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1    INTRODUCTION 

1.1    Origin and Function of Higher Plant Chloroplasts 

The chloroplast evolved as a result of an endosymbiotic event in which a cyanobacterial ancestor 

was taken over by a eukaryotic cell (Figure 1). Though main parts of the originally plastid genes 

were transferred into the nucleus, chloroplasts still have retained their own independent genome 

of less than 100 protein-coding genes mainly involved in photosynthesis, as well as several genes 

for tRNAs and rRNAs. These genes are embedded in the regulatory network of the cell enabling 

an adaptive and developmentally regulated chloroplast biogenesis, which is mainly controlled by 

nuclear factors (Stern et al., 2010).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Chloroplasts and related plastidic forms are the characteristic organelles of photoautotrophic 

eukaryotes bearing important roles in nitrogen, sulphur, and lipid metabolism and catalyzing the 

transformation of light energy into chemical energy. This step results in production of sugar and 

molecular oxygen, prerequisite for life on Earth.  

 

1.2    Photosynthetic Complexes of the Thylakoid Membrane 

A chloroplast is one of several differentiated types of plastids all originating from a so-called 

proplastid which is present in meristematic regions of the plant. In the presence of light the so far 

unstructured proplastid differentiates into a chloroplast and develops the highly structured 

thylakoid membrane. This complex membrane system consists of membrane stacks (grana) 

Figure 1. Primary Endosymbiosis and Endosymbiotic Gene Transfer. 

In the course of endosymbiosis a cyanobacterial ancestor was ingested by a eukaryotic cell. Subsequently many 

originally plastid genes were transferred into the nucleus (depicted by an arrow). 
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interconnected with single membranes (stroma lamellae). In the course of the endosymbiotic 

gene transfer many originally plastid genes were transferred to the nucleus, making the thylakoid 

membrane a mosaic of nuclear- and plastid-encoded proteins (Figure 2). The expression of 

plastid-encoded subunits is predominantly controlled by nuclear-encoded factors on the level of 

RNA metabolism, translation, and assembly (Race et al., 1999). 

 

 
 

 

 

 

 

 

The photosynthetic machinery mainly consists of four multiprotein complexes embedded in the 

thylakoid membrane, namely the photosystem II (PSII), the cytochrome b6f complex, the 

photosystem I (PSI) and the ATP synthase (Rochaix, 2011a). Both photosystems 'collect' light by 

use of the light harvesting complexes (LHCI and LHCII) that confer the energy via exciton 

transfer to the chlorophyll-containing photosystem reaction centers. The chlorophyll absorbs the 

energy while losing an electron which is subsequently translocated through the thylakoid 

membrane complexes. Finally, this electron is reducing ferredoxin, thereby producing the 

reducing equivalent NADPH. This electron transfer creates a proton gradient across the 

chloroplast membrane that is used for ATP synthesis by the ATP synthase complex (Rochaix, 

2011b). The chlorophyll molecule regains the lost electron from oxidation of a water molecule in 

the lumenal oxygen-evolving-complex releasing a dioxygen (O2) molecule. The reducing 

equivalents NADPH in turn are used for carbon fixation, a process that converts carbon dioxide 

Figure 2. The Thylakoid Membrane of Vascular Plant Chloroplasts. 

A schematic view of the thylakoid membrane demonstrates the arrangement of components of the 

photosynthetic machinery in Arabidopsis thaliana chloroplasts (modified from Race et al., 1999). Each of the four 

major complexes consists of various nucleus- and plastid-encoded proteins colored in orange and green, 

respectively. A fifth complex, the NADPH-dehydrogenase is not shown.  
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(CO2) into sugars. However, the light energy that is absorbed through the reaction centers cannot 

be quantitatively used for photosynthesis and is thus partially reflected as heat or fluorescence. 

Spectroscopic measurement of this fluorescence can shed light on the physiological state of the 

photosynthetic apparatus, since, e.g. fluorescence is increased if electron transfer is partly 

restricted (Schreiber, 1986; Schreiber et al., 1986). 

 

1.3    Nuclear Control of Plastid Gene Expression 

Despite its cyanobacterial origin, plastid gene expression is regulated in a different manner than 

in eubacteria or in the cytoplasmic system of eukaryotes (Allen, 2003 and 2005; Bollenbach et al., 

2005). Chloroplast biogenesis is mainly requiring adaptation of transcript metabolism (Barkan, 

2011) which is characterized through increased transcription rates as well as mRNA decay. An 

important characteristic of chloroplast gene regulation is the predominance of 

post transcriptional control, which is exerted at gene-specific, gene-cluster, and genome-wide 

levels (Cho et al., 2009; del Campo, 2009; Stern et al., 2010). Although the chloroplast has reduced 

its coding capacity to less than 100 proteins, a highly sophisticated system of transcript 

maturation including endo- and exonucleolytic activities, splicing, editing, and modulation of 

RNA stability has been developed which is not exploited to the same extent in the free-living 

cyanobacterial ancestor. Numerous nuclear-encoded factors have been acquired for processing 

and other post-transcriptional modifications of plastid transcripts (Stern et al., 2010; Barkan, 

2011). Some of these factors act as global players, whereas others have specific functions in 

maturation, stabilization, and editing of plastid transcripts. Especially chloroplast RNA-binding 

proteins, including members of the pentatricopeptide repeat (PPR) protein family, are involved in 

post-transcriptional control (Nickelsen, 2003; Schmitz-Linneweber and Small, 2008). Genetic and 

molecular approaches demonstrated that higher-order protein complexes are often involved in 

processing of plastid transcripts (Fisk et al., 1999; Ossenbühl and Nickelsen, 2000; Kroeger et al., 

2009). Altogether several hundred nucleus-encoded factors are thought to be required for proper 

expression of the organellar genome. Interestingly, most of these factors are gene specific, one 

factor being required for the expression of one, or a few, organellar mRNA(s). The frequent 

occurrence of plant-specific genes important for chloroplast mRNA homeostasis demonstrates 

that regulation at the post-transcriptional level represents a fast evolving process during 

endosymbiosis. 
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1.4    Ribonucleases in the Chloroplast 

The massive gene transfer which occurred after functional integration of the chloroplast 

organelle into the host cell, asides with its differentiation into various types of plastids, resulted in 

a dramatically elevated complexity of the higher plant. Tight control of complex chloroplast RNA 

processing events and global regulation of chloroplast translation turned out to be indispensable.  

  Though chloroplasts originate from cyanobacteria and have retained part of the general 

prokaryotic endonuclease-exonuclease RNA degradation system, gene expression differs widely 

from that of their ancestors. Unlike in bacteria, nearly if not all polycistronic transcripts are 

processed by endo- and exonucleases, splicing activities and editing events in the chloroplast 

(Bollenbach et al., 2007; Barkan, 2011). Processing within intergenic regions is required for 

subsequent translation as transcription termination is very inefficient in chloroplasts (Bollenbach 

et al., 2004). Additionally, transcript half-lives differ dramatically from an average of 3-8 minutes 

in bacteria to several hours in chloroplasts (Bernstein et al., 2002; Klaff and Gruissem, 1991). Not 

Figure 3. Nuclear-Encoded Factors Involved in the Control of Plastid Gene Expression. 

Most of the genes encoded in higher plant chloroplasts are organized in transcription units, which are often 

processed prior to translation producing mono- and oligocistrons. Post-transcriptional RNA metabolism is 

mediated by nuclear-encoded proteins and includes intercistronic cleavage, intron splicing and editing. RNA 

stabilization involves either the formation of stem-loop structures or binding of specific proteins to prevent 

exonucleolytic degradation. Control by nuclear-encoded factors is also mediated on translational level and on the 

assembly of proteins in the thylakoid membrane. 
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only the abundance of mRNAs but also the availability of other RNA species, like noncoding 

RNAs, rRNAs and tRNAs, is an important parameter in determining translation rates, and 

therefore the amounts of proteins produced. Most RNAs undergo an extensive maturation 

process in order to become functional. Processing and degradation of plastid RNA is mediated 

by ribonucleases. This offers a means of rapidly adjusting RNA abundance in response to 

changing environmental conditions, determining the half-life of individual RNAs and serving as a 

tool for quality control. 

  In Prokaryotes one major factor involved in post-transcriptional regulation of gene 

expression is the well-characterized endoribonuclease E (RNase E) (Arraiano et al., 2010). In 

E. coli RNase E forms part of a multiprotein complex called the degradosome, which harbors 

RNase E, PNPase, Rhl B, and Enolase as major components (Carpousis, 2007). The N-terminal 

catalytic part of the large multidomain protein RNase E is essential for cell viability. Mutations or 

deletions in this region lead to a reduced rate of RNA decay (Mudd et al., 1990) and accumulation 

of partly degraded fragments with increased lifetimes (Carpousis et al., 1994). The C-terminal 

non-catalytic domain serves as scaffold for the degradosome and helps targeting RNase E to 

RNA, but is not essential in E. coli, since the catalytic activity of the N-terminus is only little 

affected when part or all of the C-terminus is deleted (Kido et al., 1996). RNase E homologs can 

be found in cyanobacterial and land plant genomes but it remains uncertain whether they 

originate from the highly similar RNase E or the shorter form RNase G (Lee and Cohen, 2003; 

Stoppel and Meurer, 2011). RNase G is another E. coli endonuclease with overlapping but not 

identical cleavage specificity that resembles 50% sequence similarity to the highly conserved 

catalytic part of RNase E (Lee, 2002; Ow et al., 2003). Plant RNase E (RNE) differs from known 

bacterial forms mainly by an insertion in the RNA-binding S1 motif of the catalytic domain, the 

lack of the C-terminal degradosome scaffold which is replaced by a shorter chloroplast-specific 

region (Figure 4) and the acquisition of a large N-terminal extension (Schein et al., 2008).  

 

 

 

 

 

 

Figure 4. Schematic View of E. coli and 

Arabidopsis thaliana RNE Proteins. 

Domains are colored as follows: transit peptide, 

dark green; N-terminal extension, light grey; 

RNase H, dark gray; S1 domain, blue; S1 addition 

in plants, light green; 5' sensor, yellow; DNase I-

like, red; Zn-link, black; small domain, purple; C-

terminal extension in plants, light grey; E. coli 

degradosome scaffold, rose.   
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Although chloroplasts are descendants of photosynthetic eubacteria, the presence of a 

characteristic degradosome and the formation of a multiprotein complex involved in RNA 

processing and decay has yet not been reported. The presence of RNase E in a previously 

described multiprotein complex involved in RNA processing (Hayes et al., 1996) was proven to 

be an artifact due to cross-reaction with antibodies raised against E. coli RNase E (Baginsky et al., 

2001). The fact that the plastid PNPase, one of the degradosome components in some bacteria 

like E. coli, forms a homo-multimer not associated with other proteins (Baginsky et al., 2001; Rott 

et al., 2003) along with the lack of the degradosome scaffold and the formation of homo-

oligomers of the plastid RNE in vitro (Schein et al., 2008) led to the assumption that a 

degradosome homolog is not present in chloroplasts. 

  The Arabidopsis nuclear genome encodes one RNE protein (At2g04270), which has been 

characterized in several recent studies, supporting its endonucleolytic function within the 

chloroplast stroma (Schein et al., 2008; Mudd et al., 2008). RNE has been found in a proteomics 

study of triton-insoluble fractions of pea, where it co-sedimented with nucleoids and large multi-

enzyme complexes (Phinney et al., 2005). It was proposed that the rne mutation causes mainly 

defective processing of the rpl22 mRNA coding for an essential ribosomal protein (Walter et al., 

2010). However, the nature and necessity of interaction partners as well as an involvement of 

factors conferring binding specificity to RNA targets still remained unknown. Importantly, it is 

unclear, whether chloroplast RNase E still fulfills endonucleolytic and RNA degradation 

functions previously carried out by its counterpart in the bacterial degradosome. 

 

1.5    Ribonucleases and RNA Maturation as Exemplified by 

  Ribosomal RNA 

Chloroplast ribosomes comprise two subunits of 50S and 30S, which together form the 70S 

ribosome that decodes mRNAs and translates them into the appropriate polypeptide chains 

(Harris et al., 1994). Ribosomal subunits are composed of more than 50 ribosomal proteins 

(Yamaguchi and Subramanian, 2000; Yamaguchi et al., 2000) together with four ribosomal RNAs 

that are encoded in one gene cluster and have been proposed to play a role in the catalytic activity 

of the ribosome (Nissen et al., 2000). In spite of the vast evolutionary distance, the chloroplast 

rRNA gene cluster still resembles that of bacteria in terms of organization of coding sequences 

and co-transcription of genes (Strittmatter and Kössel, 1984). The clusters in eubacteria encode 

mature rRNAs of 16S, 23S, and 5S, while those of eukaryotes specify 18S, 5.8S, 28/25S, and 5S 

rRNAs (Figure 5). Eukaryotic 5.8S and 28/25S correspond to the 23S rRNA of eubacteria 
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(Evguenieva-Hackenberg, 2005). In plastids homologs of eubacterial 23S rRNA are split into 23S 

and 4.5S, the latter sharing high homology with the 3'-end of the bacterial 23S. In the plastid 

genome, 16S and 23S sequences flank a region encoding tRNAs for isoleucine and alanine and an 

additional tRNA for arginine is encoded downstream of the 5S rRNA (Figure 5).  

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ribosomal RNA abundance and processing is of great importance for ribosome assembly. Thus 

bacterial cells usually have multiple copies of the ribosomal RNA operon, located in different 

parts of the genome and arranged in a similar but not identical manner. Accordingly rRNA 

operons in eukaryotic nuclear genomes cluster in large tandem regions containing up to 400 

copies in human or many thousands in some plant species (Long and Dawid, 1980). By contrast, 

Figure 5. Maturation of rRNA Precursors in Eukaryotes, Eubacteria and Chloroplasts.  

In eukaryotes the 28/25SS, 18S, and 5.8S rRNAs are cleaved from an 18S-5.8S-28/25S precursor transcript 

transcribed by RNA polymerase I, while the 5S rRNA genes form separate clusters that are transcribed by RNA 

polymerase III (Haeusler and Engelke, 2006). The bacterial rrnC operon shown here is one of seven rRNA 

operons in the E. coli genome. The primary transcript is first cleaved by RNase III and the resulting 

intermediates are then trimmed by the RNases E, G and T (Davies et al., 2010). The RNases (arrows) 

responsible for maturation of the primary transcript in chloroplasts are still unknown. It has been suggested that 

tRNAARG is cleaved by the RNases P and Z, and 5' maturation of 23S rRNA has been attributed to CSP41a/b. 

RH39 was proposed to function in cleavage of the second ‘hidden break’ (triangle). Endonucleolytic cleavage 

intermediates are subsequently trimmed at their 3'-ends by PNPase and/or RNase R (grey) and possibly also at 

their 5'-ends by an exonuclease that could be RNase J (black). 
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there are only two rRNA operons in the chloroplast genome, which are located in the inverted 

repeats. Maturation of rRNA precursor transcripts performed by endo- and exoribonucleases is a 

prerequisite for accurate chloroplast ribosome biogenesis. Furthermore some parts of chloroplast 

rRNA processing occur in an assembly-assisted manner. 

  In E. coli, mutants defective in pre-rRNA processing have been used to elucidate the 

process of ribosomal RNA maturation (Gegenheimer and Apirion, 1981). It was shown that 

RNase III in concert with RNase E and G are responsible for the endonucleolytic cleavages, 

while RNase T performs the exonucleolytic 3'-trimming step (Davies et al., 2010). In vascular 

plant chloroplasts several mutants with putative defects in rRNA processing and ribosome 

assembly have been identified to date (Bellaoui et al., 2003; Bisanz et al., 2003; Bollenbach et al., 

2005; Komatsu et al., 2010; Lu et al., 2011; Nishimura et al., 2010). However, the precise 

mechanism of rRNA maturation in chloroplasts remains an open question, since a biochemical 

characterization of mutants is often lacking and secondary effects cannot always be excluded. 

  In chloroplasts, the 7.4 kb rRNA precursor is thought to be cleaved by an as yet 

unidentified endonuclease, releasing pre-tRNAs for isoleucine and alanine and pre-rRNA for 16S, 

as well as the dicistronic intermediates 23S-4.5S and 5S-tRNAARG (Figure 5). The pre-tRNAs are 

subsequently processed at their 5'- and 3'-ends by RNase P and RNase Z, respectively (Canino et 

al., 2009; Gobert et al., 2010). The processing intermediate 23S-4.5S is first matured at the 23S 5'- 

and 4.5S 3'-end, and then endonucleolytically cleaved in several steps at the 5'-end of 4.5S. 

Intercistronic cleavage requires both assembly of the dicistron into pre-ribosomal subunits and 

prior 3'-end maturation of 4.5S rRNA (Bellaoui et al., 2003). Mutants defective in rRNA 

3'-processing or ribosome assembly accumulate this 23S-4.5S processing intermediate (Bellaoui et 

al., 2003; Bisanz et al., 2003; Bollenbach et al., 2005). The subsequent 3'-end trimming of 23S 

rRNA is performed by PNPase and the RNase R homolog RNR1 (Yehudai-Resheff et al., 2001; 

Bollenbach et al., 2005). The mature 23S rRNA is then cleaved internally at so-called 'hidden 

breaks', as revealed by electrophoresis on agarose gels under denaturing conditions (Leaver, 

1973). Although a DEAD-box helicase with a proposed function in formation of one of the 

hidden breaks was recently identified (Nishimura et al., 2010), the need for such additional 

modifications of rRNAs in the large ribosomal subunit is not understood.  

  In contrast to bacteria, precursors of chloroplast 16S RNA are not processed close to their 

mature termini. Thus they possess long 3'-tails requiring 3'→5' exonucleolytic processing which is 

performed, as in the case of 23S, by RNR1 and/or PNPase as reported previously (Yehudai-

Resheff et al., 2001; Bollenbach et al., 2005). The 5S RNA is co-transcribed with the downstream 
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tRNAARG in Brassica and Arabidopsis (Leal-Klevezas, 2000; Sharwood et al., 2011) followed by 

endonucleolytic cleavage and exonucleolytic 3'-end trimming. 

 

1.6    Regulation of Site Specificity and Transcript Abundance  

Various mechanisms can determine the stability of chloroplast mRNAs, including protection of 

RNA termini by proteins or RNA secondary structures. Since untranslated regions are not 

protected by ribosomes they are typical sites of endonucleolytic cleavage by RNase E/J or 

CSP41, making accessibility to such sequences a key determinant of mRNA stability. Processing 

of polycistronic transcription units generates RNA 5'- and 3'-ends thus creating a complex 

pattern of mono- and oligo-cistronic RNAs (Barkan, 2011). Gene-specific transacting factors 

encoded in the nucleus can bind the 5' UTR of mRNAs to protect them against 5'→3' 

exonucleases (Drager et al., 1998) while the transcript 3'-end can in turn be stabilized by stable 

stem-loop structures or proteins, protecting from digestion by 3'→5' exonucleases (Figure 6).  

 

 

 

 

 

 

 

 

 

 

 

One major group of proteins mediating post-transcriptional control is the pentatricopeptide 

repeat (PPR) family, characterized by the presence of repeated units of 35 amino acid residues 

(aa). PPR proteins are widespread among vascular plants with more than 450 members in 

Figure 6. Model for mRNA Stability 

Mediated by Protein Binding to 5' and 3' 

Regions of Chloroplast Transcripts.  

In this model, processing and RNA decay are 

both initiated by endonucleolytic cleavage of 

sequences that are not masked by RNA structure, 

ribosomes, or proteins. The cleaved products are 

substrates for 3′→5′ and 5′→3′ exonucleases, 

which proceed until blocked by an RNA 

stem-loop or a bound protein. The ribonucleases 

proposed to be involved in RNA cleavage are 

indicated. Protective functions attributed to PPR 

proteins here, could also be taken over by non-

PPR proteins. Line thickness indicates the relative 

accumulation of different transcripts (picture 

from Pfalz et al., 2009). 
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Arabidopsis thaliana that are located either in chloroplasts or in mitochondria (Lurin et al., 2004). 

