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Zusammenfassung

Die Berechnung von Korrelationsenergien mittels Møller-Plesset Störungstheorie zweiter Ord-

nung (MP2) [1] in ihrer kanonischen Formulierung ist aufgrund des hohen O(N5) Skalenver-

haltens nur für Systeme mit höchstens ca. 100 Atomen möglich. Die Entwicklung niedrig

skalierender Reformulierungen ist daher unerlässlich, um den Anwendungsbereich dieser Meth-

ode auf größere Systeme zu erweitern. Einen möglichen Ansatz hierfür liefert die von Almlöf und

Häser vorgeschlagene Laplace Transformation [2,3], mit deren Hilfe MP2 in der Basis der atom-

zentrierten Orbitale dargestellt werden kann (AO-MP2) [4]. Da diese Orbitale per Definition

lokal sind, können Vorabschätzungsverfahren verwendet werden, um numerisch insignifikante

Beiträge zur Energie zu vernachlässigen und somit das Skalenverhalten zu reduzieren.

Das Ziel dieser Dissertation bestand in der Untersuchung Cholesky-zerlegter pseudo-Dichtematri-

zen (CDD) innerhalb dieses AO-MP2 Ansatzes. Aus technischen Gründen war die von Doser et

al. vorgestellte AO-MP2 Implementierung [5–7] auf die MP2-Energiekomponente antiparallelen

Spins (opposite spin) beschränkt und somit auf ein empirisches Skalierungsverfahren angewiesen

(Scaled Opposite Spin—SOS-MP2) [8]. Die aus der Cholesky-Zerlegung [9] der auftretenden

pseudo-Dichtematrizen resultierende CDD-MP2 Methode [10, 11] enthält im Gegensatz dazu

auch die Komponente parallelen Spins, wodurch die ab initio Eigenschaft wieder hergestellt

wird. Da für Systeme mit lokalisierter Elektronenstruktur die über die Cholesky-Zerlegung

erzeugten Orbitale ebenfalls lokal sind, lassen sich innerhalb dieses Ansatzes ebenso Vorab-

schätzungsverfahren [12] zur Reduktion des Skalenverhaltens anwenden. Für kleine Systeme

konnte nachgewiesen werden, dass die implementierte CDD-MP2 Methode im Prinzip lineares

Skalenverhalten ermöglicht. Bei mittelgroßen Systemen mit vernünftigen Basissätzen treten je-

doch schwerwiegende Leistungs- und Genauigkeitsprobleme auf, welche im Detail erörtert wer-

den. Da diese Probleme dem integral-direkten CDD Ansatz leider innewohnen, und somit nicht

behoben werden konnten, erscheint die Anwendbarkeit dieser Methode auf realistische Fragestel-

lungen nicht möglich.

Mit diesem Projekt eng verwoben war die Erweiterung der RI-CDD-MP2 Methode von Zienau

et al. [10, 11, 13], welche sich aus der Kombination des CDD-Ansatzes mit der ”Resolution

of the Identity” (RI) [14–18] zur Zerlegung und näherungsweisen Berechnung der Integrale

ergibt. Diese Methode hatte sich zwar bereits als sehr effizient erwiesen, war in ihrer bisheri-
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gen Implementierung jedoch ebenfalls auf die MP2-Komponente antiparallelen Spins beschränkt

gewesen. Daher wurde sie im Rahmen dieser Arbeit zur vollständigen Berechnung der MP2-

Energie ergänzt. Hierbei wurde zudem die bisher verwendete Integralvorabschätzung aktual-

isiert, und eine Parallelisierung verschiedener Schritte des Algorithmus durchgeführt. Aufgrund

ihres quadratischen Skalenverhaltens stellt diese Methode in ihrer vervollständigten Form nun

eine ernsthafte und effiziente Alternative zu kanonischem RI-MP2 für die Berechnung von MP2-

Energien mittlerer bis großer Moleküle dar.

Abschließend wurde untersucht, inwiefern sich die von Boman et al. [19] vorgeschlagene metho-

denspezifische Cholesky-Zerlegung (Method Specific Cholesky Decomposition – MSCD) zusam-

men mit CDD anwenden lässt, um eine effiziente Zerlegung der Zwei-Elektronen-Integralmatrix

durchzuführen. Dies wird durch die Eigenschaft motiviert, dass die Cholesky-Zerlegung eine

beliebige Genauigkeit der zerlegten Größe zulässt, wohingegen die RI-Näherung aufgrund der

Unvollständigkeit der verwendeten Hilfsbasen mit einem systematischen Fehler behaftet ist.

Obwohl diese vorläufige Untersuchung auf sehr kleine Systeme beschränkt werden musste, kon-

nten bereits bedeutende Verringerungen des Zerlegungsranges verglichen mit konventioneller

Cholesky-Zerlegung beobachtet werden, wodurch das Potential der MSCD für diese Fragestel-

lung nachgewiesen werden konnte.
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Abstract

The evaluation of correlation energies in the canonical formulation of second order Møller-Plesset

Perturbation Theory (MP2) [1] is limited to systems of about 100 atoms, due to the method’s

steep O(N5) scaling. In order to extend the method’s applicability to larger systems, it is there-

fore imperative to develop alternative formulations that allow for efficient scaling reduction.

One such approach is the Laplace transform formalism introduced by Almlöf and Häser [2, 3],

with which MP2 can be expressed in the basis of atom-centered orbitals (AO-MP2) [4], whose

local character allows to take advantage of the short range of correlation effects. The overall

scaling can thus be reduced through the application of integral pre-selection schemes to discard

all numerically irrelevant contributions to the energy.

This dissertation is concerned with the study of Cholesky decomposed pseudo-density (CDD)

matrices within this AO-MP2 scheme. For technical reasons, namely, the AO-MP2 implemen-

tation of Doser et al. [5–7] is restricted to the evaluation of the opposite spin component of

MP2, and is thus bound to the empirical scaled opposite spin parametrization procedure (SOS-

MP2) [8]. Applying a Cholesky decomposition [9] to the occurring pseudo-density matrices,

the same spin component required for full MP2 energies is naturally included in the resulting

CDD-MP2 method [10, 11], whereby the ab initio character is restored. The investigation of

the CDD-approach was further motivated by the fact that the orbitals generated by the de-

composition are localized (for electronically non-delocalized systems), and thus allow for the

pre-selection of only numerically significant integrals [12]. However, although it could be shown

on simple systems that the method does in principle scale linearly, its application to even mod-

erately sized systems with large basis sets is yet hampered by severe technical and numerical

difficulties, which are analysed and discussed in detail.

Another closely related project has been to extend the RI-CDD-MP2 algorithm of Zienau et

al. [10,11,13], an alternative to the integral-direct CDD-MP2 method based on the resolution of

the identity (RI) [14–18] for integral approximation. This implementation, which had already

been established as very efficient, was still limited to the opposite spin part and has here been

completed for calculation of total MP2 energies, along with an adaptation of the previously

employed integral pre-selection protocol, and a parallelization of various steps of the algorithm.

Due to its quadratic scaling, it now represents a serious alternative to canonical RI-MP2 for
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calculations on medium to large systems.

As a final project, it has been studied whether the method specific Cholesky decomposition

(MSCD) proposed in general terms by Boman et al. [19] can be efficiently used to obtain a

low-rank factorization of the two-electron integral matrix in the specific context of CDD-MP2.

This is motivated by the arbitrary numerical accuracy provided by the Cholesky decomposition,

whereas the finiteness of pre-optimized RI auxiliary basis sets invariably introduces a system-

atic error in the approximated entities. Despite the fact that these preliminary investigations

where restricted to very small systems, the observed rank reduction with respect to conventional

Cholesky decomposition were significant enough to demonstrate the potential of the MSCD for

this particular purpose.
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Chapter 1

Introduction

With the advent of the quantum theory at the beginning of the twentieth century, our world view

and understanding of Nature have experienced a revolution—both practical and philosophical—

similar to none other in the history of science. Although the hitherto prevailing classical theory,

consisting in essence of Newtonian mechanics and Maxwellian field theory, was very success-

fully applied to a wide range of fields ranging from mechanics, hydrodynamics, electrodynamics

to astronomy, the puzzling and seemingly paradoxical behaviour of Nature at its microscopic

level—stability of atoms, wave-particle duality—has required the development of a fundamen-

tally different theory of quantum phenomena. While the classical theory yet retains validity at

the macroscopic level of everyday experience, quantum theory has required a profound reshaping

of concepts pertaining to the small scale, and caused a partial abandon of principles that were

previously taken for granted. Within the classical world view, the evolution of physical systems,

which were conceived of as consisting of palpable, material objects possessing well-defined phys-

ical quantities such as position and momentum, was mostly described in the relatively pictural

and intuitive language of differential equations in Euclidian space. In quantum mechanics, phys-

ically observable entities lose their concreteness and mental graspability in favour of a highly

abstract mathematical formalism, in which they become associated with operators acting on

functions in configuration space, and the uncertainty principle sets a limit to the simultaneous

definition of conjugate quantities. Also, in stark constrast to the entirely deterministic classical

paradigm, the wavefunction of quantum theory merely represents potentialities, i.e. it allows

assertions of a statistical nature, which only become factual through an act of measurement.

Therefore, at least according to the Copenhagen interpretation of quantum theory, the Carte-

sian split, one of the basic tenets of classical physics which ascribed an independent, objective

reality to physical phenomena and viewed us as separate, non-disturbing observers, cannot be

rigourously upheld anymore. Namely, the interaction of a measurement apparatus with the

quantum system that is under inquiry, which is required in order to make information accessible

to an experimenter, blurs the clear-cut separation of subject and object. Further, the inevitable
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CHAPTER 1. INTRODUCTION

disturbance that the measuring process creates, according to the uncertainty principle, rela-

tivises the validity of classical concepts such as, for instance, particles moving on well-defined

trajectories, to the extent that they may be considered as useful visualisations which, however,

possess no intrinsic objective value. Due to these implications, and along with the fact that

for communication and interpretation, the outcome of measurements can only be expressed in

language, whose evolution and constituent notions have been shaped by experience at the macro-

scopic level, and is therefore only of limited applicability to speak of sub-atomic phenomena, the

quantum theory, more than any realization before, forces upon us the fundamental distinction

between Reality and models of it, between how Nature actually is, and how we describe it. In

the words of Heisenberg [20]: ”Natural science does not simply describe and explain Nature as it

is ’in itself’. It is rather part of the interplay between Nature and ourselves. It describes Nature

as exposed to our questioning and our methods.”

On a more practical footing, chemistry has also been profoundly influenced by the new insights

brought about by the quantum theory. Hitherto, chemistry had been based on many rather

vaguely defined—though of course still useful—concepts and notions about the structure and

behaviour of the constituent parts of the substances it dealt with, such that in many respects, it

yet had more traits of a knack or craft than a science on a similar level as physics. The accurate

description of atomic structure and behaviour provided by quantum mechanics, however, put

chemistry on a firmer theoretical basis and at the same time dissolved its until then sharply

marked border with physics. Not only did quantum theory explain the systematic character of

the empirically established ”periodic system of elements”, the foundation of chemistry, but also

provided explanations for phenomena ranging from the chemical bond to the observed spectra

of atoms and molecules. This better understanding of molecular structure and behaviour has in

turn led to formidable advances in synthetic and especially analytical techniques, so that today

spectroscopic methods belong to the basic tools of any chemist.

The field of quantum chemistry, whose primary concern is the solution of Schrödinger’s equation

for atoms and molecules in order to provide theoretical insights on energetics and properties,

is nowadays a well-established, though still actively developing part of chemistry. In many sit-

uations, the accurate reproduction of difficultly interpretable experimental data by theoretical

means is indispensable to a correct understanding, and theoretical predictions are often helpful

for the guidance of experimental work. Although the analytical solution of Schrödinger’s equa-

tion is not possible for systems of chemical interest, there yet exist many methods which allow

for systematic numerical approximation of the solution. In essence, the methodical approach

hereby consists of transforming Schrödinger’s differential equation into a matrix mechanics prob-

lem by the introduction of an appropriate basis set, in order to make it accessible to treatment

by the methods of algebra. This algebraization, on the other hand, is accompanied by a high

computational complexity of the resulting algorithms, and as computer power does not evolve

2



as rapidly as the interest in investigating ever larger systems, it is imperative to develop more

efficient, low-complexity alternatives while retaining control over the numerical precision.

The method due to Hartree and Fock (HF) [21,22], which constitutes the foundation of ab initio

quantum chemistry, i.e. the branch that endeavours to obtain a solution to Schrödinger’s equa-

tion from first principles only, without having recourse to empirical parameters—apart from the

inevitably parametrized basis sets, of course—is one of the methods with lowest computational

cost. In spite of a formal O(M4) complexity—M is some suitable measure of the system size—in

its most naive implementation, algorithmic improvements have reduced the method’s scaling to

linear such that systems of the order of thousands of atoms are nowadays routinely treated.

Chapter 2 of this dissertation is concerned with a review of the HF method and its scaling

reduction.

Due to its simplistic mean-field description of electronic interactions, however, the Hartree-Fock

method lacks the so-called electron correlation and thus fails to fully recover the energy and

properties derived from it. Yet, for the accurate treatment of most situations in chemistry, it is

of paramount importance to take electron correlation effects into account. For that end, a vari-

ety of post-HF methods exists, which are usually grouped into a hierarchy in order of increasing

accuracy, and the correlation energy can—in principle—be exactly evaluated, though of course

with a computational effort that rapidly becomes intractable. Among this hierarchy of methods,

second order Møller-Plesset perturbation theory (MP2) [1] has assumed a key position ever since

its inception in 1934, due to its good balance of accuracy and complexity. However, despite be-

ing the formally simplest correlation method, the computational scaling of already O(M5) in its

canonical formulation quickly leads to insurmountable difficulties which preclude the treatment

of molecules exceeding approximately 100 atoms with reasonably sized basis sets. In the last

decades, significant progress has been made in the search for efficient low-scaling reformulations

of MP2, but there still remains the need to explore further possibilities in order to extend the

perturbational treatment of electron correlation to yet larger systems. The common denomina-

tor of all these low-complexity approaches is the introduction of a basis of local orbitals, which

enables the exploitation of the short-range character of electronic correlation effects to reduce

the number of numerically significant interaction terms, and hence of the algorithms’ overall

scaling. An overview of correlation methods and approaches for the scaling reduction of MP2 is

given in chapter 3.

Along the aforementioned line of thought, the subject of the present thesis has been the study of

one such alternative approach to MP2, based on Cholesky decomposed density matrices within

the framework of Laplace transform MP2 theory [2,3]. The application of the Laplace transfor-

mation to the energy denominator allows to reformulate MP2 in terms of atom-centered orbitals

(AO-MP2) [4], which are local by definition and hence an ideal basis for scaling reduction.

However, for technical reasons, the previously completed linearly scaling AO-MP2 implemen-
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CHAPTER 1. INTRODUCTION

tation of Doser et al. [5–7], upon which the work presented here is based, was restricted to

the computation of merely the opposite spin component of the MP2 energy, and was therefore

bound to the empirical scaled opposite spin (SOS-MP2) parametrization scheme [8]. It was then

realized that through the application of a Cholesky decomposition [9] to the occurring pseudo-

density matrices (CDD—Cholesky Decomposed Densities), the exchange-type term required

for the same spin component of MP2 is straightforwardly included in the resulting CDD-MP2

method [10, 11, 23], hereby restoring the method’s ab initio character. Since for systems having

a localized electronic structure, the pseudo-densities possess a sparse character that is preserved

by the Cholesky decomposition, their Cholesky factors represent localized orbitals, and as such

establish CDD-MP2 as a potentially linearly scaling MP2 reformulation. Due to these promis-

ing features, the implementation and study of the CDD-MP2 method has constituted the main

topic of this dissertation. The Laplace transform formalism of MP2 is described in chapter 4,

where the relationship of this formalism to Lyapunov equations, which seems to have so far been

overlooked, is pointed out along with potential applications. The implementation of CDD-MP2

and the obtained results are then described and discussed in chapter 5.

Parallelly to the CDD-MP2 implementation that has been in our focus, the CDD procedure has

also been used by Zienau et al. in conjunction with the resolution of the identity (RI) for the

approximation of two-electron repulsion integrals in a RI-CDD-MP2 implementation [10,11,13].

This algorithm, however, had only been implemented for calculation of the opposite spin compo-

nent, and as a side project of the present thesis, it has been completed to include the exchange-

type term as well, for computation of total MP2 energies. In addition, a parallelization of the

algorithm has been undertaken, and results on both these contributions to RI-CDD-MP2 are

given in chapter 6.

As a final project, it has been investigated whether the method specific Cholesky decomposi-

tion (MSCD) proposed by Boman et al. [19], which represents a promising alternative to the

RI-approximation of two-electron integrals, may be beneficially applied within the framework of

CDD-MP2. Results thereof are presented in chapter 7.

To conclude this dissertation, two propositions of potentially interesting approaches are in-

cluded as appendices. Although they could not be further investigated, they are deemed worthy

of mention and are thus presented here without results. On a different footing than the usual

approaches which are grounded in exploiting the spatial separation of electron pairs, it is pro-

posed in appendix A that a reduction of the number of significant interaction terms for MP2

may possibly be achieved with an exponential weighting of the orbital energy differences oc-

curring in the canonical expression. Appendix B is an illustration of how a matrix Kronecker

Product Approximation (KPA) of the matrix of two-electron integrals may be interesting to

study for application with MP2, as an alternative related to the canonical product (CP) format

decomposition proposed by Benedikt et al. [24].
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Chapter 2

Fundamentals

The first chapter of this dissertation shall be dedicated to reviewing some fundamentals of quan-

tum chemistry in order to set the general context as well as establish the notation for our own

work exposed in later chapters. The presentation naturally begins with the Schrödinger equa-

tion, along with the Born-Oppenheimer approximation that underlies nearly all non-relativistic

quantum chemistry.

Then follows a thorough, though condensed, presentation of the Hartree-Fock (HF) method,

whose importance to ab initio quantum chemistry cannot be overemphasized, of course as an

electronic structure method in its own right, but particularly as the basis of the hierarchy of

wavefunction based methods accounting for electron correlation, which allows systematic approx-

imation to the solution of the Schrödinger equation. The essential concepts of the HF-method

are recapitulated, followed by the algebraization that makes the HF equations accessible to

numerical treatment, and a description of the SCF-cycle required for the solution of the HF-

problem.

The theory of density matrices is then described, which has achieved such importance in modern

quantum chemistry that a presentation of basic concepts is essential. Also, this formalism shall

be encountered in slightly different form in chapter 4.

This chapter concludes with an overview of techniques that have been devised to reduce the

computational scaling of the HF method, thus making it applicable to systems intractable with

conventional HF-implementations. This further lays the foundation for the later chapters con-

cerned with scaling reduction of correlation methods.

Though density functional theory (DFT) methods have long been established as viable, low-cost

alternatives to wavefunction based methods, DFT will be entirely omitted, as the presented

work has no connection with developments in that field.
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CHAPTER 2. FUNDAMENTALS

2.1 The Schrödinger equation

The central equation of (non-relativistic) quantum mechanics is Schrödinger’s wave equation [25]

i~
∂

∂t
Ψ(r, t) = ĤΨ(r, t), (2.1)

where the wavefunction Ψ(r, t) describes the evolution of the physical system specified by the

Hamilton operator Ĥ. The wavefunction explicitly depends on the time t and spatial coordinates

r only, whereas spin is accounted for by appending spin functions to the spatial wave functions.

States having a well-defined, constant energy, i.e. not changing with time, are called stationary

and are described by the eigenfunctions Ψk of the Hamiltonian. In that case, insertion of the

eigenvalue Ek and integration of (2.1) yields [26]

Ψk(r, t) = ψk(r)e
− i

~
Ekt. (2.2)

The energy eigenvalues and their corresponding eigenfunctions are thus obtained from the time-

independent eigenvalue equation

Ĥψk(r) = Ekψk(r), (2.3)

whose solution is one of the central goals of quantum chemistry, in particular for the state having

lowest energy, the ground state, which we shall exclusively be concerned with in this treatise.

The Ψk provide a basis with which any wavefunction can be expanded according to

Ψ =
∑

k

CkΨk. (2.4)

The Hamiltonian of a molecular system (in the absence of external fields) is given in atomic

units by

Ĥ = −1

2

Nel
∑

i

∇2
i −

1

2

Natom
∑

A

1

MA
∇2

A −
Nel
∑

i

Natom
∑

A

ZA

|ri −RA|
+

Nel
∑

i

∑

j<i

1

|ri − rj |
+

Natom
∑

A

∑

B<A

ZAZB

|RA −RB|

= T̂el + T̂n + V̂el,n + V̂el,el + V̂n,n. (2.5)

Indices i, j and A,B denote electrons and atomic nuclei, respectively, and T̂ , V̂ represent op-

erators of kinetic and potential energy. Due to the dependence of the wavefunction on the 3N

spatial coordinates of the particles, analytical solution of the differential equation (2.3) is possible

only for few model systems, and many-particle systems can only be solved approximately.

2.2 The Born-Oppenheimer approximation

The Born-Oppenheimer approximation, which underlies nearly all of quantum chemistry, is

based on the assumption that the total wavefunction is factorizable into electronic and nuclear

components, i.e.

ψ(rel,Rn) = ψel(rel;Rn)ψn(Rn). (2.6)
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2.3. THE HARTREE-FOCK METHOD

This is justified by the high difference in mass, but comparable momentum, of electrons and

nuclei, from which electrons may be assumed to react instantaneously to nuclear displacements,

such that their motion may be considered for static nuclear configurations. The nuclear repulsion

potential Vn,n thus becomes constant, and the electronic wavefunction, along with the electronic

energy, depends only parametrically on the nuclear coordinates. It follows that after solution of

the electronic Schrödinger equation

Ĥelψel = Eelψel, (2.7)

with the electronic Hamiltonian operator

Ĥel = T̂el + V̂el,n + V̂el,el, (2.8)

the total energy is obtained as the sum E = Eel + Vn,n of the electronic energy and nuclear

repulsion potential. The manifold of electronic energies for all nuclear conformations is called the

Born-Oppenheimer hypersurface. Within this conceptual framework, geometry optimizations

can be performed by searching stationary points on the potential energy surface according to

gradAE =
∂E

∂RA
= 0. (2.9)

Further, by expanding the energy in a Taylor series around a stationary point on the potential

surface, molecular force constants, and from these harmonic vibrational frequencies, can be

computed as the mixed second derivatives of the energy with respect to the nuclear coordinates:

kAB =
∂2E

∂RA∂RB
. (2.10)

On the same footing, a whole variety of molecular properties are calculated as (mixed) deriva-

tives of the energy with respect to particular quantities, e.g. nuclear magnetic resonance (NMR)

shieldings as derivatives with respect to the external magnetic field and nuclear magnetic mo-

menta.

2.3 The Hartree-Fock method

The Hartree-Fock (HF) method [21, 22, 27] is one of the most widely applied methods for the

solution of the electronic Schrödinger equation. Despite its simplistic description of the inter-

electronic potential as a mean-field, it provides fairly accurate results at relatively low compu-

tational cost. It is further the basis for the hierarchy of ab initio methods that take electron

correlation into account, as will be discussed in chapter 3.
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CHAPTER 2. FUNDAMENTALS

2.3.1 Hartree-Fock theory

The Hartree-Fock method is based on an independent particle model (IPM), where it is assumed

that the total wavefunction can be represented as an antisymmetrized product of mutually

orthogonal one-particle spin-orbitals formed as products of spatial orbitals and spin functions

ϕi(x) =







φ i+1

2

(r)α(ω), i odd

φ i
2

(r)β(ω), i even
i ∈ Nel (2.11)

The variational method [28] is then applied to determine the spin-orbitals whose Slater-determinant

Φ(x1,x2, . . . ,xNel
) =

1√
Nel!

det
(

ϕi(xj)
)

i,j∈Nel

(2.12)

represents the best approximation to the exact ground state wavefunction of a system described

by the electronic Hamiltonian Ĥ (subscripts denoting electronic quantities shall henceforth be

omitted). According to the variational theorem, the obtained energy represents an upper bound

to the exact electronic energy.

The expectation value of the Hamiltonian for a Slater-determinant is given by the Slater-Condon

rules as

EHF = 〈Φ|Ĥ|Φ〉

=

Nel
∑

i

〈ϕi|Ĥ|ϕi〉+
1

2

Nel
∑

i,j

〈ϕiϕj |(1− P(ij))Ĉ|ϕiϕj〉 (2.13)

=

Nel
∑

i

〈i|Ĥ|i〉+ 1

2

Nel
∑

i,j

(〈ij|ij〉 − 〈ij|ji〉) ,

where the Coulombic repulsion operator Ĉ = 1/|r1−r2| has been introduced, and P denotes the

permutation arising from the alternating property of the determinant, the so-called exchange

term. The core Hamiltonian operator

Ĥcore(1) = −1

2
∇2

1 −
Natom
∑

A

ZA

|r1 −RA|
(2.14)

represents the kinetic energy and the nuclear attraction potential of a given electron, and the

two-electron repulsion integrals (ERI)

〈ij|ij〉 ≡ 〈ϕiϕj |Ĉ|ϕiϕj〉 =
∫ ∫

ϕ∗
i (1)ϕ

∗
j (2)

1

|r1 − r2|
ϕi(1)ϕj(2)dx1dx2 (2.15)

describe the inter-electronic interaction.

Minimization of the expectation value (2.13) through the use of Lagrange’s method of underde-

termined multipliers to impose the constraints that the orbitals remain orthonormal, i.e. that

8



2.3. THE HARTREE-FOCK METHOD

〈ϕi|ϕj〉 = δij , leads to the Hartree-Fock equations (sometimes also Fock-Dirac equations [29])

F̂ϕi =

Nel
∑

j

ǫijϕj , (2.16)

with the Lagrange-multipliers ǫij . The Fock-operator is an effective one-electron Hamiltonian

given by

F̂ (1) = Ĥ(1) +

Nel
∑

j

〈ϕj |(1− P(ij))Ĉ|ϕj〉 = Ĥ(1) +

Nel
∑

j

(

Ĵj(1)− K̂j(1)
)

, (2.17)

where the one-electron Coulomb-operator

Ĵj(1)ϕi(1) =

∫

dx2ϕ
∗
j (2)

1

|r1 − r2|
ϕj(2)ϕi(1) (2.18)

describes the repulsive Coulomb potential between an electron and the field of a second one in

the orbital ϕj . The so-called exchange operator K̂ has no classical interpretation, but is defined

by its action on an orbital as

K̂j(1)ϕi(1) = 〈ϕj |P(ij)Ĉ|ϕj〉|ϕi〉 =
∫

dx2ϕ
∗
j (2)

1

|r1 − r2|
ϕi(2)ϕj(1) (2.19)

The sum of Coulomb and exchange operators is termed Hartree-Fock-potential

V̂ HF(1) =

Nel
∑

j

(

Ĵj(1)− K̂j(1)
)

(2.20)

and describes the interaction of an electron with the averaged electrostatic field of all others.

In equation (2.16), the Hartree-Fock equations do not yet represent an eigenvalue problem. The

matrix ǫ of Lagrange multipliers, however, being Hermitean, can be brought to diagonal form

by unitary transformation (rotation) of the orbitals, whereas the Fock operator is invariant to

such a transformation. This leads to the canonical Hartree-Fock equations

F̂ϕ′
i = ǫ′iϕ

′
i, (2.21)

but the primes shall be omitted in the following. Due to the dependence of the Fock operator on

the orbitals, they lack the linearity of true eigenvalue equations, but may be viewed as pseudo-

eigenvalue equations.

The simplest possible application of the HF method is to consider only closed-shell systems

by restricting the total spin to zero, and is hence termed restricted Hartree-Fock (RHF). The

next step that is required in order to facilitate handling of the above equations then consists

of performing the integration over the spin variable ω (see equation (2.11)), hence obtaining a

formulation in terms of spatial orbitals φi only. The closed-shell Fock operator is thus obtained

as

F̂ (1) = Ĥ(1) +

Nocc
∑

j

(

2Ĵj(1)− K̂j(1)
)

, (2.22)

9



CHAPTER 2. FUNDAMENTALS

where Nocc = Nel/2, each spatial orbital being doubly occupied, and the expectation value of

the energy after spin integration is given by

EHF = 2

Nocc
∑

i

(i|Ĥ|i) +
Nocc
∑

i,j

(2(ii|jj)− (ij|ji)) . (2.23)

The Mulliken notation (ii|jj) = 〈ij|ij〉 shall from now on be used in expressions involving spatial

orbitals only.

2.3.2 LCAO and the Roothaan-Hall equation

For numerical treatment, the Hartree-Fock integro-differential equations are converted into a

generalized matrix eigenvalue problem that is solvable using algebraic techniques. Following

the procedure of Roothaan [30], the HF-orbitals are expanded in a basis {χν(r)}ν∈N of atom-

centered spatial orbital functions (Linear Combination of Atomic Orbitals—LCAO), such that

the problem is shifted to the determination of optimal expansions coefficients.

For convenience, the basis functions shall be conceived as being arranged into a row vector

|χ) ≡
(

|χ1), . . . , |χN )
)

(2.24)

and we define (χ| ≡ |χ)†, but since only real-valued basis functions will be considered, adjunction

reduces to transposition. In the context of this vector arrangement, Dirac’s notation [31]—

though with parentheses to indicate spatial functions —is used to suggest that conjunction of

an element (χµ| from (χ| with an element from |χ) implies the inner product (χµ|χν). It follows

from this definition that the outer product of (χ| with |χ) yields the overlap matrix S = (χ|χ),
the N ×N Gramian matrix of the AO-basis, i.e. the positive definite matrix which induces the

metric in the spanned space.

Now, defining a corresponding vector |φ) for the MO and a matrix C of expansion coefficents,

the LCAO reads

|φ) = |χ)C, (2.25)

and upon inserting the above expansion into the Hartree-Fock equations F̂ |φ) = |φ)ǫ, one

obtains

F̂ |χ)C = |χ)Cǫ, (2.26)

where ǫ denotes the diagonal matrix of orbital energies. Taking the outer product with (χ| then
leads to

(χ|F̂ |χ)C = (χ|χ)Cǫ, (2.27)

such that F = (χ|F̂ |χ) can be identified as the matrix representation of the Fock operator in

the AO-basis. The Roothaan-Hall equation [30]

FC = SCǫ (2.28)

10



2.3. THE HARTREE-FOCK METHOD

thus finally results. Since the solution of this equation yields a N × N coefficient matrix, it

follows that in addition to the Nocc occupied MO |φo), this generates a set of Nvirt = N −Nocc

virtual, i.e. unoccupied, orbitals |φv). Due to the mutual orthogonality of the MO, the total

space F spanned by

|φ) = |φo)⊕ |φv)

≡
(

|φ1), . . . , |φNocc
), |φNocc+1), . . . , |φNocc+Nvirt

)
)

(2.29)

thus consists of the two complementary occupied and virtual subspaces

F = O ⊕ V . (2.30)

Typically, the LCAO basis sets consist of contracted Gaussian functions, because they allow for

the most efficient evaluation of the occurring integrals. Their radial part has the general form

χµ(r) ≡ G(r;Rµ, l) =
C
∑

k

KµkNk(r−Rµ)
lx
x (r−Rµ)

ly
y (r−Rµ)

lz
z e

−ζk(r−Rµ)·(r−Rµ), (2.31)

where Kµk, Nk, Rµ, l and ζk respectively denote the contraction coefficients, normalization

factors, atomic center, vector of angular momentum components, and exponent of the primitive

Gaussians. However, plane-wave, wavelet and other bases also find application, the former

especially for calculations of periodic systems.

2.3.3 Symmetric orthonormalization

The basis functions commonly used in quantum chemistry are normalized, but not orthogonal,

such that S 6= 1 and the Roothaan-Hall equation in its above form is not in the standard form

of an eigenvalue problem. Still, for any basis set it is always possible to find a transformation

matrix X which orthonormalizes the basis, i.e. having the property

X†SX = 1. (2.32)

The simplest choice for this transformation matrix, where X = S−1

2 , is Löwdin’s symmetric

orthonormalization procedure [32]. Defining new matrices C′ = X−1C = S
1

2C and correspond-

ingly F′ = X†FX = S−1

2FS−1

2 , the Roothaan-Hall equation is converted to a standard matrix

eigenvalue equation

F′C′ = C′ǫ, (2.33)

which can be solved by diagonalization of F′, followed by reverse transformation to the original

basis according to C = S−1

2C′.

