
 

 
 
 
 
 
 
 
 
 

Land-Atmosphere Coupling 
Between a Land Surface 

Hydrological Model and a Regional 
Climate Model  

 
 

Florian Zabel 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

München 2012 





 
 
 
 
 
 
 
 
 

Land-Atmosphere Coupling 
Between a Land Surface 

Hydrological Model and a Regional 
Climate Model 

 
 

Florian Zabel 
 
 
 
 
 
 
 
 
 
 
 

Dissertation 
an der Fakultät für Geowissenschaften 
der Ludwig-Maximilians-Universität 

München 
 
 
 

vorgelegt von 
Florian Zabel 
aus München 

 
 
 
 
 

München, den 21.06.2012 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Erstgutachter: Prof. Dr. Wolfram Mauser 
Zweitgutachter: Prof. Dr. Ralf Ludwig 
Tag der mündlichen Prüfung: 12.12.2012 

 



 

 

 
but I am fine 

 

 



Zusammenfassung 
 

 

vi 

1. ZUSAMMENFASSUNG 

Die Landoberfläche beeinflusst das Wetter- und Klimageschehen in grundlegender Art und 

Weise. Der Bio-, Pedo- und Kryosphäre kommt dabei eine besondere Bedeutung als 

Klimatreiber zu. Durch aerodynamischen Widerstand, Albedo, Emissivität und den Austausch 

latenter und fühlbarer Wärme über Boden und Pflanzen steuern verschiedene 

Landoberflächen mit ihren jeweils unterschiedlichen charakteristischen Eigenschaften das 

Geschehen in der Atmosphäre maßgeblich mit. Die räumliche Heterogenität der 

Landoberfläche als auch die zeitliche Dynamik der auf der Landoberfläche ablaufenden 

Prozesse stellen eine wesentliche Herausforderung in Landoberflächenmodellen dar. Die 

komplexen Wechselwirkungen zwischen atmosphärischen Prozessen und solchen auf der 

Landoberfläche sowie damit einhergehender Rückkopplungseffekte können in Modellen nur 

simuliert werden, wenn ein Austausch von Energie- und Masseflüssen zwischen diesen 

Modellkomponenten stattfindet. Klimamodelle berücksichtigen diese wechselseitigen 

Beziehungen seit jeher, mit zunehmender Bedeutung und Komplexität. Hier werden die 

Energieflüsse der Landoberfläche in eigens dafür entwickelten Landoberflächenmodellen als 

sogenannte untere Randbedingung an die Atmosphäre im Klimamodell übergeben. Die 

Landoberfläche wird in Klimamodellen jedoch meist nur grob und stark vereinfacht 

berücksichtigt, um die Wechselbeziehungen zwischen Landoberfläche und Atmosphäre für 

bestimmte wissenschaftliche Fragestellungen hinreichend zu simulieren. Gegenwärtig werden 

große Anstrengungen unternommen, um Landoberflächenmodelle in Klimamodellen zu 

verbessern. 

Hydrologische Modelle auf der anderen Seite beschreiben Landoberflächen mit einem Fokus 

auf hydrologische Prozesse mit hoher räumlicher Auflösung (z.B. Boden-Pflanzen 

Interaktionen, vertikale und horizontale Bewegung von Wasser auf der Landoberfläche und 

im Boden, Schnee und Eis). Dabei behandeln sie jedoch den meteorologisch-atmosphärischen 

Antrieb aus Klimamodellen in der Regel exogen und können daher Interaktionen und 

Rückkopplungseffekte zwischen der Landoberfläche und der Atmosphäre nicht 

berücksichtigen. Hydrologische Modelle wurden bislang erfolgreich mit Daten aus regionalen 

Klimamodellen angetrieben, um z.B. regionale Auswirkungen des Klimawandels auf die 

Hydrologie in kleinen Einzugsgebieten zu simulieren und zu erforschen. Für eine konsistente 

Analyse der regionalen Auswirkungen des Klimawandels müsste das hydrologische Modell 
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jedoch bidirektional mit dem Klimamodell gekoppelt werden, um explizit Rückkopplungen 

berücksichtigen zu können.  

Inhalt dieser Arbeit war daher die bidirektionale Kopplung eines hydrologischen 

Landoberflächenmodells mit einem regionalen Klimamodell, mit der Zielsetzung die Vorteile 

hochauflösender hydrologischer Modelle mit der Fähigkeit von Klimamodellen, nämlich die 

Berücksichtigung von Wechselwirkungen und Rückkopplungen zwischen Landoberfläche 

und Atmosphäre, zu verbinden. 

Beim Vergleich des Landoberflächenmodells NOAH, wie es aktuell im Klimamodell MM5 

benutzt wird, mit dem hydrologischen Landoberflächenmodell PROMET zeigte sich, dass die 

selben physikalischen Prozesse in den Modellen verschieden formuliert werden. Die in 

PROMET implementierten Prozessbeschreibungen innerhalb des Boden-Pflanzen-

Atmosphären-Kontinuums sind detaillierter, komplexer und umfangreicher als jene in NOAH. 

Dafür sind umfangreichere Pflanzen- und Bodenparametrisierungen notwendig, die für die 

Prozessbeschreibungen in den Modellen erforderlich sind. Die dafür benötigten Daten werden 

in PROMET aus Literatur, Messungen und Fernerkundungsdaten abgeleitet. Neben der 

unterschiedlichen Parametrisierung benutzen die Modelle aus den verschiedenen Disziplinen 

unterschiedliche räumliche und zeitliche Skalen. So rechnet PROMET mit 1 × 1 km2 auf einer 

feineren räumlichen Skala als NOAH (45 × 45 km2) und kann somit die räumliche 

Heterogenität für das Modellgebiet in Mitteleuropa mit einer wesentlich höheren Genauigkeit 

darstellen. Dafür benötigt PROMET u.a. einen höheren Informationsgehalt in den 

Eingangsdaten (wie z.B. Landbedeckung bzw. Landnutzung, Boden, Gelände). 

Um diese Informationen für das Simulationsgebiet von Zentraleuropa (1170 × 1170 km2) in 

hoher räumlicher Auflösung bereitstellen zu können, wurde ein neuer Landnutzungsdatensatz 

erzeugt. Durch die Kombination bereits existierender Landnutzungsklassifikationen, 

hochauflösenden MERIS-NDVI Fernerkundungsdaten und statistischen Datensätzen konnte 

die räumliche Heterogenität v.a. innerhalb von landwirtschaftlich bewirtschafteten Flächen 

verbessert werden. Daraus resultierten deutliche zeitliche und räumliche Veränderungen in 

der Verdunstungssimulation an der Oberen Donau, was dort schließlich zu einer 

Verbesserung der Wasserbilanz führte. Die Verbesserungen waren dabei vor allem auf 

unterschiedliche phänologische Entwicklungen von verschiedenen Ackerfrüchten 

zurückzuführen. 
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Aus den unterschiedlichen Modellkonzepten ergaben sich im Vergleich mit NOAH stark 

unterschiedliche Ergebnisse in der Verdunstung, die in Norditalien bis zu 280 mm Jahr-1 

betrug. Dabei spielten die Landnutzung und insbesondere versiegelte urbane Flächen eine 

wesentliche Rolle, die in NOAH auf Grund der groben Auflösung im Modellgebiet nicht 

berücksichtigt werden. Durch deren thermodynamische und hydraulische Eigenschaften 

tragen versiegelte Flächen deutlich weniger zur Verdunstung bei, als z.B. mit Vegetation 

bewachsene Flächen, die durch Transpiration pflanzenverfügbares Wasser aus dem Boden 

verdunsten. Daneben führten vor allem unterschiedliche Boden- und Vegetationsparameter zu 

unterschiedlicher Bodenfeuchte und unterschiedlichen Verdunstungsraten. 

Bidirektional gekoppelt ändert sich der Zustand der Atmosphäre von MM5 als Reaktion auf 

veränderte untere Randbedingungen durch den Austausch von NOAH mit PROMET. Folglich 

stieg z.B. die jährliche Mitteltemperatur im Modellierungsgebiet um 1 K und der 

Niederschlag ging um 56 mm zurück. Somit konnte gezeigt werden, dass physikalisch 

basierte hydrologische Modelle wie PROMET in der Lage sind, die unteren 

Randbedingungen für Klimamodelle in bidirektional gekoppelten Modellläufen adäquat 

bereitzustellen. Die daraus resultierenden Zustandsänderungen der Atmosphäre als Reaktion 

auf die geänderten unteren Randbedingungen sind sowohl nachvollziehbar, als auch in einer 

realistischen Größenordnung. Die durch PROMET induzierten Änderungen der Masse- und 

Energieflüsse zwischen Landoberfläche und Atmosphäre führten beim Betrachten der 

Verdunstung schließlich sowohl zu positiven, als auch zu negativen Rückkopplungseffekten. 

Die vorherrschenden hydrologischen Bedingungen bestimmten dabei das positive oder 

negative Vorzeichen, als auch die Stärke der Rückkopplung. In bereits trockenen Regionen in 

ungekoppelten Simulationen, wie z.B. in Norditalien, führte sommerliche Hitze zu einem 

vermehrten Austrocknen der Böden und damit zu mehr Wasserstress bei Pflanzen. Dies 

mündete in einen Rückgang der Verdunstung um bis zu 30 % und wiederum in eine geringere 

Verdunstungskühlung. Nördlich der Alpen hingegen war das Gegenteil der Fall. Hier führte 

ein Anstieg der Temperaturen zu überwiegend mehr Verdunstung, da der Boden hier meist 

noch genug pflanzenverfügbares Wasser beinhaltete.  

Weitere Analysen zeigten außerdem, dass Klimamodelle wie MM5 im bidirektional 

gekoppelten Modus durch die genauere Repräsentation der Landoberfläche in PROMET 

profitieren, indem z.B. die Simulation von tageszeitlichen, monatlichen und jährlichen 

Temperaturverläufen im Vergleich mit Messergebnissen an der Oberen Donau verbessert 

wurden. Dabei konnte vor allem der Temperaturverlauf an den bisher zu kühlen, frühen 
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Nachmittagsstunden verbessert werden. Ein Vergleich mit Messungen zeigte zudem eine 

Verbesserung bei der Simulation von eintreffender Sonnenstrahlung, was darauf schließen 

lässt, dass Prozesse wie Wolkenbildung ebenfalls präziser abgebildet wurden. Die in 

Klimamodellen, vor allem in Gebieten mit starkem Relief, meist überschätzten Niederschläge, 

wurden deutlich reduziert, wenngleich die Unsicherheiten v.a. in der räumlichen Verteilung 

von simulierten Niederschlagsmengen über den Alpen auf Grund von schwierig zu 

simulierenden subskaligen Konvektionsprozessen in den Klimamodellen immer noch eine 

große Herausforderung darstellen. Durch die bidirektionale Kopplung konnten dennoch alle 

Terme der Wasserbilanz für das Einzugsgebiet der Oberen Donau verbessert werden. 

Durch die Berücksichtigung von gegenseitigen Wechselbeziehungen und Rückkopplungen in 

die Simulation ist es mit dem entwickelten Ansatz möglich, nicht nur die Auswirkungen des 

Klimawandels auf die Hydrologie der Landoberflächen, sondern auch die hydrologischen 

Auswirkungen auf das Klima in Modellen besser zu erfassen. Somit ermöglicht die 

bidirektionale Kopplung von Landoberflächenmodellen wie PROMET mit Klimamodellen, 

genauere Aussagen und weitergehende Analysen als bisher über die Auswirkungen von 

Landoberflächenprozessen auf verschiedener Aspekte des Klimawandels sowohl in der 

Atmosphäre (z.B. Temperatur, Wolkenbildung, Niederschlag), als auch durch 

Rückkopplungen induzierte Änderungen auf der Landoberfläche selbst (z.B. Bodenfeuchte, 

Schnee- und Eisschmelze, Landnutzung, Verstädterung, Albedo, Verdunstung, 

Pflanzenwachstum, Abflussbildung, Perkolation, Permafrost). 
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2. SUMMARY 

The land surface influences weather and climate in a fundamental way. The bio-, pedo- and 

cryosphere play a particularly important role as climate drivers. By aerodynamic resistance, 

albedo, emissivity, and the exchange of latent and sensible heat via soil and plants, the land 

surface largely controls the processes within the atmosphere. The spatial heterogeneity of land 

surface properties and the temporal variability of land surface processes are a major challenge 

in land surface models. The complex interactions between atmospheric processes and those 

on the land surface and concomitant feedback effects can only be allowed in simulations, if 

energy and mass fluxes are exchanged between these model components. Climate models 

have always taken into account these interrelationships with increasing importance and 

complexity. Here, the energy flows of the land surface are transferred to the atmosphere as the 

lower boundary conditions. The representation of the land surface in current climate models, 

however, is coarse and does not sufficiently address certain scientific questions in terms of 

interactions between the land surface and the atmosphere. Thus, great efforts are currently 

being made to improve land surface models in climate models. 

In contrast to land surface representations in climate models, land surface hydrological 

models (LSHMs) take the land surface with a focus on hydrological processes into detailed 

spatial account (e.g. soil-plant interactions, vertical and lateral water flows, snow and ice). 

However, they usually consider the atmosphere as an exogenous driver only, thereby 

neglecting interactions and feedbacks between the land surface and the atmosphere. LSHMs 

have been driven successfully with data from regional climate models, for example in order to 

simulate regional impacts of climate change on the hydrology in small catchment areas. A 

consistent analysis of the regional impacts of climate change, would request to couple the 

hydrological model bi-directionally with the climate model to explicitly take into account 

feedback effects. 

Therefore, the purpose of this thesis is a bi-directional (two-way) coupling of a LSHM with a 

regional climate model (RCM), with the aim to combine the advantages of high resolution 

LSHMs with the ability to simulate land-atmosphere interactions and feedbacks with RCMs. 

A comparison of the land surface model NOAH, as it is currently used within the climate 

model MM5, with the land surface hydrological model PROMET, showed that the same 

physical processes are formulated differently in the models. Thus, the process descriptions as 
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formulated in PROMET are more detailed, complex and more comprehensive than in NOAH. 

Therefore, more detailed plant and soil parameterizations are needed, which are necessary for 

the process descriptions in the models. In PROMET, the required data are derived from 

literature, measurements and remote sensing data. Besides the different parameterizations, the 

models from different disciplines are using different spatial and temporal scale. PROMET 

(1 × 1 km2) simulates on a finer spatial scale than NOAH (45 × 45 km2) and, thus, the spatial 

heterogeneity for the model area in Central Europe is at higher accuracy. This requires greater 

information content in the input data of PROMET (land use, soil, terrain). 

To provide this information for the modelling domain of Central Europe (1170 × 1170 km2) 

with high spatial resolution, a new land use/cover dataset was compiled. By combining 

existing land use/cover datasets, high resolution MERIS-NDVI remote sensing and statistical 

data, the spatial heterogeneity could be improved, especially for different types of crops 

within arable land. Consequently, the spatial and temporal behaviour of simulated 

evapotranspiration resulted in an improved simulation of the water balance for the Upper 

Danube. The improvements were mainly due to differences in phenological development of 

different agricultural crops. 

The different model concepts resulted in greatly different results in simulated 

evapotranspiration when compared to NOAH. The difference was up to 280 mm year-1 in 

northern Italy. Thereby, the land-use and particularly sealed urban areas played an important 

role, which are not included in the model domain in NOAH due to the coarse spatial 

resolution. Due to their thermodynamic and hydraulic properties, these areas contribute 

substantially less to evapotranspiration in contrast to vegetated surfaces that transpire 

available soil water. Additionally, different soil and vegetation parameters resulted in 

different soil moisture and different evapotranspiration rates. 

Bi-directionally coupled, the state of the atmosphere of MM5 responses to changes due to the 

changed lower boundary conditions by the exchange of NOAH with PROMET. 

Consequently, the annual mean near surface air temperature in the modelling domain 

increased around 1K and precipitation decreased by 56 mm. Thus, it could be shown that 

physically-based models such as PROMET are able to provide the lower boundary conditions 

for climate models in bi-directionally coupled model runs in an adequate way. The resulting 

changes within the atmosphere in response to the modified lower boundary conditions are 

both understandable and in a realistic order of magnitude. PROMET induced changes in land-

atmosphere mass and energy flows finally led to both positive and negative feedback effects 
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on the evaporation. Thereby, the prevailing hydrological conditions determined the positive or 

negative signs, as well as the strength of the feedback. In regions that were already dry in 

uncoupled simulations, e.g. in Northern Italy, summer heat resulted in even more drying of 

the soil and, thus, to greater water stress in plants, which resulted in lower evaporation rates 

by up to 30 % and in turn in less evaporative cooling. North of the Alps, however, the 

opposite was the case. Here, a rise in temperatures predominantly increased evaporation 

because soil water was still available for plants.  

Further analysis also showed that climate models such as MM5 benefit in the bi-directionally 

coupled mode from the more detailed representation of the land surface in PROMET. As an 

example, the simulation of the diurnal, monthly and annual cycle of the near surface air 

temperature could be improved when compared with measurements for the Upper Danube. 

Thereby, particularly a cold bias in the simulated daily maximum temperatures in the early 

afternoon hours could be improved. In comparison to measurements, the amount of incoming 

solar radiation has also been improved, which suggests that processes such as cloud formation 

have also been reproduced more accurately. The climate models generally overestimated 

precipitation, especially in mountainous areas. However, precipitation amounts could be 

reduced, although uncertainties in alpine precipitation still remain high due to subscale 

convection is still challenging to simulate in climate models. The bi-directional coupling 

could finally improve all terms of the water balance for the catchment area of the Upper 

Danube. 

By incorporating feedbacks into the simulation, it is therefore possible to detect not only the 

effects of climate change on the land surface hydrology, but also the hydrological impact on 

the climate. Thus enabling the bidirectional coupling of land surface models such as 

PROMET with climate models, allows more precise statements and further analysis of the 

impact of land surface processes on different aspects of climate change both in the 

atmosphere (e.g. temperature, cloud formation, precipitation), as well as by feedback-induced 

changes upon the land surface itself (e.g. soil moisture, snow and ice melt, land use, 

urbanization, albedo, evapotranspiration, plant growth, runoff, percolation, permafrost). 

 



Acknowledgements 
 

 

xiii 

3. ACKNOWLEDGEMENTS 

The work was carried out at the Ludwig-Maximilians-University in Munich at the chair of 

Geography and Remote Sensing at the Department of Geography. As the head of the chair 

and my supervisor, Prof. Dr. Wolfram Mauser deserves my first and most sincere thanks for 

giving me the opportunity to work on this thesis and providing me with excellent advises, 

professional working conditions and the needed computational resources for the performed 

simulations. I always appreciated his valuable review and his open, friendly and direct mind. 

Already as a student, he fascinated me for the broad field and modern opportunities of 

geographical topics. Also, I want to express my gratefulness to Prof. Dr. Ralf Ludwig for the 

review of this thesis. Further, I want to thank all the employees of the chair and all my dear 

colleagues. 

This interdisciplinary study could not have been achieved without the background of the 

GLOWA-Danube project. The financial funding of GLOWA-Danube by the German ministry 

of Education and Research (BMBF) is gratefully acknowledged. Thereby, I want to thank all 

the former GLOWA- colleagues, especially Dr. Markus Muerth, Dr. Daniel Waldmann,  

Dr. Monika Prasch and Andrea Reiter. 

My special thanks go to Dr. Thomas Marke and Dr. Tobias Hank for their valuable expertise 

and cooperation. Many thanks also go to the meteorologists Prof. Dr. Günther Zängl, Andreas 

Pfeiffer and Dr. Clemens Wastl for the great collaboration within the GLOWA-Danube 

project and, in regards of this study, their expert meteorological knowledge concerning the 

regional climate model MM5.  

Further, I would like to thank all my fellow Ph.D. students and roommates for the valuable 

discussions, the cooperation, their technical support and the nice atmosphere. Thus, my 

special thanks go to Florian Schlenz, Thomas Sailer, Tamara Avellan, Birgitta Putzenlechner, 

Shrabana Datta, and all the others not named here. 

It is my special concern to thank my band A HOME. A HEART. WHATEVER. and namely 

the band members Dr. Marcus Schreiner and Tobias Mecklinger for the great and intense time 

we have already spent together. The rehearsals and gigs were always the best choice to clear 

my mind from work, relax, refresh and re-energize. 



Acknowledgements 
 

 

xiv 

Finally, I want to thank my parents, sisters, brothers, nieces and nephews, my friends and 

particularly Emily for their support and motivation, and for having the best and most 

wonderful friends one can have.  