PPR proteins like CRP1 and PGR3 have been implicated in both RNA stability and translation 

(Schmitz-Linneweber et al., 2005; Cai et al., 2011), similarly to the Clamydomonas protein MCA1, 

which interacts with the petA transcript (Loiselay et al., 2008; Boulouis et al., 2011). Recently a 

PPR-protein, PPR10, was reported to serve as a barrier to exonucleolytic RNA decay, 

substituting for RNA stem-loop structures (Pfalz et al., 2009). In addition to pentatricopeptide 

proteins, members of the tetratricopeptide family (TPR) have also been characterized. The TPR-

protein HCF107 for example is reported to be responsible for processing or stability of the psbH 

transcript (Sane et al., 2005). Further evidence for the existence of site specific RNA-binding 

proteins give the recently identified small RNAs, representing 'footprints' of presumably PPR- or 

TPR-binding sites (Ruwe and Schmitz-Linneweber, personal communication). By binding of the 

protein the RNA remains protected from cleavage and endures exonucleolytic digestion. The 

nature of these protective proteins is not necessarily restricted to the PPR family but could also 

apply to other proteins with RNA-binding capability. Thus binding of proteins at both 5'- and 

3'-ends can define chloroplast RNA transcript termini and abundance without the need for 

sequence specificity of ribonucleases (Figure 6). 

  For example, endonucleases like CSP41 and RNase E were shown to cleave RNA without 

any specificity in vitro (Schein et al., 2008; Yang et al., 1996). But while RNases E and J are 

postulated to cleave rather non-specifically in vivo also, giving exonucleases access to internal 

RNA regions, CSP41a displays a preference for RNAs containing hairpin structures, making it a 

candidate for determining transcript half‐life in the chloroplast (Bollenbach et al., 2003). Among 

the exonucleases, PNPase preferentially degrades polyadenylated sequences (Lisitsky and 

Schuster, 1999) while the activity of RNR1 could, like that of the E. coli RNase II (Coburn and 

Mackie, 1996), be modulated by RNA secondary structures in vivo. An interaction with other 

proteins like helicases is also conceivable, as it would facilitate the cleavage of highly structured 

substrates, as is the case for the E. coli degradosome, in which PNPase is associated with the 

RNA helicase RhlB. Last but not least translational events have been shown to influence RNA 

stability (Meurer et al., 2002). 

 

1.7    Aims of the Thesis 

The aim of this work was to extend the knowledge of RNA metabolism in the chloroplast. 

Although many aspects of post-transcriptional mechanisms have been investigated so far, the 

underlying molecular mechanisms and the nature of factors involved are still largely unknown. To 
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assess the function of nuclear-encoded factors acting globally or in contrary exhibiting high 

sequence specificity, we chose both a forward and reverse genetics approach using Arabidopsis 

thaliana as a well-established model plant. The project focused on (1) identification and 

characterization of mutant phenotypes, (2) determination of the chloroplast gene expression 

defects, (3) identification and characterization of the nuclear-encoded products, and (4) 

functional analyzes of the components.  

  For identification of interacting proteins we chose a co-immunoprecipitation (Co-IP) 

approach of complexes from cell extracts. A cell extract is prepared under non-denaturing 

conditions where proteins are present in their native conformation often associated with other 

proteins. This protein-protein complex is then precipitated using specific antibodies and 

unspecific proteins are removed by a series of washes. Precipitated complexes are then evaluated 

by SDS-PAGE followed by Western blotting with specific antibodies for the bait or prey partners 

or subjected to mass spectrometry analyses. It was necessary to (5) generate antibodies against the 

previously identified nuclear-encoded factors, (6) complement mutant lines with tagged versions 

of these proteins, (7) perform the Co-IP analyzes, and (8) characterize the identified interaction 

partners and corresponding mutant alleles.  

  In order to provide a coherent picture, I included some analyses performed by colleges or 

collaboration partners. People involved in the analyses are either mentioned in the figure legends 

or in case of already published material the reference is given. 
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2    MATERIALS 

2.1    Database Analysis 

Analyzes of gene models 

Ensembl Genome Browser  http://atensembl.arabidopsis.info/index.html 

TAIR         www.arabidopsis.org  

NCBI         www.ncbi.nlm.nih.gov 

 

Identification of protein homologues  

Chlamydomonas reinhardtii   www.chlamy.org/cgi-bin/webblast.pl 

Cyanidioschyzon merulae   http://merolae.biol.s.u-tokyo.ac.jp/blast/blast.html 

Cyanobacteria      http://blast.kazusa.or.jp/blast_search/cyanobase/genes 

Galdieria sulphuraria    http://genomics.msu.edu/cgi-bin/galdieria/blast.cgi 

NCBI Blast       http://blast.ncbi.nlm.nih.gov/Blast.cgi   

Oryza sativa       http://rice.plantbiology.msu.edu/blast.shtml 

Ostreococcus tauri      http://bioinformatics.psb.ugent.be/blast 

Phaeodactylum tricornutum   http://avesthagen.sznbowler.com 

Physcomitrella patens     http://www.plantgdb.org 

Populus trichocarpa      http://www.phytozome.net/poplar 

Red algae       http://gobase.bcm.umontreal.ca/index.php 

Selaginella moellendorffii    http://www.plantgdb.org 

Thalassiosira pseudonana   http://genome.jgi-psf.org/ 

 

Identification of duplicated genes 

PGDD        http://chibba.agtec.uga.edu/duplication/index/locus 

 

Sequence alignments 

CLUSTAL-W2     http://www.ebi.ac.uk/Tools/msa/clustalw2/ 

Geneious       Biomatters  

NCBI Blast 2 sequences   http://blast.ncbi.nlm.nih.gov/Blast.cgi 

Vector NTI 10.0     Invitrogen 

 

Digital Northerns 

Genevestigator      www.genevestigator.com   
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Co-regulated gene relationships 

ATTED-II       www.atted.jp    

 

Proteomics database 

Plant Proteome Database  http://ppdb.tc.cornell.edu 

SUBA II        http://suba.plantenergy.uwa.edu.au/ 

 

Prediction of organellar targeting 

BaCelLo        http://gpcr.biocomp.unibo.it/bacello 

ChloroP        http://www.cbs.dtu.dk/services/ChloroP  

MitoProt       http://ihg.gsf.de/ihg/mitoprot.html 

Predotar        http://urgi.versailles.inra.fr/predotar/predotar.html 

PSORT        http://psort.ims.u-tokyo.ac.jp/form.html 

SLP         http://sunflower.kuicr.kyoto-u.ac.jp/~smatsuda/slplocal 

TargetP        http://www.cbs.dtu.dk/services/TargetP  

Wolf Psort       http://wolfpsort.org/ 

 

Structure prediction and visualization 

Genesilico        https://genesilico.pl/meta2/    

JMol          http://www.jmol.org/ 

 

2.2    Bacterial Strains  

Escherichia coli: 

BL21(DE3)pLysS     Novagen/Merck 

DH5α        Bethesda Research Laboratory 

Stbl2         Invitrogen  

 

Agrobacterium tumefaciens: 

GV3101 (pMP90RK)   Koncz et al., 1994 
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2.3    Plant Material 

The Arabidopsis thaliana T-DNA insertion lines prfB3-1 (SALK_133921) and rne-1 (SALK_093546) 

both of ecotype Columbia-0 were obtained from the SALK collection (http://signal.salk.edu/). 

Seeds of the Arabidopsis thaliana ecotype Columbia-0 line rne-2 (formerly named hcf2) originated 

from a collection of EMS induced mutants (Dinkins et al., 1994) and were kindly provided by R. 

Dinkins (Kentucky, USA). The mutant line prfB3-2, ecotype Wassilewskija, was selected from a T-

DNA mutant collection (Bechtold et al., 1993) and was provided by P. Westhoff. Seeds of 

Arabidopsis thaliana ecotypes Columbia-0, Landsberg erecta and Wassilewskija were obtained from 

PD Dr. Meurer. Seeds for mutant lines cry1, cry2, phyA, phyB and corresponding double mutants 

were obtained from SALK. 

 

2.4    Vectors 

Detailed maps of all vectors used in this work can be found in the appendix. 

Gateway vectors pENTR/D-TOPO, pDONR207, and pDEST17 were purchased from 

Invitrogen. The Gateway TAP-tag vector was kindly provided by Dr. Karin Meierhoff. The 

vector pSEX001-VS (Reiss et al., 1996) was used for complementation studies of prfB3-1. 

 

2.5    Oligonucleotides 

Oligonucleotide primers used for amplification of certain DNA regions were purchased through 

MWG Biotech AG or Metabion international AG. A list of all primers used in this work can be 

found in the appendix. 

 

2.6    Antibodies  

Antibodies used in this work raised against subunits of the thylakoid membrane were either 

described in Meurer et al. (1996a) or purchased from Agrisera. Peroxidase-conjugated secondary 

antibodies as well as an anti-polyHistidine antibody were purchased from Sigma-Aldrich. The 

monoclonal, high affinity anti-HA-Peroxidase antibody was obtained from Roche and the 

anti-phosphothreonine antibody derived from Cell Signaling. 
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RNE: In order to generate antibodies against RNE, the recombinant protein (Schein et 

al., 2008; kindly provided by Prof. Gadi Schuster, Haifa, Israel) was injected into 

rabbits at different time intervals (Pineda-Antikörper-Service).  

At-PrfB3: For production of antibodies against At-PrfB3, a fragment of the cDNA (aa 35-

407) lacking the putative transit peptide was amplified using primers 

PrfB3-Topo17-f and PrfB3-Topo17-r and Phusion Pfu polymerase (NEB), cloned 

into Gateway pDEST17 vector via Gateway pENTR/D-TOPO and 

overexpressed together with an N-terminal 6xHis-tag in BL21(DE3)pLysS cells. 

The PrfB3-HIS antigen was isolated from urea-solubilized inclusion bodies to 

almost purity and injected into rabbits at different time intervals (Pineda-

Antikörper-Service). 

PAC:  The cDNA of PAC (aa 23-314) lacking the putative transit peptide was amplified 

using Phusion Pfu polymerase (NEB) and primers Pac-Topo17-f and Pac-

Topo17-r. After cloning the fragment into Gateway pDEST17 vector via Gateway 

pENTR/D-TOPO the protein was overexpressed in BL21(DE3)pLysS cells and 

purified from urea-solubilized inclusion bodies to almost purity. The resulting 

antigen was injected into rabbits at different time intervals (Pineda-Antikörper-

Service). 
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3    METHODS 

General molecular methods, e.g. cultivation and transformation of bacteria, phenol/chloroform 

extraction, precipitation, gel electrophoresis, staining and quantification of nucleic acids, PCR and 

others were performed according to standard protocols (Sambrook et al., 1989) or using kits 

consistent with the manufacturer’s instructions.  

 

3.1    Seed Sterilization, Plant Growth and Mutant Selection 

Seed sterilization and growth conditions for wild-type and mutant plants on 1x MS-medium 

(Murashige and Skoog, 1962) supplemented with 1.5 % Sucrose (Suc) were as described in 

Meurer et al. (1996a). After 2 days at 4°C to synchronize germination, seedlings were grown under 

continuous light of 20-40 µmol photons m-2 s-1
 and constant temperature of 21°C. Selection of 

mutant plants was facilitated by a chlorophyll fluorescence video imaging system 

(FluorCam690M, Photon Systems Instruments). Mutants were distinguishable from wild-type 

plants because of their failure to quench chlorophyll fluorescence, therefore displaying a high 

chlorophyll fluorescence (hcf) phenotype. Propagation of the seedling lethal mutants occurred via 

heterozygous plants grown on soil. Wild-type plants and complemented mutant lines were grown 

on soil in a growth chamber in a 12-h-light (20°C)/12-h-dark (18°C) cycle under heterochromatic 

light of 80 μmol photons m-2 s-1. In all experiments 3-4 week old plants were used.  

 

3.2    DNA Analyses 

3.2.1   Rapid DNA Isolation for PCR 

Plant material of young leaves was homogenized in 400 µl extraction buffer (200 mM Tris/HCl, 

pH 7.5, 250 mM NaCl, 25 mM EDTA, 0.5% w/v SDS) using microbeads and a bead-beater 

(MM300, Retsch) for 2 min at a frequency of 30 s or a mechanical stirrer (RW16 basic, Kika 

Labortechnik). The extract was centrifuged for 3 min at 16,000 g, 300 µl supernatant was 

transferred to a new reaction tube and 300 µl isopropanol was added. After vortexing and 

incubation at room temperature for 2 min the mixture was centrifuged for 5 min at 16,000 g. The 

supernatant was discarded, and the pellet was air-dried and resuspended in 100 µl TE buffer. For 

PCR amplification 1 µl DNA was used. 
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3.2.2   Radioactive Labeling of DNA 

DNA labeling was performed using the Random Primed DNA Labeling Kit (Roche) according 

to the method of Feinberg and Vogelstein (1983). 

 

3.3    RNA Analyses 

3.3.1   Isolation of Total RNA 

Total RNA was isolated from 1-2 g of leaf material homogenized in liquid nitrogen and incubated 

for 5 min with 700 μl TRIzol reagent (Invitrogen). After adding the same volume chloroform and 

vortexing 2 min, phases were separated through centrifugation at 10,000 g for 15 min. One 

volume of phenol/chloroform/ isoamylalcohol was added to the upper phase and centrifuged for 

10 min at 12,000 g. After transferring the upper phase to a new tube, one volume of isopropanol 

and 100 µl of 3 M Na-acetate (pH 6.0) was added, gently mixed and RNA was precipitated over 

night at -20°C. Centrifugation for 45 min at 10,000 g and subsequent air-drying of the RNA and 

resolution in 50-200 µl of RNase-free water resulted in RNA concentrations of 0.5 – 2 µg/µl 

which were determined by spectroscopic measurement of the extinction at 260 nm. 

 

3.3.2   Reverse Transcription (RT)-PCR 

Reverse transcription and PCR of specific RNAs in one single step was carried out using the 

Titan One Tube RT-PCR Kit (Roche). Total cDNAs were amplified with 1 µg RNA using 

SuperScript III Reverse Transcriptase (Invitrogen) and hexanucleotides (Roche). Ribonuclease-

free DNase I (Roche) was used for removal of DNA from RNA preparations prior to RT-PCR 

reactions. 

 

3.3.3   Quantitative Real-Time RT-PCR 

Quantitative two-step RT-PCR was carried out using the LightCycler Thermal Cycler System 

(Roche) and a commercially available master mix containing Taq DNA polymerase, SYBR-Green 

I dye and dNTPs (FastStart DNA master SYBR-Green I; Roche). Serially diluted samples of 

Arabidopsis total cDNA, corresponding from 15 ng to 1.5 pg of DNA were used for calibration 

with the prfB3-1 mutant using primers psaA-f and psaA-r. Quantification of spliced petB or petD 
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transcript was carried out using primers petB-f/petB-r and petD-f/petD-r, respectively. Additionally, 

PCR products were analyzed by 1% agarose gel electrophoresis and stained with ethidium 

bromide to obtain an independent validation check of the presence of a single product. 

 

3.3.4   Northern Analyses 

For Northern analysis 10 µg of total RNA was denatured through incubation with 30% glyoxal 

(McMaster and Carmichael, 1977), electrophoretically separated in 1.2% agarose gels in MOPS 

buffer (0.2 M MOPS, 50 mM Na-acetate, 10 mM EDTA, pH 7.0) and capillary transferred onto a 

Biodyne B nylon membrane (0.2 µm; Pall) in 20x SSC buffer (Grüne and Westhoff, 1988). RNA 

was fixed to the membrane by exposure to UV light of 12,000-120,000 µjoules (Khandijan, 

1986).  

 

3.3.5   Hybridization of Nucleic Acids 

Hybridization of radioactive labeled DNA probes was performed in ULTRAhyb hybridization 

buffer (Applied Biosystems/Ambion) at 42°C according to the manufacturer’s instructions. After 

hybridization filters were washed 2x for 5 min in washing buffer I (2x SSC/0.05% SDS) and 2x 

for 15 min in washing buffer II (0.1x SSC/0.1% SDS). Hybridization images were read with a 

digital scanner (Typhoon, GE Healthcare). 

 

3.3.6   Polysome Analysis 

Polysomes were isolated from leaf tissue essentially as described in Barkan (1998). Polysome 

aliquots (0.5 ml) were layered onto 3.2 ml of 15-55% sucrose gradients and centrifuged for 65 min 

at 250,000 g at 4°C. Fractions of 0.4 ml were collected, the RNA was purified, denatured with 

30% Glyoxal and subjected to RNA gel blot analysis. 

 

3.3.7   Translation Inhibition Experiments 

For application of plastid translation inhibitors, three-week-old plants of prfB3 and wild type were 

used. To avoid embolism, hypocotyls were clipped in a ½ MS solution containing 500 mg/L 
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chloramphenicol or 400 mg/L lincomycin, respectively. Leaves were not immersed to ensure 

increased uptake of the antibiotics by transpiration. 24 hours after incubation in ambient light, 

leaves of the seedlings were harvested. Control plants were incubated for the same time in a 

solution containing ½ MS nutrients. Total RNA was isolated from the harvested material and 

used for Northern analysis. The petB and petD probes used for hybridizations were amplified 

using primers petB-f/ petB-r and petD-f/petD-r, respectively.  

 

3.3.8   RIP-Chip Array Design, Hybridization and Slot-Blot Analyses  

Labeling of RHON1TAP-copurified RNA and its hybridization on the Arabidopsis chloroplast 

microarray was carried out as described previously (Schmitz-Linneweber et al., 2005). The length 

of spotted probes was about 800 bp. Control experiments were performed using wild-type 

extracts. Hybridization of probes and array analyses was performed by Prof. Christian Schmitz-

Linneweber (Berlin, Germany). For slot-blot hybridizations RNA was isolated as for RIP-chip 

analysis and 1/12 of the flow through and 1/6 of the pellet were spotted onto nylon membranes 

and hybridized with the probes indicated. 

 

3.4    Protein Biochemical Analyses 

3.4.1   Isolation of Soluble Chloroplast Proteins 

Arabidopsis leafs were homogenized in isolation media (0.3 M Sorbitol, 20m M Hepes/KOH, 10 

mM NaHCO3, 5 mM EGTA, 5mM EDTA, 5 mM MgCl2, pH 8.0) using a warring blender 

following centrifugation at 1,500 g for 8 min with medium break. Chloroplasts were lysed in 

RIPA buffer containing 0.1, 0.5 or 1% NP-40 and after centrifugation at 18,000 g membrane and 

soluble proteins were separated.  

 

3.4.2   Isolation of Thylakoid Membrane Complexes 

Thylakoid membranes were separated according to Ossenbühl et al. (2004). Approximately 3 g 

Arabidopsis leafs were homogenized in a Warring blender in 50 mM Hepes/KOH pH 7.5, 330 

mM Sorbitol, 1 mM MgCl2, 2 mM EDTA, 5 mM Ascorbat, 10 mM NaF. The homogenate was 

filtered through two layers Miracloth (100 µm, Calbiochem) and centrifuged for 3 min at 1,000 g. 
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The thylakoid pellet was washed in washing buffer (50 mM Hepes/KOH pH 7.5, 5 mM Sorbitol, 

10 mM NaF) and resuspended in 150 µl TMK buffer (50 mM Hepes/KOH pH 7.5, 100 mM 

Sorbitol, 5 mM MgCl2, 10 mM NaF). The suspension obtained was incubated for 10 min on ice 

and then centrifuged for 3 min at 1,000 g. The sediment was again resolved in TMK buffer and 

membrane fractions equivalent to 20-30 µg chlorophyll were used for further analyses.  

 

3.4.3   Measurement of Protein and Chlorophyll Concentration 

Concentrations of soluble proteins were measured according to Bradford (1976). Protein 

amounts of mutants were equalized to amounts in wild type (100 µg) according to Coomassie-

stained gels. Chlorophyll concentrations were measured according to Arnon (1949). 

 

3.4.4   Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis   

  (SDS-PAGE) 

Proteins were separated by SDS-PAGE as described in Meurer et al. (1996a). 

 

3.4.5   Two-Dimensional Blue Native / SDS-PAGE 

Blue Native (BN)-PAGE analysis was performed as described earlier for tobacco with some 

modifications (Schwenkert et al., 2006). Thylakoid membranes equivalent to 30 µg of chlorophyll 

were solubilized with 1% n-dodecyl-β-D-maltoside and separated on a 5-15% acrylamide gradient 

gel. After electrophoresis, lanes of the BN polyacrylamide gel were excised, denatured by 

incubation in an SDS/β-Mercapto-ethanol containing buffer and run in the second dimension in 

SDS-PAGE with 15% acrylamide and 4 M urea. Subsequently, the gels were silver-stained.  

