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Summary	
 
Almost the entirety of all chloroplast proteins is nuclear-encoded, synthesized in the cytosol 

and translocated post-translationally across the outer and inner envelope into the chloroplast. 

This transfer is mainly mediated by the subunits of the Toc and Tic complexes (translocon at 

the outer/inner envelope membrane of chloroplasts). In addition to the transport of 

preproteins, the compartmentalisation in eukaryotic cells, which enables metabolic pathways 

to progress simultaneously, requires abundant shuttling of diverse metabolites. Specific 

transporter proteins and ion-channels are responsible for this traffic across the membranes. 

The aim of this study was to further characterize the membrane protein Prat1, a predicted 

transporter and member of the Prat protein-family (preprotein and amino acid transporters). In 

earlier studies, a potential transport function of Prat1 was deduced by its ability to 

complement the function of Tim22 in yeast, a protein responsible for mediating the 

integration of carrier preproteins into the inner membrane of mitochondria. 

 In a first approach, the Prat1 protein could be localized to the inner envelope of 

chloroplasts using Pisum sativum as model system, by applying a specifically generated 

antibody. Biochemical analysis gave rise to a topology model of the protein, consisting of 

four transmembrane domains connected by hydrophilic loops, with the N- and C-termini both 

reaching into the stroma of the chloroplast, making possible protein-interactions that might be 

regulated by a phosphorylation site in the N-terminus accessible from the stromal side. 

Additionally, it could be shown that all five cysteines that are present in the protein are 

positioned within the transmembrane domains and are thus not accessible for putative redox 

regulation. Furthermore, comprehensive phenotypic analyses of a double mutant plant of both 

Prat1 isoforms present in the model plant Arabidopsis thaliana demonstrated retardation in 

growth in comparison to the wild type. In combination with a metabolic profiling of these 

plants, off-regulation of key players in the process of photorespiration could be identified that 

may be responsible for the defects in growth. Analyses of the expression levels of Prat1 

resulted in an exemplary circadian rhythm on the RNA level in contrast to constant protein 

levels. Moreover, the purified Prat1 protein was successfully stably inserted into liposomes 

that were used for electrophysiological measurements to validate the proposed channel 

activity of Prat1. Although an extended set of conditions was tested to reveal the optimal 

conditions for Prat1 to demonstrate channel activity within a lipid bilayer, these analyses have 

to be continued in future experiments to conclusively measure the transport properties of 

Prat1. However, the results of the present study contribute to a better understanding of the 

suggested function of Prat1 as a transporter of preproteins or metabolites. 
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Zusammenfassung	
 
Fast alle chloroplastidären Proteine sind im Zellkern codiert, werden im Zytosol synthetisiert 

und posttranslational durch die äußere und innere Hüllmembran in den Chloroplasten 

importiert. Dieser Transfer wird hauptsächlich durch die Untereinheiten des Toc und Tic 

Komplexes (translocon at the outer/inner envelope membrane of chloroplasts) ermöglicht. 

Zusätzlich zum Transport von Vorstufenproteinen erfordert die Kompartimentierung in 

eukaryotischen Zellen, welche den simultanen Ablauf von Stoffwechselwegen ermöglicht, 

einen hohen Austausch verschiedenster Metaboliten. Spezifische Transportproteine und 

Ionenkanäle sind für den Transfer durch die Membranen zuständig. Das Ziel dieser Arbeit lag 

in der Fortführung der Charakterisierung des Membranproteins Prat1, welches als 

Transportprotein der Prat Proteinfamilie (preprotein and amino acid transporters) 

prognostiziert wird. Vorherige Studien haben eine potentielle Transporterfunktion von Prat1 

aufgrund seiner Fähigkeit, die Funktion von Tim22 in Hefe zu komplementieren, deduziert, 

einem Protein, das für die Integration von Carrier-Vorstufenproteinen in die innere Membran 

von Mitochondrien zuständig ist. 

 In einem ersten Ansatz konnte Prat1 im Modellsystem Pisum sativum mittels eines 

spezifisch hergestellten Antikörpers in der inneren Hüllmembran des Chloroplasten lokalisiert 

werden. Biochemische Analysen ermöglichten das Erstellen eines Topologiemodells des 

Proteins, welches aus vier Transmembrandomänen besteht, die mit hydrophilen Schleifen 

verbunden sind und dessen N- und C-Terminus in das Stroma des Chloroplasten reichen. 

Somit können mögliche Proteininteraktionen, die eventuell durch die Phosphorylierung des 

N-Terminus gesteuert werden, von der stromalen Seite stattfinden. Auch konnte gezeigt 

werden, dass alle fünf im Protein vorhandenen Cysteine sich innerhalb der 

Transmembrandomänen befinden und daher für eine putative Redox-Regulierung nicht 

erreichbar sind. Des Weiteren haben umfangreiche phänotypische Untersuchungen der 

Doppelmutante beider in der Modellpflanze Arabidopsis thaliana existenten Prat1 Isoformen 

eine Verzögerung der Wachstumsrate im Vergleich zu den Wildtyppflanzen gezeigt. In 

Verbindung mit einem metabolischen Profil dieser Pflanzen konnten abweichende 

Regulierungen von Schlüsselkomponenten der Photorespiration festgestellt werden, welche 

für die Defekte im Wachstum verantwortlich sein könnten. Expressionsanalysen von Prat1 

ließen einen charakteristischen circadianen Rhythmus auf der RNA-Ebene im Gegensatz zu 

einem konstanten Proteinvorkommen erkennen. Darüber hinaus konnte das gereinigte Prat1 

Protein erfolgreich stabil in Liposomen eingebaut werden, die in elektrophysiologischen 

Messungen verwendet wurden um die erwartete Kanalaktivität von Prat1 zu validieren. 
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Wenngleich eine umfassende Anzahl von Bedingungen getestet wurden um die optimalen 

Voraussetzungen zur Messung der Kanalaktivität von Prat1 in einer Lipiddoppelschicht 

feststellen zu können, so müssen diese Studien in weiteren Versuchen fortgeführt werden um 

endgültig die Kanaleigenschaften von Prat1 zu identifizieren. Dennoch tragen die Ergebnisse 

dieser Arbeit zu einem besseren Verständnis der angedeuteten Funktion von Prat1 als 

Transporter für Vorstufenproteine oder Metaboliten bei. 
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1 Introduction 
 
Plant cells contain two types of endosymbiotic organelles: plastids and mitochondria 

(Margulis, 1970). Both evolved from α-proteobacteria. Plastids, including chloroplasts – the 

most common type of plastids – developed from cyanobacteria, which were engulfed by an 

ancient mitochondrial eukaryotic host. The ability of plants to convert the energy of light into 

chemically bound energy generating both biomass and oxygen via a process called 

photosynthesis (Emerson et al., 1932) takes place within chloroplasts located in the green 

leaves, making them essential for today’s life on earth. Additional crucial functions of 

chloroplasts include the biosynthesis of fatty acids, porphyrin and amino acids and the 

assimilation of nitrite and sulphate. To successfully accomplish all these tasks and taking into 

account that more than 90% of all chloroplast proteins are translated at ribosomes located in 

the cytosol due to an extensive evolutionary horizontal gene transfer from the plastids to the 

nucleus, massive traffic (in and out) of metabolites, nutrients and proteins occurs at the two 

envelope membranes surrounding the plastids. For this purpose specific transporters and ion 

channels are present in both membrane systems (Philippar and Soll, 2007; Weber and Fischer, 

2007). 

 

1.1 General import pathway into chloroplasts	
 
Of the approx. 3000 proteins located in the chloroplast only 50 – 250 (depending on the 

species) are encoded in the plastome (Gould et al., 2008), meaning that all others need to be 

imported posttranslationally. Proteins that are destined for the chloroplast are targeted via 

their transit peptide, which can either be an internal sequence, as it is mainly the case for 

proteins of the outer envelope (OE; Bölter et al., 1999; Li and Chen, 1996; Pohlmeyer et al., 

1997; Pohlmeyer et al., 1998; Salomon et al., 1990; Seedorf et al., 1995) or a cleavable 

peptide on the N-terminal end of the preprotein that is removed after the import process. The 

size and structure of these transit peptides varies considerably (Cline et al., 1985; von Heijne 

et al., 1989). The machineries responsible for the general import pathway are called Toc 

(translocase at the outer envelope of chloroplasts) and Tic (translocase at the inner envelope 

of chloroplasts), located in the OE and the inner envelope (IE) respectively. For proper 

guidance and to keep the proteins in the necessary unfolded conformation (Ko et al., 1992; 

May and Soll, 2000; Qbadou et al., 2006) chaperones such as Hsp70 and 14-3-3 proteins 

(guidance complex) or Hsp90 and Hsp70 support the targeting to the Toc receptor proteins 
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known as Toc34 and Toc159 (Figure 1; Kessler et al., 1994; Perry and Keegstra, 1994; Hirsch 

et al., 1994;). Toc34 is anchored into the OE by a single transmembrane domain and can be 

regulated by phosphorylation and GTP/GDP-binding and hydrolysis. Activation results upon 

dephosphorylation with an ATP-dependant phophatase (Sveshnikova et al., 2000). For the 

larger Toc159, preprotein-binding leads to the activation of the endogenous GTPase activity, 

triggering a conformational change towards the activation of the translocation channel 

(Toc75). An alternative receptor protein is constituted by Toc64 that reaches into the cytosol 

containing a tetratricopeptide repeat domain (TPR; Sohrt and Soll, 2000) known to mediate 

protein-protein interactions, especially with chaperones such as Hsp70 and Hsp90 (Frydman 

and Hohfeld, 1997; Lamb et al., 1995; Fellerer et al., 2011). The Toc and Tic machineries are 

considered to be located in close proximity to each other at so called contact sites (Schnell et 

al., 1990; Schnell et al., 1994; Perry and Keegstra, 1994), where OE and IE are physically 

near to one another to facilitate the translocation of proteins via the main channels of the Toc 

(Toc75) and the Tic (Tic110) machineries simultaneously. The intermembrane space (IMS) 

was postulated to be bridged by a Toc subunit (J-domain protein Toc12), the Tic component 

Tic22 and Hsp70 (Figure 1; Andrès et al., 2010; Becker et al., 2004). However, recent studies 

in Pisum sativum suggest Toc12 to be a truncated clone of one of the pea J-domain proteins, 

that it possesses a cleavable transit peptide and is localised in the stroma (Chiu et al., 2010). 

Whether Tic22 and Hsp70 remain as the only mediators between the Toc and the Tic 

machineries, still needs to be resolved. Tic20 contains four transmembrane domains and thus 

shows structural similarities to bacterial amino acid transporters (Reumann et al., 2005) and 

translocation channels of the inner membrane of mitochondria (Tim17 and Tim23; Rassow et 

al., 1999). However, biochemical evidence for a function of Tic20 as main IE import channel 

is missing, even though channel activity has recently been demonstrated in vitro (Kovács-

Bogdan et al., 2011). Tic110, on the other hand, contains six transmembrane domains 

(Balsera et al:, 2009), reaches an equally high expression level as Toc75 (Vojta et al., 2004) 

and was found in association with both preproteins and chaperones (Lübeck et al., 1996; 

Nielsen et al., 1997), indicating that Tic110 plays the major role for protein translocation at 

the IE. Additionally, channel activity was observed in vitro for Tic110 (Balsera et al., 2009; 

Heins et al., 2002). Further investigations will be necessary to better distinguish between the 

specific activities of Tic110 and Tic20 within the Tic machinery. Once the preprotein has 

passed the inner envelope, the stromal processing peptidase (SPP) cleaves off the transit 

peptide, resulting in the mature form of the protein (Richter and Lamppa, 1998) which is 

subsequently either inserted into the IE, remains in the stroma or continues its targeting to the 
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thylakoids. Other Tic components which have so far been described are Tic40, which is 

believed to provide the driving force together with the stromal chaperones Hsp93 and Hsp70 

for the import (“motor complex”; Kovács-Bogdán et al., 2010; Flores-Péres and Jarvis, 2012) 

and Tic62, Tic55 and Tic32 which present the so-called redox regulon (Figure 1, orange 

coloured), enabling the redox regulation of the import via their redox-sensitive groups 

(Küchler et al., 2002; Stengel et al., 2008). 

 

 

Figure 1: The Toc- and Tic-complex in chloroplasts. 

Toc (translocase at the outer envelope of chloroplasts) and Tic (translocase at the inner envelope of chloroplasts) 
mediate the main import pathway for proteins from the cytosol, destined to the stroma or to the thylakoids 
(Andrès et al., 2010; modified) (1) – (3) = three possible protein classes containing only a transit peptide (1) or 
additional chaperones (2: Hsp70/14-3-3; 3: Hsp90) targeted to the Toc complex. Toc75 and Tic110 represent the 
main import channels of the outer and inner envelope respectively. Tic62, Tic55 and Tic32 represent the redox 
regulon (coloured in orange) Red arrows indicate a speculative alternative pathway for proteins directed to Prat1 
that are further inserted into the inner envelope. FNR = ferredoxin-NADP+ oxidoreductase; SPP = stromal 
processing peptidase; Hsp = heat shock protein; TPR = tetratricopeptide repeat domain; OM = outer envelope 
membrane; IM = inner envelope membrane. For further details, see text. 
 

 Beside this general import pathway for the majority of chloroplast-located proteins, 

several alternative import pathways exist, including translocation of proteins that possess no 

cleavable transit peptide and are destined for insertion into the IE (Figure 1, red arrows). The 

import route and participating transport components for these proteins is still speculative; 
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Prat1 was postulated as a candidate channel protein in this alternative translocation pathway 

(Rassow et al., 1999). Hence, evolutionary origin and characteristics of the Prat1 protein will 

be introduced in the following. 

 

1.2 The Prat protein family 
 
The preprotein and amino acid transporters (Prat) were first discovered and described by 

Rassow et al., 1999. Annotated in the phylogenetic tree for the Prat-family (Figure 2; Murcha 

et al., 2007) are 17 proteins present in the genome of the model plant Arabidopsis thaliana, 

three from Saccharomyces cerevisiae and one from Pisum sativum. Common features of these 

proteins include the lack of a cleavable transit peptide, four predicted transmembrane domains 

(α-helices) separated by hydrophilic loops and a common sequence motif in the second and 

third transmembrane domain ([G/A]x2[F/Y]x10Rx3Dx6[G/A/S]Gx3G; Rassow et al., 1999). The 

sequence motif was defined by comparing the amino acid sequences of the Prat-proteins 

Tim17, Tim22 and Tim23 (translocase at the inner membrane of mitochondria) from yeast 

(Saccharomyces cerevisiae) with Oep16 (outer envelope protein 16 kDa) from pea (Pisum 

sativum) and the bacterial amino acid transporter LivH. However, further studies demonstrate 

that this motif is not conserved in all plant members of the Prat-family and that general 

sequence identity is low especially in the N- and C-termini of the proteins (Murcha et al., 

2007). Furthermore, the phylogenetic analysis reveals division of the members into 8 

subfamilies (colour coded in Figure 2). Whereas the mitochondrial members of the family 

such as Tim17, Tim22 and Tim23 (e. g. Moro et al., 1999; Bauer et al., 1999) and the 

chloroplast localized Oep16 (Pudelski et al., 2012) have been in the focus of numerous 

studies, only little is known about the two isoforms of Prat1 (Prat1.1 and Prat1.2) in 

Arabidopsis thaliana (highlighted in red, Figure 2) which are the focal point of this work. The 

remaining three groups in the phylogenetic tree have been subsequently named Prat2, Prat3 

and Prat4 (Pudelski et al., 2010). Although all members of the Prat-family are membrane 

proteins, their sub cellular localisation varies from the OE of chloroplasts for Oep16 to the 

inner membrane of mitochondria where Tim17, Tim22 and Tim23 are part of the Tim 

complex (Neupert and Herrmann, 2007) which is partially reminiscent to the Tic machinery 

(Figure 1; Figure 3). Prat2 has been found to be dually targeted to mitochondria and 

chloroplast membranes and both Prat3 and Prat4 are inserted into the membrane of 

mitochondria (Murcha et al., 2007; Philippar et al., 2007). 
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Figure 2: Phylogenetic tree of the Prat-Family. 

Phylogenetic tree taken from Murcha et al., 2007. Tim17, 22, 23 from yeast and Oep16 from pea were included 
in the comparison of the A. thaliana proteins. The 82 amino acids between the second and the fourth helix of the 
membrane proteins were used for the phylogenetic analysis. Included are the AGI codes of the proteins from A. 
thaliana and the subfamily names (Pudelski et al., 2010). Highlighted in red are the Prat1.1 and Prat1.2 
homologs. 
 

Functionally, the members of the Prat-family are all proposed to be membrane-spanning 

channels (Murcha et al., 2007; Pudelski et al., 2010). Best characterised are the Tim17 and 

Tim23 proteins that form the major translocase at the inner membrane of mitochondria and 

Tim22 that represents the translocase of the carrier pathway for proteins inserted into the 

inner membrane of mitochondria (Figure 3). Another well-investigated example is Oep16, an 

abundant protein in the OE of chloroplasts that possesses channel activity shown by in vitro 

experiments. These studies indicate that Oep16 is selective for amino acids and amines while 

excluding triphosphates and uncharged sugars (Pohlmeyer et al., 1997). The expression 

profiles for the three isoforms of Oep16 in Arabidopsis thaliana localise the strongest 

expression for Oep16.1 in mature leaves, Oep16.2 is only expressed in pollen, cotyledons and 

seeds (Drea et al., 2006; Philippar et al., 2007) and the ubiquitously expressed Oep16.4 is 

mainly found in seeds and pollen (Duy et al., 2007; Pudelski et al., 2010). Little is known 

about the Prat2, Prat3 and Prat4 proteins. In the following Prat1 will be the focus of interest. 
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1.3 Potential function of Prat1	
 
A large scale proteome analysis of the chloroplast envelope membranes (Ferro et al., 2002; 

Ferro et al., 2003; Froehlich et al., 2003) led to the discovery of Prat1. The two isoforms 

share an amino acid sequence identity of 77 % (Figure 3). A special feature of Prat1.1 is a 

high negative net charge (-9) in the N-terminus in (Prat1.2: -5). Like all Prat-family members 

the Prat1 proteins are structurally characterized by their four predicted transmembrane 

domains connected by hydrophilic loops, and the lack of a cleavable transit peptide. 

