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A B S T R A C T

Animals require cognitive maps for efficiently navigating in
their natural habitat. Cognitive maps are a neuronal represen-
tation of their outside world. In mammals, place cells and grid
cells have been implicated to form the basis of these neuronal
representations. Place cells are active at one particular location
in an environment and grid cells at multiple locations of the ex-
ternal world that are arranged in a hexagonal lattice.

As such, these cell types encode space in qualitatively differ-
ent ways. Whereas the firing of one place cell is indicative of
the animal’s current location, the firing of one grid cell suggests
that the animal is at any of the lattice’s nodes. Thus, a popu-
lation of place cells with varying parameters (place code) is re-
quired to exhaustively and uniquely represent an environment.
Similarly, for grid cells a population with diverse encoding pa-
rameters (grid code) is needed. Place cells indeed have varying
parameters: different cells are active at different locations, and
the active locations have different sizes. Also, the hexagonal lat-
tices of grid cells differ: they are spatially shifted, have different
distances between the nodes and the sizes of the nodes vary in
their magnitude. Hence, grid codes and place codes depend on
multiple parameters, but what is the effect of these on the repre-
sentation of space that they provide?

In this thesis, we study, which parameters are key for an accu-
rate representation of space by place and grid codes, respectively.
Furthermore, we investigate whether place and grid codes pro-
vide a qualitatively different spatial resolution.

O V E R V I E W

The research is presented in the form of articles; two accepted
papers and two manuscripts. The complete articles are included
as single chapters, each preceded by a brief summary and a clar-
ification of my specific contribution. In addition, the following
paragraphs provide a brief overview of the organization of the
thesis.

In the introduction, we recapitulate the spatial behavior of an-
imals, which suggests that they have cognitive maps, and the
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neuronal basis of spatial representations in mammals. In par-
ticular, we review experimental results on place and grid cells.
Then we state our research questions.

In the first paper, grid codes and place codes that represent a
one dimensional environment, called linear track, are compared
(chapter 2). We show that a typical grid code outperforms a
place code. Specifically, we derive optimal parameter regimes
for both codes. For place codes, the analysis reveals that the res-
olution is optimized by a population of place cells with constant
sizes, and that varying sizes are not advantageous. For grid cells,
however, the different spatial scales of the hexagonal lattices can
substantially improve the coding accuracy. We demonstrate that
nested grid codes, where the spatial periods are staggered, offer
the highest resolution.

These nested grid codes have a resolution that scales expo-
nentially in the number of neurons, rather than linearly as for
place codes. Therefore, even for small population sizes, nested
grid codes offer substantially more resolution. Neuronal repre-
sentations with unimodal tuning curves, like place codes, are
abundant in the brain and encode various stimulus spaces with
varying dimensions. We generalize the nested coding strategy
to codes that represent spaces of arbitrary dimensions and verify
the better scaling properties for this case too. This suggests that
nested, periodic neuronal representations could also be used for
other stimulus variables than space 3.

In all the preceding articles the neurons are statistically inde-
pendent in their firing. In chapter 4, we treat grid codes and
place codes with noise correlations. As we point out, noise cor-
relations do not affect the qualitative scaling of the resolution.

In the last study, we derive the optimal characteristics for grid
codes representing a planar environment. These optimal charac-
teristics are then compared to the measured properties of grid
cells. We point out the similarities, and argue that the grid code
indeed appears to be optimized for its presumed task: accurately
encoding space (chapter 5).

Finally, these results are discussed jointly and some future re-
search questions are stated.
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1 I N T R O D U C T I O N

Ich bin. Aber ich habe mich nicht.
Darum werden wir erst.

Ernst Bloch, [10].

We start by describing certain spatial behaviors of animals,
which indicate that they possess cognitive maps of their envi-
ronment. As we will then show, in mammals these maps are
believed to be supported by place and grid cells. Studying the
spatial resolution of such maps, formed by populations of place
or grid cells, is at the heart of this thesis. In particular, we in-
vestigate the characteristics of place and grid cells that affect the
resolution of such spatial representations.

1.1 SPACE AND SPATIAL BEHAVIOR

Philosophers position themselves in different paradigms re-
garding the matter of space. Some regard it as an entity in it-
self, others as a framework for holding relations among entities
or as an apriori structure waiting to be filled by a posteriori
experience [68, 103]. While classical Physics resided in three-
dimensional space, Einstein transferred it to the continuum of
space-time [85]. Similarly, in Mathematics space came a long
way from Euclid’s elements, via Descartes’ analytic geometry to
non-Euclidean geometries and finally, the notion of topological
spaces [133].

Here, however, we take a much more pragmatic stance. Space
is merely considered as the physical arena of our behavior, where
we live in, navigate through, plan, and defend ourselves [103].
Most animals are motile and their abilities to move in space are
astonishing. For instance, many types of open-ocean predatory
fish choose their foraging strategy as either Brownian or Lévy
motion depending on the abundance of food. When food is
scarce animals move according to Lévy flights, a class of random
walks with jumps distributed like a power-law. Then the trajecto-
ries of animals remind of fractal curves. It has been argued that
such movements are the most efficient ones for catching patchy
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2 INTRODUCTION

prey that occurs in low concentrations. Brownian motion, on the
other hand, feeds the animal well enough when food is abun-
dant [61].

Another staggering ability beside foraging is exemplified by
the behavior of digger wasps, which was eloquently described
by Gallistel [46]:

“Digger wasps dig nest burrows in which they lay an
egg. They cover the burrow entrance with pebbles,
making it all but invisible, then fly off in search of
insect prey. They sting their prey to paralyze it, carry
it back to the burrow, open the burrow, drag the prey
inside, exit the burrow and close it up again. The
larva that hatches from the egg eats the paralyzed,
still living prey.”

How can digger wasps remember the location of their invisible
nest? Tinberger and Kruyt established that the configuration of
landmarks near the nest guides the wasp, rather than a sensory
trace. If such landmarks, like pine cones and sticks are moved
together, the wasp looks for the nest at the corresponding point
in the moved configuration, rather than at the unaltered location
of the nest [46]. In order to remember these features wasps sys-
tematically orbit around their nest to update their visual mem-
ory about the goal location, before leaving to catch prey [151].
Yet, such a “snapshot“ of a goal relative to landmarks is a map,
which more specifically, if it is stored in the brain, is called cog-
nitive map [46, 103, 137]. With this notion in mind, the wasp’s
behavior can be summarized by stating that the wasp forms a
cognitive map of the nest’s neighborhood that is later used to
find the nest [46]. Such behavior is widespread among animals,
including mammals. And as one might expect, not just the close
vicinity of the nest is captured in a cognitive map, but the large-
scale environment as well [46, 89, 90, 103, 137]. This navigation
strategy is called piloting [46].

As we have seen for digger wasps, when animals pilot, they
orient themselves according to comparisons of their current en-
vironment to spatial memories. The salient cues, which are deci-
sive for storing snapshots and comparing those to the current en-
vironment, vary of course from species to species. Typical land-
marks can be mundane objects like pine cones, sticks, or larger
objects like trees, hills or gas stations, but also the stars, the sun,
odor traces or geomagnetic field lines [103]. For instance, pi-
geons are capable of orienting based on both the position of the
sun and their magnetic sense [103].
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Navigation is not solely based on orienting according to land-
marks, however. A standard taxonomy of navigation classifies
the strategies of animals into piloting and dead reckoning [46, 110].
Dead reckoning is a complementary strategy of integrating speed
and heading-direction over time, such that the current position
can be known from a past position plus the movements after-
wards [36, 46, 110]. Desert ants can return directly after foraging
over hundreds of meters through unfamiliar, seemingly identi-
cal territory. Bees are even adept of homing after kilometers of
tortuous flights [143]. The internal position estimate can be the
result of counting steps, as in desert ants [149], or of integrat-
ing optic flow, like in honeybees [34, 130]. Another name for
dead reckoning is path integration, and mammals also employ
this method, as shown by their ability to head home straightly
after a circuitous route [36, 92]. Meticulously controlled experi-
ments demonstrated that they achieve this by integrating head-
direction and speed. Mammals have a vestibular organ that mea-
sures angular and linear acceleration by the semicircular canal
system and the otoliths, respectively [143]. These signals are
supported by somatosensory information and motor efference
copy [35, 92, 110, 143]. Together they allow the mammal’s brain
to internally compute its position. As one might expect, similar
mechanisms can be used when navigating towards a goal rather
than the nest [37]. However, path integration is, due to its na-
ture of adding up small motion increments an inherently noisy
process [7, 38]. As such, especially for long-range navigation,
it has to be supplemented by other non-self-generated signals
that correct the errors in the internal representation, like land-
marks, etc. [36, 143]. Bees, for instance, return to Lévy flights,
when they have completely lost track of their hive – which is the
most efficient search strategy to find their hive [115], because
from a random position the hive can be considered as ”scarcely
distributed”, as the prey for for predatory fish.

So far we have seen ethological observations about how ani-
mals navigate through physical space and how navigation is sup-
ported by cognitive maps that are updated by both self-motion
signals and sensory cues. As the examples indicate, the impor-
tance of spatial memory for spatial behavior cannot be under-
estimated. Where these maps reside in the brain was not ad-
dressed, however. Thus in the next section we will have a look at
this topic and from now on focus on mammals. We will mostly
concentrate on rats, as they are the predominating experimental
model system for mammalian spatial cognition [36].
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1.2 THE NEURONAL REPRESENTATION OF SPACE

A broad corpus of anatomical, physiological, and lesion evi-
dence supports the hypothesis that the hippocampus and adja-
cent structures are involved in the representation of space [36,
88, 96, 103, 110]. The hippocampal formation is a compound
structure that encompasses the hippocampus proper as well as
the dentate gyrus and the subiculum. Superficial layers of the en-
torhinal cortex (EC) project to the hippocampal formation, while
deep layers receive hippocampal feedback ( [141, 148], figure 1).
These structures receive multimodal sensory input, including
head-direction and proprioceptive signals [141].

Two fundamental observations brought the hippocampus to the
forefront of research about space and more generally memory [110]:

• In 1971 O’Keefe and Dostrovsky found cells, basically in
the middle of the rodents’ brain, far away from all sensory
areas that had an obvious correlate. These cells have a high
elevated firing rate at one location and are practically silent
elsewhere. For this reason they are called place cells [102].

• In humans lesions of the hippocampus, and more broadly
of the temporal lobe, cause severe loss of recent declarative
memory.1 Lesioned subjects, like H.M., fail to transfer con-
tent from their short-term memory to the long-term mem-
ory – they suffer an anterograde amnesia [119].

Both insights had a profound impact on theories of the hip-
pocampus, each inspiring one of the prevailing theories: On the
one hand, that place cells are the building blocks of the cognitive
map [103], and, on the other hand, that the hippocampus asso-
ciates episodes to form memories, which are transferred to the
cortex [31, 73, 80, 128]. Similarly to humans, the spatial mem-
ory of rats is impaired, when their hippocampus is lesioned [94].
The human hippocampus has also been implicated in naviga-
tion, as for instance the hippocampi of London’s taxi drivers are
significantly larger than those of controls [79], and place cells in
humans have been reported by brain imaging [78] and physio-
logical recordings [33]. As we will see in the next section, place
cells indeed provide a spatial map, and their memory compo-
nent cannot be disregarded [32, 99, 103].

1 Memory can be divided in declarative and procedural memory. While proce-
dural memory keeps skills learned through practice, declarative memory holds
facts, events, knowledge and episodes. Thus, another name for declarative
memory is episodic memory [110, 128].
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Figure 1: Illustration of the hippocampal formation and parahip-
pocampal region in the rat. A: Lateral (left) and caudal (right)
views of hippocampal formation and parahippocampal re-
gion in the rat. The hippocampus proper comprises the den-
tate gyrus (DG; dark brown), CA3 (medium brown), CA2

(not indicated), and CA1 (orange); together with the subicu-
lum (Sub; yellow)) it is called hippocampal formation. The
parahippocampal region consists of the presubiculum (PrS;
medium blue), parasubiculum (PaS; dark blue), and the en-
torhinal cortex, which has a lateral (LEA; dark green) and a
medial (MEA; light green) part, the perirhinal cortex (A35;
pink and A36; purple) and the postrhinal cortex (POR; blue-
green). The dashed lines in the left panel mark the planes of
two horizontal sections (a,b) and two coronal sections (c,d).
These sections are depicted with the same color code in B. C:
A nissl-stained horizontal cross section (expanded from Bb).
The cortical layers are labeled with Roman ciphers. For the
layers in the hippocampus the following abbreviations are
used: gl, granule cell layer; luc, stratum lucidum; ml, molec-
ular layer; or, stratum oriens; pyr, pyramidal cell layer; rad,
stratum radiatum; slm, stratum lacunosum-moleculare. Fig-
ure reprinted with permission from [141].
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1.2.1 Place cells

Place cells in the hippocampus proper and dentate gyrus typ-
ically code a single location in the environment by a high fir-
ing rate when the animal is at that location, and remain silent
elsewhere [102, 103]. For a place cell, the region of space that
corresponds to active firing is called the place field. The centers
of place fields are distributed all over the experimental environ-
ment ( [146], Fig. 2a) and the diameter of place fields increases
along the dorsoventral axis of the hippocampus from values of
20cm up to at least 10m [70]. In larger environments, a single
place cell sometimes exhibits more than one place field [74, 107].

(a)

10cm

(b)

Figure 2: (a) Firing maps of 80 simultaneously recorded pyramidal
and inhibitory neurons of the rat hippocampus. Each panel
represents the spatial firing rate of one cell, averaged over
the whole recording session within a quadratic box. High
firing rates are depicted in red, medium rates in yellow and
low firing rates in blue. Inhibitory cells show rather spa-
tially unspecific firing and have high firing rates all over
the environment. The centers of the place fields are dis-
tributed all over the environment. Reprinted with permis-
sion from [146]. (b) The trajectory of a foraging rat within
a circular arena is depicted in black. The spatial positions
of spikes from two grid cells in red and green are shown.
Both units were extracted from one tetrode recordings and
are therefore anatomically close. Both cells exhibit multiple
firing fields that are arranged like a hexagonal lattice. Their
lattices are similar, yet spatially translated; they represent dif-
ferent spatial phases. Figure generated from publicly avail-
able data (http://www.ntnu.no/cbm/moser/gridcell, [55]).

Already a moderately large population of place cells, like the
ones depicted in Fig. 2a, can be used to accurately reconstruct

http://www.ntnu.no/cbm/moser/gridcell
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the rat’s position [146]. The firing of place cells is determined
by both allocentric cues [101] and idiothetic variables [103, 140].
All this merely implies a correlation of place cell firing and posi-
tion. Indeed, the causality has not been proven conclusively, but
sophisticated experiments suggest that the firing of place cells
appear to mirror the internal position estimate of the rat.2

Place cell firing is stable in familiar environments [41, 95]. Fur-
thermore, it has been pointed out that the spatial representation
of place cells could be innate, as neurons with place cell activity
appear just days after rat pups open their eyes [72, 145]. How-
ever, place cells do not simply form a spatial map: firstly, the fir-
ing rate of place cells is contextually modulated.3 Secondly, the
spatial map that place cells provide is not topographic, i.e. the
proximity relationships of place cells change drastically across
environments.4 Thirdly, path integration and external cues com-
pete for updating the place map in the case of a contradictory sit-
uation.5 All these findings emphasize the spatial memory aspect

2 For instance, Kubie et al. tested this hypothesis by a task in which rats have to
pause at an unmarked, fixed site to obtain a food reward [71]. This task was
carried out in a circular environment with certain, controlled distal cues. Dur-
ing the experiment the distal cues were systematically moved in a continuous
fashion. It was observed that the rats paused at, apparently, random positions
within the circular environment - not at the learned, fixed site. Earlier Fenton
et al. had determined, how distal cue configurations influence the firing of the
place cells [40]. From this understanding and the changes of the distal cues
during the experiment the authors could precisely predict the pause locations
of the animal. Hence, the position estimate of the hippocampus appears to
be closely related to the rat’s estimate [71]. Conclusive experiments, maybe
along the lines of optogenetic methods that allow to selectively alter the state
of neurons and circuits [91], should soon shed more light on this issue.

3 Their firing rates can alter significantly after small modifications of the envi-
ronment, like changing the color of a wall [25, 75]. This has been called rate
remapping. They can even be responsive to odors in odor discrimination tasks
or training rules [25]. As such, this could be important for associating locations
with certain stimuli and therefore allow episodic memory [25, 31, 32].

4 Completely different place cells can be active even in similar environments
with different distal cues. Even if a cell has a place field in both environments
the peak firing rates, and the centers are unrelated. This tendency has been
named global remapping, and can even happen within the same environment,
if salient properties alter drastically [25, 75, 98, 111, 112].

5 In an experiment by Gothard et al. rats had to run from a home location at
the beginning of a linear track to a goal location at the end. They were famil-
iar with the environment. When the length of the linear track was changed
between sessions, it became clear that the rats had home-aligned and goal-
aligned place maps. In all cases, the place cells close to the home, fired at
the same distance from the home and the place cells close to the goal location
fired at the same distance from the goal — despite different track lengths. In
case of large track length changes, a sudden transition from home-aligned to
goal-aligned place cells could be observed somewhere along the linear track.
This indicates that initially path integration drives the firing until external cues
align the place cells firing to the goal location [51, 112]. This frame switching
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of the spatial maps in the hippocampus [25, 41, 57, 58, 64, 65].
Other spatially modulated cells, which on a population level re-
semble an internal compass, are also known and will be pre-
sented next.6

1.2.2 Head-direction cells

A crucial ingredient to the path integration system was found
in the form of head-direction cells [135, 136]. They code the rat’s
heading direction in an allocentric way. These cells exist in sev-
eral brain areas including the postsubiculum and entorhinal cor-
tex. Vestibular and proprioceptive signals generate and update
their firing. Some head-direction cells are additionally tuned
to angular head-accelerations and thus update the activity too.
Their direction preference remains stable over multiple sessions
in the same, familiar environment. Their initial preference how-
ever, depends on allocentric cues, that are mostly visual [134].
One of the more important roles of some head-direction cells is
providing their input to grid cells, cells that we describe next.

1.2.3 Grid cells

In 2004 Fyhn et al. discovered neurons in the most ventral por-
tion of the medial entorhinal cortex (mEC) that exhibited multi-
ple firing fields [45].7 These fields are arranged in a regular,

can occur on the order of a tenth of a second, as it was shown in the teleportation
experiment by Jezek et al. For this experiment rats were extensively trained in
one box with two different light cues that were only presented separately. So
the animal learned two independent place maps. After the learning period of
both environments, the effect of ”instantly transferring“ the rat from one room
to the other by changing the light stimulus could be studied. Thereby rapid
transitions from the one frame to the other could be observed [65].

6 One cannot introduce the hippocampus without remarking that when rats
are running, the local field potential (LFP) shows a strong theta rhythm (6-
11Hz). This rhythm might serve as an organizing clock in the hippocampal
formation [20]. For instance, when a rat transverses a place field, the theta
phase of the spikes shifts systematically. The spikes tend to progressively
happen at earlier theta phases – a phenomenon called phase precession [104,
118].

7 Over the years prior to 2004 much evidence for the existence of spatially mod-
ulated cells projecting to the hippocampus had been accumulated. Anatomi-
cally it was known that head-direction cell signals are relayed to the hippocam-
pus via the mEC [88, 134, 148] and modeling studies suggested that the path
integrator might be located upstream of the hippocampus [87, 140]. Addition-
ally, it had been reasoned that the huge number of independent, unique place
maps that would have to be stored in the hippocampus could severely con-
strain the storing capacity, a problem that could be circumvented by a univer-
sal map that underlies these place maps [103, 124, 140]. Further evidence for
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periodic fashion. The extend of these fields is not confined to
the recording arena: when the enclosure is expanded, cells have
additional firing fields in the novel part [55].8 The pattern of
these fields resembles a hexagonal lattice or grid, which coined
their name: grid cells ([55], see Fig. 2b). More recently grid cells
have also been found in the pre- and parasubiculum [12].

The firing pattern of grid cells can be characterized by the (fir-
ing) peak-to-peak distance, called spatial period, the field size,
the (angular) orientation of the lattice and the position of one of
the lattice’s vertices, called the (spatial) phase. Grid cells have
many topographic properties. Anatomically neighboring grid
cells share similar spatial periods, field sizes and orientations.
The spatial period grows from about 20 centimeters up to sev-
eral meters along the dorsoventral axis of the mEC [16, 45, 55].
The field sizes grow too and it appears that the ratio of grid field
width to spatial period remains constant [16, 55]. The phases of
anatomically neighboring grid cells are uniformly distributed,
without any apparent topography. Yet, even a modest number
of grid cells covers the entire recording arena [55]. Deeper lay-
ers of the mEC, in particular layer III and V, contain grid cells
too, and their lattice properties are similar across layers [55, 116];
Together these observations suggest a modular organization of
the mEC, which is supported by anatomical findings [19, 147]
– reminiscent to the columnar structure in other cerebral cortex
areas [97].

Crucially, the position of the grid fields is stable across record-
ing sessions in the same environment, while the peak firing rates
of grid fields vary moderately. This suggests that the exact posi-
tion of a grid lattice is determined by allocentric reference points,
and indeed rotating distal cue cards rotates grids accordingly.
Yet, even after cue removal, like switching off the light, the grid

such cells came from experiments; the localized firing of CA1 and CA3 cells
persisted after blocking dentate gyrus input [86] and CA1 place cells remained
to fire in place, even after blocking CA3 [15]. All this pointed to the existence
of spatially modulated cells in the mEC, yet, only faintly modulated cells had
been found earlier [96].

8 Hence, it was initially reported that the density of grid fields stays the same in
an expanded environment and thus also the spatial period [55]. Later experi-
ments by Barry et al. revealed that rescaling the box leads to a corresponding
rescaling of the grid pattern – these contractions or expansions of the grid pat-
tern were most pronounced at the first exposure to the new shape. When both
the initial and the alternative shapes were known to the animal no rescaling
took place. Interestingly, after a substantial time in the rescaled environment
the grid pattern seems to return to the initial scale. Hence the spatial period
appears to be shaped by an interplay of intrinsic, self-motion estimates and
learned associations to environmental cues [6].
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firing pattern persists; leaving the spacing and the average firing
rate unaltered [55].

This robustness of the grid pattern to sensory changes points
to idiothetic signals as the likely mechanism for updating their fir-
ing, which predisposes the grid cells as the path integrator [55].
This claim has not been proven conclusively, but the anatomi-
cal, functional and behavioral knowledge strongly lends strong
support for this interpretation [96]. Homing and spatial search
performance of rats with lesions to the dorsal pole of the mEC
is strongly impaired [108, 131]. Grid cells that are additionally
modulated by idiothetic signals, like running speed and head-
direction, have later been found and were termed conjunctive
cells [116]. They are believed to play a key role in updating the
animal’s internal position estimate, as they combine the current
estimate with the current velocity [88].

For the aforementioned binding of grid cells to allocentric cues
two independent and compatible mechanisms have been sug-
gested: firstly, grid cells might be anchored by feedback from
hippocampal place cells. As place cells have spatial memory
properties it is conceivable that their activity initializes the grid
cells consistently in known environments [88, 96]. Secondly,
there are cells that represent the border of environments and
therefore could serve for anchoring the brain’s spatial represen-
tation.9

Grid cells have also been discovered in mice [44] and more re-
cently in Egyptian fruit bats [150]. For the latter finding the bats
were crawling for food pellets, so these grid patterns are also
planar lattices. Whether bats’ grid cells also have three dimen-
sional grids during flight is still unresolved. Furthermore, there
is evidence from fMRI that grid cells are present in humans as
well [27].10

1.2.4 Summary

The gist of the matter is that grid cells are believed to consti-
tute the path integrator, by integrating head-direction and speed

9 The firing rate of boundary vector cells is modulated by the shortest distance to
the closest boundary in the environment. The running direction and properties
of the boundary barely have an effect on their firing rate. These cells have been
reported in the subiculum [76]. Cells with similar properties have been found
in the entorhinal cortex too and are called border cells [117, 127]. If one rotates
distal cue cards that serve as landmarks, the spatial representation of these
cells moves as well; thus these cells might be indeed instrumental in anchoring
the firing of grid cells by setting the spatial phase [127].

10 Finally, like for place cells also grid cells show phase precession in each field
as observed by analyzing pooled data [54] and single-runs [114].
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signals. The firing of the grid cells network might be anchored
to specific landmarks by border cells or hippocampal place cells.
The feedback of hippocampal place cells re-calibrates the entorhi-
nal path integrator in case of accumulated position estimate er-
rors [88, 96].

1.3 AIM OF THIS THESIS
As we have seen, many details about the building blocks of

cognitive maps in mammals have been found. Particularly inter-
esting properties are the hexagonality and the self-similarity of
the grid cell’s firing patterns as well as the the multiple scales of
spatial representation in both place and grid cells. Hence, while
much is known about the cells that encode space, an answer why
particular designs have evolved remains elusive [50]. In light of
these cell properties, three key questions arise:

• How do grid and place cells represent space?

• Which characteristics contribute to the spatial resolution of
such codes?

• Is the population of grid cells, which has been implicated
as the path integrator and therefore should be precise, op-
timized for resolution?

The work presented in this thesis translates these vague ques-
tions into well-defined mathematical problems and studies those.
The first two questions are treated in chapters 2-4, the last one
in chapter 5. In the final part of the introduction we will pro-
vide more details regarding these questions. They are dependent
on each other, as if we do not know how these codes represent
space, we cannot discuss which parameters improve the resolu-
tion.

How do populations of grid cells (grid code) and place cells
(place code) represent space? – apparently in completely dif-
ferent ways. While place cells give sparse responses: if one cell
fires the animal is already as uniquely localized as the place field.
However, if a grid cell fires, then the rat could be in any of the
grid fields. Hence, although grid cells are allegedly specialized
in the representation of space, and place cells have other func-
tions too, naively it appears as if place cells offer a more useful
spatial code than grid cells.

This intuition is plainly wrong, if one considers the population
level. To see this, let us consider a fictive population of binary
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place cells. How many different states can 9 neurons provide?
There can at most be 2 · 9 states.11

What about 9 grid cells? Figure 3 shows a particular arrange-
ment of the grid cells that we call nested grid code. As explained
in the figure caption this code with 9 grid cells can have 33 = 27
states. Thus, the same number of binary grid cells can pro-
vide more states. This advantage becomes more pronounced the
more neurons one considers. By the same argument as above
99 place cells can provide at most 198 states, yet 99 grid cells
with, for instance, 3 phases per module can provide a baffling
number of 333 states. Much more states than neurons contained
in the human brain. This simple counting argument shows that
the number of states a population of grid cells can provide can
dwarf those of a population of place cells.