 

3.4.6   Two-Dimensional Clear Native / SDS-PAGE 

Clear Native (CN)-PAGE gels used for separation of soluble complexes were substantially the 

same like for BN besides a reduced Coomassie content (0.002%) and a lower acrylamide 

concentration (5-12%). Lanes of the CN gels were denatured as for BN and run on the second 

dimension in SDS-PAGE with 10% acrylamide.  
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3.4.7   Size‐Exclusion Chromatography 

Three-weeks-old Arabidopsis wild-type and mutant leaves were homogenized in isolation media 

as described above. Chloroplasts were lysed in a buffer containing 25 mM Tricine pH 7.9, 50 mM 

KCl and 1% Protease Inhibitors. The soluble stromal fraction was obtained after a two-step 

centrifugation for 20 min at 18,000 g and 245,000 g. Supernatants were concentrated in Amicon 

Ultra filtration devices (Millipore) at 4°C, with or without 250 units of RNaseOne (Promega). 

Samples (5 mg protein) were loaded onto a Superdex 200 10/300 GL column (GE Healthcare) 

and eluted with the same buffer using an FPLC device (Äkta, GE Healthcare). Elution fractions 

were precipitated with trichloroacetic acid and loaded onto SDS-PAGE gels with subsequent 

immunoblotting. The column was calibrated with a HMW calibration kit (GE Healthcare). 

 

3.4.8   Western Analyses 

For immunodetection, proteins separated on SDS-PAGE gels were transferred to polyvinylidene 

difluoride (0.45 µm; GE Healthcare) or nitrocellulose membranes (0.45 µm; Whatman) using a 

discontinuous buffer system (Khyse-Andersen, 1984) and a semi-dry transfer device. After 

blocking membranes in TBS-T buffer (10 mM Tris/HCl pH 8.0, 150 mM NaCl, 0.1% Tween-20) 

containing 5% dry milk powder, hybridization with primary antibodies was performed for 1 h at 

room temperature or overnight at 4°C in the same buffer conditions. Washing steps after 

antibody-incubation were performed in TBS-T. Signals could be visualized after incubation with 

secondary antibodies for 1 h at room temperature using the enhanced chemiluminescence 

technique. 

 

3.4.9   In Vivo Labeling of Chloroplast Proteins with 35S-Methionine 

For radioactive labeling of chloroplast proteins leafs of three-week-old Arabidopsis plants were 

pre-incubated for 30 min in IVL-buffer (1 mM KH2PO4 pH 6.3, 0.1% Tween-20, 20 µg/ml 

cycloheximide) to block the synthesis of nuclear-encoded proteins and subsequently vacuum-

infiltrated in a syringe in 5 ml of the same buffer supplemented with 1 mCi [35S]-L-

methionine/cysteine. After incubation and illumination with 100 μmol photons m-2s-1 for 2 h 

leafs were homogenized as described in 3.4.2 using a mechanical stirrer (RW16 basic, Kika 

Labortechnik). Soluble and membrane proteins were separated by centrifugation for 10 min at 

10,000 g and loaded onto SDS-PAGE gels, which were either dried or subjected to a semi-dry 
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blotting transfer as described above. Signals were quantified using the Typhoon scanner (GE 

Healthcare). 

 

3.4.10   Co-Immunoprecipitation of Protein Complexes  

a) using antibodies raised against a native protein 

10 µl of α-RNE antibody was bound to 50 µl Dynabeads coupled to Protein A (Invitrogen) 

following the manufacturer’s instructions. After several washing steps the Protein A-α-RNE 

complex was incubated for 30 min with 1 ml of a soluble chloroplast fraction. RNE complexes 

bound to the Protein A-antibody mix and could be used for subsequent analyses after elution. 

b) using antibodies raised against epitopes of tagged proteins 

Soluble chloroplast extracts of at least 30 g of four-week-old mutant plants complemented with 

tagged versions of the respective gene and grown on soil were prepared as described above. After 

loading onto a Strep-Tactin Column (IBA) the tagged proteins were purified following the 

manufacturer’s instructions. The combined eluates were concentrated using Amicon Ultra 

filtration devices (Millipore) and either used for further analyses or in a second purification step 

incubated for 1 h with 50 µl of an HA-matrix (Anti-HA-affinity matrix, Roche). After final 

elution samples were either separated on CN-PAGE and SDS-PAGE-gels for western analyses 

or used for identification of interaction partners via mass spectrometry. If necessary, Co-IP-

purified and concentrated complexes were treated with 1% RNase One (Promega) before loading 

onto the CN gel. 

 

3.4.11   Mass Spectrometry 

Samples for analysis with mass spectrometry were loaded onto SDS-PAGE gels, run for 30 min 

and stained with Coomassie. If visible, bands were cut out or otherwise proteins were cut out in 

total and subjected to mass spec analysis (Mass Spectrometry Unit, Department I, Biologie, LMU 

Munich). 
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3.5    Fluorometric and Spectroscopic Methods 

3.5.1   Visualization of GFP and Chlorophyll Autofluorescence 

The cDNA of PrfB3 encoding the N-terminal part was PCR-amplified using primers At-PrfB3-

Sal-f and At-PrfB3-Sal-r. The resulting product was digested with SalI and cloned in-frame into 

the SalI site of the GFP expression vector pOL-LT (Mollier et al., 2002). Transient expression 

was performed in polyethylene glycol-treated tobacco protoplasts and fluorescence was visualized 

18 hours after transformation using a Fluorescence microscope in ApoTome mode (Axio Imager, 

Zeiss). Cloning of the GFP construct and transformation of protoplasts was performed by Elli 

Gerick, microscopy images were taken by PD Dr. Jörg Meurer. Analysis of chlorophyll 

autofluorescence took place with isolated protoplasts of Arabidopsis thaliana (Dovzhenko et al., 

2003) and fluorescence was visualized as described above.  

 

3.5.2   Chlorophyll a Fluorescence Analyses 

A pulse amplitude-modulated (PAM) fluorometer (Dual-PAM101, Walz) equipped with a data 

acquisition system (PDA-100, Walz) was used to measure and analyze in vivo chlorophyll a 

fluorescence from plants of the same age grown under identical conditions. Plants were dark 

adapted for 20 min and minimal fluorescence (F0) was measured. Saturating pulses (0.8 s) of 

white light (5,000 μmol photons m-2 s-1) were used to determine the maximum fluorescence (Fm) 

and the ratio Fv / Fm (maximum quantum yield of PSII) was calculated. After 10 min of 

illumination with actinic light of varying intensities, one more saturating pulse (0.8 s) of 5,000 

μmol photons m-2 s-1 light intensity was applied to estimate Fm' and the effective quantum yield of 

PSII. Additionally the photosynthetic parameters qP (photochemical quenching) and NPQ (non-

photochemical quenching) were determined. 

 

Photochemical quenching:    qP = (Fm' – Fs) / (Fm' – F0) 

Non-photochemical quenching:  NPQ = (Fm - Fm')/ Fm' 

Effective quantum yield PSII:   ΦPSII = (Fm' – Fs) / Fm' 

Maximum quantum yield PSII:  Fv/Fm = (Fm – Fo) / Fm 
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3.5.3   Light-Induced Changes of the P700 Redox State 

Light-induced changes of the P700 redox state were recorded by absorbance changes at 830 nm, 

with the above described PAM system equipped with a dual wavelength emitter-detector unit 

(101-ED, Walz). Multiple turn-over flashes of 50 µs were induced by a Xenon lamp and 

saturating light pulses of 1 s were applied by halogen lamps. 

 

3.6    Genetic Methods 

3.6.1   Map-Based Cloning of rne-2 and rhon1 

In order to identify the precise chromosomal location of the rne-2 gene a mapping population was 

generated by crossing heterozygous rne-2 plants of ecotype Columbia-0 with wild-type plants of 

ecotype Landsberg erecta. 768 plants of the F2 generation were examined using a set of SSLP 

and CAPS markers. The genotype of recombinants was identified by screening the progeny for 

mutant segregates. Segregating mutations were confirmed by fluorescence imaging of the F3 

offspring. The rne-2 mutation could be fine-mapped to a 69 kb region on BAC T23O15. The 

rne-2 mutation was found in gene At2g04270 by sequencing. Flowers of the wild type (accession 

Landsberg erecta) were pollinated with heterozygous rhon1 plants giving rise to F2 and F3 

generations, which were screened accordingly. Mapping of rhon1 was carried out by Elli Gerick 

and PD Dr. Jörg Meurer. 

 

3.6.2   Complementation of rne and rhon1 Mutants 

The cDNA for RNE splice variant 1 was kindly provided by Prof. Gadi Schuster (Haifa, Israel). 

For complementation of the rne phenotype the cDNA beginning six nucleotides upstream of the 

start codon and missing the stop codon was amplified using Pfu polymerase (NEB) and the 

product was cloned into the TAP vector via pDONR207 using the Gateway technology and stbl2 

competent cells (Invitrogen). This allowed a C-terminal fusion of the Strep-HA-tag. 

Heterozygous rne-1 plants were transformed using Agrobacterium tumefaciens (floral dip method; 

Clough and Bent, 1998) and complemented transgenic plants were selected through BASTA 

resistance and named rneTAP. A full-length cDNA of RHON1 was generated by RT-PCR. Cloning 

into the TAP-tag vector and transformation of heterozygous rhon1 plants occurred in the same 

way as for rne-1. The selected homozygous mutant lines were named rhon1TAP. Homozygosity of 
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complemented lines was confirmed by PCR analyzes using primers flanking the T-DNA 

insertion. Both mutants were functionally complemented using the tagged protein versions. 

 

3.6.3   Complementation of the prfB3-1 Mutation 

The cDNA of PrfB3 RAFL09-18-I15 (Accession number AY128374) was obtained from the 

RIKEN BioResourse Center (Seki et al., 2002) and amplified with Pfu polymerase (NEB) using 

the 5′ phosphorylated PrfB3-P-f and PrfB3-Xba-r oligonucleotide primers, the latter including an 

XbaI restriction site. The resulting XbaI-digested PCR product was ligated into the SmaI/XbaI 

sites of vector pSEX001-VS (Meurer et al., 1998). The construct obtained, pbinatprfB3, was 

introduced into Agrobacterium tumefaciens GV3101 (pMP90RK) and subsequently transformed into 

progenies of mutant segregants using the floral dip method (Clough and Bent, 1998). After 

propagation lines were tested for antibiotic resistance conferred by the T-DNA and homozygous 

mutants were selected by PCR using gene specific intron primers PrfB3-f and PrfB3-r and the left 

border primer (LBb1) of the T-DNA insertion. Cloning of the construct and transformation of 

plants was performed by Lina Lezhneva. 

 

3.6.4   Accession Numbers 

Accession numbers are NP_850987 (At2g04270.1, RNE protein), 814965 (At2g04270.1, RNE 

gene), NP_563761 (At1g06190, RHON1 protein), 837128 (At1g06190, RHON1 gene), 

NP_191278.2 (At3g57190, At-PrfB3 protein) and 824886 (At3g57190, At-PrfB3 gene).  
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4    RESULTS 

4.1    Global Players in RNA Metabolism  

4.1.1   Genetic Mapping of HCF2 Identified the Endoribonuclease RNE 

The rne-2 mutant (hcf2) was originally identified in a screen of EMS-mutagenized Arabidopsis 

plants, exhibiting a high chlorophyll fluorescence (hcf) phenotype and affecting accumulation of certain 

sets of chloroplast transcripts (Dinkins et al., 1994). We assigned the mutation in our mapping 

population using 1536 meiotic chromosomes to bacterial artificial chromosome (BAC) T23O15 

between two adjacent markers with 3 and 10 recombination events (Figure 7A). Sequencing of 

genes located in between revealed a mutation in the RNE gene At2g04270 with a single G-to-A 

transition of the last nucleotide of the seventh intron (Figure 7B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sequencing of RT-PCR products uncovered an alternative splice site 18 nucleotides farther 

downstream within exon eight (Figure 7B+C) resulting in a deletion of six aa in the RNase H 

fold. The T-DNA insertion of the SALK line rne-1 was accompanied by a small deletion between 

Figure 7. Mutations, Mapping and 

Structure of the Arabidopsis thaliana RNE 

Gene.  

(A) Positions of molecular markers A-G on 

chromosome 2 used for mapping of rne-2 and 

the corresponding numbers of recombinant 

events (below) are shown. (B) Exons (gray 

boxes) and introns (gray lines) show the 

structure of the 6 kb genomic RNE gene 

(At2g04270). The T-DNA insertion and the 

point mutation representing mutant lines rne-1 

and rne-2 are indicated. The rne-2 mutation is 

based on a G-to-A-transition of the last 

nucleotide of the 7th intron, resulting in 

splicing 18 nucleotides farther downstream. 

Arrows indicate the positions of primers used 

for PCR analysis. (C) Exon specific primers P4 

and P5 were used for RT-PCR analysis of the 

rne-2 mutant line. The sizes (bp) and sequences 

of RT-PCR products demonstrate the splice 

 defect. (D) Immunoblot analyses using an antibody raised against RNE detected the protein in the soluble 

chloroplast fraction of wild type and rne-2 but not in rne-1. The PAC protein serves as loading control. 
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nucleotides +2381 and +2538 relatively to the start codon as confirmed by sequencing of PCR 

products generated with T-DNA border and genomic primers. Antibodies raised against the 

C-terminal subdomain of RNE localized the protein in the soluble stroma fraction as reported 

previously (Schein et al., 2008). RNE is absent in the rne-1 knockout line whereas in rne-2 the 

protein lacking the six aa is expressed at normal levels (Figure 7D). The protein runs at about 140 

kDa although the predicted size of the mature protein lacking the transit peptide for chloroplast 

import is around 104 kDa. This anomaly in migration of the protein has also been reported for 

RNase E in E. coli and was mentioned in previous reports about plastid RNE as well (Casaregola 

et al., 1992; Schein et al., 2008; Mudd et al., 2008). 

  In cooperation with the lab of Prof. Gadi Schuster it was shown that a recombinant 

protein corresponding to RNE-2 lacking the six aa 688-693 has no catalytic activity in vitro 

(Stoppel et al., submitted) when compared with the previously characterized, truncated Arabidopsis 

wild-type protein comprising aa 284-996 (Schein et al., 2008). This explains why the overall rne-2 

phenotype is very similar to that of the rne-1 knockout line and demonstrates that the internal six 

aa in the RNase H fold are essential for catalytic activity. 

 

4.1.2   Complementation and Epitope-Tagging of rne-1 

When grown on Suc-supplemented medium under sterile conditions rne mutant plants showed a 

pale green phenotype but their size and morphology was comparable to wild-type and 

heterozygous plants (Figure 8).  

 

 

 

 

Homozygous rne seedlings developed pale cotyledons when grown photoautotrophically on soil, 

but were reported to be lethal at the stage of primary leaf formation (Mudd et al., 2008). 

However, when kept under optimal watering and light conditions some of the homozygous 

mutants were able to survive on soil albeit with severe growth retardations as reported recently 

(Walter et al., 2010) and confirmed here (Figure 8).   

Figure 8. Phenotype of WT and rne Mutant Plants. 

Wild type (WT) and mutant lines rne-1 and rne-2 were grown 

on Suc-supplemented MS-media for 3 weeks (left). rne-1 

mutants were grown on soil for three, eight and 12 weeks, 

respectively (clockwise, right). Bars indicate the size of 1 

cm. 
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Since the hcf phenotype indicates deficiencies in photosynthetic electron transport and to evaluate 

the effect of the mutations on protein assemblies, thylakoid membrane complexes were separated 

by blue-native polyacrylamide gel electrophoresis (BN-PAGE) on a first and by SDS-PAGE on a 

second dimension. The protein complex pattern revealed a comparable pleiotropic phenotype for 

both rne mutant alleles (Figure 9). All major thylakoid membrane complexes are present in the rne 

mutants, albeit at lower levels, demonstrating that generally translation and assembly of 

complexes is not the primary target of RNE.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To further investigate the function and potential interactions, we complemented homozygous 

rne-1 mutants with the RNE full-length cDNA fused in frame to a TAP-tag, creating rneTAP lines. 

The TAP-tag consists of a tandem of three HA epitopes and one StrepIII epitope, separated by a 

short linker sequence (Figure 10A). The vector contains a weak promoter derived from the 

HCF173 gene in order to avoid overexpression of the tagged protein (Schult et al., 2007). This 

should allow identification of interaction partners using highly specific monoclonal antibodies 

raised against the epitopes of the tags in co-immunoprecipitation (Co-IP) experiments. 

Figure 9. Representative Blue Native/SDS-PAGE Analysis of Solubilized Thylakoid Membrane 

Complexes of WT and rne-1. 

Thylakoids were solubilized with 1% n-dodecyl-β-D-maltoside, and electrophoresis was performed in the first 

(BN-PAGE) and second (SDS-PAGE) dimension. Individual protein spots were silver stained. Although levels 

of proteins are reduced in rne-1 with respect to the WT the protein complex pattern are comparable. The 

position of thylakoid membrane complexes is indicated. 
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Homozygosity of 16 independently generated rneTAP plants was confirmed by PCR using genomic 

and T-DNA-specific primers (Figure 10B). No visible differences could be observed between 

epitope-tagged mutant lines and wild-type plants, suggesting that the TAP-tag does not impair 

the function of RNE (Figure 10C). Immunoblot analyses of complemented rne lines revealed a 

signal at the expected size (RNE 140 kDa + TAP-tag = 147 kDa) in the chloroplast stroma using 

mono-specific HA-antibodies (Figure 10D). The StrepIII-tag allowed purification of RNE under 

native conditions using a Strep-tactin column (Figure 10D).  

 

 

 

 

 

 

 

 

 

 

 

 

4.1.3   Isolation of the First RNE Interacting Protein         

  in Plant Chloroplasts 

We took advantage of the Strep-tag to isolate potential interaction partners associated with the 

plastid RNE. Detergent-solubilized stromal fractions were prepared from isolated chloroplasts 

and subjected to co-immunoprecipitation using the Strep-tactin column. Co-IP eluates were 

shortly separated on a gel and subsequently in-gel digested with trypsin. The resulting peptides 

were analyzed through microcapillary liquid chromatography MS/MS followed by protein 

database searches of the generated spectra. Three independent experiments identified several 

peptides of RNE together with a protein that could be assigned to the At1g06190 gene (Table 1).  

Figure 10. Complementation of rne-1 with a Double Tag for Tandem Affinity Purification (TAP). 

 (A) Structure of the TAP-tag construct used for transformation of rne-1 mutants. An HA and a Strep tag were 

fused in tandem to the C-terminus of the full-length cDNA of RNE. (B) Genotyping of WT, heterozygous 

(Het) and six independent rne-1 lines complemented with the TAP-tag construct (rneTAP) was performed using 

PCR. Primers P1 and P6 shown in Figure 7 amplified a 545 bp genomic DNA fragment (upper band) and a 463 

bp fragment of the cDNA (lower band), thus confirming complementation of rne-1 mutants. (C) 

Complementation of the rne-1 line fully restored WT phenotype. WT and rneTAP plants were grown on soil for 

four weeks (left). Bars indicate the size of 1 cm. (D) Stromal lysate (L), IP flow through (FT) and 10% of the IP 

eluate (E) collected during purification of RNETAP with the Strep-column were loaded. A monoclonal HA 

antibody detected the tagged protein in the lysate and IP eluate. The protein is migrating at a size of 147 kDa. 

The remaining 90% of the IP eluate were subjected to mass spectrometry. 
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Table 1: RNE and RHON1 Peptides Identified in Co-IP Experiments with rneTAP Lines.  

Experiment Sequence Homology Frequency 
    
1 R.SAIVSAQQEQPPSR.L RNE 1 
 K.TLQPQGFGLTVR.T RNE 2 
 K.TNVQC#DSVYLGVITK.F RNE 1 
 R.AM*GQTLSVVQDYFNDK.V RNE 2 
 R.PGPQFSLSVPSSVNQDR.K RNE 2 
 R.SAIVSAQQEQPPSR.L RNE 1 
 R.TVAAGHSLEELQK.D RNE 2 
 R.VDSHMSSFLTTGK.R RNE 1 
 K.FSSQGEVQGDTVDKQDR.T RHON1 1 
 R.NGPLFNLSSSPK.F RHON1 1 
    
2 K.DLDGLLLTWK.N RNE 1 
 R.TVAAGHSLEELQK.D RNE 1 
 R.NGPLFNLSSSPK.F RHON1 2 
    
3 K.AILEVNLAAAR.Q RNE 2 
 K.LVELLLEPVK.T RNE 2 
 K.TLQPQGFGLTVR.T RNE 1 
 K.TNVQC#DSVYLGVITK.F RNE 2 
 R.VEALETTFSK.I RNE 2 
 -.NGPLFNLSSSPK.- RHON1 3 
 K.DNNASSFTRPTSSFR.R RHON1 1 
    

Peptide sequences were determined by mass spectrometry based sequencing in three 

independent experiments. C#, Carbamido-methylation; M*, Oxidation. 