 

 

Figure 3: Alignment of Prat1.1 and Prat1.2. 

The alignment shows Prat1.1 and Prat1.2 of A. thaliana. The black background indicates identical amino acids, 
grey highlights amino acids which are not identical but possess the same polarity or charge and the white 
background indicates divergent amino acids. The red bars mark the location of the transmembrane domains. 
 

Using immunodetection, Prat1 could be localised to the chloroplast and more specifically to 

the envelope fraction containing both inner and outer envelope membrane, thereby confirming 

the prior proteome analysis (Murcha et al., 2007). 

 Furthermore, both Prat1 and Prat2 were tested for their ability to complement the Prat-

family member Tim22 in yeast (Saccharomyces cerevisiae). For this purpose, several vectors 

(containing either Tim22 or the Prat1 and Prat2 isoform) were each transformed into yeast 

strains in which the native Tim22 gene was placed under the control of an inducible 

galactose-dependent promoter (Figure 5A; Murcha et al., 2007). The results clearly 

demonstrated normal growth of all strains in the presence of galactose (Figure 5C.). However, 

when the same strains were grown on galactose-free medium, the native Tim22 production 

was inhibited, leading to a lethal phenotype, since Tim22 is an essential gene (Kovermann et 

al., 2002). Nevertheless, cell growth can be restored upon transformation with the additional 

vector containing Tim22 and, to a substantial extent, also by transformation of vectors 

containing either the Prat1.1 or Prat1.2 proteins (Figure 5B). The Prat2.1 and Prat2.2 proteins 

on the other hand cannot likewise substitute the function of Tim22 in yeast. The function of 
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Tim22 has been shown to be the translocation of proteins destined for insertion into the inner 

membrane of mitochondria called carrier pathway (Figure 4; Kurz et al., 1999; Hasson et al., 

2010). 

 

 

Figure 4: Import pathways for mitochondrial precursor proteins. 

Figure taken from Bohnert et al., 2007. Tom (translocase at the outer membrane of mitochondria) and Tim 
(translocase at the inner membrane of mitochondria) constitute the main import pathway (Tim23) for proteins 
from the cytosol, destined to the matrix. Tim22 is part of the carrier pathway, inserting proteins into the inner 
membrane of mitochondria. Additional pathways are known to insert proteins into the outer membrane of 
mitochondria (ß-barrel pathway) and into the soluble intermembrane space (MIA pathway).  SAM = sorting and 
assembly machinery; MIA = mitochondrial intermembrane space import and assembly; PAM = presequence 
translocase-associated motor. For further details, see text. 
 

Taking into account that both Prat1 and Tim22 belong to the same protein family, the ability 

of the two Prat1 isoforms to rescue the lethal ∆Tim22 phenotype in yeast indicates that Prat1 

might fulfil a Tim22-related function at the inner envelope of chloroplasts. 
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Figure 5: Prat1.1 and Prat1.2 can functionally complement Tim22 in yeast. 

Figure taken from Murcha et al., 2007. Tim22 was placed under the control of an inducible gal-promoter in yeast 
(S. cerevisiae). (A) Setup of the different strains containing the indicated genes in the inserted vector. (B) The 
lethal phenotype upon removing galactose from the growth medium can be rescued by Tim22 and partially, by 
both Prat1 isoforms from A. thaliana, but not by the Prat2 proteins. (C) When galactose is present in the 
medium, all strains show normal growth. 
 

1.4 Aim of this work 
 
This work focuses on the functional and structural characterization of Prat1 in chloroplasts. 

The first objective was to define the exact localisation combined with the topology of the 

protein within the membrane. Secondly, a loss of function mutant of Prat1 (A. thaliana) was 

analysed with regard to different aspects of plant growth. Thirdly, potential metabolic 

influences caused by the lack of Prat1 were determined and the expression pattern of the 

protein was monitored in wild type plants both on RNA- and protein-level. Finally, as Prat1 is 

known to be a member of the preprotein and amino acid transporter family, one objective 

focused on putative channel activity of the protein using electrophysiological methods. 
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2	Materials	

2.1	Chemicals	
 
The majority of chemicals used were purchased in high purity from Roche (Penzberg, 

Germany), Fluka (Buchs, CH), Sigma-Aldrich (Steinheim, Germany), Roth (Karlsruhe, 

Germany), Merck (Darmstadt, Germany), AppliChem (Darmstadt, Germany) or Serva 

(Heidelberg, Germany).  

 Additionally acquired were: Bio-Beads SM-2 Adsorbent from Bio-Rad Laboratories 

(Hercules, CA, USA), metoxypolyethylenglycol-maleimide 5000 Da (PEG-Mal) from Laysan 

Bio (Arab, AL, USA), L-α-phosphatidylcholine (PC, Type-IV-S), Tris(2-carboxyethyl) 

phosphine (TCEP), and iodoacetamide (IAA) from Sigma, 4-acetamido-4’-

maleimidylstilbene-2,2’-disulfonic acid (AMS) from Invitrogen (Eugene, Oregon, USA) and 

radiolabeled amino acids ([35S]Met) from DuPont-NEN (Dreieich, Germany). All bilayer 

lipids were obtained from IonoVation (Osnabrück, Germany) or Lipid Products (South 

Nutfield, England). 

 The detergents sodium dodecyl sulphate (SDS), and Triton X-100 (TX-100) were 

obtained from Roth, n-decyl-ß-maltoside (DeMa) from Glycon (Luckenwalde, Germany), 

polyoxyethyleneglycol dodecyl ether (Brij-35) from Merck, digitonin from 

Calbiochem/Merck, n-lauroylsarcosine (N-LS) from Sigma and Nonidet P-40 (NP-40) from 

Fluka. 

 

2.2	Enzymes	
 
Restriction enzymes for cloning, RNA- and DNA-polymerases and T4-DNA ligase were 

obtained from Roche (Penzberg, Germany), MBI Fermentas (St. Leon-Rot, Germany), New 

England Biolabs (Frankfurt a. M., Germany), Qiagen (Hilden, Germany), Eppendorf 

(Hamburg, Germany), Diagonal (Münster, Germany), GeneCraft (Köln, Germany) and 

Finnzymes (Espoo, Finnland). Reverse Transcriptase was purchased from Promega (Madison, 

USA), RNase-free DNase I from Roche and RNase from Amersham Biosciences (Uppsala, 

Sweden). The proteases thermolysin, GluC and trypsin were bought at Merck and Sigma-

Aldrich. 
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2.3	Assay	Kits	and	column	materials	
 
The “Plasmid Midi Kit” and “Nucleospin Extract II Kit” from Macherey and Nagel (Düren, 

Germany) were used for DNA purification and purification of DNA fragments from agarose 

gels, respectively. RNA from plants was isolated using the “Plant RNAeasy Kit” from Qiagen 

(Hilden, Germany). In vitro translation was performed with the “Flexi Rabbit Reticulocyte 

Lysate System” from Promega (Madison, USA). 

 Ni Sepharose Fast Flow column material for protein purification was supplied by GE 

Healthcare (München, Germany). Protein concentration columns (Amicon Ultra 10K and 4K) 

were purchased from Millipore (Billerica, MA, USA). 

 

2.4	Molecular	weight	markers	and	DNA	standards	
 
PstI restricted λ-Phage DNA (MBI Fermentas) was used as a molecular size marker for 

agarose-gel electrophoresis.  

 For SDS-PAGE the “MW-SDS-70L” and “MW-SDS-200” markers from Sigma-

Aldrich (Steinheim, Germany) and for BN-PAGE the “HMW Native Marker Kit” from GE 

Healthcare (München, Germany) were applied. Additionally in some cases a prestained 

marker from BioRad (München, Deutschland) was used. 

 

2.5	Oligonucleotides	
 
Oligonucleotide primers (Table 1) used in this work were ordered in standard desalted quality 

from either Invitrogen or Operon (Köln, Germany) or Metabion (Martinsried, Germany). 

 

Table 1: Oligonucleotides used in this study. 
Name Sequence Tm 

PratC1 Xho1 fwd GATCCTCGAGATGGCGACGGCGGATT 64.3°C 

PratC1 Xho1 rev GATCCTCGAGTCATCGAGATGTAGGATAAGCTACC 65.6°C 

PratC1 EcoR1 fwd GATCGAATTCATGGCGACGGCGGATT 61.1°C 

PratC1 EcoR1 rev GATCGAATTCTCATCGAGATGTAGGATAAGCTACC 63.3°C 

RT-psPratC1-fwd GGGTTCCGTTTTTGGATTCGG 54.4°C 

RT-psPratC1-rev CCAGTGCAGCATCCAGCTAC 55.9°C 

RT-atC1.1-fwd CGAAGCGACCGATAATGATTCC 54.8°C 

RT-atC1.1-rev GCCTCGGATTTGCTTCAGAAG 54.4°C 
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RT-atC1.2-fwd GCATTGGTAATCCCTGCTCC 53.8°C 

RT-atC1.2-rev CAGACTGACCCGCATCCAC 55.4°C 

RT-atC1.2-fwd neu GTTGGAGTTGCTGGGTGTTGTAC 57.1°C 

RT-atC1.2-rev neu GCTTCTTGGGTTTCGTTAAGGAG 55.3°C 

PratC1 S zu D fwd CCATGGCGACGGCGGATGACGATGGTATTG 67.1°C 

PratC1 S zu D rev CGTGAGGCGGTGCAATACCATCGTCATCCGC 68.3°C 

PratC1 S zu E fwd CCATGGCGACGGCGGATGAGGATGGTATTG 67.1°C 

PratC1 S zu E rev CGTGAGGCGGTGCAATACCATCCTCATCCGC 68.3°C 

pCold rev CGATCGATTATTTATTTCCTGAAAAC 51.7°C 

T7 promoter (short) TAATACGACTCACTATAGGG 47.7°C 

at 18S F AACTCGACGGATCGCATGG 53.2°C 

at 18S R ACTACCTCCCCGTGTCAGG 55.4°C 

ps 18SrRNA fwd CCAGGTCCAGACATAGTAAG 51.8°C 

ps 18SrRNA rev1 GAGGGTTACCTCCACATAG 51.1°C 

psHistonH4 fwd2 TCACCATGTCTGGAAGAG 48°C 

psHistonH4 rev2 ACTGATACGCTTCACACC 48°C 

LBa 1 TGGTTCACGTAGTGGGCCATCG 58.6°C 

(Tm = melting temperature) 
 

2.6	Vectors,	clones	and	strains	
 
Escherichia coli (E. coli) TOP10 (Invitrogen, Darmstadt, Germany) and BL21 (DE3) 

(Novagen/Merck, Darmstadt, Germany) strains were used for cloning of DNA fragments and 

heterologous expression of proteins, respectively. 

 The vectors applied for cloning were pET21d (Novagen/Merck), pCOLDII (Takara-

Bio, Kyoto, Japan), pIVEX1.3 and pIVEX1.4 (Roche), pRsetA (Invitrogen) and pGex 6p1 

(GE Healthcare; modified by MPI Biochemistry, Martinsried). A description of the DNA 

constructs generated during or required for this study is presented in Table 2. 

 

Table 2: Plasmid DNA clones used in this work. 

Gene Vector Organism Description 
Restriction 

site 
Purpose 

Prat1 (fl) pET21d Pisum sativum 
C-terminal 

HIS-tag 
NocI - XhoI overexpression 

Prat1 (fl) pColdII Pisum sativum 
C-terminal 

HIS-tag 
XhoI - EcoRI overexpression 
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Prat1 (fl) pIVEX1.3 Pisum sativum RTS system NocI - SacI overexpression 

Prat1 (fl) pIVEX1.4 Pisum sativum RTS system NocI - SacI overexpression 

Prat1 (fl) pGex 6p1 Pisum sativum 
C-terminal 

HIS-tag 
EcoRI - XhoI overexpression 

Prat1 (fl) pRsetA Pisum sativum 
C-terminal 

HIS-tag 
XhoI - EcoRI overexpression 

Tic110 
(M1) 

pET21d 
Arabidopsis 

thaliana 

N-terminal 
part of 
mature 
Tic110 

(aa 25- 258) 

Balsera et al. 
2009a 

negative control 

Prat1 (fl) pET21d Pisum sativum 
Ser (aa 6) to 

Glu 
site-directed 
mutagenesis 

mimic 
phosphorylation 

Prat1 (fl) pET21d Pisum sativum 
Ser (aa 6) to 

Asp 
site-directed 
mutagenesis 

mimic 
phosphorylation 

(fl = full-length; M1 = N-terminal part of mature Tic110 ;RTS = rapid translation system) 
 

2.7	Antibodies	
 
A primary antibody against Prat1 (mature protein from Pisum sativum) was generated in this 

work. The overexpressed protein (pET21d/psPrat1 see Table 2) was sent to BioGenes (Berlin, 

Germany) for immunization of a rabbit. 

 The following antibodies were already available in the laboratory: Tic62 (C-terminus 

from Pisum sativum), Fructose-1,6- bisphosphatase (FBPase; full-length protein from 

Arabidopsis thaliana), Tic110, Tic55, Tic22, Toc75, OE33, VDAC and LFNR1 (leaf isoform 

from Arabidopsis thaliana) 

 Secondary antibodies, coupled to alkaline phosphatase or horseradish peroxidase, 

against rabbit were purchased from Sigma-Aldrich. 

 

2.8	E.coli	media	and	plates	
 
LB (Luria-Bertani) medium consisting of 1% Trypton (Difco), 0.5% yeast extract (Difco) and 

1% NaCl was used for cultivation of E.coli. For selection purposes during overexpression 100 

μg/ml ampicillin was added after autoclaving to the medium. Solid LB-plates contained 

additionally 2% of agar and were stored under sterile conditions at 4 °C. 
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2.9	Plant	material	
 
All experiments were performed with Arabidopsis thaliana plants, ecotype Col-0 (Lehle 

Seeds; Round Rock, USA). The T-DNA insertion lines used for generation of the double 

mutant of Prat1 were Prat1.1 (At4g26670 – Salk020671) and Prat1.2 (At5g55510 – 

Slak001823). They were purchased from NASC (University of Nottingham, GB). 

 Peas (Pisum sativum) var. “Arvica” were ordered from Bayerische Futtersaatbau 

(Ismaning, Germany). 

 

3	Methods	
 

3.1	Molecular	biological	methods	

3.1.1	General	molecular	biological	methods	
 
General molecular biological methods like growing conditions of bacteria, preparation of 

transformation-competent bacteria, DNA precipitation, determination of DNA concentration, 

and bacterial transformation were performed as described (Sambrook et al., 1989) with slight 

modifications. Preparation of plasmid DNA, restrictions, ligations, and agarose gel 

electrophoresis were performed as described (Sambrook et al., 1989) with modifications 

according to the manufacturer’s recommendations for the corresponding enzymes. 

 

3.1.2	Polymerase	chain	reaction	(PCR)	
 
Polymerase chain reactions (PCR) were performed according to Saiki et al. (1988) under the 

conditions recommended by the manufacturer of the DNA polymerase containing kit 

(Phusion, Finnzymes, Espoo, Finnland). For site directed mutagenesis, clones containing the 

wild type insert of interest were amplified by PCR using two specific primers, including the 

desired mutation (see 2.5 Oligonucleotides). The PCR reaction mix was digested with DpnI 

and transformed in TOP10 cells. The colonies were tested for plasmids containing the 

mutation by sequencing. 
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3.1.3	In	vitro	transcription	and	translation	
 
Transcription of linearized plasmids was carried out as previously described (Firlej-Kwoka et 

al., 2008). Translation was carried out using the Flexi Rabbit Reticulocyte Lysate System 

(Promega) following the manufacturer´s protocol in presence of [35S]-methionine for 

radioactive labelling. The samples were analysed by a polyacrylamide SDS-PAGE. Signals 

were then detected by exposure of the dryed gels on X-ray films (Kodak Biomax MR, 

PerkinElmer, Rodgau, Germany). 

 

3.1.4	Genomic	DNA	isolation	from	Arabidopsis	thaliana	
 
A small Arabidopsis thaliana leaf piece (~ 0.5 x 0.5 cm) was cut and transferred to a 1.5 ml 

microtube. Next, 200 μl extraction buffer (200 mM Tris/HCl (pH 7.5), 250 mM NaCl, 25 mM 

ethylenediaminetetraacetic acid (EDTA), 0.5% SDS) and one small iron bead was added to 

the tube and the sample was lysed in a TissueLyser (Qiagen, Hilden, Germany) for three 

minutes at maximum speed. After pelleting of the debris for 15 min. at 15,000 rpm and room 

temperature (RT), 100 μl of the supernatant were transferred to a fresh tube. To precipitate the 

genomic DNA, one volume of -20 °C isopropanol was added to the sample, carefully mixed 

and centrifuged for another 15 min. at 15,000 rpm and 4 °C. The resulting pellet was washed 

once with 70% ethanol, subsequently air-dried and finally resuspended in 50 μl of sterilized 

H2O or 10 mM Tris/HCl (pH 8.5). The sample was immediately used for PCR-analysis. For 

this purpose, any residual nondissolved debris was pelleted for 1 min. at full speed in a table-

top centrifuge and 0.5 μl of the DNA sample supernatant was then added to a standard 25 μl 

volume PCR. 

 

3.1.5	RNA	extraction	from	Arabidopsis	thaliana	and	quantitative	RT‐PCR	
 
Total RNA from leaves of three-week-old Arabidopsis thaliana plants was isolated using the 

Plant RNeasy Extraction kit (Qiagen, Hilden, Germany). The RNA was digested with RNase-

free DNase I (Qiagen) and transcribed into cDNA using MMLV Reverse transcriptase 

(Promega, Mannheim). Detection and quantification of transcripts were performed as 

described previously (Benz et al., 2009). 

 For quantitative RT-PCR, the FastStar DNA Master SYBR-Green Plus kit was used 

and the reaction was performed in the iCycler (BioRad) using the appropriate pairs of 
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oligonucleotides (see 2.5 Oligonucleotides). The relative abundance of all transcripts 

amplified was normalized to the expression level of 18S rRNA. 