This procedure, however, may become numerically unstable when the basis functions approach

linear dependence with increasing basis size, or especially when diffuse basis functions are in-

cluded. For then some eigenvalues of S tend to zero, such that the computation of the complete
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inverse square root becomes impossible. In that case, eigenvalues falling below a certain thresh-

old are neglected, and the inverse square root is computed from the diagonal matrix s′−
1

2 of

reduced rank. Further developments in this field use Newton-Schultz iterations to compute the

inverse overlap square root [33].

2.3.4 The Fock matrix and the Hartree-Fock energy

From the definition (2.22) for the closed-shell Fock operator, the Fock matrix is constituted of

F = (χ|F̂ |χ) = (χ|Ĥ|χ) +
Nocc
∑

i

(

2(χ|Ĵi|χ)− (χ|K̂i|χ)
)

(2.34)

≡ H+ J−K, (2.35)

with the core Hamiltonian matrix H, the Coulomb matrix J and the exchange matrix K. In-

troducing the expansion (2.25) into equations (2.18) and (2.19) for the Coulomb and exchange

operators, the Fock matrix elements are then given explicitly by

Fµν = Hµν +

Nocc
∑

i

N
∑

λ,σ

(µν|(2− P(νσ))Ĉ|λσ)CλiCσi. (2.36)

For convenience, the ERI occurring in this expression are grouped into a matrix Γ, the matrix

representation of the antisymmetrized Coulombic repulsion operator in the AO-basis

Γ = (χ⊗ χ|(2− P)Ĉ|χ⊗ χ) = (Ω|(2− P)Ĉ|Ω). (2.37)

A density matrix whose properties are discussed in more detail in 2.4 is further defined according

to

Po = CoC
T
o , (2.38)

where the matrix Co is the N×Nocc matrix of LCAO coefficients of the occupied MO. The Fock

matrix can thus be expressed in terms of Po and AO-entities as

vec(F) = vec(H) + Γvec(Po)

f = h+ Γp, (2.39)

where the vectorization vec(X) = x denotes the stacking of all the columns of the N × N

argument matrix into a single N2-vector. Finally, upon comparison with the expectation value

(2.13), the Hartree-Fock energy in terms of the Fock and density matrices is obtained as

EHF = pTh+ pT f

= 2pTh+ pTΓp (2.40)

which, through reversion of the vectorization, is equivalent to

EHF = Tr (PoH+PoF)

= Tr (2PoH+ (Po ⊗Po)Γ) . (2.41)
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2.3.5 The Self-Consistent Field method

Due to the dependence of the Fock operator on its own eigenfunctions, or in the Roothaan-Hall

formalism F = F(Co) ≡ F(Po), direct solution of the HF equations is precluded. Instead,

an iterative procedure is required, where starting from an input density matrix the solution

is gradually refined until convergence—self-consistency of the HF-potential—has been reached,

whence the denomination as the Self-Consistent Field method. The SCF-algorithm is thus

formulated recursively as:

• Build Fock matrix F(i+1)(P
(i)
o ).

• If converged: EHF = Tr (Poh+PoF). Stop.

• Solve F(i+1)C(i+1) = SC(i+1)ǫ(i+1)

• Build P
(i+1)
o = C

(i+1)
o C

(i+1)T
o .

The criterion of convergence might simply be chosen as the difference between two consecutive

energies to be smaller than a predefined threshold value, i.e. EHF − E′
HF < θ, but from a

theoretical point of view, it is preferable to require fulfilment of the commutation relation

FPoS− SPoF = 0, (2.42)

which, resulting from the derivative of EHF with respect to the density matrix [34], indicates

that a stationary state has been reached. As to the initial value of the density matrix, different

possibilities are given. One widely applied is the superposition of atomic densities (SAD), where

the initial density is formed as the direct sum

Po =

NAtom
⊕

A

PA (2.43)

of the single-atom density matrices, i.e. the block-diagonal matrix diag(P1, · · · ,PNAtom
). In the

above naive form, however, the SCF-scheme may converge only slowly or even diverge, such that

methods have been developed to improve this. One of the most popular approaches is the direct

inversion in the iterative subspace (DIIS) procedure of Pulay [35, 36], where the Fock matrices

of a few consecutive iterations are combined according to

F =
∑

n

wnFn, (2.44)

the weights being determined so as to minimize some particular error vector, and F is then used

as input for the next iteration.
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2.4 The density operator and matrix

The description of a quantum mechanical system in terms of a wavefunction (state vector)

ψ(x1,x2, . . . ,xn) is possible only for so-called pure states. The formalism of density operators

and matrices, originating from statistical mechanics, as first introduced by von Neumann [37]

in the context of quantum mechanics and further formalized by McWeeny [38], represents a

generalization of the wavefunction picture to mixed states, i.e. not specified by a particular

state vector. The presentation will here be limited to pure electronic states though.

Following Born’s statistical interpretation, the probability for an arbitrary electron to be in a

configuration space volume element at x1—which, recalling section 2.3, denotes the combined

spatial and spin coordinates of electron 1—given by

Nel

∫

ψ(x1,x2, . . . ,xn)ψ
∗(x1,x2, . . . ,xn)dx2 . . . dxn = ρ′(x1)dx1, (2.45)

defines the electron spin-density function ρ′(x1). The factor Nel arising from the indistinguisha-

bility of electrons shall henceforth be omitted in order for the density function to be normalized,

i.e. ρ(x) = ρ′(x)/Nel. The coordinate x1 does not pertain to any particular electron, and the

subscript in x1 is dropped.

Being an observable, the electron density may be associated with a density operator that is

symbolically represented as ρ̂ = |ψ〉〈ψ|, and can be interpreted as the projection operator onto

the one-electron space spanned by ψ(x). Namely, the application of ρ̂ on any state ξ(x) yields

a multiple of ψ(x), according to

ρ̂|ξ〉 = |ψ〉〈ψ|ξ〉 ≡ ψ(x)

∫

ψ∗(x′)ξ(x′)dx′ = Cψ(x). (2.46)

In accordance with the characteristic idempotency of projection operators, we have

ρ̂2 = |ψ〉〈ψ|ψ〉〈ψ| = ρ̂. (2.47)

With this definition of ρ̂, the expectation value of any one-electron operator Â can be calculated

as

〈A〉 = Tr
(

Âρ̂
)

≡
∫

[

Âψ(x′)
]

x′→x

ψ∗(x)dx, (2.48)

which is to be understood in the sense that the integration is carried out after the action of Â
on the primed variable.

Now, in the context of HF theory, where the wavefunction is expanded in a basis of one-electron

functions, the electron density is obviously given by the sum of squared moduli of the occupied

spin-orbitals

ρ(x) =

Nel
∑

i

|ϕi(x)|2. (2.49)
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Its corresponding density operator is thus given by the projection operator onto the subspace O

ρ̂ =

Nel
∑

i

|ϕi〉〈ϕi| = |ϕo〉〈ϕo|, (2.50)

where in the last step the previously established notation of arranging the |ϕp〉p∈N into a vector

has been used, such that |ϕo〉 denotes the vector containing the occupied spin-orbitals.

As for any operator, its representation with respect to a particular basis gives rise to a corre-

sponding matrix, such that the density matrix in the MO basis is obtained as

ρMO = 〈ϕ|ρ̂|ϕ〉 = 〈ϕ|ϕo〉〈ϕo|ϕ〉 =
(

1Nel
0

0 0

)

, (2.51)

which is obviously Hermitean, idempotent, and has the property that TrρMO = Nel. For closed-

shell systems, spin-integration leads to

ρMO = 2(φ|φo)(φo|φ) =
(

2Nocc
0

0 0

)

, (2.52)

recalling that Nocc = Nel/2. Upon comparison with (2.48), it follows that

Tr
(

Âρ̂
)

= Tr
(

Â|φo)2Nocc
(φo|

)

= Tr
(

(φo|Â|φo)2Nocc

)

= Tr (AMOρMO) . (2.53)

When the MOs are expanded according to the LCAO approach, insertion of the relation (2.25)

in the definition (2.50) of the density operator leads to

ρ̂ = 2|χ)CoC
T
o (χ| = 2|χ)Po(χ|, (2.54)

such that the previous definition (2.38) of the matrix Po is recovered. The factor 2, however, is

usually omitted by setting ρ̂ ≡ 1
2 ρ̂, in order for the idempotency relation

ρ̂2 = |χ)Po(χ|χ)Po(χ| = |χ)CoC
T
o SCoC

T
o (χ| = ρ̂, (2.55)

to hold, from which it also follows that when projecting, the metric needs to be taken into

account due to the non-orthogonality of AO basis functions. The matrix representation of ρ̂ in

the AO basis is further obtained as

ρAO = (χ|ρ̂|χ) = (χ|χ)Po(χ|χ) = SPoS. (2.56)

However, Po uniquely defines the projector, and considering relation (2.53) for the expectation

value of operators, it results that

2Tr
(

Âρ̂
)

= 2Tr
(

Â|χ)Po(χ|
)

= 2Tr
(

(χ|Â|χ)Po

)

= 2Tr (AAOPo) . (2.57)
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such that Po is defined as the AO occupied one-electron density matrix. The trace property

and idempotency constraint of the AO-density matrix are thus expressed as

Tr (|χ)Po(χ|) = Tr (PoS) = Nel/2 (2.58)

PoSPo = Po. (2.59)

It is further useful to define a virtual density matrix associated with the orthogonal complement

ρ̂⊥ = 1̂− ρ̂ of the projector onto the occupied subspace, according to Pv = CvC
T
v , such that

|χ)Pv(χ| = 1− |χ)Po(χ|. (2.60)

2.5 Linear scaling Hartree-Fock

The complexity, or scaling, of an algorithm is the computational effort, in terms of resources

such as running time or storage, that is associated with its execution. It is usually measured

by expressing the effort’s growth rate as a function f(n) of the input size n and in this context,

”big O notation” f(n) = O(g(n)) is used to denote that asymptotically (n → ∞), the effort

f(n) grows at most as g(n), i.e. there exists a certain input size n0 and a constant K [39], for

which

f(n) < K · g(n), ∀n > n0. (2.61)

Since quantum chemical calculations always involve a finite basis set whose size is directly

proportional to the actual number of particles in the system under consideration, the scaling

is commonly expressed with respect to the basis size N . Then, a polynomial scaling O(Nα)

means theoretically that once a certain N0 has been exceeded, an increase of the system size by

a factor k, i.e. N ′ = kN0, entails an increase of computational effort by at most kα. Ideally, the

computational effort should asymptotically grow linearly with the system size, i.e. be O(N1),

such that doubling the system size only doubles the computation effort.

The actual scaling exponent α of a given resource R with respect to the basis size for two systems

indicated by a, b is calculated as

α =
ln (Rb/Ra)

ln (Nb/Na)
, (2.62)

In the following sections, the scaling of the HF-method is analyzed alongside a brief presentation

of well-established schemes that have been devised to achieve linear scaling, hereby laying the

foundation for the latter discussion of scaling reduction for correlation methods in chapters 3 and

5. The presentation begins with numerical screening methods indispensable to calculate only

non-negligible integrals, rather than the entire ERI matrix. Then follow density matrix based

HF-methods, where the costly diagonalization of the Fock matrix is avoided, and the chapter

concludes with a brief discussion of how the Fock matrix is built with linearly scaling effort.
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2.5.1 Integral screening and direct SCF

The HF method in its most straightforward indirect version formally scales O(N4), due to the

required computation and storage of the N2 × N2 matrix of two-electron integrals. However,

the products χµ(r)χν(r) = Ωµν(r) of basis functions defined in equation (2.37), which may be

viewed as charge distributions, decay exponentially with the separation |Rµ −Rν | between the

centers of the individual Gaussians. Thus, for a given χµ, only a relatively small number of χν

in close proximity forms significant distributions, such that the number of non-negligible ERI is

asymptotically quadratical. Now, due to the fact that the elements

(µν|λσ) =
∫ ∫

Ωµν(r1)
1

|r1 − r2|
Ωλσ(r2)dr1dr1 (2.63)

of the matrix representation of the Coulombic repulsion operator fulfil all requirements of an

inner product, the Cauchy-Schwarz-Bunyakovsky inequality [40, 41]

|(µν|λσ)| ≤ (µν|µν) 1

2 (λσ|λσ) 1

2 = QµνQλσ, (2.64)

provides an upper bound to their absolute values [15, 42, 43]. This cheap and efficient tool is

nowadays universally used to preselect—this procedure is usually denoted as Schwarz screening,

from the aforementioned inequality—significant ERI in integral-direct SCF implementations and

has further been introduced into correlation methods, as is discussed in section 5.1.3.

2.5.2 Density-matrix based Hartree-Fock

Since the scaling of the ERI evaluation is easily made quadratic, the actually rate-determining

step in the solution of the Roothaan-Hall equation is the diagonalization of the Fock matrix,

which scales as O(N3). Yet, equation (2.41) establishes the HF-energy as being uniquely spec-

ified by the one-electron density matrix Po, rather than the MO. This is quite logical, given

that the orbitals have no interpretation in themselves, but only the electronic density that they

represent, or more generally, that expectation values are quadratic in the wavefunction and thus

invariant to unitary transformations thereof. In order to calculate the HF energy, it is thus

not inevitable to solve the Roothaan-Hall equation (2.28) for the eigenvalues and eigenvectors

(canonical MO) of the Fock matrix, but also possible to determine the density matrix that mini-

mizes the energy expectation value. This is further motivated by the fact that the density matrix

decays exponentially with inter-electronic distance for non-metallic, i.e. electronically localized

systems [44–46]. The number of significant density matrix elements therefore is asymptotically

linear, such that in contrast to the cubic matrix diagonalization, the solution for the density

matrix may be obtained with linearly scaling effort.

The problem at hand is thus to minimize the energy functional EHF [Po] with respect to the

density matrix under the constraint that the density matrix fulfil the idempotency and trace
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conditions given in equations (2.58) and (2.59). This leads to the Lagrangian formulation

dL[Po]

dPo
= 0. (2.65)

This matter shall not be further elaborated, but it should be mentioned that the imposition of

the above conditions on the density matrix can be achieved through polynomial matrix func-

tions, such as the purification transformation of McWeeny [38] or the trace resetting scheme of

Niklasson and coworkers [47]. Other approaches are based on exponential parametrizations of

the density matrix, such as the curvy steps method [48,49].

2.5.3 Linear scaling Fock matrix construction

For overall linear scaling HF calculations, aside from circumventing the diagonalization, it is

imperative to build the Fock matrix in an efficient way, in particular the Coulomb and exchange

matrices J and K defined in section 2.3.4. It is discussed in section 2.5.1 how the number of ERI

to be evaluated can be reduced by preselection of significant elements according to the Schwarz

upper bound. This, however, provides quadratic scaling at best, and further modifications are

required for linear scaling.

Linear scaling exchange

The linear scaling formation of the exchange matrix can, for instance, be achieved with the LinK

method [50], which combines Schwarz screening with the natural sparsity of the density matrix.

Recalling equation (2.36), the exchange matrix is given by

Kµν =
∑

λσ

Pλσ(µσ|λν), (2.66)

and it follows from equation (2.64) that the value of the individual summands is bound by

|Pλσ(µσ|λν)| ≤ |Pλσ|QµσQλν . (2.67)

Thus, in addition to the exponential decay between basis functions, accounted for by the Schwarz

estimates, the sparsity of the density matrix can be exploited to couple the indices between both

charge distributions Ωµσ and Ωλν . Namely, for a given λ only a constant number of σ has non-

vanishing density matrix elements, such that the number of significant summands asymptotically

scales linearly. In association with a pre-ordering of the estimates with decreasing magnitude,

such that loops can be terminated as soon as an element falls below a given threshold, this

scheme allows for efficient construction of the exchange matrix.
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Multipole Methods

In contrast to the exchange matrix formation, the use of the density matrix to couple between

both charge distributions is not possible for the formation of the Coulomb matrix. Instead, one

has to resort to multipole methods, whose strength lies in the fact that the interaction between

well-separated groups of charges can be simplified to the interaction of the overall potentials of

the charge distributions.

The a priori computational scaling of such methods is still quadratic, since forN charges there are

N(N +1)/2 pairwise interactions, and even the grouping of individual charges into distributions

merely reduces the prefactor. In order to reduce the scaling exponent, so-called fast multipole

methods (FMM) [51–54] introduce a subdivision of the considered system into a hierarchy of

boxes of different size—coarseness—containing varying numbers of particles. For each box, a

separation criterion is then used to split the remaining boxes into the so-called near-field (NF)

and far-field (FF), such that at each level of the boxing hierarchy, the NF size of any given box

is constant. The NF interactions are then calculated explicitly, with constant effort, and the

FF by multipole expansion. The advantage of this procedure is that with increasing distance,

the interactions with FF boxes can be treated at an ever higher boxing level (coarser grain).

Ultimately, the number of FF interactions for each box becomes constant, resulting in overall

linear scaling of the total computational effort.

When applying these techniques to the Coulomb matrix construction, however, it has to be taken

into account that the convergence of multipole series is guaranteed only for non-overlaping charge

distributions, whereas the Ωµν formed as products of Gaussians strictly extend over all space.

The adaptation of FMM methods to continuous distributions thus requires the definition of

extent criteria which can be used to ensure that the multipole approximation is applied only

to well-separated Ωµν and Ωλσ distributions, i.e. having numerically insignificant overlap. The

error of this approximation can be shown to be of the order of numerical accuracy and thus

poses no problem in practice. Various multipole-based hierarchical methods have been proposed

to reach linear scaling of the Coulomb matrix evaluation, of which only the continuous fast

multipole method (CFMM) of White et al. [55] shall be mentioned. Further information may

be found in the review given in reference [56].
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Chapter 3

Electron correlation

The Hartree-Fock method has long been established as an indispensable tool of quantum chem-

istry. However, even in the complete basis set limit, its very formulation prevents it from being

able to recover the exact electronic energy of a many-electron system. This difference between

the exact (non-relativistic) energy Eexact and the HF-limit energy has been defined by Löwdin

as the correlation energy [57]

Ecorr = Eexact − EHF, (3.1)

which is always negative, since the HF method is variational. The correlation energy is typically

divided into two contributions of distinct origins. The so-called dynamical correlation arises from

the mean-field approximation underlying HF-theory, due to its inability to accurately account

for the mutual avoidance of electrons. Though the correlation between electrons is partially

described for same spin electrons, because HF obeys the Pauli exclusion principle, the electronic

interaction energy is typically overestimated due to the insufficient description of the Coulombic

repulsion for electrons of opposite spin. On the other hand, static correlation effects become

important in situations involving near-degenerate states, such as metals or bond-breaking config-

urations, which cannot be correctly described by a single ground state determinant but require

multi-reference methods. Here again, methods such as CASSCF allow partial recovery of the

static correlation contribution, but these are not in our focus.

Except for systems dominated by static correlation effects, HF typically recovers about 98-99%

of the total electronic energy. Nevertheless, for an accurate analysis of chemical effects, it is

crucial to account for the electron correlation. The hierarchy of methods developed to that end

allows for arbitrary precision in the solution of the electronic Schrödinger equation, though of

course at the cost of ever higher computational effort.

This chapter gives a brief presentation of some standard correlation methods along with a dis-

cussion of their respective scalings. The exposition begins with Configuration Interaction (CI)

which, aside from its conceptual simplicity, in principle allows to recover the exact non-relativistic
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electronic energy. The closely related coupled-cluster method (CC) is then described.

Then follows a concise presentation of the Random Phase Approximation (RPA). Though for-

mally a post-Kohn-Sham method, since usually KS-orbitals are employed, RPA has received

much attention in the context of ab initio quantum chemistry lately, due to a variety of attrac-

tive properties, and it might well achieve wider application in molecular quantum chemistry

when further developments have reduced its computational cost.

We then turn our attention to Møller-Plesset perturbation theory (MPn), as it forms the ba-

sis of the present work. The essential steps of the derivation are recalled, after which the

parametrization schemes that have been proposed to improve upon plain MP2 are presented.

The presentation continues with the local correlation approach of Pulay and Saebø, where the

computational cost is reduced by exploiting the intrinsically short-ranged character of corre-

lation effects. In that context, an overview of established as well as recently proposed orbital

localization procedures is given.

Finally, the explicitly correlated approaches pioneered by Hylleraas, which aim at overcoming

the slow basis set convergence by explicitly including the inter-electronic separation into the

correlation treatment, are briefly described.

3.1 Configuration Interaction and Coupled Cluster

In principle, though not in practice, Configuration Interaction (CI) is the simplest method to

improve upon Hartree-Fock theory, it being the logical continuation of the one-determinantal

approach. Namely, given a complete set {ϕp(x)} of spin-orbitals, any electronic wavefunction can

be expanded exactly in the basis of all possible Slater-determinants (”configurations”) formed

from this orbital set [27,58]. Taking the—finite, and thus approximate—set {ϕp(x)}p∈2N of HF

spin-orbitals resulting from an SCF-calculation, the full-CI wavefunction (FCI) is then defined

as

ΨFCI = C0ΦHF +

Nel
∑

i

2N−Nel
∑

a

Ca
i Φ

a
i +

Nel
∑

i,j<i

2N−Nel
∑

a,b<a

Cab
ij Φ

ab
ij + . . . , (3.2)

i.e. the linear-combination of the HF ground-state determinant and all n-tuply ”excited” de-

terminants Φ{n} formed by substituting n occupied orbitals with virtual ones. Applying the

variational principle [28] to this wavefunction to determine optimal coefficients leads to the

matrix eigenvalue problem

HC = CE, (3.3)

where the elements Hkl{n,m} = 〈Φk{n}|Ĥ|Φl{m}〉 of the Hamiltonian matrix are given by the

Slater-Condon rules. The expansion coefficients (amplitudes) C and energy eigenvalues E can

then be determined through diagonalization of H. As in general one might only be interested

in specific energies, say for the ground state, there also exist special algorithms designed for the
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extraction of selected eigenvalues, such as the Jacobi-Davidson method [59,60].

Yet, the practical applicability of full CI is severely limited by its enormous (combinatorial)

computational cost. Namely, for a system of Nel electrons and 2N spin-orbitals, there are
(

Nel

n

)(

2N−Nel

n

)

possible n-tuply excited configuration state functions [27], such that their number

rapidly grows beyond all bounds and full CI calculations of molecules with more than but a

few electrons become impossible. For reasonably sized molecules and basis sets, the excitation

space must necessarily be restricted, for instance to at most double excitations Φ{2} (CISD),

which constitute the most important contribution to the correlation energy, as it may be shown

that [27]

Ecorr =

Nel
∑

i,j

2N−Nel
∑

a,b

Cab
ij 〈ΦHF|Ĥ|Φab

ij 〉. (3.4)

although the doubles-coefficients are still coupled with higher excitations. This truncation, in

turn, leads to the loss of size consistency, which is defined as the requirement that the energy of

a system consisting of two non-interacting parts should be equal to the sum of their individual

energies. This property is of particular importance for the computation of reaction energies or

the correct description of dissociation curves.

This severe flaw of truncated CI is overcome in the conceptually related Coupled-Cluster (CC)

method [61], where instead of the additive incorporation of excitations, an exponential repre-

sentation of the wavefunction is chosen according to

ΨCC = eT̂ΨHF, (3.5)

where T̂ = T̂1 + T̂2 + T̂3 + . . . is the sum of single, double, n-tuple excitation operators. The

advantage herein lies in the fact that even though the number of included excitations needs to

be truncated, just as in CI, the exponential form of the operator ensures the retention of size

consistency. In spite of being limited to relatively small systems due to its high computational

scaling, coupled cluster—particularly as CCSD(T)—is now well-established as the ”gold stan-

dard of quantum chemistry” for the computation of high-accuracy reference data.

3.2 The Random Phase Approximation

The Random Phase Approximation (RPA), originally introduced by Pines and Bohm in the

context of plasma theory for the electron gas [62–64], has a long history of application within

density functional theory. In recent years, however, is has also received much attention as a

correlation method, due to its appealing properties of being applicable to small or zero gap

systems, and accounting for long-range dispersion. Though Kohn-Sham-orbitals are typically

used, the RPA correlation energy can nevertheless also be used to improve upon HF-calculations

23



CHAPTER 3. ELECTRON CORRELATION

according to

E = EHF + ERPA
corr . (3.6)

The computation of RPA correlation energies formally requires the solution of the non-Hermitean

eigenvalue problem [65]

(

A B

−B −A

)(

X Y

Y −X

)

=

(

X Y

Y −X

)(

Ω 0

0 −Ω

)

. (3.7)

Within direct RPA (dRPA), the most-widely applied variant of RPA, exchange contributions

are neglected and the above matrices are given by

Aia,jb = (ǫa − ǫi)δijδab + (ia|jb) (3.8)

Bia,jb = (ia|jb). (3.9)

The symplectic eigenvalue problem (3.7) can be converted to the Hermitean form

MZ = ZΩ2, (3.10)

with M = (A−B)
1

2 (A+B)(A−B)
1

2 . As shown by Furche [66], the dRPA correlation energy

can then be succinctly expressed by the plasmon equation

EdRPA
corr =

1

2
Tr(Ω−A) =

1

2
Tr(M

1

2 −A). (3.11)

Through the use of the RI approximation for integral evaluation and frequency integration to

avoid the explicit diagonalization of M, the dRPA correlation energy can be calculated with

O(N4logN) effort, as shown by Eshuis et al. in [67], where an interesting relation to the SOS-

MP2 scheme of Jung et al. [8] (see section 3.3.3) is also pointed out.

As a noteworthy aside, it has been proven analytically [68,69] that the dRPA correlation energy

(3.11) is equivalent to the direct ring coupled-cluster doubles (drCCD) correlation energy

EdrCCD
corr =

1

2
TrBT = EdRPA

corr , (3.12)

where the amplitudes T are determined from a CCD amplitudes equation

B+AT+TA+TBT = 0. (3.13)

3.3 Many-Body Perturbation Theory

It has already been mentioned that usually the correlation energy is relatively small in com-

parison to the total energy, such that it can be described as a perturbation in the spirit of

Rayleigh-Schrödinger perturbation theory (RSPT) [70]. The application of RSPT to the treat-

ment of electron correlation in many-body systems is called Møller-Plesset perturbation theory
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(MPn) [1] and is nowadays routinely used in quantum chemistry. Apart from being straight-

forward to implement on top of conventional HF code, MPn does further have the attractive

traits of being size consistent, in contrast to truncated CI methods, and invariant to unitary

orbital transformations (see also sections 3.4 and 4.1.1). It is, however, not variational and

some investigations have shed considerable doubt on its convergence behaviour upon inclusion

of higher-order terms [71, 72], such that in practice, it is usually restricted to low—typically

second—order (MP2). Still, and in spite of difficulties regarding the correct description of

strongly correlated systems such as diradicals or compounds containing metals, its good balance

of computational cost and quality of results has made MP2 one of the universally applied cor-

relation methods, and to this day, it is subject to much research effort, such as in the present

work, that aims at reducing its computational cost in view of application to large molecules and

basis sets.

3.3.1 Møller-Plesset Perturbation Theory

The starting point of RSPT is the partitioning

Ĥ = Ĥ0 + Ĥ′ (3.14)

of the Hamiltonian into an unperturbed part Ĥ0 and a perturbation Ĥ′. In the context of MPn

theory [1], the unperturbed part is defined as the sum

Ĥ0 =

Nel
∑

i

F̂ (i) (3.15)

over one-electron Fock-operators, such that this naturally leads to the perturbation being given

by the difference

Ĥ′ =
Nel
∑

i

∑

j<i

1

|ri − rj |
−

Nel
∑

i

V̂ HF(i) (3.16)

of the exact electronic interaction and the HF-potential, as mentioned in the definition of the

correlation energy. With these definitions, it is readily established that the sum of zeroth and

first order perturbed energies is equal to the HF-energy

E
(0)
0 + E

(1)
0 =

Nel
∑

i

ǫi −
1

2

Nel
∑

i,j

〈ij||ij〉 = EHF, (3.17)

such that the first correction to HF occurs in second order. Here and in the following, the order

of perturbation shall be denoted by the superscripts in parentheses, whereas the 0 subscript

indicates entities pertaining to the ground-state.
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3.3.2 Second order Møller-Plesset theory (MP2)

From RSPT, the second order perturbed energy is given in general form by [27]

E
(2)
0 =

∑

n 6=0

∣

∣

∣
〈Ψ(0)

0 |Ĥ′|Ψ(0)
n 〉
∣

∣

∣

2

E
(0)
0 − E

(0)
n

, (3.18)

where the sum is to be taken over all states except the ground state. Again, as in section 3.1,

the wavefunctions Ψ
(n)
0 are given by the n-tuply ”excited” determinants Φ{n} formed through

substitution of n occupied orbitals by virtuals, whereas the zeroth-order wavefunction is the

HF-determinant ΦHF. Recalling that Ĥ′ = Ĥ − Ĥ0, it then follows that all terms involving

single excitations vanish, since

〈ΦHF|Ĥ|Φa
i 〉 = 0 (3.19)

by Brillouin’s theorem [73], and also

〈ΦHF|Ĥ0|Φa
i 〉 = 〈ΦHF|

Nel
∑

k

F̂ (k)|Φa
i 〉 = Fia = 0, (3.20)

the Fock matrix being diagonal in the basis of canonical MO. Further, due to the two-electron

nature of the Hamiltonian, all triples and higher substitutions vanish as well, such that the

second order energy involves only double substitutions according to

E
(2)
0 =

1

4

Nel
∑

i,j

2N−Nel
∑

a,b

∣

∣

∣
〈ΦHF |

∑Nel

k

∑

l<k
1

|rk−rl| |Φ
ab
ij 〉
∣

∣

∣

2

ǫi + ǫj − ǫa − ǫb

=
1

4

Nel
∑

i,j

2N−Nel
∑

a,b

|〈ij||ab〉|2
ǫi + ǫj − ǫa − ǫb

,

where the factor 1/4 accounts for the symmetry of the expression with respect to i, j and a, b.

After carrying out the spin integration, the second order energy for a closed-shell system is

finally obtained as

E
(2)
0 =

Nocc
∑

i,j

Nvirt
∑

a,b

(ia|jb) [2(ia|jb)− (ib|ja)]
ǫi + ǫj − ǫa − ǫb

, (3.21)

where indices a, b now denote the Nvirt = N −Nocc unoccupied spatial orbitals. The terms

E
(0)
ij =

Nvirt
∑

a,b

(ia|jb) [2(ia|jb)− (ib|ja)]
ǫi + ǫj − ǫa − ǫb

(3.22)

represent the electron-pair contributions to the second-order correlation energy that also occur

in coupled-pair theories [27]. In analogy to the Coulomb and exchange terms occurring in

HF-theory, it is convenient to define a Coulomb-type part

E
(2)
J = 2

Nocc
∑

i,j

Nvirt
∑

a,b

(ia|jb)2
ǫi + ǫj − ǫa − ǫb

(3.23)
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and an exchange-type part,

E
(2)
K =

Nocc
∑

i,j

Nvirt
∑

a,b

(ia|jb)(ib|ja)
ǫi + ǫj − ǫa − ǫb

. (3.24)

such that

E
(2)
0 = E

(2)
J − E

(2)
K . (3.25)

3.3.3 Parametrized MP2

In a pragmatic approach to improve upon plain MP2, Grimme introduced the spin-component

scaled MP2 (SCS-MP2) method [74], based on a separate scaling of the same spin and opposite

spin components of the MP2 energy, according to

E
(2)
SCS = COSE

(2)
OS + CSSE

(2)
SS . (3.26)

The coefficients are then calibrated in order to accurately reproduce energies for a set of high-end

benchmark calculations. With the definitions (3.23) and (3.24) of Coulomb and exchange parts

of MP2, the opposite spin and same spin components are respectively given as

E
(2)
OS =

1

2
E

(2)
J E

(2)
SS =

1

2
E

(2)
J − E

(2)
K . (3.27)

Following Grimme’s pioneering work, a series of similar schemes has been proposed, such as the

scaled opposite spin (SOS) MP2 of Jung et al. [8], where only the opposite spin component is

taken into account according to

E
(2)
SOS = CSOSE

(2)
OS, (3.28)

or the S2-PT approach of Fink [75], which represents a generalization of SCS-MP2.