 

Both proteins were completely absent when untagged wild-type plants or lines expressing other 

TAP-tagged proteins, like HCF101 (Schwenkert et al., 2009), PrfB3 (Stoppel et al., 2011), and 

PAC (Meurer et al., 1998) were subjected to the same procedure (unpublished data), indicating the 

reliability of the TAP-tag purification and suggesting that the At1g06190 gene product represents 

an interaction partner of RNE.  

 

4.1.4   The At1g06190 Gene is Found Exclusively in Vascular Plants   

  and its Product is Targeted to the Chloroplast  

With the exception of Chlamydomonas reinhardtii, RNase E homologs can be found in all 

photosynthetic lineages including green algae, whereas At1g06190 holds only homologies among 
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vascular plants. We generated a full-length cDNA of the At1g06190 locus by RT-PCR. The 

obtained cDNA of 1,285 bp encodes a protein of 401 aa. Domain analysis of this protein 

revealed that the C-terminus contains a motif similar to the N-terminal part of the RNA-binding 

domain of bacterial transcription termination factor Rho (Allison et al., 1998; Aravind and 

Koonin, 2001). This part of the RNA-binding domain has a helix-extended-helix (HEH) 

structure and is called Rho-N. Hence we named the At1g06190 protein RHON1. Besides 

RHON1 the Arabidopsis genome encodes two other proteins with a putative Rho-N domain, 

predicted to be targeted to mitochondria (At4g18740) and cytoplasm (At2g41550) (Figure 11).  

 

 

 

 

 

 

 

 

 

A third genomic locus (At2g31150) displaying high similarity (43%) to the entire RHON1 is 

present in Arabidopsis. However, annotation data, RT-PCR analyses as well as available EST data 

could identify only transcripts, which do neither encode an entire open reading frame nor the 

corresponding C-terminal Rho-N domain because of the presence of several premature stop 

codons and annotated intron sequences. This locus most likely originated from a gene duplication 

of RHON1 because of a collinear genomic context. We conclude that At2g31150 has been 

converted into a pseudogene after duplication. This is consistent with single copy genes in 

monocot and most dicot species.  

  The previously described rice protein OsBP-73 (Os03g0183100) was assumed to bind 

DNA (Chen et al., 2003) and exhibits 35% sequence similarity to RHON1. An in vitro interaction 

with the promoter of the nuclear waxy gene in rice suggested localization of OsBP-73 in the 

nucleus and function as a transcription factor. However, the localization of OsBP-73 was not 

addressed experimentally. Several subcellular localization algorithms predicted that RHON1 and 

Figure 11. Multiple Sequence Alignment of Rho-N Motifs. 

The alignment shows the HEH structured Rho-N motifs of RHON1 and other proteins of unknown function 

in Arabidopsis thaliana (At4g18740, At2g41550), Physcomitrella patens (XP_001761620) and Ostreococcus lucimarinus 

(XP_001416615), as well as N-terminal sequences of Rho factors from Synechocystis, Rhodobacter and E. coli, 

starting with the aa indicated. The secondary structure shown above the alignment and the consensus sequence 

shown below were described in Aravind and Koonin (2001). Negatively charged aa are colored in red, positively 

charged are colored blue. H, helix; h, hydrophobic; p, polar; b, big; s, small; l, aliphatic. 
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OsBP-73 are present in the chloroplast (ChloroP, TargetP, PCLR). A C-terminal in-frame fusion 

to GFP was previously investigated in our group and confirmed targeting of RHON1 to 

chloroplasts (not shown). This is consistent with several chloroplast proteomics data and the 

immunological identification of RHON1 in chloroplast extracts (see below).  

 

4.1.5   Molecular Mapping, Complementation and Phenotype     

  of rhon1 Mutants 

An Arabidopsis seedling-lethal T-DNA mutant affected in chloroplast RNA metabolism and 

exhibiting an hcf phenotype was previously identified in our group. Segregation analysis using 

2448 F2 progenies and 638 individual F3 plants derived from backcrossed mutant plants revealed 

that the mutation is either caused by or very closely located to one insertional event because the 

kanamycin resistance conferred by the T-DNA strictly co-segregated with the mutant phenotype.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Mapping, Phenotype, and 

Complementation of rhon1. 

(A) Molecular markers H-M used for fine-

mapping of rhon1 on chromosome 1 and the 

corresponding numbers of recombinant events 

are shown. Southern blot analysis of BACs 

T21E18 and F9P14 as well as sequencing of T-

DNA border regions revealed that the T-DNA 

was inserted into the At1g06190 gene 

(RHON1). (B) Exons (gray boxes) and introns 

(black lines) show the structure of the genomic 

RHON1 gene. The T-DNA insertion at 

position +481 is marked. Arrows indicate the 

positions of primers used for PCR analysis. The 

phenotype of a rhon1 mutant plant as compared 

to WT grown for three weeks under 

heterotrophic conditions is shown. (C) The N-

terminus of RHON1 includes the sequence 

predicted to constitute a chloroplast transit 

peptide (TP). In addition, the protein contains 

   two conserved regions (red) and the C-terminal motif Rho-N (yellow). For complementation of the mutant a 

construct of the full-length protein fused to an HA-Strep TAP-tag was used. (D) WT and complemented rhon1TAP 

plants were grown on soil for four weeks in 12/12 hours light/dark conditions. (E) PCR analysis demonstrates 

orientation of the T-DNA insertion in exon 2 of rhon1, as well as homozygosity of independent complemented 

lines.  
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It was impossible to identify the T-DNA flanking sequences by inverse PCR because of multiple 

truncated T-DNA insertions in this locus as revealed by genomic Southern analysis. Therefore, 

we fine mapped the mutation on the upper part of chromosome 1 (Figure 12A) and localized the 

T-DNA insertions at position +481 relative to the start codon of RHON1. RHON1 has a size of 

about 2 kb organized in two exons (Figure 12A+B). The protein contains a predicted transit 

peptide (TP) for transfer to the chloroplast (ChloroP) and two conserved regions with unknown 

functions followed by a stretch consisting of highly negatively charged aa. Since all attempts to 

express the full-length RHON1 in E. coli cells and to immunize rabbits against synthetic peptides 

in order to get functional antibodies failed, we complemented the rhon1 mutant with the cDNA 

fused to the same TAP-tag as described for RNE (Figure 12C+D). PCR analysis of 49 selected 

plants confirmed homozygosity of 3 lines using genomic primers in combination with the right 

border primer of the T-DNA (Figure 12E). Complemented rhon1TAP lines could not be 

distinguished phenotypically from the wild type (Figure 12D) indicating that the phenotype is 

solely caused by the multiple T-DNA insertions in the RHON1 gene. 

  The phenotype of rhon1 mainly resembles that of rne, but in contrast to rne, the defect leads 

to seedling lethality, and homozygous rhon1 mutants could be grown only on Suc-supplemented 

medium (Figures 12B). Chlorophyll a fluorescence imaging of isolated leaf protoplasts revealed a 

dramatic decrease in chloroplast size accompanied with an increase in chloroplast number in 

both mutants as compared to the wild type (Figure 13).  

 

 

 

 

4.1.6   RHON1 Precipitates RNE  

To further confirm the RNE-RHON1 interaction, we investigated Co-IPs of rhon1TAP lines 

applying the same method as described above. Using the HA antibody we could observe a 

distinct signal in lysate, flow through, and eluate of rhon1TAP but not in untagged wild-type lines. 

The same immunoblot probed with the RNE antibody detected RNE in lysate and flow through 

of rhon1TAP and wild type, but only in the eluate of rhon1TAP (Figure 14A). Control experiments 

using antibodies raised against HCF101 or PAC, which are involved in plastid Fe/S cluster 

biogenesis (Schwenkert et al., 2009) and RNA metabolism (Meurer et al., 1998; Stoppel et al., 

Figure 13. Chloroplast Number and Size as 

Revealed by Chlorophyll Autofluorescence. 

Chlorophyll fluorescence was imaged from 

protoplasts isolated from WT, rne-1 and rhon1. 

Bars show the size of 10 µm. 
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2011), respectively, did not give any notable signal in rhon1TAP or wild-type eluates, suggesting that 

rhon1TAP precipitated specifically RNE. This data confirms a true interaction between both 

proteins (Figure 14A).  

 

 

 

 

 

 

 

 

 

 

 

Moreover, a Co-IP using rhon1TAP plants and RNE antibodies coupled to Protein A coated 

magnetic beads, precipitated both RNE and RHON1, while pre-immune sera of the same rabbit 

failed to do so, again substantiating the interaction (Figure 14B).  

  Levels of RNE were severely reduced in rhon1 mutants to about 25% as compared to wild 

type, while the PAC protein used as loading control accumulated normally (Figure 15A). Lower 

levels of RNE could also be observed in both rneTAP and rhon1TAP TAP-tagged lines presumably 

because of the weak promoter driving expression of the tagged proteins (Figure 15B). The HA 

antibody gave a distinct signal of both tagged proteins in stromal fractions (Figure 15B). The 

tagged RHON1 protein shows the same anomaly of migration in SDS-gels like RNE, running at 

60 kDa, which is about 13 kDa higher than expected, probably due to the high amount of 

negatively charged aa (Figure 15B).  

 

 

Figure 14. RNE and RHON1 Reciprocal Precipitations. 

(A) Soluble protein extracts from rhon1TAP or WT were immunoprecipitated using a Strep-Tactin column. 

Samples from stromal extract (L), IP flow-through (FT), and the IP eluate (E) were separated in 10% 

polyacrylamide gels and subjected to immunoblot analysis using the antibodies indicated (left). Protein sizes are 

given in kDa (right). (B) A Co-IP using the RNE antibody and protein extracts from rhon1TAP was able to 

precipitate RNE as well as RHON1 while the pre-immunserum was not, as shown by immunoblot analysis. 

pre-i, pre-immunserum. 
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4.1.7   Spectroscopic and Fluorometric Analyses Revealed a Pleiotropic 

  Phenotype of rne and rhon1 

The hcf-phenotypes of pale rne and rhon1 mutant plants indicated defects in the photosynthetic 

apparatus and were compared with each other. In order to rule out the possibility of 

photosynthetic defects in complemented mutants we included rneTAP and rhon1TAP lines in our 

analyses. If feasible, measurements were conducted on plants grown on soil. In vitro cultured rhon1 

plants were compared with wild type and rne-2 grown under the same conditions. However, no 

significant discrepancy between rne mutant plants grown on sucrose or soil could be observed. 

The activities of PSI and PSII were determined using spectroscopic and fluorometric methods. 

The maximum quantum yield of PSII (Fv/Fm), a standard parameter of PSII integrity, was 

reduced to more than 50% in both rne and rhon1. The effective maximum quantum yield of PSII 

(ΦPSII) in the steady state was 0.72±0.03 in the wild type and significantly reduced to comparable 

levels in rne (0.20±0.06) and rhon1 (0.16±0.11). An equal decrease in photochemical quenching 

(qP) could be observed in both mutants as compared to the wild type (Figure 16A). This 

behavior was due to elevated ground fluorescence and a decreased level of variable fluorescence. 

Measurements of the P700 redox state under increasing actinic light intensities revealed elevated 

levels of oxidized P700 in both mutants as compared to wild type. This demonstrates that activity 

of PSI is significantly reduced and that electron transport at the acceptor site of PSI is limited in 

the mutants (Figure 16B). The epitope-tagged complemented lines behaved comparably to wild 

type (Figure 16A+B).  

Figure 15. RNE Levels of WT, Mutants, and Tagged Lines. 

(A) Comparison of RNE levels in WT, rne, and rhon1 mutants. Levels of the protein PAC were used as a loading 

control. (B) Levels of RNE were compared between wild type, rneTAP, and rhon1TAP lines. Note the difference in 

size between wild-type RNE and the tagged version. The same blot was probed with an HA-antibody and gave 

signals at the expected sizes of 147 kDa and 60 kDa in rneTAP and rhon1TAP, respectively. Levels of PAC served as 

loading control. 
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Since these data pointed out severe pleiotropic effects on photosynthetic capacity we determined 

the content of photosynthetic proteins by immunoblot analyses. Levels of most PSI and PSII 

proteins and the ATP synthase were reduced to equal amounts of less than 25 % in both mutants 

whereas amounts of the cytochrome b6f complex were more affected in rhon1 than in rne-1 (Figure 

17).  

 

 

 

 

 

 

 

Taken together, the phenotype of rhon1 is comparable to but to a certain extent more severe than 

that of rne-1 displaying an elevated importance and/or additional functions of RHON1 in 

comparison with RNE.  

Figure 16. Photosynthetic Parameters of WT, rne, rhon1 and Tagged Lines. 

(A) Fluorescence parameters show a severe reduction in effective quantum yield of PSII (ΦPSII), maximum 

quantum yield of PSII (Fv/Fm), and photochemical quenching (qP) indicating decreased PSII activity in rne-2 and 

rhon1 grown on MS-medium. No significant difference between rne-1 grown on soil or on Suc-supplemented 

medium was detectable. Complemented TAP-tagged lines all showed wild type characteristics. (B) PSI redox 

state was measured. Amounts of oxidized P700 under increasing actinic light intensities are elevated in rne-2 and 

even more in rhon1 as compared to the wild type. 

Figure 17. Immunoblot Analyses of Thylakoid 

Membrane Proteins.  

Dilution series of membrane protein extracts from three-

week-old wild-type plants were compared with rne-1 and 

rhon1 using antibodies raised against proteins of the 

thylakoid membrane. Loading of 100% corresponds to 

10 µg chlorophyll. 
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4.1.8   Double Knockouts of rne-1 and rhon1 Display         

  an Additive Phenotype  

The nature of both rne-1 and rhon1 mutations was strictly recessive. Fv/Fm levels were more 

reduced (0.07±0.07) and the pale phenotype appeared to be more intense in the homozygous rne 

rne/rhon1 rhon1 double knockout mutants than in the individual knockouts indicating an additive 

effect of the mutations on photosynthetic parameters and chloroplast development (Figure 18).  

 

 

 

 

 

 

 

 

 

4.1.9   RNE and RHON1 are Located in the Same Complex 

Since we confirmed that RHON1 represents one of the interaction partners of plastid RNE we 

intended to clarify if they are stably associated in the same complex in vivo. Bacterial RNase E is 

extremely sensitive to proteolysis and tends to form larger assemblies when overexpressed in 

E. coli cells (Coburn and Mackie, 1999). A similar high degree of sensitivity was observed for 

plastid RNE even when using protease inhibitors. The biochemical characterization of the plastid 

enzyme is even more difficult because freezing results in a severe loss of protein stability, 

necessitating biochemical analysis only with fresh preparations. After applying several separation 

methods we found Clear Native polyacrylamide gel electrophoresis (CN-PAGE) of Co-IP-

enriched RNETAP or RHON1TAP to work best for identification of the RNE-containing complex. 

Our results show, that both RNETAP and RHON1TAP are located in the same complex running at 

about 800 kDa in the separating gel (Figure 19). 

 

Figure 18. Phenotype of rne rne/rhon1 rhon1 

Double Knockouts. 

Double knockouts were created by crossing 

heterozygous rne-1 and rhon1 mutants and selfing 

of the selected double heterozygous F1. The 

average Fv/Fm rate and standard deviation was 

determined from ten independent plants. 

Representative mutant plants are shown above 

each column, while wild-type and double 

heterozygous plants are only shown in parts in 

order to maintain the same scale. Note that the 

rne mutants in the background of heterozygous 

rhon1 are paler than those in the WT background. 
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As the in vitro processing activities of RNase E homologs in eubacteria and plastids are 

comparable and as the E. coli enzyme is the characteristic scaffold protein of the degradosome 

associated with different proteins, we suggest naming the 800 kDa assembly degradosome-like 

complex (DLC). DLC did not change its size when treated with RNase One, indicating that 

either it contains no RNA or that RNA is bound to the complex in a compact form, which is not 

accessible by RNase One. In addition, RHON1 forms a dominant sub-complex of about 100 

kDa and further complexes ranging from 100 to 800 kDa. Sub-complexes >150 kDa almost 

completely disappeared upon RNase One treatment and gave rise to a prominent and distinct 

RHON1TAP-containing complex of 150 kDa, indicating interactions presumably with RNAs of 

different sizes resulting in this broad molecular weight range (Figure 19).  

 

4.1.10   RHON1 Associates with 16S and 23S rRNA 

As an initial survey experiment to identify potential plastid RNA targets of RHON1, we 

performed RIP-chip assays. Co-immunoprecipitated RNAs from TAP-tagged lines and wild type 

as negative control were isolated from flow-through and eluates using both HA and Strep-tags 

and subsequently labeled with red- or green-fluorescing dyes, respectively. These RNAs were 

Figure 19. RNE Associates with RHON1 in the Degradosome-Like Complex. 

Soluble chloroplast fractions of rneTAP, rhon1TAP, and rhon1TAP treated with RNase One (Promega) were purified 

on Strep-columns and complexes were separated in the first (CN-PAGE) and second (SDS-PAGE) dimension. 

Blotted gels were immunodecorated with an HA antibody and sizes of complexes estimated using a HMW-

marker set (GE). The left parts of rhon1TAP immunoblots were overexposed. The high-molecular-weight 

degradosome-like complex (DLC) of ~800 kDa containing both RNE and RHON1 did not disappear upon 

RNase One treatment (not shown for rneTAP). 
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combined and hybridized to a tiling microarray of the Arabidopsis chloroplast genome (Schmitz-

Linneweber et al., 2005). Replicate experiments revealed that the RNAs most strongly enriched in 

Co-IPs using rhon1TAP were the ribosomal 16S and 23S RNAs (Figure 20A). Slot-blot 

hybridization of immunoprecipitated RNAs from flow through and eluate verified the 

enrichment of 16S and 23S rRNA using full-length gene probes (Figure 20B), while 4.5S, 5S, ycf1 

and rbcL RNAs were not bound efficiently.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This suggests that RHON1 associates with the highly abundant 16S and 23S rRNAs. However, it 

remains uncertain if RHON1 is also associated with lower abundant mRNAs. Notably, RIP-chip 

analysis using RNETAP did not detect any association with RNAs speaking in favor of the idea 

that DLC contains no RNA. Since the resolution of our RIP-chip and slot-blot analysis is limited 

Figure 20. Association of RHON1 with Chloroplast Transcripts. 

(A) Stroma of rhon1TAP or WT (control) was subjected to tandem IP with Strep-Tactin column and HA-matrix. 

Co-purified RNAs after the second purification step were labeled with Cy5 and RNAs of the flow-through from 

the first purification step were labeled with Cy3. The enrichment ratios (FCy5:FCy3) were normalized between 

two assays using tagged protein extracts and two assays using wild-type extracts. The median normalized values 

for replicate spots from the RHON1TAP purifications were divided by those from WT data and plotted 

according to fragment number on the Arabidopsis chloroplast genome tiling microarray. Fragments are 

numbered according to their chromosomal position. Labeling, hybridization and analysis of the array data was 

performed by Prof. Christian Schmitz-Linneweber (B) RIP-chip data were validated by slot–blot hybridization. 

1/12 of the RNA purified from the IP flow-through of the first purification steps (FT1) and 1/6 of the RNA 

from the IP eluate of the second purification steps (E2) was applied to slot-blots and hybridized with the 

indicated probes. 
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to several hundred nucleotides, electrophoretic mobility shift assays were performed in the group 

of Jörg Meurer suitable for narrowing down the target sequence. It appeared that the over-

expressed C-terminal 40 aa comprising the Rho-N motif fused to a GST tag binds to all 

investigated RNAs although with quite different stringencies. These data indicate that RHON1 

represents a novel RNA-binding protein recognizing specific regions of quite diverse rRNAs and 

mRNAs via the Rho-N domain. 

 

4.1.11   General Processing of Chloroplast Transcripts is not Affected   

  in rhon1 and rne Mutants 

Recently in the group of Jörg Meurer, a chloroplast genome-wide transcriptomic approach was 

used to study the differential expression of plastid genes under changing environmental 

conditions and in various nuclear mutants affected in chloroplast functions (Cho et al., 2009). The 

rne-2 and rhon1 (formerly named crp102 and crp135, respectively) mutant transcriptomes appeared 

to cluster closely together. Levels of >50% of the 94 tested genes were differentially expressed in 

comparison to wild type (Cho et al., 2009). Genes transcribed by the nuclear- and plastid-encoded 

polymerase were generally up- and down-regulated, respectively. Thus RNE and RHON1 fall 

into the same class of genes exerting global functions in plastid gene expression.  