 

3.1.6	Sequencing	
 
All cloned constructs (see Table 2) were sent for sequencing to validate their accuracy. These 

analyses were performed by the sequencing service of the institute of genetics at the 

department of biology of the Ludwig-Maximilians-Universität. 

 

3.2	Biochemical	methods	
 

3.2.1	SDS	polyacrylamide	gel	electrophoresis	(PAGE)	and	staining	
 
The separation of proteins was performed with electrophoresis, using denaturating gels 

according to Laemmli (1970). Acrylamide concentrations (ratio of acrylamide to N,N-

methylen-bisacrylamide 30:0.8) varied from 10 – 15% in the separating gel as indicated. For 

the stacking gel, 0.625 ml (two small gels) or 1.25 ml (large gel) of 0.5 M Tris/HCl, pH 6.8 

and for the separating gel 1.875 ml (two small gels) or 3.75 ml (large gel) of 1.5 M Tris/HCl, 

pH 8.8 were used. Prior to loading the gels, the samples were heated for 3 min. at 95°C in 

solubilising buffer (250 mM Tris/HCl, pH 6.8; 40% glycerine; 9% SDS; 20% ß-

mercaptoethanol; 1 spatulatip bromphenolblue) to denaturate the proteins. The running buffer 

consisted of 25 mM Tris, 192 mM glycine and 0.1% SDS. 

 For a better seperation of small proteins, gels according to Schägger and Jagow (1987) 

were utilized. Separating and stacking gel contained 1.67 ml (4%) to 7.5 ml (15%) of 3 M 

Tris/HCl, pH 8.45 and 0.3% SDS. Additionally, 13% glycerine were added to the separating 

gel, leading to altered anode buffer (0.2 M Tris/HCl, pH 8.9) and cathode buffer (0.1 M 

Tris/HCl, pH 8.25, 0.1 M tricine, 0.1% SDS) compositions. 

 For coomassie staining, the gels were placed for 15 min in staining solution on a 

shaker (50% MeOH; 7% HAc; 0.18% coomassie brilliant blue R250; Sambrook et al., 1989). 

Background staining was removed by incubation in destain solution (40% MeOH, 7% HAc, 

3% glycerine). 

 To carry out a silver staining (Ansorge 1985) the gel was placed overnight in fixing 

solution (40% MeOH, 7% HAc, 3% glycerine), before briefly (5 – 10 min.) incubating in 

solutions A (20% TCA, 50% MeOH, 2% CuCl2, 0.1% formaldehyde), B (10% EtOH, 5% 
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HAc), D (1% KMnO4, 40% KOH) B again and C (10% EtOH). Subsequently, the gel was 

washed for 10 min. with water prior to adding solution F (0.2% AgNO3) for 10 min. and 

rinsed with water again. The staining occurred upon the addition of solution G (20% Na2CO3, 

0.1% formaldehyde) and was stopped with destain solution. 

 All gels were watered after specific staining procedure and then dryed under vacuum. 

 

3.2.2	Determination	of	protein	and	chlorophyll	concentration	
 
For soluble proteins, the concentration was determined with the help of the Bio-Rad Protein 

Assay Kit (Bio-Rad, München, Germany; Bradford, 1976). Concentrations of proteins in 

membrane samples were determined according to Lowry et al., 1951. 

 Determination of chlorophyll (Chl) concentration was carried out as described by 

Arnon, 1949. 

 

3.2.3	Precipitation	of	proteins	with	trichloroacetic	acid	(TCA)	
 
For precipitation of proteins from solution, a final concentration of 15% TCA was added to 

the sample and incubated for 30 min. on ice. The sample was then centrifuged for 30 min. at 

20,000 g and 4 °C, subsequently 500 µl of cold acetone were added to the precipitate and 

incubated for 10 min on ice before centrifugation for 15 min. at 20,000 g and 4 °C. The final 

precipitate was dried and resuspended in solubilising buffer. 

 

3.2.4	Immunoblotting	and	visualization	
 
For antibody detection, proteins were electro-blotted onto polyvinylidene fluoride (PVDF; 

Immobilon-P; Zefa, Harthausen) or nitrocellulose membrane (Protran; Whatman, Dassel) 

using a semi-dry western blotting system (Hoefer TE 77; GE Healthcare, Freiburg, Germany) 

and Towbin buffer (25 mM Tris/HCl (pH 8.2-8.4), 192 mM glycine, 0.1% SDS, 20% 

methanol). Labelling with protein-specific primary antibodies was carried out by standard 

techniques using 1 – 5% skimmed milk or BSA (albumin fraction V, Roth, Karlsruhe, 

Germany) and 0.05% Tween 20 in TTBS (100 mM Tris/HCl, pH 7.5, 0.2% Tween 20 0.1% 

BSA, 150 mM NaCl). Antibody binding after washing of the membranes occurred either for 3 

h at RT or overnight at 4 °C. Bound antibodies were visualized either with alkaline 

phosphatase (AP)- conjugated secondary antibodies (goat anti-rabbit IgG (whole molecule)-

AP conjugated; Sigma) or using a chemiluminescence detection system (Enhanced 
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Chemiluminescence, ECL) in combination with a horseradish peroxidase-conjugated 

secondary antibody (goat anti-rabbit (whole molecule)-peroxidase conjugated; Sigma). The 

marker was cut from the blots and stained with amido black (stain: 0.1% w/v Napthol Blue 

Black in 50% H2O, 40% MeOH and 10% acetic acid; destain: 72.5% H2O, 20% MeOH and 

7.5% acetric acid). 

 ECL detection solution 1 (100 mM Tis/HCl (pH 8.5), 1% (w/v) luminol, 0.44% (w/v) 

coomaric acid) and solution 2 (100 mM Tris/HCl (pH 8.5), 0.018% (v/v) H2O2) were mixed in 

a 1:1 ratio and added to the blot membrane (1-2 ml per small gel). After incubation for 1 min 

at RT (in the dark) the solution was removed and the luminescence detected using a film 

(Kodak Biomax MR; PerkinElmer, Rodgau, Germany). 

 Detection of AP signals was performed by incubation of the membrane in a buffer 

containing 66 μl NBT (nitro blue tetrazolium chloride, 50 mg/ml in 70% N,N-

dimethylformamide) and 132 μl BCIP (5- bromo-4-chloro-3-indolyl phosphate, 12.5 mg/ml in 

100% N,N-dimethylformamide) in 10 ml 100 mM Tris/HCl (pH 9.5), 100 mM NaCl, 5 mM 

MgCl2 buffer. 

 

3.2.5	Protein	expression	and	purification	
 
Prat1 (fl) from Pisum sativum with a HIS-tag was overexpressed in BL21 (DE3) cells 

(Novagen/Merck) in LB medium in the presence of 100 μg/ml ampicillin at 37 °C. For this 

purpose, a 30 ml pre-culture was first grown overnight to high density. The pre-culture was 

used for inoculation of four 2 l baffled flasks filled with 500 ml generating a starting OD600 of 

0.1 in each flask. Induction of the overexpression was performed with IPTG (Isopropyl β-D-

1-thiogalactopyranoside) concentrations of 0.2 – 1 mM when the OD600 reached approx. 0.5. 

Overexpression was then continued for 3- 4 h while shaking the flasks at 125 rpm and 37 °C. 

Afterwards cells were centrifuged for 20 min at 6000 rpm and 4 °C and stored at -20 °C until 

further use. 

 For purification cell lysis was performed in 20 mM Tris/HCl (pH 8.0), 150 mM NaCl 

and 1 mM phenylmethylsulfonyl fluoride (PMSF) by three passages through an M-110L 

Microfluidizer Processor (Microfluidics, Newton, MA, USA) and two repetitions of ten short 

impulses with a rod sonifer, while keeping the cells on ice. For purification of insoluble 

proteins, cell membranes and inclusion bodies were then pelleted by centrifugation at 40,000 

g and 4 °C for 20 min and solubilized in 20 mM Tris/HCl (pH 8.0), 150 mM NaCl, 1% n-

lauroylsarcosine (N-LS) for 1.5 h, rotating at 4 °C, followed by 15 min rotation at RT. 
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Unsolubilized material was removed by centrifugation at 20,000 g and 4 °C for 15 min, and 

the cleared supernatant was used for batch Ni-affinity purification using Ni- NTA-Sepharose 

(GE Healthcare, Munich, Germany). Prat1 was bound to Ni-NTA by rotation for 1 h at 4 °C. 

During binding to the beads (100 µl) a final concentration of 15 mM imidazol was present in 

the buffer. The beads were susequently washed eight times with five volumes each of 20 mM 

Tris/HCl (pH 8.0), 150 mM NaCl, 0.3% N-LS, 15 mM imidazole. Elution was carried out six 

times, twice with one volume each of 20 mM Tris/HCl (pH 8.0), 150 mM NaCl, 0.3% N-LS 

and 100 mM imidazole twice with one bead volume each of 20 mM Tris/HCl (pH 8.0), 150 

mM NaCl, 0.3% N-LS and 200 mM imidazole and finally twice with one volume each of 20 

mM Tris/HCl (pH 8.0), 150 mM NaCl, 0.3% N-LS and 500 mM imidazole. All elutions were 

analyzed by SDS-PAGE and coomassie-staining, the elutions containing only minor amounts 

of contaminating proteins were pooled and concentrated on an Amicon column (Merck 

Millipore, USA). 

 For purification of dNTic110 from Pisum sativum the respective construct was 

overexpressed and purified as described previously (Balsera et al., 2009a). Overexpression 

was performed using BL21 (DE3) cells (Novagen/Merck) at 27 °C in LB medium in the 

presence of 100 μg/ml ampicillin. When cell density reached an OD600 of 0.5, the cells were 

induced with 0.2 mM IPTG and the temperature was shifted to 12 °C for overexpression at 

125 rpm overnight. Next, cells were centrifuged for 20 min. at 6000 rpm and 4 °C and stored 

at -20°C until further use. Cell lysis was performed in 20 mM Tris/HCl (pH 8.0), 300 mM 

NaCl, 1 mM phenylmethylsulfonyl fluoride (PMSF), 5 mM ß-ME and protease inhibitor 

cocktail tablet (Roche) using a French pressure cell press (Heinemann, Schwäbisch Gmünd, 

Germany), followed by centrifugation (40,000 g, 30 min, 4 °C). The supernatant was purified 

using HisTrap HP column (1 or 5 ml) with an ÄKTA purifier system (GE Healthcare, 

München, Germany). For wash and elution 20 mM Tris/HCl (pH 8.0), 300 mM NaCl with 

increasing concentrations of imidazole was used. Aliquots with high purity were collected and 

concentrated on an Amicon column for gel filtration (20 mM Tris/HCl (pH 8.0), 150 mM 

NaCl) on a Superdex 200 column to remove aggregates and remaining contaminants. 

 

3.2.6	Two‐dimensional	blue	native	(BN)	electrophoresis	
 
Blue native gel electrophoresis (BN-PAGE) was carried out essentially as described in 

Schägger and von Jagow, 1991 and Wittig et al., 2006 with the following modifications: 

Chloroplasts (equivalent to 25-50 μg of Chl) or IE membranes (50-200 μg protein content) 



 Materials	and	Methods	
 

 
19

were solubilized in 50 mM Bis-Tris/HCl (pH 7.0), 750 mM 6-aminocaproic acid, 1% 

ndodecyl- ß-D-maltoside by incubation on ice for 10 min. Afterwards the samples were 

centrifuged at 256,000 g for 10 min at 4 °C. The supernatant was supplemented with 0.1 

volume of a coomassie blue G solution (5% coomassie brilliant blue G-250, 750 mM 6-

aminocaproic acid) and loaded on a polyacrylamide gradient (5 – 12%) gel for separation in 

the first dimension. Electrophoresis was carried out at increasing voltage (stacking gel: 100 V 

max.; separating gel: 15 mA/400 V max. for a 12 x 14 cm gel, 8 mA max. for a 6 x 8 cm gel) 

at 4 °C. The first cathode buffer (5 mM tricine, 1.5 mM Bis-Tris/HCl (pH 7.0)) additionally 

contained 0.02% dye (coomassie blue G-250) and was replaced by buffer lacking dye after 

approximately one-third of the electrophoresis run had been completed. The anode buffer (5 

mM Bis-Tris/HCl (pH 7.0)) remained constant for the entire run. 

 For the second dimension, the lanes of interest were cut out from the gel after the run 

of the first dimension and incubated in 1% SDS, 1 mM β-mercaptoethanol (ß-ME) for 15 min, 

followed by 15 min in 1% SDS without ß-ME and 15 min in SDS-PAGE electrophoresis 

buffer (25 mM Tris, 192 mM glycine, 0.1% SDS) at RT. Single lanes were then placed 

horizontally on top of SDS-PAGE gels (10 or 12.5% polyacrylamide content), and the 

individual complexes were separated into their constituent subunits by denaturing 

electrophoresis (see 3.2.1). 

 For detection of proteins using specific antibodies, the gels were electro-blotted and 

labelling with protein-specific primary antibodies was carried out as described before (see 

3.2.4). 

 

3.2.7	Proteolysis	assays	with	thermolysin,	trypsin	and	GluC	
 
For thermolysin (from Bacillus thermoproteolyticus) digestion, inner envelope vesicles (IE) 

(Seigneurin-Berny et al., 2008; Li et al., 1991; see 3.3.2) from Pisum sativum (10 μg total 

protein content) or Prat1-proteoliposomes (approx. 4 μg protein content) were pelleted (10 

min, 256,000 g, 4 °C) and washed with 25 mM HEPES/KOH (pH 7.6), 5 mM MgCl2 and 0.5 

mM CaCl2. The samples were incubated with 0.1 μg/μl thermolysin for 5 – 30 min as 

indicated in the presence or absence of 1% Triton X-100 or 1% SDS at RT. The reaction was 

stopped by addition of 10 mM EDTA. Additionally, some samples were reduced with 10 mM 

DTT prior to the incubation with the protease if required. As negative control, 10 mM EDTA 

was added prior to thermolysin to the reaction mixture to inhibit proteolysis. Prat1 (and 

Tic110 as control in IE) was visualized by immunoblotting and antibody labelling after SDS-
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PAGE. To digest IE from from Pisum sativum in a more specific manner, trypsin was applied. 

The digest leads to a specific pattern for Prat1. The digestion buffer consisted of 50 mM 

tricine (pH 8.5) and 0.1 mM CaCl2. The incubation procedure was equal to the thermolysin 

treatment and the reaction was stopped by addition of 1 mM phenylmethylsulfonyl fluoride 

(PMSF), 5:1 volumes of trypsin inhibitor and 1:1 volume of α-macroglobulin. Additionally, 

some samples were reduced with 10 mM DTT prior to the incubation with the protease. As a 

control, all inhibitors were added before trypsin to the reaction mixture to repress proteolysis. 

Again, Prat1 (and Tic110 as control in IE) was visualized by immunoblotting and antibody 

labelling after SDS-PAGE. 

 Another specific digestion pattern is obtained with GluC (from Staphylococus aureus 

V8). For this inner envelope from Pisum sativum was treated as described above and then 

resuspended in 50 mM NH4HCO3 (pH7.8). The samples were incubated with 0.1 – 4 μg/μl 

GluC for 5 – 30 min in the presence or absence of 1% Triton X-100 or 1% SDS at RT. The 

reaction was stopped by addition of 5:1 volumes of α-macroglobulin. Additionally, some 

samples were reduced with 10 mM DTT prior to the incubation with the protease. As a 

control, excess α-macroglobulin was added before GluC to the reaction mixture to inhibit 

proteolysis. Prat1 was visualized as mentioned above. 

 

3.2.8	PEGylation	assay	
 
IE vesicles from Pisum sativum (approx. 10 µg protein content) were treated with 10 mM 

metoxypolyethylenglycol-maleimide 5000 Da (PEG-MAL, Laysan Bio, Arab, AL) in a buffer 

containing 100 mM Tris/HCl (pH 7.0), 1 mM EDTA, for 0, 5, 10, and 30 min respectively, at 

4 °C in the dark in absence or presence of 1% SDS. In the presence of SDS, the incubation 

took place at RT. The PEGylation reaction, leading to a 5 kDa shift for each attached PEG-

MAL on a cystein in Prat1, was stopped by addition of 100 mM DTT and SDS-PAGE 

solubilising buffer. Bis-Tris gels (0.36 M Bis-Tris/HCl (pH 6.5-6.8), 10% acrylamide), were 

employed using a MES running buffer (50 mM MES, 50 mM Tris, 1 mM EDTA, 1 mM 

sodium bisulfite, 0.1% SDS). The protein was detected by immunoblotting with a specific 

αPrat1 (Pisum sativum) antibody. 

 

3.2.9	AMS	assay	
 
IE vesicles from Pisum sativum (approx. 10 µg protein content) were treated with 10 mM of 

the membrane-impermeable sulfhydryl reagent, 4- acetamido -4- maleimidylstilbene -2,2-
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disulfonic acid (AMS) in a buffer containing 100 mM Tris/HCl (pH 7.0), 2 mM EDTA for 1 h 

at RT in the dark. Additionally 1% SDS, 2 mM diamide or 2 mM TCEP (Tris 2-carboxyethyl-

phosphine) was added to the samples if indicated. The reaction with AMS, leading to a shift 

of approx. 0.5 kDa for each attachment to a reduced cystein in Prat1, was terminated by the 

addition of 5 µl of non-reducing solubilising buffer (250 mM Tris/HCl, pH 6.8; 40% 

glycerine; 9% SDS; one spatulatip bromphenolblue) and 12.5% SDS-PAGE gels (see 3.2.1) 

were employed. The protein was detected by immunoblotting with the αPrat1 antibody. 

 

3.2.10	Extraction	of	inner	envelope	
 
Isolated IE (10 µg protein content) from Pisum sativum (see 3.3.2) was centrifuged for 10 

min. at 256,000 g and 4 °C and then resuspended in 25 mM Hepes/KOH (pH 7.6) and 5 mM 

MgCl2. For alkine pH conditions 0.5 M Na2CO3, for high salt conditions 4 M NaCl and for 

denaturating conditions 6 M urea were added to the samples and incubated for 10 min. on ice, 

before being centrifuged for 10 min. at 256,000 g and 4 °C. Both supernatant and pellet were 

seperated on an 10% SDS-PAGE gel and afterwards a selection of proteins (Tic110, Tic62, 

Prat1 and Tic22) were visualized by immunoblotting with protein specific antibody labelling, 

using alkaline phosphatase (AP)- conjugated secondary antibodies (see 3.2.4). 