 



Table Of Contents 
 

 

xv 

4. TABLE OF CONTENTS 

1. ZUSAMMENFASSUNG VI 

2. SUMMARY X 

3. ACKNOWLEDGEMENTS XIII 

4. TABLE OF CONTENTS XV 

5. LIST OF FIGURES XVIII 

6. LIST OF TABLES XXI 

7. INTRODUCTION - 22 - 

7.1. Interactions - 23 - 

7.2. Feedbacks in the Coupled System - 26 - 

7.3. Land Surface Heterogeneity - 27 - 

7.4. State of the Art in RCMs - 29 - 

7.5. State of the Art in LSHMs - 32 - 

7.6. Research Objectives – Bi-directional Coupling Approach - 34 - 

8. PUBLICATIONS - 36 - 

8.1. Framework of the Thesis - 36 - 

8.2. Overview of the publications - 38 - 

8.3. Transition to Publication I - 39 - 

8.4. Publication I - 40 - 

Improving arable land heterogeneity information in available land cover products for 
land surface modelling using MERIS NDVI data - 41 - 

Abstract - 41 - 
Introduction - 42 - 

Existing land use/cover maps - 42 - 
Heterogeneity of arable land - 43 - 

Method - 46 - 
Area of interest - 46 - 
Hydrological model - 47 - 
Land use/cover classification - 48 - 

Fusion of CLC 2000 and CLC Switzerland and adaptation to PROMET - 48 - 
Subdivision of arable land via MERIS NDVI data - 52 - 
Statistical subdivision of phenological classes - 56 - 



Table Of Contents 
 

 

xvi 

Results - 58 - 
Resulting land use/cover map - 58 - 
Impact on simulated evapotranspiration - 60 - 
Validation of the Water Balance - 62 - 

Conclusions - 64 - 
Acknowledgement - 66 - 
References - 67 - 

8.5. Transition to Publication II - 70 - 

8.6. Publication II - 71 - 

Inter-comparison of two land-surface models applied at different scales and their 
feedbacks while coupled with a regional climate model - 72 - 

Abstract - 72 - 
Introduction - 74 - 
Methods - 76 - 

Models and setup - 76 - 
Coupling approach - 78 - 
Study area - 80 - 
Comparison of modelling approaches - 81 - 

Scales - 81 - 
Land use - 81 - 
Plant parameterization - 83 - 
Soil water hydraulic and plant physiology - 83 - 

Results and discussion - 84 - 
Comparing NOAH and PROMET-offline - 84 - 
Quantification of feedbacks using PROMET-interact - 90 - 

Air temperature - 91 - 
Precipitation - 92 - 
Evapotranspiration - 93 - 

Conclusions - 97 - 
Acknowledgements - 99 - 
References - 100 - 

8.7. Transition to Publication III - 104 - 

8.8. Publication III - 105 - 

Analysis of feedback effects and atmosphere responses when 2-way coupling a 
hydrological land surface model and a regional climate model - 106 - 
A case study for the Upper-Danube catchment - 106 - 

Abstract - 106 - 
Introduction - 108 - 
Materials and Method - 111 - 
Results and Discussion - 113 - 

Differences between PROMET and NOAH - 113 - 
Atmosphere responses - 114 - 

Planetary boundary layer - 114 - 
Solar incoming radiation - 115 - 
Temperature - 116 - 
Precipitation - 118 - 

Feedback effects - 121 - 
Evapotranspiration - 121 - 



Table Of Contents 
 

 

xvii 

Water Balance - 121 - 
Conclusions and Outlook - 123 - 
Acknowledgements - 125 - 
References - 126 - 

9. SYNTHESIS - 129 - 

10. OUTLOOK - 131 - 

11. REFERENCES - 133 - 

12. APPENDIX - 141 - 

12.1. Underlying Model Formulations - 142 - 

12.1.1. NOAH - 142 - 

12.1.2. PROMET - 145 - 

12.1.3. References - 149 - 

12.2. Curriculum Vitae - 152 - 

 



List Of Figures 
 

 

xviii 

5. LIST OF FIGURES 

Figure 7.1:   The climate system (IPCC, 2001). .................................................................. - 22 - 

Figure 7.1.1: Energy balance at the land surface, divided into the radiation balance (red 
arrows), the water balance (black, straight arrows) and the heat fluxes (black, 
curved arrows). ............................................................................................. - 23 - 

Figure 7.2.1: Impulse-response and feedback mechanisms. ............................................... - 26 - 

Figure 8.1.1: Continuity of the publications in the framework of the thesis. ...................... - 37 - 

Figure 8.4.1: Seasonal development of LAI for maize and winter wheat for a test side in 
southern Germany (April to October 2004). Vertical error bars represent the 
minimum and maximum observations. ........................................................ - 44 - 

Figure 8.4.2: Topography (based on SRTM data) of the area of interest, showing the 
European countries as well as the boundaries of the Upper Danube catchment. ..  
 ...................................................................................................................... - 47 - 

Figure 8.4.3: Reclassification of forested areas labelled as 'mixed forest' (m) to an evenly 
distribution of deciduous (20) and coniferous (21) forest. The Pixels are 
alternately classified to coniferous and deciduous. ...................................... - 50 - 

Figure 8.4.4: Temporal change of MERIS NDVI, masked for arable land as a subtraction of 
Bimonth 4 with Bimonth 3. .......................................................................... - 53 - 

Figure 8.4.5: Decision tree for the differentiation of three phenological categories (spring, 
summer, equal) using the change signal of two MERIS NDVI images for 
Bimonth 3 and Bimonth 4 2005. .................................................................. - 54 - 

Figure 8.4.6: Phenological subclasses of arable land from CLC after splitting with MERIS 
NDVI. ........................................................................................................... - 55 - 

Figure 8.4.7: Resulting land cover map based on CLC 2000 and CLC 1990 Switzerland and 
being transformed to the PROMET classification, after phenological subclasses 
of arable land gathered by MERIS NDVI were further statistically reclassified 
with the help of the EUROSTAT dataset. .................................................... - 59 - 

Figure 8.4.8: Modelled mean monthly evapotranspiration (1971-2000) in May and August 
with three different land use/cover classification schemes implemented in 
PROMET (CLC winter wheat, CLC maize and the new land use/cover 
approach) for the Upper Danube catchment. ................................................ - 61 - 

Figure 8.6.1: a) Principle of driving the hydrological model PROMET offline with data from 
the RCM MM5 within which the NOAH-LSM provides the lower boundary 
conditions (left).  b) Interactive coupling of PROMET with the atmospheric part 
of MM5, thus providing the lower boundary conditions via the scaling interface 
SCALMET (right). ....................................................................................... - 77 - 

Figure 8.6.2: Land use classification of the NOAH-LSM (45 × 45 km2) for the whole MM5 
model domain and the inner coupling domain (left). PROMET land use 
classification (1 × 1 km2) for the coupling domain with MM5. ................... - 82 - 

Figure 8.6.3: Correlation (r) of net radiation between PROMET-offline and NOAH for daily 
mean values (left) and difference plot of annual mean net radiation between 
PROMET-offline and the NOAH-LSM, scaled to the MM5 spatial resolution 
(right). ........................................................................................................... - 84 - 



List Of Figures 
 

 

xix 

Figure 8.6.4: Annual mean shortwave reflection [W m-2] (1 January 1996 - 31 December 
1999) of the NOAH-LSM (left) and PROMET-offline (right). ................... - 85 - 

Figure 8.6.5: Difference plot of annual mean longwave outgoing radiation between 
PROMET-offline and the NOAH-LSM (left) and difference plot of annual 
mean Bowen ratio between PROMET-offline and the NOAH-LSM (right), each 
scaled to the MM5 spatial resolution. ........................................................... - 86 - 

Figure 8.6.6: Annual mean evapotranspiration of NOAH-LSM (left) and PROMET-offline 
(right) ............................................................................................................ - 87 - 

Figure 8.6.7: Difference plot between PROMET-offline and NOAH-LSM showing the annual 
mean evapotranspiration. .............................................................................. - 88 - 

Figure 8.6.8: Monthly mean evapotranspiration from 1996 - 1999 simulated by the NOAH-
LSM and PROMET-offline for pixels, dominated by impermeable area  
(share > 20 %) in the upscaled PROMET land use. The PROMET-offline 
results are shown for all corresponding PROMET-offline pixels as well as for 
vegetated pixels only, neglecting impervious surfaces. ............................... - 89 - 

Figure 8.6.9: Upscaled share of impervious area of the PROMET land use versus the 
difference of evapotranspiration between PROMET-offline and NOAH, 
illustrated with a bivariante colour map (Teuling et al., 2011). ................... - 89 - 

Figure 8.6.10: Daily mean evapotranspiration (normalized by maximum) plotted against soil 
moisture of the third soil layer (scaled between wilting point and saturation) for 
the NOAH-LSM and PROMET-offline, showing the vegetated pixels of the 
Milan area (left) and the Rhine-Neckar area (right) for July and August  
(1996-1999). ................................................................................................. - 90 - 

Figure 8.6.11: Subtraction image (MM5/PROMET-interact - MM5/NOAH) of the annual 
mean near surface air temperature [K] (1 January 1996 - 31 December 1999). ...  
 ...................................................................................................................... - 92 - 

Figure 8.6.12: Subtraction image (MM5/PROMET-interact - MM5/NOAH) of the annual 
precipitation [mm] (1 January 1996 - 31 December 1999). ......................... - 93 - 

Figure 8.6.13: Subtraction image of PROMET-interact and PROMET-offline simulation for 
annual mean evapotranspiration (1 × 1 km2). ............................................... - 94 - 

Figure 8.6.14: Monthly evapotranspiration rates [mm] (1 January 1996 - 31 December 1999) 
of PROMET-offline simulation and PROMET-interact simulation exemplarily 
for the Milan and Rhine-Neckar pixels. ....................................................... - 95 - 

Figure 8.6.15: Daily mean evapotranspiration (normalized by maximum) plotted against soil 
moisture of the third soil layer (scaled between wilting point and saturation) 
showing the PROMET-interact simulation in comparison to the PROMET-
offline and NOAH results for the vegetated pixels of the Milan area (left) and 
the Rhine-Neckar area (right) for July and August (1996-1999). ................ - 96 - 

Figure 8.8.1: Schematic illustration of 1-way (left) and 2-way coupling (right) a LSHM with a 
RCM. .......................................................................................................... - 109 - 

Figure 8.8.2: Spatially averaged monthly land surface mass and energy fluxes 
(evapotranspiration, sensible heat flux, long-wave outgoing radiation, short-
wave outgoing radiation) for the Upper-Danube catchment simulated with the 
NOAH-LSM and with PROMET offline respectively for the years 1996-1999. ..  
 .................................................................................................................... - 113 - 



List Of Figures 
 

 

xx 

Figure 8.8.3: Monthly course of the planetary boundary layer height (1996-1999). ........ - 115 - 

Figure 8.8.4: Monthly course of the total incoming short-wave radiation (1996-1999). .. - 115 - 

Figure 8.8.5: Difference plot between PROMET/MM5 and NOAH/MM5 annual mean near 
surface air temperature in the Upper Danube Basin, downscaled to 1 km. - 116 - 

Figure 8.8.6: Monthly mean temperature of fully coupled NOAH-MM5 simulation, 
PROMET-MM5 simulation in comparison with measurements in the Upper-
Danube catchment. ..................................................................................... - 117 - 

Figure 8.8.7: Monthly mean diurnal cycle (1996-1999) of the near surface air temperature 
(3-hourly) for the Upper-Danube catchment. ............................................. - 118 - 

Figure 8.8.8: Monthly convective and total precipitation of MM5 simulations coupled with 
NOAH and PROMET compared to measurements. ................................... - 119 - 

Figure 8.8.9: Over- and underestimation of annual simulated PROMET/MM5 (left) and 
NOAH/MM5 (right) precipitation in the Upper Danube Basin, downscaled to 
1 km and subtracted from measurements. .................................................. - 120 - 

Figure 8.8.10: Monthly mean evapotranspiration in the Upper Danube Basin of 1-way and 
2-way coupled PROMET simulations (1996-1999). .................................. - 121 - 

Figure 12.1.1: Model components of PROMET (Mauser and Bach, 2009). .................... - 146 - 

 
 



List Of Tables 
 

 

xxi 

6. LIST OF TABLES 

Table 7.1.1: Typical Albedo values for different land surfaces (Marshall and Plumb, 2008). ....  
 ...................................................................................................................... - 24 - 

Table 8.4.1: PROMET land use/cover classes. ................................................................... - 48 - 

Table 8.4.2: Transformation of CORINE Land Cover 2000 into the PROMET classes. ... - 49 - 

Table 8.4.3: Transformation of the CORINE Land Cover 1990 Switzerland into the PROMET 
classes. .......................................................................................................... - 50 - 

Table 8.4.4: Statistical distribution of coniferous and deciduous forest [km²] for each Swiss 
canton (Swiss Federal Statistical Office, 2004)............................................ - 51 - 

Table 8.4.5: Priority list and 'Fill-up-Order' for the statistical reclassification of 'spring-crops', 
'summer-crops' and 'equally-active' crops into 15 different types of arable land. 
 ...................................................................................................................... - 57 - 

Table 8.4.6: Water balance of three PROMET simulations using the CLC winter wheat, the 
CLC maize and the new land use/cover approach in comparison to the 
measured gauge in Achleiten as mean values from 1971 - 2000 for the month of 
August. .......................................................................................................... - 63 - 

Table 8.8.1: Measured annual mean runoff at the outlet of the Upper Danube catchment at 
Achleiten in comparison with simulated runoff of NOAH/MM5 and 
PROMET/MM5 in either 1-way or 2-way coupled configuration. ............ - 122 - 

 

 



Introduction 
 

 

- 22 - 

7. INTRODUCTION 

The climate system consists of the earth's atmosphere, oceans and the terrestrial components 

including the biosphere, the hydrosphere, the soils, the cryosphere and the orography (Figure 

7.1). These components are all linked with each other by fluxes of mass, heat and momentum. 

Thereby, physical, chemical and biological interactions occur on a wide range of spatial and 

temporal scales, making the climate system extremely complex (Bridgman and Oliver, 2006). 

Initial perturbations within one component lead to responses in other components. Resulting 

feedback mechanisms may amplify or reduce changes in response to the initial perturbation 

and hence are very important aspects in the climate system (IPCC, 2001). Thus, for modelling 

the climate adequately and provide climate scenarios, all components must be interactively 

connected and represented in a realistic way (IPCC, 2001). Therefore, climate models must be 

able to represent the land surface energy and water balance, the spatial heterogeneity of the 

land surface, the temporal variability of its complex interdependent processes, human 

activities and natural processes that impact upon the land surface, and the surface-atmosphere 

interactions (Pitman, 2003). Nevertheless, land-atmosphere interactions are still one of the 

key sources of uncertainties in current climate scenarios and simulations (IPCC, 2007a). 

 
Figure 7.1: The climate system (IPCC, 2001). 
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7.1. Interactions 

Figure 7.1.1: Energy balance at the land surface, divided into the radiation balance (red arrows), 
the water balance (black, straight arrows) and the heat fluxes (black, curved arrows). 

The components of the climate system are not closed systems in a physical sense, since matter 

and heat is exchanged with its surroundings through atmosphere-land and land-atmosphere 

interactions. Thereby, the interactions between the components form inter-componential 

balances (see Figure 7.1.1). The key equations that represent the role of the land surface in 

climate are the energy balance (Eq. 2) and the surface water balance (Eq. 3) (Pitman, 2003). 

Besides, the surface influences momentum exchange and, biogeochemical exchange, such as 

the carbon balance. 

The Earth's only significant energy source it the exogenous solar radiation. On its way to the 

land surface, it is attenuated on gas-molecules (e.g. N2, O2, H2O vapor, CO2, CH4, and O3) 

and aerosols in the Earth's atmosphere by processes of scattering and absorption (Monteith 

and Unsworth, 2008). Thus, the land surface receives the transmitted direct and forward 

scattered diffuse short-wave solar radiation. 

The incoming solar radiation ( ↓S ) at the land surface is further reflected or absorbed, 

depending on the surface's albedo (α ). Albedo naturally changes with solar insolations angle, 

vegetation phenology, rain and snowfall, but can also be changed directly by natural and 
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human induced land cover change or indirectly, e.g., by fertilizing effects on vegetation. 

Typical albedo values for different land surfaces are shown in Table 7.1.1. 

Table 7.1.1: Typical Albedo values for different land surfaces (Marshall and Plumb, 2008). 

Land surface Albedo [%] 

Forest 6-18 

City 14-18 

Grass 7-25 

Ice 20-77 

Snow (old to fresh) 40-95 

The land surface continuously emits long-wave radiation ( ↑L ) following the Stefan-

Boltzmann-law, depending on the characterized emissivity and the temperature of a specific 

land surface type. The emitted long-wave radiation is partly absorbed by atmospheric gases 

that in turn re-radiate from the atmosphere to the land surface which is known as the 

greenhouse effect ( ↓L ) (Marshall and Plumb, 2008). Eventually, the radiation balance  

(Eq. 1) from short- and longwave radiation results in the net radiation ( nR ), which describes 

the total amount of energy that is available at the land surface. 

↑−↓+−↓= LLSRn )1( α         (Eq. 1) 

The available net radiation is partitioned into sensible ( H ), latent ( LE ), and the soil or 

ground heat flux (G ), as described in the land surface energy balance (Eq.2).  

GHLERn ++=          (Eq. 2) 

Consequently, a decrease of latent heat will automatically result in an increase of sensible heat 

if net-radiation and soil heat flux remain constant. The distribution of the net radiation into 

latent, sensible and soil heat is driven by complex inter-dependent processes within the soil-

plant-atmosphere continuum. Thereby, soil heat transfer is largely determined by the current 

soil moisture and the thermal properties of the soil matrix (Muerth and Mauser, 2012). The 

water pathway via the soil through the roots into the leaf and passing via the stomata into the 

laminar and finally the turbulent atmosphere is driven by the potential difference of water 

vapour pressure between the surface and the atmosphere. These processes occur on a wide 

range of temporal scales ranging from minutes (canopy resistance), weeks (vegetation 

phenology) to years (vegetation dynamics). The flux of momentum itself is not affecting the 
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surface energy balance, but it is of importance because the atmospheric resistance to heat and 

mass transport is closely related to this flux (Berge, 1990). 

Atmospheric processes are largely sensitive to the partitioning of net radiation into latent and 

sensible heat. More latent heat contributes to more water vapour in the atmosphere and tends 

towards increasing cloudiness and precipitation, whereas increased sensible heat tends to heat 

the planetary boundary layer and increase convection (Kabat et al., 2004; Pitman, 2003).  

The atmosphere is the most unstable and rapidly changing fluid part of the climate system. Its 

turbulent moving air masses within the planetary boundary layer in the lower part of the 

atmosphere transport the received heat and mass from the land surface vertically and 

horizontally (Berge, 1990). Thereby, the height of the boundary layer depends upon the 

strength of the surface-generated mixing. When the Earth's surface is heated by the Sun, 

thermal heat is transferred upwards (convection). This enables the boundary layer to extend 

its height up to 2 km, while by night, when atmosphere cools down slower than the surface, 

there is a downward transfer of heat and the height of the boundary layer shrinks to less than 

100 m (Oke, 1987).  

Atmospheric water vapour from evaporation stays on average 9.1 days in the atmosphere 

before it condenses and, finally, falls down as precipitation, thus forming the water balance 

(Eq. 3) (Baumgartner and Liebscher, 1996): 

SREP ∆−−=          (Eq. 3) 

, where precipitation ( P ) results in surface and subsurface runoff ( R ), evaporation ( E ), and 

S∆ , describing the change in water storage, e.g., within the soil, the snowpack, ice or water 

bodies. 
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7.2. Feedbacks in the Coupled System 

In any dynamic system, an external impulse (=energy input) (+) results in a response. The 

process-response system describes the connection between cause and effect as a function of 

time (Oke, 1987). A feedback occurs when the result of an initial process (A) triggers changes 

in a second process (B), that in turn influences the initial one (see Figure 1.2-1) (IPCC, 2001). 

A

B

Input Output+
Feedback

R
esponse

 
Figure 7.2.1: Impulse-response and feedback mechanisms. 

Thereby, feedbacks may amplify (positive feedback) or dampen (negative feedback) the 

initial perturbation (Bridgman and Oliver, 2006). Consequently, a chain of mutually 

influencing effects starts, until a stable equilibrium is readjusted. While forcings are defined 

to be external to a system, feedbacks are describing internal processes.  

The land-atmosphere system is characterized by strong positive and negative feedback loops 

that are yet little understood (Bridgman and Oliver, 2006; IPCC, 2007a). A simple example is 

the snow or ice-albedo positive feedback loop whereby snow or ice melting exposes more 

dark ground, which in turn leads to lower albedo. This result in lower short-wave reflection 

and increasing heat absorption that in turn causes higher air temperature and again more snow 

melt. A reduction in vegetation, e.g., due to urbanization, deforestation or a reduction in leaf 

area or in roots, results in reduced transpiration which yields in an increase of sensible heat at 

the costs of latent heat. Thus, less evaporative cooling is warming the near surface 

temperature, which in turn affects plant transpiration (Kabat et al., 2004). Low soil moisture 

may also result in less evaporative cooling, thereby affecting convection, precipitation and air 

temperature that in turn feed back to soil moisture (Seneviratne et al., 2010; Fischer et al., 

2007a). Studies of the summer 2003 heat wave demonstrated the importance of soil moisture 

in terms of its impact on atmospheric processes (Schär et al., 2004; Loew et al., 2009; Fischer 

et al., 2007b). 
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7.3. Land Surface Heterogeneity 

The land surface fluxes are strongly related to the land surface characteristics. Thereby, the 

land surface is highly variable in all aspects in space, such that measurements taken one metre 

or two apart may report substantial differences in everything from soil moisture, through soil 

characteristics, to the type of vegetation (Pitman, 2003; Kabat et al., 2004). The enormous 

spatial variability of land cover, soil and the topography, due to their different properties is 

described in this thesis by the land surface heterogeneity. Thereby, the combination of the 

land cover, soil and topographic characteristics result in highly complex spatial 

differentiations and temporal dynamics of individual hydrological processes (Kabat et al., 

2004), thus affecting the atmosphere. 

The land cover, soils and the topography by slope, aspect and elevation control how much 

energy received from the sun is returned to the atmosphere (Monteith and Unsworth, 2008). 

Also, the terrain elevation is an important roughness property and also affects the air 

temperature with strong impacts, e.g., on mountainous snow cover. The soils have different 

hydraulic properties, such as texture and pore-size distribution. They determine, e.g., the 

infiltration rate, soil water tension and maximum soil water content. 

Because of different thermodynamic properties, such as thermal conductivity and heat 

capacity, different radiation properties, such as albedo and emissivity, and different roughness 

properties, and different hydraulic properties, the land cover and land use strongly influences 

atmosphere processes. Thereby, vegetated land elementary differs from non-vegetated 

surfaces, such as open water, bare soil, snow and ice, rock or urban areas. Besides, a broad 

palette of different types of vegetation exists, such as deciduous broadleaf and coniferous 

forest or grassland. The behaviour of the stomata resistance and, with changing vegetation 

phenology, leaf area index (LAI), root depth and albedo are important vegetation properties 

for plant transpiration (Bach, 1995). 

Anthropogenic impacts upon the land through intensive agriculture, deforestation and 

urbanization, tremendously changed the land surface, with large effects on climate (Bridgman 

and Oliver, 2006; Kabat et al., 2004; IPCC, 2007b).  

