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Abstract

ω-limit sets are interesting and important objects in the study of discrete

dynamical systems. Using a variety of methods, we present and extend ex-

isting results in this area of research. Of particular interest is the property of

internal chain transitivity, and we present several characterizations of ω-limit

sets in terms of this property. In so doing, we will often focus our attention

on the property of pseudo-orbit tracing (shadowing), which plays a central

role in many of the characterizations, and about which we prove several new

results. We also make extensive use of symbolic dynamics, and prove new

results relating to this method of analysis.
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Chapter 1

Introduction

ω-limit sets, as we will show, are an important and interesting phenomenon

in the subject of dynamical systems, and there have been many treatments

of their structure in recent literature (see for example [1], [4], [3], [9], [10],

[11], [21], [22], [23], [26], [44]). Despite having a simple topological definition,

ω-limit sets are complex objects, and take many different forms. Character-

izations exist, but the insight gained from such studies can sometimes be

limited by the complexity of the required technical definitions, and different

characterizations may appear to bear no resemblance to one another. In this

report we give an account of the existing material in this area, attempting

to draw together many of the most commonly observed characteristics, and

offer a new perspective using symbolic dynamics. We also characterize ω-

limit sets for particular systems using simple and well-known properties, in

particular that of internal chain transitivity, a property which has relevance

in many areas of applied dynamical systems as well as topological dynamics

[15], [26], [38], [53].
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We will begin in this chapter by reviewing some of the central notions in

discrete dynamical systems, giving examples to highlight certain key aspects

of the theory. In Chapter 2 we will introduce some of the more specific

definitions and terminology related to topological dynamics, in particular

to ω-limit sets, and give some important results in this area, together with

their proofs. In so doing, we will begin to see what restrictions can be put

on the topological structure of ω-limit sets when we restrict our attention to

interval maps. In Chapter 3 we will restrict our focus further to three specific

properties of ω-limit sets, one being internal chain transitivity, which will be

a focus of the remainder of this report, and which we show is equivalent to

a property introduced independently by Šarkovs′kĭı.

A lot of work has been done on ω-limit sets of interval maps (see [1], [4],

[8], [9], [10]), but in Chapter 4 we take a fresh perspective using symbolic

dynamics and kneading theory, developed primarily by Milnor and Thurston

[35], and obtain new results which appear unaccessible using conventional

analytic methods. We also prove several new results in the area of kneading

theory which help us obtain our first dynamical characterization of ω-limit

sets of interval maps in terms of internal chain transitivity.

The notion of pseudo-orbit tracing, or shadowing, has close links to that

of internal chain transitivity, and was utilized by Bowen in [11] to examine

the ω-limit sets of Axiom A diffeomorphisms; it has since become a popular

area of research in its own right [16], [18], [28], [40], [52]. In Chapter 5 we

introduce a number of different forms of this property, prove equivalences

between them, and show how certain expansive properties of maps imply

shadowing in its various forms. Finally in Chapter 6 we use much of what
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we develop in earlier chapters, particularly expansivity and shadowing from

Chapter 5, to prove a number of characterizations of ω-limit sets in various

spaces.

1.1 Dynamical Systems

In this work, we will focus on discrete dynamical systems, which are defined

below. Whilst many of the definitions are consistent with general topologi-

cal spaces, some of the more technical definitions require a metric, thus we

define everything in terms of compact metric spaces unless otherwise stated,

with particular emphasis on interval maps. For similar reasons maps on the

space will be continuous in general unless otherwise stated (some instances

where these conditions can be relaxed will be addressed in forthcoming work).

These restrictions are consistent with previous work in this area (see [1], [4],

[9], [10], [11], [12], [17], [44], [50] and many more). The terminology and

symbols we use are also consistent with work in this area.

For X a compact metric space with metric d and f : X → X a continuous

map, pick any x ∈ X and any A ⊂ X. We shall denote by f↾A the function

defined on the set A with image set f(A). We use the standard definition of

distance defined by d(x, A) = inf{d(x, y) : y ∈ A}. For any ǫ > 0 we denote

the ball of radius ǫ centered at x by Bǫ(x), and the set {x ∈ X : d(x, A) < ǫ}

by Bǫ(A). For any n ∈ N, f−n(A) denotes the set {x ∈ X : fn(x) ∈ A};

the nth inverse image of A. For a point y ∈ R and a function f : R → R,

denote by limx↓y f(x) and limx↑y f(x) the limit of f(x) as x tends to y from

above and below respectively.
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Definition 1.1.1 (Dynamical System, Orbit). A dynamical system is a pair

(X, f), where X is a compact metric space with metric d and f is a continuous

mapping of X into itself. For a point x in the space X the forward orbit of

x is the set

orb+(x) = {f i(x) : i ∈ Z, i ≥ 0},

where for n ∈ Z, fn+1 = f ◦ fn, and f 0 is the identity on X. Where f

is one-to-one, the backward orbit of x = x0, orb−(x0) = {x−i}i≥0 ⊂ X, is

well-defined, where f(x−i) = x−i+1 for every i > 0. In our general discussion

a map f will not necessarily be one-to-one, but in the case where f is a

surjective map we can generate (possible several) backward orbits of a point

x0 by sequentially choosing xi−1 ∈ f−1(xi) for each i ≤ 0. Where a backward

and forward orbit of a point x0 are defined, we define the full orbit of x0

as the set orb(x0) = {xi}i∈Z, where f(xi) = xi+1 for every i ∈ Z. We will

indicate explicitly when we are refering to a full orbit, and as we will usually

be discussing only forward dynamics we will refer to the forward orbit of a

point as simply the orbit of that point, unless there is any ambiguity.

Definition 1.1.2 (Periodic Point, Cycle). If for some positive n ∈ Z we have

that fn(x) = x we will say that x is a periodic point for f , and furthermore

if f j(x) 6= x for any j < n we will say that x has period n. The orbit of x

will be referred to as a periodic orbit (of period n) or (n-)cycle. A point x

is called pre-periodic if x is not periodic and there are integers k, n > 0 such

that f in+k(x) = fk(x) for every i ≥ 0. A point x is said to be asymptotically

periodic if there is a periodic point z ∈ X such that limn→∞ d(fn(x), fn(z)) =

0.
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It is easy to see that all periodic and pre-periodic points are asymptoti-

cally periodic.

We will denote the interior and closure of a set A by A◦ and A respectively,

and for any n ∈ N the nth derivative of a map f by Dnf .

Definition 1.1.3 (Regularly Closed Set). A set C ⊂ X is said to be regularly

closed if C = C◦.

The following are topological properties of all dynamical systems (X, f)

and will appear regularly in the sequel.

Definition 1.1.4 (Topologically Transitive Map). A map f : X → X is

topologically transitive if for any pair of non-empty open sets U and V there

is an integer k > 0 for which fk(U) ∩ V 6= ∅.

Definition 1.1.5 (Topologically Exact Map). A map f : X → X is topolog-

ically exact if for any non-empty open set U ⊂ X there is an integer k > 0

for which fk(U) = X.

We will often refer to topologically transitive maps as simply transitive.

Some authors refer to maps which are topologically exact as being locally

eventually onto. It is easy to see that topologically exact maps are also

transitive.

Remark 1.1.6. It is easy to see that any topologically exact map is also tran-

sitive, however the converse is not true in general. As an example, consider

an irrational rotation of the circle. Then any open set will certainly meet

any other open set, so the map is transitive, however there is no expansion

of segments, so the map cannot be topologically exact.
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Definition 1.1.7 (Sensitive Dependence to Initial Conditions (SDIC)). A

map f : X → X has sensitive dependence to initial conditions if there exists

a δ > 0 such that for every x ∈ X and neighbourhood N of x, there exists a

y ∈ N and an n ≥ 0 such that d(fn(y), fn(x)) > δ. The δ in this definition

is known as the sensitivity constant .

The following definition was used by Devaney in [20] to define the be-

haviour of a function which has unpredictability whilst displaying regularity

also.

Definition 1.1.8 (Chaotic Map). A map f : X → X is called chaotic if it

is topologically transitive, has a dense set of periodic points and has SDIC.

Example 1.1.9. We give two examples of maps which are chaotic, according

to Devaney’s definition. We make use of the fact that on certain spaces, some

of the elements in the definition of chaos are redundant [5, 51].

1. Consider the unit circle S = {x ∈ R2 : |x| = 1}. If we denote by θ a

point (cos θ, sin θ) ∈ S, for 0 ≤ θ < 2π, we can define a map g : S → S

by g(θ) = 2θ mod 2π (see Figure 1.1). So g simply doubles the angle

a point in S makes with the positive x-axis. Then g is chaotic. Indeed,

open arcs in S are stretched to double their length repeatedly under g,

so after enough iterations any open arc will cover S, so g is certainly

topologically transitive. Also, the periodic points of period n for g are

precisely the (2n−1)th roots of unity, so periodic points are dense in S.

Continuous transitive maps on metric spaces which have a dense set of

periodic points are chaotic (see [5] and Appendix A), thus g is chaotic.
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2. Let I be the compact interval [0, 1], let s ∈ (1, 2] and define a map

fs : I → I known as the tent map as

fs(x) =















sx x ∈ [0, 1/2]

s(1 − x) x ∈ [1/2, 1]

(see also Examples 1.2.1 and 4.4.3). The set J = [f 2
s (1/2), fs(1/2)]

is invariant under fs, so we lose no generality by considering fs ↾J ,

which we call the tent map core. For s ∈ (
√

2, 2], the tent map core is

locally eventually onto [14], thus fs is certainly transitive. Continuous

transitive maps on an interval are chaotic [51], so fs is chaotic.

�

b
θ

b
2θ

b
4θ

b

8θ

b
16θ

b32θ

b 64θ

b

128θ

Figure 1.1: The doubling map is chaotic on S.

We will see later that topological transitivity is a property that has some

interesting consequences with regards to ω-limit sets.
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The following is a consequence of the intermediate value theorem which

we will only quote here, but the proof can be found in many introductory

courses in real analysis.

Lemma 1.1.10. Suppose that f : I → I is a continuous function on a

compact interval I. Then f has a fixed point in I.

1.2 ω-Limit Sets

As we saw in the last section, even very simple functions can have compli-

cated dynamics (this has also been explored in [29], [31] and [33]), so we look

for ways to gain an overall understanding of how the system is behaving,

particularly in the long term. ω-limit sets give us a way of doing this, pro-

viding an asymptotic description of the dynamics. For a sequence of points

{xn}n∈N, the ω-limit set of {xn}n∈N is given as the set of accumulation points

of the sequence. It is formally defined as

ω({xn}) =

∞
⋂

n=0

{xk : k ≥ n}

In particular, if {xn}n∈N is the orbit of a point x ∈ X for a map f : X → X,

we define the ω-limit set of x (under f) as

ω(x, f) =
∞
⋂

n=0

{fk(x) : k ≥ n}

(where we may drop the f if there is no ambiguity.)

In some cases the ω-limit set of a point may be a finite set – in particular
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if the point is asymptotically periodic (as is shown in Lemma 2.1.7). Fur-

thermore, if the point is periodic or pre-periodic, the ω-limit set of that point

will be precisely the periodic portion of the orbit.

It will often be the case that ω(x) is an infinite set, in which case it may

take the form of a Cantor set (see Definition 2.2.9), a closed countable set

or a set with non-empty interior. It may also be that an ω-limit set is a

combination of these types of set, but it should be noted that for two ω-limit

sets A and B, it is not necessarily the case that A∪B is an ω-limit set, even

if the two intersect, as Example 1.2.1 shows (see also [10]).

Example 1.2.1. Consider the tent map

f2(x) =















2x x ∈ [0, 1/2]

2(1 − x) x ∈ [1/2, 1]

as defined in Example 1.1.9, and let us extend this to a map g : [−1, 1] →

[−1, 1] defined by

g(x) =















−f2(−x) x ∈ [−1, 0]

f2(x) x ∈ [0, 1].

The dynamics for the two halves of this map are disjoint about 0; i.e. no

point in (0, 1] is mapped to [−1, 0) and vice-versa. Indeed the point x = 1/2

is mapped to the maximum 1 and then to 0, which is fixed. Consider the

sets

H1 = {0} ∪
∞
⋃

n=0

{

1

2n

}
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and

H2 = {0} ∪
∞
⋃

n=0

{

− 1

2n

}

.

For x = 1/2i ∈ H1 with i ≥ 0, it is easy to see that gk(x) = 1/2i−k for

k ≤ i, so H1 is a backwards orbit of the point 0, similarly for H2. We show

in Chapter 4 that H1 and H2 are both ω-limit sets for g, but it is easy to see

that H = H1 ∪H2 is not an ω-limit set for g since the dynamics are disjoint

about 0 (points in H1 will remain in H1, similarly for H2), even though the

two sets are not disjoint (see Figure 1.2).

This example can be found also in [4], and we use it extensively through-

out the sequel to demonstrate various dynamical properties.

�

Example 1.2.2. A simpler example of an ω-limit set is a periodic orbit.

Any periodic orbit of a map is an ω-limit set of any of the points in the orbit

for that map. This is an example of when an ω-limit set is a minimal set, in

other words a closed invariant set which contains no proper closed invariant

set (see Chapter 2). We will see that an ω-limit set is either a minimal set,

or properly contains one (neither of the sets H1 nor H2 in Example 1.2.1 are

minimal, since {0} is closed and invariant).

�
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−1
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−1
4
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8

Figure 1.2: The dynamics of the double tent map are disjoint about 0.
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Chapter 2

Topological Dynamics

In this chapter we investigate certain topological properties which regularly

occur in the study of dynamical systems, and which will help us to improve

our understanding of how ω-limit sets behave. The results stated are for

dynamical systems (X, f) (a compact metric space X and a continuous func-

tion f : X → X), unless stated otherwise. Our treatment is taken from [9],

but examples can also be found in [1], [10] and [44].

2.1 General Properties of ω-Limit Sets

Definition 2.1.1 (Invariant Set). We say that a set A ⊂ X is invariant if

f(A) ⊂ A. If f(A) = A we say that A is strongly invariant (or s-invariant

for short).

Central to the subject of ω-limit sets is the concept of an attractor. The

following definition is taken from [26] but there are other definitions which

are sometimes used and which may not be equivalent to this one (see for
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example [9], [19], [20]).

Definition 2.1.2 (Attractor). A subset A of X is said to be an attractor

for f : X → X if A is nonempty, compact, s-invariant and there is an open

neighbourhood U of A such that

lim
n→∞

sup{d(fn(x), A) : x ∈ U} = 0

Definition 2.1.3 (Attracting/stable periodic orbit). A periodic orbit A of

a point under a map f : X → X is said to be attracting (stable) if A is an

attractor for f .

Thus we see that ω(x, f) is the attractor for f restricted to orb(x, f) (but

may not be an attractor for f). An example of a map f and an ω-limit set

which is also an attractor for f is a stable periodic orbit of an interval map

f : [0, 1] → [0, 1] (see [17], [33] for examples and exposition on stable orbits

of interval maps). The set H1 as defined in Example 1.2.1 is an example of

an ω-limit set which is not an attractor for the map on the whole space.

Lemma 2.1.4. For x0 ∈ X and f : X → X the set A = ω(x0, f) is closed,

non-empty and s-invariant.

Proof. By definition, A = ω(x0, f) is the intersection of countably many

closed non-empty sets, so is itself closed. Since these sets are nested, by

compactness we get that A is non-empty. To show that f(A) ⊆ A, suppose

that x ∈ A \ orb+(x0) (if x ∈ A ∩ orb+(x0) the claim is immediate), then

x is a limit point of orb+(x0), so by continuity f(x) is also a limit point of

orb+(x0). Now suppose that y ∈ A, then there is a sequence {nk}k≥0 ⊂ N
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such that limk→∞ fnk(x0) = y. Since A is compact the sequence of points

fnk−1(x0) for k ≥ 0 has a convergent subsequence fmk(x0) with limit z ∈ A.

So for every k ∈ N, mk + 1 = nk′ ∈ {nk}k≥0, so

f(z) = f
(

lim
k→∞

fmk(x0)
)

= lim
k→∞

fmk+1(x0) = y,

and hence f(A) = A.

The following property was first observed by Šarkovs′kĭı, who proved in

[45] that it is an inherent property of ω-limit sets. It was originally stated as

a property of invariant sets, but we modify the definition slightly to remove

the necessity of invariance. The term weak incompressibility seems to have

appeared first in [4] and we adopt this term in this text.

Definition 2.1.5 (Weak Incompressibility). A set A ⊂ X is said to have

weak incompressibility if for any proper non-empty subset U ⊂ A which

is open in A, f(U) ∩ (A \ U) 6= ∅. Equivalently we can say that for any

non-empty closed subset D ( A we have that D ∩ f(A \ D) 6= ∅.

Lemma 2.1.6. If A = ω(x0, f) for f : X → X and x0 ∈ X then A has weak

incompressibility.

Proof. Assume that for some closed M ( A we have that M ∩f(A \ M) = ∅,

then by normality there are open sets U and V such that U ∩V = ∅, M ⊂ U

and f(A \ M) ⊂ V . Thus (A \ M) ⊂ f−1(V ) = W , where W is open by

continuity. f
(

W
)

= f(W ) = V , so f
(

W
)

∩ U = ∅.

Since A = ω(x0, f) ⊂ (W ∪ U) there is an integer k0 > 0 such that

fn(x0) ∈ W ∪U for every n ≥ k0. Moreover, fn(x0) ∈ W for infinitely many

18



n ≥ k0 and fm(x0) ∈ U for infinitely many m ≥ k0, so for infinitely many

n ≥ k0, fn(x0) ∈ W and fn+1(x0) ∈ U . Thus there is a sequence {ni}i∈N

such that fni(x0) ∈ W , fni+1(x0) ∈ U and y = limi→∞ fni(x0) ∈ W . Then

f(y) = f(limi→∞ fni(x0)) = limi→∞ fni+1(x0) ∈ U ; i.e. f(y) ∈ f
(

W
)

∩ U

which contradicts the fact that f
(

W
)

∩U = ∅. Hence M∩f(A \ M) 6= ∅.

We mentioned above that an asymptotically periodic point will have a

finite ω-limit set; Lemma 2.1.7 formalizes this idea.

Lemma 2.1.7. For f : X → X and x0 ∈ X, ω(x0, f) has only finitely many

points if and only if x0 is asymptotically periodic. Furthermore, if ω(x0, f)

contains infinitely many points then no isolated point of ω(x0, f) is periodic.

Proof. If x0 is asymptotically periodic, then L = ω(x0, f) is clearly a cycle,

so is finite. Conversely, if L is finite then since L is invariant f must permute

its elements, so L must contain a cycle. Suppose then that L is finite and

properly contains a cycle C, then since every point in L is isolated, L \ C is

closed. Then by Lemma 2.1.6, f(C) ∩ (L \ C) = C ∩ (L \ C) 6= ∅ – a clear

contradiction. So if L = ω(x0, f) is finite it must itself be a cycle, meaning

that x0 is asymptotically periodic. This proves the first part of the Lemma.

Suppose that C ⊆ L is an m-cycle, and that y ∈ C is isolated. Then y is

fixed by g = fm. Let ωj = ω(f j(x0), g), and notice that

ω(x0, f) =
m−1
⋃

j=0

ωj.

Indeed, if y ∈ ∪m−1
j=0 ωj then clearly y ∈ ω(x0, f). Conversely, if y ∈ ω(x0, f)

then y = limk→∞ fnk(x0) for some sequence {nk}k∈N. Counting in base m
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we see that for some j < m, nk ≡ j mod m for infinitely many k, so y ∈ ωj.

Moreover y is isolated, so suppose that ωj 6= {y}. Then ωj \{y} is closed and

non-empty, which means that by Lemma 2.1.6, (ωj \ {y}) ∩ g({y}) = (ωj \

{y})∩{y} 6= ∅, which is impossible, so ωj = {y}. Hence limk→∞ fkm+j(x0) =

y, so letting z = fm−j(y) we see that limk→∞ fkm+i(x0) = f i(z) for every

0 ≤ i < m. Thus limn→∞ d(fn(x0), C) = 0, so x0 is asymptotically periodic,

and L is finite; i.e. if L is infinite and has a periodic point then it can’t be

isolated.

Lemma 2.1.8 tells us what happens to a connected subset under the action

of the map f . This will help us deduce what basic forms an ω-limit set can

take.

Lemma 2.1.8. Let H be a connected subset of X and let E = ∪k≥0f
k(H).

Then either the connected components of E are the sets fk(H) for every k ≥

0, or there are integers m ≥ 0 and p > 0 such that the connected components

of E are the sets fk(H) for 0 ≤ k < m and Ej = ∪k≥0f
m+j+kp(H) for

0 ≤ j < p.

Proof. By the continuity of f , connected subsets of X are mapped to con-

nected subsets. Let S denote the set of non-negative integers m for which

fm(H) and fm+i(H) are in the same component of E for some i ∈ N. If

S = ∅ then the connected components of E are the sets fk(H) for every

k ≥ 0.

So assume that S 6= ∅, and let m denote the smallest element of S. Then

clearly fk(H) are disjoint components of E for every 0 ≤ k < m, so we look

to determine the components of E ′ = ∪k≥mfk(H). Let p denote the smallest
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integer such that fm(H) and fm+p(H) are in the same component of E ′.

Since components are mapped into components, fm+i(H) and fm+p+i(H)

are both in the same component for every i ≥ 0; call this observation (1).

In particular, for any fixed j < p we have that the sets fm+j+kp(H)

are all in the same component for every k ≥ 0; i.e. for each 0 ≤ j < p,

Ej = ∪k≥0f
m+j+kp(H) is contained in a component of E ′. So we deduce that

E ′ has r components, where 1 ≤ r ≤ p. We claim that for any i ≥ m the sets

f i(H), . . . , f i+r−1(H) are contained in distinct components of E ′. Suppose

not; i.e. that there are integers j, l where i ≤ j < l ≤ i + r − 1 for which

f j(H) and f l(H) are in the same component. Then the sets fk(H) for all

k ≥ j are contained in at most l − j < r components, so some components

of E ′ contain only finitely many of the sets fk(H). But observation (1) tells

us that each of the r components in E ′ contain infinitely many of the sets

fk(H), so we have a contradiction, and the claim is proved.

From this we can deduce that not only are fm(H), . . . , fm+r−1(H) con-

tained in distinct components of E ′, so are fm+1(H), . . . , fm+r(H). Thus

both fm(H) and fm+r(H) are in a different component to the sets

fm+1(H), . . . , fm+r−1(H), which are all in distinct components. We have

only r distinct components, so we must have that fm(H) and fm+r(H) are

in the same component. By the definition of p we get that r = p. Finally,

since E ′ = ∪p−1
j=0Ej, and each Ej is contained in one of the p distinct com-

ponents of E ′, we must have that the Ej are precisely the components of

E ′.

We can now prove our first significant result about the structure of ω-
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limit sets, which for X a compact interval, tells us that if an ω-limit set has

non-empty interior it must be a cycle of intervals.

Proposition 2.1.9. Suppose that f : I → I is continuous for a compact

interval I. If L = ω(x0, f) contains an interval, then L is the union of

finitely many disjoint closed intervals J1, . . . , Jp such that f(Ji) = Ji+1 for

1 ≤ i ≤ p − 1 and f(Jp) = J1.

Proof. Let J1 be a maximal subinterval of L, then J1 is closed since L is

closed. Since J1 contains more than one point of orb+(x0), we have that

fk(J1)∩J1 6= ∅ for some k > 0. Thus by Lemma 2.1.8 there is an integer p > 0

such that the sets Jk = fk−1(J1) for 1 ≤ k ≤ p are disjoint, by continuity of

f are all closed intervals, and moreover f(Jp) ⊂ J1. If fm(x) ∈ J1 for some

m ≥ 0, then fm+i(x) ∈ ∪p
k=1Jk for every i ≥ 0, thus L ⊂ ∪p

k=1Jk. So since

∪p
k=1Jk ⊂ L we get that ∪p

k=1Jk = L. Finally since L is invariant we must

have that f(Jp) = J1.

Example 2.1.10. An example of a map for which an ω-limit set is a cycle

of disjoint intervals is a tent map fs (see Example 1.1.9) with slope s ∈

( 4
√

2,
√

2) and critical point c = 1/2. As mentioned in Example 1.1.9, the tent

map is locally eventually onto provided s ∈ (
√

2, 2], which means that any

subinterval would eventually map onto the maximal invariant set [f 2
s (c), fs(c)]

(called the core), so we could clearly not have a cycle of n disjoint intervals

for n ≥ 2. However for s ∈ (1,
√

2) we will get a cycle of at least two disjoint

intervals, and if we further restrict the slope to the interval s ∈ ( 4
√

2,
√

2) we

also get that these intervals form an ω-limit set.

To see this, consider the points {f 2
s (c), f 4

s (c), f 3
s (c), fs(c)}. It can easily
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be shown that for s ∈ ( 4
√

2,
√

2),

1. f 2
s (c) < f 4

s (c) < f 3
s (c) < fs(c),

2. c ∈ (f 2
s (c), f 4

s (c)), and

3. |f 2
s (c) − c| > |f 4

s (c) − c|.

Thus we get that the intervals [f 2
s (c), f 4

s (c)] and [f 3
s (c), fs(c)] are interchanged

by fs. Now consider the map gs := f 2
s ; this map has three turning points, one

at each of the two pre-images of c under fs, which we denote p− and p+, and

one at c itself. Furthermore, it can be shown that p− < gs(c) < g2
s(c) < p+,

so gs↾[gs(c),g2
s(c)] is an upside-down tent map core, with slope s2 ∈ (

√
2, 2).

Thus gs↾[gs(c),g2
s(c)] is locally eventually onto, so is certainly transitive.

In Chapter 3, we show that a map g : X → X is transitive if and only

if X = ω(x, g) for some x ∈ X (Theorem 3.1.3), hence for the map gs,

[gs(c), g
2
s(c)] = ω(x, gs) for some x ∈ [gs(c), g

2
s(c)]. In other words [f 2

s (c), f 4
s (c)] =

⋂

n∈N
{f 2k

s (x) : k > n}. Also [f 3
s (c), fs(c)] = fs

(

[f 2
s (c), f 4

s (c)]
)

, and it can be

shown that

fs

(

⋂

n∈N

{f 2k
s (x) : k > n}

)

=
⋂

n∈N

{f 2k+1
s (x) : k > n}.

Thus we have that

ω(x, fs) =
⋂

n∈N

{fk
s (x) : k > n} =

[

f 2
s (c), f 4

s (c)
]

∪
[

f 3
s (c), fs(c)

]

.

�
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So for the case where f : I → I we know that an ω-limit set is either a

nowhere dense set (finite or infinite) or a cycle of closed disjoint intervals.

In a later chapter we will make further observations about nowhere dense

ω-limit sets; in the next section we will see that they can take a variety of

different forms.

2.2 Minimal Sets

Definition 2.2.1 (CINE Set). A set A ⊂ X is said to be CINE if it is closed,

invariant and non-empty.

Definition 2.2.2 (Minimal Set). A set M ⊂ X is a minimal set if it is

CINE, and no proper subset of M is CINE.

The following is really an alternative definition of a minimal set, but we

present it as a lemma.

