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1 Introduction

This chapter gives an overview on environmental determinants of allergic diseases
and describes two birth control studies that are aimed to elucidate contributing
neonatal immunological mechanisms on atopy in childhood. Furthermore, the
complexity of immunological data such as cytokine and gene expression data is

illustrated and finally, the aims of the present thesis are formulated.

1.1 Environmental determinants of allergic diseases

1.1.1 General aspects of allergic diseases

Allergy and atopy are two terms that are often used misleadingly as synonyms.
Originally, the term 'allergy' was introduced in 1906 by von Pirquet and Bela Schick
(from the Greek allos meaning "other" and ergon meaning "reaction") describing a
deviation from the original state or normal behaviour of the individual (Turk 1987).
With the passage of time, the meaning of the word allergy has changed and is
defined nowadays more specifically as “a hypersensitivity reaction initiated by
immunological mechanisms”. Allergy can be antibody-or cell-mediated. In the
majority of cases the antibody typically responsible for an allergic reaction belongs to
the IgE isotype and these individuals may be referred to as suffering from an IgE-
mediated allergy or IgE-mediated allergic disease” (Johansson, Bieber et al. 2004).
In contrast atopy is defined as “a personal and/or familial tendency, usually in
childhood or adolescence, to become sensitized and produce IgE antibodies in
response to ordinary exposure to allergens, usually proteins” (Johansson, Bieber et
al. 2004). As a consequence, such individuals can develop typical symptoms of
asthma, rhinoconjunctivitis and/or dermatitis (eczema). However, the association
between atopy and manifest clinical illness is loose. Many individuals having IgE
antibodies to inhalants or food allergens are not il and do not have a clinical
response upon exposure to disease allergens.

Even though these symptoms are usually not life threatening the burden of allergic
diseases is not trivial. Allergic diseases are associated with reduced quality of life
and a high financial burden. The costs related to asthma in different western

countries ranges from US $300 to US $1300 per patient per year (Accordini 2008).
9
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Taking into account the high disease prevalence and chroniticity of the disease the
costs for society are tremendous.

Disease occurrence of allergic diseases is mainly reported as prevalence. There are
only few studies investigating incidence of allergic diseases. This is due to the fact
that the typical study design applied for measuring disease occurrences of allergic
diseases is cross-sectional and therefore, the only valid measure is prevalence.
Thus, merely the prevalence is reported in this text. There has been consistent
worldwide increase of allergic diseases since the 1960°s especially in western
countries until the late 90’s. (von Mutius 2006). The countries with the highest
prevalences are England, Scotland and Australia. E.g. among seven year old
Australian children a lifetime prevalence of 46% of ever having Asthma or wheeze

was assessed.

1.1.2 West-East gradient of allergic diseases

Interestingly, a strong east-west gradient with respect to prevalence of allergic
diseases was observed. The worldwide ISAAC study, which was undertaken to
identify factors that may explain the rise in atopic diseases, comprised over a half a
million children aged 6—7 and 13—-14 years from 155 centers in 56 countries (Asher,
Anderson et al. 1998; Beasley 1998). By using standardized written and videotaped
questionnaires, the highest prevalence of asthma symptoms was mainly found in
English speaking countries, and lowest in Eastern Europe, Russia, China, India and
Ethiopia. For allergic rhinoconjunctivitis and eczema, the areas of the lowest
prevalence were similar to those for asthma symptoms.

Another example of significant evidence of the East—West gradient in the occurrence
of atopic diseases comes from studies performed in Germany after the reunification
in 1989. Von Mutius et al. (von Mutius, Martinez et al. 1994) showed that in ethnically
similar populations, the prevalence of atopic diseases (current asthma, bronchial
hyperresponsiveness, atopic sensitization assessed by skin prick tests) were
significantly higher among school children (n = 7445) living in the former West as
compared to the children (n =4534) in former East Germany. These results are in
line with those by Nicolai et al. They showed in a study with 5313 adults from the
western and 2617 adults from the eastern part of the country that a similar west—east
gradient in the prevalence of atopy, which was defined by specific IgE levels, was

present among adults aged younger than 40 years (Nicolai, Bellach et al. 1997).
10
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Consequently, the gradient between western and eastern countries has been
confirmed in several studies among children and adults performed in Sweden and
Poland (BrABACK, Breborowicz et al. 1994), Sweden and Estonia (J6Tgi, Janson et
al. 1996), Finland and Russia (Erkki, Tuula et al. 2002), in the Baltic area (BrAbAck,
Breborowicz et al. 1995) and in a comparison between Sweden, the Baltic countries
and Uzbekistan (Bjorksten, Dumitrascu et al. 1998).

Although allergic diseases have a strong hereditary component the West-East
gradient is thought to be explained mainly by environmental factors (Von Hertzen and
Haahtela 2004) because populations have the same ethnic background. Higher
number of siblings, early attendance to day care, exposure to bacterial and viral
pathogens, exposure to endotoxin, commensal bacteria and helminth infections and
exposure to rural lifestyle such as farming environment are inversely associated with
the development of allergic diseases (von Mutius 2000; Karmaus and Botezan 2002;
Von Hertzen and Haahtela 2004). All these factors are reflected by a more rural and
traditional, and thus less westernized life style. These findings gave rise to the so
called hygiene hypothesis. The hygiene hypothesis is based on findings published in
an article by Strachan (Strachan 1989) in which he observed that hay fever and
eczema were less common in children from larger families with a higher number of
siblings leading to more exposure to more infectious agents compared to children
from families with only one child. The hygiene hypothesis states that there is a
positive association between the lack of early life exposure to infections, symbiotic
microorganisms, parasites and the development of allergic diseases by reducing
natural development of the immune system. One possible explanation for the
underlying biologic mechanism is that exposure to many bacteria and viruses elicits a
Trh1-mediated immune response and down regulates Th2-mediated immune

responses, and thus leads to suppressing allergic diseases.

1.1.3 Farm effect on allergic diseases

A large body of studies has emphasized the effect of farming as a strong factor for
protection against allergic diseases. Whereas results of studies comparing the
prevalence of allergic diseases in urban and rural areas have been inconsistent
(Strachan, Anderson et al. 1994) there are large differences in the prevalence of

allergic diseases present within rural areas. Farm children from rural areas have a

11
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significantly lower risk of developing these diseases than non-farm children who live
in the same rural area. Table 1 that is adapted from a previously published article by
von Mutius (von Mutius and Vercelli), shows a summary of studies investigating the
farm effect on allergic diseases. Here, the present table was complemented, if
available, by “Exposure”, the odds ratios of the relevant outcomes and the underlying
immunological mechanisms.

The next paragraphs are aimed to describe the most crucial findings of the “farming

studies”.

12
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Table 1: summary of studies investigating the effect of farm exposure on allergic diseases

This table is adopted from a previously published article by von Mutius (von Mutius and Vercelli). It
shows a summary of studies investigating the effect of different exposures of farm environment on
allergic diseases and symptoms. The effects are presented in terms of odd’s ratios (OR). Or <1 is
rotective”, OR>1 is considered as “risk factor”.

considered as “

Asthma | Wheeze Atopic Hay fever Atopic Immunological
Country Age Exposure (OR) (OR) dermatitis | symptoms | sensitization Findin References
(OR) (OR) (OR) ‘
agriculture, 0.56- ) " expression of
SGgrmany, pig farming, 0.72* 0'63* 035 CD14 (Ege, Remo et al.
witzerland, 5- b hed 0,73 4TLR 2007
Austria, Sweden 13 am, shed, ) ) an genes )
NetHerIand ’ silage 0.89 0.38* among farm PARSIFAL
endotoxin 0.55* ) ) kids is higher
(Braun-
. 6- . N Fahrlander,
Switzerland 15 farming 117 0,77 0,86 0,89 0,31 - Gassner et al.
1999) SCARPOL
) 8- . N " " N (Riedler, Eder et
Austria 1" farming 0,24 0,62 0,9 0,29 0,47 - al. 2000)
. i . (Riedler, Braun-
Austria, Germany, | 6- | milkandstable | g 10| g 470 . 0,20* 012" - Fahrlznder et al.
Switzerland 13 at early life 2001)
Bavaria 5.7 farmer 065 | 055" 1,04 052" - Muﬁf,?eetnife'z%om
farming,
NewZealand | °J animals, 050* | 048 | 046° 047* - (Douwes, Cheng
17 o et al. 2008)
milk in utero
farm milk " CD14,TLR2
Sﬁﬁggﬁ% 5. consumption 076 077 077 076 and TLR 4 is (Ege, Bieli et al.
. ’ ever, - significantly 2006)
Austria, Sweden, | 13 stable in higher among PARSIFAL
Netherland 0.86 0.76 0.77 0.58*
pregnancy exposed
farming during hlgrf]c?; 'I:;reg, (Schaub, Liu et al.
Bavaria 0 pregnancy - - - P 2009)
decreased IL5
milk, animals : PAULCHEN
increased IL6
IFN-y and TNF-
. ahigherin E
Austria, Germany, Pasture
France, 0 dust Samples’ - - - IL56 and 11 no (Pfefferle, Gisela
. . farming effect of
Finland,Switzerland dust on etal)
cytokines
inverse
associations of
cord blood IgE
to seasonal
allergens with
Austria, Germany. toxoplasmose positive
Fryance ’ 0 and rubella matemal (Ege, Herzum et
. o during al. 2008) pasture
Finland,Switzerland reqnanc records for
preg y Toxoplasma
gondii
and rubella
virus
) . . milk drinkers
England " farr:]r}lllr:g, %%70 %55%* 0.91 0.68 have lower IGE (Perkin and
9 ' ’ ’ 0.61* 0.24* (total) and Strachan 2006)
higher IFN-y
farming, 1.00 :
7- : 0.8 11 18 1 (Wickens, Lane et
New Zealand 10 milk, 07 06* 06* 11 06 : al. 2002)
animals
Germany,
Switzerland, 5- . B " . (Waser, Michels et
Austria, Sweden, 13 farm milk 0.74 0.86 0.89 0.56 0.67 - al. 2007)
Netherland
Austria, Germany, 6- In mattresses . (van Strien, Engel
Switzerland 14 | Muramicagd | "7 | 067 : 087 09 : et al. 2004) ALEX
25- ; " . " " (Douwes, Travier
New Zealand 49 farming 0.58 0.56 0.78 0.83 - et al. 2007)
. TLR2 and .
Austria, Germany, 9- . . . (Lauener, Birchler
Switzerland 10 farming : - : sz ::“:mrs'” etal. 2002) ALEX

13
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TLR2, TLR4
Germany, und CD14
Switzerland, stable during i " higher, (Ege, Bielietal.
Austria, Sweden, pregnancy 086 076 074 058 dose response 2006) PARSIFAL
Netherland with animal
species
(Klintberg,
Gotland 7-8 farming 0.26* - 0,39* 0,84 0.93 - Berglund et al.
2001)
IGE higher in
non-farming
Austria, German kids,
FFance Y, 0 farmin ) i i ) inverse (Pfefferle, Serdar et
Finland Switierlan d 9 correlation with al. 2008)
’ IFN-y and TNF-
a - higherin
farm kids
10- villages, 1 1 1 (Viinanen,
Mongolia 60 rural towns, 2.19 - - 1.9* 2.0 - Munhbayarlah et
capital 1.9 24* 1.4* al. 2005)
town residents, ! 1 1
10- from town to 105 (Viinanen,
Mongolia 60 village ’ - - 0.68* 0.62* - Munhbayarlah et
residents, 0.66 al. 2007)
village residents ' 0.43* 0.26*
) 18 - . . " (Kilpeldinen, Terho
Finland 24 farming 0.81 0.7 - 0.63 - et al. 2000)
Germany farming and
Switzerland, : A"‘*}{f‘;‘;‘t’}jgph'c o4 | 110 | 088 072" 073" ) Lplien, Sraun.
Au?\ltgiﬁesrgigen, 13 vs. reference 0.85 0.78 0.83 0.39 0.53 2006) PARSIFAL
children
(Klintberg,
Gotland 7-8 farming 0.26* - 0,39* 0,84 0.93 - Berglund et al.
2001)
. . ) i i ) " ) (Horak, Studnicka
Austria 78 farming 0.29 et al. 2002)
) . i ) i ) (Smit, Zuurbier et
Netherland 45 farming 1.0 04 al. 2007)
18- . . . (Schulze, van
Germany 44 farming - - 0.54 - 0.73 - Strien et . 2007)
(Koskela,
Finland 40 farming women - - - - 0.18* - Happonen et al.
2005)
visits to animal
building " " (Radon, Ehrenstein
Germany 8 | petweendand | 04 i i 036 i i etal. 2004)
6ys.
) ) ) i i ) " ) (Remes, livanainen
Finland 9 farming 0.56 et al. 2003)
6- (Kiechl-
Austria 10 farming 0.22* - - - - - Kohlendorfer,
Horak et al. 2007)
16- . i i ) i ) (Wennergren,
Sweden 75 farming 0.3 Ekerlung et al)
16- . N (Eriksson,
Sweden 75 farming 0.78 - - - - - Ekerfjung et al)
) i . " i i ) i ) (Kilpelainen, Terho
Finland 0-6 farming 0.22 et al. 2002)
. 7- . " " N (Downs, Marks et
Australia 12 farming 0.65 0.55 0.64 0.76 - - al. 2001)
0- . " (Midodzi, Rowe et
Canada 1" farming 0.22 - - - - - al. 2007)
” . 8- . " . " i ) (Dimich-Ward,
British Columbia 20 farming 0.66 0.85 1.0 0.46 Chow et al. 2006)
20- . " i i ) i ) (Hoppin, Umbach
USA 88 farming women 0.55 ot al. 2008)
12- . " " " (Ernst and Cormier
Canada 19 farming 0.70 0.59 - - 0.58 - 2000)
4- ; " . . (Adler, Tager et al.
USA 17 farming 0.78 0.78 0.77 - - - 2005)
6- . . (Chrischilles,
USA 14 farming 0.88 0.87 - - - - Ahrens et al. 2004)
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1.1.4 Sources of independent protective farming exposures

In several studies three independent protective exposures to the farming
environment for developing allergic diseases were identified: contact with livestock,
mostly cattle, pigs and poultry, contact with animal feed such as hay, grain, straw and
silage and the consumption of unprocessed cow’s milk (Ehrenstein, Mutius et al.
2000; Riedler, Eder et al. 2000; Riedler, Braun-Fahrlander et al. 2001; Ege, Remo et
al. 2007; Douwes, Cheng et al. 2008).

International studies demonstrated that exposure to livestock contributes to a large
extent to the protective ‘farm effect’ (Riedler, Braun-Fahrléander et al. 2001; Ege,
Remo et al. 2007). Even children not living on a farm but being exposed regularly to
farm animals also had a lower prevalence of allergic diseases compared to non-
exposed non-farm children. The effect reflects an inverse dose response relationship.
With an increasing number of animals the protective effect deceases. Furthermore it
was shown (Ege, Bieli et al. 2006; Schaub, Liu et al. 2009; Pfefferle, Gisela et al.
2010)that there is no protective effect of farming among children living in crop-
farming regions suggesting that the farm effect is at least partly due to contact to
animals and livestock (Wickens, Lane et al. 2002).

Studies have shown a protective effect of consumption of unprocessed cow’s milk on
developing allergic diseases. (Riedler, Braun-Fahrlander et al. 2001; Perkin 2007;
Waser, Michels et al. 2007; Schaub, Liu et al. 2009; Pfefferle, Gisela et al. 2010).
However, it is crucial that the milk has not been pasteurized and homogenized yet. It
is believed that with the ongoing processing of the milk the protective effect
disappears (von Mutius and Vercelli 2010). Also here, analogue to livestock
exposure, the protective effect from the consumption of raw milk was also seen
among non-farming people consuming unpasteurized and unhomogenized cow's milk
(Perkin and Strachan 2006).