The spatial heterogeneity of the land surface and the temporal variability at which land 

surface processes take place both are major challenges in modelling the land surface. With 

decreasing spatial scale and aggregation, the precision of the land use and land cover, the soil 
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and orography information is decreasing. The homogenization of these datasets in coarse 

scaled models leads to an information loss. The spatial distribution and spatial combination of 

soil, topography and vegetation type are essentially important in order to provide the 

prevailing conditions and properties at a certain point to the model. The parameterization of 

different soil types and land use/cover types describe the hydraulic, phenological, thermal and 

energetic properties. With increasing spatial scale, more individual plants can be located, 

resolved, parameterized and distinguished by the model. An increase of spatial resolution is 

increasing computational resources with square weight. Since computational resources are 

limited, a coarse resolution is often chosen to shorten the simulation time, e.g., for long-term 

scenario simulations in climate models. 
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7.4. State of the Art in RCMs 

A climate model is the numerical representation of the climate system based on the physical, 

chemical and biological properties of its components, their interactions and feedback 

processes, and accounting for all or some of its known properties (IPCC, 2001). Regional 

climate models (RCMs) being forced with exogenous model data on the lateral boundaries of 

the limited modelling area, extend the coarse description of atmospheric processes within 

GCMs towards increased spatial resolution, thereby capturing the regional structures of each 

model grid point on continental scales (Giorgi, 2001; Jacob et al., 2007; Kueppers et al., 2008; 

Laprise, 2008; Mc Gregor, 1997; Michalakes, 1997; Quintanar et al., 2009; Schär et al., 2004; 

Stocker, 2004; Zampieri et al., 2011). At present, RCMs' grid squares are usually around 

50 × 50 km2. RCMs have always taken into account the interrelationships between the land 

surface and the atmosphere (Pitman, 2003). Therefore, the land surface energy and matter 

fluxes, representing the lower boundary conditions, are passed to the atmospheric part of the 

RCM.  

Land surface models (LSMs) within RCMs have undergone large improvements in the past 

decades (van den Hurk et al., 2011). The Project for the Intercomparison of Land-Surface 

Parameterization Schemes (PILPS) started 1992 for evaluating and intercomparing LSMs 

within a common framework, with the aim of improving the understanding of current and 

future parameterization schemes used to represent regional to continental scales (Dickinson, 

1995; Famiglietti and Wood, 1991; Polcher et al., 1998; Wood et al., 1998; Yang et al., 1998; 

Henderson-Sellers et al., 1996; Timbal and Henderson-Sellers, 1998; Pitman and Henderson-

Sellers, 1998). One of the key findings within PILPS was the need to run LSMs decoupled 

from the host atmospheric model for model comparison and comparison with measurements, 

and the recognition of the need to formally conserve energy and matter (van den Hurk et al., 

2011). The complexity, spatial heterogeneity and temporal variability of land surface 

processes and the need for a more detailed view of it is a long standing discussion in 

atmospheric sciences (Henderson-Sellers et al., 1995; Henderson-Sellers et al., 2008; 

Dickinson, 1995; Dickinson et al., 1991). There is evidence that more advanced and robust 

LSMs, which increasingly consider the spatial heterogeneity and complexity of land surface 

biophysical and hydrological processes in the soil-plant-atmosphere continuum on a finer 

scale will reduce the uncertainties in the current modelling of land-atmosphere processes 

(Essery et al., 2003; Hagemann et al., 2001; Koster et al., 2004; Laprise, 2008; Molod and 

Salmun, 2002; Seth et al., 1994; Yu, 2000). 
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Therefore, huge efforts are currently being made in several projects to resolve the spectrum of 

land surface challenges within the International Geosphere-Biosphere Programme (IGBP) and 

the World Climate Research Programme (WCRP), such as the Integrated Land Ecosystem-

Atmosphere Processes Study (iLEAPS), the Global Energy and Water Cycle Experiment 

(GEWEX), and the Global Land Atmosphere System Study (GLASS) framework which was 

launched in 1999 (van den Hurk et al., 2011). The main focus of attention of GLASS is model 

development and evaluation, thereby enclosing various projects, such as the Global Soil 

Wetness Project (GSWP) (Dirmeyer, 2011), the Global Land Atmosphere Coupling 

Experiment (GLACE) (Koster et al., 2004; Koster et al., 2006), the Local coupled land-

atmosphere Modelling Project (LoCo) (van den Hurk and Blyth, 2008) and the Land-Use and 

Climate, Identification of robust impacts (LUCID) project (Pitman et al., 2009). These 

projects aim at transforming the ability of LSMs to realistically represent land surface 

processes and fluxes and the complex interactions and feedbacks with the atmosphere to 

capture the climate sensitivity at different spatial scales. Further, they work on improving the 

specification of the land surface characteristics of their temporal and spatial variability, e.g., 

to assess the sensitivity of surface fluxes to the specification of canopy conductance, leaf area 

index, surface roughness and rooting depth.  

Due to the latest progress, LSMs have developed from simple bucket schemes to more 

realistic land surface representations, including more and more aspects of physical land 

surface modelling, anthropogenic effects and interactions (Pitman, 2003). Vegetation 

dynamics and their responses to environmental conditions, surface and subsurface hydrology, 

dynamic evolution of snowpack and the representations of urban, lake and biogeochemical 

processes are recently implemented in LSMs (Pitman, 2003; van den Hurk et al., 2011). 

However, the major concern of current LSMs is the sufficient representation of land 

heterogeneity at the local to regional scale and sub-grid-scale processes (Bridgman and 

Oliver, 2006; IPCC, 2007b; Pitman, 2003). By not allowing for small-spatial-scale processes, 

their capacity to model future climate change is limited, especially with respect to 

hydrological consequences and their role of coupling and feedbacks (Bridgman and Oliver, 

2006; IPCC, 2007b; Pitman, 2003). Current key uncertainties in RCMs include the role of the 

soil, the cryosphere, human-induced impacts on the land use, land-atmosphere interactions as 

well as land surface parameters, such as vegetation parameters or the depth of the 

hydrological soil reservoir (IPCC, 2007a). Thereby, they typically ignore horizontal 

movement of surface and sub-surface water within the soil. They do not capture basic 
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hydrological processes, such as permafrost, the impact of frozen soil on infiltration or soil 

heat transfer, roots and their effects on moisture availability, the whole issue of groundwater 

(IPCC, 2007b; Muerth and Mauser, 2012; Pitman, 2003). Yet, most of the LSMs do not 

incorporate site-specific soil properties or the influence of soil moisture on heat transfer 

(Muerth and Mauser, 2012). 
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7.5. State of the Art in LSHMs 

Hydrologists have developed empirical, conceptual and more and more physically-based land 

surface hydrological models (LSHMs) spanning a wide range of complexity.  

They have developed from simple reservoir models, producing the runoff unit hydrograph as 

a response to precipitation input for basins and sub-basins, to not-calibrated and physically 

based models, taking in detailed into account the spatial properties of the catchment (Mauser 

and Bach, 2009). 

They go beyond reproducing runoff at gauges of small scale catchment areas and now 

consider in detail the hydrologic land surface processes, thereby capturing land surface 

heterogeneity with high spatial resolution of about 1 × 1 km2 and are more and more 

extending to continental scales (Bharati et al., 2008; Devonec and Barros, 2002; Garcia-

Quijano and Barros, 2005; Kuchment et al., 2006; Kunstmann et al., 2008; Ludwig and 

Mauser, 2000; Mauser and Bach, 2009; Schulla and Jasper, 1999; Wagner et al., 2009). 

Thereby, they describe the characteristics of a wide range of natural vegetation and 

agricultural crops. The physically based models aim at understanding the interactions between 

the different land surface and subsurface compartments, namely soil, vegetation, snow and 

ice, groundwater in producing the resulting river runoff (Ludwig and Mauser, 2000; Ludwig 

et al., 2003a; Ludwig et al., 2003b; Mauser and Schädlich, 1998; Mauser and Bach, 2009; 

Strasser, 1998). They include detailed descriptions of vertical and lateral soil water, ground 

water, including related flow regulations and man-made structures (Koch et al., 2011). They 

describe in detail mass and heat transfer within the soil (Muerth and Mauser, 2012), 

incorporating the effects of frozen soils, vegetation dynamics (Hank, 2008), snow and ice 

dynamics (Prasch et al., 2006; Prasch et al., 2011; Strasser et al., 2007; Weber et al., 2010) as 

well as mass and heat exchange with the atmosphere. Thereby, they capture the major land 

surface processes in the soil-plant-atmosphere continuum with high spatial and temporal 

resolution (Loew, 2008; Loew et al., 2009; Marke , 2008; Strasser and Mauser, 2001).  

The meteorological drivers as input to LSHMs can either be provided by measurements or by 

RCMs. The latter has been used for recent hydrological impact studies on climate change 

scenarios (Marke, 2008; Marke et al., 2011; Kotlarski et al., 2005; Kunstmann and Stadler, 

2005). A major issue in these studies is the scale gap between the RCMs and the hydrological 

impact models, since hydrological models usually act on much finer spatial scale in order to 
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resolve the relevant hydrological processes realistically (IPCC, 2007b; Marke, 2008). 

Thereby, the meaning of large spatial domains is increasing for hydrological models with 

respect to capture impacts of hydrological dynamics and processes on climate and climate 

change (Cloke and Hannah, 2011). 

In contrast to LSMs designed for atmosphere applications, the atmosphere is usually 

considered as an exogenous driver only. Therefore, they do not allow for interactions and 

feedbacks between the atmosphere and the land surface. 
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7.6. Research Objectives – Bi-directional Coupling Approach 

While RCMs allow for exchanging fluxes in a coupled land-atmosphere system, their 

representation of the land surface is usually coarse. Often, they do not sufficiently capture 

important land surface hydrological processes or even neglect hydrologically important land 

surface characteristics. On the other hand, LSHMs describe the processes at the land surface, 

including the surface energy, radiation and water balance with high spatial and temporal 

detail. However, they do not allow for feedbacks between the land surface and the 

atmosphere, since they usually consider the atmosphere as an exogenous driver only. 

Nevertheless, both models use physically based parameterizations and formulations for 

describing the same land surface processes, thereby closing the energy balance at the land 

surface and following the rules of mass and energy conservation. 

Therefore, the basic idea of this thesis was the combination of the advantages of current 

LSHMs with the advantages of existing RCMs. The recent developments in LSMs show that 

there is a huge scientific demand for improving LSMs within RCMs. In the hydrological 

community one is used to deal with climate data, though, the impact of hydrological changes 

on climate has never been discussed as explosive as today. Nevertheless, the scientific tools 

for detailed hydrological simulations are not able to cope with hydrological impacts on 

climate and resulting feedbacks. 

Therefore, a bi-directional coupling approach was developed, that allows for a coupling 

between a LSHM with the atmospheric part of a RCM across the different scales between 

both models. Coupling a LSHM with a RCM has never been investigated explicitly. The 

potential of such an approach has already been recognized e.g. in Chen and Dudhia (2001), 

who suggests to apply LSHMs originally designed for surface hydrology to atmospheric 

applications. Van den Hurk et al. (2011) stimulates a rethinking of the concept of fixed land 

models that are driven by fixed atmosphere forcings in various scientific arenas (weather 

prediction, catchment hydrology, ocean science).  

By coupling a LSHM bi-directionally with a RCM, the RCM would benefit from the 

advanced understanding and representation of the land surface from the LSHM. In return, the 

LSHM would profit from the possibility to include feedback effects between the high 

resolution land surface and the atmosphere. 
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Overall, these improvements could lead to a scientific benefit in modelling and understanding 

land-atmosphere interactions and, thus, reduce uncertainties within current climate 

projections. 

While LSHMs already deal with studying of the land surface under the influence of changing 

meteorological conditions, the bi-directional coupling approach opens the opportunity for 

hydrological models to investigate hydrological impacts at the land surface on the climate, 

e.g., due to climate or land use change. This includes possible benefits, impacts and links to 

related issues, such as water and food supply, energy, health, and biodiversity.  

Within the framework of the GLOWA-Danube project within which this work took place, the 

developed coupling approach was implemented in the LSHM PROMET and the RCM MM5. 

These models were applied and adapted for the modelling domain of Central Europe. 
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8. PUBLICATIONS 

8.1. Framework of the Thesis 

This cumulative thesis includes three integral publications forming the framework of this 

thesis. Thereby, each publication can be put in the overall context of the thesis, addressing the 

research objectives and goals as described. Hence, Figure 8.1.1 illustrates the continuity of the 

publications within the framework.  

While the first publication describes an integral method for improving land use/cover 

heterogeneity information, it can be regarded as a substantial part of the data acquisition and 

preparation for the bi-directional coupling approach between PROMET and the atmospheric 

part of MM5 that is further described in publication II.  

The main focus of publication II is the model comparison between the LSM within the RCM 

MM5 (NOAH) and the LSHM PROMET and the methodical description of the coupling 

approach. On the basis of the model comparison, the differences between the model results 

are explained.  

While results are shown and discussed within publication II for the whole coupling domain of 

Central Europe, they are finally validated and compared with measurements for the specific 

Upper Danube watershed in the study of publication III. 
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Land Use and Land Cover Information

§ The Role of land use and land cover in LSMs
§ Spatial and temporal aspects of land surface heterogeneity   

and impact on evapotranspiration
§ Improvement of land surface heterogeneity information

Bi-directional coupling between PROMET and MM5

§ Model comparison between NOAH and PROMET
§ Methodical description of the coupling approach
§ Results

Validation of the Results for the Upper Danube Catchment

§ Validation of temperature and precipitation
§ Validation of the water balance

Data Aquisition and Preperation

Methodology and Results

Results and Validation

Publication I

Publication II

Publication III

 
Figure 8.1.1: Continuity of the publications in the framework of the thesis. 
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8.2. Overview of the publications 

The dissertation encloses the following three integral publications: 

 

Publication I 

Zabel, F., Hank, T.B., Mauser, W.: Improving arable land heterogeneity information in 

available land cover products for land surface modelling using MERIS NDVI data. 

Hydrol. Earth Syst. Sci., 14, 2073–2084, Doi:10.5194/hess-14-2073-2010, 2010 

 

Publication II 

Zabel, F., Mauser, W., Marke, T., Pfeiffer, A., Zängl, G., and Wastl, C.: Inter-comparison of 

two land-surface models applied at different scales and their feedbacks while coupled 

with a regional climate model, Hydrol. Earth Syst. Sci., 16, 1017-1031, 

Doi:10.5194/hess-16-1017-2012, 2012. 

 

Publication III 

Zabel, F. Mauser, W.: Analysis of feedback effects and atmosphere responses when 2-way 

coupling a hydrological land surface model with a regional climate model. A case study 

for the Upper-Danube catchment, Hydrol. Earth Syst. Sci. Discuss., 9, 7543-7570,  

Doi: 10.5194/hessd-9-7543-2012, 2012. 
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8.3. Transition to Publication I 

In the framework of this thesis, the first paper is about the acquisition and preparation of land 

surface information (see Figure 8.1.1). The aim of this paper is to develop a yet not existing 

high resolution land use/cover dataset for the later use with PROMET in the bi-directional 

coupling approach for Central Europe, covering the large spatial area of 1170 × 1170 km2. 

The large spatial extend was necessary to allow for feedbacks within the bi-directional 

coupling approach with the RCM, since climate models are designed to simulate large spatial 

scales. 

The study forms an integral part of this thesis, since the compiled land surface information is 

essential for the further coupling approach. The land cover information has strong impact on 

both albedo and partitioning of energy and matter fluxes from the surface to the atmosphere 

(Ge et al., 2007). It determines the type of vegetation and thereby the seasonal development of 

plant phenology, canopy structure and leaf area, which in turn, through vegetation height and 

leaf area index, determines the aerodynamic and evapotranspirative properties of the land 

surface. 

Therefore, this publication describes a developed approach, combing existent land use 

classifications with high resolution remote sensing NDVI data and statistical datasets. Thus, it 

is shown that land surface heterogeneity, including the crop variability within arable land, is 

an essential aspect for hydrological modelling with high impact on energy and matter fluxes. 

The impact of land surface heterogeneity information on the simulation of evapotranspiration 

is exemplarily demonstrated for the Upper Danube basin.  
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8.4. Publication I 

 

Zabel, F., Hank, T.B., Mauser, W.: Improving arable land heterogeneity information in 

available land cover products for land surface modelling using MERIS NDVI data. 

Hydrol. Earth Syst. Sci., 14, 2073–2084, Doi:10.5194/hess-14-2073-2010, 2010 
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Improving arable land heterogeneity information in 

available land cover products for land surface modelling 

using MERIS NDVI data 

F. Zabel1, T. B. Hank1 and W. Mauser1 

[1] Department of Geography, Ludwig-Maximilians-Universität (LMU), Munich, Germany 

Correspondence to: F. Zabel (f.zabel@iggf.geo.uni-muenchen.de) 

 

Abstract 

Regionalization of physical land surface models requires the supply of detailed land cover 

information. Numerous global and regional land cover maps already exist but generally, they 

do not resolve arable land into different crop types. However, arable land comprises a huge 

variety of different crops with characteristic phenological behaviour, demonstrated in this 

paper with Leaf Area Index (LAI) measurements exemplarily for maize and winter wheat. 

This affects the mass and energy fluxes on the land surface and thus its hydrology. The 

objective of this study is the generation of a land cover map for central Europe based on 

CORINE Land Cover (CLC) 2000, merged with CORINE Switzerland, but distinguishing 

different crop types. Accordingly, an approach was developed, subdividing the land cover 

class arable land into the regionally most relevant subclasses for central Europe using 

multiseasonal MERIS Normalized Difference Vegetation Index (NDVI) data. The satellite 

data were used for the separation of spring and summer crops due to their different 

phenological behaviour. Subsequently, the generated phenological classes were subdivided 

following statistical data from EUROSTAT. This database was analysed concerning the 

acreage of different crop types. The impact of the improved land use/cover map on 

evapotranspiration was modelled exemplarily for the Upper Danube catchment with the 

hydrological model PROMET. Simulations based on the newly developed land cover 

approach showed a more detailed evapotranspiration pattern compared to model results using 

the traditional CLC map, which is ignorant of most arable subdivisions. Due to the improved 
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temporal behaviour and spatial allocation of evapotranspiration processes in the new land 

cover approach, the simulated water balance more closely matches the measured gauge.  

Introduction 

The land surface and its properties are highly influenced by human activities such as 

agriculture or surface sealing. Land use/cover information is a key component of climate and 

hydrological models since the land cover primarily controls the energy fluxes on the land 

surface (Monteith and Unsworth, 1990; Lu and Shuttleworth, 2002; Masson et al., 2002). In a 

land use/cover map, each pixel of the land surface is associated to a label that characterizes 

the land use/cover following a predefined nomenclature. The accuracy of land use/cover 

products has a strong effect on the model results (Ge et al., 2007). The regional hydrological 

relevance of the mapped agricultural land cover heterogeneity is the focus of this paper. 

Existing land use/cover maps 

Thanks to the development of new remote sensing sensors with improved spatial and spectral 

resolution, various global, regional and local classifications with a spatial resolution of 1 km 

or even higher exist (Defries and Belward, 2000; Cihlar, 2000; Herold et al., 2007). 

ECOCLIMAP, for example, is a well-known global land cover product with a spatial 

resolution of 1 km (Masson et al. 2002). The Global Land Cover (GLC) 2000 classification 

compiled by the Joint Research Centre (JRC) and the European Space Agency (ESA) using 

SPOT-4 remote sensing data also features a spatial resolution of 1 km (Bartholomé and 

Belward, 2005). As a successor of GLC 2000, GLOBCOVER uses ENVISAT MERIS fine 

resolution data (300 m) for mapping the global land cover (Arino et al., 2007; Defourny et al., 

2006). The MERIS images used for the GLOBCOVER product were acquired between 

January 2005 and June 2006 within the frame of the ESA GLOBCOVER project (Bicheron et 

al., 2008). The data are provided by POSTEL (Pôle d’Observation des Surfaces continentales 

par TELédétection). These land cover products use different thematic legends but are fully 

compatible with the LCCS (Land Cover Classification System) used by the Food and 

Agriculture Organisation (FAO) and the United Nations Environment Programme (UNEP), 

which comprises 22 different types of land cover (Di Gregorio et al., 2000). As these maps 

provide global land cover information, they may not necessarily be suitable for regional or 

local studies. The CORINE Land Cover (CLC) classification is the most detailed regional 

land cover product available for Europe. It distinguishes 44 classes of land cover with a 
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spatial resolution of 100 m (Heymann et al., 1994; EEA, 2006; Bossard et al., 2000). The data 

are available for download at the EEA (European Environmental Agency). Many studies 

comparing the available land cover products e.g. CLC 2000 and GLC 2000 (Neumann et al., 

2007; Herold et al., 2007) provide information on applicability and accuracy of the different 

maps. 

Heterogeneity of arable land 

Energy and matter fluxes are influenced directly by the land surface. Vegetation is a key 

element for SVAT (Soil-Vegetation-Atmosphere-Transfer) models, regarding its function as 

an interface between the land surface and the atmosphere (e.g. as a regulator of transpiration) 

(Monteith and Unsworth, 1990). The land surface has a strong feedback effect on the 

atmosphere and hence on the climate (Bounoua et al., 2000). Unfortunately most global and 

regional land cover datasets derived from satellites group croplands into just a few categories, 

thereby excluding information that is critical for answering key questions of current research 

(Monfreda et al. 2008; Herold et al., 2007). According to CLC, arable land accounts for 46 % 

of the study area and thereby represents the class with the largest proportion of all land cover 

classes in central Europe. However, croplands include a variety of species with different 

phenology and physiology (Lokupitiya et al., 2009).  

Exemplarily shown in Figure 8.4.1 for maize and winter wheat based on the temporal 

development of Leaf Area Index (LAI), the growth cycles of specific crops may differ largely. 

While the main growth period of winter wheat occurs between May and June, the 

measurements show that maize grows fastest between July and August.  
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Figure 8.4.1: Seasonal development of LAI for maize and winter wheat for a test side in southern 
Germany (April to October 2004). Vertical error bars represent the minimum and maximum 
observations. 

The ground based LAI measurements shown in Figure 8.4.1 were collected during a field 

campaign conducted in southern Germany (approx. 25 km south-west of the city of Munich), 

monitoring maize and winter wheat stands during the growing season in 2004. The data points 

represent values of total LAI, measured by means of the Plant Canopy Analyzer LAI-2000 

instrument (LICOR Inc., Lincoln, NE, USA). Each point corresponds to the average of five 

individual sample points within a winter wheat and a maize stand respectively. Vertical error 

bars indicate the observed minimum and maximum within each of the test fields. Although 

the investigated stands were comparably homogenous and strongly developed, which may 

cause the absolute values to appear slightly elevated compared to less well developed fields, 

the general seasonal growth pattern can be considered representative for these crops in 

southern Germany. The distinct difference of the temporal dynamics of leaf area accumulation 

and decrease of wheat and maize accounts well for the characteristic seasonal growth patterns 

of both crops. While the wheat site was ripening during July and already harvested at the 

beginning of August, the maize site did not reach its maximum development before the 

beginning of September. Since the displayed values were derived from non-destructive 

measurements, only the total LAI of the crops can be considered. If the effect of chlorophyll 

decomposition during the ripening phase is additionally taken into account, the seasonal 
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disparities between both crops would become even more apparent. Nonetheless, the readings 

displayed in Figure 1 clearly indicate that there is a temporal gap in the seasonal behaviour of 

maize and winter wheat of about 2 months. Bsaibes et al. (2009) showed similar results for 

temporal dynamics of LAI in southern France with a temporal shift forward in time of 

approximately 2 weeks. Those findings support the assumption of this typical seasonal 

behaviour of LAI development for the entire European area of interest. 