Lemma 2.2.3. For a CINE set M ⊂ X, the following are equivalent:

1. M is minimal;

2. M is the orbit closure of every one of its points;

3. M is the ω-limit set of every one of its points.

Proof. 1 ⇒ 2: Suppose that M is minimal and pick x ∈ M . Then orb+(x)

is a CINE subset of M , hence M = orb+(x).

2 ⇒ 3: Now suppose that M = orb+(x) for every x ∈ M . Pick some

x ∈ M ; we want to show that M = ω(x). Then for any z ∈ M , z ∈ orb+(x)
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and x ∈ orb+(z). If z ∈ ω(x) we are done, so assume that z /∈ ω(x), then

z ∈ orb+(x). Since x ∈ orb+(z), either x ∈ orb+(z), in which case x is

periodic and M = ω(x) and we’re done, or x ∈ ω(z) ⊂ ω(x). But then

z ∈ ω(x), which is a contradiction. Hence for every z ∈ M , z ∈ ω(x), so

M ⊂ ω(x) ⊂ orb+(x) = M , and so M = ω(x).

3 ⇒ 1: Finally suppose that the CINE set M is such that M = ω(x) for

every x ∈ M . Let P be a CINE subset of M and pick p ∈ P . Then ω(p) is

a CINE subset of P . But p ∈ M so M = ω(p) ⊂ P . Hence P = M and we

have that M is minimal.

Corollary 2.2.4. Every minimal set is s-invariant.

Theorem 2.2.5. Any two minimal sets must have empty intersection.

Proof. Suppose that M1 and M2 are two distinct minimal sets, and that

A = M1 ∩ M2 6= ∅. Then A is closed, and for every a ∈ A and every

n ∈ N, fn(a) ∈ M1 ∩M2, so A is invariant. But then A is a proper subset of

both M1 and M2 which is CINE, contradicting the fact that M1 and M2 are

minimal.

So minimal sets share an intimate connection with ω-limit sets. In fact,

by Lemma 2.1.7, finite ω-limit sets are precisely the periodic orbits of f ,

which must also be minimal sets. In other words, the finite minimal sets of

a dynamical system coincide exactly with the finite ω-limit sets. Moreover,

any finite subset of a compact interval I is a minimal set for some map.

Example 2.2.6. Consider the set M = {x0, x1, . . . , xn} ⊂ I, where xi < xi+1

for i = 0, 1, . . . , n − 1, and let f : [x0, xn] → [x0, xn] be the piecewise linear
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function defined by the rule f(xi) = xi+1 for i = 0, 1, . . . , n−1 and f(xn) = x0

(see Figure 2.1). Then M is a periodic orbit for f and is thus minimal.

�

x0 x1 x2 x3 x4

x1

x2

x3

x4

Figure 2.1: The set {x0, x1, x2, x3, x4} is a periodic orbit for the piecewise linear
map shown.

Lemma 2.2.7. Every CINE set F ⊂ X contains a minimal set.

Proof. Suppose that F is not minimal (else we are done). It then has at least

one proper CINE subset. The set of all proper CINE subsets of F is partially

ordered under inclusion, so by Hausdorff’s Maximal Principle F contains a

maximal chain, S (see Appendix B for notes on partial orders). Consider the
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intersection M of all elements of S. If x ∈ M then x ∈ T for all T ∈ S, so

f(x) ∈ T for all T ∈ S and hence f(x) ∈ M , thus M is invariant. Also, M

is the intersection of a collection of closed sets, so is itself closed, and since

these sets are non-empty and nested, by compactness of X their intersection

M is non-empty. Thus M is a CINE set, so let P be any CINE subset of

M . P must be in S since S is maximal, and if it were not it would not be

a subset of M . But then M is a subset of P , so we must have that M = P ,

hence M is minimal.

So in particular, any ω-limit set is either a minimal set, or properly con-

tains one. If the set is finite we have seen that it must be a minimal set, but

if it is infinite there is no necessity for it being a minimal set. In fact the

infinite minimal sets take a very special form.

Definition 2.2.8 (Totally Disconnected Set). A closed set C ⊂ X is said to

be totally disconnected if the only connected subsets are singleton sets.

Definition 2.2.9 (Cantor Set). A closed set C ⊂ X is said to be a Cantor

set if it has no isolated point and is totally disconnected.

Proposition 2.2.10. Every infinite minimal set for a continuous map on a

compact interval is a Cantor set.

Proof. Let M ⊂ I be an infinite minimal set. Since a subset of the real line

is totally disconnected if it contains no interval, it is enough to show that M

has no isolated point and contains no interval. If M had a periodic point p

then orb+(p) would be a proper CINE subset of M , contradicting the fact

that M is minimal, so M has no periodic points. Also, since M = ω(x) for
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every x ∈ M , x is a limit point of M , and since x is not periodic it is not

isolated. Moreover, if M contained an interval, by Proposition 2.1.9 it is a

cycle of intervals J1, . . . , Jm, where fm(J1) = J1, so by Lemma 1.1.10 there

is a periodic point of period m in J1 – a contradiction.

This result does not hold for general compact metric spaces. As a counter

example, consider an irrational rotation of the unit circle S. It can be shown

(see [9]) that every orbit for such a map is dense in S, so the whole space is

an infinite minimal set by Lemma 2.2.3, but is certainly not a Cantor set.

So we are now in a position to state that an ω-limit set can either be

finite, in which case it is a periodic orbit, or it can be infinite, in which case

it is either minimal or properly contains a minimal set. Moreover, an infinite

ω-limit set on a compact interval is either a Cantor set, a nowhere dense set

which properly contains either a Cantor set or a periodic orbit, or it is a

cycle of a finite number of closed disjoint intervals. This tells us quite a lot

about the general structure of ω-limit sets, particularly on the interval. In

the following chapters, we aim to make a more probing analysis of the types

of set that can be ω-limit sets, and introduce some technical definitions which

will help to characterize these sets.
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Chapter 3

Transitivity, Internal Chain

Transitivity and Expansivity

In this chapter we investigate further the property of transitivity, introduce

a property inherent in ω-limit sets called internal chain transitivity and also

look at certain expanding properties shared by different sets; these concepts

will form the basis of our first characterizations of ω-limit sets. This is also

where we begin to introduce results into the material presented. Unless stated

otherwise, (X, f) is a dynamical system X (see Definition 1.1.1).

3.1 Transitivity

Recall that a map f : X → X is (topologically) transitive on X if for every

pair of non-empty open sets U, V ⊂ X there is an integer k > 0 for which

fk(U) ∩ V 6= ∅ (we may also say that the set X is transitive with respect to

the map f ; the two descriptions are equivalent and we will use whichever is
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the more appropriate). Results in this section are from [9].

Lemma 3.1.1. For a map f : X → X the following statements are equiva-

lent:

1. f is transitive;

2. for every non-empty open set W ⊂ X, ∪n∈Nfn(W ) is dense in X;

3. for every pair of non-empty open sets U, V ⊂ X there is an integer

k ≥ 0 for which f−k(U) ∩ V 6= ∅;

4. for every non-empty open set W ⊂ X, ∪n∈Nf−n(W ) is dense in X;

5. every closed, invariant, proper subset of X has empty interior.

Proof. (1) ⇒ (2): For any open U, V ⊂ X there is a k ∈ N such that

fk(U) ∩ V 6= ∅. Thus ∪n∈Nfn(U) is dense in X.

(2) ⇒ (3): Let W ⊂ X be an open set, then we have that ∪n∈Nfn(W ) is

dense in X. Thus for any open V ⊂ X there is a k ∈ N such that fk(W )∩V 6=

∅. Thus there is an x ∈ W such that fk(x) ∈ V i.e. f−k(V ) ∩ W 6= ∅.

(3) ⇒ (4): Analogous to (1) ⇒ (2).

(4) ⇒ (5): Suppose that for every open W ⊂ X, ∪n∈Nf−n(W ) is dense

in X. Let C ( X be CINE (see Definition 2.2.1), and suppose that C has

non-empty interior. Then there is an open set U ⊂ C and a k ∈ N for which

f−k(X \C) ∩ U 6= ∅, which contradicts the fact that C is invariant. Thus C

has empty interior.

(5) ⇒ (1): Suppose that every proper closed invariant subset of X has

empty interior. Let U and V be non-empty open subsets of X such that for
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every k ∈ N, fk(U)∩ V = ∅. Then ∪k∈Nfk(U) is a proper CINE subset of X

with non-empty interior, which contradicts (5). Hence f is transitive.

Lemma 3.1.2. If f : X → X is transitive, then f(X) = X.

Proof. By Lemma 3.1.1 part (2), for every x ∈ X there is a sequence of

points {fnk(wk)}k∈N such that fnk(wk) → x as k → ∞. Then there is a

subsequence {wkj
}j∈N ⊂ {wk}k∈N such that fnkj

−1(wkj
) converges to some

y ∈ X. Set xj = fnkj
−1(wkj

). Then

x = lim
j→∞

f(xj) = f

(

lim
j→∞

xj

)

= f(y) ∈ f(X).

We can now prove a result linking transitive sets to ω-limit sets.

Theorem 3.1.3. A map f : X → X is transitive if and only if X = ω(x, f)

for some x ∈ X.

Proof. Suppose first that X = ω(x, f) for some x ∈ X. Then for every

pair of non-empty, open U, V ⊂ X there are integers n > m > 0 such that

fm(x) ∈ U and fn(x) ∈ V . Hence fn−m(U) ∩ V 6= ∅ and f is transitive.

Now suppose that f is transitive. For every n ∈ N, by compactness the

space X is covered by finitely many open balls of radius 1/n. We enumerate

the collection of such balls over all n as {Uk}k∈N ⊂ 2X . Then by Lemma 3.1.1

part (4) we have that for every k ∈ N the set Gk = ∪n∈Nf−n(Uk) is open

and dense in X. X is compact and thus complete, so is a Baire space by

the Baire Category Theorem (see for example [49]), hence the intersection
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G of the Gk is also dense, so certainly there is a point x ∈ X such that

x ∈ G. Thus orb+(x) ∩ Uk 6= ∅ for every k, so orb+(x) = X. By Lemma

3.1.2, there is a y ∈ X such that f(y) = x. If y ∈ orb+(x) then x is periodic,

so ω(x) = orb+(x) = X. If y /∈ orb+(x) then since y ∈ X = orb+(x) we

must have that y ∈ ω(x), and since f(y) = x we must have that x ∈ ω(x),

so orb+(x) ⊂ ω(x) by the fact that ω(x) is closed and invariant. Thus

ω(x) = orb+(x) = X.

This result will have some use for us when we consider maps which are

transitive on a subset of the whole space, allowing us to deduce that such a

subset is an ω-limit set of some point in the subset itself.

3.2 Internal Chain Transitivity

We saw in the last section that transitivity on a set is not only strong enough

to ensure the set is an ω-limit set, but ensures it is an ω-limit set of one of

its points. There are many sets which are ω-limit sets of points outside

the set (see Example 4.4.3), so transitivity is too strong a property to fully

characterize these sets. In this section we introduce a weaker property which

we will show implies ω-limit sets in certain spaces, and will form the basis of

much of the work in following chapters.

Definition 3.2.1 (ǫ-Pseudo-Orbit). For ǫ > 0, the (finite or infinite) se-

quence of points {x0, x1, . . .} ⊂ X is an ǫ-pseudo-orbit if d(f(xi), xi+1) < ǫ

for every i ≥ 0. Where the parameter ǫ is not specified, we may simply refer

to such a sequence of points as a pseudo-orbit .
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The following lemma, which is well-known, makes use of uniform conti-

nuity to make deductions about the behaviour of maps near pseudo-orbits.

Lemma 3.2.2. Let (X, f) be a dynamical system. For any ǫ > 0 and n ∈ N

there is a δ = δ(n, ǫ) > 0 such that if {x0, . . . , xn} is a δ-pseudo-orbit and

y ∈ X is such that d(y, x0) < δ then d(fk(y), xk) < ǫ for k = 1, . . . , n.

Proof. First notice that by uniform continuity of f , there is a δ < ǫ
2n

such

that whenever d(x, y) < δ we have that d(f i(x), f i(y)) < ǫ
2n

for 0 ≤ i ≤ n.

Thus for any δ-pseudo-orbit {x0, . . . , xn} of f we have that d(f j(x0), xj) < ǫ
2

for j = 1, . . . , n. Indeed for any j ≤ n we have

d(f j(x0), xj) ≤ d(f j(x0), f
j−1(x1)) + . . . + d(f(xj−1), xj)

<
jǫ

2n
≤ ǫ

2
.

Pick y such that d(x0, y) < δ, then d(f j(y), f j(x0)) < ǫ
2
, so

d(f j(y), xj) ≤ d(f j(y), f j(x0)) + d(f j(x0), xj) <
ǫ

2
+

ǫ

2

which completes the proof.

Definition 3.2.3 (Chain Transitive Set). A set A ⊂ X is said to be chain

transitive if for every ǫ > 0 and any pair of points x and y in A there is an

ǫ-pseudo-orbit {x0 = x, x1, . . . , xn = y}.

Definition 3.2.4 (Internally Chain Transitive Set). A set A ⊂ X is said

to be internally chain transitive (or has internal chain transitivity) if for

every ǫ > 0 and any pair of points x and y in A there is an ǫ-pseudo-orbit
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{x0 = x, x1, . . . , xm = y} ⊂ A, where m ≥ 1. We will use the abbreviation

ICT to mean whichever of the two terms is contextually appropriate.

Clearly every internally chain transitive set is chain transitive. The fol-

lowing is from [8] and demonstrates the link between ICT and invariance.

Proposition 3.2.5. Suppose that A is a closed subset of X. If A is ICT

then A is strongly-invariant.

Proof. Let x ∈ A; we are going to show that f(x) ∈ A and f−1({x})∩A 6= ∅.

If x is a fixed point then we are done, so assume that f(x) 6= x. For every

n there is a 1/n-pseudo-orbit of points in A from x to x, via some distinct

point. But then, for every n, we can have points yn, zn ∈ A such that

d(f(yn), x) < 1/n and d(f(x), zn) < 1/n. By compactness of A, without loss

of generality we may assume that yn → y ∈ A and zn → z ∈ A. Then by

continuity, x = f(y) for y ∈ A. Moreover,

d(f(x), z) ≤ d(f(x), zn) + d(zn, z) → 0 as n → ∞.

So f(x) = z ∈ A, and f(A) = A.

Example 3.2.6. In this example we explore some of the properties men-

tioned above.

Consider the set H = H1 ∪ H2 from Example 1.2.1; this set is ICT for

the map g. Indeed, for any two points x, y ∈ H and any ǫ > 0 we can map

x forward so that it is mapped onto either y or 0, whichever comes first. If

it is y we are done, if it is 0 then notice that there is an n ∈ N such that
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1/2n < min{|y|, ǫ}, so by jumping to z = ±1/2n (whichever is closer to y),

we can map z forward onto y.

Notice that the set H \ {0} is chain transitive but not internally chain

transitive, since we cannot get from any point in H1 to any point in H2 (or

vice-versa) without mapping onto 0. H is also closed, since 0 ∈ H is the only

limit point, so by Proposition 3.2.5 H is strongly-invariant.

It is also true that in general, not every subset of an ICT set is itself ICT,

even if it is closed. To see this consider the set H1 which is ICT. No proper

subset of H1 with more than one element but which does not contain the

point 1 is ICT. Indeed such sets are not even invariant.

�

Hirsch et al [26] investigated the link between ICT sets and ω-limit sets.

Lemmas 3.2.7 and 3.2.10 and Theorem 3.2.9 are due to these authors; we

include the proofs which will be helpful for what follows in later chapters.

Lemma 3.2.7. For any dynamical system (X, f), the set A = ω(x0, f) is

ICT for any x0 ∈ X.

Proof. Let ǫ > 0. By compactness of X, f is uniformly continuous, so there

is a δ ∈ (0, ǫ/3) such that for any u, v ∈ X we have that d(f(u), f(v)) < ǫ/3

whenever d(u, v) < δ. Since d(fn(x0), A) → 0 as n → ∞ there is an N ∈ N

such that fn(x0) is in Bδ(A) for every n ≥ N .

Let a, b ∈ A be arbitrary, then by the previous observations there are

integers k > m ≥ N such that d(fm(x0), f(a)) < ǫ/3 and d(fk(x0), b) < ǫ/3.
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Then the set

Y = {y0 = a, y1 = fm(x0), . . . , yk−m = fk−1(x0), yk−m+1 = b} ⊂ Bδ(A)

is an ǫ/3-pseudo-orbit between a and b. So for every yi ∈ Y there is a zi ∈ A

such that d(yi, zi) < δ < ǫ/3. Letting z0 = a and zk−m+1 = b we have for

every i ≤ k − m

d(f(zi), zi+1) ≤ d(f(zi), f(yi)) + d(f(yi), yi+1) + d(yi+1, zi+1)

< ǫ/3 + ǫ/3 + ǫ/3

= ǫ.

Thus A is ICT.

Definition 3.2.8 (Asymptotic Pseudo-Orbit). A sequence of points {xn}n∈N

in X is an asymptotic pseudo-orbit of f if

lim
n→∞

d(f(xn), xn+1) = 0.

Thus points in an asymptotic pseudo-orbit get progressively closer to the

images of their predecessors in the sequence. The ω-limit set of an asymptotic

pseudo-orbit {xn}n∈N is the set of limit points of subsequences of the set. Such

ω-limit sets have some properties in common with ω-limit sets of regular

orbits. They are certainly CINE sets, as is shown in [26], but they are also

characterized by the property of ICT.

Theorem 3.2.9. For a dynamical system (X, f), a closed set A ⊂ X is ICT
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if and only if it is the ω-limit set of some asymptotic pseudo-orbit of f in A.

Proof. The proof of sufficiency follows much the same course as the proof of

Lemma 3.2.7. Suppose that A is the ω-limit set of some asymptotic pseudo-

orbit {xn}n∈N, and let ǫ > 0. By compactness of X, f is uniformly con-

tinuous, so there is a δ ∈ (0, ǫ/3) such that for any u, v ∈ X we have that

d(f(u), f(v)) < ǫ/3 whenever d(u, v) < δ. Again we note that there is an

N1 ∈ N such that xn is in Bδ(A) for every n ≥ N1, but also observe that

there is a second integer N2 such that d(f(xn), xn+1) < ǫ/3 for every n ≥ N2,

by definition of asymptotic pseudo-orbits. We set N = max{N1, N2}, and

can now proceed exactly as before.

Let a, b ∈ A be arbitrary, then by the previous observations there are

integers k > m ≥ N such that d(xm, f(a)) < ǫ/3 and d(xk, b) < ǫ/3. Then

the set

Y = {y0 = a, y1 = xm, . . . , yk−m = xk−1, yk−m+1 = b} ⊂ Bδ(A)

is an ǫ/3-pseudo-orbit between a and b. So for every yi ∈ Y there is a zi ∈ A

such that d(yi, zi) < δ < ǫ/3. Letting z0 = a and zk−m+1 = b we have for

every i ≤ k − m

d(f(zi), zi+1) ≤ d(f(zi), f(yi)) + d(f(yi), yi+1) + d(yi+1, zi+1)

< ǫ/3 + ǫ/3 + ǫ/3

= ǫ,

so A is ICT.
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Now assume that A is ICT. Pick x ∈ A, then for any ǫ > 0 by compactness

there is a sequence of points {x = x0, x1, . . . , xm, xm+1 = x} ⊂ A such that

A ⊂ ∪i≤mBǫ(xi). Since A is ICT, for each i = 1, 2, . . . , m there is an ǫ-

pseudo-orbit {yi
1 = xi, y

i
2, . . . , y

i
ni

, yi
ni+1 = xi+1} ⊂ A joining xi and xi+1.

Thus the set

Uǫ = {y1
1, . . . , y

1
n1

, y2
1, . . . , y

2
n2

, . . . , ym
1 , . . . , ym

nm
, ym

nm+1} ⊂ A

is an ǫ-pseudo-orbit connecting x to itself, and such that A ⊂ ∪{Bǫ(y) : y ∈

Uǫ}.

For every k ∈ N, we have that U1/k is a 1/k-pseudo-orbit of points in A

joining x to itself and for which A ⊂ ∪{B1/k(y) : y ∈ U1/k}. Thus the

infinite sequence of points U = ∪k∈NU1/k forms an asymptotic pseudo-orbit

in A, so we need to show that its ω-limit set ω(U) is actually the set A.

Take y ∈ ω(U), then y = limj→∞ xnj
for a subsequence {xnj

}j∈N ⊂ U .

Since U ⊂ A and A is closed we must have that y ∈ A. Now suppose that

y ∈ A, then for every k ∈ N there is a zk ∈ U for which y ∈ B1/k(zk) Thus

y = limk→∞ zk and so y ∈ ω(U).

So CINE sets which are ICT are precisely those which are ω-limit sets of

some asymptotic pseudo-orbit. In light of Lemma 3.2.7 we would like to say

the same for ω-limit sets of regular orbits, however due to the complexity of

these sets it is not quite so simple. As we will see in Chapter 4, we will need

to make further assumptions about either the map itself or the contents of

an ICT set before we can ensure it is the ω-limit set of some point. However

Lemma 3.2.7 will play a role in determining certain cases when ICT does
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imply an ω-limit set of a regular orbit (see Chapter 5).

Some maps have the property that their dynamics may be decomposed

into disjoint sets, and if this is so it is not hard to see that no ω-limit set

will intersect two such sets (see Example 1.2.1 and Remark 4.4.9). If a set

A ⊂ X is ICT this tells us that the dynamics of f cannot be decomposed

over separate sets, albeit in a weaker sense than for those sets which are

transitive.

Lemma 3.2.10. Suppose that the set A ⊂ X is ICT. Then whenever A

is composed of two disjoint non-empty closed sets M1 and M2 we have that

f(M1) ∩ M2 6= ∅.

Proof. Suppose that A = M1∪M2 for disjoint non-empty closed sets M1 and

M2. Pick m ∈ M1 and n ∈ M2 and set δ = inf{d(x, y) : x ∈ M1, y ∈ M2},

which is positive as M1 and M2 are closed and disjoint. Then since A is ICT

there is a δ/2-pseudo-orbit joining m and n in A. A is closed, so is invariant

by Proposition 3.2.5, so to move from M1 to M2 in a δ/2 jump there must

exist some x ∈ M1 such that f(x) ∈ M2.

Notice that in Example 1.2.1, no pair of disjoint closed sets exist whose

union is H such that either set is invariant with respect to g; H1, H2 and

{0} are the only closed invariant sets and they all intersect at 0.

Proposition 3.2.11 shows us that ICT is equivalent to weak incompress-

ibility (see Definition 2.1.5) in dynamical systems. The result is due to Good

and Raines and can be found in [8].

Proposition 3.2.11. Let A be a closed subset of X. A is ICT if and only if

it has weak incompressibility.
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Proof. Let A be weakly incompressible. If U is a proper nonempty open

subset of A, let F (U) = f(U) \ U 6= ∅.

Suppose that x and y are in A and that ǫ > 0. Let C be a finite cover of

A by ǫ/2-neighbourhoods of points in A with no proper sub-cover, and let

B = {C ∩ A : C ∈ C}.

Suppose that B1 ∈ B. By weak incompressibility, f(B1)∩(A\B1) 6= ∅, so

unless B1 = A we have that F (B1) 6= ∅, and there is some B2 ∈ B such that

B2∩f(B1) 6= ∅, hence B2∩f(B1) 6= ∅. Suppose that we have chosen Bj ∈ B,

j ≤ k, so that for each j there is some i ≤ j such that Bj ∩f(Bi) 6= ∅. Unless

B1 ∪ . . .∪Bk = A, F (B1 ∪ . . .∪Bk) 6= ∅, so there is some Bk+1 ∈ B such that

Bk+1 ∩ f(B1 ∪ . . . ∪ Bk) 6= ∅, from which it follows that Bk+1 ∩ f(Bj) 6= ∅

for some j < k + 1. Since B is a minimal finite cover, there is no Br ∈ B for

which f(Bs) ∩ Br = ∅ for every Bs ∈ B, Bs 6= Br. It follows then that for

any B, B′ ∈ B we can construct a sequence B = B1, B2, . . . , Bn = B′ such

that Bj+1 ∩ f(Bj) 6= ∅ for each j < n.

Now suppose that x = x0, f(x) ∈ B and y ∈ B′ for some B, B′ ∈ B.

Then we can construct a sequence B1 = B, . . . , Bn = B′ as above. For

j = 1, . . . , n − 1 choose any xj ∈ Bj ∩ f−1(Bj+1), and put xn = y. Then

x0, . . . , xn is an ǫ-pseudo-orbit from x to y.

Conversely assume that A is ICT, then A is strongly-invariant by Propo-

sition 3.2.5 and suppose that D is a proper, non-empty closed subset of A.

Pick y ∈ D and x ∈ A \ D. For each n ∈ N, there is a 1/2n-pseudo-orbit

from x to y. Let zn be the last point in the pseudo-orbit that is not in D.

Then zn is such that f(zn) is within 1/2n of D. Since A is compact we may

assume that zn → z for some z, and f(z) ∈ D ∩ f(A \ D).
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3.3 Expansivity (I)

As we have noted in several of the proofs of various results, an ω-limit set

ω(x0, f) will act as an attractor for the orbit of the point x0, so it may

be surprising that these sets also have certain expansive properties. In [4],

Balibrea and La Paz specify necessary and sufficient conditions for an infinite,

nowhere dense subset of a compact interval I to be the ω-limit set of a point

in I, including an expansive condition which we call weakly-expansive (see

Definition 3.3.7). Here we will present some of their work regarding expansive

properties, interspersed with original theory, and recast somewhat to fit our

discussion (results are original unless stated otherwise). We do not present

all of their material as it is outside the scope of this work. All results in

this section are for a dynamical system (I, f), where I is a compact interval,

unless otherwise stated.

First let us recall that an ω-limit set A ⊂ I is either nowhere dense or

is a cycle of finitely many compact intervals. Moreover, if A is nowhere

dense then it is either finite and thus a periodic orbit, or infinite. It is the

infinite case that we consider here, and we make use of the fact that an

infinite nowhere dense ω-limit set is either minimal (and thus a Cantor set)

or properly contains a minimal set (see Lemma 2.2.7).

We saw in Lemma 3.2.10 that an ICT set cannot be decomposed into two

closed disjoint sets such that either is invariant. Proposition 3.3.1 is from [4]

and tells us what happens if one such set contains an invariant set.

Proposition 3.3.1. Suppose that A ⊂ I is an infinite, nowhere dense CINE

set which is ICT, and suppose that it is decomposed into two disjoint, closed
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sets M1 and M2 such that M2 contains an invariant set. Then there exists a

point x1 ∈ M1 such that ω(x1, f) ⊂ M2.

Proof. Consider the set A0 = {x ∈ M1 : f(x) ∈ M2}, which is non-empty

by Lemma 3.2.10 and compact by continuity. Since A is nowhere dense

it contains no intervals, hence we can choose U0 ⊃ M1 clopen in A with

U0 ∩ M2 = ∅.

Now set Ai := f(Ai−1)∩M2 for every i ≥ 1. Thus An is the set of points

y ∈ M2 such that there is an xy ∈ M1 for which fn(xy) = y and f i(xy) ∈ M2

for every 0 < i ≤ n. Now choose clopen sets Ui such that Ai ⊂ Ui and

f(Ui) ⊂ (Ui+1 ∪ U0) for every i ≥ 1; i.e. Ui+1 is chosen so that it contains

the part of Ui not mapped into M1.