1.1.5 Microbial exposure

Children living on farms, especially those with animal sheds, are more exposed to
allergens, bacteria, viruses and fungi than children not living on farms. Endotoxin (a
substance from Gram-negative bacteria), muramic acids (a component of
peptidoglycan from the cell wall of all types of bacteria), extracellular polysaccharides

(specific carbohydrates that are secreted or shed during growth of these fungi)

15



Novel statistical approaches for censored immunological data: introduction

derived from fungi, such as Penicillium and Aspergillus spp and glucans are more
abundant in mattress dust from farm children and farming households than to
mattresses from non-farm children and non-farming households (Perkin 2007; von
Mutius and Vercelli 2010). Children bring their microbial outdoor exposures into the
indoor environment. Thus, mattress dust can be considered as a reservoir that
represents a microbial exposure to indoor and outdoor environments (von Mutius and
Vercelli 2010).

Exposure to endotoxin levels correlate inversely with the prevalence of hay fever,
atopic asthma and atopic sensitization. However, high levels of endotoxin were found
to be a risk factor for non-atopic wheeze (Vogel, Blumer et al. 2008). On the other
hand high levels of muramic acid and extracellular polysaccharides in mattress dust
were inversely correlated with wheezing and asthma among rural children (van
Strien, Engel et al. 2004; Douwes, Travier et al. 2007; Ege, Remo et al. 2007). It
seems that endotoxin may have beneficial effects on atopic diseases and at the
same time be a risk factor for non-atopic asthma and wheeze, while muramic acid
and extracellular polysaccharides have protective effects for developing wheeze and

asthma.

1.1.6 Timing of exposure

Not only is the duration of the exposure to farming environment but also the timing of
exposure likely to play a critical role. Studies in which the subject of the timing of
exposures has also been addressed demonstrated that the protective effect of
farming environments on atopic diseases was strongest when farm contact started
early in childhood and was maintained until adulthood (Radon, Schulze et al. 2006;
Douwes, Travier et al. 2007; Smit, Zuurbier et al. 2007). An even greater reduction in
risk has been demonstrated for those children already exposed prenatally during the
mother’s pregnancy (Ege, Bieli et al. 2006). Moreover, it could be demonstrated that
maternal exposure to animal sheds and unpasteurized cow’s milk influences
immunological mechanisms, such as the production of specific IgE antibodies,
interferon-y or regulatory T-cell activity in the cord blood of the neonate (Schaub, Liu
et al. 2009; Pfefferle, Gisela et al. 2010). It can be concluded that important
immunological modulations are already activated during pregnancy. However, many

of the underlying mechanisms still are unclear.
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1.1.7 Immunological mechanisms

TLRs belong to the Toll-like receptor (TLR) family which plays a fundamental role in
pathogen recognition and activation of innate immunity. They recognize pathogen-
associated molecular patterns (PAMPs) that are expressed on infectious agents and
mediate the production of cytokines necessary for the development of effective
immunity. CD14 acts as a co-receptor along with the Toll-like receptor TLR 4 for the
detection of bacterial lipopolysaccharide. Peripheral blood leucocytes from farm
children in the ALEX study were found to show increased expression of the genes for
CD14, TLR2 and TLR4 compared to non-farm children (Lauener, Birchler et al.
2002). In the PARSIFAL study these results were not only confirmed with respect to
microbial exposure during childhood but, furthermore, it was demonstrated that
exposure of pregnant mothers to stables was associated with this enhanced PRR
expression in leukocytes of the cord blood (Ege, Bieli et al. 2006). Even, a dose—
response relationship was seen. Expression of TLR2, TLR4 and CD14 increased
with the number of different farm animal species with which the mother had had
contact during her pregnancy (Ege, Bieli et al. 2006). It can be concluded that
microbial exposure during childhood and pregnancy of the mother affects the
expression of genes encoding PRRs.

The immunoregulatory effects of farming are not restricted to innate immunity. Also
the humoral immune system whose principal function is the production of
immunoglobins (IG) is affected by exposure to farming environment. Immunoglobins
(also known as antibodies) are gamma globulin proteins that are found in the blood
or other bodily fluids of vertebrates, and are used by the immune system to identify
and neutralize foreign objects, such as bacteria and viruses. The ALEX study
explored the effect of farm exposure on class-switch recombination of IGs depending
on allergens. IgE and IgG responses to inhalant allergens (grass, cat hair and house
dust mites) were evaluated in school children. Interestingly, farm living did not affect
the prevalence of 1gG2 and IgG3 isotypes, as expected, but inhibited the
development of IgG1, IgG4 and IgE antibodies (Stern, Riedler et al. 2007). These
immunoglobulin isotypes are T helper 2 (Ty2)-dependent. The effect was seen for
both grass and cats. In contrast, the prevalence of IgE specific for house dust mites
was increased among farm children.

A striking finding was that the immunological mechanisms in school-age farm

children were also present in newborn babies. The PASTURE birth cohort study (von
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Mutius, Schmid et al. 2006) evaluated the effects of maternal farming exposures
during pregnancy on IgE responses in the offspring. Seasonal allergen-specific IgE
responses were significantly more prevalent in cord blood from newborn babies
whose mothers had not been exposed to animal sheds and grass and were strongly
inversely related with reduced production of the TH1 cell-associated cytokines. This
increased production of IFNy and TNF was seen when mothers were exposed to
multiple animal species and barns during pregnancy and even when butter made
from unprocessed milk was consumed by pregnant mothers. In contrast, the TH2
cell-associated cytokine interleukin-5 (IL-5), the regulatory cytokine IL-10 and the
TH1-inducing cytokine IL-12 remained unaffected (Pfefferle, Serdar et al. 2008).
Another cell type that is influenced by farming exposure of pregnant mothers is
represented by the regulatory T (TReg) cells. Cord blood CD4+CD25hi TReg cells
from children born to mothers exposed to stables were both more abundant and
more efficient in suppressing T cell proliferation. (Bianca). Additionally, maternal
exposure to higher numbers of farm animal species increased the expression of the
TReg cell marker glucocorticoid-induced TNF receptor (GITR) and the secretion of
IFNy by cord blood cells in response to allergen (Schaub, Liu et al. 2009).

In summary, it can be concluded that all these effects result in inhibiting a TH2-
mediated allergic inflammation. Figure 1 shows a working model of the
immunobiology of farm exposure described by von Mutius (von Mutius and Vercelli
2010).

18



Novel statistical approaches for censored immunological data: introduction

Figure 1: a working model of the immunobiology of farm exposure
described by von Mutius (von Mutius and Vercelli 2010).
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In this model, the biological diversity of a traditional farm environment (in particular, high numbers of farm animal
species) results in intense microbial pressure on the innate immune system. This in turn directs vigorous tumour
necrosis factor (TNF)- and interleukin-10 (IL-10)-promoted regulatory T (Treg) cell activation, which balances adaptive
immune responses and suppresses key effector mechanisms of allergic inflammation (allergen-induced T helper 2 (Th2)
cell-associated cytokine production and T2 cell-dependent IgE synthesis). Moreover, decreased IL-4 and IL-13
production relieves Tn2 cell-associated cytokine-dependent inhibition of CD14 expression, which leads to further
enhancement of pattern-recognition receptor expression and amplification of innate immune responsiveness.
Upregulation of interferon-y (IFNy) in children of mothers exposed to multiple farm animal species depends primarily on
enhanced innate immune activation that is induced by high microbial burden through dendritic cells (DCs) and Toll-like
receptor (TLR)-expressing natural killer (NK) cells, but may also be related to the constant, robust xenogeneic pressure
generated by close contact with multiple animal species. Xenogeneic signals (delivered through a currently undefined
mechanism) may stimulate NK cells to secrete IFNy, which counteracts allergen-induced Tu2 cell-associated cytokine
production and accelerates maturation of Ty1-type responses by activating DC-derived IL-12 production. All of these
effects synergize in preventing Ty2-mediated allergic inflammation. TGF, transforming growth factor-3.

The extreme biological diversity of a traditional farm environment with high numbers
of animal species activates the innate immune system and the expansion of Treg
cells mediated by the cytokines TNF and IL-10 (Chen, BAaumel et al. 2007). Treg
cells, balancing adaptive immune responses, decrease allergen-induced, TH2 cell-
associated cytokine production and, therefore, IgE production. Moreover, a decrease
in IL-4 and IL-13 expression alleviates IgE class switching and increases the TH2
cytokine-dependent expression of CD14 (Lauener, Goyert et al. 1990).
Consequently, pattern-recognition receptor expression is elevated and innate
immune responsiveness is improved, which inhibits TH2-type immune responses.
The finding of an increase in PRR expression among school-age farm children
contributes to the fact that immunological effects of early farm exposure may be

maintained into adulthood.
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Another key factor in this model is represented by the cytokine IFNy. Low levels of
IFNy at birth are known to be associated with an increased risk for the later
development of allergic symptoms and atopic disease (Wright 2004; Vuillermin,
Ponsonby et al. 2009). It is assumed that contact with several animal species may
activate dentritic cells and TLR-expressing natural killer (NK) cells which release
IFNy (Muzio, Bosisio et al. 2000). IFNy at birth can reduce allergen-induced TH2 cell
differentiation and stimulate high 1L-12 production by dendritic cells (Snijders,
Kalinski et al. 1998) . Consequently, accelerated TH1-type immune responses are
enhanced.

However, many of the proposed possible underlying mechanisms in the model are
based on hypothesis. Therefore, future investigation of the cellular, genetic and
epigenetic mechanisms of immunological pathways with respect to farm environment
is crucial.

In conclusion, it is evident that farm environment especially during childhood and
pregnancy of the mother conveys protection from respiratory allergies with a
prolonged effect into adulthood. Studies suggest that contact with farm animals, their
fodder and their products, such as unprocessed milk consumed directly from the
farm, and the microbial burden in farming environment contribute to the ‘farm effect'.
Even though a number of steps in innate and adaptive immunity are involved many

immunological mechanisms remained unravelled.

20



Novel statistical approaches for censored immunological data: introduction

1.2 PAULCHEN and PAULINA: two birth cohort studies

In order to contribute to explaining mechanisms on neonatal immune responses
PAULCHEN und PAULINA were conducted. The general goal of the two birth cohort
studies is the identification of underlying immunological mechanisms and interactions

of different cell populations in early life in association with epidemiological data.

1.2.1 PAULCHEN- prospective cord blood study in rural Southern Germany

Pregnant mothers were recruited in an obstetric clinic in rural southern Germany.
Study enrolment was conducted from July 2005 to September 2007 by trained
midwives in the last trimester of pregnancy. Inclusion criteria comprised healthy
neonates and mothers with uncomplicated pregnancies. Exclusion criteria included
preterm deliveries, perinatal infections and maternal use of antibiotics in the last
trimester and chronic diseases. From 84 mothers enrolled in the study, 82 (97%)
cord blood samples were included in the study. Two subjects were excluded because
of perinatal infections. Mothers completed a detailed questionnaire regarding rural
lifestyle, including detailed farming exposures. Maternal farm exposure was defined
as the mother living and regularly working on a farm in the last 1 to 5 years and
during pregnancy. Non-farming mothers lived in the same rural area but not on a
farm. Specific exposure to stables/barns and animal species and milk intake were
documented during pregnancy. Potential covariates, including delivery mode, sex,
birth characteristics, siblings, education, maternal atopy, smoking, and miscarriage,
were determined by using a questionnaire. Informed consent was obtained from the
mothers for participation in the study, including cord blood collection. Approval was
obtained from the local human research committee of the Bavarian Ethical Board,
LMU Munich, Germany.

The aim of PAULCHEN is to assess the influence of environmental, lifestyle factors
and genetic background on neonatal immune responses. A selection of different
immune responses in cord blood mononuclear cells is investigated in association

with lifestyle factors and atopic history of the parents.

21



Novel statistical approaches for censored immunological data: introduction

1.2.2 PAULINA - Pediatric Alliance for Unselected Longitudinal Investigation
of Neonates for Allergies

Pregnant mothers were recruited in an obstetric clinic in Munich, Germany. Study
enroliment was conducted from July 2005 to September 2007 by trained midwives in
the last trimester of pregnancy. Inclusion criteria comprised healthy neonates and
mothers with uncomplicated pregnancies. Exclusion criteria included preterm
deliveries, perinatal infections, maternal use of antibiotics in the last trimester and
chronic diseases. From 161 mothers enrolled in the study, 148 (92 %) cord blood
samples were included in the study. Mothers completed a detailed questionnaire
regarding lifestyle and atopic background. Potential covariates, including delivery
mode, sex, birth characteristics, siblings, education, maternal atopy, smoking, and
miscarriage, were determined by using a questionnaire. Informed consent was
obtained from the mothers for participation in the study, including cord blood
collection. Approval was obtained from the local human research committee of the
Bavarian Ethical Board, LMU Munich, Germany.

The aim of Paulina is to assess the effect of microbial stimulation of cord blood cells
on distinct cellular immune responses in association with a selection of

epidemiological data.

1.2.3 Complexity of cytokine and gene expression data

The understanding of immunological mechanisms underlying human disease has
increased greatly over the last decades. In this context, different regulatory
mechanisms involving gene regulation (of e.g. cytokines) at mRNA level and
expression of proteins play an important role. When a foreign antigen is recognized
by the immune system a complex cascade of regulatory immune mechanisms
become activated subsequently resulting in the transcription of genes, thus
expression on mMRNA level. This is followed by several complex pathways, finally
leading to the release of cytokine secretion (protein expression), which function as
mediators of immune and inflammatory reactions (Abbas and Lichtman 2009). In
order to take the complex relationships into account appropriate statistical analysis is

crucial (Genser, Cooper et al. 2007).
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1.2.4 Data distribution

In order to statistically analyse immunological data it is important to assess the
structure of the data, such as the underlying distribution. This is crucial because
many statistical methods may only be validly applied if the data follow a certain kind
of distribution as normality or log-normality. Unfortunately, the data are rarely
normally distributed and fail to be transformable into a distribution on which
parametric tests may be applied (e.g. a logarithmic transformation to make skewed

data approximately normally distributed).

1.2.5 Multivariate structure

Complex and multiple relationships are often present between immunological
parameters. Immunologists are generally interested in many different outcomes (e.g.
clinical outcomes or cytokine concentrations) depending on various exposures (e.g.
genetic variation or environment) in the presence or absence of other intervening
immunological parameters (e.g. cytokines). Furthermore, it is frequently aimed to
explain the complete causal pathways from a certain exposure (e.g. exposure to an
allergen) to a (clinical) outcome (e.g. atopy or concentration of a certain cytokine).

Therefore, data sets usually contain a large number of interacting variables that have
to be taken into account by appropriate statistical models that allow adjusting for

potential confounding and interaction effects.

1.2.6 Censoring

Another common characteristic is that datasets including cytokines may contain non-
detectable values and thus have to address the issue of so called “censored data”.
When protein expression is measured by Luminex technology in early life, where
several immune parameters are expressed at low concentrations, left censoring at a
single censoring level can occur as the measured concentrations fall below the
detection threshold and are, consequently, not quantifiable any more. Often single
values are erroneously imputed (e.g. 0.01 or half of the detection limit) in order to
include the data for the analysis.

On the other hand, “right censored” data may occur when the measurement exceeds
a certain threshold on the top measurement scale and thus, is also not exactly

quantifiable. Right censoring at multiple censoring levels may occur when genes or
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cytokines are measured by real-time RT-PCR at mRNA level and are expressed in
relation to a given housekeeping gene by the Act formula (Heid, Stevens et al. 1996).
However, in contrast to measurement by Luminex technology, right censoring in the

context of measurement by real-time RT-PCR is less obvious.