The different phenology not only has an impact on the primary productivity during the 

growing season but also on the energy and matter fluxes such as evapotranspiration, sensible 

heat flux or long- and shortwave outgoing radiation as well as on CO2 fluxes or soil moisture 

(Lokupitiya et al., 2009). This must be taken into account when modelling the processes on 

the land surface. A diverse vegetation phenology within the arable land makes it necessary to 

split this class into subdivisions of different crop types. Approaches for unmixing cropland 

out of multitemporal remote sensing data have been carried out successfully using 

NOAA/AVHRR time series (Probeck et al., 2003). Studies for higher resolution information 

nevertheless show that amounts of manual interpretation and cloud-free high spatial resolution 

imagery are required for operational implementation over large areas and in multiple years 

(Lobell and Asner, 2004). However, the approach described in this paper uses existing land 

cover products improving them with the help of remote sensing products combined with 

statistical data. 
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Method 

Area of interest 

The study area is situated in Central Europe and extends 1170 km north-south by 1170 km 

east-west including 18 European countries, 6 of them not being members of the European 

Union (Figure 8.4.2). Plains like the Po Valley, uplands like in central Germany and the Alps 

that mark a climatic boundary between the temperate latitudes and the Mediterranean climate 

dominate the landscape. Altitudes are ranging from the Mont Blanc in the French Alps  

(4.810 m) to the Atlantic Ocean in the north-west and the Mediterranean Sea in the south. In 

between, a wide range of different land covers occurs, which are strongly influenced by man. 

The area is characterized by intense agriculture especially within the fertile lowlands like the 

Upper Rhine or the Po Valley. 
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Figure 8.4.2: Topography (based on SRTM data) of the area of interest, showing the European 
countries as well as the boundaries of the Upper Danube catchment. 

Hydrological model 

The physically based hydrological model PROMET (Processes of Radiation, Mass and 

Energy Transfer) used in this study to investigate the regional impact of agricultural land 

information was developed and validated for the Upper Danube catchment (Mauser and Bach, 

2009; Mauser and Schädlich, 1998). The model can be operated on variable scales, but was 

applied with a spatial resolution of 1 km in this study. Hence, a land use/cover scheme that 
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serves as an input for PROMET at least needs the same spatial resolution. As PROMET uses 

its own land use/cover parameterization, the nomenclature of the land use/cover classification 

and the model parameterization have to match. The parameterization scheme in PROMET 

discerns 27 classes (Table 8.4.1) within the first 17 are different types of land occupied by 

agriculture. The parameterization was created for the watershed of the Upper Danube. The 

included classes therefore are restricted to the regional particularities of the land cover for this 

region (Ludwig et al., 2003). The parameterization of individual land surface classes is due to 

physical plant properties gathered from measurements. Therefore, the plant parameterization 

in PROMET is restricted to specific plant types. Accordingly, mixed vegetation classes like 

"mixed forest" are avoided in PROMET. The motivation for developing a regional land cover 

map for the larger extent of the area of interest is the need for a detailed description of the 

European land cover that allows for two-way coupling of PROMET with the regional climate 

model MM5 (Zabel et al., 2010). 

Table 8.4.1: PROMET land use/cover classes. 

ID PROMET class ID PROMET class ID PROMET class 

1 Extensive Grassland 10 Potato  19 Residential Built-Up 

2 Intensive Grassland 11 Rye 20 Deciduous Forest 

3 Silage  12 Setaside  21 Coniferous Forest 

4 Forage  13 Sugar Beet 22 Rock 

5 Hop  14 Summer Barley 23 Wetland 

6 Legumes  15 Summer Wheat  24 Alpine Vegetation 

7 Maize  16 Winter Barley 25 Natural Grassland 

8 Oat  17 Winter Wheat  26 Glacier 

9 Oleaginous  18 Industrial Built-Up 27 Water 

 

Land use/cover classification 

Fusion of CLC 2000 and CLC Switzerland and adaptation to PROMET 

As this study is concentrating on central Europe, the CLC 2000 (version 9/2007) classification 

was well suited for further processing in order to allow for a later use with the PROMET 

model. CLC 2009 is in progress but not available for all European countries, yet. Since the 44 

CLC 2000 classes do not match the parameterization of vegetation and land cover in 

PROMET, a transformation from the CLC 2000 classification system to the thematic legend 
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of PROMET was necessary. This was done following the conversion scheme shown in  

Table 8.4.2. 

Table 8.4.2: Transformation of CORINE Land Cover 2000 into the PROMET classes. 

ID LABEL3  ID LABEL 
1.1.1. Continuous urban fabric → 19 Residential Built-Up 
1.1.2. Discontinuous urban fabric → 19 Residential Built-Up 
1.2.1. Industrial or commercial units → 18 Industrial Built-Up 
1.2.2. Road and rail networks and associated land → 18 Industrial Built-Up 
1.2.3. Port areas → 18 Industrial Built-Up 
1.2.4. Airports → 18 Industrial Built-Up 
1.3.1. Mineral extraction sites → 18 Industrial Built-Up 
1.3.2. Dump sites → 18 Industrial Built-Up 
1.3.3. Construction sites → 18 Industrial Built-Up 
1.4.1. Green urban areas → 19 Natural Grassland 
1.4.2. Sport and leisure facilities → 19 Natural Grassland 
2.1.1. Non-irrigated arable land →  Arable Land 
2.1.2. Permanently irrigated land →  Arable Land 
2.1.3. Rice fields →  Rice Fields 
2.2.1. Vineyards →  Vineyards 
2.2.2. Fruit trees & berry plantations →  Fruits & Berries 
2.2.3. Olive groves →  Olive Groves 
2.3.1. Pasture →  Pasture 
2.4.1. Annual crops associated with permanent crops →  Arable Land 
2.4.2. Complex cultivation patterns →  Arable Land 
2.4.3. Land principally occupied by agriculture, with significant 

areas of natural vegetation 
→  Arable Land 

2.4.4. Agro-forestry areas → 21 Coniferous Forest 
3.1.1. Broad-leaved forest → 20 Deciduous Forest 
3.1.2. Coniferous forest → 21 Coniferous Forest 
3.1.3. Mixed forest → 20/21 50 % Deciduous Forest, 50 % 

Coniferous Forest 
3.2.1. Natural grasslands → 25 Natural Grassland 
3.2.2. Moors and heathland → 23 Wetland 
3.2.3. Sclerophyllous vegetation → 25 Natural Grassland 
3.2.4. Transitional woodland-shrub → 20 Deciduous Forest 
3.3.1. Beaches, dunes, sands → 22 Rock 
3.3.2. Bare rocks → 22 Rock 
3.3.3. Sparsely vegetated areas → 25 Natural Grassland 
3.3.4. Burnt areas → 25 Natural Grassland 
3.3.5. Glaciers and perpetual snow → 26 Glacier 
4.1.1. Inland marshes → 23 Wetland 
4.1.2. Peat bogs → 23 Wetland 
4.2.1. Salt marshes → 23 Wetland 
4.2.2. Salines → 23 Wetland 
4.2.3. Intertidal flats → 23 Wetland 
5.1.1. Water courses → 27 Water 
5.1.2. Water bodies → 27 Water 
5.2.1. Coastal lagoons → 27 Water 
5.2.2. Estuaries → 27 Water 
5.2.3. Sea and ocean → 27 Water 

 

Although the CLC 2000 classes 'rice fields', 'vineyards', 'fruit trees & berry plantations', and 

'olive groves' are not implemented in the parameterization of PROMET yet (as they are 

irrelevant in the Upper Danube catchment), they were not reclassified in order to be able to 
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introduce the crop specific parameterization to PROMET at a later point in time. The 

compiled classes 'arable land' and 'pasture', which are both not parameterized in PROMET, 

state the basis for a further processing. Since 'mixed forest' does not exist within the land 

cover nomenclature of PROMET, it was evenly distributed into the coniferous and deciduous 

forest category using a uniform pattern (Figure 8.4.3). 

 
Figure 8.4.3: Reclassification of forested areas labelled as 'mixed forest' (m) to an evenly 
distribution of deciduous (20) and coniferous (21) forest. The Pixels are alternately classified to 
coniferous and deciduous. 

Since Switzerland is missing within the CLC 2000, the map was completed with the CLC 

1990 Switzerland classification having a spatial resolution of 250 m and again using a 

different nomenclature of land use/cover classification. Land use/cover change from 1990 to 

2000 in Switzerland is supposed to be negligible. The transformation of the Swiss land cover 

classification to the PROMET classes is shown in Table 8.4.3.  

Table 8.4.3: Transformation of the CORINE Land Cover 1990 Switzerland into the PROMET 
classes. 

ID LABEL1  ID PROMET-LABEL 
11 Urban fabric → 19 Residential Built-Up 
12 Industrial, commercial and transport units → 18 Industrial Built-Up 
13 Mine, dump and construction sites → 18 Industrial Built-Up 
14 Artificial non-agricultural vegetated areas → 19 Residential Built-Up 
21 Arable land →  Arable Land 
22 Permanent crops →  Arable Land 
23 Pasture →  Pasture 
24 Heterogeneous agricultural areas →  Arable Land 
31 Forests → 20/21 Deciduous / Coniferous Forest 
32 Shrub and/or herbaceous vegetation associations → 25 Natural Grassland 
33 Open spaces with little or no vegetation → 25 Natural Grassland 
41 Inland wetlands → 23 Wetland 
51 Inland waters → 27 Water 
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As Table 8.4.3 demonstrates, CLC 1990 Switzerland has a lack of glaciers and no 

differentiation between coniferous and deciduous forest. The glaciers for Switzerland were 

added using the GLOBCOVER glacier classification (Bicheron et al. 2008) as a glacier mask 

for the new classification approach. Furthermore, the Swiss forest was divided into coniferous 

and deciduous forest by using statistical data of the Swiss Federal Statistical Office for each 

canton (Table 8.4.4).  

Table 8.4.4: Statistical distribution of coniferous and deciduous forest [km²] for each Swiss 
canton (Swiss Federal Statistical Office, 2004). 

Canton Coniferous 
Forest 

Mixed 
Coniferous 

Forest 

Mixed 
Deciduous  

Forest 

Deciduous 
Forest 

Total 
Forest 

Not 
classified 

Région 
Lémanique 955 414 278 226 1873 37 

Espace Mittelland 1105 856 693 417 3070 80 

Nordwestschweiz 108 167 229 149 654  

Zürich 165 143 136 46 489  

Ostschweiz 1708 494 361 231 2794 65 

Zentralschweiz 564 327 208 95 1195 19 

Tessin 351 189 139 601 1279 26 
 

First, all Swiss forested area located at elevations above 1200 meters was generally 

reclassified to coniferous forest according to the following rule.  

If the land cover was 'forest' and the altitude was higher than 1200 m, then the land cover was 

reclassified to 'coniferous forest'. 

This corresponds to the climatic limit of deciduous forest in Switzerland. The underlying 

digital elevation model (DEM) used for this decision consisted of 90 m Shuttle Radar 

Topography Mission (SRTM) data. After the entire forest above 1200 m was identified as 

coniferous forest, the rest of the forested area was reclassified following the statistical 

allocation for each canton (Swiss Federal Statistical Office, 2004) (Table 8.4.4), subtracting 

the coniferous forested area above 1200 m that has already been classified. The sections 

'mixed coniferous forest' and 'mixed deciduous forest' of the statistics each have a fraction of 

50 - 90 % of coniferous or deciduous forest respectively but were regarded as unmitigated 

(100 %) coniferous or deciduous forest. 

After the modified and reclassified CLC 2000 and CLC 1990 Switzerland were merged to one 

map, more adaptations were necessary for a subsequent division of the class 'natural 
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grassland'. In order to meet the regional characteristics of the alpine vegetation, the class 

'natural grassland' was further reclassified to 'rock' or 'alpine vegetation' based on three 

assumptions: 

• If the land cover was 'natural grassland' and the altitude was higher than 2400 m, then 

the land cover was reclassified to 'rock'. 

• If the land cover was 'natural grassland' and the altitude was between 1400 m and 

2400 m, then the land cover was reclassified to 'alpine vegetation'. 

• If the land cover was 'natural grassland' and the slope was higher than 30 %, then the 

land cover was reclassified to 'rock'. 

Subdivision of arable land via MERIS NDVI data 

Thus, a land cover map for central Europe was created by merging the CLC 2000 and CLC 

Switzerland into one consistent land use/cover map and translating them into the PROMET 

nomenclature. Further, it was necessary to divide the class 'arable land' into subclasses in 

order to cover the natural heterogeneity of different crop types in central Europe. Figure 8.4.1 

demonstrates the different phenological development of maize and winter wheat, using LAI as 

example. The context of these measurements can be transferred to the Normalized 

Differenced Vegetation Index (NDVI), because of a strong correlation between LAI and 

NDVI (Baret and Guyot, 1991; Bach, 1995). In order to classify the distinct phenological 

behaviours of different crops according to their photosynthetic activity (maximum LAI/NDVI 

in spring or summer), a multiseasonal NDVI dataset gathered from POSTEL (Pôle 

d‘Observation des Surfaces continentales par TELédétection) was taken into account 

(Bicheron et al., 2008). With a spatial resolution of 300 m, it provides information about the 

photosynthetic activity of vegetation in a two monthly temporal resolution. The dataset can be 

accessed online free of charge from bimonth 6, 2004 to bimonth 3, 2006 via the POSTEL 

portal. This approach uses two NDVI scenes of bimonth 3 (May, June) and bimonth 4 (July, 

August) from the year 2005, since the different photosynthetic activities at these points in 

time can be used to make assumptions about the type of crop that is growing (Figure 8.4.1). 

Preparing the data for a change detection approach, the bimonth 4 imagery was subtracted 

from bimonth 3 (Figure 8.4.4). The blue coloured areas in Figure 8.4.4 indicate a phenological 

behaviour of crops with a photosynthetic maximum in spring while red coloured areas 

indicate a temporal shift of plant activity to summer. Obviously, within the area of interest, 
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significant distinctions in temporal change of NDVI can be made. It is striking that some 

regions like the northern part of the Po Valley, are clearly distinguished from others. 

 
Figure 8.4.4: Temporal change of MERIS NDVI, masked for arable land as a subtraction of 
Bimonth 4 with Bimonth 3. 

Using a decision tree as shown in Figure 8.4.5, the change of NDVI, masked with the area of 

arable land was classified into three different phenological classes. 
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Figure 8.4.5: Decision tree for the differentiation of three phenological categories (spring, 
summer, equal) using the change signal of two MERIS NDVI images for Bimonth 3 and 
Bimonth 4 2005.  

The NDVI may return values between 0 and 1 for the dry land surface. Detected changes 

falling below 0.1 were treated as being within a range of uncertainty and thus were classified 

as 'equally-active'. Changes exceeding 0.1 were classified as 'spring-crops' or 'summer-crops' 

respectively. 
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Figure 8.4.6: Phenological subclasses of arable land from CLC after splitting with MERIS 
NDVI. 

As a result it is possible to differentiate between the phenological classes 'spring-crops', 

'summer-crops' and vegetation that does not show a change in activity within this time period, 

called 'equally active' (Figure 8.4.6). The denotation 'summer-crops' groups all kinds of crop 

plants like maize, potato, sugar beet or legumes that show a phenological behaviour with the 

highest rate of growth in summer and that significantly exist within the area of interest, while 
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'spring-crops' are e.g. winter wheat, winter barley, rape, oat or rye with highest rates of growth 

in spring. Regions dominated by 'summer-crops' can be recognized e.g. in the Rhine Valley 

(Figure 8.4.6). The Po Valley shows a separation into 'summer-crops' north and 'spring-crops' 

south of the Po. Along the Po River, 'equally-active' land was classified. While central 

Germany, Poland as well as the Czech Republic are mostly covered with 'spring-crops', 

Hungary, Croatia in the east but also the Netherlands and Belgium in the north-west are 

mainly covered by 'summer-crops'. The resulting map subsequently is used for a further 

statistical subdivision of these phenological-classes to specific crop types. 

Statistical subdivision of phenological classes 

This was done with the help of statistical information from the Statistical Office of the 

European Communities (EUROSTAT) for each so-called NUTS region (Nomenclature des 

unités territoriales statistiques) in the area of interest. The NUTS regions represent 

administrative regions within the countries of the European Union. The EUROSTAT dataset 

used for this study includes information on the 2006 acreage of different crop types for each 

NUTS region. The gathered classes 'spring-crops', 'summer-crops', 'equally-active' and 

'pasture' (Figure 8.4.6) are subdivided with the help of the statistical dataset. The classes 'rice', 

'vine' and 'olives' are already spatially located within the CLC 2000 dataset and therefore do 

not need to be taken into account for the statistical reclassification. A check-up showed that 

the sum of area of these classes agrees fairly well with the EUROSTAT statistics for each 

NUTS region. All vegetables of the statistics were merged with the class 'fruits & berries'. 

Therefore, the class label changed to 'vegetables, fruits & berries'. Among the other classes, 

the absolute amount of area associated to each crop type was converted into the percentage of 

arable land for each NUTS region. Finally, the regional distribution was based on a decision 

scheme as shown in Table 8.4.5. According to the priorities listed in Table 8.4.5, the first 

class to be distributed was winter wheat since it is the most widely spread crop type in central 

Europe. As winter wheat is a spring active crop type, it was evenly distributed into the class 

'spring-crops' for each NUTS region. If the spring crop area derived from MERIS was too 

small to contain all the winter wheat area that should be distributed according to the statistics, 

the remaining winter wheat areas were further distributed evenly among the class 'equally-

active', according to the 'Fill-up-Order' in Table 8.4.5. Following the priority of Table 8.4.5, 

the next crop type to be distributed was maize as it is the second most frequent land use of 

arable land within the area of interest. 



Publication I 
 

 

- 57 - 

Table 8.4.5: Priority list and 'Fill-up-Order' for the statistical reclassification of 'spring-crops', 
'summer-crops' and 'equally-active' crops into 15 different types of arable land. 

Priority Class Fill-up-Order 
 Group: Summer-Crops  
2. Maize 1. Summer-Crops 
3. Silage 2. Equally-Active 
10. Potato 3. Spring-Crops 
11. Sugar Beet 4. Pasture 
15. Legumes 5. Vegetables, Fruits & Berries 
 Group: Spring-Crops  
1. Winter Wheat 1. Spring-Crops 
4. Winter Barley 2. Equally-Active 
9. Oleaginous 3. Summer-Crops 
12. Oat 4. Pasture 
13. Rye 5. Vegetables, Fruits & Berries 
 Group: Grassland  
5. Extensive Grassland 1. Pasture 
6. Intensive Grassland 2. Equally-Active 
7. Forage 3. Spring-Crops 
  4. Summer-Crops 
  5. Vegetables, Fruits & Berries 
 Group: Set-aside  
8. Set-aside 1. Equally-Active 
  2. Pasture 
  3. Summer-Crops 
  4. Spring-Crops 
  5. Vegetables, Fruits & Berries 
 Group: Vegetable, Fruits & Berries  
14 Vegetables, Fruits & Berries 1. Vegetables, Fruit & Berries 
  2. Spring-Crops 
  3. Equally-Active 
  4. Summer-Crops 
  5. Pasture 
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Results 

Resulting land use/cover map 

As a result, the percentage of each individual subclass of arable land matches the statistical 

percentage derived from the EUROSTAT statistical data for each NUTS region. However, 

due to the purely statistical distribution, there is no guarantee for the correct spatial 

positioning of the pixels. Hence, an accuracy matrix as it is often shown to demonstrate the 

significance of a land use/cover classification cannot be applied at this point. Nonetheless, the 

likelihood for a correct placement of a pixel was increased by using the multitemporal NDVI 

dataset.  
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Figure 8.4.7: Resulting land cover map based on CLC 2000 and CLC 1990 Switzerland and 
being transformed to the PROMET classification, after phenological subclasses of arable land 
gathered by MERIS NDVI were further statistically reclassified with the help of the 
EUROSTAT dataset. 

Figure 8.4.7 shows the resulting land cover map including 18 subclasses of land occupied by 

agriculture at a spatial resolution of 1 km. In order to allow for subscale modelling, the same 



Publication I 
 

 

- 60 - 

approach was applied for the generation of a 100 m land cover map using CLC (100 m) as 

base data. In this case, the MERIS NDVI images were resampled from 300 m to the final 

resolution of 100 m. 

The patterns of Figure 8.4.6 still can be recognized in Figure 8.4.7 e.g. in the region of the 

Rhine Valley that is dominated by maize according to the statistical reclassification. This can 

be taken as an indication for the reliability of the NDVI approach, since the NUTS statistics 

match the NDVI in the Rhine Valley well (compare Figures. 8.4.6 and 8.4.7.). In addition, the 

segregation within the Po-Valley is reproduced in Figure 8.4.7 in comparison with Figure 

8.4.6. Partly, the agricultural areas are fragmented and heterogeneous, due to the applied even 

distribution method. Due to a lack of the statistical data for Croatia as well as for Bosnia and 

Herzegovina, all 'summer-crops' in that area were reclassified to maize and all 'spring-crops' 

to winter wheat, while the class 'equally-active' was labelled as pasture. 

 

Impact on simulated evapotranspiration 

As the new land use/cover approach is accounting for the spatial heterogeneity of arable land 

and thus is respecting the different phenological behaviour of different crop types, modelled 

evapotranspiration is expected to be improved using the new land use/cover approach. 

Therefore, the model PROMET (Mauser and Bach, 2009) was applied to the simulation of the 

hydrology of the Upper Danube catchment exemplarily, using three different land use/cover 

schemes as input data.  

