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Zusammenfassung

Ziel der hier vorliegenden Arbeit ist das Studium der Dynamik und der Trans-
porteigenschaften von Quantenmagneten und ultrakalten Atomgasen in einer
Raumdimension mithilfe numerischer Methoden. Der Schwerpunkt hierbei
liegt auf der Frage nach diffusiver oder ballistischer Dynamik und einer ge-
nauen Analyse der in ballistischen Regimes auftretendend Geschwindigkei-
ten. Hierzu werden, unter anderem, zeitabhängige Dichteprofile im Nicht-
gleichgewicht mithilfe der adaptiven zeitabhängigen Dichtematrix-Renormie-
rungsgruppe (DMRG) simuliert. Diese numerische Methode erlaubt die Si-
mulation zeitabhängiger Wellenfunktionen in einer kontrollierten Art und
Weise sowohl im als auch weit entfernt vom Gleichgewicht.

Motivation für das Studium ein-dimensionaler Quantenmagnete ist unter
anderem die stark anisotrope und für Isolatoren überdurchschnittlich hohe
Wärmeleitfähigkeit bestimmter Cuprate. Die Annahme einer linearen Ant-
wort erlaubt das Studium von Transport bei beliebiger Temperatur, mithilfe
der Kubo-Formel. Diese wird durch exakte Diagonalisierung kleiner Syste-
me und Berechnung der Strom-Strom Korrelationsfunktion ausgewertet und
so auf drei unterschiedliche Fragestellungen angewendet. Zuerst diskutiere
ich den Spintransport einer Spin−1/2 Heisenbergkette mit anisotroper Aus-
tauschwechselwirkung (XXZ-Kette) bei endlicher Temperatur.

Als zweite Anwendung exakter Diagonalisierung, hier in Verbindung mit
zeitabängiger DMRG, werden die transversalen Komponenten der Strom-
Strom Korrelationsfunktion diskutiert. Während für die Diskussion der Trans-
porteigenschaften jediglich ein Zeeman-Feld in Betracht gezogen wird, unter-
suchen wir hier die Dynamik die durch ein zusätzliches transversales Feld
induziert wird. Es stellt sich heraus, dass die transversale Komponente der
Strom-Strom Korrelationsfunktion kohärente Oszillationen aufweist. Zuätz-
lich zur üblichen Larmor-Präzession tritt hierbei eine zweite, nicht-triviale
Frequenz auf, deren Frequenz- und Feldabängigkeit studiert wird.

Anschliessend berechnen wir die frequenzabhängige Spin und Wärmeleit-
fähigkeit dimerisierter Spinketten im Magnetfeld. Motiviert durch die expe-
rimentelle Untersuchung des Phasendiagrams von C5H12N2CuBr4 wird die
dimerisierte Spin−1/2 Kette als minimales Modell den experimentell gefun-
denen Phasen diskutiert und gezeigt das im Rahmen der Näherung einer
linearen Antwort die Spin- und Wärmeleitfähigkeit in der feld-induzierten
lückenlosen Phase deutlich ansteigen.

Die letzte Anwendung im Bereich der ein-dimensionalen Quantenmagnete
ist die Simulation zeitabhängiger Energiedichten einer XXZ-Kette sowohl nah
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am als auch fern vom Gleichgewicht, mithilfe der adaptiven zeitabhängigen
Dichtematrix Renormierungsgruppe. Neben der Klassifizierung der Dynamik
als diffusiv oder ballistisch war es möglich die im ballistischen Fall auftreten-
den Geschwindigkeiten zu verstehen.

Die Anwendungen auf ultrakalte Atomgase konzentrieren sich auf die
abrupte Expansion eines Gases aus einer Falle heraus in ein leeres opti-
sches Gitter. Diese wurde kürzlich von U. Schneider et al. im Fall des zwei-
dimensionalen Fermi-Hubbard Modelles experimentelll durchgeführt und im
Kontext des elektronischen Transports diskutiert. Zur Behandlung von drei
verschiedenen Fragestellungen, simulieren wir hier zeitabhängige Dichte- und
Impulsverteilungen.

Im Falle einer nicht-polarisierten Wolke aus Fermionen konnten wir das
ballistische Regime identifizieren und so die mittlere Expansionsgeschwindig-
keit definieren. Es stellt sich heraus, dass die Expansionsgeschwindigkeit in
einem weiten Parameterbereich nur von einer kleinen Teilmenge der Anfangs-
bedingungen abhängt. Zum Beispiel, zeigt eine bekannte Phase des Fermi-
Hubbard Modells, der Mottisolator, eine konstante Expansionsgeschwindig-
keit unabhängig von der Stärke der Wechselwirkung.

Für die Expansion spinloser Bosonen verwenden wir Anfangszuständen
mit fester Teilchenzahl pro Gitterplatz bei verschiedenen Fehlstellenkonzen-
trationen und ermitteln die Expansionsgeschwindigkeit als Funktion der Wech-
selwirkungsstärke. Desweiteren werden die zeitabängigen Impulsverteilungen
auf Anzeichen eines sich dynamisch bildenden Quasikondensats untersucht.

Als letztes Beispiel simulieren wir die Expansion eines spin-polarisierten
fermionischen Gases bei attraktiver Wechselwirkung. Hier steht der noch zu
erbringende experimentelle Nachweis des Fulde-Ferrell-Larkin-Ovchinnikov-
Zustands im Vordergrund. Unsere Analyse der Impulsverteilungen und der
Paar-Wellenfunktion zeigen das einerseits die Charakteristika der FFLO-
Phase schnell verschwinden, aber andererseits auch schnell eine stationäre
Form der Impulsverteilungen erreicht wird. Diese wiederum kann auf den An-
fangszustand zurück geführt werden, was eine indirekte Detektion ermöglichen
könnte.



7

Abstract

The goal of this thesis is to study the transport properties and real-time
dynamics of quantum magnets and ultra-cold atomic gases in one spatial
dimension using numerical methods. The focus will be on the discussion of
diffusive versus ballistic dynamics along with a detailed analysis of charac-
teristic velocities in ballistic regimes. For the simulation of time-dependent
density profiles we use the adaptive time-dependent density matrix renor-
malization group (DMRG). This numerical method allows for the simulation
of time-dependent wave functions close to as well as far from equilibrium in
a controlled manner.

The studies of one-dimensional quantum magnets are partially motivated
by the experimental evidence for a highly anisotropic and for insulators com-
parably high thermal conductivity of certain cuprates. We use linear re-
sponse theory to study transport coefficients at arbitrary temperatures by
diagonalizing small systems exactly and then calculating the current-current
correlation functions. As first application we discuss the spin transport in
the spin-1/2 Heisenberg chain with anisotropic exchange interactions (XXZ-
chain).

The second application of exact diagonalization, here in combination with
time-dependent DMRG, is a discussion of the transverse components of the
current-current correlation function. While usually only a Zeeman field is
considered in the theory of transport coefficients, we here investigate the
dynamic induced by an additional transverse magnetic field. We find that
in this scenario the current-current correlation function exhibits coherent
oscillations. In addition a second non-trivial frequency, different from the one
expected from the usual Larmor precession, emerges and is studied varying
temperature and field.

Finally we calculate the frequency-dependent spin and heat conductivity
of dimerized spin chains in a magnetic field. Motivated by the recent experi-
mental studies of the phase diagram of C5H12N2CuBr4 we take the dimerized
chain as a minimal model that exhibits features of the low-temperature region
of the observed phase diagram. As a main result, the spin and heat conduc-
tivity obtained from linear response theory are enhanced in the field-induced
gapless phase.

The last application in the field of one-dimensional quantum magnets
is the simulation of time-dependent energy-density wave-packets close to as
well as far from equilibrium using the time-dependent density renormalization
group. The main results are ballistic energy dynamics independently of how
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far out-of-equilibrium the initial state is and a detailed understanding of the
average expansion velocity.

The applications in the field of ultra-cold atomic gases focus on the sudden
expansion of an initially trapped gas into an empty optical lattice. This setup
was recently realized in an experiment performed by U. Schneider et al. and
discussed in the context of electronic transport in the two-dimensional and
the three-dimensional Fermi-Hubbard model. Here we investigate the sudden
expansion of three different setups:

For the expansion of a spin-balanced cloud of fermions, we identify the
ballistic regime, and therein investigate the average expansion velocity of the
cloud. As a main result the expansion velocity is determined by a small subset
of the initial condition over a wide range of parameters. For instance, the
Mott-insulating phase of the Hubbard model is characterized by a constant
expansion velocity independently of the strength of the interaction.

In the case of spinless bosons, we study the expansion from initial states
that have a fixed particle number per lattice site and a certain concentration
of defects. We study the expansion velocity as a function of interaction
strength and investigate whether the time-dependent momentum distribution
functions indicate a dynamical quasi-condensation.

The last example is the sudden expansion of a spin-polarized gas of
fermions in the presence of attractive interactions. This study is motivated by
current effort to experimentally detect the Fulde-Ferrell-Larkin-Ovchinnikov
state. Our results for the time-dependent momentum distribution functions
and the wave-function of the pair condensate suggest that the signatures of
the FFLO state vanish quickly, yet a stationary form of the momentum dis-
tribution also emerges fast. The latter is shown to be determined by the
initial conditions, which might eventually allow for an indirect detection of
the FFLO phase.
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1 Introduction

The transport properties and dynamics of low-dimensional systems governed
by the laws of quantum mechanics are a hot topic for experimental as well
as theoretical physicists as it is being studied in many different fields such
as quantum magnets [1, 2, 3], mesoscopic systems [4], nanoscience [5] and
ultracold atomic gases [6, 7]. A great advantage for theorists is that essential
physics of the systems, whose transport properties are measured in experi-
ment, can be captured by model Hamiltonians that do not depend on the
specifics of the sample such as its atomic structure. Among those model sys-
tems, one-dimensional quantum systems, such as a quantum wire or a spin
chain, have the intriguing property that the role of interactions is of greater
importance than in higher dimensions, only due to the dimensionality [8]. For
instance, among interacting electrons in a one-dimensional wire, no electron
can move without displacing its neighbors. Such strong correlation effects
give rise to exotic phases such as the Tomonaga-Luttinger-Liquid [9, 10].

While historically one-dimensional systems were first seen as theoreti-
cians’ toy models, nowadays we have a steadily growing number of experi-
mental systems available that realize such low-dimensional structures. A fa-
mous example are the experimental advances in the field of high-temperature
superconductors, driving the pursuit to understand and predict novel phases
of electrons confined to one or two spatial dimensions [11, 12]. The fact
that fluctuations of magnetic origin are likely to play a role in this context
[13, 14, 15] also renewed the interest in quantum magnetism [16]. Examples of
bulk materials with strongly anisotropic magnetic interactions are the family
of spin ladder materials (Sr,Ca,La)14Cu24O41 [17] or spin chains like Sr2CuO3

[18]. Many new applications for one-dimensional models can be found in ex-
perimental systems specifically engineered towards low-dimensionality, e.g.
carbon nanotubes [19], quantum wires [20] or ultracold atomic gases in opti-
cal lattices [21].

As a famous example of one-dimensional model systems, the spin-1/2
Heisenberg chain is one of the fundamental models to describe magnetic prop-
erties of interacting electrons [22]. Yet, it is not only relevant to the physics
of low-dimensional quantum magnets [23]. It has also been employed to
describe ultra-cold atoms in optical lattices [24] and nanostructures [20, 25].
The other fundamental model of interest for this thesis is the one-dimensional
Hubbard model [26], which describes fully interacting electrons and has been
applied to a similarly broad range of problems as the Heisenberg model [27].
Although the Heisenberg and the Hubbard model are both exactly solv-
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able in one spatial dimension by means of the Bethe ansatz [28] dynamical
quantities, especially in real-time and out-of-equilibrium, are in general hard
to access within this approach. To advance the theoretical understanding,
many sophisticated approaches can be employed to obtain such quantities.
Among them are powerful numerical methods such as quantum Monte-Carlo
(QMC), exact diagonalization (ED) [see [29] for a recent review on both] and
the density matrix renormalization group (DMRG) [30].

The goal of this thesis is to study the transport properties and real-time
dynamics of quantum magnets and ultra-cold atomic gases in one spatial di-
mension using a combination of ED and DMRG methods. A recurrent theme
will be the discussion of diffusive versus ballistic dynamics. When describing
small perturbations, linear-response theory [31] is a powerful framework to
analyze transport properties. Within linear response the question of ballis-
tic and diffusive transport boils down to the analysis of the so called Drude
weight [32], which is the prefactor of a delta-function at zero-frequency in the
frequency-dependent transport coefficient. A finite Drude weight defines an
ideal conductor in the sense that a finite part of a current driven through the
system does not decay over time, which is one of the hallmarks of ballistic
dynamics. In the case of a vanishing Drude weight the zero-frequency limit
of the conductivity determines if the dynamics is diffusive for long times [33].

The common theme throughout this thesis is the connection between the
transport properties and the real-time dynamics of density wave-packets and
currents for a given model system. The main reason to establish such a
connection is that, while linear response theory is a very useful approach
for weakly perturbed states and will also be employed to obtain interesting
results in the following, it is a priori not clear whether the results will have any
relevance when the system is driven out-of-equilibrium. Using the adaptive
time-dependent DMRG [34, 35] we are able to study the non-equilibrium
dynamics in real-time by following the dynamics of initial states such as a
highly perturbed spin chain, or a suddenly expanding gas released from a
trap. Among the main results are the identification of ballistic regimes far
from equilibrium and a detailed analysis of the relevant expansion velocities
in these cases. In particular, we will show how the average expansion velocity
can be used as a tool to probe the initial state of a trapped two component
Fermi gas, for instance to study quantum phase transitions.

In the context of ballistic and diffusive dynamics, the spin-1/2 Heisenberg
chain has remained a very interesting topic throughout the years [2]. Based
on a strong connection between transport and conservation laws [36] this
integrable model allows for rigorous conclusions. For instance, ballistic heat
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transport in the linear response regime at arbitrary temperatures has been
predicted [36] and been confirmed by numerical as well as analytical studies
[37, 38, 39]. Yet, the spin transport properties are still subject of research
[40, 41, 42, 43, 44, 45, 46]. Much less is known about out of equilibrium
situations, such as real-time dynamics in out-of-equilibrium situations [47,
48, 49] or transport at large driving forces [50, 51, 52].

Besides the fundamental interest in understanding large-bias and out-of-
equilibrium phenomena, research into transport properties of low-dimensional
spin systems is strongly motivated by exciting experimental results on large
thermal conductivities in spin ladder and chain materials. The family of
spin ladder compounds (Sr,Ca,La)14Cu24O41 and other materials, when sub-
jected to transport measurements, exhibit anomalous anisotropic heat trans-
port (see Refs. [3, 53] for reviews) which has been understood as magnetic
contribution from the underlying one-dimensional quantum magnet. More
recently, time resolved measurements of the spreading of heat on the sur-
face of Sr9La5Cu24O41 after a short laser pulse [54, 55] have extended the
experimental research to the non-equilibrium context. Modifying the ge-
ometry and strength of the interactions by growing new compounds is also
actively pursued and yields interesting options for further experiments. For
instance, organic superconductors have been shown to exhibit spin ladders
which have exchange couplings two orders of magnitude lower than the cop-
peroxide based compounds [56, 57]. As one of the interesting consequences, it
was possible to experimentally access the magnetic phase diagram and study
the field-induced gapless phase, which shows signatures of Luttinger liquid
physics [56, 57].

Our results for quantum magnets can be summarized in three groups:
First, we consider spin transport in the Heisenberg chain at finite tempera-
tures in the linear response regime. Revisiting this still controversially dis-
cussed problem, we extract the spin Drude weight from ED data for the re-
sponse functions and obtain reasonable agreement with recent DMRG data
[58] and analytical results [59]. As ED is limited to small system sizes, we also
address the choice of the thermodynamical ensemble in which we evaluate
the response functions [60].

We then proceed to study a previously unexplored aspect of linear re-
sponse theory, namely the transverse components of the current-current cor-
relation functions, the basic building block of the linear response functions.
Usually only a Zeeman field is considered in the theory. By adding a trans-
verse component to the field we induce oscillations in the transverse current-
current correlation function, which become coherent in the limit of low tem-
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peratures. The frequency spectra of these oscillations exhibit a non-trivial
frequency in addition to the expected Larmor precession. In the limit of high
temperatures and Zeeman fields, we qualitatively explain this effect based on
the two-magnon spectra. At intermediate temperatures we calculate the de-
pendence of the frequency of the coherent oscillations on temperature and
the Zeeman field using exact diagonalization. At zero temperature we use
time-dependent DMRG to analyze the transverse component of the time-
dependent spin current, finding the same frequency shift and also a quanti-
tative agreement between the two methods regarding its field dependence.

Next we study the spin and heat conductivity of low-dimensional quantum
magnets that exhibit a field-induced gapless phase. Motivated by the recent
experimental observations of such phase transitions [56, 57], we study the
dimerized spin-1/2 chain as a minimal model that exhibits the essential fea-
tures of the phase diagram. Calculating the frequency-dependent transport
coefficients with ED, we find both, spin and heat transport to be strongly
enhanced throughout the field-induced gapless phase. This effect originates
from clear signatures of the phase transition in the current-current correlation
functions that should in principle be observable in transport measurements.

The final group of results on quantum magnets is obtained through study-
ing the real-time dynamics of the energy density in a Heisenberg chain
with anisotropic exchange interactions at zero temperature. We apply time-
dependent DMRG to investigate the time-evolution of initial states which
feature an inhomogeneous local energy density. As main result, we are able
to show that the energy dynamics is ballistic independently the anisotropy
and independently of how far we drive the system out of equilibrium. We
compare our findings to those obtained within Luttinger liquid theory, which
predicts ballistic spin and energy dynamics with a single fixed expansion ve-
locity. Furthermore, we recover the expansion velocity of the Luttinger liquid
from our numerical simulations in the limit of weak perturbations Finally,
we are able to explain the average expansion velocity energy density far from
equilibrium in terms of the difference between the momentum distribution of
the initial state and the one of the groundstate.

Our motivation to study the non-equilibrium dynamics in the Hubbard
model comes from the comparably young field of ultra-cold atomic gases,
which has established a completely new playground for quantum physics
[21]. By trapping and cooling bosonic atoms down to the nano Kelvin regime,
experimentalists obtained access to the quantum degenerate regime, the first
great achievement being the observation of Bose-Einstein condensation [61,
62, 63].
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Engineering an optical lattice using counter-propagating laser beams,
gives such systems the potential to realize the Hubbard model [64]. Us-
ing optical lattices also allows to choose the dimensionality of the system
under investigation [65]. The last ingredient towards tunable realizations of
strongly correlated quantum systems comes under the name of Feshbach res-
onance [21], a sign changing pole in the scattering length as a function of an
external magnetic field allowing precise control of the interaction between the
trapped atoms. While fermions are technically harder to cool to sufficiently
low temperatures, several experiments have nevertheless achieved this feat
[66, 67, 68]. To give an example for the investigation of a strongly correlated
system, a three dimensional Mott insulator and other phases of the Hubbard
model have been realized [69, 70] in experiments.

These techniques to experimentally study non-equilibrium dynamics within
the Hubbard model have been applied successfully using both, fermionic
[7, 71] and bosonic [72, 73] atoms. Many experiments studying the non-
equilibrium dynamics of ultra-cold atomic gases, e.g. Refs [72, 73], inves-
tigated dynamics induced by globally quenching a model parameter. With
the focus being on topics like relaxation and thermalization (see [6] for a
recent review) a finite net current is usually not desired and hence sought to
suppress. Yet, several recent experiments were deliberately performed in the
presence of finite spin or particle currents [7, 71, 74, 75, 76, 77]. These exper-
iments provide a complementary point of view on the dynamical properties
of the underlying lattice model as the initial states engineered are often not
typical for bulk systems [74]. An important aspect of this thesis is motivated
by sudden expansion experiments such as the one performed in Ref. [7]. The
idea is to have an initially trapped cloud of bosonic or fermionic atoms, in
a confining potential. At time t = 0 the confinement is removed and the
gas expands freely under the action of the respective lattice Hamiltonian.
In particular, Ref. [7] studies the expansion starting from a fermionic band
insulator (exactly two particles per site) into a homogeneous empty optical
lattice in two and three spatial dimensions. While transport in bulk systems
is usually considered in the presence of a finite background density of spins
or electrons, here all particles participate in the expansion and hence the
background density is time-dependent. To illustrate this idea Fig. 1 sketches
the two different types of real time dynamics studied in this thesis. The left
panel shows the expansion of a idealized gaussian density wave-packet on top
a homogeneous background density. The right panel illustrates the sudden
expansion of an initially trapped cloud of atoms induced by the removal of
the harmonic confining potential. The cloud then expands freely into the
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Figure 1: A sketch of a the two different scenarios, for which, the real-time
dynamics of a density ni(t) on a lattice model will be investigated in this
thesis. Left: Expansion of a density wave-packet on top of a finite background
density (BG). Right: Sudden expansion of a initially trapped density cloud
into an empty (optical) lattice, after the removal of the confining potential.

empty lattice.

We consider the sudden expansion of an initially trapped cloud of atoms
described either by the Bose-Hubbard or the Fermi-Hubbard model in one
spatial dimension under three different aspects. First, we study the expan-
sion of a repulsive spin-balanced Fermi gas and analyze the nature of the
dynamics. As a main result we find that the dynamics is ballistic whenever
the initial density inside the trap is smaller or equal to one. As a necessary
consequence of the ballistic dynamics, the cloud radius R(t) increases linearly
in time, which allows us to define the average expansion velocity as the slope
of R(t). We then analyze the expansion velocity as a function of interac-
tion and density, finding that the main effect of repulsive interactions is to
change the energy of the initial state in the trap and through that, to also
change the expansion velocity. Furthermore, we argue that probing the av-
erage expansion velocity indirectly probes the momentum distribution of the
initial state. Therefore, sudden expansion experiments or simulations can be
used to probe quantum phase transitions in the initial state if the respective
transitions changes the momentum distribution function drastically. To give
an example, we show that the expansion velocity for the expansion from an
initial state in the Mott-insulating phase is completely determined by sym-
metry and independent of the strength of the interaction. We finally show
that our qualitative findings are robust against the presence of a harmonic
trap where the density in the initial state is inhomogeneous. Thus we make
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exact predictions for experiments which would realize the setup of Ref. [7] in
one spatial dimension, yet with different initial states.

Second, we consider the sudden expansion of bosons, but instead of start-
ing from the ground state of the trap, we prepare the system in a pure Fock
state, where each particle sits on a given lattice site. The reason is twofold:
On the one hand, such an initial state can be experimentally prepared by
ramping up the lattice before the sudden expansion. One the other hand,
pure Fock states have been shown to exhibit the most pronounced dynamical
quasi-condensation at finite momenta upon expanding [78, 79, 80]. Dynam-
ical quasi-condensation in this context means the dynamical emergence of
coherence during the sudden expansion. Furthermore non-zero momenta ±k
become macroscopically occupied during the expansion, even though the ini-
tial momentum distribution is flat. While an initial Fock state is completely
uncorrelated and a bosonic Mott insulator has exponentially decaying correla-
tions the expanding gas shows a power-law decay of correlations [78, 79, 80].
Here we investigate the expansion velocity for the sudden expansion from
pure Fock states and the dynamical quasi-condensation at intermediate in-
teraction strength. Then we introduce a finite defect density, namely holes
in the Fock state and doubly occupied sites, which are both likely to be
present in a typical experiment. We find the phenomenon of dynamical
quasi-condensation at finite momenta to be remarkably stable against the
presence of holes in the initial Fock state for large interactions and small
systems. Furthermore we analyze the expansion velocity’s dependence on
interaction strength and defect concentration.

Third, we revisit the Fermi-Hubbard model but study attractive inter-
actions and initial states with a finite spin polarization. In one spatial di-
mension, the partially polarized phase was found to be the analogue of the
Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase [81, 82, 83, 84, 85, 86, 87].
The FFLO state (see Ref. [88] for a review) was originally proposed to allow
pair condensation at finite polarizations, despite to the mismatch of the two
Fermi surfaces [89, 90]. The mechanism proposed to this end is the formation
of pairs with a finite center-of-mass momentum. The motivation to study
a sudden expansion of a trapped spin imbalance Fermi gas is twofold: First
the spatial structure of it was investigated theoretically [87, 91, 92, 93] with
the result that a partially polarized phase of FFLO-type occupies the center
of the trap over a sufficiently large and stable region of the phase diagram
(see Ref. [94] for a recent review). Second, the theoretically proposed spa-
tial structure inside the trap was experimentally observed by Liao et al. in
Ref. [95]. Yet, up to now, experimentalists have not found clear signature of
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the FFLO-state in one-dimensional Fermi gases. Here we show that, during
the sudden expansion from the FFLO state, the momentum distributions
of the pairs, and both spin species, rapidly converge to a time-independent
distribution. We find that the signatures of the FFLO state such as peaks
in the momentum distribution of the pairs and the nodal structure of the
quasi-condensate are quickly lost in the process. Yet, the quickly emerging
stationary form can be related to the initial state and the integrals of motion
in terms of the corresponding Bethe ansatz solution [27]. The stationary
form of the momentum distributions should in principle be observable in an
experiment that combines the techniques of [7, 74, 95], eventually allowing
for an indirect detection of the FFLO state.

This thesis is organized in three parts: The first part introduces the adap-
tive time-dependent density matrix renormalization group whose application
to transport problems and non-equilibrium dynamics is the main tool used
in this thesis. Chapter 2.1 reviews the historical formulation of groundstate
DMRG [30] and illustrates why it works especially well for one dimensional
lattice systems. Chapter 2.2 introduces matrix product states (MPS) [96],
which after realizing the common structures became a useful tool to formulate
and extend DMRG algorithms. Among those are the time evolution meth-
ods presented in Chap. 2.3, where we discuss different variants to effectively
approximate the time evolution operator, and the truncation scheme that is
at the heart of adaptive time-dependent DMRG [34, 35]. Finally, Chap. 2.4
reviews the implementation of symmetries in MPS-based methods, especially
non-abelian ones [97].

The second part focusses on transport in low-dimensional quantum mag-
nets. We first review the framework of linear response theory necessary to
calculate the spin conductivity of the Heisenberg chain in Chap. 3.1. Chap-
ter 3.2 then revisits the evaluation of the spin Drude weight using ED and
compares different finite-size extrapolations with some recent theoretical re-
sults. Chapter 3.3 presents the result of a combined effort comparing time-
dependent current densities at zero temperature to current-current correla-
tion functions at finite temperature to study a previously overlooked aspect
of linear response theory, namely the dynamics of the transverse components
of the current current correlation functions. In addition to the usual Lar-
mor precession, we are able to identify a second non-trivial frequency in the
coherent current oscillations driven by a transverse magnetic field. This ef-
fect is analyzed as a function of temperature and Zeeman field. Chapter 3.4
then briefly discusses recent experimental studies of the field-induced gapless
phase of the organic superconductor C5H12N2CuBr4. We then proceed with
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a detailed study of the frequency-dependent spin and heat conductivities of
a dimerized spin−1/2 chain which is a minimal model that exhibits such a
field-induced gapless phase [98, 99]. In Chap. 3.5 we discuss a few of the rel-
evant materials and experiments that feature the unusual heat transport in
low-dimensional quantum magnets, comparing state of the art steady-state
transport measurements [3] to more recent time-dependent setups [54, 55].
The time-dependent setups discussed give access to the time-resolved tem-
perature distribution on the surface of a bulk sample which serves as a mo-
tivation for Chap. 3.6 where we discuss an alternative to linear response
theory, namely an investigation of the dynamics of the system based on the
real-time dynamics of density wave-packets. Finally, Chap 3.7 follows this
approach and presents the results for the study of the time-dependent en-
ergy density of an anisotropic Heisenberg chain starting from initial states
far from equilibrium.

The third part transitions from traditional condensed matter systems to
ultra-cold atomic gases in an optical lattice. Chapter 4.1 gives a brief in-
troduction to the concepts and experimental techniques in this field, as far
as they are relevant for the following discussion. Chapter 4.2 then discusses
a recent example of an experiment on ultra-cold fermions that is related to
transport in condensed matter systems. Chapter 4.3 presents our results for
the sudden expansion of a spin-balanced two-component Fermi gas from a
trap into an empty optical lattice in the presence of repulsive interactions.
We identify the ballistic regime and analyze the average expansion veloc-
ity as a function of the initial conditions in the trap, making predictions
relevant for future experiments. Chapter 4.4 presents the results for the
expansion of spinless bosons starting from Fock state. In this case we an-
alyze the dependence of the expansion velocity on experimentally relevant
defect constellations in the initial state. We furthermore discuss how robust
the dynamical quasi-condensation at finite momenta is against the presence
of defects. Chapter 4.5 presents the results for the expansion of a spin-
imbalanced mixture. Here we find a fast convergence with respect to time
of all three relevant momentum distribution functions (up-spins, down-spins,
pairs) which is then discussed in the context of the corresponding Bethe
ansatz solution and the possibility of an indirect experimental detection of
FFLO-correlations in the initial state. We conclude with a summary and an
outlook on the real-time dynamics at finite temperatures in Chap. 5
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2 The adaptive time-dependent density ma-

trix renormalization group

For the following discussion of the transport properties and real-time dynam-
ics of strongly correlated systems, we resort to numerically exact methods
to solve the fully interacting many-body problem. A seemingly simple so-
lution would be to treat a matrix representation of the Hamiltonian on a
finite lattice system in an exact manner. Yet, since the dimension of a lattice
Hamiltonian scales exponentially with the system size, exact diagonalization
(ED) studies are restricted to rather small system sizes, e.g., the treatment of
42 spin-1/2 sites on the star lattice [100] being among the largest. Still, ex-
act information obtained from small systems can be very valuable, see, e.g.,
Chap. 3.2 and 3.4. Quantum Monte Carlo simulations (see e.g., Ref. [29]
and references therein) can very successfully simulate large spin systems, via
stochastic sampling in a classical state space, but some fermionic systems
and frustrated magnets are plagued by the famous sign problem [101].

