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Summary

Random Forests are widely used for data prediction and interpretation purposes. They
show many appealing characteristics, such as the ability to deal with high dimensional data,
complex interactions and correlations. Furthermore, missing values can easily be processed
by the built-in procedure of surrogate splits. However, there is only little knowledge about
the properties of recursive partitioning in missing data situations. Therefore, extensive
simulation studies and empirical evaluations have been conducted to gain deeper insight.
In addition, new methods have been developed to enhance methodology and solve current
issues of data interpretation, prediction and variable selection.

A variable’s relevance in a Random Forest can be assessed by means of importance
measures. Unfortunately, existing methods cannot be applied when the data contain miss-
ing values. Thus, one of the most appreciated properties of Random Forests — its ability
to handle missing values — gets lost for the computation of such measures. This work
presents a new approach that is designed to deal with missing values in an intuitive and
straightforward way, yet retains widely appreciated qualities of existing methods. Results
indicate that it meets sensible requirements and shows good variable ranking properties.

Random Forests provide variable selection that is usually based on importance mea-
sures. An extensive review of corresponding literature led to the development of a new
approach that is based on a profound theoretical framework and meets important statis-
tical properties. A comparison to another eight popular methods showed that it controls
the test-wise and family-wise error rate, provides a higher power to distinguish relevant
from non-relevant variables and leads to models located among the best performing ones.

Alternative ways to handle missing values are the application of imputation methods
and complete case analysis. Yet it is unknown to what extent these approaches are able
to provide sensible variable rankings and meaningful variable selections. Investigations
showed that complete case analysis leads to inaccurate variable selection as it may in-
appropriately penalize the importance of fully observed variables. By contrast, the new
importance measure decreases for variables with missing values and therefore causes se-
lections that accurately reflect the information given in actual data situations. Multiple
imputation leads to an assessment of a variable’s importance and to selection frequencies
that would be expected for data that was completely observed. In several performance
evaluations the best prediction accuracy emerged from multiple imputation, closely fol-
lowed by the application of surrogate splits. Complete case analysis clearly performed
worst.
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Zusammenfassung

Random Forests werden in vielen wissenschaftlichen Bereichen fiir die Datenanalyse und
als Pradiktionsmodell verwendet. Sie besitzen zahlreiche vorteilhafte Fahigkeiten wie
mit hochdimensionalen Daten sowie komplexen Interaktions- und Korrelationsstrukturen
umgehen zu konnen. Bislang ist jedoch wenig iiber ihre Eigenschaften in Datensituatio-
nen mit fehlenden Werten bekannt, obgleich sich diese sehr einfach mit Hilfe sogenannter
“surrogate splits” behandeln lassen. In dieser Arbeit wurden umfangreiche Simulations
und Evaluationsstudien durchgefithrt um entsprechende Einsichten zu gewinnen. Neue
Verfahren wurden entwickelt um aktuelle Problemstellungen zu losen.

Durch Wichtigkeitsmafle kann die Relevanz einer Variablen in Random Forests beurteilt
werden. Ungliicklicherweise lassen sie sich bislang nicht berechnen wenn fehlende Werte
in den Daten vorhanden sind. In dieser Arbeit wird durch die Einfilhrung einer neuen
Methode eine Losung fiir dieses Problem prasentiert. Sie orientiert sich dabei an bereits
existierenden Maflen und behalt somit beliebte Eigenschaften bei. Es zeigte sich, dass das
neue Mafl zuvor gestellte Anforderungen erfiillt und gewiinschte Eigenschaften aufweist.

Die Moglichkeit der Variablenselektion basierend auf Wichtigkeitsmafien ist eine zusétz-
liche Starke von Random Forests. Eine ausfiihrliche Literaturrecherche fithrte zu der
Idee einer neuen Methode, die basierend of profunden wahrscheinlichkeitstheoretischen
Grundlagen wichtige statistische Eigenschaften erfiillt. Im Vergleich mit acht etablierten
Algorithmen erwies sie sich als geeignet die vergleichsbezogenen und versuchsbezogenen
Irrtumswahrscheinlichkeiten zu kontrollieren und zeigte eine hohe Trennschérfe fiir die Un-
terscheidung von relevanten und nicht relevanten Variablen. Hierauf basierende Random
Forests erzielten auflerdem hohe Vorhersagegiiten.

Alternativ lassen sich fehlende Werte durch “complete case” Analysen und Imputa-
tion behandeln. Es ist jedoch nicht bekannt inwiefern sich mit diesen Verfahren sinn-
volle Wichtigkeitsmafle oder Variablenselektionen berechnen bzw. durchfiihren lassen.
Entsprechende Untersuchungen zeigten, dass complete case Analysen zu inadequaten Se-
lektionen fiithren, da die Wichtigkeit vollstandig beobachteter Variablen falschlich herabge-
wertet werden kann. Das neue Wichtigkeitsmafl sinkt dagegen ausschliefSlich fiir Variablen
mit fehlenden Werten und erzeugt somit Selektionen, die tatsachliche Datensituationen
widerspiegeln. Ein Imputationsverfahren fiihrt zu Ergebnissen, die fiir vollstandige Daten
zu erwarten gewesen wéren. In mehreren Bewertungen wurden fiir Letzteres auch die
besten Vorhersagegiiten ermittelt. Die Anwendung von Surrogaten war nur unwesentlich
schlechter wobei complete case Analysen deutlich am schlechtesten abschnitten.
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Introduction

Recursive partitioning methods, in particular classification and regression trees and Ran-
dom Forests, are popular approaches in statistical data analysis. They are applied for
data prediction and interpretation purposes in many research fields such as social, econo-
metric and clinical science. Among others, there are approaches like the famous CART
algorithm introduced by Breiman et al. (1984), the C4.5 algorithm by Quinlan (1993) and
conditional inference trees by Hothorn et al. (2006). A detailed listing of application areas
and methodological issues, along with discussions about the historical development and
state-of-the-art, can be found in Strobl et al. (2009). The popularity of trees is rooted in
several appealing characteristics like their easy applicability and interpretability in both,
classification and regression problems. Advantages over common approaches like logistic
and linear regression are their ability to implicitly deal with missing values, collinearity,
nonlinearity and high dimensional data. Random Forests are able to achieve competitive
or even superior prediction strengths in comparison to well established approaches (i.e.
regression, linear discriminant analysis, support vector machines, neural nets etc.). More-
over, recursive partitioning is able to handle even complex interaction effects — which is a
highly valued property e.g. for the analysis of gene-gene relations (Lunetta et al., 2004;
Cutler et al., 2007; Tang et al., 2009; Nicodemus et al., 2010).

The main focus of this work is put on the performance and applicability of Random
Forests and corresponding features — like variable importance measures and variable se-
lection — in missing data analysis. Therefore, after a short introduction of methodology
in chapter 1, the predictive accuracy of Random Forests — and single trees — is explored
and compared between the application to data with and without a preliminary imputation
of missing values in chapter 2. Several datasets that provide classification and regression
problems have been used for simulation studies and empirical evaluations. For the former,
missing values were induced into fully observed data while for the latter, data were used
that already contained missing values. Multiple imputation produced variable results while
the application of surrogates appeared to be a fast and simple way to achieve performances
which are only negligibly worse and in many cases even superior.

An important feature of Random Forests is the evaluation of a variable’s relevance by
means of importance measures. However, existing measures cannot be computed in the
presence of missing values. A straightforward application to such data leads to violations of
their most basic conceptual principles. A solution to this issue is introduced in chapter 3: A
new approach makes the computation of variable importance measures possible even when
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there are missing data. Its properties are investigated in an extensive simulation study.
Results show that a list of sensible, pre-specified requirements are completely fulfilled. An
application to two datasets also shows its practicality in real life situations.

Imputation methods and complete case analysis are two alternative approaches that en-
able the computation of importance measures in the presence of missing values. However,
it is unknown to what extend these approaches are able to provide a reliable estimate of a
variable’s relevance. Therefore, an extensive simulation study was performed in chapter 4
to investigate this property for a variety of missing data generating processes. Prediction
accuracy has been explored in accordance with investigations of chapter 2. Findings sug-
gest that complete case analysis should not be applied as it may inappropriately penalize
variables that were completely observed. The new importance measure is much more ca-
pable of reflecting decreased information exclusively for variables with missing values and
should therefore be used to evaluate actual data situations. By contrast, multiple impu-
tation allows for an estimation of importances one would potentially observe in complete
data situations.

Importance measures are often used as a basis for variable selection. Many works (e.g.
Tang et al., 2009; Yang and Gu, 2009; Rodenburg et al., 2008; Sandri and Zuccolotto,
2006; Diaz-Uriarte and Alvarez de Andrés, 2006) show that different approaches have been
developed to distinguish relevant from non-relevant variables and to improve prediction
accuracy. An extensive review of the corresponding literature led to the development of a
new approach that is based on a more profound theoretical framework and meets important
statistical properties. A comparison to another eight established selection approaches is
given in chapter 5. The new proposal is able to outperform these competitors in three
simulation studies and four empirical evaluations with regard to discriminatory power and
prediction accuracy of resulting models.

Once again, alternatives are given by complete case analysis and imputation methods.
Therefore an extensive simulation study has been conducted in chapter 6 to explore the
ability of each approach — in combination with the new variable selection method and a
popular representative of established approaches — to distinguish relevant from non-relevant
variables. In accordance with chapter 2 and chapter 4 the predictive accuracy of resulting
models has been investigated, too. Findings suggest that complete case analysis should
not be applied as it leads to inaccurate variable selection. Multiple imputation is a good
means to select variables that would be of relevance in fully observed data. By contrast,
the application of the new importance measure caused a selection of variables that reflects
the actual data situation, i.e. that takes the occurrence of missing values into account.

In conclusion, this work presents extensive investigations of Random Forests for the
analysis of data with missing values. Important aspects like predictive accuracy, vari-
able importance and variable selection are examined. New methods are introduced and
compared with well-known and established approaches.
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— chapters originate from
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- - - chapters share research
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Chapter 1:

. e 1
Recursive Partitioning goas

Predictive Accuracy A new A new
for Data with Variable Importance Measure Variable Selection Method
Missing Values for Missing Data

Chapter 2: { Chapter 3: ] Chapter 5:

Chapter 4: ) Chapter 6:
Variable Importance --------------------- Variable Selection
with Missing Data with Missing Data

A short introduction to recursive partitioning is given in chapter 1:

e Construction principles and properties of trees and Random Forests, following the
CART algorithm and a conditional inference framework, are presented.

e FEasy and comprehensible examples are used for illustration.

e Additional features like the concept of surrogate splits and variable importance mea-
sures are discussed.

e A short overview of software used for implementation is given.
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An evaluation of the predictive accuracy of trees and Random Forests fit to data with and
without imputed missing values is given in chapter 2:

e Related publications with similar research goals are discussed.
e The concept of missing data generating processes is introduced.
e Imputation methods are discussed, in particular a multiple imputation approach.

e Simulation studies and empirical evaluations are used to investigate differences be-
tween the application of surrogate splits and multiple imputation.

A new variable importance measure for missing data is introduced in chapter 3:

e [ts rationale, definition, computational steps and a postulation of sensible require-
ments are presented and discussed.

e An investigation of its properties is performed by an extensive simulation study.

e The applicability of the new method is compared to a complete case analysis in
empirical evaluations.

The behavior of importance measures for missing data is investigated in chapter 4:

e The ability of the new importance measure, complete case analysis and multiple
imputation to produce reliable estimates for a variable’s relevance is explored in
extensive simulation studies.

A new variable selection method for Random Forests is presented in chapter 5:
e Discussions of existing methods are given based on a broad review of literature.

e A new variable selection approach which is based on the statistical framework of
permutation tests is introduced.

e A comparison in terms of prediction accuracy and the power to distinguish relevant
from non-relevant variables is performed against eight popular and well-established
selection approaches within several simulation studies and empirical evaluations.

Variable selection for missing data is investigated in chapter 6:

e The new importance measure, complete case analysis and multiple imputation are
used to investigate the ability of two variable selection methods — i.e. the new ap-
proach and a representative of established methods — to discriminate relevant from
non-relevant variables in extensive simulation studies.

Finally, a concluding outlook 6.4 refers to future work. It is followed by supplementary
material in appendix A and the R-Code of each method and study in appendix B.



Chapter 1

Recursive Partitioning

1.1 Classification and Regression Trees

1.1.1 Rationale

The rationale of recursive partitioning is best described by the example of the CART
algorithm (cf. Breiman et al., 1984; Hastie et al., 2009, for details). It constructs trees
as it sequentially conducts binary splits of the data in order to produce subsets which,
with respect to the outcome, are as homogeneous as possible. An example of a regression
tree used to predict ozone concentration in air quality data is given by Figure 1.1a. The
data contains daily measurements of the air quality in New York from May to September
1973 and is made available by the R software for statistical computing (R Development
Core Team, 2011). It consists of 6 variables: Day and month of recording, ozone pollution
at Roosevelt Island measured in parts per billion (ppb), solar radiation at Central Park
in Langleys (lang), average wind speed in miles per hour (mph) and the maximum daily
temperature in degrees Fahrenheit, both of the latter measured at La Guardia Airport
(ozone data was originally provided by the New York State Department of Conservation
and meteorological data by the National Weather Service). A detailed exploration and
analysis of the data can be found in Chambers (1983).

The airquality data originally consists of 153 observations. Though, the outcome ozone
contains some missing values which reduces the complete case analysis set to 116 obser-
vations. The distribution of the remaining values is displayed by a boxplot in the first
node of the regression tree in Figure 1.1a. This node is split into two daughter nodes
separating observations with temperature measurements < and > 82° into two subsets
of size 79 and 37. A comparison of the corresponding boxplots to the one of the parent
node reveals that the split was able to create more homogeneous subsets in reference to
the outcome. Likewise the heterogeneity between subsets rises with every conducted split.
This procedure continues as more split-rules are produced for the variables Temp and Wind.
Finally the diversity of distributions of the outcome in the subsets becomes evident by the
final nodes of the tree. Another illustration of the segmentation given in many works for
educational reasons (Hastie et al., 2009; Strobl et al., 2009) is displayed by Figure 1.1b. It
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Figure 1.1: (a) Regression tree for the airquality data example. (b) Corresponding seg-
mentation of the variable space. Point size indicates ozone magnitude.

clearly shows the way the variable space is split-up to create more homogeneous subsets.
Finally, predictions for new observations can be taken from the conditional distribution
of outcomes allocated to these subsets in the training phase of a tree (e.g. mean, relative
class frequencies, ...). Therefore new observations are assigned to the final nodes as they
are sent down the tree along paths determined by the split-rules. In this example they can
even be summed up in simple decision rules as demonstrated by Table 1.1. For example,
for a day with a temperature of 70° and a wind speed of 10 the prediction would be 18.5
for ozone.

Temp (t) Wind (w) Mean
82 <t 103 < w 48.7
w <103 81.6

t < 82 w < 6.9 55.6
TT<t<82 69<w 31.1
t <77 18.5

Table 1.1: Split rules and descriptive statistics of the final nodes in the air quality example.

1.1.2 The CART Algorithm

Depending on the response type, different criteria are used to determine the splits of a
tree. In a fundamental work of Breiman et al. (1984) several split criteria are suggested.
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Popular choices for binary and continuous responses are the Gini Index and the residual
sum of squares (RSS), respectively. In the case of a classification tree the former is defined
for a given node k by

TN N

with 1 and 2 indicating the response classes and N the number of observations. For
example Ny is the number of observations of class 2 in node k. The Gini-Index is used as
a measure of node impurity. It takes values between 0 and 1/2 corresponding to pure (only
one response class is represented in a node) and maximally impure nodes (both classes are
equally represented in a node), respectively. An optimal split is found for the cutpoint of
a variable that maximizes the Gini gain of a parent node to its daughter nodes. The Gini
gain is defined by the difference of a parent node’s Gini-Index to the sum of child nodes
Gini-Index, where the latter is weighted by the relative frequency of observations that are
sent left (L) or right (R):

AG, =G — (#GLI@ + %Glﬂc) .
k R

For regression trees the criterion is changed to the maximization of the RSS difference

AR, — 753, - (S0 + #85m)

Trees are grown until a certain criterion is reached, e.g.: a limiting number of observations
needed in a parent node to allow for further splitting, a minimum size of daughter nodes,
complete purity of terminal nodes, or a threshold for the split criterion. Afterwards a tree
grown to its full size can be “pruned” back in order to circumvent the issue of overfitting.
For this purpose the performance of the tree is evaluated via cross-validation at different
growth stages. Finally the smallest tree whose mean performance is within a specified
distance of u-times the standard deviation to the best performing tree is chosen. Setting
u = 1 equals the ‘one-standard-error’ rule (‘1 s.e.” rule). A more detailed description of
this approach can be found in Breiman et al. (1984) and Hastie et al. (2009).

A corresponding analysis of the airquality data is shown by Figure 1.2a. The cross vali-
dated error observed for different sizes of a CART like regression tree reaches its minimum
at seven terminal nodes. However, a tree of size two still provides an error which is within
the threshold of one standard deviation to this benchmark (dashed line). According to the
1 s.e. rule it should be chosen as the final model (cf. Figure 1.2b).

Breiman et al. (1984) already stated that the CART algorithm — and other recursive
partitioning approaches like the C4.5 method of Quinlan (1993) — favor splits in continuous
variables and variables with many categories. Works like those of Lausen et al. (1994) and
Hilsenbeck and Clark (1996) have proposed solutions to the related problem of ’optimally
selected cutpoints’. Likewise, predictors with many missing values may be preferred if
the Gini Index is employed (c.f. Strobl et al., 2007a). This also affects Random Forest
algorithms that are based on the same construction principles. To overcome these problems,
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Temps 82.5
T

10-fold cross-validation error

26.54 75.41

tree size
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Figure 1.2: (a) Plot of tree sizes against the error (+1 standard error) assessed by 10-fold
cross-validation for a CART like regression tree. The horizontal dashed line indicates the
threshold of 1 standard error to the minimal error. (b) Tree of size 2.

several unbiased tree algorithms have been suggested (cf. Dobra and Gehrke, 2001; Hothorn
et al., 2006; Kim and Loh, 2001; Lausen et al., 1994; Strobl et al., 2007a; White and Liu,
1994).

1.1.3 Conditional Inference Trees

Facing all of these pitfalls Hothorn et al. (2006) introduced the concept of conditional
inference trees. In this approach splits are performed in two steps. In a first step the
relation of a variable to the response is assessed by permutation tests based on a theoretical
conditional inference framework developed by Strasser and Weber (1999). This allows for a
fair comparison independent of a predictor’s scale. Consequently there is no bias in favor of
continuous variables and variables with many categories or many missing values any more.
After the strongest relation was found by the minimal p-value of the permutation tests it
is checked for significance, optionally with adjustment for multiple testing (one possibility
is to use the Bonferroni-Adjustment). Finally, in the second step the best cutpoint for the
most significant variable chosen in step one is determined. The growth of a tree stops as
soon as there are no further significant relations found. In addition to the advantage of
unbiased variable selection, Hothorn et al. (2006) showed that conditional inference trees
don’t overspend the alpha error and stick closer to the underlying data structure while
they produce comparable performance results to CART.
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A conditional inference tree for the airquality data is given in Figure 1.3. Note that the
p-values of the permutation tests for each split can be read off the nodes.

<103 >10.3

<77 >77

Node 3 (n = 10) Node 5 (n = 48) Node 6 (n = 21) Node 8 (n = 30) Node 9 (n=7)

150 — 150 — 150 — 150 — 150 —

100 100 100 100 EI 100
SO—EI 504 sofl:_i_l 504 507%

—_ —_

0 o4 — 0 - 0 - 0

Figure 1.3: Conditional inference regression tree for the airquality data.

The following gives a short summary of the methodology presented in Hothorn et al. (2006):

As already outlined the binary splits in conditional inference trees are assessed in two steps.
In the first one it is checked if any variable X;, j = 1,...,v — of the v-dimensional vector
X = (Xj,...,X,) which itself originates from the sample space X = & x...x X, —is related
to the response Y. Therefore Hj : D(Y|X;) = D(Y) is examined. Obviously, checking this
hypothesis for several variables induces a multiple test problem which results in a violation
of the family-wise error rate (FWR) or false discovery rate (FDR). Several methods like
the Bonferroni-Adjustment, Benjamini-Hochberg and Benjamini-Yekutieli procedure have
been proposed to control for these errors (cf. Hastie et al., 2009; Bland, 2000; Benjamini
and Hochberg, 1995; Benjamini and Yekutieli, 2001, for details). For the construction of
conditional inference trees the Bonferroni-Adjustment may be used: H, can be rejected if
the corresponding p-value drops below a significance level a* = a/Megts-
The association between Y and X is determined by a linear statistic:

T;(L,, w) = vec (Z wig; (X, h(Y;, (Y, ..., Yn))T> € Rrid

=1
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where g; : X; — RP7 is a non-random transformation of the variable X;. The influence
function h : Y xY" — R depends on the responses (Y7, . ..,Y,) in a permutation symmetric
way. A p;xq matrix is converted into a p;q column vector by column-wise combination. The
n-dimensional vector w = (wy, ..., w,) contains weights which indicate the correspondence
of observations to the nodes. £, = {(Y;, X1, ..., X;ni); 7 = 1, ...,n} denotes the learning set
of the data.

Under the null hypothesis Hg, by fixing the covariates and by conditioning on all possi-
ble permutations o € S(L,, w) of the responses, one can derive the conditional expectation
p; € RPi? and covariance 3; € RPi9*Pi9 of T';(L,,, w) as introduced by Strasser and Weber
(1999). By a standardization of the linear test statistic one is able to compute p-values

Pj =Py (e(T5( L, w), 1, 35) = (k5 15, 55)|S (L, w))

of the conditional test for HJ. Depending on whether the standardized statistics are

(t — 1)k
mazx t'7 '72' - ———S 1.1
Cmaz (1, By) = max oA (1.1)
or
Cauad(t, 115, 5) = (b5 — p3) 57 (b5 — ;)" (1.2)

the asymptotic (n,w — oo) conditional distributions are normal for (1.1) and x? for (1.2)
with degrees of freedom given by the rank of ¥;. E;r is the Moore-Penrose inverse of ;.

Now that one has checked if the null hypothesis can be rejected, a split is performed on
the variable X« with the lowest p-value. Again a linear test statistic in the permutation
test framework helps to find the splitting rule:

=1

T2 (L,, w) = vec (Z wi I (X € A5, (Y3, ..., Yn))T) € RY.
Among all possible subsets A of the sample space X« the best split is given by

A" = argmax c(tf*, u;‘*, Eﬁ).
A

1.1.4 Surrogate Splits

There are several possibilities to handle missing values. One of them is to stop the through-
put of an observation at the node at which the information for the split rule is missing (the
prediction is then based on the conditional distribution of the responses that are elements
of this node). Another approach makes the missing values simply follow the majority
of all observations with observed values (cf. Breiman et al., 1984). However, by far the
most popular way to handle missing observations is to use surrogate decisions based on
additional variables (cf. Breiman et al., 1984; Hothorn et al., 2006). These splits try to
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mimic the initial split as they preserve the partitioning of the observations. When several
surrogate splits are computed they can be ranked according to their ability to resemble the
primary split. An observation that contains several missing values in surrogate variables is
processed along this ranking until a decision for a missing value is found. The number of
possible surrogate splits is usually determined by the user. Figure 1.4 displays a schematic
view of the surrogate split concept for a hypothetical example. Here the first split rule is
given by X; < x;. There are two surrogate splits in Xy and X3 which try to mimic this
split.

Figure 1.4: Schematic view of the surrogate split conception.

Technically surrogate splits can be found by the exact same procedure used to obtain
the primary split (Hothorn et al., 2006). Therefore, the original response vector is replaced
by a binary variable which indicates the allocation of observations — the ones that are not
missing — to the daughter nodes. A search for the optimal split of variables for this ‘new
outcome’ will provide surrogate splits which mimic the decisions of the primary split as
precisely as possible.

An alternative and very general way to handle missing values is to use imputation
methods (Schafer and Graham, 2002; Horton and Kleinman, 2007; Harel and Zhou, 2007;
Klebanoff and Cole, 2008; Janssen et al., 2009, 2010, for an overview and further reading).
However, investigations of Rieger et al. (2010) and Hapfelmeier et al. (2011) have shown
that this improves the prediction accuracy of models only to a negligible extent.
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1.2 Random Forests

1.2.1 Rationale and Definition

Breiman (1996) used “bagging” (bootstrap aggregation) to enhance the tree methodology.
In bagging, several trees are fit to bootstrapped or subsampled data. Averaged values
or majority votes of the predictions produced by each single tree are used as predictions.
This way, piecewise constant prediction functions — given by a single tree’s hard decision
boundaries — are smoothed out. Accordingly, any kind of functional relation, which is
potentially not piecewise constant and may be nonlinear or even includes interactions,
can be approximated by Random Forests. It can also be shown that the performance
improves due to a reduction of the variance of predictions. A simple explanation for the
high variability of predictions of single trees is given by their instability. It is a well
known fact that small changes in the data can affect the entire tree structure because the
sequence of splits and the corresponding relation between decision rules is sensitive to such
changes. Researchers working with frequently changing or updated data might already
have experienced this issue. Random Forests are based on trees fit to random subsamples
of the data and therefore implicitly comprise this variability which results in more stable
predictions. Figure 1.5 shows, for a constructed, hypothetic example, how the aggregation
of stepwise prediction functions can improve the approximation of the functional relation
between the response and its predictors.

1.0 7 — True functional relation 1.0
-- Function 1
Function 2
—— Ensemble
0.8 0.8
0.6 0.6
> >
0.4 4 0.4 —
0.2 4 0.2 4
0.0 4 0.0 4
T T T T T T T T T T
-4 -2 0 2 4 -4 -2 0 2 4
X X

Figure 1.5: Example for the approximation of the functional relation between the outcome
Y and the predictor X by (a) an ensemble of two trees and (b) an ensemble of 1000 trees.
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As an extension of bagging, Random Forests (cf. Breiman, 2001; Breiman and Cutler,
2008) were introduced: In Random Forests, each split is searched for in a subset of variables.
A popular choice is to randomly select the square root of the number of available predictors,
as candidates for the split (cf. Diaz-Uriarte and Alvarez de Andrés, 2006). This enables a
more diverse set of variables to contribute to the joint prediction of a Random Forest, which
results in an improved prediction accuracy. Also, interaction effects between variables
that otherwise would have been dominated by stronger predictors might be uncovered.
An example of a Random Forest fit to the airquality data is given by Figure 1.6 which
highlights the diversity of trees.

The prediction accuracy itself is usually assessed by observations that were not part
of the sample used to construct the respective tree (the so called “out of bag” (OOB)
observations; cf. Breiman (2001)). Therefore it provides a more realistic estimate of the
performance that can be expected for new data (cf., e.g., Boulesteix et al., 2008a; Strobl
et al., 2009). Each tree is grown until terminal nodes called leaves are pure or reach a
specified minimal size, without any pruning. There is no general advice on how many trees
should be used in a Random Forest. Breiman (2001) proves that with a rising number
of trees the Random Forest does not overfit but ’... produces a limiting value of the
generalization error’ while the results of Lin and Jeon (2006) indicate that they do overfit
when trees are grown too large. Further research of Biau et al. (2008) lead to theorems
about the consistency of Random Forest approaches and other averaging rules. Likewise,
Genuer (2010) was able to show the superiority in prediction accuracy for a variant of
Random Forests, in comparison to single trees, and therefore proved the attendant question
of variance reduction in this special case.

The conditional inference approach of Hothorn et al. (2006) can be used to construct
Random Forests following the same rationale as Breiman’s original approach. Furthermore,
it guarantees unbiased variable selection and variable importance measures when combined
with subsampling (as opposed to bootstrap sampling; Strobl et al., 2007b). The conditional
inference framework is used in the following. An extensive summary of the state-of-the-art
can be found in Strobl et al. (2009).

1.2.2 Importance Measures

Random Forests are not solely used to achieve improved prediction accuracy but also for
the identification of relevant variables. Variable importance measures enable an assessment
of the relevance a variable takes in a Random Forest. In addition, importance measures
are often used as a basis for variable selection. The latter issue will be the topic of chapter
5, which introduces a new variable selection approach. However, a publication of Nicode-
mus et al. (2010) clarifies that the properties of importance measures are still not fully
understood and need to be object of further investigation. Not surprisingly there are new
and promising approaches for the computation of importance measures and corresponding
variable selection methods. The work of Sandri and Zuccolotto (2006), Altmann et al.
(2010), Wang et al. (2010) and Zhou et al. (2010) shows that the development of new
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Figure 1.6: Example of three trees of a Random Forest fit to the airquality data.
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importance measures is an ongoing process. The most popular approaches to determine
variable importances in Random Forests are presented in the following.

Count

A very simple way to determine a variable’s importance is to count the number of times
it is chosen for splits in a Random Forest. Advantages of this approach are its easy and
fast realization. Moreover it’s a well-known and established procedure to evaluate the
importance of a variable by assessment of its selection frequency when variable selection
is applied to several bootstrap samples of the data. Examples for linear, logistic or Cox
regression are given by Sauerbrei (1999), Sauerbrei et al. (2007) and Austin and Tu (2004).
In the field of microarray data analysis Qiu et al. (2006) published further interesting
examples. However, this popular approach comes along with some evident disadvantages:
A count rates each split in the same way independent of its position in a tree and its
discriminatory power. Therefore it will not be investigated any further in this work.

An example for the selections frequencies of predictors in the airquality data is given
in Figure 1.7 for a Random Forest that consists of 500 trees. The corresponding count ()
function written to count the number of times a variable is chosen to represent a split in
a Random Forest is given in the appendix B.

1200 —

1000 —

800 -

600 —

Selection Frequency

400 —

200 —

o —

Solar.R Wind Temp Month Day

Figure 1.7: Selection frequencies of predictors in the airquality data example for a Random
Forest consisting of 500 trees. Note that frequencies may well exceed the number of trees
as predictors can be chosen multiple times for splits of a tree.
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Gini importance

The Gini importance, that is available in many Random Forest implementations, accumu-
lates the Gini gain over all splits and trees of a Random Forest to evaluate the discrimi-
natory power of a variable (Hastie et al., 2009). A severe disadvantage of this measure is
that all tree and Random Forest algorithms based on the Gini splitting criterion are prone
to biased variable selection (Strobl et al., 2007a; Hothorn et al., 2006). Recent results also
indicate that it has undesirable variable ranking properties, especially when dealing with
unbalanced category frequencies (Nicodemus, 2011). Furthermore it is only applicable to
classification problems. For these reasons the Gini importance is not considered any further
in this work.

Permutation Accuracy Importance

The most popular and most advanced variable importance measure for Random Forests
is the permutation accuracy importance. One of its advantages is its broad applicability
and unbiasedness (when used in combination with subsampling as shown by Strobl et al.,
2007c). The permutation importance is assessed by a comparison of the prediction accu-
racy, in terms of correct classification rate or mean squared error (MSE), of a tree before
and after random permutation of a predictor variable X;. By permutation the original
association with the response is destroyed and the accuracy is supposed to drop for a rele-
vant predictor. More precisely, this procedure, which clearly emerges from the framework
of permutation tests (further insight in basic principles is given by several works like those
of Good, 2000; Efron and Tibshirani, 1994), is meant to cancel any association between
X, and the response Y and therefore simulates the null hypothesis

H() . YJ_X]

When the accuracies — before and after permutation — are almost equal there is no evidence
against H,. Consequently, the importance of X; is termed to be low as its permutation
did not show any remarkable influence. By contrast, if the prediction accuracy drops
substantially X is considered to be of relevance. The average difference across all trees
provides the final importance score. Large values of the permutation importance indicate
a strong association between the predictor variable and the response. Values around zero
(or even small negative values, cf. Strobl et al., 2009) indicate that a predictor is of no
value for the prediction of the response. However, considering the structure of a tree,
generated by sequential binary splits in different variables, it becomes evident that the
importance measure is not only sensitive to relations between the predictor variable X;
and the outcome Y but also to relations between X; and the remaining variable space
Z = X\ X;. Thus, simply permuting X; actually checks for deviations from the null
hypothesis

Hy :Y,Z1X,; which equals Hy : Y 1X; NZ1X;. (1.3)

Consequently, X; can also achieve a high importance because of its relation to Z and not
only to Y. Therefore Strobl et al. (2008) introduced a conditional version that more closely
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resembles the behavior of partial correlation or regression coefficients. For the computation
of the importance measure they suggest to permute X; in dependence of Z. Now the null
hypothesis can be expressed as

fib . (;XijJ_}/)|EE.

The discussions given in chapter 5 show that both kinds of measures, conditional and
unconditional, can be of specific value depending on the research question (cf. Nicode-
mus et al., 2010; Altmann et al., 2010). For example in large-scale screening studies like
genome wide association studies the identification of correlated markers by unconditional
importance measures is a desirable property for uncovering physical proximities and causal
variants. A similar argumentation holds for microarray studies. Many recent publications
indicate that this measure is still of vast popularity and appreciated for its unconditional
properties (i.e. for its sensitivity to (cor-)relations between variables). By contrast condi-
tional importance measures can help to differentiate influential predictors from correlated,
non-influential ones.