Suppose that the set Ω = {n ∈ N : f i(x) ∈ M2 ∀ i ≤ n, for some x ∈ A0}

were bounded above; i.e. there exists an n0 ∈ N such that for every x ∈ A0,

f j(x) ∈ M1 for some 1 < j ≤ n0 +1. Then we would have that f(An0
) ⊂ U0,

and we can choose Un0
so that f(Un0

) ⊂ U0. So

A =

(

A ∩
n0
⋃

i=0

Ui

)

∪
(

A \
n0
⋃

i=0

Ui

)

,

and since M2 contains an invariant set, ∪n0

i=0Ui 6= A so the above is a decom-

position of A into two non-empty, disjoint, closed sets for which

f

(

A ∩
n0
⋃

i=0

Ui

)

⊂ A ∩
n0
⋃

i=0

Ui,

which is impossible by Lemma 3.2.10. Hence Ω has no upper bound.

If A0 were finite, we would have some x ∈ M1 for which fn(x) ∈ M2 for
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every n ∈ N, hence ω(x, f) ⊂ M2. So suppose that A0 is infinite, and that

there is no x ∈ A0 for which fn(x) ∈ M2 for every n ∈ N (if there is we

are done). Call this condition (*). Since A0 is infinite and Ω is unbounded,

there is a sequence {yn}n∈N ⊂ A0 and an increasing sequence {mn}n∈N ⊂ N

such that for every n ∈ N, f i(yn) ∈ M2 for all 0 < i ≤ mn. A0 is compact,

so {yn}n∈N has a convergent subsequence, which without loss of generality

we take to be {yn}n∈N itself. Then x1 = limn→∞ yn ∈ A0. Also, for any

k ∈ N, fk is continuous, so fk(x1) = limn→∞ fk(yn). For any such k, choose

Nk ∈ N such that mNk
≥ k, then since fk(yn) ∈ M2 for every n > Nk, we

have fk(x1) ∈ M2 since M2 is closed. But this contradicts (*) since k ∈ N

was arbitrary, so there must be some x ∈ M1 for which fn(x) ∈ M2 for every

n ∈ N, and so ω(x, f) ∈ M2.

Lemmas 3.3.2 and 3.3.5 are useful observations about ω-limit sets which

will help us to isolate the required expansive property of infinite, nowhere

dense subsets of the interval.

Lemma 3.3.2. Suppose that A = ω(x0, f) for some x0 ∈ I. Then for every

a, b ∈ A and any neighbourhood U of a there is an increasing sequence of

positive integers {ki}i∈N such that b ∈ ∪i∈Nfki(U).

Proof. Since a, b ∈ ω(x0, f), for any open neighbourhood V of b we have

increasing sequences of positive integers {mi}i∈N and {ni}i∈N, with ni > mi

for every i, such that limi→∞ fmi(x0) = a and limi→∞ fni(x0) = b, so there

is some N ∈ N such that fmi(x0) ∈ U and fni(x0) ∈ V for every i ≥ N . For

every i ∈ N let zi := fmi(x0) and ki := ni − mi. Then clearly limi→∞ zi = a

and limi→∞ fki(zi) = b, and since zi ∈ U for infinitely many i, we must have

43



that b ∈ ∪i∈Nfki(U).

We now identify two properties of ω-limit sets, which we use to prove an

expansive property for certain ω-limit sets.

Definition 3.3.3 (Property α). For any A ⊂ I closed and nowhere dense,

suppose a ∈ A and M ( A is CINE. We say that A has property α if for

any open V ⊃ M for which A \ V 6= ∅ and A ∩ V is closed, and for any

neighbourhood U of a, there is some k0 ∈ N such that for every n > k0,

fn(U) ∩ V 6= ∅.

Definition 3.3.4 (Property β). We say that the set A ⊂ I has property

β if for every a, b ∈ A (where we do not exclude the case a = b) and any

neighbourhoods U of a and V of b, fn(U)∩V 6= ∅ for infinitely many n ∈ N.

Note that sets such as those labeled V in Definition 3.3.3 exist since A is

closed and nowhere dense. The definition of property α is quite restrictive,

but we will show that both it and property β are propeties of ω-limit sets, and

together the two properties imply a type of expansivity (Definition 3.3.7).

Note also that properties α and β are independent: the set of natural

numbers n for which fn(U) ∩ V 6= ∅ in property β need not be cofinite,

where as in property α it is cofinite. Moreover, there is a set (labelled V ) in

property α which necessarily does not contain A, where as neither set U nor

V in property β are so restricted. However both properties are implied by

(but do not imply) topological mixing (Definition 4.1.10) and by topological

exactness (Definition 1.1.5).

Lemma 3.3.5. Suppose that for some x0 ∈ I, A = ω(x0, f) is infinite and

nowhere dense. Then A has property α.
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Proof. Pick a ∈ A and let U be any neighbourhood of a. Consider the set

J = ∪j∈Nf j(U). Certainly J ∩A is CINE. If M ( A is CINE, given an open

set V ⊃ M for which A \ V 6= ∅ and A ∩ V is closed, by Proposition 3.3.1

there is a b ∈ A \ V for which ω(b, f) ⊂ V . By Lemma 3.3.2, b ∈ J , so

fk(b) ∈ J for all k ∈ N and since ω(b, f) ⊂ V , for some m ∈ N, fn(b) ∈ V

for every n > m. There are then two possible cases:

1. fm+r(b) ∈ fk0(U) for some k0, r ∈ N. Then fn(U) ∩ V 6= ∅ for every

n > k0.

2. For every n, fn(b) /∈ fk(U) for any k ∈ N. Then fm+i(b) is a limit

point of J for every i ∈ N. But fm+i(b) ∈ V , so V ∩ fk0(U) 6= ∅

for some k0 ∈ N since V is open in I. Take z ∈ V ∩ fk0(U), then

f i(z) ∈ V ∩ fk0+i(U) for every i ∈ N. Hence fn(U) ∩ V 6= ∅ for all

n > k0.

Remark 3.3.6. It is easy to see that any ω-limit set A = ω(x0) has property

β, since each point in A is approached to within arbitrarily close distances

by the orbit of the point x0. Thus the neighbourhood U of a contains an

iterate of x0 whose orbit must hit the neighbourhood V of b infinitely often.

Definition 3.3.7 (Weakly-Expansive Set). Suppose that A ⊂ I is an infinite,

nowhere dense CINE set. Then A is weakly-expansive if there exists r > 0

such that for any a ∈ A and any neighbourhood U of a, the diameter of

fn(U) is greater than r for some n ∈ N.

Proposition 3.3.8 and Corollary 3.3.9 are extracted from [4], but the proofs

are reworked to fit with the material in this chapter.
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Proposition 3.3.8. Suppose that A ⊂ I is an infinite, nowhere dense CINE

set, that A has properties α and β, and that A contains a proper minimal

subset. Then A is weakly-expansive.

Proof. Suppose there is a proper, closed, invariant set B ( A which contains

all the proper minimal subsets of A. For any x ∈ A \ B set r = 1
2
d(x, B).

Take y ∈ A and any neighbourhood U of y. If y ∈ B then fn(U) ∩ B 6= ∅

for every n ≥ 0 and by property β, fk(U) ∩ Br(x) 6= ∅ for infinitely many

k ∈ N. Thus the diameter of fk(U) is greater than r for infinitely many k.

If y /∈ B let V ⊃ B be open such that A ∩ V is closed and A \ V 6= ∅, and

let V be of distance at least r from Br/2(x) (notice that in this case we may

have y = x). Then by property α there is a k0 ∈ N for which fn(U) ∩ V 6= ∅

for every n > k0, and again we have fn(U) ∩Br/2(x) 6= ∅ for infinitely many

n ∈ N by property β. So for infinitely many n > k0 we have that fn(U) has

diameter greater than r.

Now suppose that there is no such B ( A containing all the proper

minimal subsets of A. If there was only one proper minimal subset then this

would be such a B, hence there are at least two proper minimal subsets of A.

We claim that there is an r > 0 such that for any x ∈ A, d(x, M) > 2r for

some minimal set M . If not, given a decreasing sequence {rn}n∈N of positive

real numbers, where limn→∞ rn = 0, for any of these rn we could find xn ∈ A

for which d(xn, M) < rn for all minimal subsets M . Then x = limn→∞ xn ∈ A

is such that x ∈ M for every minimal set M , which is impossible by Theorem

2.2.5.

So take y ∈ A and let B be a minimal set with d(y, B) > 2r. Take any

neighbourhood U of y with diameter r0 < r. Let V ⊃ B be open such that
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A ∩ V is closed and A \ V 6= ∅, and let V be of distance at least r from U .

Then by property α there is a k0 ∈ N such that fn(U) ∩ V 6= ∅ for every

n > k0. Also by property β, for infinitely many n ∈ N, fn(U) ∩ U 6= ∅. So

for infinitely many n > k0, fn(U) has diameter greater than r.

Corollary 3.3.9. Suppose that A = ω(x0, f) is an infinite and nowhere

dense ω-limit set for some x0 ∈ I, and that A contains a proper minimal set.

Then A is weakly-expansive.

Note that this case is not vacuous — the ω-limit sets H1 and H2 in

Example 1.2.1 both have proper minimal subset {0}. It is easy to see that

both H1 and H2 are weakly-expansive, since any open set lying to either side

of 0 will eventually cover either [0, 1] or [−1, 0]; this is due to the fact that

all tent maps with gradient in the region (
√

2, 2] are locally eventually onto

[14].

We will return to the subject of expansivity in Chapter 5, where we define

a sequence of expansive properties, satisfied by a class of interval map, and

which imply properties allowing us to draw further conclusions between ICT

sets and ω-limit sets.
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Chapter 4

Symbolic Dynamics and

Kneading Theory

Symbolic dynamics is the process of representing the behaviour of mathe-

matical systems via a sequence of symbols from a (usually finite) alphabet.

Marston Morse was one of the first to use symbols in this way, in his 1921

paper Recurrent geodesics on a surface of negative curvature [36]. Then in

1938, Hedlund and Morse [25] wrote a paper entitled Symbolic Dynamics in

which they build on this theory, proving a number of results about the space

of infinite sequences of symbols. Further contributions to the theory have

since been made by Smale [48], Gottschank and Hedlund [24] and Metropo-

lis, Stein and Stein [34]. Similar techniques were also used by Shannon as

early as 1948 when developing his theory of communication [46].

In 1988 (with pre-prints dating back to 1977), John Milnor and William

Thurston introduced an ingenious and original way of analyzing piecewise

monotone maps of a compact interval, based on the concept of symbolic
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dynamics, in their paper On Iterated Maps of the Interval [35]. Their idea

was to record symbolically where in relation to the various local extrema of

the map each iterate of a specific local extremum fell, and associate with each

such point its complete symbolic itinerary, known as a kneading invariant.

They were then able to make some remarkable observations about the map in

question using only the information stored in these kneading invariants. This

process has become known as kneading theory, which together with symbolic

dynamics provides a convenient method for analyzing piecewise monotone

maps, and has also become a popular area of research in its own right (see

for example [27], [32], [42]).

Kneading theory has been updated many times since the original paper

of Milnor and Thurston (see [17], [19], [20] for examples), and in this chapter

we present a version of the theory most relevant to our discussion, which has

evolved from the work of de Melo and van Strien [19] on piecewise monotone

maps, along with some preliminary material on shift spaces. We then show

how kneading theory can be used to make useful observations about the

behaviour of certain maps which would otherwise have been very difficult to

deduce, and in particular we present a characterization of a class of ω-limit

sets for maps of the interval, which includes the widely studied post-critical

ω-limit sets of critically non-recurrent tent maps (see [21], [22], and [41]).

4.1 Shift Spaces

In this section we introduce the idea of symbol spaces and the shift map,

which together form what are known as shift spaces – one of the basic pre-
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cepts in symbolic dynamics. The ideas in this section form the basis of

much of what follows, but it is worth noting that they also have many other

applications, particularly in coding theory.

Consider an alphabet (usually finite) of symbols A and define spaces

X = AN to be all infinite sequences (x0x1 . . .) over A (where we allow 0

to be a natural number in this case, for the sake of easy notation) and

Z = AZ all bi-infinite sequences (. . . x−1 · x0x1 . . .) over A, where the ‘·’

defines where the sequence is read from i.e. its central point. Finite sequences

(x1x2 . . . xn), xi ∈ A will be called finite words, or just words. The shift map

σ acts on X and Z as follows. For (x0x1x2 . . .) ∈ X and (. . . x−1·x0x1 . . .) ∈ Z

we have

σ((x0x1x2 . . .)) = (x1x2x3 . . .)

and

σ((. . . x−1 · x0x1 . . .)) = (. . . x−1x0 · x1 . . .).

We can define a metric d on X and Z as follows. For x = (x0x1 . . .), y =

(y0y1 . . .) ∈ X, let d(x, y) = 1/2k, where k is the smallest positive integer for

which xk 6= yk. Similarly, for x = (. . . x−1 · x0x1 . . .), y = (. . . y−1 · y0y1 . . .) ∈

Z, let d(x, y) = 1/2k, where k is the smallest positive integer for which

either xk 6= yk or x−k 6= y−k. So elements are close in X or Z if they agree

on a large initial or central segment respectively. Open balls B1/2k(x) and

B1/2k(z) with radius 1/2k about the points x = (. . . x−1 · x0x1 . . .) ∈ Z and

z = (z0z1z2 . . .) ∈ X are then given by

B1/2k(x) =
{

(. . . y−1 · y0y1 . . .) ∈ Z : yi = xi for every − k < i < k
}
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and

B1/2k(z) =
{

(y0y1y2 . . .) ∈ X : yi = zi for every i < k
}

.

This metric gives rise to the Tychonoff product topologies TN and TZ on X

and Z respectively. Indeed if we furnish the alphabet A with the discrete

topology, then open sets in TN and TZ correspond to countable unions of

open balls from X and Z with respect the the metric d. A is finite so is

compact, hence X and Z are both compact by Tychonoff’s Theorem (see

[47], for example). The shift map can easily be shown to be continuous with

respect to d on both X and Z, thus (X, σ) and (Z, σ) are dynamical systems.

Definition 4.1.1 (Shift Space). Subsets W ⊂ X and Y ⊂ Z are called shift

spaces if they are invariant with respect to σ, and closed with respect to the

topologies TN and TZ respectively.

In particular, the spaces X and Z are shift spaces, known as full shifts

over the alphabet A.

Definition 4.1.2 (Sub-Shifts of Finite Type). For a set of words F , define

the sets XF ⊂ X and ZF ⊂ Z as

XF = {x ∈ X : x does not contain any word from F}

and

ZF = {z ∈ Z : z does not contain any word from F}.

Then XF and ZF are called sub-shifts of the full shifts X and Z. In particular,

XF and ZF are called sub-shifts of finite type (or just shifts of finite type) if

F is a finite set.
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Note that the terms shift of finite type and sub-shift are also used by many

authors to refer to the shift map σ acting upon the relevant shift space. In

what follows we will use the terms to mean either the space or the map,

whichever is contextually appropriate, denoting the space in the form XF

and the map as σ.

Lemma 4.1.3. Shifts of finite type are shift spaces.

Proof. Let XF be a shift of finite type. Clearly XF is invariant since if

x ∈ XF contains no word from F then neither does σ(x). Moreover, suppose

that limn→∞ xn = x for a sequence {xn}n∈N ⊂ XF , and suppose that x /∈ XF .

Then at some point we will see that a word in F appears in x. But for any

k ∈ Z there is an n ∈ N such that d(xn, x) < 1/2k. Thus for any integer k

we can find a point xn which agrees with x up to the first k symbols. Thus

if x contains a word from F then so must an infinite number of the xn; a

contradiction that {xn}n∈N ⊂ XF . Thus x ∈ XF and so XF is closed.

Definition 4.1.4 (Sofic Shifts). Let G be a finite directed graph with edges

EG. For each e ∈ EG, let e− denote the initial point of e and e+ the final

point. Let A be a finite set of labels, let L : EG → A and let G = (G, L). A

bi-infinite path on G is a bi-infinite sequence of edges π = . . . e−1 · e0e1 . . .

such that e+
n and e−n+1 meet at a vertex. We denote the shift space of all

paths on G by ZG. L can be extended to paths around G in the natural way:

L(π) = . . . L(e−1) · L(e0)L(e1) . . . .

A shift space is sofic if it takes the form

ZG =
{

L(π) : π ∈ ZG

}

,
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for some G.

We will return to sofic shifts in Chapter 5. For now we simply note that

all shifts of finite type are sofic shifts, and all sofic shifts are shift spaces, the

proofs of which can be found in [30].

The following Lemma about ω-limit sets of sequences in shift spaces is

well-known.

Lemma 4.1.5. Suppose that X is a shift space, and that s ∈ X. Then

t ∈ ω(s, σ) if and only if every finite initial segment of t occurs infinitely

often in s.

Proof. Suppose that every finite initial segment of t = (t0t1 . . .) occurs in-

finitely often in s. Pick ǫ > 0, then there is an n ∈ N for which 1/2n < ǫ,

and we have that (t0 . . . tn) occurs in s. So by the metric on X, orb(s, σ) gets

within 1/2n (and thus ǫ) of t, hence t ∈ ω(s, σ).

Now suppose that t ∈ ω(s, σ), and pick n ∈ N. Then there is an ǫ > 0

for which ǫ < 1/2n, and orb(s, σ) gets within ǫ (and also within 1/2n) of t

infinitely often. So by the metric on X, (t0 . . . tn) occurs infinitely often in

s.

In Lemma 4.1.8 we take advantage of internal chain transitivity (ICT)

and the structure of the shift space to construct a sequence s containing

all finite words from elements in a set Λ, such that ω(s, σ) = Λ. This is a

reworking of similar theory from [7], which is originally due to Good, Knight

and Raines. First we show how pseudo-orbits appear in shift spaces.

Lemma 4.1.6. Suppose that Ω is an alphabet and Λ is a subset of ΩN. For

ǫ > 0, if {s0, s1, . . .} is an ǫ-pseudo-orbit, then for n ∈ N with 1/2n < ǫ ≤
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1/2n−1, for each i ≥ 0 the first n − 1 symbols of σ(si) agree with the first

n − 1 symbols of si+1.

Proof. We have that for each i ≥ 0, there is a positive integer ni for which

d
(

σ(si), si+1

)

= 1/2ni < ǫ. Thus the first ni − 1 symbols of σ(si) and si+1

coincide. Suppose that n ∈ N is such that 1/2n < ǫ ≤ 1/2n−1. If n >

min{ni : i ≥ 0} then n− 1 ≥ min{ni : i ≥ 0}, in which case ǫ ≤ 1/2n−1 ≤

1/2ni for some i, which contradicts the fact that {s0, s1, . . .} is an ǫ-pseudo-

orbit. Thus n ≤ min{ni : i ≥ 0} and so for each i ≥ 0 the first n − 1

symbols of σ(si) agree with the first n − 1 symbols of si+1.

We now proceed with the construction of a sequence s for which ω(s, σ)

is a specific ICT set Λ.

Suppose that Ω is an alphabet, N is a positive integer and Λ is a non-

empty, ICT subset of ΩN. Let A be the collection of all finite words of

length greater than N which appear in elements of Λ, and enumerate A as

{θn}. For every n ∈ N pick qn, qn+1 ∈ Λ such that θn is the initial segment

of qn and θn+1 is the initial segment of qn+1. Also for each n ∈ N pick

mn > max{|θn|, |θn+1|} and let ǫ = 1/2mn+1. Then since Λ is ICT there is

an ǫ-pseudo-orbit {qn,0 = qn, qn,1, . . . , qn,kn
= qn+1} ⊂ Λ joining qn and qn+1.

By Lemma 4.1.6, for each n ∈ N the points qn,0 = qn, qn,1, . . . , qn,kn
= qn+1

are such that for 1 ≤ i ≤ kn, the first mn − 1 symbols of σ(qn,i−1) agree with

the first mn − 1 symbols of qn,i.

We construct an element s(Λ, N) ∈ ΩN as follows: For every n ∈ N

we make a new word φn from θn, θn+1 and the ǫ-pseudo-orbit joining the

corresponding qn, qn+1, by taking the first symbol of each qn,i and construct-
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Figure 4.1: The relationship between the various sequences in the construction of
s(Λ,N).

ing φn sequentially from these. So φn begins with an initial segment of

qn−1,kn−1
= qn,0 (the first section of which is θn) and ends with the first sym-

bol of qn,kn−1, then φn+1 begins with an initial segment of σ(qn,kn−1) = qn+1,0

(see Figure 4.1). The sequence s(Λ, N) is then the concatenation of all the

φn. Notice that for each i, the agreement between σ(qn,i) and qn,i+1 is at least

as long as each of θn and θn+1.

Definition 4.1.7 (Arbitrary Length, Infinite Repetition Sequence). We call

the element s(Λ, N) in the above construction an arbitrary length, infinite

repetition sequence for the ICT set Λ.
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Lemma 4.1.8. Suppose that Ω is an alphabet and Λ ⊂ ΩN is a shift space

which is ICT. If for some N ∈ N, s = s(Λ, N) is an arbitrary length, infinite

repetition sequence for Λ, then Λ = ω(s, σ).

Proof. Let A be the set of all finite words of length greater than N which

occur in elements of Λ. Then since Λ is invariant, A is also the set of all finite

words of length greater than N which occur as initial segments of elements of

Λ. We first show that A is the set of all infinitely repeating words of length

greater than N occurring in s.

Let V ∈ A be a word of length greater than N . Then V occurs as a

sub-word infinitely often in A, and hence by construction infinitely often in

s. Now suppose that the finite word V has length greater than N and occurs

infinitely often in s. By the construction of s, there is a n ∈ N for which

all of the words from A occurring in σn(s) are of length greater than that of

V , so pick an occurrence of V in σn(s). Since for every k ∈ N, σk(s) begins

with a segment of some point in Λ (see Figure 4.1), this V must be the initial

segment of some point in Λ, so must also be the initial segment of some word

from A, and since A is invariant under taking subwords of length greater

than N , we must have that V ∈ A.

Pick t ∈ Λ. Then every finite initial segment of t of length greater than N

is in A, so occurs infinitely often in s, and hence by Lemma 4.1.5, t ∈ ω(s, σ).

Now pick t ∈ ω(s, σ). Then by Lemma 4.1.5 every finite initial segment of

t of length greater than N occurs infinitely often in s, and so is in A. Λ is

closed, thus t ∈ Λ (since t is the limit of points in Λ with initial segments

of increasing length which agree with those of t). Hence Λ = ω(s, σ) as

required.
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The next result is also from [7] and is a characterization of ω-limit sets

for shifts of finite type.

Theorem 4.1.9. Let F be a finite collection of words, and let Λ ⊂ XF be a

closed set. Then Λ = ω(x, σ) for some x ∈ XF if and only if Λ is ICT.

Proof. If Λ = ω(x, σ) for some x ∈ XF then by Lemma 3.2.7 we have that Λ

is ICT, so necessity is dealt with. To prove sufficiency, assume that Λ ⊂ XF

is a closed set which is ICT.

Let N = max{|F | : F ∈ F} and form the arbitrary length, infinite

repetition sequence s = s(Λ, N). By Proposition 3.2.5, Λ is invariant so is a

shift space, and by Lemma 4.1.8, Λ = ω(s, σ); we need to show that s ∈ XF .

Suppose not i.e. that there is some F ∈ F that appears in s. Thus by

the construction of s, there is some k0 ∈ N for which σk0(s) begins with F .

|F | ≤ N , so since σk(s) begins with an initial segment of some point in Λ

of length at least N for every k ∈ N, we have that F must be the initial

segment of some point in Λ. This is a contradiction since Λ ⊂ XF , hence

s ∈ XF .

The following property is related to (although stronger than) that of

transitivity, and we introduce it here as it is a property of certain shift spaces.

Definition 4.1.10 (Topological Mixing/Weak Mixing). For a dynamical sys-

tem (X, f), the map f is topologically mixing if for every pair of open sets U

and V there is an N ∈ N for which fn(U)∩V 6= ∅ for every n ≥ N . f is said

to be (topologically) weakly mixing if the map (f ×f) : (X ×X) → (X ×X),

defined by (f × f)(x, y) = (f(x), f(y)), is transitive.
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Lemma 4.1.11. Suppose for a dynamical system (X, f) that f : X → X is

mixing, then (f × f) : (X × X) → (X × X) has mixing.

Proof. Suppose that f : X → X is mixing, let U = U1 ×U2 and V = V1 ×V2

be open sets in X × X.

By mixing there are positive integers N1 and N2 such that for every

n ≥ N1 we have that fn(U1) ∩ V1 6= ∅ and for every n ≥ N2 we have that

fn(U2) ∩ V2 6= ∅. Let N = max{N1, N2}, then for every n ≥ N we have that

fn(U1) ∩ V1 6= ∅ and fn(U2) ∩ V2 6= ∅, so (f × f)n(U1 × U2) ∩ (V1 × V2) 6= ∅

for every such n.

Corollary 4.1.12. In a dynamical system (X, f), if f is mixing it is also

weak mixing.

So mixing is a stronger property than weakly mixing. These properties

will be useful in our analysis in Chapter 5.

Proposition 4.1.13. For a finite alphabet Ω, the full shift ΩN is mixing.

Proof. Suppose that X = ΩN is the full shift, and that U, V are basic open

sets in X (we lose no generality in assuming that U and V are basic open,

since if not we can “shrink” to basic open sets to get the same result). Then

there are words (t0t1 . . . tp) and (s0s1 . . . sm) such that U = {(r0r1 . . .) : ri =

ti for every 0 ≤ i ≤ p} and V = {(r0r1 . . .) : ri = si for every 0 ≤ i ≤ m}.

Since we are in the full shift, for every n ≥ 0 there is an xn ∈ X for which

σn(xn) begins with (s0s1 . . . sm). In other words σn(xn) ∈ V , so for every

n ≥ p, σn+1(t0t1 . . . tpxn−p) ∈ V . Since (t0t1 . . . tpxn−p) is an element of U for

every n ≥ p we have that σn+1(U) ∩ V 6= ∅ for every n ≥ p.
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4.2 The Kneading Theory

One common use of symbolic dynamics is to assign infinite sequences to

points in a compact interval. There is not, in general, a one-to-one rela-

tionship between points in the interval and the set of infinite sequences over

an alphabet, so it is often necessary to determine whether or not a given

sequence relates to a point in the interval.

The main precept in kneading theory is the assignment of the kneading

invariants, which are strongly related to the critical points of the map. By

examining the kneading invariants of a map and comparing them to a spe-

cific sequence of symbols, we can determine whether or not that sequence

corresponds to a point in the interval. Thus kneading theory is often used

together with symbolic dynamics.

We will be looking at maps with a finite number of monotone pieces on a

compact interval I, and the first part of this section is dedicated to defining

the basic terminology. We then focus on some results which follow from the

definitions, where arguments are quite often symmetric in terms of an order

relation, in which case we will focus only on one half of the argument; the

other being analogous.

The dynamics of a continuous map f : I → I are completely dependent

upon the position of the map with respect to the diagonal f(x) = x, so we

lose no generality in letting I be the interval [0, 1]. The map f is said to be

l-modal if it is continuous and there exist l critical points (local extrema)

c1 < c2 < . . . < cl such that f is strictly monotone on each of the l + 1

sub-intervals Ii, where Ii+1 = (ci, ci+1) for i = 1, . . . , l − 1, I1 = [0, c1) and
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Il+1 = (cl, 1]. We define the symbolic dynamics for l-modal maps as follows.

