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1 GENERAL INTRODUCTION TO THE THESIS 

1.1 General Background 

The prevention of diseases by vaccination is one of the most significant medical 

achievements of mankind. More than 3 million deaths per year are currently prevented 

by vaccines [Ulmer et al., 2006]. Antiviral vaccines garner the largest share of the 

market with nineteen billion dollars and a positive economic impact of about a billion 

dollars per year [Fox, 2007].  

The most potent vaccines used in the past decades consisted of live attenuated 

or inactivated forms of whole pathogens [Russo et al., 1997;  

Vollmar et al., 2005]. Although inactivated and attenuated vaccines are relatively safe, 

there is a small but present risk of reversion to virulent, aggressive phenotypes in vivo 

which can cause disease [Russo et al., 1997]. This was observed for the Sabin 

attenuated poliovirus vaccine [Murdin et al., 1996]. Additionally, non-infectious 

subunits of pathogens might be poorly immunogenic and might have to be formulated 

with immune-stimulating adjuvants [Kaufmann, 2004]. Unfortunately, many potent 

adjuvants are rather toxic or at least painful and are not allowed in human use  

[Singh et al., 1999].  

Thus, significant efforts have been taken to develop more potent but safer 

vaccines and adjuvants with improved compatibility to humans. A new class of 

vaccines of growing interest are virus-like particles (VLP). They consist of one or 

several viral proteins, recombinantly expressed in cell culture systems, which 

spontaneously assemble into supramolecular, highly repetitive, icosahedral or rod-like 

structures. Of capital importance is that VLP do not contain any genetic information of 

the virulent phenotype which renders the replication in the host impossible  

[Kaufmann, 2004].  

Due to their particular structure with highly repetitive, organised epitopes on their 

surface, VLP are able to induce strong and long-lasting humoral and cell-mediated 

immune responses in the absence of adjuvants [Lechner et al., 2002;  

Kaufmann, 2004].  Several viral antigens have been expressed as VLP and have 

been tested in clinical trials, including some that were recently approved for human 

use (Table 1.1.1). The high economic value of this new class of vaccines was 
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demonstrated by Gardasil® (Merck & Co., Inc.), a vaccine for the prophylaxis of 

human papillomavirus (HPV) infection, which achieved blockbuster status within the 

first year of approval°.  

Table 1.1.1 Commercialized VLP based vaccines and selection of VLP vaccines recently tested in 
clinical trials. 

Vaccine Indication 
Stage of 
clinical 
development 

Company or 
institute 

HBsAg VLP (Engerix-B®) Prophylactic B cell vaccine 
for HBV infection Approved GlaxoSmithKline* 

HPV L1 capsid VLP: 
6 / 11 / 16 / 18 (Gardasil®) 

Prophylactic B cell vaccine 
for HPV infection Approved Merck & Co., Inc.# 

HPV L1 (16 / 18) 
capsid VLP (Cervarix®) 

Prophylactic B cell vaccine 
for HPV infection Approved GlaxoSmithKline* 

Norwalk virus capsid protein 
VLP (NVCP-VLP) 

Prophylactic B cell vaccine 
for NV infect. gastroenteritis 

Phase I 
completed 

Baylor College of 
Medicine& 

Nicotine derivative covalently 
linked to ImmunodrugTM carrier 
Qbeta (bacteriophage Qb 
capsid VLP) (NIC002) 

Therapeutic B cell vaccine 
for smoking addiction 

Phase I and II 
completed 

Cytos 
Biotechnology AG+ 
(in collaboration 
with Novartis) 

Chemically synthesized 
angiotensin II coupled to 
ImmunodrugTM carrier Qbeta 
(CYT006-AngQb) 

Therapeutic B cell vaccine 
for treatment of hypertension 

Combined 
phase I / II 
completed 

Cytos 
Biotechnology AG+ 

Peptide of TNF-α covalently 
linked to ImmunodrugTM carrier 
Qbeta (CYT007-TNFQb) 

Therapeutic B cell vaccine 
for treatment of psoriasis 

Combined 
phase 
I / II ongoing 

Cytos 
Biotechnology AG+ 

ImmunodrugTM carrier QbG10 
(Qb capsid VLP filled with 
immunostimulatory DNA 
sequence G10)  
(CYT003-QbG10) 

Therapeutic T cell vaccine 
for treatment of perennial 
allergy to house dust mite 
and / or cat 

Phase I and II 
completed 

Cytos 
Biotechnology AG+ 

Melan-A/MART-1 protein 
coupled to the ImmunodrugTM 
carrier QbG10 
(CYT004-MelQbG10) 

Therapeutic T cell vaccine 
for treatment of malignant 
melanoma 

Phase I and II 
completed 

Cytos 
Biotechnology AG+ 

ImmunodrugTM carrier QbG10 
together with grass pollen 
allergen 
(CYT005-AllQbG10) 

Therapeutic T cell vaccine 
for treatment of grass pollen 
allergy 

Phase I and II 
completed 
 

Cytos 
Biotechnology AG+ 

 

______________________________________________________________ 

° http://blog.vaccineethics.org/2007/10/gardasil-rotateq-sales-top-merck.html 
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Vaccine Indication 
Stage of 
clinical 
development 

Company or 
institute 

Fragment of the β-amyloid-
protein coupled to 
ImmunodrugTM carrier Qbeta 
(CAD106) 

Therapeutic B cell vaccine 
for treatment of Alzheimer’s 
disease 

Phase I 
ongoing 

Cytos 
Biotechnology AG+ 
(in collaboration 
with Novartis) 

HIV p17 / p24:Ty VLP 
Therapeutic T cell vaccine 
for the treatment of HIV 
infections 

Phase I 
completed 

National Institute of 
Allergy and 
Infectious  Diseases 
(NIAID)~ 

HPV 16 L1 / E7 VLP: chimeric 
HPV capsid / cytotoxic T cell 
(CTL) epitope VLP (CVLP) 

Therapeutic T cell vaccine 
for cervical dysplasias 

Phase I and II 
completed 

MediGene AG§ (in 
collaboration with 
Virionics Corp.) 

H5N1 VLP influenza vaccine 
 

Prophylactic B cell vaccine 
for H5N1 clade 2 influenza 
virus infection 

Phase I and II 
ongoing Novavax$ 

HPV L1 capsid VLP: 
6 / 11 /16 / 18 

Prophylactic B cell vaccine 
for HPV infection in HIV 
infected children 

Phase I 
completed 
phase II 
ongoing 

NIAID~ 

*   http://www.gsk.com   #   http://www.merckvaccines.com  +   http://www.cytos.com  
§   http://www.medigene.de  ~   http://www.niaid.nih.gov  &   http://www.bcm.edu 
$   http://www.novavax.com 

 

Additionally, VLP not only act as carriers of immunological epitopes derived from 

microbial pathogens, but they have also been successfully used to present  

self-antigens or non-immunogenic small molecular weight molecules to the immune 

system and to overcome B cell tolerance [Lechner et al., 2002]. Based on this 

principle, Cytos Biotechnology AG developed several therapeutical vaccines based on 

VLP built from recombinantly expressed coat proteins of the bacteriophage Qb. For 

example, the therapeutical treatment of chronic diseases such as hypertension  

(e.g. angiotensin as antigen) [Ambuehl et al., 2007] and drug addiction like smoking 

(e.g. nicotine as hapten) [Maurer et al., 2006], two of the most important preventable 

causes of premature death worldwide [Mackay, 2004], are attained.  

However, for commercialization, the development of stable and convenient 

formulations is essential. In this context two major challenges of VLP vaccines have to 

be addressed: (1) VLP as highly complex protein drugs might be prone to many 

chemical and physical degradation pathways which can lead to ineffectiveness of the 

drug and / or side reactions [Manning et al., 1989; Brandau et al., 2003;  

Hermeling et al., 2004; Wang, 2005]; (2) To reach adequate immune responses 
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vaccines have to be applied at least two to three times which might lead to poor 

patient compliance [Aguado, 1993; Sinha et al., 2003].  

Although a liquid formulation is preferred in terms of cost and convenience for the 

end user, many vaccines are not stable enough in liquid solutions to meet shelf-life 

requirements. Thus, in order to overcome stability issues often dried forms are 

produced. Freeze-drying is the most widely used technique for this purpose. [Scott  

et al., 1976; Adebayo et al., 1998; Rexroad et al., 2002; Sarkar et al., 2003; Zhai  

et al., 2004; Abdul-Fattah et al., 2007]. However, during freeze-drying the drug is 

exposed to diverse stress factors, ascribed to freezing and drying, which can cause 

significant loss of activity. Thus, the proper choice of the freeze-drying process and 

the accurate selection of stabilizing excipients is inevitable [Franks, 1998; Nail et al., 

2002; Tang et al., 2004].  

With the intention to improve the effectiveness of a vaccine and patient 

compliance tremendous efforts have been taken during the last decades to develop 

single dose vaccine devices. Although, plenty of promising systems like implants, 

microspheres, and in-situ forming systems have been investigated [Cohen et al., 

1994; Sanchez et al., 1996; O'Hagan et al., 1998; Cleland, 1999; Dorta et al., 2002; 

Eliaz et al., 2002; Jaganathan et al., 2005; Katare et al., 2006], no controlled release 

vaccine formulation has been marketed so far. The limited success can be related to 

stress factors occurring during manufacture of the specific devices, storage 

instabilities, and the environmental changes during release. Nevertheless, due to the 

strong demand for stable, single dose vaccines further work in this field is valuable. 
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1.2 Aim and Organization of the Thesis 

One main objective of the thesis was the development of stable, freeze-dried 

formulations for a specific VLP based vaccine, NicQb, meeting the standard 

requirements necessary for large scale clinical studies and commercial use.  

In this context the development of an asymmetrical flow field-flow fractionation 

(AF4) method, as a new powerful tool, in the investigation of the physical stability of 

VLP is described (Chapter 3). 

In order to determine adequate formulations all steps of a complete formulation 

development study, i.e. preformulation, freeze-drying and long-term stability studies 

were conducted. The effect of parameters like pH and salt concentration, and various 

excipients on the stability of the drug were investigated. Additionally, the biological 

activity of the drug in the final freeze-dried form was assessed (Chapter 4). 

The second goal of the thesis was the development of sustained release devices 

for VLP. For this purpose, preliminary studies with PLGA and lipid based implants as 

surrogate formulations were carried out and their efficacy in vivo was assessed. Due 

to the inconvenient route of application and unsatisfactory stability of the target VLP in 

these devices PLGA microcapsules with an oily inner core as potentially improved 

formulation were scrutinized (Chapter 5). 
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2 MATERIALS AND METHODS 

2.1 Materials 

2.1.1 Virus-Like Particles (VLP) 

All VLP used in this work were provided by Cytos Biotechnology AG, Schlieren, 

Switzerland, as liquid, frozen and stored at -80 °C until use.  

The VLP are derived from the coat protein of the bacteriophage Qb. The coat 

protein is recombinantly expressed in E. coli and assembles spontaneously in the 

bacterial cytoplasm to RNA stabilized VLP of about 30 nm diameter  

[Kozlovska et al., 1993]. Each VLP consists of 180 highly organized repetitive 

subunits of approximately 14 kDa which results in a theoretical molecular weight (MW) 

of the VLP of 2.5 MDa. The amino acid sequence and a model of the assembled 

Qb VLP based on the structure dissolved by crystallography  

[Golmohammadi et al., 1996] are depicted in Figure 2.1.1 and Figure 2.1.2, 

respectively.  

AKLETVTLGNIGKDGKQTLVLNPRGVNPTNGVASLSQAGAVPALEKRVTVSVSQPSRNRKNY
KVQVKIQNPTACTANGSCDPSVTRQAYADVTFSFTQYSTDEERAFVRTELAALLASPLLIDAID
QLNPAY 

Figure 2.1.1 Amino acid sequence of Qb VLP coat protein.  

 

 
Figure 2.1.2 Model of Qb VLP. 
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Each of the 180 VLP subunits comprises 7 lysine residues (Figure 2.1.1). Using 

chemical cross-linkers, antigens can be coupled covalently to the Qb VLP surface via 

the lysine residues (Qb platform, Figure 2.1.3 A). By presenting antigens in highly 

repetitive order to the immune system B-cells can be directly activated and strong 

antibody responses can be induced even against small, low molecular weight (lmw) 

haptens [Bachmann et al., 1993; Jegerlehner et al., 2002; Lechner et al., 2002]. 

Based on this immunological principle VLP based drugs can be used for example for 

the therapeutical treatment of chronic diseases such as hypertension (e.g. angiotensin 

as antigen) [Ambuehl et al., 2007] and drug addiction like smoking (e.g. nicotine as 

hapten) [Maurer et al., 2006].  

Furthermore, by packaging immunostimulatory nucleic acid sequences, so called 

cytosine-phosphate-guanosine motifs (CpGs), into antigen-decorated VLP cytotoxic  

T-cell induction in addition to the above described B-cell activation can be achieved 

(QbG10 platform, Figure 2.1.3 B) . The CpGs activate dendritic cells via stimulation of 

Toll-like receptor 9 consequently leading to a more pronounced activation of cytotoxic 

T-cells.  This second feature can be used to treat diseases such as cancer and 

chronical viral infections [Storni et al., 2004].  

 

 
Figure 2.1.3 Scheme of Qb (A) and QbG10 (B) platform. 

In this work four different types of VLP were used. Three were based on the 

above described Qb VLP platform, namely NicQb, AngQb and QbSAMSA, and one, 

QbG10p33, based on the VLP carrier vaccine platform QbG10.  
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NicQb 

NicQb is a therapeutic vaccine for the treatment of nicotine addiction. Nicotine is 

coupled to the VLP of RNA bacteriophage Qb via a succinyl linker to the lysine side 

chains of the Qb coat proteins [Maurer et al., 2005]. Vaccination with NicQb leads to 

the induction of nicotine specific antibodies. The antibodies bind nicotine (from inhaled 

tobacco smoke) in the blood and inhibit its passage to the brain, as antibodies 

normally cannot pass the blood brain barrier. Phase II clinical trials with NicQb have 

demonstrated that this vaccine is efficacious for smoking cessation and relapse 

prevention [Maurer et al., 2006].  

AngQb 

AngQb is a therapeutic vaccine for the treatment of hypertension. It consists of 

chemically synthesized angiotensin II (identical to human form) which is chemically 

cross-linked onto the surface of Qb VLP. The drug is designed to instruct the patient’s 

immune system to produce a specific anti-angiotensin II antibody response*. 

Angiotensin II is a potent vasoconstrictor and part of the renine-angiotensin-

aldosteron system, the main regulator of blood pressure [Mutschler et al., 2001]. 

Vaccination with AngQb is anticipated to induce antibodies that bind angiotensin II 

and thus blood pressure should be down regulated. In a phase IIa clinical trial the 

efficacy of the drug was proved [Ambuehl et al., 2007].  

QbG10p33 

QbG10p33 is a model VLP which consists of a model peptide p33 covalently 

bound to Qb VLP packed with CpG oligonucleotides [Storni et al., 2004]. QbG10p33 

was used as model VLP to investigate antibody response and T-cell induction.   

QbSAMSA 

QbSAMSA is a fluorescence labeled VLP. SAMSA fluorescein is covalently 

bound to the surface of Qb VLP. In this work the labeled VLP were used as model 

VLP for encapsulation into microcapsules. 

 

______________________________________________________________ 

* htttp://www.cytos.com 
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2.1.2 Fine chemicals 

Significant chemicals used in this work are listed in Table 2.1.1. All other 

chemicals were of at least analytical grade. 

Table 2.1.1 Significant fine chemicals. 

Reagent Producer Article number 

L-Histidine Merck KGaA 
(Darmstadt, Germany) 1.04352 

D-Mannitol Sigma-Aldrich Laborchemikalien GmbH (Seelze, 
Germany) 33440 

Mineral oil Sigma-Aldrich Chemie GmbH  
(Steinheim, Germany) M1180 

Poly(vinyl alcohol) 
80 % hydrolyzed 

Sigma Aldrich Chemie GmbH  
(Steinheim, Germany) 360627 

Polyethylene glycol 3,350 Sigma Aldrich Chemie GmbH  
(Steinheim, Germany) 88276 

Polyethylene glycol 6,000 Clariant GmbH 
(Sulzbach, Germany) 107926 

Polysorbate 20 Fluka Chemie GmbH 
(Buchs, Switzerland) 44112 

Resomer® RG 502 Boehringer Ingelheim Pharma GmbH & Co. KG 
(Ingelheim, Germany) 60640667 

Resomer® RG 502 H Boehringer Ingelheim Pharma GmbH & Co. KG 
(Ingelheim, Germany) 60640802 

Resomer® RG 503 Boehringer Ingelheim Pharma GmbH & Co. KG 
(Ingelheim, Germany) 60640661 

Sesame oil 
refined 

Henry Lamotte GmbH  
(Bremen, Germany) 84260 

α, α-Trehalose  
dihydrate 

Ferro Pfanstiehl Lab., Inc.  
(Waukegan, IL, USA) T-104-1-MC 

Tristearin 
(Dynasan 118) 

Sasol GmbH 
(Witten, Germany) 106582 
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2.2 Methods 

2.2.1 Processing 

Handling of VLP solutions 

All VLP solutions were stored at -80 °C until use. Thawing was performed at 

25 °C in agitated water baths. Before using the active pharmaceutical ingredient (API) 

bulk material VLP solutions were generally filtered through 0.22 µm polyvinylidene 

difluoride (PVDF) syringe-driven filter units. 

Freeze-thawing (FT) 

VLP solutions were filled into standard Eppendorf reaction tubes (Eppendorf AG, 

Hamburg, Germany). Samples were frozen by placing the tubes in a refrigerator at 

-80 °C.  After a minimum of 3 hours the samples were thawed at ambient 

temperature. Freeze-thaw cycles were repeated for 5 times. 

Freeze-drying (FD) of VLP formulations and microcapsule formulations 

VLP formulations were prepared by mixing API bulk material with excipient stock 

solutions. After preparation, VLP formulations were sterile filtered through 

syringe-driven 0.22 µm PVDF filter units. Generally, aliquots of 600 µl of the final 

composition were transferred into 2R class I glass vials (Schott AG, Mainz, Germany) 

for freeze-drying.  The samples were freeze-dried either in an EPSILON 2-6D pilot 

scale freeze-drier or an EPSILON 2-12D freeze-drier (Martin Christ 

Gefriertrocknungsanlagen GmbH, Osterode, Germany) (Figure 2.2.1) using three 

different protocols, A, B and C (Figure 2.2.2).  

A B

 
Figure 2.2.1 Freeze-driers: Epsilon 2-6D (A) and Epsilon 2-12D (B). 
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Figure 2.2.2 Freeze-drying cycles – VLP formulations. 
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Samples were frozen to -50 °C with a cooling rate of 1 °C / min if the freeze-drier 

EPSILON 2-12D was used. When using freeze-drier EPSILON 2-6D samples were 

first frozen to -40 °C at a freezing rate of 1 °C /min. Due to technical limitation the 

samples were then frozen to -50 °C at a cooling rate of 0.16 °C / min. Subsequently, 

the temperature was held at -50 °C for 3 hours. Protocol A comprises two primary 

drying steps, 20 hours at -35 °C and 10 hours at -20 °C, and a 10 hour secondary 

drying step at 20 °C at a pressure of 0.045 mbar. In protocol B, primary drying was 

conducted at -15 °C for 20 hours at 0.045 mbar and secondary drying at 40 °C for 

10 hours at 0.007 mbar. Protocol C was alike protocol 2 with a 2 hour annealing step 

at -15 °C. After annealing the samples were again frozen to -40 °C with a cooling rate 

of 1 °C / min and to -50 °C at a freezing rate of 0.16 °C / min. The temperature was 

held at -50 °C for further 3 hours before primary drying. After freeze-drying the 

chamber was vented with nitrogen and the vials were stoppered with 

polydimethylsiloxane (PDMS) and ethylenetetrafluoroethylen (ETFE) coated 

lyophilization stoppers (West Pharmaceutical Services, Inc., Lionville, PA, USA) under 

vacuum at 800 mbar. The samples were rehydrated with highly purified water to a 

volume being equivalent to the volume prior to lyophilization. 

 

Microcapsule formulations were freeze-dried with the EPSILON 2-6D pilot scale 

freeze-drier according to freeze-drying protocol D (Figure 2.2.3). Aliquots of about 

0.5 mL were transferred into 2R class I glass vials (Schott AG, Mainz, Germany), 

frozen to -30 °C at a cooling rate of 1 °C / min and held at -30 °C for 1 hour. Primary 

drying was conducted at -30 °C and 0.100 mbar for 6 hours and secondary drying at 

20 °C and 0.05 mbar for 10 hours. After freeze-drying the chamber was vented with 

nitrogen and the samples were stoppered with PDMS and ETFE coated lyophilization 

stoppers at 800 mbar.  
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Figure 2.2.3 Freeze-drying cycle – microcapsule formulations. 

Stability studies 

Stability studies were carried out at controlled temperature levels. The conditions 

applied were 2-8 °C, 25 °C / 60 % relative humidity (RH) and 40 °C / 75 % RH. VLP 

lyophilizates were stored in 2R class I glass vials either open or sealed with PDMS 

and ETFE-coated lyophilization stoppers. VLP solutions and oily suspensions were 

stored either in LoBind Eppendorf reaction tubes or in 2R class I glass vials, open or 

sealed with the above mentioned stoppers. 

In vivo study - NicQb lyophilizates  

(performed by Cytos Biotechnology AG, Schlieren, Switzerland) 

For bioactivity testing reconstituted lyophilizates and API bulk material were 

assessed. Groups of 10 female balb / c mice were immunized subcutaneously with a 

dose of 100 μg of vaccine. Mice were boosted after seven days with the same amount 

of drug. Sera were collected after another seven days and analyzed by Enzyme-linked 

Immunosorbent Assay (ELISA). ELISA analysis was carried out by measuring the 

specific anti-nicotine IgG titers of individual mice on RNase-nicotine conjugate. In 

brief, ELISA plates were coated overnight at 5 ± 3 °C with 4.25 µg / ml RNase-nicotine 

conjugate. After blocking, mouse serum dilutions were added to the plate and 

incubated for 2 hours at room temperature. Binding of  

NicQb-antibodies was detected by goat anti-mouse IgG-horseradish 
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peroxidase-conjugate after 1 hour incubation time. A pooled standard mouse serum 

was used to establish an anti-nicotine antibody standard curve. Data fitting of the 

standard curve was performed using a 4-parameter Marquardt fit. Titers of individual 

mice were determined from triplicate analysis of different dilutions. Individual 

measurements within the linear range of the ELISA curves were used for calculations. 

Manufacture of implants 

VLP loaded, PLGA or tristearin based implants with a total weight of each 25 mg 

were produced as follows: VLP lyophilizate (10 % of total mass), matrix materials 

PLGA or tristearin (80 - 86 % of total mass) and varying amount of further excipients 

(PEG and magnesium hydroxide, in sum 4 - 10 % of total mass) were ground in an 

agate mortar. Preparation was performed in a dry-nitrogen-purged glove box to 

prevent moisture uptake from the ambient atmosphere.  25 mg of this mixture were 

transferred into a compaction tool (3 mm diameter) and compressed for 15 seconds 

with a 5 ton hydraulic press (Maassen, Eningen, Germany) (Figure 2.2.4) at 2.0 kN.  

 

 
Figure 2.2.4 Hydraulic press and compacting equipment. 
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Release studies 

The implants were placed into LoBind Eppendorf reaction tubes together with 

1 mL release buffer. The samples were incubated at 37 °C at an agitation speed of 

40 rpm in a B. Braun Biotech International Certomat® IS chamber (Melsungen, 

Germany). After defined time intervals, release media were exchanged with fresh 

release buffer. The Qb coat protein content in the release medium was determined via 

RP-HPLC. Therefore, the VLP were first disassembled with dithiothreitol (DTT) and 

guanidine hydrochloride (GuaHCl). Specific samples were analyzed via SE-HPLC for 

VLP integrity. The release buffer consisted of 20 mM sodium phosphate buffer,  

0.01 % polysorbate 20 and 0.05 % sodium azide, pH 7.2. 

In vivo study – QbG10p33 implants  

(performed by Cytos Biotechnology AG, Schlieren, Switzerland) 

For bioactivity testing different PLGA and tristearin implant formulations 

containing 300 µg VLP and placebo implants (negative control) were assessed. 

Additionally, liquid VLP formulations (reconstituted QbG10p33 lyophilizates) 

containing 50 µg VLP were applied either 1 x or 3 x (weekly application) as positive 

control. The different formulations were administered to groups of 3 - 5 female  

C57BL / 6 mice. The implants were placed under isofluorane anesthesia after surgical 

incision in the subcutaneous neck tissue. The liquid formulation was applied 

subcutaneously. Sera were collected after 1, 2, 3, 4, 6, 9 and 12 weeks. Samples 

were analyzed either by ELISA to measure the specific anti-p33 IgG titers or by 

fluorescence-activated cell sorting (FACS) to investigate the activation of p33-specific 

CD8+ T cells. 

ELISA measurements were performed by using a robotic liquid handling system 

(Hamilton Bonaduz AG, Bonaduz, Switzerland). In brief, Elisa plates were coated for 

12 hours with 10 µg / ml p33-antigen coupled to RNase. Mouse serum dilutions were 

added to the plate and incubated for 2 hours. Binding of anti-p33-antibodies was 

detected by goat anti-mouse IgG-Fc-horseradish peroxidase-conjugate after 1 hour 

incubation time. ELISA titers from individual mouse sera were calculated using a 

4-parameter Marquardt fit. The titer corresponds to the dilution needed to achieve half 

maximal optical density (OD). 
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For FACS analysis samples were incubated for 20 min at 4 °C with Strep-Tactin 

PE-labeled (IBA, Göttingen, Germany) p33-H-2b tetrameric complexes and 

subsequently 30 min with anti-mouse CD8a APC Abs (BD PharMingen, San Diego, 

CA, USA). CD8+ p33 specific T cells were acquired in a FACSCalibur device and 

analyzed by using CellQuest software (BD PharMingen, San Diego, CA, USA). 

Manufacture of microcapsules 

Oil-Based PLGA microcapsule formulations were prepared by a solvent 

extraction / solvent evaporation process introduced by Sanchez et al.  

[Sanchez et al., 1996]. The microcapsules consisted of VLP-loaded oily droplets 

coated with PLGA. 

  VLP lyophilizate was suspended in mineral oil using a SpeedMixerTM DAC 150 

FVZ (Hauschild Engineering, Hamm, Germany). The resulting suspension was 

dispersed by vortexing in acetonitrile, ethyl acetate or mixtures of both solvents 

containing PLGA. Subsequently, the suspension was slowly added through a capillary 

with an inner diameter of 0.8 mm to 10 mL of a PVA solution (0.75 % w/v) under 

vigorous magnetic stirring. After stirring for 3 minutes additional 10 mL of the PVA 

solution were slowly added for extraction of the organic solvents. After stirring for 

further 10 minutes 30 mL water were added. Then, the emulsion was stirred for 30 

minutes to enable evaporation of the organic solvents and hardening of the 

microcapsules (Figure 2.2.5).  Afterwards, the microcapsules were collected by 

vacuum filtration and rinsed with hexane. The final microcapsule formulations were 

washed with water and lyophilized as described in “Freeze-drying (FD) of VLP 

formulations and microcapsule formulations”. 

 

 

 

 

 

 

 

 

 



 
Materials and Methods 
___________________________________________________________________________ 
 

20 
 

 
VLP lyophilizate Mineral oil

Lyophilizate suspension PLGA solution

PLGA Organic solventVLP lyophilizate Mineral oil

Lyophilizate suspension PLGA solution

PLGA Organic solvent

Dispersion of lyophilizate 
suspension in PLGA solution PVA solution

Intermediate microcapsules with
„unhardened“ PLGA shells

Further addition of PVA solution

Addition of water

Microcapsules with „hardened“
PLGA shells  

Figure 2.2.5 Schematic display of manufacture process of microcapsules. 
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2.2.2 Analytics 

Asymmetrical flow field-flow fractionation (AF4) 

AF4, a quasi chromatographic fractionation technique, is gaining more and more 

interest in protein and nanoparticle analytics. It is described to be capable of 

separating particles from a few nm up to several µm. By coupling AF4 to UV and 

multiangle laser light scattering (MALLS) detectors it became possible to quantify and 

determine the molecular weight of the specific fractions [Fraunhofer et al., 2004; 

Zillies, 2007]. 

AF4 measurements were performed using either the Wyatt standard separation 

channel (25 cm) or the short channel (18 cm) equipped with a 350 µm spacer, an 

Eclipse2 separation system (Wyatt Technology Europe GmbH, Dernbach, Germany), 

Agilent 1100 HPLC series isocratic pump, autosampler, degasser, UV detector 

(Agilent Technologies, Palo Alto, CA, USA) and the Wyatt DAWN EOS MALLS 

detector. Regenerated cellulose (MWCO of 10 kDa) was used as ultrafiltration 

membrane.  

NicQb samples were analyzed by applying separation method A (Figure 2.2.6) 

and using the standard channel. The running buffer consisted of sodium phosphate 

buffer (pH 7.0) and 150 mM sodium chloride. 

AngQb and QbG10p33 samples were analyzed by applying separation method B 

(Figure 2.2.6) and using the small channel. The running buffer used for AngQb 

analysis was composed of sodium phosphate buffer (pH 7.2) with 50 mM sodium 

chloride. For QbG10p33 samples sodium phosphate buffer (pH 7.2) was used.  

The VLP concentration was determined at 260 nm via UV detection. The MALLS 

detector was used for the determination of the average molecular weight of the VLP 

fractions.  
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Figure 2.2.6: AF4 cross-flow profiles for NicQb (A), CYT006-AngQb and QbG10p33 (both B).  

Size exclusion – high performance liquid chromatography (SE-HPLC) – VLP 

integrity 

SE-HPLC is an analytical method typically applied for the investigation of soluble 

protein impurities such as degradation products and low molecular weight aggregates 

[Skoog et al., 1992; Rodriguez-Diaz et al., 2005]. In this context VLP degradation and 

aggregation was determined by SE-HPLC on a Summit HPLC System  

(Dionex GmbH, Idstein, Germany) using a TSKgel G5000PWXL SE-HPLC column 

(Tosoh Biosience GmbH, Stuttgart, Germany). The running buffer was composed of 

20 mM sodium phosphate and 150 mM sodium chloride (pH 7.2). The analytics were 

performed at a flow rate of 0.8 mL / min with UV detection at 260 nm.  
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Dynamic light scattering (DLS) 

DLS is a standard analytical tool applied for the investigation of VLP impurities 

[Brandau et al., 2003; Shi et al., 2005]. Measurements were performed using a 

Malvern Zetasizer Nano ZS (Malvern Instruments Ltd., Worcestershire, UK). The 

polydispersity index (PI) and the hydrodynamic diameter were determined by using a 

NNLS (Non-Negatively Constrained Least Squares) fitting algorithm. The size 

distributions by intensity and volume were calculated form the correlation function by 

using the multiple narrow mode of the Dispersion Technology Software version 4.00 

(Malvern Instruments Ltd., Worcestershire, UK). 

Determination of zeta potentials 

Zeta potentials state electrostatic properties of particles in a dispersion medium 

[Leuenberger, 2002]. They were assessed with a Malvern Zetasizer Nano ZS 

(Malvern Instruments Ltd., Worcestershire, UK). Malvern DTS 1060 disposable cells 

were filled with VLP solutions and analyzed at 25 °C via the automatic measurement 

mode. 

Laser diffraction - particle size distribution 

The size of the PLGA microcapsules was determined by laser diffraction using a 

Horiba LA-950 (Retsch Technology GmbH, Haan, Germany) particle size distribution 

analyzer equipped with a 10 mL fraction cell. Values of RI = 1.49 and 

absorption = 0.000 were used as optical model. 

Light obscuration analysis – particulate matter  

The particulate matter was analyzed with a PAMAS SVSS-C40 light blockage 

system (PAMAS GmbH, Rutesheim, Germany). Particles were counted due to their 

obscuration of light and were classified into 16 different size ranges from > 1 µm up to 

> 200 µm. Briefly, measurements were carried out as follows: The measurement cell 

was flushed with particle free water and rinsed with 0.3 mL sample. Subsequently, two 

independent measurements of 0.1 mL were performed, respectively. Particles larger 

than 1 and 10 µm were counted, and the mean values of the referring particle 

numbers per mL were displayed.  
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Transmission electron microscopy (TEM)  

(performed by Prof. P. Wild at the Institute of Veterinary Anatomy and Virology, 

University of Zurich, Switzerland) 

VLP samples were analyzed in a transmission electron microscope CM12 

(Philips, Eindhoven, Netherlands) at 100 kV. Therefore, parlodion films mounted on 

300 mesh / inch were carbon coated by electron gun evaporation at 10-5 mbar in a 

vacuum unit BAE 121 (BalTec Maschinenbau AG, Pfäfficon, Switzerland). The VLP 

were adsorbed onto these coated films and negatively stained with uranylacetate 

(Sigma Aldrich Chemie GmbH, Buchs, Switzerland). Images were taken using a CCD 

low scan camera (Gatan Inc., Pleasanton, CA, USA). 

 Reversed phase-HPLC (RP-HPLC) - determination of free nicotine derivatives 

(performed by Cytos Biotechnology AG, Schlieren, Switzerland) 

The free nicotine derivatives hydroxymethyl-nicotine and succinyl-hydroxy-

methyl-nicotine were separated from NicQb by filtration at 14000 rcf in Nanosep 3K 

Omega spin filters from PALL Corporation (Dreieich, Germany). The filtrate was 

analyzed by RP-HPLC on a Summit HPLC System (Dionex GmbH, Idstein, Germany) 

using a Hypersil BDS-C18, 4.0 x 125 mm, 5 µm column (Agilent Technologies 

Deutschland GmbH, Böblingen,  Germany).  A flow rate of 1.0 mL / min with UV 

detection at 260 nm was applied. An elution gradient was used, applying acetonitrile 

and a sodium dihydrogen phosphate / triethylamine buffer (pH 7.0) as eluents. The 

concentration of the nicotine derivatives was calculated from the regression of a 

nicotine standard curve. The values for free nicotine derivatives were given as 

percentage of total nicotine.  