The first two land cover schemes both consisted of the reclassified CLC 2000 and CLC 

Switzerland neglecting the subdivision of arable land. A plant parameterization of the class 

'arable land' is not possible. Only a mixed parameterization of a homogeneous class 'arable 

land' could handle the diversity of crops within the class 'arable land'. Nonetheless, this cannot 

reasonably represent reality. Therefore, all arable land was consequently reclassified to maize 

(CLC maize) respectively winter wheat (CLC winter wheat) since PROMET is well 

parameterized for the simulation of these crop types. Maize and winter wheat were assumed 

to represent summer (maize) and spring crops (winter wheat) respectively as these classes 

state two possible extremes. The third land cover scheme finally consisted of the improved 

land cover approach mapped in Figure 8.4.7 (New approach). Investigating the hydrological 

impact, the evapotranspiration was modelled with PROMET using a spatial resolution of 
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1 km and a temporal increment of 1 hour for the time period from 1971 – 2000. The model 

was driven by spatially interpolated meteorological data from 277 weather stations (Mauser 

and Bach, 2009). 

 
Figure 8.4.8: Modelled mean monthly evapotranspiration (1971-2000) in May and August with 
three different land use/cover classification schemes implemented in PROMET (CLC winter 
wheat, CLC maize and the new land use/cover approach) for the Upper Danube catchment. 

Comparing the modelled monthly mean evapotranspiration of 'CLC winter wheat' and 'CLC 

maize' (Figure 8.4.8) for the month of May as well as for August, a distinct behaviour in 

evapotranspiration due to the different phenological development of spring- and summer 

crops is obvious. While the 'CLC winter wheat' classification in May already shows high 

values of monthly evapotranspiration for the winter wheat areas of up to 70 mm, the maize 

classification (CLC maize) does not contribute to evapotranspiration yet (Figure 8.4.8). In 

August, however, the winter wheat already is harvested and therefore does not transpire 

anymore, while the maize transpires between 80 mm and 100 mm per month and therefore is 

heavily involved with the catchment evapotranspiration. This clearly demonstrates a huge 

impact of the land use on the simulated evapotranspiration. Regional differences of up to 

80 mm per month depending on whether the land use is maize or winter wheat may occur. 

Only within the new land use approach, it is possible to trace spring and summer active crops 
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in the modelled evapotranspiration. This gives a more realistic picture of the spatial behaviour 

of evapotranspiration in May and August. Spatial patterns of simulated evapotranspiration for 

the new land use approach in Figure 8.4.8 indicate the different phenological state of spring 

and summer crops in May and August respectively. While spring active crops are dominating 

the northern part of the catchment area, summer active crops are dominating the eastern part 

according to the land cover distribution assumed in Figure 8.4.7. Even more, the influence of 

the new land use approach on the evapotranspiration is supposed to be stronger in regions 

where a clear majority of spring or summer crops is cultivated, such as the Upper Rhine 

Valley, which is clearly dominated by maize. Other studies also found significant differences 

in evapotranspiration and energy fluxes corresponding to different crop types using similar 

model approaches (Richter and Timmermans, 2009).  

Validation of the Water Balance 

Figure 8.4.8 clearly indicates a huge impact of the land use/cover on the simulated 

evapotranspiration. This affects the simulated water balance in the Upper Danube catchment. 

In order to quantify the improvement of the new land use/cover approach, the water balance 

was calculated using the three land use/cover classifications 'CLC winter wheat', 'CLC maize' 

and the new land use approach. The resulting runoff was compared to the measured runoff 

volume at the outlet gauge in Achleiten. Since the Upper Danube catchment is evenly 

fractioned in spring and summer crops and therefore, the yearly evapotranspiration sums 

between the three land use classifications do not differ largely, the water balance for the 

whole year is supposed to be similar. Only during the growing season from May to 

September, the new land use approach has an impact on the amount of evapotranspiration and 

therefore on the water balance. Runoff formation in the Upper Danube catchment is 

predominantly influenced by snow cover dynamics. In order to clearly identify the 

improvement caused by the new land cover approach, the month of August was selected for 

further analysis since the influence of the snow cover was supposed to be comparably small. 
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Table 8.4.6: Water balance of three PROMET simulations using the CLC winter wheat, the 
CLC maize and the new land use/cover approach in comparison to the measured gauge in 
Achleiten as mean values from 1971 - 2000 for the month of August. 

 Precipitation Evapotranspiration Runoff Measured Gauge (Achleiten) 

CLC winter wheat 117 mm 55 mm 62 mm 55 mm 

CLC maize 117 mm 74 mm 43 mm 55 mm 

New approach 117 mm 64 mm 53 mm 55 mm 

 

The observed monthly mean precipitation in August (1971-2000) was 117 mm. PROMET 

returned mean monthly evapotranspiration of 55 mm (CLC winter wheat), 74 mm (CLC 

maize) and 64 mm (New approach) respectively. According to the water balance, this leads to 

mean monthly runoff values of 62 mm (CLC winter wheat), 43 mm (CLC maize) and 53 mm 

(New approach) respectively. Compared to the measured runoff value gathered from the 

outlet gauge in Achleiten (55 mm), the new approach significantly improves the model results 

(see Table 8.4.6). 
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Conclusions 

The changing characteristics of crop phenology in the course of the growing season due to 

differences in albedo, crop height, aerodynamic properties and leaf and stomata properties 

affect the mass - and energy fluxes on the land surface (Allen et al., 1998). As shown, LAI 

measurements clearly indicate a heterogeneous phenological behaviour of different crop 

types. In order to describe these effects in a physical model, a land use/cover scheme is 

necessary that supplies adequate heterogeneity with high spatial resolution, in combination 

with an accurate classification and parameterization of the plants properties. By grouping 

various crop types into only one mixed class of 'arable land', most available land use/cover 

products cannot take the heterogeneity within the different crops into account. Therefore, we 

developed a land cover map that uses the high resolution of the CLC classification but 

comprises the heterogeneity of arable land. Thus, phenological classes due to multiseasonal 

MERIS NDVI imagery data were compiled in order to distinguish crop types following their 

different phenological behaviour. Subsequently, the generated phenological classes were 

subdivided following statistical data from EUROSTAT for each NUTS region. The land 

use/cover scheme strongly affects the simulated evapotranspiration of a hydrological model. 

Therefore, modelling the evapotranspiration for the Upper Danube catchment with the 

hydrological model PROMET, the new land use approach was compared to two possible 

extremes: In one case, the class arable land was interpreted as pure spring crop (winter 

wheat), whereas in a second case the complete arable land area was assumed to represent a 

summer crop (maize). With the new heterogeneous land cover approach, the regional 

characteristics of arable crops can be addressed with a higher level of detail. Due to those 

improvements, the simulated monthly evapotranspiration especially in May and August shows 

large differences in comparison with the simulations using the two possible homogeneous 

classifications, especially in regions dominated by spring or summer crops respectively. The 

different spatial and temporal behaviour of modelled evapotranspiration again affects the 

water balance for the Upper Danube catchment in case of the three land use classifications. 

The modelled runoff was compared to measured data from the outlet gauge in Achleiten for a 

30-year period from 1971 to 2000. The new land use approach could improve the model 

results significantly. The importance of land use/cover information is increasing when 

investigating the interactions between the land surface and the atmosphere (Tian et al., 2004). 

However, feedback effects from the land surface to the atmosphere are not considered in this 

study. Vegetation development and land use/cover heterogeneity have a significant influence 
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on climate model simulations such as predictions of surface temperature and precipitation. 

Thus, for the application in climate models, both the spatial and temporal distributions of 

vegetation are required with a high level of detail (Lu and Shuttleworth, 2002).  
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8.5. Transition to Publication II 

Publication II is introducing the bi-directionally coupling approach between the LSHM 

PROMET and the RCM MM5 and demonstrates the resulting effects (see Figure 8.1.1). 

Thereby, the high resolution land use/cover dataset, compiled in publication I is used as an 

essential input for the PROMET model, allowing for distinguishing a broad palette of 

vegetation and crops, including a variety of natural and artificial surfaces within the 

simulation of the land surface fluxes. A detailed comparison in publication II demonstrates 

the huge differences between the NOAH-LSM as the integral LSM of the RCM MM5 and the 

LSHM MM5. Throughout the comparison, the impact of the different physical formulations 

(see Appendix 12.1), different parameterizations of plants and soil, and the different spatial 

scales, on the offline (uncoupled from the atmospheric model) model results are investigated. 

After the offline model comparison, the impacts of online (fully coupled with the atmospheric 

model) coupling PROMET with MM5 on the atmosphere and the land surface by feedback 

effects, are investigated for the model domain of Central Europe. Thereby, the different 

spatial behaviour of the resulting evapotranspiration within the online coupled approach is 

analyzed more precisely by focusing on different regions within the model domain. 

The study of publication II clearly proves that the LSHM PROMET is able to provide the 

lower boundary conditions for the atmospheric part of MM5 within the introduced coupling 

approach. By allowing for feedbacks between the LSHM and MM5, both land-atmosphere 

and atmosphere-land matter and energy fluxes are affected by different spatial and temporal 

behaviour. 

It is explained that, for hydrological models in general and all downstream models that are 

driven offline with RCM output, online coupling overcomes systematic inconsistencies that 

appear in the offline coupled approach. For the first time, this study quantifies these 

inconsistencies exemplarily for the PROMET model. 
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8.6. Publication II 

 

Zabel, F., Mauser, W., Marke, T., Pfeiffer, A., Zängl, G., and Wastl, C.: Inter-comparison of 

two land-surface models applied at different scales and their feedbacks while coupled 

with a regional climate model, Hydrol. Earth Syst. Sci., 16, 1017-1031, 

Doi:10.5194/hess-16-1017-2012, 2012. 
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Abstract 

Downstream models are often used in order to study regional impacts of climate and climate 

change on the land surface. For this purpose, they are usually driven offline (i.e., 1-way) with 

results from regional climate models (RCMs). However, the offline approach does not allow 

for feedbacks between these models. Thereby, the land surface of the downstream model is 

usually completely different to the land surface which is used within the RCM. Thus, this 

study aims at investigating the inconsistencies that arise when driving a downstream model 

offline instead of interactively coupled with the RCM, due to different feedbacks from the use 

of different land surface models (LSM). Therefore, two physically based LSMs which 

developed from different disciplinary background are compared in our study: while the 

NOAH-LSM was developed for the use within RCMs, PROMET was originally developed to 

answer hydrological questions on the local to regional scale. Thereby, the models use 

different physical formulations on different spatial scales and different parameterizations of 

the same land surface processes that lead to inconsistencies when driving PROMET offline 

with RCM output. Processes that contribute to these inconsistencies are, as described in this 

study, net radiation due to land use related albedo and emissivity differences, the 

redistribution of this net radiation over sensible and latent heat, for example, due to different 
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assumptions about land use impermeability or soil hydraulic reasons caused by different plant 

and soil parameterizations. As a result, simulated evapotranspiration, e.g., shows considerable 

differences of max. 280 mm yr−1. For a full interactive coupling (i.e., 2-way) between 

PROMET and the atmospheric part of the RCM, PROMET returns the land surface energy 

fluxes to the RCM and, thus, provides the lower boundary conditions for the RCM 

subsequently. Accordingly, the RCM responses to the replacement of the LSM with overall 

increased annual mean near surface air temperature (+1 K) and less annual precipitation  

(-56 mm) with different spatial and temporal behaviour. Finally, feedbacks can set up positive 

and negative effects on simulated evapotranspiration, resulting in a decrease of 

evapotranspiration South of the Alps a moderate increase North of the Alps. The 

inconsistencies are quantified and account for up to 30 % from July to September when 

focused to an area around Milan, Italy. 
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Introduction 

A multitude of studies deal with possible regional impacts of global climate change on a 

variety of land surface processes. These studies use the results of regional climate models 

(RCMs), which describe the processes in the atmosphere and at the land surface, thus, 

including atmosphere interactions both for oceans and land. Modelling climate, therefore, 

always requires an adequate representation of land surface processes within the climate 

model. The changing meteorological drivers are further used as input to downstream models, 

which determine the impacts of the simulated climate change on the processes to be 

investigated. Downstream models are used to analyze the impacts of climate change on a 

broad palette of natural and/or societal developments and vulnerability including the land 

surface water cycle, land use and vegetation, agricultural yield and food security, human 

health, energy consumption, and many more (IPCC, 2007). Thereby, they usually focus on 

specific thematic questions that RCMs can not or only insufficiently address and on specific 

regions at high spatial resolution. 

Nonetheless, the complexity and heterogeneity of land surface processes and the need for a 

more detailed view of the land surface is a long standing discussion in atmospheric sciences 

(Dickinson et al., 1991; Henderson-Sellers et al., 2008). There is evidence that more advanced 

and robust land surface models (LSMs), which increasingly consider the spatial heterogeneity 

(land-use, soil, elevation) and complexity of land surface biophysical and hydrological 

processes in the soil-plant-atmosphere continuum on an appropriate scale will reduce the 

uncertainties in the current modelling of land-atmosphere processes (Essery et al., 2003; 

Hagemann et al., 2001; Molod and Salmun, 2002; Seth et al., 1994; Yu, 2000). 

Meanwhile, hydrologists have developed empirical, conceptual and more and more 

physically-based land surface hydrological models (LSHMs) spanning a wide range of 

complexity. They include detailed descriptions of vertical and lateral soil water and energy 

flows, vegetation dynamics and related flow regulations, snow and ice dynamics as well as 

energy and mass exchange with the atmosphere, and, thereby, cover the major land surface 

processes in the soil-plant-atmosphere continuum. However, in contrast to LSMs designed for 

atmosphere applications, the atmosphere is usually considered as an exogenous driver only. 

At the same time as RCMs have become capable of physically downscaling the GCMs 

outputs to a resolution of 50 - 10 km, LSHMs evolved from their original application in small 

watersheds to large basins. With the improving spatial resolution of the RCMs and the 
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increasing areal coverage of the LSHMs, the scales covered by the two model families tend to 

converge (Chen et al., 1996; Henderson-Sellers et al., 1995; Yang et al., 1998). The RCMs' 

output at high spatial resolution now allows downstream impact models on the local to 

regional scale to use the results of RCM simulations offline as model input (Figure 8.6.1a). 

By now, the hydrological community uses simulation results from RCMs as input for their 

LSHMs (Kotlarski et al., 2005). However, the LSHMs operating at the land surface usually 

represent land surface in a totally different manner than the LSMs used within the RCM. 

Due to the different scales between impact models and RCMs and because of the huge 

numerical load the impacts are usually assessed with, downstream impact models are usually 

run offline. This means that they consider the meteorological outputs of the RCMs as 

exogenous input only and do not feed back to the atmosphere. However, land-atmosphere 

interactions are largely driven by soil moisture and soil temperature, vegetation dynamics and 

evapotranspiration as well as snow and ice dynamics (Fischer et al., 2007; Koster et al., 2004; 

Koster and Suarez, 1994; Martin, 1998; Orlowsky and Seneviratne, 2010; Pitman, 2003; 

Schär et al., 2004; Zeng et al., 2003). A consistent analysis of the regional impacts of climate 

change, therefore, would request to have the impact models directly coupled within the RCMs 

to be able to explicitly consider the feedbacks. 

While coupling a RCM with a physically based hydrological downstream impact model 

offline, the model chain results in two LSMs - one within the regional climate and one within 

the impact model, both describing the same land surface processes (Figure 8.6.1a). However, 

they are not identical which leads to inconsistencies within the offline model chain. They may 

have their causes in different scales between the LSMs, different coverage of land surface 

categories, different process descriptions and different parameterizations, etc. Although these 

inconsistencies are hardly ever quantified, they are only justified when land-atmosphere 

interactions are weak. 

The following analysis uses a case study to compare two LSMs, one representing a LSM used 

within a RCM and a hydrological downstream climate impact model. It further aims at 

investigating the inconsistencies which arise due to different feedbacks from using the 

hydrological impact model offline and interactively integrated the impact model within the 

RCM (Figure 8.6.1b). 



Publication II 
 

 

- 76 - 

Methods 

Models and setup 

In order to describe the discrepancies and inconsistencies between a classical LSM used 

within a RCM and a LSHM, we applied the fifth-generation Mesoscale Model (MM5) (Grell 

et al., 1994) together with the NOAH-LSM (Chen and Dudhia, 2001a, b) at a spatial 

resolution of 45 × 45 km2. Besides, from the hydrological model family, we applied the 

LSHM PROMET (Mauser and Bach, 2009) at a spatial resolution of 1 × 1 km2. MM5 was 

modified and adapted to our specific simulation requirements and our model domain (Pfeiffer 

and Zängl, 2009; Zängl, 2002). The MM5 model domain covers most of the European 

continent and has a size of 79 grid-boxes in West-East and 69 grid-boxes in South-North 

direction with the lower left corner at (8.2° W, 35.6° N) and the upper right corner at (43.2° E, 

61.0° N) (Figure 8.6.2) (Pfeiffer and Zängl, 2009). Lateral boundary conditions are provided 

6-hourly by ECMWF ERA-40 reanalysis-data (Uppala et al., 2005). The simulation was 

carried out from 1 July 1995 to 31 December 1999, using a spin-up time of 6 months for all 

model runs. The initial soil moisture conditions were set to field capacity (pF = 2.3) in 

PROMET and were initialized using ERA-40 soil moisture data [Vol-%] in NOAH. 

While the NOAH-LSM was originally developed for the use in regional atmosphere 

applications, PROMET represents a LSHM, originally designed to study the impact of climate 

on hydrology on the local to regional scale. Due to the different demands on each of the 

models, they are supposed to differ in multiple aspects. Therefore, concerning this paper, we 

first conceptually compare both LSMs in terms of different scales, model physics and 

parameterizations. Further, evapotranspiration simulated both with the NOAH-LSM and 

coupled offline with PROMET (in the course of this paper named as PROMET-offline) are 

compared to each other (Figure 8.6.1a). In this case, both models are using the same 

meteorological forcing. The model results of NOAH and PROMET-offline are compared to 

each other in order to quantify the differences when being forced with same meteorological 

data. 
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Figure 8.6.1: a) Principle of driving the hydrological model PROMET offline with data from the 
RCM MM5 within which the NOAH-LSM provides the lower boundary conditions (left). 
b) Interactive coupling of PROMET with the atmospheric part of MM5, thus providing the 
lower boundary conditions via the scaling interface SCALMET (right). 

Interactions between the downstream model and the atmospheric part of the RCM are not 

possible within the offline coupled approach. Downstream models which are only weakly 

affected by feedbacks between the land surface and the atmosphere, e.g., those who study the 

effect of climate change on energy demand for heating buildings, may neglect that issue. 

However, the hydrosphere of the land surface strongly interacts with the atmosphere. 

Therefore, we further interactively (often also called 2-way, bi-directionally or bilaterally) 

couple PROMET with the atmospheric part of MM5, thereby replacing the NOAH-LSM in 

MM5 with PROMET. Thus, PROMET now provides the lower boundary conditions for the 

atmospheric part of MM5 (in the course of this paper named as PROMET-interact) (Figure 

8.6.1b). Another possible option by coupling the NOAH-LSM offline with meteorological 

data coming from the MM5/PROMET-interact simulation is not addressed in this study, since 

it is scientifically irrelevant regarding the downstream model approach. 



Publication II 
 

 

- 78 - 

Due to the substitution of the NOAH-LSM with PROMET, interactions between the RCM 

and the downstream hydrological impact model can now be taken into account. Consequently, 

the atmospheric part of MM5 responses to the replacement of the LSM. Therefore, we 

compare the temperature and precipitation output, simulated both with MM5/NOAH and with 

MM5/PROMET-interact, respectively. Finally, the impact of the feedbacks on simulated 

evapotranspiration is investigated by comparing the offline and the interactively coupled 

PROMET results. 

 A validation and comparison of the model results with measurements is beyond the scope of 

this paper, but will be dealt with in further studies. 

Coupling approach 

The interactions between the land surface and the atmosphere are based on the exchange of 

latent and sensible heat, short and longwave radiation as well as momentum (Campbell and 

Norman, 2000). Since the NOAH-LSM is an integral part of MM5, it is required within the 

RCM to model the land surface processes at the same temporal and spatial resolution as the 

atmospheric model components of MM5. PROMET differs from MM5 both in temporal and 

spatial resolution.  

For the interactive coupling of PROMET with MM5, PROMET substitutes the NOAH-LSM 

within the coupling domain of MM5, extending 1170 × 1170 km2 (Figure 8.6.2). 

Consequently, the coarse meteorological data provided by MM5 (45 × 45 km2) has to be 

downscaled to the higher resolution of the land surface model (1 × 1 km2) for the coupling 

domain. Further, the surface fluxes simulated by PROMET at a resolution of 1 km have to be 

upscaled to the MM5 model resolution. This is done by applying the scaling tool SCALMET 

(Scaling Meteorological variables) (Marke, 2008; Marke et al., 2011). The statistical 

downscaling can either be used with regression based approaches (Daly et al., 2002) or 

empirical gradients (Liston and Elder, 2006), using elevation-dependencies in order to scale 

the meteorological data to the fine resolution grid. The adjustable simulation time step within 

PROMET, which also constitutes the exchange time step between PROMET and MM5, is set 

to 9 minutes in the current study. This allows PROMET to run synchronously with MM5, 

which uses an internal time-step of 135 seconds. 

In addition to the offline downscaling approach, a 2-way (i.e., bi-directional) and, therefore, 

interactive coupling mode was implemented in SCALMET allowing for a linear upscaling of 



Publication II 
 

 

- 79 - 

the scalar surface fluxes (see Figure 8.6.2). In order to close the energy balance within the 

interactive coupled land-atmosphere system, the downscaling as well as the upscaling 

approach strictly conserves mass and energy within the scaling processes in SCALMET for 

each variable. Hence, no bias correction is carried out in the framework of the model runs 

presented in this study. Therefore, any bias of the RCM is inevitably inherited by the LSM 

and vice versa. 
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Study area 

The study area according to the coupling domain is situated in Central Europe and extends 

1170 km North-South by 1170 km East-West including 18 European countries with the lower 

left corner at 3.9° E, 42.9° N and the upper right corner at 20.0° E, 53.3° N. Plains like the Po 

and Upper Rhine Valley, uplands like in central Germany and mountainous regions in the 

Alps, which mark a climatic boundary between the temperate latitudes and the Mediterranean 

climate, compose a complex landscape. Altitudes are ranging from the Mont Blanc in the 

French Alps (4810 m) to the North Sea in the North-West and the Mediterranean Sea in the 

South. The area is characterized by intense agriculture especially within the fertile lowlands 

like the Upper Rhine or the Po Valley and densely populated areas such as the Ruhr region, 

Berlin, or Milan. 
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Comparison of modelling approaches 

Since both applied models developed from different disciplinary background, the concepts 

behind the models vary in many aspects. While the goal of the development of the LSM was 

to implement an appropriate LSM for weather prediction and climate simulations, PROMET 

was developed for hydrological river catchment studies on the local and regional scale. A 

complete description of the NOAH-LSM is given by Chen and Dudhia (2001a, b) and 

Mitchell (2005). A comprehensive model description of PROMET can be found in Mauser 

and Bach (2009).  