The variable importance itself is given by

viI(x;) = 2 VIO) (1.4)

Ntree

while

0
Y10 () = 2ese L =) e 1 =iy ) (1.5)
i) = B0 B0 :

for categorical variables and

(t)
2ien (Ui — yimj‘z)Q B Y icaw (i — yi(t))2

|[5’(t)| |B(t)|

VIO(X;) = (1.6)

for metric outcomes.

B® indicates that in the computation of the permutation importance, the assessment of the
prediction accuracy — in terms of correct classification or mean squared error — is usually
based on observations that were not part of the sample used to fit the respective tree (the
so called “out of bag” (OOB) observations). This way, the OOB permutation importance
provides a more reliable, less biased estimate of the importance a variable may have,
independent of the respective training samples. The index 7; denotes the permutation of
the vector X;. Equations (1.4), (1.5) and (1.6), make up the computational steps of the
permutation accuracy importance measure and can be summarized in a short schematic
view:
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It can be read off equation (1.6) that the importance measure is based on the computation
of the mean squared error (MSE) before and after permutation. Equation (1.5) inherents
the accuracy which equals 1 - error rate = 1 - MSE for binary responses. This interpretation
in terms of MSE is commonly used; as retraced in Nicodemus et al. (2010) for instance.
Thus both measures are based on a statistic that is solely and directly derived from the
response and the variable space. Good (2000) denotes the selection of an appropriate
statistic as step three in his listing of 'five steps to a permutation test’. The quality of such
a statistic is supposed to be its ability to discriminate between the null-hypothesis and the
alternative. The MSE clearly satisfies this quality. Further examples of suitable statistics
for permutation tests are given by Good (2005).

An example of permutation importance measures for the airquality data is given by
Figure 1.8. As the original measure is not applicable to missing data these results emerge
from a complete case analysis. The next chapter introduces a new kind of importance
measure which is able to deal with missing data and circumvents dangers associated with
complete case analysis.

1.3 Statistical Software

All analyses and computations presented in this work were performed with the R system
for statistical computing (R Development Core Team, 2011, version 2.14.1). It provides
several freely available implementations of recursive partitioning: The CART algorithm
is given by the function rpart() of the package rpart (Therneau et al., 2011, version
3.1-52) and another implementation by tree() which is part of the tree package (Ripley,
2011, version 1.0-29). In this work rpart() is used to represent the CART algorithm.
Conditional inference trees and an implementation of conditional inference based Random
Forests — called by ctree() and cforest() — are both included in the party package
(Hothorn et al., 2008, version 1.0-0). Unfortunately the CART related implementation
of Random Forests given by the function randomForest () in the package randomForest
(Liaw and Wiener, 2002, version 4.6-6) does not support the fitting of Random Forests
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Figure 1.8: Permutation accuracy importance for a complete case analysis of the airquality
data.

to incomplete data. However, as the occurrence of missing values is in main focus of the
investigations of this work and even more importantly: as it has been discussed in this
chapter that the algorithm is prone to biased variable selection it is not used any further.
Thus, Random Forests are executed by the function cforest(). A short summary of
functions used in this work is given in Table 1.2.

In this chapter the default settings for each function were used to perform the exemplary
analyses. In the following chapters specific settings used for the analyses will be listed
separately.

Method Model Function Package Used
CART tree tree() tree
rpart () rpart v
Random Forest randomForest() randomForest
conditional tree ctree() party v
inference Random Forest cforest() v

Table 1.2: Summary of functions used to perform recursive partitioning.
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Chapter 2

Predictive Accuracy for Data with
Missing Values

2.1 Research Motivation and Contribution

The occurrence of missing values is a major problem in statistical data analysis. All scien-
tific fields and data of all kinds and size are touched by this problem. A popular approach
to handle missing values is the application of imputation methods (see Schafer and Gra-
ham, 2002; Horton and Kleinman, 2007, for a summary of approaches). There is a number
of ad-hoc solutions — e.g. available case and complete case analysis as well as single imputa-
tion by mean, hot-deck, conditional mean and predictive distribution substitution — which
can lead to a loss of power, biased inference, underestimation of variability and distorted
relationships between variables (cf. Groenwold et al., 2012, for corresponding discussions
about the proper analysis of missing outcome data in randomized trials and observational
studies). A more promising approach of rising popularity is multiple imputation by chained
equations (MICE) also known as imputation by full conditional specification (FCS) (van
Buuren et al., 2006; White et al., 2011). It allows for the imputation of multivariate data
without the need to specify a joint distribution of predictor variables. Furthermore, its
superiority to ad hoc and single imputation methods has been shown by many publica-
tions (e.g. Janssen et al., 2009, 2010). Alternatives to imputation are given by methods
with built-in procedures to handle missing values. This includes recursive partitioning by
classification and regression trees as well as Random Forests.

However there is only a few publications that compare the two approaches. Two ref-
erence publications that investigate performance differences are given by Feelders (1999)
and Farhangfar et al. (2008). Unfortunately, they lack generalizability as investigations are
restricted to classification tasks, categorical data and special simulation schemes. A third
related paper that focuses on Random Forests is given by Rieger et al. (2010). It is based
on much more extensive simulation studies that involve different missing data generating
processes (section 2.3.1) for classification and regression problems.
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The goal of this chapter is to compare the predictive accuracy of CART, conditional
inference trees and Random Forests when surrogates and multiple imputation are used to
handle missing values. Comparative analyses for various datasets and different simula-
tion settings are designed to improve and extend the investigations of related publications.
Both classification and regression problems are examined. Findings show that multiple
imputation produces ambiguous performance results for both simulation studies and em-
pirical evaluations. By contrast, the use of surrogates is a fast and simple way to achieve
performances which are often only negligibly worse and in some cases even superior. The
investigations and findings of this chapter have been published in Hapfelmeier et al. (2011).

2.2 Discussion of Related Publications

e Feelders (1999) favors the application of imputation methods. This conclusion is
based on the investigation of two classification problems. The rpart() routine im-
plemented in S (Becker, 1984), which closely resembles the CART algorithm proposed
by Breiman et al. (1984) was applied. Procedures were compared by an assessment of
the misclassification error rate (MER) which equals the fraction of wrong predictions
in the case of a binary outcome.

One of the examined datasets is the Pima Indians Diabetes Data Set (section 2.4.2).
The MER of a tree that used surrogate splits was 30.6%. Single imputations based
on EM-estimates were repeated by ten independent draws and achieved an averaged
MER of 26.8%; Little and Rubin (2002) clearly show that the variability of estimates
is likely to be underestimated by single imputation. Thus comparisons and tests
within each of the repetitions might be invalid. In a second experiment a multi-
ple imputation approach was applied ten times. The averaged MER equals 25.2%.
To back up the observed differences an exact binomial test was computed for each
repetition. In the first experiment there were 6 of 10 and in the second experiment
there were 9 of 10 p-values below 0.05. Nevertheless a test for the comparison of two
proportions like the McNemar-Test would have been more appropriate. In addition
only the training data contained incomplete observations.

The second data is the waveform recognition data originally used by Breiman et al.
(1984). Missing values were introduced completely at random in the training data
in fractions between 10% and 45%. The imputation was performed by an LDA
model based on EM-estimates. The MER of trees was assessed in two experiments
which differed by the application of single imputation and multiple imputation. For
the former the MER of a tree fit to imputed data was between 29.2% and 30.6%,
seemingly unrelated to the fraction of missing values. Trees that used surrogate splits
produced MER values between 29.8% and 34.3%. Results were similar for multiple
imputation. The MER of trees with imputation lay between 25.5% and 26.1%. With
surrogates the MER increased from 28.9% to 35.6%. Differences became more and
more pronounced with high fractions of missing values. However, 45% missing values
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in each variable is rather rare in real life data. A data set of only 5 variables would
already include 1 — (1 — 0.45)° = 95.0% incomplete observations if the locations of
missing values are statistically independent. Likewise an equal spread of missing data
is rather artificial.

e Farhangfar et al. (2008) published a profound comparison of various classification
methods applied to data with missing values. Several single imputation methods and
a multiple imputation approach by polytomous regression using the MICE algorithm
were explored. Classification models were support vector machines (SVM), k-nearest
neighbors (kNN), C4.5 (a decision tree algorithm introduced by Quinlan, 1993),
among others. Missing values were induced into 15 completely observed datasets
which exclusively consisted of qualitative variables. Results showed that the appli-
cation of MICE, compared to other imputation methods, leads to superior results in
most cases. For none of the data sets the C4.5 method benefited from imputation.
By contrast, the latter even led to worse MER values in some cases. The performance
of C4.5 was also independent of the amount of missing values. Like Feelders (1999)
the authors restricted the occurrence of missing values to the training data. The
problem of too many missing values equally spread among the variables was present,
too. Up to 50% of observations per variable were set missing.

e In an extensive simulation study Rieger et al. (2010) concluded that the application
of a k-nearest neighbors (kNN) imputation approach did not improve the perfor-
mance of conditional Random Forests. Classification and regression problems with
three different correlation structures and seven schemes to generate missing values
were investigated. These studies were repeated for high-dimensional settings with
additional noise variables and for two scenarios that differed by the introduction
of missing values in the training and test data or solely in the training data. The
fraction of missing values was not varied and chosen to be two times 20% and one
time 10% in three variables. The comparison of approaches was based on prediction
accuracy measured by binomial log-Likelihood and mean squared error (MSE). Re-
sults showed no clear advantage of imputation. Despite elaborate simulation settings
the authors point out that results may not be generalizable due to specific choices
of parameters. However, this publication does not incorporate trees, uses a single
imputation method and does not vary fractions of missing values.

Feelders (1999) showed increased MER for an increasing number of missing values when
single trees are used with surrogate splits. Meanwhile the MER of trees based on impu-
tation almost did not change. Differences between methods were rather weak for lower
fractions of missing values which are more likely to be observed in real life data. Farhang-
far et al. (2008) found no improvement for C4.5 Trees with imputed data. They even
claim a harmful effect of imputation in this case. Pitfalls and drawbacks of the former two
publications are unrealistic simulation schemes, invalid test procedures, the application of
biased imputation and tree building methods and the limited generalizability due to the
predominant examination of nonstandard polytomous data and classification tasks only.



20 2. Predictive Accuracy for Data with Missing Values

By contrast the work of Rieger et al. (2010) resolves many of these issues as it presents an
extensive simulation study for classification and regression problems. The authors conclude
that a k-nearest neighbor imputation approach was not able to improve the performance
of Random Forests.

2.3 Missing Data

2.3.1 Missing Data Generating Processes

In an early work Rubin (1976) specifies the issue of correct statistical inference from data
containing missing values. A key instrument is the declaration of the process that causes
the missingness. Based on these considerations many strategies for inference and elaborate
definitions of the subject have been developed. An extensive summary can be found in
Schafer and Graham (2002). In general, three types of missingness are distinguished:

e Missing completely at random (MCAR):
P(R’Xcomp) = P(R)

e Missing at random (MAR):
P(R|Xcomp) = P(R[Xobs)

e Missing not at random (MNAR):
P<R’X00mp) = P(R‘Xobsyxmis)

The status of missingness (yes = 1/no = 0) is indicated by a binary random variable R and
its probability distribution P(R). The letter R, that was adopted from the original nota-
tion, may emerge from the fact that Rubin (1987) originally was dealing with ’R’esponse
rates in surveys. The complete variable space Xcomp is made up of observed X,p,s and
missing Xnis parts; Xeomp = {Xobs: Xmis . Therefore MCAR indicates that the probability
of observing a missing value is independent of the observed and unobserved data. By con-
trast for MAR this probability is dependent on the observed values (but not on the missing
values themselves). Finally in MNAR the probability depends on unobserved information
or the missing values themselves. An example for the latter is a study in which subjects
with extreme values for an outcome systematically drop out while there is no information
in the data that could help to explain this discontinuation.

Farhangfar et al. (2008) outline that in practice the MCAR scheme is assumed for most
imputation methods. He et al. (2009) and White et al. (2011) point out that the MICE
algorithm is also capable of dealing with MAR schemes as the imputation model becomes
more general and includes more variables. In this situation it becomes more probable
that missing values can be explained by observed data. The latter property is especially
valuable for data that already contain missing data. In such settings it is not clear which
scheme really holds. Similar statements can be found in Janssen et al. (2010) which claims
that even a false assumption of MAR under MNAR has minor impact on results in many
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realistic cases. The performance of Random Forests under several MAR schemes was
investigated by Rieger et al. (2010). These authors compared the use of surrogates against
a single imputation method. In extensive simulation studies they were able to show that
results did not differ between MCAR and MAR. For all these reasons the introduction of
missing data is done in a MCAR scheme in the following simulation studies.

2.3.2 Multivariate Imputation by Chained Equations

Using MICE, imputation is performed by flexible specifications of predictive models for
each variable. There is no need to determine any joint distributions of the data. Cycling
through incomplete variables iteratively updates imputations until convergence. Repeating
the procedure several times leads to multiple imputed data sets. A short summary of theory
and appealing properties is given in the following.

Multiple Imputation

A simple and popular approach to handle missing data is the application of multiple
imputation (MI) as introduced by Rubin (1987, 1996). Little and Rubin (2002) point out
that an apparent advantage of this approach is its ability to make standard complete-data
methods applicable to incomplete data. Therefore the user is able to stick to his preferred
method of analysis. There is no necessity to switch to one he is not used to, he does not
understand or is known to be less powerful.

In general any measure of interest Q (e.g. parameter estimates 0 or response predictions
y) is assessed by the average

QE:%ZQe

using E estimates Qe derived from the imputed complete data sets. The total variability
of the estimate is given by
E+1

E

T = Wg + Bgr

where

E E
B PR 1 )
Wi = ;WG and B =——> (Q.—Qp)

are the average of the within-imputation variances W\e and the between-imputation vari-
ance, respectively. Of course the essential preceding step is the creation of E imputed data
sets. If imputation was only done once, like in single imputation, the imputed values would
be treated like they were known. This can lead to a severe underestimation of the vari-
ance, 'which affects confidence intervals and statistical tests’ as stated by Harel and Zhou
(2007). However, it is not sufficient to simply create more than 1 dataset by drawing from
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the conditional distribution P(Xuis|Xops, é\) The uncertainty inherent in the estimate )
itself has to be incorporated, too. The posterior predictive distribution of X, is

P(Xmis|Xobs) :/P(Xmis|XobSaQ)P(0|Xobs>d0

with
P(6|Xob8) X P(0> /P(Xobsaxmis|0)deis

denoting the observed-data posterior distribution of . A proper multiple imputation
approach is supposed to first draw E estimates 0, ...,0®) from P(0|X.ps). These are
subsequently used in the conditional distributions P( mls|XobS7 ] N,e=1,..E

An example of this procedure was taken from Rubin (1987) and White et al. (2011) to
illustrate the case of parameter estimates 0= B\ for a linear regression model. Drawing from
its conditional distribution does not consider the uncertainty about the maximum likeli-
hood estimate 3. Thus 3 needs to be drawn from its posterior distribution P (5] Xops), too.
Under the assumption of ignorable nonresponse the estimation is based on the observed
data only. In a first step a linear regression is fit to the observed data which gives

2 T -1_7
ﬁobs = (XobsXObS) XobsY obs
——— ——
A%
and

. —~ T
Ogbs = (|:<YObS - Xobsﬁobs)Z] 1> /(nObS - npar)'

Nps, 1S the dimension of 8 and ngps the number of observed values. When the prior distribu-
tion on log o is proportional to a constant it can be shown that 02/5? follows an inverted
x? distribution on n — 1 degrees of freedom. Based on these considerations the imputation
starts with the computation of

07 = Gops (Tiobs — Npar) /8

. 2 . . 2 =
where g is a random number drawn from Xnope—npar - USING the estimates o and Bobs, One
is able to compute

~ Oy
ﬁ* - /60bs + = [V]l/zz

Oobs

where z is a vector that contains n,, independent draws from a standard normal distribu-
tion. [V]*/2 is the Cholesky decomposition of V. Finally,

Vmis = Xobsﬁ* + Z40.

Again z, is a vector of n,,;s independent random draws from a standard normal distribution.
This procedure is repeated to generate several imputed data sets.
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MICE

Whenever there is more than one variable with missing values the imputation approach
needs to be adapted. There are mainly two approaches for missing data imputation in this
case. Joint modeling (JM) approaches, as presented by Schafer (1997), are not discussed
in detail here. Still it is worth mentioning that imputations are directly drawn from the
parametric multivariate density P (X5, Xobs, R|€) by this approach. Appropriate methods
exist for the multivariate normal, log-linear and general location model. A more practical
approach which makes it possible to bypass the specification of a joint distribution is MICE
also known as imputation by fully conditional specification (FCS) (cf. van Buuren, 2007;
White et al., 2011). Although it lacks profound theory van Buuren et al. (2006) showed in
simulation studies that MICE produces reasonable imputations and coverages of statistics
of concern. FCS, using linear regression, even equals JM under the multivariate normal
joint distribution, given specific regularity conditions. The same holds for some special
cases of the log linear model. According to van Buuren and Groothuis-Oudshoorn (2010)
FCS is an attempt to obtain a posterior distribution of 6 by chained equations. These
authors state that starting with the imputation of missing values by random samples of
the observed values the tth iteration of the chained equations is

0% ~ P(01|X1 0ps; X5 1, o, XU,

X4 e ~ POXG X oy X571 XETE 6,

1,mis

e‘t/ ~ P(ev‘xv,obsaxtb . Xt )
Xt~ P(XV|XV7ObS,Xt1, L X800,

v, mis

where Xt is the jth imputed variable at iteration t. It is easy to see how turns are taken
within the iterative steps to infer 8 and X,,s. After the convergence of the algorithm
it is possible to draw 0 from its posterior and to use it to obtain Xmls Several imputed
datasets are produced by repeating the procedure with different starting values. A practical
advantage of MICE are the many possibilities to model P(X;|X; obs; X_j, ;). A profound
discussion can be found in van Buuren and Groothuis-Oudshoorn (2010) and White et al.
(2011). MICE is especially suitable in MAR settings although Janssen et al. (2010) state
that it should also be preferred to ad hoc methods like complete case analysis even in
MNAR situations. In a review paper of epidemiologic literature Klebanoff and Cole (2008)
conclude that MICE is still of minor popularity. Despite its outstanding benefits compared
to simpler ad hoc methods it seems like researchers feel uncomfortable to use it. Thus they
give recommendations about the proper publication of multiple imputation methods to
increase their popularity. These are followed in this chapter and outlined in section 2.4.3.

To date there are still proposals for further developments. For example Burgette and
Reiter (2010) claim that complex distributions as well as interactions and nonlinear rela-
tions might better be fit using CART as imputation model within the MICE algorithm.
They are able to present promising results in a simulation study and an application to
real life data. Likewise, Stekhoven and Biithlmann (2011) present an iterative approach
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that uses Random Forests to impute missing values and show its superior performance in
empirical evaluations; especially when there are complex interactions and nonlinear rela-
tions. Templ et al. (2011) emphasize that many imputation approaches ‘...assume that the
data originate from a multivariate normal distribution...”. They suggest an iterative robust
model-based imputation procedure to deal with data that deviate from this assumption
(e.g. data that contain outliers or originate from skewed or multimodal distributions).
Accordingly, future studies should take the diversity of MICE approaches into account.

2.4 Studies

In order to explore several kinds of data which display a random sample of real life situations
with a wide range of attributes there were no constrictive exclusion criteria applied for their
selection. There are 12 datasets; half of them were supposed to contain regression and half
of them classification problems. Four datasets without any missing values were used for
a simulation study and the remaining eight datasets, that contained missing values in
advance, were used for an application study. There were no restrictions about the number
of observations or variables and the amount of missing values. The datasets were included
without any prior knowledge of these characteristics or any presumptions about potential
findings. Therefore a broad set of data emerging from different scientific fields was used.

There are two kinds of studies. The first one is meant to retrace and extend the simu-
lations discussed in section 2.2. The introduction of missing values was varied for a deeper
insight to effects caused by special schemes. The second study is based on empirical evalu-
ations of data that already contain missing values. It is supposed to provide a more reliable
assessment of potential benefits of imputation without the need of artificial specifications
for the simulation settings. To stick close to existing publications, the performance assess-
ment is given by the mean squared error (MSE). This measure equals the misclassification
error rate (MER) for binary responses.

Evaluation is done by Monte-Carlo Cross-Validation (MCCV; see Boulesteix et al.,
2008b). Analyses are performed for two cases that differ by the decision to use imputation
through MICE or surrogates. It is well known that for valid evaluations the test data
need to be isolated from the training data in every aspect. This can only be achieved if
two separate imputation models are fit to each of these datasets. Otherwise it is believed
that the MSE estimation would be positively biased as an imputation model fit to the
training data and applied to the test data would transfer information. One could not call
the observations of the test data ‘unseen’ to the predictive model any more. Consequently,
separate imputation models were fit to the training and test dataset. Of course the response
is also not allowed to be part of the imputation model for the test data. It is considered
unknown until the comparison of predicted and real outcomes for evaluation purposes.
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2.4.1 Simulation Studies
Analysis settings

Data were MCAR in the simulation studies. Thus each value had the same probability to
be missing independent of any observed or unobserved information. Four datasets were
chosen for the simulation studies as they were fully observed. Two of them are used for
the classification of a binary response. Another two are used for regression. Missing values
were artificially introduced in a procedure which is close to the one of Feelders (1999) and
Farhangfar et al. (2008). However, the introduction of missing data was not restricted
to the training set but extended to the test set, too. Fractions of missing values are 0%
(benchmark), 10%, 20%, 30% and 40%. The procedure was repeated 1000 times using
Monte-Carlo Cross-Validation (MCCV). In each iteration a random sample of 80% was
used for the training of a model while the remaining 20% served as test set. This also
facilitated the separation of imputation models for the training and test data.

Part of the criticism in section 2.2 was about the huge amount of missing values which
is beyond the fractions found in most of real life data; the number of observations that
contain at least one missing value is 1 — (1 — Yomissing) ™= which, on average, already
makes 1 — (1 — 0.40)° = 92.2% incomplete observations for a dataset that contains only 5
variables with 40% missing values. To stick closer to real life situations the simulation was
repeated with a randomly chosen third of the variables partly set missing in each MCCV
step. The corresponding R-Code is given in the appendix B.2.1.

Data
A summary of the data is given by Table 2.1 and the following listing:

e Haberman’s Survival Data contains data about the 5 year survival of patients
after breast cancer surgery. It was originally used for investigations of log-linear mod-
els by Haberman (1976). The corresponding study was conducted between 1958 and
1970 at the University of Chicago’s Billings Hospital. There are 306 observations in 3
independent variables namely age, year of operation and number of positive axillary
nodes. The survival status of a patient was used as the outcome of a classification
problem.

e The Heart Disease Data was collected at four clinical institutions. These are
the Cleveland Clinic Foundation, the Hungarian Institute of Cardiology, Budapest,
the V.A. Medical Center, Long Beach, CA and the University Hospital, Zurich,
Switzerland. It contains information about the incidence of heart disease along with
the assessment of a patients age, gender, chest pain type, resting blood pressure,
serum cholestoral in mg/dl, a fasting blood sugar measurement (> 120 mg/dl), resting
electrocardiographic results, maximum heart rate achieved, exercise induced angina,
ST depression induced by exercise relative to rest, the slope of the peak exercise
ST segment, number of major vessels (0-3) colored by flourosopy and thallium scan
status information. These socioeconomic data and clinical outcomes were used to
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classify the binary outcome, i.e. heart disease. The data contain 270 observations
and 13 independent variables.

The Swiss Fertility and Socioeconomic Indicators Data contains a standard-
ized fertility measure and socio-economic indicators. It was originally used for re-
gression analysis by Mosteller and Tukey (1977). Features are percentages of males
involved in agriculture, draftees receiving highest mark on army examination, draftees
with education beyond primary school, catholic population and the infant mortality
within the first year of life. Data were gathered in 47 French-speaking provinces of
Switzerland at about 1888; this makes 47 observations in 5 independent variables.
The regression aims at the explanation of the standardized fertility measure in each
province.

The Infant Birth Weight Data was collected at the Baystate Medical Center,
Springfield, Mass during the year 1986. It contains physical measures and informa-
tion about the health condition of women giving birth. Venables and Ripley (2003)
originally used it for a classification of the binary outcome, low and high birth weight
of newborns. Here, by contrast, a regression was performed to predict a child’s birth
weight in grams by the means of a mother’s health status and history. The lat-
ter is given by a mother’s age in years, weight in pounds at last menstrual period,
race, smoking status during pregnancy, number of previous premature labors, history
of hypertension, presence of uterine irritability and the number of physician visits
during the first trimester. The data contain 189 observations and 9 independent
variables.

It has to be pointed out that for the Heart Disease Data and the Infant Birth Weight Data
the number of predictor variables was reduced to 12 and 8, respectively. This was due
to computational issues with the MICE implementation, which might be seen as another
disadvantage of this approach, but only touches the analyses of this chapter.

Data Obs. ind. Var.
H. Survival 306 3
Heart 270 13
Fertility 47 )
Birthweight 189 9

Table 2.1: Count of observations and independent variables for datasets used in the simu-
lation studies.
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2.4.2 Empirical Evaluation
Analysis settings

Although simulation studies might be helpful to investigate theoretical properties there
are some deficiencies in the simulation schemes that clearly limit generalizability of results.
Corresponding statements have been discussed in section 2.2. Thus, the main focus of
this chapter is put on empirical evaluations of data that originally contain missing values.
A total of eight datasets has been used to explore four classification and four regression
problems. Again, each data was split in 1000 MCCV runs into 80% training and 20%
test observations to estimate a method’s performance in terms of MSE. The corresponding
R-Code is given in the appendix B.2.2.

Data

The eight datasets summarized in Table 2.2 are:

e The Hepatitis Dataset contains information about 155 patients that suffered from
hepatitis and of whom 32 died. A total of 19 independent variables is available for
the classification problem to predict a patient’s survival. These variables include
demographic data like sex and age, information about drug intake like steroids and
antivirals and further clinical factors. One missing value was observed in 4 variables,
5 missing values in 4 variables, and 4, 6, 10, 11, 16 and 29 missing values in one
variable, respectively. Therefore missing values were present in 14 out of 18 variables.
The fraction of missing values per variable ranges from 0.6% to 18.7%. In total 43
(27.7%) observations contain at least one missing value.

e The Mammographic Mass Data is made up of several features extracted from
breast cancer screenings. The latter are performed by physicians, especially radiol-
ogists, who try to determine the severity (benign or malign) of a suspicious lesion.
In the recent past efforts have been made to solve the classification problem by ma-
chine learning approaches. The resulting systems are called CAD (Computer Aided
Decision/Detection) systems. The data were originally used by Elter et al. (2007) for
the evaluation of such systems (c.f. Hapfelmeier and Horsch, 2011, for corresponding
evaluation studies). Analyses were performed to describe the severity status of a
lesion. The data also contain information about the four independent variables age,
shape, margin and density of mass lesions observed in 961 women. Age contains
5 missing values while shape, margin and density are missing 31, 48 and 76 times,
respectively. The corresponding fractions of missing values are 0.5%, 3.2%, 5.0% and
7.9%. Overall 130 (13.5%) observations contain at least one missing value.

e The Pima Indians Diabetes Dataset was also used for the comparison of trees
with and without imputation by Feelders (1999). It contains information about the
diabetes disease of 768 pima indian women which are at least 21 years old. In addition
to age, the number of pregnancies, plasma glucose concentration, diastolic blood
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pressure, triceps skin fold thickness, 2-Hour serum insulin, BMI and diabetes pedigree
function were recorded. This makes 8 independent variables used for the classification
problem to determine whether a women shows signs of diabetes according to the

WHO definition.

At first glance these data do not seem to contain any missing values. However, the
missing values are actually “hidden” behind many zero values that are biologically
implausible or impossible. Pearson (2006) calls this situation “disguised missing
data” and gives a profound discussion about its occurrence in the Pima Indians
Diabetes Data Set. According to his description, there are five variables that contain
missing data. The total numbers of missing values in these variables are 5, 35, 227,
374 and 11, which equals fractions of 0.7%, 4.6%, 29.6%, 48.7% and 1.4%. Overall
376 (49.0%) observations contain at least one missing value.

The Ozone Level Detection Dataset was collected from 1998 to 2004 at the
Houston, Galveston and Brazoria area and contains information about geographic
measures and ozone levels. The classification problem is to distinguish days of high
and low ozone concentration based on information about wind speed, temperature,
solar radiation etc. In total there are 2534 observations in 73 measured features.
Each of the variables contains between 2 (0.08%) and 300 (11.8%) missing values.
For the entire data 687 (27.1%) observations contained at least one missing value.

The Airquality Dataset contains daily measurements of the air quality in New York
from May to September 1973. There are four variables that were of interest for the
planned analyses. These are the ozone pollution in parts per billion (ppb), the solar
radiation in Langleys (lang), the average wind speed in miles per hour (mph) and
the maximum daily temperature in degrees Fahrenheit (degrees F). The ozone data
were originally provided by the New York State Department of Conservation and the
meteorological data by the National Weather Service. A more detailed explanation
of the data can be found in Chambers (1983). All of the metric variables were used
to predict the temperature in a regression problem. For 153 days the ozone pollution
contains 37 (24.2%) missing values while the solar radiation contains 7 (4.6%). There
are 42 (27.5%) observations that have at least one missing value.

The El Nino Dataset was gained from the Tropical Atmosphere Ocean (TAO) ar-
ray of the international Tropical Ocean Global Atmosphere (TOGA) program. TAO
is an assemblage of ca. 70 moored buoys that record oceanographic and surface me-
teorological variables in the equatorial pacific. The present data contain information
about four independent variables, i.e. the sea surface temperature, air temperature,
humidity as well as zonal and meridional wind speeds. The regression problem was
to predict the sea surface temperature from the remaining variables. There are 733
observations of which 78 (10.6%) and 91 (12.4%) are missing for the air tempera-
ture and the humidity, respectively. For the entire data 168 (22.9%) observations
contained at least one missing value.
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e The CHAIN Project Data contains information from a longitudinal cohort study
of HIV infected people living in New York City by 1994. It was originally used by
Messeri et al. (2003) for the assessment of HIV treatment effects on survival. For
the planned analyses there were 508 observations of seven variables. These are the
log of self reported viral load level, age at time of interview, family annual income, a
continuous scale of physical health, the CD4 count, a binary measure of poor mental
health and an indicator for the intake of HAART. The regression problem was to
explain the continuous scale of physical health. There were 155 missing values in
the self reported viral load level, 14 in the family annual income and 39 in the CD4
count. This equals fractions of 30.5%, 2.8% and 7.7%. At least one missing value in
any variable was observed for 173 (34.1%) observations.

e The Mammal Sleep Data contain features of 62 species ranging from mice over
opposums and elephants to man. It was originally used by Allison and Cicchetti
(1976) to examine relations between sleep, ecological influences and constitutional
characteristics. The observed sleep features include information about duration and
depth of sleep phases as well as the occurrence of dreams. Constitution is given
by measures like body weight and brain weight. The safety of sleep is assessed by
scaling for overall danger, danger for being hunted, sleep exposure, gestation time
etc. One of the main findings in the original paper was a negative correlation between
slow-wave sleep and body size. In alignment with these investigations the data was
used in a regression analysis for the prediction of body weight. The data contains 9
independent variables and 62 observations. There are 20 (32.3%) observations which
are not completely observed for all variables. It is interesting to note that Allison
and Cicchetti (1976) had originaly chosen a complete case analysis as they found the
incomplete data to be “... not suitable for the multivariate analyses ...”. There are
five variables containing 4 (3 times), 12 and 14 (6.5% (3 times), 19.4% and 22.6%)
missing values.

Most of the data is provided by the open source UCI Machine Learning Repository (Frank
and Asuncion, 2010). However, the Fertility and Airquality Data were taken directly from
the R routine. Likewise, the Birthweight, CHAIN Project and Sleep Data are part of the
R packages MASS, MI and VIM, respectively.

2.4.3 Implementation

All analyses were performed with the R software for statistical computing (R Develop-
ment Core Team, 2011, version 2.14.1). The CART algorithm is provided by the function
rpart () which is part of the equally named package rpart (Therneau et al., 2011, version
3.1-52). Tt is opposed to conditional inference trees called by ctree () which is part of the
party package (Hothorn et al., 2008, version 1.0-0). This package also includes the func-
tion cforest() which is used for the implementation of Random Forests. Unfortunately
the function randomForest () in the package randomForest (Liaw and Wiener, 2002, ver-
sion 4.6-6) does not support the fitting of Random Forests to incomplete data. Thus,
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Observations Variables
Data # > 1 missing # missing per Var.
Hepatitis 155 43 (27.7%) 19 14 (0.6% - 18.7%)
Mammo 961 130 (13.5%) 4 4 (0.5% - 7.9%)
Pima 768 376 (49.0%) 8 5  (0.7% — 48.7%)
Ozone 2534 687 (27.1%) 73 73 (0.1% — 11.8%)
Airquality 153 42 (27.5%) 4 2 (4.6% —24.2%)
El Nino 733 168 (22.9%) 4 2 (10.6% — 12.4%)
CHAIN 508 173 (34.1%) 7 3 (2.8% - 30.5%)
Sleep 62 20 (32.3%) 9 5  (6.5% — 22.6%)

Table 2.2: Characteristics of datasets used for the empirical evaluation. The number
of independent variables and observations is given in addition to absolute and relative
frequencies of missing values among them.

this biased, CART based version could not be used for comparison matters. Multivariate
Imputation by Chained Equations was done by the mice() function of the mice package
(van Buuren and Groothuis-Oudshoorn, 2010, version 2.11).