  A comparison of macroarray data with RNA gel blot analysis has not only confirmed 

alterations in the mutants’ transcript levels, but also revealed dramatic changes in the pattern of 

chloroplast transcripts in both mutants as compared to wild type, indicative for processing 

defects and altered RNA stability. For example, accumulation of high-molecular-weight 

transcripts, like that of rbcL, results from inefficient processing of precursor transcripts (Figure 

21). The same phenomenon could also be observed in rne mutants. Appearing precursor 

transcripts of 8.5 and 5.4 kb of the rbcL transcription unit comprise sequences of the downstream 

located genes accD, psaI, ycf4, cemA, and petA in both mutants (Figure 21B+C). Notably, none of 

the processed transcripts present in the wild type (not shown) is completely missing in both 

mutants indicating that processing basically takes place although with reduced efficiency (Figure 

21B+C). This finding is indicative for the presence of additional redundant endonucleases, like 

RNase J (Sharwood et al., 2011), which are also supported by RHON1 and possibly can partially 

replace the catalytic function of RNE. 
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4.1.12   Levels of Plastid Ribosomes are Severely Reduced       

  in rhon1 Mutants 

Binding of RHON1 to ribosomal 16S and 23S RNAs suggested a crucial involvement in 

processing and/or stability of ribosomal RNAs. We stained a blot of denatured RNAs of isolated 

polysome fractions of WT and rhon1 with methylene blue to visualize the integrity of plastid 

ribosomal RNAs (Figure 22).  

 

 

 

 

 

Blots were then subjected to hybridization with a full-length probe of 23S rRNA and a probe of 

rbcL. Both RNAs did not accumulate to the same extent in polysomal fractions of rhon1 as 

compared to wild type, indicating that polysomal loading and translation is affected in rhon1 

(Figure 23). This implies that translation takes place on monosomes and/or that small amounts 

Figure 21. The rbcL Gene Cluster and 

Processing Products in WT, rne, and rhon1. 

(A) The rbcL gene cluster, comprising genes 

rbcL, accD, psaI, ycf4, cemA, and petA and 

processing products are shown down to scale. 

Transcript lengths are indicated in kb, probes 

used for hybridization by black lines. (B) 

Transcript levels of rbcL are shown in WT 

Columbia (Col-0), rne-1, rne-2, WT Wassilewskija 

(Was), and rhon1. 10 µg leaf RNA of three-week-

old plants, grown on Suc-supplemented MS-

media, were loaded. (C) Total RNA of rhon1 

mutants was separated on the same gel and 

subjected to RNA gel blot analysis using strand-

specific probes (performed by PD Dr. Jörg 

Meurer). 

Figure 22. Visualization of Polysome 

Integrity of WT and rhon1. 

Polysomes of wild type and rhon1 were 

separated by 15-55% sucrose gradient 

centrifugation and collected in 10 fractions. 

Ribosomal RNAs as indicated on the left 

were visualized by methylene blue staining.  

 



                                                                                                                                        Results 42 
 

of transcripts present in polysomal fractions are sufficient to translate proteins albeit at reduced 

levels.  

 

 

 

 

 

 

 

 

4.1.13   Processing of Ribosomal RNAs is Affected in rne and rhon1 

We also investigated the processing pattern of the rRNA transcription unit by performing RNA 

gel blot analysis in rne and rhon1 mutants. RNA staining of filters revealed a severe reduction of 

both 16S and 23S rRNAs in rhon1 but not in rne-1 (Figure 24). The 16S rRNA is correctly 

processed in both mutants and levels were almost unchanged in rne but markedly decreased in 

rhon1 as compared to the wild type (Figure 24). Accumulation of the 3.2 kb 23S-4.5S dicistronic 

precursor transcript was observed in rne and even more in rhon1 mutants indicating loss of 

efficient endonucleolytic processing. This is accompanied by reduced levels of processed 

transcripts in rhon1 and to some extent in rne, like the 0.5 kb, 1.1 kb, and 1.8 kb RNAs originating 

from the 23S rRNA. Hybridization with the 4.5S probe revealed an additional band of 2.7 kb in 

both mutants, which is not present in the wild type or other rRNA processing mutants (Bellaoui 

et al., 2003; Bisanz et al., 2003; Bollenbach et al., 2005; Nishimura et al., 2010). Since this band 

could not be detected with the probe of the 23S 5' region it still comprises sequences of the 4.5S 

rRNA but lacks 0.5 kb of the 5' region (Figure 24). The 5S probe could not detect any high-

molecular-weight band although levels of the monocistronic 5S rRNA were reduced in rhon1, 

supporting that the 2.7 kb band does not comprise the 5S rRNA. Therefore, RNE and RHON1 

are not only required for efficient cleavage of mRNA but also of the 23S-4.5S rRNA intergenic 

region. 

 

Figure 23. RNA Gel Blot of Separated 

Polysomes of WT and rhon1. 

Polysomes of wild type and rhon1 were 

hybridized with full-length probes of 23S 

and rbcL. Sizes indicated on the left are 

given in kb. 
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Figure 24. Transcript Analysis of the rDNA Gene Cluster in WT, rne and rhon1. 

The rDNA gene cluster and all processing products (black lines) of rRNAs is shown down to scale. RNA gel 

blot analyses were performed using probes rrn16S, rrn23S, rrn4.5S, and rrn5S as indicated in grey boxes. A 2.7 kb 

transcript (dotted line and asterisks) is detected only in rhon1 and rne-1 mutant lines. Equal loading was 

confirmed using methylene blue (M.B.) staining. The transcript lengths are indicated in kb. 
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4.2    A Site Specific Factor for Regulation of RNA Stability  

4.2.1   Identification and Origin of the Nuclear-Encoded Factor PrfB3  

  in Arabidopsis 

Up to now little attention has been paid to the functions of translation termination in 

chloroplasts (Meurer et al., 1996b and 2002). In contrast to the omnipotent eukaryotic and 

archaebacterial ribosomal release factors (RF), two peptide chain release factors are present in 

eubacteria, chloroplasts and plant mitochondria, prfA (RF1) for UAA and UAG and prfB (RF2) 

for UAA and UGA (Meurer et al., 2002; Motohashi et al., 2007). Functional and structural 

comparisons on the basis of a common GGQ motif present in all release factors described so far 

revealed its essential function in the hydrolytic activity (Kisselev and Buckingham, 2000) and may 

reflect a common evolutionary origin of the eukaryotic/archaebacterial and eubacterial proteins 

both of which are supposed to mimic tRNAs when bound to ribosomes (Nakamura and Ito, 

2003; Loh and Song, 2010). The other highly conserved motif SPF for recognition of UGA stop 

codons is present in all eubacterial and related plastid and mitochondrial PrfB proteins (Meurer et 

al., 2002). Previously, the essential roles of the GGQ- and SPF-containing Arabidopsis thaliana 

plastid RF2 homolog, At-PrfB1 (formerly designated At-PrfB), in translational termination and 

stabilization of chloroplast UGA stop codon-containing transcripts were identified in our group 

(Meurer et al., 1996a and b; Meurer et al., 2002).  

  A fifth release factor-like protein, PrfB3, is a PrfB1-homolog of eubacterial origin. Its full-

length cDNA encodes a protein consisting of 406 aa with a deduced size of ~45 kDa. PrfB3 can 

be found only in vascular plants and displays 36.5, 37.5, and 31% sequence similarity over the 

whole length with the corresponding RF2 and only 23.3, 22.6, and 21.7% with the corresponding 

RF1 homologous proteins of mitochondria, chloroplasts, and Synechocystis, respectively. PrfB3 has 

so far not been found in proteomic approaches, indicating that this protein represents a minority 

factor, as is found for many regulatory proteins. Remarkably, PrfB3 neither contains the otherwise 

conserved tripeptide anticodon SPF, which determines release factor specificity in vivo in PrfB 

proteins (Ito et al., 2000; Nakamura et al., 2000), nor the universally conserved GGQ motif, which 

is essential for the hydrolytic activity and represents a structural counterpart on the CCA-3' 

acceptor stem of the tRNA-aminoacyl group (Frolova et al., 2000). Moreover, the corresponding 

nucleotides of both motifs were not simply replaced but rather cut out from the genes by 

deletion events (Figure 25). Therefore, PrfB3 must have lost its function to terminate translation 

and potentially could have been recruited by the chloroplast for a new function that is not 

directly related to ribosomal release.  
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4.2.2   At-PrfB3 Is Targeted to the Chloroplast  

Several publicly available programs did not predict an amino terminal transit peptide for import 

of At-PrfB3 into the chloroplast but instead identified a putative mitochondrial transit peptide. 

Moreover, it has been suggested previously that At-PrfB3 might be involved in termination of 

translation of transcripts lacking stop codons and might be a mitochondrial protein (Raczynska et 

al., 2006).  

 

 

 

 

 

 

 

 

 

 

Figure 25. Partial Sequence Alignment of Eubacterial PrfB and Homologous Plant Proteins. 

The conserved part of all functional RF2 in eubacteria (Synechocystis and E. coli), plastids (At-PrfB1 and Os-PrfB1) 

and mitochondria (At-PrfB2 and Os-PrfB2) was compared with the corresponding region in At-PrfB3 and Os-

PrfB3 in Arabidopsis and rice, respectively. The essential tripeptide motifs SPF and GGQ are highlighted in red. 

Conserved aa, which are also present in At-PrfB3 and Os-PrfB3, are shaded in gray. Amino acid residues 

specific for the functional release factors are shaded in yellow. Conserved aa, which only occur in the plastid At-

PrfB3 and Os-PrfB3 proteins are shaded in green. The deduced positions of introns are underlined and labeled 

in blue. 

Figure 26. Localization of At-PrfB3 in the 

Chloroplast Stroma.  

(A) The 206 N-terminal aa were fused in frame 

to the GFP reporter under the control of the 

35S promoter and the construct was transiently 

expressed in tobacco protoplasts. The GFP 

fluorescence perfectly matched with 

chlorophyll fluorescence confirming 

chloroplast targeting of At-PrfB3. 

Fluorescence pictures were taken by J. Meurer. 

(B) Membrane and soluble proteins of WT, 

prfB3 mutants (prfB3-1 and prfB3-2) and 

complemented lines (prfB3-1-c) were subjected 

 to immunoblot analysis using antibodies raised against At-PrfB3, the membrane protein CP43 and the soluble 

protein PAC. At-PrfB3 has a size of 45 kDa and was only present in the soluble fraction of wild type and 

complemented lines. Protein amounts were adjusted according to stained Coomassie gels. 
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4.2.3   PrfB3 is an Essential Chloroplast Protein 

To assess the function of PrfB3, we applied a reverse genetics approach and studied a 

Salk_133921 T-DNA insertion line (prfB3-1) of the At3g57190 gene of Arabidopsis encoding 

PrfB3 (Figure 27A). Sequencing of the PCR product obtained with genespecific and left border 

T-DNA primers confirmed that the insertion occurred in the fourth exon at position +961 

relative to the start codon. Homozygosity of the T-DNA insertion line was confirmed by PCR 

using adequate control primers (Figure 27B).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 27. Gene Structure and Mutations of PrfB3. 

(A) The structure of the PrfB3 gene, composed of 6 exons (gray boxes), the T-DNA insertion in line prfB3-1, the 

deletion in prfB3-2 with the resulting splice product, the corresponding sequences (lower part), and the primers 

used for PCR analysis (arrows) are indicated. The positions of start (ATG) and stop (TAG) codons of 

translation are assigned. The resulting premature stop codon in prfB3-2 is labeled in red. (B) To test 

homozygosity of the T-DNA insertion, PCR analysis was performed using primers specific for the T-DNA left 

border (LBb1) and the PrfB3 gene (PrfB3-f and PrfB3-r). The gene specific primers only amplified a 454 bp 

product in wild type and heterozygous plants. The border primer and PrfB3-r amplified a 398 bp fragment in 

heterozygous and mutant plants. The T-DNA insertion in homozygous lines prevented PCR amplification of 

the corresponding locus. Sequencing of the PCR product obtained with LBb1 and PrfB3-r primers confirmed 

that the T-DNA was inserted in the fourth exon at position +961 relative to the start codon. Size of PCR 

products is given in bp. (C) RT-PCR products using gene specific primers B3-Ex1-f and B3-Ex4-r amplified a 

689 bp fragment in the wild type and a 471 bp fragment in the prfB3-2 mutants corresponding to the loss of 

exon 2 and border regions as revealed by sequencing. Both fragments were amplified in heterozygous plants. 

(D) Successful complementation of four lines number 4, 43, 64, and 69 was tested with the same primers as 

used in (B). The genomic fragment could only be amplified in wild-type and heterozygous plants. In the 

complemented mutants only the inserted cDNA gave rise to a PCR product of 258 bp.  
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A forward genetics screen identified a mutation, prfB3-2, showing the same phenotype. 

Sequencing of the PrfB3 locus in prfB3-2 identified a deletion of 273 bp at position +282 relative 

to the start codon. The deletion includes the entire exon 2 and adjacent intron regions (Figure 

27A). Sequencing of RT-PCR products revealed that the deletion produces a premature stop 

codon and, correspondingly, leads to expression of a truncated protein encoded mainly by exon 1 

(Figure 27C). Both mutations segregated in a Mendelian manner. The stromal PrfB3 protein was 

lacking in both mutants but was expressed at wild-type-comparable levels in the complemented 

lines (Figure 26B). Homozygous mutants exhibited an hcf phenotype characteristic for plants with 

deficiencies in the photosynthetic apparatus (Meurer et al., 1996a) and, accordingly, died in the 

seedling stage and could grow further only under sterile heterotrophic conditions. Plants grown 

under very low light of 10 µmol photons m-2s-1 were somehow pale but their size and leaf 

morphology was comparable to the wild type (Figure 28A). Expression of the full-length cDNA 

under the control of the constitutive 35S promoter in homozygous prfB3-1 lines fully restored the 

wild-type phenotype and photoautotrophic growth (Figures 27D and 28A). Functional 

complementation indicates that the phenotype was exclusively due to the mutations in the PrfB3 

gene. Endogenous PrfB1, expressed in the prfB3 mutant background, apparently fails to rescue 

the mutant defect, supporting the idea that PrfB3 recruited a novel function. 

 

4.2.4   The Intersystem Electron Transport is Abolished in       

  prfB3-1 and prfB3-2 

To gain insights into the primary photosynthetic defect in the mutants, chlorophyll a fluorescence 

primarily emitted by PSII at room temperature was measured. The maximum quantum yield of 

PSII, Fv/Fm, was reduced to 0.54 ± 0.04 in the mutants compared with 0.82 ± 0.01 in the wild 

type. Under the chosen light conditions, ~85% of the variable fluorescence is lost by 

photochemical and non-photochemical quenching in the wild type (Figure 28B). In prfB3-1 and 

-2, the actinic light-induced fluorescence remained at its maximum level (qP and NPQ = 0), 

indicating disruption of the photosynthetic electron transport behind PSII (Meurer et al., 1996a). 

To further estimate the primary defect in both mutants, the redox state of PSI was assessed. 

Light intensities of 50 µmol photons m-2 s-1 induced ~10% oxidation of PSI in the wild type. 

Although the P700 signal was a bit weaker in the mutants, the actinic light oxidized P700 to 

100% (Figure 28C). This indicates that PSI operates but its activity is limited by deficiencies in 

the intersystemic electron transport chain due to disruption of PrfB3. The photosynthetic 
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characteristics of the complemented lines were comparable to those of the wild type (Figure 

28B+C). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 28. Phenotype and Functional Analysis of prfB3 Mutants and Complemented Lines.  

(A) Phenotype of 25-d-old wild type (WT) and mutant plants grown on Suc-supplemented medium under low 

light of 10 µmol photons m-2 s-1. Under these conditions mutant plants are paler than wild-type plants but 

similar in size. Knockout line prfB3-1-c-69 complemented with the PrfB3 cDNA were undistinguishable from 

wild type and able to grow photoautotrophically. (B) Chlorophyll a fluorescence induction was measured after 

application of a saturating light pulses (red stars) to dark-adapted plants. The ratio Fv/Fm of 0.82 ± 0.01 in the 

wild type was reduced to 0.54 ± 0.04 in prfB3 mutants. Actinic light (aL) of 50 µmol photons m-2 s-1 was applied, 

and the photosynthetic parameters qP and NPQ were measured in the steady state after 9 min illumination. Fi, 

fluorescence intensity (arbitrary units). (C) Absorbance of P700 at 830 nm is a measure of the P700 redox state. 

Light-to-dark switches and application of far-red light (FRL) induced redox changes of P700, indicating that PSI 

is active in prfB3 mutants, although the overall signal is somehow decreased. Saturating light pulses (red stars) in 

the background of far-red light were sufficient for the complete PSII-dependent reduction of PSI in the wild 

type. However, these conditions did not significantly reduced P700 in the mutants, indicating that the electron 

transport is interrupted before PSI. A, relative absorbance. 
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4.2.5   PrfB3 is Required for Accumulation of the           

  Cytochrome b6f Complex 

Immunological analyses showed that the amounts of the major subunits of the cytochrome b6f 

complex, such as cytochrome f, cytochrome b6, and the Rieske Fe-S protein, constituted around 

4% of wild-type levels in prfB3-1 (Figure 29). By contrast, PsaF, a representative subunit of PSI as 

well as PsbI and PsbH from PSII accumulated at wild-type-comparable levels. Levels of the α- 

and β-subunits of the ATP synthase were increased in prfB3 mutants (Figure 29), which is likely 

to represent a secondary effect of the mutation since cytochrome b6f complex knockout lines in 

Arabidopsis, Oenothera, and tobacco (Nicotiana tabacum) showed the same phenomenon 

(Schwenkert et al., 2007) presumably to compensate for the loss of the cytochrome b6f complex.  

 

 

 

 

 

 

 

To investigate whether the assembly of higher-order photosynthetic membrane complexes was 

affected in the mutants, two-dimensional resolution of thylakoid protein complexes was 

performed by Blue Native/SDS-PAGE. The spot pattern clearly demonstrates that thylakoid 

membrane complexes of the ATP synthase, PSI, and PSII were able to assemble efficiently in 

prfB3-1 (Figure 30). By contrast, both the dimeric and monomeric cytochrome b6f complexes were 

below the limits of detection by staining in the mutants (Figure 30). Therefore, we conclude that 

the deficiency in prfB3 caused a severe and specific defect in the accumulation of the cytochrome 

b6f complex. Immunoblot analysis of the second dimension demonstrated that the high ratio of 

dimeric/monomeric complexes was comparable in mutants and the wild type (Stoppel et al., 

2011). This indicates that assembly and stability of the cytochrome b6f complex are not affected in 

the mutants. Taken together, the results of the fluorometric, spectroscopic, and protein analyses 

allowed the conclusion that accumulation of the cytochrome b6f complex, but not its assembly or 

stability, is the primary defect in the prfB3 mutations. 

Figure 29. Accumulation of Thylakoid Membrane Proteins 

in prfB3 Mutants. 

Immunoblot analyses of prfB3-1 and the wild type (WT) are 

shown. Levels of cytochrome b6f complex subunits PetA (Cytf), 

PetB (Cytb6), and the Rieske protein, the PSII subunits PsbI 

and PsbH, the PSI subunit PsaF, and α- and β-subunits of the 

ATP synthase were analyzed. Loading of 100% corresponds to 

10 µg of chlorophyll. Parts of these analyses were performed by 

Serena Schwenkert. Cyt, cytochrome.  
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4.2.6   3' Processed petB Transcripts Fail to Accumulate in prfB3 Mutants 

To assess whether lack of the cytochrome b6f complex was caused by deficiencies in transcript 

patterns, numerous plastid transcripts were probed by RNA gel blot hybridizations (Figure 31). 

With the exception of mRNAs for the psbB gene cluster, all of the transcripts analyzed 

accumulated in size and abundance comparable to the wild type in both allelic prfB3 mutants, 

indicating that global plastid gene expression is not affected by the mutations (Stoppel et al., 

2011). The plastid pentacistronic psbB-psbT-psbH-petB-petD gene cluster has a promoter for the 

plastid-encoded polymerase and is conserved among vascular plants. It encodes the subunits 

CP47 (psbB), T (psbT), and H (psbH) of PSII as well as cytochrome b6 (petB) and subunit IV (petD) 

of the cytochrome b6f complex (Figure 31A). Each of the petB and petD genes contains an intron. 

The processing pattern of this gene cluster is rather complex and differs between plant species. 