The literature recommends different methods of dealing with censored or “non-
detectable” data. These suggestions comprise substitution of the values above or
below the detection level (Buckley, Liddle et al. 1997), Tobit regression (Tobin 1958),
multiple Imputation (Lubin, Colt et al. 2004; Uh, Hartgers et al. 2008) and deletion
(Hobbs, Muir et al. 2003) among others (Helsel 2005). However, simple substitution
is not advisable as it may lead to strongly biased results (Helsel 2005). Other
methods like Tobit regression require strong parametric assumptions which can
rarely be fulfilled by cytokine data (Arabmazar and Schmidt 1982; Austin, Escobar et
al. 2000). Multiple Imputation has been shown to be valid (Lubin, Colt et al. 2004; Uh,
Hartgers et al. 2008) but is quite time consuming, especially when data sets are
large. Furthermore, multiple imputation is not supported by all statistical packages.
Therefore, it is important to use statistical tools that take censoring into account, are
not prone to violating parametric assumptions, allow adjusting for covariates,
potential confounding and interaction effects and are available in common statistical

packages.
1.3 Aims of Thesis

Based on the complexity of cytokine data as described in the introduction the aims of

the thesis are:

e To describe the characteristics of the PAULCHEN and PAULINA data sets

especially with respect to censoring and data distribution

e To present distribution-free methods on how to compute summary statistics for

censored immunological data

e Toillustrate non-parametric statistical testing procedures on differences

between two or more groups when censoring is present
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e To introduce the Tobit regression model on ranks: a novel regression
approach for non-normal censored data in order to allow adjusting for potential

confounding and interaction effects

The methods and procedures described in this thesis are accompanied by numerous
illustrative examples both taken from the PAULCHEN and PAULINA studies and
artificially created. Additionally, SAS codes are given at the end of each chapter for

all statistical methods and tests so that they can be reproduced by the reader.
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2 Characteristics of the PAULCHEN and PAULINA data
sets

The aim of this chapter is to define the concept of censoring, describe the kind and
dimension of censoring in PAULCHEN and PAULINA and illustrate by means of two
examples the typical distribution of the immunological variables in both data sets.

2.1 Definition of censoring

2.1.1 Left censoring

Measurements whose values are known to be below a certain threshold are non-
detectable and thus left-censored because the exact value of the data is not known.
It is merely known that the observation is below a certain threshold. e.g. If a
laboratory kit is not capable of measuring exactly a concentration below, e.g. 1, the
measured values that are below 1 are left censored. If the same kit is used in one
laboratory there is only one detection limit. If different laboratories use different kits
the detection limits may vary. Consequently, different detection levels may be
present. Figure 2: shows an example of left censoring with more than one detection
level. The concentration levels of case 3, 4 and 5 can be directly determined.
However, the concentration levels of case 1 and 2 cannot be directly determined
because they fall below the laboratory specific detection level. The only information
available for these cases is that the measured concentration lies between 0 and 1 for

case 1 and between 0 and 10 for case 2 respectively.
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Figure 2: Example of left censoring with more than one detection level from different
laboratories

The concentration levels of case 3, 4 and 5 can be directly determined. However, the concentration
levels of case 1 and 2 fall below the detection levels and thus, cannot be directly determined. The only
information available for these cases is that the measured concentration lies between 0 and 1 for case
1 and between 0 and 10 for case 2 respectively. The two different detection levels may arise from the
fact that the measurements were performed in two different laboratories using different laboratory
equipments. The first line at concentration 1 represents the detection threshold of laboratory 1, the
second line at concentration 10 represents the detection threshold of laboratory 2.
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Luminex data in PAULCHEN and PAULINA are left censored

A typical example for “left censoring” in the PAULCHEN and PAULINA data is the
measurement of cytokine concentrations at protein level by Luminex technology. To
be detectable the concentration has to exceed a certain threshold determined by the
respective lab technique, e.g. 1.3 pg/ml for IFN-y. Measurements by luminex may
also occur as “right censoring” when the measurement exceeds a certain threshold
on the top measurement scale and thus, are not exactly quantifiable. However, this
rarely happens in the context of cytokine measurement by luminex. The exact
detection threshold may vary according to the cytokine of interest. Left censoring at
one or more detection levels is highly obvious and thus can easily be dealt with
because every measurement below a certain value (detection level) can be directly
marked as “censored”. Table 2 shows three observations of the variable IFN-y. Case
A and B are left censored because they fall below the minimal detectable
concentration of 1.3 pg/ml. The information that can be drawn from these two cases

is merely that the concentration is less than 1.3 pg/ml. Case C is not censored
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because the measured concentration exceeds the minimal detectable concentration

of 1.3 pg/ml.

Table 2: Example with two left censored observations from PAULCHEN data

Case A and B are left censored because they fall below the minimal detectable concentration of 1.3
pg/ml. Case C is not censored because the measured concentration exceeds the minimal detectable
concentration of 1.3 pg/ml.

Case Concentration in pg/ml Censored
A <1.3 yes
B <13 yes
C 2.5 no

2.1.2 Right censoring

Data in medical and industrial studies are most often right censored, merely known
as being greater than a certain threshold. In other words if a measurement exceeds a
certain threshold it is not quantifiable any more. Typically, this happens with survival
studies whose goal is to assess the length of time until an event occurs e.g. peoples’
death after receiving a certain drug. Figure 3 shows such a scenario. When patients
survive the complete study time or drop out of the study at a certain time point
without dying the conclusion is that patients survive until this time or longer. As a
consequence, the observations are right censored at different thresholds (here time
points). In Figure 3 subjects 2, 3, 5 die after 6, 10 and 14 months (no censoring
occurs). Subjects 1 and 4 survive at least 15 and 20 months respectively (right

censoring occurs). They either drop out or reach the study end without dying.
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Figure 3: Example of right censoring taken from classical survival analysis

The figure shows the survival time of five patients. If patients survive the complete study time or drop
out of the study at a certain time point without dying it can be concluded that these patients survive
until this time or longer (time point of death is unknown). As a consequence, the observations are right
censored at different thresholds (here time points). Here, subjects 2, 3, 5 die after 6, 10 and 14
months (no censoring occurs). Subjects 1 and 4 survive at least 15 and 20 months respectively (right
censoring occurs). Subject 4 drops out, subject 1 reaches the study end without dying.
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real-time RT-PCR at mRNA level data in PAULCHEN and PAULINA are right
censored

Right censoring in cytokine and other gene expression measurements may be
present when they are assessed at mMRNA level by real-time RT-PCR and expressed
as Act (cycle threshold) in relation to a housekeeping gene according to the formula
Act = ct (gene of interest) - ct (housekeeping gene) (Livak and Schmittgen 2001).
Although censoring is less obvious than for low protein concentrations it is as crucial.
Act values are often right censored at multiple detection levels. Figure 54 explains
the underlying mechanism for the existence of right censored data at multiple
detection levels. During real-time RT-PCR, mRNA expression of a single gene
becomes amplified and can be assessed quantitatively. Amplification of DNA results
in an increase of a fluorescence signal. The threshold for detection of fluorescence
above background is determined. The cycle at which the fluorescence from a sample
crosses the threshold is called the cycle threshold (ct). In Figure 4 the ct-value for
gene of interest E2 is 31.1. If the threshold cycle exceeds a certain predetermined
maximum cycle threshold (ct) (e.g. the maximum number of cycles run by the real-
time RT-PCR cycler) the value is considered to be very low and not-quantifiable
(comparable to non-detects using LUMINEX technology). In the figure not-

quantifiable gene expressions are represented by gene G12 and gene H12. A high
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ct-value refers to low expression of a gene, a low ct-value describes high gene
expression. Thus, by showing the highest possible ct-value for the specific PCR-
cycler, the respective value is greater than the predetermined maximum cycle
threshold (in figure approximately 39) and is thus right-censored. The determined ct
from the gene of interest is set relative to the ct value of a housekeeping gene (Act).
In the figue the housekeeping genes are represented as E1, G1 and H1.
Housekeeping genes are characterized by stable expression over time and
stimulation conditions and per definition their cycle threshold may vary only slightly
from sample to sample. Thus, the values are normalized for possible variation in the
amount and quality of mRNA between different samples. If the ct from the gene of
interest is right censored, the resulting Act contains a right censored value and has
multiple quantification (censoring) levels. A numerical example taken from Figure 4 is

illustrated in Table 3 the determined cycle threshold is 39.

Figure 4: Example of right censored mRNA expression data with multiple censoring levels
D2, G12, E2 are genes of interest. These are set relative to the house keeping genes D1, E1 and H12.
However, D2 and G12 are not quantifiable and thus, right censored.

Qa0 E1 ::QDD

a0 + //"/#i a0

700+ 1700
T H12 T

600 - Heoo
1 D"I 1 4

500 1 1500

400 1 1400

300 1 / 1300
4 Ez_ +

PCR Base Linz Subtracked CF RFU

200 1 T200
ol 027,
0 L et _ﬁi"'_‘_,- iy
-]_I:ll:l +—+ +——— +——— +——— +——— +———1+—+ +———+ +———+ +———+ +—— +— -]_I:II:I

o 2 4 & & 10 12 14 16 18 20 22 294 26 28 30 32 34 36 35 40 42
Cycle detection threshold

30



Novel statistical approaches for censored immunological data: group comparison

Table 3: Numerical example of right censored mRNA expression data with multiple censoring
levels.

The fact that mRNA expression may be right censored with different censoring levels is illustrated by
an example with three cases taken from PAULCHEN data.

Consider the following three cases in which a maximum cycle threshold (CT) of 39
is thought to be the detection limit.

gene CT of . CT of Censored | Interpretation
gene Gene housekeeping . Act
Case of ) housekeeping Act of Act
. of detection gene value
interest interest gene value value
A E2 31.1 yes E1 12.6 18.5 no 18.5
B G12 >39 no H12 12.4 26.6 yes >26.6
C D2 >39 no D1 13.1 259 yes >25.9

A. The threshold cycle of gene of interest E2 for case A is 31. The threshold cycle
of the housekeeping gene E1 is 12.6. The Act value is 18.5 (31.1 -12.6 =18.5).
In this case no censoring is present.

B. The threshold cycle of gene of interest G12 for case B exceeds 39 and thus, is
not quantifiable any more. The value has to be considered as “greater than 39”
and, consequently, is right censored. The threshold cycle of the housekeeping
gene H12 is 12.4. The Act value is 26.6 (39 — 12.4 = 26.6). However, as this
Act value contains the right censored value of 39 the resulting Act value is also
right censored. Thus, the Act value has to be interpreted as greater than 26.6.

C. The threshold cycle of gene of interest D2 for case C exceeds 39 and thus, is
also not quantifiable anymore and, consequently, as in example B, also right
censored. The threshold cycle of the housekeeping gene D1 is 13.1. It follows
that the Act value is 25.9 (39 — 13.1 = 25.9). Again, as this Act value contains
the right censored value of 39 the resulting Act value is also right censored.
The resulting Act value has to be interpreted as greater than 25.9. However, as
the threshold cycle of the housekeeping gene is different to the one in case B
(26.9 vs. 25.9) the resulting right censored Act value has a different censoring
level than in case B.

It can be concluded that Act values may be right censored data at different

censoring levels.
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2.2 Dimension of censored data in PAULCHEN and PAULINA

2.2.1 PAULINA

Out of 148 variables assessing immunological parameters 62 variables contain
censored observations. This corresponds to a proportion of 42%. From these 62
variables 35 (56%) are derived by real-time RT-PCR at mRNA level and 27 (44%) by
luminex technology.

Table 4 illustrates the dimension of censoring in the PAULINA data set. It depicts the
number of variables with censored observations and descriptive statistics for the
proportion of censored observations per variable. All variables that contain at least
one censored observation are taken into account. The median proportion of censored
observations per variable is 30.27%. The upper quartile is represented with 71.79%
and the lower quartile with 17.28%. The minimum and maximum proportions lie
between 1.51% and 98.63 % resp.

Table 4: descriptive statistics for the proportion of censored observations per variable in
PAULINA data

Number of variables with censored observations and descriptive statistics for the proportion of

censored observations per variable for the PAULINA data set. Variables with at least one censored
observation are taken into account

N°of variables with Median (IQR) proportion Minimum proportion of Maximum proportion
. . of censored
censored of censored observations censored observations .
. . . observations per
observations per variable per variable .
variable
62/148 (42%) 30.27% (17.28% -71.79%) 1.5% 98.6%

2.2.2 Paulchen

Out of 162 variables assessing immunological parameters 92 variables contain
censored observations. This corresponds to a proportion of 57%. From these 92
variables 56 (61%) are derived by real-time RT-PCR at mRNA level and 36 (39%) by
luminex technology.

Table 4 illustrates the dimension of censoring in the PAULCHEN data set. It depicts
the number of variables with censored observations and descriptive statistics for the
proportion of censored observations per variable. All variables that contain at least
one censored observation are taken into account. The mean proportion of censored
observations per variable is 41.61%, the median proportion 33.68%. The upper
quartile is represented with 64.88% and the lower quartile with 12.50%. The
minimum and maximum proportions lie between 1.30% and 100.00 % resp.
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Table 5: descriptive statistics for the proportion of censored observations per variable in
PAULCHEN data

Number of variables with censored observations and descriptive statistics for the proportion of
censored observations per variable for the PAULINA data set. Variables with at least one censored
observation are taken into account

Maximum proportion
of censored
observations per
variable

N°of variables with Median (IQR) proportion Minimum proportion of
censored of censored observations censored observations
observations per variable per variable

92/161 (57%) 33.68% (12.50% -64.88%) 1.30% 100%

2.3 Non-normal distribution of the variables in PAULCHEN and
PAULINA

The majority of the data in both PAULCHEN and PAULINA are not normally
distributed and cannot be transformed into a distribution in order to meet parametric
assumptions. This is illustrated by two examples: The distributions of a variable
derived by both luminex and real-time RT-PCR at mRNA level are presented in
Figure 5 -Figure 8. The probability plots show how exactly the values of the cytokine
the gene IL17F_PHA_dct (real-time RT-PCR at mRNA level) and IFN_g_M (luminex)
fit with the percentiles of an underlying distribution like normality or lognormality. The
underlying distribution with its mean and variance is represented by the reference
line with the corresponding intercept and slope. The reference line of the underlying
distribution is computed by maximum likelihood estimation taking into account the
censored observations. If the data distribution of the variable of interest matches the
underlying distribution the data points lie as close as possible on the reference line.
The non-censored determined observations are represented by circles along the
reference line and the censored observations by small vertical lines on the x-axis.
Figure 5 and Figure 6 compare the distributions of the variables IL17F_PHA_dct and
IFN_g M with a normal distribution. It can clearly be shown that neither of the
variables follow a normal distribution as most of the data points are pretty distant

from the reference line.
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Figure 5: non-normal distribution of variable with right censored observations from
PAULCHEN data

The probability plot compares the distribution of the variable IL17F_PHA_dct to a normal distribution. It
can clearly be noted that the variable does not follow a normal distribution as most of the data points

are pretty distant from the reference line. The reference line represents normal distribution. Censored
observations are marked along the x-axis.

MNormal Probability Plot for IL17F_PHA_dct
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Figure 6: non-normal distribution of variable with left censored observations from PAULCHEN
data

The probability plot compares the distribution of the variable IL17F_PHA_dct to a normal distribution. It
can clearly be noted that the variable does not follow a normal distribution as most of the data points

are pretty distant from the reference line. The reference line represents normal distribution. Censored
observations are marked along he x-axis.
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A similar pattern can be seen when the percentiles of a lognormal distribution are fit
with the variables IL17F_PHA_dct and IFN_g_M (see Figure 7). Again the points do
not fall on the straight line that represents the lognormal distribution. Thus, neither
normality nor lognormality can be assumed.