RP-HPLC - determination of total nicotine  

(performed by Cytos Biotechnology AG, Schlieren, Switzerland) 

The nicotine moiety covalently linked to Qb VLP was quantitatively cleaved 

during 3 h incubation at 40 °C and pH > 11. Subsequently, proteins were precipitated 

with hydrochloric acid and removed by centrifugation. The concentration of the 

hydrolysis product hydroxymethyl-nicotine in the supernatant was determined as 

described above. 
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RP-HPLC – quantification of Qb coat proteins 

For the quantification of Qb coat proteins in liquid samples VLPs were first 

disassembled by reducing disulfide bonds with DTT (50 mM) and disrupting 

non-covalent interactions with guanidine hydrochloride (2 M). Disassembled samples 

were centrifuged to remove particulate matter. The supernatant was analyzed by 

RP-HPLC on a Summit HPLC System (Dionex GmbH, Idstein, Germany) using a 

Jupiter C4, 300 A, 150 x 4.6 mm, 5 µm column (Phenomenex,  Aschaffenburg, 

Germany). A flow rate of 1.0 mL / min with UV detection at 215 nm was applied. An 

elution gradient was used, introducing acetonitril (40 % v/v) and acetonitril (60 % v/v) 

as eluents under acidic conditions. The concentration of Qbeta coat protein was 

determined by external calibration with a VLP standard. 

Bioanalyzer – RNA integrity  

(performed by Cytos Biotechnology AG, Schlieren, Switzerland) 

The integrity of RNA in Qb VLP was analyzed either by Bioanalyzer or by 

SE-HPLC. For sample preparation VLP formulations were first homogenized with 

TRI-Reagent® (Lucerna Chem AG, Luzern, Switzerland), a combination of phenol and 

guanidine thiocyanate in a monophase solution used to inhibit RNase activity. After 

incubation for 5 minutes at ambient temperature BCP Phase Separation Reagent 

(Lucerna Chem AG, Luzern, Switzerland) was added. Thereby, the homogenate is 

separated into aqueous and organic phases. Afterwards the mixture was centrifuged. 

RNA remains exclusively in the aqueous phase, DNA in the interphase and proteins in 

the organic phase. RNA was precipitated from the aqueous phase by addition of 

isopropanol, washed with ethanol and dissolved in diethyl pyro-

carbonate (DEPC) - water. RNA was analyzed by using a 2100 Bioanalyzer (Agilent 

Technologies AG, Basel Switzerland) together with the RNA 6000 Nano assay 

(Agilent Technologies AG, Basel Switzerland).  The Agilent 2100 Bioanalyzer uses a 

combination of microfluidics, capillary electrophoresis, and fluorescent dyes that bind 

to nucleic acid to simultaneously evaluate both RNA concentration and integrity. The 

RNA pattern of the samples was compared to a corresponding standard.   
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SE-HPLC – RNA integrity  

(performed by Cytos Biotechnology AG, Schlieren, Switzerland) 

The VLP samples were prepared as described in “Bioanalyzer – RNA integrity”. 

RNA degradation was determined by SE-HPLC on a Summit HPLC System  

(Dionex GmbH, Idstein, Germany) using a TSKgel G5000PWXL SE-HPLC column 

(Tosoh Biosience GmbH, Stuttgart, Germany). The running buffer was composed of 

20 mM sodium phosphate and 150 mM sodium chloride (pH 7.2). The analytics were 

performed at a flow rate of 0.8 mL / min with UV detection at 260 nm. The retention 

time of the extracted RNA was determined relative to a tRNA standard analyzed in the 

same sequence.  

Gel electrophoresis (LDS-PAGE) – VLP degradation  

(performed by Cytos Biotechnology AG, Schlieren, Switzerland) 

LDS-PAGE and SDS-PAGE (lithium / sodium dodecylsulfate polyacrylamide gel 

electrophoresis) is a standard tool to separate different fractions of a protein sample. 

After denaturing the protein with LDS / SDS, protein species are separated according 

to their mass on a polyacrylamide gel. In general, protein species with low molecular 

weight diffuse faster through the gel than those with larger molecular weight. 

LDS / SDS-PAGE can be carried out under non-reducing or reducing conditions 

(addition of DTT resulting in the break-up of covalent disulfide bonds) [Dunn, 2000; 

Wang et al., 2006]. 

This method was used for the determination of degradation products of Qb coat 

proteins. VLP samples and a Qb standard were incubated with DTT solution 

(Sigma-Aldrich Chemie GmbH, Buchs, Switzerland) and NuPage® LDS sample buffer 

(Invitrogen Life Technologies Ltd, Paisley, UK). Thus, disassembling of VLP is 

enabled by the cleavage of disulfide bonds and non-covalent bonds. Invitrogen 

NuPage® 12% Bis-Tris gels and NuPage® MES LDS running buffer were used for 

separation of the samples in an Novex Xcell SureLock Mini-Cell (Invitrogen Life 

Technologies Ltd, Paisley, UK) connected to a BioRad Power Pac 300 power supply 

(Bio-Rad AG, Glattbrugg, Switzerland). Detection was carried out by silver staining 

with silver nitrate solution. SigmaMarker™ low range (6,500-66,000 Da) MW standard 
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(Sigma-Aldrich Chemie GmbH, Buchs, Switzerland) was run on each gel for 

estimation of molecular weights. Low molecular weight impurities and degradation 

products were detected. The intensity of bands of an apparent molecular weight 

smaller than the molecular weight of Qb coat protein monomer was compared to a Qb 

standard, applied at different concentrations to the same gel.  

Osmolality 

Osmolality measurements were conducted by using a Knauer Semimicro 

Osmometer Automatik (Knauer Wissenschaftliche Gerätebau Dr. Ing. Herbert Knauer 

GmbH, Berlin, Germany). The osmolality of liquid formulations and reconstituted 

lyophilisates was determined via reduction of the freezing point of the solution in 

comparison to pure water.  

Karl Fisher (KF) titration - determination of residual water content 

Residual moisture contents of the lyophilizates were determined by coulometric 

Karl Fischer (KF) titration using an Aqua 40.00 titrator with a headspace module 

(Analytic Jena AG, Halle, Germany). In brief, samples were heated in 2R glass vials to 

80 °C for at least 5 minutes. The vaporised water was transferred with nitrogen into 

the titration solution (Hydranal®-Coulomat AG, Sigma-Aldrich GmbH, Seelze, 

Germany), where its amount was determined. 

X-Ray powder diffraction (XRD) 

The morphology of lyophilizates was analyzed by XRD from 5-40 °2-θ, with steps 

of 0.05 °2-θ (2 s per step) on an XRD 3000TT X-ray diffractometer (Seiffert, 

Ahrenburg, Germany), equipped with a copper anode (40 kV, 30 mA, wavelength 

154.17 pm).  

Differential scanning calorimetry (DSC) 

DSC is used to study the glass transition of the maximally freeze-concentrated 

solutions (Tg’), the glass transition (Tg) and / or melting temperature of lyophilizates, 

and the crystallization behavior of amorphous excipients [Nail et al., 2002;  

Hawe, 2006]. Samples were analyzed on a Differential Scanning Calorimeter 204 
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Phoenix (Netzsch-Geraetebau GmbH, Selb, Germany) in cold-sealed aluminum 

crucibles. 

For the investigation of the Tg’ of liquid samples heating and cooling rates of 

10 °C / min were applied, in a range of -70 °C up to 20 °C. About 20 mg of the 

samples were analyzed. Tg’ (point of inflection) of the compositions was determined 

during the heating scan.   

For the investigation of dried samples 2-15 mg were used. Preparation was 

performed in a dry-nitrogen-purged glove box to prevent moisture uptake from the 

ambient atmosphere. In a first heating scan samples were heated from -20 to 90 °C at 

10 °C / min, cooled to -20 °C at 10 °C / min and again heated in a second heating 

scan from -20 °C to 170 °C at 10 °C / min. Tg (point of inflection) of trehalose, melting 

temperature (peak) of mannitol and crystallization of amorphous mannitol were 

determined from the heating scans.  

Light microscopy 

Aliquots of 10 to 20 µL microcapsule formulations were pipetted on a glass object 

holder plate and were covered with a glass cover slide. The samples were assessed 

using a Nikon Labophot microscope (Nikon Instruments Inc., Melville, NY, USA), 

equipped with CFW 10x oculars and 4x, 10x, 20x and 40x objectives, respectively. 

Pictures were taken using a JVC TK-C1380 digital camera (JVC Deutschland GmbH, 

Friedberg, Deutschland). Microcapsule sizes were assessed by measuring the 

diameters of representative microcapsules by applying the calibrated JVC Digital 

Screen Measurement Comet software. 

Scanning electron microscopy (SEM) 

The morphology and structure of the freeze-dried microcapsules was analyzed 

with a Field Emission Scanning Electron Microscope Joel JSM-6500F (Joel Inc., 

Peabody, MA, USA). Therefore, microcapsules were first cut with a Mikrotom-

Kryostat-HM500 microtome (MICROM Laborgeräte GmbH, Waldorf, Germany). 

Briefly, microcapsule samples were frozen on the sample holder pin of the microtome, 

cut, lyophilized and examined by SEM.  
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Samples were fixed with a double-sided adhesive carbon tape (Bal-Tec AG, 

Balzers, Liechtenstein) to a custom made brass stub. The fixed samples were 

sputtered with carbon (Bal-Tec AG, Balzers, Liechtenstein) under vacuum for 

approximately 2 minutes inside a MED020 sputtering device (Bal-Tec AG, Balzers, 

Liechtenstein). Subsequently, the sputtered samples were analyzed.  

Confocal laser scanning microscopy (CLSM) 

Aliquots of 10 to 20 µL of the FITC labeled VLP microcapsule formulations were 

pipetted on a glass object holder plate and were covered with a glass cover slide. The 

samples were assessed using a Zeiss LSM 510 Meta fluorescence confocal laser 

scanning microscope (Zeiss Microscope Systems, Jena, Germany) equipped with a 

C-Apochromat 40x / 1.2 W Korr objective. For excitation of the fluorophore the 488 nm 

line of an Ar laser was used. The CLSM pictures were analyzed with the Zeiss LSM 

Image Browser software (Zeiss Microscope Systems, Jena, Germany). 
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3. AF4 AS NEW ANALYTICAL TOOL FOR THE 
INVESTIGATION OF THE PHYSICAL STABILITY 
OF VLP  

3.1 Introduction 

For the development of virus-like particle (VLP) based pharmaceutical products 

the application of reliable analytical tools is of great importance. For quality control 

purposes the methods need to be sufficiently sensitive to detect and quantify even 

small varieties between different API bulk materials, and varying formulations upon 

manufacture and storage. For the assessment of physical properties of viruses and 

virus-like particles three main techniques are established: (1) Transmission electron 

microscopy (TEM) [Vogt et al., 1999; Casini et al., 2004; Hansen et al., 2005],  

(2) Dynamic light scattering (DLS) often referred to as photon correlation 

spectroscopy (PCS) or quasi-elastic light scattering (QELS) [Santos et al., 1996; 

Brandau et al., 2003; Shi et al., 2005] and (3) Size exclusion chromatography  

(SE-HPLC) [Zlotnick et al., 2000; Rueda et al., 2000; Schmidt et al., 2000]. The 

utilization of TEM may be ascribed to the high resolution enabling accurate particle 

analysis. Inherent drawbacks of this technique are random sampling – instead of an 

overall sample analysis – and time consuming preparation and measurement 

procedures. DLS is described as a powerful, fast, non-destructive method for the 

determination of the average hydrodynamic radii, and size distributions of particles in 

their natural liquid environment. Thereby, increasing average sizes and polydispersity 

indices indicate aggregation of the particles [Griffin et al., 1993]. However, the size 

resolution is rather low and the obtained size distribution is rather inaccurate; the 

particles must differ in radius by about twofold to be resolved. Furthermore, the 

accurate quantification of different particle fractions is not feasible [Stock et al., 1985; 

Jiskoot et al., 2005]. SE-HPLC represents the gold standard for the analysis of the 

physical stability of proteins and is also used for the characterization of large 

biomolecules like virus-like particles. The drawbacks of SE-HPLC are its limited 

resolution capacity of especially high molecular weight molecules and the fact that 

only the analysis of soluble aggregates is possible [Litzen et al., 1993]. Consequently, 

for formulation development studies there is a strong need for a more sensitive 
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analytical tool that allows separation, characterization and quantification of different 

VLP fractions.  

Field-flow fractionation (FFF) was introduced in 1966 as a new versatile 

technique for the separation and characterization of high-molecular-weight molecules 

and particles [Giddings, 1966]. Since then various FFF techniques like sedimentation 

FFF, thermal FFF, electrical FFF, flow FFF and asymmetrical flow FFF (AF4) have 

been developed as reviewed recently by Fraunhofer et al. [Fraunhofer et al., 2004] 

and Reschiglian et al. [Reschiglian et al., 2005]. Among these, AF4 is described as 

the most versatile and widely used. The theory and basic mechanisms of AF4 are 

discussed in detail elsewhere [Wahlund et al., 1987; Schimpf, 2000; Fraunhofer et al., 

2004; Kowalkowski et al., 2006] and are thus only summarized in brief. In Figure 3.1.1 

the principle of separation is illustrated.  

 

 

Figure 3.1.1: Separation principle of AF4. 

A sample is injected into the hollow channel, which is at the downside 

(“accumulation wall”) limited by an ultrafiltration membrane with a certain MWCO 

(open for solvent, but not for species to be analyzed). After a focusing step, samples 

are eluted by a parabolic channel flow. At the same time, a cross-flow perpendicular 

to the carrier flow is applied which “pushes” the dispersed particles in the direction of 

the accumulation wall, where the cross-flow exits the channel via the membrane. 

Thereby, analytes are partitioned into regions with different flow velocities in 

dependence of their diffusion properties. In essence, the larger a particle, the smaller 

its diffusion coefficient acting in opposite direction than the convection from the  

cross-flow. Thus, the larger a particle, the stronger it is influenced by the cross-flow 

and the longer it is retained in the channel. As a consequence, smaller particles elute 

faster than larger ones. Due to the open architecture of the separation channel 
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particles in the size range from several nanometers up to a few microns are 

accessible for separation by field-flow fractionation [Giddings, 1993].  

During the last decades AF4 has gained more and more attention and was 

successfully applied for example for the analysis of the size and size distribution of 

monoclonal antibodies [Litzen et al., 1993], liposomes [Moon et al., 1993], lipid / DNA 

complexes [Lee et al., 2001], nanoparticles [Jores et al., 2004; Zillies, 2007], and 

viruses [Thielking et al., 1998]. Additionally, by coupling this technique with a 

multiangle laser light-scattering detector (MALLS) it became possible to obtain the 

molecular weight distributions of the fractionated species [Thielking et al., 1998; 

Wyatt, 1998; Fraunhofer et al., 2004]. 

In this context, it was the objective of the present work to develop an AF4 method 

as alternative tool for the analysis of VLP formulations and to investigate whether AF4 

can provide a better insight into VLP compositions than DLS and SE-HPLC.  
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3.2 Results and Discussion 

The VLP NicQb was used for the development of the AF4 method on an Eclipse2 

AF4 system (Wyatt Technology Europe GmbH, Dernbach, Germany) equipped with 

the “standard channel (25 cm)” (see chapter 2). The separation efficiency of an AF4 

method can be affected by manifold parameters like channel height, membrane 

material and molecular weight cut-off, eluent composition, focusing time, channel flow 

and cross-flow profile, and applied drug amount [Schimpf, 2000]. In preliminary 

experiments the following parameters were determined as fixed: 

 

a)  Spacer – 350 µm 

b) Eluent – 20 mM sodium phosphate buffer (pH 7.0) with 150 mM sodium 

chloride 

c)  Ultrafiltration membrane molecular weight cut-off – 10 kDa 

d) Channel flow – 1.5 mL / min 

e)  VLP amount – 20 µg 

3.2.1 Selection of Membrane Material 

First, the impact of the membrane material on the separation of VLP was 

analyzed.  The proper selection of the membrane material is important because 

during intensive focusing and during separation at high initial cross-flow rates the 

analyte is accumulated at the membrane, and thus adsorption phenomena can occur 

[Schimpf, 2000]. In this context regenerated cellulose, cellulose triacetate and 

polyethersulfone membranes were assessed. The cross-flow was kept at 2.0 mL / min 

for 30 minutes and was subsequently reduced to 0 mL / min within 10 minutes. The 

fractograms, depicted in Figure 3.2.1, revealed that regenerated cellulose was the 

most suitable membrane material. The fractionation of apparently diverse VLP 

fractions was feasible and the recovery of NicQb, determined from the UV signal, was 

96 %. Thus, it was assumed that almost no material was adsorbed onto the 

membrane. This might be related to the repulsion of the negatively charged NicQb 

(compare chapter 4) by the negatively charged cellulose residues. However, cellulose 

acetate, which is even more negatively charged, seemed not to be useful, as the 
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resolution of the distinctive peaks was worse and the recovery was clearly reduced 

(79 %) in comparison to regenerated cellulose. By using polyethersulfone two distinct 

VLP peaks with high resolution were obtained but a significant amount of NicQb was 

adsorbed to the membrane, the recovery was approximately 30 %. Hence, 

regenerated cellulose was determined as optimal membrane material. 
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Figure 3.2.1 Effect of membrane material on the separation of VLP: regenerated cellulose (1), 
polyethersulfone (2), and cellulose triacetate (3); all 10 kDa cut-off. 

3.2.2 Determination of Cross-Flow Profile  

The initially applied cross-flow of 2 mL / min at a channel flow of 1.5 ml / min 

exhibited good separation properties for NicQb. However, in the next step the effect of 

various cross-flows in the range of 0.5 up to 3.0 mL / min on the separation of NicQb, 

the peak symmetry and width was investigated. The resulting fractograms are 

displayed in Figure 3.2.2. It was demonstrated that increasing cross-flows led on the 

one hand to improved separation of apparently different VLP fractions but on the other 

hand to prolonged separation time and broadening of the specific peaks. The recovery 

of NicQb was higher than 95 % for all samples indicating that adsorption of NicQb to 

the membrane was not an issue. Finally, a cross-flow of 2.0 mL / min was chosen 

taking into account separation capacity and the symmetry of the particular peaks.  
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Figure 3.2.2 Effect of the varying cross-flow profiles on the separation of VLP: 0.5 mL / min (1), 
1.0 mL / min (2), 1.5  mL / min (3), 2.0  mL / min (4), 2.5  mL / min (5), and 3.0 mL / min (6) 

The main VLP peak was detected at about 23 minutes elution time. In order to 

further optimize the separation and to improve the elution of the “larger” VLP fractions 

the cross-flow profile was adjusted as described in the following. The cross-flow was 

reduced right after the elution of the main peak (26 min) from  

2.0 mL / min to 0.15 mL / min within 15 minutes and kept at this low flow for further 5 

minutes to enable the consecutive elution of larger VLP species. Subsequently, in a 

final step the cross-flow was completely deactivated to enable the elution of high 

molecular weight aggregates. The final cross-flow profile is illustrated in Figure 3.2.3. 
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Figure 3.2.3 AF4 cross-flow profile method A. 



 
AF4 as a New Analytical Tool for the Investigation of the Physical Stability of VLP 

___________________________________________________________________________ 

39 
 

In Figure 3.2.4 the resulting fractogram with the UV signal and the calculated 

molar masses of the specific VLP species is displayed. It could be shown that the 

applied AF4 separation protocol was capable to resolve VLP compositions in VLP 

fragments, monomers, dimers, and oligomers / aggregates. Furthermore, by coupling 

the AF4 to UV and MALLS detectors, quantification and determination of the MW of 

the specific fractions was possible. For VLP monomers a MW about 3.5 MDa was 

determined. As the recombinantly produced VLPs have a lower amount of host cell 

RNA (about 25 %) [Bachmann et al., 2006] as compared to the native bacteriophage 

Qb (50 % RNA content) the data obtained fit well with the data from literature 

appointing the MW of the native phage to 4.2 MDa [Hohn et al., 1970].  Furthermore, 

the MW of the VLP dimers and trimers could be assigned to 6.3 MDa and 9.8 MDa, 

respectively (Table 3.2.1). Due to the high sensitivity of MALLS on high molecular 

weight analytes, molar masses for higher-order oligomers and high molecular weight 

aggregates could be calculated up to values > 108 Da. The presence of VLP 

monomers, dimers and trimers was confirmed by TEM analysis (Figure 3.2.5).   

Table 3.2.1  Molecular weights of specific NicQb fractions calculated from respective UV and 
MALLS signals (n = 3). 

 VLP monomer VLP dimer VLP trimer 

Molecular weight  
[MDa] 3.27 ± 0.02 6.27 ± 0.18 9.80 ± 0.82 
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Figure 3.2.4 UV signal and molecular weights of specific NicQb fractions calculated from respective 
UV and MALLS data. 
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Figure 3.2.5 TEM picture of NicQb. 

3.2.3 Repeatability 

The intended use of AF4 as a reliable tool for the quality control of VLP 

formulations demands high repeatability of the method. It was therefore of interest to 

study the repeatability of the determination of the relative amount of the different VLP 

species, expressed as the percentage of the total peak areas. A NicQb bulk  

(20 µg / injection) was, according to the instructions of the ICH guideline Q2 (R1), 

subjected to six independent measurements by AF4. The results, presented in  

Table 3.2.2., prove the repeatability of the applied AF4 method. Even for the VLP 

fractions present at low amounts (fragments and oligomers / aggregates) a relative 

standard deviation of less than 7 % was determined.   

Table 3.2.2 Repeatability of the AF4 analysis of NicQb (20 µg / injection). 

Fragments Monomer Dimer Oligomers / 
Aggregates Injection 

Relative peak areas [%] 

1 0.76 89.20 6.27 3.77 

2 0.82 89.25 6.05 3.88 

3 0.80 89.86 5.58 3.76 

4 0.82 90.00 5.66 3.52 

5 0.73 89.64 5.86 3.77 

6 0.80 89.49 6.47 3.24 

Average 0.79 ± 0.03 89.57 ± 0.32 5.98 ± 0.35 3.66 ± 0.23 

SDrel [%] 4.40 0.36 5.80 6.40 
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3.2.4 Comparison of AF4 to DLS and SE-HPLC 

 
After successful development of an AF4 method for VLP it was essential to 

compare its efficiency to the commonly used DLS and SE-HPLC techniques. For a 

better illustration of the differences of these three techniques consciously a 

formulation which was due to its excipient composition unsuitable for the stabilization 

of NicQb during freeze-drying and storage was selected. In the following DLS,  

SE-HPLC and AF4 data obtained for the NicQb formulation A17 (compare chapter 4, 

page 103 to 105) prior to freeze-drying (A) and for dried samples stored for 6 weeks at 

25 and 40 °C, respectively (B and C) are presented.  

The DLS results are shown in Figure 3.2.6. For the unstressed NicQb sample A 

the mean size of the VLP was determined at 30 nm with a very narrow size 

distribution as indicated by the polydispersity index of 0.10 and the width of the peak. 

The stressed NicQb samples revealed for increasing storage temperatures increasing 

mean sizes of the VLP and increasing PIs and peak widths. PI values of particulate 

systems higher than 0.1 denote the presence of several species [Griffin et al., 1993], 

which was related in this case to the formation of VLP oligomers and aggregates. As 

expected, DLS was not capable to resolve the different VLP fractions. 
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Figure 3.2.6 DLS size distribution by volume of NicQb sample A (black line), B (dark grey line), and 
C (light grey line).  
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The chromatograms obtained from the SE-HPLC analysis are depicted in  

Figure 3.2.7. It was obvious that the “stressed” samples B and C contained higher 

amounts of VLP oligomers and aggregates in comparison to the liquid formulation as 

for these samples a “shoulder” of the main peak appeared at a lower retention time.   
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Figure 3.2.7 Characterization of NicQb samples A (black line), B (dark grey line), and C (light grey 
line) by means of SE-HPLC.  

For a better understanding of the chromatogram SE-HPLC was coupled to a 

MALLS detector which enabled the determination of the molar mass distributions of 

the specific peaks (Figure 3.2.8). 
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Figure 3.2.8 Interpretation of SE-HPLC analysis of NicQb by coupling SE-HPLC to MALLS.  
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The calculated molar masses indicated that the main peak not only consists of 

VLP monomer (~3.5 MDa) but additionally of VLP dimers (~7 MDa) and trimers  

(~10 MDa). The shoulder on the left side of the main peak comprises VLP oligomers 

and aggregates in a range of 107 up to 108 Da. The poor resolution of the different 

VLP fractions by SE-HPLC arises from the large size of the VLP which are already as 

monomers in the upper separation range of the used TSKgel G5000PWXL column 

(TSKgel PW Brochure*).  

By contrast AF4 was capable of resolving the different VLP fractions into VLP 

fragments, monomer, dimers, trimers and larger oligomers and aggregates  

(Figure 3.2.9). The amounts of the specific VLP fractions could be easily determined. 

The relative amounts of the VLP species, expressed as percentage of the total peak 

areas are given in Table 3.2.3 and are compared to the results obtained by SE-HPLC. 
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Figure 3.2.9 Characterization of NicQb samples A (black line), B (dark grey line), and C (light grey 
line) by AF4 coupled to MALLS.  
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Table 3.2.3 Characterization of NicQb samples A, B and C via AF4 and SE-HPLC. As VLP 
monomers, dimers and trimers were not resolved by SE-HPLC they were summarized in the table.  

Fragments Monomer Dimer Trimer Oligomers / 
Aggregates  Sample 

Relative peak areas [%] 

A 1.37 ± 0.11 86.93 ± 0.16 5.98 ± 0.12 1.93 ± 0.03 3.79 ± 0.13 

B 2.92 ± 0.13 60.84 ± 0.27 16.25 ± 0.13 7.9 ± 0.04 12.09 ± 0.31AF4 

C 6.11 ± 0.10 44.17 ± 0.80 16.16 ± 0.51 8.97 ± 0.42 24.60 ± 1.82

A 1.31 ± 0.08 98.54 ± 0.06 0.15 ± 0.02 

B 2.87 ± 0.03 95.49 ± 0.19 1.65 ± 0.22 SE-
HPLC 

C 6.27 ± 0.14 88.09 ± 0.41 5.64 ± 0.27 

 

Concerning the amount of VLP fragments both methods revealed the same 

values whereas the determined amounts of VLP oligomers (larger than VLP trimers) 

and aggregates varied significantly. SE-HPLC analysis revealed far lower amounts of 

VLP oligomers and aggregates which might be explained by: (1) Deprivation of 

insoluble high molecular weight aggregates from analysis due to the exclusion limit of 

the SE-HPLC column, (2) Inaccurate integration of the oligomer / aggregate peak due 

to the poor resolution, (3) Abrasion of VLP oligomers and aggregates due to the 

harsher conditions (high shear forces) connected with SE-HPLC in comparison to AF4 

(no stationary phase), and / or (4) Generation of VLP aggregates during the focusing 

step of AF4 analysis. The deprivation of high molecular weight aggregates from SE-

HPLC analysis could be excluded because no clear decrease of the total peak area 

could be observed. VLP aggregation induced during AF4 analysis seemed to be 

improbable due to the high reproducibility of the results obtained but further 

investigations in this context are necessary. Hence, it was assumed that either the 

shearing degradation by the stationary phase of VLP aggregates and / or the 

inaccurate integration of the VLP aggregate peak might have led to these different 

results.  
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It was found that AF4 exceeds by far the capabilities of DLS and SE-HPLC with 

regard to the analysis of the physical stability of VLP. AF4 can be used for the 

separation of VLP compositions and quantification of the single fractions, where DLS 

renders only trends. However, in terms of a fast progress in formulation development 

the utilization of DLS as a fast and easily applicable method seemed to be reasonable 

to delimitate initially large numbers of formulations to the most promising ones.  

SE-HPLC exhibited only a poor capability of analyzing the physical stability of VLP, 

but it was found that it is a reliable tool for the investigation of the chemical stability of 

VLP because of the proper determination of VLP fragments. However, it has to be 

mentioned that the currently used SE-HPLC method might be improved by using e.g. 

other column types, but a further optimization of the SE-HPLC method was beyond 

the scope of the present work. In summary it could be stated that AF4 is a very 

powerful tool for the accurate characterization of VLP formulations and overcomes the 

limitations of DLS and SE-HPLC.  

3.2.5 Improvement of AF4 Method by Using New Channel Technology 

In 2006 Wyatt Technology Europe GmbH introduced a new small AF4 separation 

channel (18 cm). It was described that, in comparison to the standard channel  

(25 cm), the application of the small channel improves resolution, enables shorter 

equilibration and analysis times, and reduces eluent volumes. At the same time 

increasing peak heights are obtainable which in turn might lead to lower detection 

limits, and thus, enable the reduction of the injected amount. Hence, it was 

investigated whether the before described AF4 method for VLP, developed for the  

standard AF4 channel (25 cm), could be optimized by using the new, shorter AF4 

separation channel (18cm). For this purpose comparative AF4 measurements were 

performed. Qb VLP were analyzed either with the standard channel according to 

method A (Figure 3.2.3) or with the new channel by applying method B  

(Figure 3.2.10). VLP amounts in the range of 5 – 20 µg and 2.5 – 10 µg were applied 

for the standard and the shorter AF4 channel, respectively.  
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Figure 3.2.10 AF4 cross-flow profile method B. 

The resulting AF4 fractograms are displayed in Figure 3.2.11. The figure 

illustrates the advantage of the small channel in comparison to the standard channel: 

at the same injected amounts sharper, higher peaks were obtained. Thus, the 

determination of the MW of the VLP monomer and dimer was feasible even at 2.5 µg 

injected VLP amount when using the small channel whereas for correct determination 

of the MW of the VLP dimer the injected amount needed to be higher than 10 µg 

when the standard channel was used.  
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Figure 3.2.11 AF4 analysis of different amounts of NicQb by using Wyatt’s new channel (18 cm) 
 – 2.5 µg (1), 5 µg (2) and 10 µg (3) – in comparison to Wyatt’s standard channel (25 cm) – 5 µg (4),  
10 µg (5) and 20 µg (6). 
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Concerning the amounts of the different VLP species (Table 3.2.4) both methods 

revealed comparable values over the whole amount range tested. However, the 

lowest amount applied for the small channel (2.5 µg) was further reduced to one half 

of the lowest amount applied for the standard channel.  

Table 3.2.4 AF4 analysis of NicQb by using Wyatt’s standard channel (25 cm) in comparison to 
Wyatt’s new channel (18 cm).   

Fragments Monomer Dimer Oligomers / 
Aggregates 

Channel 
VLP amount 

[µg] Relative peak areas [%] 

20 0.80 ± 0.05 88.11 ± 0.03 6.56 ± 0.19 4.53 ± 0.18 

10 0.92 ± 0.03 87.67 ± 0.08 6.29 ± 0.19 5.12 ± 0.14 25 cm 

5 0.84 ± 0.04 86.58 ± 1.01 6.84 ± 0.17 5.74 ± 0.80 

10 1.03 ± 0.15 87.42 ± 0.30 6.60 ± 0.51 4.95 ± 0.06 

5 1.02 ± 0.06 87.47 ± 0.30 6.47 ± 0.06 5.05 ± 0.18 18 cm 

2.5 0.93 ± 0.06 87.65 ± 0.34 6.41 ± 0.01 5.01 ± 0.27 

 

Furthermore, as indicated in Table 3.2.5 the analysis time and the eluent volume 

could be remarkably reduced by using Wyatt’s small channel.  

Table 3.2.5 Comparison between method A (standard channel) and B (small channel). 

 Standard Channel 
25 cm 

Small Channel 
18 cm 

Time [min] 56 31 

Eluent volume [mL] 159 70 

Injection amount [µg] 10 - 20 2.5 - 10 

 

Thus, it could be stated that the new channel technology was a clear 

improvement for VLP characterization as compared to the standard channel. It 

enables a clearly increased sample throughput and the accurate characterization of 

VLP compositions at remarkably low VLP concentrations.  
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3.3 Summary 

The successful development of AF4 methods for the assessment of VLP 

compositions was presented. It was found that AF4 exceeds the separation capacity 

of DLS and SE-HPLC. AF4 enabled the proper separation of a VLP composition into 

VLP fragments, monomers, dimers, oligomers and aggregates. Furthermore, by 

coupling AF4 to UV and MALLS detectors accurate quantification of the specific 

fractions and the determination of the molecular weight distributions were feasible. 

Thus, AF4 seemed to be a valuable tool for the characterization of VLP compositions.   
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4 DEVELOPMENT OF A STABLE, FREEZE-DRIED 
FORMULATION FOR A VIRUS-LIKE PARTICLE 
BASED VACCINE AGAINST NICOTINE 
ADDICTION 

4.1 Introduction 

Tobacco misuse is the single leading preventable cause of death worldwide. The 

World Health Organization (WHO) estimates that there are 1.3 billion smokers 

worldwide and nearly 5 million tobacco-related deaths each year. Despite widespread 

knowledge of tobacco’s dangerous health effects, smoking continues to pose a 

serious public health threat, as the number of smokers is increasing steadily#. 

According to the 2004 Surgeon General’s Report* nearly 70 % of smokers want to 

stop smoking but less than 5 % who make a quitting attempt are successful.  By 2006 

smoking cessation products on the market included two types of medications:  

(1) Nicotine replacement therapy in the form of nicotine gums, inhalers, nasal sprays 

or transdermal patches, and (2) Treatment with the antidepressant bupropion, acting 

by attenuating withdrawal symptoms. However, clinical trials have shown that the 

long-term abstinence rates were only 6-10 % above placebo when using these 

medications§. Thus, there still is a high need for new therapies. In 2006 ChantixTM 

(Pfizer Inc.) with varenicline as a new chemical compound, acting by modulating 

receptor activity in the brain, was approved by the FDA. Even though varenicline 

exceeds commonly achieved abstinence rates, only 23 % of the smokers remained 

abstinent after 1 year   [Maurer et al., 2007]. However, the sales of Chantix, 883 

million dollars in 2007§, clearly demonstrated the high economic value of new drugs 

for smoking cessation. 

 

 

 ____________________________________________________________________ 
# http://www.wpro.who.int/media_centre/fact_sheets/fs_20060530.htm 
*  http://www.cdc.gov/tobacco/data_statistics/sgr/sgr_2004/index.htm 
& http://www.nice.org.uk/Docref.asp?d=30634 
§  http://seekingalpha.com/article/61585-pfizer-s-chantix-poised-for-blockbuster-sales?source=feed 
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Vaccination against nicotine is an innovative approach followed by Nabi 

Pharmaceuticals (NicVAX), Celtic Pharma (TA-NIC), and Cytos Biotechnology AG 

(NicQb).  Clinical trials with Pseudomonas aeruginosa exoprotein A (NicVAX), 

recombinant cholera toxin B (TA-NIC), and Qb VLP nicotine conjugates (NicQb) have 

been shown to induce strong nicotine-specific antibody responses leading to the 

prevention of relapses by sequestering nicotine in the blood from immunized smokers 

[Cerny, 2005; Maurer et al., 2006; Boyd, 2006; Maurer et al., 2007]. However, besides 

the proof of efficacy and safety of these vaccines the development of stable 

formulations is essential for their commercialization and might turn the scale in the 

nip-and-tuck race towards market entry. The aim of the present work was to develop 

stable formulations for the VLP based vaccine candidate NicQb from Cytos 

Biotechnology AG. 