3.2.11	Liposome	preparation	
 
Phospholipid phosphatidylcholine (PC) was solubilized in chloroform:methanol (1:1) in a 

concentration of 20 mg/ml. To remove the solvent, samples were dried under a steady flow of 

nitrogen gas for 30 min and afterwards placed in a vacuum exsicator for 3 h. PC forms a thin 

layer at the bottom of the utilized glass tube and was stored at -20 °C under argon. Lipid 

vesicles (20 mg/ml) were prepared in 10 mM Mops/Tris (pH 7.0), 100 mM NaCl, in the 

presence or absence of 1% SDS or in 20 mM Tris-HCl (pH 8.0), 100 mM NaCl as indicated. 

To prepare unilamellar liposome vesicles, samples were frozen and thawn 5 times in liquid 

nitrogen prior to being carefully extruded 21 times through a polycarbonate filter with a 

diameter of 100 or 200 nm (Liposofast, Avestin, Ottawa, Canada). For generation of 

proteoliposomes, purified proteins (Prat1 and Tic110) in a concentration of 0.3-0.6 mg/ml (or 

the respective buffer only as control) were subsequently mixed with liposomes in a 1:2 

protein:lipid volume ratio and incubated for 1.5 h at 4 °C. Samples were dialysed for 16 h at 4 

°C against the protein buffer without detergent, and the remaining detergent was removed 

during 2 h incubation at 4 °C with Bio-Beads (20 mg/ 1 mg detergent). In the presence of 

SDS, incubation and dialysis was performed at RT. 
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3.2.12	Flotation	assay	
 
To differentiate between liposome-associated and liposome-free proteins, separation by 

flotation through a sucrose gradient was applied. Samples as described before in 3.2.11 were 

therefore adjusted to a sucrose concentration of 1.6 M and overlaid with a sucrose step 

gradient consisting of 0.8 M, 0.4 M and 0.1 M concentrations (to a final volume of 4 ml for 

the small centrifuge tubes or 12 ml for the larger tubes). After centrifugation at 100,000 g and 

4 °C for 19 h, 0.5 ml (small tubes) or 1 ml (large tubes) fractions were carefully collected 

from the top of the tube, followed by a TCA precipitation (see 3.2.3) and washing of the 

proteins with 100% acetone. Samples were then resuspended in Laemmli-buffer, separated by 

SDS-PAGE and proteins were detected by silver-staining (see 3.2.1). 

 To verify proper insertion of proteins into the liposomes, these proteoliposomes (0.3-

0.6 mg/ml protein content) were incubated for 30 min at RT in the presence of different buffer 

conditions and then subjected to flotation as described before. The following buffers were 

used: as a control 10 mM MOPS/Tris (pH 7.0) or 20 mM Tris/HCl (pH 8.0), for high salt 

conditions 1 M MOPS/Tris (pH 7.0) or 1 M NaCl in 20 mM Tris/HCl (pH 8.0), for alkine pH 

conditions 10 mM Na2CO3 (pH 11.0) and for denaturing conditions 6 M urea in 10 mM 

MOPS/Tris (pH 7.0) or in 20 mM Tris/HCl (pH 8.0). 

 

3.2.13	Thin‐layer	chomotography	
 
Isolated chloroplasts from Arabidopsis thaliana (see 3.3.4) and Pisum sativum (see 3.3.1) (50 

– 100 µg chlorophyll. content), inner envelope vesicles from Pisum sativum (50 – 100 µg 

protein content), phosphatidylcholine (PC) (100 – 200 µg lipids) and a mixture of palmitoyl-

oleoyl- phosphatidylcholine (POPC) and palmitoyl-oleoyl- phosphatidylethanolamine (POPE) 

(25 – 50 µg lipids) were applied at the bottom of a silica thin layer chromatography plate. The 

plate was placed upright in a lid covered beaker containing solute (65% chloroform and 25% 

MeOH). The running time for the chromatography amounted to 1 h 45 min. The plate was 

afterwards sprayed with a staining solution (5 mM FeSO4, 5 mM KMnO4 and 3% H2SO4) and 

incubated for 10 min at 120 °C. 

 

3.2.14	Swelling	assay	
 
Freshly prepared liposomes and proteoliposomes (see 3.2.11) were diluted to 1 ml, 

approximating the starting optical density of all samples to 0.5 at OD500. The OD500 of the 
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samples was measured with a Shimadzu UV-2401PC Spectrophotometer (Columbia, USA) in 

time intervals of 1 min or for better disbanding 30 sec. After 2 – 5 min. of measurements 300 

mM KCl, sucrose or CsCl were added to the samples and the changes in density recorded. If 

indicated the Prat1-proteoliposomes and the control liposomes were additionally incubated for 

45 min at RT before the measurements. Also treatment with 50 μM CuCl2 for 20 min at 20 °C 

to oxidize the protein, 10 mM DTT for 20 min at RT to reduce Prat1 and the addition of 10 

mM ATP which may be needed for proper gating was performed prior to the measurements in 

the spectrophotometer. 

 

3.2.15	Isoelectric	focusing	(IEF)	
 
IEF is used to seperate proteins based on their overall charge emitted from their amino acids. 

Isolated stroma samples from wild type and mutant plants (Arabidopsis thaliana) of Prat1 

were taken and after performing IEF seperated on large gels to demonstrate a specific protein 

pattern. Differences between wild type and mutant help to characterize Prat1. 

 For the preparation of stroma samples, Rehydration buffer (7 M urea, 2 M thiourea, 

0.2% biolytes 3 - 10 (Bio-Rad, München), 2% CHAPS, 100 mM dithiothreitol (DTT), 

bromophenol blue) was supplemented just before use with protease inhibitors (for 3.0 ml 

buffer: 2.88 ml urea/thiourea rehydration buffer, 0.06 ml 50x complete (in H2O), 0.03 ml 100 

mM phenylmethylsulfonyl fluoride (PMSF in isopropanol), 0.003 ml pepstatin 1 mg/ml (in 

pure ethanol)). In the next step, 200 μg soluble protein (with a concentration of at least 6 

mg/ml) from the stromal fraction of isolated chloroplasts (see 3.3.4) was adjusted with this 

buffer to a total volume of 200 μl and incubated at RT for 1 h. The samples were centrifuged 

for 10 min at 20,000 g at RT and the supernatant was loaded into an IEF-tray (Bio-Rad, for 11 

cm strips). Subsequently, the protection foil was removed from the strips (ReadyStrip IPG 

strips, pH range 3 - 10 and 6 - 8, Bio-Rad, München) and gel strips were put on top of the 

sample located in the tray avoiding air bubbles between the strip and the sample (gel side on 

bottom, writing on the left hand side). After incubation for 1 h at RT, the strips were covered 

with mineral oil and the first dimension IEF-run was started (Protean IEF Cell; Bio-Rad; 

settings: preset method; rapid; rehydration: yes, active; gel length 11 cm; pause after 

rehydration: yes; hold at 500V: yes). After 12 h of rehydration, the run was paused and wet 

wicks (use 10 μl H2O per wick) were inserted between strips and electrodes, then the program 

is continued for ~ 9.5 h (35,000 Vh, end voltage: 8000 V). After the run finished, the strips 
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were drained on a tissue to remove oil and transferred into a clean tray (with gel side facing 

up). They were either applied directly to the second dimension or stored at -80°C. 

 For second dimension SDS-PAGE the strips were transferred to a clean tray and 

equilibrated for 20 min. in equilibration buffer I (6 M urea, 2% SDS, 50 mM Tris (pH 8.8), 

20% glycerol, 2% DTT). After incubation in equilibration buffer II (6 M urea, 2% SDS, 50 

mM Tris (pH 8.8), 20% glycerol, 2.5% iodoacetamide) for 10 min, the strips were covered 

with running buffer. SDS-gels (with Rotiphorese Gel 40 (29:1) acrylamide; Carl Roth GmbH, 

Karlsruhe) contain 0.1% SDS in both the stacking and separating gel and were poured in a 

Bio-Rad gel system (Criterion Cassette). After application of the IEF strip to the top of the 

stacking gel, it was directly overlaid with 1% agarose (in running buffer). Electrophoresis is 

performed in a Criterion Cell (Bio- Rad) at 35 mA per gel. 

 For staining with colloidal coomassie, the gels were first fixed in 30% ethanol, 2% 

phosphoric acid (100 ml per gel) for at least 5 h or overnight on a shaker at RT. The gels were 

then washed in H2O three times for at least 20 min each. Subsequently, gels were incubated in 

staining solution (120 ml per gel; 17% ammonium sulfate, 2% phosphoric acid, 34% 

methanol) for 1 h before 120 mg coomassie blue G-250 (1 mg dye/ml) was sprinkled onto the 

surface. After incubation for 3 days (on a shaker at RT), the gels were washed for 1 h in H2O 

and were then ready for scanning and analysis. 

 

3.2.16	Phosphorylation	and	de‐phosphorylation	assay	
 
Samples used for phosphorylation of the first serine in the N-terminus of Prat1 shown by 

Reiland et al. 2011 consisted of either IE vesicles from Pisum sativum or Arabidopsis 

thaliana (10 µg protein content), purified Prat1 protein or Prat1 which had undergone site-

directed mutagenesis of the serine to aspartic acid or glutamic acid to mimic phosphorylation 

(see table 2) and pSSU (each protein approx. 2-5 µg) protein in inclusion bodies as a control. 

The samples were resuspended in 20 mM Tris/HCl (pH7.5), 5 mM MgCl2 and 0.5 mM MnCl2 

and incubated with 3 µCi 32P-labled ATP for 10 min. at RT. Additionally, leaf lysate or 

isolated stroma (approx. 6 mg/ml ) from Pisum sativum or 1% Triton X-100 were added as 

indicated to the samples. A thermolysin digest (see 3.2.7) was performed before the 

phosphorylation was started where indicated. After separation by SDS-PAGE, proteins were 

detected by immunoblotting (see 3.2.4) with the αPrat1 or αTic110 (Pisum sativum) 

antibodies, respectively. To analyse where phosphorylation had occured, incorporation of 32P-
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labled ATP was visualized by autoradiography (Kodak BiomaxBLUE, PerkinElmer, Rodgau, 

Germany) for 5 h, overnight or up to two days. 

 De-phosphorylation was performed with the same samples also used for 

phosphorylation, using 50 mM HEPES (pH 7.5), 100 NaCl, 2 mM DTT, 0.01% Brij 35, 10% 

MnCl2 and the Lambda Protein Phosphatase (200 units; Lambda PP, New England BioLabs 

Inc, USA). The samples were incubated for 30 min. at 30 °C and then either phosphorylated 

as described above or directly loaded onto an SDS-PAGE. The further procedure was 

identical to the phosphorylation assay. 

 

3.2.17	Cross‐linking	
 
To analyse the oligomerization state of Prat1, 10 μg samples of isolated inner envelope from 

Pisum sativum (see 3.3.2) were incubated with 0.1 or 0.5 mM cross-linker for 10 min up to 1 

h at RT or on ice in 25 mM HEPES/KOH pH 7.6 buffer. Three different cross-linkers were 

tested (thiosulfate, 0 Å; dithionite, 0 Å; disuccinimidyl tartrate, 6 Å). The reaction was 

terminated by the addition of non-reducing solubilising buffer directly onto the sample, which 

was then loaded on a 10% Schägger gel (see 3.2.1). The gel was blotted onto nitrocellulose 

membrane (see 3.2.4) and Prat1 was visualized via immunodetection using a specific αPrat1 

antibody. 

 

3.2.18	Metabolite	analyses	
 
To analyse metabolic changes, leaf material from Arabidopsis thaliana wild type (wt) and the 

double mutant (dm) of Prat1 was collected from plants grown under long-day conditions (16 h 

light and 8 h dark), short-day conditions (8 h light and 16 h dark) and constant light 

conditions (24 h light at approx. 100 µmol). The leaves (with three replicas each) were 

directly frozen in liquid nitrogen, pestled and aliquoted into 50 mg portions. The plant 

material was extracted with a mixture of H2O/MeOH/chloroform (1:2.5:1 volumes). As an 

internal standard for later analysis 50 mM ribitol was added. The samples were mixed using a 

vortex for 20 sec. and then rotated for 6 min. at 4 °C before being centrifuged for 2 min. at 

20,000 g and RT. The supernatant was then carefully removed and used for analyses of 

metabolites. 

 The metabolite analyses via gas-chromatography followed by mass spectrometry were 

performed by Katrin Weber from the group of Prof. Andreas Weber at the Heinrich-Heine-
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Universität Düsseldorf (Institute for biochemistry of plants) according to Denkert et al. 

(2008). 

 

3.2.19	Protein	identification	by	mass	spectrometry	(MS)	
 
Coomassie- or silver-stained protein spots were cut from SDS-PAGE gels and send for 

identification to the “Zentrallabor für Proteinanalytik” (ZfP, Adolf-Butenandt-Institut, LMU 

München). There, tryptic peptides were detected either by Peptide Mass Fingerprint (MALDI, 

Matrix Assisted Laser Desorption/Ionization) or LC-MS/MS (Liquid Chromatography with 

MS) runs. Protein identification was then accomplished with a Mascot software assisted 

database search. 

 

3.3	Cell	biological	methods	

3.3.1	Isolation	of	intact	chloroplasts	from	Pisum	sativum	
 
To isolate intact chloroplasts (Schindler et al., 1987), seedlings from Pisum sativum were 

grown for 9-11 days on vermiculite in a climate chamber, under 12/12 hours dark/light (160 

μmol photons m–2 s–1) cycles. The plants were placed in the dark the night prior to conducting 

the isolation to reduce starch accumulation. All procedures were carried out at 4 °C. About 

200 g of pea leaves were collected and ground in a kitchen blender in approximately 300 ml 

isolation medium (330 mM sorbitol, 20 mM MOPS, 13 mM Tris, 3 mM MgCl2, 0.1% (w/v) 

BSA) and filtered through four layers of mull and one layer of gauze (30 μm pore size). The 

filtrate was centrifuged for 1 min at 1,500 g and the pellet was gently resuspended in about 1 

ml wash medium (330 mM sorbitol, 50 mM Hepes/KOH (pH 7.6), 3 mM MgCl2). Intact 

chloroplasts were reisolated via a discontinuous Percoll gradient of 40% and 80% (in 330 mM 

sorbitol, 50 mM Hepes/KOH (pH 7.6)) and centrifuged for 5 min at 3,000 g in a swing out 

rotor. Intact chloroplasts were taken from the 40%/80% interface, washed two times, and 

resuspended in a suitable volume of wash medium. Samples of isolated chloroplasts (3x 1 μl) 

were taken and resuspended in 1 ml each of 80% acetone. The chlorophyll concentration was 

estimated by measuring the optical density at three wavelengths (663, 645 and 750 nm) 

against the solvent (Arnon, 1949). Chloroplasts were used immediately after isolation to 

ensure functionality. 
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3.3.2	Preparation	of	inner	and	outer	envelope	vesicles	from	Pisum	sativum	
 
For isolation of inner and outer envelope vesicles from chloroplasts, Pisum sativum seedlings 

grown for 9-11 days on sand, under a 12/12 hours dark/light regime, were used. All 

procedures were carried out at 4 °C. Pea leaves cut from ~ 20 trays were ground in a kitchen 

blender in 10-15 l isolation medium (330 mM sorbitol, 20 mM MOPS, 13 mM Tris, 0.1 mM 

MgCl2, 0.02% (w/v) BSA) and filtered through four layers of mull and one layer of gauze (30 

μm pore size). The filtrate was centrifuged for 5 min. at 1,500 g, the pellet gently resuspended 

with a brush and intact chloroplasts reisolated via a discontinuous Percoll gradient (40% and 

80%). Intact chloroplasts were washed twice with wash medium (330 mM sorbitol, Tris-base 

(~ pH 7.6)), homogenized and further treated according to the modification (Waegemann et 

al., 1992) of the previously described method (Keegstra and Youssif, 1986). The quality of 

the isolated inner and outer envelope was checked by comparing the presence of the hallmark 

proteins on a coomassie stained SDS-PAGE. 

 

3.3.3	Isolation	of	stroma	from	Pisum	sativum	
 
Freshly isolated chloroplasts (see 3.3.1; approx. 600 µg chlorophyll) from Pisum sativum 

were incubated in 5 mM Tris/HCl (pH 7.5) for 30 min. on ice. A first centrifugation for 10 

min. at 16.000 g and 4 °C to remove thylakoid fragments was followed by a second 

centrifugation step (256,000 g, 30 min, 4 °C) to separate the stroma (= supernatant) from the 

envelope membrane fraction. Protein concentration was determined with the Bio-Rad Protein 

Assay Kit (Bio-Rad, München, Germany; Bradford, 1976). 

 

3.3.4	Isolation	and	fractionation	of	Arabidopsis	thaliana	chloroplasts	
 
Intact Arabidopsis thaliana chloroplasts were prepared from two trays (approx. 150 g fresh 

weight leaf material, harvested from darkness) of three- to fourweek- old plants grown on soil 

in a climate chamber (see 3.4), essentially as described in Seigneurin-Berny et al., 2008. 

Chloroplasts were subsequently resuspended in 15 ml of 10 mM Hepes/KOH (pH 7.6), 5 mM 

MgCl2 and lysed using 50 strokes in a small (15 ml) Dounce-homogenizer (Wheaton, 

Millville, NJ, USA). Further separation into stroma, thylakoids, and envelopes was done 

according to Li et al., 1991 using linear Percoll gradients which were centrifuged for 2 h at 

58,000 g and 4 °C. Each fraction, identified by its color (green = thylakoids, yellow/green = 

IE and outer envelope (OE), clear = stroma) was taken carefully from the gradient.The 
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envelope fraction was centrifuged again for 1 h at 135,200 g and 4 °C the supernatant 

removed and the pellet resuspended in a small volume (approx. 100 µl). All samples were 

either immediately used or frozen in liquid nitrogen and stored at -80 °C. Concentrations were 

determined according to Lowry et al., 1951. 