Figure 7: non-lognormal distribution of variable with right censored observations from
PAULCHEN data

The probability plot compares the distribution of the variable IL17F_PHA dct to a lognormal
distribution. It can clearly be noted that the variable does not follow a normal distribution as most of
the data points are pretty distant from the reference line. The reference line represents lognormal
distribution. Censored observations are marked along the x-axis.
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Figure 8: non-lognormal distribution of variable with left censored observations from
PAULCHEN data

The probability plot compares the distribution of the variable IL17F_PHA dct to a lognormal
distribution. It can clearly be noted that the variable does not follow a lognormal distribution as most of
the data points are pretty distant from the reference line. The reference line represents lognormal
distribution. Censored observations are marked along the x-axis
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2.4 SAS code for distribution fit and summary of censoring

The SAS code in order to check the distribution fit and summary of censoring is as

follows:

ods graphics on;
proc lifereg data=paulchen;
model IL17 m dct*Censor(l) = / d = normal;
probplot;
run;
ods graphics off;

2.5 Conclusion of chapter

This chapter demonstrated two typical characteristics of the PAULCHEN and
PAULINA data:

Data often contain left and right censored observations with both single and multiple
detection levels.

Furthermore, the assumptions of an underlying distribution applying parametric tests
are mostly violated in the setting of immunological measurements. Consequently,
statistical instruments are required that take both characteristics of the data into

account.
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3 Summary statistics for non-normal censored data

In this chapter it is described how to compute summary statistics such as the median
and its confidence intervals for immunological data (Luminex and Real-time RT-PCR
measurements) when these are censored and do not follow a distribution upon which

parametric tests can be applied.

3.1 Summary statistics for Luminex data can be computed by
standard methods

The median is used as a statistical measure of location when a distribution is skewed
or when one requires reduced importance to be attached to outliers. The median of a
sample is defined to be the middle value when the observations are ordered from
lowest to highest. Due to the fact that immunological data rarely follow a certain
distribution (see 2.3) the median should be used as the measure of choice for these
data in order to produce summary statistics.

When computing summary statistics such as the median and confidence intervals for
protein expression data measured by Luminex technology, standard methods (as
implemented in all statistical packages, e.g. Proc univariate in SAS) are applicable
(Helsel 2005). The measured values are assigned ranks from lowest to highest. All
values below the detection level are assigned tied ranks. As there is generally only
one detection level per variable there is no loss of information. Based on ranks the
median can be computed and its corresponding confidence intervals can be derived
from a table with a continuous distribution based on order statistics (Helsel 2005) or
calculated by Campell and Gardners” formula (Campbell and Gardner 1988) as
described below. In contrast to the interquartile range, which represents the
dispersion in the study sample, the confidence interval gives an estimated range of

values which is likely to include the parameter of interest in the population.
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3.1.1 Maedian for an odd number of observations

When the sample contains an odd number of observations the median is calculated

as follows:

Median= observation at R(HTH) (1)

Where

R=Rank
n=number of observations

Consider the following example with five observations that are already ranked from
lowest to highest:

246910
n=5
. . 5+1
Median = observation at R(T) = R(3)
The 3™ rank corresponds to the observation with value 6. Consequently the median=

6.

3.1.2 Median for an even number of observations

When the sample contains an even number of observations then the median is

calculated as follows:

observation at R ( n ) + observation at R ( Ly )
Median= 2 2

(2)

2

Consider the following example with six observations that are already ranked from
lowest to highest:

24691012

n=6

observation at R ( g ) + observation at R ( g +1)

Median = =75

2
The median is the mean of the values at the 3™ and the 4™ rank. Consequently the
median= (6+9)/2= 7.5.
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3.1.3 Computation of the median: Application to data measured by Luminex

Computation of the median by standard methods as described may easily be applied
to variables measured by Luminex technology as these measurements generally
contain censoring at one single detection level. The cytokine IFN_y m is taken as an
example. Values below the detection level are assigned tied ranks which are marked
as 0.01 in the data set and ranked from lowest to highest. The median of the variable
IFN_y_m is derived as follows:

The variable contains 76 observations. Consequently, formula (2) is applied.

76 76
observation at R ( By ) + observation at R (—+1)

Median = 5 2 =0.04

The median is the mean of the values at the 38" and the 39" rank. According to data

set (not shown here) the 38™ rank corresponds to value 0.03 and the 39" rank to
value 0.05. Consequently the median= (0.3+0.5)/2=0.04.

3.1.4 Nonparametric confidence interval for the median

The confidence interval is the interval that contains with a probability of, in general,
95%, the true population value. Here, it is of interest to compute the confidence
intervals of the median. The confidence intervals may be derived by methods that
both assume and do not assume a certain distribution. Due to the fact that
immunological data rarely follow a certain distribution the confidence interval of the
median should be derived by a nonparametric method. The formula is given by
(Campbell and Gardner 1988):

rzﬁ_(]\]l_g,/zxﬂ)and S=1+ﬁ+(Nl—a/2X£)
2 2 2 2

3)

Where
r= lower bound of the confidence interval
s= upper bound of the confidence interval
n=sample size
Ni-«/2=is the corresponding value from the standard Normal distribution for
the 100(1-a/2) percentile
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3.1.5 Computation of the confidence interval: Application to data
measured by Luminex

The formula (3) for the confidence interval of the median is applied to the variable
IFN_y m:

r :7—6—(1.96><—\/%) = 29" rank
2 2
76 V76

s =1+7—(l.96>< )= 48" rank

2
Rank 48 and rank 29 correspond to the values 0.77 and 0.01 respectively in the data

set.

The confidence intervals (Cl) may also be looked up in a binomial table (Table 6) with
nonparametric two sided confidence intervals for the median:
(http://lwww.math.unb.ca/~knight/utility/MedInt95.htm). With a known sample size the
corresponding ranks of the upper and lower endpoints may be derived directly from
the table.

Example (IFN-y): N=76
Lower endpoint (L in table)= rank 29
Upper bound (U in table)= rank 48
Again, rank 48 and rank 29 correspond to the values 0.77 and 0.01 respectively in

the data set.

Conclusion: the median 0.04 has the corresponding CI (0.01; 0.77).
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Table 6: Nonparametric two sided 95% (or better) confidence intervals for the median

With a known sample size N the corresponding ranks of the upper (U) and lower (L) endpoints may
directly be derived from the table. The p-value gives the probability that the median lies between the
lower and upper endpoints which is 95% or better

N L U P<0.05 N L U P<0.05 N L U P<0.05
1 41 14 28 0.02753 81 32 50 0.04483
2 42 15 28 0.04356 82 32 51 0.03524
3 43 15 29 0.03154 83 33 51 0.04752
4 44 16 29 0.04877 84 33 52 0.03753
5 . . 45 16 30 0.03570 85 33 53 0.02946
6 1 6 0.03125 46 16 31 0.02590 86 34 53 0.03985
7 1 7 0.01563 47 17 31 0.03999 87 34 54 0.03142
8 1 8 0.00781 48 17 32 0.02930 88 35 54 0.04221
9 2 8 0.03906 49 18 32 0.04438 89 35 55 0.03342
27 8 20 0.01916 65 25 41 0.04635 105 42 64 0.03130
28 9 20 0.03570 66 25 42 0.03558 106 43 64 0.04087
29 9 21 0.02412 67 26 42 0.04980 107 43 65 0.03295
30 10 21 0.04277 68 26 43 0.03846 108 44 65 0.04281
31 10 22 0.02945 69 26 44 0.02949 109 44 66 0.03462
32 10 23 0.02006 70 27 44 0.04139 110 45 66 0.04476
33 11 23 0.03508 71 27 45 0.03193 111 45 67 0.03631
34 11 24 0.02431 72 28 45 0.04437 112 46 67 0.04674
35 12 24 0.04096 73 28 46 0.03442 113 46 68 0.03802
36 12 25 0.02882 74 29 46 0.04739 114 47 68 0.04872
37 13 25 0.04703 75 29 47 0.03695 115 47 69 0.03975
38 13 26 0.03355 76 29 48 0.02863 116 47 70 0.03227
39 13 27 0.02370 77 30 48 0.03954 117 48 70 0.04150
40 14 27 0.03848 78 30 49 0.03079 118 48 71 0.03379

3.1.6 Summary statistics computed in SAS for data measured by Luminex

The most convenient form in order to compute summary statistics is to use a
statistical program such as SAS. Unsurprisingly, the results computed by SAS and by
hand are identical (Table 7). Furthermore, the table compares the median and its
corresponding confidence intervals derived by the standard methods to the median
and its corresponding confidence intervals derived by the Kaplan-Meier method. The
Kaplan-Meier method is the method of choice that takes censoring into account (see

chapter below).
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Table 7: median with confidence intervals derived by the standard method and Kaplan-Meier
method

The results from the standard methods are identical to the ones from the Kaplan-Meier method.
Consequently, in the setting with censoring at one single detection level it is not necessary to use the
more complicated Kaplan-Meier method which is considered to be the classical nonparametric method
for censored data.

Standard methods

Kaplan-Meier method
(Calculated by hand and by SAS)

Median ClI (lower; upper) Median Cl (lower; upper)

0.04 0.01; 0.77 0.04 0.01; 0.77

The results are also identical here. Consequently, it may be concluded that when
computing summary statistics for protein data measured by Luminex (censoring at
one single level) standard methods may be applied without distorting the result. In
the setting with censoring at one single detection level it is not necessary to use the
more complicated Kaplan-Meier method which is considered to be the classical

nonparametric method for censored data.

3.1.7 SAS code for summary statistics of Luminex data

Standard method:

proc univariate data=paulchen CIQUANTDF ;
var IFN_g M;
run;
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3.2 Summary statistics for Real-time PCR data should be
computed by the Kaplan-Meier method

In contrast to Luminex data with left censoring, summary statistics for right censored
Real-time PCR data have to be computed by the Kaplan-Meier method (Kaplan and
Meier 1958). The non-parametric Kaplan-Meier (K-M) method is considered the
standard method for producing summary statistics for right censored survival data at
multiple detection levels by calculating the survival probability (Kaplan and Meier
1958). However, for immunological analysis, it is not relevant to calculate the
probability of surviving but rather the probability of exceeding a certain gene
expression and thus Act value. Nevertheless, the underlying idea is similar. In the
following, the outcome is called exceedance probability, instead of survival
probability. How to produce a lifetable according the Kaplan-Meier method is
ilustrated and described in detail in order to compute summary statistics for Act
values. Therefore, an example (see Table 8) of immunological data is taken to
ilustrate the application of the Kaplan-Meier method. The Real-time PCR data that
are used are from the Paulchen Study (Schaub, Liu et al. 2009). It is aimed to assess
whether the gene expression (Act value) of a certain cytokine (IL-17F-PHA) is
dependent on a certain exposure. The data were not normally distributed and could

not be transformed to a valid distribution.

Table 8: Characteristics of an example with right censored gene expression (IL-17F-PHA)
expressed as Act and assessed by real time RT-PCR

Exposed Sample Size Number right Censored Percent right Censored
no 45 25 55.55
yes 16 4 25.00
total 61 29 47.54

3.2.1 Creating a lifetable according to the Kaplan-Meier method

Before the median and the corresponding confidence interval can be derived a

lifetable and a survival plot of the survivor function have to be created. Table 9
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shows how the survivor function according to the K-M method is applied to the Act
data for the unexposed group.

Table 9: The Kaplan-meier method is applied in order to produce summary statistics for right
censored gene expression data
The survival function according to the K-M method is applied to example with right censoring (IL-17F-

PHA) at multiple detection levels for the unexposed group (see Table 8)

Number Number Incremental Probability of
ACT- " UMDEr | Number Left (NL) = NL(before) — |  probability exceeding Act

Censored Detected
value (NC(before)+ND(before)) P=(NL- value

NC) (ND) —p*
ND)/NL S=P S(before)
0 0 0 40 (40-0)/40=1 1

14.45 1 0 40 - -
15.70 0 1 39 (39-1)/39=0.97 | 0.974*1.00=0.97
16.80 0 1 38 (38-1)/38=0.97 | 0.97*0.97=0.95
20.15 0 1 15 (15-1)/15=0.93 | 0.933*0.516=0.48
23.30 1 0 3 - -
23.70 0 1 2 (2-1)/2=0.50 0.50*0.177=0.08
25.05 1 0 1 - -

Act value: measured cytokine concentration of the observation.

Number censored: number of censored measurements with given Act value

Number detected: number of detected (uncensored) measurements with given Act value

Number Left: number of observations left that exceed given Act value

Incremental probability: probability of the NL to exceed the cytokine concentration of the given observation. In
case of censoring the incremental probability is not calculated, but NL is reduced by NC

Probability of exceeding Act value: the product of incremental probabilities up to that point

The first column represents the measured cytokine concentration of the observation
expressed as Act. The next column shows whether censoring occurred (0=no
1=yes). In the third column the number of observations that are detected is
presented. The column (Number Left) depicts the number of observations left that
exceed the last measured concentration. The incremental probability is the
probability of the observations left (Number Left) to exceed the cytokine
concentration of the given observation. The column “survival probability” presents the
product of the incremental probabilities up to that point. Lifetables for the exposed

group and both groups together are computed analogue (tables not shown).
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3.2.2 Creating a survival plot

From the life table based on the Kaplan-Meier method a survival plot which plots the
survival functions can be created. Censored values are represented by crosses. In
the setting of immunological data the plot should not be interpreted as “survival” but
as the probability of exceeding a certain gene expression level depending on the
exposure. Consequently, the x-axis presents the measured gene expression level
expressed as Act. The y-axis represents the exceedance probability. The medians of
each group may be easily visualized in the survival plot (see Figure 9) by drawing a
horizontal line at 0.5 on the vertical axis and drawing a perpendicular line to the x-
axis at the points where the horizontal line intersects the survival function. This
procedure can be performed for any percentile of interest. For each measured gene
expression level an exceedance probability can be achieved depending on the

exposure.

Figure 9: Kaplan-Meier curve of a cytokine expressed as Act and assessed by real time RT-PCR
The Kaplan-Meier curve represents the survival functions achieved by the life table (table 9). Right
censoring with multiple detection levels are present. The plot should not be interpreted as “survival”
but as the probabilities of exceeding a certain gene expression level depending on the exposure.
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Example:

In the exposed group the probability of exceeding the Act-value of 20 is
approximately 60%. In the unexposed group the probability of exceeding the Act-
value of 20 is approximately 75%. Consequently, the gene expression level in the

unexposed group is higher.

3.2.3 Median for right censored data

The median of the DCT-value according to the Kaplan-Meier method for right
censored data is defined as the smallest DCT-value for which the survival probability
(here: probability of exceeding the DCT-value) is less than or equal to 0.5. According
to the lifetables the medians for the exposed are 21.02, for the unexposed 23.00 and
both groups together 22.10 respectively. This way the Act-value for any percentile of
interest can be achieved. Additionally, the medians or any percentile of interest of
each group may be easily visualized in the survival plot as described in the previous

paragraph.

3.2.4 Confidence interval of the median for right censored data

In order to produce confidence intervals for the median nonparametric procedures
are required as no underlying distribution can be assumed. Klein and Moeschberger
(Klein and Moeschberger 2003) discourage the use of the confidence interval
according to Kaplan-Meier as it becomes unreliable with small sample sizes. They
rather recommend producing the confidence interval for the median by the B-C
method after Brookmeyer and Crowley (Brookmeyer and Crowley 1982) which is
based on Greenwood’s (Greenwood 1926) formula for the standard error of the

survival function:

Standard error of the survival function= s.e.(S)=

ND;
SixX |j= 4
j \/.1 12 NLj(NDj— NL;) ( )

Where

S = survival function of observation at time j
ND; = number of observations detected at time j
NL; = number of observations left at time j
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However, applying Greenwood’s formula is time consuming and can be
approximated by Peto’s (Peto, Pike et al. 1976) formula in order to be easily

calculated by hand:

Standard error of the survival function by Peto = s.e.(S)= | IZQLSJ )
J

Where

S = survival function of observation at time j

NL; = number of observations left at time j

For illustration the formula is applied to the median of the variable IL-17F-PHA =
22.10 with its corresponding survival function S= 0.489 which are obtained from a

lifetable as described in paragraph 3.2.1.:

S.e. (0.489) =\/0.4892x$ =0.07

Consequently, the survival function S=0.489 has the standard error S.e. =0.07.