Accumulation of most transcripts derived from the psbB gene cluster was unchanged in both 

allelic mutants (Figure 31C). However, both mutants showed the same striking deviation from 

the wild-type transcript pattern. The 3' processed and spliced petB-containing transcripts, the 

monocistronic petB, and the dicistronic psbH-petB transcripts were barely detectable in the 

mutants. Also, transcript precursors lacking the petB intron (i.e., psbB-psbT-psbH-petB-petD, psbH-

petB-petD, and petB-petD) were slightly reduced in both mutants as shown by RNA gel blot 

analysis (Figure 31C, transcripts 3, 6, and 7). Quantitative RT-PCR analysis revealed that prfB3-1 

Figure 30. Assembly of Thylakoid 

Membrane Complexes in prfB3 Mutants. 

Chloroplast protein complexes were 

solubilized by treatment with 1% (w/v) n-

dodecyl-β-D-maltoside and separated by Blue 

Native/PAGE (BN-PAGE) in the first and 

SDS-PAGE in the second dimension followed 

by silver staining. Macromolecular protein 

complexes of thylakoid membranes are 

indicated. The protein spots of the wild type 

(blue) and prfB3-1 mutant (red) were selectively 

stained in silico (Photoshop), and subsequently 

merged. The proteins cytochrome b6, Rieske 

and subunit IV of the dimeric cytochrome b6f 

complex, which appeared only in the wild type, 

are circled. This experiment was performed by 

Serena Schwenkert.  
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accumulates 67% ± 2% spliced petB RNA and 105% ± 6% petD RNA compared with the wild 

type. This reduction is due to the apparent lack of 3' processed petB transcripts and reduced levels 

of spliced precursors. Amounts of all precursor transcripts that include the petB intron were 

unchanged in the mutants, indicating that splicing takes place efficiently (Figure 31C, transcripts 

1, 2, 4, and 5).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

All this attests that the prfB3 mutation affects only 3' processed petB transcripts of the psbB gene 

cluster. Therefore, PrfB3 is involved either in processing of the petB-petD intergenic region or in 

the stabilization of 3' processed petB transcripts. In contrast with maize (Zea mays) and presumably 

Figure 31. RNA Gel Blot Analysis of the psbB Gene Cluster. 

(A) The structure of the psbB gene cluster and probes A-H used in RNA gel blot analysis in (C) are shown. P, 

promoter of the plastid-encoded polymerase. The gene cluster has been drawn to scale. (B) The precursor 

transcript and its most prominent processed and spliced products are numbered from 1-13. Transcripts have 

been drawn to scale. (C) RNA gel blot analysis of the psbB gene cluster in the wild type (WT) and prfB3 mutants. 

Probes used A-I and labeled transcripts 1-13 are shown in (A) and (B), respectively. The size of the transcripts is 

indicated. Mutant plants were compared with wild-type plants of the same accession. RNA gel blot analyses were 

performed in cooperation with Lina Lezhneva and Susanne Felder. 
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all other monocots (Barkan, 2011), monocistronic and spliced petD transcripts of ~600 

nucleotides do not accumulate to significant levels in Arabidopsis and other dicots. In 

Arabidopsis wild-type plants, petD transcripts, which result from endonucleolytic cleavage in the 

petB-petD intergenic region, are rapidly degraded irrespective whether they are spliced or not 

(Figures 31B+C) (Felder et al., 2001; Meierhoff et al., 2003). In the prfB3 mutants, intron- and 3' 

exon-containing petD transcripts of 1.2 kb (Figure 31C, transcript 8), which lack the first exon, 

accumulate to even slightly higher amounts presumably due to increased cleavage of the 5' splice 

site, indicating that splicing of petD occurs efficiently in the mutants (Figure 31C, transcript 8). 

Spliced petB transcripts in the wild type are either processed in the petB-petD intergenic region or 

the petD intron is also missing (Figures 31B+C). This indicates that petB splicing depends either 

on processing of the intergenic region or on petD splicing. The fact that the abundance of these 

spliced but unprocessed precursors is slightly reduced in both mutants suggests that processing 

of the petB-petD intergenic region occurs efficiently. The finding that the spliced petB intron of 0.8 

kb accumulated to wild-type comparable levels again suggests that petB splicing is not affected in 

the mutants (Figure 31C). This all speaks in favor of the idea that PrfB3 evolved to stabilize 3' 

processed petB transcripts. 

 

4.2.7   Proposed Function of PrfB3 in Stabilization of 3' Processed    

  petB Transcripts 

Several nuclear and chloroplast mutants have been identified that are affected primarily in 

splicing or processing of plastid precursor transcripts. In all cases, unspliced or unprocessed 

precursors accumulated at higher levels (e.g., Jenkins et al., 1997; Meierhoff et al., 2003; Asakura 

and Barkan, 2007; Petersen et al., 2011). This is not the case for petB precursors in prfB3 mutants. 

They are instead slightly decreased, again supporting the assumption that spliced and 3' processed 

petB transcripts are efficiently generated but are rapidly subjected to degradation in the mutants. 

  Chloroplast mRNA stability is known to be dependent on the state of transcript termini. 

Therefore, in cooperation with the group of Prof. Peter Westhoff (Düsseldorf, Germany), the 

mature 5'- and 3'-ends of transcripts from the psbB gene cluster were precisely determined by S1 

nuclease mapping in both the wild type and prfB3-2 (Stoppel et al., 2011). 3' processing of petB 

transcripts could only barely be detected in the mutant, again indicating that PrfB3 is required for 

accumulation and/or stabilization of 3' processed petB transcripts. 
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Taken together we conclude that PrfB3 is required for stabilizing 3' processed petB transcripts. 

Obviously, accumulation of almost unchanged amounts of spliced petB-containing precursors in 

the mutants is not sufficient to ensure translation of petB. This indicates that either only 3' 

processed petB transcripts are translational competent or that PrfB3 plays an additional role in 

translation of petB or other transcripts encoding subunits of the cytochrome b6f complex.  

 

4.2.8   The Function of PrfB3 in petB RNA Stabilization is       

  Independent of Translation 

Since PrfB3 originated from a duplication of the functional release factor PrfB1, we addressed 

the question whether the role of PrfB3 is still related to translational events. In contrast with 

transcripts that are targeted by PrfB1 (Meurer et al., 2002), polysomal loading of petB and petD 

transcripts is unaltered in prfB3-1 mutants (Figure 32).  

 

 

 

 

 

 

 

 

 

 

Inhibition of plastid translation in prfB1 induced normal accumulation of transcripts, which are 

otherwise lacking (Meurer et al., 2002). By contrast, neither inhibition with lincomycin nor with 

chloramphenicol induced an increase in petB transcript abundance in prfB3-1 (Figure 33). This 

indicated that the function of PrfB3 in petB RNA stability has been completely uncoupled from 

translational events. 

Figure 32. Polysome Analysis of WT and 

prfB3-1. 

Polysomes were isolated, separated on 

sucrose gradients and subsequently 

subjected to RNA gel blot analysis using 

petB and petD specific probes. 



                                                                                                                                        Results 54 
 

 

 

 

 

 

 

 

 

4.2.9   PrfB3 is Part of a petB RNA-Containing Complex  

To investigate whether PrfB3 acts as part of a protein complex, we analyzed native soluble 

proteins by size-exclusion chromatography. Collected fractions were subjected to immunological 

analysis. PrfB3 was found to be part of a 400-kDa complex when RNA digestion was inhibited 

from the beginning of sample extraction (Figure 34).  

 

 

 

 

 

 

 

 

However, when samples were treated with RNase before they were subjected to chromatography, 

the 400 kDa complex disappeared and most PrfB3 could be found as free protein. In addition, 

upon RNase treatment, small amounts of a PrfB3-containing complex of ~700 kDa were 

assembled, possibly due to the formation of unspecific aggregation products or a multimeric 

complex when RNA is lacking (Figure 34). Electrophoretic mobility shift assays were performed 

Figure 34. PrfB3 is Part of an RNA-Containing Complex. 

Native soluble proteins were separated by size-exclusion chromatography in the presence of RNase inhibitors, 

and fractions (1-24) were subjected to immunoblot analysis together with wild-type (WT) and prfB3-1 proteins 

using PrfB3 antibodies (top part). Extracts were RNase treated before subjecting to chromatography (bottom 

part). The molecular mass of marker proteins is indicated in kDa. 

Figure 33. RNA Gel Blot Analysis of WT 

and prfB3-1 Treated with Plastid 

Translation Inhibitors. 

20-d-old plants were incubated for 24 h with 

the plastid translation inhibitors lincomycin (L) 

(400 mg/L) and chloramphenicol (C) (500 

mg/L) in ½ MS medium. Control plants (-) 

were incubated for the same time in a solution 

containing ½ MS nutrients. 
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with the purified PrfB3 protein and indeed it appeared that PrfB3 efficiently binds to the petB 3' 

UTR (Stoppel et al., 2011). 

 

4.2.10   Reduced PrfB3 Amounts Effect Stabilization of petB mRNA 

The potentially regulatory function of PrfB3 in stabilizing petB transcripts was first investigated by 

selecting partially complemented mutant lines (Figure 35). When grown under normal light 

regime (>20 µmol photons m-2 s-1) mutant plants were smaller in size and much paler as 

compared to wild type indicating that the mutants are extremely light sensitive because under 

very low light of 10 µmol photons m-2 s-1 their size was comparable to wild type (Figure 28).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 35. Phenotype and Functional Analysis of prfB3 Mutants and Complemented Lines. 

21-d-old WT and mutant plants were grown on Suc-supplemented medium under light intensities of 40 µmol 

photons m-2 s-1. At this light intensity mutant plants were much paler and smaller as compared to those grown 

under 10 µmol photons m-2 s-1 indicating increased light sensitivity of the mutants (for comparison see Figure 

28). In contrast to mutant plants, partially complemented lines 4, 43, and 64 were smaller and/or paler than the 

WT but compared to the mutants they looked much healthier and were able to grow photoautotrophically. Line 

number 69 precisely showed WT behaviour indicating complete complementation. Chlorophyll a fluorescence 

induction was measured after application of a saturating light pulse (red star) to dark-adapted plants. Note that 

the partially complemented lines 4, 43, and 64 showed an intermediate level of variable fluorescence, lower than 

in the mutants and higher than in WT and line 69. aL, Actinic light of 50 µmol photons m-2 s-1. Fi, fluorescence 

intensity. 
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Three lines, numbers 4, 43, and 64, showed increased steady state chlorophyll fluorescence levels 

and a lowered qP (Figure 35) but were able to grow photoautotrophically. Line number 69 

showed fluorescence characteristics that are typical for the wild type. It appeared that expression 

of PrfB3 is reduced in lines number 4, 43, and 64. Only those lines (numbers 43 and 64) in which 

PrfB3 accumulated below a threshold of ~25% of wild-type levels also accumulated <25% of 

cytochrome b6 (Figure 36A). Down-regulation of PrfB3 levels to >50% of wild-type levels in line 

4 was insufficient to reduce amounts of cytochrome b6 comparably. Levels of the PSI protein 

PsaF were unaffected by the lower accumulation of PrfB3, indicating that PrfB3 levels are crucial 

for determining levels of cytochrome b6 and accordingly of the entire cytochrome b6f complex. 

The effect of reduced PrfB3 levels in the partially complemented lines on petB mRNA stability 

was tested by RNA gel blot analysis. Only lines number 43 and 64 had significantly lower levels 

of the monocistronic petB mRNA, indicating that accumulation of PrfB3 above 50% had no 

effect on petB mRNA levels (Figure 36B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 36. Regulatory Role of PrfB3 in petB RNA Stability and Cytochrome b6 Accumulation. 

(A) Levels of the soluble protein PrfB3 and the membrane proteins cytochrome b6 and PsaF were investigated 

in the WT, mutant, and partially (numbers 4, 43, and 64) as well as completely complemented (number 69) lines 

by immunoblot analysis. For the WT, dilution series of membrane proteins corresponding to 10 (100%), 5, and 

2.5 µg chlorophyll and to 100 (100%), 50, and 25 µg of soluble proteins were loaded. As loading control for the 

soluble proteins, an imidazole stain of the RuBisCO large subunit (LSU) is shown. The qP value for each line is 

indicated below. (B) Accumulation of monocistronic petB transcripts in WT and complemented lines. A dilution 

series of 8 (100%), 4, and 2 µg of total WT RNA was loaded. As loading control the 18S rRNA is shown. 
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4.2.11   Light- and Stress-Dependent Regulation of PrfB3 Levels 

The general increase in chloroplast transcript abundance upon illumination of dark-adapted 

plants is known to depend highly on increased RNA stability (Monde et al., 2000). Therefore, a 

possible role of light in PrfB3 abundance was investigated. Interestingly, levels of PrfB3 were 

severely reduced in light-grown plants adapted to darkness, low heterochromatic (2 µmol 

photons m-2 s-1), blue (5 µmol photons m-2 s-1), or far-red light (0.1 µmol photons m-2 s-1) for 3 d 

(Figure 37A). Reduced expression of PrfB3 correlated with reduced amounts of cytochrome b6 

but levels of the large subunit of the RuBisCO as well as of the α- and β-subunits of the plastid 

ATP synthase remained unchanged, reflecting the specificity with which PrfB3 regulates 

cytochrome b6 levels. Expression of PrfB3 and, thus, cytochrome b6 was comparable to the wild 

type under red light illumination (70 µmol photons m-2 s-1) and under heterochromatic light of 

100 and 20 µmol photons m-2 s-1 (Figure 37A).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 37. Effect of Light Quantities, Qualities and Stressors on PrfB3 and Cytochrome b6 Expression. 

(A) PrfB3 levels under different light conditions were investigated by immunoblot analysis. As loading control, 

an imidazole stain of the RuBisCO (LSU) (soluble protein) and the α/β subunits of the ATP synthase 

(membrane proteins) are shown. Plants were grown for 14 d under heterochromatic light (100 µmol photons m-2 

s-1) on soil and were then adapted for 3 d to different light regimes. The intensities of heterochromatic light are 

indicated. µE, µmol photons m-2 s-1; RL, red light (70 µmol photons m-2 s-1); BL, blue light (5 µmol photons m-2 

s-1); FRL, far-red light (0.1 µmol photons m-2 s-1). (B) Expression of PrfB3, cytochrome b6, and PsaF was 

analyzed in photoreceptor mutants. Levels of LSU are shown as loading control. Plants were grown on soil 

under heterochromatic light (100 µmol photons m-2 s-1) for 3 weeks. c, complemented. (C) Stress-dependent 

expression of PrfB3 and cytochrome b6 was analyzed. Controls are the same as in (A). HL, high light (800 µmol 

photons m-2 s-1, 3 h); MV, methylviologen (50 µM in 0.1% Tween, 2x 4 h incubation); heat (38°C, 3 h). 
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The light intensities used differed and were quite weak for blue and far-red light. Therefore, we 

could not differentiate between light quantity and quality. To address this issue, we performed 

immunoblot analyses using mutants of several photoreceptors. PrfB3 is severely down-regulated 

in cryptochrome mutants cry1, cry2, and cry1 cry2. Additionally, expression of PrfB3 is severely 

reduced in phyB and phyA phyB double mutants (Figure 37B). This is consistent with normal 

expression of PrfB3 under red light, which is sensed only by phytochrome B (Quail et al., 1995), 

and in phyA mutants. Reduced PrfB3 expression below a certain threshold is apparently 

accompanied by lower cytochrome b6 levels. These data indicate that expression of PrfB3 highly 

depends on light receptors and accordingly on light quality in addition to light intensity. Since the 

cytochrome b6f complex is known to be responsible for redox signaling (e.g., to balance light 

absorbance of the two photosystems by triggering phosphorylation of the LHCII kinase; 

Lemeille and Rochaix, 2010), a possible role of PrfB3 in stress responses was also investigated 

(Figure 37C). It appeared that application of high light (3 h), oxidative stress as induced by 

methylviologen treatment (H2O2 production) (8 h), and heat stress (3 h) caused a decrease in 

PrfB3 amounts to ≤50% of wild-type levels. However, no simultaneous loss of cytochrome b6 

could be observed, again indicating that a certain threshold of PrfB3 levels is needed to mediate 

regulation of cytochrome b6 levels. In conclusion, expression of PrfB3 is quite sensitive to 

environmental changes, indicating an important regulatory role in adjusting petB RNA and 

consequently cytochrome b6 protein levels. 
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5    DISCUSSION 

Ribonucleases have long been considered as purely degradative enzymes, cleaving without any 

sequence specificity. But nowadays a greater awareness of the significance of both endo- and 

exoribonucleases is emerging, in particular because it has become apparent that many RNases can 

display specificity for sequences or structures, allowing them to regulate transcript abundance 

according to the needs of the cell. It is becoming obvious that RNases play a central role in RNA 

metabolism, including RNA decay, maturation of RNA precursors and end-trimming of certain 

RNAs. A contribution of RNases to the implementation of molecular processes in response to 

environmental signals is emphasizing the importance of RNA metabolism in adjusting 

chloroplast functions. A single cell or organelle contains various RNases with sometimes 

overlapping functions and specificities, and high-molecular-weight complexes function together 

with stabilizing elements in order to control overall RNA accumulation (Stoppel and Meurer, 

2011). Besides the protection of RNA termini by RNA secondary structures, RNA stability is 

influenced by polyadenylation or ribosome binding and in vivo RNA cleavage specificity is 

thought to be imposed by auxiliary RNA-binding proteins, which protect RNAs from non-

specific nucleolytic attack by masking otherwise vulnerable sites. 

 

5.1    Global Players: Evidence for a Degradosome-Like    

  Complex in Arabidopsis Chloroplasts     

5.1.1   Divergence of Evolution, Structure and Function of RNE 

RNase E is a well-studied and highly conserved eubacterial enzyme, which in E. coli is part of the 

so-called degradosome that functions in mRNA decay and post-transcriptional gene expression. 

The shorter form RNase G is lacking the degradosome scaffold and acts independent from 

RNase E in E. coli. Cyanobacterial and red algae plastid genomes encode only one form, which 

cannot be assigned to RNase E or G with certainty (Stoppel and Meurer, 2011). This 

cyanobacterial RNase E/G gene is likely to be the ancestor of the plant RNE gene. The 

Arabidopsis thaliana homolog RNE is localized in the chloroplast and shares in vitro biochemical 

similarities with the eubacterial protein (Schein et al., 2008). In this work we present a new allele 

of the chloroplast RNase E, rne-2 (Figure 7), which was identified as an hcf mutant, formerly 

called hcf2 (Dinkins et al., 1994). Mapping and sequencing of the mutant locus revealed that the 

EMS induced mutation caused a deletion of six aa within the RNase H domain, leading to a 
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significant loss of RNase activity, although the RNE-2 protein is expressed at normal levels 

(Figures 7D). This is similar to E. coli where the replacement of single aa in the RNase H domain 

can severely affect the catalytic activity of the enzyme (Callaghan et al., 2005). Despite all 

similarities, RNE diverged in many respects in plants. For example the highly conserved RNA-

binding S1 domain (Callaghan et al., 2005) is interrupted in plant RNEs by an insertion of more 

than 100 aa (Figure 4). Plant RNE is also lacking the large C-terminal degradosome scaffold 

typical for bacterial RNase E enzymes, which is replaced by a plant-specific 130 aa extension 

(Figure 4). Furthermore, a novel, large N-terminal extension was acquired. Both terminal regions 

are of so far unknown function but could serve as scaffold for associated proteins.  

 

5.1.2   RNE Forms a High-Molecular-Weight Degradosome-Like    

  Complex Together with RHON1 

Eubacterial RNase E protein complexes are rate-limiting for RNA decay and processing and vary 

among different organisms. This could be attributed to the fact that the C-terminal degradosome 

assembly site is highly plastic in length and sequence. For example in the gram-negative 

γ-proteobacterium E. coli RNase E forms the degradosome mainly together with PNPase, Rhl B, 

and Enolase but without the presence of RNase G, which acts independently (Carpousis, 2007). 

In contrast to E. coli, which is lacking RNase J, the gram-positive γ-proteobacterium Bacillus 

subtilis has two RNase J forms (J1 and J2) but no RNase E (Condon, 2010). In the purple 

α-proteobacterium Rhodobacter capsulatus RNase E forms a degradosome-like complex acting in 

concert with two DEAD-box helicases and the termination factor Rho, which is an RNA helicase 

as well (Jäger et al., 2001). Notably, this degradosome-like complex is lacking PNPase. 

Cyanobacteria possess, similar to land plants, both RNase J and RNase E/G (Kaberdin et al., 

1998; Rott et al., 2003; Even et al., 2005). The presence of processed transcripts in rne albeit at 

reduced amounts indicates that loss of RNE in Arabidopsis is partially compensated by RNase J 

or other RNases rendering the mutant viable. This is in contrast to the essential function of 

RNase E in E. coli, which is lacking RNase J. Apparently the presence of RNE is neither essential 

nor a prerequisite for general processing and degradation of plastid RNA and thus RNE gained 

specific targets via RHON1. 

