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2 Introduction 

2.1 Macromolecular therapy - a brief survey 

Today most of the drugs prescribed belong to a group of molecules smaller than 500 

Da (1). In most cases, these small molecules can be obtained through direct 

chemical synthesis. Due to their small sizes and their partition coefficient, they are 

usually able to freely diffuse through the plasma membrane bilayer and get to their 

site of action. In general small molecules share a common mode of action. They are 

usually blocking the active site of a target molecule, either by covalent coupling or 

just by intermolecular interaction. Due to lack of specificity this often causes 

unwanted side effects and in consequence toxicity occurs. In contrast 

macromolecules, e.g. nucleic acids or proteins, in most cases exhibit high specificity 

for their target molecule. This is rooted in their complex structure. The complexity 

does not only reduce the risk of unwanted interactions, but primarily it opens the door 

for a large set of functionalities that cannot be mimicked by small molecules (2). 

Macromolecules, of rather high molecular weight and often multiple charged, are in 

most cases not able to overcome the cytoplasmic membrane. Because of this reason 

the application of macromolecular drugs is mainly limited to therapeutics, whose site 

of action is located extracellular or on the cell surface (3-7). The first clinical used 

macromolecular therapeutic was insulin which was extracted from bovine pancreas in 

1922 by Lilly (8). Problems, like availability of pancreases for purification, high costs 

and immunological reactions of some patients hindered a widespread use. Although 

these problems could not be solved at this time, this successful application slowly 

shifted the focus of drug development from small molecules to macromolecular 

compounds. In the following 40 years many endogenous proteins with therapeutic 

potential have been identified (9, 10). But it took the development of recombinant 

DNA technique and modern biotechnology which enabled easy and cheap production 

of large amounts of recombinant proteins, leading to the explosion of the 

biopharmaceutical market. Aside low costs and easy scale up, recombinant produced 

proteins have got several therapeutic advantages compared to other protein sources. 

Due to the transcription and translation of the exact human gene, they lower the risk 

of immunogenic responses and often have got higher specific activity. Up to date 

nearly 100 recombinant proteins are approved by the FDA for clinical use (2). Plenty 
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of diseases, e.g. cystic fibrosis or Duchenne muscle dystrophy are the result of a 

mutation in a protein encoding gene. The growing knowledge in genetics and 

biotechnology also opened the door for gene therapy, a concept of treating such 

diseases on their molecular origin. The basic idea of gene therapy, replacing the 

deficient gene with a functional copy, arose during the 1960s and 1970s, when the 

first evidences for uptake of exogenous DNA in mammalian cells have been found 

(11, 12). From this point of time things went on quite fast. The first approved human 

gene therapy trial was performed by Rosenberg and colleagues in 1989. They used 

retroviruses to introduce a gene encoding for resistance to neomycin into human 

tumor-infiltrating lymphocytes prior to reinfusion into patients with advanced 

melanoma (13). Despite some severe  backlashes, up to date more than 1700 clinical 

studies on human gene therapy are either in process or even have been finished 

(Gene Therapy Clinical Trials Database). Besides DNA, diverse other nucleic acids, 

like antisense RNAs (14), messenger RNAs (15), 2'-O-alkyl RNAs (16), aptamers 

(17), phosphorothioate DNAs (PS-DNA) (18), inosine-cytosine RNAs (polyIC) (19), 

decoy oligonucleotides (20), and LNAs (21) are in the clinical trial phase or are 

already used in macromolecular therapy. Among these nucleic acid based 

techniques, siRNA mediated RNA interference is rising particular hope, as it can be 

used for both up- (22) and down- regulation of a gene. Since Tuschel and coworkers 

(2001) showed that synthetic siRNAs can down regulate gene expression in 

mammalian cells (23) and Andrew Fire together with Craig Mello won the Nobel Prize 

(2006) for their work on RNA interference, more than 30 clinical trials on siRNA 

mediated RNA interference have been started (24). All nucleic acid based therapies 

inherence the risk of potential interaction of the delivered macromolecular drug with 

the DNA of the target cell. In worst case, this can lead to severe damage of the 

treated organism (25). 

Intracellular delivery of active proteins supplementing dysfunctional cellular proteins 

is an encouraging alternative to gene therapy (26, 27). It is expected to be a safe 

approach, lacking the potential malignant transformation of viral gene therapy (28). 

Protein transduction presents the most straight forward plan of attack for healing 

plenty of diseases caused by mutated or wrong folded proteins (29). The first protein 

observed, having the ability to translocate through the intact phospholipid bilayer, 

was the HIV-1 TAT protein (30, 31). In the meantime, it has been discovered that 

natural homeoproteins such as the Antennapedia homeobox can cross cell 
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membranes and internalize into cells as part of their physiological function (32) and 

numerous homeoprotein-derived natural and artificial transduction peptides have 

been identified. (33-36) Thus, the intracellular delivery of active proteins, named 

‘protein transduction’, now is considered as an interesting option and alternative to 

gene therapy, substituting for dysfunctional cellular proteins (27, 29, 37). After this 

observation in 1988, it took almost another 20 years until the first clinical trials using 

this new technique started. Clinical trials include treatment of various diseases, e.g. 

dermal scar therapy, psoriasis, pulmonary fibrosis, hyperhidrosis. Altogether up to 

date over 20 Phase 1 and Phase 2 clinical trials were performed and more than 2000 

patients have been treated with drugs, delivering peptides or proteins into cells (38). 

A Phase 2a clinical trial in the treatment of Lateral Canthal Lines showed significant 

efficacy versus a placebo. The therapeutic is based on a Botulinum Toxin Type A 

protein, which is delivered by a protein transduction domain (PTD). Moreover the 

drug appears to be well tolerated. Although protein transduction technology is still in 

its infancy, it raises hope in the development of new macromolecular drugs for the 

treatment of numerous diseases caused by dysfunctional cellular proteins. Although 

tremendous progress was made in the last decade, all of the macromolecular therapy 

techniques, except the extracellular operative ones, share a common difficulty – 

without effective delivery into the cell their therapeutic use is very limited. 

 

2.2 Barriers in macromolecular therapy 

On the long rocky road to the site of action, the macromolecular drug has to 

overcome many hurdles. So many different critical steps have to be addressed. First 

problem is to decide what´s the right administration form of a certain macromolecular 

drug. Oral application of a macromolecular drug in most cases does not make sense, 

as the therapeutic would be rapidly degraded inside the intestinal tract. One 

possibility to get an adequate quantity of the drug to the target is local injection, 

followed by passive diffusion of the macromolecular medicate. Presumably the 

treatment of age related macula degeneration with siRNA represents the most 

spectacular example of this administration form (39). Major disadvantage of this 

method is that far not all tissues and cells can be reached. Most inner organs as well 

as tumor tissue have got strong blood circulation and therefore are good accessible 

through direct intravenous injection. Once inside the blood flow the macromolecular 
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drug is confronted with a hostile environment. The macromolecular drug is 

threatened with degradation by proteases, nucleases, phagocytotic cells of the 

immune system and many more. One possibility to reduce interaction with these 

components is PEGylation of the macromolecular therapeutic. Polyethylene glycol  

(PEG) is a uncharged, hydrophilic polymer which was shown to reduce 

immunogenicity and enhances circulation live of proteins (40). Also unspecific 

interaction of DNA polyplexes with blood components could be minimized through 

this way (41).  Next hindrances that have to be mastered are clearance by liver and 

kidney which presents a particular problem in delivery of macromolecules (42). In this 

case again PEGylation can be used to increase size, as the kidney allows clearance 

mainly of particles below 8 nm. Next step is the extravasation of the therapeutic to 

the target cell through the extra cellular matrix. Especially for electrostatic DNA or 

siRNA polyplex formulations this represents a critical step that may be limiting 

effective drug delivery (43). Macromolecules, whose site of action is on the cell 

surface, e.g. surface receptor ligands (44) or antibodies binding to extracellular target 

(45) have already reached their final destination on this stage. For macromolecular 

drugs acting in the cytosol the major delivery problems are just starting at this point. 

Now they have to overcome the biological barrier of the cytoplasmic membrane, a 

phospholipid bilayer structure whose primary natural function is to prevent the 

uncontrolled cell entrance of such big and charged molecules (molecular weight cut-

off around 600 Da) (46).  
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Scheme 2.1: Illustration of uptake pathways for mac romolecular drugs and further processing 
of the internalized vesicles. Except caveolae media ted endocytosis, all other cellular entries 
lead at least partly to fusion of the vesicles with  lysosomes and therefore to acidic degradation 
of the cargo.  

Endocytosis is a natural occurring process that allows the directed uptake of 

molecules, for example Fe3+. Iron is internalized after binding of iron loaded 

transferrin to the transferrin receptor (47). Macromolecular drugs can use this cellular 

feature to penetrate into the target cell, when ligands like Transferrin (48), Folate 

(49), EGF (50), RGD (51), B6 (51) or GE11 (52) are associated to their surface. 

Literature describes, as illustrated in Scheme 2.1, at least five different ways of 

endocytosis: phagocytosis, clathrin-mediated endocytosis, macropinocytosis, 

caveolae-mediated endocytosis, and clathrin-caveolae-independent endocytosis 

(53). Targeted uptake occurs mainly via clathrin mediated endocytosis (54). Also 

unspecific binding of a macromolecular drugs to the cell, e.g. via electrostatic 

interaction can lead to internalization. In this case all pathways can be involved (55, 

56). Except caveolae mediated endocytosis, all other cellular entries lead at least 

partly to fusion of the vesicles with lysosomes and therefore to acidic degradation of 

the internalized macromolecules (57). To prevent this, the therapeutic has to escape 
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from endo-lysosomal degradation. As most macromolecular drugs are not able to 

disrupt the endosome membrane themself, a second molecule providing this feature 

is needed. In case of DNA polyplexes this often is the cationic polymer 

polyethylenimine (PEI). PEI polymers possess protonable primary, secondary or 

tertiary amines, with a pKa between five and seven which can buffer acidification of 

the late endosomes by taking up protons. This buffering goes along with concurrent 

influx of chloride to maintain charge neutrality and results in an increased ionic 

strength inside the endosome. To balance this, water is accumulating passively 

inside the endosome. Therefore the pressure inside the endosome increases more 

and more until the membrane bursts and the content of the endosome is released 

into the cytosol (58). Lipid based carriers present another possibility to destabilize the 

endosome membrane and promote release of the entrapped therapeutic (59-61). A 

third well known strategy to promote endosomal release is the use of lytic, membrane 

disrupting peptides, for example melittin. Melittin the main active compound in bee 

venom inserts into the phospholipid bilayer where it forms pores and leads to 

membrane disruption (62). As the lytic properties are not pH specific, melittin is also 

interacting with other membranes and therefore exhibits quite high toxicity. In 

contrast to melittin the lytic influenza peptide develops its lytic activity through a 

change in conformation which occurs after acidification. Because of this property it is 

a great reagent for enhancing endosomal release (63). Although some chemicals, 

e.g. Chloroquine, can prevent endosomal acidification and therefore enhance 

endosomal escape, their inherent toxicity excludes therapeutic applications (64-66). 

Although after endosomal release most drugs have reached their destination, they 

have to get rid of all modifications to develop their natural behavior. Some 

therapeutics, like DNA or transcription factors, need to be further translocated 

subcellularly to the nucleus, their site of action. Subcellular nuclear transport presents 

a major bottleneck in DNA delivery (67). Proteins exposing their nuclear localization 

signal are translocated into the nucleus by binding of the cytosolic, heterodimer 

carrier protein importin. Importin binding is resulting in a GTP driven active transport 

through the nuclear pore complex (68).    
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2.3 Nucleic acid versus protein delivery 

 

 

Scheme 2.2: Illustration of differences and similar ities in further processing, after cellular 
uptake of nucleic acids and proteins (Scheme partly  adapted from David Schaffert (69)). 

Intracellular delivery of active proteins supplementing dysfunctional cellular proteins 

is an encouraging alternative to gene therapy (26, 27). First difference of nucleic acid 

and protein delivery is the different stability of the naked molecules in plasma. For 

example Houk et al. showed that naked linear DNA has got an half-life of only 11 

minutes in isolated rat plasma (70), whereas proteins have got an half-life of up to a 

few hours (71). Protein transduction presents the most straight forward plan of attack 

for healing plenty of diseases caused by mutated or wrong folded proteins (29). A 

DNA molecule delivered into the cell is acting as a kind of prodrug, because it has to 

be further processed by the cell to develop its therapeutic effect. First the DNA has to 

be transcribed into mRNA and the mRNA has to be translated into the protein to get 

the active compound (Scheme 2.2). Up-regulation of a gene encoding for a certain 

protein via RNAi technique is even more complicate. In this case the siRNA must 

knockdown the translation of mRNA encoding for a suppressor protein of the 
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accordant gene. This leads to enhanced transcription and therefore translation of the 

desired gene (22). Delivery of mRNA is again a step closer. In this case the 

internalized mRNA is active in the cytosol and just has to get transcribed to result in 

the corresponding active protein (72). Aside that protein delivery has got several 

other advantages compared to nucleic acid delivery. It is expected to be a safe 

approach, lacking the potential malignant transformation of viral gene therapy (28). In 

addition protein transduction technology offers the possibility to transport proteins into 

the cytosol, containing artificial or D-amino acids, which are considered to be less 

immunogenic (62) and more stable towards intracellular degradation. Harris and 

coworkers have shown that shortening of the amino acid sequence and replacement 

of L-amino acids through  their D-AA analog raises half-life time of Somatostatin from 

a few minutes up to 1.5 hours (73).  A well-known bottleneck in nucleic acid delivery, 

the transport of the DNA into the nucleus (74), which is indispensable for target gene 

expression, is easily bypassed. Most proteins have got their site of action inside the 

cytosol. Nevertheless some therapeutic proteins like transcription factors also have to 

be subcellularly transported into the nucleus to get active. But in contrast to DNA this 

is much easier, just because of the smaller size of proteins. The nuclear pore 

complex has got a diameter of around 8 nm which allows passive diffusion of 

molecules up to 40 kDa into the nucleus. Bigger proteins are only transported into the 

nucleus through an energy dependent process, when they are bearing an exposed 

nuclear targeting sequence (68). One big drawback of protein delivery in comparison 

to gene therapy is that especially for enzymes their tertiary conformation is essential 

for the activity. This tertiary structure may be disturbed by coupling carrier molecules 

for example CPPs. Typically nucleic acids like plasmid DNA is forming a stable 

polyplex with most cationic carrier molecules, held together by electrostatic 

interactions. In contrast complexation of proteins, because of the lower density of 

negative charges on the surface, affords in most cases covalent coupling of the 

carrier molecule to the protein cargo. Kataoka and coworkers presented another 

smart technique to overcome this problem. They substituted the positive charges of 

lysine residues in proteins through negative ones by reaction with citraconic 

anhydride, thus charge density is high enough for non-covalent complexation (75). 

Another major difference may be for some cases an advantage and for other ones a 

disadvantage. In contrast to protein transduction, cells transduced with DNA are 

expressing the encoded protein, dependent on the used promoter, quite a long time 
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(76). Protein delivery is a short termed treatment, because the internalized proteins 

are degraded by proteases after a while. To sum up nucleic acid as well as protein 

delivery has its special features and offers specific advantages over the other one. 

 

2.4 Strategies for transporting proteins into the c ytosol of 

living cells 

Proteins have to overcome the biological barrier of the cytoplasmic membrane to get 

into the cytosol. As already mentioned this phospholipid bilayer structure was 

designed from nature for preventing the uncontrolled entering and exiting of such big, 

charged molecules. For pure in-vitro studies, it is possible to use physical methods, 

like microinjection or electroporation, to promote an uptake of the desired peptide or 

protein (77, 78). With the help of a microinjector the cytoplasmic membrane of 

individual cells is perforated with a thin glass capillary and the protein is directly 

injected into the cytosol. Because of the big effort only a few cells can be addressed 

with this technique and in addition quite a great amount of the cells do not survive 

this treatment. Electroporation in contrast to microinjection is a technique which is 

also applicable for in vivo application (79). An externally applied electrical field is 

temporarily changing the conformation of membrane properties, resulting in an 

increase in membrane permeability. During this short time interval proteins can 

overcome the phospholipid bilayer. In opposite to these rather brute physical 

methods, for moderate biological techniques having the potential for broad 

therapeutic application, in most cases a carrier molecule is needed. On the rocky 

road into the cytosol, the transduction carrier has to prevent the cargo from 

extracellular degradation and transport it piggyback over the biological barrier of the 

cytoplasmic membrane. Once inside the cell the carrier-cargo complex has to escape 

from endo-lysosomal degradation. Afterwards the carrier should release its cargo in 

the cytosol to warrant activity of the protein. A perfect carrier system has to address 

all this critical steps and furthermore exhibit low cytotoxicity. In the last decades many 

efforts have been made to create such a perfect carrier system. In 2010 Voelkel et al. 

presented a technology for protein delivery, where they transported GFP into the 

cytosol of living cells using murine retroviral particles as carrier system (80). Quite a 

similar system were they used lentivirus derived virus like particles (VLPs) was 
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developed by Frederico and coworkers (81). Major drawback of these virus based 

systems is the presence of reverse transcriptase and integrase in the particles which 

causes the potential risk of conversion of RNAs into DNA and integration of DNA into 

the chromosome of the transduced cell (82). Dai and colleagues used single walled 

carbon nanotubes (SWNT) for the delivery of streptavidin and cytochrome c in a 

number of different cell lines (83-85). Aside carbon nanotubes, also another inorganic 

carriers, e.g. mesoporous silica nanoparticles (MSN) and gold nanoparticles were 

successfully used to deliver proteins into cells (86-88). Major drawback of this 

carriers based on inorganic compounds is that the protein is attached to their surface, 

where it is not protected against proteases and in many cases the shuttles exhibit low 

endosomal escape. Most commercial available carriers for protein delivery are based 

on cationic lipids (89-91). Liposomes are supposed to enter cells via two different 

mechanisms, endocytosis or fusion of the liposome with the cell membrane (92). 

Later uptake mechanism offers the advantage that the cargo is not internalized in 

endosomes but is rather directly discharged into the cytosol. Main disadvantage is 

the low stability of most cationic lipid based vectors under serum containing 

conditions that hampers effective protein uptake (93). The first protein observed that 

was naturally able to translocate through the intact phospholipid bilayer was the HIV-

1 TAT protein (30, 31). In the meantime, it has been discovered that natural 

homeoproteins such as the Antennapedia homeobox can cross cell membranes and 

internalize into cells as part of their physiological function (32) and numerous 

homeoprotein-derived natural and artificial transduction peptides have been 

identified. (33-36). Thus, the intracellular delivery of active proteins, named ‘protein 

transduction’, now is considered as an interesting option and alternative to gene 

therapy, substituting for dysfunctional cellular proteins (27, 29, 37). The most 

common method used for protein delivery is the use of short positively charged 

peptides, so called protein transduction domains (PTDs) (27, 94-96). These PTDs 

can be grouped in two major classes, natural ones like Penetratin (96, 97) or HIV-

TAT (27) and artificial ones e.g. oligoarginines (98). Protein transduction domains 

(PTDs) or also called cell penetrating peptides (CPPs) in general are tagged to the 

cargo protein by genetic engineering. Especially in cases where the active center of 

an enzyme is located near the carboxy- or amino-terminus this tags can disturb 

functionality. The internalization pathway of these fusion proteins is discussed 

controversial. Some studies suggest macropinocytosis (97, 99) others predicate it is 
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a mixture between different mechanisms (100). At least uptake means may be 

dependent on the used CPP, cell line, concentration and cargo (101, 102). The 

efficiency of the following step, the retrograde transport out of the endosome is very 

low for most PTDs (103, 104). Altogether the efficiency of this technique seems to be 

dependent on cell line and cargo size (98, 101). Okuyama et al. engineered a 

synthetic carrier system that is mimicking an alpha helix found in some PTDs. 

Covalent coupling of this small molecule based carriers (SMoCs) to the DNA 

replication licensing repressor protein geminin showed an antiproliferative effect on 

human cancer cells (105).  Aside PTD mediated protein delivery the use of cationic 

polymers, e.g. polyethylenimine is a widely used strategy for protein transduction (75, 

106-109). Cationic polymers like polyethylenimine often are very effective carriers, 

but are lacking of precise structure and often show high toxicity dependent on the 

molecular weight of the used polymer (110). Up to date protein delivery still lacks of 

an all-purpose carrier system. Each of the presented technologies has got its 

limitations. Some technologies show cell type dependence (98) or others are 

bordered to certain cargo proteins (111). 

 

2.5 Biological cleaveable crosslinkers 

Today plenty of different protein crosslinkers are on the market. They are used for 

many different applications, e.g. for analysis of protein structure and subunits, 

formation of protein- protein conjugations, immobilization of proteins on solid phase, 

PEGylation, formation of crosslinks between nucleic acids and proteins, analysis of 

protein interactions, preparation of immunogens or for the construction of 

immunotoxins. For some applications it is of favor that the bond between the 

crosslinked molecules is reversible and can be cleaved under certain conditions. Also 

for this acquirement linkers are available. Linkers containing internal esters, e.g. the 

ethylene glycolbis(succinimidylsuccinate) (EGS) can be cleaved by incubation with 

hydroxylamine (112, 113). Introduction of diol containing groups that can be cleaved 

by periodate is also a very common technique in crosslinker development (114, 115). 

Base labile crosslinkers based on sulfone groups present another group of 

commercial linkers (116-118). Although all these presented linkers are cleavable 

under conditions which are compatible for most proteins, they do not allow a 

cleavage under such mild chemical conditions compatible with a living biological 
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system. Furthermore for intracellular macromolecular drug delivery it is of advantage 

to have a chemical dynamic linker triggered by tiny changes in chemical 

microenvironment. During the delivery process the chemical microenvironment 

changes with the further transport of the macromolecular drug to another cellular 

compartment. The linker should respond to this tiny chemical changes in the required 

manner. For example the linker should be stable in the extracellular matrix, before 

cellular uptake and after internalization the bond between carrier and cargo should 

be cleaved. Nearly all commercial available crosslinkers providing this feature are 

based on bioreducible disulfide bonds (119-122). The most famous under this type of 

linkers is the heterobifunctional crosslinker (SPDP), which was developed by Carlson 

et al. in 1978 (119). One end is built up from an amine reactive succinimidylester that 

can be reacted with the amine group of lysine containing proteins, resulting in a 

stabile amide bond. The other functional group is a 2-pyridyldithio group which allows 

reaction with sulfhydryl containing molecules (e.g. cysteine residues of proteins or 

peptides), forming a disulfide bond. This disulfide bond is stable in a non-reducing 

environment, for example in the extracellular matrix. Under mild reducing conditions 

in contrast, (e.g. caused by glutathione levels in the cytosol), it is cleaved (123, 124). 

An additional feature of SPDP is that the cleavage of the 2-pyridyldithio group causes 

a change in the spectral properties and therefore it is quite easy to determine the 

amount of linker coupled to the desired molecule. For this reasons SPDP became the 

most used linker in macromolecular drug delivery (123, 125-127). Photo-cleavable 

linkers present another strategy that allows controlled cleavage of the bond between 

two crosslinked molecules (128-130). Ottl and coworkers developed a 

hetrobifunctional linker, which contains a photoreactive o-nitrobenzyl group (129). 

Upon light stimulus the linker is cleaved. Photocleavable linkers are applicable mainly 

for in vitro uses, because deeper tissues can hardly be addressed. Knorr et al. 

presented a homobifunctional acetone ketal cross-linker in 2008 that capitalizes from 

the differences in pH in different cellular compartments or tissues (131). The inherent 

acetal group is cleaved under mild acidic conditions, which are typical for tumor 

tissue (132) or early endosomes (133), whereas the linker is quite stable under 

physiological pH of 7.4. All cleavable linkers presented have in common that they are 

not cleaved off completely. After cleavage a small relict of the linker remains bound to 

the molecule of interest. For some applications like protein delivery this might be a 

drawback, e.g. the active site of an enzyme could be sterically blocked by this 
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fragment. Blätter et al. created a heterobifunctional, acid labile linker in 1984 that is 

based on maleic anhydride. This linker is cleaved off traceless from the molecule of 

interest upon acidification (134).  Major drawback of this linker is that it requires quite 

low pH values to be cleaved. A linker especially developed for protein delivery was 

presented by Dowdy and colleagues in 2010 (27). It is based on nitrilotriacetic acid 

(NTA) coordinated copper that is strongly binding to hexahistidine-tagged 

macromolecules like peptides and proteins. This affinity is lost after a pH drop to 5 

which can be found as already mentioned in late endosomes. Major drawback of this 

linker is that exclusively the histidine bearing end of the protein can be modified and 

therefore no real encapsulation is possible. Up to date still no perfect linker system 

for protein delivery is available. 

 

2.6 Aims of the thesis 

2.6.1 Establishment of a cellular test system for p rotein delivery  

Aim of this thesis was to establish a test system for protein delivery. The test systems 

should enable easy and fast qualitative proof of successful protein internalization. 

The protein should be of average size and exhibit a typical isoelectric point (pI). 

Furthermore it should be possible to evaluate the percentage of transfected cells, as 

well as the amount of protein that was taken up by the cells. As a “golden standard”, 

one corresponding model protein should be established bearing a very common PTD 

like HIV-TAT peptide. This CPP should be fused to the model protein by genetic 

engineering. This standard protein transduction technology should serve as a 

reference test method, to evaluate and compare the efficiency of different developed 

carrier systems. One of the major bottle necks for protein delivery is, as already 

mentioned endosomal release. The test model ought to demonstrate easy, if the 

cargo is released out from the endosome and is behaving naturally inside the cytosol, 

e.g. through successful subcellular transport. Furthermore the test system should be 

able to evidence that biologic activity of a transported enzyme is maintained. A model 

of such a test system is illustrated in Scheme 2.3. 
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Scheme 2.3: Illustration documenting the concept of  the planed protein delivery test system. 
386 is a precise oligo(ethane amino)amide carrier. SPDP is a protein crosslinker. 

 

2.6.2 Protein delivery with defined polycations 

The most widespread technique for delivery of proteins is the use of CPP as carrier 

system (27, 94-96). As already mentioned such delivery is of low efficiency especially 

since endosomal escape is very low (103, 104). At least efficiency seems to be 

limited to certain cell lines and cargos. For that reason an efficient delivery system 

that is applicable for a huge amount of proteins on many different cell lines should be 

developed. In contrast to PTDs an artificial polycation should be used as carrier 

system. Up to date for protein transduction mostly PEI has been used as a 

polycationic carrier (75, 106-109). PEI is a highly efficient carrier but it is a polymer 

that lacks of defined, precise chemical structure and exhibits quite high toxicity. For 

this thesis a structure defined, precise oligo(ethane amino)amide carrier should be 

used. These carriers were developed recently in our lab for the delivery of siRNA and 

DNA (59). The oligo(ethane amino)amide carriers are based on natural and synthetic 

amino acids and were synthesized with solid phase supported chemistry. Because of 

their low molecular weight they exhibit low toxicity. Nevertheless they show high 
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transduction efficiency in case of nucleic acid delivery. This high transduction 

efficiency, aside of the good complexation properties and the ability to form stable 

polyplexes, might be a result of their endosome destabilizing properties. Because of 

these promising results in nucleic acid delivery, the carriers should be tested for their 

ability to transport proteins into the cytosol of living cells. 

 

2.6.3 Development of a new traceless cleavable link er for protein 

delivery 

Aside the establishment of a test system for successful protein delivery and the 

development of a new protein transduction technology, the synthesis of a linker 

designed for intracellular protein delivery was the major aim of this thesis. The new 

linker should fulfill following requirements for protein delivery. The bond between 

carrier and cargo should be stable under physiological conditions that means 

especially under serum containing conditions at pH 7.4. After uptake the linker should 

be cleaved off traceless form the cargo to release an unmodified natural protein. This 

desired feature is demonstrated in Scheme 2.4. The linker cleavage should be 

triggered by the pH drop in the endosome. At a pH of around 5 the linker should 

release the carrier from the cargo completely. Furthermore the linker system should 

allow the complete encapsulation of the protein with the carrier molecule. In recent 

years click chemistry reactions, especially the copper catalyzed 1,3-dipolar 

cycloaddition (CuAAC) and the Staudinger ligation, became useful tools for 

conjugating biomolecules (49, 135-137). Both reactions have great advantages 

compared to other linking strategies, like high efficiency and bioorthogonality. The 

new linker should enable the use of these click chemistry reactions for covalent 

modification of the cargo protein with the carrier.    
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Scheme 2.4: Illustration of the linker concept. Scheme (138) is showing the linker coupling a carrier 
over CuAAC to nlsEGFP. Furthermore all major desired properties of the new linker are displayed: 
heterobifunctionality, bioorthogonality, using click chemistry, complete encapsulation, acid lability, 
traceless cleavage.
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3 Materials 

3.1 Chemicals 

All used chemicals, unless noted otherwise, were purchased from Sigma-Aldrich and 

used without further purification. 

 

3.2 Reagents 

3.2.1 Dyes 

Dylight 488 a phosphine containing dye for copper free click chemistry coupling over 

Staudinger ligation was purchased from Thermo Fisher Scientific (Schwerte, 

Germany). Tetramethylrhodamine-5-maleimide was bought from Sigma-Aldrich 

(Munich, Germany). 

 

3.2.2 Peptides 

Cystein modified melittin (Mel) with following sequence CIGA VLKV LTTG LPAL ISWI 

KRKR QQ, in all D conformation, was ordered from IRIS biotech (Marktredwitz, 

Germany). The N-terminal cysteine was introduced as an amine and the C-terminal 

amino acid as carboxylic acid. 

 

3.2.3 Linkers 

The copper free click chemistry linkers DBCO-PEG4-maleimide and DBCO-NHS 

were purchased from Jena Bioscience (Jena, Germany). The heterobifunctional 

SMCC crosslinker was ordered from Pierce Biotechnology (Bonn, Germany). 
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3.3 Solvents 

DCM, MeOH, THF were purchased from Merck (Darmstadt, Germany). CHCl3, n-

hexane, n-heptane, DMSO, ACN, Et2O were obtained from Sigma Aldrich (Munich, 

Germany). All solvents were purified by distillation and dried before use. Water was 

used after purification and deionization. Deuterated solvents were bought from Sigma 

Aldrich. 

 

3.4 Buffers 

PBS buffer was prepared with following mixture: NaCl 137 mM, KCl 2.7 mM, 

Na2HPO4 x 2 H2O 2mM, pH 7.4. If another pH value is stated it was adjusted with 

aqueous 1M HCl or NaOH solution. 

 

3.5 Solutions 

Click solution A was freshly prepared by dissolving CuBr (1 mg, 7 µmol) in 

DMSO/tert-ButOH (70 µl, 3/1, v/v). Click solution B was prepared by dissolving 

Tris[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]amine (TBTA, 2.7 mg, 5µmol)) in 

DMSO/tert-ButOH (3/1, v/v) (100 µl). Click solution C was freshly prepared by mixing 

click solution A and click solution B (1/2, v/v). 

   

3.6 Cell culture material 

All cell culture consumables (flasks, dishes, well plates) were purchased from NUNC 

(Langenselbold, Germany) or TPP (Trasadingen, Switzerland). Growth media, as 

well as FCS, Glutamine, Penicillin/Streptomycin were ordered from Invitrogen 

(Karlsruhe, Germany). 
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3.7 Cell lines 

All cell lines were purchased from the american type culture collection (ATCC, Wesel, 

Germany). The used cell lines are listed in Table 3.1. 

 

Table 3.1: Used cell lines 

Name Description ATCC number 

HeLa human cervix adenocarcinoma cell line CCL-2 

Neuro2A murine neuroblastoma cell line CCL-131 

NIH/3T3 murine fibroblast cell line CRL-1658 

KB human nasopharyngeal epidermoid carcinoma cell 

line 

CCL-17 

 

3.8 Bacteria strains 

Chemical competent E.coli protein expression strain BL21(DE3)plysS was purchased 

from Novagen (Merck4biosciences, Darmstadt , Germany). 