The B-C signh method can be applied based on the standard errors of the survival
functions of each observation. For each observation in the lifetable a ratio is created
whose variation is approximately normal (see Table 10).

The ratio depends on the survival function of each observation, its standard error and

the percentile of interest (here: the median):

B-C sign ratio: S-p (6)

s.e.(S)
Where
S = is the survival function of the observation at time j
p = target percentile (here: median)

S.e.= standard error of the survival function of the observation at time j
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Example for computing the B-C ratio:
The B-C ratio for the median: As calculated before the median= 22.10 has the
survival function S=0.489 with the corresponding standard error S.e. =0.07:

B-C sign ratio: 2232=9- _ .22
0.07

Table 10: In order to compute confidence interval of the median for right censored data the B-C
ratio method is applied.

The B-C ratio is based on the Survival function and its standard error. Its variation is approximately
normally distributed. The survival times (here ACT-values) of detected observations that lie closest to
the boundaries of the B-C ratio values >= + 1.96 or <=-1.96 represent the lower and upper bounds of
the confidence intervals

ACT-value Censoring Indicator | Survival function| Standard Error | B-C ratio
13.10 no 0.98 0.02 30.24
13.30 no 0.97 0.02 20.85
15.10 yes
15.45 no 0.95 0.03 16.47
20.40 no 0.67 0.06 2.74
20.45 no 0.65 0.06 2.43
20.45 yes
20.55 no 0.63 0.06 2.02
20.70 yes
20.95 no 0.61 0.06 1.80
21.00 no 0.60 0.06 1.50
22.40 no 0.47 0.07 -0.52
22.75 yes
23.00 no 0.44 0.07 -0.84
23.15 yes
23.20 no 0.42 0.07 -1.16
23.20 yes
23.30 yes
26.40 yes
26.40 yes

Consequently, The survival times (here DCT-values) of detected observations that lie
closest to the boundaries of the B-C ratio values >= + 1.96 or <=-1.96 represent the
lower and upper bounds of the confidence intervals.

Example: The closest B-C ratio >= +1.96 is 2.02. The corresponding DCT-value is
20.55. It follows that the lower bound of the confidence interval is 20.55. However, a
B-C ratio <= -1.96 cannot be computed because all observations >23.20 are

censored. The lowest possible B-C ratio to be calculated is -1.16. Consequently, the
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upper confidence interval cannot be computed. It is merely known that the upper
bound is greater than 23.20.

3.2.5 Summary statistics computed in SAS for data measured by Real time
PCR

Table 11 demonstrates that manual calculation of the B-C ratio method and the
Kaplan-Meier method implemented in SAS yield identical results.

Table 11: Results for the median and its corresponding confidence interval produced by SAS
and manual calculating of the B-C ratio method

Median Cl(lower,upper)
22.10 20.55, n.a.

3.2.6 SAS code for summary statistics of RT-PCR data

Kaplan-meier method:

proc lifetest method =pl data=N.paulchen;
time IL17F_PHA_dct*il17fphact_c(1);
strata pregbarn

run;

3.3 Consequences when censored data at multiple detection levels
are calculated by inappropriate methods
In order to demonstrate the consequences when censored data at multiple detection
levels are calculated by inappropriate methods an example of right censored data
with multiple detection levels is analyzed by both appropriate and inappropriate
methods. The appropriate method is the Kaplan-Meier method for the median and B-
C ratio test for the confidence interval. In contrast, the inappropriate methods are the
standard methods as described in paragraph 3.1 which are only applicable for left
censored data with one detection level. Data from Table 8 are used as an example.
In order to demonstrate the great impact of censoring on computing summary

statistics four situations are used to illustrate this:

1. The median and CI are calculated on the original data of example. Censoring is
properly taken into account in the Kaplan-Meier method.

2. Censoring is ignored in the exposed group. Censoring is not taken into account in
the exposed group

3. Censoring is ignored in the unexposed group. Censoring is not taken into account

in the exposed group
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4. Censoring s ignored in both groups. Censoring is not taken into account in both
the exposed and the unexposed group

In all four situations the original values of the data are maintained. Merely the
proportion of censored observations is ignored. Ignoring means that the censored
observations are not marked as censored for the analysis in the corresponding
group.

The results are shown in table 12 and Figure 10 to 13.
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Table 12: Consequences are shown when summary statistics are computed on censored data
at multiple detection levels by inappropriate methods

This table compares the results from the Kaplan-Meier method (appropriate method) to the standard
method (inappropriate method) when applied to right censored data with multiple detection levels. The
median and the corresponding Cls according to the K-M method and the B-C ratio test depend on the
censored observations in the data. In contrast, summary statistics by the standard method do not
capture the information of censoring. Both median and confidence intervals remain unaffected.

standard method Kaplan-Meier method

NP° per group

median CI median CI

Censoring is properly taken into account by the Kaplan-Meier method

40 (55.55 % censored) 21.62 20.40-23.15 23.00 20.45- NA

13 (25 % censored) 21.02 18.90-23.30 21.02 18.35-23.20

Censoring is not taken into account in the exposed group by the Kaplan-Meier method

40 (55.55 % censored) 21.62 20.40-23.15 23.00 20.45- NA

13 (0 % censored) 21.02 18.90-23.30 21.02 18.35-23.20

Censoring is not taken into account in the unexposed group by the Kaplan-Meier method

40 (0 % censored) 21.62 20.40-23.15 21.62 20.35-23.00

13 (25 % censored) 21.02 18.90-23.30 21.02 18.35-23.20

Censoring is not taken into account in both groups by the Kaplan-Meier method

40 (0 % censored) 21.62 20.40-23.15 21.62 20.35-23.00

13 (0 % censored) 21.02 18.90-23.30 21.02 18.35-23.20

The median and the corresponding Cls according to the K-M method and the B-C
ratio test depend on the censored observations in the data. In situation 1 (Censoring
is properly taken into account) and situation 2 (censoring is not taken into account in
the exposed) the median and confidence interval in the unexposed group is 23.00
(Cl: 20.45 - NA) and 21.03 (CI: 18.35 — 23.20), respectively. “NA” describes that the
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horizontal line at 0.5 does not intersect the upper limit of the confidence interval. In
situation 3 (censoring is not taken into account in the unexposed group) and situation
4 (censoring is not taken into account in both groups) the median and ClI in the non-
exposed group is 21.625 (Cl: 20.35 — 23.00) and 21.025 (CI: 18.35 — 23.20),
respectively. The information whether an observation is censored or not may affect
summary statistics calculated by appropriate methods even though the values of the
observations are not altered. In contrast, the median and the CIl according to the
standard methods stay unaffected by the amount of censoring. This fact underlines
the importance of calculating summary statistics of right censored data with different
detection levels by appropriate descriptive methods.

The survival plots in Figure 10 present graphically all four situations. It can be clearly
seen that the shapes of the survival functions strongly differ according to the
information of censoring.

Figure 10: The plot shows the Kaplan-Meier curve based on the situation in which censoring is
properly taken into account in both groups
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Figure 11: The plot shows the Kaplan-Meier based on the situation in which censoring is taken
into account in the unexposed group and ignored in the exposed group
It can be clearly seen that the function of the unexposed group has a sharper drop than in figure 10.

Consequently, the two functions differ more strongly.

Faplan-Meier Curve
10
0.8
= 064
= |
az L
= 0.47 |
-= q
= |
= |
= 1
0.2 4 L
|
L
|
|
0.0 '
T T T T T T
0 5 10 15 20 25
concentration
[Exposure 0 ——— 1]

Figure 12: The plot shows the Kaplan-Meier based on the situation in which censoring is taken
into account in the unexposed group and ignored in the exposed group

It can be clearly seen that the function of the exposed group has a sharper drop than in figure 10.
Consequently, the two functions are more similar to each other
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Figure 13: Censoring is not taken into account in both groups
Here in this scenario both functions have a sharper drop. Their shape is different to the one in figure
10 in which censoring is properly taken into account.
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3.4 Conclusion of chapter

When computing summary statistics (e.g. median with confidence intervals) for left
censored data with one detection level such as Luminex data, standard methods may
be applied without loss of information or biasing the results. In contrast summary
statistics for right censored data with multiple detection levels should be computed by
methods that particularly take censoring into account such as the Kaplan-Meier

method in order to avoid biased results.
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4 Non-parametric statistical testing for group comparisons
when censoring is present

In this chapter it is described how to perform statistical testing on differences
between two or more groups in the context of immunological data derived by both
Luminex and Real-time RT-PCR measurements when these are censored and do not

follow a distribution upon which parametric tests can be applied.
4.1 Luminex data may be analyzed by the Wilcoxon rank-sum test

When statistically analyzing non-normally distributed left censored data at one single
detection level, such as measurements by Luminex, standard non-parametric tests
like the Wilcoxon rank-sum-test or the Kruskal-Wallis-Test may be applied without a
loss of information (Helsel 2005).

In order to apply the Wilcoxon rank-sum test the measured values are assigned
ranks from lowest to highest as depicted in Table 13. In case of ties (e.g. 0.01) the
average rank is assigned (e.g. rank 19.5 to the value 0.01).

Table 13: Before applying the Wilcoxon ranks sum test the data are ranked

the measured values of the concentration are assigned ranks from lowest to highest. Furthermore

exposure (yes/no) is indicated. Based on this information the Wilcoxon rank-sum-test or the Kruskal-
Wallis-Test may be applied

Concentration in pg/ml exposure rank
0.01 no 19.5
0.01 no 19.5
0.07 no 39
0.08 no 40
0.45 no 41.5
0.45 no 41.5
0.58 no 45.5
0.77 yes 45.5
1.82 yes 62
1.82 yes 62
1.99 no 64
2.53 no 66.5
3.84 no 74.5
4.56 no 76
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Due to the fact that there is generally only one detection level per variable in Luminex
data there is no loss of information by assigning tied ranks to all censored values
below (or above) the detection (here: non-detectable values are represented by
0.01). Based on the ranks the Wilcoxon rank-sum test and the Kruskal-Wallis-Test
respectively can be applied by the PROC NPAR1WAY procedure in SAS or
calculated manually. To illustrate this the variable IFN_y m is used as an example
(Table 13). The aim is to check whether the cytokine concentration is significantly
different depending on a certain exposure. The test static U from the Wilcoxon rank

sum test is achieved by the following formula:

mX(m+1)

Test statistics U =ni X n.+ - Ri(7)

Where
m= number of observations in unexposed group
n.= number of observations in exposed group
Ri=sum of ranks in unexposed group

The values achieved from Table 13 are entered in the formula:

S59%(59+1)

U =59x17+ —2362 =411

The test statistic U is approximately normally distributed. Consequently, Z can be
computed from U by

U— mXn:
Z= 2 ~ N(0;1) (8)
\/I’ll X l’lz(l’ll +n.+ 1)

12

The values achieved from Table 13 and formula 7 are entered in the formula 8:

411 59%17
= =1.13
\/59><17(59+17+1)
12

The corresponding p-value derived from a table with standard normal distribution is:
0.26.
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4.1.1 Results computed by SAS

Table 14 shows that the results computed by SAS and by hand are identical.
Furthermore, the table compares the z-score with the corresponding p-value derived
by the standard methods to the z-score with the corresponding p-value derived by
the generalized Wilcoxon test. The generalized Wilcoxon test is the method of choice
that takes censoring into account at multiple detection levels (further description
below).

Table 14: Comparison of z-scores calculated by the Wilcoxon-Test and the generalized
Wilcoxon-Test

The z-scores and corresponding p-values by either method are identical. Consequently, in the setting

of left censoring at one single detection level the Wilcoxon test can be applied without loss of
information

Wilcoxon (calculated by hand and SAS) | Generalized Wilcoxon (SAS)

Z-score p-value Z-score p-value
1.13 0.26 1.13 0.26

The results are also identical here. Consequently, it may be concluded that when
computing summary statistics for protein data measured by Luminex (censoring at

one single level) standard methods may be applied without distorting the result.

4.1.2 SAS code for standard method

proc npariway data=N.paulchen wilcoxon ;
class pregfmilk;

var IFN_y m;

run;

4.2 Real-time PCR data should be analyzed by the generalized
Wilcoxon-Test

In the case of analyzing censored gene expression data (shown as Act) when testing
for differences between two or more groups, statistical tests need to be applied that
capture the information in the censored proportion of the Act data. One possibility is
the generalized Wilcoxon test (Peto and Peto 1972; Prentice 1978). This test is a
modification of the rank-sum test and takes right censored data - leading to multiple

detection limits- into account by estimating the U score of each censored value
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according to the survival function of the previous uncensored observation. Basically,
the test investigates whether survival distributions in two or more groups differ
significantly. In SAS the Proc lifetest procedure covers the generalized Wilcoxon test.
The generalized Wilcoxon test is applied to the example from Table 8 with right
censoring at multiple detection levels (Act assessed by real time RT-PCR). In order
to conduct the generalized Wilcoxon-Test a table (Table 15) according to the Kaplan-
Meier method has to be created.

Table 15: The generalized Wilcoxon test is based on the survival function according to the
Kaplan-Meier method

Based on the survival function by the Kaplan-Meier method the U score is computed. Based on the U
score the test statistic W can be derived.

ACT-value | Exposure Censoring Igleutr:ct:::j Number Survival U Uz
P Indicator (ND) Left (NL) (St)

13.1 no no 1 61 0,984 0.984 0,968
13.3 no no 1 60 0.968 0,952 0.906
15.1 no yes 0 59 -0,032 0.001
15.45 no no 1 58 0.951 0.919 0.845
20.45 no no 1 38 0.650 0.317 0.100
20.45 no yes 0 37 -0.350 0.123
20.55 no no 1 36 0.632 0.282 0.080
20.7 no yes 0 35 -0.368 0.135
20.95 yes no 1 34 0.614 0.246 0.061
21 yes no 1 33 0.596 0.210 0.044
21.05 yes no 1 32 0.578 0.174 0.030
26.4 no yes 0 1 -0.578 0.334
26.4 no yes 0 0 -0.578 0.334

The U score based on the survival function at that observation is achieved as follows:

U score for uncensored observations: U =S+ Si-1-1 (9)
U score for censored observations: U = S:-1-1 (10)
where
St is the value of the survival function at corresponding observation
St1 is the value at the survival function for the previous uncensored
observation
Example:
U score for DCT-value (15.45) = 0.951 + 0.968 — 1 = 0.919
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The test statistic W is obtained by summing the U scores for one group
w=>U (1)
The variance of W is as follows:

VarlW)=mxn LU (12)

(m+n)X(m+n+1)

Where
m = number of observations in unexposed group

n= number of observations in exposed group

The values achieved from Table 13 are entered in the formula 11 and 12
w=>U=-279
Var(W)=3.52
The Z statistic is produced by dividing W by the square root of the variance of W:
w

Var(W)

7="21 _ 149

73.52

Comparing z=-1.49 to table of the standard normal distribution yields a p-value of
0.14.