  The first successful complementation of the rne mutant using the TAP-tag allowed 

purification and concentration of the low-abundant protein and thus discovery of the 

degradosome-like complex in vivo (Figure 19). RNE was not found in any other complexes or as a 
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monomer indicating that the protein is present only in the DLC, which does not seem to contain 

RNA (Figure 19).  

  Sequencing of co-precipitated proteins using antibodies raised against RNE and the TAP-

tag identified RHON1 as an interaction partner (Table 1). Vice versa, Co-IPs of RHON1TAP also 

precipitated RNE. Several more factors, like ribosomal proteins, helicases, and other 

ribonucleases were identified in RNE co-precipitates but they still have to be confirmed to be 

true interaction partners.  

 

5.1.3   RHON1 is an Essential Key Player in Plastid Gene Expression 

The vascular plant-specific RHON1 protein plays an indispensable role in plastid gene expression 

as revealed by seedling lethality and the rhon1 phenotype. The data indicate physical interaction, 

tight co-regulation of RHON1 and RNE protein expression, and close functional relationship 

between the two proteins (Figures 13, 15-19). This is also reflected by tight clustering of both 

mutant transcriptomes (Cho et al., 2009).  

  Besides being a component of the DLC, RHON1 forms smaller complexes, which are 

associated with certain plastid RNAs (Figure 19). Since we did not find RNAs associated with 

DLC, we suggest that transcripts are only transiently bound in the course of endonucleolytic 

cleavage. It is tempting to speculate that RHON1 targets these transcripts to the DLC in order to 

contribute to the efficient catalytic activity of RNE similar to one of the degradosome functions 

in E. coli (Figure 38). This function of RHON1 is supported by the finding that RNA processing 

still occurs in rhon1 although less efficiently. The additive effect in the corresponding double 

mutant hints to additional roles of RHON1, e.g. supporting the function of other RNases such as 

RNase J.  

  RIP-chip and slot-blot analysis have shown that RHON1 associates with RNA (Figure 20). 

As revealed by electrophoretic mobility shift assays the short C-terminal Rho-N domain of 

RHON1 is responsible for RNA-binding (Stoppel et al., submitted). Similar to related nucleic acid-

binding domains, like the SAP motif (Aravind and Koonin, 2001), the Rho-N domain has been 

recruited by quite diverse proteins of plants including mosses and some green algae and has often 

been transferred to their C-terminus (Figure 11). The Rho-N domain of RHON1 binds to 

specific regions of plastid RNAs with different strength attesting sequence and/or secondary 

structure specificity, which may be supported further by the remaining part of RHON1 in vivo.  
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One of the most striking characteristics in rne and rhon1 mutants is the accumulation of 

unprocessed high-molecular-weight transcripts within the chloroplast. For example, processing of 

the rbcL-accD intercistronic region is inefficient in both mutants as compared to the wild type 

leading to appearance of large transcripts, which harbor sequences of the downstream located 

accD, psaI, ycf4, cemA, and petA genes (Figure 21). 

  Association of RHON1 to 16S and 23S RNA revealed an important role in facilitating 

rRNA maturation at least in part through RNE (Figures 22-24). In turn, defective rRNA 

processing and thus ribosome assembly would explain the severe loss of polysomes in rhon1 and 

to a certain extent in rne mutants (Figures 22, 23). This is evidenced by a severe loss of 16S rRNA 

in rhon1 and accumulation of the 3.2 kb dicistronic 23S-4.5S precursor and a transcript of 2.7 kb, 

which appears in both mutants. The 2.7 kb transcript originates from an incorrectly processed 

23S-4.5S precursor that is lacking the 23S 5'-end of 0.5 kb (Figure 24). Processing of one of the 

two hidden breaks generates this 0.5 kb fragment upon incorporation into ribosomes and usually 

depends on prior 23S-4.5S intercistronic cleavage (Leaver, 1973). Therefore, it is likely that initial 

assembly of ribosomes takes place but loss of 4.5S cleavage in the mutants hinders subsequent 

assembly steps leading to translational deficiencies.  

Figure 38. Model of the Degradosome-Like Complex in Arabidopsis Chloroplasts. 

Using Co-IP analyses RNE (yellow) has been found to be associated with RHON1 (grey) and several other 

proteins, like helicases and ribosomal proteins, which still have to be confirmed as true interaction partners. 

Together they form a high-molecular-weight degradosome-like complex, primarily involved in RNA processing. 

In addition, RHON1 is part of various smaller complexes associated with RNAs of different sizes. It is tempting 

to speculate that RHON1 targets these RNAs to the DLC in order to ensure efficient processing of transcripts 

by RNE. 
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Several pleiotropic mutants exhibiting defects in maturation of ribosomal RNAs have been 

described so far. However, it is still unclear whether all these deficiencies are primary or 

secondary effects (Barkan, 1993) since the molecular mechanisms of rRNA maturation are rather 

unclear and numerous proteins were assumed to be involved (Stoppel and Meurer, 2011). 

AtPPR2 was proposed to bind 23S RNA in order to coordinate translation during embryogenesis 

(Lu et al., 2011) while BPG2 was described playing a role in processing and maturation of 

ribosomal RNA (Komatsu et al., 2010). Mutations in the maize Whirly gene (Prikryl et al., 2008) 

and the dicot DCL, DAL, RNR1, and RH39 genes (Bellaoui et al., 2003; Bisanz et al., 2003; 

Bollenbach et al., 2005; Nishimura et al., 2010) lead to reduced processing of the 23S-4.5S 

precursor. Defects in processing of 23S RNA of the endonuclease mutants CSP41a and b 

(Beligni and Mayfield, 2008) were recently proposed to represent secondary effects (Qi et al., 

2011). In none of these mutants the 2.7 kb transcript was detectable. This indicates a primary 

effect of RNE and RHON1 on ribosomal RNA processing.  

  Another intriguing observation is the high number of chloroplasts in rne and rhon1 mutants, 

accompanied by a smaller size as compared to wild type. This is pointing to a faster plastid 

multiplication rate caused by diminished repression of division (Figure 13). This finding could 

not be observed in mutants with similar defects in chloroplast development or RNA metabolism, 

e.g. dpa1 (Dal Bosco et al., 2004), prfB3 (Stoppel et al., 2011) or other mutants generally affected in 

plastid gene expression (Cho et al., 2009; unpublished data). E. coli degradosomes form 

cytoskeleton-like structures together with MinD, a repressor of cell division (Taghbalout and 

Rothfield, 2007). In analogy to rhon1, minD mutants in E. coli divide more frequently resulting in 

minicells (de Boer et al., 1989). Interestingly, MinD was shown to directly associate with bacterial 

RNase E in a yeast-two-hybrid screen suggesting that the bacterial cytoskeleton is involved in 

compartmentalization of protein activities like RNA processing and degradation (Taghbalout and 

Rothfield, 2007). A functional interaction between RNE and MinD is presumably conserved in 

the chloroplast causing plastid division defects when RNE or RHON1 are lacking. Alternatively, 

defective processing of plastid transcripts could account for elevated chloroplast division rates. 

Candidates could be ycf1 and ycf2 genes with still unknown function. To our knowledge, RHON1 

and RNE are the first proteins linking plastid RNA metabolism to chloroplast division.  

  The discovery of the essential role of RHON1 for RNE function and evolution of a plant 

specific DLC leads to the conclusion that the plastid RNA processing/degradation machinery is 

more sophisticated than previously thought. We anticipate that future research on the 

degradosome-like complex, its compartmentalization and association partners will shed new light 

on chloroplast gene expression, division and development. 
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5.2    Specificity Factors: Recruitment of a Ribosomal Release 

  Factor for Light- and Stress-Dependent Regulation of   

  petB Transcript Stability in Higher Plant Chloroplasts 

5.2.1   Phylogenetic Origin, Divergence and Structure of PrfB3 

The Arabidopsis genome encodes four functional organellar release factors of eubacterial origin 

which retained the highly conserved stop codon recognition and peptidyl-tRNA hydrolysis 

tripeptide motifs, indicating the similarity between termination of translation in eubacteria and 

organelles. It was previously shown that At-PrfB1 in addition to its involvement in ribosomal 

release, also affects stability of transcripts containing UGA stop codons (Meurer et al., 2002). This 

phenomenon has not been described in eubacteria to date. Therefore, it appears that the 

regulatory functions of At-PrfB1 have been newly acquired by land plants and that they could 

represent the evolutionary constraints keeping the number of TGA stop codons high in plastids 

of land plants (Meurer et al., 2002). Several algae, like C. reinhardtii, have lost the TGA stop codon 

in their plastid genomes and accordingly a gene encoding for the corresponding RF2 (Meurer et 

al., 2002). The PrfB3 RF2-like protein arose from PrfB1 but has lost both characteristic tripeptide 

motifs indicating that it also lost its function as a release factor. In spite of the comparable 

similarity between PrfB3 and the plastid (37.5%) and mitochondrial (36.5%) RF2, we 

unequivocally demonstrate that PrfB3 only recently arose from the plastid-localized form, 

indicating a very fast divergence of this gene. We provide evidence that PrfB1 and PrfB3 are 

phylogenetically closely related but functionally distinct plastid proteins in vascular plants. 

  The high degree of divergence as well as the fluctuation of the gene and intron 

composition of the psbB gene cluster in plants also attests to the fast evolving gene cluster 

organization accompanied by the recent acquisition of many plant-specific factors involved in 

processing of the primary transcript (Barkan, 2011). This is consistent with the higher divergence 

(even between closely related species) of the target sequence elements in plastid UTRs and 

intergenic regions compared with that in coding regions, which are by far not targeted as 

extensively for the control of gene expression (Greiner et al., 2008).  

  The absence of the PrfB3 gene in the sequenced genomes of cyanobacteria, red, green, and 

diatom algae, the moss P. patens, and the fern S. moellendorffii again suggests that PrfB3 evolved in 

vascular plants just before divergence of monocots and dicots, as a result of a duplication of the 

ancestral PrfB1 gene and subsequent loss of the peptide chain release function followed by the 

loss of the two conserved tripeptide motifs (Figure 25).  
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5.2.2   PrfB3 Protects 3' Processed petB Transcripts against      

  3'→5' Exonucleolytic Degradation 

Mapping of transcript termini demonstrated that only spliced and 3' processed petB transcripts are 

missing almost completely in both allelic prfB3 mutants. Several effects potentially could cause 

reduction of the amounts of these RNAs: reduced splicing, loss of processing, or increased 3' 

exonucleolytic attack. Three lines of evidence indicate that there are no primary splicing defects 

in prfB3: (1) RNA gel blot, S1 nuclease mapping, and quantitative RT-PCR analyses showed that 

prfB3 was generally able to splice petB transcripts efficiently (Figure 31C); (2) in contrast with 

nuclear and chloroplast mutants affected in splicing precursor transcripts (Jenkins et al., 1997; 

Ostheimer et al., 2003; Barkan, 2011), unspliced forms of petB did not accumulate at higher levels 

in prfB3 (Figure 31C); (3) the pattern and abundance of all petB intron-containing transcripts was 

identical in the mutant and wild type (Figure 31C, intron probe D). Levels of all petB intron-

containing precursors are unaffected, and spliced petB precursors are rather slightly reduced in the 

mutant, indicating efficient processing of the petB-petD intergenic region. Therefore, we 

hypothesize that PrfB3 stabilizes 3' processed petB transcripts (Figure 39).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 39. PrfB3 Protects 3' Processed petB Transcripts from 3'→5' Exonucleolytic Attack. 

PrfB3 has been shown to protect 3' processed petB transcripts from digestion by exonucleases (yellow) by 

binding to the 3'-end of the petB RNA. The predicted three-dimensional structure of PrfB3 appears to be almost 

identical to that of the crystallized PrfB protein in E. coli (pdb 1GQE, Vestergaard et al., 2001) with the 

exception of two loops harboring the SPF and GGQ tripeptide motifs in E. coli. It is still unclear whether PrfB3 

already binds to unprocessed precursor transcripts or if structures built upon 3' processing are a prerequisite for 

PrfB3 binding capability. If PrfB3 is missing, 3' processed petB transcripts are highly unstable and rapidly 

digested. 



                                                                                                                                    Discussion 66 
 

The finding that PrfB3 is part of an RNA-containing complex also supports the role of the 

protein in petB RNA protection (Figure 34). The complex fell apart upon RNase treatment, but a 

shift toward heavier fractions was also observed. This indicates that the bound RNA is 

responsible for the formation of the complex running at ~400 kDa. Either the complex is shifted 

to a higher molecular weight because its structure is more relaxed when RNA is absent or, 

although less likely, a new association partner that replaces the RNA has been assembled. 

Alternatively, the RNA-free complex tends to form a multimeric assembly of 700 kDa. This may 

indicate that different transient assembly products are also present in vivo. A similar phenomenon 

has been described recently for MCA1 in C. reinhardtii (Boulouis et al., 2011). As the RNA-

containing complex is found in only a few fractions, we assume that it binds exclusively 

transcripts of a distinct and similar size like the 3' processed psbH-petB and monocistronic petB 

RNAs.  

  The slight reduction in the amounts of spliced petB precursors in the mutants indicates an 

increased cleavage of the petB-petD intergenic region and hints of a feedback regulation, when 

either cytochrome b6 proteins or petB transcripts are of low abundance. Presumably, large 

amounts of accumulating precursor transcripts are translationally incompetent with respect to 

petB and are rapidly cleaved upon signaling to speed up cytochrome b6 synthesis. This is 

supported by the fact that the cytochrome b6f complex is virtually absent, although amounts of 

spliced petB precursors are only marginally reduced in the mutants.  

  Given that PrfB3 originated from the functional release factor PrfB1, it is conceivable that 

PrfB3 exerts its function through binding ribosomes. To check this assumption, the effect of two 

inhibitors, chloramphenicol and lincomycin, known to hinder chloroplast translation in different 

ways, was analyzed. In prfB1, inhibition of translation stabilizes specific transcripts, which are 

otherwise unstable (Meurer et al., 2002). However, in prfB3, translation inhibition had obviously 

no effect on RNA abundance, indicating that translational events are not responsible for rapid 

degradation of 3' processed petB RNA (Figure 33). Nevertheless, these experiments do not 

exclude that PrfB3 is also involved in translation, as it was shown that all spliced petB and petD 

precursors that are associated with ribosomes are subjected to translation in maize (Barkan, 1988, 

2011). In addition, a maize mutant lacking the monocistronic petB transcript is still able to 

produce cytochrome b6 at almost normal rates (Barkan et al., 1994).  

  However, it should be mentioned here that regulation of petB-petD transcript maturation 

and presumably petB translation seems to be quite different in maize and Arabidopsis. In contrast 

with maize, monocistronic petD transcripts in Arabidopsis are below the limits of detection in 

RNA gel blots. This indicates that petD translation also takes place on precursor transcripts in 
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Arabidopsis but presumably more efficiently than in maize (Barkan et al., 1994). Taken together, 

the data indicate that petB-petD intercistronic processing occurs efficiently in the prfB3 mutants. 

The resulting petD transcripts are rapidly subjected to degradation in both the wild type and prfB3, 

whereas processed petB transcripts are degraded only in the mutant. Thus, we strongly suggest 

that PrfB3 has been recruited to specifically protect petB transcripts against 3'→5' exonucleolytic 

attack by masking the 3'-ends (Figure 39).  

  It has been proposed that the eubacterial release factor possesses the capability to bind the 

23S rRNA already before recognition of the stop codon (Frolova et al., 2000; Korostelev et al., 

2010). The RNA-binding activity has presumably been conserved in PrfB3 and ultimately been 

specified for petB transcripts. Indeed, we have shown that PrfB3 predominantly interacts with the 

petB 3' UTR, substantiating the idea that PrfB3 masks the petB 3' UTR against exonucleolytic 

attack (Stoppel et al., 2011).  

  In addition to PrfB3, several more nuclear-encoded factors required for processing and 

splicing of the polycistronic psbB-psbT-psbH-petB-petD transcript were identified (Barkan, 2011). 

Thus, increase of the structural complexity of the processing pattern of the psbB gene cluster was 

accompanied by the acquisition of a number of newly evolved nuclear-encoded protein factors. 

This may allow individual regulation of gene expression despite of their presence in a 

polycistronic context. PrfB3 is a further example of proteins that originally had a housekeeping 

function and subsequently have been recruited during evolution for fine-tuning of petB RNA 

stability. PrfB3 represents the first known factor in plants that is involved in regulation of the 

stability of a single chloroplast RNA without having PPR, TPR, or OPR motifs.  

 

5.2.3   PrfB3 Expression is Highly Responsive to Stress and      

  Environmental Changes 

Recently, it was hypothesized that most factors involved in chloroplast RNA maturation and 

complexity evolved to ensure the functionality of chloroplast genetic information and have no 

authentic regulatory function (Maier et al., 2008). Although expression of several chloroplast 

RNA-binding proteins was shown to depend on development, tissues, and environmental 

conditions, a truly regulatory function has been shown, to the best of our knowledge, only for the 

PPR protein MCA1, a factor in C. reinhardtii (Raynaud et al., 2007; Tillich et al., 2010; Ruwe et al., 

2011). It appeared that the abundance of MCA1 limits the amount of petA mRNA and 

accordingly levels of the encoded protein, cytochrome f (Raynaud et al., 2007). This and the fact 
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that the activity of the cytochrome b6f complex is rate-limiting for the light reaction in 

photosynthesis (Yamori et al., 2011) prompted us to investigate whether PrfB3 also has a 

regulatory function in petB gene expression.  

  We have shown that down-regulation of PrfB3 below a threshold of ~25% goes along with 

a severe reduction in the amount of petB RNA and consequently in the abundance of cytochrome 

b6 protein levels (Figure 36A). Furthermore, we show that expression of PrfB3 is highly 

responsive to changes in light quantities and qualities (Figures 37A+B) as well as to the redox 

status and stress factors like heat and high light (Figure 37C). Similarly, ATAB2 was shown to be 

involved in the signaling pathway of light-regulated translation of PSI and PSII proteins during 

early plant development (Barneche et al., 2006). PrfB3 levels rapidly dropped to ~25 to 50% 

when we applied one stress factor under otherwise constant conditions. The application of the 

individual stressors for only a limited time period may explain why we did not detect a 

concomitant reduction of cytochrome b6 upon stress induction. Presumably, under natural 

conditions, the response of PrfB3 to combined and more intense stressors may be even more 

pronounced. We propose that PrfB3 expression is tightly regulated and presumably rate-limiting 

for levels of petB mRNA as well as cytochrome b6 under changing and/or adverse environmental 

conditions. For example, PrfB3 could exert its function when a selective reduction or increase in 

the amount of the cytochrome b6f complex is required (Schöttler et al., 2007). Physiologically it 

would also make sense to regulate primarily the rate-limiting step of photosynthetic electron 

transport. The complex endonucleolytic processing of RNA precursors in chloroplasts 

presumably evolved not only to allow subsequent adjustment of processed transcript amounts 

but also to fine-tune translation rates. This regulation also represents an adaptation to the 

eukaryotic regulatory system.  
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6    SUMMARY 

Chloroplast biogenesis requires constant adjustment of RNA homeostasis under conditions of 

on-going developmental and environmental changes and its regulation is achieved mainly by 

post-transcriptional control mechanisms, e.g. mediated by nucleus-encoded ribonucleases.  

  Bacterial endonuclease RNase E is involved in processing of precursor RNAs and initiation 

of RNA degradation. It builds up the so-called degradosome complex, which has been thought 

not to exist in plant chloroplasts. By expression of a tandem affinity purification-tagged version 

of the plastid RNase E in the Arabidopsis rne mutant background in combination with mass 

spectrometry, we identified the novel vascular plant-specific and co-regulated interaction partner 

of RNE, designated RHON1. RHON1 is essential for photoautotrophic growth and together 

with RNE forms a distinct ~800 kDa degradosome-like complex (DLC). Additionally, RHON1 

is part of various smaller RNA-containing complexes. RIP-chip and other association studies 

revealed that the Rho-N motif of RHON1 binds to and supports processing of plastid RNAs. In 

all respects, such as plastid RNA precursor accumulation, protein pattern, increased number and 

decreased size of chloroplasts, and defective chloroplast development, the phenotype of rhon1 

knockout mutants resembles that of rne lines showing that RNE functions highly depend on the 

presence of RHON1. Additionally, the phenotypes of rhon1 and rne suggest a link between 

chloroplast division and DLC-dependent plastid RNA metabolism.  