• Define the alphabet Ω = {I1, . . . , Il+1, C1, . . . , Cl}.

• The full shift space is denoted ΩN, where

ΩN = {(s0s1 . . .)|si ∈ Ω}.

• The polarity of an element si is determined by the map ρ : Ω →

{−1, +1}, where

ρ(si) =











+1 if either D(f) > 0 on si, or si = Cj for some j

−1 if D(f) < 0 on si.

• We say that a finite word (s0 . . . sn) is even if Πn
i=0ρ(si) = 1 and odd if

Πn
i=0ρ(si) = −1.

• We say that two sequences (s0s1 . . .) and (t0t1 . . .) in ΩN have discrep-

ancy m if si = ti for every i ≤ m − 1 and sm 6= tm.

• The address of a point x ∈ I is given by the map A : I → Ω, where

A(x) =











Ii x ∈ Ii

Ci x = ci.

• The itinerary of a point x is the sequence It(x) = (x0x1 . . .) where

Iti(x) = xi = A(f i(x)), and define It(x)↾N= (x0x1 . . . xN ).

• For x ∈ I and N ∈ N, let IN(x) = {y ∈ I : It(y)↾N= It(x)↾N}.
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We denote the set of all itineraries of a map f by Σf , where we will drop

the subscript f when there is no ambiguity. If f is an l-modal map, then

usually Σf ( ΩN. We furnish ΩN with the metric d and the shift map σ as

defined in Section 4.1. Notice that (σ ◦ It)(x) = (It ◦ f)(x) for every x ∈ I.

Σf is not in general a shift space, but we can put certain conditions upon

subsets Λ ⊂ I which make It(Λ) a shift space (see Lemma 4.2.5 and Theorem

4.3.12).

Definition 4.2.1 (Parity Lexicographic Ordering). Order the elements of Ω

as follows: Ii < Ci < Ii+1 for i = 1, . . . , l. For two sequences s = (s0s1 . . .)

and t = (t0t1 . . .) with discrepancy m, we say that s ≺ t if either (s0 . . . sm−1)

is even, and sm < tm, or (s0 . . . sm−1) is odd, and sm > tm.

By defining the lexicographic ordering ≺ on ΩN as above, we ensure that

the ordering of the sequence space preserves that on the real line. Results

4.2.2, 4.2.3 and 4.2.4 are known, and follow on from the definition of the

order ≺.

Proposition 4.2.2. Let f : I → I be l-modal, x, y ∈ I. If It(x) ≺ It(y)

then x < y.

Proof. Let the discrepancy of It(x) = (x0x1x2 . . .) and It(y) = (y0y1y2 . . .)

be m, with It(x) ≺ It(y).

If m = 0 then the result is clear, since then x0 < y0 so x < y. Thus we

assume (for an inductive argument) that the result holds for sequences with

discrepancy up to m − 1 for m > 0, and prove the result for m.

Consider It(f(x)) = (x1x2 . . .) and It(f(y)) = (y1y2 . . .). If ρ(x0) =

1, then It(f(x)) ≺ It(f(y)), since we have not changed the parity of
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(x0 . . . xm−1), thus by our inductive hypothesis, f(x) < f(y). Since x0 = y0,

ρ(x0) = 1 and f(x) < f(y), we have that x < y.

If ρ(x0) = −1, then It(f(x)) ≻ It(f(y)) since the parity of (x0 . . . xm−1)

has changed, thus f(x) > f(y) by inductive hypothesis. Since x0 = y0,

ρ(x0) = −1 and f(x) > f(y), we have that x < y.

If x0 = y0 = Ci for some i, then x = y and so It(x) = It(y), contrary to

our hypothesis.

Lemma 4.2.3. Let w ∈ I and N ∈ N, then the set IN(w) is an interval

in I. Moreover, if fn(w) = ck for some n ≤ N and some 1 ≤ k ≤ l, then

IN (w) = {w}, otherwise IN(w) is an open interval.

Proof. Suppose that for some N ∈ N there is an n ≤ N for which fn(w) = ck

for some 1 ≤ k ≤ l. Notice that if a point y ∈ I has more than one immediate

pre-image, they are all in different intervals of monotonicity. So there is only

one pre-image of each point in the backwards orbit of ck which falls into the

same interval of monotonicity as that of the point in the orbit of w. Thus if

Iti(y) = Iti(w) for every i < n and Itn(y) = Itn(w) = Ck then y = w and so

IN (w) = {w}, since w is the only point in It0(w) which maps onto ck after

n iterations.

Now suppose that fn(w) 6= ck for any n ≤ N , and x ∈ IN (w). Then

there is an ǫ > 0 such that Bǫ(x) ∈ IN(w), so IN (w) is open. Suppose

that x, y, z ∈ I s.t. x < y < z and It(x) ↾N= It(z) ↾N= It(w) ↾N . We

want to show that It(y)↾N= It(x)↾N . Suppose not; i.e. It(y) and It(x)

have discrepancy j < N . Suppose It(y) ≻ It(x). Then It(y) ≻ It(z) since

certainly It(x)↾j= It(z)↾j . But then y > z – a contradiction. So suppose
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It(y) ≺ It(x). But then y < x which is another contradiction.

We have shown that if x < y < z and x, z ∈ IN(w) for some w ∈ I, then

y ∈ IN (w). So if IN(w) is not a single point it is an open interval.

In particular the ordering on the sequence space gives us that for any

t ∈ ΩN the set A = {x ∈ I : It(x) ≺ t} is an interval in I.

We show now that the itinerary map is continuous at points which are not

in the backwards orbit of any critical point, and use this to shown that images

under the itinerary map of CINE subsets of the interval not containing any

critical point are shift spaces. This does not hold in general if we allow the

set to contain critical points, as we see later in Theorem 4.3.12.

Lemma 4.2.4. Suppose that x ∈ I and that Ck /∈ It(x) for any 1 ≤ k ≤ l.

Then the itinerary map It is continuous at x.

Proof. Pick ǫ > 0. For every i ≥ 0 define ηi = min{|f i(x) − ck| : 1 ≤

k ≤ l} > 0. Choose N ∈ N such that 1/2N < ǫ. Then for every y ∈ Ui =

f−i
(

Bηi
(f i(x))

)

, A(f i(y)) = A(f i(x)) for every i, where f−i is the inverse

image of f i. Set U =
⋂

i≤N Ui, then for every y ∈ U , It(y)↾N= It(x)↾N . The

Ui are open so U is open, and x ∈ U so U 6= ∅. Hence there is a δ > 0 such

that Bδ(x) ⊂ U . So for every y ∈ Bδ(x) we have that It(y)↾N= It(x)↾N and

so d(It(x), It(y)) ≤ 1/2N < ǫ.

Lemma 4.2.5. Suppose that f : I → I is an l-modal map with critical points

c1, . . . , cl. If Λ ⊂ I is a CINE set such that cj /∈ Λ for any 1 ≤ j ≤ l then

It(Λ) is a shift space.
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Proof. We have that

σ(It(Λ)) = (σ ◦ It)(Λ) = (It ◦ f)(Λ) ⊂ It(Λ),

so It(Λ) is invariant. Moreover It : Λ → It(Λ) is continuous by Lemma

4.2.4, so It(Λ) is compact since Λ is compact. Thus It(Λ) is closed since ΩN

is a Hausdorff space.

Definition 4.2.6 (Limit Itineraries). Define the upper- and lower-

limit itinerary of a point x ∈ I as It(x+) = limy↓x It(y) and It(x−) =

limy↑x It(y) respectively.

Lemma 4.2.7 shows that the limits It(x+) and It(x−) exist and are con-

sistent with the ordering on ΩN, and is based on notes in [19].

Lemma 4.2.7. Let f : I → I be an l-modal map.

1. If f i(x) 6= ck for any i and for any 1 ≤ k ≤ l then It(x) = It(x+) =

It(x−).

2. If fn(x) = ck for some n ∈ N and some 1 ≤ k ≤ l, then for small

enough δ

(a) Itn(y) = Ik+1 for all y ∈ (x, x + δ) and Itn(y) = Ik for all y ∈

(x − δ, x) if It(y)↾n−1 is even, and

(b) Itn(y) = Ik for all y ∈ (x, x + δ) and Itn(y) = Ik+1 for all y ∈

(x − δ, x) if It(y)↾n−1 is odd.

For the least such n we have that It(x)↾n−1= It(x+)↾n−1= It(x−)↾n−1.
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3. For all x ∈ I, Ck does not appear in It(x+) or It(x−) for any 1 ≤ k ≤ l.

Proof. Let x ∈ I be fixed. Notice that by the continuity of f , for any n ∈ N

there is a δ > 0 for which Itn is constant on (x, x+δ) and (x−δ, x), although

if Itn(x) = Ck for some 1 ≤ k ≤ l then if It(x)↾n−1 is even, Itn(y) = Ik+1 for

all y ∈ (x, x+ δ) and Itn(y) = Ik for all y ∈ (x− δ, x) by the definition of the

ordering ≺ (and vice-versa if It(x)↾n−1 is odd). This is because by Lemma

4.2.3, when Itn(x) = Ck, IN(x) = {x} for every N ≥ n. Thus Ck does not

appear in It(x+) or It(x−) for any 1 ≤ k ≤ l.

Now suppose that fn(x) = ck for some n ∈ N and some 1 ≤ k ≤ l, and

that n is minimal in this respect. Then by the continuity of f there is a

δ > 0 such that for any y ∈ (x − δ, x + δ), f i(y) 6= cj for every i < n and for

all 1 ≤ j ≤ l. So for all i < n there is a δ > 0 for which Iti(y) = Iti(y
+)

for every y ∈ (x, x + δ) and Iti(y) = Iti(y
−) for every y ∈ (x − δ, x), and in

particular It(x)↾n−1= It(x+)↾n−1= It(x−)↾n−1. Now suppose that f i(x) 6= ck

for all i ∈ N and all 1 ≤ k ≤ l; this must mean that It(x) = It(x+) = It(x−)

by the continuity of It.

Lemma 4.2.8 is not stated in [19], and is stated implicitly but not proved

in [35]. We prove it here as we need it for Theorem 4.2.13.

Lemma 4.2.8. For every 1 ≤ j ≤ l, σ(It(c+
j )) = σ(It(c−j )).

Proof. By the continuity of f and the fact that cj is an extremum, for 1 ≤

j ≤ l there is an open neighbourhood U of cj such that for every y ∈ U∩[0, cj)

there is an x ∈ U ∩ (cj , 1] for which f(x) = f(y); i.e. for every itinerary s of

a point in U ∩ [0, cj) there is an itinerary t of a point in U ∩ (cj , 1] such that

σ(s) = σ(t). Call this observation (1).
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Suppose that σ(It(c+
j )) 6= σ(It(c−j )), and their discrepancy is p > 0. Thus

σ(It(c+
j ))↾n= σ(It(c−j ))↾n for every n < p but σ(It(c+

j ))↾p 6= σ(It(c−j ))↾p (so

in fact σ(It(c−j ))↾p≺ σ(It(c+
j ))↾p). Certainly there is a point x < cj such that

σ(It(x))↾p= σ(It(c−j ))↾p, and by observation (1) there is a y > cj such that

σ(It(y))↾p= σ(It(x))↾p. So we have y > cj with

σ(It(y))↾p= σ(It(c−j ))↾p≺ σ(It(c+
j ))↾p,

and so for some z ∈ (cj, y) we have that It(y) ≺ It(z), which contradicts

Proposition 4.2.2. Hence σ(It(c+
j )) = σ(It(c−j )).

Definition 4.2.9 (Kneading Invariants). For an l-modal map f , the knead-

ing invariants Ki for 1 ≤ i ≤ l are defined as Ki = σ(It(c+
i )) = σ(It(c−i )).

It is worth mentioning that some authors, such as Collet and Eckmann

in [17], use alternative kneading invariants defined as the itineraries of the

images of the critical points. The differences in the definitions are explored

in [19] but we do not address them here.

Definition 4.2.10 (Concatenation of Sequences). For two sequences of sym-

bols A and B (which may be either finite or infinite), we use the notation

A < B to denote the concatenation of A with B.

Lemma 4.2.11. If fn(x) = ck for some n ∈ N and some 1 ≤ k ≤ l then

• σn(It(x+)) = It(c+
k ) and σn(It(x−)) = It(c−k ) if It(x)↾n−1 is even;

• σn(It(x+)) = It(c−k ) and σn(It(x−)) = It(c+
k ) if It(x)↾n−1 is odd.
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Proof. Suppose that It(x)↾n−1 is even and let It(x) = (x0 . . . xn−1Ck . . .).

Then by Lemma 4.2.7, It(x+) = (x0 . . . xn−1Ik+1 . . .), and as y ↓ x, fn(y) ↓

fn(x) = ck. Thus

It(x+) =

(

x0 . . . xn−1 < lim
y↓fn(x)

It(y)

)

,

and so

σn(It(x+)) = lim
y↓fn(x)

It(y) = lim
y↓ck

It(y) = It(c+
k ).

Similarly, It(x−) = (x0 . . . xn−1Ik . . .), and as y ↑ x, fn(y) ↑ fn(x) = ck.

Thus

It(x+) =

(

x0 . . . xn−1 < lim
y↑fn(x)

It(y)

)

,

and so

σn(It(x+)) = lim
y↑fn(x)

It(y) = lim
y↑ck

It(y) = It(c−k ).

The proof is analogous if It(x)↾n−1 is odd.

In the next section we will manipulate sequences in ΩN to produce results

about maps of the interval. It will thus be important for us to know whether

a certain sequence is actually the itinerary of a point in the interval. As has

been suggested, the key to this is the set of kneading invariants {Ki}1≤i≤l.

To see why this might be the case, consider the map as shown in Figure 4.2.

In order to preserve the parity lexicographic ordering, itineraries of points

should fall between It(f(k)) and It(f(c)).

Definition 4.2.12 and Theorem 4.2.13 are reworkings of similar material

in [19].
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Figure 4.2: All itineraries fall between those of f(k) and f(c).

Definition 4.2.12 (Admissibility Conditions). Let ΣK denote the subset of

ΩN which consists of sequences s = (s0s1 . . .) obeying the following condi-

tions. For every n ≥ 0 and for 1 ≤ k ≤ l

σn(s) = It(ck) if sn = Ck (4.1)

Kk ≺ σn+1(s) ≺ Kk+1 if sn = Ik+1 and ρ(sn) = +1 (4.2)

Kk+1 ≺ σn+1(s) ≺ Kk if sn = Ik+1 and ρ(sn) = −1, (4.3)

where we ignore the redundant invariants Kl+1 if sn = Il+1, or K0 if sn = I1.

Sequences in ΣK will be called admissible. Let Σ̂K be defined as ΣK but with

≺ replaced by � in (4.1) to (4.3).
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Theorem 4.2.13. ΣK ⊆ It(I) ⊆ Σ̂K .

Proof. Let x ∈ I with It(x) = s and suppose that fn(x) ∈ Ik+1 = (ck, ck+1)

for some n ≥ 0 and some 1 ≤ k ≤ l − 1. Then fn+1(x) ∈ (f(ck), f(ck+1)) if

ρ(Ik+1) = +1 and fn+1(x) ∈ (f(ck+1), f(ck)) if ρ(Ik+1) = −1. Hence by (the

contra-positive of) Proposition 4.2.2, Kk � σn+1(s) � Kk+1 if ρ(Ik+1) = +1,

and Kk+1 � σn+1(s) � Kk if ρ(Ik+1) = −1. Thus It(x) ∈ Σ̂K . Suppose that

fn(x) ∈ I1 (the case where fn(x) ∈ Il+1 is analogous). Then fn+1(x) < f(c1)

if ρ(I1) = +1 and fn+1(x) > f(c1) if ρ(I1) = −1. Hence by Proposition

4.2.2, σn+1(s) � K1 if ρ(I1) = +1, and K1 � σn+1(s) if ρ(I1) = −1. Thus

It(x) ∈ Σ̂K .

Now let t = (t0t1 . . .) ∈ ΣK and suppose that there is no x ∈ I for

which It(x) = t. Then I = A ∪ B, where A = {x ∈ I : It(x) ≺ t} and

B = {x ∈ I : It(x) ≻ t}. A and B are intervals by Lemma 4.2.3 with 0 ∈ A

and 1 ∈ B, and furthermore A ∩ B = ∅. The real numbers a = sup A and

b = inf B both exist, with a ≤ b, so if a /∈ A and b /∈ B we have that A ∪ B

is not connected and hence a contradiction. We show that b /∈ B; the case

a /∈ A is analogous, and is given in [19].

Suppose that b ∈ B, then for every y < b we must have y /∈ B and hence

It(y) ≺ t, so

It(b−) � t ≺ It(b). (4.4)

By Lemma 4.2.4, any discontinuity of the itinerary map must occur at a

point which is in the backward orbit of a turning point. By (4.4) this must

be the case for the point b; i.e. there is a non-negative integer n for which

69



fn(b) = ck for some 1 ≤ k ≤ l. Let n be minimal in this respect. Thus

by Lemma 4.2.7, It(b)↾n−1= t↾n−1= It(b−)↾n−1 (which is vacuous if n = 0).

For all x < b with x sufficiently close to b we have that either fn(x) ∈ Ik+1

or fn(x) ∈ Ik. Suppose that fn(x) ∈ Ik+1 for all such x; the other case is

analogous. Thus Itn(b−) = Ik+1, so since It(b) ≻ It(b−) we must have that

t↾n−1 is odd, and ck ≤ tn ≤ Ik+1.

If tn = ck then since t ∈ ΣK we would have that σn(t) = It(ck) and

then It(b) = t, which contradicts the assumption that there is no such b. So

tn = Ik+1.

Now σn(It(b−)) = It(c+
k ) by Lemma 4.2.11, and thus σn+1(It(b−)) =

σ(It(c+
k )) = Kk by Lemma 4.2.8. Hence by (4.4) and Proposition 4.2.2, if

ρ(Ik+1) = +1 then σn+1(t) � σn+1(It(b−)) = Kk, and if ρ(Ik+1) = −1 then

σn+1(t) � σn+1(It(b−)) = Kk, both of which contradict the admissibility

conditions (4.1) to (4.3), which is a contradiction to the fact that t ∈ ΣK .

Hence b /∈ B.

4.3 Locally Pre-Critical Maps

Consider a set Λ ⊂ I and the corresponding set of itineraries It(Λ); gener-

ally there is not a one-to-one correspondence between points in Λ and their

itineraries in It(Λ). This is due to the fact that distinct points in the basins

of attraction of periodic orbits will often have identical itineraries. We wish

to avoid this situation, so we place a condition on piecewise monotone maps

which guarantees that the itinerary map is a bijection. The results in this

section are original, unless otherwise stated.
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Definition 4.3.1 (Locally Pre-Critical). We say that the l-modal map f :

I → I with critical points c1, . . . , cl is locally pre-critical if for every open

interval U ⊂ I there is an n ∈ N such that ck ∈ fn(U) for some 1 ≤ k ≤ l.

Locally pre-critical is a similar but weaker property than topologically

exact (also referred to as locally eventually onto – see Definition 1.1.5), since

locally pre-critical does not specify the need for expansivity.

Example 4.3.2. The map g in Example 1.2.1 is locally pre-critical, since

any open interval will contain an open interval in either (0, 1) or (−1, 0), and

both f2 and −f2 are locally eventually onto on [0, 1] and [−1, 0] respectively

[13]. However g is not locally eventually onto, since [0, 1] and [−1, 0] are both

invariant under g.

�

Definition 4.3.3 (Wandering Interval). For an l-modal map f : I → I, an

interval J ⊂ I is called a wandering interval if fn(J) ∩ fm(J) = ∅ for every

n > m ≥ 0 and the orbit {fn(J)}n≥0 does not tend towards a cycle.

The following definition was introduced implicitly by Milnor and Thurston

in [35] and used in [17] and [19] in discussions about the distribution of

itineraries of points.

Definition 4.3.4 (Homterval). For an l-modal map f : I → I, an interval

J ⊂ I is called a homterval if fn is a homeomorphism on J for every n ≥ 0.

Locally pre-critical is equivalent to saying that the map has no homter-

vals. De Melo and van Strien show that this is the case when the map
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has no wandering intervals and no attracting periodic orbit ([19], Lemma

3.1). We also have the following two Theorems, courtesy of Collet and Eck-

mann, which are variations of results from [17] and concern the logistic map

fµ(x) = µx(1 − x) for 1 ≤ µ ≤ 4:

Theorem 4.3.5. If fµ has no attracting (stable) periodic orbit then it has

no homterval.

Theorem 4.3.6. The kneading sequence of fµ is periodic if and only if the

map has a stable periodic orbit.

Thus we get the following corollary:

Corollary 4.3.7. For the family of logistic maps fµ(x) = µx(1−x), 1 ≤ µ ≤

4, if the kneading sequence is not periodic then the map has no homterval.

We define and investigate various expansive properties of maps in Chapter

5, which allow us to make deductions on their behaviour similar to those

which we make for locally pre-critical maps. Corollary 4.3.7 shows us however

that there are many smooth, locally pre-critical maps, which is useful since

it demonstrates that there are many maps other than expanding maps for

which the theory in this and the following sections on locally pre-critical

maps applies.

By ensuring that a map is locally pre-critical we can make several useful

deductions about the behaviour of the associated itinerary map.

Lemma 4.3.8. The itinerary map It : I → Σ is a bijection if and only if

the associated map f : I → I is locally pre-critical.
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Proof. Suppose that f is locally pre-critical. By the definition of Σ, the

itinerary map It : I → Σ is onto, so let x, y ∈ I for x < y. Then there is

an n ∈ N for which ck ∈ fn((x, y)) for some k, and let n be minimal in this

respect. Then for every i < n, f i((x, y)) is strictly contained in an interval

of monotonicity, so f i(x) 6= f i(y) for all such i. Assume that for every i < n,

f i(x) 6= cj and f i(y 6= cj) for any 1 ≤ j ≤ l. If this is not the case then

Iti(x) 6= Iti(y) for the smallest such i and we are done. Thus for every

i < n, f i([x, y]) is strictly contained in an interval of monotonicity, and so

the endpoints of f i([x, y]) are f i(x) and f i(y) for each i < n. Thus ck lies

between fn(x) and fn(y) and hence Itn(x) 6= Itn(y). Thus It is one-to-one.

Now suppose that f is not locally pre-critical, then there is an open

interval U ⊂ I for which ck /∈ fn(U) for any critical point ck and any n ≥ 0.

So for every n ≥ 0 we have that for any u, v ∈ U such that u < v, fn([u, v]) is

strictly contained in an interval of monotonicity, and hence It(u) = It(v).

Lemma 4.3.9. If a map f : I → I is locally pre-critical then the inverse

itinerary map It−1 : Σ → I is continuous.

Proof. Pick s ∈ Σ, where s = It(x) for some x ∈ I and let ǫ > 0. Then for

every N ∈ N, IN(x) is an interval by Lemma 4.2.3. Since the itinerary map is

bijective by Lemma 4.3.8, ∩N∈NIN(x) = {x}, so there is an N∗ ∈ N such that

for every y ∈ IN∗(x) we have |x−y| < ǫ. Set δ = 1/2N∗

, then whenever t ∈ Σ

such that d(s, t) < δ, It−1(t) ∈ IN∗(x) and so |It−1(t) − It−1(s)| < ǫ.

Lemma 4.3.10. Suppose that the l-modal map f : I → I is locally pre-

critical. Then x > y implies that It(x) � It(x−) ≻ It(y+) � It(y).
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Proof. It is clear from the definition of the limit itineraries that It(x) �

It(x−) and It(y+) � It(y). Moreover by Proposition 4.2.2 and the fact that

the itinerary map is bijective, every z ∈ (y, x) is such that It(x−) ≻ It(z) ≻

It(y+).

In Lemma 4.2.5 we showed that CINE subsets of the interval which don’t

contain critical points map to shift spaces under the itinerary map. Theorem

4.3.12 shows precisely when the set of itineraries of a collection of points is

closed. Corollary 4.3.13 then tells us when a CINE set Λ for a locally pre-

critical map has an image It(Λ) under the itinerary map which is a shift

space. If it can be shown that such a set is ICT, by Theorem 4.1.9 there is

an s ∈ ΩN for which It(Λ) = ω(s, σ). This fact will be exploited in future

results.

Lemma 4.3.11. Suppose that the l-modal map f : I → I with critical points

c1, . . . , cl is locally pre-critical, and y ∈ I is either critical or pre-critical.

Then there is no x ∈ I for which either It(x) = It(y+) or It(x) = It(y−).

Proof. By Lemma 4.3.8 we have that the itinerary map is a bijection. Sup-

pose that It(x) = It(y+) (the case for It(x) = It(y−) is similar). Then

certainly x 6= y since Cj /∈ It(x) by Lemma 4.2.7(3) for any 1 ≤ j ≤ l, so

x > y by the definition of It(y+). But then for every z ∈ (y, x), It(z) =

It(y+) = It(x) by Lemma 4.2.3, which contradicts the fact that the itinerary

map is a bijection.

Theorem 4.3.12. Suppose that the l-modal map f : I → I with critical

points c1, . . . , cl is locally pre-critical, and Λ ⊂ I. It(Λ) is closed if and
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only if Λ is closed and there is no sequence of points {xn}n∈N ⊂ Λ for which

limn→∞ xn = y for any critical or pre-critical point y.

Proof. Suppose that It(Λ) is closed. It−1 is continuous by Lemma 4.3.9,

so since It(Λ) is compact we have that Λ is compact and thus closed. If

there were a sequence {xn}n∈N ⊂ Λ as in the statement of the theorem, there

would be a subsequence {xnj
}j∈N for which either limj→∞ It(xnj

) = It(y+)

or limj→∞ xnj
= It(y−). Thus the sequence {It(xnj

)}j∈N ⊂ It(Λ) has no

limit in It(Λ) by Lemma 4.3.11, contradicting the fact that It(Λ) is closed.

Now suppose that Λ is closed and contains no such sequence {xn}n∈N as

in the statement of the theorem. Suppose for a contradiction that It(Λ) is

not closed, then there must be a sequence of points {sj}j∈N ⊂ It(Λ) for which

limj→∞ sj = s /∈ It(Λ). Write It−1(sj) = xj for every j, then {xj}j∈N ⊂ Λ

and

s = lim
j→∞

It(xj) (4.5)

Λ is compact, so there is a subsequence {xjn
}n∈N which has a limit x ∈ Λ.

By assumption, x is neither a critical nor a pre-critical point, so the itinerary

map is continuous at x. If {xj}j∈N had a limit this would have to be x also,

but then

s = lim
j→∞

It(xj) = It

(

lim
j→∞

xj

)

= It(x) ∈ It(Λ),

which is a contradiction. Thus there must be another subsequence {xjm
}m∈N

which has a limit z 6= x, where z ∈ Λ.