This argument has of course only limited explanatory power
for the brain. Just let us consider one obvious problem. Real
neurons are noisy, in the sense that the identical stimulus con-
dition might elicit a different number of spikes. Grid cells and
place cells are no exception. So what happens if a certain neuron
accidentally fires, or fails to fire? In figure 3 let us assume that
instead of phase 1 in module 1, it is actually phase 2 in module 1
that fires. This noisy code word would correspond to a state that
is almost half the width of the linear track away. But how likely
is that, and what happens under realistic neuronal noise condi-
tions, and what effect do other parameters have? Neural coding
theory offers the tools to rigorously tackle such questions.

1.3.1 Neural coding theory

We alluded to codes a couple of times. Formally, a code is
a rule of translating one signal into another. These signals can
be physical variables, letters, bits, spikes, etc. For instance, our
senses translate physical variables into spike trains. Also be-
tween brain areas signals are transferred and possibly recoded.

11 By state we mean a vector v = (v1, v2, . . . , v9) of ones and zeros that signifies
the activity of the 9 neurons at position v. For instance, if v1 = 1, the first
neuron is active, and if v1 = 0 it is inactive. Now let us assume that these
states are spatially ordered a,b, c,d, . . .. This means that state a is a neighbor
of b, b of c, etc. Because a and b are different states, at least one neuron has
to have a different state: for instance, a3 6= b3 meaning neuron 3 is active at
a, but inactive at b or vice versa. So, either neuron 3 turns off or on, when
traversing from a to b. Crucially, each neuron is a place cell. Hence, along this
sequence of positions a,b, c,d, . . . it can at most only once turn on and only
once turn off, because it has only one place field. Thus, any neuron can at
most twice change its state. Consequently, there can be at most 2 · 9 different
code words.
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Linear track:

Phases:

Module # 1 1 2 3
Hour hand 

Module # 2 1 2 3 1 2 3 1 2 3
Minute hand 

Module # 3 1 2 3 1 2 3 1 2 3 1 2 3 2 3 1 2 3 1 2 3 1 2 3 1 2 3
Second hand 

Clock analogy:

Position x

with coordinates: (blue, blue,red)

Figure 3: Illustration nested coding scheme. Example with three dif-
ferent spatial periods with three discrete phases each. The
different cells with the same spatial period comprise a mod-
ule. For instance, phase 1 of module 1 is active in the first
third of the linear track, phase 2 of module 2 in the second
third, and etc. The first module gives coarse spatial infor-
mation, that is further subdivided by the other two modules.
By themselves the other modules provide ambiguous spatial
information; together they effectively subdivide the linear
track. In particular, each phase of module 1 is subdivided
by the three phases of module 2, and they themselves are
again subdivided by the 3 phases of module 3. All in all
that makes 33 = 27 states. This coding strategy is analogous
to the principle of a clock, where each hand further refines
time. All three hands code a twelve-hour span down to sec-
ond precision.
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Figuring out the code book of these transformations is one of the
major quests of Neuroscience [28, 142].

In the brain many stimulus variables are encoded by popula-
tion codes, where the elicited spikes of many neurons represent
the stimulus in a distributed way. The nobel-prize-winning ex-
ample is the encoding of the edge orientation in images by sim-
ple cells in the visual system [59, 60]. Evidence for similar encod-
ing strategies exists across the brain, from lower and higher sen-
sory areas to motor areas and even in between, as exemplified
by the place and grid cell populations [28, 48, 49, 152]. Neuronal
responses, like the number of spikes, are often noisy in the sense
that the repeated presentation of identical stimuli results in vari-
able spike counts [23]. The stimulus-response function together
with the statistical distribution mathematically define the encod-
ing step of a population. Given a certain population code, like
a place code or a grid code, which translate positions into vec-
tors of spike counts, the spatial resolution of such a code can be
computed [23, 120]. Intuitively, the resolution is the average en-
coding precision of such a code (formally defined in chapter 2).

Within this framework we establish the qualitatively different
scaling of a nested grid code and place codes, despite neuronal
noise. This result is presented in chapter 2 for the linear track
and higher dimensional stimulus variables in chapter 3. There
we show that the resolution of nested grid codes can scale expo-
nentially in the number of neurons, whereas place cells can only
scale linearly in the number of neurons. This framework also
allows us to study multiple other dependencies: What is the
effect of the different spatial scales of place cells? What about
other sets of spatial periods than the nested arrangement? Such
questions are treated in chapter 2.

The first two chapters consider place and grid codes with sta-
tistically independent neurons. The effect of correlations on the
resolution are elucidated in chapter 4.

The remaining key question is whether the grid code in the
medial entorhinal cortex is optimal for encoding space. In the
following section we introduce a principle that has been put for-
ward as a theoretical model for the connection between function
and form.
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1.3.2 Optimal coding hypothesis

Form follows function.

Louis Henry Sullivan.

As noted in a recent review article by Simoncelli and Olshausen [125],
the evolution and development of any neuronal system is hy-
pothesized to be sculpted by the following three factors:

1. ”the tasks that the organism must perform,

2. the computational capabilities and limitations of neurons
(this would include metabolic and wiring constraints),

3. the environment in which the organism lives“ [125].

The last, ecological factor has a pronounced impact on sen-
sory systems. Therefore, Attneave and Barlow proposed the ef-
ficient coding hypothesis as a theoretical framework for sensory
coding [4, 5]. They observed that an important factor for neu-
ral systems are information bottlenecks, like the optic nerve.
Therefore, from an information theoretical point of view it is
efficient to have a neuronal code that matches the environmen-
tal and neuronal response characteristics. Thus sensory systems
should excel at processing sensory signals that manifest them-
selves most frequently in the environment [4, 5, 125]. Indeed,
the efficient coding hypothesis has been applied to successfully
predict the structure of receptive fields, tuning curves in the
cochlear, and the sparseness of neuronal representations in sen-
sory cortices [2, 3, 77, 105]. However, the efficient coding hypoth-
esis does not mention the accuracy of the coding [125].

Like the third factor, also the first two factors, namely the
task together with computational capabilities exert a dominating
influence on neural systems. In the task of path integration the
challenge has been presented earlier: the neuronal representa-
tion has to store the current position as precisely as possible,
despite neuronal noise. Otherwise small intrinsic deviations of
the position estimate accumulate over time to huge errors and
subsequently render path integration useless. As the accuracy,
presumably, has such a prevailing effect on the path integration
system, we ask if these factors can explain the observed features
of the grid code in the mEC. Taken together, and due to our
emphasis on the accuracy, we call this the optimal coding hypoth-
esis. It was in light of this framework that we ask in chapter 5,
what are the parameters of a grid code that optimize its resolu-
tion. Thereby we formalize the second and third factors in the
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following way (chapter 5 for details). As second factor we con-
sider a fixed number of grid cells with a limited peak firing rate
(power constraint). Furthermore, we require that the size of the
environment is bounded and that the spatial resolution within
this environment should be equally high at all positions. This
is assumed, because a path integration system should be spa-
tially invariant [63]. In that sense, our study design also mirrors
certain ecological factors.

Hence, we investigate the optimality of a population of grid
cells under the constraints just presented. We show which fea-
tures of the grid code endow it with the highest spatial resolu-
tion and compare these optimal properties to the properties of
grid cells in the mEC. This work is presented in chapter 5.



2 G R I D C E L L S
O U T P E R F O R M P L A C E C E L L S

2.1 SUMMARY

Rodents possess two neuronal coordinate systems for repre-
senting their position that are known: place cells in the hip-
pocampus and grid cells in the medial entorhinal cortex. While
place cells typically fire at one particular location in space, grid
cells spike at numerous sites that are arranged periodically.

We study the spatial resolution of these two coding schemes
and find that a generic set of modular grid cells1 typically outper-
forms even the optimal set of place cells with the same number
of cells, when encoding an interval. A one dimensional interval
can be seen as the abstraction of a linear track. The two dimen-
sional case is treated in chapter 5.

Furthermore, we derive optimal parameter regimes for popu-
lations of place cells (place code) and populations of grid cells
(grid codes) in this one dimensional case. Optimality here refers
to the resolution an ideal observer can achieve. We compute the
resolution analytically by Fisher information and numerically by
maximum likelihood estimation; this study also sheds light on
when and why these measures differ.

For place codes the analysis shows that a heterogeneous pop-
ulation of place cells with varying tuning widths gives no qual-
itative improvement over a homogeneous population. In partic-
ular, the resolution is maximized by a constant optimal tuning
width. For grid cells, however the different spatial scales can sig-
nificantly improve the coding accuracy. The study of a large set
of grid codes reveals that nested grid codes, where the spatial
periods are staggered, offer the highest resolution. As presented
in the paper there are also parameter regimes, where grid codes
offer only poor spatial resolution.

1 As specified in the paper. Basically generic means that the spatial periods
are uniformly picked random numbers, which are smaller than the size of the
environment.
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Abstract

Rodents use two distinct neuronal coordinate systems to estimate their position: place
fields in the hippocampus and grid fields in the entorhinal cortex. Whereas place cells
spike at only one particular spatial location, grid cells fire at multiple sites that corre-
spond to the points of an imaginary hexagonal lattice. We study how to best construct
place and grid codes, taking the probabilistic nature of neural spiking into account:
which spatial encoding properties of individual neurons confer the highest resolution,
when decoding the animal’s position from the neuronal population response? For grid
codes, the periodic pattern of firing fields introduces ambiguities in the position esti-
mate. The solution to this problem requires grid cells with different spacings, and the
spatial resolution crucially depends on choosing the rightratios of these spacings across
the population. We compute the expected error in estimatingthe position both in the
asymptotic limit, using Fisher information, and for low spike counts, using maximum
likelihood estimation. Achieving high spatial resolutionand covering a large range of
space in a grid code leads to a trade-off: the best grid code for spatial resolution is
built of nested modules with different spatial periods, oneinside the other, whereas
maximizing the spatial range requires distinct spatial periods that are pairwisely in-
commensurate. Optimizing the spatial resolution predictstwo grid cell properties that
have been experimentally observed. First, short lattice spacings should outnumber long
lattice spacings. Secondly, the grid code should be self-similar across different lattice



spacings, so that the grid field always covers a fixed fractionof the lattice period. If
these conditions are satisfied and the spatial “tuning curves” for each neuron span the
same range of firing rates, then the resolution of the grid code easily exceeds that of the
best possible place code with the same number of neurons.

1 Introduction

An animal’s position and heading in world coordinates is reflected in coordinated neural
firing patterns within different subnetworks of the brain, most notably the hippocam-
pus, subiculum, and entorhinal cortex (O’Keefe and Dostrovsky, 1971; O’Keefe, 1976;
Taube et al., 1990b,a; Fyhn et al., 2004; Hafting et al., 2005; Boccara et al., 2010). In
rodents, these subnetworks have evolved at least two distinct representations for encod-
ing spatial location: in the hippocampus proper, place cells fire only at a single, specific
location in space, whereas in the medial entorhinal cortex (mEC), grid cells build a
hexagonal lattice representation of physical space, such that each cell fires whenever
the animal moves through a firing field centered at a cell-specific lattice point.

How accurately can an animal determine its location using one of these two distinct
encoding schemes for space? Most neurons in cortex spike irregularly and unreliably
(Softky and Koch, 1993; Shadlen and Newsome, 1998) and cellsin the hippocampal-
entorhinal loop are no exception (Fenton and Muller, 1998; Kluger et al., 2010). As
the animal moves through space, it spends only a brief momentin each firing field of
a grid cell or the firing field of a place cell, eliciting no morethan a handful of unre-
liable spikes: grid cells, for instance, often spike only once or twice during a single
pass through a firing field (Reifenstein et al., 2010). Hence,for both codes precise
information about position can only be gained from a population of grid and place
cells, respectively. If all grid cells share the same lattice length scale the same pattern
of spikes across the population corresponds to different locations in space, leading to
catastrophic errors in estimating position. How differentlattices can be combined to
resolve the ambiguity introduced by the multiplicity of firing fields is crucial for navi-
gation and might explain the variation of the spatial periods along the dorso-ventral axis
for the mEC (Brun et al., 2008).

The goal of this paper is to answer the question of how grid codes should be con-
structed and relate these to the resolution of population codes. Single-peaked place
fields are analogous to the tuning curves for orientation in visual and motor cortices,
for which the questions of neuronal coding and optimal tuning widths have been inves-
tigated extensively (Paradiso, 1988; Seung and Sompolinsky, 1993; Brunel and Nadal,
1998; Zhang and Sejnowski, 1999; Pouget et al., 1999; Bethgeet al., 2002; Brown and
Bäcker, 2006; Bobrowski et al., 2009). Theoretical studies on the coding properties
of grid cells (Burak et al., 2006; Fiete et al., 2008) have dealt with the spatial range
encoded by populations of grid cells, without assuming an explicit noise model. Here,
our focus will neither be on the spatial range, nor on how grid-like firing patterns arise
(Fuhs and Touretzky, 2006; McNaughton et al., 2006; Burgesset al., 2007; Kropff and
Treves, 2008; Burak and Fiete, 2009; Remme et al., 2010; Zilli and Hasselmo, 2010;
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Mhatre et al., 2010), nor how grid fields can lead to place fields (Fuhs and Touret-
zky, 2006; Solstad et al., 2006; Rolls et al., 2006; Franziuset al., 2007; Si and Treves,
2009; Cheng and Loren, 2010). Rather we extract general observations about grid and
place cells from experimental findings and relate these to the resolution of population
codes. In addition to comparing grid and place codes quantitatively, we derive optimal
parameter regimes for both codes. Using the hypothesis thatneuronal populations code
efficiently (Attneave, 1954; Barlow, 1959), we can then makepredictions about grid
cell properties in the mEC.

The comparison will be carried out in the framework of Poisson rate coding for the
position of an animal along a one-dimensional path, typically a linear track (Hafting
et al., 2008; Brun et al., 2008). A place cell is characterized by a single firing field
with a given spatial center and width; for grid cells, one measures the spatial period and
phase of the regularly spaced lattice of firing fields. These parameters define families
of tuning curves for population models of spatial coding. Based on maximum likeli-
hood decoding, we estimate the distortion, or average error, in recovering the animal’s
position. Asymptotically, given enough neurons and a long enough time to observe the
firing rate, the distortion becomes analytically calculable. The Cramér-Rao bound states
that the inverse of the Fisher information yields the minimum achievable square error,
provided the estimator is unbiased; furthermore, maximum likelihood decoding attains
this bound (Lehmann and Casella, 1998). In the context of neural population coding,
many authors have calculated the Fisher information (Paradiso, 1988; Seung and Som-
polinsky, 1993; Brunel and Nadal, 1998; Zhang and Sejnowski, 1999; Pouget et al.,
1999; Eurich and Wilke, 2000; Wilke and Eurich, 2002; Bethgeet al., 2002; Brown and
Bäcker, 2006). However, it is also known that no such estimator will attain the lower
bound if the neurons have Poisson spike statistics and the expected number of spikes
is low even when a neuron is firing at its maximal rate (Bethge et al., 2002). In other
words, if the product of the firing ratefmax and the time windowT for counting spikes
obeysfmaxT ≈ 1, the Fisher information greatly exaggerates the true spatial resolution
of the population code. If one takes the time window for read-out to be one cycle of the
on-going7− 12 Hz theta rhythm during movement, the natural time-scale forgrid and
place cells is short compared to the typical firing rates in these cells. Under these con-
ditions, the asymptotic error and the true error can diverge, so that the parameters for
an optimal grid or place code are only to be found numerically. Maximum likelihood
decoding is computationally expensive, so we treat the caseof populations encoding a
one-dimensional stimulus in detail. Multiple stimulus dimensions correspond to a prod-
uct space in the mathematical sense; under ideal conditions, the errors across stimulus
dimensions add. Hence, studying the one-dimensional case will be illustrative for how
general grid codes should be constructed, as we will discuss.

Some of the results here have been presented in a briefer format Mathis et al. (2010).

3



2 Grid Code Schemes

The place code is a classical instance of a population code (Wilson and McNaughton,
1993), wherein each position in space is represented by the activity of a large number
of place cells (Fig. 1a) with intersecting place fields. The set of well-localized place
fields forms a dense cover of the explored space, so that the set of simultaneously active
place cells yields an accurate estimate of the animal’s position. Additional precision in
estimating the position can be gained from the spatial profile of how individual place
cells map position into a firing rate—the place cell’s “tuning curve” (Paradiso, 1988;
Seung and Sompolinsky, 1993; Zhang and Sejnowski, 1999). Early models considered
cells with single fields and a standard tuning curve for each cell. Yet the width of the
place fields grows along the dorso-ventral axis (Kjelstrup et al., 2008), and ventral CA3
cells are more likely to have more than one place field (Leutgeb et al., 2007; Fenton
et al., 2009). As we will show, both of these properties can improve the resolution, but
only marginally.

(a) (b)

Figure 1: Firing patterns for a place and grid cell. (a) A place cell spikes only when the
animal is within a single region of space called the place field. Black lines depict the
trajectory of a rat in a square arena. The superimposed red dots mark the rat’s location
when this CA1 cell in hippocampus fired a spike. Figure adapted from (Jeffery, 2008)
with permission. (b) In contrast, a grid cell from entorhinal cortex fires at multiple
spatial locations, which form a hexagonal lattice. Three neighboring firing fields span a
nearly equilateral triangle. Figure adapted from (Haftinget al., 2005) with permission.

A grid code, in contrast, is harder to read out. The firing of a single grid cell (Fig. 1b)
implies that the animal could be at any one of a range of different locations, without
specifying which one. A clear-cut estimate of position becomes possible by taking into
account the properties of neighboring grid cells, each of which is characterized by a
regular lattice of locations at which the cell fires. For neighboring grid cells, the lattices
share similar spatial periods and orientations, but are spatially translated (Hafting et al.,
2005; Sargolini et al., 2006; Doeller et al., 2010). A singlegrid cell thus signals the spa-
tial phase of the animal’s location relative to the lattice.Taking a subset from the local

4



grid cell population that spans all phases is tantamount to discretizing the spatial phase
and forms the basis for defining a grid module: an ensemble of grid cells that share the
same lattice properties, but have different spatial phases. Along the dorsolateral axis of
the mEC, the typical spatial period grows from values of around 20 centimeters up to
several meters (Fyhn et al., 2004; Giocomo et al., 2007; Brunet al., 2008), while the
ratio of grid field width to spatial period remains constant (Hafting et al., 2005; Brun
et al., 2008).

The range and precision of the grid code’s representation ofspace crucially depends
on how the spatial periods of different modules are arranged. In the most extreme case,
the combination of spatial periods could yield a populationcode with a high resolution,
but a short range, or vice versa. Many grid codes will have mixed properties, imply-
ing no hard trade-off between range and precision, but we first compare and contrast
two radically different grid coding schemes: in the first, the spatial periods themselves
span a wide range, effectively subdividing space; in the second, the spatial periods are
similar, yet incommensurate, so that the phases represented in the population response
are unique for each position across a wide range of space. We will call the first scheme
the ‘nested interval scheme’, illustrated in Figure 2a. Imagine that the spatial periods
λi are ordered,λ1 > λ2 > . . . > λL. For eachλi, assume that there areM grid cells
that share this spatial period, but have lattices that are shifted relative to each other.
TheM cells will represent the equidistant phases2πj/M with j ∈ {0, 1, . . . ,M − 1}.
Such a grid codes positions smaller thanλ1 precisely and effectively in a step-by-step
fashion: Module1 only provides coarse information about the position estimate, with
a resolution ofλ1/M . Module2, although itself ambiguous within the range[0, λ1],
adds resolution within each of theM subintervals of lengthλ1/M . Likewise, module
3 adds further precision and so forth. An analog clock works the same way: within a
twelve-hour span, the minute and second hand are ambiguousper se. While the hour
hand could, in principle, encode the time of the day down to microsecond precision,
there is a limit to the angular resolution of the human eye, whereas the combination of
all hands is easy to read. Similarly, the nested interval scheme can resolve the position
with high accuracy, even though the individual modules either lack spatial precision or
lack spatial range. Unlike the clock, the periodsλi are not necessarily integer multiples
of each other,i.e. λi ∤ λi−1. In this case, the range, which is the longest distance that
is unambiguously coded by the modules, can be much larger than the largest spatial
periodλ1. Extending the range beyond the largest spatial period is the key idea behind
the ‘modular arithmetic scheme’ (Fiete et al., 2008), whichis the alternative to nested
interval coding.

Consider two one-dimensional modules with spatial periods12 and17. One can
represent each module as a circleS1, whose circumference matches the period. Geo-
metrically, spatial positions are mapped onto the product of these two circles, which is a
torusT 2 = S1 × S1. The mapping of spatial position is unique up to the point at which

Π: [0,∞) → T 2 (1)

x 7→ (mod (x, 12), mod (x, 17))

closes in on itself for the first time,i.e. minx>0 Π(x) = Π(0). As the integers12 and
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(a) (b)

Figure 2: (a)Nested Interval Scheme.Example with three clearly different spatial pe-
riods and three discrete phases each. The first module gives coarse spatial information,
that is further refined by the other two modules. By themselves the other modules pro-
vide ambiguous spatial information on the range, together they effectively subdivide the
unit interval. (b)Modular Arithmetic Scheme. The two periodic variables depicted
by the circles with different spatial periodsλ1 andλ2 can lead to an elongation of the
coding range. Geometrically this can be seen by consideringa particle wandering with
the same increment in each variable on the Cartesian productof the two circles, which
is a torus. The trajectory of this particle will close after lengthlcm(λ1 , λ2 ), the least
common multiple as described in the text.

17 have no common divisor, the period is204 = 12 · 17, the least common multiple of
the two spatial periods.1 This principle is illustrated in Figure 2b. By induction, one
can show that the range of a sequence of spatial periods{λ1, λ2, . . . λL} is given by the
least common multiple of this sequencelcm(λ1 , λ2 , . . . λL).

At best, an ideal, noiseless grid code with integer periods has a range that is the
product of the spatial length scales (Fiete et al., 2008). A small change in the periods,
however, can lead to a dramatic reduction in the range: for instance, changing the pe-
riods from12 and17 to 12 and18 reduces the range from204 to merely36, the least
common multiple of12 and18. In general, for two positive real numbers representing
the spatial periods, the combined period is given by:

lcm(x, y) =





∞ x/y 6∈ Q
n · x x/y ∈ Q with x = m

n
· y,

for m,n ∈ N,without common divisor.

(2)

1In contrast to the watch example, the two periods should not have a common divi-
sor. Since a second divides a minute and a minute divides an hour, a standard analog
watch does not represent more than the maximal 12-hour period.
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This function is highly discontinuous. For every pair of periods(λ1, λ2) ∈ Q, one can
find an arbitrarily close pair of rational spatial periods with an arbitrarily largelcm. In
contrast, within any vicinity(λ1, λ2), a smallest least common multiple exists.

An even more severe problem than the sensitivity of the rangelurks. For the spatial
periods from the example above,λ1 = 12 andλ2 = 17, changing the modular coordi-
nates from(0, 0) to (1, 0) implies a jump in position from0 to 85, which is almost half
of the range. Small errors in the phase can thus lead to huge mistakes in the position
estimate. Choosing more closely spaced periods limits the magnitude of the such an
error, yet a unit step in any one coordinate represents a shift in the position by at least
one spatial period.

In principle, the grid lattice need not be regular, nor need agrid cell share the same
lattice spacing with other grid cells. We will not consider the most general case here,
but make the prior assumption of both periodicity and modularity, two features that
could facilitate the downstream read-out of the neuronal population’s response. We
will construct both nested interval and modular codes by sampling from the space of
different possible spatial periods in several ways:

1. Deterministic Ensembles:GivenN cells, assign an equal number of cells to a set
of modules whose spatial periods are defined as follows: starting with an initial
module with spatial periodλ = 1, let each successive module have a smaller
period, such thatλn+1 = sλn, wheres < 1 is a constant contraction factor. The
set of spatial periods forms a geometric sequence. Such gridcodes consist of
nested intervals, by design, and are unsuited for modular arithmetic.

2. Stochastic Ensembles:For N cells, a divisorL|N is chosen randomly. Then
the spatial periods are drawn identically from one of two distributions: in the first
case, from the uniform distribution[0, 1]; in the second case, from the uniform
distribution [(1 − A) · s, A + (1 − A) · s], wheres is a random shift variable,
andA a random amplitude, both drawn uniformly from[0, 1]. Either case is
applied in70% or 30% of the realizations, respectively. The second case results
in more densely spaced spatial periods, all of which lie within ±(1−A) · s of the
period with lengthA, which tends to favor decoding based on modular arithmetic.
In general, drawing from the stochastic ensemble can yield spatial periods that
fit either the nested interval or modular arithmetic scheme;the resulting grids
embody generic modular codes consisting of periodically spaced tuning curve
peaks.

The choice of spatial periods for the grid affects both the range and the resolution of
the code. In the absence of noise, a well-designed grid code could simultaneously
span large distances and discriminate fine differences in position; however, intrinsic
variability introduces trade-offs between these two properties of the code. While the
modular arithmetic scheme does not require closely spaced spatial periodsa priori, the
close spacing becomes important in the presence of noise. Hence, the nested interval
and the modular arithmetic schemes become distinct if one insists that the spatial range
in the latter scheme be robust. We now submit both schemes to the crucial test: can one
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reliably estimate the position by counting the spikes from afinite set of neurons within
a limited time window? We start by contrasting the resolution of grid and place codes
for populations of neurons.

3 Population Coding Model

We consider a population ofN stochastically independent Poisson neurons (similar to
Paradiso, 1988; Seung and Sompolinsky, 1993; Salinas and Abbott, 1994; Bethge et al.,
2002; Pouget et al., 2003; Huys et al., 2007, for instance). The firing rate of each neuron
depends on the one-dimensional positionx on the unit intervalX = [0, 1]. A priori,
each position is equally likely, resulting in a flat priorP (x) = 1.

The firing rate of neuroni is described by its tuning curve{αi(x)}i≤N . Given a
positionx ∈ [0, 1], the conditional probability of observing theN-dimensional spike
patternK = (k1, . . . , kN) ∈ NN in a time interval of lengthT is:

P (K|x) =
∏

i≤N

Poisson(ki, T · αi(x)) =
∏

i≤N

(T · αi(x))
k

k!
· exp(−T · αi(x)). (3)

The maximal firing ratefmax = maxx∈X,i≤N(αi(x)) is assumed to be constant across
the population. Periodic tuning curvesαi(x) correspond to grid codes, whereas single-
peaked, aperiodicαi(x) correspond to place codes.

The tuning curves of place cells are taken as Gaussian functions with centers dis-
tributed equidistantly overX = [0, 1]:

αi(x) = fmax · exp
(
−
(x− i

N−1
)2

2σ2

)
with 0 ≤ i < N. (4)

The free parameters are the maximal firing ratefmax, the tuning widthσ, and the num-
ber of neuronsN . Figure 3a illustrates this family of tuning curves forN = 12 cells
with tuning widthσ = 0.1.