E. coli strain DH5α was bought from Invitrogen (Karlsruhe, Germany) and was used 

for plasmid amplification. 

 

3.9 Nucleic acids 

The plasmid pRHGPCNA containing a gene encoding for a nuclear localization 

sequence (derived from SV 40 large T antigen) bearing nlsEGFP fusion protein was 

kindly provided by M. Cristina Cardoso (TU Darmstadt, Germany). For heterolog 

protein expression the plasmid pET 23a (+) vector from Novagen 

(Merck4biosciences, Darmstadt, Germany) was used. 
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 Primers with following base sequences were used: 

a) For nlsEGFP amplification following oligonucleotides were purchased from 

Eurofins MWG (Ebersberg, Germany): 

forward: 5´-GTTGATGAATTCCCGAAGAAGAAGCGCAAAGTA-3`;  

reverse: 5`-TCAACTAAGCTTCTTGTAAAGCTCGTCCATGCC-3`. 

 

b) For introducing the HIV-TAT PTD sequence following oligonucleotides were 

ordered from Eurofins MWG (Ebersberg, Germany) 

Sense: 

5`AGCTTGGTTATGGGCGCAAAAAACGCCGTCAGCGCCGTCGGGGCC3` 

Antisense: 

5`TCGAGGCCCCGACGGCGCTGACGGCGTTTTTTGCGCCCATAACCA 3`  

4 Methods 

4.1 General chemical procedures 

4.1.1 1HNMR and 13CNMR 

The 1H-NMR and 13CNMR spectra were recorded at room temperature using a 

JNMR-GX (400 MHz, Joel) or a JNMR-GX 500 (500 MHz) with a coupling constant of 

0.3 Hz. All spectra were recorded without TMS as internal standard and thus spectra 

were calibrated to the residual proton signal of the deuterated solvent. For the 

measurements 10-100 mg sample were used. Spectra were analyzed using the NMR 

software MestreNova (MestreLab research) or NUTS (Acron NMR). 

 

4.1.2 Mass spectroscopy 

Mass spectra were recorded on a Thermo Finnigan MAT 95 or on a Jeol MStation.  

 

4.1.3 CD spectroscopy 

nlsEGFP was diluted in phosphate buffer (50mM, pH 7.5, 1mg/ml). Spectra were 

recorded on a Jasco J810 CD and ORD spectrometer. 386-DBCO-AzMMMan-
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nlsEGFP was dialyzed against citric acid-phosphate buffer (0.1 M, pH 5) at 37°C 

overnight to cleave off the transduction oligomer 386. This was followed by another 

dialysis step against phosphate buffer (50mM, pH 7.5, 1 mg/ml) for 12 hours. The 

dialysis was performed using a 14000 MWCO dialysis membrane from Carl Roth 

(Karlsruhe, Germany). The protein was concentrated to 1 mg per ml with Amicon 

Ultra centrifugal filter units (MWCO=10,000). 

 

4.1.4 UV-Vis spectroscopy 

Protein, linker concentrations, etc. were determined by measuring UV-Vis 

absorbance at different wavelengths. For these measurements a Genesys 10 S UV-

Vis spectrophotometer (Thermo Scientific, Bonn, Germany) was used. 

 

4.1.5 Fluorescence spectroscopy 

For fluorescence spectroscopy a Varian Cary Eclipse (Darmstadt, Germany) 

fluorescence spectrophotometer was used. Proteins were diluted in PBS buffer (pH 

7.3). 

 

4.1.6 Chromatography 

4.1.6.1 HPLC 

HPLC runs were performed either on a GE Healthcare ÄKTA Basic system or on a 

Bio-Rad (München, Germany) BioLogic FPLC station. The Äkta system is built up 

from a P-900 dual-pump, a UV-900 three channel UV-detector and F-950 fraction 

collector. The system was controlled by the appropriate UNICORN software (version 

4.11). The BioLogic Workstation is containing two pumps, 6 valves, a conductivity 

meter and an external UV-detector. The system is operated by the BioLogic version 

1.3 software. A fraction collector model 2180 also from Bio-Rad was used.   
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4.1.6.2 Dry column vacuum chromatography (DCVC) 

Dry column vacuum chromatography was done as described by Pederson and 

colleagues (139).   

 

4.1.6.3 Flash Column Chromatography (FCC) 

Flash chromatography was performed as described by Still and coworkers (140). As 

stationary phase silica gel with a mean diameter between 0.035 and 0.073 mm was 

used. Column height and diameter were varied according to sample size and the 

required resolution. 

 

4.1.6.4 Thin layer chromatography (TLC) 

Silica gel coated aluminium plates were used for thin layer chromatography. 

Detection method was UV-detection at 254 nm. 

 

4.1.7 Dynamic light scattering (DLS) 

Particle size and zeta potential of the transduction shuttles was measured by 

dynamic laser-light scattering using a Zetasizer Nano ZS (Malvern Instruments, 

Worcestershire, UK). Modified proteins were measured in Hepes buffer (20mM, pH 

7.4) at a concentration of 5 mg/ml. 

 

4.2 Synthesis 

4.2.1 Synthesis of watersoluble hemicyanine alkyne dye 

The watersoluble hemicyanine dye (E)-2-(4-(bis(2-hydroxyethyl)amino)styryl)-3-

(prop-2-yn-1-yl)benzo[d]thiazol-3-ium bromide was synthesized in a very 

straightforward two step reaction from methylbenzothiazole as precursor. First step is 

a nucleophilic substitution followed by a condensation of the product with 4-N,N-

bishydroxyethyl aminobenzaldehyde. 
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Scheme 4.1: Synthesis strategy of watersoluble hemi cyanine alkyne dye. (E)-2-(4-(bis(2-
hydroxyethyl)amino)styryl)-3-(prop-2-yn-1-yl)benzo[ d]thiazol-3-ium bromide 

 

4.2.1.1 Synthesis of 2-methyl-3-prop-2-ynyl-benzoth iazol-3-ium bromide 

N

S

Br

 

This compound was prepared analogously as described elsewhere (141). Briefly: 

Methylbenzothiazole (12.0 g, 0.1 mol) was given to a solution of propargyl bromide 

(5.0 g, 34 mmol) in acetonitrile (20 mL) under vigorously stirring. Subsequently the 

reaction mixture was refluxed for 24 h. Afterwards the reaction mixture was allowed 

to cool to room temperature, and the precipitate was collected. This gave the desired 

product as a grey solid (5.8 g, 21% yield); 1H NMR(500 MHz, DMSO D6) d 8.5 (d, J 

= 8.1 Hz, 1H), 8.38 (d, J = 8.5 Hz, 1H), 7.95 (t, J = 8 Hz, 1H), 7.83 (t, J = 7.8 Hz, 1H), 

5.78 (d, J = 2.5 Hz, 2H), 3.85 (t, J = 2.5 Hz, 1H), 3.27 (s, 3H). 

 

4.2.1.2 Synthesis of 2-[2-(4-dihydroxyethylamino-ph enyl)-vinyl]-3-prop-2-ynyl-

benzothiazol-3-ium bromide 
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4-N,N-bishydroxyethyl aminobenzaldehyde (0.5 g, 2.39 mmol) and 2-methyl-3-prop-

2-ynyl-benzothiazol-3-ium bromide (641 mg, 2.39 mmol) were diluted in ethanol (20 

ml) and refluxed for 2 h. Afterwards the solvent was removed in a rotary evaporator. 

The residue was purified by DCVC (dry column vacuum chromatography). First the 

column was washed with ethylacetate/methanol (9:1, v/v) followed by a washing step 

with acetone/methanol (9/1, v/v) and elution using acetone/water (1:1, v/v). Most of 

the acetone was removed by evaporation and the residue was lyophilized. This gave 

a dark purple fluffy solid (0.86 g, 78 % yield). MS (FAB+, 8 kV) calcd for 

C22H23N2O2S [M]+ 379.50, found 379.5. 1H NMR (500 MHz, [d6]DMSO)  8.30 (d, J 

= 7.82 Hz, 1H), 8.12 (m, 2H), 7.90 (d, J = 8.71 Hz, 2H), 7.80 (t, J= 7.98 Hz, 1H), 7.68 

(m, 2H); 6.93 (d, J = 9.11 Hz, 2H), 5.77 (s, 2H), 4.90 (s, 2H), 3.72 (t, 1H), 3.62 (m, 

8H). 

 

4.2.2 Synthesis of azide hemicyanine dye 

4.2.2.1 Synthesis of propane diazide 

 

This synthesis was done after a procedure described by Ciampi et al. (142). Briefly:  

1,3-dibromopropane (5.0 g, 24.8 mmol) was diluted in DMF (80 mL). Sodium azide 

(5.0 g, 76.9 mmol) was added in one portion under argon. The reaction mixture was 

heated to 65° C and the reaction was continued for 48 h under argon. Afterwards the 

reaction mixture was cooled to room temperature and diluted with diethyl ether (200 

mL). The resulting suspension was washed with water (20 mL) and two times with 

brine (50 mL) and then dried over NaSO4. Removal of sodium sulfate by filtration and 

subsequent evaporation gave yellow oil. The crude product was further purified using 

column chromatography (silica gel) with elution by hexane to give propane diazide  

as colorless oil (2.5 g, 80,11%). 1H NMR (300 MHz, CDCl3) δ: 1.80 (q, 2H), 3.35 (t, 

4H, J = 6.5 Hz). 
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4.2.2.2 Synthesis of azide hemicyanine dye by CuAAC  

 

 

Alkyne hemicyanine dye (2-[2-(4-Dihydroxyethylamino-phenyl)-vinyl]-3-prop-2-ynyl-

benzothiazol-3-ium bromide) (25 mg, 54 µmol) was diluted in DMSO (1ml). Propane 

diazide was added in one portion (540 µmol, 110 mg). Reaction was started by 

addition of click solution C (30 µl). Preparation of click solution is described in section 

3.5. The reaction mixture was stirred 2 hours at 80° C. After cooling to room 

temperature the mixture was precipitated in MTBE (50 ml) three times. The residue 

was purified by DCVC. First the column was washed with ethylacetate/MetOH (9:1, 

v/v) followed by a washing step with acetone/methanol (9/1, v/v) and elution using 

acetone/water (1:1, v/v). Most of the acetone was removed by evaporation and the 

residue was lyophilized. This gave a dark purple fluffy solid (39.8 mg, 63 %). MS 

(FAB+, 8 kV) calcd for C25H29N8O2S [M]+ 505.52, found 505.2 . 1H NMR (500 MHz, 

[d6]DMSO)  8.30 (d, J = 7.82 Hz, 1H), 8.12 (m, 2H), 7.90 (d, J = 8.71 Hz, 2H), 7.80 (t, 

J= 7.98 Hz, 1H), 7.68 (m, 2H); 6.93 (d, J = 9.11 Hz, 2H), 6.38 (s, 2H), 4.90 (s, 2H), 

4.42 (t, 2H), 3.62 (m, 8H), 3.37 (m, 2H), 1.81 (m, 2H). 
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4.2.3 Synthesis of N-propargyl maleimide 

 

 

 

N-Propargyl maleimide was synthesized quite similar as described elsewhere (143). 

In short: A saturated aqueous solution of sodium bicarbonate (40 ml), propargylamine 

(330 µl, 4.84 mmol) was dissolved and cooled on an ice bath. Afterwards N-(methoxy 

carbonyl) maleimide (751 mg, 4.81 mmol) was added in portions over 20 min under 

vigorous stirring. This mixture was stirred for 30 min at 0° C, followed by 45 min at 

room temperature. Subsequently the product was extracted with CH2Cl2 (3 × 50 mL). 

The organic phase was dried over Na2SO4 and the crude product was purified by 

silica gel column chromatography with using EtOAc/heptane (1:2) as solvent.  

Evaporation of the solvent gave colorless oil (279 mg, 43% yield). 1H NMR (500MHz, 

CDCl3): 6.76 (s, 2H); 4.30 (d, J = 2.5 Hz, 2H); 2.22 (t, J = 2.5 Hz, 1H). 

 

4.2.4 Synthesis of N-succininimidyl-3-(2-pyridyldit hio)-propionate 

(SPDP) 

SPDP was synthesized quite similar to the method described elsewhere (144). All 

modifications are announced in the following section. 
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4.2.4.1 Synthesis of 3-(Pyridin-2ylsulfanyl)-propio nic acid 

 

 

Dithiopyridine (3.77 g, 17.11 mmol) was diluted in 30 ml EtOH and 0.4% acetic acid. 

A solution of 3-mercaptopropionic acid (0.9 g, 8.48 mmol, 737 µl) in 20 ml EtOH and 

0.4 % acetic acid was added dropwise over one hour. 2 hours later the solvent was 

removed on an evaporator. The resulting oil was purified by DCVC using basic 

aluminia as stationary phase (diameter 4 cm, h=7 cm). After the column was 

preconditioned with CHCl3 and loaded, the crude product was washed with 

CHCl3/MeOH 8/2 until the collected fractions were colorless. Afterwards the product 

could be eluted by addition of 4% acetic acid to the former solvent mixture. Fractions 

were collected and the solvent was removed by evaporation (1.67 g, 91%). 1H NMR 

(500 MHz, [CD3OD) 8.40 (ddd, J = 4.9/1.8/0.9 Hz, 1H), 7.77-7.89 (m, 2H), 7.20-7.26 

(m, 1H); 3.04 (t, J = 6.9 Hz, 2H), 2.71 (t, J= 6.8 Hz, 2H). 

 

4.2.4.2 Synthesis of SPDP 

 

 

3-(Pyridin-2ylsulfanyl)-propionic acid (1.643 g, 7.634 mmol) was dissolved in dry 

CH2Cl2. N-hydroxysuccinimide (1.0 g, 8.68 mmol) was added in one portion. After the 

suspension was completely dissolved,  N,N′-Dicyclohexylcarbodiimide (DCC) (1.7505 

g, 8.688 mmol) was added. 4 hours later the side product Dicyclohexylurea (DCU) 

was filtered off and the solvent was removed by evaporation. The yellowish solid was 
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purified by DCVC (diameter 4 cm, h=7 cm) using silica gel as stationary phase and a 

gradient of 0-15% MeOH in CH3Cl (50 ml fractions). After recrystallization in EtOH 

the pure product, a white solid was obtained (1.48 g, 62%). 1H NMR (500 MHz, 

[CDCl3) 8.48-8.51 (ddd, J = 4.7/1.3/1.2 Hz, 1H), 7.64-7.69 (m, 2H), 7.09-7.14 (m, 

1H); 3.09 -3.15 (m, 2H), 3.04 -3.09 (m, 2H), 2.84 (s, 4H). 

 

4.2.5 Synthesis of MAM linker  

 

The synthesis of MAM linker (6-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)-N-(4-(((2,5-

dioxo-2,5-dihydrofuran-3-yl)methyl)thio)phenyl)hexanamide) was done according to 

the method of Blättler et al. (134).  
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4.2.6 Synthesis of AzMMMan linker 

  

The azidomethyl-methylmaleic anhydride linker (AzMMMan) was synthesized from 

dimethylmaleic anhydride as precursor very straightforward in two simple reaction 

steps: a) radical substitution with N-bromosuccinimide resulting in 2, followed by b) 

Finkelstein reaction with sodium azide. 

 

4.2.6.1 Synthesis of 3-(Bromomethyl)-4-methyl-2,5-f urandione 

 

This compound was synthesized according to the procedure described elsewhere 

(145) with minor modifications. Dimethylmaleic anhydride (5.04 g, 50 mmol), N-

bromosuccinimide (14.24 g, 100 mmol), and benzoyl peroxide (200 mg, 0.83 mmol) 

where dissolved in carbon tetrachloride (250 mL). This mixture was gently refluxed 

for 5 h in a 500 mL round-bottom flask. Afterwards the reaction mixture was allowed 

to cool to room temperature and an additional amount of benzoyl peroxide (200 mg, 

0.83 mmol) was added. The refluxing was continued 5 h more. After cooling to room 

temperature the residue was filtered and washed two times with carbontetrachloride 

(25 ml). Subsequently the organic phase was washed two times with water (100 mL) 

and brine (100 mL). The organic layer was dried over Na2SO4 and concentrated in 

vacuo to result in yellow oil. This oil was first purified by chromatography on a silica 

gel column and eluted with a mixture of petroleum ether/ethyl acetate (8:2). Finally 
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the residue was distilled under high vacuum (120-125° C, 2 mm) to get pure product 

(3.9 g, 56% yield).1H NMR (400 MHz, CDCl3) 4.17 (s 2H), 2.17 (s 3H). 

 

4.2.6.2 Synthesis of 3-(Azidomethyl)-4-methyl-2,5-f urandione 

 

3-(Bromomethyl)-4-methyl-2,5-furandione (310.5 mg, 1.5 mmol) was dissolved in 

acetone (10 ml). Sodium azide (97.5 mg, 1.5 mmol) was added in one portion. The 

suspension was stirred over night at room temperature. After filtering the solvent was 

evaporated. The remaining oil was dissolved in ethyl acetate (20 ml) and washed 

with water (20 ml). Afterwards the organic layer was washed with 20 ml brine and 

dried over Na2SO4. Concentration in vacuo, followed by chromatographic purification 

over a silica gel column using hexane/ethyl acetate (7:3) as mobile phase gave pure 

product (220 mg, yield 88%).1H NMR (500 MHz ,CDCl3) 4.29 (q, J = 1.01 Hz, 2H), 

2.17 (t, J = 1.01 Hz 3H). 13C NMR (100 MHz, [d6] acetone) δ 9.09, 43.15, 137.23, 

144.51, 165.24, 165.93. IR νmax 2101, 1759, 1679 cm-1. MS (70 eV, DEI+) calcd for 

C6H5N3O3 [M]+ 167.12, found 166.99. 

 

4.2.7 Synthesis of PentyneMMan linker 

 

The 3-methyl-4-(pent-4-yn-1-yl)furan-2,5-dione linker (PentyneMMan) was 

synthesized from 3-(Bromomethyl)-4-methyl-2,5-furandione anhydride by a Grignard 

reaction with 3-butynyl-1-magnesium bromide. 
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4.2.7.1 Synthesis of 3-butynyl-1-magnesium bromide  

 

This reaction was done analog as described elsewhere (146). Briefly: First the 

reaction flask was charged with ZnBr2 (120 mg, 4 mol %, 0.53 mmol) and Mg (650 

mg). Afterwards the flask was heated under vacuum and flushed with argon. Now 

diethylether (10 mL) and propargyl bromide (1.0 mL, 13 mmol) in Et2O (8 mL) were 

added dropwise over a period of 40 minutes. Subsequently after the addition, 

exothermic reaction started and the mixture was cooled to 0° C (ice water). The 

mixture was stirred at the same temperature for further 1 h. This gave a greenish 

supernatant and pulverized Mg precipitates. The concentration of the supernatant 

was 0.52 M. This was determined by titration using methyl orange as an indicator 

(74% yield). 

 

4.2.7.2 Synthesis of 3-methyl-4-pentynyl-furan-2,5- dion 

 

3-(Bromomethyl)-4-methyl-2,5-furandione anhydride (410 mg, 2 mmol) and CuJ (38 

mg, 0.2 mmol) were dissolved in Et2O (10 mL). Now HMPA (4 ml) was added. The 

reaction flasc was flushed with argon. Reaction was started by dropping in a solution 

of 3-butynyl-1-magnesium bromide (0.52 M) from the reaction described above. 

Reaction was continued for 15 minutes over an ice bath. Now the reaction mixture 

was allowed to warm to room temperature and stirring was continued overnight. The 

resulting pink suspension was diluted with Et2O (15 mL). Subsequently sulphuric acid 

(4 M, 10 ml) were added. The precipitations dissolve and the solution is turning 
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brown. The water phase was extracted three times with Et2O (15 mL). Afterwards the 

combined organic phases were washed two times with water (20 mL) and then with 

brine (20 ml). Now the organic phase was dried with Na2SO4 filtered and solvent was 

removed by evaporation. The crude product purified over DCVC (diameter 4 cm, h=7 

cm) with a step gradient from 0-50% EtAc in n-hexane (2.5 % steps, 20 ml fractions). 

After the solvent was removed colorless oil was obtained (113 mg, 32 %). TLC: Rf = 

0.44 (n-heptane/EtAc =3/1). 1H NMR (500 MHz, CDCl3) 2.56 (m, 2H), 2.19 (m, 2H), 

2.05 (s, 3H), 1.962 (m, 2H), 1.77 (m, 2H) 13C NMR (100 MHz, CDCl3) δ 9.56, 18.023, 

23.20, 25.86, 69.85, 82.66, 141.54, 143.52, 165.68, 165.99. IR νmax 3291, 2937, 

2118, 1762, 1699, 1624 cm-1. MS (70 eV, DCI+) calcd for C10H10O3 [M]+ 178.18, 

found 179.1. 

 

4.3 Cloning, heterologous expression and purificati on of 

nlsEGFP and HIV-TAT-nlsEGFP 

The plasmid containing a gene for EGFP, tagged with a nuclear localization 

sequence (derived from SV 40 large T antigen), was kindly provided by M. Cristina 

Cardoso (TU Darmstadt, Germany). The coding region of the plasmid was amplified 

with PCR reaction using following primers:  

forward: 5´-GTTGATGAATTCCCGAAGAAGAAGCGCAAAGTA-3`;  

reverse: 5`-TCAACTAAGCTTCTTGTAAAGCTCGTCCATGCC-3`. 

This gene was cloned into Novagen pET 23a (+) vector (Merck4biosciences, 

Darmstadt, Germany).  By the common calciumchloride method, this plasmid was 

transformed into E. coli BL21(DE3)plysS (Novagen, Merck4biosciences, Darmstadt , 

Germany). Under constant shaking in TB medium (37° C), the cells were grown to an 

optical density of 0.75 (600nm). Protein expression was induced with isopropyl β-D-

1-thiogalactopyranoside (Biomol, Hamburg, Germany) (final concentration 1mM) and 

expression was continued for another 16 hours. After ultrasonic cell lysis the 

nlsEGFP was purified by nickel chromatography using a gradient from binding buffer 

(50 mM sodium hydrogenphosphate, 300 mM sodium chloride, 20 mM imidazole) to 

elution buffer (50 mM sodium hydrogenphosphate, 500 mM sodium chloride, 250 mM 

imidazole). The protein was dialysed over night at 4° C against PBS buffer (pH 7.3) 
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using a dialysis membrane (14000 MWCO) from Carl Roth (Karlsruhe, Germany). 

Finally the nlsEGFP was concentrated with Amicon Ultra centrifugal filter units 

(MWCO 10,000). Transformation, protein expression and purification of the PTD 

bearing homolog were done in the same way. Following primers encoding for HIV-

TAT sequence were annealed and cloned into the vector described above.  

Sense: 5`AGCTTGGTTATGGGCGCAAAAAACGCCGTCAGCGCCGTCGGGGCC3` 

Antisense: 5`TCGAGGCCCCGACGGCGCTGACGGCGTTTTTTGCGCCCATAACCA 

3` 

 

4.4 Modification of proteins with crosslinkers 

4.4.1 Modification with SPDP 

4.4.1.1 Modification of nlsEGFP with SPDP 

nlsEGFP (3 mg, 0.095 µmol) was diluted in PBS buffer (1 ml; pH 7.3, 1 mM EDTA). 

Then SPDP (Succinimidyl 3-(2-pyridyldithio) propionate) was dissolved in DMSO (50 

µl; 1.14 µmol) and added to above protein solution. After incubation (2 h; 20°C), not 

conjugated linker was removed by size exclusion chromatography (Sephadex G25 

superfine) using PBS buffer (pH 7.3, 1 mM EDTA) as mobile phase. The modified 

protein was concentrated with Amicon Ultra centrifugal filter units (MWCO=10,000; 

Millipore (Billerica, MA)). Protein concentration was quantified by measurement of the 

absorbance at a wavelength of 488 nm using an extinction coefficient of 55000 M-

1cm-1. The ratio of linker to protein could be calculated, after reducing a sample of the 

modified protein with DTT (dithiothreitol) and determination of the change in 

absorbance (343 nm; 8080 M-1cm-1). 

 

4.4.1.2 Modification of ß-galactosidase with SPDP 

ß-galactosidase (3 mg, 0.026 µmol) was diluted in PBS buffer (1 mL; pH 7.3, 1 mM 

EDTA). Then SPDP (succinimidyl 3-(2-pyridyldithio)propionate) was dissolved in 

DMSO (50 µl; 0.775 µmol) and added to above protein solution (30-fold molar excess 

compared to ß-galactosidase). After incubation (2 h; 20° C), unconjugated linker was 

removed by size exclusion chromatography (Sephadex G25 superfine) using PBS 
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buffer (pH 7.3, 1 mM EDTA) as mobile phase. The modified protein was concentrated 

with Amicon Ultra centrifugal filter units (MWCO 10,000; Millipore (Billerica, MA)). 

The protein concentration was determined at 280 nm using a molar extinction 

coefficient of 210000 M-1cm-1. The ratio of linker to protein could be calculated, after 

reducing a sample of the modified protein with DTT (dithiothreitol) and determination 

of the change in absorbance (343 nm; 8080 M-1cm-1).  

 

4.4.2 Modification of nlsEGFP with succinimidyl-4-( N-

maleimidomethyl) cyclohexane-1-carboxylate (SMCC) 

nlsEGFP (2 mg, 0.063 µmol) was diluted in PBS buffer (1 ml, pH 7.3) and SMCC (0.3 

mg, 0.951 µmol) dissolved in DMSO (50 µl) was added. After an incubation time of 2 

hours at room temperature, the reaction mixture was passed through a Sephadex G 

25 superfine size exclusion column. The purified protein was concentrated with 

Amicon Ultra centrifugal filter units (MWCO 10,000). 

 

 

4.4.3 Modification of nlsEGFP with MAM linker 

nlsEGFP (5 mg, 0.158 µmol) was dissolved in Hepps Puffer (950 µl, 0.5 M, pH 9.0). 

Afterwards MAM linker (5 mg, 11.66 µmol) was diluted in DMSO (50 µl) and dropped 

slowly to the protein solution. Incubation (2 h) under constant stirring (20° C) was 

followed by removal of non-coupled linker. This was performed by size exclusion 

chromatography using PBS buffer (pH 8.0) as mobile phase. The modified protein 

was concentrated with Amicon Ultra centrifugal filter units (MWCO 10,000; Millipore 

(Billerica, MA)). The concentration of the modified nlsEGFP was quantified by 

measuring the absorbance (488 nm) using an extinction coefficient of 55000 M-1cm-1. 

 

4.4.4 Modification of HSA with PentyneMMan linker 

Human serum albumin (5 mg, 0.075 µmol) was dissolved in 500 µl Hepps buffer (0.5 

M, pH 9.0). Then PentyneMMan linker (5 mg, 0.028 mmol) was diluted in acetonitrile 
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(50 µl) and slowly dropped into the protein solution. After incubation for 2 h under 

constant stirring at room temperature not conjugated linker was removed by size 

exclusion chromatography using PBS buffer (pH 8.0) as mobile phase. The modified 

protein was concentrated with Amicon Ultra centrifugal filter units (MWCO 10,000; 

Millipore (Billerica, MA)). The concentration of the modified HSA was quantified by 

measurement the absorbance at a wavelength of 280 nm using an extinction 

coefficient of 41440 M-1cm-1. 

 

4.4.5 Modification with AzMMMan linker 

4.4.5.1 Modification of Melittin 

Melittin peptide (2 mg, 2893.6 g mol-1, 0.691 µmol) was dissolved in a mixture of 

acetonitrile and Hepps buffer (0.5 M, pH 9.0) (1/2 v/v, 1 ml). Immediately after 

hydrolysis, N-ethylmaleimide (1 µmol, 0.125 mg) dissolved in acetonitrile (50 µl) was 

added. After 10 minutes at room temperature AzMMMAn crosslinker (7.5 mg, 45 

µmol) was added and aggitated for 2 hours at 20° C. The reaction buffer was diluted 

in PBS buffer (add 5 ml, pH 8.5) and concentrated via ultrafiltration (Vivaspin2, 

Vivascience, Hannover, Germany MWCO 1000).  Thereafter the reaction mixture 

was passed over a SEC G25 size exclusion column using 2.5 mM ammonium 

carbonate buffer (pH adjusted to 8.0) as eluent. The peptide containing fraction was 

lyophylised. 

 

4.4.5.2 Modification of HSA 

Human serum albumin (5 mg, 0.075 µmol) was dissolved in 500 µl Hepps buffer (0.5 

M, pH=9.0). Then AzMMMan (5 mg, 0.03 mmol) was diluted in acetonitrile (50 µl) and 

slowly, dropped into the protein solution. After incubation for 2 h under constant 

stirring at room temperature not conjugated linker was removed by size exclusion 

chromatography using PBS buffer (pH 8.0) as mobile phase. The modified protein 

was concentrated with Amicon Ultra centrifugal filter units (MWCO 10,000; Millipore 

(Billerica, MA)). The concentration of the modified HSA was quantified by 

measurement the absorbance at a wavelength of 280 nm using an extinction 

coefficient of 41440 M-1cm-1. 
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4.4.5.3 Modification of nlsEGFP 

The conjugation was performed analogous to the method described above for the 

modification of HSA. Briefly: nlsEGFP 5 mg (0.158 µmol) was dissolved in Hepps 

Puffer (950 µl, 0.5 M, pH 9.0). Afterwards AzMMMan linker (5 mg, 0.03 mmol) was 

diluted in acetonitrile (50 µl) and dropped slowly to the protein solution. Incubation (2 

h) under constant stirring (20° C) was followed by removal of non-coupled linker. This 

was performed by size exclusion chromatography using PBS buffer (pH 8.0) as 

mobile phase. The modified protein was concentrated with Amicon Ultra centrifugal 

filter units (MWCO 10,000; Millipore (Billerica, MA)). The concentration of the 

modified nlsEGFP was quantified by measuring the absorbance (λ 488 nm) using an 

extinction coefficient of 55000 M-1cm-1. 

 

4.4.5.4 Modification of ß-galactosidase  

The conjugation was performed very similar to the method described above for the 

modification of HSA. Briefly: ß-Gal 5 mg (0.043 µmol) was dissolved in Hepps Puffer 

(975 µl, 0.25 M, pH 8.5). Afterwards AzMMMan linker 3 (5 mg, 0.03 mmol) was 

diluted in acetonitrile (25 µl) and dropped slowly to the protein solution. Incubation (2 

h) under constant stirring (20° C) was followed by removal of non-coupled linker. This 

was performed by size exclusion chromatography using PBS buffer (pH 8.0) as 

mobile phase. The modified protein was concentrated with Amicon Ultra centrifugal 

filter units (MWCO 10,000; Millipore (Billerica, MA)). The concentration of the 

modified ß-Gal was quantified by measuring the absorbance (λ 280 nm) using an 

extinction coefficient of 210000 M-1cm-1. 

 

4.5 Coupling of carriers, dyes and PEG to the prote ins 

4.5.1 Coupling of G3 PPI to nlsEGFP via EDC 

G3 PPI (50 mg, 0.03 mmol) was diluted in H2O (1ml). After complete dissolution pH 

was adjusted to 5.0 with water diluted hydrochloric acid (1 M). nlsEGFP (1 mg) 

diluted in 100 µl PBS buffer was added. The reaction was started by the addition of 
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EDC (N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride, final 

concentration 0.1 mg/ml) and continued under constant stirring at room temperature 

for 16 hours. The dendrimer modified nlsEGFP was purified over size exclusion 

chromatography using PBS buffer (pH 7.4) as mobile phase. Afterwards the product 

was concentrated using Amicon Ultra centrifugal filter units (MWCO 10,000). 

 

4.5.2 Coupling of G3 PPI to nlsEGFPx5SPDP via a red ucible 

disulfide bond 

G3 PPI was diluted in PBS buffer (10 mg, 6 µmol, 1 ml). pH was adjusted to 7.4 with 

water diluted hydrochloric acid (1 M). SPDP (8 µmol) diluted in 100 µl DMSO was 

added in one portion. After reaction for 2 hours at room temperature the protected 

thiol group was reduced by the addition of DTT (0.01 mmol, 1.5 mg) and further 

stirring for 30 minutes. The reaction product was purified over size exclusion 

chromatography using 0.01 M HCl as mobile phase and subsequently lyophylized. 