 

3.3.5	Protein	import	experiments	
 
Intact chloroplasts were isolated from 17 to 18-days-old Arabidopsis thaliana (grown on 

plates or on soil) or 9 to 11-days-old Pisum sativum (grown on vermiculite) plants according 

to the protocol by Aronsson and Jarvis, 2002 with the following exceptions: all buffers were 

supplied with 0.4 M sorbitol, and NaHCO3 as well as gluconic acid were omitted. An import 

reaction (containing chloroplasts equivalent to 7.5 μg Chl) was subsequently carried out in 

100 μl volume containing 3 mM ATP and 1-5% (v/v) [35S]-labelled translation products (see 

3.1.3). Import reactions were initiated by the addition of translation product to the 

import/chloroplast mix and carried out for the indicated time at 25 °C. Reactions were 

terminated by the addition of 2 volumes of ice-cold washing buffer (0.4 M sorbitol, 50 mM 

Hepes/KOH (pH 8.0), 3 mM MgSO4). Chloroplasts were washed twice and finally 

resuspended in Laemmli buffer (50 mM Tris/HCl (pH 6.8), 100 mM β-ME, 2% (w/v) SDS, 

0.1% bromophenol blue (w/v), 10% glycerol (v/v)). Import products were separated by SDS-

PAGE and radiolabeled proteins were analyzed by a phosphorimager or by exposure on 

autoradiography films (Kodak Biomax-MR). 

 

3.4	Plant	growth	conditions	and	phenotyping	
 
Pisum sativum of the type “Arvica” (from Prag, Czech Republic) were purchased at the 

Bayerische Futtersaatbau (Ismaning, Germany) and grown on vermiculite in a climate 

chamber regulated in a 12 h day/night-cycle at 20 °C. 

 Arabidosis thaliana seed material of the ecotype Col-0 (wild type) was purchased at 

Lehle Seeds (Round Rock, USA). The T-DNA insertion lines SALK_020671 and 

SALK_001823 were ordered at NASC (Nottingham Arabidopsis Stock Center, Nottingham, 

UK). 

 To synchronize germination, all seeds were subjected to vernalization at 4 °C for 2-3 

days. Plants were grown on soil or on 0.3% Gelrite medium containing 0.5 x MS salts at pH 

5.7 and in the presence or absence of 1% D-sucrose. Before sowing on sterile plates, seeds 
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were surface-sterilized with 70% ethanol, 0.05% Triton X-100 for 10 min and washed four 

times with 96% ethanol. Unless stated otherwise, plant growth occurred in growth chambers 

with a 16 h light (22 °C; 100 μmol photons m–2 s–1) and 8 h dark (18 °C) cycle. 

 Phenotyping of the Prat1 double mutant (dm) was performed by comparing growth to 

wild type (wt) Arabidopsis thaliana plants (ecotype Col-0) under the various conditions listed 

in Table 3. Prat1 dm plants were retrieved from crossing the two T-DNA insertion lines 

Prat1.1 (At4g26670 – SALK_020671) and Prat1.2 (At5g55510 – SALK_001823) (see 2.9). 

 

Table 3: Phenotyping conditions for Arabidopsis thaliana Prat1 (wt vs. dm). 

location light duration light intensity temperature humidity 

1) Climate chamber 16 h / 8 h 100 µMol 22° / 18°C 50 / 65% 

2) Climate chamber 8 h / 16 h 100 µMol 20° / 16°C 60 / 75% 

3) Percival 9 16 h / 8 h 100 µMol 10°C n/a 

4) Percival 1 constant 100 µMol 21° / 16°C n/a 

5) Percival 1 constant 10 µMol 21° / 16°C n/a 

6) Percival 4 16 h / 8 h 75 µMol 20° / 16°C n/a 

7) Greenhouse weather 
dependant 

weather 
dependant 

weather 
dependant 

weather 
dependant 

8) Heat cabinet 16 h / 8 h 80 µMol 28° / 24°C n/a 

9) Climate chamber 
(no watering) 

16 h / 8 h 100 µMol 22° / 18°C 50 / 65% 

 

Root analyses were performed with wt and dm Arabidopsis thaliana seedlings grown on 

plates containing 0.3% Gelrite medium 0.5 x MS salts at pH 5.7 and 1% D-sucrose. The 

seedlings were placed in a row at the top end of a vertically positioned plate in a climate 

chamber with a 16 h light (22 °C; 100 μmol photons m–2 s–1) and 8 h dark (18 °C) cycle. The 

plates were examined regularly and results were documented by photography. 
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3.5	Electrophysiological	measurements	
 
Electrophysiological measurements of channel proteins were performed using the IonoVation 

Bilayer Explorer (Osnabrück, Germany) according to the supplier`s instructions. A disposable 

bilayer chamber ("bilayer slide"), consisting of two compartments (cis and trans), separated 

by a polytetrafluoroethylene (PTFE) septum containing a microhole served for the preparation 

of the bilayer (Figure 6A and B). 

 

 

Figure 6: Principles of the IonoVation Bilayer slide. 

Figures were taken from Ionovation Bilayer Explorer V01 (2009) Manual from IonoVation. (A) Bilayer slide. 
Via the bilayer port lipids and proteoliposomes can be added, at the electrode ports the electrodes are inserted 
into the two chambers and the calibration wells are used to calibrate the system (B) Schematic view of the 
assembly of the bilayer slide. Cis and trans chambers are separated by a PTFE septum, serving as a platform for 
bilayer formation. Inserted proteins allow current flow, which can be measured by the electrodes inserted to each 
compartment. 
 
Both compartments were filled with approx. 150 μl of saline buffer during measurements (10 

mM MOPS/Tris (pH 7.0), 250/20 mM KCl, cis/trans). For electrical measurements Ag/AgCl 

electrodes with salt bridges were connected to the cis and trans compartments. A perfusion 

system with two 10 ml syringes was responsible for buffer exchange. For bilayer preparation 

approx. 0.2 μl of bilayer lipid (phosphatidylcholine and phosphatidylethanolamine) in n-

decane (5-10 mg/ml) was added directly onto the microhole. A stroking movement with the 

syringe and the pumping of buffer into and out of the chambers leads to bilayer formation, 

which was also controlled by light microscopy (Olympus CKX41, Hamburg, Germany) 

(Figure 7).  
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Figure 7: Bilayer formation at the microhole in the PTFE septum. 

The pictures show the microhole connecting the two compartments and were kindly provided by Maike 
Hellmers. (A) No lipids present therefore the buffer flow between the compartments is visible. (B) Unordered 
lipids across the microhole. (C) Lipid bilayer with large annulus has formed. (D) Large ordered lipid bilayer with 
a small annulus has formed. 
 
After the formation of a lipid bilayer, 0.3 µl of proteoliposomes (see 3.2.11) were carefully 

added on top of it in the cis chamber (higher salt concentration). Fusion with the lipid bilayer 

occured due to the osmotic gradient of 250/20 mM KCl in the buffers between the two 

chambers (Figure 8). 

 Patchmaster software (HEKA Elektronik, Lambrecht/Pfalz, Germany) controlled the 

experiment, by preparing and verifying the bilayer formation and executing the measurements 

between the two electrodes. 

 

 
 
Figure 8: Schematic diagram of the fusion of a proteoliposome to the lipid bilayer. 

The figure was taken from Ionovation Bilayer Explorer V01 (2009) Manual from IonoVation. The ionic gradient 
across the PTFE septum (250/20 mM KCl) allows proteoliposomes to be pulled towards the lipid bilayer and 
undergo fusion with it, thereby inserting the protein into the lipid bilayer. 
 

3.6	Cryo‐electrotomography	
 
For structural analyses of Prat1 and Tic110, 50 µl of proteoliposomes (see 3.2.11) of these 

proteins were prepared and sent to the group of Prof. Baumeister from the Max-Planck-

Institute (Martinsried, Germany). There the samples were shock-frozen in liquid ethane and 

placed on grits. For images see the supplementary data. The procedure of cryo-

electrotomography was performed by Zdravko Kochovski. 



 Results	
 

 
32

4	Results	
 

4.1	Purification	of	Prat1	
 
To be able to characterise the membrane protein Prat1 (fl) from Pisum sativum was 

overexpressed using the pET21d vector (see 2.6) in E. coli at 37 °C as inclusion bodies (see 

3.2.5). Bacteria from a 2 l culture were lysed and the pellet solubilised in 1% N-LS and 

applied to a Ni-column. Samples from load, flow-through, wash (each 1/50) and elution 

(1/10) after Ni-affinity chromatography were loaded onto an SDS-PAGE gel to control yield 

and purity. The gel in figure 9 shows a representative result. A large amount of the HIS-

tagged protein Prat1 does not bind to the Ni-beads, resulting in a clear band visible at approx. 

24 kDa (22.8 kDa = calculated size) in the flow through. The optimal concentration of 

imidazol was determined in several test purifications as 15 mM during the binding and 

washing process and 100 mM during elution. After the first elution, the imidazol 

concentration was raised to 200 mM and 500 mM to clear beads of residual protein. Prat1 was 

eluted and the protein concentrated via centrifugation on an Amicon ultrafiltration unit. Up-

scaling of the bacterial culture to 4 l for overexpression did not lead to a significant increase 

in protein yield after purification. 

 

 

Figure 9: Purification of Prat1 using Ni-affinity chromatography. 

SDS-PAGE (12.5%) loaded with 1/50 of load, flow-through and wash and 1/10 of elution samples after Ni-
affinity chromatography and coomassie staining M = protein marker; L = load (prior to Ni-affinity 
chromatography); F = flow through (directly after Ni-affinity chromatography); W1 = first wash; W8 = last 
wash; E1 = first elution; E2 = second elution and E3 = third elution. Prat1 is indicated with an arrow. 
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4.2	Generating	an	antibody	against	psPrat1	
 
An antibody against the heterologously expressed Prat1 protein from Pisum sativum (see 4.1) 

was generated. After overexpression, the lysed samples were loaded onto two large gels 

(12.5%). The Prat1 bands were excised from the two gels, pooled, 500 µl of water added and 

sent to Biogenes (Berlin) to be injected into a rabbit. 

 The antibodies (used 1 : 500 in 1% skimmed milk and 0.05% Tween 20 in TTBS (100 

mM Tris/HCl, pH 7.5, 0.2% Tween 20 0.1% BSA, 150 mM NaCl)) received after the final 

bleeding (120 days) showed specific reactions with both the native Prat1 and the recombinant 

protein after overexpression and purification (Figure 10). The antibody is specific for the 

Prat1 from Pisum sativum, an antibody against the homolog in Arabidopsis thaliana was 

already available. Also some cross-reactions with other proteins were detected which might 

be due to the recognition of other proteins with a similar sequence. 

 

 

Figure 10: Antibody specificity test. 

The immunoblot was incubated with the final bleeding of the psPrat1 antibody (1 : 500 in 1% skimmed milk and 
0.05% Tween 20 in TTBS (100 mM Tris/HCl, pH 7.5, 0.2% Tween 20 0.1% BSA, 150 mM NaCl)). The marker 
was stained separately with amino black. The additional lanes between C(p) / IE and OE / Prat1 were removed. 
M = marker; C(a) = chloroplasts from A. thaliana; C(p) = chloroplasts from P. sativum; IE = inner envelope 
from P. sativum; OE = outer envelope from P. sativum  and Prat1 = overexpressed protein which was purified 
via Ni-affinity chromatography. Prat1 is indicated with arrows. 
 
The running behaviour of Prat1 in its native state at 19 kDa (calculated 22.8 kDa), shown here 

in the two lanes with isolated chloroplasts and the inner envelope from Pisum sativum, differs 

clearly from the size observed after purification of the overexpressed protein Prat1 using Ni-

affinity chromatography, (~24 kDa). This can be attributed to the addition of the His-tag to 

the overexpressed protein and the presence of inner envelope lipids attached to the native 

protein. Also it can not be excluded that Prat1 is processed upon import into the chloroplast as 

can be seen by the weakly predicted transit peptide in the Plant Proteome Database (PPDB; 

Figure 11, underlined). Also emphasized in red are the peptides that identified Prat1.1 and 

Prat1.2 using mass spectrometry, which do not represent the extrem N-terminus and therefore 



 Results	
 

 
34

give no indication if the protein is cleaved by a peptidase (Figure 11). In contrast to the PPDB 

transit peptide prediction, ChloroP (Emanuelsson et al., 1999) forecasts no transit peptide for 

both Prat1.1 and Prat1.2. 

 

 

Figure 11: Identified peptides of Prat1.1 and Prat1.2 in A. thaliana. 

Taken from The Plant Proteome Database (PPDB; Sun et al., 2008). Depicted are the peptide sequences of 
Prat1.1 (At4g26670) and Prat1.2 (At5g55510). Marked in red are the identified peptides after mass spectrometry. 
Underlined are weakly predicted transit peptides. 
 

4.3 Localisation of Prat1 
 
To analyse the localization of Prat1, samples of inner and outer envelope (each 10 µg), 

thylakoids and stroma (each 20 µg) from Pisum sativum were subjected to 10% SDS-PAGE. 

In addition, freshly isolated chloroplasts and mitochondria (each approx. 20 µg) were loaded. 

Figure 12 exhibits the two resulting immunoblots, whereas the top immunoblot was divided 

into five separate blots, each incubated with the indicated antibody. Clearly visible is the 

localisation of the Prat1 protein in the inner envelope and the chloroplast fraction. As 

controls, antibodies against Toc75 (outer envelope), fructose-1,6-bisphosphatase (FBPase, 

stroma), OE33 (thylakoids) and the voltage-dependant anion channel (VDAC, mitochondria) 

were used and the corresponding proteins were each found in the respective fraction. The 

second immunoblot was run with the same base material as the first and represents a further 

control for the inner envelope. The αTic110 antibody was applied. 
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Figure 12: Prat1 is localised at the inner envelope of Pisum sativum. 
The immunoblot was incubated with the indicated antibodies (each 1 . 1000 in 1% skimmed milk and 0.05% 
Tween 20 in TTBS (100 mM Tris/HCl, pH 7.5, 0.2% Tween 20 0.1% BSA, 150 mM NaCl)). The marker was 
stained separately with amino black. Both immunoblots were loaded with identical quantities of the same 
material. M = marker; OE = outer envelope; IE = inner envelope; T = thylakoids; S = stroma; C(p) = 
chloroplasts; Mi = mitochondria, kindly provided by Sabine Nick. All materials were isolated from P. sativum. 
 

4.4 Topology of Prat1 in the inner envelope 
 
In addition to the exact localisation within the chloroplast, the topology of Prat1 within the 

inner envelope was investigated to determine whether it is an integral membrane protein or if 

it is merely attached to the inner envelope. For this purpose, a variety of conditions were 

applied to inner envelope vesicles of Pisum sativum by incubating them with buffers 

containing (i) high salt concentrations (4 M NaCl), (ii) alkaline pH (Na2CO3, pH 11) (iii) 6 M 

urea (Figure 13). Proteins which are not incorporated into the inner envelope are washed off 

the membrane when their hydrophobic or electrostatic interactions are disturbed by the 

conditions listed above. The samples were centrifuged after being incubated for 10 min on ice 

with the respective buffers and subsequently, supernatant (containing soluble proteins) and 

pellet (containing membrane-bound proteins) were loaded separately on an SDS-PAGE gel 

and immunoblotting was performed. Noticeably, Prat1 was exclusively detected in the pellet 

fraction under all conditions tested, similar to the control membrane protein Tic110. In 

comparison, Tic62, known to only interact with the inner envelope, can also partly be seen in 
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the supernatant fractions. This demonstrates that Tic62 was partially washed off the inner 

envelope, whereas Prat1 seems to be integrated into the inner envelope membrane. 

 

 

Figure 13: Extraction of inner envelope from P. Sativum. 

The immunoblot was incubated with the indicated antibodies (each 1 . 1000 in 1% skimmed milk and 0.05% 
Tween 20 in TTBS (100 mM Tris/HCl, pH 7.5, 0.2% Tween 20 0.1% BSA, 150 mM NaCl)). The marker was 
stained separately with amino black. IE from P. sativum was incubated with buffer conditions as indicated. 4 M 
NaCl = high salt condition; Na2CO3 = alkaline pH condition; 6 M urea = denaturating conditions; P = pellet 
fraction; SN = supernatant; IE = inner envelope from P. sativum with no treatment. 
 
In silico analyses of the Prat1 protein predict the presence of four transmembrane helices that 

anchor it within the membrane, resulting in a structure with both N- and C-termini facing the 

same side of the membrane (Figure 14). However, no biochemical experiments had so far 

been performed to investigate the orientation of the protein in more detail. 

 

 

Figure 14: Topology model of Prat1 (P. Sativum). 

The topology model of Prat1 depicts four transmembrane helices represented as dark blue barrels spanning the 
inner envelope membrane. Both N- and C-terminus and loop two are reaching into the stroma of the chloroplast. 
Loops one and three by contrast are facing the inner membrane space. The five cysteins are marked in red and 
are localised within the transmembrane domains of Prat1. 
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4.4.1	Prat1	is	protease	resistant	
 
As a first approach to gain insight into the topological features of Prat1, the protease 

thermolysin was used to digest the protein in inner envelope vesicles from Pisum sativum 

(Figure 15A). In this approach 1 µg of thermolysin was used for 10 µg protein content and 

incubated for 10 min on ice. Indicated samples were treated with 1% Triton X-100 or 10 mM 

dithiothreitol (DTT) prior to the thermolysin digest to solubilize the membranes or reduce the 

protein. 

 The results show that the Prat1 protein is hardly affected by thermolysin treatment in 

the absence of Triton X-100, which demonstrates the protease resistance of the protein under 

native conditions. The control protein Tic110 on the other hand demonstrates digestion bands 

already after 2 min of treatment. The addition of DTT seems to hinder the protease activity. 

Once the samples are solubilised with 1% Triton X-100, both Tic110 and Prat1 are almost 

completely digested. However, Prat1 is only affected upon solubilisation of IE membranes. 