Both It(x) and It(z) are in It(Λ), and since f is locally pre-critical,
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It(x) 6= It(z); let d(It(x), It(z)) = ǫ. The itinerary map is continuous at

both x and z, so there are values δx, δz > 0 such that whenever u ∈ Bδx
(x)

we have that It(u) ∈ Bǫ/4(It(x)) and whenever v ∈ Bδz
(z) we have that

It(v) ∈ Bǫ/4(It(z)). Since x and z are limits of their corresponding sequences,

there are integers M, N > 0 such that for every n ≥ N , xjn
∈ Bδx

(x) so

It(xjn
) ∈ Bǫ/4(It(x)) (and similarly for every m ≥ M , xjm

∈ Bδz
(z) so

It(xjm
) ∈ Bǫ/4(It(z))).

By (4.5), there is a p ∈ N such that for every j ≥ p, It(xj) ∈ Bǫ/4(s). But

infinitely many of these will be in Bǫ/4(It(x)) and infinitely many will be in

Bǫ/4(It(z)). This is impossible by the definition of ǫ, so no such s exists and

we conclude that It(Λ) is closed.

Corollary 4.3.13. Suppose that the l-modal map f : I → I with critical

points c1, . . . , cl is locally pre-critical, and Λ ⊂ I. It(Λ) is a shift space if

and only if Λ is CINE and there is no sequence of points {xn}n∈N ⊂ Λ for

which limn→∞ xn = y for any critical or pre-critical point y.

Proof. Suppose that It(Λ) is a shift space, in other words is CINE. Then Λ

is closed by Theorem 4.3.12 and there is no such sequence {xn} as stated.

Also since It(Λ) is invariant we have

(It ◦ f)(Λ) = (σ ◦ It)(Λ) ⊂ It(Λ),

thus f(Λ) ⊂ Λ since It is bijective by Lemma 4.3.8. Thus Λ is CINE.

Now suppose that Λ is CINE and there is no sequence of points {xn}n∈N ⊂

Λ for which limn→∞ xn = y for any critical or pre-critical point y. By Theo-
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rem 4.3.12 It(Λ) is also closed, and since Λ is invariant,

(σ ◦ It)(Λ) = (It ◦ f)(Λ) ⊂ It(Λ),

so It(Λ) is invariant. Thus It(Λ) is a shift space.

4.4 Symbolic Dynamics and ω-Limit Sets

In [7], we show that for XF a shift of finite type, closed, invariant, non-

empty (CINE) subsets of XF are internally chain transitive (ICT) if and

only if they are the ω-limit set of some point s ∈ XF . In other words,

internal chain transitivity completely characterizes ω-limit sets of shifts of

finite type. Example 1.2.1 tells us that this is not the case for maps of the

interval in general, where the set H from that example is ICT but not an

ω-limit set for the map g. However in [7], we show that for certain subsets

of a compact interval this is the case for tent maps. The proof of this relies

heavily upon the kneading theory, and in this section, which is original work

unless stated otherwise, we generalize the result to l-modal maps. (It will

be assumed that f is an l-modal map on the interval I = [0, 1] with critical

points c1, . . . , cl, and that Σ is the set of itineraries of points in I.)

In order to use symbolic dynamics to analyze the dynamics of maps on

their ω-limit sets, we would like to have an analogue of Lemma 4.1.5 to

enable us to tell when a point y ∈ I is in the ω-limit set of a point x, but

it is clear that when moving between the interval and the sequence space,

problems occur when a critical point is in the forward orbit of a point under
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consideration. Ensuring that the map is locally pre-critical allows us to avoid

this problem, as is shown in Proposition 4.4.2, which requires the following

Lemma.

Lemma 4.4.1. Suppose that the l-modal map f : I → I with critical points

c1, . . . , cl is locally pre-critical, and let y ∈ I. For every ǫ > 0 there is

a positive integer N = N(ǫ, y) such that for every x ∈ I which satisfies

It(x)↾N= It(y+)↾N or It(x)↾N= It(y−)↾N we have x ∈ (y − ǫ, y + ǫ).

Proof. Case 1: suppose that there is no k ∈ N such that fk(y) = cj for

any 1 ≤ j ≤ l. Thus It(y+) = It(y) = It(y−) and the itinerary map is

continuous at y by Lemma 4.2.4. Assume the lemma is false; i.e. that there

is an ǫ > 0 such that for every n ∈ N there is a point zn ∈ I such that It(zn)

and It(y) agree up to their first n places, but zn /∈ (y − ǫ, y + ǫ). Certainly

limn→∞ It(zn) = It(y). Since I is compact, limn→∞ zn exists, and since It is

continuous at y we have It(limn→∞ zn) = It(y). Because the itinerary map is

bijective we get that limn→∞ zn = y, which contradicts our assumption that

the lemma is false.

Case 2: suppose that there is a k ∈ N for which fk(y) = cj for some

1 ≤ j ≤ l, and k is minimal in this respect. Thus by Lemma 4.2.7, the

discrepancy between It(y) and It(y+) is k, as it is between It(y) and It(y−).

Assume that the lemma is false for It(y+); i.e. that there is an ǫ > 0 such

that for every n ∈ N there is a point zn ∈ I such that It(zn) and It(y+) agree

up to their first n places, but zn /∈ (y − ǫ, y + ǫ) (the proof is analogous for

It(y−)). Pick z ∈ (y, y+ǫ), then since f is locally pre-critical, It(z) ≻ It(y+)

by Lemma 4.3.10; let their discrepancy be m. Let m∗ = max{m, k}, then
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by assumption there is a zm∗ ∈ I such that It(zm∗) ↾m∗= It(y+) ↾m∗ and

|zm∗ − y| ≥ ǫ. We must have that zm∗ > y by the agreement of It(zm∗) with

It(y+) past the discrepancy with It(y), hence zm∗ > y + ǫ > z. So we have

y < z < zm∗ , with

It(z)↾m∗≻ It(y+)↾m∗= It(zm∗)↾m∗ ,

which contradicts Lemma 4.2.2.

The next proposition exploits symbolic dynamics to give conditions under

which one point is in the ω-limit set of another.

Proposition 4.4.2. Suppose that the l-modal map f : I → I is locally pre-

critical. For x, y ∈ I, either

1. x is periodic or pre-periodic, in which case y ∈ ω(x, f) if and only if

arbitrarily long initial segments of It(y) occur infinitely often in It(x),

or

2. x is neither periodic nor pre-periodic, in which case y ∈ ω(x, f) if and

only if arbitrarily long initial segments of It(y+) or It(y−) (or possibly

both) occur infinitely often in It(x).

Proof. Consider case 1. If x is periodic or pre-periodic, ω(x, f) is a subset

of orb(x, f) and is a cycle. So if y ∈ ω(x, f) then y occurs infinitely often in

orb(x, f) and thus arbitrarily long initial segments of It(y) occur infinitely

often in It(x). Similarly, if arbitrarily long initial segments of It(y) occur

infinitely often in It(x), then y must be in the periodic part of orb(x, f). In

other words, y ∈ ω(x, f).
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For case 2, let y ∈ ω(x, f). Then since x is neither periodic nor pre-

periodic, y ∈ orb(x, f) at most once. Pick n ∈ N; we want to show that

either It(y+)↾n or It(y−)↾n occurs infinitely often in It(x). By Lemma 4.2.7,

for any i ∈ N there is a δi > 0 such that Iti(x) is constant on (y, y + δi) and

(y − δi, y). Let δ = min{δi : i ≤ n} (so δ > 0), then It(z)↾n= It(y+)↾n

for all z ∈ (y, y + δ) and It(z)↾n= It(y−)↾n for all z ∈ (y − δ, y). Since

y ∈ ω(x, f), there are infinitely many k ∈ N for which |fk(x) − y| < δ, and

since y ∈ orb(x, f) at most once there are infinitely many k for which either

fk(x) ∈ (y, y + δ) or fk(x) ∈ (y − δ, y). Thus for these infinitely many k,

either It(fk(x))↾n= It(y+)↾n or It(fk(x))↾n= It(y−)↾n.

Suppose now that for x, y ∈ I, arbitrarily long initial segments of It(y+)

occur infinitely often in It(x) (the proof for It(y−) is analogous), and let

ǫ > 0. By Lemma 4.4.1 there is an N(ǫ) ∈ N such that for every z ∈ I which

satisfies It(z)↾N(ǫ)= It(y+)↾N(ǫ) we have z ∈ (y − ǫ, y + ǫ). By assumption

there is a k ∈ N for which σk(It(x))↾N(ǫ)= It(y+)↾N(ǫ); so It(fk(x))↾N(ǫ)=

It(y+)↾N(ǫ) and thus |fk(x) − y| < ǫ. Since ǫ was arbitrary, y ∈ ω(x, f).

We now return to Example 1.2.1 and show that the set H1 is an ω-limit

set for the map f2 (and hence for g since the dynamics are disjoint about 0).

Since the dynamics are identical on [−1, 0] and disjoint from those on [0, 1],

we also get that H2 is an ω-limit set for the map −f2.

Example 4.4.3 (Using symbolic dynamics to identify an ω-limit set). Re-

call the map f2, the tent map as described in Example 1.1.9 with constant

gradient |s| = 2 (the upper half of the map in Figure 4.3), which is locally

pre-critical.
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Consider the set

H1 = {0} ∪
∞
⋃

n=0

{

1

2n

}

.

The symbolic dynamics can be defined over the set Ω = {0, 1, C} where

A(x) = 0 if x ∈ [0, 1/2), A(x) = C if x = 1/2 and A(x) = 1 if x ∈ (1/2, 1].

For a point x = 1/(2i+1) ∈ H1 for any i ≥ 0, notice that x is mapped to

1/(2i), then 1/(2i−1) and so on until it is mapped onto 1, then the fixed point

0. Hence for such an x we have It(x) = (0iC10∞) and It(x+) = (0i110∞),

where for example 10i means 1 followed by i repetitions of a 0. The only

points in H1 not of this form are 1 which has itinerary (10∞) and 0 which has

itinerary (0∞). Moreover, this map has kneading invariant K = It(f(c)) =

(10∞).

Consider the sequence s = (011021103110411 . . .), which is the itinerary

of a point y0 ∈ [0, 1] by Theorem 4.2.13. Notice that for any x ∈ H1,

arbitrarily long segments of It(x+) occur infinitely often in It(y0) = s. Hence

by Proposition 4.4.2 H1 ⊆ ω(y0, f2). Now suppose that x /∈ H1. Then It(x+)

and It(x−) will always contain a word of the form 10n1, for some n ∈ N, or

111, neither of which appears infinitely often in It(y0). So by Proposition

4.4.2 x /∈ ω(y0, f2) for any such x. Hence H1 = ω(y0, f2).

�

So symbolic dynamics is a powerful tool for establishing whether a given

set is the ω-limit set of some point in the interval. In the case of Example

4.4.3, it was relatively easy to write down the itinerary of a point whose ω-

limit set would be the set H1, since we knew exactly which points we needed
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Figure 4.3: The interval [0, 1] is invariant under f2; the upper half of the map.

to include. However to develop a more general theory we need a better idea

of how the itinerary map affects the structure of sets in the interval.

Theorem 4.4.4. Suppose that f : I → I is a locally pre-critical l-modal map

with critical points c1, . . . , cl and that Λ ⊂ I is a set which does not contain ck

for any 1 ≤ k ≤ l and for which f(Λ) ⊂ Λ. Then It↾Λ is a homeomorphism.

Proof. Since ck /∈ Λ for any 1 ≤ k ≤ l and f(Λ) ⊂ Λ, no x ∈ Λ is pre-critical,

so It is continuous on Λ by Lemma 4.2.4. It↾Λ is bijective by Lemma 4.3.8,

and It−1 is continuous by Lemma 4.3.9.

Lemma 4.4.5. Suppose that f : I → I is locally pre-critical, Λ ⊂ I is closed
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and ck /∈ Λ for any 1 ≤ k ≤ l. Then Λ is ICT if and only if It(Λ) is ICT.

Proof. Suppose that the closed set Λ is ICT. By Proposition 3.2.5, Λ is

invariant, so no point x ∈ Λ is pre-critical. To show that It(Λ) is ICT,

pick r, s ∈ It(Λ), where r = It(y) and s = It(x) for some x, y ∈ Λ, and

let ǫ > 0. We need a sequence {s = s0, s1, . . . , sn = r} ⊂ It(Λ) for which

d(σ(si−1), si) < ǫ for every 1 ≤ i ≤ n. Now It is continuous on Λ by Lemma

4.2.4, so is also uniformly continuous since Λ is compact. So there is a δ > 0

such that for every x, y ∈ Λ for which |x−y| < δ we have d(It(x), It(y)) < ǫ.

Since Λ is ICT there exist x0 = x, x1, . . . , xn = y for which |f(xi−1)−xi| < δ

for every 1 ≤ i ≤ n. Hence d
(

It(f(xi−1), It(xi)
)

< ǫ. Thus, setting si =

It(xi) and noting that by conjugation It(f(xi−1)) = σ(It(xi−1)), we get that

d(σ(si−1), si) < ǫ for every 1 ≤ i ≤ n.

Now suppose that It(Λ) is ICT. Since by Theorem 4.4.4, It−1 : It(Λ) → Λ

is a homeomorphism we have that It(Λ) is closed, so is compact since the

full shift is compact [30]. Thus we can show that Λ is ICT using an identical

(but symmetric) argument to that given above.

Proposition 4.4.6. Suppose that f : I → I is a locally pre-critical, l-modal

map with critical points c1, . . . , cl, and that L ⊂ I is closed, invariant, non-

empty and does not contain cj for any 1 ≤ j ≤ l. Suppose also that for

x0 ∈ I, {fn(x0) : n ∈ N} is bounded away from cj for each 1 ≤ j ≤ l. Then

It(L) = ω(It(x0), σ) if and only if L = ω(x0, f).

Proof. Since {fn(x0) : n ∈ N} is bounded away from cj for 1 ≤ j ≤ l, It is
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a homeomorphism on {fn(x0) : n ∈ N} by Theorem 4.4.4. So

ω(It(x0), σ) =
⋂

n≥0

{σk(It(x0)) : k > n}

=
⋂

n≥0

{It(fk(x0)) : k > n}

=
⋂

n≥0

It
(

{fk(x0) : k > n}
)

(since It is continuous)

= It

(

⋂

n≥0

{fk(x0) : k > n}
)

(since It is injective)

= It(ω(x0, f))

Suppose that It(L) = ω(It(x0), σ), then by the above calculation, It(L) =

It(ω(x0, f)). It is a homeomorphism on L by Theorem 4.4.4, so certainly it

is injective, hence we must have that L = ω(x0, f).

Now suppose that L = ω(x0, f), then clearly It(L) = It(ω(x0, f)); i.e.

It(L) = ω(It(x0), σ), again by the above calculation.

By ensuring that a CINE set Λ contains the images of none of the critical

points, we get some interesting structure in the associated space of itineraries,

as was shown in Lemma 4.2.5 – a result extended by the following theorem.

Theorem 4.4.7. Suppose that f : I → I is a locally pre-critical, l-modal

map with critical points c1, . . . , cl, and that Λ ⊂ I is a CINE set which does

not contain f(cj) for any 1 ≤ j ≤ l.

Then It(Λ) is a shift space which is a subset of a shift of finite type XF

for some finite but non-empty set of words F .

Proof. Λ is CINE so It(Λ) is CINE by Theorem 4.3.12. Moreover, cj /∈ Λ for
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1 ≤ j ≤ l since f(cj) /∈ Λ and Λ is invariant, thus It(Λ) is a shift space by

Lemma 4.2.5.

Since f(cj) /∈ Λ for 1 ≤ j ≤ l and Λ is closed, we must have that Λ is in

fact bounded away from each f(cj). The inverse itinerary map is continuous

by Lemma 4.3.9, so is uniformly continuous and It(Λ) must therefore be

bounded away from each Kj . In particular for every 1 ≤ j ≤ l there is an

nj ∈ N such that d(Kj, s) ≥ 1/2nj for every s ∈ It(Λ). Hence the discrepancy

between s and Kj is at most nj for every s ∈ It(Λ). Set

F = {Kj↾nj
: 1 ≤ j ≤ l}.

We claim that It(Λ) ⊂ XF , where X = ΩN for Ω = {I1 . . . Il+1, C1, . . . , Cl}

as defined above. Indeed, for any s ∈ It(Λ), no initial segment of s can be

a word from F by the discrepancy between s and Kj as noted above. So

suppose that there is some s ∈ It(Λ) and some F ∈ F such that s contains

the word F ; i.e. F is the initial segment of σk(s) for some k ∈ N. But It(Λ)

is invariant, so σk(s) = t ∈ Λ′ has F as its initial segment, which we have

said can’t happen. Thus It(Λ) ⊂ XF .

The main result of this chapter is Theorem 4.4.8, which characterizes

those ω-limit sets of locally pre-critical, piecewise monotone interval maps

which do not contain the image of any critical point. Such ω-limit sets are

well-studied, and include the post-critical ω-limit sets of tent maps whose

critical point is non-recurrent (see [21], [22], [41] for examples).

Theorem 4.4.8. Suppose that f : I → I is a locally pre-critical, l-modal

map with critical points c1, . . . , cl, and that Λ ⊂ I is a closed, non-empty set
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which does not contain f(cj) for any 1 ≤ j ≤ l.

Then Λ is ICT if and only if Λ = ω(x0, f) for some x0 ∈ I.

Proof. Suppose that Λ = ω(x0, f), then Λ is ICT by Lemma 3.2.7. Now

suppose that Λ ⊂ I is a non-empty, closed set which does not contain the

image of any critical point of f , and is ICT. Thus Λ is invariant by Proposition

3.2.5, and so contains no critical or pre-critical points. Furthermore, since

Λ is closed, there is no sequence of points in Λ which converges to a critical

or pre-critical point. Let Γ = It(Λ). Then by Lemmas 4.2.5 and 4.4.5, Γ

is closed, invariant, non-empty and ICT. Since f(cj) /∈ Λ for any 1 ≤ j ≤ l

and Λ is closed it must be bounded away from each f(cj), so by uniform

continuity of It−1, Γ must be bounded away from each Kj . Thus for every

1 ≤ j ≤ l there is an Nj ∈ N such that the discrepancy between t and Kj is

less than Nj for every t ∈ Γ; let N = max{Nj : 1 ≤ j ≤ l}. Now construct

the arbitrary length, infinite repetition sequence s = s(Γ, N). By Lemma

4.1.8, Γ = ω(s, σ).

We want to have that s = It(x0) for some x0 ∈ [0, 1], so we show that the

admissibility conditions (4.1) to (4.3) in Definition 4.2.12 are satisfied by s.

By the construction of s, for any k ∈ N, σk(s) begins with at least the first

N symbols of some t ∈ Γ, within which we can see a discrepancy with every

kneading invariant Kj , as noted above. Since each such t is the itinerary of

some point in Λ, this discrepancy tells us that σk(s) satisfies conditions (4.1)

to (4.3). Thus by Theorem 4.2.13, there is an x0 ∈ I for which s = It(x0).

Hence Γ = ω(It(x0), σ), where fk(x0) is bounded away from cj for 1 ≤ j ≤ l.

So by Proposition 4.4.6 we have that Λ = ω(x0, f) as required.
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Remark 4.4.9. It may appear that the (implied) condition of Λ not contain-

ing any critical point in Theorem 4.4.8 is simply an artifact of using symbolic

dynamics. However we need only look as far as Examples 1.2.1 and 4.4.3 to

see that not every CINE set which is ICT is an ω-limit set. Indeed the set

H = H1 ∪ H2 which contains both critical points (and their images) is ICT

but is not an ω-limit set for g. We require that Λ does not contain the image

of any critical point in order to ensure that the admissibility conditions are

met when constructing the arbitrary length, infinite repetition sequence in

the proof of the theorem, however it is not known whether this condition is

actually required for the theorem to hold.

In Chapter 5 we identify a strong form of a property known as shad-

owing, which is a sufficient (but not necessary) condition of ICT sets to be

ω-limit sets and which depends on the behaviour of the critical point of a

map, implying that a property of greater subtlety than ICT is required to

characterize ω-limit sets which contain critical points. In particular, we show

that by omitting the critical points of a map from a set, the map has this

strong form of shadowing on such sets.
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Chapter 5

Pseudo-Orbit Shadowing

The idea of a pseudo-orbit is one with many practical considerations. Indeed

when we study orbits of points in an abstract setting, such as within an

arbitrary topological space, we are assuming implicitly that we are able to

calculate the position, or value of each point in the space to an infinite degree

of accuracy. In practice of course this is not possible, and whether we are

calculating the positions of protons in a particle accelerator or the movement

of a low pressure system in the earth’s atmosphere, small errors will inevitably

enter our calculations and distort our findings and predictions. This is due to

unavoidable rounding errors inherent in the calculating device we are using;

be it a hand-held calculator or a powerful supercomputer, the value of a

point in a system (and thus all iterates thereof) can only be found to a finite

number of decimal places (assuming the use of base-10 arithmetic). What we

have in fact is a δ-pseudo-orbit (see Chapter 3), where δ can be treated as the

rounding error. Hence we should like to know that for each such pseudo-orbit

there exists a real orbit in the system which approximates the pseudo-orbit
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to a degree of accuracy we can control; if this is the case we can conclude

that our calculations, based upon the pseudo-orbit, contain a bounded level

of inaccuracy. This property is known as shadowing, or pseudo-orbit tracing.

In [11], Bowen uses shadowing to study ω-limit sets of a certain class of

diffeomorphism, which is where the definition seems to have originated. How-

ever since then many different versions of shadowing have been introduced

to describe a similar type of behaviour in different classes of maps [28, 40].

We saw in Theorem 4.1.9 that for shifts of finite type, ω-limit sets are

precisely the ICT subsets of the shift space, whilst in [52], Walters proves

that a subshift has the shadowing property if and only if it is of finite type.

Thus shadowing would appear to be a useful and important property for us

to consider in our pursuit of understanding ω-limit sets in terms of internal

chain transitivity. In the first half of this chapter we investigate the links

between the various versions of shadowing, prove implications where they

exist and give examples where appropriate.

In [18], Coven et al. identify a condition on tent maps which implies shad-

owing, which we state here without proof, and which relies upon the nature

of the critical point of the map. They also give an expansivity condition for

general maps which implies shadowing. In the second half of this chapter we

investigate further how expansivity properties give rise to shadowing, basing

one of our properties upon that given by Coven et al. and extending their

result to show that maps possess a stronger form of shadowing in this case

(Theorem 5.2.22).

Much of the material in this chapter is the result of work in collaboration

with Chris Good, Piotr Oprocha and Brian Raines [8]. As in previous chap-
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ters, work is original unless stated otherwise, and we will indicate where a

result or example is from [8].

Throughout this chapter, (X, f) is a dynamical system unless stated oth-

erwise.

5.1 The Shadowing Property

Recall that a δ-pseudo-orbit is a sequence of points {x0, x1, . . .} ⊂ X such

that d(f(xi), xi+1) < δ for i ≥ 0.

Definition 5.1.1 (Shadowing/Pseudo-Orbit Tracing). Let the set K be ei-

ther {0} ∪ N or {0, 1, . . . , k − 1} for some k ∈ N, and let ǫ > 0 be a real

number. The sequence {yn}n∈K is said to ǫ-shadow the sequence {xn}n∈K

if for every n ∈ K we have that d(yn, xn) < ǫ, and is said to asymptotically

shadow the sequence {xn}n∈N if limn→∞ d(yn, xn) = 0. If both properties

hold we say that {yn}n∈N asymptotically ǫ-shadows {xn}n∈N.

The map f is said to have the pseudo-orbit tracing property (or shadow-

ing) if for every ǫ > 0 there is a δ > 0 such that for every δ-pseudo-orbit

{x0, x1, . . .} ⊂ X there is a point x ∈ X whose orbit {fn(x) : n ∈ N}

ǫ-shadows the pseudo-orbit.

Notice that the definition does not tell us the value of δ in relation to ǫ, so

from a practical point of view it offers little help, except to say that the map

is somehow “well-behaved” on pseudo-orbits. However from a mathematical

point of view, we shall see that this property (and others like it) allow us to

discern a great deal about the behaviour of “true” orbits near pseudo-orbits,
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and from this make further statements about the link between internal chain

transitivity and ω-limit sets.

We begin with a number of results which will help us determine when a

map has the shadowing property. The following fact is well-known.

Lemma 5.1.2. A map f : X → X has shadowing if and only if for every

ǫ > 0 there is a δ > 0 such that every finite δ-pseudo-orbit is ǫ-shadowed.

Proof. Clearly if f has shadowing every finite pseudo-orbit is shadowed, so

assume conversely that for every ǫ > 0 there is a δ > 0 such that every finite

δ-pseudo-orbit is ǫ-shadowed. Let ǫ > 0, let δ be the constant given by the

statement for ǫ/2, and let {xn}n∈N be an infinite δ-pseudo-orbit. For each

n ∈ N there is a yn ∈ X which ǫ/2-shadows {x1, . . . , xn}. Some subsequence

{ynk
}k∈N has a limit y ∈ X, so for any m ∈ N, there is a nk > m, such that

d(fm(ynk
), fm(y)) < ǫ/2. Then

d(fm(y), xm) ≤ d(fm(y), fm(ynk
)) + d(fm(ynk

), xm)

< ǫ/2 + ǫ/2

= ǫ.

Results 5.1.3 and 5.1.4 are due to Coven, Kan and Yorke [18]. We provide

no proof of either result here, but in Theorem 5.2.22 we show that the con-

dition in Lemma 5.1.3, when satisfied, implies a stronger form of shadowing

which implies the form given in Definition 5.1.1.
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Lemma 5.1.3. A map f : X → X has shadowing if for every ǫ > 0 there is

a δ > 0 such that for every x ∈ X,

Bǫ+δ(f(x)) ⊆ f
(

Bǫ(x)
)

.

So provided that a slightly expanded neighbourhood of the image of a

point is contained in the image of the neighbourhood of that point, the map

f has shadowing on X. This is really an expansive condition, albeit different

from locally eventually onto (which we know is satisfied by the tent map fλ

for λ ∈ (
√

2, 2], see Example 1.1.9 and [14]). Indeed Coven et al. remark that

while the condition of Lemma 5.1.3 is satisfied by the tent map for λ = 2,

it is not satisfied by the tent map for any value of λ ∈ (
√

2, 2) since it fails

at the critical point. Lemma 5.1.4 addresses this issue, where the kneading

invariant is given by K = (K0K1 . . .), c = 1/2 is the critical point of the

map, and the symbolic dynamics for the tent map are exactly as defined in

Example 4.4.3.

Lemma 5.1.4. For λ 6= 2, the tent map fλ has the shadowing property if and

only if for every ǫ > 0 there is a positive integer n such that |fn
λ (c) − c| ≤ ǫ,

and either Kn = C or K↾n−1 is even if Kn = 0 and odd if Kn = 1.

In other words the tent map fλ with slope λ has the shadowing property

if and only if the orbit of fλ(c) returns to within arbitrarily small neighbour-

hoods of c, and such that when it returns after n iterations, we have that

(K0 . . .Kn−1Kn) � (K0 . . .Kn−1C).

The following theorem is due to Walters [52], and shows that shadowing

is inherent in a class of subshift (see Definition 4.1.2).
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Theorem 5.1.5. A subshift has shadowing if and only if it is of finite type.

In analyzing this result, we actually see that the same is true of a strictly

stronger form of shadowing. This is the motivation for our next definition,

which is new in the literature.