Over the last twenty years the density matrix renormalization group
(DMRG) [30] has emerged as a powerful method for local Hamiltonians
on one-dimensional lattices (see [96, 102, 103] for excellent reviews). The
method works best for mildly entangled states, which is usually the case for
short-ranged interactions, and in some cases up to the order of a thousand
lattice sites.

In its adaptive time-dependent formulation [34, 35, 104] this method has
given rise to many important results on the dynamical properties of one-
dimensional model systems. Examples are the time-dependent spin current
for an initial state far from equilibrium [47], real-time simulation of spin-
charge separation in the one-dimensional Hubbard model [105, 106, 107],
local relaxation dynamics of a one-dimensional bose gas [73, 108, 109] and
charge transport in nano-structures at large driving forces [110, 111] to list
only a few. It will also be the main workhorse for important results of
this thesis. This chapter gives a brief overview of DMRG evolved from the
proposal by White in 1992 [30] into the ”Age of matrix product states” [96].

2.1 A brief summary of groundstate DMRG

In order to treat systems of a finite-size numerically, an efficient implemen-
tation and reasonable, well controlled approximations are needed. We are
interested in model Hamiltonians describing the physics on a one dimen-
sional lattice where a local number of degrees of freedom, or local physical
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dimension d can be attributed to each lattice site. One example is a single
spin-1/2, which can point either up or down, thus d = 2. A single electron
site can already contain zero to two electrons. Since two electrons with equal
spin on the same site are excluded by the Pauli principle, d = 4 in that case.
The full Hilbert space of a finite chain of length L has to be constructed as a
tensor product of the local state spaces {|σi〉}, which results in a dimension
dim(H) = dL. Thus, on a given lattice, the most general quantum state is
parametrized by dL complex coefficients:

|ψ〉 =
∑

σ1,...,σL

cσ1...σL

⊗

i=1,...,L

|σi〉 . (1)

The paradigm of DMRG based methods is to take into account only a small
subset of the full Hilbert space which contains the most relevant information
about |ψ〉. For this purpose, we introduce a bipartition of the lattice into
two parts A and B, rewriting Eq.(1) accordingly:

|ψ〉 =
∑

i,j

ci,j|iA〉 ⊗ |jB〉 , (2)

and we define the reduced density matrix of subsystem A as partial trace
over B:

ρA := TrBρ =
∑

{iB}

〈iB|ψ〉〈ψ|iB〉 . (3)

The crucial steps in White’s original prescription [30] are to obtain and diago-
nalize ρA for the exact groundstate of a small system, to order the eigenvalues
of ρA by size and the truncation of the Hilbert space retaining only the m
eigenvectors which correspond to the largest eigenvalues. The same can be
achieved by calculating the singular value decomposition (SVD) of the matrix
ci,j in Eq. (2) and projecting onto the basis corresponding to the m largest
singular values. The SVD of ci,j is given by:

ci,j =
∑

k

Ui,kDk,kV
†
k,j , (4)

where U and V are rectangular matrices, and D is a diagonal matrix con-
taining the so called singular values. Using a SVD to rewrite the state |ψ〉
[Eq.(1)], we obtain the so-called Schmidt decomposition:

|ψ〉 =
∑

k

λk|λk,A〉|λk,B〉 , (5)
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A

A

A

Figure 2: A sketch of a single step of the DMRG algorithm and the superblock
concept: We have, from a previous step, A and B represented by m states
and in between one or two exactly represented sites (•). The product A •B
defines the superblock, on which we target the groundstate, e.g., using the
Lanczos method. Performing an SVD of the groundstate of the superblock
and truncating to m states, we arrive at a new basis for A and B which then
serves as input for the next step.

where |λk,A〉 is a basis of A and |λk,B〉 is a basis of B, respectively, transformed
via U and V and the λk are the singular values. Calculating the reduced
density matrix ρA from Eq. (5), reveals that it is diagonal in the basis {|λk,A〉}
with eigenvalues λ2

k.

To obtain the groundstate, DMRG uses the following scheme: Assume
that we know the groundstate from the previous step and that it consists
of a system Block A and an environment block B. After truncating the
groundstate to an effective basis of size m for each block, for instance, via
an SVD as stated above, we shift the blocks by moving one or by two sites
1 from the environment to the system, i.e., AB → A • B′. The • stands for
one or two exactly represented lattice site. At this point A and B are both
represented in a reduced basis. The reduced basis for B′ is in general known
from a previous step of the algorithm. The object A•B′ is called superblock

1Moving two sites is used in the original formulation and favorable in many cases[112],
while the single site variant is directly equivalent to the MPS approach outlined in
Chap. 2.2. For a detailed comparison and a MPS version of the two site variant see
[96].



26
2 THE ADAPTIVE TIME-DEPENDENT DENSITY MATRIX

RENORMALIZATION GROUP

in the literature and the procedure is illustrated in Fig. 2. For this superblock,
which has dimension m2d, we calculate the groundstate of the Hamiltonian,
e.g., by Lanczos iteration. Afterwards the two blocks A• and B′ are relabeled
as A and B and truncated back to m states, via SVD or diagonalization of
ρA. The procedure can be repeated until the environment consists of only
the minimal number of lattice sites chosen to be represented exactly in each
step. Then the role of system and environment is exchanged. Going one time
from minimal system size to a minimal environment size and back is called
a sweep. Before starting the algorithm, an initial guess for each basis of A
and B that appears in the process is needed, which can either be random
or a physically motivated guess. The algorithm outlined above can be run
until convergence, increasing the number of states m ideally after convergence
with respect to the number of sweeps has been achieved. One of the main
features of the method is the precise control of the error. On the one hand,
the method is exact for m = dim(H). On the other hand the maximal m can
always be improved by increasing the computational resources. The measure
that is usually studied to quantify the error in a given DMRG calculation is
the discarded weight in the reduced density matrix:

|ψ〉 =
m∑

k=1

λk|λk,A〉|λk,B〉 ⇒ δρ =
∑

k>m

λ2
k, . (6)

In many cases, the assumption that expectation values of physical operators
will have an absolute error of magnitude δρ holds. This can be seen by
calculating the expectation value for any local, bounded operator OA defined
on A. Let OA be an operator for which

max
|φ〉∈A

〈φ|OA|φ〉
〈φ|φ〉 ≤ c (7)

holds. Then [102, 113]:

〈OA〉 = TrAρAOA; 〈OA〉DMRG =
m∑

k=1

λ2
k〈λk,A|OA|λk,A〉 (8)

|〈OA〉DMRG − 〈OA〉| ≤ c
∑

k>m

λ2
k = c · δρ (9)

This upper bound to the error in an observable is also the main reason
why DMRG is regarded as a ”numerically exact” method in the literature
as errors vanish as m approaches the true dimension of the Hilbert space.
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One drawback is of course that the statements above depend heavily on the
nature of the spectrum of the reduced density matrix, i.e., the distribution
of weights λ2

k in Eq. (5). Very fast convergence with minimum resources
can be obtained if the λ2

k decay exponentially. If all of them are equal, the
approximation Eq. (6) is no longer beneficial and achieving convergence with
respect to m will be obviously hard. The ability to approximate a given
state by a finite number of states within a DMRG scheme can be quantified
utilizing concepts from quantum information theory, the simplest being the
von-Neumann entropy:

SvN = −TrρAlog2(ρA) . (10)

As the maximal entanglement between twom-dimensional state spaces can be
log2m [96] the number of states needed to describe a bipartite wave function
with entanglement entropy S within a given error bound δρ scales as m ∼ 2S.
In general, we know only the truncated state spaces from the DMRG side,
but general laws for S are available under the name of area laws [114, 115,
116, 117]: Considering a short-ranged Hamiltonian with a gapped spectrum
in D spatial dimensions and a bipartition where A is of size LD and B is in the
thermodynamic limit, the entanglement entropy is proportional to the surface
of the cut, that is S ∼ LD−1. Hence S(L) saturates for one-dimensional
systems once L exceeds the correlation length, which is favorable for DMRG
based methods. For critical systems with open boundary conditions in one
dimension, the entanglement entropy of a block of length l can be obtained
from conformal field theory and scales as [118]

S =
c

6
log2

[
L

π
sin
(π
L
l
)]

+ const (11)

where c is the central charge of the conformal field theory (see [119] for a
recent review). Two technical remarks are in order: First, the statements
on entanglement scaling above apply to groundstate calculations, the time
dependence of S is discussed in Chap. 2.3. Second, while the von-Neumann
entropy does allow for the estimation of resources on a qualitative level in
most cases, the explicit construction of states where such estimates are wrong
is possible [120]. A generalized version, the so called Reny-entropies, allow
for a mathematical rigorous treatment of simulability [120, 121].

2.2 Matrix product states

While the original DMRG algorithm has been very successful, many of the
concepts can be phrased more elegantly in the language of matrix product
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states (MPS). Other applications of MPS in the context of strongly correlated
systems include, e.g., the construction of an exact groundstate as an MPS
for the AKLT Hamiltonian [122], or the studies of translationally invariant,
finitely correlated states in the context of quantum spin chains [123].

A general matrix product state on a one-dimensional chain of length L is
given by :

|ψ〉 =
∑

{σi}

Aσ1Aσ2 ... AσL−1AσL
⊗

i=1..L

|σi〉 , (12)

where every Aσi is a matrix of dimension mi and the states |σi〉 encode the
local physical degrees of freedom. Eq. (12) has a structure very similar to
the one of Eq. (1). It replaces each of the complex coefficients of a general
quantum state by a product of d ·L complex matrices where d is the number
of local degrees of freedom. In the following, a brief introduction is given and
the minimal formalism required for the subsequent time evolution methods
is established. For a complete review of state-of-the-art MPS manipulation,
see [96].

First, we show that, using the Schmidt decomposition, every general
quantum state can be approximated by an MPS of dimension m. Follow-
ing [96], let us consider a matrix Ψ of dimension d × dL−1 that encodes the
dL coefficients and subject it to an SVD:

cσ1 ... σL = Ψσ1,(σ2, ... σL) =

r1∑

a1

Uσ1,a1Da1,a1V
†
a1,(σ2, ... σL) , (13)

where r1 ≤ d is now the full rank of the SVD. Since U has dimension d× r1
we can decompose it as d row vectors Aσ1 with entries Aσ1

a1
= Uσ1,a1 . The

remaining product between S and V † is a matrix Ψ(a1σ2),(σ3,...σL) of dimension
r1d× dL−2. An SVD of Ψ(a1σ2),(σ3,...σL) yields:
∑

a1

∑

a2

Aσ1
a1
U(a1σ2),a2Sa2,a2V

†
a2,(σ3,...,σL) =

∑

a1

∑

a1

Aa1Aa1,a2Ψ(a2,σ3),(σ4,...,σL)

(14)
where Aσ2

a1,a2
is now a set of d matrices of dimension r1 × r2. Repeating this

procedure L times we can indeed construct an exact MPS representation of
an arbitrary quantum state with:

cσ1 ... σL =
∑

a1,...,aL

Aσ1
a1
...AσLaL . (15)

Up to this point this is an exact rewriting of the coefficients and for a general
quantum state the ranks of the SVDs involved can exhaust the full Hilbert
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space dimension. However, one could also truncate to a maximum number
of states retained for every matrix. As outlined in the previous section for
the DMRG algorithm, the feasibility of expressing a given quantum state
as MPS with m < dim(H) is strongly tied to the scaling properties of the
entanglement entropy. An important consequence of the natural notion of
truncation in the MPS framework is possibility to reformulate the original
DMRG algorithm as a variational method in the space of matrix product
states [124, 125]. To this end, one realizes that one sweep in the DMRG al-
gorithm corresponds to minimizing the energy expectation value with respect
to all consecutively addressed A-matrices.

As the next step, in a similar fashion as in Eq. (13), one can reorganize
the matrix elements of a given operator as a matrix product operator (MPO)

O =
∑

σ

∑

σ′

Mσ1,σ′1 ...MσL,σ
′
L|σ1〉〈σ′1| ⊗ ...⊗ |σL〉〈σ′L| . (16)

The main difference is that each tensor has two physical indices to account for
in and outgoing states. Several advantages of the formalism unveil themselves
upon applying an MPO to an MPS [96]: First, the structure of the MPS
remains invariant, second, the local dimension m grows in a controlled way,
and third, the resulting MPS can be compressed afterwards to the original
m with the error bounds established beforehand.

In the presented framework, it is now very feasible to formulate algorithms
for the time evolution of a wave function based on the application of MPOs
to MPS while maintaining control of the error involved in the necessary
approximation.

2.3 Time evolution with MPS

In order to formulate an efficient algorithm to calculate the time evolution
of a wave function two ingredients are crucial. First, one needs a faithful
representation of the time evolution operator, namely the matrix exponen-
tial e−iHt. One route to achieve this goal is to utilize the structure of the
Hamiltonian. Short-ranged lattice Hamiltonians can all be written as a sum
over operators, acting only on a few, ideally neighboring, bonds:

H =
L−1∑

i=1

hi . (17)

An important fact to realize about Eq. (17) is that the hi on the even and
the hi on the odd bonds commute. In addition, the time evolution of a single
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bond can be done exactly as the matrix dimensions are sufficiently small.
These ideas are exploited by the Suzuki-Trotter approximation. Discretizing
time such that

eiHt =
(
eiHδt

)M
(18)

we can approximate the time evolution operator for each time step by [126]
by:

e−iHδt = e−iHevenδte−iHoddδt +O(δt2) , (19)

where e−iHoddt is the sum of all hi with odd indices and e−iHevent is the sum of
all hi with even indices. The error ∼ δt2 originates from the non-vanishing
commutator [hi, hi+1] in Eq. (19) and is called Trotter error in the literature.
It can be reduced by choosing either smaller time steps δt, higher orders of
the decomposition [126, 127] or both. An important fact to realize about
Eq. (19) is that the time evolution can be formulated in terms of only two
MPOs, namely e−iHoddt and e−iHevent, each having a bond dimension of d2

among themselves. The resulting wave function after each time step thus
will have a dimension of d2m if it was originally m.

Besides being very successful and easy to implement, this approximation
has two major drawbacks: The first one is the interplay between the Trot-
ter error and the bond dimension. Whenever we decrease the time step δt
to minimize the Trotter error, the additional time steps increase the bond
dimension before truncation substantially. Hence we need to keep a larger
number of states to maintain a constant δρ as the truncation error accumu-
lates faster. Second, the approach is not ideal for long range interactions as
the identification of mutually commuting terms among the hi depends on the
details of the model.

An alternative route pursued throughout the following applications is the
time evolution via a Krylov subspace method. Instead of calculating the time
evolution of each bond, this approach consists of searching for |ψ(t+ δt))〉 in
the Krylov subspace, which is spanned by the vectors.

|K0〉 = |ψ(t)〉, |K1〉 = H|ψ(t)〉, |K2〉 = H2|ψ(t)|〉, ... . (20)

This idea originates from the theory of large linear systems (see [128] and
references therein) and has been first formulated for unitary time evolution
by Park and Light [129]. Given a large complex square matrix H, power
methods such as the Lanzcos or Arnoldi process (see, e.g., [130]) can be used
to generate an orthonormal basis Vr of the r-dimensional Krylov subspace
such that an analytic function f of H, for instance the matrix exponential,
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can be approximated by

f(H)|ψ〉 ≈ Vrf(Hr) . (21)

Krylov subspace approaches are known to converge rapidly with respect to
r and error bounds have been studied extensively [128]. The beauty of this
approach, in an MPS context, lies in the fact that each of the Krylov vectors
can be setup as a separate MPS |Kr〉 with individual bond dimension mr.
On top of that, the error bounds from the mathematical literature allow
for a combined error bound per time step. As applying powers of the full
Hamiltonian leads to rapidly increasing bond dimensions, each Krylov vector
can only be obtained to a finite accuracy, which decreases as r increases. At
the same time the coefficients cr in the expansion

|ψ(t+ δt)〉 =
rmax∑

r=0

crH
r|ψ(t)〉 (22)

decay exponentially [128]. On a quantitative level, the error in the evolved
wave function can be estimated by the last coefficient crmax in Eq. (22). Yet
one has to take into account that the mr can be very large such that the sum
in Eq. (22) cannot be taken efficiently without truncation. The implemen-
tation used in Chaps. 3 and 4 is part of I.P. McCulloch’s Matrix Product
Toolkit [131].

The second ingredient to an efficient time evolution is a philosophy how
to keep the numerical cost under control. Both, the Suzuki-Trotter approach
and the Krylov subspace approach, rely on the application of MPOs and thus
feature a rapid growth of the bond dimension after each time step. Hence the
task is to find a prescription of how to choose a truncated basis that faithfully
describes |ψ(t)〉. The increase of bond dimension due to the entanglement
growth during the time evolution is independent of the method and discussed
at the end of this section.

The breakthrough came with the reformulation of the time evolving block
decimation (TEBD) algorithm [104, 132], in the DMRG language [34, 35].
The paradigm of this method, which became known as adaptive time-depen-
dent DMRG, is to choose a new optimal basis after every time step. First
one approximates the initial state by an MPS of dimension m0. Then the
time evolution operator is applied several times with timesteps δt to achieve
the desired final time. After each and every time step, a truncation step is
included. In principle, two ways of truncating are viable: First, one could
limit the maximum number of states in each truncation step, monitoring the
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Figure 3: Sketch illustrating the basic idea of adaptive time-dependent
DMRG. The circles represent the size of the basis optimal with respect to
the desired error bound. The initial state |ψ(t = 0)〉 is compressed with a
small number of states retained compared to the full Hilbert space H. After
each time step, a different basis is chosen, increasing the number of states
to maintain a constant truncation error per time step. While the maximal
time is ultimately limited by the entanglement growth, a single subspace to
describe the wave function at all times of interest with equal accuracy would
be way more costly.

truncation error as a function of time. This leads to the so called run-away
error [47], as the fixed number of states is prone to becoming less and less
optimal. Therefore, convergence of the wave function with respect to the
control parameter m has to be monitored carefully. The second option is
to increase the number of states kept after every time step to maintain a
fixed error per time step. In that case the error increases at most linearly in
time but the computational resources available might be exceeded at some
point. The latter approach was used throughout this thesis and is sketched
in Fig. 3. Note that, for all observables calculated from the wave function
the error bound given by Eq. (9) still holds.

Recently proposed alternatives how to tackle the problem of time evolu-
tion, such as the transverse folding algorithm proposed in [133] or working
directly in the Heisenberg picture [134] have yet to prove their superiority, be
it only for a certain class of problems. Given comparably efficient implemen-
tations of the two methods presented in this chapter, it is merely a matter
of taste and range of interactions which one to use.
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As discussed in Chap. 2.1, the physical limitation of any DMRG or MPS
based approach is the entanglement present in the state of interest. As
opposed to the picture for groundstates, which favors a MPS representation
in one spatial dimension due to the existence of area laws, for a general non-
equilibrium state, the entanglement entropy is only bounded by the maximal
speed at which information can propagate [135, 136], thus SvN ∼ t, in the
worst case. Yet the argumentation from 2.1 still applies, namely that matrix
dimensions for a fixed δρ per time step will have to grow exponentially if the
bound on S(t) is exhausted. For a certain specific setup, such statements can
be checked by computing the time-dependence of the entanglement entropy
[137, 138]. As an example, we find a mild logarithmic increase for the setup
discussed in Chap. 3.7 which is common for so called local quenches [139].
In such cases, the matrix dimensions grow only linear in time. The increase
of computational resources needed due to such growing matrix dimensions
can be slowed to a certain degree by the inclusion of symmetries, especially
non-abelian ones [97].

2.4 Symmetries

While everything discussed in this chapter up to now, can be done with
moderate computational resources compared to an exact treatment of the
full Hilbert space, we have also seen the limitations. In general the time
evolution of a strongly correlated system out of equilibrium is very well lim-
ited by the current technologies as the number of states needed to maintain
a constant error scales exponentially with the entanglement entropy. Even
though the worst case of an exponential growth of resources needed cannot
be compensated this way, the implementation of symmetries can extend the
accessible time scales substantially.

The simplest case would be a single abelian symmetry group, correspond-
ing to a single scalar quantum number, which already gives a considerable
speedup [102]. Common examples would be the total particle number or the
global magnetization, but any operator that commutes with H generates a
symmetry group (not necessarily abelian though). The implementation of
such a scalar quantum number requires rigorous bookkeeping. By taking the
original basis in Eq .(1) to be eigenstates of the conserved quantity, the A-
matrix on each site can be written in block diagonal form. To illustrate this,
we consider a system in a state with global quantum number Q, a separate
quantum number Qi can be attributed to each subsystem. Now consider an
MPS which is split into three parts, as in a single step of a sweep in the
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DMRG algorithm, which addresses the matrix Aσr . Labeling the quantum
number of the block encoded in the matrices Aσi where i < r with Q1, the
quantum number of the block encoded in the matrices Aσi where i > r with
Q3 and the contribution of Aσr itself with Q2, Q1 +Q2 +Q3 = Q must hold
for each non-zero matrix element of Aσi . In practice, the number of matrix
elements needed to be stored to represent a given wavefunction faithfully is
reduced by an order of magnitude for every scalar quantum number [102].

Even more powerful, although harder to implement, are non-abelian sym-
metries such as the conservation of total spin ~S in the Heisenberg chain [97]
In the following, we restrict the discussion to the case of a single SU(2)
symmetry to minimize the notational overhead but the arguments generalize
naturally to larger symmetry groups [140]. Applying the reasoning for the
scalar quantum numbers above does not lead to a block-diagonal structure
[141, 142]. Resolving this issue requires a deeper mathematical understand-
ing of the structure of the involved symmetry groups: Instead of working
with the eigenstates of the vector operator ~S, the DMRG algorithm itself
has to be formulated in a reduced basis, corresponding to the irreducible
representation of ~S. The key to find an irreducible representation of the
corresponding SU(2) symmetry group is the Wigner-Eckart theorem, which
is a relation between an irreducible representation and the reduced matrix
elements [143]. Given a general irreducible tensor operator T

(k)
q of rank k it

states that the matrix elements are given by:

〈j′,m′|T (k)
q |j,m〉 = (j, k,m, q|j′,m′)〈j′|T (k)|j〉 (23)

where the (j, k,m, q|j′m′) are the Clebsch-Gordon coefficients and 〈j′|T (k)|j〉
are the so-called irreducible matrix elements [144] which are independent
of m,m′ and q. In the case of the spin SU(2), k = 1, and q labels the
components, usually q = x, y, z. The simplest case, the coupling two of
spin-1/2 sites is a standard textbook application for the addition of angular
momenta. For an arbitrary SU(2) symmetric problem, the Clebsch-Gordon
coefficients can be obtained, e.g., via a recursion analogous to the case of two
spins [145] or via a closed formula [144]. The basis of the irreducible matrix
elements can again be used to obtain a block structure in the A-matrices
where non-zero matrix elements now represent a multiplet of states at once.
The first and still one of the most efficient implementations was accomplished
by McCulloch [97] and is part of his Matrix Product Toolkit [131] which is
used for the SU(2) symmetric calculations in Chapter 3 and 4. For a recent
review in a matrix product context see [146]. To illustrate the practical use
of non-abelian symmetries we discuss an example out of Chap. 3.7, where we
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Figure 4: Time evolution of the spatial variance of an inhomogeneous en-
ergy density, comparing SU(2) and U(1) symmetric simulations using roughly
comparable computational resources.

calculate the real-time dynamics of energy density wave-packets. Figure 4
shows the time-dependent spatial variance of such a energy density wave-
packet for the Heisenberg chain:

H =
L−1∑

i=1

~Si · ~Si+1 . (24)

Using only the U(1) symmetry, namely the conservation of magnetization
we restricted the dynamics to chains of L = 100 spins and can simulate times
of 30/J using at most m = 900 states with an error bound of δρ = 10−4.
Performing the time-evolution in the SU(2) invariant basis, we are able to
calculate the time evolution of a chain of L = 200 spins up to 60/J within the
same error bound using at most m = 400 states. Both curves were produced
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using the Krylov subspace approach from Chap. 2.3 with a timestep of J/4.
This shows how a single non-abelian symmetry can be utilized to increase
maximal simulation times or the accuracy up to an order of magnitude.
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3 Spin and heat dynamics in low-dimensional

quantum magnets

Low-dimensional quantum magnets continue to be an interesting field of
research as they exhibit a wealth of phases of condensed matter such as
Tomonaga-Luttinger liquids [8], quantum dimer chains or valence bond solids
(see [23] for a review). On the one hand, there is a growing variety of bulk
crystals and organic materials that realize one-dimensional magnetic struc-
tures. These are referred to as spin-chain or spin-ladder materials depending
on the respective geometry realized [11]. On the other hand, we have model
systems which allow for an variety of powerful theoretical methods to be
applied [16]. This situation gives rise to many fruitful interactions between
theory and experiment, for instance, the investigation of the spectrum of
magnetic excitations, see e.g., Refs. [147, 148, 149, 150, 151, 152].

In this chapter, the model system we discuss predominately is the anisotropic
spin−1/2 Heisenberg chain:

H = J
∑

i

[
1

2
(S+

i S
−
i+1 +H.c.) + ∆Szi S

z
i+1] . (25)

Here Sxi , S
y
i and Szi are the components of a spin-1/2 operators acting on site

i, S±i = 1
2
(Sxi ± Syi ) are the corresponding raising and lowering operators,

the exchange coupling J sets the global energy scale and ∆ parametrizes the
exchange anisotropy. The groundstate properties and thermodynamics in
equilibrium of the model defined by Eq. (25) have been studied extensively
on the theoretical side [153], yet the transport properties [1, 2], especially far
from equilibrium [47, 48, 49, 50, 51, 52], are not fully understood.

On the experimental side, the model can be used to explain the physics
of spin chain materials such as SrCuO2 [154] and Sr2CuO3 [155, 156] (see
Chap. 3.5), or many other materials (see Refs. [23, 157, 158] for reviews).
The Heisenberg model [Eq. (25)] has yet to be realized in ultra-cold atomic
gases, but important steps have already been taken [24, 159, 160, 161].

This chapter discusses our results on the spin and heat transport as well
as the real-time dynamics of low-dimensional quantum magnets, which are
organized in three groups. Chapter 3.1-3.3 focus on the spin transport in the
anisotropic Heisenberg chain [Eq. (25)]. Chapter. 3.1 introduces the basic
framework of linear response theory necessary to calculate the spin conduc-
tivity of the Heisenberg chain at finite temperature. Within this framework
the real parts of the frequency-dependent conductivities σ(ω) of this model
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can be written as
Reσ(ω) = Dsδ(ω) + σreg(ω) , (26)

where Ds is the so called spin Drude weight. For finite temperatures, bal-
listic transport in the linear response regime is defined by a non-zero Drude
weight while Ds = 0 is necessary for diffusive transport. Furthermore, the
formalism exhibits a strong connection between transport and conservation
laws, which, e.g., renders the energy transport in the Heisenberg chain bal-
listic [36]. While the ballistic energy transport in the linear response pic-
ture for Eq. (25) at arbitrary temperatures has been confirmed by a variety
of theoretical approaches [36, 38, 37], finite temperature spin transport in
the isotropic Heisenberg chain at zero magnetization is still under scrutiny
[40, 41, 42, 43, 44, 45, 46]. Exact diagonalization [43, 162] studies suggest a
finite spin Drude weight for |∆| < 1 while agreement for ∆ = 1 as well as
agreement on the qualitative temperature dependence is lacking. There is
also large interest in the regular part of the spin conductivity. For instance,
Ref. [163] adressed the problem of spin transport at low but finite temper-
atures within field theory and finds a large diffusive contribution. These
findings were also corroborated by QMC data in Ref. [164] .

In Chap. 3.2 we compare recent theoretical results regarding the Drude
weight of an anisotropic Heisenberg chain at intermediate (T ∼ J) and high
temperatures (T → ∞). First, Prosen [59] found a non-local conserved
quantity, that has a finite overlap with the spin current for 0 ≤ ∆ < 1
at high temperatures which is used to derive a lower bound for the spin
Drude weight. Second Karrasch et al. improved time-dependent DMRG
at finite temperatures [165], which allowed the calculation of the current-
current correlation function at finite temperature up to so far unprecedented
time scales [58]. If the current-current correlation function decays to a non-
zero time independent value as time approaches infinity, then this value is
directly proportional to the Drude weight [58]. In addition, Herbrych et al.
presented a another analysis of exact diagonalization data [60], evaluated in
the canonical ensemble,i.e., at fixed magnetization. We compare these recent
findings with our reevaluation of the spin Drude weight obtained via ED using
the grand-canonical ensemble [43], extrapolating data for odd system sizes
L in polynomials of 1/L. We find reasonable agreement between the finite
temperature DMRG data and our ED data. Furthermore, the analytical
bound from Ref. [59] is exhausted for special values of the anisotropy, given
by ∆ = cos(π/m) by both methods. By switching to a canonical ensemble we
illustrate that at the isotropic point (∆ = 1) any extrapolation in powers of
1/L is inconclusive for the accessible system sizes as we are lacking a theory
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(a) Field configuration: Static
     Bias and perturbation
(b) Spin precession in the chain
(c) Transverse spin current
(d) Relaxation and dephasing

Figure 5: Sketch illustrating the model and setup used to study of the trans-
verse component of the spin current correlation functions. Adapted from
Ref. [166], see Chap. 3.3

for Ds = Ds(1/L). Yet, the extrapolation of grand canonical data suggests
a finite spin Drude weight at ∆ = 1, in agreement with Ref. [58].