In contrast, the tuning curves for grid cells are defined as periodic functions with

Gaussian-like bumps of the typeexp
(
− (−λ

2
+ mod (λ

2
+x,λ))2

2σ2

)
. Here mod (z, λ) stands

for the remainder after dividingz by the spatial periodλ.
To construct a family of grid cell tuning curves, we vary the spatial periods and the

spatial phases. Each spatial period{λl}l<L defines a grid module; each of theL modules
containsM = N/L equidistantly arranged phases within its periodic domain.Hence,
for each moduleλi, with 0 ≤ i < L, there are equidistant spatial phasesϕj = j·λi

M

0 ≤ j < M per moduleλi and tuning curves:

αi,j(x) = fmax · exp
(
−(−λi

2
+ mod (λi

2
+ x− ϕj, λi))

2

2σ2
i

)
. (5)

Figure 3b illustrates a grid code for12 cells with two spatial periods. After fixing
fmax andN , the only remaining free parameter for the place code is the spatial tuning
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Figure 3: Families of tuning curves. (a) Family of place celltuning curves: Different
colors represent different cells. Tuning curves of12 place cells withσ = 0.1 and
maximum firing ratefmax = 3. (b) Family of grid cell tuning curves for two different
spatial periods: Different colors represent different cells. Tuning curves of12 grid cells
with spatial periodsλ1 = 0.32 andλ2 = 0.83, 6 phases per module and maximum firing
ratefmax = 3. In this model, the tuning width of the grid cells scales withthe spatial
period, as suggested by experimental data (Brun et al., 2008).

width σ, whereas for the grid code the set of spatial periods{λ1, . . . , λL} needs to be
specified.

Both coding schemes should enable real-time readout of the rat’s positionwhile
it is moving. During active exploration of the environment,7 − 12 Hz theta oscilla-
tions course through the parahippocampal loop, acting as aZeitgeber (Buzsaki, 2006).
Within this natural time-frame of roughlyT = 80−140 ms, the maximal expected spike
count of a grid or place cell is generally low. With measured peak firing rates of place
and grid fields in the range of10 − 30 Hz (Hafting et al., 2005; Leutgeb et al., 2004),
fmax · T ≈ 1− 4 within one theta cycle. For our analysis, we choosefmax · T = 3.
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By observing the spike counts from a population ofN neurons, one can build an
estimatorx̂ of the positionx. The average mean square error is (Salinas and Abbott,
1994; Bethge et al., 2002):

χ2 = E
(
(x− x̂)2

)
=
∑

K∈NN

∫ 1

0

(x− x̂(K))2 · P (K|x)p(x)dx, (6)

The χ2 error generally depends on the estimatorx̂. For instance, given a particular
population responseK, the most likely stimulus that gave rise to it is

x̂MLE(K) = maxx∈[0,1]P (x|K), (7)

which is known as the maximum likelihood estimate (MLE). Thecorresponding mean
maximum likelihood estimate square error (MMLE) is defined asχ2

MLE = E
(
(x− x̂MLE)

2).
We compute the MMLE as described in the appendix by Monte Carlo methods. As the
MMLE is numerically expensive to compute for large population sizes, we compare it
against a reference that can be computed analytically. The maximum likelihood esti-
mate is both statistically efficient and consistent (Lehmann and Casella, 1998), which
means thatχ2

MLE asymptotically approaches the mean asymptotic square error (AE) for
an increasing number of independent, identically distributed (i.i.d.) observations:

χ2
AE = E (1/J(x)) , (8)

as shown in (Bethge et al., 2002). HereJ(x) stands for the Fisher information

J(x) = E

((
∂

∂x
ln(P (K|x))

)2
)
. (9)

However, for low numbers of spikes and a single observation and low spike counts, the
trueχ2 can exceedχ2

AE , as reported by Bethge (Bethge et al., 2002) for the minimum
mean square error. For this reason we will employχ2

AE as a practical benchmark that
gives us scaling rules for grid and place codes and furthermore investigate how a pop-
ulation code can be cleverly constructed so that maximum likelihood decoding of the
population response comes close to this benchmark, even forlow, realistic spike counts.

The Fisher information (9) for a population model with independent, Poisson neu-
rons has a simple structure (compare Paradiso, 1988; Seung and Sompolinsky, 1993,
for instance):

JPopulation model(x) =
N∑

i=1

T (∂αi(x)/∂x)
2

αi(x)
, (10)

so that the asymptotic error is

χ2
AE =

∫ 1

0

(∑

i≤N

T (∂αi(x)/∂x)
2

αi(x)

)−1

dx. (11)

This quantity only depends on the tuning curves and their first derivatives. Following
the tradition of comparing neuronal codes on the basis of theFisher information (Zhang
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and Sejnowski, 1999; Eurich and Wilke, 2000; Wilke and Eurich, 2002; Brown and
Bäcker, 2006), we will ask: based on the error measuresχ2

MLE andχ2
AE , can a grid

code outperform a place code? In particular, which spatial periods should be present in
the grid code? What should the width of the firing field be relative to the spatial period?

3.1 Average Fisher Information and Asymptotic Resolution

For the families of place code (PC) and grid code (GC) tuning curves defined by equa-
tions (4) and (5), the Fisher information (9) of a single cellis given by

JPC,i(x) = Tfmax ·
(x− i

N−1
)2

σ4
· exp

(
−
(x− i

N−1
)2

2σ2

)
(12)

and

JGC,ij(x, ϕj) = Tfmax ·
(−λi

2
+ mod (λi

2
+ x− ϕj, λi))

2

σ4
i

·

exp

(
−(−λi

2
+ mod (λi

2
+ x− ϕj , λi))

2

2σ2
i

)
. (13)

For the Fisher information of a population of cells, withJ(x) =
∑

ij Jij(x), Jensen’s
inequality implies:

χ2
AE =

∫ 1

0

1

J(x)
dx ≥ 1∫ 1

0
J(x)dx

. (14)

The closerJ(x) comes to being a constant, so that it is independent of the position x,
the tighter the inequality. Therefore, the asymptotic error is easy to calculate in the
following limits: For place codes, when the equidistant tuning curves tile the full range
densely; or, for grid codes, when the phase-shifted tuning curves tile each spatial period
densely.

In these limits, the Fisher information for the population approachesN times the
average Fisher information per cell. The asymptotic error is simply the inverse of the
Fisher information conveyed by the population. For the place code, we first compute
the average Fisher information for a tuning curve centered at c ∈ [0, 1] and then average
over all possible centersc:

JPC =

∫ 1

0

∫ 1

0

fmaxT · (x− c)2

σ4
exp

(
−(x− c)2

2σ2

)
dxdc. (15)

= fmaxT ·
(√

2π

σ
erf

(
1√
2σ

)
+ 4 · exp

(
− 1

2σ2

)
− 4

)

∝
√
2πfmaxT

σ
for σ ≪ 1 (16)

This result (Brown and Bäcker, 2006) shows that the averageFisher information of
one place cell is inversely proportional to the tuning widthσ —the narrower the tuning
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curve, the better (Fig. 4a); this finding coincides with the result for stimuli that are
not restricted to a compact subset ofR (Zhang and Sejnowski, 1999). If the tuning
curves for place cells cover the span[0, 1] sufficiently densely and uniformly, then the
resolution of the place code, as measured by the MLE, will approach the Cramér-Rao
bound

(
N · JPC

)−1
. For fixedN , the tuning width cannot be reduced indefinitely while

maintaining uniform coverage of the unit interval. Indeed,for fixed N and for any
ǫ > 0, there will be aσ(ǫ) > 0 and subintervalsK ⊂ [0, 1] of fixed lengthl, such that
for all σ < σ(ǫ) andx ∈ K: JPC,N(x) < ǫ. By Jensen’s inequality (14),χ2

AE =≥ l
ǫ
,

and henceχ2
AE(PC,N) → ∞ for σ → 0. This means that there is an optimalσ for

finite ensembles. For instance, forN = 100, the smallest asymptotic error is attained
for σ ≈ 4.1 · 10−3, leading to a resolution ofχ2

AE ≈ 6 · 10−6. This value is used as a
benchmark for comparison with grid codes.

In general, a population of place cells will have

JPC,N ∝ fmaxT ·
N∑

i=1

1

σi
≈ fmaxT ·N

〈
1

σi

〉
, (17)

if we do not assume that all tuning curves have equal width. Insome cases, place cells
have multiple peaks, although the average number peaks is close to one (Leutgeb et al.,
2007; Fenton et al., 2009). If there areγ peaks per place cell, and the tuning widths are
optimized, then the Fisher information at best scales as(γN2) in the number of neurons.
If the tuning widths are not simultaneously scaled, in contrast, the Fisher information
scales linearly inN .

By comparison, the spatial map of a grid cell has multiplebumps, by definition. If
the Fisher information for each bump scales asσ−1, just as in a place cell, and there are
λ−1 bumps in the unit interval, then the mean Fisher informationin a grid cell scales as
(λσ)−1. This is indeed correct, as the following more formal argument shows. For the
mean Fisher information of a grid cell, we have to average theFisher information (13)
over all possible spatial phasesϕ. Due to periodicity, it suffices to average over phases
from 0 to the spatial periodλ.

JGC =
1

λ
·
∫ λ

0

∫ 1

0

JGC(x, ϕ)dxdϕ. (18)

For λ ≪ 1,
∫ 1

0
JGC(x, ϕ)dx ≈ 2

λ
·
∫ λ

2

0
JGC(x, 0)dx, because of the periodicity of

JGC(x, ϕ) in x. Hence,

JGC ≈ 2fmaxT

λ

∫ λ/2

0

x2

σ4
exp

(
− x2

2σ2

)
dx

∼
√
2π

fmaxT

λ σ
, (19)

for σ ≪ λ. The derivation of the exact formula is given in the appendix. The tuning
width σ can be expressed as a product of the spatial periodλ and the relative tuning
width per spatial period, which we call the area ratiorA. We define the tuning curve’s
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width by the firing rate relative to the maximum firing rate. Iff ≥ βfmax delineates a
firing field, then the following relationship holds:

σ =
rA · λ

2
√
log(1/β2)

. (20)

Consequently, we haveJGC ∼ fmaxT
λ2rA

. In Figure 4a, the average Fisher information
of a grid and a place cell are compared. Both parameters, the spatial period and the
tuning width, are expressed in terms of the normalized stimulus range and are varied
between0 and1. Whereas the average Fisher information of a place cell is inversely
proportional to the tuning widthσ, the average Fisher information of a grid cell is
inversely proportional to the square of the spatial periodλ. As the tuning curve width
σ narrows, the mean firing rate in a place code decreases, whereas a grid cell maintains
a constant mean firing rate asλ changes, by construction. On a per spike basis, the
scaling of the average Fisher information withσ is identical for place cells and grid
cells.

By rescaling the lattice length scaleλ, the local resolution of a grid cell population
can improve. Yet periodicity also introduces ambiguity, such that a typical neuronal
response for a single grid cell maps onto⌊2/λ⌋ possible values ofx. Adding neurons
with shifted tuning curves of the same spatial period and considering the population
response still leads to ambiguity. So the error made in decoding can be large, even
though the Fisher information indicates otherwise. Indeed, for λ ≪ 1, the expected
error approaches the variance ofx over the uniform distribution on the interval[0, 1]:

χ2
AE = 1/JGC ∼ 1/λ2 ≪

λ→0
E
(
(x− x̂)2

)
= 1/12. (21)

Hence,χ2
AE can be much less thanχ2

MLE, for instance; the asymptotic estimate falls far
short of what can realistically be achieved using any decoder. The solution lies in using
different length scales in parallel, which allows one to exploit the higher resolution at
short length scales. This observation also emphasizes thatthe MASE analysis has to be
supplemented by numerical studies of the MMLE for grid codes.

3.2 Modular Codes, Self-Similarity, and Power-Law Scaling

As pointed out above, the asymptotic error (AE) may never be achieved by maximum
likelihood estimation (MLE) or any other estimator, as a grid code’s periodicity causes
ambiguity, even in the absence of noise: if we consider the population response as a
code word, there will be distinct stimuli that give rise to the same code word. Therefore,
we will now construct a class of grid codes, called nested grid codes, that will contain
no recurring codewords for stimuli on the interval[0, 1]. For such codes, MLE can
attain the asymptotic error, as we show later.

A nested modular code consists of dividing the population ofN neurons intoL sub-
groups ofMi neurons, whose tuning curves are periodic on the same lengthscaleλi.
Each subgroup is called amodule. The range of stimuli that such a nested grid code
represents is at least as long as the longest lattice length scalemax(λi), and possibly
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(a) (b)

Figure 4: (a) Average Fisher Information versus spatial period λ and tuning widthσ,
both normalized to the unit span[0, 1]. The average Fisher information of a grid cell
JGC scales asλ−2, whereas the average Fisher information of a place cellJPC scales
asσ−1. Forσ ≈ 1, the tuning curve becomes wider than the stimulus space, leading to
a more rapid fall-off in the average Fisher information of the place cell thanσ−1. (b)
Mean maximum likelihood estimate square errorχ2

MLE and mean asymptotic square
error χ2

AE for a grid code on an one dimensional unit interval with two modules of
M = 25 neurons each. We use Monte Carlo methods to computeχ2

MLE , whereas
the analytical Fisher information is used for the asymptotic estimate. The first module
is non-periodic and comprises 25 equidistantly arranged Gaussian tuning curves with
tuning widthσ = 1/

(
5
√
2
)

and a 10 Hz peak firing rate, integrated overT = 1 second.
This corresponds to a peak spike count of 10, much larger thanfmax · T ≈ 1 in Bethge
et al. (2002). The second module also comprises 25 equidistantly arranged cells with
tuning curves that are periodically extended versions of the tuning curves of the first
module with spatial periodλ2. The numerically determinedχ2

MLE closely follows the
asymptotic error given by the inverse Fisher informationχ2

AE for spatial periods of
λ2 > 0.18. This is roughly10 · 1/√J0, that is, 10 times the square root of the inverse
Fisher information of module 1. If the periodicity of the next module falls below the
typical range of errors made by the first module, the Fisher information ceases to capture
the MLE error.

much longer. But for simplicity takemax(λi) > 1, as some of the ideal, modular grid
codes with optimal resolution derived below will have a range that is exactlymax(λi).
Furthermore, we make thea priori assumption that each module can be read out indi-
vidually, i.e. that a spatial phase relative to the length scaleλi can be determined from
the population response of this module. According to Eq. (19), the Fisher information
of a given module scales as

J̄i ∼
Mi

λi〈σi〉
, (22)

in which 〈σi〉 is the average width parameter for the tuning curves in the module
(cf. appendix for the precise equalities). Within one spatial period, the grid cells code
position the same way place cells do. Hence, as is the case forplace cells, the optimal
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tuning width scales as

〈σi〉 ∼
λi

Mi

. (23)

So the Fisher information for the module scales as

J̄i =
C2

1M
2
i

λ2
i

, (24)

when the tuning curve widths are optimized. HereC2
1 is a constant, which we write

using a power of two for later convenience. Summing over all modules, the Fisher
information of the grid code can be written as:

JGC,N = C2
1

∑

0≤i≤L−1

M2
i

λ2
i

. (25)

Within any grid code, the spatial periods can always be ordered so thatλ0 > λ1 >

· · · > λL−1. In a nested grid scheme, two types of error can occur during decoding.
Imagine a grid code with two modules and periodsλ0 > λ1. The module with the
shorter spatial scaleλ1 refines the representation at the coarser scaleλ0, such that the
periodλ1 “discretizes” the periodλ0 —note that we do not assume thatλ0 is an integer
multiple of λ1. If x̂ is an estimate of the positionx based on moduleλ0, then there is
a finite probability that|x̂ − x| > λ1. In such an event, which we call a discretization
error, the module with periodλ1 cannot improve the estimate ofx. The second type of
error is the local error, which is less catastrophic and is bounded by the inverse of the
Fisher information.

To limit the probability of a discretization error per module to less thanǫ, we will
insist that

D(ǫ)
/√

Ji ≤ λi+1 ≤ λi, (26)

whereD(ǫ) is a safety factor. This safety factor can be computed from the probability
distribution of the deviation between the (efficient) estimate x̂ and the true valuex,
based on the population spike count from a single module. In the asymptotic limit
(Mi ≫ 1 andfmaxT ≫ 1), this probability distribution can be modeled by the Laplace
approximationp(x− x̂) ∝ exp

[
−(x− x̂)2Ji/2

]
; hence,

D(ǫ) =
√
2erfc−1 (ǫ) . (27)

For instance, a safety factorD(ǫ) = 4 guarantees that the discretization error prob-
ability is less than10−4. Given such a constraint, the Fisher information (25) is maxi-
mized when the lower bound in (26) is attained. This implies that

λi = λ0 ·
(∏

j<i

C1

D(ǫ)
Mj

)−1

. (28)

DefiningM̃j =
√

C1/D(ǫ)Mj , the population Fisher information (25) becomes

JGC,N =
C1D(ǫ)

λ2
0

∑

0≤i≤L−1

∏

j≤i

M̃2
j . (29)
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Maximizing the Fisher information in Eq. (29) for integerMi subject to the constraint∑L−1
i=0 Mi = N leads to

Mi ≈ N/L, (30)

as long asL ≪
√
C1/D(ǫ)N . For instance, if

√
C1/D(ǫ) ∼ O(1), then the condition

for Mi ≈ N/L readsN/L ≥ 3. Otherwise,Mi = 3 for i ≤ ⌊N/3⌋ andMi = 0 for
i > ⌈N/3⌉ leads to the maximal Fisher information. Therefore, we should assign an
equal numberM of grid cells to each grid module, so that all modules areself-similar.
As a corollary, the area ratiorA between mean field width and the spatial period should
be constant across modules. This prediction is consistent with experimental data from
Brun et al. (Brun et al., 2008). The experimentally determined ratio2 of field width to
period isrA ≈ 0.3. This ratio remains approximately constant along the dorso-ventral
axis of mEC, even as the spatial periodλ varies.

For constantM , eq. (26) indicates that the sequence of length scalesλi should form
a geometric progression. In this case, the population’s Fisher information becomes:

JGC,N =
M2C2

1

λ2
0

·
L−1∑

i=0

M̃ i =
M2C2

1

λ2
0

M̃2L − 1

M̃2 − 1

≥ C1D(ǫ)

λ2
0

(
M̃2
)N/M

(31)

Hence, the Fisher information for a nested grid code obeys a power law in the num-
ber of neuronsN for fixed module sizeM . Such a coding scheme, therefore, outper-
forms a place code that scales at best asN2, which happens when the tuning width
scales asN−1.

We need to resort to numerical simulations to test whetherJGC,N , as given by
Eq. (31), reliably predicts the true error in decodingx from the neuronal response
measured over short time windows. Figure 4b reveals that theerror in the maximum
likelihood estimate is close to the asymptotic error, as long as the safety factorD(ǫ) is
sufficiently large.

In summary, for a modular grid code to achieve high spatial resolution, the grid
lattices should form a geometric progression in the spatialperiods, and each module
should be self-similar. Only relatively few distinct spatial phases are needed at each
length scale, but they should generally number at least three. If the number of encoded
phases is low, the spatial tuning width should be broad to ensure that the animal’s posi-
tion is uniformly and isotropically represented, even whenobserving only a finite subset
of neurons.

2Experimentally defined as the median of the set of pairwise grid field to grid field
spacings.
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4 The Spatial Resolution
of Maximum Likelihood Decoding

Within a fixed time windowT , neurons will fire a finite number of spikes, yielding a
population vectorK of spike counts. As the animal moves, this time window needs to
be short to create a running estimate x, which will rely only on a few spikes. Maximum
likelihood (ML) decoding requires performing numerical calculations (cf. appendix)
and returns the most likely positionx givenK. Such estimates will be subject to both
local and global errors; the Fisher information only predicts the local error in the limit
as fmaxT → ∞. Therefore, the ML errorχ2

MLE may diverge from the asymptotic
errorχ2

AE, and the optimal parameter settings will change. We will useML to study
both grid codes for which the spatial periods are asymptotically optimal and grid codes
drawn from random ensembles. Randomly selecting the spatial periods will reveal how
generic the properties of good grid codes are.

4.1 Maximum Likelihood Decoding—Simulation Results

We calculated the spatial resolution by maximum likelihoodmethods, again for a pop-
ulation of100 grid and place cells, respectively, andfmaxT = 3. To examine the error
made in reading out the place code, we varied the widthσ of the tuning curves.

The simulations show that the mean maximum likelihood error( χ2
MLE) of a place

cell diverges substantially from the mean asymptotic square error (χ2
AE) for small tun-

ing widths sigma, i.e. for narrow place fields (Fig. 5a). In particular, the spatial width
that minimizes the asymptotic error is ten times smaller than the width that minimizes
the MLE.

The grid codes do not differ in the relative tuning width of the spatial firing rate
profiles, but in the number of spatial periods and the length scales that describe the
grid lattice spacing. Asymptotic theory (section 3.2) predicts that these length scales
should form a geometric sequence. By choosing the largest spatial periodλ1 to be unity
and then creating grid codes characterized by different ratios for the successive periods,
we investigate the concordance between the maximum likelihood error (MMLE) and
the asymptotic error (Fig. 5). If the modules are nested so that the contraction factor
0.5 < s < 1, the MLE approaches the asymptotic error. For factorss < 0.5, the MMLE
exceeds the asymptotic error; the asymptotic error keeps decreasing forever, whereas
the MMLE will eventually increase. The MMLE is not convex, however, ins. When
the contraction factors is close to an even divisor of unity, such ass = 1/2, 1/3, . . ., the
MMLE diverges more strongly from the asymptotic error. In such exceptional cases,
all modules attain a maximum close tox = 1, which, by the periodicity of the tuning
curves, can be wrapped around to join the maximum atx = 0. In these cases, positions
close to the boundaries of the unit interval, i.e., either close to zero or close to one, elicit
similar patterns of spikes. Mistaking a positionx = ǫ, whereǫ ≪ 1, for a position close
to 1− ǫ, however, corresponds to a huge error. Hence, the MMLE is higher. Moreover,
as the contraction factor becomes smaller, fewer intermediate modules remain. These
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(a) (b)

Figure 5: Mean maximum likelihood estimate square error (χ2
MLE) and mean asymp-

totic square error (χ2
AE) of place code and histogram of MMLE of grid codes with

100 neurons,fmaxT=3. (a) Double logarithmic plot of the mean maximum likelihood
estimator square errorχ2

MLE as a function of the spatial widthσ compared with the
mean asymptotic square errorχ2

AE for place code comprising100 cells andfmaxT = 3.
(b) The mean maximum likelihood estimate square errorχ2

MLE for geometric progres-
sions of grid lattice spacings with contraction factors, compared to the mean asymp-
totic square errorχ2

AE . The factors determines the spatial periods asλi = si−1 for
1 ≤ i ≤ 10. Each module comprises10 equidistantly arranged spatial phases.

modules with intermediate lattice spacings allow maximum likelihood estimation to
correct for errors in the spatial phase represented by coarser modules. Fors ≪ 1/2,
the increasing lack of compensation for errors causes the MMLE to rise, whereas the
asymptotic error becomes ever smaller. Additionally, ass → 0, any contraction factor
becomes close to1/n for somen — these are the exceptional cases mentioned above
that have high MMLE. Note that these exceptional cases can beavoided by takingλ1 to
be slightly larger than unity.

Hence, for grid codes whose modules are staggered in a geometric sequence, the
resolution is much higher than in a place code (Fig. 5). Is this result, however, generic?
In other words, if one were to randomly put together a grid code with different spa-
tial periods, would the resolution still be higher? To answer this question, we created
randomly sampled grid codes as described in section 2, for which we estimated the
MMLE. The histogram in Figure 6 shows the distribution of MMLE’s for the ensem-
ble. The grid codes’ MMLE can then be compared to the MMLE for the optimal place
coding scheme with the same number of neurons, depicted as a dashed reference line
in Figure 6. Some grid codes are worse than the optimal place code: choosing a nar-
row span of spatial periods leads to poor spatial resolution(cf. the second highlighted
example in Figure 6).

Closely spaced spatial periods should confer upon the grid code the ability to uniquely
represent an extended range of positions, going far beyond the unit interval (Fiete et al.,
2008). Nonetheless, here we compare not the ranges of different grid codes, but the
ability of the codes to resolve positions within the fixed unit interval. For some grid
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Figure 6: Histogram of mean maximum likelihood estimate square error (χ2
MLE) for

grid codes with100 neurons,fmaxT=3. Histogram of MMLE for885 simulated grid
codes, which were randomly drawn according to the method described in section 2,
and contrasted with the optimal place-code MMLE depicted asa dashed line. The inset
shows the spatial periods of the three example grid codes; the corresponding MMLE for
these examples is marked on the histogram by a vertical line.Note that closely spaced
spatial periods, such as in example2, lead to poor spatial resolution.

codes, the unit interval corresponds only to a fraction of the full theoretical range.
Around three-quarters of the randomly drawn grid codes havebetter MMLE than

the best place code; hence, it is likely that a generic grid code, one with unrestricted
range, will lead to a higher spatial resolution than the bestplace code.

What common properties do the better grid codes have? One keyfeature is that
their spatial periods span a large range. For Figure 7, we binned the smallest and
largest period of each grid code in the ensemble, and depict the highest resolution for
each binned pair ofmini λi, maxi λi. The resolution increases both in the direction of
smallermini λi and, to a lesser degree, in the direction of largermaxi λi. Each grid
code is determined by the spatial periods of its modules. Figure 8a depicts the set of
spatial periods for the ten best grid codes in the random ensemble. As suggested by the
asymptotic analysis, the grid codes with the lowest MMLE have in common that the
smallest spatial periodmini λi is close to zero. In many cases, the largest spatial period,
maxi λi, nearly covers the entire unit interval represented by the code. The random
sampling of spatial periods was unbiased: thea priori distribution of spatial periods is
almost uniform (Fig. 8b). In the best grid codes, the smallerspatial periods are overrep-
resented. Selecting the hundred spatial periods from the best grid codes in the sample
strongly shifts the distribution of spatial periods to the lower range (Fig. 8b).

Unlike the asymptotic error, which monotonically decreases with the smallest spa-
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Figure 7: Mean maximum likelihood estimate square error (χ2
MLE) as a function of the

minimal and maximal spatial period. After dividing the spatial periods into bins, the
smallest MMLE present in the random ensemble of grid codes iscolor-coded for each
combination of smallest and largest spatial period. The results show that grid codes
with similar smallest and largest spatial periods result ina large MMLE. Decreasing the
smallest period, while keeping the largest period fixed, strongly improves the resolution;
in contrast, keeping the smallest period fixed and increasing the largest period leads to a
smaller improvement. The highest resolution is obtained when the smallest and largest
period are far apart.

tial period, the MMLE reaches an optimum. In the randomly sampled ensemble, going
belowmini λi ≈ 10−2 typically confers no advantage. A direct comparison between
MMLE and the asymptotic error is shown in Figure 9. In some cases, the MMLE is
much higher than the asymptotic error; throughout all cases, the MMLE never drops
below10−7 relative to the unit interval, whereas the asymptotic errorcan be orders of
magnitude lower. One should note, also, that deterministically generating sequences of
grid modules using Eq. (26) yields a considerably lower MMLEthan even the lowest
MMLE’s in the random ensemble that we tested.