7 =

4.2.1 Results computed by SAS

The table compares the z-score with the corresponding p-value calculated by hand to
the z score calculated by SAS with the LIFETEST procedure. The results are
identical

Table 16: Results computed by SAS
The results calculated by hand and SAS are identical

Generalized Wilcoxon (calculated by hand and SAS)

Z-score p-value

-1.49 0.14
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4.2.2 SAS procedure for the generalized Wilcoxon test

proc lifetest method =pl data=N.paulchen;
time IL17F_PHA_dct*il17fphact _c(1);
strata pregbarn/test=wilcoxon;

run;

4.3 Consequences when censored data are analyzed by
inappropriate methods

In order to demonstrate the consequences when censored data at multiple detection
levels are calculated by inappropriate methods an example of right censored data
with multiple detection levels is again analyzed by both appropriate and inappropriate
methods. The appropriate method is the generalized Wilcoxon test. In contrast, the
inappropriate method is the standard Wilcoxon Test as described in paragraph 4.1
which is only applicable for left censored data with one detection level. Data from
Table 8 are used as an example. The same four situations are again used to
illustrate in order to demonstrate the great impact of censoring on computing
summary statistics:

1. The p-value is calculated on the original data of example. Censoring is properly
taken into account

2. Censoring is ignored in the exposed group. Censoring is not taken into account in
the exposed group

3. Censoring is ignored in the unexposed group. Censoring is not taken into account
in the exposed group

4. Censoring is ignored in both groups. Censoring is not taken into account in both
the exposed and the unexposed group

In all four situations the original values of the data are maintained. However, when
censoring is ignored it means that the censored observations are not marked as
censored for the analysis. Consequently, censoring is not taken into account for the
analysis.

The results are shown in Fehler! Verweisquelle konnte nicht gefunden werden.. It can
be seen that the p-value given by the generalized Wilcoxon test is strongly
dependent on the amount of censoring in each group. In situation 1 the p-value
amounted to 0.15, in situation 2 to 0.06, in situation 3 to 0.62, and in situation 4 to

0.39. In contrast, when data are analyzed by the standard Wilcoxon test the results
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do not differ according to the amount of censoring in each group. The results are
identical in each situation. Obviously, only the generalized Wilcoxon test captures the
information whether an observation is censored which may affect the p-value even
though the values of the observations are not altered. This fact underlines the
importance of analyzing right censored data with different detection levels by
appropriate statistical methods.

Table 17: Consequences are shown when inappropriate methods are applied to censored data
at multiple detection levels

This table compares the results from the generalized Wilcoxon test (appropriate method) to the
standard Wilcoxon test (inappropriate method) when applied to right censored data with multiple
detection levels. The p-values according to the generalized Wilcoxon test depend on the censored

observations in the data. In contrast, the p-value by the standard Wilcoxon test does not capture the
information of censoring. The p-values remain unaffected.

Wilcoxon Test Generalized Wilcoxon Test

NP° per group

p-value p-value

Censoring is properly taken into account by the Kaplan-Meier method

40 (55.55 % censored)

0.39 0.14
13 (25 % censored)

Censoring is not taken into account in the exposed group by the Kaplan-Meier method

40 (55.55 % censored)

0.39 0.06
13 (0 % censored)

Censoring is not taken into account in the unexposed group by the Kaplan-Meier method

40 (0 % censored)
0.39 0.63

13 (25 % censored)

Censoring is not taken into account in both groups by the Kaplan-Meier method

40 (0 % censored)
0.39 0.39

13 0 % censored)
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4.4 Conclusion of chapter

When performing statistical testing on differences between two or more groups in the
presence of left censored data with one detection level such as Luminex data,
standard methods as the Wilcoxon rank sum test may be applied without loss of
information or biasing the results. In contrast, testing on differences between two or
more groups in the presence of right censored data with multiple detection levels
should be computed by methods that particularly take censoring into account such as
the generalized Wilcoxon Test in order to capture the information of censoring in the

data. Otherwise, biased results may be the consequence.
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5 Tobit regression on ranks: a model for censored data
without parametric assumptions

Multivariate structures are often present in immunological settings. Consequently, the
statistical methods described in paragraph 3 and 4 are not applicable any more.
More sophisticated methods such as regression techniques that may take possible
confounding and interaction effects into account are crucial. However, in the context
of cytokine and gene expression data these methods need to be robust against
violating parametric statistical assumptions due to the fact that underlying
distributions may not be assumed. Furthermore, the methods should capture the
information of possible censored observations in the data. Therefore, the Tobit
regression on rank transformed data is introduced in the following chapter. This
model makes use of both the classical Tobit regression and the regression on rank
transformed data. Additionally, its application will be shown by means of two
examples taken from the PAULCHEN study. For the purpose of easiness simple
regression is used as an illustration. Self evidently Tobit regression may be extended
as any other regression to multivariate comparisons in order to adjust for possible

confounding and interaction effects.
5.1 Description of the model

As mentioned before the generalized Wilcoxon does not allow adjustment for
covariables and potential confounding. Hence, a regression technique such as the
Tobit model is required to assess the simultaneous effect of different variables on the
outcome in the presence of censoring. However, the disadvantage of the Tobit
regression is that it is vulnerable to violation of the statistical assumptions like
normality of the error distribution and equal variances of the residuals
(homoscedasticity). E.g. In the presence of heteroscedasticity the Tobit estimates
may become inconsistent (Arabmazar and Schmidt 1982; Austin, Escobar et al.
2000) and lead to biased results.

Based on the concept of Iman and Conover (Iman and Conover 1979; Conover 1980;
Conover and Iman 1981) the data is ranked from lowest to highest and subsequently,
the Tobit regression can be performed on the rank transformed data. Rank

transformation procedures lead to distribution free tests.
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The classical Tobit model according to the economist James Tobin (Tobin 1958)
uses three types of information: 1) the observed values above detection limits b) the
proportion of data below each detection limit and c) the assumed underlying
distribution which may be e.g. normal or log-normal. The Tobit model estimates a
regression model for the data above the detection level, and assumes the same
distribution of errors for the censored data (below DL) as for the observed data. The
Tobit regression is applicable for both left and right censoring and both single or
multiple detection levels.

The Tobit model can be described in terms of a latent variable y * . Suppose
y*=o+ fx+¢& where ¢~N(0, §%) (13)
and the observed variable y satisfies :
y=y*if y>a (14)
y=a ify* <=a (15)

where a=detection limit.

In contrast to linear regression whose parameters are derived by the least square
method the parameters in the Tobit regression are derived by applying maximum
likelihood estimation (MLE). MLE methods are computed by maximising a likelihood
function L. For detailed information on computation of MLE refer to pertinent
literature.

Tobit regression model on ranks is not calculated on the real values of the
observations but on their corresponding ranks. Conover and Iman stated that
calculating parametric tests on rank transformed data produce equivalent results as
the corresponding non-parametric test (Iman and Conover 1979; Conover 1980;
Conover and Iman 1981). Thus, according to Iman and conover the corresponding
Tobit regression on ranks is given by:

n+1 n+1

> + BR(x) - 5

Ry*)if Ry*) > R (@) 17)

Ry = ) (16)

R()

R(p) = R(@if Ry <= R(@)  (18)
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where

R(y) =is the rank of the corresponding variable.
R (a) =detection limit of rank transformed variable.

The estimates of the Tobit model on ranks are estimates of the rank transformed
variables R(y) which may be retransformed to their original values according to iman.
This procedure is described in paragraph 5.7.

As Tobit regression in general is applicable to both left and right censored data with
both single or multiple detection levels the Tobit regression on ranks can be used for

both Luminex and Real time PCR data when expressed as Act.

5.1.1 Ranking censored data

Ranking is performed according to the following method: the entire set of
observations is ranked from smallest to largest. The smallest observation obtains the
rank 1 and the largest observation the highest possible rank. Average ranks are
assigned in case of ties. In Table 18 an example is presented on how to transform a
variable y with right censoring into its corresponding rank. The variable y turns into
the rank transformed variable R(y). In case of censoring the censored variable >y
turns into the censored rank transformed variable >R(y).

Table 18: Example of rankig a variable with right censoring

The entire set of observations is ranked from smallest to largest. Consequently, the variable y turns

into the rank transformed variable R(y). In case of censoring the censored variable >y turns into the
censored rank transformed variable >R(y).

y R(y) censoring
1 1 no
1.5 2 no
>2 >3 yes
25 4 no

5.1.2 Regression on ranked data: parametric assumptions hold

When data are not normally distributed it can be transformed into normal distribution
by e.g. taking the logs. However, transformation into normality does not always work.

In scenario a) in Figure 14 log transformation of y results in the normally distributed
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variable log(y). In contrast this transformation does not work in scenario b). Here
instead, the variable y can be rank transformed into rank(y) resulting in a uniform
symmetric distribution.

The reason that regression on ranks is considered to be a non-parametric procedure
is based on the fact that linear regression or Tobit regression can be performed on
uniform distributed (rank transformed) variables while parametric assumptions still
hold. Parametric assumptions of linear regression are, among others things, equal
variances of the residuals (homoscedasticity) and normality of the residuals.

The fact that these assumptions are not violated is demonstrated by figure 15. In a)
residual diagnostics of a linear regression model applied to a heavily skewed variable
reveal that the residuals are not normally distributed. Additionally, heteroscedasticity
is present and outliers have a potential impact on the model. Consequently, the
assumptions of linear regression are violated. In contrast, when linear regression is
applied to the same variable after rank transformation the parametric assumptions
hold. In b) the residuals become approximately normally distributed and the

variances become homoscedastic. The influence of potential outliers is reduced.

66



Novel statistical approaches for censored immunological data: Tobit regression on ranks

Figure 14: transforming a heavily skewed variable into ranks results in uniform distribution.

Scenario a) shows that log-transformation of a log-normally distributed variable y result in a normally
distributed variable log(y). However, some distributions like in scenario b) are not transformable into
normality. Here, rank transformation can be conducted resulting in a uniform symmetricly distributed

variable rank(y). Data parametric tests can be applied on rank transformed.

da)

log transtormation

lagly)

rank transtormation

rank{y)
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Figure 15: Parametric assumptions hold when regression is performed on rank transformed
data

In a) residual diagnostics of a linear regression model applied to a heavily skewed variable reveal that
the residuals are not normally distributed and heteroscedasticity is present. Consequently, the
assumptions of linear regression are violated. In contrast, when linear regression is applied to the
same variable after rank transformation the assumptions hold. In b) the residuals become
approximately normally distributed and the variances become homoscedastic
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5.2 Performance check of the Tobit model on ranks by simulation
study

Simulation studies are generally used to compare different statistical methods and
models under realistic data conditions. These realistic conditions are artificially
created according to certain criteria which are of interest. In this way, the
performance or bias of different competing models can be assessed when “reality” is
known. E.g. the validity of a model can be evaluated in the presence of
heteroscadasticity. A simulation study was conducted here in order to check the
performance of the Tobit regression on ranks in comparison to other competing
statistical tests and methods when an increasing amount of censored observations
are added to the data. Performance was defined to be the Type-l error rate and

power of a statistical method or test.

5.21 Type l error

Type | error, also known as ,type-1", a error, or "false positive" rate, is the error of
rejecting a null hypothesis when it is actually true (Table 19). e.g. a diagnostic test
wrongly identifies somebody as having a disease when in fact he/she has no
disease. The false positive rate is the proportion of absent events e.g. no diagnosis
that yield positive test outcomes, i.e., the probability of a positive test result given an
absent event. The false positive rate is also known as the specificity of a test and is
related to the level of significance of a statistical test. The significance level is the

probability of making the wrong decision when the null hypothesis is true

Table 19: concept of false positive (a error) and false negative (8 error) test results

Reality
HO is true (absent) H1 is true (present)
HO is true correct False negative (B3-error)
Test result
H1 is true False positive (a error) correct
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5.2.2 Type-ll error and power

Type Il error, also known as a "type-Il", a B error, or ,false negative" rate, is the error
of failing to reject a null hypothesis when it is actually not true (Table 19). It may
occur when a diagnostic test wrongly identifies somebody as not having a disease
when in fact he/she has the disease. The false negative rate is the proportion of
present events that yield negative test outcomes, i.e., the probability of a negative
test result given present event.

The power of a test is defined as:1- #pe — Il error .It is also known as the sensitivity of

a test.

5.2.3 Procedure of the simulation study

10000 data sets were simulated by drawing samples from a population similar to the
PAULCHEN and PAULINA studies with respect to sample size and proportion of
censored observations.

A two group comparison was conducted with an interval scaled dependent variable.
Normal error distribution was assumed as it was desired to include the Tobit
regression model as the golden standard in the simulation study. Two scenarios were
considered: In the first scenario both groups had the same mean of 20 and a
variance of 2 N(20, 2). Scenario 1 was meant to assess the Type-I error rate. In the
second scenario there was a mean difference of 1 (mean= 20 and 21 resp.) and a
variance of 2 (group 1: N(20,2), group 2: N(21,2)). Scenario 2 was meant to assess
the power. In each scenario three different sample sizes per group were considered
(25, 50 and 100 resp.). Additionally to different sample sizes, decreasing detection
levels were added to the simulation settings starting from DL > 26. The next
simulation setting had DL > 25 and so on until DL > 18. Consequently, the proportion
of censored observation increased each simulation setting and the proportion of
censoring was always higher in the group with the higher mean which was to be
expected in the context of gene expression data expressed as Act.

In the simulation study four statistical models and the standard Wilcoxon rank-sum
were used for comparison. As described in previous chapters and according the

literature (Helsel 2005) both the models and the standard Wilcoxon rank sum test are
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considered to be appropriate methods in this context of right censored data at one

single detection level. :

1.

Quantile regression (Koenker 2005): In contrast to the method of least
squares as used in linear regression that approximates the conditional mean
of the response variable given certain values of the predictor variables,
Quantile regression approximates either the median or other quantiles of the
response variable. This model was recommended in literature to be a possible
option for application to censored data. However, its performance has not

been assessed in the context of censored data

. Logistic regression: logistic regression is a model from the family of the

generalized linear models. It is used for the prediction of the probability of an
event occurring by fitting data to a logit function. From the probability of
occurring an event the odds ratio can be computed. Logistic regression
describes the relation between one or more independent variables (e.g., age,
sex, etc.) and a binary response variable (e.g. yes/no). The cutoff value for
dichotomizing the data in the simulation study was the median. When the
proportion of censoring was >= 50 % the detection level was used as the cut-
off value.

The Wilcoxon rank-sum test: As described in paragraph 4.2 the test is a non-
parametric statistical hypothesis test and thus assumes no certain distribution

of the data. It can be applied here as the detection occurs at one single level.

. The Tobit regression: the tobit model as described in paragraph 5.1 was used

in the simulation study as the golden standard.
The Tobit regression on ranks as described in paragraph 5.1 was the model of

main interest in the simulation study.
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5.3 Results of performance check

Figure 16 to Figure 18 show the performance of the Tobit regression model on ranks
in comparison to four statistical models and tests as described in paragraph 5.2.3
The x-axis indicates the proportion of censored observations, the y-axis on the right-

hand side the power and the y-axis on the left-hand side the Type-I error rate.

5.3.1 Performance of Tobit model on ranks with sample size N=100 per group

Figure 16 shows the performance of the Tobit regression on ranks with a sample size
N=100 per group. With respect to power the Wilcoxon test, the Tobit model and the
Tobit model on ranks perform equally well until app. 70% of censoring. However, the
power decreases slightly with increasing an amount of censoring from app. 95% (0%
censoring) until app 75% (70% censoring). With a higher amount of censoring (>70%
censoring) the Wilcoxon test produces the least false negative rate and performs
slightly better than both the Tobit model and the Tobit model on ranks. Between 0%
and 50% of censoring logistic regression performs with a constant power of
approximately 80%. With more than 50% of censored observations its power is
reduced. However, when the proportion of censoring reaches approximately 80%
logistic regression has as much power as Tobit regression and Tobit regression on
ranks. In contrast to the other tests and models, quantile regression shows very poor
performance with respect to power across all proportions of censoring. With more
than 50% of censoring quantile regression, when the estimator of interest is based on
the 5" quantile (median), is no longer applicable.