Definition 5.1.6 (Shadowing with Direct Hit/h-Shadowing). For a subset

Y ⊂ X we say that the map f : X → X has shadowing with direct hit on Y

(or simply h-shadowing on Y ) if and only if for every ǫ > 0 there is a δ > 0

such that for every finite δ-pseudo-orbit {x0, x1, . . . , xm} ⊆ Y there is y ∈ X

such that d(f i(y), xi) < ǫ for every i < m and fm(y) = xm.

If Y = X then we say simply that f has h-shadowing.

Lemma 5.1.2 shows that a map with h-shadowing also has shadowing; we

will see below that the converse is not the case. First we relate h-shadowing

to shift spaces.

Theorem 5.1.7. A subshift has h-shadowing if and only if it is of finite type.

Proof. Suppose that a subshift σ : XF → XF has h-shadowing, then by

Lemma 5.1.2 it is clear that σ has shadowing, so by Theorem 5.1.5 it is a

shift of finite type.

Now suppose that σ : XF → XF is a shift of finite type and let ǫ > 0.

Suppose that the maximum number of symbols in any word in F is M , and

pick k ∈ N such that k > M and 1/2k ≤ ǫ; let δ = 1/2k. Suppose that

{s0, s1, . . . , sn} ⊂ XF is a δ-pseudo-orbit, where si = (s0
i s

1
i s

2
i . . .), then by

Lemma 4.1.6, the first k symbols of σ(si) agree with those of si+1, for i =

0, 1, . . . , n−1. Let t = (t0t1 . . .) be the element formed by setting ti to be the
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first symbol of si, for i = 0, 1, . . . , n − 1, and setting (tntn+1 . . .) = sn. Then

σi(t) = (s0
i s

0
i+1s

0
i+2 . . .) for i < n. Moreover for j ≤ min{n − i, k}, s0

i+j = sj
i ,

so σi(t) = (s0
i s

1
i s

2
i . . . sk−1

i . . .) for i < n and thus d(σi(t), si) ≤ 1/2k+1 < ǫ.

Also by construction, σn(t) = sn, so provided t ∈ XF we have that σ has

h-shadowing.

Suppose that t /∈ XF , then for some i ∈ N, σi(t) begins with some word

F ∈ F . Thus by the construction of t and since k > M , we are forced to

conclude that either si begins with F for some i < n, or σj(sn) begins with

F for j ≥ 0, both of which are contradictions so we are done.

We stay with shift spaces for Proposition 5.1.8, which uses symbolic dy-

namics to show that an l-modal map f : I → I has h-shadowing on a CINE

subset of a compact interval I provided the set does not contain the im-

age of any critical point. This is precisely the hypothesis of Theorems 4.4.7

and 4.4.8, and demonstrates the connection between shadowing and our use

of symbolic dynamics in Theorem 4.4.8. This connection will be explored

further in the next chapter.

Proposition 5.1.8. Suppose that f : I → I is a locally pre-critical l-modal

map with critical points c1, . . . , cl, and that Λ ⊂ I is CINE. If f(ck) /∈ Λ for

any 1 ≤ k ≤ l then f has h-shadowing on Λ.

Proof. Fix ǫ > 0. The inverse itinerary map It−1 is continuous by Theorem

4.4.4, thus also uniformly continuous since It(Λ) is closed by Theorem 4.3.12

and thus compact, so there is an ηǫ > 0 for which |x − y| < ǫ whenever

d(It(x), It(y)) < ηǫ for every x, y ∈ Λ. Similarly, the itinerary map It is

uniformly continuous on the compact set Λ by Theorem 4.4.4, so for every
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ν > 0 there is a δν > 0 such that d(It(x), It(y)) < ν whenever |x − y| < δν .

Since f(ck) /∈ Λ for any 1 ≤ k ≤ l and It(Λ) is closed it is bounded away

from the kneading invariants Kk for every 1 ≤ k ≤ l. So there is a χ ∈ N

such that It(x)↾χ satisfies admissibility conditions (4.1) to (4.3) for every

x ∈ Λ. Now set ν := min{1/2χ, ηǫ/2}, then there is an m ∈ N such that

ν ≤ 1/2m < ηǫ and 1/2m ≤ 1/2χ.

Consider a δν-pseudo-orbit {x0, x1, . . . , xr} ⊂ Λ, which gives rise to a ν-

pseudo-orbit {s0, s1, . . . , sr} ⊂ It(Λ) by Lemma 4.4.5. Then by the metric

on ΩN and the definition of ν, the first m symbols in σ(si) correspond to

the first m symbols in si+1, and in particular the first χ symbols in σ(si)

correspond to the first χ symbols in si+1. Let s be a sequence constructed

from taking first element of si for 0 ≤ i ≤ r − 1 in turn and appending this

with sr as the tail of s. We claim that s = It(z) for some z ∈ I. i.e. that s

satisfies admissibility conditions (4.1) to (4.3). The condition will be violated

either in the middle of sr or across the join between si and si+1 for some i.

The former cannot occur, since t↾χ satisfies admissibility conditions (4.1) to

(4.3) for every t ∈ It(Λ), and It(Λ) is invariant so every iterate of sr is in

It(Λ) also. Thus as soon as we see χ symbols of an iterate of sr we know

that it satisfies admissibility conditions (4.1) to (4.3). Notice also that a join

incorporates at least χ symbols of the outgoing word, say si, so since σi(s)

begins with si we remain in si for more than χ symbols, so can conclude that

σi(s) still satisfies admissibility conditions (4.1) to (4.3). Hence s = It(z) for

some z ∈ I.

To see that the δν-pseudo-orbit is ǫ-shadowed, notice that since σ(si−1)

agrees in the first m places with si for every 1 ≤ i ≤ r, we have that

95



for every 1 ≤ i ≤ r, d(σ(si−1), si) ≤ 1
2m < ηǫ, i.e. d(σi(s), si) < ηǫ, so

d(σi(It(z)), It(xi)) < ηǫ and by conjugation d(It(f i(z)), It(xi)) < ηǫ. Thus

|f i(z) − xi| < ǫ for every 1 ≤ i ≤ r.

To see that h-shadowing is a strictly stronger property than shadowing

we identify a class of maps which do not have h-shadowing. This requires

the following lemma, which demonstrates how pseudo-orbits behave under

homeomorphisms [8].

Lemma 5.1.9. Let f : X → X be a homeomorphism.

1. Suppose that f has h-shadowing, and for any ǫ > 0, let δ be as given

by h-shadowing for ǫ. Then for any two δ-pseudo-orbits {xi}n
i=0 and

{yi}n
i=0 with xn = yn = z we have that d(xi, yi) < 2ǫ for 0 ≤ i ≤ n.

2. Conversely, suppose that there are points x, y, z with x 6= y, and suppose

that for every δ > 0 there is an n > 0 and δ-pseudo-orbits {x1 =

f(x), x2, . . . , xn = z} and {y1 = f(y), y2, . . . , yn = z}. Then f cannot

have h-shadowing.

Proof. (1): Let z0 be a point which ǫ-shadows {xi}n
i=0 with direct hit, and

let z1 be a point which ǫ-shadows {yi}n
i=0 with direct hit. Then fn(z0) =

fn(z1) = z, so since f is one-to-one, we must have that f i(z0) = f i(z1) for

0 ≤ i ≤ n. In other words, both {xi}n
i=0 and {yi}n

i=0 are ǫ-shadowed by the

same orbit, forcing the result.

(2): Suppose that f has h-shadowing, let ǫ = d(x, y)/2, and let δ be as

given by h-shadowing for ǫ. Consider the δ-pseudo-orbits {x0 = x, x1 =

f(x), . . . , xn = z} and {y0 = y, y1 = f(y), . . . , yn = z}. Then there are
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points z0 and z1 which ǫ-shadow {xi}n
i=0 and {yi}n

i=0 respectively, with direct

hit. As in (1), since f is one-to-one we must have that z0 = z1. But then

d(x, y) ≤ d(x, z0) + d(z0, z1) + d(z1, y)

< ǫ + 0 + ǫ

= d(x, y).

This contradiction proves the result.

Theorem 5.1.10 [8] says that when homeomorphisms have weak mixing

(see Definition 4.1.10) they cannot have h-shadowing.

Theorem 5.1.10. Let f : X → X be a topologically weakly mixing home-

omorphism. If X has more than one element then f does not have h-

shadowing.

Proof. Fix x, y ∈ X such that x 6= y. By topological weak mixing, for any

δ > 0 there is an n > 0 such that fn(Bδ(f(x))) ∩Bδ(x) 6= ∅, fn(Bδ(f(y)))∩

Bδ(x) 6= ∅. In particular, for every δ > 0 there are δ-pseudo-orbits

{x, f(x), . . . , fn−1(x), x}

and

{y, f(y), . . . , fn−1(y), x}.

Then by Lemma 5.1.9 (2), f cannot have h-shadowing.

Example 5.1.11 (Maps with shadowing but not h-shadowing). Bi-infinite

sub-shifts are homeomorphisms, and as we know from [52] shifts of finite type
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have shadowing. By Corollary 4.1.12, a mixing shift of finite type acting on

a non-singleton set is thus an example of a map which satisfies the conditions

of Theorem 5.1.10, so does not have h-shadowing, but does have shadowing

[8].

As a specific example, consider the full shift, Z = {0, 1}Z on the alphabet

{0, 1}. Z is a weakly mixing homeomorphism (see Proposition 4.1.13), and

has shadowing as mentioned above. Suppose Z has h-shadowing, let ǫ = 1/4

and let δ be the constant given by the definition of h-shadowing for ǫ. There

is an n ∈ N such that 1/2n < δ. Let s = 0−∞ · 10∞ and let t = 1−∞ · 1∞.

Now let

s0 = s,

s1 = 0−∞ · 10n−11∞,

si+1 = σi(s1) for 1 ≤ i < 2n,

and s2n+1 = t.

Then {s0 = s, s1, . . . , s2n+1 = t} is a δ-pseudo-orbit in Z, so there is some

r ∈ Z for which d(σi(r), si) < ǫ for 0 ≤ i ≤ 2n and σ2n+1(r) = s2n+1 = t.

But then r = t, and so

d(r, s0) = d(r, t) = 1/2 > 1/4 = ǫ,

so Z cannot have h-shadowing.

�

With reference to Theorem 3.2.9, we introduce the following further varia-
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tion of shadowing, which will allow us to apply a similar analysis to Theorem

3.2.9 for ω-limit sets of true orbits.

Definition 5.1.12 (Limit Shadowing). The map f : X → X is said to have

limit shadowing on L ⊂ X if for every asymptotic pseudo-orbit {xn}n∈N ⊂ L

there is a point x ∈ X which asymptotically shadows {xn}n∈N. If L = X we

simply say that f has limit shadowing.

Although this is, strictly speaking, not a stronger property than shad-

owing (see Example 5.1.13), for maps which have this property we will be

able to demonstrate a clear link between ICT and ω-limit sets. The following

example, found in [40], shows how a map can have limit shadowing but not

shadowing.

Example 5.1.13. Consider a strictly increasing interval map f : [0, 1] →

[0, 1], for which the points 0, 1/3, 2/3, 1 are fixed, for which f(x) > x on

(0, 1/3) and on (1/3, 2/3) and for which f(x) < x on (2/3, 1). So 0 and 1

are unstable fixed points, 2/3 is a stable fixed point, and 1/3 is stable from

below and unstable from above.

For 5 < m ∈ N, let V m
s = B1/m(s), for s ∈ {0, 1/3, 2/3, 1}. Furthermore,

let W m
1 = (0, 1/3) \ (V m

0 ∪ V m
1/3) and let W m

2 = (1/3, 1) \ (V m
1/3 ∪ V m

2/3 ∪ V m
1 ).

By the definition of f , we see that for every m > 5 there is an am > 0

such that for every x ∈ W m
1

|f(x) − 1/3| ≤ |x − 1/3| − 2am, (5.1)
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and for every x ∈ W m
2

|f(x) − 2/3| ≤ |x − 2/3| − 2am. (5.2)

Consider a sequence {xk}k≥0 ⊂ [0, 1] such that

dk = |f(xk) − xk+1| → 0 as k → ∞.

We will show that such orbits are always asymptotically shadowed.

There exist m0 ∈ N and b1 > 0 such that for every m ≥ m0 and for every

x ∈ f(V m
s ) we have that d(x, V m

u ) ≥ b1 provided u 6= s. Moreover, there

exists k0 ∈ N such that for every k ≥ k0 we have that dk < b1. This implies

that for every m ≥ m0, for every k ≥ k0 and for every x ∈ f(V m
s ), if u 6= s

we have that

|f(xk) − xk+1| < d(x, V m
u ). (5.3)

In what follows, it will be assumed that we have chosen m ≥ m0 and k ≥ k0.

By (5.3), for xk ∈ V m
s we have that f(xk) ∈ f(V m

s ) so |f(xk) − xk+1| <

d(f(xk), V
m
u ) for u 6= s. So since V m

s ∩ V m
u = ∅ for u 6= s we have

xk+1 /∈ V m
u provided xk ∈ V m

s . (5.4)

Let r1 = f(1/3− 1/m)− (1/3− 1/m), r2 = f(2/3− 1/m)− (2/3− 1/m) and

r3 = (2/3 + 1/m) − f(2/3 + 1/m). For any m ≥ m0, by the definition of f
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there is a b2(m) > 0 for which

b2(m) < min{r1, r2, r3}.

We claim that for every m ≥ m0 there is an s ∈ {0, 1/3, 2/3, 1} and a

K(m) ≥ k0 such that

xk ∈ V m
s for every k ≥ K(m). (5.5)

It follows from (5.4) that if (5.5) holds we have established limit shadowing

for f , since then we can let our shadowing orbit be that of s, whichever of the

fixed points that is. In fact, as long as we can show that for some m ≥ m0,

xk ∈ V m
0 ∪V ∪

1/3V
m
2/3∪V m

1 for every k ≥ k0 we are done by the same reasoning.

To prove claim (5.5), fix m ≥ m0 and let l(m) ≥ k0 be such that for

k ≥ l(m),

dk < min{am, b2(m)}. (5.6)

Case 1: xl(m) ∈ W m
2 .

Then for k ≥ l(m), provided xk ∈ W m
2 we have by (5.2) and (5.6) that

|xk+1 − 2/3| ≤ |xk+1 − f(xk)| + |f(xk) − 2/3|

< am + |xk − 2/3| − 2am

= |xk − 2/3| − am. (5.7)
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Also, for k ≥ l(m) we have

min{r2, r3} > |f(xk) − xk+1|

by the choice of b2(m) and l(m). So, combining this with (5.7), if

xk+j ∈ {(2/3 − 1/m), (2/3 + 1/m)} for some j > 0, xk+j+1 ∈ V m
2/3

and we are done. If no such xk+j ∈ {(2/3 − 1/m), (2/3 + 1/m)} then

xki
∈ V m

2/3 for some i > 0 by (5.7) and we are done.

Case 2: xl(m) ∈ W m
1 .

Then for k ≥ l(m), provided xk ∈ W m
1 we have by (5.1) and (5.6)

|xk+1 − 1/3| ≤ |xk+1 − f(xk)| + |f(xk) − 1/3|

< am + |xk − 1/3| − 2am

= |xk − 1/3| − am.

So, again using the choice of b2(m), there is a j > 0 for which either

1/3 > xk+j ∈ V m
1/3, or xk+j ∈ (1/3, 2/3) in which case (after several

iterations if needs be) we are reduced to Case 1.

This proves claim (5.5), and thus f has limit shadowing.

Let ǫ = 1/6. To see that f does not have shadowing, for any 0 < δ < 1/6

consider the sequence {xk}k≥0 defined as follows:

• x0 = δ/2;

• xk = fk(x0) for every 0 < k < J , where |xJ−1 − 1/3| ≤ δ/2;
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• xJ+i = f i(1/3 + δ/2) for every i ≥ 0.

This is a δ-pseudo-orbit for any δ > 0 we choose, and it is not ǫ-shadowed

by any x ∈ [0, 1], so f cannot have shadowing.

�

Since Example 5.1.13 shows that limit shadowing does not imply shad-

owing, the property of strong limit shadowing (or s-limit shadowing) was

introduced by Lee and Sakai [28], which does imply shadowing (indeed shad-

owing is part of the condition for a map to have this stronger form).

Definition 5.1.14 (s-Limit Shadowing). A map f : X → X has s-limit

shadowing on Y ⊆ X if for every ǫ > 0 there is δ > 0 such that the following

two conditions hold:

1. for every δ-pseudo-orbit {xn}n∈N ⊆ Y of f , there is y ∈ X such that y

ǫ-shadows {xn}n∈N, and

2. for every asymptotic δ-pseudo-orbit {zn}n∈N ⊆ Y of f , there is y ∈ X

such that y asymptotically ǫ-shadows {zn}n∈N.

In the special case Y = X we say that f has s-limit shadowing.

We explore the links between limit shadowing, s-limit shadowing and h-

shadowing in Lemma 5.1.15 and Theorem 5.1.16 [8].

Lemma 5.1.15. If Λ ⊆ f(Λ) ⊆ X and f has s-limit shadowing on Λ then

f has limit shadowing on Λ. In particular, if f is surjective and has s-limit

shadowing then f also has limit shadowing.
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Proof. Fix any asymptotic pseudo orbit {xn}n∈N ⊆ Λ, fix any ǫ > 0 and let

δ be the constant given from the definition of s-limit shadowing for ǫ. There

is N such that d(f(xn), xn+1) < δ for all n ≥ N . There is also y ∈ Λ such

that fN(y) = xN . Then the sequence

y, f(y), . . . , fN(y) = xN , xN+1, xN+2, . . . (5.8)

is an asymptotic δ-pseudo-orbit in Λ. Now, it is enough to apply the definition

of s-limit shadowing and the proof is completed.

Theorem 5.1.16. Suppose that Λ ⊆ X is closed.

1. If there is an open set U such that Λ ⊆ U and f has h-shadowing on

U , then f has s-limit shadowing on Λ.

2. If Λ is invariant and f↾Λ has h-shadowing then f↾Λ has s-limit shad-

owing.

3. If f has h-shadowing then f has s-limit shadowing.

Proof. (1): Notice that by Lemma 5.1.2, f has shadowing already, so the

first half of the definition of s-limit shadowing is satisfied trivially.

Fix ǫ > 0 such that B3ǫ(Λ) ⊆ U and denote ǫn = 2−n−1ǫ. By the definition

of h-shadowing there are {δn}n∈N such that every finite δn-pseudo-orbit in U

is ǫn-shadowed with direct hit. Fix any infinite δ0-pseudo-orbit {xn}n∈N ⊆ Λ

such that limn→∞ d(f(xn), xn+1) = 0. There is an increasing sequence {ki}i∈N

such that {xn}∞n=ki
is an infinite δi-pseudo-orbit and obviously k0 = 0. Note
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that if w is a point such that fki(w) = xki
then the sequence

w, f(w), . . . , fki(w), xki+1, . . . , xki+1

is a δi-pseudo-orbit.

Let z0 be a point which ǫ0-shadows the δ0-pseudo-orbit x0, . . . , xk1
with

exact hit (i.e. such that fk1(z0) = xk1
). Notice that f j(z0) ∈ U for 0 ≤ j ≤

k1.

For i ∈ N, assume that zi is a point which ǫi-shadows the δi-pseudo-orbit

zi−1, f(zi−1), . . . , f
ki(zi−1), xki+1, . . . , xki+1

⊆ U

with exact hit. Then by h-shadowing there is a point zi+1 which ǫi+1-shadows

the δi+1-pseudo-orbit

zi, f(zi), . . . , f
ki+1(zi), xki+1+1, . . . , xki+2

⊆ U

with exact hit. Thus we can produce a sequence {zi}∞i=0 with the following

properties:

1. d(f j(zi−1), f
j(zi)) < ǫi for j ≤ ki and i ≥ 1,

2. d(f j(zi), xj) < ǫi for ki < j ≤ ki+1 and i ≥ 0,

3. fki+1(zi) = xki+1
for i ≥ 0,

4. d(f j(zi), Λ) < ǫ for j ≤ ki+1,

There is an increasing sequence {si}i∈N such that the limit z = limi→∞ zsi
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exists.

For any j, n ∈ N there exist i0 ≥ 0 and m ≥ i0 such that ki0 < j ≤ ki0+1

and d(f j(z), f j(zsm
)) < ǫn+1. So we get

d(f j(z), xj) ≤ d(f j(z), f j(zsm
)) + d(f j(zi0), xj) +

sm−1
∑

i=i0

d(f j(zi), f
j(zi+1))

≤ ǫn+1 + ǫi0 +

sm−1
∑

i=i0

ǫi+1

≤ ǫ2−n−2 +

∞
∑

i=i0

2−i−1ǫ ≤ ǫ(2−n−2 + 2−i0)

≤ ǫ(2−n−2 + 1).

But we can fix n to be arbitrarily large in that case, which immediately

implies that

d(f j(z), xj) ≤ ǫ.

Furthermore, for any n, let j > kn+2. There is i1 ≥ n+2 such that ki1 < j ≤

ki1+1 and there is m > i1 such that d(f j(z), f j(zsm
)) < ǫn+1. Then as before

we obtain

d(f j(z), xj) ≤ ǫ(2−n−2 + 2−i1)

≤ ǫ(2−n−2 + 2−n−2) = ǫn.

This immediately implies that lim supj→∞ d(f j(z), xj) ≤ ǫn which, since n

was arbitrary, finally gives limj→∞ d(f j(z), xj) = 0. This shows that f has

s-limit shadowing on Λ.
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(2) follows from (1), since U = Λ is open in Λ. (3) is a special case of (1)

with Λ = X.

The next result follows immediately from Theorem 5.1.16 (1) and Lemma

5.1.15.

Corollary 5.1.17. Suppose that there is an open set U such that f has

h-shadowing on U . If Λ ⊆ U is closed with Λ ⊆ f(Λ) then f has limit

shadowing on Λ.

Despite this last result, it is not known whether shadowing and limit

shadowing together imply s-limit shadowing.

We finish this section by proving a result from [8] which shows that pro-

vided we can find some iterate of a map which has h-shadowing, we can

deduce that the map itself has h-shadowing.

Theorem 5.1.18. If Λ is a closed set such that f(Λ) ⊃ Λ then the following

conditions are equivalent:

1. f has h-shadowing on Λ,

2. fn has h-shadowing on Λ for some n ∈ N,

3. fn has h-shadowing on Λ for all n ∈ N,

Proof. Implication (3) implies (2) is trivial. Implication (1) implies (3) is also

obvious, since for any δ > 0 and n > 0 if {y0, y1, . . . , ym} is δ-pseudo-orbit

for fn then the sequence

y0, f(y0), . . . , f
n−1(y0), y1, f(y1), . . . , f

n−1(ym−1), ym
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is δ-pseudo-orbit for f .

For the proof of implication (2) implies (1), fix ǫ > 0 and suppose that fn

has h-shadowing on Λ for some n ∈ N. Let X have metric d. By Lemma 3.2.2

there is an ǫ′ > 0 such that if {x0, . . . , xn} ⊆ Λ is an ǫ′-pseudo-orbit and

y ∈ X is such that d(y, x0) < ǫ′ then d(fk(y), xk) < ǫ for k = 1, . . . , n.

By h-shadowing there is a δ > 0 such that every δ-pseudo-orbit of fn is

ǫ′-shadowed by a point in X which hits the last element of the pseudo-orbit.

Again by Lemma 3.2.2 (with y = x0), there is a γ < δ
n

such that whenever

{x0, . . . , xn} is a γ-pseudo-orbit for f we have that d(f i(x0), xi) < δ for

i = 1, . . . , n.

Let {x0, . . . , xm} ⊆ Λ be any γ-pseudo-orbit for f , and write m = jn + r

for some j ≥ 0 and some r < n. Since f is surjective on Λ (i.e. Λ ⊂ f(Λ))

there is a point z ∈ Λ such that fn−r(z) = x0. Then

{z, f(z), . . . , fn−r(z), x1, . . . , xm} ⊂ Λ

is a γ-pseudo-orbit for f , which we re-enumerate to obtain the sequence

{y0, . . . , y(j+1)n}. We now claim that {y0, yn, y2n, . . . , y(j+1)n} is a δ-pseudo-

orbit for fn. Indeed, {y0, . . . , f
n−r(y0) = yn−r, . . . , yn} is a γ-pseudo-orbit (of

length n + 1) for f and so d(fn(y0), yn) < δ. Similarly we have

d(fn(ykn), y(k+1)n) < δ for 1 ≤ k ≤ j.

By h-shadowing of fn there is u such that that d(fkn(u), ykn) < ǫ′ for

k = 0, 1, . . . , j + 1 and f (j+1)n(u) = y(j+1)n. Thus by the definition of
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ǫ′ we have that d(fkn+i(u), ykn+i) < ǫ for k = 0, . . . , j + 1 and for i =

0, . . . , n− 1. So the point u ǫ-shadows the γ-pseudo-orbit {y0, . . . , y(j+1)n} =

{z, f(z), . . . , fn−r(z) = x0, x1, . . . , xm}, and consequently the point w =

fn−r(u) ǫ-shadows the γ-pseudo-orbit {x0, . . . , xm} with exact hit, since

fm(w) = f (j+1)n(u) = y(j+1)n = xm.

5.2 Expansivity (II)

In our pursuit of properties which guarantee pseudo-orbit shadowing in con-

tinuous maps, we have isolated a type of expansivity which not only implies

the standard form of shadowing, as is shown in [18], but also implies the

stronger property of h-shadowing. However the expansive property is not

easy to verify in most cases, so we prove a series of implications between

this and other forms of expansivity, and link these to the various versions of

shadowing. What we present here is a theory which highlights properties of

maps which are easy to verify, are commonly observed, and which imply the

existence of and links between shadowing, in its various forms.

Definition 5.2.1 (Positively Expansive). The map f : X → X is said to be

positively expansive if there is a constant of expansivity b > 0 such that for

any x, y ∈ X the condition

d(fn(x), fn(y)) < b for every n ≥ 0
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implies that x = y.

Proposition 5.2.2 is from [8]; Proposition 5.2.3 is new.

Proposition 5.2.2. Suppose that f is a positively expansive map with shad-

owing, then f has h-shadowing.

Proof. Let 0 < ǫ < b and let δ > 0 be the constant as given in the definition

of shadowing for ǫ. Fix any δ-pseudo orbit {x0, x1, . . . , xm} and extend it

to the infinite δ-pseudo-orbit {x0, x1, . . . , xm, f(xm), f 2(xm), . . .} Let z be a

point which ǫ-shadows the above pseudo-orbit, then d(f j+m(z), f j(xm)) < b

for all j ≥ 0, which by positive expansivity implies that fm(z) = xm.

Proposition 5.2.3. On a compact interval I, suppose that the map f : I → I

is positively expansive. Then any infinite, nowhere dense, CINE set A ⊂ I

is weakly-expansive.

Proof. Suppose f : I → I is positively expansive with constant b, let A

be any infinite, nowhere dense, CINE subset of I and let x ∈ A have a

neighbourhood U . Choose y ∈ U with y 6= x, then there is a k ∈ N such that

|fk(x) − fk(y)| ≥ b, so certainly fk(U) has diameter at least b and hence A

is weakly-expansive.