However, though on average these approaches represent a certain improvement, they forsake

the ab initio character of MP2 theory and some of these schemes have the severe flaw of not

recovering various effects to the same extent as unparametrized MP2, e.g. long-range dispersion

interactions. In effect, for reasonable reliability, this means that the parameters either have to be

specifically taylored for the case of interest, or that yet further parameters need to be introduced,

for instance in a modification of the SOS-MP2 approach that employs an attenuated Coulomb

metric [76, 77], and where the attenuation parameter needs to optimized.

3.4 Local correlation methods

The computational cost of MP2 calculations is determined by the quadruple transformation

(ia|jb) =
N
∑

µ

Cµi

(

N
∑

ν

Cνa

(

N
∑

λ

Cλj

(

N
∑

σ

Cσb(µν|λσ)
)))

(3.29)
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of ERI over atomic orbitals to the MO-basis. Due to the fact that the canonical MO generally

spread over the whole system, i.e. the coefficient matrix C is dense, this results in O(N5)

scaling. Though this transformation can be simplified and the overall prefactor be decreased,

for instance by applying ’resolution of the identity’ (RI) techniques (see chapter 6), conventional

MP2 calculations rapidly become prohibitively expensive.

However, electronic correlation effects are rather short-ranged, displaying the same long-distance

decay of r−6
ij as dispersion effects, such that in non-delocalized systems, for each electron only a

relatively small (asymptotically constant) number of spatially close electrons lead to significant

pair interaction energies (3.22). It is thus intuitive that the correlation energy could be calculated

in a linear-scaling manner by exploiting this behaviour through the use of a basis of localized

MO (LMO). This section gives a short overview of orbital localization methods, after which the

essential traits of Pulay’s local MP2 formulation [78, 79] are outlined, it being the counterpart

to the Laplace-transform approach described in the next chapter.

3.4.1 Orbital localization methods

The disadvantages incurred from the use of the delocalized canonical MO for the treatment of

electron correlation have been recognized early on and some localization schemes were proposed

relatively long ago [80, 81]. Yet, this topic still constitutes an active field of research, such that

today a broad array of different methods is available.

Technically, MO locality is expressed by a diagonal-dominant structure of the coefficient matrix,

which means that for each orbital, only a small subset of spatially close basis functions has

non-negligible expansion coefficients (cf. equation (2.25)). The procedure for localizing the

orbitals, however, is not uniquely defined, but is usually formulated as the minimization of

some particular functional ζ(i) of the orbitals, and requires an iterative solution. The common

objective of all localization procedures is thus the computation of a matrix Lo of localized

coefficients, connected to the canonical MO by a unitary transformation Lo = CoUo, in order

to preserve the orthonormality. In this section, both established and recently proposed schemes

are briefly described, following in part the review given by Pipek and Mezey [82]. Another short

recapitulation of localization methods is also found in [83].

The method of Boys [80, 84] aims at obtaining LMO of minimal spatial extent by maximizing

the distance of orbital centroids. This can be shown to be equivalent to maximization of the

functional

ζBoys(i) =

Nocc
∑

i

(i|r|i)2 , (3.30)

where r is the position operator. Though this approach bears the slight disadvantage of pro-

ducing artificial τ -orbitals as linear combinations of σ- and π-orbitals, which however is of no

concern for the purpose of methodical scaling reduction, its relatively low O(N3) scaling is an
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attractive feature. Through the use of pre-localized orbitals, as discussed below, the scaling of

this procedure can be further reduced to linear.

In the approach chosen by Edminston and Ruedenberg (ER) [81, 85], the orbital extents are

minimized by maximizing the Coulombic self-interaction energy

ζER(i) =

Nocc
∑

i

(ii|ii), (3.31)

leading to minimal exchange energy between them. Though this method preserves the σ- and

π-separation, in contrast to the Boys method, the required integral transformation causes the

computational cost to scale as O(N5), which is unfortunate since the primary incentive for

using LMO is to speed up correlation methods. Another scheme proposed by von Niessen [86]

is conceptually related to the Edminston-Ruedenberg method.

The method of Pipek and Mezey [82, 87] advocates the minimization of the sum of quadratic

gross atomic Mulliken populations to minimize the number of atoms over which the MO spread,

i.e. the functional

ζPM(i) =

Nocc
∑

i

Natom
∑

A

∣

∣

∣
(i|P̂A|i)

∣

∣

∣

2
, (3.32)

where P̂A =
∑

µ∈A |µ)(µ| is the projection operator onto the space spanned by the AOs centered

on atom A. Because it combines preservation of the σ-π-separation with a favourable O(N3)

scaling, the PM method is nowadays one of the most widely applied localization methods.

On a somewhat different footing, the scheme of Aquilante et al. [88] exploits the natural sparsity

of the one-electron density matrix Po to generate LMO by performing a Cholesky decomposition

[9] (see also section 5.1.1)

Po = LoL
T
o . (3.33)

In contrast to the previously presented methods of Boys, ER and PM, this method has the

significant advantage of being non-iterative. Further, it does not require an initial MO set,

but merely a density matrix, such that it is applicable in conjunction with density-based HF

algorithms. Though it formally scales as O(N3), a linear-scaling implementation of the Cholesky

decomposition for positive semi-definite matrices has recently been proposed in conjunction

with further use of the obtained Cholesky MO as input for the Boys procedure [89]. It is also

straightforwardly applied to obtain local virtual MO by decomposing the virtual density matrix

Pv = (S−1 −Po) = LvL
T
v (3.34)

defined in equation (2.60), whereas standard localization functions, though in principle applica-

ble to the virtual MO as well, have been discussed to perform rather poorly for that purpose [90].

Being sparse and normally positive definite, the overlap matrix can be inverted in a linear-scaling

fashion by inverse Cholesky decomposition [91].
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Another localization procedure recently proposed by Janśık et al. [83] is based on minimization

of powers of the orbital variance Ωp

ζn(p) =
N
∑

p

Ωn
p =

N
∑

p

(

(p|r2|p)− (p|r|p)2
)n
, (3.35)

where the general MO index p is deliberately used to indicate that this method has been shown

to perform well both for occupied and virtual orbitals. For n = 1, this approach is equivalent

to the Boys method, though a different optimization algorithm is employed, and locality is

improved upon increasing n.

Instead of using virtual LMO, yet another way to span the virtual space V is to use a set

of projected atomic orbitals (PAO) obtained by projecting out O, in order to maintain the

orthogonality of both subspaces. Recalling section 2.4, the orthogonal complement of the density

operator is given by

ρ̂⊥ = 1− |χ)Po(χ|, (3.36)

so that the PAO, which shall be denoted with tildes, are obtained as

|χ̃) = ρ̂⊥|χ) = (1− |χ)Po(χ|)|χ) = |χ)− |χ)PoS = |χ)(1−PoS). (3.37)

Though orthogonal to the occupied MO, the PAO are not orthonormal among themselves.

3.4.2 Local MP2

In section 3.3.2, the traditional derivation of MP2 was followed. Through minimization of the

Hylleraas functional, it can also be obtained in the more general form [92]

E
(2)
0 =

∑

k,l∈O

∑

r,s∈V
T rs
kl (kr|ls) =

∑

k,l∈O

∑

r,s∈V
T rs
kl M

rs
kl = TrT M, (3.38)

where k, l and r, s indicate arbitrary basis functions for the occupied and virtual subspaces,

respectively, and the antisymmetrized amplitudes T are given by T rs
kl = 2T rs

kl − T sr
kl . For the

case of the canonical MO basis, a comparison with equation (3.21) directly yields that

T ab
ij =

2(ia|jb)− (ib|ja)
ǫi + ǫj − ǫa − ǫb

=
(ia||jb)

fii + fjj − faa − fbb
. (3.39)

Their calculation, though computationally expensive, is thus a straightforward matter, as the

MO Fock matrix f is diagonal. In a basis of LMO and PAO, however, as used in the local MP2

(LMP2) method proposed by Pulay and Saebø [78,79], the LMO and PAO Fock matrices f ′ and

F̃ are non-diagonal and the amplitudes need to be determined iteratively for each electron pair

from the set of equations [92–94]

Mij + F̃TijS̃+ S̃TijF̃−
Nocc
∑

k

S̃
[

f ′ikTkj +Tikf
′
kj

]

S̃ = 0, (3.40)
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where S̃ denotes the PAO overlap matrix and Tij is the amplitude sub-matrix of the ij-th

electron pair. The advantage herein is that on the basis of the locality of the LMO and PAO,

approximations can now be introduced to exploit the short-range character of correlation in

order to reduce the computational scaling.

First, the space into which electrons are substituted (excited) is truncated by assigning to each

LMO |i) an excitation domain, i.e. a subset [i] of spatially close PAO to which substitution

is restricted. These domains are usually constructed according to the method of Boughton

and Pulay [95], where for each LMO, 3-4 atoms are determined by a least-squares residual

minimization such that their combined PAO span the considered LMO to a defined extent,

typically 98%. For an electron pair described by |i) and |j) the pair excitation domain [ij] is

then given by the union [i] ∪ [j] of individual orbital domains.

Further, a hierarchy of (ij) pairs is defined according to the minimum distance R in Bohr

(a.u.) between any atoms in their respective domains. The contraction to the MP2 energy thus

becomes

E
(2)
0 =

∑

i,j∈(ij)

∑

µ̃,ν̃∈[ij]
T µ̃ν̃
ij (iµ̃|jν̃). (3.41)

In the LMP2 implementations of Werner et al. [93, 96], the so-called strong (R ∈ (0; 1]) and

weak (R ∈ (1; 8]) pairs are treated explicitly. Strong pairs may even be treated at a higher

theoretical level, for instance CCSD, such that a larger portion of the correlation energy is re-

covered. Distant pairs (R ∈ (8; 15]) may either be treated in the same manner as weak pairs,

but approximating the ERI by multipole methods as mentioned in section 2.5.3, or neglected,

whereas very distant pairs (R ∈ (15;∞)) are ignored altogether.

This method has been successfully applied in a variety of linear scaling LMP2 implementa-

tions [93, 94, 96], and has further found application in coupled-cluster theory. However, due to

the a priori neglect of electronic interactions, these local approximations have been shown to

produce discontinuous potential curves [97]. This is problematic in view of molecular geometry

optimizations and calculation of other properties, but progress on the solution of this issue has

been reported [98].

3.5 Explicitly correlated methods

One of the major problems of MP2, and other correlation methods for that matter, is the slow

convergence of the correlation energy with basis set size. For instance, within Dunning’s series

of correlation consistent basis sets cc-pVnZ (n = 2, 3, . . . ) [99–102], the deviation from the basis

set limit correlation energies decreases only as O(n−3), since the basis set size Nn grows as

O(n3). However, the corresponding rise of O(n12) in the number of integrals and thus compu-

tational cost [103] is in no relation to the obtained improvement. This behaviour is due to the
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inability of orbital product expansions of the wavefunction (Slater determinants), moreover in

the typically used Gaussian basis sets, to accurately model the cusp of the wavefunction [104].

This (finite) discontinuity in the wavefunction arises from the fact that the Coulomb interaction

operator 1/r12 diverges in the limit r12 → 0, such that the kinetic energy must compensate for

this divergence in order to maintain the local energy constant.

In order to overcome this disadvantageous behaviour, a variety of methods, going back to Hyller-

aas’ pioneering work on the helium atom [105,106], have been developed which explicitly intro-

duce the interelectronic distance into the correlation treatment by including a correlation factor

F12(r12) of the electronic separation. In the so-called R12 methods, this is simply F12 = r12,

but it has been shown that Slater-type factors F12 = e−γr12 used in F12 approaches perform

better [107, 108]. Other schemes have also been proposed, but we refer to [103, 109] for further

detail.

One disadvantage of these explicitly correlated methods is the occurrence of three- and four-

electron integrals whose evaluation is computationally very demanding, and significant progress

in view of applying explicitly correlated methods to systems of moderate size has only been

made upon Kutzelnigg and Klopper’s introduction of special auxiliary bases to approximate

these integrals using RI techniques [110,111].
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Chapter 4

Laplace-Transform Møller-Plesset

Perturbation Theory

We now turn to the description of Almlöf and Häser’s Laplace-transform formalism to remove

energy denominators [2, 3], upon which the work presented in the next chapter is based. This

chapter is dedicated to a recapitulation of interesting theoretical implications that the Laplace-

transform formulation has for Møller-Plesset theory. The intuitive fact that the MPn energy

should be independent from the choice of orbital basis is proven, from which it logically fol-

lows that Laplace-transform MP corresponds to a (non-iterative) version of local MP schemes

introduced by Pulay. As an aside, an interesting relation between Laplace-transform MP2 and

Lyapunov equations is briefly pointed out.

We then turn to atomic-orbital MP theory (AO-MP), as first introduced by Häser for MP2 [4],

which allows to express the MP energy as a functional of the one-electron density matrix

only, thus providing the natural extension of density-based HF-schemes to correlation meth-

ods. Due to the inherent locality of the AO-basis, Häser’s formulation has laid the foundation

for linear-scaling implementations based on the preselection of integrals according to schemes

previously described in section 2.5.1, in order to extend perturbative correlation treatment to

large molecules intractable with the canonical formulation of MP theory.

4.1 Laplace-Transform MP2

We start by recalling equation 3.21 for the MP2 energy of a closed-shell system:

E
(2)
0 = −

Nocc
∑

i,j

Nvirt
∑

a,b

(ia|jb) [2(ia|jb)− (ib|ja)]
ǫa + ǫb − ǫi − ǫj

, (4.1)

where indices i, j and a, b denote occupied and virtual spatial molecular orbitals (MO), re-

spectively. Following the notation established in the first chapter, all entities pertaining to the
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AO-basis are indicated with greek letters.

As discussed in section 3.4, the fact that the canonical MOs are delocalized (i.e. the coefficient

matrix C is dense), leads to the transformation

(ia|jb) =
N
∑

µνλσ

CµiCνa(µν|λσ)CλjCσb, (4.2)

from the AO to the MO basis to scale as O(N5). Since the MP2 energy is independent of the par-

ticular choice of the MO basis (see section 4.1.1), it is desirable to express it in a localized basis

in order to exploit the short-range character of electron correlation effects. The non-separability

of the canonical orbital energies in the denominator of the MP2 expression, however, precludes

a straightforward change of basis, such that the amplitudes of a local MP2 calculation need to

be determined iteratively, as discussed in section 3.4.2.

In another approach to overcome this problem, Almlöf and Häser proposed to remove the de-

nominator ∆iajb = ǫa − ǫi + ǫb − ǫj by expressing it through the integral [2, 3]

1

∆iajb
=

∫ ∞

0
e−∆iajbtdt, (4.3)

which, according to the definition of the Laplace transform [112],

F (s) = L(f(t)) ≡
∫ ∞

0
f(t)e−stdt, Re(s) > 0, (4.4)

corresponds to a transform of the constant function f(t) = 1. The integral (4.3) can be approx-

imated by a finite sum of exponentials

∫ ∞

0
e−∆iajbt ≈

τ
∑

α

wαe
−∆iajbtα , (4.5)

where 5 ≤ τ ≤ 8 quadrature points have been shown to be sufficient for µHartree accuracy [3,6].

The orbital energies in the exponent thus become separable, giving

E
(2)
0 = −

τ
∑

α

wα

Nocc
∑

i,j

Nvirt
∑

a,b

e−(ǫa−ǫi)tα(ia|jb) [2(ia|jb)− (ib|ja)] e−(ǫb−ǫj)tα . (4.6)

For notational simplicity, the ERI and orbital energy differences are arranged into matrices

A ≡ Aµν,λσ = (µν|λσ)

Γ ≡ Γµν,λσ = 2Aµν,λσ −Aµσ,λν

M ≡Mia,jb = (ia|jb) (4.7)

G ≡ Gia,jb = 2Mia,jb −Mib,ja

D ≡ Dia,kc = (ǫa − ǫi)δikδac
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with dimension N2×N2 or NoccNvirt×NoccNvirt, such that equation (4.6) reads in matrix form

E
(2)
0 = −

τ
∑

α

wαTr
(

e−DtαMe−DtαG
)

. (4.8)

The matrix exponential is defined by the extension of the corresponding Taylor series from

scalars to matrices, i.e.

eX =
∞
∑

n=0

Xn

n!
= 1+X+

1

2
X2 +

1

6
X3 + . . . (4.9)

and always converges. Note that under similarity transformations

T−1eXT = eT
−1XT (4.10)

holds, i.e. the similarity-transformed matrix exponential is equal to the exponential of the

similarity-transformed exponent.

Inserting the LCAO expansion (2.25) into the definition (2.37) of the ERI matrix, the transfor-

mation (4.2) reads

M = (Co ⊗Cv)
TA(Co ⊗Cv), (4.11)

recalling the elementary properties of the Kronecker product

(X⊗Y)T = (XT ⊗YT ) (4.12)

(X⊗Y)(V ⊗W) = (XV ⊗YW). (4.13)

The subscripts o and v denote matrices belonging to the occupied and virtual subspaces, respec-

tively. We proceed by pointing out that the above expression for D corresponds to the definition

of the Kronecker sum (not to be confused with the direct sum)

D = −ǫo ⊕ ǫv = −ǫo ⊗ 1v + 1o ⊗ ǫv, (4.14)

for which the following relation holds with respect to the matrix exponential

eX⊕Y = eX ⊗ eY. (4.15)

Finally, by recalling that the orbital energies are recovered by transforming the Fock matrix to

the basis of canonical MOs, we have

ǫo = CT
o FCo ǫv = CT

vFCv. (4.16)
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4.1.1 Orbital invariance and relation to local MP2

The invariance of the MP2 energy under orbital rotations has already been pointed out by

Almlöf upon his introduction of the Laplace transform [2]. The proof is now given in the most

general way. Inserting relation (4.15) into the energy (4.8), noting that the exponential matrices

of orbital energies are symmetric, leads to

E
(2)
0 = −

τ
∑

α

wαTr
(

(etαǫo ⊗ e−tαǫv)M(etαǫo ⊗ e−tαǫv)G
)

. (4.17)

By taking the square root of the matrix exponentials according to

(etαǫo ⊗ e−tαǫv) = (e
tα
2
ǫo ⊗ e−

tα
2
ǫv)(e

tα
2
ǫo ⊗ e−

tα
2
ǫv) = (e(α)o ⊗ e(α)v )(e(α)o ⊗ e(α)v ), (4.18)

the cyclic invariance of the trace can be used to rearrange the previous expression to the sym-

metric form

E
(2)
0 = −

τ
∑

α

wαTr
(

(e(α)o ⊗ e(α)v )M(e(α)o ⊗ e(α)v )(e(α)o ⊗ e(α)v )G(e(α)o ⊗ e(α)v )
)

. (4.19)

Now, considering unitary rotations Lo = CoUo and Lv = CvUv of the occupied and virtual

orbitals, and defining a matrix U = (Uo ⊗Uv), the identity relation UUT = 1 may simply be

inserted at the appropriate places, such that

E
(2)
0 = −

τ
∑

α

wαTr
(

(e(α)
′

o ⊗ e(α)
′

v )M′(e(α)
′

o ⊗ e(α)
′

v )(e(α)
′

o ⊗ e(α)
′

v )G′(e(α)
′

o ⊗ e(α)
′

v )
)

. (4.20)

The primes here denote matrices in a general basis of non-canonical, thus potentially local

orbitals, i.e. from equation (4.11)

M′ = (UT
o ⊗UT

v )M(Uo ⊗Uv) = (LT
o ⊗ LT

v )A(Lo ⊗ Lv) (4.21)

and for the exponential energy matrices, invoking relations (4.10) and (4.16)

e(α)
′

o = UT
o e

(α)
o Uo = UT

o e
tα
2
ǫoUo = e

tα
2
LT
o FLo , (4.22)

with corresponding relations for the matrix G of antisymmetrized ERI and the virtual exponen-

tial energy matrix e
(α)
v . The equality of the previous energy expression to the canonical MP2

energy (4.19) is obvious.

The matrix G′ in (4.20) can further be directly related to the amplitude matrix in equation

(3.39). For localized MO, the Laplace transform approach can thus be interpreted as a variant

of the local MP2 formulation of Pulay, where instead of the iterative solution for the amplitudes,

the ERI matrices have to be transformed with the exponential weighting matrices e
(α)
o and e

(α)
v

for each quadrature point. This relationship between local and Laplace transform MP2 has first

been pointed by Schütz [113], though for the particular case of spanning the virtual subspace

with PAO.
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4.1.2 Relation to Lyapunov equations

In this section, we wish to briefly point out an elegant relation between the Laplace MP2 energy

and Lyapunov equations, which to the best of our knowledge has not been mentioned so far.

For given matrices A and Hermitean C, the equation

AX+XAT = C, (4.23)

which occurs in certain areas of control theory, is called the continuous time Lyapunov equation.

The equation has a unique Hermitean solutionX if and only ifA and −AT have no eigenvalues in

common, and if C is positive (semi)definite the solution is also positive (semi)definite [114–116].

For asymptotically stable A, it can further be shown that the solution to the above Lyapunov

equation may be written as

X = −
∫ ∞

0
eAtCeA

T tdt. (4.24)

The condition for asymptotic stability of a matrix is that all its eigenvalues have real parts in

the open left half plane of C, i.e. that they be negative in the case of real eigenvalues [114].

Recalling eq. (4.6) for the Laplace transform MP2 energy, we have

E
(2)
0 = −

Nocc
∑

i,j

Nvirt
∑

a,b

∫ ∞

0
e−(ǫa−ǫi)t(ia|jb) [2(ia|jb)− (ib|ja)] e−(ǫb−ǫj)tdt, (4.25)

which, using the definitions from equation (4.7), can also be written as

E
(2)
0 = −

Nocc
∑

i,j

Nvirt
∑

a,b

(
∫ ∞

0
e−Dt(M ◦G)e−Dtdt

)

ia,jb

, (4.26)

where ◦ denotes the Hadamard product (i.e. entry-wise) of M and G.

By setting C = M ◦ G and A = −D in equation (4.24), and taking into account that −D

is diagonal, hence symmetric, and by definition negative definite, such that it fulfils the above

condition of being asymptotically stable, it follows that the MP2 energy is obtained as the sum

E
(2)
0 =

Nocc
∑

i,j

Nvirt
∑

a,b

Xia,jb. (4.27)

over the elements of the matrix X that solves the corresponding Lyapunov equation

−DX−XD = M ◦G. (4.28)

Due to D being diagonal, the above equation directly yields

Xia,jb =
(ia|jb) [2(ia|jb)− (ib|ja)]

ǫi − ǫa + ǫj − ǫb
, (4.29)

such that aside from the purely mathematical elegance of this relation which closes the circle

from the Laplace transform approach to conventional MP2 by way of the theory of Lyapunov
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equations, this does not seem to indicate any straightforward possibility of improvements over

conventional MP2 implementations. However, for cases where the solution to the Lyapunov

equation is known to be non-negative definite, there exist algorithms [115–117] to compute a

low rank decomposition X = BBT without first explicitly evaluating X. Therefore, due to

M ◦ G and hence X being positive semidefinite in the present context, this relation hints at

the possibility to obtain a low rank decomposition of the amplitude matrix from the previous

equation using methods developed for the solution of large Lyapunov equations. This would

represent an alternative to approaches based on the decomposition of merely the ERI matrix

(see also chapter 7), and could also possibly be useful in cases involving very similar expressions,

maybe some coupled cluster approaches [118]. Conversely, the methods developed in the context

of Laplace-transform MP-theory could prove useful for the solution of Lyapunov equations.

4.2 Atomic-orbital MP theory (AO-MP)

In his seminal work on the application of Møller-Plesset theory to large molecules, Häser used

the Laplace transform formulation to express the MP2 energy purely in terms of AO-entities [4]

and has thus paved the way for linear-scaling implementations based on exploiting the inherent

locality of the AO-basis [5,6,119]. Namely, inserting relation (4.11) for the ERI transformation

into equation (4.17), leads to

E
(2)
0 = −

τ
∑

α

wαTr
(

(etαǫo ⊗ e−tαǫv)(CT
o ⊗CT

v )A(Co ⊗Cv)(e
tαǫo ⊗ e−tαǫv)(CT

o ⊗CT
v )Γ(Co ⊗Cv)

)

(4.30)

which, again invoking the invariance of the trace under cyclic permutations and using property

(4.13), can straightforwardly be rearranged to

E
(2)
0 = −

τ
∑

α

wαTr
(

(Coe
tαǫoCT

o ⊗Cve
−tαǫvCT

v )A(Coe
tαǫoCT

o ⊗Cve
−tαǫvCT

v )Γ
)

(4.31)

= −
τ
∑

α

wαTr
(

(P(α) ⊗P
(α)

)A(P(α) ⊗P
(α)

)Γ
)

(4.32)

= −
τ
∑

α

wα

∑

µ···σ′

P
(α)
µµ′P

(α)
νν′AµνλσP

(α)
λλ′P

(α)
σσ′Γµνλσ (4.33)

This AO-based formulation can be extended to arbitrary order n of MP theory through the use of

individual integral representations for each orbital energy term ∆kr,ls occurring in the canonical

MPn expression, as has been shown explicitly for MP3 in [7, 23]. Due to the high algorithmic

complexity that this entails, however, and given that the cost to quality ratio of higher order

MPn terms progressively deteriorates, the implementation of AO-MP3 and higher orders has so

far not received much attention in our group, beyond the preliminary investigations mentioned

above. The discussion will therefore be limited to MP2 in the following.
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4.2.1 Pseudo-density matrices and operators

The matrices introduced in equation (4.32),

P(α) = Coe
tαǫoCT

o P
(α)

= Cve
−tαǫvCT

v , (4.34)

where the underline and overline serve to denote the occupied and virtual matrix, bear a certain

resemblance to the energy weighted density matrices that occur in the context of HF energy

gradients, albeit with an exponential weighting of the orbital energies. For numerical reasons,

it is convenient to introduce a scaling parameter ǫF according to

P(α) = Coe
tα(ǫo−ǫF1o)CT

o P
(α)

= Cve
−tα(ǫv−ǫF 1v)CT

v (4.35)

which is generally chosen as the Fermi-level ǫF = (ǫLUMO + ǫHOMO)/2 [4]. This parameter,

however, has no effect on the following theoretical considerations and will thus be omitted,

along with the explicit dependence on the quadrature point α, as it is implied by the underlines

and overlines.

As discussed in section 2.4 for the occupied and virtual one-particle density matrices, the above

matrices may be associated with corresponding operators

ρ̂(t) = |φo)e
ǫot(φo| = |χ)P(χ| (4.36)

ρ̂(t) = |φv)e
−ǫvt(φv| = |χ)P(χ|, (4.37)

which, in contrast to their analogues, lack the idempotency of projection operators, for one has

ρ̂2(t) = |φo)e
ǫot(φo|φo)e

ǫot(φo| = |φo)e
2ǫot(φo| (4.38)

ρ̂
2
(t) = |φv)e

−ǫvt(φv|φv)e
−ǫvt(φv| = |φv)e

−2ǫvt(φv|. (4.39)

They are therefore called pseudo-density operators or matrices, respectively. We deduce from

the previous relation that upon repeated application

lim
n→∞

(ρ̂)n(t) = lim
n→∞

|φo)e
nǫot(φo| = 0 (4.40)

lim
n→∞

(ρ̂)n(t) = lim
n→∞

|φv)e
−nǫvt(φv| = 0, (4.41)

since ǫo and −ǫv are negative definite. They do, however, have the property of being mutually

orthogonal,

ρ̂(t)ρ̂(t) = |φo)e
ǫot(φo|φv)e

−ǫvt(φv| = 0, (4.42)

or for their corresponding matrices PSP = 0, which is of particular importance in the context

of integral screening, as is discussed in section 5.1.3. Upon comparison with equation (4.32), it

further follows that by defining an operator according to

ρ̂(t) = ρ̂(t)⊗ ρ̂(t) = |χ⊗ χ)(P⊗P)(χ⊗ χ|, (4.43)
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the MP2 energy may be expressed in rough analogy to an expectation value (cf. section 2.4) as

E
(2)
0 =

∫ ∞

0
Tr
(

ρ̂(t)Ĉρ̂(t)(2− P)Ĉ
)

dt, (4.44)

though of course t is not a configuration space variable. As in section 2.3, P denotes the

permutation accounting for the antisymmetry and Ĉ is the Coulombic repulsion operator.

4.2.2 The MPn energy as a functional of the density matrix

In equation (2.38), it is shown that the Hartree-Fock energy is completely specified by the density

matrix Po and can thus be calculated without diagonalization of the Fock matrix. In view of the

combination of AO-MP with such implementations, the question naturally arises whether the

canonical orbital energies occurring in the definition of the pseudo-density matrices or operators

can be avoided. As has first been pointed out by Surján [120] in the present context, this is

indeed the case, as can be readily established by inserting relation (4.16) into the definition (4.34)

for the pseudo-densities (ignoring the scaling with the Fermi-energy which is of no concern here)

P = Coe
tαC

T
o FCoCT

o . (4.45)

Explicitly considering the series defining the matrix exponential

P = Co

( ∞
∑

n=1

(tαC
T
o FCo)

n

n!

)

CT
o , (4.46)

the matrix Co can be shifted back and forth, such that it follows from the definition Po = CoC
T
o

for the occupied one-electron density matrix that

P = CoC
T
o

( ∞
∑

n=1

(tαFCoC
T
o )

n

n!

)

= Poe
tαFPo . (4.47)

Given that P, as well as Po and F, are Hermitean, i.e. real-symmetric in the cases that are of

interest for us, it is also obvious that

P = PT =
(

Poe
tαFPo

)T
= etαPoFPo. (4.48)

For the virtual pseudo-density matrix, the corresponding relation is given by

P = Pve
−tαFPv = e−tαPvFPv (4.49)

Recalling the complementarity relation PvS = 1−PoS, this evidently establishes the AO-MPn

energy as a functional E
(n)
0 [Po] of the occupied one-electron density matrix.
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Chapter 5

Cholesky Decomposed Densities in

MP2

Following the preliminaries established in the previous chapter, we now arrive at the main subject

of this dissertation, the Cholesky decomposed pseudo-densities in MP2 method (CDD-MP2).

We begin with a discussion of the limitations and formal disadvantages of atomic-orbital based

MP2 as previously implemented by Doser et al. [5–7], which motivated the investigation of sym-

metrically decomposed pseudo-density matrices occurring in AO-MP2 theory. Following a brief

analysis of the relation between CDD-MP2 and local MP theory, the pre-selection scheme that

is essential to determine significant contributions to the energy and perform the corresponding

transformation of the ERI matrix in an efficient way is presented. After a detailed description of

the implementation of the CDD-MP2 algorithm, results are presented, beginning with the local-

ity of the Cholesky orbitals, efficiency of the screening procedure to reduce integral numbers and

the numerical accuracy afforded hereby, followed by a discussion of the method’s performance

and the encountered difficulties.

5.1 Cholesky-decomposed pseudo-density matrices (CDD-MP2)

In Häser’s initial AO-MP2 formulation [4] and Ayala’s subsequent implementation [119], the

transformation with the pseudo-densities in equation (4.32) was performed according to

AFT = (P⊗P)A(P⊗P) (5.1)

from which the MP2 energy is then calculated as

E
(2)
0 = −

τ
∑

α

wαTr (AFTΓ) = −
τ
∑

α

wα

N
∑

µνλσ

(µν|λσ)[2(µν|λσ)− (µσ|λν)], (5.2)
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where the underlined and overlined indices denote transformation with the pseudo-densities.

In contrast to this, the implementation of Doser [7] is based on a half-transformation of ERI

matrices according to

AHT = (P⊗P)A. (5.3)

The immediate advantage herein lies in the greatly simplified integral transformation and con-

traction, albeit only for the case of the opposite spin part

E
(2)
OS =

τ
∑

α

wαTr (AHTAHT) =
τ
∑

α

wα

N
∑

µνλσ

(µν|λσ)(λσ|µν), (5.4)

Namely, in terms of half-transformed ERI the exchange term required for the same-spin com-

ponent (see equation 3.24) is explicitly given by

E
(2)
K =

τ
∑

α

wα

N
∑

µνλσ

(µν|λσ)(µσ|λν) (5.5)

which again leads to great difficulties for an efficient implementation, as one has to perform

two different types of transformations and handle two ERI-arrays. This implementation is

therefore only practicable in conjunction with the scaled-opposite spin parametrization scheme

(SOS-MP2) [8]

E
(2)
SOS = CSOSE

(2)
OS, (5.6)

and is thus subject to its shortcomings, as discussed previously in section 3.3.3. It was further

noticed that summands of different sign in the contraction (5.4) cancel each other to a large

extent, i.e.