The type-l error rate for all statistical tests and models does not depend on the
proportion of censoring and lies at around 5%. An exception is the Type-| error rate
of quantile regression which increases strongly with more than 30% of censored

observations.
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Figure 16: performance of Tobit model on rank transformed data in comparison to four
statistical tests and models with a sample size of N=100 per group

The x-axis indicates the proportion of censored observations, the y-axis on the right- hand side the
power and the y-axis on the left-hand side the Type-I error rate. With respect to power the Wilcoxon
test, the Tobit model and the Tobit model on ranks perform equally well until approximately 70% of
censoring. The type-l error rate for all statistical tests and models does not depend on the proportion
of censoring and lies at around 5% except for quantile regression.
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5.3.2 Performance of Tobit model on ranks with sample size N=50 per group

Figure 17 shows the performance of the Tobit regression on ranks with a sample size
N=50 per group. With respect to power the Wilcoxon test, the Tobit model and the
Tobit model on ranks perform equally well until app. 70% of censoring. However, the
power decreases slightly with increasing amount of censoring from app. 90% (0%
censoring) until approximately 60% (70% censoring). With a higher amount of
censoring (>70% censoring) the Wilcoxon test produces the least false negative rate
and performs slightly better than both the Tobit model and the Tobit model on ranks.
Between 0% and 50% of censoring logistic regression performs with a constant

power of approximately 65%. With more than 50% of censored observations its
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power is reduced. However, when the proportion of censoring reaches approximately
80% logistic regression has as much power as Tobit regression and Tobit regression
on ranks. In contrast to the other tests and models, quantile regression shows very
poor performance with respect to power across all proportions of censoring. With
more than 50% of censoring quantile regression, when the estimator of interest is
based on the 5" quantile (median), is no longer applicable.

The type-l error rate for all statistical test and models does not depend on the
proportion of censoring and lies at around 5%. An exception is the Type-| error rate
of quantile regression which increases strongly with more than 30% of censored
observations.

Also with a sample size of N=50 the type-l error rate for all statistical tests and
models does not depend on the proportion of censoring and lies at around 5%. An
exception is again the Type-l error rate of quantile regression which increases

strongly with more than 30% of censored observations.
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Figure 17: performance of Tobit model on rank transformed data in comparison to four
statistical tests and models with a sample size of N=50 per group

The x-axis indicates the proportion of censored observations, the y-axis on the right hand side the
power and the y-axis on the left hand side the Type-I error rate. With respect to power the Wilcoxon
test, the Tobit model and the Tobit model on ranks perform equally well until approximately 70% of
censoring. The type-I error rate for all statistical test and models does not depend on the proportion of
censoring and lies at around 5% except for quantile regression
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5.3.3 Performance of Tobit model on ranks with sample size N=25 per group

Figure 18 shows the performance of the Tobit regression on ranks with a sample size
N=25 per group. Here, again the power of the Tobit model on ranks, the Tobit model
and the Wilcoxon test is the greatest, even though strongly reduced compared to the
power in simulation settings with a greater sample size. The power slightly decreased
with increasing amount of censoring from approximately 42% (0% censoring) until
approximately 28% (70% censoring). With increasing proportion of censoring the
Tobit regression produces the least false negative rate. However, at the same time
point its type-l error rate strongly increases. Logistic regression has constant power
of approximately 30% until 50 % of censoring. The power of the quantile regression

becomes inconsistent and varies strongly with increasing proportion of censoring.
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Also with a sample size of N=25 the type-l error rate for all statistical tests and
models does not depend on the proportion of censoring and lies at around 5%.
Exceptions are the Type-| error rate of quantile regression which increases with more
than 30% of censored observations and the Type-l error rate of Tobit regression

which increases with more than 85% of censored observations.

Figure 18: performance of Tobit model on rank transformed data in comparison to four
statistical test and models with a sample size of N=25 per group

Tthe power of the Tobit model on ranks, the Tobit model and the Wilcoxon test is the greatest, even
though strongly reduced compared to the power in simulation settings with a greater sample size. The
type-I error rate for all statistical test and models is not depending on the proportion of censoring.
Exceptions are the Type-I error rate of quantile regression which increases with more than 30% of
censored observations and the Type-I error rate of Tobit regression which increases with more than
85% of censored observations
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5.4 SAS code for simulation study

Step 1: 10000 datasets are computed

data test;
do numsim = 1 to 100;
do group = 0,1;
do i =1 to 10000;
if group = 0 then y = rand('normal',21,2);
else y = rand('normal',20,2);
if y>20 then y=21;
if y>20 then cutoff=1;
else cutoff=0;
output;
end;
end;
end; run;

Step 2: the data sets are ranked

data test;set test;

proc rank data=test out=testrank ties=low ;
var y;
by numsim;
ranks yrank ;

run;

Step 3: The statistical models and tests (As an example the Wilcoxon test ) are
applied to the 10000 datasets

ods select none;

ods output WilcoxonTest=wil;

proc nparlway data = test wilcoxon;
by numsim; class group;

var y;

run;

ods select all;

Step 4: the proportion of significant results is assessed and stored

data propswil;set wil;

where (namel = "P2 WIL");
reject = (nvaluel 1t .05);
run;

proc freq data = propswil;

tables reject/binomial (level="1");
output out=wiltypel binomial;

run;

data wiltypel;set wiltypel;

keep bin ;
rename _bin =wilcoxon;
run;

Step 5: Repeating this procedure for all tests and models with varying sample sizes
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5.5 Application of Tobit regression on ranks to left censored
variable

In order to illustrate the application of the Tobit regression on ranks the variable
IFN_y with left censored observations from the PAULCHEN study is taken as an
example . Again, it is of interest whether IFN_y is dependent on a certain exposure.
Before applying the tobit model on ranks the variable IFN_y is ranked from lowest to
highest (see Table 20). The variable IFN _y is left censored at one single detection
level which is < 0.07. Consequently, all values below 0.07 (here marked as 0.01)
represent censored observations and are replaced by average tied ranks. However, it
is arbitrary which rank the censored observations are assigned to because the model
in SAS receives the information that all rank transformed observations below the
detection level of 0.07 are censored. Thus, all ranks below rank 39 are censored.
Table 20: Before applying the tobit model on ranks to the variable IFN_y ranking is performed
from lowest to highest

The variable IFN_y is left censored at one single detection level which is < 0.07. 0.07 represents rank
39. Consequently, all ranks below rank 39 are censored.

Concentration in pg/ml (y) censoring Exposure (x) Rank (y)
0.01 yes no 19.5
0.01 yes no 19.5
0.07 no no 39
0.08 no no 40
0.45 no no 41,5
0.45 no no 41,5
0.58 no no 45,5
0.77 no yes 45,5
1.82 no yes 62
1.82 no yes 62
1.99 no no 64
2.53 no no 66.5
3.84 no no 74.5
4.56 no no 76

Subsequently, the tobit model is performed on the rank transformed data where the
exposure x represents the independent variable and Rank(y) represents the
dependent variable. In order to take censoring into account all tied ranks below rank

39 are indicated as censored in the model.
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The results are presented in Table 21. The estimate of rank(y) for both the intercept
and the exposure and the corresponding confidence intervals are shown. For the
purpose of comparison the p-value achieved by the Wilcoxon rank-sum test is also
shown. As described before, in situations with left censored data at one single
detection level the p-value by the Wilcoxon test is considered to yield the correct
result and can thus serve as a golden standard to be compared with. Both p-values
depicted in the table are of similar magnitude. This finding confirms the results from
the simulation study that demonstrates similar performance of the Tobit regression
on ranks and the Wilcoxon test. How to retransform the estimated ranks into the
original values is shown in paragraph 5.7.

Table 21: The results of the Tobit model on ranks for the variable IFN_y_m are presented

For the purpose of comparison the p-value achieved by the Wilcoxon rank-sum test is also shown.

Both p-values are of same magnitude confirming the results from the simulation study that
demonstrates similar performance of the Tobit regression on ranks and the Wilcoxon test.

Estimate Confidence interval (lower _ p-value
Rank(y) bound; upper bound) T?abrlltk:n Wilcoxon test
intercept 41.10 36.75;45.41
0.24 0.25
Exposure(x) -7.89 -14.33;1.44

5.6 Application of Tobit regression on ranks to right censored
variable

In order to illustrate the application of the Tobit regression on ranks the variable
IL17F _PHA_dct with right censored observations from the PAULCHEN study is taken
as an example. Again, it is of interest whether IL17F_PHA_ dct is dependent on a
certain exposure.

Before applying the tobit model on ranks to the variable IL17F_PHA_dct the variable
is ranked from lowest to highest (Table 22). The variable IL17F_PHA dct is right
censored at multiple detection levels. All values with the symbol “>” represent the
right censored observations and have to be interpreted as values “greater than”.

Consequently, their corresponding ranks are similarly treated as ranks “greater than”.
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Table 22: Before applying the tobit model on ranks to the variable IL17F_PHA_dct ranking is
performed from lowest to highest

Right censoring at multiple detection levels is present. All values with the symbol “>” represent the
right censored observations and have to be interpreted as values “greater than”. Consequently, their
corresponding ranks are similarly treated as ranks “greater than”.

DCT-value (y) Censoring Indicator Exposure (x) Rank (y)
13.10 no 0 1
13.30 no 0 2

>15.10 yes 0 >3
15.45 no 0 4
16.35 no 0 5
16.40 no 1 6
17.65 no 0 7
17.70 no 1 8
>17.80 yes 0 >9
18.00 no 1 10
>21.65 yes 0 >35
>21.80 yes 0 >36
>21.95 yes 0 >37
22.10 no 0 38
22.40 no 0 39
>22.75 yes 0 >40
23.00 no 0 41
>23.15 yes 0 >42
>23.20 yes 0 43
>26.10 yes 0 >59
>26.30 yes 0 >60
>26.40 yes 0 >61
>26.40 yes 0 >62

Subsequently, the tobit model on ranks is performed on the rank transformed data
where the exposure x represents the independent variable and Rank (y) represents
the dependent variable. In order to take censoring into account all censored ranks
that represent the censored observations are indicated as censored by the model.

The results are presented in Table 23. For the purpose of comparison the p-values
achieved by the generalized Wilcoxon are also shown. As described before in
situations with right censored data at multiple detection levels the p-value by the
generalized Wilcoxon test is considered to yield the correct results and can thus
serve as a golden standard to be compared with. Again, both p-values depicted in
the table are of similar magnitude. This finding underlines the validity of the Tobit
regression on ranks. How to retransform the estimated ranks into the original values

is shown in paragraph 5.7
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Table 23: application of Tobit regression on ranks to right censored variable
For the purpose of comparison the p-value achieved by the generalized Wilcoxon is also shown. Both
p-values are of same magnitude underlining the validity of the Tobit model on ranks

p-value
Estimate Rank(y) | Confidence interval

Tobit on ranks | Generalized Wilcoxon

intercept 4548 35.76; 54.94
0.13 0.14

Exposure (x) -13.13 -29.64; 3.39

5.7 Retransformation of the estimated rank into originally
measured values

In contrast to the classical linear regression model whose estimates result in
estimates of the originally measured values y» regression on ranks results in
estimates of the ranks R(y) which are not directly interpretable. In order to obtain an
interpretable value expressed in originally measured units the estimated parameters
of the Tobit regression on ranks can be retransformed.

The interpretable value y° out of the estimated rank R(y)is achieved according to

the following formula (Iman):

R(y) - Ri

19
R:— R (19)

y=yi+(y2 = ynX
Where
R(y) = the estimated regression parameter by the Tobit regression on ranks
Ri = the rank before R(y)
R> =the rank after R(y)
y1 = the value of the observation belonging to Ri

y2 = the value of the observation belonging to R:

The following example demonstrates that the retransformed estimators of the Tobit
regression on ranks validly estimate the true effect.

A simple hypothetical, randomly created group comparison with a mean difference of
approximately 2 (mean group 1 = approximately 20, mean group 2 = approximately
22) is used to illustrate (data not shown). The variable is normally distributed.
Additionally, the variable contains 25% right censored observations. This example is

chosen to allow the classical Tobit regression to be used for comparison with the
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Tobit regression on ranks when the “real situation” is known (group difference = 2).
For this example the parametric assumptions for the Tobit model hold. Consequently,
it can be assumed that the classical Tobit regression estimates are valid.

The estimates of Tobit regression on ranks as obtained by SAS are presented in
Table 24. The estimates are not interpretable yet.

Table 24: The Tobit model on ranks is applied to a hypothetical, randomly created example

A group comparison with a mean difference of approximately 2 (mean group 1 = approximately 20,
mean group 2 = approximately 22) is used to illustrate this(data not shown). The variable is normally

distributed. Additionally, the variable contains 25% right censored observations. Results from the
Tobit regression on ranks are not interpretable in original values yet.

Estimate R(y) Confidence interval p-value

intercept 37.85 30.01; 45.69
0.0001

Group (x) 28.07 16.66;39.48

Based on Table 24 the mean rank with corresponding confidence intervals for group
1is:
R(y) =37.85 CI(30.01;45.69)

the mean rank with corresponding confidence intervals for group 2:

R(y)=65.92 CI(54.51;77.33)
Applying formula 19 " for group 1 can be derived:

y'=20.23+(20.23 - 20.01))(% =20.18

Analogue, the estimated ranks of the estimate in group 2 and the confidence
intervals of the estimates of the ranks in both groups are retransformed. The
retransformed estimates are depicted in Table 25: the tableFor comparison the
results from the classical Tobit model applied on the same data are presented. The
achieved values are of similar magnitude which underlines that the retransformed

estimates of the ranks yield valid results.
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Table 25: the table compares the retransformed values and the p-values from the Tobit model
on ranks to the values achieved from the classical Tobit regression

The achieved values are of similar magnitude which underlines that the retransformed estimates of the
ranks yield valid results.

Tobit regression on ranks Classical Tobit regression

Estimate group 1 | Estimate group 2 | p-value | Estimate group 1 | Estimate group 2 | p-value

20.18 21.96 19.88 22.21
<0.0001 <0.0001
(19.70;20.65) (21.22;23.15) (19.23;20.55) (21.30;23.22)

5.8 SAS Code for Tobit model on ranks

Step 1: the variable is ranked

data test;set test;

proc rank data=test out=testrank ties=low ;
var y;
ranks yrank ;

run;

Step 2: Tobit regression is applied to the rank transformed variable

ods select none;
ods output ParameterEstimates=tobit;
proc gqlim data=testrank;
model yrank=group;
endogenous yrank~ censored (ub=20) ;
run;
ods select all;

5.9 Tobit regression on ranks estimates the median of the original
measured values

In contrast to the classical regression model whose estimates represent the mean
estimates from regression models on rank transformed data represent the mean rank
which corresponds to the median of the originally measured values. To illustrate this
fact a simple hypothetical example with highly skewed data is considered: Table 26
presents hypothetical data in originally measured value and their corresponding
ranks. The mean and the median of the originally measured values are 20276.25 and
700 respectively. The mean of the rank transformed values is 4.5. Retransforming

the mean rank according to formula 19 into the originally measured values:

3'= 400+ (100 — 400) x 455 "44 =700
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Table 26: Tobit regression on ranks estimates the median of the original measured values

Originally measured values Ranks of originally measured values
1 1
10 2
100 3
400 4
1000 5
10000 6
50000 7
100000 8
Mean: 20276.25 Mean rank: 4.5
Median: 700 Retransformed in original values: 700

5.10 Application of the retransformation procedure to examples
from PAULCHEN

In this paragraph it is demonstrated how the procedure of retransformation is applied
to two examples from the PAULCHEN study. Both an example with right and left
censored observations is presented. Therefore, the example with left censored data
is variable IFN_g_m from paragraph 5.5 and the example with right censored data is
variable IL-17F_pha from paragraph 5.6.

Table 27 presents the results of the Tobit regression on ranks for the left censored
variable IFN_g m. The estimates from the Tobit regression on ranks are already
retransformed into the original measured values according to formula 19. The table
additionally depicts the results of the standard method as described in chapter 3.1
and 4.1 which are considered to be appropriate here. The magnitude of both the
estimates (median and confidence interval) and the p-values of both methods are
similar. This finding suggests that the results of the Tobit regression on ranks are
unbiased when applied on left censored data.

Table 27: results of the Tobit regression on ranks (already retransformed) for the left censored

variable IFN_g_m are shown
The results are unbiased as they are of same magnitude as the results from the standard method.