  Land plant genomes encode four functional ribosomal peptide chain release factors (Prf) of 

eubacterial origin, two (PrfA and PrfB homologs) for each endosymbiotic organelle. A novel 

PrfB-like protein, PrfB3, is localized to the chloroplast stroma in a petB RNA-containing complex 

and found only in higher plants. Notably, PrfB3 is lacking the two most important tripeptide 

motifs characteristic for all eubacterial and organellar PrfB homologs described so far: the stop 

codon recognition motif SPF and the catalytic center GGQ for peptidyl-tRNA hydrolysis. 

Complementation studies, as well as functional and molecular analyses of two allelic mutations in 

Arabidopsis, both of which lead to a specific deficiency of the cytochrome b6f complex, revealed 

that PrfB3 is essentially required for photoautotrophic growth. Plastid transcript, polysome, and 

translation analyses indicate that PrfB3 has been recruited in vascular plants for stabilization of 3' 

processed petB transcripts. Thus PrfB3 serves as a barrier to exonucleolytic RNA decay, providing 

an alternative to RNA stem-loop structures. Light- and stress-dependent control of PrfB3 levels 

likewise allows the plant to adjust cytochrome b6 levels, which determine overall rates of 

photosynthesis.  
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7    ZUSAMMENFASSUNG 

Die Chloroplastenbiogenese erfordert eine stetige Anpassung der plastidären Genexpression an 

wechselnde Umwelt- und Wachstumsbedingungen. Diese wird maßgeblich auf post-

transkriptioneller Ebene von kernkodierten Faktoren wie z.B. Ribonukleasen gesteuert.  

  Die bakterielle Endonuklease RNase E ist an der Prozessierung von Vorläufertranskripten 

sowie der Initiation des RNA Abbaus beteiligt. Sie ist Hauptbestandteil des Degradosoms, von 

dem man bislang angenommen hat, dass es in Pflanzen nicht vorkommt. Co-Immuno-

präzipitationsanalysen des 'getaggten', plastidären RNE Gens im Arabidopsis rne Mutanten-

hintergrund und massenspektometrische Bestimmung der dabei aufgereinigten Proteine konnten 

das bislang unbekannte, pflanzenspezifische und koregulierte RHON1 Protein eindeutig als 

Interaktionspartner von RNE identifizieren. RHON1 ist essentiell für photoautotrophes 

Wachstum der Pflanze und bildet mit RNE einen ~800 kDa Degradosom-ähnlichen Komplex 

(degradosome-like complex - DLC). Darüber hinaus finden sich RHON1 Proteine in einer Reihe 

RNA-enthaltender Subkomplexe. Rip-Chip und andere Assoziationsstudien haben gezeigt, dass 

das Rho-N Motif von RHON1 plastidäre Transkripte bindet und ihre Prozessierung begünstigt. 

Der Phänotyp von rhon1 Mutanten ähnelt in allen Aspekten dem von rne, wie z.B. der 

Akkumulation von Vorläufertranskripten, der erhöhten Anzahl kleinerer Chloroplasten und der 

gestörten Chloroplastenentwicklung. Dies zeigt, dass RNE Funktionen stark von dem 

Vorhandensein von RHON1 abhängig sind. Darüber hinaus lassen die Phänotypen der rne und 

rhon1 Mutanten die Vermutung aufkommen, dass ein Zusammenhang zwischen Plastidenteilung 

und DLC-abhängigem plastidärem RNA Metabolismus besteht. 

  Die Genome von Landpflanzen kodieren vier Translations-Terminationsfaktoren 

bakteriellen Ursprungs (peptide chain release factor - Prf), jeweils zwei Homologe (PrfA und PrfB) für 

jedes Organell. PrfB3 ist ein PrfB-ähnliches Protein, welches nur in Chloroplasten von höheren 

Pflanzen vorkommt und einen petB RNA enthaltenden Komplex bildet. Bemerkenswerter Weise 

hat PrfB3 beide für Terminationsfaktoren typischen Tripeptid-Motive verloren: das Stopp-

Kodon Erkennungsmotiv SPF und das Motiv GGQ für die Hydrolyse der Peptidyl-tRNA 

Bindung. Funktionelle und molekulare Analysen zweier allelischer Mutanten in Arabidopsis 

zeigten, dass PrfB3 essentiell für photoautotrophes Wachstum ist und Mutationen im Gen zu 

einem spezifischen Verlust des Cytochromkomplexes führen. Transkript-, Polysomen- und 

Translationsanalysen deuteten darauf hin, dass PrfB3, in Analogie zu RNA Haarnadelstrukturen, 

3' prozessierte, Cytochrom b6 kodierende petB Transkripte stabilisiert und somit vor 

exonukleolytischem Abbau schützt. Die Licht- und Stress-abhängige Kontrolle von PrfB3 

Mengen erlauben der Pflanze im Gegenzug die Mengen an Cytochrom b6 anzupassen, welche 

wiederum die allgemeine Photosynthese Rate festlegen.  
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I    ABBREVIATIONS 

α    anti 

aa    amino acid residue 

ATP    adenosine 5′-triphosphate 

bp    base pairs 

CAPS   cleaved amplified polymorphic sequences 

d    days 

DLC   degradosome-like complex 

DNA   deoxyribonucleic acid 

dNTPs   deoxynucleoside triphosphates 

EDTA   ethylenediaminetetraacetic acid 

EGTA   ethylene glycol tetraacetic acid 

EMS    ethyl methanesulfonate 

EST    expressed sequence tag 

g     gravity force 

h    hours 

hcf     high chlorophyll fluorescence 

Hepes   N-[2-Hydroxyethyl]piperazine-N’-[2-ethanesulfonic acid] 

kb    kilobases 

kDa    kilodalton 

min   minutes 

MOPS   3-[N-Morpholino]propanesulfonic acid 

mRNA   messenger RNA 

NPQ    non-photochemical chlorophyll a fluorescence quenching 

P700    PSI primary electron donor chlorophyll a 

PCR    polymerase chain reaction 

PSI    photosystem I 
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PSII    photosystem II 

qP    photochemical chlorophyll a fluorescence quenching 

RF    release factor 

RNA    ribonucleic acid 

rpm    revolutions per minute 

rRNA   ribosomal RNA 

RT-PCR  reverse transcription PCR 

s    seconds 

S     Svedberg unit 

SDS    sodium dodecyl sulfate 

Suc   Sucrose 

PAGE   polyacrylamide gel electrophoresis 

SSLP    simple sequence length polymorphism 

TAP   tandem affinity purification 

T-DNA   transferred DNA 

Tricine   N-Tris-(hydroxymethyl)-methylglycine 

Tris    Tris-(hydroxymethyl)-aminomethane 

tRNA   transfer RNA 

Tween   polyoxyethylenesorbitan monolaurate 

UTR    untranslated region 

v/v    volume per volume 

WT   wild type 

w/v    weight per volume 
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II. 1    Vector Maps 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 40. Gateway pENTR/D-TOPO Vector Used for 

Generation of Entry Clones for pDEST17. 

T1 and T2: transcription termination sequences reducing 

potential toxicity in E. coli by preventing basal expression of 

the PCR product; attL1 and attL2: bacteriophage λ-derived 

recombination sequences that allow recombinational cloning 

of a gene of interest in the entry construct with a Gateway 

destination vector; TOPO Cloning site: allows rapid, 

directional cloning of the PCR product. Kanamycin: 

resistance gene allowing selection of the plasmid in E. coli. 

pUC origin of replication: allows high-copy replication and 

maintenance in E. coli. 

Figure 41. Gateway pDEST17 Vector Used for 

Overexpression of PAC and PrfB3. 

DNA from the entry clone replaces the region 

between bases 147 and 1830. T7: T7 promoter 

permitting high-level IPTG-inducible expression 

of the recombinant protein in E. coli strains 

expressing the T7 RNA polymerase; RBS: 

Ribosome binding site; 6xHis: N-terminal 6×His 

tag, permits affinity purification of recombinant 

fusion protein using a metal-chelating resin such 

as Ni-NTA; attR1 and attR2 sites: bacteriophage 

 

 

λ-derived DNA recombination sequences that permit recombinational cloning of the gene of interest from a 

Gateway entry clone; CmR: Chloramphenicol resistance gene, allows counterselection of the plasmid. ccdB: 

permits negative selection of the plasmid. T7 term: T7 transcription termination region sequence from 

bacteriophage T7 that permits efficient transcription termination. Ampicillin: resistance gene (β-lactamase) that 

allows selection of the plasmid in E. coli. pBR322 origin of replication (ori), permits replication and maintenance 

in E. coli. Rop: ORF that interacts with the pBR322 origin to facilitate low-copy replication in E. coli. 
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Figure 42. Gateway pDONR207 Vector Used as Entry 

Vector for TAP-Tag Constructs. 

T1 and T2: transcription terminators protecting the cloned 

gene from expression by vector-encoded promoters, thereby 

reducing possible toxicity; attP1 and attP2: bacteriophage λ-

derived DNA recombination sequences that allow 

recombinational cloning of the gene of interest from an attB 

site flanked PCR product; ccdB: allows negative selection of 

the plasmid; CmR: Chloramphenicol resistance gene, allows 

counterselection of the plasmid; Gentamicin: resistance gene, 

allows selection of the plasmid in E. coli; pUC origin: allows 

replication and maintenance in E. coli. 

 

Figure 43. Binary TAP-Vector Used for Complementation and Epitope Tagging of RNE and RHON1. 

pVS1 sta: Agrobacterium stability region; pVS1 rep: Agrobacterium origin of replication; pBR322 bom: site for 

mobilization from E. coli to Agrobacterium; pBR322 ori: permits replication and maintenance in E. Coli; 

Kanamycin: resistance gene for selection in E. coli and Agrobacteria. T-border (left and right): T-DNA right and 

left border sequences, respectively; hcf173 promoter: RNA promoter from the nuclear Arabidopsis gene hcf173; 

attR1 and attR2: bacteriophage λ-derived recombination sequences that allow recombinational cloning of a gene 

of interest in the expression construct with a Gateway destination vector; Chloramphenicol resistance: allows 

counterselection of the plasmid; ccdB: allows negative selection of the plasmid; 3xHA: triple Hemagglutinin tag; 

StrepIII: double Strep tag separated by a short linker region; Nos terminator: Nopaline synthase terminator; 

CaMV 35S promoter: RNA promoter from CaMV; bar: Phosphinotricine resistance gene (i.e. Basta), for 

selection of plant transformants; CaMV35S polyA: polyadenylation signal from CaMV. 

 

TAP-Vector 
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II. 2    Oligonucleotides Used in this Work 

Name Sequence 5' → 3'  Experiment/Figure 

A-f  CGTAGTTAACTTTTCGTAACGTTTGG mapping rne-2/7A 

A-r CAAGCTTTTTCACCATACATTGTACTAG mapping rne-2/7A 

B-f GATTGAGCCCCAAAGCATTGGTTG mapping rne-2/7A 

B-r GCAGCTAAAAGATAATGTGTGGTGGAG mapping rne-2/7A 

C-f GGTCACTCAAGCAGTCGAAACTCAAAACTC mapping rne-2/7A 

C-r TCATTGCCGCTTATCGCCTAGCGCTCTC mapping rne-2/7A 

D-f CCAAGTGGATGAAACAACTGC mapping rne-2/7A 

D-r CACGAGCCAAGGTTACCTTG mapping rne-2/7A 

E-f AGAGGCTGATCGGTCTGAAA mapping rne-2/7A 

E-r ATTTTCCATAGGGGGCACTC mapping rne-2/7A 

F-f CCTGAGTGAATGCACACAATG mapping rne-2/7A 

F-r GGTTACACAATGCGTCATGC mapping rne-2/7A 

G-f GGATGAATAGTATCGTCAGG mapping rne-2/7A 

G-r CCTCTGTAGTAGTCTCATTG mapping rne-2/7A 

H-f TGACTACATGGAGATTATGGCC mapping rhon1/12A 

Figure 44. Map of the Plant Binary Expression Vector 

pSEX001-VS.  

EcoRI,1: EcoRI site at nucleotide position 1; SmaI,542: 

SmaI site at nucleotide position 542; BamHI,547: BamHI 

site at nucleotide position 547; XbaI,552: XbaI site at 

nucleotide position 552; 5578,XhoI: XhoI site at 

nucleotide position 5578; Br and Bl: Agrobacterium T-DNA 

right and left border sequences, respectively; 35S: CaMV 

35S RNA promoter; pAA: polyadenylation signal from 

CaMV; ori: E. coli origin of replication; tp-sul: 

sulfonamide-resistance gene equipped with a chloroplast 

targeting peptide; Amp: ampicillin-resistance gene; pVS1: 

Agrobacterium origin of replication. 
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Oligonucleotides Used in this Work. continued 

Name Sequence 5' → 3'  Experiment / Figure 

H-r CACGATATGATCAAGCTTTAACG mapping rhon1/12A 

I-f TTACTTTTTGCCTCTTGTCATTG mapping rhon1/12A 

I-r GGCTTTCTCGAAATCTGTCC mapping rhon1/12A 

J-f GATCAGACGCAAGACCGTTA mapping rhon1/12A 

J-r AATCACTTGTTGGTTACCTC mapping rhon1/12A 

K-f GTTCCAATCCGTGTTGGAGCAGATG mapping rhon1/12A 

K-r CAAGACTCCAGAGCCATATCCTATTGCCG mapping rhon1/12A 

L-f TTCAGAGGCAGATCAATTTGCACGCGGG mapping rhon1/12A 

L-r TGCGCCTGCCTTCTGTGCATCAAAGTGC mapping rhon1/12A 

M-f GGAGTCTTGTTATGACTGGCAATCGG mapping rhon1/12A 

M-r CCCATCAAGCCCATGAAGATTATTGGCC mapping rhon1/12A  

P1 CATGTCTCAGATCATCTAGCTG PCR/7B+C,10B 

P2 GCGTGGACCGCTTGCTGCAACT PCR 

P3 GTCCTGCACAACTGATAGTG PCR 

P4 GCAGATGAAGGTGTGGAAGGAG RT-PCR/7C 

P5 CACCAAAGAACCTCCATTGG RT-PCR/7C 

P6 GCAGACCATCTAAGTCTTTCTGC PCR/7B,10B 

P7 TCAGTGACAACGTCGAGCAC PCR/7A,12B+E 

P8 TGTGTTACCAAGATAAGCCAGAG PCR/12B+E 

P9 ACTTCTATTGGGGACAGATTTCAGACG PCR/12B+E 

rrn16S-f TAAGCATCGGCTAACTCTGTGCC probe/20B,24 

rrn16S-r TACAGCACTGCACGGGTCGATAC probe/20B,24 

rrn23S-f GAAAGGCTTACGGTGGATAC probe/20B,23 

rrn23S-r5’ ATCGGTCACCCAGGAGTATT probe/24 

rrn23S-f3’ AGGCGTGCAAAGGTTTCCT probe/24 

rrn23S-r GGTGGGCTTACTACTTAGAT probe/20B,23 
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Oligonucleotides Used in this Work. continued 

Name Sequence 5' → 3'  Experiment / Figure 

rrn4.5S-f ACGAGCCGTTTATCATTACGATAGGTGTC probe/20B,24 

rrn4.5S-r CCGGTCTGTTAGGATGCCTCAG probe/20B,24 

rrn5S-f GGCGTAGAGGAACAACACCAATCC probe/20B,24 

rrn5S-f AGCTATTTTTCCGCAGGACCTCC probe/20B,24 

rbcL-f CTAGAGGATCTGCGAATCCCTCC probe/20B,21B,23 

rbcL-r CTAGTATTTGCGGTGAATCCCCC probe/20B,21B,23 

ycf1-f GCCTCTGCATTTAGCATTGGGTAG probe/20B 

ycf1-f TGTTTAGTCCCACCCGTTTCTGAG probe/20B 

rbcL Meurer et al., 1996b probe/21C 

accD Meurer et al., 1996b probe/21C 

psaI/ycf4/cemA Meurer et al., 1996b probe/21C 

petA Meurer et al., 1996b probe/21C 

RHON1-AttB1-
entry-f 

GGGGACAAGTTTGTACAAAAAAGCAGGCTGAAGTCTGT
TCATGGCGATG cloning rhon1TAP/12C 

RHON1-AttB1-
entry-r 

GGGGACCACTTTGTACAAGAAAGCTGGGTCGCTGGAAT
CACTACCAAGCAAC cloning rhon1TAP/12C 

RNE-AttB1-
entry-f 

GGGGACAAGTTTGTACAAAAAAGCAGGCTCTCAATACC
ATGGATGTTACTG cloning rneTAP/10A 

RNE-AttB1-
entry-r 

GGGGACCACTTTGTACAAGAAAGCTGGGTCTCGCCTTT
GTTTACCACTGGTC 

cloning rneTAP/10A  

RHON1-phos-f TCTGCTCCTGAAGTCTGTTCATGGCGATG cDNA RHON1 

RHON1-phos-r AGCAAGGTTCAGCTGGAATCACTACCGC cDNA RHON1 

PrfB3-P-f P-ATGGCGGCAAAGATTATTGGTGGATGCTGC Complementation/27A 

PrfB3-Xba-r TACCTCTAGATTAAGCCTAAATCGCATCAATTGATC Complementation/27A 

PrfB3-f GATCTCCAGGCGCAAAATCTCAG prfB3-1 PCR/27B+D 

PrfB3-r GTGGTATGATATCAACAGTCGCTG prfB3-1 PCR/27B+D 

LBb1 GCGTGGACCGCTTGCTGCAACT prfB3-1 PCR/27B 

B3-Ex1-f CAGGAAGAGAACATCATCTCG prfB3-2 RT-PCR/27C 



                                                                                                                                   Appendix 92 
 

Oligonucleotides Used in this Work. continued 

Name Sequence 5' → 3'  Experiment / Figure 

B3-Ex4-r TGCACACCTCGCTCACCTAAGAG prfB3-2 RT-PCR/27C 

psbB5' CGCGGATCCTGGTTGGGCTGGTTC probe A/31 

psbB3' CGCGGATCCAGTTACACCTACTTG probe A/31 

psbH5' CGCGGATCCGGATCTATGCTAAG probe B/31 

psbH3' CGCGGATCCGGAAATATACAATC probe B/31 

petB5' probe pSoP1351; Westhoff and Herrmann, 
1988 

probe C/31 

petB-intron-f TACTTCGTCGGATATTCATTCGAG probe D/31 

petB-intron-r TGAGATAGGTAAACCAAGGTTACTC probe D/31 

petB-f TGGTTCGAAGAACGTCTTGAGATTCAGGCG 
probe E/31 

probe petB/32,33 

petB-r CCGACCATCGATGAACTGATCGGATTAACCAACC 
probe E/31 

probe petB/32,33 

petB-petD 
probe pSoP850; Westhoff and Herrmann, 

1988 
probe F/31 

petD5'-1 GCGGATCCGGTGAAGGAACGATG probe G/31 

petD5'-2 CGTCTAGACCATAATCCATTATCT probe G/31 

petD-intron-f GTGTCTTTGTTCCAACCACTGTGTAAGCC 
probe H/31  

probe petD/32,33 

petD-intron-r CAGGTAAATGCTCAACACCCACGTAAGC 
probe H/31  

probe petD/32,33 

petD-f ACCCGCATGGCCCAACGACCTTTTA probe I/31 

petD-r GGGTACGGTTAATAATCCCGCTGGTACTGAAACC probe I/31 

AtprfB3-Sal-f AGCGTCGACGCTCCGGTGAAATAAAATGGCGGC GFP cloning/26A 

AtprfB3-Sal-r CGCGTCGACCGTTTTGGCCTAGCCTTTCTGCCC GFP cloning/26A 

psaA-f CCAATTTCTAAACGCTGGAGTAGATCC quantitative RT-PCR 

psaA-r CATGACCAATACCCCAGTTGGTCCTATAC quantitative RT-PCR 

petB-f CTCCTTTGGTAGTTCGACCG quantitative RT-PCR 

petB-r CCAACCAAAGTTAGCTTCAGTC quantitative RT-PCR 

petD-f GGATATTTCCCTTCAACTCCAC quantitative RT-PCR 
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Oligonucleotides Used in this Work. continued 

Name Sequence 5' → 3'  Experiment / Figure 

PrfB3-Topo17-f CACCATGGATGACATGGACAC 
cloning for 

overexpression 

PrfB3-Topo17-r GCCTAAATCGCATCAATTGATC 
cloning for 

overexpression 

PAC-Topo17-f CACCGCTACGAAGAAGCTGAC 
cloning for 

overexpression 

PAC-Topo17-f CTGCCTACCACTTCAAGTTGAG 
cloning for 

overexpression 
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