 

context methylation can occur at CpA and CpT sites, however mCpA seems to be 

predominant form of non-CpG methylation (Ramsahoye et al., 2000; Laurent et al., 2010). As 

non-CpG methylation was found to decrease during differentiation, it has been suggested to 

be associated with pluripotency (Lister et al., 2009; Laurent et al., 2010). 

1.1.2 Histone modifications 

Within the cell, DNA is packed into chromatin. The first level of compaction is the 

nucleosome, which consists of a histone octamer of the four core histones H2.A, H2.B, H3 

and H4 and of 146 bp DNA wrapped around in 1.65 turns. The fifth histone H1 is the linker 
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histone, which binds to DNA linking two nucleosomes and stabilizes higher order chromatin 

structure. The canonical histones consist of an unstructured N-terminal tail, a globular 

domain and a short C-terminus. The highly unstructured tails are targets of numerous post-

translational modifications including acteylation, methylation, phosphorylation, ubiquitination, 

SUMOylation, ADP ribosylation, citrullination and glucosamine N-acetylation and proline 

isomerization (Kouzarides, 2007). These modifications are reversibly set by various writers 

and erasers including histone acetyltransferases and histone deacetylases, kinases and 

phosphatases, arginine methyltransferases as well as histone lysine methyltransferases and 

demethylases, respectively. 

The modification of histone tails plays a crucial role in two basic processes; firstly, the 

establishment of global chromatin regions, like euchromatin and heterochromatin and 

secondly, the facilitation of DNA based functions like transcription, DNA replication and 

repair, chromosome condensation (Kouzarides, 2007) and alternative splicing (Luco et al., 

2010). Posttranslationally modified histones alter the histone-DNA interactions either directly 

or via recruitment of specific chromatin associated proteins that recognize and translate the 

various histone modifications into specific biological consequences. Furthermore, the 

incorporation of histone variants through ATP dependent nucleosome-remodeling exchanger 

complexes can alter histone-DNA interactions which influence nucleosome positioning and 

gene expression (reviewed in (Portela and Esteller, 2010) and see also Figure 1 in Chapter 

1.1). 

Based on distinct modifications of histone tails, the genome can roughly be divided into two 

distinct chromatin regions; which reflect gene expression activity. The actively transcribed 

and accessible euchromatic regions contain high levels of acetylated histone tails as well as 

trimethylation on histone H3K4. The inactive and highly condensed heterochromatin is 

characterized by low levels of acetylation and high levels of trimethylation on histone H3K9, 

H3K27 and H4K20 (Li et al., 2007a). Moreover, bivalent chromatin domains have been found 

in embryonic stem cells (ESCs), where predominantly promoters involved in differentiation 

carry the active histone H3K4me3 mark simultaneously with the repressive histone 

H3K27me3 mark. It has been proposed that this bivalency keeps developmental genes in a 

silent state but poises them for rapid lineage-specific activation or repression (Bernstein et 

al., 2006; Mikkelsen et al., 2007; Ku et al., 2008). The enzymes responsible for setting these 

bivalent marks are two antagonistically acting epigenetic regulators of gene activity; 

Polycomb group (PcG) proteins act as transcriptional repressors which establish histone 

H3K27me3 marks and consist of two complexes, Polycomb repressor complex 1 and 2 

(PRC1 and PRC2). More specifically, PRC1 is composed of the core subunits Ring1a and 1b 

together with various other proteins and catalyzes monoubiquitination of histone H2A. PRC2 
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consists of the three core proteins Enhancer of zeste 2 (Ezh2), Embryonic ectoderm 

development (Eed) and Suppressor of zeste 12 (Suz12) and are responsible for catalyzing 

di- and trimethylation of histone H3K27 via the SET domain of Ezh2 (Akasaka et al., 1996; 

Core et al., 1997; del Mar Lorente et al., 2000). Several studies suggest a synergistic action 

of PRC1 and PRC2 to mediate transcriptional repression. After trimethylation of H3K27, 

PRC1 binds to the repressive marks, catalyzes monoubiquitation of histone H2A which 

interferes with transcription. However, recent data point to more complex functions of PRC1 

and PRC2 as both can be part of various heterogeneous complexes affecting many different 

target genes. By contrast, trithorax group (trxG) proteins are transcriptional activators 

catalyzing trimethlyation of histone H3K4 and are also part of multiprotein complexes 

including histone methyltransferases and nucleosome remodelers (reviewed in Orkin and 

Hochedlinger, 2011). The two protein groups, PcGs and TrxG proteins and their associated 

histone modifications play crucial roles in the plasticity of stem cell states, developmental 

transitions, maintenance of lineage-specific transcription programs, genomic imprinting, X 

inactivation and cancer. Importantly, both protein complexes are not involved in the initial 

regulation of expression but have a critical function in maintaining a transcriptionally active 

(trxG) or silent (PcG) state through many rounds of cell division and hence provide a system 

for cellular memory (Ringrose and Paro, 2004; Sparmann and van Lohuizen, 2006; 

Schuettengruber et al., 2007). 
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1.2 Regulation of DNA methylation in mammalian cells 

1.2.1 Writers of DNA methylation marks – the family of DNA methyltransferases 

DNA methylation marks are set and maintained by the family of mammalian DNA 

methyltransferases (Dnmts). The de novo Dnmts, Dnmt3a and Dnmt3b, together with their 

catalytically inactive cofactor Dnmt3L, are responsible for the establishment of methylation 

marks during differentiation, which are then progressed by the maintenance Dnmt, Dnmt1, 

throughout the cell cycle. All active DNA cytosine methyltransferases harbor a highly 

conserved C-terminal catalytical domain containing all 10 sequence motifs commonly found 

in bacterial cytosine methyltransferases (Goll and Bestor, 2005) (Figure 2).  

 

Figure 2. Domain structure of the mammalian Dnmt family. 
Whereas the C-terminal catalytical domain is highly conserved among all members of the Dnmt family, the N-

terminal regulatory domain shows some striking differences. Dnmt1 harbors the largest N-terminal region 

containing the PCNA binding domain (PBD), the targeting sequence (TS) responsible for pericentric 

heterochromatin localization, the CXXC domain followed by two bromo adjacent homology domains (BAH1 and 

2). A linker consisting of 7 lysine - glyine repeats (KG)7 connects the N- and C-terminal part of Dnmt1. The N-

terminal region of Dnmt3a and 3b harbors only two distinct domains, the Pro-Trp-Trp-Pro (PWWP) motif 

containing domain and the plant – homeodomain (PHD). The catalytically inactive Dnmt3L only contains the PHD 

domain. Dnmt2 is the only member which does not contain a N-terminal regulatory domain. The length of the 

various Dnmts is indicated in amino acids (aa) (adapted from (Rottach et al., 2009). 

Given the high conservation between prokaryotic and eukaryotic Dnmts, it is generally 

assumed that the same mechanism is applied by all enzymes. After substrate recognition 

and flipping of the target cytosine out of the DNA double helix, a covalent complex is formed 

with the C-6 position of the cytosine. Subsequently, a methyl group is transferred from the 

methyl group donor S-Adenosyl-L-Methionine (AdoMet) to the activated C-5 position and the 

enzyme is finally released by ß-elimination (Flynn et al., 1996; Flynn and Reich, 1998; 

Pradhan et al., 1999). 
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1.2.1.1 Dnmt1 

The maintenance enzyme Dnmt1 was the first eukaryotic Dnmt to be discovered and cloned 

(Stein et al., 1982; Bestor et al., 1988). Experiments on cell lines and mice carrying 

homozygous mutations of dnmt1 underline the importance of properly maintaining genomic 

DNA methylation patterns. Whereas complete genetic ablation of dnmt1 leads to embryonic 

lethality at the midgastrula stage, embryos carrying a hypomorphic dnmt1 allele with around 

10% residual dnmt1 expression are able to develop (Li et al., 1992; Lei et al., 1996). These 

mutant mice have a globally hypomethylated genome, display chromosomal instability and 

develop aggressive tumors several months after birth (Gaudet et al., 2003). Interestingly, 

dnmt1-/- embryos show biallelic expression of some imprinted genes and ectopic transient X 

Chromosome inactivation, emphasizing the crucial function of Dnmt1 in genomic imprinting 

and X Chromosome inactivation (Li et al., 1993; Beard et al., 1995). ESCs derived from 

dnmt1-/- blastocysts are viable and are not impaired in their ability to self-renew, although 

these cells contain low (around 20 %) but stable levels of DNA methylation mostly in 

repetitive sequences (Li et al., 1992; Lei et al., 1996). By contrast, somatic cells lacking 

Dnmt1 are impaired in their ability to proliferate and survive and show p53-dependent 

apoptosis, which can be overcome by additionally knocking out p53 in these cells (Jackson-

Grusby et al., 2001; Chen et al., 2007; Spada et al., 2007). 

Dnmt1 is the major and most abundant Dnmt in mammalian cells, as it is expressed in all 

proliferating cells. To provide a faithful mechanism for the stable inheritance of DNA 

methylation patterns, several factors act in combination. Firstly, Dnmt1 expression is cell 

cycle-dependent regulated, resulting in highest dnmt1 transcription during S-G2 phase and 

minimal expression in quiescent (G0) cells (Robertson et al., 2000b; Tatematsu et al., 

2000a). Consistently, dnmt1 is down regulated in non-proliferating cells, with the exception of 

post-mitotic neurons, where Dnmt1 seems to be localized in the cytoplasma (Goto et al., 

1994; Inano et al., 2000). Secondly, Dnmt1 is directly coupled to the replication machinery 

via direct interaction with the replication factor proliferating cell nuclear antigen (PCNA). Two 

different domains of the N-terminal part are involved in the distinct subnuclear localization of 

Dnmt1 during the cell cycle. Whereas the PCNA binding domain (PBD) is responsible for the 

recruitment of Dnmt1 to replication sites during early to mid S-phase (Leonhardt et al., 1992; 

Chuang et al., 1997), the protein is then associated with (peri-) centromeric heterochromatin 

via its Targeting sequence (TS) domain during late S to G2-phase (Easwaran et al., 2004). 

Thirdly, Dnmt1 has a preference for hemimethylated DNA (Yoder et al., 1997a; Frauer and 

Leonhardt, 2009), substrates which are generated during semi-conservative replication. 

Fourthly, the recently identified protein Uhrf1 has been identified as a crucial factor for 

maintenance methylation as this protein is proposed to recruit Dnmt1 to replication foci via its 
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binding to hemimethylated CpG sites (see also chapter 1.2.2) (Bostick et al., 2007; Papait et 

al., 2007; Sharif et al., 2007). 

The association of Dnmt1 with the replication machinery suggests a combined replication of 

genetic and epigenetic information. Interestingly, the PBD has not only a crucial role in 

recruiting Dnmt1 to replication foci, but also to sites of DNA damage, indicating that Dnmt1 is 

also involved in restoring epigenetic information after DNA repair (Mortusewicz et al., 2005).  

Several studies aiming to elucidate the basis of maintenance methylation - the preference of 

Dnmt1 for hemimethylated DNA - were performed over the last years. The first crystal 

structure of Dnmt1 in complex with unmethylated DNA was just recently solved and sheds 

some more light on the complex regulation and function of this enzyme. Whereas it has been 

known that the CXXC domain of Dnmt1 preferentially binds to unmethylated CpG sites 

(Fatemi et al., 2001; Pradhan et al., 2008; Frauer et al., 2011), structural insights now 

suggest a crucial inhibitory role of this binding in maintenance methylation. Upon binding of 

the CXXC domain to unmethylated DNA, an autoinhibitory linker connecting the CXXC 

domain with the first BAH domain is positioned in the active center of Dnmt1, thereby 

preventing the entering of (unmethylated) DNA in the catalytical pocket and thus aberrant 

DNA methylation (Song et al., 2011). The same group published a second structure of 

Dnmt1 covalently bound to a DNA substrate containing a hemimethylated CpG site. 

Comparison of this new structure to the inhibitory state shows that most conformational 

changes occur within the catalytical pocket. Interestingly, several amino acids in the 

catalytical center specifically target the DNA substrate to distinguish its methylation state and 

similarly to prokaryotic methyltransferases, the target cytosine is flipped out of the double 

helix (Song et al., 2012). Additionally, other crystal structures of Dnmt1 suggest an inhibitory 

role of the TS domain by binding directly to the DNA binding pocket within the catalytical 

center, which has to be displaced in order to allow the DNA methylation reaction (Syeda et 

al., 2011; Takeshita et al., 2011). Taken together, all these structures give first, but limited, 

insights into the complex process of maintenance methylation, which seems to involve a 

multi-step cascade of conformational changes. 

The catalytic domain of Dnmt1 contains all conserved motifs described to be necessary in 

prokaryotic methyltransferases to catalyze the methylation reaction. Nonetheless, the 

catalytic domain of Dnmt1 alone is not sufficient for enzymatic activity but needs 

intramolecular interaction with the N-terminal regulatory domain for allosteric activation 

(Zimmermann et al., 1997; Margot et al., 2000; Fatemi et al., 2001). Besides this 

intramolecular interactions, also a range of intermolecular interactions with numerous 

chromatin-associated proteins were reported for Dnmt1, thereby linking the enzyme to 

diverse biological functions including cell cycle regulation, DNA repair, chromatin structure as 
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well as tumorigenesis. Important interaction partners are the H3K9 histone 

methyltransferases G9a (Estève et al., 2006), Suv39h1 (Fuks et al., 2003a) as well as 

components of the Polycomb group 2 complex (PRC2), Eed and Ezh2, involved in H3K27 

methylation (Viré et al., 2006) and the histone deacetylases HDAC1/2(Fuks et al., 2000; 

Robertson et al., 2000a; Rountree et al., 2000b). Furthermore, the Heterochromatin Protein 1 

(HP1) (Fuks et al., 2003a) and various chromatin remodelers including members of the SNF2 

family of ATPases, like Smarca5 (Robertson et al., 2004) and related proteins like Lsh 

(Myant and Stancheva, 2008) as well as transcriptional regulators, among them the Dnmt1-

associated protein 1 (Dmap1) (Rountree et al., 2000a), have been shown to interact with 

Dnmt1. These interactions emphasize the high interconnectivity of various epigenetic 

pathways which lead to the establishment and maintenance of transcriptionally inactive 

chromatin. Additionally, many interacting proteins have been demonstrated to subject Dnmt1 

to numerous posttranslational modifications, which modulate Dnmt1 abundance, stability and 

activity. More specifically, recent reports suggest that the stability and abundance of Dnmt1 

is controlled by acetylation and ubiquitination in a cell-cycle dependent manner. Whereas 

Dnmt1 is acetylated by the histone acetyltransferase (HAT) Kat5 and subsequently 

ubiquitinated by the E3 ubiquitin ligase Uhrf1 leading to its proteolytic digestion, Dnmt1 

abundance increases in early to late S-phase via the concerted action of the deubiquitinase 

Usp7 and deacteylase HDAC1, thereby antagonizing degradation and enhancing the stability 

of Dnmt1 (Du et al., 2010; Qin et al., 2011). Furthermore, phosphorylation followed by 

methylation of Dnmt1 has been shown to function antagonistically to regulate Dnmt1 stability 

during the cell cycle (Estève et al., 2009, 2011). Another interesting example is the 

sumoylation of Dnmt1 which has been suggested to enhance its catalytic activity in vitro (Lee 

and Muller, 2009). 

1.2.1.2 Dnmt2 

The second member of the Dnmt family, Dnmt2, so far has not been shown to harbor Dnmt 

activity, but rather has RNA methyltransferase activity as it has been implicated in 

methylating aspartic acid transfer RNA (tRNAAsp) (Goll et al., 2006). Although this protein is 

the most strongly conserved one, contradicting reports about the role of Dnmt2 in 

mammalian cells aside from its RNA methyltransferase activity exist. The first reports about 

the discovery of Dnmt2 describe no DNA methyltransferase activity although the enzyme 

contains all conserved methyltransferases motives (Okano et al., 1998b; Yoder and Bestor, 

1998). However, DNA binding properties of human DNMT2 at least in vitro have been 

suggested by a crystal structure of human DNMT2 in complex with the demethylated cofactor 

S-adenosyl L-homocystein and a superimposition with bacterial restriction methyltransferase 

M.HhaI showed remarkably similar orientations of all important sequence motifs (Dong et al., 
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2001). Furthermore, studies by Hermann et al. indicate a very weak DNA methyltransferase 

activity of DNMT2 in vitro (Hermann et al., 2003). Taken together, although sequence and 

structure comparison analyses suggest a Dnmt role for Dnmt2, so far most genetic and 

biochemical data failed to prove this function in vitro and in vivo.  

1.2.1.3 The Dnmt3 family 

During development and gametogenesis, Dnmt3a and Dnmt3b are responsible for the 

establishment of global DNA methylation patterns (Okano et al., 1999; Kaneda et al., 2004). 

Consistent with this, both proteins are highly expressed in embryonic stem cells (ESCs) and 

down regulated in differentiated somatic cells and tissues (Okano et al., 1998a). Mice lacking 

dnmt3a survive for 4 weeks after birth, suggesting that Dnmt3a is not crucial for early 

embryonic developmental processes but seems to play a pivotal role in the methylation of 

genes critical for neonatal viability (Okano et al., 1999). Furthermore, studies on conditional 

dnmt3a knockout mice revealed a crucial function of Dnmt3a in both, maternal and paternal 

imprinting, the mono-allelic expression of genes dependent on the origin of parent (Kaneda 

et al., 2004). In contrast, embryos deficient for dnmt3b show early embryonic lethality (E 9.5), 

indicating that Dnmt3b plays an important role during early developmentally processes. 

Dnmt3b was found to specifically methylate centromeric minor satellite repeats. This is 

consistent with a phenotyp described in patients suffering from the rare autosomal recessive 

human ICF (immunodeficiency, centromer instability and facial anomalies) syndrome, which 

is caused by point mutations in DNMT3B (Hansen et al., 1999; Xu et al., 1999). The specific 

loss of methylation at minor pericentric satellite DNA is thus assumed to be critical for 

maintaining chromosome stability. Moreover, loss of both de novo Dnmts leads to early 

embryonic lethality and dnmt3a-/-, 3b-/- ESCs progressively become globally hypomethylated 

and fail to methylate newly integrated proviral sequences (Okano et al., 1999). 

Interestingly, although Dnmt3a and Dnmt3b are closely related, they seem to have non-

overlapping functions during development as suggested by the different phenotypes of their 

respective knockout mice. Both proteins consist of a regulatory N-terminal domain linked to a 

conserved C-terminal catalytical domain (Figure 2). The regulatory domain contains the 

PWWP domain shown to be involved in chromatin targeting of both enzymes. Furthermore, 

the PWWP domain was reported to bind to trimethylated histone H3K36, which seems to 

enhance DNA methylation activity of Dnmt3a and 3b (Ge et al., 2004; Dhayalan et al., 2010). 

The N-terminal domain also harbors a PHD which has been reported to specifically bind to 

unmethylated H3K4 and is responsible for multiple interactions with various chromatin 

proteins including HDACs, HP1 and the histone methyltransferase Suv39h1 (Fuks et al., 

2003a).  
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The third homologue of the Dnmt3 family is Dnmt3L, which consists of a short N-terminal 

domain and the C-terminal catalytical domain, but has no methyltransferase activity (Figure 

2). Nonetheless, Dnmt3L has been shown to function as an important cofactor for Dnmt3a 

and Dnmt3b as it interacts and colocalizes with both proteins during early embryonic 

development and was proposed to stimulate their activity (Hata et al., 2002; Xie et al., 2006). 

In germ cells, Dnmt3L together with Dnmt3a is responsible for establishing de novo DNA 

methylation at imprinted genes, presumably via its binding to unmethylated H3K4 and 

subsequent recruitment or activation of Dnmt3a2, a variant of Dnmt3a (Ooi et al., 2007). In 

line with this, dnmt3l-/- mice are viable but methylation of sequences that are normally 

maternally methylated is absent in oocytes. Furthermore, reactivation of retrotransposons 

and meiotic catastrophes is observed in spermatocytes from dnmt3l-/- mice. Consequently, 

the mice are sterile after birth, although surprisingly, global DNA methylation levels are not 

altered (Bourc’his et al., 2001; Bourc’his and Bestor, 2004). 

It is still not well understood how sequence specific de novo DNA methylation patterns are 

established. One recent study identified small methylation-determining regions (MDRs) within 

proximal promoter regions that mediate both hypomethylation and de novo methylation, 

indicating that target specificity of DNA methylation patterns is conveyed by the local DNA 

sequence itself (Lienert et al., 2011). However, also DNA binding proteins and the local 

chromatin environment are likely to influence DNA methylation adding again to the 

complexity of how methylation patterns are established.  

1.2.1.4 Cooperative functions of mammalian Dnmts 

Although a non-overlapping function of the two types of enzymes, Dnmt1 as the maintenance 

and Dnmt3a and 3b as the de novo Dnmts, has been proposed, accumulating evidence 

suggests that a clear categorical distinction of maintenance and de novo methylation might 

not be possible. Firstly, a cooperative function of Dnmts has been proposed for the 

maintenance of methylation at repetitive sequences (Liang et al., 2002) and is underlined by 

data showing that Dnmt1 can interact with both de novo Dnmts (Fatemi et al., 2002; Kim et 

al., 2002). Secondly, the progressive loss of DNA methylation after inactivation of dnmt3a 

and dnmt3b in ESCs can be rescued by reintroduction of both proteins, indicating that they 

participate in the maintenance of global DNA methylation patterns (Chen et al., 2003). 

Thirdly, recent data revealed that Dnmt3a and Dnmt3b are selectively anchored to 

methylated nucleosomes, leading to their stabilization in the cells, whereas unbound Dnmt3a 

and Dnmt3b proteins are degraded by the proteosomal machinery. This 

compartmentalization has been suggested to abolish aberrant de novo methylation by 

Dnmt3a and Dnmt3b and by specifically binding to methylated sites, the two proteins would 

only target CpG sites that were missed by Dnmt1 after DNA replication. Altogether, this 
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implies that both de novo Dnmts work synergistically with Dnmt1 to stably propagate DNA 

methylation patterns (Jeong et al., 2009; Sharma et al., 2011).  

1.2.2 Readers of DNA methylation marks – methylcytosine binding proteins  

DNA methylation is considered to mediate transcriptional silencing for which two possible 

modes of repression have been described so far. The methyl group can directly interfere with 

the binding of transcription factors at their target sites (Becker et al., 1987). The second 

mechanism of DNA methylation mediated transcriptional repression involves direct and 

specific binding of the methyl group by methyl-CpG binding proteins (MBPs) which in turn 

recruit repressive chromatin modifiers. Until now, three different MBP families have been 

described as the readers of DNA methylation marks: the methyl-CpG binding domain (MBD) 

family, the Kaiso protein family, and the ubiquitin-like plant homeodomain and RING finger 

domain-containing (Uhrf) protein family. 

1.2.2.1 The MBD protein family 

The family of MBD proteins consists of five members (MBD1, MBD2, MBD3, MBD4 and 

MeCP2; Figure 3) and all proteins, except MBD3, preferentially bind methylated DNA via 

their MBD domain (Hendrich and Bird, 1998; Saito and Ishikawa, 2002). Besides their MBD 

domain, MBD1, MBD2 and MeCP2 contain a non-conserved transcription repressor domain 

(TRD) which in the case of MeCP2 mediates interaction with Dnmt1 (Kimura and Shiota, 

2003). Also MBD2 and MBD3 were shown to form complexes with Dnmt1 and were 

suggested to be involved in maintaining DNA methylation during DNA replication (Tatematsu 

et al., 2000b). 

 

Figure 3. Domain structure of the MBD protein family.  

Aside from the common MBD domain, MBD1 contains a cystein rich domain with 3 additional CXXC-type zinc 

finger motifs. MBD2 and MBD3 contain repeat sequences, Glycine arginine (GR) and glutamine (E) repeats, 

respectively. MBD4 is the only member containing a C-terminal glycosylase domain implicated in base excision 

repair. Numbers indicate the length of the proteins in amino acids (aa) (adapted from (Rottach et al., 2009). 
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All members of the MBD family mediate transcriptional repression in an HDAC-dependent 

manner and all except of MBD4 have been shown to interact with nucleosome remodeling 

complexes like NuRD, which establish a repressive chromatin environment (Jones et al., 

1998; Hendrich and Tweedie, 2003; Kondo et al., 2005). Furthermore, MBD1 and MeCP2 

have been found to interact with histone H3K9 methyltransferases as well as the 

Heterochromatin Protein 1 (HP1), thereby functioning as a link between DNA methylation 

and repressive histone modifications to stabilize transcriptional repression (Fujita et al., 2003; 

Fuks et al., 2003b; Sarraf and Stancheva, 2004; Agarwal et al., 2007). These two members 

contain dual binding sites and can in addition to methylated DNA also bind to unmethylated 

DNA. MBD1 and MeCP2 can also induce chromatin compaction in the absence of DNA 

methylation, suggesting that they facilitate transcriptional repression not only through the 

recruitment of histone deacteylases but also through their properties to generate highly 

condensed secondary and tertiary chromatin structures which constitute a physical barrier for 

the assembly of activating transcription complexes at these sites (Georgel et al., 2003; 

Jørgensen et al., 2004; Nikitina et al., 2007). Notably, MBD4 is the only member containing a 

thymine DNA glycosylase domain which has been described to be involved in the repair of 

TG mismatches generated by the deamination of 5-methylcytosine, implying a role of MBD4 

in active DNA demethylation (Bellacosa et al., 1999; Hendrich et al., 1999); see also chapter 

1.2.3). 

Interestingly, the founding member of the MBD family, MeCP2 is ubiquitously expressed but 

the most abundant in brain tissue, indicating a functional role for MeCP2 in the nervous 

system (Shahbazian and Zoghbi, 2002). In line with this, mutations of the MeCP2 genes 

were identified as the primary cause of the rare neurodevelopmental RETT syndrome (RTT) 

in humans (Amir et al., 1999), implying that MeCP2 participates in the epigenetic regulation 

of neuronal function. Surprisingly though, genome-wide mapping of MeCP2 binding sites in 

human neurons revealed actively transcribed regions as the primary binding targets and only 

a minority of methylated CpGs sites were bound by MeCP2, leading to the assumption that 

transcriptional repression might not be the pivotal role of MeCP2 (Yasui et al., 2007). By 

contrast, recent genome-wide binding data in mouse neurons suggest that MeCP2 

preferentially associates with methylated regions and that loss of MeCP2 leads to global 

changes in chromatin structures including increased histone acetylation levels and higher 

levels of the linker histone H1. These data indicate that MeCP2 globally functions as a 

transcriptional dampener and not as a gene-specific transcriptional repressor (Skene et al., 

2010). 

The unexpectedly very mild phenotype of mice lacking MBD proteins suggests functional 

redundancy among the proteins, especially in light of the dramatic phenotype of global loss 
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of DNA methylation and their early embryonic death (Chen et al., 2001; Guy et al., 2001; 

Hendrich et al., 2001; Zhao et al., 2003). However, MDB1, MBD2 and MeCP2 were shown to 

bind to different foci within a cell, arguing for dinstinct functions (Ballestar et al., 2003; Klose 

et al., 2005). Other explanations for the viability of knockout mice could be that either DNA 

methylation is sufficient to induce transcriptional silencing also in the absence of MBD 

proteins which then would function solely in maintaining the repressed state, or that other 

non-MBD proteins like the Kaiso and Uhrf family proteins can compensate the loss in these 

knock out mice (Sasai and Defossez, 2009). 

1.2.2.2 The Kaiso protein family 

All three members of the Kaiso protein family, Kaiso (ZBTB33) and the Kaiso-like proteins 

ZBTB4 and ZBTB38 harbor a three zinc-finger motif with which they preferentially bind 

methylated DNA (Prokhortchouk et al., 2001; Filion et al., 2006) (Figure 4). 

 

Figure 4. Schematic overview of the Kaiso protein family. 

Binding to methylated DNA is mediated by their Krüppel-like, triple C2H2 ZnF domain marked in black. All 

members contain a broad complex, tramtrack and bric a brac/poxvirus and zinc finger domain (BTB/POZ) which 

in case of ZBTB4 harbors an insertion of 60 amino acids (aa) depicted in white. CXXC: CXXC type Zinc finger 

domain; ZnF: Zinc finger domain; P- and E-repeat: Proline and glutamine repeats are indicated (modified from 

Rottach et al., 2009). 

Whereas Kaiso requires at least two symmetrical methylated CpG (mCpG) sites for efficient 

binding, Kaiso-like proteins are able to bind to single mCpGs. Similar to MBD proteins, Kaiso 

was shown to bind to and recruit nucleosome remodeling complexes to mediate methylation-

dependent transcriptional repression via histone deaceylation and H3K9 methylation (Yoon 

et al., 2003). Interestingly, Kaiso proteins were shown to bind with even higher affinity to an 

unmethylated specific consensus sequences, termed Kaiso binding sequence (KBS) (Daniel 

et al., 2002). A KBS was identified at the promoter of the wnt/ß-catenin/TCF target promoter 

matrilysin, which is bound and repressed by Kaiso via recruitment of N-CoR and HDAC3 in 

vivo, demonstrating the bi-modal binding properties of Kaiso proteins (Spring et al., 2005). In 

contrast to Kaiso, transcriptional silencing mediated by ZBTB38 and ZBTB4 involves the 

recruitment of the corepressor protein CtBP and the Sin3A/HDAC repressor complex, 

respectively (Sasai et al., 2005; Weber et al., 2008). Until today, the targets of Kaiso and 

Kaiso-like proteins are not fully identified yet and only Kaiso has been knocked out in mice so 

far, however leading to no obvious phenotype (Prokhortchouk et al., 2001). This raises again 
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the question of redundancy of these proteins and given their overlapping gene expression 

patterns in some, but not all adult tissues (Daniel and Reynolds, 1999; Filion et al., 2006), 

these proteins might have context dependent unique and overlapping functions. Future 

studies targeting all members of the Kaiso protein family will clarify their role in transcriptional 

silencing.  

1.2.2.3 The Uhrf protein family 

The third family of methylcytosine binding proteins involves two members, Uhrf1 (also called 

Np95/ICBP90) and Uhrf2 (also called Np97/NIRF) (Figure 5). Both proteins consist of a multi-

functional modular structure, containing a Set- and Ring associated (SRA) domain shown to 

recognize methylated DNA (Unoki et al., 2004). 

 

Figure 5. Domain structure of the Uhrf protein family. 

Both members harbor a very similar domain structure containing a ubiquitin-like domain (Ubl), a tandem Tudor 

domain, followed by a plant homeo domain (PHD), a Set- and Ring associated (SRA) domain and a really 

interesting new gene (Ring) domain. Only the tandem Tudor domain of both proteins differs as Uhrf2 contains an 

insertion of 33 additional amino acids (aa) as depicted in brighter purple within the tandem Tudor domain. 

Numbers indicate the length of the protein in aa (modified from Rottach et al., 2009). 

 

The founding member Uhrf1 was initially identified as a protein involved in cell cycle 

regulation and in the DNA damage response pathway (Bonapace et al., 2002; Muto et al., 

2002). Further studies suggest an important role of Uhrf1 in cell proliferation as it has been 

implicated in silencing tumor suppressor genes in breast cancer cells possibly via the 

recruitment of the repressive chromatin modifying enzymes histone H3K9 methyltransferase 

G9a and histone deacetylase HDAC1 (Unoki et al., 2004; Kim et al., 2009). Uhrf1 localizes to 

replication foci during mid- to late S-phase and plays a crucial role in replicating 

heterochromatic regions (Uemura et al., 2000; Miura et al., 2001; Papait et al., 2007). 

Interestingly, the PHD finger of Uhrf1 has been shown to play an essential role in inducing 

large-scale reorganization of the pericentromeric heterochromatin, which might be critical for 

the replication of heterochromatic regions by permitting access of the replication machinery 

to densely packed structures (Papait et al., 2008). In addition, the PHD finger can bind to 

methylated histone H3K9 which seems to be crucial for the proper localization of Uhrf1 to 

heterochromatic regions (Karagianni et al., 2008). The RING domain of Uhrf1 harbors a E3 

ubiquitin ligase activity and can ubiquitinate histone H3 in vitro, although the biological 

significance of Uhrf1-mediated histone ubiquitination remains to be determined (Citterio et 

al., 2004). Recent data demonstrated that the tandem Tudor domain of Uhrf1 recognizes and 
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selectively binds trimetylated histone H3K9 via an aromatic cage structure (Rottach et al., 

2010). This structure shows striking similarity to the hydrophobic cage of the chromodomain 

of HP1, which is known to bind to repressive chromatin marks (H3K9me3) and to associate 

with pericentromeric heterochromatin (Jacobs and Khorasanizadeh, 2002).  

Strikingly, recent findings suggest a crucial function of Uhrf1 in maintaining DNA methylation. 

Uhrf1 colocalizes with Dnmt1 throughout S-phase of the cell cycle and directly associates 

with Dnmt1 during replication (Bostick et al., 2007; Sharif et al., 2007). Embryos lacking uhrf1 

show a drastic phenotype remarkably similar to dnmt1-/- embryos, including global genomic 

DNA hypomethylation and early embryonic lethality. In line with this, decreased methylation 

at imprinted regions and major satellites as well as de-repression of endogenous 

retrotransposons were detected in uhrf1-/- ESCs and embryos (Bostick et al., 2007; Sharif et 

al., 2007) Furthermore, Uhrf1 binds with a slight, but significant preference, to 

hemimehylated substrates via its SRA domain and therefore was suggested to recruit Dnmt1 

to hemimethylated CpG sites generated during DNA replication (Bostick et al., 2007; Sharif 

et al., 2007; Rottach et al., 2010). Crystal structures of Uhrf1 in complex with hemimethylated 

DNA revealed that the SRA domain recognizes its substrate by flipping the methylated base 

out of the DNA helix. Such a base-flipping mechanism has been demonstrated for bacterial 

Dnmts and some DNA repair enzymes which then further modify the flipped base. Until 

today, Uhrf1 has been the only non-enzymatic protein identified so far catalyzing this base-

flapping mechanism (Arita et al., 2008; Avvakumov et al., 2008; Hashimoto et al., 2008). 

In conclusion, by binding to hemi-methylated DNA and to repressive histone marks, together 

with the recruitment of repressive histone modifiers, Uhrf1 allows epigenetic crosstalk by 

linking the two major epigenetic pathways for gene silencing. Interestingly, the second 

member of the Uhrf protein family, Uhrf2, shows a similar modular structure to Uhrf1, raising 

the question whether Uhrf2 has a similar function. So far, first data point to a role of Uhrf2 in 

cell cycle regulation and possibly as a tumor suppressor protein and has been shown to 

harbor auto-ubiquitin ligase activity (Mori et al., 2002, 2004, 2011; Li et al., 2004). However 

its role in maintaining DNA methylation patterns still remains elusive.  

1.2.3 Modifiers of DNA methylation marks – the family of Tet proteins 

Since the discovery of DNA methylation, it was always considered to be a quite stable 

epigenetic mark. In 2009, however, Tahiliani and colleagues performed a computational 

homology search to the trypanosome thymine hydroxylases J base containing proteins JBP1 

and JBP2 and discovered the ten-eleven translocation (Tet) protein family, which can convert 

5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC). By performing high resolution 

mass spectrometry, small amounts of 5hmC (0.03 % of all Cs) were detected in the genomic 

DNA of embryonic stem cells (ESCs) and expression analysis of tet1 demonstrated the 
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presence of tet1 transcripts in these cells (Tahiliani et al., 2009). The Tet protein family 

consists of three members, Tet1, Tet2 and Tet3 (Figure 6). 

 

Figure 6. Schematic overview of the family of Tet proteins 

The N-terminal, low complexity region is predicted to function as a protein interaction surface. As the CxxC4 

protein was found in close chromosomal proximity it was suggested that a local chromosomal inversion removed 

the CXXC domain from the Tet2 gene. However, CxxC4 might interact with Tet2 and possibly is involved in 

targeting Tet2 to genomic DNA (Iyer et al., 2009). Contradicting reports about the presence of a CXXC domain in 

Tet3 exist and therefore a CXXC domain for Tet3 is not included in the overview. The length of the proteins is 

indicated in amino acids (aa).  

All members contain a C-terminal 2-oxoglutarate (2OG)- and Fe(II) -dependent dioxygenase 

domain (DSBH), catalyzing the conversion of 5mC to 5hmC in vitro and in vivo (Tahiliani et 

al., 2009; Ito et al., 2010). Remarkably, recent data demonstrate that the Tet proteins can 

even further oxidize 5hmC to 5-formylcytosine (5fC) and 5 carboxylcytosine (5caC) and that 

these two cytosine derivates are detectable in mouse genomic DNA of ESCs and tissues (Ito 

et al., 2011). Adjacent to the DSBH, all Tet proteins harbor a Cystein-rich domain predicted 

to be involved in DNA binding. Interestingly, so far a CXXC domain was only identified in 

Tet1 which shows similarity to the CXXC domain in Dnmt1 and preferentially binds to CpG-

rich DNA (Iyer et al., 2009). 

1.2.3.1 Tet1 

The founding member Tet1 was first described as a fusion partner of the histone H3K4 lysine 

methyltransferase MLL in a subgroup of patients suffering from acute myeloid leukemia 

harboring the translocation t(10;11)(q22;q23) (Lorsbach et al., 2003). The finding that tet1 is 

highly expressed in ESCs, but decreases during differentiation, points to a role of Tet1 in 

regulating pluripotency and differentiation potential. Indeed, a knockdown of tet1 in ESCs 

results not only in global reduction of 5hmC level, but also revealed a crucial role of Tet1 in 

maintaining ESCs in an undifferentiated state, possibly by keeping the promoter of the 

pluripotency associated gene nanog in a hypomethylated and therefore active state (Ito et 

al., 2010; Freudenberg et al., 2011). In line with this, tet1 as well as tet2 were shown to be 

regulated by Oct4 and Sox2 (Koh et al., 2011) and depletion of both proteins results in 

decreased expression of pluripotency-related genes with concordant increase in their 

promoter DNA methylation (Ficz et al., 2011; Koh et al., 2011). Furthermore, Tet1 seems to 
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be important for the specification of the inner cell mass, as reduced tet1 levels in pre-

implantation embryos results in a skewed differentiation towards trophoectodermal lineage 

(Ito et al., 2010; Koh et al., 2011). In stark contrast to the dramatic phenotypes upon tet1 

knock down, tet1-/- ESCs show only a partial reduction of global 5hmC level solely affecting 

the expression of few genes and no defect in maintaining pluripotency could be detected. 

Moreover, genetic ablation of tet1 still gave viable and fertile mice, however with a slightly 

reduced body size compared to their littermates (Dawlaty et al., 2011). Hence, further studies 

including additional Tet knockout models are needed to clarify the function of Tet1 in 

pluripotency and during differentiation. 

Genome-wide binding data of Tet1 shed some light on its biological function. Several studies 

showed an enrichment of Tet1 within gene bodies, preferentially at exons, as well as at 

transcriptional start sites and promoters (Ficz et al., 2011; Pastor et al., 2011; Williams et al., 

2011; Wu et al., 2011b; Xu et al., 2011). Furthermore, Tet1 binding is especially observed at 

high CpG dense promoters (HCP) carrying histone H3K4me3 marks and thus negatively 

correlates with DNA methylation marks (Williams et al., 2011; Wu et al., 2011b; Xu et al., 

2011). As a positive correlation between CpG content and Tet1 binding exists, it has been 

suggested that Tet1 binding to CG rich promoters keeps these sequences in a 

hypomethylated, activated state. Consistently, depletion of Tet1 leads to increased DNA 

methylation at CpG rich sequences (Wu et al., 2011a).  

Surprisingly, these genome-wide binding profiles of Tet1 revealed a dual function of the 

protein in transcriptional regulation, as it can function not only as an activator but also as a 

repressor of target genes (Williams et al., 2011; Wu et al., 2011a; Xu et al., 2011). Active 

genes controlled by Tet1 are involved in pluripotency whereas genes repressed by Tet1 play 

a role in differentiation processes (Wu et al., 2011a). Many of the genes repressed by Tet1 

are targets of Polycomp Repressive Complex 2 (PRC2) carrying bivalent histone 

modifications (see also chapter 1.1.2) and it has been shown that Tet1 is enriched on those 

genes (Williams et al., 2011; Wu et al., 2011a, 2011c). As loss of Tet1 abolishes binding of 

PRC2 to genes carrying bivalent marks and the fact that binding of PRC2 is blocked by 5mC, 

it has been suggested that PRC2 is indirectly recruited to bivalent genes by Tet1, which are 

kept in a hypomethylated and therefore accessible state for PCR2 (Wu et al., 2011a). 

Additional support for a role of Tet1 in transcriptional repression comes from the observation 

that Tet1 interacts and colocalizes with a substantial amount of target genes of the Sin3A co-

repressor complex, implying an important function of this complex in Tet1-mediated 

repression. The Tet1- mediated repression by the Sin3A complex seems to be independent 

of its catalytical activity. In line with this, the same target genes are also up regulated in 

hypomethylated ESCs lacking Tet1, indicating that these genes are not directly controlled by 
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DNA hydroxymethylation per se but rather by the presence of Tet1 itself on these promoters 

(Williams et al., 2011). 

1.2.3.2 Tet2 

The second member of the Tet family, Tet2, is also expressed in ESCs but its depletion had 

only minor consequences in ESCs suggesting a possible function in other biological contexts 

(Ito et al., 2010; Koh et al., 2011). Indeed, human TET2 has been shown to be crucial for 

haematopoiesis as mutations in TET2 have been frequently found in various human myeloid 

malignancies including myelodysplastic syndromes, myeloproliferative neoplasms, and 

chronic myelomonocytic leukemia (Langemeijer et al., 2009; Ko et al., 2010). Many of these 

mutations affect the catalytic activity of TET2 and it has been suggested that these mutations 

occur early during tumorigenesis (Ko et al., 2010). Studies on tet2 knockout mice revealed a 

crucial function of Tet2 in self-renewal, proliferation and differentiation of hematopoietic stem 

cells (HSCs). Whereas tet2-/- mice are viable and appear phenotypically normal after birth, 

they seem to be more proned to develop hematopoietic malignancies already within one year 

after birth. Furthermore, loss of tet2 in mice leads to a global decrease of 5hmC and an 

elevated number of HSCs. In agreement with this, in vitro experiments suggest that Tet2 

functions as a tumor suppressor during hematopoietic cell homeostasis as cells depleted of 

tet2 show an increased self-renewing, but decreased differentiation capacity (Ko et al., 2011; 

Li et al., 2011; Moran-Crusio et al., 2011; Quivoron et al., 2011). Interestingly, also mutations 

in the metabolic enzymes isocitrate dehydrogenase (IDH) 1 and IDH2 similarly impair the 

differentiation of HSC and are often found in patients suffering from acute myeloid leukemias. 

The mutant forms of the enzymes produce predominantly the metabolite 2-hydroxyglutarate, 

which inhibits the hydroxylation reaction by Tet2, probably by outcompeting the actual co-

factor of Tet2 α-ketoglutarate (Figueroa et al., 2010; Konstandin et al., 2011). 

1.2.3.3 Tet3 

Probably the least investigated member of the Tet family so far, Tet3, has been reported to 

be only very low abundant in ESCs and therefore seems not to play a role in ESC biology. 

However, recent data suggest a fundamental role for Tet3 in the reprogramming of the 

paternal genome after fertilization (Gu et al., 2011; Iqbal et al., 2011; Wossidlo et al., 2011). 

More specifically, as levels of global 5mC drastically decline in the paternal pronucleus after 

fertilization, a concomitant increase of 5hmC was found in the male genome. Intriguingly, tet3 

was shown to be highly expressed in oocytes and zygotes and as the other two members of 

the family, tet1 and tet2 were nearly absent at these stages, it was suggested that Tet3 is the 

responsible enzyme for the conversion of 5mC to 5hmC in the paternal pronucleus (Iqbal et 

al., 2011; Wossidlo et al., 2011). The maternal pronucleus seems to be protected from Tet3 
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mediated hydroxylation by Stella/Dppa3 (Nakamura et al., 2006; Wossidlo et al., 2011). 

Further evidence for the involvement of Tet3 in the global reprogramming of the paternal 

genome comes from observations in tet3-/- zygotes, which fail to reduce global 5mC levels 

and show impaired demethylation of oct4 and nanog in the male pronucleus. Interestingly, 

deletion of tet3 in female germ lines leads to reduced fecundity of female mice and their 

heterozygous mutant offspring are more prone to developmental failures (Gu et al., 2011).  

Based on the fact that 5hmC was specifically detected in the paternal pronucleus, it was 

speculated that Tet3-mediated oxidation of 5hmC is part of an active DNA demethylation 

process which would further involve the removal of 5hmC or its derivates by DNA repair 

enzymes of the base excision repair (BER) pathway like the tymine DNA glycosylase (Tdg). 

However, latest data on paternal and maternal chromosome spreads of pre-implantation 

embryos now suggest that 5hmC gets diluted in the paternal genome in a replication 

dependent, passive manner and not via the involvement of repair enzymes (Inoue and 

Zhang, 2011). Furthermore, the same authors show that concomitantly to 5hmC, also 5fC 

and 5caC can be detected in preimplantation embryos and also become replication-

dependent diluted, indicating that these two newly identified modifications are quite stable 

and not just temporary intermediates, suggesting a possibly functional role of 5fC and 5caC 

during preimplantation development (Inoue et al., 2011). 

1.2.3.4 DNA hydroxymethylation - 5hmC 

Although the presence of a 6th DNA base, 5hmC, in mammalian genomic DNA was already 

reported in 1972 (Penn et al., 1972), appreciable attention to 5hmC started only in 2009 with 

the discovery of the Tet protein family (Tahiliani et al., 2009). 5hmC was not only detected in 

genomic DNA of ESCs, but also in Purkinje cells of the mouse cerebellum, 0.6 % of all Cs 

were found to be hydroxylated. Although this seems to be very low levels of genomic 5hmC, 

it translates to approximately 40 % of all 5mCs being hydroxylated (Kriaucionis and Heintz, 

2009; Tahiliani et al., 2009). The finding that 5hmC level are relatively high in ESCs but 

decrease upon ESC differentiation, suggests a crucial role of the newly discovered 

modification in pluripotency (Kriaucionis and Heintz, 2009; Tahiliani et al., 2009). To advance 

understanding of the role of 5hmC, several groups performed genome-wide mapping of 

5hmC in ESCs. Similar to the binding profile of Tet1, 5hmC is mainly found in gene bodies 

with a specific enrichment at exons and near transcriptional start sites (TSS). Furthermore, 

5hmC can be detected on promoters with intermediate levels of CpG sites (ICPs) carrying 

predominantly bivalent chromatin marks and its enrichment negatively correlates with CG 

content (Ficz et al., 2011; Pastor et al., 2011; Wu et al., 2011b; Xu et al., 2011). Since 5hmC 

is derived from 5mC, both modifications show some co-existence in gene bodies. However, 

in contrast to the genomic distribution of 5mC, 5hmC is not enriched at heterochromatic 
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regions like repetitive sequences, pointing to different biological roles of the two modifications 

(Ficz et al., 2011; Pastor et al., 2011; Williams et al., 2011). 

1.2.3.5 Possible mechanisms of DNA demethylation 

The observation of dynamic reprogramming of DNA methylation patterns during 

development, the global demethylation wave in the paternal pronucleus shortly after 

fertilization (Mayer et al., 2000; Oswald et al., 2000) as well as in primordial germ cells in 

post-implantation embryos (Hajkova et al., 2002; Lee et al., 2002; Yamazaki et al., 2003), 

has raised the question of mechanisms for active DNA demethylation processes. Especially 

the fact that loss of DNA methylation in the paternal pronucleus occurs remarkably fast, 

being completed within 4-8 hours after fertilization even before the first cell division is 

finished, excludes the possibility of passive DNA demethylation and great effort has been 

undertaken in finding potential enzymes which could actively remove DNA methylation 

marks.  

Two major mechanisms of active DNA demethylation have been proposed; the deamination 

pathway involving sequential deamination by AID/Apobec and subsequent excision by 

components of the BER machinery and the oxidation pathway including several oxidation 

steps of 5hmC to 5fC and 5caC followed by excision by Tdg (Figure 7).  

 

Figure 7. Overview of active and passive DNA demethylation pathways 

Genomic 5mC can be removed by passive, replication-dependent dilution or actively involving several 

intermediate steps, among others, 5hmC as an intermediate product. In principal, two pathways for active DNA 

demethylation have been proposed, the deamination pathway including Tets, members of the family of AID 

deaminases and BER enzymes or the oxidation pathway including progressive oxidation of 5mC to 5cac by Tets 

and BER enzymes (adapted from Branco et al., 2012). 
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The deamination pathway is proposed to be a two-step process in which deamination is 

followed by base-excision repair. Crucial members of this suggested pathway involve the 

activation- induced cytidine deaminase (AID)/ apolipoprotein B mRNA editing enzyme, 

catalytic polypeptide (APOBEC) family, which have been shown to deaminate 5mC to 

thymine resulting in a G:T mismatch (Morgan et al., 2004). The mismatch is then recognized 

and excised by the DNA gylcosylases Tdg or MBD4. Evidence for this pathway comes from 

studies using zebrafish embryos showing that active demethylation involves deamination of 

AID and subsequent cleavage by MBD4 followed by replacement with cytosine via BER 

enzymes. Interestingly, this process was shown to be promoted by the damage response 

protein Gadd45a (Rai et al., 2008). Furthermore, mammalian PGCs deficient for AID display 

incomplete erasure of global DNA methylation marks (Popp et al., 2010). However, recent 

data in neural cells suggest that the same deaminases can also convert 5hmC to 5hmU, as 

overexpression of both, AID/ Apobec as well as Tet1, resulted in an elevated global 

accumulation of 5hmU. In line with this, Tdg and the single-strand-selective monofunctional 

uracil-DNA glycosylase 1 (SMUG1) have been reported to exhibit a strong activity towards 

5hmU:G mismatches and hence were proposed to be involved in this pathway (Cortellino et 

al., 2011; Guo et al., 2011). The fact that Tdg was also found to interact with AID and 

Gadd45 further supports the existence of this proposed pathway (Cortellino et al., 2011). 

Importantly, by regulating endogenous levels of 5mC, the Tet1-oxidation/ deamination-

mediated pathway has been implicated in neuronal activity- induced, region-specific 

demethylation of neurogenic niche factors in the dentate gyrus of adult mouse brain (Guo et 

al., 2011). 

The initial step of the oxidation pathway for active DNA demethylation involves hydroxylation 

of 5mC to 5hmC and successive oxidation of 5hmC to 5fC and 5caC (Ito et al., 2010, 2011; 

Pfaffeneder et al., 2011). Both oxidation products, 5fC and 5caC were shown to be 

recognized and cleaved by Tdg, followed by repair via BER enzymes (He et al., 2011; Maiti 

and Drohat, 2011). However, also other strategies for the removal of 5fC and 5caC, possibly 

by directly deformylating 5fC or decarboxylating 5caC to generate C could exist and need 

further examination. Additionally, 5hmC as well as both cytosine derivates have also been 

suggested to become replication-dependent diluted in a passive demethylation pathway as 

has been reported in the paternal pronucleus in preimplantation embryos (Inoue and Zhang, 

2011; Inoue et al., 2011). In support of this proposed passive mechanism, Dnmt1 binding to 

DNA was found to be impaired upon hydroxylation of 5mC to 5hmC (Valinluck and Sowers, 

2007).  
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1.3 Embryonic stem cells as a model system for differentiation 

processes in vitro 

Embryonic stem cells (ESCs) are derived from the explanted inner cell mass (ICM) of 

preimplantation blastocysts. Importantly, under appropriate culture conditions, ESCs are 

distinguished by two distinctive properties, unlimited capacity of self renewal and 

pluripotency which refers to the ability of ESCs to differentiate into all kinds of cell types 

including germ cells in vitro and in vivo (reviewed in Nichols and Smith, 2011). Therefore, 

ESCs are a powerful tool and attractive model to study the molecular mechanisms underlying 

pluripotency and cell fate choices during differentiation. Furthermore, the recent discovery 

that the expression of four transcription factors, Oct4, Sox2, Klf4 and c-Myc (Takahashi and 

Yamanaka, 2006), is sufficient for somatic cellular reprogramming - the conversion of a 

differentiated somatic cell to an ESC- like state, also referred to as induced pluripotent stem 

cells (iPS) - has focused attention to the molecular basis and regulatory mechanisms that 

establish and maintain pluripotency. 

1.3.1 The pluripotency network  

To keep ESCs in an undifferentiated, pluripotent and self- renewal state, a complex network 

of signal transduction pathways in combination with transcription factors needs to be 

maintained. Key signaling pathways include the leukemia inhibitory factor LIF/ JAK/ Stat3, 

PI3K/ Akt, BMP2/ Smad and wnt signaling in combination with the dual inhibition of the FGF/ 

Erk and GSK3 signaling pathways (Niwa et al., 1998, 2009; Matsuda et al., 1999; Sato et al., 

2003; Ying et al., 2003a, 2008; Paling et al., 2004; Watanabe et al., 2006; Berge et al., 2011; 

Griffiths et al., 2011) (Figure 8). These conditions promote the expression of master 

transcriptional regulators of the pluripotency network, oct4 (also called pouf5I), nanog and 

sox2 (Okamoto et al., 1990; Nichols et al., 1998; Avilion et al., 2003; Chambers et al., 2003; 

Mitsui et al., 2003). Together with epigenetic modifiers, non- coding RNA and the c-Myc 

transcriptional network, these crucial regulators form a core regulatory transcriptional 

network that promotes expression of pluripotency associated genes and represses genes for 

lineage commitment and differentiation (Boyer et al., 2005; Loh et al., 2006; Kim et al., 

2008a) and reviewed in Ng and Surani, 2011; Orkin and Hochedlinger, 2011). 
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Figure 8. Overview of signaling pathways that maintain pluripotency and self-renewal in mouse ESCs. 

Several pathways synergistically act to keep ESCs in a pluripotent and self- renewal state. LIF can act via two 

different pathways: Binding to the gp130/ LIF receptor (LIFR) activates the Janus Kinase (Jak) which then 

phosphorylates signal transducer and activator of transcription 3 (Stat3). Activated Stat3 promotes the 

transcription of c-Myc and hence self- renewal and pluripotency. LIF can also activate the Phosphatidyl Inositol 3 

Kinase (PI3K) which ultimately leads to activation of a serine/ threonine kinase (Akt), subsequent modulation of 

mTOR signaling and hence stimulation of proliferation and suppression of cell death. At the same time, Akt 

inhibits the glycogen synthase kinase 3ß (GSK3) normally involved in phosphorylation of ß-catenin followed by its 

degradation. By inhibiting GSK3, either by wnt signaling or Akt, ß-catenin can shuffle to the nucleus and stabilizes 

pluripotency by inhibiting Tcf3, a repressor of core pluripotency- associated transcription factors. In addition, the 

bone morphogenetic protein (BMP)/ Smad signaling contributes to pluripotency. Phosphorylated Smad1 triggers 

the expression of Inhibitor of differentiation (Id) proteins which block transcription factors involved in lineage 

commitment. Also ESCs themselves contribute to the metastable state of pluripotency by producing Fgf4 which 

drives ESCs to lineage commitment. In the pluripotent state, nanog is highly and - unlike oct4 and sox2 - 

heterogeneously expressed and counteracts Erk signaling. Based on the heterogeneous expression of nanog, 

cells with low nanog levels are more prone to Erk signaling and likely induce differentiation programs. (reviewed in 

(Okita and Yamanaka, 2006; Niwa, 2011; Welham et al., 2011).  

 

A deeper understanding of how pluripotency is established and maintained by transcription 

factors and epigenetic modifications is of great interest not only for the facilitation of directed 

programming of ESCs to specific lineages but also for somatic cell reprogramming and 

hence holds great promises for the development of new therapies for diseases and 

regenerative medicine. Especially the master regulators Oct4, Sox2 and Nanog of the core 

transcriptional network have been extensively studied over the past years. Oct4, a POU 

domain-containing transcription factor encoded by Pouf5I, lies in the center of the network 

and is essential for the formation of a pluripotent founder cell population in the embryo 

(Nichols et al., 1998). The Oct4 levels within a cell need to be tightly controlled as already 

two fold changes in expression drastically affect the stem cell fate. Whereas an increase of 

oct4 results in differentiation towards primitive endoderm and mesoderm, a decrease of oct4 
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leads to loss of pluripotency and differentiation to the trophoectodermal lineage (Niwa et al., 

2000). Oct4 is one of the critical, so far irreplaceable factors of somatic cell reprogramming to 

iPS cells (Takahashi and Yamanaka, 2006; Nakagawa et al., 2007a). 

Sox2 has been shown to function as a transcriptional partner of Oct4 (Avilion et al., 2003). 

More specifically, an enhancer highly active in ESCs contains binding motifs for Oct4 and 

Sox2 and regulates the expression of pluripotency- associated genes, including nanog and 

fgf4. It has been shown that Oct4 and Sox2 collaborate to synergistically activate the 

enhancer, thereby promoting the expression of genes important to maintain pluripotency 

(Yuan et al., 1995; Rodda et al., 2005; Masui et al., 2007). The Oct4- Sox2 enhancers also 

regulate the expression of oct4 and sox2 themselves by a positive- feedback loop (Tomioka 

et al., 2002; Chew et al., 2005; Okumura-Nakanishi et al., 2005). Sox2 is part of the SRY-

related HMG box protein family and its genetic ablation in mice results in early embryonic 

lethality (Avilion et al., 2003) and deletion of sox2 in ESCs leads to differentiation primarily 

into the trophoectodermal lineage (Masui et al., 2007). 

The third member of the core transcriptional network, Nanog, is a homeodomain containing 

protein. Whereas lack of nanog in ESCs leads to loss of pluripotency and differentiation to 

the endodermal lineage, overexpression of nanog prevents the induction of differentiation 

and maintains pluripotency independently of the LIF/ Stat3 pathway (Chambers et al., 2003; 

Mitsui et al., 2003). Consequently, Nanog is often referred to as the gate keeper of 

pluripotency, as it needs to be tightly controlled to allow reprogramming and differentiation 

(Silva et al., 2009); see also Figure 8). Nanog is known to show a very heterogeneous 

expression and latest data suggest that the heterogeneity of nanog expression is regulated 

on a chromosomal level. In early pre-implantation embryos, nanog is monoallelically 

expressed. However, its expression is gradually switched to biallelic expression as the inner 

cell mass (ICM) matures to the naïve epiblast and acquires ground- state pluripotency 

(Miyanari and Torres-Padilla, 2012).  

Genome- wide comparative binding data of Oct4, Sox2 and Nanog revealed substantial 

overlapping binding sites on both, active and repressed promoters and enhancers in human 

ESCs. Actively transcribed genes occupied by one or two of the core regulators encode not 

only their own genes, but also transcription factors for components of signaling pathways 

including wnt and Tgf-ß pathways. Hence, the core factors promote not only their own 

expression by forming an interconnected autoregulatory loop but also promote the 

expression of genes encoding essential components of key signaling pathways as well as 

chromatin modifying proteins. Inactive genes co- bound by Oct4, Sox2 and Nanog are 

predominately genes involved in lineage commitment and differentiation. Taken together, the 

highly interconnected autoregulatory loop of the core transcription factors generates a 
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metastable state in ESCs: on the one hand, the positive feedback loop promotes 

pluripotency if all three core factors are expressed at appropriate levels; on the other hand, 

perturbation of one factor by e.g. low expression unbalances the positive loop and might 

thereby favor entrance into a differentiation program (Boyer et al., 2005; Loh et al., 2006).  

Although the three transcriptional regulators, Oct4, Nanog and Sox2, build the core of the 

pluripotency network, proteomic studies using affinity purification and mass spectrometry 

identified a large protein- protein interaction network including many transcription factors and 

chromatin modifying complexes that contribute to the maintenance of ESC properties. 

Pluripotency related interacting proteins include Sal4, Rex1, Dax1, Klf4, Essrb, and Tcl1 as 

well as proteins linked to important signaling pathways to maintain pluripotency like Smad1, 

Stat3, and Tcf3 (Wang et al., 2006; Chen et al., 2008; Cole et al., 2008; Kim et al., 2008a, 

2010; Mallanna et al., 2010; Pardo et al., 2010; van den Berg et al., 2010). Interacting 

proteins of chromatin modifying complexes involve components of the Swi/Snf (also called 

BAF) nucleosome remodeling complex, the NuRD/HDAC complex and polycomb complex 2 

(Figure 9).  

 

Figure 9. Overview of the oct4 centric module in ESCs 

The oct4 centric module consists of a highly connected protein interaction network with Oct4, Nanog and Sox2 

(circled in red in left picture) building important nodes within the network. The key regulators also directly or 

indirectly interact with various chromatin regulators (circled in green in left middle). Genome- wide binding data of 

the key regulators using chromatin immunoprecipitation (ChIP) followed by hybridization on a Chip or Sequencing 

revealed a complex transcriptional regulatory network (right picture). Many components of the network show 

autoregulatory but also interconnectivity mechanisms (adapted from Kim et al., 2010; Orkin and Hochedlinger, 

2011). 

Further studies investigating the genome- wide binding behavior of several key transcription 

factors in ESCs revealed a complex transcriptional regulatory network with many 

autoregulatory loops. Additionally, many transcription factors co- occupy target genes 

important for pluripotency, leading to a high interconnectivity among the components of the 
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network (Figure 9). Consistent with this, Oct4 was shown to function as an anchor protein for 

the assembly of the multiprotein complexes on target genes (Chen et al., 2008; van den Berg 

et al., 2010).  

By combining protein- protein and protein- DNA interaction studies, the various transcription 

factors active in ESCs cluster into two different modules: the Oct4- centric module, and the 

Myc- centric module (Chen et al., 2008; Kim et al., 2008a, 2010). The Oct4- centric module is 

also referred to as the core transcriptional network which consists aside from the master 

transcriptional regulators Oct4, Nanog and Sox2 of other transcription factors important for 

pluripotency (see also Figure 9). The Myc- centric module consists mainly of proteins 

associated with cell cycle regulation and metabolism, including c-Myc, n-Myc, Zfx, E2F1 and 

E2F4. Interestingly, components of the Myc regulated network include also various chromatin 

modifying enzymes like the HATs GCN5, p300 and Tip60-p400 complex (Kim et al., 2008a, 

2010; Lin et al., 2009).  

Interestingly, recent data suggest that the key regulators Oct4, Nanog and Sox2 also play 

crucial roles in cell fate choice and initiation of developmental processes. By integrating 

external differentiation signals which modulate Oct4 and Sox2 protein level and change their 

genome wide binding properties, lineage selection is induced without prior activation of any 

lineage specific markers (Boiani and Scholer, 2005; Thomson et al., 2011) 

1.3.2 The epigenetic landscape in embryonic stem cells  

ESCs harbor a unique epigenetic landscape characterized by a relatively less condensed, 

open chromatin structure compared to the more restricted, closed chromatin conformation 

observed in differentiated cells (Efroni et al., 2008). Possibly as a consequence of the open 

chromatin structure, global transcriptional hyperactivity is observed in ESCs together with an 

enrichment of activating histone marks including histone H3 trimethylation at K4, K36 and 

K79 and acetylation of H4K16. In line with this, repressive histone modifications like 

trimethylation of histone H3 at K9 and K27 are underrepresented in ESCs (Gaspar-Maia et 

al., 2010). Furthermore, many chromatin associated proteins like Histone H1 and Hp1 show 

hyperdynamic binding behaviors in ESCs and heterochromatic regions are more dispersed 

and less abundant compared to differentiated cells (Meshorer et al., 2006). Recent data 

demonstrate a similar open chromatin conformation in cells of the ICM of mouse blastocysts 

at day 3.5, confirming that the chromatin structure of ESCs indeed resembles the in vivo 

structure in the embryo (Ahmed et al., 2010). 

In addition to the open chromatin structure, ESCs also harbor distinct epigenetic 

modifications that contribute to the maintenance of pluripotency and self renewal. Genome-

wide detection of trimethylation of H3K4 and H3K27 in ESCs revealed a unique distribution 
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of these marks that reflect the cellular state. Whereas actively transcribed genes are marked 

by trimethylation of H3K4, stably repressed genes in ESCs are enriched in trimethylation of 

H3K27 (Guenther et al., 2007; Mikkelsen et al., 2007; Pan et al., 2007; Zhao et al., 2007). 

Repressed genes which are crucial for differentiation- related processes carry bivalent 

chromatin domains leaving them poised for rapid activation or silencing during lineage 

commitment. The occurrence of bivalency in ESCs has been suggested to be integral for 

pluripotency as it is used as a mechanism to transiently repress lineage marker genes 

without permanently silencing them (see also chapter 1.1.2) (Bernstein et al., 2006). 

Interestingly, genes which carry neither of the two histone marks have been shown to be 

targets of DNA methylation and are almost exclusively classified as intermediate and low 

CpG containing promoters. More specifically, around 30 % of all genes in ESCs are 

controlled by DNA methylation and are predominately involved in differentiation and 

reproduction and therefore mainly repressed in ESCs. Consequently, housekeeping genes 

and genes crucial for pluripotency are unmethylated in the undifferentiated state and are 

enriched for trimethylation of H3K4 marks. Consistent with this, comparison of binding data 

for Oct4, Nanog and proteins of the PcG complex with mapping data of histone H3K4/ K27 

trimethylation and DNA methylation marks revealed hardly any overlap between the different 

components and chromatin marks that contribute to the maintenance of pluripotency and 

self- renewal. Hence, it has been suggested that DNA methylation functions as an additional, 

parallel layer of epigenetic control to suppress differentiation and keep the undifferentiated 

state together with the pluripotency core network and actions of PcG associated proteins 

(Fouse et al., 2008).  

Taken together, all these distinct epigenetic modifications and chromatin features ensure a 

highly dynamic state that confers the necessary plasticity to ESCs to maintain pluripotency 

but also to integrate intrinsic and extrinsic signals to permit progression towards 

differentiation programs. Whereas epigenetic factors and chromatin remodelers participate to 

stabilize the pluripotent state, they are usually not strictly necessary for the establishment 

and maintenance of pluripotency. In support of this, loss of components of PRC1, PRC2 or 

both does not impair the self renewal capacity of ESCs (O’Carroll et al., 2001; Wang et al., 

2002; Voncken et al., 2003; Leeb et al., 2010). However, catalytical inactivation of both, 

PRC1 and PRC2, results in unstable ESCs with more spontaneous differentiation in culture 

(Leeb et al., 2010). Consistently, ESCs lacking Dnmts are viable and show no defect in 

proliferation (Tsumura et al., 2006). Therefore, it has been suggested that the pluripotent 

state of ESCs represents a ground state which is relatively independent from epigenetic 

regulation. However, as most ESCs lacking key epigenetic factors are impaired in their ability 

to differentiate it is postulated that epigenetic regulation plays especially a crucial role during 

cell fate choice and lineage commitment (Silva and Smith, 2008; Leeb et al., 2010). 
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1.3.3 Differentiation of embryonic stem cells in vitro recapitulates early developmental 

processes 

The early mouse development is characterized by two different stages of the embryo, the 

pre- implantation and post- implantation embryo and reflects the gradual loss of cell potency 

and concomitant progression of differentiation. During pre- implantation development, the 

zygote develops to the early blastocyst (day 3.5), which consists of two different cell 

lineages; the inner cell mass (ICM) and the trophoectoderm (TE) (Figure 10).  

 

Figure 10. Comparison of mouse embryonic and embryoid body development  

The differentiation of ESCs to embryoid bodies resembles early mouse developmental processes as they also 

initiate endodermal differentiation, followed by basement membrane assembly and epiplast polarization. After 5-6 

days, a pro- amniotic cavity is built by apoptosis of the central cells in the epiblast (summarized in and adapted 

from (Li  and Yurchenco, 2006). 

 

Reciprocal repression of Oct4 in the ICM and caudal related homeobox2 (Cdx2) in TE seem 

to initiate the segregation of the two lineages in the pre- implantation embryo. More 

specifically, the ICM is characterized by high levels of Oct4 which inhibit Cdx2 expression in 

this lineage, whereas Cdx2 is highly expressed in the TE and negatively regulates Oct4 
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expression in the TE (Niwa et al., 2005). The TE cells give rise to extraembryonic tissues 

important for the implantation of the embryo. In contrast, the ICM further develops into the 

epiblast (primitive ectoderm) and the hypoblast (primitive endoderm) by day 4.5 (late 

blastocyst stage) which are separated by an embryonic basement layer. After implantation, 

the hypoblast gives rise to parietal and visceral primitive endoderm and together with the 

trophoblast contributes to extraembryonic tissues including the placenta. In contrast, the 

central cells of the epiblast undergo apoptosis, leading to the formation of the pro-amniotic 

cavity. Afterwards, during gastrulation, the epiblast gives rise to the three embryonic germ 

layers ectoderm, mesoderm and endoderm, which differentiate into all cell types of an 

organism. Notably, cells from the epiblast also contribute to the extraembryonic mesoderm of 

the yolk sac and additionally form primordial germ cells (PGCs) around day 7.  

ESCs derived from the ICM can be differentiated in culture to further investigate processes of 

lineage commitment and cell fate specification. In principle, there are three different 

approaches to differentiate ESCs: i) monolayer culture of ESCs on extracellular matrix 

proteins ii) direct culture of ESCs on supportive stromal layers and iii) culture of ESCs as 

spherical cell aggregates called Embryoid Bodies (EBs). Among the different methods, the 

formation of EBs provides an undirected way to induce differentiation which recapitulates 

early developmental processes including temporal and spatial expression patterns during 

early embryogenesis. More specifically, the formation of EBs in culture resembles the 

transition from the ICM to a structure containing two germ layers which is similar to the early 

egg cylinder stage at the beginning of gastrula. Hence, EBs consist of an outer secretory 

endodermal layer and an inner epiblast layer, separated by a basement layer and produce a 

central cavity with progressive differentiation. Within the EB, progenitors and even terminally 

differentiated cells of all three germ layers can be generated including among others 

cardiogenic, myogenic, neurogenic and hematopoietic lineages (reviewed in (Guan et al., 

1999). Several protocols exist to induce EB formation in culture; for example ESCs can be 

cultured in suspension in non- adherent dishes generating EBs with very heterogeneous size 

and shape. To form more homogenous EBs, the hanging drop method is usually used where 

a defined, equal number of cells is plated in a drop on inverted petri dishes, which allows the 

formation of EBs at the bottom of the drop. After 3-4 days, the EBs are then cultured in 

suspension to induce later differentiation stages (summarized in Desbaillets et al., 2000). 

1.3.4 The epigenetic landscape changes dynamically during differentiation 

As the in vitro differentiation of ESCs recapitulates early embryonic developmental processes 

it is widely used as a powerful tool to study epigenetic processes during early embryogenesis 

and lineage commitment. Already shortly after fertilization, the developing zygote undergoes 

major epigenetic reprogramming events. The male nucleus is extensively remodeled, 
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involving replacement of protamines with histones and global paternal- specific active DNA 

demethylation except for imprinted regions and repetitive sequences (see also chapter 

1.1.3). Shortly afterwards, the maternal nucleus becomes passively demethylated as a 

consequence of the active exclusion of Dnmt1 from the nucleus (Carlson et al., 1992; 

Cardoso and Leonhardt, 1999). Around this time, the expression of pluripotency associated 

genes begins which are enriched in histone H3K4 trimethylation whereas developmental 

genes are kept silenced by the PcG repressive system. During differentiation, pluripotency 

genes are then silenced and at the same time, the expression of developmental genes is 

induced together with an increase of trimethylation of histone H3K4. Remarkably, a second 

wave of global DNA demethylation occurs around day 7 with the establishment of PGCs 

which includes reactivation of the X- chromosome and erasure of imprinted genes. 

Concordantly, somatic differentiation programs are repressed and the pluripotency potential 

is reacquired. During this time, pluripotent embryonic germ cells (EGCs) can be derived from 

PGCs under appropriate culture conditions (summarized in Orkin and Hochedlinger, 2011).  

1.3.4.1 Role of DNA methylation during development 

DNA methylation has been shown to play an important role in silencing pluripotency genes. 

Especially the multistep cascade for silencing of oct4 during differentiation is well 

characterized and involves loss of the nucleosome- depleted regions at the distal enhancer, 

setting of repressive histone marks H3K9me3 by the histone methyltransferase G9a and 

subsequent recruitment of Hp1 which then is followed by de novo methylation of the 

promoter via Dnmt3a and Dnmt3b (Feldman et al., 2006; Li et al., 2007b; You et al., 2011). 

Besides pluripotency genes, also germ line specific genes and clusters like the protocadherin 

gene family as well as the reproductive homeobox X- linked (rhox) gene cluster have been 

identified as targets of DNA methylation (Oda et al., 2006; Illingworth et al., 2008; Borgel et 

al., 2010). Furthermore, DNA methylation seems to play a crucial role during lineage 

commitment as hypomethlyated embryos die early during development (Li et al., 1992, see 

also chapter 1.2.1). How de novo DNA methylation contributes to lineage commitment, is not 

yet well understood and several controversial studies about the developmental potential of 

hypomethylated cells exist. Results by Panning and Jaenisch suggest that differentiation of 

dnmt1-/- ESCs leads to apoptosis whereas Jackson and colleagues show that dnmt1-/- ESCs 

stay viable upon LIF removal, but fail to initiate differentiation (Panning and Jaenisch, 1996; 

Jackson et al., 2004). Furthermore, dnmt1-/- EBs were reported to express high levels of 

trophoblast markers and in contrast to wild type (wt) EBs can be differentiated into 

trophoblast stem cells under appropriate culture conditions (Ng et al., 2008). Similarly, it has 

been shown that TKO ESCs exhibit a growth defect and increased apoptosis upon EB 

differentiation. In addition, chimeric mouse embryos derived by aggregation of wt and TKO 
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embryos show that TKO derived cells mostly contributed to extraeembryonic tissues but also 

to a small extent to the embryo proper at least detectable until an early postgastrulation 

stage (day 8.5) (Tsumura et al., 2006; Sakaue et al., 2010).  
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1.4 Aims of the work 

In mammals, DNA methylation plays important roles in the epigenetic control of gene 

expression during development and differentiation and it is crucial for maintaining genomic 

stability. The functional significance of DNA methylation has been mainly inferred from 

genomic methylcytosine profiles in a limited selection of cell types and developmental stages 

and very little is known about how DNA methylation and Dnmts actually affect transcription 

programs during cellular differentiation. Based on the controversial reports about the 

developmental potential of hypomethylated cells (see previous chapter), it is still not clear to 

what extent hypomethylated cells are able to commit to and progress along embryonic 

lineages.  

One of the main objectives of this thesis was to elucidate the role of DNA methylation and 

Dnmts during differentiation. To this aim I used wild type (wt) ESCs, ESCs lacking the 

maintenance Dnmt (dnmt1-/- ESCs) as well as ESCs lacking all three major Dnmts (dnmt1-/-; 

dnmt3a-/-; dnmt3b-/-, or TKO ESCs) and generated their corresponding Embryoid Bodies 

(EBs). Using this differentiation system, I analyzed the potential of hypomethylated ESCs to 

silence pluripotency genes, studied their developmental potential and investigated whether 

differentiated EBs from all three cell lines can revert back to the undifferentiated state under 

appropriate culture conditions (chapter 3.1).  

Recent reports identified the multi-domain protein Uhrf1 as an essential co- factor for 

maintenance DNA methylation. The second member of the Uhrf family, Uhrf2, is structurally 

very similar, but very little is known about its biological function(s). To gain first insights into 

the function of Uhrf2, I analyzed expression patterns of uhrf1 and uhrf2 in various cellular 

contexts and investigated whether Uhrf2 plays a role in maintenance DNA methylation 

(chapter 3.2).  

The discovery of the “6th base” of the genome, 5hmC, a potential intermediate in DNA 

demethylation, and the Tet1-3 enzymes, which have been shown to be responsible for 

oxidation of 5mC to 5hmC, raised fundamental questions about the biological relevance of 

this newly identified modification. To advance understanding of the functions(s) of 5hmC and 

Tets, I analyzed expression levels of tet1-3 in ESCs, during differentiation and in different 

tissues and used a newly identified, 5hmC specific endonuclease to map 5hmC levels in 

genomic DNA (chapter 3.3).  

Finally, I aimed at analyzing whether designer transcription activator- like effectors (dTALEs) 

can be used for activation of target promoters, whether the epigenetic state of a target 

promoter sequence interferes with the action of dTALEs and how this interference can be 

overcome (chapter 3.4). 
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2. Materials and Methods 

2.1 Materials 

2.1.1 Technical devices 

Devices Type Supplier 

Agarosegel system Mupid-Ex Advance co 

Bacterial incubator UL 40 Memmert GmbH 

Bacterial shaker Certomat H+R B.Braun 

Cell culture microscope EVOS xl AMG 

Centrifuge Avanti J30l Beckman Coulter GmbH 

CO2 incubator Binder CB150 BINDER Inc. 