SPDP modified nlsEGFP (1 mg, 0.0317 µmol) was diluted in Hepps buffer (1 ml, 0.5 

M pH 8.0) and 10-fold molar excess of thiol bearing G3 PPI dendrimer (compared to 

covalently bound linker) (0.32 µmol, 0.54 mg) was added and reacted for one hour. 

The reaction product was purified over SEC using PBS buffer (pH 7.4) as mobile 

phase. 

 

4.5.3 Coupling of 386 to nlsEGFPx5SPDP 

SPDP modified nlsEGFP (1 mg, 0.0317 µmol) was diluted in Hepps buffer (1 ml, 0.5 

M pH 8.5) and 2-fold molar excess of oligomer 386 (compared to covalently bound 

linker) (0.32 µmol, 1.95 mg, 39 µl) which was pre-dissolved in water (50 mg/ml), was 

added for the modification of nlsEGFP. Thereafter pH was adjusted to 7.5 with 

aqueous HCl (1 M). The product was purified, after 1 hour incubation (20° C) by 

Amicon Ultra centrifugal filter units (MWCO 10,000; ×3 washing steps with PBS 

buffer, 1 mM EDTA, pH 7.3).  
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4.5.4 Coupling of 386 to ß-galactosidasex8SPDP 

SPDP modified ß-galactosidase (1 mg,  0.0086 µmol) was diluted in Hepps buffer (1 

ml, 0.5 M pH 8.5) and 5-fold molar excess of oligomer 386 (compared to covalently 

bound linker) (0.34 µmol, 2.1 mg, 42 µl) which was pre-dissolved in water (50 mg/ml), 

was added for the modification of nlsEGFP. Thereafter pH was adjusted to 7.5 with 

aqueous HCl (1 M). The product was purified, after 1 hour incubation (20° C) by 

Amicon Ultra centrifugal filter units (MWCO 10,000; ×3 washing steps with PBS 

buffer, 1 mM EDTA, pH 7.3). 

 

4.5.5 Coupling of 386 to SMCC-nlsEGFP 

SMCC modified nlsEGFP (1 mg, 0.032µmol) was diluted in Hepps buffer (1 ml, 0.5 M 

pH 8.5). Then a dilute aqueous solution (30 µl, 50 mg/ml) of oligomer 386 (Mw 6165.9 

gmol-1) was added (0.24 µmol). The pH was adjusted to 7.5 with aqueous HCl (1 M). 

After incubation for 1 hour at room temperature the product was isolated by Amicon 

Ultra centrifugal filter units (MWCO 10,000) (×2 washing steps with PBS buffer pH 

7.3).  

 

4.5.6 Coupling of 386 to AzMMMan-nlsEGFP 

Oligomer 386 (1.5 mg, 0.24 µmol, containing within the sequence three mol 

equivalent cysteine mercapto groups) was diluted in Hepps buffer (1 ml, 0.5 M, pH 

8.5). Subsequently dibenzylcyclooctyne-PEG4-maleimide (0.49 mg, 0.72 µmol) 

diluted in DMSO (100 µl) was added. Afterwards the pH was adjusted to 8.0. This 

mixture was given in one portion to AzMMMan-nlsEGFP (1 mg, 0.032 µmol) diluted 

in Hepps buffer (1 ml, 0.5 M, pH 8.0). After 4 hours at 20°C non-conjugated polymer 

was removed by centrifugation steps with Amicon Ultra centrifugal filter units (MWCO 

10,000) (×2 washing steps with PBS buffer pH 7.3). 

 

4.5.7 Coupling of TMR labelled-386 to AzMMMan-nlsEG FP 

386 (20 mg, 3.244 µmol) was dissolved in DMSO (400 µl) and TMRM (1.56 mg, 

3.244 µmol), dissolved in DMSO (400 µl) was added. After one hour at room 
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temperature, dibenzylcyclooctyne-PEG4-maleimide (4.38 mg, 6.48 µmol) diluted in 

DMSO (200 µl) was added and stirred for one hour. This was dropped slowly under 

stirring to AzMMMan-nlsEGFP (10 mg diluted in 10 ml 0.5 M Hepps buffer pH 8.5). 

After 4 hours at 20° C non-conjugated polymer was removed by centrifugation steps 

with Amicon Ultra centrifugal filter units (MWCO 10,000) (×2 washing steps with PBS 

buffer pH 7.3).  

 

4.5.8 Coupling of 386 to AzMMMan-ß-galactosidase 

Oligomer 386 (1.5 mg, 0.24 µmol, containing within the sequence three mol 

equivalent cysteine mercapto groups) was diluted in Hepps buffer (1 ml, 0.5 M, pH 

8.5). Subsequently DBCO-PEG4-maleimide (0.49 mg, 0.72 µmol) diluted in DMSO 

(100 µl) was added. Afterwards the pH was adjusted to 8.0. This mixture was given in 

one portion to AzMMMan-ß-Gal (1 mg, 0.0086 µmol) diluted in Hepps buffer (1 ml, 

0.5 M, pH 8.0). After 4 hours at 20° C non-conjugated polymer was removed by 

centrifugation steps with Amicon Ultra centrifugal filter units (MWCO 10,000) (×2 

washing steps with PBS buffer pH 7.3). 

 

4.5.9 Coupling of poly(ethylene glycol) (PEG) 

4.5.9.1 Coupling of PEG 5000 to AzMMMan-nlsEGFP 

Poly(ethylene glycol) methyl ether thiol (average Mw 5000 g/mol, 2 mg, 0.4 µmol) was 

dissolved in PBS buffer (80 µl, pH 8,0). Subsequently N-propargyl maleimide (0.4 

µmol) diluted in acetonitrile (20 µl) was added. This mixture was dropped into 

AzMMMan-HSA (0.5 mg, 7.5 nmol) diluted in PBS (900 µl, pH 8.0). The click reaction 

was initiated by adding click solution C (30 µl). Click solution C was freshly prepared 

as described in section 3.5.  After incubation for 3 h at 20° C the product was purified 

via ultrafiltration (Amicon Ultra centrifugal filter units (MWCO 10,000), ×2 washing 

steps with PBS buffer pH 8.0). 
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4.5.9.2 Coupling of TMR labelled PEG to AzMMMan-nls EGFP 

PEG dithiol (Mw 8000, 10 mg, 1.25 µmol) was dissolved in DMSO (800 µl) and  

Tetramethylrhodamine-5-maleimide (TMRM) (0.6 mg, 1.25 µmol), dissolved in DMSO 

(100 µl) was added. After one hour at room temperature, N-propargyl maleimide 

(0.17 mg, 1.25 µmol) diluted in DMSO (100 µl) was added and stirred for one hour. 

200 µl of this solution was dropped slowly under stirring to AzMMMan-HSA (1 mg, 

0.015 mol, diluted in 1.8 ml PBS buffer pH 8.0). The click reaction was started by 

addition of click reaction c (30 µl). Click solution C was freshly prepared as described 

in the section buffers and solutions. After 4 hours at 20° C, non-conjugated PEG 

polymer and dye were removed by centrifugation steps with Amicon Ultra centrifugal 

filter units (MWCO 10,000) (×2 washing steps with PBS buffer pH 7.3), yielding the 

TMR-PEG-HSA conjugate. 

 

4.5.10 Coupling of alkyne hemicyanine dye to AzMMMa n-HSA 

AzMMMan-HSA (5 mg, 0.075µM) was diluted in PBS buffer (1.5 ml, pH 8.0). Alkyne 

dye (0.375 mg, 0.99 µmol) was diluted in DMSO (50 µl) and dropped into the protein 

solution. Reaction was started by addition of click solution C (30 µl). Click solution C 

was freshly prepared as described in the section buffers and solutions. After 3 h of 

incubation at 20°  C the reaction batch was purified with Amicon Ultra centrifugal filter 

units (MWCO 10,000) (two washing steps with PBS buffer pH 8.0), followed by an 

additional purification step over size exclusion chromatography using PBS buffer (pH 

8.0) as mobile phase. 

 

4.5.11 Coupling of phosphine dye DyLight 488 to AzM MMan-HSA 

DyLight 488, a phosphine containing dye (Thermo Fisher Scientific, Germany) (0.1 

mg, 0.09 µmol) was dissolved in DMSO (20 µl). This was added to AzMMMan-HSA 

(2 mg, 0.03 µmol, diluted in 230 µl PBS buffer pH 8.5) resulting in an end 

concentration of 8 mg protein/ml. After 4 h incubation at 37° C the labeled HSA was 

purified over SEC (G25 superfine) with PBS buffer (pH 8.5) as eluent. 
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4.5.12 Coupling of azide dye to PentyneMMan-HSA 

PentyneMMan-HSA (5 mg, 0.075 µM) was diluted in PBS buffer (1.5 ml, pH 8.0). 

Azide dye (0.375 mg, 0.64 µmol) was diluted in DMSO (50 µl) and dropped into the 

protein solution. Reaction was started by addition of click solution C (30 µl). Click 

solution C was freshly prepared as described in the section buffers and solutions. 

After 3 h of incubation at 20° C the reaction batch was purified with Amicon Ultra 

centrifugal filter units (MWCO 10,000) (two washing steps with PBS buffer pH 8.0), 

followed by an additional purification step over size exclusion chromatography using 

PBS buffer (pH 8.0) as mobile phase. 

 

4.5.13 Coupling of folic acid and melittin to AzMMM an-EGFP 

 

Scheme 4.2: Synthesis of a polycation-free protein transduction shuttle.  

Folic acid-PEG-lysine (5 mg, 2.9 µmol) was diluted in 400 µl of a 1/1 mixture of 

Hepps (0.25 M, pH 8.5) and DMSO. After dissolution DBCO-NHS ester (2.9 µmol, 
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1.25 mg) diluted in DMSO (100 µl) was added. The reaction was continued for 2 

hours and the mixture was purified by dialysis against PBS buffer (pH 8.5) over night. 

A dialysis membrane with a MWCO of 1000 Da (Carl Roth (Karlsruhe, Germany)) 

was used. Afterwards it was filed up to 1ml with PBS (pH 8.5). Melittin (0.5 mg, 0.169 

µmol) was diluted in PBS containing 30% acetonitrile (200µl). Now 

dibenzylcyclooctyne-PEG4-maleimide (0.11 mg, 0.169 µmol) diluted in DMSO (50 µl) 

was added dropwise and stirred for 30 minutes. Meanwhile AzMMMan-nlsEGFP (1 

mg, 0.032 µmol) was diluted in PBS buffer (1 ml, pH 8.5). To the protein solution was 

added a threefold surplus of the folic acid conjugate ( 0.1 µmol, 35 µl) and reacted for 

two hours at room temperature. Thereafter a 5 fold excess of the melittin conjugate 

was added (0.16 µmol, 236 µl) and reaction was continued for another two hours. 

Later the modified protein was purified over size exclusion chromatography SEC G25 

superfine with PBS buffer (pH 8.5) as eluent. 

 

4.5.14 Coupling of transduction oligomer 71 to MAM- EGFP 

MAM modified nlsEGFP (1 mg, 0.032 µmol) was diluted in Hepps buffer (1 ml, 0.5M 

pH 8.5). Then a dilute aqueous solution of transduction oligomer 72 (Mw 2247.25 

gmol-1) was added (0.064 µmol). The pH was adjusted to 7.5 with aqueous HCl (1 

M). After incubation for 1 hour at room temperature, precipitated protein was 

separated by centrifugation. The supernatant was purified by dialysis against PBS 

buffer (pH 7.4, MWCO 15000 Da) over night. 

 

4.6 Characterization of new acid labile crosslinker s 

4.6.1 Determination of the degree of protein modifi cation  

Samples of HSA (Mw 66478 g mol-1, 5 mg, 0.075µM) were reacted with the azido-

dimethylmaleic anhydride linker (compound 3, Scheme 5.8) as described above. But 

this time varying amounts of AzMMMan diluted in acetonitrile (50 µl) were added 

(end concentrations of 2.0, 1.8, 1.6, 1.4, 1.2, 1.0, 0.8, 0.6, 0.4, 0.2 mM). After 

purification the AzMMMan modified HSA (compound 4, Scheme 5.8) was reacted 

with an excess of the water soluble alkyne dye (0.375 mg, 0.99 µmol) as described 

above to result in compound 7 (Scheme 5.8). The amount of AzMMMan groups 
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incorporated in HSA could be determined by quantifying the amount of dye coupled 

to the protein. This was done by following procedure. A sample of the labeled HSA 

was taken and the dye was cleaved off from the protein by incubation in an equal 

volume acetate buffer (0.5 M, pH 3.0) for 5 hours at 37° C. Thereafter the solution 

was neutralized with Tris buffer (1 M, pH 9.0) and the absorbance of the dye was 

measured at a wavelength of 530 nm (ε 35000 M-1 cm-1). After purification over a size 

exclusion column with PBS (pH 7.3) as eluent, the protein concentration was 

determined by measuring the HSA absorbance at 280 nm using an extinction 

coefficient of 41440 M-1cm-1.  

 

4.6.2 Determination of the acid catalyzed release o f linker from the 

protein 

This experiment was done similar to the method described above for the 

determination of AzMMMAn groups incorporated into HSA. Dye labelled HSA 

(compound 7, Scheme 5.8) was acidified to the required pH with acetic acid and 

incubated in the same volume of citric acid-phosphate (0.1 M) buffer. Thus samples 

having final pH values of 8.5, 7.3, 6.0, 5.0 and 4.0 were obtained. These samples 

were incubated at 37° C. At different time points samples were withdrawn. The 

amount of released dye was determined, after purification over a size exclusion 

column, by measuring the absorbance of the dye still coupled to the protein. For the 

comparative release between dye coupled via Staudinger Ligation and dye linked via 

CuAAc the incubation was done at 20° C for 16 h. The amount of Dylight was 

determined using an extinction coefficient of 70000 M-1cm-1 at a wavelength of 493 

nm. 

 

4.6.3 Serum stability assay 

For the serum stability assay experiments were done following the same procedure 

as described above in 4.6.2. After incubation against PBS buffer (pH 7.4) containing 

30% fetal bovine serum at 37 °C for different time intervals samples were withdrawn 

purified and analyzed. Each experiment was done in triplicates. 
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4.6.4 Release of PEG from HSA conjugate  

Polyethylene glycol modified HSA (compound 8, Scheme 5.8) was dialyzed against 

citric acid-phosphate buffers of different pH values (0.1 M, pH: 8.5, 7.3, 6.0, 5.0, 4.0) 

for 16 hours at 37° C using a 14000 MWCO dialysis membrane from Carl Roth 

(Karlsruhe, Germany). Afterwards the solutions were neutralised using sodium 

hydroxide (1 M). Samples of protein (about 20 µg) were loaded on a 12.5% SDS-

PAGE gel. The gel ran for 2 hours at 160 V. After electrophoresis the gel was stained 

with comassie solution (45/45/10 water/methanol/acetic acid and 0.5% comassie 

brilliant blue G250). Then the gel was washed several times with an aqueous solution 

of acetic acid (7.5% v/v) and ethanol (20% v/v). 

 

4.6.5 Release kinetics of TMR-labeled PEG from HSA conjugate  

To determine the detailed release kinetics, PEG was labeled with 

Tetramethylrhodamine-5-maleimide (TMRM). Briefly: PEG dithiol (Mw 8000, 10 mg, 

1.25 µmol) was dissolved in DMSO (800 µl) and TMRM (0.6 mg, 1.25 µmol), 

dissolved in DMSO (100 µl) was added. After one hour at room temperature, N-

propargyl maleimide (0.17 mg, 1.25 µmol) diluted in DMSO (100 µl) was added and 

stirred for one hour. 200 µl of this solution was dropped slowly under stirring to 

AzMMMan-HSA (1 mg, 0.015 mol, diluted in 1.8 ml PBS buffer, pH 8.0). The click 

reaction was started by addition of click reaction C (30 µl). Click solution C was 

freshly prepared as described in section 3.5. After 4 hours at 20° C, non-conjugated 

PEG polymer and dye were removed by centrifugation steps with Amicon Ultra 

centrifugal filter units (MWCO 10,000) (×2 washing steps with PBS buffer pH 7.3), 

yielding the TMR-PEG-HSA conjugate. The release kinetic experiment with this 

conjugate was performed as described above in section 4.6.2 (release of alkyne dye 

from conjugate). Absorption was measured at a wavelength of 543 nm. 
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4.6.6 Acid catalyzed release of nlsEGFP from 386-DB CO -

AzMMMan-nlsEGFP 

4.6.6.1 Qualitative release 

Samples of 386-DBCO-AzMMMan-nlsEGFP (compound 9, Scheme 5.8) were 

acidified to pH 5 by dialysis against citric acid-phosphate buffer (0.1 M, pH 5) at 37° 

C overnight. The dialysis was performed using a 14000 MWCO dialysis membrane 

from Carl Roth (Karlsruhe, Germany). After that time the protein solution was 

neutralized using Tris buffer (1 M, pH 9.0). Afterwards protein samples (about 20 µg) 

were loaded on a SDS-PAGE gel (12.5%) and run at 160 V for 2 hours. After 

electrophoresis the gel was stained with comassie solution (45/45/10 

water/methanol/acetic acid, v/v/v, and 0.5% w/v comassie brilliant blue G250). Then 

the gel was washed several times with an aqueous solution of acetic acid (7.5% v/v) 

and ethanol (20% v/v). 

 

4.6.6.2 Release kinetics 

To determine the full release kinetic of 386-AzMMMan-nlsEGFP conjugates 

(compound 9, Scheme 5.8) the oligomer 386 was labeled with one equivalent 

tetramethylrhodamine-5-maleimide (TMRM) before coupling. Briefly: 386 (20 mg, 

3.244 µmol) was dissolved in DMSO (400 µl) and TMRM (1.56 mg, 3.244 µmol), 

dissolved in DMSO (400 µl) was added. After one hour at room temperature, 

dibenzylcyclooctyne-PEG4-maleimide (4.38 mg, 6.48 µmol) diluted in DMSO (200 µl) 

was added and stirred for one hour. This was dropped slowly under stirring to 

AzMMMan-nlsEGFP (conjugate 5, Scheme 5.8) (10 mg diluted in 10 ml 0.5 M Hepps 

buffer, pH 8.5). After 4 hours at 20° C non-conjugated polymer was removed by 

centrifugation steps with Amicon Ultra centrifugal filter units (MWCO 10,000) (×2 

washing steps with PBS buffer, pH 7.3). The release kinetic experiment (see Figure 

5) was performed as described above for the release of alkyne dye from conjugate 7 

(Scheme 5.8). Absorption was measured at a wavelength of 543 nm. 
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4.7 Biological characterization of the synthesized 

conjugates 

4.7.1 General procedures 

4.7.1.1 Cell culture 

The used cell lines are listed in Table 3.1. All cultured cells were grown at 37° C in 

5% CO2 humidified atmosphere. HeLa and Neuro2A cells were grown in DMEM (1 g/l 

glucose) supplemented with10% FCS and 100 U/ml penicillin and streptomycin (100 

µg/ml). 3T3 murine fibroblasts cells were grown in Dulbecco’s modified Eagle’s 

medium (DMEM), supplemented with FCS (10%), glucose (4 g/l), stable glutamine (4 

mM), sodium pyruvate (1 mM), penicillin (100 U/mL), and streptomycin (100 µg/mL). 

KB cells were cultured in RPMI media without folic acid.  

 

4.7.1.2 Flow cytometry (FACS) 

3T3, HeLa or Neuro2A cells were seeded in 6-well plates (250000 cells/well). After 

transfection and washing as described in the transfection section 4.7.2, cells were 

detached with trypsin/EDTA, diluted with growth media containing 10% FCS, 

harvested by centrifugation and taken up in phosphate-buffered saline with 10% 

FCS. Flow cytometry was performed using a Cyan ADP flow cytometer (Dako, 

Hamburg, Germany). The cellular fluorescence was assayed by excitation of 

nlsEGFP or C12-FDG at 488 nm and detection of emission at 510 nm. To 

discriminate between viable and dead cells as well as for exclusion of doublets, cells 

were appropriately gated by forward/sideward scatter, pulse width and 

counterstained with propidium iodide. 10000 gated cells per sample were collected. 

Data was recorded with SummitT software (Summit, Jamesville, NY). Evaluation was 

done using FlowJo software (Treestar, Ashland, Oregon, USA). 
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4.7.1.3 Fluorescence microscopy and phase contrast microscopy  

For fluorescence microscopy observation, the nuclei of the cells were stained by 

pipetting Hoechst Dye 33342 (1 µg/ml) into the cell culture media. 10 minutes later 

the cells were watched on an Axiovert 200 fluorescence microscope from Zeiss 

(Jena, Germany). A 40x phase 1 objective or a 63x magnification DIC oil immersion 

objective (Plan-APOCHROMAT) and appropriate filter sets for analysis of EGFP and 

Hoechst fluorescence were used. Data were analyzed and processed by AxioVision 

LE software (Zeiss, Jena, Germany). For phase contrast microscopy, also an 

Axiovert 200 microscope from Zeiss (Jena, Germany) was used. Pictures were taken 

using a 10x magnification phase 1 contrast objective. 

 

4.7.1.4 Microinjections 

Microinjections of nlsEGFP, HIV-TATnlsEGFP or carrier modified nlsEGFP were 

performed with a Femtojet microinjector and an Injectman NI2 micromanipulator 

(Eppendorf). HeLa cells were plated onto sterile glass bottom culture dishes. On the 

day of transfection cells have reached a fluency of 70%. A spinning disk confocal 

microscope (BFI Optilas, Dietzenbach, Germany) was used for microinjection. 

Proteins were injected with a concentration of 0.5 mg/ml in PBS buffer.  

 

4.7.2 Protein transductions 

Protein transductions were done similar for all transfections independent of used cell 

line, or used transduction oligomer. Just the used protein concentrations were 

different. 

 

4.7.2.1 Transduction of nlsEGFP 

For fluorescence microscopy, 24 h prior to transfection 20000 cells (HeLa, KB, 

Neuro2A, 3T3) were seeded in 8 well Nunc chamber slides (Thermo Scientific, 

Braunschweig, Germany). Before transfection, medium was replaced with fresh 

medium. Subsequently the oligomer modified nlsEGFP was pipetted into cell culture 

media (10% FCS). After two hours incubation time the cells were washed with PBS 
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buffer (pH 7.3), containing 500 IU heparin per ml. Afterwards fresh medium was 

added and 2 hours later the cells were examined under the microscope. 

For FACS experiments, 24 h prior to transfection 250000 cells were seeded in 6 well 

plates. Before transfection, medium was replaced with fresh medium containing 10% 

FCS. Subsequently the oligomer modified nlsEGFP was pipetted into the cell culture 

media. After incubation (usually 120 min, except for the uptake vs. time experiment 

15; 30; 60; 120; 180 min) cells were washed two times with PBS buffer (pH 7.3; 500 

IU heparin/ ml). 

 

4.7.2.2 Transduction of ß-galactosidase 

Transfection was done quite similar as described above for nlsEGFP. Neuro2A or 

HeLa cells were seeded in 6 well plates (250000 cells per well; one day before 

transduction) and transfected with different concentrations 386-ß-galactosidase for 

two hours.  

For X-Gal staining, a method which was previously described was used (147). After 

transduction, cells were washed with PBS (containing 500 IU heparin per ml and 

subsequently fixed with glutaraldehyde (1.25% (v/v)). Following two additional 

washing steps with PBS, X-gal staining solution (50 mM Tris/HCl, pH 7.5; 5 mM 

potassium ferrocyanate, 5 mM potassium ferricyanate, 15 mM sodium chloride, 1 mM 

magnesium chloride, 0.1% Triton and 0.5 mg/mL X-gal) was added and incubated for 

three hours (37° C). Afterwards the cells were washed once more with PBS and 

analyzed with a phase contrast microscope. 

For quantitative FACS analysis C12-FDG (Invitrogen, Karlsruhe, Germany) substrate 

was used. 250000 Neuro 2A or HeLa cells were seeded in 6 well plates the day 

before transfection. Transduction was done by pipetting 386-ß-galactosidase into the 

growth media. After two hours incubation the cells were washed two times with PBS 

buffer, supplemented with 500 IU heparin per ml. Afterwards the cells were covered 

with fresh growth media containing 2.0 µM C12-FDG. After incubation for 45 minutes, 

the cells were washed again with PBS and evaluated by flow cytometry. 
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4.7.3 Endocytosis inhibition 

This experiment was performed as described elsewhere (148), with minor 

modifications. Briefly: 250000 cells were seeded in 6 well plates. Before transfection, 

medium was replaced with fresh medium containing 1 mM amiloride (inhibitor for 

macropinocytosis), 5 µg/mL chlorpromazine (inhibitor for clathrin-mediated 

endocytosis), or 2.5 mM β-cyclodextrin (inhibitor for caveolae-mediated endocytosis).  

After 30 minutes incubation, the oligomer modified nlsEGFP was pipetted into the cell 

culture media (0.5 µM). Another 120 min later, cells were washed two times with PBS 

buffer (pH 7.3, 500 IU heparin per ml) and subsequently analyzed via flow cytometry 

or fluorescence microscopy. 

 

4.7.4 Cell viability assay 

The metabolic activity of transfected cells was determined by MTT assay. Neuro2A, 

HeLa or 3T3 cells were seeded in 96-well tissue culture plates (TPP, Transdingen, 

Switzerland) at a density of 15000 cells per well, the day before transfection. Cells 

were transfected with different concentrations of 386-nlsEGFP in 100 µL growth 

media (containing 10% FCS) for two hours. After washing with PBS and incubation in 

fresh media (3 h), MTT solution (10 µL per well, 5.0 mg/mL MTT in phosphate-

buffered saline buffer, pH 7.4) was added. The medium was replaced by 100 µL of 

DMSO after 3 h. The optical absorbance was measured at 590 nm, with a reference 

wavelength of 630 nm, by a microplate reader (Spectraflour Plus, Tecan Austria 

GmbH, Austria). The metabolic activity of the transduced cells was expressed as 

relative cell viability, compared to untreated cells. Relative cell viability was defined 

as 

%[ℎ�����	
�
] =
�590(�������)

�590(���������)
100 

 

4.7.5 Activity test of modified ß-galactosidase 

The formation of a fluorescent product (4-methylumbelliferone (4-MU); λexcitation  360 

nm,  λemission 440 nm) out from the nonfluorescent 4-methylumbelliferone-ß-D-

galactopyranoside substrat (MUG) by hydrolysis through ß-galactosidase (149) was 
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used to determine the relative activity of modified ß-galactosidase, compared to 

unmodified enzyme. The assay was performed with minor modification as described 

elsewhere (150). Briefly: MUG (1 mM, non-limiting surplus) substrate was dissolved 

in PBS buffer (pH 7.4; 5 mM MgCl2). The reaction was started by the addition of 

enzyme (0.5 µg/ml). Enzyme kinetic was monitored, by following the formation of the 

fluorescent 4-MU product over time, on a Varian Cary Eclipse fluorescence 

spectrophotometer. As the substrate was used in non-limiting surplus, the enzyme 

activity is displayed by the slope of the curve.  

 

4.7.6 Erythrocyte leakage assay 

This experiment was done quite similar as described elsewhere (62). From fresh, 

citrate-treated blood mouse erythrocytes were isolated and washed in phosphate 

buffered saline (PBS) by four centrifugation steps (800 g, 10 min, 4° C). With PBS 

(pH 7.3) the erythrocytes were diluted to the final cell concentration (5.0x107 

cells/ml). AzMMMAn modified melittin was diluted in PBS buffer (pH 7.3) to give 

melittin concentrations of 5, 2.5, 1.0, 0.5, 0.25 µM. For comparison the same 

concentrations of pure melittin were prepared. The same solutions were prepared 

with PBS buffer (pH 5.0). The acidic samples were preincubated for 3 h at 37° C 

under constant shaking. Meanwhile erythrocyte suspension (75 µL, 3.75x106 cells, 

per well) was pipetted in a V-bottomed 96-well plate (NUNC, Denmark). After mixing 

with 75 µL of the different samples and incubation for 60 min at 37°C under constant 

shaking, the cells were pelletized (800 g, 10 min). The hemoglobin release was 

analyzed by measuring the absorbance of supernatant (80 µl) at 405 nm using a 96-

well microplate reader (Spectrafluor Plus, Tecan Austria GmbH, Grödig, Austria). To 

get data for 100% lysis, erythrocyte suspension (75 µL) was freeze-thawed three 

times and centrifuged (800 g, 10 min) and diluted with PBS buffer (75 µL, pH 7.3). 

Relative haemolysis was defined as: 

 

%[ℎ�����	
�
] =
�405(��������) − �405(���������)

�405(������ − �ℎ����) − �405(���������)
100 
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5 Results 

5.1 nlsEGFP as a model protein 

First aim of this work was to establish a cellular test system that enables evaluation 

of the efficiency of the developed protein transduction technologies. For these 

studies nlsEGFP (Figure 5.1) was used as one of two model proteins. 

 

Figure 5.1: 3D structure of EGFP. Calculated with ModWeb and visualized by DeepView version 
4.04. Lysine residues are marked yellow. 

For multiple reasons nlsEGFP presents a good model for intracellular protein 

transduction. Most important its fluorescent properties can be used to pursuit its 

cellular uptake, qualitatively with a fluorescent microscope, or in a more quantitative 

fashion with FACS experiments. Furthermore with a molecular weight of around 31 

kDa, it represents a protein of average molecule size. With an isoelectric point 

around 6.5 it is only slightly charged at physiological pH value of 7.4. An additional 

feature is, that its fluorescence intensity is pH dependent (Figure 5.2). At pH 5.0 that 

is found in late endosomes the absorbance is only about 10 percent of the 

absorbance at pH 7.5. This finding is consistent with the pH dependent fluorescence 

reported for EGFP (151). High cellular fluorescence is a hint for successful 

endosomal escape of the transduced nlsEGFP, because protein encapsulated in 

acidic late endosomes shows only marginal fluorescence. The nuclear localization 

signal (derived from SV40 large T-antigen) fused to the N-terminus is a second 

property that is indicating endosomal escape as free cytosolic protein should be 

translocated into the nucleus (152).   
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Figure 5.2: Fluorescence of nlsEGFP at different pH  values. Fluorescence is normalized to the 
mean value at pH 7.5. 

 

 

5.1.1 Cloning, heterolog expression and purificatio n of nlsEGFP 

and TAT-nlsEGFP 

The gene encoding for nlsEGFP was amplified from the vector pc1068-pRHGPCNA 

and provided with new cloning sites for the insertion into the expression vector pET 

23a(+) by PCR reaction. The successful amplification is shown in Figure 5.3. 

 

Figure 5.3: PCR amplification of nlsEGFP gene from plasmid pc1068-pRHGPCNA (Scheme 9.1). 
Lane 1: DNA standard; Lane 2: PCR product. 
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After cloning and transformation into E. coli expression strain BL21DE3, protein 

expression was induced. Figure 5.4 and Figure 5.5  are documenting the purification 

of the HIS tagged nlsEGFP and the HIV-TAT bearing counterpart over affinity 

chromatography. Both proteins were obtained in over 90 percent purity.  

 

Figure 5.4: Purification of nlsEGFP over affinity c hromatography. Lane1: Protein Ladder; Lane2: 
E.coli lysate; Lane 3: flow through; Lane4-6: wash steps; Lane 7-9: elution fractions. 

 

Figure 5.5: Purification of nlsEGFP over affinity c hromatography. Lane1: Protein Ladder; Lane2: 
E.coli lysate; Lane 3-6: wash steps; Lane 7-9: elution fractions. 

From a four liter overnight E. coli culture in TB medium about 50 mg of pure protein 

were obtained. The fluorescence properties of both proteins were evaluated by 

measuring absorbance and fluorescence spectra (Figure 5.6). Both proteins exhibited 

a fluorescence maximum at about 510 nm. Absorption maxima were detected at 

around 400 nm and 490 nm for both proteins. The extinction coefficient was around 

55000 at pH 7.4. All these data is consistent with values found for EGFP in literature.  
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Figure 5.6: Fluorescence and absorption spectra of nlsEGFP and nlsEGFP-TAT. Blue lines 
present extinction spectra; green lines present emission spectra. 