Hence, this is a first indication for the N- and C-termini of Prat1 to be localized at the stromal 

side of the inner envelope. Moreover, it can be concluded that the loops of 26 and 4 amino 

acids (loops one and three, Figure 14) exposed to the inner membrane space are hardly 

accessible to thermolysin treatment. 

 

Figure 15: Prat1 from IE vesicles is largely resistant to thermolysin digestion. 

(A) Thermolysin digestion of IE vesicles (10 µg) for indicated time. Indicated sample was treated with 10 mM 
DTT or 1% Triton X-100. The immunoblot was incubated with the psPrat1 antibody and the Tic110 antibody 
(each 1 : 1000). IE = inner envelope, untreated sample. (B) Prat1 proteoliposomes (0.3-0.6 mg/ml protein 
content) were digested with thermolysin. The three samples on the left remained untreated prior to digestion the 
three samples on the right were treated with 1% Triton X-100. The time scale on the bottom indicates the 
digestion time with thermolysin. The immunoblot was incubated with the psPrat1 antibody (1 . 1000). 
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 Additionally, overexpressed and purified Prat1 protein introduced into liposomes (see 

3.2.11) was subjected to thermolysin digestion (Figure 15B), with or without pretreatment 

with 1% Triton X-100. Clearly visible are the degradation bands below the original Prat1 

band, demonstrating that thermolysin is able to digest at least part of the protein. A genuine 

conclusion cannot be drawn from this result, due to the fact that the orientation of the 

overexpressed protein in the liposomes cannot be contolled and varies. This leads to 

proteoliposomes that either expose the N- and C-termini and others where the termini are 

located towards the inside of the proteoliposomes. The addition of 1% Triton X-100 

completely dissolves the liposome structure, in contrast to native membranes (Figure 15A). 

This makes the protein entirely accessible to the protease, leading to a complete digestion 

(Figure 15B). 

 Furthermore, digests of IE (10 µg) using the proteases trypsin (0.1 µg) for the 

indicated time were performed (Figure 16). In addition the indicated sample was reduced with 

10 mM dithiothreitol (DTT). As a control the immunoblot was additionally incubated with the 

αTic110 antibody (Figure 16). Additional digests with the protease GluC lead to comparable 

results (data not shown). 

 

 

Figure 16: Prat1 from IE vesicles is largely resistant to trypsin digestion. 

Trypsin digestion of IE vesicles (10 µg) for indicated time. Indicated sample was treated with 10 mM DTT. The 
immunoblot was incubated with the psPrat1 antibody and the Tic110 antibody (each 1 : 1000). 
 

4.4.2	PEGylation	of	Prat1	identifies	cysteins	in	transmembrane	helices	
 
Another useful approach to determine the topology of Prat1 is the pegylation of its free 

cysteins with PEG-Mal. Incubation with this compound leads to its binding to reduced thiol 

groups that are accessible from outside the membrane. Since PEG-Mal is not membrane 

permeable, only thiol groups present in the inner membrane space are bound when right-side-

out IE vesicles are used. Binding of PEG-Mal to a cystein residue adds 5 kDa to the molecular 
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weight of the protein. This size shift can then easily be detected on an immunoblot. As 

highlighted in the topological model, Prat1 contains five cystein residues, of which two are 

consecutive (Figure 14). Upon incubation of 10 µg IE vesicles with 10 mM PEG-Mal for 0, 

10 and 30 min, no additional Prat1 bands appear (Figure 17). By contrast, after solubilisation 

of IE vesicles with 1% SDS, four bands corresponding to higher molecular weight Prat1 

forms can be detected. This clearly indicates that all five cysteines (due to sterical hindrance 

the two consecutive cysteins will bind only one PEG-Mal molecule) are either located on the 

stromal side of the inner envelope or within the transmembrane regions as predicted in the 

model. Concomitantly, diminution of the native Prat1 band is observed when PEG-Mal 

attaches to the cysteins and shifts the protein to a higher molecular weight. Thus the results 

clearly support the topology model of Prat1 displayed in figure 14. 

 

 

Figure 17: PEGylation of Prat1 cysteins inline with topology model. 

Inner envelope vesicles (10 µg protein content) from P. sativum were incubated with 10 mM PEG-Mal for the 
indicated amount of time. Half of the samples were additionally, prior to PEGylation, solubilised with 1% SDS. 
The immunoblot was incubated with the psPrat1 antibody (1 : 1000) and divided during staining to better 
visualise reduction of native Prat1 (lower panel). The arrows indicate size shifts of the protein with one or up to 
five attachments of PEG-Mal. IE = inner envelope from P. sativum as a control. The time scale on the bottom 
indicates the incubation time with PEG-Mal. 

	

4.4.3	AMS	treatment	further	supports	location	of	cysteins	in	transmembrane	
helices	
 
Similar to the PEGylation assay shown before, 4-acetamido-4′-maleimidylstilbene-2,2′-

disulfonic acid (AMS) is able to attach to reduced cysteins. Hereby, the oxidative state of the 

protein plays an important factor: only if Prat1 is in a reduced state, alkylation of reduced 

thiol groups can occur and AMS will attach to cysteins available in the intermembrane space, 

because AMS can not pass membranes. Modification of the protein with AMS adds 0.5 kDa 

to the molecular weight, resulting in slower running behaviour. Figure 18 depicts an 



 Results	
 

 
40

immunoblot with inner envelope vesicles from Pisum sativum treated as indicated: untreated 

inner envelope (lane IE; no AMS, no SDS, no reducing or oxidizing agent) shows Prat1 in an 

oxidized state (all samples were loaded with non-reducing solubilising buffer). Incubating the 

sample for 1 h in the dark with AMS (lane 1) leads to a slight change in the running behaviour 

of the protein, indicating that one or two cysteins are accessible to the chemical. This could 

suggest that cysteins located within the transmembrane domains become available to interact 

with AMS because they are exposed in a possible channel structure formed by Prat1. 

Solubilising the inner envelope for 10 min with 1% SDS prior to AMS treatment (lane 2) 

results in a further upwards shift (approx. 1 – 2 kDa) in the running behaviour, indicating that 

more cysteins become available to interact with AMS. To better distinguish how AMS 

interacts with the cysteins in Prat1, the protein was either oxidized (lane 3) with 2 mM 

diamide or reduced (lane 4) with 2 mM tris(2-carboxyethyl)phosphine (TCEP) and afterwards 

incubated with AMS as before. A clear shift between lane 3 where a similar behaviour to lane 

1 can be seen and lane 4 where the chemical bound most likely to all cysteins is visible. Under 

the applied conditions Prat1 for yet unknown reasons was detected as a double band (Figure 

18). 

 These results further support the topology model of Prat1 (Figure 14). The cysteins 

require solubilisation for complete accessibility to AMS matching the prediction of the 

positions of the cysteins in the transmembrane helices as presented in the topology model in 

figure 14. 

 

 

Figure 18: Cysteins only accessible when IE is solubilized. 

Isolated IE vesicles (10 µg) were incubated with chemicals as indicated and treated with AMS for 1 h at RT. 
Proteins were separated on a non-reducing SDS-PAGE gel and Prat1 was detected by immunoblot using a 
psPrat1 antibody (1 . 1000). IE = untreated IE vesicles from P. sativum; 1 = IE vesicles incubated with AMS; 2 
= solubilised IE vesicles with 1% SDS and incubated with AMS; 3 = IE vesicles solubilised with 1% SDS and 
oxidized with 2 mM diamide prior to being incubated with AMS; 4 = IE vesicles solubilised with 1% SDS and 
reduced with 2 mM TECP and then incubated with AMS. 
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4.4.4	Prat1	can	be	phosphorylated	at	the	first	serine	in	the	N‐terminus	
 
In earlier studies, a single phosphorylation site in Prat1.1 (At4g26670) from Arabidopsis 

thaliana at the first serine residue (position Ser 6) was found (Reiland et al., 2011). Since this 

is predicted to be the only phosphorylation site present in the protein, the orientation of the N- 

and C-termini either towards the inter membrane space or the stroma of the chloroplast should 

be possible to be determined via phosphorylation analysis. Since the serine residue is 

conserved in Prat1.1 from Arabidopsis thaliana and Prat1 from Pisum sativum, the 

experiments were performed with isolated pea inner envelope. To determine the orientation of 

the protein, a combination of phosphorylation experiment followed by a thermolysin digestion 

was performed. Inner envelope vesicles (10 µg) were incubated with 3 µCi 32P-ATP for 10 

min at RT before being either treated with or without Triton X-100 followed by thermolysin 

treatment as indicated. Proteins were separated via SDS-PAGE, transferred on a membrane 

and the dried blot was placed over night onto an x-ray film for visualisation of 

phosphorylation (Figure 19A). The corresponding blot (Figure 19B) includes Iep37 as a 

control because it demonstrates a clear degradational band when cleaved by thermolysin 

(Figure 19B, lanes 2 & 3). For yet unknown reasons Prat1 was more accessible to thermolysin 

in this experiment than seen in 4.4.1. The results of the phosphorylation show labelling of 

Prat1 with 32P-ATP (Figure 19A, lane 1) that remains to a certain extent when IE vesicles are 

treated with thermolysin after phosphorylation (Figure 19A, lane 2). This could indicate on 

one hand that the termini are on the protected stomal side because phosphorylation remains 

visible on the other hand it could suggest an incomplete digestion of the termini on the side of 

the intermembrane space. However, after incubation with 1% Triton X-100 to solubilise the 

vesicles, the phosphorylation site of Prat1 becomes entirely accessible to thermolysin and thus 

no band can be seen on the x-ray film. Therefore the N-terminus is likely to face the stromal 

side of the inner envelope, which correlates with the topology model of Prat1 presented before 

(Figure 14). 
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Figure 19: Phosphorylation site accessible to thermolysin only after solubilization. 

IE vesicles were incubated with 32P-ATP to phosphorylate the serin residue at the N-terminus of Prat1 before 
being treated as indicated with Triton X-100 and/or thermolysin for 10 min at RT. After separation of proteins on 
an SDS-PAGE gel and immunoblotting, labelled proteins were (A) visualized via autoradiography or (B) 
proteins were detected using the indicated antibodies (1 : 1000). In (B) the marker was stained separately with 
amino black. M = marker; IE = inner envelope from P. sativum. 
 

 Considering all results the topology model for Prat1 in Pisum sativum can most likely 

be concluded as depicted in Figure 14. The N- and C-termini are therefore located on the 

stromal side of the inner envelope, whereas loop one and three reach into the inner membrane 

space. Also the position of all cysteins within the transmembrane helices is perfectly in line 

with the biochemical data presented in 4.4.2 and 4.4.3. 

 

4.5	Prat1	forms	small	complexes	
 
To analyse the size of native Prat1, which might give evidence on a potential participation in 

complexes with other proteins, two-dimensional BN/SDS-PAGE analyses were performed. 

For this purpose, a BN 1st dimension gradient (5 – 12%) loaded with inner envelope from 

Pisum sativum was used. For the 2nd dimension the lane was cut out of the gel and placed 

horizontally on top of a SDS-PAGE gel. Proteins were subsequently transferred onto 

nitrocellulose and Prat1 was detected using the respective antibody (Figure 20). A signal for 

Prat1 is observed in the range from 200 – 100 kDa, thus it seems to be part of a small protein 

complex with itself or other unidentified partners. Hence, potential interactions that can be 

detected under the applied conditions occur either with other small proteins or Prat1 itself. 
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Figure 20: 2nd Dimension of blue-native with inner envelope from P. sativum. 

Inner envelope from P. sativum was run in a 1st dimension gradient gel (5 – 12%) and laterally transferred to a 
2nd dimension on a 12.5% SDS-PAGE. The immunoblot was incubated with the psPrat1 antibody (1 : 1000). The 
marker was stained separately with amino black. 
 

In a next step potential Prat1 interaction partners were searched for. For this purpose 

overexpressed and purified protein was bound onto a Ni-NTA matrix and a second empty 

matrix as a control. Both columns were then incubated with solubilised inner envelope from 

Pisum sativum. To identifiy any specific interaction partners of Prat1 the elutions from both 

matrixes were loaded on SDS-PAGE gel and the band patterns of the silver staining was 

compared. However, no differences were detected (data not shown). Furthermore, 

experiments using iso-electric focusing of envelope from wild type and double mutant plants 

from Arabidopsis thaliana to separate proteins according to their charge and then comparing 

the colloidal staining of the SDS-PAGE gels showed no differences in general complex 

formation or protein levels (data not shown). Also silver staining of 2nd dimension blue native 

gels using envelope or whole chloroplasts from Arabidopsis thaliana wild type in comparison 

to Prat1 double mutant plants demonstrated few distinct spots which do not differ prominently 

(Figure 21). 
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Figure 21: Blue-Native 2nd Dimension of IE and chloroplasts (silver stained). 

Depicted are the 2nd Dimension of Blue-Native gels of the indicated samples from either wild type (WT) or 
double mutant (P1DM) plants from A. thaliana. The gels were silver stained. M= marker. 
 

4.6	Floatation	of	Prat1	proteoliposomes	demonstrates	stable	insertion	
 
A prerequisite for in vitro approaches such as channel activity measurements, is the stable 

integration of Prat1 into liposomes. For this purpose, liposomes prepared as described in 

3.2.11 were incubated with purified Prat1 protein (for lipid composition Figure 23). These 

proteoliposomes were then treated with different buffers to test the quality of insertion: (i) 1 

M Mops (high salt conditions), (ii) 10 mM NaCO3 (alkaline pH conditions) and (iii) 6 M urea 

were used to wash off proteins which merely attached to the membrane. The samples 

including an untreated control were loaded at the bottom of seperate sucrose gradients and 

centrifuged at 100.000 g over-night. Fractions of 500 µl each, taken from top to bottom from 

each gradient, were precipitated using TCA, loaded on SDS-PAGE gels and proteins were 

visualized with silver staining (Figure 22). 
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Figure 22: Floatation of proteoliposomes. 

Prat1 proteoliposomes were treated with the indicated buffers and centrifuged at 100.000 g o/n at 4 °C at the 
bottom of a sucrose gradient. Fractions of 500 µl were TCA precipitated, loaded on four SDS-PAGE gels and 
Prat1 was detected by silver staining. 1 – 8 = top to bottom loading of samples from sucrose gradient. 
 
 The results clearly demonstrate that Prat1 is firmly integrated into liposomes. Whereas 

aggregated protein would accumulate at the bottom of the gradient (corresponding to fraction 

8), protein inserted within the liposomes is detected in higher fractions (2 – 5) in the gradient 

due to the density of the lipids (Morandat et al., 2002). Under all conditions applied, Prat1 

colocalises with the liposomes in the gradient, indicating its proper insertion. Thus, these 

proteoliposomes can be used further for measurements of the channel activity when fused to 

an artificial lipid bilayer (see 4.7). 



 Results	
 

 
46

 

Figure 23: Lipid composition demonstrated via thin-layer-chromatography. 

Lipid composition of chloroplasts (Chl) from A. thaliana, inner envelope (IE) from P. sativum, lipids used for 
proteoliposome generation (prolis) and lipids used for electrophysiological experiments via the artificial bilayer 
with the Ionovation Bilayer explorer. Each sample was loaded twice (50 and 100 µg) onto the silica gel plate. 
Running buffer: 65 ml chloroform, 25 ml methanol and 4 ml H2O. Staining solution: 2 g FeSO4 x 7 H2O, 180 mg 
KMnO4, 6 ml H2SO4 and 200 ml H2O. MDGD = monogalactosyldiacylglycerol; DGDG = 
digalactosyldiacyglycerol; SQDG = sulfoquinovosyldiacylglycerol; PG = phosphatidylglycerol; PC = 
phosphatidylcholine; PE = phosphatidylethanolamine 

 

4.7	Electrophysiological	measurements	
 
To gain insight into possible channel activities of Prat1, electrophysiological measurements 

using the Bilayer Explorer from Ionovation GmbH (Osnabrück, Germany) were performed. 

For this purpose, proteoliposomes containing Prat1 were loaded onto an artificial lipid bilayer 

(see 3.5; lipid composition see 4.6 Figure 23). When a proteoliposome fuses with the bilayer 

and the protein is positioned in such a manner that its open channel spans the lipid bilayer, the 

two electrodes located on each side of the bilayer measure electrical currents passing through 

the inserted channel protein. From these measurements valuable information about the 

channel properties can be gathered. 

 For the overexpression and purification of Prat1 protein from Pisum sativum, various 

conditions were tested including the addition of detergents such as lauryl-sarcosine, n-

dodecyl-ß-D-maltoside, brij 35, digitonin and Triton X-100. These were analysed in regard to 
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ideal preparation of the proteoliposomes ensuring proper insertion into the lipid bilayer which 

was formed between two chambers (see 3.5). The two electrodes separated by the lipid bilayer 

could then register voltage dependant gating events of Prat1 inserted in the lipid bilayer. In 

further experiments, recombinant Prat1 protein or its product after translation was loaded 

directly onto the bilayer to discover optimal insertion properties and conditions. Moreover, 

giant unilamellar vesicles (GUVs) with multiple Prat1 insertions were tested on a similar 

machine, the Port-a-Patch from Nanion Technologies GmbH (Munich, Germany; the machine 

was used with the help of Ana Cosme in the group of Prof. Martin Parniske). The GUVs were 

allocated onto a small opening between two separated chambers and positioned via mild 

suction. As described above, electrodes then measured passing currents enabeling conclusions 

regarding to channel activities and properties. Additionally, a deletion construct consisting of 

only two transmembrane domains of Tic110 was used as a negative control to be able to 

differentiate between actual measurements of channel activity of Prat1 and unwanted 

interfering factors. 

 

 Further structural analyses were performed using cryo-electron-tomography (see 3.6). 

Here shock-frozen proteoliposomes are used, which are positioned in an electron microscope 

and a tomogram is taken by slightly rotating the sample (Prat1 within the proteoliposome) and 

taking pictures (Figure 24). These can then be reconstructed into a 3D model of the protein 

similar to crystallization. Various attempts using different conditions for the Prat1 

proteoliposomes remained without success. The main reason for this might be the small size 

of Prat1 (22.8 kDa) making it difficult to detect (proteoliposomes appear empty). The smallest 

protein that was successfully characterized with this method until now was the major porin of 

Mycobacterium smegmatis MspA (157 kDa; see PhD-Thesis by Christian Werner Hoffmann, 

TU Munich). 
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Figure 24: Cryo-electron-tomography. 