τ
∑

α

wα

N
∑

µνλσ

∣

∣(µν|λσ)(λσ|µν)
∣

∣≫

∣

∣

∣

∣

∣

∣

τ
∑

α

wα

N
∑

µνλσ

(µν|λσ)(λσ|µν)

∣

∣

∣

∣

∣

∣

. (5.7)

from which is was anticipated that the number of required integrals, hence the prefactor, might

be reduced if this cancellation was avoided by summing up products of equally transformed

integrals, which would all be positive.

These two facts motivated the exploration of symmetrically decomposed pseudo-density matri-

ces, which could then be used as transformation matrices for the integrals, thus in principle

solving both problems just mentioned. For that end, both the Cholesky decomposition and

matrix square root may be envisaged. However, initial investigations showed that the latter

presents no particular improvement [23], such that subsequent work was based solely on the

Cholesky decomposition.
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5.1.1 Cholesky decomposition

The Cholesky decomposition [9] of a positive definite N × N Hermitean matrix V yields a

lower-triangular matrix L with the property

V = LLT . (5.8)

The pseudo-density matrices, however, are positive semi-definite by definition, being formed as

the outer product of only Nocc and Nvirt linearly independent vectors from the MO-coefficient

matrix C (equation (4.34)). A pivot algorithm therefore has to be employed, as described in

section 5.2.1, yielding the decomposition:

P = LLT P = LL
T
, (5.9)

where L and L have dimension N × Nocc and N × Nvirt, respectively. Upon insertion into

equation 4.32, we obtain [10, 11]

E
(2)
0 = −

τ
∑

α

wαTr
(

(LLT ⊗ LL
T
)A(LLT ⊗ LL

T
)Γ
)

= −
τ
∑

α

wαTr
(

(LT ⊗ L
T
)A(L⊗ L)(LT ⊗ L

T
)Γ(L⊗ L)

)

(5.10)

= −
τ
∑

α

wαTr (MG) , (5.11)

where the rearrangement in the second equation is based on property (4.13) and invariance of

the trace under cyclic permutations. The last term is explicitly written as

E
(2)
0 = −

τ
∑

α

wα

Nocc
∑

i,j

Nvirt
∑

a,b

(ia|jb)[2(ia|jb)− (ib|ja)], (5.12)

from which we notice that apart from fulfilling the initial purpose, this approach has the formal

advantage of reintroducing the restriction of indices to the occupied and virtual subspaces. Due

to Nocc being constant for a given molecule, this approach is expected to display a smaller

increase of the prefactor with basis set size than the AO-based expression where indices run over

the entire basis set.

5.1.2 CDD as localized pseudo-MO

It is shown in section 5.3.1 that the Cholesky factors inherit the sparsity of the pseudo-densities,

and as such they may be interpreted as exponentially energy-weighted localized MO-coefficient

matrices. This also becomes evident by a closer analysis of their structure. In equation (4.47),

we can take the square root of the exponential matrix, and with the shifting property used in

(4.46), we can write

P = e
tα
2
PoFPoe

tα
2
FPo . (5.13)
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Inserting the Cholesky decomposition of Po (see also section 3.4.1)—or any localized coefficient

matrix Lo, for that matter—we obtain

P = e
tα
2
LoL

T
o FLoL

T
o e

tα
2
FLoL

T
o . (5.14)

The corresponding relation holds for the virtual pseudo-density as well, and we may thus identify

the pseudo-density Cholesky factors as [10]

L′ = e
tα
2
LoL

T
o FLo = Loe

tα
2
LT
o FLo (5.15)

L
′

= e−
tα
2
LvL

T
v FLv = Lve

− tα
2
LT
v FLv , (5.16)

at least up to a ”phase factor”, i.e. unitary rotation L = L′U′
o and L = L

′
U′

v. This phase factor

is of no concern in the present context, however, and if required, it could be recovered from

e−
tα
2
LT
o FLoLT

o SL = U′
o (5.17)

e
tα
2
LT
v FLvLT

v SL = U′
v, (5.18)

by virtue of the orthonormality of the local MOs and the fact that the inverse of an exponential

matrix always exists. These considerations establish CDD-MP2 as an instance of local Laplace

MP2 as discussed in general terms in section 4.1.1. It follows from the previous equations that

these Cholesky MO are not orthonormal, since we have

LTSL = e
tα
2
LT
o FLoLT

o SLoe
tα
2
LT
o FLo = etαL

T
o FLo 6= 1o (5.19)

L
T
SL = e−

tα
2
LT
v FLvLT

v SLve
− tα

2
LT
v FLv = e−tαL

T
v FLv 6= 1v, (5.20)

but that the occupied and virtual subspaces are still orthogonal,

LTSL = 0, (5.21)

which is the more important property in view of integral screening.

5.1.3 Integral screening

It has been discussed in the previous section that the Cholesky factors of the pseudo-densities

correspond to exponentially weighted local MO coefficient matrices. Accordingly, the number of

significant integral products in the contraction to the CDD-MP2 energy should asymptotically

be linear. Now, it is described in section 2.5.1 how the Cauchy-Schwarz-Bunyakovsky inequality

(2.64) can be used to preselect the elements (µν|λσ) of the ERI matrix according to their absolute

value. It has further been shown by Häser [4] that this can be extended to the transformed ERI

as well, such that in our case the upper bounds

|(iν|λσ)| ≤ (iν|iν) 1

2 (λσ|λσ) 1

2 = XiνQλσ

|(µa|λσ)| ≤ (µa|µa) 1

2 (λσ|λσ) 1

2 = YaµQλσ

|(ia|λσ)| ≤ (ia|ia) 1

2 (λσ|λσ) 1

2 = Z ′
iaQλσ

|(ia|jb)| ≤ (ia|ia) 1

2 (jb|jb) 1

2 = Z ′
iaZ

′
jb, (5.22)
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provide an estimate for any type of (partially) transformed integral. The matrices Q, X and Y

are rather straightforward to compute, with O(N3) effort, but the situation is more complicated

for Z′. Namely, the explicit evaluation of the (ia|ia) would scale as O(N5), which is unacceptable

for efficiency reasons. On the other hand, in order to be reliable as screening matrices, their

evaluation, as well as that of the previous screening matrices, cannot be based on the exploitation

of the sparsity of the LMO-coefficient matrices to reduce transformation time, since this would

induce a numerical error that may be of the order of magnitude of the integrals that are to be

preselected. In order to keep the computational cost of this step within reasonable bounds, a

matrix Z is thus built as [4]

Zia = min

(

N
∑

λ

Xiλ|Lλa|,
N
∑

λ

Yaλ|Lλi|
)

≥ Z ′
ia, (5.23)

which is an upper bound to Z′ by virtue of the Cauchy inequality.

This screening procedure, however, only exploits the decay of charge distributions with the dis-

tance between the centers of their constituting orbitals, and the number of preselected integrals

can thus at best be reduced to quadratic. In order to achieve linear scaling, one needs to account

for the fact that ERI depend on the separation R between the respective charge distributions.

For that end, the Schwarz upper bounds are modified by a reduced distance parameter R′, as

recently proposed by Maurer et al. [12]. Although these modified Schwarz estimates do not

represent strict upper bounds to the ERI any more, it has been shown on a wide selection of

molecular systems that this procedure causes no significant loss of reliability. The rationale

behind this approach is based on the transformation behaviour of the multipole expansion of

the ERI, which, as has already been mentioned in section 2.5.3, is valid for well-separated charge

distributions. In order to separate the variables acted upon by the Coulombic repulsion opera-

tor, it can be expanded as a series (cf. ref. [56] and references given therein for more details on

this subject)

Ĉ =
1

|r1 − r2|
=

1

|r′ − r′′ +R| (5.24)

=
∞
∑

n=0

n
∑

m=−n

∞
∑

k=0

k
∑

l=−k

(−1)kRnm(r′)I∗
n+k,m+l(R)Rkl(r

′′), (5.25)

where r′ = r1 −R′ and r′′ = r2 −R′′ denote the coordinates of electrons 1 and 2 with respect

to the centers R′ and R′′ of some charge distributions Ω(r1) and Ω(r2), and R = R′ − R′′.

Further, R and I denote the scaled regular and irregular solid harmonics, whose explicit form

is of secondary importance here (see reference given above), but behave as

Rnm(r′) ∝ |r′|n = r′n (5.26)

I∗
n+k,m+l(R) ∝ |R|−(n+k+1) = R−(n+k+1). (5.27)
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In the following, we shall also not be concerned with particular aspects of the transformation from

primitive to contracted Gaussians, as this doesn’t affect the point to be made here. Arranging

the harmonics into a vector and a matrix—both infinite-dimensional—according to

|R) ≡ |Rnm(r′)) (5.28)

T ≡ Tnm,kl(R) = (−1)kI∗
n+k,m+l, (5.29)

where as in previous cases, the notation in terms of kets serves to denote the operator character

of the expression, the above expansion may be suggestively summarized as

Ĉ = |R)T (R|. (5.30)

From this, recalling equations (4.7) and (2.37), the ERI matrix is obtained as

A = (Ω|Ĉ|Ω) = (Ω|R)T (R|Ω) = QTT Q, (5.31)

the elements of the ∞×N2 matrix Q ≡ Q(R′) of spherical multipoles being given by

Qkl,λσ(R
′) =

∫

Rkl(r
′)Ωλσ(r)dr. (5.32)

Considering the monopoles, i.e. the first row of Q (k = 0 and thus l = 0), we have

Q00,λσ(R
′) =

∫

R00(r
′)Ωλσ(r)dr, (5.33)

such that from the proportionality relation (5.26), it follows that apart from a scaling factor and

angular part, this row is just equal to the vectorized overlap matrix S, since

Q00,λσ ∝
∫

|r′|0Ωλσ(r)dr =

∫

χλ(r)χσ(r)dr = Sλσ. (5.34)

Thus, upon performing the first half-transformation to the MO-basis according to

AHT = A(L⊗ L) = QTT Q(L⊗ L) = QTT Q′ (5.35)

and using that vecT (X)(V ⊗ WT ) = vecT (WXV), it follows by virtue of the orthogonality

relation (5.21) that

vecT (S)(L⊗ L) = vecT (L
T
SL) = vecT (0), (5.36)

such that the first row of Q′ = Q(L⊗L),which respresents the transformed monopoles, vanishes.

Accordingly, since an element of AHT is obtained from

(µν|jb) =
∞
∑

n=0

n
∑

m=−n

∞
∑

k=0

k
∑

l=−k

Qµν,nmTnm,klQ′
kl,jb, (5.37)
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and given that the terms for which k = l = 0 drop out and only k ≥ 1 remains, if follows from

the proportionality relation (5.27) that the leading order of R in the half-transformed integrals

is R−2. After the second half-transformation

AFT ≡ M = (LT ⊗ L
T
)QTT Q′ = Q′TT Q′, (5.38)

the same argument leads to the realization that only terms of O(R−3) remain in the multipole

expansion. This behaviour is invoked to justify the modification of the Schwarz estimates of

half-transformed and fully transformed ERI according to

∣

∣(µν|jb)
∣

∣ /
QµνZjb

R′2 (5.39)

∣

∣(ia|jb)
∣

∣ /
ZiaZjb

R′3 , (5.40)

for the case of well-separated distributions. The criterion of well-separatedness is defined as

R′ = Ria,jb − (Extia + Extjb) > 1, where Ria,jb stands for the distance between the centers of

the charge distributions and Ext denotes their respective extents. These centers are determined

as the weighted means of the centers of untransformed distributions

Cen
(q)
ia =

∑

µν |LµiSµνLνa|Cen(q)µν
∑

µν |LµiSµνLνa|
, (5.41)

where q = x, y, z. The idea behind including the overlap elements into the weighting factors

|LµiSµνLνa| in addition to the transformation matrix elements is that they provide a measure

of a distribution’s significance, since mutually distant Gaussians will have vanishing overlap.

The definition of the transformed extents, however, leaves more possibilities. Initially, the

transformed extents were defined in the same way as the centers, i.e. as the weighted means

of the extents of untransformed distributions plus their distance Ria,µν from the respective

distribution’s center

Extia =

∑

µν |LµiSµνLνa|(Ria,µν + Extµν)
∑

µν |LµiSµνLνa|
. (5.42)

However, it was realized that this definition might not be able to correctly account for orbital

”bulges” distant from the centers. It was thus modified so as to contain the farthest untrans-

formed distribution whose weight factor exceeds a predefined threshold value:

Extia = max
µ,ν

{

|LµiSµνLνa|
∑

µν |LµiSµνLνa|
Extµν +Ria,µν

∣

∣

∣

∣

∣

|LµiSµνLνa|
∑

µν |LµiSµνLνa|
> θ

}

. (5.43)

5.2 Implementation of CDD-MP2

This section is dedicated to the presentation of algorithmic details of the CDD-MP2 method as

it has been implemented in a development version of the quantum chemical programme package
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Q-Chem [121]. In the following, the different types of (partially) transformed integrals will be

abbreviated as

UTI (untransformed integrals): (µν|λσ)
STI (single transformed integrals): (iν|λσ)
HTI (half transformed integrals): (ia|λσ)
TTI (triple transformed integrals): (ia|jσ)
FTI (fully tranformed integrals): (ia|jb)

The algorithm consists of the following steps (for each quadrature point):

• Cholesky decomposition of pseudo-density matrices

• Formation of screening prerequisites (screening matrices, centers and extents of trans-

formed charge distributions)

• Screening for significant FTI products (ia|jb)(ia|jb) and/or (ia|jb)(ib|ja)

• Computation of pre-selected FTI:

◦ Screening for required HTI (ia|λσ)

◦ Computation of HTI according to screening record

⊲ Screening for required STI (iν|λσ), then for UTI (µν|λσ)
⊲ Transformations to HTI

◦ Transformations to FTI

• Contraction of FTI to MP2 energy

The chosen approach is purely integral-direct, i.e. no integrals or other major arrays are written

to disk. Accordingly, due to the rapid increase of integral numbers with system size, a batching

scheme has to be employed. It should also be noted that even though AO-indices are retained in

the following for the sake of notational clarity, all AO-based quantities are in practice grouped

into shells of basis functions for computational efficiency, as described in 5.2.2.

5.2.1 The Cholesky decomposition algorithm

The pseudo-densities used as input for the Cholesky decomposition are obtained from Doser’s

SOS-AO-MP2 implementation [7], where they are computed according to their definition given

in 4.2.1, but with direct inclusion of the numerical quadrature weighting factors wα, i.e.

P = |wα|
1

4Coe
tα(ǫo−ǫF 1o)CT

o P
(α)

= |wα|
1

4Cve
−tα(ǫv−ǫF 1v)CT

v . (5.44)
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Even though they could in principle be obtained without the canonical orbital energies, as shown

in section 4.2.2, this has so far not been subject to optimization endeavours.

As mentioned in section 5.1.1, the pseudo-density matrices are positive semi-definite by defini-

tion, i.e. their rank—the number of non-zero eigenvalues—is smaller than their dimension N

(except for exceptional cases involving minimal bases), and their Cholesky decomposition

P = LLT P = LL
T

(5.45)

must therefore be performed with a pivoting technique. For this, a slightly modified version of

an L′DL′T -decomposition algorithm described in [122] is used, which has been adapted for direct

computation of the Cholesky decomposition according to LLT , with L = L′D
1

2 . In essence, this

should correspond to the algorithm proposed by Beebe and Linderberg in the context of the

decomposition of the ERI matrix [123].

Formulated recursively, the Cholesky decomposition of an input matrix V is computed as [122]:

• If dim(V) = 1, define L = V
1

2

• Determine P̂ as the permutation of 1 and j such that Vjj = maxi∈N{Vii}. Define then the

N ×N matrix U as

P̂VP̂T =: U =

(

U11 uT

u Ũ

)

(5.46)

• a) If U11 > θCD: compute the Cholesky decomposition of the (N − 1)× (N − 1) matrix

Ũ− 1
U11

uuT :

P̃(Ũ− 1

U11
uuT )P̃T = L̃′L̃′T (5.47)

Then define

L′ :=

( √
U11 0

1√
U11

P̃u L̃′

)

, P :=

(

1 0

0 P̃

)

P̂ (5.48)

b) If U11 ≤ θCD, define P = P̂ and L′ = 0. Stop.

The matrix L′ thus obtained obeys the relationPVPT = L′L′T , and it finally has to be permuted

back according to L = PTL′, such that LLT = V holds.

More explicitly, our implementation of this algorithm had the structure:

• Create record array P of original order of V’s diagonal elements, i.e. P [i] = i, for i ∈ N .

• Loop i ∈ (N − 1)

◦ Determine Vjj = maxk>i{Vkk}.

◦ If Vjj ≤ θCD, set M = rank(V) = i and exit loop.
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◦ Else, perform permutation P̂ of i-th and j-th row and column, keeping record of

permutation by swapping P [i] and P [j].

◦ Get v as {Vki | k > i}, i.e. the sub-diagonal part of the i-th column of V.

◦ Form submatrix Ṽ = V − 1
Vii

vvT .

◦ Determine Ṽjj = maxj>i{Ṽii} to obtain the permutation P̃.

◦ Form i-th column of preliminary, i.e. unpermuted L′′ according to L′′
ii =

√
Vii and

L′′
ki =

vk√
Vii

, k > i.

◦ Perform permutation P̃ of (i+ 1)-th and j-th row of L′′ to obtain L′.

End i loop

• If algorithm has not stopped for i ∈ (N − 1), which implies that rk(V) ≥ N − 1:

◦ If VNN > θCD, set L
′
NN =

√
VNN .

Finally, perform permutation L = PTL′ by permuting the rows back to the original order

according to the record P , i.e. switching the i-th and P [i]-th row for i ∈ N . The decomposition

threshold is taken as

θCD = ∆rel ·N ·max
i∈N

{Vii}, (5.49)

as proposed in [122], where ∆rel = 10−15 is the relative precision of a variable of double type.

Since it has been observed that in general most elements of L are larger than those in L, the

Cholesky factors are then scaled with the maximum element of the virtual Cholesky factor

according to

L = L · Lmax, L = L/Lmax, (5.50)

in order to equilibrate the distribution of magnitudes in both matrices, in view of their use in

the integral screening procedure.

Although the current implementation scales as O(N3), decomposition times have so far been

negligible for all investigated system, so that no optimization effort has been made. However,

since the pseudo-densities are sparse—for non-metallic systems—a linear scaling implementation

is feasible, as has been shown recently for the practically identical case of the one-particle density

matrix Po [89].

5.2.2 Screening prerequisites

The Schwarz matrices are computed in accordance with their definitions given in 5.1.3, but AO

indices are then converted to shell indices (cf. introduction in section 5.2), for instance
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Loop I ∈ NShl

Loop J ∈ NShl

QIJ = maxµ,ν∈I,J{|Qµν |}
XIj = maxµ∈I{|Xµj |}

End J

End I

In the same way, the centers and extents of untransformed charge distributions occurring in the

definitions (5.41) and (5.43) are given for shells IJ instead of AOs µν.

5.2.3 External screening for FTI

The pre-selection of significant FTI products according to the procedure described in section

(5.1.3), the so-called external screening, is performed rather straightforwardly:

Loop ia ∈ {ia | Zia ≥ θsparse}
Loop jb ∈ {jb | Zjb ≥ θsparse}, j ≤ i for bra-ket-symmetry

R′ = Ria,jb − (Extia + Extjb)

R′′ = Rib,ja − (Extib + Extja)

Near-field (R′ ≤ 1 and/or R′′ ≤ 1)

if (ZiaZjbZiaZjb >
1
2θext or ZiaZjbZibZja > θext)

Far-field (R′ > 1 and/or R′′ > 1)

if (
ZiaZjbZiaZjb

R′6 > 1
2θext or

ZiaZjb

R′3

ZibZja

R′′3 > θext)

→ record FTidx of i, a, j, b indices

if reached FTBatchSize → leave screening

End jb

End ia

Note that for Coulomb-type products half the threshold θext is used, since E
(2)
J is weighted by

a factor of 2 in the MP2 energy. The FTidx is built in such a way as to distinguish indices for

which the exchange-type estimate was significant from those where only the Coulomb estimate

was significant. Integrals are batched over the index i, such that for a given i all bras (ia| and
their associated kets |jb) are recorded. The maximum allowed batch size is set to half the total

RAM, in order to allow sufficient memory for treatment of HTI and associated arrays. In view

of the screening of HTI, an array of occurring (ij)-pairs is extracted from the FTidx.
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Subsequent to this screening, an auxiliary array Kidx is recorded and sorted so as to allow for

direct assignment between integrals (ib|ja) and (ia|jb), in order to perform the contraction of

(ia|jb)(ib|ja) products in an efficient manner. This is done according to:

Loop iajb ∈ FTidxK

record Tmp array of indices coded as iN3 + bN2 + jN + a,

along with Kidx array of running number k

End

Perform QuickSort of Tmp to increasing order

with parallel reordering of Kidx

FTidxK here denotes the subset of indices from FTidx for which the exchange estimate was

significant. Due to the reordering of Kidx in accord with the sorting of Tmp back to increasing

iN3 + aN2 + jN + b (i.e. the order in which the indices iajb occur in FTidx), for the k-th FTI,

the corresponding exchange integral (ib|ja) is simply that at position Kidx[k].

5.2.4 Internal screening for HTI

Having obtained the list FTidx of significant FTI, screening has to be performed for the HTI

required in their formation. In contrast to the external screening for the fully transformed

integrals, i.e. the final quantities that are required for the energy calculation, this screening deals

with the intermediary quantities required for the FTI, and is thus termed internal screening.

Here too, a batching scheme is necessary, and the maximum batch size is determined as 90% of

RAM remaining after allocation of all arrays from the external screening, in order to allow for

allocation of other minor arrays.

Ideally, the selection of required HTI would be performed by directly screening down from FTI

to HTI according to

Loop ia ∈ FTidx

Loop jb ∈ FTidxia

Loop σ ∈ {σ | Lσb ≥ θsparse}
if ZiaXjσLσb ≥ θint: record j, σ

End σ and jb

Loop jσ ∈ {jσ | recorded}
Loop λ ∈ {λ | Lλj ≥ θsparse}

if ZiaQλσLλj ≥ θint: record i, a, λ, σ

End λ

End jσ

End ia
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However, though this would in principle allow to preselect the minimum number of HTI for

the particular choice of internal screening threshold, this approach leads to significant technical

difficulties. Namely, given the similarity of the (ia|λσ) integrals for CDD-MP2 and the (µν|λσ)
from the AO-MP2 implementation of Doser [6, 7], it is desirable to use the highly efficient HTI

generation code previously developed in that context, after adaptation for our particular pur-

pose, as discussed in the next section. This requires that the HTidx be written as (λσ|ia) and
batched over bras, i.e. that all |ia) ket indices be recorded for a subset of the (λσ|. This clearly
cannot be obtained—at any rate not in an efficient, direct and dynamic way—using the above

loop structure, where the untransformed indices form the inner loop.

An alternative approach therefore had to be chosen, were screening is performed up from all

potentially significant HTI. In order to keep the number of integrals to a minimum, the transfor-

mation matrix L is used to preselect the HTI not merely by their estimated value, but according

to their weight in the transformation to TTI. Additionally to the Schwarz/R estimates described

in section 5.1.3, the (ij)-pairs extracted from the FTidx are used for coupling between left and

right charge distributions. Screening is then performed with the following loop structure:

Loop λσ ∈ ShellPairs, σ ≤ λ

Loop ia ∈ {ia | Zia ≥ θsparse}, ∀i ∈ FTidx

if ZiaQλσ ≥ θint: R
′
λσ,ia = Rλσ,ia − (Extλσ + Extia)

End ia

Loop j ∈ {j | Lλj ≥ θsparse}
Loop i ∈ (ij)− pairs

Loop a ∈ {a | R′
λσ,iarecorded}

Check for well-separatedness: R′ > 1

if ZiaQλσ

R′2 |LλjLσ,max| ≥ θint: record HTidx of λ, σ, i, a

if reached HTBatchSize: → leave screening

End a, i, j

End λσ

In spite of being a quadratic step, the determination of the reduced distances R′
λσ,ia before

entering the actual screening loop has such a small prefactor that it is by far more efficient

than repeated computation within the second loop. It should be obvious that R′ is used in

the estimate of a given HTI only in the case of well separatedness of the corresponding charge

distributions.
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5.2.5 Formation of the HTI

As mentioned in the previous section, the similarity of HTI in the CDD-MP2 and AO-MP2

methods called for the use of Doser’s very efficient implementation [6] of the first two transfor-

mations, after adaptations for our purpose. For technical reasons, in Doser’s implementation

the transformations from UTI to HTI are performed on the kets, i.e. from (µν|λσ) to (µν|λσ),
since this allows for maximum efficiency. In the case of AO-MP2, the integrals thus formed can

then be directly contracted to the MP2 energy according to equation (5.4), such that no further

problems arise. For CDD-MP2, however, in view of the further two transformations that are

required from HTI to FTI and which, for the reason just mentioned, are best performed on the

kets, the HTI need to be stored as (ia|λσ). Yet, as described in the previous section, the HTidx

has to be initially built for (λσ|ia), in order to be compatible with the aforementioned ket-

transformation scheme from UTI to HTI. In order to avoid an explicit transposition step from

(λσ|ia) to (ia|λσ), the code from Doser’s implementation had to be adapted for direct recording

of the HTI in the bra-transformed order upon transformation. A corresponding indexing array

HTidxT has thus to be written simultaneously to the recording. Further modifications of the

code were of a rather marginal character and mostly consisted of adapting the array handling

in the screening and transformation routines to our purpose. We thus give an overview of the

algorithm’s structure, but refer to [7] for further details

Loop λσ ∈ HTidx

Screening for required STI and UTI,

with formation of auxiliary arrays for transformation

1st transformation to (λσ|iν)

2nd transformation to (λσ|ia), but direct recording as (ia|λσ)
with simultaneous HTidxT formation

End λσ

5.2.6 Last transformations to FTI

The last transformations of the HTI to the FTI are in principle similar to the first and second,

although, in contrast to the screening down from HTI to STI and then UTI, the desired FTI

and present HTI are known, such that different possibilities open up for the screening scheme

of TTI intermediaries.

The ideal procedure, here again, would be the first one described above in section 5.2.4, with

a corresponding recording of auxiliary arrays of indices required in the transformation, i.e. an
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array T3aux of j to which a given |λσ) is transformed, according to

(ia|jσ) =
∑

λ∈HTidxTia

(ia|λσ)Lλj , ∀σ ∈ HTidxTia, ∀j ∈ T3auxλσ (5.51)

and an array T4aux of σ occuring in the last transformation

(ia|jb) =
∑

σ∈T4auxjb

(ia|jσ)Lσb, ∀jb ∈ FTidxia. (5.52)

Initial tests, however, revealed that this causes the screening step to be too expensive due to

the numerous allocations of individual auxiliary arrays, such that it was abandoned.

Given that the indices of HTI and FTI are known, an alternative to such a screening procedure

would be simply to get the lists J = {j | j ∈ FTidxia} and Σ = {σ | σ ∈ HTidxTia} and to

form the list of TTI as {jσ} = J ⊗ Σ, i.e. all possible jσ combinations. However, though this

saves significant screening time, this approach artificially increases the numbers of TTI to such

an extent that transformation time becomes dominant.

The procedure finally chosen is a compromise of both these approaches, where for the last

transformation an array T4aux is formed as defined previously, whereas the list of {j | j ∈
FTidxia} is recorded in view of the third transformation. The overall structure of the algorithm

for the transformation from HTI to FTI is then

Loop ia ∈ FTidx

Screening:

Loop jb ∈ FTidxia

Loop σ ∈ {σ | Lσb ≥ θsparse}
if ZiaXjσLσb > θint: record σ to T4auxjb

End σ, jb

Get list J = {j | j ∈ FTidxia}

3rd trafo:

Loop λσ ∈ HTidxTia

(ia|jσ) =∑j∈J(ia|λσ)Lλj

End λσ

4th trafo:

Loop jb ∈ FTidxia

(ia|jb) =∑σ∈T4auxjb
(ia|jσ)Lσb

End jb

End ia
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5.2.7 Contraction to MP2 energy

With the assignment array Kidx as defined in section 5.2.3, the contraction to the MP2 energy

reduces to a straightforward matter:

Loop iajb ∈ FTidx

running number k

(ia|jb) = FTidx[k]

(ib|ja) = FTidx[Kidx[k]]

E
(2)
J + = (ia|jb)(ia|jb), ×2 if i 6= j

E
(2)
K + = (ia|jb)(ib|ja), ×2 if i 6= j

End

E
(2)
0 = 2E

(2)
J − E

(2)
K

5.3 Results and discussion

The following sections give an account of the performance of the CDD-MP2 algorithm, as tested

on linear alkanes, chains of α-D-glucose (amylose), chains of DNA base pairs (adenine-thymine),

as well as the S22 test set of Hobza [124]. Although it is originally provided with benchmark

results to evaluate the accuracy of new methods devised for the calculation of interaction ener-

gies, the S22 set has here merely been used for its eclectic mix of systems in order to compare

the accuracy of CDD-MP2 interaction energies with respect to canonical MO-MP2.

Calculations have been performed on a computer cluster equiped with Intel Xeon E5620 (2.40

GHz) processors. The code was compiled using the C++/Fortran compilers provided by the

Intel Composer XE 2011.2.137 suite and its associated MKL library, the optimization level for

compilation was set to O3. All calculations were further based on the frozen core approximation,

a threshold of 10−10 for the determination of significant shell pairs, and the convergence criterion

of all underlying HF calculations was chosen as 10−7. The sparsity threshold below which matrix

elements were discarded was set to θsp = 10−9, unless indicated otherwise. For the evaluation of

transformed extents required in the Schwarz/R screening procedure, the untransformed extents

occurring in definition (5.43) were determined using a truncation criterion of 10−1 [12], and the

neglect threshold θ was chosen as 10−3.

The accuracy provided by the number of quadrature points in the numerical evaluation of the

Laplace transform integral has already been amply documented (see for instance [6,7,13]), such

that this matter has not been systematically investigated in the present work, and unless noted

otherwise, a fixed number of 5 quadrature points has been used as default setting in all cal-
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culations. Further, all data depending on the quadrature points, such as matrix sparsities and

integral numbers, has been taken from the first quadrature point, since it is usually the ”worst

case”.

The presentation begins with the sparsities of the Cholesky-factors, screening matrices and

pseudo-densities and then proceeds with integral numbers, accuracies, along with timings, after

which the gained insights are discussed and conclusions are drawn.

5.3.1 Matrix sparsities

The first issue that needs to be addressed for our present objective of reducing the scaling

exponent of MP2 is whether the (exponentially weighted) orbitals obtained through Cholesky

decomposition of the pseudo-densities matrices are actually local and thus have the potential

for application of integral screening. In order to demonstrate that this is so, table 5.1 gives the

numbers of significant elements of the scaled (see section 5.2.1) occupied and virtual Cholesky

factors L and L, as well as the screening matrix Z defined in section 5.1.3, for a variety of test

systems. We see that for linear alkanes or amylose chains with the basis sets 6-31G* or SVP, the

numbers of significant elements in the Cholesky factor matrices rapidly grow linearly with the

system size, which confirms that, as discussed in section 5.1.2, they represent energy-weighted

localized molecular orbitals. Accordingly, the screening matrix Z displays the same behaviour

and it can thus be anticipated that in conjunction with the distance-dependent estimates intro-

duced in section 5.1.3, the number of FTI products that will be pre-selected for computation

of the MP2 energy should rapidly display linear scaling with increasing system size. However,

we also notice that for the larger cc-pVTZ basis, as well as for the more bulky DNA systems

even with the smaller basis sets, the occupied Cholesky orbitals do not quite display the same

locality as the virtuals, and linear scaling of the significant matrix elements is not achieved in

these cases.

For comparison, table 5.2 shows the corresponding numbers of significant elements in the pseudo-

density matrices that served as input for the Cholesky decomposition. In essence, the exact same

trends are observed as for the sparsity of the Cholesky factors. The main difference merely lies

in the fact that in the problematic cases discussed above, it is the virtual rather than the occu-

pied pseudo-density that does not scale linearly. This is to be attributed to the aforementioned

”normalization” of the virtual Cholesky factor L by the maximum element Lmax (section 5.2.1),

such that the magnitudes of elements in the scaled LmaxL are shifted up. Aside from this,

however, we notice that the Cholesky decomposition indeed preserves the sparsity of the input

matrix, and in cases where the pseudo-density is sufficiently local, so are the obtained Cholesky

orbitals.
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5.3.2 Integral numbers and accuracy

Following the validation of principle of the Cholesky decomposition approach that was given in

the previous section, it has to be established whether the integral screening procedures described

in sections 5.2.3 and 5.2.4 allow to reduce the numbers of FTI as well as integrals required in

the transformation steps to linear, while retaining numerical accuracy.