We conclude our investigations of the spin transport in the XXZ-chain
by a study of the transverse components of the current-current correlation
function in Chap. 3.3. The magnetic field gradient ∇B that serves as the
perturbation in the linear response ansatz presented in Chap. 3.1 is usually
chosen parallel to the quantization axis of the magnetization. Hence, only
the longitudinal component of the spin current appears in current-current
correlation function which are used to calculate the conductivity. Here, we
consider spin-chains, where the chains are oriented along the y-direction,
their magnetization points in the z-direction, and the magnetic field is ap-
plied in the x-direction. Now we consider an additional homogeneous Zeeman
field B = (0, 0, Bz), Bz 6= 0, which induces a spin precession and gives rise
to oscillations in the x-component of the spin-current autocorrelation func-
tion. In such a setup (see Fig. 5 for a sketch) all components of the spin
current ~js = (jx, jy, jz) are non-zero. We study the temperature and field-
dependence of the x-component of the frequency-dependent current-current
correlation function, finding coherent current oscillations at the Larmor fre-
quency. At finite temperature a second frequency emerges and we find that
the corresponding oscillation becomes coherent in the limit of zero temper-
ature and large Bz. We show that this frequency shift in the spectrum
cannot be explained by single magnetic excitations and hence is a unique
many-body effect. We then complement these findings by calculating the
real-time dynamics of the spin current at zero temperature using tDMRG,
in the presence of a transverse magnetic. Within the DMRG based approach
we study the jx itself at zero temperature, instead of its correlation functions
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at finite temperature. The main result, a frequency shift in the current’s
oscillations remains and even a quantitative agreement on the magnitude of
the frequency shift and it’s dependence on Bz is obtained between ED and
DMRG.

The second block consists of Chap 3.4 and discusses the spin and heat
transport in field-induced gapless phases. We first discuss recent experiments
on the organic superconductor C5H12N2CuBr4 [56, 57], which made it pos-
sible to study magnetic phase diagram due to a comparably small exchange
coupling. Motivated by these results, Chap. 3.4 focusses on the frequency-
dependent conductivities of a dimerized spin-1/2 chain. This model is one
of the minimal models to exhibit a field-induced gapless phase [98, 99]. We
investigate the spin conductivity and the thermal conductivity as a function
of temperature and in a homogeneous magnetic field. As a main result, we
find enhanced spin and heat transport in the field-induced gapless phase,
which manifests itself as an increased weight in the low-frequency regime of
both spin and heat conductivity. The increased weight originates from a clear
signature of the phase transition in the current-current correlation functions.
We also investigate the dependence on the dimerization, and include magne-
tothermal corrections, which then lead to a decrease of the conductivities, as
was known for the Heisenberg chain [167].

For the last part of this chapter we go beyond the linear response regime
to study the spin and energy dynamics of the Heisenberg chain out-of-
equilibrium. These studies are highly motivated by the recent progress in
heat transport experiments on Sr9La5Cu24O41 [54, 55]. Chapter 3.5 intro-
duces examples of different experimental techniques and materials to study
heat transport in low-dimensional quantum magnets. The family of materials
(Sr,La,Ca)14Cu24O41 played an important role in the discovery of magnetic
heat transport [155, 168]. The compound Sr9La5Cu24O41 exhibits the most
pronounced effect [168], and was later also investigated by optical means in
a pump-probe like setup which made it possible to follow the anisotropic
heat dynamics in real-time [54, 55]. As an example for experiments on spin
chains, we discuss the double chain compound SrCuO2, which has recently,
in a study of samples of previously unachieved purity, exhibited the highest
κmag to date and a macroscopic mean free path for the magnons of the order
of 1µm [154]. In Chap. 3.6 we establish an alternative perspective to the
linear response approach, namely the study of transport properties based
solely on the real-time evolution of density profiles. This approach is based
on analyzing the spatial variance of a time-dependent density profile and is
suitable to study the dynamics of initial states both far and close to equilib-
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rium. Instead of working in the (∆, T ) plane, the distance in energy between
the initial state and the groundstate is tuned at zero temperature, e.g., by a
magnetic field. Since the approach outlined here is suitable to treat large en-
ergy differences, we are able to contribute results far from equilibrium to the
discussion of spin and heat dynamics. The approach has also already been
applied to the magnetization dynamics in the XXZ-chain [48], with the result
that the spin dynamics far from equilibrium are ballistic in the gapless phase
(0 ≤ ∆ ≤ 1), while the numerical results for the gapped phase (∆ > 1) show
a hint at diffusive dynamics. In Chap. 3.7 we apply the approach outlined in
Chap 3.6 to investigate the energy dynamics in the XXZ-chain in the absence
of spin currents. We find ballistic energy dynamics independently of ∆ and
of the distance between the initial state and the groundstate. Our findings
thus extend the established linear response results to scenarios far from equi-
librium. The problem is also investigated using Luttinger liquid theory, with
the result that both, energy and magnetization wave-packets expand ballis-
tically with the characteristic sound velocity within this approach. For the
non-equilibrium case the average expansion velocities are analyzed in detail
and understood in terms of the change in the momentum distributions of the
perturbed initial states compared to the groundstate. Furthermore we study
the time-dependent energy currents in the system, further corroborating the
ballistic dynamics by showing that a finite time-independent energy current
emerges after short transient dynamics. We also derive a relation between the
spatial variance and the current operator which provides an alternative way
to determine the average expansion velocity. Finally, the dynamics induced
by a gaussian magnetic field [48] are revisited to obtain agreement between
the numerical calculations and Luttinger liquid theory for the expansion ve-
locity in the limit of weakly perturbed initial states.

3.1 Linear response theory

Linear response theory [31, 169] expresses the response of the system to a
weak external perturbation via correlation functions of the system in equilib-
rium. While the approach can be formulated for arbitrary model systems, the
required correlation functions can in general not be calculated easily, leav-
ing interesting open questions for many models. For instance, in Chap. 3.2
we devote special interest to the case of a single one-dimensional Heisenberg
chain, where up to now, the spin transport of an isotropic antiferromagnetic
chain is still under scrutiny [40, 41, 42, 43, 44, 45, 46]. Yet, before discussing
this particular problem in more detail, the general framework is established
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[31, 169], with the application of spin transport in the Heisenberg chain in
mind. Consider a system in equilibrium described by H0, subjected to a
small perturbation Ht at a fixed time t0. For the time independent system
expectation values of an arbitrary operator A are given by:

〈A〉0 = TrρA =
1

Z

∑

n

e−βEn〈n|A|n〉 , (27)

where En, |n〉 are eigenenergies and eigenstates of H0 respectively and Z =
Trρ is the partition function. Including the perturbation, the time evolution
is described by a time-dependent Hamiltonian given by:

H(t) = H0 + θ(t− t0)Ht . (28)

Treating the time-dependent expectation value in the interaction picture up
to first order in the time-dependent perturbation, 〈A(t)〉 can be calculated
as [169]:

〈A(t)〉 = 〈A〉0 − i
∫ t

t0

dt′
1

Z

∑

n

e−βEn〈n|[A(t), Ht(t
′)]|n〉 . (29)

This is the most general form of the Kubo formula, which relates the response
to an external perturbation to a time-dependent correlation function of the
system in equilibrium. It is usually convenient to work with the Fourier
components of the perturbation:

Ht =

∫
dω

2π
e−iωtHω . (30)

As an example, we discuss the spin transport in a Heisenberg chain of length
L [Eq. (25)]. The spin current follows from the equation of continuity for the
conserved total magnetization Sz =

∑L
l=1〈Szi 〉:

js = i
∑

l

[hl−1, S
z
l ] , (31)

where the hl denote the local terms of the lattice Hamiltonian such that
H =

∑L−1
l=1 hl. The linear response equation for this case reads [170]:

js(ω) = −σ(ω)∇B(ω) (32)

where ∇B is the gradient of the magnetic field driving the spin current. In
general, the temperature gradient also couples to the spin current, leading
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to the 2× 2 system of conductivities discussed in detail in Chap. 3.4. Using
the Kubo formula [Eq.(29)] and Eq. (31) the frequency-dependent conduc-
tivity σ(ω) is expressed as a function of the time-dependent current-current
correlation function [31]:

σ(ω) =
1

L

∫ ∞

0

dte−i(ω−i0
+)t

∫ β

0

dτ〈js(0)js(t+ iτ)〉 , (33)

In the following we want to discuss the real part of σ(ω) for a finite lat-
tice system. Inserting a spectral representation 1 =

∑
o |o〉〈o| of the lattice

Hamiltonian leads to

Reσ(ω) = Dsδ(ω) + σreg(ω) , (34)

where

Ds =
πβ

ZL

∑

n,o

En=Eo

e−βEn〈n|js|o〉〈o|js|n〉 , (35)

and

σreg =
π

ZL

1− e−βω
ω

∑

n,o

En 6=Eo

e−βEn〈n|js|o〉〈o|js|n〉δ(ω −∆E) . (36)

Ds is called spin Drude weight in the literature and plays an important role
in transport theory. In real-time, the current-current correlation function
reads:

C(t, β) := 〈js(t)j(0)〉 =
1

ZL

∑

n,o

e−βEne−it(En−Eo)|〈n|js|o〉|2 , (37)

where the time-independent contributions are proportional to Eq. (35). Hence,
a finite Drude weight in Eq. (34) indicates that the current-current correlation
function of the system will not decay to zero, but to a finite time-independent
value at infinite times. In contrast, for a diffusive model in one spatial di-
mension, the current-current correlation function C(t, β) must decay as 1/

√
t

[1, 33]. The anomalous behavior indicated by a finite Drude weight is usu-
ally called ballistic transport. It is a fundamental theoretical question which
models, exhibit such diverging transport coefficients and under which cir-
cumstances. Besides directly calculating the correlation functions, important
insights can be gained using Mazur’s inequality [36, 171, 172]:

Ds ≥
πβ

L

∑

m

〈jsQm〉2
〈Q2

m〉
, (38)
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where we sum over a subset {Qm} of the orthogonal conserved quantities Q
(〈QmQm′〉) = δm,m′ [36] of the model of interest. Eq. (38) becomes an equality
when either the full set is known [171, 173], which is difficult in general, or
if the bound is exhausted by a few Qm. Formulated for the thermal Drude
weight, the Mazur inequality [Eq. (38)] has important implications for the
Heisenberg chain. First, the energy current jE itself is one of the Qm, namely
Q3 [36]. In that case Eq. (29) already implies a finite thermal Drude weight
since the commutator [jth, H] vanishes, as well as that Eq. (38) is exhausted
due to the orthogonality 〈QiQj〉 = δi,j. Second, the energy current and the
spin current have a finite overlap 〈jsjE〉 at finite magnetization, leading to
a non-zero Drude weight at non-zero magnetization [36]. Even including
all conserved quantities, which can be constructed due to the integrability
[174] of the Heisenberg chain, in the analysis of Eq. (38) does not allow for
conclusions at zero magnetization [36] since there all 〈jsQm〉 vanish. The
following chapter presents a survey of the theoretical results on this issue
and the most recent attempts to resolve it.

3.2 Comparison of recent results for the spin Drude
weight

One of the intriguing open questions in linear response theory applied to
one-dimensional quantum magnets is the spin Drude weight of the isotropic
Heisenberg chain [Eq. (25) at ∆ = 1] at zero magnetization and finite tem-
perature [40, 41, 42, 43, 44, 45, 46]. As outlined in Chap. 3.1, in the case of
spin transport at zero magnetization, the bound provided by Eq. (38) van-
ishes for all local conserved quantities [36] except for ∆ = 0 where the spin
current itself is conserved. At zero temperature the spin Drude weight can
be calculated exactly, and is given by [175]:

Ds =
π

4

sin ν

ν(π − ν)
, (39)

where ∆ = cos(ν). Therefore, we have a finite Drude weight indicating a
conducting state for −1 ≤ ∆ ≤ 1 and a sharp transition to an insulating
behavior as the Drude weight discontinuously drops to zero for ∆ = 1 at
T=0 [32, 176].

One approach to study spin transport at finite temperatures pursued in
the literature is to evaluate Eq. (35) and (36) using exact diagonalization
of small systems (see [2] for a review). As shown in Refs. [43, 162] such
numerical studies are consistent with Ds(T ) > 0 for 0 ≤ ∆ ≤ 1. Since the
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full spectrum is needed, system sizes are usually not larger than L = 21 spins
and the data is extrapolated in 1/L. Ds(T ) > 0 for 0 ≤ ∆ ≤ 1 has also been
suggested by QMC data, e.g., in Ref. [42]. Another approach is the exact
calculation of Ds within an extension of the thermodynamic Bethe ansatz
[177]. For instance, Ref. [41] finds the Drude weight to be a monotonically
decreasing function of temperature for 0 ≤ ∆ ≤ 1 which vanishes for all
temperatures at the isotropic point ∆ = 1. Yet, the results obtained for
the temperature dependence and the value at the isotropic point (∆ = 1)
deviate depending on details of the approach [45]. Ref. [45] argues that it
can also be used to show that the results for Ds(T ) are finite for T=0, as
well as for T > 0 at ∆ = 1. Recently the question of diffusive versus ballistic
spin transport was also addressed within low-energy field theory, with the
result that a dominant diffusive channel exists at finite but low temperature,
although a ballistic contribution cannot be excluded [163]. These findings
have also been corrobarated by QMC data in Ref. [164].

Here we compare some very recent results that have provided new direc-
tions for this interesting question. First, Prosen found a quasi-non-local con-
served quantity that has a finite overlap with the spin current for 0 ≤ ∆ < 1
[59]. Ref [59] focusses on the high temperature limit, in which the leading
order in the high temperature expansion of Ds is studied instead of the Drude
weight, namely:

Cs = lim
β→0

1

β
Ds =

π

ZL

∑
m,n

En=Em

|〈m|js|n〉|2 (40)

The main result of Ref. [59] is a lower bound to CS via Eq. (38). The
second example is the numerical calculation of the current-current correla-
tion function at finite temperatures by Karrasch et al., using time-dependent
DMRG [58]. They evaluate the current-current correlation function in real-
time which decays on the accessible time-scales to a non-zero time indepen-
dent value for 0 ≤ ∆ ≤ 1. The stationary value then is directly proportional
to the Drude weight. They suggest a finite spin Drude weight at ∆ = 1 in
their analysis which involves simulation times ranging from 10/J to 30/J .
The third example is the recent work by Herbrych et al. [60], in which a
evaluation of ED data using the canonical ensemble and odd system sizes
was done. Their reason for this approach is acclaimed faster convergence
with respect to the system size. Odd system sizes have also been reported to
have a more favorable finite size scaling using the grand canonical ensemble
[43]. The results of Ref. [60] for the spin Drude weight is consistent with [41],
in particular they conclude Ds = 0 at ∆ = 1 within their approach.
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Figure 6: Exact diagonalization data for the spin Drude weight comparing
the grand canonical (gc) and the canonical ensemble (c). Left: Fitting p1

and p2 to the data for Ds at ∆ = 1 for βJ = 2. Right: Cs(∆) at β = 0 and
Ds(∆) at βJ = 2.

For a comparison with the findings of Refs. [58],[59] and [60] we revisit
the evaluation of the spin Drude weight Ds using exact diagonalization and
Eq. (35). A priori, Eq. (35) does not state which thermodynamical ensemble
is used to evaluate the expectation values. Since we are interested in the
behavior at zero magnetization and restricted to finite systems, one has to
consider the following if using a canonical ensemble: For an even number
of spins it is straight forward to see that restricting the sum in Eq. (35) to
states with zero magnetization leads to a vanishing spin Drude weight due to
particle-hole symmetry. The Hilbert space of a system of odd length though
only has a subspace with zero magnetization in the thermodynamic limit.
Ref. [60] calculates the spin Drude weight of anisotropic Heisenberg chains
using a canonical evaluation of Eq. (35), specifically restricting Eq. (35) to the
sector with the lowest possible magnetization, M =

∑
r〈Szr 〉 = 1/L. The data

is then extrapolated to second order in 1/L. In Fig. 3.2 we reproduce their
results in the high temperature limit β = 0 and for intermediate temperatures
βJ = 2. We extrapolate the data in polynomials of 1/L:

Ds ≈ pi :=
i∑

r=0

cr
1

Lr
, (41)

using both, the canonical and the grandcanonical ensemble. For the canonical
ensemble at βJ = 2 we find that up to fourth order Ds(L → ∞) < 0 at
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Figure 7: Left: ED data for the spin Drude weight Ds obtained from a grand-
canonical (gc) evaluation of Eq. (35) at βJ = 2 compared to the DMRG data
of Ref. [58]. Right: Comparison of ED data for the high temperature limit
of the spin Drude weight Cs obtained from a grandcanonical (gc) evaluation
of Eq. (40) at βJ = 0 to the infinite temperature results of Refs. [58] and
[59].

∆ = 1. The data for both ensembles and the fits to p1 and p2 are shown in
the left panel of Fig. 3.2. From this unphysical behavior we conclude that,
at ∆ = 1 a finite-size extrapolation of the canonical spin Drude weight from
odd systems sizes at finite temperature is rather involved as the full Ds(1/L)
is likely to have a very small slope, since Ds ≥ 0 must hold for all system
sizes. The right panel of Fig. 3.2 shows a comparison of the extrapolated
data for both ensembles at T = ∞ and T = 1/2J where we averaged over
the results obtained from p1, p2, p3 and p4. For β = 0 we find a reasonable
agreement between the two approaches while for βJ = 2 the canonical Ds

deviates stronger from the grandcanonical Ds the closer we get to ∆ = 1.

Next we compare our results for the spin Drude weight in the grand
canonical ensemble for both infinite and intermediate temperature to the
findings of Refs. [58] and [59]. The left panel of Fig. 3.3 shows our results
at T = J compared to the DMRG data from Ref. [58]. In addition to the
reasonable agreement obtained, both results are in favor of a finite spin Drude
weight at intermediate temperatures for 0 ≤ ∆ ≤ 1. Figure 3.3 compares ED
data, DMRG data and the rigorous lower bound for Ds(∆) from Ref. [59]
in the high temperature limit. First, both numerical results indicate a finite
Drude weight for 0 ≤ ∆ ≤ 1 and show remarkable agreement. Second the
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rigorous lower bound by Prosen is exhausted at certain commensurate points
∆ = cos(π/m) the first one being ∆ = 0.5. For all other ∆ ≥ 0 the lower
bound is smaller than the numerical results, but the deviations at those
incommensurate points become smaller as ∆ increases.

To summarize this chapter we have briefly reviewed the current state of
discussion regarding the spin Drude weight of the one dimensional Heisenberg
chain. We find that time-dependent DMRG and exact diagonalization in the
grand canonical ensemble are in favor of a finite spin Drude weight at the
isotropic point. The lower bound based on Eq. (38) also agrees reasonable
well with the numerical data and is exhausted at the commensurable points
∆ = cos(π/m). Switching to a canonical ensemble within the ED approach
unveils that the finite-size extrapolation in that case is highly non-trivial
and leaves questions open to be addressed in the future. A theory for Ds =
Ds(1/L) would be highly desirable. Furthermore, a quantitative study of
the full temperature dependence certainly is another interesting direction for
further research.
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3.3 Coherent spin-current oscillations in
transverse magnetic fiels

In the previous chapter and common in the literature, the analysis of linear
response functions was restricted to only the longitudinal component of the
current. Yet, each spin on the chain, as well as the spin current, have three
components that can be excited separately by an appropriate magnetic field.
This chapter presents a study of the oscillations in the transverse components
of the current-current correlation function. They are induced by a magnetic
field B = (Bx, 0, Bz) where Bx is the driving force in the linear response
equations and Bz is a homogenous field in which the spins precess. In ad-
dition to the expected Larmor precession, we were able to identify a second
frequency in the transverse current-current correlation function’s oscillations,
which becomes coherent for low temperatures and large Bz. We find that
this additional frequency is a many-body effect as it cannot be described
by single magnetic excitations. The problem is studied using an analytical
approximation for high temperatures, exact diagonalization for intermediate
temperatures and time-dependent DMRG at zero temperature, mapping out
the frequency shift as a function of the homogenous field Bz and tempera-
ture. We find remarkable agreement between the DMRG and the ED data
regarding the frequency shifts dependence on Bz.
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Controlling quantum coherence is paramount for future
information processing [1]. The coherence of localized
quantum spin degrees of freedom has been studied in a
wide variety of systems, including semiconductor quantum
dots [2,3], molecular magnets [4], nitrogen vacancies in
diamond [5], carbon nanotubes [6], and ultracold atoms
[7]. Coherence in spin transport has been addressed pri-
marily in semiconductors [8]. A new route into coherent
spin transport may arise from quantum magnets. Here,
magnetization is transported solely by virtue of exchange
interactions and (de)coherence of spins will emerge as a
purely intrinsic many-body phenomenon. In one-
dimensional (1D) spin systems, magnetic transport has
experienced an upsurge of interest in the last decade due
to the discovery of very large magnetic heat conduction [9]
and long nuclear magnetic relaxation times [10]. Genuine
spin transport in such materials remains yet to be observed
experimentally and if combined with materials with small
exchange couplings [11,12], the coherent manipulation of
spin transport using laboratory magnetic fields may be-
come feasible. Theoretically, spin transport has already
been given significant attention (see Refs. [13,14] for a
review); previous studies, however, have focused on the
longitudinal spin conductivities only, excluding the phys-
ics of coherence. Therefore, in this Letter we investigate
the dynamics of spin-currents with components transverse
to an externally applied magnetic field, as sketched in
Fig. 1. This setup allows us to study the collective preces-
sion frequency of the transverse spin-current and its decay
time, which will be at the prime focus of this Letter. We
will show that, besides a coherent oscillation at the Larmor
frequency, a second nontrivial collective oscillation at
higher frequencies emerges at low temperatures. This os-
cillation is identified as a pure many-magnon effect and
also becomes coherent in the low-temperature limit.

In this Letter, we study the antiferromagnetic
Heisenberg spin chain, one of the fundamental models to

describe magnetic properties of interacting electrons. It is
relevant to the physics of low-dimensional quantum mag-
nets [15], ultracold atoms [16], nanostructures [17], and—
seemingly unrelated—fields such as string theory [18] and
quantum Hall systems [19]. The Hamiltonian reads

H ¼ J
XN
r;�

S�r S
�
rþ1 � Bz

XN
r

Szr: (1)

S�r (� ¼ x, y, z) are the components of spin-1=2 operators
at site r, N is the number of sites, J > 0 is the exchange
coupling constant, Bz is a longitudinal magnetic field, and
@ � 1 [20]. For Bz < Bz

c ¼ 2J, Eq. (1) implies a gapless
Luttinger liquid [21,22] and, for Bz > Bz

c, a gapped ferro-
magnetic ground state.
We investigate the transverse spin-current dynamics for

two complementary scenarios and use methods appropriate
for each situation. First, we study current autocorrelations

FIG. 1. Quasiclassical sketch of transverse spin transport in a
spin chain directed along the y-direction: (a) External magnetic
field with a static ‘‘bias’’ component Bz and a perturbing, space-
and time-dependent component Bxðy; tÞ; (b) Bz produces a
magnetization ~M with a homogeneous transverse component
and a Larmor precession, Bxðy; tÞ produces an inhomogeneous
transverse component driving (c) a transverse spin-current
jxðy; tÞ in y direction. The dynamics of jxðy; tÞ is controlled by
the intrinsic exchange coupling J. (d) As a function of time, the
magnetization relaxes and the transverse component dephases.
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at finite temperature, using numerically exact diagonaliza-
tion (ED) and an asymptotic analytic analysis (AAA).
Second, applying the adaptive time-dependent density ma-
trix renormalization group (tDMRG) [23], we analyze the
real-time dynamics of currents at zero temperature during
the evolution from initial states with an inhomogeneous
magnetization. Qualitatively, the same physics explains
our observations in both scenarios, and even a quantitative
agreement can be obtained.

We begin by discussing the current autocorrelations
~C��ð!Þ¼P

lme
��Emhljj�jmihmjj�jli�ð!�EmþElÞ=ZN

[24], where jli, jmi and El;m are eigenstates and -energies

of Eq. (1), � ¼ 1=T is the inverse temperature, j� is the
zero-momentum spin-current, �, � ¼ x, y, z, Z is the
partition function, and ! is the frequency. More precisely,

we consider a symmetrized version C��ð!Þ ¼ ½ ~C��ð!Þ þ
~C��ð�!Þ�=2; i.e., in the time domain, we focus on the real

part C��ðtÞ ¼ Re½ ~C��ðtÞ�. While Bz breaks total spin
conservation, a spin-current can still be defined by decom-
posing the time derivative of the spin-density at momen-
tum q as @tS

�
q ¼ @tS

�
q jJ¼0 � {qj

�
q into a local source

(sink) term due to Bz (present without any exchange inter-
actions) and the actual exchange mediated spin-current j

�
q .

The latter then derives from the continuity equation for S�q

at Bz ¼ 0. In turn ~j ¼ {
P

r
~Sr � ~Srþ1, where ~j ¼ ~jq¼0. The

eigenstates (energies) are classified according to the total
spin z component

P
rS

z
rjli ¼ Mjli. Since jli is independent

of Bz and C�� is diagonal at Bz ¼ 0, it will remain diago-
nal at any Bz. Moreover, by symmetry Cxx ¼ Cyy.
However, since jx mediates transitions between sectors
with�M ¼ �1while jz conservesM, the autocorrelations
Cxx (transverse) and Czz (longitudinal) differ at Bz � 0.
This difference is solely due to the field dependence of
the eigenenergies. Formally speaking, this aspect is at the
center of this Letter. For the remainder we abbreviate

CxxðzzÞ by CxðzÞ. Note that by the continuity equation the
current autocorrelations at small q are related to the dy-
namic spin structure factor S��ðq;!Þ, exhibiting a matrix
symmetry identical to C��ð!Þ at Bz � 0 [25].

Generically, the longitudinal autocorrelation decom-
poses into a Drude weight Dz and a regular part,
i.e., Czð!Þ ¼ Dz�ð!Þ þ Cz

regð!Þ. A significant body of

evidence in favor of DzðT � 0Þ � 0 for Bz < Bz
c

has been gathered [13,14,26], with thermally activated
behavior of DzðTÞ for Bz > Bz

c [14]. Less is known on
the specific shape of the regular part [26]. The previous
discussion of symmetries of C�� implies that Cxð!Þ ¼P

�½Dx�ð!� BzÞ þ Cx
regð!� BzÞ�. In general, Dx and

Cx
reg will not be identical to Dz=2 and Cz

reg=2, respectively,

due to the different Bz-dependence of Boltzmann weights
in Cz and Cx. In the time domain, Dx implies a coherent,
nondecaying oscillation of the transverse current at the
Larmor frequency !L ¼ Bz, permitted by the integrability
of Eq. (1) [13]. On the other hand, Cx

reg a priory implies

only decoherence and damping. In the following, however,
we demonstrate that at sufficiently low T and finite Bz, out
of Cx, a new collective quasicoherent oscillation of the
current emerges. The oscillation frequency differs from the
‘‘simple’’ Larmor frequency and cannot be understood
within a one-magnon picture.
First, we discuss high temperatures, i.e., � ¼ 0.

A straightforward analysis yields

Cxð!Þ ¼ ½Czð!� BzÞ þ Czð!þ BzÞ�=2: (2)

Figure 2(a) displays Cxð!Þ for Bz=J ¼ 2. As can be seen
from Fig. 2(b), this approximately transforms into CxðtÞ �
½RðtÞ þDx� cosð!LtÞ in the time domain, with RðtÞ rapidly
decaying within �1=!L and a ‘‘trivial’’ coherent oscilla-
tion due to the Drude weight.
Next we reduce the temperature to �J ¼ 2 at Bz=J ¼ 2.

Figure 2(c) clearly shows two effects. First, the Drude
weight Dx is strongly reduced. This reduction continues
monotonically with increasing Bz (as discussed within the
AAA below). Second, the regular part Cx

reg is strongly

enhanced and undergoes an asymmetric weight redistrib-
ution with a major peak developing at a frequency! larger
than !L (and a minor peak at !<!L). This is consistent
with Bz breaking particle-hole symmetry. In the time do-
main, see Fig. 2(d), we find that

CxðtÞ � RðtÞ cos½ð!L þ �!Þt� þDx cosð!LtÞ (3)

allows for a reasonable leading-order fit of CxðtÞ over
several oscillation periods by assuming an exponential
behavior RðtÞ ¼ R0 expð�t=�Þ, i.e., a single decay time
�. In fact, Cxð!Þ is rather close to a Lorentzian in
Fig. 2(c). We find this approach to apply at least to
Bz=J 	 3 and �J 	 3 and to have very little finite-size
effects for the system sizes (N ¼ 10; . . . ; 18) and time
scales (tJ 	 20) studied [20]. Figure 2(c) is a central result
of this Letter. It unveils the emergence of a new collective
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FIG. 2 (color online). Frequency and time dependence of the
autocorrelation Cx for Bz=J ¼ 2 and (a), (b) � ¼ 0, (c), (d)
�J ¼ 2 (ED). The Drude weight in (a), (c) is visible exactly at
the Larmor frequency !L ¼ Bz (vertical dashed-dotted lines). In
(b),(d) the envelopes of fits [as defined in Eq. (3)] to data for
N ¼ 18 are shown (dashed-dotted curves).
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frequency scale, namely, at !L þ �!, in the transverse
transport process besides the Larmor frequency. Moreover,
for � ! 1 this process would be coherent.