5 Discussion

The neural representation of position in world coordinatesis always subject to distortion
due to the noisy, spiking nature of neurons. Just as photographing an athlete in motion
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(a)

(b)

Figure 8: (a) Spatial periods of samples with highest mean maximum likelihood es-
timate square error (χ2

MLE). Scatter plot of spatial periods of10 best grid codes in
simulations and their corresponding MMLE, arranged from small to large MMLE. (b)
Distribution of spatial periods with highest mean maximum likelihood estimate square
error (χ2

MLE). Histogram of the spatial periods in all simulated grid codes and of the
100 samples with the lowest MMLE. The overall distribution has no substantial pref-
erence, whereas the distribution of the100 spatial periods from the best grid codes is
strongly skewed.

rules out a long shutter time, capturing the instantaneous position as an animal explores
its environment precludes averaging over long times–no matter whether single neurons
fire at labeled positions (place cells) or at triangular lattice points in space (grid cells),
noise will limit the resolution an animal needs to orient itself and navigate.

By considering stochastic models for neuronal populations, we have shown that grid
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Figure 9: Comparison of mean maximum likelihood estimate square error (χ2
MLE) and

mean asymptotic square error (χ2
AE) for grid codes. Double logarithmic plot of MMLE

vs. asymptotic error for grid code plotted against the smallest spatial period. Smaller
periods refine the unit interval more, yielding better spatial resolution. The asymp-
totic error decreases, on average, quadratically as the minimum spatial period becomes
smaller, serving as a lower bound for the MMLE. Grid modules that are not properly
nested lead to a much higher error than predicted asymptotically. Furthermore, the
lower bound is no longer tight formini λi < 10−2. No generic grid code from the ran-
dom ensemble achieved an MMLE lower than10−8, even though the asymptotic error
values drop to10−12.

cells can achieve higher spatial resolution than any possible arrangement of the same
number of place cells. We computed the resolution for both coding schemes by decod-
ing the most likely position in space from the number of spikes across the population
within a short time window. The average divergence between the true and estimated
position is bounded from below by the inverse of the average Fisher information, an
analytically calculable measure of the asymptotic local coding precision: whereas the
average Fisher information scales inversely with the tuning width for place cells, it
scales inversely with thesquare of the tuning width for grid cells. Grid cells gain this
advantage by firing at multiple locations in space; place cells, in contrast, inherently
exhibit ’sparser’ neuronal discharge. But for a grid code toshow improved spatial reso-
lution over a place code, the grid lattices must be strategically arranged; many randomly
constructed grid codes are actually worse than the best place codes.

Distortion theory predicts how good grid codes should be constructed. First, grid lat-
tices should exist at different spatial scales, yet short length scales should predominate.
Each scale constitutes an independent module, comprising grid cells with a common
spatial periodλi but different spatial phase offsets (Hafting et al., 2005, for instance).
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After constructing an ensemble of grid codes by randomly sampling λi, we found that
good grid codes strongly skewed the distribution ofλi’s to small values, such that larger
spatial periods are fewer, yet still present: the full spatial range and the largest spatial
period were typically of the same length scale and not an order of magnitude apart.
Brun et al. recorded the spatial periods of different grid cells along the dorsoventral
axis of the mEC; the histogram of spatial periods is similar in its skew (Brun et al.,
2008). Some grid cells had spatial periods of more than8 meters on a18 meter linear
track. The typical lattice spacing of grid cells grows alongthe dorsoventral axis, yet
reported grid cells were recorded along the first 75% of this axis (Brun et al., 2008),
implying that longer length scales may yet be found, particularly if it becomes feasible
to record from rodents foraging on a football field. Our theoretical results also predict
that the spatial periods should be plastic and adapt to the largest length scale in the lo-
cal environment to achieve high spatial resolution. Indeed, grid lattices in mEC rescale
when a familiar enclosure is artificially expanded or shrunkby a moderate factor, such
that the relative positions of landmarks is maintained (Barry et al., 2007).

Secondly, achieving high spatial resolution with a fixed number of grid cells favors
scaling the size of the firing fields with the spatial period ofthe grid module; further-
more, we can predict the ratio of firing field width to the spatial period. A grid module
with spatial periodλi consists of several grid cells, whose spatial lattices are shifted rel-
ative to each other. Hence, a grid code represents the spatial phase in firing field-sized
bins, yielding a discretized phase.

If one only distinguishes whether a cell is active or not, oneobserves the following:
GivenM grid cells that tile the range[0, 1) in a non-overlapping manner, the phase
resolution is at least∆ϕ = 1/M . If the next module recursively tiles each phase of

the preceding module intoM bins, such a scheme would have a resolution of
(

1
M

)N/M
,

whereN is the number of cells. The highest spatial resolution is reached by trading off
the number of spatial periods per module with the number of grid modules.

For discrete encoding, three grid cells per module are ideal, with the firing field of
each grid cell covering one-third the spatial period. Each module associated with one
spatial period will be perfectly nested inside another module. Nesting naturally gives
rise to a strongly skewed distribution of spatial periods ona linear scale.

Some of the conclusions from the binary coding case considered above carry over
to the continuous coding case, in which one discerns betweendifferent firing rates.
Maximizing the Fisher information of the population code reveals that the grid code
should still stagger the modules’ spatial periods in a geometric progression,λn+1 =

sλn. The contraction factor in the geometric seriess = λi+1/λi depends on the relative
resolution of each module and hence crucially on the number of neurons per module and
the peak firing rate. As having more modules at the expense of phases per module is
advantageous, the ratio of field width to spatial period should be comparatively large; in
fact, the optimal ratio will approach the minimum allowed bythe numberM of distinct
phases. The ideal numberM is no longer necessarily three, but rather depends on the
tolerable level of risk for catastrophic error during decoding. The greaterM , the lesser
this risk.
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The design principles for grid codes were derived from asymptotic theory, which
assumes that the time window for observing the neuronal population’s response is suf-
ficiently long. While the (asymptotic) Fisher information reveals how the error scales
with tuning curve parameters (Zhang and Sejnowski, 1999; Brown and Bäcker, 2006), it
could severely underestimate the true error (Bethge et al.,2002). We, therefore, pursued
a systematic comparison between the asymptotic theory and the true maximum likeli-
hood error, which was evaluated numerically by simulating the neuronal response over
short time windows. For instance, one can construct a grid code with two modules for
which the asymptotic error goes to zero, as one lets the smallest spatial period become
infinitely small. An analysis of the mean maximum likelihooderror (MMLE), however,
revealed that the minimal spatial period is, in fact, bounded. Likewise, the asymptotic
error systematically underestimates the optimal tuning width for a place code. Yet the
MMLE also confirmed some of the scaling properties of grid codes predicted by the
Fisher information. For instance, the resolution of grid codes still scales exponentially
in the number of neurons, implying that grid codes are superior to place codes, even
under realistic conditions.

Our analysis suggests that even with noisy, spiking grid cells, the roughly105 neu-
rons in the mEC (Mulders et al., 1997) should be able to encodethe animal’s position
in space with exquisite precision. Four factors limit the effective resolution:

• The smallest spatial period cannot be arbitrarily small.

• Not all neurons in mEC contribute to encoding the position.

• A realistic decoding mechanism will not achieve the resolution of an ideal ob-
server.

• A putative decoder network may not have access to the whole ensemble of grid
cells.

If we read out the spikes within one cycleT of the ongoing theta oscillation while a
rodent is running near its peak speed of about 150 cm/s on a linear track, the minimal
spatial period has to be bounded byλmin > T/vmax ≈ 20 cm. Otherwise, the animal
will traverse multiple grid lattice points within a single theta cycle. The spatial resolu-
tion for an ideal grid code scales with the square of the smallest period. Moreover, the
spatial resolution will increase with the square root of thenumber of neurons that share
this spatial period, but the effective number might be less than gross anatomy suggests.
While place cells in the dentate gyrus and area CA3 of hippocampus are targets of layer
II of mEC, such neurons will presumably not be strongly connected to all neurons in
mEC, but just to a few. In general, a downstream neuron that “decodes” the animal’s
position might only have access to a restricted number of grid cell inputs; predicting
the size of grid fields also required us to assume that the number of grid cells is fi-
nite. Several theoretical models propose that the ensemblefiring of grid cells gives rise
to single, isolated place fields in hippocampus by superposition (Fuhs and Touretzky,
2006; Solstad et al., 2006; Rolls et al., 2006; Franzius et al., 2007; Si and Treves, 2009;
Cheng and Loren, 2010); arbitrary or all-to-all connections between grid and place cell
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layers, however, often give rise to multiple firing fields (Solstad et al., 2006). The aver-
age of measured firing field to period ratios lies around0.3 (Brun et al., 2008), which is
consistent both with the theoretical prediction and the hypothesis that each place cell in
DG and CA3 is strongly innervated only by a small subsample ofgrid cells from each
grid module along the dorsoventral band (Solstad et al., 2006).

A key assumption in this analysis was that the spike counts obey a Poisson distribu-
tion. The fine temporal pattern of spike trains in both place and grid cells is anything but
Poisson, as ongoing hippocampal-entorhinal-cortical rhythms imprint their structure on
the timing of spikes (Deshmukh et al., 2010; Quilichini et al., 2010; Bragin et al., 1995).
These rhythms might, indeed, be essential for generating the spatially localized firing
fields in these cells (Burgess et al., 2007; Hasselmo et al., 2007; Burgess, 2008; Remme
et al., 2010; Geisler et al., 2010). For instance, Geisleret al. correlate the frequency
shift between intrinsic firing and the 7-12 Hz theta oscillation in the local field potential
with the size of the firing field in CA1 of hippocampus. Likewise, the spatial period
and neural resonance properties correlate along the dorsoventral axis of the mEC (Gar-
den et al., 2008; Giocomo et al., 2007). We used the time scaleof the theta oscillation
to define the time window in which to count spikes, but discount the fine structure of
spike timing within this time window. Rapid oscillations largely average out in the sum
that represents the probability of the spike count. The detailed temporal structure of
hippocampal place cell firing can be captured by multiplyingor linearly convolving the
oscillations with the spatial tuning curve (Itskov et al., 2008); repeated traversals of the
firing field are accompanied by different phases of the oscillations, which adds to the
variance of the spike count. Preliminary analysis of lineartrack data (Hafting et al.,
2005) for grid cells indicate that the spike counts generally are close to Poisson (Kluger
et al., 2010), notwithstanding the fact that the fine temporal structure is not Poisson. For
place cells, Fenton and colleagues (Fenton and Muller, 1998) find that place cells fire
even more variably than would be predicted by a Poisson model; the excess variance
is attributable to attention (Fenton et al., 2010) or nonspatial signals that modulate the
firing rate, but not the location of place cell firing (Leutgebet al., 2005; Jackson and
Redish, 2007). The spatial resolution of a place code shouldsuffer when the position
signal is conflated with other signals, providing one more reason why the grid code
in mEC might be better suited for integrating path information than the place code in
CA1. Both place cells and grid cells encode position not onlyin the firing rate, but also
in the timing of spikes relative to the ongoing theta oscillation (O’Keefe and Recce,
1993; Hafting et al., 2008). A temporal phase code at the single cell or population level
is potentially more precise in resolving spatial location than counting spikes; decoding
such a code, however, was beyond the scope of this study.

Estimating the most likely spatial location relies on having full knowledge of the
place and grid field firing rate profiles at each location. For the grid code, the lattices
need not be perfectly regular to achieve high spatial resolution. What is required is sim-
ply a disjunctive union of intervals at successively finer spatial scales; the periodicity
of the intervals is irrelevant. For instance, applying different lateral shifts to different
firing fields of within one module would disrupt the periodicity, but not change the
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resolution. Moreover, the existence of modules, defined as subpopulations of neurons
whose grid fields have the same spacing, is not truly required—each grid cell can pos-
sess its own lattice spacing, drawn from the entire continuum of possible length scales.
As long as all length scales are densely represented, maximum likelihood decoding of
the population response will be highly accurate and subjectto low error.

On the other hand, both periodicity and modularity are crucial for the ‘modular
arithmetic scheme.’ The spatial range, defined as the maximum distance that is uniquely
represented by the set of all modules, is unbounded in the absence of noise, leading to
the remarkable property that a huge spatial range, on the order of kilometers, could
be supported by modules withλi’s ranging from thirty to seventy centimeters (Fiete
et al., 2008). To extend the spatial range beyond the maximumgrid period, Fieteet
al. proposed that the spatial periods should not be multiples ofeach other nor, more
generally, have common divisors. Such a constraint can be satisfied aptly by a set
of close spatial periods; indeed, the largest spatial rangewill be obtained when the
periods cluster near the maximal period. In the presence of noise, though, narrow spatial
periods make the grid code excruciatingly prone to error, leading to a dramatic loss of
spatial resolution. In principle, these problems can be overcome by adding redundancy,
using modules with very low errors and fine correction algorithms, yet this is a non-
trivial challenge. In addition, the grid modules should be highly stable over time for
such computations to be feasible. Experimental results indicate that the spatial periods
rescale in response to changing the geometry of the environment (Derdikman et al.,
2009) or the context (Fyhn et al., 2007), and in general exhibit a high variability between
trials (Brun et al., 2008; Kluger et al., 2010; Reifenstein et al., 2010). While variability
may greatly diminish the effective spatial range of a grid code, the local resolution can
still be sufficiently high, as we have shown. In this interpretation, the entorhinal cortex’s
function is tolocally represent the animal’s position with high resolution, using grid-
based coordinate maps that are continually reset and calibrated by landmarks or spatial
memory via the hippocampus (McNaughton et al., 2006).

Grid coding maintains its advantage over place coding even in higher-dimensional
stimulus spaces. For a grid cell encoding more than one stimulus dimension, the average
Fisher information of the population scales asλ−2 in each dimension. Indeed, if the
tuning curve is separable into its individual components (i.e., dimensions), then the
Fisher information of grid cell is simply related to the Fisher information of a place cell
with a comparable tuning curve width:

JGC ∼




1
λ1

0
. . .

0 1
λN


 · JPC,

In general, the Fisher information is a matrix, which is diagonal in simple cases. The
more general case, for tuning curves that are periodic on arbitrary lattices in more than
one dimension, is treated by Mathis et al. (2011a,b).

Given that the grid code can be orders of magnitude better than the place code,
based on the mean maximum likelihood error (MMLE), why are both codes used? Hip-
pocampus may have ten times as many neurons as medial entorhinal cortex (Mulders
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et al., 1997), but achieves the same spatial resolution, based on these arguments. Yet
grid codes and place codes may well serve different purposes. Entorhinal cortex draws
on head-direction and velocity inputs (Sargolini et al., 2006), integrating over the path
of motion. Grid lattice representations of the external world are well suited for dead
reckoning during navigation. As the hippocampus is essential for forming new episodic
memories (O’Keefe and Nadel, 1978), we speculate that placefields are needed for
associating specific events with specific locations. Synaptic plasticity and long-term
potentiation occurs between pairs of cells, so that if the firing of a single cell already
represents a unique location, synapses can easily adapt to the conjunction of location
and sensory information. A distributed representation of location, as in a grid code, is
less suited for forming such associations.
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Appendix: Annalytical derivation and numerical meth-
ods

Fisher information of grid and place cell

The average Fisher information of a place cellJPC, was defined in equation (15), which
stated:

JPC =

∫ 1

0

∫ 1

0

fmaxT · (x− c)2

σ4
exp

(
−(x− c)2

2σ2

)
dxdc. (32)

Here the details of the computation are given. The inner integral from (32) can be
simplified by applying integration by parts.

∫ 1

0

(x− c)2

σ4
exp

(
−(x− c)2

2σ2

)
dx =

[
− x

σ2
exp

(
− x2

2σ2

)
+

√
2π

σ
· erf

(
x√
2σ

)]1−c

−c

=

=
c− 1

σ2
exp

(
−(c− 1)2

2σ2

)
− c

σ2
exp

(
− c2

2σ2

)

−
√
2π

2σ
·
(

erf

(
c− 1√
2σ

)
− erf

(
c√
2σ

))
.

(33)

In order to obtain (32) one has to integrate the result overc ∈ [0, 1]. For the first two
terms of (33): Since− exp(− x2

2σ2 ) is a primitive for x
2σ2 · exp(− x2

2σ2 ) we obtain:
[
− exp

(
−(c− 1)2

2σ2

)
+ exp

(
− c2

2σ2

)]1

0

= 2 ·
(
exp

(
− 1

2σ2

)
− 1

)
(34)
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and for the second part again by integration by parts:

−
√
2π

2σ
·
∫ 1

0

(
erf

(
c− 1√
2σ

)
− erf

(
c√
2σ

))
dc

=

√
2π

2σ
·
√
2σ ·

(∫ 0

− 1√
2σ

−erf(s)ds+
∫ 1√

2σ

0

erf(s)ds

)

=
√
π · 2 ·

∫ 1√
2σ

0

erf(s)ds

= 2
√
π ·
[
s · erf(s) +

1√
π
exp

(
−s2

)] 1√
2σ

0

= 2
√
π

(
1√
2σ

erf

(
1√
2σ

)
+

1√
π
exp

(
− 1

2σ2

)
− 1√

π
· exp (0)

)

=

√
2π

σ
erf

(
1√
2σ

)
+ 2 · exp

(
− 1

2σ2

)
− 2 (35)

Summing (34) and (35) the average Fisher information of a place cell (32) is:

JPC = fmaxT ·
(√

2π

σ
erf

(
1√
2σ

)
+ 4 · exp

(
− 1

2σ2

)
− 4

)
. (36)

The second and third term together behave like a staircase function that is zero for
largeσ and quickly approaches−4 for small values. The first term is the leading term,

where erf
(

1√
2σ

)
≈ 1 for σ < 1. Hence, e the average Fisher information scales as∝ 1

σ

for smallσ. The other terms change the behavior slightly, contribute abend to the curve
for σ > 0.1 in Fig. (4a). This result is reported in the main text (Eq. (16)).

The average firing rate of a place cell can be calculated as follows:

fPC =

∫ 1

0

∫ 1

0

fmax exp

(
−(x− c)2

2σ2

)
dxdc, (37)

Analogously to the average Fisher information this integral can be computed by:

fPC =
√
2σfmax

∫ 1

0

∫ 1−c√
2σ

− c√
2σ

exp
(
−t2
)
dtdc

=
√
2σfmax

∫ 1

0

√
π

2

(
−erf

(
c− 1√
2σ

)
+ erf

(
c√
2σ

))
dc

= fmax

(√
2πσerf

(
1√
2σ

)
+ 2σ2 · exp

(
− 1

2σ2

)
− 2σ2

)
, (38)

where the last equation followed from (35).
Next, we present the computation of the average Fisher information of a grid cells

JGC , as defined in equation 18, which stated:

JGC =
1

λ
·
∫ λ

0

∫ 1

0

JGC(x, ϕ)dxdϕ. (39)
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Due to the periodicity ofJGC(x, ϕ) in x, JGC need only be integrated over one half
of the periodic domain, followed by multiplication with2/λ. Furthermore, for small
periods averaging over different phases is not necessary, again due to the periodicity.
Hence, for smallλ, the case we are actually interested in is:

JGC =
1

λ
·
∫ λ

0

∫ 1

0

JGC(x, ϕ)dxdϕ ≈ 2fmaxT

λ

∫ λ/2

0

x2

σ4
exp

(
− x2

2σ2

)
dx (40)

The last integral can be computed by similar means as above:
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(41)

Thus Eq. (39) becomes

JGC = fmaxT

(√
2π

σλ
erf

(
λ

2
√
2σ

)
− 1

σ2
exp

(
− λ2

8σ2

))
. (42)

In terms of the area ratiorA from Eq. (20),i.e. σ = rA·λ
2
√

−2 log(β)
, we can write

JGC =
fmaxT

rA · λ2

(
2
√
−4π log(β)erf

(√
− log(β)

rA

)
− 8 log(β)

rA
exp

(
log(β)

r2
A

))

︸ ︷︷ ︸
=:f(rA,β)

.

(43)
For the parameters we are interested in,i.e. β = 0.05 and rA < 0.5 the right

term is negligible, and the first term is effectively constant in for rA < 0.5. Therefore,
JGC ∝ fmax

rA·λ2 (Eq. (19)).
Here we derived an approximation for small spatial periods.For larger spatial peri-

ods, there will be boundary effects when averaging over the spatial periods. However,
numerical comparison actually showed that the derived formula for JGC gives a good
approximation, even for spatial periods close to one.

For the grid cell, the average rate is defined by:

fGC =
1

λ

∫ λ

0

∫ 1

0

α(x, ϕ)dxdϕ, (44)
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with α being the firing rate as defined in equation (5), but with spatial phaseϕ. Anal-
ogously to the average Fisher information this value can be approximately computed
by:

fGC ≈ 2

λ

∫ λ
2

0

fmax · exp
(
− x2

2σ2

)
dx =

2
√
2fmaxσ

λ

∫ λ
2
√

2σ

0

·exp
(
−t2
)
dt

=

√
2πfmaxσ

λ
erf

(
λ

2
√
2σ

)
= fmax ·

√
2πrA

2
√
−2 log(β)

erf

(√
− log(β)

rA

)
. (45)

Whereas,the average firing rate for a place cell is characterized by linear growth in
σ, the average firing rate of a grid cell remains constant for changing spatial periods,
because the firing field size is determined by the spatial period. This manifests itself in
that the average Fisher information per average firing rate falls with the inverse square
of λ andσ for grid and place cells, respectively.

Monte Carlo Integration and MMLE

The mean maximum likelihood error (MMLE) is best computed byMonte Carlo in-
tegration. Each set of parameters governing a grid or place code determines a joint
probability distributionP (K, x), from which we realized samples(xl, Kl)1≤l≤R with
R ≥ 105. From these realizations, we compute:

χ2
MLE ≈ 1

R

R∑

l=1

(xl − x̂MLE(Kl))
2 =: χ̂2

MLE(R). (46)

The right hand side converges with1√
R

towards the MMLE. The Monte Carlo integra-
tion is stopped if:

|χ̂2
MLE(R)− χ̂2

MLE(R + 104)| < 1.001 · χ̂2
MLE(R + 104). (47)

In other words, convergence is said to be reached reached when theχ̂2
MLE changes by

less than10−3 over the last10, 000 iterations. A similar convergence criteria was used
in (Bethge et al., 2002). As an additional test, we corroborate the error estimates by
bootstrapping methods.
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3 N E S T E D C O D E S R E P R E S E N T
C O N T I N U O U S VA R I A B L E S W I T H E X-
P O N E N T I A L A C C U R A C Y

3.1 SUMMARY

Population codes that are based on neurons with unimodal
tuning curves are abundant in the mammalian brain. The most
prominent locations are the hippocampus, the visual, auditory,
somatosensory and the motor system [48, 59, 60, 66, 77, 102].
These codes have been studied extensively [8, 9, 11, 14, 17, 93,
106, 109, 120, 153], often with special emphasis on how the accu-
racy of the population code depends on the tuning width. In a
seminal paper Zhang and Sejnowski (1999) showed that for ra-
dial symmetric tuning curves the optimal tuning width is solely
related to the number of dimensions of the signal [153]. How-
ever, common to all these coding schemes is that the Fisher in-
formation scales linearly with the number of neurons.1

In chapter 2 we point out that a nested grid code can give
rise to a qualitatively different scaling for encoding a one dimen-
sional variable like space. Building on this work we generalize
the design of a nested grid code to stimulus spaces of arbitrary
dimension and prove that such a code can offer a Fisher infor-
mation that scales exponentially in the number of neurons. In
particular, we give a general construction of how to periodify
any unimodal tuning curve to an arbitrary affine lattice. We
show how the Fisher information of this constructed periodic
population code is related to the population of unimodal tuning
curves. This connection is then used to provide an argument
for the scaling that is independent of the specific tuning curve
shape.

In chapter 2 we show that for certain parameter regimes the
Cramér-Rao bound, given by the Fisher information, cannot be
attainable by an ideal observer. Here a formula is presented for
how the nesting should be devised, based on the explicit noise
level of the first module, in order to be attainable by an estimator.
This formula is corroborated by numerical simulations.

1 This linear scaling can be improved to quadratic scaling in the case of a one
dimensional stimulus as pointed out in the paper presented here.
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Collective computation is typically polynomial in the number of computational elements, such as

transistors or neurons, whether one considers the storage capacity of a memory device or the number of

floating-point operations per second of a CPU. However, we show here that the capacity of a computa-

tional network to resolve real-valued signals of arbitrary dimensions can be exponential in N, even if the

individual elements are noisy and unreliable. Nested, modular codes that achieve such high resolutions

mirror the properties of grid cells in vertebrates, which underlie spatial navigation.
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The brain encodes many stimulus variables, such as
the position of an object, the orientation of an edge,
or the frequency of a sound, with high precision.
Multidimensional stimulus spaces are represented by joint
activity across neurons, each of which fires noisy, unreli-
able spikes. Yet, despite the stochastic nature of neuronal
discharge, the nervous system achieves a highly efficient
representation of the outside world [1].

The simplest representation of a continuous stimulus
variable is a one-to-one map onto a neuronal firing rate.
Given unreliable spikes, however, a labeled line code
across different neurons is more robust and efficient [2].
The place code for spatial position in the hippocampus is
an instance of such a labeled line code. One drawback of
such a code is that the resolution only scales linearly in the
number of neurons [2–4].

A place code can be improved upon by using a cascade
of self-similar, periodic representations at different scales,
as depicted in Fig. 1. Each successive level refines the
representation at the previous coarser scale, such that the
overall resolution scales exponentially in the number of
neurons, as we show in this Letter.

Neuronal coding of sensory information at multiple
scales occurs in many brain areas [5] and arises naturally
in the theory of sparse coding [6]; we show here how the
dense coding at multiple scales found in the entorhinal
cortex and related areas, where each neuron has multiple
firing fields, can be highly efficient, even though the firing
rate of a single neuron no longer maps onto a single
stimulus, but to many possible stimuli.