 

5.1.2 Microinjection of nlsEGFP and TAT-nlsEGFP 

As already mentioned above the nuclear localization signal was fused by genetic 

engineering to the model protein to indicate successful endosomal escape of the 

transduction shuttles. To evaluate the functionality of the fused nuclear localization 

signal (derived from SV 40 large T-antigen) nlsEGFP was microinjected into the 

cytosol of HeLa cells. The fluorescence microscope pictures in Figure 5.7 show that 

injected nlsEGFP is translocated into the nucleus very fast. Already 30 minutes after 

microinjection quite a large amount of the protein was transported into the nucleus. 

The second picture reveals that the amount of subcellular translocated nlsEGFP is 

further increased after 120 minutes. From this point of time further incubation did not 

enhance the amount of protein that is transported into the nucleus (Figure 5.7, 

picture C).    
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Figure 5.7: Microinjection of SV40nls-EGFP in HELA cells. A) 30 min after microinjection; B) 120 
min after injection; C) 180 min after injection. 

The nuclear translocation was also investigated for the PTD tagged nlsEGFP. Figure 

5.8 exhibits that TAT-nlsEGFP is also transported into the nucleus. The nuclear 

transport is even faster than the translocation observed for the counterpart without 

the CPP. Already 15 minutes after injection almost all injected TAT-nlsEGFP is found 

in the nucleus. Beside faster transport into the nucleus also the percentage of cellular 

protein translocated into the nucleus is higher. In contrast to nlsEGFP without fused 

CPP the protein is not distributed homogeniously in the nucleus, but rather 

concentrates in the nucleoli. This finding is consistent with literature that describes 

the same finding for other HIV-TAT tagged proteins (153, 154).     

 

Figure 5.8: Microinjection of TAT-nlsEGFP in HELA c ells . A)  bright-field picture was taken 
immediately before microinjection; B) EGFP fluorescence 15 min after injection. 
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5.2 Protein transduction with TAT-nlsEGFP 

The establishing of a standard protein transduction technology with the model protein 

nlsEGFP was one aim of this thesis. The standard technology should enable the 

possibility to directly compare the efficiency of new developed protein transduction 

techniques. For this reason as already mentioned an nlsEGFP protein that is carrying 

the HIV-TAT protein transduction domain was created. The HIV-TAT cell penetrating 

peptide is built up from mostly cationic amino acids that effect first binding of the 

protein to the negative charged cell surface followed by cellular internalization. As the 

HIV-TAT peptide is one of the mostly used CPPs for protein delivery it should serve 

as a “gold standard” when comparing other techniques with this standard method. 

Figure 5.9 shows pictures taken on a fluorescence microscope of cells transfected 

with a concentration of 2.5 µM TAT-nlsEGFP. The bright field Image reveals that this 

treatment is well tolerated by the cells. Strong EGFP fluorescence of the transfected 

cells is observed using this transduction concentration. Furthermore the fluorescence 

picture reveals that the protein is not equally distributed inside the cell which is a first 

hint that quite a great amount of protein is entrapped in endosomes. Another 

indicator for this hypothesis is the fact that only a small amount of protein is found in 

the nucleus.     

 

Figure 5.9: Transduction of 3T3 cells. A) Brightfield picture of transduced cells; B) EGFP 
fluorescence; C) Hoechst 33342 stain of nucleus. 

To obtain more quantitative information of the uptake and internalization efficiency 

FACS measurements of cells transfected with different concentrations of TAT-

nlsEGFP were done. The experiment shown in Figure 5.10 displays that cells treated 

with a transfection concentration of 0.5 µM exhibit stronger fluorescence than 

untreated cells or cells treated with nlsEGFP without fused TAT protein transduction 

domain. At a concentration of 1.5 µM nearly 100 percent of the cells are found to be 

EGFP positive. As expected the fluorescence intensity is increased with raising the 
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transfection concentration from 0.5 to 1.5 µM. Further increase of the concentration 

to 5.0 µM does not boost the fluorescence intensity much. 

 

Figure 5.10: Transduction of 3T3 cells with differe nt concentrations of TATnlsEGFP. 

Although the brightfield picture in Figure 5.9 which shows nicely shaped cells gave a 

first hint that TAT-nlsEGFP is well tolerated by the cells, this theory should be 

confirmed by doing a cell viability assay. The result of such a MTT assay experiment 

is highlighted in Figure 5.11. Up to a concentration of 1 µM cell viability is not more 

affected by treatment with TAT-nlsEGFP compared to nlsEGFP.  At higher 

concentrations the toxicity is slightly higher than the one observed for the counterpart 

without TAT sequence. But even at the highest tested concentration of 5.0 µM 

around 60 percent of the metabolic activity compared to untreated cells is observed. 

 

Figure 5.11: Cell viabiltity of 3T3 cells treated w ith different amounts of nlsEGFP-TAT or 
nlsEGFP.  
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5.3 Cationic lipid mediated protein delivery 

Most commercial available protein transduction carriers are based on cationic lipids. 

Also for comparison reasons this technique was tested for its ability to mediate 

successful transduction of the model protein nlsEGFP. Murine fibroblast cells were 

transfected with 1 µM nlsEGFP complexed with the cationic lipid SAINTphd. Under 

the tested serum containing conditions almost no cellular uptake could be observed 

(Figure 5.12).  

 

Figure 5.12: 3T3 cells transfected with the cationi c lipid SAINTphd. Nucleus was stained with 
Hoechst 33342 after transduction. 

 

5.4 Dendrimer based protein transduction 

5.4.1 Synthesis of G3 PPI-nlsEGFP 

Protein delivery mediated by structure defined polycationic carrier molecules was one 

of the major aims of this thesis. By Russ et al. modified generation 3 

polypropylenimine dendrimers were previously used successfully for gene delivery 

(155). Inspired by these promising results the properties of this carrier molecule for 

protein transduction should be investigated. For most proteins even those who 

possess a low isoelectric point the negative charge density in contrast to nucleic 

acids is not high enough for creating stable complexes mediated just by ionic 

interactions. Therefore it was decided to covalently couple the dendrimers to the 

protein surface. For the establishment of the covalent bond the terminal amines of 

the dendrimer on the one hand and the carboxylic groups of the protein on the other 

hand were used. As illustrated in Scheme 5.1 the carboxy side chain of aspartate 



Results  69 

and glutamate was activated with the zero length crosslinker EDC, resulting in stable 

amide bonds between the PPI dendrimer and nlsEGFP. 

 

 

Scheme 5.1: Covalent coupling of G3-PPI dendrimer t o nlsEFGP. Because of better clarity only a 
generation 2 dendrimer is shown. 

Successful modification of nlsEGFP with G3 PPI dendrimer was proven by SDS-

PAGE. The SDS gel in Figure 5.13 reveals 3 different bands for the reaction product. 

These bands correspond to nlsEGFP molecules bearing 1 to 3 PPI dendrimers on 

the surface. Without further purification this mixture of different dendrimer-nlsEGFP 

conjugates were used for transfection experiments. 

 

Figure 5.13: Modification of nlsEGFP with G3-PPI de ndrimer. Lane 1: protein ladder; Lane 2: 
unmodified nlsEGFP; Lane 3: G3-PPI modified nlsEGFP . 
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5.4.2 Protein transduction with G3 PPI-nlsEGFP 

Transduction studies with the G3 PPI-nlsEGFP conjugate were done on the murine 

fibroblast cell line 3T3. FACS experiments (Figure 5.14) reveal that G3 PPI is a highly 

effective carrier molecule for protein delivery. Already with a transfection 

concentration of 0.01µM nearly 100 percent of 3T3 cells are EGFP positive. To reach 

the same fluorescence level when doing transfection with PTD bearing nlsEGFP, 

almost 0.5 µM protein have to be used. As expected Figure 5.14 shows that higher 

transfection concentration leads to higher cellular uptake and therefore brighter 

EGFP fluorescence is observed. 

 

Figure 5.14: Transfection of 3T3 cells with G3 PPI- nlsEGFP. Average cellular EGFP 
fluorescence intensity of 3T3 murine fibroblasts af ter transduction with different 
concentrations of G3 PPI-nlsEGFP. 

Aside the necessary transfection concentration, it was evaluated if transfection time 

has got an influence on cellular internalization. The examination of FACS data shown 

in Figure 5.15 reveals a quite linear dependency of cellular fluorescence and 

transfection time for up to three hours when a concentration of 0.1 µM G3 PPI-

nlsEGFP is used. This observation is a hint for endocytosis as uptake mechanism.    
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Figure 5.15: Transfection of 3T3 cells with G3 PPI- nlsEGFP. Average cellular EGFP 
fluorescence intensity of 3T3 murine fibroblasts af ter different transfection times. Transfection 
was done with 0.1 µM G3 PPI-nlsEGFP. 

To get more information about internalization and especially about endosomal 

escape, transfected cells were watched on a convocal fluorescence microscope. 

Figure 5.16 illustrates bright fluourescence of 3T3 cells transfected with 0.5 µg per ml 

G3 PPI-nlsEGFP in the cell medium. The protein seems to be quite equally 

distributed in the cytoplasm which is a first hint for successful endosomal escape. 

Although due to the nuclear localization signal of nlsEGFP, free cytosolic protein 

should be subcellularly translocated into the nucleus, only small amounts of protein 

are found in the nucleus. The nlsEGFP protein seems to stick to negative charged 

cell components like the nuclear membrane and the endoplasmatic reticulum.   

 

 

Figure 5.16: Transfection of 3T3 murine fibroblasts  with G3PPI-nlsEGFP. 
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In addition to high transfection efficacy, an appropriate transduction shuttle system 

should be well tolerated by the cells. To investigate G3 PPI-nlsEGFP under this 

aspect a cell viability assay, whose examination is displayed in Figure 5.17  was 

done. The figure approved the apprehension that emerged during FACS 

measurements and observation of the cells under the microscope. G3 PPI-nlsEGFP 

is very toxic for cells already in low concentrations. Toxicity occurs already when cells 

are treated with only 0.05 µM G3 PPI-nlsEGFP. With a transfection concentration of 

0.5 µM cells exhibit only 50 percent of the metabolic activity compared to untreated 

control cells.  

 

 

 

Figure 5.17: Cell viabiltity of 3T3 cells treated w ith different amounts of nlsEGFP or G3PPI-
nlsEGFP. 

 

5.4.3 Microinjection of G3 PPI-nlsEGFP 

Although the high cellular toxicity, which aggravates the application of covalently 

coupled G3 PPI as a protein transduction system, the second diagnosed drawback of 

this technology, the bad subcellular translocation into the nucleus should be 

investigated further. Figure 5.7 shows that unmodified nlsEGFP is translocated very 

fast into the nucleus after microinjection. In contrast only small amounts of G3 PPI-

nlsEGFP are found in the nucleus of microinjected HeLa cells after 15 minutes 
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(Figure 5.18). 90 minutes after injection the situation is almost the same. The nucleic 

membrane shows bright EGFP fluorescence. The small amount of protein that was 

transported into the nucleus is concentrated in the nucleoli. This observation is a 

well-known phenomenon for highly positive charged proteins. Microinjection 

reinforces the hypothesis that G3 PPI-nlsEGFP is sticking due to its high positive 

surface charge to negative charged cellular components like the nuclear membrane 

and therefore nuclear transport is hampered.  

 

Figure 5.18: Microinjection of G3PPI-nlsEGFP. A) Pi cture was taken 15 minutes after injection. 
B) Picture was taken 90 minutes after injection. 

 

5.5 Protein transduction with G3PPI coupled to nlsE GFP 

over a bioreversible bond 

5.5.1 Synthesis of G3PPI-SS-nlsEGFP 

To overcome the problem of the unnatural subcellular behavior of G3 PPI-nlsEGFP in 

comparison to unmodified nlsEGFP, the dendrimer should be coupled reversible to 

the protein. The bond between carrier and protein should be cleaved after cellular 

uptake resulting in cytosolic nlsEGFP without dendrimer modification. For introducing 

such a cleavable bond the protein as well as the dendrimer was modified with the 
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crosslinker SPDP. The G3PPI was reduced with DTT resulting in a thiol bearing 

dendrimer. This dendrimer could be simply reacted with SPDP modified nlsEGFP. 

 

Figure 5.19: Synthesis of biological reversible G3P PI-SS-nlsEGFP. G3-PPI was modified with 
SPDP and subsequently reduced. nlsEGFP was modified with SPDP crosslinker. 

Figure 5.20 shows the successful modification of the protein with the dendrimer. 

Furthermore it reveals that the binding between carrier and protein is cleaved in 

presence of reducing agents resulting in nlsEGFP without covalent dendrimer 

modification. 

 

 

Figure 5.20: SDS-PAGE showing successful modificati on of nlsEGFP with G3PPI over 
reducible disulfide bond. Lane1: protein ladder; La ne2: native nlsEGFP; Lane 3: G3PPI-SS-
nlsEGFP: Lane 4: reduced nlsEGFP; Lane 5: reduced G 3PPI-SS-nlsEGFP 
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5.5.2 Protein transduction using G3PPI-SS-nlsEGFP 

Again as with the noncleavable counterpart transfection studies were done on 3T3 

murine fibroblasts. The fluorescent pictures in Figure 5.21 show that nuclear import of 

nlsEGFP after internalization is improved by introducing a biological cleaveable bond 

between the carrier and the protein. The brightfield pictures of cells transfected with 

G3 PPI-SS-nlsEGFP (data not shown) are indicating that toxicity is not significant 

reduced in comparison to the stable construct.  

 

 

Figure 5.21: Transfection of 3T3 murine fibroblasts  with G3PPI-nlsEGFP. A) EGFP fluorescence; 
B) Merged LM-micrograph: EGFP fluorescence and Hoechst fluorescence of the nucleus. 

FACS experiments of cells transfected with G3 PPI-SS-nlsEGFP reveal that 

transfection efficiency is not decreased by the implementation of a reducible bond 

between the dendrimer and the nlsEGFP protein. Already a concentration of 0.01 µM 

of G3 PPI-SS-nlsEGFP leads to detectable EGFP fluorescence of the cells (Figure 

5.22). The cellular fluorescence observed for 0.05 and 0.2 µM is also comparable to 

the fluorescence intensity of cells transfected with the same concentration of the non-

cleavable construct (Figure 5.14). 

 

A) B) 
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Figure 5.22: Fluorescence assisted cell sorting of 3T3 murine fibroblasts after transduction 
with varying concentrations of G3PPI-SS-nlsEGFP. I)  Untreated cells; II) Transduction with 0.01 
µM G3PPI-SS-nlsEGFP; III) Transduction with 0.05 µM  G3PPI-SS-nlsEGFP; IV) Transduction 
with 0.2 µM G3PPI-SS-nlsEGFP. 

Cell viability assays confirm the assumption that toxicity could not be reduced by the 

insertion of a cleavable bond between carrier and cargo. Figure 5.23 is showing 

rather even higher cellular toxicity compared to the corresponding values obtained tor 

the non-cleavable construct (Figure 5.17). Already a treatment of cells with 0.1 µM 

reduces the metabolic activity by a third in comparison to untreated control cells. 

 

Figure 5.23: Cell viabiltity of 3T3 cells treated w ith different amounts of nlsEGFP or G3 PPI-SS-
nlsEGFP. 
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5.6 Protein transduction using the structure define d 

oligomer 386 

Above results show that the G3 PPI dendrimer is an effective carrier for protein 

delivery but its inherent cellular toxicity limits its application. For this reason another 

structure defined carrier with high efficiency and low cytotoxicity should be found. The 

3 arm structure 386 was previously developed as a carrier for the delivery of DNA 

and siRNA. In case of nucleic acid delivery it combines high efficiency with low 

cytotoxicity (59, 156). The transduction oligomer 386 is a structure defined cationic 

oligomer which is built up from natural and artificial amino acids. The main 

components are succinoyl tetraethylene pentamine units which are supposed to be 

important for endosomolytic activity and three cysteine residues on the end of each 

arm. These cysteine residues should enable coupling to cargo molecules as well as 

lateral stabilization through the formation of disulfide bonds.   

 

Scheme 5.2: Structure of 386. x=H; Stp, succinoyl tetraethylene pentamine; C, cysteine; K, α,ε-
modified branching lysine. 

 

5.6.1 Synthesis of reducible 386 modified nlsEGFP 

The three cysteine residues on the terminus of the oligomer arms should be used for 

reversible covalent coupling to the nlsEGFP protein. The coupling strategy is 

illustrated in Scheme 5.3. 
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Scheme 5.3: Synthesis of 386-SS-nlsEGFP. Step 1: modification of nlsEGFP with SPDP. Step 2: 
coupling of 386 to SPDP-nlsEGFP. 

 

To enable an effective coupling of the carrier nlsEGFP was modified with the 

commercial available heterobifunctional crosslinker SPDP. After modification with the 

linker under the used conditions (4.4.1.1), nlsEGFP is exposing around five activated 

thiol groups on the surface that enable fast formation of covalent disulfide bonds with 

the transduction oligomer 386. Successful modification of nlsEGFP with the 

transduction oligomer 386 as well as reversibility of the binding in presence of 

reducing agents is evidenced in Figure 5.24. Dynamic light scattering reveals particle 

sizes of 26.8 +/- 3.6 nm and a zeta potential of 12.4 +/- 0.6 mV. 
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Figure 5.24: SDS PAGE documenting successful modifi cation of nlsEGFP with transduction 
oligomer 386 and reversibility of the bond. Lane 1: Protein ladder; Lane 2: Unmodified nlsEGFP; 
Lane 3: 386-SS-nlsEGFP; Lane4: reduced 386-nlsEGFP. 

 

5.6.2 Protein transduction with 386-SS-nlsEGFP 

Protein transduction ability of the 386 oligomer was evaluated on two different cell 

lines. In a first experiment for direct comparison to G3 PPI dendrimer and PTD-

nlsEGFP 3T3 murine fibroblast cells were transfected and efficiency was evaluated 

by FACS studies. Although the transfection efficiency is lower than the one of 

covalently coupled G3 PPI it is far higher in comparison to TAT-nlsEGFP (Figure 

5.25). 

 

Figure 5.25: Fluorescence assisted cell sorting of 3T3 murine fibroblasts after transduction 
with varying concentrations of 386-SS-nlsEGFP. I) U ntreated cells; II) Transdsuction with 
unmodified nlsEGFP 5µM; III) Transduction with 0.5µ M TAT-nlsEGFP; IV) Transduction with 1.5 
µM TAT-nlsEGFP; V) Transduction with 0.25 µM 386-SS -nlsEGFP; VI) Transduction with 0.5 µM 
VII) Transduction with 0.75 µM.; VIII) Transduction  with 1.0 µM. 



Results  80 

The mean cellular fluorescence intensity of 386-SS-nlsEGFP treated cells is about 

twenty times higher than the mean fluorescence of TAT-nlsEGFP treated ones. 

Controls which were treated with a high concentration (5µM) of unmodified nlsEGFP 

showed only negligible raise in fluorescence. The same experiment was done with 

Neuro2A cells. Transfection efficiency on Neuro2A cells was slightly lower, compared 

to 3T3 cells transfected with the same amount of modified Protein. Fluorescent 

intensity of Neuro2A cells compared to 3T3 cells was around 55 % lower for cells 

transfected with 0.25 µM, at higher concentrations the mean fluorescence intensity 

was around 20 percent lower (Figure 5.26). We had expected that uptake efficiency 

is concentration dependent, this was already reported for CPP assisted transfection 

studies (102). Nevertheless the nearly perfect linear relationship between transfection 

concentration and fluorescence intensity, for both cell types, in the tested 

concentration area was a little bit surprising. Linear dependency of concentration and 

uptake was already reported for internalization mediated by the protein transduction 

domain Antp (Antennapedia-homeodomain) (100). 

 

Figure 5.26: Concentration dependent cellular uptak e of 386-SS-nlsEGFP. Cells were 
transfected with different amounts of 386-SS-nlsEGF P. White bars: 3T3 cells. Grey bars: 
Neuro2A cells. 

In a following experiment we found that uptake of 386-SS-nlsEGFP and therefore 

observed fluorescence intensity is increasing with incubation time (Figure 5.27). After 

an incubation time of 15 min around 45 percent and after 30 min incubation already 

over 90 percent of the cells were EGFP positive, when transfection was done with 0.5 

µM 386-SS-nlsEGFP. Again, like in the concentration dependent uptake experiment 
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we could find approximately a linear relationship between fluorescence intensity and 

time. Such a continuous uptake is supposed to be a strong hint for endocytosis 

mediated uptake (100). 

 

 

Figure 5.27: Time dependency of protein transductio n with 0.5 µM 386-SS-nlsEGFP on 3T3 
cells. I) Untreated cells; II) Cells transfected wi th 386-SS-nlsEGFP for 15 minutes. III) 30 min 
incubation; IV) 60 min incubation; V) 120 min incub ation VI) 180 min incubation. 

To investigate the ability of these transduction shuttles to penetrate cells, promote 

endosomal release and following subcellular transport. Uptake and subcellular 

distribution were also pursued on a fluorescence microscope. Figure 5.28 is 

demonstrating nicely that all cells were transfected successfully after an incubation 

time of two hours, using a 0.5 µM concentration of 386-SS-nlsEGFP. The cells show 

homogenous cytoplasmic fluorescence. This suggests endosomal escape of the 386-

SS-nlsEGFP. Moreover, the protein is concentrated in the nucleus of the cells, which 

gives again a strong hint for successful escape of the transduction shuttles out of the 

endosomes. Cells treated with unmodified nlsEGFP, as a control, do not show any 

fluorescence. 
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Figure 5.28: . Transduction of 3T3 cells with 386-S S-nlsEGFP. TOP: Transduction with 386-SS-
nlsEGFP. Bottom: Transduction with unmodified nlsEGFP. A) bright-field picture of the transfected 
cells, B) EGFP fluorescence of the transfected cells, C) Hoechst 33342 DNA stain of the cell nucleus. 

Transduction oliogomer 386 has been shown to exhibit low cytotoxicity when used as 

a carrier for siRNA or DNA (59, 156). Because of its internal amide bonds it is 

supposed to be degraded intracellularly by proteases. To verify the nontoxic 

properties for siRNA delivery also in case of being covalently bound to a protein, a 

cell viability test was performed that confirmed this assumption. Figure 5.29 shows 

the low toxicity of the transduction shuttle, even at high transduction concentrations. 

It exhibited only marginal higher toxicity than the cells treated with unmodified 

nlsEGFP protein. With the standard concentration used for the transfections above 

(0.5 µM) a decline in metabolic activity of only 10 percent in comparison to untreated 

cells was observed. Even after transfection with 2.5 µM 386-SS-nlsEGFP cell viability 

decreased by only 25%. 
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Figure 5.29: Cell viabiltity of 3T3 cells treated w ith different amounts of nlsEGFP or 386-SS-
nlsEGFP. White bars: cells transfected with unmodified nlsEGFP. Grey bars: cells transfected with 
386-SS-nlsEGFP 

Flow cytometry experiments using 0.5 µM 386-SS-nlsEGFP also demonstrate that 

internalized nlsEGFP is disappearing after a few days (Figure 5.30). This finding was 

expected, as due to cell proliferation the intracellular nlsEGFP concentration is dying 

out and of course the principal reason is proteosomal degradation. 24 hours after 

transfection cells lost approximately one third of their original mean fluorescence. 

Within 48 hours after transfection the fluorescence decreased to a fourth and after 72 

hours to below 10 percent of the primordial value. 
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Figure 5.30: Cellular fluorescence intensity of cel ls after treatment with 386-SS-nlsEGFP at 
different times. 

As already mentioned in the section above the linear relationship of transfection time 

and uptake efficiency gave a first hint for an endocytotic uptake mechanism. To 

confirm this hypothesis, further experiments were done. Transfection at 4°C lowers 

internalization of the modified protein (Figure 5.31) in 3T3 cells dramatically. Cells 

transduced at 4°C exhibited only 25 percent of the fluorescence compared to control 

cells transfected at 37°C. This observation is indicating that internalization of 386 

modified nlsEGFP is an energy dependent process and is consistent with most CPPs 

(102, 148, 157). To further analyze the endocytotic pathway in 3T3 cells, transfection 

experiments in presence of chlorpromazine (inhibits clathrin mediated endocytosis), 

amiloride (inhibits macropinocytosis) and ß-cyclodextrin (inhibits caveolae mediated 

endocytosis) were done. All this endocytosis inhibitors reduce transduction efficiency 

at least a little bit, suggesting that all three endocytosis pathways participate in 

internalization. Clathrin mediated endocytosis is the predominantly internalization 

route, as chlorpromazine reduces cellular fluorescence to 55 percent compared to 

control cells, transduced under standard conditions. Caveolae mediated endocytosis 

and macropinocytosis seem to contribute respectively to around 15-20 percent of the 

uptake. The finding that clathrin mediated endocytosis may be the major 

internalization route is in accordance with the measured particle size, as particles 

smaller than 200 nm are supposed to be taken up mainly through this pathway (158). 

Aoyama and coworkers found that receptor-mediated endocytosis is strongly size-
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dependent with an optimum of around 25 nm (159-161). That correlates exactly with 

the measured size of the transduction shuttles and the observed uptake pathway. 

 

Figure 5.31: Average cellular fluorescence intensit y of 3T3 cells after transduction with 386-
nlsEGFP at 4°C and in presence of three different e ndocytosis inhibitors: Amiloride, 
chlorpromazine and ß-cyclodextrin. Fluoresence intensity is normalized to cells transduced at 37 °C. 

 

5.6.3 Transduction of 386-SS-ßgalactosidase 

Aside the development of a carrier system for protein delivery, one of the major aims 

of this thesis is the establishing of a test system for protein delivery. nlsEGFP is a 

good model to observe uptake and internalization, but a potential therapeutic 

applicable protein transduction system has to demonstrate that enzyme activity is 

maintained during the delivery process inside the target cell. For this reasons ß-

galactosidase from E.coli was modified with the cationic transduction oligomer 386, to 

demonstrate on the one hand the ability of the carrier to transduce also big molecules 

(464-kDa homo-tetramer), but in the first instance this model should show that 

enzyme activity is maintained inside the target cell. 
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5.6.3.1 Synthesis of 386-SS-ßgalactosidase 

Coupling was done again over the SPDP linker (as described under the material and 

methods part), resulting in a biological reversible bond of the transduction oligomer to 

ß-galactosidase. Each ß-gal molecule was modified with an average of 8 linker 

molecules. Through covalent coupling of the transduction oligomer 386 to linker 

modified ß-galactosidase, particles of 48.3 +/- 2.4 nm with a surface charge of 9.5 +/- 

0.2 mV arise.  

 

5.6.3.2 Activity of modified ß-galactosidase 

To determine the relative activity of modified ß-galactosidase, compared to 

unmodified enzyme, the formation of a fluorescent product (4-methylumbelliferone (4-

MU); λexcitation  360 nm,  λemission 440 nm) out from the nonfluorescent 4-

methylumbelliferone-ß-D-galactopyranoside substrat (MUG) by hydrolysis through ß-

galactosidase (149) was quantified. Figure 5.32 displays that ß-galactosidase is 

losing nearly 85 percent of its enzyme activity during the modification process. 

 

 

Figure 5.32: Enzyme activity of 386-SS-ßGal in comp arison to unmodified ß-galactosidase. Dots 
activity of unmodified ß-galactosidase. Squares activity of 386-SS-ßgalactosidase.  
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5.6.3.3 Transfection experiments with ß-galactosida se 

Although enzyme activity is hampered by the modification, transfection experiments 

with the carrier modified enzyme were done. 386-SS-ßgal was transduced into 

Neuro2A cells, as described under materials and methods. First a qualitative 

experiment should show if any enzyme activity at all could be verified, or if activity 

was lost completely during modification, transfection, internalization or possible 

intracellular degradation. Transduced ß-gal is able to hydrolyse X-Gal (5-bromo-4-

chloro-3-indoxyl-β-D-galactopyranosid) substrate into ß-galactose and its colored 

product 5-bromo-4-chloro-3-hydroxyindole (162) (Figure 5.33). Only cells that were 

transduced with 386-SS-ßgal are blue tinted. Control cells which were treated with 

unmodified ß-gal, before incubation with X-Gal substrate, do not show any staining. 

Therefore we can conclude that transduction of ß-galactosidase was successful and 

a certain enzyme activity is maintained. 

 

Figure 5.33: Transduction of Neuro2A cell with ß-ga lactosidase. Comparison of Neuro2A cells 
after treatment with 386-ß-galactosidase (right) washing and following incubation with X-Gal (5-bromo-
4-chloro-indolyl-β-D-galactopyranoside) substrate. Left: Transduction with unmodified, natural ß-
galactosidase. 

For a more quantitative analysis we used C12-FDG substrate, which led to FITC 

fluorescence after cleavage. Fluorescence was quantified by flow cytometry. We 

observed considerable fluorescence of the 386-SS-ßgal transduced cells but not for 

cells transduced with unmodified ß-gal (Figure 5.34). Therefore we could conclude 

that transduction oligomer 386 is able to transport remarkable amounts of active ß-

gal enzyme into cells, even at the low transduction concentration of 1µM. 
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Figure 5.34: Fluorescence assisted cell sorting of Neuro2A cells following transduction with 
different concentrations of 386-SS-ßgalactosidase w ashing and incubation with C12-FDG 
substrate. I) control, untreated cells; II) Cells transfected with 2.5 µM unmodified ß-galactosidase; III) 
Cells transducted with 1.0 µM 386-SS-ßgalactosidase; IV) Cells treated with 2.5 µM 386-SS-
ßgalactosidase. 

 

5.7 Development of acid labile, traceless heterobif unctional 

click linkers for protein delivery 

The third main aim of this thesis was the development of a linker for protein delivery. 

This linker should allow easy and highly effective covalent coupling of the carrier 

molecule to the cargo protein without many side reactions. It was desired that the 

whole surface of the protein could be modified and therefore the cargo protein could 

be completely encaged by the transduction oligomer. Furthermore the linker should 

enable cleavage between the internalized protein and the transduction carrier under 

mild biological conditions. The cleavage should be triggered by the tiny chemical 

changes, occurring during internalization and further intracellular processing. Last but 

not least it would be in favor, if the linker is cleaved off traceless and therefore 

releases the cargo in its natural unmodified state.  

 

5.7.1 Synthesis of MAM linker 

Blättler and Coworkers (134) presented in 1985 a linker based on maleic anhydride. 

It is the only linker described in literature so far, which may fulfill (except of 

bioorthogonality) all of the desired requirements. The linker was synthesized as 

described by Blättler et al. and illustrated in Scheme 5.4 with acceptable yield.  
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Scheme 5.4: Synthesis of MAM linker. 

 

5.7.2 Acid lability of MAM linker 

The MAM linker was evaluated, if it is applicable for protein delivery. Therefore 

nlsEGFP was modified with the MAM linker and subsequently the transduction 

oligomer 71 (Scheme 5.5) was covalently coupled. Transduction oligomer 71 was 

designed and synthesized by Christina Troiber (AK Wagner, LMU) as part of her phd 

work. 
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Scheme 5.5: Structure of polymer 71.  Drawn by Christina Troiber (AK Wagner, LMU) 

 Figure 5.35 is showing the result of such a modification procedure. The band in lane 

3 reveals that modification was successful. Due to the hydrophobicity of the carrier 

the modified protein is running deeper into the SDS-PAGE, although it is of higher 

molecular weight than the unmodified protein (lane 2). Lane 4 and 5 were charged 

with modified protein after acidic incubation. The modification seems to be partly 
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reversible but only at very low pH values. Because of the insufficient release and the 

low required pH for cleavage, the linker is not really useful for protein delivery.  