In Fig. 3 we summarize our findings for � and �! over
a range of temperatures and fields of 0 	 �J 	 3 and
1 	 Bz=J 	 3. Figure 3(a) shows that � increases roughly
linearly with �, with an increasing slope as Bz increases.
While finite system studies will not clarify if this result
implies true coherence for a particular range of Bz as
T ! 0, Fig. 3(a) is at least strongly indicative of a large
� in that limit. Regarding �!, Fig. 3(b) clearly signals
a saturation roughly at �J � Bz=J with the value at satu-
ration increasing with Bz. We emphasize that �! � 0
directly implies that the transverse current cannot be de-
scribed in terms of transitions between the zero- and one-
magnon sector. The dominant spectral weight of such
one-magnon excitations at q ¼ 0 is exactly at !L [25],
leading to �! ¼ 0.

To gain insight into the origin of �! � 0 we present an
AAA for Bz > Bz

c and low T. Here, the contribution of
different M sectors to Cx can be dissected asymptotically
and, after an extensive analysis [20], we arrive at a simple
picture: the transverse current is carried dominantly by
transitions from the one-magnon sector around q� �
into antibound states of the two-magnon continuum at the
same q. The related frequencies �!L þ J and also the
asymptotic form of CxðtÞ can be obtained analytically:

Cx
AAAðtÞ �

ffiffiffiffiffi
J3

�

s
e��ðBz�2JÞRe

�
e{ð!LþJÞtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�þ {t

p
�
: (4)

This is consistent with Fig. 3(b), which also suggests that
�! ! J as Bz increases and � ! 1. The thermal activa-
tion in Eq. (4) stems from the one-magnon energy at
q ¼ �. The damping results from summing over all tran-
sitions in the vicinity of q ¼ � and its power-law behavior,

i.e. �t�1=2, for t ! 1 clearly shows that the single-scale
exponential used for RðtÞ in Eq. (3) is an approximation for
not too low temperatures T only. Nevertheless, for a com-
parison with Fig. 3(a), we extract a ‘‘decay time’’ from the

envelope of Eq. (4), i.e. jCx
asyðtÞ=Cx

asyð0Þj 	 1=e for t � �,

leading to � ¼ 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e4 � 1

p
� 15�. As shown in Fig. 3(a)

(straight line), our ED data for Bz=J ¼ 3 are consistent
with the asymptotic line; e.g., the slope d�=d� is already
close to 15� at �J � 2.
Now we turn to the real-time evolution of the spin-

current derived from a Krylov-space based tDMRG ap-
proach [23]. This allows us to study larger systems than
with ED, however, at zero temperature and only below the
saturation field. The latter follows since there are no
current-carrying states for Bz > Bz

c at T ¼ 0. Moreover,
since ED and AAA already suggest that � ! 1 as T ! 0,
limitations in the accessible simulation times confine the
tDMRG to an analysis of �!. To induce a current we add
a perturbation H1 ¼

P
rB

x
rS

x
r to Eq. (1) with Bx

r ¼
Bx cosð2�kr=NÞ. First, the ground state of H þH1 is
evaluated using DMRG, then the system is left to evolve
under H alone.
Typical transverse magnetization profiles hSxri at t ¼ 0

are shown in Fig. 4(a) for ðBz; BxÞ=J ¼ ð1:5; 1Þ and for
small values of k. hSxri follows Bx

r qualitatively, with addi-
tional 2kF-oscillations from the underlying Luttinger liq-
uid. We perform the time evolution using m ¼ 200 states
for the ground-state calculation, a time step of �tJ ¼ 0:25,
and a fixed discarded weight [20,23]. Although H1 breaks
Uð1Þ symmetry, we can still obtain reliable results for
L 	 64 lattice sites. To analyze currents free of spatial
oscillations we coarse-grain the data by averaging over
suitable parts of the chain. Figure 4(b) shows an example
of the time evolution of the current hjxN=2ðtÞi, averaged over
the left half of the chain, at ðBz; BxÞ=J ¼ ð1:5; 1Þ for
k ¼ 0:5. For the times reached in the simulation
(tJ � 80), no relaxation can be observed. This is consistent

0 1 2 3
βJ

0

0.5

1

δω
/J

Bz=J
Bz=2J
Bz=3J

0 1 2
βJ

0

5

10

15

τJ

B
z
/J=1

B
z
/J=2

B
z
/J=3

AAA

(a) (b)

FIG. 3 (color online). (a) Decay time � and (b) frequency shift
�! w.r.t. � for different Bz. Data are extracted from the
autocorrelation CxðtÞ, using ED for N ¼ 18 (symbols). Solid
lines represent the low-temperature asymptote above the critical
field, dashed curves are guides to the eye.
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FIG. 4 (color online). Simulation of the transverse spin-current
dynamics using tDMRG: (a) Initial magnetization profiles hSxri at
t ¼ 0 for different k; (b) Coherent oscillation of the spatially
averaged current hjxN=2ðtÞi for k ¼ 0:5 and Bz=J ¼ 1:5; (c),

(d) Discrete Fourier transform for (b) and for Bz=J ¼ 0:75.
Besides the dominant peak at the Larmor frequency !L ¼ Bz,
there is another significant peak at a higher frequency !L þ �!.
For more details, see Ref. [20].
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with the expectation for T ¼ 0 drawn from ED and AAA.
In view of the substantial number of periods covered in
Fig. 4(b) we have chosen to directly study the discrete
Fourier transform of the real-time data in order to
obtain the dominant frequencies. This is shown in
Figs. 4(c) and 4(d) for hjxN=2ðtÞi at ðBz; BxÞ=J ¼ ð1:5; 1Þ
and ðBz; BxÞ=J ¼ ð0:75; 1Þ at k ¼ 0:5. These two figures
clearly evidence the main result from tDMRG, namely,
that, fully consistent with the findings from ED and AAA,
there are two characteristic frequencies in the current
dynamics, namely !L and !L þ �!. In contrast to the
linear-response regime, the analysis of the relaxation sce-
nario finds the contribution at !L to be the larger one. This
is not surprising since two different scenarios are
compared, characterized by similar yet different correla-
tion functions. We have checked that the results of
Figs. 4(b)–4(d) are insensitive (i) to the details of the
coarse-graining, (ii) to varying k within the small k regime,
and (iii) to the strength of Bx, at least up to Bx=J ¼ 1, as
used here [20]. The latter implies a minor role of nonline-
arity (nonequilibrium).

Finally, in Fig. 5 we compare �! from ED with tDMRG
for 0:5 	 Bz=J 	 2. The agreement is remarkably good,
not only in view of the different scenarios. For intermediate
fields (Bz=J ¼ 0:5, 0.75, 1) the frequency shifts match
each other almost exactly, while we attribute the slight
deviation of ED from tDMRG at larger fields to finite
temperature effects, where convergence to the T ¼ 0 val-
ues has not been reached yet [see Bz=J ¼ 3 in Fig. 3(b)].
For Bz=J < 0:5, the accessible time scales prevent a reli-
able determination of �! in our approaches.

In summary, we studied the transverse spin-current dy-
namics in the spin-1=2 Heisenberg chain. As a main result,
besides a coherent oscillation at the Larmor frequency, we
provided evidence for a second nontrivial collective oscil-
lation at higher frequencies, emerging at low temperatures

as a genuine many-magnon effect and turning coherent as
the temperature is lowered.
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Dimensional Quantum Systems (Kluwer Academic
Publishers, Dordrecht, 2004).

[14] F. Heidrich-Meisner, A. Honecker, and W. Brenig, Eur.
Phys. J. Special Topics 151, 135 (2007).

[15] D. C. Johnston et al., Phys. Rev. B 61, 9558 (2000).
[16] S. Trotzky et al., Science 319, 295 (2008).
[17] P. Gambardella, Nature Mater. 5, 431 (2006).
[18] M. Kruczenski, Phys. Rev. Lett. 93, 161602 (2004).
[19] Y. B. Kim, Phys. Rev. B 53, 16420 (1996).
[20] See supplemental material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.106.160602 for more
details.

[21] R. B. Griffiths, Phys. Rev. 133, A768 (1964).
[22] F. D.M. Haldane, Phys. Rev. Lett. 45, 1358 (1980).
[23] A. J. Daley et al., J. Stat. Mech. P04005 (2004); S. R.

White and A. E. Feiguin, Phys. Rev. Lett. 93, 076401
(2004); G. Vidal, Phys. Rev. Lett. 93, 040502 (2004).

[24] G. D. Mahan, Many Particle Physics (Plenum Press, New
York, London, 1980).

[25] S. Grossjohann and W. Brenig, Phys. Rev. B 79, 094409
(2009).

[26] For M> 0, DzðT > 0Þ> 0 [13]. The M ¼ 0 case is still
under scrutiny: see J. Sirker, R. G. Pereira, and I. Affleck,
Phys. Rev. Lett. 103, 216602 (2009); S. Grossjohann and
W. Brenig, Phys. Rev. B 81, 012404 (2010); Refs. [13,14],
and references therein.

0 0.5 1 1.5 2
B

z
/J

0

0.5

1

δω
/J

ED, N=18
tDMRG, N=64

FIG. 5 (color online). Frequency shift �! with respect to the
magnetic field Bz, as obtained from ED (�J ¼ 3) and tDMRG.

PRL 106, 160602 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

22 APRIL 2011

160602-4



Supplementary Material for: Coherent Spin-Current Oscillations in Transverse
Magnetic Fields

Robin Steinigeweg,1, ∗ Stephan Langer,2 Fabian Heidrich-Meisner,2 Ian P. McCulloch,3 and Wolfram Brenig1

1Institute for Theoretical Physics, Technical University Braunschweig, D-38106 Braunschweig, Germany
2Department of Physics and Arnold Sommerfeld Center for Theoretical Physics,

Ludwig-Maximilians-Universität München, D-80333 München, Germany
3School of Physical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia

(Dated: March 24, 2011)

I. DERIVATION OF THE ASYMPTOTIC
APPROXIMATION

In this section we give a detailed derivation of the
asymptotic approximation in Eq. (4) of the Letter. For
convenience, we shift the zero point of the energy E to
N(J/4−Bz/2) and of the quantum number M to N/2.
The shifted quantities will be denoted by E and M in the
following,

E = E −N(
J

4
− Bz

2
) , M = −(M − N

2
) . (1)

Above the critical field the ground state is fully polar-
ized

ψ(M=0,q=0) = |↑↑ . . . ↑↑〉 (2)

with momentum q = 0 and energy E(0,0) = 0, see Fig. 1
(triangle). Periodic boundary conditions are assumed in
this section. This state is an eigenstate of the current
operator with the eigenvalue zero

jx ψ(0,0) = 0 . (3)

In the limit of T = 0 only matrix elements from this ini-
tial state contribute to the current autocorrelation func-
tion Cx(ω). Therefore limT→0 Cx(ω) = 0. At any finite
temperature, βJ ≫ 1, initial states from the subspace
with M = 1, i.e. one-magnon states, start to contribute
to the current autocorrelation function. Using the opera-
tor Tµ, which translates a state by µ sites, the eigenstates
of the Hamiltonian H in Eq. (1) of the Letter read in this
subspace

ψ(1,q) =
1√
N

N−1∑

µ=0

eıqµ Tµ |↓↑↑ . . . ↑↑〉 , (4)

q = 2πk/N , k = 0, 1, . . . , N − 1. Their energies are

E(1,q) = J (cos q − 1) + Bz , (5)

see Fig. 1 (crosses). At non-zero momentum these one-
magnon states obviously carry a net-current, however,
they are not eigenstates of the current operator. In fact
one readily obtains

0 π 2π
   q

0

B
z
-2J

B
z

2B
z
-4J

2B
z

ε δω = Jδω = 0

δω = 0

FIG. 1: The spectrum of the Hamiltonian in the M = 0-,
1-, and 2-magnon subspaces (symbols). Additionally, those
transitions of the transverse current are indicated that are
relevant for the asymptotic approximation at low tempera-
tures above the critical magnetic field: ‘Forbidden’ transitions
(red, dashed lines) yielding no contribution as well as ‘allowed’
transitions (green, solid lines) leading to the dominant con-
tribution. The latter transitions involve a two-magnon band
at the edge of the Brillouin zone, i.e., q = π. The associated
frequencies are larger than the Larmor frequency ωL = Bz,
namely, these frequencies are shifted by δω = J .

jx ψ(1,q) = ı
J

2
(1− eıq)ϕ(2,q) , (6)

where ϕ(2,q) are states from the subspace with M = 2,
i.e. the two-magnon subspace. They read

ϕ(2,q) =
1√
N

N−1∑

µ=0

eıqµ Tµ |↓↓↑↑ . . . ↑↑〉 . (7)

In general, and in contrast to Eqs. (4), (5), these states
are no eigenstates of the Hamiltonian H in Eq. (1) of the
Letter, but

H ϕ(2,q) = (2Bz − J)ϕ(q,2) +
J

2
(1 + eıq) ϕ̃(2,q) , (8)

where ϕ̃(2,q) refers to states generated by the trans-
verse fluctuations of H, which separate the two adjacent
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flipped spins by one site. However, in the vicinity of
q = π, the prefactor (1 + eıq) suppresses these contribu-
tions rendering ϕ(2,π) an exact eigenstate of H. From
its eigenenergy (2Bz − J) and Fig. 1 (green circle), it is
obvious that this state is the (anti)bound two-magnon
state ψr

(2,q) at q = π, well known from Bethe-Ansatz. Its
dispersion over the complete Brillouin zone is [1]

Er
(2,q) =

J

2
(cos q − 1) + 2Bz (9)

and is situated above the two-magnon continuum.
Due to their Boltzmann weight the transitions from

ψ(1,q) into ϕ(2,π) at q ≈ π dominate the current autocor-
relation function asymptotically for βJ ≫ 1. Therefore,
the leading contribution to Cx results from projecting
all intermediate states solely onto ψr

(2,q). Since the anti-
bound state is separated by a gap of O(J) from the two-
magnon continuum at q ≈ π, we may use 〈ϕ(2,q)|ψr

(2,q)〉 ≈
1 in that region, leading to

C̃x
AAA(ω) ≈ 1

N

∑

q

e−βE(1,q) |〈ψ(1,q)|jx ψr
(2,q)〉|2

× δ(ω − [Er
(2,q) − E(1,q)]) . (10)

Using Eq. (6) and introducing the frequency ωq =
J/2 (1− cos q) this can be rewritten as

C̃x
AAA(ω) ≈ J

N
e−βBz ∑

q

ωq e2βωq δ(ω−[Bz+ωq]) . (11)

Since momentum enters only through ωq, we may intro-
duce the corresponding density of states and replace the
sum by an integral with respect to ωq. This results in

C̃x
AAA(ω + Bz) ≈ J

2π

eβ(2ω−Bz)

√
J/ω − 1

Θ(ω)Θ(J − ω) , (12)

where Θ(ω) is the Heavyside function. Fourier trans-
forming this to the time domain we get

C̃x
AAA(t) ≈ J2

2
e−β(Bz−J) eı(Bz+J/2)t

×
[
I0(J [β +

ı t

2
]) + I1(J [β +

ı t

2
])
]

,(13)

where I0,1(z) are modified Bessel functions of the first
kind. At low temperatures, i.e. for βJ ≫ 1, we may insert
their asymptotic forms for |z| ≫ 1, which are I0,1(z) ≈
ez/

√
2π z. Therefore

C̃x
AAA(t) ≈

√
J3

π
e−β(Bz−2J) eı(Bz+J)t

√
2β + ı t

. (14)

The real part of this, i.e. Cx
AAA(t) = Re C̃x

AAA(t), is
Eq. (4) of our Letter, with ωL = Bz.
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(a) 0 < t J < 30

(b) 30 < t J < 60

FIG. 2: The current autocorrelation function Cx(t) for (a) 0 ≤
tJ ≤ 30 and (b) 30 ≤ tJ ≤ 60, restricted to the transitions
into the subspaces M ≤ 1 (one-magnon subspace). Data
are evaluated numerically by the use of ED (circles) and are
shown for the parameters βJ = 9, Bz/J = 3, and N = 200.
For comparison, the asymptotic approximation according to
Eq. (4) of the Letter is included (curves).

To assess the quality of the asymptotic approximation,
we compare this result with ED for the current autocorre-
lation function above the saturation field, restricting the
intermediate-state Hilbert space to two-particle states.
This corresponds to taking the limit βJ ≫ 1. Due to
this restriction ED is possible for rather large systems
sizes N . We choose N = 200. As shown in Fig. 2, the
agreement is excellent. This validates the approxima-
tions involved in going from Eq. (6) to (14).

II. ED CALCULATIONS

In this section we provide supplementary material on
our ED calculations concerning a potential impact of the
finite system size. Specifically, we demonstrate that for
the systems of size N = 18 and time scales tJ . 20,
as used in the Letter, finite-size effects in the frequency
shift δω and the relaxation time τ can be neglected. Both
of these quantities are determined by assuming a single
exponential R(t) = exp(−t/τ) to model the envelope of
the decay of the coherent oscillation as in Eq. (3) of the
Letter. This procedure leads to satisfactory fits to the ED
results for not too low temperatures, βJ . 3. Examples
of this are shown in Fig. 2 of the Letter.
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FIG. 3: The extracted (a) frequency shift δω and (b) decay
time τ as a function of the inverse size 1/N for the parameters
βJ = 2 and Bz/J = 1, 2, and 3 (symbols). Lines are guides
to the eyes.

Figure 3 summarizes our results for δω and τ as ob-
tained from N = 10, 12, 14, 16, and 18 for various mag-
netic fields at βJ = 2. This figure clearly demonstrates
that both, δω and τ either display almost no finite size
dependence or a clear tendency towards saturation as a
function of 1/N . In all cases shown, the absolute changes
in going from N = 16 to 18 are negligible. Significant fi-
nite size effects can only be seen at systems sizes N ≤ 14.
Therefore, for the temperatures and fields considered in
the Letter, it is justified to use N = 18 data to obtain
δω and τ (see Fig. 3 of the Letter).

III. DMRG CALCULATIONS

In this section we provide details of our DMRG simula-
tions of the real-time evolution of the transverse current.
We will focus on three aspects: (i) the coarse graining of
the current, (ii) the dependence on the initial state and
its characteristic wave length k, and (iii) the numerical
determination of the frequency shift δω, depending on
the maximum simulation time and system size. The sim-
ulations were carried out with a fixed discarded weight,
which we have varied from 10−4 to 10−6 in order to check
convergence of our results.

Figure 4 shows the Fourier spectrum of the transverse
current for two different coarse graining schemes. The
solid, black line is taken from Fig. 4(c) of the Letter where

0 1 2 3
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0.5

1

<
jx α(ω
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/J

α=N/2
α=5

N=64
B

z
/J=1.5

k=1/2

FIG. 4: Coarse graining: The solid, black line is the
frequency-dependent current averaged over the left half of the
system while the dashed, red line is averaged over five sites,
counting away form the center of the system with N = 64 (to
be precise, these are sites r = 30, 31, 32, 33, 34). The main
features, i.e., the dominant frequencies do not depend on the
coarse graining.

we average the current over the left half of the chain
(labeled by α = N/2 in Fig. 4). The dashed, red line
is the result from averaging the current over five sites
in the middle of the chain (denoted by α = 5); in this
example, the coarse graining is taken over sites r = 30,
31, 32, 33, 34 in a system with N = 64. As the figure
clearly shows, the position of the two maxima, i.e., the
one at the Larmor frequency ωL and the one at ωL + δω,
as well as their (relative) weights are insensitive to the
coarse graining.

Turning to the initial states of the real-time evolution,
they are constructed by adding a site-dependent trans-
verse field via a term

∑
r Bx

r Sx
r to the Hamiltonian with
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J=40
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J=40
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z
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FIG. 5: Dependence on the initial state: Spectrum of the
transverse current for two different values of k: k = 1/2
(solid, black line) and k = 1 (dashed, red line). In both cases,
Bx/J = 1, Bz/J = 1 and N = 64. The Fourier transform is
taken with tmaxJ = 40 due to the higher numerical costs at
larger k.
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FIG. 6: Numerical determination of ωL +δω in dependence of
the simulation time, for three different system sizes: N = 32
(solid, black line), N = 48 (dash-dotted, blue line) and N =
64 (dash-dotted, red line). The final values are all within
the overall numerical accuracy and no systematic finite size
effects are visible. The inset shows the spectra at tmaxJ = 80
for N = 32 (solid, black line) and N = 64 (dashed, red line).

Bx
r = Bx cos(2πkr/N). Figure 5 illustrates that a central

result of our Letter, namely the positions of the maxima
in the current’s Fourier spectrum, does not depend on
the wave vector k of the perturbing field Bx

r in the long
wave-length limit. Computational constraints lead to a
decrease of the maximum simulation times accessible as k
is increased. For a comparison of k = 1/2 and 1 this im-
plies that we have to confine ourselves to tJ . 40. There-
fore, the features in Fig. 5 are broader than in Fig. 4 (c)
of our Letter.

In Fig. 6, we address the convergence of the position of
the second maximum in jx

N/2(ω) at ωL +δω as a function
of the simulation time and the system size. Since we per-
form a discrete Fourier transform on a finite time window
to obtain jx

N/2(ω) from the real-time data jx
N/2(t), the

resulting spectrum depends on the maximum simulation
time. After a minimum time needed to resolve the two
frequencies has been reached we compute the spectrum
after each time step and extract both frequencies. The
quantity displayed in the figure is ωL + δω averaged over
these spectra obtained from tmaxJ = 20 up to the max-
imum simulation time tmax. For N = 32 and 48 (solid,

black and dash-dotted, blue line, respectively), ωL + δω
weakly increases with tmax, while for N = 64 (dashed
red line), the convergence is much faster. The finite-size
effects in ωL + δω are non-monotonous and result in a
small uncertainty of about 2-3%, well within the overall
numerical accuracy of the simulations. The inset shows
the spectrum of the current as a function of frequency at
tmaxJ = 80 for N = 32 and N = 64. While the dom-
inant frequencies are only slightly affected by finite-size
effects, spurious additional peaks appear on the smaller
system that are irrelevant for the results and discussion
presented in the Letter.

IV. COMMENT ON UNITS

In the Letter all quantities are expressed in units of
the exchange coupling constant J . Moreover, and to ab-
breviate the theoretical analysis, Planck’s constant ~ has
been set to unity as usual. Similarly, the Bohr magne-
ton µB and the spin Landé factor gS have been absorbed
into the definition of the magnetic field. The correspon-
dence between these units and SI-units is summarized in
Tab. I. Therein, J is expressed in units of temperature,
i.e., divided by the Boltzmann constant kB.

quantity
unit

Letter SI

magnetic field J kB/(µB gS) (J/kB)

≈ 0.744 T/K (J/kB)

frequency J kB/~ (J/kB)

≈ 1.309 · 1011 Hz/K (J/kB)

time 1/J ~/kB (kB/J)

≈ 7.638 · 10−12 sK (kB/J)

TABLE I: Correspondence between the units in the Letter
and SI-units.

∗ Electronic address: r.steinigeweg@tu-bs.de

[1] H. Bethe, Z. Phys. A 71, 205 (1931).



58
3 SPIN AND HEAT DYNAMICS IN LOW-DIMENSIONAL QUANTUM

MAGNETS



3.4 Field-dependent spin and heat conductivities of dimerized
spin-1

2
chains 59

T

B
3D-Order

LL-phase
gapless

gapped
dimerized phase

Bc1
Bc2

Ferro-
magnet

Figure 8: Sketch of the phase diagram of a bulk material exhibiting a field-
induced Luttinger Liquid phase at low temperatures

3.4 Field-dependent spin and heat conductivities of
dimerized spin-1

2 chains

We now leave the Heisenberg chain and employ linear response theory to
study the transport properties of gapped quantum magnets in a homoge-
neous magnetic field. While the physics of a spin Luttinger liquid, which is
a critical phase with algebraic decaying spin-spin correlations, can very well
be studied theoretically using the Heisenberg chain [8], experimental access
to the Luttinger liquid physics in low dimensional quantum magnets is rare
[56, 57]. For quantum magnets which have a spin gap in the groundstate
such as spin ladders or dimerized chains, the Luttinger liquid phase can be
induced by a magnetic field. As a experimental motivations, we introduce
the organic spin ladder compound C5H12N2CuBr4 (Refs. [56] and [57]). This
material has recently gained attention as it allows for the experimental ac-
cess to field-driven quantum phase transitions at low temperatures up to the
saturation field. While the exchange couplings of the majority of copper
based spin ladder materials (see [11] and Chap. 3.5) exceed the magnetic
fields available in the laboratory, for this material, the phase diagram with
respect to temperature and magnetic field has been explored by a large va-
riety of experimental probes [56, 57, 178, 179, 180]. A sketch of the relevant
features of phase diagram found in these experiments [57] is shown in Fig. 8.
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For very low temperatures real low-dimensional quantum magnets exhibit a
ordered phase in which the anisotropic exchange interaction in the planes is
no longer dominant. At higher, yet sufficiently low temperatures and zero
magnetic field the phase is gapped and dimerized, which was also reported
for C5H12N2CuBr4. Once the magnetic field exceeds Bc1 the gap closes and
the material exhibits a spin liquid phase with algebraic decaying spin-spin
correlations. Further increasing the magnetic field amplitude beyond Bc2

induces a second phase transition to a ferromagnetic phase.
In the following we take a dimerized spin chain as minimal model of a

quantum magnet that exhibits such a field-induced gapless phase [98, 99].
The spin gap as a function of dimerization can be tuned to the value found
experimentally for C5H12N2CuBr4 [56, 57, 178]. We do expect to observe
qualitatively similar magnetothermal transport properties. We apply the
linear response formalism established in Chap. 3.1 to calculate the frequency-
dependent spin and heat conductivities of dimerized spin chains as a function
of temperature and magnetic field. As a main result, we find enhanced spin
and heat transport in the field-induced gapless phase, which manifests itself
as an increased weight in the low-frequency regime of both spin and heat con-
ductivity for all values of dimerization. While we focus on the experimentally
relevant value, it is important to note though that recent experiments have
not found distinct features in the thermal conductivity of C5H12N2CuBr4

[181]. Furthermore, we include magnetothermal corrections, which then lead
to an decrease of the conductivities, as was known for the Heisenberg chain
[167].
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I. INTRODUCTION

While low-dimensional quantum magnets have been in-
tensely studied for the past decade, the transport properties
still pose viable challenges for experimental and theoretical
physicists.1–4 On the theoretical side, the ground-state prop-
erties of low-dimensional spin systems are very well studied
by means of powerful techniques such as the Bethe ansatz,
bosonization, the density matrix renormalization group
�DMRG� method, quantum Monte Carlo, and exact diagonal-
ization �see Refs. 5–7 for reviews�. Finite-temperature trans-
port properties, though, remain an exciting and active field of
research. One of the best established results is the ballistic
thermal transport in the integrable XXZ spin-1

2 chain.8–11 In
general, however, transport properties are not that easily ob-
tained, especially far from equilibrium or in nonintegrable
models but even spin transport in exactly solvable models is
still an active field of research with open pending
questions.11–18 In the nonequilibrium case, one has to resort
to numerical simulations of either systems coupled to exter-
nal baths19–21 or closed systems prepared in a state out of
equilibrium.22,23

For nonintegrable systems, finite-temperature transport is
expected to be diffusive,24,25 which is consistent with the
numerical observation of a vanishing Drude weight for both
heat and spin transport.11,26–29 While this result has been ac-
cepted for massive phases in the high-temperature regime,
the situation for massless phases of nonintegrable systems at
low temperatures and in the vicinity of integrable
models11,30–32 is less clear, in the sense that numerical studies
yield large ballistic contributions to transport coefficients in
massless phases and on finite systems.2,30,33

Theoretical research into the transport properties of low-
dimensional magnets1,2 has been strongly motivated by ex-
citing experimental results on materials with low-
dimensional electronic structures.3,4 The large thermal
conductivities found in the spin-ladder materials
�Sr,Ca,La�14Cu24O41 establish a link between the thermal

conductivity and magnetic excitations.34–37 There is also a
variety of spin-chain materials with magnetic contributions
to the heat conductivity, most notably Sr2CuO3, SrCuO2
�Refs. 38–40�, and CaCu2O3 �Ref. 41�. Recent successes in
sample preparation have resulted in very clean samples of
SrCuO2, exhibiting the largest thermal conductivity so far
observed in low-dimensional quantum magnets.40 This has
been interpreted as experimental evidence for ballistic heat
transport in clean Heisenberg chains, where phonons are the
main source of external scattering.40

The magnetic field dependence of the thermal conductiv-
ity has been the case of interest in several experimental
studies,34,42,43 yet in most of the known materials, exchange
couplings are orders of magnitude larger than the magnetic
fields available in a laboratory. Only recently, the quasi-one-
dimensional organic compound �C5H12N�2CuBr4 �Refs. 44
and 45� has gained attention in this context. It has exchange
couplings small enough to allow experimental access to
field-driven quantum phase transitions at low temperatures
up to the saturation field. In these experiments, the phase
diagram with respect to temperature and magnetic field has
been explored by a large variety of experimental probes, es-
tablishing the presence of a field-induced gapless phase at
low temperatures.46–50 Recent measurements of the thermal
conductivity of these compounds in external magnetic fields
have been interpreted in terms of the absence of spin-
mediated heat transport.51

The field-dependent thermal transport in the XXZ chain
has previously been addressed with several theoretical
approaches,52–54 emphasizing the role of magnetothermal
corrections to the thermal conductivity due to the coupling of
the spin and the heat current, similar to the Seebeck effect.55

The possibility of controlling the heat transport in spin
chains by varying a magnetic field has been addressed in
Ref. 56. The zero-field transport properties of the dimerized
chain have been studied in Refs. 2 and 11 while the field
dependence of the thermal Drude weight of noninteracting,
dimerized XX chains has been discussed in Ref. 57.
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Our present goal is to understand the dependence of the
spin and heat conductivities of dimerized spin chains on ex-
ternal magnetic fields. Within linear-response theory, the
frequency-dependent conductivity has two contributions, a
delta peak at zero frequency whose weight is the Drude
weight and a regular part,

������� = Ds�th����� + ����reg��� . �1�

Using exact diagonalization to evaluate Kubo formulas,55,58

we compute these quantities for a value of the spin gap that
is comparable to the one found in �C5H12N�2CuBr4 �Refs. 46
and 47�.