We consider N statistically independent neurons encod-
ing a compact but possibly high-dimensional stimulus
space, normalized to ½0; 1�D. For simplicity, each stimulus

is assumed to be equally likely. Each neuron’s response is
characterized by the number of spikes ki emitted within a
time � after stimulus onset. The neuron’s mean firing rate
depends on the stimulus x through its tuning curve �iðxÞ.
The number of spikes is stochastic, so that observing a
response K ¼ ðk1; . . . ; kNÞ across the population of neu-
rons has a probability

PðKjxÞ ¼ YN
i¼1

Piðkij��iðxÞÞ: (1)

(a) (b)

FIG. 1 (color online). Example of nested modules. (a) All
modules, except for the coarsest one, have periodic tuning curves
�iðx� ciÞ. A module consists of a set of tuning curves with the
same period but different phases ci. The spatial period for
modules 2 and 3 are �2 ¼ 0:45 and �3 ¼ 0:3, respectively. In
each module, we highlight a single tuning curve by a solid line to
show the period. Shifted but otherwise identical tuning curves
are dashed. Nested modules successively refine the representa-
tion of the stimulus. Periodicity implies that the map from
stimulus to population response is not one-to-one within a single
module. Only the ensemble response provides a unique repre-
sentation of x. (b) A unimodal tuning curve � in two dimen-
sions, shown at the top, can be rescaled and periodically
extended using Eqs. (5) and (6). The periodic tuning curves
�� in the lower panel is based on a rectangular lattice � spanned
by v1 ¼ �ð1; 0Þ0 and v2 ¼ �ð0; 1Þ0, with � ¼ 1=2. For this
lattice, a fundamental domain U is depicted.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 3.0 License. Further distri-
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We ask how accurately an ideal observer can deduce the
stimulus x from K. For this purpose, we use the Fisher
information matrix J with components

J��ðxÞ ¼
Z @ lnPðK; xÞ

@x�

@ lnPðK; xÞ
@x�

PðK; xÞdK; (2)

where �, � 2 f1; � � � ; Dg. The Cramér-Rao inequality [7]
relates the inverse of J to the covariance matrix � of any
unbiased estimator x̂ of the encoded stimulus x,

�ðx̂jxÞ � JðxÞ�1: (3)

Let us first consider a population of neurons with tuning
curves �iðxÞ such that each has a single peak of width �.
Suppose the tuning curves differ only in the center ci of the
peak, so that�iðxÞ ¼ �ðx� ciÞ. A single tuning curve has
Fisher information J�i

ðxÞ. For the stochastic population

model in Eq. (1), the Fisher information J�ðxÞ for the
population is simply the sum

J�ðxÞ ¼def
XN
i¼1

J�i
ðxÞ ¼

Z
½0;1�D

J�ðx� ’Þ�ð’Þd’;

where �ð’Þ ¼ P
N
i¼1 �ð’� ciÞ is the density of the centers.

Assume that the centers ci are uniformly distributed in
½0; 1�D, so that the tuning curves cover the entire stimulus
space. As the centers become increasingly dense with

increasing N, the Fisher information J�ðxÞ becomes inde-
pendent of the specific stimulus x and scales linearly in the
number of neurons

J� ¼ NK�ð�; �;DÞ (4)

for some function K� [3,8,9]. If the stimulus space were
not compact, but instead encompassed all of RD, then
K� � �D�2 [3].

The linear scaling of Eq. (4) in N can be dramatically
improved by switching to a nested modular code, in which
each module consists of a subpopulation of M periodic
tuning curves, as in Fig. 1. Each module is associated with
a unique spatial period.

We first compute the Fisher information for a single
module that has periodic tuning curves, such that M ¼ N.
Any unimodal tuning curve �ðxÞ on ½0; 1�D can be periodi-
cally extended. Let � � RD be a nondegenerate, affine
point lattice [10]

�¼uþ XD
�¼1

k�v� for k� 2Z; u; v� 2RD; (5)

such that ðv�Þ1���D is a basis for RD and u a center. Let
U � RD be a fundamental domain of this lattice. Then there
is a canonical coordinate transformation �: U ! ½0; 1ÞD in
terms of an invertible matrix T and a vector w, such that
� ¼ �wþ T. One defines the periodic extension of � as

��: R
D ! Rþ; x � � ��ðx mod �Þ: (6)

This definition is illustrated in Fig. 1(b) and is independent
of the particular representation (or translational shift) for U.
A family of shifted, periodic tuning curves on the lattice

� constitutes a module and is associated with Fisher infor-

mation J�;�. We now relate J�;� to the original J�. Under

the inverse map ��1, the transformed tuning curves have
centers c0i ¼ ��1ðciÞ 2 U. Therefore,

J�;�ðxÞ ¼def
XN
i¼1

J��
ðxþ c0iÞ ¼

Z
U
J��

ðxþ ’Þ�0ð’Þd’;

where �0ð’Þ ¼ PN
i¼1 �ð’� c0iÞ. By changing the variables

in the Fisher information [7] and using the periodicity of
�ððxþ ’Þ mod �Þ on U, we get

J�;�ðxÞ ¼
Z
U
TJ�ð�ðxþ ’ÞÞT0�0ð’Þd’

¼ T
Z
U
J�ð�ðxþ ’ÞÞ�0ð’Þd’T0:

In the last step, we interchanged the multidimensional
integration and matrix multiplication, as T and its trans-
pose T0 are independent of ’. Under the map�, we obtain

J�;�ðxÞ ¼ T
Z
½0;1�D

J�ðxþ yÞ � �ðyÞdyT0

¼ T

�XN
i¼1

J�ðxþ ciÞ
�
T0 ¼ TJ�ðxÞT0: (7)

Thus, we have derived the following rule: J�;�ðxÞ ¼
TJ�ðxÞT0. For an orthogonal lattice � defined by v� ¼
��e� on the canonical basis ðe�Þ1���D of RD, each entry
in the Fisher information matrix is rescaled by ð����Þ�1

under this transformation. If the original Fisher informa-

tion matrix is diagonal, then so is J�;�ðxÞ. Therefore,

rescaling the periodic tuning curves by a factor of 2 quad-
ruples the Fisher information, but at the cost of introducing
ambiguity—the value of x can only be recovered modulo
the lattice �. Resolving this ambiguity requires a multi-
scale representation consisting of multiple modules span-
ning different spatial periods.
How should these different spatial periods be chosen?

Suppose there are L modules with spatial periods
f�1; . . . ; �Lg, arranged in decreasing order from the
longest period to the shortest, as in Fig. 1. Each module
hasM ¼ N=L tuning curves, and each tuning curve within
a module is associated with a different phase shift.
The easiest case to analyze is the one in which the

lattices �k are orthogonal [11], the rescaling is uniform
in each dimension, and the tuning curve � is radially
symmetric. In such a case, a module on lattice �k has a

Fisher information matrix J�;�k
ðxÞ ¼ ��2

k J�, and radial

symmetry implies that J� ¼ JI is diagonal and propor-
tional to the identity matrix I [3]. To ensure that the first
module represents x 2 ½0; 1�D unambiguously, we treat
this module as a special case and make it aperiodic;
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i.e., the first module is a place code with the same tuning
width that a periodic module with � ¼ 1 would have.

Within the first module, the expected error in an un-

biased estimate of x asymptotically approaches 1=
ffiffiffi
J

p
,

according to Eq. (3). This error sets a lower bound on the
period of the next module that refines the representation of
x. Hence, each �k should obey

�kþ1 ¼ C�kffiffiffi
J

p ; (8)

where C is a safety factor, such that 1 	 C<
ffiffiffi
J

p
.

For a C larger than unity, the next module can correct
for the error in the previous module. The Fisher

information for the nested population is J�;�1����L
¼

J�;�1����L
I with

J�;�1����L
¼ XL

k¼1

J

�2
k

¼ XL
k¼1

Jk

C2ðk�1Þ :

If we take only the last term in the series and substitute
L ¼ N=M, we see that

J�;�1����L
>

JN=M

C2ðN=M�1Þ : (9)

For fixed module size M, the Fisher information scales
exponentially in the number of neurons N. Such a coding
scheme, therefore, outperforms a single module that only

(a) (b)

(d)(c)
− −

−

−

−

−

FIG. 2 (color online). (a) Grid codes (GC) outperform place codes (PC), regardless of the number of stimulus dimensions. A
population of N ¼ 3
 105 neurons is divided into one, two, or three modules, according to Eq. (8). The neurons’ tuning width is fixed
as � ¼ 2. (b) The Fisher information for a neuronal population with M ¼ 105 neurons per module and D ¼ 3. For a nested modular
code with Lmodules, the Fisher information grows exponentially in N ¼ L �M, whereas it is linear in N for a place code. (c) The error
of the estimator that minimizes ðx� x̂Þ2 for place and grid codes inD ¼ 3 dimensions, based on sampling the stochastic response 1200
times. Each module comprises M ¼ 83 equidistantly spaced cells. The lattice lengths for different modules are scaled according to
Eq. (8), with a safety factor C ¼ 20. The Cramér-Rao bound of Eq. (10) is tight for both the grid and place codes. (d) When the lattice
lengths contract more strongly than allowed by Eq. (8), such that C ¼ 1, the error fails to improve in a nested modular code. Although
the Fisher information predicts an error even lower than in (c), the uncertainty derived from the first module’s response is larger than
the lattice length scale of the next finer-grained module, so that adding modules with finer spacing does not improve the resolution.
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scales linearly in N. Note that this scaling is independent
of the dimension D.

As a concrete example, we consider a set of tuning
curves with Poisson noise, centers ci, tuning width
�, and period �, as given by �iðxÞ ¼ fmax

expð 1
�2

P
D
�¼1fcos½2�ðx� � ci;�Þ=�� � 1gÞ [12]. If the

number of neurons per period � isM � 1 and the centers
are uniformly distributed, the module’s average Fisher
information is given by

J ¼ M4�2fmax�

�2�2
K1ð�2ÞKD�1

0 ð�2ÞI (10)

where KnðxÞ ¼ expð�1=xÞInð�1=xÞ and InðxÞ is the nth
order modified Bessel function of the first kind. In
Fig. 2(a), the Fisher information for a large population of
N ¼ 300 000 (place) cells is plotted for stimulus dimensions
D ¼ 1 to 10. Dividing the population into separate grid
modules according to Eq. (10) with C ¼ 20 leads to a
much higher Fisher information—orders of magnitude,
irrespective of the dimension D of the stimulus space.
Figure 2(b) underscores the key finding of this Letter: the
Fisher information grows exponentially in the number N of
encoding neurons. The place code, in contrast, is linear inN.
To corroborate these analytical results, we sampled the
response K and estimated the minimum mean square error
based on the posterior probability distribution pðxjKÞ [13],
as shown in Figs. 2(c) and 2(d). These simulations show that
the Cramér-Rao bound is tight as long as the grid codes obey
the constraint in Eq. (8). For place codes, it is known that on
short time scales [14], or for low numbers of neurons [9], the
Cramér-Rao bound will not be tight, so that the Fisher
information underestimates the error in decoding the signal.
The same will hold true for grid codes. However, whenN >
M � 1 and the expected number of spikes at the center of
each tuning curve is appreciable, a nested modular code

leads to an error that scales as M�N=M.
Note that we assume that the firing of neurons is

uncorrelated. Whether this assumption holds in cortex is
a matter of fierce debate [15]. The Fisher information
deteriorates with increasing noise correlations, but its scal-
ing in N does not, at least not for the correlation strengths
measured by Ecker et al. in cortex.

Periodic tuning curves have been found in entorhinal
cortex of rodents—coined grid cells ([16]; see Supple-
mental Material [17]). This unexpected discovery has in-
spired theorists to explore the combinatorial capacity of
modular periodic codes and how they might be used in the
brain [18]. In some cases, the stimulus space is intrinsically
periodic—orientation and color hue are but two examples.
But when the space of stimulus x is infinite instead of
periodic, different spatial periods can be combined to
encode a much larger range of x uniquely than would
otherwise be possible [19]. Indeed, the exponential range
that can result confers a relative precision that is also
exponential [20]. This Letter, in contrast, shows that the

absolute precision in x can be exponential in N. Precision
is of paramount importance for path integration, for which
the mammalian brain is thought to use grid cells [21].
Interestingly, the periodic lattices for neighboring grid
cells share similar spatial periods and orientations, but
are spatially translated relative to each other [16].
Moreover, along the dorso-ventral axis of the entorhinal
cortex, the typical spatial period of the lattice grows from
roughly 20 cm to several meters, while the ratio of grid
field width to spatial period remains constant [22]. Our
theoretical analysis indicates that these grid cell properties
may endow the brain with a highly accurate representation
of space; the same principles might be used for represent-
ing other continuous, high-dimensional stimuli.
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4 T H E E F F E C T O F C O R R E L AT I O N S
O N G R I D C O D E S

The material presented in this chapter is the core of an unfin-
ished manuscript. Due to small gaps in the current version of the
manuscript the material is presented abbreviated, yet cohesive.

4.1 INTRODUCTION

In chapter 3 the favorable scaling properties of nested grid
codes have been demonstrated. There the individual noisy el-
ements are assumed to be statistically independent. A type of
statistical dependence among neurons that has been observed in
the cortex are correlated response fluctuations (noise correlations).
According to a widely believed hypothesis these correlations of
a pair of neurons are caused by random fluctuations of neurons
that are presynaptic to both [29, 121]. The strength of these noise
correlations in cortical neurons has been reported to lie between
0 and 0.3 [22, 29, 47, 47, 113, 126, 154]. These measurements are
from visual areas, and to our knowledge the noise correlations
in the entorhinal cortex have not been determined so far.

Such correlations can have a strong effect on the coding preci-
sion of population codes – and nested grid codes are no excep-
tion. In the theoretical study of this chapter we investigate the
effects by extending the framework from chapter 3. In particu-
lar, we determine the effect of noise correlations on the popula-
tion’s Fisher information. As the basic building block of nested
grid codes is given by a module, we can start by studying place
codes. This case has often been considered in the literature; for
families of unimodal tuning curves it has been reported that re-
ducing the correlations improves the resolution of the popula-
tion code [1, 29, 30, 122, 123, 144]. As we will demonstrate, this
tendency is correct for nested grid codes too.
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4.2 METHODS: POPULATION CODING MODEL
WITH NOISE CORRELATIONS

The model presented here, is an extension of the work by
Ecker et al. on correlated unimodal tuning curve families [30,
123]. As this chapter generalizes the statistically independent
model of chapter 3 the terminology is the same.

4.2.1 Population coding model

Assume that we have N neurons encoding a one-dimensional
circular variable x ∈ [−π,π). The response of neuron i is given
by:

Υi(x) = Ωi(x) + ηi(x). (4.1)

Here Ωi(x) is the tuning curve of the i-th neuron and ηi is the
trial-to-trial variability. For simplicity, assume that this variabil-
ity follows a multivariate normal distribution with zero mean
and covariance matrix Q(x).

As in the example of chapter 3, let the tuning curves be given
by von Mises functions:

Ωi(x) = fmax · exp
(
1/σ2 · (cos(2π/λi · (x− ci)) − 1)

)
. (4.2)

Thereby fmax stands for the peak firing rate, σ the tuning
width, λi for the spatial period, and ci for the angular preference
of the tuning curve.

We assume a modular structure of the population comprising
L modules of M neurons each, so altogether that means N =
L ·M. Within each module the period λi is identical, and the
angular preferences are equally spaced, i.e.

ci ∈ {0,
2π · λi
M

, . . . ,
2π · (M− 1)λi

M
}. (4.3)

In the example considered in chapter 3, the neurons are inde-
pendent and Poisson statistics governs their firing, so that each
ηi(x) is normally distributed with mean zero and varianceΩi(x).
Here we treat the more general case with a non-trivial correlation
structure. More specifically, we assume that the correlation factor
between two neurons rij is independent of the stimulus. In this
case, the covariance matrix can be written as a product [30]:

Qij(x) =
√
Ωi(x) · rij ·

√
Ωj(x). (4.4)



4.2 METHODS: POPULATION CODING MODEL WITH NOISE CORRELATIONS 63

For the correlation coefficients rij we will assume the follow-
ing. Within each module, each cell’s tuning curve has a spatial
phase ci. We let the correlation coefficient between two cells de-
pend on the difference in spatial phase. This is motivated by the
functional organization of the cortex ([30], also see discussion).
Mathematically, for any two neurons with phases ci and cj, their
correlation coefficient is given by the following function:

rij = c
(
−π+ (ci − cj + π) mod 2π)

)
+ δij(1− c(0)). (4.5)

Here δij is the Kronecker delta, and c is a monotonously de-
creasing function. In particular, we will use c(t) = c0 · exp

(
− tτ
)

,
with τ = 1. For the correlations across modules we will as-
sume that they vanish. Hence, for grid codes, the correlation
coefficient matrix and also the covariance matrix Q have a block-
structure.1 Figure 4 illustrates the block-structure of the correla-
tion coefficient matrix (rij).

4.2.2 Fisher information

For the outlined model the Fisher information can be written
as a sum [30, 69, 123]:

J(x) = Jmean(x) + Jcov(x) (4.6)

with the following individual parts:

Jmean(x) = (Ω ′(x))tQ(x)−1Ω ′(x) (4.7)

Jcov(x) =
1
2Tr

((
Q ′(x)Q(x)−1

)2) . (4.8)

TherebyΩ ′ andQ ′ are the derivatives with respect to the stim-
ulus variable x. The names of these quantities derive from the
fact that Jmean depends on the changes of the mean firing rate
Ω ′ and Jcov depends on changes of the covariance structure Q ′.

In the following we study how the Fisher information changes
with the defined noise correlation structure. Thereby, the effect
of the scaling parameter Q ′ on the Fisher information of the
population is of chief interest.

1 If the indices are canonically arranged, which we assume from now on. By
canonically we mean that the first M indices belong to the first module, the
next M indices to the second module, etc. And within each module we assign
the index according to growing phase-preference starting with phase 0.
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Figure 4: The correlation matrix for a grid code with N = 300 neurons
and 3 modules of 100 neurons each. The parameters are
τ = 1 and c0 = 0.25. The indices are canonically arranged,
as explained in the main text. Each neuron is perfectly corre-
lated to itself, therefore the correlation coefficient is 1 along
the diagonal. The correlations between modules are zero,
so there are three blocks of non-zeros and zeros elsewhere.
These blocks are all identical, as the definition of rij (Eq. 4.5)
does not depend on the spatial periods. Due to the equidis-
tantly arranged phases within each module and a periodic
stimulus space, it follows that these blocks are circulant ma-
trices, i.e. for the first module: ri,j = r|i−j|,0 = r100−|i−j|,0
for i, j ∈ {0, 1, . . . 99}.

4.3 RESULTS

We will vary the population sizeN and the correlation peak c0
and then compute J. For the simulations, we set the peak rate to
fmax = 20 Hz and the tuning width to σ =

√
2/2. Qualitatively

these choices are not important, as long as there are enough
neurons to cover the space given σ and the peak spike count is
larger than one (compare to chapter 2).

4.3.1 Place code

We know that in the absence of correlations, the Fisher infor-
mation grows linearly in N (chapter 3). For rising correlation
amplitude c0 the Fisher information decreases, yet still grows
linearly with N (Figure 5 a). This effect can be explained by con-
sidering the two components Jmean and Jcov individually, as
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Figure 5: Fisher information for population codes with correlations.
We evaluated the Fisher information at position x = 0. a:
The total Fisher information J for a population of N place
cells with correlation peak c0. For zero-correlation the Fisher
information grows linearly in N. For larger correlation coef-
ficients the Fisher information falls, but eventually grows lin-
early in N, as indicated by considering the two components
of J individually, see subfigure b. b: The same simulation,
but the two parts of the Fisher information Jmean and Jcov
are shown separately in solid and dashed lines, respectively.
The mean term saturates for increasing correlation peak c0,
but the covariance term grows linearly and is in fact inde-
pendent of the correlation peak c0. c: Fisher information for
grid code without inter-module correlation. The total Fisher
information J for a population of L modules and correlation
peak c0. Each module contains M = 200 neurons. Even
for increasing correlation, the population Fisher information
still grows stronger than linearly. The stronger the correla-
tion coefficient becomes the smaller the contraction factor
C/
√
J becomes, and therefore the smaller the growth. d: The

same simulation, but the two parts of the Fisher information
Jmean and Jcov, are shown separately in solid and dashed
lines, respectively.
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shown in Fig. 5 b. While the former saturates, the latter grows
linearly in N, independently of the degree of correlation. This
result is well known, e.g., see Shamir and Sompolinsky [30, 123].

4.3.2 Nested grid code

Let us see how the results just presented for the place code
affect grid codes. With increasing peak correlation c0, each mod-
ule provides a lower Fisher information. As described in chap-
ter 3, in order for the Fisher information to be

attainable the spatial period should depend on the resolution
of the next coarser module. This is the same for modules with
intrinsic correlation. All that changes is the “allowed“ spatial
period – accordingly the spatial periods should obey:

λk+1 =
C · λk√
J

, (4.9)

with safety factor C and Fisher information of first module J (See
chapter 3, Eq. 8 and discussion thereof).

Thus, the population Fisher information of a grid code, de-
spite still growing exponentially, grows more slowly in N for
rising c0. Figure 5 c and d, depict the Fisher information of a
grid code with up to 5 modules and M = 200 neurons per mod-
ule.

4.4 CONCLUSION
We demonstrated that, although noise correlations within mod-

ules reduce the Fisher information of each module, the exponen-
tial scaling of nested grid codes is not qualitatively affected. As
presented, this follows from the linear scaling of place codes de-
spite noise correlations.

The spatial phases of grid cells appear to be randomly dis-
tributed [55]. This is in strong contrast to the clustered arrange-
ment of orientation preference in the visual system of macaques,
for instance, where neighboring cells have similar tuning orienta-
tions [21]. Neighboring cells are also more likely to be connected
and to receive common input [13, 21]. Thus it has been shown
that the cells with similar preferences also have higher noise cor-
relations [29]. For this reason, the effect of limited range cor-
relations is often studied [30, 123], and motivates the function
Eq.4.5 in our study. Larger values of the decline parameter τ in
Eq.4.5 make the correlation values less dependent on the stimu-
lus preference. For randomly distributed grid cell phases larger
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values of τ might be more appropriate. Numerical simulations
suggest that almost constant correlation values (τ large) are less
detrimental on the Fisher information than limited range corre-
lations (data not shown).

As pointed out in chapter 2 the Fisher information only pro-
vides a bound to the resolution of a grid code. For certain cases,
like low firing counts per cell, too small spatial periods, etc. this
bound is not attainable by maximum likelihood decoding. For
nesting in accordance with Eq. 4.9 the attainability is guaranteed
by considerations of the posterior distribution (see chapter 3 and
5). Nevertheless, the results should be corroborated by numeri-
cal simulations of the maximum likelihood estimator.

Here we assumed that the noise correlations of two neurons
in different modules vanish. Given that different modules have
different spatial periods and that these modules are spatially sep-
arated this assumption appears reasonable [19, 55, 147]. Incor-
porating such correlations was beyond the scope of this study,
because the approach of determining the periodicity of the finer
module based on the uncertainty of the coarser one is bound to
break down, if there are correlations between the two modules.
In such a case the Fisher information of the coarser module itself
depends, due to the correlations, on the periodicity of the finer
one. To resolve this, a new approach is needed, or numerical
simulations have to be done. Two observations motivate further
work in this direction. Firstly, recent findings seem to undermine
the earlier finding about the spatial distance between grid cells
of different scales [132], which would make noise correlations
between such cells more likely. Secondly, from a coding theoret-
ical point of view, the effect of these correlations is particularly
interesting. The crux of nested grid codes is the specialization of
different modules on different scales. This can only be exploited
if the scales are sufficiently independent. Shedding light on how
independent they have to be would be very interesting.2

Finally, one upshot of many earlier studies is that for large, het-
erogeneous populations of unimodal tuning curves, i.e. families
with varying tuning widths and peak firing rates, reducing the
correlations does not improve encoding accuracy[30, 123, 144].
Grid cells are also highly heterogeneous in their firing rates and

2 For the practical implications of this transition, it is necessary to determine the
level of noise correlations in grid cells. Reliably measuring spike correlations,
however, is technically challenging [29]. From the reasons given in Ecker et
al. the control for internal variables (e.g. short-term memory [24]) and diffi-
culty of single-unit isolation due to low signal-to-noise ratio of extracellular
recordings in the entorhinal cortex (E Mankin, personal communication) are
particularly valid for grid cells.
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tuning parameters [55, 56], and it would be interesting to study
the effect of heterogeneity for grid codes as well.



5 T H E E N TO R H I N A L C O R T E X O F
R O D E N T S H A R B O R S A N O P T I M A L G R I D
C O D E F O R S PA C E

5.1 SUMMARY
In chapter 2 we show that the optimal grid code on the lin-

ear track has nested spatial periods, and that the tuning curves
should be self-similar. In this manuscript these two results are
generalized to 2D environments.

Maybe the most prominent property of the population of grid
cells is that their firing fields are hexagonally arranged. This is
especially interesting as hexagonal or almost hexagonal patterns
occur throughout nature. Often these arrangements could be
motivated by optimality principles. We will show that the hexag-
onal lattice offers a higher spatial resolution than a quadratic lat-
tice. More specifically, we prove that for unimodal tuning curves
the optimal grid cell has a hexagonal periodicity rather than a
quadratic one.

These findings are compared to data from the Moser lab, Trond-
heim and together with other predictions discussed in the light
of experimental findings.

5.2 REFERENCE
This work was done under the supervison of Martin Stemmler

and Andreas Herz; AM, AH and MS conceived and designed the
research. AM performed research. AM, AH and MS discussed
the results. AM drafted the current state of the manuscript. Parts
were presented as a talk at the Society for Neuroscience meeting
in Washington in November 2011.
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The Entorhinal Cortex of Rodents
Harbors an Optimal Grid Code

for Space
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Abstract

Natural selection pressures animals to use their resources efficiently. For the brain this signifies
that neuronal representations are optimized for performance. Path integration in mammals is
based on maps that have to be highly precise. A map that has been hypothesized to be formed
by grid cells. For this reason, we investigate the system of grid cells in the medial entorhinal
cortex under the assumption that this population encodes space with the highest accuracy.

The population of grid cells has curious, yet unexplained characteristics: every cell has multiple
spatial firing fields that are arranged like a hexagonal lattice, and these patterns come in dif-
ferent phases and scales. We will show that all these features contribute to the unprecedented
precision of such a population code and are indeed an optimal configuration.
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1 Introduction

For an animal to survive, reproduce, and thrive it has to efficiently navigate through its hos-
tile environment. This ability is supported by a precise mental representation of space. Many
species can indeed precisely keep track of their position, as exemplified in homing experiments.
Even after circuitous detours they can home to their nest in a direct way [43, 17, 57, 19]. Mam-
mals also master this task called path integration, and meticulously controlled experiments
demonstrated that they achieve this by integrating head direction and speed [43, 18, 19].

Anatomical, physiological, and lesion evidence have implicated the hippocampal formation
in path integration. More specifically the grid cells in the medial entorhinal cortex (mEC) are
the prime candidate [47, 19, 41, 45], as these cells exhibit spatially modulated firing, receive
self-motion signals and keep responding similarly despite experimental manipulations, like
turning the lights off [30, 53].

The spatial firing pattern of a grid cell resembles a hexagonal lattice [24, 30]. Yet, at a single cell
level, the individual firing fields are indistinguishable [49] and it is therefore the population of
grid cells that matters for encoding space. Anatomically neighboring grid cells respond in a
spatially shifted way, so that they correspond to different phases of the same lattice, the lattices
have inter firing field distances (spatial period) ranging from 30cm to multiple meters that
grow along the dorso-ventral axis [30, 10]. Layer three grid cells are additionally modulated by
speed and head direction [53, 45].