Although the definition of weak expansivity refers to infinite, nowhere

dense, CINE sets, it is easy to see from the above proof that for a positively

expansive map on a compact interval I with expansive constant b, any subset

A ⊂ I has the property that for any a ∈ A and any neighbourhood U of a

there is some k ∈ N such that the diameter of fk(U) is greater than b.
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Recall from the definition of a full orbit, that for a surjective map we

may define a backward orbit of a point by choosing successive pre-images

of a point. Definition 5.2.4 weakens Definition 5.2.1 by making use of the

existence of full orbits for surjective maps. There are many similar expansive

definitions in the literature (see [2], [28], [37] for examples), so we use the

term c-expansive to distinguish from these.

Definition 5.2.4 (c-Expansive). The surjective map f : X → X is said to

be c-expansive if there is a constant of expansivity c > 0 such that for any

x, y ∈ X and any full orbits {fn(x)}n∈Z and {fn(y)}n∈Z through x and y

respectively the condition

d(fn(x), fn(y)) < c for every n ∈ Z

implies that x = y.

It is easy to see that c-expansivity is equivalent to saying that there is a

c > 0 such that for every x, y ∈ X such that x 6= y there is a k ∈ Z for which

d(fk(x), fk(y)) ≥ c. Thus any shift space X is c-expansive with constant

1/2, since for any two elements s, t ∈ X with s 6= t we have that for some

k ∈ N, d(σk(s), σk(t)) = 1 > 1/2.

Theorem 5.2.5 [8] is due to Oprocha:

Theorem 5.2.5. If f is c-expansive then the following conditions are equiv-

alent:

1. f has the shadowing property,

2. f has the s-limit shadowing property.
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Proof. We have to prove (1) =⇒ (2) since the converse implication is trivial.

Fix ǫ > 0 and assume that ǫ < b/2 where b is the expansive constant. Let

δ > 0 be a constant provided by the shadowing property for ǫ. Shadowing

implies that Definition 5.1.14 (1) holds. To prove 5.1.14 (2), let {xn}n∈N be

an asymptotic δ-pseudo-orbit that is ǫ-shadowed by the point z.

Suppose, for a contradiction, that d(fn(z), xn) does not converge to 0

as n → ∞. Since X is compact (so that every sequence has a convergent

subsequence), there are points p0 and q0 in X and an infinite subset N0 of N

such that

1. lim
n→∞,n∈N0

fn(z) = p0, and

2. lim
n→∞,n∈N0

xn = q0.

Let d(p0, q0) = η > 0. By continuity,

lim
n→∞,n∈N0

fn+k(z) = pk = fk(p0)

for all k ≥ 0. By continuity, the fact that {xn} is an asymptotic pseudo-orbit

and that

d
(

xn+1, f(q0)
)

≤ d
(

xn+1, f(xn)
)

+ d
(

f(xn), f(q0)
)

,

we have that

lim
n→∞,n∈N0

xn+1 = q1 = f(q0).

Hence limn→∞,n∈N0
xn+k = qk = fk(q0) for all k ≥ 0.
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Since X is compact, there is an infinite subset N−1 of N0 such that

lim
n→∞,n∈N−1

fn−1(z) = p−1 and lim
n→∞,n∈N−1

xn−1 = q−1,

for some p−1 and q−1 in X. Again, continuity and the fact that {xn} is an

asymptotic pseudo-orbit imply that f(p−1) = p0 and f(q−1) = q0. Repeating

this argument we can find a nested sequence of infinite sets {N−k}k∈N, and

sequences of points {p−i}i∈N and {q−i}i∈N, such that for all 0 < k ∈ N

1. 0 ≤ n − k for all n ∈ N−k,

2. lim
n→∞,n∈N−k

fn−k(z) = p−k and f(p−k) = p−k+1,

3. lim
n→∞,n∈N−k

xn−k = q−k and f(q−k) = q−k+1.

Thus the sequences {pk}k∈Z and {qk}k∈Z are the specific full orbits passing

through p0 and q0 respectively, which satisfy the above conditions. Moreover

d(pk, qk) ≤















supn∈N0
d
(

fn+k(z), xn+k

)

, if k ≥ 0,

supn∈Nk
d
(

fn+k(z), xn+k

)

, if k < 0.

Since ǫ < b/2 and z ǫ-shadows {xn}, d(pk, qk) < b/2 for all k ∈ Z. It follows

by c-expansivity that

0 = d(p0, q0) = lim
n→∞,n∈N0

d(fn(z), xn) = η > 0,

which is a contradiction, and the result follows.
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Definition 5.2.6 (Topologically Hyperbolic). The surjective map f : X →

X is said to be topologically hyperbolic if it is c-expansive and has the shad-

owing property.

Thus a topologically hyperbolic map automatically has s-limit shadowing

by Theorem 5.2.5.

Many authors refer to hyperbolic properties in the context of expanding

maps (see for example [11], [28], [37], [40]) but is not clear where the definition

of topologically hyperbolic originated. An important class of topologically

hyperbolic maps are the shifts of finite type (one or two-sided), which as

noted above have c-expansivity and have shadowing [52].

As we will see in Theorem 6.1.1 and Corollary 6.1.2, for topologically

hyperbolic maps ω-limit sets are completely characterized by internal chain

transitivity.

The term uniformly expanding is usually used to describe maps which

increase the distance between any pair of points by at least some amount

µ > 1 (see for example [2], [39]). We introduce four variations of this property

which will enable us to demonstrate the existence of shadowing properties

in various maps. The first three properties can be observed in many classes

of maps, the widely studied class of interval maps being one example. All

results in the remainder of this section are from [8].

Definition 5.2.7 (Uniformly Expanding). If there are δ > 0, µ > 1 such

that d(f(x), f(y)) ≥ µd(x, y) provided that x, y ∈ A ⊆ X and d(x, y) < δ

then we say that f is uniformly expanding on A.

It is a consequence that if f is uniformly expanding on A then for each
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x ∈ A there is an open set U ∋ x such that f↾U∩A is one-to-one. Furthermore

we have the following.

Lemma 5.2.8. If f is uniformly expanding on the invariant set Λ ⊆ X then

f is positively expansive on Λ.

Proof. Let δ > 0 and µ > 1 be as given in the definition of uniformly ex-

panding, and put b = δ/2. Pick x 6= y ∈ Λ and assume that d(x, y) < b (else

we are done). Then

d(f i(x), f i(y)) ≥ µd(f i−1(x), f i−1(y))

whenever d(f i−1(x), f i−1(y)) ≤ b. Then certainly there is a k ∈ N such that

d(fk−1(x), fk−1(y)) ≤ b < d(fk(x), fk(y)), which completes the proof.

Definition 5.2.9 (Strongly Uniformly Expanding). If there are δ > 0, µ > 1

such that d(f(x), f(y)) ≥ µd(x, y) provided that x ∈ A ⊆ X and d(x, y) < δ

then we say that f is strongly uniformly expanding on A.

We note that if f is strongly uniformly expanding on A, then it is trivially

uniformly expanding on A.

Definition 5.2.10 (Piecewise Expanding). For Λ ⊆ X closed, we say that f

is piecewise expanding on Λ if there exist µ > 1 and a finite number of open

sets U1, . . . , Un such that Λ ⊂ ⋃n
j=1 Uj and d(f(x), f(y)) ≥ µd(x, y) for every

x, y ∈ Uj , j = 1, . . . , n.

In the sequel, we will regularly use Λ to denote the closed set on which a

map is piecewise expanding.
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Remark 5.2.11. Notice that by normality, if f is piecewise expanding on Λ,

then there is an open set U ⊃ Λ whose closure is also contained in
⋃n

j=1 Uj .

Therefore f is piecewise expanding on the closure of U , for any such U .

Definition 5.2.12 (Open/Locally One-to-One Maps). For a subset A ⊆ X,

we say that f is open on A if for every x ∈ A and every neighbourhood U

of x, f(x) ∈ f(U)◦, and that f is locally one-to-one on A if for every x ∈ A

there is an open set U ∋ x such that f↾U is injective.

Definition 5.2.13 (Lebesgue Number). For any open cover U of a set A ⊂

X, the Lebesgue number of this cover is the constant δ such that for any

x ∈ A, the open δ-neighbourhood around x is contained in some member of

the cover.

Piecewise expanding is a stronger property than that of both uniformly

expanding and locally uniformly expanding, since it requires f to be ex-

pansive on an open cover of the set Λ, rather than just the set itself. The

following lemma demonstrates this fact.

Lemma 5.2.14. If f is piecewise expanding on the closed set Λ ⊆ X then f

is strongly uniformly expanding on Λ.

Proof. Let µ > 1 be the constant and U1, . . . , Un be the open cover of Λ

as given in the definition of piecewise expanding, and let η be the Lebesgue

number of this cover. Define δ = η/2. Then for every x ∈ Λ, y ∈ X,

if d(x, y) < δ we have that y ∈ Bη(x) and so there is some Ui for which

x, y ∈ Ui. Thus d(f(x), f(y)) ≥ µd(x, y) and we get that f is strongly

uniformly expanding on Λ.
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The similarities between Definitions 5.2.9 and 5.2.10 allow us to prove

many of the following results in “tandem”, considering first the case of a

strongly uniformly expanding map, and then that of a piecewise expanding

map. Much of the detail in these separate cases is very similar, but we include

full proofs for completeness.

The last of the four uniformly expanding properties is a derivation of a

property introduced implicitly in Coven et al [18], which they use to prove

shadowing, and from it we get a strengthening of this result. Note that our

property bears no resemblance to the property of locally expanding introduced

in [10].

Definition 5.2.15 (Locally Uniformly Expanding). For a subset Λ ⊆ X we

say that a continuous map f : X → X is locally uniformly expanding on Λ if

there is a µ > 1 and a ν > 0 such that for every x ∈ Λ and every ǫ < ν we

have that Bµǫ(f(x)) ⊆ f (Bǫ(x)).

Definition 5.2.15 depends on the structure of open neighbourhoods and

so there may be some difficulty to verify it in practice. As it happens, local

uniform expanding is a property of piecewise expanding maps which are open

on a specific set. To prove this we need the following lemma.

Lemma 5.2.16. Let Λ ⊆ X be closed and suppose that one of the following

hold:

(i) f is strongly uniformly expanding on Λ with respect to the constants

µ > 1 and δ > 0, and for x, q ∈ Λ and η > 0, we have that Bµη(f(x)) ⊂

f(U)◦ for some open set U , where x ∈ U ⊆ Bδ/2(q),

117



(ii) f is piecewise expanding on Λ with respect to the constant µ > 1 and

the open cover U1, . . . , Un of Λ, and for some i ≤ n, η > 0 we have that

Bµη(f(x)) ⊂ f(U)◦ for some open set U , where x ∈ U ⊆ Ui.

Then for any ρ < η,

Bµρ(f(x)) ⊆ f(Bρ(x)).

Proof. Denote V = U ∩ f−1
(

Bµρ(f(x))
)

and notice that f(V ) = Bµρ(f(x))

from our assumption. We consider the two cases from the assumptions of

the lemma independently.

(i): First note that V ⊂ Bδ/2(q). Suppose that V * Bρ(x). Then there

is y ∈ V \Bρ(x), so ρ ≤ d(x, y) < δ, thus d(f(x), f(y)) ≥ µρ and we get that

f(y) /∈ Bµρ(f(x)) which is impossible. Thus V ⊆ Bρ(x) and

f(V ) = Bµρ(f(x)) ⊆ f(Bρ(x)).

(ii): Suppose that V * Bρ(x). Then there is y ∈ V \Bρ(x), so d(x, y) ≥ ρ

and x, y ∈ U ⊂ Ui, thus d(f(x), f(y)) ≥ µρ and we get that f(y) 6∈ Bµρ(f(x))

which is impossible. Thus

f(V ) = Bµρ(f(x)) ⊆ f(Bρ(x)).

Lemma 5.2.17. Let Λ ⊆ X be closed.

(i) If f is strongly uniformly expanding and open on Λ then f is locally

uniformly expanding on Λ.
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(ii) If f is piecewise expanding on Λ and open on a neighbourhood Q of Λ

then f is locally uniformly expanding on a neighbourhood W ⊆ Q of Λ.

Proof. (i): Let µ > 1, δ > 0 be the constants from Definition 5.2.9 . Fix

x ∈ Λ and let U be an open neighbourhood of x such that U ⊆ Bδ/2(x).

There is an η = η(x) > 0 such that Bµη(f(x)) ⊂ f(U)◦ since f is open at x.

Fix any ρ < η, then by Lemma 5.2.16(i) we have that Bµρ(f(x)) ⊆ f(Bρ(x)).

Let U ′ = f−1
(

Bµη/2(f(x))
)

∩U . Then x ∈ U ′ and we can take ν = ν(x) <

η/2 so that Bν(x) ⊆ U ′.

Take any z ∈ Bν(x) and ǫ ≤ ν so that Bǫ(z) ⊆ Bν(x), then f(z) ∈

f(U ′) = Bµη/2(f(x)) and so

Bµǫ(f(z)) ⊆ Bµη(f(x)) ⊆ f(U)◦.

Since z ∈ U ⊆ Bδ/2(x), by Lemma 5.2.16(i) we get that Bµǫ(f(z)) ⊆

f(Bǫ(z)). In other words, for x ∈ Λ and z ∈ X we have that

Bǫ(z) ⊆ Bν(x)(x) ⇒ Bµǫ(f(z)) ⊆ f(Bǫ(z)). (5.9)

Λ is compact and ν(x) is well defined for every x ∈ Λ, so there are x1, . . . , xs

such that

Λ ⊆
s
⋃

i=1

Bν(xi)/2(xi).

Denote ξ = mini ν(xi)/2, fix any ǫ < ξ and any x ∈ Λ. There is i such

that x ∈ Bν(xi)/2(xi) and so Bǫ(x) ⊆ Bν(xi)(xi). Hence by (5.9), Bµǫ(f(x)) ⊆

f(Bǫ(x)).

(ii): Let µ > 1 be the constant and U1, . . . , Un be the open cover of Λ
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as given in Definition 5.2.10. Thus Q∩⋃i≤n Ui is an open neighbourhood of

Λ, and moreover there is a neighbourhood W ⊃ Λ such that f is piecewise

expanding on W ⊂
(

Q ∩⋃i≤n Ui

)

(see Remark 5.2.11). We will show that f

is locally uniformly expanding on W .

Fix x ∈ W and let U be an open neighbourhood of x such that U ⊆ Ui

for some i. There is an η = η(x) > 0 such that Bµη(f(x)) ⊂ f(U)◦ since

f is open at x. Fix any ρ < η, then by Lemma 5.2.16(ii) we have that

Bµρ(f(x)) ⊆ f(Bρ(x)).

Let U ′ = f−1
(

Bµη/2(f(x))
)

∩U . Then x ∈ U ′ and we can take ν = ν(x) <

η/2 so that Bν(x) ⊆ U ′.

Take any z ∈ Bν(x) and ǫ ≤ ν so that Bǫ(z) ⊆ Bν(x), then f(z) ∈

f(U ′) = Bµη/2(f(x)) and so

Bµǫ(f(z)) ⊆ Bµη(f(x)) ⊆ f(U◦).

Since z ∈ U ⊆ Ui, by Lemma 5.2.16(ii) we get that Bµǫ(f(z)) ⊆ f(Bǫ(z)).

In other words, for x ∈ W and z ∈ X we have that

Bǫ(z) ⊆ Bν(x)(x) ⇒ Bµǫ(f(z)) ⊆ f(Bǫ(z)). (5.10)

Note that W is compact and ν(x) is well defined for every x ∈ W , so there

are x1, . . . , xs such that

W ⊆
s
⋃

i=1

Bν(xi)/2(xi).

Denote ξ = mini ν(xi)/2, fix any ǫ < ξ and any x ∈ W . There is i such that
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x ∈ Bν(xi)/2(xi) and so Bǫ(x) ⊆ Bν(xi)(xi). Hence by (5.10), Bµǫ(f(x)) ⊆

f(Bǫ(x)).

When the map is locally one-to-one we can reverse the implication in

Lemma 5.2.17.

Lemma 5.2.18. Let Λ ⊆ X be closed.

(i) If f is locally uniformly expanding and locally one-to-one on Λ then f

is strongly uniformly expanding on Λ.

(ii) If f is locally uniformly expanding on a neighbourhood of Λ and locally

one-to-one on Λ then f is piecewise expanding on Λ.

Proof. Let µ, ν be as given in Definition 5.2.15. Certainly for every x ∈ Λ

there is a δ(x) such that f is one-to-one on Bδ(x)(x), and the collection of

such neighbourhoods cover Λ. Take β to be their Lebesgue number and let

δ = min{β, ν}, then f is one-to-one on Bδ(x) for every x ∈ Λ. We consider

the two cases independently.

(i): Let x ∈ Λ and suppose that d(x, y) = η < δ. Suppose also that

d(f(x), f(y)) < µd(x, y) = µη, then

f(y) ∈ Bµη(f(x)) ⊆ f(Bη(x))

since f is locally uniformly expanding at x, and η < ν. But y /∈ Bη(x), so

there is a z ∈ Bη(x) for which f(z) = f(y), contradicting the fact that f

is one-to-one on Bδ(x). Thus d(f(x), f(y)) ≥ µd(x, y) for every x ∈ Λ with

d(x, y) < δ, and hence f is strongly uniformly expanding on Λ.
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(ii): Let W be the neighbourhood of Λ on which f is locally uniformly

expanding. Now consider a cover of Λ consisting of δ/3-neighbourhoods

of points in Λ, take a finite sub-cover {Bδ/3(xi) : 1 ≤ i ≤ n}, and let

Ui = W ∩ Bδ/3(xi). Fix any i ≤ n and x, y ∈ Ui. Then η = d(x, y) < 2δ/3

and d(x, xi) < δ/3, d(y, xi) < δ/3, thus since y 6∈ Bη(x) and Bη(x) ⊆ Bδ(xi),

we get that f is one-to-one on Bη(x).

Suppose that d(f(x), f(y)) < µd(x, y) = µη. Then we have that

f(y) ∈ Bµη(f(x)) ⊆ f(Bη(x)),

since f is locally uniformly expanding at x, and η < ν. But y /∈ Bη(x), so

there is a z ∈ Bη(x) for which f(z) = f(y), contradicting the fact that f is

one-to-one on Bδ(x). Thus d(f(x), f(y)) ≥ µd(x, y) for every x, y ∈ Ui, for

any i, and hence f is piecewise expanding on Λ.

The assumption of Lemma 5.2.18 that f is locally one-to-one on Λ is

essential, as shown by the following example, which makes use of some specific

properties of the interval to find a map which is locally uniformly expanding

but neither locally one-to-one nor strongly uniformly or piecewise expanding.

Example 5.2.19. For each n ∈ N, let an = 1/2n and bn = 3/2n+2, so that

bn is the midpoint of the line segment [an+1, an].

Consider the continuous function f : [0, 1] → [0, 1], taking the value

f(0) = 0, whose graph (see Figure 5.1) is the piecewise linear curve pass-

ing consecutively through the points

(1, 1), (a1, 0), (b1, 1), (a2, 0), (b2, 1/2), (a3, 0), . . . , (an, 0), (bn, 1/2n−1), . . .
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Note that the gradient on the interval (an+1, bn) is 8 and on (bn, an) is −8.

Let µ = 4/3, ν = 1/4 and let Λ = {0} ∪ {an : n = 1, 2, 3, . . .}. For any

0 < ǫ < 1/4, the interval [0, ǫ) is an open neighbourhood of points Λ and

there is n ∈ N such that an+1 < ǫ ≤ an.

We show will show that f is locally uniformly expanding on Λ. However

f↾U is not one-to-one for any open neighbourhood U of zero, and f is clearly

not uniformly or piecewise expanding on Λ.

First, we claim that

Bµǫ(f(0)) ⊆ f
(

Bǫ(0)
)

.

Case 1: 3/2n+2 = bn < ǫ ≤ an. Then [1/2n+1, 3/2n+2] ⊆ [0, ǫ) ⊆ B1/2n(0)

so that

f
(

Bǫ(0)
)

⊇ f
(

[0, 3/2n+2]
)

⊇ [0, 4/2n+1] ⊇ Bµ/2n(0) ⊇ Bµǫ(0).

Case 2: an+1 < ǫ ≤ bn. Then [3/2n+3, 1/2n+1] ⊆ [0, ǫ) ⊆ [0, 3/2n+2) so

f
(

Bǫ(0)
)

⊇ f
(

[0, 3/2n+3]
)

= [0, 4/2n+2] ⊇ B2µ/2n+2(0) ⊇ Bµǫ(0).

The proof of the claim is finished. Now fix any an ∈ Λ \ {0} and consider

Bǫ(an) = (an − ǫ, an + ǫ). If bn+1 /∈ Bǫ(an), then Bǫ(an) ⊆ (bn+1, bn−1)

and f
(

Bǫ(an

))

= [0, 8ǫ) ⊇ Bµǫ(f(an)). If bn+1 ∈ (an − ǫ, an + ǫ), then

f
(

Bǫ(an)
)

= f
(

[0, an + ǫ)
)

. The argument now follows by the argument at

0, since

Bµǫ(f(an)) = Bµǫ(0) ⊂ f(Bǫ(0)) ⊂ f(Bǫ+an
(0)) = f([0, ǫ + an)).
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Figure 5.1: The graph of the function f from Example 5.2.19

The following results illustrate the similarities and differences between

piecewise or strongly uniformly expanding maps and locally uniformly ex-

panding maps.

Corollary 5.2.20. Let Λ ⊆ X closed and suppose that f : X → X is open

and locally one-to-one on Λ. Then f is strongly uniformly expanding on Λ if

and only if f is locally uniformly expanding on Λ.

Proof. Follows directly from Lemmas 5.2.17 and 5.2.18.

Theorem 5.2.21. Let Λ ⊆ X closed, then the following conditions are equiv-

alent:

(i) f is piecewise expanding on Λ and open on an open neighborhood Q of

Λ.
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(ii) f locally one-to-one on Λ and locally uniformly expanding on an open

neighborhood W of Λ.

Proof. To prove the first implication, suppose that f is piecewise expanding

on Λ and open on Q. Let µ be the constant and U1, . . . , Un be the open

cover given in Definition 5.2.10, then by Lemma 5.2.17(ii) we get that f

is locally uniformly expanding on W , where W ⊂ Q ∩ ⋃i Ui and W is an

open neighborhood of Λ. To see that f is locally one-to-one on W , let δ be

the Lebesgue number for the open cover U1, . . . , Un of W . Fix x ∈ W and

y, z ∈ Bδ(x), then y, z ∈ Ui for some i, and so d(f(y), f(z)) ≥ µd(y, z). Thus

f(z) 6= f(y) for any y, z ∈ Bδ(x), so f is locally one-to-one on W .

Now suppose that f is locally uniformly expanding on W and locally

one-to-one on Λ, and let µ, ν be as given in Definition 5.2.15. By Lemma

5.2.18 we get that f is piecewise expanding on Λ. To see that f is open on

W , take any x ∈ W and any 0 < ǫ < ν, then Bµǫ(f(x)) ⊆ f(Bǫ(x)), which

implies that f(x) ∈ f(Bǫ(x))◦. It is enough to put Q = W and the proof is

finished.

Finally we present a result which is a strengthening of a result from [18],

and relates expansivity to shadowing in a direct sense.

Theorem 5.2.22. For Λ ⊆ X, if f : X → X is locally uniformly expanding

on Λ then f has h-shadowing on Λ.

Proof. Let ǫ > 0, let µ, ν be as given in Definition 5.2.15, let ǫ′ = min{ǫ, ν}

and let δ = (µ − 1)ǫ′. Then for every x ∈ Λ

Bǫ′+δ(f(x)) ⊆ Bµǫ′(f(x)) ⊂ f (Bǫ′(x)) . (5.11)
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Suppose that {x0, . . . , xm} ⊂ Λ is a δ-pseudo-orbit. Notice that by (5.11) we

have Bǫ′+δ(f(xi)) ⊂ f (Bǫ′(xi)) for i = 0, 1, . . . , m − 1, so

Bǫ′(xi+1) ⊆ f (Bǫ′(xi)) for i = 0, 1, . . . , m − 1. (5.12)

Let J0 = Bǫ′(x0) and then define inductively Ji = f−i
(

Bǫ′(xi)
)

∩ Ji−1.

Clearly the Ji are nested, and by (5.12) we can prove by induction that

f i(Ji) = Bǫ′(xi), since

Bǫ′(xi) ⊃ f i(Ji) ⊃ Bǫ′(xi) ∩ f i(Ji−1) ⊃ Bǫ′(xi) ∩ f(Bǫ′(xi−1))

⊃ Bǫ′(xi) ∩ Bǫ′(xi) = Bǫ′(xi).

In particular, f i(Jm) ⊂ Bǫ′(xi), for i = 0, 1, . . . , m and fm(Jm) = Bǫ′(xm),

thus there is a point y ∈ Jm such that f i(y) ∈ Bǫ′(xi) and for which fm(y) =

xm.

Figure 5.2 shows what we call the “family tree” of implications between

shadowing and expansivity, illustrating how all the various properties of shad-

owing and expansivity relate to one another. Arrows represent an implication

between two properties, with any extra conditions in parentheses where re-

quired.

126



Figure 5.2: The “family tree”, relating the various types of expansivity and shad-
owing.
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Chapter 6

ω-Limit Sets in Various Spaces

In Chapter 4 we proved our first main result linking internal chain transi-

tivity (ICT) to ω-limit sets (Theorem 4.4.8). This seems a natural charac-

terization, particularly in view of Theorem 4.1.9, and we pursue this link

throughout this chapter, proving many results showing when this character-

ization applies. We also introduce another dynamical property which seems

more closely linked to ω-limit sets (Definition 6.1.4), which is based upon a

similar property introduced by Balibrea and La Paz in [4].

The material in this chapter draws upon that in the previous chapter,

often relying upon a form of pseudo-orbit shadowing to attain the required

characterization. Some of the material is again the result of collaboration

with Good, Oprocha and Raines [8], and as before, where a result is due to

collaboration or another author we will indicate this clearly.
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6.1 ω-Limit Sets of Maps on Compact Metric

Spaces

We begin this section with a result that uses a version of shadowing to show

when ω-limit sets are characterized by ICT. This result, from [8], is the

first in a sequence of results which provide different conditions for when this

characterization applies.

Theorem 6.1.1. Let (X, f) be a dynamical system. If f has limit shadowing

on a closed set Λ ⊆ X, then for any closed subset A ⊂ Λ the following

conditions are equivalent:

1. A has weak incompressibility,

2. A is ICT,

3. there is a point xA ∈ X such that A = ω(xA, f).

In particular, if f has limit shadowing then properties (1–3) are equivalent

properties of any closed invariant subset of X.

Proof. If A is an ω-limit set then it necessarily has weak incompressibility

as was shown in [44]. This gives (3) =⇒ (1). By Theorem 3.2.11 we have

(1) ⇐⇒ (2). The last implication (2) =⇒ (3) follows by the fact that every

closed ICT set A is the ω-limit set of an asymptotic pseudo-orbit {xn}n∈N

by Lemma 3.2.9, thus there is a point xA ∈ X whose orbits asymptotically

shadows {xn}n∈N, giving A = ω(xA, f).

In light of Lemma 5.1.15 and Theorem 5.2.5 we get the following corollary

[8] from Theorem 6.1.1.