 

Figure 5.35: Modification of nlsEGFP with MAM linke r and transduction oligomer 71. Lane 1: 
Protein ladder; Lane 2: unmodified nlsEGFP; Lane 3: nlsEGFP-MAM-71 pH 8.5; Lane 4: nlsEGFP-
MAM-71 after incubation at pH 5.0; Lane 5: nlsEGFP-MAM-71 after incubation at pH 3; 

Although the experiment above showed insufficient release of the carrier from the 

protein under biological relevant conditions, transduction experiments with polymer 

71 coupled via the MAM linker to nlsEGFP were done. 

The pictures taken on the fluorescent microscope and shown in Figure 5.36 reveal 

that polymer 71 is able to deliver covalently bound nlsEGFP into 3T3 cells. But the 

pictures also indicate that quite a great amount of the protein seems to be 

encapsulated in endosomes and therefore only small amounts of nlsEGFP are 

translocated into the nucleus of the cells.  

 

Figure 5.36: Transduction of 3T3 cells with 71-MAM- nlsEGFP. A) bright-field picture of the 
transfected cells, B) EGFP fluorescence of the transfected cells, C) Hoechst 33342 DNA stain of the 
cell nucleus. 



Results  91 

 

5.7.3 Synthesis of AzMMMan linker 

As already mentioned so far no linker, which fulfills all requirements for protein 

delivery was described in literature so far. In recent years click chemistry reactions, 

especially the copper catalyzed 1,3-dipolar cycloaddition (CuAAC) and the 

Staudinger ligation, became useful tools for conjugating biomolecules (49, 135-137). 

Both reactions have great advantages compared to other linking strategies, like high 

efficiency and bioorthogonality. Nevertheless, as already mentioned above, for the 

application in protein delivery, a completely bioreversible bond would be favorable. 

Dimethylmaleic anhydride is known to form amide bonds with amines that are 

cleaved under very mild acidic conditions (62, 125, 163-166). The new linker based 

on substituted dimethylmaleic anhydride should combine the advantages of click 

chemistry with the implementation of a pH sensitive bond between conjugated 

biomolecules. This linker should  be labile under mild acidic conditions, which are 

typical for early endosomes (133). Moreover this linker should be cleaved off 

traceless, resulting in an unmodified molecule of interest. Scheme 5.6 is showing the 

structure and the synthesis strategy for the new AzMMMan linker. The azidomethyl-

methylmaleic anhydride linker (compound 3, Scheme 5.6) (AzMMMan) was 

synthesized from dimethylmaleic anhydride by two simple reaction steps (radical 

substitution with N-bromosuccinimide resulting in bromomethyl methylmaleic 

anhydride (compound 2, Scheme 5.6), followed by a type of Finkelstein reaction with 

sodium azide). The overall synthesis yield is 49 percent. 

 

Scheme 5.6: Synthesis of AzMMMan linker. a) N-bromosuccinimide, benzoyl peroxide, 56% b) 
sodium azide, 88%. 
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5.7.4 Synthesis of water soluble alkyne hemicyanine  dye 

The water soluble alkyne dye was used on the one hand to determine the degree of 

protein modification with the new linker and on the other hand to investigate cleavage 

kinetics under acidic conditions. Scheme 5.7 is illustrating the synthesis strategy for 

the new alkyne dye. In the first step methylbenzothiazole was reacted with 

propargylbromide. The reaction yield is 21 percent of the theoretical value. In the 

following condensation reaction the reaction product was transformed with 4-N,N-

bishydroxyethyl aminobenzaldehyde (78 % yield).  

 

Scheme 5.7: Synthesis of hemicyanine dye. a) propar gyl bromide, acetonitrile, 21%; b) 4-N,N-
bishydroxyethyl aminobenzaldehyde, ethanol, 78%. 

 

 

Figure 5.37: Absorption spectrum of alkyne hemicyan ine dye.  

After purification the characteristics of the dye were investigated. It is well soluble in 

water and has got an absorption maximum at a wavelength of 530 nm. For this 

reason it is easy to determine dye coupled to HSA, as HSA does exhibit nearly no 
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absorption at this wavelength. The molar extinction coefficient is 35000 M-1cm-1 in 

PBS buffer (pH 8.5). 

 

5.7.5 Modification of proteins with AzMMMan 

The heterobifunctional linker was used to introduce acid labile azido groups into 

human serum albumin (HSA), EGFP, or ß-galactosidase (ß-Gal) (Scheme 5.8 step a) 

by reaction of the maleic anhydride moiety with amino groups of the proteins. In 

subsequent reactions (Scheme 5.8 step b-e) the linker modified proteins were 

reacted with dye (to determine the amount of coupled linker, acid lability) or 

transduction oligomer for protein delivery investigations. 

 

Scheme 5.8: pH-reversible modification of proteins with AzMMMan and following click 
mocifications with dyes, PEG, or transduction oligo mer. a) Modification of nlsEGFP, HSA, or ß-
Gal with AzMMMan linker 3. CuAAC conjugation of AzMMMan-HSA 4 with b) alkyne-hemicyanin dye 
12 or  d) alkyne-PEG, resulting in conjugates 7 or 8, respectively. c) Staudinger ligation of Dylight 488 
(R4) to AzMMMan-HSA resulting in conjugate 11. e) Conjugation of AzMMMan-nlsEGFP 5 or 
AzMMMan-ß-Gal 6 with carrier polymer 386 (R1) via copper free cycloaddition resulting in conjugate 9 
or 10, respectively. 
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5.7.5.1 Determination of AzMMMan modification degre e of HSA 

HSA was reacted with different linker concentrations. After purification of the reaction 

batches, the reaction products were reacted with a surplus of alkyne dye. The degree 

of linker modification could be determined by measuring the absorbance of the 

coupled dye in conjugate 7 (Scheme 5.8). As expected, the number of azides 

introduced in HSA was nearly linear to the initial concentration of AzMMMan (Figure 

5.38). 

 

Figure 5.38: Reaction of HSA with different concent rations of AzMMMan . The number of azido 
groups incorporated into HAS was determined by reaction of compound 4 (Scheme 5.8 ) with alkyne 
dye.  

 

5.7.5.2 Acid lability and serum stability of AzMMMa n-HSA-Alkyne dye 

Figure 5.39 displays the kinetics of pH-dependent cleavage of dye-conjugate 7 

(Scheme 5.8). Dye labeled HSA 7 (Scheme 5.8) was incubated in buffers of different 

pH. The cleavage of alkyne dye from the protein was determined at various times by 

measuring residual dye absorbance of purified protein fractions.  At basic pH of 8.5 

the conjugate was quite stable, with only about 25 percent cleavage after 24 hours. 

In contrast, at pH 6 the same amount was released already after 30 minutes. Half-life 

at pH 5 is about half an hour, whereas at pH 4 already 90 percent of the linker was 

cleaved in that time. The cleavage of the linker appears to follow a pseudo first order 

kinetic. 
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Figure 5.39: Acid catalyzed release of alkyne dye f rom conjugate 4 (Scheme 5.8) at 37° C. 
Samples of 4 (Scheme 5.8) were incubated in buffers of different pH. At each time point, the fraction 
(%) of dye remaining conjugated with HSA was determined after protein purification. Percentage of 
released dye is calculated as (100- % HSA conjugated dye). 

Figure 5.40 reveals that conjugate 7 (Scheme 5.8) is quite stable under physiological 

serum conditions at 37 °C. After 2 hours incubation in buffer containing 30% FCS still 

94 % of the dye remained coupled to HSA. Even after an incubation time of 12 hours 

60 % of the bonds still are intact. The cleavage rate does not differ much from 

incubation in pure PBS buffer at physiological pH (Figure 5.39). 

 

Figure 5.40: Serum stability of conjugate 7 (Scheme  5.8) at 37° C. Samples of 7 were incubated 
in PBS buffer pH 7.4 containing 30 % FCS. Dye remai ning conjugated with the protein was 
determined by measuring the absorbance of the conju gate after purification from released dye. 
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Aside the copper catalyzed cycloaddition reaction shown in the section above also 

the so called Staudinger ligation can be performed with the azido-proteins (Scheme 

5.9) (137).  

 

Scheme 5.9: Staudinger Ligation . Reaction mechanism of phosphines with azides. 

 

A phosphine containing dye was coupled to AzMMMan-HSA 4 (Scheme 5.8, step c), 

resulting in conjugate 11 (Scheme 5.8). Figure 5.41 shows similar pH-dependent 

cleavage of the two HSA conjugates independent of dye was coupled by Staudinger 

ligation (compound 11, Scheme 5.8) or by CuAAC (compound 7, Scheme 5.8). 
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Figure 5.41: Comparative release of dye coupled ove r Staudinger Ligation and CuAAc. White 
bars: HSA-dye conjugate 7 (Scheme 5.8), generated with alkyne dye via CuAAC. Patterned bars: HSA 
dye conjugate 11 (Scheme 5.8), generated with phosphine dye via Staudinger ligation. 

 

5.7.5.3 Modification of melittin with AzMMMan 

Modification of melittin, the active lytic peptide from bee venom (26 amino acids) 

demonstrates, what great influence blocking of amino groups can have on 

functionality of molecules. Figure 5.42 illustrates, that melittin is losing its lytic activity 

towards erythrocytes when the amino groups are reacted with the AzMMMan 

crosslinker. The lytic activity is retrieved back under mild acidic conditions. This 

experiment shows that for some applications it might be necessary that not only the 

binding between crosslinked molecules is divided, but rather the linker molecule itself 

is cleaved off traceless to release the molecule of interest in its natural unmodified 

condition. 
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Figure 5.42: Acid lability of melittin modification . Hämoglobin release assay from erythrocytes 
incubated with unmodified melittin at pH 7.3 and 5.0 in comparison to AzMMMAn modified melittin at 
pH 7.3 and pH 5. 

 

5.7.5.4 Click modification of AzMMMan-HSA with PEG 

Another application of the AzMMMan linker is reversible PEGylation of proteins 

(Scheme 5.8, step d). Figure 5.43 gives evidence that HSA can be effectively 

coupled with alkyne bearing PEG (lane 3). The PEG conjugate 8 (Scheme 5.8) 

shows extended stability at physiological pH (lane 4) but is cleaved under very mild 

acidic conditions of pH 6 (lane 5). At pH 5 or 4 almost all PEG is released (lanes 6 

and 7). 

 

Figure 5.43: Acid catalyzed release of PEG from HSA  conjugate 8. SDS-polyacrylamide gel 
electrophoresis after 16 h incubation. Lane 1 marke r, lane 2 unmodified HSA, lane 3 pH 8.5, 
lane 4 pH 7.3, lane 5 pH 6, lane 6 pH 5, lane 7 pH 4. 

A more detailed cleavage kinetic of PEG-AzMMMan-HSA at the endosomal pH of 5 

is displayed in Figure 5.44. For this purpose PEG was distally end-labeled with 

tetramethylrhodamine (TMR) dye. The release of TMR-PEG from HSA conjugate was 
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determined at various times by measuring absorbance of TMR dye remaining 

incorporated in purified PEGylated protein conjugate. In contrast to the type of 

coupling reaction which has a minor influence on cleavage kinetics (Figure 5.41) the 

coupled molecule has more impact on acidic bond cleavage. PEG release from the 

protein was considerably slower compared with dye release from conjugate 7 

(Scheme 5.8) (Figure 5.39). 

 

Figure 5.44: Kinetics of PEG release from HSA conju gate at endosomal relevant pH of 5 and 
stability of the conjugate at physiological pH of 7 .3. TMR-labeled PEG released from HSA protein 
was determined by comparing the absorbance of the intact PEG-HSA conjugate before and after 
incubation. 

 

5.7.5.5 Protein transduction using acid labile AzMM Man click linker and 386 

Protein transduction, i.e. the intracellular delivery of proteins, can take advantage of 

the endosomal acidification process (108, 167, 168). nlsEGFP bearing a nuclear 

localization sequence (which mediates natural active nuclear import once a protein 

resides in the cytosol) was bound to the three-arm cationic oligo(aminoethane) amide 

386 (Scheme 5.8, step e) resulting in conjugate 9. Cationic carriers like 386 

containing diaminoethane motifs bind cells and act as proton sponges which upon 

endosomal acidification become increasingly positively charged, triggering endosome 

disruption and release of its content (110, 169). For intracellular delivery of nlsEGFP 

protein, two different linking strategies, conventional irreversible conjugation and pH-

reversible conjugation, were compared. For the synthesis of an irreversible 

conjugate, the commercial linker SMCC was used, resulting in thioether linkage. In 
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the new strategy, oligomer 386 was coupled with AzMMMan-nlsEGFP by copper-free 

cycloaddition via dibencylcyclooctyne (Scheme 5.8, step e). Thus conjugate 9 

contains an acid-labile bond between carrier 386 and nlsEGFP, which is expected to 

be reversible in the endosomal microenvironment before transfer into the cytosol. 

Successful modification of the nlsEGFP protein with transduction oligomer 386 and 

acidic lability of the resulting conjugate 9 (Scheme 5.8) is shown in Figure 5.45. 

 

Figure 5.45: SDS-PAGE gel is showing the successful  modification of nlsEGFP with oligomer 
386 and acid lability of the AzMMMan construct. Lane 1: protein standard ladder; lane 2: 
unmodified nlsEGFP; lane 3: conjugate 9 (nlsEGFP conjugate with 386 via AzMMMan linkage); lane 4: 
nlsEGFP conjugate with 386 via irreversible SMCC modification; lane 5: conjugate 9 (Scheme 5.8) 
after acidic incubation at pH 5; lane 6: nlsEGFP-386 conjugate via SMCC modification, after acidic 
incubation at pH 5. 

The cleavage kinetics was determined in more detail (Figure 5.46) by labeling the 

386 carrier with TMR dye and further processing analogously as described for the 

investigation of PEG release from HSA (Figure 5.44). As already observed for the 

PEG-HSA conjugate, coupling of carrier 386 to nlsEGFP is retarding the cleavage 

kinetics. Nevertheless, after 1 hour incubation at endosomal pH 5.0, >20% and after 

2 hours almost 50% of the transduction oligomer was released from the nlsEGFP 

protein.  
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Figure 5.46: Acid catalyzed release of TMR-386 from  conjugate 9 (Scheme 5.8) at 37° C. 
Samples of TMR-labeled 9 were incubated in PBS buff ers of pH 7.3 and pH 5.0. Dye labeled 386 
released from the protein was determined indirectly  by measuring the absorbance of the 
conjugate after purification. 

The cell culture experiment shown in Figure 5.47 demonstrates how important 

intracellular cleavage can be for protein delivery in the case of covalent binding to a 

carrier molecule using the novel AzMMMan linker. Both constructs, based on the pH-

reversible conjugation or on conventional irreversible conjugation by SMCC thioether 

linkage, were able to deliver nlsEGFP into the cytosol of HeLa cells (Figure 5.47, row 

1 and row 2). Flow cytometry experiments suggest that the stable thioether construct 

seems to be slightly more efficient (data not shown). Cells in row 3 were transfected 

with unmodified nlsEGFP as a control. The fluorescence image shows that no protein 

was internalized. However, only nlsEGFP which had been coupled to the carrier by 

acid labile bonds was further translocated into the nucleus to a large extent (Figure 

5.47, row 1). Transfection of cells with conjugate 9 (Scheme 5.8) at 4° C in the 

presence of three different endocytosis inhibitors (amiloride (inhibitor for 

macropinocytosis), chloroproamzine (inhibitor for clathrin-mediated endocytosis), β-

cyclodextrin (inhibitor for caveolae-mediated endocytosis)) almost completely 

eliminates internalization (Figure 5.47, row 4). This observation suggests an active, 

energy dependent internalization mechanism. The experiment shown in Figure 5.47, 

row 5 evidences that acidification in the endosome is a critical requirement for 

intracellular release of the carrier. Cells were preincubated and transfected in the 

presence of chloroquine and ammonium chloride. Both substances prevent 

acidification of the cellular endosomes. Transfections under these conditions result in 
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a similar observation that was made for the noncleavable construct. The conjugate is 

taken up by the cell and the balanced distribution suggests at least some endosomal 

escape, but only minor translocation of the protein into the nucleus was observed.  

 

Figure 5.47: Transduction of HeLa cells with 386 mo dified nlsEGFP. Row 1: carrier 386 was 
coupled with nlsEGFP via the cleavable AzMMMan linker (compound 9, Scheme 5.8). Row 2: carrier 
386 was coupled by irreversible SMCC thioether linkage. Row 3: transfection was done with 
unmodified nlsEGFP. Row 4: transfection with conjugate 9 (Scheme 5.8 ) at 4°C in presence of 
endocytosis inhibitors. Row 5: transfection with conjugate 9 in presence of endosome acidification 
inhibitors.  A) Brightfield picture of the transfected cells, B) EGFP fluorescence of the transfected cells, 
C) Hoechst 33342 DNA stain of the cell nucleus. 
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Transduction oligomer 386 has been shown to exhibit low cytotoxicity when used as 

a carrier for siRNA or DNA (59, 156). To verify the nontoxic properties also in case of 

being covalently bound to a protein over an acid labile bond, a cell viability test was 

performed that confirms this assumption. Figure 5.48 shows the low toxicity of the 

transduction shuttle, even at high transduction concentrations. It exhibits only 

marginal higher toxicity than the unmodified nlsEGFP protein. With the standard 

concentration used for the transfections above (10 µg/ml) a decline in metabolic 

activity of only 10 percent in comparison to untreated cells is observed. Even after 

transfection with the highest tested concentration of 80 µg/ml 386 nlsEGFP conjugate 

cell viability decreased by only 33%. The toxicity profile of stable and reversible 

bound carrier does not differ much. However at the highest tested concentration the 

irreversible SMCC construct seems to be slightly more toxic. 

 

 

Figure 5.48: Cell viability assay of HeLa cells tra nsfected with different concentrations of 386-
nlsEGFP conjugates. Unmodified nlsEGFP was used for comparison. 

To investigate if the protein conformation is irreversible changed through the 

modification with the AzMMMan linker and the transduction oligomer 386 a CD 

spectroscopy experiment was performed. We compared unmodified nlsEGFP with 

with AzMMMan linker and 386 modified nlsEGFP after acidic incubation and 

purification. Figure 5.49 shows that the cd spectra of unmodified nlsEGFP and 

conjugate 9 (Scheme 5.8) after acidic incubation and purification do not differ much. 

This indicates that the natural conformation of the nlsEGFP protein is not disturbed 

by the reversible modification. 
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Figure 5.49: CD spectra of unmodified nlsEGFP and o f conjugate 9 (386-AzMMMan-nlsEGFP, 
Scheme 5.8) after acidic incubation and purificatio n. 

Fluorescence properties and also CD spectra of construct 9 (Scheme 5.8) are 

indicating that the protein conformation is not significantly affected by the modification 

with the linker and the transduction oligomer. Therefore we examined whether the 

activity of an enzyme would be maintained and survive the modification, delivery, and 

intracellular release steps. As a model enzyme we have chosen ß-galactosidase (ß-

Gal). It is of rather big size (119 kDa), and the activity of the enzyme in the cytosol 

can easily be investigated by the use of the fluorescent substrates. Carrier 386 was 

covalently bound to the ß-Gal protein over the AzMMMan linker (Scheme 5.8, step 

e), resulting in conjugate 10 (Scheme 5.8). This construct was able to transport 

biological active ß-galactosidase into the cytosol of HeLa cells. ß-Gal activity was 

detected by using the fluorescent substrate C12-FDG (C12-fluorescein-di-beta-D-

galactopyranoside), which exhibits FITC fluorescence after cleavage. This 

fluorescence was determined by flow cytometric analysis. Already with a transfection 

concentration of 1 µM a significant raise in fluorescence was observed. Transfection 

with 2.5 µM ß-Gal further raised fluorescent properties. In contrast, cells treated with 

2.5 µM unmodified ß-Gal (without shuttle) did not show a significant shift in 

fluorescence. This experiment evidences that the transduction shuttle is able to 

transduce biological active proteins into the cytosol of cells. 
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Figure 5.50: HeLa cells were transfected with conju gate 10 (386-AzMMMan-ßGal), washed and 
incubated with C12-FDG substrate and evaluated by f low cytometry. I: untreated cells. II: cells 
transfected with 2.5 µM unmodified ß-Gal. III: cells transfected with 1 µM conjugate 10. IV: cells 
treated with 2.5 µM of conjugate 10. 

 

5.7.5.6 Polycation free protein transduction using a folic acid-PEG conjugate 

and melittin peptide 

As already shown in Figure 5.32 modification of enzymes with the polycation 386 can 

have an influence on enzymatic activity. For this reasons a new polycation free 

transduction shuttle was designed (Scheme 4.2). 

 

Scheme 4.2: Synthesis of a polycation-free protein transduction shuttle. 
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 A folic acid- PEG conjugate (synthesized by Christian Dohmen, AK Wagner as part 

of his phd work) that was recently developed for the delivery of siRNA (49, 63) should 

effect internalization. To enable endosomal escape, additionally the endosomolytic 

peptide mellitin was covalently bound to folic acid-PEG modified nlsEGFP. 

Successful transfection of KB cells with the polycation free transduction shuttle (at a 

concentration of 25 µg per ml) is demonstrated in Figure 5.51 (transduction 

experiment performed by Daniel Edinger, AK Wagner, LMU). Quite a great amount of 

transduction shuttle is internalized and the even distribution of the protein inside the 

cytosol indicates endosomal escape. In addition, the protein is translocated into the 

nuclei of the cells, confirming successful escape of the transduction shuttles out of 

the endosomes and subsequent active nuclear import facilitated by the NLS 

sequence. 

 

Figure 5.51: Transfection of KB cells with FAPEGxMe l-nlsEGFP. A) bright-field picture of the 
transfected cells, B) EGFP fluorescence of the transfected cells, C) Hoechst 33342 DNA stain of the 
cell nucleus. This transduction experiment was performed by Daniel Edinger (AK Wagner, LMU). 

 

5.7.6 Synthesis of PentyneMMan crosslinker 

For some applications it may be of advantage to modify the protein instead of the 

azide with the alkyne. Therefor the alkyne bearing counterpart to the AzMMMan 

linker was synthesized. The pentyne-methylmaleic anhydride linker (PentyneMMan) 

was synthesized from dimethylmaleic anhydride by two simple reaction steps (radical 

substitution with NBS resulting in bromomethyl methylmaleic anhydride, followed by a 

carbon-carbon coupling step (Grignard reaction with 4-bromo-1-butyne). The yield for 

the second reaction step was 31 percent. 
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Scheme 5.10: Synthesis of PentyneMMan linker.  a) N-bromosuccinimide, benzoyl peroxide, 56% b) 
diethyl ether, 31%. 

 

5.7.7 Acid lability of PentyneMMan linker 

To investigate if the PentyneMMan linker shows the same acidic reversibility than the 

AzMMMan linker, HSA was modified with the linker and subsequently an azide 

containing dye was coupled. Dye labeled HSA was incubated in buffers of different 

pH. The cleavage of azide dye from the protein was determined at various times by 

measuring residual dye absorbance of purified protein fractions (Figure 5.52).  At 

basic pH of 8.5 the conjugate was quite stable, with only about 30 percent cleavage 

after 24 hours. At pH 6 nearly 40 % was released already after 30 minutes. Half-life 

at pH 5 is about a quarter hour. At pH 4 over 90 percent of the linker was cleaved in 

30 minutes. The cleavage of the PentyneMMan linker as well as for the AzMMMan 

linker follows a pseudo first order kinetic. In summary the bond formed by the 

PentyneMMan linker seems to be a little bit more acid labile the than the bond formed 

by the AzMMMan linker. 
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Figure 5.52: Acid catalyzed release of azide dye co upled over PentyneMMan to HSA at 37° C. 
Samples of azide dye modified PentyneMMan-HSA were incubated in buffers of different pH. At each 
time point, the fraction (%) of dye remaining conjugated with HSA was determined after protein 
purification. Percentage of released dye is calculated as (100%-HSA conjugated dye). 
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6 Discussion 

6.1 Establishing of a cellular test system for prot ein 

delivery 

Protein delivery into the cytosol of living target cells is a very complex process. Many 

different hurdles have to be overcome on the way into the cytoplasm. The delivery 

process may be subdivided into 5 main uptake steps. First the transduction shuttle 

must stay stable at physiological conditions in presence of serum. The second point 

is effective binding of the carrier system to the surface of the target cell. This binding 

may be mediated either by electrostatic interaction or via specific target cell 

interactions. Once bound to the surface the protein complex has to be internalized by 

the cell. The most common uptake pathway in protein delivery is endocytosis. 

Endocytosis leads to an entrapment of the internalized particle in cellular 

compartments surrounded by a phospholipid bilayer membrane, called endosomes. 

In most cases this endosomes are maturing to acidic lysosomes, leading to 

degradation of the internalized protein by proteases. For this reasons the escape out 

of this endosomal compartment is indispensable for successful protein delivery into 

the cytosol of cells. But even after the carrier-cargo complex has reached the cytosol 

the delivery process is not finished. Now ideally in the fifth and last delivery step, the 

carrier has to be cleaved off from the cargo to assure natural behavior of the 

internalized protein. During all these critical five delivery steps the natural 

conformation of the protein has to be maintained to warrant activity of an internalized 

enzyme for example. A perfect test system for protein delivery should highlight every 

single step of this internalization process isolated. This should enable appropriate 

adjustment of the carrier system in case of one of these critical hurdles is not 

overcome by the transduction shuttle. Moreover a perfect test system should allow 

easy and fast qualitative determination of cellular uptake and further processing. To 

enable the comparison of different protein delivery techniques with regard to 

efficiency the test system should allow aside qualitative uptake the quantitative 

determination of the internalized protein amount and the percentage of successfully 

transfected cells. Of course it will never be completely avoidable that the carrier 

system has to be a little bit adjusted and modified according to the special demand of 
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a certain cargo. Nevertheless the test system should provide a platform that is 

transferable to as much other proteins as possible. Therefor the test proteins should 

be of average protein size and surface charge. Last but not least the test proteins 

have to be available in great quantities. So they have to be either cheaply 

commercially available or have to be easy to express and purify. The protein delivery 

test system developed in this thesis is addressing all requirements mentioned above. 

The nlsEGFP protein is easily heterologously expressable in E. coli and ß-

galactosidase is cheaply commercially available.  As the test proteins nlsEGFP and 

ß-galactosidase are of average protein size and charge, their transfection results 

should be transferable to a great amount of other proteins. Cellular binding and 

uptake, because of the inherent fluorescent properties of nlsEGFP, can be easily 

determined as well qualitative on a fluorescent microscope as well as quantitative via 

FACS analysis. Endosomal escape is indicated by even distribution of the nlsEGFP 

protein inside the cytosol of the transfected cell and more exactly by successful 

subcellular transport. This subcellular transport of nlsEGFP into the nucleus, 

mediated by the tagged nuclear localization signal, is only possible after endosomal 

release. Moreover the results in Figure 5.47 reveal that cleavage between carrier and 

cargo is advertised by the test system. The ß-galactosidase enzyme was used as a 

second test protein which should evidence that the conformation of the proteins is not 

irreversibly disturbed by modification and the subsequent delivery processes. ß-

galactosidase allows also qualitative (Figure 5.33) and quantitative (Figure 5.34) 

conclusion of the transfection efficiency by the use of fluorescence substrates. In 

literature as well nlsEGFP (170) as also ß-galactosidase (147) were already used as 

test proteins for protein delivery. However, only the combination of results obtained 

by transfection experiments with these two test proteins, gives a good hint for a broad 

applicability of the investigated transduction technology.    

   

6.2 Development of a sequence defined carrier syste m for 

protein delivery 

Protein transduction into living cells holds enormous potential in biological as well as 

in medical applications. With few exceptions native proteins, because of their size 

and charge, are unable to penetrate into the cytosol of living cells. Hence, an all-
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purpose intracellular protein delivery technology is highly desirable as it would open 

the door for reams of different therapeutic uses. As already mentioned in the section 

above, the requirements on such a carrier platform are enormous. The carrier has to 

protect the protein cargo from proteolysis and aggregation in the extracellular space 

of the target cell. Afterwards the carrier has to promote cellular binding and further 

uptake of the complex by the target cell. Once inside the cell the retrograde transport 

out of the endosome mediated by the carrier system is indispensable for successful 

protein delivery. Moreover the carrier system has to combine high transduction 

efficiency with low cytotoxicity. Up to date many different carriers have been 

investigated in regard to exhibit these required properties. Cationic polymers as 

polyethylenimines belong to one of the most effective drug carrier classes and have 

been widely used as well for nucleic acid (126) as for protein delivery (107). 

Polyethylenimine lacks of defined structure and more important exhibits due to the 

big molecule size quite high cellular toxicity (171). For this reasons a generation three 

polypropylenimine dendrimer as carrier was used as a first protein transduction 

carrier molecule. G3 PPI is of rather low molecular weight and furthermore a 

structure defined molecule. Covalent coupling of the G3 PPI dendrimer over the zero 

length crosslinker EDC to nlsEGFP leads to high efficient protein transduction into 

living cells (Figure 5.14). Although the fluorescent pictures show good internalization 

and even distribution of the nls-EGFP protein is indicating endosomal escape, only 

small amounts of the internalized protein is translocated into the nucleus of the 

transfected cells. Also microinjection experiments reveal that G3 PPI modified 

nlsEGFP (Figure 5.18) in contrast to unmodified nlsEGFP (Figure 5.7) is subcellularly 

not transported into the nucleus. The lacking nuclear import of G3 PPI modified 

nlsEGFP is consistent with a direct (by chemical modification of the nls residues) or 

indirect (by sterical shielding) inactivation of the nuclear localization signal. 

Alternatively, active nuclear transport may be hampered by unspecific cytosolic 

retention of the polycationic transduction shuttle. The microinjection pictures of 

G3PPI-nlsEGFP are indicating that the last point may be one of the major reasons as 

quite a great amount of the protein is sticking to negative charged cell components 

for example the nuclear membrane shows high EGFP fluorescence. To achieve 

aside high efficient internalization natural subcellular behavior a cleavable bond 

between theG3PPI carrier and the nlsEGFP cargo was introduced. Transduction 

studies with this G3PPI-SS-nlsEGFP showed a little bit better nuclear translocation 
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compared to the non-cleavable counterpart (Figure 5.21). The shape of cells 

transfected with the reducible construct indicated high cytotoxicity that was further 

evidenced by a performed cell viability assay (Figure 5.23). High toxicity of G3PPI 

was already observed for the noncleavable G3PPI-nlsEGFP construct but the 

significant higher toxicity of the cleaveable G3PPI-nlsEGFP was not expected in that 

extent. The higher toxicity of the cleavable transduction shuttle may be explained with 

the fact that free cytosolic G3PPI dendrimer can interact more with cellular 

components, for example mRNAs, DNA, membranes etc., than protein bound 

dendrimer which is at least partly shielded by the irreversible covalently bound  

nlsEGFP protein. High toxicity is known to be another possible reason for unnatural 

behavior of internalized proteins. This could explain the rather low nuclear transport 

of nlsEGFP, when it is transduced with G3PPI as a carrier molecule, even in cases 

when the bond between carrier and cargo is biological cleavable. To overcome the 

problem of high toxicity other carrier molecules were tested for their applicability in 

protein delivery. Like G3PPI dendrimer, polymer 71 is a structure defined cationic 

oligomer. In contrast to the G3PPI dendrimer that is based on polypropylenimine 

units, polymer 71 is built up from amino acids and fatty acid subunits. The carrier was 

previously designed in the Wagner laboratory for the transfection of DNA and siRNA. 

In these studies it exhibited high transduction efficiency combined with low 

cytotoxicity. Covalent coupling to the nlsEGFP protein over the MAM linker molecule 

was quite difficult. Only low amounts of polymer can be coupled to the protein, 

because otherwise the modified protein is building non soluble aggregates. The 

formation of these aggregates is consistent with the following explanation. 