Nevertheless, both models describe the pathways of water and energy at the land surface in a 

physically based manner, thus conserving mass and energy and closing the energy balance at 

the land surface without a calibration. They are describing the same land surface processes on 

different scales, thereby using different formulations and parameterizations. Thus, the model 

results basically must be comparable and the differences between the model results must be 

traceable to the conceptual differences. 

Scales 

One major difference is the differently applied spatial resolution. Within the GLOWA-

Danube project, in which this study took place, MM5 and, thus, the NOAH-LSM was applied 

in climate mode with a single domain having a horizontal spatial resolution of 45 km and an 

integration internal time step of 135 seconds. The coarse spatial resolution was set in order to 

be able to simulate long time series for regional climate scenarios until the year 2100 with the 

available computational resources.  

PROMET was applied at 1 km spatial resolution since it has been extensively validated in 

different regions in the world at 1 km spatial resolution (Mauser and Bach, 2009). 

Due to the different spatial resolution, the models' underlying land-use (Figure 8.6.2), the 

digital elevation model (DEM) as well as the soil textures vary in spatial heterogeneity. 

Land use 

The land cover information has a strong effect on albedo, emissivity and partitioning of 

energy and matter fluxes from the surface to the atmosphere (Ge et al., 2007). Land cover 

determines the type of vegetation and, thereby the seasonal development of plant phenology, 
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canopy structure and leaf area, which in turn, through vegetation height and leaf area index, 

determines the aerodynamic and evapotranspirative properties of the land surface. The 

combined vegetation and soil properties determine soil moisture development and the reaction 

of the land surface to changing fractions of latent and sensible heat fluxes influenced by 

vegetation water stress. Figure 8.6.2 shows the land use classifications used by NOAH and by 

PROMET, respectively. 

 
Figure 8.6.2: Land use classification of the NOAH-LSM (45 × 45 km2) for the whole MM5 model 
domain and the inner coupling domain (left). PROMET land use classification (1 × 1 km2) for 
the coupling domain with MM5. 

Impervious surfaces such as scattered urban areas are not classified in the NOAH 

classification, since they are small scaled and, thus, not mapped at the coarse resolution in 

NOAH. While most of the land is homogeneously treated as one class of mixed arable land in 

NOAH, PROMET separates arable land into 17 individual crop types using different crop 

specific parameterizations. A detailed description of the land use/cover map used in PROMET 

is given in Zabel et al. (2010).  

For example, while for Berlin, the Ruhr Region or Milan, NOAH classifies one class 

representing a mixture of dryland, cropland and pasture, the 45 × 45 respective upscaled 

PROMET pixels for each of the same area show a high share of urbanization - e.g.,  

Berlin: 43 %, Ruhr region 55 %, Milan 37 % (Figure 8.6.2). 
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Plant parameterization 

The parameterization for each of the vegetation types in PROMET is taken from literature and 

remote sensing data (Bach, 1995; Mauser and Bach, 2009). Typical daily change of the 

dynamic plant parameters (LAI, albedo, root depth and plant height) were taken from the 

analysis of time series of LANDSAT images in Southern Germany in combination with 

extensive field measurements on typical plant stands (Mauser and Bach, 2009), thereby taking 

into account phenological behaviour of different stands and spatial heterogeneity (Zabel et al., 

2010). 

On the other hand, MM5 uses monthly values of green vegetation fraction (also known as 

Fcover) for each grid cell at the model's spatial resolution in order to allow for seasonal 

phenological behaviour of vegetation. The green vegetation fraction is derived from remote-

sensing NDVI data and accordingly is also used within the NOAH-LSM to control the degree 

of urbanization and impervious surfaces for each grid cell. Due to known problems in NDVI 

scaling (Bach and Verhoef, 2003; Gutman and Ignatov, 1997; Richter and Timmermans, 

2009), vegetation fraction was generally decreased by 30 percent which helped to improve the 

simulation of summertime near surface temperature substantially (Pfeiffer and Zängl, 2009). 

Soil water hydraulic and plant physiology 

Besides different underlying soil textures, the models use different physical approaches to 

describe the pathway of water through the soil and the plant into the atmosphere. Here, 

PROMET uses a more comprehensive approach, following Baldocchi et al. (1987) and Jarvis 

(1976), taking more soil and plant specific parameters into account. NOAH uses soil specific 

water contents [Vol-%] to parameterize wilting point, saturation and field capacity for 

calculating plant transpiration, while PROMET calculates soil water content from soil water 

potential and takes plant specific functions of leaf water potential into account, including a 

functional dependence between stomatal conductance and plant suction when calculating 

plant transpiration. 
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Results and discussion 

Comparing NOAH and PROMET-offline 

The offline coupled model approach results in two LSMs, namely the NOAH-LSM and 

PROMET. The differences between the two models result in different portioning of latent and 

sensible heat, while incoming solar radiation, temperature and precipitation are the same for 

both models in offline configuration (see Figure 8.6.1a). As a result, net radiation shows a 

high temporal correlation between PROMET and NOAH, except for Alpine areas  

(Figure 8.6.3). Here, large differences in snow cover affect shortwave reflection and, thus, net 

radiation. Nevertheless, the PROMET net radiation in the remaining domain is higher than the 

NOAH net radiation (Figure 8.6.3), due to different land surface properties in terms of 

emissivity and albedo. Overall, more energy is available at the PROMET land surface  

(Figure 8.6.3). 

 
Figure 8.6.3: Correlation (r) of net radiation between PROMET-offline and NOAH for daily 
mean values (left) and difference plot of annual mean net radiation between PROMET-offline 
and the NOAH-LSM, scaled to the MM5 spatial resolution (right). 

While albedo is handled as a prognostic variable in both LSMs, snow cover is less dominant 

in the Alpine regions in the NOAH simulation due to the use of different snow modules and 

lower altitudes in mountainous regions caused by scale issues. Due to the higher spatial 

resolution in PROMET, spatial heterogeneity - especially in mountainous regions can be 

captured more realistically. Thus, not only snow processes, but also radiation processes can be 
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calculated with higher spatial and process detail considering, e.g., aspect, slope and altitude 

more accurately. 

Consequently, shortwave reflection increased mainly in the Alpine part of the model domain 

(Figure 8.6.4), reducing net radiation in winter and spring in the PROMET simulation, while 

net radiation is increased in the summer months, when the snowpack has melted in 

mountainous regions. 

 
Figure 8.6.4: Annual mean shortwave reflection [W m-2] (1 January 1996 - 31 December 1999) 
of the NOAH-LSM (left) and PROMET-offline (right). 

The higher net radiation in the PROMET simulation in the non-alpine areas mainly is due to 

differently assumed emissivities of the land surfaces, resulting in overall lower emissivity 

and, therefore, lower longwave outgoing radiation in the PROMET simulation (Figure 8.6.5, 

left). 
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Figure 8.6.5: Difference plot of annual mean longwave outgoing radiation between PROMET-
offline and the NOAH-LSM (left) and difference plot of annual mean Bowen ratio between 
PROMET-offline and the NOAH-LSM (right), each scaled to the MM5 spatial resolution. 

Further, the different portioning of the available energy at the land surface into latent and 

sensible heat is shown in Figure 8.6.5 (right) by subtracting the annual mean Bowen ratio. 

Finally, more available energy at the land surface is proportionally given more into sensible 

than into latent heat in the PROMET simulation, where finally the Bowen ratio remarkably 

increased in areas with high share of urbanization (Figure 8.6.5). The degree of urbanization 

shows a correlation of r = 0.71 with the difference plot of the Bowen ratio.  

Figure 8.6.6 compares the annual mean evapotranspiration from 1996-1999 simulated by the 

NOAH-LSM (left) and by the offline PROMET approach (right). Regarding the hydrological 

context of this paper, latent heat is shown as evapotranspiration in [mm]. 
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Figure 8.6.6: Annual mean evapotranspiration of NOAH-LSM (left) and PROMET-offline 
(right) 

Overall, the NOAH-LSM simulation shows an annual mean evapotranspiration of 469 mm 

and PROMET-offline 397 mm respectively. The remarkable mean difference of more than 

70 mm for the area average is diversely spatially distributed and has several reasons that we 

further aim to investigate. 

Basically, both models show a north-to-south gradient of evapotranspiration and lower values 

in the Alpine region, which corresponds to the prevailing climate conditions. Daily mean 

values of the model domain are highly correlated between the models (R² = 0.94). The most 

obvious difference is the spatial heterogeneity related to the spatial resolution applied to each 

model. The PROMET-offline evapotranspiration allows for recognising small-scale spatial 

patterns such as Alpine valleys with high contrasts to its surroundings and forested areas with 

high evapotranspiration as can be found e.g., in the Black Forest (approx. 48.5° N 8.3° E). 

While the PROMET land-use data set includes a number of impervious surfaces (residential 

or industrial areas and rocks) that do not contribute to transpiration and, therefore, reduce 

annual mean evapotranspiration, the NOAH underlying land-use dataset accounts only for a 

small number of land-use classes and mainly implements cropland in the model domain 

(Figure 8.6.2). The effect of different land-uses and impervious surfaces in PROMET 

becomes especially apparent in large urban areas such as Berlin or the extended Ruhr region 

as well as in rocky Alpine areas (Figure 8.6.6). In order to compare the model results on the 
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same spatial scale, we aggregated the PROMET-offline result to the spatial resolution of 

45 × 45 km2 and finally subtracted it from the NOAH evapotranspiration (Figure 8.6.7). 

 
Figure 8.6.7: Difference plot between PROMET-offline and NOAH-LSM showing the annual 
mean evapotranspiration. 

The highest difference of evapotranspiration can be found at the Milan pixel. Here, 

evapotranspiration is reduced by 283 mm from 707 mm (NOAH) to 424 mm (PROMET-

offline).  

Further, Figure 8.6.8 compares the models' evapotranspiration by assuming a similar land use 

in both models. For this purpose, impermeable areas are ignored when upscaling the 

1 × 1 km2 PROMET evapotranspiration to the MM5 spatial resolution. Figure 8.6.8 shows the 

monthly mean values only for pixels with a share of impermeable area of at least 20 % in the 

upscaled PROMET land use classification. Thereby, different assumptions in the LSMs' 

underlying land use classification in terms of impervious surfaces result in great differences in 

summer (up to 21 mm month-1 in July) and small differences in winter (1 mm month-1 in 

January). By neglecting impervious surfaces, the prominent annual gap of 130 mm year-1 is 

reduced to 46 mm year-1 and the difference in July is reduced to 6 mm month-1 (Figure 8.6.8). 
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Figure 8.6.8: Monthly mean evapotranspiration from 1996 - 1999 simulated by the NOAH-LSM 
and PROMET-offline for pixels, dominated by impermeable area (share > 20 %) in the upscaled 
PROMET land use. The PROMET-offline results are shown for all corresponding PROMET-
offline pixels as well as for vegetated pixels only, neglecting impervious surfaces. 

For a spatially differentiated consideration of the impact of impermeable areas for the 

coupling domain, Figure 8.6.9 shows the difference of simulated evapotranspiration between 

PROMET-offline and NOAH versus the upscaled share of impermeable land in the PROMET 

land use classification, illustrated with a bivariante colour map (Teuling et al., 2011). 

 
Figure 8.6.9: Upscaled share of impervious area of the PROMET land use versus the difference 
of evapotranspiration between PROMET-offline and NOAH, illustrated with a bivariante colour 
map (Teuling et al., 2011). 
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Another important aspect contributing to inconsistencies are due to different soil hydraulics, 

affecting soil moisture and, therefore, soil evaporation and plants transpiration. The functional 

dependence between soil moisture of the third soil layer and evapotranspiration for the Milan 

and Rhine-Neckar vegetated pixels for daily values in July and August is shown in Figure 

8.6.10 for each model. Scaled between saturation and wilting point, PROMET operates in a 

drier part of the sensitivity curve, thereby more restricting evapotranspiration than the NOAH-

LSM (Figure 8.6.10). PROMET reacts more sensitive to increasing soil suction and 

decreasing soil moisture, respectively. While the wilting point is never reached in the Rhine-

Neckar area, it is already reached on several days in the PROMET-offline simulation from 

July to August in the Milan area (Figure 8.6.10, left). The soil layer thickness of the third soil 

layer is 1 m in both models, reaching from 1 to 2 m in the NOAH-LSM and from 0.5 to 1.5 m 

in PROMET, respectively. 
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Figure 8.6.10: Daily mean evapotranspiration (normalized by maximum) plotted against soil 
moisture of the third soil layer (scaled between wilting point and saturation) for the NOAH-
LSM and PROMET-offline, showing the vegetated pixels of the Milan area (left) and the Rhine-
Neckar area (right) for July and August (1996-1999). 

Quantification of feedbacks using PROMET-interact 

The simulated latent and sensible heat between the NOAH-LSM and PROMET-offline, as 

showed differ both in spatial and temporal manner. When using PROMET instead of NOAH 

within MM5, the response of the atmosphere to the changed land surface fluxes now result in 

feedbacks that in turn affect the land surface energy fluxes. Thus, the inconsistencies within 

the offline coupling approach due to neglecting those feedbacks are quantified. Therefore, 

PROMET is now interactively coupled with MM5, thereby substituting the NOAH-LSM and 
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finally providing the lower boundary conditions for the MM5 atmosphere (Figure 8.6.1b). 

Energy conservation is guaranteed within the interactively coupled system. The feedbacks can 

amplify or dump an initial perturbation to the system. As a result, a new equilibrium between 

the land surface and the atmosphere establishes and, therefore, changes the energy fluxes in 

both directions. This chapter first describes the responses of the MM5 atmosphere triggered 

by the replacement of the LSM. Finally, the impact of feedbacks on the interactively coupled 

PROMET (PROMET-interact) evapotranspiration is investigated and compared against the 

PROMET-offline simulation. 

Air temperature 

Figure 8.6.11 compares the annual mean near surface air temperature between the MM5 

simulation either using the NOAH-LSM or PROMET-interact. While the mean temperature 

over the coupling domain is 9.4° C in the MM5/PROMET-interact simulation, it is 8.5° C in 

the MM5/NOAH simulation. Despite the replacement of the NOAH-LSM, still a similar 

temperature can be reproduced within the MM5/PROMET-interact simulation with regional 

differences. 

A higher net radiation in the MM5/PROMET-interact simulation than in the MM5/NOAH 

simulation as well as less evapotranspiration and, thus, less evaporative cooling result in 

mutually dependent higher near surface air temperature in the MM5/PROMET-interact 

simulation, except for mountainous regions. Here, snow cover plays a prominent role in the 

PROMET simulation, affecting sensible heat particularly in spring, when available energy is 

put into snow melt in the PROMET simulation, while energy is put into sensible heat 

resulting in increasing near surface air temperature in the NOAH simulation. Possible reasons 

for the different snow cover may be the use of different snow modules and scale issues due to 

different underlying DEMs.  

The MM5 atmospheric model responses to the replacement of the NOAH-LSM with 

PROMET with higher temperatures by up to 2.4 K (in the Ruhr region) as shown in  

Figure 8.6.11. 
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Figure 8.6.11: Subtraction image (MM5/PROMET-interact - MM5/NOAH) of the annual mean 
near surface air temperature [K] (1 January 1996 - 31 December 1999). 

While the annual mean near surface air temperature for the PROMET Milan pixels is 1.6 K 

warmer (14.2° C) than the MM5/NOAH simulation (12.6° C), maximum differences (3.3 K) 

appear in June, while in winter, when energy assumption at the land surface is low, 

temperature is hardly affected by feedbacks. 

Precipitation 

Besides temperature, precipitation is another parameter strongly interacting with the land 

surface and having large hydrological impacts on LSHMs. The changed lower boundary 

conditions in the PROMET-interact simulation result in less annual precipitation amounts, 

especially South of the Alps (Figure 8.6.12). While the annual precipitation amount over the 

simulation area is 830 mm in the MM5/PROMET-interact simulation, it is 886 mm in the 

MM5/NOAH simulation. The spatial patterns of annual precipitation amounts between 

MM5/NOAH and MM5/PROMET-interact simulations are almost the same. However, total 

precipitation amounts decrease mostly North and South of the Alps and in the Po-Valley by 

up to 213 mm (Figure 8.6.12). 
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Figure 8.6.12: Subtraction image (MM5/PROMET-interact - MM5/NOAH) of the annual 
precipitation [mm] (1 January 1996 - 31 December 1999). 

Maximum differences compared to the MM5/NOAH simulation occur mainly in August, 

when almost 50 mm less precipitation is simulated for the Milan area by using the PROMET-

interact land surface within MM5. Concerning the Milan pixels, the annual precipitation 

differs by 164 mm which is about 15 %. The decrease of total precipitation is difficult to 

diagnose. It is mainly based on a decrease of convective precipitation in summer. The 

different portioning of energy into sensible and latent heat overall results in an increase of 

sensible heat in the PROMET simulation, except for mountainous areas in winter and spring 

due to snow cover. With increasing sensible heat flux, the planetary boundary layer height is 

increasing which results in dryer air masses. As a result, cloud fraction and convection are 

inhibited and, thus, convective precipitation is decreasing especially in summer. 

Evapotranspiration 

By allowing for feedbacks between the high resolution PROMET land surface and the MM5 

atmosphere, the land surface in turn is affected by the changed atmospheric conditions. The 

impact of these feedback effects on evapotranspiration is shown in Figure 8.6.13, thereby 

quantifying the inconsistencies between the offline and interactive coupling approach. 

Overall, the annual PROMET-interact evapotranspiration (405 mm) is a little higher than in 

the annual PROMET-offline simulation (397 mm).  



Publication II 
 

 

- 94 - 

However, a more detailed spatial analysis shows remarkably smaller annual 

evapotranspiration rates in the Mediterranean area South of the Alps while annual 

evapotranspiration rates slightly increased North of the Alps (Figure 8.6.13). The highest 

impact of the feedbacks on evapotranspiration can be found in the Northern part of Italy, 

where evapotranspiration rates decreased by up to 150 mm due to dryer conditions. 

 
Figure 8.6.13: Subtraction image of PROMET-interact and PROMET-offline simulation for 
annual mean evapotranspiration (1 × 1 km2). 

For the Milan pixels, the annual distinction is approx. 55 mm which is 13 % of the annual 

evapotranspiration. The inconsistencies of the offline coupling approach are most relevant in 

the summer months, when PROMET-interact shows decreased evapotranspiration rates, e.g., 

in July of up to 20 mm (27 %), while in the winter months evapotranspiration is hardly 

affected by the feedback mechanisms (Figure 8.6.14). When focusing on the Milan region, 

evapotranspiration decreased by 30 % from July to September while at the same time 

temperature increased by 2.7 K and precipitation decreased by 37 %.  

North of the Alps as exemplarily shown for the Rhine Neckar area, annual evapotranspiration 

slightly increased by 4 mm year-1 (1.9 %). Thereby, the moderate increase mainly occurred 

from Mai to August and accounted for 3.2 % (2 mm) (Figure 8.6.14). 
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Figure 8.6.14: Monthly evapotranspiration rates [mm] (1 January 1996 - 31 December 1999) of 
PROMET-offline simulation and PROMET-interact simulation exemplarily for the Milan and 
Rhine-Neckar pixels. 

According to Figure 8.6.10, Figure 8.6.15 now shows the degree to which the soil moisture-

evapotranspiration interaction is responsible for the sign of the feedback. For the Milan area 

PROMET-interact now operates in a yet drier regime. While plants' water suction already 

reached the wilting point in PROMET-offline simulations on several days (Figure 8.6.10), 

feedback effects in the PROMET-interact simulations now result in an even drier soil where 

soil moisture is closer to the wilting point from July to August (Figure 8.6.15). This results in 

a higher level of plants' water-stress, restricting transpiration more. North of the Alps, 

exemplarily shown for the Rhine-Neckar area, where precipitation is also reduced upon 

implementing PROMET into MM5, PROMET-interact also operates in a yet drier regime, 

however, far away from reaching the wilting point (Figure 8.6.15). Thus, still enough soil 

water is available for plant transpiration and evaporation. Therefore, the feedbacks - 

especially the increased air temperature and radiation have predominantly positive effects on 

transpiration here. 
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Figure 8.6.15: Daily mean evapotranspiration (normalized by maximum) plotted against soil 
moisture of the third soil layer (scaled between wilting point and saturation) showing the 
PROMET-interact simulation in comparison to the PROMET-offline and NOAH results for the 
vegetated pixels of the Milan area (left) and the Rhine-Neckar area (right) for July and August 
(1996-1999). 
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Conclusions 

Offline driving a LSM with RCM output can lead to inconsistencies since feedbacks between 

the offline driven LSM and the RCM are not taken into account. The study has shown that 

considerable discrepancies occur between LSMs used within RCMs and downstream climate 

impact models. The different scales, parameterizations and formulations describing identical 

land surface processes in the NOAH-LSM, used within the RCM MM5, and the downstream 

hydrological model PROMET contribute to the inconsistencies. Consequently, net radiation 

was higher in the PROMET-offline simulation due to different albedo and emissivity settings. 

The different redistribution of this net radiation into sensible and latent heat resulted in an 

overall higher Bowen ratio due to e.g., more impermeable areas (such as urban areas) in the 

PROMET land use while the NOAH-LSM assumes the land surface to rather homogeneously 

consist of arable land for the coupling domain. Finally, different soil hydraulics due to 

different soil/plant parameterizations and different physical formulations lead to considerable 

hydrological differences which resulted in lower soil moisture and lower evapotranspiration.  

By coupling PROMET interactively with the RCM MM5, thereby substituting the NOAH-

LSM, PROMET provides the lower boundary conditions to the atmospheric part of MM5. 

Subsequently, the scaling interface SCALMET closes the scale gap between the models and 

ensures mass- and energy conservation within the down- and the upscaling of linear and 

nonlinear energy fluxes. Consequently, the atmosphere responded to the replacement of the 

LSM with increased annual air temperatures by up to 2 K and decreased annual precipitation 

by up to 213 mm mainly due to less convection in summer. 