The number of trees in Random Forests was set to be ntree = 500. Each split was
chosen from mtry = min(5, variables available) randomly selected variables. Trees and
Random Forests use maxsurrogate = min(3, variables available) surrogate splits. MICE
produces five imputed datasets. A normal linear model was used for the imputation of
continuous variables, logistic regression for binary variables and a polytomous regression for
variables with more than two categories: defaultMethod = ¢("norm”, ”logreg”, "polyreg”).
Concerning the training data each variable contributed to the imputation models. In the
test data the response was excluded from these models. The fraction of imputed values
and number of variables used for imputation can be read off Table 2.1 and 2.2.

2.5 Results

2.5.1 Simulation Studies

The following contains discussions for each of the four investigated datasets. A correspond-
ing graphical representation is given by Figure 2.1. A summary of observed MSE values is
presented by Table 2.3 and an even more elaborate listing is given in the appendix A.1.1.

e Haberman’s Survival Data is used to predict the 5 year survival of patients after
breast cancer surgery. Random Forests, ctree and rpart perform comparably. They
are able to preserve the benchmark MSE (obtained for 0% missing values) indepen-
dent of the procedure to handle missing values. The relative improvement by MICE
instead of surrogates ranges from -2% to 5% and gets even less pronounced (-2% to
1%) when only one third of variables contains missing values.



2.5 Results 31

e By means of the Heart Disease Data it is assessed how well the presence of heart
disease can be predicted. In terms of prediction accuracy, Random Forests outper-
forms both single tree methods, while rpart produces slightly superior results than
ctree. An increased number of missing values makes error rates rise especially when
they are introduced in each variable. The relative improvements by MICE shrink
from a range of 0% to 22% to a range of -5% to 2% when only one third of variables
contain missing values.

e The Swiss Fertility and Socioeconomic Indicators Data is used to examine
whether a continuous fertility measure can be explained by socio-economic indicators.
All three methods produce comparable results. Although in some instances, one is
able to produce results which are close to the benchmark when surrogates are used
it is obvious that MICE results exceed this level. A slight rise in differences between
methods can be observed for an increased number of missing values. The mean
relative improvement due to imputation is between 1% and 19%. When there are

missing values in only one third of the variables this relative improvement ranges
from -2% to 4%.

e The Infant Birth Weight Data is used to predict a child’s birth weight in grams.
Random Forests clearly outperform its competitors while ctree and rpart perform
comparably. The difference between imputation and surrogates does not increase
with an increased number of missing values. In some cases MICE makes the perfor-
mance exceed the benchmark. The improvements by imputation drop from 2%-7%
to 0%-4% when the number of variables that contain missing values is restricted to
one third.

Referring to single trees it has to be stressed that a comparison between the application of
MICE and surrogates is not quite fair. MICE produces multiple datasets that vary in the
imputed values. To each of them a tree is fit which may consequently differ from each other.
Their average or majority decision for an observation is used for prediction. Several works
(e.g. Bithlmann and Yu, 2002; Breiman, 1996) show that ensemble approaches perform
superior to single trees. This fact becomes apparent for the Swiss Fertility Data as MICE
is able to even exceed the benchmark obtained for 0% missing values. By contrast Random
Forests are an ensemble method themselves which makes them less prone to this effect.
Therefore, one might find them even more suitable for a fair comparison. Anyhow as MICE
is very popular this multiple imputation approach is still preferred to single imputation in
order to reflect use-oriented results.

2.5.2 Empirical Evaluation

Results obtained for the eight investigated datasets which originally contain missing values
are displayed by Figure 2.2. The relative improvement of MICE compared to the applica-
tion of surrogates can be read off Table 2.4. An extensive listing of results can be found
in the appendix A.1.2.
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missing values

missing 0% 10%—40% 10%—40%
Type Data Model  variables benchmark Surrogates MICE rel. imp.
Classi- H. Survival forest 3 0.27 0.28 — 0.29 0.27 0% — 5%
fication 1 0.27 0.27 0%
ctree 3 0.28 0.27 - 0.28 0.27 - 0.28 2% - -1%
1 0.27 - 0.28 0.28 2% - -1%
rpart 3 0.28 0.28 0.28 2% - 0%
1 0.28 0.28 -1% - 0%
Heart* forest 12 0.17 0.19 - 0.26 0.18 - 0.23 0% - ™%
4 0.18 - 0.19 0.18-0.19 -5% - -2%
ctree 12 0.24 0.27 - 0.35 0.24 - 0.27 7% - 22%
4 0.25 0.25 -2%- 0%
rpart 12 0.22 0.23 - 0.30 0.21 - 0.25 6% — 13%
4 0.22 - 0.23 0.21-0.22 -1%- 2%
Regres-  Fertility forest 5 124 129 — 160 123 — 129 1% - 17%
sion 2 123 - 131 122 - 129 2% - 0%
ctree 5 126 144 — 164 116 — 126 12% — 19%
2 126 — 136 119 — 125 1% - 4%
rpart 5 128 129 — 143 113 - 121 5% - 9%
2 121 - 132 115 - 125 -1% - 2%
Birthweight*  forest 8 46e+4  48e+4 — 52e+4  4Te+4 — Hle+4 2% — 3%
3 46e+4 — 48e+4  46e+4 — 48e+4 0% — 1%
ctree 8 52e+4  5de+4 — 56e+4  Sle+4 — 53e+4 4% - ™%
3 52e+4 — bde+4  5le+4 — 52e+4 2%
rpart 8 53e+4  5de+4 — 56e+4  Sle+4 — 5de+4 3% — 5%
3 53e+4 — 55e+4  bHle+4 — 52e+4 3% — 4%

Table 2.3: Summary of mean MSE values and mean relative improvements (rel. imp. =
MSESM‘S*EI\:SEWCE) obtained by multiple imputation and surrogates. Please note that the
mean relative improvement is given by the mean of improvements across simulation runs.
It can not simply be computed by the mean MSE values used in the formula given here
(as the mean of ratios does not equal the ratio of means). *The predictor sets of 13 and 9
variables were reduced to 12 and 8 variables due to computational issues with the MICE

implementation.
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Figure 2.1: MSE of the simulation studies. Left and right columns show results when all or
one third of variables had missing values. White and grey boxes correspond to surrogates
and imputation. Solid points represent mean values. Relative improvements are shown
beneath. Horizontal dashed lines give the mean benchmark MSE for 0% missing values.
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A close look at the observed MSE values reveals that Random Forest performs best
while ctree and rpart are comparable. The relative improvement for Random Forests
lies within -41% and 4%. For ctree these values are between -16% and 15%. For rpart
values range from -65% to 36%.

Data forest ctree rpart
Classification Hepatitis 1% -4% 1%
Mammo 4% 3% 0%
Pima 0% 1% 0%
Ozone -39% 10% 0%

Regression Airquality 4%  15% 1%
El Nino -41% -16%  36%

CHAIN 1% 2% 4%
Sleep 1% 0% -65%
Table 2.4: Summary of the mean relative improvement (rel. imp. = MSESﬁ‘S*EIZIi?MICE).

2.6 Discussion and Conclusion

In the simulation studies rpart and ctree alternately beat each other in performance.
Similar results were already found by Hothorn et al. (2006) in their work introducing
conditional inference trees. Still one may tend to use ctree as rpart is known to be biased
towards the selection of variables with many possible cutpoints and many missing values.
In fulfillment of expectations, Random Forests do not show inferior results compared to
single tree approaches. Therefore Random Forests are recommended for application when
the main focus is put on prediction.

Simulation Studies

Independent of the statistical model, the underlying dataset and the fraction of missing
values, it is found that results are affected by the proportion of variables that contain
missing values. If there are missing values in all of them, the relative improvement by an
application of MICE instead of surrogates ranges from 0% to 17% for Random Forests. For
ctree it is between -2% and 22%, and for rpart it lies between -2% and 13%. If only one
third of the variables contain missing values the improvement diminishs. Now it ranges
from -5% to 1% for Random Forests, -2% to 4% for ctree and -1% to 4% for rpart. These
results show that on one hand MICE tends to be beneficial when there are many missing
values in many variables. On the other hand it loses this advantage when the number of
missing values is limited. In such cases it may even produce inferior results.

In combination with the considerations and findings about the simulation setting in
sections 2.2 and 2.5.1 this raises strong doubt about the usefulness of such comparisons
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Figure 2.2: Boxplots of MSE values are given by Figure 2.2a.

(b) Relative improvement

White and gray boxes

correspond to surrogates and imputation, respectively. Figure 2.2b shows the relative
improvement of multiple imputation compared to surrogates. Solid points represent mean

values.
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for real life situations. A simulation pattern that equally spreads missing values across the
entire data in much too high fractions is extremely artificial. There is a strong need to
extend simulation to a wider range of patterns that are closer to those found in real life
data. A first big step into this direction has already been taken by Rieger et al. (2010)
who use lower fractions of missing values and additionally take MAR settings into account.
Similar investigations can also be found in chapter 4 and 6 of this work. However eligible
structures are difficult to define and it is easier to investigate data that already include
missing values.

Application Studies

The potential improvement by the application of imputation instead of surrogates lies
within -41% and 4% for Random Forests. Results were equaly ambigious for tree methods
although the benefit of MICE was slightly more pronounced. To some extend this might
be affected by the property of MICE to implicitly produce ensembles of trees. The relative
improvement reaches from -16% to 15% for ctree and -65% to 36% for rpart. Independent
of the prediction method used, MICE produced inferior results in some cases, indicating
that imputation may also decrease prediction accuracy.

General

Recursive partitioning by trees is still the method of choice if one is interested in clear
decision rules. Nevertheless, the conducted studies confirmed the superiority of Random
Forests in terms of prediction strength. There was no convincing improvement by the
application of MICE in combination with Random Forests. In terms of prediction accuracy
Random Forests seem to be capable to handle missing values by surrogates almost as well
as by imputation. A slightly more distinct benefit was found for single tree procedures
though it was rather negligible in many cases. For all methods and studies the application
of MICE also produced inferior results in some cases. Furthermore the extra effort of
imputation should not be underestimated. For example one might decide to create five
imputed datasets which results in a fit of five models. If these are subsequently applied to
each of another five imputed datasets there are 25 predictions to be made. In total this
makes 30 computational steps (5 times fitting + 25 times prediction). With surrogates it
takes only one fitting and one prediction step. Generally, the number of computational
steps is ngy + Ngt * Nyest While ng; is the desired number of imputed datasets for the fitting
and ngg for the application of models. In addition, when multiple imputation is used
during the fitting process, single trees lose their ability to provide simple decision rules
which is often one of the main reasons for their application.

Results for the application of imputation or surrogates in both the training and test
steps have been presented in this chapter. Actually, when the fitting and the application of
a statistical method is done by two different researchers these habits could also mix. Some
might not be used to imputation methods and will not apply them. Others could have
experienced good results with MICE which makes them use it whenever possible. Likewise,



2.6 Discussion and Conclusion 37

it has often been claimed that one positive aspect of imputation is that the imputed data
can be passed to third party analysts. Therefore all analyses have also been conducted by
imputation of the training set while the test set was not touched and vice versa. There
were two interesting findings: Firstly, the average MSE values of both cases lay between
those obtained for the imputation of both datasets or none of them. Secondly, there was
also no consistent benefit or harm observed for the imputation of one set instead of the
other.

Conclusion

Results indicate that the theoretical properties of the investigated recursive partition-
ing methods could be retraced in the simulation and application studies. Thus, Ran-
dom Forests showed the best or at least not inferior performances. The CART algorithm
and conditional inference trees implemented by the functions rpart and ctree performed
equally well.

The simulation based on four datasets showed no clear improvement of results by the
application of multiple imputation versus surrogates. A potential benefit is highly depen-
dent on the composition of the simulation setting. MICE may even produce inferior results
when missing values are limited in number and are not arbitrarily spread across the entire
data. Thus the generalizability of simulation results is limited. A broader application to
diverse simulation schemes is needed for further insight.

In order to be close to practical scenarios empirical evaluations of another eight datasets
were performed. The benefit of imputation in terms of prediction accuracy was found to be
ambiguous. For Random Forests the relative reduction was rather negligible in six datasets
ranging from -1% to 4%. In another two datasets it even showed extremely harmful effects;
i.e. -41% and -39%. Similar results were found for single tree methods though the benefit
was slightly more pronounced. Refering to ctree, it reached from -16% to 15% while it
was between -65% and 36% for rpart.

Due to reasons like lacking familiarity or additional work and time that needs to be
spent for multiple imputation, a practitioner might not be willing to use it in combination
with recursive partitioning methods. The application of surrogates instead is fast, simple,
works in any data situation and leads to only negligibly worse (and in some cases even
superior) results. These statements are based on the analysis of as much as four simulation
settings and eight empirical evaluations. Although they cover a huge range of missing value
patterns, variable scales, data dimensions and research fields, the presented results need
to prove generalizability in further studies.
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Chapter 3

A new Variable Importance Measure
for Missing Data

3.1 Research Motivation and Contribution

A highly valued feature of Random Forests, which is in the main focus of this chapter, is
the assessment of a variable’s relevance by means of importance measures. Unfortunately,
there is no suggestion on how to compute such measures in the presence of missing values.
Existing methods can not be used as there are evident violations against their most basic
principles if applied straightforward. Hence one of the most appreciated properties of
Random Forests, namely its ability to handle missing values, gets lost for the computation
of importance measures. This chapter presents a solution to this pitfall by the introduction
of a new variable importance measure that:

e retains the widely appreciated qualities of existing variable importance measures;

e is applicable to any kind of data, whether it does or does not contain missing values;
e is robust against different kinds of missing data generating processes;

e shows good variable ranking properties;

e meets sensible requirements;

e incorporates the full information provided by the entire data (i.e. without any need
for restrictions like complete case analysis);

e can deal with missing values in an intuitive and straightforward way.

The properties of the new method are investigated in an extensive simulation study. Two
data evaluations show the practicability of the new method in real life situations. They
also indicate that the new approach may provide a more sensible variable ranking than the
widespread complete case approach. The new proposal and corresponding investigations
of this chapter have been accepted for publication (Hapfelmeier et al., 2012b).
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3.2 New Proposal

3.2.1 Definition

A new approach is suggested here in order to provide a straightforward and intuitive way
of dealing with missing values in the computation of a Random Forest variable importance
measure. The construction of the new measure closely sticks to existing methodology while
it deviates from the original permutation accuracy importance (section 1.2.2) only in one
— yet one substantial — step.

In the original permutation accuracy importance, the OOB values of a predictor variable
of interested are randomly permuted to simulate the null-hypothesis Hy : Y, ZLX; (cf.
equation (1.3)). This mechanism destroys the relation of the predictor variable to the
response and the remaining variable space. If the OOB accuracy drops substantially as a
result, the variable is termed to be of relevance. However, it is not clear how to proceed
in the presence of missing values. In particular, it is not clear how conclusions about the
importance of a variable can be drawn from the permutation approach when surrogate splits
are used for the computation of the OOB accuracy but are not part of the permutation
scheme. A simple extension of the permutation scheme to cover the surrogate variables
does not solve this issue but leads to additional undesirable effects; e.g. the importance
of all variables that are involved in the permutation would somehow be admixed. For this
problem, a simple but efficient solution is suggested in the following.

The main idea of the new proposal is the following: Instead of permuting the OOB
values of a variable (that may be missing), the corresponding observations are randomly
allocated to one of the child nodes if the split of their parent node is conducted in the
variable of interest. This procedure detaches any decision from the raw values of the
variable, and therefore circumvents any problems associated with the occurrence of missing
values and the application of surrogate splits for the computation of the OOB accuracy.

The rest of the computation procedure, however, is not affected by this “trick”: In the
first step of the computation one proceeds as normal by recording the OOB accuracy of a
tree (using all surrogate splits, which can be considered as an implicit imputation of the
missing values). In a second step, the OOB accuracy is again recomputed by randomly
assigning OOB observations that were originally split in the variable of interest to the
corresponding child nodes.

Formally introducing a binary random variable D, that indicates the decision for one
of the child nodes, the probability of being sent to the left (D = 0) or to the right (D = 1)
child node respectively is given by Py(D = 0) and Py(D = 1) =1 — P,(D = 0) for a node
k. The random allocation of the OOB observations, just like the random permutation of
the OOB values of a predictor variable X; itself in the original permutation importance,
mimics the null hypothesis that the assignment of observations to nodes does not depend
on this particular predictor variable any more. Under the null-hypothesis, the probability
to end up in a specific child node of node k is

P.(D|X;) = Pu(D).
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Therefore it does not matter whether values of X; are missing or not, as it is not used for
the decision of how to further process an observation.

For the practical computation of the prediction accuracy, the probability Py(D = 0) is
replaced by its empirical estimator, the relative frequency:

Pr(D = 0) = ng ot /T

where nyjep and ny are the number of observations that were originally sent to the left
child node and were present in parent node k, respectively. In contrast to the original
permutation importance measure presented in section 1.2.2, the computation of the new
measure consists of the following steps, highlighting the essential difference in step 2:

1. [ Compute the OOB accuracy of a tree.

9 L RzTndomly assign each OOB obiservation 'With ﬁk (D=0) ‘to the }
) child nodes of a node £k that uses X; for its primary split.

3. [ Recompute the OOB f:mccurf:mcyl of the tree following step 2. j

4. [ Compute the difference between the oiiginal and recomputed OOB accuracy. J

5. [ Repeat step 1 ti 4 for each tree.

0. [ The overall importance score isigiven by the average difference. J

A corresponding implementation is given by the function varimp () in the R package party
since version 1.0-0.

3.2.2 Requirements

The characteristics of the proposed importance measure needed to be explored while it
also had to follow some requirements. Therefore several properties were supposed to be
close to those of the original permutation importance measure like the fact that correlated
variables obtain higher importances than uncorrelated ones in an unconditional assessment.
Others were still to be investigated like the effect of different correlation structures (that
determine the quality and amount of surrogate variables), schemes of missingness, the
amount of missing values and so forth.

In order to rate the performance of the newly suggested approach a list of requirements
that should be met by a sensible variable importance measure designed for dealing with
missing values was formulated:

e (R1) When there are no missing values, the measure should provide the same variable
importance ranking as the original permutation importance measure.
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(R2) The importance of a variable is not supposed to artificially increase, but to
decrease with an increasing amount of missing values (because the variable loses
information, cf. Strobl et al., 2007a).

(R3) Like the original permutation importance (that is a marginal importance in the
sense of Strobl et al., 2008), the importance of a variable is supposed to increase with
an increasing correlation to other influential predictor variables.

(R4) The importance ranking of variables not containing missing values is supposed
to stay unaffected by the amount of missing values in other variables. This is only
required within groups of equally correlated variables as differences in correlation
directly affect variable importances and therefore may well change the ranking.

(R5) The importance of influential variables is supposed to be higher than the impor-
tance of non-influential variables. This should hold for equally correlated variables
with equal amounts of missing values — considering that both facts influence the im-
portance of a variable. For example a non-influential variable which does not contain
missing values and is correlated with influential variables can achieve a higher impor-
tance than an isolated influential variable containing missing values (cf. Strobl et al.,
2008). In any case, the lowest importance should always be assigned to non-influential
variables that are uncorrelated with any other influential variables.

In order to investigate these requirements and shed light on further characteristics of the
newly suggested approach, an extensive simulation study — as described in the following
sections — was set up.

3.3 Studies

3.3.1 Simulation Studies

There are several factors that need to be varied in the simulation setting, in particular
the amount of missing values, correlation strength, the number of correlated variables
(termed block size in the following), variable influence and different missing data generating
processes. A detailed explanation of the setup is given in the following.

Influence of predictor variables

The proposed importance measure is supposed to be applicable in both classification
and regression problems. Thus, the simulated data contained a categorical (binary)
and a continuous response. In both cases the coefficients 3, that were used to produce
20 variables in the data generating model described below, are:

B=(4,4,3,4,3,4,3,4,3,0,0,2,2,0,0,0,0,0,0,0)"
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The idea of this setup was that a repeated choice of the same values for [ enables
a direct comparison of importances of variables which are, by construction, equally
influential. The different g values are crossed with the other experimental factors
to allow an evaluation of differences and provide reference values for each setting.
In addition, the non-influential variables with § = 0 help to investigate possible
undesired effects and serve as a baseline.

e Data generating models

A continuous response was modeled by means of a linear model:

y =x' [+ e with e ~ N(0,.5).

The binary response was drawn from a Bernoulli distribution B(1,7) while 7 was
assessed by means of a logistic model

x' B
e

The variable set x itself contains 100 observations drawn from a multivariate normal
distribution with mean vector i = 0 and covariance matrix X:

o (Correlation
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As the variances of each variable are chosen to be 1, the covariance equals the corre-
lation in this special case. The strength of correlation was varied by setting r to 0, .3,
.6 and .9. The structure of the 20 x 20 dimensional covariance matrix ¥ reveals that
there are four blocks of correlated variables of various sizes, each of them consisting

of 3, 2, 2 and 4 variables, respectively. Thus it was possible to investigate the effect
that the strength and extent of the correlation had on the importance measure.
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o Missing values

In analogy to the simulation setting of Rieger et al. (2010), who investigate the
performance of Random Forests on missing data, several MCAR and MAR schemes
were implemented to induce missing values. In addition, a further MNAR setting
was investigated. In each scheme, a given fraction m of observed values is replaced
by missing values for selected variables. As the amount of missing values is of major
concern in the simulation experiments, m takes the values 0%, 10%, 20% and 30%.

In a MAR setting, the probability for missing values in a variable depends on the
values of another variable. In the MNAR scheme this probability is determined by
a variables own values. Accordingly, each variable containing missing values has to
be linked to at least one other variable or itself. Table 3.1 lists the corresponding
relations.

contains missing values determines missing values
(MCAR, MAR & MNAR) (MAR) (MNAR)

Xo X3 X5

X4 X5 X4

Xs Xg Xg

X10 X1 X10

X2 X3 X2

X1 Xi15 X14

Table 3.1: List of variables that contain missing values and variables that determine the
probability of a missing value.

The schemes to produce missing values are:

— MCAR: Values are randomly replaced by missing values.

— MAR(rank): The probability of a value to be replaced by a missing value rises
with the rank the same observation has in the determining variable.

— MAR(median): The probability of a value to be replaced by a missing value is 9
times higher for observations whose value in the determining variable is located
above the corresponding median.

— MAR(upper): Those observations with the highest values of the determining
variable are replaced by missing values.

— MAR(margins): Those observations with the highest and lowest values of the
determining variable are replaced by missing values.

— MNAR(upper): The highest values of a variable are set missing.

The findings of Little and Rubin (2002) showed that usual sample estimates, for
example in linear regression, stay unaffected by the MCAR scheme. However, Strobl
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et al. (2007a) outlined that in classification and regression trees even MCAR may
induce a systematic bias, that may be carried forward to Random Forests based on
biased split selections. Therefore, in the following simulation study, one MCAR, four
MAR and one MNAR process to generate missing values are investigated to shed
light on the sensitivity of the proposed method to these schemes.

A schematic illustration of § summarizes all factors varied in the simulation design below.
Correlated blocks of variables are enumerated by roman figures and separated by ’|’. Bold
figures indicate variables that contain missing values:

= T
f=(44.3]4.3]43(4300] 2 [ 2 |0 | 0 [0 |0 |0 [0 [0)
1 11 111 v \% VI VII VIII IX X XI XII XIIT

In summary, there are 2 response types, 6 missing value generating processes, 4 fractions
of missing values and 4 correlation strengths, summing up to as much as 192 different
simulation settings. Variable importances were recorded by repeating each setting 1000
times. The corresponding R-Code is given in the appendix B.3.1.

3.3.2 Empirical Evaluation

In addition to the extensive simulation study, two well known data sets were used to
show the applicability of the new approach in real life situations. These are The Pima
Indians Diabetes Dataset and the Mammal Sleep Data as presented in section 2.4.2. Both
were chosen to provide a varying number of missing values in several variables. The total
number of variables equals 8 and 9 to allow for an easy and clear comparison of importance
measures.

Besides the examination of the newly suggested approach, the original permutation
importance measure was applied, too. For the latter, the still popular complete case
analysis approach was used, for which observations that contain missing values are entirely
omitted before the Random Forest is fit. Finally the ranking of variable importances
within each approach was compared and discussed. The corresponding R-Code is given in
the appendix B.3.2.

3.3.3 Implementation

The analyses of this chapter were again performed with the R system for statistical com-
puting (R Development Core Team, 2011, version 2.14.1). The function cforest() of the
party package (Hothorn et al., 2008, version 1.0-0) was used as an unbiased implementa-
tion of Random Forests. The settings for the simulation studies were chosen to result in
a computation of ntree = 50 trees and maxsurrogate = 3 surrogate splits in each node.
The number of randomly selected variables serving as candidates for splits was set to be
mtry = 8. Sticking to the default setting mincriterion = 0 there were no restrictions con-
cerning the significance of a split. Trees were grown until terminal nodes contained less than
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mansplit = 20 observations while not allowing splits that led to less than minbucket = 7
observations in a child node. As the number of complete observations becomes extremely
low in the complete case analysis of the additional simulation study these parameters were
set to mansplit = 2 and minbucket = 1 in this case. The examination of two empirical
evaluations was based on Random Forests that consisted of ntree = 5000 trees in order to
produce stable variable importance rankings. The number of variables chosen for splits was
set to mtry = 3 considering that the data contain only 8 and 9 variables, respectively. The
number of surrogate splits and observations required in terminal nodes and parent nodes
was the same as in the simulation studies. An implementation of the new importance
measure is provided by the function varimp since version 1.0-0 of the party package. A
function that counts selection frequencies, i.e. the number of times a variable is chosen for
splits in a Random Forest, is given in appendix B.

Genuer et al. (2008) have conducted elaborate studies to investigate the effect of the
number of observations, ntree and mtry on the computation of importance measures. They
found that the stability of estimation improved with a rising amount of observations and
trees (ntree). However, the rankings of importance measures — which are in main focus of
this work — remained almost untouched. This property is also supported by the fact that
simulation studies are repeated 1000 times; aiming at an averaged assessment of rankings.
It is a common choice to make mitry equal the square root of the number of predictors (cf.
Diaz-Uriarte and Alvarez de Andrés, 2006; Chen et al., 2011). Again, Genuer et al. (2008)
found this value and even higher values for mtry to be convenient for the identification
of relevant variables by means of importance measures. Therefore, all of the parameter
settings of the simulation studies are in accordance with these considerations.

3.4 Results

3.4.1 Simulation Studies

The following extensive investigations are based on the regression analysis in the MAR(rank)
scheme. Due to the study design, each requirement can be explored by the presentation of
results for specific sets of variables. However, it has to be pointed out that non-influential
variables were only partly presented as they all gave the same results and did not show any
unexpected effects. Thus, except for requirement (R1), variables 16 to 20 are omitted from
any presentation. A discussion about the reproducibility of findings in the investigated
classification problem and further processes that generate missing values is given in the
end of this section.

Requirement (R1) is satisfied for all of the investigated variables and correlation strength
(Figure 3.1). The newly suggested approach and the original permutation importance
measure even approximately equal each other when there are no missing values (m = 0%).
Deviations of single assessments are due to the inherent variability of importance measures.
Therefore, results are also presented as median importance across 1000 simulation runs to
stress the average equality.
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Figure 3.1: Comparison of the new approach and the original permutation importance.
Left: Median importance measures across 1000 simulation runs for all variables and cor-
relations when there is no missing data (m = 0%). Right: Distribution of values observed
in 1000 simulation runs for the example of variable 5 (r = 0.6).

Requirement (R2) is met as the importance of variables decreases the more missing
values they contain (Figure 3.2). This holds for all variables and correlation strengths
(Figure A.1 in appendix A.2).

Requirement (R3) holds as correlations with influential variables induce higher impor-
tances (Figure 3.3). This is true for all variables and fractions of missing values (Figure
A.1 in appendix A.2; A comparison of blocks I and II shows that block size is another
factor that affects variable importance. However, non-influential variables, given in block
IV, do not contribute to this effect.).

The effects of correlation and missing values appear to be interacting (see block I in
Figure 3.4): Although all variable importances rise with a rising strength of correlation,
the importance of variable 2 drops in relation to the variables of the same block when the

Var. 8 Var. 10
30 | Coef. =4 Coef. =0
| Block = IV Block = IV
20 ;
© N
1l '
T 10 : T
0 . ' ‘ bl ! : e = ——
T T T T T T T T
m 0% 10% 20% 30% 0% 10% 20% 30%

Figure 3.2: Variable importance of variables 8 and 10 for a correlation of r = .6 and m =
0%, 10%, 20%, 30% missing values. Boxplots of variables with missing values are colored
grey. Outliers are omitted from illustration for clarity.
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Figure 3.3: Variable importances of variables 3, 5 and 9 for correlations of r = 0, .3, .6, .9.
Outliers are omitted from illustration for clarity.

amount of missing values increases. An investigation of selection frequencies — i.e. the
number of times a variable is chosen for splits in a Random Forest (displayed as horizontal
lines) — reveals that it is replaced by other variables in the tree building process. This
effect follows a simple rule: the more similar the information of variables becomes due to
an increased correlation, and the more information a variable is lacking because of missing
values, the more often it will be replaced by others.

Requirement (R4) is satisfied as the ranking of fully observed variables from the same
block stays unaffected by the amount of missing values in other variables (Figure 3.4).
Note that between blocks the variable rankings may change: The importance of variable
5 increases as it is able to replace variable 4 that contains missing values. It rises above
variable 7 with the same (and for strong correlations and many missing values even above
variable 6 with a higher) influence on the response. Another question emerging from the
fact that variables may replace others in a tree is if this also holds for isolated blocks
that are not correlated with any variables that contain missing values. Figure 3.5 shows
that this is almost not the case as selection frequencies and variable importances stay on
a certain level for block 11T compared to block II). This finding even partly extends (R4)
which demands stable rankings for fully observed variables only within blocks, not across
blocks.

Requirement (R5) is met as the importance of influential variables is higher than for
non-influential variables (Figure 3.6). This holds for variables with and without missing
values, but not necessarily for comparisons between the two cases. Importances of influ-
ential variables may drop below those of non-influential ones if the former contain missing
values and the latter are part of a correlated block with influential variables. An example is
given by block IV: Variable 8 shows a higher importance than variable 10 (both containing
missing values) and variable 9 shows a higher importance than variable 11 (both without
missing values). However, the importance of the influential variable 8 drops below that
of the non-influential variable 11, as the former contains missing values and the latter is
correlated to variable 9. The importance of variable 11 even rises above that of influential
variables contained in other blocks (e.g. variable 13). However, the lowest importance
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Figure 3.4: Variable importances (left axis) of variables 1-7 (Block I, II, III) for correlations
of r =0, .9 and fractions of missing values m = 0%, 30%. Boxplots of variables that contain
missing values are colored grey. Horizontal lines indicate selection frequencies (right axis).
Vertical dashed lines indicate correspondance to the same block. Outliers are omitted from
illustration for clarity.
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Figure 3.5: Variable importances (left axis) of variables 4-7 (Blocks II, III) for correlations
of r = .6, .9 and fractions of missing values m = 0%, 30%. Boxplots of variables that contain
missing values are colored grey. Horizontal lines indicate selection frequencies (right axis).
Vertical dashed lines indicate correspondance to the same block. Outliers are omitted from
illustration for clarity.
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Figure 3.6: Variable importances of block IV-VIII for correlations of r = .6, .9 and fractions
of missing values m = 20%, 30%. Boxplots of variables that contain missing values are
colored grey. Vertical dashed lines indicate correspondance to the same block. Outliers are
omitted from illustration for clarity.

should always be assigned to non-influential variables that are uncorrelated with any other
influential variables. This claim is supported by the examples of variable 14 and 15.

In conclusion, factors like the occurrence of missing values, the number and influence of
correlated variables as well as the correlation strength, can positively affect the importance
of variables. However, these are properties to be expected from a marginal variable im-
portance measure when dealing with variables that lose information due to missing values,
yet are correlated to other variables that can “take over for them”.

Results of the entire simulation setting for the regression problem are displayed in Figure
3.7 for a broad overview. The results show the same properties that were already pointed
out for the specific settings above. An additional comparison of results for all schemes used
to produce missing values (MCAR, MAR(rank), MAR(median), MAR (upper), MAR(mar-
gins) and MNAR (upper)) is given by Figure 3.8. For the purpose of clarity it concentrates
on the case of r = .6 and m = 20%. None of the schemes shows any noticeable differences;
all findings of the previous analyses in the MAR(rank) setting can be retraced in each
scheme. In conclusion, the proposed approach shows the same properties for a wide range
of MCAR, MAR and MNAR missing data schemes. Likewise, results for the classification
problem show the same properties (Figure A.3 in the appendix A.2) and thus are not
discussed in detail to omit redundancy.