As a main result, we find an increased weight in the low-
frequency regime of both ���� and ���� in the field-induced
phase. This allows for a direct interpretation in terms of
transport channels opened in the vicinity of the Fermi points
of the corresponding Luttinger liquid. These channels lead to
a strong enhancement of the transport coefficients for spin
and heat conduction. On the finite systems that we have ac-
cess to with exact diagonalization, the main contribution to
the increase in the conductivities at low frequencies and low
but finite-temperature stems from the Drude weight. In the
case of the spin conductivity this increase is roughly an order
of magnitude larger than the one observed in the regular part
whereas for the thermal conductivity, the picture is more
involved. At zero magnetic field and low temperatures, the
bare thermal Drude weight �without any magnetothermal
corrections� dominates the regular part, yet when increasing
the field, the regular part increases more strongly than the
thermal Drude weight. Finally, taking into account the mag-
netothermal corrections, the increase in the thermal weight
with increasing field becomes a decrease, as expected from
the results for the XXZ chain.54

We further study the dependence of the transport coeffi-
cients on the strength of the dimerization, varying it between
the limits of uncoupled dimers and the Heisenberg chain. We
expect that our results are generic for dimerized quasi-one-
dimensional systems, while the obvious advantage of work-
ing with the dimerized chain is that with exact diagonaliza-
tion, we can reach longer chains than in the case of a ladder.
We shall stress that our work is concerned with the intrinsic
transport properties of dimerized systems whereas for a com-
plete description of the experimental results, phonons may
play an important role, as has been emphasized in Refs.
59–61.

The paper is organized as follows: first, we introduce the
model and briefly review the ground-state properties. Sec-
ond, we proceed by summarizing the necessary framework to
compute transport coefficients and conductivities within
linear-response theory. Section IV presents the results. We
study the Drude weights in Sec. IV A, the frequency-
dependent conductivities in Sec. IV B and the spectral
weights in Sec. IV C, all as a function of the magnetic field
and temperature. The influence of the strength of the dimer-
ization is discussed in Secs. IV D and IV E covers magneto-
thermal effects. Finally, we summarize our findings in Sec.
V. The dependence of the Drude weights at finite fields on
the system size is presented in the Appendix.

II. MODEL

We study the spin and thermal conductivity of dimerized
spin chains in a homogeneous magnetic field. The model
Hamiltonian for a chain of length L is given by

H = �
i=1

L

hi = J�
i=1

L

��iS� i · S� i+1 − hSi
z� , �2�

where the dimerization is introduced via �i=� for i even and
�i=1 for i odd, S� = �Sx ,Sy ,Sz�, Si

� and �=x ,y ,z are the com-
ponents of a spin-1

2 operator acting on site i and h denotes
the magnetic field. We use periodic boundary conditions. The
exchange coupling J sets the global energy scale and the
model includes the Heisenberg spin chain ��=1� and un-
coupled dimers ��=0� as limiting cases.

The magnetic phase diagram,62,63 shown in Fig. 1, is very
similar to the one of the two-leg ladder system.68 The upper
�red dashed� line is the saturation field. The lower �solid
black� line corresponds to the spin gap which has been in-
tensely studied by analytical and numerical means.64–67

Since the Heisenberg chain is gapless a careful finite-size
scaling for the lower critical field is necessary. The blue dia-
monds are DMRG data for open boundary conditions, ex-
trapolated in inverse system size, which we compare to exact
diagonalization results obtained with L=18 sites and periodic
boundary conditions �squares�. This illustrates that for �
�0.8, the phase boundaries exhibit very small finite-size ef-
fects; thus, for the system sizes that we shall use in our exact
diagonalization analysis, we are already very close to the
bulk value for the gap. The Luttinger liquid phase here is
similar to the Luttinger-liquid phase in the XXZ model where
the transition from the gapped to the gapless phase is of the
commensurate-incommensurate type �see, e.g., Refs. 69 and
70�.
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FIG. 1. �Color online� �h ,�� plane of the phase diagram of the
dimerized spin chain at temperature T=0 �see Refs. 62 and 63�. The
upper �red dashed� line is the saturation field. The lower �solid
black� line corresponds to the spin gap �Refs. 64–67�. The critical
fields hc1

and hc2
are obtained from exact diagonalization of chains

of length L=18 �squares�. The blue diamonds are DMRG data,
extrapolated in the inverse system size.
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III. TRANSPORT COEFFICIENTS AND CONDUCTIVITIES

Here we summarize the central equations for magnetic
transport in the linear-response regime. The expectation val-
ues of the spin and thermal currents, j1 and j2, are given by55

�jl� = �
m

Llmfm, �3�

where f1=�h and f2=−�T refer to the magnetic field and
temperature gradients. Llm is the conductivity matrix. j1 and
j2 can be expressed via the spin and energy currents js and jth
by

j1 = js, j2 = jth − hjs, �4�

where

js�th� = i�
l=1

L−1

�hl−1,dl� . �5�

hl denotes the local energy densities defined by Eq. �2� at
zero magnetic field, i.e., dl=hl=�iSi

�Si+1
� for heat transport,

while dl=Sl
z for spin transport. The conductivities satisfy

�lm��� � Re Llm��� = Dlm���� + �reg,lm��� �6�

with

Dlm =
	
r+1

ZL
�
n,o

En=Eo

e−
En�n	jl	o��o	jm	n� , �7�

where r=0�1� for m=1�2� and

�reg,lm =
	
r

ZL

1 − e−
�

�
�
n,o

En�Eo

e−
En

��n	jl	o��o	jm	n���� − �E� . �8�


=1 /T is the inverse temperature, 	n� and En are the eigen-
states and energies of H, Z=�ne−
En denotes the partition
function, and �E=Eo−En. Next we define


 ����
����

�th,s��� � � 
 �11���
�22���	 j2→jth

�21���	 j2→jth
,
� �9�

and the Drude weights Ds, Dth, and Dth,s of ����, ����, and
�th,s���, respectively. The latter set of quantities corresponds
to a choice for the currents alternative to Eq. �4�, namely,
j1= js and j2= jth. Note that TD12�s,th�=D21�th,s�. As in Refs. 2,
11, 26, and 54 we will evaluate ����, ����, and �th,s���
using exact diagonalization. From these quantities all trans-
port coefficients �lm��� at finite fields can be obtained using
Eqs. �4�, �7�, and �8�. The Drude weight Kth for purely ther-
mal transport accounts for the situation of no spin current,
i.e., at �js�=0. It is obtained analogously to the Seebeck ef-
fect as

Kth = Dth −
Dth,s

2

TDs
, �10�

or equivalently, using Eqs. �4� and �7�: Kth=D22
−D21

2 / �TD11�. We will study the field dependence of the
magnetothermal coupling in Sec. IV E.

For the spin Drude weight, an alternative expression fully
equivalent to Eq. �7� exists71

Ds =
	

ZL��− T̂� − 2 �
n,o

En�Eo

e−
En
	�o	js	n�	2

�E 
 , �11�

where �T̂� denotes the kinetic energy. This expression will be
used to evaluate Ds in this paper since it gives the correct
contribution to the optical sum rule Eq. �13� on finite systems
at low temperatures �see the discussion below�.54

Finally, we define the integrated spectral weights

Is�th���� ª �
−�

�

�������d� = Ds�th� + 2�
0+

�

����reg��� ,

�12�

and Is�th�
0 � Is�th��
�. For the spin conductivity, one obtains the

optical sum rule,72

Is
0
ª �

−





����d� =
	

L
�− T̂� . �13�

The right-hand side of the corresponding sum rule for ther-
mal transport73 at finite temperatures depends on the model
and the choice for the local energy density.

IV. RESULTS

We present our results for the transport coefficients of
dimerized spin chains, starting with the dimerization strength
�=0.5, yielding a gap close to the one of the experimental
system. We separately analyze the Drude weights �Sec.
IV A� and the conductivities �Sec. IV B� and then combine
them to get the spectral weight �Sec. IV C�, all as a function
of temperature and magnetic field. As a result, we find that
the dominant effect of applying a magnetic field for this fixed
value of � is an enhancement of the low-frequency spin as
well as heat conductivity. In Sec. IV D, we analyze this en-
hancement at different strengths of the dimerization. Section
IV E discusses the magnetothermal coupling.

A. Drude weights as a function of T and h

We start focusing on �=0.5, resulting in a value of the
spin gap �=0.66 in units of J. One of the two contributions
to the integrated spectral weights is the Drude weight in Eq.
�1�. Figure 2 shows the spin Drude weight Ds and the ther-
mal Drude weight Dth as a function of the magnetic field for
T /J=0.25,0.5,1 and chains consisting of L=18 spins. At
low temperatures �T=0.25J, solid black lines�, we find a
strong enhancement of both quantities between the critical
fields hc1

=0.66J and hc2
=1.48J. Increasing the temperature

weakens this feature significantly, especially for thermal
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transport. This feature is addressed quantitatively in the dis-
cussion of the spectral weights �Sec. IV C�. It is also worth
noting that the maximum in the Drude weights Ds�th�
=Ds�th��h� moves to higher fields as the temperature in-
creases. At low temperatures, the question arises whether
there are any features in Ds=Ds�h� at the critical field, i.e.,
whether the finite systems we investigate exhibit remnants of
the quantum critical behavior to be expected at hc1

. We shall
comment on this point in Sec. IV D, where we will discuss
the � dependence of the Drude weights.

B. Dynamical conductivities

The second contribution to the spectral weight is the regu-
lar part �Eq. �8�� of the dynamical conductivity. By inspect-
ing the spectral representations, one realizes that the field can
only enter via the Boltzmann factors, thus a magnetic field
can only enhance or reduce existing weight but does not
change the position of the poles �=�E. Note that at zero

magnetic field, the weight in the gap is suppressed at low
temperatures as the system approaches its dimerized ground
state and can be tuned to finite values by increasing either the
magnetic field or temperature.2

Our numerical results are depicted in Fig. 3. At zero mag-
netic field and low temperatures, there is almost no weight in
the regular part of ���� �dashed line in Fig. 3�a�� below a
value of � approximately corresponding to hc1

�compare Ref.
2 for the case of �=0.1 and h=0� beyond which the domi-
nant peak is located. Turning on a magnetic field larger than
hc1

influences the curve drastically. The major portion of the
weight still lies above the gap but is much smaller and with-
out significant peaks �solid line in Fig. 3�a��. In addition to
the overall reduction we find spectral weight at very small
frequencies which is not the case at zero field. Going to
higher temperatures �Fig. 3�b�� results in a smooth curve due
to thermal excitations while the influence of the magnetic
field is much weaker and does only change the numerical
values without modifying the structure.
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FIG. 2. �Color online� Drude weight for spin �a� and thermal �b� transport at �=0.5 and different temperatures for chains of length L
=18. At low temperatures �T=0.25J, solid black lines� we find a significant increase in both quantities in the field-induced phase. At larger
temperatures, the peak becomes less pronounced and is located at higher magnetic fields. The black dotted vertical lines are guides to the
eyes which mark the critical fields hc1

=0.66J and hc2
=1.4J.
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FIG. 3. �Color online� Regular part of the dynamical conductivities ����, ���� as a function of frequency for different magnetic fields
and temperatures. �a� shows the spin conductivity at low temperatures �T=0.25J� and zero magnetic field �dashed black line� as well as h=J
�solid red line� for a chain with L=18 spins and a dimerization of �=0.5. In the presence of a field h=J, �reg��� increases in the gap but
strongly decreases at higher frequencies. The inset �b� shows the same at a higher temperature �T=J� where the effect of h is less strong. �c�
and �d� show �reg��� of the same system. �c� For low temperatures, the magnetic field gives rise to an increase in �reg��� over the whole
spectrum �solid red line�. The inset �d� shows �reg��� at higher temperatures �T=J�, where �reg��� is a smooth curve and barely influenced
by the field.
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In the case of thermal transport �Fig. 3�c��, the basic struc-
ture is different and the role of the magnetic field at low
temperatures is even more important. Without a field �dashed
line� a significant amount of spectral weight is found around
�=0 while another important contribution is at the lower
edge of the one-triplet band, similar to the spin conductivity.
Switching on a magnetic field larger than hc1

�solid line�
enhances the heat conductivity strongly, especially at low
frequencies. Increasing the temperature up to T=J smooth-
ens the curve while completely suppressing the influence of
the magnetic field.

Concentrating on the regular parts alone, one would con-
clude that both spin and heat transport are not influenced by
the magnetic field at high temperatures. At low temperatures,
the weight in �reg��� is strongly reduced by the magnetic
field yet comes along with an increase in the weight at low
frequencies, which is the effect we are interested in. By con-
trast, �reg��� is enhanced by the field at low temperatures at
all frequencies, with most of this increase originating from
the low-frequency range ��hc1

. At higher temperatures,
both effects are suppressed. To understand the interplay of
the Drude weights and the regular parts, one has to study the
spectral weight.

C. Field dependence of the spectral weight

Now that we have shown how the transport enhancement
takes place via increasing weight at low frequencies we
study the integrated spectral weight Is�th����. Figure 4 shows
our results for Is��=0.5J� and Ith��=0.5J� as well as the
total spectral weights Is�th�

0 . We have chosen the upper bound
of integration to be �=0.5J to measure how the weight in the
gap of the system behaves as a function of temperature and
field. Our findings in the case of low temperature and �
=0.5 are the following: for both spin and heat transport, we
find a strong enhancement of transport in the field-induced
gapless phase at low temperatures T�hc1

. As temperature
increases, the field dependence becomes less pronounced.
From Fig. 4, it is obvious that the total weight in the spin

conductivity, i.e., Is
0� �−T̂� typically decreases as a function

of increasing field, due to the increasing weight of strongly
polarized states. Therefore, the enhanced low-frequency
weight seen in both the Drude weight and the regular part
has to be accompanied by a decrease in spectral weight at
higher frequencies in order to satisfy the optical sum rule Eq.
�13�, consistent with our discussion of Fig. 3�a�.

In the case of thermal transport, the influence of tempera-
ture on Ith

0 is much more drastic: the maximum in Ith
0 seen at
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FIG. 4. �Color online� �a� Spectral weight Is��� for spin transport integrated up to �=0.5J as a function of magnetic field h for L=18
spins and at different temperatures. �b� Spectral weight Ith��� for heat transport integrated up to �=0.5J. At low temperatures, there is a large
peak in both quantities indicating the enhancement of transport in the field-induced gapless phase. As temperature increases, this effect
vanishes up to the point where the magnetic field causes the decrease in spectral weight in the gap. For heat transport, the magnetic field has
almost no effect at large temperatures �T=J ,2J�. �c� and �d� When extending the upper bound on the frequency � to infinity, the effect of
the magnetic field on spin transport is hidden under the large contributions of the regular part above the gap �c� while Ith

0 behaves similar to
Ith��=J /2� �d�. The inset in each panel illustrates the small dependence on the system size at low temperatures.
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T=0.25J is quickly washed out at temperatures T�hc1
. By

contrast, for spin transport and in Is
0, the interesting features

are hidden at all temperatures under the large field-induced
decrease in the regular part as � approaches the gap �Fig.
4�c�� whereas in the case of thermal transport, the low-
frequency behavior dominates the field dependence of Ith

0 at
T�hc1

�Fig. 4�d��. For T�0.25J, the finite-size effects of the
integrated weights become very small, which is shown in the
insets of Fig. 4, illustrating that this quantity is very robust.
In other words, the maximum of Is�th���=0.5J� in the win-
dow hc1

�h�hc2
is stable against a variation in L.

The field-dependent enhancement of Is�th���=0.5J� in
Figs. 4�a� and 4�b� �T=0.25J� is well described by Is�th�
�h2 for h�hc1

. Furthermore, we present

�Is�th� =
maxh�Is�th��� = 0.5J,h�� − Is�th��� = 0.5J, h = 0�

Is�th��� = 0.5J, h = 0�

in Fig. 5 as a function of temperature for L=14 spins. The

data are already converged with respect to the system size for
the temperatures shown. While the field dependence of
Ith��=0.5J� and Is��=0.5J� is only qualitatively similar, �Ith
�black solid line� and �Is �red dashed line� almost coincide.
The green dashed-dotted line is an exponential decay fitted to
�Ith to illustrate that the decay is slightly slower than expo-
nential for spin as well as for heat transport.

Regarding the temperature dependence of the thermal
spectral weight at lower temperatures �T�0.25J� we expect
an exponential suppression at low temperatures in gapped
phases11,57,74 �h�hc1

or h�hc2
�. For the Luttinger-Liquid

phase �hc1
�h�hc2

�, we expect Is�th�= Is�th��T��T based on
previous work on the temperature dependence of the thermal
drude weights of the XXZ spin-1

2 chain in a magnetic field.54

At zero magnetic field we indeed find an exponentially sup-
pressed weight converged with respect to the systems size
for T�0.25J but in the gapless phase �h=J�, the finite-size
effects do not allow for a definite conclusion on the tempera-
ture dependence.

To clarify the role of the Drude weight on finite systems
in this context, it is plotted in Fig. 6 as a fraction of the
corresponding total spectral weight. In the case of spin trans-
port �Fig. 6�a��, the Drude weight contributes very little to
the total weight but its significance increases monotonously
with the field. Ds / Is

0 saturates at a finite value above the
saturation field. These observations hold for all temperatures
studied �T /J=0.25,0.5,1�, only the value at saturation and
the field necessary for reaching it depends on temperature.
For instance, at T=0.25J �solid black line� the Drude weight
accounts for 60% of the total weight above h=2J. At T
=0.5J �dashed red line�, Ds / Is

0 saturates at h=3.5J at a value
of 48%. However, Fig. 6 should not be interpreted in terms
of a large absolute value of the Drude weight above satura-
tion in the thermodynamic limit, neither at zero or finite tem-
peratures. At zero temperature, for N→
 and in the two
gapped phases h�hc1

and h�hc2
, we expect the spin Drude

weight to vanish, according to Kohn’s reasoning.71 As far as
the gapless phase is concerned, the zero-temperature Drude
weight should consequently be finite in the thermodynamic
limit, yet the contribution of the Drude weight relative to the
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tral weights as a function of temperature �L=14�. The curves for
thermal transport �solid black line� and spin transport �dashed red
line� almost coincide and decay slightly slower than exponentially
��Is�th��exp�−cT�, green dashed-dotted line� as the temperature
increases.
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regular conductivities remains an open issue for low tem-
peratures.

In the case of heat transport �Fig. 6�b��, the picture has
more facets. For low temperatures �T=0.25J, solid black
line�, Dth / Ith

0 decreases in the field-induced phase as there is
a huge increase in the regular part of the conductivity �com-
pare Fig. 3�c��. This results in a minimum in Dth / Ith at h
�J, roughly where the field-dependent thermal Drude
weight has its maximum. At h�2J, the Drude weight is
restored as the dominant contribution at Dth / Ith

0 �0.9 at low
T. This effect is weakened by temperature �compare Fig.
3�d��, eventually resulting in a monotonous increase in
Dth / Ith

0 with h at T=J. Our results clearly suggest that the
Drude weight is a significant contribution in the field-
induced gapless phase on finite systems. Several comments
are in order. First, a finite Drude weight at T�0 in a nonin-
tegrable system would be surprising while on the other hand,
this observation is consistent with the fact that thermody-
namic properties in the phase are well described by an effec-
tive XXZ model,48,75 which is believed to have ballistic trans-
port properties in its gapless zero-field phase.2,12 Moreover,
in the ferromagnetic phase h�hc2

, the physics is expected to
be well approximated by a weakly interacting gas of mag-
nons which in turn renders the Drude weight large in relation
to the total weight. We stress that similar to Ds, this is a
statement about finite systems and temperatures, and much
larger system sizes �see the Appendix� would be required to
extrapolate the ratio Dth / Ith

0 to the thermodynamic limit. We
can therefore not pursue this question here. Note though, that
in the high-temperature limit �
=0� the magnetic field de-
pendence drops out. In this limit, exact diagonalization
yields a systematic decrease in the Drude weight with the
system size.11

To summarize the discussion of the behavior at �=0.5, in
the low-temperature regime, which is our main case of inter-
est, the field-driven enhancement is visible in the conductivi-
ties as well as in the Drude weights and therefore also in the
spectral weight but the Drude weights contribute the most.
Further, we can distinguish a field- and a temperature-
dominated regime: qualitatively, at T�hc1

, a variation in the

magnetic field influences the conductivities whereas for T
�hc1

, the magnetic field has little effect on both the structure
and the weight in the conductivities. Figure 4 contains the
main result of our work: a field-induced increase in both
transport coefficients at low frequencies ��hc1

.

D. Dependence on �

Next we turn to the discussion of the influence of the
strength of dimerization �. Since we have presented evidence
that the Drude weights are the dominant contribution in the
field-induced phase, we concentrate on these quantities, ex-
pecting them to reflect the main qualitative behavior. Figure
7 shows the spin Drude weight as a function of the external
magnetic field at different temperatures and strengths of
dimerization. In all cases, the Drude weight for spin transport
exhibits a maximum at intermediate fields. We expect that in
the thermodynamic limit and at sufficiently low tempera-
tures, the transition into the field-induced Luttinger phase
should lead to signatures in the Drude weights at hc1

and hc2
.

Yet, for the system sizes we can study, and thus the acces-
sible T, the location of the inflection points of Ds do not
exhibit a clear correlation with critical fields hc1

and hc2
of

Fig. 1. This remains to be analyzed in the future.
As temperature increases �compare Figs. 7�a� and 7�b��,

the maximum in the Drude weights moves from between the
critical fields to higher values of h while the absolute value
of Ds decreases. Sending �→0 decreases the values of Ds
for all fields while the field-driven increase is not affected
qualitatively. This is true for small as well as high tempera-
tures. Note that increasing the temperature suppresses the
spin Drude weight much more severely than altering �. In
the case of thermal transport �Fig. 8�a�� we find a stronger
quantitative dependence on � while the fact that altering �
does not change the field dependence remains qualitatively
correct. The former is not surprising since uncoupled dimers
cannot carry any heat current while the Heisenberg chain is
known for its ballistic heat transport.8–11

E. Magnetothermal couplings

The last effect to investigate is the influence of the mag-
netothermal coupling Eq. �10�. In the case of the XXZ chain,
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FIG. 7. �Color online� Spin Drude weight as a function of magnetic field h for a system of length L=16 and different values of �. �a� At
low temperatures �T=0.25J�, the spin Drude weights show a significant peak between the critical fields �compare Fig. 1 at T=0�. �b� For
larger temperatures �T=J� the peak is less pronounced and moves to larger fields. In both cases increasing � gives rise to a strong increase
in the numerical values but the position of the peak moves only slightly toward smaller fields. The qualitative field dependence is almost
independent of �. For all values of �, the peak is located at marginally smaller fields than for the Heisenberg chain �long dashed lines in �a��.
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it has been shown that this correction suppresses the thermal
conductivity.54 The results for the field dependence of the
thermal Drude weight Kth at low temperatures �T=0.25J� are
shown in Fig. 8�b�. The corrected Drude weight Kth �Eq.
�10�� decreases as the magnetic field increases, which is the
systematic behavior in the whole field-induced phase. Shift-
ing � toward �=0 lowers the overall values while only
slightly affecting the field dependence. Figure 9 is a compari-
son of the three Drude weights associated with thermal trans-
port, Dth, D22, and Kth, where

D22 = Dth − 2
hDth,s + 
h2Ds. �14�

As expected from Eqs. �10� and �14�, all three quantities
coincide at zero magnetic field. While D22�Dth both quan-
tities exhibit a similar field dependence, i.e., it features a
maximum in the field-induced gapless phase and a smooth
decay to zero as h increases beyond saturation. The magne-
tothermal correction changes this behavior completely, yield-
ing a monotonous decrease as the field increases.

V. CONCLUSIONS AND SUMMARY

In this work, we studied spin and heat transport in dimer-
ized spin-1

2 chains in a magnetic field, in dependence of tem-
perature T, magnetic field h and the strength of dimerization
�. Focusing on the field dependence in the case of �=0.5 we
found that the transport coefficients at low frequencies for
both, spin and heat transport, are strongly enhanced in the
field-induced gapless phase. For spin transport at low but
finite temperatures, the Drude weight becomes the dominant
contribution as the field increases. We stress that this is an
observation for finite systems. While one may expect that the
Drude weight remains relevant in the field-induced phase in
the zero temperature,71 thermodynamic limit, the theoreti-
cally interesting question of a finite Drude weight at low but
finite temperatures is beyond the scope of this work.

In the case of heat transport, the emerging picture is more
involved. Increasing the magnetic field up to saturation, we
find that the regular part of the conductivity is vastly en-
hanced at all frequencies. Although the thermal Drude

weight has a field dependence similar to its spin counterpart,
this leads to a decrease in the relative contribution in the
spectral weight at low temperatures. However, the thermal
Drude weight remains the dominant contribution on the finite
systems studied here. In both transport channels, a tempera-
ture larger than the spin gap severely weakens all features
related to the magnetic field.

Our main finding is the field-induced increase in both
transport coefficients in the low-frequency window, which is
robust even on the finite chains accessible to exact diagonal-
ization. While most of our work was concerned with param-
eters that mimic the energy scales typical for
�C5H12N�2CuBr4 �Refs. 46–48�, we further studied the de-
pendence on the strength of dimerization. There we observe
that altering � changes the overall values while the field
dependence remains qualitatively the same. Thus we con-
clude that our observation of field-enhanced spin and heat
transport is valid in dimerized spin chains. We also expect it
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FIG. 8. �Color online� �a� Thermal Drude weight Dth as a function of magnetic field h for a system of length L=16 and different values
of � at low temperatures �T=0.25J�. While the thermal Drude weight decreases fast as � decreases, the field dependence is not affected. �b�
Corrected thermal Drude weight Kth. We find that the magnetothermal coupling prohibits the strong increase in the thermal Drude weight in
the field-induced phase.
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to be more generally valid in other dimerized quasi-one-
dimensional spin systems, such as two-leg spin ladders.

Finally, the calculation of the magnetothermal coupling at
low temperatures unveils a very interesting effect, similar to
the XXZ chain.54 The corrected thermal Drude weight shows
no increase in the field induced phase, instead, it decreases.

In conclusion, we complemented several experimental
and theoretical studies which characterized the field-induced
gapless phase,46–48 by emphasizing here that clear finger-
prints of this transition are present in current-current corre-
lation functions and should thus, in principle, manifest them-
selves in transport measurements. The spin conductivity is
inaccessible at the moment but can be extracted from quan-
tities measured in NMR experiments.76,77
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APPENDIX: FINITE-SIZE SCALING OF THE
DRUDE WEIGHTS

The finite-size scaling of the Drude weights in noninte-
grable spin chains has been previously studied at zero field
and in the limit of infinite temperature11 without evidence of
a finite Drude weight in the thermodynamic limit for nonin-
tegrable systems. Note that the field dependence drops out at

=0. These studies include the dimerized chain. We present
our data for finite magnetic fields in Fig. 10. Due to the
interplay between the regular contribution and the Drude
weight in the conductivities, the dependence on the system
size is nonmonotonic at finite magnetic fields and for the
system sizes accessible, especially at low temperatures �T
=0.25J�. Therefore, the accessible system sizes are too small
to gain any qualitative insight into Ds�th� beyond Ref. 11. The
integrated spectral weight �Fig. 4� is a robust quantity in this
context.
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3.5 Experimental observation of anisotropic heat transport in
low-dimensional quantum magnets 71

3.5 Experimental observation of anisotropic heat trans-
port in low-dimensional quantum magnets

The theoretical work on the energy dynamics of low-dimensional quantum
magnets to be presented in Chap. 3.7 is strongly motivated by the ex-
perimental observation of anisotropic heat transport in materials that are
known to show strong signatures of low-dimensional quantum magnets. Even
though the focus of the theoretical analysis will be on chains, we first discuss
the so-called telephone number compounds (Sr,Ca,La)14Cu24O41, which are
spin ladder materials. They played an important role in realizing that the
magnon contribution to thermal transport in magnetic insulators can out-
weigh the phonon contribution at elevated temperatures (see Ref. [3] for a
review). Furthermore, all-optical measurement techniques, that resemble a
non-equilibrium setup, have been applied to Sr9La5Cu24O41 [54, 55]. Second,
we discuss recent results for the spin chain material SrCuO2 where an increase
in sample purity has led to a drastic increase of the magnetic contribution
to the thermal conductivity [154].