Finally, by comparing the offline driven and the interactive simulation, we were able to 

quantify the inconsistencies that occur when neglecting the feedbacks. The study has shown 

that the inconsistencies that arise when using PROMET offline instead of interactively 

coupled with MM5 are strong (up to 150 mm year-1) and, therefore, may not be neglected. 

Further, we demonstrated that these inconsistencies can affect evapotranspiration positively as 

well as negatively, depending on the prevailing hydrological conditions. The temperature 

increase and precipitation decrease led to drier conditions in the interactively coupled 

simulation. As a result, evapotranspiration decreased in regions mainly South of the Alps with 

already dry conditions in summer, where soil moisture was close to the wilting point. 

Thereby, evapotranspiration decreased by 30 % from June to September, e.g., for the Milan 

area. North of the Alps, however, the level of soil moisture was far away from reaching the 

wilting point due to more humid conditions than in the Mediterranean area. The feedbacks 
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affected evapotranspiration positively here, due to increased temperature and more radiation. 

Although precipitation decreased, still enough soil water was available for plant transpiration 

and evaporation. The impact of the feedbacks on evapotranspiration was almost negligible in 

winter but considerably high in the summer months, when energy conversion at the land 

surface is high, finally resulting in greater feedbacks.  

Further studies will compare the offline and interactive coupling approach with observation 

data for annual, monthly, and diurnal time series. 
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8.7. Transition to Publication III 

The study of publication II has introduced the bi-directional coupling approach and 

demonstrated the resulting impacts upon the simulation results for the coupling domain of 

Central Europe. For quality statements about the results from the online coupling, 

comparisons to measured data and validation of the water balance for a specific catchment are 

carried out in publication III. Therefore, the Upper Danube catchment was chosen, since in 

the framework of the GLOWA-Danube project, the data from a dense network of 

meteorological monitoring stations and gauge measurements were available and the water 

balance of the Upper Danube was well researched. 

Atmospheric responses to the online coupling and occurring feedbacks in the catchment are 

described. The results from online and offline simulations are compared to measurements. 

Thus, a validation of the bi-directional coupling approach was possible. It is shown that the 

investigated near surface air-temperature and the components of the water balance, 

precipitation, evapotranspiration and runoff are improved by the online coupling. 
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Zabel, F. Mauser, W.: Analysis of feedback effects and atmosphere responses when 2-way 

coupling a hydrological land surface model with a regional climate model. A case study 

for the Upper-Danube catchment, Hydrol. Earth Syst. Sci. Discuss., 9, 7543-7570,  

Doi: 10.5194/hessd-9-7543-2012, 2012. 
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Abstract 

Most land surface hydrological models (LSHMs) take land surface processes (e.g. soil-plant-

atmosphere interactions, lateral water flows, snow and ice) into detailed spatial account. On 

the other hand, they usually consider the atmosphere as exogenous driver only, thereby 

neglecting feedbacks between the land surface and the atmosphere. Regional climate models 

(RCMs), on the other hand, generally describe land surface processes much coarser but 

naturally include land-atmosphere interactions. What is the impact on RCMs performance of 

the differently applied model physics and spatial resolution of LSHMs? In order to investigate 

this question, this study analyses the impact of replacing the land surface model (LSM) within 

a RCM by a LSHM.  

Therefore, a 2-way coupling approach was applied for a full integration of the LSHM 

PROMET (1 × 1 km2) and the atmospheric part of the RCM MM5 (45 × 45 km2). The scaling 

interface SCALMET is used for down- and upscaling the linear and non-linear fluxes between 

the model scales.  

The response of the MM5 atmosphere to the replacement is investigated and validated for 

temperature and precipitation for a 4 year period from 1996 to 1999 for the Upper-Danube 

catchment. By substituting the NOAH-LSM with PROMET, simulated non-bias-corrected 
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near surface air temperature significantly improves for annual, monthly and daily courses, 

when compared to measurements from 277 meteorological weather stations within the Upper-

Danube catchment. The mean annual bias was improved from -0.85 K to -0.13 K. In 

particular, the improved afternoon heating from May to September is caused by increased 

sensible heat flux and decreased latent heat flux as well as more incoming solar radiation in 

the fully coupled PROMET/MM5 in comparison to the NOAH/MM5 simulation. Triggered 

by the LSM replacement, precipitation overall is reduced, however simulated precipitation 

amounts are still of high uncertainty, both spatially and temporally. The distribution of 

precipitation follows the coarse topography representation in MM5, resulting in a spatial shift 

of maximum precipitation northwards the Alps. Consequently, simulation of river runoff 

inherits precipitation biases from MM5. However, by comparing the water balance, the bias 

of annual average runoff was improved from 21.2 % (NOAH/MM5) to 4.4 % 

(PROMET/MM5) when compared to measurements at the outlet gauge of the Upper-Danube 

watershed in Achleiten. 
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Introduction 

Land surface models designed for hydrological studies (LSHMs) need meteorological data as 

input in order to simulate the pathway of water and energy at the land surface. This can be 

provided by measurements or regional climate models (RCMs). The latter is often used for 

hydrological impact studies on climate change scenarios. However, most LSHMs consider the 

atmosphere as an exogenous model driver only, applying a 1-way coupling approach and 

usually a correction of the systematic biases of temperature and precipitation (Marke et al., 

2011a; Senatore et al., 2011), when driving LSHMs with data provided by a RCM (see  

Figure 8.8.1). Thereby, the 1-way coupled model chain includes redundancy of two different 

land surface models, describing the same land surface processes. By not allowing for 

feedbacks between the downstream LSHM and the atmosphere of the RCM, inconsistencies 

occur when driving the LSHM offline with RCM output (Zabel et al., 2012).  

Physically based LSHMs are usually designed to simulate small scale river basins on high 

spatial resolution, which allows for modelling physical processes with high process and 

spatial detail. They have intensely been validated reproducing gauge measurements and have 

recently extended from small to large scale river basins in the order of 1 million km² (Mauser 

and Bach, 2009; Ludwig et al., 2003). However, they go beyond reproducing runoff at gauges 

of small scale catchment areas and now consider in detail land surface processes (Garcia-

Quijano and Barros, 2005; Kuchment et al., 2006; Kunstmann et al., 2008; Ludwig and 

Mauser, 2000; Mauser and Bach, 2009; Schulla and Jasper, 1999). The physically based 

models aim at understanding the interactions between the different land surface 

compartments, namely soil, vegetation, snow and ice in producing the resulting river runoff. 

Some are not calibrated with measured runoff and, thereby, in a strict sense, they conserve 

mass and energy at the land surface. They include detailed descriptions of vertical and lateral 

soil water and energy flows, vegetation dynamics and related flow regulations, snow and ice 

dynamics as well as energy and mass exchange with the atmosphere and, accordingly, land 

surface processes in the soil-plant-atmosphere continuum. However, for modelling runoff 

over mountainous terrain with RCM forcing adequately, a bias correction of the RCM data is 

necessary (Marke et al., 2011b).  

On the other hand, LSMs designed for the use within RCMs, developed from coarse spatial 

resolution on continental scales, use a comparatively simple physical description of the land 

surface processes with simple parameterizations, in order to keep computational demand low 
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(Chen and Dudhia, 2001; Henderson-Sellers et al., 1995; Henderson-Sellers et al., 1996; 

Pitman, 2003; Pitman and Henderson-Sellers, 1998; Wood et al., 1998). During the past years, 

they have become more and more complex, considering vegetation dynamics, biogeochemical 

processes, surface and subsurface hydrology, dynamic development of snowpack and include 

representations of urban and artificial areas as well as lakes (van den Hurk et al., 2011). Due 

to the latest developments, LSM and LSHMs overall seem to converge in terms of their 

physical skills. Nevertheless, a gap remains between the spatial resolution of RCMs and 

LSHMs. Therefore, we investigate the impacts of directly coupling a high resolution LSHM 

with a low resolution RCM using an appropriate up-and downscaling approach. 

RCM
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Figure 8.8.1: Schematic illustration of 1-way (left) and 2-way coupling (right) a LSHM with a 
RCM. 

As shown in multiple studies, an improvement of physical parameterization and spatial 

resolution in RCMs is supposed to improve simulation results (Hagemann et al., 2001; Zängl, 

2007a). 2-way coupling a LSHM with a RCM potentially seems to be a very powerful 

approach (Chen and Dudhia, 2001). Mölders and Raabe (1997) e.g. applied a 2-way coupling 

approach for a 24 h weather prediction forecast for a small domain of 225 × 150 km2. 

Simulating large scale watersheds and longer time periods could not be considered at that 

time due to computational limitations. The central question concerning this study is, whether 

RCMs could benefit in terms of an improved modelling of atmospheric and land surface 

processes (e.g. temperature, precipitation, evapotranspiration, and runoff) from the spatially 
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and process-wise more detailed land surface description when substituting the LSM of the 

RCM with a high spatial resolution LSHM and a spatial scaling mechanism. 

In this study we take the Upper-Danube catchment (A = 77000 km²) over a 4-year period 

from 1996 - 1999 to compare simulation results of atmospheric and land surface hydrology 

variables and simulated water balance with measurements, using the original MM5-NOAH 

and a replacement of NOAH with the high resolution PROMET-LSHM and a bi-directional 

scaling interface. 
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Materials and Method 

The RCM applied in this study is the fifth-generation Mesoscale Model (MM5) (Grell et al., 

1994), developed by the Pennsylvania State University (Penn State) and the National Center 

for Atmospheric Research (NCAR). It was modified and adapted to our specific simulation 

requirements and our specific model domain (Pfeiffer and Zängl, 2009; Zängl, 2002). MM5 is 

used in climate mode with a horizontal spatial resolution of 45 km and an internal time step of 

135 seconds. ECMWF ERA-40 reanalysis-data (Uppala et al., 2005) are used to nudge the 

double-nested MM5 model solutions 6-hourly at the lateral boundaries of the first nesting 

domain that covers the European continent with 79 grid-boxes in west-east and 69 grid-boxes 

in south-north directions (Pfeiffer and Zängl, 2009).  

The NOAH-LSM (Chen and Dudhia, 2001) as an integral component of MM5 is an advanced 

physically based LSM designed for the use in atmosphere application such as MM5 and, thus, 

it uses the same spatial resolution than the atmosphere model. It has been developed with the 

goal of a simple but robust parameterization, taking the most important aspects of land surface 

hydrology into account (Chen and Dudhia, 2001). As a physically based LSHM, PROMET 

uses a more hydrological view on the land surface with a more detailed spatial resolution of 

1 km and different physical formulations than the NOAH-LSM (Zabel et al., 2012). Detailed 

model descriptions of PROMET can be found in (Mauser and Bach, 2009, Muerth and 

Mauser, 2012).  

An enhanced 2-way coupling approach, which takes care of the different spatial resolutions of 

the two components is used in this study for fully coupling the LSHM PROMET with the 

RCM MM5 for the model domain of Central Europe (Zabel et al., 2012). Therefore, the 

NOAH-LSM is replaced with PROMET and the bi-directional scaling tool SCALMET (Zabel 

et al., 2012). Thus, PROMET results of scalar surface fluxes, which are latent and sensible 

heat, short- and longwave outgoing radiation and momentum, are linearly upscaled to 45 km. 

These upscaled fluxes serve as the lower boundary conditions for the MM5 atmosphere and, 

consequently, MM5 results downscaled to 1 km provide the inputs to PROMET (Zabel et al., 

2012). Besides, the non-scalar radiation temperature at the surface or at the top of the 

vegetation canopy respectively is given to MM5, since it is needed for initializing the 

convection scheme at each coupling time step. It is calculated from the upscaled emissivity 

and the upscaled emission of longwave radiation of the PROMET land surface using the 

Stefan-Boltzmann-law. The adjustable coupling time step for exchanging the fluxes between 
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both models in both directions was set to 9 min in the current study. This allows PROMET to 

run synchronously with MM5, which uses an internal time-step of 135 s. 

SCALMET assures the conservation of mass and energy during the up- and downscaling 

process. In order to guarantee for a consistent coupling between the models, a bias correction 

is not applied in this study. Further, PROMET maintains mass and energy at the land surface 

and is not calibrated with measured discharges.  

A more detailed model comparison between PROMET and NOAH and methodological 

explanation of the coupling approach between PROMET and MM5 is given in Zabel et al. 

(2012). Within this paper, the results of three different configurations are compared with 

measurements (see Figure 8.8.1): 

• NOAH fully, interactively coupled with the atmospheric part of MM5 

• PROMET offline driven with MM5 output 

• PROMET interactively (bi-directionally) coupled with MM5, applying the 2-way 

coupling approach 

All simulation results are compared with measurements from 277 meteorological weather 

stations, spatially interpolated to the Upper Danube catchment. The catchment is situated in 

Central Europe, has an area of 76.653 km² and is characterized by a complex terrain, covering 

parts of the Alps in Southern Germany, Austria, Switzerland and Italy. Altitudes reach from 

4049 m a.s.l. at Piz Bernina to 287 m a.s.l. at the catchment's outlet at the gauge in Achleiten. 

The lowlands north of the Alps are characterized by heterogeneous land and soil patterns, 

intense agriculture and high population density. The prevailing climate is characterized by the 

temperate latitudes with an annual precipitation gradient ranging from 550 mm in the 

Northern part of the catchment to more than 2000 mm in the Alps. 



Publication III 
 

 

- 113 - 

Results and Discussion 

Differences between PROMET and NOAH 
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Figure 8.8.2: Spatially averaged monthly land surface mass and energy fluxes 
(evapotranspiration, sensible heat flux, long-wave outgoing radiation, short-wave outgoing 
radiation) for the Upper-Danube catchment simulated with the NOAH-LSM and with 
PROMET offline respectively for the years 1996-1999. 

As can be seen in Figure 8.8.2, offline driven with RCM output, PROMET simulates less 

long-wave outgoing radiation and more short-wave outgoing radiation than NOAH. The 

lower long-wave outgoing radiation is mainly due to lower values of land surface emissivity 

within the PROMET parameterization than within the NOAH parameterization, while the 

higher amount of reflected short-wave radiation mainly results from a more heterogeneous 

land use and land cover in PROMET, having a higher number of land use/cover classes with 

high albedo values, such as urban area or rock. Further, snow cover increased short-wave 

reflection especially from March to May due to a spatially more detailed underlying 

topography, resulting in higher elevations in the Alpine area. In the PROMET simulation, 

snow cover still was predominant in the higher altitudes in May, while the high altitudes are 

averaged out in the NOAH topography due to the coarse spatial resolution.  

Overall, net radiation for the Upper-Danube catchment is higher by 8 W/m². This net radiation 

is further differently distributed into latent and sensible heat due to different assumptions in 
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the model's underlying land surfaces in terms of topography, soil and land use/cover 

properties (Zabel et al., 2012). Further, evapotranspiration is considerably lower due to 

impervious surfaces, such as urban area and rock that do not contribute to transpiration in 

PROMET while NOAH mainly implements a mixture of cropland and forest (Zabel et al., 

2012) for the Upper-Danube. Consequently, sensible heat is higher in summer but lower in 

the winter months (Figure 8.8.2) due to snow cover effects in the PROMET simulation in the 

Alpine area. While energy goes into snow melt instead of into sensible heat in the PROMET 

simulation, available net radiation has to become sensible heat in the NOAH-LSM. The 

higher spatial resolution in PROMET results in a more detailed modelling of the snow cover, 

especially in the spatially heterogeneous Alps with strong impact on the sensible heat flux. 

Thus, more energy goes into snow melt in the PROMET simulation, which explains the 

overall lower heat fluxes in the PROMET simulation although net radiation is a little higher. 

Atmosphere responses 

By replacing NOAH with PROMET and a bi-directional scaling interface, a full interactive 

coupling with the atmospheric part of MM5 is achieved and the modelled atmosphere 

responds to the replacement of the LSM. 

Planetary boundary layer 

Due to the tendency of higher sensible heat flux without snow cover in the PROMET model, 

the height of the planetary boundary layer is increasing in the PROMET/MM5 bi-directional 

coupling in summer and decreasing in winter over the Upper-Danube catchment  

(Figure 8.8.3). Consequently, this has far-reaching implications to the moisture content of air 

masses as well as the stability of stratification. Sensible heat is a sensitive parameter, affecting 

cloud fraction, convection and, thus, precipitation as well as solar radiation. In our setup, 

MM5 uses the Kain-Fritsch-2-scheme which turned out to be the best parameterization of the 

convection scheme for the simulation area, being tested with the NOAH-LSM with respect to 

simulated rainfall amounts (Pfeiffer and Zängl, 2010). This scheme was further applied to the 

PROMET/MM5 simulation, without adaptation and without testing other convection 

parameterization schemes in combination with PROMET.  
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Figure 8.8.3: Monthly course of the planetary boundary layer height (1996-1999). 

Solar incoming radiation 

Total incoming radiation, as the sum of direct and diffuse radiation, increases by the use of 

the PROMET land surface from 106 W/m² (NOAH) to 112 W/m². Measurements of radiation 

(117 W/m²) calculated via the proportion of cloud cover from 277 meteorological stations are 

compared to simulation results in Figure 8.8.4. The monthly incoming short-wave radiation is 

increased in the summer months and, thereby, closer to the measurements while the influence 

of the land surface on the atmospheric conditions is low in winter. The basic shape of the 

PROMET and NOAH curves is similar since it is mainly controlled by the passing low-

pressure systems imposed onto the simulations by the ERA-40 lateral boundary forcing. 
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Figure 8.8.4: Monthly course of the total incoming short-wave radiation (1996-1999). 
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Temperature 

 
Figure 8.8.5: Difference plot between PROMET/MM5 and NOAH/MM5 annual mean near 
surface air temperature in the Upper Danube Basin, downscaled to 1 km. 

The higher solar incoming radiation as well as lower evaporative cooling in PROMET results 

in an increase of the annual mean near surface air temperature from 5.93° C to 6.65° C in the 

fully coupled PROMET/MM5 simulations. The increase mainly occurs North of the Alps and 

near the city of Munich (Figure 8.8.5). Measurements from 277 meteorological weather 

stations show 6.78° C for the Upper-Danube catchment and the respective years. Thus, annual 

bias could be reduced from -0.85 K to -0.13 K. In addition, the monthly behaviour was 

improved in fully coupled PROMET/MM5 simulations when compared to measurements (see 

Figure 8.8.6). 
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Figure 8.8.6: Monthly mean temperature of fully coupled NOAH-MM5 simulation, PROMET-
MM5 simulation in comparison with measurements in the Upper-Danube catchment. 

Figure 8.8.7 shows the simulated diurnal cycle of the near surface air temperature for 

NOAH/MM5, PROMET/MM5 and measurements respectively. The impact of the land 

surface is marginal in the winter months due to low energy inputs on the land surface. 

Therefore, the bi-directional coupling approach with PROMET has almost no effect on the air 

temperature in the winter months. On the contrary, the diurnal cycle is strongly affected by 

the changed land surface in the summer months. Here, by using PROMET, near surface air 

temperature heats up faster and stronger. A cold bias of up to 2 K in the NOAH/MM5 

simulation, especially in the afternoon hours in summer, corresponds to the results of Pfeiffer 

and Zängl (2009). Compared to measurements, a clear improvement can be investigated from 

May to September, where the diurnal course and particularly the maximum can be reproduced 

considerably better. 

In August e.g., the mean maximum temperature is measured at 19.7° C. While the 

NOAH/MM5 simulations only reaches 16.9° C in the afternoon hours, the changed lower 

boundary conditions lead to a mean maximum daily temperature of 19.0° C in bi-directionally 

coupled PROMET-MM5 simulations. 
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Figure 8.8.7: Monthly mean diurnal cycle (1996-1999) of the near surface air temperature (3-
hourly) for the Upper-Danube catchment. 

Precipitation 

The measured annual precipitation for the area of the Upper-Danube is 1045 mm. While the 

NOAH/MM5 approach calculated 1180 mm, the fully coupled PROMET/MM5 approach 

simulated 1095 mm. Thus, annual bias was reduced from 12.9 % to 4.8 %. In particular, 

winter and spring precipitation is clearly overestimated (Figure 8.8.8) in both MM5 

simulations. However, precipitation amounts are reduced in the summer months as a respond 

of coupling the PROMET land surface with MM5, while winter and spring precipitation 

hardly changes (Figure 8.8.8).  
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Figure 8.8.8: Monthly convective and total precipitation of MM5 simulations coupled with 
NOAH and PROMET compared to measurements. 

The decrease of monthly precipitation from May to September in the results of 

PROMET/MM5 is mainly due to the decrease of convective precipitation by 20 %, while non-

convective precipitation is reduced by 9 % (Figure 8.8.8). Therefore, it can be pointed out that 

the change of the land surface predominantly affects convective precipitation that finally 

decreases during summer for the Upper-Danube catchment. This results in an improvement 

for June and August but not in May and July. 

However, heavy precipitation events such as in May 1999 due to special weather conditions 

are not properly reproduced in the Upper-Danube in both simulations where heavy 

precipitation is generally underestimated (Zängl, 2007b).  

Further, Zängl (2007a) found a resolution-dependence, drastically affecting the MM5 model 

skill in the Alpine part of the model domain. By refining the mesh size from 9 km to 1 km, 

simulated precipitation could be considerably improved, due to a better representation of the 

topography in the atmosphere model. However, the coarse resolution of MM5 in our study 

(45 km) is not suitable for reproducing precipitation properly in the Alps and the foothills of 

the Alps. The coarse resolution of the MM5 topography results in a northwards shift of 

precipitation away from the Alps, when compared with measurements. Consequently, 

precipitation is overestimated in the Alpine foreland and underestimated in the Alps, due to 

leeward effects (see Figure 8.8.9). 
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Figure 8.8.9: Over- and underestimation of annual simulated PROMET/MM5 (left) and 
NOAH/MM5 (right) precipitation in the Upper Danube Basin, downscaled to 1 km and 
subtracted from measurements. 

The use of PROMET instead of NOAH does not change the coarse resolution of the MM5 

underlying topography. Therefore, the precipitation shift appears in both simulations while the 

annual overestimation in the alpine foreland is reduced in the PROMET simulations while at 

the same time the underestimation in the Alpine regions is increased. From this, we conclude 

that precipitation improved in the Northern part of the Upper-Danube catchment with low 

influence of the Alps and low relief. 