3.4.2 Empirical Evaluation

Figure 3.9 shows the results observed for the two data evaluations. Both datasets were an-
alyzed in two ways: By applying the new approach to the full data set and by applying the
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Figure 3.7: Variable importances (left axis) of block I-VIII for correlations of r = 0, .3, .6,
.9 and fractions of missing values m = 0%, 10%, 20%, 30% in the MAR(rank) setting of
the regression problem. Boxplots of variables that contain missing values are colored grey.
Horizontal lines indicate selection frequencies (right axis). Vertical dashed lines indicate
correspondance to the same block. Outliers are omitted from illustration for clarity.
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Figure 3.8: Variable importances (left axis) of variables 1-15 for a correlation of r = .6
and a fraction of missing values m = 20% in the regression problem. Boxplots of variables
that contain missing values are colored grey. Horizontal lines indicate selection frequencies
(right axis). Vertical dashed lines indicate correspondance to the same block. Outliers are

omitted from illustration for clarity.
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Figure 3.9: Variable Importances for the Pima Indians and the Mammal Sleep Data. Black
and grey bars correspond to the original permutation importance measure (complete case
analysis; left axis) and the new approach (right axis), respectively. Heights of bars were
matched in relation to the maximally observed importance of each approach. Figures above
bars indicate ranks within methods. The fraction of missing values per variable is given
by m.

original permutation importance measure in a complete case analysis, where observations
with missing values are excluded from analysis.

In the Pima Indians Diabetes Data the ranking of predictor variables shows severe dif-
ferences between methods: The new approach assigns a higher importance to the variables
BMI, number of pregnancies and the diabetes pedigree function. It downgrades the vari-
ables age and 2-Hour serum insulin. The strongest and weakest variables, however, plasma
glucose concentration, diastolic blood pressure and triceps skin fold thickness are ranked
equally. Similar findings can be observed for the Mammal Sleep Data. The variables slow
wave sleep (‘NonD’ = ‘nondreaming’), dreaming sleep, maximum life span and the overall
danger index are ranked differently.

A plausible reason for these differences is that complete case analysis can induce a bias
when observations are not MCAR. This is well-known, yet complete case analysis is still fre-



54 3. A new Variable Importance Measure for Missing Data

quently applied in practice. Results show that differences do not directly (or solely) depend
on whether or not a variable contains missing values. Complete case analysis can modify
the entire importance ranking just because information is omitted when observations are
excluded from the analysis.

To illustrate one possible scenario that can lead to a change in the variable ranking when
complete case analysis is applied to data that is not MCAR, another small simulation was
conducted. Given a pair of binary variables (U, V') the response Y follows the distribution:

N(2,1) if (u,v) = (1,0)
Y ~qN(0,1) if (u,v) =(0,0) or (u,v) = (1,1)
N(=2,1) if (u,v) =(0,1)

The relative frequencies of class 0 and class 1 in U and V' are 80% and 20%, respectively.
They are not correlated. Missing values are induced into V' dependent on the highest values
of Y which resembles the MAR(upper) scheme. To produce stable results the simulation
is based on 5,000 observations and Random Forests growing 5,000 trees. According to our
expectation Figure 3.10a displays the same importance for both variables when there are
no missing values in the data. In Figure 3.10b a fraction of 30% of V' is set missing. The
new approach is able to incorporate the entire data into the computation of the importance
measures and assigns a reduced importance to V' while U remains of high relevance. This
finding again meets our expectations. In a complete case analysis however, U suffers the
loss of its explanatory power although it does not contain any missing values at all. It is
not even correlated to V. The explanation of this effect is quite simple: The highest values
of Y which cause the missing values in V are most frequently related to u = 1. Deleting
these observations in a complete case analysis makes U mainly consist of class 0. As a
consequence it loses its discriminatory power. This example demonstrates how a complete
case analysis can distort the ranking of variable importances when the missingness scheme
is not MCAR. The new approach follows a much more sensible way of producing importance
measures in any situation. Corresponding, more elaborate investigations of this issue are
given in the following chapters 4 and 6.

3.5 Discussion and Conclusion

In summary, the simulation results have shown that all requirements that were previously
formulated were fulfilled by the newly suggested importance measure for different types of
MCAR, MAR and MNAR missing data. Most importantly: In the absence of missing val-
ues, both the original permutation importance measure and the newly suggested approach
produce similar results. The importance of variables containing missing values does not
artificially increase but decreases with the number of missing values and the respective
decrease of information. Moreover, in the presence of correlation, the measure shows all
properties that are to be expected from a marginal variable importance measure.

A particularly interesting effect is that with regard to the variable selection frequen-
cies, variables with increasing numbers of missing values are increasingly replaced by fully
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Figure 3.10: Variable importances of U and V' computed by the original permutation
importance measure (black bars; left axes) and the new approach (grey bars; right axis).
Case (a) is based on the entire data without any missing values. In case (b) 30% of variable
V' are set missing. A complete case analysis is used to compute the original permutation
importance (black) while the new approach is able to process the entire data (grey).

observed variables that are correlated with them: the complete variables “take over” for
those with missing values within a group of correlated ones. Similar findings about the
...competition of correlated variables for selection into a tree...” have already been outlined
by Nicodemus et al. (2010). In this sense, the effects of correlation and missing values are
interacting. This is an intuitive property, since both affect the amount of information a
variable retains.

What is important to note here is that, besides effects of the correlation on the permu-
tation importance that were already pointed out by Strobl et al. (2008), in the presence
of missing values the correlation is also linked to the quality of surrogate variables. The
exact role that surrogate variables play for the variable importance is still ambiguous: On
one hand they help to reconstitute missing information, but on the other hand they also
compete for the selection in the tree. However, the selection frequencies displayed in the
results indicate that the latter effect is stronger.

Besides the findings for the simulation analysis the new approach also appears well
suited to deal with missing values in the evaluation study: There were some profound
differences between the variable ranking suggested by the new approach and a complete
case analysis. As the latter is known to produce biased results in many situations (e.g.,
Janssen et al., 2009, 2010) this strongly indicates that the omission of observations with
missing values has induced artifacts because the values were not missing at random. Results
of corresponding simulation studies support this claim.

The advantage of the new approach proposed in this work is that it incorporates the full
information provided by the data. Moreover, it reconstitutes one of the most appreciated
properties of recursive partitioning methods, namely their ability to deal with missing
values. The rationale of the approach is not to undo the influence missing values have on
the information carried by a variable, but to reflect the remaining information that the
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variable retains with the respective values missing. Accordingly, the resulting importance
rankings do not only depend on the amount of missing values but also on the quality and

availability of surrogate variables.



Chapter 4

Variable Importance with Missing
Data

4.1 Research Motivation and Contribution

A new variable importance measure that is able to deal with missing values has been intro-
duced in chapter 3. However, there are also alternative solutions like imputation methods
and complete case analysis that enable the computation of the permutation importance
measure in such cases. Therefore an extensive simulation study, that involves various
missing data generating processes, is conducted in this chapter to explore and compare the
ability of

e complete case analysis,
e multiple imputation and
e the new importance measure

to produce reliable estimates of a variable’s relevance. Both, regression and classification
problems are explored. In addition, the predictive accuracy of Random Forests that are
based on each of these approaches is investigated for a simulated test dataset. The latter
issue has already been explored in chapter 2: comparisons of models fit with and without
imputation of missing values showed only negligible differences. By contrast, the following
study focuses on the assessment of a variables importance measure. As a result the ability
to produce reliable estimates differs between approaches. Findings and recommendations:
Complete case analysis should not be applied as it may inappropriately penalize variables
that were completely observed. The new importance measure is much more capable of
reflecting decreased information exclusively for variables with missing values and should
therefore be used to evaluate actual data situations. By contrast, multiple imputation
allows for an estimation of importances one would potentially observe in complete data
situations. The investigations of this chapter have been published as a technical report in
Hapfelmeier et al. (2012a).
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4.2 Simulation Studies

There are several factors of potential influence that needed to be explored in the simulation
study. Therefore the amount of missing values, correlation schemes, variable strength and
different processes to generate missing values were of particular interest. The setup closely
resembles the one given in section 3.3.1. However, there are essential differences as listed
in the following:

e Influence of predictor variables

The simulated data again contained both, a classification and a regression problem.
Therefore, a categorical (binary) and a continuous response were created in depen-
dence of six variables with coefficients j:

B=(1,1,0,0,1,0)".

Repeated values for 8 make it possible to compare importances of variables which
are, by construction, equally influential but show different correlations and different
fractions of missing values. In addition, the non-influential variables with 5 = 0 help
to investigate possible undesired effects and serve as a baseline.

o (Correlation
1 03 03 0.3
0.3 1 0.3 0.3
0.3 03 1 0.3

O = O O OO
_— o O O oo

=11 03 03 03 1
0 0 0 0
0 0 0 0

As the variances of each variable are chosen to be 1, the covariance equals the cor-
relation in this special case. The structure of the covariance matrix 3 reveals that
there is a block of four correlated variables and two uncorrelated ones.

o Missing values

Several MCAR, MAR and MNAR processes to create missing values were imple-
mented. For each scheme, a given fraction m € {0.0,0.1,0.2,0.3} of values is set miss-
ing for the variables X5, X and X5 (cf. Table 4.1). The number of observations that
contain at least one missing value is given by 1— (1 —%missing) ™ 2*es. Thus, a dataset
that contains three variables with 30% missing values includes 1 — (1 —0.3)% = 65.7%
incomplete observations on average. This seems to be a rather huge amount rarely
seen for real life data. Nevertheless, this way m comprises a wide range of pos-
sible scenarios. The schemes to produce missing values were MCAR, MAR(rank),
MAR (median), MAR (upper), MAR(margins) and MNAR(upper).
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contains missing values determines missing values
(MCAR, MAR & MNAR) (MAR) (MNAR)

X2 X1 X2

X4 Xo X4

X5 X X5

Table 4.1: List of variables that contain missing values and determine the probability of
missing values.

o Validation

An independent test dataset served the purpose to evaluate the predictive accuracy
of a Random Forest. It was created the same way as the training data though
it contained 5000 observations and was completely observed. The accuracy was
assessed by the mean squared error (MSE) which equals the misclassification error
rate (MER) in classification problems.

e Implementation

The implementation of the simulation was similar to the one described in section
3.3.3: The function cforest() of the party package (Hothorn et al., 2008, ver-
sion 1.0-0) was used with settings ntree = 50, mtry = 3, mazxsurrogate = 3,
mincriterion = 0, minsplit = 20 and minbucket = 7. MICE was again applied
by the function mice () of the mice package (van Buuren and Groothuis-Oudshoorn,
2010, version 2.11) to produce five imputed datasets with defaultMethod = ¢(”norm”,

YY)

"logreg”, "polyreg”). Corresponding R-Code is given in section B.4.

In summary, there were 2 response types investigated for 6 processes to generate and 3
procedures to handle 4 different fractions of missing values. This sums up to 144 simulation
settings. The simulation was repeated 1000 times.

4.3 Results

The following investigations are based on the classification analysis. Results for the regres-
sion problem are presented as supplementary material in section A.3 (Figure A.4) as they
showed similar properties.

A general finding which holds for each analysis accentuates the well-known fact that
unconditional permutation importance measures rate the relevance of correlated variables
higher than that of uncorrelated ones with the same coefficients (Strobl et al., 2008).
This becomes evident by the example of variables 1, 2 and 5. Although they are of equal
strength the latter is assigned a lower relevance as it is uncorrelated to any other predictor;
in some research fields this effect is appreciated to uncover relations and interactions among
variables (cf. Nicodemus et al., 2010; Altmann et al., 2010). Also, there were no artificial
effects observed for the non-influential variable 6 in any analysis setting.
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Figure 4.1: Median variable importance observed for the new importance measure in the
classification problem (m = % of missing values in X5, X, and Xj).

Findings for the new variable importance measure which is able to implicitly deal with
missing values are displayed by Figure 4.1. According to expectations, the importance of
variables 2, 4 and 5 decreased as they contained a rising amount of missing values. It
is interesting to note that meanwhile the importance of variable 1 rose, although it does
not seem to be directly affected. However, the findings of chapter 3 showed that this
gain of relevance is justified: variables that are correlated and therefore provide similar
information replace each other in a Random Forest when some of the information gets lost
due to missing values. Accordingly, variable 1 takes over for variable 2 which results in an
increased selection frequency of variable 1 in the tree building process. In conclusion, this
approach is allowed to be affected by the occurrence of missing values as it mirrors the
situation at hand, i.e. the relevance a variable takes in a Random Forest considering of the
information it actually provides. The new importance measure appeared to be well suited
for any of the missing data generating processes as results did not differ substantially.

Results for the complete case analysis — given by Figure 4.2 — showed undesired effects.
A rising amount of missing values lead to a decreased importance of the completely ob-
served variable 1. This might partly be explained by the general loss of information as
some observations are discarded from analysis. However, the importance of variable 1 is
not supposed to drop below that of variable 2 which is of equal strength yet contains the
missing values. Unfortunately, this latter effect can be observed for every missing data
generating process, except for MNAR (upper). It is most pronounced for MAR(upper) and
MAR(margins). There is no rational justification for this property as variable 1 actually
retains its information while other variables lose it. A proper evaluation of a variable’s
relevance is supposed to reflect this fact. Considering this vulnerability of complete case
analysis to different missing data generating processes it should not be used for the assess-
ment of importance measures when there are missing data.
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Figure 4.2: Median variable importance observed for the complete case analysis in the
classification problem (m = % of missing values in X5, X, and Xj).

An examination of Figure 4.3 reveals that multiple imputation, with as few as five
imputed data sets, is a convenient way to maintain and recover the importance of variables
that would have been observed if there were no missing data at all. This equally held for
variables that contained missing values and those which were completely observed; none of
their importances was arbitrarily decreased or increased. Even the importance of variable
5, which is only related to the outcome and therefore is associated with a rather weak
imputation model, remained unaffected by the amount of missing values. The example of
variable 4 shows that the imputation of non-influential variables did not induce artificial
importances. All missing data generating processes showed these advantageous properties,
except for the MNAR(upper) setting.

The prediction error produced by each approach for the independent test sample is
displayed in Figure 4.4. For multiple imputation the prediction accuracy only slightly de-
creases with a rising amount of missing values. This effect is more pronounced for Random
Forests that use surrogate splits; though there are only minor differences to multiple im-
putation (Rieger et al., 2010; Hapfelmeier et al., 2011, for similar findings). Complete case
analysis appears to be much worse and leads to very high errors with a rising fraction of
missing values. Missing data generating processes give comparable results within each ap-
proach. However, there is one exception for the MNAR setting that always causes the worst
results. A corresponding evaluation of the regression problem is given as supplementary
material in section A.3 (Figure A.5).
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Figure 4.3: Median variable importance observed for the imputed data in the classification
problem (m = % of missing values in Xy, X, and Xj).

4.4 Conclusion

The ability of a new importance measure, complete case analysis and a multiple impu-
tation approach to produce reasonable estimates for a variable’s importance in Random
Forests has been investigated for data that contain missing values. Therefore, an extensive
simulation study that employed several MCAR, MAR and MNAR processes to generate
missing values has been conducted. There are some clear recommendations for application:
Inappropriate results have been found for the complete case analysis in the MAR settings;
it penalized the importance of variables that were completely observed in an arbitrary way.
As a consequence, the sequence of importances was not able to reflect the true relevance
of variables any more. This approach is not recommended for application. By contrast the
new importance measure was able to express the loss of information exclusively for vari-
ables that contained missing values. Therefore, it should be used to describe the relevance
of a variable under consideration of its actual information. In some cases one might prefer
to investigate the relevance a variable would have taken if there had been no missing val-
ues. Multiple imputation appeared to serve this purpose very well except for the MNAR
setting. An additional evaluation of prediction accuracy revealed that Random Forests
based on multiple imputed data were mostly unaffected by the occurrence of missing val-
ues. Results were only slightly worse when surrogate splits were used to process missing
values. Complete case analysis lead to models with the lowest prediction strength.
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Chapter 5

A new Variable Selection Method

5.1 Research Motivation and Contribution

The application of variable selection mainly pursues two objectives: an improved predic-
tion accuracy and the identification of relevant variables. Several approaches for variable
selection have been proposed to combine and intensify these qualities (e.g. Diaz-Uriarte
and Alvarez de Andrés, 2006; Rodenburg et al., 2008; Sandri and Zuccolotto, 2006; Tang
et al., 2009; Yang and Gu, 2009); a summary of various selection methods and related pub-
lications is provided by Archer and Kimes (2008). However, the definition of the expression
‘relevance’ is strongly influenced by the research field the analytical question emerges from.
For example, in the field of genome-wide association studies (GWAS) or microarray anal-
ysis, variable selection is used to uncover noticeable expression levels, influential genes
and genes which are functionally related to the latter. Following this definition, variables
which themselves are informative and variables which are non-informative but correlated
to informative ones are termed to be of relevance. The identification of such variables
is also supported by the application of variable importance measures that are sensitive to
(cor-)relations between variables. For instance, measures like the permutation accuracy im-
portance are well suited to detect relations and interactions among predictors (Nicodemus
et al., 2010; Altmann et al., 2010); therefore it will be used by the new variable selection
method and throughout the following investigations.

Alternatively, researchers might intend to solely aim at the identification of informative
variables. The application of conditional importance measures could prove beneficial in
such a case, and should be the subject of future research. In conclusion, it is still controver-
sially discussed whether correlation should contribute to the importance and relevance of
a predictor (section 1.2.2). However, recent proposals of importance measures (cf. Strobl
et al., 2008) have provided the means to investigate data in either way and researchers
are free to decide which kind of definition is more suitable for their respective research
question.

Yang and Gu (2009); Zhou et al. (2010) show that the predictive power of a Random
Forest may benefit from variable selection. Others like Altmann et al. (2010); Diaz-Uriarte
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and Alvarez de Andrés (2006); Svetnik et al. (2004) claim that the opposite might be
true and that any approach should at least maintain a certain prediction accuracy when
variables are rejected.

An extensive review of the corresponding literature showed that existing variable selec-
tion approaches are closely related to each other, yet differ in essential conceptual aspects.
It also led to the development of a new variable selection approach which is based on
the well known and established statistical framework of permutation tests. A comparison
with another eight popular variable selection methods in three extensive simulation studies
and four empirical evaluations indicated that the new approach is able to outperform its
competitors as it:

e can be used to control the test-wise and family-wise error rate;

e provides a higher power to distinguish relevant from non-relevant variables, based on
a clear, application-dependent, definition of ‘relevance’;

achieves the highest fraction of relevant variables among selected variables;

leads to models that belong to the very best performing ones;

is equally applicable to regression and classification problems.

In contrast to the popular stepwise variable selection for regression models this work focuses
on the detection of all relevant variables — even though they may be highly correlated. Also,
the information of such variables is not necessarily unique and might just as well be omitted
for prediction purposes. However, there is no need to create a sparse prediction model in
order to prevent overfitting. Random Forests implicitly deal with this issue as they are
fitted to random subsets of the data and perform splits in random subsets of the variable
space. Quite the contrary, variable selection might even harm their performance when
too much information is left out. Therefore, the main focus is put on the selection of all
variables which are of relevance and to simultaneously improve or at least maintain the
prediction accuracy that can be achieved without any selection. Both of these goals were
explored for a new approach which stands on solid theoretical grounds. Note that it can
generally be applied to any kind of Random Forest algorithm without any restrictions.
The new variable selection method and corresponding investigations of this chapter have
been published in (Hapfelmeier and Ulm, 2012).

5.2 Variable Selection

Various variable selection approaches have been proposed for application in different re-
search fields. A work of Guyon and Elisseeff (2003) provides an overview of general findings
and methodologies. Some of these ideas, like the permutation of variables or the applica-
tion of cross-validation, are summarized in the following discussion about variable selection
with Random Forests.
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An investigation of the corresponding literature makes clear that the basic element of
variable selection is given by importance measures. They are used by all approaches —
which therefore can be allocated to the family of embedded variable selection methods (cf.
Abeel et al., 2010; Guyon and Elisseeff, 2003), to guide the decision of whether a variable
should be included in or rejected from the model. However, there are also many differences
concerning the number of rejection or inclusion steps, the fraction of variables rejected
per step, the (re-)calculation of variable importances, the kind of importance measure, the
method to assess prediction accuracy, the application of sampling methods, forward or
backward selection and the stopping criterion.

A very prominent difference can be used to distinguish two major classes. One is to
repeatedly fit models to the data in order to determine the best performing one in terms
of prediction accuracy. Related methods are henceforth called ‘performance-based ap-
proaches’. A second kind applies a permutation test framework to estimate the significance
of variable importances. These methods are henceforth termed ‘test-based approaches’.
The following sections will further discuss and explain the most popular representatives
which are also used in the simulation and application studies.

5.2.1 Performance-based Approaches

Performance-based approaches are popular and widely used in many research fields. Al-
though there is some diversity, most of the existing methods only differ in minor aspects
while they share the same methodological scheme. The following listing presents and dis-
cusses well-established representatives of these methods:

e Svetnik et al. (2004) produce several orderings of variables by the computation of
importance measures on each training set of a 5-fold cross-validation. The error of
the corresponding test sets is recorded while the number of variables used to build
a Random Forest is halved along the orderings. The procedure is repeated 20 times
to ‘smooth out’ the variability and the minimum averaged error is used to determine
the optimal number of variables. The final model is now fit to this optimal number
of most relevant variables, i.e. with the highest importance measures, in the entire
dataset.

Svetnik et al. (2004) repeatedly emphasize that there are two dangers that lead to
overfitting. The first one is given by the recalculation of importance measures after
each variable rejection step. In a simulation study this ‘recursive’ approach is shown
to be inferior to the ‘non-recursive’ approach which computes the variable impor-
tances only once using the entire variable set. The second risk arises when the OOB
error is used for evaluation purposes instead of cross-validation. The explanation is
that the observed OOB errors are related to the sequence of variable importances as
the latter were computed on the entire data or on the OOB observations. Conse-
quently the independence of the model fit and evaluation is violated.
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e Jiang et al. (2004) introduce a method in which they claim to combine the unsuper-

vised ‘gene shaving’ approach (cf. Hastie et al., 2000) and the supervised Random
Forests. They follow a very similar concept to Svetnik et al. (2004) though they do
not repeat the algorithm several times. There are three major differences: Firstly
they act against the warnings about overfitting as they use the OOB error. Secondly,
they recalculate the variable importances after each rejection step. And thirdly, two
data sets are actually used to determine the minimal error. A Random Forest is fit to
each of the datasets and the OOB error is recorded. An application of the Random
Forests to the datasets they were not fit to produces another, independent assessment
of the prediction error. The aggregation of the OOB errors and the prediction errors
leads to the final decision of the optimal number of variables. The incorporation of
independent prediction errors, instead of OOB errors only, might result in a variable
selection which is more robust to overfitting.

Diaz-Uriarte and Alvarez de Andrés (2006) present an approach which is again very
similar to the ones suggested by Jiang et al. (2004) and Svetnik et al. (2004). It
uses the OOB error and computes variable importances only once. The best model
is chosen to be the smallest one with an error rate within u standard errors of the
best performing model. Setting u = 1 equals the ‘one-standard-error’ rule (‘1 s.e.’
rule) known from works about classification trees (cf. Breiman et al., 1984; Hastie
et al., 2009). The authors are well aware of the fact that the OOB error might
lead to overfitting. Therefore, the error is investigated in an additional simulation
study by the .632+ estimator (cf. Efron and Tibshirani, 1997). By contrast to the
findings of Svetnik et al. (2004) no overfitting was detected in this analysis. In
a concluding remark the authors state that their approach returns small sets of
uncorrelated variables which are able to retain predictive performance.

Genuer et al. (2010b) repeatedly (e.g. 50 times) fit Random Forests to the data and
record the resulting variable importances. The averaged values are used to produce
an ordering of variables. Along this sequence Random Forests are repeatedly fit to
an increasing number of variables (e.g. another 50 times). An application of the 1
s.e. rule to the average of the observed OOB errors leads to the determination of
the best model. The authors call this first step the “variable selection procedure for
interpretation” meant to “find important variables highly related to the response for
interpretation purpose”. In a second step they propose another method, the “variable
selection procedure for prediction”, which further reduces the selected variable set
and is supposed to achieve a better prediction accuracy. Therefore a threshold is
computed by averaging the error decreases observed at each inclusion of a variable
after step one. This threshold is supposed to reflect the “average variation obtained
by adding noisy variables”. Now, again following the initial sequence a variable
is only selected if the error gain of the corresponding Random Forests exceeds the
threshold. Interesting applications of this approach exist in the fields of brain state
decoding or malaria infectiousness (cf. Genuer et al., 2011; Genuer et al., 2010a).
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A summary of the corresponding computational steps is given by the following pseudo-code.
The possibility to abstract all methods in a single pseudo-code highlights the similarity of
approaches:

1. [ Assess (a) the OOB error or (b) a cross-validated error of the Random Forest. j

|

Compute the importance measures of variables.

|

Reject a fraction of least important variables and refit the Random Forest.

|

4. [ Assess (a) the OOB error or (b) a cross-validated error of the Random Forest. j

|

5. Return to (a) step 2. or (b) step 3. until no further variables can be rejected.
( N
Choose the model with (a) the lowest error or (b) the sparsest model with
0. an error within a specified number of standard deviations to the lowest error
(e.g. according to the 1 s.e. rule).
. J

Often the preceding steps are based on averaged findings to achieve higher
7. stability. Therefore, steps 1. to 5. can optionally be repeated separately,
in conjunction and within cross-validation runs.

An example of application is given by Zhou et al. (2010) who use the method suggested
by Svetnik et al. (2004). However, they follow a recommendation of Diaz-Uriarte and Al-
varez de Andrés (2006) as they investigate a different kind of variable importance measure
based on proximity. Another interesting application is given by the work of Chehata et al.
(2009). The authors use the method of Diaz-Uriarte and Alvarez de Andrés (2006) to select
multi-echo and full-waveform lidar features for the classification of urban scenes.

There are many new and innovative proposals of alternative methods. These are briefly
presented here though they are not further investigated as they are not commonly used or
represent special applications in specific research fields. Still it is worthwhile to list them
in order to highlight the variety of ongoing developments: Sandri and Zuccolotto (2006)
suggest the computation of four different kinds of importance measures for each variable.
The distance to a corresponding four-dimensional centroid determined by the importance
vectors of all variables is meant to reflect the relevance of a variable. Noise variables
are supposed to cluster together and therefore have a strong impact on the position of
the centroid. Thus, distant observations which exceed a specified threshold, are meant
to represent relevant variables. Yang and Gu (2009) propose a method in the field of
GWAS which is able to deal with thousands of single-nucleotide polymorphisms (SNPs).
Therefore, Random Forests are fit to changing subsets of SNPs and global importances are
determined. This procedure was shown to outperform Random Forests fit to the entire data
in terms of power to detect relevant SNPs. A similar approach is presented by Schwarz et al.
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(2007) who also suggest to fit Random Forests to subsets of variables. Afterwards averaged
importances are used to determine a ranking of variables. Along this ranking, the Random
Forest that generates a local minimum for the OOB error is selected. Another very simple
but widely applicable approach is proposed by Strobl et al. (2009). They suggest to assess
the random variability of non-informative variables by the range of observed, negative
importance measures. Only variables with a positive importance that exceeds this range
are termed informative and supposed to be subject of further exploratory investigations.

5.2.2 Test-based Approaches

Altmann et al. (2010) present a method that uses a permutation test framework to pro-
duce unbiased importance measures (cf. Strobl et al., 2007b). In addition, the approach
offers the opportunity to perform variable selection: In a first step the importance mea-
sures of variables are recorded. In a second step the response variable is permuted several
times. Each time a new Random Forest is fit to the data which now contains the permuted
response vector. The corresponding importance measures are used to determine their em-
pirical distribution under the condition that the relation between predictors and outcome
is destroyed by permutation. In combination with the original importance measures as-
sessed in the initial step, a p-value can be assigned to each variable. Variable selection can
now be performed by the rejection of variables with a p-value above a certain threshold,
e.g. > 0.05. The authors also claim that this approach distinguishes informative from
non-informative variables, improves prediction accuracy and selects correlated variables
in groups which is a major advantage to identify functionally related genes in microarray
experiments.

An almost identical approach has already been introduced earlier by Rodenburg et al.
(2008) whereas these authors directly aim at the introduction of a variable selection ap-
proach. They repeat the procedure several times and combine the selected variables in
a final set. Another related work of Wang et al. (2010) is based on a different kind of
importance measure called the ‘maximal conditional chi-square importance’ to identify
relevant SNPs in GWAS. Following the same research goal Tang et al. (2009) simultane-
ously permute entire sets of SNPs which belong to the same gene. This method is closely
related to the approach of Altmann et al. (2010) as permuting the response vector equals
a permutation of the largest group of variables available, which is the entire set.
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Due to their similarities the approaches can again be summarized by pseudo-code:

1. { Compute any kind of importance measure using the original data. }
s 7
Permute groups of variables (up to all variables available) several times
2. to assess the empirical distributions of importance measures when the
L relation to the response — and the remaining variables — is destroyed. )
3 ( Assess the p-value for each variable by means of the empirical )
) distributions and the original importance measures.

|

4. { Select the variables with a p-value below a certain threshold, e.g. < 0.05. }

The concept of significance tests for variable importance measures has already been intro-
duced by Breiman and Cutler (2008). However Strobl and Zeileis (2008) revealed that the
power of such tests depends on the number of trees in the Random Forest. Consequently
they state that due to “alarming statistical properties ... any statement of significance
made with this test is nullified”. Likewise, for the approaches presented in this section,
conclusions about the significance of importance measures have to be drawn with care. It
is highly ambiguous what kind of hypothesis is investigated by the corresponding tests.
An exploration of properties on the grounds of a permutation test framework is given in
the following section. It reveals apparent shortcomings which lead to the introduction of
a new approach that supports an improved interpretability and is based on sound theory.

5.2.3 New Method

The following section contains a discussion about an adequate permutation test for variable
importance measures. There are obvious similarities to section 1.2.2 as the construction of
the permutation accuracy importance is based on the same framework. By contrast, per-
mutation is used for hypothesis testing here. This demands for a new detailed exploration
of its statistical properties and the effects of an improper application.

Rationale

To identify the most relevant and informative variables from a set of candidates one may
pose the question: “Which variables are related to the outcome?” A formulation in mathe-
matical terms transforms this question into a null-hypothesis of independence between the
response Y and a variable X;, (j =1,...,v):

Hy:Y L X,

where X; comes from the v-dimensional vector X = (X, ..., X,). A variable which violates
this hypothesis is termed to be relevant. Whether information against it is present in the
data can be assessed in a permutation test framework (see Efron and Tibshirani, 1994;
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Good, 2005, 2000, for further insight in basic principles). Therefore X; is permuted to
destroy its relation to Y. The data created this way are used to refit the Random Forest
and to recalculate the variable importance. Values observed across several repetitions of
the permutation are used to reflect the empirical distribution of importance measures under
the null-hypothesis. Finally, the location and likelihood of the original importance measure
within this distribution can be used to judge its concordance with the null-hypothesis and
to produce a p-value.

However, it is well known that the permutation of X; does not only destroy its relation
to Y but also to the remaining variable space Z = X\ X (cf. Strobl et al., 2008). Therefore
a non-informative variable can still show an increased variable importance if it is related
to an informative one. The correct question which truly fits to the permutation scheme
now extends to: “Which variables are related to some other or to the outcome?” A
reformulation of the corresponding hypothesis is

H() IY,ZLX]‘. (51)

In many research fields like the analysis of GWAS or microarray data this is a desirable
property as relations among variables are of major interest; by contrast, this hypothesis
might not always agree with the research question of interest, e.g. when correlation should
not be a relevant factor for variable selection (cf. discussions of section 5.1). An example
emerging from the field of ecology is given by Cutler et al. (2007).

Based on these considerations it is unclear which information is provided by the per-
mutation scheme proposed by Altmann et al. (2010) and Tang et al. (2009). These au-
thors suggest to simultaneously permute multidimensional vectors (i.e. groups) of variables
X* C X which destroys the relation of each of these variables to the outcome and also
to variables Z* = X \ X* which themselves are not part of the permutation scheme. The
resulting empirical distributions do not reflect Hy (5.1) but a null-hypothesis which, for all
variables X* within the mutual permutation, postulates independence of the outcome Y
and the variables Z*:

H::Y,Z" L X* (5.2)

As a consequence evaluations of the original importance measures within the empirical
distributions under H (5.2) can not be used to draw conclusions about the significance of
a single variable X;.

Another point of concern is that the significance of each variable is tested independently.
This way only the test-wise error rate (TWER = probability of a null-hypothesis to be
falsely rejected) can be controlled at a threshold « (e.g. « = 0.05). However, the procedure
obviously leads to a multiple testing problem. Therefore it is advisable to apply a correction
method that helps to control the family-wise error rate (FWER). A simple but effective
method is given by the Bonferroni-Adjustment which is suggested for the new approach.
Hereby the probability of at least one false rejection among a set of true null-hypotheses
is bounded by « (Hastie et al., 2009). Likewise any correction method to handle the
multiple testing problem can be applied. This also includes methods which control the false
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discovery rate (FDR) instead of the FWER (e.g. the Benjamini-Hochberg or Benjamini-
Yekutieli procedures; cf. Benjamini and Hochberg, 1995; Benjamini and Yekutieli, 2001,
for details).