The anisotropic heat transport of Sr14Cu24O42 has first been reported in-
dependently in Refs. [168] and [182], after a thorough investigation of these
compounds as part of the search for high-TC superconductors [183]. In copper
based quantum magnets such as (Sr,Ca,La)14Cu24O41 the electronic transport
properties are dominated by the Cu2+ super exchange along the Cu-O-Cu
bonds in the CuO layers. In this configuration the Heisenberg type (~S · ~S) su-
perexchange interaction is mediated via hybridization with the intermediate
oxygen atoms [18]. Specifically, in (Sr,Ca,La)14Cu24O41, every second plane
of the crystal lattice consists of Cu2O3 ladders. The inter-ladder-coupling
is frustrated while the inter-plane coupling is small, effectively isolating the
spin ladders [11, 12]. The chains, which constitute the intermediate planes
of the crystal lattice, were found to be nearly dispersionless and as such do
not contribute to thermal transport [184, 185, 186, 187, 188].

In the following we concentrate on one specific example of the spin ladder
compounds, namely Sr9La5Cu24O41. Replacing Sr with La to a certain degree
reduces the intrinsic hole doping of the ladder planes, leading to very clean
spin ladders [168]. The left panel of Fig 9 shows the heat conductivity κ
of Sr9La5Cu24O41 as a function of temperature measured along the three
different axis of a three dimensional bulk crystal [168]. The two curves with
overall smaller values, are obtained from measurements along the a and b axis
of the crystal. They can be understood as the standard phonon contribution
[168]. However, if the thermal conductivity is measured along the c-axis of
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Figure 9: Anisotropic heat conductivity in Sr9La5Cu24O41. Left: Anisotropic
thermal conductivity, taken from Ref. [168] with permission from the author.
Right: Snapshots of the time resolved spreading of heat in Sr9La5Cu24O41 us-
ing the microthermal imaging technique [54], taken from [55] with permission
from the author.

the crystal the thermal conductivity is broadly peaked around 175K. The fit
based on the phononic conductivity can only describe the behavior at very low
temperatures in this case. However, it can be used to isolate the anisotropic
contribution by substracting the phononic part and studying κmag = κ −
κphonon. The high temperature peak is nowadays understood as the magnon
contribution to heat transport [155, 168].

Exhibiting the largest magnetic contribution to the thermal conductivity
for a long time, Sr9La5Cu24O41 was prone to be the best candidate for new
experiments. Otter et al. used two techniques to measure the time-resolved
heat propagation through a bulk sample [54], as opposed to the established
steady-state techniques. The so called micro-thermal imaging is especially
interesting as far as it motivates the approach to non-equilibrium transport
presented in Chap. 3.6 and 3.7. The experimental protocol can be briefly
summarized as follows: A bulk sample of Sr9La5Cu24O41 is coated with a flu-
orescent substance and subsequently a spot of 40µm2 on the sample surface
is heated up using an 488nm argon laser. While the heat spreads out in the
sample, the photoluminescence is collected and imaged by a CCD camera
with an integration time of 20 − 30µs. The right panel of Fig. 9 shows the
latest result of this technique [55], the time resolved anisotropic spreading
of heat. While these non-equilibrium type-of-experiments are conceptually
interesting, it is currently under discussion how to interpret the results to re-
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Figure 10: Ballistic heat transport in very pure samples of SrCuO2. Left:
Anisotropic heat conductivity along the three axis of the crystal as a function
of temperature. Right: Average mean free path of the magnetic excitations
as a function of temperature, calculated based on the data for κ using Eq (42).
Taken from Ref. [154] with permission from the author

produce the thermal conductivity as known from steady state measurements
[189].

Among the spin chain materials, significant progress in has been made
for SrCuO2. During the early stages of the field of heat transport in low-
dimensional quantum magnets SrCuO2 showed promisingly large magnon
contributions to the thermal conductivity but the magnon and phonon con-
tribution are hard to separate [3, 155]. Yet, by preparing samples of previ-
ously unachieved purity Hlubek et al. recently measured the highest κmag

to that date and a macroscopic mean free path for the magnon lmag & 1µm
[154]. The left panel of Fig. 10 shows their result for the thermal conductiv-
ity measured along the three axis of the crystal and a sketch of the relevant
crystal structure. The black dots where reproduced from [155] and illustrate
how close the phononic and magnonic contribution are in magnitude in this
case, the high-temperature peak being only a shoulder on the low temper-
ature phonon peak (open symbols for a and b axis). For the high purity
sample (red dots) the maximal value of the thermal conductivity doubles,
and now the phonon fit shows clear magnon contributions, exceeding even
those of Sr9La5Cu24O41. The right panel of Fig. 10 shows the mean free path
derived from κmag within a phenomenological model for the magnon heat
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conductivity, introduced in Ref. [190]:

lmag =
3

πNsk2
bT
κmag , (42)

where Ns is the number of spin chains per unit area. As real bulk samples
always have a finite defect density the authors interpret the macroscopical
mean free path as an important phenomenological measure of ballistic trans-
port. It is an open question whether or not the data relates to the ballistic
heat transport in the Heisenberg chain.

3.6 Non-equilibrium transport and real-time evolution

Our analysis of the spin transport in the XXZ chain and the spin and heat
transport in dimerized chains was mainly based on linear response theory.
Yet there is a wealth of interesting physics to be found beyond the linear
regime, see e.g., Refs. [47, 48, 49, 50, 51, 52]. This chapter presents an ap-
proach to study the transport properties of a system at zero temperature,
solely based on the analysis of time-dependent density profiles [48]. The mo-
tivation to employ such an approach to analyze the spin and heat dynamics
in low-dimensional quantum magnets is threefold: First, it is technically sim-
ple and provides easy access to initial states far from equilibrium. Hence it
complements linear response theory at an important point by treating highly
perturbed initial states. Second, in the time-resolved optical measurement of
spreading heat in low-dimensional quantum magnets [54] the time dependent
temperature distribution can be analyzed in the same fashion [55]. However,
in such experiments on bulk materials finite temperature and phonons al-
most certainly play a role. Here we want to first analyze the fundamental
models. A direct comparison with experiments on quantum magnets in bulk
materials is thus beyond the scope of this work. The third point is that
time-dependent particle density profiles can be experimentally accessed in
expansion experiments using ultra-cold atomic gases in optical lattices (see
Chap. 4.2). By trying to emulate the fundamental lattice model, those sys-
tems realize a setup very similar to the one discussed in the following. Parts
of this section have been published in [48] and [191] (see Chap. 3.7).

The general idea is that given a time-dependent density n(x, t) with a well
defined second moment, its time dependence contains important information
about the nature of the dynamics. As a first example, we consider a normal
diffusion equation for a density n(x, t) [48]:

∂tn(x, t) = ∇ · (D∇n(x, t)) , (43)
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Figure 11: Sketch of the approach to non-equilibrium dynamics for spin
dynamics pursued in Ref. [48] and applied to energy dynamics in Chap. 3.7.

where D is the diffusion constant. The Green’s function for Eq. (43) in γ
spatial dimensions is given by

G(x, x́, t) =
1

(4πDt)γ/2
· e− (x−x́)2

4Dt , (44)

which we can use to calculate the expectation values

〈x〉 = x́ and 〈x2〉 = |x́|2 + 2γDt , (45)

and obtain for the spatial variance

σ2(t) = 〈x2〉 − 〈x〉2 = 2γDt+ σ2(t = 0) (46)

Therefore, σ2(t) − σ2(0) ∼ t is a necessary condition for normal diffusive
dynamics. The same result can also be obtained from a classical random
walk [192]. On the other hand ballistic dynamics is supposed to resemble the
dynamics of free particles. One example would be a Gaussian wave-packet in
single particle quantum mechanics[193]. In this case we find for the spatial
variance

σ2(t) = σ2(0)(1 + ξ2t2) . (47)

where ξ2σ2(0) = 1/(4m2) and m is the mass of the particle described by
the wave-packet. We can thus define the average expansion velocity V de-
scribing the spreading of the wave-packet via V 2 = ξ2σ2(0). Qualitatively
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Figure 12: Preparation of initial states far from equilibrium using a gaussian
magnetic field. (a) Initial magnetization profile for ∆ = 0.5, B0 = J and
σB=5. (b) Energy difference δE between the initial state and the ground
state as a function of B0 for σB = 5 and ∆ = 0.5.

similar behavior is obtained from Luttinger Liquids, free spinless fermions
(see Chap. 3.7 for both), so-called quantum random walks [194] or a quan-
tum boltzmann equation in the absence of scattering [195], to name only
a few examples. In each case the prefactor V in σ2(t) − σ2(0) = V 2t2 has
dimensions of a velocity. We can therefore use the spatial variance not only
as a necessary condition to identify parameter regimes which are candidates
for diffusive or ballistic dynamics respectively, but also to define an average
expansion velocity in the ballistic regimes.

The paradigm pursued in the following (see Fig. 11 for a sketch) is now
to prepare an initial state far from equilibrium, where linear response theory
does not apply, calculate the time-dependent spatial variance using adap-
tive time-dependent DMRG, and determine whether σ2(t) grows linear or
quadratic in time. As DMRG is used in the most common formulation for
pure states at zero temperature we employ the energy difference δE between
the groundstate and the initial state as a tuning parameter. The great ad-
vantage is that local densities can be accessed much more efficiently than
current-current correlation functions. Yet, as in studies of C(β, t) [Eq. (37)],
for instance Ref. [58], the time scales have to be sufficiently large to allow
for a conclusion [48]. For the open boundary conditions we apply as usual
in DMRG, the simulation times are inherently limited by the system size
as reflection of the wavepacket at the boundary has drastic influences on
the variance. The downside of studying the variance is that we have only a
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necessary condition for both respective classes of dynamics.
As an example of state preparation we revisit Ref. [48], where we studied

the spin dynamics of the anisotropic Heisenberg chain. The panel (a) of
Fig. 12 shows the magnetization profile of the initial state at ∆ = 0.5 that
is obtained as the groundstate of:

H = HXXZ +B0e
(i−i0)2

2σ2
B , (48)

that is, we have a gaussian magnetic field centered around site i0 = 100.5
with width σB = 5 and amplitude B0. Panel (b) illustrates how the gaussian
magnetization wave-packets generated by this approach explore the regime
of non-linear transport. We plot the energy difference δE between the initial
state and the true groundstate at B0 = 0.

Our main results for the spin dynamics are that for a single Heisenberg
chain we have ballistic transport for ∆ ≤ 1 as suggested by Eq. (39) while our
results for ∆ > 1 were consistent with diffusive dynamics, namely σ2

S(t) ∼
t for large times. As examples for non-integrable systems we studied the
isotropic two-leg spin ladder and a frustrated chain model. For the frustrated
chain we found ballistic dynamics in the gapless phase and σ2

S(t) ∼ t for large
times in the gapped phase. For the isotropic ladder, which also has a gap, we
found the clearest notion of diffusive spin dynamics obtained from the spatial
variance so far. The real-time dynamics of XXZ spin chains induced by a
gaussian magnetic field was also studied in Ref. [49] where they argue that
even though σ2(t)− σ2(0) � t2, there are still features of ballistic dynamics,
namely fast wave fronts. Even though, those do decay on accessible time
scales, it cannot be excluded that finite-size effects in the background density
play a role in that context. Yet, the advantage of an analysis of the spatial
variance is that all excitations are treated on equal footing which makes it a
useful approach to identify candidates for systems that can exhibit diffusion.
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3.7 Real-time energy dynamics in spin-1/2
Heisenberg chains

Here the approach introduced in Chap. 3.6 will be extended to the energy
dynamics in the XXZ-chain. To this end we analyze initial states where the
dynamics only gives rise to a finite energy current but no spin current and
states where the dynamics is driven by a magnetic field. For both scenarios
the expansion of a density wave-packet is analyzed in the exactly solvable
limit ∆ = 0 and using Luttinger liquid theory for 0 ≤ ∆ < 1. We then treat
the fully interacting system driven far from equilibrium using adaptive time-
dependent DMRG. The main result is that the energy dynamics is ballistic in-
dependently of the anisotropy and the distance from equilibrium. Hence, our
data suggests the validity of the linear response results for non-equilibrium.
We furthermore show that the average expansion velocity, which we defined
based on the spatial variance as outlined in Chap. 3.6, can be understood in
terms of the momentum distribution of the perturbed initial state. We also
study the time-dependent energy current during the expansion and establish
a connection between the spatial variance and the time-dependent current.
Revisiting the dynamics driven by a gaussian magnetic field we recover the
Luttinger liquid result, which is propagation with the sound velocity u in
the limit of small perturbations. While, for the field-induced dynamics in
the gapless phase, spin and energy density are qualitatively the same, we
find a huge qualitative difference in the gapped phase. Namely the energy
dynamics stays ballistic while the spin dynamics is consistent with diffusive
behavior for large times.
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I. INTRODUCTION

The understanding of transport properties of low-
dimensional systems with strong correlations still poses viable
challenges to theorists. These include, on the one hand, the
fundamental problem of calculating transport coefficients for
generic models such as the Heisenberg chain,1,2 and on the
other hand, the theoretical modeling of experiments that
typically require the treatment of spin or electronic degrees
of freedom coupled to phonons, in particular, in the case of
the thermal conductivity.3,4 Most theoretical work is focused
on the linear-response regime, in which the properties of
current-current autocorrelation functions determine transport
properties (see Refs. 1 and 2 for a review).

More recently, the out-of-equilibrium properties of one-
dimensional systems have evolved into an active field of
research, one reason being recent advances in experiments
with ultracold atoms.5 These have paved the way for studying
the dynamics of quantum many-body systems that are driven
far away from equilibrium in a controlled manner, with little or
no coupling to external degrees of freedom. Much attention has
been paid to the question of thermalization, typically studied
in so-called quantum quenches (see Ref. 6 and references
therein). While global quantum quenches in homogeneous
systems usually do not induce any finite net currents (of either
spin, energy, or particles), we will be particularly interested
in setups that feature finite net currents. Such situations are
realized in, for instance, the sudden expansion of particles
in optical lattices after the removal of trapping potentials.7

Further examples are spin and/or particle currents induced
by connecting two regions with opposite magnetizations or
by letting two particle clouds collide (see, for instance,
Refs. 8–11).

Theoretical work in this context ranges from the expansion
dynamics of bosons and fermions in optical lattices12–18 over
the dynamics of wave packets in spin chains,19–28 to the
demonstration of signatures of spin-charge separation in such
setups.29,30 In the aforementioned examples, nonequilibrium
situations were studied with either finite spin or particle
currents. In our work, we address the energy dynamics for a

model that is prototypical for systems with strong correlations,
namely, the spin-1/2 XXZ chain:

HXXZ =
L−1∑
i=1

hi

:= J

L−1∑
i=1

[
1

2
(S+

i S−
i+1 + H.c.) + �Sz

i S
z
i+1

]
, (1)

where S
μ

i and μ = x,y,z are the components of a spin-1/2
operator acting on site i and S±

i are the corresponding
lowering/raising operators. The global energy scale is set by
the exchange coupling J , � is the exchange anisotropy in
the z direction, and L denotes the number of sites. Equation
(1) describes either interacting quantum spins or, via the
Jordan-Wigner transformation,31 spinless fermions.

Specifically, we follow the time evolution of the local
energy density 〈hi〉 starting from initial states that are far
away from the ground state of Eq. (1) and that feature an
inhomogeneous profile in the local energy density (see Fig. 1
for a sketch). We emphasize that, in the main part of our work,
we choose the initial conditions such that only finite energy
currents exist, whereas the spin (particle) density is constant
during the time evolution, hence all spin (particle) currents
vanish. Obviously, an initial state with an inhomogeneous spin
density profile leads to both finite spin and energy currents,
and we revisit this case, previously studied in Refs. 20 and 28.

Our work is motivated by and closely related to a specific
experiment on a spin-ladder material. Many low-dimensional
quantum magnets are known to be very good thermal
conductors with heat predominantly carried by magnetic
excitations at elevated temperatures.32,33 Examples for ma-
terials that exhibit particularly large thermal conductivities
are (Sr,La,Ca)14Cu24O41 (Refs. 34 and 35) and SrCuO2

(Ref. 36). While these experiments are carried out under
steady-state conditions and in the regime of small external
perturbations, more recently, time-resolved measurements
have been performed on La9Ca5Cu24O41 (Ref. 37). For this
spin ladder material, two approaches have been implemented:
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FIG. 1. (Color online) Sketch of our setup: we prepare initial
states with an inhomogeneous distribution of local energies and then
study the time evolution of the local energy density.

a time-of-flight measurement in which one side of the sample
is heated up with a laser pulse and the time-dependent response
is recorded on the other side. Second, a nonequilibrium local
heat distribution was generated in the surface of the material
by shining laser light on it. It is possible to record the heat
dynamics via thermal imaging that uses the response of an
excited thin fluorescent layer placed on top of the spin ladder
material.

It is the latter case that we mimic in our work: the time
evolution of local energy densities induced by inhomogeneous
initial distributions. We utilize the time-dependent density
matrix renormalization group (tDMRG)38–42 technique. It
allows us to simulate the dynamics of pure states whereas in
the experiment, temperature likely plays a role. Our work thus
addresses qualitative aspects in the first place, while a direct
comparison with experimental results is beyond the scope
of this study. The goal is to demonstrate that in a spin-1/2
chain described by Eq. (1), the energy dynamics is ballistic,
irrespective of how far from equilibrium the system is and
also irrespective of the presence or absence of excitation gaps.
To this end, we use the same approach as in Ref. 20. We
classify the dynamics based on the behavior of the spatial
variance σ 2

E(t) of the local energy density. The ballistic case is
σ 2

E(t) ∼ t2, whereas diffusion implies σ 2
E ∼ t . Our main result

for the XXZ chain, based on numerical tDMRG simulations,
is that energy propagates ballistically at sufficiently long times,
independently of model parameters (such as �). One can
then interpret the prefactor VE in σ 2

E(t) = V 2
Et2 as a measure

of the average velocity of excitations contributing to the
expansion. The velocity VE can be calculated analytically
and exactly in noninteracting models, which (in the absence
of impurities or disorder) typically have ballistic dynamics,
and we consider two examples: (i) the noninteracting limit
of the XXZ Hamiltonian (� = 0), i.e., spinless fermions and
(ii) the Luttinger liquid, which is the universal low-energy
theory in the continuum limit of Eq. (1) for |�| < 1. We
show that our tDMRG results agree with the exactly known
expansion velocity VE in these two examples.

Our main result, namely, the numerical observation of
σ 2

E(t) ∼ t2 independently of initial conditions or model pa-
rameters such as the exchange anisotropy �, is consistent with

the qualitative picture derived from linear-response theory.
Within that theory, transport properties of the XXZ chain have
intensely been studied in recent years, both the energy43–47

and the spin transport.1,2,47–62 Ballistic dynamics is associated
with the existence of nonzero Drude weights. Since the
total energy current of the anisotropic spin-1/2 chain is a
conserved quantity for all �, the thermal conductivity κ(ω)
diverges in the zero-frequency limit and is given by Re κ(ω) =
DEδ(ω), where DE is the thermal Drude weight.43–46 This
behavior is different from the spin conductivity σ (ω). This
quantity takes the form Re σ (ω) = Dsδ(ω) only at the
noninteracting point � = 0, whereas for 0 < � � 1, many
numerical studies1,2,60,61 indicate Ds(T > 0) > 0, with a finite
weight at finite frequencies, though. Therefore, for 0 < � �
1, Re σ (ω) = Dsδ(ω) + σreg(ω). Recent field-theoretical and
numerical work suggests that the regular part σreg(ω) of σ (ω)
in massless phases is consistent with diffusive behavior.54,56,62

A finite value of the current-current correlation function in
the long time limit is associated with a finite Drude weight.
Finite Drude weights can be traced back to the existence
of conservation laws,43,60 and, in consequence, a potential
relation between integrability63 and ballistic behavior—in the
sense of nonzero Drude weights—has been intensely discussed
(see, e.g., Refs. 1, 2, 47, 60–62 and further references cited
therein). Very recently, Prosen has presented results that
provide a lower bound to the spin Drude weight that is non
zero for � < 1.60 This is in qualitative agreement with earlier
exact diagonalization studies.2,47,48 The particular point � = 1
is still discussed controversially;47,49,52,54,59–61 first, no finite
lower bound to the Drude weight is known,60 and second,
the qualitative results of exact diagonalization studies seem
to depend on details of the extrapolation of finite-size data to
the thermodynamic limit and the statistical ensemble that is
considered.47,48,59

Our approach that analyzes the time dependence of spatial
variances, albeit restricted to the analysis of densities, is
numerically easily tractable and is an alternative to the
numerically cumbersome evaluation of current correlation
functions. tDMRG has, for instance, been applied to evaluate
current-current autocorrelation functions in the thermody-
namic limit.54 However, the accessible time scales are quite
limited (t ∼ 10/J ), making an unambiguous interpretation
of the results difficult and the approach is not applicable to
nonequilibrium. Our approach allows us, at least in principle,
to study the entire regime of weakly perturbed states to
maximally excited ones. An earlier analysis of spin-density
wave packets in various spin models has yielded the following
picture (all based on the time-dependence of the spatial
variance);20 in massless phases, ballistic dynamics is seen,
whereas in massive ones, examples of diffusive dynamics have
been identified. It is important to stress that the observation of
a variance that increases linear in time is a necessary condition
for the validity of the diffusion equation.

Finally, to complete the survey of related literature, recent
studies have addressed steady-state spin and energy transport
in open systems coupled to baths with no restriction to the
linear-response regime.28,61,64–66 These studies suggest spin
transport to be ballistic in the gapless phase of the XXZ spin
chain and to be diffusive in the gapped phase with a negative
differential conductance at large driving strengths. The heat
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current has been addressed in Ref. 64 where Fourier’s law has
been validated for the Ising model in a tilted field.

A byproduct of any tDMRG simulation is information
on the time-evolution of the entanglement entropy. While
this is not directly related to this article’s chief case, it
nevertheless provides valuable information on the numerical
costs of tDMRG simulations. Qualitatively, speaking (see the
discussion in Ref. 42 and references therein), the faster the
entanglement growth is the shorter are the time scales that can
be reached with tDMRG. We here show that the quenches
studied in this work generate a mild logarithmic increase
of entanglement, which is why this problem is very well
suited for tDMRG. Such a behavior is typical for so-called
local quenches.67 This result might be useful for tDMRG
practitioners.

This paper is organized as follows. First, we introduce
the model and the quantities used in our analysis in Sec. II.
Section III A reviews the framework of bosonization, which is
applied in Sec. III B to give an analytical derivation of ballistic
spin and energy dynamics in the low-energy case, valid in
the massless phase of Eq. (1). Sections IV and V contain our
numerical results. First, we study the energy dynamics in the
absence of spin currents in Sec. IV. To this end, we generate an
initial state consisting of a variable number of ferromagnetic
bonds in the center of an antiferromagnetic chain. We calculate
the time evolution of these states under Eq. (1) finding ballistic
energy dynamics independent of the phase and the strength of
the perturbation. To supplement these findings we derive an
observable, which depends on the local currents, and whose
expectation value is time-independent whenever σ 2

E(t) ∼ t2.
The numerical calculation of this quantity indicates ballistic
dynamics as well. Section V revisits the scenario of Ref. 20
where local spin and energy currents are present during the
dynamics as we start from states with an inhomogeneous
spin density. In that case, the energy density shows ballistic
dynamics in the massless phase with a velocity matching the
bosonization result in the limit of small perturbations. In the
massive phase, we observe a different behavior of the two
transport channels, i.e., ballistic energy dynamics while the
spin dynamics looks diffusive.20 Finally, we summarize our
findings in Sec. VI. Additionally, we discuss the entanglement
growth induced by coupling two regions with an opposite sign
of the exchange coupling in the Appendix.

II. SETUP AND DEFINITIONS

A. Preparation of initial states and definition of spatial variance

In this work, we focus on spin-1/2 XXZ chains of a finite
length L given by Eq. (1) where our goal is to study the
dynamics of an inhomogeneous distribution of the local energy
density originating from a local quench of system parameters.
The inhomogeneous distributions are generated by preparing
the system in the respective ground states of the following
Hamiltonians that are perturbations of HXXZ from Eq. (1).
First,

HJ
init =

L−1∑
i=1

Ji

J
hi , (2)

where hi is defined in Eq. (1), and second,

HB
init = HXXZ −

∑
i

BiS
z
i , (3)

where

Bi = B0 e
−(i−L/2)2

2σ2
0 . (4)

In the first case, we quench site-dependent exchange couplings.
In this scenario, we obtain initial states with large local
energy densities. Typical initial states that are ground states
of Eq. (2) are shown in Fig. 2. These states have b bonds
with ferromagnetic Ji < 0 in the center while the rest has
antiferromagnetic Ji > 0. We refer to this setup as the Ji

quench.
In the second case, the dynamics is driven by an inhomo-

geneous spin density, enforced by an external magnetic field
applied in the initial state. This allows us to generate smooth
spatial perturbations of 〈hi〉 with small differences in energy
compared to the ground state of Eq. (1). We refer to this setup
as the B0 quench. A more detailed discussion of the initial
states generated by a Ji quench will be given in Sec. IV A. The
B0 quench was introduced in detail in Ref. 20.

The definition of the local energy density from the
Hamiltonian Eq. (1) is not unambiguous. For instance, it
is always possible to add local terms to the Hamiltonian
whose total contribution by summation over all lattice sites
vanishes. However, this seeming ambiguity can be resolved up
to constants by requiring that any block of adjacent lattice sites∑m

i=l hi is Hermitian and yet to have the same structure as the
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FIG. 2. (Color online) Profile of the local energy density 〈hi〉 in the initial states induced by a Ji quench for b = 1,3,5 [compare Eq. (30)]
for (a) � = 0.5, (b) � = 1, and (c) � = 1.5. In all cases, the system forms a region with ferromagnetic nearest-neighbor spin correlations
in the middle of the chain. In the regions with antiferromagnetic Ji > 0, the local energy density oscillates, reflecting the antiferromagnetic
nearest-neighbor correlations.
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total Hamiltonian H . These details seem to be rather specific,
yet for the definition of the appropriate local energy density
within the Luttinger liquid description, see below, these formal
considerations are important. For the XXZ chain the local
energy density is therefore determined by the bond energies
〈hi〉.

To classify the dynamics of a density ei we study its spatial
variance

σ 2
E(t) =

L−1∑
i=1

(i − μ)2ei(t), (5)

where μ is the first moment of ei . The ei are the normalized
distribution linked to the energy density via

ei = δE−1〈h̃i〉 (6)

where 〈h̃i〉 = 〈hi〉 − 〈hi〉0 denotes the expectation value of hi

in the initial state shifted by the ground state expectation value
〈hi〉0 = 〈ψ0|hi |ψ0〉.

δE := Einit − E0 =
∑

i

〈h̃i〉 (7)

is the energy difference between the initial state |ψinit〉 [i.e.,
the ground state of either HJ

init or HB
init] and the ground state

|ψ0〉 of Eq. (1), both energies measured with respect to the
unperturbed Hamiltonian from Eq. (1):

E0 = 〈ψ0|HXXZ|ψ0〉, Einit = 〈ψinit|HXXZ|ψinit〉 . (8)

On physical grounds, the energy density should be normal-
ized by the amount of energy transported by the propagating
perturbation. This is well approximated by the energy dif-
ference δE between the initial state and the ground state of
Eq. (1), as we have verified in many examples. In some cases,
though, the propagating energy is, on a quantitative level, better
described by estimating the area under the perturbations, as δE

may also contain contributions from static deviations from the
ground state bond energies in the background. Nevertheless,
δE does not depend on the overall zero of energy and is an
obvious measure of how far the system is driven away from
the ground state. This, all together, justifies our definition of
the ei .

To remove static contributions depending only on the
initial distribution ei(t = 0), we subtract σ 2

E(t = 0) and study
δσ 2

E(t) := σ 2
E(t) − σ 2

E(0). δσ 2
E(t) ∼ (VEt)2 is expected to grow

quadratically in time in the case of ballistic behavior, where
VE has the dimensions of a velocity. For diffusive behavior,
we expect, from the fundamental solution of the diffusion
equation,69 that δσ 2

E(t) ∼ Dt grows linearly in time, where D

is the diffusion constant (see, e.g, the discussion in Ref. 20).
Within linear response theory the diffusion constant can be
related to transport coefficients via Einstein relations, see, e.g.,
Ref. 70. To be clear, the observation of δσ 2

E ∼ t2 or δσ 2
E ∼ t is

a necessary condition for the respective type of dynamics and
time-dependent crossovers are possible.