To begin with, tables 5.3 and 5.4 display the numbers of preselected FTI products and their

scaling exponents with respect to the previous molecule, along with the numbers of (ij)-pairs

which are used as described in section 5.2.4. The tables further display the numbers of UTI,

STI and HTI that occur in the consecutive transformations to the FTI. The numbers of TTI are

not given, because due to the HTI being formed subset-wise, the third transformation cannot

be fully carried out to obtain explicitly formed (ia|jσ) integrals, but can only be performed

partially for each HTI batch. The FTI are thus formed successively according to

(ia|jb) =
NBatch
∑

B

∑

λ,σ∈B
(ia|λσ)LλjLσb =

NBatch
∑

B

∑

σ∈B
(ia|jσ)′Lσb, (5.53)

where the prime on (ia|jσ)′ serves to indicate that the TTI are actually only intermediary

summation entities.

Now, as can be seen from table 5.3, within the series of linear alkanes the number of pre-

selected FTI products and their associated numbers of (ij)-pairs rapidly achieve linear scaling.

The corresponding partially transformed integrals of the transformation steps from UTI to FTI

ultimately also scale linearly with system size, though significantly later than the FTI products.

Furthermore, as the integral transformation degree decreases, i.e. more indices run over the

AO basis rather than the Cholesky orbital basis, the integral numbers increase tremendously.

For instance, the numbers of UTI are two or three orders of magnitude larger than the FTI

numbers. Considering the less idealized test series consisting of amylose chains, whose integral

data is displayed in table 5.4, the observed trends are similar for the partially transformed

integrals, but differ substantially for the UTI. Though the fully transformed integral products

as well as the formed HTI and STI asymptotically scale linearly for the small 6-31G* and SVP

basis sets, the untransformed integrals do not achieve better than quadratic scaling, and their

scaling exponent eventually increases again. This seemingly anomalous behaviour of the UTI

numbers is to be ascribed to the batching scheme over FTI, which is described in section 5.2.3.

Namely, according to the transformation

(ia|jb) =
∑

µνλσ

LµiLνa(µν|λσ)LλjLσb (5.54)

a given integral (µν|λσ) enters into all (ia|jb), or within a screening scheme such as in the

present case, at least into a subset of the FTI. Therefore, as soon as the batching of FTI sets
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in, repeated computation of UTI that are required in the transformation to FTI belonging to

different batches becomes inevitable within our integral direct approach. Though the numbers

of UTI formed for a given FTI batch should eventually attain linear scaling in the asymptotic

regime, the prefactor of their total number is not the same between a system for which all

FTI can all be treated as a whole and a system requiring subdivision into two or more FTI

batches. Evaluation of the scaling exponent of the UTI number according to equation (2.62),

which presupposes a constant prefactor, thus leads to the observed inconsistency. In such a case

involving non-constant prefactors, equation (2.62) should be replaced by

α =
ln (Tb/Ta)− ln (Kb/Ka)

ln (Nb/Na)
, (5.55)

such that the evaluation of the true scaling exponent α is impossible as it requires knowledge

of the unknown prefactors Ka and Kb. Thus, for lack of any better data, the evaluation of all

scaling exponents here and in following cases shall yet be based on equation (2.62), bearing in

mind the limited meaningfulness of the data thus obtained.

All in all, we are forced to the conclusion that, though linear scaling of the number of UTI is in

principle possible, as could be shown for the case of linear alkanes, it is hardly achieveable for

realistic systems, where multiple FTI batches are required. For large basis sets, the situation

is further complicated by the fact that in these cases, as discussed in the previous section, the

pseudo-densities, and as a consequence the Cholesky orbitals, are only poorly localized. The

numerous successive screening steps that are necessary in the transformations to the FTI thus

lose efficiency in reducing the numbers of transformation intermediaries, and as can be seen

from the integral data for Amylose with cc-pVTZ, all integrals scale very unfavourably for the

systems that could be investigated.

As concerns the accuracy of the CDD-MP2 approach, tables 5.5, 5.6 and 5.7 display the errors in

MP2 total energies, as well as resolved into the Coulomb and exchange components E
(2)
J and E

(2)
K ,

for different numerical settings and basis sets. For the 6-31G* basis, the results given in table

5.5 show that errors are already within very reasonable bounds for the loose thresholds. Merely

the large amylose systems and DNA pairs call for the tighter thresholds to obtain sub-mHartree

accuracy. Also, because the errors in the Coulomb-type and exchange-type component have the

same sign in all these cases, they partially compensate each other upon combination of both

terms to total energies, due to the exchange part entering with a different sign than its Coulomb

counterpart (cf. equation (3.25)). We further notice that the error in E
(2)
J is larger than the

corresponding error in E
(2)
K , such that the total error is dominated by the former. Considering

the results for the larger basis sets SVP and cc-pVTZ, given in tables 5.6 and 5.7, respectively,

different trends become apparent for the errors in the Coulomb-like and exchange-like term. For

the latter, not only are the deviations reasonable for both threshold settings, but they are very

well-behaved in the sense that they increase almost linearly with system size, and tightening of

59



CHAPTER 5. CHOLESKY DECOMPOSED DENSITIES IN MP2

the screening thresholds by an order of magnitude also reduces the error by roughly an order

of magnitude. For the Coulomb-type component, however, the errors are not quite so well-

behaved, and we observe a rather unsystematic behaviour, which may be explained as follows.

On the one hand, as is to be seen in equation (5.12), the CDD-MP2 Coulomb type energy should

theoretically represent a lower bound to the exact E
(2)
J . Namely, since only positive summands

of the form (ia|jb)2 are added up, neglect of small elements in the summation causes

E
(2)
J,CDD < E

(2)
J,exact, (5.56)

such that one would expect the error in the Coulomb part to be always negative. On the other

hand, however, the FTI used in the contraction to the energy are not exact, being formed

themselves through an internal screening procedure that discards small contributions in the

consecutive transformations from UTI to FTI. They are thus affected by a certain numerical

error and we may write the FTI matrix (see equation (5.11)) as

M = Mexact +∆, (5.57)

where both the FTI matrix and the matrix ∆ of errors in the FTI are symmetric. Now, upon

calculation of the Coulomb-type energy according to

E
(2)
J = 2Tr

(

M2
)

= 2Tr
(

M2
exact

)

+ 4Tr (Mexact∆) + 2Tr
(

∆2
)

(5.58)

a strictly positive error Tr
(

∆2
)

= ||∆||2F ≥ 0 ensues, the squared Frobenius norm of the error

matrix. The overall result of these two antagonistic effects is a high sensitivity of the Coulomb-

like energy to the combination of screening thresholds. The number of FTI discarded by the

external screening and the precision with which the preselected FTI are formed appear to be

difficult to be balanced against each other, such that the results are numerically not very stable.

The first signs of this may be seen in table 5.6 for the case of amylose systems with the SVP basis

set. Going over from Amylose2 to Amylose4, for the looser threshold combination (left column),

we notice that the error in the Coulomb energy becomes smaller, which hints at the fact that

the additive error ||∆||2F starts to gain weight in compensating for the negative error arising in

Tr
(

M2
)

due to FTI neglect. For the very same systems with lower screening thresholds (right

column), the error in E
(2)
J actually becomes positive, indicating that in spite of a tighter internal

screening, the additive error now even prevails over the negative error. In this particular case,

the total accuracy provided by lower thresholds is actually poorer. This overcompensation of

the negative by the additive error component is further observed in table 5.7 for all systems with

the cc-pVTZ basis. In contrast to the well-behaved cases with the 6-31G* basis, where the errors

of E
(2)
J and E

(2)
K have same signs and thus partially cancel each other upon formation of total

energies, the Coulomb and exchange errors of different signs here mutually add up, resulting in

relatively poor overall accuracy of CDD-MP2 total absolute energies.
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Yet, the situation is improved for relative energies, which are more relevant for chemistry anyway,

as may be seen in table 5.8, where the MO-MP2 interaction energies of complexes from the

S22 test set [124] are listed together with the errors of the CDD-MP2 method with respect

to these reference values, along with the mean and standard deviation of the errors. For the

data set pertaining to the SVP basis, we notice that the loosest threshold combination already

provides chemical accuracy. Even for the largest complexes of the test set, such as 5, 6, 7

or 15, the deviation from the MO-MP2 reference interaction energy is well below 1 kcal/mol.

Going over to the next tighter combination, the errors become practically negligible, especially

when considering that they are smaller than the inherent error of MP2 as compared to high-

end methods like coupled cluster. For the case of the cc-pVTZ basis, the loose thresholds are

evidently inappropriate as is indicated by the large average error and standard deviation. We

notice in particular that the errors in the results are unacceptable for systems 5, 6, 7, 20 and

especially 21. Tightening of the thresholds by two orders of magnitude, however, substantially

improves the results and chemical accuracy is achieved for all systems except 5 and 7. For both

basis sets, we further notice from the last columns of both data sets, respectively, that upon

increasing the number of quadrature points in the Laplace integral evaluation, and imposing

very tight screening conditions, the numerical error can for all practical purposes be considered

as null.

We may thus draw the conclusion that the large errors affecting the absolute CDD-MP2 energies

due to the numerical imbalance of the Coulomb-like energy component largely cancel each other

out in the formation of energy differences. This is actually not so surprising, since it is to

be expected that the numerical error due to the screening scheme in two systems of similar

dimensions should be of similar magnitude and particularly of same sign, given that the additive

error in E
(2)
J showed the tendency to dominate over its negative counterpart. Upon formation

of energy differences, it thus seems logical that the overall errors should mutually cancel each

other to a large extent. In effect, this behaviour is analogous, though not as systematic, to

situations where RI-techniques are applied. Even though the deviations of RI-approximated

absolute energies are quite substantial, due to the incompleteness of the auxiliary basis (see also

section 6.4.2), experience has revealed that they compensate each other in relative enegies, such

that the application of RI is yet meaningful.

5.3.3 Timings

Finally, the central issue of calculation times shall be addressed. The discussion begins with a

comparison of total wall times for CDD-MP2 and conventional MO-MP2, the data of which is

given in table 5.9, in order to outrightly point out the problems that arise. This is followed by

a closer analysis of timings of the individual steps of the CDD-MP2 algorithm.

Now, as may be seen in table 5.9, for the homologous series of linear alkanes near-linear scaling
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is achieved with both the 6-31G* and SVP basis sets, though admittedly at a relatively late

point, considering that alkanes are idealized one-dimensional systems. Accordingly, the cross-

overs with MO-MP2 are situated at relatively large molecular sizes, namely between C40H82 and

C80H162 for 6-31G*, whereas it is barely below C80H162 for the SVP basis.

For alkanes with the larger cc-pVTZ basis and the somewhat bulkier amylose chains with all

three bases, however, the situation is far less favourable. In both cases the computational scaling

of CDD-MP2 does not get better than quadratic for the system sizes that could be investigated.

In the former case of alkanes with cc-pVTZ, the cross-over point again lies between C40H82

and C80H162, but due to the still high scaling exponent and prefactor the gains are rather

meager, as the overall calculation time for C80H162 is merely halved as compared to MO-MP2.

This relatively small gain is further mitigated by the fact that because of memory problems

due to the tremendously increasing numbers of integrals with tight numerical thresholds, these

calculations had to be performed using thresholds (7, 7, 9) (see definition in table 5.9) which,

though totally acceptable for 6-31G* and SVP, have been discussed in section 5.3.2 as producing

quite large errors in the absolute energies with cc-pVTZ.

For amylose chains, as already mentioned, only quadratic scaling is achieved with the 6-31G*

and SVP basis sets and in both cases the cross-over to conventional MO-MP2 is located between

Amylose8 and Amylose16. Although it has to be taken into consideration that the scaling that

was determined for the MO-MP2 references is smaller than the expected fifth order, such that

the timings of the large amylose chains that could not be computed explicitly are extrapolated

rather generously, the advantage of CDD-MP2 is again relatively small. With 6-31G*, the CDD-

MP2 calculation time of Amylose16 is roughly half as large as for the conventional method, and

only slightly improved with the SVP basis. For cc-pVTZ, the high scaling exponent of 3.6 results

in an explosion of computation time and the cross-over to MO-MP2 could not be reached.

At this point, computation times of DNA chains as representatives of model systems which

might be encountered in realistic situations would be of further interest. However, as is already

hinted at by the poor locality of the Cholesky orbitals for DNA systems (see section 5.3.1), the

problems that arise in the aforementioned test systems of alkanes and amylose chains are here

even worse. Though calculations on DNA1 and DNA2 were performed in order to determine

the method’s numerical accuracy, the rather delocalized nature of the Cholesky orbitals and

small extent of these systems logically do not allow for the distance based screening procedure

to discard enough integrals so as to reduce the computational scaling. Due to the ensuing

explosion of memory requirements and computation times, DNA4, DNA8 and higher elements

of the sequence of DNA base pairs, where the effects of integral screening on computational

scaling could be expected to reveal themselves, become utterly intractable even with the small

6-31G* and SVP bases. It is therefore not possible to discuss the trends that would arise within

this homologous series, such that the listing of calculation times of merely the first two elements
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is not deemed to be of particular use either. Suffice it to say that in these two cases for which

calculations could be performed, CDD-MP2 performs significantly slower than canonical MP2,

and that the cross-over point cannot be reached with the present implementation.

For a thorougher analysis of the situation, tables 5.10 to 5.15 display timings of the individual

steps of the CDD-MP2 algorithm for alkanes and amylose chains with the different basis sets. At

the outset, it has to be remarked that due to the roundoff of wall times to full seconds, very fast

steps such as the Cholesky decomposition or contraction to the MP2 energy display irregular

fluctuations that only level out when this roundoff becomes negligible in calculations on larger

systems. Furthermore, though in the current implementation the Cholesky decomposition and

external screening have complexities of O(N3) and O(N2), respectively, their contributions to

the total calculation times are negligible in all systems that could be investigated, such that no

optimization of these steps was deemed necessary so far.

For linear alkanes, we notice that all steps except the aforementioned decomposition and external

screening asymptotically achieve near-linear scaling. In the case of 6-31G* (table 5.10), the

internal screening for UTI and their evaluation clearly dominate the calculation time. These

are followed by the first two transformations, whereas the portion of the remaining steps in the

calculation time is relatively small. As is to be expected from the previously discussed behaviour

of integral numbers within the sequence of transformations from UTI to FTI, transformation

times decrease gradually from the first to the last transformation. Yet, we notice that in contrast

to the first three transformations, the last one does not achieve fully linear scaling. Going over to

the slightly larger SVP basis (table 5.11), the trends in the individual scaling exponents remain

largely the same, though it is the integral screening for UTI that here becomes the most time-

demanding step due to its not fully linear scaling. Here again, all transformations nearly achieve

linear scaling, except for the fourth transformation (see explanation below) which, however, still

represents less than 2% of the total time.

The corresponding data for the series of amylose chains with the 6-31G* and SVP bases is given

in tables 5.13 and 5.14, respectively. For both cases, in accordance with the previously discussed

overall scalings given in table 5.9, all steps representing significant portions of the total time

achieve only quadratic asymptotic scaling. With the 6-31G* basis, merely the first and third

transformation attain distinctly sub-quadratic scaling. Moreover, in contrast to the previous

trend of decreasing transformation time, the last transformation here experiences a dramatic

surge of execution time and exhibits a nearly cubic scaling exponent. Together with the second

internal screening step for TTI intermediaries, these steps alone make up for nearly 30% of the

total time. Similarly to the case of multiple UTI formations discussed previously, this behaviour

is caused by the batching scheme over HTI. Namely, the screening procedure described in section

5.2.6, which is required to perform the last transformations as efficiently as possible, has to be

gone through for every batch. Therefore, although this screening is implemented in such a
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way that it should scale linearly for sparse enough screening matrices, the prefactor of its total

execution time is not constant but depends on the number of HTI batches that are required.

Accordingly, as has already been discussed in section 5.3.2 in the context of integral numbers,

the true scaling exponents cannot be determined, and the observed inconsistencies are due to

the use of equation 2.62 for their evaluation.

The fact that HTI are handled one subset at a time has further repercussions on the last

transformation. Namely, for a given bra (ia| with its associated set of (ia|λσ) integrals in a

given HTI batch B, the set J = {j | j ∈ FTidxia} for which transformations

(ia|jσ)′ =
∑

λ∈B
(ia|λσ)Lλj

are performed is unique. Recalling equation (5.53), (ia|jσ)′ represents an intermediary summa-

tion entity rather than a fully formed TTI. Now, due to J being unique, for a linearly scaling total

number of HTI and sparse enough occupied Cholesky factor L, the third transformation, even

performed successively, scales linearly, as is observed. However, some of the σ indices do occur

repeatedly in different HTI batches, such that when more than one HTI batch is needed, some

combinations of (ia|jσ)′-indices arise multiple times, and thus need to be addressed repeatedly

in the final transformation

(ia|jb) =
∑

σ∈T4auxjb

(ia|jσ)′Lσb

which is performed successively for each HTI batch. In effect, the prefactor of this transforma-

tion step also varies with the number of HTI batches, such that equation (2.62) is here again

only of limited validity, and we accordingly observe an unsystematic, increasing behaviour of the

scaling exponents. Going over to the SVP basis (table 5.14), the same shift of the computational

time of individual steps is observed as in the case of alkanes, and the screening for UTI assumes

a dominant role in the total computation time, followed by the UTI evaluation. Similarly to

the 6-31G* basis, the first and third transformations here again scale more efficiently than the

second and fourth, although the differences are less pronounced, especially for the two last trans-

formations. In particular, we note that the fourth transformation here takes considerably less

time than with 6-31G*.

For the cc-pVTZ basis, timings of individual steps for linear alkanes as well as amylose chains

(tables 5.12 and 5.15) exhibit the same tendencies that have just been discussed. In both cases,

the high scaling exponents of the UTI screening, UTI evaluation and the first two transforma-

tions, which by themselves constitute up to 75% of the total computational time, account very

well for the overall scaling exponent. Also, the second internal screening for TTI intermediaries

and last transformation again display abnormally high scaling exponents which, as discussed in

the previous paragraph, are due to the dependence of these steps’ prefactors on the numbers of

HTI batches.
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5.3.4 Conclusion

The overall picture that emerges from the very mitigated results presented in the foregoing

sections is that, in spite of promising features, the CDD-MP2 method does not live up to ex-

pectations and—at least in its current implementation—is clearly not fit for MP2 calculations

of large molecules. Though it could be shown for the case of linear alkanes as idealized one-

dimensional systems and with small basis sets that the approach is in principle valid to achieve

asymptotic linear scaling of the computational effort, the applicability to systems of realistic

size with large bases is severely hampered by the technical problems that arise. In spite of

the fact that the numbers of preselected FTI in general rapidly scale efficiently, such that the

time required for contraction to the energy in itself becomes negligible, the successive integral

preselection steps required for the transformation intermediaries from UTI to FTI lead to long

”screening tails” and to a late onset of overall linear scaling even for the one-dimensional case.

For compact systems such as amylose chains or DNA base pairs, and particularly in the case

of large basis sets, the poorer locality of the pseudo-density matrices, and accordingly of the

Cholesky orbitals, further adds to the difficulties and in these cases the overwhelming computa-

tional effort associated with the internal screenings and the quadruple integral transformation

makes it impossible to reach the linear scaling regime in practice. Due to the associated large

computational prefactor for large systems and basis sets, the performance gains as compared to

conventional MO-MP2 are relatively small, and in some cases cross-over points could not even

be reached.

Apart from these performance problems, the approach was discovered to have the additional flaw

of being numerically unstable for the formation of the Coulomb-type component E
(2)
J of the MP2

energy. Namely, whereas the negative error component of E
(2)
J due to the discarding of negligible

FTI products seems to correlate well with the choice of external screening threshold, the error

induced by the internal screening in the finally formed FTI propagates tremendously over the

four consecutive transformations, resulting in a large overall deviation in E
(2)
J and thus insuffi-

cient accuracy of total absolute energies with practicable screening thresholds. Even though the

overall accuracy is in principle fully tunable through the numerical settings, the minimization

of this additive error component would call for internal screening thresholds and enlargements

of the distribution extents that utterly annihilate any prospects of reducing the computational

effort and obtaining performance improvements over conventional implementations. Despite the

fact that this error was shown to partially cancel upon forming energy differences, such that rela-

tive energies on the average display very reasonable accuracy even with relatively loose screening

thresholds, this trait remains problematic, be it only because it severely limits the reliability of

CDD-MP2 absolute energies for use in basis set limit extrapolation schemes.

As to possible approaches to tackle the encountered problems, one might be inclined to point
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out that according to section 5.1.2, the transformation matrices used within CDD-MP2 need

not necessarily be obtained through Cholesky decomposition of the pseudo-density matrices,

but can also be formed from any other set of localized molecular orbitals. This might result

in sparser transformation matrices that would allow for more efficient screening. Additional

improvements of the performance can also be obtained from a parallel implementation, which

has already been undertaken but will only be concluded upon combination with a parallelized

version of the UTI evaluation algorithm, which will be the object of future work. Furthermore,

some of the arising difficulties are directly related to the integral batching that is inevitable

within the chosen integral direct approach, such that an integral indirect implementation would

circumvent some of these problems.

However, in light of the numerical problems inherent to the approach, the potential improvements

brought by alternative transformation matrices obtained from other local molecular orbitals are

questionable, since a reduction of integral numbers through the use of sparser screening matrices

can only come at the cost of further losses in numerical accuracy. Also, though the parallelized

CDD-MP2 algorithm can be anticipated to be more efficient, it would merely reduce the over-

all prefactor and hardly touch at the deeper rooted problems due to the observed high scaling

exponents with large systems. Finally, due to the large numbers of UTI and tremendous effort

involved in the quadruple integral transformation, an integral indirect algorithm only makes

sense in conjunction with a decomposition of the integral matrices, such that both issues of

storage requirements and transformation cost are solved. The logical consequence of this is the

RI-CDD-MP2 method that is discussed in chapter 6. Also, a promising alternative to the RI

integral decomposition approach is the method specific Cholesky decomposition investigated in

chapter 7.
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Molecule
6-31G* SVP cc-pVTZ

L Sc. L Sc. Z Sc. L Sc. L Sc. Z Sc. L Sc. L Sc. Z Sc.

C10H22 67 - 197 - 47 - 76 - 249 - 65 - 183 - 1741 - 176 -

C20H42 242 1.8 717 2.0 185 2.0 271 2.0 893 2.0 249 2.0 701 1.9 6389 1.9 675 2.0

C40H82 915 1.9 2650 2.0 655 1.8 1022 2.0 3230 1.9 934 1.9 2701 2.0 18808 1.6 2645 2.0

C80H162 3171 1.8 7855 1.6 1678 1.4 3908 2.0 9262 1.6 2959 1.7 10076 1.9 47672 1.4 10177 2.0

C160H322 7903 1.3 18511 1.2 3724 1.2 13513 1.8 21795 1.2 7150 1.3 30415 1.6 111118 1.2 30927 1.6

Amylose1 67 - 197 - 56 - 76 - 249 - 65 - 184 - 1385 - 173 -

Amylose2 242 1.8 717 2.0 203 2.0 271 2.0 893 2.0 232 2.0 656 2.0 4938 2.0 617 2.0

Amylose4 915 1.9 2650 2.0 768 2.0 1022 2.0 3230 1.9 875 2.0 2472 2.0 17828 1.9 2325 2.0

Amylose8 3171 1.8 7855 1.6 2751 1.9 3908 2.0 9262 1.6 3377 2.0 9564 2.0 53258 1.6 9018 2.0

Amylose16 7903 1.3 18511 1.2 7025 1.4 13513 1.8 21795 1.2 11453 1.8 37137 2.0 130154 1.3 35214 2.0

Amylose32 17375 1.1 39828 1.1 15570 1.2 34625 1.4 46788 1.1 28824 1.3 - - - - - -

DNA1 505 - 1561 - 427 - 549 - 1791 - 470 - 1312 - 9777 - 1233 -

DNA2 2368 2.0 7118 2.0 1982 2.0 2532 2.0 7845 2.0 2147 2.0 6002 2.0 42145 1.9 5616 2.0

DNA4 10201 1.9 29123 1.9 8509 2.0 10834 2.0 31039 1.9 9142 2.0 25587 2.0 168312 1.9 23891 2.0

DNA8 39566 1.9 92606 1.6 33840 1.9 44085 2.0 96923 1.6 37355 2.0 - - - - - -

Table 5.1: Numbers [in 102] of elements of magnitude ≥ 10−9 in the scaled (cf. section 5.2.1) Cholesky factors L and L and screening

matrix Z, along with scaling exponents with respect to previous molecule, for linear alkanes, α-D-glucose chains (amylose) and DNA base

pairs (adenine-thymine) with the indicated basis sets; First quadrature point.
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Molecule
6-31G* SVP cc-pVTZ

P Sc. P Sc. P Sc. P Sc. P Sc. P Sc.

C10H22 285 - 285 - 535 - 547 - 3318 - 3642 -

C20H42 1099 2.0 1116 2.0 2034 2.0 2105 2.0 11772 1.9 13822 2.0

C40H82 3403 1.6 4133 1.9 6510 1.7 8014 2.0 33846 1.6 53035 2.0

C80H162 8070 1.3 10983 1.4 16285 1.3 24228 1.6 84609 1.3 184130 1.8

C160H322 17405 1.1 24687 1.2 35679 1.1 57551 1.3 195605 1.2 501876 1.5

Amylose1 416 - 416 - 520 - 520 - 2787 - 2788 -

Amylose2 1513 2.0 1513 2.0 1866 2.0 1866 2.0 9942 2.0 9960 2.0

Amylose4 5717 2.0 5761 2.0 6958 2.0 7056 2.0 36624 2.0 37558 2.0

Amylose8 17051 1.6 21147 1.9 21934 1.7 26440 1.9 116683 1.7 145262 2.0

Amylose16 39808 1.2 55413 1.4 57023 1.4 79588 1.6 312060 1.4 518443 1.9

Amylose32 85341 1.1 123975 1.2 128743 1.2 192148 1.3 - - - -

DNA1 3328 - 3352 - 3830 - 3906 - 19839 - 20392 -

DNA2 15460 2.0 15674 2.0 17260 2.0 17739 2.0 87546 2.0 90962 2.0

DNA4 65138 2.0 67480 2.0 71614 2.0 75369 2.0 359407 2.0 383398 2.0

DNA8 208597 1.6 270171 2.0 242471 1.7 303476 2.0 - - - -

Table 5.2: Numbers [in 102] of elements of magnitude ≥ 10−9 in the pseudo-density matrices P and P, along with scaling exponents with

respect to previous molecule, for linear alkanes, α-D-glucose chains (amylose) and DNA base pairs (adenine-thymine) with the indicated

basis sets; First quadrature point.

68



5.3.
R
E
S
U
L
T
S
A
N
D

D
IS
C
U
S
S
IO

N

Basis Molecule N UTI Sc. STI Sc. HTI Sc. FTI Sc. (ij) Sc.

6-31G*

C10H22 194 235 - 61 - 47 - 6 - 496 -

C20H42 384 1095 2.3 401 2.8 298 2.7 20 1.8 1779 1.9

C40H82 764 4174 1.9 1552 2.0 1025 1.8 47 1.3 4558 1.4

C80H162 1524 11120 1.4 3980 1.4 2507 1.3 103 1.1 10091 1.2

C160H322 3044 24928 1.2 8829 1.2 5467 1.1 215 1.1 21167 1.1

SVP

C10H22 250 549 - 120 - 96 - 13 - 496 -

C20H42 490 2505 2.3 783 2.8 559 2.6 49 1.9 1852 2.0

C40H82 970 9528 2.0 3180 2.1 1932 1.8 122 1.3 5414 1.6

C80H162 1930 26212 1.5 8341 1.4 4759 1.3 269 1.1 12467 1.2

C160H322 3850 59702 1.2 18688 1.2 10396 1.1 561 1.1 26563 1.1

cc-pVTZ

C10H22 608 14483 - 1447 - 1229 - 72 - 496 -

C20H42 1188 63258 2.2 9297 2.8 6613 2.5 226 1.7 1847 2.0

C40H82 2348 230774 1.9 35949 2.0 21122 1.7 530 1.2 5119 1.5

C80H162 4668 614045 1.4 92185 1.4 50940 1.3 1133 1.1 11624 1.2

Table 5.3: Numbers of integrals [in 106] for all partial transformations and numbers of (ij)-pairs, along with scaling exponents with

respect to previous molecule, for linear alkanes with the indicated basis sets; First quadrature point; numerical thresholds: θext = 10−7,

θint = 10−7, θsp = 10−9.
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Basis Molecule N UTI Sc. STI Sc. HTI Sc. FTI Sc. (ij) Sc.

6-31G*

Amylose1 204 498 - 115 - 87 - 15 - 666 -

Amylose2 389 2771 2.7 914 3.2 693 3.2 110 3.1 2346 2.0

Amylose4 759 12278 2.2 5842 2.8 4271 2.7 374 1.8 8758 2.0

Amylose8 1499 47627 2.0 24524 2.1 16041 1.9 868 1.2 25539 1.6

Amylose16
a 2979 250208 2.4 65294 1.4 40434 1.3 1875 1.1 59188 1.2

SVP

Amylose1 228 640 - 142 - 110 - 19 - 666 -

Amylose2 432 3468 2.6 1059 3.1 822 3.1 131 3.0 2346 2.0

Amylose4 840 15205 2.2 6049 2.6 4511 2.6 454 1.9 8771 2.0

Amylose8 1656 56974 1.9 23169 2.0 15658 1.8 1068 1.3 25974 1.6

Amylose16
a 3288 280618 2.3 59713 1.4 38822 1.3 2322 1.1 60571 1.2

cc-pVTZ

Amylose1 528 13781 - 1501 - 1292 - 123 - 666 -

Amylose2 998 70349 2.6 11050 3.1 9102 3.1 850 3.0 2346 2.0

Amylose4
a 1938 818125 3.7 67373 2.7 49820 2.6 2948 1.9 8778 2.0

a Onset of FTI batching

Table 5.4: Numbers of integrals [in 106] for all partial transformations and numbers of (ij)-pairs, along with scaling exponents with

respect to previous molecule, for α-D-glucose chains (amylose) with the indicated basis sets; First quadrature point; numerical thresholds:

θext = 10−7, θint = 10−7, θsp = 10−9.
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Molecule N
∆E (7, 7, 9) ∆E (8, 8, 9)

TOTAL Coulomb Exchange TOTAL Coulomb Exchange

C10H22 194 -45.91 -80.92 -35.01 -13.06 -16.18 -3.12

C20H42 384 -171.19 -270.77 -99.57 -62.05 -72.66 -10.61

C40H82 764 -427.78 -657.54 -229.76 -163.52 -189.66 -26.15

C80H162 1524 -934.66 -1423.46 -488.79 -364.75 -421.58 -56.82

Amylose1 204 -5.77 -22.47 -16.70 -0.33 -1.49 -1.16

Amylose2 389 -78.64 -148.84 -70.21 -9.52 -15.47 -5.95

Amylose4 759 -446.49 -636.33 -189.83 -150.37 -169.29 -18.92

Amylose8 1499 -1305.11 -1753.60 -448.48 -530.38 -577.58 -47.19

DNA1 579 -259.68 -396.78 -137.11 -102.97 -128.32 -25.35

DNA2 1252 -1335.67 -1919.00 -583.33 -471.24 -555.70 -84.46

Table 5.5: Errors [µHartree] of CDD-MP2 total energy as well as Coulomb and exchange parts,

with respect to canonical MO-MP2 reference (∆EX = E
(2)
X,Ref − E

(2)
X,CDD) for linear alkanes, α-

D-glucose chains (amylose) and DNA base pairs (adenine-thymine) with the 6-31G* basis set;

5 quadrature points; numbers (k, l, m) indicate numerical thresholds θext = 10−k, θint = 10−l,

θsp = 10−m.