Epiflourescence microscope Axiophot 2 Carl Zeiss MicroImaging GmbH 

FACS Aria II instrument Sorp Becton Dickinson 

Fixed angle rotor fixed angle 1720 Hettich Zentrifugen 

Fixed angle rotor JA-14 Beckman Coulter GmbH 

Freezer (-20°C) Comfort neoLab Migge Laborbedarf GmbH 

Freezer (-80°C) MDF-594 SANYO GmbH 

Fridge Premium Liebherr 

Geldocumentation system UV System INTAS 

Imaging system 
Typhoon Trio Variable 
Mode Imager 

GE Healthcare 

Liquid Scintillation Analyzer Tri-Carb 2100TR Packard 

Magnetic Stirrer Yellowline MSH-basic IKA GmbH & CO. KG 

Microwave  Siemens AG 

Photometer NanoVue GE Healthcare 

Pipettes Eppendorf Research) Eppendorf AG 

Pipettor (Mobile) PIPETBOY acu INTEGRA Biosciences GmbH 

Power Supply unit Bio-Rad PowerPac 300 Bio-Rad Laboratories GmbH 

Real-Time PCR System 7500 Fast Applied Biosystems 

Roller mixer RM5 CAT 

SDS PAGE system Mini-Protean Tetra Bio-Rad Laboratories GmbH 

Shaker DOS-10L neoLab Migge Laborbedarf GmbH 

Sonifier 
Branson Digital Sonifier 
450D 

G. Heinemann Ultraschall- und 
Labortechnick 

Sterile Bench Herasafe KS, Class II Fisher Scientific GmbH 

Table centrifuge Mikro 22R Hettich Zentrifugen 

Table top centrifuge Centrifuge 5454 Eppendorf AG 

Table top centrifuge Rotina 38R Hettich Zentrifugen 

Thermo shaker Thermomixer comfort Eppendorf AG 

TECAN infinite M1000 plate 
reader 

 Tecan 

Vortex mixer Neolab 7-2020 neoLab Migge laborbedarf GmbH 

Water bath Type 1013 GFL 

Waving platform shaker Polymax 1040 Heidolph Instruments GmbH&Co 
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2.1.2 Consumables 

Consumables Supplier 

Cell culture plates & flasks  Falcon, Becton Dickinson GmbH 

Centrifuge bottle (polypropylene, 250ml) Beckman Coulter GmbH 

Erlenmeyer flasks SCHOTT AG 

Falcon Tubes (15ml, 50ml) Becton Dickinson GmbH 

Glass Pasteur pipettes (230mm) Brand GmbH +Co KG 

Laboratory bottle (100ml, 250ml, 500ml, 1L) SCHOTT AG 

Latex exam gloves “Satin PLUS” Kimberely-Clarke Europe 

Microscope coverslips (Ø20mm) Menzel GmbH + Co KG 

Nitrile laboratory gloves SLG Süd-Laborbedarf GmbH 

Parafilm M sealing film neoLab Migge Laborbedarf GmbH 

Pipette tips (10µl, 300µl, 1000µl) BrandTech Scientific 

Pipette tips with filter (10µl, 200µl, 100µl) SLG Süd-Laborbedarf GmbH 

Reaction tubes (1.5ml) Eppendorf AG 

Reaction tubes (0.2ml, 0.5ml) Eppendorf AG 

Serological pipettes Carl Roth  

Soft wipes (KIMTECH science) Kimberely-Clark Europe 

Snaptwist vials Simport 

Whatman filter paper  Whatmann GmbH 

2.1.3 Reagents and consumables 

Reagents & Kits   Supplier 

5-aza-2'-deoxycytidine      Sigma-Aldrich 

7-amino-actinomycin D       Invitrogen 

5-hydroxymethyl-dCTP      Bioline GmbH 

5-methyl-dCTP       Jena Bioscience GmbH 

Accutase       PAA Laboratories GmbH 

Alexa Flour
®
 647 Mouse anti-Oct3/4     BD Biosciences 

Alexa Flour
®
 647 Mouse IgG1 K isotype control   BD Biosciences 

Ammoniumperoxodisulfate (APS)    Carl Roth GmbH 

Anti-oct4 mouse (goat)      Santa Cruz 

Anti-goat-Alexa Fluor 647 (rabbit)    Molecular Probes 

ß-mercaptoethanol       Invitrogen GmbH 

B27 (50x) Invitrogen GmbH 

Betaine        Sigma 

BSA        PAA Laboratories GmbH 

Bromphenol blue sodium salt     AppliChem GmbH 

Cell Dissociation Buffer      Invitrogen GmbH 

Chloroform       Roth GmbH 

Cytofix         BD Biosciences 

4’,6-Diamidino-2-phenylindol (DAPI)    Roche Diagnostics 

DMEM/F12 Invitrogen GmbH 

DMEM, high glucose with L-glutamine    PAA Laboratories GmbH 

Dimethylsulfoxide (DMSO)     AppliChem GmbH 

Disodiumhydrogenphosphate (Na2HPO4)   Carl Roth GmbH 

dNTPs        PeqLab 
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Eco Plus scintillation liquid      Carl Roth GmbH 

EDTA-dihydrate      AppliChem GmbH 

EGF        Peprotech 

Ethanol (98%)       AppliChem GmbH 

Ethidiumbromide      AppliChem GmbH 

Euromed-N        Euroclone 

EZ DNA Methylation-Gold Kit     Zymo research 

Fetal bovine serum (FBS)     PAA Laboratories GmbH 

FGF2         Peprotech 

Formaldehyde (36,5%)     Sigma-Aldrich 

Fugene HD       Roche Diagnostics 

Gelatine Sigma 

GeneChip Mouse Gene 1.0 ST microarrays   Affymetrix 

Gentamicin (50mg/ml)      PAA Laboratories GmbH 

GlutaMax I (200mM) Invitrogen GmbH 

Glycerol       Carl Roth GmbH 

Glycin        Carl Roth GmbH 

HEPES        PAA Laboratories GmbH 

High-Capacity cDNA Reverse Transcription Kit with RNase 

Inhibitor      
Applied Biosystems 

Hydrochloric acid (HCl)      Carl Roth GmbH 

Hoechst 33258       Invitrogen GmbH 

Isopropanole       Carl Roth GmbH 

Isopropyl β-d-thiogalactopyranoside (IPTG) AppliChem GmbH 

Knock-out DMEM      Gibco 

LIF (ESGRO)       Millipore 

L-glutamine (200mM)      PAA Laboratories GmbH 

Lipofectamine 2000      Invitrogen GmbH 

LR recombination      Invitrogen GmbH 

Magnesium chloride (MgCl2)     Sigma-Aldrich 

Mammalian Protease Inhibitor     Calbiochem Merck 

MEM Non-essential Amnio Acid Solution   PAA Laboratories GmbH 

N2 (100x) Invitrogen GmbH 

Neurobasal medium Invitrogen GmbH 

Nickel-nitrilotriacetic acid column    QIAGEN 

Nonylphenoxypolyethoxylethanol (NP-40)   Sigma 

Nucleospin       Macherey-Nagel 

NucleoSpin Triprep Kit      Macherey-Nagel 

OptiMEM       Invitrogen 

PBS (phosphate buffer saline) PAA Laboratories GmbH 

Penincillin/Strepomycin      PAA Laboratories GmbH 

Perm/Wash Buffer      BD Biosciences 

pET28b vector        Novagen 

pENTR-D-TOPO      Invitrogen GmbH 

pGL-3 basic vector      Promega 

Phusion HF DNA Polymerase     Finnzymes 

Polyethylenimine (PEI)     Sigma 

Potassium chloride      Carl Roth GmbH 
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Potassiumdihydrogenphosphate (KH2PO4)   Merck 

Power SYBR Green PCR Master Mix    Applied Biosystems 

Propidium Iodide      Sigma 

Qiagen Hot Start Polymerase     QIAGEN 

QIAmp DNA Mini Kit      QIAGEN 

ResourceQ anion exchange column    GE Healthcare 

Rotiphorese Gel 30 (Acrylamide)    Carl Roth GmbH 

RNAse A       AppliChem 

RNase-free DNase I       Roche Diagnostics 

RNeasy kit        QIAGEN 

siRNA, ON-TARGET plus non-targeting pool, mouse  Dharmacon, Thermo Scientific 

siRNA, ON-TARGET plus Set of 4, uhrf2 mouse   Dharmacon, Thermo Scientific 

Smart Ladder       Eurogentec Deutschland GmbH 

Sodium chloride (NaCl)      Carl Roth GmbH 

Sodium hydroxide (NaOH)     Carl Roth GmbH 

Sodium sulfate (Na2SO4)     Sigma-Aldrich 

StrataClone
TM

 PCR Cloning Kit     Agilent Technologies 

StrataCone
TM

 SoloPack
®
 Competent Cells   Agilent Technologies 

Streptomycin       PAA Laboratories GmbH 

Superdex S-200 preparative gel filtration column  GE Healthcare 

S-SYBR green I nucleic acid gel stain (10.000x)   Invitrogen GmbH 

T4 DNA Ligase         New England Biolabs 

TaqMan probes       Applied Biosystems 

TaqMan Gene expression Master Mix    Applied Biosystems 

TEMED        Merck 

Tetramethylammonium-chloride  (TMAC)   Sigma-Aldrich 

Trichloroacetic acid (TCA)     Sigma-Aldrich 

Trichostatin A        Sigma-Aldrich 

Tris        Carl Roth GmbH 

Triton X-100       Carl Roth GmbH 

Trizol        Invitrogen GmbH 

Trypsin/EDTA       PAA Laboratories GmbH 

Tween        Carl Roth GmbH 

Universal agarose      Bio&SELL e.K. 

UDP-glucose       Sigma-Aldrich 

UDP-[
3
H]glucose      Hartmann Analytic GmbH 

Valproic acid sodium salt     Sigma-Aldrich 

Vectashield       Vector Laboratories 

WT Expression Kit      Ambion 

WT Terminal Labeling and Controls Kit    Affymetrix 

Zero Blunt® PCR Cloning Kit      Invitrogen 
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2.1.4 Cell lines 

ESCs 
Parental  

cell line 

Genetic 

background 
Introduced modification 

J1 wt J1 129/sv Wild type 

dnmt1
c/c 

J1 J1 129/sv dnmt1 c allele homozygous null 

TKO  J1 129/sv dnmt1, dnmt3a and 3b triple homozygote null 

E14 wt E14 129/ola Wild type 

uhrf1
-/-

 E14 E14 129/ola homozygote uhrf1 null 

JM8A3.N1 JM8 C57BI/6N Wild type 

uhrf2
-/+

 JM8A3.N1 

EPD0373-2C02 
JM8 C57BI/6N heterozygote uhrf2 null, clone EPD0373-2C02 

ogESCs  wt J1 129/sv 
stable cell line expressing eGFP driven by the oct4 

promoter (pc2055) 

ogNSCs wt J1 129/sv 
stable cell line expressing eGFP driven by the oct4 

promoter (pc2055), differentiated to neural stem 

cells (NSCs) 

somatic cell description 

C2C12 Mouse myoblasts 

NIH3T3 Mouse fibroblasts 

HEK293T Human embryonic kidney 

2.1.5 Primer sequences 

2.1.5.1 TaqMan Assay ID numbers for relative quantification using qPCR 

All PCRs were carried out using the standard program (see 2.2.2.3) and Annealing 

temperature of 60°C. 

Gene Name Assay ID Amplicon length 

dnmt3a Mm00432884_m1 80 bp 

dnmt3b Mm01240113_m1 83 bp 

gapdh Mm99999915_g1 107 bp 

oct4 Mm00658129_gH 100 bp 

nanog Mm01617761_g1 100 bp 

uhrf1 Mm00477865_m1 83 bp 

uhrf2 Mm00520043_m1 62 bp 
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2.1.5.2 SYBR Green Primer sequences for relative quantification using qPCR 

All PCRs were conducted using standard conditions (see 2.2.2.3). 

Gene Forward Primer (5´-3´) Reverse Primer (5´-3´) 
Amplicon 

length 

brachyury 
CTC CAA CCT ATG CGG ACA 

ATT C 

ATG ACT CAC AGG CAG CAT 

GCT 
110 bp 

dnmt1 GGC GGA AAT CAA AGG AGG AT 
CCT GGG TCT GGA ACT TCT 

TTT ATC 
101 bp 

eomes 
ACC GGC ACC AAA CTG AGA 

TGA 

GGG GTT GAG TCC GTT TAT 

GTT GAA 
85 bp 

fgf5 GAT CTA CCC GGA TGG CAA AG 
TGC TGA AAA CTC CTC GTA 

TTC CT 
110 bp 

gapdh CAT GGC CTT CCG TGT TCC TA 
CTT CAC CAC CTT CTT GAT GTC 

ATC 
100bp 

gata6 
CAA AAG CTT GCT CCG GTA 

ACA 

GGT CGC TTG TGT AGA AGG 

AGA AG 
110 bp 

hnf4a 
CAA GAG GTC CAT GGT GTT 

TAA GG 
CGG CTC ATC TCC GCT AGC T 90 bp 

nestin 
ACT CTG CTG GAG GCT GAG 

AAC T 

CAA GGA AAT GCA GCT TCA 

GCT T 
100 bp 

pcna 
GAC TTA GAT GTG GAG CAA 

CTT GGA 

GGC TAA GGT CTC GGC ATA 

TAC G 
100 bp 

sox1 
GCT TCG GAG GAC AAA AGA 

CAA 

AAG AGC TGG CGG GAA GTA 

AAC 
101 bp 

tet1 
CCA GGA AGA GGC GAC TAC 

GTT 

TTA GTG TTG TGT GAA CCT 

GAT TTA TTG T 
100 bp 

tet 2 
ACA AAG CTG ATG GAA AAT 

GCA A 
GGT GCC TCT GGA GTG TTG GT 100 bp 

tet3 
GAG CAC GCC AGA GAA GAT 

CAA 
CAG GCT TTG CTG GGA CAA TC 100 bp 

2.1.5.3 SYBR Green Primer sequences for quantification of PvuRts1I digested 

products using qPCR 

PCRs were performed using standard conditions (see 2.2.2.3). 

Name Forward Primer (5´-3´) Reverse Primer (5´-3´) 

nanog primer 1 GAT TTC CCC AGG TTT CCC AAT GAG TCA GAC CTT GCT GCC AAA 

nanog primer 2 
TGC CTA ATG ACA AGA ATC ACA 

TCA 

GCC CCT AAG TAG AAA TCA TAG 

AAC A 

oct4 primer 
GAG AAG GAT GTG AGT GCC AAG 

AT 
GGA ATG GGA ACA GGG AAA CA 

2.1.5.4 Primer sequences for bisulfite sequencing 

All PCR reactions were carried out as semi-nested PCRs.  

Gene Forward Primer (5´-3´) Reverse Primer (5´-3´) 

brachyury (PCR 1) 
GGT GGG AGT TAG TGG TAG TTT 

AT 

CAA AAC CCT AAC TCC TAA AAC 

CA 

brachyury (PCR 2) 
TTT AAA GTT GTT ATA TTT GGG 

GAG GT 
= Reverse from PCR1 
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fgf5 (PCR1) 
TAG GGT GGT TTT TTA GTG GAG 

AAA T 

ATT ATC AAA AAC CAC CCA ATC 

ACC 

fgf5 (PCR2) 
ATG GTA GGG GTT AGT AAT TTG 

GAA 
= Reverse from PCR1 

nestin (PCR1) 
GGA AGA ATT TTT TTA GAT GTG 

GGA G 
CAA CCT AAA TAC TCA ACC ACC C 

nestin (PCR2) 
GAG GAG TAG AAT TAG TTG TTT 

AGT 
= Reverse from PCR1 

sox1 (PCR1) 
GTT AGT TTA GGT TGG GTT TTA 

TGA AAT 

AAT CCC TAT CTC AAA ACC TAC 

TAC 

sox1 (PCR2) = Forward from PCR1 
CCT AAA CCT ATC AAT ATA AAC 

CCT AT 

tet1 (PCR1) TTTTTAGGATGTTATTTGGATGATT CACAACCTTTACTAAACCCTATACC 

tet1 (PCR2) = Forward from PCR1 TATCTCCCCAATACAAACCTC 

2.1.5.5 Primer sequences for Pyrosequencing 

Gene Forward Primer (5´-3´) Reverse Primer (5´-3´) 

oct4 (PCR 1) 
ATG GGT TGA AAT ATT GGG TTT 

ATT TA 

ACC CTC TAA CCT TAA CCT CTA 

AC 

oct4 (PCR 2) 
GTA AGA ATT GAG GAG TGG TTT 

TAG 

= Reverse from PCR1 with 

5´biotinylated 

nanog (PCR1) 
TAG TTT GGG TTA TTT TAT AGT 

TTT TTT TG 

CCA AAA AAA CCC ACA CTC ATA 

TC 

nanog (PCR2) 
AAT GTT TAT GGT GGA TTT TGT 

AGG T 

= Reverse from PCR1 with 

5´biotinylated 

major satellite AAAATGAGAAACATCCACTTG CCATGATTTTCAGTTTTCTT 

h19 promoter ATAGTTATTGTTTATAGTTT AGGAATATGTTATATTTAT 
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2.2 Methods 

2.2.1 Methods of Cell Biology 

2.2.1.1 Cultivation of ESCs and somatic cells 

The undifferentiated mouse ESCs derived from the genetic background 129/ sv and 129/ ola 

(see 2.1.4) were maintained on gelatin-coated dishes in DMEM supplemented with 16 % 

FBS , 0,1 mM ß- mercaptoethanol, 2 mM L- glutamine, 1x MEM Non- essential Amnio Acid 

Solution, 100 U /ml pencillin, 100 μg/ ml streptomycin and 1000 U/ ml recombinant mouse. 

Mouse ESCs derived from C57Bl6/ N strain were cultured in the same medium except 

Knock- out DMEM was supplemented with 10 % FBS. The somatic cell lines, C2C12 

myoblasts, NIH3T3 fibroblasts and HEK293T kidney cells were cultured in DMEM 

supplemented with 20 % or 10 % FBS, respectively and 50 µg/ ml gentamycin. All cell lines 

were cultured in a 37°C incubator with a humified atmosphere of 5 % CO2. Cells were spilt 

every two to three days in a ratio ranging from 1:8 - 1:10 for ESCs and HEK293T, 1:20 – 

1:40 for C2C12 and 1:4 – 1:6 for NIH3T3 cells.  

2.2.1.2 Generation of transgenic cell lines 

The generation of the transgenic cell line was done by Sebastian Bultmann. J1 wt ESCs 

were transfected with poct4-eGFP promoter construct using Fugene according to the 

manufacturer´s instructions and cells with stable integrated reporter contruct were identified 

by repeated FACS sorting for eGFP expression using the FACS Aria II instrument. Finally, to 

obtain a clonal transgenic cell line (ogESCs), single cell sorting was performed.  

2.2.1.3 Differentiation of ESCs to neural stem cells (NSCs) 

Differentiation of ogESCs to ogNSCs was conducted by Sebastian Bultmann. In brief, 

3,5x105 cells were plated in a 25 cm² culture flask with N2B27 medium containing 1000 U/ ml 

of LIF (Ying et al., 2003b). To induce neural differentiation, medium was replaced with 

N2B27 without LIF the next day. After 7 days cells were plated in Euromed-N supplemented 

with 20 ng/ ml EGF and FGF2. After additional 5 days, neurospheres were collected and 

plated in gelatin coated flasks in the same medium to allow outgrowth of NSCs. NSCs were 

then maintained in N2B27 medium containing 20 ng/ ml EGF and FGF2. 

2.2.1.4 Differentiation of ESCs to EBs 

To induce EB formation, ESCs were resuspended in the same medium as above but without 

LIF and cultured in hanging drops (600 cells/ 20 μl drop) for four days. Culture dishes were 

filled with PBS to avoid drying of the hanging drops. After four days, EBs were cultured in 
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bacterial culture dishes to avoid attachment of the EBs and the medium was replaced every 

four days. 

2.2.1.5 Replating of EBs  

For replating of cells from late EBs, EBs were washed three times with PBS and dissociated 

to single cells by repeated cycles of Accutase treatment at 37°C. The reaction was stopped 

by adding fresh EB medium (ES cell medium without LIF) to the dissociated cells. After 

centrifugation, dissociated cells were resuspended in fresh EB medium and equal numbers 

of cells were seeded in duplicate on gelatin- coated plates and LIF was added to one of the 

duplicate plates to a final concentration of 1000 U/ ml.  

2.2.1.6 Transfection of plasmids  

For transient reporter assays of oct4 dTALEs, HEK293T cells were transfected with 

polyethylenimine. Transfections of ogESCs and ogNSCs were carried out using 

Lipofectamine 2000 according to the manufacturer´s instructions.  

2.2.1.7 Transient knock- down using small interfering RNAs (siRNAs) 

For silencing of uhrf2 in ESCs, two different siRNAs targeting uhrf2 as well as a pool of non-

targeting siRNA were used to control for off- target effects. Cells were plated at a density of 

6-7*104 cells/ cm2 in normal ESC medium. After approximately one hour, siRNA diluted in 

OptiMEM with a final concentration of 50 nM was transfected using Lipofectamine 2000 

according to the manufacturer´s conditions. Medium was changed after 24 hours and cells 

were split and transfected every second day for a total of 8-10 days. To monitor for knock-

down efficiency, residual cells were harvested and lysed in RP1 buffer of the Triprep kit every 

second day. Lysates were stored at -80°C until the end of the experiments, so that all 

samples could be processed simultaneously.  

2.2.1.8 Treatment of ogNSCs with epigenetic inhibitors 

Valproic acid sodium salt (VPA) and 5-aza-2'-deoxycytidine (5-azadC) was dissolved in PBS 

at a concentration of 250 mM and 30 mM, respectively and sterile filtered. Trichostatin A 

(TSA) was dissolved in DMSO at a concentration of 5 mM. Prior to treatment with epigenetic 

inhibitors, ogNSCs were transfected with the T-83 construct (for details see 2.2.1.6) and 

after 12 hours, medium was exchanged with medium containing dilutions of the respective 

inhibitor or a combination thereof and cells were cultured for additional 36 hours. Final 

concentrations of the inhibitors were for TSA 30 nM, VPA 620 µM, 5-azadC 10 nM and for 

the combination of VPA 310 µM + 5-azadC 5 nM.  



  Methods 
 

44 
 

2.2.1.9 Intracellular protein staining using FACS 

To stain intracellular Oct4 protein levels during differentiation, EBs were washed twice in 

PBS and incubated in Cell Dissociation Buffer for 45 min at 37°C. An equal volume of EB 

medium was added and EBs were dissociated to single cells by vortexing. To distinguish 

dead from living cells, 7- amino- actinomycin D (7- AAD) was added at a concentration of 5 

µg/ ml for 20 min at 4°C. After multiple washing steps in PBS, cells were fixed in Cytofix for 

20 min at 4°C and washed twice in Perm/ Wash solution. Antibody staining was performed in 

Perm/ Wash buffer for 30 min at 4°C using Alexa Flour® 647 Mouse anti- Oct3/4 and Alexa 

Flour® 647 Mouse IgG1 K isotype control. After washing twice with Perm/ Wash buffer, cells 

were resuspended in Annexin buffer (10 mM HEPES, 140 mM NaCl, 2.5 mM CaCl2, pH 7.4) 

and analyzed with a FACS Aria II instrument. Data analysis was performed using FlowJo 

version 7.2.5. 

2.2.1.10 Serum starvation of fibroblasts 

To analyse whether uhrf2 shows an expression pattern that is dependent on the proliferative 

state of the cells, NIH3T3 cells were plated to about 60 % confluency one day before 

starvation. After washing twice with PBS, cells were cultured in starvation medium containing 

0.5 % FBS and 1 % Gentamycin for 48 hours. Cells were released from starvation by adding 

fresh medium and samples were taken every 3, 6, 9, 12 and 24 hours after serum addition.  

2.2.1.11 Analysis of cell cycle profile using FACS 

After trypsinization and resuspension of the cell pellet in PBS, cells were fixed by slowly 

adding 100 % Ethanol while simultaneously vortexing to ensure homogenous fixation of the 

cells. Cells were incubated on ice for 15 min, washed twice in PBS and incubated in PBS 

containing 50 µg/ ml Propidium Iodide (PI), 0.1 mg/ ml RNAse A and 0.05 % Triton X-100 for 

30 min at 37°C. Cells were then analyzed using a FACS Aria II instrument and data analysis 

was performed using FlowJo version 7.2.5.  

2.2.1.12 Immunofluorescence staining 

Immunostaining of Oct4 protein in ogNSCs was performed by Sebastian Bultmann. In brief, 

ogNSCs were grown on cover slips, transiently transfected with the oct4- dTALE T-83, fixed 

with 2 % paraformaldehyde in PBS and permeabilized in PBS containing 0.2 % Triton X-100. 

Oct4 was stained using a primary goat- anti- Oct4 antibody (dilution 1:1000) and a secondary 

rabbit- anti- goat antibody coupled to Alexa Fluor 647 (dilution 1:2000). The antibodies were 

diluted in PBS containing 0.02 % Tween 20 and 2 % BSA. Cells were counterstained with 

DAPI and mounted in Vectashield (Vector Laboratories) Images were acquired with a Zeiss 

Axioplan 2 fluorescence microscope equipped with a Plan-NEOFLUAR 40x/1,3 oil objective.  
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2.2.2 Methods of Molecular Biology 

2.2.2.1 RNA extraction 

Total RNA from cultured cells, EBs and tissue samples from 6 weeks old 129sv mice were 

isolated with TRIzol reagent or the NucleoSpin Triprep Kit according to the manufacturer´s 

instructions. To avoid genomic DNA contamination, isolated RNA was digested with 

recombinant RNase- free DNase I and further purified with the QIAGEN RNeasy kit. RNA 

concentration and purity was determined using a NanoVue spectrophotometer. Quality of 

RNA was assessed by agarose gel electrophoresis and RNA was stored at -20°C - -80C°.  

2.2.2.2 cDNA synthesis 

500 ng total RNA were used for cDNA synthesis with the High- Capacity cDNA Reverse 

Transcription Kit with RNase Inhibitor according to the manufacturer´s instructions and using 

random hexamer. Samples without reverse transcriptase were prepared in parallel to control 

for genomic DNA contamination. cDNA was stored at -20°C.  

2.2.2.3 Quantification of mRNA levels using Real- time PCR 

Transcript levels of genes of interest were quantified relative to transcript levels of stably 

expressed housekeeping genes with quantitative PCR using a 7500 Fast Real- Time PCR 

cycler with a 96 well block. For quantification, either TaqMan probes in combination with 

TaqMan Gene expression Master Mix or Primers designed with Primer Express were used 

together with the Power SYBR Green PCR Master Mix. TaqMan gene expression assay IDs 

and Primer sequences are listed in 2.1.5.1 and 2.1.5.2, respectively. Each sample was 

analyzed in technical triplicates for each primer set with a total volume of 10 µl. In every 

reaction, equal amounts of cDNA were diluted 1:25 – 1:50 and final concentrations for each 

SYBR green primer pair were 500 nM. TaqMan assays were used as recommended by the 

manufacturer. All primer pairs were tested for specificity and efficiency by using non template 

controls, melting curve analysis (in the case of SYBR green primers after each run), agarose 

gel electrophoresis and dilution series of cDNAs. The following program was used for 

amplification: 

Pre-incubation    2min   50°C 

Enzyme activation  10min  95°C 

     15sec  95°C 

40x cycles of amplification  1min   60°C 

      5sec   95°C 

Melting curve    1min   60°C 

     2.5°C/ min  95°C 

Gene expression levels were normalized to gapdh and calculated with the sequence 

detection system software v1.3 using the comparative CT method (∆∆CT method).  
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2.2.2.4 Genome- wide expression profiling using Microarrays 

Microarray hybridization was carried out by our collaborators Dietmar Martin and Kerstin 

Maier at the Gene Center Affymetrix Microarray Platform (Laboratory of Patrick Cramer, LMU 

Munich). Sample preparation for microarray analysis was performed using the WT 

Expression Kit and WT Terminal Labeling and Controls Kit with 300 ng input RNA. Samples 

were hybridized to GeneChip Mouse Gene 1.0 ST microarrays according to the 

manufacturer’s instructions. Bioinformatical analysis including Principal Component Analysis 

(PCA) was performed by out collaborators Benedikt Zacher and Achim Tresch (Laboratory of 

Achim Tresch, LMU Munich). Quality control, normalization and further statistical analyses 

were carried out using the R/Bioconductor programming environment. Linear Models for 

Microarray Data (limma) was used to compute fold changes and p-values (Smyth, 2005). 

Genes with a fold change of 2 and a false discovery rate below 0.05 were considered 

differentially expressed. These genes are listed in the appendix (chapter 6). A one-sided 

Kolmogorov-Smirnov test was used to compare gene expression changes in wt and 

knockout EBs globally as well as for bivalent and non-bivalent genes between day 0 and 4 of 

differentiation. I performed Gene ontology (GO), tissue expression and chromosomal location 

analysis using DAVID (Huang et al., 2008, 2009). For GO enrichment analysis the lowest 

level of GO categories for biological process (GO_BP_ALL) was used. To identify 

significantly enriched GO categories, the corrected p-value calculated according to the 

Benjamini- Hochberg method was used for multiple testing corrections. Microarray data have 

been deposited into the GEO database under the accession number GSE36679.  

2.2.2.5 DNA extraction 

Genomic DNA from ESCs, EBs and tissue samples from 6 weeks old 129sv mice were 

extracted using either the NucleoSpin Triprep Kit or the QIAmp DNA Mini Kit according to the 

manufacturer´s instructions. Shearing of fragments and concentration measurements with 

Hoechst was done by Sebastian Bultmann. Isolated genomic DNA samples were sheared to 

500 - 1500 bp fragments by sonication to reduce the viscosity and improve homogeneity and 

the concentration was measured by fluorometry. 50 µl of diluted sample were mixed with 50 

µl of 2x TNE (Tris 20 mM, pH 7.4; NaCl 400 mM and EDTA 2mM) containing 200 ng/ µl of 

Hoechst 33258 and fluorescence was measured in a TECAN infinite M1000 plate reader (Ex: 

350/10; Em: 455/10). Serial dilutions ranging from 20 to 2000 ng/ ml of the 5hmC containing 

reference DNA fragment (see below) were used as standard for quantification. 

2.2.2.6 Preparation of reference DNA fragments for 5hmC glucosylation assay 

Reference DNA fragments (1139 bp) containing 0 % and 100 % 5hmC were prepared by 

PCR, using dCTP and 5-hydroxymethyl- dCTP, respectively. As a template, T4 phage DNA 
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was used with the following primers: 5’-TGG AGA AGG AGA ATG AAG AAT AAT-3’ and 

5’-GTG AAG TAA GTA ATA AAT GGA TTG-3’, Phusion HF DNA Polymerase and the 

following cycling profile: one cycle of 98°C, 2 min and 35 cycles of 98°C, 10s; 58°C, 10s; 

72°C, 30s. Note that the Primer sequences do not contain any cytosine residues. PCR 

products were purified by gel electrophoresis and silica column purification.  

2.2.2.7 Quantitative 5hmC glucosylation assay 

Assays for quantification of 5hmC glucosylation were performed by Alexandra Szwagierczak 

and Sebastian Bultmann. Reactions contained 150 mM NaCl, 20 mM Tris, pH 8.0, 25 mM 

CaCl2, 1 mM DTT, 2.8 μM “cold” UDP-glucose, 0.86 nM UDP- [3H]glucose (glucose-6-3H; 60 

Ci / mmol;), 1 µg of DNA substrate and 36 nM recombinant β- gt in a total volume of 50 µl. 

After incubation for 20 min at RT, reactions were terminated by heating at 65°C for 10 min. 

From each reaction, 20 µl were spotted in duplicate on paper filters and DNA was 

precipitated by incubation in 5 % TCA for 15 min at RT. Afterwards, filters were washed twice 

with 5 % TCA and once with 70 % ethanol. Remaining radioactivity was measured using a 

Liquid Scintillation Analyzer Tri- Carb 2100TR with quench indicating parameter set on tSIE/ 

AEC (transformed spectral index of the external standard / automatic efficiency control) in 4 

ml of Rotiszint Eco Plus scintillation liquid in snaptwist vials. Samples were measured for 30 

min or until the 2 σ value reached 2 %. To calculate the percentage of 5hmC per total 

cytosine from the incorporation of [3H]glucose, a calibration curve was used which was 

measured with the reference fragments for every experiment. The percentage of 5hmC was 

then corrected for the difference in C abundance between reference fragment (35 %) and 

mouse genome (42 %). 

2.2.2.8 Preparation of reference DNA fragments for testing PvuRts1I specificity 

Reference DNA fragments containing exclusively 5hmC, 5mC or unmodified cytosine 

residues were prepared by PCR using 5-hydroxymethyl- dCTP, 5-methyl- and dCTP, 

respectively. As a template for all reference fragments, T4 phage DNA was used for PCR 

amplification by Phusion HF DNA Polymerase and primer 5’-GTG AAG TAA GTA ATA AAT 

GGA TTG-3’, which does not contain cytosine residues. To generate the reference 1139 bp 

fragment with 100 % 5hmC for restriction with PvuRts1I the second primer was 5’-TGG AGA 

AGG AGA ATG AAG AAT AAT- 3’, which also does not contain cytosine residues. To 

generate the 800 and 500 bp control substrates containing only 5mC and only unmodified 

cytosine the second primer was 5’-GCC ATA TTG ATA ATG AAA TTA AAT GTA-3’ and 

5’-TCA GCA ATT TTA ATA TTT CCA TCT TC-3’, respectively. After PCR amplification, 

products were purified by gel electrophoresis followed by silica column purification.  
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2.2.2.9 Preparation of DNA substrates for Linker – PvuRTS1I – analysis 

To prepare substrates containing different 5hmC levels (0 %, 1 %, 2,5 %, 5 %, 10 %), 

genomic DNA from wt JM8A3.N1 was used as a template to amplify the Region III of the 

nanog promoter (Hattori et al., 2007) by PCR using Phusion HF DNA Polymerase 

(Finnzymes) and the following primers: For 5´ TCA GGA GTT TGG GAC CAG CTA 3´ and 

Rev 5´CCC CCC TCA AGC CTC CTA 3´, resulting in a 867 bp fragment. To generate nanog 

promoter substrates containing increasing 5hmC levels, 5-hydroxymethyl- dCTP and dCTP 

were added to the PCR reactions at appropriate ratios and PCR products were purified by 

silica column purification. Successful incorporation of 5hmC levels was confirmed by the 

quantificative 5hmC glucosylation assay. The radioactive assay was conducted by Sebastian 

Bultmann.  

2.2.2.10 Preparation of linker  

A linker containing a random 3´overhang was generated by annealing the following primer: 

For 5´CTC GTA GAC TGC GTA CCA TG NN 3´ and Rev 5´CA TGG TAC GCA GTC TAC 

CAG 3´. Successful annealing of oligos was checked by loading 100 ng of each oligo 

(annealed and unannealed) together with the loading dye xylenol mixed with bromphenol 

blue (ratio 1:1) on a 15 % non- denaturating PAGE. Ultra low range marker was used to 

control for size, gel was stained with SYBR green (1:1000) for 20 mins and scanned on a 

Typhoon imaging system using filter sets for excitation at 488 nm and emission of 520 nm.  

2.2.2.11 Digestion with PvuRts1I  

Sheared genomic DNA of wt and TKO ESCs or 250 ng of each fragment with increasing 

5hmC content were digested with 2 U of PvuRts1I in reaction buffer containing 150 mM 

NaCl, 20 mM Tris, pH 8.0, 5 mM MgCl2, 1 mM DTT for 15 min at 22°C followed by a heat 

inactivation of 20 min at 60°C. To control for successful digestion, reference substrates (see 

2.2.2.8) were digested using the same conditions and analyzed on a 1 % agarose gel 

electrophoresis.  

2.2.2.12 Detection of PvuRts1I digested fragments using qPCR 

10 ng of digested or mock treated genomic DNA was amplified by qPCR using two different 

primer pairs specific for the nanog upstream regulatory region at standard cycling conditions 

(see 2.1.5.3). To ensure that equal amounts of gDNA were added to each well, a primer pair 

specifically amplifying the oct4 locus was used to correct for pipetting mistakes. Each sample 

was analyzed in technical triplates and amplification of single products was tested by melting 

curve analysis after each run.  
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2.2.2.12 Detection of PvuRts1I digested fragments using linker - PCR strategy 

25 ng of each digested fragment was ligated to a linker containing the random 3´ overhang. 

The ligation reaction was carried out using T4 DNA Ligase overnight at 16°C. As a control for 

the specificity of the ligation, each fragment was Mock- ligated, where no linker was added to 

the reaction. To selectively amplify fragments cut by PvuRts1I, the ligated products were 

amplified by PCR with Phusion HF DNA Polymerase using a Linker- specific Forward Primer 

(For 5´CTC GTA GAC TGC GTA CCA TG 3´) and gene- specific Revers Primers (PP1 Rev: 

5´ GAG TCA GAC CTT GCT GCC AAA 3´, and PP2 Rev 5´ GCC GTC TAA GCA ATG GAA 

GAA 3´), resulting in different fragment sizes depending on the cutting site. The PCR pattern 

was analyzed on a 2 % agarose gel and a library of the 10 % 5hmC fragments was 

generated using the Zero Blunt® PCR Cloning Kit. Randomly selected clones were 

sequenced and analyzed for potential cutting sites. 

2.2.2.13 DNA methylation analysis 

Bisulfite conversion of genomic DNA (0.5 - 1.5 µg) was carried out using the EZ DNA 

Methylation-Gold Kit according to the manufacturer´s instructions. For amplification we used 

Qiagen Hot Start Polymerase in 1x Qiagen Hot Start Polymerase buffer supplemented with 

0.2 mM dNTPs, 0.2 µM forward primer, 0.2 µM reverse primer, 1.3 mM betaine and 60 mM 

tetramethylammonium-chloride. Primer sequences (listed in 2.1.5.4 and 2.1.5.5) were 

designed using MethPrimer (Li and Dahiya, 2002) and CpG islands were identified with the 

CpG Island Searcher using default settings (Takai and Jones, 2002). DNA methylation 

analysis by pyrosequencing was carried out by Varionostic GmbH (Ulm, Germany). For 

bisulfite sequencing, PCR products were subcloned using the StrataCloneTM PCR Cloning Kit 

and StrataConeTM SoloPack® Competent Cells according to the manufacturer´s instructions. 

Sequences were analyzed with BISMA software using default settings (Rohde et al., 2010).  

2.2.2.14 Cloning of oct4 dTALEs  

Cloning of oct4 dTALEs was performed by our collaboration partner Robert Morbitzer (group 

of Thomas Lahaye, LMU Munich). A Gateway cassette from pGWB5 (Nakagawa et al., 

2007b) was amplified (Forward primer 5´GGG GCG ATC GCA CAA GTT TGT ACA AAA 

AAG CTG AAC GAG 3´; reverse primer 5´ GGG GCG GCC GCA ACC ACT TTG TAC 

AAG AAA GCT GAA CG 3´), thereby adding AsiSI and NotI restriction sites and subcloned 

into pCAG_mCH (Niwa et al., 1991) using AsiSI and NotI, generating pCAG_mCH_GW. The 

VP16AD was amplified from RSV E2F1-VP16 using the following primers: Forward primer 5´ 

GGG GGT CTC TCA CCA TGG ATC CTG CCC CCC CGA CCG ATG TCA GC 3, 

Reverse primer 5´ GGG GGT CTC CCT TCT ACC CAC CGT ACT CGT CAA TTC 

CAA GG 3´ (Johnson et al., 1994), thereby adding a BamH1 restriction site to the 5' end and 
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cloned into pENTR-D-TOPO generating pENTR-D-BamHI_VP16AD. TALE repeat arrays 

were generated via multi-fragment cut-ligation using golden gate cloning (Engler et al., 2009) 

and ligated either into pENTR-D-TALE-∆rep-BpiI-AC or pENTR-D-TALE-∆rep-BpiI-AC-

VP16AD. All entry clones were transferred by LR recombination into the expression vector 

pCAG_mCh_GW. 

2.2.2.15 Cloning of oct4 reporter contruct 

Cloning of the oct4 reporter construct was performed by Sebastian Bultmann. The vector 

GOF-18 (Yeom et al., 1996) was cut by XhoI/ AvrII, resulting in the basepairs -1 to -4716 

upstream of the transcriptional start site of oct4, which was ligated into pGL-3 basic together 

with a linker oligo (5´ CCT AGG TGA GCC GTC TTT CCA CCA GGC CCC CGG 

CTC GGG GTG CGA TCG CCG CCC ATG G 3´) using XhoI/ NcoI. Subsequently, the 

luciferase ORF was removed by with KasI/ FseI and replaced by the eGFP ORF (Forward 

primer 5´ AAA GGC GCC AGT GAG CAA GGG CG 3´, reverse primer 5´. AAA GGC CGG 

CCT TAC TTG TAC AGC TCG TCC 3´). 

2.2.3 Methods of Biochemistry 

2.2.3.1 Protein expression and purification 

Cloning of both sequences was performed by Sebastian Bultmann and Alexandra 

Szwagierczak. The protein expression and purification was done by Alexandra 

Szwagierczak. The sequence encoding bacteriophage T4 β- gt and PvuRts1I was 

synthesized at Mr. Gene GmbH (Regensburg) and cloned into pET28b vector. BL21(DE3) E. 

coli cells carrying the expression construct were grown at 37 °C until A600 = 0.6–0.7 and 

induced with 1 mM isopropyl β-d-thiogalactopyranoside for 16 h at 20 °C and 18 °C, 

respectively. Lysates from ß- gt and PvuRts1I expressing bacteria were prepared by 

sonication in 300 mM NaCl, 50 mM Na2HPO4, pH 8.0, 10 mM imidazole, 1 mM β-

mercaptoethanol and for PvuRts1I, additionally 10 % glycerol was added. After clearing 

lysates by centrifugation, they were applied to nickel-nitrilotriacetic acid column pre-

equilibrated with lysis buffer. Washing and elution were performed with lysis buffer containing 

20 and 250 mM imidazole, respectively. Eluted proteins were applied to a Superdex S-200 

preparative gel filtration column in 150 mM NaCl, 20 mM Tris, pH 8.0, 1 mM DTT and in the 

case of PvuRts1I, 10 % glyercol was again added. Fractions containing the β- gt or PvuRts1I 

peak were pooled and applied to a ResourceQ anion exchange column in order to eliminate 

residual contaminants, resulting in pure β- gt and PvuRts1I in the flowthrough. The stability of 

PvuRts1I upon storage was improved by supplementation with 10 % glycerol. 
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2.2.3.2 Reporter gene assay for dTALE activity 

The transient reporter gene assay was conducted by Sebastian Bultmann. HEK293T cells 

were plated in 6 well plates, grown to 70  

% confluence and co-transfected with the reporter plasmid and the respective dTALE 

construct. 48 h after transfection cells were lysed in PBS containing 0,5 % NP40 and 

mammalian protease inhibitors. The lysate was cleared by centrifugation and eGFP and 

mCherry fluorescence was measured with a Tecan Infinite M1000 plate reader.  

 
 
 
  



  Methods 
 

52 
 

 
  



  Results 
 

53 
 

3. Results 

3.1 Reversion of differentiation programs in globally hypomethylated 

embryonic stem cells 

To elucidate the role of DNA methylation during ESC differentiation, we chose a system, the 

differentiation of wt, dnmt1-/- and TKO cells to Embryoid Bodies (EBs), which represents an 

undirected way of differentiating cells, allowing for a less biased analysis of the differentiation 

process. EB formation was performed using the hanging drop method, where a definite 

number of cells per drop (600 cells/ 20 µl) are spotted on the lid of a petri dish (Figure 11). 

Inversion of the lid causes the cells to accumulate at the bottom of the drop resulting in the 

formation of EBs. After 4 days, the EBs are harvested from the hanging drops and cultured in 

suspension to promote further differentiation and allow exchange of medium. 

 

Figure 11. Overview of hanging drop method to induce EB formation. 

(A) Schematic representation of EB formation by the hanging drop method. (B) Phase contrast pictures of 

undifferentiated ESCs (left) grown on gelatinized dishes in standard ESC medium and a differentiated EB grown 

in suspension in EB medium at day 12.  

3.1.1 Incomplete silencing of pluripotency genes during differentiation in globally 

hypomethylated cells 

To gain insights into the specific role of DNA methylation in silencing pluripotency associated 

genes during differentiation, we generated EBs from wt, dnmt1-/- and TKO ESCs and 

analyzed expression as well as promoter DNA methylation of the pluripotency genes oct4 

and nanog (Fig. 12). Interestingly, wt and dnmt1-/- EBs already showed a drastic down 

regulation of both transcripts at day 4, whereas DNA methylation of the respective promoters 

could be detected only by day 8. Consistent with previously reported data (Sakaue et al., 

2010), TKO EBs exhibited similar initial silencing kinetics for nanog transcription, however, a 

drastic delay in the down regulation of oct4 mRNA levels was observed. Strikingly, in both 

Dnmt knock out EBs, silencing of oct4 and nanog transcripts was partial as compared to wt 

EBs and significant residual levels of both transcripts were detectable even in late EBs. It is 

interesting to note that although both knock out EBs are severely hypomethylated, dnmt1-/- 
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EBs seem less affected by the loss of DNA methylation compared to TKO EBs as both 

pluripotency genes are more efficiently silenced.  

 

Figure 12. Pluripotency genes are not completely silenced in hypomethylated cells during EB formation. 

oct4 and nanog transcript levels (upper panels) und respective promoter DNA methylation (lower panels) during 

differentiation of wt, dnmt1
-/-

 and TKO ESCs to EBs. Expression levels were determined by qPCR and are 

displayed relative to day 0 in wt ESCs and standard errors are the mean of 3 biological replicates. DNA 

methylation analysis was performed using bisulfite conversion followed by PCR and pyrosequencing. Five and 

four CpG sites within the proximal promoter regions of oct4 and nanog, respectively were measured and 

averaged values of two biological replicates and the standard deviation are displayed. At every time point, 

statistical analysis was performed between wt and dnmt1
-/-

 as well as between wt and TKO ESCs and EBs, 

respectively. Significant differences between wt and knock out ESCs and EBs are marked by an asterisk; 

significance level: * p<0.05; ** p<0.001; *** p< 0.0001 (Student t- test). Pyrosequencing data for dnmt1
-/-

 EBs 

duplicates as well as data from one wtJ1 EB unicate was provided by Daniela Meilinger.  

Taken together, our experiments reveal that promoter DNA methylation is dispensable for the 

initial silencing of oct4 and nanog but necessary for their complete shutdown during 

differentiation. 

3.1.2 Complete and uniform downregulation of Oct4 protein level in hypomethylated 

EBs 

We next asked whether the partial down regulation of pluripotency transcripts also results in 

an incomplete reduction of pluripotency markers at the protein level and whether the 

incomplete silencing occurs homogenously in all cells or it is due to the appearance of 

heterogeneous subpopulations during differentiation. To address these questions, we studied 

Oct4 in greater detail and followed its protein level during EB formation by intracellular FACS 

staining using commercial antibodies (Fig. 13). The FACS machine was operated with the 

help of Sebastian Bultmann.  
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As expected, all cell lines displayed similar Oct4 level in the pluripotent state. After 4 days of 

differentiation, less than 2 % cells of wt EBs are Oct4 positive, but a significantly higher 

proportion of positive cells could be detected in both knock out EBs. As observed at the 

transcript level (Fig. 12) a dramatic delay in the down regulation of Oct4 protein was also 

observed in TKO EBs as more than 13 % of cells were still Oct4 positive at day 4. 

Furthermore, we again found that dnmt1-/- EBs showed an intermediate phenotype as only 

4.75 % of all cells still contained detectable Oct4 levels. Surprisingly, at later time points, less 

than 1 % of all cells were Oct4 positive, independent of the methylation status. As only a 

single Oct4 positive population was detectable at all analyzed time points, we conclude that 

the down regulation of Oct4 during differentiation occurs homogenously not only in wt but 

also in hypomethylated cells. 

 

Figure 13. Homogenous downregulation of Oct4 protein levels during differentiation. 

Shaded histograms depict Oct4 intracellular staining by FACS analysis. Dashed lines indicate isotype control 

staining and horizontal bars represent individual gates set for Oct4 positive cells based on the isotype control. The 

overlay shows Oct4 expression for each cell line at each day. Numbers in red, blue and green indicate the 

percentages of Oct4 positive cells in wt, dnmt1
-/-

 and TKO ESCs/EBs, respectively, after subtraction of 

background signal from isotype controls.  

3.1.3 DNA methylation is dispensable for the initiation of differentiation programs 

As we found that hypomethylated cells are capable of partially down regulating pluripotency 

associated genes, we next asked whether these cells are able to initiate differentiation 
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programs. To address this question, we performed genome- wide expression analysis of wt, 

dnmt1-/- and TKO cells at three different time points: i) in the undifferentiated state (day 0), ii) 

during early differentiation (day 4) and iii) during a late differentiation (day 16) stage in 

duplicate experiments. The Microarray hybridizations were performed by our collaborators 

Kerstin Maier and Dietmar Martin (Laboratory of Patrick Cramer) and the initial processing of 

the microarray data was done by our collaborators Benedikt Zacher and Achim Tresch 

(Laboratory of Achim Tresch). They performed the Principal Component Analysis (Fig. 14), 

identified differentially regulated genes, compared differentially expressed genes in 

undifferentiated TKO ESCs identified in our study to published data (Fig. 16B) and did the 

analysis of bivalent genes and all gene changes between d0-4 (Fig. 21, 23). I performed all 

other analyses, including GO, Kegg pathway, chromosomal location and tissue expression 

analysis using DAVID software (Huang et al., 2008, 2009; for details see chapter 2.2.2.4). 

Differentially regulated genes identified at the various time points are listed in chapter 6.  

The Principal Component Analysis (PCA) revealed that the microarray data can be 

separated according to day of differentiation and genotype (Fig. 14).  

 

Figure 14. Principal Component Analysis of genome- wide expression data from wt, dnmt1
-/-

 and TKO 

ESCs during differentiation 

RNA samples from undifferentiated ESCs and respective EBs at day 4 and 16 of differentiation were subjected to 

microarray expression analysis. Data from independent biological duplicates per cell line and per time point were 

processed by two dimensional principal component analysis. Two principal components (PC), PC1 and PC2, 

were identified (see also text for details).  

In the undifferentiated state, all cell lines were closely clustered, suggesting that loss of DNA 

methylation in the undifferentiated state affects the expression of relatively few genes. 

However, principal component 1 provides a clear differentiation signature, as it increases 

continuously with culture time. This increase was less pronounced among the knockout 

genotypes, reflecting a crucial role of DNA methylation during differentiation. Intriguingly, at 

both differentiation time points, dnmt1-/- EBs took an intermediate position on the median line 

between TKO and wt EBs, again emphasizing the less severe phenotype of dnmt1-/- EBs 

compared to TKO EBs.  
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Using a two- fold cutoff and false discovery rate below 5 %, we calculated gene expression 

changes in undifferentiated dnmt1-/- and TKO ESCs relative to wt ESC lines (Fig. 15A). 

Furthermore, we determined gene expression changes for each genotype between the 

undifferentiated ESC state and day 4 EBs (Fig. 15B), as well as between day 4 and day 16 

EBs (Fig. 15C). As suggested by PCA, the expression of only few genes was altered in 

undifferentiated hypomethylated ESCs (54 genes in dnmt1-/- ESCs, 82 genes in TKO ESCs). 

As DNA methylation is mostly considered a repressive mark involved in silencing of genes 

(Siegfried et al., 1999), we reasoned that genes being down regulated in the knock outs are 

most likely the results of indirect effects and not due to the lack of DNA methylation. 

Therefore we focused most of the analysis on the set of up regulated genes in the knock out 

ESCs and EBs. 

 

Figure 15. Analysis of genome- wide expression data from wt, dnmt1
-/-

 and TKO ESCs during 

differentiation. 

A) Venn diagram of differentially expressed genes in dnmt1
-/-

 (blue circles) and TKO (green circles) ESCs 

compared to wt ESCs. (B, C) Venn diagram of gene expression changes occurring between day 0-4 (C) and day 

4-16 (C) in knockout and wt (red circles) EBs. Expression changes occurring in wt EBs between day 0-4 and day 

4-16 were identified and compared to expression patterns in dnmt1
-/-

 and/ or TKO EBs. Larger numbers indicate 

total numbers of gene changes, whereas smaller numbers refer to up- (↑) and down- (↓) regulated transcripts in 

the respective sectors. Data were averaged from independent biological duplicates. 

Gene ontology (GO) enrichment analysis of the 57 genes up regulated in TKO ESCs 

revealed that the most enriched categories are involved in reproductive processes like 

gamete generation, oogenesis and spermatogenesis (Fig. 16A). 
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Figure 16. Gene ontology enrichment of transcriptome analysis of TKO ESCs compared to wt ESCs 

(A) 57 genes were up regulated in TKO ESCs compared to wt ESCs (Fig. 15) and can be grouped in 12 GO 

categories. (B) Venn diagram showing the comparison of differentially expressed genes in TKO ESCs identified in 

the current study and deregulated genes identified by Fouse et al. (Fouse et al., 2008) in compound dnmt3a/3b
-/-

 

ESCs with stable Dnmt1 knockdown (TKO*; black circles). To directly compare differentially expressed genes in 

the two studies, the same cut off criteria based solely on a fold change >2 were used. These less stringent cut off 

criteria lead to a significant higher number of deregulated genes in our TKO ESCs (274 genes compared to 82 

with additional cut off criteria of p<0.05). However, only 60 commonly differentially regulated genes between our 

TKO ESCs and the 336 genes identified by Fouse et al. can be identified. Those genes can also be grouped 

within the same GO categories comparable to the ones in (A). A comparison of the GO terms associated with the 

individual genes in the lists from the two studies shows a significant functional overlap (red numbers in red 

shaded circle). 159 genes identified from our study are associated with the same GO terms as genes from Fouse 

et al. and vice verse, 183 genes from their data are linked to the same GO terms as genes from our data set.  

In contrast to the data obtained from TKO ESCs, no enriched categories could be identified 

for the 49 up regulated genes in dnmt1-/- ESCs. However, in both mutant cell lines, 

deregulated genes were mainly located on the X chromosome (dnmt1-/- 13.1 %; TKO 40.4 

%). In this context, it is important to note that both wt and knock out ESCs are derived from 

male (XY) mice and hence lack X chromosome inactivation. Therefore, the relatively high 

amount of X- linked, upregulated genes in both hypomethylated ESCs is not linked to a 

deregulated X inactivation process. Furthermore, in dnmt1-/- ESCs many deregulated genes 

are also located on the Y chromosome (13.3 %). The up regulated transcripts of both cell 

lines were mostly genes known to exhibit testis-specific expression (dnmt1-/- 57.7 %; TKO 

61.5 %). These data are consistent with previous results from Fouse and colleagues (Fouse 

et al., 2008), who performed genome-wide expression analysis on a dnmt3 double knock 

ESC line (dnmt3a-/-, dnmt3b-/-) with constitutive knockdown of dnmt1 (TKO*). Surprisingly 

though, using the same cut off criteria (fold change >2) as in Fouse et al., only 60 out of 274 

differentially expressed genes identified in our study for TKO were also found to be 

deregulated in the previous study (Fig. 16B). This may at least in part be due to the less 
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stringent cut off criteria used in Fouse et al. However, when we compare the GO terms 

associated with the differentially regulated genes, we found a significant functional overlap 

between these two studies.  

To investigate the role of DNA methylation during differentiation, we first determined the 

gene changes occurring in wt EBs between day 0-4 and day 4-16 and used this as a 

baseline of expression changes normally occurring during ESC differentiation. We then 

compared these changes to the gene changes occurring in the knock outs at the respective 

days. This strategy allowed us to identify concordant gene changes of wt and knock out EBs 

which are regulated independently of DNA methylation (Fig. 15B, C). In the first 

differentiation period (d0-4), approximately the same number of genes in wt (1255) and 

dnmt1-/- EBs (1230) were altered and two thirds (833) of the genes concordantly changed in 

the two EB populations. In comparison, 819 genes changed their transcript level in TKO EBs, 

which translates to about two thirds of gene changes compared to those in wt EBs. However, 

only one third of the genes (376) changed concertedly in wt and TKO EBs (Fig. 15B). 

Strikingly, in the second differentiation period (d4-16) total transcript level changes in dnmt1-/- 

(879) and TKO EBs (406) were roughly half and one fifth of those in wt EBs (1808), 

respectively (Fig. 16C). Furthermore, one third (593) of the genes changing in dnmt1-/- but 

only one tenth (187) of transcripts altered in TKO are concordantly regulated compared to wt 

EBs. The observation of a high proportion of concerted gene expression changes in mutant 

and wt EBs during the early differentiation stage, suggests that hypomethylated cells are 

able to induce differentiation programs to some extent. However, the decreased amount of 

concordant transcription level changes between day 4-16 implies that the progression of 

differentiation programs in hypomethylated EBs is impaired, in particular in TKO EBs, 

indicating that the presence of Dnmt3 proteins could enable hypomethylated dnmt1-/- EBs the 

execution of differentiation programs to similar extents as in wt EBs. 

Intriguingly, we detected 365 concerted gene changes in EBs of all three genotypes during 

the first four days of differentiation (Fig. 15B). GO analysis of the 198 conjointly up regulated 

genes yielded categories involved in developmental processes like anatomical structure 

development, system and organ development and cell differentiation being the most enriched 

(Fig. 17A).  



  Results 
 

60 
 

 

Figure 17. Gene ontology enrichment and cell type specific expression of concomitantly regulated genes 

in wt, dnmt1
-/-

 and TKO EBs during day 0-4 of differentiation 

From the 365 concordant genes changes (Fig. 15), 198 genes were upregulated and are associated with 47 GO 

terms (A) involved in various developmental processes. On the contrary, 167 genes were concordantly down 

regulated and are connected to stem cell maintenance and development GO categories (B). The latter set of 

genes is specifically expressed in ESCs and EGCs specifically (C).  

Furthermore, genes playing roles in transcription, metabolism and signaling pathways like 

the wnt receptor and tyrosine kinase pathways were identified by Kegg pathway analysis (not 

shown). By contrast, the expression of 167 genes was down regulated in all three cell lines 

and they could be categorized into genes involved in stem cell maintenance and 

development and are known to be mainly expressed in ESCs and embryonic germ cells 

(EGCs) (Fig. 17B, C).  
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These data clearly demonstrate that all cell lines independent of their genotype were able to 

activate differentiation programs by down regulating genes associated with stem cell fate and 

up regulating genes required for developmental processes. 

3.1.4 Cells lacking Dnmt1 possess a greater differentiation potential than TKO cells 

During the later differentiation time point (day 4-16), only 145 commonly expressed genes in 

wt, dnmt1-/- and TKO EBs could be identified using our strategy described above (Fig. 15C). 

Enriched GO categories for the 129 concerted up regulated genes in all three cell lines were 

involved in lipid metabolic processes and were mainly expressed in extraembryonic tissues 

(Fig. 18).  

 

Fig. 18. Gene ontology enrichment and cell type specific expression of concomitantly regulated genes in 

wt, dnmt1
-/-

 and TKO EBs during day 4-16 of differentiation 

From the 145 concordant genes changes (Fig. 15C), almost 90 % of these genes were upregulated and were 

associated with 8 GO terms (A) mainly involved in lipid metabolism. The up regulated genes are mostly 

expressed in extraembryonic tissues like placenta and amnion (B). Only 16 genes were concordantly down 

regulated.  

Intriguingly, substantially more genes were concertedly regulated in wt and dnmt1-/- at both 

time points of differentiation. In addition to the 365 genes concordantly altered in all three cell 

lines, 468 more genes were conjointly regulated in wt and dnmt1-/- EBs at d0-4 (Fig. 15B). 

Highly enriched GO terms of the 210 up regulated genes were associated with 

developmental processes including cell differentiation and proliferation as well as tissue and 

organ development (Fig. 19). Kegg pathway analysis indicate that these genes are, among 

others, associated with the wnt and TGF-ß signaling pathway (not shown). Furthermore, the 
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258 genes conjointly down regulated in wt and dnmt1-/- EBs yielded 35 enriched GO 

categories involved in the regulation of expression, metabolism and developmental 

processes (not shown). 

 

Figure 19. Enriched GO categories of conjointly up regulated genes in wt and dnmt1
-/-

 EBs after 4 days of 

differentiation  

A total of 468 genes could be identified as commonly regulated genes in wt and dnmt1
-/-

 EBs after 4 days of 

differentiation (Fig. 16C). Among these genes, 210 are up- and 258 are downregulated. Shown here are the 46 

enriched GO categories for the up regulated genes with a p-value < 1x10
-3

 (1e-03). Using a cut off p-value < 0.05 

corrected by Benjamini-Hochberg increases the number of enriched categories to 144. In addition, these 210 

genes, among others, play a role in the wnt and TGF-ß signaling pathways according to Kegg pathway analysis. 

For the concordantly down regulated genes, using a p-value < 0.05 we also found 35 enriched GO categories 

which include genes involved in the regulation of expression, metabolism and developmental processes. 

However, the p-values for these categories are above 1x10
-3

 and therefore are not displayed here for consistency 

with the upregulated genes.  

Importantly, also at a later differentiation time point (day 4-16), 446 genes were commonly 

regulated in wt and dnmt1-/- EBs, and more than 90 % of those genes (402) were up 

regulated (Fig. 20).  
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Figure 20. Enriched GO categories of concordantly up regulated genes in wt and dnmt1
-/-

 EBs during day 

4-16 of differentiation.  
Later during differentiation, 446 genes were still commonly regulated in wt and dnmt1

-/-
 EBs. More than 90 % of 

those genes (402) were upregulated and only 44 were downregulated. The most enriched GO terms with a p-

value below 1x10
-2 

(1e-02) of the up regulated (18 GO terms) and down regulated (17 GO terms) genes are 

displayed in A and B, respectively. Using a cut off p-value < 0.05 corrected by Benjamini-Hochberg increases the 

number of enriched categories to 20 for up regulated genes and 38 for down regulated genes. The up regulated 

genes are expressed in various tissues (C), the highest enriched in liver, plasma and kidney (p-value <.1e-06).  
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Enriched GO terms for the up regulated genes were mainly associated to cell adhesion, 

hemostasis, organ development and metabolism (Fig. 20A) and are annotated as being 

expressed in various tissues like liver, plasma and kidney (Fig. 20C). In contrast, the few 

genes (44) concertedly down regulated in wt and dnmt1-/- late EBs showed enriched GO 

categories of pattern specification and embryonic development (Fig. 20B). Taken together, 

these data reveal a previously unappreciated progression and execution of developmental 

programs in dnmt1-/- EBs and indicate that dnmt1-/- cells possess a greater differentiation 

potential compared to TKO cells.  

To analyze the different developmental potentials of dnmt1-/- and TKO EBs in greater detail 

we focused on gene changes occurring at the first differentiation period (day 0-4) as TKO 

EBs seemed unable to progress to later differentiation stages. We compared the total 

expression changes in TKO or dnmt1-/- EBs relative to wt EBs for all genes (25528) (Fig. 21).  

 

Figure 21. Genome- wide expression changes of TKO and dnmt1
-/-

 EBs compared to wt EBs at day 0-4 of 

differentiation 

Scatter plots of genome- wide expression changes between day 0 and 4 in TKO (A) and dnmt1
-/-

 EBs (B) relative 

to wt EBs. Data points are heat- colored according to their local point density with yellow representing high gene 

density and blue low gene density. From a total of 25528 genes, around 17 % of all genes are changing in wt 

during differentiation as indicated by the vertical corridor between the dotted lines. Genes whose expression 

levels increased and decreased in wt but not in TKO EBs (“TKO non- responders"), are marked in green in both 

plots. These genes are located within the horizontal dotted lines to the left and right of the vertical dotted lines in 

(A). Many of the “TKO non- responding” (green marked) genes change similarly in dnmt1
-/-

 and wt EBs (B). The 

number of “TKO non– responders” are reported in green in the respective sectors. 

In this analysis we used a two- fold cutoff as well, but did not filter for false discovery rate, 

resulting in higher numbers of gene expression changes than in the case of Fig. 15B. 

Interestingly, data points clustered much closer to the diagonal line in the plot showing 

expression changes in dnmt1-/- relative to wt EBs (Fig. 21B), confirming the higher 

concordance of transcript level changes between these EB populations. In TKO EBs, 2397 
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genes did not respond to the differentiation signals (“non-responders”; green dots in Fig. 

21A). To investigate, whether those “non-responders” were also deregulated in dnmt1-/- EBs, 

we compared the expression profile of dnmt1-/- versus wt EBs and again highlighted the non-

responding genes identified in TKO EBs (green dots in Fig. 21B). Intriguingly, more than half 

of these genes (1298 out of 2397) did change similarly in dnmt1-/- and wt EBs and that in 

total 70 % of gene expression changes were concordant between et EBs and dnmt1-/- EBs.  

The further progression of differentiation programs in dnmt1-/- compared to TKO EBs 

suggests that the expression of the de novo Dnmts, dnmt3a and dnmt3b confers dnmt1-/- 

cells with greater developmental potential. Therefore, we analyzed dnmt3a and dnmt3b 

transcript levels in wt and dnmt1-/- EBs after 4 and 16 days of differentiation (Fig. 22).  

 

Figure 22: Expression of dnmt3a and dnmt3b in wt and dnmt1
-/-

 cell lines during EB formation. 

Expression analysis was performed by qPCR and is displayed relative to dnmt3a in wt ESCs at day 0, so that 

transcript levels of dnmt3a and dnmt3b are directly comparable to each other. Mean values and standard errors 

from three independent experiments are shown. At each analyzed time point, statistical analysis was performed 

between wt and dnmt1
-/- 

ESCs and EBs and significant differences are marked by an asterisk. Significance level 

p<0.05 as determined by Student t-test is displayed. 

In wt EBs, dnmt3b was highly expressed in the undifferentiated state and during early 

differentiation stages (day 4), but was drastically down regulated during later differentiation 

stages. In contrast, dnmt3a was highly expressed in late EBs, indicating a time- and 

developmental stage- dependent switch between dnmt3a and dnmt3b expression. This 

observation confirms previously published immunostaining data in ESCs, reporting lower 

protein levels of Dnmt3a compared to Dnmt3b as well as the switch of de novo dnmt 

expression during differentiation (Watanabe et al., 2002). Surprisingly, dnmt1-/- EBs showed 

a completely opposite expression pattern of both de novo Dnmts. Whereas dnmt3a mRNA 

levels progressively decreased during EB formation, dnmt3b is highly up regulated at all time 

points during differentiation. The high dnmt3b transcript levels might contribute to the further 

progression of differentiation programs in dnmt1-/- versus TKO EBs. 
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3.1.5 Most bivalent genes are silenced independently of de novo methylation or Dnmt 

proteins during early EB differentiation 

In mouse ESCs, around 2978 genes carry bivalent (H3K4me3/H3K27me3) chromatin 

domains and it has been proposed that this bivalency keeps developmental genes in a silent 

state but poises them for rapid activation during differentiation (Bernstein et al., 2006; Ku et 

al., 2008). Interestingly, Mohn et al. showed that 93 % of all bivalent promoters contain CpG 

islands and suggest a switch from the bivalent state to DNA methylation during differentiation 

of ESCs to neural progenitors, indicating a lineage- specific crosstalk between the two 

repressive modifications. To test whether a similar transition occurs more generally in 

undirected EB differentiation conditions, we repeated the same analysis of gene expression 

changes as above, but analyzed bivalent and non- bivalent gene sets separately (Figure 23).  

 

Figure 23. Expression changes of non-bivalent and bivalent genes in TKO and dnmt1
-/-

 EBs relative to wt 

EBs at day 0-4 of differentiation 

Scatter plots of expression changes for all 22550 non- bivalent genes (A) and all 2978 bivalent genes (B) in TKO 

(y-axis; left plots) and dnmt1
-/-

EBs (y-axis; right plots) relative to wt EBs (x-axis). Genes whose expression levels 

alter in wt but not in TKO EBs (“TKO non- responders", horizontal corridor between the dotted lines of A and B) 

are marked in green in both panels of A and B. The other “responding” genes are heat- colored according to their 

local point density. An increased density of data points in the central doted squares of plots in (B) relative to (A) 

could be observed, indicating that the majority of genes carrying bivalent chromatin domains in the ESCs do not 

change their expression level between d0-4 in any of the genotypes with respect to the non- bivalent genes.  
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Despite the different number of genes, this analysis revealed similar distributions for the 

separate gene sets as for all genes together. Therefore, no general trend for genes which 

are bivalent in the undifferentiated state and then switch to repression by DNA methylation or 

Dnmt protein- dependent mechanisms during early differentiation could be observed. 

Instead, bivalent genes do not tend to change their expression levels under EB differentiation 

conditions since these genes cluster more at the center of the plots (Fig. 23). This is 

expected as EBs are composed of heterogeneous cell populations and bivalent genes are 

only activated in specific cell types and kept silenced in all other lineages. 

3.1.6 Dnmts are required for silencing selected bivalent genes during differentiation 

We also analyzed genes specifically upregulated in dnmt1-/- and/or TKO EBs to identify 

genes controlled by DNA methylation and/or Dnmt3 proteins. We detected 107 genes 

upregulated in both hypomethylated EBs during the first four days of differentiation (d0-4). 

These genes are enriched in GO terms for developmental processes like system, organ and 

anatomical structure development (Fig. 24A). 

 

Figure 24. GO and tissue expression enrichment for genes concertedly upregulated in dnmt1
-/-

 and TKO 

EBs as well as solely upregulated in dnmt1
-/-

 or TKO EBs after the first 4 days of differentiation. 

Enriched GO categories for genes commonly upregulated in dnmt1
-/-

 and TKO EBs (A) and for genes solely 

upregulated in TKO (B) and dnmt1
-/-

 EBs (D). Enriched tissues identified from genes upregulated in TKO EBs are 

displayed in (C).  
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In TKO EBs, more genes (353) were upregulated in comparison to the 224 genes 

upregulated in dnmt1-/- EBs (Fig. 15). Intriguingly, genes exclusively upregulated in either 

dnmt1-/- and/ or TKO EBs have been shown to play a role in the development of the nervous 

system (Fig. 24B, D) and in the case of TKO EBs, many exhibit a brain– specific expression 

(Fig. 24C). Up regulated genes in TKO EBs involved in neural differentiation include nestin, 

hes6, fapb7/blbp, otx2 and fzd3, suggesting that DNA methylation is crucial for the 

repression of early neural lineage specification. In line with this, some of the genes were 

shown to be involved in the in vitro differentiation of ESCs to progenitors of neural rosettes 

(Abranches et al., 2009).  

Interestingly, nestin and otx2 carry bivalent domains in the ESC state and may have been 

missed in our global analysis of bivalent gene expression in hypomethylated EBs (Fig. 23). 

Therefore, we analyzed whether the expression of selected bivalent genes, including genes 

encoding early neural markers, are controlled by DNA methylation and/ or Dnmt proteins. To 

address this question, we quantified mRNA levels in wt, dnmt1-/- and TKO ESCs and EBs 

and analyzed CpG island methylation for nestin (all ectodermal progenitors) and sox1 (early 

neuroepithelial progenitors). We extended the same analysis to fgf5 (primitive ectoderm) and 

brachury (early mesoderm) as representatives of non- neural bivalent genes (Fig. 25). As a 

control we also analyzed a non- bivalent gene, tet1, which encodes the founding member of 

the Tet hydroxylase family and is highly expressed in ESCs, but silenced upon EB 

differentiation (Szwagierczak et al., 2010). As expected, transcript level analysis of nestin, 

sox1, fgf5 and brachury revealed altered expression profiles in mutant ESCs/EBs, although 

to variable extents and at different time points during differentiation. Interestingly, out of all 

analyzed bivalent genes, an increase in CpG island methylation was only detectable for 

nestin and sox1 (Fig. 25B, D). However, it is important to note that methylated sites were not 

found in all clones analyzed by bisulfite sequencing, indicating that the increased methylation 

of these genes only occurs in selected lineages. Furthermore, the observation that some 

genes showed relatively high global transcript levels is consistent with the presence of 

several clones which do not acquire any or very little DNA methylation at all stages. On the 

contrary, in all analyzed clones of tet1 an increase in methylation was detectable in wt EBs, 

although surprisingly, tet1 mRNA levels were not altered in mutant EBs (Fig. 25I, J). These 

data point towards a role of DNA methylation in mediating the suppression of bivalent genes 

involved in early neural differentiation. However, the proper repression of other selected 

bivalent genes like fgf5 and brachyury possibly requires the presence of Dnmt proteins, but 

not the DNA methylation mark per se (Fig. 25F, H). 
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Figure 25. CpG islands of selected bivalent genes important for early neurodevelopmental processes are 

deregulated in mutant ESCs/EBs and methylated in subpopulations of differentiating wt cells. 

Expression levels and CpG island methylation of bivalent genes nestin (A,B), sox1 (C,D), brachyury (E,F) and fgf5 

(G,H) as well as non- bivalent control gene tet1 (I,J) in undifferentiated ESCs (day 0) and at day 4 and 16 of EB 

differentiation. (A,C,E,G,I ) Transcript levels were determined by qPCR in wt, dnmt1
-/-

 and TKO ESCs/EBs as 

indicated and mean values and standard errors from biological triplicates are displayed. To directly compare the 

cell lines to each other, all values were normalized to undifferentiated wt ESCs. Asterisks indicate the significance 

level p <0.05 (Student t-test). (B,D,F,H,J) DNA methylation analysis was performed using bisulfite sequencing in 

wt ESCs/EBs. In the gene cartoons large arrows indicate transcriptional start sites (TSS), open rectangles 

represent exons, grey shaded rectangles represent CpG islands and numbers depict boarders of CpG islands 

with respect to the TSS. Small arrows indicate the analyzed regions. In the panels grey and black squares 

indicate unmethylated and methylated CpG sites, respectively. Percentages of total CpG methylation within the 

analyzed regions/clones are indicated at the bottom of each panel. 
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3.1.7 Hypomethylated cells from late EBs revert to the undifferentiated state 

Our data clearly demonstrated that hypomethylated EBs downregulated Oct4 protein levels, 

although silencing of oct4 and nanog transcription was only partial relative to wt EBs. At the 

same time, both mutant EBs were able to activate differentiation programs, but the 

progression of differentiation programs was changed to an extent that depended on the 

presence of Dnmt3 proteins as dnmt1-/- cells containing both de novo Dnmts, possessed a 

greater differentiation potential compared to TKO cells. Thus, we wondered whether cells 

derived from late dnmt1-/- and TKO EBs could revert to the undifferentiated state in the 

presence of pluripotency promoting conditions. To address this question, we dissociated 12 

days old wt, dnmt1-/- and TKO EBs into single cells and plated equal numbers of cells in the 

presence or absence of LIF (Fig. 26).  

 

Figure 26. Reversible exit from the undifferentiated ESC state in cells with severe DNA hypomethylation 

(A) Overview of experimental set up. EBs were cultured for 12 days, dissociated and their cells plated and 

cultured for three days (R1-3) in the presence or absence of LIF. Expression analysis of oct4 (B), nanog (C), tet1 

(D), fgf5 (E), brachyury (F) and eomes (G) was performed by qPCR in ESCs (day 0), EBs (day 12) and 1, 2 or 3 

days after replating (R1-3). Wt samples are represented in shades of red, dnmt1
-/-

 in shades of blue and TKO in 

shades of green colors; as indicated in the box at the upper right corner. Transcript levels are relative to day 0 in 
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wt ESCs and standard errors are the mean of 3 biological replicates. Asterisks indicate significance levels 

according to a student t-test * p<0.05; ** p<0.001; *** p< 0.0001.  

We then analyzed the expression of pluripotency associated genes as well as markers of 

differentiation after one (R1), two (R2) or three (R3) days of replating. We chose this time 

point (day 12) as previous results clearly demonstrated that Oct4 protein levels were 

homogenously downregulated in all cell lines (Fig. 13). As expected, mRNA levels of 

pluripotency associated factors as well as differentiation markers did not show any response 

to the presence or absence of LIF in wt cells upon replating. By contrast, dnmt1-/- and TKO 

cells upregulated the expression of pluripotency associated factors within 24 h after replating. 

This effect was particularly obvious in the presence of LIF and cells eventually restored the 

transcription to levels originally measured in the respective undifferentiated ESC cultures. 

Furthermore, depending on the presence or absence of LIF, the expression of differentiation 

markers decreased or increased, respectively. Again, the addition of LIF resulted in 

expression levels similar to those originally determined in the undifferentiated state, 

demonstrating that cells from 12 days old dnmt1-/- and TKO EBs are still responsive to 

pluripotency promoting conditions. In the absence of LIF, the same replated cells from 

hypomethylated EBs kept or even augmented the expression of differentiation markers. 

These data clearly demonstrate that even though hypomethylated EBs can activate and can 

progress in their differentiation programs (in the case of dnmt1-/-), cells isolated from these 

mutant EBs can fully revert to the undifferentiated ESC state under appropriate culture 

conditions. This underlines the fundamental role of DNA methylation in establishing a barrier 

for the reactivation of pluripotency genes and in stabilizing transcriptionally silent states 

during differentiation.  
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3.2 Distinct functions of the two members of the Uhrf protein family, 

Uhrf1 and Uhrf2  

Recently, Uhrf1 was identified as a crucial factor in the maintenance of DNA methylation 

patterns by recruiting Dnmt1 to hemi- methylated CpG sites (Bostick et al., 2007; Sharif et 

al., 2007). By binding to hemi- methylated CpG sites and to repressive histone marks, Uhrf1 

connects the two major silencing pathways (see also Chapter 1.2.2). Interestingly, the 

second member of the Uhrf protein family, Uhrf2, contains a highly similar domain structure 

as Uhrf1 (see also Figure 5); however its functional role in maintenance DNA methylation or 

other biological processes remains elusive. Data published by Pichler et al. revealed that 

Uhrf2 is also able to bind to hemi- methylated CpG sites via its SRA domain, as well as to 

repressive histone marks via its tandem tudor domain. Furthermore, co- immunoprecipitation 

studies showed that Uhrf2 interacts with all Dnmts (Dnmt1, Dnmt3a and 3b), suggesting a 

potential role of Uhrf2 in the regulation of DNA methylation (Pichler et al., 2011).  

3.2.1 Uhrf1 and Uhrf2 are differentially expressed in ESCs, various adult tissues, 

during differentiation to EBs and quiescence (serum starvation) 

To elucidate the function of Uhrf2, we first analyzed the expression of uhrf1 and uhrf2, in 

various ESCs, somatic cell lines, during Embryoid Body (EB) differentiation and in adult 

mouse tissues (Fig. 27).  

 
Figure 27. Opposite expression pattern of uhrf1 and uhrf2 in ESCs, during differentiation and in tissues 

Transcript levels of uhrf1 and uhrf2 were measured by qPCR in different wildtype ESCs (wt J1, wt, JM8A, wt 

E14), uhrf1
-/-

 ESCs and somatic cells (A), in various adult mouse tissues (B) and during differentiation of wt J1 (C) 

and wt E14 (D) ESCs to embryoid bodies (EBs). Expression levels are displayed relative to uhrf1 in wtJ1 (A), day 

0 of differentiation (C and D) and to kidney (B) (uhrf1 set to 1). Error bars represent standard error of at least two 

independent experiments, with the exception of (D), where the technical error of one experiment is displayed and 

each sample was measured in triplicates. Part of these data were published in (Pichler et al., 2011). 
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The analysis revealed that the expression profile of both genes switches during 

differentiation of ESCs. Uhrf1 is highly expressed in all analyzed wild type ESCs (wt J1, wt 

JM8A, wt E14) and progressively down regulated during differentiation of ESCs to EBs. 

These data are consistent with previous reports demonstrating that uhrf1 is highly expressed 

in proliferating cells (Muto et al., 1995; Fujimori et al., 1998). In contrast, uhrf2 expression is 

higher in somatic cells when compared to the transcript levels detected in ESCs and its 

expression is up regulated during EB differentiation. Furthermore, in differentiated adult 

mouse tissues like kidney, liver and several brain tissues, uhrf1 mRNA levels are mostly 

absent and uhrf2 is the predominately expressed member of the Uhrf protein family. The 

opposite expression pattern of uhrf1 and uhrf2 argues against a functional redundancy of 

both proteins. Consistent with this, we could not detect a compensatory up- regulation of 

uhrf2 in uhrf1-/- ESCs. Hence the switch in transcription levels of both members of the Uhrf 

protein family indicates different functional roles of uhrf1 and uhrf2 during differentiation.  

As the expression of uhrf1 is known to be regulated in a proliferation- dependent manner 

(Uemura et al., 2000; Miura et al., 2001), we wondered whether uhrf2 shows a similar 

regulation dependency on the progression of the cell cycle. To address this questions we 

serum- deprived NIH3T3 mouse fibroblasts for 48h which caused the majority of the cells to 

accumulate in a quiescent state (G1/G0 phase of the cell cycle) (Fig. 28).  

 
Figure 28. Serum- starvation of NIH3T3 fibroblasts results in the arrest of the majority of the cells in 

G1/G0 phase of the cell cycle. 

To measure the cell cycle profile of proliferating, serum- deprived and restimulated NIH3T3 fibroblasts, cells were 

fixed, stained with Propidium Iodide (PI) and analyzed by FACS. The starvation of cells was very effective as less 

than 1 % of the cells were in S-phase and almost 95 % of all cells were arrested in G1/G0- phase as compared to 

the proliferative state, where only two thirds of the cells were in G1- phase and more than 3 % in S- phase. A 

change in the cell cycle profiles could be detected 18hours after restimulation by the addition of serum. Numbers 

in red describe the percentage of cells in the different phases of the cell cycle (G1, S, and G2). The analysis was 

performed with the help of my colleague Sebastian Bultmann. 
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By adding serum we then restimulated proliferation of the cells and took samples for 

expression analysis after 3, 6, 9, 12 and 24h after serum addition. As a control, we followed 

the expression of dnmt1 and pcna during normal growth, starvation and restimulation, as the 

expression of both genes is known to be dependent of the proliferation of the cells. 

Consistent with previous data (Uemura et al., 2000; Miura et al., 2001), all three genes show 

a proliferation- dependent expression (Fig. 29). During serum starvation transcript levels of 

uhrf1, dnmt1 and pcna were significantly reduced, but reached initial expression level about 

12 hours after serum addition with respect to normally proliferating cells. In contrast, uhrf2 

expression was highly up- regulated in the quiescent state and mRNA levels were drastically 

down regulated upon restimulation. Taken together, these data argue for distinct roles of 

uhrf1 and uhrf2.  

 

Figure 29. Uhrf1, but not uhrf2 shows proliferation dependent expression. 

Expression analysis of uhrf1, uhrf2, dnmt1 and pcna in proliferating (P), serum- starved (S) and restimulated 

NIH3T3 fibroblasts after 3, 6, 9, 12 and 24h of serum addition. Transcript levels were determined by qPCR and 

are displayed relative to the proliferative state of each gene (P is set to 1). Error bars represent standard errors of 

three biological replicates, each measured in triplicates.  