Tobit regression on ranks standard method

Estimate group 1 | Estimate group 2 | p-value | Estimate group 1 | Estimate group 2 | p-value

0.05 (0.01;0.70) | 0.09 (0.03;0.93) | 0.24 0.01(0.01;0.77) | 0.08 (0.01:1.01) | 0.25

Table 28 presents the results of the Tobit regression on ranks for the variable IL-
17F _pha. The estimates from the Tobit regression on ranks are again already
retransformed according to formula 19. The table additionally depicts the results from

the Kaplan-Meier-method as described in chapter 3.2 and 4.2. Even though the
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results differ slightly the magnitude of both the estimates (median and confidence
interval) and the p-values of both methods are similar. This finding suggests that the
results of the Tobit regression on ranks are unbiased when applied on right censored
data.

Table 28: results from the Tobit regression on ranks (already retransformed) for the right

censored variable IL-17F-PHA are shown
The results are unbiased as they are of same magnitude as the results from the Kaplan-Meier method.

Tobit regression on ranks Kaplan-Meier method

Estimate group 1 | Estimate group 2 | pvalue | Estimate group 1 | Estimate group 2 | p-value

23.23 21.28 013 23.00 21.02 014
(21.20; n.a) (19.22:24.10) ' (20.75; n.a.) (18.75-23.80) '

5.11 Conclusion of chapter

This chapter introduced the Tobit model on rank transformed data which may be
applied to censored data that violate parametric assumptions. This model makes use
of both the classical Tobit regression and the idea of regression on rank transformed
data and may be used to adjust for possible confounding and interaction effects.
Additionally, its application was shown by means of two examples with both left and
right censored observations taken from the PAULCHEN study. Its validity could be
demonstrated by a simulation study. Furthermore, it was explained how to
retransform the estimates from the Tobit regression on ranks into original values. The
retransformed estimates from the Tobit regression on ranks always result in the

median of the original measured values.

85



Novel statistical approaches for censored immunological data: Discussion

6 Discussion

Motivated by the PAULCHEN and PAULINA data sets the main goal of the
dissertation was to highlight the characteristics and complexity of immunological data
and present novel statistical approaches that take these into account. The complexity
arises from skewed data distributions which are not transformable into appropriate
distributions, the fact that censoring may hamper the data analysis and the presence
of complex and multiple relationships between immunological and epidemiological
parameters.

The majority of the data in both PAULCHEN and PAULINA is not normally distributed
and cannot be transformed into an appropriate distribution. This holds both for data
measured by Luminex technology at protein level and data measured by real-time
RT-PCR at mRNA level. This is depicted in Figure 1 which compares the distribution
of two variables measured by both Luminex and real-time RT-PCR to a normal and
lognormal distribution. Consequently, in order to apply parametric tests and models
the corresponding assumptions such as an appropriate underlying distribution may
be violated.

The concept of censoring is a great issue in both the PAULINA and the PAULCHEN
data sets. A large number of variables assessing immunological parameters contain
a non-negligible proportion of censored observations. These variables are both
derived by real-time RT-PCR at mRNA level and luminex technology. When protein
expression is measured by Luminex technology left censoring at a single censoring
level can occur as the measured concentrations fall below the detection threshold.
Here, censoring is obvious. In contrast, right censoring at multiple censoring levels
may occur when genes or cytokines are measured by real-time RT-PCR at mRNA
level and are expressed in relation to a given housekeeping gene by the Act formula.

Here, censoring is much less obvious.

Furthermore, the complex and multiple relationships that are often present between
immunological and epidemiological parameters must not be neglected.
Immunologists are generally interested in many different outcomes depending on
various exposures when other intervening immunological parameters may be
present. Thus, data sets usually contain a large number of interacting variables that
have to be taken into account by appropriate statistical models that allow adjusting
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for potential confounding and interaction effects. However, such models need to be
both non-parametric and take censoring into account.
Having highlighted the characteristics of both PAULINA and PAULCHEN data,

statistical methods were presented that take these into consideration.

In order to compute summary statistics like the median and its corresponding
confidence intervals for censored data at multiple detection levels it was shown how
to apply the Kaplan-Meier-method and B-C ratio test using an example with gene
expression data (shown as Act). Furthermore, it was illustrated that this method is
preferable to the standard method since the Kaplan-Meier method takes censoring
into account. It could be demonstrated that summary statistics differed according to
varying proportions of censored observations when analyzed by the Kaplan-Meier
method. In contrast, summary statistics remained unaffected according to varying
proportions of censored observations when analyzed by standard methods. This fact
underlines the sensitivity of the Kaplan-Meier method to capture the information of
censoring in the data and its appropriateness as a descriptive method. The Kaplan-
Meier method may be applied regardless of the underlying distribution. The major
drawback of this method is that it is only applicable for less than 50% of censoring.
For data with at least 50% censoring literature recommends other methods and ways
of action. These are based on maximum likelihood estimation, multiple imputation or
regression on order statistics (Helsel 2005). However, applying these methods
require assumptions for an underlying distribution and a minimum sample size.
Ignoring these may result in biased results. Consequently, it remains questionable
whether cytokine and gene expression data with more than 50% of censoring and
small sample sizes should be interpreted at all.

Not only summary statistics of censored data at multiple detection levels need to be
adapted but also testing on group differences should be computed by appropriate
methods in the setting of cytokine and gene expression data. In order to correctly
calculate p-values it is also essential that a statistical test takes the amount of
censoring in each group into account. For statistical testing on differences between
two or more groups the use of the generalized Wilcoxon test is preferable to the
classical Wilcoxon test. The achieved p-value by the generalized Wilcoxon test in the
example with right censored expression data highly depended on the proportion of

censoring in each group. In contrast the p-values from the standard Wilcoxon test did
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not capture the information of the censored proportion and were highly biased
compared to the correct analysis by the generalized Wilcoxon test. Consequently,
right censored gene expression data with multiple detection levels should be
calculated by the generalized Wilcoxon test.

In contrast, when censored cytokine data measured by Luminex are censored at one
detection level standard methods for both summary statistics and statistical testing
on differences between two or more groups may be applied without loss of
information.

In order to take the often complex and multiple relationships among immunological
parameters and between immunological and other characteristics (e.g. environment)
into consideration appropriate statistical models are of high importance (Genser,
Cooper et al. 2007). The recommendations given in literature are often not
applicable: substitution of the values above or below the detection level (Buckley,
Liddle et al. 1997) may lead to strongly biased results. Classical Tobit regression is
prone to violating parametric assumptions (Arabmazar and Schmidt 1982; Austin,
Escobar et al. 2000) and multiple Imputation (Lubin, Colt et al. 2004; Uh, Hartgers et
al. 2008), which is a valid alternative, may be time consuming and not supported by
all statistical packages. Furthermore, multiple imputation requires the assumption of
a certain underlying distribution

Another method mentioned in literature (Helsel 2005) as a suitable regression model
for censored data is the semiparametric cox regression which is mainly applied in
classical survival analysis. The outcome of cox regression is the hazard (the
probability of an event occurring) given a certain predictor. In classical survival
analysis the predictor is time, transferred into immunology the predictor would be e.g.
concentration of a certain cytokine. Even though cox regression has no assumption
of the underlying distribution of the data, it has not been translated well into the
setting of immunological studies. This is potentially due to two reasons: Firstly, the
concentration of cytokine may not be estimated by the model as in Tobit regression
and secondly, the cox regression model is based on the assumption of proportionality
of hazard ratios. This means e.g. that the survival functions of two groups of interest
may not cross each other. In the context of cytokine measurements this condition is
hardly to be fulfilled. An example for crossing survival functions can be seen in Figure
9. Consequently, cox regression is not a recommendable alternative for cytokine

measurements.
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As a possible solution for the analysis of non-normal censored cytokine data the
Tobit regression on rank transformed data was presented. The model takes
censoring into account, does not require parametric assumptions, allows adjusting for
covariates and potential confounders and is available in common statistical
packages. The performance of the Tobit model on ranks with respect to power and
type | error rate was assessed in a simulation study. The performance was
comparable to both the classical Tobit regression and the Wilcoxon test over different
sample sizes and varying amounts of censoring. In comparison to the logistic
regression and the quantile regression the Tobit model on ranks performed much
better. The fact that logistic regression has less power than other models is due to
dichotomizing, resulting in loss of information (Uh, Hartgers et al. 2008). Quantile
regression has even less power and can only be applied to up to 50% of censoring.
Thus, both logistic regression and quantile regression cannot be recommended.
Additionally, the good performance of the Tobit model on ranks was confirmed by
applying it to immunological examples. The resulting p-values were of similar
magnitude to those obtained from the generalized Wilcoxon test.

The simulation study was not conducted with skewed data, different error
distributions or great outliers due to two reasons. It was aimed to include the classical
Tobit model as the golden standard. Applying this model requires strong parametric
assumptions as (log)normality and homoscedasticity of the data (Arabmazar and
Schmidt 1982; Austin, Escobar et al. 2000). Additionally, rank regression is
considered to be a distribution-free analysis (Conover 1980; Conover and Iman
1981). As shown before when skewed data with heteroscedastic residuals are rank
transformed parametric assumptions still hold. Therefore, there is no need to check
the performance of regression models on rank transformed data when the parametric
assumptions of the non-transformed variable do not hold.

The obtained estimate from the Tobit on ranks model is the estimate of the rank
transformed variable instead of the estimate of the originally observed variable.
However, the estimate of the rank transformed variable can be easily retransformed
into the original observed values (Iman and Conover 1979) resulting in the median of
the originally measured variable.

Yet, it remains unclear as to what extent the Tobit on ranks estimates the true
population parameter when retransformed into its original values. Therefore, a

simulation study evaluating the root mean square error (RMSE) of the Tobit on ranks
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estimator might be performed. RMSE is an estimate of both bias and consistency of
a parameter of interest. However, as the Type-| error rate and power of the Tobit
model on ranks is comparable to classical Tobit regression, likewise the estimated
RMSE of Tobit on ranks is expected to be comparable to the RMSE of classical Tobit
model. In other words, a biased estimator would have resulted in reduced
performance revealed by the simulation study.

A remaining aspect open for discussion is about the course of action when the
explaining variable is also censored. This scenario is imaginable when the
concentration of a measured cytokine that contains censored measurements is
aimed to be predicted by the concentration of another cytokine that is also
constrained by censored observations. Literature gives recommendations about the
course of action when the independent variable is censored (Austin and Hoch 2004;
Schisterman, Vexler et al. 2006). However, no substantial recommendations are
given when both explaining and outcome variable are hampered by censored
observations.

One approach to adjust one censored variable by another censored variable is to

take a ratio or the difference out of both variables as is done by the formula for the
fold difference. The fold difference is defined as fd = 24 )=2<m) (| jyak and

Schmittgen 2001). In this formula the Act of the stimulated cytokine is subtracted
from the Act of the unstimulated cytokine. In other words the Act of the stimulated
cytokine is adjusted for the Act of the unstimulated cytokine. In the case of right
censoring of the unstimulated cytokine, the resulting fold difference also becomes
right censored. In the case of right censoring of the stimulated cytokine the resulting
fold difference becomes left censored. In case of right censoring of both Acts
(unstimulated and stimulated) the resulting fold difference can take any value
between zero and positive infinity resulting in a right censored observation with a
detection level of zero. However, whether this way of dealing with the data leads to

unbiased results requires further research.

In summary, it is highly important to treat gene expression data (expressed as Act

values) as censored when the cycle threshold of a real-time RT-PCR measurement

exceeds a certain value and thus, is not quantifiable anymore. Applying appropriate

statistical methods is crucial. For summary statistics and comparison of simple group

differences the Kaplan-Meier-method and the generalized Wilcoxon test respectively
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are to be recommended. For multivariate comparison that allows adjusting for
potential confounding and interaction effects it is suggested to apply the Tobit
regression on ranks. Further advantages in addition to adjusting for potential
confounding and interaction effects are that Tobit regression on ranks assumes no
certain distribution of the data and is available in standard statistical packages like
SAS.

Key points of thesis

e Data often contain left and right censored observations with both single and
multiple detection levels.

e The assumptions of an underlying distribution applying parametric tests are
mostly violated in the setting of immunological measurements

e Summary statistics for left censored data with one detection level such as
Luminex data may be computed by standard methods without loss of
information

e Summary statistics for right censored data with multiple detection levels
should be computed by methods that particularly take censoring into account
such as the Kaplan-Meier method in order to avoid biased results

e Statistical testing on differences between two or more groups in the presence
of left censored data with one detection level such as Luminex data standard
methods such as the Wilcoxon rank sum test may be applied

e Statistical testing on differences between two or more groups in the presence
of right censored data with multiple detection levels should be computed by
methods that particularly take censoring into account such as the generalized
Wilcoxon test

e Tobit regression on ranks has been shown to be a valid procedure for the
application to non-normal censored data

e Tobit regression on ranks can be used to adjust for possible confounding and

interaction effects
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7 Summary

For several immune-mediated diseases immunological analysis becomes more
detailed and complex in the future with large datasets in which cytokine and gene
expression data play a major role. These data have certain characteristics that
require sophisticated statistical analysis such as strategies for skewed distributions
and censoring. Additionally, complex and multiple immunological relationships need
to be adjusted for potential confounding and interaction effects.

Consequently, the main goal of the dissertation was to highlight the characteristics
and complexity of immunological data by means of two birth cohort studies
(PAULCHEN und PAULINA) and present novel statistical approaches in order to take
these into account. PAULCHEN und PAULINA were conducted in order to contribute
to explaining mechanisms on neonatal immune responses in association with
epidemiological data such as life style factors and atopic history of the parents.

It could be shown that the majority of both the PAULCHEN and PAULINA data is
neither normally nor log-normally distributed and cannot be transformed into an
appropriate distribution. This holds for data both measured by Luminex technology at
protein level and data measured by real-time RT-PCR at mRNA level.

Furthermore, a high number of variables from both the PAULCHEN and PAULINA
data assessing immunological parameters contain a non-negligible proportion of
censored observations. Out of 148 variables in the PAULINA data 62 variables
contain censored observations corresponding to a proportion of 42%. Out of 162
variables 92 in the PAULCHEN data contain censored observations corresponding to
a proportion of 57%. Censoring occurs in the context of measurements derived by
both real-time RT-PCR at mRNA level and Luminex technology at protein level.
Summary statistics without parametric assumptions for left censored data with one
detection level such as Luminex data can be computed by standard methods without
loss of information. In contrast, summary statistics without parametric assumptions
for right censored data with multiple detection levels should be computed by methods
that particularly capture the information of the censored proportion in the data such
as the Kaplan-Meier method in order to avoid biased results.

In analogy, non-parametric statistical testing on differences between two or more
groups standard methods such as the Wilcoxon rank sum test can be applied without
loss of information when left censored data with one detection level (e.g. in the
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setting of Luminex measurements) are present. However, non-parametric statistical
testing of differences between two or more groups should be computed by methods
that particularly capture the information of the censored proportion in the data such
as the generalized Wilcoxon test when right censored data with multiple detection
levels (e.g. in the context of real time RT-PCR measurements) are present.

In order to take the complex and multiple relationships between immunological and
epidemiological parameters into account the Tobit regression on ranks was
introduced. The non-parametric Tobit regression on ranks can be used for left and
right censored data with multiple detection thresholds aiming to adjust for potential
confounding and interaction effects. Its performance was evaluated in a simulation
study: Both type-l error rate and power are comparable to the classical Tobit
regression and the Wilcoxon test over different sample sizes and varying amounts of
censoring. In contrast to classical linear or Tobit regression that estimate the mean of
the dependent variable Tobit regression on ranks estimates the median of the
dependent variable after retransforming into originally measured values.

As a conclusion, it is crucial to apply appropriate statistical methods to complex
immunological data that are skewed and contain censored measurements.

Otherwise, biased results may be the consequence.
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