Molecule N
∆E (7, 7, 9) ∆E (8, 8, 9)

TOTAL Coulomb Exchange TOTAL Coulomb Exchange

C10H22 250 -34.92 -85.79 -50.87 -9.18 -13.50 -4.32

C20H42 490 -117.18 -260.29 -143.11 -31.66 -46.97 -15.31

C40H82 970 -308.18 -634.72 -326.54 -105.87 -143.57 -37.70

Amylose1 228 -13.34 -43.94 -30.61 -1.13 -3.89 -2.76

Amylose2 432 -44.30 -136.21 -91.91 -6.12 -15.53 -9.41

Amylose4 840 179.39 -55.45 -234.84 194.49 168.63 -25.86

DNA1 625 -6.68 -169.25 -162.57 -14.09 -37.97 -23.88

DNA2 1332 337.60 -361.06 -698.66 371.59 275.97 -95.61

Table 5.6: Errors [µHartree] of CDD-MP2 total energy as well as Coulomb and exchange parts,

with respect to canonical MO-MP2 reference (∆EX = E
(2)
X,Ref − E

(2)
X,CDD) for linear alkanes,

α-D-glucose chains (amylose) and DNA base pairs (adenine-thymine) with the SVP (VDZ**)

basis set; 5 quadrature points; numbers (k, l, m) indicate numerical thresholds θext = 10−k,

θint = 10−l, θsp = 10−m.
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Molecule N
∆E (7, 7, 9) ∆E (8, 8, 9)

TOTAL Coulomb Exchange TOTAL Coulomb Exchange

C10H22 608 88.86 -139.17 -228.03 -16.32 -37.69 -21.37

C20H42 1188 837.54 221.05 -616.50 513.01 445.70 -67.30

Amylose1 528 -14.95 -183.38 -168.43 -8.60 -26.33 -17.73

Amylose2 998 1197.14 718.69 -478.44 168.02 115.01 -53.01

Amylose4 1938 5836.13 4714.62 -1121.51 - - -

DNA1 1428 5190.63 4411.45 -779.18 2250.67 2102.36 -148.31

Table 5.7: Errors [µHartree] of CDD-MP2 total energy as well as Coulomb and exchange parts,

with respect to canonical MO-MP2 reference (∆EX = E
(2)
X,Ref − E

(2)
X,CDD) for linear alkanes, α-

D-glucose chains (amylose) and DNA base pairs (adenine-thymine) with the cc-pVTZ basis set;

5 quadrature points; numbers (k, l, m) indicate numerical thresholds θext = 10−k, θint = 10−l,

θsp = 10−m.
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Complex Eint

∆Eint (SVP)
Eint

∆Eint (cc-pVTZ)

5; 6, 6, 9 5; 8, 8, 9 6;10,10,12 5; 6, 6, 9 5; 8, 8, 9 6;10,10,12

01. Ammonia dimer -2.011 0.011 0.001 0.000 -2.774 -0.130 -0.002 0.000

02. Water dimer -4.263 0.004 0.001 0.000 -4.434 0.001 -0.003 0.000

03. Formic acid dimer -14.723 0.013 -0.005 -0.001 -16.891 0.065 -0.013 -0.003

04. Formamide dimer -12.042 0.016 0.000 0.000 -14.247 0.073 -0.010 0.000

05. Uracil dimer (H-bonded) -16.571 -0.173 -0.068 -0.016 -18.741 -4.706 -1.778 -0.032

06. 2-Pyridoxine 2-aminopyridine -14.220 -0.258 -0.069 -0.011 -15.907 -4.382 -0.335 -0.021

07. Adenine-thymine (Watson-Crick) -13.033 -0.302 -0.093 -0.012 -14.919 -4.644 -1.668 -0.038

08. Methane dimer -0.033 0.024 0.001 0.000 -0.317 -0.128 -0.001 0.000

09. Ethene dimer -0.243 -0.008 -0.006 -0.001 -1.150 -0.326 -0.018 -0.002

10. Benzene-methane -0.500 0.023 -0.016 -0.003 -1.410 -0.466 -0.013 -0.007

11. Benzene dimer (parallelly displaced) -1.534 -0.067 -0.056 -0.007 -3.760 -1.666 -0.095 -0.024

12. Pyrazine dimer -3.049 -0.075 -0.092 -0.014 -5.435 -0.243 -0.135 -0.043

13. Uracil dimer (stack) -5.693 -0.051 -0.052 -0.015 -9.089 -0.925 -0.058 -0.020

14. Indole-benzene (stack) -3.292 -0.095 -0.062 -0.008 -6.428 -3.039 -0.087 -0.018

15. Adenine-thymine (stack) -7.736 -0.100 -0.063 -0.013 -12.287 -2.409 -0.073 -0.021

16. Ethene-ethyne -0.917 0.030 -0.002 0.000 -1.426 -0.149 -0.009 -0.001

17. Benzene-water -1.964 -0.028 -0.038 -0.011 -2.927 -0.129 -0.033 -0.016

18. Benzene-ammonia -1.188 -0.017 -0.027 -0.007 -2.127 -0.236 -0.020 -0.009

19. Benzene-HCN -3.021 0.013 -0.040 -0.007 -4.600 -0.524 -0.056 -0.009

20. Benzene dimer (T-shape) -1.633 0.007 -0.053 -0.006 -3.004 -1.864 -0.095 -0.019

21. Indole-benzene (T-shape) -4.024 -0.015 -0.053 -0.005 -6.155 -6.076 -0.109 -0.021

22. Phenol dimer -5.640 -0.111 -0.079 -0.014 -6.707 -1.978 -0.132 -0.026

Mean error -0.053 -0.040 -0.007 -1.540 -0.216 -0.015

Sample standard deviation 0.091 0.032 0.006 1.884 0.494 0.013

Table 5.8: MO-MP2 interaction energies [kcal/mol] (counterpoise corrected) and errors of CDD-MP2 interaction energies with respect to MO-MP2

reference (∆Eint = E
(2)
int,Ref − E

(2)
int,CDD), along with mean errors and standard deviations, for the S22 test set with the SVP and cc-pVTZ basis sets

and the indicated numerical settings. The numbers m;n, o, p stand for m quadrature points and thresholds θext = 10−n, θint = 10−o, θsp = 10−p,

respectively.
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Basis Molecule N tCDD Sc. tMO Sc.

6-31G*

C10H22 194 470 - 42 -

C20H42 384 2483 2.4 290 2.8

C40H82 764 9900 2.0 5473 4.3

C80H162 1524 26477 1.4 104442 a 4.4

C160H322 3044 68748 1.4 2192294 a 4.4

Amylose1 204 745 - 84 -

Amylose2 389 5714 3.2 849 3.6

Amylose4 759 35259 2.7 10243 3.7

Amylose8 1499 173700 2.3 118606 3.6

Amylose16 2979 778829 2.2 1404545 a 3.6

SVP

C10H22 250 1620 - 48 -

C20H42 490 9161 2.6 575 3.7

C40H82 970 38122 2.1 8693 4.0

C80H162 1930 120290 1.7 134110 a 4.0

C160H322 3850 333675 1.5 2090245 a 4.0

Amylose1 228 1798 - 84 -

Amylose2 432 13659 3.2 1036 3.9

Amylose4 840 84796 2.7 16154 4.1

Amylose8 1656 450376 2.5 251884 a 4.1

Amylose16 3288 1658424 1.9 4157621 a 4.1

cc-pVTZ

C10H22 608 27427 - 1639 -

C20H42 1188 154391 2.6 14174 3.2

C40H82 2348 715438 2.3 284035 a 4.4

C80H162 4668 2886367 b 2.0 5840847 a 4.4

Amylose1 528 27152 - 1515 -

Amylose2 998 211859 3.2 25065 4.4

Amylose4 1938 2327338 3.6 467098 a 4.4

a Extrapolated from previous molecule with indicated scaling exponent

b Extrapolated from previous molecule using indicated scaling exponent

from first quadrature point

Table 5.9: Total Wall times [s] of CDD-MP2 and conventional MO-MP2 along with scaling

exponents with respect to previous molecule for calculations on linear alkanes and α-D-glucose

chains (amylose) with the indicated basis sets; 5 quadrature points; numerical thresholds: θext =

10−7, θint = 10−7, θsp = 10−9.
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C10H22 C20H42 C40H82 C80H162 C160H322
a

Scaling
(194) (384) (764) (1524) (3044)

TOTAL 470 2483 9900 26477 68748 2.4 2.0 1.4 1.4

Cholesky dec. 0 1 7 45 347 - 2.8 2.7 3.0

External scr. FTI 4 18 75 288 1508 2.2 2.1 1.9 2.4

Internal scr. HTI 5 87 579 1742 4948 4.2 2.8 1.6 1.5

Internal scr. UTI 56 329 1588 4460 12591 2.6 2.3 1.5 1.5

Make UTI 198 807 3203 7495 17064 2.1 2.0 1.2 1.2

1st transfo. 48 398 1479 3849 8898 3.1 1.9 1.4 1.2

2nd transfo. 54 386 1466 3922 8649 2.9 1.9 1.4 1.1

Screening TTI 9 55 166 709 1712 2.7 1.6 2.1 1.3

3rd transfo. 22 113 368 799 1837 2.4 1.7 1.1 1.2

4th transfo. 8 41 119 325 946 2.4 1.5 1.5 1.5

Contraction 1 0 2 4 9 - - 1.0 1.2

a Onset of HTI batching

Table 5.10: Wall times [s] of total calculation and essential steps of the CDD-MP2 algorithm for

linear alkanes, along with scaling exponents between consecutive molecules, for the 6-31G* basis

set. The numbers in parentheses denote numbers N of basis functions; 5 quadrature points;

numerical thresholds: θext = 10−7, θint = 10−7, θint = 10−9.
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C10H22 C20H42 C40H82 C80H162
a C160H322

Scaling
(250) (490) (970) (1930) (3850)

TOTAL 1620 9161 38122 120290 333675 2.6 2.1 1.7 1.5

Cholesky dec. 0 0 10 86 712 - - 3.1 3.1

External scr. FTI 7 32 141 601 3760 2.3 2.2 2.1 2.7

Internal scr. HTI 18 309 2566 9560 28948 4.2 3.1 1.9 1.6

Internal scr. UTI 224 1652 8321 31350 93520 3.0 2.4 1.9 1.6

Make UTI 668 3057 11091 29255 69662 2.3 1.9 1.4 1.3

1st transfo. 262 1667 7075 19563 47224 2.7 2.1 1.5 1.3

2nd transfo. 154 1085 4067 12636 31848 2.9 1.9 1.6 1.3

Screening TTI 27 126 471 2435 9160 2.3 1.9 2.4 1.9

3rd transfo. 42 301 1100 2784 6722 2.9 1.9 1.3 1.3

4th transfo. 22 120 299 1536 4987 2.5 1.3 2.4 1.7

Contraction 0 2 5 10 19 - 1.3 1.0 0.9

a Onset of HTI batching

Table 5.11: Wall times [s] of total calculation and essential steps of the CDD-MP2 algorithm

for linear alkanes, along with scaling exponents between consecutive molecules, for the SVP

(VDZ**) basis set; The numbers in parentheses denote numbers N of basis functions; 5 quadra-

ture points; numerical thresholds: θext = 10−7, θint = 10−7, θint = 10−9.
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C10H22 C20H42
a C40H82

Scaling
(608) (1188) (2348)

TOTAL 26670 153471 829885 2.6 2.5

Cholesky dec. 2 17 145 3.2 3.1

External scr. FTI 95 418 1765 2.2 2.1

Internal scr. HTI 157 2996 31514 4.4 3.5

Internal scr. UTI 2435 19581 136609 3.1 2.9

Make UTI 10381 45892 172215 2.2 1.9

1st transfo. 7102 39037 164153 2.5 2.1

2nd transfo. 3217 22783 122302 2.9 2.5

Screening TTI 345 4386 75190 3.8 4.2

3rd transfo. 471 3630 12736 3.0 1.8

4th transfo. 480 5758 74097 3.7 3.7

Contraction 4 22 53 2.5 1.3

a Onset of HTI batching

Table 5.12: Wall times [s] of total calculation and essential steps of the CDD-MP2 algorithm

for linear alkanes, along with scaling exponents between consecutive molecules, for the cc-pVTZ

basis set; The numbers in parentheses denote numbers N of basis functions; 5 quadrature points;

numerical thresholds: θext = 10−7, θint = 10−7, θint = 10−9.
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Amylose1 Amylose2 Amylose4
a Amylose8 Amylose16

Scaling
(204) (389) (759) (1499) (2979)

TOTAL 745 5714 35259 173700 778829 3.2 2.7 2.3 2.2

Cholesky dec. 0 1 6 41 352 - 2.7 2.8 3.1

External scr. FTI 11 81 305 1161 5461 3.1 2.0 2.0 2.3

Internal scr. HTI 5 101 1857 13574 47362 4.7 4.4 2.9 1.8

Internal scr. UTI 70 601 4385 20574 68552 3.3 3.0 2.3 1.8

Make UTI 287 1517 6279 23441 96434 2.6 2.1 1.9 2.1

1st transfo. 102 925 6035 27943 80333 3.4 2.8 2.3 1.5

2nd transfo. 81 937 6194 25312 99258 3.8 2.8 2.1 2.0

Screening TTI 22 353 2709 24978 188104 4.3 3.0 3.3 2.9

3rd transfo. 34 424 3267 9704 24979 3.9 3.1 1.6 1.4

4th transfo. 38 370 2299 18736 131560 3.5 2.7 3.1 2.8

Contraction 1 4 13 30 66 2.1 1.8 1.2 1.1

a Onset of HTI batching

Table 5.13: Wall times [s] of total calculation and essential steps of the CDD-MP2 algorithm for α-D-glucose chains (amylose), along

with scaling exponents between consecutive molecules, for the 6-31G* basis set; The numbers in parentheses denote numbers N of basis

functions; 5 quadrature points; numerical thresholds: θext = 10−7, θint = 10−7, θint = 10−9.
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Amylose1 Amylose2 Amylose4
a Amylose8 Amylose16

Scaling
(228) (432) (840) (1656) (3288)

TOTAL 1798 13659 84796 450376 1658424 3.2 2.7 2.5 1.9

Cholesky dec. 0 0 5 59 462 - - 3.6 3.0

External scr. FTI 12 84 344 1416 6366 3.0 2.1 2.1 2.2

Internal scr. HTI 15 288 5352 45813 179207 4.6 4.4 3.2 2.0

Internal scr. UTI 238 2447 17690 100997 404995 3.6 3.0 2.6 2.0

Make UTI 681 3730 16122 63771 253001 2.7 2.2 2.0 2.0

1st transfo. 345 2898 16860 73160 220750 3.3 2.6 2.2 1.6

2nd transfo. 178 1567 9625 38166 125248 3.4 2.7 2.0 1.7

Screening TTI 26 434 5049 50821 217547 4.4 3.7 3.4 2.1

3rd transfo. 64 788 5617 18205 45520 3.9 3.0 1.7 1.3

4th transfo. 45 400 3364 26298 95416 3.4 3.2 3.0 1.9

Contraction 2 6 13 35 76 1.7 1.2 1.5 1.1

a Onset of HTI batching

Table 5.14: Wall times [s] of total calculation and essential steps of the CDD-MP2 algorithm for α-D-glucose chains (amylose), along with

scaling exponents between consecutive molecules, for the SVP (VDZ**) basis set; The numbers in parentheses denote numbers N of basis

functions; 5 quadrature points; numerical thresholds: θext = 10−7, θint = 10−7, θint = 10−9.
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Amylose1 Amylose2
a Amylose4

Scaling
(228) (432) (840)

TOTAL 27152 211859 2327338 3.2 3.6

Cholesky dec. 1 11 85 3.8 3.1

External scr. FTI 113 727 2846 2.9 2.1

Internal scr. HTI 115 2205 109733 4.6 5.9

Internal scr. UTI 2295 24222 240578 3.7 3.5

Make UTI 10006 50268 410247 2.5 3.2

1st transfo. 7707 51799 384470 3.0 3.0

2nd transfo. 3357 29093 235341 3.4 3.2

Screening TTI 375 14231 396295 5.7 5.0

3rd transfo. 607 7499 55508 3.9 3.0

4th transfo. 611 21442 414029 5.6 4.5

Contraction 9 41 129 2.4 1.7

a Onset of HTI batching

Table 5.15: Wall times [s] of total calculation and essential steps of the CDD-MP2 algorithm

for α-D-glucose chains (amylose), along with scaling exponents between consecutive molecules,

for the cc-pVTZ basis set; The numbers in parentheses denote numbers N of basis functions; 5

quadrature points; numerical thresholds: θext = 10−7, θint = 10−7, θint = 10−9.
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Chapter 6

Resolution of the Identity CDD-MP2

In many situations, the evaluation of the N2×N2 matrix of four-center two-electron integrals is

one of the central computational obstacles. One approach to alleviate this problem is to reduce it

to the computation of three- and two-center integrals through the application of resolution of the

identity (RI) techniques [14–18] for approximation of the ERI. This procedure has been applied

to the CDD method by Zienau et al. in a resolution of the identity CDD-MP2 (RI-CDD-MP2)

implementation [10, 11, 13]. Being originally limited to the calculation of the Coulomb-type

component E
(2)
J within the SOS-MP2 scheme [8] (cf. section 3.3.3), this algorithm has in the

present work been completed for calculation of the total MP2 energy E
(2)
0 . In addition, certain

steps of the algorithm that weren’t already inherently parallel through their use of MKL library

routines have been parallelized with the OpenMP (OMP) procedure [125].

This chapter begins with a review of RI-theory and how it is applied within RI-CDD-MP2,

followed by a brief presentation of the concepts of parallel computing. The RI-CDD-MP2 al-

gorithm is then recalled in order to discuss the contributions that have been made to it, after

which performance and accuracy of the extended method are discussed, as well as the efficiency

of the OMP parallelization.

6.1 Resolution of the Identity and Density Fitting

For any given complete orthonormal set of basis functions {ξ(r)} spanning a space X , which,

using the previously established notation, shall be arranged into the vector |ξ), the projection

operator

ρ̂ξ = |ξ)(ξ| = 1 (6.1)

corresponds to the identity operator, since the action of ρ̂ξ on any function projects it onto

its (exact) representation in the basis {ξ(r)}. The application of this closure relation is thus

termed ”resolution of the identity” (RI). When using the RI in practice, the introduced auxiliary

basis {ξq(r)}q∈Naux
is necessarily finite (typically 3N / Naux / 7N , where N denotes the size
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of the AO-basis), such that the closure relation cannot be strictly fulfilled. In general, the

auxiliary basis is also non-orthogonal, but it may still be orthonormalized, for instance through

symmetric orthonormalization (see section 2.3.3) |ξ′) = |ξ)Ξ− 1

2 , such that the corresponding

projector reads

ρ̂ξ′ = |ξ′)(ξ′| = |ξ)Ξ−1(ξ| ≈ 1, (6.2)

whereΞ = (Ξpq)p,q∈Naux
denotes the Gramian matrix, i.e. metric, of the auxiliary basis functions.

Now, recalling equation (5.31), A is the matrix representation of the Coulombic repulsion oper-

ator Ĉ = 1/|r1−r2| in the basis of the two-center one-electron distributions Ω(r) = χ(r)⊗χ(r),

i.e.

A = (Ω|Ĉ|Ω) ≡ (Ω|Ω)C , (6.3)

where in the last step we have established the notation that shall be used throughout this section

to distinguish integrals involving the operator Ĉ from normal inner products. Insertion of the

projector (6.2) onto the space X into the expression for matrix A according to

A ≈ (Ω|ρ̂ξ′ |Ω)C = (Ω|ξ)Ξ−1(ξ|Ω)C (6.4)

then leads to the aforementioned three- and two-center integrals. Upon second insertion of ρ̂ξ′ ,

the symmetric relation

A ≈ (Ω|ξ)Ξ−1(ξ|ξ)CΞ−1(ξ|Ω) (6.5)

results. The use of RI in this particular form, however, has been shown to be too inaccurate

in practice, so that another definition is required. Namely, an alternative approach consists of

expanding the two-center charge densities in the auxiliary basis, i.e. to determine a coefficient

matrix D such that

∆ = |Ω)− |ξ)DT = 0, (6.6)

whence the denomination of density fitting (DF) for this procedure [126]. It may be shown that

optimal coefficients are obtained through minimization of the least-squares error of the electric

field [16, 127], i.e. minimization of

(∆|∆)C = (Ω|Ω)C − (Ω|ξ)CDT −D(ξ|Ω)C +D(ξ|ξ)CDT , (6.7)

such that upon derivation with respect to D the optimal coefficients are determined as

D = (Ω|ξ)C(ξ|ξ)−1
C = (Ω|ξ)CΞ−1

C . (6.8)

The significant difference of this approach is that the resulting metric is defined by the overlap

ΞC = (ξ|Ĉ|ξ) of the auxiliary basis functions with respect to the Coulombic repulsion operator.

Inserting the density fitting relation (6.6) into expression (6.3) for the ERI matrix, and using
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the expansion coefficients of the previous equation, the optimal RI-approximation of the ERI

matrix is obtained as

A ≈ (Ω|ξ)CΞ−1
C (ξ|Ω)C . (6.9)

Performing a symmetric factorization of Ξ−1
C , typically by forming the matrix square root (the

Cholesky decomposition is applicable as well), the RI-decomposition of the ERI matrix may be

brought to the final form

A ≈
(

(Ω|ξ)CΞ
− 1

2

C

)(

Ξ
− 1

2

C (ξ|Ω)C

)

= B′B′T , (6.10)

where the orthonormalized matrix B′ of three-center integrals is formally of dimension N2 ×
Naux. Within the RI-CDD-MP2 approach, the matrix M of pseudo-MO integrals in the energy

expression (5.11) is thus constructed according to

M ≈ (LT ⊗ L
T
)B′B′T (L⊗ L) = BBT . (6.11)

6.2 The RI-CDD-MP2 algorithm

The RI-CDD-MP2 algorithm developed and implemented by Zienau et al. is extensively de-

scribed in [13], and only a brief overview of its structure shall be given here in order to discuss

the modifications added to it in the context of the present work. The preliminary steps, i.e.

Cholesky decomposition of the pseudo-density matrices and formation of screening prerequisites

are identical to the CDD-MP2 case. Also, as the MBIE integral screening protocol [5, 128]

which was initially employed in RI-CDD-MP2 has been revealed as erroneously implemented

and too conservative [129,130], it has here been replaced by the Schwarz/R procedure [12] that

is used within CDD-MP2 (see section 5.1.3). Due to the use of the RI approximation, the main

difference between RI-CDD-MP2 and the CDD-MP2 implementation described in the previous

chapter lies in the integral formation procedure, and the overall structure of the algorithm is [13]:

• Computation of matrix (Ω|ξ)C of untransformed three-center integrals (Disk)

• Computation of inverse auxiliary overlap matrix square root Ξ
− 1

2

C (Disk)

• Construction of orthonormalized matrix B′ = (Ω|ξ)CΞ
− 1

2

C (Disk)

• Loop over quadrature points:

◦ Cholesky decomposition of pseudo-densities and formation of screening prerequisites

(RAM)

◦ External screening for FTidx of required FTI (Disk)

◦ Internal screening for intermediaries in transformations from B′ to B (RAM)
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◦ Perform consecutive transformations according to B = (1⊗ L
T
)(LT ⊗ 1)B′ (Disk)

◦ Construct FTI matrix M = BBT (RAM) and contract to energy

End

The algorithm is integral-indirect, such that apart from those steps annotated with (RAM), all

arrays are written to disk and read in as required. As mentioned previously, Zienau’s implemen-

tation was limited to the computation of the Coulomb part E
(2)
J of the energy, and has here been

complemented for calculation of the exchange part in order to allow full MP2 calculations. The

central steps of generating the matrix B of transformed three-center integrals and its assembly

to the FTI matrix are totally unaffected by this extension, since both Coulomb and exchange

type parts use the same integrals. The complementation rather consisted of adapting peripheral

steps such as the screening protocol, for the reasons mentioned above, as well as the contraction

to the MP2 energy.

6.3 OMP Parallelization

The objective of parallel programming is to exploit modern multi-core processor architectures

to achieve reductions of computational time by going over from sequential to parallel execution,

i.e. simultaneous execution of programme parts by different cores. For instance, in order to

parallelize a standard control structure such as a loop, the set over which the loop variable runs

is simply divided into subsets that are treated individually by a thread. The OpenMP (OMP)

application programming interface (API) [125] is an easily applicable tool for this purpose, and

in general the parallelization of present code merely requires the adaptation of the loops in ques-

tion, with corresponding redeclarations of variables that are to be private for each particular

thread or shared by all threads.

However, not all programmes may be straightforwardly parallelized, and some not at all. Namely,

in order to avoid conflicts between different threads and ensure thread safety, steps involving

communication among threads, for instance during the modification of shared variables by sep-

arate threads, may require to be placed within so-called critical environments. Critical code

can only be executed sequentially, such that unpredictable programme behaviour due to simul-

taneous modification of a shared variable by different threads is precluded. When critical steps

occur in the innermost control structure, parallelization loses all potential for performance im-

provement and would actually impede the flow of execution.

Considering the sequential and parallel programme execution times t1 and tp, performance gains

may be assessed by evaluating the parallelization efficiency η, which is defined as the ratio

η =
S

Nthr
=

(

t1
tp

)

· 1

Nthr
(6.12)
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of speed-up S = t1/tp to the number Nthr of threads. Optimal performance is thus indicated

by an efficiency value of 1, whereas the worst case of obtaining no speed-up is expressed by an

efficiency of 1/Nthr.

6.4 Results and discussion

The value of the completed RI-CDD-MP2 algorithm lies in the ability to calculate full MP2 en-

ergies, instead of merely the Coulomb-like component E
(2)
J to which it was previously restricted.

As far as computational scaling and performance are concerned, the modifications made for in-

clusion of the exchange-type energy E
(2)
K lead to no fundamental differences as compared to the

original sequential RI-CDD-MP2 algorithm, since only peripheral steps needed to be adapted.

Therefore, due to the fact that this aspect has already been thoroughly discussed by Zienau et

al. [11,13], the subject of timings is broached only briefly, and stronger emphasis is placed on the

numerical accuracy of RI-CDD-MP2 energies with the corrected external screening procedure

and inclusion of the exchange-type term. The discussion then proceeds with an analysis of the

efficiency of the parallelized RI-CDD-MP2 algorithm.

All calculations were performed on the same computer cluster as the results presented for CDD-

MP2, and for comparability, are all based on the same standard settings for underlying HF

calculations and other numerical settings that are given in section 5.3. Except for the investiga-

tions on parallelization efficiency, all calculations were performed purely sequentially, i.e. with

one core.

6.4.1 Timings

All relevant data pertaining to the computational performance of the completed sequential RI-

CDD-MP2 algorithm has been summarized in table 6.1, which contains numbers of significant

FTI preselected in the external screening and calculation times both for RI-CDD-MP2 and

conventional RI-MO-MP2, for comparison, along with scaling exponents of the individual quan-

tities.

Unsurprisingly, the behaviour of the numbers of FTI that are preselected in the external screen-

ing procedure is the same as that observed in section 5.3.2 for the case of CDD-MP2, since this

step is performed identically. For all but the bulky DNA systems, the FTI numbers rapidly

achieve linear scaling with system size. As to the corresponding calculation times, it has to be

kept in mind that even for a linear scaling number of FTI, the use of the RI approximation

at best allows for quadratically scaling effort of the integral assembly step M = BBT . Being

typically the most time-consuming, this step therefore determines the overall scaling of RI-CDD-

MP2 calculations. On the other hand, however, the matrix inversion required to obtain Ξ
− 1

2

C
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scales cubically. This is also the case for the matrix product B′ = (Ω|ξ)CΞ
− 1

2

C , which, though

formally of quartic scaling, is asymptotically cubic, since the exponential coupling of Gaussian

basis functions constituting the Ωµν distributions leads to the number of significant (Ωµν |ξp)
three-center integrals to scale quadratically. Accordingly, in spite of relatively small prefactors,

these steps will asymptotically dominate the calculation time. Inspection of the timings given

in table 6.1 reveals precisely these tendencies. For linear alkanes and amylose chains with both

basis sets, although the computation time tends towards quadratic, true quadratic scaling is

not achieved in spite of near-linear scaling of the FTI number. On the one hand, this indicates

that the truly quadratic scaling regime of the FTI assembly step could not be reached with the

investigated systems, but also shows that with increasing molecular size, the aforementioned

cubically scaling steps have an impact on the total scaling exponent. For the compact DNA

systems, the observed high scaling exponents of the computational time are in good agreement

with the large numbers of preselected FTI.

In terms of performance as compared to O(N5) canonical RI-MO-MP2, the lower scaling of the

RI-CDD-MP2 approach leads to the cross-over points to be located at moderate system sizes.

For alkanes, both with SVP and cc-pVTZ, the cross-over point is situated between C20H42 and

C40H82, and for amylose chains with both bases, it is located between Amylose4 and Amylose8.

As to the DNA systems that were investigated, the cross-over point of RI-CDD-MP2 is between

DNA2 and DNA4, but it could not be reached with the cc-pVTZ basis.

6.4.2 Accuracy

The issue of more interest, namely the accuracy provided for MP2 energies by the completed RI-

CDD-MP2 algorithm with the Schwarz/R integral preselection procedure, shall now be adressed.

Errors of RI-CDD-MP2 absolute energies with respect to canonical RI-MO-MP2 are given in

tables 6.2 and 6.3 for the SVP and cc-pVTZ basis set, respectively. In both cases, the loosest

numerical thresholds lead to arguably too large errors, particularly for the DNA systems. With

the tighter threshold combination (8, 8, 9) (see definition in table), the situation is improved

and the obtained accuracies are reasonable, whereas (9, 9, 10) provides very accurate results.

Considering the individual accuracies of the Coulomb-type and exchange-type component E
(2)
J

and E
(2)
K of the MP2 energy, in part similar trends are observed as for the CDD-MP2 method

discussed in section 5.3.2. We notice in particular that, just as in the CDD-MP2 case, the error

of the exchange component behaves very systematically, i.e. that it diminishes by roughly an

order of magnitude upon lowering the screening threshold by an order of magnitude, and fur-

ther that it grows almost linearly with system size. The Coulomb-type component, on the other

hand, is not so well-behaved because the error grows stronger than linearly with the system size,

in particular for the DNA systems. Also, upon lowering the external screening threshold, the
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improvements in accuracy are less pronounced than for its exchange counterpart.

However, in stark contrast to the numerical problems that arise with CDD-MP2 (see discussion

in section 5.3.2), the errors of E
(2)
J are here consistenly negative, such that the RI-CDD-MP2

Coulomb-type component fulfils the theoretical condition of representing a lower bound to the

exact E
(2)
J . Although the additive error contribution in the Coulomb component, arising from

the inaccuracy induced in the FTI by the internal screening, is here also in principle present,

this fundamental difference of the observed accuracies is due to the different ways in which the

integral transformation is performed. Namely, in the case of CDD-MP2, the numerical error in-

duced by the neglect of insignificant transformation intermediaries can strongly propagate over

the course of the four consecutive transformations from UTI to final FTI. In the RI-CDD-MP2

approach, on the other hand, where the FTI matrix is assembled according to M = BBT , the

matrix B of transformed three-center integrals is obtained from the untransformed B′ matrix

after only two transformations, such that there is far less room for error propagation as for

CDD-MP2. Furthermore, since in the RI-approach the computational effort associated with

these transformation steps is significantly smaller than for CDD-MP2, where the minimization

of the transformation effort demanded a highly selective internal screening procedure, the inter-

nal screening used in Zienau’s RI-CDD-MP2 implementation is far less selective. This further

reduces the numerical error in the transformed integrals, such that for RI-CDD-MP2 the nega-

tive deviation of E
(2)
J , arising from the neglect of insignificant FTI products, clearly dominates

over its additive counterpart. Therefore, due to the numerical error in the exchange component

being also always negative in all the considered cases and the fact that E
(2)
K enters into the

MP2 energy with a different sign than E
(2)
J , the errors in both terms partially cancel in the final

energy, and since the error in E
(2)
K is in general about an order of magnitude smaller, the overall

error is mostly determined by the Coulomb error.