Implementation

Following these considerations we introduce a method which rates the relation between a
variable and the outcome and other variables, i.e. its relevance according to Hy (5.1), on
a sound theoretical permutation test framework. The new approach differs in slight but
essential adaptions from the test-based approaches (differences are highlighted):

1. [ Compute any kind of importance measure using the original data. }

l

Permute each variable separately and several times to assess the
empirical distribution of its importance measure under H; (5.1).

l

Assess the p-value for each variable by means of the empirical

3. L distributions and the original importance measures. )
( Select the variables with a p-value below a certain threshold; )
4. optionally with Bonferroni-Adjustment (or any other method
that controls the FWER or FDR).
- J

This way, as a single variable X; is permuted, it is assured that the distribution of im-
portance measures is simulated under the null-hypothesis of interest, namely Hy (5.1). A
permutation of the response Y, as a special case for the simultaneous permutation of sev-
eral variables when X* = X, follows H{ (5.2) which can not validly reflect the significance
of single variables Xj.

In the following simulation studies (section 5.4.1 and 5.4.1) approaches basing on H{
(5.2) only achieve an inferior power to detect relevant variables. A closer examination
of results led to a simple explanation: A permutation of the response Y destroys any
relation to the entire variable space X. As a consequence, Random Forests are forced to
use any of such non-informative variables to build a model and will frequently allocate an
importance score of a certain size to them. By contrast, Random Forests are still able
to select informative variables if only a single variable of interest is permuted under H
(5.1). Accordingly, this permuted variable will not be able to contribute to the Random
Forest and will therefore only achieve very low importance scores, instead. For this reason,
the resulting upper percentiles, which represent the critical values of the corresponding
permutation tests, of the empirical distribution obtained under Hy (5.1) are probably lower
than the ones under Hj (5.2). This results in a higher power to detect relevant variables
for the new approach. A short yet explicit example of these properties is given by Figure
5.1 for the relevant variable X in the case of a regression problem: y = x1+xs+x3+x4+e,

e~ N(0,0.5), z;  N(0,1).
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Figure 5.1: Kernel density estimation of importance measures obtained for X; after per-
mutation following Hy and H. Vertical lines indicate the respective 95% percentiles, i.e.
the critical values of one-sided permutation tests on 5% significance levels. For instance:
An initial importance taking a value of ¢ would lead to a significant test result under H
and a non-significant result under Hj.

The necessity of a re-computation of Random Forests and variable importances after
each permutation of a predictor variable makes this approach computationally demand-
ing. Yet, after an expensive and even more time-consuming data collection phase e.g.
of microarray data, the main focus should be put on a meaningful selection and not on
the expenditure of time. In addition, Altmann et al. (2010) already outlined that the
entire process might be parallelized on multiple cores of a system to significantly reduce
computation time.

5.3 Studies

The new method is compared with the approaches introduced in section 5.2 in terms of
prediction accuracy and even more importantly, the ability to distinguish relevant from
non-relevant variables. Three simulation studies were conducted. The first two are used to
explore theoretical properties while the third one represents an application to an artificial
dataset. In addition, the performance of each method was assessed by four empirical
evaluations.

5.3.1 Simulation Studies

The first simulation study (Study I) explores the TWER and FWER of the approaches.
For both, an error is defined to be the selection of a non-relevant variable, which is non-
informative and not correlated to any informative one. By definition, the new approaches
are to control the TWER and FWER at a specified level (e.g. a < 0.05).

The second simulation setting (Study II) is meant to shed light on the power of the
approaches to identify relevant variables and to distinguish them from non-relevant ones.
According to Hy (5.1) there are two aspects that might affect this ability and that need to
be checked for: the predictive strength of a variable and the correlation between variables.
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A third simulation setting (Study III) represents the more specific case of an application
to a simulated, artificial dataset. It includes a broad assemblage of relevant and non-
relevant variables, in total there are 20, with differing correlation schemes. This way the
properties of each method can be examined in an extensive but known lineup of settings.
This time, next to selection frequencies, focus was also put on prediction accuracy. As
it might not always improve when variable selection is applied to Random Forests (Diaz-
Uriarte and Alvarez de Andrés, 2006) a baseline is given by the performance of a Random
Forest using the entire variable set.

The variable selection methods are investigated in classification and regression prob-
lems. Therefore a categorical (binary) and a continuous outcome are created for Studies I,
IT and III. The continuous outcome is modeled by means of a linear model

y=x'f+ewith e~ N(0,1)

while values of the binary outcome follow a Bernoulli distribution B(1, 7). The parameter
7 was modeled by means of a logistic model

ex' B

The variable set x itself contains 100 observations drawn from a multivariate normal distri-
bution with mean vector fi = 0 and covariance matrix >. As the variances of each variable
are chosen to be 1, the covariance equals the correlation in this special case.

For Study I,

10000
01000
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This makes five non-relevant (non-informative and uncorrelated) variables. A selection
of these variables is rated as an error with reference to the TWER and FWER. The
uncorrelated structure of variables assures the stochastic independence of permutation
tests conducted by the new approaches. This way their ability to control the TWER and
FWER can be validly investigated.

In Study II,

Y= and B = (s,s,5,1,0,0)".
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With s € {0,0.1,0.2,...,1} one is able to investigate how an increasing strength of a
predictive variable affects selection frequencies. In combination with ¥ ;; this effect can be
observed for variables that are uncorrelated, correlated with an informative variable and
correlated with a non-informative variable.

For study III,

100 00000O0O0OOTO0 00 0
0100000O0O0O0GO0TO0 00 0
001 00000000000 0
000 17700000000 0
000.7 1.7 00000000 0
000.77 100000000 0
000000 1.7 777000 0
0000 00.7 1777000 0

Xmr=1000 00077177000 o | and
000 000.7.77 1.7 000 0
000 O0O00.7.7 771000 0
00000000 OTUO0UO0 1.70 0
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000 0000O0O0O0UO0O0 01 0
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Brrr=(3,2,1,3,2,1,3,2,1,0,--- ,0)".

The structure of Yj;;; reveals that the 20 variables are assembled in correlated blocks
of different sizes; while it equals the identity matrix for variables 14 — 20. The first three
informative variables are not correlated at all. They are compared to a triplet of informative
variables which is of the same strength but is correlated. The next block of variables is
identical but contains two additional non-informative — yet, due to correlation, relevant —
variables. These are followed by two non-relevant variables which are correlated to each
other and another seven, non-informative and uncorrelated variables. The combination
of different prediction strength and correlation schemes is supposed to answer questions
about the influence of these factors on selection frequencies.

Variable selection was repeated in 5000 simulation runs for study I and 1000 simulation
runs for study II and III. In each run and study, the data were made up of 100 observations.
For validation purposes an independent dataset consisting of 5000 observations was created
once in study III. It was used to measure the prediction strength of a Random Forest by
the MSE which equals the misclassification error rate (MER) in classification problems.
The corresponding R-Code is given in the appendix B.5.2.
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5.3.2 Empirical Evaluation
Analysis settings

Empirical evaluations of four datasets (two regression and two classification problems)
have been conducted to investigate the performance of each method. Observed selection
frequencies can only be used to explore differences between methods but not to evaluate
their concordance with the real relevance of a variable because it is unknown. The per-
formance is again measured by means of the MSE. Bootstrap sampling makes it possible
to draw conclusions about the predictive strength of a modeling strategy. Therefore a
number of observations, which equals the initial size of the data, is repeatedly drawn with
replacement. This way approximately 1 — (1 — 1/n)" &~ 1 —e™! = 63.2% of observations
make up the training set while the remaining observations are used as test set. The .632
estimator suggested by Efron (1983) provides a less biased estimate of the MSE compared
to sampling methods like cross-validation or resubstitution (cf. Boulesteix et al., 2008a;
Hastie et al., 2009). It is defined as a weighted sum of the overoptimistic resubstitution

. _ . —=0)
estimate mse and the too pessimistic leave-one-out bootstrap MSE ~ estimate:

MSE = 0.368 - mse + 0.632- MSE .

Another appealing property of the bootstrap is that it is commonly used to evaluate a
variable’s importance by the number of times it is selected within several bootstrap samples.
Examples for linear, logistic or Cox regression can be found in publications of Austin and
Tu (2004); Sauerbrei et al. (2007); Sauerbrei (1999). Further examples for microarray data
are given by Qiu et al. (2006).

In summary the bootstrap method is used for two obvious reasons: Firstly to produce
an estimate of low bias for the MSE and secondly to evaluate the selection frequencies
of variables. Therefore 1000 bootstrap samples were repeatedly drawn for each data set.
Variable selection was additionally conducted on the entire data to produce a selection that
is based on the entire information. A baseline assessment of the MSE is again given by the
performance of a Random Forest without any kind of variable selection. The corresponding
R-Code is given in the appendix B.5.3.

Data

Four well known datasets, two regression and two classification problems, with differing
numbers of variables and observations were chosen for the application studies. These are
the Infant Birth Weight Data and Heart Disease Data already introduced in section 2.4.1.
Two other datasets have been added:

e The Boston Housing Data was originally used by Harrison and Rubinfeld (1978)
to assess the willingness of citizens to pay for clean air. One of their objectives was to
model the median value of owner-occupied homes by regression analysis. Here, this
task is solved by an application of Random Forests using demographic and economic
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factors (e.g. crime rate, proportion of land over 25,000 sq. ft., proportion of non-retail
business acres per town, a Charles River dummy variable, nitric oxides concentration,
average number of rooms per dwelling, proportion of owner-occupied units built prior
to 1940, weighted distances to five Boston employment centres, index of accessibility
to radial highways, full-value property-tax rate, pupil-teacher ratio, a factor for the
proportion of blacks in the town and the fraction of lower status of the population).
The data consists of 506 observations and 13 independent variables.

e The Parkinson’s Disease Detection Dataset contains voice recordings of several
healthy people and people suffering from Parkinson’s disease. Little et al. (2007)
originally used it to investigate new feature extraction and speech analysis methods
for general voice disorders. The distinction of healthy and diseased people creates a
classification problem which is meant to be solved by the aid of several biomedical
voice measurements. In total there are 22 independent variables measured on 195
observations.

A summary of data characteristics is given in table 5.1. Except for the Infant Birth Weight
Data which was taken from the R package MASS, the data are provided by the open source
UCI Machine Learning Repository (Frank and Asuncion, 2010).

Data # obs. # var.
regression Birthweight 189 9

B. Housing 506 13
classification Heart 270 13

Parkinson 195 22

Table 5.1: Characteristics of data used in the application studies.

5.3.3 Implementation

Analyses of this chapter were again performed with the R system for statistical computing
(R Development Core Team, 2011, version 2.14.1). The computation of unbiased Random
Forests based on a conditional inference framework is provided by the function cforest ()
which is part of the package party (Hothorn et al., 2008, version 1.0-0). Each Random
Forest contained ntree = 100 trees. The number of randomly selected candidate variables
for splits ntry was chosen to be the square root of available variables, following the recom-
mendation of Diaz-Uriarte and Alvarez de Andrés (2006). Sticking to the default setting
mancriterion = 0, there were no restrictions concerning the significance of a split. Trees
were grown until terminal nodes contained less than minsplit = 20 observations while child
nodes had to contain at least minbucket = 7 observations.
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5.3.4 Settings of Variable Selection Approaches

The variable selection methods presented in section 5.2 were implemented as R-functions
(corresponding codes are given in the appendix B.5.1). Although the instructions of authors
were closely followed, a minor adjustment was made for the performance-based approaches.
The rejection of a certain fraction of variables was reduced to one variable in each step
in order to investigate a finer grid. Another adaption, which deviates from the original
definitions but is felt to be a major improvement, is that performance-based approaches
were empowered to select no variables at all. Therefore the prediction of such a null-model
is simply given by the majority vote of classes (for binary outcomes) or the mean outcome
(for continuous outcomes). The resulting MSE is compared to the performance of Random
Forests at different variable selection stages. Within the algorithm it technically represents
one of the MSE values that can be chosen to be optimal e.g. according to the 1 s.e. rule.

For test-based approaches tests were conducted in a one-sided manner as only values
on the right margin of the empirical distribution of importance measures (i.e. high values
as opposed to low or negative values) provide evidence against the null-hypothesis of a
non-relevant variable.

The performance-based approaches have originally been constructed for classification
problems only. Consequently, the discussion and presentation of results focus on such
data. Technically, they are applicable to regression problems, too. However, in such cases
only the 0 s.e. rule is executed to stick close to the original definitions. In principle, and
this is subject to further research, Breiman et al. (1984) already suggested an adaption of
the 1 s.e. rule for regression analysis. In addition there have been proposals of advanced
cross-validation to select optimal models in linear regression analysis (Shao, 1993; Zhang,
1993). If adapted to the performance-based variable selection approaches, such methods
could prove beneficial to reduce type-I errors, i.e. lessen the selection of non-relevant
variables. Likewise, the s.e. rule could serve as a kind of tuning parameter for this purpose.
Furthermore, the test-based approaches can easily be modified to potentially control for
the TWER and FWER in the same manner as the new proposal.

A summary of all variable selection methods and specific settings is given in Table 5.2.
It also contains a list of labels which will be used to name the methods in the following.
The algorithms themselves are presented in section 5.2.

5.4 Results

5.4.1 Simulation Studies
Study I

Study I was designed to explore the TWER and FWER of the variable selection approaches
for non-relevant variables. Table 5.3 shows that the approaches NAP, NAP.B and ALT are
able to control the TWER of 5%. NAP.B meets the expectations and even controls the
FWER due to the application of the Bonferroni-Adjustment. Although other approaches
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Publication Label  Settings
Svetnik et al. (2004) SVT - 5-fold CV
- 20 repetitions
Jiang et al. (2004) J.0 - 0 s.e. rule*
J.1 - 1 s.e. rule*
Diaz-Uriarte and Alvarez de Andrés (2006) D.0 - 0 s.e. rule
D.1 - 1 s.e. rule
Genuer et al. (2010Db) Gi - model for interpretation
G.p - model for prediction
Altmann et al. (2010) ALT - 400 permutation runs
- o = 0.05%*
New Approach NAP - 400 permutation runs
- a = 0.05%*

NAP.B - 400 permutation runs
- 0= 0.05 /Myt ¥ F
- All - all variables are used
*only the OOB error is computed
**one-sided test
***Bonferroni-adjusted significance level

Table 5.2: Summary of variable selection methods, labels and specific settings.

have originally not been constructed to control for the TWER or FWER they are judged
the same way (see section 5.3.4 for a discussion of possible modifications). Thus, J.0, D.0
and SVT produce TWER which are far beyond the threshold of 5%. Others like G.i, G.p,
D.1, and J.1 at least show a less pronounced violation of this restriction. Accordingly,
approaches are allocated to three classes to facilitate the presentation and comparison of
results in the following. Class I is made up by approaches which control the TWER or
FWER — not surprisingly these are the test-based approaches. Class II contains approaches
which showed an TWER of moderate extent. Finally class III consists of approaches which
showed a severe TWER.

For the regression problem NAP, NAP.B and ALT controlled the TWER and FWER
the same way as for the classification problem (cf. Table A.3 in appendix A.4.1). The error
rates of their competitors were again too high, with one exception for G.p, while differences
between methods were less pronounced. Once again it becomes evident that they were not
constructed for the purpose of controlling neither the TWER nor the FWER.

Another interesting finding is given for the approaches using the 0 s.e. rule. Both
produce very high TWER and are therefore members of class III. The explanation is quite
simple: As long as the prediction accuracy does not improve by omitting variables, the
full variable set, or at least a subset that contains non-relevant variables, may provide the
best performing model. Considering this fact it is advisable to apply the 1 s.e. rule which
choses the smallest set of variables among models of comparable performance.
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TWER FWER Class
var. 1 var. 2 wvar. 3 var. 4 wvar. b

NAPB 1.0% 08% 0.7% 12% 0.9% 4.4% I
NAP 51%  5.0%  4.9% 57% 53% 22.7% I
ALT 53%  4.7%  5.0% 52% 52%  23.3% I
G.p 92% 9.1% 8.6% 9.9% 9.4%  40.6% II
D.1 13.9% 14.8% 14.4% 15.1% 14.9%  49.7% II
J.1 14.1% 14.8% 14.8% 15.2% 15.1%  54.0% 11

Gi 18.7% 191% 18.4% 20.0% 19.7%  64.2% II
J.0 29.1% 28.5% 28.7% 29.8% 29.9%  79.7% II1
D.0 29.1% 29.3% 29.7% 29.5% 30.6%  75.7% III
SVT 29.7% 29.6% 29.1% 29.8% 30.2%  58.9% III

Table 5.3: TWER and FWER for 5000 simulation runs of the classification problem in
study I. Approaches are ranked and allocated to classes I, II and III according to their
mean TWER.

Study 11

Study II was designed to investigate the power of the approaches to discriminate relevant
from non-relevant variables. Results are shown by Figure 5.2 which displays the observed
selection frequencies against a rising strength s of the predictor variables. For a clear
presentation, classes are subsumed by gray areas which range from the lowest to highest
values observed for the corresponding approaches. The evident discrepancy of classes
confirms the definition found in study I. A more detailed view and discussion of each
approach is given in the appendix A.4.1.

An examination of selection frequencies for the non-relevant variable 6, and variables
1, 3, and 5 when s = 0, makes it clear that approaches of class III heavily exceed the
TWER of 5% (which is indicated by a horizontal line in the plots). Accordingly, it is not
surprising that they also show a high power to detect the relevant variables 1, 2, 3, 4 and
5 (when s > 0). However, this comes at the cost of a high TWER. It is also interesting
to note that for some of the approaches, the selection frequency of the relevant variable 4
even drops with a rising strength of variables 1, 2 and 3. The new approaches NAP and
NAP.B show competitive and in some cases even superior results though they control the
TWER, or even the FWER in the case of NAP.B.

Results for class 1T (+ ALT) indicate that these approaches are much more capable
to control the TWER. However, in the majority of cases they are outperformed by NAP
and NAP.B which show a much higher power to select the relevant variables. The new
approaches also seem to be the only ones which are able to detect variable 5, which is non-
informative yet relevant as it is correlated to the informative variable 3. They also show
a constant selection frequency for variable 4 — independent of the amount and strength of
informative variables.
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Figure 5.2: Plot of selection frequencies in 1000 simulation runs of the classification problem
of study II. Results are shown in dependence of predictor strength as determined by g;; =
(s,5,5,1,0,0)". There are no relations except for pairwise correlations (r = 0.7) between
variable 2 and 4 as well as 3 and 5. Class III and II (+ ALT) are represented by gray areas
which range from the lowest to highest values observed for the corresponding approaches.
The horizontal line represents a 5% TWER. [Relevant Variables: var. 4 & var. 1, 2, 3, 5
for s > 0; Informative Variables: var. 4 & var. 1, 2, 3 for s > 0]
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Results for the regression problem show a clear superiority of the new approaches
which is even more demonstrative than in the classification problem (cf. Figure A.7 in the
appendix A.4.1). NAP and NAP.B once again outperform their competitors in terms of
discriminatory power.

Study III

Figure 5.3 displays results for variables 1-15 of study III (the non-relevant variables 1620
were omitted from the illustration for redundancy). The presentation is again grouped by
class and a more detailed discussion of each approach is given in appendix A.4.1. As a
general finding, it is interesting to note that variables of correlated blocks (var. 4-11) show
higher selection frequencies than uncorrelated variables (var. 1-3), even though the former
might be non-informative (var. 10-11). This is due to the sensitivity of unconditional
importance measures to relations between variables (cf. Strobl et al., 2008).

An investigation of selection frequencies for variables 12-15 makes clear that approaches
of class I1I again select non-relevant variables far too often — confirming the results of studies
I and II. Despite this increased TWER they are not able to outperform NAP and in most
cases even the opposite is true when it comes to the identification of the relevant variables
1-11. Even NAP.B, which by definition is much more conservative, is able to keep up with
these approaches in some cases. All methods of class 1T (+ ALT) produce a TWER of
about 5% and therefore also agree with the findings of Study II. A comparison reveals a
clear superiority of NAP and NAP.B in terms of the ability to identify relevant variables.

It is also interesting to note that a precise interpretation of equation (5.1) suggests
that even a relation between non-informative variables could theoretically provide evidence
against Hy. However, this is not a grave issue as in practice the computation of importance
measures underlying the hypothesis tests is only affected by relations of variables to the
response, whether they are direct or achieved via correlation. Therefore, NAP and NAP.B
did not select the correlated and non-informative variables 12 and 13. This is a desirable
property as it perfectly matches the definition of non-relevance (cf. section 5.1) which
demands that a relevant variable is either informative itself or correlated to an informative
one.

Once again, results demonstrate that the new approaches show a high power to distin-
guish relevant from non-relevant variables among approaches which either tend to select
any kind of variable (class III), not matter their relevance, or are too weak to detect relevant
variables (class II).

Boxplots of the observed MSE values show that among all variable selection approaches,
NAP performs best while NAP.B is in the sixth position. However, it has to be pointed
out that all results up to and including NAP.B are on a comparable level. Results also
underline the well known fact that the prediction accuracy of Random Forests does not
necessarily benefit from variable selection: the Random Forest which was build without
any selection performs best.

In a perfect scenario all of the selected variables are relevant while the non-relevant
ones are rejected. An additional illustration of mean selection frequencies investigates this
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property. The second best performing approach SVT selected 10.7 variables on average.
Among those, 9 variables were of relevance. This makes a difference of 1.7 (16%) selected
but non-relevant variables. Results for D.0 and J.0 are even worse. NAP only selects 9.2
variables but as much as 8.8 relevant ones. This makes a difference of 0.4 (4%) while the
absolute amount of selected relevant variables is almost as high as for SVT (8.8 vs. 9).
Thus for the selection of an equal number of relevant variables NAP produces less false
positive detections. These values are even lower for NAP.B and ALT (0.1 and 0; 2% and
0%), although the absolute amount of detected relevant variables is lower (6.5 and 6.7).
In conclusion NAP and NAP.B show a high efficiency as the fraction of relevant variables
among a set of selected variables is high. NAP is also more effective as the absolute
amount of detected relevant variables is high, too. Meanwhile they are able to produce a
comparable MSE while other approaches are less efficient and less effective.

In the regression problem the new approaches NAP and NAP.B outperform their com-
petitors even more clearly (see Figure A.9 in appendix A.4.1). They show the highest
power to detect relevant variables, produce the lowest median MSE (even lower than for
a Random Forest without any variable selection) and show effectivenesses and efficiencies
that range among the highest.

5.4.2 Empirical Evaluation

A summary of results found for the empirical evaluation is given by Table 5.4. It reveals
that the new variable selection approaches, compared to eight competitors, are consistently
ranked among the best performing ones. In some instances they are even able to beat the
performance of a Random Forest that uses no variable selection. It is also remarkable that
methods of class II and IIT show alternating performance rankings while they can clearly
be differentiated from class I which achieves better results throughout.

The number of selected variables for each classification and regression problem differs
between methods. A comparison of performances makes clear that an increased or de-
creased set of variables is not necessarily associated with prediction accuracy. Likewise,
it is not possible to rate the quality or correctness of selections as the true relevance of
variables is unknown for real data (section 5.4.1 for similar evaluations). However, the
number of times a variable is selected across all bootstrap runs may at least be taken as
an indicator for its importance and the stability of its selection (cf. Table A.4 in appendix
A.4.2). Considering the achieved performances, NAP and NAP.B seem to be well suited
to select variables which are of predictive relevance.

5.5 Discussion and Conclusion

An extensive review of literature about variable selection using Random Forests led to
the proposal of a new approach. It was basically invented within a permutation test
framework to meet important theoretical properties. In addition, three simulation studies
showed further appealing properties: Firstly, the new approach makes it possible to control
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Figure 5.3: (a) Selection frequencies of variables 1-15 in 1000 simulation runs of the clas-

sification problem of study III. Class III and II (+ ALT) are represented by gray areas
which range from the lowest to highest values observed for the corresponding approaches.
The horizontal line represents a 5% TWER. Brackets indicate correlated variables. (b)
Boxplots of the observed MSE aranged in increasing order of median values. (c¢) Mean se-
lection frequency of variables and an additional information about the amount of relevant
and informative variables among them. Reference values are indicated by horizontal lines.
[Relevant Variables: var. 1 — 11; Informative Variables: var. 1 — 9|
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Rank 1 2 3 4 5 6 7 8 9 10 11
Birthweight NAP.B NAP ALT G.p Gi  SVT All D.0 J.0
class 1 1 1 11 11 11T 111 111
MSED 0.208 0.213 0.209 0.209 0.209 0.210 0.227  0.315  0.309
var. selected 5.80 7.25 4.99 1.00 1.22 1.09 9.00 5.18 5.01
Thse 0.166 0.169 0.192  0.203 _0.203 0.203 0.101 _0.272 _ 0.319
var. selected 5 5 3 1 1 1 9 5 5
MSE5D 0.193 0.197 0.203 0.207 0.207 0.207 0.214 0.299  0.312
B. Housing ALT NAP.B NAP Al SVT Gi G.p D.0 7.0
class I 1 1 111 I 1I 01 111
Mse™® 16.31 16.61 16.70  16.79  20.22  20.05 20.10 27.30  26.71
var. selected 9.39 12.56 12.83 13.00 2.78 2.63 2.09 9.01 8.81
Thoe 10.78 10.33 1001 11.63 11.86 1494 1495 1579 18.15
var. selected 7 13 13 13 3 2 2 7 10
MSE5D 14.27 14.30 14.57 14.89 17.14 18.17 18.20 23.07  23.56
Heart All NAP NAP.B ALT SVT D.0 ai J1 D.1 J.0 G.p
class 1 I 1 111 111 1I 1I 1I 111 11
seV 0.173 0.175 0.177 0.180 0.175 0.177 0.181 0.181 0.182 0.177  0.248
var. selected 13.00 11.44 9.904 754 1042 979 519 578 599  9.53  1.99
Thee 0.100 0.118 0.122 0.126 0.137 0.137 _0.137 0.137 _0.137 _0.170 _ 0.237
var. selected 13 10 8 7 11 3 3 3 3 4 1
MSEED 0.146 0.154 0.157 0.160 0.161 0.162 0.165 0.165 0.165 0.174  0.244
Parkinson NAP Al NAP.B  ALT J.0 D.0  SVT J1 ai D.1 G.p
class 1 1 I 111 111 111 11 11 11 11
aseV 0.152 0.153 0.152 0.152 0.150 0.151 0.155 0.152 0.153 0.155 0.162
var. selected 19.16 22.00 13.54  9.83 11.27 1274 11.26  4.92 553 577  1.94
e 0.092 0.007 0.103 0.108 0.113 0.113 0.108 0.133 0.133 _ 0.133 _ 0.133
var. selected 14 22 10 5 19 14 14 1 1 1 1
MSECED 0.130 0.133 0.134 0.136 0.136  0.137 0.138 0.145 0.146  0.147  0.152

Table 5.4: Bootstrap-, resubstitution- and .632 estimators for the MSE of the investigated
—(.632)
methods arranged in order of decreasing performance (assessed by MSE ) for each

datasset. In addition, the average number of selected variables in the bootstrap runs and
for a single fit on the entire dataset are given.

the TWER and FWER. Secondly, it showed a higher power to distinguish relevant from
non-relevant variables compared to common approaches. This finding was also confirmed
in a simulated data application. Thirdly, it achieved the highest ratio of relevant to selected
variables. Corresponding Random Forests produced MSE values which were comparable to
the best performing models. Within an application to four datasets the two versions of the
new approach always ranked among the best three (out of eleven) performing approaches in
terms of MSE. Moreover, it is equally applicable to regression and classification problems.

Despite the clear superiority of the new approach which was observed in this work, the
benefit of its application, in terms of prediction accuracy and especially for the selection
of relevant variables, has to be further investigated. Additional simulation studies and
empirical evaluations, possibly emerging from research fields in which these approaches
are commonly used (e.g. microarray analysis, GWAS), are needed for further insight.
Investigations should be intensified to further explore the effects of correlation strength,
block size, interactions, type of importance measure, definition of ‘relevance’ and kind of
alpha adjustment. Analyses also need to be extended to high-dimensional data.



Chapter 6

Variable Selection with Missing Data

6.1 Research Motivation and Contribution

Variable selection has been suggested for Random Forests to enhance data prediction and
interpretation (cf. chapter 5). However, its basic element, i.e. variable importance mea-
sures, can not be computed in a straightforward manner when there are missing data
(chapter 3). Possible solutions that still enable variable selection despite the occurrence of
missing values are

e complete case analysis,
e multiple imputation and
e the new importance measure.
These have been used in combination with two variable selection methods:
e NAP and

e D.1,

representing the conceptual classes of test-based and performance-based approaches, re-
spectively (section 5.3.4). An extensive simulation study that involves various missing data
generating processes is conducted to explore their ability to discriminate relevant from non-
relevant variables. In addition, the predictive accuracy of resulting models is investigated
for a simulated test dataset (see chapter 2 and 4 for similar studies). Both regression and
classification problems are explored. Findings and recommendations: Complete case anal-
ysis should not be applied as it leads to inaccurate variable selection and models with the
worst prediction accuracy. Multiple imputation is a good means to select variables that
would be of relevance in fully observed data. It produced the best prediction accuracy.
By contrast, the application of the new importance measure causes a selection of variables
that reflects the actual data situation, i.e. that takes the occurrence of missing values into
account. Its error was only negligibly worse compared to imputation.
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6.2 Simulation Studies

An extensive simulation study was set up to explore which of complete case analysis, mul-
tiple imputation by MICE and the new importance measure is most capable of supporting
variable selection. Therefore the NAP and D.1 approaches, as representatives of test-based
and performance-based methods, have been chosen to investigate their quality to distin-
guish relevant from non-relevant variables. Two additional investigations will focus on the
predictive accuracy of Random Forests in a simulated test dataset and the ability of selec-
tion methods to control the TWER. Factors like the amount of missing values, correlation
schemes, variable strength and different missing data generating processes are of major
interest as they potentially influence variable selection. The setup of the simulation study
resembles the ones given in chapter 3 and 4. Essential differences are presented in the
following;:

e Influence of predictor variables

The simulated data contained both a classification and a regression problem. There-
fore, a categorical (binary) and a continuous response were created in dependence of
six variables with coefficients 3:

B=(1,1,0,1,1,0)".

Repeated values for S make it possible to compare selection frequencies of variables
which are, by construction, equally important but show different correlations and
contain different amounts of missing values. In addition, the non-influential variables
with 8 = 0 help to investigate possible undesired effects, serve as a baseline and are
used to check for the ability to control the TWER.

o (Correlation

1 03 03 0 0 O

03 1 03 0 0 0

s 03 03 1 0 0 O
0O 0 0100

0 0 0010

0 0 0001

As the variances of each variable are chosen to be 1, the covariance equals the cor-
relation in this special case. The structure of the covariance matrix ¥ reveals that
there are two blocks of three correlated and three uncorrelated variables.

o Missing values

Several missing data generating processes that follow MCAR, MAR and MNAR
schemes were employed. For each, a given fraction m € {0.0,0.1,0.2,0.3} of values is
set missing in variables X, and X (cf. Table 6.1). Therefore, the average percentage
of observations that contain at least one missing value is 1 — (1 — Yomissing) "veriebles =
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contains missing values determines missing values
(MCAR, MAR & MNAR) (MAR) (MNAR)

X Xy X

X5 Xy X5

Table 6.1: List of variables that contain missing values and determine the probability of
missing values.

1—(1-0.3)? = 51% in case of m = 0.3. This is an amount not unlikely to be observed
in real life data which makes m span a wide range of possible scenarios. The schemes
to produce missing values were MCAR, MAR(rank), MAR (median), MAR(upper),
MAR (margins) and MNAR (upper).

o Validation

An independent test dataset of 5000 observations was constructed the same way,
though it did not contain missing values, for an evaluation of predictive accuracy.
The latter was assessed by the mean squared error (MSE) which equals the misclas-
sification error rate (MER) in classification problems.

e Implementation

The implementation of the simulation almost equals the one of chapter 4 except for
the fact that Random Forests contained more trees: ntree = 100. Corresponding
R-Code is given in section B.6.

In summary, there were 2 variable selection methods and 2 response types investigated for
6 processes to generate and 3 procedures to handle 4 different fractions of missing values.
This sums up to 288 simulation settings. Each of them was repeated 1000 times.