3.2.2 Uhrf2 does not play a role in maintenance DNA methylation in proliferating cells 

To gain more insights into the role of Uhrf2 in regulating DNA methylation we performed 

transient knock downs of uhrf2 in wt and uhrf1-/- ESCs with two different siRNAs. Scrambled 

siRNA (control siRNA) was used to control for possible off- target effects. As currently no 

specific antibody against murine Uhrf2 is available, we monitored the knock down efficiency 

by qPCR (Fig. 30A, B). After two days of treatment, uhrf2 expression was already very 

efficiently down regulated by both specific siRNAs and transcript levels stayed low during 

consecutive rounds of siRNA treatment. As previous studies on RNAi- mediated knock down 

of dnmt1 in HCT116 cells have demonstrated that a dramatic effect on genomic DNA 

methylation could only be observed after at least 8 days of siRNA treatment (Spada et al., 

2007), we chose to analyze DNA methylation levels after 10 days of repeated siRNA 

transfections. This prolonged treatment should also ensure a good knock down efficiency of 

uhrf2 and accumulation of potential errors in DNA methylation patterns. Hence, after 10 days 



  Results 
 

76 
 

of siRNA treatment, we isolated genomic DNA and analyzed the DNA methylation status at 

repetitive sequences like major satellites using bisulfite treatment followed by 

pyrosequencing (Fig. 30C, D). As expected, uhrf1-/- ESCs show a drastic reduction in DNA 

methylation at repetitive sequences in comparison to wt ESCs. However, DNA methylation 

levels were neither affected in wt nor in uhrf1-/- ESCs by the reduced uhrf2 mRNA level, 

suggesting that Uhrf2 might not play a role in the regulation of maintenance DNA methylation 

in ESCs.  

 

Figure 30. Transient knock down of uhrf2 in ESCs does not affect DNA methylation levels at repetitive 

sequences.  

(A and B) Wildtype (left side) and uhrf1
-/-

 (right side) ESCs were treated with two different siRNAs targeting uhrf2 

(siRNA- 1 and siRNA- 2). Cells were transfected with siRNA every second day for a total of 10 days and samples 

were taken for qPCR analysis to investigate the success of uhrf2 downregulation. Control siRNA was used to 

monitor possible off- targets caused by repeated transfections with siRNA. Untreated cells (not shown) were used 

for normalization and set to 1. Shown is the standard error of technical replicates of one biological replicate. (C 

and D). DNA methylation levels were analyzed at Major satellite sequences in ESCs treated with specific or 

control siRNA for 10 days using bisulfite treatment followed by pyrosequencing. 

Since our first experiments of silencing uhrf2 expression by RNAi showed no effect on 

maintenance DNA methylation, we wondered whether the residual uhrf2 mRNA levels (about 

20 % with respect to control treated cells) were sufficient to maintain relative high Uhrf2 

protein levels in the cells. As we were unable to monitor the remaining levels of Uhrf2 protein 

after RNAi treatment due to the lack of a Uhrf2 specific antibody we acquired uhrf2-/+ ESCs, 

which only express about 50 % of uhrf2 with respect to their wt cells (Figure 31A, B).  
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Figure 31. RNAi- mediated silencing of uhrf2 in ESCs does not affect maintenance DNA methylation. 

(A and B) Wildtype (left side) and uhrf2
+/-

 (right side) ESCs were either transfected with control or specific siRNA 

(siRNA- 1) every second day and knock down efficiency was monitored by qPCR. Untreated wt cells (not shown) 

were used as reference and set to 1 so that levels in wt and uhrf2
-/+

 ESCs are directly comparable. Shown is the 

standard error of technical replicates of one biological replicate. (C–G). Pyrosequencing data at major satellite 

sequences (C, D), dnmt1o promoter (E, F) and skeletal α-actin promoter (G, H) in wt (left) and uhrf2
-/+

 ESCs 

treated with specific or control siRNA for 8 days. For the skeletal α-actin promoter, only the results from the first 6 

CpG sites are displayed.  
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We hypothesized that RNAi treatment of these cells should achieve a higher knock down 

efficiency. Hence, we treated wt and uhrf2-/+ with control or specific siRNA for 8 days and 

monitored efficiency of uhrf2 silencing by qPCR. In wt ESCs, we obtained similar down 

regulation of uhrf2 to about 80 % compared to control treated cells. As expected, in ESCs 

heterozygous for uhrf2, mRNA levels of uhrf2 were reduced to about 95 % with respective to 

wt cells, demonstrating that the lower starting transcript levels indeed improved the total 

knock down efficiency. After 8 days, we then analyzed DNA methylation levels at repetitive 

sequences as well as single- copy genes in both cell lines (Fig. 31C-G). Although uhrf2 

expression was drastically reduced after 8 days of siRNA treatment, neither an effect on 

DNA methylation level at repetitive sequences (i.e. major satellites) nor at single copy genes 

(i.e. promoter of dnmt1o or skeletal α- actin) was detected. These data, together with the 

previous RNAi mediated knock down experiment suggest that Uhrf2 does not play a role in 

maintenance DNA methylation in undifferentiated ESCs.  

The observation that uhrf2 transcript levels increase during differentiation could imply a role 

of Uhrf2 in maintenance methylation during development. As uhrf2-/+ ESCs show reduced 

mRNA levels of uhrf2, we wondered whether these cells exhibit any defects in maintaining 

DNA methylation patterns during differentiation. Therefore, we differentiated wt and uhrf2-/+ 

ESCs to EBs and analyzed the expression of uhrf1 and uhrf2 in the undifferentiated state 

(day 0) as well as 4 and 16 days after differentiation (Fig. 32A,B). Whereas uhrf1 transcript 

levels were similarly down regulated independently of the genotype of the cell lines, uhrf2 

expression in uhrf2-/+ ESCs was increased in both EBs during differentiation. However, in 

heterozygous EBs, uhrf2 mRNA levels reached on 50% of the transcript levels measured in 

wt EBs. We then analyzed the level of DNA methylation in the ESCs state (d0) and at both 

time points during differentiation (d4 and d16) by bisulfite treatment followed by 

pyrosequencing (Fig. 32C-F). For both analyzed sequences, no difference in DNA 

methylation was observed in uhrf2-/+ ESCs and during EB differentiation, possibly because of 

the remaining Uhrf2 level in the heterozygous cells.  
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Figure 32. Reduced uhrf2 transcript levels do not alter DNA methylation during differentiation. 

Wildtype (left) and uhrf2
-/+

 (right) ESCs were differentiated to EBs and samples for measuring expression levels 

as well as DNA methylation levels were taken and analyzed in the pluripotent state (d0) as well as 4 and 16 days 

after differentiation. (A and B) Expression analysis of uhrf1 and uhrf2 in wt and uhrf2
-/+ 

ESCs and EBs by qPCR. 

Transcript levels of uhrf1 in undifferentiated wt cells were used as a reference (set to 1), so that mRNA levels 

between the two cell lines (wt and uhrf2
-/+

) are directly comparable. Error bars represent the standard error of 

three technical replicates. (C–F). DNA methylation of ESCs (d0) and 4 and 16 days old EBs at major satellite 

sequences (C, D) and the dnmt1o promoter (E, F) was measured by pyrosequencing.  

In general, the residual levels of uhrf2 mRNA in uhrf2-/+ ESCs and during RNAi- mediated 

knock down could mask the real phenotype of Uhrf2 and hence might not be the best 

approach to analyze the function of Uhrf2, especially in light of a missing antibody to control 

for knock down efficiency at the protein level. Therefore, the best solution to analyze a 

possible function of Uhrf2 in maintenance DNA methylation, would be to generate uhrf2-/- 

ESCs and then analyze DNA methylation pattern in the undifferentiated state as well as 

during differentiation and mouse development.  
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3.3 Novel methods to quantify and map 5 hmC in genomic DNA 

The discovery of the 6th base 5 hydroxymethylcytosine (5hmC) in the genome of ESCs and in 

several tissues with particularly high levels of 5hmC in the central nervous system 

(Kriaucionis and Heintz, 2009; Tahiliani et al., 2009), raised interest in the functional role of 

this newly identified modification. Several hypotheses about the possible function of 5hmC 

have been formulated, including roles as an epigenetic mark and/ or an intermediate in the 

active demethylation pathway (see also chapter 1.2.3). Furthermore, mutations in tet2 have 

been linked to various myelodysplastic syndromes including myeloid leukemia, suggesting 

that aberrant global 5hmC patterns might contribute to the development of myeloid 

malignancies (Langemeijer et al., 2009; Ko et al., 2010).  

Two properties of the newly identified modification make it technically challenging to quantify 

and selectively detect 5hmC: its low abundance and its structural similarity to the more 

abundant 5mC. Moreover, the classical approach to determine genomic 5mC levels, bisulfite 

treatment, cannot be used to distinguish 5hmC from 5mC. Therefore, several tools have 

been adapted or newly developed to quantify and map 5hmC. These methods include 

among others thin layer chromatography (TLC), liquid chromatography in combination with 

mass spectrometry (LS- MS) and the use of antibodies for detection. However, these 

techniques have several drawbacks as in the case of TLC accuracy of 5hmC detection 

proves to be difficult or the use of antibodies for detection bears the risk of unspecific binding 

(reviewed in (Branco et al., 2012). 

3.3.1 Sensitive enzymatic quantification of global hmC levels  

Given all the limitations and drawbacks of the methods used so far to quantify global 5 hmC 

levels, we developed a sensitive, enzymatic assay for accurate quantification of genomic 

5hmC levels. The establishment of the glucosylation assay and the quantification of global 

5hmC levels in various tissues, ESCs and during EB formation was carried out by my 

colleagues Aleksandra Szwagierczak and Sebastian Bultmann. I contributed material from 

ESCs and EBs, participated in the isolation of genomic DNA from tissues, isolated RNA from 

all samples and analyzed the expression of tet1-3 transcript levels by qPCR.  

The basis of the newly developed method is the use of glucosyltransferases of T- even 

bacteriophages, which have been shown to specifically transfer glucose from an uridine 5´- 

diphosphate (UDP)- glucose donor to the hydroxymethyl group of 5hmC. Interestingly, the 

DNA from T4 bacteriophages is devoid of cytosine residues and instead contains 5hmC 

residues, which are modified by α- and ß- glucosyltransferases (α- and ß- gt). As previous 

studies demonstrated that ß- gt is more efficient for in vitro glucosylation assays, we focused 

on ß- gt rather than α- gt (Kornberg et al., 1961; Georgopoulos and Revel, 1971). Using a 
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standard curve with known 5hmC content, we showed that the incorporation of isotopically 

labeled glucose ([3H]glucose) in DNA can be reliably used to measure the abundance of 

5hmC. Hence, with this ß- gt glucosylation assay, genomic 5hmC can be specifically labeled 

and accurately quantified by comparison to a standard curve. We applied this assay to 

various adult mouse tissues as well as to two different mouse strains of undifferentiated 

ESCs and their corresponding differentiated EBs (wt J1 and wt E14) and correlated the hmC 

levels to the relative transcript levels of tet1-3 (Figure 33). 

Figure 33. Quantification of genomic 5hmC and tet mRNA levels in ESCs, EBs and tissues. 

(A-C) Measurements of global 5hmC levels using the 5hmC glucosylation assays. A calibration curve was used 

as a reference to calculate the percentage of 5hmC per total cytosine. Error bars in (A) and (C) represent 

standard deviation of two (A) or one (C) biological replicate, each measured in two independent assays, whereas 

samples in (B) and the hippocampus were only measured once. Every sample was measured twice in every 

assay. The dashed line in (A) represents the calculated limit of detection (0.025 %). (D-F) qPCR analysis of tet 

expression. Transcript levels were calculated relative to tet1 in kidney (set to 1), so that values in D, E and F are 

directly comparable. Error bars represent standard deviation from two (D, E) and one (F) biological replicate, each 

determined from two independent reactions of cDNA synthesis, with the exception of wt E14 EBs after 4 and 8 

days, which were only measured from one cDNA synthesis and therefore lack error bars. Each sample was 

measured in triplicates in the qPCR reaction. Asterisk depicts that obtained values where at the limit of detection 

and therefore could not be quantified accurately. Note that genomic DNA and RNA used in A/B/C and D/E/F, 

respectively, were isolated from the same cell and tissue sample. Data were published in (Szwagierczak et al., 

2010). 

Our measurements using the glucosylation assay revealed that both wild type ESCs 

contained 0.3 % 5hmC relative to total cytosine (Fig. 33A and B). As a control, we also 

measured genomic 5hmC level in Dnmt1, Dnmt3a/3b triple knockout (TKO) ESCs, which are 

devoid of any genomic cytosine methylation and hence should also contain very little, if any, 

hydroxymethylation. Indeed, we could only measure background levels of 5hmC in TKO 

ESCs below the calculated detection limit of 0.025 % of our assay. Expression analysis by 

qPCR showed that tet1-3 transcript levels were comparable in both wild type as well as TKO 
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ESCs, with tet1 transcripts being the most abundant and tet3 the least expressed in 

undifferentiated ESCs (Fig. 33D and E). Previous studies revealed that differentiation of 

ESCs by withdrawal of LIF from monolayer cultures for 5 days leads to decreased genomic 

5hmC with a concomitant reduction of tet1 transcript levels (Tahiliani et al., 2009). We 

differentiated both wild type ESCs to EBs and followed 5hmC levels and tet1-3 transcript 

dynamics. Interestingly, we found that 5hmC levels initially decrease during differentiation of 

ESCs (day 4 EBs), but increased again after 4 additional days of EB culture (day 8 EBs). 

Furthermore, we could observe distinct transcription dynamics of tet genes during EB 

differentiation. Tet1 was predominately expressed in the undifferentiated state but drastically 

down regulated already in the first 4 days and further decreased with differentiation. 

Similarly, tet2 transcripts were down regulated at day 4 of differentiation, but were fully 

restored in EBs at day 8. By contrast, tet3 transcript levels drastically increased during the 

course of differentiation. After the first 4 days, tet3 mRNA levels doubled and increased by 

up to 20 fold in prolonged EB cultures as compared to the levels in the undifferentiated state. 

Therefore, the high levels of tet1, together with the lower tet2 transcripts in the 

undifferentiated state correlate with the relatively high 5hmC levels. The partial recovery of 

5hmC after 8 days of EB culture correlates with increased expression of tet2 and tet3.  

We then measured 5hmC as well as tet1-3 mRNA levels in several adult tissues (Fig. 33C 

and F). Consistent with previous reports (Kriaucionis and Heintz, 2009), we found the highest 

levels of genomic 5hmC in brain tissues which correlated with high levels of tet3 and to a 

lower extent tet2 transcripts. In general, all analyzed adult tissues were characterized by high 

levels of tet3 and low levels of tet1, whereas undifferentiated ESCs show the reversed 

expression pattern. Strikingly, we detect a relatively high amount of 5hmC in kidney with 

concomitant high levels of tet2 in this tissue. The predominate expression of tet2 in kidney is 

consistent with the observation, that one of the described phenotype of tet2-/- mice is a 

cellular defect in proximal convoluted tubules of the kidney (Tang et al., 2008). 

Taken together, our analysis demonstrates a correlation of the different amounts of genomic 

5hmC in various adult tissues, ESCs and during differentiation with the differential expression 

of tet genes.  

3.3.2 The 5hmC specific endonuclease PvuRtsI1 as a tool to profile genomic 5hmC 

patterns 

To gain insights into the functional role(s) of the newly discovered “6th base”, it will be 

necessary to determine genomic 5hmC patterns. As described earlier, the genome of T4 

bacteriophages contains exclusively 5hmC instead of cytosine residues, which are modified 

by α- and ß- glucosyltransferases. The switch of cytosine to 5hmC in the T4 genome is 

thought to have evolved as a protection system against the restriction enzymes of the host 
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bacteria after infection. As a strategy to counter the phage`s measures, bacteria have 

evolved a system of restriction enzymes that specifically recognize modified cytosines. One 

of the bacteria enzymes, the endonuclease PvuRts1I has been demonstrated to cleave 

glucosylated 5hmC and its restriction activity was shown to be modulated by glucosylation in 

a complex way. PvuRts1I is encoded by a single gene found on the kanamycin resistance 

plasmid Rts1 which was originally isolated from Proteus vulgaris (Janosi et al., 1994). 

Interestingly, the growth of 5hmC containing T- even bacteriophages, but not that of T-odd 

phages containing 5mC or λ- phages devoid of any modified base is restricted by bacteria 

carrying the Rts1 plasmid (Janosi et al., 1994). This suggests that PvuRts1I could be a useful 

tool to discriminate 5hmC from 5mC or unmodified cytosine.  

To address this question, we purified recombinant PvuRts1I and showed that it selectively 

cleaves non- glucosylated 5hmC containing DNA with even higher efficiency than α- or ß-

glucosylated DNA. We then determined the cleavage pattern of PvuRts1I by generating 

libraries of restriction fragments of the whole non- glucosylated T4 genome or a reference 

fragment produced from the same genome containing exclusively hdroxymethylated 

cytosine. Random sequencing of more than 100 clones from each library revealed a 

consensus sequence of hmCN11-12/N9-10G with a 2 nucleotide 3´- overhang. Furthermore, by 

comparing DNA substrates containing one single PvuRts1I consensus site (hmCN12/N10G) 

with either hmC or mC in symmetrical or asymmetrical configuration or unmodified C, we 

found that sites with symmetric hmC are the preferred substrates of PvuRts1I. These 

experiments were conducted by my colleague Aleksandra Szwagierczak and are published 

in (Szwagierczak et al., 2011).  

All the experiments performed so far used T4 genome or artificial DNA substrates as 

templates. As a next step, we wanted to investigate whether PvuRts1I could be used as a 

tool to map 5hmC patterns in mammalian genomic DNA. All the following experiments were 

conducted by me, except for the radioactive measurements of 5hmC levels in DNA 

substrates, which were conducted by my colleague Aleksandra Szwagierczak. 

To analyze the efficiency of PvuRts1I digestion for mammalian genomic DNA, we chose the 

upstream regulatory region III of the mouse nanog gene (Hattori et al., 2007). We selected 

this region because very recent data indicate that Tet1 binds to this region and keeps the 

nanog promoter in a hypomethylated, active state. Further evidence for this hypothesis 

comes from the observation that this region acquires CpG methylation upon knock down of 

Tet1 in ESCs (Ito et al., 2010). Hence, the upstream regulatory region of nanog represents a 

potential 5hmC containing sequence in ESCs.  
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Firstly, we digested or mock- treated genomic DNA from wild type and TKO ESCs with 

PvuRts1I and used two different primer pairs (Primer 1 and Primer 2) to analyze the 

decrease in product after digestion compared to mock digested samples (Figure 34). The 

primers were chosen in nanog regions which according to Ito et al. show increased DNA 

methylation upon tet1 knock down in ESCs (Ito et al., 2010).  

 

Figure 34. Amplification of PvuRts1I digested fragments does not reduce amount of PCR products. 

Genomic DNA from wt or TKO ESCs was digested with PvuRts1I or mock treated and amplified with primers 

specific for the nanog locus by qPCR. A locus containing 5hmC and digested with PvuRts1I should result in fewer 

template for the qPCR. As TKO ESCs are devoid of any DNA methylation, genomic DNA from TKO serves as a 

negative control for the specificity of the digestion reaction. A) shows an outline of the strategy used to detect 

5hmC in mammalian genomic DNA whereas B) describes the upstream regulatory region of the nanog locus and 

also marks the location of the primers used in the qPCR reaction. The results of the amplification of fragments 

treated or not treated are depicted in C). Shown is the technical error of one representative experiment and each 

sample was measured in triplicates in the reaction. Each mock treated sample for each analyzed region and cell 

line was set to 1 to calculate the change in product after digestion.  

However, we could not detect a decreased resistance to PvuRts1I digestion in the two nanog 

promoter regions as qPCR amplification with both primer pairs did not lead to a reduction of 

products in the digested samples. This could be due to the low abundance of 5hmC in 

genomic DNA of ESCs which makes it technically challenging to detect slight differences in 

decreased amounts of PCR products. We then thought of a strategy to positively identify rare 

PvuRts1I digestion products. As digestion with PvuRts1I results in fragments with a two 

nucleotide 3´ overhang, we generated a linker with a random two nucleotide 3´overhang (Fig. 

35A), which we ligated to the digested products. We then used nanog specific primers paired 

with a linker specific primer to amplify ligation products. Unfortunately even using this 

adapted protocol we were unable to detect any amplification products (data not shown). The 

lack of amplification products may be explained by an extremely rare occurrence of 5hmC at 

PvuRts1I cleavage sites of this locus, especially as PvuRts1I preferentially cleaves sites with 

symmetrical 5hmC configuration. In addition, it could be due to inefficient digestion with 

PvuRts1I or a combination of both explanations. In this respect it is important to note that a 

positive identification of 5hmC in the upstream regulatory region of the nanog locus has not 
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been conclusively demonstrated for ESCs (Ito et al., 2010) and is still highly controversial as 

another group could not confirm the reduced nanog expression upon tet1 knock down in 

ESCs (Koh et al., 2011). Taken together, it is uncertain whether the nanog locus is modified 

by hydroxymethylation in ESCs and is therefore not suitable to establish the cut- ligation-

amplification strategy to detect PvuRts1I digestion products.  

Consequently, we decided to generate substrates with defined amounts of 5hmC to validate 

the PvuRts1I cut- ligation amplification protocol for the identification of 5hmC sites. We used 

primers specific for the region III of the nanog promoter to amplify fragments by PCR in the 

presence of increasing amounts of 5-hydroxymethyl- dCTP (Figure 35). The successful 

incorporation of proportional levels of 5hmC was confirmed by the ß- glucosylation assay.  

 

Figure 35. Preparation of linker oligos and substrates with increasing 5hmC concentration. 

A) Equal amounts of single stranded forward primer (For), forward primer containing a random two nucleotide 

3´overhang (For-OH), reverse primer (Rev) and annealed oligo (Linker) were loaded on a 15 % non-denaturating 

polyacrylamide gel (PAGE) and stained with SYBR-Green. B) PCR products (867 bp) containing increasing 5hmC 

levels were generated by amplification of the proximal upstream regulatory region of the nanog locus (Region III) 

and the addition of 5-hydroxymethyl- dCTP and dCTP at appropriate ratios. Minus indicates negative control of 

the PCR reaction. (C) The random incorporation of 5hmC into the PCR fragments was confirmed by ß-

glucosylation assay.  

The PCR products with increasing, randomly distributed 5hmC sites were then digested with 

PvuRts1I, ligated to a linker with random two nucleotide overhangs to match PvuRts1I and 

ligation products were detected by PCR amplification using two distinct nanog specific 

primers (nanog P1 and P2) each paired with a linker specific primer. PCR products were 

analyzed on an agarose gel (Figure 35B) and randomly cloned and sequenced. Indeed, we 

could detect fragments with ends corresponding to the PvuRts1I cleavage pattern however 

only in products from high 5hmC content (10 %). While fragments containing 1 % 5hmC, 

which is the highest global 5hmC content to be reported in certain brain tissues, only show 

background signal (Fig. 36). Our results using the linker/ amplification strategy clearly 

suggest that a high local concentration of 5hmC facilitates the detection of digestion products 

by PvuRts1I.  
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Figure 36. Identification of PvuRts1I digestion fragments of substrates with increasing 5hmC level. 

A) Outline of cut-ligation-amplification strategy to identify PvuRts1I cleavage sites. After generation of PCR 

fragments with increasing 5hmC amount, fragments were digested with PvuRts1I and ligated to a linker. Two 

different nanog specific primers (P1 and P2) were used in combination with the linker specific primer to positively 

amplify PvuRts1I cleaved sites. B) Agarose gels of obtained PCR fragments indicate the presence of several 

products after PvuRts1I digestion. The percentage of 5hmC contained in the original substrates and the presence 

of the linker in the ligation reaction are depicted. NTC: no template control in the PCR reaction. C) Products from 

the PCR reaction (B) were randomly cloned and sequenced. In the table, the numbers of sequences containing 

ends corresponding to one of the PvuRts1I cleavage site and the site subtype are summarized. The asterisk 

indicates a sequence which is reported under two categories because it could not be unambiguously assigned to 

the consenus site hmCN12/N9G or hmCN11/N9G due to occurrence of consecutive C residues. Data were 

published in (Szwagierczak et al., 2011).  
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3.4 Targeted transcriptional activation of silent oct4 pluripotency genes 

by combining designer TALEs and inhibition of epigenetic modifiers 

The ability to study and engineer biological processes by specifically manipulating the 

genetic information within a cell has been a long- sought goal for scientists. Some natural 

occurring DNA- binding proteins including zinc fingers and meganucleases have been 

engineered to achieve site- specific manipulation of the genome. Especially Zinc fingers 

fused to transcriptional activator or repressor proteins have been successfully used to carry 

out site- specific modifications nearby their binding sites (Beerli et al., 2000; Blancafort et al., 

2003). However, the design and development of new DNA binding proteins that recognize 

user- defined target sequences is often difficult and expensive. Intriguingly, recent studies 

showed that transcription activator- like effector proteins (TALEs) from the plant pathogenic 

bacteria Xanthomonas harbor a DNA binding domain which can be tailored to specifically 

target new sequences (Boch et al., 2009; Bogdanove and Voytas, 2011). These natural 

effector proteins are injected into plant cells where the TALE modulates the gene expression 

of the host genome to contribute to bacterial colonization and survival (Kay et al., 2007; 

Römer et al., 2007). The central DNA binding domain of the modular TALE proteins is 

composed of a variable number of tandem repeats of a 34-35 amino acid- sequence motif. 

Each repeat monomer binds to one base and the various repeats differ from each other only 

at position 12 and 13. These two residues are also known as the repeat variable diresidues 

(RVDs) which confer base preference as different RVDs specifically recognize different DNA 

base pairs (Boch et al., 2009; Moscou and Bogdanove, 2009). The decryption of this TALE 

code enables the assembly of TALE repeat arrays that target any user-defined DNA 

sequence (Bogdanove et al., 2010). Indeed, recent data using a variety of designer TALEs 

(dTALEs) targeting several genes demonstrated that they can specifically modulate 

transcription from the genome in human cells (Zhang et al., 2011a). However, genes like the 

pluripotency gene oct4 could not be activated in the study, raising the question if and how 

epigenetic modifications might affect the performance of dTALEs.  

To shed some light on how the epigenetic environment might affect the ability of TALEs to 

activate oct4, we generated five different dTALEs each targeting 19 bp sequences within 100 

bp upstream of the transcriptional start site of the murine oct4 promoter. Furthermore, the 

activation domain (AD) of the Xanthomonas TALE was replaced with the VP-16AD of the 

herpes simplex. The generation of the dTALEs was carried out by our collaborator Robert 

Morbitzer from the group of Thomas Lahaye. Reporter assays, Immunflourescence and most 

of the DNA methylation analysis were done by Sebastian Bultmann. I contributed all 

expression data and participated in collecting and analyzing DNA methylation patterns.  
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Using a transient gene reporter assay, we tested the activity of the five dTALEs by co- 

transfecting an oct4- promoter driven eGFP (poct4-eGFP) construct and a constitutively 

expressed dTALE plasmid. Notably, we found that the efficiency to act as transcriptional 

activators greatly varied - up to 25 fold difference - between the tested dTALEs on the poct4-

eGFP reporter. Next we analyzed the efficiency of dTALE mediated transcriptional activation 

on methylated poct4-GFP plasmid to investigate whether the epigenetic state of the promoter 

does influence the efficiency of activation. Interestingly, all tested dTALEs were able to 

induce eGFP expression albeit to a lower extent when compared to the unmethylated 

reporter construct. We then used the dTALE (T-83) which achieved the strongest 

transcriptional activation in both transient reporter assays to activate endogenous oct4 

expression in ESCs. To test the activation potential of T-83, we generated ESC lines carrying 

a stable integrated oct4 promoter construct regulating the expression of eGFP (ogESCs) and 

transfected the reporter cell with the dTALE T-83 fused to mCherry. Transfected cells were 

identified and selected by FACS, the intensity of eGFP fluorescence was measured and 

endogenous oct4 mRNA level were analyzed by qPCR (Figure 37). 

 

Figure 37. Hyperactivation of endogenous oct4 expression in ESCs by dTALEs. 

(A) Schematic overview of the 102 bp long region upstream of the transcriptional start site (TSS) of the oct4 locus. 

The binding site of the Sp1/Sp3 transcription factors, the hormone responsive element (HRE) and two CpG sites 

(open circles) are depicted. The location of the target sequence of the oct4 specific dTALEs is shown and the 

dTALEs are named according to the distance between the 5´end of their binding sequence and the TSS. The 

most activating dTALE according to the transient reporter assays, T-83 (red box), was used to hyperactive the 

endogenous oct4 locus in ESCs carrying a stable integrated plasmid where expression of eGFP is under control 

of the upstream regulatory region of oct4 (ogESCs). After transfection with control (mCherry) vector or T-83 

plasmid fused to mCherry, cells were analyzed by FACS and relative eGFP intensity of mCherry positive ogESCs 

was measured (B). Transfected, mCherry positive cells were single sorted by FACS and endogenous oct4 

transcript levels were analyzed by qPCR (C). Shown are average values and standard deviation from three 

biological replicates. Data were published in (Bultmann et al., 2012). 

Cells transfected with dTALE T-83, but not with control plasmid, showed a 3-4 fold higher 

mean eGFP fluorescence intensity compared to control treated cells. Furthermore, transcript 
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levels of the endogenous oct4 locus were about twofold higher than cells transfected with 

control plasmid, demonstrating that the dTALEs can hyperactivate endogenous oct4 

expression in ogESCs. The relatively low activation rate of oct4 is probably due to the high 

basal oct4 expression level in ESCs and to the regulation of oct4 by negative feedback loops 

on its own promoter (Pan et al., 2006). 

To investigate whether dTALEs are able to activate a transcriptionally silent endogenous 

oct4 locus, we differentiated ogESCs into neural stem cells (ogNSCs) since the oct4 

promoter is epigenetically silenced during differentiation and oct4 expression is therefore 

shut down (Kim et al., 2008b). Consistently, we could neither detect any poct4-eGFP 

fluorescence nor oct4 transcripts in untransfected ogNSCs (Fig. 38A,B). Transfection of 

control or dTALE T-83 could however neither activated the endogenous locus nor the 

oct4eGFP locus since neither oct4 mRNA nor eGFP fluorescence was measured. Given that 

the oct4 promoter acquires repressive histone modifications and DNA methylation upon 

differentiation, we wondered whether the different epigenetic states of the oct4 locus in 

ogESCs and ogNSCs could be the reason for the lack of activation upon dTALE transfection. 

In ogESCs, oct4 is actively transcribed and therefore the promoter region might be more 

accessible to dTALEs, whereas in ogNSCs, oct4 is silenced and the locus could be in a more 

condensed and inaccessible conformation for dTALE binding and activation. Hence, we 

wondered whether inhibition of repressive epigenetic modifications could overcome the 

barrier for dTALE mediated activation of the transcriptionally silent oct4 promoter. To test this 

hypothesis, we applied histone deacteylase (HDAC) inhibitors Trichostatin A (TSA) (Yoshida 

et al., 1990) or valproic acid (VPA) (Göttlicher et al., 2001) as well as the Dnmt inhibitor 5-

aza- 2´- deoxycytidine (5-azadC) (Santi et al., 1983) which interfere with the two major 

epigenetic silencing mechanisms in mammals (Fig. 38). Twelve hours after transfection with 

empty or T-83 plasmid, ogNSCs were treated with respective inhibitor or a combination 

thereof (VPA + 5-azadC) for additional 36 hours. In line with our hypothesis, the treatment of 

cells with VPA, 5-azadC or a combination of both significantly increased eGFP fluorescence 

intensity only in cells transfected with dTALE and not with control vector. In line with this, 

endogenous transcript levels of oct4 were induced up to 60 % with respect to the levels in 

ogESCs. In contrast, addition of TSA to transfected cells (control or dTALE) neither 

enhanced eGFP fluorescence nor endogenous oct4 mRNA level. A combination of 5-azadC 

and VPA did not show any additive nor synergistic effects but led to similar activation as the 

addition of the single epigenetic inhibitors.  
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Figure 38. Activation of the silent oct4 locus in NSCs requires inhibition of repressive epigenetic mechanisms 

in combination with dTALEs. 

NSCs carrying a stable integrated oct4 promoter plasmid controlling eGFP expression were derived from ESCs, 

transfected with either control (blue) or T-83 (red) plasmid and treated with various epigenetic inhibitors: TSA (30 

nM), VPA (620 µM), 5- azadC (10 nM) or a combination of VPA (310 µM) and 5- azadC (5 nM). (A) Relative 

eGFP intensities of transfected and treated cells were measured by flow cytometry. After RNA isolation of 

positively transfected and sorted cells, mRNA levels of oct4 (B), nanog (C) and tet1 (D) were quantified by qPCR. 

Untransfected ogESCs and ogNSCs were used as controls and all expression levels were calculated relative to 

ogESCs (ogESCs set to 1). In the very same samples, DNA methylation levels at the oct4 promoter were 

analyzed by bisulfite-treatment followed by pyrosequencing and ogESCs and ogNSCs served as reference (E). 

Shown is the percentage of DNA methylation measured over 5 CpG sites in the proximal part of the oct4 

promoter. Oct4 protein level was confirmed by antibody staining (Alexa-647) and fluorescence microscopy (F). 

ogNSCs were transfected with T-83 dTALE and either untreated or treated with 5-azadC (10 nM) and samples 

were counterstained with DAPI. Transfected cells with T-83 or control plasmid are displayed in the mCherry 

channel, whereas eGFP fluorescence reflects expression of oct4 reporter construct. Error bars show standard 
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deviation from two to three biological replicates. Samples where no transcript could be detected by qPCR are 

marked with asterisks. Data were published in (Bultmann et al., 2012). 

Importantly, the fact that the treatment with inhibitors alone did neither induce reporter nor 

endogenous oct4 expression, demonstrates that the observed transcriptional activation was 

the result of the synergistic action of both, dTALE and inhibitors on the oct4 locus. 

Furthermore, ogNSCs transfected with dTALE and treated with VPA, 5-azadc or combination 

of both did not only upregulate oct4 transcript levels but also Oct4 protein levels (Figure 

38F). In addition, also downstream target genes of Oct4, like nanog and tet1, were 

specifically activated in these cells, suggesting that the pluripotency network could at least be 

partially activated via the activation of Oct4 by dTALEs in combination with epigenetic 

inhibitors (Fig. 38D, C). In contrast, the expression of genes which are not part of the Oct4 

regulatory network were not altered upon treatment with epigenetic inhibitors and/ or 

transfection with dTALE (Figure 39).  

 

Figure 39. Transcript and DNA methylation levels of control genes and loci, respectively, are not affected 

by dTALE mediated activation of oct4 promoter or addition of epigenetic inhibitor.  

Cells were treated as described in Figure 37. (A) Relative expression of the late endodermal marker gene hnf4a 

was measured by qPCR in untransfected, control or T-83 transfected cells. As a positive control, 16 day old EBs 

derived from ogESCs (ogEBs) were analyzed and set as reference (set to 1). DNA methylation levels at major 

satellite repeats (B) and the imprinted locus h19 (C) were analyzed by bisulfite treatment coupled with 

pyrosequencing. Average values of 8 (B) and 6 CpG (C) sites are displayed. Error bars represent standard 

deviation from two to three biological replicates. Data were published in (Bultmann et al., 2012). 

As the application of both, 5-azadC and VPA, has been shown to induce DNA demethylation 

(Santi et al., 1983; Dong et al., 2010), we analyzed the effect of both inhibitors on the DNA 

methylation level at the oct4 locus. Strikingly, in samples treated with inhibitors alone and/or 

transfected with control vector, DNA methylation remained unchanged. In contrast, cells 

transfected with dTALE T-83 and/ or treatment with VPA and/ or 5-azadC resulted in a 

remarkable reduction of around 30 % of the original methylation observed at the oct4 

promoter (Figure 38E). It is important to note that reduced DNA methylation levels were not 

observed on the imprinted h19 locus or at major satellite repeats upon treatment with 
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inhibitors in combination with dTALE T-83 transfection (Fig. 39). This clearly demonstrates 

that the observed effect occurs specifically at the oct4 promoter and suggests that dTALEs in 

combination with chemical manipulation of epigenetic modifiers facilitate targeted 

transcriptional activation of epigenetically silenced target genes.  
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4. Discussion 

4.1 Global DNA hypomethylation prevents consolidation of 

differentiation programs and allows reversion to the ESC state 

4.1.1 DNA methylation is not required for the initial down regulation of pluripotency 

genes 

Numerous studies have analyzed DNA methylation profiles in several cell lines, including 

ESCs, during ESC differentiation and various developmental stages. However, most studies 

concentrated on mapping DNA methylation patterns without taking into account that not only 

DNA methylation as a mark per se but also the presence of the Dnmts themselves 

independent of their catalytical activity might be a crucial factor for the initiation and 

execution of differentiation programs. Especially expression data from in vitro differentiated 

progeny of hypomethylated ESCs lacking specific Dnmts are very seldom. This is probably 

due to previous studies reporting very limited survival and/ or proliferation of dnmt1-/- and 

TKO ESCs upon differentiation (Lei et al., 1996; Panning and Jaenisch, 1996; Jackson et al., 

2004; Sakaue et al., 2010). To elucidate the role of Dnmts and DNA methylation during 

differentiation we generated Embryoid Bodies (EBs) from wt, dnmt1-/- and TKO ESCs and 

analyzed their differentiation potential (Fig. 40).  

 

Figure 40. The experimental strategy and key questions of the project are outlined. 
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The formation of EBs provides an unbiased and undirected differentiation model leading to 

the generation of a broad range of cell fates and therefore is commonly used to evaluate the 

differentiation potential of cells. We investigated transcript and DNA methylation levels of 

selected genes involved in pluripotency and differentiation and also measured protein levels 

of the master regulator Oct4 during the course of differentiation. Furthermore, we analyzed 

genome- wide expression changes at three different time points during differentiation to gain 

insights into the developmental potential of globally hypomethylated cells.  

In our study, we find that the expression of the pluripotency master genes, oct4 and nanog, is 

down regulated in dnmt1-/- and TKO EBs, but residual mRNA levels of both genes can even 

be detected in 16 days old EBs (Fig. 12). However, intracellular protein staining by FACS 

revealed that all cells uniformly down regulated Oct4 protein level to the same basal levels 

present in wt EBs after 8 to 12 days of EB culture, indicating that also globally 

hypomethylated cells did homogenously exit from the ESC state (Fig. 13). This observation is 

supported by the relatively high concordance of genome- wide expression changes in mutant 

relative to wt EBs after 4 days of differentiation. In all three cell lines, transcript levels of 

genes involved in stem cell maintenance and development were down regulated, whereas 

the expression of genes involved in differentiation processes were up regulated (Fig. 17). 

Our results also show that the initial down regulation of oct4 and nanog transcript levels 

occurs independently of DNA methylation as an increase in promoter methylation in wt EBs 

is only detectable after 6 to 8 days of differentiation (Fig. 12). This is in line with previous 

studies demonstrating that DNA methylation is not required for initiation of silencing, but 

necessary to maintain long- term repression (Feldman et al., 2006; Sato et al., 2006; 

Athanasiadou et al., 2010).  

Furthermore, our experiments revealed that silencing of oct4 occurs in a timely delayed 

manner exclusively in TKO, but not in dnmt1-/- EBs, after 4 days of differentiation and this 

delay is detectable at transcript as well as protein level. Both mutant EBs are globally 

hypomethylated, but the major difference between these two knock out EBs is that TKO cells 

additionally lack both de novo Dnmts. The notion, that the delay in oct4 silencing selectively 

occurs in TKO EBs very early during differentiation, suggests that the presence of de novo 

Dnmts independent of their catalytical activity plays a role in the initiation of oct4 down 

regulation. The process of oct4 silencing during differentiation has been shown to consist of 

a multistep cascade including the loss of the nucleosome- depleted regions at the distal 

enhancer of oct4, binding of the transcriptional repressor GCNF, transfer of the repressive 

histone mark H3K9me3 by the histone methyltransferase G9a and subsequent recruitment of 

Hp1 which is then followed by de novo methylation of the promoter via Dnmt3a and Dnmt3b 

(Feldman et al., 2006; Sato et al., 2006; Li et al., 2007b; Epsztejn-Litman et al., 2008; You et 
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al., 2011). Several studies indicated that Dnmt3a and 3b also interact with various epigenetic 

factors like GCNF and G9a which supposedly leads to the recruitment of the de novo Dnmts 

to the oct4 promoter (Sato et al., 2006; Epsztejn-Litman et al., 2008). Although DNA 

methylation seems to function as a secondary epigenetic event in oct4 silencing, our data 

indicate that the presence of Dnmt3a and 3b proteins at the oct4 locus independent from 

their catalytic activity might contribute to the efficient initiation of oct4 silencing possibly by 

supporting the recruitment of repressive histone modifying enzymes. It would be interested to 

analyze whether a delay in oct4 down regulation can also be observed in ESCs lacking 

Dnmt3a and/or Dnm3b and to perform genetic complementation assays of TKO ESCs with 

catalytical active or inactive Dnmt3a and/ or Dnmt3b proteins. Furthermore, it would be 

important to examine at what time point during differentiation Dnmt3 proteins bind to the oct4 

locus and to identify epigenetic factors which are possibly recruited by Dnmt3 proteins very 

early during differentiation before any promoter methylation is detectable at the locus.  

4.1.2 dnmt1-/- and TKO ESCs show differences in their developmental potential 

To analyze the differentiation potential of wt, dnmt1-/- and TKO ESCs, we performed global 

expression analysis in the pluripotent state (d0) and at two time points during differentiation 

(d4 and d16), which revealed several important results. Firstly, hypomethylated cells are able 

to initiate differentiation processes as many concordant transcript changes between mutant 

and wt EBs were detected after 4 days of differentiation. In line with this, the expression of 

genes associated with pluripotency was down regulated and transcripts involved in lineage 

selection and developmental processes were up regulated in all three cell lines 

independently of the genotype. These results indicate that DNA methylation is dispensable 

for the activation of differentiation programs. Secondly, although both mutant cells are 

globally hypomethylated, dnmt1-/- and TKO EBs show significant differences in their ability to 

execute differentiation programs. This idea is supported by the observation that the 

expression profiles of TKO EBs show a high degree of divergence from those in wt EBs after 

16 days of EB culture and the few genes could only be grouped into GO categories involved 

in metabolic processes. In contrast, we still detect many concordant transcript changes in 

dnmt1-/- and wt EBs at day 16 of differentiation. Most of these commonly expressed genes 

were related to developmental processes including cell differentiation and proliferation as 

well as organ development. These data clearly point to a previously unappreciated 

progression of transcription programs in differentiated dnmt1-/- cells.  
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Figure 41. Summary of gene changes and corresponding GO categories occurring in wt (red), dnmt1
-/- 

(blue) and TKO (green) ESCs and EBs identified by Microarray analysis.I 

In the undifferentiated state, all cell lines show very similar expression profiles, however, during differentiation, 

expression patterns progressively diverge, especially in the case of TKO EBs. 

However, our analysis also implies a substantial limited differentiation potential in TKO and, 

to a lower extent, in dnmt1-/- cells. In this regard it is important to note that while TKO ESCs 

are virtual devoid of DNA methylation, dnmt1-/- ESCs contain about 20 % residual genomic 

methylation, although the methylation is mainly restricted to repetitive sequences (Lei et al., 

1996; Liang et al., 2002; Tsumura et al., 2006). Nonetheless, examination of the expression 

profiles of both hypomethylated cells clearly shows a different response of TKO and dnmt1-/- 

cells to differentiation conditions, suggesting that the presence of Dnmt3 proteins can 

partially compensate for the loss of Dnmt1. In line with this we detected higher levels of 

dnmt3b, but slightly lower levels of dnmt3a transcripts in dnmt1-/- EBs compared to wt EBs 

(Fig. 22). Interestingly, it has been shown that the activity of the dnmt3b promoter is 

regulated by DNA methylation (Nimura et al., 2006). Hence, the reduced global DNA 

methylation levels in dnmt1-/- EBs could contribute to the higher expression of dnmt3b and 

possibly compensates for the lower dnmt3a transcript levels observed in mutant EBs.  

Besides a possible compensatory role of Dnmt3 proteins in dnmt1-/- EBs, it could also be that 

the de novo Dnmts fulfill functions in transcriptional regulation independent of their catalytical 

activity like we have seen e.g. in the silencing of the bivalent genes fgf5 and brachyury (Fig. 

25), although here it will be important to confirm binding of Dnmt3 proteins at those 

promoters. The notion that Dnmts can mediate transcriptional repression independent of their 
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catalytical domain has been demonstrated for Dnmt1. Among the numerous Dnmt1- 

interacting proteins, also several histone deacteylases have been identified (see also chapter 

1.2.1) and it is believed that Dnmt1 recruits these repressive chromatin modifying enzymes 

to mediate gene silencing independently of DNA methylation (Fuks et al., 2000; Robertson et 

al., 2000a; Rountree et al., 2000b). A recent report suggests that also Dnmt3b could fulfill 

regulatory functions aside from its DNA methylation activity. More specifically, the study by 

Martins-Taylor et al. shows that knock down of dnmt3b during neural differentiation alters the 

timing of differentiation and lineage choice. Interestingly, affected genes were not targets of 

DNA methylation but the proximal promoters of these lineage genes were directly bound by 

Dnmt3b. The finding that upon dnmt3b knock down, also the repressive histone mark 

H3K37me3 and binding of EZH2, the H3K27 methyltransferase component of the Polycomb 

repressive complex 2 (PRC2), at deregulated genes was reduced compared to control 

treated cells, implies that Dnmt3b might play an important role in the recruitment of EZH2 

and/ or in maintaining EZH2 binding at these promoters (Martins-Taylor et al., 2012). In this 

context it is interesting to note that up regulated genes in TKO EBs were predominately 

involved in neural fate specification, implying that DNA methylation and/ or Dnmts play a 

crucial role in neural development. In general, further studies comparing global binding 

patterns of Dnmts to DNA methylation profiles would be necessary to shed more light on the 

role of DNA methylation and Dnmts in controlling transcription programs during development. 

The analysis of global binding profiles of Dnmt3s and DNA methylation maps could be used 

to identify targets of Dnmts independent of their catalytical activity. Conversely, the knockout 

cell lines could be complemented with catalytical mutants of Dnmts to distinguish catalytical 

dependent and independent targets of the methyltransferases. In addition, as our results 

suggest that the presence of Dnmt3s in dnmt1-/- could contribute to their milder phenotype, it 

would be crucial to analyze the transcription profiles and developmental potential of ESCs 

lacking Dnmt3a and/or Dnmt3b. A comparison of these results with the data from dnmt1-/- 

and TKO ESCs and EBs would shed light on how the various Dnmt proteins contribute to 

transcriptional control during differentiation.  

Key transcription factor genes for cell fate choice and lineage commitment are known to 

carry bivalent chromatin domains, which are mainly resolved after differentiation initiation, 

either by loss of H3K27me3 for transcriptional activation or loss of H3K4me3 or both H3 

marks for gene silencing (Bernstein et al., 2006; Mikkelsen et al., 2007). In the latter case, 

the loss of these histone marks is believed to be accompanied by gain of DNA methylation 

for permanently sealing transcription, as has been proposed for the differentiation into the 

neural lineage (Mohn et al., 2008). We hypothesized that DNA methylation might represent a 

general mechanism for the final silencing of bivalent genes and expected that most bivalent 

genes would be deregulated in dnmt1-/- and/ or TKO EBs. However, our analysis revealed 
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that only selected bivalent genes involved in early neuroectodermal differentiation like nestin 

and sox1 did gain DNA methylation in a subset of differentiated wt cells and were 

deregulated in the absence of Dnmts. Hence, our results support the idea that de novo 

methylation represents the long- term silencing mechanism for selected bivalent genes in 

specific lineages and does not function as a general mechanism for the repression of 

bivalent genes during differentiation.  

4.1.3 Parallels and crosstalk between the two major repressive pathways– DNA 

methylation and Polycomb repressive system 

Intriguingly, a comparison of the phenotypes observed in ESCs devoid of functional 

Polycomb repressive complexes (ring1b-/- eed-/- double knock out (DKO) ESCs) show striking 

similarities to the phenotypes detected in ESCs lacking all three major Dnmts. Analogous to 

Dnmt TKO ESCs, Polycomb DKO ESCs are able to self- renew in culture, but are severely 

impaired in their ability to differentiate. More specifically, in vitro differentiation to EBs 

revealed that the Polycomb double mutant cells formed EBs, although with reduced size 

compared to wt or single mutant EBs and up regulated differentiation markers and down 

regulated the expression of pluripotency genes. Furthermore, Polycomb DKO cells injected 

into blastocysts were able to contribute to the inner cell mass (ICM), but failed to contribute 

to lineages at later developmental stages (E10.5) in chimera embryos (Leeb et al., 2010). 

Hence, similar to Dnmt TKO ESCs, Polycomb DKO ESCs are able to activate differentiation 

programs but fail to proceed with differentiation (Leeb et al., 2010; Sakaue et al., 2010). 

ESCs lacking either PRC1 or PRC2 show no defect in differentiation and can contribute to 

cells of all three lineages (Leeb et al., 2010). In line with this, we detect a milder phenotype of 

ESCs lacking solely Dnmt1 since also at later differentiation stages, many concordant 

expression changes between wt and dnmt1-/- EBs could be detected.  

Another parallel between the two repressive systems is the higher number of derepressed 

genes upon simultaneous knock out of PRC1/PRC2 ESCs and TKO ESCs compared to cells 

lacking only one component. In both cases, complete ablation of all functional components 

results in approximately twice as many deregulated genes as in single knockouts of ESCs 

and in the case of the Polycomb DKO, also genomic repeats like endogenous retroviral 

elements (ERVs) are derepressed (Leeb et al., 2010). The finding that the majority of 

Polycomb targets are repetitive sequences suggests a potential role of repeat sequences in 

Polycomb mediated gene silencing, probably by serving as a binding platform for PcG 

proteins. Indeed, several studies indicate that genomic repeats play central roles in 

regulating transcription often via the transcription of long non- coding RNAs or miRNAs from 

these repetitive sequences, which subsequently interfere with expression (Faulkner et al., 

2009; Kaneko et al., 2011; Cabianca et al., 2012). For instance, recent data demonstrate that 
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a long noncoding RNA generated from the repeat element D4Z4 of patients suffering from a 

specific form of muscular dystrophy (Facioscapulohumeral muscular dystrophy, FSMD) is 

involved in the progression of the disease. In healthy humans, D4Z4 repeats are silenced by 

Polycomb group proteins, however with the onset of the disease, these repeats are 

progressively lost, leading to reduced Polycomb binding. The insufficient Polycomb protein 

binding allows the production of a long non- coding RNA at these repeats which recruits an 

activating Trithorax complex that promotes further derepression of the repetitive arrays 

(Cabianca et al., 2012). Interestingly, in our study we find that dnmt1-/- ESCs possess a 

greater differentiation potential compared to TKO ESCs, although both cells are severely 

globally hypomethylated. However, dnmt1-/- ESCs (and possibly EBs thereof) harbor a 

substantial residual methylation of repetitive sequences (Lei et al., 1996; Biniszkiewicz et al., 

2002; Chen et al., 2003) which could - similar to PcG mediated repression - serve as a 

platform for gene silencing during differentiation. It will be crucial to determine methylation 

levels at repetitive sequences in dnmt1-/- EBs to exclude the possibility that the milder 

phenotype observed in these cells is due to higher methylation at single copy genes and/ or 

repetitive elements. However, this seems unlikely as our methylation analysis at e.g. the oct4 

promoter in dnmt1-/- EBs during differentiation shows an inital slight increase in DNA 

methylation, but the levels drop dramatically during further differentiation (Fig. 12). In 

addition, no remarkable increase in promoter methylation at the nanog locus in dnmt1-/- EBs 

could be detected at any time point during EB formation. Therefore, it is unlikely that a 

transient increase in DNA methylation at selected genes could lead to the high number of 

concordant expression changes between dnmt1-/- and wt EBs after 16 days of EB culture. In 

conclusion, the residual methylation at repetitive sequences and/or the presence of Dnmt3 

proteins could account for the greater differentiation potential of dnmt1-/- ESCs compared to 

TKO ESCs.  

Taken together, there seem to be striking parallels between the roles and possible modes of 

action of the two major repressive systems, DNA methylation and Polycomb system, in 

contributing to cell fate choice and developmental potential. Moreover, there also seems to 

be a specific crosstalk between both systems since e.g. ESCs with simultaneous ablation of 

PRC1 and PRC2 show not only reduced levels in H3K27me3, but also partial loss of DNA 

methylation at repetitive sequences (Leeb et al., 2010). This is consistent with a previous 

study reporting that components of PRC2 are involved in the recruitment of Dnmts and 

subsequent methylation of Polycomb target genes (Viré et al., 2006). Additionally, it has 

been shown that 93 % of all bivalent promoters in ESCs contain CpG islands and that genes 

repressed by PcG frequently become targets of DNA methylation during neuronal 

differentiation, indicating a lineage- specific crosstalk between the two repressive 

modifications (Mohn et al., 2008). In conclusion, both repressive pathways do not only show 
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parallels in their functions and actions, but also specific crosstalk between DNA methylation 

and Polycomb repressive systems can be observed dependent on the genomic context as 

well as cell lineage and developmental stage.  

4.1. 4 Improved reprogramming by transient, simultaneous inactivation of Dnmt1 and 

p53? 

Our experiments reveal that globally hypomethylated cells isolated from 12 days old EBs can 

fully and rapidly revert to the undifferentiated state when cultured in pluripotency promoting 

conditions. This is especially surprising for replated dnmt1-/- cells as these cells show a 

higher degree of differentiation compared to TKO cells. The observed reversion to the 

undifferentiated ESC state is unlikely the result of a subpopulation of undifferentiated cells 

within dnmt1-/- and TKO EBs, as their cells homogenously express the same basal levels of 

Oct4 protein as differentiated cells from wt EBs, which do not show any response to replating 

in medium containing LIF. Additionally, the fast kinetics of re- increasing the expression of 

pluripotency genes and concomitant reduction of lineage marker transcripts argues against a 

non- differentiating subpopulation as the reversion occurs within three days after replating 

exclusively in hypomethylated cells but not in wt cells in the presence of LIF. However, the 

observation that oct4 and nanog mRNA level are not completely silencing in both 

hypomethylated cells, underscores that DNA methylation is crucial for complete and 

permanent repression of their transcription and thus enforces canalization of cell fate choice 

and lineage commitment upon differentiation.  

The fact that cells lacking DNA methylation are not able to stably maintain cell fate is in line 

with reports showing that global inhibition of Dnmt activity e.g. by the addition of the Dnmt 

inhibitor 5-aza-deoxycytidine, 5-azadC, accelerates the rate of reprogramming of 

differentiated somatic cells to pluripotency (Mikkelsen et al., 2008; Shi et al., 2008). This 

facilitation of somatic cellular reprogramming is likely due to the more efficient and complete 

demethylation of pluripotency genes. However, the use of small molecules like 5-azadC for 

cellular reprogramming also harbors the risk of forming covalent and potentially mutagenic 

Dnmt- DNA adducts. Our finding that cells lacking Dnmt1 can efficiently revert to the ESC 

state, suggests that transient and specific inhibition of Dnmt1 activity in combination with 

pluripotency promoting conditions might be sufficient to facilitate reprogramming to the 

pluripotent state. Based on the recently described crystal structures of Dnmt1 (Song et al., 

2011, 2012; Syeda et al., 2011; Takeshita et al., 2011), it will be easier to design more 

specific and less toxic compounds for Dnmt1 inhibition which could be used instead of 

unspecific inhibitors like 5-azadC.  



  Discussion 
 

103 
 

Transient inhibition of Dnmt1 activity could be combined with functional inactivation of p53, 

which has been shown to increase the efficiency of iPS derivation by overcoming proliferative 

senescence of somatic cells (Hong et al., 2009; Kawamura et al., 2009; Li et al., 2009; 

Marion et al., 2009; Utikal et al., 2009). However, as p53 is an important guardian of 

chromosome stability and integrity, transient inactivation of p53 by either RNAi or a p53-

peptide inhibitor, which forms a hetero- tetramer with the endogenous p53 and leads to its 

reduced transcriptional activity (Wada et al., 2012), would be safer ways to overcome the 

replicative senescence. In addition to the latter effect, transient p53 inactivation would also 

support a rapid passive demethylation by high proliferation rates. Furthermore, the silencing 

of p53 could prevent the death of not yet dedifferentiated cells which would probably die 

upon Dnmt1 inhibition and subsequent global demethylation, phenotypes which are observed 

upon genetic ablation of Dnmt1 in fibroblasts (Jackson-Grusby et al., 2001) .  
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4.2 Uhrf proteins link the two major repressive epigenetic pathways 

It is now well accepted that both DNA methylation and histone modifications are involved in 

the epigenetic control of gene expression during development. Although both modifications 

are established by a completely different set of enzymes, increasing evidence suggests a 

high interconnectivity between these two epigenetic systems (see also chapter 4.1.3). In 

addition to Polycomb- mediated H3K27me3, also the repressive histone mark H3K9me3 has 

been linked to DNA methylation, since e.g. the loss of the histone methyltransferase G9a not 

only leads to reduced H3K9me3 levels, but also decreased DNA methylation levels (Feldman 

et al., 2006). However how this epigenetic crosstalk is mediated and translated into defined 

chromatin states within the cell is still poorly understood. The discovery of the multi- domain 

Uhrf protein family (see chapter 1.2.2.), has shed some light on how the two repressive 

epigenetic pathways are connected with each other. The two members of the Uhrf protein 

family harbor a conserved multi- domain structure and were shown to behave biochemically 

very similar. Both proteins can bind to hemi- methylated DNA as well as to methylated H3K9 

and co- immunoprecipitation studies revealed that Uhrf1 and Uhrf2 interact with Dnmt1, 

Dnmt3a, Dnmt3b and G9a, suggesting functional redundancy of both proteins (Bostick et al., 

2007; Sharif et al., 2007; Rottach et al., 2010; Pichler et al., 2011; Zhang et al., 2011b). 

Whereas Uhrf1 has been shown to function as an essential co- factor in maintaining DNA 

methylation patterns (Bostick et al., 2007; Sharif et al., 2007), it remains elusive whether 

Uhrf2 also plays a role in DNA methylation and/ or has additional functions in other biological 

contexts. So far, Uhrf2 has been implicated in cell cycle regulation (Mori et al., 2002, 2004; Li 

et al., 2004) and in the intranuclear degradation of polyglutamine aggregates via its E3 

ubiquitin ligase activity (Iwata et al., 2009). 

4.2.1 Uhrf1 and Uhrf2 show no functional redundancy 

To gain more insights into the function of Uhrf2, we analyzed transcript levels of uhrf1 and 

uhrf2 in ESCs, ESC differentiation to Embryoid Bodies (EBs), somatic cells and adult mouse 

tissues. Interestingly, we found that the expression profile of uhrf1 and uhrf2 show striking 

differences. In undifferentiated ESCs, uhrf1 is predominately expressed, but the transcript 

levels progressively decrease during differentiation of ESCs to EBs (Fig. 27), confirming 

previous data showing that uhrf1 is highly expressed in proliferating cells (Muto et al., 1995; 

Fujimori et al., 1998). On the contrary, uhrf2 mRNA level increase with prolonged EB culture, 

indicating a time- and developmental switch in uhrf1 and uhrf2 expression. In line with this, 

uhrf2 transcript levels were prevalent in differentiated adult mouse tissues and very little if 

any expression of uhrf1 could be detected. Furthermore, we found that both proteins 

behaved differently during serum- starvation of fibroblasts. Whereas uhrf1, like dnmt1, is 

proliferation- dependent regulated, uhrf2 is up regulated in serum- starved, quiescent 
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fibroblasts (Fig. 29). Interestingly, this opposite expression pattern of uhrf1 and uhrf2 

dependent on the proliferative state of the cell is in line with previous studies analyzing the 

expression pattern of both genes in primordial germ cells (PGCs). Shortly after PGC 

specification around E.6.5 days, these cells arrest in the G2 phase of the cell cycle and 

become quiescent. During this time, uhrf1, dnmt1 as well as dnmt3b transcription 

dramatically decreases, whereas uhrf2 has been shown to be specifically upregulated, at 

least in in vitro PGC- like cells. However, this high expression of uhrf2 is maintained despite 

re- entry of the cells in an active proliferative state during PGC migration, together with a re-

increase of dnmt1 expression (Kurimoto et al., 2008). Since migrating PGCs still contain a 

relatively high DNA methylation level although the essential co- factor Uhrf1 is absent, it has 

been speculated that Uhrf2 might compensate for the loss of Uhrf1 and contributes to the 

maintenance of DNA methylation until the PGCs enter the genital ride around E.10.5 days, 

where they become fully reprogrammed, including genome- wide erasure of DNA 

methylation patterns (reviewed in Hackett et al., 2012).  

However, it is still unclear whether Uhrf2 plays a role in maintenance methylation. Our knock-

down studies of uhrf2 in wildtype, uhrf1-/- as well as heterozygous uhrf2-/+ ESCs did not 

reveal any difference in DNA methylation levels on repetitive sequences and single copy 

genes upon loss of uhrf2 (Fig. 30 and 31). Consistent with this, a recently published study on 

human UHRF2 could also not detect an effect on global DNA methylation levels upon knock 

down of UHRF2 (Zhang et al., 2011b). Furthermore, genetic complementation of uhrf1-/- 

ESCs with Uhrf2 did not lead to restoration of DNA methylation levels, indicating that Uhrf1 

and Uhrf2 are not functional redundant (Pichler et al., 2011; Zhang et al., 2011b). In line with 

this, it has been shown that, unlike Uhrf1, Uhrf2 fails to recruit Dnmt1 to replication foci 

during the S- phase of the cell cycle, hence providing a possible explanation for the inability 

of Uhrf2 to rescue DNA methylation patterns in genetic complementation assays. 

Additionally, this result underscores the S- phase dependent interaction between Dnmt1 and 

Uhrf1 as a crucial regulatory mechanism for maintenance methylation (Zhang et al., 2011b).  

4.2.2 What is the function of Uhrf2? 

Nonetheless, it has been shown that Uhrf2, like Uhrf1, can interact with Dnmts at least in 

vitro. The functional consequences of these interactions are still unknown. One possibility is 

that Uhrf2 needs additional proteins that mediate the interaction to Dnmts and which are not 

present in proliferating cells, where high levels of Uhrf1 are sufficient to promote the 

maintenance of DNA methylation. This would lead to the hypothesis that Uhrf2 might only be 

involved in maintenance methylation when Uhrf1 is absent e.g. in non- proliferating, 

differentiated cells or in specialized cells like PGCs. In support of this, it has been shown that 
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Uhrf2, in contrast to Uhrf1, only preferentially binds to hemi-methylated DNA, the substrate of 

maintenance methylation, when simultaneously bound to the repressive heterochromatin 

mark H3K9me3 (Pichler et al., 2011). This cooperative binding of Uhrf2 might play a role in 

the tighter control of gene silencing in differentiated cells, whereas Uhrf1 might mediate a 

less stringent control in undifferentiated cells to allow the cellular plasticity and open 

chromatin conformation of ESCs. To understand the functional role of Uhrf2 it will be 

necessary to generate uhrf2-/- knock-out mice and ESCs and analyze DNA methylation 

patterns in the undifferentiated state as well as during ESC differentiation. Furthermore, the 

recently established culture system which reconstitutes the PGC specification pathway 

(Hayashi et al., 2011) would be an attractive model to analyze the role of Uhrf2 in 

maintaining DNA methylation patterns during germ cell development.  
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4.3 Role of 5hmC and Tets during development 

4.3.1 Novel methods to quantify and map 5hmC 

DNA methylation has always been considered a quite stable epigenetic modification, which 

once it is established, cannot be actively removed. The discovery of the “6th base” of the 

genome, 5- hydroxymethylcytosine (5hmC), together with the identification of the family of 

Tet proteins, changed this long believed paradigm and scientists started to focus on the 

biological function of this newly identified modification. To gain insights into the functional 

role of 5hmC, a first challenge is to develop new methods which can selectively detect 5hmC 

and discriminate it from the more abundant and structurally very similar 5mC (see also 

chapter 3.3) and hence allow the measurement of 5hmC levels in various cell lines and 

tissues. 

To this aim we developed a novel method to quantify global 5hmC levels in genomic DNA. 

We sought to exploit the ß- glucosyltransferase of T4 bacteriophages, an enzyme known to 

modify 5hmC and that evolved as a defense mechanism in the struggle between prokaryotes 

and their viruses. Using radiolabeled glucose, we showed that 5hmC can be specifically 

labeled and by generating reference fragments with known, but varying 5hmC content, we 

verified that the incorporation of isotopically labeled glucose in genomic DNA occurs linear 

within a range of 0.25 %- 2 % 5hmC content. Thus, global 5hmC level can be specifically 

labeled and accurately quantified by comparison to a standard curve, which was measured in 

each assay (Szwagierczak et al., 2010).  

First, we applied this assay to two different wildtype ESCs as well as during their in vitro 

differentiation to Embryoid Bodies (EBs) and also measured transcript levels of tet1-3 in the 

very same samples (Figure 33). We found that ESCs contain relatively high 5hmC levels (0.3 

% 5hmC relative to total cytosine), which drastically drop during differentiation to EBs. 

Interestingly, tet1 transcript levels were prevalent in the undifferentiated state, but decreased 

during EB formation, suggesting that Tet1 is the main enzyme responsible for the generation 

of 5hmC in ESCs (Szwagierczak et al., 2010). These data are consistent with previous 

publications showing that tet1 is predominately expressed in ESCs, but declines during 

monolayer differentiation of ESCs upon removal of LIF (Tahiliani et al., 2009). Furthermore, 

increasing evidence points to a role of Tet1 and 5hmC in the regulation of pluripotency and 

developmental potential. Knock-down of tet1 in ESCs results not only in reduced 5hmC level 

with a concomitant increase in 5mC at selected loci, but also in the deregulation of 

pluripotency associated genes (Ito et al., 2010; Freudenberg et al., 2011). In line with this, it 

has been shown that tet1 depletion in pre- implantation embryos and ESCs leads to loss of 

pluripotency and skewed differentiation towards the trophoectodermal lineage (Ito et al., 
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2010; Koh et al., 2011). The finding that tet1 is directly regulated by the master regulator 

Oct4 also integrates Tet1 and 5hmC in the pluripotency network (Koh et al., 2011). However, 

several studies could not confirm the deregulation of pluripotency genes upon tet1 knock 

down in ESCs and found only modest reduction of global 5hmC level with a minor increase 

of 5mC (Koh et al., 2011; Williams et al., 2011). Additionally, genetic ablation of tet1 revealed 

viable and fertile mice (Dawlaty et al., 2011), raising uncertainty about the importance of Tet1 

in ESC maintenance. These contradictory results emphasize the need for further 

experiments including the generation of inducible, conditional knock out mice, which would 

allow a more specific approach to investigate the function of Tet1 e.g. in certain tissues or at 

defined time points during development.  

In contrast to the expression profile of tet1, we found that tet3 mRNA levels were very low in 

ESCs, but increased with differentiation and prolonged EB culture (Fig. 33). Tet2 transcript 

levels dropped during the first 4 days of EB differentiation, but the mRNA levels recovered to 

the levels initially found in ESCs after 4 more days of EB culture. Remarkably, the initial 

reduction of 5hmC after 4 days of differentiation was followed by a re- increase of global 

5hmC level in 8 days old EBs. Therefore, our results suggest that the relatively high 

abundance of 5hmC in undifferentiated ESCs correlates with high expression levels of tet1 

and to a lower extent, tet2. The partial recovery of genomic 5hmC in 8 days old EBs 

correlates with higher tet2 and tet3 transcript levels (Szwagierczak et al., 2010). Interestingly, 

the distinct expression profiles of tet1-3 are in line with a study showing that during 

reprogramming of fibroblasts, the initial high levels of tet3 transcripts substantially decrease 

during this process, whereas tet1 and tet2 transcript levels as well as global 5hmC content 

concomitantly increase (Koh et al., 2011).  

We next analyzed genomic 5hmC as well as tet1-3 transcript levels in several adult mouse 

tissues (Fig. 33). In line with previous reports (Kriaucionis and Heintz, 2009), 5hmC was the 

most abundant in brain tissues which correlated with high levels of tet3 and lower levels of 

tet2. In general, we found that all analyzed tissues typically contained high levels of tet3 but 

low levels of tet1, whereas undifferentiated ESCs are characterized by the exactly opposite 

expression pattern. However, kidney seems to be an exemption as we measured relatively 

high level of genomic 5hmC together with high tet2 levels (Szwagierczak et al., 2010). The 

prevalent expression of tet2 in kidney is consistent with reports showing that one of the 

phenotypes described in tet2-/- mice is a cellular defect in proximal convoluted tubules of the 

kidney (Tang et al., 2008).  

In conclusion, our analysis revealed that genomic 5hmC can be detected not only in various 

brain regions, but also in other analyzed tissues like kidney and liver. Furthermore, we found 
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that different amounts of global 5hmC level correlate with differential expression of tet1-3 

genes (Figure 42). 

 

Figure 42. Abundance of 5hmC in ESCs, EBs and various tissues correlates with the differential 

expression of tet1-3 genes.  

To elucidate the biological significance of 5hmC in mammalian genomes, it is crucial to 

determine the distribution of the novel modification in genomic DNA: For this purpose we 

again exploited an enzyme from bacteria that was evolved as a strategy to counter the 

phage´s measures. The endonuclease PvuRts1I has been shown to cleave glucosylated 

5hmC and in vivo studies found that T- even phages containing exclusively genomic 5hmC, 

but not T- odd phages which contain 5mC or unmodified C, were selectively limited in their 

growth by the presence of a plasmid encoding PvuRts1I (see also chapter 3.3.2). We 

wondered whether PvuRts1I could be used as a tool to discriminate 5hmC from 5mC and 

unmodified C and therefore purified the enzyme and tested its activity in vitro (Szwagierczak 

et al., 2011).  

Our analysis demonstrates that PvuRtsI1 selectively cleaves 5hmC containing DNA and 

revealed the consensus sequence hmCN11-12/N9-10G with a 2 nucleotide 3´-overhang as the 

cleavage site of PvuRtsI1. We then wanted to use PvuRtsI1 to map 5hmC pattern in genomic 

DNA and, based on previous report, chose the upstream regulatory region of nanog as a 

potential region containing 5hmC (Ito et al., 2010). However, our attempt to measure the 

decrease of product after PvuRtsI1 digestion compared to mock digested samples did not 

reveal any difference in products between the two different samples (Fig. 34). Also, our 

devised strategy to positively identify rare digestion of PvuRtsI1 products by ligating linkers 

with random 2 nucleotide overhang in combination with PCR amplification using a linker 

specific primer paired with a nanog specific primer did not reveal any amplification products. 

In this context it is important to note that until today no positive identification of 5hmC at the 

upstream regulatory region of nanog has been demonstrated, raising uncertainty about the 
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suitability of this locus to establish the linker- amplification strategy also because it is still 

highly debated whether nanog is a target of Tet1 and hydroxylation at all (Koh et al., 2011). 

Nonetheless, the use of substrates with defined 5hmC amount showed that the cut and 

ligation strategy could in principal be used to map 5hmC patterns, although a high local 

concentration of 5hmC clearly facilitates the detection of digestion products by PvuRtsI1 (Fig. 

36) (Szwagierczak et al., 2011). The presence of high local 5hmC concentrations does not 

seem very unlikely given that in the case of cerebellum, the measured 5hmC levels translate 

to approximately 40 % of all 5mCs being hydroxylated (Kriaucionis and Heintz, 2009). 

Furthermore, several studies performed global mapping of 5hmC in ESCs and revealed a 

non- linear distribution of this modification with specific enrichment of 5hmC within gene 

bodies (specifically at exons) and at transcriptional start sites and promoters (Ficz et al., 

2011; Pastor et al., 2011; Williams et al., 2011; Wu et al., 2011a; Xu et al., 2011). Hence, the 

enrichment of the digested fragments using our cut/ligation strategy could be applied to 

generate libraries for massive parallel sequencing and/or microarray hybridizations for 

genome- wide mapping of 5hmC.  

4.3.2 5hmC- an intermediate of demethylation or a stable epigenetic modification? 

The discovery of 5hmC in mammalian genomes led to the formulation of two principal 

hypotheses about the biological role of the 6th base. As a potentially stable base, 5hmC itself 

might represent a novel epigenetic modification which alters chromatin structure and possibly 

influences the local transcriptional state. Alternatively, it has been suggested that 5hmC 

serves as an intermediate stage in the DNA demethylation pathway, although it is still 

debated whether the demethylation occurs actively and/or passively. Active DNA 

demethylation has been proposed to involve specific DNA repair mechanisms such as 

deamination by the cytidine deaminases AID/APOBEC leading to the conversion of 5hmC to 

5 hydroxymethyluracil (5hmU), which would then be removed by enzymes of the BER 

pathway like Tdg or MBD4 (see also chapter 1.2.3 and Fig. 7) (Cortellino et al., 2011; Guo et 

al., 2011). Further evidence for 5hmC as an intermediate in active DNA demethylation came 

from studies showing that Tet enzymes can even further oxidize 5hmC to 5 formylcytosine 

(5fC) and 5 carboxylcytosine (5caC) (Ito et al., 2011). Interestingly, these two oxidation 

products are also recognized and cleaved by Tdg, offering another mechanism of active DNA 

demethylation (He et al., 2011; Maiti and Drohat, 2011). Alternatively, 5caC could be 

decarboxylated to unmodified C by a yet to be identified decarboxylase, which would offer a 

demethylation pathway without the involvement of the DNA repair machinery. However, it 

has also been suggested that 5hmC as well as both cytosine derivates are part of a passive 

demethylation pathway. In line with this, it has been shown that 5hmC, 5fC and 5caC 

become replication- dependent diluted in the paternal pronucleus in preimplantation embryos 



  Discussion 
 

113 
 

(Inoue and Zhang, 2011; Inoue et al., 2011). In support of a passive demethylation 

mechanism, it has been shown that 5hmC containing DNA cannot be methylated by Dnmt1 

(Valinluck and Sowers, 2007). Based on these results, it is now widely accepted that 5hmC 

plays a role in DNA demethylation, however, additional function(s) of 5hmC as a stable 

epigenetic mark are discussed. Especially the high abundance of 5hmC in post- mitotic 

neurons suggests a function as a epigenetic mark, possibly by changing the local chromatin 

environment via the recruitment or displacement of proteins (Kriaucionis and Heintz, 2009). 

Evidence strengthening this hypothesis comes from the finding that the methylcytosine 

binding protein MeCP2, which is highly abundant in brain tissues, does not recognize 5hmC 

and therefore might prevent the establishment of repressive chromatin structures (Frauer et 

al., 2011). Conversely, MBD3 has been suggested as a first possible effector protein which 

selectively recognizes 5hmC. MBD3 recruitment was shown to be dependent on Tet1-

catalyzed hydroxymethylation and suggests a mechanism of how possible effects of 5hmC 

could be translated within the cell. However, what biological consequences such a possible 

5hmC signaling could have is still completely unknown (Yildirim et al., 2011).  
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4.4 designer TALEs– novel tools for genome editing 

The recent discovery of the TALE DNA binding code has enabled the engineering of specific 

TALEs that bind to user- defined target sequences in a number of different cell types and 

organisms including plant and mammalian cells (Boch et al., 2009; Moscou and Bogdanove, 

2009; Zhang et al., 2011a). These designer TALEs (dTALEs) can be tethered to a variety of 

effector domains, e.g. activating or repressing, to modulate the transcription of target genes 

in vivo. A recent study synthesized a large number of dTALEs fused to activation domains 

and targeted the promoters of the “Yamanaka- factors” (oct4, sox2, Klf4, c-myc), factors 

known to be essential for efficient reprogramming of fibroblasts to induced pluripotent stem 

cells (iPSCs) (Takahashi and Yamanaka, 2006). Two genes, sox2 and klf4, were 

successfully targeted by specific dTALEs and endogenous genes could be activated. 

However, dTALEs targeting the epigenetically regulated pluripotency gene oct4 failed to 

activate the endogenous gene (Zhang et al., 2011a). This raises the question whether 

epigenetic modifications like DNA methylation interfere with dTALE- mediated transcriptional 

activation. Our study analyzing 5 different dTALEs fused to the activating domain VP-16 of 

the herpes simplex, and targeting distinct sites in the oct4 promoter revealed differences in 

the efficiency to activate oct4 in transient gene reporter assays (see also chapter 3.4). 

Furthermore, we found that methylation of the oct4 promoter construct did not interfere with 

dTALE- mediated activation, but reduced its efficiency. We then chose the dTALE with the 

highest activation efficiency as measured in our transient reporter assays and used this 

dTALE to hyperactivate endogenous oct4 expression in ESCs (Fig. 37). However, the same 

locus could not be activated by dTALEs in neural stem cells (NSCs), where oct4 is 

transcriptionally silent, suggesting that repressive epigenetic mechanisms restrict dTALE 

activity. Therefore, we targeted epigenetic modulators and inhibited the activity of histone 

deacetylases by valproic acid (VPA) or DNA methyltransferases by 5-aza- deoxycytidine (5-

azadC), which facilitated dTALE- mediated transcriptional activation of the epigenetically 

silent oct4 locus in NSCs (Fig. 38) (Bultmann et al., 2012). It is well established that silencing 

of the oct4 promoter during differentiation consists of a multi-step cascade involving histone 

H3K9 methylation as well as DNA methylation. This tight epigenetic control of oct4 seems to 

constitute a barrier for the inappropriate reactivation of oct4, thereby preventing uncontrolled 

proliferation and cancer (Gidekel et al., 2003; Looijenga et al., 2003; Feldman et al., 2006). 

Hence, it is conceivable that the repressive epigenetic environment might restrict the access 

of dTALEs to their target site. In line with this, crystal structures of two TALEs showed that 

the protein forms a right- handed superhelix which wraps around the DNA helix along the 

major groove, thereby directly competing with nucleosome positioning (Deng et al., 2012; 

Mak et al., 2012).  
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Interestingly, we found that addition of the HDAC inhibitor VPA, but not Trichostatin A (TSA), 

allowed dTALE- mediated activation of oct4 (Bultmann et al., 2012). In line with this, it has 

been shown that both inhibitors have different efficacies for cellular reprogramming and oct4 

promoter activation, implying different target specificities of both inhibitors (Kim and Bang, 

2006; Huangfu et al., 2008). Whereas it has been reported that high concentrations of VPA 

and/or 5-azadC lead to demethylation and reactivation of silent genes (Santi et al., 1983; 

Dong et al., 2010), we could only detect reduced DNA methylation levels when the inhibitors 

were applied in combination with the dTALEs, implying a synergistic effect. One possible 

explanation for this observation could be that dTALE binding to the oct4 locus might interfere 

with Dnmt binding and maintenance methylation. The synergistic effect of low concentrations 

of epigenetic inhibitors and dTALEs indicates that inactive target genes could be activated 

without global DNA demethylation and hence would avoid unwanted side effects. Indeed, we 

found that DNA methylation levels were only reduced at the oct4 promoter, but not at 

repetitive sequences like major satellites or the imprinted h19 locus (Fig. 39). Furthermore, 

we found that dTALE mediated transcriptional activation of oct4 also reactivated Oct4 target 

genes of the pluripotency network e.g. nanog and tet1 (Fig. 38). This shows that the 

reactivated Oct4 also directly affected its downstream targets, leading to the reactivation of 

several members of the core pluripotency network. Hence, dTALEs could possibly also be 

used for reprogramming of somatic cells to iPSCs.  

In general, dTALEs can not only be applied to activate any desired gene within a cell, but 

also repressor domains could be tethered to dTALE to allow silencing of specific genes at a 

user- defined time point. Such repressor domains could be chromatin-modifying enzymes, 

like histone deacetylases or DNA methyltransferases. Furthermore, by coupling dTALEs to 

nucleases like FokI, site- specific DNA double strand breaks can be generated that enable 

targeted DNA cleavage for gene knockouts and genome editing (summarized in Bogdanove 

and Voytas, 2011) (Figure 43). 

 

Figure 43. Overview of possibilities for genome editing and manipulation using engineered dTALEs. 