Cryo-electron-tomogram of shock-frozen (liquid ethane) proteoliposomes. This procedure is able to identify the 
structure of membrane proteins in their native state localised within the membrane. A) shows Prat1 
proteoliposomes but the protein cannot be identified. The picture was provided by Zdravko Kochovski from the 
AG Baumeister at the MPI in Martinsried. The white scale bar represents 100 nm. 
 

4.8	∆Prat1.1	Prat1.2	represents	a	true	loss	of	function	line	in	Arabidosis	
thaliana	
 
To characterise the Prat1 protein two single knock-out lines for Prat1.1 and Prat1.2 in 

Arabidopsis thaliana were identified from SALK-lines (Manuela Baumgartner, personal 

communication; Figure 25A, B). The T-DNA insertions are localised within the first intron 

for ∆Prat1.1 and within the third intron for ∆Prat1.2, respectively. Even though no exon is 

directly affected by the T-DNA insertions, PCR and RT-PCR analyses revealed the complete 

lack of both wild type transcripts (Figure 25A). 
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Figure 25: Single knock-out lines of Prat1.1 and Prat1.2 of A. thaliana. 

A) SALK_020671 line. Depicted is the T-DNA insertion for Prat1.1 and the primer pairs with the indicated PCR 
products used for verification. B) SALK_001823 line. Depicted is the T-DNA insertion for Prat1.2 and the 
primer pairs with the indicated PCR products used for verification. Exons are marked in grey. LB = left border 
of T-DNA; RP = right primer; LP = left primer. 
 

These lines were then successfully crossed by Manuela Baumgartner generating a double 

mutant. To verify the complete loss of function of both genes, RNA was isolated and cDNA 

was made from wild type and the double mutant plants. Then RT-PCR was performed as 

described (see 3.1.5) with specific primers (RT-atC1.1 fwd/RT-atC1.1 rev, see Table1). The 

loss of transcript for Prat1.1 is demonstrated in the lack of a product after RT-PCR (Figure 

26A). Furthermore, envelope from wild type (Columbia 0) and the double mutant plants was 

isolated according to Seigneurin-Berny et al., 2008 and tested for the protein using the atPrat1 

peptide antibody. The resulting immunoblot demonstrates the absence of Prat1 in the double 

mutant (Figure 26B). These results demonstrate that the atPrat1 double mutant does not 

contain residual Prat1 wild type transcript or protein. 
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Figure 26: Verification of the Prat1 double mutant in A. thaliana. 

(A) cDNA from the indicated templates was tested with the RT-atC1.2 fwd neu/RT-C1.2 rev neu (see Table 1) 
primer pair for the presence of  Prat1.2 transcript. Product upon amplification is expected at 511 bp (B) 
Immunoblot of isolated envelope vesicles (10 µg) from wild type and Prat1 double mutant upon protein 
seperation on an SDS-PAGE. For detection the atPrat1 peptide antibody (1 . 1000) was used. M = marker. 
 

4.9	Phenotyping	of	the	atPrat1	double	mutant	
 
To increase the understanding of the function of a protein, knock-out mutant plants in regard 

to a specific phenotype were analysed. In this case the Prat1 double mutant (P1DM) plants 

from Arabidopsis thaliana were investigated in comparison to wild type (WT). All plants 

used for these analyses where grown on soil in flower pots (6.5 x 6.5 cm) with only one seed 

per pot to allow unhindered growth. All seeds were initially vernalized for approx. three days 

at 4 °C in the cold room to ensure parallel germination of all seeds. Wild type and double 

mutant pots were then placed next to each other in the climate chambers and positions 

switched regularly to enable equal growth conditions at all times. Normal growing conditions 

included 16 h light and 8 h dark with a light intensity of 100 µMol (gradual rise and fall every 

day from 0 to 100 µMol over 30 min), temperatures were held at 22 °C during the day and 18 

°C at night and the humidity ranged from 50 to 65%. Under these conditions the P1DM shows 

retarded growth when compared to the wild type. After 17 days as well as after 33 days of 

growth, clear differences in size are visible (Figure 27). Additionally, P1DM plants appear 

slightly paler in color. However, although retarded, the double mutant is able to produce 

flowers and fertile seeds. Thus, fully grown plants appear identical, and wild type and double 

mutant cannot be distinguished at these later stages. 
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Figure 27: Prat1 phenotype under normal growth conditions. 

A. thaliana plants grown on soil in a climate chamber with the following conditions: 16 h light, 22 °C and 50% 
humidity / 8 h dark, 18 °C and 65% humidity. WT = wild type; P1DM = Prat1 double mutant. Days indicated 
were counted after placement of the plants into the climate chamber. The scale bar in each picture represents 1 
cm. 
 

In the next step, it was tested whether the so far observed moderate growth phenotype can be 

maximized by growing the plants under different conditions (see Table 3 in 3.4, Figure 28). 

Again similar effects can be detected: the double mutant plants are slightly retarded in growth 

and therefore in development in comparison to the wild type. The general appearance of the 

plants adapt to the growth conditions (for both wild type and double mutant plants). 

Additional conditions tested included constant low light (10 µMol), heat stress (28 – 30 °C) 

and drought stress (no further watering after initial identical irrigation; all pots contained 

equal amouts of soil). However, the phenotypes for these conditions did not alter from the 

presented ones (data not shown). 

 



 Results	
 

 
52

 

Figure 28: Additional growth conditions for phenotype analyses. 

A. thaliana plants were grown on soil in a climate chamber with the indicated growth conditions. WT = wild 
type; P1DM = Prat1 double mutant. Days indicated were counted after placement of the plants into the climate 
chamber. The scale bar in each picture represents 1 cm. 

	

4.9.1	Root	growth	in	the	Prat1	double	mutant	is	slightly	increased	
 
The visible phenotype of the Prat1 double mutant in Arabidopsis thaliana displays a moderate 

retardation in growth. To analyse possible effects of P1DM mutation on the growth behaviour 

of the roots, seeds of both the wild type and the double mutant were grown on agar plates, 

which were placed vertically in the climate chambers. Root growth was monitored for up to 

28 days (Figure 29). 
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Figure 29: Phenotype analyses of root growth for Prat1. 

A. thaliana seedlings (amount indicated) were placed sideways onto vertically positioned plates. WT = wild 
type; P1DM = Prat1 double mutant. Days indicated were counted after placement of the plants into the climate 
chamber. The scale bar in each picture represents 1 cm. 
 

To analyse root growth quantitatively, pictures were taken at regular intervals and the length 

of the roots was determined digitally using Adobe Photoshop CS3. The data were pooled and 

are represented in the diagram in figure 30. For wild type plants a mean length of 6.91 +/- 

0.62 mm after 5 days, 25.37 +/- 2.25mm after 8 days and 50.79 +/- 6.18 mm after 13 days was 

measured. For the P1DM, a growth of: 8.89 +/- 0.88 mm after 5 days, 29.17 +/- 1.82 mm after 

8 days and 56.56 +/- 5.02 mm after 13 days. Due to excessive branching of roots and the 

limiting space of the plates, root length analyses were not performed at later timepoints. 

Taking the standard error bars into account, root growth does not differ significantly between 

the wild type and the P1DM, although the mean of root length in the double mutant is slightly 

increased. This indicates a marginally stronger growth of the plants below the soil than above 

compared to the wild type. (see 4.9). 
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Figure 30: Comparison of the root length between wild type and P1DM plants. 

Seedlings were placed on vertically positioned sterile plates in a climate chamber and root growth was regularly 
photographically documented and digitally measured in Adobe Photoshop CS3. For wild type and PIDM 
measurements of 18 roots each were pooled. The grey bars represent the mean root length for the WT = wild 
type and the black bars the mean for the P1DM = Prat1 double mutant. Standard error bars are included. 
 

4.10	RNA	expression	is	regulated	with	the	circadian	clock	
 
In a next step, the RNA expression profiles of the Prat1.1 and Prat1.2 genes were determined 

(see genome tiling arrays, Winter et al., 2007, Laubinger et al. 2008). Interestingly, in a 

further study, the RNA expression of the Prat1.1 gene from Arabidopsis thaliana was 

analysed using a NASCArray (Nottingham Arabidopsis Stock Centre microarray database, 

GeneChip analysis) with which the RNA expression behaviour of genes linked to the 

circadian clock was observed (Steve Smith, E-NASC-49, 2005). The plants used in this 

analysis for RNA extraction were grown in climate chambers with a 12 h day and 12 h night 

rhythm. Prat1.1 was found to show an expression pattern independent of the dark/light rhythm 

(diurnal), but rather anticipating it (Figure 31). During the light phase RNA expression 

decreases continuously until approx. 3 h before beginning of the dark phase where the 

expression strongly increases to then slowly drop again during the dark hours. Approx. 2 - 3 h 

prior to the light phase the strong increase of the expression is observed again, demonstrating 

that the Prat1.1 RNA expression cycles with the circadian clock present in the plant and is not 

merely light regulated. 
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Figure 31: RNA expression pattern of Prat1.1 in Arabidopsis thaliana (NASCArray) shows 

diurnal regulation. 

RNA expression levels of atPrat1.1 according to the time. Area in grey represents the 12 h night phase in 
contrast to the 12 h day phase. Data retrieved from NASCArray (Steve Smith, E-NASC-49, 2005). 
 

To verify these results and to additionally analyse the expression profile of the Prat1.2 gene, 

RT-PCR experiments were performed. For this purpose, wild type plants as well as the two 

single mutant plants were grown for 25 days, then leaf samples were taken and directly frozen 

in liquid nitrogen, followed by RNA isolation and RT-PCR using the primers indicated (Table 

1, Figure 32). The results for the RNA expression levels of the Prat1.1 and Prat1.2 genes are 

not as clear as the ones derived from the NASCArray. However, a distinct tendency is 

observed, showing gradual decreases and sharp increases of RNA expression levels in regular 

cycles, as described before. Interestingly, in ∆Prat1.1 and ∆Prat1.2, the expression pattern of 

the other respective gene remains unaltered (Figure 32). In addition it has to be noted that the 

light (16 h) and dark (8 h) phases were not identical to the experiment performed by Steve 

Smith, E-NASC-49, 2005 (12 h / 12 h). 
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Figure 32: RNA expression pattern of Prat1.1 and Prat1.2 in Arabidopsis thaliana (RT-PCR). 

Represented is the ratio of RNA expression levels for (A, C) Prat1.1 and (B, D) Prat1.2 from A. thaliana to 18S 
RNA in either wild type or the indicated single mutant plants. Leaf material was taken at indicated timepoints 
and RNA was isolated for RT-PCR analysis. Area in grey represents the night phase in contrast to the white day 
phase. Light: 9am – 1am; dark: 1am – 9am. 
 

To determine whether protein expression follows this RNA expression pattern, leaf samples 

were taken at the indicated times and protein extraction was performed. After separation of 

proteins via SDS-PAGE and immunoblotting, Prat1 was detected using a specific antibody 

(Figure 33). Aditionally, a Tic110 antibody was applied as a loading control (some sample 

was lost at timepoint 6 pm, WT). In contrast to the RNA expression levels, the protein 

amounts remained stable even in the Prat1.1 single mutant (Prat1.2 still present, the antibody 

detects both isoforms). Thus, the effects of the circadian rhythm on RNA expression do not 

seem to be directly correlated with protein synthesis and/or stability. 

 

 

Figure 33: Protein levels of Prat1 remain stable in A. thaliana. 

Leaf samples were taken at the indicated timepoints and protein extraction was performed. Samples were loaded 
on a 12.5% SDS-PAGE gel for separation and afterwards blotted onto a PVDF membrane. The immunoblot was 
incubated with the indicated antibodies (1 : 1000). WT = wild type plants. αTic110 was used as a loading 
control. 
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4.11	P1DM	is	affected	in	photorespiration,	the	TCA	cycle	and	the	oxidative	
pentose	phosphate	cycle	(metabolic	influences)	
 
Since the phenotype of the Prat1 double mutant in Arabidopsis thaliana exhibits retarded 

growth it seems likely that certain metabolic pathways are affected. Thus, the respective 

substrates might not be synthesized efficiently or their transport to the correct destinations 

could be influenced, therefore causing retarded growth of the entire plant. Hence, metabolic 

profiling was performed to gain an overview of the metabolic activities within the double 

mutant plants, which aids to identify metabolites which are off-regulated in comparison to the 

wild type. 

 

Figure 34: Metabolic profiling data from WT and P1DM. 

Leaf samples from indicated 20 days old plants were subjected to metabolic profiling at the University of 
Düsseldorf in the group of Prof. Andreas Weber. Selected graphs with standard error bars of indicated 
substances are presented. Framed bars indicate significant up or down regulations. WT = wild type; P1DM = 
Prat1 double mutant; CL = constant light; LD = long day; SD = short day. Arrows indicate up or down 
regulation. 
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For the metabolic analysis, Prat1 double mutant and wild type plants were grown under three 

different conditions: (i) constant light (100 µMol), (ii) long day (16 h / 8 h) and (iii) short day 

(8 h / 16 h). Leaf samples were taken after 20 days of growth and sent to the group of Prof. 

Andreas Weber at the University of Düsseldorf, Germany where the profiling was performed 

(Figure 34 and 35). Interesstingly, five compounds were found to be slightly down regulated 

under at least one growth condition (constant light, Figure 34, framed bars). These include 

glycine, glyceric acid, lysine, succinic acid and gluconic acid. Aspartic acid on the other hand 

was detected as slightly up regulated under long day conditions. When looking at the relevant 

metabolic pathways, it can be concluded that the Prat1 double mutant is affected in 

photorespiration, the citric acid cycle and the oxidative pentose phosphate cycle. Therefore it 

is tempting to speculate that Prat1 might function as a transporter for either amino acids 

involved or for plastid proteins associated with the described pathways. However, this theory 

needs to be substantiated by direct evidence. 
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Figure 35: Additional data from metabolic profiling. 

Leaf samples from indicated 20 days old plants were subjected to metabolic profiling at the University of 
Düsseldorf in the group of Prof. Andreas Weber. Selected graphs with standard error bars of indicated 
substances are presented in alphabetical order. WT = wild type; C1DM = P1DM = Prat1 double mutant; CL = 
constant light; LD = long day; SD = short day. 
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5 Discussion 
 

5.1 The membrane-spanning protein Prat1 in the IE of chloroplasts 
 
The present study focussed on further characterisation of the chloroplast membrane protein 

Prat1. It was initially discovered in a proteome analysis of the chloroplast envelope 

membranes from Arabidopsis thaliana (Ferro et al., 2002; Ferro et al., 2003; Fröhlich et al., 

2003). On the basis of a phylogenetic analysis the protein was confirmed to be a member of 

the Prat-family (preprotein and amino acid transporter; Murcha et al., 2007), which includes 

e.g. Tim17, Tim22 and Tim23 from mitochondria (e. g. Moro et al., 1999; Bauer et al., 1999), 

but also Oep16 from chloroplasts (Pudelski et al., 2012). Moreover, immuno detection assays 

of Prat1 suggested its localisation within the envelope membrane fraction of chloroplasts from 

Arabidopsis thaliana containing both inner and outer envelope (Murcha et al., 2007). In 

agreement with this preliminary data, the present study was able to verify this location of the 

protein using a newly generated specific antibody (see 4.2), which detected the Prat1 

homologue in Pisum sativum exclusively in the inner envelope membrane of chloroplasts 

(Figure 12). Furthermore, the bioinformatical prediction for membrane proteins in the 

ARAMEMNON database (Schwacke et al., 2003) reveals four transmembrane domains of α-

helical structure, which is a typical feature of members of the Prat-family. These structural 

propertise indicate a strong association of the protein to the membrane, which was indeed 

observed for Prat1 by protease digestion experiments of envelope membranes using 

thermolysin, GluC and trypsin (see 4.4.1). Even the hydrophilic loops were found to be 

largely protected from protease degradation (Figure 15 and 16). Additionally, floatation 

analysis of Prat1 integrated into artificial liposomes further support the predicted membrane 

localisation of the protein (see 4.6; Hyland et al., 2001). 

 A question that needed to be solved for generating a more detailed topology model for 

the protein regards its orientation within the inner envelope of the chloroplast. The predicted 

structure of Prat1, containing four transmembrane domains connected by hydrophilic loops 

clearly implies that both N- and C-termini are located towards the same side of the membrane, 

in this case reaching either into the intermembrane space or the stroma. Other Part-family 

members such as the Oep16 protein located in the outer envelope membrane demonstrate a 

topology with both N- and C-termini reaching into the cytosol of the cell (Pudelski et al., 

2012). In contrast to this it has been suggested that the Prat2 protein located in the inner 

envelope of the chloroplast like Prat1 has its termini positioned towards the intermembrane 
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space (Sabrina Kraus, PhD-Thesis, LMU München 2010). Prat1 contains a single 

phosphorylation site in the N-terminus of the protein (Ser6; Reiland et al., 2011). It could be 

shown that approximately 50% of these serines, which are the first in the N-terminus of Prat1, 

stay phosphorylated after protease treatment, indicating that the phosphorylation site is 

protected from protease activity and suggesting that both the N- and C-termini are positioned 

on the stromal side of the inner envelope. However, the lower intensity of the phosphorylation 

band after thermolysin treatment could also imply an incomplete digestion, placing the 

termini of Prat1 in the intermembrane space. Nonetheless, a complete solubilisation of the 

inner envelope membrane is required for a total loss of phosphorylation (Figure 19). 

Moreover, protease treatment experiments failed to produce clear digestion bands for Prat1 

(see 4.4.1), indicating inaccessibility to the proteases used. The present study therefore 

defines the orientation of the N- and C-termini of Prat1 reaching into the stroma of the 

chloroplast whereas loop one and three of the protein are located on the side towards the 

intermembrane space (Figure 14). Possible protein-interaction sites within the termini would 

therefore be accessible from the stromal side. These interactions could include the recruiting 

of proteins that will further process or guide preproteins or metabolites which have been 

transferred by the predicted transporter Prat1 or be part of a signalling pathway yet to be 

identified. The possible significance of the phosphorylation is discussed in more detail in 5.2. 