Transduction oligomer 71 contains oleic acid residues that should enable membrane 

destabilization and therefore endosomal escape. After covalent coupling to the 

protein these fatty acids change the naturally hydrophilic surface of the nlsEGFP 

protein and makes it more hydrophobic. Now van der Waals forces are leading to the 

observed protein aggregation. The weak nuclear transport of nlsEGFP transduced 

with oligomer 71 can be explained in following manner. Because only a small 

modification degree is possible, the amount of carrier covalently bound to the protein 

is not sufficient to promote endosomal escape (Figure 5.36). Another cause for the 

lack of nuclear translocation may be found in insufficient cleavage of the used MAM 

linker and therefore again interaction of the carrier with cellular components hempers 

nuclear transport. For this reasons 386 another structure defined carrier that showed 
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similar good properties for nucleic acid delivery as transduction oligomer 71 was 

used. In contrast to 71, the structure of 386 does not contain fatty acid residues. This 

fact enables a high modification degree of the nlsEGFP without leading to protein 

aggregation and the formation of insoluble particles. The stp subunits, because of 

their high positive charge density effect good cellular binding of 386 modified 

nlsEGFP to the cell surface and therefore internalization of the conjugate. Moreover 

the membrane destabilizing properties of 386 enable good endosomal escape. If 386 

is coupled over a biological cleavable bond to the protein natural behavior of 

cytosolic nlsEGFP is indicated by fast nuclear translocation of free cytosolic nlsEGFP 

(Figure 5.28). Although 386 is showing lower transfection efficiency than G3PPI 

(Figure 5.26), the fact of the low cytotoxicity makes it much more applicable for 

protein delivery. The linear dependency of concentration and uptake that was found 

for 386 modified nlsEGFP was already reported for internalization mediated by the 

protein transduction domain Antp (Antennapedia homeodomain) (100). Furthermore 

an approximately linear relationship between fluorescence intensity and time was 

found. Such a continuous uptake is supposed to be a strong hint for endocytosis 

mediated uptake (100). This hypothesis was further evidenced by uptake inhibition 

experiments. The uptake inhibition experiments did not allow the identification of a 

certain endocytosis pathway, but rather suggest that different mechanisms are 

involved in the internalization process (Figure 5.31). Although it cannot be excluded 

completely that in some cases the observation of reduced uptake may also be 

explained by the toxicity of the inhibitor which leads to lower cellular metabolism. The 

bright fluorescence of 386-SS-nlsEGFP and 386-AzMMMan-nlsEGFP is indicating 

that the conformation of the nlsEGFP is not affected much by the modification. This 

was further evidenced by CD spectroscopy experiments which reveal a natural 

conformation of nlsEGFP after splitting off the carrier (Figure 5.49). Aside the rather 

low sized nlsEGFP, 386 was able to deliver ß-galactosidase with high molecular 

weight into the cytosol of different cell lines. Moreover the enzyme is found to be 

enzymatically active inside the cytosol of the transduced cells. Although enzyme 

activity was found in transduced cells an experiment investigating the kinetics of 

substrate conversion revealed that 386 modified ß-galactosidase exhibits only 10 

percent of the activity compared to untreated enzyme. This finding may be explained 

by the charge inversion of the protein, as unmodified ß-gal is a protein with a 

negative isoelectric point (theoretical pI 5.8), whereas on the modified protein the 
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positive charges overbalances the negative ones by far. Another possible reason for 

the loss in activity may be the rather rough chemical conditions during the 

modification process. To resolve this problem another carrier system was tested for 

its protein delivery properties. PEG modified folic acid as a targeting ligand and the 

endosomolytic peptide mellittin were covalently coupled to the nlsEGFP. This 

transduction shuttle is completely free of polycations. Ideally, this protein transduction 

shuttle comprises functionalities for all essential steps during the delivery process: 

shielding of the protein during circulation (to prevent immunogenic side effects as 

well as degradation), a targeting moiety (for receptor specific delivery and uptake by 

the target cells) and finally an endosomolytic moiety (for effective release of the 

payload from the endosomal compartment). First transduction studies show 

promising results for the transfection of nlsEGFP (Figure 5.51). 

 

6.3 Design of a traceless-cleavable linker for prot ein 

delivery 

For protein delivery in contrast to nucleic acid delivery in most cases a covalent bond 

between the carrier and the cargo is necessary. Nucleic acids exhibit a high density 

of negative charges resulting in a strong electrostatic interaction between the 

polycationic carrier and the nucleic acid. The formed polyplexes are very stable even 

under serum containing conditions. Although the polar and charged side chains of 

the amino acids are mostly exposed on the surface of the protein whereas the 

hydrophobic residues assemble in the core the charge density is far lower compared 

to nucleic acids. Moreover the surface of most proteins does not only contain 

negative charged moieties resulting from the glutamic acid or asparagine side chains 

but usually also the positive charged side chains of lysine, histidine and arginine 

amino acids are exposed. For example the used nlsEGFP protein is built up of 281 

amino acids, whereof 36 residues are negative charged (aspartate and glutamate) 

and 33 are positive charged (arginine and lysine). This is resulting in a negative 

charge density of one negative charge per 10511 Da. In comparison an average 

double stranded DNA molecule of the same molecular weight exhibits a charge 

density of one negative charge per 312 Da. Regarding this great difference in the 

charge density it becomes clear why proteins do not form stable complexes with 
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polycations, in contrast to nucleic acids. To overcome this problem, different 

strategies were developed. For example each positive charge occurring from a lysine 

residue can be transformed in two negative charges by modification with citraconic 

anhydride. With this strategy the charge density of cytochrome c could be enhanced 

to one negative charge per 320 Da (75). Another strategy for forming stable 

polyplexes is the exploitation of hexa-histidine tag fused to the cargo protein. A 

carrier that contains a chelat forming nitrile triacetic acid complex is binding strongly 

to this histidine tag (27). The major disadvantage of this system is that no complete 

encapsulation of the cargo protein with the carrier is possible as these hexa-histidine 

tags in most cases are either fused to the amino- or to the carboxy-end of the protein. 

In contrast, the covalent coupling of the carrier to lysine residues of the cargo protein, 

over linker molecules, allows complete encapsulation. Up to date many different 

linker molecules for covalent modification of proteins have been developed. Covalent 

modification of proteins can have great influence on their properties. For example the 

bee venom peptide mellittin can lose its lytic activity after covalent modification 

(Figure 5.42). For this reasons most of them are limited applicable for protein delivery 

as they form stable non-cleavable bonds between the carrier and the cargo (e.g. 

amide bonds, thioether and others). Among the biological cleavable linkers the used 

SPDP crosslinker is one of the most famous. The disulfide bonds between the carrier 

and the cargo protein are cleaved by the reducing conditions endemism in the 

cytosol. For protein delivery also acid labile linkers are applicable, due to the 

acidification process occurring in endosomes after internalization of the transduction 

shuttle. Such acid labile linkers have already been described in literature (172-174). 

Major disadvantage of these linkers is the fact that after cleavage of the acid labile 

bond a small linker fragment is retarded on the cargo molecule. The acid labile 

linkers used and developed in this thesis are based on maleic anhydride which forms 

an acid labile amide bond with amines of the cargo molecule. Under acidic 

conditions, this labile amide bond is cleaved traceless, resulting in an unmodified 

cargo molecule. Blatter and coworkers (134) developed a heterobifunctional MAM 

linker based on maleic anhydride. Figure 5.35 and Figure 5.36 show that its 

applicability for protein delivery is limited due to insufficient cleavage of the acid labile 

bond under physiological relevant pH conditions. It is well known that amide bond 

formed by dimethyl maleic anhydride are due to the Thorpe-Ingold effect much more 

acid labile than those formed with maleic anhydride (62). This is also the explanation 
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why the AzMMMan and PentyneMMan linkers, developed in this thesis, are cleaved 

at higher pH values (Figure 5.39, Figure 5.52). How important the cleavage under 

mild physiological relevant conditions is becomes clear when comparing the results 

of nlsEGFP coupled to the carrier molecule over AzMMMan and MAM. nlsEGFP 

coupled to the carrier with AzMMMan shows natural cytosolic behavior and is 

subcellularly transported into the nucleus, whereas nlsEGFP coupled over the MAM 

linker lacks of this translocation due to insufficient cleavage. The experiment in which 

endosomal acidification is prevented with chloroquine is evidencing that cleavage of 

the carrier is indispensable for natural subcellular behavior of nlsEGFP (Figure 5.47). 

Aside the higher acid lability, the developed AzMMMan and PentyneMMan linkers 

have got a second advantage compared to the MAM linker. In recent years click 

chemistry reactions, especially the copper catalyzed 1,3-dipolar cycloaddition 

(CuAAC) and the Staudinger ligation, became useful tools for conjugating 

biomolecules.(49, 135-137) Both reactions have great advantages compared to other 

linking strategies, like high efficiency and bioorthogonality. In contrast the second 

functional group of the MAM linker is a maleimide. This maleidido group is not 

bioorthogonal, as it can react with thiol groups from cysteine residues as well as with 

amine groups from lysine residues for example. Figure 5.41 reveals that the coupling 

type (Staudinger Ligation or CuAAC) has got only a minor influence on the acid 

lability of the construct, whereas the coupled molecule has more impact on acidic 

bond cleavage. PEG release from the protein (Figure 5.44) was considerably slower 

compared with dye release (Figure 5.39). This may be explained by better sterical 

shielding of the maleimido group by PEG. Although the PentyneMMan linker seems 

to be a little more acid labile than the AzMMMan linker they do not differ much in this 

property. The better solubility of the AzMMMan linker tipped the balance why it was 

preferred for use in the protein delivery experiments. 
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7 Summary 

Intracellular protein delivery is offering numerous possibilities in research and in 

therapy. Aside gene therapy, protein delivery into living cells is one of the most 

promising tools for the treatment of various so far immedicable diseases including 

cancer. To develop a practicable protein delivery platform, a test system which allows 

easy control of successful intracellular delivery is needed. Therefore a test system 

based on two model proteins was established. A nuclear localization signal tagged 

EGFP molecule is enabling fast control of cellular uptake and endosomal release. 

The second model protein ß-galactosidase is evidencing that protein conformation is 

not irreversible disturbed by modification with the carrier molecules. Protein 

transduction technology is opening the door for a promising alternative to gene 

therapy, as it is lacking of the potential malignant side effects of gene therapy. The 

most limiting step in the development of a therapeutic drug remains the delivery 

process. In the last decade, many techniques to deliver proteins into living cells were 

developed. Although great efforts were made, so far no all-purpose technique is 

available that addresses all critical steps, like efficient uptake, endo-lysosomal 

escape, low toxicity, while maintaining enzymatic activity. Each method has got its 

limitation, for example cell type dependence. Among the so far used carriers, the 

most effective ones are cationic polymers like polyethylenimine. These carriers are 

lacking of precise structure and often show high toxicity, dependent on the molecular 

weight of the used polymer. In this thesis the properties of the three arm cationic 

oligomer 386, which was previously designed for siRNA delivery was investigated in 

regard of being applicable as a transduction carrier for protein delivery. This carrier 

molecule, in contrast to other cationic polymers used for protein delivery, is of precise 

structure, of low molecular weight and potentially degradable by proteases. The 

transduction oligomer was covalently bound to the protein by a bioreversible bond. 

Our results reveal that covalent coupling of the structure defined cationic oligomer 

386 to a protein leads to a high efficient, serum insensitive and low toxic alternative to 

established protein transduction technologies. For a general all-purpose delivery 

system covalent coupling of the carrier to the cargo protein is indispensable. Protein 

delivery requires special properties to the linker molecule. Therefore in this work a 

new pH sensitive linker was developed which combines the advantages of click 

reactions with the implementation of a traceless cleavable bond between two 
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conjugated molecules. Three different click chemistries were performed which all are 

compatible with the acid labile properties. A traceless cleavage may be a particularly 

important feature in protein transduction strategies, to maintain full bioactivity of 

enzymes and other proteins. The current example of 386 carrier-mediated cytosolic 

delivery and subsequent nuclear import of released nls-EGFP demonstrates the 

advantage of the traceless linker. To demonstrate that the modification does not 

irreversibly affect structure and biological activity of proteins, 386-AzMMMan-ß-

galactosidase was delivered as a model enzyme. It exhibited cytosolic activity in the 

transduced cells far higher than without shuttle. Aside from these encouraging 

options for protein delivery and modification, the linker might have broader use in the 

design of novel programmed, acid labile and biodegradable drug delivery systems. 

Targeted therapeutics could, after delivery into acidic tumor areas or upon cellular 

uptake into endosomes, be dismantled from their outer shell including targeting 

ligands. Besides drug delivery, the linker may also be of interest for other 

applications, such as reversible labeling of various biological and also chemical 

molecules. The developed linking strategy and the presented concepts for 

transduction shuttles may help to get a step closer in the design of an all-purpose 

protein delivery platform, applicable on bench as on bedside. 
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8 Abbreviations 

µM   Micromolar 

µmol   Micromole 

AA   Amino acid 

ACN   Acetonitrile 

Antp   Antennapedia homeodomain 

ATCC   American type culture collection 

AzMMMan  Azidomethyl methyl maleic anhydride 

B6   Peptide sequence with affinity for the transferrin receptor 

C12-FDG  5-dodecanoylaminofluorescein di-β-D-galactopyranoside 

Calcd   Calculated 

CD   circular dichroism 

CHCL3  Chloroform 

C-NMR  Carbon Nuclear magnetic resonance spectroscopy  

CPP   Cell penetrating peptide 

CuAAc  Copper catalyzed alkyne azide cycloaddition 

CuBr   Copper bromide 

CuI   Copper iodide 

Da   Dalton 

DBCO   Dibenzylcyclooctyne 

DCC   Dicyclocarbodiimide 

DCM   Dichloromethane 

DCU   Dicyclourea 
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DCVC   Dry column vacuum chromatography 

DIC   Differential interference contrast  

DLS   Dynamic light scattering 

DMF   N,N-Dimethylformamide  

DMSO  Dimethyl sulfoxide 

DNA   Deoxyribonucleic acid 

DTT   DL-Dithiothreitol 

e.g.   Exempli gratia, for example 

EDC   N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride 

EDTA   Ethylenediaminetetraacetic acid 

EGF-R  Epidermal growth factor receptor  

EGFP   Enhanced green fluorescent protein 

Et2O   Diethyl ether  

etc.   Et cetera 

EtOH   Ethanol 

FA   Folic acid 

FACS   Fluorescent analyzed cell sorting 

FCC   Flash column chromatography    

FCS   Fetal calve serum  

FDA   Food and Drug Administration   

FITC   Fluorescein isothiocyanate  

G3   Generation three 

GE 11   Peptide binding to the EGF-receptor  
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GFP   Green fluorescent protein 

GTP   Guanosine 5′-triphosphate    

HCl   Hydrochloric acid 

Hepes   N-(2-hydroxyethyl) piperazine-N’-(2-ethansulfonic acid)  

Hepps   N-2-Hydroxyethylpiperazin-N'-3-propansulfonsäure  

HIV   Human immunodeficiency virus  

HMPA   Hexamethylphosphoramide  

H-NMR  Proton Nuclear magnetic resonance spectroscopy 

HSA   Human serum albumine  

IR   Infrared 

IU   International Units 

kDa   kilo Dalton 

Mal   Maleimide 

MAM   Maleic anhydride maleimide    

Mel   Melittin 

MetOH  Methanol 

mg   Milligramm 

MHz   Megahertz 

mL   Milliliter 

mM   Millimolar 

mmol   Millimole 

mRNA   Messenger RNA 

MSN   Mesoporous silica nanoparticle 
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MTBE   Methyl tertiary butyl ether 

MTT   1-(4,5-Dimethylthiazol-2-yl)-3,5-diphenylformazan  

MUG   4-Methylumbelliferyl β-D-galactopyranoside 

MWCO  Molecular Weight Cut Off 

NBS   N-Bromosuccinimide  

NHS   N-Hydroxysuccinimide  

NLS   Nuclear localization signal 

nlsEGFP  Nuclear localization signal tagged EGFP 

nm   Nanometer 

NTA   Nitrilotriacetic acid  

PBS   Phosphate buffered saline 

PCR   Polymerase chain reaction  

PEG   Polyethylene glycol 

PEI   Polyethylenimine 

PentyneMMan Pentyne methyl maleic anhydride  

pH   Potentia Hydrogenii 

PPI   Polypropylenimine 

PTD   Protein transduction domain 

RGD   Peptide sequence (arginine, glycine, aspartic acid)  

RNA   Ribonucleic acid 

RNAi   RNA interference  

SDS   Sodium dodecyl sulfate 

PAGE   Poly Acrylamide Gel Electrophoresis 
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SEC   Size exclusion chromatography 

siRNA   Small interfering RNA 

SMCC   N-Succinimidyl 4-(maleimidomethyl)cyclohexanecarboxylate 

SPDP   N-Succinimidyl 3-(2-pyridyldithio)propionate 

ß-Gal   Beta galactosidase 

Stp   Succinoyl-tetraethylenpentamine 

SWNTs  Single walled carbon nanotubes 

TAT   Trans-Activator of Transcription  

TB   Terrefic Broth  

TBTA   Tris[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]amin) 

tertButOH  Tertiary butanol 

THF   Tetrahydrofuran 

TLC   Thin layer chromatography 

TMR   Tetramethylrhodamine 

Tris   Tris(hydroxymethyl)aminomethane 

UV   Ultraviolett 

Vis   Visible 

VLPs   Virus like particles 

X-Gal   5-Brom-4-chlor-3-indoxyl-β-D-galactopyranosid  
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9 Appendix 

9.1 Plasmid maps and base sequences 

9.1.1 pc1068-pRHGPCNA  

 

Scheme 9.1: Plasmid pc1068-pRHGPCNA 

Base Sequence: 

GATCTCGATCCCGCGAAATTAATACGACTCACTATAGGGAGACCACAACGGTTT

CCCTCTAGAAATAATTTTGTTTAACTTTAAGAAGGAGATATACATATGCGGGGTT

CTCATCATCATCATCATCATGGTATGGCTAGCATGACTGGTGGACAGCAAATGG

GTCGGGATCTGTACGACGATGACGATAAGGATCGATGGGGATCCCCGAAGAAG

AAGCGCAAAGTACTGGTACCGGTCGCCACCATGGTGAGCAAGGGCGAGGAGCT

GTTCACCGGGGTGGTGCCCATCCTGGTCGAGCTGGACGGCGACGTAAACGGC

CACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCACCTACGGCAAGC

TGACCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTGCCCTGGCCCACC

CTCGTGACCACCCTGACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCA

CATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGG

AGCGCACCATCTTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTG

pc1068-pRHGPCNA

4846 bp

BamHI (203)

EcoRI (1398)

HindIII (2144)

ApaLI (3058)

ApaLI (4304)

ClaI (196)

ClaI (1012)

PstI (1131)

Pst I (1711)

Nco I (246)

Nco I (1218)

Nco I (1950)

SV40-nls-EGFP
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AAGTTCGAGGGCGACACCCTGGTGAACCGCATCGAGCTGAAGGGCATCGACTT

CAAGGAGGACGGCAACATCCTGGGGCACAAGCTGGAGTACAACTACAACAGCC

ACAACGTCTATATCATGGCCGACAAGCAGAAGAACGGCATCAAGGCCAACTTCA

AGATCCGCCACAACATCGAGGACGGCAGCGTGCAGCTCGCCGACCACTACCAG

CAGAACACCCCCATCGGCGACGGCCCCGTGCTGCTGCCCGACAACCACTACCT

GAGCACCCAGTCCGCCCTGAGCAAAGACCCCAACGAGAAGCGCGATCACATGG

TCCTGCTGGAGTTCGTGACCGCCGCCGGGATCACTCTCGGCATGGACGAGCTG

TACAAGGGCGAAGGGCAAGGGCAAGGGCAAGGGCCGGGCCGCGGCTACGCG

TATCGATCCATGTTCGAGGCGCGCCTGGTCCAGGGCTCCATCCTCAAGAAGGT

GTTGGAGGCACTCAAGGACCTCATCAACGAGGCCTGCTGGGATATTAGCTCCA

GCGGTGTAAACCTGCAGAGCATGGACTCGTCCCACGTCTCTTTGGTGCAGCTC

ACCCTGCGGTCTGAGGGCTTCGACACCTACCGCTGCGACCGCAACCTGGCCAT

GGGCGTGAACCTCACCAGTATGTCCAAAATACTAAAATGCGCCGGCAATGAAGA

TATCATTACACTAAGGGCCGAAGATAACGCGGATACCTTGGCGCTAGTATTTGA

AGCACCAAACCAGGAGAAAGTTTCAGACTATGAAATGAAGTTGATGGATTTAGAT

GTTGAACAACTTGGAATTCCAGAACAGGAGTACAGCTGTGTAGTAAAGATGCCT

TCTGGTGAATTTGCACGTATATGCCGAGATCTCAGCCATATTGGAGATGCTGTT

GTAATTTCCTGTGCAAAAGACGGAGTGAAATTTTCTGCAAGTGGAGAACTTGGA

AATGGAAACATTAAATTGTCACAGACAAGTAATGTGGATAAAGAGGAGGAAGCT

GTTACCATAGAGATGAATGAACCAGTTCAACTAACTTTTGCACTGAGGTACCTGA

ACTTCTTTACAAAAGCCACTCCACTCTCTTCAACGGTGACACTCAGTATGTCTGC

AGATGTACCCCTTGTTGTAGAGTATAAAATTGCGGATATGGGACACTTAAAATAC

TACTTGGCTCCCAAGATCGAGGATGAAGAAGGATCTTAGTCTAGAGTCGAGATC

CTGAGAACTTCAGGGTGAGTTTGGGGACCCTTGATTGTTCTTTCTTTTTCGCTAT

TGTAAAATTCATGTTATATGGAGGGGGCAAAGTTTTCAGGGTGTTGTTTAGAATG

GGAAGATGTCCCTTGTATCACCATGGACCCTCATGATAATTTTGTTTCTTTCACT

TTCTACTCTGTTGACAACCATTGTCTCCTCTTATTTTCTTTTCATTTTCTGTAACTT

TTTCGTTAAACTTTAGCTTGCATTTGTAACGAATTTTTAAATTCACTTTTGTTTATT

TGTCAGATTGTAAGTACTTTCTCTAATCACTTTTTTTTCAATTCGAAGCTTGATCC

GGCTGCTAACAAAGCCCGAAAGGAAGCTGAGTTGGCTGCTGCCACCGCTGAGC

AATAACTAGCATAACCCCTTGGGGCCTCTAAACGGGTCTTGAGGGGTTTTTTGC

TGAAAGGAGGAACTATATCCGGATCTGGCGTAATAGCGAAGAGGCCCGCACCG

ATCGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCGAATGGGACGCGCCCTGT

AGCGGCGCATTAAGCGCGGCGGGTGTGGTGGTTACGCGCAGCGTGACCGCTA
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CACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTTCCTTTCTCG

CCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGG

TTCCGATTTAGTGCTTTACGGCACCTCGACCCCAAAAAACTTGATTAGGGTGAT

GGTTCACGTAGTGGGCCATCGCCCTGATAGACGGTTTTTCGCCCTTTGACGTTG

GAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGAACAACACTCAACC

CTATCTCGGTCTATTCTTTTGATTTATAAGGGATTTTGCCGATTTCGGCCTATTG

GTTAAAAAATGAGCTGATTTAACAAAAATTTAACGCGAATTTTAACAAAATATTAA

CGCTTACAATTTAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTG

TTTATTTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATAACCCTGAT

AAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTGT

CGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAA

ACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTA

CATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGA

ACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCC

CGTATTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAAT

GACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACA

GTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAAC

TTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAAC

ATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGC

CATACCAAACGACGAGCGTGACACCACGATGCCTGTAGCAATGGCAACAACGTT

GCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATA

GACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCC

GGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCG

GTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCT

ACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAG

ATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCATATA

TACTTTAGATTGATTTAAAACTTCATTTTTAATTTAAAAGGATCTAGGTGAAGATC

CTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAG

CGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCG

CGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTTT

GCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGC

GCAGATACCAAATACTGTTCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAA

GAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGC

TGCTGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTT
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ACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGGGGTTCGTGCACACAGCCC

AGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACAGCGTGAGCTATG

AGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGC

GGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCT

GGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTT

GTGATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCC

TTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTTCTTTCCTGCGT

TATCCCCTGATTCTGTGGATAACCGTATTACCGCCTTTGAGTGAGCTGATACCG

CTCGCCGCAGCCGAACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGA

AGAGCGCCCAATACGCAAACCGCCTCTCCCCGCGCGTTGGCCGATTCATTAAT

GCAGAAGGCAATCAGGGTATATTATATTGTACTTCAGCACAGTTTTAGAGAAC 
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9.1.2 pET 23a(+) 

 

Scheme 9.2: Plasmid pET-23a(+) 

Base Sequence: 

ATCCGGATATAGTTCCTCCTTTCAGCAAAAAACCCCTCAAGACCCGTTTAGAGG

CCCCAAGGGGTTATGCTAGTTATTGCTCAGCGGTGGCAGCAGCCAACTCAGCTT

CCTTTCGGGCTTTGTTAGCAGCCGGATCTCAGTGGTGGTGGTGGTGGTGCTCG

AGTGCGGCCGCAAGCTTGTCGACGGAGCTCGAATTCGGATCCGCGACCCATTT

GCTGTCCACCAGTCATGCTAGCCATATGTATATCTCCTTCTTAAAGTTAAACAAA

ATTATTTCTAGAGGGAAACCGTTGTGGTCTCCCTATAGTGAGTCGTATTAATTTC

GCGGGATCGAGATCTCGGGCAGCGTTGGGTCCTGGCCACGGGTGCGCATGAT

CGTGCTCCTGTCGTTGAGGACCCGGCTAGGCTGGCGGGGTTGCCTTACTGGTT

AGCAGAATGAATCACCGATACGCGAGCGAACGTGAAGCGACTGCTGCTGCAAA
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ACGTCTGCGACCTGAGCAACAACATGAATGGTCTTCGGTTTCCGTGTTTCGTAA

AGTCTGGAAACGCGGAAGTCAGCGCCCTGCACCATTATGTTCCGGATCTGCATC

GCAGGATGCTGCTGGCTACCCTGTGGAACACCTACATCTGTATTAACGAAGCGC

TGGCATTGACCCTGAGTGATTTTTCTCTGGTCCCGCCGCATCCATACCGCCAGT

TGTTTACCCTCACAACGTTCCAGTAACCGGGCATGTTCATCATCAGTAACCCGTA

TCGTGAGCATCCTCTCTCGTTTCATCGGTATCATTACCCCCATGAACAGAAATCC

CCCTTACACGGAGGCATCAGTGACCAAACAGGAAAAAACCGCCCTTAACATGGC

CCGCTTTATCAGAAGCCAGACATTAACGCTTCTGGAGAAACTCAACGAGCTGGA

CGCGGATGAACAGGCAGACATCTGTGAATCGCTTCACGACCACGCTGATGAGC

TTTACCGCAGCTGCCTCGCGCGTTTCGGTGATGACGGTGAAAACCTCTGACACA

TGCAGCTCCCGGAGACGGTCACAGCTTGTCTGTAAGCGGATGCCGGGAGCAGA

CAAGCCCGTCAGGGCGCGTCAGCGGGTGTTGGCGGGTGTCGGGGCGCAGCCA

TGACCCAGTCACGTAGCGATAGCGGAGTGTATACTGGCTTAACTATGCGGCATC

AGAGCAGATTGTACTGAGAGTGCACCATATATGCGGTGTGAAATACCGCACAGA

TGCGTAAGGAGAAAATACCGCATCAGGCGCTCTTCCGCTTCCTCGCTCACTGAC

TCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGC

GGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGC

AAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTT

TCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGA

GGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGC

TCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGC

CTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCT

CAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCG

TTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGG

TAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGA

GCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGG

CTACACTAGAAGGACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTT

CGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCG

GTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAG

AAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCAC

GTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTT

AAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTG

ACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCG

TTCATCCATAGTTGCCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGG
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CTTACCATCTGGCCCCAGTGCTGCAATGATACCGCGAGACCCACGCTCACCGG

CTCCAGATTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAGT

GGTCCTGCAACTTTATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCT

AGAGTAAGTAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTGCCATTGCTGCA

GGCATCGTGGTGTCACGCTCGTCGTTTGGTATGGCTTCATTCAGCTCCGGTTCC

CAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCGGTTAGC

TCCTTCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTC

ATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGCT

TTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGC

GACCGAGTTGCTCTTGCCCGGCGTCAATACGGGATAATACCGCGCCACATAGC

AGAACTTTAAAAGTGCTCATCATTGGAAAACGTTCTTCGGGGCGAAAACTCTCAA

GGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACT

GATCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAG

GCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAAATGTTGAATACTCAT

ACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCG

GATACATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATT

TCCCCGAAAAGTGCCACCTGAAATTGTAAACGTTAATATTTTGTTAAAATTCGCG

TTAAATTTTTGTTAAATCAGCTCATTTTTTAACCAATAGGCCGAAATCGGCAAAAT

CCCTTATAAATCAAAAGAATAGACCGAGATAGGGTTGAGTGTTGTTCCAGTTTGG

AACAAGAGTCCACTATTAAAGAACGTGGACTCCAACGTCAAAGGGCGAAAAACC

GTCTATCAGGGCGATGGCCCACTACGTGAACCATCACCCTAATCAAGTTTTTTG

GGGTCGAGGTGCCGTAAAGCACTAAATCGGAACCCTAAAGGGAGCCCCCGATT

TAGAGCTTGACGGGGAAAGCCGGCGAACGTGGCGAGAAAGGAAGGGAAGAAA

GCGAAAGGAGCGGGCGCTAGGGCGCTGGCAAGTGTAGCGGTCACGCTGCGCG

TAACCACCACACCCGCCGCGCTTAATGCGCCGCTACAGGGCGCGTCCCATTCG

CCA 
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9.1.3 pET 23a(+)-SV40nls-EGFP 

 

Scheme 9.3: Plasmid pET-23a(+)-SV40nls-EGFP 

Base Sequence:  

AGCTTGCGGCCGCACTCGAGCACCACCACCACCACCACTGAGATCCGGCTGCT

AACAAAGCCCGAAAGGAAGCTGAGTTGGCTGCTGCCACCGCTGAGCAATAACT

AGCATAACCCCTTGGGGCCTCTAAACGGGTCTTGAGGGGTTTTTTGCTGAAAGG

AGGAACTATATCCGGATTGGCGAATGGGACGCGCCCTGTAGCGGCGCATTAAG

CGCGGCGGGTGTGGTGGTTACGCGCAGCGTGACCGCTACACTTGCCAGCGCC

CTAGCGCCCGCTCCTTTCGCTTTCTTCCCTTCCTTTCTCGCCACGTTCGCCGGC

TTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGCT

TTACGGCACCTCGACCCCAAAAAACTTGATTAGGGTGATGGTTCACGTAGTGGG

CCATCGCCCTGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTT

AATAGTGGACTCTTGTTCCAAACTGGAACAACACTCAACCCTATCTCGGTCTATT

pET-23a(+)-nlsEGFP

4409 bp
AP r

T7-Tag

His-Tag

Primer T7

bla Promotor

Promotor T7

rbs

pBR322 origin

T7 transcription terminator
SV40nls

BamHI (3642)

BmtI (3613)

EcoRI (3648)

HindIII (1)

Nco I (3691)

NdeI (3604)

Nhe I (3609)

XbaI (3564)

Xho I (16)

SV40nls-EGFP
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CTTTTGATTTATAAGGGATTTTGCCGATTTCGGCCTATTGGTTAAAAAATGAGCT

GATTTAACAAAAATTTAACGCGAATTTTAACAAAATATTAACGTTTACAATTTCAG

GTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAAT

ACATTCAAATATGTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCAATAAT

ATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTT

TTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTA

AAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTC

AACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATG

AGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGG

CAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTAC

TCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGC

AGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACG

ATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTA

ACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGA

GCGTGACACCACGATGCCTGCAGCAATGGCAACAACGTTGCGCAAACTATTAAC

TGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGC

GGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTAT

TGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCAC

TGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGT

CAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTG

ATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCATATATACTTTAGATTGATTT

AAAACTTCATTTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCA

TGACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAG

AAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTT

GCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCT

ACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATAC

TGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACC

GCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGA

TAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCA

GCGGTCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACG

ACCTACACCGAACTGAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTT

CCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAG

GAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCT

GTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGG
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GGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGC

CTTTTGCTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATCCCCTGATTCTGTG

GATAACCGTATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCGAAC

GACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCTGATGCGG

TATTTTCTCCTTACGCATCTGTGCGGTATTTCACACCGCATATATGGTGCACTCT

CAGTACAATCTGCTCTGATGCCGCATAGTTAAGCCAGTATACACTCCGCTATCG

CTACGTGACTGGGTCATGGCTGCGCCCCGACACCCGCCAACACCCGCTGACGC

GCCCTGACGGGCTTGTCTGCTCCCGGCATCCGCTTACAGACAAGCTGTGACCG

TCTCCGGGAGCTGCATGTGTCAGAGGTTTTCACCGTCATCACCGAAACGCGCG

AGGCAGCTGCGGTAAAGCTCATCAGCGTGGTCGTGAAGCGATTCACAGATGTC

TGCCTGTTCATCCGCGTCCAGCTCGTTGAGTTTCTCCAGAAGCGTTAATGTCTG

GCTTCTGATAAAGCGGGCCATGTTAAGGGCGGTTTTTTCCTGTTTGGTCACTGA

TGCCTCCGTGTAAGGGGGATTTCTGTTCATGGGGGTAATGATACCGATGAAACG

AGAGAGGATGCTCACGATACGGGTTACTGATGATGAACATGCCCGGTTACTGGA

ACGTTGTGAGGGTAAACAACTGGCGGTATGGATGCGGCGGGACCAGAGAAAAA

TCACTCAGGGTCAATGCCAGCGCTTCGTTAATACAGATGTAGGTGTTCCACAGG

GTAGCCAGCAGCATCCTGCGATGCAGATCCGGAACATAATGGTGCAGGGCGCT

GACTTCCGCGTTTCCAGACTTTACGAAACACGGAAACCGAAGACCATTCATGTT

GTTGCTCAGGTCGCAGACGTTTTGCAGCAGCAGTCGCTTCACGTTCGCTCGCG

TATCGGTGATTCATTCTGCTAACCAGTAAGGCAACCCCGCCAGCCTAGCCGGGT

CCTCAACGACAGGAGCACGATCATGCGCACCCGTGGCCAGGACCCAACGCTGC

CCGAGATCTCGATCCCGCGAAATTAATACGACTCACTATAGGGAGACCACAACG

GTTTCCCTCTAGAAATAATTTTGTTTAACTTTAAGAAGGAGATATACATATGGCTA

GCATGACTGGTGGACAGCAAATGGGTCGCGGATCCGAATTCCCGAAGAAGAAG

CGCAAAGTACTGGTACCGGTCGCCACCATGGTGAGCAAGGGCGAGGAGCTGTT

CACCGGGGTGGTGCCCATCCTGGTCGAGCTGGACGGCGACGTAAACGGCCAC

AAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCACCTACGGCAAGCTGA

CCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTGCCCTGGCCCACCCTC

GTGACCACCCTGACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACAT

GAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGC

GCACCATCTTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAG

TTCGAGGGCGACACCCTGGTGAACCGCATCGAGCTGAAGGGCATCGACTTCAA

GGAGGACGGCAACATCCTGGGGCACAAGCTGGAGTACAACTACAACAGCCACA

ACGTCTATATCATGGCCGACAAGCAGAAGAACGGCATCAAGGCCAACTTCAAGA
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TCCGCCACAACATCGAGGACGGCAGCGTGCAGCTCGCCGACCACTACCAGCAG

AACACCCCCATCGGCGACGGCCCCGTGCTGCTGCCCGACAACCACTACCTGAG

CACCCAGTCCGCCCTGAGCAAAGACCCCAACGAGAAGCGCGATCACATGGTCC

TGCTGGAGTTCGTGACCGCCGCCGGGATCACTCTCGGCATGGACGAGCTTTAC

AAGA 

 

9.1.4 pET 23a(+)-SV40nls-EGFP-HIVTAT 

 

Scheme 9.4: Plasmid pET-23a(+)-SV40nls-EGFP-HIVTAT 

Base Sequence:  

AGCTTGGTTATGGGCGCAAAAAACGCCGTCAGCGCCGTCGGGGCCTCGAGCAC

CACCACCACCACCACTGAGATCCGGCTGCTAACAAAGCCCGAAAGGAAGCTGA

GTTGGCTGCTGCCACCGCTGAGCAATAACTAGCATAACCCCTTGGGGCCTCTAA

ACGGGTCTTGAGGGGTTTTTTGCTGAAAGGAGGAACTATATCCGGATTGGCGAA

TGGGACGCGCCCTGTAGCGGCGCATTAAGCGCGGCGGGTGTGGTGGTTACGC

GCAGCGTGACCGCTACACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTC

pET-23a(+)-SV40nls-EGFP-HIVTAT

4439 bp

AP r

His-Tag

T7-Tag

HIV-TAT

Primer T7

Promotor T7

bla Promotor

rbs

pBR322 origin

T7 transcription terminator

SV40nls

BamHI (3672)

EcoRI (3678)

HindIII (1)

NdeI (3634)

Nhe I (3639)

XbaI (3594)

Xho I (46)

nlsEGFP-TAT
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TTCCCTTCCTTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGG

GGGCTCCCTTTAGGGTTCCGATTTAGTGCTTTACGGCACCTCGACCCCAAAAAA

CTTGATTAGGGTGATGGTTCACGTAGTGGGCCATCGCCCTGATAGACGGTTTTT

CGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTG

GAACAACACTCAACCCTATCTCGGTCTATTCTTTTGATTTATAAGGGATTTTGCC

GATTTCGGCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAACGCGAAT

TTTAACAAAATATTAACGTTTACAATTTCAGGTGGCACTTTTCGGGGAAATGTGC

GCGGAACCCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTCATG

AGACAATAACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTA

TTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTT

TTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGT

GCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGT

TTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTG

GCGCGGTATTATCCCGTATTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATA

CACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTA

CGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATA

ACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACC

GCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCG

GAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGCAGC

AATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCC

CGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTG

CGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGA

GCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCC

GTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATA

GACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAGACC

AAGTTTACTCATATATACTTTAGATTGATTTAAAACTTCATTTTTAATTTAAAAGGA

TCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAGTT

TTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGA

TCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCA

GCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACT

GGCTTCAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTA

GGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATC

CTGTTACCAGTGGCTGCTGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGA

CTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGGGGTT
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CGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTA

CAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACA

GGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCC

AGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACT

TGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACG

CCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACA

TGTTCTTTCCTGCGTTATCCCCTGATTCTGTGGATAACCGTATTACCGCCTTTGA

GTGAGCTGATACCGCTCGCCGCAGCCGAACGACCGAGCGCAGCGAGTCAGTG

AGCGAGGAAGCGGAAGAGCGCCTGATGCGGTATTTTCTCCTTACGCATCTGTG

CGGTATTTCACACCGCATATATGGTGCACTCTCAGTACAATCTGCTCTGATGCC

GCATAGTTAAGCCAGTATACACTCCGCTATCGCTACGTGACTGGGTCATGGCTG

CGCCCCGACACCCGCCAACACCCGCTGACGCGCCCTGACGGGCTTGTCTGCT

CCCGGCATCCGCTTACAGACAAGCTGTGACCGTCTCCGGGAGCTGCATGTGTC

AGAGGTTTTCACCGTCATCACCGAAACGCGCGAGGCAGCTGCGGTAAAGCTCA

TCAGCGTGGTCGTGAAGCGATTCACAGATGTCTGCCTGTTCATCCGCGTCCAGC

TCGTTGAGTTTCTCCAGAAGCGTTAATGTCTGGCTTCTGATAAAGCGGGCCATG

TTAAGGGCGGTTTTTTCCTGTTTGGTCACTGATGCCTCCGTGTAAGGGGGATTT

CTGTTCATGGGGGTAATGATACCGATGAAACGAGAGAGGATGCTCACGATACG

GGTTACTGATGATGAACATGCCCGGTTACTGGAACGTTGTGAGGGTAAACAACT

GGCGGTATGGATGCGGCGGGACCAGAGAAAAATCACTCAGGGTCAATGCCAGC

GCTTCGTTAATACAGATGTAGGTGTTCCACAGGGTAGCCAGCAGCATCCTGCGA

TGCAGATCCGGAACATAATGGTGCAGGGCGCTGACTTCCGCGTTTCCAGACTTT

ACGAAACACGGAAACCGAAGACCATTCATGTTGTTGCTCAGGTCGCAGACGTTT

TGCAGCAGCAGTCGCTTCACGTTCGCTCGCGTATCGGTGATTCATTCTGCTAAC

CAGTAAGGCAACCCCGCCAGCCTAGCCGGGTCCTCAACGACAGGAGCACGATC

ATGCGCACCCGTGGCCAGGACCCAACGCTGCCCGAGATCTCGATCCCGCGAAA

TTAATACGACTCACTATAGGGAGACCACAACGGTTTCCCTCTAGAAATAATTTTG

TTTAACTTTAAGAAGGAGATATACATATGGCTAGCATGACTGGTGGACAGCAAAT

GGGTCGCGGATCCGAATTCCCGAAGAAGAAGCGCAAAGTACTGGTACCGGTCG

CCACCATGGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGCCCATCCT

GGTCGAGCTGGACGGCGACGTAAACGGCCACAAGTTCAGCGTGTCCGGCGAG

GGCGAGGGCGATGCCACCTACGGCAAGCTGACCCTGAAGTTCATCTGCACCAC

CGGCAAGCTGCCCGTGCCCTGGCCCACCCTCGTGACCACCCTGACCTACGGC

GTGCAGTGCTTCAGCCGCTACCCCGACCACATGAAGCAGCACGACTTCTTCAA
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GTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCAAGGACG

ACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGT

GAACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGG

GGCACAAGCTGGAGTACAACTACAACAGCCACAACGTCTATATCATGGCCGACA

AGCAGAAGAACGGCATCAAGGCCAACTTCAAGATCCGCCACAACATCGAGGAC

GGCAGCGTGCAGCTCGCCGACCACTACCAGCAGAACACCCCCATCGGCGACG

GCCCCGTGCTGCTGCCCGACAACCACTACCTGAGCACCCAGTCCGCCCTGAGC

AAAGACCCCAACGAGAAGCGCGATCACATGGTCCTGCTGGAGTTCGTGACCGC

CGCCGGGATCACTCTCGGCATGGACGAGCTTTACAAGA 

9.2 Amino acid sequences 

9.2.1 SV40nls-EGFP 

MASMTGGQQMGRGSEFPKKKRKVLVPVATMVSKGEELFTGVVPILVELDGDVNGH

KFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLTYGVQCFSRYPDHMKQH

DFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNILG

HKLEYNYNSHNVYIMADKQKNGIKANFKIRHNIEDGSVQLADHYQQNTPIGDGPVLL

PDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGITLGMDELYKKLAAALEHHHHHH 

 

9.2.2 SV40nls-EGFP-HIVTAT 

MASMTGGQQMGRGSEFPKKKRKVLVPVATMVSKGEELFTGVVPILVELDGDVNGH

KFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLTYGVQCFSRYPDHMKQH

DFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNILG

HKLEYNYNSHNVYIMADKQKNGIKANFKIRHNIEDGSVQLADHYQQNTPIGDGPVLL

PDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGITLGMDELYKKLGYGRKKRRQRR

RGLEHHHHHH  

 

9.2.3 ß-galactosidase 

MTMITDSLAVVLQRRDWENPGVTQLNRLAAHPPFASWRNSEEARTDRPSQQLRSL

NGEWRFAWFPAPEAVPESWLECDLPEADTVVVPSNWQMHGYDAPIYTNVTYPITV

NPPFVPTENPTGCYSLTFNVDESWLQEGQTRIIFDGVNSAFHLWCNGRWVGYGQD

SRLPSEFDLSAFLRAGENRLAVMVLRWSDGSYLEDQDMWRMSGIFRDVSLLHKPT
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TQISDFHVATRFNDDFSRAVLEAEVQMCGELRDYLRVTVSLWQGETQVASGTAPF

GGEIIDERGGYADRVTLRLNVENPKLWSAEIPNLYRAVVELHTADGTLIEAEACDVG

FREVRIENGLLLLNGKPLLIRGVNRHEHHPLHGQVMDEQTMVQDILLMKQNNFNAV

RCSHYPNHPLWYTLCDRYGLYVVDEANIETHGMVPMNRLTDDPRWLPAMSERVTR

MVQRDRNHPSVIIWSLGNESGHGANHDALYRWIKSVDPSRPVQYEGGGADTTATD

IICPMYARVDEDQPFPAVPKWSIKKWLSLPGETRPLILCEYAHAMGNSLGGFAKYW

QAFRQYPRLQGGFVWDWVDQSLIKYDENGNPWSAYGGDFGDTPNDRQFCMNGL

VFADRTPHPALTEAKHQQQFFQFRLSGQTIEVTSEYLFRHSDNELLHWMVALDGKP

LASGEVPLDVAPQGKQLIELPELPQPESAGQLWLTVRVVQPNATAWSEAGHISAW

QQWRLAENLSVTLPAASHAIPHLTTSEMDFCIELGNKRWQFNRQSGFLSQMWIGD

KKQLLTPLRDQFTRAPLDNDIGVSEATRIDPNAWVERWKAAGHYQAEAALLQCTAD

TLADAVLITTAHAWQHQGKTLFISRKTYRIDGSGQMAITVDVEVASDTPHPARIGLNC

QLAQVAERVNWLGLGPQENYPDRLTAACFDRWDLPLSDMYTPYVFPSENGLRCG

TRELNYGPHQWRGDFQFNISRYSQQQLMETSHRHLLHAEEGTWLNIDGFHMGIGG

DDSWSPSVSAEFQLSAGRYHYQLVWCQK 
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9.3 Analytic spectra 

9.3.1 Alkyne hemicyanine dye 

 

Figure 9.1:  1H NMR of 2-[2-(4-Dihydroxyethylamino-phenyl)-vinyl] -3-prop-2-ynyl-benzothiazol-3-
ium bromide 12. 
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9.3.2 AzMMMan linker 

 

 

Figure 9.2: 1H NMR of 3-(azidomethyl)-4-methyl-2,5- furandione. 
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Figure 9.3:  13C NMR of 3-(azidomethyl)-4-methyl-2,5-furandione. 

 

 

Figure 9.4: IR spectrum of 3-(azidomethyl)-4-methyl -2,5-furandione. 



Appendix  142 

 

Figure 9.5: DEI + mass spectra of AzMMMan. 
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9.3.3 PentyneMMan linker 

 

Figure 9.6: 13CNMR of PentyneMMan. 
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Figure 9.7: 1HNMR of PentyneMMan 
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Figure 9.8: IR spectra of PentyneMMan. 
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Figure 9.9: DCI + mass spectra of PentyneMMan. 

 



References  147 

10 References 

1. C.A. Lipinski, F. Lombardo, B.W. Dominy, and P.J. Feeney. Experimental and 
computational approaches to estimate solubility and permeability in drug 
discovery and development settings. Adv Drug Deliv Rev. 46:3-26 (2001). 

2. B. Leader, Q.J. Baca, and D.E. Golan. Protein therapeutics: a summary and 
pharmacological classification. Nat Rev Drug Discov. 7:21-39 (2008). 

3. J.L. Rosado, N.W. Solomons, R. Lisker, and H. Bourges. Enzyme replacement 
therapy for primary adult lactase deficiency. Effective reduction of lactose 
malabsorption and milk intolerance by direct addition of beta-galactosidase to 
milk at mealtime. Gastroenterology. 87:1072-1082 (1984). 

4. H.L. Corwin, A. Gettinger, R.G. Pearl, M.P. Fink, M.M. Levy, M.J. Shapiro, 
M.J. Corwin, and T. Colton. Efficacy of recombinant human erythropoietin in 
critically ill patients: a randomized controlled trial. JAMA. 288:2827-2835 
(2002). 

5. H.J. Out, S.G. Driessen, B.M. Mannaerts, and H.J. Coelingh Bennink. 
Recombinant follicle-stimulating hormone (follitropin beta, Puregon) yields 
higher pregnancy rates in in vitro fertilization than urinary gonadotropins. Fertil 
Steril. 68:138-142 (1997). 

6. M.P. Manns, J.G. McHutchison, S.C. Gordon, V.K. Rustgi, M. Shiffman, R. 
Reindollar, Z.D. Goodman, K. Koury, M. Ling, and J.K. Albrecht. Peginterferon 
alfa-2b plus ribavirin compared with interferon alfa-2b plus ribavirin for initial 
treatment of chronic hepatitis C: a randomised trial. Lancet. 358:958-965 
(2001). 

7. J. Blasi, E.R. Chapman, E. Link, T. Binz, S. Yamasaki, P. De Camilli, T.C. 
Sudhof, H. Niemann, and R. Jahn. Botulinum neurotoxin A selectively cleaves 
the synaptic protein SNAP-25. Nature. 365:160-163 (1993). 

8. F.G. Banting, C.H. Best, J.B. Collip, W.R. Campbell, and A.A. Fletcher. 
Pancreatic extracts in the treatment of diabetes mellitus: preliminary report. 
1922. CMAJ. 145:1281-1286 (1991). 

9. A. Isaacs and J. Lindenmann. Virus interference. I. The interferon. Proc R Soc 
Lond B Biol Sci. 147:258-267 (1957). 

10. S. Cohen. The stimulation of epidermal proliferation by a specific protein 
(EGF). Dev Biol. 12:394-407 (1965). 

11. T. Friedmann. A brief history of gene therapy. Nat Genet. 2:93-98 (1992). 

12. M.J. Cline, H. Stang, K. Mercola, L. Morse, R. Ruprecht, J. Brown, and W. 
Salser. Gene transfer in intact animals. Nature. 284:422-425 (1980). 

13. S.A. Rosenberg, P. Aebersold, K. Cornetta, A. Kasid, R.A. Morgan, R. Moen, 
E.M. Karson, M.T. Lotze, J.C. Yang, S.L. Topalian, and et al. Gene transfer 
into humans--immunotherapy of patients with advanced melanoma, using 
tumor-infiltrating lymphocytes modified by retroviral gene transduction. N Engl 
J Med. 323:570-578 (1990). 

14. D. Mahadevan, P. Chalasani, D. Rensvold, S. Kurtin, C. Pretzinger, J. Jolivet, 
R.K. Ramanathan, D.D. Von Hoff, and G.J. Weiss. Phase I Trial of AEG35156 



References  148 

an Antisense Oligonucleotide to XIAP Plus Gemcitabine in Patients With 
Metastatic Pancreatic Ductal Adenocarcinoma. Am J Clin Oncol (2012). 

15. B. Weide, S. Pascolo, B. Scheel, E. Derhovanessian, A. Pflugfelder, T.K. 
Eigentler, G. Pawelec, I. Hoerr, H.G. Rammensee, and C. Garbe. Direct 
injection of protamine-protected mRNA: results of a phase 1/2 vaccination trial 
in metastatic melanoma patients. J Immunother. 32:498-507 (2009). 

16. H.X. Chen, J.L. Marshall, E. Ness, R.R. Martin, B. Dvorchik, N. Rizvi, J. 
Marquis, M. McKinlay, W. Dahut, and M.J. Hawkins. A safety and 
pharmacokinetic study of a mixed-backbone oligonucleotide (GEM231) 
targeting the type I protein kinase A by two-hour infusions in patients with 
refractory solid tumors. Clin Cancer Res. 6:1259-1266 (2000). 

17. Z. Ni and P. Hui. Emerging pharmacologic therapies for wet age-related 
macular degeneration. Ophthalmologica. 223:401-410 (2009). 

18. M.D. de Smet, C.J. Meenken, and G.J. van den Horn. Fomivirsen - a 
phosphorothioate oligonucleotide for the treatment of CMV retinitis. Ocul 
Immunol Inflamm. 7:189-198 (1999). 

19. A. Shir, M. Ogris, E. Wagner, and A. Levitzki. EGF receptor-targeted synthetic 
double-stranded RNA eliminates glioblastoma, breast cancer, and 
adenocarcinoma tumors in mice. PLoS Med. 3:e6 (2006). 

20. N. Tomita, H. Azuma, Y. Kaneda, T. Ogihara, and R. Morishita. Application of 
decoy oligodeoxynucleotides-based approach to renal diseases. Curr Drug 
Targets. 5:717-733 (2004). 

21. E.S. Hildebrandt-Eriksen, V. Aarup, R. Persson, H.F. Hansen, M.E. Munk, and 
H. Orum. A Locked Nucleic Acid Oligonucleotide Targeting MicroRNA 122 Is 
Well-Tolerated in Cynomolgus Monkeys. Nucleic Acid Ther (2012). 

22. J. Stenvangand S. Kauppinen. MicroRNAs as targets for antisense-based 
therapeutics. Expert Opin Biol Ther. 8:59-81 (2008). 

23. S.M. Elbashir, J. Harborth, W. Lendeckel, A. Yalcin, K. Weber, and T. Tuschl. 
Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured 
mammalian cells. Nature. 411:494-498 (2001). 

24. J.C. Burnett, J.J. Rossi, and K. Tiemann. Current progress of siRNA/shRNA 
therapeutics in clinical trials. Biotechnol J. 6:1130-1146 (2011). 

25. S. Hacein-Bey-Abina, C. Von Kalle, M. Schmidt, M.P. McCormack, N. 
Wulffraat, P. Leboulch, A. Lim, C.S. Osborne, R. Pawliuk, E. Morillon, R. 
Sorensen, A. Forster, P. Fraser, J.I. Cohen, G. de Saint Basile, I. Alexander, 
U. Wintergerst, T. Frebourg, A. Aurias, D. Stoppa-Lyonnet, S. Romana, I. 
Radford-Weiss, F. Gross, F. Valensi, E. Delabesse, E. Macintyre, F. Sigaux, J. 
Soulier, L.E. Leiva, M. Wissler, C. Prinz, T.H. Rabbitts, F. Le Deist, A. Fischer, 
and M. Cavazzana-Calvo. LMO2-associated clonal T cell proliferation in two 
patients after gene therapy for SCID-X1. Science. 302:415-419 (2003). 

26. S.R. Schwarze, A. Ho, A. Vocero-Akbani, and S.F. Dowdy. In vivo protein 
transduction: delivery of a biologically active protein into the mouse. Science. 
285:1569-1572 (1999). 

27. R.K. June, K. Gogoi, A. Eguchi, X.S. Cui, and S.F. Dowdy. Synthesis of a pH-
sensitive nitrilotriacetic linker to peptide transduction domains to enable 



References  149 

intracellular delivery of histidine imidazole ring-containing macromolecules. J 
Am Chem Soc. 132:10680-10682 (2010). 

28. I.M. Verma and N. Somia. Gene therapy -- promises, problems and prospects. 
Nature. 389:239-242 (1997). 

29. G. Walsh. Biopharmaceutical benchmarks 2010. Nat Biotechnol. 28:917-924 
(2010). 

30. A.D. Frankeland C.O. Pabo. Cellular uptake of the tat protein from human 
immunodeficiency virus. Cell. 55:1189-1193 (1988). 

31. M. Green and P.M. Loewenstein. Autonomous functional domains of 
chemically synthesized human immunodeficiency virus tat trans-activator 
protein. Cell. 55:1179-1188 (1988). 

32. A. Joliot, C. Pernelle, H. Deagostini-Bazin, and A. Prochiantz. Antennapedia 
homeobox peptide regulates neural morphogenesis. Proc Natl Acad Sci U S 
A. 88:1864-1868 (1991). 

33. E. Dupont, A. Prochiantz, and A. Joliot. Penetratin story: an overview. 
Methods Mol Biol. 683:21-29 (2011). 

34. M. Lindgren and U. Langel. Classes and prediction of cell-penetrating 
peptides. Methods Mol Biol. 683:3-19 (2011). 

35. L. Chatelin, M. Volovitch, A.H. Joliot, F. Perez, and A. Prochiantz. 
Transcription factor hoxa-5 is taken up by cells in culture and conveyed to their 
nuclei. Mech Dev. 55:111-117 (1996). 

36. K. Kilk, M. Magzoub, M. Pooga, L.E. Eriksson, U. Langel, and A. Graslund. 
Cellular internalization of a cargo complex with a novel peptide derived from 
the third helix of the islet-1 homeodomain. Comparison with the penetratin 
peptide. Bioconjug Chem. 12:911-916 (2001). 

37. S.R. Schwarze, A. Ho, A. Vocero-Akbani, and S.F. Dowdy. In vivo protein 
transduction: delivery of a biologically active protein into the mouse. Science. 
285:1569-1572 (1999). 

38. A. van den Berg and S.F. Dowdy. Protein transduction domain delivery of 
therapeutic macromolecules. Curr Opin Biotechnol. 22:888-893 (2011). 

39. M.J. Tolentino, A.J. Brucker, J. Fosnot, G.S. Ying, I.H. Wu, G. Malik, S. Wan, 
and S.J. Reich. Intravitreal injection of vascular endothelial growth factor small 
interfering RNA inhibits growth and leakage in a nonhuman primate, laser-
induced model of choroidal neovascularization. Retina. 24:132-138 (2004). 

40. A. Abuchowski, J.R. McCoy, N.C. Palczuk, T. van Es, and F.F. Davis. Effect of 
covalent attachment of polyethylene glycol on immunogenicity and circulating 
life of bovine liver catalase. J Biol Chem. 252:3582-3586 (1977). 

41. M. Ogris, S. Brunner, S. Schuller, R. Kircheis, and E. Wagner. PEGylated 
DNA/transferrin-PEI complexes: reduced interaction with blood components, 
extended circulation in blood and potential for systemic gene delivery. Gene 
Ther. 6:595-605 (1999). 

42. P.R. Dash, M.L. Read, L.B. Barrett, M.A. Wolfert, and L.W. Seymour. Factors 
affecting blood clearance and in vivo distribution of polyelectrolyte complexes 
for gene delivery. Gene Ther. 6:643-650 (1999). 



References  150 

43. J. DeRouchey, C. Schmidt, G.F. Walker, C. Koch, C. Plank, E. Wagner, and 
J.O. Radler. Monomolecular assembly of siRNA and poly(ethylene glycol)-
peptide copolymers. Biomacromolecules. 9:724-732 (2008). 

44. M. Bidlingmaier and C.J. Strasburger. Growth hormone. Handb Exp 
Pharmacol:187-200 (2010). 

45. J.F. Mouser and J.S. Hyams. Infliximab: a novel chimeric monoclonal antibody 
for the treatment of Crohn's disease. Clin Ther. 21:932-942; discussion 931 
(1999). 

46. M.C. Cardoso and H. Leonhardt. Protein transduction: a novel tool for tissue 
regeneration. Biol Chem. 383:1593-1599 (2002). 

47. H. Li and Z.M. Qian. Transferrin/transferrin receptor-mediated drug delivery. 
Med Res Rev. 22:225-250 (2002). 

48. N. Tietze, J. Pelisek, A. Philipp, W. Roedl, T. Merdan, P. Tarcha, M. Ogris, 
and E. Wagner. Induction of apoptosis in murine neuroblastoma by systemic 
delivery of transferrin-shielded siRNA polyplexes for downregulation of Ran. 
Oligonucleotides. 18:161-174 (2008). 

49. C. Dohmen, T. Frohlich, U. Lachelt, I. Rohl, H.-P. Vornlocher, P. Hadwiger, 
and E. Wagner. Defined Folate-PEG-siRNA Conjugates for Receptor-specific 
Gene Silencing. Mol Ther Nucleic Acids. 1:e7 (2012). 

50. J. Kloeckner, L. Prasmickaite, A. Hogset, K. Berg, and E. Wagner. 
Photochemically enhanced gene delivery of EGF receptor-targeted DNA 
polyplexes. J Drug Target. 12:205-213 (2004). 

51. I. Martin, C. Dohmen, C. Mas-Moruno, C. Troiber, P. Kos, D. Schaffert, U. 
Lachelt, M. Teixido, M. Gunther, H. Kessler, E. Giralt, and E. Wagner. Solid-
phase-assisted synthesis of targeting peptide-PEG-oligo(ethane 
amino)amides for receptor-mediated gene delivery. Org Biomol Chem. 
10:3258-3268 (2012). 

52. Z. Li, R. Zhao, X. Wu, Y. Sun, M. Yao, J. Li, Y. Xu, and J. Gu. Identification 
and characterization of a novel peptide ligand of epidermal growth factor 
receptor for targeted delivery of therapeutics. FASEB J. 19:1978-1985 (2005). 

53. S.D. Conner and S.L. Schmid. Regulated portals of entry into the cell. Nature. 
422:37-44 (2003). 

54. A. Subtil, A. Hemar, and A. Dautry-Varsat. Rapid endocytosis of interleukin 2 
receptors when clathrin-coated pit endocytosis is inhibited. J Cell Sci. 107 ( Pt 
12):3461-3468 (1994). 

55. I.M. Kaplan, J.S. Wadia, and S.F. Dowdy. Cationic TAT peptide transduction 
domain enters cells by macropinocytosis. J Control Release. 102:247-253 
(2005). 

56. K. von Gersdorff, N.N. Sanders, R. Vandenbroucke, S.C. De Smedt, E. 
Wagner, and M. Ogris. The internalization route resulting in successful gene 
expression depends on both cell line and polyethylenimine polyplex type. Mol 
Ther. 14:745-753 (2006). 

57. A. Ferrari, V. Pellegrini, C. Arcangeli, A. Fittipaldi, M. Giacca, and F. Beltram. 
Caveolae-mediated internalization of extracellular HIV-1 tat fusion proteins 
visualized in real time. Mol Ther. 8:284-294 (2003). 



References  151 

58. J.-P. Behr. The Proton Sponge: a Trick to Enter Cells the Viruses Did Not 
Exploit. CHIMIA International Journal for Chemistry. 51:34-36 (1997). 

59. D. Schaffert, C. Troiber, E.E. Salcher, T. Frohlich, I. Martin, N. Badgujar, C. 
Dohmen, D. Edinger, R. Klager, G. Maiwald, K. Farkasova, S. Seeber, K. 
Jahn-Hofmann, P. Hadwiger, and E. Wagner. Solid-phase synthesis of 
sequence-defined T-, i-, and U-shape polymers for pDNA and siRNA delivery. 
Angew Chem Int Ed Engl. 50:8986-8989 (2011). 

60. I.S. Zuhorn and D. Hoekstra. On the mechanism of cationic amphiphile-
mediated transfection. To fuse or not to fuse: is that the question? J Membr 
Biol. 189:167-179 (2002). 

61. Y. Xu and F.C. Szoka, Jr. Mechanism of DNA release from cationic 
liposome/DNA complexes used in cell transfection. Biochemistry. 35:5616-
5623 (1996). 

62. M. Meyer, A. Zintchenko, M. Ogris, and E. Wagner. A dimethylmaleic acid-
melittin-polylysine conjugate with reduced toxicity, pH-triggered endosomolytic 
activity and enhanced gene transfer potential. J Gene Med. 9:797-805 (2007). 

63. C. Dohmen, D. Edinger, T. Frohlich, L. Schreiner, U. Lachelt, C. Troiber, J. 
Radler, P. Hadwiger, H.P. Vornlocher, and E. Wagner. Nanosized 
Multifunctional Polyplexes for Receptor-Mediated SiRNA Delivery. ACS Nano. 
6:5198-5208 (2012). 

64. P. Guterstam, F. Madani, H. Hirose, T. Takeuchi, S. Futaki, S. El Andaloussi, 
A. Graslund, and U. Langel. Elucidating cell-penetrating peptide mechanisms 
of action for membrane interaction, cellular uptake, and translocation utilizing 
the hydrophobic counter-anion pyrenebutyrate. Biochim Biophys Acta. 
1788:2509-2517 (2009). 

65. M. Magzoub, A. Pramanik, and A. Graslund. Modeling the endosomal escape 
of cell-penetrating peptides: transmembrane pH gradient driven translocation 
across phospholipid bilayers. Biochemistry. 44:14890-14897 (2005). 