TALE proteins fused to activation domains (AD) or repression domains (RD) could be used for gene regulation in 

vivo, including transcriptional activation and repression of user-defined target genes. Moreover, specific gene 

knock outs can be generated by tethering a nuclease to TALE proteins. Note that FokI, a nuclease mainly used 

for this purpose only functions as a heterodimer, thereby reducing off-target effects (reviewed in Bogdanove and 

Voytas, 2011).  
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5.2 Abbreviations 

5-azadC: 5-aza cytidine 

5cac: 5-carboxylcytosine 

5fc: 5-formylcytosine 

5mC: 5-methylcytosine 

5hmC: 5-hydroxymethylcytosine 

aa: amino acid 

Ac: acetylation 

AID: activation-induced cytidine deaminase 

Apobec: apolipoprotein B mRNA editing enzyme, catalytic polypeptide 

ATP: adenosine-5´-triphosphate 

ß-gt: beta-glucosyltransferase 

BAH: Bromo Adjacent Homology domain 

BER: base excision repair 

bp: base pair 

CpG: cytosine-phosphatidyl-guanine 

Da: dalton 

DMAP: Dnmt1-associated protein 

DMR: differentially methylated regions 

DNA: deoxyribonucleic acid 

Dnmt: DNA methyltransferase 

dTALE: designer transcription activator-like effector proteins 

EB: embryoid body 

Eed: embryonic ectodermal development 

EGC: embryonic germ cell 

EGF: epidermal growth factor 

EGFP: enhanced green fluorescent protein 

ESC: embryonic stem cell 

Ezh2: enhancer of zeste homolog 2 

FACS: fluorescence-activated cell sorting 

FGF: fibroblast growth factor 

GO: gene ontology 

G phase: Gap phase 

HAT: histone acetyltransferase 

HDAC: histone deactelyase 

Hp1: heterochromatin binding protein 1 

HSC: hematopoetic stem cell 
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IAP: intracisternal A particle 

ICBP90: inverted CCAAT box binding protein of 90 kDa 

ICF: immunodeficiency, centromer instability and facial anomalies 

ICM: inner cell mass 

IDH: isocitrate dehydrogenase 

iPSC: induced pluripotent stem cells 

KBS: kaiso binding sequence 

LIF: leukemia inhibitory factor 

MBD: methyl-CpG binding domain 

MBP: methyl-CpG binding protein 

MDR: methylation-determining regions 

Me: methylation 

MeCP2: methyl-CpG binding protein 2 

mRNA: messenger RNA 

Np95/97: nueclar protein of 95/97 kDa 

NIRF: Np95/ICBP90-like RING finger protein 

NSC: neural stem cell 

NuRD: nucleosome remodeling complex 

Oct4: octamer binding transcription factor 4 

p: phosphorylation 

PBD: PCNA binding domain 

PCA: Principal component analysis 

PcG: Polycomb group  

PCNA: proliferating cell nuclear antigen 

PHD: Plant Homeo Domain 

PGC: Primordial germ cells 

PI: Propidium iodide 

PRC: Polycomb repressive complex 

qPCR: quantitative PCR 

RING: really interesting new gene 

RNA: ribonucleic acid 

S-Adomet: S-adenosyl-L-methionine 

S phase: synthesis phase 

SRA: Set- and Ring-associated  

Suv39h1: suppressor of variegation 3-9 homolog 1 

Tdg: tymidine glycosylase 

TE: trophoectoderm 
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Tet: Ten-eleven translocation 

TKO: triple knock out of dnmt1-/-; dnm3a-/-; dnmt3b-/- ESCs 

TRD: transcription repressor domain 

trxG: trithorax group 

TS: Targeting Sequence 

TSA: Trichostatin A 

TSS: transcriptional start site 

Ub: ubiquitin 

Uhrf: ubiquitin-like containing PhD and Ring finger domain proteins 

VPA: valproic acid 

wt: wild type 
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6. Appendix 

6.1 Differentially expressed genes in the pluripotent state 

Genes upregulated in dnmt1-/- ESCs compared to wt ESCs 

Gene symbol 
Entrez 

Gene ID 
Fold change 
to wt ESCs 

Gene name 

1700013H16Rik 75514 1.67 RIKEN cDNA 1700013H16 gene 

AV320801 331531 2.85 expressed sequence AV320801 

Dazl 13164 2.01 deleted in azoospermia-like 

Dcdc2a 195208 1.34 doublecortin domain containing 2a 

Dnajc5g 231098 1.36 DnaJ (Hsp40) homolog, subfamily C, member 5 gamma 

Efhc2 74405 3.44 EF-hand domain (C-terminal) containing 2 

Fkbp6 94244 1.81 FK506 binding protein 6 

Fthl17 83457 1.65 ferritin, heavy polypeptide-like 17 

Gm13154 433804 1.21 predicted gene 13154 

Gm13498 227885 1.83 predicted gene 13498 

Gm2889 
10004065

8 2.1 

hypothetical protein LOC100041609; hypothetical protein LOC100044795; predicted gene 3395; 
similar to gag polyprotein; hypothetical protein LOC100047557; hypothetical protein 
LOC100040347; hypothetical protein LOC100044384; hypothetical protein LOC100045342; 
hypothetical protein LOC100038979; predicted gene 2889 

Gm4638 
10004377

5 2.78 predicted gene 4638 

Gm5128 331529 3.08 predicted gene 7903; predicted gene 5128 

Gm5635 434729 1.18 predicted gene 5635 

Gpat2 215456 1.45 RIKEN cDNA A530057A03 gene 

Gpx6 75512 1.23 glutathione peroxidase 6 

Gtsf1 74174 1.67 gametocyte specific factor 1 

Hormad1 67981 2.42 HORMA domain containing 1; predicted gene 7167 

Kdm5d 20592 1.04 lysine (K)-specific demethylase 5D 

LOC280487 280487 2.78 pol polyprotein 

Magea1 17137 1.42 melanoma antigen, family A, 1 

Nckap1l 105855 1.54 NCK associated protein 1 like 

Nlrc4 268973 1.48 NLR family, CARD domain containing 4 

Nlrp4c 83564 1.61 NLR family, pyrin domain containing 4C 

Nxf3 245610 1.72 nuclear RNA export factor 3 

Olfr307 258610 2.51 olfactory receptor 307 

Pnma5 385377 1.58 paraneoplastic antigen family 5 

Pramel3 83565 2.96 preferentially expressed antigen in melanoma-like 3 

Rbmy1a1 19657 1.58 RNA binding motif protein, Y chromosome, family 1, member A1 

Rnf17 30054 1.28 ring finger protein 17 

Rpl39l 68172 2.41 ribosomal protein L39-like 

Scml2 107815 1.64 similar to sex comb on midleg-like 2 (Drosophila); sex comb on midleg-like 2 (Drosophila) 

Serpina3m 20717 1.45 serine (or cysteine) peptidase inhibitor, clade A, member 3M 

Slc5a4b 64454 1.92 solute carrier family 5 (neutral amino acid transporters, system A), member 4b 

Smc1b 140557 2.27 structural maintenance of chromosomes 1B 

Sohlh2 74434 1.4 spermatogenesis and oogenesis specific basic helix-loop-helix 2 

Stk31 77485 1.69 serine threonine kinase 31 

Ube1y1 22202 1.35 similar to ubiquitin activating enzyme E1; ubiquitin-activating enzyme E1, Chr Y 1 

Usp9y 107868 1.39 ubiquitin specific peptidase 9, Y chromosome 

Vmn2r-ps104 
10004191

5 1.05 vomeronasal 2, receptor, pseudogene 104 

Wfdc15a 68221 1.85 WAP four-disulfide core domain 15A 

Xlr3a 22445 3.35 

hypothetical protein LOC100044094; similar to X-linked lymphocyte-regulated protein 3A; X-linked 
lymphocyte-regulated 3E, pseudogene; hypothetical protein LOC100044314; similar to X-LINKED 
LYMPHOCYTE-REGULATED PROTEIN 3A (XLR RELATED PROTEIN A12); X-linked lymphocyte-
regulated 3C; X-linked lymphocyte-regulated 3A; X-linked lymphocyte-regulated 3B; X-linked 
lymphocyte-regulated 3D, pseudogene 

Xlr3b 574437 3.48 

hypothetical protein LOC100044094; similar to X-linked lymphocyte-regulated protein 3A; X-linked 
lymphocyte-regulated 3E, pseudogene; hypothetical protein LOC100044314; similar to X-LINKED 
LYMPHOCYTE-REGULATED PROTEIN 3A (XLR RELATED PROTEIN A12); X-linked lymphocyte-
regulated 3C; X-linked lymphocyte-regulated 3A; X-linked lymphocyte-regulated 3B; X-linked 
lymphocyte-regulated 3D, pseudogene 
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Xlr3c 22446 3.54 

hypothetical protein LOC100044094; similar to X-linked lymphocyte-regulated protein 3A; X-linked 
lymphocyte-regulated 3E, pseudogene; hypothetical protein LOC100044314; similar to X-LINKED 
LYMPHOCYTE-REGULATED PROTEIN 3A (XLR RELATED PROTEIN A12); X-linked lymphocyte-
regulated 3C; X-linked lymphocyte-regulated 3A; X-linked lymphocyte-regulated 3B; X-linked 
lymphocyte-regulated 3D, pseudogene 

Xlr4b 27083 3.07 
X-linked lymphocyte-regulated 4D; X-linked lymphocyte-regulated 4E, pseudogene; X-linked 
lymphocyte-regulated 4B; X-linked lymphocyte-regulated 4C; hypothetical protein LOC100044049 

Xlr4c 72891 3.36 
X-linked lymphocyte-regulated 4D; X-linked lymphocyte-regulated 4E, pseudogene; X-linked 
lymphocyte-regulated 4B; X-linked lymphocyte-regulated 4C; hypothetical protein LOC100044049 

Xlr5a 574438 4.48 

X-linked lymphocyte-regulated 5B; X-linked lymphocyte-regulated 5D, pseudogene; X-linked 
lymphocyte-regulated 5A; X-linked lymphocyte-regulated 5E, pseudogene; predicted gene, 
EG667719 

Xlr5b 627081 5.05 

X-linked lymphocyte-regulated 5B; X-linked lymphocyte-regulated 5D, pseudogene; X-linked 
lymphocyte-regulated 5A; X-linked lymphocyte-regulated 5E, pseudogene; predicted gene, 
EG667719 

Zfy1 22767 1.94 zinc finger protein 1, Y linked 

 
Genes down regulated in dnmt1-/- ESCs compared to wt ESCs 

Gene symbol 
Entrez 

Gene ID 
Fold change 
to wt ESCs 

Gene name 

Dnmt1 13433 -1.02 DNA methyltransferase (cytosine-5) 1 

Eif4g3 230861 -1.03 
eukaryotic translation initiation factor 4 gamma, 3; similar to Eukaryotic translation initiation factor 4 
gamma 3 (eIF-4-gamma 3) (eIF-4G 3) (eIF4G 3) (eIF-4-gamma II) (eIF4GII) 

Frmd4b 232288 -1.13 FERM domain containing 4B 

Lphn2 99633 -1.53 latrophilin 2 

Sema6a 20358 -2.12 sema domain, transmembrane domain (TM), and cytoplasmic domain, (semaphorin) 6A 

 
Genes upregulated in TKO ESCs compared to wt ESCs 

Gene symbol 
Entrez 

Gene ID 
Fold change 
to wt ESCs 

Gene name 

1700013H16Rik 75514 1.81 RIKEN cDNA 1700013H16 gene 

1700080O16Rik 74279 1.14 RIKEN cDNA 1700080O16 gene 

4930591A17Rik 68175 1.51 RIKEN cDNA 4930591A17 gene 

9030617O03Rik 217830 1.04 RIKEN cDNA 9030617O03 gene 

Asz1 74068 1.49 ankyrin repeat, SAM and basic leucine zipper domain containing 1 

AV320801 331531 3.61 expressed sequence AV320801 

Camk1d 227541 1.14 calcium/calmodulin-dependent protein kinase ID 

Ctcfl 664799 1.99 CCCTC-binding factor (zinc finger protein)-like 

Dazl 13164 2.39 deleted in azoospermia-like 

Dcdc2a 195208 1.52 doublecortin domain containing 2a 

Dnajc5g 231098 1.71 DnaJ (Hsp40) homolog, subfamily C, member 5 gamma 

Efhc2 74405 3.58 EF-hand domain (C-terminal) containing 2 

Fkbp6 94244 2.16 FK506 binding protein 6 

Fthl17 83457 1.5 ferritin, heavy polypeptide-like 17 

Gm13498 227885 2.38 predicted gene 13498 

Gm2889 
1000406

58 2.35 

hypothetical protein LOC100041609; hypothetical protein LOC100044795; predicted gene 3395; 
similar to gag polyprotein; hypothetical protein LOC100047557; hypothetical protein 
LOC100040347; hypothetical protein LOC100044384; hypothetical protein LOC100045342; 
hypothetical protein LOC100038979; predicted gene 2889 

Gm5128 331529 3.91 predicted gene 7903; predicted gene 5128 

Gpa33 59290 1.15 glycoprotein A33 (transmembrane) 

Gpat2 215456 1.34 RIKEN cDNA A530057A03 gene 

Gpx6 75512 1.43 glutathione peroxidase 6 

Gtsf1 74174 1.59 gametocyte specific factor 1 

Hormad1 67981 2.71 HORMA domain containing 1; predicted gene 7167 

Magea1 17137 2.42 melanoma antigen, family A, 1 

Magea2 17138 2.01 melanoma antigen, family A, 2 

Magea4 17140 1.86 melanoma antigen, family A, 4 

Magea5 17141 1.87 melanoma antigen, family A, 5 

Magea6 17142 1.58 melanoma antigen, family A, 6 

Mov10l1 83456 1.46 Moloney leukemia virus 10-like 1 

Nckap1l 105855 1.75 NCK associated protein 1 like 

Nlrp4c 83564 1.58 NLR family, pyrin domain containing 4C 

Nxf3 245610 1.61 nuclear RNA export factor 3 

Olfr307 258610 2.17 olfactory receptor 307 

Pde8a 18584 1.13 
phosphodiesterase 8A; similar to cAMP-specific cyclic nucleotide phosphodiesterase PDE8; 
MMPDE8 
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Piwil2 57746 1.3 piwi-like homolog 2 (Drosophila) 

Pnma5 385377 1.62 paraneoplastic antigen family 5 

Ppp3ca 19055 1.05 protein phosphatase 3, catalytic subunit, alpha isoform 

Pramel3 83565 3.75 preferentially expressed antigen in melanoma-like 3 

Rhox13 73614 1.25 reproductive homeobox 13 

Rhox2a 75199 1.27 
reproductive homeobox 2C; reproductive homeobox 2B; reproductive homeobox 2A; reproductive 
homeobox 2E 

Rhox2e 
1000400

16 1.26 
reproductive homeobox 2C; reproductive homeobox 2B; reproductive homeobox 2A; reproductive 
homeobox 2E 

Rnf17 30054 1.06 ring finger protein 17 

Scml2 107815 2.16 similar to sex comb on midleg-like 2 (Drosophila); sex comb on midleg-like 2 (Drosophila) 

Smc1b 140557 2.47 structural maintenance of chromosomes 1B 

Snx25 102141 1.42 sorting nexin 25 

Sohlh2 74434 1.53 spermatogenesis and oogenesis specific basic helix-loop-helix 2 

Spink10 328971 1.12 serine peptidase inhibitor, Kazal type 10 

Stra8 20899 1.12 stimulated by retinoic acid gene 8 

Taf9b 407786 1.46 TAF9B RNA polymerase II, TATA box binding protein (TBP)-associated factor 

Tuba3b 22147 1.55 predicted gene 5366; tubulin, alpha 3B; tubulin, alpha 3A 

Wfdc15a 68221 1.82 WAP four-disulfide core domain 15A 

Xlr3a 22445 3.16 

hypothetical protein LOC100044094; similar to X-linked lymphocyte-regulated protein 3A; X-linked 
lymphocyte-regulated 3E, pseudogene; hypothetical protein LOC100044314; similar to X-LINKED 
LYMPHOCYTE-REGULATED PROTEIN 3A (XLR RELATED PROTEIN A12); X-linked lymphocyte-
regulated 3C; X-linked lymphocyte-regulated 3A; X-linked lymphocyte-regulated 3B; X-linked 
lymphocyte-regulated 3D, pseudogene 

Xlr3b 574437 3.32 

hypothetical protein LOC100044094; similar to X-linked lymphocyte-regulated protein 3A; X-linked 
lymphocyte-regulated 3E, pseudogene; hypothetical protein LOC100044314; similar to X-LINKED 
LYMPHOCYTE-REGULATED PROTEIN 3A (XLR RELATED PROTEIN A12); X-linked lymphocyte-
regulated 3C; X-linked lymphocyte-regulated 3A; X-linked lymphocyte-regulated 3B; X-linked 
lymphocyte-regulated 3D, pseudogene 

Xlr3c 22446 3.36 

hypothetical protein LOC100044094; similar to X-linked lymphocyte-regulated protein 3A; X-linked 
lymphocyte-regulated 3E, pseudogene; hypothetical protein LOC100044314; similar to X-LINKED 
LYMPHOCYTE-REGULATED PROTEIN 3A (XLR RELATED PROTEIN A12); X-linked lymphocyte-
regulated 3C; X-linked lymphocyte-regulated 3A; X-linked lymphocyte-regulated 3B; X-linked 
lymphocyte-regulated 3D, pseudogene 

Xlr4b 27083 3.09 
X-linked lymphocyte-regulated 4D; X-linked lymphocyte-regulated 4E, pseudogene; X-linked 
lymphocyte-regulated 4B; X-linked lymphocyte-regulated 4C; hypothetical protein LOC100044049 

Xlr4c 72891 3.34 
X-linked lymphocyte-regulated 4D; X-linked lymphocyte-regulated 4E, pseudogene; X-linked 
lymphocyte-regulated 4B; X-linked lymphocyte-regulated 4C; hypothetical protein LOC100044049 

Xlr5a 574438 4.63 

X-linked lymphocyte-regulated 5B; X-linked lymphocyte-regulated 5D, pseudogene; X-linked 
lymphocyte-regulated 5A; X-linked lymphocyte-regulated 5E, pseudogene; predicted gene, 
EG667719 

Xlr5b 627081 5.21 

X-linked lymphocyte-regulated 5B; X-linked lymphocyte-regulated 5D, pseudogene; X-linked 
lymphocyte-regulated 5A; X-linked lymphocyte-regulated 5E, pseudogene; predicted gene, 
EG667719 

 
Genes downregulated in TKO ESCs compared to wt ESCs 

Gene symbol 
Entrez 

Gene ID 
Fold change 
to wt ESCs 

Gene name 

Atxn1l 52335 -1.01 ataxin 1-like 

Clcn5 12728 -1.12 chloride channel 5 

Cyr61 16007 -2.14 cysteine rich protein 61 

Dnmt1 13433 -1.27 DNA methyltransferase (cytosine-5) 1 

Dnmt3a 13435 -1.62 DNA methyltransferase 3A 

Dnmt3b 13436 -2.52 DNA methyltransferase 3B 

Dpysl2 12934 -1.23 dihydropyrimidinase-like 2 

Fkbp10 14230 -1.02 FK506 binding protein 10 

Fndc3c1 333564 -2.86 fibronectin type III domain containing 3C1 

Gja1 14609 -1.18 gap junction protein, alpha 1 

Krt18 16668 -2.46 keratin 18 

Krt19 16669 -2.9 keratin 19 

Lpar6 67168 -1.66 purinergic receptor P2Y, G-protein coupled, 5 

Lphn2 99633 -1.86 latrophilin 2 

Lrrc8c 100604 -1.44 leucine rich repeat containing 8 family, member C 

Mphosph6 68533 -1.03 M phase phosphoprotein 6; predicted gene 11448 

Nes 18008 -1.9 nestin 

Nnat 18111 -2.13 neuronatin 

Ogfr 72075 -1.05 opioid growth factor receptor 

Sema6a 20358 -2.38 sema domain, transmembrane domain (TM), and cytoplasmic domain, (semaphorin) 6A 

Sh3bgrl 56726 -1.02 SH3-binding domain glutamic acid-rich protein like 



  Appendix 
 

154 
 

Sox4 20677 -1 SRY-box containing gene 19; SRY-box containing gene 4 

Tagln 21345 -2.29 transgelin 

Thbs1 21825 -2.61 thrombospondin 1; similar to thrombospondin 1 

Tlcd1 68385 -1.09 TLC domain containing 1 

 
Concordant upregulated genes in dnmt1-/- and TKO ESCs compared to wt ESCs 

Gene symbol 
Entrez 

Gene ID 

Fold change 
dnmt1-/- to 

wt ESCs 

Fold change 
TKO to wt 

ESCs 
Gene name 

1700013H16Rik 75514 1.67 1.81 RIKEN cDNA 1700013H16 gene 

AV320801 331531 2.85 3.61 expressed sequence AV320801 

Dazl 13164 2.01 2.39 deleted in azoospermia-like 

Dcdc2a 195208 1.34 1.52 doublecortin domain containing 2a 

Dnajc5g 231098 1.36 1.71 DnaJ (Hsp40) homolog, subfamily C, member 5 gamma 

Efhc2 74405 3.44 3.58 EF-hand domain (C-terminal) containing 2 

Fkbp6 94244 1.81 2.16 FK506 binding protein 6 

Fthl17 83457 1.65 1.5 ferritin, heavy polypeptide-like 17 

Gm13498 227885 1.83 2.38 predicted gene 13498 

Gm2889 
1000406

58 2.1 2.35 

hypothetical protein LOC100041609; hypothetical protein LOC100044795; 
predicted gene 3395; similar to gag polyprotein; hypothetical protein 
LOC100047557; hypothetical protein LOC100040347; hypothetical protein 
LOC100044384; hypothetical protein LOC100045342; hypothetical protein 
LOC100038979; predicted gene 2889 

Gm5128 331529 3.08 3.91 predicted gene 7903; predicted gene 5128 

Gpat2 215456 1.45 1.34 RIKEN cDNA A530057A03 gene 

Gpx6 75512 1.23 1.43 glutathione peroxidase 6 

Gtsf1 74174 1.67 1.59 gametocyte specific factor 1 

Hormad1 67981 2.42 2.71 HORMA domain containing 1; predicted gene 7167 

Magea1 17137 1.42 2.42 melanoma antigen, family A, 1 

Nckap1l 105855 1.54 1.75 NCK associated protein 1 like 

Nlrp4c 83564 1.61 1.58 NLR family, pyrin domain containing 4C 

Nxf3 245610 1.72 1.61 nuclear RNA export factor 3 

Olfr307 258610 2.51 2.17 olfactory receptor 307 

Pnma5 385377 1.58 1.62 paraneoplastic antigen family 5 

Pramel3 83565 2.96 3.75 preferentially expressed antigen in melanoma-like 3 

Rnf17 30054 1.28 1.06 ring finger protein 17 

Scml2 107815 1.64 2.16 
similar to sex comb on midleg-like 2 (Drosophila); sex comb on midleg-like 2 
(Drosophila) 

Smc1b 140557 1.4 2.47 structural maintenance of chromosomes 1B 

Sohlh2 74434 1.05 1.53 spermatogenesis and oogenesis specific basic helix-loop-helix 2 

Wfdc15a 68221 1.85 1.82 WAP four-disulfide core domain 15A 

Xlr3a 22445 3.35 3.16 

hypothetical protein LOC100044094; similar to X-linked lymphocyte-regulated 
protein 3A; X-linked lymphocyte-regulated 3E, pseudogene; hypothetical protein 

LOC100044314; similar to X-LINKED LYMPHOCYTE-REGULATED PROTEIN 3A 
(XLR RELATED PROTEIN A12); X-linked lymphocyte-regulated 3C; X-linked 
lymphocyte-regulated 3A; X-linked lymphocyte-regulated 3B; X-linked lymphocyte-
regulated 3D, pseudogene 

Xlr3b 574437 3.48 3.32 

hypothetical protein LOC100044094; similar to X-linked lymphocyte-regulated 
protein 3A; X-linked lymphocyte-regulated 3E, pseudogene; hypothetical protein 
LOC100044314; similar to X-LINKED LYMPHOCYTE-REGULATED PROTEIN 3A 
(XLR RELATED PROTEIN A12); X-linked lymphocyte-regulated 3C; X-linked 
lymphocyte-regulated 3A; X-linked lymphocyte-regulated 3B; X-linked lymphocyte-
regulated 3D, pseudogene 

Xlr3c 22446 3.54 3.36 

hypothetical protein LOC100044094; similar to X-linked lymphocyte-regulated 
protein 3A; X-linked lymphocyte-regulated 3E, pseudogene; hypothetical protein 
LOC100044314; similar to X-LINKED LYMPHOCYTE-REGULATED PROTEIN 3A 
(XLR RELATED PROTEIN A12); X-linked lymphocyte-regulated 3C; X-linked 
lymphocyte-regulated 3A; X-linked lymphocyte-regulated 3B; X-linked lymphocyte-
regulated 3D, pseudogene 

Xlr4b 27083 3.07 3.09 

X-linked lymphocyte-regulated 4D; X-linked lymphocyte-regulated 4E, pseudogene; 
X-linked lymphocyte-regulated 4B; X-linked lymphocyte-regulated 4C; hypothetical 
protein LOC100044049 

Xlr4c 72891 3.36 3.34 

X-linked lymphocyte-regulated 4D; X-linked lymphocyte-regulated 4E, pseudogene; 
X-linked lymphocyte-regulated 4B; X-linked lymphocyte-regulated 4C; hypothetical 
protein LOC100044049 

Xlr5a 574438 4.48 4.63 

X-linked lymphocyte-regulated 5B; X-linked lymphocyte-regulated 5D, pseudogene; 
X-linked lymphocyte-regulated 5A; X-linked lymphocyte-regulated 5E, pseudogene; 
predicted gene, EG667719 

Xlr5b 627081 5.05 5.21 

X-linked lymphocyte-regulated 5B; X-linked lymphocyte-regulated 5D, pseudogene; 
X-linked lymphocyte-regulated 5A; X-linked lymphocyte-regulated 5E, pseudogene; 
predicted gene, EG667719 
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Concordant downregulated genes in dnmt1-/- and TKO ESCs compared to wt ESCs 

Gene symbol 
Entrez 

Gene ID 

Fold change 
dnmt1-/- to 

wt ESCs 

Fold change 
TKO to wt 

ESCs 
Gene name 

Dnmt1 13433 -1.02 -1.27 DNA methyltransferase (cytosine-5) 1 

Lphn2 99633 -1.53 -1.86 latrophilin 2 

Sema6a 20358 -2.12 -2.38 
sema domain, transmembrane domain (TM), and cytoplasmic domain, 
(semaphorin) 6A 

 

6.2 Differentially regulated genes during the first differentiation period 

(day 0 -4) 

Unique upregulated genes in wt EBs d0-4 

Gene symbol 
Entrez Gene 

ID 

Fold 
change 
between 

d0_4 

Gene Name 

1110012D08Rik 73827 1.15 RIKEN cDNA 1110012D08 gene 

1500011H22Rik 68948 1.1 RIKEN cDNA 1500011H22 gene 

2010011I20Rik 67017 1.17 RIKEN cDNA 2010011I20 gene 

2410018L13Rik 69732 1.15 RIKEN cDNA 2410018L13 gene 

3110062M04Rik 78412 1.25 RIKEN cDNA 3110062M04 gene 

3632451O06Rik 67419 1.87 RIKEN cDNA 3632451O06 gene 

4933433P14Rik 66787 1 RIKEN cDNA 4933433P14 gene 

9430020K01Rik 240185 1.18 RIKEN cDNA 9430020K01 gene 

Aacs 78894 1.28 acetoacetyl-CoA synthetase 

Abcd2 26874 1.16 ATP-binding cassette, sub-family D (ALD), member 2 

Abtb2 99382 1 ankyrin repeat and BTB (POZ) domain containing 2 

Adam10 11487 1.4 a disintegrin and metallopeptidase domain 10 

Adamts10 224697 1.59 a disintegrin-like and metallopeptidase (reprolysin type) with thrombospondin type 1 motif, 10 

Add3 27360 1.05 adducin 3 (gamma) 

Adrbk2 320129 1.05 adrenergic receptor kinase, beta 2 

Akr1c19 432720 1.1 aldo-keto reductase family 1, member C19 

Akr1e1 56043 1.28 aldo-keto reductase family 1, member E1 

Aldh1l1 107747 1.06 
similar to Aldehyde dehydrogenase 1 family, member L1; aldehyde dehydrogenase 1 family, 
member L1 

Amfr 23802 1.02 autocrine motility factor receptor 

Angptl2 26360 1.03 angiopoietin-like 2 

Ano1 101772 1.39 anoctamin 1, calcium activated chloride channel 

Apbb1 11785 1.19 amyloid beta (A4) precursor protein-binding, family B, member 1 

Aph1b 208117 1.19 anterior pharynx defective 1b homolog (C. elegans) 

Arhgap29 214137 1.46 Rho GTPase activating protein 29 

Arid3a 13496 1.29 AT rich interactive domain 3A (BRIGHT-like) 

Asb12 70392 2.4 ankyrin repeat and SOCS box-containing 12 

Atp2b4 381290 1.06 ATPase, Ca++ transporting, plasma membrane 4 

AV249152 216560 1.01 expressed sequence AV249152 

AW551984 244810 1.83 expressed sequence AW551984 

B930095G15Rik 320268 1.29 RIKEN cDNA B930095G15 gene 

Bag2 213539 1.08 BCL2-associated athanogene 2 

BC005764 216152 1.22 cDNA sequence BC005764 

BC051142 407788 1.15 cDNA sequence BC051142; testis specific basic protein 

Bmf 171543 1.01 BCL2 modifying factor 

Bmp4 12159 1.88 bone morphogenetic protein 4 

Bmp7 12162 1.5 bone morphogenetic protein 7 

Ccdc136 232664 1.28 coiled-coil domain containing 136 

Ccdc46 76380 1.15 coiled-coil domain containing 46 

Ccdc8 434130 1.1 coiled-coil domain containing 8 

Ccl25 20300 1.01 chemokine (C-C motif) ligand 25 

Cd55 13136 2 CD55 antigen 

Cdc42ep5 58804 1.03 CDC42 effector protein (Rho GTPase binding) 5 

Cdkn1b 12576 1.15 cyclin-dependent kinase inhibitor 1B 
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Chst2 54371 1.12 carbohydrate sulfotransferase 2 

Col4a1 12826 1.33 collagen, type IV, alpha 1 

Col4a2 12827 1.14 collagen, type IV, alpha 2 

Col4a6 94216 1.36 collagen, type IV, alpha 6 

Copz2 56358 1.56 coatomer protein complex, subunit zeta 2 

Cpm 70574 2.51 carboxypeptidase M 

Creb3l2 208647 1.02 cAMP responsive element binding protein 3-like 2 

Ctsh 13036 2.59 cathepsin H 

Ctso 229445 1.53 cathepsin O 

Ctxn1 330695 1.02 cortexin 1 

Cyp51 13121 1.49 cytochrome P450, family 51 

D10Ertd610e 52666 1.19 DNA segment, Chr 10, ERATO Doi 610, expressed 

D130062J21Rik 100038651 1.5 RIKEN cDNA D130062J21 gene 

D430042O09Rik 233865 1.04 RIKEN cDNA D430042O09 gene 

Dapk2 13143 1.53 death-associated protein kinase 2 

Ddah2 51793 1.32 dimethylarginine dimethylaminohydrolase 2 

Dhrs7 66375 1.31 dehydrogenase/reductase (SDR family) member 7 

Dnajc12 30045 1.06 DnaJ (Hsp40) homolog, subfamily C, member 12 

Dynlt3 67117 1.09 dynein light chain Tctex-type 3 

E130112L23Rik 268739 1.05 RIKEN cDNA E130112L23 gene 

Edil3 13612 1.8 EGF-like repeats and discoidin I-like domains 3 

Egflam 268780 1.06 EGF-like, fibronectin type III and laminin G domains 

Egln3 112407 1.89 EGL nine homolog 3 (C. elegans) 

Elovl1 54325 1.37 elongation of very long chain fatty acids (FEN1/Elo2, SUR4/Elo3, yeast)-like 1 

Emp2 13731 1.39 epithelial membrane protein 2 

Emp3 13732 1.03 epithelial membrane protein 3 

Erbb2 13866 1.14 
v-erb-b2 erythroblastic leukemia viral oncogene homolog 2, neuro/glioblastoma derived 
oncogene homolog (avian) 

Fam114a1 68303 1.38 family with sequence similarity 114, member A1 

Fam125b 72543 1.38 family with sequence similarity 125, member B; similar to RIKEN cDNA 2610528K11 gene 

Fam126a 84652 1.2 family with sequence similarity 126, member A 

Fam57a 116972 1.37 family with sequence similarity 57, member A 

Fam65a 75687 1.05 family with sequence similarity 65, member A 

Fbln1 14114 1.38 fibulin 1 

Fbxl20 72194 1.05 F-box and leucine-rich repeat protein 20 

Fgf15 14170 1.25 fibroblast growth factor 15 

Fgfr2 14183 1.53 fibroblast growth factor receptor 2 

Fhdc1 229474 1.26 FH2 domain containing 1 

Flrt3 71436 1.44 
fibronectin leucine rich transmembrane protein 3; similar to fibronectin leucine rich 
transmembrane protein 3 

Fut8 53618 1.03 fucosyltransferase 8 

Fzd4 14366 1.77 frizzled homolog 4 (Drosophila) 

Gabre 14404 1.73 
similar to gamma-aminobutyric acid (GABA-A) receptor, subunit epsilon; gamma-aminobutyric 
acid (GABA) A receptor, subunit epsilon 

Gapdhs 14447 1.06 glyceraldehyde-3-phosphate dehydrogenase, spermatogenic 

Gm10554 100038541 1.19 predicted gene 10554 

Gm10561 628004 1.28 predicted gene 10561 

Gm11818 208820 1.02 predicted gene 11818 

Gm4983 245297 1.17 predicted gene 4983 

Gng12 14701 1.18 guanine nucleotide binding protein (G protein), gamma 12 

Golim4 73124 1.04 golgi integral membrane protein 4 

Gpr124 78560 2.07 G protein-coupled receptor 124 

Grik5 14809 1.04 glutamate receptor, ionotropic, kainate 5 (gamma 2) 

Grina 66168 1.28 glutamate receptor, ionotropic, N-methyl D-aspartate-associated protein 1 (glutamate binding) 

Gucy1b3 54195 1.71 guanylate cyclase 1, soluble, beta 3 

H2-Ab1 14961 1.57 
histocompatibility 2, class II antigen A, beta 1; response to metastatic cancers 2; similar to H-2 
class II histocompatibility antigen, A-D beta chain precursor 

Herc1 235439 1.16 
hect (homologous to the E6-AP (UBE3A) carboxyl terminus) domain and RCC1 (CHC1)-like 
domain (RLD) 1 

Hey2 15214 2.47 hairy/enhancer-of-split related with YRPW motif 2 

Hgsnat 52120 1.12 heparan-alpha-glucosaminide N-acetyltransferase 

Hmgcs1 208715 1.28 similar to Hmgcs1 protein; 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 1 
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Hook3 320191 1.06 hook homolog 3 (Drosophila) 

Hoxd1 15429 1.33 homeo box D1 

Hpcal1 53602 1.01 hippocalcin-like 1 

Hs3st3b1 54710 1.12 heparan sulfate (glucosamine) 3-O-sulfotransferase 3B1 

Hsd17b7 15490 1.08 hydroxysteroid (17-beta) dehydrogenase 7 

Idh1 15926 1.11 isocitrate dehydrogenase 1 (NADP+), soluble 

Igfbp5 16011 1.67 insulin-like growth factor binding protein 5 

Inpp4a 269180 1.07 inositol polyphosphate-4-phosphatase, type I 

Inpp5f 101490 1.1 inositol polyphosphate-5-phosphatase F 

Ipp 16351 1.1 IAP promoted placental gene 

Itga4 16401 1.63 integrin alpha 4 

Itgb5 16419 1.05 integrin beta 5 

Itm2a 16431 1.37 integral membrane protein 2A 

Katnal2 71206 1.03 katanin p60 subunit A-like 2 

Kcnq5 226922 1.28 potassium voltage-gated channel, subfamily Q, member 5 

Kdelr3 105785 1.12 KDEL (Lys-Asp-Glu-Leu) endoplasmic reticulum protein retention receptor 3 

Kitl 17311 1.39 kit ligand 

Klk1b22 13646 1.46 kallikrein 1-related peptidase b22 

L1cam 16728 1.06 L1 cell adhesion molecule 

Large 16795 1.29 like-glycosyltransferase 

Lass4 67260 1.5 LAG1 homolog, ceramide synthase 4 

Letmd1 68614 1.17 LETM1 domain containing 1 

Lipa 16889 1.11 lysosomal acid lipase A 

LOC677548 677548 1.09 
similar to Hippocalcin-like protein 1 (Visinin-like protein 3) (VILIP-3) (Neural visinin-like protein 
3) (NVL-3) (NVP-3) 

Lrig2 269473 1.02 leucine-rich repeats and immunoglobulin-like domains 2 

Lrp4 228357 1.04 low density lipoprotein receptor-related protein 4 

Lss 16987 1.02 lanosterol synthase 

Maged1 94275 1.17 melanoma antigen, family D, 1 

Man2a1 17158 1.12 mannosidase 2, alpha 1 

Map2k6 26399 1.11 mitogen-activated protein kinase kinase 6 

Med12 59024 1.09 mediator of RNA polymerase II transcription, subunit 12 homolog (yeast) 

Mex3b 108797 1.25 mex3 homolog B (C. elegans) 

Mllt3 70122 1.23 myeloid/lymphoid or mixed-lineage leukemia (trithorax homolog, Drosophila); translocated to, 3 

Mmp15 17388 1.79 matrix metallopeptidase 15 

Mpp2 50997 1.08 membrane protein, palmitoylated 2 (MAGUK p55 subfamily member 2) 

Mvd 192156 1.18 mevalonate (diphospho) decarboxylase 

Mxra8 74761 1.69 matrix-remodelling associated 8 

Myo1b 17912 1.17 myosin IB 

Narf 67608 1.33 nuclear prelamin A recognition factor 

Ncrna00086 320237 1.06 non-protein coding RNA 86 

Ndrg1 17988 1.28 N-myc downstream regulated gene 1 

Neil3 234258 1.54 nei like 3 (E. coli) 

Nelf 56876 1.13 nasal embryonic LHRH factor 

Nfatc4 73181 1.05 nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 4 

Npc2 67963 1.14 Niemann Pick type C2 

Npr2 230103 1.05 natriuretic peptide receptor 2 

Nsmaf 18201 1.06 neutral sphingomyelinase (N-SMase) activation associated factor 

P4ha1 18451 1.85 procollagen-proline, 2-oxoglutarate 4-dioxygenase (proline 4-hydroxylase), alpha 1 polypeptide 

P4ha2 18452 1.72 procollagen-proline, 2-oxoglutarate 4-dioxygenase (proline 4-hydroxylase), alpha II polypeptide 

Pbx2 18515 1.42 pre B-cell leukemia transcription factor 2 

Pde3a 54611 1.21 phosphodiesterase 3A, cGMP inhibited 

Pdlim4 30794 1.37 PDZ and LIM domain 4 

Phc3 241915 1.09 polyhomeotic-like 3 (Drosophila) 

Pik3ip1 216505 1.14 phosphoinositide-3-kinase interacting protein 1 

Pja1 18744 1.07 praja1, RING-H2 motif containing 

Pja2 224938 1.18 praja 2, RING-H2 motif containing 

Plekha6 240753 1.09 pleckstrin homology domain containing, family A member 6 

Ppap2b 67916 1.03 phosphatidic acid phosphatase type 2B 

Ppil6 73075 1.22 peptidylprolyl isomerase (cyclophilin)-like 6 
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Ppp1r3c 53412 1.23 protein phosphatase 1, regulatory (inhibitor) subunit 3C 

Ppp3ca 19055 1.69 protein phosphatase 3, catalytic subunit, alpha isoform 

Prex1 277360 1.09 phosphatidylinositol-3,4,5-trisphosphate-dependent Rac exchange factor 1 

Prmt2 15468 1.03 protein arginine N-methyltransferase 2 

Pros1 19128 1.07 protein S (alpha) 

Prrg1 546336 1.1 proline rich Gla (G-carboxyglutamic acid) 1 

Purg 75029 1.05 purine-rich element binding protein G 

Rabgap1l 29809 1.17 RAB GTPase activating protein 1-like 

Rapgef5 217944 1.05 Rap guanine nucleotide exchange factor (GEF) 5 

Rdh11 17252 1.15 retinol dehydrogenase 11 

Reln 19699 1.64 reelin 

Ripk2 192656 1.19 receptor (TNFRSF)-interacting serine-threonine kinase 2 

Rnpep 215615 1.06 arginyl aminopeptidase (aminopeptidase B) 

Rras 20130 1.07 Harvey rat sarcoma oncogene, subgroup R 

S100a1 20193 1.01 S100 calcium binding protein A1 

Samd14 217125 1.02 sterile alpha motif domain containing 14 

Sc4mol 66234 1.15 sterol-C4-methyl oxidase-like 

Sc5d 235293 1.43 sterol-C5-desaturase (fungal ERG3, delta-5-desaturase) homolog (S. cerevisae) 

Scarna17 100217466 1.03 small Cajal body-specific RNA 17 

Scd1 20249 1.12 stearoyl-Coenzyme A desaturase 1 

Scn7a 20272 1.14 sodium channel, voltage-gated, type VII, alpha 

Sept10 103080 1.28 septin 10 

Sertad4 214791 1.27 SERTA domain containing 4 

Sesn1 140742 1.11 sestrin 1 

Sh3yl1 24057 1.16 Sh3 domain YSC-like 1 

Sirpa 19261 1.26 signal-regulatory protein alpha 

Slc25a10 27376 1.01 solute carrier family 25 (mitochondrial carrier, dicarboxylate transporter), member 10 

Slc38a4 69354 1.26 solute carrier family 38, member 4 

Slc5a7 63993 1.43 solute carrier family 5 (choline transporter), member 7 

Slit2 20563 1.72 slit homolog 2 (Drosophila) 

Smpd1 20597 1.05 sphingomyelin phosphodiesterase 1, acid lysosomal 

Snai2 20583 2.82 snail homolog 2 (Drosophila) 

Snx25 102141 1.11 sorting nexin 25 

Spata6 67946 1.14 spermatogenesis associated 6 

Spo11 26972 1.1 sporulation protein, meiosis-specific, SPO11 homolog (S. cerevisiae) 

Sprr1a 20753 1.28 small proline-rich protein 1A 

St3gal5 20454 1.6 ST3 beta-galactoside alpha-2,3-sialyltransferase 5 

St6galnac3 20447 1.03 
ST6 (alpha-N-acetyl-neuraminyl-2,3-beta-galactosyl-1,3)-N-acetylgalactosaminide alpha-2,6-
sialyltransferase 3 

St6galnac4 20448 1.1 
ST6 (alpha-N-acetyl-neuraminyl-2,3-beta-galactosyl-1,3)-N-acetylgalactosaminide alpha-2,6-
sialyltransferase 4 

Stard4 170459 1.37 StAR-related lipid transfer (START) domain containing 4 

Stx2 13852 1.22 syntaxin 2 

Taz 66826 1.14 tafazzin 

Tbx2 21385 1.31 T-box 2 

Tdo2 56720 4.21 tryptophan 2,3-dioxygenase 

Tgfbr3 21814 1.11 transforming growth factor, beta receptor III 

Thra 21833 1.1 thyroid hormone receptor alpha; similar to thyroid hormone receptor 

Tiam2 24001 1.04 T-cell lymphoma invasion and metastasis 2 

Tm7sf2 73166 1.42 transmembrane 7 superfamily member 2 

Tmem119 231633 1.42 transmembrane protein 119 

Tmem176a 66058 1.06 transmembrane protein 176A 

Tmx1 72736 1.24 thioredoxin-related transmembrane protein 1 

Tnnc1 21924 1.53 troponin C, cardiac/slow skeletal 

Ttc12 235330 1.01 tetratricopeptide repeat domain 12; similar to tetratricopeptide repeat domain 12 

Ttc3 22129 1.27 tetratricopeptide repeat domain 3 

Ttc8 76260 1.08 tetratricopeptide repeat domain 8 

Ttr 22139 2.15 transthyretin 

Twist1 22160 1.88 twist homolog 1 (Drosophila) 

Twist2 13345 1.41 twist homolog 2 (Drosophila) 

Vegfa 22339 1.29 vascular endothelial growth factor A 
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Vim 22352 1.48 vimentin 

Wbp1 22377 1.05 WW domain binding protein 1 

Wdr19 213081 1 WD repeat domain 19 

Whsc1 107823 1.08 Wolf-Hirschhorn syndrome candidate 1 (human) 

Zc3hav1l 209032 1.2 zinc finger CCCH-type, antiviral 1-like 

Zcchc24 71918 1.5 zinc finger, CCHC domain containing 24 

Zeb1 21417 1.1 zinc finger E-box binding homeobox 1 

Zfp395 380912 1.04 zinc finger protein 395 

Zfp516 329003 1.99 zinc finger protein 516 

Zhx1 22770 1.06 zinc fingers and homeoboxes 1 

Zim1 22776 1.28 zinc finger, imprinted 1 

 

Unique downregulated genes in wt EBs d0-4 

Gene symbol 
Entrez Gene 

ID 

Fold 
change 
between 

d0_4 

Gene Name 

1110012J17Rik 68617 -1.03 RIKEN cDNA 1110012J17 gene 

1190005I06Rik 68918 -1.15 RIKEN cDNA 1190005I06 gene 

1700020N01Rik 67692 -1.12 RIKEN cDNA 1700020N01 gene 

1700024J04Rik 71848 -1.09 RIKEN cDNA 1700024J04 gene 

2810474O19Rik 67246 -1.05 RIKEN cDNA 2810474O19 gene 

4930572J05Rik 223626 -1.51 RIKEN cDNA 4930572J05 gene 

4933437F05Rik 71275 -1.32 RIKEN cDNA 4933437F05 gene 

Abca1 11303 -1.51 ATP-binding cassette, sub-family A (ABC1), member 1 

Abcb1b 18669 -1.44 ATP-binding cassette, sub-family B (MDR/TAP), member 1B 

AI747699 381236 -1.2 
predicted gene 8981; similar to lipase-like, ab-hydrolase domain containing 2; expressed 
sequence AI747699 

Aim2 383619 -2.36 absent in melanoma 2 

Akap1 11640 -1.01 A kinase (PRKA) anchor protein 1 

Angptl4 57875 -1.03 angiopoietin-like 4 

Anxa1 16952 -2.34 annexin A1 

Arl4a 11861 -1.06 ADP-ribosylation factor-like 4A 

As3mt 57344 -1.15 arsenic (+3 oxidation state) methyltransferase 

Atp10a 11982 -1.48 ATPase, class V, type 10A 

Atp1b1 11931 -1.77 ATPase, Na+/K+ transporting, beta 1 polypeptide 

B3gnt2 53625 -1.34 UDP-GlcNAc:betaGal beta-1,3-N-acetylglucosaminyltransferase 2 

BB287469 544881 -2.75 
predicted gene 6804; predicted gene 2046; predicted gene 8607; expressed sequence 
BB287469; predicted gene 2075; predicted gene 2022; predicted gene 4027 

Bcam 57278 -1.59 basal cell adhesion molecule 

Bcat1 12035 -1.44 
branched chain aminotransferase 1, cytosolic; similar to branched chain aminotransferase 1, 
cytosolic 

Bdh2 69772 -1.56 3-hydroxybutyrate dehydrogenase, type 2 

Bend3 331623 -1.08 BEN domain containing 3 

Bmp8b 12164 -1.02 bone morphogenetic protein 8b 

Bspry 192120 -1.07 B-box and SPRY domain containing 

C230052I12Rik 101831 -1.26 RIKEN cDNA C230052I12 gene 

Cacna1a 12286 -1.05 calcium channel, voltage-dependent, P/Q type, alpha 1A subunit 

Capsl 75568 -1.29 calcyphosine-like 

Cbr3 109857 -1.84 carbonyl reductase 3 

Cd34 12490 -1 CD34 antigen 

Cdh1 12550 -1.37 cadherin 1 

Cenpv 73139 -1.32 centromere protein V 

Chek2 50883 -1.05 CHK2 checkpoint homolog (S. pombe) 

Cldn4 12740 -1.27 claudin 4 

Cngb1 333329 -1.04 cyclic nucleotide gated channel beta 1 

Col18a1 12822 -1.28 collagen, type XVIII, alpha 1 

Ctgf 14219 -1.81 connective tissue growth factor 

Cth 107869 -1.31 cystathionase (cystathionine gamma-lyase) 

Cxcl16 66102 -1.53 chemokine (C-X-C motif) ligand 16 

Cyp2j13 230459 -1.09 cytochrome P450, family 2, subfamily j, polypeptide 13 
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D6Mm5e 110958 -1.02 DNA segment, Chr 6, Miriam Meisler 5, expressed 

Dbx1 13172 -1.56 developing brain homeobox 1 

Ddx4 13206 -2.28 DEAD (Asp-Glu-Ala-Asp) box polypeptide 4 

Depdc6 97998 -1.07 DEP domain containing 6 

Depdc7 211896 -1.75 DEP domain containing 7 

Dnahc8 13417 -1.33 
similar to axonemal dynein heavy chain 8 long form; similar to dynein, axonemal, heavy chain 
8; dynein, axonemal, heavy chain 8 

Dnmt3a 13435 -1.02 DNA methyltransferase 3A 

Dtx3l 209200 -1.25 deltex 3-like (Drosophila) 

Dusp14 56405 -1.09 dual specificity phosphatase 14 

Dyrk3 226419 -1.03 dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 3 

E130012A19Rik 103551 -1.18 RIKEN cDNA E130012A19 gene 

E2f8 108961 -1.22 E2F transcription factor 8 

Edn1 13614 -1.38 endothelin 1 

EG665955 665955 -1.03 predicted gene, EG665955 

Elavl2 15569 -1.08 ELAV (embryonic lethal, abnormal vision, Drosophila)-like 2 (Hu antigen B) 

Emp1 13730 -1.81 epithelial membrane protein 1 

Eps8 13860 -1.01 epidermal growth factor receptor pathway substrate 8 

F3 14066 -1.27 coagulation factor III 

Fam111a 107373 -1.95 RIKEN cDNA 4632417K18 gene 

Fancl 67030 -1.14 
similar to Fanconi anemia, complementation group L; Fanconi anemia, complementation group 
L 

Fetub 59083 -2.53 fetuin beta 

Fgd1 14163 -1.14 FYVE, RhoGEF and PH domain containing 1 

Fgf18 14172 -1.06 fibroblast growth factor 18 

Fgfbp1 14181 -1.45 fibroblast growth factor binding protein 1 

Fmr1nb 207854 -1.56 fragile X mental retardation 1 neighbor 

Foxd3 15221 -1.13 forkhead box D3 

Foxi3 232077 -1.12 forkhead box I3 

Foxo1 56458 -1.6 forkhead box O1 

Foxp1 108655 -1.45 forkhead box P1 

Gadd45a 13197 -1.72 growth arrest and DNA-damage-inducible 45 alpha 

Gadd45b 17873 -1.13 growth arrest and DNA-damage-inducible 45 beta 

Gclm 14630 -1.19 glutamate-cysteine ligase, modifier subunit 

Gm10785 100038392 -1.15 predicted gene 10785 

Gm16368 100039226 -1.98 

predicted gene 2056; predicted gene 5442; predicted gene 8300; predicted gene 5788; 
predicted gene, 100039042; similar to X-linked eukaryotic translation initiation factor 1A; 
predicted gene 8332; predicted gene 2035; predicted gene 16368 

Gm4340 100043292 -3.38 predicted gene 4340 

Gm5712 435755 -1.07 predicted gene 5712 

Gm6723 626952 -1.1 L antigen family, member 3; predicted gene 6723; L antigen family, member 3 pseudogene 

Gm7682 665551 -1.9625 predicted gene 7682 

Gm9350 668774 -1.56 predicted gene 9350 

Gm9359 668786 -1.44 tripartite motif-containing 13; predicted gene 9359 

Gm98 225908 -1.25 predicted gene 98 

Gpc4 14735 -1.35 glypican 4; similar to Glypican 4 

Grtp1 66790 -1.34 GH regulated TBC protein 1 

Gstm3 14864 -1.15 glutathione S-transferase, mu 3 

Hist1h2aa 319163 -2.57 histone cluster 1, H2aa 

Hmgxb4 70823 -1.01 similar to Hmgb2l1 protein; HMG box domain containing 4 

Hook1 77963 -1.16 hook homolog 1 (Drosophila) 

Hs6st1 50785 -1.22 heparan sulfate 6-O-sulfotransferase 1 

Igfbp2 16008 -1.18 insulin-like growth factor binding protein 2 

Il33 77125 -1.12 interleukin 33 

Itga3 16400 -2.24 integrin alpha 3 

Jup 16480 -1.08 junction plakoglobin 

Krtdap 64661 -1.27 keratinocyte differentiation associated protein 

Laptm5 16792 -2.01 lysosomal-associated protein transmembrane 5 

Lefty2 320202 -3.32 left-right determination factor 2 

Lgals9 16859 -1.13 lectin, galactose binding, soluble 9 

Lgr4 107515 -1.27 leucine-rich repeat-containing G protein-coupled receptor 4 

LOC624931 624931 -1.955 similar to D5Ertd577e protein 
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Lrp2 14725 -2.41 low density lipoprotein receptor-related protein 2 

Mal2 105853 -1.15 mal, T-cell differentiation protein 2 

Mfap5 50530 -1.15 microfibrillar associated protein 5 

Mgat4a 269181 -1.26 mannoside acetylglucosaminyltransferase 4, isoenzyme A 

Mlkl 74568 -1.47 mixed lineage kinase domain-like 

Mov10l1 83456 -1.11 Moloney leukemia virus 10-like 1 

Mpzl2 14012 -1.72 myelin protein zero-like 2 

Mt2 17750 -1.2 metallothionein 2 

Mtap7d2 78283 -2 MAP7 domain containing 2 

Mtap7d3 320923 -1.21 MAP7 domain containing 3 

Nckap1l 105855 -1.6 NCK associated protein 1 like 

Ngfr 18053 -1.31 nerve growth factor receptor (TNFR superfamily, member 16) 

Nhedc1 74446 -1.05 Na+/H+ exchanger domain containing 1 

Nlrp14 76858 -1.52 NLR family, pyrin domain containing 14 

Nol6 230082 -1.14 nucleolar protein family 6 (RNA-associated) 

Nt5e 23959 -1.17 5' nucleotidase, ecto 

Ntn1 18208 -1.52 similar to Netrin-1 precursor; netrin 1 

Nuak2 74137 -1.16 NUAK family, SNF1-like kinase, 2 

Olfr161 258859 -1.17 olfactory receptor 161 

Phyhipl 70911 -1.9 phytanoyl-CoA hydroxylase interacting protein-like 

Plaur 18793 -1.03 plasminogen activator, urokinase receptor 

Ppap2a 19012 -1.42 phosphatidic acid phosphatase type 2A 

Ppif 105675 -1.01 peptidylprolyl isomerase F (cyclophilin F) 

Pramef12 77632 -1.01 PRAME family member 12 

Prex2 109294 -2.37 phosphatidylinositol-3,4,5-trisphosphate-dependent Rac exchange factor 2 

Prps1 19139 -1.42 
mirror-image polydactyly gene 1 homolog (human); phosphoribosyl pyrophosphate synthetase 
1; phosphoribosyl pyrophosphate synthetase 1-like 1 

Ptgs2 19225 -1.37 prostaglandin-endoperoxide synthase 2 

Ptpn3 545622 -1.37 protein tyrosine phosphatase, non-receptor type 3 

Rasd2 75141 

-
1.1911111

11 RASD family, member 2 

Rasgrp1 19419 -1.02 RAS guanyl releasing protein 1 

Rnd1 223881 -1 Rho family GTPase 1 

Rnf138 56515 -1.05 ring finger protein 138 

Rps4y2 66184 -1.305 predicted gene 6816; ribosomal protein S4, Y-linked 2 

Rrp9 27966 -1.14 RRP9, small subunit (SSU) processome component, homolog (yeast) 

Scand3 71970 -1 SCAN domain containing 3 

Sec24d 69608 -1.65 Sec24 related gene family, member D (S. cerevisiae) 

Sema3e 20349 -1.07 
sema domain, immunoglobulin domain (Ig), short basic domain, secreted, (semaphorin) 3E; 
hypothetical protein LOC100044162 

Serpine1 18787 -1.17 serine (or cysteine) peptidase inhibitor, clade E, member 1 

Serpini1 20713 -1.17 serine (or cysteine) peptidase inhibitor, clade I, member 1 

Sesn2 230784 -1.18 sestrin 2 

Set 56086 -1.35 

predicted gene, EG625349; predicted gene 5789; predicted gene 7085; predicted gene 5708; 
predicted gene 6847; SET translocation; cDNA sequence BC085271; predicted gene 7239; 
similar to protein phosphatase 2A inhibitor-2 I-2PP2A; predicted gene 9531 

Sfmbt2 353282 -1.03 Scm-like with four mbt domains 2 

Sfn 55948 -2.305 predicted gene 5279; stratifin; similar to 14-3-3 protein sigma (Stratifin); predicted gene 7850 

Sgk1 20393 -1.34 serum/glucocorticoid regulated kinase 1 

Six6os1 75801 -1.03 Six6 opposite strand transcript 1 

Slc25a31 73333 -1.53 solute carrier family 25 (mitochondrial carrier; adenine nucleotide translocator), member 31 

Slc35f2 72022 -1.94 solute carrier family 35, member F2 

Slc7a5 20539 -1.06 

similar to solute carrier family 7 (cationic amino acid transporter, y+ system), member 5; similar 
to Solute carrier family 7 (cationic amino acid transporter, y+ system), member 5; solute carrier 
family 7 (cationic amino acid transporter, y+ system), member 5 

Sms 20603 -1.235 predicted gene 7270; predicted gene 14680; spermine synthase 

Spna1 20739 -1.85 spectrin alpha 1 

Ston2 108800 -1.1 stonin 2 

Sycp1 20957 -1.21 synaptonemal complex protein 1; similar to testicular protein 

Sycp3 20962 -1.79 synaptonemal complex protein 3 

Syngr1 20972 -1.35 synaptogyrin 1 

Syt4 20983 -1.21 synaptotagmin IV 
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Taf4a 228980 -1.07 
TAF4A RNA polymerase II, TATA box binding protein (TBP)-associated factor; similar to 
TAF4A RNA polymerase II, TATA box binding protein (TBP)-associated factor 

Tagln 21345 -1.46 transgelin 

Tcf3 21423 -1.04 transcription factor E2a 

Tcof1 21453 -1.1 Treacher Collins Franceschetti syndrome 1, homolog 

Thbs1 21825 -1.85 thrombospondin 1; similar to thrombospondin 1 

Tmem106a 217203 -1.05 transmembrane protein 106A 

Tmem30b 238257 -1.02 transmembrane protein 30B 

Tmem54 66260 -1.62 transmembrane protein 54 

Tmem79 71913 -1.02 transmembrane protein 79 

Trh 22044 -1.15 thyrotropin releasing hormone 

Ube1y1 22202 -1.69 similar to ubiquitin activating enzyme E1; ubiquitin-activating enzyme E1, Chr Y 1 

Ubl3 24109 -1.09 ubiquitin-like 3 

Ugt8a 22239 -1.69 UDP galactosyltransferase 8A 

Usp44 327799 -1.04 ubiquitin specific peptidase 44 

Utp14a 72554 -1.03 UTP14, U3 small nucleolar ribonucleoprotein, homolog A (yeast) 

Wsb2 59043 -1.36 WD repeat and SOCS box-containing 2 

X99384 27355 -1.04 cDNA sequence X99384 

Xrcc5 22596 -1.21 X-ray repair complementing defective repair in Chinese hamster cells 5 

Zdhhc23 332175 -1.24 zinc finger, DHHC domain containing 23 

Zfp345 545471 -1.37 zinc finger protein 345 

Zfp36 22695 -1.07 zinc finger protein 36 

Zfp518 72672 -1.03 zinc finger protein 518 

Zfp97 22759 -1.06 zinc finger protein 97; cDNA sequence BC018101 

Zfy1 22767 -1.36 zinc finger protein 1, Y linked 

Zic5 65100 -1.93 
similar to zinc finger protein of the cerebellum 5; predicted gene 12241; zinc finger protein of 
the cerebellum 5 

Zmiz2 52915 -1.08 zinc finger, MIZ-type containing 2 

Zscan4c 245109 

-
3.7233333

33 

zinc finger and SCAN domain containing 4F; zinc finger and SCAN domain containing 4E; zinc 
finger and SCAN domain containing 4D; expresssed sequence BQ559217; zinc finger and 
SCAN domain containing 4C; zinc finger and SCAN domain containing 4B; zinc finger and 
SCAN domain containing 4, pseudogene 1; predicted gene 4186; zinc finger and SCAN 
domain containing 4, pseudogene 2; zinc finger and SCAN domain containing 4, pseudogene 
3; similar to Gene model 397, (NCBI) 

 

Upregulated genes in dnmt1-/- EBs compared to wt EBs between d0-4 

Gene symbol 
Entrez Gene 

ID 

Fold change 
compared to 

wt 
Gene name 

1700048O20Rik 69430 1.06 RIKEN cDNA 1700048O20 gene 

1810011O10Rik 69068 1.47 RIKEN cDNA 1810011O10 gene 

2310014D11Rik 69633 1.23 RIKEN cDNA 2310014D11 gene 

2610034B18Rik 70420 1.4 RIKEN cDNA 2610034B18 gene 

2700046A07Rik 78449 1.42 RIKEN cDNA 2700046A07 gene 

3110007F17Rik 73061 1.57 
predicted gene 5945; RIKEN cDNA 3110007F17 gene; predicted gene 2411; predicted gene 
5167; predicted gene 6604; predicted gene 14957 

3830403N18Rik 70691 2.6 RIKEN cDNA 3830403N18 gene 

5930434B04Rik 381356 1.06 RIKEN cDNA 5930434B04 gene; hypothetical protein LOC100047034 

A130022J15Rik 101351 1.52 RIKEN cDNA A130022J15 gene 

Abca5 217265 1.07 ATP-binding cassette, sub-family A (ABC1), member 5 

Acp2 11432 1.01 acid phosphatase 2, lysosomal 

Acss3 380660 1.04 acyl-CoA synthetase short-chain family member 3 

Acvr1b 11479 1 activin A receptor, type 1B 

Adcy2 210044 1.02 adenylate cyclase 2 

Adra2b 11552 2.11 adrenergic receptor, alpha 2b 

Agpat6 102247 1.09 1-acylglycerol-3-phosphate O-acyltransferase 6 (lysophosphatidic acid acyltransferase, zeta) 

Antxr1 69538 1.12 anthrax toxin receptor 1 

Arg2 11847 1.2 arginase type II 

Arhgef9 236915 1.15 CDC42 guanine nucleotide exchange factor (GEF) 9 

Asz1 74068 1.45 ankyrin repeat, SAM and basic leucine zipper domain containing 1 

Bach1 12013 1.05 BTB and CNC homology 1 

Baiap2l1 66898 1 BAI1-associated protein 2-like 1 

Baz2b 407823 1.01 bromodomain adjacent to zinc finger domain, 2B 
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Calcrl 54598 2.04 calcitonin receptor-like 

Cald1 109624 1.37 caldesmon 1 

Camk2d 108058 1.18 calcium/calmodulin-dependent protein kinase II, delta 

Capn2 12334 1.72 calpain 2 

Car13 71934 1.42 carbonic anhydrase 13 

Car3 12350 1.2 carbonic anhydrase 3 

Cdh5 12562 1.56 cadherin 5 

Cited2 17684 1.36 Cbp/p300-interacting transactivator, with Glu/Asp-rich carboxy-terminal domain, 2 

Clcn5 12728 1.55 chloride channel 5 

Cmtm8 70031 1.26 CKLF-like MARVEL transmembrane domain containing 8 

Cnrip1 380686 1.65 cannabinoid receptor interacting protein 1 

Cpd 12874 1.44 carboxypeptidase D; similar to carboxypeptidase D 

Cpe 12876 1.93 carboxypeptidase E; similar to carboxypeptidase E 

Cpxm2 55987 1.56 carboxypeptidase X 2 (M14 family) 

Ctsc 13032 2.71 cathepsin C 

Ctse 13034 1.58 cathepsin E 

Cxadr 13052 1.13 coxsackie virus and adenovirus receptor 

Cxcr7 12778 1 chemokine (C-X-C motif) receptor 7 

Cxx1b 553127 1.395 
CAAX box 1 homolog A (human); CAAX box 1 homolog B (human); similar to mammalian 
retrotransposon derived 8b 

Cxx1c 72865 1.87 CAAX box 1 homolog C (human) 

Cyp2j6 13110 1.25 cytochrome P450, family 2, subfamily j, polypeptide 6 

D830030K20Rik 320333 1.135 

predicted gene 2971; predicted gene 3532; predicted gene 3033; RIKEN cDNA 
D830030K20 gene; predicted gene 3278; predicted gene 8271; predicted gene 2244; 
predicted gene 3043; predicted gene 3537; predicted gene 10408; predicted gene 8050; 
predicted gene 3755 

Dact1 59036 1.09 dapper homolog 1, antagonist of beta-catenin (xenopus) 

Dclk1 13175 1.7 doublecortin-like kinase 1 

Dock11 75974 1.17 dedicator of cytokinesis 11 

Dpysl5 65254 1.16 dihydropyrimidinase-like 5 

Dub1 13531 1.18 deubiquitinating enzyme 1; similar to DUB-1 

Dusp22 105352 1.01 dual specificity phosphatase 22 

Dusp4 319520 2.2 dual specificity phosphatase 4 

Efna5 13640 1.1 ephrin A5 

Efnb2 13642 1.52 ephrin B2 

Eif4g3 230861 1.11 
eukaryotic translation initiation factor 4 gamma, 3; similar to Eukaryotic translation initiation 
factor 4 gamma 3 (eIF-4-gamma 3) (eIF-4G 3) (eIF4G 3) (eIF-4-gamma II) (eIF4GII) 

Elmod2 244548 1.03 ELMO domain containing 2 

Eml3 225898 1.06 echinoderm microtubule associated protein like 3 

ENSMUSG000000
79376 545001 1.17 predicted gene, ENSMUSG00000079376 

Epb4.1l3 13823 1.81 erythrocyte protein band 4.1-like 3 

Erbb2ip 59079 1.01 Erbb2 interacting protein 

F2r 14062 1.97 coagulation factor II (thrombin) receptor 

Fabp7 12140 1.88 fatty acid binding protein 7, brain 

Fam135a 68187 1.12 family with sequence similarity 135, member A 

Fam149a 212326 1.04 family with sequence similarity 149, member A 

Fam163a 329274 1.32 family with sequence similarity 163, member A 

Fam38b 667742 1.32 family with sequence similarity 38, member B2 

Fam64a 109212 1.14 RIKEN cDNA 6720460F02 gene 

Fgf5 14176 1.86 fibroblast growth factor 5 

Flnc 68794 1.49 filamin C, gamma 

Fn1 14268 1.04 fibronectin 1 

Frk 14302 1.34 fyn-related kinase 

Frmd4b 232288 1.58 FERM domain containing 4B 

Fst 14313 2.24 follistatin 

Fuca2 66848 1.17 fucosidase, alpha-L- 2, plasma 

Furin 18550 1.41 furin (paired basic amino acid cleaving enzyme) 

Fzd2 57265 1.16 frizzled homolog 2 (Drosophila) 

Fzd3 14365 1.05 frizzled homolog 3 (Drosophila) 

Gabra3 14396 1.04 gamma-aminobutyric acid (GABA) A receptor, subunit alpha 3 

Gdpd3 68616 3.66 glycerophosphodiester phosphodiesterase domain containing 3 
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Gfra2 14586 1.2 glial cell line derived neurotrophic factor family receptor alpha 2 

Gfra3 14587 1.23 glial cell line derived neurotrophic factor family receptor alpha 3 

Ghr 14600 1.79 growth hormone receptor 

Gja1 14609 1.09 gap junction protein, alpha 1 

Gm10021 622931 1.04 predicted gene 10021 

Gm12387 621880 1.2 predicted gene 12387 

Gm3264 100041306 1.17 

predicted gene 3494; predicted gene 3099; predicted gene 6676; predicted gene 3518; 
alpha7-takusan; RIKEN cDNA 4930555G01 gene; predicted gene, 100039441; predicted 
gene 3715; RIKEN cDNA B930046C15 gene;  

Gm3696 100042149 3.36 
predicted gene 3494; predicted gene 3099; predicted gene 6676; predicted gene 3518; 
alpha7-takusan; RIKEN cDNA 4930555G01 gene; predicted gene, 100039441;  

Gm5458 432825 1.135 
predicted gene 3494; predicted gene 3099; predicted gene 6676; predicted gene 3518; 
alpha7-takusan; RIKEN cDNA 4930555G01 gene; predicted gene, 100039441;  

Gm5666 435373 1.7 predicted gene 5666 

Gm773 331416 2.07 predicted gene 773 

Gm9943 100036531 1.5 predicted gene 9943 

Gpm6b 14758 1.16 glycoprotein m6b 

Gpr116 224792 1.65 G protein-coupled receptor 116 

Gpr165 76206 1.27 G protein-coupled receptor 165 

Gpx8 69590 1.76 glutathione peroxidase 8 (putative) 

Gria3 53623 1.96 glutamate receptor, ionotropic, AMPA3 (alpha 3) 

Gstm5 14866 2.36 glutathione S-transferase, mu 5 

Gypc 71683 1.72 glycophorin C 

H2afy2 404634 1.18 H2A histone family, member Y2 

H2-gs10 436493 1.01 MHC class I like protein GS10 

H2-T22 15039 1.47 

histocompatibility 2, T region locus 9; hypothetical protein LOC100044191; histocompatibility 
2, T region locus 10; hypothetical protein LOC100044190; histocompatibility 2, T region 
locus 22 

Hapln1 12950 3.94 hyaluronan and proteoglycan link protein 1 

Hbb-y 15135 4.06 similar to beta-globin; hemoglobin Y, beta-like embryonic chain 

Hdx 245596 1.37 highly divergent homeobox 

Heph 15203 1.34 hephaestin 

Hn1l 52009 1.15 hematological and neurological expressed 1-like 

Igdcc3 19289 1.23 immunoglobulin superfamily, DCC subclass, member 3 

Igf1r 16001 1.22 insulin-like growth factor I receptor 

Ilk 16202 1.17 integrin linked kinase; predicted gene 6263 

Inadl 12695 1.36 InaD-like (Drosophila) 

Irs1 16367 1.3 insulin receptor substrate 1 

Irs2 384783 1.2 insulin receptor substrate 2 

Itga8 241226 1.68 integrin alpha 8 

Kcne3 57442 1.29 
potassium voltage-gated channel, Isk-related subfamily, gene 3; hypothetical protein 
LOC100044693 

Kcnj5 16521 1.56 potassium inwardly-rectifying channel, subfamily J, member 5 

Kcnmb1 16533 1.04 potassium large conductance calcium-activated channel, subfamily M, beta member 1 

Kdm5d 20592 1.01 lysine (K)-specific demethylase 5D 

Kif3a 16568 1.02 kinesin family member 3A 

Klf6 23849 1.32 Kruppel-like factor 6 

Krt19 16669 2.18 keratin 19 

Lamp2 16784 1.13 lysosomal-associated membrane protein 2 

Lcp1 18826 1.38 lymphocyte cytosolic protein 1 

Ldb2 16826 1.8 LIM domain binding 2 

Lgals3bp 19039 1 lectin, galactoside-binding, soluble, 3 binding protein 

Lhfp 108927 1.17 lipoma HMGIC fusion partner 

Limd1 29806 1.1 LIM domains containing 1 

Lmbrd1 68421 1.17 LMBR1 domain containing 1 

LOC280487 280487 3.36 pol polyprotein 

Lphn2 99633 1.98125 latrophilin 2 

Lrrc8c 100604 1.08 leucine rich repeat containing 8 family, member C 

Map4k5 399510 1.09 mitogen-activated protein kinase kinase kinase kinase 5 

Mapkapk2 17164 1.36 MAP kinase-activated protein kinase 2 

Mcc 328949 1.23 mutated in colorectal cancers 

Mesp1 17292 2.21 mesoderm posterior 1 

Mmd 67468 1.73 
monocyte to macrophage differentiation-associated; similar to monocyte to macrophage 
differentiation-associated 
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Mmp9 17395 1.36 matrix metallopeptidase 9 

Mpp5 56217 1.3 membrane protein, palmitoylated 5 (MAGUK p55 subfamily member 5) 

Msl1 74026 1.04 similar to RIKEN cDNA 4121402D02 gene; male-specific lethal 1 homolog (Drosophila) 

Msl3 17692 1.15 male-specific lethal 3 homolog (Drosophila) 

Mthfd2l 665563 1.145 methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 2-like 

Myh10 77579 1.04 myosin, heavy polypeptide 10, non-muscle 

Naalad2 72560 1.22 N-acetylated alpha-linked acidic dipeptidase 2 

Nme5 75533 1.19 non-metastatic cells 5, protein expressed in (nucleoside-diphosphate kinase) 

Nnat 18111 1.75 neuronatin 

Notch2 18129 1.14 Notch gene homolog 2 (Drosophila) 

Ogfr 72075 1.2 opioid growth factor receptor 

Olfm1 56177 1.19 olfactomedin 1 

Olfr893 258333 1.41 olfactory receptor 893 

Ophn1 94190 1.21 oligophrenin 1 

Padi3 18601 1.74 peptidyl arginine deiminase, type III 

Parp8 52552 1.55 poly (ADP-ribose) polymerase family, member 8 

Pbx3 18516 1.49 similar to PBX3a; pre B-cell leukemia transcription factor 3 

Pctp 18559 1.12 phosphatidylcholine transfer protein 

Pdgfrl 68797 1.34 platelet-derived growth factor receptor-like 

Penk 18619 1.81 preproenkephalin 

Phldb2 208177 2.29 pleckstrin homology-like domain, family B, member 2 

Pla2g12b 69836 1.47 phospholipase A2, group XIIB 

Plin2 11520 1.5 adipose differentiation related protein 

Plxna4 243743 1.01 plexin A4 

Pnpt1 71701 1.14 
similar to polynucleotide phosphorylase-like protein; polyribonucleotide 
nucleotidyltransferase 1 

Ppfibp1 67533 1.24 PTPRF interacting protein, binding protein 1 (liprin beta 1); similar to mKIAA1230 protein 

Ppt2 54397 1.25 palmitoyl-protein thioesterase 2 

Prkce 18754 1.06 RIKEN cDNA 9630025F12 gene; protein kinase C, epsilon 

Prom1 19126 1.18 prominin 1 

Pxmp3 19302 1.55 peroxisomal biogenesis factor 5-like; peroxisomal membrane protein 3 

Pygl 110095 1.52 liver glycogen phosphorylase 

Rap1a 109905 1.09 predicted gene 9392; similar to Raichu404X; RAS-related protein-1a 

Rap2c 72065 1.34 
similar to RAP2C, member of RAS oncogene family; RAP2C, member of RAS oncogene 
family 

Rbm24 666794 1.09 RNA binding motif protein 24 

Rbmy1a1 19657 1.893333333 RNA binding motif protein, Y chromosome, family 1, member A1 

Rbp1 19659 1.53 retinol binding protein 1, cellular 

Rfx3 19726 1.05 
regulatory factor X, 3 (influences HLA class II expression); similar to Regulatory factor X, 3 
(influences HLA class II expression) 

Rgs17 56533 1.58 regulator of G-protein signaling 17 

Rhob 11852 1.17 ras homolog gene family, member B 

Rnf128 66889 1.78 ring finger protein 128 

Samd3 268288 1.34 sterile alpha motif domain containing 3 

Samd5 320825 1.07 sterile alpha motif domain containing 5 

Sema6a 20358 1.72 sema domain, transmembrane domain (TM), and cytoplasmic domain, (semaphorin) 6A 

Sept8 20362 1.85 septin 8 

Serpinb9 20723 1.39 serine (or cysteine) peptidase inhibitor, clade B, member 9 

Sfxn4 94281 1.03 sideroflexin 4 

Sgk3 170755 1.06 serum/glucocorticoid regulated kinase 3 

Slc16a10 72472 1.02 solute carrier family 16 (monocarboxylic acid transporters), member 10 

Slc18a2 214084 1.89 solute carrier family 18 (vesicular monoamine), member 2 

Slc38a5 209837 1.04 solute carrier family 38, member 5 

Slc39a8 67547 2.86 solute carrier family 39 (metal ion transporter), member 8 

Slc43a3 58207 1.27 solute carrier family 43, member 3 

Slc6a6 21366 1.09 solute carrier family 6 (neurotransmitter transporter, taurine), member 6 

Sox4 20677 1.01 SRY-box containing gene 19; SRY-box containing gene 4 

Sparcl1 13602 1.44 SPARC-like 1 

Spats2l 67198 1.29 RIKEN cDNA 2810022L02 gene 

St3gal1 20442 1.04 ST3 beta-galactoside alpha-2,3-sialyltransferase 1 

Stag2 20843 1.01 stromal antigen 2 



  Appendix 
 

166 
 

Stxbp6 217517 1.28 syntaxin binding protein 6 (amisyn) 

Syne2 319565 1.156666667 synaptic nuclear envelope 2 

T 20997 5.02 brachyury 

Tank 21353 1.19 TRAF family member-associated Nf-kappa B activator 

Tcf4 21413 1.04 transcription factor 4 

Tex13 83555 1.39 testis expressed gene 13 

Thoc7 66231 1.06 THO complex 7 homolog (Drosophila); similar to Thoc7 protein 

Tmem128 66309 1.13 transmembrane protein 128 

Tmem144 70652 1.13 transmembrane protein 144 

Tmem47 192216 1.29 transmembrane protein 47 

Tmem80 71448 1.22 transmembrane protein 80 

Tpm1 22003 1.57 tropomyosin 1, alpha 

Tsc22d3 14605 1.1 TSC22 domain family, member 3 

Tspan6 56496 2.59 tetraspanin 6 

Tspan7 21912 1.14 tetraspanin 7 

Ttc18 76670 1.66 tetratricopeptide repeat domain 18 

Tuft1 22156 1.07 similar to tuftelin; tuftelin 1 

Usp18 24110 1.69 ubiquitin specific peptidase 18; similar to ubiquitin specific protease UBP43 

Usp25 30940 1.26 ubiquitin specific peptidase 25 

Usp9y 107868 1.29 ubiquitin specific peptidase 9, Y chromosome 

Vmn2r50 434117 1.01 vomeronasal 2, receptor 50 

Vwa5a 67776 1.16 von Willebrand factor A domain containing 5A 

Wnt3 22415 2.14 wingless-related MMTV integration site 3 

Zc3h12b 547176 1.28 zinc finger CCCH-type containing 12B 

Zfp362 230761 1.03 zinc finger protein 362 

Zfp608 269023 1.54 zinc finger protein 608 

Zfp772 232855 1.01 cDNA sequence BC023179 

Zhx2 387609 1.15 zinc fingers and homeoboxes 2 

 

Downregulated genes in dnmt1-/- EBs compared to wt EBs between d0-4 

Gene symbol 
Entrez Gene 

ID 

Fold change 
compared to 

wt 
Gene name 

1700007K13Rik 69327 -1.14 RIKEN cDNA 1700007K13 gene 

2200001I15Rik 69134 -1.06 RIKEN cDNA 2200001I15 gene 

2310003C23Rik 76425 -1.01 predicted gene 5206; RIKEN cDNA 2310003C23 gene 

2410017P07Rik 103268 -1.04 RIKEN cDNA 2410017P07 gene 

2700023E23Rik 70036 -1.08 RIKEN cDNA 2700023E23 gene 

4930429B21Rik 67576 -1.14 RIKEN cDNA 4930429B21 gene 

4930502E18Rik 75013 -1.05 RIKEN cDNA 4930502E18 gene 

4930591A17Rik 68175 -1.54 RIKEN cDNA 4930591A17 gene 

5730590G19Rik 77011 -1.15 RIKEN cDNA 5730590G19 gene; similar to RIKEN cDNA 5730590G19-like 

A2m 232345 -1.3 alpha-2-macroglobulin 

Aass 30956 -1.15 aminoadipate-semialdehyde synthase 

Abcg1 11307 -1.12 ATP-binding cassette, sub-family G (WHITE), member 1 

Adamts14 237360 -1 
a disintegrin-like and metallopeptidase (reprolysin type) with thrombospondin type 1 motif, 
14 

Adap2 216991 -1.41 ArfGAP with dual PH domains 2 

Aes 14797 -1.4 amino-terminal enhancer of split 

Aire 11634 -1.53 autoimmune regulator (autoimmune polyendocrinopathy candidiasis ectodermal dystrophy) 

Aldh1b1 72535 -1.27 aldehyde dehydrogenase 1 family, member B1 

Aplp1 11803 -1.47 amyloid beta (A4) precursor-like protein 1 

Apobec2 11811 -1.32 
apolipoprotein B mRNA editing enzyme, catalytic polypeptide 2; similar to APOBEC-2 
protein 