Hence, this population has a couple of curious properties, most strikingly the hexagonal peri-
odicity and the multiple scales are puzzling, and while much is known about how the mam-
malian brain encodes space, an answer why this particular design has evolved remains elu-
sive [26]. The optimal coding hypothesis successfully predicts the structure of receptive fields,
tuning curves in the cochlear, and the sparseness of neuronal representations in sensory cor-
tices [3, 4, 1, 2, 48, 38]. We investigate the optimality of a population of grid cells (grid code).
More specifically, we will derive which features of the grid code endow it with the highest
spatial resolution and compare this optimal grid to the properties of grid cells in the mEC.

Other theoretical investigations have mainly studied how grid-like firing patterns arise [22, 41,
12, 32, 11, 50, 64, 42, 26, 13], or how grid fields give rise to place fields [22, 55, 51, 21, 54, 14]. The
coding properties of grid cells have received less attention with the notable exception of [20,
56]. Fiete and colleagues interpreted the grid cell activity and emphasized that by modular
arithmetic the spatial range can be much longer than the longest spatial period.

We determine the optimal parameters for encoding space with a network of grid cells and
compare these values to experimental parameters derived from recordings by the Moser lab,
Trondheim. We will show that optimal coding explains the distribution of spatial periods, that
they cluster, the size of grid fields, that the size scales with the spatial period and the hexago-
nality. Furthermore, we will derive that the optimal grid code has a qualitatively remarkable
scaling property: the resolution scales exponentially in the number of neurons and thereby
offers unprecedented computational benefits for navigation.
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2 Materials and Methods

2.1 Theory

2.1.1 Population model

We consider a population of N cells that respond in a stochastic fashion to a stimulus, corre-
sponding to 2D (planar) position x = (x1, x2) ∈ B ⊂ R2. Thereby B is the environment of
the animal. The firing rate of each cell is given by its tuning curve Ωi(x). We will assume that
the neuronal response is the spike count K = (k0, · · · , kN ) ∈ NN , and that it is stochastically
dependent on the firing rate of each cell.

Generally, we try to formulate our results as universally as possible and therefore simply de-
note the stochastic relationship between K and x by some function P ,

P (K|x) = P(K,Ωi(x)). (1)

More specifically, we consider independent Poisson firing,

P(K,Ωi(x)) =
∏

i

exp(−Ωi(x))
Ωi(x)ki

ki!
. (2)

For the tuning curves Ωi(x) we mainly work with the general case of functions that are at least
twice continuously differentiable (C2). We often simply assume that these functions are uni-
or multimodal. By unimodal we mean that the function has a single, global maximum on its
definition domain. Multimodal on the other hand means that the function has multiple peaks.

We will also deploy rotationally symmetric tuning curves, i.e.,

Ω(x) = fmaxT · Φ
(‖x− c‖2

σ2

)
, (3)

with mean peak spike count fmaxT and a monotonically decreasing function Φ(s) with peak
Φ(0) = 1. The expression ‖v‖ denotes the Euclidean distance, ‖v‖ =

√
v2

1 + v2
2 . The tuning

width σ scales the tuning curve, while leaving the shape unchanged. A Gaussian tuning curve
corresponds to the special case Φ(s) = exp (−s/2).

2.1.2 Decoding, Fisher information & Cramer-Rao inequality

The population of neurons encodes the position in a noisy manner. To investigate how precise
the representation is, one looks at the performance of a suitable estimator. Due to the stochas-
ticity of the firing, any estimator will make errors, when decoding the position; an estimator x̂
is a method for calculating an estimate of the position based on the noisy spike count K. At a
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fixed position x, for each realization the spike count K can be different and hence the estimate
x̂(K(x)). This variability can be assessed by the properties of the posterior distribution p(x̂|x),
being the probability distribution of estimates given a fixed position x. The more precise a
population code is the more narrow this distribution will be.

For measuring the precision of the posterior we consider the second moment of the posterior,
which is the mean square error [52, 7]:

χ2 = E
(
‖x− x̂‖2

)
=
∑

K∈NN

∫

B
‖x− x̂(K)‖2 · P (K|x)dx, (4)

The χ2 error generally depends on the estimator x̂. For instance, given a particular population
response K, the most likely stimulus that gave rise to it is

x̂MLE(K) = maxx∈BP (x|K), (5)

which is known as the maximum likelihood estimate (MLE). The corresponding mean maxi-
mum likelihood estimate square error (MMLE) is defined as χ2

MLE = E
(

(x− x̂MLE)2
)

. As the
MMLE is numerically expensive to compute for large population sizes, we compare it against a
reference that can be computed analytically. The maximum likelihood estimate is both statisti-
cally efficient and consistent [35], which means that χ2

MLE asymptotically approaches the mean
asymptotic square error (AE) for an increasing number of independent, identically distributed
(i.i.d.) observations, which is given by

χ2
AE = E (1/J(x)) , (6)

as shown in [7]. Here J(x) stands for the Fisher information

J(x) = E

((
∂

∂x
ln(P (K|x))

)2
)
. (7)

The Cramér-Rao bound gives a limit to the accuracy of any read-out mechanism and is there-
fore useful for studying the accuracy of stochastic population codes. According to the Cramér-
Rao inequality the Fisher information matrix bounds the covariance matrix of any unbiased
estimator [35] at position x:

E
(
(x− x̂MLE)2 | x

)
≥ J(x)−1. (8)

For matrices such an inequality means that the difference is positive definite, which in this case,
due to symmetry, is equivalent to the difference matrix possessing only positive eigenvalues.

As we are dealing with navigation in arbitrary planar environments the error should be equal
in each direction for an orthogonal basis, as trading accuracy in one direction for another one
is not advantageous. From now on we will always pick the canonical basis, i.e. x = (x1, x2) =

x1(1, 0) + x2(0, 1). In these coordinates the mean square error is given by the sum over the
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individual components: χ2 = χ2
x1

+ χ2
x2

.

The i, j-th component of the Fisher information matrix is given by:

J (ij)(x) = E
(
∂

∂xi
lnP (K|x) · ∂

∂xj
lnP (K|x)

)
. (9)

The goal χx1 = χx2 translates into J(x) being a diagonal matrix with equal entries.

As a concrete example, we consider a module of tuning curves with Poisson noise, centers ci,
tuning width σ, and spatial period λ, as given by

Ωi(x) = fmax · exp

(
1

σ2

2∑

α=1

{cos [2π(xα − ci,α)/λ]− 1}
)
, (10)

similar to [44]. If the number of neurons per period λ is M � 1 and the centers are uniformly
distributed, the module’s average Fisher information is given by:

J (ii) =
M4π2fmaxT · exp(−2σ−2)

λ2σ2
· I1(σ−2) · I0(σ−2), (11)

with i = 1, 2, where In(s) is the nth order modified Bessel function of the first kind. The non-
diagonal values of the Fisher information vanish [39].

2.1.3 Periodification and planar lattices

For studying the lattice-type dependence let us consider the two equidistant planar lattices: the
hexagonal and the square lattice (Figure 1). A planar lattice is a discrete subgroup of the plane
R2, and can therefore be generated by linear combinations with integer coefficients of two basis
vectors.

These lattices can be used to construct periodic tilings of the plane and therefore qualify to
underlie a grid code. In the following we outline a basic construction for the periodification of a
unimodal tuning curve given a certain lattice and will later show that under certain assumptions
a grid code based on the symmetries of a hexagonal lattice has a higher population Fisher
information and therefore offers more spatial resolution.

Let Γ ⊂ R2 be a planar point lattice [34]:

Γ =

2∑

α=1

kαvα for kα ∈ Z; vα ∈ R2, (12)

such that (vα)1≤α≤2 is a basis for R2. For the quadratic and hexagonal lattice it holds that the
length of the basis vectors is equal ‖v1‖2 = ‖v2‖2 and that the angle between ]v1, v2 respectively
is 90◦ and 120◦.
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Figure 1: Equidistant planar lattices. A: Hexagonal lattice Γ6 generated by basis vectors v1

and v2 of equal length and angle 120◦. The shaded area labeled by D6 depicts a fundamental
domain for this lattice. B: Quadratic lattice Γ generated by basis vectors v1 and v2 of equal
length and angle 90◦. The shaded area labeled by D depicts a fundamental domain for this
lattice.

The orbit of a point x in R2 is the set of elements of R2 to which x can be moved by the elements
of Γ and is denoted by Γx = {g + x | g ∈ Γ}. A fundamental domain of a lattice Γ is a connected
subset D ⊂ R2 that has the property that the orbits of D under the lattice operation fulfill
ΓD = R2 and that it contains exactly one point from each orbit, i.e. Γx ∩D = x for all x ∈ D.
Let Γ6 stand for the hexagonal lattice with fundamental domain being the regular hexagon D6

(Fig. 1). For the quadratic lattice we pick a square centered around a node as fundamental
domain.

Let D be a fundamental domain of lattice Γ and let Ω(x) be a tuning curve. With the canonical
inclusion ι : D → R2 one can define the periodic extension of Ω as

ΩΓ : R2 → R+, x 7→ Ω ◦ ι(x mod Γ). (13)

Here s mod Γ means congruent modulo the lattice Γ, so an element x ∈ R2 is mapped to the
unique element of the same orbit in D. The definition is illustrated in Fig. 2 and is analogous
to the construction of wallpapers, where each motif is placed at any lattice point to define a
pattern. Here the restriction of the tuning curve to D is the motif.1

Having defined the periodic function ΩΓ, we want to focus our attention on the Fisher informa-
tion for a population of such neurons. A family of shifted, periodic tuning curves ΩΓ(x− ci) =

1This construction yields a function, which everywhere but possible at the boundary of the fundamental domain,
has the same differentiability class (Ck) as the initial tuning curve Ω. At the boundary it is at least continuous and
can also be smoothed. As a one-dimensional subset of D, the boundary can be neglected when computing the
Fisher information.
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Figure 2: A unimodal tuning curve Ω, shown on the left, can be rescaled and periodically
extended using Eqs. (12)-(13). The periodic tuning curves ΩΓ in the middle and right panels
are based on a rectangular lattice Γ spanned by v1 = λ ·(1, 0)′ and v2 = λ ·(0, 1)′. For the middle
panel the spatial period is λ = 1/2, whereas for the right panel λ = 1/4.

Ω
(
|(x−ci) mod Γ|2

σ2

)
on the lattice Γ with different centers ci constitutes a module and is associ-

ated with a Fisher information JMΩ,Γ. As we assume that all neurons are statistically independent
the Fisher information is given by summing over the contributions from all individual cells,

JMΩ,Γ(x) =

M∑

i=1

JΩΓ
(x− ci). (14)

In the limit of large population with uniformly distributed centers c ∈ D this finite sum fulfills
∣∣∣∣
volD
M

· JMΩ,Γ(x)−
∫

D
JΩΓ

(x− ϕ)dϕ

∣∣∣∣→ 0 (15)

for M → ∞. As this difference is already tight for decent neuron numbers, we will from now
on consider the Fisher information of the average cell, which is defined as

JΩ,Γ(x) :=

∫

D
JΩΓ

(x− ϕ)dϕ (16)

For the following theorem let us assume that the initial unimodal tuning curve is radially sym-
metric. As a first step to compute the Fisher information, we note that

∂

∂xi
lnP (K|x) =

∂

∂s
lnP(K, s)

∣∣∣
s=ΩΓ(x)

· Φ′(x) · fmaxT ·
2(xi − ci)

σ2
. (17)
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Together with the definition (9) of the Fisher information this yields

J
(ij)
ΩΓ

(x) =f2
maxT

2 · 4(xi − ci)(xj − cj)
σ4

· Φ′(x)2

·
∑

K

(
∂

∂s
lnP(K, s)

∣∣∣
s=ΩΓ(x)

)2

· P(K,ΩΓ(x))

︸ ︷︷ ︸
=:N (‖x−c‖2)

. (18)

Note that for i 6= j this function is odd in c around x. As Eq. (16) shows, the population
Fisher information is given by averaging these individual contributions over the fundamental
domain,

J
(ij)
Ω,Γ(x) =

∫

D
J

(ij)
ΩΓ

(x− ϕ)dϕ. (19)

Therefore, as the fundamental domains are symmetric one gets that J (ij)
Ω,Γ(x) = 0 for i 6= j. The

diagonal entries are all identical and the trace of the Fisher information matrix becomes

tr
(
JΩΓ

(x)
)

=
∑

i

J
(ii)
ΩΓ

(x) =

∫

D
f2
maxT

2 4
∑

i(xi − ϕi)2

σ4

(
Φ′Γ

(‖x− ϕ‖2
σ2

))2

· N (‖x− ϕ‖2)

︸ ︷︷ ︸
=:F(‖x−ϕ‖2)

dϕ

(20)

We will use the notation BR(c) = {x ∈ R2 | ‖x − c‖2 ≤ R} for the closed ball of radius R with
center c.
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3 Results

3.1 Theory

To analyze the Fisher information of a grid code, we start by focusing on its basic building
block: the module, a population of grid cells that share the same lattice, but are spatially shifted
and represent different (spatial) phases. For a single module we show that the key parameter
for improving the resolution is the spatial period of the lattice. In order to harness a small
spatial period for a module, the ambiguities of an individual module have to be excluded by
the other modules. We will show that this is best done in a nested fashion, which suggests that
there should be a progression of grid sizes across modules. Such a code with multiple scales
qualitatively changes the scaling behavior of the Fisher information.

Finally, we derive that for a wide range of tuning shapes the Fisher information is maximized
by arranging the peaks on a hexagonal lattice rather than on a quadratic lattice. Furthermore,
we study the optimal tuning width for such a module. All the model predictions will then be
compared to measured characteristics of grid cells.

3.2 Module scaling

For a large number M of phases that densely cover the fundamental domain, the Fisher infor-
mation of a single module, and therefore the spatial resolution, is independent of the particular
location. Thereby, the Fisher information scales like [39]:

Jmodule ∝
M · F (σ)

λ2
, (21)

with tuning width σ, spatial period λ and F a function of the tuning width. Crucially, for a two
dimensional, rotational symmetric tuning curve at the center of the lattice, this function satu-
rates for small widths and is generally bounded [63, 9, 39]. Hence, as the number of neurons is
also bounded, the only parameter significantly changing the Fisher information is the spatial
period. Indeed, for maximizing the Fisher information the spatial period has to be minimized
(Fig. 3a).

As such the smaller the spatial scale the higher the spatial resolution, which is intuitively clear,
as rescaling the tuning curves increases their slopes and therefore the ability to discriminate
between neighboring locations. Yet this also introduces multiple periods and therefore large
scale ambiguity - the value of x can only be recovered modulo the lattice Γ, which is illustrated
by the posterior distribution of a single module in figure 3b. In the realm of periodic tuning
curves resolving this ambiguity requires a multi-scale representation, consisting of multiple
modules spanning different spatial periods, and the key questions is, how should these spatial
periods be picked?
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Figure 3: (a) Average Fisher information for a module over the spatial period λ. The peak firing
rate is 1Hz, and three different tuning widths σ are depicted in different gray shades. The Fisher
information grows unboundedly for decreasing spatial period, highlighting the advantages of
those. (b) Illustration of one-dimensional MLE-posterior P (x̂MLE |x) for a grid module with
spatial period λ. The distribution of estimates x̂MLE for an animal located at x is shown. Such
an estimator can make two types of errors: catastrophic and local ones. The latter are well
described by the Fisher information J of the module as shown in (a) and can be captured by
Q(x̂|x) ∝ exp(− |x̂−x|22J ). Yet, although Q(x̂|x) describes the local errors well, it fails to account
for catastrophic errors that stem from the inherently periodic nature of the tuning curve: simply
put if x̂ is a MLE of x than so is x̂ + λ, a value that is possibly far from x and therefore results
in a catastrophic error. Mathematically this can be seen by assuming s = x̂MLE(K), then by
definition maxx P (x|K) = P (s|K). Due to the periodicity of all tuning curves, it holds that
P (s|K) = P (s+λ|K), so also s+λ is an estimate and similarly s+ k ·λ for all k ∈ Z. Although
a module with a small spatial period localizes the position better, as can be seen by the Fisher
information, it also introduces catastrophic errors — making such modules impractical per se.
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Figure 4: (a) Posterior of two modules as well as the combined grid code. The combined poste-
rior is given by the product of the two module posteriors, due to the vanishing probability of far
outliers for module I, these values are also highly unlikely for the product. Consequently this
grid code combines the strong localization of module II with the coarse localization of module
I, and thereby achieves almost the local discrimination of module II. This effect breaks down for
too small spatial periods: (b) The periodicity of module II is larger than the uncertainty of the
first module, and therefore the product posterior also has outliers with high incidence, yielding
a performance worse than in (a). This suggests that there is an optimal spatial period for the
second module, something that is confirmed by panel (c). (c) Mean square error χ2

MLE of com-
bined modules for different spatial periods of the second module λ2 (solid red) and χ2

MLE of
the first module separately (dashed line). For large enough λ2 the second module improves the
accuracy of the population until for values below 0.55 the error grows and eventually falls back
to the level of a single module. (d) Nested interval scheme: Example with three different spatial
periods with three discrete phases each. The first module gives coarse spatial information, that
is further subdivided by the other two modules. By themselves the other modules provide am-
biguous spatial information on the range; together they effectively subdivide the unit interval.
This coding strategy is analogous to the principle of a clock, where each hand further refines
time. All three hands code a twelve-hour span down to second precision. Note that due to the
high noise in grid cells, the periods are not divisors of each other like in the clock example.
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3.3 Nested arrangement outperforms all others

This question can be approached by starting with two modules. For this consideration let
us fix the spatial period λ1 of the first module and consider a slightly smaller spatial period
λ2 < λ1 for the second module. Due to the smaller spatial period of the second module the
Fisher information is larger and therefore the two modules together encode the position more
precisely (Fig. 4a). Decreasing the spatial period λ2 will further increase the Fisher information
and seemingly continue to further improve the performance without bound. But this is not
the case, if λ2 becomes smaller than the typical uncertainty of the first module, then there will
be no further improvement and eventually even a deterioration (Fig. 4b). Consequently there
is a smallest optimal spatial period for the second module given by the coarseness of the first
module — this can be seen by the error of the full posterior (Fig. 4c). The uncertainty of the
first module is, according to the Cramér-Rao bound, given by a multiple of the inverse Fisher
information, i.e.r C√

J1
with safety factor C. The spatial period λ2 is then given by C√

J1
, where

we denote the Fisher information of the first module by J1 ∝ M1 · F (σ1). Subsequently the
second module has the following Fisher information:

J2 ∝
M2 · F (σ2)

λ2
2

∝ M1 ·M2 · F (σ1) · F (σ2)

C2
. (22)

By induction one arrives at the conclusion that all the modules should have nested spatial pe-
riods, where each module further subdivides the preceding ones (Fig. 4d). This intuition has
been corroborated by analytical considerations and numerical simulations [40, 39]. Such an
arrangement of spatial periods, termed nested coding scheme, yields the highest possible res-
olution for the population of stochastic grid cells and obeys a qualitatively remarkable scaling
property: the resolution scales exponentially in the number of neurons. For seeing this, let us
assume that there are L modules, then Eq. 22 generalizes to

JL ∝
L∏

i=1

Mi · F (σi), (23)

which for equally sized modules becomes proportional to ML = MN/M , with N = L · M
being the number of neurons in all modules together. So the Fisher information scales expo-
nentially in the number of neurons N . As a side effect such a code dwarfs a population of
cells with spatially localized firing, like place cells, which scales only linearly in the number of
neurons [40, 39], and thereby highlights the merits of multiple spatial scales in grid cells. The
fact that the largest spatial period λ1 in our model has the length scale of the encoded domain
makes a couple of predictions. Firstly, the relevant behavioral range should be on the order of
the largest spatial period λ1. Secondly, to use the capacity fully, λ1 including all other spatial
periods should adopt to the currently relevant environment of the animal. More generally, the
nested coding scheme predicts that the spatial periods of grid cells cluster in multiple discrete
groups, and that they should form a geometric progression λi = λ1 · consti. This implies in
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particular that there should be more small spatial periods than large spatial periods present –
two predictions that will be discussed in light of the experimental data.

The optimality of these codes has been derived by considerations of the Fisher information and
the posterior distribution. In the literature it has been argued that the Cramér-Rao bound, given
by the Fisher information is not attainable for low spike counts and small cell numbers [7, 62, 6].
Two conditions that do not apply for the mEC. The attainability of the Cramér-Rao bound by
ML-estimation of nested grid codes has been shown [40, 39].

3.4 Self-similarity and area ratio

From the Fisher information of the jth module (23), one gets for the full Fisher information

J =
L∑

l=1

Cl ·
l∏

i=1

Mi · F (σi), (24)

with certain constants Cl. A priori each module could have a different number of phases Mi

and tuning widths σi, as long as the following constrains are fulfilled: The overall neuron
number is constant

∑
iMi = N and each module contains enough phases and wide enough

tuning widths to cover the fundamental domain. By similar means as in [40] for 1D grid codes,
one can show that under these constraints the Fisher information is maximized by having ap-
proximately the same neuron number per module and consequently, for covering reasons [40],
similar relative tuning widths σ.

This constancy of field size to grid size has been pointed out early on in recordings [30, 10],
and can also be appreciated in the inset of figure 5. But what range for σ would one expect?
In coding theory it is well established that for two dimensional stimulus spaces the Fisher
information becomes independent of the tuning width for small values and plateaus [63, 9];
Figure 5 depicts the Fisher information per neuron for a typical tuning curve. The data from
the largest environments so far, the 18 m long linear track, [10] have been reanalyzed. The
relative tuning width of each recorded grid cell has been estimated and is plotted — these
values are distributed within the top 80%−100% region of the Fisher information (Fig. 5). There
is also a notable trade-off: although smaller spatial tuning widths yield a slightly higher Fisher
information per neuron, more neurons are needed to cover the domain and therefore fewer
modules exist. But it is the number of modules L that massively improves the resolution.

3.5 Lattice dependence: Hexagonal tops quadratic

Any given radially symmetric tuning curve can be periodically extended to either a rectangular
lattice or a hexagonal lattice. But do these choices affect the Fisher information of a module?
This question is settled by the following result.

Theorem 3.1. Consider the set Γ of all planar lattices, whose fundamental domain D has constant area.
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Figure 5: The Fisher information (Eq. (11)) per neuron with tuning curve given by Eq. (10),
fmaxT = 1 and spatial period λ = 1. The Fisher information, shown in black, plateaus for small
tuning widths σ, and considerably decreases for large σ. The relative tuning width of grid
cell firing patterns on the linear track [10] has been determined and the distribution of values,
as well as their average, are shown in red. All experimental widths are close to the peak of
the Fisher information. The average measured width along the dorso-ventral axis remains
constant, as illustrated in the inset. Each average has been computed from three sets, which
were determined according to the recording location of the cells. As the grid sizes increase
along this axis [10], this establishes that the relative tuning width is independent of the spatial
period.
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Let Γ6 be a hexagonal lattice with fundamental domain D6 of same area. We assume without loss of
generality thatD is symmetric around the x-and y-axis. Let Ω(x) = fmaxT ·Φ

(
|x−c|2
σ2

)
be a C2-radially

symmetric tuning curve that has the property that F(r), as defined above, is non-increasing for r > R

for a certain R, with the property that the fundamental domain is longer than 2R, i.e. BR(0) ⊂ D∩D6.

The periodically extended tuning curve ΩΓ for any lattice Γ of this set is associated with a population
Fisher information that obeys:

JΩ,Γ ≤ JΩ,Γ6 .

Proof. We have to show that the eigenvalues of JΩ,Γ6 are larger than or equal to those of JΩ,Γ.
These are diagonal matrices with equal terms along the diagonal, therefore it suffices to show
this for the traces of the Fisher information matrix. Without loss of generality let us consider
x = 0. Eq. (20) asserts for the trace tr

(
JΩΓ

(0)
)

=
∫
D F(‖ϕ‖2)dϕ, an integral that we can split

into contributions of phases with either BR(0) ∪ (D −BR(0)) = D as follows:

tr
(
JΩΓ

(0)
)

=

∫

BR(0)
F(‖ϕ‖2)dϕ+

∫

D−BR(0)
F(‖ϕ‖2)dϕ. (25)

By definition F(s) is non-increasing on D −BR(0) and therefore we get by Tóth’s theorem of
the sums of moments[60, 46, 29] that:

∫

D−BR(0)
F(‖ϕ‖2)dϕ ≤

∫

D6−BR(0)
F(‖ϕ‖2)dϕ. (26)

Since F(s) is identical on D ∩BR(0) = D6 ∩BR(0) = BR(0) this establishes the result.

So far we derived optimal properties for the grid code, in particular nesting, self-similarity,
and hexagonality. While the latter have already been discussed nesting will now be checked,
in light of published data.

3.6 Predictions and Experimental Observations

We pointed out that the spatial periods should form geometric progressions. This prediction
can only be tested by simultaneously recording at multiple sites along the dorso-ventral axis
of one animal in a large environment. The jumps that are predicted by the nested arrangement
have indeed been observed in a preliminary fashion for two modules in Barry et al. [5], and
more rigorously at the SfN conference by Stensola et al. [58]. When pooling over multiple
animals and sessions, we expect a strongly skewed distribution, with many more short than
long spatial periods. These characteristics are indeed mirrored in the distribution recorded by
Brun et al. [10] that is depicted in Fig. 6a.
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Figure 6: (a) The distribution of estimated spatial periods from the spatially modulated neurons
running on the 18 m long linear track are shown [10]. Brun et al. have determined the spatial
periods by different methods, either by taking the minimum, or median of the pairwise peak
to peak distances in the firing map, or by the distance of the first peak in the autocorrelation
(acor). Different methods were employed, as each rat traversed the track only a few times
and the estimation of firing rates was therefore unreliable [10]. Nevertheless, the tendency of
few large spatial periods and many small spatial periods can be appreciated. (b) In Mathis
et al. the spatial resolution of grid codes with randomly sampled sets of spatial periods was
computed [40]. It was noted that although this sampling had no preference in spatial periods,
the 100 spatial periods from the grid codes with the highest resolution is significantly skewed
— the distribution of these best grid sizes is shown in red. The space in this analysis was
normalized. The measured grid periods by Brun et al., when normalized by the length of the
track show a similar trend [10].
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4 Discussion and Conclusion

This paper demonstrated that the parameters of grid cells in the medial entorhinal cortex favor
a high spatial resolution. In particular, the optimal grid code is nested with spatial periods
obeying geometric progression laws and comprising self-similar tuning curves, and hence con-
stant relative tuning width across modules. Thereby our theory provides a normative justifica-
tion for the properties of grid cells.