66. C.M. Lee and I.F. Tannock. Inhibition of endosomal sequestration of basic 
anticancer drugs: influence on cytotoxicity and tissue penetration. Br J Cancer. 
94:863-869 (2006). 

67. A. Subramanian, P. Ranganathan, and S.L. Diamond. Nuclear targeting 
peptide scaffolds for lipofection of nondividing mammalian cells. Nat 
Biotechnol. 17:873-877 (1999). 

68. E.A. Nigg. Nucleocytoplasmic transport: signals, mechanisms and regulation. 
Nature. 386:779-787 (1997). 

69. D. Schaffert. Precise Oligoethyleneimine-based Carriers for Nucleic Acid 
Delivery, Department of Pharmacy, Vol. phd, Ludwig-Maximilians-University 
Munich, 2010, p. 161. 

70. B.E. Houk, G. Hochhaus, and J.A. Hughes. Kinetic modeling of plasmid DNA 
degradation in rat plasma. AAPS PharmSci. 1:E9 (1999). 

71. M. Werle and A. Bernkop-Schnurch. Strategies to improve plasma half life 
time of peptide and protein drugs. Amino Acids. 30:351-367 (2006). 

72. M.S. Kormann, G. Hasenpusch, M.K. Aneja, G. Nica, A.W. Flemmer, S. 
Herber-Jonat, M. Huppmann, L.E. Mays, M. Illenyi, A. Schams, M. Griese, I. 



References  152 

Bittmann, R. Handgretinger, D. Hartl, J. Rosenecker, and C. Rudolph. 
Expression of therapeutic proteins after delivery of chemically modified mRNA 
in mice. Nat Biotechnol. 29:154-157 (2011). 

73. A.G. Harris. Somatostatin and somatostatin analogues: pharmacokinetics and 
pharmacodynamic effects. Gut. 35:S1-4 (1994). 

74. C. Scholz and E. Wagner. Therapeutic plasmid DNA versus siRNA delivery: 
Common and different tasks for synthetic carriers. J Control Release (2011). 

75. Y. Lee, T. Ishii, H. Cabral, H.J. Kim, J.H. Seo, N. Nishiyama, H. Oshima, K. 
Osada, and K. Kataoka. Charge-conversional polyionic complex micelles-
efficient nanocarriers for protein delivery into cytoplasm. Angew Chem Int Ed 
Engl. 48:5309-5312 (2009). 

76. T. Magnusson, R. Haase, M. Schleef, E. Wagner, and M. Ogris. Sustained, 
high transgene expression in liver with plasmid vectors using optimized 
promoter-enhancer combinations. J Gene Med. 13:382-391 (2011). 

77. J.K. McClung and R.F. Kletzien. Analysis of BHK cell growth kinetics after 
microinjection of catalytic subunit of cyclic AMP-dependent protein kinase. Mol 
Cell Biol. 4:1079-1085 (1984). 

78. M. Fenton, N. Bone, and A.J. Sinclair. The efficient and rapid import of a 
peptide into primary B and T lymphocytes and a lymphoblastoid cell line. J 
Immunol Methods. 212:41-48 (1998). 

79. R. Thummel, T.J. Bailey, and D.R. Hyde. In vivo electroporation of 
morpholinos into the adult zebrafish retina. J Vis Exp:e3603 (2011). 

80. C. Voelkel, M. Galla, T. Maetzig, E. Warlich, J. Kuehle, D. Zychlinski, J. Bode, 
T. Cantz, A. Schambach, and C. Baum. Protein transduction from retroviral 
Gag precursors. Proc Natl Acad Sci U S A. 107:7805-7810 (2010). 

81. C. Muratori, R. Bona, and M. Federico. Lentivirus-based virus-like particles as 
a new protein delivery tool. Methods Mol Biol. 614:111-124 (2010). 

82. S.J. Kaczmarczyk, K. Sitaraman, H.A. Young, S.H. Hughes, and D.K. 
Chatterjee. Protein delivery using engineered virus-like particles. Proc Natl 
Acad Sci U S A. 108:16998-17003 (2011). 

83. N.W. Kam, Z. Liu, and H. Dai. Carbon nanotubes as intracellular transporters 
for proteins and DNA: an investigation of the uptake mechanism and pathway. 
Angew Chem Int Ed Engl. 45:577-581 (2006). 

84. N.W. Shi Kam, T.C. Jessop, P.A. Wender, and H. Dai. Nanotube molecular 
transporters: internalization of carbon nanotube-protein conjugates into 
Mammalian cells. J Am Chem Soc. 126:6850-6851 (2004). 

85. N.W. Kam and H. Dai. Carbon nanotubes as intracellular protein transporters: 
generality and biological functionality. J Am Chem Soc. 127:6021-6026 (2005). 

86. Slowing, II, B.G. Trewyn, and V.S. Lin. Mesoporous silica nanoparticles for 
intracellular delivery of membrane-impermeable proteins. J Am Chem Soc. 
129:8845-8849 (2007). 

87. S.S. Bale, S.J. Kwon, D.A. Shah, A. Banerjee, J.S. Dordick, and R.S. Kane. 
Nanoparticle-mediated cytoplasmic delivery of proteins to target cellular 
machinery. ACS Nano. 4:1493-1500 (2010). 



References  153 

88. P. Ghosh, X. Yang, R. Arvizo, Z.J. Zhu, S.S. Agasti, Z. Mo, and V.M. Rotello. 
Intracellular delivery of a membrane-impermeable enzyme in active form using 
functionalized gold nanoparticles. J Am Chem Soc. 132:2642-2645 (2010). 

89. L. Liguori, B. Marques, A. Villegas-Mendez, R. Rothe, and J.L. Lenormand. 
Liposomes-mediated delivery of pro-apoptotic therapeutic membrane proteins. 
J Control Release. 126:217-227 (2008). 

90. R.J. Debs, L.P. Freedman, S. Edmunds, K.L. Gaensler, N. Duzgunes, and 
K.R. Yamamoto. Regulation of gene expression in vivo by liposome-mediated 
delivery of a purified transcription factor. J Biol Chem. 265:10189-10192 
(1990). 

91. C.O. Weill, S. Biri, A. Adib, and P. Erbacher. A practical approach for 
intracellular protein delivery. Cytotechnology. 56:41-48 (2008). 

92. L.Y. Chou, K. Ming, and W.C. Chan. Strategies for the intracellular delivery of 
nanoparticles. Chem Soc Rev. 40:233-245 (2011). 

93. D. Dalkara, C. Chandrashekhar, and G. Zuber. Intracellular protein delivery 
with a dimerizable amphiphile for improved complex stability and prolonged 
protein release in the cytoplasm of adherent cell lines. J Control Release. 
116:353-359 (2006). 

94. N.A. Lissy, P.K. Davis, M. Irwin, W.G. Kaelin, and S.F. Dowdy. A common 
E2F-1 and p73 pathway mediates cell death induced by TCR activation. 
Nature. 407:642-645 (2000). 

95. D. Jo, D. Liu, S. Yao, R.D. Collins, and J. Hawiger. Intracellular protein therapy 
with SOCS3 inhibits inflammation and apoptosis. Nat Med. 11:892-898 (2005). 

96. R. Sawant and V. Torchilin. Intracellular transduction using cell-penetrating 
peptides. Mol Biosyst. 6:628-640 (2010). 

97. J.M. Gump, R.K. June, and S.F. Dowdy. Revised role of glycosaminoglycans 
in TAT protein transduction domain-mediated cellular transduction. J Biol 
Chem. 285:1500-1507 (2010). 

98. J.C. Mai, H. Shen, S.C. Watkins, T. Cheng, and P.D. Robbins. Efficiency of 
protein transduction is cell type-dependent and is enhanced by dextran 
sulfate. J Biol Chem. 277:30208-30218 (2002). 

99. I. Nakase, T. Takeuchi, G. Tanaka, and S. Futaki. Methodological and cellular 
aspects that govern the internalization mechanisms of arginine-rich cell-
penetrating peptides. Adv Drug Deliv Rev. 60:598-607 (2008). 

100. F. Duchardt, M. Fotin-Mleczek, H. Schwarz, R. Fischer, and R. Brock. A 
comprehensive model for the cellular uptake of cationic cell-penetrating 
peptides. Traffic. 8:848-866 (2007). 

101. K.M. Stewart, K.L. Horton, and S.O. Kelley. Cell-penetrating peptides as 
delivery vehicles for biology and medicine. Org Biomol Chem. 6:2242-2255 
(2008). 

102. F. Madani, S. Lindberg, U. Langel, S. Futaki, and A. Graslund. Mechanisms of 
cellular uptake of cell-penetrating peptides. J Biophys. 2011:414729 (2011). 

103. L.N. Patel, J.L. Zaro, and W.C. Shen. Cell penetrating peptides: intracellular 
pathways and pharmaceutical perspectives. Pharm Res. 24:1977-1992 
(2007). 



References  154 

104. I. Green, R. Christison, C.J. Voyce, K.R. Bundell, and M.A. Lindsay. Protein 
transduction domains: are they delivering? Trends Pharmacol Sci. 24:213-215 
(2003). 

105. M. Okuyama, H. Laman, S.R. Kingsbury, C. Visintin, E. Leo, K.L. Eward, K. 
Stoeber, C. Boshoff, G.H. Williams, and D.L. Selwood. Small-molecule mimics 
of an alpha-helix for efficient transport of proteins into cells. Nat Methods. 
4:153-159 (2007). 

106. H. Murata, J. Futami, M. Kitazoe, T. Yonehara, H. Nakanishi, M. Kosaka, H. 
Tada, M. Sakaguchi, Y. Yagi, M. Seno, N.H. Huh, and H. Yamada. 
Intracellular delivery of glutathione S-transferase-fused proteins into 
mammalian cells by polyethylenimine-glutathione conjugates. J Biochem. 
144:447-455 (2008). 

107. J. Futami, M. Kitazoe, T. Maeda, E. Nukui, M. Sakaguchi, J. Kosaka, M. 
Miyazaki, M. Kosaka, H. Tada, M. Seno, J. Sasaki, N.H. Huh, M. Namba, and 
H. Yamada. Intracellular delivery of proteins into mammalian living cells by 
polyethylenimine-cationization. J Biosci Bioeng. 99:95-103 (2005). 

108. Y. Lee, T. Ishii, H.J. Kim, N. Nishiyama, Y. Hayakawa, K. Itaka, and K. 
Kataoka. Efficient delivery of bioactive antibodies into the cytoplasm of living 
cells by charge-conversional polyion complex micelles. Angew Chem Int Ed 
Engl. 49:2552-2555 (2010). 

109. V.V. Didenko, H. Ngo, and D.S. Baskin. Polyethylenimine as a transmembrane 
carrier of fluorescently labeled proteins and antibodies. Anal Biochem. 
344:168-173 (2005). 

110. E. Wagner. Polymers for siRNA Delivery: Inspired by Viruses to be Targeted, 
Dynamic, and Precise. Acc Chem Res (2011). 

111. D. Dalkara, G. Zuber, and J.P. Behr. Intracytoplasmic delivery of anionic 
proteins. Mol Ther. 9:964-969 (2004). 

112. J. Browning and A. Ribolini. Studies on the differing effects of tumor necrosis 
factor and lymphotoxin on the growth of several human tumor lines. J 
Immunol. 143:1859-1867 (1989). 

113. V. Russ, M. Gunther, A. Halama, M. Ogris, and E. Wagner. Oligoethylenimine-
grafted polypropylenimine dendrimers as degradable and biocompatible 
synthetic vectors for gene delivery. J Control Release. 132:131-140 (2008). 

114. L.S. Park, D. Friend, S. Gillis, and D.L. Urdal. Characterization of the cell 
surface receptor for a multi-lineage colony-stimulating factor (CSF-2 alpha). J 
Biol Chem. 261:205-210 (1986). 

115. T.C. Farries and J.P. Atkinson. Biosynthesis of properdin. J Immunol. 142:842-
847 (1989). 

116. D.A. Zarling, A. Watson, and F.H. Bach. Mapping of lymphocyte surface 
polypeptide antigens by chemical cross-linking with BSOCOES. J Immunol. 
124:913-920 (1980). 

117. Z. Bouizar, M. Fouchereau-Peron, J. Taboulet, M.S. Moukhtar, and G. 
Milhaud. Purification and characterization of calcitonin receptors in rat kidney 
membranes by covalent cross-linking techniques. Eur J Biochem. 155:141-147 
(1986). 



References  155 

118. A.D. Howard, S. de La Baume, T.L. Gioannini, J.M. Hiller, and E.J. Simon. 
Covalent labeling of opioid receptors with radioiodinated human beta-
endorphin. Identification of binding site subunit. J Biol Chem. 260:10833-
10839 (1985). 

119. J. Carlsson, H. Drevin, and R. Axen. Protein thiolation and reversible protein-
protein conjugation. N-Succinimidyl 3-(2-pyridyldithio)propionate, a new 
heterobifunctional reagent. Biochem J. 173:723-737 (1978). 

120. L.L. Chen, J.J. Rosa, S. Turner, and R.B. Pepinsky. Production of multimeric 
forms of CD4 through a sugar-based cross-linking strategy. J Biol Chem. 
266:18237-18243 (1991). 

121. S. Joshi and R. Burrows. ATP synthase complex from bovine heart 
mitochondria. Subunit arrangement as revealed by nearest neighbor analysis 
and susceptibility to trypsin. J Biol Chem. 265:14518-14525 (1990). 

122. L.C. Packman and R.N. Perham. Quaternary structure of the pyruvate 
dehydrogenase multienzyme complex of Bacillus stearothermophilus studied 
by a new reversible cross-linking procedure with bis(imidoesters). 
Biochemistry. 21:5171-5175 (1982). 

123. M.P. Barnes and W.C. Shen. Disulfide and thioether linked cytochrome c-
oligoarginine conjugates in HeLa cells. Int J Pharm. 369:79-84 (2009). 

124. J. Mendez, A. Monteagudo, and K. Griebenow. Stimulus-responsive controlled 
release system by covalent immobilization of an enzyme into mesoporous 
silica nanoparticles. Bioconjug Chem. 23:698-704 (2012). 

125. M. Meyer, C. Dohmen, A. Philipp, D. Kiener, G. Maiwald, C. Scheu, M. Ogris, 
and E. Wagner. Synthesis and biological evaluation of a bioresponsive and 
endosomolytic siRNA-polymer conjugate. Mol Pharm. 6:752-762 (2009). 

126. D. Schaffert, M. Kiss, W. Rodl, A. Shir, A. Levitzki, M. Ogris, and E. Wagner. 
Poly(I:C)-mediated tumor growth suppression in EGF-receptor overexpressing 
tumors using EGF-polyethylene glycol-linear polyethylenimine as carrier. 
Pharm Res. 28:731-741 (2011). 

127. H. Murata, M. Sakaguchi, J. Futami, M. Kitazoe, T. Maeda, H. Doura, M. 
Kosaka, H. Tada, M. Seno, N.H. Huh, and H. Yamada. Denatured and 
reversibly cationized p53 readily enters cells and simultaneously folds to the 
functional protein in the cells. Biochemistry. 45:6124-6132 (2006). 

128. D. Saran and D.H. Burke. A versatile photocleavable bifunctional linker for 
facile synthesis of substrate-DNA conjugates for the selection of nucleic acid 
catalysts. Bioconjug Chem. 18:275-279 (2007). 

129. J. Ottl, D. Gabriel, and G. Marriott. Preparation and photoactivation of caged 
fluorophores and caged proteins using a new class of heterobifunctional, 
photocleavable cross-linking reagents. Bioconjug Chem. 9:143-151 (1998). 

130. X. Tang and I.J. Dmochowski. Synthesis of light-activated antisense 
oligodeoxynucleotide. Nat Protoc. 1:3041-3048 (2006). 

131. V. Knorr, V. Russ, L. Allmendinger, M. Ogris, and E. Wagner. Acetal linked 
oligoethylenimines for use as pH-sensitive gene carriers. Bioconjug Chem. 
19:1625-1634 (2008). 



References  156 

132. K. Engin, D.B. Leeper, J.R. Cater, A.J. Thistlethwaite, L. Tupchong, and J.D. 
McFarlane. Extracellular pH distribution in human tumours. Int J Hyperthermia. 
11:211-216 (1995). 

133. R.F. Murphy, S. Powers, and C.R. Cantor. Endosome pH measured in single 
cells by dual fluorescence flow cytometry: rapid acidification of insulin to pH 6. 
J Cell Biol. 98:1757-1762 (1984). 

134. W.A. Blattler, B.S. Kuenzi, J.M. Lambert, and P.D. Senter. New 
heterobifunctional protein crosslinking reagent that forms an acid-labile link. 
Biochemistry. 24:1517-1524 (1985). 

135. E. Saxon and C.R. Bertozzi. Cell surface engineering by a modified 
Staudinger reaction. Science. 287:2007-2010 (2000). 

136. H. Yu, Y. Nie, C. Dohmen, Y. Li, and E. Wagner. Epidermal growth factor-PEG 
functionalized PAMAM-pentaethylenehexamine dendron for targeted gene 
delivery produced by click chemistry. Biomacromolecules. 12:2039-2047 
(2011). 

137. M.R. Vallee, P. Majkut, I. Wilkening, C. Weise, G. Muller, and C.P. 
Hackenberger. Staudinger-phosphonite reactions for the chemoselective 
transformation of azido-containing peptides and proteins. Org Lett. 13:5440-
5443 (2011). 

138. K. Maier and E. Wagner. Acid-labile traceless click linker for protein 
transduction. J Am Chem Soc. 134:10169-10173 (2012). 

139. D. Pedersen and C. Rosenbohm. Dry Column Vacuum Chromatography. 
Synthesis. 2001:2431-2434 (2001). 

140. C. Still, M. Kahn, and A. Mitra. Rapid chromatographic technique for 
preparative separations with moderate resolution. The Journal of Organic 
Chemistry. 43:2923-2925 (1978). 

141. W.-h. Zhan, H.N. Barnhill, K. Sivakumar, H. Tian, and Q. Wang. Synthesis of 
hemicyanine dyes for ‘click’ bioconjugation. Tetrahedron Letters. 46:1691-
1695 (2005). 

142. S. Ciampi, M. James, P. Michaels, and J.J. Gooding. Tandem "click" reactions 
at acetylene-terminated Si(100) monolayers. Langmuir. 27:6940-6949 (2011). 

143. A.T. Dirks, J.J. Cornelissen, and R.J. Nolte. Monitoring protein-polymer 
conjugation by a fluorogenic Cu(I)-catalyzed azide-alkyne 1,3-dipolar 
cycloaddition. Bioconjug Chem. 20:1129-1138 (2009). 

144. H. Xie, O. Braha, L.Q. Gu, S. Cheley, and H. Bayley. Single-molecule 
observation of the catalytic subunit of cAMP-dependent protein kinase binding 
to an inhibitor peptide. Chem Biol. 12:109-120 (2005). 

145. A.M. Deshpande, A.A. Natu, and N.P. Argade. Chemoselective 
Carbon−Carbon Coupling of Organocuprates with (Bromomethyl)methylmaleic 
Anhydride:  Synthesis of Chaetomellic Acid A†. The Journal of Organic 
Chemistry. 63:9557-9558 (1998). 

146. H.P. Acharya, K. Miyoshi, and Y. Kobayashi. Mercury-free preparation and 
selective reactions of propargyl (and propargylic) Grignard reagents. Org Lett. 
9:3535-3538 (2007). 



References  157 

147. S. Tada, E.H. Chowdhury, C.S. Cho, and T. Akaike. pH-sensitive carbonate 
apatite as an intracellular protein transporter. Biomaterials. 31:1453-1459 
(2010). 

148. M. Yan, J. Du, Z. Gu, M. Liang, Y. Hu, W. Zhang, S. Priceman, L. Wu, Z.H. 
Zhou, Z. Liu, T. Segura, Y. Tang, and Y. Lu. A novel intracellular protein 
delivery platform based on single-protein nanocapsules. Nat Nanotechnol. 
5:48-53 (2010). 

149. J.B. McGuire, T.J. James, C.J. Imber, S.D. St Peter, P.J. Friend, and R.P. 
Taylor. Optimisation of an enzymatic method for beta-galactosidase. Clin Chim 
Acta. 326:123-129 (2002). 

150. S.T. Henriques, J. Costa, and M.A. Castanho. Translocation of beta-
galactosidase mediated by the cell-penetrating peptide pep-1 into lipid vesicles 
and human HeLa cells is driven by membrane electrostatic potential. 
Biochemistry. 44:10189-10198 (2005). 

151. M. Kneen, J. Farinas, Y. Li, and A.S. Verkman. Green fluorescent protein as a 
noninvasive intracellular pH indicator. Biophys J. 74:1591-1599 (1998). 

152. H. Ayame, N. Morimoto, and K. Akiyoshi. Self-assembled cationic nanogels for 
intracellular protein delivery. Bioconjug Chem. 19:882-890 (2008). 

153. D. Ponti, M. Troiano, G.C. Bellenchi, P.A. Battaglia, and F. Gigliani. The HIV 
Tat protein affects processing of ribosomal RNA precursor. BMC Cell Biol. 
9:32 (2008). 

154. A. Efthymiadis, L.J. Briggs, and D.A. Jans. The HIV-1 Tat nuclear localization 
sequence confers novel nuclear import properties. J Biol Chem. 273:1623-
1628 (1998). 

155. V. Russ, T. Frohlich, Y. Li, A. Halama, M. Ogris, and E. Wagner. Improved in 
vivo gene transfer into tumor tissue by stabilization of pseudodendritic 
oligoethylenimine-based polyplexes. J Gene Med. 12:180-193 (2010). 

156. T. Frohlich, D. Edinger, R. Klager, C. Troiber, E. Salcher, N. Badgujar, I. 
Martin, D. Schaffert, A. Cengizeroglu, P. Hadwiger, H.P. Vornlocher, and E. 
Wagner. Structure-activity relationships of siRNA carriers based on sequence-
defined oligo (ethane amino) amides. J Control Release (2012). 

157. J. Mueller, I. Kretzschmar, R. Volkmer, and P. Boisguerin. Comparison of 
cellular uptake using 22 CPPs in 4 different cell lines. Bioconjug Chem. 
19:2363-2374 (2008). 

158. J. Rejman, V. Oberle, I.S. Zuhorn, and D. Hoekstra. Size-dependent 
internalization of particles via the pathways of clathrin- and caveolae-mediated 
endocytosis. Biochem J. 377:159-169 (2004). 

159. Y. Aoyama, T. Kanamori, T. Nakai, T. Sasaki, S. Horiuchi, S. Sando, and T. 
Niidome. Artificial viruses and their application to gene delivery. Size-
controlled gene coating with glycocluster nanoparticles. J Am Chem Soc. 
125:3455-3457 (2003). 

160. T. Nakai, T. Kanamori, S. Sando, and Y. Aoyama. Remarkably size-regulated 
cell invasion by artificial viruses. Saccharide-dependent self-aggregation of 
glycoviruses and its consequences in glycoviral gene delivery. J Am Chem 
Soc. 125:8465-8475 (2003). 



References  158 

161. F. Osaki, T. Kanamori, S. Sando, T. Sera, and Y. Aoyama. A quantum dot 
conjugated sugar ball and its cellular uptake. On the size effects of 
endocytosis in the subviral region. J Am Chem Soc. 126:6520-6521 (2004). 

162. J.P. Horwitz, J. Chua, R.J. Curby, A.J. Tomson, M.A. Da Rooge, B.E. Fisher, 
J. Mauricio, and I. Klundt. Substrates for Cytochemical Demonstration of 
Enzyme Activity. I. Some Substituted 3-Indolyl-β-D-glycopyranosides1a. 
Journal of Medicinal Chemistry. 7:574-575 (1964). 

163. M. Meyer, A. Philipp, R. Oskuee, C. Schmidt, and E. Wagner. Breathing life 
into polycations: functionalization with pH-responsive endosomolytic peptides 
and polyethylene glycol enables siRNA delivery. J Am Chem Soc. 130:3272-
3273 (2008). 

164. M.A. Nieto and E. Palacian. Effects of temperature and pH on the regeneration 
of the amino groups of ovalbumin after modification with citraconic and 
dimethylmaleic anhydrides. Biochim Biophys Acta. 749:204-210 (1983). 

165. D.B. Rozema, D.L. Lewis, D.H. Wakefield, S.C. Wong, J.J. Klein, P.L. Roesch, 
S.L. Bertin, T.W. Reppen, Q. Chu, A.V. Blokhin, J.E. Hagstrom, and J.A. Wolff. 
Dynamic PolyConjugates for targeted in vivo delivery of siRNA to hepatocytes. 
Proc Natl Acad Sci U S A. 104:12982-12987 (2007). 

166. D.B. Rozema, K. Ekena, D.L. Lewis, A.G. Loomis, and J.A. Wolff. 
Endosomolysis by masking of a membrane-active agent (EMMA) for 
cytoplasmic release of macromolecules. Bioconjug Chem. 14:51-57 (2003). 

167. E.M. Bachelder, T.T. Beaudette, K.E. Broaders, J. Dashe, and J.M. Frechet. 
Acetal-derivatized dextran: an acid-responsive biodegradable material for 
therapeutic applications. J Am Chem Soc. 130:10494-10495 (2008). 

168. N. Murthy, J. Campbell, N. Fausto, A.S. Hoffman, and P.S. Stayton. 
Bioinspired pH-responsive polymers for the intracellular delivery of 
biomolecular drugs. Bioconjug Chem. 14:412-419 (2003). 

169. K. Miyata, N. Nishiyama, and K. Kataoka. Rational design of smart 
supramolecular assemblies for gene delivery: chemical challenges in the 
creation of artificial viruses. Chem Soc Rev. 41:2562-2574 (2012). 

170. A. Biswas, K.I. Joo, J. Liu, M. Zhao, G. Fan, P. Wang, Z. Gu, and Y. Tang. 
Endoprotease-mediated intracellular protein delivery using nanocapsules. 
ACS Nano. 5:1385-1394 (2011). 

171. A. Zintchenko, A. Philipp, A. Dehshahri, and E. Wagner. Simple modifications 
of branched PEI lead to highly efficient siRNA carriers with low toxicity. 
Bioconjug Chem. 19:1448-1455 (2008). 

172. A. Luong, T. Issarapanichkit, S.D. Kong, R. Fong, and J. Yang. pH-Sensitive, 
N-ethoxybenzylimidazole (NEBI) bifunctional crosslinkers enable triggered 
release of therapeutics from drug delivery carriers. Org Biomol Chem. 8:5105-
5109 (2010). 

173. V. Knorr, M. Ogris, and E. Wagner. An acid sensitive ketal-based polyethylene 
glycol-oligoethylenimine copolymer mediates improved transfection efficiency 
at reduced toxicity. Pharm Res. 25:2937-2945 (2008). 

174. B.D. Mather, S.R. Williams, and T.E. Long. Synthesis of an Acid-Labile 
Diacrylate Crosslinker for Cleavable Michael Addition Networks. 
Macromolecular Chemistry and Physics. 208:1949-1955 (2007).



Publications  159 

 

11 Publications 

11.1 Original papers 

K. Maier, I. Martin  and E. Wagner. Sequence Defined Disulfide-linked Protein 

Transduction Shuttle. Submitted to Molecular Pharmaceutics. 

 

K. Maier and E. Wagner. Acid-labile traceless click linker for protein transduction. J 

Am Chem Soc. 134:10169-10173 (2012). 

 

M. Ackermann, M. Kubitza, K. Maier, A. Brawanski, G. Hauska, and A.L. Pina. The 

vertebrate homolog of sulfide-quinone reductase is expressed in mitochondria of 

neuronal tissues. Neuroscience. 199:1-12 (2011). 

 

S. Abke, M. Neumeier, J. Weigert, G. Wehrwein, E. Eggenhofer, A. Schaffler, K. 

Maier, C. Aslanidis, J. Scholmerich, and C. Buechler. Adiponectin-induced secretion 

of interleukin-6 (IL-6), monocyte chemotactic protein-1 (MCP-1, CCL2) and 

interleukin-8 (IL-8, CXCL8) is impaired in monocytes from patients with type I 

diabetes. Cardiovasc Diabetol. 5:17 (2006). 

 

11.2 Book chapters 

K. Maier and E. Wagner. Intracellular Fate of Plasmid DNA Polyplexes. In V. 

Weissigand G.G.M. D`Souza (eds.), Organelle-Specific Pharmaceutical 

Nanotechnology, Wiley, New Jersey, 2010, pp. 123-143. 

 



Publications  160 

11.3 Poster presentations 

Maier K, Fröhlich T, Russ V, Li Y, Halama A, Ogris M, Schaffert D, Schlossbauer A, 

Bein T and Wagner E. Biocompatible Nanosystems for Nucleic Acid & Protein 

Delivery. Third Annual Symposium on Nanobiotechnology: New Directions in 

NanoHealth, 2009, California NanoSystems Institute, UCLA, Los Angeles, USA.  

 

Schlossbauer A, Bein T, Ruthardt N, Bräuchle C, Plank C, Schmidt C, Rädler J, 

Schaffert D, Dohmen C, Maier K, Meyer M, Ogris M and Wagner E. NIM workshop 

2009. Nanosystems: from Information Technology to Life Science. Nanosystems 

Initiative Munich, LMU, Munich, Germany.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Acknowledgements  161 

12 Acknowledgements 

First of all, I would like to thank all my colleagues; without you this thesis would have 

never been possible. It was a pleasure to work together with each single member of 

the team. Thanks for your support and the fun we had over the last four years inside 

and also outside the lab. I want to thank my supervisor Professor Dr. Ernst Wagner 

for giving me the opportunity to perform this work in his research group. Thank you 

for giving me time and trust to develop new ideas and to bring them to fruition, as well 

as for scientific support and helpful discussions. My lab-mate Christian Dohmen 

deserves a big thank not just for numerous scientific discussions but rather for being 

a friend from the first minute we met. Thanks to my other lab-mates Edith Salcher 

and Claudia Scholz for keeping the place on their window ledge reserved for me. 

This oasis of tranquility and socialization made work much easier. Uli Lächelt my lab-

mate during the last few days in the lab deserves a special thanks for being the most 

likeable scientist in the world. I am also very grateful to Thomas Froehlich for the 

phenomenal work trip to L.A, for buying me shoes and for many more. Thanks to 

David Schaffert for getting a biologist introduced in the secrets of organic chemistry 

and to Arzu Cengizeroglu for introducing me to cell culture. I also owe gratitude to 

Wolfgang Roedl for helping me with computer problems, broken machines and so 

much more. I have to thank Ursula Biebl (my lower bavarian countryman) for the 

delicious birthday cakes ans so on. Without the help of our technicians Miriam 

Hoehn, Anna Kulinyak, Markus Kovac and Melinda Kiss who keep the lab running 

serious research would be impossible – thank you not only for that. I appreciate Dr. 

Martina Rüffer showing me how to teach students and what pleasure this can be. I 

am grateful to Manfred Ogris, Prajakta Oak, Christian Marfels, Rebekka Kubisch, 

Alexandra Vetter for helping me fighting with the microscope and FACS machines 

and... Thanks to Christina Troiber for synthesizing the transduction carrier molecule 

71 and showing me how to keep cleanliness in a lab. Irene Martin, thanks for 

synthesizing polymer 386 and for bringing southern European lightheartedness into 

our lab. I will never forget the amazing evenings I spent with the phd room clique 

(Florian, Petra,…) – thanks a lot. Furthermore I want to thank Rafaela Kläger for 

sweetening me the last days of my phd work in the Schreibkammer. I would also like 

to say a big thank you to all master students who did an excellent job, namely Alice 

Pahnke, Evelyn Hartung, Verena Staudacher and Kathrin Abstiens. 



Acknowledgements  162 

But most of all I have to thank my family: My sisters Nadja and Martina for always 

having a sympathetic ear. Regina, Alois and Bernd for taking care of our children 

hectic times.  My parents for their unconditional love, for my beautiful childhood, for 

my education, for their indefatigable support and for numerous other things. Christina 

for always being there, for bearing my moods and for the two most wonderful girls in 

the world. Mona and Paula for always making me happy and showing me the 

meaning of life on every day. 

 

 

 

 