Arrdc3 105171 -1.02 arrestin domain containing 3 

C130073F10Rik 242574 -1.18 RIKEN cDNA C130073F10 gene 

Camk2b 12323 -1.25 calcium/calmodulin-dependent protein kinase II, beta 

Ccdc3 74186 -1.17 coiled-coil domain containing 3 

Cd1d1 12479 -1.04 CD1d1 antigen; CD1d2 antigen 

Cd37 12493 -1.34 CD37 antigen 
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Cd80 12519 -1.57 CD80 antigen 

Cdkl4 381113 -1.2 cyclin-dependent kinase-like 4 

Cenpm 66570 -1.48 centromere protein M 

Cpn1 93721 -1.18 carboxypeptidase N, polypeptide 1 

Cpne5 240058 -1.69 copine V; similar to Copine V 

Crmp1 12933 -1.03 collapsin response mediator protein 1 

Crtap 56693 -1.13 cartilage associated protein 

Ctcfl 664799 -1.24 CCCTC-binding factor (zinc finger protein)-like 

Ctsw 13041 -1.16 cathepsin W 

Cyb5r1 72017 -1.01 cytochrome b5 reductase 1 

Cyct 13067 -1.01 cytochrome c, testis 

D1Pas1 110957 -1.11 DNA segment, Chr 1, Pasteur Institute 1 

D630013G24Rik 319825 -1.23 RIKEN cDNA D630013G24 gene 

D630023F18Rik 98303 -1.22 RIKEN cDNA D630023F18 gene 

Dcdc2a 195208 -1.59 doublecortin domain containing 2a 

Ddr2 18214 -1.37 discoidin domain receptor family, member 2 

Derl3 70377 -1.12 Der1-like domain family, member 3 

Dgka 13139 -1.2 diacylglycerol kinase, alpha 

Dgke 56077 -1.12 diacylglycerol kinase, epsilon 

Dmc1 13404 -1.04 
DMC1 dosage suppressor of mck1 homolog, meiosis-specific homologous recombination 
(yeast) 

Dnajc5g 231098 -1.92 DnaJ (Hsp40) homolog, subfamily C, member 5 gamma 

Dpp4 13482 -1.49 dipeptidylpeptidase 4 

Efhc2 74405 -2.27 EF-hand domain (C-terminal) containing 2 

Egr1 13653 -1.01 early growth response 1 

Epas1 13819 -1.56 endothelial PAS domain protein 1; similar to Endothelial PAS domain protein 1 

Fam63a 75007 -1.24 family with sequence similarity 63, member A 

Fkbp6 94244 -1.58 FK506 binding protein 6 

Foxr1 382074 -1.32 forkhead box R1 

Fry 320365 -1.29 furry homolog (Drosophila) 

Galnt6 207839 -1.5 UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 6 

Gjb3 14620 -1.64 gap junction protein, beta 3 

Glb1 12091 -1.24 galactosidase, beta 1 

Gm10047 791327 -1.16 predicted gene 10047 

Gm10139 628676 -1.05 predicted gene 10139 

Gm13498 227885 -1.76 predicted gene 13498 

Gm1564 268491 -1.74 predicted gene 1564 

Gm15698 217066 -1.27 predicted gene 15698 

Gm281 238939 -1.05 predicted gene 281 

Gm2889 100040658 -1.982 

hypothetical protein LOC100041609; hypothetical protein LOC100044795; predicted gene 
3395; similar to gag polyprotein; hypothetical protein LOC100047557; hypothetical protein 
LOC100040347; hypothetical protein LOC100044384; hypothetical protein LOC100045342; 
hypothetical protein LOC100038979; predicted gene 2889 

Gm340 381224 -1.16 predicted gene 340 

Gm5077 317677 -1.16 predicted gene 5077 

Gm5488 433036 -1.04 predicted gene 5488 

Gm7325 653016 -1.08 predicted gene 7325 

Gm7455 665033 -1.07 predicted gene 7455 

Gm949 381142 -1.37 predicted gene 949 

Gm9886 791286 -1.38 predicted gene 9886 

Gpx2 14776 -1.59 glutathione peroxidase 2 

Gpx4 625249 -1.025 heterogeneous nuclear ribonucleoprotein L-like; glutathione peroxidase 4 

Grhl3 230824 -1.28 grainyhead-like 3 (Drosophila) 

Hvcn1 74096 -1 hydrogen voltage-gated channel 1 

Icosl 50723 -1.09 icos ligand 

Ildr1 106347 -1.05 immunoglobulin-like domain containing receptor 1 

Jag2 16450 -1.31 jagged 2 

Jak3 16453 -1.07 Janus kinase 3 

Kank3 80880 -1.11 KN motif and ankyrin repeat domains 3 

Kdm3a 104263 -1.25 lysine (K)-specific demethylase 3A 

Lama1 16772 -1.72 laminin, alpha 1 



  Appendix 
 

168 
 

Lamc1 226519 -1.13 laminin, gamma 1 

Macf1 11426 -1.12 microtubule-actin crosslinking factor 1 

Magea1 17137 -1.27 melanoma antigen, family A, 1 

Magea2 17138 -1.18 melanoma antigen, family A, 2 

Mc5r 17203 -1.2 melanocortin 5 receptor 

Mcam 84004 -1.36 melanoma cell adhesion molecule 

Mfng 17305 -1.13 MFNG O-fucosylpeptide 3-beta-N-acetylglucosaminyltransferase 

Mia1 12587 -1.04 melanoma inhibitory activity 1 

Mlana 77836 -1.21 melan-A 

Mmp11 17385 -1.02 matrix metallopeptidase 11 

Mmrn2 105450 -1.63 multimerin 2 

Mras 17532 -1.31 muscle and microspikes RAS 

Mylpf 17907 -1.67 myosin light chain, phosphorylatable, fast skeletal muscle 

Myo1g 246177 -1 myosin IG 

Naaa 67111 -1.3 N-acylethanolamine acid amidase 

Naprt1 223646 -1.09 nicotinate phosphoribosyltransferase domain containing 1 

Ncoa1 17977 -1.12 
similar to Nuclear receptor coactivator 1 (NCoA-1) (Steroid receptor coactivator 1) (SRC-1) 
(Nuclear receptor coactivator protein 1) (mNRC-1); nuclear receptor coactivator 1 

Necab1 69352 -1.59 N-terminal EF-hand calcium binding protein 1 

Nedd4l 83814 -1.2 neural precursor cell expressed, developmentally down-regulated gene 4-like 

Nfu1 56748 -1.34 NFU1 iron-sulfur cluster scaffold homolog (S. cerevisiae); predicted gene 7859 

Nlrc4 268973 -2.24 NLR family, CARD domain containing 4 

Nlrp4f 97895 -1.3 NLR family, pyrin domain containing 4F 

Nlrp9b 243874 -1.04 NLR family, pyrin domain containing 9B 

Nos1 18125 -1.31 nitric oxide synthase 1, neuronal 

Nrg4 83961 -1.42 neuregulin 4 

Olfr307 258610 -2.59 olfactory receptor 307 

P4htm 74443 -1.12 prolyl 4-hydroxylase, transmembrane (endoplasmic reticulum) 

Padi4 18602 -1.07 peptidyl arginine deiminase, type IV 

Pcyt1b 236899 -1.19 phosphate cytidylyltransferase 1, choline, beta isoform 

Pfkp 56421 -1.45 phosphofructokinase, platelet 

Pigl 327942 -1.09 phosphatidylinositol glycan anchor biosynthesis, class L 

Pik3cd 18707 -1.08 phosphatidylinositol 3-kinase catalytic delta polypeptide; RIKEN cDNA 2610208K16 gene 

Pitpnc1 71795 -1.11 phosphatidylinositol transfer protein, cytoplasmic 1 

Piwil4 330890 -1.29 piwi-like homolog 4 (Drosophila) 

Pla2g7 27226 -1.07 phospholipase A2, group VII (platelet-activating factor acetylhydrolase, plasma) 

Plac9 211623 
-

1.013333333 placenta specific 9; predicted gene 10393; predicted gene 9780 

Plekhg5 269608 -1.27 pleckstrin homology domain containing, family G (with RhoGef domain) member 5 

Plk5 216166 -1.06 polo-like kinase 5 (Drosophila) 

Plxdc1 72324 -1.11 plexin domain containing 1 

Pole4 66979 -1.31 polymerase (DNA-directed), epsilon 4 (p12 subunit) 

Porcn 53627 -1.21 porcupine homolog (Drosophila) 

Ppp2r2c 269643 -1.41 protein phosphatase 2 (formerly 2A), regulatory subunit B (PR 52), gamma isoform 

Ppp2r5c 26931 -1.14 protein phosphatase 2, regulatory subunit B (B56), gamma isoform 

Pramel6 347711 -1.33 preferentially expressed antigen in melanoma like 6 

Prmt8 381813 -1.39 protein arginine N-methyltransferase 8 

Prune 229589 -1.04 predicted gene 5217; prune homolog (Drosophila) 

Prune2 353211 -1.09 RIKEN cDNA A230083H22 gene 

Ptchd3 74675 -1.12 patched domain containing 3 

Ptk2b 19229 -1.3 PTK2 protein tyrosine kinase 2 beta 

Ptp4a3 19245 -1.1 protein tyrosine phosphatase 4a3 

Pycard 66824 -1.13 PYD and CARD domain containing 

R3hdml 100043899 -1.08 R3H domain containing-like 

Rab27a 11891 -1.55 RAB27A, member RAS oncogene family 

Rad9b 231724 -1.09 RAD9 homolog B (S. cerevisiae) 

Rdm1 66599 -1.23 RAD52 motif 1 

Rlbp1 19771 -1.03 retinaldehyde binding protein 1 

Skil 20482 -1.32 SKI-like 

Slc1a1 20510 -1.78 
solute carrier family 1 (neuronal/epithelial high affinity glutamate transporter, system Xag), 
member 1 
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Slc29a1 63959 -1.09 solute carrier family 29 (nucleoside transporters), member 1 

Slc29a4 243328 -1.04 
solute carrier family 29 (nucleoside transporters), member 4; similar to Solute carrier family 
29 (nucleoside transporters), member 4 

Slc5a1 20537 -1.52 solute carrier family 5 (sodium/glucose cotransporter), member 1 

Slco4c1 227394 -1.4 solute carrier organic anion transporter family, member 4C1 

Slfn9 237886 -1.05 similar to putative protein; schlafen 9; similar to schlafen 9 

Smc1b 140557 -2.39 structural maintenance of chromosomes 1B 

Sntb2 20650 -1.04 similar to beta-2-syntrophin; syntrophin, basic 2 

Sox15 20670 -1.03 SRY-box containing gene 16; SRY-box containing gene 15 

Sp110 109032 -1.03 predicted gene 15753; Sp110 nuclear body protein 

Spint2 20733 -1.01 serine protease inhibitor, Kunitz type 2 

Stag3 50878 -1.43 stromal antigen 3 

Steap3 68428 -1.06 STEAP family member 3 

Stk30 26448 -1.45 renal tumor antigen 

Stra8 20899 -1.26 stimulated by retinoic acid gene 8 

Syngr3 20974 -1.03 synaptogyrin 3 

Taf9b 407786 -1.24 TAF9B RNA polymerase II, TATA box binding protein (TBP)-associated factor 

Tcfeb 21425 -1.3 transcription factor EB 

Tmem64 100201 -1.19 transmembrane protein 64 

Tmprss12 75002 -1.2 transmembrane protease, serine 12 

Tnfsf12-tnfsf13 619441 -1.13 
tumor necrosis factor (ligand) superfamily, member 12; tumor necrosis factor (ligand) 
superfamily, member 12-member 13; tumor necrosis factor (ligand) superfamily, member 13 

Trib3 228775 -1.19 tribbles homolog 3 (Drosophila) 

Tuba3b 22147 -1.28 predicted gene 5366; tubulin, alpha 3B; tubulin, alpha 3A 

Tubb2b 73710 -1.1 tubulin, beta 2a, pseudogene 2; tubulin, beta 2B 

Ubr5 70790 -1.14 ubiquitin protein ligase E3 component n-recognin 5 

Ung 22256 -1.11 uracil DNA glycosylase 

Upk1a 109637 -1.11 uroplakin 1A 

Usp50 75083 -1.26 ubiquitin specific peptidase 50 

Wdtc1 230796 -1.19 WD and tetratricopeptide repeats 1; similar to WD and tetratricopeptide repeats 1 

Xlr5a 574438 -1.22 

X-linked lymphocyte-regulated 5B; X-linked lymphocyte-regulated 5D, pseudogene; X-linked 
lymphocyte-regulated 5A; X-linked lymphocyte-regulated 5E, pseudogene; predicted gene, 
EG667719 

Xlr5b 627081 -2.63 

X-linked lymphocyte-regulated 5B; X-linked lymphocyte-regulated 5D, pseudogene; X-linked 
lymphocyte-regulated 5A; X-linked lymphocyte-regulated 5E, pseudogene; predicted gene, 
EG667719 

Zcwpw1 381678 -2.7 paired immunoglobin-like type 2 receptor beta 2; zinc finger, CW type with PWWP domain 1 

Zcwpw1 545812 -1.54 paired immunoglobin-like type 2 receptor beta 2; zinc finger, CW type with PWWP domain 1 

Zfp710 209225 -1.17 zinc finger protein 710 

 

Upregulated genes in TKO EBs compared to wt EBs between d0-4 

Gene symbol 
Entrez Gene 

ID 

Fold change 
compared to 

wt 
Gene name 

544988 100042149 1.05 predicted gene, 544988 

1300003B13Rik 74149 1.13 RIKEN cDNA 1300003B13 gene; hypothetical protein LOC100044281 

1300014I06Rik 66895 2.37 RIKEN cDNA 1300014I06 gene 

1700048O20Rik 69430 1.42 RIKEN cDNA 1700048O20 gene 

1810011O10Rik 69068 1.37 RIKEN cDNA 1810011O10 gene 

2610018G03Rik 70415 1.3 RIKEN cDNA 2610018G03 gene 

4631416L12Rik 622434 1.33 RIKEN cDNA 4631416L12 gene 

4930550L24Rik 75352 1.33 RIKEN cDNA 4930550L24 gene 

5930434B04Rik 381356 1.02 RIKEN cDNA 5930434B04 gene; hypothetical protein LOC100047034 

6430411K18Rik 76880 1.06 retrotransposon-like 1; RIKEN cDNA 6430411K18 gene 

9230105E10Rik 319236 1.526666667 similar to tripartite motif protein TRIM5; RIKEN cDNA 9230105E10 gene 

A130022J15Rik 101351 1.69 RIKEN cDNA A130022J15 gene 

A2bp1 268859 1.06 ataxin 2 binding protein 1 

Aadat 23923 1 aminoadipate aminotransferase 

Acadl 11363 1.31 acyl-Coenzyme A dehydrogenase, long-chain 

Acsl4 50790 1.04 acyl-CoA synthetase long-chain family member 4 

Adamts1 11504 1 a disintegrin-like and metallopeptidase (reprolysin type) with thrombospondin type 1 motif, 1 

Adamts15 235130 1.78 
a disintegrin-like and metallopeptidase (reprolysin type) with thrombospondin type 1 motif, 
15 
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Aff3 16764 1.5 
AF4/FMR2 family, member 3; similar to AF4/FMR2 family member 3 (LAF-4 protein) 
(Lymphoid nuclear protein related to AF4) 

Afp 11576 1.42 alpha fetoprotein 

Agpat3 28169 1.15 1-acylglycerol-3-phosphate O-acyltransferase 3 

AI314180 230249 1.01 expressed sequence AI314180 

Ano5 233246 1.04 anoctamin 5 

Ap1m2 11768 1.29 adaptor protein complex AP-1, mu 2 subunit 

Apba2 11784 1.22 amyloid beta (A4) precursor protein-binding, family A, member 2 

Ar 11835 1.49 androgen receptor 

Arhgap18 73910 1.88 Rho GTPase activating protein 18 

Arhgef5 54324 1.285 Rho guanine nucleotide exchange factor (GEF) 5 

Arhgef9 236915 1.18 CDC42 guanine nucleotide exchange factor (GEF) 9 

Arid2 77044 1.04 AT rich interactive domain 2 (ARID, RFX-like); RIKEN cDNA 1700124K17 gene 

Arl4c 320982 1.28 similar to ADP-ribosylation factor-like protein 7; ADP-ribosylation factor-like 4C 

Arrb1 109689 1.14 arrestin, beta 1 

Bach1 12013 1.25 BTB and CNC homology 1 

Bbx 70508 1.23 bobby sox homolog (Drosophila) 

Bcl9 77578 1.02 B-cell CLL/lymphoma 9 

Cables1 63955 1.25 CDK5 and Abl enzyme substrate 1 

Cacnb2 12296 1.04 calcium channel, voltage-dependent, beta 2 subunit 

Calcr 12311 2.3 calcitonin receptor 

Calcrl 54598 2.16 calcitonin receptor-like 

Camk2d 108058 1.65 calcium/calmodulin-dependent protein kinase II, delta 

Car13 71934 1.67 carbonic anhydrase 13 

Car2 12349 2.86 carbonic anhydrase 2 

Ccdc85a 216613 1.08 coiled-coil domain containing 85A 

Ccl20 20297 1.01 chemokine (C-C motif) ligand 20 

Cda 72269 1.09 cytidine deaminase 

Cdc14a 229776 1.12 
similar to Dual specificity protein phosphatase CDC14A (CDC14 cell division cycle 14 
homolog A); CDC14 cell division cycle 14 homolog A (S. cerevisiae) 

Cdcp1 109332 1.12 CUB domain containing protein 1 

Cdh10 320873 1.47 cadherin 10 

Cdh5 12562 1.7 cadherin 5 

Cdh9 12565 1 cadherin 9 

Cdkn1a 12575 1.23 cyclin-dependent kinase inhibitor 1A (P21) 

Chst15 77590 2.09 carbohydrate (N-acetylgalactosamine 4-sulfate 6-O) sulfotransferase 15 

Clcn5 12728 1.54 chloride channel 5 

Cldn6 54419 1.81 claudin 6 

Cldn7 53624 1.61 claudin 7 

Cmtm8 70031 1.26 CKLF-like MARVEL transmembrane domain containing 8 

Cnksr3 215748 1.13 Cnksr family member 3 

Cpe 12876 2.88 carboxypeptidase E; similar to carboxypeptidase E 

Cpt1b 12895 1.02 carnitine palmitoyltransferase 1b, muscle 

Csrp1 13007 1.11 cysteine and glycine-rich protein 1 

Ctnnd2 18163 1.2 catenin (cadherin associated protein), delta 2 

Ctsc 13032 2.94 cathepsin C 

Cxadr 13052 1.36 coxsackie virus and adenovirus receptor 

Cxcl12 20315 1.43 chemokine (C-X-C motif) ligand 12 

Cxx1b 553127 1.545 
CAAX box 1 homolog A (human); CAAX box 1 homolog B (human); similar to mammalian 
retrotransposon derived 8b 

Cxx1c 72865 2.1 CAAX box 1 homolog C (human) 

Cyp2j6 13110 1.01 cytochrome P450, family 2, subfamily j, polypeptide 6 

Cyp4a12b 13118 1.88 cytochrome P450, family 4, subfamily a, polypeptide 12B 

Cyr61 16007 2.24 cysteine rich protein 61 

Cysltr1 58861 1.66 cysteinyl leukotriene receptor 1 

D830030K20Rik 320333 1 

predicted gene 2971; predicted gene 3532; predicted gene 3033; RIKEN cDNA 
D830030K20 gene; predicted gene 3278; predicted gene 8271; predicted gene 2244; 
predicted gene 3043; predicted gene 3537; predicted gene 10408; predicted gene 8050; 
predicted gene 3755 

Dapk1 69635 1.22 death associated protein kinase 1 

Dbc1 56710 1.08 deleted in bladder cancer 1 (human) 

Dclk1 13175 1.77 doublecortin-like kinase 1 
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Dennd5b 320560 1.02 DENN/MADD domain containing 5B 

Dhrs3 20148 1.63 dehydrogenase/reductase (SDR family) member 3 

Diap2 54004 1 diaphanous homolog 2 (Drosophila) 

Dnmt3b 13436 1.35 DNA methyltransferase 3B 

Dock11 75974 1.38 dedicator of cytokinesis 11 

Dpysl5 65254 1.3 dihydropyrimidinase-like 5 

Dusp4 319520 2.79 dual specificity phosphatase 4 

Dusp6 67603 2.21 dual specificity phosphatase 6 

Ebf1 13591 1.895 early B-cell factor 1 

Efna5 13640 1.97 ephrin A5 

Efnb2 13642 1.32 ephrin B2 

Eif4g3 230861 1.14 
eukaryotic translation initiation factor 4 gamma, 3; similar to Eukaryotic translation initiation 
factor 4 gamma 3 (eIF-4-gamma 3) (eIF-4G 3) (eIF4G 3) (eIF-4-gamma II) (eIF4GII) 

Eltd1 170757 1.69 EGF, latrophilin seven transmembrane domain containing 1 

Enpp2 18606 2.42 ectonucleotide pyrophosphatase/phosphodiesterase 2 

ENSMUSG000000
68790 100042149 1.41 

predicted gene 3494; predicted gene 3099; predicted gene 6676; predicted gene 3518; 
alpha7-takusan; RIKEN cDNA 4930555G01 gene; predicted gene, 100039441; predicted 
gene 3715; RIKEN cDNA B930046C15 gene;  

Epb4.1l3 13823 1.85 erythrocyte protein band 4.1-like 3 

Epha1 13835 2.57 Eph receptor A1 

Epha7 13841 1.85 Eph receptor A7 

Erap1 80898 2.16 endoplasmic reticulum aminopeptidase 1 

Erbb2ip 59079 1.16 Erbb2 interacting protein 

Erg 13876 1.18 avian erythroblastosis virus E-26 (v-ets) oncogene related 

Errfi1 74155 1 ERBB receptor feedback inhibitor 1 

Esm1 71690 1.07 endothelial cell-specific molecule 1 

Exoc3l 277978 1.82 exocyst complex component 3-like 

F2r 14062 2.21 coagulation factor II (thrombin) receptor 

Fabp7 12140 1.61 fatty acid binding protein 7, brain 

Fads2 56473 1.12 fatty acid desaturase 2 

Fam131b 76156 1.08 family with sequence similarity 131, member B 

Fam171b 241520 1.76 family with sequence similarity 171, member B 

Fam38b 667742 1.36 family with sequence similarity 38, member B2 

Fam55c 385658 1.21 family with sequence similarity 55, member C 

Fbxo32 67731 1 F-box protein 32 

Fermt1 241639 1.07 fermitin family homolog 1 (Drosophila) 

Fgf5 14176 4.03 fibroblast growth factor 5 

Fgf8 14179 1.42 fibroblast growth factor 8 

Fhl3 14201 1.03 four and a half LIM domains 3 

Fras1 231470 1.32 Fraser syndrome 1 homolog (human) 

Frem2 242022 1.35 Fras1 related extracellular matrix protein 2 

Frk 14302 1.01 fyn-related kinase 

Frmd4b 232288 1.57 FERM domain containing 4B 

Fst 14313 3.17 follistatin 

Fuca2 66848 1.23 fucosidase, alpha-L- 2, plasma 

Fv1 14349 1.04 Friend virus susceptibility 1 

Fzd2 57265 1.15 frizzled homolog 2 (Drosophila) 

Fzd3 14365 1.2 frizzled homolog 3 (Drosophila) 

Fzd7 14369 1.15 frizzled homolog 7 (Drosophila) 

Gabra3 14396 1.67 gamma-aminobutyric acid (GABA) A receptor, subunit alpha 3 

Gabra4 14397 1.24 gamma-aminobutyric acid (GABA) A receptor, subunit alpha 4 

Galnt12 230145 1.26 UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 12 

Galnt3 14425 2.13 UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 3 

Gatm 67092 1.63 glycine amidinotransferase (L-arginine:glycine amidinotransferase) 

Gatsl2 80909 1.04 GATS protein-like 2 

Gbp3 55932 2.28 guanylate binding protein 3 

Gbp4 17472 1.15 guanylate binding protein 4 

Gcom1 102371 1.02 GRINL1A complex locus 

Gdpd3 68616 3.94 glycerophosphodiester phosphodiesterase domain containing 3 

Ghr 14600 1.92 growth hormone receptor 

Gja1 14609 1.74 gap junction protein, alpha 1 
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Glcci1 170772 1.25 
similar to glucocorticoid induced transcript 1; predicted gene 5815; glucocorticoid induced 
transcript 1 

Gli3 14634 1.41 GLI-Kruppel family member GLI3 

Glrx 93692 1.85 glutaredoxin 

Gm10021 622931 1.21 predicted gene 10021 

Gm4638 100043775 3.56 predicted gene 4638 

Gpm6a 234267 2.15 glycoprotein m6a 

Gpm6b 14758 1.05 glycoprotein m6b 

Gpx8 69590 1.49 glutathione peroxidase 8 (putative) 

Gria3 53623 1.56 glutamate receptor, ionotropic, AMPA3 (alpha 3) 

Grik3 14807 1.84 glutamate receptor, ionotropic, kainate 3 

Grip1 74053 1 glutamate receptor interacting protein 1 

Gstm1 14862 1.12 
similar to Glutathione S-transferase Mu 1 (GST class-mu 1) (Glutathione S-transferase 
GT8.7) (pmGT10) (GST 1-1); predicted gene 5562; glutathione S-transferase, mu 1 

Gstm5 14866 1.86 glutathione S-transferase, mu 5 

H2-gs10 436493 1.78 MHC class I like protein GS10 

H2-Q6 110557 1.17 

histocompatibility 2, Q region locus 1; histocompatibility 2, Q region locus 9; similar to H-2 
class I histocompatibility antigen, L-D alpha chain precursor; histocompatibility 2, Q region 
locus 8; histocompatibility 2, Q region locus 2; similar to MHC class Ib antigen; 
histocompatibility 2, Q region locus 7; histocompatibility 2, Q region locus 6; hypothetical 
protein LOC100044307; similar to H-2 class I histocompatibility antigen, Q7 alpha chain 
precursor (QA-2 antigen); RIKEN cDNA 0610037M15 gene 

H2-T10 15024 1.17 

histocompatibility 2, T region locus 9; hypothetical protein LOC100044191; histocompatibility 
2, T region locus 10; hypothetical protein LOC100044190; histocompatibility 2, T region 
locus 22 

H2-T22 15039 1.98 

histocompatibility 2, T region locus 9; hypothetical protein LOC100044191; histocompatibility 
2, T region locus 10; hypothetical protein LOC100044190; histocompatibility 2, T region 
locus 22 

Hapln1 12950 3.37 hyaluronan and proteoglycan link protein 1 

Hdx 245596 1.12 highly divergent homeobox 

Heph 15203 1.79 hephaestin 

Hes6 55927 1.09 hairy and enhancer of split 6 (Drosophila) 

Hivep2 15273 1.35 human immunodeficiency virus type I enhancer binding protein 2 

Hn1l 52009 1.06 hematological and neurological expressed 1-like 

Hspa4l 18415 1 heat shock protein 4 like 

Hunk 26559 1.28 
similar to putative serine/threonine protein kinase MAK-V; similar to hormonally upregulated 
Neu-associated kinase; hormonally upregulated Neu-associated kinase 

Id4 15904 2.03 inhibitor of DNA binding 4 

Igdcc3 19289 1.26 immunoglobulin superfamily, DCC subclass, member 3 

Igf1r 16001 1.51 insulin-like growth factor I receptor 

Igfbp3 16009 2.74 insulin-like growth factor binding protein 3 

Il17rd 171463 1.655 interleukin 17 receptor D 

Ilk 16202 1.23 integrin linked kinase; predicted gene 6263 

Inadl 12695 1.57 InaD-like (Drosophila) 

Irgm1 15944 3.63 immunity-related GTPase family M member 1 

Irs1 16367 1.71 insulin receptor substrate 1 

Itga1 109700 2.32 integrin alpha 1 

Itga8 241226 1.71 integrin alpha 8 

Itm2c 64294 1.07 integral membrane protein 2C 

Itpkb 320404 1.37 inositol 1,4,5-trisphosphate 3-kinase B 

Jakmip2 76217 1.04 janus kinase and microtubule interacting protein 2 

Kcng3 225030 1.76 potassium voltage-gated channel, subfamily G, member 3 

Kcnh8 211468 1.13 potassium voltage-gated channel, subfamily H (eag-related), member 8 

Kcnj3 16519 2.1 potassium inwardly-rectifying channel, subfamily J, member 3 

Kcnk1 16525 1.1 potassium channel, subfamily K, member 1 

Kctd12b 207474 1.18 potassium channel tetramerisation domain containing 12b 

Kdm5d 20592 1 lysine (K)-specific demethylase 5D 

Kif1a 16560 2.42 kinesin family member 1A 

Kif21a 16564 1.5 kinesin family member 21A 

Klf6 23849 1.26 Kruppel-like factor 6 

Krt19 16669 1.9 keratin 19 

Lcp1 18826 1.74 lymphocyte cytosolic protein 1 

Ldb2 16826 1.77 LIM domain binding 2 

Ldhb 16832 1.08 lactate dehydrogenase B; predicted gene 5514 

Limd1 29806 1.22 LIM domains containing 1 
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Lmo4 16911 1.67 LIM domain only 4 

LOC280487 280487 3.56 pol polyprotein 

Lpar4 78134 2.34 lysophosphatidic acid receptor 4 

Lpcat4 99010 1.14 lysophosphatidylcholine acyltransferase 4 

Lphn2 99633 2.715 latrophilin 2 

Lrrc1 214345 1.21 leucine rich repeat containing 1 

Lrrc8c 100604 2.06 leucine rich repeat containing 8 family, member C 

Lrrn1 16979 1.57 leucine rich repeat protein 1, neuronal 

Lsr 54135 1.01 lipolysis stimulated lipoprotein receptor 

Lyn 17096 1.41 Yamaguchi sarcoma viral (v-yes-1) oncogene homolog 

Lypd6 320343 1.13 LY6/PLAUR domain containing 6 

Mab21l2 23937 1.3 mab-21-like 2 (C. elegans) 

Magel2 27385 1.78 melanoma antigen, family L, 2 

Magi2 50791 1.09 membrane associated guanylate kinase, WW and PDZ domain containing 2 

Mapk12 29857 1.05 mitogen-activated protein kinase 12 

Mapk4 225724 1.33 mitogen-activated protein kinase 4 

Mapre2 212307 1.19 microtubule-associated protein, RP/EB family, member 2 

Marveld2 218518 1.03 MARVEL (membrane-associating) domain containing 2 

Mcc 328949 1.47 mutated in colorectal cancers 

Mcoln3 171166 1.41 mucolipin 3 

Mecom 14013 1.57 ecotropic viral integration site 1 

Med14 26896 1.05 mediator complex subunit 14 

Met 17295 1.52 met proto-oncogene 

Mfap3l 71306 1.06 microfibrillar-associated protein 3-like 

Mkx 210719 1.12 mohawk homeobox 

Mmp14 17387 1.13 matrix metallopeptidase 14 (membrane-inserted) 

Mmp25 240047 2.17 matrix metallopeptidase 25 

Morf4l2 56397 1.07 predicted gene 5521; similar to mortality factor 4 like 2; mortality factor 4 like 2 

Moxd1 59012 1.24 monooxygenase, DBH-like 1 

Mthfd2l 665563 1.435 methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 2-like 

Naalad2 72560 1.31 N-acetylated alpha-linked acidic dipeptidase 2 

Nefl 18039 2.53 neurofilament, light polypeptide 

Nefm 18040 3.37 neurofilament, medium polypeptide 

Nes 18008 2.02 nestin 

Nhsl1 215819 1.15 NHS-like 1 

Nnat 18111 2.29 neuronatin 

Notch2 18129 1.21 Notch gene homolog 2 (Drosophila) 

Npy1r 18166 1.33 neuropeptide Y receptor Y1 

Nr6a1 14536 1.01 nuclear receptor subfamily 6, group A, member 1 

Nrcam 319504 1.48 neuron-glia-CAM-related cell adhesion molecule 

Ogfr 72075 1.35 opioid growth factor receptor 

Ophn1 94190 1.29 oligophrenin 1 

Otx2 18424 1.68 orthodenticle homolog 2 (Drosophila) 

Parp10 671535 1.18 similar to Plec1 protein 

Parp8 52552 2.84 poly (ADP-ribose) polymerase family, member 8 

Pcdh1 75599 1.23 protocadherin 1 

Pde2a 207728 1.27 phosphodiesterase 2A, cGMP-stimulated 

Pdpn 14726 1.01 podoplanin 

Penk 18619 1.83 preproenkephalin 

Pgap1 241062 1.15 post-GPI attachment to proteins 1 

Phldb2 208177 2.04 pleckstrin homology-like domain, family B, member 2 

Pik3r1 18708 1.09 phosphatidylinositol 3-kinase, regulatory subunit, polypeptide 1 (p85 alpha) 

Pim2 18715 2.77 proviral integration site 2 

Pitx2 18741 1.1 paired-like homeodomain transcription factor 2 

Plagl1 22634 1.67 pleiomorphic adenoma gene-like 1 

Plch1 269437 1.18 phospholipase C, eta 1 

Plekha1 101476 1.1 
pleckstrin homology domain containing, family A (phosphoinositide binding specific) member 
1 

Plekhg2 101497 1.31 pleckstrin homology domain containing, family G (with RhoGef domain) member 2 

Plin2 11520 1.47 adipose differentiation related protein 
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Plk2 20620 1.21 polo-like kinase 2 (Drosophila) 

Plxdc2 67448 1.35 plexin domain containing 2 

Plxnb1 235611 1.06 plexin B1 

Plxnc1 54712 1.5 plexin C1; similar to plexin C1 

Pphln1 223828 1.58 periphilin 1 

Ppp4r4 74521 3.28 protein phosphatase 4, regulatory subunit 4 

Pramel3 83565 1.02 preferentially expressed antigen in melanoma-like 3 

Prickle1 106042 1.27 prickle like 1 (Drosophila) 

Prkch 18755 1.06 protein kinase C, eta 

Prom1 19126 2.43 prominin 1 

Prss8 76560 1.19 protease, serine, 8 (prostasin) 

Psme1 19186 1.1 predicted gene 7776; proteasome (prosome, macropain) 28 subunit, alpha 

Ptbp2 56195 1.07 polypyrimidine tract binding protein 2 

Ptk7 71461 1.04 PTK7 protein tyrosine kinase 7 

Ptprm 19274 1.13 protein tyrosine phosphatase, receptor type, M 

Rab25 53868 1.83 RAB25, member RAS oncogene family 

Rab38 72433 1.16 RAB38, member of RAS oncogene family 

Rasef 242505 1.99 RAS and EF hand domain containing 

Rdh10 98711 1.19 retinol dehydrogenase 10 (all-trans) 

Rem2 140743 1.17 rad and gem related GTP binding protein 2 

Rerg 232441 1.43 RAS-like, estrogen-regulated, growth-inhibitor 

Rfx3 19726 1.06 
regulatory factor X, 3 (influences HLA class II expression); similar to Regulatory factor X, 3 
(influences HLA class II expression) 

Rfx6 320995 1.33 regulatory factor X, 6 

Rgs17 56533 1.6 regulator of G-protein signaling 17 

Rgs2 19735 2.18 regulator of G-protein signaling 2 

Rhob 11852 1.11 ras homolog gene family, member B 

Rnf122 68867 1.13 ring finger protein 122 

Rnf128 66889 1.86 ring finger protein 128 

Rnpepl1 108657 1.06 arginyl aminopeptidase (aminopeptidase B)-like 1 

Rragd 52187 1.02 Ras-related GTP binding D 

Rtl1 353326 1.325 retrotransposon-like 1; RIKEN cDNA 6430411K18 gene 

S1pr1 13609 1.24 sphingosine-1-phosphate receptor 1 

Sall2 50524 1.68 sal-like 2 (Drosophila) 

Sat1 20229 1.04 
similar to spermidine/spermine N1-acetyltransferase; predicted gene 5552; 
spermidine/spermine N1-acetyl transferase 1 

Satb1 20230 1.18 special AT-rich sequence binding protein 1 

Scamp1 107767 1.36 secretory carrier membrane protein 1 

Sema6a 20358 3.37 sema domain, transmembrane domain (TM), and cytoplasmic domain, (semaphorin) 6A 

Sepp1 20363 1.33 selenoprotein P, plasma, 1 

Serinc5 218442 1.91 serine incorporator 5 

Serpinb9 20723 1.71 serine (or cysteine) peptidase inhibitor, clade B, member 9 

Sesn3 75747 1.03 sestrin 3 

Setbp1 240427 1.45 SET binding protein 1 

Setd7 73251 1.18 SET domain containing (lysine methyltransferase) 7 

Sfrp2 20319 1.39 secreted frizzled-related protein 2 

Sgk3 170755 1.39 serum/glucocorticoid regulated kinase 3 

Shc4 271849 1.31 SHC (Src homology 2 domain containing) family, member 4 

Slc16a2 20502 1.12 
similar to X-linked PEST-containing transporter; solute carrier family 16 (monocarboxylic 
acid transporters), member 2 

Slc35d3 76157 1.18 solute carrier family 35, member D3 

Slc35f1 215085 1.22 solute carrier family 35, member F1 

Slc39a8 67547 2.61 solute carrier family 39 (metal ion transporter), member 8 

Slc5a5 114479 1.33 solute carrier family 5 (sodium iodide symporter), member 5 

Slc9a3r1 26941 1.2 solute carrier family 9 (sodium/hydrogen exchanger), member 3 regulator 1 

Slc9a7 236727 1.84 solute carrier family 9 (sodium/hydrogen exchanger), member 7 

Slco5a1 240726 1.06 solute carrier organic anion transporter family, member 5A1 

Socs2 216233 1.12 suppressor of cytokine signaling 2; predicted gene 8000 

Sox18 20672 1.13 SRY-box containing gene 18 

Sox4 20677 1.6 SRY-box containing gene 19; SRY-box containing gene 4 

Sp8 320145 1.14 trans-acting transcription factor 8 
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Spats2l 67198 1.51 RIKEN cDNA 2810022L02 gene 

Spon1 233744 1.51 spondin 1, (f-spondin) extracellular matrix protein 

Spry2 24064 1.08 sprouty homolog 2 (Drosophila) 

Ssbp2 66970 1.99 single-stranded DNA binding protein 2; predicted gene 12470 

St6gal2 240119 2.04 beta galactoside alpha 2,6 sialyltransferase 2 

Stag2 20843 1.13 stromal antigen 2 

Stard10 56018 1.06 START domain containing 10 

Stau2 29819 1.14 staufen (RNA binding protein) homolog 2 (Drosophila) 

Stox2 71069 1.32 storkhead box 2 

Stx3 20908 1.44 syntaxin 3 

Stxbp6 217517 1.42 syntaxin binding protein 6 (amisyn) 

Syne2 319565 1.736666667 synaptic nuclear envelope 2 

Syngap1 240057 1.06 synaptic Ras GTPase activating protein 1 homolog (rat) 

T 20997 5.67 Brachyury 

Tapbp 21356 1.22 TAP binding protein 

Tbc1d5 72238 1.1 TBC1 domain family, member 5 

Tc2n 74413 1.31 tandem C2 domains, nuclear 

Tceal8 66684 1.28 
transcription elongation factor A (SII)-like 8; similar to transcription elongation factor A (SII)-
like 8 

Tcf4 21413 1.08 transcription factor 4 

Tcirg1 27060 1.02 T-cell, immune regulator 1, ATPase, H+ transporting, lysosomal V0 protein A3 

Tec 21682 1.02 tec protein tyrosine kinase 

Tex13 83555 2.02 testis expressed gene 13 

Tex15 104271 1.35 testis expressed gene 15 

Tie1 21846 1.25 tyrosine kinase with immunoglobulin-like and EGF-like domains 1 

Tmc4 353499 1.18 transmembrane channel-like gene family 4 

Tmem173 72512 1.1 transmembrane protein 173 

Tmem189 407243 1.16 predicted gene 6194; transmembrane protein 189 

Tmem200a 77220 1.82 RIKEN cDNA C030003D03 gene 

Tmem47 192216 1.2 transmembrane protein 47 

Tnfaip8 106869 1.06 tumor necrosis factor, alpha-induced protein 8 

Tpbg 21983 1.76 trophoblast glycoprotein 

Tpm1 22003 1.69 tropomyosin 1, alpha 

Trib2 217410 1.18 tribbles homolog 2 (Drosophila) 

Trpa1 277328 1.04 transient receptor potential cation channel, subfamily A, member 1 

Tspan5 56224 1.12 tetraspanin 5 

Tspan6 56496 2.03 tetraspanin 6 

Tspan7 21912 1.49 tetraspanin 7 

Tspan8 216350 1.6 tetraspanin 8 

Ttc18 76670 1.21 tetratricopeptide repeat domain 18 

Uap1l1 227620 1.03 UDP-N-acteylglucosamine pyrophosphorylase 1-like 1 

Usp25 30940 1.31 ubiquitin specific peptidase 25 

Utrn 22288 1.05 utrophin 

Vaultrc5 378472 1.22 vault RNA component 5 

Vcl 22330 1.17 vinculin 

Vwa5a 67776 1.65 von Willebrand factor A domain containing 5A 

Wnt8a 20890 2.39 wingless-related MMTV integration site 8A 

Zfp36l2 12193 1.53 zinc finger protein 36, C3H type-like 2 

Zfp608 269023 2.27 zinc finger protein 608 

Zfp869 66869 1.2 zinc finger protein 869 

Zmynd8 228880 1 zinc finger, MYND-type containing 8 

Zyx 22793 1.04 zyxin 

 

Downpregulated genes in TKO EBs compared to wt EBs between d0-4 

Gene symbol 
Entrez Gene 

ID 

Fold change 
compared to 

wt 
Gene name 

2410017P07Rik 103268 -1.15 RIKEN cDNA 2410017P07 gene 

4930528F23Rik 75178 -1.97 RIKEN cDNA 4930528F23 gene 

4930591A17Rik 68175 -1.59 RIKEN cDNA 4930591A17 gene 
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9030617O03Rik 217830 -1.57 RIKEN cDNA 9030617O03 gene 

A2m 232345 -1.6 alpha-2-macroglobulin 

Acp6 66659 -1.04 acid phosphatase 6, lysophosphatidic 

Aire 11634 -1.51 autoimmune regulator (autoimmune polyendocrinopathy candidiasis ectodermal dystrophy) 

Akap2 11641 -1.06 A kinase (PRKA) anchor protein 2; paralemmin 2 

Alpk3 116904 -1.8 alpha-kinase 3 

Apod 11815 -1.04 apolipoprotein D 

Arrdc4 66412 -1.1 arrestin domain containing 4 

Ascl2 17173 -1.07 achaete-scute complex homolog 2 (Drosophila) 

Atp9a 11981 -1.21 ATPase, class II, type 9A 

Bcap29 12033 -1.53 B-cell receptor-associated protein 29 

Btnl7 195349 -1.42 butyrophilin-like 7 

C330024D21Rik 320479 -1.04 RIKEN cDNA C330024D21 gene 

Cd37 12493 -1.23 CD37 antigen 

Cenpm 66570 -1.26 centromere protein M 

Chac1 69065 -1.3 ChaC, cation transport regulator-like 1 (E. coli) 

Cmklr1 14747 -1.12 chemokine-like receptor 1 

Cpn1 93721 -1.28 carboxypeptidase N, polypeptide 1 

Crtap 56693 -1.02 cartilage associated protein 

Ctcfl 664799 -1.82 CCCTC-binding factor (zinc finger protein)-like 

D1Pas1 110957 -1.13 DNA segment, Chr 1, Pasteur Institute 1 

Dcdc2a 195208 -1.21 doublecortin domain containing 2a 

Dgke 56077 -1.08 diacylglycerol kinase, epsilon 

Dnajc5g 231098 -1.9 DnaJ (Hsp40) homolog, subfamily C, member 5 gamma 

Ech1 51798 -1.2 enoyl coenzyme A hydratase 1, peroxisomal 

Efhc2 74405 -2.6 EF-hand domain (C-terminal) containing 2 

Galnt6 207839 -1.5 UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 6 

Gfpt2 14584 -1.23 glutamine fructose-6-phosphate transaminase 2 

Gjb3 14620 -1.55 gap junction protein, beta 3 

Gjb5 14622 -1.43 gap junction protein, beta 5 

Gm10863 100041655 -1.36 hypothetical protein LOC100041655 

Gm13498 227885 -2.7 predicted gene 13498 

Gm15698 217066 -1.22 predicted gene 15698 

Gm216 241112 -1.08 predicted gene 216 

Gm2889 100040658 -2.348 

hypothetical protein LOC100041609; hypothetical protein LOC100044795; predicted gene 
3395; similar to gag polyprotein; hypothetical protein LOC100047557; hypothetical protein 
LOC100040347; hypothetical protein LOC100044384; hypothetical protein LOC100045342; 
hypothetical protein LOC100038979; predicted gene 2889 

Gpx2 14776 -1.41 glutathione peroxidase 2 

Grb10 14783 -1.61 growth factor receptor bound protein 10 

Hmmr 15366 -1.1 hyaluronan mediated motility receptor (RHAMM) 

Magea1 17137 -1.71 melanoma antigen, family A, 1 

Magea2 17138 -1.53 melanoma antigen, family A, 2 

Magea4 17140 -1.04 melanoma antigen, family A, 4 

Magea5 17141 -1.38 melanoma antigen, family A, 5 

Magea6 17142 -1.29 melanoma antigen, family A, 6 

Mapt 17762 -1.1 microtubule-associated protein tau 

Mia1 12587 -1.31 melanoma inhibitory activity 1 

Mras 17532 -1.42 muscle and microspikes RAS 

Msln 56047 -1.14 mesothelin 

Naprt1 223646 -1.01 nicotinate phosphoribosyltransferase domain containing 1 

Necab1 69352 -1.13 N-terminal EF-hand calcium binding protein 1 

Nfu1 56748 -1.16 NFU1 iron-sulfur cluster scaffold homolog (S. cerevisiae); predicted gene 7859 

Nlrp4f 97895 -1.23 NLR family, pyrin domain containing 4F 

Nos1 18125 -1.19 nitric oxide synthase 1, neuronal 

Nupr1 56312 -1.04 nuclear protein 1 

Olfr307 258610 -1.36 olfactory receptor 307 

P4htm 74443 -1.01 prolyl 4-hydroxylase, transmembrane (endoplasmic reticulum) 

Pcyt1b 236899 -1.15 phosphate cytidylyltransferase 1, choline, beta isoform 

Phlda2 22113 -1.34 pleckstrin homology-like domain, family A, member 2 

Pigl 327942 -1.02 phosphatidylinositol glycan anchor biosynthesis, class L 
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Piwil4 330890 -1.51 piwi-like homolog 4 (Drosophila) 

Pkd2l1 329064 -1.04 polycystic kidney disease 2-like 1 

Prmt8 381813 -1.26 protein arginine N-methyltransferase 8 

R3hdml 100043899 -1.03 R3H domain containing-like 

Rhox10 434769 -1.3 reproductive homeobox 10 

Rlbp1 19771 -1.06 retinaldehyde binding protein 1 

Rtp3 235636 -1.08 receptor transporter protein 3 

Slc11a1 18173 -1.02 solute carrier family 11 (proton-coupled divalent metal ion transporters), member 1 

Slc1a1 20510 -1.47 
solute carrier family 1 (neuronal/epithelial high affinity glutamate transporter, system Xag), 
member 1 

Slc5a1 20537 -1.14 solute carrier family 5 (sodium/glucose cotransporter), member 1 

Smc1b 140557 -2.15 structural maintenance of chromosomes 1B 

Spink10 328971 -1.18 serine peptidase inhibitor, Kazal type 10 

Stag3 50878 -1.09 stromal antigen 3 

Stk30 26448 -1.03 renal tumor antigen 

Stra8 20899 -1.47 stimulated by retinoic acid gene 8 

Tcfeb 21425 -1.25 transcription factor EB 

Tmem40 94346 -1.12 transmembrane protein 40 

Trib3 228775 -1.43 tribbles homolog 3 (Drosophila) 

Tsx 22127 -1.04 testis specific X-linked gene 

Txnrd3 232223 -1.05 thioredoxin reductase 3 

Ubash3a 328795 -1.1 ubiquitin associated and SH3 domain containing, A 

Ubxn11 67586 -1.03 UBX domain protein 11 

Usp50 75083 -1.08 ubiquitin specific peptidase 50 

Xlr5a 574438 -2.68 

X-linked lymphocyte-regulated 5B; X-linked lymphocyte-regulated 5D, pseudogene; X-linked 
lymphocyte-regulated 5A; X-linked lymphocyte-regulated 5E, pseudogene; predicted gene, 
EG667719 

Xlr5b 627081 -2.8 

X-linked lymphocyte-regulated 5B; X-linked lymphocyte-regulated 5D, pseudogene; X-linked 
lymphocyte-regulated 5A; X-linked lymphocyte-regulated 5E, pseudogene; predicted gene, 
EG667719 

Yars 107271 -1.05 tyrosyl-tRNA synthetase 

Zcwpw1 381678 -1.15 paired immunoglobin-like type 2 receptor beta 2; zinc finger, CW type with PWWP domain 1 

 

Genes concordantly upregulated in wt, dnmt1-/- and TKO Ebs between d0-4 

Gene symbol 
Entrez Gene 

ID 
Fold 

change wt 
Fold change 

dnmt1-/- 
Fold change 

TKO 
Gene name 

2310021P13Rik 268721 1.01 1.23 1.12 RIKEN cDNA 2310021P13 gene 

2810432L12Rik 67063 1.05 1.26 1.09 RIKEN cDNA 2810432L12 gene 

5730469M10Rik 70564 1.4 1.75 1.12 RIKEN cDNA 5730469M10 gene 

7420416P09Rik 432677 2.15 2 2.14 RIKEN cDNA 7420416P09 gene 

Adamts3 330119 
1.7186666

67 1.555454545 1.05 
a disintegrin-like and metallopeptidase (reprolysin type) with 
thrombospondin type 1 motif, 3 

Adamts6 108154 1.37 1.37 2.71 
a disintegrin-like and metallopeptidase (reprolysin type) with 
thrombospondin type 1 motif, 6 

Adamts9 101401 1.63 1.02 1.215 
a disintegrin-like and metallopeptidase (reprolysin type) with 
thrombospondin type 1 motif, 9 

Alox15 11687 1.9 2.71 2.2 arachidonate 15-lipoxygenase 

Amot 27494 4.31 4.18 3.84 angiomotin 

Ano10 102566 2.03 2.36 1.52 anoctamin 10 

Antxr2 71914 1.59 1.99 1.99 anthrax toxin receptor 2 

Anxa5 11747 1.42 2.4 2.48 annexin A5 

Aplnr 23796 3.64 3.86 1.49 apelin receptor 

App 11820 1.98 2.16 2.15 amyloid beta (A4) precursor protein 

Armcx3 71703 
1.9366666

67 1.773333333 2.133333333 
armadillo repeat containing, X-linked 3; hypothetical protein 
LOC100044266; predicted gene 9299 

Armcx3 100044266 3.67 5.58 2.52 
armadillo repeat containing, X-linked 3; hypothetical protein 
LOC100044266; predicted gene 9299 

Asb4 65255 1.59 2.05 1.64 ankyrin repeat and SOCS box-containing 4 

Atrnl1 226255 1.13 1.83 1.17 attractin like 1 

Axin2 12006 1.02 1.83 1.65 axin2 

B2m 12010 2.04 2.06 1.07 beta-2 microglobulin 

BC023829 236848 1.5 1.38 1.45 cDNA sequence BC023829 

Bin1 30948 1.19 1.32 1.54 bridging integrator 1 

C530008M17Rik 320827 1.68 2.08 2.9 RIKEN cDNA C530008M17 gene 
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Cachd1 320508 2.12 3.04 2.54 
cache domain containing 1; similar to Cache domain 
containing 1 

Cap2 67252 2.51 2.34 1.97 CAP, adenylate cyclase-associated protein, 2 (yeast) 

Car14 23831 3.04 2.51 3.34 carbonic anhydrase 14 

Car4 12351 1.66 1.37 1.46 carbonic anhydrase 4 

Casp6 12368 1.11 1.74 1.72 caspase 6 

Casp8 12370 1.27 1.1 1.62 caspase 8 

Ccnjl 380694 5.18 4.06 2.11 cyclin J-like 

Cdh11 12552 2.4 2.81 2.47 cadherin 11 

Cdh2 12558 1.19 1.51 1.26 cadherin 2; similar to N-cadherin 

Cgrrf1 68755 1.11 1.13 1.18 cell growth regulator with ring finger domain 1 

Clcn4-2 12727 1.58 1.7 1.78 chloride channel 4-2 

Clic1 114584 1.85 1.68 1.16 chloride intracellular channel 1 

Cmtm3 68119 1.36 1.59 1.18 CKLF-like MARVEL transmembrane domain containing 3 

Cobll1 319876 1.07 1.41 1.64 Cobl-like 1 

Colec12 140792 1.69 1.69 1.4 collectin sub-family member 12 

Commd3 12238 1.42 1.48 1.85 COMM domain containing 3 

Crispld1 83691 4.28 4.11 1.37 cysteine-rich secretory protein LCCL domain containing 1 

Cxcr4 12767 3.68 3.73 2.27 chemokine (C-X-C motif) receptor 4 

Cyp26a1 13082 1.01 1.5 1.47 cytochrome P450, family 26, subfamily a, polypeptide 1 

Cyp39a1 56050 1.39 1.86 1.54 cytochrome P450, family 39, subfamily a, polypeptide 1 

Dab2 13132 1.4 1.41 1.53 disabled homolog 2 (Drosophila) 

Dbn1 56320 1.71 1.35 1.34 drebrin 1 

Ddx26b 236790 1.69 1.69 1.67 DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 26B 

Dgkk 331374 1.12 1.3 1.02 diacylglycerol kinase kappa 

Dock7 67299 1.51 1.3 1.47 dedicator of cytokinesis 7 

Dpysl2 12934 1.14 1.44 1.76 dihydropyrimidinase-like 2 

Dsc2 13506 1.53 1.99 1.38 desmocollin 2 

Dsp 109620 2.75 3.75 4.27 desmoplakin 

Eomes 13813 1.93 2.1 1.07 eomesodermin homolog (Xenopus laevis) 

Ets1 23871 1.16 1.84 2.15 E26 avian leukemia oncogene 1, 5' domain 

Etv2 14008 2.14 2.13 1.66 similar to ETS related protein 71; ets variant gene 2 

Fam115a 77574 1.37 1.02 1.31 family with sequence similarity 115, member A 

Farp1 223254 1.3 1.2075 1.42 

FERM, RhoGEF (Arhgef) and pleckstrin domain protein 1 
(chondrocyte-derived); similar to FERMRhoGEF (Arhgef) 
and pleckstrin domain protein 1 

Fat3 270120 2.63 2.54 1.14 FAT tumor suppressor homolog 3 (Drosophila) 

Fgf10 14165 1.94 1.25 1.32 fibroblast growth factor 10 

Fli1 14247 1.69 1.92 2.38 Friend leukemia integration 1 

Fndc3c1 333564 1.53 3.19 4.37 fibronectin type III domain containing 3C1 

Foxh1 14106 1.45 1.31 1 forkhead box H1 

Frzb 20378 2.53 3.26 2.51 frizzled-related protein 

Gata3 14462 1.7 1.4 1.02 GATA binding protein 3 

Gata6 14465 2.65 2.7 1.16 GATA binding protein 6 

Gpc6 23888 1.91 1.46 1.19 predicted gene 4672; glypican 6; similar to Glypican 6 

Gprc5c 70355 1.615 1.745 1.84 

G protein-coupled receptor, family C, group 5, member C; 
similar to G protein-coupled receptor, family C, group 5, 
member C 

Gria4 14802 1.32 1.05 1.53 
glutamate receptor, ionotropic, AMPA4 (alpha 4); 
hypothetical protein LOC100044208 

H19 14955 3.58 3.15 2.825 H19 fetal liver mRNA 

Has2 15117 3.09 3.74 4.44 hyaluronan synthase 2 

Hdac7 56233 1.25 1.21 1.06 histone deacetylase 7; similar to histone deacetylase 7A 

Hey1 15213 1.5 1.46 1.94 hairy/enhancer-of-split related with YRPW motif 1 

Hmcn1 545370 
1.3121212

12 1.378 1.5806 hemicentin 1 

Hmgb3 15354 1.855 1.815 1.39 

predicted gene 11805; predicted gene 8850; high mobility 
group box 3; similar to High mobility group protein 4 (HMG-
4) (High mobility group protein 2a) (HMG-2a) 

Id3 15903 1.56 1.94 2.14 inhibitor of DNA binding 3 

Ier5 15939 1.25 1.65 1.12 immediate early response 5 

Igfbp4 16010 2.39 2.9 2.41 insulin-like growth factor binding protein 4 

Insr 16337 1.245 1.41 1.25 insulin receptor 

Jak2 16452 1.43 1.32 1.31 Janus kinase 2 
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Jam3 83964 1.16 1.64 1.25 junction adhesion molecule 3 

Jun 16476 1.25 1.52 1.44 Jun oncogene 

Kdr 16542 4.12 4.24 3.41 kinase insert domain protein receptor 

Kif1c 16562 1.43 1.38 1.24 kinesin family member 1C 

Klhdc2 69554 1.13 1.35 1.18 kelch domain containing 2 

Klhl6 239743 2.75 4.92 3.82 kelch-like 6 (Drosophila) 

Krt18 16668 1.64 2.82 2.69 keratin 18 

Krt8 16691 1.65 2.85 1.92 predicted gene 5604; keratin 8 

L3mbtl3 237339 1.59 1.6 1.54 l(3)mbt-like 3 (Drosophila) 

Leprel1 210530 2.15 2.6 1.55 leprecan-like 1 

Lmo2 16909 2.03 1.69 1.05 LIM domain only 2 

Lpar6 67168 1.05 1.03 2.57 purinergic receptor P2Y, G-protein coupled, 5 

Lrrn4 320974 1.19 1.06 1.32 leucine rich repeat neuronal 4 

Maged2 80884 1.3 1.45 1.18 
similar to melanoma antigen family D, 2; melanoma antigen, 
family D, 2 

Magi3 99470 1.86 1.18 1.15 
membrane associated guanylate kinase, WW and PDZ 
domain containing 3 

Marcks 17118 1.96 2.06 1.79 myristoylated alanine rich protein kinase C substrate 

Mef2a 17258 1.08 1.28 1.21 
similar to Myocyte enhancer factor 2A; myocyte enhancer 
factor 2A 

Mest 17294 1.31 1.29 1.05 mesoderm specific transcript 

Mixl1 27217 2.66 3.34 3.28 Mix1 homeobox-like 1 (Xenopus laevis) 

Mmp2 17390 1.9 2.1 1.46 matrix metallopeptidase 2 

Mogat2 233549 3.17 3.31 1.99 monoacylglycerol O-acyltransferase 2 

Mpdz 17475 1.29 1.55 1.66 multiple PDZ domain protein 

Mrps6 121022 1.19 1.46 1.16 mitochondrial ribosomal protein S6 

Msx1 17701 2.41 2.32 1.33 homeobox, msh-like 1 

Mum1l1 245631 2.49 2.71 1.81 melanoma associated antigen (mutated) 1-like 1 

Ndn 17984 1.43 1.62 1.29 necdin 

Nrarp 67122 1.11 1.25 1.6 Notch-regulated ankyrin repeat protein 

Oat 18242 1.14 1.54 1.52 ornithine aminotransferase 

Paip1 218693 1.27 1.25 1.02 
polyadenylate binding protein-interacting protein 1; similar to 
poly(A) binding protein interacting protein 1 

Pam 18484 1.69 1.86 1.92 peptidylglycine alpha-amidating monooxygenase 

Papss1 23971 1.18 1.31 1.25 3'-phosphoadenosine 5'-phosphosulfate synthase 1 

Pbx1 18514 1.97 2.55 2.05 

pre B-cell leukemia transcription factor 1; region containing 
RIKEN cDNA 2310056B04 gene; pre B-cell leukemia 
transcription factor 1 

Pcdh18 73173 2.69 3.16 1.98 protocadherin 18 

Pcdh7 54216 3.09 2.53 1.35 protocadherin 7 

Pde5a 242202 1.31 2.03 2.27 phosphodiesterase 5A, cGMP-specific 

Pdgfra 18595 3.78 4.24 1.79 platelet derived growth factor receptor, alpha polypeptide 

Pdlim3 53318 1.39 1.47 1.78 PDZ and LIM domain 3 

Pdzrn3 55983 1.44 1.78 2.09 PDZ domain containing RING finger 3 

Pea15a 18611 1.03 1.17 1.39 phosphoprotein enriched in astrocytes 15A 

Peg10 170676 1.32 2.1 1.45 paternally expressed 10 

Peg3 18616 3.21 2.32 1.78 paternally expressed 3; antisense transcript gene of Peg3 

Pik3r3 18710 1.43 1.26 1.28 
phosphatidylinositol 3 kinase, regulatory subunit, 
polypeptide 3 (p55) 

Pip4k2a 18718 1.34 1.31 1.22 phosphatidylinositol-5-phosphate 4-kinase, type II, alpha 

Pkdcc 106522 1.13 1.15 1.31 protein kinase domain containing, cytoplasmic 

Plcl2 224860 1.15 1.53 1.19 phospholipase C-like 2 

Plekho1 67220 1.54 1.56 1.54 pleckstrin homology domain containing, family O member 1 

Pls3 102866 1.63 1.65 2.12 plastin 3 (T-isoform) 

Plxnd1 67784 1.36 1.35 1.46 plexin D1 

Podxl 27205 1.99 1.77 1.45 podocalyxin-like 

Prkd1 18760 2.39 1.79 1.43 protein kinase D1 

Prtg 235472 2.5 3.32 2.4 protogenin homolog (Gallus gallus) 

Ptpn13 19249 1.92 1.83 2.03 protein tyrosine phosphatase, non-receptor type 13 

Ptpn9 56294 1.45 1.95 1.78 protein tyrosine phosphatase, non-receptor type 9 

Pxdn 69675 1.53 1.76 1.77 peroxidasin homolog (Drosophila) 

Ramp2 54409 1.81 1.59 1.56 receptor (calcitonin) activity modifying protein 2 

Rasgrp3 240168 2.05 3.2 2.9 RAS, guanyl releasing protein 3 



  Appendix 
 

180 
 

Rbms1 56878 1.685 1.875 1.29 RNA binding motif, single stranded interacting protein 1 

Rcbtb2 105670 1.49 1.9 2 
regulator of chromosome condensation (RCC1) and BTB 
(POZ) domain containing protein 2 

Reep5 13476 1.12 1.26 1.07 receptor accessory protein 5 

Rgl1 19731 1.78 1.56 1.31 ral guanine nucleotide dissociation stimulator,-like 1 

Rhobtb3 73296 1.31 1.23 1.57 Rho-related BTB domain containing 3 

Rhoj 80837 1.25 1.51 1.07 ras homolog gene family, member J 

Rnf103 22644 1.45 1.33 1.24 ring finger protein 103 

Rnf217 268291 1.9 1.89 1.5 ring finger protein 217 

Rspo3 72780 3.43 3.11 1.54 R-spondin 3 homolog (Xenopus laevis) 

Sema4c 20353 2.06 1.84 1.64 

sema domain, immunoglobulin domain (Ig), transmembrane 
domain (TM) and short cytoplasmic domain, (semaphorin) 
4C 

Sema5a 20356 1.85 1.36 1.31 

sema domain, seven thrombospondin repeats (type 1 and 
type 1-like), transmembrane domain (TM) and short 
cytoplasmic domain, (semaphorin) 5A 

Sepn1 74777 1.04 1.24 1.02 selenoprotein N, 1 

Sgce 20392 1.78 2.34 1.3 sarcoglycan, epsilon 

Sh3bgrl 56726 1.26 2 1.99 SH3-binding domain glutamic acid-rich protein like 

Slc15a2 57738 1.6 1.27 1.42 solute carrier family 15 (H+/peptide transporter), member 2 

Slc22a23 73102 1.58 1.54 1.59 solute carrier family 22, member 23 

Slc25a24 229731 1.44 2.68 2.13 
solute carrier family 25 (mitochondrial carrier, phosphate 
carrier), member 24 

Slc40a1 53945 1.25 1.73 3.23 
solute carrier family 40 (iron-regulated transporter), member 
1 

Slc4a4 54403 1.02 1.3 1.04 solute carrier family 4 (anion exchanger), member 4 

Slc5a3 53881 2.78 2.69 1.49 solute carrier family 5 (inositol transporters), member 3 

Slc7a8 50934 1.45 1.33 1.62 
solute carrier family 7 (cationic amino acid transporter, y+ 
system), member 8 

Slit3 20564 1.31 1.15 1.7 slit homolog 3 (Drosophila) 

Smad1 17125 1.61 1.91 1.36 MAD homolog 1 (Drosophila) 

Smo 319757 1.25 1.4 1.2 predicted gene 4066; smoothened homolog (Drosophila) 

Snai1 20613 1.19 1.96 1.09 snail homolog 1 (Drosophila) 

Snx33 235406 1.35 1.43 1.11 sorting nexin 33 

Soat1 20652 1.43 2.27 2.21 sterol O-acyltransferase 1 

Sox11 20666 1.26 1.31 1.6 SRY-box containing gene 11 

St3gal6 54613 2.55 2.84 1.76 ST3 beta-galactoside alpha-2,3-sialyltransferase 6 

St6gal1 20440 1.4 1.39 1.61 beta galactoside alpha 2,6 sialyltransferase 1 

Stk39 53416 2.33 2.27 2.87 serine/threonine kinase 39, STE20/SPS1 homolog (yeast) 

Stxbp4 20913 1.59 1.415 1.08 syntaxin binding protein 4 

Stxbp5 78808 1.55 1.39 1.17 syntaxin binding protein 5 (tomosyn) 

Suv39h1 20937 2.17 2.26 1.46 suppressor of variegation 3-9 homolog 1 (Drosophila) 

Tax1bp3 76281 1.06 1.32 1.415 

Tax1 (human T-cell leukemia virus type I) binding protein 3; 
predicted gene 13597; similar to Tax1 (human T-cell 
leukemia virus type I) binding protein 3 

Tbx20 57246 3.26 3.64 1.92 T-box 20 

Tcf12 21406 1.64 1.45 1.47 transcription factor 12 

Tcn2 21452 1.33 1.19 1.04 transcobalamin 2 

Tead2 21677 1.2 1.23 1.24 TEA domain family member 2 

Tes 21753 1.25 1.6 2.25 testis derived transcript 

Tmc7 209760 2 1.73 1.61 
transmembrane channel-like gene family 7; similar to Tmc7 
protein 

Tmem164 209497 1.6 1.6 1.47 transmembrane protein 164 

Tmem176b 65963 2.01 1.82 1.04 transmembrane protein 176B 

Tnfrsf19 29820 1.54 1.32 1.07 tumor necrosis factor receptor superfamily, member 19 

Tpm4 326618 1.08 1.24 1.185 tropomyosin 4; predicted gene 7809 

Ttc21b 73668 1.13 1.36 1.4 tetratricopeptide repeat domain 21B 

Uggt2 66435 1.16 1.4 1.2 UDP-glucose ceramide glucosyltransferase-like 2 

Unc5b 107449 1.05 1.63 2.2 unc-5 homolog B (C. elegans) 

Vamp8 22320 1.08 1.15 1.37 vesicle-associated membrane protein 8 

Vav3 57257 1.7 1.37 1.23 vav 3 oncogene 

Vcan 13003 2.14 1.97 1.78 versican 

Vopp1 232023 1.66 2.38 2.1 expressed sequence AW146242 

Yaf2 67057 1.24 1.4 1.17 YY1 associated factor 2 

Zdhhc2 70546 1.63 1.91 2.19 zinc finger, DHHC domain containing 2 
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Zeb2 24136 2.14 2.34 1.27 zinc finger E-box binding homeobox 2 

Zfp358 140482 1.38 1.14 1.02 zinc finger protein 358 

Zfp521 225207 1.96 2.12 1.97 zinc finger protein 521 

Zfp711 245595 3.61 2.06 1.79 zinc finger protein 711 

 

Concordantly downregulated genes in wt, dnmt1-/- and TKO EBs between d0-4 

Gene symbol 
Entrez Gene 

ID 
Fold 

change wt 
Fold change 

dnmt1-/- 
Fold change 

TKO 
Gene name 

1190003J15Rik 76974 -1.38 -1.53 -1.06 RIKEN cDNA 1190003J15 gene 

1700001L05Rik 69291 -2.13 -2.48 -1.31 RIKEN cDNA 1700001L05 gene 

1700019N12Rik 67077 -1.12 -1.04 -1.04 RIKEN cDNA 1700019N12 gene 

1700029P11Rik 66346 -1.63 -1.92 -1.87 RIKEN cDNA 1700029P11 gene; predicted gene 9050 

1700061G19Rik 78625 -1.5 -2.04 -1.93 RIKEN cDNA 1700061G19 gene 

1700072H12Rik 73493 -1.17 -1.2 -1.17 RIKEN cDNA 1700072H12 gene 

2410004A20Rik 66991 -1.09 -2.08 -1.79 RIKEN cDNA 2410004A20 gene 

2410137M14Rik 76797 -1.65 -1.88 -1.61 RIKEN cDNA 2410137M14 gene 

2410141K09Rik 76803 -3.22 -2.04 -1.28 
RIKEN cDNA 2410141K09 gene; predicted gene 7771; 
predicted gene 7896 

8430410A17Rik 232210 -1.19 -1.05 -1.17 RIKEN cDNA 8430410A17 gene 

Abcb1a 18671 -1.56 -1.43 -1.63 ATP-binding cassette, sub-family B (MDR/TAP), member 1A 

Accsl 381411 -2.42 -2.23 -2.46 
1-aminocyclopropane-1-carboxylate synthase homolog 
(Arabidopsis)(non-functional)-like 

Actn3 11474 -1.52 -1.23 -1.52 actinin alpha 3 

Adap1 231821 -1.82 -2.01 -2.06 ArfGAP with dual PH domains 1 

Adrb3 11556 -1.12 -1.72 -1.22 adrenergic receptor, beta 3 

Aoah 27052 -1.22 -1.64 -1.03 acyloxyacyl hydrolase 

Arid5b 71371 -1.65 -1.96 -1.19 
similar to modulator recognition factor 2; AT rich interactive 
domain 5B (MRF1-like) 

Atcay 16467 -1.2 -1.1 -1.1 ataxia, cerebellar, Cayman type homolog (human) 

Atp1a3 232975 -1.01 -1.72 -1.16 ATPase, Na+/K+ transporting, alpha 3 polypeptide 

AU018091 245128 -4.02 -3.4 -2.03 expressed sequence AU018091 

BC021614 225884 -1.09 -1.14 -1.28 cDNA sequence BC021614 

Bcl3 12051 -1.64 -1.79 -1.67 B-cell leukemia/lymphoma 3 

Bnc2 242509 -2.4 -2.31 -1.06 basonuclin 2 

Btbd11 74007 -1.24 -1.23 -1.19 BTB (POZ) domain containing 11 

C330019L16Rik 208111 -1.91 -1.38 -1.38 RIKEN cDNA C330019L16 gene 

C330022B21Rik 78699 -2.65 -1.98 -1.36 RIKEN cDNA C330022B21 gene 

Calml4 75600 -1.34 -1.97 -1.21 calmodulin-like 4 

Camk1d 227541 -1.12 -1.7 -1.18 calcium/calmodulin-dependent protein kinase ID 

Cd68 12514 -1.02 -1.57 -1.37 CD68 antigen 

Cd97 26364 -1.3 -1.8 -1.2 CD97 antigen 

Cdyl2 75796 -2.16 -2.93 -2.06 chromodomain protein, Y chromosome-like 2 

Cep55 74107 -1.47 -1.65 -1.04 centrosomal protein 55 

Chrna9 231252 -1.31 -1.27 -1.55 cholinergic receptor, nicotinic, alpha polypeptide 9 

Clgn 12745 -2.4 -2.3 -1.66 calmegin 

Cltb 74325 -2.88 -2.68 -1.96 clathrin, light polypeptide (Lcb) 

Cnpy1 269637 -2.42 -1.97 -1.1 canopy 1 homolog (zebrafish) 

Cobl 12808 -1.5 -1.5 -1.31 cordon-bleu 

Cphx 105594 

-
1.0433333

33 
-

1.286666667 -1.02 
predicted gene 2135; predicted gene 2104; cytoplasmic 
polyadenylated homeobox 

Cpsf4l 52670 -1.71 -2.06 -1.47 cleavage and polyadenylation specific factor 4-like 

Ctnnal1 54366 -1.49 -1.53 -1 catenin (cadherin associated protein), alpha-like 1 

D14Ertd668e 219132 -2.1 -2.69 -1.59 

predicted gene 6907; predicted gene 6904; predicted gene 
4902; DNA segment, Chr 14, ERATO Doi 668, expressed; 
PHD finger protein 11 

Ddc 13195 -1.02 -1.13 -1.12 dopa decarboxylase 

Dnmt3l 54427 -4.6 -3.53 -2.09 
similar to DNA cytosine-5 methyltransferase 3-like protein; 
DNA (cytosine-5-)-methyltransferase 3-like 

Dppa2 73703 -3.98 -2.98 -1.28 
similar to developmental pluripotency-associated 2; predicted 
gene 9298; developmental pluripotency associated 2 

Dusp27 240892 -2.41 -3.41 -2.73 dual specificity phosphatase 27 (putative) 

Enox1 239188 -1.88 -2.07 -1.17 ecto-NOX disulfide-thiol exchanger 1 

Ephx1 13849 -1.27 -2.17 -1.89 epoxide hydrolase 1, microsomal 
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Esrrb 26380 -4.11 -3.58 -1.58 estrogen related receptor, beta 

Fblim1 74202 -2.05 -2.52 -1.87 filamin binding LIM protein 1 

Fbxo15 50764 -5.41 -3.95 -2.25 F-box protein 15 

Fcgrt 14132 -1.02 -1.55 -1.21 Fc receptor, IgG, alpha chain transporter 

Fgf17 14171 -2.4 -1.93 -1.54 fibroblast growth factor 17 

Fgf4 14175 -1.91 -2.19 -1.4 fibroblast growth factor 4 

Folr1 14275 -1.38 -1.48 -1.09 folate receptor 1 (adult) 

Gatsl3 71962 -1.25 -1.37 -1.07 GATS protein-like 3 

Gbx2 14472 -4.36 -3.2 -1.33 gastrulation brain homeobox 2 

Gdf3 14562 -1.42 -1.48 -1.15 growth differentiation factor 3 

Gli1 14632 -1.99 -1.73 -1.56 GLI-Kruppel family member GLI1 

Glod5 69824 -4.52 -3.07 -1.54 glyoxalase domain containing 5 

Gm10324 628709 -1.855 -1.74 -1.35 predicted gene 10324 

Gm10351 100127434 -1.11 -1.65 -1.12 predicted gene 10351 

Gm10522 100038407 -2.29 -1.6 -1.03 predicted gene 10522 

Gm13051 626316 -2.02 -2 -1.05 
predicted gene 13051; predicted gene 8935; predicted gene 
13151 

Gm13152 195531 -1.76 
-

1.703333333 -1.163333333 predicted gene 13152 

Gm13154 433804 -3.77 -2.25 -1.8 predicted gene 13154 

Gm13242 100041379 -4.73 -3.34 -1.74 predicted gene 13242 

Gm13251 433791 -2.115 -1.525 -1.12 
predicted gene 13251; predicted gene, 
OTTMUSG00000010657; RIKEN cDNA 1700029I01 gene 

Gm15514 434225 -1.42 -1.7 -1.52 predicted gene 15514 

Gm4782 213320 -1.92 -2.2 -1.34 predicted gene 4782; predicted gene 5989 

Gm5301 384356 

-
1.8866666

67 
-

2.153333333 -1.243333333 predicted gene 5301 

Gpa33 59290 -1.96 -2.84 -1.92 glycoprotein A33 (transmembrane) 

Gpx6 75512 -1.74 -2.45 -1.28 glutathione peroxidase 6 

Gtsf1l 68236 -2.04 -2.45 -1.37 zinc finger protein 850; gametocyte specific factor 1-like 

H2-M5 240095 -1.6 -1.62 -1.07 histocompatibility 2, M region locus 5 

Hck 15162 -2.81 -2.74 -2.88 hemopoietic cell kinase 

Hormad1 67981 -1.17 -2.34 -2.025 HORMA domain containing 1; predicted gene 7167 

Hormad2 75828 -2.29 -1.11 -1.17 HORMA domain containing 2 

Hsd17b14 66065 -2.96 -2.89 -2.02 hydroxysteroid (17-beta) dehydrogenase 14 

Hsf2bp 74377 -3.66 -3.18 -1.78 heat shock transcription factor 2 binding protein 

Icam1 15894 -1.46 -1.96 -1.39 intercellular adhesion molecule 1 

Inhbb 16324 -1.11 -1.11 -1.66 inhibin beta-B 

Inpp5d 16331 -2.4 -1.87 -1.35 inositol polyphosphate-5-phosphatase D 

Itgb7 16421 -1.42 -1.68 -1.35 integrin beta 7 

Jam2 67374 -3.98 -3.84 -2.15 junction adhesion molecule 2 

Klf2 16598 -2.95 -2.18 -1.2 Kruppel-like factor 2 (lung) 

Klf4 16600 -1.02 -1.84 -1.96 Kruppel-like factor 4 (gut) 

Klhl13 67455 -2.26 -1.74 -1.35 kelch-like 13 (Drosophila) 

Krt17 16667 -1.8 -1.97 -1.45 keratin 17 

Krt42 68239 -1.62 -1.51 -1.13 keratin 42 

Lrrc2 74249 -2.57 -3.29 -2.21 
leucine rich repeat containing 2; similar to Leucine-rich 
repeat-containing protein 2 

Mael 98558 -2.15 -2.67 -1.51 maelstrom homolog (Drosophila) 

Mageb16 71967 -4.295 -1.785 -1.555 predicted gene 15072; RIKEN cDNA 2410003J06 gene 

Mlh3 217716 -1.31 -1.45 -1.15 mutL homolog 3 (E coli) 

Morc1 17450 -3.38 -3.67 -2.53 microrchidia 1 

Mreg 381269 -2.62 -2.26 -1.2 melanoregulin 

Ms4a14 383435 -1.55 -1.76 -1.15 membrane-spanning 4-domains, subfamily A, member 14 

Myof 226101 -1.34 -1.71 -1.16 myoferlin 

Myst4 54169 -2.28 -2.21 -1.64 MYST histone acetyltransferase monocytic leukemia 4 

Nefh 380684 -2.4 -2.48 -1.39 
similar to neurofilament protein; neurofilament, heavy 
polypeptide 

Neurod1 18012 -1.61 -1.55 -1.18 neurogenic differentiation 1; neurogenic differentiation 5 

Nfatc2ip 18020 -1.37 -1.38 -1.01 
nuclear factor of activated T-cells, cytoplasmic, calcineurin-
dependent 2 interacting protein 

Nphs1 54631 -1.49 -1.94 -1.04 nephrosis 1 homolog, nephrin (human) 

Nqo1 18104 -2.51 -2.33 -1.39 NAD(P)H dehydrogenase, quinone 1 
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Nr5a2 26424 -2.45 -2.43 -1.12 nuclear receptor subfamily 5, group A, member 2 

Nup210l 77595 -1.09 
-

1.236666667 -1.11 nucleoporin 210-like 

Obox6 252830 -1 -1.76 -1.38 predicted gene 5496; oocyte specific homeobox 6 

Ooep 67968 -2.19 -2.5 -1.54 oocyte expressed protein homolog (dog) 

Pcolce 18542 -2.06 -1.96 -2.34 procollagen C-endopeptidase enhancer protein 

Pdgfc 54635 -1.16 -2.61 -1.35 platelet-derived growth factor, C polypeptide 

Pim1 18712 -2.11 -1.88 -1.06 proviral integration site 1 

Piwil2 57746 -1.37 -1.7 -1.61 piwi-like homolog 2 (Drosophila) 

Pla2g10 26565 -1.55 -2.04 -1.12 phospholipase A2, group X 

Pnma5 385377 -2.16 -2.17 -2.08 paraneoplastic antigen family 5 

Psma8 73677 -2.95 -2.6 -1.78 proteasome (prosome, macropain) subunit, alpha type, 8 