In order to compare the error due to the integral screening in RI-CDD-MP2 with the systematic

error induced by the RI-approximation, tables 6.4 and 6.5 display deviations of conventional

RI-MO-MP2 and RI-CDD-MP2 energies from their respective non-RI canonical MO-MP2 refer-

ences, for SVP and cc-pVTZ. For both basis sets, the RI error (left part) is far more significant

than the screening errors discussed previously, such that the overall errors of RI-CDD-MP2 with

respect to MO-MP2 (right part) are only marginally different from the deviations of RI-MO-

MP2. Furthermore, since the screening errors were observed to behave systematically, i.e. be

always of the same sign, there is no reason why the RI-CDD-MP2 overall errors should not

compensate each other to a similar extent as the RI error upon formation of energy differences

for relative energies. To demonstrate this, accuracies of RI-CDD-MP2 interaction energies de-

termined for the S22 test set [124] are given in table 6.6. For both basis sets, the very loose

threshold combination (6, 6, 9) already provides chemical accuracy for all complexes, even for

systems 5, 6, 7, 11, 14, 15, 20, 21 or 22, where CDD-MP2 produced unacceptably high errors
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with cc-pVTZ (see table 5.8). Further, upon tightening of the numerical thresholds, the im-

provement of the accuracy is in general relatively small and the error even fluctuates in some

cases, for instance 11, 12 or 22 with cc-pVTZ. This indicates that the results with loose thresh-

olds may already be considered as converged, since although the absolute errors are larger with

loose thresholds, upon formation of relative energies they cancel each other to practically the

same extent as the errors of calculations using tighter screening conditions. Thus, no particular

improvement is obtained through the imposition of stricter screening, which merely leaves room

for slight variations in the individual absolute errors to increase or decrease the relative errors

in a fortuitous rather than systematic way.

6.4.3 Parallel RI-CDD-MP2

As has been mentioned in the introduction, the RI-CDD-MP2 method has been parallelized

using the OMP API for various steps that weren’t outright parallel through their use of library

routines, such as the inversion of the auxiliary overlap matrix ΞC or the FTI assembly step

M = BBT , which invoke Intel MKL library routines [131]. For reasons of thread safety (see

section 6.3), however, some sequential steps could not be parallelized, for instance the external

screening where the progressive build-up of the FTidx array precludes parallelization of the

occurring loops. In addition, the parallelization of steps involving the generation of particular

integrals, such as the formation of the metricΞC , the matrix (Ω|ξ)C of three-center integrals, and

the evaluation of the screening matrices from equation (5.22), is part of the larger undertaking

of parallelizing the entire integral evaluation code and was outside the scope of the present work.

In the preliminary RI-CDD-MP2 algorithm presented here, parallelization has been applied to

the calculation of the centers and extents of tranformed charge distributions defined in equations

(5.41) and (5.43), which are required for the screening procedure described in section 5.1.3, and

to the transformation B = (1 ⊗ L
T
)(LT ⊗ 1)B′ of the orthonormalized matrix B′ of three-

center integral matrix. Though the former step of evaluating extents is typically not very

computationally demanding, it scales cubically and the prefactor reduction accomplished by the

parallelization will eventually be of importance for larger systems where this step constitutes a

larger portion of the total computation time.

For an analysis and discussion of the parallelized RI-CDD-MP2 algorithm, tables 6.7 to 6.12

contain total calculation timings as well as for individual steps with different numbers of threads,

along with the corresponding efficiencies, for the same model systems and basis sets that have

been used in previous contexts. Due to the algorithm being only partially parallelized, the

evaluation of efficiencies for the total calculation times may not be meaningful in a strict sense.

Nevertheless, they shall serve as an indication of the influence that the speed-ups of individual

parallel steps have on the total time. The rationale for including efficiencies for the FTI assembly

matrix product M = BBT is that, being based on an Intel MKL matrix multiplication routine,
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they serve as reference data on parallelization efficiency.

The tendencies that reveal themselves for the various computational steps are very similar for

all the different model systems with both bases. Considering the calculation of centers and

extents of the transformed charge distributions, the efficiencies observed with two threads are

near-ideal, usually well above 90%. There are a few exceptional cases, for instance C40H82 with

cc-pVTZ (table 6.8) or Amylose2 with SVP (table 6.9) where η > 1 seems to indicate super-

linear speed-up. These might result from cache effects, or also the fact that timings are yet

subject to a certain variability between different calculations on identical systems, especially

for relatively short steps. At any rate, these should be considered as outliers, and they do not

particularly alter the picture that emerges from the data. Increasing the thread numbers to

four and eight, however, the near-ideal behaviour is lost and we observe a gradual decrease of

the efficiency. Furthermore, in most cases this loss of efficiency also occurs with increase of the

system size, the effect of which is most pronounced for calculations with eight threads, as may

be seen for instance for linear alkanes with SVP (table 6.7). Thus, in the worst cases, this step

of transforming centers and extents achieves hardly 50% efficiency for large systems.

For the transformation of the three-center integral matrix B′, the determined efficiencies behave

very similarly to the aforementioned situation. Even though with two threads near-ideal speed-

ups are obtained, upon increasing the numbers of threads to eight the efficiency here again

diminishes drastically, and in the worst cases almost drops to a mere 30%. Although, of course,

the increase of the number of threads still results in a certain speed-up of execution times, except

for few exceptional cases, the benefits of parallelization are not fully reaped with large threads

numbers.

Turning our attention to the reference efficiencies afforded by the Intel MKL routines for the

FTI assembly step M = BBT , we notice that the situation is analogous as for the previous

steps. For calculations with two and four threads, the observed speed-ups are practically ideal

and the corresponding efficiencies come very close to 100%. Increasing the number of threads

to eight, however, efficiencies suddenly drop and in most cases vary between only 40% and 50%.

These poor efficiencies registered on calculation involving eight threads are to be ascribed to

the employed computers’ double-quadcore architecture, i.e. two processors of four cores each.

Namely, for calculations with more than four threads the communication required among both

processors inevitably slows down the programme’s execution, which prevents ideal efficiencies

to be achieved with mere OMP parallelization. In this case, a deeper-level MPI parallelization

might be required to fully exploit higher core numbers.

In light of this last argument, it can be concluded that up to the maximum meaningful number

of four threads, for the computers on which calculations were performed, the parallelized RI-

CDD-MP2 performs very satisfactorily. For two threads, the observed efficiencies of all parallel

steps practically achieve optimal values, and calculations with four threads also display very
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reasonable efficiencies of at least 80% for the systems large enough to allow for the benefits of

parallelization to reveal themselves.

6.4.4 Conclusion

The overall conclusion that may be drawn from the results presented here is that the RI-CDD-

MP2 algorithm of Zienau performs very well and, in its extended form for evaluation of the

exchange-type component of the energy, now allows for efficient calculations of MP2 energies on

systems of moderate to large size with large basis sets. Due to its quadratically scaling com-

putational effort—for system sizes where the asymptotically cubic steps do not yet dominate—

RI-CDD-MP2 could be shown to be competitive over canonical RI-MO-MP2 for a variety of

model systems with basis sets up to cc-pVTZ. The errors induced in the absolute MP2 energies

by the integral preselection procedure are within reasonable bounds with numerical screening

thresholds that still lead to performance gains. In addition, RI-CDD-MP2 absolute energies dis-

play the attractive property of being upper bounds to the exact RI-MO-MP2 energies—at least

for all systems that were investigated. Regarding relative energies, it was demonstrated for the

S22 test set that even rather loose threshold combinations afford chemical accuracy, due to the

mutual cancellation of errors in energy differences. In contrast to the non-RI based CDD-MP2

approach presented in the previous chapter, which was revealed to suffer from the overwhelming

effort of performing the quadruple integral transformation and further displayed a pronounced

numerical instability (see section 5.3.2), the overall prefactor reduction and simplification of

the integral transformation brought about by the RI-approach makes RI-CDD-MP2 far more

efficient and numerically stable.

In addition to being extended to total MP2 energies, a parallelized version of the RI-CDD-MP2

algorithm was presented, which was demonstrated to achieve high efficiencies, at least with

thread numbers for which the particular architecture of the used computers does not create fur-

ther bottlenecks (see section 6.4.3). Although the parallelization yet has to be completed for the

integral evaluation steps, the speed-ups brought about by the preliminary parallelization already

have a significant impact on total computation times. For four threads, total computation times

are already reduced by a factor of about two, on the average. As the steps that do not allow

for parallelization for reasons of thread safety have rather marginal influence on the total time,

it is to be anticipated that upon finalization of the parallelization, total speed-ups will be very

satisfactory. This will further contribute to making RI-CDD-MP2 applicable to large systems

arising in realistic situations of interest.
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Basis Molecule N NFTI Sc. tRI−CDD Sc. tRI−MO Sc.

SVP

C10H22 250 16 - 0.0 - 0.0 -

C20H42 490 74 2.2 0.1 2.9 0.0 4.5

C40H82 970 196 1.4 0.9 2.6 1.1 4.6

C80H162 1930 441 1.2 4.6 2.4 31.1 4.9

C160H322 3850 929 1.1 23.6 2.4 933.1 a 4.9

Amylose1 228 21 - 0.0 - 0.0 -

Amylose2 432 179 3.4 0.2 3.6 0.0 4.3

Amylose4 840 737 2.1 2.0 3.3 0.8 4.6

Amylose8 1656 1855 1.4 11.5 2.6 20.4 4.9

Amylose16 3288 4127 1.2 59.4 2.4 566.7 a 4.9

Amylose32 6552 8667 1.1 280.2 2.3 16058.7 a 4.9

DNA1 625 218 - 0.5 - 0.2 -

DNA2 1332 2184 3.0 10.5 4.0 7.1 4.8

DNA4 2746 10374 2.2 143.6 3.6 232.5 4.8

DNA8 5574 27950 1.4 1003.8 b 2.7 7085.9 a 4.8

cc-pVTZ

C10H22 608 102 - 0.3 - 0.0 -

C20H42 1188 390 2.0 2.2 2.8 0.5 4.5

C40H82 2348 965 1.3 12.7 2.5 13.1 4.8

C80H162 4668 2106 1.1 68.0 2.4 361.0 a 4.8

C160H322 9308 4383 1.1 328.4 2.3 10090.8 a 4.8

Amylose1 528 142 - 0.3 - 0.0 -

Amylose2 998 1230 3.4 3.1 3.6 0.4 4.5

Amylose4 1938 5258 2.2 28.0 3.3 8.7 4.7

Amylose8 3818 13679 1.4 180.0 2.7 216.6 a 4.7

Amylose16 7578 30596 1.2 922.7 b 2.4 5589.1 a 4.7

DNA1 1428 1723 - 7.3 - 1.9 -

DNA2 3016 16284 3.0 165.9 4.2 18.9 3.1

a Extrapolated from previous molecule with indicated scaling exponent

b Extrapolated from previous molecule using scaling exponent from first quadrature point

Table 6.1: Numbers NFTI of significant FTI products [in 106] (from first quadrature point), total

Wall times [h] of RI-CDD-MP2 and conventional RI-MO-MP2 along with scaling exponents with

respect to previous molecule for calculations on linear alkanes, α-D-glucose chains (amylose) and

DNA base pairs (adenine-thymine) with the indicated basis sets; 5 quadrature points; numerical

thresholds: θext = 10−8, θint = 10−8, θsp = 10−9.
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Molecule
∆E (7, 7, 9) ∆E (8, 8, 9) ∆E (9, 9, 10)

Total Coulomb Exchange Total Coulomb Exchange Total Coulomb Exchange

C10H22 -58.97 -89.80 -30.83 -11.32 -13.95 -2.63 -2.16 -2.38 -0.22

C20H42 -211.32 -302.89 -91.58 -58.32 -68.17 -9.85 -19.79 -20.85 -1.05

C40H82 -520.11 -731.94 -211.83 -155.15 -179.70 -24.54 -57.36 -60.21 -2.85

C80H162 -1131.71 -1583.43 -451.72 -347.84 -401.58 -53.74 -132.43 -138.85 -6.42

Amylose1 -27.85 -46.39 -18.54 -2.29 -3.98 -1.69 -0.44 -0.81 -0.37

Amylose2 -110.90 -169.14 -58.24 -11.48 -17.51 -6.02 -1.47 -2.46 -0.99

Amylose4 -460.87 -612.30 -151.42 -119.23 -136.08 -16.85 -34.12 -36.75 -2.63

Amylose8 -1326.47 -1680.65 -354.18 -452.27 -493.38 -41.11 -182.27 -188.51 -6.24

Amylose16 -3030.29 -3767.05 -736.75 -1132.37 -1219.32 -86.95 -502.62 -515.76 -13.14

DNA1 -294.50 -403.53 -109.03 -87.91 -106.24 -18.33 -34.70 -43.77 -9.07

DNA2 -1428.13 -1903.76 -475.63 -406.43 -474.57 -68.15 -138.44 -158.37 -19.93

DNA4 -5651.50 -6919.02 -1267.52 -2128.91 -2316.35 -187.43 -784.24 -830.49 -46.25

Table 6.2: Errors [µHartree] of RI-CDD-MP2 total energy as well as Coulomb and exchange parts, with respect to canonical RI-MO-MP2

reference (∆EX = E
(2)
X,Ref −E

(2)
X,RI−CDD) for linear alkanes, α-D-glucose chains (amylose) and DNA base pairs (adenine-thymine) with the

SVP (VDZ**) basis set; 5 quadrature points; numbers (k, l, m) indicate numerical thresholds θext = 10−k, θint = 10−l, θsp = 10−m.
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Molecule
∆E (7, 7, 9) ∆E (8, 8, 9) ∆E (9, 9, 10)

Total Coulomb Exchange Total Coulomb Exchange Total Coulomb Exchange

C10H22 -226.46 -367.44 -140.98 -41.90 -55.45 -13.55 -11.49 -14.64 -3.15

C20H42 -705.17 -1100.75 -395.58 -163.97 -208.24 -44.27 -55.56 -64.01 -8.45

C40H82 -1671.65 -2572.07 -900.42 -415.12 -521.11 -105.99 -147.99 -167.33 -19.34

C80H162 -3578.64 -5482.38 -1903.74 -909.76 -1138.00 -228.24 -330.74 -371.85 -41.11

Amylose1 -125.16 -226.89 -101.73 -15.53 -27.63 -12.11 -7.06 -12.36 -5.31

Amylose2 -445.37 -745.14 -299.77 -57.65 -93.43 -35.78 -16.69 -28.23 -11.55

Amylose4 -1382.91 -2105.54 -722.64 -308.39 -399.05 -90.66 -103.09 -128.56 -25.47

Amylose8 -3424.43 -5024.65 -1600.23 -951.30 -1156.44 -205.15 -387.76 -442.21 -54.45

DNA1 -903.62 -1427.49 -523.87 -277.85 -400.50 -122.65 -164.45 -248.40 -83.95

DNA2 -3770.48 -5639.82 -1869.34 -1053.39 -1412.09 -358.70 -482.17 -665.19 -183.02

Table 6.3: Errors [µHartree] of RI-CDD-MP2 total energy as well as Coulomb and exchange parts, with respect to canonical RI-MO-MP2

reference (∆EX = E
(2)
X,Ref −E

(2)
X,RI−CDD) for linear alkanes, α-D-glucose chains (amylose) and DNA base pairs (adenine-thymine) with the

cc-pVTZ basis set; 5 quadrature points; numbers (k, l, m) indicate numerical thresholds θext = 10−k, θint = 10−l, θsp = 10−m.
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Molecule
∆E (RI-MO-MP2) ∆E (RI-CDD-MP2 8, 8, 9)

Total Coulomb Exchange Total Coulomb Exchange

C10H22 -843.00 -2301.14 -1458.14 -854.33 -2315.09 -1460.76

C20H42 -1662.83 -4602.95 -2940.12 -1721.15 -4671.11 -2949.97

C40H82 -3302.50 -9206.60 -5904.10 -3457.65 -9386.30 -5928.64

Amylose1 -619.15 -2752.36 -2133.21 -621.44 -2756.34 -2134.90

Amylose2 -1148.91 -5173.06 -4024.15 -1160.39 -5190.57 -4030.17

Amylose4 -2209.01 -10015.71 -7806.70 -2328.24 -10151.78 -7823.55

DNA1 -1556.07 -7879.29 -6323.22 -1643.98 -7985.53 -6341.55

DNA2 -2489.26 -16859.93 -14370.67 -2895.69 -17334.51 -14438.81

Table 6.4: Deviation [µHartree] of RI-MO-MP2 and RI-CDD-MP2 total energies, as well as

individual components, with respect to conventional MO-MP2 reference for linear alkanes, α-D-

glucose chains (amylose) and DNA base pairs (adenine-thymine) with the SVP (VDZ**) basis; 5

quadrature points; numerical thresholds for RI-CDD-MP2: θext = 10−8, θint = 10−8, θsp = 10−9.

Molecule
∆E (RI-MO-MP2) ∆E (RI-CDD-MP2 8, 8, 9)

Total Coulomb Exchange Total Coulomb Exchange

C10H22 -301.63 -869.99 -568.36 -343.53 -925.44 -581.91

C20H42 -599.67 -1740.43 -1140.76 -763.65 -1948.67 -1185.02

Amylose1 -227.28 -1120.02 -892.74 -242.81 -1147.65 -904.85

Amylose2 -421.83 -2134.36 -1712.52 -479.48 -2227.79 -1748.30

Amylose4 -811.00 -4163.72 -3352.73 -1119.39 -4562.78 -3443.39

DNA1 -646.66 -3274.24 -2627.58 -924.50 -3674.74 -2750.24

Table 6.5: Deviation [µHartree] of RI-MO-MP2 and RI-CDD-MP2 total energy, as well as

individual components, with respect to conventional MO-MP2 reference for linear alkanes, α-

D-glucose chains (amylose) and DNA base pairs (adenine-thymine) with the cc-pVTZ basis; 5

quadrature points; numerical thresholds for RI-CDD-MP2: θext = 10−8, θint = 10−8, θsp = 10−9.
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Complex Eint

∆Eint (SVP)
Eint

∆Eint (cc-pVTZ)

5; 6, 6, 9 5; 8, 8, 9 6;10,10,12 5; 6, 6, 9 5; 8, 8, 9 6;10,10,12

01. Ammonia dimer -2.011 0.009 0.001 0.000 -2.775 0.026 -0.002 0.000

02. Water dimer -4.262 0.004 0.001 0.000 -4.434 0.019 -0.003 0.000

03. Formic acid dimer -14.721 0.012 -0.005 -0.001 -16.891 0.095 -0.013 -0.003

04. Formamide dimer -12.042 0.020 0.000 0.000 -14.248 0.096 -0.010 0.000

05. Uracil dimer (H-bonded) -16.571 0.022 -0.050 -0.016 -18.742 0.288 -0.057 -0.021

06. 2-Pyridoxine 2-aminopyridine -14.220 -0.021 -0.068 -0.011 -15.907 0.175 -0.101 -0.021

07. Adenine-thymine (Watson-Crick) -13.032 0.040 -0.055 -0.012 -14.919 0.262 -0.075 -0.022

08. Methane dimer -0.033 0.044 0.001 0.000 -0.317 0.165 -0.002 0.000

09. Ethene dimer -0.244 0.001 -0.006 -0.001 -1.152 0.011 -0.019 -0.002

10. Benzene-methane -0.501 0.023 -0.016 -0.003 -1.412 0.097 -0.014 -0.007

11. Benzene dimer (parallelly displaced) -1.540 -0.031 -0.057 -0.007 -3.765 0.037 -0.112 -0.024

12. Pyrazine dimer -3.055 -0.075 -0.093 -0.014 -5.440 -0.038 -0.144 -0.043

13. Uracil dimer (stack) -5.701 -0.033 -0.053 -0.015 -9.095 0.129 -0.070 -0.020

14. Indole-benzene (stack) -3.302 -0.044 -0.063 -0.008 -6.435 0.049 -0.109 -0.018

15. Adenine-thymine (stack) -7.747 -0.015 -0.064 -0.013 -12.297 0.181 -0.091 -0.021

16. Ethene-ethyne -0.917 0.050 -0.002 0.000 -1.427 0.066 -0.010 -0.001

17. Benzene-water -1.964 -0.021 -0.038 -0.011 -2.927 0.023 -0.034 -0.016

18. Benzene-ammonia -1.189 -0.002 -0.027 -0.007 -2.129 0.040 -0.021 -0.009

19. Benzene-HCN -3.022 0.013 -0.041 -0.007 -4.601 0.054 -0.056 -0.009

20. Benzene dimer (T-shape) -1.635 0.071 -0.054 -0.006 -3.007 0.195 -0.097 -0.019

21. Indole-benzene (T-shape) -4.026 0.019 -0.054 -0.005 -6.159 0.135 -0.108 -0.021

22. Phenol dimer -5.641 -0.031 -0.080 -0.014 -6.710 0.044 -0.133 -0.026

Mean error 0.003 -0.038 -0.007 0.098 -0.058 -0.014

Sample standard deviation 0.034 0.030 0.006 0.085 0.047 0.012

Table 6.6: RI-MO-MP2 interaction energies [kcal/mol] (counterpoise corrected) and errors of RI-CDD-MP2 with respect to RI-MO-MP2 reference

(∆Eint = E
(2)
int,Ref −E

(2)
int,RI−CDD), along with mean errors and standard deviations, for the S22 test set with the SVP and cc-pVTZ basis sets and the

indicated numerical settings. The numbers m;n, o, p stand for m quadrature points and thresholds θext = 10−n, θint = 10−o, θsp = 10−p, respectively.
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Molecule
TOTAL Centers+extents

t1 t2 t4 t8 η2 η4 η8 t1 t2 t4 t8 η2 η4 η8

C20H42 536 401 332 302 0.67 0.40 0.22 28 15 9 5 0.93 0.78 0.70

C40H82 3160 2248 1921 1911 0.70 0.41 0.21 264 135 79 51 0.98 0.84 0.65

C80H162 16479 11022 9118 8574 0.75 0.45 0.24 1394 730 454 252 0.95 0.77 0.69

C160H322 85041 61919 47148 45423 0.69 0.45 0.23 4610 2376 1549 1056 0.97 0.74 0.55

Transf. B′ → B M = BBT

t1 t2 t4 t8 η2 η4 η8 t1 t2 t4 t8 η2 η4 η8

C20H42 56 28 15 17 1.00 0.93 0.41 186 107 56 37 0.87 0.83 0.63

C40H82 334 153 95 82 1.09 0.88 0.51 1197 650 328 368 0.92 0.91 0.41

C80H162 1624 775 478 377 1.05 0.85 0.54 5736 2969 1494 1662 0.97 0.96 0.43

C160H322 8944 6132 3307 2852 0.73 0.68 0.39 24388 12860 6581 7012 0.95 0.93 0.43

Table 6.7: Wall times [s] of total calculation and individual parallel steps of the OMP parallelized RI-CDD-MP2 algorithm with 1, 2, 4

and 8 threads, respectively, along with corresponding efficiencies η (see text), for calculations on linear alkanes with the SVP (VDZ**)

basis set; 5 quadrature points; numerical thresholds: θext = 10−8, θint = 10−8, θsp = 10−9.
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TOTAL Centers+extents

t1 t2 t4 t8 η2 η4 η8 t1 t2 t4 t8 η2 η4 η8

C10H22 1219 1087 947 943 0.56 0.32 0.16 21 12 5 4 0.88 1.05 0.66

C20H42 8062 6193 5257 5270 0.65 0.38 0.19 240 124 66 43 0.97 0.91 0.70

C40H82 45741 34740 27143 26398 0.66 0.42 0.22 2938 1305 687 492 1.13 1.07 0.75

C80H162 244908 173958 140916 137708 0.70 0.43 0.22 22492 11114 6120 4533 1.01 0.92 0.62

C160H322 1182154 875283 696396 663788 0.68 0.42 0.22 89802 50884 30641 25001 0.88 0.73 0.45

Transf. B′ → B M = BBT

t1 t2 t4 t8 η2 η4 η8 t1 t2 t4 t8 η2 η4 η8

C10H22 80 47 39 20 0.85 0.51 0.50 200 94 45 59 1.06 1.11 0.42

C20H42 666 293 179 126 1.14 0.93 0.66 2495 1301 664 591 0.96 0.94 0.53

C40H82 4179 3554 1413 896 0.59 0.74 0.58 14438 7401 3813 4134 0.98 0.95 0.44

C80H162 24373 13597 8613 7228 0.90 0.71 0.42 67024 34212 17881 18576 0.98 0.94 0.45

C160H322 86451 45514 31139 31663 0.95 0.69 0.34 289434 150489 78920 80457 0.96 0.92 0.45

Table 6.8: Wall times [s] of total calculation and individual parallel steps of the OMP parallelized RI-CDD-MP2 algorithm with 1, 2, 4

and 8 threads, respectively, along with corresponding efficiencies η (see text), for calculations on linear alkanes with the cc-pVTZ basis

set; 5 quadrature points; numerical thresholds: θext = 10−8, θint = 10−8, θsp = 10−9.
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t1 t2 t4 t8 η2 η4 η8 t1 t2 t4 t8 η2 η4 η8

Amylose2 828 625 543 462 0.66 0.38 0.22 25 13 6 4 0.96 1.04 0.78

Amylose4 7191 4776 3704 3679 0.75 0.49 0.24 292 122 74 47 1.20 0.99 0.78

Amylose8 41489 26642 20132 19535 0.78 0.52 0.27 2437 1278 656 461 0.95 0.93 0.66

Amylose16 213809 144425 104625 103994 0.74 0.51 0.26 14382 7686 4160 2962 0.94 0.86 0.61

Amylose32
a 205936 130070 93004 105166 0.79 0.55 0.24 9517 5146 2981 2126 0.92 0.80 0.56

Transf. B′ → B M = BBT

t1 t2 t4 t8 η2 η4 η8 t1 t2 t4 t8 η2 η4 η8

Amylose2 78 39 24 19 1.00 0.81 0.51 334 171 95 64 0.98 0.88 0.65

Amylose4 599 258 165 143 1.16 0.91 0.52 3872 2006 995 1182 0.97 0.97 0.41

Amylose8 3250 1549 1020 760 1.05 0.80 0.53 22886 11688 6025 6038 0.98 0.95 0.47

Amylose16 17926 9471 5487 4031 0.95 0.82 0.56 106385 55199 28285 30969 0.96 0.94 0.43

Amylose32
a 16842 9213 4683 5460 0.91 0.90 0.39 140956 72092 36875 39427 0.98 0.96 0.45

a Calculation times for 1st quadrature point only

Table 6.9: Wall times [s] of total calculation and individual parallel steps of the OMP parallelized RI-CDD-MP2 algorithm with 1, 2, 4

and 8 threads, respectively, along with corresponding efficiencies η (see text), for calculations on α-D-glucose chains (amylose) with the

SVP (VDZ**) basis set; 5 quadrature points; numerical thresholds: θext = 10−8, θint = 10−8, θsp = 10−9.
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TOTAL Centers+extents

t1 t2 t4 t8 η2 η4 η8 t1 t2 t4 t8 η2 η4 η8

Amylose2 11033 8576 7039 6740 0.64 0.39 0.20 180 93 47 36 0.97 0.96 0.63

Amylose4 100661 67986 50668 48098 0.74 0.50 0.26 2063 1073 541 399 0.96 0.95 0.65

Amylose8 648056 429442 322118 323384 0.75 0.50 0.25 27299 12884 6978 4769 1.06 0.98 0.72

Amylose16
a 684616 417941 279264 268386 0.82 0.61 0.32 32798 17821 9845 7702 0.92 0.83 0.53

Transf. B′ → B M = BBT

t1 t2 t4 t8 η2 η4 η8 t1 t2 t4 t8 η2 η4 η8

Amylose2 840 728 324 179 0.58 0.65 0.59 4056 2103 1080 1158 0.96 0.94 0.44

Amylose4 6931 5581 2520 1739 0.62 0.69 0.50 57636 29328 15111 14018 0.98 0.95 0.51

Amylose8 37328 23626 12831 9984 0.79 0.73 0.47 378803 193985 100075 104124 0.98 0.95 0.45

Amylose16
a 41768 19831 11991 7338 1.05 0.87 0.71 523166 266165 138194 144562 0.98 0.95 0.45

a Calculation times for 1st quadrature point only

Table 6.10: Wall times [s] of total calculation and individual parallel steps of the OMP parallelized RI-CDD-MP2 algorithm with 1, 2, 4

and 8 threads, respectively, along with corresponding efficiencies η (see text), for calculations on α-D-glucose chains (amylose) with the

cc-pVTZ basis set; 5 quadrature points; numerical thresholds: θext = 10−8, θint = 10−8, θsp = 10−9.
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t1 t2 t4 t8 η2 η4 η8 t1 t2 t4 t8 η2 η4 η8

DNA1 1837 1316 1089 919 0.70 0.42 0.25 80 43 22 12 0.93 0.91 0.83

DNA2 37901 24182 17775 16904 0.78 0.53 0.28 1451 769 393 243 0.94 0.92 0.75

DNA4 516862 318530 204776 206441 0.81 0.63 0.31 26618 13867 7092 4921 0.96 0.94 0.68

DNA8
a 1060398 641176 426311 438397 0.83 0.62 0.30 61715 33524 18034 13511 0.92 0.86 0.57

Transf. B′ → B M = BBT

t1 t2 t4 t8 η2 η4 η8 t1 t2 t4 t8 η2 η4 η8

DNA1 174 74 79 47 1.18 0.55 0.46 778 417 212 151 0.93 0.92 0.64

DNA2 2622 1237 824 626 1.06 0.80 0.52 23480 12065 6208 5962 0.97 0.95 0.49

DNA4 25272 13682 8016 5422 0.92 0.79 0.58 356296 183412 93369 100283 0.97 0.95 0.44

DNA8
a 37307 17244 10798 7282 1.08 0.86 0.64 849069 435220 225165 244676 0.98 0.94 0.43

a Calculation times for 1st quadrature point only

Table 6.11: Wall times [s] of total calculation and individual parallel steps of the OMP parallelized RI-CDD-MP2 algorithm with 1, 2,

4 and 8 threads, respectively, along with corresponding efficiencies η (see text), for calculations on DNA bases pairs (adenine-thymine)

with the SVP (VDZ**) basis set; 5 quadrature points; numerical thresholds: θext = 10−8, θint = 10−8, θsp = 10−9.
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t1 t2 t4 t8 η2 η4 η8 t1 t2 t4 t8 η2 η4 η8

DNA1 26286 18676 14567 14355 0.70 0.45 0.23 599 312 158 116 0.96 0.95 0.65

DNA2 597397 375576 256807 265743 0.80 0.58 0.28 11441 5926 3050 2154 0.97 0.94 0.66

Transf. B′ → B M = BBT

t1 t2 t4 t8 η2 η4 η8 t1 t2 t4 t8 η2 η4 η8

DNA1 2184 1770 899 486 0.62 0.61 0.56 12193 6192 3182 3538 0.98 0.96 0.43

DNA2 33114 18968 10161 7332 0.87 0.81 0.56 395751 201233 102947 111523 0.98 0.96 0.44

Table 6.12: Wall times [s] of total calculation and individual parallel steps of the OMP parallelized RI-CDD-MP2 algorithm with 1, 2,

4 and 8 threads, respectively, along with corresponding efficiencies η (see text), for calculations on DNA bases pairs (adenine-thymine)

with the cc-pVTZ basis set; 5 quadrature points; numerical thresholds: θext = 10−8, θint = 10−8, θsp = 10−9.
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Chapter 7

Method Specific Cholesky

Decomposition

Apart from RI-approximations, which have already been discussed in the previous chapter,

there has been an increasing focus on the Cholesky decomposition (CD) to obtain low-rank

decompositions of the ERI matrix in recent years. In a secondary project, it has been investigated

to what extent the method specific Cholesky decomposition (MSCD) formulated by Boman et

al. [19] in general terms but investigated only in the context of HF-theory, might be beneficially

applied to correlation methods, and specifically within the CDD-MP2 approach. The conceptual

basis of MSCD is the input of information about the final form the ERI matrix is to be used

in, for instance transformed to a basis of localized molecular orbitals (LMO), rather than in its

untransformed form, in order to obtain a Cholesky decomposition with minimum rank.

In order to set this work into the appropriate context, this chapter begins with a brief survey of

various ERI decomposition procedures that have been proposed, though with particular emphasis

on the relation between RI and CD. We then proceed with a presentation of the MSCD and

how it can be applied in the specific context of CDD-MP2, after which the obtained results are

discussed.

7.1 Decompositions of the ERI matrix

Due to the fact that the evaluation or handling of the matrix of ERI or wavefunction amplitudes

constitutes one of the bottlenecks of many quantum chemical methods, this aspect has been sub-

ject to intensive research aiming at reducing its computational cost by applying matrix/tensor

decomposition procedures. However, although they are related by their common objective, the

methods that have been devised to that effect differ by their approach and scope of applicability.