Many biopharmaceuticals, such as vaccines, proteins and peptides, are often not 

sufficiently stable in aqueous solutions to allow distribution and storage, particularly at 

room temperature. They are susceptible to chemical (hydrolysis of glycosilic and 

peptide bonds and linking sequences, oxidation, deamidation, disulfide exchange, 

racemisation, and beta elimination) and / or physical degradation (denaturation, 

aggregation, precipitation, and adsorption) in liquid formulations [Manning et al., 1989; 

Cleland et al., 1993; Brandau et al., 2003; Wang, 2005]. During shipping products can 

be subjected to further stresses that can lead to denaturation, e.g. agitation, exposure 

to high and / or low temperatures, and freezing [Arakawa et al., 2001]. Additionally, 

even if optimal formulation and shipping systems might be designed, damage during 

long-term storage may not be prevented sufficiently [Manning et al., 1989; Carpenter 

et al., 1997].  

In order to achieve more robust formulations dried forms were often produced 

because in the dried state particularly chemical reactions are intended to be 

substantially retarded [Franks, 1998; Lai et al., 1999]. Common drying techniques are 

freeze-drying [Carpenter et al., 1997; Wang, 2000], vacuum-drying [Mattern et al., 

1999; Sharma et al., 2004], spray-drying [Lee, 2002; Harris et al., 2004; Ameri et al., 

2006] and spray-freeze-drying [Maa et al., 1999]. Among these freeze-drying is the 

most widely used technique for the preparation of biopharmaceuticals for parenteral 

administration. Currently 46 % of the marketed biopharmaceutical  products are 

lyophilizates [Costantino et al., 2004]. It is a well established process to improve the 
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stability of particularly labile drugs such as proteins [Wang, 2000] and complex 

vehicles like virus vaccines [Scott et al., 1976; Adebayo et al., 1998; Sarkar et al., 

2003; Zhai et al., 2004; Abdul-Fattah et al., 2007], viral vectors [Talsma et al., 1997; 

Evans et al., 2004; Cruz et al., 2006], liposomes [Engel et al., 1994; Zingel et al., 

1996; Hinrichs et al., 2005] and lipid-DNA complexes [Allison et al., 2000; Molina et 

al., 2004].  

A typical freeze-drying process consists of three main stages, i.e. freezing, 

primary drying and secondary drying. First the solution is frozen to a temperature 

below the critical temperature of the formulation and held for several hours at this 

temperature to allow complete solidification. The critical temperature of a formulation 

is the collapse temperature Tc, above which the intestinal water in the frozen matrix 

becomes significantly mobile, which in turn might lead to the loss of the macroscopic 

structure during freeze-drying. Tc has been considered to be about 2 °C higher than 

the Tg’ of an amorphous system or to be equivalent to the eutectic temperature of a 

crystalline system. During primary drying ice is transferred from the product to the 

condenser by sublimation and crystallization onto the cold coils in the condenser. It 

starts when the chamber pressure is reduced to improve the rate of ice sublimation 

and the shelf temperature is raised to supply the heat removed by ice sublimation. 

The driving force is provided by the partial pressure difference of water at the 

subliming ice surface and at the condenser. Upon secondary drying the unfrozen, 

adsorbed water is removed from the product by desorption and subsequent 

condensation in order to reduce the residual moisture content to a level optimal for 

stability. Secondary drying is typically carried out at higher temperature so that 

desorption of water may occur at a practical rate [Pikal, 1994; Franks, 1998; Wang, 

2000; Nail et al., 2002; Tang et al., 2004; Costantino et al., 2004].  

However, during freeze-drying the drug is exposed to two distinct stresses which 

can cause significant damage to the drug, i.e. freezing and drying.  

During freezing drug stability can be influenced by (1) Cold denaturation 

[Privalov, 1990] (2) Exposure to ice-water interfaces [Chang et al., 1996], (3) Salt and 

drug concentration effects [Pikal, 2004], (4) pH shifts due to selective crystallization of 

specific buffer species [Anchordoquy et al., 1996a; Sarciaux et al., 1999], (5) 

Mechanical damage by growing ice crystals [Zhai et al., 2004], and (6) Crystallization 

of protective excipients [Carpenter et al., 1989; Izutsu et al., 1993].  
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Upon drying the removal of stabilizing hydration shells can influence the stability 

of the drug [Prestrelski et al., 1993], In an aqueous solution proteins are fully 

hydrated. The removal of the hydration shell may disrupt the native state of a protein 

and cause denaturation and probably the loss of activity [Arakawa et al., 1991; 

Prestrelski et al., 1995].  

Therefore, to ensure the stability of the drug during freeze-drying stabilizing 

excipients have to be employed [Wang, 2000; Rexroad et al., 2002; Carpenter et al., 

2002; Tang et al., 2004].  

Surfactants, like polysorbates, are added to prevent aggregation of the drug in 

the liquid formulation, during freezing and reconstitution. Surfactants drop the surface 

tension of formulations and might consequently reduce the driving force of protein 

adsorption and / or aggregation at ice-water interfaces formed during freezing [Chang 

et al., 1996; Jones et al., 2001; Shi et al., 2005].  

Cryoprotectants like sugars (e.g. trehalose and sucrose), polymers (e.g. 

polyethylene glycol and human serum albumin), and amino acids are used to stabilize 

the active pharmaceutical ingredient in solution and upon freezing. They hinder 

protein molecules from unfolding by the preferential exclusion mechanism, which 

favours the native protein conformation exhibiting the minimum surface area  

[Arakawa et al., 1982; Arakawa et al., 1991; Carpenter et al., 1999].  

Lyoprotectants, especially the disaccharides sucrose and trehalose, are utilized 

to stabilize the drug during drying [Wang, 2000].  The two main mechanisms proposed 

are the “vitrification“ and the “water-replacement” hypotheses.  “Vitrification” ascribes 

to the formation of an amorphous glass during lyophilization leading to increased drug 

stability by slowing down conformational changes of biomolecules [Franks, 1994; Fox, 

1995; Hancock et al., 1997; Crowe et al., 1998; Chang et al., 2005]. The “water 

replacement hypothesis” involves the formation of hydrogen bonds between the 

protein and excipients. The excipients serve as water substitutes and hinder protein 

unfolding and intra- or interprotein hydrogen bonding during dehydration [Carpenter  

et al., 1990; Arakawa et al., 1991; Crowe et al., 1993a; Crowe et al., 1993b; Allison  

et al., 1999].    

Bulking agents are applied to achieve more elegant and stable cakes. In this role 

mannitol is often used because it crystallizes to a substantial degree during 

lyophilization and forms a mechanically strong cake. However, it is well-known that 
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crystalline excipients when used alone are not necessarily able to provide sufficient 

stability. Thus, in order to achieve elegant and stable products mixtures of mannitol 

with sucrose or trehalose are used [Johnson et al., 2002; Izutsu et al., 2002; Liao et 

al., 2005].  

Upon long-term storage the stability of a labile biopharmaceutical can further be 

affected by several factors like storage temperature, glass transition temperature 

[Hancock et al., 1995], residual moisture content [Shalaev et al., 1996; Breen et al., 

2001; Klibanov et al.i, 2004] and crystallization of amorphous excipients [Costantino et 

al., 1998; Lai et al., 1999].  

In this chapter the development of stable NicQb lyophilizates meeting the 

requirements for large scale clinical study and commercial use is described. The 

influence of different pH values and various excipients like surfactants, polyols, sugars 

and salts on the stability of NicQb in liquid formulations, during  

freeze-thawing, freeze-drying, and finally upon storage of the dried product was 

investigated. Besides standard analytical tools like DLS, light obscuration, SE-HPLC, 

RP-HPLC and LDS-PAGE, the developed AF4 method described in chapter 3 is used 

for the analysis of VLP stability.  
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4.2 Results and Discussion  

4.2.1 pH Stability Study - NicQb 

The stability of vaccines in solutions is strongly influenced by solution conditions 

like pH, ionic strength, osmolality and the presence of excipients. Among these 

parameters formulation pH is described as one of the most critical variables 

concerning the chemical and physical stability of vaccines [Brandau et al., 2003]. As 

the drug has first to be formulated in a liquid prior to freeze-drying and has to be 

handled for several hours in the liquid state (especially in the context of large scale 

manufacture) the influence of the pH has to be properly investigated. Furthermore, the 

formulation pH can also affect the stability of dried products during long-term storage 

[Townsend et al., 1990; Costantino et al., 1994; Song et al., 2001].  

 

Therefore, the stability of NicQb was investigated in dependence of the pH of a 

liquid formulation. NicQb solutions in a pH range of 4.6 up to 8.2 were manufactured 

by adjusting the pH of the bulk material either with 0.1 N NaOH or 0.1 N H3PO4 and 

subsequent dilution of the solutions to 1 mg / mL NicQb. The samples were stored at 

room temperature up to 14 days. After storage samples were analyzed via DLS,  

SE-HPLC and RP-HPLC at least in duplicate. 

Chemical stability of NicQb  

RP-HPLC analysis revealed that the content of free nicotine derivatives 

increased with increasing pH values (Figure 4.2.1). Up to a pH of 6.6 the amount of 

free nicotine derivatives was below 5 % even after storage for 14 days at ambient 

temperature. Between pH 6.6 and 8.2 the amount of cleaved nicotine increased 

markedly with increasing pH values upon storage. After 2 weeks, almost 50 % of total 

nicotine was cleaved at a pH of 8.2.  
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Figure 4.2.1 Amount of free nicotine derivatives as determined by RP-HPLC after manufacture and 
after 2, 7 and 14 days. 

The data obtained from SE-HPLC analysis (Figure 4.2.2) revealed that with 

increasing pH values the amount of fragmentation products of NicQb increased clearly 

upon storage within 7 days at room temperature. Up to a pH of 7.0 the amount of 

fragmentation products increased only up to 2 % in comparison to the starting material 

whereas at higher pH values the amount of fragmentation products rose up to 15 % at 

a pH of 8.2.  

Thus, addressing the stability of the esterbond between the VLP-linker and 

nicotine and the integrity of the VLP it could be stated that a pH value below 6.6 is 

desirable.  

 

 
Figure 4.2.2 Amount of fragmentation products of NicQb as determined by SE-HPLC after 
manufacture and after 7 days. 
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Physical stability of NicQb  

Concerning the physical stability of NicQb DLS measurements revealed that with 

increasing pH values the aggregation level of NicQb decreased (Figure 4.2.3). The 

polydispersity index (PI) decreased and the intensity of the main NicQb peak 

increased, indicating a decreasing polydisperse size distribution. Below a pH of 6.2 

the intensity of the main NicQb peak was less than 95 %. At a pH of 4.6 not only a 

remarkable increase of the PI and decrease of the intensity of the main peak could be 

observed, but even a second peak at a size of several 100 nm appeared, proving the 

presence of VLP aggregates (Figure 4.2.4).  

 
Figure 4.2.3 Proportion of main NicQb peak and PI as determined by DLS after 14 days storage at 
RT by applying the intensity conversion model. 
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Figure 4.2.4 Size distribution as determined by DLS for NicQb sample at a pH of 4.6 stored for 14 
days at RT. 
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Aggregation of dispersed particles can be influenced by the electrostatic 

properties of a formulation, like pH and salt concentration. If the zeta potential of 

charged particles such as protein complexes are near zero, particle aggregation can 

occur whereas at significant positive and negative zeta potential values particles might 

be stabilized by repulsive electrostatic forces [Jiskoot et al., 2005]. In order to find out 

whether the increasing amount of aggregated species of NicQb with decreasing pH 

values could be related to low absolute zeta potential values of the particles, NicQb 

solutions in a pH range of 3.4 to 7.2 were analyzed with the Malvern Zetasizer 

Nano ZS. The results are depicted in Figure 4.2.5. 
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Figure 4.2.5 Zeta potential of NicQb in dependence of the pH. 

It was found that the zeta potential of NicQb was 0 mV at a pH of 4.7, which 

marks the isoelectric point, and that in the pH range of 3 to 6 the absolute zeta 

potential values were below 20 mV which, as described above, can lead to particle 

aggregation.  

Hence, the DLS and zeta potential measurements revealed that with respect to 

aggregation of NicQb the pH of the formulation should be higher than 6.2.  

Summary 

In summary two divergent results were observed. Concerning the chemical 

stability of NicQb pH values below 6.6 were favourable whereas with respect to the 

physical stability the pH of the solution should be higher than 6.2. Therefore, a 

compromise between the hydrolysis of the esterbond between VLP-linker and nicotine 
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and the degradation of the VLP on the one hand, and aggregation of the VLP at low 

pH values on the other hand had to be made. A pH range from 6.2 up to 6.6 appeared 

to be optimal to assure both chemical and physical stability of NicQb in a liquid 

formulation.  

4.2.2 Freeze-Thaw (FT) Studies - NicQb 

A freeze-drying process consists of two major steps: freezing of the drug solution, 

and drying of the frozen solid under vacuum. Each step generates different kinds of 

stresses, and depending on the specific properties of a drug its stability can be 

influenced by either one and / or both steps [Wang, 2000; Rexroad et al., 2002]. 

Therefore, the impact of each single step on the stability of NicQb and the effect of 

stabilizing excipients had to be scrutinized. Freeze-thawing is routinely used as a tool 

to determine the effects of various stresses connected to freezing on the stability of a 

drug [Jiang et al., 1998; Anchordoquy et al., 2001].  

A wide variety of excipients have been employed to prevent freezing-induced 

denaturation, including surfactants, disaccharides and polymers. For example, 

polysorbates were described as potent cryoprotectants for viruses [Evans et al., 

2004], virus-like particles [Shi et al., 2005] and proteins [Chang et al., 1996; Kreilgaard 

et al., 1998; Sarciaux et al., 1999; Jones et al., 2001]. The efficiency of trehalose as 

efficient cryo- and lyoprotectant was shown for several virus vaccines [Gupta et al., 

1996; Worrall et al., 2001; Sarkar et al., 2003].  

Thus, in order to study the effect of the freezing step on the stability of NicQb and 

the particular influence of the clinically approved excipients polysorbate 20 and 

trehalose on its stability during freeze-thawing was investigated. Additionally, the 

effect of sodium chloride, which is often used to adjust the tonicity of liquid 

formulations [Costantino et al., 2004] and is described to be able in some cases to 

stabilize biopharmaceuticals [Liu et al., 1991; Schwendeman et al., 1995],  was 

analyzed.  

1 mL of NicQb solutions with a drug concentration of 0.2 mg / mL, with 30, 60, 90 

or 150 mM sodium chloride, 10 % trehalose, with or without addition of 0.005 % 

polysorbate 20 were filled into 1.5 mL Eppendorf Tubes (Eppendorf AG, Hamburg, 

Germany). Additionally, samples without trehalose, 0.005 % polysorbate 20 and 

30 mM NaCl were prepared. With respect to the findings from the pH stability study 
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the samples were buffered with 20 mM sodium phosphate salts at a pH of 6.4. The 

samples were frozen by placing the tubes in a refrigerator at -80 °C.  After a minimum 

of 3 hours the samples were thawed at ambient temperature. Freeze-thaw cycles 

were repeated 5 times. As aggregation of protein therapeutics induced by 

denaturation at ice-water interfaces is described as the major degradation pathway 

during freezing [Chang et al., 1996; Jones et al., 2001], the focus of this experiment 

was laid on the physical stability of NicQb. Thus, the samples were analyzed before 

and after freeze-thaw cycling via DLS and light obscuration at least in duplicate. 

Effect of trehalose and polysorbate 20 on the stability of NicQb  

In order to investigate the single effect of polysorbate 20 and trehalose on the 

stability of NicQb formulations with or without either one or both excipients was 

assessed after freeze-thawing.  The results obtained by DLS and light obscuration are 

displayed in Figure 4.2.6 and Figure 4.2.7. It was found that trehalose had no clear 

stabilizing effect on NicQb during freeze-thawing whereas polysorbate 20 had a 

significant protective effect. For the formulations with polysorbate 20 neither a clear 

increase of the number of particles > 1 µm nor a clear increase of the polydispersity 

index and decrease of the main NicQb peak was detected. The protective effect of 

polysorbate 20 can be explained by either binding to hydrophobic regions of the drug 

thereby preventing interaction with hydrophobic surfaces [Bam et al., 1995] or by 

competing with the therapeutic for adsorption at liquid-surface interfaces  

[Shi et al., 2005].  
 



 
Freeze-Drying of a VLP Based Vaccine 
___________________________________________________________________________ 
 

64 
 

without PS with PS without PS with PS
0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

polydispersity index
polydispersity

index

without trehalose with trehalose
before

after

without PS with PS without PS with PS
0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

polydispersity index
polydispersity

index

without PS with PS without PS with PS
0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

polydispersity index

without PS with PS without PS with PS
0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

polydispersity index
polydispersity

index

without trehalose with trehalose
before

after
 

Figure 4.2.6 Polydispersity indices and proportions of main NicQb peak in dependence of trehalose 
(0 vs. 10 %) and polysorbate (0 vs. 0.005 %) addition before freeze-thawing and after 5 freeze-thaw 
cycles.  
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Figure 4.2.7 Number of particles > 1 µm in dependence of trehalose (0 vs. 10 %) and polysorbate 
(0 vs. 0.005 %) addition before freeze-thawing and after 5 freeze-thaw cycles. 

Effect of sodium chloride and polysorbate 20 on the stability of NicQb  

DLS data revealed that with increasing concentrations of sodium chloride in 

NicQb formulations without polysorbate 20 the proportion of the main NicQb peak 

decreased, indicating an increase of the aggregation level. Furthermore, the PI of 

these formulations was higher than 0.4, referring to a polymodal size distribution 

(Figure 4.2.8). Such a destabilizing effect of sodium chloride at higher salt 

concentrations on proteins and other biopharmaceuticals like for example hepatitis A 

virus has been reported in several cases [Volkin et al., 1996; Chi et al., 2003].   
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A proposed mechanism is the shielding of repulsive forces between similarly charged 

groups by sodium chloride leading to an increase in drug aggregation [Brange et al., 

1997].  
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Figure 4.2.8 Polydispersity indices and proportions of main NicQb peak in dependence of sodium 
chloride concentration (30, 60, 90 and 150 mM), formulated without (A / B) or with (C / D) polysorbate 20 
(0.005 %) before freeze-thawing and after 5 freeze-thaw cycles; samples contained 10 % trehalose. 

In contrast, in the presence of polysorbate 20 aggregation of NicQb could be 

prevented, even at high sodium chloride concentrations. However, the best results 

rendered the NicQb formulation with the lowest amount of sodium chloride (30 mM), 

0.005 % polysorbate 20 and 10 % trehalose with 99.9 % proportion of the main NicQb 

peak and a PI of 0.20 (Figure 4.2.8).   

The findings of the DLS measurements were confirmed by data obtained by light 

obscuration. As illustrated in Figure 4.2.9 aggregation of NicQb upon freeze-thawing, 

indicated by increasing numbers of particles ≥ 1 µm, could be prevented by 

polysorbate 20 together with trehalose. However, the clear trend observed by DLS 

that increasing amounts of sodium chloride could be correlated to increasing 

aggregation levels was not supported by light obscuration measurements as the 

number of particles > 1 µm did not increase steadily.   
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Figure 4.2.9 Number of particles > 1 µm in dependence of sodium chloride concentration (30, 60, 90 
and 150 mM), formulated without (A) or with (B) polysorbate 20 (0.005 %) before freeze-thawing and 
after 5 freeze-thaw cycles; samples contained 10 % trehalose. 

Summary  

It can be stated that the addition of polysorbate 20 was very beneficial to prevent 

aggregation of NicQb during freeze-thawing and that the addition of high 

concentrations of sodium chloride should be avoided. Even though it was found that 

trehalose had no protective effect during freeze-thawing it might serve as 

lyoprotectant during the drying step. 

4.2.3 Freeze-Drying (FD) Studies - NicQb 

The effect of the freezing step on the stability of NicQb was investigated during 

freeze-thaw experiments. Now, the stability of NicQb throughout the whole FD 

process depending on formulation composition and process parameters had to be 

investigated. The focus was laid on the development of formulations which meet the 

following criteria: (1) The drug should be stable during manufacture and storage, 

ideally even at ambient temperature; (2) It should be composed of FDA approved 

excipients; (3) It should have an acceptable and reproducible appearance; and (4) 

Ideally the lyophilizate should be reconstitutable with water to a parenteral applicable 

isotonic solution. Concerning the final freeze-drying process the aim was to establish 

a rapid, economical and robust process with respect to drug stability and appearance 

of the resulting lyophilizate. Furthermore, the process parameters like cooling rate, 

temperature, and vacuum should be easily transferable to standard large-scale 

lyophilizers enabling the manufacture of larger batches in the future.  
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Selection of formulations 

The lead concentration of NicQb was 1.0 mg / mL and the fill volume was 

determined to 0.6 mL / vial. Furthermore, trehalose was selected as lyoprotectant and 

hereby in a concentration of 10%. 

Trehalose and sucrose are often used as lyoprotectants. The proposed 

stabilizing mechanisms were described in previous sections. Trehalose has been 

selected as lyoprotectant because of the following reasons:  

(1) A freeze-concentrated trehalose solution has a Tg’ about 3 °C higher than 

sucrose (trehalose -29.5 °C vs. sucrose -32°C [Levine et al., 1988]) enabling 

drying at higher temperatures resulting in shorter freeze-drying times [Tang  

et al., 2004];  

(2) Dried amorphous trehalose has a higher glass transition temperature as 

compared to sucrose [Slade et al., 1995], and thus, a higher temperature of 

“zero” mobility [Yu, 2001] which can lead to an improved long-term stability 

[Green et al., 1989; Molina et al., 2004], especially at ambient temperature; 

(3) Trehalose is less hygroscopic [De Giulio et al., 2005]; 

(4) Trehalose has a very low chemical reactivity [Roser, 1991; O'Brien, 1996]; 

(5) The glycosilic bond of trehalose is in comparison to sucrose far more stable 

[Moelwyn-Hughes, 1929; Higashiyama, 2002] which might lead to an 

improved long-term stability as the resulting decomposition product glucose 

has the propensity to degrade proteins via the Maillard reaction [Hageman, 

1992].  

A trehalose concentration of 10 % has been selected. This high concentration 

was chosen because high amounts of amorphous stabilizers protect complex 

particulate systems like viruses, lipid / DNA complexes and nanoparticles [Allison et 

al., 2000; Zhai et al., 2004; Zillies, 2007] better than lower amounts. However, at 

trehalose concentrations higher than 10 % the primary drying time could increase 

significantly [Hatley et al., 1996; Nail et al., 2002]. Furthermore, at a trehalose 

concentration of 10 % the resulting solution could already be isoosmotic [Cleland et 

al., 2001], and thus, the lyophilizate could easily be reconstituted with water to the 

initial volume to a parenterally applicable solution.  
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The advantage of the addition of polysorbate 20 as cryoprotectant was described 

in the previous paragraph. In this study the adequate concentration of polysorbate 

should be selected.  

Another important factor is the selection of the pH and the buffer species. The pH 

stability study revealed that NicQb is stable only in a narrow pH range. Above a pH of 

6.6 it is prone to chemical degradation and below a pH of 6.2 NicQb tends to 

aggregate. In contrast to the formulations investigated in the freeze-thaw stability 

study the pH was reduced from 6.4 to 6.2 with the intention to further increase the 

chemical stability of the drug (see pH stability study). This seemed to be reasonable 

as it was found from the freeze-thaw studies that the aggregation of the drug could be 

prevented by polysorbate 20.  

Concerning the buffer type sodium phosphate, potassium phosphate and 

histidine / histidine HCl (all 20 mM) were tested. Even though sodium phosphate is 

one of the most commonly used buffer species for lyophilizates [Schwegman et al., 

2005], there is still a lively discussion about a possible pH shift to more acidic pH 

values, caused by a more readily crystallization of Na2HPO4 than NaH2PO4 during the 

freezing step, which can lead to denaturation of proteins [Nema et al., 1993; Chang et 

al., 1996; Anchordoquy et al., 1996b].  Hence, as for potassium phosphate buffered 

systems a pH shift is not that distinct [Sarciaux et al., 1999] and histidine buffered 

formulations show no pH shift [Osterberg et al., 1999] these two buffer species were 

tested as alternatives to sodium phosphate. 

Additionally, the effect of varying concentrations of sodium chloride (0 mM up to 

150 mM) on the stability of NicQb upon the whole freeze-drying process was 

investigated. AF4 was introduced to monitor the effect of sodium chloride on the 

physical stability of NicQb more closely. 

Finally, in view of clinical dose finding studies, the most promising formulation 

candidate should be assessed towards its capability to stabilize NicQb in the 

concentration range of 0.2 to 2.0 mg / mL. 

Consequently, the NicQb formulations described in Table 4.2.1 were prepared 

and used for freeze-drying studies.  
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Table 4.2.1:  Compositions of NicQb formulations. 

Code NicQb 
[mg] 

Trehalose 
dihydrate 
[% (w/v)] 

Polysorbate20 
[% (w/v)] 

Sodium 
chloride 

[mM] 

Sodium 
phosphate 

[mM] 

Potassium 
phosphate 

[mM] 

Histidine 
[mM] pH 

A01 0.60 10 - - 20 - - 6.2 

A02 0.60 10 0.0025 - 20 - - 6.2 

A03 0.60 10 0.005 - 20 - - 6.2 

A04 0.60 10 0.0075 - 20 - - 6.2 

A05 0.60 10 0.010 - 20 - - 6.2 

A06 0.60 10 0.005 - - 20 - 6.2 

A07 0.60 10 0.005 30 - 20 - 6.2 

A08 0.60 10 0.005 60 - 20 - 6.2 

A09 0.60 10 0.005 90 - 20 - 6.2 

A10 0.60 10 0.005 150 - 20 - 6.2 

A11 0.60 10 0.005 - - - 20 6.2 

A12 0.12 10 0.005 - 20 - - 6.2 

A13 0.36 10 0.005 - 20 - - 6.2 

A14 1.2 10 0.005 - 20 - - 6.2 

Cycle development rationale  

The aim was to develop a freeze-drying cycle possible for the lyophilization of all 

the formulations described in Table 4.2.1. As agreed with Cytos Biotechnology AG, 

the cycle was developed for a 0.6 mL fill in 2R class 1 glass vials. Therefore, 

freeze-drying cycle A (Table 4.2.2) was designed.  

The formulations were cooled to - 50 °C at a cooling rate of 1 °C / min. This 

moderate cooling rate was applied because as described by Tang et al. [Tang et al., 

2004] this seems to be a good compromise between reasonable supercooling 

resulting in moderate ice surface areas and uniform ice structure, and short times 

during which the drug is exposed to the freeze-concentrated solution. Higher 

supercooling achievable by freezing methods like liquid nitrogen freezing, loading 

vials onto precooled shelves, or ramped cooling on the shelves leads to the formation 

of small ice crystals and larger ice / liquid interfaces [Jiang et al., 1998]. This might be 

beneficial if the formation of larger ice crystals is crucial for the drug stability, e.g. 
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disrupture of especially complex, large particles like viruses [Zhai et al., 2004]. 

However, the large ice / water interface can lead to surface-induced denaturation 

[Chang et al., 1996]. Furthermore, applying such enhanced freezing methods can lead 

to heterogeneity between vials and is not practical because the cooling rate in 

common freeze-driers is limited to less than 2 °C / min [Costantino et al., 2004]. Slow 

freezing leads to smaller ice / liquid interfaces which reduces surface-induced 

degradation, but prolongs the time the drug exists in the freeze-concentrated liquid 

state which in turn can affect its stability [Heller et al., 1999; Bhatnagar et al., 2007].   

Table 4.2.2 Freeze-drying protocol A. 

Step Time  
[min] 

Temperature  
[°C] 

Pressure  
[mbar] 

Loading 00:00:00 20 1013 

00:01:10 -50 1013 
Freezing 

00:03:00 -50 1013 

00:00:01 -50 0.045 

00:00:15 -35 0.045 

20:00:00 -35 0.045 

00:02:30 -20 0.045 

Primary drying 

10:00:00 -20 0.045 

00:01:20 20 0.045 
Secondary drying 

10:00:00 20 0.045 

 

The target freezing temperature was set to -50 °C in order to cool the 

formulations below their glass transition temperature, the temperature above which a 

product might loose its macroscopic structure due to mobilization of the intestinal 

water in the frozen matrix [Wang, 2000]. In order to determine the Tg’ of the 

formulations DSC measurements were performed. The results obtained are 

summarized in Table 4.2.3. The lowest Tg’ was -39 °C for formulation A10. The 

decrease of Tg’ with increasing sodium chloride concentrations is related to the 

increase of the quantity of unfrozen water in the freeze-concentrate. The unfrozen 

water in turn acts as plasticizer and decreases Tg’ [Her et al., 1995]. In order to 

provide a safety margin and to allow complete solidification of all formulations the 

target freezing temperature was determined to -50 °C and kept for 3 hours prior to 

primary drying.  
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Table 4.2.3:  Glass transition temperatures of maximally freeze-concentrated solutions. 

Code Tg’ [°C] Code Tg’ [°C] 

A01 -34.3 A08 -35.2 

A02 -34.0 A09 -36.7 

A03 -34.4 A10 -39.0 

A04 -34.4 A11 -31.5 

A05 -34.8 A12 -33.2 

A06 -32.8 A13 -33.1 

A07 -34.1 A14 -33.6 

 

In a next step the chamber pressure and the shelf temperature to be applied 

during primary drying had to be defined. Current dogma requires that formulations are 

freeze-dried below Tg’ to avoid macroscopical collapse [Pikal, 1990; Wang, 2000; 

Tang et al., 2004; Costantino et al., 2004]. Even though freeze-drying below Tg’ 

demands a very low target product temperature and in consequence longer processes 

it was decided to follow this recommendation as the major goal was to establish a 

robust and safe freeze-drying cycle. Therefore, the target product temperature was 

determined to -40 °C (vapour pressure of ice = 0.128 mbar) in the initial phase of the 

freeze-drying process. The chamber pressure impacts both heat and mass transfer. 

According to Nail et al. it should be between one-fourth and one-half of the vapour 

pressure of ice at the target product temperature to allow a high sublimation rate, but 

high enough to enable sufficient and homogeneous heat transfer [Nail et al., 2002]. 

Therefore, the chamber pressure was set to 0.045 mbar which seemed to be a good 

compromise between a high sublimation rate and heat transfer provided by the 

conductivity of the vapour phase. The chamber pressure was controlled by a Pirani 

gauge. In order to provide the heat removed by sublimation the shelf temperature is 

normally set a few degrees above the target product temperature. As an excessive 

heat input may lead to an increase of the product temperature above its Tg’ which 

might lead to product collapse [Adams et al., 1996] the shelf temperature was first set 

to -35 °C and was raised to -20 °C after 20 hours to accelerate primary drying. The 

endpoint of primary drying is reached when all the frozen water is removed and the 

rate of water sublimation is significantly reduced. Then, the product temperature 

shows a clear increase, followed by a plateau [Nail et al., 2002]. To monitor the 



 
Freeze-Drying of a VLP Based Vaccine 
___________________________________________________________________________ 
 

72 
 

product temperature during freeze-drying thermocouples were placed in the centre of 

the vials. Figure 4.2.10 shows an exemplarily process documentation. It illustrates that 

during primary drying steps the product reaches or exceeds the shelf temperature 

indicating that primary drying was completed within the determined time frames.  

Furthermore, no macroscopical collapse of any of the tested formulations was 

observed.  
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Figure 4.2.10 Example - process documentation.  

Secondary drying is typically carried out at accelerated temperature to enable 

fast desorption of the remaining water [Franks, 1998]. However, the shelf temperature 

should be increased slowly, because early in secondary drying the amorphous 

product has high residual moisture content, and thus, low glass transition 

temperature, which make collapse possible [Tang et al., 2004]. Consequently, the 

temperature was increased from -20 °C to 20 °C at a heating rate of 0.5 °C / min. 

Then, the product was dried for further 10 hours at 20 °C and 0.05 mbar to reduce the 

residual moisture content.  

After freeze-drying all formulations showed excellent appearance, exemplarily 

shown for formulation A03 in Figure 4.2.11, and were amorphous as indicated by XRD 

measurements (Figure 4.2.12). The lyophilizates could be easily reconstituted with 
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water within 5 seconds. All formulations were clear after reconstitution and contained 

no visible particles.   

 

 
Figure 4.2.11 Appearance NicQb formulation A03 after freeze-drying. 
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Figure 4.2.12  XRD of freeze-dried NicQb formulation A03. 

Furthermore, it could be shown that by applying the developed process low 

residual moisture < 1.3 % (Table 4.2.4) could be achieved for all formulations tested. 

Low residual moisture contents are desirable, especially in view of long-term stability, 

because water can affect the drug stability in two ways, as reactant or as a plasticizer 

of the amorphous formulation [Shalaev et al., 1996].  
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Table 4.2.4:  Residual moisture content after freeze-drying. 

Code RM [%] Code RM [%] 

A01 1.3 A08 0.7 

A02 0.9  A09 0.9 

A03 1.1 A10 1.2 

A04 1.1 A11 0.4 

A05 1.2 A12 0.5 

A06 0.3  A13 0.6 

A07 0.6 A14 0.5 

 

High glass transition temperature is considered to be one of the most important 

parameters for long-term stability of a labile drug. It has been suggested that the glass 

transition temperature should be 50 °C above the intended storage temperature to 

minimize molecular mobility to the point of zero mobility and achieve sufficient stability 

[Hancock et al., 1995; Breen et al., 2001]. It is described that the Tg of a formulation 

can be reduced by 10 °C by each percent of moisture content [Franks, 1994; Rossi  

et al., 1997] which might lead at high residual water contents to product collapse and 

degradation of the drug [Franks, 1998; Wang, 2000; Molina et al., 2004]. The glass 

transition temperatures determined for the formulations without sodium chloride were 

above 80 °C (Table 4.2.5), which is in good correlation with literature [Crowe et al., 

1996; Hancock et al., 1997; Chen et al., 2000]. Exemplarily, the thermogram obtained 

for formulation A03, is shown in Figure 4.2.13. Hence, it was assumed that concerning 

the mobility of the dried formulations all formulations should be capable of stabilizing 

NicQb.  Unfortunately, the formulations A07 – A10, formulations with increasing 

sodium chloride concentrations, could not be analyzed by DSC due to the limitation of 

lyophilized samples.  
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Table 4.2.5:  Tg of NicQb formulations after freeze-drying (n=2). 