B. Spatial variance in the noninteracting case

For pedagogical reasons and to guide the ensuing dis-
cussion, we next calculate the spatial variance in the
noninteracting limit of Eq. (1), i.e., at � = 0. Using the

Jordan-Wigner transformation, we can write the Hamiltonian
as

H = J

2

∑
i

(S+
i S−

i+1 + H.c.) = −J

2

∑
i

(c†i ci+1 + H.c.) , (9)

where c
†
i creates a spinless fermion on site i. A subsequent

Fourier transformation diagonalizes the Hamiltonian:

H =
∑

k

εkc
†
kck . (10)

Since we will compare with numerical results on systems with
open boundary conditions, we obtain

εk = −J cos(k), k = πn

L + 1
, n = 1, . . . ,L . (11)

Next, we compute

δσ 2
E(t) =

∑
i

ei(t)(i − i0)2 −
∑

i

ei(t = 0)(i − i0)2

with ei from Eq. (6) and hi = −J (c†i ci+1 + H.c.)/2. By
expressing c

(†)
i through their Fourier transform and by plugging

in the time evolution of c
(†)
k , we finally obtain, after straight-

forward calculations:

δσ 2
E(t) = V 2

E t2 , (12)

i.e., ballistic dynamics independently of the initial state. Terms
linear in t will be absent if in the initial state, the density is
symmetric with respect to its first moment, i.e., eμ+δ = eμ−δ

and if the wave packet has no finite center-of-mass momentum
at t = 0 already. In the remainder of the paper, we will work
under these two additional assumptions that are valid for all
initial states considered in our work. The prefactor V 2

E is given
by

V 2
E = 1

δE

∑
k

εkv
2
k δnk , (13)

where vk = ∂εk/∂k and

δnk = ninit
k − nk

is the difference between the momentum distribution function
(MDF) in the initial state and the one in the ground state of
Eq. (1). Since we use open boundary conditions, we compute
nk from

nk = 〈c†kck〉 := 2

L + 1

∑
r,r ′

sin (kr) sin (kr ′)〈c†r cr ′ 〉 . (14)

We can also express δE via δnk:

δE =
∑

k

εk δnk .

The expression (13) suggests that VE is the average velocity of
excitations contributing to the propagation of the wave packet.
Characteristic for ballistic dynamics, V 2

E is fully determined
by the initial conditions through δnk .
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For completeness, we mention that an analogous calculation
can be done for the spatial variance σS of the spin density. This
quantity is defined as

σ 2
S (t) := 1

N

L∑
i=1

(i − μ)2〈Sz
i (t) + 1/2

〉
. (15)

The normalization constant N measures the number of
propagating particles. The spin density is, in terms of spinless
fermions,

Sz
i = c

†
i ci − 1/2 = ni − 1/2 .

The result for the spatial variance of the spin density is

δσ 2
S (t) = σ 2

S (t) − σ 2
S (0) = V 2

S t2 (16)

with

V 2
S = 1

N
∑

k

v2
k δnk . (17)

Although we started from the Hamiltonian for � = 0, we
stress that Eqs. (12), (16), (13), and (17) are valid for any
dispersion relation εk , irrespective of the presence of a gap,
provided that k has the meaning of a momentum.

C. Energy current

Another aspect worth noting is that the time-evolving state
carries a nonzero energy current, a situation that usually does
not appear in the case of a global quench. From the equation
of continuity for the energy density, one can derive the well-
known expression for the local energy current operator,43

jE
i = J 2 �̃Si−1 · ( �Si × �̃Si+1) , (18)

where �̃S = (Sx,Sy,�Sz). With periodic boundary conditions,
the total current JE = ∑

i j
E
i is a conserved quantity, i.e.,

[H,JE] = 0 (see Ref. 43). On a system with open boundary
conditions such as the ones that are well suited for DMRG,
this property is lost, yet the dynamical conductivity still has
a quasi-Drude peak at very low frequencies, reminiscent of
the true Drude peak Reκ(ω) = DEδ(ω) of a system with
periodic boundary conditions.68 The latter form is recovered
on a system with open boundary conditions as L → ∞ (see
Ref. 68), showing that ballistic dynamics due to the existence
of globally conserved currents can still be probed on systems
with open boundary conditions.

To connect the local energy currents to the spatial variance
of the time-dependent density one can rewrite the time
derivative of σ 2

E(t) using the equation of continuity, assuming
no current flow to sites at the boundary (this assumption is
justified in our examples as long as we restrict ourselves
to times before reflections occur at the boundary in our
simulations):

∂tσ
2
E(t) ∼

L∑
r=1

(r − μ)2∂t 〈hr (t)〉

= −〈
jE

1

〉 +
L∑

r=1

(2r − 2μ + 1)
〈
jE
r (t)

〉
. (19)

If σ 2
E(t) = V 2

Et + b and μ 	= μ(t), then using 〈JE〉 = 0 leads
to

L∑
r=1

r ∂t

〈
jE
r (t)

〉 ∼ 1

2
∂2
t σ 2

E(t) = V 2
E = const . (20)

If we interpret this equation as an operator equation, then we
see that we can define a quantity J ∗

E via

J ∗
E =

L∑
r=1

r ∂t j
E
r . (21)

If for a given initial state and over a certain time window,
〈J ∗

E(t)〉 = const, then we have identified a regime with ballistic
dynamics, δσ 2

E(t) ∼ t2. If 〈J ∗
E(t)〉 = const holds for all times

and initial states, then J ∗
E is a conserved quantity, [H,J ∗

E] = 0.
This is the case at � = 0, the noninteracting limit of Eq. (1),
where 〈J ∗

E〉 = V 2
E δE from Eq. (13).

We emphasize that we have here identified an operator
that connects the phenomenological observation of a quadratic
increase of σ 2

E(t) to the local energy currents. In ballistic
regimes, its expectation value becomes stationary.

For completeness, we mention an analogous result in the
diffusive regime where σ 2

E ∼ t . Then, expectation values of
the operator

JD
E =

L∑
r=1

(r − μ)jE
r (t) (22)

are time independent. Obviously, similar expressions can be
written down for the spatial variance associated with the spin
density.

III. PROPAGATING ENERGY AND SPIN WAVE PACKETS
IN A LUTTINGER LIQUID

In the gapless phase, i.e., for |�| < 1, the low-energy and
low-momentum properties of the XXZ chain can be described
by an effective Luttinger liquid theory.71 In the following, we
want to analyze the energy density and the spin dynamics of
the XXZ chain in this exactly solvable hydrodynamic limit.
Specifically, we show that at least asymptotically for large
times, the spatial variance always grows quadratically both in
the case of spin and energy dynamics. In addition, we work
out the precise dependence of the prefactor in front of the t2

increase of the spatial variance on system parameters. Since
our DMRG results to be presented in Secs. IV and V show that
σ 2

E(t) ∼ t2 at any �, we did not investigate the influence of
marginally relevant perturbations at � = 1 on the wave-packet
dynamics. In passing, we mention that in the massive phase,
where the appropriate low-energy theory is the sine-Gordon
model, the expansion velocity could also be derived at the
Luther-Emery point (this case was studied in, e.g., Refs. 25
and 26).

A. Bosonization of the anisotropic spin-1/2 chain

The Hamiltonian (1) can be mapped onto a system
of interacting spinless fermions via the Jordan-Wigner
transformation.31 Within a hydrodynamic description in terms
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of a linearized fermionic dispersion relation, the Hamiltonian
can be represented in terms of a Luttinger liquid theory (LL),

HLL = u

4

∫
dx

2π

[
K(ρL − ρR)2 + 1

K
(ρL + ρR)2

]
, (23)

using the notation of Ref. 72. The sum of the two left- and right-
moving densities ρL(x) + ρR(x) of the spinless Jordan-Wigner
fermions is proportional to the continuum approximation of the
local magnetization Sz

i up to a constant. The sound velocity u

can be related to the parameters of the XXZ chain in Eq. (1)
via the group velocity73

u = vg = J
π

2

sin(ν)

ν
, (24)

with cos ν = �. Similarly, the Luttinger parameter K is given
by the relation K = π/[2(1 − ν)]. In the noninteracting case,
� = 0, we have K = 1 and u = J .

B. Ballistic dynamics in the gapless phase

Within the Luttinger liquid description for � < 1, an
initially inhomogeneous local energy density profile always
propagates ballistically independently of the details of the
perturbation as can be seen from general arguments. For the
effective low-energy Hamiltonian, the probability distribution
e(x,t) associated with the local energy density is given by

e(x,t) = E−1〈ψinit|ĥ(x,t)|ψinit〉 , (25)

where |ψinit〉 is the initial state,

ĥ(x) = u(K + K−1)/(8π )
∑

η

∂xϕ
†
η(x)∂xϕη(x)

−u(K − K−1)/(8π )[∂xϕ
†
L(x)∂xϕ

†
R(x)

+ ∂xϕR(x)∂xϕL(x)] (26)

and

E =
∫

dx 〈ψinit|ĥ(x,t = 0)|ψinit〉 . (27)

For the exact definition of the fields ϕ(†)
η , see, e.g., Ref.

72. The local energy density operator consists of decoupled
left- and right-moving contributions in the basis in which
the Hamiltonian for the time evolution is diagonal. This
allows for a separation of e(x,t) into left- and right-moving
contributions, which both propagate with the sound velocity
vg: e(x,t) = eL(x + vgt,t = 0) + eR(x − vgt,t = 0).

Assuming an L ↔ R symmetry in the initial state, i.e., a
state with zero total momentum, one obtains for the variance
from Eq. (5):

δσ 2
E(t) = σ 2

E(t) − σ 2
E(t = 0) = (VEt)2 (28)

for all times t with VE = vg = u. This result can also be
obtained from evaluating Eq. (13) in the continuum limit.

In the case of an initial L ↔ R asymmetry in the initial
state, we get δσ 2

E(t) → (vgt)2 for t → ∞, but the short-time
behavior may differ. Thus within the validity of a Luttinger
liquid description the energy transport is always ballistic for
all initial conditions. This is evident from a physical point
of view as all excitations propagate with exactly the same
velocity vg , the left movers to the left and the right movers

to the right. Note that the applicability of a Luttinger liquid
description is manifestly restricted to cases in which the initial
energy density profile is a smooth one in the sense that
the associated excitations do not feel the nonlinearity of the
fermionic dispersion relation. Thus, the time-evolution starting
from initial profiles such as the ones shown in Fig. 2 is beyond
the scope of this low-energy theory.

In analogy to the above arguments, the dynamics of spin-
density wave packets is also ballistic in the XXZ chain for
� < 1 in the Luttinger liquid limit. In the bosonic theory, the
spin density is proportional to ρL(x) + ρR(x) up to a constant,
see Sec. III A. The associated probability distribution ρ(x,t) =
Q−1〈ρL + ρR〉/2π , with Q = ∫

dx〈ρL + ρR〉/2π , can again
be separated into a left- and a right-moving contribution, i.e.,

ρ(x,t) = ρL(x + vgt,t = 0) + ρR(x − vgt,t = 0) . (29)

Thus similar to the case of the energy dynamics, one finds
ballistic behavior for |�| < 1 consistent with the numerical
results of Ref. 20.

IV. DMRG RESULTS FOR THE Ji QUENCH

Now we turn to the numerical simulations. Using the
adaptive time-dependent DMRG38–42 method, we can access
the real-time dynamics of initial bond-energy distributions.
Within this approach, we can probe the microscopic dynamics
including the time dependence of bond energies or the
entanglement entropy starting from various initial states in
an essentially exact manner without limitations in the range
of parameters. We discuss the pure energy dynamics in the
absence of spin currents induced by the Ji quench in this
section. We detail the construction of initial states and their
specific features, then move on to the analysis of the time
evolution of the bond energies. We calculate the spatial
variance and the related quantity J ∗

E and discuss the emergent
velocities of the energy dynamics. Within the numerical
accuracy of our simulations we find a quadratic increase of
σ 2

E(t) in all cases studied. However, it seems that for a Ji

quench a large number of different velocities contribute as
opposed to the Luttinger liquid theory result, the latter valid
at low energies. Our study of the energy current during the
time evolution and the time evolution of the expectation value
〈J ∗

E(t)〉, defined in Eq. (21), gives additional insights into
short-time dynamics and further validates the conclusion of
ballistic energy dynamics.

A. Initial states

Let us first describe the typical shape of initial states induced
by a Ji quench on a few bonds in the middle of the spin chain.
To be specific, in the Hamiltonian (2), we set

Ji =

⎧⎪⎨
⎪⎩

J, i < L/2 − b,

−J, for L/2 − b � i � L/2 + b

J, i > L/2 + b,

, (30)

which provides us with initial states with an inhomogeneous
energy density profile with a width of 2b of the ferromagnetic
region. Outside this ferromagnetic region, we obtain antifer-
romagnetic nearest-neighbor correlations.
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FIG. 3. (Color online) Energy difference δE between the initial
state and the ground state for the Ji quench as a function of b for
� = 0.5,1,1.5. The inset shows the hierarchy of states with increasing
total spin, which appear as initial states when the total spin is a good
quantum number, i.e., at � = 1.

Figure 2 shows the profile of the local energy density of
XXZ chains with L = 100 sites with (a) � = 0.5, (b) � = 1,
and (c) � = 1.5, induced by a sign change of Ji on b =
1,3,5 bonds [compare Eq. (30)], obtained using DMRG with
m = 200 states exploiting the U(1) symmetry to ensure zero
global magnetization Sz

tot = ∑
i〈Sz

i 〉 = 0 and, in consequence,
〈Sz

i 〉 = 0. In all cases shown in Fig. 2, the system forms a
region with ferromagnetic nearest-neighbor correlations in
the middle of the chain. Note that for � 	= 1, 〈hi〉 is the
sum of the nearest-neighbor transverse and longitudinal spin
correlations, the latter weighted with �. In the regions with
antiferromagnetic Ji > 0, the local energy density oscillates,
reflecting the antiferromagnetic nearest-neighbor correlations.
Figure 3 shows the energy difference δE. As a function
of b, the energy difference δE increases linearly once the
smallest possible ferromagnetic region has been established.
The minimum energy difference δE = Einit − E0 is of the
order of 2J , i.e., initial states that are only weak perturbations
of the respective ground state cannot be generated using a Ji

quench.
At the isotropic point � = 1, we can explain the depen-

dence of the initial state on the width b in a transparent
manner. The ground-state energy per site for the antiferro-
magnetic ground state is known from the Bethe Ansatz to be
limL→∞ E0(L)/L = −ln(2) + 1/4,74 while for the ferromag-
netic ground state, E0/(L − 1) = 1/4, excluding the boundary
sites, which gives rise to a very small system-size dependence.
By growing the ferromagnetic region symmetrically with
respect to the center of the chain and taking E0(L) from the
unperturbed ground state with open boundaries, we obtain
states with an energy that increases as

δE(b) = (2 b − 1)[E0/(L − 1) − 0.25] + δE0 , (31)

for our finite system size (δE0 is simply an offset). Equation
(31) exactly reproduces the data for � = 1 shown in Fig. 3.

Furthermore, at � = 1, the total spin

S2
tot =

∑
i

�Si ·
∑

j

�Sj (32)

is a conserved quantity. Since the ground-state calculation
only respects the conservation of magnetization (Sz

tot = 0), we
obtain a hierarchy of states with S > 0. This can be easily
understood by considering the block structure of the initial
state. Taking, e.g., a total of L = 100 spins and assuming
a ferromagnetic region of only two spins (i.e., b = 1), the
two ferromagnetic spins are fully polarized with a total spin
of S = 1, while each of the antiferromagnetic blocks has 49
spins and therefore a total spin of S = 1/2. Thus the total
spin of the whole chain is Stot = 2. Increasing the width
of the ferromagnetic region by one, i.e., to b = 2, we have
S = 2 in the middle, and the antiferromagnetic blocks are of
even length, both having S = 0 in their ground state. This
pattern repeats itself upon increasing the length 2b of the
ferromagnetic region.

B. Time evolution of bond energies after a Ji quench

Now we focus on the time evolution of the local energy
density induced by the aforementioned perturbation. At time
t = 0+, we set all Ji = J and then evolve under the dynamics
of Eq. (1). The DMRG simulations are carried out using a
Krylov-space based algorithm75,76 with a time step of typically
0.25J and by enforcing a fixed discarded weight. We restrict
the discussion to times smaller than the time needed for the
fastest excitation to reach the boundary.

1. Ji quench: qualitative features

Figure 4 shows the time evolution of the bond energies
〈hi(t)〉 as a contour plot for � = 0.5,1,1.5 at b = 1. Despite
the different ground states for the selected values of anisotropy,
all features of the dynamics such as two distinct rays starting
at the edges of the block of ferromagnetic correlations,
are similar. The solid white lines for � = 0.5 and � = 1
indicate an excitation spreading out from the center of the
ferromagnetic region with the group velocity given by Eq. (24)
(these lines are parallel to the outer rays visible in the figure,
i.e., the fastest propagating particles). Note that Eq. (24) holds
only in the gapless phase (|�| � 1). Besides the outer rays
that define a light-cone structure, Fig. 4 unveils the presence
of more such rays inside the light cone. Since our particular
initial states have a sharp edge in real space, there ought to be
many excitations with different momenta k contributing to the
expansion.

2. Ji quench: spatial variance

Our main evidence for ballistic dynamics in both phases
is based on the analysis of the spatial variance, shown in
Fig. 5. Fitting a power law (straight lines) to the data, i.e.,
σ 2

E(t) − σ 2
E(0) = αtβ yields a quadratic increase with β ≈ 2,

classifying the dynamics as ballistic.
In order to estimate uncertainties in the fitting parameter

α, we compare this to the results of fitting a pure parabola
σ 2

E(t) − σ 2
E(0) = V 2

E t2 to the data. Typically, V 2
E deviates from

α by about 10% while the exponent of the power-law fit is
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FIG. 4. Time evolution of the bond energy distribution starting from initial states with b = 1 from Fig. 2 for (a) � = 0.5, (b) � = 1, and
(c) � = 1.5. Despite the different ground-state phases, for the selected values of the exchange anisotropy �, main features of the dynamics
such as two distinct rays extending from the edges of the perturbation are similar. The solid white lines for � = 0.5 and � = 1 indicate the
propagation of a single excitation starting in the middle of the chain at time t = 0 moving with the group velocity vg from Eq. (24). This is
also the velocity in the outer rays.

usually different from 2 by 5%. As an example, for � = 0.5
and b = 1, we obtain β = 2.03 and α = 0.53 versus V 2

E =
0.6J 2. The main reason for the deviation of β from two is,
in fact, that the short-time dynamics is not well described
by a power law at all over a b-dependent time window. We
shall see later, in Sec. IV C, that the ballistic dynamics sets in
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β
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(a) b=1, L=100

FIG. 5. (Color online) Spatial variance of the evolving energy
distribution for (a) b = 1, (b) b = 5, and � = 0.5,1,1.5. Fitting a
power law (straight lines) to σ 2

E(t) − σ 2
E(0) = αtβ yields a quadratic

increase with sufficient accuracy, classifying the dynamics as ballistic.
For instance, we find α = 0.53, β = 2.03 for � = 0.5 and b = 1
[black circles in (a)]. We do not find any qualitative difference
between the massless (|�| � 1) and the massive (� > 1) phases.
The deviations between the fit and the tDMRG data in the � = 1.5
curves at the largest times simulated are due to the boundaries.

only after the block of ferromagnetically correlated bonds has
fully “melted.” Indeed, by excluding several time steps at the
beginning of the evolution from the power-law fit, we observe
that β → 2 and α → V 2

E . Therefore we will present results for
V 2

E , obtained by fitting σ 2
E(t) − σ 2

E(0) = V 2
Et2 to our tDMRG

data.

3. Exploiting SU(2) symmetry at � = 1 for the Ji quench

Before proceeding to the discussion of the expansion
velocity V 2

E , we wish to discuss the long-time limit, which can
be accessed in the case of � = 1. Since our perturbation is pro-
portional to the operators for the local energy density, global
symmetries of the unperturbed Hamiltonian are respected by
the initial states of the type in Eq. (30). Therefore, at � = 1,
we can exploit the conservation of total spin S, a non-Abelian
symmetry. This can be used to push the simulations to much
longer times, since we can perform the time evolution in
an SU(2) invariant basis.77 The number of states needed to
ensure a given accuracy is reduced substantially compared to
a simulation that only respects U(1) symmetry. Therefore we
can work with larger system sizes and study the long-time
dynamics of the energy density. As we can reach longer
times, we can also analyze and discuss finite-size effects for
� = 1 here. Figure 6 shows our result for the time evolution
respecting SU(2) symmetry (blue triangles) for a system of
L = 200 sites and � = 1, b = 1 compared to the result from
Fig. 5 for L = 100 sites (red squares). We still find a quadratic
increase of σ 2

E(t) and thus ballistic dynamics for times up to
t ∼ 60/J and in addition, the prefactor does not depend on
the system size. Both simulations were carried out keeping the
discarded weight below 10−4, which requires at most m = 900
states using only U(1) symmetry on L = 100 sites versus a
maximum of m = 400 using SU(2) for L = 200 sites.

4. Expansion velocity

The results for V 2
E are collected in Fig. 7 and plotted as

a function of δE for � = 0,0.5,1,1.5. In the noninteracting
case, � = 0, V 2

E is constant for b � 2, while at b = 1 (the
smallest possible δE), V 2

E = 0.5J 2. For all � > 0, V 2
E slightly

decreases with δE and V 2
E is much smaller than v2

g given by
Eq. (24), suggesting that indeed, many velocities contribute
during the expansion of the energy wave packet.
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FIG. 6. (Color online) Long-time evolution exploiting the con-
servation of total spin Stot at � = 1 for L = 200 sites using an initial
state with b = 1. For comparison, we plot the result for L = 100 sites
using only U(1) symmetry. Fixing the discarded weight to 10−4, we
need less than half the number of states. Furthermore, we find that
the spatial variance is very robust against finite-size effects.

Intuitively, one might associate the decrease of V 2
E , which

is a measure of the average velocity of propagating excitations
contributing to the expansion, to band curvature: the higher
δE, the more excitations with velocities smaller than vg are
expected to factor in.

It is instructive to consider the noninteracting limit first
by comparing the numerical results obtained from a time
evolution with exact diagonalization to the analytical (and also
exact result) from Eq. (13). To that end, we need to compute
the MDF [see Eq. (14)] of the initial state. Our results for
� = 0, which are shown in Fig. 8, unveil a peculiar property:
the Ji quench always induces changes at all k, i.e., the system
is not just weakly perturbed in the vicinity of kF . This is not
surprising since our initial states have sharp edges in real space
(compare Fig. 2). Moreover, the Ji quench changes the MDF in
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FIG. 7. (Color online) Prefactors V 2
E of the fits σ 2

E − σ 2
E(0) =

V 2
Et2 as functions of δE for � = 0,0.5,1,1.5 and Ji quenches with

b = 1,2,3,4,5 (for � = 1.5, we show b = 1,2,3 only). For � > 0,
V 2

E decreases slightly with b, while V 2
E < v2

g . At � = 0, V 2
E is roughly

constant for b > 2.
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FIG. 8. (Color online) MDF of the initial states generated by
a Ji quench at � = 0.5 and � = 0 (inset) with b = 1,3,5. For
comparison, we include the MDF of the ground state (solid black
line).

such a way that δnk(b) = ninit
k (b) − nk is point symmetric with

respect to kF = π/2, where kF is the Fermi wave vector. As
Fig. 7 shows, V 2

E as extracted from fits to δσ 2
E (solid symbols)

and V 2
E from Eq. (13) (open symbols) perfectly agree with

each other, as expected.
The MDF of initial states for the interacting systems are

also such that δnk 	= 0 at all momenta and we may therefore
conclude that the observation VE < vg is due to the fact
that the Ji quench induces many excitations with velocities
smaller than vg (compare the data shown for � = 0.5 shown
in Fig. 8). Of course, Eq. (13) is not directly applicable
to the interacting case since, first, it does not account for
the correct eigenstates at � 	= 0 and second, in general,
〈hi〉 	= 〈J (S+

i S−
i+1 + H.c.)/2〉. Nevertheless, by numerically

calculating δnk for the interacting system and by using the
renormalized velocity in Eq. (13) instead of J [i.e., J →
vg(�)], we obtain an estimate for V 2

E from

V 2
E ≈ v2

g

δE

∑
k

cos(k) sin2(k)δnk . (33)

This reproduces the qualitative trend of the tDMRG results for
V 2

E as we exemplify for � = 0.5 in Fig. 7.
To summarize, the overall picture for the time evolution of

the bond energies after a Ji quench is that energy propagates
ballistically with an expansion velocity VE that is approxi-
mately given by Eq. (33). Combined with the observation that
on a finite system, a Ji quench induces changes in the MDF at
all momenta k, we conclude that many excitations contribute
to the wave-packet dynamics, resulting in VE < vg , both in the
noninteracting and in the interacting case.

C. Energy currents

To conclude the discussion of the Ji quenches we present
our results for the local energy currents at � = 1 in Fig. 9. By
comparison with Fig. 4(b), we see that the local current is the
strongest in the vicinity of the wave packet. The energy current
in each half of the system becomes a constant after a few time
steps, i.e., JE

L/2 := ∑L/2−1
i=1 jE

i reaches a constant value. We
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FIG. 9. (Color online) Real-time evolution of the local energy
current, Eq. (18), at � = 1 for a Ji quench with b = 1.

plot the absolute value of 〈JE
L/2〉 for � = 0.5,1,1.5 for b = 1

in Fig. 10(a). The qualitative behavior is independent of �:
as soon as the initial perturbation has split up into two wave
packets, we have prepared each half of the chain in a state with
a constant, global current 〈JE

L/2〉 = const. For a system with
periodic boundary conditions, the total current JE = ∑

i j
E
i

is a conserved quantity.43 Since the effect of boundaries only
factors in once these are reached by the fastest excitations,
we directly probe the conservation of a global current with
our setup, after some initial transient dynamics. Therefore we
can link the phenomenological observation of ballistic wave-
packet dynamics to the existence of a conservation law in the
system.

While the currents 〈JE
L/2〉 clearly undergo some transient

dynamics [see Fig. 10(a)], we have derived a quantity in
Sec. II, called J ∗

E , whose expectation value is stationary if
σ 2

E ∼ t2. We now numerically evaluate 〈J ∗
E(t)〉 from Eq. (21),

which provides an independent probe of ballistic dynamics.
Figure 10(b) shows our results for � = 1 and Ji quenches
with b = 1,2,3,4,5. It turns out that 〈J ∗

E(t)〉 is indeed constant
at sufficiently large times, consistent with the observation of
δσ 2

E ∼ t2. In Sec. IV B, we have noted that δσ 2
E 	∼ t2 at short

times t � b/J . This renders 〈J ∗
E(t)〉 a time-dependent quantity

over the same time window. Clearly, the time window over
which 〈J ∗

E(t)〉 	= const depends on b [see Fig. 10(b)], which
suggests that the deviation of ballistic dynamics is associated
to the “melting” process of the region with ferromagnetic
correlations. We have carefully checked that these observations
are robust against errors in the calculation of time derivatives
in Eq. (21) induced by the finite time step. Since 〈J ∗

E(t)〉 is time
dependent (at least at short times), we conclude that J ∗

E is not a
conserved quantity in the interacting case. Finally, within our
numerical accuracy and as an additional consistency check,
we find that 〈J ∗

E〉/δE = α in the stationary state as expected
from the discussion in Sec. II C.

To summarize, 〈J ∗
E(t)〉 = const whenever δσ 2

E ∼ t2 but
〈J ∗

E〉 is very sensitive to the initial transient dynamics in the
energy dynamics and becomes constant after a time ≈ bJ .
Furthermore, our setup serves to prepare each half of the
system in a state with a finite global energy current 〈JE

L/2〉

0 5 10 15 20 25 30
time tJ

0

1

2

3

|<
JE

L
/2

>
|/J

2

Δ=0.5
Δ=1
Δ=1.5

(a) b=1, L=100

0 5 10 15 20
time tJ

0

1

2

3

4

5

6

<
J E

* >
/J

2

b=1
b=2
b=3
b=4
b=5

(b)  Δ=1

FIG. 10. (Color online) (a) Absolute value of the current in each
half of the system. A constant value is reached after t ≈ 5/J . (b) The
quantity 〈J ∗

E(t)〉 from Eq. (21) derived from a pure quadratic increase
of the spatial variance for � = 1 and b = 1,2,3,4,5. This quantity is
constant, as expected from the discussion in Sec. IV C, except for the
initial transient dynamics at t < b/J .

that, after some transient dynamics, does not decay since the
global energy current operator is a conserved quantity.

V. COUPLED SPIN AND ENERGY DYNAMICS

After focusing on the energy dynamics in the absence of
spin/particle currents we now revisit the case of spin dynamics
starting from states with 〈Sz

i (t = 0)〉 	= 0. Thus during the
time evolution, the local spin and energy currents are both
nonzero. In Ref. 20, the dynamics of the magnetization
was studied, where the inhomogeneous spin-density profile
was induced by a Gaussian magnetic field in the initial
state. We take the initial state to be the ground state of
Eq. (3) in the sector with zero global magnetization, i.e.,
Sz

tot = ∑
i〈Sz

i 〉 = 0. Such a perturbation naturally also results
in an inhomogeneous energy density in the initial state,
which is coupled to the spin dynamics during the time
evolution.28
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FIG. 11. (Color online) (a) Magnetization (solid black line) and
energy density (dashed red line) in the initial state, for a B0 quench
with B0 = J and σ0 = 5 for � = 0.5 on a lattice of L = 200 sites.
(b) Prefactor V 2

E of δσ 2
E(t) = V 2

Et2 for the energy dynamics after a
B0 quench in the massless phase of the XXZ chain, compared to the
group velocity [Eq. (24)] for � = 0,0.5 and L = 200. On this system
size and in the limit of small perturbations, V 2

E is approximately
5% smaller than the prediction from the Luttinger liquid theory for
both �. For � = 0, finite-size scaling of V 2

E(δE → 0) using L =
100,200, . . . ,800 yields V 2

E → v2
g as shown in the inset.