Advective inflowing air masses passing the MM5 model domain, dominantly driven by the 

lateral boundary conditions (ERA-40), are one source of uncertainty, which ERA-40 data 

inherit to the RCM. 

The coarse resolution of MM5 is another source for overestimating precipitation especially in 

winter, which coincides with the findings of Pfeiffer and Zängl (2010). 

In addition, a systematic underestimation of wintertime snowfall in the observational dataset 

mainly in the Alpine domain should be considered in the evaluation. 
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Feedback effects 

Evapotranspiration 

By coupling PROMET bi-directionally with MM5, simulated evapotranspiration increases 

between May and August and decreases slightly from September to April due to changed 

atmospheric conditions such as the increased temperature and solar radiation that feed back to 

the land surface in the bi-directional coupling case (Figure 8.8.10). 
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Figure 8.8.10: Monthly mean evapotranspiration in the Upper Danube Basin of 1-way and 2-
way coupled PROMET simulations (1996-1999). 

Zabel et al. (2012) showed that the change of evapotranspiration in the fully coupled 

PROMET/MM5 simulations highly depends on the simulated soil moisture. Since wilting 

point is hardly ever reached in the Upper-Danube catchment, evapotranspiration is marginally 

affected by soil moisture and can thereby increase in summer. 

Water Balance 

By the use of PROMET's baseflow, interflow and surface runoff as well as channel hydraulics 

components, simulated time series of monthly, daily and hourly runoff can be compared 

against hourly gauge measurements (Mauser and Bach, 2009). NOAH has the ability for 

modelling surface runoff formation but lacks in the option for simulating of lateral and river 

channel flow.  
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However, it is not the intention of this study to estimate the ability of bias corrected RCM 

inputs to reproduce runoff in the Upper Danube watershed. Since a bias correction would 

have been counterproductive in this study, biases of the RCM, particularly precipitation biases 

are handed over to the land surface components and, therefore, drastically affect runoff 

simulations.  

Due to the coarse spatial resolution of 45 km in our study, the spatial patterns of precipitation 

follow the coarse spatial resolution of the underlying MM5 topography (45 × 45 km2). The 

scale mismatch to the 1 km topography of PROMET, therefore, leads to inadequate spatial 

shifts and biases in runoff that cannot be corrected without a bias correction.  

Consequently, analogously to precipitation, a spatially detailed analysis of simulated river 

runoff underlies strong uncertainties in the Alps and the Alpine foreland. Nevertheless, 

regarding the annual water balance, simulated and annual averaged river runoff at the 

catchment's outlet was compared to the measured annual average runoff at the outlet of the 

Upper Danube Basin in Achleiten, which was determined to be 1412 m³ s-1 for the considered 

years. The results are shown in Table 8.8.1.  

Mean surface runoff [mm] simulated by the NOAH-LSM for the Upper-Danube catchment 

and converted into the catchment's discharge, is 1712 m³ s-1. Thus, NOAH/MM5 strongly 

overestimates annual mean runoff. One way coupling of PROMET with MM5 results in a 

simulated average lateral river runoff of 1583 m³ s-1 and a considerable improvement from the 

NOAH/MM5 case. The full 2-way coupling of PROMET and MM5 leads to a simulated 

average river runoff of 1474 m³ s-1. This value can be considered to compare quite well with 

the observed 1412 m³ s-1. Thus, the annual bias could be reduced from 21.1 % (NOAH) to  

4.4 % (2-way coupled PROMET). 

Table 8.8.1: Measured annual mean runoff at the outlet of the Upper Danube catchment at 
Achleiten in comparison with simulated runoff of NOAH/MM5 and PROMET/MM5 in either 1-
way or 2-way coupled configuration. 

Model Configuration Runoff 

NOAH 1712 m³ s-1 

PROMET, 1-way coupled 1583 m³ s-1 

PROMET, 2-way coupled 1474 m³ s-1 

Measurements 1412 m³ s-1 
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Conclusions 

In this study, we investigated the impacts of replacing the land surface module of the RCM 

MM5 with the LSHM PROMET for the Upper-Danube catchment. As shown, it is possible to 

use LSHMs embedded in RCMs, which offers new opportunities for both, the atmospheric 

and the hydrological community.  

Through that replacement, the spatial resolution of the land surface representation improved 

from 45 km² to 1 km², which was dealt with by a bi-directional scaling interface that arranged 

the 2-way coupling between the models. It could be shown that different spatial scales and 

assumptions between the land surface models NOAH and PROMET lead to different 

simulation results of latent and sensible heat, as well as long- and short-wave outgoing 

radiation. Thereby, PROMET evapotranspiration was lower, while sensible heat flux tends to 

be higher. By applying the full 2-way coupling between PROMET and MM5, the atmosphere 

responded to the changed lower boundary conditions. As a consequence, mean annual 

temperature increased from 5.93° C to 6.65° C due to more incoming solar radiation and less 

evaporative cooling which lead to more sensible heat flux. Compared to meteorological 

measurements (6.78° C), simulated near surface air temperature improved also for monthly 

and diurnal courses. Particularly afternoon heating was modelled more adequately by the use 

of PROMET. The impact of the PROMET land surface scheme on changes in the atmosphere 

is strongest in summer, when energy transformation at the land surface strongly affects 

atmosphere processes.  

The impact on precipitation is difficult to diagnose, due to high uncertainties induced by the 

complex terrain of the catchment. Overall, precipitation was reduced mainly due to decreased 

convective precipitation in summer which can be explained by the rise of the planetary 

boundary layer due to more sensible heat flux. As a result, the moisture content of air masses 

is reduced and cloud fraction and convection are finally impeded. However, simulated 

precipitation shows a spatial shift northwards into the Alpine forelands when compared to 

measurements in the Upper-Danube catchment, as a result of the coarse description of the 

topography in MM5. The high temporal and spatial bias of precipitation, mainly in the Alps 

and the Alpine foreland is inherited to runoff simulation results in PROMET.  

The NOAH river runoff for the Upper-Danube catchment converted from surface runoff [mm] 

was 1712 m³ s-1, which means a strong overestimation of annual runoff. Simulated annual 
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river runoff improved to 1583 m³ s-1 when using the 1-way coupled PROMET/MM5 approach 

due to less precipitation and higher evapotranspiration. Finally, the fully coupled 

PROMET/MM5 approach improved the simulation of the outlet gauge in Achleiten to  

1474 m³ s-1 without a bias correction in comparison to gauge measurements in Achleiten  

(1412 m³ s-1).  

We conclude from these results that when comparing simulation results of an RCM using 

different land use schemes, all investigated meteorological and hydrological parameters 

improved in comparison with observations when moving from NOAH/MM5 to a fully-

coupled PROMET/MM5. 
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9. SYNTHESIS 

The aim of the thesis was the bi-directional coupling of the LSHM PROMET with the RCM 

MM5. The complexity of interactions, responses and feedbacks which occur between the 

atmosphere and the heterogeneous land surface were the key issues addressed in the 

publications. 

It can be pointed out that the land surface does remarkably affect land surface matter and 

energy fluxes. It was proven that a more detailed view on land surface heterogeneity is 

evidentially important to describe hydrological processes at the land surface. Atmospheric 

responses were largely sensitive to land surface heterogeneity, due to effects on albedo, mass 

and heat fluxes that result from different land surface land cover, soil and topographic 

properties. Thereby, the prevailing hydrological conditions determined both the positive or 

negative sign and the strength of the feedbacks. 

An approach was presented, that enables a bi-directionally coupling between LSHMs and 

RCMs across different spatial scales. Thereby, PROMET is able to provide lower boundary 

conditions for RCMs. In comparison to the NOAH-LSM that is used within the RCM MM5, 

PROMET more realistically matches land surface heterogeneity. The physical formulations 

are taking hydrological aspects at the land surface, such as soil and plant processes, runoff 

formation, snowpack and evapotranspiration, more detailed into account. Consequently, land 

surface fluxes of heat and matter differ between PROMET and NOAH both, spatially and 

temporally. The processes in the atmosphere respond adequately and in a comprehensible way 

to the replacement of the NOAH-LSM with PROMET. As shown, the air temperature, the 

planetary boundary layer height, cloud fraction and precipitation are influenced by the 

PROMET land surface. The changed atmospheric conditions feed back to the land surface. 

Consequently, positive and negative feedbacks lead to increased and decreased 

evapotranspiration, depending on the prevailing hydrological conditions, varying both 

spatially and temporally. 

By the use of PROMET, all investigated processes were improved for seasonal, monthly and 

diurnal cycles in comparison with measurements for the Upper Danube catchment. 

Precipitation was at least improved for annual values, however still high uncertainties remain. 

The improved representation of the land surface has led to better simulation of the diurnal 
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variation of surface heat and water fluxes, improving the water balance and hence the forcings 

for boundary-layer dynamics and convection.  

In conclusion, the results can be viewed from both, the meteorological and the hydrological 

point of view. From the meteorological point of view, the bi-directional coupling between the 

LSHM PROMET and the RCM MM5 resulted in a more realistic simulation of the lower 

boundary conditions that yielded in improved simulation of atmospheric processes. Thus, it 

was demonstrated that bi-directional coupling LSHMs with RCMs can make valuable 

contributions to an improved land surface representation in current RCMs. 

From the hydrological point of view, the study addresses the topic of the inconsistency 

between atmospheric and land surface models. It shows that due to more detailed 

parameterizations, formulations and underlying land surface information, the equilibrium 

hydrological balance in the PROMET model is different from the NOAH model, but 

moreover, that this difference is regionally amplified when the PROMET model is allowed an 

online interaction with the atmosphere. 
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10. OUTLOOK 

Due to the successful application of the bi-directional coupling approach, exemplarily for a  

4-year simulation period, an extension to long term scenarios, e.g. until 2100, would be a 

possible next step in further studies. This could further improve the understanding and 

knowledge about future climate and land-surface hydrological feedbacks, such as permafrost 

melting effects on climate. Thus, a contribution could be given to improve climate scenarios.  

For further improvements, the bi-directional hydrological coupling should not only be applied 

to RCMs, but also to GCMs. This could be achieved by allowing the RCM to dynamically 

exchange fluxes with the model providing the lateral boundaries, or by coupling the 

PROMET high resolution land surface with a GCM bi-directionally. However, global 

simulations at a 1 km spatial grid at the land surface would require a massive increase of 

computational resources. 

A potentially powerful approach for improving the interrelationship between the land surface 

and the atmosphere processes would be the extension of the land surface model grid from the 

boundary into the lower atmosphere layers. This would particularly improve the simulation of 

small-scale clouds, which would aid in improving precipitation patterns and amounts in high 

relief areas (Pitman, 2003; Zängl 2007). 

Another step forward would be the inclusion of the nitrogen and carbon cycle in the land-

atmosphere exchange, which is already implemented in the scaling tool SCALMET. So-called 

'third generation' LSMs (Pitman, 2003; Kabat et al., 2004) take advantage of the relationship 

of photosynthesis and stomatal conductance (Farquhar et al., 1980), therefore including plants' 

carbon assimilation and uptake explicitly in the simulations. PROMET already provides the 

option that allows for the simulations of plants' carbon uptake (Hank, 2008). The integration 

of the carbon cycle in the bi-directional coupling approach would therefore be another 

obvious step that would contribute to further improvements in the land-atmosphere 

interrelations. 

It became clear that the land surface and its hydrological characteristics are one of the key 

aspects of climate sensibility with respect to their influence on the climate through direct and 

indirect effects on climate variables. The human impacts upon the land surface, land use 

change, water management, urbanization and vegetation as well as impacts of climate change 

on the land surface, plants and the water cycle therefore are key issues concerning the land 
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surface that, however, must be considered more precisely in climate scenarios. This requires 

land surface hydrological models that are able to capture large spatial domains with high 

spatial resolution. A coupling with models from other scientific disciplines, such as economic 

models for detecting land use change and investigating ecosystem services, could be a 

promising future extension of coupling integrative processes. 
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12.1. Underlying Model Formulations 

This Section gives an overview of the underlying model formulations, used in the models 

NOAH and PROMET for describing the land surface evapotranspiration.  

The LSMs applied in this study are the NOAH-LSM and PROMET. Both models describe the 

pathways of water and energy at the land surface in a physically based manner. 

Evapotranspiration is the sum of plant transpiration ( tE ) via soil, root, leaf and the stomata 

and evaporation from the bare soil ( dirE ) and evaporation of water intercepted by the canopy 

or other surfaces ( iE ) (Eq. A1). It is driven by the gradient of vapour pressure between the 

surface and the surrounding air, passing the laminar boundary layer into the free atmosphere, 

finally carried away by the turbulent mass transport of wind within the atmospheric boundary 

layer expressed by the aerodynamic resistance. Thus, modelling evapotranspiration is a 

complex issue which requires taking multiple aspects into account. 

tidir EEEE ++=           (A1) 

12.1.1. NOAH 

The NOAH-LSM was originally designed for the use in RCMs and is part of the MM5 

modelling system. The NOAH-LSM is an updated version of the OSU-LSM. A complete 

description of the NOAH and OSU-LSM is given in Chen and Dudhia (2001b, a) and 

Mitchell (2005). The older version of MM5 documented in Grell et al. (1994), already 

included a simple land surface model which does not take basic hydrological effects like snow 

cover into account. The land use had a coarse resolution and soil moisture was defined as a 

function of land use with seasonal values that cannot change during the simulation or respond 

to precipitation. Vegetation evapotranspiration and runoff processes were not included (Chen 

and Dudhia, 2001b). 

The goal of the development of the NOAH-LSM was to implement an appropriate LSM for 

weather prediction and more hydrological applications that reflect the major effects of 

vegetation on the long-term evolution of surface evaporation and soil moisture and to get 

along with relatively few parameters for short and long-time within continental-domain 

applications. The NOAH-LSM is the result of the further developments of LSMs, designed 

for atmosphere applications over the last years and scientific studies like the PILPS project. 
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Potential evaporation is calculated within the NOAH-LSM using a Penman-based energy 

balance approach (Mahrt and Ek, 1984) including a stability-dependent aerodynamic 

resistance. It includes a 4-Layer soil model and a canopy resistance approach of Jaquemin and 

Noilhan (1990) and Planton (1989). The prognostic variables are the moisture and 

temperature of the soil layers, water stored on the canopy and snow stored on the ground. 

Daily surface runoff is computed by the Simple Water Balance (SWB) model (Schaake et al., 

1996). The NOAH-LSM computes actual evapotranspiration separately for the following 

components: Direct evaporation (Eq. A2), evaporation of intercepted water (Eq. A3) and 

transpiration (Eq. A4). 
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Besides the green vegetation fraction ( fσ ), the NOAH-LSM is taking the soil water content 

( β ), the intercepted canopy water content ( cW ), the maximum canopy capacity ( S ) as well 

as a plant coefficient ( cB ) as a function of canopy resistance into account (Chen et al., 1996).  

The green vegetation fraction ( fσ ) strongly influences simulation results since it acts as a 

fundamental weighting coefficient of potential evaporation ( pE ) within the calculation of all 

components of evapotranspiration. MM5 uses monthly values of green vegetation fraction 

( fσ ) (also known as Fcover) for each grid cell at the model's spatial resolution in order to 

control seasonal phenological development of vegetation as well as the degree of urbanization 

and impervious surfaces for each grid cell. It is defined as a function of NDVI (Eq. A5). 
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−
=σ         (A5) 

Where 0NDVI  and ∞NDVI  are the lower and upper 5% of the global NDVI distribution for 

the whole year and, therefore, describe the signals from bare soil and not-vegetated areas and 

dense green vegetation respectively (Chen et al., 1996; Gutman and Ignatov, 1997). Since the 
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∞NDVI  is likely to reach saturation, this approach tends to overestimate fσ  (Richter and 

Timmermans, 2009). Uncertainties of NDVI due to soil moisture, soil type and colour, dead 

vegetation and shadow-effects within the plant stand as well as atmospheric effects such as 

cloud contamination and angular effects of the radiometer field-of-view (FOV) affect 

satellite-based measurements of the vegetation fraction, making it an unreliable quantity 

(Bach and Verhoef, 2003; Gutman and Ignatov, 1997; Richter and Timmermans, 2009). 

Further, the use of the 5th percentile of NDVI for calculating the vegetation fraction assumes 

a dense vegetation for all pixels in the model domain (Gutman and Ignatov, 1997). The green 

vegetation fraction concerning this study was gathered by a 5-year time series of NDVI (Chen 

et al., 1996; Gutman and Ignatov, 1997) from AVHRR (US Geological Survey (USGS)), with 

a spatial resolution of 10 minutes (18.5 km) and global coverage. It was further generally 

reduced by 30 percent since it proved to be too high for our simulation area and this reduction 

helped to improve the simulation of summertime near surface temperature substantially 

(Pfeiffer and Zängl, 2009). 

The canopy treatment represented by the plant coefficient ( cB ) within tE  is a function of the 

canopy resistance ( cR ), where hC  is the surface exchange coefficient for heat and moisture; 

∆  depends on the slope of the saturation specific humidity curve; rR  is a function of surface 

air temperature, surface pressure, and hC  (Eq. A6) (Chen and Dudhia, 2001b), 
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         (A6) 

The canopy resistance ( cR ) is formulated as follows in the NOAH-LSM (Eq. A7): 

4321

min

FFFFLAI
R

R c
c =          (A7) 

, where 4F  is the water-stress function with respect to soil moisture while 1F , 2F  and 3F  

represent the effects of solar radiation, vapour pressure deficit and air temperature on the 

canopy resistance. The values of all functions range between 0 and 1; LAI is the leaf area 

index and mincR  is the minimum canopy resistance which is set to 40 s m-1 for the class 

'dryland, cropland and pasture' (Jacquemin and Noilhan, 1990; Noilhan and Planton, 1989). 
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The maximum value of the canopy resistance is set to 5000 s m-1 for all plants. The LAI does 

not change with season and for all land use classes of the NOAH-LSM has a value of 4.0. The 

temperature-stress function is the same for all plants, the optimum transpiration temperature 

being parameterized with 298 K (Chen and Dudhia, 2001b). The dynamic function of water-

stress ( 4F ) is a factor for the availability of soil moisture, however neglecting plant specific 

parameters (Eq. A8).  
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It is a function of volumetric soil moisture content (Θ ) and the soil specific parameters of 

field capacity ( refΘ ) and the wilting point ( wΘ ) for the upper three soil layers integrated in 

the rooted zone with its individual thickness ( zid ) (Chen and Dudhia, 2001b), parameterized 

as percentage values of soil moisture. 

12.1.2. PROMET 

PROMET was developed for hydrological river catchment studies on the local and regional 

scale. It describes processes at the land surface physically based with high detail and 

complexity using several sub-modules (Figure A4). It conserves mass and energy and closes 

the energy balance of the land surface. Consequently, it is not calibrated. It was applied in this 

study with an hourly temporal and 1 km spatial resolution. An extensive model description 

can be found in Mauser and Bach (2009) and Muerth and Mauser (2012). 
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Figure 12.1.1: Model components of PROMET (Mauser and Bach, 2009). 

PROMET has already been used in several small and large scale watersheds ranging from a 

few hundred km² to app. 1 million km² and has been extensively validated in different regions 

in the world (Hank, 2008; Koch et al., 2011; Loew, 2008; Loew et al., 2009; Ludwig and 

Mauser, 2000; Ludwig et al., 2003a; Ludwig et al., 2003b; Marke et al., 2011; Mauser and 

Schädlich, 1998; Mauser and Bach, 2009; Muerth, 2008; Muerth and Mauser, 2012, Prasch et 

al., 2006; Prasch et al., 2011; Strasser, 1998; Strasser and Mauser, 2001; Strasser et al., 2007; 

Weber et al., 2010). 

Actual evapotranspiration within the vegetation component of PROMET is simulated using 

the Penman-Monteith equation (Mauser and Schädlich, 1998; Monteith, 1965; Monteith and 

Unsworth, 2008), closing the energy balance iteratively (Mauser and Bach, 2009). The water 

pathway via the soil through the roots into the leaf and passing via the stomata into the 

laminar and finally the turbulent atmosphere, is driven by the potential difference of water 

vapour pressure between the soil and the atmosphere, assuming that the atmospheric suction 

is limited by a number of resistances similar to electrical conductivity (Monteith and 

Unsworth, 2008). The canopy resistance is calculated for individual plant types following an 

approach by Baldocchi et al. (1987) and Jarvis (1976). 
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The stomata resistance ( cR ) is a function of radiation ( PAR ), temperature ( 1F ), ambient 

humidity ( 2F ), CO2 in the atmosphere and the leaf water potential ( 3F ) (Jarvis and Morison, 

1981) (Eq. A9).  

321

min )(
FFF

PARR
R c

c =          (A9) 

PAR is calculated according to the fractions of sunlit and shaded leaf area and the PAR flux 

densities on the respective leaves (Baldocchi et al., 1987). The relation of temperature, 

humidity deficit and leaf water potential to the stomata resistance is described with 1F , 2F  

and 3F  following Jarvis (1976), returning values between 0 and 1. An increase in temperature 

beyond a plant specific optimum results in an increase of stomata resistance since the plant's 

stomata will close in order to protect itself against dehydration, which results in a decrease of 

transpiration. The conductivity is reduced to the minimum stomata conductivity, which is the 

conductivity of the cuticle. 

The inhibition of transpiration due to water stress (Eq. A10) is quantified in PROMET in 

terms of leaf water potential, which depends in a plant-specific way to the soil water potential 

( sΨ ) within the rooted soil layers (= root water uptake reduction function). 

ΨΨ +Ψ−+Ψ= baRF rs *))(( 03        (A10) 

The stomatal conductance shows no dependence on leaf water potential below a plant specific 

threshold ( 0Ψ ) of suction and an approximately linear plant specific decrease beyond 

(Baldocchi et al., 1987), and takes the resistance of the transition from the soil to the root ( rR ) 

into account (Biscoe et al., 1976). The parameters rR , 0Ψ , Ψa  and Ψb  are parameterized for 

each plant type in PROMET where Ψa  describes the plant specific slope and Ψb  the plant 

specific intercept of the function. The soil water potential ( sΨ ) as in PROMET is a function 

of soil type and soil water content following an approach of Brooks and Corey (1964) (Eq. 

A11). 

m
s S /1

1
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, where 1Ψ  is the air entry tension (bubbling pressure head), S is the saturation of the 

effective pore space with water and m is the pore-size distribution index, which are all 

parameters available within the soil parameterization of PROMET. 
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