Code Tg [°C] Code Tg [°C] 

A01 85.0 A08 ND 

A02 82.6 A09 ND 

A03 84.1 A10 ND 

A04 82.9 A11 94.0 

A05 81.1 A12 101.4 

A06 89.4  A13 102.7 

A07 ND A14 100.6 

 

 

-20 0 20 40 60 80 100 120 140 160
temperature [°C]

-0.2

-0.1

0.0

0.1

0.2

exo

he
at

flo
w

[m
W

/m
g]

 
 

Figure 4.2.13 DSC heating scan of freeze-dried NicQb formulation A03. 

In summary it could be stated that the developed freeze-drying process led to 

amorphous products with excellent appearance, low residual moisture levels and high 

glass transition temperatures. It could be concluded that this freeze-drying cycle is 

suitable for all the formulations tested. However, by employing more aggressive 

conditions it should be possible to achieve higher drying efficiency, but a further 

process optimization was not in the focus of this work because the current cycle 

already met the requirements of being robust, short and transferable to any pilot and 

production freeze-dryer.  
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In the following sections the effects of the different formulations (Table 4.2.1) on 

the stability of NicQb upon freeze-drying are described. Therefore, the samples were 

analyzed before and after freeze-drying by SE-HPLC, AF4 and DLS at least in 

duplicate. In the following paragraphs SE-HPLC and AF4 results are presented. DLS 

data are not shown as for all samples comparable results were obtained and it was 

shown that AF4 exceeds by far the capability of DLS with regard to the analysis of the 

physical stability of VLP (compare chapter 3). 

Effect of varying polysorbate 20 concentrations on the stability of NicQb  

In order to determine the minimum concentration of polysorbate 20 necessary to 

prevent NicQb aggregation during freeze-drying five NicQb formulations (1 mg / mL) 

with increasing polysorbate 20 concentrations from 0 up to 0.01 % were prepared. 

The formulations also contained 10 % trehalose dihydrate (w / v) as lyoprotectant and 

were buffered with 20 mM sodium phosphate (formulations A01 – A05, Table 4.2.1).  

AF4 measurements revealed that aggregation of NicQb upon freeze-drying could 

be clearly influenced by polysorbate 20. Formulation A01, without polysorbate, 

showed a clear increase of the aggregation level from initially 3.9 % aggregates (the 

term aggregates includes all VLP species larger than VLP dimers) to 7.9 % after 

freeze-drying indicating that trehalose alone was not sufficient to avoid aggregation of 

NicQb upon freeze-drying. By contrast, if polysorbate was added in a concentration of 

0.0025 % aggregation could be prevented. A further increase of the polysorbate 20 

concentration showed no further positive effect on the stability of NicQb (Figure 

4.2.14 A).  

The data obtained from SE-HPLC analysis showed that with the exception of 

formulation A01, none of the formulations led to an increase (more than 1.0 %) of 

NicQb fragments (Figure 4.2.14 B). Thus, it seemed that polysorbate 20 not only 

prevented NicQb aggregation but also inhibited VLP degradation during lyophilization.  
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Figure 4.2.14 Stability of NicQb (1 mg / mL) in dependence of varying polysorbate concentrations. 
Aggregation level determined by AF4 (A). Amount of NicQb degradation products determined by 
SE-HPLC (B). 

Consequently, it could be stated that the addition of polysorbate 20 was very 

beneficial to stabilize NicQb upon freeze-drying, especially with respect to the 

inhibition of NicQb aggregation. A concentration of 0.005 % seemed to be 

recommendable in order to provide a safety margin to the lowest effective 

concentration (0.0025 %).  

Effect of different buffer systems on the stability of NicQb  

In order to investigate the effect of different buffer types on the stability of NicQb 

upon freeze-drying formulations including sodium phosphate, potassium phosphate 

and histidine buffer (all 20 mM) were assessed (formulations A03, A06 and A11, 

Table 4.2.1). The pH was adjusted to 6.2. The NicQb concentration was 1 mg / mL. 
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Additionally, the formulations contained trehalose dihydrate 10 % (w / v) and 0.005 % 

polysorbate 20.  

AF4 measurements revealed that in none of the formulations the aggregation 

level of NicQb was increased upon freeze-drying. The amount of aggregated species 

of NicQb in the histidine buffered formulations was already initially slightly higher than 

in the phosphate buffered formulations (Figure 4.2.15 A). The reason for this result is 

not clear because the different buffered NicQb solutions were all prepared from the 

same API batch.  

The data obtained from SE-HPLC analysis showed that none of the formulations 

led to a significant increase of the fragmentation products. In comparison to the liquid 

formulation prior to freeze-drying the fragmentation level was increased for at most 

1.0 %, again the histidine buffered solution showed the highest initial level of NicQb 

fragments (Figure 4.2.15 B).  

In conclusion it could be stated that none of the tested buffer compositions had a 

negative effect on the stability of NicQb during freeze-drying, and thus, all buffer 

species tested were conceivable. As described above a pH drop in the sodium 

phosphate buffered formulation might occur due to a more readily crystallization of 

one buffer component during the freezing step [Pikal, 1994; Shalaev et al., 2002]. 

From the results obtained during the pH stability study it was assumed that a pH drop 

could lead to an increase of the aggregation level. However, as no significant 

alteration of NicQb purity was observed it was supposed that either crystallization of 

the buffer was prevented by the amorphous trehalose matrix, a mechanism already 

proposed by Chang et al. [Chang et al., 1992], and / or the low buffer concentration 

[Pikal, 1999], and thus, no pH change occurred, or aggregation of NicQb was inhibited 

by polysorbate 20 and trehalose and fragmentation did not happen in the short time 

the formulation was present in the liquid state. Due to the slightly higher levels of 

aggregated and fragmented VLP species in the histidine buffered liquid formulation 

prior to freeze-drying, as compared to the phosphate buffered formulations, histidine 

was not considered in further studies.   
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Figure 4.2.15 Stability of NicQb (1 mg / mL) in dependence of different buffer species. Aggregation 
level determined by AF4 (A). Amount of NicQb degradation products determined by SE-HPLC (B). 

Effect of varying sodium chloride concentrations on the stability of NicQb  

Even though the results obtained from the freeze-thaw experiments already 

indicated that sodium chloride leads to aggregation of NicQb during freezing, it was 

the intention of the current experiment to investigate the effect of sodium chloride in 

the concentration range of 0 up to 150 mM (formulations A06 – A10) on the stability of 

NicQb upon the whole freeze-drying process. This was interesting because at this 

time point an AF4 method, as a more sensitive tool for the analysis of VLP aggregates 

in comparison to DLS, was available. All formulations tested contained 1 mg / mL 

NicQb, 10 % trehalose dihydrate and 0.005 % polysorbate 20.  

AF4 measurements revealed that in the presence of polysorbate 20 and 

trehalose up to a sodium chloride concentration of 60 mM no aggregation of NicQb 

occurred, whereas at sodium chloride concentrations higher than 90 mM the 

aggregation level of the NicQb formulations increased with increasing sodium chloride 
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concentrations. For formulation A10 (150 mM sodium chloride) the level of aggregates 

increased from initially 6.5 % prior to freeze-drying up to 10.3 % after freeze-drying 

(Figure 4.2.16 A).  

Addressing the integrity of NicQb SE-HPLC analysis showed that sodium 

chloride in the concentrations tested had no negative effect as no increase of the 

fragmentation level could be observed (Figure 4.2.16 B).  

It was concluded that sodium chloride has a negative effect on NicQb when 

added in concentrations higher than 90 mM, even in the presence of polysorbate 20. 

However, as no protective effect of sodium chloride was observed at lower 

concentrations and the addition of the salt is not necessary to adjust the tonicity of the 

formulations it was assumed that the addition of sodium chloride to lyophilized NicQb 

formulations should be prevented. 
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Figure 4.2.16 Stability of NicQb (1 mg / mL) in dependence of varying sodium chloride concentrations. 
Aggregation level determined by AF4 (A). Amount of NicQb degradation products determined by 
SE-HPLC (B). 
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Effect of varying trehalose / NicQb weight ratios on the stability of NicQb  

From previous experiments it was found that an optimal formulation for NicQb at 

a concentration of 1 mg / mL should be composed of trehalose dihydrate (10 %) and 

polysorbate 20 (0.005 %), buffered with either sodium phosphate or potassium 

phosphate. Finally, with regard to clinical dose finding studies, formulations with 

different NicQb concentrations had to be prepared. Ideally, in respect of double blind 

trials, the lyophilizates with different NicQb amounts should have the same 

appearance and should be reconstitutable to isotonic, parenterally applicable 

solutions of the same final volume. Thus, four formulations with NicQb concentrations 

in the range of 0.2 to 2.0 mg / mL, 10 % trehalose dihydrate, 0.005 % polysorbate 20 

and 20 mM sodium phosphate with a fill of 0.6 mL were prepared (formulations A12, 

A13, A03 and A14, Table 4.2.1). In this context the effect of different trehalose to 

NicQb ratios could be investigated. The resulting trehalose to NicQb weight ratios are 

displayed in Table 4.2.6. 

Table 4.2.6 Trehalose / NicQb weight ratios of specific NicQb formulations. 

Code NicQb conc. 
[mg / mL] 

Trehalose conc. 
 [mg / mL] 

Weight ratio  
Trehalose / NicQb 

A14 2.0 90 45 

A03 1.0 90 90 

A13 0.6 90 150 

A12 0.2 90 450 

 

Based on the findings of Zillies [Zillies, 2007], Allison et al. [Allison et al., 2000], 

Zhai et al. [Zhai et al., 2004] and Cleland et al. [Cleland et al., 2001] who showed that 

increasing ratios of disaccharide to gelatine nanoparticle, lipid / DNA complex, herpes 

simplex virus 2 and monoclonal antibody ratios, respectively led to increasing drug 

stability upon freeze-drying it was not expected that in our case the increase of the 

trehalose to NicQb weight ratio has a negative influence on the drug stability. 

Furthermore, it was not supposed that the slight decrease of the excipient to drug ratio 

of the “lead” formulation A03 from 90 : 1 to 45 : 1 in the formulation A14 might have a 

great influence on drug stability.  
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AF4 and SE-HPLC measurements revealed that in all formulations tested NicQb 

remained stable upon freeze-drying; neither increase of the aggregation level nor an 

increase of fragments was observed (Figure 4.2.17).   
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Figure 4.2.17 Stability of NicQb in dependence of varying drug concentrations. Aggregation level 
determined by AF4 (A). Amount of NicQb degradation products determined by SE-HPLC (B). 

Consequently, it could be stated that in the range of 45 : 1 up to 450 : 1 

trehalose /  NicQb (w / w) in a solution also containing 0.005 % polysorbate 20, NicQb 

could be stabilized by trehalose upon freeze-drying. The preparation of lyophilizates 

with similar appearance, which could be easily reconstituted with 0.6 mL water to 

isotonic solutions, and NicQb concentrations of 0.2 mg / mL up to 2.0 mg / mL was 

feasible.  
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Conclusion 

A robust freeze-drying cycle was developed that was successfully used to  

freeze-dry all formulations tested herein. Lyophilizates with elegant appearance and 

low residual moisture levels were achieved. Furthermore, from a technical point of 

view the freeze-drying cycle can easily be transferred to large-scale production 

freeze-dryers. It was found that a formulation composed of 10 % (w/v) trehalose 

dihydrate, 0.005 % (w/v) polysorbate 20 and either sodium phosphate or potassium 

phosphate as buffer agent was very beneficial to preserve the stability of NicQb in a 

concentration of 0.2 to 2.0 mg / mL during freeze-drying. Additionally, the lyophilizates 

could easily be reconstituted with water to parenterally applicable isotonic solutions.  

4.2.4 Storage Stability Studies - NicQb Lyophilizates 

In order to define a formulation capable of stabilizing NicQb upon storage four 

formulations (A03, A06, A14, and A15, Table 4.2.7) were assessed in a storage 

stability study for 15 weeks, at 2-8 °C, 25 °C / 60 % RH and 40°C / 75 % RH, 

respectively. Selected formulations, A03 and A15, were tested up to 25 weeks.  

Table 4.2.7 Compositions of NicQb formulations assessed for long-term stability. 

Code NicQb 
[mg] 

Trehalose 
dihydrate 
[% (w/v)] 

Mannitol 
[% (w/v)] 

Polysorbate20 
[% (w/v)] 

Sodium 
phosphate 

[mM] 

Potassium 
phosphate 

[mM] 
pH 

A03 0.6 10 - 0.005 20 - 6.2 

A06 0.6 10 - 0.005 - 20 6.2 

A15 0.6 10 - 0.005 20 - 5.8 

A16 0.6 1.1 4.4 0.005 20 - 6.2 

 

A03 and A06 were the lead formulations designated from the freeze-drying 

experiments with either sodium phosphate or potassium phosphate as buffering 

agents. A15, a formulation similar to A03 except for a solution pH of 5.8, was included 

because of the higher chemical stability of the drug at lower pHs (refer to pH stability 

study). The aim was to investigate whether degradation of the VLP and the cleavage 

of nicotine upon storage are reduced at this pH. Based on the findings of the  

freeze-thaw and freeze-drying studies it was now in the focus to determine whether 
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the theoretically more pronounced aggregation of NicQb at the lower pH value might 

be prevented by polysorbate 20. These three formulations were freeze-dried 

according to protocol A (chapter 2). Additionally, formulation A16 composed of 

mannitol as bulking agent and trehalose as lyoprotectant in a weight ratio of 4:1 was 

included. The underlying rationale was that a combination of a crystalline bulking 

agent (mannitol) and a non-crystallizing disaccharide could offer on the one hand a 

robust crystalline matrix enabling shorter drying times (primary drying could be 

conducted at higher temperatures due to the eutectic point of mannitol at -1.5°C [Kim 

et al., 1998]), and on the other hand protects the drug by the amorphous disaccharide 

part [Johnson et al., 2002; Izutsu et al., 2002; Liao et al., 2005; Chatterjee et al., 

2005]. Formulation A16 was freeze-dried according to protocol B (Table 4.2.8).  

Table 4.2.8 Freeze-drying protocol B. 

Step Time  
[min] 

Temperature  
[°C] 

Pressure  
[mbar] 

Loading 00:00:00 20 1013 

00:01:10 -50 1013 
Freezing 

00:03:00 -50 1013 

00:00:01 -50 0.045 

04:00:00 -15 0.045 Primary drying 

20:00:00 -15 0.045 

00:00:01 -15 0.007 

06:00:00 40 0.007 Secondary drying 

10:00:00 40 0.007 

 

Primary drying was carried out at -15 °C according to Tang et al.  

[Tang et al., 2004] who proposed that combined formulations with both amorphous 

stabilizer and crystalline bulking agent can be dried more than 20 °C higher than the 

Tg’ of the specific formulation without resulting in macrocollapse. The Tg’ of 

formulation A016 was determined to -43.5 °C. Secondary drying was performed at  

40 °C in order to prevent the possible formation of an unstable mannitol hydrate at 

lower drying temperature [Yu et al., 1999]. An annealing step typically applied to 

enable complete crystallization of mannitol  [Izutsu et al., 1993; Searles et al., 2001; 

Ma et al., 2001; Lu et al., 2004] was not included because as proposed by Johnson et 
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al. mannitol crystallizes completely in formulations containing higher weight ratios of 

mannitol to disaccharide than 2 to 1 [Johnson et al., 2002].  

The samples were analyzed at multiple time points, at least in duplicate, 

according to Table 4.2.9. 

Table 4.2.9 Stability study plan. 

Test interval (weeks) 
CRITERIA 

0 6 15 25 
(option) 

Characteristics Test method 

Li
qu

id
   

LY
O

 

2-
8 

°C
   

 
25

 °
C

   
 

40
 °

C
 

2-
8 

°C
   

 
25

 °
C

   
 

40
 °

C
 

2-
8 

°C
   

 
25

 °
C

   
 

40
 °

C
 

Appearance lyophilisate / 
reconstituted solution Visual inspection • / • • / • / • • / • / • • / • / • 

Reconstitution Time Time − / • • / • / • • / • / • • / • / • 

pH of reconstituted solution pH meter − / • • / • / • • / • / • • / • / • 

Residual moisture (RM) KF titration − / • • / • / • • / • / • • / • / • 

Tg  (solid) DSC − / • • / • / • • / • / • • / • / • 

Morphology  XRD − / • − / − / − − / − / • − / − / − 

Free nicotine RP-HPLC • / • • / • / • • / • / • • / • / • 

NicQb integrity SE-HPLC 
• / • 

• / • / • • / • / • • / • / • 

NicQb degradation LDS-PAGE 
• / • 

• / • / • • / • / • • / • / • 

RNA integrity SE-HPLC 
• / • 

• / • / • • / • / • • / • / • 

NicQb aggregation AF4 
• / • 

• / • / • • / • / • • / • / • 

NicQb aggregation DLS 
• / • 

• / • / • • / • / • • / • / • 

Particulate matter Light obscuration 
• / • 

• / • / • • / • / • − / − / − 

 

Complete data sets for all methods, formulations and storage conditions are 

presented in tables in the annex of this chapter. In the following paragraphs a 

selection of the most significant results is presented. 
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Characterization of the physical state of the lyophilizates 

After freeze-drying all formulations showed excellent appearance. The trehalose 

based formulations A03, A06 and A15 resulted in stable cakes with only rare cracks 

and a marginal shrinkage. Upon storage, even at accelerated temperature none of 

these formulations showed significant alteration. The reason for the good 

macroscopical stability of the formulations A03, A06 and A15 is the high glass 

transition temperature of the mainly trehalose based matrix. Formulation A16 

exhibited no  shrinkage neither during freeze-drying nor upon storage which can be 

assigned to its mostly crystalline structure. Pictures of representative lyophilizates 

stored for 3 months at 40 °C are shown in Figure 4.2.18. 

 
Figure 4.2.18 Appearance of NicQb lyophilizates after 15 weeks storage at 40 °C. 

Residual moisture of all formulations was initially determined to be below 0.5 % 

(Figure 4.2.19). The mannitol / trehalose based formulation A16 exhibited the lowest 

initial water content of 0.15 %  which could be related to the higher secondary drying 

temperature applied for this formulation (FD protocol B). Upon storage for 15 and 25 

weeks at 2-8 °C and 25 °C / 60 % RH, respectively,  only a negligible increase of the 

water content (increase of RM content < 0.3 %) was observed. Upon storage at  

40 °C / 75 % RH significantly higher amounts of water were absorbed from the 

stoppers by all formulations, but even here the increase of the residual moisture level 

was below 1.0 % (Figure 4.2.19). According to Shalaev and Zografi low residual 

moisture content is important to minimize chemical degradation upon storage and to 

prevent plasticizing of the amorphous matrix [Shalaev et al., 1996].  
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Figure 4.2.19 Residual moisture content of freeze-dried NicQb formulations right after the drying 
process and after 6, 15 and 25 weeks storage at 40 °C / 75 % RH.  

The plasticizing effect of water was clearly observed by the Tgs of the 

amorphous trehalose based formulations A03, A06 and A15. Right after freeze-drying 

the glass transition temperatures were between 96 and 99 °C which is in good 

accordance to literature [Crowe et al., 1996; Hancock et al., 1997]. After storage at  

2-8 °C and 25 °C / 60 % RH no clear changes of the Tgs could be detected. Upon 

storage at 40 °C / 75 % RH a decrease of the Tgs of 5-10 °C of the initial value was 

noted (Figure 4.2.20) which could be related to the increase of the water content. The 

decrease of the Tgs by increasing water contents is confirmed by literature; as 

described by Franks depression of Tg can amount to 10 degrees for each percent of 

moisture uptake by the lyophilizate [Franks et al., 1991].  
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Figure 4.2.20  Glass transition temperatures of freeze-dried NicQb trehalose based formulations after 
the drying process and after 6, 15 and 25 weeks storage at 40 °C / 75 % RH. 
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As highlighted in the previous section high glass transition temperature of a 

formulation is considered to be one of the most important parameters for long-term 

stability of a labile drug. Following the recommendations of Hancock et al. the glass 

transition temperature should be 50 °C above the intended storage temperature to 

minimize molecular mobility to the point of zero mobility and achieve sufficient stability 

[Hancock et al., 1995]. The intended storage temperature was ambient temperature, 

so that the desired glass transition temperature was designated to  

70 °C.  The formulations A03, A06 and A15 met these requirements over the whole 

time span tested.  

Additionally to the DSC runs XRD measurements revealed that the formulations 

A03, A06 and A15 were amorphous after freeze-drying and that the glassy state was 

maintained upon storage for 15 weeks, even at 40 °C, exemplarily shown for 

formulation A03 (Figure 4.2.21).  

5 10 15 20 25 30 35 40

°2-Theta

T 0

 T 15 weeks 40°C

 
Figure 4.2.21 Physical state of NicQb formulation A03 determined by XRD after manufacture and after 
15 weeks storage at 40 °C. 

Concerning the physical state of the mannitol / trehalose based formulation A16 

the XRD measurements revealed that after freeze-drying the lyophilizates were 

partially crystalline / partially amorphous and that the amorphous mannitol crystallized 

in an uncontrolled manner upon storage at 40 °C (Figure 4.2.22). The physical state 

was additionally analyzed by DSC. Amorphous mannitol is known to crystallize upon 

heating [Izutsu et al., 1994; Kim et al., 1998]. First DSC heating scans of the 

formulation stored for 15 weeks showed that mannitol crystallized completely upon 

storage at 40 °C because no exothermal event, indicating crystallization of amorphous 

mannitol could be observed. By contrast, the samples stored at 2-8 °C and 25 °C 

remained partially amorphous (Figure 4.2.23). Here, exothermal events comparable to 
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the starting material, indicating crystallization of mannitol, were observed. The melting 

point of mannitol, determined from the second heating scan was always around  

156 °C; it was not affected by storage time or condition. According to Burger et al. this 

melting temperature corresponds to the δ-modification of mannitol [Burger et al., 

2000]. This finding was confirmed by the XRD measurements (Figure 4.2.22), 

because specific peaks for the α- and β-modifications of mannitol at 17.3 °2-Theta 

and 14.7 °2-Theta, respectively, did not appear in the diffractogram [Hawe et al., 

2006]. Furthermore, XRD measurements showed that mannitol hydrate was not built 

during freeze-drying as the specific peak of 17.9 °2-Theta did not appear in the 

diffractogram. These results indicate that mannitol, in contrast to the proposal of 

Johnson et al. [Johnson et al., 2002], did not completely crystallize during  

freeze-drying. An uncontrolled crystallization of mannitol upon storage is undesirable 

because it is proposed to affect the stability of labile drugs, as e.g, described for 

gelatin nanoparticles [Zillies, 2007] and monoclonal antibodies [Costantino et al., 

1998].    

 
Figure 4.2.22 Physical state of NicQb formulation A16 determined by XRD after manufacture and after 
15 weeks storage at 40 °C / 75 % RH. 
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Figure 4.2.23 First DSC heating scans of NicQb formulation A16 after manufacture and after 15 
weeks storage at 40 °C / 75 % RH. 

Characterization of the reconstituted lyophilized formulations 

The lyophilizates were reconstituted right after lyophilization and after storage 

with 0.6 mL highly purified water. All samples could easily be dissolved within 5 

seconds. After reconstitution the appearance of all formulations was comparable and 

was not altered by storage temperature and time. The solutions were colourless and 

free of visible particles. Furthermore, the pH of the formulations remained stable upon 

the whole stability study. Additionally, the osmolality of reconstituted lyophilizates of all 

formulations was determined after manufacture. It was found that all formulations 

were isoosmotic (Table 4.2.10).  

Table 4.2.10 Osmolality of reconstituted NicQb lyophilizates 

Code Osmolality  
[mosm/kg] 

A03 318 

A06 318 

A15 314 

A16 320 

Stability of NicQb  

The physical stability of NicQb was analyzed by AF4, DLS and light obscuration. 

In the following the results obtained for these three analytical methods are exemplarily 

shown for the samples before and after freeze-drying and after storage at 
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40 °C / 75 % RH. Complete data sets for all storage conditions are presented in 

Tables 4.5.1, 4.5.6 and 4.5.7 of the annex.  

Concerning the aggregation of NicQb AF4 measurements (Figure 4.2.26) as well 

as DLS (Figure 4.2.25) and light blockage analysis (Figure 4.2.24) indicated that all 

formulations were capable of stabilizing the drug substance during freeze-drying. 

None of the performed analytical methods revealed any significant changes from the 

liquid formulations prior to freeze-drying to the lyophilized formulations. The 

preservation of the physical stability of NicQb during freeze-drying might be related to 

the prevention of VLP aggregation at interfaces by polysorbate 20 [Shi et al., 2005], 

and to the protection of the drug in the amorphous trehalose matrix by vitrification and 

water replacement [Hancock et al., 1997; Allison et al., 1999; Chang et al., 2005]. DLS 

measurements revealed no significant changes of the proportions of the main NicQb 

peak and the polydispersity indices (Figure 4.2.25 and Table 4.5.7 in the annex); 

furthermore, the determined average size of the VLP remained constant for all 

formulations and storage conditions (37 ± 1 nm). Additionally, light blockage 

measurements denoted no significant changes of NicQb stability upon storage for any 

of the assessed formulations, even at accelerated temperature (Figure 4.2.24 and 

Table 4.5.6 in the annex).  
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Figure 4.2.24 Number of particles > 1 µm, determined by light blockage, in NicQb formulations A03, 
A06, A15 and A16 prior to freeze-drying, right after freeze-drying and after storage for 6 and 15 weeks at 
40 °C / 75 % RH. 
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Figure 4.2.25 Proportions of main NicQb peak (A) and polydispersity indices of NicQb (B), determined 
by DLS, in NicQb formulations A03, A06, A15 and A16 prior to freeze-drying, right after freeze-drying and 
after storage for 6, 15 and 25 weeks at 40 °C / 75 % RH. 

AF4 analysis, the most sensitive method for the determination of VLP 

aggregation (see chapter 3), indicated a slight increase (increase of aggregation level 

< 3 %) of NicQb aggregates in all formulations upon storage. This increase of the 

aggregation level was observed for all storage temperatures (Figure 4.2.26 and Table 

4.5.1 in the annex). It was found that the theoretically more pronounced aggregation 

of the VLP at the lower pH value in formulation A15 was prevented by polysorbate 20. 

Hence, it seemed that NicQb could be stabilized in the amorphous trehalose matrix of 

formulations A03, A06 and A15 as well as in the partially crystalline (mannitol) / 

partially amorphous (trehalose) matrix of formulation A16. The crystallization of 

mannitol upon storage (see previous paragraph) did not affect the physical stability of 

NicQb, at least in the presence of amorphous trehalose.  
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Figure 4.2.26 Amount of NicQb oligomers and aggregates, determined by AF4, in NicQb formulations 
A03, A06, A15 and A16 prior to freeze-drying, right after freeze-drying and after storage for 6, 15 and 25 
weeks at 2-8 °C (A), 25 °C / 65 % RH (B) and 40 °C / 75 % RH (C). 

The chemical stability of NicQb was investigated using SE-HPLC, RP-HPLC and 

LDS-PAGE. Chemical instability of NicQb results in the disassembly of the VLP into 

monomers or multimers of the Qb coat protein, degradation of the RNA incorporated 

in the VLP and / or the dissociation of the hapten nicotine and the Qb VLP. 

Furthermore, the single coat proteins could be hydrolyzed to smaller peptide chains. 
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SE-HPLC measurements revealed that the integrity of NicQb was preserved in all 

formulations during freeze-drying and subsequent storage at all temperatures tested. 

Only a slight increase of the amount of degradation products such as single Qb coat 

proteins or multimers of the Qb coat proteins and RNA form the inner core could be 

observed (Figure 4.2.27 and Table 4.5.2 in the annex). Thus, it appeared that all 

formulations were capable of stabilizing the VLP against disassembly even at 

accelerated storage temperature.  
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Figure 4.2.27 Amount of fragmentation products of NicQb, determined by SE-HPLC, in NicQb 
formulations A03, A06, A15 and A16 prior to freeze-drying, right after freeze-drying after storage for 6, 15 
and 25 weeks at 2-8 °C (A), 25 °C / 65 % RH (B) and 40 °C / 75 % RH (C). 
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In order to assess the integrity of the incorporated RNA SE-HPLC analysis was 

carried out. This was important because as described by Vaughan et al. RNA might 

be prone to hydrolysis even in dried formulations [Vaughan et al., 2006]. The RNA 

was first extracted from the VLP and subsequently analyzed. Hydrolysis of the RNA 

would result in smaller RNA fragments that would lead to a shift of the RNA signal to 

higher retention times and / or the appearance of further RNA peaks. The SE-HPLC 

results revealed that the RNA remained stable in all formulations upon the whole time 

span tested, independent of the storage temperature. Neither shifts in the retention 

time of the three specific RNA peaks at 8.7, 10.4 and 10.9 min could be observed, nor 

could additional RNA peaks be detected. Exemplarily, the chromatograms obtained 

for formulation A03 after manufacture and after storage for 25 weeks at 40 °C / 75 % 

RH are depicted in Figure 4.2.28.  
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Figure 4.2.28 SE-HPLC analysis of RNA integrity of NicQb formulation A03 after freeze-drying and 
after storage for 25 weeks 40 °C / 75 % RH. 

With respect to the stability of the esterbond linking nicotine to the VLP surface, 

RP-HPLC analysis revealed that it remained stable during freeze-drying in all 

formulations tested. Upon storage at 2-8 °C and 25 °C only a marginal increase  

(< 0.5 %) of the content of free nicotine derivatives was detected for all formulations 
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(Table 4.5.3 of the annex) which was obviously more pronounced after storage at  

40 °C (Figure 4.2.29). The increasing hydrolysis of the esterbond could either be 

related to the increasing water content and / or decreased stability of the esterbond at 

higher temperatures, illustrated exemplarily in Figure 4.2.30 for formulation A03 after 

25 weeks storage time. However, even for these samples the amount of free nicotine 

derivatives was below 1.5 % of total coupled nicotine after 25 weeks.  
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Figure 4.2.29 Amount of free nicotine derivatives, determined by RP-HPLC, in NicQb formulations 
A03, A06, A15 and A16 after storage for 6, 15 and 25 weeks at 40 °C / 75 % RH. Data for the liquid 
formulations and the lyophilized starting material are not shown, because the free nicotine content was 
below the limit of quantification (≤ 0.2 %). 
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Figure 4.2.30 Amount of free nicotine derivatives, determined by RP-HPLC and moisture content, 
determined by KF titration, in NicQb formulations A03 stored at 40 °C / 75 % RH for 25 weeks.  
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LDS-PAGE was performed to analyze the stability of the Qb coat proteins. 

Degradation products of the Qb coat protein monomer appear as bands of an 

apparent molecular weight smaller than the molecular weight of the Qb coat protein 

monomer (14.1 kDa). All silver stained gels obtained for the formulations before 

freeze-drying, after freeze-drying and after storage, independent of storage 

conditions, showed two bands corresponding to an approximate molecular weight of 

5-6 kDa and 11-13 kDa. After storage at 2-8 °C and 25 °C up to 15 weeks (A06 and 

A16) or 25 weeks (A03 and A15) an increase of these bands was not observed for 

any of the four formulations. After storage at 40 °C the intensity of these bands 

increased for all formulations, but quantification (comparison to standard dilutions) 

revealed that it was still less than 0.1 % of the intensity of the band corresponding to 

the Qb coat protein monomer. Exemplarily, an LDS-PAGE gel obtained for formulation 

A03 after storage for 25 weeks at 40 °C / 75 % RH is displayed in Figure 4.2.31. 
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Figure 4.2.31 LDS-PAGE analysis of NicQb formulation A03 after 25 weeks storage at  
40 °C / 75 % RH.   

As the formulations A03 and A15, which differ only in the pH, showed almost 

similar results for the amounts of degradation products and free nicotine derivatives it 
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could be stated that for the dried formulation the pH effect is not that distinctive as for 

liquid formulations (compare pH stability study).  The study revealed that lowering the 

pH in formulation A15 (pH 5.8) as compared to the lead formulation A03 (pH 6.2) led 

to no further improvement of the chemical stability of NicQb.  

Conclusion 

It was found that all formulations tested were capable of stabilizing NicQb during 

freeze-drying. Physical as well as chemical stability of NicQb was maintained 

throughout the performed freeze-drying processes. Stable lyophilizates with excellent 

appearance and moisture contents below 0.5 % were produced.  

Upon storage over 15 weeks (formulations A06 and A16) and 25 weeks 

(formulations A03 and A15), respectively, at 2-8 °C, 25 °C / 60 % RH and  

40 °C / 75 % RH for all formulations no significant changes concerning the physical 

stability of NicQb could be observed. Concerning the chemical stability of NicQb it was 

found that all formulations were capable of preserving the integrity of the VLP, the 

incorporated RNA and the Qb coat proteins upon the whole time span, independent of 

the storage temperature. In view of the stability of the bond between nicotine and the 

Qb VLP only a marginal increase of the amount of nicotine derivatives, cleaved from 

the VLP surface, could be detected for the samples stored at 40 °C which could be 

traced back to the slight increase of the residual moisture content. However, the 

proportion of cleaved nicotine was for all formulations still below 1.5 %.  

With respect to the morphology of the lyophilizates it was found that the trehalose 

based formulations remained amorphous upon storage at all temperatures whereas 

the mannitol / trehalose based formulation led to an uncontrolled crystallization of 

mannitol upon storage at 40 °C. Even though the stability of NicQb was not affected 

by this uncontrolled crystallization of mannitol such uncontrolled changes are 

undesirable. Therefore, the freeze-drying process applied for this formulation should 

be optimized so that mannitol crystallizes completely in a controlled manner during the 

process. 