Moreover, the transmembrane domains were also found to include the five cysteines present 

in the amino acid sequence of Prat1 from Pisum sativum, as these could only be chemically 

labelled after solubilisation of the protein making any redox-regulation unlikely (see 4.4.2 and 

4.4.3). The homologue Prat1.1 and Prat1.2 proteins from Arabidopsis thaliana contain an 

additional sixth cysteine in the C-terminus which should be accessible for modification, and 

which might serve as an excellent control in future analysis. However in the present study, 

solely the homologue from Pisum sativum was employed.  

 In a next step the question whether Prat1 might form a functional channel which spans 

the inner envelope of the chloroplast was addressed. When taking a closer look at other 

members of the Prat-family which have already been investigated to some extent, a channel 

function is often found. The mitochondrial Tim17 together with Tim23 constitute the main 

protein import channel proteins of the Tim-complex (Rehling et al., 2001). Prior studies have 

shown Tim23 to be a 13-24 Å wide voltage-sensitive high-conductance channel with 

specificity for mitochondrial presequences (Truscott et al., 2001; Mokranjac and Neupert, 

2010). Additionally, the Prat-family member Oep16 located in the outer envelope of the 

chloroplast possesses channel activity and is selective for amino acids and amines while 
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excluding triphosphates and uncharged sugars (Pohlmeyer et al., 1997). A predicted channel-

forming function of the Prat1 protein is therefore a plausible assumption. This hypothetical 

channel could either be formed by a single or multimer of the Prat1 protein or an assemblage 

of small proteins clustered together with Prat1 as the main channel protein. The formation of a 

channel pore by homooligomer or heterooligomer subunits of a membrane protein-family has 

also been described before (Jeanguenin et al., 2008). Other Prat-family members like Tim23 

have been described to possess a pore-stoichiometry consisting of a multiple of three, whereas 

Oep16 shows dimerisation even though the electrophysiological data point to a channel 

activity of three or six pores (Truscott et al., 2001; Pohlmeyer et al., 1997; Steinkamp et al., 

2000). Results received by BN-PAGE reveal Prat1 to be part of a small protein complex 

(Figure 20) supporting the hypothesis of oligomerisation. The proposed constellation with two 

Prat1 proteins could form the basis for a channel-pore. 

 To test for channel activity, both the Ionovation Bilayer Explorer and the Nanion Port-

a-Patch machines were used (see 4.7). Although testing various conditions including the 

addition of e.g. Ca2+ to enable channel activity, the conditions needed for a proper insertion of 

the Prat1 protein into the lipid bilayer still remain to be optimised for Prat1. Possible 

misapplications can occur as early as the purification of the overexpressed protein and include 

the use of inappropriate detergent, being the quantity or the type of detergent (Chiu, 2012; 

Korepanova and Matayoshi, 2012). Once the purified Prat1 protein is at hand and applied to 

the lipid bilayer the insertion into the bilayer takes place at random. Nor the orientation of the 

protein within the bilayer neither an undesirable additional channel-like opening in the 

bilayer, due to the insertion, can be determined. To minimize these effects a deletion 

construct, in this case of Tic110, was used as a negative control. The deletion construct 

consisted of merely two transmembrane domains making it impossible for the protein to form 

a channel but still integrate into the lipid bilayer. Repetitive trials with both the Prat1 protein 

and the negative control could then clarify between actual measurements of the channel 

activity and unwanted interfering factors. Further testing will be necessary for a conclusive 

statement on the channel activity of Prat1. 

 Most important for this study is the link between Prat1 and the Prat-family member 

Tim22 located within the inner membrane of mitochondria where it acts as a channel for 

proteins without a transit peptide which are inserted into the inner membrane (Hasson et al., 

2010). For Tim22 channel activity has been described for a single and a triple pore-unit 

(Kovermann et al., 2002). In a complementation assay both Prat1 isoforms from Arabidopsis 

thaliana were able to at least partially complement the function of the essential Tim22 protein 
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in the yeast Saccharomyces cerevisiae (Murcha et al., 2007). This is a strong indication that 

Prat1 adopts a channel function in vivo and represents the chloroplast equivalent of the 

mitochondrial Tim-translocase Tim22 (carrier pathway; Kurz et al., 1999; Hasson et al., 

2010). Thereby it might constitute an alternative import pathway for proteins not using the Tic 

complex (Benz et al., 2009) that are destined to the chloroplast stroma or become integrated 

into the inner envelope. Another possible hypothesis, given the fact that the chloroplast is the 

primary compartment for the amino acid biosynthesis (Lam et al., 1996), is a role of Prat1 in 

transport of amino acids and their derivates, similarly as has been described for the Oep16 

proteins (Pohlmeyer et al., 1997). 

 

5.2 Possible role of Prat1-phosphorylation 
 
During the process of phosphorylation a phosphate group is added to a protein or other 

organic molecule with the help of a kinase. The mechanism retrieves the supplementary 

phosphate group usually from an ATP (adenosine-5’-triphosphate) molecule (Figure 36). 

 

 

Figure 36: Phosphorylation mechanism of the amino acid serine. 

Phosphorylation at the amino acid serine occurs with the help of a serine protein kinase which converts ATP 

(adenosine-5’-triphosphate) into ADP (adenosine diphosphate) and thereby adds a phosphate group to the serine. 

 

ATP is thereby converted into ADP (adenosine diphosphate), releasing a phosphate group 

which is transferred to the available phosphorylation site. The primary sites for 

phosphorylation have been described to be serine, threonine and tyrosine residues although in 

some cases histidine, arginine and lysine residues may undergo phosphorylation as well 

(Ciesla et al., 2011). In the case of the Prat1 protein in Arabidopsis thaliana Ser6 was 

discribed as phosphorylation site in a comparative phosphoproteome profiling performed in 

Arabidopsis thaliana (Reiland et al., 2011). 

 Phosphorylation is the most widespread posttranslational protein modification, playing 

a regulatory role in almost every aspect of cell life in both prokaryotic and eukaryotic 
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organisms (Chang and Stewart, 1998; Ciesla et al., 2011). Many enzymes and receptors are 

switched “on” or “off” by this reversible process mediated by kinases responsible for 

phosphorylation them and phosphatases that dephosphorylate. Conformational changes in the 

involved proteins, signal transduction, protein-protein interactions and even protein 

degradation are the key effects evoked by phosphorylation (Olsen et al., 2006). For Prat1, the 

function of the single phosphorylation site remains to be discovered. Most proteins which are 

phosphorylated contain numerous phosphorylation sites which control and regulate their 

biochemical properties dependent on which specific site becomes phosphorylated. Due to the 

location of the sole phosphorylation site at the N-terminus of the Prat1 protein sequence, the 

site reaches into the stroma of the chloroplast (Figure 14), where it can interact with proteins. 

Since channel activity is predicted for the Prat1 protein, communication with proteins on the 

stromal sides of the inner envelope membrane is of substantial importance. The 

phosphorylation on the stromal side of the protein could cause a specific conformational 

change inducing an active state of Prat1. Other examples where channel-gating is regulated 

via phosphorylation sites of the channel protein, include the recently described CaMKII 

(Ca2+/calmodulin-dependent protein kinase II) activity contolling the gating of the cardiac 

NaV1.5 sodium channel (Ashpole et al., 2012). 

 Within the scope of the comparative phosphoproteome profiling in Arabidopsis 

thaliana six separate repetitions of the experiment were performed. In four of these 

experiments the serine at the N-terminus of Prat1 was found in a phosphorylated state and 

twice in a non-phosphorylated state (Reiland et al., 2011), indicating that the phosphorylation 

of the Prat1 protein in Arabidopsis thaliana is reversible and can therefore adapt to changes in 

the biochemical capacity or requirements of chloroplasts. 

 

5.3 RNA expression of Prat1 follows a circadian rhythm 
 
Most organisms including higher plants have the innate ability to measure time. Plants do not 

only respond to sunrise or sunset but rather anticipate dawn and dusk and adjust their biology 

and metabolism accordingly. The circadian rhythms, are the subsets of biological rhythms 

divided into periods, defined as the time to complete one cycle of ~ 24 h (Giebultowicz, 

2004). Important characteristics of the circadian rhythms include that they are endogenously 

generated and self-sustained, enabling them to persist under constant environmental 

conditions such as permanent light (or dark) and/or temperature. Under these controlled 

conditions, the plant can no longer rely on external time cues to express specific proteins and 
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therefore it depends on the entrained endogenous timing system which precisely corresponds 

to the exogenous period of the earth’s rotation. The expression of the Prat1.1 gene from 

Arabidopsis thaliana was analysed using a NASCArray (Nottingham Arabidopsis Stock 

Centre microarray database, GeneChip analysis) with which the RNA expression behaviour of 

genes linked to the circadian clock was observed (Steve Smith, E-NASC-49, 2005; Figure 

31). Indeed, a typical circadian expression on RNA level was detected for Prat1.1. The plants 

used in this analysis for RNA extraction were grown in climate chambers with a 12 h day and 

12 h night rhythm, nonetheless the expression of Prat1.1 increased 2 h prior to the beginning 

of the light phase (see 4.10). In the present study similar behaviour could also be detected 

with RT-PCR analysis for both Prat1.1 and Prat1.2 (Figure 32). 

 The circadian clock is known to regulate many key physiological processes in higher 

plants, ranging from growth (Dowson-Day and Millar, 1999) and flowering time (Yanovsky 

and Kay, 2003; Imaizumi and Kay, 2006) to stomatal opening and CO2 assimilation 

(Hennessey and Field, 1991). Microarray analyses suggest that more than 10% of all 

Arabidopsis thaliana genes are regulated at the level of mRNA abundance and multiple 

metabolic pathways have been identified that seem to be under circadian control (Harmer et 

al., 2000; Schaffer et al., 2001; Michael and McClung, 2003). The current knowledge of the 

main proteins involved in the circadian rhythm regulation in Arabidopsis thaliana are 

depicted in a simplified model (Figure 37). The evening-expressed timing of cab expression 1 

(TOC1) gene forms together with the light/morning-induced transcription factors circadian 

clock associated1 (CCA1) and its homologous gene late elongated hypocotyl (LHY) the key 

players of the main transcriptional feedback loop in Arabidopsis thaliana (Ito et al., 2008). 

Additionally, CCA1 and LHY are regulated by pseudo response regulatory7 (PRR7) and 

PRR9 in response to ambient temperatures (Salomé et al., 2010) and function upstream of 

TOC1 which they regulate negatively. TOC1 in turn, serves as a positive regulator of CCA1 

and LHY, together they control circadian and morphogenic responses in the plant (Ito et al., 

2007). 
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Figure 37: Current knowledge regarding key players of the circadian rhythm in plants. 

The figure was taken from the Farré Lab homepage (http://farrelab.openwetware.org/Research.html) and 
modified. Depicted is a basic model of the Arabidopsis thaliana circadian oscillator. Proteins are indicated by 
oval shapes with the indicated protein name. Protein activity is indicated with solid lines, with lines ending in 
arrowheads indicating positive action and lines ending in perpendicular dashes indicating negative action. CCA1, 
LHY and TOC1 create the core feedback loop. The shaded area indicates activities peaking in the subjective 
night and white area indicates activities peaking during the subjective day. CCA1 = circadian clock associated 1; 
LHY = late elongated hypocotyls; TOC1 = timing of cab expression 1; PRR3,5,7,9 = pseudo-response 
regulators; GI = gigantea; ZTL = zeitlupe; CHE1 = CCA1 hiking expedition; LUX = lux arrythmo; ELF3,4 = 
early flowering. 
 

Circadian regulated transcripts have been found to be enriched in the subset of transcripts 

with short half-lives (Gutierrez et al., 2002); hence high transcript stability might conceal 

transcriptional oscillations when only the steady state transcript level is monitored. Indeed, 

enhancer trapping, a transgenic construction containing a mobile element (P element) and a 

reporter gene for the identification of enhancers, suggests that up to 35% of the transcriptome 

may show clock regulation (Michael and McClung, 2003). Since Prat1.1 does not seem to be 

regulated in a circadian rhythm on protein level (Figure 33), the function of an oscillating 

transcript is not yet understood. It could be suggested that a substrate transported by the 

Prat1.1 protein underlies circadian control but also acts as the main trigger for a signalling 

pathway inducing Prat1.1 transcription. In this case, changes in the abundance of the circadian 

regulated substrate would correspond to an altered Prat1.1 transcript level. Whether the 

Prat1.1 protein would continue to assume its proper function could then be controlled via 

phosphorylation (see 4.4.4). Hence phosphorylation can also be used as a signal for 

degradation of a protein (Vlach et al., 1997; Niu et al., 1998; Ke et al., 2003) and hereby 
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keeping the level of Prat1.1 at a constant amount. The results from experiments performed in 

plants have shown that post-translational regulation of protein levels plays a key role in the 

control of the plant circadian clock (Mas et al., 2003; Ito et al., 2007; Kiba et al., 2007; 

Fujiwara et al., 2008). To what extent this applies for the Prat1 protein still needs to be further 

investigated. 

 

5.4 Prat1 influences certain metabolic pathways 
 
To generate an overview of the metabolic activities in the Prat1 wild type and double mutant 

plants from Arabidopsis thaliana and analyse the observed phenotype of retardation in growth 

in more detail, a metabolic profiling experiment was carried out. Taking a closer look at the 

identified metabolites that are up/down-regulated in the Prat1 double mutant could give 

insights into the specific substrates of the Prat1 protein and thereby help to further elucidate 

its function within the inner envelope of the chloroplast. Some metabolites could be identified 

that depict an altered amount in the double mutant plant in comparison to the wild type. These 

include the slight but significant down-regulation of glycine, gluconic acid and glyceric acid 

under constant light conditions, as well as the up-regulation of aspartic acid under long-day 

conditions. By comparing these results with the phenotype of the Prat1 double mutant plants, 

a possible explanation could be concluded (see 4.9): retardation in growth in comparison to 

the wild type plants indicates that the plant metabolism is influenced by the loss of the Prat1 

protein, although it can partially be compensated. Thus, the function of Prat1 might be 

redundant to some extent to that of another protein. Most likely, if Prat1 does display channel 

activity, the transported substrates are capable of reaching their final destination via other 

proteins similar to Prat1, however with reduced effectivity. This process is hence more 

complex and time-consuming resulting in a slower growth of the double mutant plant. As a 

consequence, some metabolites accumulate because the substrates required for further 

processing are low abundant, while others become down-regulated due to a missing precursor. 

The association between other channel proteins in Arabidopsis thaliana and plant growth 

have shown recently that the knock-out mutant of the voltage-dependent anion channel 2 in 

mitochondria can suffer of severe growth retardation (Tateda et al., 2012).  

 Glycine, found to be down-regulated under constant light conditions, is synthesized 

from the amino acid serine, which in turn is derived from 3-phosphoglycerate, an intermediate 

metabolite in both glycolysis and the Calvin cycle. The lack of either a metabolite or 

processing enzyme involved in its synthesis pathway will lead to an alteration in its 
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abundance. One major process in the plant metabolism is photorespiration which occurs when 

CO2-levels are low and the enzyme RuBisCO combines O2 with the sugar Ribulose-1,5-

bisphosphate (RuBP) instead of adding CO2 which is the case during photosynthesis. As a 

result toxic phosphoglycolate is produced and has to be catabolised before the molecules can 

re-enter the Calvin cycle. Since photorespiration occurs in the chloroplast (Calvin cycle, 

oxygen fixation via RuBisCO) the peroxisome (glycolate is converted to glycine) and the 

mitochondria (glycine is converted to serine; glycolysis, converts glucose to pyruvate), 

constant shuttling of metabolites and amino acids is mandatory (Bauwe et al., 2010; Figure 

38). 

 

 

Figure 38: Photorespiration. 

The figure was taken from ‘Biochemistry and Molecular Biology of Plants’ by Buchanan BB, Gruissem W, 
Jones RL (2000). Depicted is a simplified model of the processes occurring during photorespiration in a plant 
cell. Black circled numbers represent the enzymes that catalyse the indicated step. 1 = RuBisCO; 2 = 
phosphoglycolate phosphatise; 3 = glycolate oxidase; 4 = glutamate-glyoxylate aminotransferase; 5 = glycine 
decarboxylase complex; 6 = serin-glyoxylate aminotransferase; 7 = pyruvate reductase; 8 = glycerate kinase; 9 = 
catalase; 10 = glutamate synthase and glutamine synthetase. Yellow highlighted letters represent known 
translocators. A = glycerate-glycolate translocator; B = malate-glutamate/2-oxoglutarate translocator; C = amino 
acid translocator. 
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Responsible for the transport of the metabolite glycerate during photorespiration is the 

glycerate-glycolate translocator with proton/substrate symport activity (Young and McCarty 

1993; Figure 38). A conceivable function for the Prat1 transporter could include the 

translocation of preproteins of the enzymes needed to catalyse the further steps in glycerate 

processing in the Calvin cycle taking place within the chloroplast. Additionally, the down-

regulation of glyceric acid, whose phosphate derivates are important intermediates in the 

glycolysis and the lower amount of gluconic acid which arises from the oxidation of glucose 

seem to be consistent consequences for plants suffering from a loss of the Prat1 protein being 

active in preprotein transport during photorespiration. 

 On the other hand, aspartic acid, an acidic amino acid and precursor for lysine and 

methionine is up-regulated under long-day conditions, leading to a slight increase in the 

abundance of the essential amino acids lysine and methionine as well. The derivative of 

aspartic acid, aspartate, participates in the gluconeogenesis (generation of glucose; Leegood 

and Rees, 1978), indicating that Prat1 double mutant plants seem to be affected in the 

production (gluconeogenesis) and degradation (glycolysis) of glucose. Slightly elevated levels 

of glucose (Figure 35) could suggest a higher generation rate, but more likely defects in 

degradation lead to an accumulation of glucose and a decrease in metabolites downstream in 

the complex process of photorespiration, demonstrated by the down-regulation of the 

metabolites mentioned above. Which specific substrate is translocated by the Prat1 protein 

remains to be the goal of further studies. A strong indication for a function as a transporter of 

preproteins or metabolites involved in photorespiration has been given in the present study. 

Nevertheless, more experimental data is needed to confirm this. 
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