6.3 Results

The following discussion presents results for the classification problem. Similar findings
for the regression problem are given as supplementary material in section A.5 (cf. Figure
A.10)

Variable selection frequencies displayed in Figure 6.1 stress that the test-based ap-
proach performs better than the performance-based approach. The former selects relevant
variables (including variable 3 which is non-informative, yet correlated to informative vari-
ables) more often, independent of the amount of missing values. With reference to the
non-relevant variable 6, both approaches control for the TWER. As expected, the selection
frequencies of variables 2 and 5 drop as they contain a rising amount of missing values.
Meanwhile variables 1 and 4 are chosen more frequently by the performance-based ap-
proach. This can be seen as the attempt to replace variables with missing information by
other predictors (see chapter 3). The same effect can not be observed for the test-based



90 6. Variable Selection with Missing Data

+ test-based (o contains missings) A performance-based (A contains missings)
m= 0123 0123 .0.123 0123 0123 0123
1000 — . ...
« 800 - * ‘;,A o0
Z 600 { A AN A o
g 400 B ALLT A °
200 e eee A
P R LR R Ak b .. Ak AA-
1000 —
< 800 o
§ 600 - & An
= EAY A
€ 400 N S YN

= 200 e
P Ak AAo . Ak AA-

..........

1000 9 ...

>‘§Boo« ;;1 00 g

% 600 - A A,

E a00 N st

< 200 | ieee N

e AhAA oo Ak AA-

ﬁlOOO 1

g 800 -

g 4 a o

Ec:’jgga Bla, aasd An,

£ 200 o oaiee A
0 o A-A A Ao Ak AA-

selection frequenc:

~1000 7 e

5 . 0.

g 7 AA AA

E 400 + A Ak an
< 200 o B

S T AAAA . AAAA-
~1000 7 e
g 800 akd eecee o
Se00- & NS AA o
& 400 - ’A_A° AL A e
ES 4

Z 200

3 A o
A geee A
P e T AAAb T A axAA-

variable 1 2 3 4 5 6

Figure 6.1: Variable selection frequencies observed for the new importance measure. The
horizontal dashed line illustrates a TWER of 5% (m = % of missing values in X and Xj).

approach which already shows higher and rather stable selection frequencies for these fully
observed variables. There are minor differences between variables 1 and 4, though they are
of the same strength. This is due to the fact that unconditional permutation importance
measures, which underly the applied selection methods, rate the relevance of correlated
variables higher than for uncorrelated ones (Strobl et al., 2008). In conclusion, there are
no apparent differences between the missing data generating processes. The application
of the new importance measure for variable selection can be recommended whenever the
objective is to describe the data situation at hand; i.e. under consideration of the relevance
a variable can take with all of its missing values.

In the complete case analysis (illustrated by Figure 6.2) the performance-based ap-
proach is again outperformed by the test-based approach, while both control for the TWER.
However, there are some general findings that question the quality of complete case anal-
ysis. Thus, selection frequencies of the informative variables 1 and 4 drop with a rising
fraction of missing values in variables 2 and 5. One might argue that this is caused by
the general loss of information induced by complete case analysis. However, in some cases
(e.g. MAR(margins)) this effect is carried to extremes as variables 1 and 4 are even less
frequently selected than variables 2 and 5, while the latter are the ones that actually lost
part of their information. There is no rational justification for this undesirable property
which is present for any missing data generating process. Consequently, complete case
analysis is not recommended for application as selection methods might not be capable of
detecting variables of true relevance.
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Figure 6.2: Variable selection frequencies observed for the complete case analysis. The
horizontal dashed line illustrates a TWER of 5% (m = % of missing values in X and Xj).

Results for the application of multiple imputation are given by Figure 6.3. Again, they
reflect the superiority of the test-based approach to the performance-based approach, while
both of them control the TWER. Furthermore, imputation leads to rather stable selection
frequencies of variables, independent of the amount of missing values. However, a slight
decrease can still be observed for variables 2 and 5 as they lose information. This holds for
each missing data generating process except for MNAR(upper). It is interesting to note
that results for the latter resemble those of Figure 6.1. Thus, the occurrence of missing
values and the associated loss of information seems to directly affect selection frequencies
when missing values can not be appropriately imputed. Nevertheless, multiple imputation
appears to be a well suited means of selecting variables according to the relevance they
would have if the data were fully observed.

Prediction errors observed for the independent test sample are displayed by Figure 6.4.
They confirm the superiority of the test-based approach to the performance-based approach
in terms of predictive accuracy. This holds independent of the approach to handle missing
values, the amount of missing values and the process to generate missing values. The lowest
MSE, which is almost stable for any fraction of missing values, was found for models fit to
imputed data. Variable selection that is based on the new importance measure produced
models that performed only slightly worse (see chapter 2 and 4 for corresponding findings).
For this procedure the error increased with an increasing number of missing values. This
property intensifies for the complete case analysis which clearly produced the worst results
for increased fractions of missing values. Similar findings about the predictive accuracy of
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Figure 6.3: Variable selection frequencies observed for the imputed data. The horizontal
dashed line illustrates a TWER of 5% (m = % of missing values in X5 and Xj).

Random Forests when there are missing data have been published by Rieger et al. (2010)
and Hapfelmeier et al. (2011).

6.4 Conclusion

Variable selection with Random Forests is guided by importance measures which are used
to rate a variable’s relevance for prediction. There are several approaches like a new kind
of importance measure, complete case analysis and multiple imputation, that enable its
application when the data contain missing values. An extensive simulation study has been
conducted to investigate the ability of such approaches to discriminate relevant from non-
relevant variables under several missing data generating processes. Complete case analysis
appeared to provide inaccurate variable selection as the occurrence of missing values inap-
propriately penalized the selection of informative and fully observed variables. Accordingly,
it led to models that showed the worst prediction accuracies. Selection methods based on
the application of a new importance measure were much more able to reflect the data sit-
uation at hand. Thus, fully observed variables were selected consistently and considerably
more often than those with missing values. The prediction accuracy of the corresponding
Random Forests was much higher than for the complete case analysis. Multiple impu-
tation also showed consistent selection frequencies, that could be called most accurate if
the objective was to rate the relevance a variable would have in fully observed data. For
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Figure 6.4: MSE observed for the independent test sample. Outliers are not displayed for
clarity (m = % of missing values in X, and Xjp).

any simulation setting and any approach to handle missing values, the test-based variable
selection method performed better than the performance-based approach.

There is a clear recommendation for the application of approaches: One should not use
complete case analysis because of inaccurate selection properties. Approaches that base
on the new kind of importance measure should be used if one is interested in a selection
of variables that reflects their relevance under consideration of the given information. By
contrast, imputation methods are best used for the selection of variables that would be of
relevance in the hypothetical scenario of fully observed data.
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Outlook

The assessment of predictive accuracy has been performed for the newly introduced variable
importance, complete case analysis and multiple imputation in chapter 2, 4 and 6. However,
investigations need to be expanded:

e A concluding discussion in section 2.3.2 already presents some recent and ongoing
developments of imputation methods. This diversity of approaches should be taken
into account for future research.

e Despite elaborate simulation settings and extensive empirical evaluations the findings
need to prove generalisability in further investigations.

A new variable importance measure for Random Forests with missing data is proposed
in chapter 3. Although it meets all postulated requirements and shows some appealing
characteristics the corresponding discussions have shown that there is still room for further
developments and investigations:

e A conditional variable importance measure that can handle missing data is to be
developed. Strobl et al. (2008) introduced a conditional version of the permutation
accuracy importance measure that more closely resembles the behavior of partial
correlation or regression coefficients. Yet, non-conditional importance measures, to
which the one proposed in chapter 3 belongs to, are often appreciated for their
sensitivity to correlations and hence for their ability to uncover relations between
variables (see chapter 5 for further discussions of this matter). However, in some
research fields a conditional assessment might be preferred which raises the task of
enhancing the current method to a measure that, besides its property to handle
missing values, is conditional.

Chapter 5 presents an extensive investigation of a new variable selection procedure for
Random Forests. Despite its appealing properties and power to distinguish relevant from
non-relevant variables, future research and further developments are proposed to enhance
its applicability:

e As the permutation steps of the proposed test-based variable selection algorithm are
independent from each other they can be parallelized on multiple cores of a system
to significantly reduce computation time (see Altmann et al., 2010, for an earlier
suggestion of this procedure). In future work this benefit can be checked for and
realized by an according implementation.
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In section 5.3.4 it has been pointed out that the performance-based approaches have
originally been suggested for classification problems only. Thus, corresponding defi-
nitions of the 1 s.e. rule are not applicable to regression problems. However, Breiman
et al. (1984) already suggested an adaption of the 1 s.e. rule which will be imple-
mented for further performance evaluations in regression analysis.

The application of variable selection with Random Forests is particularly popular in
the field of microarray data analysis (Diaz-Uriarte and Alvarez de Andrés, 2006; Jiang
et al., 2004; Rodenburg et al., 2008; Zhou et al., 2010). Many of the presented meth-
ods were originally designed for this special data case which is characterized by a low
ratio of observations to predictors. Accordingly, the properties and competitiveness
of the new approach should be reassessed in this special research field.

There are several aspects like correlation strength, block size, interactions, type of im-
portance measure, definition of ‘relevance’ and kind of alpha adjustment that should
be the object of further, intensified investigations as to examine their effect on the
performance of variable selection approaches.

Despite a possible parallelization of the new algorithm, the computation time is ex-
pected to be exceptionally high in the case of thousands or tens of thousands of
predictors. For the analysis of microarray data, this is a well known problem faced
by many methods. It becomes even more challenging as more and more genetic
information is made available with ongoing research, e.g. in GWAS. A proposed so-
lution is to reduce the information transfered to the new approach by a preliminary
selection step. Therefore a suggestion of Strobl et al. (2009) is followed: all variables
with an importance which lies within the random variability of non-relevant variables
(determined by the range of negative importance measures) are rejected. This way
the amount of variables passed to the new approach is supposed to be significantly
reduced. Especially in the case of microarray data, which can contain lots of redun-
dant information, the computational time is expected to decrease substantially due
to this very fast and easy preliminary selection step. Corresponding experience has
already been published in Yahya et al. (2011).

The new variable selection approaches proposed in this work are based on an un-
conditional importance measure (Strobl et al., 2008, for a definition of conditional
and unconditional measures). For this reason non-informative variables which are
related to informative ones are found to be of relevance and possibly selected by the
approaches. However, this might also be seen as an undesired property. Future re-
search is meant to explore variable selection that is based on a conditional importance
measure. In this manner, the question of whether the selection can be restricted to
informative variables is meant to be answered, too.
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Supplementary Material

A.1 Chapter 2

A.1.1 Simulation Studies

Table A.1 contains an extensive listing of results for the simulation studies presented in
section 2.5.

Table A.1: Summary of mean MSE values, mean absolute (abs. imp. = MSEg, —
MSEwcg) and mean relative improvement (rel. imp. = MSESﬁ‘SE\:SEMICE) obtained by using

multiple imputation and surrogates. Missing values were induced completely at random
into data that was originally fully observed. Two imputation schemes are distinguished.
For one of them all variables and for another one only one third of variables is partly
set missing. Please note that the mean relative improvement is given by the mean of
improvements across simulation runs. It can not simply be computed by using the mean
MSE values in the formula given here (as the mean of ratios does not equal the ratio of

means).
missing Surrogates MICE abs. imp. rel. imp.

Data Type # Var. % Values Mean SD Mean SD Mean SD Mean SD

Classi- H. Survival forest 0% 0.27 0.05 0.27 0.05
fication 3 10% 0.28 0.05 0.27 0.05 0.01 0.03 0.03 0.12
20% 0.29 0.05 0.27 0.05 0.02 0.04 0.05 0.14
30% 0.28 0.05 0.27 0.06 0.01 0.04 0.04 0.15
40% 0.28 0.06 0.27 0.05 0.00 0.05 0.00 0.18
1 10% 0.27 0.05 0.27 0.05 0.00 0.02 0.00 0.08
20% 0.27 0.05 0.27 0.05 0.00 0.03 0.00 0.10
30% 0.27 0.05 0.27 0.05 0.00 0.03 0.00 0.11
40% 0.27 0.05 0.27 0.05 0.00 0.03 0.00 0.12

ctree 0% 0.28 0.05 0.28 0.05
3 10% 0.28 0.06 0.28 0.05 0.00 0.04 -0.01 0.18
20% 0.27 0.06 0.27 0.05 0.00 0.05 -0.02 0.18
30% 0.27 0.06 0.27 0.06 0.00 0.05 -0.01 0.16
40% 0.27 0.06 0.27 0.05 0.00 0.05 -0.02 0.19
1 10% 0.28 0.05 0.28 0.05 0.00 0.03 -0.01 0.10
20% 0.28 0.05 0.28 0.05 0.00 0.03 -0.01 0.10
30% 0.27 0.05 0.28 0.05 0.00 0.03 -0.02 0.11
40% 0.28 0.05 0.28 0.05 0.00 0.03 -0.01 0.11

rpart 0% 0.28 0.05 0.28 0.05
3 10% 0.28 0.06 0.28 0.05 0.00 0.04 0.00 0.15
20% 0.28 0.05 0.28 0.05 0.00 0.04 -0.01 0.16
30% 0.28 0.05 0.28 0.06 0.00 0.04 -0.01 0.17
40% 0.28 0.05 0.28 0.05 0.00 0.04 -0.02 0.17
1 10% 0.28 0.05 0.28 0.05 0.00 0.03 0.00 0.12
20% 0.28 0.05 0.28 0.05 0.00 0.04 0.00 0.13
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30% 0.28 0.05 0.28 0.05 0.00 0.04 -0.01 0.15
40% 0.28 0.05 0.28 0.05 0.01 0.04 0.01 0.15
Heart forest 0% 0.17 0.05 0.17 0.05
12 10% 0.19 0.05 0.18 0.05 0.00 0.03 0.00 0.19
20% 0.20 0.05 0.20 0.05 0.00 0.04 0.00 0.22
30% 0.23 0.06 0.22 0.06 0.01 0.05 0.04 0.23
40% 0.26 0.06 0.23 0.06 0.02 0.06 0.07 0.24
4 10% 0.18 0.05 0.18 0.05 0.00 0.03 -0.02 0.17
20% 0.18 0.05 0.18 0.05 0.00 0.03 -0.04 0.22
30% 0.19 0.05 0.19 0.05 0.00 0.04 -0.03 0.24
40% 0.19 0.05 0.19 0.05 0.00 0.04 -0.05 0.25
ctree 0% 0.24 0.06 0.24 0.06
12 10% 0.27 0.06 0.24 0.06 0.03 0.06 0.07 0.23
20% 0.30 0.06 0.25 0.06 0.05 0.07 0.15 0.22
30% 0.33 0.07 0.26 0.06 0.07 0.07 0.19 0.22
40% 0.35 0.07 0.27 0.06 0.09 0.08 0.22 0.22
4 10% 0.25 0.06 0.25 0.06 0.00 0.04 0.00 0.19
20% 0.25 0.06 0.25 0.06 0.00 0.05 0.00 0.23
30% 0.25 0.06 0.25 0.06 0.01 0.05 -0.01 0.25
40% 0.25 0.06 0.25 0.06 0.00 0.06 -0.02 0.25
rpart 0% 0.22 0.06 0.22 0.06
12 10% 0.23 0.06 0.21 0.06 0.02 0.05 0.06 0.26
20% 0.25 0.06 0.23 0.06 0.03 0.06 0.08 0.25
30% 0.28 0.06 0.24 0.06 0.04 0.07 0.12 0.24
40% 0.30 0.06 0.25 0.06 0.04 0.07 0.13 0.24
4 10% 0.22 0.06 0.21 0.06 0.01 0.04 0.02 0.20
20% 0.22 0.06 0.22 0.06 0.01 0.05 0.00 0.25
30% 0.23 0.06 0.22 0.06 0.01 0.05 0.02 0.25
40% 0.23 0.06 0.22 0.06 0.00 0.06 -0.01 0.27
Regres- Fertility forest 0% 123.88 59.39 123.88 59.39
sion 5 10% 128.72 60.77 125.91 60.10 2.81 16.36 0.01 0.15
20% 128.74 62.13 124.19 60.00 4.55 22.13 0.01 0.20
30% 152.36 74.58 122.91 61.76 29.44 30.91 0.17 0.23
40% 160.17 80.29 129.33 69.28 30.84 34.39 0.16 0.24
2 10% 122.58 58.97 122.49 58.95 0.09 10.96 0.00 0.11
20% 123.29 64.43 123.25 62.17 0.03 16.67 -0.02 0.17
30% 122.71 58.84 122.31 58.52 0.40 23.08 -0.02 0.24
40% 130.65 65.59 129.37 63.44 1.28 27.08 -0.02 0.25
ctree 0% 125.50 72.64 125.50 72.64
5 10% 143.59 71.67 118.73 66.97 24.85 48.13 0.12 0.41
20% 151.47 73.84 116.20 63.06 35.27 52.43 0.18 0.37
30% 151.47 72.91 116.20 61.87 35.27 49.96 0.19 0.34
40% 163.68 82.91 125.79 72.49 37.89 52.84 0.18 0.35
2 10% 127.61 69.47 121.11 69.15 6.49 32.18 0.01 0.38
20% 129.85 70.76 121.92 70.21 7.93 34.76 0.02 0.35
30% 126.32 65.43 119.44 65.11 6.88 37.05 0.01 0.38
40% 135.95 72.54 125.19 70.03 10.77 42.25 0.04 0.35
rpart 0% 128.08 67.24 128.08 67.24
5 10% 131.89 67.47 117.00 64.73 14.89 47.04 0.06 0.37
20% 129.09 67.36 113.72 64.43 15.37 50.17 0.05 0.45
30% 134.35 70.86 113.24 60.85 21.11 50.21 0.09 0.41
40% 143.20 82.27 120.70 71.32 22.50 51.87 0.06 0.43
2 10% 127.62 64.68 120.97 67.30 6.65 35.78 0.01 0.54
20% 129.00 66.68 119.53 64.42 9.46 40.08 0.02 0.45
30% 120.61 60.19 114.85 60.16 5.76 39.03 -0.01 0.44
40% 131.61 65.26 124.85 66.33 6.76 42.09 0.00 0.45
Birthweight forest 0% 457232 95500 457232 95500
8 10% 480114 98110 468505 96912 11610 22990 0.02 0.05
20% 496568 99652 479233 96640 17335 31472 0.03 0.07
30% 513674 106290 500251 103400 13423 38018 0.02 0.08
40% 523973 106809 511407 102216 12565 39898 0.02 0.08
3 10% 461966 97094 460541 97183 1426 12439 0.00 0.03
20% 468606 97316 466447 95369 2160 20850 0.00 0.05
30% 477325 100949 473842 99294 3483 24978 0.01 0.05
40% 482337 98226 481618 97479 719 29519 0.00 0.06
ctree 0% 521135 102026 521135 102026
8 10% 541681 106881 510502 101726 31179 44007 0.05 0.08
20% 550504 108030 511162 103410 39343 54991 0.07 0.10
30% 557568 113516 526071 107761 31497 55300 0.05 0.10
40% 558431 112739 530738 106455 27692 58479 0.04 0.10
3 10% 524473 105341 514840 104686 9634 32771 0.02 0.06
20% 528372 104142 516334 102509 12038 38736 0.02 0.07
30% 531124 104639 516274 102125 14850 43622 0.02 0.08
40% 535775 105253 523234 103125 12541 49098 0.02 0.09
rpart 0% 530248 117622 530248 117622
8 10% 537710 117599 507510 106833 30200 67410 0.05 0.13
20% 545339 119787 514642 104013 30697 80091 0.04 0.15
30% 558719 124351 530830 111282 27889 84234 0.04 0.15
40% 564695 122945 536551 107390 28144 86001 0.03 0.15
3 10% 529680 115061 511419 108543 18261 54492 0.03 0.10
20% 533993 120503 512754 109923 21239 66603 0.03 0.12
30% 544904 123811 516096 112904 28808 72635 0.04 0.13
40% 545331 120782 518021 110371 27310 76905 0.04 0.15
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A.1.2 Empirical Evaluation

Table A.2 gives an extensive listing of results for the application studies of section 2.5.

Surrogates MICE abs. imp. rel. imp.
Data Type Mean SD Mean SD Mean SD Mean SD
Classi- Hepatitis forest 0.18 0.07 0.18 0.06 0.00 0.02 -0.01 0.20
fication ctree 0.22 0.07 0.22 0.07 0.00 0.06 -0.04 0.35
rpart 0.22 0.07 0.21 0.07 0.01 0.06 0.01 0.30
Mammo forest 0.21 0.03 0.20 0.03 0.01 0.01 0.04 0.06
ctree 0.22 0.03 0.21 0.03 0.01 0.02 0.03 0.07
rpart 0.21 0.03 0.21 0.03 0.00 0.01 0.00 0.07
Pima forest 0.24 0.03 0.24 0.03 0 0.01 0.00 0.05
ctree 0.26 0.03 0.25 0.03 0 0.02 0.01 0.06
rpart 0.25 0.03 0.25 0.03 0 0.02 0.00 0.10
Ozone forest 0.06 0.01 0.09 0.03 -0.02 0.03 -0.39 0.49
ctree 0.07 0.01 0.06 0.01 0.01 0.01 0.10 0.12
rpart 0.07 0.01 0.06 0.01 0.00 0.01 0.00 0.12
Regres- Airquality forest 55.52 12.73 53.19 13.17 2.34 6.23 0.04 0.11
sion ctree 65.65 15.42 55.37 13.57 10.28 9.98 0.15 0.14
rpart 66.80 14.95 56.16 14.26 10.64 10.81 0.15 0.15
El Nino forest 0.45 0.13 0.61 0.27 -0.16 0.25 -0.41 0.58
ctree 0.61 0.26 0.62 0.27 -0.01 0.33 -0.16 0.63
rpart 1.35 0.36 0.81 0.27 0.54 0.40 0.36 0.25
CHAIN forest 136.43 14.11 135.24 14.27 1.19 2.10 0.01 0.02
ctree 143.56 14.00 141.35 14.15 2.21 4.79 0.02 0.03
rpart 146.55 16.76 141.00 15.20 5.55 8.18 0.04 0.05
Sleep forest 486943.26 1032618.19 485402.09 1032126.12 1541.17 7874.01 0.01 0.12
ctree 517357.24 958954.63 517330.69 958864.23 26.55 1928.41 0.00 0.00
rpart 548506.76 946491.05 554341.03 946373.04 -5834.27 39446.44 -0.65 7.06
Table A.2: Summary of mean MSE values, mean absolute (abs. imp. = MSEg, —
MSEcg) and mean relative improvement (rel. imp. = MSES&SEI\S/[SEMICE) obtained by using
ur

multiple imputation and surrogates within 1000 MCCV runs for the data that originally
includes missing values. Please note that the mean relative improvement is given by the
mean of improvements across simulation runs. It can not simply be computed by using
the mean MSE values in the formula given here (as the mean of ratios does not equal the
ratio of means).

A.2 Chapter 3

Figure A.1 displays the importances of all variables that contain missing values (i.e., vari-
ables 2, 4, 8, 10, 12 and 14) for different fractions of missing values and correlation strength.
Requirement (R2), claiming that the importance should not increase but decrease with
an increasing amount of missing values, is met for all combinations of influential, non-
influential, correlated and uncorrelated variables. The apparent difference of importance
measures between variable 2 and variable 4 — though both of them have a coefficient of the
same magnitude — is due to their correspondence to blocks of different size (cf. discussions
about requirement (R3))

An investigation of Figure A.2 reveals that requirement (R3), that correlations with
influential variables induce higher importance values, is also met. This claim holds for all
combinations of influential and non-influential variables with different fractions of missing
values (represented by blocks I, II and IV). However, the effect is less pronounced for
variables 4 and 8. Also, for variables which do not contain missing values (e.g. variables
1, 3, 5, 9 and 11) the importance is rising with a rising number of missing values in
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Figure A.1: Variable importance of variables 2, 4, 8, 10, 12, 14 — that contain missing
values when m > 0% — for correlations r = .6, .9 and fractions of missing values m =
0%, 10%, 20%, 30%. Boxplots of variables that contain missing values are colored grey.
Outliers are omitted from illustration for clarity.

other variables. Both effects occur because with a rising correlation and a rising number
of missing values variables are replaced by others (cf. section 3.4.1 for corresponding
discussions).

Block sizes — i.e., the number of variables that are correlated with each other — is
another factor that strongly influences importance measures. A comparison of blocks I
to II clearly shows that an increasing block size makes importances rise. However, this
statement is only true for blocks containing influential variables. Non-influential variables
do not induce this effect, as can be seen by the example of block IV compared to block
II. This investigation also shows that the importance of non-influential variables benefits
from the correlation to influential variables while the reverse is not true.

Figure A.3 presents results for the simulated classification problem and therefore cor-
responds to Figure 3.7 in section 3.4.1.
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Figure A.2: Variable importances of variables 1-5, 8-11 (Blocks I, II, IV) and correlations
r =0, .3, .6, .9 for fractions of missing values m = 0%, 30%. Boxplots corresponding to
variables with missing values are colored grey. Outliers were omited from illustration for
clarity.
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Figure A.3: Variable importances (left axis) of block I-VIII and correlations r = 0, .3, .6,
.9 for fractions of missing values m = 0%, 10%, 20%, 30% in the MAR(rank) setting and
classification problem. Boxplots of variables that contain missing values are colored grey.
Horizontal lines indicate selection frequencies (right axis). Vertical dashed lines indicate
correspondance to the same block. Outliers are omitted from illustration for clarity.
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A.3 Chapter 4
Figure A.4 displays median importance measures observed for the regression problem.
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Figure A.4: Median variable importance observed for the regression problem (m = % of
missing values in Xy, X, and Xj).
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Figure A.5 displays the evaluation of prediction error for the regression problem.
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Figure A.5: MSE observed for the regression problem (m = % of missing values in X5, X,

and X5).

A.4 Chapter 5

A.4.1 Simulation Studies
Study 1

Results for the regression problem of Study I are given in Table A.3. The TWER and
FWER are controlled by NAP, NAP.B and ALT the same way as in the classification
problem (cf. section 5.4.1). The error rates of methods allocated to classes II and III are
again too high — except for G.p. Differences between classes are less pronounced as in the

classification problem.
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TWER FWER Class
var. 1 var. 2 wvar. 3 var. 4 wvar. b

NAPB 1.0% 08% 1.0% 11% 1.1% 4.8% I
NAP 52%  4.7%  55% 54%  4.8%  22.6% I
ALT 4.8% 51% 54%  52% 51%  23.4% I
G.p 1.2%  15% 2.0% 14% 1.6% 6.2% II
D.1 13.6% 13.6% 14.6% 13.7% 13.6% 27.9% II
J.1 13.7% 13.9% 14.1% 14.4% 13.9%  29.3% 11

G.i 102%  9.9% 10.5% 10.7% 10.5%  25.0% IT
J.0 13.7% 13.9% 141% 14.4% 13.9%  29.3% II1
D.0 13.6% 13.6% 14.6% 13.7% 13.6%  27.9% III
SVT 20.0% 19.9% 20.5% 20.1% 20.0% 25.3% III

Table A.3: TWER and FWER for 5000 simulation runs of the regression problem in
study I. Approaches are ranked and allocated to classes according to the results of the
classification problem.

Study II

The following contains — in addition to the findings and conclusions already presented in
section 5.4.1 — an extensive discussion of the performance of single approaches in Study
IT1. For an improved clarity of presentation, Figure A.6 consists of two columns separating
approaches which produce low to moderate TWER (class I and II) from those which showed
an extremely increased TWER (class III). The new approaches are compared against each
of them.

The left column of Figure A.6 displays results for J.0, D.0 and SVT. The horizontal gray
lines indicate a selection frequency of 50 which is expected to be reached when the TWER
of a non-relevant variable equals 5%. An examination of results for variable 6 makes clear
that J.0, D.0 and SVT select this non-relevant variable far too often. The same holds for
variable 1, 3 and 5 which are also of no relevance when s = 0. Consequently it is not
surprising that these approaches — besides this tendency to select non-relevant variables
— also show a high power to detect relevant ones. Thus, variables 1, 2 and 3 for s > 0
as well as variable 4 and variable 5 (which is correlated to the informative variable 3) are
frequently selected by these approaches. SVT slightly outperforms J.0 and D.0 as it shows
fewer false discoveries and a higher power as s increases. It is also interesting to note that
the selection frequency of the relevant variable 4 even drops for J.0 and D.0 with a rising
relevance of variables 1, 2 and 3 (s > 0). In summary the approaches seem to be capable
to detect relevant variables with a high power. However, this is not a big achievement as
it comes at the cost of a high TWER. More surprisingly the new approaches NAP and
NAP.B show competitive and in some cases even superior results though they control the
TWER - or even the FWER (which holds for NAP.B). The latter property is shown by
selection frequencies of variable 6 as well as variables 1, 3 and 5 when s = 0. In terms
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of informative variables NAP is even able to outperform its competitors (c.f. variable 2
and 4) while it is not inferior in any other case. Even the by definition more conservative
NAP.B shows competitive results when s increases.

The right column of Figure A.6 displays results for J.1, D.1, ALT, G.i and G.p. An
investigation of selection frequencies of variable 6 as well as variables 1, 3 and 5 when s = 0
makes clear that the approaches — except for a slight violation by G.i — do not exceed the
threshold TWER (gray line). In regard of the relevant variables 1, 2, 3, 4 and 5 (s > 0) the
approaches NAP, NAP.B, ALT and G.i clearly perform best — though there is always one of
the latter two that shows inferior results for some of the variables. NAP.B is only slightly
inferior to NAP. It often outperforms or compares to ALT and G.i though it is expected
to be more conservative (as it is the only approach that controls the FWER). NAP — and
NAP.B for larger values of s — are the only approaches which are able to detect variable
5 which is of relevance as it is correlated to the informative variable 3. J.1, D.1 and G.p
show inferior results throughout. For these approaches and G.i the selection frequency of
the informative variable 4 even decreases with a rising strength of variables 1, 2 and 3
(s > 0); while it stays constant for approaches of class I (i.e. NAP, NAP.B and ALT).

NAP shows the highest power and clearly outperforms ALT — which is of major interest
as both methods only slightly differ, yet in a substantial aspect of the permutation scheme.
A discussion in section 5.2.3 already outlined that this is because the empirical distribution
of importances of relevant variables has higher upper percentiles under H (5.2) — followed
by ALT - than under Hy, (5.1) — followed by NAP. Therefore NAP is able to reject the
null-hypothesis for relevant variables, that initially have an importance score of a certain
magnitude, more often.

Results for the regression problem are similar, yet they stress the superiority of the
new approaches even stronger (cf. Figure A.7). NAP and NAP.B clearly outperform their
competitors as they show the highest discriminatory power in this case.

Study ITI

In relation to section 5.4.1 a much more detailed illustration of the results for each approach
in study III is given by Figure A.8. A comparison to the approaches G.i, G.p, J.1, D.1
and ALT reveals a clear superiority of NAP and NAP.B in terms of the ability to identify
relevant variables. In analogy to the findings of Study II the only approach which is able
to keep up — now in a setting of a simulated data set — is ALT. However, it is outperformed
by NAP — which it resembles the most (cf. section 5.2.3 for a discussion about the reasons
behind this superiority of NAP) — and only compares to NAP.B though the latter is — by
definition — much more conservative as it uses the Bonferroni-Adjustment. A comparison
to J.0, D.0 and SVT reveals that these approaches again produce error rates far beyond
the 5% level. Still they are not able to clearly outperform NAP and NAP.B, especially for
higher values of s.

The superiority of the new approaches becomes even more evident in the regression
problem (cf. Figure A.9): they show the highest power to detect relevant variables, the
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Figure A.6: Plot of selection frequencies in 1000 simulation runs of the classification prob-
lem of study II. Results are shown in dependence of predictor strength as determined by
Bir = (s,5,5,1,0,0)". There are no relations except for pairwise correlations (r = 0.7)
between variable 2 and 4 as well as 3 and 5. Comparisons of the new approaches to class
IIT and IT (+ ALT) are given in the left and right column, respectively. The horizontal line
represents a 5% TWER. [Relevant Variables: var. 4 & var. 1 — 3, 5 for s > 0; Informative
Variables: var. 4 & var. 1 -3 for s > (]
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Figure A.7: Plot of selection frequencies in 1000 simulation runs of the regression problem
of study II. Results are shown in dependence of predictor strength as determined by g;; =
(s,5,5,1,0,0)". There are no relations except for pairwise correlations (r = 0.7) between
variable 2 and 4 as well as 3 and 5. Comparisons of the new approaches to class III and II
(+ ALT) are given in the left and right column, respectively. The horizontal line represents
a 5% TWER. [Relevant Variables: var. 4 & var. 1 — 3, 5 for s > 0; Informative Variables:
var. 4 & var. 1 —3 for s > 0]
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Figure A.8: Selection frequencies of variables 1-15 in 1000 simulation runs of the classifi-
cation problem of study III. The new approaches are compared to class III (a) and class
IT (+ ALT) (b). The horizontal grey line represents a 5% TWER. Brackets indicate corre-
lated variables. (c) Boxplots of the observed MSE aranged in increasing order of median
values. (d) Mean selection frequency of variables and an additional information about the
amount of relevant and informative variables among them. Reference values are indicated
by horizontal lines. [Relevant Variables: var. 1 — 11; Informative Variables: var. 1 — 9]
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Figure A.9: Selection frequencies of variables 1-15 in 1000 simulation runs of the regression
problem of study III. The new approaches are compared to class III (a) and class 1T (+
ALT) (b). The horizontal grey line represents a 5% TWER. Brackets indicate correlated
variables. (c) Boxplots of the observed MSE aranged in increasing order of median values.
(d) Mean selection frequency of variables and an additional information about the amount
of relevant and informative variables among them. Reference values are indicated by
horizontal lines. [Relevant Variables: var. 1 — 11; Informative Variables: var. 1 — 9|

lowest median MSE and the highest effectiveness while the efficiencies are among the
highest, too.