Finally, it was concluded that all formulations were suitable candidates for the 

stabilization of NicQb during freeze-drying and upon storage, even at ambient 

temperature.  
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4.2.5 Bioactivity Testing of NicQb Lyophilizates 

The stability study revealed that the formulations A03, A06 and A15 were 

capable of stabilizing NicQb upon storage. Nevertheless, the retention of biological 

activity had to be verified. As the three formulations were comparable concerning the 

physical and chemical stability of NicQb, only formulation A03 was assessed for 

bioactivity. The bulk material (used as internal standard, stored at -80 °C), and 

lyophilized samples (frozen at -20 °C after manufacture) were compared to samples 

stored at 2-8 °C, 25 °C and 40 °C for 41 weeks. The respective antibody titers (dose 

of 100 µg) are shown in Figure 4.2.32. 
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Figure 4.2.32  Bioassay analysis of NicQb formulation A03 upon immunisation of mice with 100 µg of 
formulated product stored at different temperatures for 41 weeks. P-values obtained by comparison with 
the bulk material (defined as internal standard STD) and formulated product stored at  
-20 °C (T0) using an unpaired two-tailed t-test with a confidence interval of 95 % are shown on top of 
each bar. Differences identified as significant are marked by asterisk (*). 

Upon immunization with 100 µg NicQb none of the samples stored for 41 weeks, 

independent of storage temperature, showed loss of activity in comparison to the 

material right after manufacture (Figure 4.2.32). An unpaired two-tailed t-test 

(confidence interval 95 %) performed for the results of each preparation in comparison 

to the bulk material also showed no significant differences, except for A03 stored at 

2-8 °C, with a p-value only slightly below 0.05. In this case an even higher antibody 

titer was determined for the lyophilisate as compared to the standard.  

Finally, it could be concluded that even long-term storage of NicQb formulation 

A03 at accelerated temperatures did not result in lower antibody titers in comparison 

to the bulk material and the formulation right after freeze-drying.  
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4.2.6 Optimization of Freeze-Drying Process for Mannitol / Trehalose 

Based Formulation and Study of the Effect of a Pure Crystalline 

Formulation on the Stability of NicQb 

Data obtained during the stability study for formulation A16 with mannitol as 

bulking agent and trehalose as lyoprotectant revealed that this composition was 

capable of stabilizing NicQb during freeze-drying and storage at 2-8 °C and 25 °C 

over 15 weeks. However, upon storage at 40 °C uncontrolled crystallization of the 

partially amorphous mannitol was observed. Thus, the aim of this experiment was to 

optimize the freeze-drying process to ensure controlled, complete mannitol 

crystallization during the freeze-drying process. This can be achieved by applying an 

annealing step, a thermal treatment step in which samples are maintained at a 

specific subfreezing temperature for a period of time [Izutsu et al., 1993; Lueckel et 

al., 1998a; Searles et al., 2001; Lu et al., 2004].  Hence, formulation A16 was  

freeze-dried according to two freeze-drying protocols: without (FD protocol B,  

chapter 2) and with (FD protocol C, chapter 2) a 2 hour annealing step at -15 °C. 

Additionally, for a better understanding of the effect of an amorphous matrix in 

comparison to a crystalline or partially crystalline matrix on the stability of NicQb a 

further formulation (A17), composed of 1 mg / mL NicQb, 5 % mannitol, 0.005 % 

polysorbate 20 and 20 mM sodium phosphate (pH 6.2) was freeze-dried according to 

freeze-drying protocol C (chapter 2).  The stability of the drug and the physical state of 

all formulations were investigated right after manufacture and after storage for 6 

weeks at 2-8 °C, 25 °C and 40 °C. 

Characterization of the physical state of the lyophilizates 

After freeze-drying all formulations showed excellent appearance which was not 

altered upon storage. The residual moisture content of all formulations was initially 

below 0.5 % and increased only slightly upon storage. Even after storage for 6 weeks 

at 40 °C the water content was still below 0.8 % (Figure 4.2.33). 
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Figure 4.2.33 Residual moisture, determined by KF titration, in NicQb formulations A16 prepared by 
applying FD protocol B (marked with an asterisk) and by applying FD protocol C (without asterisk) and 
A17 (freeze-dried by using FD protocol C) right after freeze-drying and after storage for 6 weeks. 

All dried formulations showed a typical XRD peak pattern for crystalline mannitol. 

For formulation A17 peaks of all mannitol modifications (α-, β- and δ-mannitol) were 

detected, whereas both A16 formulations, independent of implementation of an 

annealing step, showed solely the typical peaks for δ-mannitol [Kim et al., 1998; Hawe 

et al., 2006] (Figure 4.2.34). The formation of δ-modification, which is described to be 

less stable than the α- and β- modifications [Yu, 2003], might be provoked by the 

cosolute trehalose [Kim et al., 1998].   
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Figure 4.2.34 XRD diffractograms of NicQb formulations A16 prepared by applying FD protocol B 
(marked with an asterisk) and by applying FD protocol C (without asterisk) and A17 (freeze-dried by 
using FD protocol C) right after freeze-drying. 



 
Freeze-Drying of a VLP Based Vaccine 
___________________________________________________________________________ 
 

102 
 

The DSC measurements revealed that mannitol in formulation A16 was only 

partially crystalline when freeze-dried without annealing whereas it was completely 

crystalline when an annealing step was applied. The first DSC heating scan of the 

non-annealed material showed an exothermal event which could be referred to the 

crystallization of amorphous mannitol [Kim et al., 1998]. This crystallization peak of 

mannitol was not detected for the lyophilizates of the formulations A16 and A17 which 

were produced according to freeze-drying protocol C including an annealing step 

(Figure 4.2.35).  
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Figure 4.2.35 First heating DSC scan of NicQb formulations A16 prepared by applying FD protocol B 
(marked with an asterisk) and by applying FD protocol C (without asterisk) and A17 (freeze-dried by 
using FD protocol C) right after freeze-drying. 

XRD measurements performed after 6 weeks storage showed no changes in the 

peak pattern, independent of storage temperature, for any of the formulations tested 

(data not shown). By contrast, DSC measurement revealed that, according to the 

findings from the former stability study, the partially amorphous mannitol in formulation 

A16 produced with FD protocol B crystallized completely upon storage at 40 °C. 

However, formulations A16 and A17 produced with FD protocol C exhibited no 

changes in the thermal behavior. Thus, it was concluded that applying an annealing 

step was necessary to achieve complete mannitol crystallization during freeze-drying 

and to prevent uncontrolled crystallization of mannitol upon storage.  
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Stability of NicQb 

Concerning the physical stability of NicQb it was found that independent from 

applying an annealing step formulation A16 was capable of stabilizing the drug during 

freeze-drying and upon storage for 6 weeks at 2-8 °C, 25 °C and 40 °C. AF4 results 

revealed only a slight increase of the aggregation level during freeze-drying and upon 

storage (Figure 4.2.36). The preservation of the physical stability of NicQb by 

formulation A16 might be achieved by the prevention of direct interactions of the drug 

within the amorphous disaccharide portion as proposed for example by Chatterjee et 

al. and Johnson et al. [Johnson et al., 2002; Chatterjee et al., 2005]. By contrast, for 

formulation A17 an increase of the amount of aggregates was observed which was 

even more pronounced after storage at 25 °C and 40 °C, respectively  

(Figure 4.2.36). This observation can be explained by the findings of Izutsu et al. and 

Lueckel et al. who described that potentially protective interactions of mannitol with a 

labile drug are lost by crystallization of mannitol upon freeze-drying. Furthermore, it is 

described that crystallization of mannitol can also change the degree of freeze-

concentration which in turn can lead to drug aggregation upon processing and storage 

[Izutsu et al., 1994; Lueckel et al., 1998b].  
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Figure 4.2.36  Amount of NicQb oligomers and aggregates, determined by AF4, in NicQb formulations 
A16 prepared by applying FD protocol B (marked with an asterisk) and by applying FD protocol C 
(without asterisk) and A17 (freeze dried by using FD protocol C) right after freeze-drying and after 
storage for 6 weeks. 

With respect to the chemical stability of NicQb SE-HPLC and RP-HPLC 

measurements indicated that the stability of NicQb was preserved during  

freeze-drying and upon storage by formulation A16, independent of the applied FD 
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protocol, whereas for formulation an increase of NicQb fragments and of the amount 

of free nicotine derivatives was detected after storage at 40 °C (Figure 4.2.37 and 

Figure 4.2.38).  Interestingly, the increase of the free nicotine derivatives in 

formulation A17 seemed not to be solely dependent on the residual water content as 

all formulations revealed comparable amount of residual moisture. It appeared that 

the instability of the bond between nicotine and the Qb VLP is closely related to the 

aggregation NicQb. One explanation might be an autocatalytic hydrolysis of the 

esterbond between nicotine and the succinyl linker enabled by the accumulation of 

NicQb, and thus, possible direct chemical interactions.  
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Figure 4.2.37 Amount of NicQb fragments, determined by SE-HPLC, in NicQb formulations A16 
prepared by applying FD protocol B (marked with an asterisk) and by applying FD protocol C (without 
asterisk) and A17 (freeze-dried by using FD protocol C) right after freeze-drying and after storage for 6 
weeks. 
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Figure 4.2.38 Amount of free nicotine derivatives, determined by RP-HPLC, in NicQb formulations 
A16 prepared by applying FD protocol B (marked with an asterisk) and by applying FD protocol C 
(without asterisk) and A17 (freeze-dried by using FD protocol C) right after freeze-drying and after 
storage for 6 weeks. 
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The integrity of the RNA incorporated in the VLP, determined by Bioanalyzer, 

remained stable for all formulations and storage condition, all samples showed the 

same RNA pattern. Furthermore, LDS-PAGE analysis revealed that the integrity of the 

Qb coat proteins was not affected by any of the formulations independent of the 

storage conditions, similar Qb coat protein band profiles were obtained for all 

samples.   

Conclusion 

It can be stated that a completely crystalline matrix was not capable of stabilizing 

NicQb during freeze-drying and upon storage. This observation is in accordance to 

the findings of Izutsu et al. and Chang et al. who  proposed that the implementation of 

an amorphous lyoprotectant is indispensable for the protection of a labile drug [Izutsu 

et al., 1994; Chang et al., 1996]. On the other hand the combination of crystalline 

mannitol as bulking agent, leading to physically remarkably stable lyophilizates with 

excellent appearance, and amorphous trehalose, which stabilizes the drug, seemed to 

be a further promising formulation for NicQb. The performance of an annealing step 

led to complete crystallization of mannitol during the freeze-drying process, and thus 

the initially observed, unwanted uncontrolled crystallization of mannitol upon storage 

could be resolved.   
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4.3 Summary  

During the present work the development of stable NicQb lyophilizates meeting 

the requirements for large scale clinical study and commercial use was demonstrated. 

Due to the well structured study setup from pH, freeze-thaw,  

freeze-drying and finally long-term stability studies a very fast progress towards a 

commercializable product was feasible.  

A grid of parameters critical for stabilizing the VLP based vaccine NicQb during 

freeze-drying and storage at 2-8 °C and ambient temperature was determined. It was 

found that an amorphous disaccharide matrix was suitable for the stabilization of 

NicQb. The addition of polysorbate 20 was very beneficial for preventing aggregation 

of the VLP.  Furthermore, it was shown that combined formulations of a crystalline 

bulking agent together with an amorphous disaccharide can also be applied for the 

manufacture of stable freeze-dried NicQb formulations. The freeze-dried formulations 

showed all excellent appearance, were composed of approved excipients, and could 

easily be reconstituted to parenterally applicable isotonic liquids.  

Finally, full retention of biological activity of VLP lyophilizates, even after 

long-term storage, was demonstrated. 

Furthermore, robust, short freeze-drying processes which can easily be 

transferred to large-scale production freeze-dryers were developed.  

.  
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4.5 Annex 

Table 4.5.1 Amount of NicQb oligomers and aggregates, determined by AF4, in NicQb formulations 
prior to freeze-drying, freeze-dried NicQb formulations right after freeze-drying and after storage for 6, 15 
and 25 weeks, respectively, at 2-8 °C, 25 °C / 60 % RH and 40 °C / 75 % RH. 

Oligomers and aggregates [%] 

Start 6 weeks 15 weeks 25 weeks Formulation 

Liquid LYO 2-8°C 25°C 40°C 2-8°C 25°C 40°C 2-8°C 25°C 40°C 

A03 5.03 
± 0.19 

5.13 
± 0.25 

6.10 
± 0.00 

6.35 
±0.07 

6.55 
± 0.35 

7.05 
± 0.07 

6.15 
± 0.21 

6.60 
± 0.00 

8.00 
± 1.27 

7.80 
± 0.42 

7.10 
± 0.14 

A06 6.13 
± 0.78 

5.77 
± 0.12 

6.50 
± 0.28 

6.20 
±0.57 

6.37 
± 0.67 

7.20 
± 0.42 

7.00 
± 0.14 

6.60 
± 0.00 n/a n/a n/a 

A15 5.43 
± 0.13 

5.27 
± 0.21 

6.95 
± 0.21 

6.80 
± 0.28 

6.95 
± 0.35 

6.90 
± 0.14 

7.10 
± 0.14 

7.90 
± 0.42 

8.35 
± 0.35 

7.35 
± 0.07 

7.75 
± 0.21 

A16 5.13 
± 0.24 

5.50 
± 0.00 

6.45 
± 0.35 

5.90 
± 0.57 

6.35 
± 0.49 

6.95 
± 0.21 

7.15 
± 0.07 

6.20 
± 0.14 n/a n/a n/a 

 
 

Table 4.5.2 Amount of degradation products of NicQb, determined by SE-HPLC, in NicQb 
formulations prior to freeze-drying, freeze-dried NicQb formulations right after freeze-drying and after 
storage for 6, 15 and 25 weeks, respectively, at 2-8 °C, 25 °C / 60 % RH and 40 °C / 75 % RH. 

Degradation products [%] 

Start 6 weeks 15 weeks 25 weeks Formulation 

Liquid LYO 2-8°C 25°C 40°C 2-8°C 25°C 40°C 2-8°C 25°C 40°C 

A03 1.54 
± 0.23 

2.34 
± 0.07 

2.35 
± 0.02 

2.34 
±0.02 

2.55 
± 0.01 

2.40 
± 0.04 

2.33 
± 0.01 

2.59 
± 0.01 

2.75 
± 0.28 

2.37 
± 0.10 

2.60 
± 0.03 

A06 1.57 
± 0.03 

1.98 
± 0.04 

2.07 
± 0.03 

2.02 
±0.01 

2.02 
± 0.02 

2.13 
± 0.02 

2.07 
± 0.01 

2.32 
± 0.06 n/a n/a n/a 

A15 1.54 
± 0.23 

2.47 
± 0.01 

2.51 
± 0.01 

2.47 
± 0.01 

2.75 
± 0.00 

2.55 
± 0.01 

2.51 
± 0.01 

2.79 
± 0.01 

2.36 
± 0.01 

2.37 
± 0.01 

2.74 
± 0.01 

A16 1.54 
± 0.23 

2.69 
± 0.21 

2.58 
± 0.25 

2.42 
± 0.16 

2.83 
± 0.13 

3.01 
± 0.47 

2.37 
± 0.12 

3.04 
± 0.07 n/a n/a n/a 
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Table 4.5.3 Amount of free nicotine derivatives, determined by RP-HPLC, of NicQb formulations 
prior to freeze-drying, freeze-dried NicQb formulations right after freeze-drying and after storage for 6, 15 
and 25 weeks, respectively, at 2-8 °C, 25 °C / 60 % RH and 40 °C / 75 % RH. 

Free nicotine [% of total nicotine] 

Start 6 weeks 15 weeks 25 weeks Formulation 

Liquid LYO 2-8°C 25°C 40°C 2-8°C 25°C 40°C 2-8°C 25°C 40°C 

A03 <0.20* <0.20* 0.35 
± 0.00 

0.38 
±0.00 

0.77 
± 0.02 

0.30 
± 0.00 

0.41 
± 0.00 

1.05 
± 0.06 

0.45 
± 0.02 

0.61 
± 0.02 

1.32 
± 0.02 

A06 <0.20* <0.20* 0.31 
± 0.02 

0.38 
±0.00 

0.75 
± 0.06 

0.31 
± 0.02 

0.43 
± 0.00 

1.03 
± 0.00 n/a n/a n/a 

A15 <0.20* <0.20* 0.31 
± 0.02 

0.38 
± 0.00 

0.69 
± 0.06 

0.29 
± 0.02 

0.38 
± 0.00 

0.95 
± 0.08 

0.45 
± 0.02 

0.57 
± 0.00 

1.25 
± 0.12 

A16 <0.20* <0.20* 0.34 
± 0.02 

0.43 
± 0.04 

0.72 
± 0.02 

0.33 
± 0.00 

0.53 
± 0.06 

1.35 
± 0.06 n/a n/a n/a 

* Amount of nicotine not detectable due to detection limit 

 
Table 4.5.4 Residual moisture content of freeze-dried NicQb formulations right after freeze-drying, 
and after storage for 6, 15 and 25 weeks, respectively, at 2-8 °C, 25 °C / 60 % RH and 40 °C / 75 % RH. 

Residual moisture [%] 

Start 6 weeks 15 weeks 25 weeks Formulation 

LYO 2-8°C 25°C 40°C 2-8°C 25°C 40°C 2-8°C 25°C 40°C 

A03 0.49 
± 0.00 

0.60 
± 0.06 

0.63 
±0.07 

0.89 
± 0.04 

0.56 
± 0.08 

0.74 
± 0.08 

1.20 
± 0.03 

0.66 
± 0.01 

0.79 
± 0.04 

1.55 
± 0.00 

A06 0.49 
± 0.13 

0.54 
± 0.04 

0.61 
±0.04 

0.82 
± 0.04 

0.44 
± 0.05 

0.65 
± 0.18 

1.12 
± 0.01 n/a n/a n/a 

A15 0.51 
± 0.01 

0.56 
± 0.11 

0.60 
± 0.01 

0.81 
± 0.01 

0.52 
± 0.04 

0.58 
± 0.01 

1.20 
± 0.04 

0.52 
± 0.03 

0.66 
± 0.01 

1.39 
± 0.07 

A16 0.15 
± 0.06 

0.11 
± 0.06 

0.20 
± 0.01 

0.52 
± 0.01 

0.12 
± 0.04 

0.29 
± 0.05 

0.94 
± 0.06 n/a n/a n/a 
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Table 4.5.5 Tg (point of inflection) of freeze-dried trehalose based NicQb formulations right after 
freeze-drying, and after storage for 6, 15 and 25 weeks, respectively, at 2-8 °C, 25 °C / 60 % RH and  
40 °C / 75 % RH. 

Glass transition temperature Tg [°C] 

Start 6 weeks 15 weeks 25 weeks Formulation 

LYO 2-8°C 25°C 40°C 2-8°C 25°C 40°C 2-8°C 25°C 40°C 

A03 98.9 
± 0.61 

96.75 
± 5.44 

96.27 
± 2.15 

94.95 
± 4.88 

98.2 
± 2.12 

96.60 
± 1.84 

89.27 
± 1.42 

100.25 
± 0.21 

97.50 
± 1.84 

93.15 
± 1.34 

A06 97.13 
± 1.94 

97.85 
± 9.83 

95.90 
± 0.14 

91.05 
± 0.35 

100.65 
± 0.07 

97.85 
± 3.46 

90.65 
± 0.21 

100.55 
± 1.91 

92.65 
± 2.76 

89.25 
± 0.64 

A15 96.35 
± 6.01 

101.25 
± 3.18 

94.83 
± 7.22 

96.50 
± 2.40 

97.10 
± 0.28 

96.85 
± 0.07 

90.05 
± 2.47 n/a n/a n/a 

 

 
Table 4.5.6 Number of particles ≥ 1 and ≥ 10 µm, respectively, determined by light obscuration, in 
NicQb formulations prior to freeze-drying, freshly reconstituted solutions of freeze-dried NicQb 
formulations right after freeze-drying, and after storage for 6, 15 and 25 weeks, respectively, at  
2-8 °C, 25 °C / 60 % RH and 40 °C / 75 % RH. 

Number of particles ≥ 1 µm and ≥ 10 µm / mL 

Start 6 weeks 15 weeks Formulation 

Liquid LYO 2-8°C 25°C 40°C 2-8°C 25°C 40°C 

1418 
± 856 

1105 
± 229 

818 
± 190 

1190 
± 102 

560 
± 354 

843 
± 751 

623 
± 610 

788 
± 666 

A03 

30 ± 27 95 ± 53  33 ± 22 58 ± 43 35 ± 31 208 ± 223 33 ± 39 23 ± 15 

1425 
± 1102 

1140 
± 785 

678 
± 179 

1225 
± 516 

578 
± 158 

720 
± 712 

958 
± 979 

1423 
± 987 

A06 

42.5 ± 34 100 ± 70 13 ± 5 18 ± 10 33 ± 15 53 ± 32 33 ± 13 18 ± 13 

1980 
±1337 

1263 
±722 

1463 
± 816 

795 
± 500 

1173 
± 578 

1848 
± 1556 

748 
± 551 

1308 
± 724 

A15 

45 ± 27 50 ± 57 15 ± 6 40 ± 14 30 ± 25 245 ± 178 23 ± 33 48 ± 44 

1758 
± 952 

788 
± 382 

438 
± 107 

838 
± 146 

570 
± 260 

1150 
± 721 

1690 
± 1377 

1118 
± 295 

A16 

25 ± 17 70 ± 35 10 ± 14 38 ± 31 13 ± 5 218 ± 101 13 ± 10 23 ± 10 
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Table 4.5.7 Proportion of main NicQb peak and polydispersity index of NicQb formulations prior 
to freeze-drying, freshly reconstituted solutions of freeze-dried NicQb formulations right after 
freeze-drying, and after storage for 6, 15 and 25 weeks, respectively, at 2-8 °C, 25 °C / 60 % RH and  
40 °C / 75 % RH. 

Proportion of main NicQb peak [%]  and PI 

Start 6 weeks 15 weeks 25 weeks Formulation 

Liquid LYO 2-8°C 25°C 40°C 2-8°C 25°C 40°C 2-8°C 25°C 40°C 

98.11 
± 1.74 

99.14 
± 0.82 

99.05 
± 0.84 

98.85 
± 0.70 

99.38 
± 0.44 

98.63 
± 0.85 

98.85 
± 1.02 

99.30 
± 0.44 

98.58 
± 0.78 

98.88 
± 0.37 

98.75 
± 0.81 

A03 
0.15 

± 0.00 
0.16 

± 0.00 
0.16 

± 0.00 
0.16 

± 0.01 
0.15 

± 0.00 
0.15 

± 0.00 
0.15 

± 0.01 
0.16 

± 0.01 
0.16 

± 0.01 
0.16 

± 0.01 
0.17 

± 0.01 

99.44 
± 0.38 

99.61 
± 0.30 

99.39 
± 0.31 

99.38 
± 0.32 

99.36 
± 0.48 

99.10 
± 1.07 

98.78 
± 0.43 

99.10 
± 1.07 n/a n/a n/a 

A06 
0.15 

± 0.00 
0.15 

± 0.00 
0.15 

± 0.00 
0.17 

± 0.00 
0.14 

± 0.00 
0.15 

± 0.00 
0.15 

± 0.01 
0.15 

± 0.01 n/a n/a n/a 

97.88 
± 1.05 

98.23 
± 1.29 

98.67 
± 0.83 

99.11 
± 0.25 

99.54 
± 0.27 

99.45 
± 0.31 

98.68 
± 1.99 

99.45 
± 0.50 

99.55 
± 0.17 

99.40 
± 0.24 

99.25 
± 0.52 

A15 
0.16 

± 0.00 
0.16 

± 0.00 
0.16 

± 0.00 
0.16 

± 0.01 
0.16 

± 0.01 
0.16 

± 0.01 
0.17 

± 0.01 
0.16 

± 0.00 
0.17 

± 0.01 
0.16 

± 0.01 
0.19 

± 0.03 

99.27 
± 0.62 

98.97 
± 1.06 

99.20 
± 0.70 

99.78 
± 0.08 

99.23 
± 0.74 

99.50 
± 0.34 

99.30 
± 0.43 

99.55 
± 0.26 n/a n/a n/a 

A16 
0.15 

± 0.00 
0.15 

± 0.00 
0.15 

± 0.00 
0.15 

± 0.01 
0.14 

± 0.01 
0.15 

± 0.01 
0.15 

± 0.01 
0.15 

± 0.00 n/a n/a n/a 
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5. DEVELOPMENT OF SUSTAINED RELEASE 
SYSTEMS FOR VIRUS-LIKE PARTICLE BASED 
VACCINES 

5.1 Introduction 

Vaccines aiming on the prevention or therapy of diseases typically require 

multiple applications to achieve the desired immune response [Bloom, 1989; Cleland, 

1999; Kaufmann, 2004]. This frequent dosing is inconvenient with respect to patient’s 

compliance and treatment costs. Hence, the development of single injection vaccine 

formulations is highly desirable. In 1979 Preis et al. introduced an implant formulation 

based on the non-degradable copolymer ethylene-vinyl acetate (EVAc), with BSA as 

model antigen, which was capable of releasing the antigen continuously over several 

months, and thus, leading to comparably high antibody titers as a multiple application 

of a liquid BSA formulation [Preis et al., 1979]. Based on these promising experiments 

great efforts have been taken during the last decades to develop single injection 

vaccines. A major milestone in this context was, without any doubt, the World Health 

Programme for Vaccine Development, initiated in the late 1980, with neonatal tetanus 

as its first target. This initiative clearly accelerated research in the area of controlled 

delivery devices for antigens, from peptides and proteins to viruses. For example 

Dewar et al. showed that the immune response of rabbits to HSA microspheres 

encapsulating Nodamura virus was significantly higher and longer lasting than for the 

fluid antigen [Dewar et al., 1984]. Similar observations were made by Greenway et al. 

in a mice model who employed PLGA microcapsules for the immunization against 

venezuelan equine encephalomyelitis virus [Greenway et al., 1995]. Sturesson et al. 

encapsulated inactivated rotavirus in PGLA microspheres and demonstrated high 

antibody levels in mice [Sturesson et al. 2000]. The existing literature on formulation 

strategies for vaccines is copious, as exemplarily displayed in Table 5.1.1., and even 

more research work has been done in the field of controlled release formulations for 

therapeutic peptides and proteins. 

However, up to now only a few controlled release devices, all based on poly 

(lactide) (PLA) and poly (lactide-co-glycolide) (PLGA) are on the market (Lupron® 

Depot, Zoladex®, Eligard®, Profact® Depot, Enantone® Depot, Sandostatin® LAR 
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Depot, Trenantone®, Decapeptyl® Depot and Suprefact® Depot), and all of them 

include peptides rather than proteins and vaccines.  

Table 5.1.1 Examples of single-dose vaccine systems. 

Delivery system Vaccine / 
immunogen Material  Reference 

Bovine serum 
albumin EVAC [Preis et al., 1979] 

Bovine serum 
albumin Cholesterol and lecithin [Khan et al., 1991] 

Recombinant 
dichelobacter 
nodosus pili 

Cholesterol and lecithin [Walduck et al., 1998] 

Avidin and 
clostridial toxoid Silicone [Lofthouse et al., 2002;  

Kemp et al., 2002] 

Malaria vaccine 
(SPf66) PLGA [Dorta et al., 2002] 

Implant 

Plasmid DNA Agarose [Toussaint et al., 2007] 

In situ forming 
implant Plasmid DNA PLGA [Eliaz et al., 2002] 

Minipellet 
Tetanus toxoid 
and diphteria 

toxoid 
Collagen [Higaki et al., 2001] 

Tetanus toxoid PLA and PLGA 

[Esparza et al., 1992; Alonso  
et al., 1994; Chang et al., 1996; 
Johansen et al., 1998; Sanchez 
et al., 1999; Katare et al., 2006] 

Tetanus toxoid Gelatin / poloxamer core 
and PLGA shell [Tobio et al., 1999a] 

Tetanus toxoid PLGA and ABA-triblock 
copolymers [Jung et al., 2002] 

Tetanus toxoid PLGA and chitosan [Jaganathan et al., 2005] 

Tetanus toxoid Mineral oil core and PLGA 
shell [Sanchez et al., 1996] 

Diphtheria toxoid 
and tetanus toxoid PLA and PLGA [Johansen et al., 1999;  

Peyre et al., 2003] 

Microparticles 

Haemophilus 
influenza b 
conjugate, 

diphtheria toxoid, 
tetanus toxoid and 

pertussis toxoid 

PLA and PLGA [Boehm et al., 2002] 
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Delivery system Vaccine / 
immunogen Material Reference 

Diphteria toxoid PLA [Singh et al., 1991] 

Recombinant HIV 
envelope protein 

(MN gp120) 
PLGA 

[Cleland et al., 1994; Moore et al., 
1995; Cleland et al., 1996b; 

Cleland et al., 1997;  
Cleland et al., 1998] 

Hepatitis B virus 
surface antigen 

Hydroxypropyl cellulose 
core and PLGA shell [Lee et al., 1997] 

Hepatitis B virus 
surface antigen PLGA [Singh et al., 1997; Shi et al., 

2002; Feng et al., 2006] 

Hepatitis B virus 
surface antigen PELA [Li et al., 2002] 

Malaria antigen PLA and PLGA  [Thomasin et al., 1996] 

Malaria antigen  PLA and PCL with 
phospholipids and lipid A [Amselem et al., 1992] 

Staphylococcal 
enterotoxin B PLGA [Eldridge et al., 1991] 

Pneumotropic 
bacterial antigen PLA and PLGA [Kofler et al., 1996] 

PEI / DNA 
complexes Chitosan [Domb, 2006; Zhou et al., 2007] 

Nodamura virus RSA [Dewar et al., 1984] 

Venezuelan 
equine 

encephalitis virus 
PLGA [Greenway et al., 1995] 

Bovine serum 
albumin 

Squalen core and PLGA 
or PCL shell [Youan et al., 2001] 

Monovalent 
influenza vaccine PLA and PLGA [Coombes et al., 1998;  

Hilbert et al., 1999] 

Trivalent influenza 
vaccine PLGA and PIBCA [Chattaraj et al., 1999] 

Inactivated duck 
parvovirus PLA and PLGA [Palinko-Biro et al., 2001] 

Rotavirus vaccine Poly (acryl starch) and 
PLGA [Sturesson et al., 2000] 

Microparticles 

Avidin and 
clostridial toxoid Lipospheres [Domb, 2006] 
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Poly (α-hydroxy esters) PLA and PLGA found most widespread use due to their 

excellent safety and biocompatibility [Gombotz et al., 1995; van de Weert et al., 2000; 

Johansen et al., 2000b; Schwendeman, 2002]. Furthermore, applying these polymers 

tailor-made release kinetics, like continuous or pulsed release, can be achieved by 

varying parameters like molecular weight of the monomers, PLA to PLGA ratio, size 

and shape of the final formulation (microparticles, implants), addition of further 

excipients like pore building substances, e.g. PEG, and different preparation methods 

[Johansen et al., 2000a; Kang et al., 2001; Sandor et al., 2001; Wang et al., 2002]. 

This is an important issue as up to now it is still unclear which release profile induces 

the most potent immune response [Lofthouse, 2002; O'Hagan et al., 2003]. Even 

though most of the scientists claim that a pulsed release, which mimics the common 

vaccination schedule, is preferable [Medlicott et al., 1999; Lima et al., 1999; Gander  

et al., 2001] other studies demonstrated that a continuous release profile also induced 

high antibody titers [Preis et al., 1979; Cleland et al., 1996a; Toussaint et al., 2007].  

Despite these benefits several inherent shortcomings of PLA / PLGA and the 

resulting detrimental effects on the stability especially of complex drugs like proteins 

and vaccines during processing, storage and release might explain the limited 

success of these polymeric delivery systems [Fu et al., 2000; van de Weert et al., 

2000; Schwendeman, 2002; Perez et al., 2002; Sinha et al., 2003; Bilati et al., 2005].  

The broad spectrum of techniques for the preparation of implants and 

microparticles and linked drug stability issues are summarized in Table 5.1.2. With the 

exception of the manufacture of implants by simple compression all other fabrication 

methods implicate stress factors that may alter drug stability. The major drawback 

seems to be the use of organic solvents for the dissolution of the polymers leading, in 

dependence of the applied preparation method, to the formation of water / organic 

solvent or solid drug / organic solvent interfaces. Antigens, which are typically 

composed of proteins (substances with an amphiphilic character) tend to adsorb at 

such interfaces which consequently can result in protein unfolding followed by  

non-covalent aggregation [Schwendeman et al., 1997; Sanchez et al., 1999; Sah, 

1999a; Sah, 1999b; van de Weert et al., 2000].  
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Table 5.1.2 Common techniques for the preparation of implants and microparticles and linked 
problems. 

Formulation Preparation Challenges on drug stability References 

Direct compression 
of PLGA and solid 

drug 
 -  

[Ramchandani et al., 1997; 
Takahashi et al., 2004;  

Onishi et al., 2005] 

Solvent casting Exposure to organic solvent 
[Garcia et al., 2002;  
Dorta et al., 2002;  

Santovena et al., 2006] 

Molding Exposure to high 
temperature [Park et al., 1995] 

Implants 

Extrusion Exposure to high 
temperature and pressure [Witt et al., 2000] 

In situ forming 
implants 

Implant formation 
at the injection site  Exposure to organic solvent 

[Eliaz et al., 2000;  
Ravivarapu et al., 2000;  
Matschke et al., 2002;  

Packhaeuser et al., 2004] 

Solvent 
evaporation and 

extraction 

Exposure to organic solvent 
/ water interfaces and shear 

/ cavitation / forces and 
temperature stress during 

emulsification in 
dependence of the applied 

emulsification process 

[Alonso et al., 1994; Greenway 
et al., 1995; Schwendeman  
et al., 1996; Schwendeman  
et al., 1997; Sanchez et al., 
1999; Sah, 1999b; van de 

Weert et al., 2000; Yeo et al., 
2001; Shi et al., 2002; Jiang  

et al., 2004; Freitas et al., 
2005; Feng et al., 2006] 

Phase separation 
Exposure to organic solvent 
/ water interfaces and shear 

/ cavitation forces 

[Esparza et al., 1992; 
Thomasin et al., 1998; 
Johansen et al., 1999;  

Peyre et al., 2003] 

Spray drying 
Exposure to organic solvent 
/ water interfaces and shear 

forces 

[Khan et al., 1992; Johansen 
et al., 1998; Johansen et al., 

1999; Jain, 2000; 
Peyre et al., 2003] 

Microcapsules 

Supercritical fluid 
precipitation Exposure to organic solvent [Jain et al., 1998; Jain, 2000; 

Tamber et al., 2005] 

 

In addition to the stress factors identified during processing several detrimental 

conditions for antigens evolve in PLA / PLGA based systems during release [Chang  

et al., 1996; Schwendeman et al., 1997; Schwendeman, 2002; Sinha et al., 2003; 

Jiang et al., 2005]. Poly (α-hydroxy esters) matrices undergo bulk erosion, meaning 

that polymer degradation is slower than the water uptake of the device. Consequently, 

the matrix is completely wetted before cleavage of the polymer chains begins 

[Gombotz et al., 1995; Goepferich, 1996; von Burkersroda et al., 2002]. Hence, upon 
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incubation the matrix degrades (homogeneously) throughout the device and the acidic 

degradation products are trapped within the matrix, accumulate, and lead to an 

altered microenvironment: 

(1) pH drop [Zhu et al., 2000; Fu et al., 2000] 

(2) Increase of osmotic pressure [Brunner et al., 1999] 

(3) Accumulation of reactive species [Lu et al., 1995; Lucke et al., 2002] 

These changes in the environment may cause protein unfolding, aggregation and 

chemical degradation, and thus, lead to a loss of efficacy. Additionally, water uptake 

of the polymer matrix during incubation leading to an increase in antigen mobility can 

result in conformational changes of epitopes and consequently to antigen aggregation 

[Schwendeman et al., 1995; Costantino et al., 1994]. Furthermore, interactions 

between PLA / PLGA or degradation products thereof with the antigen can cause 

inactivation of the antigen and incomplete release [Crotts et al., 1997; Johansen et al., 

1999; Palinko-Biro et al., 2001].  