A more quantitative prediction of, for instance, the ratios of spatial periods was beyond the
scope of this study for a couple of reasons. Firstly, there is a lack of knowledge about the
number of grid cells, their tuning curves, firing variability, correlation structure, etc. These
uncertainties could in principle be mediated by providing a range for the predicted ratio, yet
there is a more decisive factor: the neuronal decoder is not known, we therefore studied grid
cell networks by a more general, information-theoretic measure: the Fisher information and
the Cramér-Rao bound. This makes our results more general, but qualitative in nature.

Other studies and models have reported physiological correlates of grid firing map properties [27,
13, 22, 31]. For instance, the h-current is correlated with the grid size along the dorso-ventral
axis [25]. Thereby, these studies provide a mechanistic explanation for grid cell properties. In
that light it is remarkable to note that either the optimal parameters exist “by accident“ or that
these parameters co-evolved with their physiological correlate.

Optimal quantizers for 2D signals (analog-digital-converters) have hexagonal cells, i.e. the
code words are arranged on a hexagonal lattice and, for encoding each analog value, is as-
signed to the closest lattice point. [28, 46]. A proof for this theorem is based on Fejes Tóth’s
theorem of the sum of moments, that has also been used in the proof for the optimality of the
hexagonal lattice for grid cells in this paper, and that proved to be groundbreaking for packing
and covering problems [60, 61]. In this paper we proved the advantage of hexagonal lattices
over quadratic ones. Although in earlier studies the perfect hexagonal regularity has always
been emphasized [30], recently minor, yet significant deviations have been pointed out and the
structure has been described as elliptic grid patterns [59]. Furthermore, Krupic et al. have re-
ported that the majority of cells with high spatial information might not be classical grid cells,
but are cells with fewer than three dominant Fourier components, giving rise to band-like cells,
and even non-periodic spatial cells [33]. In this paper we stressed that nesting is the key fac-
tor for the high resolution, rather than minor changes in tuning widths, peak firing rates, etc.
Even further, it is the presence of the multiple scales that empowers nested grid codes with
the remarkable exponential scaling, not periodicity. In a nested code the peaks could be dis-
tributed between different cells of one module, destroying the periodic structure, but leaving
the combinatorial resolution of the population code intact. Therefore, it is important to realize
that our assumption that the individual tuning curves are periodic cannot be weakened and
therefore not be explained by optimal coding. Similarly, the assumption of modularity cannot
be dropped, i.e. that modules of shifted grid cells with the same spatial periods exist. One
can devise a nested scheme, where each module comprises only one cell with a random phase,
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with only small spatial frequency variations between the modules, that due to the higher num-
ber of modules performs like a nested modular grid code. Such non-periodic or non-modular
schemes might be harder to generate with the known models of grid cells [26, 13], and less
aesthetic. They could, nevertheless, offer the same spatial resolution.

Investigators of path integration in mammals have emphasized the detrimental effect of noise
in the self-motion signals on the accuracy. Path integration is therefore not feasible over longer
distances and has to be complemented by other strategies, most crucially by orienting based
on landmarks [19]. These behavioral observations are also underpinned by the physiological
result that the grid pattern changes and even disappears minutes after inactivating the hip-
pocampus [8], which provides an input that has been implicated to anchor the grid map to
salient spatial cues [30, 41].

Other studies on the coding properties of grid cells have suggested that with modular arith-
metic the spatial range of the grid code can be much longer than the longest spatial period [20,
56]. This idea crucially depends on reliable, static and global grid patterns, as otherwise the
range boost arising from the interference patterns across the multiple cells cannot be exploited.
Experimental findings like fragmentation of grid maps in small compartments [16], realign-
ment of grid maps across different mazes [23] and global remapping [37, 36] challenge this
requirement. These experimental findings have, however, motivated our assumption that the
grid code optimizes the resolution and therefore supports path integration and the metric rep-
resentation locally — within the range of the largest spatial period. As it has also been sug-
gested by other authors these reliable and precise local charts are part of the atlas that forms
the manifold like representation of the outside world [15]. The coordinate transformations in
this atlas or initializations of the grid map within each compartment could be stored in the hip-
pocampus [41].

Finally, from a solely coding theoretical point of view it is interesting to note that both the
nested coding strategy and the modular arithmetic strategy for grid cells [20, 56] provide un-
precedented coding accuracy for noisy, neuronal representations. Yet, while the latter relies on
a network based, error-correction mechanism to achieve exponential scaling, no such mecha-
nism is required for nested grid codes to achieve that feat [39]. In any case, as Sreenivasan and
Fiete remark, it is indeed to be expected that other instances of such combinatorial codes will
be discovered in the brain.
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6 D I S C U S S I O N A N D C O N C L U S I O N S

Essentially, all models are wrong,
but some are useful.

George Edward Pelham Box

In this thesis we study the resolution of neuronal representa-
tions of space.1 In particular, the place cell ensemble (place code)
in the hippocampus as well as the grid cell ensemble (grid code)
in the medial entorhinal cortex (mEC) of mammals are investi-
gated.

Let us start with place cells. In chapter 2 we show, for homoge-
neous place codes, that the Fisher information increases linearly
with the number of neurons. Thereby, homogeneous refers to
a population of neurons with identical tuning curves and tun-
ing widths. This result is well known for general populations of
neurons with unimodal tuning curves [14, 39, 82, 144, 152, 153].
Even inhomogeneous populations of place cells, with varying
tuning widths and slightly more than one field per cell, scale the
same way as a homogeneous place code (chapter 2). Hence, the
observed gradient of place field sizes in the hippocampus [70] is
not improving the coding precision, if the neurons spike in a sta-
tistically independent fashion. This condition is crucial, as we re-
view in chapter 4 that in the presence of high noise correlations,
inhomogeneous populations are less affected than homogeneous
ones. It has indeed been argued that there are considerable noise
correlations among place cells in the hippocampus [152]. Differ-
ent scales could therefore help to mend the spatial resolution,
despite correlations. Another, more speculative explanation is
functional: it was pointed out in the introduction that the hip-
pocampus is not solely specialized on space, but is also crucial
for episodic memory. Different sizes of place fields might be
useful for learning associations to relevant behavioral items [67].

Contrarily, the multiple scales can substantially improve the
resolution of a population of grid cells. In chapter 2 and 3 we
show this for an arrangement we call nested grid code. In such

1 Here resolution is defined as the accuracy of a maximum likelihood decoder
and the Fisher information provides a bound for this accuracy. See chapter 2

or 3 for details.
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92 DISCUSSION AND CONCLUSIONS

a code, grid cells with different spatial phases are arranged in
modules of the same spatial periods. These modules have stag-
gered spatial periods such that each module further refines the
representation of the subsequent module. Thereby, we derive
how the optimal spatial period of the refining module can be
computed from the noise model of the subsequent module. Such
a nested grid code can have a resolution that scales exponentially
in the number of neurons, while a place code can only scale lin-
early in the number of neurons. Thus, a nested grid code can be
orders of magnitude more precise than a place code (chapter 2

and 3). We demonstrate that these scalings remain unaltered
if one introduces noise correlation between neurons of the same
module. As pointed out in chapter 4 the effect of noise corre-
lations between modules was beyond the scope of the current
approach, and simulations of estimators as utilized in chapter 2

should be used to elucidate this case.

Yet, it is not simply the multiple scales that endow nested grid
codes with exponential scaling. There are many arrangements
of the spatial periods that are worse than the best place code of
the same number of neurons. For instance, if the spatial periods
are all close to each other (chapter 2). Thus, the appropriate
nesting of the multiple scales is crucial. By “appropriate“ we
mean according to the uncertainty of the coarser modules, as
defined in (chapter 2 and 3). Yet, although nested grid codes
stand out among many other arrangements of spatial periods
by their high resolution, some characteristic properties of these
nested grid codes are not necessary for this feat. On the one
hand, the resolution of these codes is robust to perturbations of
the firing maps, like different peak firing rates at different fields,
Fano factors of the spiking around one, variable tuning widths,
etc. Such robustness is desired for any code, especially for codes
in biological systems, where many parameters are highly vari-
able. On the other hand, as pointed out in chapter 5, one can
find spatial codes that have non-periodic tuning curves, or have
only one phase per module, and still achieve similar resolution
levels like nested grid codes. Thus, periodicity and modularity
are not necessary implications of optimality.

Among the periodic and modular grid codes, however, nested
grid codes are optimal. For these nested grid codes we could
show that it is best to have an equal amount of neurons per mod-
ule and that the tuning curves are self-similar across modules.
These findings are important, as they appear to be reflected in
the properties of grid cells in the mEC ([6, 16, 55, 132], chapter 5).
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We could also show in chapter 5 that the hexagonality2 of grid
cells improves the spatial resolution of a grid code. Altogether
our results provide a normative justification for the properties of
grid cells along the lines of the optimal coding hypothesis.

That certain configurations of grid cells provide more spatial
information than place cells has also been pointed out by other
authors. Guanella and Verschure reported that the resolution
of small populations of grid cells is higher than that of small
populations of place cells. In particular, they noted the impor-
tance of different scales [53]. Fiete and colleagues, on the other
hand, argued that the spatial range of the grid code can be much
longer than the longest spatial period [18, 42]. Thus, these au-
thors claimed that rats could path integrate over much longer
distances than the longest spatial periods of the grid cell popu-
lation. When these papers were published this had been seen
as an important problem, as prior to 2008 the largest spatial pe-
riod that has been observed was smaller than one meter. Later
recordings from environments that were actually substantially
larger than the then known periods revealed much longer spa-
tial periods. Periods of at least more than 50% of 18m the linear
track were found [16] and the upper limit has still not been de-
termined. As we demonstrate in chapter 2 grid codes that boost
the spatial range are prone to catastrophic errors, because the
spatial periods are close to each other with respect to the range.
Recently Sreenivasan and Fiete suggested an error-correction
mechanism that can hamper these catastrophic errors [129]. This
mechanism consists of a feedback loop to the population of grid
cells. They assume that this network is actually path integrating,
so that at each moment the network represents a current posi-
tion that is updated by small motion increments. The aforemen-
tioned loop provides a position signal to the grid cell ensemble.
In each cycle, this signal is based on the position before the mo-
tion update and thereby localizes the novel spatial estimate of the

2 Guanella and Verschure calculated the resolution of small populations of grid
cells with different lattice types. They observed for a specific case that hexag-
onal lattices give a lower error than quadratic lattices and mention that this
follows from to the fact that the hexagonal packing is the densest of all circle
packings ([53], note that their terminology is different from ours). As such that
means that the effective spatial period of hexagonal lattices is smaller than that
of square lattices. In chapter 5 we show that even if the density is controlled,
i.e. the same number of fields per area is considered, a hexagonal arrangement
gives at least as much information as a quadratic arrangement for the same ra-
dial symmetric tuning curve. Intuitively, this holds because among all regular
tilings of the plane with tiles of the same area, the hexagonal tiling can hold
the largest inscribed circle. Both results are based on the same mathematical
theorem by Tóth [138, 139], which also implies that the optimal quantizer for
2D signals (analog-digital-converter) discretizes space with hexagons [52, 100].
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population of grid cells after the motion update. Thereby, it obvi-
ates other estimates that are far from the previous position and
consequently exclude catastrophic errors. This feedback mech-
anism is inspired by the the entorhinal-hippocampal loop [129].
In chapter 2 we had not only argued that the spatial represen-
tation in the initial model is susceptible to noise, but also that
the range is also highly variable with respect to the spatial peri-
ods. This problem carries over to the model with error-correction
and makes it dependent on reliable, static and global grid pat-
terns. A requirement that is challenged by experimental obser-
vations like the fragmentation3 of grid maps, even within small
compartments [26], realignment of grid maps across different
mazes [43]4 and global remapping [75, 112].

Our assumption that the grid code optimizes the resolution
rather than the range and therefore allows path integration lo-
cally has been motivated by these findings. Furthermore, as
we review in the introduction, path integration in mammals ap-
pears only to be feasible over relatively short distances [36]. In
particular, the aforementioned fragmentation of grid patterns in
multi-compartmental environments suggests that the mEC en-
codes space by a collection of regular sub-maps [26]. This di-
vision of the environment into sub-maps is remarkable, as it
points to a manifold-like representation of the outside world [25].
The anchoring of the individual coordinates for each sub-maps
might be stored in the hippocampus [25, 88], and the transforma-
tion between these coordinates could happen by computations
within the entorhinal-hippocampal loop. This system appears
to allow the animal a highly flexible and adaptive spatial repre-
sentation, that can always be optimized for the current task and
environment at hand. Revealing how this mechanistically works
is one of the major objectives for understanding navigation in
mammals.

3 When Derdikman et al. recorded in environments consisting of multiple com-
partments the spatial firing pattern of grid cells, which had been identified
in open-field environments, ceased to be hexagonal. More specifically, in the
hairpin maze, which is a “stack of interconnected, zig-zagged compartments of
equal shape and orientation” [26] the grid cell firing patterns were fragmented
by the compartment boundaries, and each compartment had its periodic pat-
tern. The experiment suggests that the mEC encodes space by collection of
regular sub-maps [25, 26].

4 Fyhn et al. observed that during rate remapping the grid patterns of grid cells
remained unaltered. During global remapping the phases of these patterns
shifted and/or the grid orientations changed. Crucially, these changes were
consistent, so that grid cells recorded from the same tetrode were subject to
similar changes. Sometimes also small changes of the spatial periods were
observed [25, 43].
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From now on we will provide an outlook to related research
questions.

OUTLOOK

One upshot of many earlier population coding models with
correlation structure is that for large, heterogeneous populations
of unimodal tuning curves, i.e. families with varying tuning
widths and peak firing rates, reducing the correlations does not
improve encoding accuracy [30, 123, 144]. Grid cells are also
highly heterogeneous in their firing rates and tuning parame-
ters [55, 56], and it would be interesting to study the effect of
heterogeneity for grid codes as well.

Throughout this thesis we consider a firing code and assumed
that there is a fixed time scale that governs how many spikes
each neuron elicits given its spatial firing rate modulation. This
time scale is inspired by the periods of the theta rhythm, which
has been suggested as the Zeitgeber in the hippocampus ([20],
chapter 2). One could incorporate finer time scales in the popu-
lation coding model, which are indeed present in the hippocam-
pus and the medial entorhinal cortex, like the gamma rhythm or
phase precession [20, 104]. For instance, Reifenstein et al. show
that for a single grid cell the resolution is about 80% higher, if
one considers the theta phase of the individual spikes rather
than the spike count [114]. Phase precision could therefore po-
tentially also enhance the resolution of a population of grid cells.

In chapter 2 we argue that the time scale of the theta rhythm is
sufficiently short and the velocities sufficiently low that we can
as a first approximation consider an immobile animal. This is of
course a huge simplification, and moving animals, as well as the
precision of the encoded trajectory, could be studied next. For
instance, by similar methods to the ones employed by Huys et
al. [62].

A major difficulty of navigation studies in mammals is that,
although much is known about the cell types that encode space
and, as we also discus in this thesis, spatial maps that are formed
by these neurons, it is unclear how these maps mechanistically
give rise to action [36]. One avenue to be taken by modelers
would be to suggest how the homing vector can be computed
from the path integration system. As this system is, presumably,
given by the network of grid cells, one can ask what is necessary
to compute the homing vector of the population activity of grid
cells. More generally, we discuss in chapter 5 the importance
of the specific decoder on the resolution of the grid code. To
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provide more quantitative predictions about the grid code, it
would be important to learn more about the decoder itself, i.e.
the computations that are done with grid cells.



B I B L I O G R A P H Y

[1] LF Abbott and P Dayan. The effect of correlated variability
on the accuracy of a population code. Neural Computation,
11:91–101, 1999.

[2] JJ Atick. Could information theory provide an ecological
theory of sensory processing? Network: Computation in
neural systems, 3:213–251, 1992.

[3] JJ Atick, Z Li, and AN Redlich. Understanding Retinal
Color Coding from First Principles. Neural Computation, 4,
1992.

[4] F Attneave. Some informational aspects of visual percep-
tion. Psychological Review, 61(3):183–193, 1954.

[5] HB Barlow. Sensory mechanisms, the reduction of redun-
dancy, and intelligence. In The mechanisation of thought
processes, volume 10, pages 535–539, London, 1959. Her
majesty’s Stationary Office.

[6] C Barry, R Hayman, N Burgess, and KJ Jeffery. Experience-
dependent rescaling of entorhinal grids. Nature neuro-
science, 10(6):682–4, June 2007.

[7] S Benhamou, JP Sauve, and P Bovet. Spatial Memory in
Large Scale Movements : Efficiency and Limitation of the
Egocentric Coding Process. J. theor. Biol, 145:1–12, 1990.

[8] P Berens, AS Ecker, S Gerwinn, AS Tolias, and M Bethge.
Reassessing optimal neural population codes with neuro-
metric functions. Proceedings of the National Academy of Sci-
ences, February 2011.

[9] M Bethge, D Rotermund, and K Pawelzik. Optimal short-
term population coding: when fisher information fails.
Neural Computation, 14:2317–2351, 2002.

[10] E Bloch. Tübinger Einleitung in die Philosophie I. Suhrkamp
Verlag, Frankfurt am Main, 1963.

[11] O Bobrowski, R Meir, and E Yoninina. Bayesian Filtering
in Spiking Neural Networks: Noise, Adaptation, and Mul-
tisensory Integration. Neural Computation, 21:1277–1320,
2009.

97



98 Bibliography

[12] CN Boccara, F Sargolini, VH Thoresen, T Solstad, MP Wit-
ter, EI Moser, and MB Moser. Grid cells in pre- and para-
subiculum. Nature neuroscience, 13(8):987–994, July 2010.

[13] PC Bressloff. Pattern formation and visual cortex. Les
Houches Lectures in Neurophysics, 2005.

[14] WM Brown and A Bäcker. Optimal neuronal tuning for
finite stimulus spaces. Neural computation, 2006.

[15] VH Brun, K Otnass, S Molden, HA Steffenach, MP Wit-
ter, MB Moser, and EI Moser. Place cells and place recog-
nition maintained by direct entorhinal-hippocampal cir-
cuitry. Science (New York, N.Y.), 296(5576):2243–6, June
2002.

[16] VH Brun, T Solstad, KB Kjelstrup, M Fyhn, MP Witter,
EI Moser, and MB Moser. Progressive Increase in Grid
Scale From Dorsal to Ventral Medial Entorhinal Cortex.
Hippocampus, 18:1200–1212, 2008.

[17] N Brunel and JP Nadal. Mutual Information, Fisher In-
formation, and Population Coding. Neural Computation,
10:1731–1757, 1998.

[18] Y Burak, T Brookings, and I Fiete. Triangular lattice
neurons may implement an advanced numeral system to
precisely encode rat position over large ranges. arXiv:q-
bio/0606005v1, 93106:4, June 2006.

[19] A Burgalossi, L Herfst, M von Heimendahl, H Förste,
K Haskic, M Schmidt, and M Brecht. Microcircuits of
functionally identified neurons in the rat medial entorhi-
nal cortex. Neuron, 70(4):773–86, May 2011.

[20] G Buzsaki. Rhythms of the Brain. Oxford University Press,
USA, 2006.

[21] DB Chklovskii and AA Koulakov. Maps in the brain: what
can we learn from them? Annual Review of Neuroscience,
27:369–92, January 2004.

[22] MR Cohen and WT Newsome. Context-dependent
changes in functional circuitry in visual area MT. Neuron,
60(1):162–73, October 2008.

[23] P Dayan and LF Abbott. Theoretical Neuroscience: Compu-
tational and Mathematical Modeling of Neural Systems. MIT
Press, 2001.



Bibliography 99

[24] L De Almeida, M Idiart, A Villavicencio, and J Lisman.
Alternating predictive and short-term memory modes of
entorhinal grid cells. Hippocampus. doi 10.1002/hipo.22030,
May 2012.

[25] D Derdikman and EI Moser. A manifold of spatial maps in
the brain. Trends in Cognitive Sciences, pages 1–9, October
2010.

[26] D Derdikman, JR Whitlock, A Tsao, M Fyhn, T Hafting,
MB Moser, and EI Moser. Fragmentation of grid cell maps
in a multicompartment environment. Nature neuroscience,
12(10):1325–32, October 2009.

[27] CF Doeller, C Barry, and N Burgess. Evidence for grid
cells in a human memory network. Nature, 463(7281):657–
61, February 2010.

[28] K Doya, S Ishii, A Pouget, and RPN Rao. Bayesian Brain
Probabilistic Approaches to Neural Coding. MIT Press, 2007.

[29] AS Ecker, P Berens, GA Keliris, M Bethge, NK Logothetis,
and AS Tolias. Decorrelated neuronal firing in cortical mi-
crocircuits. Science (New York, N.Y.), 327(5965):584–7, Jan-
uary 2010.

[30] AS Ecker, P Berens, AS Tolias, and M Bethge. The Effect
of Noise Correlations in Populations of Diversely Tuned
Neurons. Journal of Neuroscience, 31(40):14272–14283, 2011.

[31] H Eichenbaum. A cortical-hippocampal system for declar-
ative memory. Nature reviews. Neuroscience, 1(1):41–50, Oc-
tober 2000.

[32] H Eichenbaum. Hippocampus: mapping or memory? Cur-
rent biology, 10(21):R785–7, November 2000.

[33] AD Ekstrom, MJ Kahana, JB Caplan, TA Fields, EA Isham,
EL Newman, and I Fried. Cellular networks underlying
human spatial navigation. Nature, 425:184–187, 2003.

[34] H Esch and J Burns. Distance estimation by foraging hon-
eybees. The Journal of Experimental Biology, 199:155–62, Jan-
uary 1996.

[35] AS Etienne. The control of short-distance homing in the
golden hamster. In Cognitive Processes and Spatial Orienta-
tion in Animals and Man, Vol. I, Experimental Animal Psychol-
ogy and Ethology, pages 233–251. Nijhoff, Boston, 1987.



100 Bibliography

[36] AS Etienne and KJ Jeffery. Path integration in mammals.
Hippocampus, 14(2):180–92, January 2004.

[37] AS Etienne, R Maurer, J Berlie, and B Reverdin. Navigation
through vector addition. Nature, pages 161–164, 1998.

[38] AS Etienne, R Maurer, and F Saucy. Limitations in the
Assessment of Path Dependent Information. Behaviour,
106(1/2):81–111, 1988.

[39] CW Eurich and SD Wilke. Multidimensional Encod-
ing Strategy of Spiking Neurons. Neural Computation,
12(7):1519–1529, July 2000.

[40] AA Fenton, G Csizmadia, and RU Muller. Conjoint Con-
trol of Hippocampal Place Cell Firing by Two Visual Stim-
uli II. A Vector-field Theory that Predicts Modifications
of the Representation of the Environment. J.Gen.Physiol.,
116(August):211–221, 2000.

[41] AA Fenton, WW Lytton, JM Barry, PP Lenck-Santini,
LE Zinyuk, S Kubík, J Bures, B Poucet, RU Muller, and
AV Olypher. Attention-like modulation of hippocampus
place cell discharge. Journal of Neuroscience, 30(13):4613–25,
March 2010.

[42] IR Fiete, Y Burak, and T Brookings. What Grid Cells Con-
vey about Rat Location. Journal of Neuroscience, 28(27):6858

– 6871, 2008.

[43] M Fyhn, T Hafting, A Treves, MB Moser, and EI Moser.
Hippocampal remapping and grid realignment in entorhi-
nal cortex. Nature, 446(7132):190–4, March 2007.

[44] M Fyhn, T Hafting, MP Witter, EI Moser, and MB Moser.
Grid cells in mice. Hippocampus, 18(12):1230–8, January
2008.

[45] M Fyhn, S Molden, MP Witter, EI Moser, and MB Moser.
Spatial representation in the entorhinal cortex. Science
(New York, N.Y.), 305(5688):1258–64, August 2004.

[46] CR Gallistel. Insect Navigation: Brains as Symbol-
Processing Organs. In S Sternberg and D Scarborough,
editors, Brains as Symbol Processors: The Case of Insect Navi-
gation, volume 4, pages 1–51. MIT Press, 2 edition, 1998.

[47] TJ Gawne and J Richmond. How independent are the mas-
sages carried by adjacent inferior temporal cortical neu-
rons? Journal of Neuroscience, 13(7):2758–2771, 1993.



Bibliography 101

[48] A Georgopoulos, A Schwartz, and R Kettner. Neu-
ronal population coding of movement direction. Science,
233(4771):1416–1419, September 1986.

[49] ED Gershon, MC Wiener, PE Latham, and BJ Richmond.
Coding Strategies in Monkey V1 and Inferior Temporal
Cortices. Journal of Neurophysiology, 79(3):1135–1144, 1998.

[50] LM Giocomo, MB Moser, and EI Moser. Review Computa-
tional Models of Grid Cells. Neuron, 71(4):589–603, 2011.

[51] KM Gothard, WE Skaggs, and BL McNaughton. Dynam-
ics of mismatch correction in the hippocampal ensemble
code for space: interaction between path integration and
environmental cues. Journal of Neuroscience, 16(24):8027–40,
December 1996.

[52] RM Gray and DL Neuhoff. Quantization. IEEE Transaction
on Infromation theory, 44(6):2325–2383, 1998.

[53] A Guanella and P Verschure. Prediction of the Position of
an Animal Based on Populations of Grid and Place Cells:
A Comparative Study. Journal of Integrative Neuroscience,
6(3):433–446, 2007.

[54] T Hafting, M Fyhn, T Bonnevie, MB Moser, and EI Moser.
Hippocampus-independent phase precession in entorhi-
nal grid cells. Nature, 453(7199):1248–52, June 2008.

[55] T Hafting, M Fyhn, S Molden, MB Moser, and EI Moser.
Microstructure of a spatial map in the entorhinal cortex.
Nature, 436(7052):801–6, August 2005.

[56] AVM Herz, C Kluger, A Mathis, and M Stemmler. Vari-
ability of grid cell firing on a trial-to-trial basis. In Ninth
Göttingen Meeting of the German Neuroscience Society, pages
T26–15C, 2011.

[57] JJ Hopfield. Neural networks and physical systems with
emergent collective computational abilities. Proceedings of
the National Academy of Sciences, 79:2554–2558, 1982.

[58] JJ Hopfield. Neurodynamics of mental exploration. Pro-
ceedings of the National Academy of Sciences, 107(4):1648–53,
January 2010.

[59] DH Hubel and TN Wiesel. Receptive fields and functional
architecture of monkey striate cortex. Journal of Physiology,
195(1):215–43, March 1968.



102 Bibliography

[60] TN Hubel, DH and Wiesel. Receptive Fields of Single
Neurons in the Cat’s Striate Cortex. Journal of Physiology,
148:574–591, 1959.

[61] NE Humphries, N Queiroz, JRM Dyer, NG Pade,
MK Musyl, KM Schaefer, DW Fuller, JM Brunnschweiler,
TK Doyle, JDR Houghton, GC Hays, CS Jones, LR Noble,
VJ Wearmouth, EJ. Southall, and DW Sims. Environmental
context explains Lévy and Brownian movement patterns
of marine predators. Nature, 465(7301):1066–1069, June
2010.