A.4.2 Empirical Evaluation

In addition to the findings of section 5.4.2 Table A.4 contains the selection frequencies of
variables which were observed for the empirical evaluation within 1000 bootstrap runs.
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Variable NAP NAP.B G.i G.p J.0 J.1 D.0 D.1 ALT SVT
Birthweight low 1000 1000 1000 1000 1000 1000 1000 1000
age 907 553 7 0 658 612 255 3

Iwt 990 922 214 1 920 924 783 72

race 967 861 0 0 791 826 759 10

smoke 987 917 0 0 808 839 836 5

ptl 576 323 0 0 47 98 274 0

ht 353 208 0 0 26 34 175 0

ui 975 883 0 0 654 731 875 1

ftv 498 137 0 0 102 112 30 0

B. Housing CRIM 1000 1000 135 14 979 957 999 107
ZN 969 860 0 0 65 105 73 0

INDUS 1000 1000 69 1 813 910 996 224

CHAS 859 698 0 0 43 50 169 0

NOX 1000 1000 226 57 958 970 997 92

RM 1000 1000 1000 999 1000 1000 1000 1000

AGE 1000 1000 0 0 636 657 648 0

DIS 1000 1000 1 0 757 745 699 2

RAD 1000 1000 0 0 405 411 515 0

TAX 1000 1000 5 0 862 853 997 29

PTRATIO 1000 1000 191 18 909 955 1000 326

B 1000 1000 0 0 385 397 298 0

LSTAT 1000 1000 1000 1000 1000 1000 1000 1000

Heart age 917 724 83 5 628 161 672 182 253 761
sex 993 932 233 25 768 306 825 358 647 882

cp 1000 999 985 448 991 944 995 954 994 999

trestbps 765 435 50 1 486 96 501 95 62 586

chol 761 452 68 2 544 128 547 107 83 663

fbs 296 90 1 0 183 12 201 13 1 175

restecg 725 423 50 3 525 121 515 122 97 582

thalach 1000 997 464 119 878 531 902 587 905 958

exang 995 977 361 59 849 476 875 504 843 932

oldpeak 999 996 609 192 908 682 948 708 959 972

slope 984 917 310 44 T 366 810 391 701 907

ca 1000 1000 991 450 998 984 998 985 1000 1000

thal 1000 1000 982 643 996 977 997 987 1000 999

Parkinson MDVP.Fo.Hz. 995 950 681 147 863 577 887 558 922 845
MDVP.Fhi.Hz. 962 708 241 15 634 277 629 222 451 506
MDVP.Flo.Hz. 966 745 212 29 565 159 657 242 554 585
MDVP.Jitter... 572 98 0 0 140 3 206 15 9 187
MDVP.Jitter.Abs. 940 653 55 5 401 59 529 113 369 408
MDVP.RAP 595 167 5 0 177 15 242 25 28 212
MDVP.PPQ 599 138 1 0 153 6 208 24 13 207
Jitter. DDP 590 183 11 0 187 17 248 33 33 231
MDVP.Shimmer 991 897 353 34 649 242 752 322 759 645
MDVP.Shimmer.dB. 923 590 80 0 390 73 513 131 376 436
Shimmer.APQ3 965 702 121 2 540 160 617 189 402 484
Shimmer.APQ5 964 754 188 11 498 129 643 236 534 536
MDVP.APQ 988 907 326 33 594 189 744 334 670 661
Shimmer.DDA 973 738 153 9 592 194 636 202 452 522
NHR 455 86 5 0 128 4 155 15 4 146

HNR 931 598 112 15 493 125 567 160 244 454

RPDE 888 464 63 4 463 158 508 129 183 393

DFA 847 378 67 4 399 7 435 108 224 336

spreadl 1000 1000 957 880 992 982 977 916 1000 994

spread2 995 980 632 140 810 439 879 595 951 861

D2 955 759 349 62 623 253 688 325 617 576

PPE 1000 1000 898 541 936 760 967 857 1000 988

Table A.4: Summary of variable selection frequencies observed for 1000 bootstrap runs of
the empirical evaluation.
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A.5 Chapter 6

Results for the regression problem are presented in Figure A.10. They underline the find-
ings for the classification problem. The 0 s.e. rule was executed for the performance-based
approach. As a consequence, its TWER and selection frequencies are increased.
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Figure A.10: Variable selection frequencies and MSE observed for the regression problem
(m = % of missing values in X, and Xj3).



Appendix B
R-Code

All of this works computations are operable by the following Code using R (version 2.14.1).
General functions used throughout the studies are:

# Function to count selection frequencies of variables in Random Forests
count <- function(forest, inames = NULL) {
# forest: object of class "RandomForest" created by the function cforest()
# inames: names of variables to be assessed (defaults to NULL, using all variables)
if (is.null(inames) && extends(class(forest), "RandomForest"))
inames <- names(forest@data@get ("input"))
resultvec <- rep(0, length(inames))
myfunc <- function(x, inames, resultvec) {

names (x) <- c("nodeID", "weights", "criterion", "terminal", "psplit",
"ssplits", "prediction", "left", "right")
names (x$criterion) <- c("statistic", "criterion", "maxcriterion")

if (!x$terminal) {
resultvec [x$psplit [[1]]] <- resultvec[x$psplit[[1]]1] + 1
resultvec <- myfunc(x$left, inames = inames, resultvec = resultvec)
resultvec <- myfunc(x$right, inames = inames, resultvec = resultvec)
}
return(resultvec)
3
for (k in 1:length(forest@ensemble)) {
resultvec <- myfunc(forest@ensemble[[k]], inames, resultvec)
}
names (resultvec) <- inames
return(resultvec)
}

environment (count) <- environment(varimp)

# Function to simulate data
create.dat <- function(coefs = ¢(0, 0, 0, 0, 0), n = 100,
sigma = NULL, regression = T, error = 1) {
# coefs: coefficients; n: number of observations; sigma: covariance matrix
# regression: TRUE produces a regression problem, FALSE a classification problem
# error: error added to outcome in case of a regression problem
if (is.null(sigma)) sigma <- diag(length(coefs)) # initialize sigma
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if (length(coefs) != nrow(sigma)) stop("dimension of coefs and sigma differs")

dat <- rmvnorm(n, sigma = sigma) # create covariates

X.beta <- dat %*% coefs

dat <- as.data.frame(dat)

if (regression == T) dat$response <- x.beta + rnorm(n, O, error) # create the response
else dat$response <- as.factor(rbinom(n, 1, exp(x.beta) / (1 + exp(x.beta))))
return(dat)

# Function to induce missing values into a data set
with.missings <- function(data, mis.var, ind.var, m) {
# data: data meant to contain missing values
# mis.var: names of variables to be partly set missing
# ind.var: variables that induce the missing values
# m * 10: fraction of missing values in
X <- lapply(1:6, function(x) data) # for 6 missing data generating processes
n <- nrow(data)
for (k in mis.var) {
ind <- ind.var[mis.var == k]
# induce missing values MCAR
is.na(X[[1]]1[,k]) [sample(l:n, m * .1 * n)] <- TRUE
# induce missing values MAR(rank)
is.na(X[[2]]1[,k]) [sample(l:n, m * .1 * n, prob
# induce missing values MAR(median)
is.na(X[[3]]1[,k]) [sample(l:n, m * .1 * n, prob = ifelse(X[[3]][,
ind] >= median(X[[3]1]1[,ind]l), .9, .1))] <- TRUE

rank(X[[2]]1[,ind]) / sum(1:n))] <- TRUE

# induce missing values MAR(upper)

is.na(X[[411[,k]) [X[[411[,ind] >= sort(X[[4]]1[,ind], T)[m * .1 * n]] <- TRUE

# induce missing values MAR(margins)

is.na(X[[5]10,k])[X[[5]][,ind] >= sort(X[[5]1]1[,ind], T)[m * .1 *n / 2] |
X[[5]]1[,ind] <= sort(X[[5]]1[,ind])[m * .1 * n / 2]] <- TRUE

# induce missing values MNAR(upper)

is.na(X[[611[,k]) [X[[6]11[,k] >= sort(X[[6]]1[,k], T)[m * .1 * n]] <- TRUE

}

return(X)

B.1 Chapter 1

The following code gives a short summary of how to create and display trees and Random
Forests. Further functionalities are given by manuals of the packages party and rpart.
Also, steps to create figures and views can be taken from any R-Code textbook and are not
presented here.

set.seed(290875) # set a random seed for reproducibility of results

# load the airquality data and reject observations with missing response
airq <- subset(airquality, !is.na(0Ozone))
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library(party) # load required package ‘party’ version 1.0-0

airct <- ctree(Ozone ~ ., data = airq, # create a tree with 3 surrogates
controls = ctree_control(maxsurrogate = 3))

airct # display it

plot(airct) # and plot it

library(rpart) # load required package ‘rpart’ version 3.1-52

aircart <- rpart(Ozone ~ ., data = airq) # create a CART like tree
printcp(aircart) # assess the cross-validated error for different tree sizes
aircart.pruned <- prune(aircart, cp = 0.08) # prune the tree to the optimal size
plot(aircart.pruned); text(aircart.pruned) # plot the tree

aircf <- cforest(Ozone ~ ., data = airq) # create a Random Forest
count (aircf) # apply the count() function

airq2 <- na.omit(airquality) # create a complete case version of the data
aircf2 <- cforest(Ozone ~ ., data = airq2) # and a corresponding Random Forest
# compute the permutation importance measure and its conditional version

varimp(aircf2, prel.0_0 = T); varimp(aircf2, conditional = T)

B.2 Chapter 2

B.2.1 Simulation Studies

R-Code used for the simulation studies by the example of Haberman’s Survival Data (other
datasets were processed the same way):

# load required packages
library(party) # version 1.0-0
library(mice) # version 2.11
library(rpart) # version 3.1-52

# define the predictors used in the imputation models
predmat <- matrix(l, ncol = 4, nrow = 4); diag(predmat) <- 0; predmat[, 4] <- 0

repetitions <- 1000 # there were 1000 MCCV runs

# create matrices that take the observed MSE values for Random Forests, conditional

# inference trees (=tree) and CART (=oldtree). "with" = imputation was used

mse.without.forest <- mse.with.forest <- mse.without.tree <- mse.with.tree <-

mse.without.oldtree <- mse.with.oldtree <- matrix(NA, nrow = 4, ncol = repetitions,
dimnames = list(seq(.1, .4, .1), 1l:repetitions))

# load the data

dat <- read.table("your_local_directory/haberman.txt", sep = ",")
names(dat) <- c("age", "year", "nodes", "surv")

dat$surv <- as.factor(dat$surv)

for (j in 1:4) { # there are four fractions of missing values
for (i in 1:repetitions) { # and 1000 repetitions
misdat <- dat
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miss <- sapply(1:3, function(x) sample(l:nrow(misdat), round(nrow(misdat)* 0.1 * j)))
for (k in 1:3) {is.na(misdat[miss[, k], k]) <- T}
### when only 1/3 of variables should contain missing values, use instead:
#miss <- sample(l:nrow(misdat), round(nrow(misdat)* 0.1 * j))
#is.na(misdat[miss, sample(1:3, 1)]) <- T
# samples are drawn to build the training and test data
samp <- sample(l:nrow(misdat), round(nrow(misdat) * .8), replace = F)
dat.train <- misdat[samp, ]; dat.test <- misdat[-samp, ]
# use MICE to impute the data
test.mi <- mice(dat.test, printFlag = F, defaultMethod = c("norm", "logreg", "polyreg"),
predictorMatrix = predmat)
train.mi <- mice(dat.train, printFlag = F, defaultMethod = c("norm", "logreg", "polyreg"))
# compute the MSE values without imputation
forest <- cforest(surv ~ ., data = dat.train, controls =
cforest_unbiased(maxsurrogate = min(3, ncol(dat) - 2)))
mse.without.forest[j, i] <- mean((as.numeric(dat.test$surv) -
as.numeric(Predict (forest, newdata = dat.test)))"2)
tree <- ctree(surv ~ ., data = dat.train, controls =
ctree_control (maxsurrogate = min(3, ncol(dat) - 2)))
mse.without.tree[j, i] <- mean((as.numeric(dat.test$surv) -
as.numeric(predict(tree, newdata = dat.test)))"2)
oldtree <- rpart(surv ~ ., data = dat.train)
mse.without.oldtree[j, i] <- mean((as.numeric(dat.test$surv) -
round(predict(oldtree, newdata = dat.test)[, "2"]) - 1)°2)
# compute the MSE values with imputation
mse.with.forest[j, i] <- mean((as.numeric(dat.test$surv) - round(rowMeans(sapply(1l:5,
function(x) {mi.forest <- cforest(surv ~ .,
data = complete(train.mi, action = x), controls =
cforest_unbiased(maxsurrogate = min(3, ncol(dat) - 2)));
return(rowMeans (sapply(1:5, function(y)
as.numeric(Predict(mi.forest, newdata = complete(test.mi,
action = y))))))}))))"2)
mse.with.tree[j, i] <- mean((as.numeric(dat.test$surv) - round(rowMeans(sapply(1l:5,
function(x) {mi.forest <- ctree(surv ~ ., data =
complete(train.mi, action = x), controls =
ctree_control (maxsurrogate = min(3, ncol(dat) - 2)));
return(rowMeans (sapply(1:5, function(y)
as.numeric(predict(mi.forest, newdata =
complete(test.mi, action = y))))))}))))"2)
mse.with.oldtree[j, i] <- mean((as.numeric(dat.test$surv) - round(rowMeans(sapply(1:5,
function(x) {mi.forest <- rpart(surv ~ ., data =
complete(train.mi, action = x));
return(rowMeans (sapply(1:5, function(y)
round(predict(mi.forest, newdata = complete(test.mi,

action = y)) [, "2"1))))1)) - 1)°2)
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B.2.2 Empirical Evaluation

R-Code used for the application studies by the example of the Hepatitis Dataset (other
datasets were processed the same way):

# load required packages
library(party) # version 1.0-0
library(mice) # version 2.11
library(rpart) # version 3.1-52

# define the predictors used in the imputation models
predmat <- matrix(1l, ncol = 20, nrow = 20); diag(predmat) <- O; predmat[, 1] <- O

repetitions <- 1000 # there were 1000 MCCV runs

# create matrices that take the observed MSE values for Random Forests, conditional
# inference trees (=tree) and CART (=oldtree). "with" means that imputation was used
mse.ohne.forest <- mse.mit.forest <- mse.ohne.tree <- mse.mit.tree <-
mse.ohne.oldtree <- mse.mit.oldtree <- rep(NA, repetitions)

# load the data

dat <- read.table("your_local_directory/hepatitis.txt", sep = ",", na.strings = "7")
names (dat) <- c("status", "age", "sex", "steroid", "antivirals", "fatigue",
"malaise", "anorexia", "liver", "livfirm", "spleen",
"spiders", "ascites", "varices", "bilirubin", "alk", "sgot",
"albumin", "protime", "histology")

dat$status <- as.factor(dat$status)

for (i in 1:repetitions) { # there are 1000 repetitions
# samples are drawn to build the training and test data
samp <- sample(l:nrow(dat), round(nrow(dat) * .8), replace = F)
dat.train <- dat[samp, ]; dat.test <- dat[-samp, ]
# use MICE to impute the data
train.mi <- mice(dat.train, printFlag = F, defaultMethod
test.mi <- mice(dat.test, printFlag = F, defaultMethod

c("norm", "logreg", "polyreg"))
c("norm", "logreg", "polyreg"),

predictorMatrix = predmat)

# compute the MSE values without imputation

mse.ohne.forest[i] <- mean((as.numeric(dat.test$status) - as.numeric(Predict(cforest(

status © ., data = dat.train, controls =

cforest_unbiased(maxsurrogate = 3)), newdata = dat.test)))"2)
tree <- ctree(status ~ ., data = dat.train, controls = ctree_control (maxsurrogate = 3))

mse.ohne.tree[i] <- mean((as.numeric(dat.test$status) - as.numeric(predict(tree,

newdata = dat.test)))"2)

oldtree <- rpart(status ~ ., data = dat.train)
mse.ohne.oldtree[i] <- mean((as.numeric(dat.test$status) - round(predict(oldtree,

newdata = dat.test) [, "2"]) - 1)°2)

# compute the MSE values with imputation

mse.mit.forest[i] <- mean((as.numeric(dat.test$status) - round(rowMeans(sapply(1l:5,
function(x) {mi.forest <- cforest(status ~ ., data =
complete(train.mi, action = x), controls =
cforest_unbiased(maxsurrogate = 3)); return(rowMeans(
sapply(1:5, function(y) as.numeric(Predict(mi.forest,
newdata = complete(test.mi, action = y))))))}))))"2)
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mse.mit.tree[i] <- mean((as.numeric(dat.test$status) - round(rowMeans(sapply(1:5,

function(x) {mi.forest <- ctree(status ~ ., data =
complete(train.mi, action = x), controls =
ctree_control (maxsurrogate = 3)); return(rowMeans (

sapply(1:5, function(y) as.numeric(predict(mi.forest,
newdata = complete(test.mi, action = y))))))}))))"2)
mse.mit.oldtree[i] <- mean((as.numeric(dat.test$status) - round(rowMeans (sapply(
1:5, function(x) {mi.forest <- rpart(status ~ ., data =
complete(train.mi, action = x)); return(rowMeans (sapply(
1:5, function(y) round(predict(mi.forest, newdata =
complete(test.mi, action = y))[, "2"1))))}))) - 1)°2)

B.3 Chapter 3

B.3.1 Simulation Studies

R-Code used for the simulation study:

# load required packages

library("party"); attach(asNamespace("party")) # version 1.0-0
library (mvtnorm) # version 0.9-9992

library(mice) # version 2.11

# create a list of covariance matrices for each correlation strength
sig <- lapply(1:4, function(x) {r <- c(0,.3,.6,.9)[x]; y <- diag(20);
y[1:3, 1:3] <~ r; y[4:5, 4:5] <- r; y[6:7, 6:7] <- r;

y[8:11, 8:11] <- r; diag(y) <- 1; return(y)})

create lists that contain arrays used to collect the results of 20 variables for 4
fractions of missing values, 4 correlation strength and 6 missing data generating
processes in 1000 simulation runs. The common importance measure (‘old’), the new
approach (‘new’) and selection frequencies (‘count’) are recorded for the
regression (‘reg’) and classification (‘clas’) problem.

reg.old <- clas.old <- reg.new <- clas.new <- reg.count <- clas.count <-

lapply(1:6, function(y) lapply(1:4, function(x) array(dim = c(1000, 20, 4))))

H B HF H H

set.seed(1234) # set a random seed for reproducibility of results
# 1000 simulation runs start here
for (i in 1:1000) {
for (r in 1:4) { # there are 4 correlation strength
dat <- as.data.frame(rmvnorm(100, sigma = sigl[[r]])) # create the data
x.beta <- with(dat, 4 * V1 + 4 * V2 + 3 x V3 + 4 *x V4 + 3 * V56 +
4 x V6 +3 x V7 +4 V8 + 3 V9 + 2 x*x V12 + 2 x V13
dat$y.reg <- x.beta + rnorm(100, O, .5)
dat$y.clas <- rbinom(100, 1, exp(x.beta) / (1 + exp(x.beta)))
for (m in 1:4) { # there are 4 fractions of missing values
# the data is replicated for each of 6 missing data generating process
dat.mis <- with.missings(dat, c("V2", "v4", "v8", "vVi0", "Vi2", "Vi4"),
c("y3d", "ys", "yo", "vii“, "vi3", "Vi5"), m - 1)
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for (j in 1:6) { # compute results for 6 missing data generating processes

# create random forests and compute importances and selection frequencies

forest.reg <- cforest(as.formula(paste("y.reg", paste("V", 1:20, sep = "",
collapse = " + "), sep = " ~ ")), data = dat.mis[[j]],
controls = cforest_unbiased(mtry = 8, ntree = 50,
maxsurrogate = 3))

forest.clas <- cforest(as.formula(paste("y.clas", paste("V", 1:20, sep = "",
collapse = " + "), sep =" ~ ")), data = dat.mis[[j]],
controls = cforest_unbiased(mtry = 8, ntree = 50,
maxsurrogate = 3))

reg.new[[j1]1 [[r]][i, , m] <- varimp(forest.reg)

clas.new[[j]11[[r]][i, , m] <- varimp(forest.clas)

reg.count[[j1][[r]][i, , m] <- count(forest.reg)

clas.count [[j1][[r]][i, , m] <- count(forest.clas)

if (m == 1) {

reg.old[[jI1]1[[r]]1[i, , m] <- varimp(forest.reg, prel.0_0

clas.old[[jI1[[r]][i, , m] <- varimp(forest.clas, prel.0_0

1}

TRUE)
TRUE)

B.3.2 Empirical Evaluation

R-Code used for the empirical evaluation:

# load required package
library("party"); attach(asNamespace("party")) # version 1.0-0

# load the pima indians diabetes data as provided by the UCI repository

pima <- read.table("your_local_directory/pima_data.txt", sep = ",")

names (pima) <- c("num.preg", "gluc", "bloodpres", "skin", "insulin",
"bmi", "pedigree", "age", "diabetes")

pima$diabetes <- as.factor(pima$diabetes) # prepare the data

is.na(pima$gluc[pima$gluc == 0]) <- T # and define the missing values

is.na(pima$bloodpres[pima$bloodpres == 0]) <- T
is.na(pima$skin[pima$skin == 0]) <- T; is.na(pima$bmi[pima$bmi == 0]) <- T
is.na(pima$insulin[pima$insulin == 0]) <- T

# load the mammal sleep data
slep <- read.table("your_local_directory/sleep_data.txt", header = T)

set.seed(5) # set a random seed for reproducibility of results

# create forests of 5000 trees for the pima data and the sleep data

forest.pima.new <- cforest(diabetes ~ ., controls = cforest_unbiased(mtry = 3,
maxsurrogate = 3, ntree = 5000), data = pima)

forest.sleep.new <- cforest(BodyWgt ~ ., controls = cforest_unbiased(mtry = 3,
maxsurrogate = 3, ntree = 5000), data = slep)

# create a forest of 5000 trees for a complete case versions of the data

forest.pima.old <- cforest(diabetes ~ ., controls = cforest_unbiased(mtry = 3,

maxsurrogate = 3, ntree = 5000), data = na.omit(pima))

forest.sleep.old <- cforest(BodyWgt ~ ., controls = cforest_unbiased(mtry = 3,
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maxsurrogate = 3, ntree = 5000), data = na.omit(slep))

# compute the corresponding variable importances by the new approach
pima.new <- varimp(forest.pima.new); sleep.new <- varimp(forest.sleep.new)
pima.old <- varimp(forest.pima.old, prel.0_0 = T)

sleep.old <- varimp(forest.sleep.old, prel.0_0 = T)

# Additional simulation study

create the response Y and predictors U and V
<- sample(rep(1:0, times = c(1000, 4000)))
<- sample(rep(0:1, times = c(4000, 1000)))

Y <- rep(NA, 5000)

Y[U == 1] <- rnorm(sum(U == 1), 2, 1); Y[V
YU ==0 & V == 0] <~ rnorm(sum(U == 0 & V
Y[U==1&V == 1] <- rnorm(sum(U == 1 & V
# induce missing values (MAR(upper)) in V
V2 <- V; is.na(V2) [which(Y >= quantile(Y, .7))] <- TRUE

< c %

1] <- rnorm(sum(V == 1), -2, 1)
0), 0, 1)
1), 0, 1)

# fit a Random Forest to the complete data
fullfor <- cforest(Y ™ U + V, controls = cforest_unbiased(mtry = 2, ntree = 5000))
fullimp <- varimp(fullfor, prel.0_0 = T); fullimp # compute variable importances
# recompute the Random Forest in a complete case analysis
misfor <- cforest(Y ~ ., data = na.omit(as.data.frame(cbind(Y, U, V2))),

controls = cforest_unbiased(mtry = 2, ntree = 5000))
misimp <- varimp(misfor, prel.0_0 = T); misimp # recompute the variable importance
# recompute the Random Forest using the entire data
misfor2 <- cforest(Y ~ U + V2, controls = cforest_unbiased(mtry = 2,

ntree = 5000, maxsurrogate = 1))

newimp <- varimp(misfor2); newimp # apply the new approach

B.4 Chapter 4

R-Code used for the simulation studies:

# load required packages

library("party"); attach(asNamespace("party")) # version 1.0-0
library (mvtnorm) # version 0.9-9992

library(mice) # version 2.11

# create covariance matrix

sig <- matrix(c( 1, 0.3, 0.3, 0.3, 0, O,
0.3, i, 0.3, 0.3, 0, O,
0.3, 0.3, 1, 0.3, 0, O,
0.3, 0.3, 0.3, 1, 0, O,
0, 0, 0, 0, 1, 0,
0, 0, 0, 0, 0, 1), ncol = 6, byrow = T)

# create a list of arrays to collect results for 6 variables, 4 fractions of
# missing values and 6 missing data generating processes in 1000 simulation runs



B.4 Chapter 4 121

mylist <- lapply(1:6, function(x) array(dim = c(1000, 6, 4)))

# create lists which contain importance measures for the new approach (‘new’),
# complete case analysis (‘cc’) and multiple imputation (‘imp’) in a

# classification (‘.c’) and regression problem (‘.r’)

new.c <- cc.c <- imp.c <- new.r <- cc.r <- imp.r <- mylist

# create arrays that contain the corresponding MSE values

new.err.c <- cc.err.c <- imp.err.c <-

new.err.r <- cc.err.r <- imp.err.r <- array(NA, c(1000, 4, 6))

set.seed(1234) # set a random seed for reproducibility of results

# create the test data

test.dat <- as.data.frame(rmvnorm(5000, sigma = sig))

x.beta <- 1 * test.dat$Vl + 1 * test.dat$V2 + 1 * test.dat$Vb

test.dat$y.reg <- x.beta + rnorm(5000, 0, .5)

test.dat$y.clas <- as.factor(rbinom(5000, 1, exp(x.beta) / (1 + exp(x.beta))))

# 1000 simulation runs start here
for (i in 1:1000) {
dat <- as.data.frame(rmvnorm(100, sigma = sig)) # simulate the data
x.beta <- 1 * dat$Vl + 1 * dat$V2 + 1 * dat$Vb
dat$y.reg <- x.beta + rnorm(100, 0, .5)
dat$y.clas <- as.factor(rbinom(100, 1, exp(x.beta) / (1 + exp(x.beta))))
for (m in 1:4) { # there are 4 fractions of missing values
dat.mis <- with.missings(dat, c("V2", "v4", "V5"), c("Vi", "V3", "V6"), m - 1)
for (j in 1:6) { # there are 6 missing data generating processes
# create Random Forests without imputation
for.reg <- cforest(y.reg ~ V1 + V2 + V3 + V4 + V5 + V6, data = dat.mis[[j]],
controls = cforest_unbiased(mtry = 3, ntree = 50, maxsurrogate = 3))
for.clas <- cforest(y.clas ~ V1 + V2 + V3 + V4 + V5 + V6, data = dat.mis[[j]],
controls = cforest_unbiased(mtry = 3, ntree = 50, maxsurrogate
# compute variable importances and MSE
new.c[[j1]1[i, , m] <- varimp(for.clas)
new.r[[j1]1[i, , m] <- varimp(for.reg)
new.err.c[i, m, j] <- mean((as.numeric(test.dat$y.clas) -
as.numeric(predict(for.clas, newdata = test.dat)))"2)
new.err.r[i, m, j] <- mean((test.dat$y.reg - predict(for.reg, newdata = test.dat))"2)
# create Random Forests in a complete case analysis
cc.reg <- cforest(y.reg ~ V1 + V2 + V3 + V4 + V5 + V6, data = na.omit(dat.mis[[j]]),
controls = cforest_unbiased(mtry = 3, ntree = 50, maxsurrogate = 3))
cc.clas <- cforest(y.clas " V1 + V2 + V3 + V4 + V5 + V6, data = na.omit(dat.mis[[j]1]),
controls = cforest_unbiased(mtry = 3, ntree = 50, maxsurrogate = 3))
# compute variable importances and MSE
cc.cll[jlI1[i, , m] <~ varimp(cc.clas, prel.0_0 = T)
cc.r[[j1]1[i, , m] <~ varimp(cc.reg, prel.0_0 = T)
cc.err.c[i, m, j] <- mean((as.numeric(test.dat$y.clas) -
as.numeric(predict(cc.clas, newdata = test.dat)))"2)
cc.err.r[i, m, j] <- mean((test.dat$y.reg - predict(cc.reg, newdata = test.dat))"2)
# create Random Forests with imputation when there is missing data
if (m > 1) {

3))
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imp.dat <- mice(dat.mis[[j]], printFlag = F,
defaultMethod = c("norm", "logreg", "polyreg"))
imp.reg <- lapply(1:5, function(x) cforest(y.reg ~ V1 + V2 + V3 + V4 + V5 + V6,
data = complete(imp.dat, action = x), controls =
cforest_unbiased(mtry = 3, ntree = 50, maxsurrogate = 3)))
imp.clas <- lapply(1:5, function(x) cforest(y.clas ~ V1 + V2 + V3 + V4 + V5 + V6,
data = complete(imp.dat, action = x), controls =
cforest_unbiased(mtry = 3, ntree = 50, maxsurrogate = 3)))
# compute variable importances and MSE
imp.r[[j]1[i, , m] <- rowMeans(sapply(imp.reg, function(x) varimp(x, prel.0_0
imp.c[[j]1[i, , m] <- rowMeans(sapply(imp.clas, function(x) varimp(x, prel.0_0
imp.err.cl[i, m, j] <- mean(sapply(imp.clas, function(x)
mean((as.numeric(test.dat$y.clas) -
as.numeric(predict(x, newdata = test.dat)))"2)))
imp.err.r[i, m, j] <- mean(sapply(imp.reg, function(x)
mean((test.dat$y.reg - predict(x, newdata = test.dat))"2)))}

™))
™))

if (m == 1) {

imp.r[[j1]1[i, , m] <= cc.r[[j11[1i, , m]
imp.c[[j1]1[i, , m] <= cc.c[[j11[1i, , m]
imp.err.c[i, m, j] <- cc.err.c[i, m, j]
imp.err.r[i, m, j] <- cc.err.r[i, m, j]
i33:

}

B.5 Chapter 5

B.5.1 Functions to perform Variable Selection

R-Code used to implement the variable selection methods of section 5.3.4:

# load required packages
library("party"); attach(asNamespace("party")) # version 1.0-0

B s

### The NAP and NAP.b approaches ###

I

NAP <- function(Y, X, nperm = 100, ntree = 50, alpha = 0.05) {

Y: response vector

X: matrix or data frame containing the predictors

nperm: number of permutations

ntree: number of trees contained in a Random Forest

alpha: alpha level for permutation tests

RETURNS: selected variables, a corresponding Random Forest and the
00B-error with and without Bonferroni-Adjustment

mtry <- ceiling(sqrt(ncol(X))) # automatically set mtry to sqrt(p)

dat <- cbind(Y, X) # create the data

names (dat) <- c("response", paste("V", 1:ncol(X), sep = ""))

forest <- cforest(response ~ ., data = dat, # fit a Random Forest

controls = cforest_unbiased(mtry = mtry, ntree = ntree))
obs.varimp <- varimp(forest, prel.0_0 = T) # compute initial importances

H OH H HEH HH
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selection <- names(obs.varimp)
# create a matrix that contains the variable importances after permutation
perm.mat <- matrix(NA, ncol = length(selection), nrow = nperm,
dimnames = list(1l:nperm, selection))
for (j in selection) { # repeat the computational steps for each variable
perm.dat <- dat # perm.dat will be the data after permutation
for (i in 1:nperm) { # do nperm permutations
perm.dat[, j] <- sample(perm.dat[, j]) # permute each variable
perm.forest <- cforest(response ~ ., data = perm.dat, # recompute the forest
controls = cforest_unbiased(mtry = mtry, ntree = ntree))
perm.mat[i, j] <- varimp(perm.forest, prel.0_0 = T)[jl}} # recompute importances
p-vals <- sapply(selection, function(x) sum(perm.mat[, x] # compute p-values
>= obs.varimp[x]) / nperm)
p.vals.bonf <- p.vals * length(p.vals) # p-values with Bonferroni-Adjustment
if (any(p.vals < alpha)) { # keep significant variables
selection <- names(p.vals) [which(p.vals < alpha)]
mtry <- ceiling(sqrt(length(selection)))
forest <- cforest(as.formula(paste("response", paste(selection,
collapse = " + "), sep =" ~ ")), data = dat,
controls = cforest_unbiased(mtry = mtry, ntree = ntree))}
if (any(p.vals.bonf < alpha)) { # keep significant variables (Bonferroni)
selection.bonf <- names(p.vals.bonf) [which(p.vals.bonf < alpha)]
mtry <- ceiling(sqrt(length(selection.bonf)))
forest.bonf <- cforest(as.formula(paste("response", paste(selection.bonf,
collapse = " + "), sep =" ~ ")), data = dat,
controls = cforest_unbiased(mtry = mtry, ntree = ntree))}
if (lany(p.vals < alpha)) { # if there are not significant variables
selection <- c(); forest <- c()}
if (lany(p.vals.bonf < alpha)) { # if there are not significant variables
selection.bonf <- c(); forest.bonf <- c()}
oob.error <- ifelse(length(selection) != 0, mean((as.numeric(as.character(Y)) -
as.numeric(as.character(predict(forest, 00B = T))))"2),
mean ( (as.numeric(as.character(Y)) - ifelse(all(Y %in% 0:1),
round (mean(as.numeric(as.character(Y)))), mean(Y)))"2))
oob.error.bonf <- ifelse(length(selection.bonf) != 0,
mean((as.numeric(as.character(Y)) -
as.numeric(as.character(predict(forest.bonf, 00B = T))))"2),
mean((as.numeric(as.character(Y)) - ifelse(all(Y %in% 0:1),
round (mean(as.numeric(as.character(Y)))), mean(Y)))"2))

return(list("selection" = selection, "forest" = forest, "oob.error" = oob.error,
"selection.bonf" = selection.bonf, "forest.bonf" = forest.bonf,
"oob.error.bonf" = oob.error.bonf))
¥