Thus, to overcome these stability concerns several attempts have been taken. 

For example, basic additives such as magnesium hydroxide and calcium carbonate 

were introduced as buffer salts to counteract the pH drop within PLGA devices during 

hydrolytic polymer degradation [Johansen et al., 1998; Zhu et al., 2000; Zhu et al., 

2000]. Other approaches suggest the addition of pore forming substances, like e.g. 

PEG, or the use of PELA copolymers to ameliorate the potential pH decrease during 

matrix degradation. Thereby, the porosity of the matrix is increased which in turn 

accounts for the accelerated diffusion of acidic degradation products out and of buffer 

components into the device [Jiang et al., 2001; Perez et al., 2002; Zhou et al., 2003].  

Another attempt was the development of microcapsule formulations consisting of 

an inner oily core, in which the antigen is entrapped, surrounded by an outer PLGA 

shell. The oily core is deemed to protect the antigen against deleterious environmental 

conditions like moisture and acidic pH and to prevent permeation of PLGA 

degradation products until the polymer shell is degraded and releases the inner core 

[Sanchez et al., 1996].  

Besides investigations on stabilization strategies within PLGA-based devices 

several alternative matrix materials for the delivery of proteins have been investigated 

(Table 5.1.1). Among them  especially lipids, e. g. fatty acids, glycerides and waxes, 

gain more and more attention as matrix formers for parenteral controlled release 
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devices [Khan et al., 1991; Opdebeeck et al., 1993; Walduck et al., 1998; Mohl et al., 

2004; Maschke et al., 2004; Koennings et al., 2005]. Lipids as natural, physiological 

materials, exhibit an excellent biocompatibility [Reithmeier et al., 2001; Guse et al., 

2006]. A potential advantage compared to PLGA is the prevention of an acidic 

microenvironment, and thus, potentially preservation of drug integrity upon release.  

Furthermore, with lipids additional preparation methods such as melt dispersion 

or spray congealing are applicable for particulate devices which do not require the use 

of organic solvents [Reithmeier et al., 2001; Maschke et al., 2007].  Due to the 

excellent compressibility of lipids the preparation of implants can be realized by 

compression without the employment of heat, what can be beneficial with respect to 

both production costs and protein stability [Wang, 1989; Mohl et al., 2004]. However, 

first attempts taken by Kent et al. to develop cholesterol based controlled release 

devices for macromolecules failed due to the poor release rates which might be 

related to the low diffusivity of large molecules and the lack of an interconnected pore 

network [Kent, 1994]. Later on, Mohl et al. demonstrated that by adding PEG as pore 

forming substance to tristearin implants this drawback could be overcome and release 

rates up to 50 % for BSA and 90 % for interferon α-2a within 30 days were attainable 

[Mohl, 2003]. However, a drawback of such lipidic implants is their unclear 

biodegradability. In vivo experiments revealed lack of erosion for pure triglyceride 

based devices, so that large devices would need to be removed by surgical recision 

after completed release [Vogelhuber et al., 2003; Guse et al., 2006]. Nevertheless, 

there is some information available that drawbacks related to lipid biodegradation can 

be solved by admixing of amphiphilic lipids, such as phospholipids, to the implant 

formulation [Khan et al., 1991].  

Summing up, lipids are deemed to be promising matrix materials and the 

potential of lipid-based sustained release systems for the delivery of vaccines might 

be investigated as alternate to the standard PLGA. In the following chapter preliminary 

experiments towards the development of sustained release devices for VLP based 

vaccines are presented. The in vitro release behavior of two model VLP vaccines, 

AngQb and QbG10p33, from PLGA and lipid based implant formulations was studied 

and the in vivo efficacy of these provisional sustained release devices was tested in 

mice. Additionally, basic experiments towards the preparation of an enhanced 
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sustained release device, PLGA microcapsules with an oily inner core, were 

performed.  
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5.2 Results and Discussion 

5.2.1 Preparation of VLP Lyophilizates as Starting Material 

First, for the preparation of sustained release devices for VLP the designated 

VLP candidates had to be freeze-dried. Therefore, based on the findings of the 

formulation development studies for NicQb (compare chapter 4) it was investigated 

whether AngQb and QbG10p33 can be stabilized during freeze-drying by the same 

excipients like NicQb, i.e. polysorbate 20 and trehalose.  

Preformulation studies, performed by Cytos Biotechnology AG, revealed that the 

optimal pH for AngQb was 7.2 and that the addition of low amounts of sodium chloride 

was important to preserve its integrity. Thus, in a first attempt the AngQb formulation 

FA01 (Table 5.2.1) was freeze-dried according to freeze-drying protocol A (see 

chapter 2).  

Table 5.2.1:  Compositions of AngQb formulation FA01 (filling volume - 0.7 mL). 

Code VLP 
[mg] 

Trehalose  
[mg] 

Polysorbate20 
[% (w/v)] 

Sodium 
chloride 

[mM] 

Sodium 
phosphate 

[mM] 
pH 

FA01 1.40 47.25 0.005 50 20 7.2 

 

AF4 measurements revealed that the integrity of AngQb in formulation FA01 was 

preserved upon freeze-drying. Neither fragmentation nor aggregation of AngQb was 

observed (Figure 5.2.1).  
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Figure 5.2.1 Stability of AngQb, determined by AF4, in formulation FA01 prior to and after FD.  
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Interestingly, the experiment indicated that an excipient combination of trehalose 

as lyoprotectant and polysorbate 20 as cryoprotectant, as it was used for NicQb, was 

also capable to stabilize AngQb upon freeze-drying.  

However, for the preparation of sustained release devices with adequate drug 

payloads, there was the need to prepare highly concentrated VLP lyophilizates.  

Hence, in a second step the AngQb / trehalose ratio (w / w) was reduced from 1 : 33.8 

(formulation FA01) to 1 : 6 (formulation FA02, Table 5.2.2) leading to an AngQb 

concentration of 300 µg /  2.5 mg lyophilizate. Formulation FA02 was freeze-dried 

according to freeze-drying protocol A (chapter 2).  

Table 5.2.2 Compositions of AngQb formulation FA02 (filling volume - 0.6 mL). 

Code VLP 
[mg] 

Trehalose  
[mg] 

Polysorbate20 
[% (w/v)] 

Sodium 
chloride 

[mM] 

Sodium 
phosphate 

[mM] 
pH 

FA02 2.24 13.50 0.005 50 20 7.2 

 
After freeze-drying lyophilizates with excellent appearance and a residual 

moisture content of 1.2 % were obtained. AF4 measurements indicated that even at 

this low lyoprotectant / drug weight ratio the integrity of AngQb was maintained upon 

freeze-drying (Figure 5.2.2).  

 

0

20

40

60

80

100

prior to  lyophilization after lyophilization

re
la

tiv
e 

am
ou

nt
 [%

]

fragments

monomer

dimer

oligomers /
aggregates

 
Figure 5.2.2 Stability of AngQb, determined by AF4, in formulation FA02 prior to and after FD.  
 

Consequently, the freeze-dried AngQb formulation FA02 was used as starting 

material for the preparation of sustained release systems. 
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For QbG10p33 no data were available concerning its stability with respect to 

varying pHs or the presence of sodium chloride. Thus, according to the experiences 

made with NicQb (see chapter 4) and AngQb (see above) formulation FQ01 (Table 

5.2.3), with and QbG10p33 concentration of 300 µg / 2.5 mg (QbG10p33 / trehalose 

weight ratio 1 : 7.5), was freeze-dried according to protocol A (chapter 2).  

Table 5.2.3 Compositions of QbG10p33 formulation FQ01 (filling volume - 0.6 mL). 

Code VLP 
[mg] 

Trehalose  
[mg] 

Polysorbate20 
[% (w/v)] 

Sodium 
phosphate 

[mM] 
pH 

FQ01 1.80 11.56 0.005 20 7.2 

 
After freeze-drying lyophilizates with excellent appearance and a residual 

moisture content of 1.7 % were obtained. AF4 measurements revealed that the 

integrity of QbG10p33 was maintained upon freeze-drying (Figure 5.2.3). The API 

bulk already contained relatively large amounts of QbG10p33 oligomers and 

aggregates but the proportion of this VLP fraction was not altered during  

freeze-drying.  
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Figure 5.2.3 Stability of QbG10p33, determined by AF4, in formulation FQ01 prior to and after FD.  

It can be stated that the excipient composition of trehalose as lyoprotectant and 

polysorbate 20 as cryoprotectant was, according to the results obtained for NicQb and 

AngQb, also capable of stabilizing QbG10p33. Hence, formulation FQ01 was used as 

starting material for the manufacture of sustained release devices.  
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5.2.2 Definition of Release Study Parameters 

Selection of container and release medium 

The release medium used for in vitro release studies with AngQb and QbG10p33 

sustained release formulations was phosphate buffered saline composed of 50 mM 

sodium chloride and 20 mM sodium phosphate buffer at a pH of 7.2. Furthermore, 

sodium azide was added at a concentration of 0.05 % as bacteriostatic agent. This 

composition was chosen based on the results obtained during preformulation studies, 

performed by Cytos Biotechnology AG, which indicated the highest stability of AngQb 

at this salt concentration and pH. Preliminary experiments performed with AngQb 

solutions (1 mg / mL) at 37 °C indicated that it tended to fragmentate even at this 

“optimum” pH (Figure 5.2.4).  Based on these results the release media was 

exchanged at least every third day.  
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Figure 5.2.4 Stability of AngQb (1 mg / mL) at 37 °C at pH 7.2, determined via SE-HPLC. 

 

The determination of the most appropriate container for release studies is 

another crucial parameter, because upon long-term release studies the amount of 

VLP in the release medium was expected to be extremely low (< 20 µg / mL). 

Adsorption of VLP to the container surface might result in lower drug concentrations 

detected in the release medium. Therefore, the adsorption behavior of AngQb to four 

different container types was investigated: (1) Standard Eppendorf reaction tubes, (2) 

LoBind Eppendorf reaction tubes (Eppendorf AG, Hamburg, Germany), (3) 2R class 1 

glass vials (Schott AG, Mainz, Germany), and (4) TopPac® vials (Schott AG, Mainz, 
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Germany). Adsorption of AngQb to the different containers was analyzed at two drug 

concentrations, 20 µg / mL and 100 µg / mL, respectively, upon incubation at 37 °C for 

7 days. As surfactants are often used to prevent adsorption to surfaces [Cleland et al., 

1997; Tobio et al., 1999b; Palinko-Biro et al., 2001; Jaganathan et al., 2005], the 

effect of polysorbate 20 (0.01 % w / w), on the adsorption behavior of AngQb to the 

above mentioned containers was additionally examined. The AngQb amount in the 

respective samples was determined via RP-HPLC (see chapter 2). The results 

obtained revealed a strong adsorption of AngQb to all container types in the absence 

of polysorbate 20, where glass vials and TopPac® vials exhibited the worst results 

with more than 50 % adsorption after 7 days at an AngQb concentration of 

20 µg / mL. By adding polysorbate 20 to the AngQb solutions adsorption to the 

container surfaces could be clearly reduced, exemplarily displayed in Figure 5.2.5 for 

the AngQb solution of 20 µg / mL. The results indicated that the most favorable 

container was the LoBind Eppendorf reaction tube. Here, less than 10 % of AngQb 

were adsorbed to the container after 3 days. Thus, LoBind Eppendorf reaction tubes 

were used as container for the release studies with AngQb and QbG10p33 sustained 

release devices and polysorbate 20 was added in a concentration of 0.01 % (w / w) to 

the release medium. 
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Figure 5.2.5 Adsorption behavior of AngQb (20 µg / mL) in the presence of 0.01 % polysorbate 20 to 
different container types upon 7 days storage. AngQb concentration determined via RP-HPLC. 
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Evaluation of quantification method 

For in vitro release studies an adequate analytical method for drug quantification 

is inevitable. Common methods for protein based drugs are the bicinchoninic acid 

(BCA) [Chattaraj et al., 1999; Higaki et al., 2001; Feng et al., 2006] and Bradford 

[Thomasin et al., 1996] assays, which are both applicable for protein concentrations 

down to 1 µg / mL. Besides these colorimeteric assays ELISA es a further commonly 

used quantification method which is applicable even for antigen concentrations in the 

ng range [Singh et al., 1991; Jung et al., 2002; Katare et al., 2006].  

However, as all of these methods have some specific drawbacks their 

applicability for the quantification of VLP was investigated.  

The Bradford assay is a dye binding assay in which a differential color change of 

Coomassie Brilliant Blue dye from 465 nm to 595 nm occurs due to stoichiometric 

protein binding. From the optical absorbance the protein concentration can be 

calculated by using a protein standard curve [Bradford, 1976]. This assay is very 

sensitive to surfactants especially at very low protein concentrations [Compton et al., 

1985]. Preliminary experiments with AngQb solutions indicated that even slight 

variations in the surfactant concentration had clear effects on the determined VLP 

amount. However, the addition of polysorbate 20 to the release medium was essential 

to prevent the adsorption of the VLP to the container. As potentially different amounts 

of polysorbate might adsorb to the container surfaces leading to varying amounts of 

polysorbate in the release medium it was assumed that this method was inappropriate 

for the quantification of VLP in the samples obtained during release studies.  

The BCA method involves the reduction of Cu2+ to Cu+ by peptidic bonds of 

proteins. The BCA chelates Cu+ ions with very high specificity to form a water soluble 

purple colored complex. This reaction can be measured by optical absorbance of the 

final Cu+ complex at 562 nm and is used for the determination of the protein 

concentration by applying a standard curve [Smith et al., 1985]. The method is  

non-sensitive to surfactants but susceptible to chelating substances, lipids and 

reducing substances [Smith et al., 1985; Kessler et al., 1986; Wiechelman et al., 

1988]. Preliminary experiments performed with AngQb solutions spiked with PEG (as 

potent release modifier) or lactic acid (as degradation product of PLGA) revealed that 
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both substances lead to deviant results. Hence, this protein quantification assay was 

useless as well.  

As the two commonly used colorimetric protein quantification methods were not 

well applicable a multi-step sandwich ELISA, as displayed in Figure 5.2.6, was 

developed for the quantification of VLP.  
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Figure 5.2.6 Organization of sandwich ELISA for the quantification of VLP. 

After optimization of the dilutions of the specific sera and antibody solutions linear 

standard curves (absorbance vs. concentration plot) for both VLP, AngQb and 

QbG10p33, exemplarily shown for AngQb in Figure 5.2.7, were established. 
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Figure 5.2.7 AngQb standard curve for the developed ELISA.  

Even though ELISA is a very specific quantification method for small antigens 

with single epitopes [Reid et al., 2000; Breuer, 2007], a problem can arise when 

working with large antigens, or especially large antigens that consist of multiple similar 
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subunits with potentially similar epitopes. For complex structures there is the risk of 

detecting not only the complete, intact antigens, but additionally fragmented species 

or single subunits. If e.g. a VLP is dissembled into 20 subunits that are all recognized 

by the ELISA, 20 fold too high results might be achieved. Therefore, it was 

investigated whether the developed ELISA detects purified, single Qb coat protein 

dimers (obtained by Cytos Biotechnology AG) as well. Unfortunately, this was the 

case so that even this highly sensitive quantification method could not be used. 

Finally, it could be stated that none of the commonly used methods was 

applicable for the quantification of VLP during release studies.  

Fortunately, a different approach could be applied. Cytos Biotechnology AG 

developed a RP-HPLC method for the quantification of Qb coat proteins (see  

chapter 2). The Qb VLP are assembled from 180 units of Qb coat protein monomer 

and are stabilized by tight non-covalent Qb coat protein dimer interactions and 

disulfide bonds linking each Qb coat protein dimer covalently to the rest of the coat 

[Golmohammadi et al., 1996].  For sample preparation the Qb VLP are first 

disassembled with dithiothreitol (DTT) and guanidine hydrochloride. Thereby, 

dithiothreitol, a reducing agent [Cleland, 1964], cleaves the disulfide bonds linking the 

coat proteins together, and guanidine hydrochloride, a chaotropic salt [Hatefi et al., 

1969], disrupts the non-covalent interactions and increases protein solubility. 

Subsequently, the Qb coat proteins are separated by RP-HPLC from potential 

impurities using an acetonitrile gradient under acidic conditions and are detected by 

UV absorption at 215 nm. Finally, the Qb coat protein content is determined by 

external calibration with a Qb standard. The concentration of the standards was 

determined by amino acid analysis. In Figure 5.2.8 a typical standard curve is shown, 

which reveals that this quantification method is applicable for Qb concentrations down 

to 0.1 µg / mL. Consequently, this RP-HPLC method was used for the quantification of 

VLP in samples obtained during release studies.  
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Figure 5.2.8 Qb coat protein standard curve obtained by RP-HPLC analysis.  

5.2.3 Implants 

The aim of these initial experiments was to study VLP release from implants, 

composed of PLGA or lipids as matrix materials, as simple models for sustained 

release devices. Implants were manufactured by simple compression of the matrix 

material and other excipients like pore forming substances and lyophilized VLP. This 

preparation method was chosen in order to prevent the exposure of the drug to stress 

factors like organic solvents and water / organic interfaces, shear stress or 

temperature, which are connected to preparation methods for microparticulate 

systems [Jain, 2000; Yeo et al., 2001; Sinha et al., 2003]. In addition such systems 

can be manufactured fast and easy without great operating expenses [Mohl, 2003; 

Onishi et al., 2005].  

AngQb, a therapeutic VLP for the treatment of hypertension, acting upon the 

induction of a specific anti-angiotensin antibody response [Ambuehl et al., 2007], and 

QbG10p33, a model VLP which was designed to induce T-cells additionally to an 

antibody response [Storni et al., 2004], were used for this purpose. The release 

behavior in dependence of the matrix material and the addition of further excipients 

like, e.g. pore forming agents, was investigated. Furthermore, the stability of the VLP 

upon processing and release was analyzed. Finally, the in vivo efficacy of VLP 

implants in comparison to multiple applications of a liquid formulation was studied.  
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AngQb implants  

Implants of 25 mg total weight each were produced according to the protocol 

introduced in chapter 2. In brief, five different formulations (Table 5.2.4, n = 3) were 

compressed (15 seconds, 2.0 kN) to small cylindric implants with a diameter of 3 mm, 

exemplarily shown for formulation IA01 and IA05 in Figure 5.2.9. The height of the 

PLGA based implants was about 2.6 mm whereas the tristearin based implants were 

about 3.3 mm high. The payload of AngQb was throughout all formulations 300 µg / 

implant. 

Table 5.2.4:  Compositions of AngQb implants (25 mg) used for in vitro release studies. 

Code AngQb 
lyophilizate 

Resomer® 
RG 502H 

Resomer®       
RG 502 

Dynasan 
118 PEG 6,000 Mg(OH)2

IA01 10 % 80 % - - 10 % - 

IA02 10 % - 80 % - 10 % - 

IA03 10 % 80 % - - 7 % 3 % 

IA04 10 % 80 % - - 6 % 4 % 

IA05 10 % - - 80 % 10 % - 

 
 

3 mm
3 mm

2.6 mm 3.3 mm

IA01 IA05

3 mm
3 mm

2.6 mm 3.3 mm

IA01 IA05
 

Figure 5.2.9  Compressed implants – formulation IA01 and IA05. 

Formulations IA01 and IA02 were chosen to study the effect of different PLGA 

materials on the release kinetics of VLP. Both polymers are composed of equivalent 

molar ratios of lactic acid to glycolic acid and have an average molecular weight of 

about 12 kDa and an inherent viscosity of 0.2 dL / g in chloroform. The difference 

between these two PLGAs is that Resomer® RG 502H exhibits free carboxylic acid 

end groups whereas in the case of Resomer® RG 502 these groups are end-capped. 
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As free carboxylic acid end groups autocatalytically accelerate the hydrolytic 

degradation of PLGA [Park, 1995] a faster release of the VLP was expected for 

Resomer® RG 502H. PEG 6,000 was added to these formulations as pore forming 

agent in order to enable an adequate release of the VLP by diffusion through a 

continuous porous network, formed within the matrix by fast dissolution of the 

hydrophilic PEG. Furthermore, by increasing the porosity of the matrix diffusion of 

acidic degradation products out of the device, and thus, prevention of a pH drop within 

the device, is described to potentially increase drug stability upon release [Bilati et al., 

2005; Jiang et al., 2005]. The PLGA based formulations IA03 and IA04 were selected 

based on the findings of Zhu et al. who showed that alteration of BSA upon release 

from PLGA implants and microspheres could be significantly reduced by the addition 

of poorly water-soluble basic salts like Mg(OH)2 which were coincorporated to 

neutralize the acidic microclimate pH [Zhu et al., 2000]. Formulation IA05, a lipid 

based formulation, was included as alternative to the standard PLGA. Such a 

tristearin / PEG based implant formulation was introduced by Mohl et al. who showed 

that it was capable of releasing BSA and interferon α-2a continuously up to 30 days 

[Mohl, 2003]. The potential advantage of lipids as matrix material in comparison to 

PLGA might be the prevention of an acidic environment, and thus, potentially 

preservation of drug integrity upon release. A drawback of lipids as matrix materials 

for sustained controlled release devices is their slow biodegradability.   

The release kinetics of the five AngQb implant formulations were investigated in 

an in vitro study over a time frame of 3 months. The cumulative release profiles of 

AngQb from the presented formulations are depicted in Figure 5.2.10. Importantly, it 

has to be mentioned that the RP-HPLC method applied can be used for the 

determination of the amount of VLP coat proteins in the release medium but not for 

stability testing as AngQb is disassembled before analysis (see page 136). PLGA 

implants swelled upon incubation and were almost completely degraded after 3 

months. By contrast, tristearin implants remained macroscopically unaltered 

throughout the release studies.  
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Figure 5.2.10 Cumulative in vitro release of AngQb from tristearin / PEG and PLGA / PEG implants 
over a time frame of 3 months.  

Following conclusions can be drawn from the presented data: 

(1) The PLGA / PEG based formulations IA01 and IA02 (10 % PEG) showed a high 

initial burst of about 55 % within the first day; A lower initial burst of ~ 50 % and 

~ 30 %, respectively, was observed for formulations IA03 (7 % PEG) and IA04 

(6 % PEG); The tristearin / PEG based formulation IA05 revealed an initial burst 

of ~ 25 %. 

(2) All formulations with exception of formulation IA04 showed a continuous release 

after the initial burst phase:  - IA01 another 25 % within day 2 – 26 

- IA02 another 15 % within day 2 – 8 

- IA03 another 30 % within day 2 – 50 

- IA05 another 45 % within day 2 – 70 

 which leveled off after the respective release periods. 

(3) For formulation IA04 a triphasic release behavior was observed. The initial burst 

was followed by a lag period up to day 27. Then, from day 27 to 84 another 

30 % were released.  

(4) All formulations revealed an incomplete release of AngQb. 

 

Formulations IA01 and IA02 showed, after a primary burst, no long-lasting or 

pulsed release of AngQb and might thus be no appropriate sustained release devices. 

Formulations IA03 and IA05 revealed a primary burst followed by a continuous AngQb 
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release up to 7 and 10 weeks, respectively. An adequate primary burst, which mimics 

the first vaccine dose, is desirable for sustained release devices for vaccines. 

Furthermore, a continuous antigen release was shown to be capable of inducing long-

lasting high antibody titers [Preis et al., 1979; Cleland et al., 1996a; Toussaint et al., 

2007], and thus, the respective formulations seemed to be promising sustained 

release devices for AngQb. However, the composition of formulation IA03 is still 

optimizable by reducing the high initial burst rate. Formulation IA04 might be a 

promising controlled release device due to its pulsed release profile. For example 

Thomasin et al. showed that a pulsed release of tetanus toxoid and malaria antigens 

from PLGA microspheres initiated high, long-lasting antibody titers in mice [Thomasin 

et al., 1996].  

 

Stability of AngQb during release from PLGA and lipid based implants 

From a quality and safety perspective the investigation of drug integrity upon 

release is an important issue. Appropriate analytical methods for the investigation of 

VLP degradation and aggregation are SE-HPLC and AF4 (compare chapter 3). 

However, both analytical methods have a limit of quantification of about 20 µg / mL. 

As the amount of AngQb released from the implant formulations investigated was 

after one ore two days below this limit, the integrity of AngQb could only be assessed 

by SE-HPLC and AF4 during the first days. Unfortunately, the analysis of the AngQb 

samples by AF4 was not feasible, probably due to interference of the excipients and / 

or degradation products of the matrix with the ultrafiltration membrane material. The 

SE-HPLC data for day 1 and 2 were compared to the starting material (Table 5.2.5). 

For all samples a slight increase of aggregated species and fragments was observed, 

but the proportion of the main AngQb peak was still > 90 %. As AngQb is rather 

unstable in solution (compare Figure 5.2.4 and Figure 5.2.14) it was not clear whether 

the observed degradation of AngQb was related to specific detrimental conditions 

upon release from the devices or was just a result of liquid storage. 
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Table 5.2.5 Stability of AngQb, determined via SE-HPLC, upon release from PLGA and lipid 
implants. 

Aggregates Main peak Fragments 
Formulation Time [d] 

Amount [%] 

AngQb   
lyophilizate FA02 - 0.1 98.7 1.1 

1 0.6 95.1 4.3 
IA01 

2 0.7 92.8 6.4 

1 0.6 94.4 5.1 
IA02 

2 0.9 92.0 7.1 

IA03 1 0.3 95.9 3.8 

IA04 1 0.1 96.7 3.2 

1 0.5 92.9 6.6 
IA05 

2 0.2 90.7 9.1 

 

Further discussion of release from PLGA implants 

The release of antigens from the bulk eroding, degradable polymer PLGA is 

generally controlled by a primary release from the surface and surface-near areas 

(initial burst) followed by a further release governed by three mechanisms: (1) 

liberation through a water-filled porous network, (2) degradation of the polymer, and / 

or (3) swelling of the system [Pitt, 1990; Cleland et al., 1994; Gombotz et al., 1995; 

Park, 1995; Johansen et al., 1999].   

The PLGA based AngQb implant formulations investigated in the present study 

exhibited different initial release rates. The primary burst relies on the initial 

penetration of water into the polymer matrix which initiates release of the drug 

entrapped very close to the surface of the matrix. Water dissolves the drug and 

enables its liberation through the developing interconnecting porous network. In 

general, the water uptake and consequently the initial release increases with 

increasing drug loadings, increasing amounts of hydrophilic porogens and increasing 

hydrophilicity of the matrix material [Perez et al., 2002; Yeo et al., 2004]. In our case 

the hydrophilicity of the matrix seemed to have no effect on the amount of initially 

liberated VLP. A similar burst of approximately 55 % was observed for formulation 

IA02, prepared with the end-capped PLGA Resomer® RG 502, and IA01, composed 

of the PLGA Resomer® RG 502H, with similar molar ratios of lactic to glycolic acids 

and the same molecular weight as Resomer® RG 502, but free carboxylic end-groups, 
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which increase the hydrophilicity of the polymer [Johansen et al., 1999]. As all 

formulations contain the same amount of VLP lyophilizate the different initial burst 

rates seemed to be solely depending on the PEG amount. With decreasing PEG 

amounts the initial burst decreased from 55 % for formulation IA01 and IA02  

(10 % PEG) over 50 % for formulation IA03 (7 % PEG) to 30 % for formulation IA04  

(6 % PEG).  

For formulations IA01, IA02 and IA03 a biphasic release profile was observed 

whereas formulation IA04 exhibited a triphasic release behavior. Formulations IA01 

and IA02 showed a short continuous release period of 26 and 8 days, respectively. 

The more prolonged release of AngQb from formulation IA01 (PLGA with free 

carboxylic end groups) in comparison to formulation IA02 (end capped PLGA) can be 

explained by the more pronounced water uptake and swelling of the more hydrophilic 

matrix, as illustrated in Figure 5.2.11, which facilitated the formation of larger pores, 

and thus, enabled increased liberation of the drug. After the short continuous release 

periods the release of AngQb leveled off due to the formation of acid and moisture 

induced AngQb aggregation and adsorption to the matrix (compare pages 145 – 148). 

For formulation IA03 a continuous release of AngQb was observed up to day 50. 

This continuous release of AngQb in comparison to formulation IA01 seemed to be 

related to the incorporation of Mg(OH)2 which was deemed to prevent AngQb 

aggregation upon incubation enabling prolonged release. These data are in good 

correlation to the findings of Zhou et al. who showed that BSA release from PLGA 

implants could be clearly increased by incorporation of poorly soluble basic additives. 

The postulated mechanism was that basic additives neutralize the acidic microclimate 

pH within the PLGA implant, consequently inhibit acid-induced BSA aggregation, and 

thus, facilitate a prolonged release of BSA [Zhu et al., 2000].  

The lag-phase obtained for formulation IA04 can be explained by its lower PEG 

(6 %) content in comparison to formulations IA01 (10 %) and IA03 (7 %). For 

formulation IA04 the water uptake was slowed down as illustrated by the swelling 

behavior of the implants (Figure 5.2.11), and thus, the formation of an interconnected 

pore network with sufficiently large pores was reduced until the matrix was degraded 

to such an extend so that the VLP could be released. However, after this lag phase a 

continuous, long-lasting AngQb release was observed which, following the theory of 

the hindrance of the release of aggregated species due to their size, led to the 
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assumption that in contrast to formulations IA01 and IA02 AngQb was protected to a 

certain level against acid-induced aggregation by coincorporated Mg(OH)2.  
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Figure 5.2.11 Swelling behavior of AngQb implants IA01, IA02, IA03 and IA04 upon 8 days 
incubation time. 

However, similar to formulations IA01 and IA02 the formulations IA03 and IA04 

revealed an incomplete release which might probably be affected by moisture induced 

aggregation, in later release periods acid induced aggregation (depletion of the 

Mg(OH)2 reservoir) and / or adsorption to the matrix.  

 

Discussion of release from tristearin implants 

The release profile from very slow degrading lipid matrices is generally controlled 

by release of the drug from the surface and surface-near areas, followed by leaching 

out of the drug through pores. As the matrix is impermeable for macromolecules the 

formation of an interconnected network is essential to facilitate the release of 

adequate amounts of the incorporated drug. This can be achieved by high drug 

loadings or the incorporation of hydrophilic substances, such as PEG. Thereby, first 
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the drug and the water soluble excipient located at the surface of the device and in 

surface-near areas are dissolved and released very fast. Then, water penetrates into 

the system and further dissolves the incorporated drug and the porogen leading to the 

creation a porous microstructure which in turn enables further leaching of the drug. At 

low drug loadings and / or too low amounts of porogen an interconnected network 

might not be achieved, so that not the entire drug has access to the water-filled pores, 

and thus, cannot be released [Kaewvichit et al., 1994; Vogelhuber et al., 2003; Mohl 

et al., 2004; Koennings et al., 2006; Herrmann et al., 2007b].  

The tristearin / PEG based AngQb implant formulation IA05 was produced 

following the findings of Mohl et al. who showed that interferon α-2a could be released 

almost completely (~ 90 %) upon a time span of 30 days from an almost similar 

implant formulation (10 % lyophilized interferon α-2a, 80 % tristearin, 10 % PEG 

6,000) [Mohl et al., 2004]. Comparing the release profiles from AngQb formulation 

IA05 to the interferon α-2a release data it is apparent that despite a comparable initial 

burst (~ 25 %) a lower amount of AngQb was released upon a clearly longer time 

span. A reason for this finding might be the remarkably higher molecular weight of 

AngQb (~ 4.1 MDa) in comparison to interferon α-2a (19 kDa). Even though smaller 

implants (3 mm vs. 5 mm diameter) were produced by applying lower compressions 

force (2.0 kN vs. 19.6 kN) and shorter compression time (15 s vs. 30 s), in order to 

facilitate the formation of larger pore diameters, liberation of the larger VLP was 

hindered. Other possible reasons for an incomplete release are adsorption of AngQb 

to the matrix and / or moisture induced aggregation of the drug induced by the slow 

hydration upon release (compare pages 146-147).  

 

Reasons for incomplete release 

In order to examine the adsorption behavior of AngQb to the specific matrix 

materials, placebo implants composed of 10 % placebo lyophilizate, 80 % Resomer® 

RG 502, Resomer® RG 502H or tristearin, respectively, and 10 % PEG 6,000 were 

produced according to the same protocol used for the preparation of the verum 

implants (see chapter 2). The placebo implants were placed in LoBind Eppendorf 

reaction tubes together with 1 mL AngQb solution (0.3 mg / mL – amount equal to 

payload of the verum implants, 20  mM sodium phosphate buffer, 0.01 % polysorbate 

20 and 0.05 % sodium azide, pH 7.2) and incubated for 7 days at 37 °C and an 
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agitation speed of 40 rpm. The AngQb concentration was monitored via RP-HPLC at 

least in duplicate. The results, depicted in Figure 5.2.12., revealed that almost 15 % of 

the material was adsorbed to all placebo implant formulations after 7 days incubation 

time. Thus, it was assumed that adsorption of AngQb to PLGA and tristearin is a 

potential cause for the incomplete release during in vitro studies.  
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Figure 5.2.12 Adsorption of AngQb (0.3 mg / mL) to placebo implants upon incubation for 7 days at 
37 °C. 

Now the effect of moisture induced aggregation of AngQb within the implants 

upon incubation was investigated. To simulate the slow hydration of dried AngQb 

within the implants upon release AngQb lyophilizates (FA02, Table 5.2.2) were stored 

unsealed for four weeks at 40 °C in a controlled humidity environment (75 % RH). 