The procedure of resolution of the identity (RI) and density fitting (DF) has already been de-

scribed in section 6.1. Further approaches advocate the use of a Cholesky decomposition of the
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ERI matrix, or propose higher order tensor decompositions for further reductions of complexity

and storage requirements.

7.1.1 Resolution of the Identity

It has been discussed in section 6.1 that within the so-called resolution of the identity (RI) [14–18]

a lower-rank decomposition to the ERI matrix A can be straightforwardly obtained through the

introduction of an auxiliary basis {ξq(r)}q∈Naux
and application of the closure relation

ρ̂ξ = |ξ)(ξ| = 1, (7.1)

leading to a factorization of the form

A =

(

(Ω|ξ)CΞ
− 1

2

C

)(

Ξ
− 1

2

C (ξ|Ω)C

)

= B′B′T . (7.2)

Recall that the Naux ×Naux matrix Ξ
− 1

2

C denotes the inverse square root of the overlap matrix

ΞC of the auxiliary basis functions with respect to the Coulombic repulsion operator Ĉ. The

N2 × Naux matrix (Ω|ξ)C (ignoring integral symmetry) is composed of the three-center two-

electron repulsion integrals, i.e. has elements

(

(Ω|ξ)C
)

µν,p
= (Ωµν |ξp) =

∫ ∫

Ωµν(r1)
1

|r1 − r2|
ξp(r2)dr1dr1. (7.3)

RI-techniques are nowadays routinely employed due to the high performance improvements that

they provide and their ease of implementation. Despite this wide success, however, they are not

entirely flawless. On the one hand, the above closure relation cannot be strictly fulfilled due

to the incompleteness of the auxiliary basis set. The error introduced by this approximation

is in practice reasonable, and in general cancels to a large extent upon formation of relative

energies. Nevertheless, this impairs the reliability of RI-calculated properties for use in basis set

limit extrapolation procedures, as the RI-error may be larger than the extrapolation accuracy

[19]. Furthermore, the auxiliary basis sets, which typically consist of atom-centered Gaussian

functions, have to be taylored a priori for the particular AO basis set as well as method that

they are to be used with. They are thus biased by construction, similarly to conventional LCAO

basis sets, and of limited applicability outside the original scope of their preoptimization.

7.1.2 Cholesky decomposition

Due to linear near-dependence among the Ωµν charge distributions, the ERI matrix A is only

positive semidefinite. In a seminal paper from 1977, Beebe and Linderberg [123] proposed to

exploit this property to obtain a low rank factorization from a Cholesky decomposition (CD) [9],

according to

A = B′B′T . (7.4)
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As has already been discussed in section 5.1.1 for the pseudo-density matrices, the CD of a

semidefinite matrix requires a pivoting technique (see section 5.2.1). The obtained Cholesky

factors B′ are therefore N2 ×R matrices (ignoring integral symmetry), where R is the (numer-

ical) rank of the ERI matrix, i.e. the number of non-vanishing eigenvalues. In contrast to other

factorization techniques, the Cholesky factor has the significant advantage of being built column

by column, and thus does not require the entire input matrix to be evaluated beforehand.

The reason for using the same symbol B′ as for the RI-approximation is that, as has been shown

by Beebe and Linderberg in their original paper [123], the Cholesky decomposition and RI are

in principle related, because they both represent inner projections in the sense of Löwdin [132].

The fundamental difference, however, is that in contrast to RI, where an external, preoptimized

auxiliary basis is used for the projection, the Cholesky decomposition produces an auxiliary

basis set that is intrinsic to the considered space, and therefore unbiased. Furthermore, whereas

in the RI-case a non-tunable systematic error arises due to the incompleteness of the auxiliary

basis, the pivot-CD can be made arbitrarily precise by adjusting the decomposition threshold.

Due to these attractive features, the Cholesky decomposition of the ERI matrix has been amply

investigated [133–139] for application within Hartree-Fock schemes [140] or correlation meth-

ods [141], and further for the analytical evaluation of energy gradients [134,142]. For a compar-

ison between RI and CD methods, see also reference [143].

One arguable drawback of CD, however, is that with relatively tight decomposition thresholds,

the Cholesky auxiliary bases are normally larger than comparable RI basis sets. Therefore, in

order to obtain a particularly small Cholesky basis, some of the cited schemes advocate the

incorporation of only atom-centered distributions Ωµν in a first decomposition step, after which

the obtained auxiliary basis may be further refined through inclusion of further distributions.

This procedure reestablishes a certain similarity to RI, where the employed functions are also

typically atom-centered. Yet, it has to be remarked that although the errors induced by this

approach were shown to be of reasonable magnitude, and can in principle be made arbitrarily

small by gradually reintroducing all distributions, such a truncation of the Cholesky basis for-

sakes numerical rigour in the sense that the errors are then not bound by the decomposition

threshold any more.

7.1.3 Tensor approximation

Alternatively to the aforementioned procedures, which are most conveniently viewed as matrix

decompositions, there also exist approaches that aim at higher order decomposition of the ERI

tensor or other wavefunction parameters. For instance, it has recently been proposed by Benedikt

et al. [24] that an efficient reduction of storage and transformation effort involved with the

handling of ERI can be achieved through an expansion of A using representing vectors in the
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canonical product (CP) format

A =

R
∑

r=1

a(µ)r ⊗ a(ν)r ⊗ a(λ)r ⊗ a(σ)r , (7.5)

such that the computational cost is reduced from O(N4) to O(d · R · N), where d stands for

the dimension of the tensor, i.e. 4 in the case of ERI, and R is the decomposition rank. The

superscripts on the a
(µ)
r are not indices, but serve to denote the dimension to which the different

representing vectors belong. The primary advantage of this decomposition scheme is its gen-

erality, which makes it extendable to any other tensor, such as amplitudes, that may occur in

quantum chemical situations. For illustration, within the Laplace transform approach to MP2

(see chapter 4), which allows to factorize the denominator of orbital energies, this format in

principle enables an efficient reformulation of the integral transformation and contraction [24].

However, this procedure at present requires the computation of the entire input tensor A, fol-

lowed by an iterative reduction of the initial rank of a trivial CP decomposition in order to

approximate it within a predetermined accuracy. Although significant rank reductions which

still afford reasonable accuracy have been reported, this method may so far only be beneficially

applied within higher correlation methods such as coupled cluster, whose complexity is not de-

termined by the O(N4) evaluation and storage of the ERI.

On a very similar footing, as an aside, a proposition is put forth in appendix B how a matrix

Kronecker product approximation (KPA) of the ERI matrix, rather than a CP approximation,

might also prove favourable for the calculation of the MP2 energy.

7.2 Method specific Cholesky decomposition (MSCD)

In most applications, the ERI matrix A is not required in raw, untransformed form, but it

rather occurs either as an intermediary in the formation of the Coulomb and exchange matrices

J and K constituting the Fock matrix of HF-theory, or transformed to some particular basis

for correlation methods. With this in mind, Boman et al. [19] proposed to base the Cholesky

decomposition ofA not on its diagonal itself as pivot elements, but on some specific characteristic

matrix Ω, i.e. functional of A, that describes the particular situation one is confronted with.

The rationale behind this approach, termed method specific Cholesky decomposition (MSCD),

is to obtain a Cholesky decomposition of minimum rank, through the screening induced by the

transformation procedure on A, while retaining arbitrary accuracy of the final expression that

is to be evaluated through the sole parameter of the decomposition threshold.

Now, within the CDD-MP2 approach described in chapter 5, and in chapter 6 for its RI-based

variant, the ERI matrix needs to be transformed to the basis of Cholesky orbitals according to

M = (LT ⊗ L
T
)A(L⊗ L), (7.6)
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where, recalling the definitions given in section 4.1, the matrix M has elements Mia,jb = (ia|jb).
However, the matrix that has been used as basis for the application of MSCD in the present

context is the half-transformed ERI matrix

AHT = (LT ⊗ 1)A(L⊗ 1), (7.7)

i.e. where both occupied indices have been transformed according to (iν|jσ). The characteristic
matrix whose diagonal elements are used for pivoting in the Cholesky decomposition is in this

case given by

Ω ≡
(

Lµi(µν|λσ)Lλj

)

i,j∈Nocc
µ,ν,λ,σ∈N

. (7.8)

This procedure thus produces a N2 ×RMSCD Cholesky decomposition

A = B′B′T (7.9)

for the ERI matrix A, where the dimension RMSCD of the Cholesky factor, however, is the

numerical rank of the characteristic matrix Ω, which is itself determined by the decomposition

threshold θMSCD. Since for systems where the electronic density is sufficiently localized L repre-

sents LMO, as has been discussed for CDD-MP2 in sections 5.1.2 and 5.3.1, the screening based

on the above characteristic matrix may be anticipated to lead to a significant rank reduction.

After transformation of the reduced rank Cholesky factor B′ according to

B̃ = (LT ⊗ 1)B′, (7.10)

the half-transformed ERI matrix can then be constructed with minimal effort as

AHT = B̃B̃T (7.11)

and with a numerical accuracy determined by θMSCD. The reason for having based the MSCD

on the half-transformed ERI matrix AHT instead of the fully transformed one M is that, as had

already been pointed out by Boman et al. [19], and as was confirmed by our initial investigations

in this context, the structure of the characteristic matrix

Ω ≡
(

LµiLνa(µν|λσ)LλjLσb

)

i,j∈Nocc
a,b∈Nvirt
µ,ν,λ,σ∈N

. (7.12)

for the MSCD of M does not lead to a favourable rank reduction. Still, the half-transformed

integral matrix AHT thus obtained can then be straightforwardly used for further transforma-

tions. Alternatively, a second transformation can be directly carried out as B = (1 ⊗ L
T
)B̃,

after which the FTI matrix can be assembled identically to RI-CDD-MP2 as M = BBT .
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7.2.1 Technical details

In spite of the aforementioned property that the Cholesky decomposition does not necessarily

require the evaluation of the entire matrix that is to be decomposed, an implementation of this

procedure for selective, column-wise formation of the ERI matrix with full exploitation of integral

symmetry for successive build-up of the Cholesky factor was beyond the scope of this project.

For the preliminary investigations that were performed on this subject, the MSCD has been

implemented within a modified version of the CD algorithm that is used for decomposition of the

pseudo-density matrices (see sections 5.1.1 and 5.2.1), after adaptation to the pivoting induced

by the characteristic matrix given in equation (7.8). Since this non-optimized algorithm requires

the input matrix, i.e. the N2 ×N2 ERI matrix A, to be formed in its entirety, investigations of

this method were possible only on very small systems, due to the ensuing tremendous increase

of memory requirements, especially with the large basis set cc-pVTZ.

In order to analyze the potential of the MSCD as applied to the present situation, the numerical

ranks obtained from a MSCD were compared to those of a standard CD of the ERI matrix for

the series of linear alkanes with a variety of basis sets. The particular decomposition thresholds

for both decompositions have been defined as follows. For the standard CD, in analogy to the

threshold used in section 5.2.1, θCD has been chosen as

θCD = Amax · 10−9, (7.13)

where Amax denotes the maximum (diagonal) element of A. This yields a precision of 10−9

Hartree of the individual elements of A as reconstructed from the Cholesky factor hereby ob-

tained. The threshold θMSCD applied to the diagonal elements of Ω, on the other hand, has

been defined as

θMSCD = Amax · 10−8/L2
max, (7.14)

so that, in view of the transformation (7.10), the individual elements of AHT may be recomposed

with an accuracy of 10−8 Hartree. As in section 5.2.1, Lmax here denotes the maximum element

of the occupied Cholesky factor matrix L, but in contrast to (RI)-CDD-MP2, L is here not

scaled with the maximum element of the virtual Cholesky factor.

The reason for imposing different target precisions is that, for further use in some transformation

procedure, the raw matrix A ought to be constructed at least with the aforementioned accuracy,

whereas from the experience gathered in the context of RI-CDD-MP2, a precision of 10−8 should

be sufficient for the elements of the half-transformed matrix AHT.

7.2.2 Results and discussion

The numerical ranks RCD and RMSCD determined as described in the previous section are

listed in table 7.1, along with the maximum possible rank Rmax = N(N + 1)/2 (in case of
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linear independence, when integral symmetry is fully exploited), for illustration of the advantage

brought by both standard CD and MSCD. Namely, whereas the formal maximum rank grows

quadratically, it has already been amply documented (see references given in section 7.1.2) that

the linear dependence in the ERI matrix causes the numerical rank to scale linearly. In addition

to the numerical rank data, the Frobenius norm ||∆||F of the difference matrix

∆ = AHT − B̃B̃T (7.15)

between the exact HTI matrix and as recomposed from the transformed MSCD factor matrix is

given in table 7.1, as a measure of the overall accuracy afforded by the low-rank approximation.

Further, for comparison with the RI-approximation, the size Naux of the corresponding auxil-

iary basis has been indicated for the basis sets SVP and cc-pVTZ (STO-3G and 6-31G* do not

possess an RI auxiliary basis for MP2).

From the behaviour of the numerical ranks with different basis sets, it becomes apparent that

the benefits of MSCD over standard CD are most significant for large bases. For the STO-3G

minimal basis, the difference between RCD and RMSCD is rather small for the initial molecular

sizes, and even vanishes for the smallest molecule CH4. Although this difference becomes more

pronounced towards larger alkanes, MSCD here doesn’t achieve a reduction of RCD beyond a

factor of about 1.6 for the largest system C30H62. With the next larger 6-31G* basis, the situa-

tion is already noticeably different and for C10H22, a rank reduction by a factor 2.4 is obtained.

Increasing the basis set size, the rank reduction brought about by MSCD progressively gains

further importance. With SVP and cc-pVTZ, for the largest molecule that could be investigated

in each case, the rank is reduced by a factor 2.5 and even 3.7, respectively. Considering that

in these last cases, the calculations were restricted to very small molecules, it may be surmised

that for larger molecular sizes the effects of the MO locality will further enhance the observed

rank reduction. Turning our attention to the error measure provided by the Frobenius norm

||∆||F of the error matrix, we notice that in all cases the HTI matrix is recomposed with a very

high and well-controlled overall accuracy.

Finally, a comparison of RMSCD with Naux yields that the RI-approximation yet provides a lower-

rank decomposition of A in all cases both for SVP and cc-pVTZ. However, as has already been

alluded to in section 7.1.2, this result has to be weighed against the fact that the incomplete-

ness of the RI auxiliary basis induces a fixed, non-tunable error in the approximated entity. In

contrast to this, the precision provided by MSCD can be controlled through the decomposition

threshold. It may therefore be argued that, though MSCD would come at higher computational

cost, it offers the possibility to compute precise integrals, and thus absolute energies. On the

other hand, if one were satisfied with smaller accuracy, the decomposition threshold θMSCD may

also be chosen so as to make RMSCD comparable to Naux, such that MSCD can still be compet-

itive with RI-approaches. One could also consider the application of truncation schemes of the
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Cholesky auxiliary basis, which have been mentioned previously. At any rate, the rank reduc-

tion of MSCD as compared to standard CD is rather encouraging, and it might be interesting

to pursue developments in this direction.

Molecule
STO-3G SVP

Rmax RCD RMSCD ||∆||F Rmax RCD RMSCD ||∆||F Naux

CH4 45 45 45 0.0 595 454 207 6.3 104

C2H6 136 123 109 0.6 1711 836 347 14.8 180

C3H8 276 218 167 1.5 3403 1206 489 23.8 256

C4H10 465 311 224 1.9 5671 1563 627 31.0 332

C5H12 703 404 278 3.0 8515 1931 763 36.5 408

C10H22 2628 869 559 4.7 - - - - -

C15H32 5778 1334 836 6.8 - - - - -

C20H42 10153 1799 1112 8.1 - - - - -

C30H62 22578 2729 1663 11.0 - - - - -

6-31G* cc-pVTZ

Rmax RCD RMSCD ||∆||F Rmax RCD RMSCD ||∆||F Naux

CH4 276 235 131 3.1 3741 1095 302 22.2 201

C2H6 903 524 242 14.3 10440 1864 506 52.7 342

C3H8 1891 789 347 23.5 20503 2617 703 80.9 483

C4H10 3240 1056 453 26.6 - - - - -

C5H12 4950 1317 553 31.8 - - - - -

C10H22 18915 2616 1077 50.9 - - - - -

Table 7.1: Numerical ranks of ERI matrix A (theoretical maximum Rmax, standard CD RCD

and method specific CD RMSCD), along with Frobenius norm ||∆||F [µHartree] of error matrix

∆ between exact HTI matrix AHT and recomposed from MSCD as B̃B̃T , and size Naux of

auxiliary RI-basis for SVP and cc-pVTZ. See discussion in section 7.2.1 for settings of the

individual decompositions.
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Chapter 8

Conclusion and outlook

The main topic of this dissertation has been the implementation of the CDD-MP2 method, the

investigation of which was motivated by a series of promising theoretical features that endow it

with the potential to scale linearly, and thus be useful for the evaluation of MP2 energies of large

molecules. In particular, the CDD approach has the advantage of yielding full MP2 energies,

rather than merely the opposite spin component of it, to which the AO-MP2 implementation

that forms its basis is currently restricted for technical reasons. However, although it could be

shown on ideal model systems that the CDD-MP2 approach does in principle scale linearly, its

practical applicability to molecular systems of sensible size with large basis sets was severely

limited and it could not be established as being competitive—both in terms of computational

performance and reasonable accuracy—to canonical MP2 for fairly large systems. Namely, al-

though the employed integral preselection scheme does achieve considerable reductions of the

numbers of significant contributions to the MP2 energy in themselves, the formation of these

contributions through four consecutive transformations is associated with an overwhelming com-

putational effort that could not be efficiently reduced, in spite of an internal screening procedure

that minimizes the evaluation cost of the preselected terms by discarding insignificant interme-

diaries in the formation. In addition to this, the very formulation of the Coulomb-type MP2

energy component in terms of purely positive summands within this CDD approach, in conjunc-

tion with the fact that the internal screening induces a certain error in the evaluated integrals,

leads to a high numerical imbalance with practicable numerical settings and large basis sets.

Accordingly, overall accuracies are rather poor even on relatively small molecules, such that it

doesn’t appear sensible to continue research on this specific integral-direct CDD-MP2 approach,

since improvements merely of the computational performance will not help in coming to terms

with the numerical problems.

On the other hand, the RI-CDD-MP2 implementation of Zienau et al., a modification of CDD-

MP2 which is based on RI-approximation of the required integrals, has been extended to include

the exchange-type term and is now also capable of producing total MP2 energies. Due to its
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near-quadratic scaling, this method was revealed as advantageous over fifth-order scaling canon-

ical RI-MP2 for a variety of large test systems with basis sets up to cc-pVTZ. The entirely

different integral transformation procedure also causes this approach not to be affected by the

numerical problems that plague CDD-MP2, and it was shown to provide very satisfying ac-

curacy with practicable screening thresholds. Apart from the complementation to full MP2,

a preliminary OMP parallelized version of this algorithm has been presented, which attains

relatively high efficiencies. Although this parallelization yet has to be completed for all steps

involving integral generation, the speed-ups brought about by the partially parallel algorithm

were shown to already have a substantial impact on the total calculation times, as these were on

the average halved in calculations with four threads. The RI-CDD-MP2 method thus represents

a serious alternative to canonical RI-MP2 for the evaluation of MP2 energies of moderate to

large systems with large bases, and is anticipated to further gain efficiency upon completion of

the parallelization.

As an alternative approach to RI-approximated integrals, it has also been explored whether a

method specific Cholesky decomposition of the ERI matrix can be fruitfully applied in the CDD

context. For implementational reasons, the preliminary investigations on this subject had to

be restricted to very small molecules, but significant rank reductions with respect to standard

Cholesky decomposition were already observed in these cases. In particular, these reductions

were most pronounced with large basis sets. Even though MSCD ranks were still larger than

corresponding RI auxiliary bases, this approach presents the advantage of reproducing the ap-

proximated entity with arbitrary precision, in contrast to the basis set incompleteness error that

affects RI methods. Due to these encouraging results, it would seem worthwhile to pursue efforts

along this line and work out an optimized MSCD implementation for selective column formation

and full use of integral symmetry in order to study the method’s potential also on large systems.

As a concluding retrospective and outlook, it may be said that over the last decades, remarkable

progress has been made in the treatment of electron correlation, and a wide array of wavefunction

based methods, ranging from coupled cluster approaches to low-scaling perturbational schemes

is nowadays at our disposal to provide quantum theoretical treatment of many of the questions

arising in contemporary research applications. Yet, the difficulties with which quantum chem-

istry is faced in that respect are still many and the evaluation of electron correlation energies with

higher precision or for very large systems remains as challenging as ever. In the high-accuracy

domain, the currently established methods such as coupled cluster are still limited to rather

small molecules, due to their high computational cost. On the other hand, even lower-level

methods will have to be made more efficient than they are at present in order to be routinely

applicable for the investigation of systems that occur in biochemistry and similar situations.

Certainly, computational possibilities will continue to benefit from the ongoing tremendous im-
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provements of hardware, so that larger systems will progressively become tractable with current

methods and algorithms. As concerns these developments, however, the growth rate of processor

frequency has somewhat decreased in recent times in favour of a stronger emphasis on parallel

computing, such that it will be important to follow this trend and adapt quantum chemical soft-

ware for that purpose. Nevertheless, despite the undoubtable impact of hardware improvements,

the predominant driving force of quantum chemical progress has always been and will remain

methodical innovation and the development of new, more efficient algorithms. It is therefore

indispensable that purely technical advances go hand in hand with method-theoretical research.

In that respect, however, it is hard to predict how the presently applied techniques will evolve

and from which direction significant advances will be stimulated. One may even be tempted to

the somewhat controversial admission that however valuable the currently established algebraic

procedures have been thus far, they also seem to lead into further and further approximations

and increasingly tricky algorithms. One could therefore speculate that a fundamentally different

mathematical approach will eventually have to emerge in order to provide new possibilities for

the formidable endeavour of solving Schrödinger’s equation.
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Appendix A

Exponentially weighted energy

differences in MP2

The primary incentive to express the MP2 energy—and other electron correlation methods, for

that matter—in a local basis is the intrinsically delocalized nature of canonical HF molecular

orbitals (MO). This precludes the application of integral screening schemes based on spatial

separation of charge distributions to exploit the short-range nature of electronic correlation

effects, which in principle would lead to a 1/R3 decay of electron repulsion integrals (ERI)

(ia|jb).
Considering the expression for the canonical MP2 energy

E
(2)
0 =

Nocc
∑

i,j

Nvirt
∑

a,b

(ia|jb) [2(ia|jb)− (ib|ja)]
ǫi − ǫa + ǫj − ǫb

=

Nocc
∑

i,j

Nvirt
∑

a,b

Mia,jbGia,jb

Dia +Djb
, (A.1)

however, a reduction of the computational effort required to evaluate E
(2)
0 might also be based

on the truncation of the substitution space of a given occupied orbital φi, i.e. the set {φa}a∈Nvirt

of virtual MO into which electron substitution i → a is permitted, by taking into account the

difference Dia = ǫi − ǫa of orbital energies. Namely, with increasing Dia and Djb, the value of

an associated amplitude Mia,jbGia,jb should dramatically decrease. This approach is actually

already widely applied in form of the frozen core and frozen virtual approximations, where

coreorbitals and high lying virtuals are excluded from the active and virtual spaces, since the

occurrence of Dia in the denominator already induces a 1/Dia decay of the summands. This

damping form, however, should not allow for efficient reduction of the number of significant

contributions beyond the frozen core and frozen virtual approximation.

In the expression of the Laplace-transform MP2 energy

E
(2)
0 = −

τ
∑

α

wα

Nocc
∑

i,j

Nvirt
∑

a,b

e−DiatαMia,jbGia,jbe
−Djbtα . (A.2)
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as discussed in section 4.1, the individual summands decay exponentially with the orbital en-

ergy difference, which already would lead to a more rapid decrease of significant contributions.

However, in this context, this expression bears the disadvantage that no coupling between the

substitution energies Dia and Djb is induced.

Another possibility of expressing the energy denominator in (A.1) is to use an integral transform

of the type

1

x
=

2√
π

∫ ∞

0
e−x2t2dt ≈ 2√

π

τ
∑

α

wαe
−x2t2α , (A.3)

which, in contrast to the Laplace transform approach, does not decouple the orbital energies in

view of a change of basis, but more suits the present purpose of exploiting the damping induced

by the energy differences. With this expression, the MP2 energy takes the form

E
(2)
0 = −

τ
∑

α

w′
α

Nocc
∑

i,j

Nvirt
∑

a,b

Mia,jbGia,jbe
−(Dia+Djb)

2t2α , (A.4)

where w′
α = 2wα/

√
π, such that with (Dia +Djb)

2 = D2
ia + 2DiaDjb +D2

jb one finally obtains

E
(2)
0 = −

τ
∑

α

w′
α

Nocc
∑

i,j

Nvirt
∑

a,b

Mia,jbGia,jbe
−(D2

ia+2DiaDjb+D2
jb)t

2
α . (A.5)

With this functional form, the substitution amplitude should strongly decrease with the differ-

ences of orbital energies. For illustration, assuming that the maximum magnitude of ERI is

O(1) a.u. and noting that e−D2
mint

2
α is always smaller than unity, in order for the term e−D2

iat
2
α

and hence the whole summand to be smaller in magnitude than 10−6, one obtains the condition

Dia >

√
6ln10

tα
≈ 3.7, (A.6)

assuming tα ≈ 1 in the last step. From this consideration, the aforementioned frozen core

and frozen virtual approximations are certainly directly recovered, since the energy differences

between highest lying core orbital and LUMO, as well as between the HOMO and highest

lying virtuals should always be large enough for the substitution to be strongly damped by the

exponential terms. The above expression bears the further advantage than the term e−2DiaDjbt
2
α

couples both charge distributions in the ERI, so that for a given set of Dia only a reduced

number of Djb should lead to numerically significant terms.

On the basis of expression (A.5), one may thus envisage a reduction of the substitution space

based on successive screening of the excitations that have significant contributions according to

the exponential damping. Although for full numerical control the integrals should be known in

advance, in order to apply the exponential term to the actual amplitudes rather than relying on

the rough estimate used above for illustrative purposes, this procedure could for instance be used

in conjunction with resolution of the identity (RI). Since with RI approximated integrals the
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computational effort is shifted away from the AO-MO-transformation towards the contraction to

the energy, the proposed procedure may help reduce the complexity of this step within canonical

RI-MP2 algorithms.
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Appendix B

Kronecker Product Approximation

of ERI

Along the lines of the canonical product tensor approximation of ERI proposed by Benedikt

et al. [24] (see section 7.1.3), we wish to propose an alternative, though related approach that

may prove beneficial for the calculation of the MP2 energy within the Laplace transform formal-

ism of Almlöf and Häser and with Cholesky decomposed pseudo-density matrices (see sections

4.1 and 5.1). Namely, if instead of a CP factorization a low rank matrix Kronecker product

approximation (KPA) of the ERI matrix were obtained as

A ≈
R
∑

r

(Xr ⊗Yr), (B.1)

where Xr and Yr are of dimension N×N , the transformation of the integrals in equation (4.20)

could then be efficiently performed according to

M′ =
R
∑

r

(LT ⊗ L
T
)(Xr ⊗Yr)(L⊗ L) =

R
∑

r

(LTXrL⊗ L
T
YrL) =

R
∑

r

(X′
r ⊗Y′

r). (B.2)

Using the useful property of the Kronecker product

Tr(A⊗B) = TrA · TrB, (B.3)

121



APPENDIX B. KRONECKER PRODUCT APPROXIMATION OF ERI

the contraction to the energy (here only the Coulomb type energy, but these considerations

apply to the exchange part as well, though for permuted indices) then becomes

E
(2)
J = −

τ
∑

α

wαTr
(

(e′ ⊗ e′)M′(e′ ⊗ e′)
)2

= −
τ
∑

α

wαTr

(

R
∑

r

(e′ ⊗ e′)(X′
r ⊗Y′

r)(e
′ ⊗ e′)

)2

= −
τ
∑

α

wαTr

(

R
∑

r

(e′X′
re

′ ⊗ e′Y′
re

′)

)2

(B.4)

= −
τ
∑

α

wα

R
∑

r,s

Tr(X′′
rX

′′
s ⊗Y′′

rY
′′
s)

= −
τ
∑

α

wα

R
∑

r,s

Tr(X′′
rX

′′
s) · Tr(Y′′

rY
′′
s),

where the double prime indicates contraction with the e′ and e′, i.e. X′′
r = e′X′

re
′. The

occupied and virtual transformation are hereby completely decoupled, as is seen in equation

(B.2), and the contraction to the energy is reduced to forming the traces of 2R2 products of—in

practice surely sparse—Nocc × Nocc and Nvirt × Nvirt matrices, hence allowing for the use of

optimized linear algebra library routines as well as parallel implementation.

The KPA of a matrix A, i.e. the search of matrices Xr and Yr for which the norm

||A− Ã||F = ||A−
R
∑

r

(Xr ⊗Yr)||F (B.5)

is minimized, is closely related to the singular value decomposition (SVD), at least for the case

R = 1. Namely, it can be shown that for Ã having the SVD Ã = UΣVT , the minimizers of

||A−X⊗Y||F (B.6)

are the matrices X∗ and Y∗ with

vec(X∗) = σ1u1, vec(Y∗) = v1, (B.7)

where u1 and v1 are the first columns of U and V and σ1 is the largest element of Σ, i.e. the

largest singular value of Ã [144].

Further, as the ERI matrix that is to be decomposed is highly symmetric and sparse, especially

when applying a screening scheme to determine and compute only those elements that are

required in the transformations to the MO ERIs, the matrices Xr and Yr would themselves most

probably be symmetric and relatively sparse, so that one might possibly apply a constrained

KPA algorithm.
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List of abbreviations

AO - Atomic Orbitals

API - Application Programming Interface

CC - Coupled Cluster

CD - Cholesky Decomposition

CDD - Cholesky Decomposed Densities

CFMM - Continuous Fast Multipole Method

CI - Configuration Interaction

CP - Canonical Product Format

DF - Density Fitting

DFT - Density Functional Theory

DIIS - Direct Inversion in the Iterative Subspace

DNA - Deoxyribonucleic Acid

ER - Edminston-Ruedenberg Localization

ERI - Electron Repulsion Integrals

FCI - Full Configuration Interaction

FMM - Fast Multipole Method

FTI - Fully Transformed Integrals (ia|jb)
FTidx - Indexing array of FTI

HF - Hartree-Fock

HTI - Half Transformed Integrals (ia|λσ)
HTidx - Indexing array of HTI

Kidx - Assignment array of exchange integrals

KPA - Kronecker Product Approximation

LCAO - Linear Combination of Atomic Orbitals

LMO - Localized Molecular Orbitals

123



APPENDIX C. LIST OF ABBREVIATIONS

MBPT - Many Body Perturbation Theory

MKL - Math Kernel Library

MO - Molecular Orbitals

MP2 - Second Order Møller-Plesset Perturbation Theory

MPn - n-th Order Møller-Plesset Perturbation Theory

MSCD - Method Specific Cholesky Decomposition

OMP - Open Multi-Processing

PAO - Projected Atomic Orbitals

PM - Pipek-Mezey Localization

RAM - Random Access Memory

RHF - Restricted Hartree-Fock

RI - Resolution of the Identity

RPA - Random Phase Approximation

RSPT - Rayleigh-Schrödinger Perturbation Theory

SAD - Superposition of Atomic Densities

SCS - Spin Component Scaling

SOS - Scaled Opposite Spin

STI - Single Transformed Integrals (iν|λσ)
TTI - Triple Transformed Integrals (ia|jσ)
UTI - Untransformed Integrals (µν|λσ)
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[126] O. Vahtras, J. Almlöf and M. W. Feyereisen, Chem. Phys. Lett., 213, 514 (1993).

[127] B. I. Dunlap, J. W. D. Connolly and J. R. Sabin, Int. J. Quantum Chem., Symp. 11, 81

(1977).

[128] D. S. Lambrecht and C. Ochsenfeld, J. Chem. Phys., 123, 184101 (2005).

[129] D. S. Lambrecht and C. Ochsenfeld, J. Chem. Phys., 136, 149901 (2012).

[130] D. S. Lambrecht, B. Doser and C. Ochsenfeld, J. Chem. Phys., 136, 149902 (2012).

[131] J. J. Dongarra, J. Du Croz, S. Hammarling and I. S. Duff, ACM Transactions on Math-

ematical Software, 16, 1 (1990).
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