Ptch2 19207 -1.86 -1.91 -1.1 patched homolog 2 

Reep6 70335 -1.37 -1.61 -1.3 receptor accessory protein 6 

Rex2 19715 -4.02 -2.47 -1.3 
hypothetical protein LOC100048814; predicted gene 13138; 
reduced expression 2; predicted gene 13164 

Ripply1 622473 -1.65 -1.3 -1.41 ripply1 homolog (zebrafish) 

Rmnd5b 66089 -1.39 -1.41 -1.21 
required for meiotic nuclear division 5 homolog B (S. 
cerevisiae) 

Rnf125 67664 -2.54 -2.51 -1.37 ring finger protein 125 

Rnf17 30054 -1.91 -1.51 -1.49 ring finger protein 17 

Rpl10l 238217 -1.94 -1.27 -1.15 

predicted gene 14460; predicted gene 13891; predicted gene 
2387; ribosomal protein 10; predicted gene 7476; predicted 
gene 4167; predicted gene 5621; predicted gene 3379; 
similar to QM protein; predicted gene 11450; predicted gene 
6564; predicted gene 3405; predicted gene 10041; predicted 
gene 4892; ribosomal protein L10-like 

Sept1 54204 -1.36 -2.43 -1.58 septin 1 

Serpinb6c 97848 -1.55 -1.57 -1.64 serine (or cysteine) peptidase inhibitor, clade B, member 6c 

Sfrp4 20379 -2.07 -2.28 -1.24 secreted frizzled-related protein 4 

Slc15a1 56643 -1.1 -1.8 -1.13 solute carrier family 15 (oligopeptide transporter), member 1 

Slc25a12 78830 -2.33 -2.29 -1.83 
solute carrier family 25 (mitochondrial carrier, Aralar), 
member 12 

Slc28a1 434203 -1.74 -1.48 -1.23 
solute carrier family 28 (sodium-coupled nucleoside 
transporter), member 1 

Slc47a1 67473 -1.04 -1.52 -1.25 solute carrier family 47, member 1 

Slc5a11 233836 -1.28 -1.55 -1.58 
solute carrier family 5 (sodium/glucose cotransporter), 
member 11 

Slc5a4b 64454 -1.11 -2.49 -1.57 
solute carrier family 5 (neutral amino acid transporters, 
system A), member 4b 

Slc7a1 11987 -1.35 -1.68 -2.22 
solute carrier family 7 (cationic amino acid transporter, y+ 
system), member 1 

Socs3 12702 -1.51 -1.85 -1.87 suppressor of cytokine signaling 3 

Sod2 20656 -1.06 -1.43 -1.32 superoxide dismutase 2, mitochondrial 

Spats1 71020 -1.01 -1.39 -1.29 spermatogenesis associated, serine-rich 1 

Spp1 20750 -4.35 -4.19 -2.05 secreted phosphoprotein 1 

Stk31 77485 -1.91 -2.44 -1.2 serine threonine kinase 31 

Stmn2 20257 -1.48 -1.85 -1.29 stathmin-like 2 

Susd2 71733 -1.41 -1.78 -1.78 sushi domain containing 2 

Syce1 74075 -2.35 -2.09 -1.69 synaptonemal complex central element protein 1 

Tcea3 21401 -2.01 -2.2 -1.29 transcription elongation factor A (SII), 3 

Tcl1 21432 -3.06 -3.31 -2.37 T-cell lymphoma breakpoint 1 

Tdrd12 71981 -4.27 -3.25 -2.23 tudor domain containing 12 

Tet1 52463 

-
2.3266666

67 -2.63 -1.686666667 tet oncogene 1 

Tet2 214133 -1.89 -2.34 -2.22 tet oncogene family member 2 

Tex14 83560 -2.01 -2.64 -2.26 testis expressed gene 14 

Tgm1 21816 -2.21 -1.31 -2.05 transglutaminase 1, K polypeptide 

Timp1 21857 -1.9 -1.72 -1.18 tissue inhibitor of metalloproteinase 1 

Tm7sf3 67623 -1.52 -1.63 -1.46 transmembrane 7 superfamily member 3 

Trap1a 22037 -2.92 -1.45 -1.3 tumor rejection antigen P1A 

Trim25 217069 -1.31 -1.23 -1.08 tripartite motif-containing 25 

Triml1 244448 -2.25 -2.45 -2.07 tripartite motif family-like 1 

Triml2 622117 -3.5 -2.85 -1.93 tripartite motif family-like 2 

Ttc39b 69863 -2.25 -2.09 -1.145 tetratricopeptide repeat domain 39B 

Ttll6 237930 -1.06 -1.15 -1.18 tubulin tyrosine ligase-like family, member 6 
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Ttpa 50500 -1.24 -1.43 -1.16 tocopherol (alpha) transfer protein 

Tubb3 22152 -1.82 -2.02 -1.24 tubulin, beta 3; tubulin, beta 3, pseudogene 1 

Uchl1 22223 -3.04 -2.64 -1.11 ubiquitin carboxy-terminal hydrolase L1 

Vmn2r-ps104 100041915 -1.84 -1.76 -1.09 vomeronasal 2, receptor, pseudogene 104 

Zbtb32 58206 -1.21 -1.62 -1.27 zinc finger and BTB domain containing 32 

Zfp229 381067 -1.4 -1.82 -1.34 zinc finger protein 

Zfp296 63872 -2.15 -1.79 -1.15 zinc finger protein 296 

Zfp42 22702 -5.06 -3.96 -1.85 zinc finger protein 42 

Zfp57 22715 -1.88 -2.12 -1.11 zinc finger protein 57 

Zfp640 386626 -4.806 -2.92 -1.805 zinc finger protein 640 

Zp3 22788 -1.7 -1.82 -1.84 zona pellucida glycoprotein 3 

Zswim1 71971 -1.74 -1.58 -1.08 zinc finger, SWIM domain containing 1 

 

Concordantly upregulated genes in wt and dnmt1-/- EBs between d0-4 

Gene symbol 
Entrez Gene 

ID 
Fold 

change wt 
Fold change 

dnmt1-/- 
Gene name 

1110002B05Rik 104725 1.16 1.17 RIKEN cDNA 1110002B05 gene 

1110032A03Rik 68721 1.37 1.28 RIKEN cDNA 1110032A03 gene; hypothetical protein LOC100048251 

1110038D17Rik 68778 1.15 1.06 RIKEN cDNA 1110038D17 gene 

1110051M20Rik 228356 1.15 1.21 RIKEN cDNA 1110051M20 gene 

1700025G04Rik 69399 1.345 1.02 RIKEN cDNA 1700025G04 gene 

2010106G01Rik 66552 1.08 1.11 RIKEN cDNA 2010106G01 gene 

2610008E11Rik 72128 1.37 1.04 RIKEN cDNA 2610008E11 gene 

6230427J02Rik 68176 1.96 2.03 RIKEN cDNA 6230427J02 gene 

6330403K07Rik 103712 2.09 1.88 RIKEN cDNA 6330403K07 gene 

9230110C19Rik 234912 1.42 1.36 RIKEN cDNA 9230110C19 gene 

Ablim1 226251 1.1 1.02 actin-binding LIM protein 1 

Adcy6 11512 1.29 1.55 adenylate cyclase 6 

Adssl1 11565 2.03 1.1 adenylosuccinate synthetase like 1 

Akt3 23797 1.39 1.53 thymoma viral proto-oncogene 3 

Alg8 381903 1.23 1.06 
asparagine-linked glycosylation 8 homolog (yeast, alpha-1,3-
glucosyltransferase) 

Amn1 232566 1.16 1.01 antagonist of mitotic exit network 1 homolog (S. cerevisiae) 

Anxa4 11746 1.17 1.26 annexin A4 

Apcdd1 494504 2.49 2.46 adenomatosis polyposis coli down-regulated 1 

Arsa 11883 1.74 1.8 arylsulfatase A 

B130016D09Rik 436015 2.28 2.09 RIKEN cDNA B130016D09 cDNA 

Bach2 12014 1.1 1.08 BTB and CNC homology 2 

Bambi 68010 2.32 1.49 BMP and activin membrane-bound inhibitor, homolog (Xenopus laevis) 

Bmp2 12156 2.98 2.57 bone morphogenetic protein 2 

Bmp5 12160 3.24 3.61 bone morphogenetic protein 5 

Bmper 73230 3.16 2.97 BMP-binding endothelial regulator 

Camk1g 215303 1.05 1.26 calcium/calmodulin-dependent protein kinase I gamma 

Capn6 12338 4.56 3.61 calpain 6 

Casd1 213819 1.41 1.02 CAS1 domain containing 1; similar to O-acetyltransferase 

Ccng2 12452 2.44 1.35 cyclin G2 

Cd24a 12484 1.68 1.54 CD24a antigen 

Cd44 12505 1.8 1.17 CD44 antigen 

Cd99l2 171486 1.42 1.07 CD99 antigen-like 2 

Cdx2 12591 2.26 1.24 caudal type homeo box 2 

Cer1 12622 2.28 3.15 cerberus 1 homolog (Xenopus laevis) 

Cfc1 12627 2.84 2.77 cripto, FRL-1, cryptic family 1 

Cgnl1 68178 1.79 1.58 cingulin-like 1 

Chst14 72136 1.22 1.47 carbohydrate (N-acetylgalactosamine 4-0) sulfotransferase 14 

Clic6 209195 2.63 2.21 chloride intracellular channel 6 

Cnksr2 245684 2.36 1.29 connector enhancer of kinase suppressor of Ras 2 

Col1a1 12842 1.22 1.43 collagen, type I, alpha 1 

Crb2 241324 2.01 1.64 crumbs homolog 2 (Drosophila) 

Cttnbp2 30785 1.08 1.14 cortactin binding protein 2 
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Cyp4f15 106648 1.4 1.19 cytochrome P450, family 4, subfamily f, polypeptide 15 

Dkk1 13380 2.15 2.27 dickkopf homolog 1 (Xenopus laevis) 

Dlg5 71228 1.24 1.07 discs, large homolog 5 (Drosophila) 

Dok4 114255 2.95 1.95 docking protein 4 

E330009J07Rik 243780 1.02 1.19 RIKEN cDNA E330009J07 gene 

E330027M22Rik 100038419 2.46 1.67 RIKEN cDNA gene, E330027M22Rik 

Ednra 13617 1.83 1.38 endothelin receptor type A 

Efemp2 58859 1.07 1.04 epidermal growth factor-containing fibulin-like extracellular matrix protein 2 

Efha1 68514 1.23 1.38 EF hand domain family A1 

Efna1 13636 2.26 1.51 ephrin A1 

Efnb1 13641 1.4 1.2 ephrin B1 

Eid1 58521 1.49 1.47 EP300 interacting inhibitor of differentiation 1 

Emb 13723 1.39 1.62 embigin 

Extl2 58193 1.09 1.2 exostoses (multiple)-like 2 

Fam55d 244853 1 1.04 family with sequence similarity 55, member D 

Fbln2 14115 1.44 1.58 fibulin 2 

Fbn1 14118 1.68 1.68 fibrillin 1 

Fbn2 14119 2.44 1.7 similar to fibrillin 2; fibrillin 2 

Fgf3 14174 2.52 1.77 fibroblast growth factor 3 

Fkbp14 231997 1.34 1.02 FK506 binding protein 14 

Foxf1a 15227 4.015 3.255 forkhead box F1a 

Foxo4 54601 1.65 1.35 forkhead box O4 

Frat1 14296 1.13 1.14 frequently rearranged in advanced T-cell lymphomas 

Frem1 329872 1.66 1.72 Fras1 related extracellular matrix protein 1 

Frmd6 319710 1.22 1.33 predicted gene 5780; FERM domain containing 6 

Fstl1 14314 1.19 1.3 follistatin-like 1 

Fut10 171167 1.14 1.32 fucosyltransferase 10 

Fut11 73068 1.01 1.17 fucosyltransferase 11 

Galnt1 14423 1.42 1.57 
UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-
acetylgalactosaminyltransferase 1 

Galnt7 108150 1.67 1.36 
UDP-N-acetyl-alpha-D-galactosamine: polypeptide N-
acetylgalactosaminyltransferase 7 

Gata2 14461 1.43 1.64 GATA binding protein 2 

Gata4 14463 2.19 2.67 GATA binding protein 4 

Gem 14579 1.66 1.39 GTP binding protein (gene overexpressed in skeletal muscle) 

Gm10397 100038401 1.5 1.58 predicted gene 10397 

Gm9958 791294 1.17 1.03 predicted gene 9958 

Gnas 14683 1.14 1.535 GNAS (guanine nucleotide binding protein, alpha stimulating) complex locus 

Gnb4 14696 1.44 1.05 guanine nucleotide binding protein (G protein), beta 4 

Gpc3 14734 2.89 2.12 glypican 3 

Greb1 268527 2.28 2.21 gene regulated by estrogen in breast cancer protein 

Gsbs 19051 1.45 1.28 G substrate 

Gulp1 70676 1.71 1.6 GULP, engulfment adaptor PTB domain containing 1 

H1f0 14958 1.88 1.69 H1 histone family, member 0 

Hand1 15110 2.92 2.18 heart and neural crest derivatives expressed transcript 1 

Hes1 15205 1.09 1.02 hairy and enhancer of split 1 (Drosophila) 

Hmga2 15364 1.73 2.13 predicted gene 7996; high mobility group AT-hook 2 

Hoxb2 103889 1.94 1.43 homeo box B2 

Ifngr2 15980 1.28 1.05 interferon gamma receptor 2 

Igf2 16002 3.39 1.53 insulin-like growth factor 2 

Il10rb 16155 1.23 1.39 interleukin 10 receptor, beta 

Ip6k2 76500 1.1 1 hypothetical protein LOC100044300; inositol hexaphosphate kinase 2 

Isl1 16392 1.99 1.07 ISL1 transcription factor, LIM/homeodomain 

Kcnmb4 58802 1.13 1.14 

potassium large conductance calcium-activated channel, subfamily M, beta 

member 4 

Kif21b 16565 1.67 1.05 kinesin family member 21B 

Klhl23 277396 1 1.2 kelch-like 23 (Drosophila) 

Lama4 16775 3.06 2.34 laminin, alpha 4 

Lbh 77889 1.11 1.14 limb-bud and heart 

Lgr5 14160 2.92 2.79 leucine rich repeat containing G protein coupled receptor 5 

Lhfpl2 218454 2.42 2.26 lipoma HMGIC fusion partner-like 2 
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Lhx1 16869 2.38 3.01 LIM homeobox protein 1 

Lix1l 280411 1.51 1.18 Lix1-like 

Lrp1 16971 1.95 1.19 low density lipoprotein receptor-related protein 1 

Lsp1 16985 1.22 1.23 lymphocyte specific 1 

Maml3 433586 1.25 1.22 mastermind like 3 (Drosophila) 

Man1c1 230815 1.37 1.03 mannosidase, alpha, class 1C, member 1 

Man2a2 140481 1 1.01 mannosidase 2, alpha 2 

Meis2 17536 1.45 1.52 Meis homeobox 2 

Mfap2 17150 1.19 1.06 microfibrillar-associated protein 2 

Morc4 75746 2.75 2.66 microrchidia 4 

Mospd1 70380 1.86 1.24 predicted gene 2147; motile sperm domain containing 1 

Ms4a4d 66607 2.67 2.26 membrane-spanning 4-domains, subfamily A, member 4D 

Msx2 17702 3.35 2.55 similar to homeobox protein; homeobox, msh-like 2 

Nfxl1 100978 2.18 1.91 nuclear transcription factor, X-box binding-like 1 

Nkd1 93960 2.04 2.24 naked cuticle 1 homolog (Drosophila); similar to naked cuticle 1 homolog 

Nrk 27206 1.73 1.44 Nik related kinase 

Nrp1 18186 5.31 4.62 neuropilin 1 

Nxf7 170722 2.08 2.85 nuclear RNA export factor 7 

Opn3 13603 1.81 1.71 opsin 3 

Pcmtd2 245867 1.55 1.02 protein-L-isoaspartate (D-aspartate) O-methyltransferase domain containing 2 

Pdgfrb 18596 2.25 1.28 platelet derived growth factor receptor, beta polypeptide 

Pigp 56176 1.64 1.22 phosphatidylinositol glycan anchor biosynthesis, class P; predicted gene 9001 

Pknox2 208076 1.07 1.12 Pbx/knotted 1 homeobox 2 

Plac1 56096 3.16 2.3 placental specific protein 1 

Plxna2 18845 1.67 1.16 plexin A2 

Pmp22 18858 3.84 4.33 peripheral myelin protein 22 

Polg 18975 1.16 1.04 polymerase (DNA directed), gamma 

Ppic 19038 2.48 2.46 peptidylprolyl isomerase C 

Prdm6 225518 3.45 3.07 PR domain containing 6 

Prkar2b 19088 2.71 1.82 protein kinase, cAMP dependent regulatory, type II beta 

Prox1 19130 1.93 1.56 prospero-related homeobox 1 

Prss12 19142 1.11 1.59 protease, serine, 12 neurotrypsin (motopsin) 

Pth1r 19228 1.13 1.24 parathyroid hormone 1 receptor 

Ptpla 30963 1.38 1.26 
protein tyrosine phosphatase-like (proline instead of catalytic arginine), 
member a 

Rcn1 19672 1.5 1.27 reticulocalbin 1 

Reck 53614 1.7 1.06 
reversion-inducing-cysteine-rich protein with kazal motifs; similar to Reversion-
inducing cysteine-rich protein with Kazal motifs precursor (mRECK) 

Rftn1 76438 2.13 2.26 raftlin lipid raft linker 1 

Rgs5 19737 2.98 1.91 regulator of G-protein signaling 5 

Rhou 69581 1.13 1.48 ras homolog gene family, member U 

Rnf130 59044 1.14 1.19 ring finger protein 130; similar to Ring finger protein 130 

Rnf19a 30945 1.5 1.02 ring finger protein 19A 

Rora 19883 1.82 1.2 RAR-related orphan receptor alpha 

Rps6ka6 67071 1.58 1.3 ribosomal protein S6 kinase polypeptide 6 

Runx1 12394 1.9 2.61 runt related transcription factor 1 

Sccpdh 109232 1.8 1.51 
similar to Saccharopine dehydrogenase (putative); saccharopine 
dehydrogenase (putative) 

Sdc2 15529 1.2 1.22 syndecan 2 

Sdc3 20970 1.08 1.16 syndecan 3 

Sdcbp 53378 1.15 1.27 similar to syntenin; syndecan binding protein 

Sema3a 20346 1.76 1.63 
sema domain, immunoglobulin domain (Ig), short basic domain, secreted, 
(semaphorin) 3A; hypothetical protein LOC100044161 

Sema6d 214968 1.49 1.71 
sema domain, transmembrane domain (TM), and cytoplasmic domain, 
(semaphorin) 6D 

Senp7 66315 1.63 1.28 SUMO1/sentrin specific peptidase 7 

Serpinh1 12406 1.3 1.35 serine (or cysteine) peptidase inhibitor, clade H, member 1 

Sgcb 24051 1.5 1.56 sarcoglycan, beta (dystrophin-associated glycoprotein) 

Sh3kbp1 58194 1.11 1.04 SH3-domain kinase binding protein 1 

Sh3pxd2b 268396 1.22 1.14 SH3 and PX domains 2B 

Slc22a21 56517 1.3 1.51 solute carrier family 22 (organic cation transporter), member 21 

Slc36a4 234967 1.25 1.15 solute carrier family 36 (proton/amino acid symporter), member 4 
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Slc44a5 242259 1.91 2.58 solute carrier family 44, member 5 

Slc9a6 236794 1.31 1.02 solute carrier family 9 (sodium/hydrogen exchanger), member 6 

Smad3 17127 1.43 1.19 MAD homolog 3 (Drosophila) 

Smad6 17130 2.49 2.06 MAD homolog 6 (Drosophila) 

Smarca2 67155 1.79 1.8 
SWI/SNF related, matrix associated, actin dependent regulator of chromatin, 
subfamily a, member 2 

Snx1 56440 1.15 1.11 sorting nexin 1 

Snx6 72183 1.12 1.11 similar to sorting nexin 6; sorting nexin 6 

Sox17 20671 1.41 1.01 SRY-box containing gene 17 

Spin2 278240 2.7 1.55 spindlin family, member 2 

Stard13 243362 1.14 1.28 
StAR-related lipid transfer (START) domain containing 13; similar to 
serologically defined colon cancer antigen 13 

Stard8 236920 3.11 2.15 START domain containing 8 

Stat5b 20851 1.27 1.21 signal transducer and activator of transcription 5B 

Stx18 71116 1.06 1.17 syntaxin 18 

Tbc1d12 209478 1.12 1.22 TBC1D12: TBC1 domain family, member 12 

Tbx3 21386 1.89 1.11 T-box 3 

Tceal1 237052 1.5 1.52 transcription elongation factor A (SII)-like 1 

Tgfb1 21803 1.24 1.09 transforming growth factor, beta 1 

Tgfb2 21808 1.57 1.4 transforming growth factor, beta 2 

Timp2 21858 1.28 1.3 tissue inhibitor of metalloproteinase 2 

Tlcd2 380712 1.03 1.06 TLC domain containing 2 

Tm6sf1 107769 1.1 1.6 transmembrane 6 superfamily member 1 

Tmem106b 71900 1.01 1.03 transmembrane protein 106B 

Tmem132a 98170 1.01 1.11 transmembrane protein 132A 

Tmem22 245020 2.57 2.99 transmembrane protein 22 

Tmem88 67020 1.31 1.17 transmembrane protein 88 

Tmem9b 56786 1.27 1.08 TMEM9 domain family, member B 

Tmprss2 50528 2.36 1.96 transmembrane protease, serine 2 

Tnfrsf1a 21937 1.5 1.08 tumor necrosis factor receptor superfamily, member 1a 

Top2b 21974 1.92 1.69 topoisomerase (DNA) II beta 

Trpc3 22065 3.12 3.12 transient receptor potential cation channel, subfamily C, member 3 

Tspan12 269831 1.16 1.1 tetraspanin 12 

Tspan2 70747 1.65 1.29 tetraspanin 2 

Ube2h 22214 1.9 1.26 
predicted gene 2058; similar to Ubiquitin-conjugating enzyme UbcH2; 
ubiquitin-conjugating enzyme E2H 

Ugdh 22235 1.17 1.11 UDP-glucose dehydrogenase 

Uhrf2 109113 1.89 1.8 ubiquitin-like, containing PHD and RING finger domains 2 

Ulk2 29869 3.78 2.14 Unc-51 like kinase 2 (C. elegans) 

Unc5c 22253 1.93 1.41 unc-5 homolog C (C. elegans) 

Usp3 235441 1.11 1.18 ubiquitin specific peptidase 3 

Usp47 74996 1.39 1.14 ubiquitin specific peptidase 47 

Usp51 635253 1.35 1.46 ubiquitin specific protease 51 

Vamp4 53330 1.8 1.03 vesicle-associated membrane protein 4 

Vasn 246154 1.39 1.79 vasorin 

Vgll4 232334 2.76 2.19 vestigial like 4 (Drosophila) 

Vldlr 22359 2.12 2.02 very low density lipoprotein receptor 

Vstm2b 58188 1.46 1.63 
hypothetical protein LOC100045106; V-set and transmembrane domain 
containing 2B 

Wnt2 22413 3.08 3.17 wingless-related MMTV integration site 2 

Wnt5a 22418 1.42 1.62 wingless-related MMTV integration site 5A 

Zc3hav1 78781 1.39 1.31 zinc finger CCCH type, antiviral 1 

Zcchc11 230594 1.02 1.12 zinc finger, CCHC domain containing 11 

Zcchc12 72693 1.21 1.25 zinc finger, CCHC domain containing 12 

Zfp334 228876 1.05 1.02 zinc finger protein 334 

Zfpm1 22761 1.38 1.55 zinc finger protein, multitype 1; similar to FOG 

Zkscan3 72739 1.09 1.11 zinc finger with KRAB and SCAN domains 3 

 

Concordantly downregulated genes in wt and dnmt1-/- EBs between d0-4 

Gene symbol 
Entrez Gene 

ID 
Fold 

change wt 
Fold change 

dnmt1-/- 
Gene name 
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1700019D03Rik 67080 -2.18 -2.1 RIKEN cDNA 1700019D03 gene 

1700029I01Rik 70005 -1.84 -1.33 
predicted gene 13251; predicted gene, OTTMUSG00000010657; RIKEN 
cDNA 1700029I01 gene 

2410012M07Rik 71979 -1.41 -1.68 RIKEN cDNA 2410012M07 gene 

2610305D13Rik 112422 -3.47 -2.19 RIKEN cDNA 2610305D13 gene 

2610528J11Rik 66451 -1.29 -1.06 RIKEN cDNA 2610528J11 gene 

2900011O08Rik 67254 -1.37 -1.2 RIKEN cDNA 2900011O08 gene 

4930519F16Rik 75106 -1.05 -1.24 RIKEN cDNA 4930519F16 gene 

4932441K18Rik 353170 -1.02 -1.07 
predicted gene 8258; similar to factor inhibiting activating transcription factor 4 
(ATF4)-mediated transcription; RIKEN cDNA 4932441K18 gene 

9630033F20Rik 319801 -1.24 -1.18 RIKEN cDNA 9630033F20 gene; similar to RIKEN cDNA 9630033F20 gene 

A830080D01Rik 382252 -1.25 -1.09 RIKEN cDNA A830080D01 gene 

Abcc4 239273 -2.28 -1.6 ATP-binding cassette, sub-family C (CFTR/MRP), member 4 

Acsl1 14081 -1.14 -1.14 acyl-CoA synthetase long-chain family member 1 

Actr3b 242894 -1.41 -1.32 ARP3 actin-related protein 3 homolog B (yeast) 

Adam23 23792 -2.14 -1.28 a disintegrin and metallopeptidase domain 23; similar to ADAM23 

Agtrap 11610 -1.18 -1.29 angiotensin II, type I receptor-associated protein 

Alg13 67574 -1.88 -1.73 asparagine-linked glycosylation 13 homolog (S. cerevisiae) 

Ankrd45 73844 -1.26 -1.41 ankyrin repeat domain 45 

Ano9 71345 -1.39 -2.06 anoctamin 9 

Anxa11 11744 -1.79 -1.17 annexin A11; predicted gene 2260; predicted gene 2274 

Apobec1 11810 -1.39 -1.32 apolipoprotein B mRNA editing enzyme, catalytic polypeptide 1 

Apobec3 80287 -1.91 -2.08 apolipoprotein B mRNA editing enzyme, catalytic polypeptide 3 

Aqp3 11828 -1.47 -1.98 aquaporin 3 

Arhgap30 226652 -1.24 -1.41 Rho GTPase activating protein 30 

Arhgef3 71704 -1.77 -1.55 Rho guanine nucleotide exchange factor (GEF) 3 

Ass1 11898 -1.575 -1.84 argininosuccinate synthetase 1 

Avpi1 69534 -1.1 -1.12 arginine vasopressin-induced 1 

B3gnt7 227327 -1.31 -1 UDP-GlcNAc:betaGal beta-1,3-N-acetylglucosaminyltransferase 7 

B4galnt3 330406 -1.04 -1.52 beta-1,4-N-acetyl-galactosaminyl transferase 3 

BC032203 210982 -1.51 -1.4 cDNA sequence BC032203 

Bcat2 12036 -1.18 -1.18 branched chain aminotransferase 2, mitochondrial 

Bnipl 171388 -1.13 -1.39 BCL2/adenovirus E1B 19kD interacting protein like 

C330016O10Rik 212706 -1.76 -1.45 RIKEN cDNA C330016O10 gene 

C77370 245555 -2.17 -1.62 expressed sequence C77370 

Calcoco2 76815 -2.865 -2.745 predicted gene 11701; calcium binding and coiled-coil domain 2 

Cbfa2t2 12396 -1.07 -1.06 core-binding factor, runt domain, alpha subunit 2, translocated to, 2 (human) 

Cbx7 52609 -1.63 -1.37 chromobox homolog 7 

Ccnb1ip1 239083 -1.27 -1.04 cyclin B1 interacting protein 1 

Ccne1 12447 -1.92 -1.45 cyclin E1 

Ccrn4l 12457 -1.49 -1.29 
similar to carbon catabolite repression 4 protein homolog; CCR4 carbon 
catabolite repression 4-like (S. cerevisiae) 

Cdh3 12560 -1.27 -1.39 cadherin 3 

Cdv3 321022 -2.32 -1.59 
carnitine deficiency-associated gene expressed in ventricle 3; predicted gene 
7236 

Ceacam1 26365 -1.41 -1.74 
carcinoembryonic antigen-related cell adhesion molecule 1; carcinoembryonic 
antigen-related cell adhesion molecule 2 

Chchd10 103172 -2.88 -2.53 coiled-coil-helix-coiled-coil-helix domain containing 10 

Chd9 109151 -2.1 -1.29 chromodomain helicase DNA binding protein 9 

Ckb 12709 -2.83 -1.6 similar to creatine kinase, brain; predicted gene 12892; creatine kinase, brain 

Cnnm2 94219 -1.23 -1.23 cyclin M2 

Cpt1a 12894 -1.93 -1.48 carnitine palmitoyltransferase 1a, liver 

Csrnp1 215418 -1.02 -1.16 cysteine-serine-rich nuclear protein 1 

Ctbp2 13017 -1.5 -1.27 C-terminal binding protein 2 

Dapp1 26377 -1.89 -1.29 dual adaptor for phosphotyrosine and 3-phosphoinositides 1 

Dazl 13164 -1.22 -1.48 deleted in azoospermia-like 

Dclk2 70762 -1.07 -1.62 doublecortin-like kinase 2 

Ddx58 230073 -1.9 -1.75 DEAD (Asp-Glu-Ala-Asp) box polypeptide 58 

Dennd2c 329727 -1.45 -1.48 DENN/MADD domain containing 2C 

Diap1 13367 -1.21 -1.05 diaphanous homolog 1 (Drosophila) 

Dmrt1 50796 -1.42 -1.54 doublesex and mab-3 related transcription factor 1 

Dmrtc1c 71083 -1.53 -1.08 DMRT-like family C1c2; DMRT-like family C1c 
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Dnajc21 78244 -1.44 -1.61 DnaJ (Hsp40) homolog, subfamily C, member 21 

Dnajc6 72685 -2.09 -1.88 DnaJ (Hsp40) homolog, subfamily C, member 6 

Dock6 319899 -1.09 
-

1.178571429 dedicator of cytokinesis 6 

Dppa3 73708 -1.625 -1.655 developmental pluripotency-associated 3; predicted gene 6269 

Dppa4 73693 -3.89 -2.66 predicted gene 5501; developmental pluripotency associated 4 

Dppa5a 434423 -3.62 -2.27 
developmental pluripotency associated 5A; similar to developmental 
pluripotency associated 5; hypothetical protein LOC674522 

Duxbl 278672 

-
1.0666666

67 -1.16 predicted gene 10394; predicted gene 10391; double homeobox B-like 

Efhd1 98363 -1.37 -1.34 EF hand domain containing 1 

Elavl3 15571 -1.18 -1.1 ELAV (embryonic lethal, abnormal vision, Drosophila)-like 3 (Hu antigen C) 

En2 13799 -1.05 -1.61 engrailed 2 

Enah 13800 -1.28 -1.34 enabled homolog (Drosophila) 

Enpp3 209558 -4.06 -2.3 ectonucleotide pyrophosphatase/phosphodiesterase 3 

Epb4.1l4a 13824 -1.53 -1.28 erythrocyte protein band 4.1-like 4a 

Epb4.9 13829 -1.38 -1.21 erythrocyte protein band 4.9 

Epha2 13836 -2.47 -1.74 Eph receptor A2 

Ephx2 13850 -1.6 -2.19 epoxide hydrolase 2, cytoplasmic 

Eras 353283 -1.43 -1.3 ES cell-expressed Ras 

Etv5 104156 -1.94 -1.715 ets variant gene 5 

Ezr 22350 -1.19 -1.02 ezrin; hypothetical protein LOC100044177 

Fabp3 14077 -1.495 -1.42 
fatty acid binding protein 3, muscle and heart; similar to mammary-derived 
growth inhibitor 

Fam169a 320557 -1.42 -1.33 family with sequence similarity 169, member A 

Fam178b 381337 -1.67 -1.39 family with sequence similarity 178, member B 

Fgd4 224014 -1.27 -1.51 FYVE, RhoGEF and PH domain containing 4 

Fkbp5 14229 -1.4 -1.32 FK506 binding protein 5 

Frrs1 20321 -1.88 -1.69 ferric-chelate reductase 1 

Fut9 14348 -1.96 -1.56 fucosyltransferase 9 

Fzd5 14367 -1.63 -1.44 frizzled homolog 5 (Drosophila) 

Gab1 14388 -2.29 -1.8 growth factor receptor bound protein 2-associated protein 1 

Gap43 14432 -2 -1.12 growth associated protein 43 

Gca 227960 -1.68 -1.09 grancalcin 

Gcnt2 14538 -1.89 -1.5 glucosaminyl (N-acetyl) transferase 2, I-branching enzyme 

Gldc 104174 -1.62 -1.08 glycine decarboxylase 

Gm10451 100041694 -2.05 -1.2 hypothetical protein LOC100041694 

Gm12569 622699 -2 -1.6 predicted gene 12569 

Gm13225 622846 -3.81 -2.51 predicted gene 13225 

Gm13235 385211 -3.81 -2.51 predicted gene 13235 

Gm13939 100038454 -2.38 -2.33 predicted gene 13939 

Gm6762 627480 -1.47 -1.16 cDNA sequence BC004728; predicted gene 6762 

Gm6792 627821 -2.52 -2.06 predicted gene 6792 

Gng3 14704 -2.26 -1.81 guanine nucleotide binding protein (G protein), gamma 3 

Grhl1 195733 -1.17 -1.18 grainyhead-like 1 (Drosophila); similar to Grhl1 protein 

Grhl2 252973  -1.46 -1.44 grainyhead-like 2 (Drosophila) 

Gsta4 14860 -1.48 -1.32 glutathione S-transferase, alpha 4 

Hap1 15114 -1.06 -1.08 huntingtin-associated protein 1 

Helb 117599 -1.07 -1.33 helicase (DNA) B 

Hexb 15212 -1.34 -1.46 hexosaminidase B 

Hhip 15245 -1.65 -1.59 Hedgehog-interacting protein 

Hpdl 242642 -1.28 -1.02 4-hydroxyphenylpyruvate dioxygenase-like 

Hspb1 15507 -1.73 -1.585 heat shock protein 1 

Hspbap1 66667 -1.2 -1.05 Hspb associated protein 1 

Ifitm3 66141 -1.78 -1.16 interferon induced transmembrane protein 3 

Impa2 114663 -1.15 -1.11 inositol (myo)-1(or 4)-monophosphatase 2 

Ina 226180 -2.54 -1.905 internexin neuronal intermediate filament protein, alpha 

Ino80 68142 -1.13 -1.53 INO80 homolog (S. cerevisiae); similar to yeast INO80-like protein 

Irak3 73914 -1.98 -2.17 interleukin-1 receptor-associated kinase 3 

Itga6 16403 -1.87 -1.32 integrin alpha 6 

Itpk1 217837 -1.49 -1.49 inositol 1,3,4-triphosphate 5/6 kinase 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=252973
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Jarid2 16468 -1.6 -1.8 jumonji, AT rich interactive domain 2 

Jub 16475 -1.63 -1.21 ajuba 

Kat2b 18519 -2.08 -1.94 K(lysine) acetyltransferase 2B; predicted gene 5109 

Kbtbd11 74901 -1.62 -1.65 kelch repeat and BTB (POZ) domain containing 11 

Kcnk5 16529 -1.52 -1.8 potassium channel, subfamily K, member 5 

Kdm4c 76804 -1.21 -1.17 lysine (K)-specific demethylase 4C 

Kirrel2 243911 -1.27 -1.79 kin of IRRE like 2 (Drosophila) 

Klf3 16599 -1.51 -1.16 Kruppel-like factor 3 (basic); similar to BKLF 

Klf5 12224 -2.02 -1.53 Kruppel-like factor 5 

Klf9 16601 -1.86 -1.86 Kruppel-like factor 9 

L1td1 381591 -3.56 -2.46 LINE-1 type transposase domain containing 1 

L3mbtl2 214669 -1.29 -1.51 l(3)mbt-like 2 (Drosophila) 

Lck 16818 -1.41 -1.26 lymphocyte protein tyrosine kinase 

Lefty1 13590 -3.97 -3.78 left right determination factor 1 

Lima1 65970 -1.69 -1.4 LIM domain and actin binding 1 

Liph 239759 -3.44 -3.68 lipase, member H 

Lrrc34 71827 -2.24 -1.7 leucine rich repeat containing 34 

Lrrc8d 231549 -1.11 -1.44 leucine rich repeat containing 8D 

Ltbp4 108075 -1.39 -1.21 latent transforming growth factor beta binding protein 4 

Manba 110173 -1.32 -1.52 mannosidase, beta A, lysosomal 

Mcf2 109904 -2.7 -2.31 mcf.2 transforming sequence 

Mep1b 17288 -1.54 -1.1 meprin 1 beta 

Mkrn1 54484 -2.22 -1.84 makorin, ring finger protein, 1 

Mkrn1-ps1 353327 -2.04 -1.74 makorin, ring finger protein 1, pseudogene 1 

Mllt6 246198 -1.02 -1.01 
myeloid/lymphoid or mixed-lineage leukemia (trithorax homolog, Drosophila); 
translocated to, 6 

Mov10 17454 -1.8 -1.81 Moloney leukemia virus 10; predicted gene 7357 

Msh6 17688 -1.36 -1.29 mutS homolog 6 (E. coli) 

Mtap7 17761 -1.64 -1.49 microtubule-associated protein 7 

Mtmr7 54384 -1.16 -1.26 myotubularin related protein 7 

Muc3 666339 -1.22 -1.33 mucin 3, intestinal 

Mvp 78388 -1.08 -1.25 major vault protein 

Mybl2 17865 -1.97 -1.83 myeloblastosis oncogene-like 2 

Mycn 18109 -2.01 -1.24 
v-myc myelocytomatosis viral related oncogene, neuroblastoma derived 
(avian) 

Myo10 17909 -1.04 -1.01 myosin X 

Nanog 71950 -2.59 -2.04 similar to Nanog homeobox; Nanog homeobox 

Nav2 78286 -1.78 -1.23 neuron navigator 2 

Nid2 18074 -1.5 -1.36 nidogen 2 

Nodal 18119 -2.21 -1.82 nodal 

Nom1 433864 -3.27 -1.92 nucleolar protein with MIF4G domain 1 

Notum 77583 -1.16 -1.86 notum pectinacetylesterase homolog (Drosophila) 

Nr0b1 11614 -5.6 -4.25 nuclear receptor subfamily 0, group B, member 1 

Nup210 54563 -1.17 -1.02 nucleoporin 210 

Olfr985 258854 -1.27 -1.84 olfactory receptor 985 

Pax6 18508 -1.78 -2.13 paired box gene 6 

Pcolce2 76477 -2.17 -1.67 procollagen C-endopeptidase enhancer 2 

Pcsk6 18553 -1.08 -1.1 proprotein convertase subtilisin/kexin type 6 

Pde1b 18574 -1.79 -1.92 phosphodiesterase 1B, Ca2+-calmodulin dependent 

Pdzd4 245469 -2.44 -1.36 PDZ domain containing 4 

Phc1 13619 -2.08 -1.58 polyhomeotic-like 1 (Drosophila) 

Phf17 269424 -2.49 -1.75 PHD finger protein 17 

Pipox 19193 -3.23 -2.8 pipecolic acid oxidase 

Pla2g1b 18778 -3.79 -3.11 phospholipase A2, group IB, pancreas 

Plcb4 18798 -1.23 -1.12 phospholipase C, beta 4 

Plcg2 234779 -1.44 -1.14 phospholipase C, gamma 2 

Plekha7 233765 -1.04 -1.1 pleckstrin homology domain containing, family A member 7 

Plk3 12795 -1.88 -2.08 polo-like kinase 3 (Drosophila) 

Pls1 102502 -1.05 -1.14 plastin 1 (I-isoform) 

Pltp 18830 -1.32 -1.24 phospholipid transfer protein 

Pml 18854 -2.06 -1.89 promyelocytic leukemia 
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Pmm1 29858 -1.27 -1.02 phosphomannomutase 1 

Pnldc1 240023 -2.02 -1.49 poly(A)-specific ribonuclease (PARN)-like domain containing 1 

Pou5f1 18999 -2.64 -1.66 POU domain, class 5, transcription factor 1 

Ppm1j 71887 -1.06 -1.24 protein phosphatase 1J 

Prdm14 383491 -1.12 -2.16 PR domain containing 14 

Prrg4 228413 -2.02 -1.18 

proline rich Gla (G-carboxyglutamic acid) 4 (transmembrane); similar to 
Transmembrane gamma-carboxyglutamic acid protein 4 precursor (Proline-
rich Gla protein 4) (Proline-rich gamma-carboxyglutamic acid protein 4) 

Pycr2 69051 -1.2 -1.21 pyrroline-5-carboxylate reductase family, member 2 

Ramp3 56089 -1.7 -1.32 
receptor (calcitonin) activity modifying protein 3; similar to receptor activity 
modifying protein 3 

Ranbp17 66011 -1.56 -1.31 RAN binding protein 17 

Rarg 19411 -1.34 -1.46 retinoic acid receptor, gamma 

Rasgrp2 19395 -1.43 -1.37 RAS, guanyl releasing protein 2 

Rbpj 19664 -2.13 -2.005 recombination signal binding protein for immunoglobulin kappa J region 

Rest 19712 -1.75 -1.72 RE1-silencing transcription factor 

Rif1 51869 -1.18 -1.2 Rap1 interacting factor 1 homolog (yeast) 

Rnf165 225743 -1.34 -1.3 ring finger protein 165 

Rpl39l 68172 -2.26 -1.79 ribosomal protein L39-like 

Rpp25 102614 -2.06 -2.1 ribonuclease P 25 subunit (human) 

Scrn1 69938 -1.26 -1.21 secernin 1 

Sema4b 20352 -1.18 -1.1 
sema domain, immunoglobulin domain (Ig), transmembrane domain (TM) and 
short cytoplasmic domain, (semaphorin) 4B 

Sema4d 20354 -1.69 -1.69 
sema domain, immunoglobulin domain (Ig), transmembrane domain (TM) and 
short cytoplasmic domain, (semaphorin) 4D 

Sh3gl2 20404 -1.62 -1.4 SH3-domain GRB2-like 2 

Si 20431 -1.35 -1.45 silver 

Six1 20471 -1.7 -1.71 sine oculis-related homeobox 1 homolog (Drosophila) 

Slc12a6 107723 -1.675 -1.415 solute carrier family 12, member 6 

Slc12a8 171286 -1.48 -1.67 solute carrier family 12 (potassium/chloride transporters), member 8 

Slc17a9 228993 -1.4 -1.54 solute carrier family 17, member 9 

Slc23a1 20522 -1.71 -1.23 solute carrier family 23 (nucleobase transporters), member 1 

Slc25a40 319653 -1.37 -1.03 solute carrier family 25, member 40 

Slc27a2 26458 -3.13 -2.21 solute carrier family 27 (fatty acid transporter), member 2 

Slc37a1 224674 -1.81 -1.22 solute carrier family 37 (glycerol-3-phosphate transporter), member 1 

Slc39a14 213053 -1.16 -1.4 solute carrier family 39 (zinc transporter), member 14 

Slc4a11 269356 -1.03 -1.12 solute carrier family 4, sodium bicarbonate transporter-like, member 11 

Slc6a15 103098 -1.5 -1.12 solute carrier family 6 (neurotransmitter transporter), member 15 

Slc7a3 11989 -3.09 -2.43 solute carrier family 7 (cationic amino acid transporter, y+ system), member 3 

Slc7a7 20540 -2.19 -1.61 solute carrier family 7 (cationic amino acid transporter, y+ system), member 7 

Smoc1 64075 -1.39 -1.07 SPARC related modular calcium binding 1 

Smpdl3b 100340 -1.64 -1.56 sphingomyelin phosphodiesterase, acid-like 3B 

Sohlh2 74434 -1.77 -1.36 spermatogenesis and oogenesis specific basic helix-loop-helix 2 

Sox2 20674 -3.59 -2.65 SRY-box containing gene 2 

Spata22 380709 -1.04 -1.03 spermatogenesis associated 22; olfactory receptor 20 

Spic 20728 -1.5 -1.77 Spi-C transcription factor (Spi-1/PU.1 related) 

Spry4 24066 -2.25 -2.12 sprouty homolog 4 (Drosophila) 

Stat4 20849 -1.97 -1.33 signal transducer and activator of transcription 4 

Sult6b1 73671 -1.3 -1.58 sulfotransferase family, cytosolic, 6B, member 1 

Syt11 229521 -1.55 -1.5 synaptotagmin XI; similar to synaptotagmin XI 

Syt9 60510 -1.39 -1.05 synaptotagmin IX 

Tcf15 21407 -2.29 -1.82 transcription factor 15 

Tcfcp2l1 81879 -2.96 -2.47 transcription factor CP2-like 1 

Tcfe3 209446 -1.22 -1.07 transcription factor E3 

Tdh 433463 -4.71 -2.735 L-threonine dehydrogenase; predicted gene 13929 

Tesk2 230661 -1.25 -1.3 testis-specific kinase 2 

Tex11 83558 -2.17 -1.28 testis expressed gene 11 

Tex19.1 73679 -2.32 -1.48 testis expressed gene 19.1 

Tjp2 21873 -1.33 -1.18 tight junction protein 2 

Tle4 21888 -1.95 -1.32 transducin-like enhancer of split 4, homolog of Drosophila E(spl) 

Tm4sf5 75604 -1.25 -1.01 transmembrane 4 superfamily member 5 

Tmem63a 208795 -1.01 -1.13 transmembrane protein 63a 
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Tmem8 60455 -1.24 -1.03 transmembrane protein 8 (five membrane-spanning domains) 

Tns3 319939 -2.01 -1.95 tensin 3 

Tpd52 21985 -1.175 -1.1 similar to Tpd52 protein; tumor protein D52 

Trim13 66597 -1.82 -1.34 tripartite motif-containing 13; predicted gene 9359 

Trim2 80890 -1.52 -1.6 tripartite motif-containing 2 

Trim6 94088 -1.03 -1.46 tripartite motif-containing 6; similar to Tripartite motif protein 6 

Tst 22117 -1.13 -1.18 thiosulfate sulfurtransferase, mitochondrial 

Tuba3a 22144 -1.02 -1.09 predicted gene 5366; tubulin, alpha 3B; tubulin, alpha 3A 

Tuba4a 22145 -1.44 -1.43 tubulin, alpha 4A 

Twf2 23999 -1.26 -1.47 twinfilin, actin-binding protein, homolog 2 (Drosophila) 

Ubxn2a 217379 -1.18 -1.12 UBX domain protein 2A; predicted gene 6245 

Ulk1 22241 -1.03 -1.2 Unc-51 like kinase 1 (C. elegans) 

Usp26 83563 -3.45 -1.9 ubiquitin specific peptidase 26 

Usp28 235323 -1.92 -1.83 ubiquitin specific peptidase 28 

Utf1 22286 -4.39 -3.28 undifferentiated embryonic cell transcription factor 1 

Wdr31 71354 -1.29 -1.23 WD repeat domain 31 

Wfdc15a 68221 -1.04 -1.29 WAP four-disulfide core domain 15A 

Zbtb8a 73680 -2.44 -2.23 zinc finger and BTB domain containing 8a 

Zfp219 69890 -1.05 -1.49 zinc finger protein 219 

Zfp428 232969 -1.29 -1.41 zinc finger protein 428 

Zfp459 328274 -2.43 -1.65 zinc finger protein 459 

Zfp462 242466 -1.31 -1.58 zinc finger protein 462 

Zfp532 328977 -1.37 -1.66 zinc finger protein 532 

Zfp809 235047 -1.12 -1.09 zinc finger protein 809 

Zfp819 74400 -2.15 -2.25 zinc finger protein 819 

Zic3 22773 -1.61 -1.25 zinc finger protein of the cerebellum 3 

Zscan10 332221 -1.24 -1.17 zinc finger and SCAN domain containing 10 

Zyg11a 230590 -1.19 -1.94 zyg-11 homolog A (C. elegans) 

 

Concordantly upregulated genes in wt and TKO EBs between d0-4 

Gene symbol 
Entrez Gene 

ID 
Fold 

change wt 
Fold change 

TKO 
Gene name 

Itm2a 16431 1.37 1.77 integral membrane protein 2A 

Slit2 20563 1.72 1.24 slit homolog 2 (Drosophila) 

Itgb5 16419 1.05 1.07 integrin beta 5 

Cpm 70574 2.51 1.76 carboxypeptidase M 

 
Concordantly downregulated genes in wt and TKO EBs between d0-4 

Gene symbol 
Entrez Gene 

ID 
Fold 

change wt 
Fold change 

TKO 
Gene name 

4933437F05Rik 71275 -1.32 -1.05 RIKEN cDNA 4933437F05 gene 

Emp1 13730 -1.81 -2.04 epithelial membrane protein 1 

Mal2 105853 -1.15 1.62 mal, T-cell differentiation protein 2 

Sema3e 20349 -1.07 1.56 
sema domain, immunoglobulin domain (Ig), short basic domain, secreted, 
(semaphorin) 3E; hypothetical protein LOC100044162 

Slc25a31 73333 -1.53 1.12 
solute carrier family 25 (mitochondrial carrier; adenine nucleotide translocator), 
member 31 

Trh 22044 -1.15 1.19 thyrotropin releasing hormone 

Xrcc5 22596 -1.21 -1.17 X-ray repair complementing defective repair in Chinese hamster cells 5 

 

6.3 Differentially regulated genes during the second differentiation 

period (day 4 - 16) 

Unique upregulated genes in wt EBs d4-16 

Gene symbol 
Entrez Gene 

ID 

Fold change 
between 

d4_16 
Gene Name 

0610040J01Rik 76261 1 RIKEN cDNA 0610040J01 gene 

1110032A04Rik 66183 2.3 RIKEN cDNA 1110032A04 gene 

1200009O22Rik 66873 1.04 RIKEN cDNA 1200009O22 gene 
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1600012P17Rik 72025 2 RIKEN cDNA 1600012P17 gene 

1810010H24Rik 69066 1.52 RIKEN cDNA 1810010H24 gene 

2210407C18Rik 78354 2.06 RIKEN cDNA 2210407C18 gene 

2210415F13Rik 70163 3.28 RIKEN cDNA 2210415F13 gene 

2310043J07Rik 69665 2.16 RIKEN cDNA 2310043J07 gene 

2310067E19Rik 76455 1.39 RIKEN cDNA 2310067E19 gene 

2610203C20Rik 100042464 1.45 hypothetical protein LOC100042464 

2810055G20Rik 77994 1.485 RIKEN cDNA 2810055G20 gene 

3830417A13Rik 70696 2 RIKEN cDNA 3830417A13 gene 

4921506M07Rik 70846 1.36 RIKEN cDNA 4921506M07 gene 

4930402H24Rik 228602 1.31 RIKEN cDNA 4930402H24 gene 

4932442L08Rik 631145 1.15 similar to Putative uncharacterized protein CXorf58 

5330426P16Rik 68190 1.2 RIKEN cDNA 5330426P16 gene 

5430435G22Rik 226421 1.23 RIKEN cDNA 5430435G22 gene 

A630033H20Rik 213438 1.21 RIKEN cDNA A630033H20 gene 

A730069N07Rik 244425 1.14 RIKEN cDNA A730069N07 gene 

AA986860 212439 1.27 expressed sequence AA986860 

Aadac 67758 1.12 arylacetamide deacetylase (esterase) 

Abca5 217265 1.33 ATP-binding cassette, sub-family A (ABC1), member 5 

Abca8b 27404 1.44 ATP-binding cassette, sub-family A (ABC1), member 8b 

Abcc3 76408 1.38 ATP-binding cassette, sub-family C (CFTR/MRP), member 3 

Abcd1 11666 1.18 ATP-binding cassette, sub-family D (ALD), member 1 

Abcd3 19299 1.13 ATP-binding cassette, sub-family D (ALD), member 3 

Abhd2 54608 1.12 abhydrolase domain containing 2 

Abi3bp 320712 1.03 ABI gene family, member 3 (NESH) binding protein 

Acaa2 52538 1.24 acetyl-Coenzyme A acyltransferase 2 (mitochondrial 3-oxoacyl-Coenzyme A thiolase) 

Acadl 11363 1.07 acyl-Coenzyme A dehydrogenase, long-chain 

Acat1 110446 1.16 acetyl-Coenzyme A acetyltransferase 1 

Ace2 70008 2.79 angiotensin I converting enzyme (peptidyl-dipeptidase A) 2 

Acnat1 230161 1.38 
novel protein similar to bile acid-Coenzyme A: amino acid N-acyltransferase Baat; 
expressed sequence AI132189 

Acot2 171210 1.01 acyl-CoA thioesterase 2 

Acsl5 433256 1.4 acyl-CoA synthetase long-chain family member 5 

Acsm1 117147 1.04 acyl-CoA synthetase medium-chain family member 1 

Acsm3 20216 1.58 acyl-CoA synthetase medium-chain family member 3 

Acss1 68738 1.13 acyl-CoA synthetase short-chain family member 1 

Actg2 11468 2.38 actin, gamma 2, smooth muscle, enteric 

Actn2 11472 1.4 actinin alpha 2 

Adam10 11487 1.21 a disintegrin and metallopeptidase domain 10 

Adam12 11489 1.11 a disintegrin and metallopeptidase domain 12 (meltrin alpha) 

Adamdec1 58860 1.94 ADAM-like, decysin 1 

Adamts12 239337 1.3 
a disintegrin-like and metallopeptidase (reprolysin type) with thrombospondin type 1 motif, 
12 

Adamts5 23794 1.16 

similar to a disintegrin-like and metalloprotease (reprolysin type) with thrombospondin type 1 
motif, 5 (aggrecanase-2); a disintegrin-like and metallopeptidase (reprolysin type) with 
thrombospondin type 1 motif, 5 (aggrecanase-2) 

Adamtsl1 77739 1.2 ADAMTS-like 1 

Adcy7 11513 1.14 adenylate cyclase 7 

Aes 14797 1.85 amino-terminal enhancer of split 

Aff2 14266 1.04 AF4/FMR2 family, member 2 

Agt 11606 3.01 angiotensinogen (serpin peptidase inhibitor, clade A, member 8) 

Ahr 11622 1.65 aryl-hydrocarbon receptor 

AI607873 226691 1.05 expressed sequence AI607873 

AI747448 99709 2.2 expressed sequence AI747448 

Aifm2 71361 1.11 apoptosis-inducing factor, mitochondrion-associated 2 

Aim2 383619 1.19 absent in melanoma 2 

Ak5 229949 1.2 adenylate kinase 5 

Akr1c13 27384 1.36 aldo-keto reductase family 1, member C13 

Akr1c14 105387 2.95 aldo-keto reductase family 1, member C14 

Akt1 11651 1.14 thymoma viral proto-oncogene 1; similar to serine/threonine protein kinase 

Alcam 11658 3.64 activated leukocyte cell adhesion molecule 

Aldh1a1 11668 2.8 aldehyde dehydrogenase family 1, subfamily A1 
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Aldh1a2  19378 1.59 aldehyde dehydrogenase family 1, subfamily A2 

Aldh1a7 26358 4.23 aldehyde dehydrogenase family 1, subfamily A7 

Aldh1b1 72535 1.86 aldehyde dehydrogenase 1 family, member B1 

Aldh1l2 216188 1.85 aldehyde dehydrogenase 1 family, member L2 

Alox12 11684 1.02 arachidonate 12-lipoxygenase 

Anpep 16790 1.15 alanyl (membrane) aminopeptidase 

Antxr2 71914 1.2 anthrax toxin receptor 2 

Anxa10 26359 3.57 annexin A10 

Anxa11 11744 1 annexin A11; predicted gene 2260; predicted gene 2274 

Anxa13 69787 1.33 annexin A13 

Anxa3 11745 2.29 similar to Anxa3; annexin A3 

Anxa5 11747 1.76 annexin A5 

Anxa6 11749 1.02 annexin A6 

Anxa8 11752 1.1 annexin A8 

Apcs 20219 1.05 serum amyloid P-component 

Apobec1 11810 2.06 apolipoprotein B mRNA editing enzyme, catalytic polypeptide 1 

Apoc3 11814 1.34 apolipoprotein C-III 

Apoh 11818 2.54 apolipoprotein H 

Arap1 69710 1.08 ArfGAP with RhoGAP domain, ankyrin repeat and PH domain 1 

Arfgap3 66251 1.57 ADP-ribosylation factor GTPase activating protein 3 

Arg1 11846 1.46 arginase, liver 

Arhgap24 231532 1.12 Rho GTPase activating protein 24 

Arhgap31 12549 1.46 Rho GTPase activating protein 31; Synonyms  CdGAP, mKIAA1204  

Arhgdib 11857 1.44 Rho, GDP dissociation inhibitor (GDI) beta 

Arhgef10 234094 1.15 Rho guanine nucleotide exchange factor (GEF) 10 

Arrdc4 66412 1.455 arrestin domain containing 4 

Arsb 11881 1.05 arylsulfatase B 

Asb2 65256 1.22 ankyrin repeat and SOCS box-containing 2 

Aspa 11484 2.83 aspartoacylase 

Aspn 66695 1.35 asporin 

Atp2c2 69047 1.29 ATPase, Ca++ transporting, type 2C, member 2 

Atp6v0a4 140494 1.15 ATPase, H+ transporting, lysosomal V0 subunit A4 

Atp6v0d2 242341 1.21 ATPase, H+ transporting, lysosomal V0 subunit D2 

Atp9a 11981 1.37 ATPase, class II, type 9A 

AU018091 245128 1.93 expressed sequence AU018091 

Axl 26362 2.4 AXL receptor tyrosine kinase 

B130024G19Rik 434198 1.76 RIKEN cDNA B130024G19 gene 

B3gnt9 97440 1.67 UDP-GlcNAc:betaGal beta-1,3-N-acetylglucosaminyltransferase 9 

BB287469 544881 2.49 
predicted gene 6804; predicted gene 2046; predicted gene 8607; expressed sequence 
BB287469; predicted gene 2075; predicted gene 2022; predicted gene 4027 

Bcam 57278 1.42 basal cell adhesion molecule 

Bcl11a 14025 1.55 B-cell CLL/lymphoma 11A (zinc finger protein) 

Blvra 109778 1.5 biliverdin reductase A 

C1qa 12259 2.78 complement component 1, q subcomponent, alpha polypeptide 

C1qb 12260 3.13 complement component 1, q subcomponent, beta polypeptide 

C1qc 12262 3.31 complement component 1, q subcomponent, C chain 

C1qtnf6 72709 1.16 C1q and tumor necrosis factor related protein 6 

C1rb 667277 1.62 complement component 1, r subcomponent; predicted gene 8551 

C2 12263 1.1 complement component 2 (within H-2S) 

C630004H02Rik 217310 1.48 hypothetical protein LOC100043986; RIKEN cDNA C630004H02 gene 

Camk2n1 66259 1.15 calcium/calmodulin-dependent protein kinase II inhibitor 1 

Car8 12319 1.88 carbonic anhydrase 8; similar to Carbonic anhydrase-related protein (CARP) (CA-VIII) 

Casp12 12364 1.95 caspase 12; hypothetical protein LOC100044205 

Cav1 12389 1.43 caveolin 1, caveolae protein 

Cav2 12390 1.17 caveolin 2 

Cbr2 12409 1.41 carbonyl reductase 2 

Cbx4 12418 1.24 chromobox homolog 4 (Drosophila Pc class) 

Ccdc80 67896 2.6 coiled-coil domain containing 80 

Ccl12 20293 1.55 chemokine (C-C motif) ligand 12; similar to monocyte chemoattractant protein-5 

Ccl3 20302 4.87 chemokine (C-C motif) ligand 3 
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Ccl6 20305 1.04 chemokine (C-C motif) ligand 6 

Ccnd2 12444 1.34 cyclin D2 

Ccr5 12774 1.88 chemokine (C-C motif) receptor 5 

Cd14 12475 2.23 CD14 antigen 

Cd34 12490 2.95 CD34 antigen 

Cd36 12491 1.84 CD36 antigen 

Cd38 12494 1.11 CD38 antigen 

Cd47 16423 1.29 CD47 antigen (Rh-related antigen, integrin-associated signal transducer) 

Cd52 23833 1.69 CD52 antigen 

Cd53 12508 3.93 CD53 antigen 

Cd63 12512 1.08 CD63 antigen 

Cd72 12517 1.4 CD72 antigen 

Cd93 17064 2 CD93 antigen 

Cd97 26364 1.41 CD97 antigen 

Cdc42ep2 104252 1.18 CDC42 effector protein (Rho GTPase binding) 2 

Cdh1 12550 1.19 cadherin 1 

Cdh17 12557 1.08 cadherin 17 

Cdhr5  72040 2.56 cadherin-related family member 5; Synonyms  1810074H01Rik, Mucdhl, Mupcdh 

Cdkn1a 12575 1.89 cyclin-dependent kinase inhibitor 1A (P21) 

Cdkn2c 12580 1.04 cyclin-dependent kinase inhibitor 2C (p18, inhibits CDK4) 

Cds1 74596 1.06 CDP-diacylglycerol synthase 1 

Ceacam3 384557 1.33 
carcinoembryonic antigen-related cell adhesion molecule 3; similar to Carcinoembryonic 
antigen-related cell adhesion molecule 3 precursor (Carcinoembryonic antigen CGM1) 

Cebpa 12606 1.11 CCAAT/enhancer binding protein (C/EBP), alpha 

Ces3 104158 1.1 carboxylesterase 3 

Cfh 12628 2.74 complement component factor h; similar to complement component factor H 

Cftr 12638 1.64 cystic fibrosis transmembrane conductance regulator homolog 

Cgn 70737 1.04 cingulin; cDNA sequence BC021767 

Chchd10 103172 1.27 coiled-coil-helix-coiled-coil-helix domain containing 10 

Chrm2 243764 1.63 cholinergic receptor, muscarinic 2, cardiac 

Ckb 12709 1.61 similar to creatine kinase, brain; predicted gene 12892; creatine kinase, brain 

Ckmt1 12716 1.94 creatine kinase, mitochondrial 1, ubiquitous 

Clca1 12722 1.57 chloride channel calcium activated 1 

Clca2 80797 1.1 chloride channel calcium activated 2 

Clca3 23844 1.09 chloride channel calcium activated 3 

Cldn1 12737 1.46 claudin 1 

Cldn23 71908 1.3 claudin 23 

Cldn3 12739 1.53 claudin 3 

Cldn8 54420 1.5 claudin 8 

Clec2d 93694 1.67 C-type lectin domain family 2, member d 

Clec2h 94071 1.33 C-type lectin domain family 2, member h 

Clec4d 17474 1.85 C-type lectin domain family 4, member d 

Clec4n 56620 2.73 C-type lectin domain family 4, member n 

Clmn 94040 1.7 calmin 

Clrn3 212070 1.18 clarin 3 

Cltb 74325 1.72 clathrin, light polypeptide (Lcb) 

Cmtm8 70031 1.3 CKLF-like MARVEL transmembrane domain containing 8 

Col6a2 12834 1.88 collagen, type VI, alpha 2 

Colec10 239447 1.15 collectin sub-family member 10 

Copz2 56358 1.56 coatomer protein complex, subunit zeta 2 

Coro2a 107684 1.06 coronin, actin binding protein 2A 

Cps1 227231 2.02 carbamoyl-phosphate synthetase 1 

Cpt1a 12894 3.04 carnitine palmitoyltransferase 1a, liver 

Creb3 12913 1.08 cAMP responsive element binding protein 3 

Crp 12944 2.85 C-reactive protein, pentraxin-related 

Csf2rb 12983 1.02 colony stimulating factor 2 receptor, beta, low-affinity (granulocyte-macrophage) 

Csrp3 13009 1.55 cysteine and glycine-rich protein 3 

Ctgf 14219 2.13 connective tissue growth factor 

Ctsd 13033 1.16 cathepsin D 

Ctse 13034 1.91 cathepsin E 
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Ctsr 56835 1.48 cathepsin R 

Ctss 13040 4.28 cathepsin S 

Cx3cr1 13051 1.49 similar to chemokine receptor CX3CR1; chemokine (C-X3-C) receptor 1 

Cxcl16 66102 1.24 chemokine (C-X-C motif) ligand 16 

Cyba 13057 1.01 cytochrome b-245, alpha polypeptide 

Cybb 13058 2.71 cytochrome b-245, beta polypeptide 

Cym 229697 6.57 similar to prochymosin; chymosin 

Cyp2c40 13099 1.53 

cytochrome P450, family 2, subfamily c, polypeptide 40; similar to RIKEN cDNA 
C730004C24 gene; cytochrome P450, family 2, subfamily c, polypeptide 69; cytochrome 
P450, family 2, subfamily c, polypeptide 67 

Cyp2c55 72082 2.2 cytochrome P450, family 2, subfamily c, polypeptide 55 

Cyp2c67 545288 1.09 

cytochrome P450, family 2, subfamily c, polypeptide 40; similar to RIKEN cDNA 
C730004C24 gene; cytochrome P450, family 2, subfamily c, polypeptide 69; cytochrome 
P450, family 2, subfamily c, polypeptide 67 

Cyp2c68 433247 1.24 cytochrome P450, family 2, subfamily c, polypeptide 68 

Cyp2c70 226105 1.79 cytochrome P450, family 2, subfamily c, polypeptide 70 

Cyp2d26 76279 1.41 cytochrome P450, family 2, subfamily d, polypeptide 26 

Cyp2f2 13107 3.23 cytochrome P450, family 2, subfamily f, polypeptide 2 

Cyp2s1 74134 1.39 cytochrome P450, family 2, subfamily s, polypeptide 1 

Cyp4a12b 13118 1.11 cytochrome P450, family 4, subfamily a, polypeptide 12B 

Cyp4v3 102294 1.01 cytochrome P450, family 4, subfamily v, polypeptide 3 

Cyth4 72318 1.05 cytohesin 4 

D4Bwg0951e 52829 2.99 DNA segment, Chr 4, Brigham & Women's Genetics 0951 expressed 

Dapp1 26377 1.31 dual adaptor for phosphotyrosine and 3-phosphoinositides 1 

Dazap2 23994 1.07 similar to DAZ associated protein 2; predicted gene 2444; DAZ associated protein 2 

Dcdc2a 195208 1.07 doublecortin domain containing 2a 

Ddx60 234311 2.33 DEAD (Asp-Glu-Ala-Asp) box polypeptide 60 

Degs2 70059 1.2 degenerative spermatocyte homolog 2 (Drosophila), lipid desaturase 

Des 13346 1.31 desmin 

Dkk2 56811 2.78 dickkopf homolog 2 (Xenopus laevis) 

Dmbt1 12945 1.53 deleted in malignant brain tumors 1 

Dmrtc1c 71083 1.11 DMRT-like family C1c2; DMRT-like family C1c 

Dnajb4 67035 1.25 DnaJ (Hsp40) homolog, subfamily B, member 4 

Dnm1 13429 1.01 dynamin 1 

Dock8 76088 1.23 dedicator of cytokinesis 8 

Doxl2 243376 1.09 diamine oxidase-like protein 2 

Dpt 56429 1.08 dermatopontin 

Dsg2 13511 1.29 desmoglein 2; similar to Dsg2 protein 

Dtx4 207521 1.31 deltex 4 homolog (Drosophila) 

Dusp1 19252 1.03 dual specificity phosphatase 1 

Dynlt3 67117 1.08 dynein light chain Tctex-type 3 

Ech1 51798 1.09 enoyl coenzyme A hydratase 1, peroxisomal 

Efhd2 27984 1.24 similar to EF hand domain containing 2; EF hand domain containing 2 

Egfr 13649 1.93 epidermal growth factor receptor 

Ehd2 259300 1.41 EH-domain containing 2 

Ehf 13661 1.96 ets homologous factor 

Ehhadh 74147 1.19 enoyl-Coenzyme A, hydratase/3-hydroxyacyl Coenzyme A dehydrogenase 

Eid1 58521 1.1 EP300 interacting inhibitor of differentiation 1 

Eif2ak3 13666 1.02 eukaryotic translation initiation factor 2 alpha kinase 3 

Elf3 13710 1.34 E74-like factor 3 

Elmo3 234683 1.09 engulfment and cell motility 3, ced-12 homolog (C. elegans) 

Eltd1 170757 1.98 EGF, latrophilin seven transmembrane domain containing 1 

Emcn 59308 2.59 endomucin 

Emilin1 100952 1.8 elastin microfibril interfacer 1 

Emp3 13732 1.41 epithelial membrane protein 3 

Emr1 13733 2.11 EGF-like module containing, mucin-like, hormone receptor-like sequence 1 

Enpp4 224794 1.03 ectonucleotide pyrophosphatase/phosphodiesterase 4 

Entpd4 67464 1.03 ectonucleoside triphosphate diphosphohydrolase 4 

Epha3 13837 2.99 Eph receptor A3 

Epha7 13841 1.95 Eph receptor A7 

Epn3 71889 1.45 epsin 3 



  Appendix 
 

197 
 

Erbb2ip 59079 1.12 Erbb2 interacting protein 

Erbb3 13867 1.6 v-erb-b2 erythroblastic leukemia viral oncogene homolog 3 (avian) 

Esm1 71690 1.29 endothelial cell-specific molecule 1 

Esrp2 77411 2.03 epithelial splicing regulatory protein 2 

Exph5 320051 1.17 exophilin 5 

F10 14058 1.24 coagulation factor X 

F13a1 74145 4.54 coagulation factor XIII, A1 subunit 

Fabp2 14079 1.31 fatty acid binding protein 2, intestinal 

Fabp4 11770 1.51 fatty acid binding protein 4, adipocyte 

Fam101b 76566 1.34 family with sequence similarity 101, member B 

Fam174b 100038347 1.57 family with sequence similarity 174, member B 

Fam20c 80752 1.1 family with sequence similarity 20, member C 

Fam70a 245386 1.98 family with sequence similarity 70, member A 

Fam84a 105005 1.24 family with sequence similarity 84, member A 

Fas 14102 1.37 Fas (TNF receptor superfamily member 6) 

Fat4 329628 1.89 FAT tumor suppressor homolog 4 (Drosophila) 

Fbp1 14121 1.94 fructose bisphosphatase 1 

Fbxo32 67731 1.56 F-box protein 32 

Fcer1g 14127 2.59 Fc receptor, IgE, high affinity I, gamma polypeptide 

Fcgr2b 14130 1 Fc receptor, IgG, low affinity IIb 

Fdx1 14148 1.05 ferredoxin 1 

Fermt1 241639 1.32 fermitin family homolog 1 (Drosophila) 

Fetub 59083 1.44 fetuin beta 

Fgd3 30938 1.38 FYVE, RhoGEF and PH domain containing 3 

Fgfr3 14184 1.75 fibroblast growth factor receptor 3 

Fgl1 234199 1.46 fibrinogen-like protein 1 

Figf 14205 1.52 c-fos induced growth factor 

Fkbp7 14231 1.43 FK506 binding protein 7 

Fosl2 14284 1.14 similar to fos-like antigen 2; fos-like antigen 2 

Foxa1 15375 1.62 
forkhead box A1; similar to Hepatocyte nuclear factor 3-alpha (HNF-3A) (Forkhead box 
protein A1) 

Foxo1 56458 1.07 forkhead box O1 

Foxq1 15220 1.37 forkhead box Q1 

Fras1 231470 1.72 Fraser syndrome 1 homolog (human) 

Frem1 329872 1.78 Fras1 related extracellular matrix protein 1 

Frem2 242022 1.1 Fras1 related extracellular matrix protein 2 

Frk 14302 2.03 fyn-related kinase 

Fry 320365 1.19 furry homolog (Drosophila) 

Fstl1 14314 1.22 follistatin-like 1 

Fxyd5 18301 2.17 FXYD domain-containing ion transport regulator 5 

Fzd1 14362 1.45 frizzled homolog 1 (Drosophila) 

G0s2 14373 1.26 G0/G1 switch gene 2 

Gab2 14389 1.02 growth factor receptor bound protein 2-associated protein 2 

Gabrp 216643 2.44 gamma-aminobutyric acid (GABA) A receptor, pi 

Gadd45b 17873 2.07 growth arrest and DNA-damage-inducible 45 beta 

Galnt4 14426 1.12 UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 4 

Gap43 14432 1.09 growth associated protein 43 

Gatm 67092 1.12 glycine amidinotransferase (L-arginine:glycine amidinotransferase) 

Gca 227960 1.1 grancalcin 

Gcnt3 72077 1.17 glucosaminyl (N-acetyl) transferase 3, mucin type 

Gda 14544 1.14 guanine deaminase 

Gfra1 14585 1.27 glial cell line derived neurotrophic factor family receptor alpha 1 

Ghr 14600 2.01 growth hormone receptor 

Gjb1 14618 1.44 gap junction protein, beta 1 

Glcci1 170772 1.08 
similar to glucocorticoid induced transcript 1; predicted gene 5815; glucocorticoid induced 
transcript 1 

Glrx 93692 1.45 glutaredoxin 

Gm10639 100042314 2.99 predicted gene 10639 

Gm4340 100043292 2.42 predicted gene 4340 

Gm52 214292 1.72 predicted gene 52 

Gm648 270599 1.56 predicted gene 648 
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Gm885 380732 2.25 predicted gene 885 

Gp49a 14727 3.65 glycoprotein 49 A; leukocyte immunoglobulin-like receptor, subfamily B, member 4 

Gpbar1 227289 1.21 G protein-coupled bile acid receptor 1 

Gpm6b 14758 1.2 glycoprotein m6b 

Gpr97 54672 1.16 G protein-coupled receptor 97 

Gpx2 14776 1.61 glutathione peroxidase 2 

Gria3 53623 1.65 glutamate receptor, ionotropic, AMPA3 (alpha 3) 

Grtp1 66790 1.04 GH regulated TBC protein 1 

Gsdmc2 331063 2.45 gasdermin C2 

Gsdmc3 270328 2.61 gasdermin C3 

Gsta2 14858 3.04 glutathione S-transferase, alpha 2 (Yc2) 

Gsta4 14860 1.33 glutathione S-transferase, alpha 4 

Gstm2 14863 1.36 predicted gene 6665; glutathione S-transferase, mu 2 

Gsto1 14873 1.47 glutathione S-transferase omega 1 

Gucy1a3 60596 1.74 guanylate cyclase 1, soluble, alpha 3 

Gucy1b3 54195 1.57 guanylate cyclase 1, soluble, beta 3 

H2-D1 14964 1.15 histocompatibility 2, D region; histocompatibility 2, D region locus 1 

Hc 15139 1 hemolytic complement 

Hcfc2 67933 1.37 host cell factor C2 

Hcls1 15163 1.26 hematopoietic cell specific Lyn substrate 1 

Heg1 77446 1.12 HEG homolog 1 (zebrafish) 

Heph 15203 1.06 hephaestin 

Herpud1 64209 1.36 
homocysteine-inducible, endoplasmic reticulum stress-inducible, ubiquitin-like domain 
member 1 

Hgd 15233 1.04 homogentisate 1, 2-dioxygenase 

Hic1 15248 1.11 hypermethylated in cancer 1 

Hif3a 53417 1.27 hypoxia inducible factor 3, alpha subunit 

Hipk3 15259 1.23 
homeodomain interacting protein kinase 3; similar to homeodomain interacting protein 
kinase 3 

Hist1h1c 50708 1.31 histone cluster 1, H1c 

Hist1h2bc 68024 2.06 
histone cluster 1, H2bg; histone cluster 1, H2be; histone cluster 2, H2bb; histone cluster 1, 
H2bc 

Hk1 15275 1.18 hexokinase 1 

Hmgcs2 15360 3.55 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 2 

Hpgds 54486 1.48 prostaglandin D2 synthase 2, hematopoietic 

Hpse 15442 1.7 heparanase 

Hs6st1 50785 1.18 heparan sulfate 6-O-sulfotransferase 1 

Hsd17b13 243168 2.79 hydroxysteroid (17-beta) dehydrogenase 13 

Hsd3b2 15493 1.37 hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 2 

Hspa1a 193740 1.115 heat shock protein 1B; heat shock protein 1A; heat shock protein 1-like 

Hspb1 15507 1.435 heat shock protein 1 

Hspb8 80888 1.08 heat shock protein 8 

Htra1 56213 1.57 HtrA serine peptidase 1 

Idh2 269951 1.12 isocitrate dehydrogenase 2 (NADP+), mitochondrial 

Ifi202b 26388 2.16 interferon activated gene 202B 

Ifi204 15951 1.76 interferon activated gene 204 

Ifi27l2a 76933 1.05 interferon, alpha-inducible protein 27 like 2A 

Ifi47 15953 1.12 interferon gamma inducible protein 47 

Ifih1 71586 1.46 interferon induced with helicase C domain 1 

Ifit2 15958 1.31 interferon-induced protein with tetratricopeptide repeats 2 

Ifitm3 66141 1.85 interferon induced transmembrane protein 3 

Ifngr1 15979 1.4 interferon gamma receptor 1 

Ifngr2 15980 1.08 interferon gamma receptor 2 

Igf1 16000 2.42 insulin-like growth factor 1 

Igfbp2 16008 1.29 insulin-like growth factor binding protein 2 

Igsf5 72058 1.16 Purkinje cell protein 4; immunoglobulin superfamily, member 5 

Iigp1 60440 1.38 interferon inducible GTPase 1; interferon-inducible GTPase-like 

Il13ra1 16164 2.15 interleukin 13 receptor, alpha 1 

Il2rg 16186 1.6 predicted gene 614; interleukin 2 receptor, gamma chain 

Il33 77125 1.37 interleukin 33 

Il4ra 16190 1.4 interleukin 4 receptor, alpha 
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Inhba 16323 1.43 inhibin beta-A 

Irf2bp2 270110 1.37 interferon regulatory factor 2 binding protein 2 

Irf8 15900 1.42 interferon regulatory factor 8 

Isg20 57444 1.27 interferon-stimulated protein 

Itga1 109700 1.43 integrin alpha 1 

Itga8 241226 1.18 integrin alpha 8 

Itgam 16409 1.53 integrin alpha M 

Itgb2 16414 1.13 integrin beta 2 

Itgb4 192897 1.24 integrin beta 4 

Itgb6 16420 2.03 integrin beta 6 

Itgb8 320910 1.07 integrin beta 8 

Itih3 16426 1.72 inter-alpha trypsin inhibitor, heavy chain 3 

Itih4 16427 2.05 inter alpha-trypsin inhibitor, heavy chain 4 

Itm2a 16431 2.55 integral membrane protein 2A 

Itpkb 320404 1.2 inositol 1,4,5-trisphosphate 3-kinase B 

Jag1 16449 1 jagged 1 

Jund 16478 1.16 Jun proto-oncogene related gene d 

Jup 16480 1.27 junction plakoglobin 

Kcne3 57442 1.46 
potassium voltage-gated channel, Isk-related subfamily, gene 3; hypothetical protein 
LOC100044693 

Kcne4 57814 1.59 potassium voltage-gated channel, Isk-related subfamily, gene 4 

Kcnj2 16518 2.08 potassium inwardly-rectifying channel, subfamily J, member 2 

Klf3 16599 1.15 Kruppel-like factor 3 (basic); similar to BKLF 

Klf5 12224 2.07 Kruppel-like factor 5 

Klhl13 67455 1.7 kelch-like 13 (Drosophila) 

Kng2 385643 2.14 kininogen 2 

Krt15 16665 4.19 keratin 15 

Krt4 16682 3.5 keratin 4 

Krt5 110308 2.86 keratin 5 

Kynu 70789 1.94 kynureninase (L-kynurenine hydrolase) 

Lama2 16773 1.1 laminin, alpha 2 

Lama5 16776 1.38 laminin, alpha 5 

Lamb3 16780 1.12 laminin, beta 3 

Laptm5 16792 2.45 lysosomal-associated protein transmembrane 5 

Lass3 545975 2.06 LAG1 homolog, ceramide synthase 3 

Lbh 77889 1.88 limb-bud and heart 

Ldb2 16826 1.17 LIM domain binding 2 

Lepr 16847 1.17 leptin receptor 

Lgals4 16855 3.9 
lectin, galactose binding, soluble 6; hypothetical protein LOC100044254; lectin, galactose 
binding, soluble 4 