Additionally, AngQb lyophilizates were stored in closed containers under the same 

conditions. After storage, the samples were reconstituted in 0.6 mL purified water. In 

contrast to the lyophilizates stored sealed the lyophilizates stored open could not be 

reconstituted completely, and large particles were macroscopically visible. Samples 

were filtered through a PVDF filter (0.22 µm pore size). All samples were analyzed by 

SE-HPLC at least in duplicate. In Figure 5.2.13 the proportions of the specific VLP 

fractions, in relation to the total amount of VLP in the untreated samples, are 

displayed. The results revealed that the most of the material aggregated upon open 

storage; the loss of about 90 % AngQb was ascribed to the formation of insoluble VLP 

aggregates which were removed by the filtration step.   
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Figure 5.2.13 Stability of AngQb lyophilizates, determined by SE-HPLC, after storage for 4 weeks 
open or sealed at 40 °C and 75 % RH. The proportions of the different VLP fractions are expressed as 
relative amount to the total amount of the untreated sample.  

Moisture induced aggregation can be related to non-covalent aggregation 

induced by conformational changes of the drug due to an increased mobility 

[Schwendeman et al., 1995; Costantino et al., 1995; Perez et al., 2002] or covalent 

aggregation such as disulfide interchange [Liu et al., 1991]. As the leaching of huge 

aggregated VLP species from the specific implants might be more improbable than for 

the intact VLP, it was assumed that moisture induced aggregation was a further cause 

for the incomplete release of AngQb from the implant formulations investigated.  

With the aim to investigate whether acid induced aggregation was a further cause 

of incomplete AngQb release from PLGA implants, as for example proposed for BSA 

and tetanus toxoid [Johansen et al., 1998; Zhu et al., 2000], the stability of AngQb in 

dependence of the pH was investigated. Therefore, four AngQb solutions 

(0.3 mg / mL, 20 mM sodium phosphate buffer) with pHs of 4.0. 5.0. 6.0 and 7.2, 

respectively, were prepared by dilution of the API bulk with pH adjusted buffers. Right 

after manufacture, the AngQb solutions with a pH ≤ 6.0 were turbid indicating 

aggregation of AngQb. Consequently, the formulations were filtered through a PVDF 

filter (0.22 µg pore size) and subsequently incubated for 7 days at 37 °C and an 

agitation speed of 40 rpm. The stability of AngQb upon storage was investigated via 

AF4 and SE-HPLC at least in duplicate.  

Initial measurements showed that the whole AngQb material was aggregated in 

the solutions with a pH ≤ 5.0. The results obtained for the AngQb solutions with a pH 

of 6.0 and 7.2 are illustrated in Figure 5.2.14 and Figure 5.2.15. The results showed 
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that AngQb degraded upon incubation at both pHs and aggregated at a pH of 6.0. 

The loss of about 45 % AngQb observed for the liquid formulation with a pH of 6.0 

was ascribed to the formation of insoluble VLP aggregates which were removed by 

filtration. Thus, it was assumed that acid induced aggregation played a major role for 

the incomplete release of the drug from PLGA based implants. 
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Figure 5.2.14 Stability of AngQb at a pH of 7.2 (A) and 6.0 (B), determined by AF4, upon storage for 
7 days at 37 °C.   
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Figure 5.2.15 Stability of AngQb at a pH of 7.2 (A) and 6.0 (B), determined by SE-HPLC, upon 
storage for 7 days at 37 °C.   

Summary 

The in vitro release study revealed that the liberation of AngQb from PLGA or 

lipid based implants, as provisional sustained release devices, was feasible for 

several weeks. For PLGA based implants both, triphasic and biphasic release profiles, 

were achieved by variations of the matrix composition. The lipid based implant 

formulation exhibited a biphasic release profile. As literature describes the induction of 

high antibody titers for both release patterns for various antigens the development of 

single-dose formulations for VLP seemed to be feasible.  
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The integrity of AngQb released upon time could not be investigated due to low 

concentrations of the drug in the release media and the limitations of the accessible 

analytical methods. Additional experiments indicated that AngQb is rather unstable at 

pH < 7 that might develop upon degradation of the PLGA devices, and that the drug 

tends to moisture induced aggregation, a challenge that is connected to both matrix 

materials, and to adsorption to PLGA and tristearin. Thus, it was assumed that AngQb 

was an inappropriate VLP drug candidate for the investigated devices. As the stability 

issues of AngQb were all associated with an aqueous phase, “water-free” sustained 

release devices might overcome the challenges.  

QbG10p33 implants  

The experiments performed with AngQb implants (compare previous section) 

indicated that its stability was affected by environmental conditions like water uptake 

and / or acidic pHs evolving during incubation of PLGA and lipid implants. Therefore, it 

was investigated whether the second VLP drug candidate QbG10p33 is more stable 

than AngQb and might thus enable further in vitro and in vivo studies with implant 

formulations.  

 

Stability studies QbG10p33 

In order to study the effect of different pHs on the stability of QbG10p33 four  

solutions (0.3 mg QbG10p33 / mL, 20 mM sodium phosphate buffer) with pHs of 4.0. 

5.0. 6.0 and 7.2, respectively, were prepared by dilution of the API bulk with buffer 

solutions. In contrast to the observations made for AngQb (clouding of the solutions at 

pH ≤ 6.0, see page 147) all QbG10p33 solutions were clear after preparation, 

indicating a superior physical stability. The solutions were incubated for 7 days at  

37 °C and an agitation speed of 40 rpm. The stability of QbG10p33 upon storage was 

investigated via AF4 and SE-HPLC. The results obtained for the different QbG10p33 

solutions before and after storage are depicted in Figure 5.2.16 and Figure 5.2.17. 

The SE-HPLC measurements revealed no alteration of QbG10p33 integrity in any of 

the solutions tested (Figure 5.2.17). The results obtained by AF4 (Figure 5.2.16) 

showed slightly increased aggregation levels of QbG10p33 after storage at 

formulation pHs of 6.0, 5.0 and 4.0, respectively. At a pH of 7.2 no changes in VLP 

purity were observed. Thus, it was assumed that QbG10p33 was, in comparison to 
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AngQb (compare Figure 5.2.14 and Figure 5.2.15) more stable in the whole pH range 

examined.   
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Figure 5.2.16 Stability of QbG10p33 at a pH of 7.2, 6.0, 5.0 and 4.0, respectively, determined by AF4, 
before and after storage for 7 days at 37 °C.   
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Figure 5.2.17 Stability of QbG10p33 at a pH of 7.2, 6.0, 5.0 and 4.0, respectively, determined by  
SE-HPLC, before and after storage for 7 days at 37 °C.   

To investigate a possible moisture induced aggregation of QbG10p33, 

QbG10p33 lyophilizates (FQ01,Table 5.2.3) were stored unsealed and sealed for four 

weeks at 40 °C in a controlled humidity environment (75 % RH). After storage, the 

samples were reconstituted in 0.6 mL purified water. In contrast to the lyophilizates 

stored sealed the lyophilizates stored open could not be reconstituted completely, 

some particles were macroscopically visible. Therefore, these samples were filtered 

through a PVDF filter (0.22 µm pore size). All samples were analyzed by SE-HPLC 

and AF4, at least in duplicate, and the results obtained were compared to the starting 

material. In Figure 5.2.18 the proportions of the specific QbG10p33 fractions, in 
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relation to the total amount of QbG10p33 in the untreated samples, are displayed. For 

the QbG10p33 lyophilizates stored open a loss of about 20 % was observed. This loss 

was ascribed to the formation of insoluble aggregates which were removed by 

filtration. The amount of VLP oligomers and higher aggregates in the remaining 

material was determined to be 20 % (SE-HPLC analysis) and 50 % (AF4 analysis), 

respectively. The lower amount of detectable aggregated species in the SE-HPLC 

analysis might be related to either inaccurate integration of the oligomer / aggregate 

peak due to the poor resolution, abrasion of VLP aggregates due to the harsher 

conditions, i.e. high shear forces connected with SE-HPLC, and / or generation of VLP 

aggregates during the focusing step of the AF4 analysis. However, both analytics 

showed that QbG10p33 tends to moisture induced aggregation, but in comparison to 

the results obtained for AngQb (see Figure 5.2.13) the proportion of “intact” VLP was 

remarkably higher (50 % vs. 9 % main peak, determined by SE-HPLC).  
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Figure 5.2.18 Stability of QbG10p33 lyophilizates, determined by SE-HPLC (A) and AF4 (B), after 
storage for 4 weeks open or sealed at 40 °C and 75 % RH. The proportions of the different VLP fractions 
are expressed as relative amount to the total amount of the untreated sample.  

In summary it can be stated that QbG10p33 is far more stable than AngQb. 

Consequently, further in vitro release experiments with QbG10p33 implant 

formulations were conducted.  

 

In vitro release study 

QbG10p33 implants of 25 mg total weight each were produced according to the 

protocol introduced in chapter 2. In brief, four different formulations (Table 5.2.6,  

n = 3) were compressed (15 seconds, 2.0 kN) to small cylindric implants with a 

diameter of 3 mm. The payload of QbG10p33 was throughout all formulations 300 µg 

/ implant. 
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Table 5.2.6:  Compositions of QbG10p33 implants (25 mg) used for in vitro release studies. 

Code QbG10p33 
lyophilizate 

Resomer® 
RG502H 

Dynasan 
118 PEG 6,000 Mg(OH)2 

IQ01 10 % 84 % - 6 % - 

IQ02 10 % 86 % - - 4 % 

IQ03 10 % 80 % - 6 % 4 % 

IQ04 10 % - 80 % 10 % - 

 

The formulations were selected on the basis of the in vitro release studies 

performed with AngQb implants (see previous section). Formulation IQ01 was 

adopted from formulation IA01 which exhibited a biphasic release profile. The content 

of the release modifier PEG was reduced from 10 % to 6 % to reduce the high primary 

burst observed for formulation IA01 (55 % within the first day). Formulation IQ02, 

similar to IQ01 but without PEG, was included to further investigate the effect of pore 

forming substances on the release behavior of VLP. IQ03 and IQ04 were similar to 

the AngQb implant formulations IA04 and IA05, respectively.  

The release kinetics of the four QbG10p33 implant formulations were 

investigated in an in vitro study over a time frame of 3 months. The cumulative release 

profiles of QbG10p33 from the presented formulations are depicted in Figure 5.2.19. 

The PLGA implants swelled upon incubation and were almost completely degraded 

after 3 months. By contrast, the tristearin implants remained macroscopically 

unaltered throughout the release studies.  

 

Following conclusions can be drawn from the presented data: 

(1) Formulations IQ01 and IQ02 revealed a triphasic release profile, with an initial 

burst of 30 % (IQ01) and 10 % (IQ02), followed by a lag phase lasting for 44 days 

(IQ 01) and 31 days (IQ02); After the lag phase another 30 % (IQ01) and 60 % 

(IQ02) QbG10p33, respectively, were released continuously up to day 90; 

(2) Formulations IQ03 and IQ04 showed a biphasic release behavior with an initial 

burst of about 10 % followed by a further continuous release of another 50 % 

within day 2 – 80 (IQ03) and 2 – 63 (IQ04), respectively; 

(3) All formulations revealed an incomplete release of QbG10p33. 
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Figure 5.2.19 In vitro release profiles (cumulative release) – QbG10p33 implants. 

The reasons for the different release behaviors of VLP from PLGA or lipid 

implants were already discussed in detail in previous sections. For QbG10p33 

formulations IQ03 and IQ04 almost similar release profiles where obtained as for the 

comparable AngQb formulations IA04 and IA05, respectively. As expected the initial 

burst of formulation IQ01 was reduced in comparison to formulation IA01 (30 % vs.  

55 %) due to the lower amount of release modifier PEG (6 % vs. 10 %). Furthermore, 

formulation IQ01 showed in contrast to formulation IA01, where the release leveled off 

after 26 days, a second continuous release period from day 44 to day 90 which might 

be promoted by the increased stability of QbG10p33. The more pronounced triphasic 

release profile observed for formulation IQ02 might be explained by the absence of an 

additional pore forming substance. Porogens typically favor swelling of the matrix and 

formation of an interconnected porous network with large pore diameters [Wang et al. 

2002]. Hence, the release of the VLP seemed to be delayed until advanced stages of 

matrix wetting, swelling and polymer degradation.  

The major cause for incomplete release of QbG10p33 seemed to be moisture 

induced aggregation (compare pages 150 - 151). To investigate whether adsorption 

was a further reason for incomplete release adsorption of QbG10p33 to placebo 

implants composed of 10 % placebo lyophilizate, 80 % Resomer RG 502H or 

tristearin, respectively, and 10 % PEG 6,000 was tested. Therefore, placebo implants 

were placed in LoBind Eppendorf reaction tubes together with 1 mL QbG10p33 
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solution (0.3 mg / mL – amount equal to payload of the verum implants, 20 mM 

sodium phosphate buffer, 0.01 % polysorbate 20 and 0.05 % sodium azide, pH 7.2) 

and incubated for 7 days at 37 °C and an agitation speed of 40 rpm. The QbG10p33 

concentration was monitored via RP-HPLC at least in duplicate. The results, 

illustrated in Figure 5.2.20, revealed that about 13 % and 7 % of the material was 

adsorbed to PLGA and lipid implants, respectively, after 7 days incubation time. 

Consequently, it was assumed that adsorption of QbG10p33 to the different matrix 

materials was a further cause for the incomplete release during in vitro studies.  
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Figure 5.2.20 Adsorption of  QbG10p33 (0.3 mg / mL) to placebo implants upon incubation for 7 days 
at 37 °C. 

 
Stability of QbG10p33 during release from PLGA and lipid based implants 

The stability of QbG10p33 during release from the different implant formulations 

was investigated via SE-HPLC. In contrast to the studies performed with AngQb 

implant formulations the concentration of QbG10p33 was high enough (> 20 µg / mL) 

to make the analysis of VLP integrity possible, even after several weeks of incubation. 

The results revealed that QbG10p33 released from the PLGA based formulations 

IQ01, IQ02 and IQ03 material was even after 1-2 months of incubation almost intact 

with 91 – 98 % of the main peak (Table 5.2.7). The analysis of QbG10p33 released 

from the lipid based implant formulation IQ04 was not possible due to the low amount 

liberated per time interval. However, it was assumed that QbG10p33 remained in the 

lipid matrix at least as stable as in the PLGA matrices [Schwendeman et al., 1997; 

Sanchez et al., 1999; Mohl, 2003].  
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Table 5.2.7 Stability of QbG10p33upon release from PLGA and lipid implants, determined via  
SE-HPLC. 

Aggregates Main peak Fragments 
Formulation Time [d] 

Amount [%] 

QbG10p33 
lyophilizate FQ01 - 1.3 98.0 0.7 

1 0.5 97.6 1.9 

5 1.2 96.6 2.2 IQ01 

51 3.1 96.5 0.4 

1 0.4 97.8 1.8 

2 0.5 99.4 0.3 

38 0.4 99.3 0.3 
IQ02 

55 8.1 91.2 0.7 

1 0.5 98.2 1.3 

2 0.2 99.5 0.3 IQ03 

38 1.1 98.2 0.7 

IQ04 1 0.6 98.6 0.8 

 

Summary 

The controlled release of QbG10p33 from implants with either PLGA or lipid as 

matrix material was feasible up to several weeks. For the lipid based implant 

formulation a biphasic release of QbG10p33 was achieved whereas in dependence of 

additives both biphasic and triphasic release profiles were obtained for PLGA based 

formulations. Furthermore, it was shown that QbG10p33 released from the different 

PLGA devices was almost intact during the first two months of incubation. An at least 

comparable stability of the drug was assumed for the lipid devices, as here less 

detrimental conditions evolve upon incubation than with PLGA devices.  

Hence, having different sustained release systems for QbG10p33 with different 

release kinetics on hand the efficacy of these provisional single dose formulations was 

investigated in vivo.  
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In vivo studies - QbG10p33 implants 

For bioactivity testing four QbG10p33 implant formulations (Table 5.2.8) were 

prepared according to the protocol described in chapter 2. The payload of all 

formulations was 300 µg QbG10p33 / implant. Formulations IQ02, IQ03 and IQ04 

were chosen because they revealed the most promising release profiles in vitro with a 

primary burst of about 10 % (~ 30 µg QbG10p33) followed by either continuous (IQ03 

and IQ04) or pulsed release (IQ02) of further 50 – 60 % of incorporated VLP (~150-

180 µg QbG10p33) within 3 months (compare Figure 5.2.19). Formulation IQ05 was 

similar to IQ03 with exception of the used PEG, here PEG 6,000 (IQ03) was 

exchanged by the FDA approved PEG 3,350 (like in Depo-ProveraTM). 

Table 5.2.8:  Compositions of QbG10p33 implants (25 mg) used for in vivo experiments. 

Code QbG10p33 
lyophilizate 

Resomer® 
RG 502H 

Dynasan 
118 PEG 6,000 PEG 3,350 Mg(OH)2 

IQ02 10 % 86 % - - - 4 % 

IQ03 10 % 80 % - 6 % - 4 % 

IQ04 10 % - 80 % 10 % - - 

IQ05 10 % 80 % - - 6 % 4 % 

 

The in vivo experiments were carried out as described in chapter 2. In brief, the 

different implant formulations were administered to female C57BL / 6 mice (n = 4). 

Additionally, as a positive control, liquid QbG10p33 formulations (reconstituted 

lyophilizate FQ01) containing 50 µg VLP were applied either once (day 0) or three 

times (day 0, 7 and 14) to groups of 3 (single application) or 5 mice (threefold 

application), respectively. Furthermore, as negative control one placebo implant 

formulation, composed of 10 % placebo lyophilizate, 80 % Resomer® RG 502H,  

6 % PEG 6,000 and 4 % Mg(OH)2 was applied to a group of 4 mice. Sera from the 

different test groups were collected up to 12 weeks and analyzed by ELISA, to 

measure the specific anti-p33 IgG titers, and by FACS, to study the activation of  

p33-specific CD8+ T cells. In parallel in vitro release studies were performed with  

3 implants / formulation, respectively.  
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After three months the in vivo experiments were terminated and the mice were 

sacrificed. The implantation site was macroscopically examined and it was found that 

the PLGA implants were almost completely degraded whereas the appearance of the 

lipid implants was unaltered. No signs of inflammation or encapsulation were 

observed for none of the implant formulations tested.  

 

In vitro release profile  

The cumulative release profiles of QbG10p33 from the four implant formulations 

are illustrated in Figure 5.2.21. The PLGA implants swelled upon incubation and were 

almost completely degraded after 3 months. The tristearin implants remained 

macroscopically unaltered throughout the release studies.  
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Figure 5.2.21 In vitro release profiles (cumulative release) – QbG10p33 implants. 

The release profiles obtained for formulations IQ02, biphasic release, and IQ03, 

triphasic release, were despite slightly decreased total amounts, comparable to the 

previously performed in vitro study (compare Figure 5.2.19). The substitution of PEG 

6,000 in formulation IQ03 by PEG 3,500 in formulation IQ05 had no effect on the 

release behavior of QbG10p33. Similar release profiles were obtained for both 

formulations. Formulation IQ04 showed in contrast to the previously performed in vitro 

studies a changed release profile. After a similar initial burst of about 10 % VLP, no 

further QbG10p33 release was observed in this study whereas in the previous 

experiments a continuous release of further 50 % within 9 weeks was obtained. As 
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similar prepared QbG10p33 lyophilizates and the same excipients were used, and the 

same preparation protocol was applied the reason for this changed release behavior 

is unclear. Importantly, in former in vitro studies similar release profiles were obtained 

for comparable AngQb and QbG10p33 lipid implant formulations (see Figure 5.2.10 

and Figure 5.2.19). Furthermore, Mohl et al and Herrmann et al showed that 

reproducible release profiles of interferon α-2a from comparable lipid implant 

formulations (10 % lyophilized protein, 80 % tristearin, 10 % PEG 6,000) could be 

achieved when applying similar preparation protocols (e.g. compression force and 

duration) [Mohl et al., 2004; Herrmann et al., 2007a]. Thus, further investigations are 

necessary to determine the cause of the changed release profile.  

 

Antibody response 

The antibody titers obtained for the four implant formulations as well as for the 

positive and negative controls are illustrated in Figure 5.2.22.  
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Figure 5.2.22 Anti-p33 antibody response following a single or threefold s.c. administration of a liquid 
QbG10p33 formulation, or s.c. application of QbG10p33 implant formulations IQ02, IQ03, IQ04 and IQ05.   

Following conclusions can be drawn from the presented data: 

(1) All verum implant formulations as well as the single and threefold shots of liquid 

vaccine induced an anti-p33 specific antibody response within the first two weeks 

whereas no antibody response was observed for the placebo formulation;  

(2) A further increase of the antibody titers within day 14 to 21 was observed for the 

threefold shot of liquid vaccine and the implant formulations IQ02, IQ03 and IQ05;  
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(3) The antibody titers declined after 14 days for the single shot liquid vaccine and 

after 21 days for the implant formulations IQ03 and IQ05 and the threefold shot of 

liquid vaccine; 

(4) The antibody titers remained almost stable for formulation IQ02 from day 21 to 91 

and for formulation IQ04 from day 14 to 91. 

 

The results obtained for the single shot of the liquid formulation showed after a 

primary induction of an antibody response, within the first two weeks after application, 

declining antibody titers. A further increase of the antibody titers was achieved by the 

threefold weekly application of the liquid vaccine, but even for this group a decrement 

of the antibody titers was observed after three weeks. Hence, it was assumed that a 

multiple application of the liquid vaccine, at least for the chosen interval, leads to an 

increase of the antibody titers but does not lead to long-lasting high antibody titers. 

The PLGA implant formulations IQ03 and IQ05 induced similar to the threefold 

application of the liquid vaccine increasing antibody titers, within the first three weeks. 

The lower initial anti-p33 antibody titers in comparison to the threefold applied liquid 

formulation can be explained by the lower vaccine release in vitro (Figure 5.2.22). 

Both implant formulations released about 30 % of the incorporated vaccine (~ 90 µg 

VLP) within the first three weeks whereas 150 µg were applied with three shots of the 

liquid vaccine. However, after three weeks the antibody titers declined, no long-lasting 

high antibody titers were observed. By contrast, long-lasting high antibody titers were 

obtained for the implant formulation IQ02, here, initially achieved antibody titers 

remained on the same level for 3 months. As formulation IQ02 was the only 

formulation which exhibited a pulsed release of the drug in vitro, it seemed that for a 

long-lasting anti-p33 antibody response this pulsed release with a second burst after 

four weeks was beneficial to the more continuous release observed for formulations 

IQ03 and IQ05. The potential of inducing long-lasting antibody responses by 

sustained release systems which exhibit a pulsed release of the antigen was 

described in literature e.g. for influenza A vaccine, tetanus toxoid and malaria antigen 

[Thomasin et al., 1996; Hilbert et al., 1999]. Formulation IQ04 showed after the 

primary induction of antibody response also long-lasting antibody titers, but on a 

notably low level. The reason for this long-lasting antibody response is not clear as in 

vitro no further release of QbG10p33 was observed. Thus, after clarification of the 
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reasons for the changed in vitro release behavior further in vivo investigations with 

this implant formulation are necessary.  

It has to be mentioned that the vaccination schedule of the test group (threefold 

application of 50 µg QbG10p33 at day 0, 7 and 14) was different from the observed 

release profiles obtained for the different implant formulations. For example 

formulation IQ02 released about 60 µg QbG10p33 within the first three days, a dose 

similar to a single application of the liquid drug, but then the “second” dose (~ 60 µg) 

was liberated not as a sharp bolus but over a prolonged period of about two weeks 

after a three week latency period (see in vitro release profile - Figure 5.2.21). 

Consequently, the comparison of the implant formulations to the three shot liquid 

vaccine group is problematic. Therefore, for further studies more comparable 

vaccination schedules should be used for the positive controls (multiple application of 

liquid vaccine). Additionally, a more proper investigation of the efficacy of a pulsed vs. 

continuous release of antigen is necessary. This might for example be feasible by 

using implantable mini-pumps as introduced by Walduck et al. [Walduck et al., 1997]. 

 

Induction of p33-specific CD8+ T cells 

The induction of p33-specific CD8+ cells by the four implant formulations as well 

as for the positive and negative controls are illustrated in Figure 5.2.23. 
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Figure 5.2.23 Induction of p33 specific CD8+ cells after single or threefold s.c. administration of a 
liquid QbG10p33 formulation, or s.c. application of QbG10p33 implant formulations IQ02, IQ03, IQ04 and 
IQ05.   
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The ability of QbG10p33 to induce p33 specific CD8+ T cells was previously 

shown by Schwarz et al. [Schwarz et al., 2003]. In comparison to recombinantly 

produced Qbp33 VLP (mainly containing RNA) the application of QbG10p33 VLP 

(RNA substituted by CpG oligonucleotides) substantially increased frequencies of p33 

specific CD8+ T cells. This increased efficacy was explained by the activation of 

dendritic cells by CpGs via stimulation of Toll like receptor 9 allowing a stronger 

induction of T cell responses. In the current study it was investigated whether a 

multiple application of QbG10p33 and a continuous or pulsed release of QbG10p33 

from implants can further increase the T cell response. The results obtained from the 

in vivo study showed that all implant formulations as well as the application of the 

liquid vaccine was capable to induce p33 specific CD8+ T cells within the first week 

which is in good correlation to previous studies [Schwarz et al., 2003]. However, after 

this primary T cell response the amount of p33 specific CD8+ T cells declined for the 

implant test group and the group that received a single shot of the liquid vaccine. A 

further increase of p33 specific CD8+ T cells within the second week was only 

observed for the group of mice which received three times the liquid vaccine. After two 

weeks a decrease of p33 specific CD8+ T cells was observed as well. The reason for 

the inability of the implant formulations to further increase the T cell response upon 

incubation is not clear. Possible reasons for the inhibition of a recall response might 

be: (1) The amount of QbG10p33 delivered per time interval was too low to 

restimulate effector T cells; (2) Clearance of the VLPs by neutralizing antibodies  

[Da Silva et al., 2001] before they could reach lymphoid tissue , which is believed to 

be unique for T cell priming and expansion [Kaufmann, 2004]; and / or (3) Death or 

anergy of effector T cells induced by prolonged stimulation [Iezzi et al., 1998; Kaech 

et al., 2002]. Finally, it can be stated that the achievement of a long-lasting T cell 

response by sustained release devices is extremely challenging due to the high 

complexity of the immune system, and thus, further, extensive investigations are 

necessary. 

 

Summary 

The aim of the current in vivo study was to investigate whether long-lasting 

antibody and / or T cell responses against QbG10p33, as model VLP, can be 

achieved by PLGA and lipid based implants as provisional single dose vaccine 
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formulations. The experiments showed that high antibody titers could be achieved by 

all PLGA based formulations. Long-lasting high antibody levels were obtained by a 

PLGA formulation which exhibited a triphasic release profile whereas for PLGA 

formulations with a continuous release profile the antibody titers leveled off after the 

primary activation. The results obtained for the lipid based formulation were not 

meaningful due to the in comparison to previous in vitro studies altered release profile. 

A primary T cell induction was observed for all implant formulations, but no  

long-lasting effect was observed for any implant formulation. In conclusion, it was 

shown that the development of single dose formulations for VLP based vaccines 

intended to induce antibody-mediated immunity is feasible, and thus, the performance 

of further studies with therapeutic VLP are recommendable. The generation of  

long-lasting T cell responses by sustained release systems with VLP based vaccines 

seemed to be more challenging and requires further fundamental research.   

5.2.4 Evaluation of Biodegradable PLGA Microcapsules Containing an 

Oily Core as an Enhanced Controlled Release System for AngQb  

Previous experiments revealed that the stability of AngQb, a therapeutic VLP 

vaccine intended for the treatment of high blood pressure [Ambuehl et al., 2007], was 

affected by detrimental environmental conditions arising during release from PLGA 

and lipid based implant formulations. Further in vitro and in vivo studies were 

performed with QbG10p33, a model VLP that is far more stable than AngQb. It was 

shown that long-lasting antibody responses against QbG10p33 could be achieved by 

PLGA implants. Encouraged by this “proof of concept” it was now the objective to 

develop a formulation which is on the one hand capable to protect the drug from the 

above mentioned deleterious conditions and on the other hand enables a pulsatile 

release. In 1996 Sanchez et al. introduced biodegradable PLGA microcapsules with 

an oily inner core in which a lyophilized antigen, tetanus toxoid, was entrapped. It was 

considered that the antigen is protected in the oily core from deleterious conditions, 

e.g. moisture, acidic pH and / or degradation products of PLGA, until the polymer shell 

is degraded to such a degree that the drug can be liberated. Sanchez et al. showed 

that depending on the copolymer composition, a pulsed release of immunochemically 

detectable antigen could be achieved after different times, 3 and 7 weeks, 

respectively. It was proposed that a single-step immunization might be feasible by 
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single administration of a composition containing a priming dose and two types of 

antigen loaded microcapsules with different coating composition [Sanchez et al., 

1996]. This seemed to be a very promising approach for VLP, and thus feasibility 

studies were carried out.  

Stability of AngQb in mineral oil 

In a first step the stability of AngQb in lyophilized form suspended in mineral oil 

was assessed as this is the prerequisite for the development of the above described 

microcapsule formulation. Therefore, 1 mL of mineral oil were added to AngQb 

lyophilizates (formulation FA02, Table 5.2.2), sealed under nitrogen atmosphere, and 

stored for 10 weeks at 40 °C to imitate in vivo conditions. For comparison stability of 

pure AngQb lyophilizates was assessed. Right after preparation and after storage for 

4 and 10 weeks, respectively, samples were reconstituted with purified water. To 

allow extraction of AngQb from the lyophilizate / mineral oil suspensions the samples 

were agitated gently for 10 minutes and subsequently centrifuged. The reconstituted 

lyophilizates and the aqueous phase of the extracted samples were analyzed by AF4 

at least in duplicate.   
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Figure 5.2.24 Stability of AngQb in pure lyophilized form and in lyophilizate / mineral oil suspension 
during 10 weeks storage at 40 °C, determined by AF4. 

In Figure 5.2.24 the respective storage stabilities at 40 °C of AngQb in the 

different environments are illustrated. AF4 measurements revealed an increase of the 

aggregation level for both, AngQb lyophilizates and AngQb lyophilizate / mineral oil 

suspensions. Importantly, after 10 weeks storage time almost similar amounts of 
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aggregated species were detected for both sample sets. Hence, it was assumed that 

the stability of AngQb was not affected by mineral oil but depends on the lyophilizate 

composition. Based on these results it is expected that with an enhanced lyophilized 

formulation the stability of AngQb in the lyophilizate / oil suspension might be 

improved as well. However, as the optimization of the lyophilized AngQb formulation 

was beyond the scope of the present work the above presented formulation (FA02) 

was used for further basic experiments.  

Preparation of microcapsules 

Basic principle of microcapsule preparation 

The preparation method proposed by Sanchez et al. is a solid / oil1 / oil2 / water 

emulsion technique. In brief, the lyophilized antigen is first dispersed in mineral oil. 

The resulting suspension is next dispersed in an organic solvent containing PLGA. 

This organic phase is then emulsified in an aqueous PVA solution. Thereby, 

microdroplets are formed which gradually harden by precipitation of the PLGA around 

the oily droplets induced by solvent extraction and evaporation. Finally, the 

microcapsules are collected, washed and lyophilized [Sanchez et al., 1996] (compare 

flow chart depicted in chapter 2).  

The suggested process is highly complex and includes several factors that 

influence the morphology, structure, size distribution and encapsulation efficiency of 

the final microcapsules. Thus, in the following investigations on the diverse processing 

steps were carried out. 

 

Homogenization of AngQb lyophilizate in mineral oil 

First, homogeneous dispersion of the AngQb lyophilizate in mineral oil had to be 

achieved. For this purpose the centrifugal mixer SpeedMixerTM DAC 150 FVZ 

(Hauschild Engineering, Hamm, Germany) was evaluated. This device is described to 

enable extremely fast homogenization (seconds to minutes) of low sample volumes in 

disposable cups e.g. reaction tubes#. For suitability testing a suspension with an 

lyophilizate / oil weight ratio of 5 : 95 was produced. First AngQb lyophilizate FA02  

____________________________________________________________________ 
#http://www.speedmixer.co.uk/dac3000.php 
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was levigated in an agate mortar in a dry-nitrogen-purged glove box (to prevent 

moisture uptake from the ambient atmosphere). Then, 25 mg of the powder were 

placed together with 475 mg mineral oil in a 0.5 mL LoBind Eppendorf Cap and 

homogenized with the SpeedmixerTM DAC 150 FVZ at 3500 rpm for 30 s. Then, 3 

samples of the resulting suspension, 50 mg each, were extracted within 10 minutes 

with 1 mL PBS buffer. The aqueous phase was analyzed by SE-HPLC for the 

determination of AngQb content (by calculation from the regression of an AngQb 

standard curve) and for the investigation of VLP integrity. The results showed that 

homogeneous dispersion was feasible, 96.5 ± 4.7 % of the estimated amount of 

AngQb were determined. Furthermore, it was found that the liberated VLP remained 

intact during homogenization and liberation from the oil, in comparison to the starting 

material no increase of VLP fragments or aggregated species was observed.  

 

Selection of organic solvent for PLGA  

For manufacture of the above described microcapsules the organic solvent used 

for PLGA had to possess several features. It had to be volatile, so that it can finally be 

removed from the microcapsule formulation. Furthermore, it needed to be immiscible 

with mineral oil and should not harm VLP stability. Commonly used volatile organic 

solvents for the preparation of PLGA microparticles are methylene chloride [Chattaraj 

et al., 1999; Kim et al., 1999; Feng et al., 2006], ethyl acetate [Lee et al., 1997; Shi et 

al., 2002; Li et al., 2002], acetonitrile [Tobio et al., 1999] and acetone [Coombes et al., 

1998; Zhuang et al., 2002]. Dissolution experiments revealed that methylene chloride 

and ethyl acetate as single solvents for PLGA were not possible because both 

dissolved mineral oil. By contrast mineral oil was not soluble in pure acetone or 

acetonitrile, and in an acetonitrile / ethyl acetate mixture, which was used e.g. by 

Sanchez et al. [Sanchez et al., 1996] and Youan et al. [Youan et al., 2001] for 

microcapsule preparation.  