129



Corollary 6.1.2. Let (X, f) be a dynamical system, f : X → X be surjective

and Λ ⊆ X be closed. If f is topologically hyperbolic, then the following

conditions are equivalent on any closed subset A ⊂ Λ:

1. A has weak incompressibility,

2. A is ICT,

3. there is a point xA ∈ X such that A = ω(xA, f).

Example 6.1.3. In Remark 4.4.9 we give an example of a set which is ICT

and CINE but which is not an ω-limit set. Thus the condition of topological

hyperbolicity cannot be dropped from Corollary 6.1.2.

We also note that the implied condition of shadowing cannot be dropped

on its own. As a specific example, in [7] we give an example of a subset A

of a sofic shift S which is CINE and ICT but not an ω-limit set of any point

in S (although it will be the ω-limit set of some point in the full shift by

Theorem 4.1.9). We will show that the shift map σ : S → S is c-expansive

but not shadowing on S.

The sofic shift in question is generated by the graph G with vertices a

and b with directed edges [a, a] labelled 0, [a, a] labelled 1, [a, b] labelled 2

and [b, b] labelled 0 (see Figure 6.1).

So sequences in the space S are all those which can be formed by following

bi-infinite paths around the graph G. For example a sequence can have any

combination of 1’s and 0’s, but once it has a 2 it must then be followed by an

infinite string of ‘0’s. The metric d and shift map σ are as defined in Section

4.1. S is a compact metric space and σ is continuous on S, so this example

is relevant to the discussion (see [30]).

130



b b
a b2

0

1

0

Figure 6.1: The sofic space S is generated by the graph G.

The set A is given as all forward and backward shifts of the points 0 =

(0−∞.0∞), 1 = (1−∞.1∞), s = (0−∞.1∞), t = (1−∞.20∞), where the decimal

point lies to the immediate left of the 0th element. A is CINE since 0 and 1

are fixed, shifts of s tend towards 1 and shifts of t tend towards 0. Moreover

A is ICT since for any n ∈ N there are forward shifts of s and t which agree

with central segments of 1 and 0 of length n respectively, and backward

shifts of s and t which agree with central segments of 0 and 1 of length n

respectively, so there is a 1/2n-pseudo-orbit joining any two points of A.

To see that σ is c-expansive, notice that for any two distinct sequences in

the shift space there will be a point where the two sequences have different

symbols, thus if we shift to this point these two shifted sequences will be a

distance 1 apart, thus σ is c-expansive with constant 1. To see that σ does not

have the shadowing property on S, consider a pseudo-orbit which contains

at least two instances of the sequence t. No such orbit can be ǫ-shadowed
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by a real orbit for any 0 < ǫ < 1, since such an orbit would be a sequence

containing more than one central segment of t i.e more than one occurrence

of a 2, which can’t happen for any sequence in S. This is related to the

reason why A cannot be the ω-limit set of any point in S; any such point

must contain arbitrarily long central segments of t infinitely often, which as

mentioned above cannot be the case.

�

In [4], Balibrea and La Paz define a property set property for interval

maps which seems closely linked to shadowing, but better approximates the

dynamics of maps on their ω-limit sets. To this end we define the following,

more general set property for maps on compact metric spaces which has

similarities to that in [4].

Definition 6.1.4 (Dynamically Indecomposable). For a dynamical system

(X, f), we say that a set Λ ⊆ X is dynamically indecomposable if for every

ǫ > 0, every pair of points x, y ∈ Λ and every pair of open sets U, V such

that x ∈ U and y ∈ V there is m > 0 and a sequence of regularly closed sets

J0, J1, . . . , Jm (see Definition 1.1.3) for which

1. x ∈ (J0)
◦, J0 ⊆ U ,

2. Ji+1 ⊆ f(Ji) for i = 0, 1, . . . , m − 1,

3. Ji ⊆ Bǫ(Λ) for i = 0, 1, . . . , m,

4. y ∈ (Jm)◦, Jm ⊆ V .
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Next we present Theorem 6.1.5 and Theorem 6.1.6 (the latter being sim-

ilar to a result in [4]). The two results, together with Theorem 6.1.7, relate

dynamical indecomposability to shadowing and ω-limit sets. They appear in

[8] but are due primarily to this author.

Theorem 6.1.5. Let (X, f) be a dynamical system. If Λ ⊆ X is ICT, f has

h-shadowing on Λ and is open on a neighbourhood of Λ, then Λ is dynamically

indecomposable.

Proof. Let ǫ > 0, pick x, y ∈ Λ and let U and V be open with x ∈ U and

y ∈ V . Certainly there is an η > 0 for which Bη(x) ⊆ U and Bη(y) ⊆ V .

There is also ξ such that f is open on Bξ(Λ). Let ǫ′ = min{η, ǫ, ξ/2}. Let δ

be provided for ǫ′/2 by h-shadowing. By the assumptions Λ is ICT, so there

is a δ-pseudo-orbit {x0 = x, x1, . . . , xm = y} ⊂ Λ. Thus there is a z ∈ X for

which d(f i(z), xi) < ǫ′/2 and fm(z) = xm = y.

So let J0 = Bǫ′/2(x0) and for i = 0, 1, . . . , m − 1, let

Ji+1 = f(Ji) ∩ Bǫ′/2(xi+1).

The Ji are regularly closed by the openness and continuity of f . We claim

that

• x ∈ (J0)
◦, J0 ⊆ U ;

• Ji+1 ⊆ f(Ji) for i = 0, 1, . . . , m − 1;

• Ji ⊆ Bǫ(Λ) for i = 0, 1, . . . , m;

• y ∈ (Jm)◦, Jm ⊆ V .
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Since f is open at f i(z) ∈ Bξ(Λ), f i(z) ∈ (Ji)
◦ 6= ∅, and the first three

statements hold immediately. Furthermore, there is 0 < r < ǫ′/2 such that

f((Ji)
◦) ⊃ Br(f

i+1(z))

and in particular,

y = fm(z) ∈ f((Jm−1)
◦) ∩ Br(xm) ⊂ (Jm)◦.

This proves that the claim holds, and as an immediate consequence we see

that Λ is dynamically indecomposable.

Theorem 6.1.6. Let (X, f) be a dynamical system, and suppose that Λ ⊆ X

is a closed set which is dynamically indecomposable. Then Λ = ω(xΛ, f) for

some xΛ ∈ X.

Proof. Since Λ is compact, there is a sequence of points {zn : n ∈ N} in

Λ such that Λ = {zn}n∈N. Enumerate the collection {B1/p(zn) : n, p ∈ N}

as {Bk : k ∈ N}, then for every k there is an nk ∈ N such that znk
∈ Bk.

We define a sequence of natural numbers {mn : n ∈ N} and a sequence of

regularly closed sets {Jk : k ∈ N} as follows.

1. For m1 = 1, let Jm1
be the closure of any basic open subset of B1 such

that zn1
∈ (Jm1

)◦

2. Given Jmi
such that zni

∈ (Jmi
)◦ consider the point zni+1

∈ Bi+1.

Since Λ is dynamically indecomposable, we can define basic open sets

I0
mi

and {Ij : mi + 1 ≤ j ≤ mi+1} whose closures J0
mi

and {Jj :
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mi + 1 ≤ j ≤ mi+1} respectively are contained in B1/i(Λ), and for

which zni
∈ (J0

mi
)◦ ⊆ (Jmi

)◦, Jmi+1 ⊆ f(J0
mi

), Jj+1 ⊆ f(Jj) for j =

mi + 1, . . . , mi+1 − 1, and zni+1
∈ (Jmi+1

)◦ ⊆ Bi+1.

By the construction of the Jk’s, for every k ∈ N there is a closed set D ⊆

Jk−1 such that f(D) = Jk. Hence, for every k ∈ N there is a closed set

J (k) ⊆ J0 such that fk(J (k)) = Jk. The J (k) are nested, so by compactness

K =
⋂

k∈N
J (k) 6= ∅.

For xΛ ∈ K, f i(xΛ) ∈ Ji for every i ∈ N, so certainly Λ ⊂ ω(xΛ, f).

Suppose that z ∈ X \Λ, then there are disjoint open sets U and V for which

z ∈ U and Λ ⊆ V . Since
⋃{Jj : mi ≤ j ≤ mi+1} ⊆ B1/i(Λ) there is an

N ∈ N for which fn(xΛ) ∈ V for every n ≥ N , hence z /∈ ω(xΛ, f). Thus

Λ = ω(xΛ, f).

Thus using dynamical indecomposability, we can make a link between

internally chain transitive sets and ω-limit sets for maps which are strongly

uniformly expanding (and thus also h-shadowing) on the given set. This is

made precise in Theorem 6.1.7.

Theorem 6.1.7. Let (X, f) be a dynamical system. If f is strongly uniformly

expanding on the closed set Λ and open on a neighbourhood of Λ ⊆ X then

for any subset A ⊂ Λ the following are equivalent:

1. A has weak incompressibility;

2. A is ICT;

3. A = ω(xA, f) for some xA ∈ X.
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Proof. By the same arguments as in the proof of Theorem 6.1.1 it suffices to

prove (2) =⇒ (3). By the fact that f is strongly uniformly expanding on A

and open on a neighbourhood of A, Lemma 5.2.17 implies that f is locally

uniformly expanding on A. This in turn gives us that f has h-shadowing

on A by Theorem 5.2.22. Then A = ω(xA, f) for some xA ∈ X follows by

Theorems 6.1.5 and 6.1.6.

Since strongly uniformly expanding is a weaker property than both piece-

wise uniformly expanding and locally uniformly expanding, we see that The-

orem 6.1.7 applies to a number of maps on various spaces. One example is

the class of piecewise linear interval maps, including tent maps, which are

among the maps explored in the next section.

6.2 ω-Limit Sets of Interval Maps

We begin this section by analyzing piecewise expanding maps on a compact

interval I. The structure of the interval allows us to make certain useful

observations about such maps, which will be useful in proving some of the

results which follow.

There is a large class of piecewise expanding interval maps, namely the

class of piecewise linear maps, where each interval of linearity has gradient

greater than 1. If f is such a map and Λ is a closed set which contains no

local extremum, then it is easy to see that f is piecewise expanding on Λ.

Remark 6.2.1. Notice that a continuous interval map f : I → I cannot be

piecewise expanding on any set Λ ⊆ I which contains a local extremum, since
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there must be infinitely many pairs of points on either side of the extremum

which map to the same point. Furthermore, such a map is trivially open

on any set Λ which does not contain any of the local extrema. Thus if an

interval map f : I → I is piecewise expanding on the closed set Λ ⊆ I, it is

also open on a neighbourhood of Λ.

Proposition 6.2.2 and Theorem 6.2.3 are both in [8] but are again due to

this author.

Proposition 6.2.2. If f : I → I is a map which is piecewise expanding on a

closed set Λ, then there is an open set U ⊃ Λ such that f is locally uniformly

expanding on U .

Proof. Remark 6.2.1 gives us that f is open on a neighbourhood of Λ,

and by Lemma 5.2.17 we have that f is locally uniformly expanding on

a neighbourhood V of Λ. Then by normality there is a set U such that

Λ ⊆ U ⊂ U ⊆ V .

The next result gives us a test for when ω-limit sets of interval maps are

characterized by ICT. The result is similar to that of Theorem 6.1.7, but

we use different results to prove it, thus demonstrating the robustness of the

theory.

Theorem 6.2.3. Suppose that Λ ⊆ I is closed and the continuous map

f : I → I is piecewise expanding on Λ. Then for any closed subset A ⊂ Λ

the following are equivalent:

1. A has weak incompressibility;

2. A is ICT;
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3. A = ω(xA, f) for some xA ∈ I.

Proof. As previously, we only have to prove (2) =⇒ (3). By Proposition

6.2.2, there is an open set U ⊃ A such that f is locally uniformly expanding

on U , and by Theorem 5.2.22, f has h-shadowing on U , indeed on U itself.

Furthermore, by Proposition 3.2.5 A is invariant. Thus by Corollary 5.1.17

f has limit shadowing on A, and finally by Theorem 6.1.1 we obtain that

A = ω(xA, f) for some xA ∈ I.

Theorem 6.2.3 also has similarities to Theorem 4.4.8, and taking these

two results together it would be reasonable to conjecture that a locally pre-

critical interval map has some shadowing or expansive properties on a set

which contains no critical points. However as we have already mentioned,

a map which is locally pre-critical need not be uniformly expanding, even

on a set which contains none of the critical points (Corollary 4.3.7), nor can

we prove whether such a map has any form of shadowing. These remain

unanswered questions.

Throughout this chapter (and previous chapters) we have proved cases of

when an internally chain transitive set is an ω-limit set. We have seen that

there is a direct link in the case of shifts of finite type (Theorem 4.1.9), but

when we move to general compact metric spaces we need to place further re-

strictions on the behaviour of the map on the set in question (Theorems 6.1.1,

6.1.7 and Corollary 6.1.2), of which the interval is a specific case (Theorems

4.4.8 and 6.2.3).

However, there are cases of interval maps where these extra conditions

are satisfied trivially, meaning that the characterization of ω-limit sets by
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ICT applies for the whole space; Corollary 6.2.5 [8] is such a case.

Theorem 6.2.4. The full tent map f2 : [0, 1] → [0, 1] has h-shadowing.

Proof. Follows trivially from Theorem 5.2.22, since the full tent map is locally

uniformly expanding (on the whole interval).

Corollary 6.2.5. For the full tent map f2 : [0, 1] → [0, 1] and any closed

subset A ⊂ [0, 1], the following are equivalent:

1. A has weak incompressibility;

2. A is ICT;

3. A = ω(xA, f2) for some xA ∈ [0, 1].

Proof. To show that (2) =⇒ (3), notice that by surjectivity, f2 is open on any

neighbourhood of A, so by Theorem 6.1.5 A is dynamically indecomposable.

Furthermore A is closed, so by Theorem 6.1.6 there is some xA ∈ [0, 1] for

which A = ω(xA, f2). The other implications are dealt with as in Theorem

6.1.1.

Remark 6.2.6. Coven, Kan and Yorke show in [18] that in the family of tent

maps {fs}, fs has shadowing precisely when the critical point c is recurrent

and obeys certain parity rules with respect to its orbit (a result which is

extended to a larger class of piecewise linear maps in [16]). Although the full

tent map f2 has h-shadowing, this is not true for other tent maps, regardless

of the behaviour of the critical point. The reason for this is that the standard

form of the tent map fs is not surjective for 1 < s < 2, so for any 0 < δ ≤

1 − fs(c) the point fs(c) + δ has no pre-image but can be the final point in

a δ-pseudo-orbit, hence the map cannot have h-shadowing.
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By Theorem 4.4.8, we see that for a tent map fs with critical point c,

an ICT subset of the interval is an ω-limit set provided it does not contain

fs(c). To provide proof that this is not a redundant condition, even in tent

maps, in a forthcoming paper we will give an example of a tent map f which

has an ICT set containing f(c) which is not an ω-limit set.

Example 6.2.7. In this example we use the kneading theory to identify an

ICT set for a tent map f , containing f(c), which does not have the shadowing

property, yet which is an ω-limit set. We define the symbolic dynamics for

the family of tent maps {fs} with slope s and critical point c as in Example

4.4.3.

Let W be the word 100, and consider the symbolic sequence

K = W1n1W1n2W1n3..., where {ni} is an increasing sequence of positive,

odd integers; then by [17, Lemma III.1.6], K is the kneading sequence of

some tent map f . Consider the set Λ′ defined as follows:

Λ′ = {σj(1kK), σj(1kW1∞) : j, k ∈ N}.

It can be shown that Λ′ is a set of limit-itineraries of points in a set Λ ⊂ [0, 1].

Indeed 1∞ is the itinerary of the unstable fixed point, sequences of the form

1kW1∞ are itineraries of pre-images of the fixed point along a certain pre-

image branch, and sequences of the form 1kK are limit itineraries of pre-

images of c which come from the fixed point. It is not hard to show that

Λ′ is closed and ICT (see Section 4). By [6, Theorem 5.4] we also see that
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Λ = ω(z), where z is the point with itinerary

It(z) = W1k1W1n1W1k2W1n1W1n2W1k3W1n1W1n2W1n3...,

and where for each j ∈ N, kj > nj is an odd integer.

However, since K is not recurrent we get that c is not recurrent and so f

does not have the shadowing property by [18, Theorem 4.2].

�

We end this chapter by noting that whilst we have proved many cases

where ICT is equivalent to being an ω-limit set, it is still far from clear

exactly what other conditions we need to place upon a set to ensure this is

the case in general. This question remains open.
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Chapter 7

Concluding Remarks

7.1 Internal Chain Transitivity

Whilst there are many dynamical properties which can be observed in ω-limit

sets, many of which we have investigated here, it seems that the most useful is

that of internal chain transitivity (ICT). We have seen that in terms of shifts

of finite type, ICT gives us a full description of maps on their ω-limit sets

(Chapter 4). Furthermore we have found that the same is true of a certain

class of interval maps, when we restrict our attention to sets which contain no

pre-critical points (Chapters 4 and 6). Whilst we acknowledge that ICT gives

us a picture of the behaviour of maps on their ω-limit sets which is far from

complete, and that there exist other characterizations in the literature, we

believe that characterizations in terms of ICT are helpful since they allow us

to make comparisons about the behaviour of different maps with respect to

a single property. For instance, the fact that ω-limit sets are fully described

in terms of ICT for shifts of finite type but not interval maps, or even other
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shift maps such as sofic shifts (Chapter 5), indicate a fundamental structural

difference in these spaces, and this may help us to isolate further properties

which will provide a more general characterization. Furthermore, ICT has

many applications in the applied sciences, such as computer science (as was

hinted at in Chapter 5) and the biological sciences [15], [26], [53], and is

a topic of research in its own right [8], [26], [38]. Thus we feel that a full

characterization of ω-limit sets which incorporates this property would be

useful and instructive, and we will pursue such a description in future work.

7.2 Shadowing

In pursuing an understanding of how and when ICT, which describes the

dynamics on a set in terms of pseudo-orbits, characterizes ω-limit sets, it

was necessary that we concentrate our focus on maps which have a element

of pseudo-orbit shadowing (Chapters 5 and 6), at least on their ω-limit sets

(which are intrinsically ICT). This is somewhat misleading, as it is clear from

Example 6.2.7, that maps are not generally shadowing on their ω-limit sets.

However, it would seem to be implied by the various results throughout this

(and other) work that shadowing of some form is likely to be required in any

general description of ω-limit sets in terms of ICT.

7.3 The Criticality of Critical Points

In Chapter 4, to extract a characterization of ω-limit sets based on the prop-

erty of internal chain transitivity (ICT), we rely heavily upon the fact that
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the itinerary map is continuous at points whose orbits do not contain critical

points, and focus on ω-limit sets containing only such points. We note that

far from being vacuous, this case contains an uncountable number of exam-

ples, and also provides an example of when the set of itineraries of a subset

of the interval is a shift space. Then in Chapter 6 we note that for certain

expanding maps with shadowing, a closed, invariant, ICT set is always an

ω-limit set, and the existence of shadowing for interval maps depends upon

the behaviour of the critical points of the map. Moreover we prove that lo-

cally pre-critical maps are h-shadowing on a closed, invariant, non-empty set

provided the set contains no image of a critical point. Thus we see that in

each approach we have taken, the existence (or otherwise) of critical points

in the object set, together with the behaviour of the map with regards to its

critical points, is crucial to obtaining the result we require.

Geometrically speaking, for a set to be the ω-limit set of a point x we must

have that the orbit of x meets arbitrarily small neighbourhoods of each point

in the set infinitely often. If we consider the tent map as an example, we see

that for the image of the critical point (call this f(c)), this can only occur

from below, since no points get mapped above f(c). Eliminating critical

points from the set avoids this problem, but to include them (and thus all

iterates thereof) we must give special consideration to how the map behaves

on a set containing their images to ensure that it is an ω-limit set.

Several authors have addressed this problem (see for example [1], [4], [9],

[10]), and we note that the solutions they provide are far from trivial, but the

full analysis of their results is outside the scope of this work. In forthcoming

research we will attempt to tackle the issue of ICT, ω-limit sets and critical
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points by refining our analytic methods further, particularly that of symbolic

dynamics as is described below.

7.4 Symbolic Dynamics

A large proportion of the new material in this work uses symbolic dynamics

constructively in proving results about ω-limit sets (Chapter 4). We have

refined existing material in this area, proving results which make this form

of analysis possible, and in so doing we obtain certain results which we are

yet to fully explain using more conventional methods (Chapters 5 and 6).

A key difficulty in using symbolic analysis is that we have relied upon the

continuity of the itinerary map away from pre-critical points, which imme-

diately limits our scope to sets which don’t contain pre-critical points. We

believe, however, that there is scope for using symbolic dynamics to prove

more general results, and to avoid such restrictions in the future we will de-

fine a new topology on the shift space, with regards to which the itinerary

map is continuous at every point. Thus topological properties of subsets of

the interval, such as weak incompressibility (see Chapter 2), will be evident

in their images under the itinerary map, and we can use the structure of

the shift space to our advantage (as in Theorem 4.4.8). The situation is still

far from simple however, as the new topology (unlike the Tychonoff product

of the discreet topology used in Chapter 4) does not admit a metric. This

is work in progress which we hope will result in a greater understanding of

ω-limit sets of interval maps.
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Appendices

A: Redundancy of Sensitive Dependence in

Devaney’s Definition of Chaos

In [5], Banks et al prove that for maps on metric spaces SDIC is redundant in

the definition of chaos, implied by transitivity and density of periodic points.

Furthermore in [51] it is shown that for maps of the interval, transitivity

implies both a dense set of periodic points and SDIC. Here we prove the first

of the two results.

Theorem. For a metric space (X, d), if a continuous map f : X → X is

topologically transitive, with the set of periodic points for f dense in X, then

f has sensitive dependence on initial conditions (and is thus chaotic).

Proof. Suppose that f : X → X is topologically transitive and its periodic

points are dense in X. Notice that for any periodic points q and r with

disjoint orbits θ(q) and θ(r), there is a minimum distance δ0 between the two

orbits, since each has a finite number of points. Thus for every x ∈ X, x is a

distance at least δ0/2 away from either θ(q) or θ(r). We will show that f has

sensitive dependence to initial conditions with sensitivity constant δ := δ0/8.
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So pick any x ∈ X, and let N be any open neighbourhood of x. Define

U := N ∩ Bδ(x)

Since the periodic points are dense, there is a periodic point p ∈ U ; of period

n say. i.e. fn(p) = p but fk(p) 6= p for any k < n. By the initial observation

(and without loss of generality), let θ(q) be the orbit which is a distance at

least δ0/2 = 4δ from x.

Define

V :=
n
⋂

i=0

f−i
[

Bδ

(

f i(q)
)]

So V is the set of all points mapped under f i to within δ of f i(q) for every

0 ≤ i ≤ n. V is a finite intersection of open sets, so is open, and since f is

continuous V is an open neighbourhood of q. f is topologically transitive, so

there is a y ∈ U such that for some k ≥ 0, fk(y) ∈ V .

Let j equal the integer part of k/n+1. Thus k/n+1 ≥ j, so nj − k ≤ n.

Also, j > k/n so nj − k > 0 and we can conclude that nj − k ≥ 1. Putting

this together we get that 1 ≤ nj − k ≤ n.

Now

fnj(y) = fnj−k
(

fk(y)
)

∈ fnj−k(V ) ⊆ Bδ

(

fnj−k(q)
)

by definition of V . We know that fnj(p) = p, and by the triangle inequality

we also have

d
(

x, fnj−k(q)
)

≤ d(x, p) + d
(

p, fnj−k(q)
)

≤ d(x, p) + d
(

p, fnj(y)
)

+ d
(

fnj(y), fnj−k(q)
)
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So

d
(

p, fnj(y)
)

≥ d
(

x, fnj−k(q)
)

− d
(

fnj(y), fnj−k(q)
)

− d(x, p)

> 4δ − δ − δ

since fnj−k(q) ∈ θ(q), fnj(y) ∈ Bδ

(

fnj−k(q)
)

and p ∈ Bδ(x) as noted above.

So

d
(

p, fnj(y)
)

= d
(

fnj(p), fnj(y)
)

> 2δ

But

d
(

fnj(p), fnj(x)
)

+ d
(

fnj(x), fnj(y)
)

≥ d
(

fnj(p), fnj(y)
)

> 2δ

so either d
(

fnj(p), fnj(x)
)

> δ or d
(

fnj(x), fnj(y)
)

> δ. And since both p

and y are in N , we have found an element of N which is eventually mapped

a distance at least δ away from x, so we are done.

B: Partial Orders

A set P is a partially ordered set (with partial order ≤) if for all x, y, z ∈ P

we have the following properties:

1. x ≤ x;

2. If x ≤ y and y ≤ z then x ≤ z;

3. If x ≤ y and y ≤ x then x = y.

A set P is a totally ordered set, or chain (with total order ≤) if it is a partially

ordered set and furthermore for every x, y ∈ P we have that either x ≤ y
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or y ≤ x. For example, if we define a partial order � on a set X by saying

that for subsets U, V ⊂ X, U � V if U ⊆ V , the collection of subsets of X is

partially ordered under this rule. Moreover, a collection of nested sets forms

a chain.

We also state a theorem by Hausdorff about partially ordered sets, which

can be found in the Appendices of [43] for example.

Theorem (Hausdorff’s Maximal Principle). Every partially ordered set con-

tains a maximal chain.

We note here that Hausdorff’s Maximality Principle is equivalent to the

Axiom of Choice, which states that for any collection X of non-empty sets, we

can define a function f on X such that for each C ∈ X, f(C) is a well-defined

element of C.
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[45] O. M. Šarkovs′kĭı. Continuous mapping on the limit points of an itera-

tion sequence. Ukrain. Mat. Ž., 18(5):127–130, 1966.
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Dynamical System, 7
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Forward orbit, 8

Full orbit, 8

Full shift, 51

h-shadowing, 93

Homterval, 71
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Itinerary, 60

Lebesgue number, 116

Limit itinerary, 64

157



Limit shadowing, 99

Locally eventually onto (map), 9

Locally one-to-one, 116

Locally pre-critical (map), 70

Locally uniformly expanding, 117

Lower-limit itinerary, 64

Minimal set, 24

Odd (word), 60

Open (map), 116

Orbit, 8

Parity Lexicographic Order (≺), 61

Periodic orbit, 8

Periodic point, 8

Piecewise expanding (map), 115

Polarity, 60

Positively expansive (map), 109

Pre-periodic point, 8

Property α, 44

Property β, 44

Pseudo-orbit, 32

Pseudo-orbit tracing, 90

Regularly Closed Set, 9

s-invariant set, 16

s-limit-shadowing, 103

Sensitive dependence to initial condi-
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Sensitivity constant, 10

Shadowing, 90

Shadowing with direct hit, 93

Shift map, 50

Shift of finite type, 52

Shift space, 51

Stable periodic orbit, 17

Strongly uniformly expanding (map),

115

Strongly-invariant set, 16

Sub-shift, 52

Tent map, 11

Topologically exact (map), 9

Topologically hyperbolic (map), 113

Topologically mixing (map), 57

Topologically transitive (map), 9

Topologically weakly mixing (map),

57

Totally disconnected set, 27

Transitive (map), 9

Uniformly expanding (map), 114
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Upper-limit itinerary, 64

Wandering Interval, 71

Weak incompressibility, 18

Weakly-expansive (set), 45
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