Lgals8 56048 1.36 lectin, galactose binding, soluble 8 

Lgi2 246316 1.46 leucine-rich repeat LGI family, member 2 

Lgr4 107515 1.06 leucine-rich repeat-containing G protein-coupled receptor 4 

Lilrb4 14728 2.86 glycoprotein 49 A; leukocyte immunoglobulin-like receptor, subfamily B, member 4 

Limk2 16886 1.06 LIM motif-containing protein kinase 2 

Lims2 225341 1.47 LIM and senescent cell antigen like domains 2 

Lmna 16905 1.11 lamin A 

Lmo7 380928 1.35 LIM domain only 7 

Lonrf3 74365 1.7 LON peptidase N-terminal domain and ring finger 3 

Loxl1 16949 1.52 lysyl oxidase-like 1 

Lphn3 319387 1.13 latrophilin 3 

Lpin2 64898 1.12 lipin 2 

Lrig1 16206 1.36 leucine-rich repeats and immunoglobulin-like domains 1 

Lrrc17 74511 2.23 leucine rich repeat containing 17 

Lrrc32 434215 1.03 leucine rich repeat containing 32 

Lsp1 16985 1.28 lymphocyte specific 1 

Ltbp4 108075 1.29 latent transforming growth factor beta binding protein 4 

Ly86 17084 1.6 lymphocyte antigen 86 

Ly96 17087 1.43 lymphocyte antigen 96 

Lyn 17096 1.55 Yamaguchi sarcoma viral (v-yes-1) oncogene homolog 

Lypd6b 71897 1.66 LY6/PLAUR domain containing 6B 
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Lyve1 114332 1.39 lymphatic vessel endothelial hyaluronan receptor 1 

Macc1 238455 1.71 metastasis associated in colon cancer 1 

Mageb16 71967 1.3 predicted gene 15072; RIKEN cDNA 2410003J06 gene 

Mal 17153 2.37 myelin and lymphocyte protein, T-cell differentiation protein 

Mal2 105853 3.45 mal, T-cell differentiation protein 2 

Mamdc4 381352 1.49 MAM domain containing 4 

Mapk13 26415 1.21 mitogen-activated protein kinase 13 

Masp1 17174 1.35 mannan-binding lectin serine peptidase 1 

Mat1a 11720 1.76 methionine adenosyltransferase I, alpha 

Mbnl1 56758 2.5 muscleblind-like 1 (Drosophila) 

Mbnl3 171170 2.34 muscleblind-like 3 (Drosophila) 

Mcam 84004 1.38 melanoma cell adhesion molecule 

Mecom 14013 2.76 ecotropic viral integration site 1 

Mef2c 17260 1.69 myocyte enhancer factor 2C 

Meg3 17263 1.26 maternally expressed 3 

Meis1 17268 2.9 Meis homeobox 1 

Meis2 17536 2.12 Meis homeobox 2 

Met 17295 1.42 met proto-oncogene 

Mfap2 17150 1.58 microfibrillar-associated protein 2 

Mfap4 76293 1.58 microfibrillar-associated protein 4 

Mfi2 30060 1.02 antigen p97 (melanoma associated) identified by monoclonal antibodies 133.2 and 96.5 

Mfsd6 98682 1.2 major facilitator superfamily domain containing 6 

Mgll 23945 1.89 monoglyceride lipase 

Mmaa 109136 1.05 methylmalonic aciduria (cobalamin deficiency) type A 

Mmp12 17381 3.41 matrix metallopeptidase 12 

Mmp14 17387 1.1 matrix metallopeptidase 14 (membrane-inserted) 

Mmp16 17389 1.25 matrix metallopeptidase 16 

Mmp19 58223 1.07 matrix metallopeptidase 19 

Mmp2 17390 1.11 matrix metallopeptidase 2 

Mpeg1 17476 3.68 macrophage expressed gene 1 

Mpp1 17524 1.14 membrane protein, palmitoylated 

Mr1 15064 2.17 major histocompatibility complex, class I-related 

Mrc1 17533 1.83 mannose receptor, C type 1 

Ms4a4a 666907 2.07 membrane-spanning 4-domains, subfamily A, member 4A 

Ms4a6b 69774 1.54 membrane-spanning 4-domains, subfamily A, member 6B 

Ms4a6c 73656 1.71 membrane-spanning 4-domains, subfamily A, member 6C 

Ms4a6d 68774 2.04 membrane-spanning 4-domains, subfamily A, member 6D 

Msln 56047 2.51 mesothelin 

Msr1 20288 2.1 macrophage scavenger receptor 1 

Mt1 17748 2.27 metallothionein 1 

Mt2 17750 2.19 metallothionein 2 

Muc4 140474 1.02 mucin 4 

Myh14 71960 1.03 myosin, heavy polypeptide 14 

Myl2 17906 1.64 myosin, light polypeptide 2, regulatory, cardiac, slow 

Myl9 98932 2.26 myosin, light polypeptide 9, regulatory 

Myo15b 217328 1.63 myosin XVB 

Myo16 244281 1.96 myosin XVI 

Myo1c 17913 1.07 similar to nuclear myosin I beta; myosin IC 

Myo1f 17916 1.07 myosin IF 

Naaladl2 635702 1.43 N-acetylated alpha-linked acidic dipeptidase-like 2 

Naga 17939 1.13 N-acetyl galactosaminidase, alpha 

Naglu 27419 1.07 alpha-N-acetylglucosaminidase (Sanfilippo disease IIIB) 

Ncam1 17967 1.52 neural cell adhesion molecule 1 

Ncf1 17969 1.19 neutrophil cytosolic factor 1 

Nckap1l 105855 2.63 NCK associated protein 1 like 

Ndrg2 29811 1.58 N-myc downstream regulated gene 2 

Nell1 338352 1.41 NEL-like 1 (chicken) 

Neurl3 214854 1.13 neuralized homolog 3 homolog (Drosophila) 

Nexn 68810 1.32 nexilin 
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Nfia 18027 1.875 nuclear factor I/A 

Nfix 18032 1.89 nuclear factor I/X 

Nfkbiz 80859 1.32 nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, zeta 

Ngly1 59007 1.01 N-glycanase 1 

Nipal2 223473 1.14 NIPA-like domain containing 2 

Nnat 18111 1.1 neuronatin 

Nos2 18126 1.14 nitric oxide synthase 2, inducible 

Nov 18133 1.02 nephroblastoma overexpressed gene 

Npnt 114249 1.45 nephronectin 

Nppa 230899 1.07 natriuretic peptide precursor type A 

Npy1r 18166 1.02 neuropeptide Y receptor Y1 

Nr1h4 20186 1.05 nuclear receptor subfamily 1, group H, member 4 

Nr2f1 13865 1.45 nuclear receptor subfamily 2, group F, member 1 

Nr3c1 14815 1.7 nuclear receptor subfamily 3, group C, member 1 

Nupr1 56312 1.55 nuclear protein 1 

Oas1g 23960 1.81 2'-5' oligoadenylate synthetase 1G 

Oasl2 23962 1.47 2'-5' oligoadenylate synthetase-like 2 

Ociad2 433904 1.07 OCIA domain containing 2 

Ogn 18295 3.22 osteoglycin 

Olfm4 380924 1.85 olfactomedin 4 

Olr1 108078 1.24 oxidized low density lipoprotein (lectin-like) receptor 1 

Onecut1 15379 1.915 one cut domain, family member 1 

Os9 216440 1.3 amplified in osteosarcoma 

Osr1 23967 1.08 odd-skipped related 1 (Drosophila) 

Ostf1 20409 1.12 osteoclast stimulating factor 1 

Pah 18478 1.34 phenylalanine hydroxylase 

Pappa 18491 1.36 pregnancy-associated plasma protein A 

Pappa2 23850 1.793333333 pappalysin 2 

Paqr9 75552 1.22 progestin and adipoQ receptor family member IX 

Parp14 547253 1.47 poly (ADP-ribose) polymerase family, member 14 

Parva 57342 1.88 parvin, alpha 

Pcdh11x 245578 1.52 protocadherin 11 X-linked 

Pcdh18 73173 1.28 protocadherin 18 

Pcdh9 211712 1.56 protocadherin 9 

Pcdhb11 93882 1.6 protocadherin beta 11 

Pcdhb16 93887 2 protocadherin beta 16 

Pcdhb17 93888 1.42 protocadherin beta 17 

Pcdhb18 93889 1.16 protocadherin beta 18 

Pcdhb19 93890 1.41 protocadherin beta 19 

Pcdhb20 93891 1.06 protocadherin beta 20 

Pcolce 18542 3.1 procollagen C-endopeptidase enhancer protein 

Pde1a 18573 1.76 phosphodiesterase 1A, calmodulin-dependent 

Pdgfc 54635 1.88 platelet-derived growth factor, C polypeptide 

Pdk2 18604 1.11 pyruvate dehydrogenase kinase, isoenzyme 2 

Pdzk1ip1 67182 1.32 PDZK1 interacting protein 1 

Pgf 18654 1.95 placental growth factor 

Phactr2 215789 1.12 phosphatase and actin regulator 2 

Phyhd1 227696 1.02 phytanoyl-CoA dioxygenase domain containing 1 

Pik3ap1 83490 1.33 phosphoinositide-3-kinase adaptor protein 1 

Pik3r1 18708 1.38 phosphatidylinositol 3-kinase, regulatory subunit, polypeptide 1 (p85 alpha) 

Pkhd1 241035 1.27 polycystic kidney and hepatic disease 1 

Pla2g7 27226 1.02 phospholipase A2, group VII (platelet-activating factor acetylhydrolase, plasma) 

Plaur 18793 1.89 plasminogen activator, urokinase receptor 

Plbd1 66857 1.46 phospholipase B domain containing 1; similar to RIKEN cDNA 1100001H23 gene 

Plcd1 18799 1.16 phospholipase C, delta 1 

Plk2 20620 1.3 polo-like kinase 2 (Drosophila) 

Pllp 67801 1.02 plasma membrane proteolipid 

Plod1 18822 1.08 procollagen-lysine, 2-oxoglutarate 5-dioxygenase 1 

Pltp 18830 1.53 phospholipid transfer protein 
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Plxnb2 140570 1.33 plexin B2 

Plxnc1 54712 1.16 plexin C1; similar to plexin C1 

Pmepa1 65112 1.63 
prostate transmembrane protein, androgen induced 1; similar to Nedd4 WW binding protein 
4 

Pof1b 69693 1.79 premature ovarian failure 1B 

Pold4 69745 1.12 polymerase (DNA-directed), delta 4 

Pon2 330260 1.09 paraoxonase 2 

Ppap2a 19012 1.47 phosphatidic acid phosphatase type 2A 

Ppargc1a 19017 1.78 peroxisome proliferative activated receptor, gamma, coactivator 1 alpha 

Ppl 19041 1.1 periplakin 

Ppm1k 243382 1.27 protein phosphatase 1K (PP2C domain containing) 

Ppp2r2b 72930 1.87 protein phosphatase 2 (formerly 2A), regulatory subunit B (PR 52), beta isoform 

Ppp2r3a 235542 1.21 
protein phosphatase 2 (formerly 2A), regulatory subunit B'', alpha; RIKEN cDNA 
3222402P14 gene 

Pramef12 77632 2.48 PRAME family member 12 

Prdm16 70673 1.09 PR domain containing 16 

Prelp 116847 1.19 proline arginine-rich end leucine-rich repeat 

Prkcdbp 109042 1.52 protein kinase C, delta binding protein 

Prkch 18755 1.7 protein kinase C, eta 

Prkg1 19091 1.49 protein kinase, cGMP-dependent, type I 

Prnp 19122 1.81 prion protein 

Prrx1 18933 1.02 paired related homeobox 1 

Prss23 76453 1.51 protease, serine, 23 

Psca 72373 2.23 prostate stem cell antigen 

Psd3 234353 1.17 pleckstrin and Sec7 domain containing 3 

Psg27 545925 1.08 pregnancy-specific glycoprotein 27 

Psg28 114871 1.17 pregnancy-specific glycoprotein 28 

Ptger3 19218 1.22 prostaglandin E receptor 3 (subtype EP3) 

Ptgs1 19224 1.62 prostaglandin-endoperoxide synthase 1 

Ptk2b 19229 1.12 PTK2 protein tyrosine kinase 2 beta 

Ptp4a3 19245 1.11 protein tyrosine phosphatase 4a3 

Ptprc 19264 1.51 protein tyrosine phosphatase, receptor type, C 

Ptprj 19271 1.055 protein tyrosine phosphatase, receptor type, J; predicted gene 13768; predicted gene 13767 

Ptrf 19285 1.65 polymerase I and transcript release factor 

Pvrl4 71740 1.1 poliovirus receptor-related 4 

Pygb 110078 1.23 brain glycogen phosphorylase 

Pygl 110095 1.24 liver glycogen phosphorylase 

Pzp 11287 3.28 pregnancy zone protein 

Rab25 53868 1.49 RAB25, member RAS oncogene family 

Rab27b 80718 1.97 RAB27b, member RAS oncogene family 

Rab3d 19340 1.02 RAB3D, member RAS oncogene family 

Rarb 218772 2.76 retinoic acid receptor, beta 

Rarres2 71660 1.51 retinoic acid receptor responder (tazarotene induced) 2 

Rasd1 19416 1.01 RAS, dexamethasone-induced 1 

Rasgef1b 320292 1.38 RasGEF domain family, member 1B; hypothetical protein LOC100044232 

Rasl11b 68939 1.51 RAS-like, family 11, member B 

Rassf8 71323 1.02 Ras association (RalGDS/AF-6) domain family (N-terminal) member 8 

Rassf9 237504 2.52 Ras association (RalGDS/AF-6) domain family (N-terminal) member 9 

Rbp1 19659 1.61 retinol binding protein 1, cellular 

Rbp2 19660 1.68 retinol binding protein 2, cellular 

Rcn3 52377 1.15 reticulocalbin 3, EF-hand calcium binding domain 

Rerg 232441 1.42 RAS-like, estrogen-regulated, growth-inhibitor 

Rgn 19733 1.18 regucalcin 

Rgs2 19735 1.41 regulator of G-protein signaling 2 

Rhox12 382282 1.15 reproductive homeobox 12 

Rnf125 67664 1.27 ring finger protein 125 

Rnf213 672511 1.445 ring finger protein 213 

Rtl1 353326 1.23 retrotransposon-like 1; RIKEN cDNA 6430411K18 gene 

S100a11 20195 1.34 predicted gene 7665; S100 calcium binding protein A11 (calgizzarin); predicted gene 5068 

S100a14 66166 1.46 S100 calcium binding protein A14 

S100a16 67860 1.46 S100 calcium binding protein A16 
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S100a6 20200 2.64 S100 calcium binding protein A6 (calcyclin) 

S1pr1 13609 1.04 sphingosine-1-phosphate receptor 1 

Samd5 320825 1.1 sterile alpha motif domain containing 5 

Sardh 192166 1.07 sarcosine dehydrogenase 

Sat1 20229 1.09 
similar to spermidine/spermine N1-acetyltransferase; predicted gene 5552; 
spermidine/spermine N1-acetyl transferase 1 

Scarb2 12492 1.28 scavenger receptor class B, member 2 

Scel 64929 1.45 sciellin 

Scrn1 69938 1.13 secernin 1 

Selenbp2 20342 1.18 selenium binding protein 2 

Sema3a  20346 1.99 sema domain, immunoglobulin domain (Ig), short basic domain, secreted, (semaphorin) 3A 

Sema3c 20348 4.86 sema domain, immunoglobulin domain (Ig), short basic domain, secreted, (semaphorin) 3C 

Sema3d 108151 1.12 
sema domain, immunoglobulin domain (Ig), short basic domain, secreted, (semaphorin) 3D; 
hypothetical protein LOC100044160 

Sema4d 20354 1.19 
sema domain, immunoglobulin domain (Ig), transmembrane domain (TM) and short 
cytoplasmic domain, (semaphorin) 4D 

Sept4 18952 1.35 septin 4 

Serinc2 230779 1.52 serine incorporator 2; hypothetical protein LOC100044221 

Serpina10 217847 1.15 
serine (or cysteine) peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), member 
10 

Serpina1c 20702 3.95 serine (or cysteine) peptidase inhibitor, clade A, member 1C 

Serpinb1a 66222 1.56 serine (or cysteine) peptidase inhibitor, clade B, member 1a 

Serpinb6b 20708 2.47 serine (or cysteine) peptidase inhibitor, clade B, member 6b 

Serpinb8 20725 1.04 serine (or cysteine) peptidase inhibitor, clade B, member 8 

Serpinb9b 20706 2.32 serine (or cysteine) peptidase inhibitor, clade B, member 9b 

Serpinc1 11905 1.18 serine (or cysteine) peptidase inhibitor, clade C (antithrombin), member 1 

Serpine2 20720 1.43 serine (or cysteine) peptidase inhibitor, clade E, member 2 

Serpinf1 20317 2.14 serine (or cysteine) peptidase inhibitor, clade F, member 1 

Sfrp1 20377 2.74 secreted frizzled-related protein 1 

Sfrp2 20319 1.56 secreted frizzled-related protein 2 

Sgce 20392 1.13 sarcoglycan, epsilon 

Shisa3 330096 1.12 shisa homolog 3 (Xenopus laevis) 

Shisa5 66940 1.31 shisa homolog 5 (Xenopus laevis) 

Slc14a1 108052 1.24 solute carrier family 14 (urea transporter), member 1 

Slc15a3 65221 1.94 solute carrier family 15, member 3 

Slc16a7 20503 1.53 solute carrier family 16 (monocarboxylic acid transporters), member 7 

Slc17a5 235504 1.03 solute carrier family 17 (anion/sugar transporter), member 5 

Slc25a12 78830 1.37 solute carrier family 25 (mitochondrial carrier, Aralar), member 12 

Slc26a7 208890 1 solute carrier family 26, member 7 

Slc2a2 20526 1.75 solute carrier family 2 (facilitated glucose transporter), member 2 

Slc35f5 74150 1.36 solute carrier family 35, member F5 

Slc36a4 234967 1.18 solute carrier family 36 (proton/amino acid symporter), member 4 

Slc37a2 56857 1.37 solute carrier family 37 (glycerol-3-phosphate transporter), member 2 

Slc6a14 56774 1.15 solute carrier family 6 (neurotransmitter transporter), member 14 

Slc6a2 20538 1.42 solute carrier family 6 (neurotransmitter transporter, noradrenalin), member 2 

Slc7a11 26570 1.42 solute carrier family 7 (cationic amino acid transporter, y+ system), member 11 

Slc7a2 11988 1.05 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 

Slc9a9 331004 1.27 solute carrier family 9 (sodium/hydrogen exchanger), member 9 

Slco4a1 108115 1.65 solute carrier organic anion transporter family, member 4a1 

Slfn2 20556 1.95 schlafen 2 

Slit2 20563 1.41 slit homolog 2 (Drosophila) 

Slitrk6 239250 2.18 SLIT and NTRK-like family, member 6 

Smpd3 58994 1.18 sphingomyelin phosphodiesterase 3, neutral 

Smyd1 12180 1.12 SET and MYND domain containing 1 

Sncaip 67847 1.03 synuclein, alpha interacting protein (synphilin) 

Sostdc1 66042 1.15 sclerostin domain containing 1 

Sox2 20674 1.48 SRY-box containing gene 2 

Sox5 20678 1.13 SRY-box containing gene 5 

Spon1 233744 1.41 spondin 1, (f-spondin) extracellular matrix protein 

Sprr3 20766 1.29 small proline-rich protein 3 

Sqrdl 59010 1.63 sulfide quinone reductase-like (yeast) 

Sri 109552 1.01 sorcin 
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Srpx 51795 1 sushi-repeat-containing protein; retinitis pigmentosa GTPase regulator 

Srpx2 68792 2.6 sushi-repeat-containing protein, X-linked 2 

Srr 27364 1.23 serine racemase 

Ssbp2 66970 1.3 single-stranded DNA binding protein 2; predicted gene 12470 

St3gal4 20443 1.2 ST3 beta-galactoside alpha-2,3-sialyltransferase 4 

St5 76954 1.06 suppression of tumorigenicity 5 

St8sia4 20452 1.3 ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 4 

Stab1 192187 1.34 stabilin 1 

Stambp 70527 1.14 STAM binding protein 

Stat1 20846 1.66 signal transducer and activator of transcription 1 

Steap2 74051 1.07 six transmembrane epithelial antigen of prostate 2 

Stom 13830 1.82 stomatin 

Styk1 243659 1.04 serine/threonine/tyrosine kinase 1 

Sult1d1 53315 1.87 sulfotransferase family 1D, member 1 

Syne1 64009 1.15 synaptic nuclear envelope 1 

Syngr1 20972 1.61 synaptogyrin 1 

Sytl2 83671 2.33 synaptotagmin-like 2 

Tac2 21334 1.03 tachykinin 2 

Tagln 21345 1.54 transgelin 

Tbc1d8b 245638 1.87 TBC1 domain family, member 8B 

Tcp11l2 216198 1.43 t-complex 11 (mouse) like 2 

Tecrl 243078 1.34 steroid 5 alpha-reductase 2-like 2 

Tet2 214133 1.41 tet oncogene family member 2 

Tff1 21784 1.45 trefoil factor 1; predicted gene 3090 

Tgfb3 21809 2.2 transforming growth factor, beta 3 

Tgm1 21816 1.17 transglutaminase 1, K polypeptide 

Thbs1 21825 3.07 thrombospondin 1; similar to thrombospondin 1 

Tifa 211550 1.43 TRAF-interacting protein with forkhead-associated domain; similar to Traf2 binding protein 

Timp1 21857 1.27 tissue inhibitor of metalloproteinase 1 

Timp2 21858 1.6 tissue inhibitor of metalloproteinase 2 

Tll1 21892 1.1 tolloid-like 

Tlr13 279572 1.12 toll-like receptor 13 

Tlr7 170743 1.31 toll-like receptor 7 

Tm4sf1 17112 1.34 transmembrane 4 superfamily member 1 

Tm4sf4 229302 2.47 transmembrane 4 superfamily member 4 

Tmem100 67888 1.45 transmembrane protein 100 

Tmem125 230678 1.06 transmembrane protein 125 

Tmem173 72512 1.37 transmembrane protein 173 

Tmem184a 231832 1.01 transmembrane protein 184a 

Tmem195 319660 1.23 transmembrane protein 195 

Tmem26 327766 1.81 transmembrane protein 26 

Tmem27 57394 2.68 transmembrane protein 27 

Tmem45a 56277 3.45 transmembrane protein 45a 

Tmem63a 208795 1.41 transmembrane protein 63a 

Tmem86a 67893 1.37 transmembrane protein 86A 

Tmem87b 72477 1.08 transmembrane protein 87B 

Tmem98 103743 1.18 transmembrane protein 98 

Tmprss11b 319875 1.36 transmembrane protease, serine 11b N terminal like 

Tmsb4x 19241 2.39 thymosin, beta 4, X chromosome; similar to thymosin beta-4 

Tmtc2 278279 1.39 transmembrane and tetratricopeptide repeat containing 2 

Tmx4 52837 1.02 thioredoxin-related transmembrane protein 4 

Tnfrsf9 21942 2.23 tumor necrosis factor receptor superfamily, member 9 

Tns1 21961 1.535 tensin 1 

Tns3 319939 1.27 tensin 3 

Tns4 217169 1.76 tensin 4 

Tob1 22057 1.6 transducer of ErbB-2.1 

Tpbpb 116913 1.93 trophoblast specific protein beta 

Trim29 72169 1.52 tripartite motif-containing 29 

Trim30 20128 1.84 tripartite motif-containing 30 
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Trim55 381485 1.03 tripartite motif-containing 55 

Trmt2b 215201 1.15 TRM2 tRNA methyltransferase 2 homolog B (S. cerevisiae) 

Trpm4 68667 1.03 transient receptor potential cation channel, subfamily M, member 4 

Trps1 83925 1.1 trichorhinophalangeal syndrome I (human); similar to Trps1 protein 

Tshz1 110796 1.37 teashirt zinc finger family member 1 

Tshz2 228911 1.85 teashirt zinc finger family member 2 

Tspan1 66805 1.4 tetraspanin 1 

Tspan15 70423 1.32 tetraspanin 15 

Tyrobp 22177 2.29 TYRO protein tyrosine kinase binding protein 

U46068 228801 4.68 cDNA sequence U46068 

Ugt1a9 394434 1.61 

similar to UDP glycosyltransferase 1 family polypeptide A13; similar to UGT1.6; UDP 
glucuronosyltransferase 1 family, polypeptide A1; UDP glucuronosyltransferase 1 family, 
polypeptide A2; UDP glycosyltransferase 1 family, polypeptide A10; UDP 
glucuronosyltransferase 1 family, polypeptide A5; UDP glycosyltransferase 1 family, 
polypeptide A cluster; UDP glucuronosyltransferase 1 family, polypeptide A9; UDP 
glucuronosyltransferase 1 family, polypeptide A8; similar to UDP glycosyltransferase 1 
family, polypeptide A8; UDP glucuronosyltransferase 1 family, polypeptide A7C; UDP 
glucuronosyltransferase 1 family, polypeptide A6A; similar to UDP glucuronosyltransferase 1 
family, polypeptide A6B; UDP glucuronosyltransferase 1 family, polypeptide A6B 

Ugt2b35 243085 1.8 UDP glucuronosyltransferase 2 family, polypeptide B35 

Ugt2b36 231396 1.19 UDP glucuronosyltransferase 2 family, polypeptide B36 

Ugt8a 22239 1.82 UDP galactosyltransferase 8A 

Unc93b1 54445 1.41 unc-93 homolog B1 (C. elegans) 

Upk1a 109637 1.22 uroplakin 1A 

Usp18 24110 1.98 ubiquitin specific peptidase 18; similar to ubiquitin specific protease UBP43 

Usp46 69727 1.16 ubiquitin specific peptidase 46 

Vcan 13003 1.21 versican 

Vgll3 73569 1.01 vestigial like 3 (Drosophila) 

Vsig1 78789 2.08 V-set and immunoglobulin domain containing 1 

Vtcn1 242122 1.44 V-set domain containing T cell activation inhibitor 1 

Wfdc1 67866 1.62 WAP four-disulfide core domain 1 

Wfdc2 67701 2.42 WAP four-disulfide core domain 2 

Wisp1 22402 1.67 WNT1 inducible signaling pathway protein 1 

Wsb2 59043 1.555 WD repeat and SOCS box-containing 2 

Wwc1 211652 1.17 WW, C2 and coiled-coil domain containing 1 

Xaf1 327959 1.1 XIAP associated factor 1 

Xbp1 22433 1.07 X-box binding protein 1 

Ypel5 383295 1.01 yippee-like 5 (Drosophila) 

Zadh2 225791 1.66 zinc binding alcohol dehydrogenase, domain containing 2 

Zbtb20 56490 1.305 zinc finger and BTB domain containing 20 

Zc3h12c 244871 1 zinc finger CCCH type containing 12C 

Zfhx4 80892 1.1 zinc finger homeodomain 4 

Zfp827 622675 1.37 zinc finger protein 827 

Zscan4c 245109 2.226666667 
zinc finger and SCAN domain containing 4C; pseudogene 3; similar to Gene model 397, 
(NCBI) 

 

Unique downpregulated genes in wt EBs d4-16 

Gene symbol 
Entrez Gene 

ID 

Fold change 
between 

d4_16 
Gene Name 

1810032O08Rik 66293 -1.11 RIKEN cDNA 1810032O08 gene 

2410127L17Rik 67383 -1.09 RIKEN cDNA 2410127L17 gene; predicted gene 7622 

2610002D18Rik 69885 -1.29 RIKEN cDNA 2610002D18 gene 

2610024G14Rik 56412 -1.05 RIKEN cDNA 2610024G14 gene 

2610039C10Rik 66578 -1.11 RIKEN cDNA 2610039C10 gene 

2610318N02Rik 70458 -1.485 RIKEN cDNA 2610318N02 gene; predicted gene 6960 

2610528E23Rik 66497 -1.18 RIKEN cDNA 2610528E23 gene 

4732471D19Rik 319719 -1.05 RIKEN cDNA 4732471D19 gene 

4930422G04Rik 71643 -1.04 RIKEN cDNA 4930422G04 gene 

4930503L19Rik 269033 -1.14 RIKEN cDNA 4930503L19 gene 

Aacs 78894 -1.03 acetoacetyl-CoA synthetase 

Abcd4 19300 -1.16 ATP-binding cassette, sub-family D (ALD), member 4 

Abtb2 99382 -1.17 ankyrin repeat and BTB (POZ) domain containing 2 
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Acaca 107476 -1.01 predicted gene 5182; acetyl-Coenzyme A carboxylase alpha 

Acat2 110460 -1.03 acetyl-Coenzyme A acetyltransferase 2 

Acsl3 74205 -1.02 acyl-CoA synthetase long-chain family member 3 

Acsl6 216739 -1.09 acyl-CoA synthetase long-chain family member 6 

Adamts3 330119 -1.195 a disintegrin-like and metallopeptidase (reprolysin type) with thrombospondin type 1 motif, 3 

Adcyap1r1 11517 -1.19 adenylate cyclase activating polypeptide 1 receptor 1 

AK129341 234915 -1.09 similar to CDNA sequence AK129341; cDNA sequence AK129341 

Akap12 83397 -1.19 A kinase (PRKA) anchor protein (gravin) 12 

Akr1b3 11677 -1.4525 aldo-keto reductase family 1, member B3 (aldose reductase) 

Amhr2 110542 -1.22 anti-Mullerian hormone type 2 receptor 

Amph 218038 -1.22 amphiphysin 

Arhgap19 71085 -1.22 Rho GTPase activating protein 19 

Arid3b 56380 -1.74 AT rich interactive domain 3B (BRIGHT-like) 

Atf7ip2 75329 -1.205 activating transcription factor 7 interacting protein 2 

Atp10d 231287 -1.06 ATPase, class V, type 10D 

B3gnt5 108105 -1.66 UDP-GlcNAc:betaGal beta-1,3-N-acetylglucosaminyltransferase 5 

Bard1 12021 -1.08 BRCA1 associated RING domain 1 

BC030867 217216 -1.05 cDNA sequence BC030867 

BC051142 407788 -1.09 cDNA sequence BC051142; testis specific basic protein 

Bccip 66165 -1.05 BRCA2 and CDKN1A interacting protein 

Blm 12144 -1.37 Bloom syndrome homolog (human) 

Bop1 12181 -1.23 block of proliferation 1 

Brca1 12189 -1.03 breast cancer 1 

Brca2 12190 -1.05 breast cancer 2 

Bub1 12235 -1.39 budding uninhibited by benzimidazoles 1 homolog (S. cerevisiae) 

C330019L16Rik 208111 -1.48 RIKEN cDNA C330019L16 gene 

C330024D21Rik 320479 -1.87 RIKEN cDNA C330024D21 gene 

C330027C09Rik 224171 -1.22 RIKEN cDNA C330027C09 gene 

C530008M17Rik 320827 -1.04 RIKEN cDNA C530008M17 gene 

C79407 217653 -1.22 expressed sequence C79407 

Cad 69719 -1.28 carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase 

Calcr 12311 -1.09 calcitonin receptor 

Camkv 235604 -1.29 CaM kinase-like vesicle-associated 

Car14 23831 -1.62 carbonic anhydrase 14 

Casp8ap2 26885 -1.12 caspase 8 associated protein 2 

Ccdc136 232664 -1.05 coiled-coil domain containing 136 

Ccdc18 73254 -1.41 coiled-coil domain containing 18 

Ccdc21 70012 -1.09 coiled-coil domain containing 21 

Ccnb1ip1 239083 -2.15 cyclin B1 interacting protein 1 

Ccnd1 12443 -1.13 cyclin D1 

Ccne2 12448 -1.21 cyclin E2 

Cdc20 107995 -1.03 cell division cycle 20 homolog (S. cerevisiae) 

Cdc6 23834 -1.23 
cell division cycle 6 homolog (S. cerevisiae); predicted gene 9430; similar to cell division 
cycle 6 homolog 

Cdca5 67849 -1.25 cell division cycle associated 5 

Cdca7 66953 -1.08 cell division cycle associated 7 

Cdca8 52276 -1.14 cell division cycle associated 8 

Cdh2 12558 -1.36 cadherin 2; similar to N-cadherin 

Cdx2 12591 -1.71 caudal type homeo box 2 

Cebpz 12607 -1.02 CCAAT/enhancer binding protein zeta 

Cecr2 330409 -1.79 cat eye syndrome chromosome region, candidate 2 homolog (human) 

Cenph 26886 -1.18 centromere protein H 

Cenpk 60411 -1.33 centromere protein K 

Cenpn 72155 -1.05 centromere protein N 

Cenpp 66336 -1.16 centromere protein P 

Cep76 225659 -1.05 centrosomal protein 76 

Cep78 208518 -1.17 centrosomal protein 78 

Chd7 320790 -1.042 chromodomain helicase DNA binding protein 7 

Chek1 12649 -1.16 checkpoint kinase 1 homolog (S. pombe) 

Chn1 108699 -1.04 chimerin (chimaerin) 1 
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Cnksr2 245684 -1.26 connector enhancer of kinase suppressor of Ras 2 

Crb2 241324 -1.77 crumbs homolog 2 (Drosophila) 

Crispld1 83691 -1.43 cysteine-rich secretory protein LCCL domain containing 1 

Crlf3 54394 -1.01 cytokine receptor-like factor 3 

Crmp1 12933 -1.13 collapsin response mediator protein 1 

Cstf3 228410 -1 cleavage stimulation factor, 3' pre-RNA, subunit 3 

Cyp26a1 13082 -2.52 cytochrome P450, family 26, subfamily a, polypeptide 1 

Cyp51 13121 -1.22 cytochrome P450, family 51 

D10Wsu102e 28109 -1.1 DNA segment, Chr 10, Wayne State University 102, expressed 

Dapk2 13143 -1.15 death-associated protein kinase 2 

Ddx11 320209 -1.02 
DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 (CHL1-like helicase homolog, S. 
cerevisiae) 

Ddx21 56200 -1.21 DEAD (Asp-Glu-Ala-Asp) box polypeptide 21 

Ddx39 68278 -1.05 DEAD (Asp-Glu-Ala-Asp) box polypeptide 39 

Depdc1a 76131 -1.045 DEP domain containing 1a 

Depdc1b 218581 -1.27 DEP domain containing 1B 

Dhfr 13361 -1.43 dihydrofolate reductase 

Dimt1 66254 -1.1 DIM1 dimethyladenosine transferase 1-like (S. cerevisiae) 

Dkc1 245474 -1.24 dyskeratosis congenita 1, dyskerin homolog (human) 

Dkk1 13380 -1.27 dickkopf homolog 1 (Xenopus laevis) 

Dna2 327762 -1.02 DNA replication helicase 2 homolog (yeast) 

Dnmt3b 13436 -2.09 DNA methyltransferase 3B 

Dok4 114255 -1.81 docking protein 4 

Donson 60364 -1.04 downstream neighbor of SON 

Dscc1 72107 -1.33 defective in sister chromatid cohesion 1 homolog (S. cerevisiae) 

Dus4l 71916 -1.16 dihydrouridine synthase 4-like (S. cerevisiae) 

Dusp4 319520 -1.6 dual specificity phosphatase 4 

Dut 110074 -1.08 deoxyuridine triphosphatase 

E2f5 13559 -1.24 E2F transcription factor 5 

E330027M22Rik 100038419 -2.25 RIKEN cDNA gene, E330027M22Rik 

Efna3 13638 -1.28 ephrin A3; similar to Ephrin A3 

Eif2b3 108067 -1.04 eukaryotic translation initiation factor 2B, subunit 3 

Elavl2 15569 -1.12 ELAV (embryonic lethal, abnormal vision, Drosophila)-like 2 (Hu antigen B) 

Emb 13723 -1.94 embigin 

Eme1 268465 -1.1 essential meiotic endonuclease 1 homolog 1 (S. pombe) 

Ercc6l 236930 -1.12 excision repair cross-complementing rodent repair deficiency complementation group 6 - like 

Esco2 71988 -1.02 establishment of cohesion 1 homolog 2 (S. cerevisiae) 

Espl1 105988 -1.04 extra spindle poles-like 1 (S. cerevisiae) 

Exo1 26909 -1.46 exonuclease 1 

Exosc8 69639 -1.13 exosome component 8 

F630043A04Rik 219114 -1.15 RIKEN cDNA F630043A04 gene 

F730047E07Rik 212377 -1.04 RIKEN cDNA F730047E07 gene 

Fam123c 211383 -1.27 family with sequence similarity 123, member C 

Fam136a 66488 -1.01 
RIKEN cDNA 2010309E21 gene; similar to CG5323-PA; predicted gene 6396; predicted 
gene 6624 

Fam169a 320557 -1.66 family with sequence similarity 169, member A 

Fam54a 71804 -1.07 similar to DUF729 domain containing 1; family with sequence similarity 54, member A 

Fam64a 109212 -1.03 RIKEN cDNA 6720460F02 gene 

Fancd2 211651 -1.25 Fanconi anemia, complementation group D2 

Fancm 104806 -1.11 Fanconi anemia, complementation group M 

Fbl 14113 -1.07 similar to Fibrillarin; fibrillarin 

Fbxo5 67141 -1.05 F-box protein 5 

Fen1 14156 -1.18 flap structure specific endonuclease 1 

Fndc3c1 333564 -1.81 fibronectin type III domain containing 3C1 

Fscn1 14086 -1.01 fascin homolog 1, actin bundling protein (Strongylocentrotus purpuratus) 

Gemin4 276919 -1.04 gem (nuclear organelle) associated protein 4 

Gemin6 67242 -1.295 
predicted gene 6253; gem (nuclear organelle) associated protein 6; similar to gem (nuclear 
organelle) associated protein 6 

Gen1 209334 -1.36 Gen homolog 1, endonuclease (Drosophila) 

Gfpt2 14584 -1.73 glutamine fructose-6-phosphate transaminase 2 

Gins1 69270 -1.38 GINS complex subunit 1 (Psf1 homolog) 
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Gls2 216456 -1.07 glutaminase 2 (liver, mitochondrial) 

Glt1d1 319804 -1.18 glycosyltransferase 1 domain containing 1 

Gm10661 100038435 -1.21 predicted gene 10661 

Gm10664 100038489 -1.52 predicted gene 10664 

Gm15542 100043546 -1.15 

predicted gene 15542; predicted gene 7816; similar to DnaJ-like protein; predicted gene 
6335; DnaJ (Hsp40) homolog, subfamily A, member 1, pseudogene; DnaJ (Hsp40) 
homolog, subfamily A, member 1 

Gm4893 235279 -1.03 
predicted gene 11221; similar to Protein C14orf111 homolog; predicted gene 4893; FCF1 
small subunit (SSU) processome component homolog (S. cerevisiae) 

Gm5595 434179 -1.26 predicted gene 5595; predicted gene 2381 

Gm7239 638487 -1.31 

predicted gene, EG625349; predicted gene 5789; predicted gene 7085; predicted gene 
5708; predicted gene 6847; SET translocation; cDNA sequence BC085271; predicted gene 
7239; similar to protein phosphatase 2A inhibitor-2 I-2PP2A; predicted gene 9531 

Gmnn 57441 -1.225 geminin 

Gng3 14704 -1.17 guanine nucleotide binding protein (G protein), gamma 3 

Gnl3 30877 -1.03 guanine nucleotide binding protein-like 3 (nucleolar) 

Gpatch4 66614 -1.1 G patch domain containing 4 

Greb1 268527 -1.56 gene regulated by estrogen in breast cancer protein 

Grik3 14807 -1.29 glutamate receptor, ionotropic, kainate 3 

Grwd1 101612 -1.18 glutamate-rich WD repeat containing 1 

H2-Oa 15001 -1.11 histocompatibility 2, O region alpha locus 

Hand1 15110 -2.19 heart and neural crest derivatives expressed transcript 1 

Has2 15117 -1.69 hyaluronan synthase 2 

Haus6 230376 -1.08 HAUS augmin-like complex, subunit 6 

Heatr1 217995 -1.19 HEAT repeat containing 1 

Hells 15201 -1.2 helicase, lymphoid specific 

Herc1 235439 -1.06 
hect (homologous to the E6-AP (UBE3A) carboxyl terminus) domain and RCC1 (CHC1)-like 
domain (RLD) 1 

Hey2 15214 -1.68 hairy/enhancer-of-split related with YRPW motif 2 

Hmga1 15361 -1.34 high mobility group AT-hook I, related sequence 1; high mobility group AT-hook 1 

Hmgb3 15354 -1.115 
predicted gene 11805; predicted gene 8850; high mobility group box 3; similar to High 
mobility group protein 4 (HMG-4) (High mobility group protein 2a) (HMG-2a) 

Hmmr 15366 -1.04 hyaluronan mediated motility receptor (RHAMM) 

Hoxb6 15414 -1.03 homeo box B6 

Hoxd1 15429 -1.47 homeo box D1 

Hspbap1 66667 -1.09 Hspb associated protein 1 

Hsph1 15505 -1.05 heat shock 105kDa/110kDa protein 1 

Id3 15903 -1.32 inhibitor of DNA binding 3 

Idi1 319554 -1.655 
isopentenyl-diphosphate delta isomerase; similar to Isopentenyl-diphosphate delta 
isomerase; predicted gene 7655 

Ifrd2 15983 -1.05 interferon-related developmental regulator 2 

Igf2bp1 140486 -1.39 insulin-like growth factor 2 mRNA binding protein 1 

Il17rd 171463 -1.38 interleukin 17 receptor D 

Isy1 57905 -1.04 ISY1 splicing factor homolog (S. cerevisiae) 

Jph1 57339 -1.185 junctophilin 1 

Kbtbd8 243574 -1.56 kelch repeat and BTB (POZ) domain containing 8 

Kif11 16551 -1.06 kinesin family member 11 

Kif14 381293 -1.07 kinesin family member 14 

Kif15 209737 -1.38 kinesin family member 15 

Kif18a 228421 -1.04 kinesin family member 18A 

Kif1a 16560 -1.27 kinesin family member 1A 

Kif20a 19348 -1.1 kinesin family member 20A 

Kif20b 240641 -1.07 kinesin family member 20B 

Kif22 110033 -1.16 kinesin family member 22 

Kif4 16571 -1.01 kinesin family member 4 

Klf8 245671 -1.78 Kruppel-like factor 8 

Klhl12 240756 -1.03 kelch-like 12 (Drosophila) 

Kntc1 208628 -1.05 kinetochore associated 1 

Lbr 98386 -1.26 lamin B receptor 

Lin28a 83557  -1.79 lin-28 homolog A (C. elegans) 

Lin28b 380669 -1.54 lin-28 homolog B (C. elegans) 

Lrp11 237253 -1.06 low density lipoprotein receptor-related protein 11 

Lrrn4 320974 -2.04 leucine rich repeat neuronal 4 

Lss 16987 -1.12 lanosterol synthase 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=83557
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Lyar 17089 -1.31 Ly1 antibody reactive clone 

Mak16 67920 -1.05 MAK16 homolog (S. cerevisiae) 

Mapk8ip2 60597 -1.23 mitogen-activated protein kinase 8 interacting protein 2 

Mastl 67121 -1.11 microtubule associated serine/threonine kinase-like 

Mcm10 70024 -1.37 minichromosome maintenance deficient 10 (S. cerevisiae) 

Mcm2 17216 -1.05 minichromosome maintenance deficient 2 mitotin (S. cerevisiae) 

Mcm4 17217 -1.16 minichromosome maintenance deficient 4 homolog (S. cerevisiae) 

Mcm5 17218 -1.08 minichromosome maintenance deficient 5, cell division cycle 46 (S. cerevisiae) 

Mcm7 17220 -1.07 minichromosome maintenance deficient 7 (S. cerevisiae) 

Mcm8 66634 -1.06 minichromosome maintenance deficient 8 (S. cerevisiae) 

Mdm1 17245 -1.12 transformed mouse 3T3 cell double minute 1 

Mdn1 100019 -1.2 midasin homolog (yeast) 

Melk 17279 -1.19 maternal embryonic leucine zipper kinase 

Mirhg1 75957 -1.24 microRNA host gene 1 (non-protein coding) 

Mki67ip 67949 -1.1 Mki67 (FHA domain) interacting nucleolar phosphoprotein 

Mlf1ip 71876 -1.16 myeloid leukemia factor 1 interacting protein 

Mlh1 17350 -1.36 mutL homolog 1 (E. coli) 

Mnd1 76915 -1.84 
meiotic nuclear divisions 1 homolog (S. cerevisiae); predicted gene 3833; similar to Meiotic 
nuclear divisions 1 homolog (S. cerevisiae) 

Mphosph10 67973 -1.11 M-phase phosphoprotein 10 (U3 small nucleolar ribonucleoprotein) 

Mpp6 56524 -1.1 membrane protein, palmitoylated 6 (MAGUK p55 subfamily member 6) 

Mrto4 69902 -1.245 
predicted gene 9178; MRT4, mRNA turnover 4, homolog (S. cerevisiae); predicted gene 
5633 

Msto1 229524 -1 misato homolog 1 (Drosophila) 

Mtap7d3 320923 -1.29 MAP7 domain containing 3 

Mthfd1 108156 -1.03 
methylenetetrahydrofolate dehydrogenase (NADP+ dependent), methenyltetrahydrofolate 
cyclohydrolase, formyltetrahydrofolate synthase 

Mum1 68114 -1 melanoma associated antigen (mutated) 1 

Mum1l1 245631 -1.82 melanoma associated antigen (mutated) 1-like 1 

Mvd 192156 -1.41 mevalonate (diphospho) decarboxylase 

Myb 17863 -1.33 myeloblastosis oncogene 

Naf1 234344 -1.34 nuclear assembly factor 1 homolog (S. cerevisiae) 

Nasp 50927 -1.47 
nuclear autoantigenic sperm protein (histone-binding); similar to nuclear autoantigenic 
sperm protein; NASP 

Nat10 98956 -1.04 N-acetyltransferase 10 

Ncapg 54392 -1.31 non-SMC condensin I complex, subunit G 

Ncapg2 76044 -1.04 non-SMC condensin II complex, subunit G2 

Ncl 17975 -1.42 nucleolin 

Ncrna00086 320237 -1.39 non-protein coding RNA 86 

Ndc80 67052 -1.04 NDC80 homolog, kinetochore complex component (S. cerevisiae) 

Nfkbil2 72749 -1.06 nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor-like 2 

Nfxl1 100978 
-

1.616666667 nuclear transcription factor, X-box binding-like 1 

Nhej1 75570 -1.06 nonhomologous end-joining factor 1 

Ninl 78177 -1.16 ninein-like 

Nkx1-2 20231 -1.07 NK1 transcription factor related, locus 2 (Drosophila) 

Nmt2 18108 -1.05 N-myristoyltransferase 2 

Noc3l 57753 -1.01 nucleolar complex associated 3 homolog (S. cerevisiae) 

Nolc1 70769 -1.14 nucleolar and coiled-body phosphoprotein 1 

Nop58 55989 -1 NOP58 ribonucleoprotein homolog (yeast) 

Npm3 18150 -1.24 nucleoplasmin 3; nucleoplasmin 3, pseudogene 1 

Nr6a1 14536 -1.08 nuclear receptor subfamily 6, group A, member 1 

Nsdhl 18194 -1.02 NAD(P) dependent steroid dehydrogenase-like 

Nudt11 58242 -1.26 
nudix (nucleoside diphosphate linked moiety X)-type motif 11; nudix (nucleoside 
diphosphate linked moiety X)-type motif 10 

Nudt15 214254 -1.17 nudix (nucleoside diphosphate linked moiety X)-type motif 15 

Nup107 103468 -1.11 nucleoporin 107 

Nup35 69482 -1.225 predicted gene 4353; nucleoporin 35 

Nup37 69736 -1.12 similar to nucleoporin 37; nucleoporin 37 

Nup43 69912 -1.3 nucleoporin 43 

Nutf2 68051 -1.16 

similar to Chain A, D92n,D94n Double Point Mutant Of Human Nuclear Transport Factor 2 
(Ntf2); predicted gene 10349; predicted gene 4682; nuclear transport factor 2; similar to 
nuclear transport factor 2; predicted gene 9386; predicted gene 10333 

Nxf3 245610 -1.03 nuclear RNA export factor 3 
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Oip5 70645 -1.25 Opa interacting protein 5 

Orc1l 18392 -1.6 origin recognition complex, subunit 1-like (S.cereviaiae) 

Orc2l 18393 -1.05 origin recognition complex, subunit 2-like (S. cerevisiae) 

Osgepl1 72085 -1.03 O-sialoglycoprotein endopeptidase-like 1 

Osgin2 209212 -1.36 oxidative stress induced growth inhibitor family member 2 

Pcbp4 59092 -1.21 poly(rC) binding protein 4 

Pcyt1b 236899 -1.4 phosphate cytidylyltransferase 1, choline, beta isoform 

Pdcd11 18572 -1 programmed cell death 11 

Pdlim4 30794 -1.04 PDZ and LIM domain 4 

Pdss1 56075 -1.07 prenyl (solanesyl) diphosphate synthase, subunit 1 

Pfas 237823 -1 phosphoribosylformylglycinamidine synthase (FGAR amidotransferase) 

Pfkfb1 18639 -1.21 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 1 

Plk1 18817 -1.02 polo-like kinase 1 (Drosophila) 

Plk4 20873 -1.1 polo-like kinase 4 (Drosophila) 

Pm20d2 242377 -1.07 peptidase M20 domain containing 2 

Pmvk 68603 -1.1 phosphomevalonate kinase 

Pold3 67967 -1.03 polymerase (DNA-directed), delta 3, accessory subunit 

Pole 18973 -1.23 polymerase (DNA directed), epsilon 

Pole2 18974 -1.17 polymerase (DNA directed), epsilon 2 (p59 subunit) 

Polg 18975 -1.4 polymerase (DNA directed), gamma 

Polr1e 64424 -1.16 polymerase (RNA) I polypeptide E 

Polr3g 67486 -1.74 polymerase (RNA) III (DNA directed) polypeptide G 

Pou5f1 18999 -1.68 POU domain, class 5, transcription factor 1 

Ppa1 67895 -1.01 pyrophosphatase (inorganic) 1 

Ppat 231327 -1.28 phosphoribosyl pyrophosphate amidotransferase 

Ppih 66101 -1.105 

similar to peptidyl prolyl isomerase H; predicted gene 7879; predicted gene 9088; predicted 
gene 8719; predicted gene 11585; similar to Peptidyl-prolyl cis-trans isomerase H (PPIase 
H) (Rotamase H); peptidyl prolyl isomerase H 

Ppil1 100047806 -1.21 similar to peptidylprolyl isomerase-like 1; peptidylprolyl isomerase (cyclophilin)-like 1 

Ppil1 68816 -1.85 similar to peptidylprolyl isomerase-like 1; peptidylprolyl isomerase (cyclophilin)-like 1 

Prdm6 225518 -1.02 PR domain containing 6 

Prim1 19075 -1.13 DNA primase, p49 subunit 

Prim2 19076 -1.73 DNA primase, p58 subunit 

Prkd1 18760 -1.02 protein kinase D1 

Prmt3 71974 -1.49 protein arginine N-methyltransferase 3 

Prph 19132 -2.4 peripherin 

Prtg 235472 -1.04 protogenin homolog (Gallus gallus) 

Ptcd3 69956 -1.07 pentatricopeptide repeat domain 3 

Pus7 78697 -1.17 pseudouridylate synthase 7 homolog (S. cerevisiae) 

Rad51 19361 -1.13 RAD51 homolog (S. cerevisiae) 

Rad54l 19366 -1.16 RAD54 like (S. cerevisiae) 

Rangrf 57785 -1.04 
predicted gene 7791; similar to Ran-interacting protein MOG1; predicted gene 15711; RAN 
guanine nucleotide release factor; predicted gene 4535; predicted gene 8572 

Rbm19 74111 -1.76 RNA binding motif protein 19 

Rbpms2 71973 -1.22 predicted gene 3470; RNA binding protein with multiple splicing 2 

Rcl1 59028 -1.25 RNA terminal phosphate cyclase-like 1 

Rcor2 104383 -1.23 REST corepressor 2 

Rdh11 17252 -1.01 retinol dehydrogenase 11 

Rfc3 69263 -1.03 replication factor C (activator 1) 3 

Rhebl1 69159 -1.62 Ras homolog enriched in brain like 1 

Ripk2 192656 -1.53 receptor (TNFRSF)-interacting serine-threonine kinase 2 

Ripk3 56532 -1.13 receptor-interacting serine-threonine kinase 3 

Rnu73a 19870 -1.12 U73B small nuclear RNA; U73A small nuclear RNA 

Rnu73b 19871 -1.34 U73B small nuclear RNA; U73A small nuclear RNA 

Rock2 19878 -1.29 Rho-associated coiled-coil containing protein kinase 2 

Rpl12 269261 -1.15 
similar to ribosomal protein L12; small nucleolar RNA, H/ACA box 65;similar to 60S 
ribosomal protein L12; ribosomal protein L12; 

Rpl13 270106 -1.53 similar to ribosomal protein L13; similar to 60S ribosomal protein L13; ribosomal protein L13 

Rpl23a 268449 -1.28 ; ribosomal protein L23a; similar to 60S ribosomal protein L23a;  

Rpp30 54364 -1.03 ribonuclease P/MRP 30 subunit (human) 

Rpp40 208366 -1.18 ribonuclease P 40 subunit (human) 

Rps12 20042 -1.23 ribosomal protein S12;  
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Rps13 68052 -1.26 
similar to ribosomal protein S13; predicted gene 12270; predicted gene 6834; predicted 
gene 15483; predicted gene 6573; ribosomal protein S13; predicted gene 10159 

Rps6ka6 67071 -2.24 ribosomal protein S6 kinase polypeptide 6 

Rragb 245670 -1.35 Ras-related GTP binding B 

Rrm2 20135 -1.03 ribonucleotide reductase M2 

Rrp12 107094 -1.01 ribosomal RNA processing 12 homolog (S. cerevisiae) 

Rrp1b 72462 -1.2 ribosomal RNA processing 1 homolog B (S. cerevisiae) 

Ruvbl1 56505 -1.02 RuvB-like protein 1 

Sall1 58198 -1.33 sal-like 1 (Drosophila) 

Sall4 99377 -2.07 sal-like 4 (Drosophila) 

Scarna8 100217448 -1.02 small Cajal body-specific RNA 8 

Scd1 20249 -1.44 stearoyl-Coenzyme A desaturase 1 

Scyl3 240880 -1.11 SCY1-like 3 (S. cerevisiae) 

Sgk1 20393 -1.07 serum/glucocorticoid regulated kinase 1 

Sgol1 72415 -1.09 shugoshin-like 1 (S. pombe) 

Shcbp1 20419 -1.09 Shc SH2-domain binding protein 1 

Siah1b 20438 -1.14 seven in absentia 1B 

Sirt1 93759 -1.05 sirtuin 1 (silent mating type information regulation 2, homolog) 1 (S. cerevisiae) 

Six6os1 75801 -1.53 Six6 opposite strand transcript 1 

Slc43a1 72401 -1.04 solute carrier family 43, member 1 

Slc4a5 232156 -1.22 solute carrier family 4, sodium bicarbonate cotransporter, member 5 

Smad6 17130 -1.48 MAD homolog 6 (Drosophila) 

Smarcd1 83797 -1.12 
SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily d, 
member 1 

Smn1 20595 -1.04 survival motor neuron 1 

Smpd4 77626 -1.07 sphingomyelin phosphodiesterase 4 

Smyd5 232187 -1.01 SET and MYND domain containing 5 

Snhg1 83673 -1.7125 small nucleolar RNA host gene (non-protein coding) 1 

Snora61 100217440 -1.15 small nucleolar RNA, H/ACA box 61 

Snora62 104433 -1.01 small nucleolar RNA, H/ACA box 62 

Snora65 104367 -1.19 

similar to ribosomal protein L12; predicted gene 7117; small nucleolar RNA, H/ACA box 65; 
predicted gene 11425; predicted gene 6285; predicted gene 5962; predicted gene 9396; 
similar to 60S ribosomal protein L12; ribosomal protein L12; predicted gene 6336 

Snora69 104369 -1.67 small nucleolar RNA, H/ACA box 69 

Snora7a 100217451 -1.05 small nucleolar RNA, H/ACA box 7A 

Snord1c 100216536 -1.4 small nucleolar RNA, C/D box 1C 

Snord34 27210 -1.38 small nucleolar RNA, C/D box 34 

Snord37 100217454 -1.25 small nucleolar RNA, C/D box 37 

Snord38a 100217424 -1.29 small nucleolar RNA, C/D box 38A 

Snord49a 100217455 -1.29 small nucleolar RNA, C/D box 49A 

Snord58b 100217457 -1.3 small nucleolar RNA, C/D box 58B 

Snord82 80828 -1.33 small nucleolar RNA, C/D box 82 

Snord87 266793 -1.52 small nucleolar RNA, C/D box 87 

Snrnp25 78372 -1.22 small nuclear ribonucleoprotein 25 (U11/U12) 

Snrpg 68011 -1.01 predicted gene 8186; small nuclear ribonucleoprotein polypeptide G 

Snrpn 20646 -1.16 
small nuclear ribonucleoprotein N; SNRPN upstream reading frame; predicted gene 5802; 
similar to SNRPN upstream reading frame protein 

Spag5 54141 -1.11 sperm associated antigen 5 

Spata13 219140 -1.17 spermatogenesis associated 13 

Spata5 57815 -1.01 spermatogenesis associated 5 

Spin2 278240 -2.1 spindlin family, member 2 

Spo11 26972 -1.06 sporulation protein, meiosis-specific, SPO11 homolog (S. cerevisiae) 

Stard8 236920 -2.07 START domain containing 8 

Stmn2 20257 -2.09 stathmin-like 2 

Sult4a1 29859 -2.1 sulfotransferase family 4A, member 1 

Suv39h1 20937 -1.52 suppressor of variegation 3-9 homolog 1 (Drosophila) 

Suv39h2 64707 -1.44 suppressor of variegation 3-9 homolog 2 (Drosophila) 

Taf4b 72504 -1.36 TAF4B RNA polymerase II, TATA box binding protein (TBP)-associated factor 

Tbx20 57246 -1.43 T-box 20 

Tbx3 21386 -1.82 T-box 3 

Tcf7 21414 -1.9 transcription factor 7, T-cell specific 

Tcfl5 277353 -2.17 transcription factor-like 5 (basic helix-loop-helix) 
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Tdrd5 214575 -1.06 tudor domain containing 5 

Terf1 21749 -1.02 telomeric repeat binding factor 1 

Thop1 50492 -1.03 thimet oligopeptidase 1 

Tiam2 24001 -1.11 T-cell lymphoma invasion and metastasis 2 

Timm8a1 30058 -1.035 
predicted gene 9797; translocase of inner mitochondrial membrane 8 homolog a1 (yeast); 
similar to small zinc finger-like protein 

Tipin 66131 -1.15 timeless interacting protein 

Tmem28 620592 -1.18 transmembrane protein 28 

Tmem88 67020 -1.82 transmembrane protein 88 

Tnfrsf19 29820 -1.07 tumor necrosis factor receptor superfamily, member 19 

Tnfrsf22 79202 -1.2 tumor necrosis factor receptor superfamily, member 22 

Top2a 21973 -1.19 topoisomerase (DNA) II alpha 

Trim36 28105 -1.06 tripartite motif-containing 36 

Trim59 66949 -1.24 similar to mouse RING finger 1; tripartite motif-containing 59 

Trim6 94088 -1.01 tripartite motif-containing 6; similar to Tripartite motif protein 6 

Trim71 636931 -1.93 similar to LIN41; tripartite motif-containing 71 

Trip13 69716 -1.48 thyroid hormone receptor interactor 13 

Trmt11 73681 -1.07 tRNA methyltransferase 11 homolog (S. cerevisiae) 

Tsen2 381802 -1 tRNA splicing endonuclease 2 homolog (S. cerevisiae) 

Tspan2 70747 -1.11 tetraspanin 2 

Ttc27 74196 -1.39 tetratricopeptide repeat domain 27 

Ttk 22137 -1.24 Ttk protein kinase 

Ube2cbp 70348 -1.09 ubiquitin-conjugating enzyme E2C binding protein 

Uchl5 56207 -1.06 ubiquitin carboxyl-terminal esterase L5 

Umps 22247 -1.02 uridine monophosphate synthetase 

Urb1 207932 -1.08 URB1 ribosome biogenesis 1 homolog (S. cerevisiae) 

Urod 22275 -1.02 uroporphyrinogen decarboxylase 

Usp44 327799 -1.46 ubiquitin specific peptidase 44 

Utp14a 72554 -1.29 UTP14, U3 small nucleolar ribonucleoprotein, homolog A (yeast) 

Utp18 217109 -1.12 UTP18, small subunit (SSU) processome component, homolog (yeast) 

Utp20 70683 -1.05 UTP20, small subunit (SSU) processome component, homolog (yeast) 

Vrk1 22367 -1.08 vaccinia related kinase 1 

Wdhd1 218973 -1.33 WD repeat and HMG-box DNA binding protein 1 

Wdr12 57750 -1.265 WD repeat domain 12; predicted gene 4879 

Wdr3 269470 -1 WD repeat domain 3 

Wdr46 57315 -1.03 WD repeat domain 46 

Wdr54 75659 -1.37 WD repeat domain 54 

Wdr55 67936 -1.22 WD repeat domain 55 

Wdr75 73674 -1.02 WD repeat domain 75 

Wnt5a 22418 -1.43 wingless-related MMTV integration site 5A 

Xpo4 57258 -1 exportin 4 

Yars2 70120 -1.07 tyrosyl-tRNA synthetase 2 (mitochondrial) 

Zc3hav1 78781 -1.09 zinc finger CCCH type, antiviral 1 

Zdbf2 73884 -1.33 zinc finger, DBF-type containing 2 

Zfp105 22646 -1.13 zinc finger protein 105 

Zfp280c 208968 -1.21 zinc finger protein 280C 

Zfp345 545471 -1.41 zinc finger protein 345 

Zfp365 216049 -1.04 zinc finger protein 365 

Zfp7 223669 -1.08 zinc finger protein 7 

Zfp711 245595 -2.19 zinc finger protein 711 

Zic2 22772 -1.85 zinc finger protein of the cerebellum 2 

Zic3 22773 -1.39 zinc finger protein of the cerebellum 3 

Zic5 65100 -1.42 
similar to zinc finger protein of the cerebellum 5; predicted gene 12241; zinc finger protein of 
the cerebellum 5 

Znhit3 448850 -1.11 zinc finger, HIT type 3 

Zscan10 332221 -2.02 zinc finger and SCAN domain containing 10 

Zwilch 68014 -1.13 Zwilch, kinetochore associated, homolog (Drosophila) 
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Upregulated genes in dnmt1-/- EBs compared to wt EBs between d4-16 

Gene symbol 
Entrez Gene 

ID 

Fold change 
compared to 

wt 
Gene name 

0610031J06Rik 56700 1.05 RIKEN cDNA 0610031J06 gene 

1700001L05Rik 69291 1.42 RIKEN cDNA 1700001L05 gene 

1700013H16Rik 75514 2.2 RIKEN cDNA 1700013H16 gene 

2210010C17Rik 70080 1.85 RIKEN cDNA 2210010C17 gene 

2510049J12Rik 70291 1.36 RIKEN cDNA 2510049J12 gene 

2610019F03Rik 72148 1.13 RIKEN cDNA 2610019F03 gene 

3830431G21Rik 217682 1.16 RIKEN cDNA 3830431G21 gene 

4632428N05Rik 74048 1.28 RIKEN cDNA 4632428N05 gene 

4933426M11Rik 217684 1.02 RIKEN cDNA 4933426M11 gene 

5730469M10Rik 70564 1.02 RIKEN cDNA 5730469M10 gene 

9130017N09Rik 78906 1.27 RIKEN cDNA 9130017N09 gene 

9930013L23Rik 80982 1.75 RIKEN cDNA 9930013L23 gene 

A4galt 239559 1.19 alpha 1,4-galactosyltransferase 

Aass 30956 1.42 aminoadipate-semialdehyde synthase 

Abcb11 27413 1.01 ATP-binding cassette, sub-family B (MDR/TAP), member 11 

Abcc4 239273 1.46 ATP-binding cassette, sub-family C (CFTR/MRP), member 4 

Acat3 224530 1.25 acetyl-Coenzyme A acetyltransferase 3 

Acp5 11433 1.08 acid phosphatase 5, tartrate resistant 

Adamts9 101401 1.148 a disintegrin-like and metallopeptidase (reprolysin type) with thrombospondin type 1 motif, 9 

Adap2 216991 1.16 ArfGAP with dual PH domains 2 

Amn 93835 1.74 amnionless 

Angpt2 11601 1.13 angiopoietin 2 

Apoc1 11812 1.72 apolipoprotein C-I 

Apoe 11816 1.53 apolipoprotein E 

Arhgap28 268970 1.44 Rho GTPase activating protein 28 

Arhgap8 73167 1.21 Rho GTPase activating protein 8; proline rich 5 (renal) 

Arhgef16 230972 1.05 Rho guanine nucleotide exchange factor (GEF) 16 

As3mt 57344 1.31 arsenic (+3 oxidation state) methyltransferase 

Atp6v0a1 11975 1.24 ATPase, H+ transporting, lysosomal V0 subunit A1 

Atp7b 11979 1.85 ATPase, Cu++ transporting, beta polypeptide 

Atp8a2 50769 1.81 ATPase, aminophospholipid transporter-like, class I, type 8A, member 2 

Atxn1 20238 1.16 ataxin 1 

Bace2 56175 1.61 beta-site APP-cleaving enzyme 2 

Bcmo1 63857 1.88 beta-carotene 15,15'-monooxygenase 

Bend5 67621 1.5 BEN domain containing 5 

Car7 12354 3.21 carbonic anhydrase 7 

Casq1 12372 1.18 calsequestrin 1 

Cck 12424 1.14 cholecystokinin 

Ccl2 20296 1.17 chemokine (C-C motif) ligand 2 

Ceacam15 101434 2.73 carcinoembryonic antigen-related cell adhesion molecule 15 

Ceacam9 26368 2.63 carcinoembryonic antigen-related cell adhesion molecule 9 

Chrnb1 11443 1.08 cholinergic receptor, nicotinic, beta polypeptide 1 (muscle) 

Cited1 12705 2.15 Cbp/p300-interacting transactivator with Glu/Asp-rich carboxy-terminal domain 1 

Cldn6 54419 1.07 claudin 6 

Clic6 209195 2.69 chloride intracellular channel 6 

Cln6 76524 1.35 ceroid-lipofuscinosis, neuronal 6 

Clps 109791 2.15 colipase, pancreatic 

Cndp2 66054 1.56 CNDP dipeptidase 2 (metallopeptidase M20 family) 

Cntn5 244682 1.57 contactin 5 

Cpeb2 231207 1.51 cytoplasmic polyadenylation element binding protein 2 

Cpn1 93721 2.14 carboxypeptidase N, polypeptide 1 

Crabp2 12904 1.11 cellular retinoic acid binding protein II 

Creb3l1 26427 1.48 cAMP responsive element binding protein 3-like 1 

Creb3l3 208677 1.73 cAMP responsive element binding protein 3-like 3 

Cst3 13010 1.11 cystatin C 

Ctdspl 69274 1.16 CTD (carboxy-terminal domain, RNA polymerase II, polypeptide A) small phosphatase-like 
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Cts7 56092 1.97 cathepsin 7 

Ctsh 13036 3.91 cathepsin H 

D14Ertd668e 219132 2.09 
predicted gene 6907; predicted gene 6904; predicted gene 4902; DNA segment, Chr 14, 
ERATO Doi 668, expressed; PHD finger protein 11 

Dazl 13164 2.61 deleted in azoospermia-like 

Ddah1 69219 1.72 dimethylarginine dimethylaminohydrolase 1 

Depdc7 211896 1.46 DEP domain containing 7 

Dkkl1 50722 1.59 dickkopf-like 1 

Dnajb9 27362 1.04 predicted gene 6568; DnaJ (Hsp40) homolog, subfamily B, member 9 

Dnajc22 72778 1.27 DnaJ (Hsp40) homolog, subfamily C, member 22 

Dpcr1 268949 2.8 diffuse panbronchiolitis critical region 1 (human) 

Dpep1 13479 1.02 dipeptidase 1 (renal) 

Dpep3 71854 1.14 dipeptidase 3 

Dpp4 13482 3.8 dipeptidylpeptidase 4 

dram2 67171 1.2 DNA-damage regulated autophagy modulator 2; oldy symbol Tmem77 

Eif2ak2 19106 1.16 eukaryotic translation initiation factor 2-alpha kinase 2 

Entpd2 12496 1.28 ectonucleoside triphosphate diphosphohydrolase 2 

Epas1 13819 2.73 endothelial PAS domain protein 1; similar to Endothelial PAS domain protein 1 

Eps8 13860 1.08 epidermal growth factor receptor pathway substrate 8 

Eps8l3 99662 1.57 EPS8-like 3 

Ero1l 50527 1.79 ERO1-like (S. cerevisiae) 

Exoc6 107371 1.07 exocyst complex component 6 

Fgfr4 14186 1.22 fibroblast growth factor receptor 4 

Fhdc1 229474 1.1 FH2 domain containing 1 

Flrt3 71436 1.29 
fibronectin leucine rich transmembrane protein 3; similar to fibronectin leucine rich 
transmembrane protein 3 

Fmo4 226564 1.9 flavin containing monooxygenase 4 

Fndc3a 319448 1.24 fibronectin type III domain containing 3A 

Foxa3 15377 1.12 forkhead box A3 

Fuca2 66848 1.22 fucosidase, alpha-L- 2, plasma 

Gab1 14388 1.58 growth factor receptor bound protein 2-associated protein 1 

Galnt6 207839 1.71 UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 6 

Gcnt4 218476 1.14 predicted gene 73 

Gdpd5 233552 1.11 glycerophosphodiester phosphodiesterase domain containing 5 

Gkn1 66283 2.91 gastrokine 1 

Gm12569 622699 1.1 predicted gene 12569 

Gm1527 385263 1.09 predicted gene 1527; predicted gene 6558 

Gm2889 100040658 1.91 

hypothetical protein LOC100041609; hypothetical protein LOC100044795; predicted gene 
3395; similar to gag polyprotein; hypothetical protein LOC100047557; hypothetical protein 
LOC100040347; hypothetical protein LOC100044384; hypothetical protein LOC100045342; 
hypothetical protein LOC100038979; predicted gene 2889 

Gm2889 100041537 1.265 

hypothetical protein LOC100041609; hypothetical protein LOC100044795; predicted gene 
3395; similar to gag polyprotein; hypothetical protein LOC100047557; hypothetical protein 
LOC100040347; hypothetical protein LOC100044384; hypothetical protein LOC100045342; 
hypothetical protein LOC100038979; predicted gene 2889 

Gm371 236914 1.13 predicted gene 371 

Gm4779 212753 1.17 predicted gene 4779 

Gm5077 317677 1.09 predicted gene 5077 

Gm7455 665033 1.44 predicted gene 7455 

Gm9 194854 1.07 predicted gene 9 

Gns 75612 1.17 glucosamine (N-acetyl)-6-sulfatase 

Gpam 14732 1.07 glycerol-3-phosphate acyltransferase, mitochondrial 

Gpx3 14778 2.19 glutathione peroxidase 3 

Gramd1b 235283 2.37 GRAM domain containing 1B 

Gramd1c 207798 1.53 GRAM domain containing 1C 

Grb10 14783 1.66 growth factor receptor bound protein 10 

Hbegf 15200 1.18 heparin-binding EGF-like growth factor 

Hnf1b 21410 1.92 HNF1 homeobox B 

Hs3st1 15476 1.86 heparan sulfate (glucosamine) 3-O-sulfotransferase 1 

Hsf2bp 74377 1.36 heat shock transcription factor 2 binding protein 

Ifi27l2b 217845 1.08 interferon, alpha-inducible protein 27 like 2B 

Igf2r 16004 1.56 insulin-like growth factor 2 receptor 

Igfbp6 16012 1.09 insulin-like growth factor binding protein 6 
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Il1rl2 107527 1.13 interleukin 1 receptor-like 2 

Il22ra1 230828 2.16 interleukin 22 receptor, alpha 1 

Insig1 231070 1.17 insulin induced gene 1 

Irf7 54123 1.73 interferon regulatory factor 7 

Kit 16590 1.57 kit oncogene 

Klf4 16600 1.08 Kruppel-like factor 4 (gut) 

Klhl2 77113 1.2 kelch-like 2, Mayven (Drosophila) 

Kmo 98256 2.22 kynurenine 3-monooxygenase (kynurenine 3-hydroxylase) 

Lamb2 16779 1.13 laminin, beta 2 

Lcat 16816 1.08 lecithin cholesterol acyltransferase 

Lgi1 56839 1.22 leucine-rich repeat LGI family, member 1; predicted gene 3888 

Lrpap1 16976 1.66 low density lipoprotein receptor-related protein associated protein 1 

Lrrc8b 433926 1.07 leucine rich repeat containing 8 family, member B 

Lrrc8d 231549 1.05 leucine rich repeat containing 8D 

Mael 98558 1.8 maelstrom homolog (Drosophila) 

Magea1 17137 1.12 melanoma antigen, family A, 1 

Man2b2 17160 1.09 mannosidase 2, alpha B2 

Marveld2 218518 1.16 MARVEL (membrane-associating) domain containing 2 

Mcoln2 68279 1.6 mucolipin 2 

Mcoln3 171166 2.2 mucolipin 3 

Me1 17436 1.48 
predicted gene 7049; similar to NADP-dependent malic enzyme (NADP-ME) (Malic enzyme 
1); malic enzyme 1, NADP(+)-dependent, cytosolic 

Mmp3 17392 1.12 matrix metallopeptidase 3 

Mobkl2b 214944 1 MOB1, Mps One Binder kinase activator-like 2B (yeast) 

Morc1 17450 1.31 microrchidia 1 

Mosc1 66112 1.74 
similar to MOSC domain-containing protein 1, mitochondrial; MOCO sulphurase C-terminal 
domain containing 1 

Mtmr7 54384 1.35 myotubularin related protein 7 

Naaa 67111 1.15 N-acylethanolamine acid amidase 

Neu1 18010 1.77 neuraminidase 1 

Npc1l1 237636 1.12 NPC1-like 1 

Nuak2 74137 1.08 NUAK family, SNF1-like kinase, 2 

Oas1c 114643 1.19 2'-5' oligoadenylate synthetase 1C 

Olfr1054 259021 1.61 olfactory receptor 1054 

Osbpl6 99031 1.28 oxysterol binding protein-like 6 

P4ha1 18451 1.54 
procollagen-proline, 2-oxoglutarate 4-dioxygenase (proline 4-hydroxylase), alpha 1 
polypeptide 

Pdia5 72599 1.25 protein disulfide isomerase associated 5 

Pdpn 14726 2.07 podoplanin 

Pdzk1 59020 1.53 PDZ domain containing 1 

Pgam2 56012 1.17 phosphoglycerate mutase 2 

Pgc 109820 3.81 progastricsin (pepsinogen C) 

Phf16 382207 1.25 PHD finger protein 16 

Phf17 269424 1.51 PHD finger protein 17 

Pik3cb 74769 1.21 phosphatidylinositol 3-kinase, catalytic, beta polypeptide 

Pilra 231805 1.09 paired immunoglobin-like type 2 receptor alpha 

Plekhb2 226971 1.41 pleckstrin homology domain containing, family B (evectins) member 2 

Plekhh1 211945 1.3 pleckstrin homology domain containing, family H (with MyTH4 domain) member 1 

Plk3 12795 1.08 polo-like kinase 3 (Drosophila) 

Plscr1 22038 1 phospholipid scramblase 1; predicted gene 5530; hypothetical protein LOC677340 

Podxl 27205 1.47 podocalyxin-like 

Prl2c1 666317 4.36 Prolactin family 2, subfamily c, member 1 

Prl3d1 18775 4.8 prolactin family 3, subfamily d, member 1 

Prl3d3 215029 3.28 prolactin family 3, subfamily d, member 3 

Prl5a1 28078 2.65 prolactin family 5, subfamily a, member 1 

Prl7a1 19113 4.32 prolactin family 7, subfamily a, member 1 

Prl7a2 19114 1.07 prolactin family 7, subfamily a, member 2 

Prlr 19116 1.71 prolactin receptor 

Procr 19124 1.5 protein C receptor, endothelial 

Pros1 19128 1.04 protein S (alpha) 

Psg29 114872 2.99 pregnancy-specific glycoprotein 29 
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Pth1r 19228 1.48 parathyroid hormone 1 receptor 

Ptk6 20459 1.84 PTK6 protein tyrosine kinase 6 

Pyy 217212 2.37 peptide YY 

Rab20 19332 1.04 RAB20, member RAS oncogene family 

Rab30 75985 1.32 RAB30, member RAS oncogene family 

Ralgapa2 241694 1.2 Ral GTPase activating protein, alpha subunit 2 (catalytic) 

Rbmy1a1 19657 2.063333333 RNA binding motif protein, Y chromosome, family 1, member A1 

Rfx6 320995 1.57 regulatory factor X, 6 

Rgs4 19736 1.62 regulator of G-protein signaling 4 

Rhobtb1 69288 1.19 Rho-related BTB domain containing 1 

Rhpn2 52428 1.05 rhophilin, Rho GTPase binding protein 2 

Rnasel 24014 1.33 ribonuclease L (2', 5'-oligoisoadenylate synthetase-dependent) 

S100a1 20193 1.27 S100 calcium binding protein A1 

Scml2 107815 1.19 similar to sex comb on midleg-like 2 (Drosophila); sex comb on midleg-like 2 (Drosophila) 

Scpep1 74617 1.31 serine carboxypeptidase 1 

Serpinb6c 97848 1.85 serine (or cysteine) peptidase inhibitor, clade B, member 6c 

Sfmbt2 353282 1.47 Scm-like with four mbt domains 2 

Sgpp2 433323 1.05 sphingosine-1-phosphate phosphotase 2 

Sh3d19 27059 1.25 SH3 domain protein D19 

Shroom3 27428 1.03 shroom family member 3 

Siae 22619 1.23 sialic acid acetylesterase 

Slc13a3 114644 1.64 solute carrier family 13 (sodium-dependent dicarboxylate transporter), member 3 

Slc13a4 243755 1.97 solute carrier family 13 (sodium/sulfate symporters), member 4 

Slc16a9 66859 1.14 solute carrier family 16 (monocarboxylic acid transporters), member 9 

Slc23a1 20522 1.68 solute carrier family 23 (nucleobase transporters), member 1 

Slc23a3 22626 1.96 solute carrier family 23 (nucleobase transporters), member 3 

Slc28a2 269346 1.27 solute carrier family 28 (sodium-coupled nucleoside transporter), member 2 

Slc30a1 22782 1.27 solute carrier family 30 (zinc transporter), member 1 

Slc47a1 67473 1.21 solute carrier family 47, member 1 

Slc6a4 15567 1.45 solute carrier family 6 (neurotransmitter transporter, serotonin), member 4 

Slc9a6 236794 1.42 solute carrier family 9 (sodium/hydrogen exchanger), member 6 

Slco4c1 227394 1.95 solute carrier organic anion transporter family, member 4C1 

Smc1b 140557 2.07 structural maintenance of chromosomes 1B 

Smoc1 64075 1.22 SPARC related modular calcium binding 1 

Sntb1 20649 1.14 syntrophin, basic 1 

Snx9 66616 1.21 similar to Sorting nexin 9; sorting nexin 9 

Socs3 12702 1.28 suppressor of cytokine signaling 3 

Sohlh2 74434 2.65 spermatogenesis and oogenesis specific basic helix-loop-helix 2 

Spns2 216892 1.23 spinster homolog 2 (Drosophila) 

Spock1 20745 1.39 sparc/osteonectin, cwcv and kazal-like domains proteoglycan 1 

St3gal1 20442 1.5 ST3 beta-galactoside alpha-2,3-sialyltransferase 1 

Stra8 20899 1.41 stimulated by retinoic acid gene 8 

Stx7 53331 1.19 syntaxin 7 

Sycp1 20957 1.45 synaptonemal complex protein 1; similar to testicular protein 

Taf7l 74469 2.17 TAF7-like RNA polymerase II, TATA box binding protein (TBP)-associated factor 