[62] QJM Huys, RS Zemel, R Natarajan, and P Dayan. Fast pop-
ulation coding. Neural Computation, 19(2):404–441, 2007.

[63] JB Issa and K Zhang. Universal conditions for exact path
integration in neural systems. Proceedings of the National
Academy of Sciences, 109(17):6716–6720, 2012.

[64] J Jackson and AD Redish. Network Dynamics of
Hippocampal Cell-Assemblies Resemble Multiple Spatial
Maps Within Single Tasks. Hippocampus, 17:1209–1229,
2007.

[65] K Jezek, EJ Henriksen, A Treves, EI Moser, and MB Moser.
Theta-paced flickering between place-cell maps in the hip-
pocampus. Nature, 478(7368):246–9, October 2011.

[66] RS Johansson and JR Flanagan. Coding and use of tactile
signals from the fingertips in object manipulation tasks.
Nature reviews. Neuroscience, 10(5):345–59, May 2009.

[67] MW Jung, SI Wiener, and BL McNaughton. Comparison
of Spatial Firing Characteristics Ventral Hippocampus of
the Rat. Journal of Neuroscience, 74(12):7347–7456, 1994.

[68] I Kant. Kritik der reinen Vernunft. Suhrkamp-Taschenbuch
Wissenschaft, Frankfurt am Main, 14 edition, 2000.

[69] SM Kay. Fundamentals of Statistical Signal Processing: Es-
timation Theory. Prentice Hall, Upper Saddle River, New
Jersey, 1993.

[70] KB Kjelstrup, T Solstad, VH Brun, T Hafting, S Leutgeb,
MP Witter, EI Moser, and MB Moser. Finite scale of spa-
tial representation in the hippocampus. Science (New York,
N.Y.), 321(5885):140–3, July 2008.



Bibliography 103

[71] JL Kubie, A Fenton, N Novikov, D Touretzky, and
RU Muller. Changes in goal selection induced by cue con-
flicts are in register with predictions from changes in place
cell field locations. Behavioral Neuroscience, 121(4):751–763,
2007.

[72] RF Langston, JA Ainge, JJ Couey, CB Canto, TL Bjerknes,
MP Witter, EI Moser, and MB Moser. Development of the
spatial representation system in the rat. Science (New York,
N.Y.), 328(5985):1576–80, June 2010.

[73] C Leibold and R Kempter. Memory Capacity for Se-
quences in a Recurrent Network with. Neural Computation,
18:904–941, 2006.

[74] JK Leutgeb, S Leutgeb, MB Moser, and EI Moser. Pattern
separation in the dentate gyrus and CA3 of the hippocam-
pus. Science (New York, N.Y.), 315(5814):961–6, February
2007.

[75] S Leutgeb, JK Leutgeb, CA Barnes, EI Moser, BL Mc-
Naughton, and MB Moser. Independent codes for spatial
and episodic memory in hippocampal neuronal ensembles.
Science (New York, N.Y.), 309(5734):619–23, July 2005.

[76] C Lever, S Burton, A Jeewajee, J O’Keefe, and N Burgess.
Boundary vector cells in the subiculum of the hippocam-
pal formation. Journal of Neuroscience, 29(31):9771–7, Au-
gust 2009.

[77] MS Lewicki. Efficient coding of natural sounds. Nature
neuroscience, 5(4):356–63, April 2002.

[78] EA Maguire, N Burgess, JG Donnett, RSJ Frackowiak,
DF Frith, and J O’Keefe. Knowing Where and Get-
ting There: A Human Navigation Network. Science,
280(5365):921–924, May 1998.

[79] EA Maguire, DG Gadian, IS Johnsrude, CD Good, J Ash-
burner, RS Frackowiak, and CD Frith. Navigation-related
structural change in the hippocampi of taxi drivers. Pro-
ceedings of the National Academy of Sciences, 97(8):4398–403,
April 2000.

[80] D Marr. Simple Memory: A Theory for Archicortex.
Philosophical Transactions of the Royal Society of London,
262(841):23–81, 1971.



104 Bibliography

[81] A Mathis, AVM Herz, and M Stemmler. How Good is Grid
Coding versus Place Coding for Navigation Using Noisy,
Spiking Neurons? Frontiers in Computational Neuroscience.
Conference Abstract: Bernstein Conference on Computational
Neuroscience, 4(2010):3389–3389, 2010.

[82] A Mathis, AVM Herz, and M Stemmler. Optimal Popula-
tion Codes for Space: Grid Cells Outperform Place Cells.
Neural Computation, 9(24):2280–2317, May 2012.

[83] A Mathis, M Stemmler, and A Herz. How good is grid cod-
ing versus place coding for navigation using noisy, spiking
neurons? BMC Neuroscience, 11(Suppl 1):O20, 2010.

[84] A Mathis, MB Stemmler, and AVM Herz. Exponential Scal-
ing of Nested Neuronal Representations. Front. Comput.
Neurosci. Conference Abstract: BC11 : Computational Neuro-
science & Neurotechnology Bernstein Conference & Neurex An-
nual Meeting, 2011.

[85] T Maudlin. Philosophy of Physics: Space and Time. Princeton
University Press, Princeton, 2012.

[86] BL McNaughton, A Barnes, J Meltzer, and J Sutherland.
Hippocampal granule cells are necessary for normal spa-
tial learning but not for spatially-selective pyramidal cell
discharge. Experimental Brain Research, 76:485–496, 1989.

[87] BL McNaughton, CA Barnes, JL Gerrard, K Gothard,
MW Jung, JJ Knierim, H Kudrimoti, Y Qin, WE Skaggs,
M Suster, and KL Weaver. Deciphering the hippocam-
pal polyglot: the hippocampus as a path integration sys-
tem. The Journal of Experimental Biology, 199:173–85, Jan-
uary 1996.

[88] BL McNaughton, FP Battaglia, O Jensen, EI Moser, and
MB Moser. Path integration and the neural basis of the
’cognitive map’. Nature reviews Neuroscience, 7(8):663–78,
August 2006.

[89] R Menzel, K Geiger, L Chittka, J Joerges, and J Kunze. The
knowledge base of bee navigation. The Journal of Experi-
mental Biology, 146:141–146, 1996.

[90] R Menzel, U Greggers, A Smith, S Berger, R Brandt,
S Brunke, G Bundrock, T Plu, F Schaupp, E Schu, S Stach,
J Stindt, N Stollhoff, and S Watzl. Honey bees navigate
according to a map-like spatial memory. Proceedings of the
National Academy of Sciences, 102(8), 2005.



Bibliography 105

[91] G Miesenböck. Optogenetic Control of Cells and Circuits.
Annual Review of Cell and Developmental Biology, 27:731–758,
2011.

[92] ML Mittelstaedt and H Mittelstaedt. Homing by Path In-
tegration in a Mammal. Naturwissenschaften, 67, 1980.

[93] MA Montemurro and S Panzeri. Optimal Tuning Widths
in Population Coding of Periodic Variables. Neural Compu-
tation, 18:1555–1576, 2006.

[94] RGM Morris, P Garrud, JNP Rawlins, and J O’Keefe. Place
navigation impaired in rats with hippocampal lesions. Na-
ture, 297, 1982.

[95] EI Moser, E Kropff, and MB Moser. Place cells, grid cells,
and the brain’s spatial representation system. Annual Re-
view of Neuroscience, 31:69–89, January 2008.

[96] EI Moser and MB Moser. A Metric for Space. Hippocampus,
18:1142–1156, 2008.

[97] VB Mountcastle. The columnar organization of the neocor-
tex. Brain, 120:701–22, April 1997.

[98] RU Muller and JL Kubie. The Effects of Changes in the
Environment Hippocampal Cells on the Spatial Firing of.
Journal of Neuroscience, 7(7):1951–1968, 1987.

[99] L Nadel. The hippocampus and space revisited. Hippocam-
pus, 1(3):221–9, July 1991.

[100] DJ Newman. The Hexagon Theorem. IEEE Transactions on
Information Theory, 28(2):137–139, 1982.

[101] J O’Keefe and N Burgess. Geometric determinants of the
place fields of hippocampal neurons. Nature, 381, 1996.

[102] J O’Keefe and J Dostrovsky. The hippocampus as a spatial
map: Preliminary evidence from unit activity in the freely-
moving rat. Brain research, 34:171–175, 1971.

[103] J O’Keefe and L Nadel. The Hippocampus as a cognitive map.
Oxford University Press, 1978.

[104] J O’Keefe and ML Recce. Phase relationship between hip-
pocampal place units and the EEG theta rhythm. Hippocam-
pus, 3(3):317–30, July 1993.



106 Bibliography

[105] BA Olshausen and D Field. Emergence of simple-cell re-
ceptive field properties by learning a sparse code for natu-
ral images. Nature, 381(13), 1996.

[106] M A Paradiso. A Theory for the Use of Visual Orientation
Information which Exploits the Columnar Structure of Stri-
ate Cortex. Biological Cybernetics, 58:35–49, May 1988.

[107] E Park, D Dvorak, and AA Fenton. Ensemble Place Codes
in Hippocampus: CA1, CA3, and Dentate Gyrus Place
Cells Have Multiple Place Fields in Large Environments.
PloS one, 6(7):e22349, January 2011.

[108] C Parron and E Save. Evidence for entorhinal and parietal
cortices involvement in path integration in the rat. Exper-
imental brain research. Experimentelle Hirnforschung. Expéri-
mentation cérébrale, 159(3):349–59, December 2004.

[109] S Pouget, S Deneve, JC Ducom, and PE Latham. Narrow
versus wide tuning curves: What’s best for a population
code? Neural Computation, 11(1):85–90, January 1999.

[110] AD Redish. Beyond the Cognitive Map: From Place Cells to
Episodic Memory. MIT Press, February 1999.

[111] AD Redish, FP Battaglia, MK Chawla, AD Ekstrom, JL Ger-
rard, P Lipa, ES Rosenzweig, PF Worley, JF Guzowski,
BL McNaughton, and CA Barnes. Independence of Firing
Correlates of Anatomically Proximate Hippocampal Pyra-
midal Cells. Journal of Neuroscience, 21(RC134):1–6, 2001.

[112] AD Redish, ES Rosenzweig, JD Bohanick, BL Mc-
Naughton, and CA Barnes. Dynamics of Hippocampal
Ensemble Activity Realignment : Time versus Space. Jour-
nal of Neuroscience, 20(24):9298–9309, 2000.

[113] DS Reich, F Mechler, and JD Victor. Independent and re-
dundant information in nearby cortical neurons. Science
(New York, N.Y.), 294(5551):2566–8, December 2001.

[114] ET Reifenstein, R Kempter, S Schreiber, MB Stemmler, and
AVM Herz. Grid cells in rat entorhinal cortex encode phys-
ical space with independent firing fields and phase pre-
cession at the single-trial level. Proceedings of the National
Academy of Sciences, pages 1–6, April 2012.

[115] AM Reynolds, AD Smith, R Menzel, U Greggers,
DR Reynolds, and JR Riley. Displaced honey bees per-
form optimal scale-free search flights. Ecology, 88(8):1955–
61, August 2007.



Bibliography 107

[116] F Sargolini, M Fyhn, T Hafting, BL McNaughton, MP Wit-
ter, MB Moser, and EI Moser. Conjunctive representation
of position, direction, and velocity in entorhinal cortex. Sci-
ence (New York, N.Y.), 312(5774):758–62, May 2006.

[117] F Savelli, D Yoganarasimha, and JJ Knierim. Influence of
Boundary Removal on the Spatial Representations of the
Medial Entorhinal Cortex. Hippocampus, 1282:1270–1282,
2008.

[118] R Schmidt, K Diba, C Leibold, D Schmitz, G Buzsáki, and
R Kempter. Single-trial phase precession in the hippocam-
pus. Journal of Neuroscience, 29(42):13232–41, October 2009.

[119] WB Scoville and B Milner. Loss of Recent Memory After
Bilateral Hippocampal Lesions. The Journal of Neurology,
Neurosurgery and Psychiatry, 20:11–21, 1957.

[120] HS Seung and H Sompolinsky. Simple models for read-
ing neuronal population codes. Proceedings of the National
Academy of Sciences, 90(22):10749–53, November 1993.

[121] MN Shadlen and WT Newsome. The variable discharge
of cortical neurons: implications for connectivity, compu-
tation, and information coding. Journal of Neuroscience,
18(10):3870–96, May 1998.

[122] M Shamir and H Sompolinsky. Correlation Codes in Neu-
ronal Networks. NIPS, 15:277–284, 2001.

[123] M Shamir and H Sompolinsky. Implications of neu-
ronal diversity on population coding. Neural Computation,
18(8):1951–86, August 2006.

[124] PE Sharp. Complimentary roles for hippocampal versus
subicular/entorhinal place cells in coding place, context,
and events. Hippocampus, 9(4):432–43, January 1999.

[125] EP Simoncelli. Natural image statistics and neural repre-
sentation. Annual Review of Neuroscience, 24:1193–216, 2001.

[126] MA Smith and A Kohn. Spatial and temporal scales of
neuronal correlation in primary visual cortex. Journal of
Neuroscience, 28(48):12591–603, November 2008.

[127] T Solstad, CN Boccara, E Kropff, MB Moser, and EI Moser.
Representation of geometric borders in the entorhinal cor-
tex. Science (New York, N.Y.), 322(5909):1865–8, December
2008.



108 Bibliography

[128] LR Squire. Memory systems of the brain: A brief history
and current perspective. Neurobiology of Learning and Mem-
ory, 82(3):171–7, November 2004.

[129] S Sreenivasan and IR Fiete. Grid cells generate an analog
error-correcting code for singularly precise neural compu-
tation. Nature neuroscience, 14:1330–1337, September 2011.

[130] MV Srinivasan, S Zhang, M Altwein, and J Tautz. Honey-
bee Navigation: Nature and Calibration of the "Odometer".
Science, 287(5454):851–853, February 2000.

[131] HA Steffenach, M Witter, MB Moser, and EI Moser. Spatial
memory in the rat requires the dorsolateral band of the
entorhinal cortex. Neuron, 45(2):301–13, January 2005.

[132] H Stensola, T Stensola, T Solstad, K Froland, MB Moser,
and E Moser. Modular organization of grid scale. SfN
abstract, 726.15/YY6, 2011.

[133] J Stillwell. Mathematics and its History. Springer, New York,
2nd edition, 2002.

[134] JS Taube. The head direction signal: origins and sensory-
motor integration. Annual Review of Neuroscience, 30:181–
207, January 2007.

[135] JS Taube, RU Muller, and JB Ranck. Head-direction cells
recorded from the postsubiculum in freely moving rats.
I. Description and quantitative analysis. Journal of Neuro-
science, 10(2):420–35, February 1990.

[136] JS Taube, RU Muller, and JB Ranck. Head-direction cells
recorded from the postsubiculum in freely moving rats. II.
Effects of environmental manipulations. Journal of Neuro-
science, 10(2):436–47, February 1990.

[137] EC Tolman. Cognitive maps in rats and men. Psychological
Review, 55(4):189–208, July 1948.

[138] GF Tóth. Sum of Moments of Convex Polygons. Acta Math-
ematica Academiae Scientiarum Hungaricae, 24:417–421, 1973.

[139] LF Tóth. Lagerungen in der Ebene, auf der Kugel und im Raum.
Springer, 2nd edition, 1972.

[140] DS Touretzky and AD Redish. Theory of rodent naviga-
tion based on interacting representations of space. Hip-
pocampus, 6:247–70, January 1996.



Bibliography 109

[141] NM van Strien, NLM Cappaert, and MP Witter. The
anatomy of memory: an interactive overview of the
parahippocampal-hippocampal network. Nature reviews.
Neuroscience, 10(4):272–82, April 2009.

[142] C van Vreeswijk. What is the neural code? In L van
Hemmen and TJ Sejnowski, editors, 23 Problems in Systemic
Neuroscience. Oxford University Press, 2006.

[143] R Wehner and M Srinivasan. Path integration in insects.
In KJ Jeffery, editor, The Neurobiology of Spatial Behaviour.
Oxford University Press, Oxford, 2003.

[144] SD Wilke and CW Eurich. Representational Accuracy
of Stochastic Neural Populations. Neural Computation,
189:155–189, 2001.

[145] TJ Wills, F Cacucci, N Burgess, and J O’Keefe. Develop-
ment of the hippocampal cognitive map in preweanling
rats. Science (New York, N.Y.), 328(5985):1573–6, June 2010.

[146] MA Wilson and BL McNaughton. Dynamics of the hip-
pocampal ensemble code for space. Science (New York,
N.Y.), 261(5124):1055–8, August 1993.

[147] MP Witter and EI Moser. Spatial representation and the ar-
chitecture of the entorhinal cortex. Trends in Neurosciences,
29(12):671–8, December 2006.

[148] MP Witter, PA Naber, T van Haeften, WC Machielsen,
SA Rombouts, F Barkhof, P Scheltens, and FH Lopes da
Silva. Cortico-hippocampal communication by way of par-
allel parahippocampal-subicular pathways. Hippocampus,
10(4):398–410, January 2000.

[149] M Wittlinger, R Wehner, and H Wolf. The ant odometer:
stepping on stilts and stumps. Science (New York, N.Y.),
312(5782):1965–7, June 2006.

[150] MM Yartsev, MP Witter, and N Ulanovsky. Grid cells with-
out theta oscillations in the entorhinal cortex of bats. Na-
ture, 479(7371):103–107, 2011.

[151] J Zeil, A Kelber, and R Voss. Structure and function of
learning flights in bees and wasps. The Journal of Experi-
mental Biology, 199:245–252, 1996.

[152] K Zhang, I Ginzburg, BL McNaughton, and TJ Sejnowski.
Interpreting neuronal population activity by reconstruc-
tion: unified framework with application to hippocampal



110 Bibliography

place cells. Journal of Neurophysiology, 79(2):1017–44, Febru-
ary 1998.

[153] K Zhang and T Sejnowski. Neuronal tuning: to sharpen
or broaden. Neural Computation, 11(1):75–84, 1999.

[154] E Zohary, MN Shadlen, and WT Newsome. Corre-
lated neuronal discharge rate and its implications for psy-
chophysical performance. Nature, 1994.



A C K N O W L E D G E M E N T S

This paper has proved to be
controversial.

Anonymous reviewer.

First and foremost, I would like to thank my supervisors, An-
dreas and Martin. When I had just started working with them,
they gave me, a topologist, a guided tour of the fascinating world
of Neuroscience and granted me the freedom to explore ever
since. I am thankful for their enthusiasm, scrutiny and guid-
ance. It was a pleasure to work with them. Recently I learned
that Martin is a high-energy physicist by training, a term that
also describes his personality quite literally.

I am grateful to Mark Hübener for his contributions in the
TAC meetings.

The Herz lab and all the neighboring labs were a great place
to work, discuss and learn. With Eric, I shared a table which
was too long for a time which was unfortunately too short – als
Berliner Original mußte er früh ebendahin zurückkehren. Later
came Dinu, and our “night shifts” were essential for finishing
this thesis and some parts of the manuscripts it contains. Grazie
a Gio for bringing this LATEX-classicthesis-design to my attention.
I also want to extend my thanks to all other former and current
members of the Herz lab.

Thanks as well to all other colleagues in the BCCN, the GSN
and the Biocenter. In particular, I highly appreciated the di-
rect and unembellished discussions with Christian, his style of
bouncing around ideas was very refreshing. Furthermore, thanks
to Axel for our swift collaboration.

Over the past few years, also many scientists outside of Mu-
nich also had an impact on me. Thanks to the members of
the Center for Neurobiology and Behavior, Columbia University
and the Computational Neuroscience Lab, Tsinghua University
for their hospitality during my brief summer visits. The confer-
ences and summer schools I attended were highly informative
and captivating. In particular, I would like to thank Dave Re-
dish for all he told me about the hippocampus.

I am grateful to all proof readers of various parts of the thesis:
Alex, Álvaro, Audrey, Chun, Dinu and Felix.



112

Last but not least, I would like to thank my family and my
adorable fiancée for all their love and support through all these
years.



P U B L I C AT I O N L I S T

A Mathis, AVM Herz, and M Stemmler: “The Resolution of Nested
Neuronal Representations can be Exponential in the Number of Neu-
rons”. Physical Review Letters, 109 (1), 018103, 2012.

A Mathis, AVM Herz, and M Stemmler: “Optimal Population
Codes for Space: Grid Cells Outperform Place Cells”. Neural Com-
putation, 24 (9):2280-2317, 2012.

A Mathis, M Stemmler, and AVM Herz: “The Entorhinal Cortex of
Rodents Harbors an Optimal Grid Code for Space”, in preparation

A Mathis, AVM Herz and M Stemmler: “The Effect of Correlations
on Nested Grid Codes”, in preparation

A Kammerer, A Mathis, M Stemmler, AVM Herz, C Leibold: “A
Physiologically Inspired Model for Global Remapping in the Hippocam-
pus”, in preparation

Conference Contributions:

A Hartz, M Stemmler, A Mathis and AV Herz (2012) “Finite Size
Effects in Grid-Cell Attractor Models for Spatial Navigation“. Front.
Comput. Neurosci. Conference Abstract: Bernstein Conference, Munich.

AJ Kammerer, A Mathis, Stemmler M, AV Herz and C Leibold
(2012) “A Physiologically Inspired Model for Global Remapping in the
Hippocampus“. Front. Comput. Neurosci. Conference Abstract: Bernstein
Conference, Munich.

J Nagele, D Patirniche, A Mathis, M Stemmler and AV Herz (2012)
“Grid cells discharge with less variability than place cells“. Front. Com-
put. Neurosci. Conference Abstract: Bernstein Conference, Munich.

FM Kempf, A Mathis, M Stemmler and AV Herz (2012) “Neural
Representation of Space: Relation between one- and two-dimensional
Environments“. Front. Comput. Neurosci. Conference Abstract: Bernstein
Conference, Munich.

A Mathis, A Herz and M Stemmler (2011) “How grid codes opti-
mally encode space“. Society for Neuroscience Conference, Washington.



114

A Mathis, A Herz and M Stemmler (2011) “Exponential Scaling of
Nested Neuronal Representations“, Front. Comput. Neurosci. Confer-
ence Abstract: Bernstein Conference, Freiburg.

A Mathis, A Herz and M Stemmler (2011) “Optimal Distribution of
Spatial Periods for Grid Cell Ensembles on Finite Space”. 9th Göttingen
Meeting of the German Neurscience Society.

D Patirniche, A Mathis, M Stemmler, A Herz (2011) “A Parametric
Free Method for Estimating High Dimensional Tuning Curves”. 9th
Göttingen Meeting of the German Neuroscience Society.

A Herz, C Kluger, A Mathis, M Stemmler (2011) “Variability of
Grid Cell Firing On a Trial-To-Trial Basis”. 9th Göttingen Meeting of the
German Neuroscience Society.

A Kammerer, A Mathis, M Stemmler, A Herz, C Leibold (2011)
“A Physiologically Inspired Model for Global Remapping in the Hip-
pocampus”. Computational Neuroscience Meeting CNS*2011, Stockholm.

A Mathis, M Stemmler, A Herz (2010) “How Good is Grid Cod-
ing versus Place Coding for Navigation Using Noisy, Spiking Neu-
rons?“ Front. Comput. Neurosci. Conference Abstract: Bernstein Confer-
ence, Berlin.

C Kluger, A Mathis, M Stemmler and A Herz (2010) “Movement
Related Statistics of Grid Cell Firing“. Front. Comput. Neurosci. Confer-
ence Abstract: Bernstein Conference, Berlin.

A Mathis, M Stemmler, A Herz (2010) “How good is grid coding
versus place coding for navigation using noisy, spiking neurons?” Com-
putational Neuroscience Meeting CNS*2010, San Antonio.

A Mathis, M Stemmler, A Herz (2010) “How good is grid cod-
ing versus place coding for navigation using noisy, spiking neurons?”
AREADNE Research in Encoding and Decoding of Neural Ensembles, San-
torini.



E I D E S S TAT T L I C H E E R K L Ä R U N G

Ich versichere hiermit an Eides statt, dass die vorgelegte ku-
mulative Dissertation von mir, wo nicht anderweitig gekennze-
ichnet, selbständig und ohne unerlaubte Hilfe angefertigt ist.
Die Beiträge zu den Manuskripten waren wie folgt:

Die Erstellung der Veröffentlichung “A Mathis, AVM Herz,
and M Stemmler: Optimal Population Codes for Space: Grid
Cells Outperform Place Cells. Neural Computation, accepted
February 7, 2012” unterlag folgender Arbeitsteilung: AM, AH
and MS conceived and designed the research. AM performed
research. AM, AH and MS discussed the results and wrote the
paper.

Die Erstellung der Veröffentlichung “A Mathis, AVM Herz,
and M Stemmler: The Resolution of Nested Neuronal Repre-
sentations can be Exponential in the Num- ber of Neurons. PRL,
accepted, April 18, 2012” unterlag folgender Arbeitsteilung: AM,
AH and MS conceived and designed the research. AM per-
formed research, MS did numerical simulation of estimator er-
rors in Fig. 2c/d. AM, AH and MS discussed the results and
wrote the paper.

Die Arbeit zum Manuskript “A Mathis, M Stemmler, and AVM
Herz: The Entorhinal Cortex of Rodents Harbors an Optimal
Grid Code for Space, preprint” unterlag folgender Arbeitsteilung:
AM, AH and MS conceived and designed the research. AM per-
formed research. AM, AH and MS discussed the results. AM
drafted the current state of the manuscript.

München, Juni 2012

Alexander Mathis

Hiermit bestätigen die Mitautoren die von Herrn Mathis ange-
gebenen Beiträge zu den einzelnen Publikationen.

München, Juni 2012

Martin Stemmler Andreas Herz


	Cover
	Abstract
	Contents
	1 Introduction
	1.1 Space and spatial behavior
	1.2 The neuronal representation of space
	1.2.1 Place cells
	1.2.2 Head-direction cells
	1.2.3 Grid cells
	1.2.4 Summary

	1.3 Aim of this thesis
	1.3.1 Neural coding theory
	1.3.2 Optimal coding hypothesis


	2 Grid cells outperform place cells
	2.1 Summary
	2.2 Reference

	3 Exponential accuracy of nested codes
	3.1 Summary
	3.2 Reference

	4 The effect of correlations on grid codes
	4.1 Introduction
	4.2 Methods: Population coding model with noise correlations
	4.2.1 Population coding model
	4.2.2 Fisher information

	4.3 Results
	4.3.1 Place code
	4.3.2 Nested grid code

	4.4 Conclusion

	5 The entorhinal cortex of rodents harbors an optimal grid code for space
	5.1 Summary
	5.2 Reference

	6 Discussion and Conclusions
	Bibliography
	Acknowledgements
	Publication list
	Eidesstattliche Erklärung