HHHHH R

### The ALT approach ###

s

ALT <- function(Y, X, nperm = 100, ntree = 50, alpha = 0.05) {
# Y: response vector
# X: matrix or data frame containing the predictors
# nperm: number of permutations
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# ntree: number of trees contained in a Random Forest
# alpha: alpha level for permutation tests
# RETURNS: selected variables, a corresponding Random Forest and 00B-error
mtry <- ceiling(sqrt(ncol(X))) # automatically set mtry to sqrt(p)
dat <- cbind(Y, X) # create the data
names (dat) <- c("response", paste("V", 1:ncol(X), sep = ""))
forest <- cforest(response ~ ., data = dat, # fit a forest
controls = cforest_unbiased(mtry = mtry, ntree = ntree))
obs.varimp <- varimp(forest, prel.0_0 = T) # compute initial importances
selection <- names(obs.varimp)
# create a matrix that contains the variable importances after permutation
perm.mat <- matrix(NA, ncol = length(selection), nrow = nperm,
dimnames = list(1l:nperm, selection))
perm.dat <- dat # perm.dat will be the data after permutation
for (i in 1:nperm) { # do nperm permutations
perm.dat[, "response"] <- sample(perm.dat[, "response"]) # permute the response
perm.forest <- cforest(response ~ ., data = perm.dat, # recompute the forests
controls = cforest_unbiased(mtry = mtry, ntree = ntree))
perm.mat[i, ] <- varimp(perm.forest, prel.0_0 = T)} # recompute variable importances
p-vals <- sapply(selection, function(x) sum(perm.mat[, x] # compute p-values
>= obs.varimp[x]) / nperm)
if (any(p.vals < alpha)) { # keep significant variables
selection <- names(p.vals) [which(p.vals < alpha)]
mtry <- ceiling(sqrt(length(selection)))
forest <- cforest(as.formula(paste("response", paste(selection,
collapse = " + "), sep =" ~ ")), data = dat,
controls = cforest_unbiased(mtry = mtry, ntree = ntree))}
if (lany(p.vals < alpha)) { # if there are not significant variables
selection <- c(); forest <- c()}
oob.error <- ifelse(length(selection) != 0, mean((as.numeric(as.character(Y)) -
as.numeric(as.character(predict(forest, 00B = T))))"2),
mean((as.numeric(as.character(Y)) - ifelse(all(Y %in% 0:1),
round (mean (as.numeric(as.character(Y)))), mean(Y)))"2))
return(list("selection" = selection, "forest" = forest, "oob.error" = oob.error))

I

### The J.0, J.1, D.O and D.1 approaches ###

B s

Diaz <- function(Y, X, recompute = F, ntree = 3000) {

# Y: response vector
X: matrix or data frame containing the predictors
recompute: should the variable importances be recomputed after each
regection step? TRUE produces J.0 and J.1

ntree: number of trees contained in a Random Forest

RETURNS: selected variables, a corresponding Random Forest and 00B-error
for the 0 s.e. and 1 s.e. rule

mtry <- ceiling(sqrt(ncol(X))) # automatically set mtry to sqrt(p)

dat <- cbind(Y, X) # create the data

names (dat) <- c("response", paste("V", 1:ncol(X), sep = ""))

forest <- cforest(response ~ ., data = dat, # fit a forest

H O H H HH
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controls = cforest_unbiased(mtry = mtry, ntree = ntree))

selections <- list() # a list that contains the sequence of selected variables
selections[[ncol(X)]] <- names(sort(varimp(forest, prel.0_0 = T), decreasing = T))
errors <- c()
for (i in ncol(X):1) { # take backward rejection steps
mtry <- ceiling(sqrt(i)) # set mtry to sqrt() of remaining variables
forest <- cforest(as.formula(paste("response", paste(selections[[i]],

collapse = " + "), sep = " ~ ")), data = dat, # fit forest

controls = cforest_unbiased(mtry = mtry, ntree = ntree))
errors[i] <- mean((as.numeric(as.character(Y)) - # compute the 00B-error

as.numeric(as.character(predict(forest, 00B = T))))"2)
# define the next set of variables
if (recompute == F & i > 1) selections[[i - 1]] <- selectiomns[[i]][-i]
if (recompute == T & i > 1) selections[[i - 1]] <- names(sort(varimp(forest,

prel.0_0 = T), decreasing = T))[-il}
# compute the error expected when no predictor is used at all
errors <- c(mean((as.numeric(as.character(Y)) - ifelse(all(Y %in% 0:1),
round (mean (as.numeric(as.character(Y)))), mean(Y)))"2), errors)
# define the number of variables determined by the O s.e. and 1 s.e. rule
optimum.number.0se <- which.min(errors)
optimum.number.lse <- which(errors <= min(errors) + 1 * ifelse(all(Y %in% 0:1),
sqrt (min(errors) * (1 - min(errors)) / nrow(X)), 0))[1]

# compute the corresponding Random Forests and 00B-errors

if (optimum.number.Ose == 1) {forest.0se <- c(); selection.0Ose <- c(O}
if (optimum.number.lse == 1) {forest.lse <- c(); selection.lse <- c(}
if (optimum.number.Ose !'= 1) {

selection.Ose <- selections[[optimum.number.Ose - 1]]
forest.0Ose <- cforest(as.formula(paste("response", paste(selection.Ose,

collapse = " + "), sep =" ~ ")), data = dat,
controls = cforest_unbiased(mtry = mtry, ntree = ntree))}
if (optimum.number.lse !'= 1) {

selection.lse <- selections[[optimum.number.lse - 1]]
forest.lse <- cforest(as.formula(paste("response", paste(selection.lse,
collapse = " + "), sep =" ~ ")), data = dat,
controls = cforest_unbiased(mtry = mtry, ntree = ntree))}
oob.error.0se <- errors[optimum.number.Ose]
oob.error.1lse <- errors[optimum.number.lse]

return(list("selection.Ose" = selection.Ose, "forest.Ose" = forest.Ose,
"oob.error.Ose" = oob.error.Ose, "selection.lse" = selection.lse,
"forest.lse" = forest.lse, "oob.error.lse" = oob.error.1se))
}

HEHSH B HAHHAEH B H A SR AR EH
### The SVT approach #i##
HEH SR
SVT <- function(Y, X, ntree = 50, folds = 5, repetitions = 20) {
# Y: response vector
# X: matrix or data frame containing the predictors
# ntree: number of trees contained in a Random Forest
# folds: determines ’folds’-fold cross validation
# repetitions: the results of ’repetitons’ repetitons should be aggregated
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# RETURNS: selected variables, a corresponding Random Forest and 00B-error
mtry <- ceiling(sqrt(ncol(X))) # automatically set mtry to sqrt(p)
dat <- cbind(Y, X) # create the data
names (dat) <- c("response", paste("V", 1:ncol(X), sep = ""))
forest <- cforest(response ~ ., data = dat, # fit a Random Forest
controls = cforest_unbiased(mtry = mtry, ntree = ntree))

final.imps <- names(sort(varimp(forest, prel.0_0 = T), decreasing = T)) # final sequence
errors <- array(NA, dim = c(repetitions, ncol(X) + 1, folds))
for (x in 1:repetitions) { # repeatedly produce results of several...

samps <- sample(rep(l:folds, length = nrow(X)))

for (k in 1:folds) { # ...crossvalidations
train <- dat[samps != k, ]; test <- dat[samps == k, ] # train and test data
forest <- cforest(response ~ ., data = train, # fit a Random Forest

controls = cforest_unbiased(mtry = mtry, ntree = ntree))
selection <- names(sort(varimp(forest, prel.0_0 = T), decreasing = T))
for (i in ncol(X):1) { # do backward rejection steps
mtry <- min(mtry, ceiling(sqrt(i)))
forest <- cforest(as.formula(paste("response", paste(selection[1:i],
collapse = " + "), sep =" ~ ")), data = train,
controls = cforest_unbiased(mtry = mtry, ntree = ntree))
errors[x, i + 1, k] <- mean((as.numeric(as.character(test$response)) -
as.numeric(as.character(predict(forest, newdata = test))))"2)}
errors[x, 1, k] <- mean((as.numeric(as.character(test$response)) -
ifelse(all(Y %in% 0:1), round(mean(as.numeric(
as.character(train$response)))), mean(train$response))) 2)}}
mean.errors <- sapply(l:(ncol(X) + 1), function(x) mean(errors[, x, 1))
optimum.number <- which.min(mean.errors) # optimal number of variables

if (optimum.number == 1) { # determine the final forest, selection and 0BB-error
forest <- c(); selection <- c()}
if (optimum.number !'= 1) {

selection <- final.imps[1:(optimum.number - 1)]
forest <- cforest(as.formula(paste("response", paste(selection,
collapse = " + "), sep =" 7~ ")), data = dat,
controls = cforest_unbiased(mtry = mtry, ntree = ntree))}
error <- mean.errors[optimum.number]
return(list("selection" = selection, "forest" = forest, "error" = error))

I
### The G.i and G.p approaches ###
R
Gen <- function(Y, X, ntree = 50, se.rule = 1, repetitions = 50) {
# Y: response vector
# X: matrix or data frame containing the predictors
# ntree: number of trees contained in a Random Forest
# se.rule: kind of s.e. rule used; e.g. = 1 equals the 1 s.e. rule
# repetitions: the results of ’repetitons’ repetitons should be aggregated
# RETURNS: selected variables, a corresponding Random Forest and 00B-error
mtry <- ceiling(sqrt(ncol(X))) # automatically set mtry to sqrt(p)
dat <- cbind(Y, X) # create the data
names (dat) <- c("response", paste("V", 1:ncol(X), sep = ""))
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rankings <- matrix(NA, nrow = repetitions, ncol = ncol(X),
dimnames = list(l:repetitions, names(dat)[-1]))
for (i in 1l:repetitions) { # repeatedly assess ranking of variable importances
forest <- cforest(response ~ ., data = dat,
controls = cforest_unbiased(mtry = mtry, ntree = ntree))
rankings[i, ] <- varimp(forest, prel.0_0 = T)}
selection <- names(sort(colMeans(rankings), decreasing = T))
errors <- matrix(NA, nrow = repetitions, ncol = ncol(X) + 1)
for (i in 1:ncol(X)) { # do forward selection steps based on the ranking
mtry <- min(mtry, ceiling(sqrt(i)))
for (j in 1l:repetitions) { # also repeat the computation of 00B-errors
forest <- cforest(as.formula(paste("response", paste(selection[1:i],
collapse = " + "), sep =" ~ ")), data = dat,
controls = cforest_unbiased(mtry = mtry, ntree = ntree))
errors[j, i + 1] <- mean((as.numeric(as.character(Y)) -
as.numeric(as.character(predict(forest, 00B = T))))"2)}}
errors[, 1] <- mean((as.numeric(as.character(Y)) - # error with no predictors
ifelse(all(Y %in% 0:1), round(mean(as.numeric(as.character(Y)))), mean(Y)))"2)
mean.errors <- colMeans(errors); sd.errors <- apply(errors, 2, sd)
optimum.number <- which(mean.errors <= # optimal number using the s.e. rule
min(mean.errors) + se.rule * sd.errors[which.min(mean.errors)]) [1]

if (optimum.number == 1) { # determine the model for interpretation
selection.int <- c(); forest.int <- c(}
if (optimum.number !'= 1) {

selection.int <- selection[1: (optimum.number - 1)]
forest.int <- cforest(as.formula(paste("response", paste(selection.int,
collapse = " + "), sep =" 7~ ")), data = dat,
controls = cforest_unbiased(mtry = mtry, ntree = ntree))}
# determine the threshold to be exceeded for inclusion into the prediction model
steps <- sapply(2:(ncol(X) + 1), function(x) mean.errors[x - 1] - mean.errors[x])
threshold <- sum(abs(steps[optimum.number:length(steps)])) /
((ncol(X) + 1) - optimum.number)
best <- which(steps <= threshold) [1] # optimal size for the prediction model
if (best == 1) {selection.pred <- c(); forest.pred <- c(}
if (best != 1) {selection.pred <- selection[1:(best - 1)]
forest.pred <- cforest(as.formula(paste("response", paste(selection.pred,
collapse = " + "), sep =" ~ ")), data = dat,
controls = cforest_unbiased(mtry = mtry, ntree = ntree))}
oob.error.int <- mean.errors[optimum.number]; oob.error.pred <- mean.errors[best]

return(list("selection.int" = selection.int, "selection.pred" = selection.pred,
"forest.int" = forest.int, "forest.pred" = forest.pred,
"oob.error.int" = oob.error.int, "oob.error.pred" = oob.error.pred))
X

B.5.2 Simulation Studies
Study I

R-Code used for simulation study I:

# load required packages
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library("party"); attach(asNamespace("party")) # version 1.0-0
library (mvtnorm) # version 0.9-9992

myfunc <- function(reg = F) { # function to apply variable selection to the data
Sigma <- diag(5) # define sigma and produce the data
dat.mod <- create.dat(c(0,0,0,0,0), n = 100, sigma = Sigma, regression = reg)
# apply each method with the specified settings and save selection frequencies
N <- NAP(dat.mod$response, dat.mod[, which(names(dat.mod) != "response")],
nperm = 400, ntree = 100, alpha = 0.05)
Nap <- N$selection; Nap.b <- N$selection.bonf
G <- Gen(dat.mod$response, dat.mod[, which(names(dat.mod) != "response")],
ntree = 100, se.rule = 1, repetitions = 50)
G.i <- G$selection.int; G.p <- G$selection.pred
<- Diaz(dat.mod$response, dat.mod[, which(names(dat.mod) != "response")],
recompute = T, ntree = 100)

[

J.0 <- J$selection.Ose; J.1 <- J$selection.lse
D <- Diaz(dat.mod$response, dat.mod[, which(names(dat.mod) != "response")],

recompute = F, ntree = 100)
D.0 <- D$selection.Ose; D.1 <- D$selection.1ise
Alt <- ALT(dat.mod$response, dat.mod[, which(names(dat.mod) '= "response")],
nperm = 400, ntree = 100, alpha = 0.05)$selection
svt <- SVT(dat.mod$response, dat.mod[, which(names(dat.mod) != "response")],

ntree = 100, folds = 5, repetitions = 20)$selection
Nap, NAP.B = Nap.b, G.i = G.i, G.p = G.p, J.0 =J.0, J.1 = 7J.1,
D.0, D.1 = D.1, ALT = Alt, SVT = svt))

return(list (NAP
D.0

}

set.seed(65) # set random seed for reproducibility of results
result.reg <- lapply(1:5000, function(x) myfunc(reg = T)) # regression
result.clas <- lapply(1:5000, function(x) myfunc(reg = F)) # classification

Study 11

R-Code used for simulation study II (set regression = T in the function create.dat()
to produce results for the regression problem):

# load required packages
library("party"); attach(asNamespace("party")) # version 1.0-0
library (mvtnorm) # version 0.9-9992

myfunc <- function(x) { # function to apply variable selection to the data

Nap <- Nap.b <- G.i <= G.p <= J.0 <= J.1 <~

D.0 <- D.1 <- Alt <- svt <- vector("list", length = 11)

# create the covariance matrix

Sigma <- diag(6); Sigmal[2, 4] <- Sigmal[4, 2] <- .7; Sigmal3, 5] <- Sigma[5, 3] <- .7

for (s in seq(0, 1, .1)) { # vary the strength of coefficients
dat.mod <- create.dat(c(s, s, s, 1, 0, 0), n = 100, sigma = Sigma, regression = F)
# apply each method with the specified settings and save the selection frequencies
N <- NAP(dat.mod$response, dat.mod[, which(names(dat.mod) != "response")],

nperm = 400, ntree = 100, alpha = 0.05)
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Nap[[which(seq(0, 1, .1) == s)]1] <- N$selection
Nap.b[[which(seq(0, 1, .1) == s)]] <- N$selection.bonf
G <- Gen(dat.mod$response, dat.mod[, which(names(dat.mod) != '"response")],
ntree = 100, se.rule = 1, repetitions = 50)
G.i[[which(seq(0, 1, .1) == s)]] <- G$selection.int
G.pl[which(seq(0, 1, .1) == s)]] <- G$selection.pred
J <- Diaz(dat.mod$response, dat.mod[, which(names(dat.mod) != "response")],
recompute = T, ntree = 100)
J.0[[which(seq(0, 1, .1) == s)]] <- J$selection.0Ose
J.1[[which(seq(0, 1, .1) == s)]] <- J$selection.lse
D <- Diaz(dat.mod$response, dat.mod[, which(names(dat.mod) != "response")],
recompute = F, ntree = 100)
D.0[[which(seq(0, 1, .1) == s)]] <- D$selection.Ose
D.1[[which(seq(0, 1, .1) == s)]] <- D$selection.lise
Alt[[which(seq(0, 1, .1) == s)]] <-
ALT(dat.mod$response, dat.mod[, which(names(dat.mod) !'= "response")],
nperm = 400, ntree = 100, alpha = 0.05)$selection
svt[[which(seq(0, 1, .1) == s)]] <-
SVT(dat .mod$response, dat.mod[, which(names(dat.mod) != "response")],
ntree = 100, folds = 5, repetitions = 20)$selection

}

return(list (NAP = Nap, NAP.B = Nap.b, G.i = G.i, G.p = G.p, J.0 = J.0, J.1 = J.1,
D.0 = D.0, D.1 = D.1, ALT = Alt, SVT = svt))

}

set.seed(1234) # set random seed for reproducibility of results
result <- lapply(1:1000, function(x) myfunc(x = x))

Study III

R-Code used for simulation study III (set regression = T in the function create.dat()
to produce results for the regression problem):

# load required packages
library("party"); attach(asNamespace("party")) # version 1.0-0
library (mvtnorm) # version 0.9-9992

sigma <- diag(20); sigmal[4:6, 4:6] <- .7 # create the covariance matrix
sigmal[7:11, 7:11] <- .7; sigma[12:13, 12:13] <- .7; diag(sigma) <- 1

# function to assess selection frequencies and prediction errors
myfunc <- function(dat.test, sigma) {
dat.mod <- create.dat(coefs = ¢(3,2,1,3,2,1,3,2,1,0,0,0,0,0,0,0,0,0,0,0),
n = 100, sigma = sigma, regression = F)
# apply each method and save selection frequencies and prediction errors
N <- NAP(dat.mod$response, dat.mod[, which(names(dat.mod) != "response")],
nperm = 400, ntree = 100, alpha = 0.05)
Nap <- N$selection; Nap.b <- N$selection.bonf
Nap.error <- mean((as.numeric(dat.test$response) -
as.numeric(predict (N$forest, newdata = dat.test)))"2)
Nap.b.error <- mean((as.numeric(dat.test$response) -
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as.numeric(predict (N$forest.bonf, newdata = dat.test)))"2)
G <- Gen(dat.mod$response, dat.mod[, which(names(dat.mod) != "response")],
ntree = 100, se.rule = 1, repetitions = 50)
.1 <~ G$selection.int; G.p <- G$selection.pred
G.i.error <- mean((as.numeric(dat.test$response) -
as.numeric(predict (G$forest.int, newdata = dat.test)))"2)
G.p.error <- mean((as.numeric(dat.test$response) -
as.numeric(predict (G$forest.pred, newdata = dat.test)))"2)
J <- Diaz(dat.mod$response, dat.mod[, which(names(dat.mod) != "response")],
recompute = T, ntree = 100)

(]

J.0 <- J$selection.Ose; J.1 <- J$selection.lse
J.0.error <- mean((as.numeric(dat.test$response) -
as.numeric(predict (J$forest.Ose, newdata
J.1l.error <- mean((as.numeric(dat.test$response) -
as.numeric(predict (J$forest.1lse, newdata = dat.test)))"2)
D <- Diaz(dat.mod$response, dat.mod[, which(names(dat.mod) != "response")],
recompute = F, ntree = 100)

dat.test)))"2)

D.0 <- D$selection.Ose; D.1 <- D$selection.lse
D.0.error <- mean((as.numeric(dat.test$response) -
as.numeric(predict (D$forest.0Ose, newdata
D.1l.error <- mean((as.numeric(dat.test$response) -
as.numeric(predict (D$forest.1lse, newdata = dat.test)))"2)
A <- ALT(dat.mod$response, dat.mod[, which(names(dat.mod) != "response")],
nperm = 400, ntree = 100, alpha = 0.05)

dat.test)))"2)

Alt <- A$selection
Alt.error <- mean((as.numeric(dat.test$response) -
as.numeric(predict (A$forest, newdata = dat.test)))"2)
S <- SVT(dat.mod$response, dat.mod[, which(names(dat.mod) != "response")],
ntree = 100, folds = 5, repetitions = 20)
svt <- S$selection
svt.error <- mean((as.numeric(dat.test$response) -
as.numeric(predict (S$forest, newdata = dat.test)))"2)
Fo <- cforest(response ~ ., data = dat.mod, controls = cforest_unbiased(mtry =
ceiling(sqrt(ncol(dat.mod) - 1)), ntree = 100))
error <- mean((as.numeric(dat.test$response) -
as.numeric(predict(Fo, newdata = dat.test)))"2)

return(list (NAP = Nap, NAP.error = Nap.error, NAP.B = Nap.b, NAP.B.error = Nap.b.error,
G.i =G.i, G.p = G.p, G.i.error = G.i.error, G.p.error = G.p.error,

J.0 =7J.0, J.0.error = J.0.error, J.1 = J.1, J.l.error = J.1.error,

D.0 = D.0, D.O.error = D.0.error, D.1 = D.1, D.1.error = D.1l.error,

ALT = Alt, ALT.error = Alt.error, SVT = svt, SVT.error = svt.error, error.full = error))
¥

set.seed(1234) # set random seed for reproducibility of results
# this is the data used for validation
mydat.test <- create.dat(coefs = ¢(3,2,1,3,2,1,3,2,1,0,0,0,0,0,0,0,0,0,0,0),
n = 5000, sigma = sigma, regression = F)
result <- lapply(1:1000, function(x) myfunc(dat.test = mydat.test, sigma = sigma))
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B.5.3 Empirical Evaluation

R-Code used for the empirical evaluation of the Infant Birth Weight Data (other datasets
were processed the same way):

# load required packages
library("party"); attach(asNamespace("party")) # version 1.0-0
library (MASS) # version 7.3-17

dat <- birthwt # initialize the data
names (dat) <- c(paste("V", 1:9, sep = ""), "bwt")

# function to assess selection frequencies and prediction errors
myfunc <- function(data) {
samp <- sample(l:nrow(data), nrow(data), replace = T) # sampling step
dat.mod <- data[samp, ]; dat.test <- datal[-samp, ] # test and training data
# apply each method and save the selection frequencies and prediction errors
N <- NAP(dat.mod$bwt, dat.mod[, which(names(dat.mod) '!'= "bwt")],
nperm = 400, ntree = 100, alpha = 0.05)
Nap <- N$selection; Nap.b <- N$selection.bonf
Nap.error <- mean((as.numeric(dat.test$bwt) -
as.numeric(predict (N$forest, newdata
Nap.b.error <- mean((as.numeric(dat.test$bwt) -
as.numeric(predict (N$forest.bonf, newdata
G <- Gen(dat.mod$bwt, dat.mod[, which(names(dat.mod) !'= "bwt")],
ntree = 100, se.rule = 1, repetitions = 50)
G.i <- G$selection.int; G.p <- G$selection.pred
G.i.error <- mean((as.numeric(dat.test$bwt) -
as.numeric(predict (G$forest.int, newdata = dat.test)))"2)
G.p.error <- mean((as.numeric(dat.test$bwt) -
as.numeric(predict(G$forest.pred, newdata = dat.test)))"2)
J <- Diaz(dat.mod$bwt, dat.mod[, which(names(dat.mod) != "bwt")], recompute = T,
ntree = 100)

dat.test)))"2)

dat.test)))"2)

J.0 <- J$selection.Ose; J.1 <- J$selection.lse
J.0.error <- mean((as.numeric(dat.test$bwt) -
as.numeric(predict (J$forest.Ose, newdata = dat.test)))"2)
J.1l.error <- mean((as.numeric(dat.test$bwt) -
as.numeric(predict (J$forest.1lse, newdata = dat.test)))"2)
D <- Diaz(dat.mod$bwt, dat.mod[, which(names(dat.mod) != "bwt")], recompute = F,
ntree = 100)
D.0 <- D$selection.Ose; D.1 <- D$selection.lse
D.0.error <- mean((as.numeric(dat.test$bwt) -
as.numeric(predict (D$forest.Ose, newdata = dat.test)))"2)
D.1.error <- mean((as.numeric(dat.test$bwt) -
as.numeric(predict (D$forest.1lse, newdata = dat.test)))"2)
A <- ALT(dat.mod$bwt, dat.mod[, which(names(dat.mod) != "bwt")], nperm = 400,
ntree = 100, alpha = 0.05)
Alt <- A$selection
Alt.error <- mean((as.numeric(dat.test$bwt) -
as.numeric(predict (A$forest, newdata = dat.test)))"2)
S <- SVT(dat.mod$bwt, dat.mod[, which(names(dat.mod) !'= "bwt")],
ntree = 100, folds = 5, repetitions = 20)
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svt <- S$selection
svt.error <- mean((as.numeric(dat.test$bwt) -
as.numeric(predict (S$forest, newdata = dat.test)))"2)
error.all <- mean((as.numeric(dat.test$bwt) - as.numeric(predict(
cforest(bwt ~ ., data = dat.mod, controls = cforest_unbiased(mtry =
ceiling(sqrt(ncol(dat.mod) - 1)), ntree = 100)), newdata = dat.test)))"2)
return(list (NAP = Nap, NAP.error = Nap.error, NAP.B = Nap.b, NAP.B.error = Nap.b.error,

G.i=G.i, G.p = G.p, G.i.error = G.i.error, G.p.error = G.p.error,

J.0 =7J.0, J.0.error = J.0.error, J.1 =J.1, J.l.error = J.1.error,

D.0 = D.0, D.O.error = D.O.error, D.1 = D.1, D.1l.error = D.1.error,

ALT = Alt, ALT.error = Alt.error, SVT = svt, SVT.error = svt.error, error.all = error.all))
}

set.seed(1234) # set random seed for reproducibility of results
result <- lapply(1:1000, function(x) myfunc(data = dat))

B.6 Chapter 6

R~Code used for the simulation studies of chapter 6:

# load required packages

library("party"); attach(asNamespace("party")) # version 1.0-0
library(mvtnorm) # version 0.9-9992

library(mice) # version 2.11

sig <- matrix(c( , # create covariance matrix

-
-

o O

-

1 3 3
0.3, 1 3
0.3, 0.3 1
0, 0, 0,
0 0 0
0 0 0

-

-

O O, OO O
O = O O OO
= O O O O O

-

>

-

), ncol = 6, byrow = T)

# function used for the simulation analysis
myfunc <- function(dat.test, sigma) {
# dat.test: data frame used for the assessment of a models error
# sigma: covariance matrix used to build the training data
dat.train <- create.dat(n = 100, sigma = sigma, regression = F) # training data
dat.mis <- lapply(l, function(x) dat.train)
# lists that will contain the variable selections and corresponding errors
# of the test-based (‘TB’) and performance-based (‘PB’) approaches
TB <- PB <- lapply(1:6, function(x) array(0, dim = c(6, 4, 3),
dimnames = list(paste("V", 1:6, sep = ""),
0:3, c("sur", "cc", "imp"))))
TB.error <- PB.error <- lapply(1l:6, function(x) matrix(0, nrow = 3,
ncol = 4, dimnames = list(c("sur", "cc", "imp"), 0:3)))
for (m in 1:4) { # induce 4 fractions of missing values
dat.mis <- with.missings(dat, c("V2", "V5"), c("V1", "V4"), m - 1)
for (j in 1:length(dat.mis)) { # there are 6 missing data generating processes
train.response <- dat.mis[[j]l]$response
mean.response <- ifelse(all(train.response %in}% 0:1), round(mean(
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as.numeric(train.response))), mean(train.response))
test.response <- as.numeric(dat.test$response)
input <- which(names(dat.train) != "response")
errorfunc <- function(a, b) {mean((a - as.numeric(predict(b, newdata = dat.test)))"2)}
# perform variable selection
Tb <- NAP(train.response, dat.mis[[j]][, input], nperm = 100, ntree = 100, alpha = 0.05)
TBL[j]l] [Tb$selection, m, 1] <- ifelse(is.null(Tb$selection), 0, 1)
TB.error[[jl]1[1, m] <- ifelse(is.null(Tb$selection), mean((test.response -
mean.response) "2), errorfunc(test.response, Tb$forest))
Pb <- Diaz(train.response, dat.mis[[j]l][, input], ntree = 100)
PB[[j]] [Pb$selection, m, 1] <- ifelse(is.null(Pb$selection.lse), 0, 1)
PB.error[[j]1]1[1, m] <- ifelse(is.null(Pb$selection.lse), mean((test.response -
mean.response) "2), errorfunc(test.response, Pb$forest))
if (m > 1) { # perform variable selection with a complete case analysis
Tb <- NAP(na.omit(dat.mis[[j]])$response, na.omit(dat.mis[[j]]) [, input],
nperm = 100, ntree = 100, alpha = 0.05)
TBL[j1] [Tb$selection, m, 2] <- ifelse(is.null(Tb$selection), 0, 1)
TB.error[[j1]1[2, m] <- ifelse(is.null(Tb$selection), mean((test.response -
mean.response) "2), errorfunc(test.response, Tb$forest))
Pb <- Diaz(na.omit(dat.mis[[j]])$response, na.omit(dat.mis[[j]]) [, input], ntree = 100)
PB[[j]] [Pb$selection.lse, m, 2] <- ifelse(is.null(Pb$selection.lse), 0, 1)
PB.error[[j]1]1[2, m] <- ifelse(is.null(Pb$selection.lse), mean((test.response -
mean.response) "2), errorfunc(test.response, Pb$forest))
# perform variable selection with multiple imputation
imp.dat <- mice(dat.mis[[j]], printFlag = F, defaultMethod = c("norm", "logreg", "polyreg"))
Tb <- lapply(1:5, function(x) NAP(complete(imp.dat, action = x)$response,
complete(imp.dat, action = x)[, input], nperm = 100, ntree = 100, alpha = 0.05))
TBL[j1]1[, m, 3] <- rowSums(sapply(Tb, function(x) table(x$selection) [paste("V", 1:6,
sep = "")]), na.rm =T) / 5
TB.error[[j]1]1[3, m] <- mean(sapply(Tb, function(x) { if (!is.null(x$selection)) {
errorfunc(test.response, x$forest)}
else mean((test.response - mean.response)”2)}))
Pb <- lapply(1:5, function(x) Diaz(complete(imp.dat, action = x)$response,
complete(imp.dat, action = x)[, input], ntree = 100))
PB[[j]]1[, m, 3] <- rowSums(sapply(Pb, function(x) table (x$selection) [paste("V",
1:6, sep = "")]), na.rm =T) / 5
PB.error[[j1][3, m] <- mean(sapply(Pb, function(x) { if (!is.null(x$selection)) {
errorfunc(test.response, x$forest)}
else mean((test.response - mean.response)”2)}))
11}
for (j in 1:6) { # processes do not differ when there are no missing values
TBL[311L0, 1, 1 <= TBL[111[, 1, 1); TB.error[[jl1[, 1] <- TB.error[[1]1]1[1, 1]
PBL[j]11[, 1, 1 <= PB[[1]11[, 1, 1]; PB.error[[jl1[, 1] <- PB.error[[1]1]1[1, 1]
}
return(list(Test.Based = TB, Test.Based.error = TB.error, Data.Driven = PB,
Data.Driven.error = PB.error))

}

set.seed(1234) # set a random seed for reproducibility of results
mydat.test <- create.dat(n = 5000, sigma = sig, regression = F) # create the test data
result <- lapply(1:1000, function(x) myfunc(dat.test = mydat.test, sigma = sig))
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