Tcf7l2 21416 1.1 transcription factor 7-like 2, T-cell specific, HMG-box 

Tcfec 21426 1.32 transcription factor EC 

Tcn2 21452 1.37 transcobalamin 2 

Tdh 58865 1.76 L-threonine dehydrogenase; predicted gene 13929 

Tex11 83558 1.48 testis expressed gene 11 

Tex14 83560 1.16 testis expressed gene 14 

Thbd 21824 1.06 thrombomodulin 

Tm6sf2 107770 1.17 transmembrane 6 superfamily member 2 

Tmem116 77462 1.06 transmembrane protein 116 

Tmem130 243339 1.04 transmembrane protein 130 

Tmem144 70652 1.01 transmembrane protein 144 

Tmprss2 50528 2.03 transmembrane protease, serine 2 

Tnfrsf12a 27279 1.22 tumor necrosis factor receptor superfamily, member 12a 

Tor1aip2 240832 1.01 torsin A interacting protein 2 
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Tram2 170829 1.04 translocating chain-associating membrane protein 2 

Trap1a 22037 1.36 tumor rejection antigen P1A 

Trim25 217069 1.04 tripartite motif-containing 25 

Triml2 622117 2 tripartite motif family-like 2 

Trpm6 225997 1.2 transient receptor potential cation channel, subfamily M, member 6 

Tspan9 109246 1.36 tetraspanin 9 

Ttc18 76670 1.6 tetratricopeptide repeat domain 18 

Tuba3b 22147 2.3 predicted gene 5366; tubulin, alpha 3B; tubulin, alpha 3A 

Ubash3b 72828 1.14 ubiquitin associated and SH3 domain containing, B 

Upk3b 100647 1.59 uroplakin 3B 

Usp26 83563 1.36 ubiquitin specific peptidase 26 

Utf1 22286 1.45 undifferentiated embryonic cell transcription factor 1 

Vamp8 22320 1.26 vesicle-associated membrane protein 8 

Vkorc1 27973 1.06 vitamin K epoxide reductase complex, subunit 1 

Wnk2 75607 1.06 WNK lysine deficient protein kinase 2 

Xist 213742 4.99 inactive X specific transcripts 

Xlr5a 574438 2.08 

X-linked lymphocyte-regulated 5B; X-linked lymphocyte-regulated 5D, pseudogene; X-linked 
lymphocyte-regulated 5A; X-linked lymphocyte-regulated 5E, pseudogene; predicted gene, 
EG667719 

Xlr5b 627081 2.16 

X-linked lymphocyte-regulated 5B; X-linked lymphocyte-regulated 5D, pseudogene; X-linked 
lymphocyte-regulated 5A; X-linked lymphocyte-regulated 5E, pseudogene; predicted gene, 
EG667719 

Ypel2 77864 1.56 yippee-like 2 (Drosophila) 

Zbtb16 235320 1.79 zinc finger and BTB domain containing 16 

Zfp42 22702 1.57 zinc finger protein 42 

 

Downregulated genes in dnmt1-/- EBs compared to wt EBs between d4-16 

Gene symbol 
Entrez Gene 

ID 

Fold change 
compared to 

wt 
Gene name 

1700008I05Rik 71841 -1.45 RIKEN cDNA 1700008I05 gene 

3110007F17Rik 73061 -1.06 
predicted gene 5945; RIKEN cDNA 3110007F17 gene; predicted gene 2411; predicted gene 
5167; predicted gene 6604; predicted gene 14957 

Arhgap36 75404 -1.72 Rho GTPase activating protein 36; Synonym 1100001E04Rik 

Car3 12350 -1.77 carbonic anhydrase 3 

Cth 107869 -1.28 cystathionase (cystathionine gamma-lyase) 

Cxxc1 72865  -1.13 CAAX box 1 homolog C (human) 

Dclk1 13175  -1.46 doublecortin-like kinase 1 

Dmrta1 242523 -1.04 doublesex and mab-3 related transcription factor like family A1 

Dub1 13531 -1.29 deubiquitinating enzyme 1; similar to DUB-1 

Efna2 13637 -1.1 ephrin A2 

Epor 13857 -1.07 erythropoietin receptor 

Exoc3l 277978  -1.82 exocyst complex component 3-like 

Frat1 14296 -1.17 frequently rearranged in advanced T-cell lymphomas 

Gfra3 14587 -1.29 glial cell line derived neurotrophic factor family receptor alpha 3 

Gm12387 621880 -1.06 predicted gene 12387 

Gpr165 76206 -1.14 G protein-coupled receptor 165 

Gria4 14802  -1.14 glutamate receptor, ionotropic, AMPA4 (alpha 4) 

Khk 16548 -1.02 ketohexokinase 

L1cam 16728 -1.02 L1 cell adhesion molecule 

Lmo2 16909 -1.13 LIM domain only 2 

Mesp1 17292 -2.3 mesoderm posterior 1 

Mesp2 17293 -1.4 mesoderm posterior 2 

Ncs1 14299 -1.31 neuronal calcium sensor 1, Freq 

Nkd1 93960 -1.36 naked cuticle 1 homolog (Drosophila); similar to naked cuticle 1 homolog 

Olfm1 56177 -1.04 olfactomedin 1 

Olfr893 258333 -1.2 olfactory receptor 893 

Pgm2l1 70974 -1.14 phosphoglucomutase 2-like 1 

Rasgrp3 240168 -1.55 RAS, guanyl releasing protein 3 

Samd3 268288 -1.17 sterile alpha motif domain containing 3 

Slc38a5 209837 -1.08 solute carrier family 38, member 5 

Slc39a10 227059 -1.07 solute carrier family 39 (zinc transporter), member 10 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=72865
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=13175
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=277978
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=14802
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Tmem47 192216 -1.07 transmembrane protein 47 

Wdr16 71860 -1.15 WD repeat domain 16 

 

Upregulated genes in TKO EBs compared to wt EBs between d4-16 

Gene symbol 
Entrez Gene 

ID 

Fold change 
compared to 

wt 
Gene name 

1700013H16Rik 75514 2.57 RIKEN cDNA 1700013H16 gene 

1700080O16Rik 74279 1.12 RIKEN cDNA 1700080O16 gene 

2410004A20Rik 66991 1.26 RIKEN cDNA 2410004A20 gene 

4632428N05Rik 74048 1.05 RIKEN cDNA 4632428N05 gene 

Agpat9 231510 1.37 1-acylglycerol-3-phosphate O-acyltransferase 9 

Aire 11634 1.47 autoimmune regulator (autoimmune polyendocrinopathy candidiasis ectodermal dystrophy) 

Alpk3 116904 1.06 alpha-kinase 3 

Anxa2 12306 2.5 
similar to Annexin A2 (Annexin II) (Lipocortin II) (Calpactin I heavy chain) (Chromobindin-8) 
(p36) (Protein I) (Placental anticoagulant protein IV) (PAP-IV); annexin A2 

As3mt 57344 1.1 arsenic (+3 oxidation state) methyltransferase 

Ascl2 17173 1.28 achaete-scute complex homolog 2 (Drosophila) 

Btnl7 195349 1.18 butyrophilin-like 7 

Car7 12354 1.64 carbonic anhydrase 7 

Cdyl2 75796 1.36 chromodomain protein, Y chromosome-like 2 

Ceacam15 101434 2.53 carcinoembryonic antigen-related cell adhesion molecule 15 

Ceacam9 26368 2.58 carcinoembryonic antigen-related cell adhesion molecule 9 

Clic6 209195 2.17 chloride intracellular channel 6 

Cln6 76524 1.28 ceroid-lipofuscinosis, neuronal 6 

Cntn5 244682 1.65 contactin 5 

Cpn1 93721 1.26 carboxypeptidase N, polypeptide 1 

Crygd 12967 1.49 crystallin, gamma D 

Ctsh 13036 2.26 cathepsin H 

D14Ertd668e 219132 1.58 
predicted gene 6907; predicted gene 6904; predicted gene 4902; DNA segment, Chr 14, 
ERATO Doi 668, expressed; PHD finger protein 11 

Dazl 13164 2.57 deleted in azoospermia-like 

Dkkl1 50722 1.63 dickkopf-like 1 

Dmrt1 50796 1.2 doublesex and mab-3 related transcription factor 1 

Dpep3 71854 1.22 dipeptidase 3 

Dpp4 13482 1.97 dipeptidylpeptidase 4 

Dppa3 73708 1.37 developmental pluripotency-associated 3; predicted gene 6269 

Dysf 26903 1.1 dysferlin 

Efnb1 13641 1.07 ephrin B1 

Gata3 14462 1.51 GATA binding protein 3 

Gjb3 14620 1.87 gap junction protein, beta 3 

Gjb5 14622 1.51 gap junction protein, beta 5 

Gm10439 382243 2.02 

predicted gene, OTTMUSG00000018964; predicted gene, OTTMUSG00000019138; 
predicted gene 15097; predicted gene 15085; predicted gene 15093; predicted gene 15109; 
predicted gene 15114; predicted gene 15128; ovary testis transcribed; similar to ovary testis 
transcribed; novel protein similar to ovary testis transcribed (Ott) 

Gm13498 227885 1.62 predicted gene 13498 

Gm2889 100040658 1.46 

hypothetical protein LOC100041609; hypothetical protein LOC100044795; predicted gene 
3395; similar to gag polyprotein; hypothetical protein LOC100047557; hypothetical protein 
LOC100040347; hypothetical protein LOC100044384; hypothetical protein LOC100045342; 
hypothetical protein LOC100038979; predicted gene 2889 

Gm773 331416 2.48 predicted gene 773 

Gm9 194854 1.5 predicted gene 9 

Got1l1 76615 1.09 glutamic-oxaloacetic transaminase 1-like 1 

Gramd1c 207798 1.5 GRAM domain containing 1C 

Grin1 14810 1.63 glutamate receptor, ionotropic, NMDA1 (zeta 1) 

Hormad2 75828 1.34 HORMA domain containing 2 

Htatip2 53415  1.04 HIV-1 tat interactive protein 2, homolog (human) 

Igfbp6 16012 1.22 insulin-like growth factor binding protein 6 

Inpp5d 16331 1.28 inositol polyphosphate-5-phosphatase D 

Klf4 16600 1.04 Kruppel-like factor 4 (gut) 

Krt8 16691 1.97 predicted gene 5604; keratin 8 

Luzp4 434865 2.34 predicted gene, OTTMUSG00000019001; leucine zipper protein 4 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=53415
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Ly6a 110454 2.42 lymphocyte antigen 6 complex, locus A 

Ly75 17076 1.25 lymphocyte antigen 75 

Magea1 17137 2.01 melanoma antigen, family A, 1 

Magea2 17138 1.8 melanoma antigen, family A, 2 

Magea6 17142 1.62 melanoma antigen, family A, 6 

Me1 17436 1.03 
predicted gene 7049; similar to NADP-dependent malic enzyme (NADP-ME) (Malic enzyme 
1); malic enzyme 1, NADP(+)-dependent, cytosolic 

Morc1 17450 1.31 microrchidia 1 

Nxf7 170722 2.21 nuclear RNA export factor 7 

Olfr1054 259021 1.06 olfactory receptor 1054 

Ott 18422 2.211111111 

predicted gene, OTTMUSG00000018964; predicted gene, OTTMUSG00000019138; 
predicted gene 15097; predicted gene 15085; predicted gene 15093; predicted gene 15109; 
predicted gene 15114; predicted gene 15128; ovary testis transcribed; similar to ovary testis 
transcribed; novel protein similar to ovary testis transcribed (Ott) 

Pgc 109820 2.22 progastricsin (pepsinogen C) 

Phf16 382207 1.11 PHD finger protein 16 

Plac1 56096 2.9 placental specific protein 1 

Pnma5 385377 1.28 paraneoplastic antigen family 5 

Prl2c1 666317 3.14 Prolactin family 2, subfamily c, member 1 

Prl3d1 18775 3.77 prolactin family 3, subfamily d, member 1 

Prl5a1 28078 2.81 prolactin family 5, subfamily a, member 1 

Prl7a1 19113 3.2 prolactin family 7, subfamily a, member 1 

Prss42 235628 1.1 protease serine 42; old symbol Tessp2 

Rbm44 329207 1.41 RNA binding motif protein 44 

Rbmy1a1 19657 1.723333333 RNA binding motif protein, Y chromosome, family 1, member A1 

Sbsn 282619 1.13 suprabasin 

Scml2 107815 1.44 similar to sex comb on midleg-like 2 (Drosophila); sex comb on midleg-like 2 (Drosophila) 

Serpinb1c 380839 1.33 serine (or cysteine) peptidase inhibitor, clade B, member 1c 

Sfmbt2 353282 1.88 Scm-like with four mbt domains 2 

Shroom1 71774 1.08 shroom family member 1 

Slc13a4 243755 1.99 solute carrier family 13 (sodium/sulfate symporters), member 4 

Slc25a20 57279 1.15 solute carrier family 25 (mitochondrial carnitine/acylcarnitine translocase), member 20 

Slc6a4 15567 1.21 solute carrier family 6 (neurotransmitter transporter, serotonin), member 4 

Smc1b 140557 2.65 structural maintenance of chromosomes 1B 

Smtnl2 276829 1.24 smoothelin-like 2 

Sohlh2 74434 1.94 spermatogenesis and oogenesis specific basic helix-loop-helix 2 

Sox15 20670 1.13 SRY-box containing gene 16; SRY-box containing gene 15 

Stag3 50878 1.33 stromal antigen 3 

Stra8 20899 1.82 stimulated by retinoic acid gene 8 

Tcfap2c 21420 1.77 transcription factor AP-2, gamma 

Tex14 83560 1.5 testis expressed gene 14 

Tmem231 234740 1.05 transmembrane protein 231; synonym  4932417I16Rik  

Tmprss2 50528 1.84 transmembrane protease, serine 2 

Ttc18 76670 2.45 tetratricopeptide repeat domain 18 

Tuba3b 22147 1.12 predicted gene 5366; tubulin, alpha 3B; tubulin, alpha 3A 

Usp26 83563 2.19 ubiquitin specific peptidase 26 

Xist 213742 2.78 inactive X specific transcripts 

Xlr5a 574438 2.31 

X-linked lymphocyte-regulated 5B; X-linked lymphocyte-regulated 5D, pseudogene; X-linked 
lymphocyte-regulated 5A; X-linked lymphocyte-regulated 5E, pseudogene; predicted gene, 
EG667719 

Xlr5b 627081 2.42 

X-linked lymphocyte-regulated 5B; X-linked lymphocyte-regulated 5D, pseudogene; X-linked 
lymphocyte-regulated 5A; X-linked lymphocyte-regulated 5E, pseudogene; predicted gene, 
EG667719 

Zbtb10 229055 1.41 zinc finger and BTB domain containing 10 

Zbtb16 235320 1.13 zinc finger and BTB domain containing 16 

Zc3h6 78751 1.19 zinc finger CCCH type containing 6 

 

Downregulated genes in TKO EBs compared to wt EBs between d4-16 

Gene symbol 
Entrez Gene 

ID 

Fold change 
compared to 

wt 
Gene name 

A130022J15Rik 101351 -1.15 RIKEN cDNA A130022J15 gene 

Aadat 23923 -1.01 aminoadipate aminotransferase 
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Adamts15 235130 -1.35 
a disintegrin-like and metallopeptidase (reprolysin type) with thrombospondin type 1 motif, 
15 

Adamts6 108154 -1.5 a disintegrin-like and metallopeptidase (reprolysin type) with thrombospondin type 1 motif, 6 

Aff3 16764 -1.15 
AF4/FMR2 family, member 3; similar to AF4/FMR2 family member 3 (LAF-4 protein) 
(Lymphoid nuclear protein related to AF4) 

AI504432 229694 -1.17 expressed sequence AI504432 

Antxr1 69538 -1.04 anthrax toxin receptor 1 

Apba2 11784 -1.07 amyloid beta (A4) precursor protein-binding, family A, member 2 

Arrb1 109689 -1.1 arrestin, beta 1 

Bend3 331623 -1.03 BEN domain containing 3 

Cachd1 320508 -1.55 cache domain containing 1; similar to Cache domain containing 1 

Car3 12350 -1.64 carbonic anhydrase 3 

Cask 12361 -1.29 calcium/calmodulin-dependent serine protein kinase (MAGUK family) 

Casp3 12367 -1.09 caspase 3 

Ccdc85a 216613 -1.08 coiled-coil domain containing 85A 

Ccl20 20297 -1.03 chemokine (C-C motif) ligand 20 

Cdh10 320873 -1.07 cadherin 10 

Cdh11 12552 -1.22 cadherin 11 

Cdh9 12565 -1.14 cadherin 9 

Coro1a 12721 -1.27 coronin, actin binding protein 1A 

Cpe 12876 -1.54 carboxypeptidase E; similar to carboxypeptidase E 

Cxx1b 553127 -1.19 
CAAX box 1 homolog A (human); CAAX box 1 homolog B (human); similar to mammalian 
retrotransposon derived 8b 

Cxx1c 72865 -1.62 CAAX box 1 homolog C (human) 

Cyp2j6 13110 -1.12 cytochrome P450, family 2, subfamily j, polypeptide 6 

Cysltr1 58861 -1.29 cysteinyl leukotriene receptor 1 

Cyyr1 224405 -1.19 cysteine and tyrosine-rich protein 1 

Dab1 13131 -1.19 disabled homolog 1 (Drosophila) 

Dapk1 69635 -1.01 death associated protein kinase 1 

Dbn1 56320 -1.11 drebrin 1 

Dclk1 13175 -1.55 doublecortin-like kinase 1 

Ebf1 13591 -1.915 early B-cell factor 1 

Elovl4 83603 -1 elongation of very long chain fatty acids (FEN1/Elo2, SUR4/Elo3, yeast)-like 4 

Enpp2 18606 -2.1 ectonucleotide pyrophosphatase/phosphodiesterase 2 

Etv1 14009 -1.725 ets variant gene 1 

Etv6 14011 -1.18 ets variant gene 6 (TEL oncogene) 

Exoc3l 277978 -2.3 exocyst complex component 3-like 

Fabp7 12140 -1.78 fatty acid binding protein 7, brain 

Fam115c 232748 -1.16 family with sequence similarity 115, member C 

Fam171b 241520 -1.85 family with sequence similarity 171, member B 

Fam19a4 320701 -1.42 family with sequence similarity 19, member A4 

Fam38b 667742 -1.29 family with sequence similarity 38, member B2 

Fat3 270120 -1.2525 FAT tumor suppressor homolog 3 (Drosophila) 

Foxi3 232077 -1.23 forkhead box I3 

Fst 14313 -3.1 follistatin 

Fzd3 14365 -1.06 frizzled homolog 3 (Drosophila) 

Gabra3 14396 -1.5 gamma-aminobutyric acid (GABA) A receptor, subunit alpha 3 

Gria4 14802 -1.47 glutamate receptor, ionotropic, AMPA4 (alpha 4); hypothetical protein LOC100044208 

Gtf3c6 67371 -1.12 general transcription factor IIIC, polypeptide 6, alpha 

Gucy1a2 234889 -1.25 hypothetical protein LOC100044212; guanylate cyclase 1, soluble, alpha 2 

Hmcn1 545370 
-

1.351666667 hemicentin 1 

Hunk 26559 -1.13 
similar to putative serine/threonine protein kinase MAK-V; similar to hormonally upregulated 
Neu-associated kinase; hormonally upregulated Neu-associated kinase 

Ids 15931 -1 iduronate 2-sulfatase 

Jakmip2 76217 -1.64 janus kinase and microtubule interacting protein 2 

Jam3 83964 -1.08 junction adhesion molecule 3 

Kcng3 225030 -1 potassium voltage-gated channel, subfamily G, member 3 

Kcnh8 211468 -1.15 potassium voltage-gated channel, subfamily H (eag-related), member 8 

Kif3c 16570 -1.1 kinesin family member 3C 

Lpar4 78134 -2.26 lysophosphatidic acid receptor 4 

Lphn2 99633 -1.64 latrophilin 2 
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Magel2 27385 -1.81 melanoma antigen, family L, 2 

Mapk4 225724 -1.04 mitogen-activated protein kinase 4 

Mapre2 212307 -1.24 microtubule-associated protein, RP/EB family, member 2 

Mcc 328949 -1.33 mutated in colorectal cancers 

Mkx 210719 -1.05 mohawk homeobox 

Mmp25 240047 -1.81 matrix metallopeptidase 25 

Naalad2 72560 -1.37 N-acetylated alpha-linked acidic dipeptidase 2 

Nefl 18039 -2.71 neurofilament, light polypeptide 

Neto2 74513 -2.1 neuropilin (NRP) and tolloid (TLL)-like 2 

Nova1 664883 -1.19 neuro-oncological ventral antigen 1 

Nrarp 67122 -1.1 Notch-regulated ankyrin repeat protein 

Nudt19 110959 -1.03 nudix (nucleoside diphosphate linked moiety X)-type motif 19 

Parp8 52552 -1.61 poly (ADP-ribose) polymerase family, member 8 

Pbx1 18514 -1.05 
pre B-cell leukemia transcription factor 1; region containing RIKEN cDNA 2310056B04 gene; 
pre B-cell leukemia transcription factor 1 

Pde2a 207728 -1.2 phosphodiesterase 2A, cGMP-stimulated 

Pde4d 238871 -1.14 phosphodiesterase 4D, cAMP specific 

Pde5a 242202 -1.21 phosphodiesterase 5A, cGMP-specific 

Pgap1 241062 -1.34 post-GPI attachment to proteins 1 

Plch1 269437 -1.06 phospholipase C, eta 1 

Plxdc2 67448 -1.24 plexin domain containing 2 

Ppp4r4 74521 -2.66 protein phosphatase 4, regulatory subunit 4 

Prom1 19126 -1.2 prominin 1 

Prps2 110639 -1.06 phosphoribosyl pyrophosphate synthetase 2 

Ptk7 71461 -1.14 PTK7 protein tyrosine kinase 7 

Rab38 72433 -1.13 RAB38, member of RAS oncogene family 

Rasgrp3 240168 -1.48 RAS, guanyl releasing protein 3 

Rragd 52187 -1.09 Ras-related GTP binding D 

Rxrg 20183 -1.44 retinoid X receptor gamma 

Sall2 50524 -1.22 sal-like 2 (Drosophila) 

Sall3 20689 -1.02 sal-like 3 (Drosophila) 

Sema6a 20358 -1.84 sema domain, transmembrane domain (TM), and cytoplasmic domain, (semaphorin) 6A 

Shc4 271849 -1.31 SHC (Src homology 2 domain containing) family, member 4 

Slc27a2 26458 -2.02 solute carrier family 27 (fatty acid transporter), member 2 

Slc35f1 215085 -1.11 solute carrier family 35, member F1 

Slco5a1 240726 -1.04 solute carrier organic anion transporter family, member 5A1 

Smarca1 93761 -1.43 
SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, 
member 1 

Socs2 216233 -1.34 suppressor of cytokine signaling 2; predicted gene 8000 

Sox4 20677 -1 SRY-box containing gene 19; SRY-box containing gene 4 

Sp8 320145 -1.07 trans-acting transcription factor 8 

Spry2 24064 -1.43 sprouty homolog 2 (Drosophila) 

Sssca1 56390 -1.155 Sjogren's syndrome/scleroderma autoantigen 1 homolog (human) 

St6gal2 240119 -2.08 beta galactoside alpha 2,6 sialyltransferase 2 

Stox2 71069 -1.21 storkhead box 2 

Sulf1 240725 -1.66 sulfatase 1 

Syngap1 240057 -1.25 synaptic Ras GTPase activating protein 1 homolog (rat) 

Syt11 229521 -1.3 synaptotagmin XI; similar to synaptotagmin XI 

T 20997 -5.13 brachyruy 

Thbs3 21827 -1.18 thrombospondin 3 

Tmem47 192216 -1.04 transmembrane protein 47 

Tmem90b  433485 -1.41 transmembrane protein 90B; old symbol Gm14134 

Trpa1 277328 -1.09 transient receptor potential cation channel, subfamily A, member 1 

Tspan6 56496 -1.74 tetraspanin 6 

Wnt8a 20890 -2.3 wingless-related MMTV integration site 8A 

Zdhhc15 108672 -1.06 zinc finger, DHHC domain containing 15 

Zfp521 225207 -1.04 zinc finger protein 521 

Zfp608 269023 -1.19 zinc finger protein 608 

Zfp946 74149 -1.18 
RIKEN cDNA 1300003B13 gene; hypothetical protein LOC100044281, old symbol 
1300003B13Rik 

Zfp882  382019  -1.48 zinc finger protein 882 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=382019
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Concordantly upregulated genes in wt, dnmt1-/- and TKO Ebs between d4-16 

Gene symbol 
Entrez Gene 

ID 
Fold 

change wt 

Fold 
change 
dnmt1-/- 

Fold change 
TKO 

Gene name 

1110003E01Rik 482771 1.44 1.25 1.06 RIKEN cDNA 1110003E01 gene 

1600029D21Rik 425870 2.68 2.04 2.27 RIKEN cDNA 1600029D21 gene 

A2m 445751 2.26 2.19 2.1 alpha-2-macroglobulin 

Abcc2 451709 2.68 2.91 2.08 ATP-binding cassette, sub-family C (CFTR/MRP), member 2 

Afp 452310 7.45 6.91 4.42 alpha fetoprotein 

Akap2 424354 1.2 1.085 1.02 A kinase (PRKA) anchor protein 2; paralemmin 2 

Aldh3b2 482013 1.68 1.06 1.5 
aldehyde dehydrogenase 3 family, member B2; RIKEN cDNA 
1700055N04 gene 

Anxa1 425879 4.82 2.15 1.28 annexin A1 

Apoa1 431055 5.81 5.68 4.13 apolipoprotein A-I 

Apoa2 483037 3.72 5.14 2.44 apolipoprotein A-II 

Apob 447688 4.82 5.1 3.61 apolipoprotein B 

Apoc2 461471 3.26 4.65 3.16 apolipoprotein C-II 

Apom 460325 2.39 5.32 3.67 apolipoprotein M 

Aqp3 476854 1.98 2.56 1.83 aquaporin 3 

Aqp8 425939 3.37 4.15 2.57 aquaporin 8 

Arhgef6 421496 4.29 4.06 3.54 Rac/Cdc42 guanine nucleotide exchange factor (GEF) 6 

Atp11a 433815 2.35 1.66 1.2 ATPase, class VI, type 11A 

B4galnt2 430216 2.26 4.28 2.66 beta-1,4-N-acetyl-galactosaminyl transferase 2 

Cd68 462582 2.76 1.92 1.83 CD68 antigen 

Cd82 451736 3.05 2.69 2.42 CD82 antigen 

Cdh5 446981 2.85 2.29 1.36 cadherin 5 

Cdhr2 268663  2.6 3.25 1.51 cadherin-related family member 2 

Cdkn1c 475371 1.62 2.8 1.94 cyclin-dependent kinase inhibitor 1C (P57) 

Cfb 425397 3.17 3.12 1.06 complement factor B 

Cfi 432302 2.38 2.87 1.66 complement component factor i 

Clu 443598 3.67 2.84 1.3 similar to clusterin; clusterin 

Csf1r 430511 3.41 1.95 1.27 colony stimulating factor 1 receptor 

Ctsb 477096 2.47 2.01 1.25 cathepsin B 

Ctsj 468291 3.51 3.89 2.43 cathepsin J 

Ctsz 441359 1.08 1.85 1.09 cathepsin Z 

Cubn 474472 3.76 5.01 3.16 cubilin (intrinsic factor-cobalamin receptor) 

Dab2 448546 2.22 3.59 2.36 disabled homolog 2 (Drosophila) 

Dmrtc1b 432258 1.13 1.24 1.22 DMRT-like family C1b 

Dram1 426028 1.12 2.28 1.16 RIKEN cDNA 1200002N14 gene 

Enpep 444098 2.86 3.34 1.18 glutamyl aminopeptidase 

Entpd1 452537 1.67 1.85 1.99 ectonucleoside triphosphate diphosphohydrolase 1 

Ephx1 460565 2.97 1.41 1.07 epoxide hydrolase 1, microsomal 

Eps8l2 425066 1.77 1.66 1.13 EPS8-like 2 

Ets2 428496 1.59 1.39 1.34 E26 avian leukemia oncogene 2, 3' domain 

F2 448405 2.9 3.71 1.45 coagulation factor II 

Fabp3 422118 1.71 2.66 1.815 
fatty acid binding protein 3, muscle and heart; similar to 
mammary-derived growth inhibitor 

Fgb 430358 5.52 5.53 3.04 fibrinogen beta chain 

Fndc3b 456688 1.65 1.75 1.68 fibronectin type III domain containing 3B 

Folr1 430285 1.82 2.9 1.29 folate receptor 1 (adult) 

Fstl3 425869 1.59 1.48 1.69 follistatin-like 3 

Gc 449785 4.62 3.49 1.3 group specific component 

Gjb2 432541 2.9 2.45 2.67 gap junction protein, beta 2 

Gm2a 439285 2.43 2.2 1.89 GM2 ganglioside activator protein 

Gpr116 446182 2.93 2.18 1.95 G protein-coupled receptor 116 

Gpr126 462385 2.83 1.69 1.28 G protein-coupled receptor 126 

Gsn 438270 2.13 2.27 2 gelsolin 

Gstm3 434159 4.325 2.37 1.48 glutathione S-transferase, mu 3 

Habp2 448617 2.3 3.45 1.41 hyaluronic acid binding protein 2 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=268663
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Hkdc1 471239 1.86 2.96 1.61 hexokinase domain containing 1 

Hnf4a 442159 1.8 2.25 1.28 hepatic nuclear factor 4, alpha 

Hpgd 456111 2.82 1.45 1.21 hydroxyprostaglandin dehydrogenase 15 (NAD) 

Hsd17b2 427962 4.01 3.33 2.31 hydroxysteroid (17-beta) dehydrogenase 2 

Igfbp1 467817 5.1 5.04 1.31 insulin-like growth factor binding protein 1 

Itgb3 461496 1.41 1.26 2.12 integrin beta 3 

Kdelr3 441810 2.33 2.48 1.47 
KDEL (Lys-Asp-Glu-Leu) endoplasmic reticulum protein retention 
receptor 3 

Klb 426337 1.21 2.89 1.15 klotho beta 

Krt14 481757 1.94 1.77 2.15 keratin 14 

Krt19 448028 2.23 1.77 2.48 keratin 19 

Krt7 433153 4.01 2.25 2.68 keratin 7 

Lgals2 429829 2.26 4.99 2.82 lectin, galactose-binding, soluble 2 

Lgals3 434018 2.36 1.77 1.42 lectin, galactose binding, soluble 3 

Lgals9 452854 4.72 3.44 2.65 lectin, galactose binding, soluble 9 

Lgmn 446275 1.58 2.55 1.93 legumain 

Mbnl2 457193 1.8 1.92 1.34 muscleblind-like 2 

Mfge8 455998 1.24 1.56 1.51 milk fat globule-EGF factor 8 protein 

Mia2 433125 2.6 3.91 2.75 melanoma inhibitory activity 2 

Mttp 433105 1.63 3.67 2.34 microsomal triglyceride transfer protein 

Muc13 455791 3.29 3.07 1.6 mucin 13, epithelial transmembrane 

Mvp 429449 1.73 1.85 1.34 major vault protein 

Myl4 447204 3.21 2.86 1.62 myosin, light polypeptide 4 

Myof 478519 2.59 2.31 1.3 myoferlin 

Ndrg1 465817 2.29 1.68 1.98 N-myc downstream regulated gene 1 

Nid1 478950 2.25 1.86 1.35 
similar to Nidogen precursor (Entactin); nidogen 1; similar to 
Nid1 protein 

Nostrin 464009 1.45 3.15 2.1 nitric oxide synthase trafficker 

Nqo1 481143 3.8 2.75 1.56 NAD(P)H dehydrogenase, quinone 1 

Nr2f2 434891 4.37 1.98 1.24 
similar to COUP-TFI; nuclear receptor subfamily 2, group F, 
member 2 

Nrk 479394 2.8 3.04 2.98 Nik related kinase 

P2rx4 463310 1.2 2.55 1.23 purinergic receptor P2X, ligand-gated ion channel 4 

Pcbd1 436208 1.35 2.41 1.6 
pterin 4 alpha carbinolamine dehydratase/dimerization cofactor 
of hepatocyte nuclear factor 1 alpha (TCF1) 1 

Pde8a 435616 1.18 1.42 1.07 
phosphodiesterase 8A; similar to cAMP-specific cyclic nucleotide 
phosphodiesterase PDE8; MMPDE8 

Pla2g12b 466028 1.49 2.35 1.56 phospholipase A2, group XIIB 

Pparg 459227 2.03 1.15 1.55 peroxisome proliferator activated receptor gamma 

Prl2a1 458150 5.01 4.87 3.54 prolactin family 2, subfamily a, member 1 

Prl2b1 437269 3.44 2.71 1.76 prolactin family 2, subfamily b, member 1 

Prl2c3 425724 2.11 4.69 2.36 
prolactin family 2, subfamily c, member 3; prolactin family 2, 
subfamily c, member 4 

Prl2c5 437114 6.04 6.99 5.09 prolactin family 2, subfamily c, member 5 

Prl4a1 453799 1.08 3.38 2.85 prolactin family 4, subfamily a, member 1 

Prl7b1 459814 3.58 4.4 2.95 prolactin family 7, subfamily b, member 1 

Prl7d1 464374 4.2 5.17 4 prolactin family 7, subfamily d, member 1 

Prl8a9 428579 4.58 3.61 2.03 prolactin family8, subfamily a, member 9 

Prr13 424501 1.3 1.55 1.1 proline rich 13 

Rassf4 423866 1.28 1.44 1.01 Ras association (RalGDS/AF-6) domain family member 4 

Rbp4 433458 4.6 6.09 4.52 retinol binding protein 4, plasma 

Reep6 469675 1.48 1.79 1.05 receptor accessory protein 6 

Rhox6 429981 2.98 2.13 2.38 reproductive homeobox 6 

Rhox9 445775 3.57 2.68 2.55 reproductive homeobox 9 

Sct 423804 2.28 2.59 2.25 secretin 

Serpinb9d 478140 1.7 2.57 2.12 serine (or cysteine) peptidase inhibitor, clade B, member 9d 

Serpinb9e 424972 5.61 4.96 4.24 serine (or cysteine) peptidase inhibitor, clade B, member 9e 

Serpinb9f 425674 4.36 4.19 3.53 serine (or cysteine) peptidase inhibitor, clade B, member 9f 

Serpinb9g 442453 4.3 4.12 3.415 serine (or cysteine) peptidase inhibitor, clade B, member 9g 

Serpine1 422178 2.53 3.24 2.85 serine (or cysteine) peptidase inhibitor, clade E, member 1 

Serpinf2 479980 3.82 3.39 1.58 serine (or cysteine) peptidase inhibitor, clade F, member 2 

Slc1a1 451162 1.24 1.46 1.46 
solute carrier family 1 (neuronal/epithelial high affinity glutamate 
transporter, system Xag), member 1 

Slc34a2 440546 2.25 3.23 2.24 solute carrier family 34 (sodium phosphate), member 2 
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Slc44a4 457306 1.62 1.87 1.03 solute carrier family 44, member 4 

Slc7a1 475083 1.15 1.14 1.34 
solute carrier family 7 (cationic amino acid transporter, y+ 
system), member 1 

Slc7a9 456728 1.55 3.25 1.54 
solute carrier family 7 (cationic amino acid transporter, y+ 
system), member 9 

Slco2a1 475464 2.99 3.62 1.9 solute carrier organic anion transporter family, member 2a1 

Soat2 464985 1.29 2.34 1.61 sterol O-acyltransferase 2 

Tfpi 464234 1.98 1.73 1.21 tissue factor pathway inhibitor 

Tgm2 437315 3.44 3.05 2.5 transglutaminase 2, C polypeptide 

Tinagl1 480993 3.27 3.03 2.24 tubulointerstitial nephritis antigen-like 1 

Tmem106a 433088 1.35 1.66 1.04 transmembrane protein 106A 

Tnnc1 435600 1.4 1.99 1.08 troponin C, cardiac/slow skeletal 

Tnnt2 454486 3.42 2.26 1.08 troponin T2, cardiac 

Trf 433235 6.81 6.09 4.07 transferrin 

Tspan8 475891 3.96 3.07 1.41 tetraspanin 8 

Ttr 439049 4.83 5.14 3.68 transthyretin 

Txnip 468587 1.57 1.13 1.22 thioredoxin interacting protein 

Vegfa 480917 1.86 1.59 1.52 vascular endothelial growth factor A 

Vil1 444016 1.82 2.2 1.22 villin 1 

Vill 464133 1.64 1.17 1.25 villin-like 

Vnn1 436866 4.12 3.62 2.3 vanin 1 

 

Concordantly downregulated genes in wt, dnmt1-/- and TKO Ebs between d4-16 

Gene symbol 
Entrez Gene 

ID 
Fold 

change wt 

Fold 
change 
dnmt1-/- 

Fold change 
TKO 

Gene name 

7420416P09Rik 432677 -3.31 -1.09 -2.02 RIKEN cDNA 7420416P09 gene 

Alox15 11687 -2.77 -2.95 -2.62 arachidonate 15-lipoxygenase 

Amot 27494 -1.89 -1.29 -1.17 angiomotin 

Asb4 65255 -1.41 -2.74 -1.47 ankyrin repeat and SOCS box-containing 4 

Axin2 12006 -1.1 -1.02 -1.36 axin2 

Dgkk 331374 -1.94 -1.07 -1.18 diacylglycerol kinase kappa 

Dpysl5 65254 -1.42 -1.16 -1.04 dihydropyrimidinase-like 5 

Eomes 13813 -3.34 -2.45 -2.75 eomesodermin homolog (Xenopus laevis) 

Etv2 14008 -1.44 -1.91 -1.78 similar to ETS related protein 71; ets variant gene 2 

Fgf15 14170 -2.48 -1.21 -1.37 fibroblast growth factor 15 

Hdx 245596 -1.32 -1.26 -1.45 highly divergent homeobox 

Ina 226180 -1.29 -1.09 -1.47 internexin neuronal intermediate filament protein, alpha 

Mixl1 27217 -2.48 -2.58 -3.04 Mix1 homeobox-like 1 (Xenopus laevis) 

Phf6 70998 -1.11 -1.17 -1.2 PHD finger protein 6 

Trh 22044 -2.22 -1.15 -2.06 thyrotropin releasing hormone 

 

Concordantly upregulated genes in wt and dnmt1-/- EBs between d4-16 

Gene symbol 
Entrez Gene 

ID 
Fold 

change wt 
Fold change 

dnmt1-/- 
Gene name 

0610010O12Rik 66060 1.08 1.54 RIKEN cDNA 0610010O12 gene 

1110036O03Rik 66180 1.38 1.17 RIKEN cDNA 1110036O03 gene 

1200009I06Rik 74190 1.08 1.27 RIKEN cDNA 1200009I06 gene 

1300017J02Rik 71775 1.65 1.72 RIKEN cDNA 1300017J02 gene 

1810011O10Rik 69068 2.99 1.48 RIKEN cDNA 1810011O10 gene 

2610528J11Rik 66451 1.95 2.43 RIKEN cDNA 2610528J11 gene 

2810459M11Rik 72792 1.04 1.59 RIKEN cDNA 2810459M11 gene 

4930506M07Rik 71653 1.42 1.09 RIKEN cDNA 4930506M07 gene 

8430408G22Rik 213393 2.75 1.72 RIKEN cDNA 8430408G22 gene 

9530068E07Rik 213673 1.62 1.06 RIKEN cDNA 9530068E07 gene 

A1cf 69865 1.2 1.24 APOBEC1 complementation factor 

A430107O13Rik 214642 2.46 1.22 RIKEN cDNA A430107O13 gene 

Abca1 11303 2.87 1.82 ATP-binding cassette, sub-family A (ABC1), member 1 

Abca3 27410 1.03 1.28 ATP-binding cassette, sub-family A (ABC1), member 3 

Acox1 11430 1.52 1.25 acyl-Coenzyme A oxidase 1, palmitoyl 
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Acsl1 14081 1.42 1.14 acyl-CoA synthetase long-chain family member 1 

Acta2 11475 3.85 2.56 actin, alpha 2, smooth muscle, aorta 

Actc1 11464 5.01 3.88 actin, alpha, cardiac muscle 1; similar to alpha-actin (AA 27-375) 

Adamts1 11504 2.79 1.67 
a disintegrin-like and metallopeptidase (reprolysin type) with thrombospondin 
type 1 motif, 1 

Adh1 11522 3.7 1.35 alcohol dehydrogenase 1 (class I) 

Adm 11535 2.25 1.74 adrenomedullin 

Afap1l2 226250 1.41 1.38 actin filament associated protein 1-like 2 

Afm 280662 2.33 1.56 afamin 

Aga 11593 1.44 1.46 aspartylglucosaminidase 

Ahnak2 100041194 2.02 1.27 AHNAK nucleoprotein 2; similar to Unknown (protein for IMAGE:3599271) 

Ahsg 11625 6.56 2.53 alpha-2-HS-glycoprotein 

Akr1c12 622402 1.48 1.01 aldo-keto reductase family 1, member C12 

Akr1c19 432720 3.01 1.48 aldo-keto reductase family 1, member C19 

Alb 11657 7.84 4.96 albumin 

Aldh3a2 11671 1.33 1.15 aldehyde dehydrogenase family 3, subfamily A2 

Aldob 230163 3.11 1.8 aldolase B, fructose-bisphosphate 

Ambp 11699 5.34 3.21 alpha 1 microglobulin/bikunin 

Ang 11727 1.43 1.9 angiogenin, ribonuclease, RNase A family, 5 

Angpt1 11600 1.87 1.38 angiopoietin 1 

Ank 11732 1.34 1.07 progressive ankylosis 

Ankrd1 107765 3.1 2.24 ankyrin repeat domain 1 (cardiac muscle) 

Ano1 101772 1.95 1.19 anoctamin 1, calcium activated chloride channel 

Anxa4 11746 1.35 1.27 annexin A4 

Apoa4 11808 2.75 3.2 apolipoprotein A-IV 

App 11820 1.2 1.11 amyloid beta (A4) precursor protein 

Arhgap10 78514 1.2 1.16 Rho GTPase activating protein 10 

Arhgap18 73910 1.59 1.36 Rho GTPase activating protein 18 

Arhgef3 71704 1.57 1.36 Rho guanine nucleotide exchange factor (GEF) 3 

Arid5b 71371 1.37 1.72 
similar to modulator recognition factor 2; AT rich interactive domain 5B (MRF1-
like) 

Asah2 54447 1.04 1.16 N-acylsphingosine amidohydrolase 2 

Ass1 11898 1.16 1.02 argininosuccinate synthetase 1 

Atf3 11910 1.78 1.12 activating transcription factor 3 

Atp1b1 11931 3.57 2.44 ATPase, Na+/K+ transporting, beta 1 polypeptide 

Atp8b1 54670 3.21 1.07 ATPase, class I, type 8B, member 1 

B2m 12010 1.93 1.61 beta-2 microglobulin 

Baiap2l1 66898 1.13 1.16 BAI1-associated protein 2-like 1 

BC025446 223631 1.5 2.3 cDNA sequence BC025446 

BC037703 242125 1.71 1.32 cDNA sequence BC037703 

Bgn 12111 4.74 2.99 biglycan 

Bicc1 83675 2.75 1.23 bicaudal C homolog 1 (Drosophila) 

Bmp2k 140780 1.21 1.03 predicted gene 4521; BMP2 inducible kinase 

Bnc2 242509 1.85 1.08 basonuclin 2 

Bst1 12182 1.39 1.97 bone marrow stromal cell antigen 1 

Btg1 12226 1.49 1.2 
B-cell translocation gene 1, anti-proliferative; similar to myocardial vascular 
inhibition factor 

C1s 50908 2.33 2.09 
similar to Complement component 1, s subcomponent; complement 
component 1, s subcomponent 

C3 12266 3.34 1.55 
complement component 3; similar to complement component C3 
prepropeptide, last 

C3ar1 12267 4.61 1.55 complement component 3a receptor 1 

Calml4 75600 2.17 1.63 calmodulin-like 4 

Ccdc3 74186 2.46 1.09 coiled-coil domain containing 3 

Ccdc68 381175 1.8575 1.37 coiled-coil domain containing 68 

Ccdc141 545428  2.31 2.35 coiled-coil domain containing 141 

Ccl9 20308 1.71 1.02 chemokine (C-C motif) ligand 9 

Cd9 12527 1.14 1.4 CD9 antigen 

Cdcp1 109332 1.13 1.11 CUB domain containing protein 1 

Cdh3 12560 2.09 1.96 cadherin 3 

Cdh6 12563 1.25 1.29 cadherin 6 

Cdo1 12583 1.71 1.34 cysteine dioxygenase 1, cytosolic 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=545428
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Chst15 77590 1.28 1.16 carbohydrate (N-acetylgalactosamine 4-sulfate 6-O) sulfotransferase 15 

Cldn18 56492 2.76 1.89 claudin 18 

Cldn2 12738 1.49 2.61 claudin 2 

Cldn4 12740 2.4 1.22 claudin 4 

Cldn7 53624 1.15 1.3 claudin 7 

Clic5 224796 1.34 1.17 chloride intracellular channel 5 

Cmbl 69574 1.43 1.21 carboxymethylenebutenolidase-like (Pseudomonas) 

Col12a1 12816 2.89 1.3 collagen, type XII, alpha 1 

Col14a1 12818 3.11 1.15 collagen, type XIV, alpha 1 

Col1a1 12842 3.21 2.21 collagen, type I, alpha 1 

Col1a2 12843 5.13 2.86 collagen, type I, alpha 2 

Col3a1 12825 5.26 3 collagen, type III, alpha 1 

Col4a1 12826 1.31 2.55 collagen, type IV, alpha 1 

Col4a2 12827 1.47 2.76 collagen, type IV, alpha 2 

Col5a2 12832 3.22 1.07 collagen, type V, alpha 2 

Col6a1 12833 2.86 1.48 collagen, type VI, alpha 1 

Col6a3 12835 2.73 1.25 collagen, type VI, alpha 3 

Cp 12870 2.7 1.01 ceruloplasmin 

Cpb2 56373 1.68 1.28 carboxypeptidase B2 (plasma) 

Cpeb4 67579 1.34 1.05 cytoplasmic polyadenylation element binding protein 4 

Cpm 70574 1.71 2.12 carboxypeptidase M 

Creb3l2 208647 1.21 1.35 cAMP responsive element binding protein 3-like 2 

Crim1 50766 2.37 2.68 cysteine rich transmembrane BMP regulator 1 (chordin like) 

Crispld2 78892 1.89 1.01 cysteine-rich secretory protein LCCL domain containing 2 

Cryab 12955 2.23 1.34 crystallin, alpha B 

Ctsa 19025 1.31 1.47 cathepsin A 

Ctsl 13039 1.08 1.63 cathepsin L 

Ctsq 104002 3.02 2.93 cathepsin Q 

Cxcl10 15945 2.37 1 

chemokine (C-X-C motif) ligand 10; similar to Small inducible cytokine B10 
precursor (CXCL10) (Interferon-gamma-induced protein CRG-2) (Gamma-
IP10) (IP-10) (C7) 

Cxcl12 20315 2.58 1.19 chemokine (C-X-C motif) ligand 12 

Cybrd1 73649 1.61 1.85 cytochrome b reductase 1 

Cyp11a1 13070 2.83 2.02 cytochrome P450, family 11, subfamily a, polypeptide 1 

Cyp1b1 13078 2.92 1.62 cytochrome P450, family 1, subfamily b, polypeptide 1 

Cyp2c65 72303 2.25 1.64 cytochrome P450, family 2, subfamily c, polypeptide 65 

Cyp3a13 13113 1.48 1.51 cytochrome P450, family 3, subfamily a, polypeptide 13 

D0H4S114 27528 2.85 1.04 DNA segment, human D4S114 

Dap 223453 2.05 1.87 death-associated protein 

Dcn 13179 6.97 4.9 decorin 

Ddc 13195 2.44 1.59 dopa decarboxylase 

Ddr2 18214 2.13 1.89 discoidin domain receptor family, member 2 

Ddx58 230073 2.24 1.92 DEAD (Asp-Glu-Ala-Asp) box polypeptide 58 

Dgat2 67800 1.01 1.36 diacylglycerol O-acyltransferase 2 

Dhrs3 20148 3.59 1.27 dehydrogenase/reductase (SDR family) member 3 

Dhrs9 241452 1.2 1.78 dehydrogenase/reductase (SDR family) member 9 

Dio3 107585 1 1.68 deiodinase, iodothyronine type III 

Dkk3 50781 1.67 1.06 dickkopf homolog 3 (Xenopus laevis) 

Dlk1 13386 4.04 3.71 delta-like 1 homolog (Drosophila) 

Dnm3os 474332 2.43 1.13 dynamin 3, opposite strand 

Dsc2 13506 1.88 1.5 desmocollin 2 

E130203B14Rik 320736 2.38 1.36 RIKEN cDNA E130203B14 gene 

Ecm1 13601 1.05 1.22 extracellular matrix protein 1 

Ednra 13617 1.82 1.42 endothelin receptor type A 

Ednrb 13618 2.45 1.51 endothelin receptor type B 

Elf1 13709 1.36 1.23 E74-like factor 1 

Elovl7 74559 1.19 1.16 ELOVL family member 7, elongation of long chain fatty acids (yeast) 

Emp1 13730 4.17 1.83 epithelial membrane protein 1 

Emp2 13731 1.23 1.29 epithelial membrane protein 2 

Enpp1 18605 1.61 1.38 ectonucleotide pyrophosphatase/phosphodiesterase 1 
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Enpp3 209558 1.19 1.66 ectonucleotide pyrophosphatase/phosphodiesterase 3 

Enpp5 83965 1.53 1.74 ectonucleotide pyrophosphatase/phosphodiesterase 5 

Entpd5 12499 1.66 1.3 ectonucleoside triphosphate diphosphohydrolase 5 

Errfi1 74155 1.34 1.14 ERBB receptor feedback inhibitor 1 

Esam 69524 1.43 1.19 endothelial cell-specific adhesion molecule 

Ezr 22350 1.33 1.28 ezrin; hypothetical protein LOC100044177 

F3 14066 2.07 3.17 coagulation factor III 

Fabp1 14080 4.32 1.88 fatty acid binding protein 1, liver 

Fam114a1 68303 2.07 1.67 family with sequence similarity 114, member A1 

Fam129a 63913 1.03 1.22 family with sequence similarity 129, member A 

Fam134b 66270 1.58 2.67 family with sequence similarity 134, member B 

Fam189a2 381217 1.1 1.56 predicted gene 967 

Fam46a 212943 1.13 1.32 family with sequence similarity 46, member A 

Fam83b 208994 1.53 1.65 family with sequence similarity 83, member B 

Fbp2 14120 1.46 1.01 fructose bisphosphatase 2 

Fbxo15 50764 1.81 2.37 F-box protein 15 

Fcgrt 14132 3.38 2.32 Fc receptor, IgG, alpha chain transporter 

Fga 14161 2.64 2.155 fibrinogen alpha chain 

Fgd4 224014 1.15 1.17 FYVE, RhoGEF and PH domain containing 4 

Fgg 99571 4.73 3.47 fibrinogen gamma chain 

Flrt2 399558 2.23 1.08 fibronectin leucine rich transmembrane protein 2 

Fmo1 14261 2.17 2.96 flavin containing monooxygenase 1 

Fnd3c2 331491 2.71 1.84 fibronectin type III domain containing 3C2 

Fndc1 68655 1.36 1.04 
fibronectin type III domain containing 1; similar to fibronectin type III domain 
containing 1 

Gas6 14456 2.03 1.37 growth arrest specific 6 

Gbp6 229900 1.51 1.37 guanylate binding protein 6 

Gcnt2 14538 1.35 1.57 glucosaminyl (N-acetyl) transferase 2, I-branching enzyme 

Gipc2 54120 2.5 2.32 GIPC PDZ domain containing family, member 2 

Gkn2 66284 1.98 4.64 gastrokine 2 

Glipr1 73690 1.64 2.28 GLI pathogenesis-related 1 (glioma) 

Gm10768 100038628 2.4 3.04 predicted gene 10768 

Gm10786 100038539 1.81 2.48 predicted gene 10786 

Gm15070 100038527 1.95 2.06 predicted gene 15070 

Golt1a 68338 1.02 1.84 golgi transport 1 homolog A (S. cerevisiae) 

Gpnmb 93695 3.41 1.41 glycoprotein (transmembrane) nmb 

Gpr39 71111 1.45 1.77 G protein-coupled receptor 39 

Gpr50 14765 3.5 1.24 G-protein-coupled receptor 50 

Gpr56 14766 2.21 1.05 G protein-coupled receptor 56 

Gprc5a 232431 1.94 1.5 G protein-coupled receptor, family C, group 5, member A 

Grina 66168 1.41 1.14 
glutamate receptor, ionotropic, N-methyl D-aspartate-associated protein 1 
(glutamate binding) 

Gsta1 14857 4.57 1.615 glutathione S-transferase, alpha 1 (Ya) 

Gsta3 14859 4.02 1.36 glutathione S-transferase, alpha 3 

Gstm1 14862 3.22 2.5 

similar to Glutathione S-transferase Mu 1 (GST class-mu 1) (Glutathione S-
transferase GT8.7) (pmGT10) (GST 1-1); predicted gene 5562; glutathione S-
transferase, mu 1 

Gstm4 14865 1.29 1.35 glutathione S-transferase, mu 4 

Gucy2c 14917 1.27 1.04 guanylate cyclase 2c 

Hexb 15212 2.31 1.98 hexosaminidase B 

Hgf 15234 2.5 1.08 hepatocyte growth factor 

Hhip 15245 2.34 1.88 Hedgehog-interacting protein 

Hpx 15458 3.33 3.24 hemopexin 

Hsd11b2 15484 1.09 1.6 hydroxysteroid 11-beta dehydrogenase 2 

Hsd3b7 101502 1.11 1.04 hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 7 

Icam1 15894 1.08 1.34 intercellular adhesion molecule 1 

Ifi27l1 52668 2.21 1.73 interferon, alpha-inducible protein 27 like 1 

Ifi30 65972 1.58 2.39 interferon gamma inducible protein 30 

Ifi35 70110 1.08 1.03 interferon-induced protein 35 

Ifi44 99899 2.6 1.79 interferon-induced protein 44 

Ifit1 15957 2.39 1.83 interferon-induced protein with tetratricopeptide repeats 1 

Ifit3 15959 1.91 1.82 interferon-induced protein with tetratricopeptide repeats 3 
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Igf2 16002 1.27 2.72 insulin-like growth factor 2 

Igfbp5 16011 3.86 2.94 insulin-like growth factor binding protein 5 

Igfbp7 29817 4.29 2.95 insulin-like growth factor binding protein 7 

Il10rb 16155 1.79 1.22 interleukin 10 receptor, beta 

Il1r1 16177 2.44 2.21 interleukin 1 receptor, type I 

Irak2 108960 1.14 1.08 interleukin-1 receptor-associated kinase 2 

Irf6 54139 1.31 1.34 interferon regulatory factor 6 

Irf9 16391 1.27 1.32 interferon regulatory factor 9 

Islr 26968 2.71 1.17 immunoglobulin superfamily containing leucine-rich repeat 

Itga3 16400 2.17 1.73 integrin alpha 3 

Itga6 16403 1.63 1.41 integrin alpha 6 

Itgav 16410 1.15 1.09 integrin alpha V 

Itih2 16425 3.82 1.48 inter-alpha trypsin inhibitor, heavy chain 2 

Itm2b 16432 1.76 1.2 integral membrane protein 2B 

Kng1 16644 5.39 3.72 kininogen 1 

Krt13 16663 1.17 1.01 keratin 13 

Krt20 66809 2 1.8 keratin 20 

Lama1 16772 2.19 4.4 laminin, alpha 1 

Lamb1-1 16777 1.27 1.96 laminin B1 subunit 1 

Lamc1 226519 1.81 2.41 laminin, gamma 1 

Lamc2 16782 2.03 1.34 laminin, gamma 2 

Lamp2 16784 1.71 1.23 lysosomal-associated membrane protein 2 

Lbp 16803 2.05 1.43 lipopolysaccharide binding protein 

Lcn2 16819 2.28 2.44 lipocalin 2 

Lcor 212391 1.39 1.29 ligand dependent nuclear receptor corepressor 

Lcp1 18826 2.51 2.54 lymphocyte cytosolic protein 1 

Lgals3bp 19039 3.56 2.15 lectin, galactoside-binding, soluble, 3 binding protein 

Lima1 65970 1.73 1.59 LIM domain and actin binding 1 

Lipa 16889 1.47 1.31 lysosomal acid lipase A 

Liph 239759 2.58 2.14 lipase, member H 

Lox 16948 3.65 1.7 lysyl oxidase 

Loxl2 94352 1.6 2.83 lysyl oxidase-like 2 

Lpl 16956 2.34 1.73 lipoprotein lipase; similar to Lipoprotein lipase precursor (LPL) 

Lpp 210126 1.135 1.15 LIM domain containing preferred translocation partner in lipoma 

Lrp2 14725 1.39 2.16 low density lipoprotein receptor-related protein 2 

Lum 17022 7.07 3.8 lumican 

Lyz2 17105 5.1 2.01 lysozyme 2 

Mab21l2 23937 2.74 1.64 mab-21-like 2 (C. elegans) 

Maf 17132 1.3 1.01 
similar to c-Maf long form; avian musculoaponeurotic fibrosarcoma (v-maf) 
AS42 oncogene homolog 

Man1a 17155 1.78 1.32 mannosidase 1, alpha 

Manba 110173 1.33 1.49 mannosidase, beta A, lysosomal 

Maob 109731 3.66 3.23 monoamine oxidase B 

Mboat1 218121 2.2 1.28 membrane bound O-acyltransferase domain containing 1 

Megf9 230316 1.17 1.28 multiple EGF-like-domains 9 

Mertk 17289 1.24 1.18 c-mer proto-oncogene tyrosine kinase 

Mfsd7c 217721 1.77 2.27 major facilitator superfamily domain containing 7C 

Mgat4a 269181 2.85 1.3 mannoside acetylglucosaminyltransferase 4, isoenzyme A 

Mgst1 56615 2.74 1.61 microsomal glutathione S-transferase 1 

Mgst2 211666 2.18 2.09 microsomal glutathione S-transferase 2 

Mical2 320878 1.61 1.45 microtubule associated monoxygenase, calponin and LIM domain containing 2 

Mov10 17454 1.14 1.33 Moloney leukemia virus 10; predicted gene 7357 

Mpzl2 14012 1.94 1.17 myelin protein zero-like 2 

Mreg 381269 2.01 1.76 melanoregulin 

Mtmr11 194126 1.03 1.87 myotubularin related protein 11 

Mtus1 102103 1.62 1.9 mitochondrial tumor suppressor 1 

Muc1 17829 3.32 1.54 mucin 1, transmembrane 

Mybpc3 17868 1.53 2.61 myosin binding protein C, cardiac 

Myh6 17888 3.32 2.53 myosin, heavy polypeptide 6, cardiac muscle, alpha 

Myh7 140781 2.4 1.48 myosin, heavy polypeptide 7, cardiac muscle, beta 
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Myl3 17897 1.53 2.03 myosin, light polypeptide 3 

Myl7 17898 3.45 1.75 myosin, light polypeptide 7, regulatory 

Mylip 218203 1.13 1.37 myosin regulatory light chain interacting protein 

Myo1d 338367 2.39 1.52 myosin ID 

Myo5b 17919 1.23 1.17 myosin VB 

Myo6 17920 1.94 2.55 myosin VI 

Myom1 17929 1.38 1.05 myomesin 1 

Nebl 74103 
1.2633333

33 1.42 nebulette 

Nedd4l 83814 1.6 1.51 neural precursor cell expressed, developmentally down-regulated gene 4-like 

Nedd9 18003 1.67 1.31 neural precursor cell expressed, developmentally down-regulated gene 9 

Nek6 59126 1.61 1.12 NIMA (never in mitosis gene a)-related expressed kinase 6 

Nepn 66650 1.04 2.11 nephrocan 

Nfib 18028 3.685 1.925 nuclear factor I/B 

Nhlrc3 212114 1.35 1.71 NHL repeat containing 3 

Nkain4 58237 1.35 1.03 Na+/K+ transporting ATPase interacting 4 

Npas2 18143 1.07 1.41 neuronal PAS domain protein 2 

Npl 74091 1.1 2.23 N-acetylneuraminate pyruvate lyase 

Npr3 18162 3.15 1.23 natriuretic peptide receptor 3 

Nrn1 68404 2.95 1.85 neuritin 1 

Oaf 102644 1.82 1.17 OAF homolog (Drosophila) 

Ocln 18260 2.05 1.88 occludin 

Olfml1 244198 2.25 1.49 olfactomedin-like 1 

Olfml3 99543 2.69 1.39 olfactomedin-like 3 

Osmr 18414 2.11 1.98 oncostatin M receptor 

Palld 72333 1.69 1.07 palladin, cytoskeletal associated protein 

Pamr1 210622 4.25 2.26 peptidase domain containing associated with muscle regeneration 1 

Pde3a 54611 1.41 1.82 phosphodiesterase 3A, cGMP inhibited 

Pdlim1 54132 1.4 1.49 

PDZ and LIM domain 1 (elfin); predicted gene 5864; similar to PDZ and LIM 
domain protein 1 (LIM domain protein CLP-36) (C-terminal LIM domain protein 
1) (Elfin) 

Pf4 56744 3.33 2.01 platelet factor 4 

Pga5 58803 3.48 4.2 pepsinogen 5, group I 

Pgcp 54381 1.57 1.01 plasma glutamate carboxypeptidase 

Pgm5 226041 2.35 1.37 phosphoglucomutase 5 

Pi15 94227 2.85 1.34 peptidase inhibitor 15 

Pip5k1b 18719 1.11 1.29 
phosphatidylinositol-4-phosphate 5-kinase, type 1 beta; similar to 
phosphatidylinositol 4-phosphate 5-kinase type I-alpha 

Pklr 18770 1.26 1.16 pyruvate kinase liver and red blood cell 

Pla1a 85031 1.17 2.03 phospholipase A1 member A 

Pla2g4a 18783 3.56 1.2 phospholipase A2, group IVA (cytosolic, calcium-dependent) 

Plac8 231507 2.46 2.21 placenta-specific 8 

Plagl1 22634 5.16 2.42 pleiomorphic adenoma gene-like 1 

Plat 18791 2.09 2.21 plasminogen activator, tissue 

Plau 18792 2.1 1.22 plasminogen activator, urokinase 

Plek 56193 3.01 1.59 pleckstrin 

Plg 18815 1.89 1.23 plasminogen 

Plin2 11520 1.59 1.17 adipose differentiation related protein 

Pln 18821 3.03 2.17 phospholamban 

Plod2 26432 1.14 2.04 procollagen lysine, 2-oxoglutarate 5-dioxygenase 2 

Pls1 102502 1.67 2.24 plastin 1 (I-isoform) 

Popdc2 64082 1.46 1.04 popeye domain containing 2 

Postn 50706 5.21 4.05 periostin, osteoblast specific factor 

Ppbp 57349 1.58 1.32 pro-platelet basic protein 

Ppfibp2 19024 1.28 1.63 
protein tyrosine phosphatase, receptor-type, F interacting protein, binding 
protein 2 

Ppp1r3c 53412 1.36 1.25 protein phosphatase 1, regulatory (inhibitor) subunit 3C 

Prkg2 19092 1.24 1.47 protein kinase, cGMP-dependent, type II 

Prl3b1 18776 3.38 2.75 prolactin family 3, subfamily b, member 1 

Prl6a1 19111 1.26 1.27 prolactin family 6, subfamily a, member 1 

Proc 19123 1.09 1.47 protein C 

Prss35 244954 2.51 2.4 protease, serine, 35 
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Prss8 76560 1.13 1.73 protease, serine, 8 (prostasin) 

Psap 19156 1.47 1.03 prosaposin 

Ptgs2 19225 2.97 2.55 prostaglandin-endoperoxide synthase 2 

Ptn 19242 3.16 1.92 pleiotrophin 

Pttg1ip 108705 1.04 1.16 pituitary tumor-transforming 1 interacting protein 

Pvr 52118 1.12 1.78 poliovirus receptor 

Qsox1 104009 2.23 1.7 quiescin Q6 sulfhydryl oxidase 1 

Rab11fip5 52055 1.02 1.31 RAB11 family interacting protein 5 (class I) 

Rab17 19329 1.15 1.04 
RAB17, member RAS oncogene family; similar to RAB17, member RAS 
oncogene family 

Rap1gap 110351 1.23 1.14 Rap1 GTPase-activating protein 

Rassf6 73246 1.27 1.67 Ras association (RalGDS/AF-6) domain family member 6 

Rbl2 19651 1.35 1.09 retinoblastoma-like 2 

Rbm46 633285 1.05 1.14 RNA binding motif protein 46 

Rbm47 245945 1.71 2.17 RNA binding motif protein 47 

Rbms3 207181 1.78 1.07 RNA binding motif, single stranded interacting protein 

Rdh10 98711 1.38 1.13 retinol dehydrogenase 10 (all-trans) 

Rhoc 11853 1.23 1.13 ras homolog gene family, member C 

Rnf144b 218215 1.09 1.16 ring finger protein 144B 

Robo2 268902 1.77 1.43 roundabout homolog 2 (Drosophila) 

Rsad2 58185 1.96 1.56 radical S-adenosyl methionine domain containing 2 

Rtp4 67775 2.86 2.22 receptor transporter protein 4 

S100g 12309 3.56 5.25 S100 calcium binding protein G 

S1pr3 13610 2.28 1 sphingosine-1-phosphate receptor 3 

Saa3 20210 1.78 1.79 serum amyloid A 3 

Samd9l 209086 1.84 1.27 sterile alpha motif domain containing 9-like 

Sdc4 20971 1.38 1.52 syndecan 4 

Sdpr 20324 2.75 1.39 serum deprivation response 

Sec24d 69608 2.36 1.52 Sec24 related gene family, member D (S. cerevisiae) 

Sel1/3 231238  1.15 1.97 sel-1 suppressor of lin-12-like 3 (C. elegans) 

Selenbp1 20341 1.75 1.09 selenium binding protein 1; hypothetical protein LOC100044204 

Sema4g 26456 1.16 1.09 
sema domain, immunoglobulin domain (Ig), transmembrane domain (TM) and 
short cytoplasmic domain, (semaphorin) 4G 

Sepp1 20363 3.44 3.08 selenoprotein P, plasma, 1 

Serpina1a 20700 4.62 1.12 serine (or cysteine) peptidase inhibitor, clade A, member 1A 

Serpina1b 20701 4.63 1.4 serine (or cysteine) preptidase inhibitor, clade A, member 1B 

Serpina1e 20704 4.72 1.13 
predicted gene 8893; serine (or cysteine) peptidase inhibitor, clade A, member 
1E 

Serpina3n 20716 4.51 2.26 serine (or cysteine) peptidase inhibitor, clade A, member 3N 

Serpina6 12401 4.9 1.25 serine (or cysteine) peptidase inhibitor, clade A, member 6 

Serpind1 15160 3.36 2.04 serine (or cysteine) peptidase inhibitor, clade D, member 1 

Serping1 12258 2.7 1.98 serine (or cysteine) peptidase inhibitor, clade G, member 1 

Sgms2 74442 1.79 1.23 sphingomyelin synthase 2 

Sh2d4a 72281 2.53 1.44 SH2 domain containing 4A 

Slc16a12 240638 3.24 1.02 solute carrier family 16 (monocarboxylic acid transporters), member 12 

Slc39a5 72002 1.12 1.75 solute carrier family 39 (metal ion transporter), member 5 

Slc40a1 53945 2.47 2.04 solute carrier family 40 (iron-regulated transporter), member 1 

Slc41a2 338365 1.21 1.49 solute carrier family 41, member 2 

Slc44a3 213603 2.43 1.72 solute carrier family 44, member 3 

Slc8a1 20541 1.795 1.42 solute carrier family 8 (sodium/calcium exchanger), member 1 

Sorbs2 234214 3.47 1.23 sorbin and SH3 domain containing 2 

Sord 20322 1.41 1.035 sorbitol dehydrogenase 

Sparc 20692 1.51 1.75 
secreted acidic cysteine rich glycoprotein; similar to Secreted acidic cysteine 
rich glycoprotein 

Sparcl1 13602 3.73 1.28 SPARC-like 1 

Sphkap 77629 1.16 1.11 SPHK1 interactor, AKAP domain containing 

Spint2 20733 1.24 1.14 serine protease inhibitor, Kunitz type 2 

Spon2 100689 2.11 1.74 spondin 2, extracellular matrix protein 

Spp1 20750 5.26 2.21 secreted phosphoprotein 1 

Spp2 75396 4.25 4.17 secreted phosphoprotein 2 

Sprr1a 20753 3.8 1.42 small proline-rich protein 1A 

Srgn 19073 4.22 4.62 serglycin 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=231238
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Stard10 56018 1.65 1 START domain containing 10 

Steap4 117167 1.31 1.39 STEAP family member 4 

Sult1e1 20860 1.02 2.12 sulfotransferase family 1E, member 1 

Susd2 71733 1.33 2.17 sushi domain containing 2 

Taf9b 407786 1.1 1.7 TAF9B RNA polymerase II, TATA box binding protein (TBP)-associated factor 

Tcf21 21412 2.72 2 transcription factor 21 

Tdrd7 100121 1.58 1.13 tudor domain containing 7 

Tec 21682 1.39 1.58 tec protein tyrosine kinase 

Tff3 21786 2.45 2.87 trefoil factor 3, intestinal 

Tgfbi 21810 2.91 2.04 transforming growth factor, beta induced 

Tgfbr2 21813 1.71 1.43 transforming growth factor, beta receptor II 

Tgfbr3 21814 1.72 1.83 transforming growth factor, beta receptor III 

Thbs2 21826 3.04 1.43 thrombospondin 2 

Timd2 171284 1.63 1.72 T-cell immunoglobulin and mucin domain containing 2 

Timp3 21859 2.01 2.09 tissue inhibitor of metalloproteinase 3 

Tm4sf5 75604 1.62 2.36 transmembrane 4 superfamily member 5 

Tmbim1 69660 1.6 1.31 transmembrane BAX inhibitor motif containing 1 

Tmc4 353499 1.92 1.23 transmembrane channel-like gene family 4 

Tmem140 68487 2.44 1.96 transmembrane protein 140 

Tmem150a 232086  1.18 1.59 transmembrane protein 150A 

Tmem176a 66058 2.33 1.27 transmembrane protein 176A 

Tmem176b 65963 2.77 1.3 transmembrane protein 176B 

Tmem30b 238257 1.83 1.48 transmembrane protein 30B 

Tmem37 170706 1.48 1.52 transmembrane protein 37 

Tnc 21923 3.66 1.74 tenascin C 

Tnni1 21952 1.5 1.47 troponin I, skeletal, slow 1 

Tpbpa 21984 5.23 3.31 trophoblast specific protein alpha 

Tpd52 21985 1.36 1.235 similar to Tpd52 protein; tumor protein D52 

Ttn 22138 1.39 1.31 titin 

Tuft1 22156 1.44 1.11 similar to tuftelin; tuftelin 1 

Ugt2b34 100727 6.59 4.34 UDP glucuronosyltransferase 2 family, polypeptide B34 

Upk1b 22268 4.01 1.84 uroplakin 1B 

Vaultrc5 378472 1.76 1.2 vault RNA component 5 

Vcam1 22329 3.3 1.62 vascular cell adhesion molecule 1 

Vsig2 57276 1.97 1.6 V-set and immunoglobulin domain containing 2 

Vtn 22370 4.98 2.26 vitronectin 

Wipi1 52639 1.57 1.26 WD repeat domain, phosphoinositide interacting 1 

Zfp36 22695 1.7 1.04 zinc finger protein 36 

Zfp9 22750 1.33 1.12 zinc finger protein 9 

Zim1 22776 2.51 2.22 zinc finger, imprinted 1 

 

Concordantly downregulated genes in wt and dnmt1-/- EBs between d4-16 

Gene symbol 
Entrez Gene 

ID 
Fold 

change wt 
Fold change 

dnmt1-/- 
Gene name 

6030429G01Rik 436022 -1.75 -1.82 RIKEN cDNA 6030429G01 gene 

Apcdd1 494504 -2.2 -2.07 adenomatosis polyposis coli down-regulated 1 

Aplnr 23796 -1.1 -1.35 apelin receptor 

Atp11c 320940 -2.49 -1.68 ATPase, class VI, type 11C 

B130016D09Rik 436015 -1.56 -1.5 RIKEN cDNA B130016D09 cDNA 

BC023829 236848 -3.31 -2.04 cDNA sequence BC023829 

Bmper 73230 -1.67 -1.02 BMP-binding endothelial regulator 

Cer1 12622 -1.86 -2.55 cerberus 1 homolog (Xenopus laevis) 

Cfc1 12627 -2.62 -1.75 cripto, FRL-1, cryptic family 1 

Coch 12810 -2.3 -1.56 coagulation factor C homolog (Limulus polyphemus) 

Cpxm2 55987 -1.34 -1.47 carboxypeptidase X 2 (M14 family) 

Cxcr4 12767 -1.54 -2.45 chemokine (C-X-C motif) receptor 4 

Cyp4f15 106648 -1.11 -1.42 cytochrome P450, family 4, subfamily f, polypeptide 15 

Dll3 13389 -1.91 -2.19 delta-like 3 (Drosophila) 

Dock11 75974 -1.09 -1.41 dedicator of cytokinesis 11 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=232086
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Fgf10 14165 -2.3 -1.87 fibroblast growth factor 10 

Fgf3 14174 -2.26 -1.95 fibroblast growth factor 3 

Foxf1a 15227 -1.455 -1.455 forkhead box F1a 

Foxh1 14106 -3.27 -2.1 forkhead box H1 

Gas5 14455 

-
1.5233333

33 -1.05 growth arrest specific 5 

Ifitm1 68713 -1.04 -1.16 interferon induced transmembrane protein 1 

Kdr 16542 -1.81 -1.92 kinase insert domain protein receptor 

Lef1 16842 -1.68 -1.53 lymphoid enhancer binding factor 1 

Lgr5 14160 -2.46 -2.29 leucine rich repeat containing G protein coupled receptor 5 

Lhx1 16869 -2.53 -2.52 LIM homeobox protein 1 

Mns1 17427 -1.73 -1.61 meiosis-specific nuclear structural protein 1 

Mogat2 233549 -2.04 -1.12 monoacylglycerol O-acyltransferase 2 

Ms4a4d 66607 -2.54 -1.31 membrane-spanning 4-domains, subfamily A, member 4D 

Msx1 17701 -2.35 -1.61 homeobox, msh-like 1 

Msx2 17702 -3 -1.49 similar to homeobox protein; homeobox, msh-like 2 

Myc 17869 -1.59 -1.07 myelocytomatosis oncogene 

Nkrf 77286 -1.34 -1.01 NF-kappaB repressing factor 

Padi3 18601 -1.5 -1.49 peptidyl arginine deiminase, type III 

Pop1 67724 -1.39 -1.07 processing of precursor 1, ribonuclease P/MRP family, (S. cerevisiae) 

Rftn1 76438 -1.83 -1.99 raftlin lipid raft linker 1 

Rspo3 72780 -1.96 -1.99 R-spondin 3 homolog (Xenopus laevis) 

Slc44a5 242259 -1.57 -2.09 solute carrier family 44, member 5 

Snord52 100217427 -1.73 -1.2 small nucleolar RNA, C/D box 52 

St6galnac4 20448 -1.08 -1.31 
ST6 (alpha-N-acetyl-neuraminyl-2,3-beta-galactosyl-1,3)-N-
acetylgalactosaminide alpha-2,6-sialyltransferase 4 

Taf1d 75316 -1.52 
-

1.173333333 
TATA box binding protein (Tbp)-associated factor, RNA polymerase I, D; 
predicted gene 13487 

Trpc3 22065 -1.94 -1.63 transient receptor potential cation channel, subfamily C, member 3 

Vstm2b 58188 -1.95 -1.59 
hypothetical protein LOC100045106; V-set and transmembrane domain 
containing 2B 

Wnt3 22415 -1.66 -1.82 wingless-related MMTV integration site 3 

Zcchc12 72693 -1.03 -1.85 zinc finger, CCHC domain containing 12 

 

Concordantly upregulated genes in wt and TKO EBs between d4-16 (Note that genes marked in red show opposite expression pattern in 
wt and TKO Ebs) 

Gene Symbol 
Entrez Gene 

ID 
fold 

change wt 
fold change 

TKO 
Gene Name 

Antxr2 71914 1.2 -1.15 liver glycogen phosphorylase 

Atp9a 11981 1.37 1.15 Ras association (RalGDS/AF-6) domain family (N-terminal) member 9 

Car8 12319 1.88 1.16 epsin 3 

Copz2 56358 1.56 1.94 DMRT-like family C1c2; DMRT-like family C1c 

Cyp2c55 72082 2.2 1.42 Eph receptor A7 

Cyp2s1 74134 1.39 1.19 regulator of G-protein signaling 2 

Cyp4a12b 13118 1.11 -1.47 septin 4 

Dmrtc1c 71083 1.11 1.77 
carbonic anhydrase 8; similar to Carbonic anhydrase-related protein (CARP) 
(CA-VIII) 

Epha7 13841 1.95 -1.15 heat shock protein 8 

Epn3 71889 1.45 1.2 sarcoglycan, epsilon 

Gadd45b 17873 2.07 1.56 LIM domain binding 2 

Gpr97 54672 1.16 1.3 cytochrome P450, family 2, subfamily s, polypeptide 1 

Hspb8 80888 1.08 1.45 serine (or cysteine) peptidase inhibitor, clade B, member 1a 

Ldb2 16826 1.17 -1.24 coatomer protein complex, subunit zeta 2 

Mecom 14013 2.76 -1.14 growth arrest and DNA-damage-inducible 45 beta 

Nnat 18111 1.1 -1.39 anthrax toxin receptor 2 

Npy1r 18166 1.02 -1.28 cytochrome P450, family 2, subfamily c, polypeptide 55 

Pygl 110095 1.24 1.44 ecotropic viral integration site 1 

Rassf9 237504 2.52 -1.02 cytochrome P450, family 4, subfamily a, polypeptide 12B 

Rgs2 19735 1.41 -1.53 ATPase, class II, type 9A 

Sept4 18952 1.35 1.52 G protein-coupled receptor 97 

Serpinb1a 66222 1.56 1.42 neuronatin 

Sgce 20392 1.13 1.01 neuropeptide Y receptor Y1 
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Concordantly downregulated genes in wt and TKO EBs between d4-16 

Gene symbol 
Entrez Gene 

ID 
Fold 

change wt 
Fold change 

TKO 
Gene name 

Akr1b3 11677 -1.4525 -1.01 aldo-keto reductase family 1, member B3 (aldose reductase) 

Calcr 12311 -1.09 -1.25 calcitonin receptor 

Crispld1 83691 -1.43 -1.46 cysteine-rich secretory protein LCCL domain containing 1 

Crmp1 12933 -1.13 -1.19 collapsin response mediator protein 1 

Dnmt3b 13436 -2.09 -1.12 DNA methyltransferase 3B 

Dut 110074 -1.08 -1.02 deoxyuridine triphosphatase 

Gng3 14704 -1.17 -1.8 guanine nucleotide binding protein (G protein), gamma 3 

Grik3 14807 -1.29 -1.55 glutamate receptor, ionotropic, kainate 3 

Hand1 15110 -2.19 1.16 heart and neural crest derivatives expressed transcript 1 

Il17rd 171463 -1.38 -1.39 interleukin 17 receptor D 

Kif1a 16560 -1.27 -1.09 kinesin family member 1A 

Mtap7d3 320923 -1.29 -2.12 MAP7 domain containing 3 

Rragb 245670 -1.35 -1.05 Ras-related GTP binding B 

Tnfrsf19 29820 -1.07 -1.13 tumor necrosis factor receptor superfamily, member 19 

Usp44 327799 -1.46 -1.05 ubiquitin specific peptidase 44 

Zc3hav1 78781 -1.09 1.48 zinc finger CCCH type, antiviral 1 

Zdbf2 73884 -1.33 -1.14 zinc finger, DBF-type containing 2 

Zfp280c 208968 -1.21 -1.24 zinc finger protein 280C 

Zfp365 216049 -1.04 -1.1 zinc finger protein 365 
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