In order to investigate the stability of AngQb suspended in selected organic 

solvents AngQb lyophilizates were incubated for 10 minutes with 1.0 mL of acetone, 

ethyl acetate or acetonitrile, respectively. Subsequently, the samples were 

centrifuged, the organic solvent was removed and the remaining VLP lyophilizate was 

dissolved in purified water and analyzed by SE-HPLC. The SE-HPLC measurements 

revealed that AngQb remained intact in all samples, no alteration of AngQb 
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composition was observed. Thus, it was concluded that acetone, acetonitrile and a 

acetonitrile / ethyl acetate mixture (1 : 1) were potent solvents for the preparation of 

microcapsules.  

Consequently, three plain microcapsule formulations were prepared with the 

selected solvents to investigate their effect on the microcapsule morphology. In brief, 

50 mg mineral oil were dispersed by vortexing for 3 s in 2 mL of either acetonitrile, 

acetone or an acetonitrile / ethyl acetate mixture (1 : 1), respectively, containing 10 % 

Resomer® RG 503, a PLGA with lactide : glycolide molar ratios of 50 : 50 (inherent 

viscosity in chloroform of 0.42 dL / g). The resulting mixtures were then added through 

a capillary (0.8 mm inner diameter) to 10 mL of an aqueous PVA solution  

(0.75 %) under vigorous magnetic stirring. After 3 minutes light microscopic pictures of 

the initially formed microcapsules were taken. 

The pictures showed that by using acetone as solvent for PLGA large, undefined 

structures were formed (Figure 5.2.25 A and B). A similar observation was made for 

acetonitrile but besides undefined structures intermediate microcapsules were 

obtained (Figure 5.2.25 C and D). It was assumed that the reason for the formation of 

such irregular PLGA structures was the excellent miscibility of acetone and 

acetonitrile with water enabling a very fast diffusion of these solvents from the organic 

droplets into the aqueous phase. Hence, the polymer precipitated before 

microdroplets were formed. In contrast, by using a mixture of acetonitrile and ethyl 

acetate microdroplets were formed (Figure 5.2.25 E and F). As ethyl acetate is not 

miscible with water, precipitation of PLGA might be slowed down, so that the organic 

phase could be emulsified in the surfactant solution before uncontrolled polymer 

precipitation. Then, by diffusion of acetonitrile out of the organic microdroplets a 

polymer film at the water / oil interphase is formed entrapping the mineral oil inside the 

microdroplets and leading to the formation of preliminary microcapsules (Figure 5.2.25 

E and F). Hence, a mixture of ethyl acetate / acetonitrile (1 : 1) was used for further 

studies as solvent for PLGA.  
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Figure 5.2.25 Photomicrographs of PLGA microcapsules with an oily inner core obtained by light 
microscopy during the initial phase of the microencapsulation process by using either acetone (A / B), 
acetonitrile (C / D) or a mixture of acetonitrile / ethyl acetate (1 : 1) as solvent for PLGA.  

PLGA microcapsule formation  

Four microcapsule formulations with an oily inner core were produced. Two 

formulations were prepared with AngQb lyophilizates (formulation FA02, Table 5.2.2) 

and two with QbSAMSA, which is a fluorescein labeled Qb VLP (see chapter 2). Each 

drug was formulated with either Resomer® RG 502H or Resomer® RG 503.  

QbSAMSA was lyophilized according to freeze-drying protocol A (see chapter 2) in a 

formulation containing 1.0 mg / mL QbSAMSA, 2.5 % (w / v) trehalose dihydrate,  

50 mM sodium chloride, 0.005 % (w / v) polysorbate 20 and 20 mM sodium phosphate 
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buffer (pH 7.2). For microcapsule preparation first lyophilizate / mineral oil 

suspensions with a weight ratio of 5 : 95 were produced as described on page 166. 

Then 50 mg of the respective suspensions were dispersed by vortexing for 3 s in 2 mL 

of an acetonitrile / ethyl acetate mixture (1 : 1) containing 10 % polymer. The 

consecutive processing steps were carried out as described in chapter 2.  The 

microencapsulation process was examined by light microscopy. Furthermore, the 

structure of the microcapsules was analyzed by scanning electron microscopy (SEM) 

and confocal laser scanning microscopy (CLSM).  

 

 
Figure 5.2.26 Photomicrographs of PLGA microcapsules with an oily inner core containing AngQb 
prepared with either Resomer® RG 502H (A-C) or Resomer® RG 503 (D-F) observed by light microscopy 
during the initial phase of the microencapsulation process (A / D), after solvent extraction (B / E) and after 
freeze-drying (C / F).  

The photomicrographs in Figure 5.2.26 show the formation of PLGA 

microcapsules with an oily inner core during the various phases of the 

microencapsulation process. As described above intermediate microcapsules with a 

thin polymer film trapping the AngQb loaded oily cores were formed during the initial 

phase of the process. Upon solvent extraction / evaporation induced by further 

addition of aqueous PVA solution and water under continuous stirring the polymer 

shell solidified. After solvent extraction / evaporation the microparticles were first 

washed with hexane, to remove any residual mineral oil from the surface of the 

microparticles, then washed with purified water and lyophilized. The 
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photomicrographs C and F in Figure 5.2.26 indicated that the microcapsules remained 

intact during the washing steps and the subsequent freeze-drying process.  

Further investigation of cross sections of the final microcapsules by SEM (Figure 

5.2.27) showed that true core-wall structures with continuous polymer shells were 

formed.  To examine whether the core really consists of mineral oil with entrapped 

VLP pictures of QbSAMSA microcapsules were taken by CLSM (Figure 5.2.28). The 

pictures showed bright spots inside the microcapsules which correspond to the 

fluorescence labeled VLP whereas the polymer shell showed no fluorescence.  

 

 
Figure 5.2.27 Scanning electron micrographs of a cross-sectional view of PLGA microcapsules with 
an oily inner core containing AngQb prepared with either Resomer® RG 502H (A) or Resomer® RG 503 
(B). 

 
Figure 5.2.28 Confocal laser scanning micrographs of PLGA microcapsules with an oily inner core 
containing QbSAMSA prepared with either Resomer® RG 502H (A) or Resomer® RG 503 (B). 
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Thus, the hypothesis of microcapsule formation was corroborated. Furthermore, it 

was shown that microcapsules with similar appearance were formed for both PLGA 

materials Resomer® RG 502H and Resomer® RG 503. 

 

Excursus – Evaluation of different techniques for the determination of the 

amount of VLP encapsulated in PLGA microcapsules 

A critical issue during development of microparticle formulations is the accurate 

determination of the antigen amount encapsulated into the PLGA microspheres. 

These data are a prerequisite for studying the effects of different preparation 

techniques and formulations on the encapsulation efficiency. Furthermore, knowledge 

of the drug payload is important for calculating the cumulative amount of drug 

released during in vitro studies and for correct dosing of the respective formulation 

during in vivo studies.  

Several techniques have been reported for the determination of antigens 

encapsulated in PLGA microparticles. One common method involves alkaline 

hydrolysis of PLGA microspheres followed by antigen quantification by protein assays 

like Lowry or BCA [Sanchez et al., 1999; Chattaraj et al., 1999; Feng et al., 2006]. 

However, as already highlighted in previous sections the correct determination of VLP 

content in a multicomponent sample by protein assays is very complicated because of 

several possible interferences between excipients and dyes. Hence, it was assumed 

that an extraction method might be more adequate for our purpose. For the extraction 

of antigens from PLGA microparticles acetonitrile [Katare et al., 2006] and methylene 

chloride [Li et al., 2002; Peyre et al., 2003] are commonly used solvents. Thereby, 

PLGA is dissolved in the organic solvent and the antigen is extracted with an aqueous 

phase. Another approach is e.g. to crush the particles and extract the encapsulated 

drug directly with an aqueous phase [Singh et al., 1991; Mohl, 2003].  

For the evaluation of an appropriate extraction method for AngQb from PLGA 

microcapsules a microcapsule formulation was prepared according to the above 

described process (page 168) from 100 mg AngQb  lyophilizate / mineral oil 

suspension (weight ratio 5 : 95) and 2 mL of a 1 : 1 mixture of ethyl acetate and 

acetonitrile containing 10 % Resomer® RG 503. Subsequently, samples of 50 mg 

each were extracted according to the following procedures:  
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(1)  Microcapsules were ground in an agate mortar and VLP were extracted with 

PBST (phosphate buffered saline with 1 % polysorbate 20). 

(2) Microcapsules were incubated with methylene chloride to dissolve PLGA and 

mineral oil. Then, PBS was added to extract the VLP. 

(3) Microcapsules were incubated with acetonitrile to dissolve PLGA. Then, the 

suspension was centrifuged to precipitate the insoluble VLP lyophilizate / mineral oil 

suspension and the supernatant was discarded. The procedure was repeated three 

times. Finally, the VLP were dissolved in PBS. 

(4) Microcapsules were processed as described in (3) with the exception that the 

VLP were finally dissolved in a reducing and denaturing aqueous solution containing  

4 M guanidinium chloride (GuaHCl) and 0.1 M dithiothreitol (DTT).   

 The amount of AngQb in the different samples was determined by RP-HPLC as 

described in chapter 2. 

In Table 5.2.9 the amounts of AngQb found when applying the above described 

extraction methods, calculated per 100 mg microcapsules, are summarized. The 

determined payload of AngQb varied strongly between the different methods used.  

Table 5.2.9:  Actual amounts of AngQb in a microcapsule formulation determined by various 
extraction methods followed by VLP quantification by RP-HPLC. 

Extraction method Amount VLP  
[µg / 100 mg microcapsules] 

Grinding  / PBST 10.3 

Methylene chloride / PBS 13.4 

Acetonitrile / PBS 17.4 

Acetonitrile / GuaHCl and DTT 23.7 

 

Extraction method 1 (crushing of the microcapsules and extraction with PBS)   

and extraction method 2 (extraction with methylene chloride / PBS) revealed the 

lowest amounts of AngQb. In the case of method 1 this might be related to an 

incomplete destruction of the microcapsules. The low amounts detected by method 2 

can be a result of drug aggregation at the organic solvent / aqueous solution interface  

[Sah, 1999]. The extraction with acetonitrile / PBS or acetonitrile / GuaHCl and DTT 

revealed about 1.5 fold higher amounts of AngQb. This might be explained by the 
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absence of an organic solvent / water interface (acetonitrile is miscible with water) 

preventing VLP interfacial aggregation. The more complete extraction of AngQb 

achieved by method 4 in comparison to method 4 was possible due to the 

disassembling and the solubilization of the VLP by DTT (disrupture of disulfide bonds) 

and GuaHCl (disrupture of non-covalent interactions).  

Thus, it was assumed that method 4 was the most appropriate method for the 

determination of the amount of AngQb encapsulated in PLGA microcapsules. 

However, as the evaluation was performed with a microcapsule formulation with an 

unknown AngQb payload this method was challenged in a further experiment. To 

investigate the effect of the presence of mineral oil and / or PLGA on the detectable 

amount of VLP, the following AngQb samples were analyzed by method 4: (a) Pure 

AngQb lyophilizate, (b) AngQb lyophilizate with mineral oil – weight ratio 1 : 19, (c) 

AngQb lyophilizate with mineral oil and Resomer® RG 502H – weight ratio 1 : 19 : 40, 

and (d) Temperature stressed AngQb lyophilizate (aggregation of AngQb) with 

mineral oil and Resomer® RG 502H – weight ratio 1 : 19 : 40. All samples were 

prepared in triplicate. The results are shown in Table 5.2.10. 

Table 5.2.10 AngQb recovery determined by RP-HPCL for various AngQb samples after extraction 
with acetonitrile / GuaHCl and DTT. 

Sample Recovery AngQb  
[% of applied amount] 

AngQb lyophilizate 96.4 ± 1.8 

AngQb lyophilizate with 
mineral oil 94.0 ± 0.6 

AngQb lyophilizate with  
mineral oil and PLGA 91.4 ± 0.6 

Stressed AngQb lyophilizate with 
mineral oil and PLGA 92.4 ± 2.5 

 

The experiment revealed that even for stressed AngQb samples in the presence 

of mineral oil and PLGA more than 90 % of the applied AngQb amount (calculated 

from the mass of accurately weight AngQb lyophilizate) could be extracted and 

quantified by the above described method. Thus, it was confirmed that the extraction 

procedure with acetonitrile / GuaHCl and DTT followed by AngQb quantification by 
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RP-HPLC is an accurate method for the determination of the AngQb payload in PLGA 

microcapsules with an oily inner core.  

 

Formulation development studies 

To examine the effect of various oil to PLGA ratios and various PLGA materials 

on the encapsulation efficiency of AngQb and the morphology and size distribution of 

the microcapsules six microcapsule formulations (see Table 5.2.11) were prepared as 

described in chapter 2. In brief, 50 to 200 mg AngQb lyophilizate / mineral oil 

suspension with a weight ratio of 5 : 95 were dispersed by vortexing in 2 mL of a 1 : 1 

mixture of acetonitrile and ethyl acetate containing 200 mg of the specific PLGA. 

Then, the respective mixtures were emulsified in an aqueous solution containing  

0.75 % PVA. For solvent extraction / evaporation further PVA solution and water was 

added. Finally, the microcapsules were collected, washed and lyophilized.  

Table 5.2.11:  Compositions PLGA microcapsule formulations containing an oily inner core with 
AngQb.  

Formulation 
AngQb 

lyophilizate 
[mg]* 

Mineral oil 
[mg] 

Resomer® RG 
502H 
[mg] 

Resomer®  
RG 503 

[mg] 

MCAng01 2.5 47.5 200.0 - 

MCAng02 5.0 95.0 200.0 - 

MCAng03 10.0 190.0 200.0 - 

MCAng04 2.5 47.5 - 200.0 

MCAng05 5.0 95.0 - 200.0 

MCAng06 10.0 190.0 - 200.0 

* 2.5 mg lyophilizate contain 300 µg AngQb 

The payload of AngQb in the different formulations was determined by the above 

described extraction method. The encapsulation efficiency was calculated in 

difference of material weighed in and the payload determined after preparation. The 

size distribution and average size of the microcapsule formulations, expressed as 

volume mean diameter, was determined by laser diffraction. The stability of AngQb 

upon processing was investigated by SE-HPLC after extraction of the VLP from the 
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final microcapsule formulations with acetonitrile / PBS (compare, extraction method 3 

described on page 171). 

The influence of different polymers and varying oil suspension / PLGA ratios on 

the characteristics of microcapsule formulations is provided in Table 5.2.12.   

Table 5.2.12:  Characteristics of various AngQb microcapsule formulations.  

Formulation Loading [µg VLP / 100 
mg MC] 

Encapsulation 
efficiency  

[% of applied amount] 

Mean diameter / 
diameter range 
d10 – d90 [nm] 

MCAng01 9.6 8.0 
80.1  

 

 27.3 – 146.3 

MCAng02 15.8 7.9 
88.3 

 

20.6 – 183.2 

MCAng03 31.0 10.3 
124.4 

 

28.8 – 333.7 

MCAng04 9.0 7.5 
99.0 

 

28.7 – 196.9 

MCAng05 23.7 11.8 
135.1 

 

45.3 – 243.3 

MCAng06 43.2 14.4 
523.4 

 

53.5 – 1426.8 

 

Microcapsules prepared from Resomer® RG 503 exhibited slightly higher 

encapsulation efficiencies and larger average microcapsule sizes as compared to 

microcapsules produced with Resomer® RG 502H. These differences can be 

explained by a higher viscosity of the organic phase for Resomer® RG 503 in 

comparison to Resomer® RG 502H. At higher viscosities of the organic phase 

migration of the AngQb loaded oily cores out of the embryonic microspheres might be 

slowed down leading to higher encapsulation efficiencies. Further, the more viscous 

organic phase formed larger microdroplets during the initial emulsification step 

resulting in larger microcapsules. Additionally, it was observed that with increasing 

ratios of oil suspension / PLGA increasing levels of AngQb loading were achieved. 

This might be due to the formation of larger microcapsules with larger oily cores and 

thinner PLGA shells as indicated by the increasing mean diameters.  At an oil 

suspension / PLGA ratio of 1 : 1 for both PLGAs extremely large particles up to a few 

mm were detected. Here, probably for some microdroplets the formation of a coherent 
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PLGA shell was unfeasible, so that these large undefined PLGA structures were built. 

The presence of such clusters in formulations MCAng03 and MCAng06 was 

confirmed by light microscopy (photomicrographs not shown).  

For all formulations only a poor encapsulation efficiency of 8 to 14 % was 

achieved. The most likely reasons seemed to be the excellent extractability of the 

hydrophilic VLP from the oily phase with water (see pages 164 - 165) enabling a fast 

leaching of the VLP from the oily microdroplets during the primary emulsification step 

during microcapsule preparation.  

Concerning the stability of AngQb during processing SE-HPLC data revealed for 

all samples in comparison to the starting material higher amounts of VLP aggregates 

and fragments (Table 5.2.13). Interestingly, for the formulations prepared with 

Resomer® RG 502 H fragmentation was the bigger issue whereas in the formulations 

prepared with Resomer® RG 503 aggregation played the major role. The reason for 

VLP aggregation can be the exposure to interfaces between organic and aqueous 

phases and / or VLP-polymer interactions during processing. A reasonable cause for 

VLP fragmentation are shear forces occurring during emulsification [Yeo et al., 2001; 

Perez et al., 2002]. It was assumed that the faster hardening of Resomer® RG 503 in 

comparison to Resomer® RG 502 H was the reason for the divergent VLP stability 

problems. On the one hand the early hardening of the PLGA shell can have led to the 

inclusion of multiple small oil droplets per microcapsule, and thus, to the formation of 

larger interfaces and a more pronounced aggregation. On the other hand due to the 

fast hardening the VLP in the oily inner cores were more protected from mechanical 

stress leading to lower amounts of VLP fragments. Additionally to the preparation 

steps alteration of VLP integrity could have also been provoked by the extraction 

procedure. However, despite several deleterious conditions during processing and 

extraction the proportions of the main peak was for all formulations still 82 – 96 % 

indicating that the major part of the encapsulated VLP remained intact.  
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Table 5.2.13:  Stability of AngQb in various microcapsule formulations, analyzed by SE-HPLC. 

Aggregates Main peak Fragments 
Formulation 

Amount [%] 

AngQb 
lyophilizate FA02 0.1 98.7 1.1 

MCAng01 1.0 82.4 16.6 

MCAng02 2.9 91.1 6.0 

MCAng03 1.5 94.2 4.3 

MCAng04 11.4 86.9 1.8 

MCAng05 9.9 87.7 2.5 

MCAng06 1.5 96.2 2.2 

 

Finally, it was concluded that with respect to highest payload and acceptable size 

distribution the formulations MCAng02 (Resomer® RG 502H) and MCAng05 

(Resomer® RG 503), prepared by applying an oil suspension / PLGA ratio of 1 : 2, 

were the most promising ones. Hence, in a next step it was investigated whether the 

preparation of these formulations is reproducible and the process to a certain extend 

upscalable.  

 

Reproducibility of microcapsule preparation and upscalability 

For the investigation of the reproducibility of the microencapsulation process the 

formulations MCAng02 and MCAng05 were prepared in triplicate with 100 mg AngQb 

lyophilizate / mineral oil suspension (weight ratio 5 : 95) and 200 mg PLGA dissolved 

in 2 mL in acetonitrile / ethyl acetate (initial batch size) as described in chapter 2. For 

upscalability testing the threefold amount e.g. 300 mg of the lyophilizate / mineral oil 

suspension and 600 mg PLGA dissolved in 6 mL acetonitrile / ethyl acetate were 

applied. Furthermore, also the threefold amount of PVA solution and water, 

respectively, was used. The resulting microcapsule formulations were examined for 

AngQb payload and size distribution. The results are summarized in Table 5.2.14. 

The data revealed that the preparation of formulation MCAng02 was reproducible 

and upscalable, only marginal differences for the loading / encapsulation efficiency 

and the size distribution were observed. Concerning the loading / encapsulation 

efficiency of formulation MCAng05 it seemed that the process was also reproducible 
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and upscalable but with respect to the size distribution strong variations between the 

different batches were noticed. This might be related to the higher viscosity of 

formulation MCAng05 in comparison to formulation MCAng02 hindering a 

reproducible, more homogeneous emulsification of the organic phase in the PVA 

solution.  

Table 5.2.14:  Investigation of reproducibility and upscalability of the manufacturing process for the 
AngQb microcapsule formulations MCAng02 and MCAng05.   

Formulation Batch code / 
composition 

Loading  
[µg VLP /  

100 mg MC] 

Encapsulation 
efficiency  

[% of total AngQb] 

Mean diameter / 
diameter range  
d10 – d90 [µm] 

A  
(100 mg oil susp. and 

200 mg PLGA) 
13.3 6.7 

72.7 
 

27.9 – 127.8 

B  
(100 mg oil susp. and 

200 mg PLGA) 
10.7 5.4 

73.6 
 

28.1 – 131.2 

C  
(100 mg oil susp. and 

200 mg PLGA) 
12.4 6.2 

78.4 
 

26.2 – 149.6 

MCAng02 

D  
(300 mg oil susp. and 

600 mg PLGA) 
14.2 7.1 

72.7 
 

22.8 – 129.5 

A  
(100 mg oil susp. and 

200 mg PLGA) 
21.1 10.5 

328.6 
 

39.5 – 888.9 

B  
(100 mg oil susp. and 

200 mg PLGA) 
26.7 13.4 

405.2 
 

49.4 – 1406.1 

C  
(100 mg oil susp. and 

200 mg PLGA) 
21.3 10.7 

88.4 
 

31.5 – 168.9 

MCAng05 

D  
(300 mg oil susp. and 

600 mg PLGA) 
27.4 13.7 

138.3 
 

33.8 – 332.7 

Summary and outlook 

The aim of these experiments was to investigate the feasibility of PLGA 

microcapsules with an oily inner core as enhanced controlled release system for 

AngQb. Such a system was proposed to enable on the one hand a pulsed release of 

the incorporated drug, controlled by the degradation properties of the polymer, and on 

the other hand drug protection in the oily core until release.  
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It was shown that the preparation of such microcapsules with AngQb embedded 

in the oily core was possible. Furthermore, primary experiments indicated that the 

encapsulated material remained almost stable upon processing. However, by applying 

a solid / oil1 / oil2 / water emulsion technique the loading / encapsulation efficiency has 

not turned out satisfactory, and thus, the performance of in vitro release studies was 

not feasible. The most likely reason for the poor encapsulation efficiency was 

assumed to be the leaching of the VLP from the oily droplets during the emulsification 

step of the microencapsulation process. Thus, to achieve an adequate microcapsule 

loading, enabling in vitro and in vivo studies, the application of other preparation 

methods is necessary.  

A possible approach might be the preparation of drug loaded lipidic microcores 

by spray-congealing as e.g. described by Maschke et al. [Maschke et al., 2007] which 

can subsequently be coated with PLGA. By using lipids with a melting temperature 

around 35 °C two requirements might be achieved: (1) In vivo release should be 

possible because the lipid cores are fluid at body temperature, and (2) Coating of the 

lipidic cores should be feasible by a simple oil / water emulsion technique without 

substantial loss of the incorporated drug when the coating procedure is performed e.g. 

at ambient temperature so that the lipid cores are solid, and thus, leaching of the 

incorporated drug is prevented.   
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5.3 Conclusion 

In the present work primary experiments towards the development of single dose 

formulations for VLP vaccines were described.  

First the release behavior of AngQb and QbG10p33, as model VLP, from PLGA 

and lipid based implants was examined. It was found that depending on the implant 

composition a cumulative release of 50 – 80 % VLP upon several weeks was 

possible. Lipid implants exhibited a biphasic release profile whereas for PLGA 

implants depending on the matrix composition both, triphasic and biphasic release 

profiles were achieved. Supplementary studies indicated that the stability of AngQb 

was affected by environmental conditions arising during incubation of lipid and PLGA 

based implants. In contrast it was shown that QbG10p33 was less susceptible to 

deleterious conditions associated with such devices during incubation.  

Consequently, in vivo studies were carried out with PLGA and lipid based 

QbG10p33 implants. The induction of a long-lasting antibody and / or T cell response 

was examined over a time span of 3 months. It was found that all PLGA based 

implants led to the induction of high antibody titers during the first weeks. After the 

primary activation the antibody titers leveled off for PLGA implant formulations with a 

biphasic release profile whereas long-lasting high antibody levels were obtained for a 

PLGA formulation exhibiting a triphasic release profile. Further, for all formulations a 

primary induction of the T cell response was observed but here, no long-lasting effect 

was achieved for any composition. A meaningful interpretation of the results obtained 

for the lipid implant formulation was not possible due to an altered release profile as 

compared to previous studies. However, the in vivo study performed with the 

provisional implant formulations suggests that the development of single dose VLP 

based formulations aimed for the induction of antibody-induced immunity against is 

possible. 

Next, feasibility studies with PLGA microcapsules with an oily inner core as 

enhanced controlled release system for AngQb were performed. With such a 

formulation two requirements might be achieved, stabilization of the drug in the oily 

core during incubation and pulsed release of the oily core controlled by the 

degradation properties of the PGLA shell. It was shown that the manufacture of such 

microcapsule formulation is possible by applying a solid / oil1 / oil2 / water emulsion 
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technique. However, with this method only poor payloads were achieved so that in 

vitro or in vivo studies could not be carried out. Consequently, further studies with 

enhanced preparation protocols need to be performed.  

In summary, it can be stated that the preparation of controlled release 

formulations for VLP enabling the induction of long-lasting antibody responses by a 

single application seems to be possible. Due to the high potential of such improved 

vaccine formulations preventing the inconvenient, frequent dosing of a liquid vaccine 

formulation further investigations in this field are worthwhile.   
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6 FINAL CONCLUSION 
 

The present work addresses the development of stable, freeze-dried formulations 

for a specific VLP based vaccine, NicQb, meeting the requirements for large scale 

clinical studies and commercial use, and in vitro as well as in vivo feasibility studies 

for single dose sustained release systems for VLP vaccines.  

 

For the development of VLP based pharmaceutical products the application of 

reliable analytical tools is of great importance. For the assessment of physical 

properties of virus-like particles up to now three main techniques, i.e. TEM, DLS and 

SE-HPLC are established. As all of these techniques have some inherent drawbacks 

there is the strong need for additional, enhanced analytical tools.  

In Chapter 3 asymmetrical flow field-flow fractionation (AF4) is introduced as a 

new, versatile analytical tool for the assessment of VLP compositions. The rational 

development of reliable AF4 methods is presented. It is shown that VLP compositions 

can be classified by AF4 into different fractions, i.e. VLP fragments, monomers, 

dimers, oligomers and aggregates. Furthermore, by coupling AF4 to UV and MALLS 

detectors accurate quantification of the specific fractions and the determination of the 

molecular weight distributions are possible. Comparative experiments revealed that 

AF4 exceeds the capabilities of DLS and SE-HPLC with regard to the analysis of the 

physical properties of VLP compositions, and thus, it can be stated that AF4 is a 

valuable analytical method for the characterization of VLP formulations.  

 

Recently, the VLP based vaccine NicQb was introduced by Cytos Biotechnology 

AG as a new drug for the treatment of nicotine addiction. For large scale clinical trials 

and commercialization the development of stable formulations enabling storage for 

prolonged periods is required. In Chapter 4 the development of stable, freeze-dried 

NicQb formulations is described. Due to the well structured study setup from pH, 

freeze-thaw, freeze-drying and finally long-term stability studies a fast progress 

towards a commercializable product was feasible.  

The primary conducted pH stability study revealed two divergent trends, for the 

preservation of chemical stability (nicotine binding and integrity of VLP shell) pH 
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values below 6.6 were favourable whereas pH values higher than 6.2 were necessary 

to prevent NicQb aggregation. Hence, as a compromise the optimum pH range was 

assessed between 6.2 and 6.6.  

In freeze-thaw studies the effect of sodium chloride, trehalose and polysorbate 20 

on the stability of NicQb was investigated. The study indicated that polysorbate 20 

prevents NicQb aggregation during freeze-thawing whereas trehalose had no 

protective effect. Sodium chloride induced NicQb aggregation but up to a sodium 

chloride concentration of 90 mM NicQb aggregation could be prevented in the 

presence of polysorbate 20.  

In the next step the development of a gentle but robust freeze-drying cycle for 

trehalose based NicQb formulations is described which is on the one hand concerning 

the process parameters easily transferable to large-scale freeze-driers, and on the 

other hand short enough (2 days) to meet the criteria for economically acceptable 

processes. The effect of polysorbate 20, trehalose, different buffer systems, sodium 

chloride and varying NicQb concentrations on the stability of NicQb during  

freeze-drying was investigated. It was found that a formulation composed of trehalose 

as lyoprotectant, polysorbate 20 as cryoprotectant and either sodium or potassium 

phosphate as buffer agents was highly beneficial to preserve the stability of NicQb 

during freeze-drying. Lyophilizates with excellent appearance, low residual moisture 

contents and high glass transition temperatures were achieved.   

The stability of NicQb in four lyophilized formulations was tested  up to six months 

at 2-8 °C, 25 °C / 60 % RH and 40 °C / 75 % RH storage temperature. Thereby, a 

formulation containing trehalose as lyoprotectant and bulking agent is compared to a 

formulation containing mannitol as bulking agent and trehalose as lyoprotectant in a 

weight ratio of 4 : 1. Additionally, the influence of potassium phosphate vs. sodium 

phosphate as buffer agents and the effect of formulation pH values of 5.8 vs. 6.2 on 

the stability of NicQb were tested. All dried formulations showed excellent appearance 

and were easily reconstituted to parenteral applicable liquids. It was shown that all 

formulations were capable of stabilizing NicQb during freeze-drying and upon storage 

at 2-8 °C and 25 °C, physical as well as chemical stability of NicQb was maintained. 

Upon storage at 40 °C a marginal increase of the amount of nicotine derivatives, 

cleaved from the VLP surface, was observed for all formulations, which was related to 

the slightly increasing residual moisture contents upon storage at 40 °C. Concerning 
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the lyophilizate morphology it was found that the trehalose based lyophilizates 

remained amorphous whereas for the formulations containing trehalose and mannitol 

an uncontrolled crystallization of mannitol was observed upon storage at 40 °C. In 

vivo experiments demonstrated that even after long-term storage at accelerated 

temperatures comparable antibody titers to the bulk material and the lyophilized 

starting material were attainable.  

In the last part the optimization of the freeze-drying process applied for the 

preparation of the mannitol / trehalose based formulations and the effect of a pure 

crystalline mannitol on the stability of NicQb is described. The experiments showed 

that by applying an annealing step complete crystallization of mannitol during the 

freeze-drying process could be achieved preventing uncontrolled crystallization of 

mannitol upon storage. Furthermore, it was found that a completely crystalline matrix 

was not capable of stabilizing NicQb during freeze-drying and upon storage.  

Finally, it was concluded that the addition of trehalose as lyoprotectant, leading to 

an amorphous matrix, and polysorbate 20, preventing NicQb aggregation was very 

beneficial for stabilizing NicQb during freeze-drying and upon storage.   

 

Vaccines typically require multiple applications to achieve the desired immune 

response. The frequent dosing is inconvenient with respect to patient’s compliance 

and treatment costs, and thus, the development of single injection formulations is 

highly desirable. In Chapter 5 primary steps towards the development of single dose 

formulations for VLP vaccines are described. For this purpose two VLP vaccines, 

AngQb and QbG10p33 were used.  

First, as provisional sustained release devices, implants composed of PLGA or 

tristearin as matrix materials, lyophilized VLP, and optionally PEG as pore forming 

substance and Mg(OH)2 as basic additive were prepared by simple compression. The 

in vitro release behavior of the two VLP vaccines from different implant compositions 

was studied. Liberation of the VLP from PLGA or lipid implants was observed for 

several weeks. For PLGA implants both, triphasic (initial burst release, lag phase, 

second release period) and biphasic (initial burst release followed a further continuous 

release period) could be achieved by variations of the matrix composition. Lipid 

implants exhibited a biphasic release profile. The cumulative release of VLP ranged 

from 50 % to 80 %, depending on the implant composition. The incomplete release 
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was ascribed for both VLP to moisture induced aggregation, occurring during implant 

incubation and adsorption to the matrix materials. In the case of AngQb PLGA 

implants VLP aggregation induced by an acidic microenvironment arising during 

matrix degradation was deemed to be a further parameter for incomplete release. 

Supplementary experiments revealed that QbG10p33 was less susceptible than 

AngQb to potentially deleterious environmental conditions developing in the matrices 

upon incubation.  

In vivo experiments were performed with PLGA and lipid based QbG10p33 

implants. It was shown that all PLGA based implant formulations induced initially high 

antibody titers. Long-lasting high antibody levels were achieved by a PLGA implant 

formulation which exhibited a triphasic release profile whereas for PLGA formulations 

with a continuous release profile the antibody titers leveled off. Concerning the 

induction of p33-specific CD8+ T cells it was found that all formulations led to a 

primary activation but no further stimulation of the specific T cells was achieved. A 

meaningful discussion of the effect of tristearin implants on antibody and T cell 

response was not possible because of an inexplicably change of the release profile as 

compared to previous in vitro studies. Finally, it was reasoned that the development of 

single dose formulation for VLP based vaccines aimed for the induction of antibody-

mediated immune response is possible.  

In the last part of this chapter basic experiments towards the preparation of an 

enhanced sustained release device, PLGA microcapsules with an oily inner core, are 

described. This formulation was supposed to protect the drug in the oily core and to 

offer, depending on the degradation behavior of PLGA applied, a pulsed release of 

the drug. In preliminary experiments it was shown that the manufacture of such 

microcapsules is feasible and that the integrity of the VLP within the microcapsules 

was almost preserved upon processing, but with the currently used solid / oil1 / oil2 / 

water emulsion only poor encapsulation efficiencies were achieved. Hence, in further 

studies alternate preparation methods e.g. formation of solid lipid cores by spray 

congealing followed by PLGA coating by oil in water emulsion, need to be evaluated.  

In conclusion, these preliminary experiments indicated that the preparation of 

single dose formulations for VLP is feasible and that with such devices a long-lasting 

antibody response can be achieved in vivo.  

 



 
Final Conclusion 

___________________________________________________________________________ 

197 
 

In summary, stable freeze-dried NicQb formulations possible for large scale 

clinical trials and commercialization were developed. The fast progress was promoted 

by the early establishment of AF4, as a sensitive analytical tool for the investigation of 

the physical stability of VLP. Additionally, it was shown that basically the preparation 

of sustained release systems for VLP is possible, and that with such devices  

long-lasting antibody responses can be induced. Based on these preliminary, 

promising results further studies in this field seem to be worthwhile.  
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