A. Massless phase

In Fig. 11(a), we compare the initial magnetization (black
solid line) and the local bond energies (dashed red line) induced
by a Gaussian magnetic field with B0 = J and σ0 = 5 at � =
0.5 finding qualitatively the same pattern; both the spin and
the energy density follow the shape of the magnetic field,
resulting in a smooth perturbation with small oscillations in
the background away from the wave packet.

For the time evolution of the bond energies at 0 < � � 1,
we perform an analysis of their spatial variance analogous
to the discussion of the Ji quench, finding ballistic dynamics
in the massless phase. Since with a B0 quench, initial states
with very small δE can be produced, we next connect our
numerical results to the predictions of LL theory, valid in the
limit δE 
 J (compare Sec. III).

Since we enforce zero global magnetization, we draw
magnetization from the background into the peak.14 Therefore
one has to carefully estimate the contributions to δE that

do not contribute to the time dependence of bond energies
yet change the background density nbg. The latter, in turn,
affects the expected group velocity and we thus expect to
recover the LL result derived for the half-filled case, i.e.,
propagation with vg from Eq. (24), in the limit of large
systems where nbg → 1/2. Furthermore, B0 quenches induce
2kF oscillations in the spin and energy density.20 To account
for this, we use coarse graining, i.e., averaging the energy
density over neighboring sites, and we take the sum only over
the area of the peak when estimating δE. We obtain δEpeak :=∑L/2+x

L/2−x(〈hi〉 − 〈hi〉0), where 〈hi〉0 denotes the ground-state
expectation value. From this quantity we calculate the velocity
via V 2

E → V 2
E · δE/δEpeak, which is shown in Fig. 11(b). Note

that while δEpeak is the correct normalization to obtain the
correct velocities, we label our initial states via δE. At � = 0
(blue circles), V 2

E decreases linearly as a function of δE.
Next we compare the result from the low-energy theory from
Sec. III (solid symbols at δE = 0) to our tDMRG data. For both
� = 0 and � = 0.5, V 2

E for L = 200 sites is approximately
5% smaller than v2

g from Eq. (24), which is mainly due to the
deviation of the background density from half filling. While
it is hard to get results for larger systems than L ∼ 200 in
the interacting case, we can solve the � = 0 case numerically
exactly in terms of free spinless fermions, allowing us to go to
sufficiently large L to observe V 2

E(L) → v2
g as L → ∞. The

inset of Fig. 11(b) shows the finite-size scaling of V 2
E(L) for

� = 0 using L = 100,200, . . . ,800, which yields V 2
E → v2

g in
the limit L → ∞, taking first δE → 0 for each system size.
We thus, in principle, have numerical access to the dynamics in
the low-energy limit well described by Luttinger liquid theory
using a B0 quench.

B. Massive phase

In Ref. 20, examples of a linear increase of the spatial
variance of the magnetization σ 2

S (t), defined in Eq. (16), were
found in the massive phase, which were interpreted as an
indication of diffusive dynamics. We now demonstrate that
while the spin dynamics may behave diffusively, i.e., δσ 2

S ∼ t

over a certain time window, the energy dynamics in the same
quench is still ballistic, i.e., δσ 2

E ∼ t2.
In Fig. 12, we show the full time evolution of the bond ener-

gies for a Gaussian magnetic field with B0 = 1.5J and σ0 = 5
on a chain of L = 200 sites at � = 1.5. It consists of two rays
propagating with opposite velocities. In Fig. 13, we compare
the spatial variance of the magnetization σ 2

S (t) to the one of the
bond energies σ 2

E(t) calculated in the same time evolved state.
The main panel of Fig. 13 shows σ 2

E(t) − σ 2
E(0), which is very

well described by a power-law fit with an exponent β = 2.03
on the accessible time scales. The inset of Fig. 13 displays the
data for δσ 2

S (t) = σ 2
S (t) − σ 2

S (0) taken from Ref. 20. The spa-
tial variance of the energy density is quadratic in time, even at
times t � 12/J where the spatial variance of the magnetization
increases only linearly. This example reflects the qualitative
difference between spin and energy transport in the massive
phase of the XXZ model at zero global magnetization. The
conservation of the global energy current is consistent with
the observation of ballistically propagating energy wave
packets, while spin clearly does not propagate ballistically.
Our result, obtained in the nonequilibrium case with a
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FIG. 12. (Color online) Time-dependent bond energies for the
dynamics induced by a B0 quench with B0 = 1.5J, σ0 = 5 on a chain
of L = 200 sites at � = 1.5. In this case, both local spin and local
energy densities are perturbed and the corresponding local currents
are nonzero.

zero-temperature background density, is consistent with the
picture established from both linear-response theory51,55 and
steady-state simulations.28,61,64

Very recently, Jesenko and Žnidarič have also studied the
time evolution of spin and energy densities induced by a
B0 quench.28 They concentrate their analysis on the velocity
of the fastest wave fronts, contrasting energy against spin
dynamics. Based on the presence of these rays of fast prop-
agating particles, they claim that the wave packet dynamics
still has ballistic features. However, their analysis neglects
the influence of slower excitations that also contribute to
the dynamics of the wave packet, which is captured by the
variance, and it ignores the decay of the intensity in the outer
rays that we typically observe whenever δσ 2

S ∼ t .20 The latter
is, if at all, weak in a ballistic expansion characterized by

0 10 20
time tJ

0

1000

σ E

2 (t
)-

σ E

2 (0
)

α*t
2

10 20
time tJ

0

10

σ S

2 (t
)-

σ S

2 (0
)D*t+const.

Δ=1.5, L=200, B
0
=1.5J

FIG. 13. (Color online) Spatial variance of the energy density
(main panel) and the spin density (inset), induced by a B0 quench
with B0/J = 1.5 and σ0 = 5 [compare Eq. (3)] at � = 1.5. In this
case, both local spin and local energy densities are non zero during
the time evolution. The inset was reproduced from Ref. 20.

δσ 2
S ∼ t2. Therefore, while the analysis of Ref. 28 unveils

interesting details of the time evolution of densities during a
B0 quench, we maintain that the variance is a useful quantity to
identify candidate parameter sets for spin diffusion in, e.g., the
nonequilibrium regime. Final proof of diffusive behavior then
needs to be established by either demonstrating the validity of
the diffusion equation or by computing correlation functions,
see, e.g., Refs. 55 and 61. For instance, in Ref. 28, Jesenko and
Žnidarič analyze the steady-state currents in the � > 1 regime
at finite temperature and obtain diffusive behavior.

VI. SUMMARY

We studied the real-time energy dynamics in XXZ spin-1/2
chains at zero temperature in two different scenarios. First,
we investigated the energy dynamics in the absence of spin
currents induced by a local sign change in the exchange
interactions. The spatial variance behaves as δσ 2

E(t) ∝ t2 for
all �, consistent with ballistic dynamics. In the gapless regime,
the velocity of the fastest excitation present in the dynamics
is the group velocity vg of spinons, yet our particular quench
also involves excitations with much smaller velocities resulting
in expansion velocities VE < vg . Furthermore, the ballistic
dynamics can be related to properties of energy currents. While
the total current vanishes in our setup, i.e., 〈JE〉 := ∑

i〈jE
i 〉 =

0, the current in each half of the chain 〈JE
L/2〉 > 0 takes a

constant value, after some transient dynamics. Therefore, in
each half of the system, we prepared a state with a conserved
global current, allowing us to make a direct connection to the
predictions of linear-response theory where the existence of
ballistic dynamics is directly linked to conservation laws that
prohibit currents from decaying.43 Moreover, we identified
an observable J ∗

E built from local currents whose expectation
value 〈J ∗

E(t)〉 is time independent if δσ 2
E ∝ t2 and vice versa.

This carries over to other types of transport as well and, in fact,
the analysis of the time dependence of 〈J ∗

E〉 can be used as an
independent means to identify ballistic regimes, or to unveil
the absence thereof.

0 5 10 15 20 25 30
time tJ

0

1

2

3

4

S
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(t
)
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Δ=1.5
ln(t/t

0
)

FIG. 14. (Color online) Time dependence of the von Neumann
entropy SvN for a bipartition that cuts the system across the central
bond during the time evolution starting from a ferromagnetic region
coupled to an antiferromagnetic one at � = 0.5,1,1.5
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In the second part, we studied the energy dynamics induced
by quenching a Gaussian magnetic field, with two main
results. These quenches allow us to access the regime of
weakly perturbed initial states and in that limit, we recover the
predictions from Luttinger liquid theory for the wave-packet
dynamics. Their variance simply grows as δσ 2

E = v2
gt

2. In
the massive phase, a very interesting phenomenon occurs,
since the energy dynamics is ballistic on time scales over
which the spin dynamics behaves diffusively although both
are driven by the same perturbation. This resembles the
picture established from linear-response theory,43 there applied
to the finite-temperature case, in the nonequilibrium setup
studied here. While our numerical results cover spin chains on
real-space lattices and initial states far from equilibrium, the
extension of our work to a finite temperature of the background
will be crucial to tackle the most important open questions.
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APPENDIX: ENTANGLEMENT GROWTH

Here, we want to study the growth of entanglement
across a junction separating regions in a spin chain with
ferromagnetic correlations from ones with antiferromagnetic
ones.

To that end, we take initial states inspired by Ref. 19 where
one half of the system has a positive and the other one a
negative J . We obtain this configuration as a variation of Ji-
quench choosing:

Ji =

⎧⎪⎨
⎪⎩

J, i < L/2,

0, for i = L/2,

−J, i > L/2,

(A1)

in Eq. (2). We then perform the time evolution under the
antiferromagnetic Hamiltonian [Eq. (1)]. As a measure of the
entanglement we calculate the von Neumann entropy

SvN = −Tr(ρAlnρA) (A2)

of the reduced density matrix ρA = TrBρ, where ρ =
|ψ(t)〉〈ψ(t)| and |ψ(t)〉 is the time-evolved wave function,
for a bipartition in which we cut the chain into two halves of
length L/2 across the central link. Our results are plotted in
Fig. 14. We observe that the von Neumann entropy grows at
most logarithmically (purple dashed line), in agreement with
Ref. 21. The overall largest values of SvN(t) are found at the
critical point � = 1 (red squares). This behavior is very similar
to the observations made in Ref. 19 for spin dynamics starting
from a state with all spins pointing up (down) in the left (right)
half.
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4 Dynamics of ultra-cold atomic gases in one

spatial dimension

In the discussion of the results for the low-dimensional quantum magnets,
the experimental motivations where based upon real materials. While the
question of ballistic versus diffusive dynamics in the models used to describe
some features of such materials is a interesting, fundamental question, espe-
cially out of equilibrium, the gap to experiments done at room temperature
on three-dimensional macroscopic bulk crystals is quite large. Especially
phonons are likely to play a role in the whole picture and difficult to incor-
porate into numerical simulations.

The fairly young field of cold atomic gases can nowadays provide us with
well controlled quantum systems, which, to a certain degree, emulate the
physics of interesting model Hamiltonians [196]. It originated from the ex-
perimental observation of Bose-Einstein condensation [197] in ultra-cold Bose
gases [61, 62, 63] and the resulting investigation of macroscopic coherent mat-
ter waves (see [198] for a review). Compared to Bosons, cooling fermions to
the quantum degenerate regime is technically more demanding but has also
been achieved [66, 67, 68].

Beyond cooling bosons and fermions to the quantum regime, the two
following developments then forged the bond between ultra-cold gases and
strongly correlated lattice models: The first one is the realization of strong
periodic potentials, so called optical lattices, by the means of counter-propagating
laser beams [64, 65]. The second one is the precise control of the two parti-
cle interaction strength via Feshbach resonances [199, 200, 201]. Combining
those two techniques allows to study the physics of the Hubbard model with
tunable interactions and dimensionality (see, e.g., [7, 69, 70, 95]).

The investigation of non-equilibrium properties of ultra-cold atomic gases
is often driven by questions such as thermalization [202], or state engineer-
ing [21]. In the discussion of whether or not relaxation dynamics give rise to
thermalization [6] finite net currents are usually sought to suppress. Yet, sev-
eral recent experiments deliberately addressed scenarios with finite particle
currents [7, 71, 74, 75, 76, 77].

This chapter presents our results for the real-time dynamics that bosons
and fermions undergo upon being released from a confining potential into
the empty optical lattice. Our motivation to study such sudden expansions
is two-fold: First, we want to extend the discussion of ballistic and diffu-
sive dynamics from perturbations of a homogeneous background density to
the case of a cloud of particles expanding into the vacuum. In the sudden
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expansion all particles participate in the dynamics and thus the background
density itself is time-dependent. Second, the sudden expansion into an empty
optical lattice is gaining attention as an experimental technique to study the
dynamical properties of the underlying model system using ultra-cold atomic
gases [7]. Therefore we want to make to make exact predictions for further
experiments and identify possibly interesting systems.

To this end, we use time-dependent DMRG to analyze the sudden ex-
pansion in three different setups: (i) A spin-balanced mixture of repulsively
interacting fermions starting from the groundstate of the trap, repulsively
interacting, (ii) spinless bosons starting from initial states with a fixed par-
ticle number per site and a finite defect density and (iii) a spin-imbalanced
fermi gas in the presence of attractive interactions, again starting from the
groundstate of the trap.

For similar purposes the time-dependent density profiles of two compo-
nent Fermi gases have recently been simulated [203, 204, 205, 206] and also
unveiled effects that are likely to influence further experiments. One exam-
ple important in the following, is the so-called quantum distillation [204],
a very fast process that mediates the spatial separation of pairs and single
particles immediately after opening the trap. We will show that this process
is also the dominant process behind the drastic changes in the momentum
distribution our third setup, which are of high experimental relevance [95].
Another approach is taken for instance in Ref. [206], where the experimental
setup of Ref. [7] was directly translated to one spatial dimension. Finally,
the long-time limit of the sudden expansion can again be discussed in the
context of thermalization, see, e.g., Ref. [205].

In the following we first introduce the physics that allow the trapping
of atomic gases and the engineering of lattices and two-body interactions in
Chap. 4.1.

In Chap. 4.2 we discuss the experiment performed in Ref. [7] in detail as
it covers two aspects important for the following theoretical analysis. First,
its experimental protocol realizes the expansion into the empty lattice in
the absence of residual potentials, thus the experiment really studies the
homogenous Hubbard model. Second, it relates the real-time dynamics of
density profiles to the electronic transport properties of the Hubbard model
in two and three spatial dimensions.

The possibility to study the expansion into a homogeneous empty lattice
[7] and the possibility to study one-dimensional Fermi gases [95, 207, 208]
serve as motivation for the following investigation of the sudden expansion of
a two-component Fermi gas in Chap. 4.3. There we study the time evolution
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of a spin-balanced mixture expanding, in the presence of repulsive interac-
tions, from either a box trap or a harmonic trap. For the box trap, we find
that the dynamics is ballistic in nature whenever the density in the initial
state is smaller than one. The hallmark of ballistic transport we observe is
a linear growth of the cloud’s radius Rn(t). We define the cloud radius as
second moment of the fermion density which allows us to define the average
expansion velocity via Rn(t) = Vext in analogy to Chap. 3.6. Studying Vex as
a function of density n and on-site interaction U we find that the expansion
velocity is determined by only a small subset of the initial conditions, namely
density and energy of the initial state, over a wide range of parameters. Fur-
thermore the expansion velocity is completely determined by symmetry in
the Mott insulating phase (n = 1) and thus independent of U in that case.
The qualitative dependence of Vex on n and U is remarkably stable against
the presence of a harmonic trap where the initial density is no longer homo-
geneous but can develop a shell structure depending on U and n [209]. In
the presence of a Mott insulating shell in the trap we find the same clear
signature in the expansion velocity as for the box trap, namely Vex =

√
2

in units of hopping, as in the homogenous case. Therefore the expansion
velocity could also serve as a probe to determine quantum phase transitions.

In Chap. 4.4 we perform a similar analysis for spinless bosons, but here
we focus on the effect of defects in the initial state that could be present in
a typical experimental setup. The expansion velocity is studied for initial
states which are pure Fock states in real space, i.e., states with a well defined
number of particles per site, each one localized on their respective site. We
then introduce an admixture of defects, either holes, double occupied sites,
or both and study the effect of such configurations on the expansion velocity
and the time-dependent momentum distribution functions. For the expansion
velocity we find that it could serve as a probe for the density of defects in the
initial state. The investigation of time-dependent momentum distribution
functions is motivated by the observation of dynamical quasi-condensation
in the momentum distribution of bosonic Fock states and Mott insulators at
large interactions [78, 79, 203, 80]. Our data suggests that the dynamical
quasi-condensation is remarkable stable against the presence of defects.

Chapter 4.5 then revisits the Fermi-Hubbard model, studying the expan-
sion of a spin-imbalanced mixture in the presence of attractive interactions.
Attractive spin-imbalanced Fermi gases in one spatial dimension have been
shown to exhibit the analogue of the famous Fulde-Ferrel-Larkin-Ochnikov
(FFLO) phase [81, 82, 83, 84, 85, 86, 87]. The FFLO phase (see Ref. [88]
for a review) has been originally proposed as a model fermionic pairing at
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finite polarization [89, 90]. In such a situation, the Fermi surfaces of the two
fermionic species mismatch. As a result the fermionic pairs acquire a finite
center-of-mass momentum. A partially polarized phase of FFLO-type has
been predicted for trapped one-dimensional Fermi gases [91, 92] and numer-
ical data suggests clear signatures of the FFLO state in the momentum dis-
tribution functions and the spatial structure of the ground state [82, 87, 93].
Motivated by the recent experimental investigation of spin imbalanced Fermi
gases in one spatial dimension [95], we study the time-dependent momentum
distribution function of up-spins, down-spins and bound pairs during the the
sudden expansion. We find that each momentum distribution function un-
dergoes major changes only over a rather short time interval, until the cloud
has expanded roughly by a factor of four. For very large times the momen-
tum distributions become virtually time independent. A possible connection
to the asymptotic limit of infinite expansion times and the integrability of
the model is discussed based on the Bethe ansatz solution of this model [27].

4.1 Ultra-cold atomic gases in optical lattices

In the following we are going to review the two concepts that allow experi-
mental access to strongly correlated lattice systems, namely optical lattices
and Feshbach resonances, following the presentation in [21]. Both, the trap-
ping of atoms and creating a periodic potential originate from the dipole force
that the atoms experience in a laser field, which is detuned with respect to
a resonance frequency ω0 of the atom [210]. The dipole potential induced by
a gaussian laser beam, propagating in the z-direction can be approximated
by [21]:

Vdip(r, z) ≈ −V0

{
1−

(
2
r

ω0

)2

−
(
z

zR

)2
}
, (49)

where zR is the Rayleigh length of the laser [21] and the trapping strength
V0 is proportional to the laser intensity. The simplest periodic potential can
be introduced by overlapping two counter-propagating laser beams, which
results in

V (r, z) = −V0e
−2r2/ω2(z) · sin2(kz) (50)

on top of the still present trapping potential. As the resulting dipole poten-
tial for two or three standing waves is simply the superposition, the resulting
lattice can have the dimensionality of choice, allowing one to study either a
three-dimensional cubic lattice, or arrays of one-dimensional tubes, in a two
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counter-
propagating
laser beams

arrays of 1D tubes

 cubic lattice

Figure 13: Illlustration of the concept of optical lattices generated by stand-
ing waves of laser light. Panel (a) sketches the formation of arrays of one-
dimensional tubes using a two dimensional lattice. Panel (b) sketches the
emulation of a three dimensional ”crystal” of atoms in a three-dimensional
optical lattice. Adapted from [21] with permission from the author.

dimensional lattice, as illustrated in Fig. 13. Assuming an infinite homo-
geneous lattice, the single-particle eigenstates are Bloch waves with quasi-
momentum q whose energy in the lowest band and one spatial dimension is
given by the dispersion dispersion [211]

ε0(q) = −2J cos(qa) , (51)

where a is the lattice constant. J is usually set to unity in theoretical cal-
culations and serves as global energy scale. In optical lattices the energy for
many applications scale is set by the recoil energy [21] Er = k/(2m), where k
is the wave-vector of the laser light and m is the mass of the trapped atoms.
In the limit of deep lattices (V0 >> Er) one can approximate J by

J =
4√
π
Er

(
V0

Er

)3/4

e−2( V0
Er

)
1/2

. (52)

Switching to the Wannier basis, which describes particles localized around
particular lattice sites, focussing on only the lowest Bloch band and introduc-
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ing creation operators a†r which populate exactly the corresponding wannier
mode ψr, one arrives at a lattice Hamiltonian of the following form [65]:

H0 =
∑

r,r′

−Jr,r′(a†rar′ +H.c.) (53)

where the Jr,r′ are the tunneling matrix elements between lattice sites r and
r′. Treating the trapping potential on the same footing gives

H = H0 + V
∑

r

(r − r0)2a†rar (54)

where r0 is the center of the trap.

The interactions usually assumed for experiments with ultra-cold atoms
in optical lattices are two-body contact interactions [21]. The interaction
between two different Wannier functions, which are centered around r and r′

respectively, takes the form Uδr,r′, where U/J =∼ exp(
√
V0/Er) [21]. This

means that the interactions can be tuned via the lattice depth V0, which
has been used, e.g., to study the superfluid-to-Mott transition of the Bose-
Hubbard Hamiltonian [64, 65].

An alternative way to include short ranged interactions is to consider
that collisions between bosons or fermions with different spins in the low-
energy limit are given by s-wave scattering which corresponds to a point-like
potential V = gδ(r) where g is proportional to the scattering length a. The
potential can be either repulsive (a < 0) or attractive (a > 0). A Feshbach
resonance [212] is a divergency of the s-wave scattering length that occurs
when the kinetic energy of two colliding atoms is equal to the energy of a
bound state of those two atoms. Such a condition can be met in atom-atom
scattering due to the different hyperfein states [199]. Phenomenologically,
the scattering length around a Feshbach resonance can be parametrized as
[21]

a(B) = a0(1−
∆B

B −B0

) , (55)

where a0 is the bare scattering length far away from the resonance, ∆B
is the width of the resonance and B0 the position of the resonance (see
[213, 214, 215] for detailed reviews). Given those parameters, the on-site
two-body interactions can be tuned independently of the lattice depth using
a magnetic field.

Depending on the particles loaded into the lattice and upon including the
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Initial state

Initial state

Free expansion into lattice

Figure 14: Expansion of a fermionic band insulator in two dimensions. Left:
Sketches of the initial state (upper panel) and the expanding cloud (lower
panel) with the respective shape of the optical lattice. Right: In-situ ab-
sorption images of the particle density in the expanding cloud after 25ms.
Adapted from [7] with permission from the author.

two-body term, Eq (53) becomes either the Bose-Hubbard model

H0 = −J
∑

r

[(b†rbr+1 +H.c) +
U

2
nr(nr − 1)] , (56)

where b†r creates a boson on site r and nr = b†rbr, or the Fermi Hubbard model

H0 = −J
∑

r,σ

(c†r,σcr+1,σ +H.c) +
∑

r

Unr,↑nr,↓ , (57)

where c†r,σ creates a fermion with spin σ =↑, ↓ on site r and nr,σ = c†r,σcr,σ Af-
ter detailing how ultra-cold atomic gases can emulate the Hubbard model we
will now discuss a particular example of non-equilibrium dynamics relevant
for the following numerical simulations.

4.2 Sudden expansion experiments and non-equilibrium
transport

In the context of fermionic transport the sudden expansion experiment per-
formed by Schneider et al. on two and three-dimensional Fermi gases of 40K
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atoms makes two very important points [7]: First, the expansion under the
action of a homogeneous Hubbard hamiltonian is studied. This is important
because previous experiments with similar setups [69, 70, 216] where carried
out in the presence of residual external potentials due to the experimental
protocols. Second, the experimental data obtained was discussed in great
detail in the context of diffusive versus ballistic dynamics. In the following
we are going to briefly summarize the experiment from Ref. [7]. Figure 14
shows sketches of the initial state and the expansion into the empty homo-
geneous lattice (upper and lower left panel respectively) as well the in-situ
absorption images visualizing the local particle density after expanding for
25ms for various values of density density interactions (right panel). The ex-
periment was performed with 40K atoms loaded into an optical lattice with
a harmonic confining potential in the absence of interactions. The loading
sequence is chosen in such a way that the initial state is a band insulator
with a thin metallic shell (upper left panel of Fig 14). The density is then
frozen by ramping to a very deep lattice before the interactions are turned
on using a Feshbach resonance. Finally the lattice lattice and the confining
potential are ramped down in such a way that the result is an expansion into
a homogenous empty lattice (lower left panel of Fig 14). The main feature is
the sudden crossover from the square ballistic halo at U = 0 to the presence
of a diffusive core at finite U . This feature is very well visible in the par-
ticle density imaged after 25ms (right panel of Fig 14). Furthermore, they
find that already small values of interaction strength drastically reduce the
expansion velocity extracted from the density profiles.

In the following we present our results for the sudden expansion in one
spatial dimension for three different setups: (i) A spin-balanced two-component
Fermi gas, starting from the groundstate of either a box or a harmonic trap,
(ii) A bosonic Fock state in real space and (iii) a spin imbalanced Fermi gas,
again starting from the ground-state of trapped gas.
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4.3 Expansion velocity of a one-dimensional, two-component
Fermi gas during the sudden expansion in the bal-
listic regime

The results of Schneider et al. discussed in Chap. 4.2 combined with the
possibility of similar expansion experiments for one-dimensional Fermi gases
was our motivation to carry over the analysis put forward in Chap. 3.7 to the
sudden expansion scenario of Ref. [7]. Here we consider an initially trapped
spin-balanced two-component Fermi gas, expanding into an empty lattice.
The crucial difference to Chap 3.7 is that the setup changes from a wave-
packet expanding on top of a stationary background density to the case where
all particles participate in the dynamics, and as such all particles contribute
to the average expansion velocity in the ballistic case.

In contrast to Schneider et al. we consider one spatial dimension and
work with densities n ≤ 1. We start from the groundstate of either a box or
a harmonic trap and study the dynamics at different interaction strengths
U ≥ 0. As a main result we find that the expansion from a box trap is
ballistic whenever n ≤ 1 independently of U . This enables us to study the
average expansion velocity as a function of interaction strength and density
for the box trap and we find that it can be explained by a non-interacting
thermal reference system, based on energy and particle number conservation,
over a wide range of parameters. In these cases the expansion is completely
characterized by a very small subset of the initial conditions. It follows that
the main effect of interactions in the system is to raise the initial energy,
and thus to also increase the expansion velocity. At n = 1 the groundstate
of the box trap is a Mott insulator. In this case we find that the average
expansion velocity is completely determined by symmetry and thus Vex =√

2J independently of the interaction strength. Replacing the box trap with
a harmonic trap, and thus replacing the homogeneous density by a shell
structure of different densities [209], we find that the qualitative dependence
on the effective density and the interaction strength is robust against the
presence of the harmonic trap. Most importantly the clear signature of the
Mott insulator, namely Vex =

√
2J , is preserved which should be observable

in future experiments. Hence, we conclude Vex can also be a tool to detect
quantum phase transitions in the initial states.
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We show that in the sudden expansion of a spin-balanced, two-component Fermi gas into an empty optical
lattice induced by releasing particles from a trap, over a wide parameter regime, the radius Rn of the particle
cloud grows linearly in time. This allow us to define the expansion velocity Vex from Rn = Vext . The goal of this
work is to clarify the dependence of the expansion velocity on the initial conditions which we establish from
time-dependent density matrix renormalization group simulations, both for a box trap and a harmonic trap. As
a prominent result, the presence of a Mott-insulating region leaves clear fingerprints in the expansion velocity.
Our predictions can be verified in experiments with ultracold atoms.
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I. INTRODUCTION

Research into the nonequilibrium properties of strongly
correlated many-body systems has emerged into a dynamic
and active field, driven by the possibility to address questions
such as thermalization [1,2], the properties of steady states,
or state engineering in ultracold atomic gases [3]. While
substantial theoretical attention has been devoted to quantum
quenches in homogeneous systems [2], more recently, setups
that give rise to finite particle or spin currents have been
studied as well, both from the theoretical side [4–15] and in
experiments (see, e.g., Refs. [16–21]). Using these approaches
allows one to investigate transport properties of strongly
correlated many-body systems—in and out of equilibrium—in
cold atomic gases that are of great interest in condensed matter
theory.

Our work is motivated by the experiment by Schneider
et al. [17] who have studied the expansion of a two-component
Fermi gas in an optical lattice in two and three dimensions (de-
scribed by the Fermi-Hubbard model [22,23]), starting from
an almost perfect band insulator. The qualitative interpretation
of their results is that, besides a ballistically propagating halo
of particles, at finite interaction strengths a core of diffusively
expanding particles exists [17]. In the case of one-dimensional
(1D) bulk systems relevant for condensed matter problems
and on the level of linear response theory, ballistic dynamics
of interacting particles can be traced back to the existence
of nontrivial conservation laws [24]. For instance, the fact
that the energy current is conserved for the 1D Heisenberg
model renders its spin transport ballistic away from zero total
magnetization [24–26], whereas at zero magnetization there
exists a quasilocal quantity [27], which is conserved only for
the infinite system, that gives rise to ballistic dynamics. While
for the 1D Hubbard model, the understanding of its transport
properties is by far less complete than for the Heisenberg chain,
one might be tempted to expect similar quantities to play a role
for the latter model as well [24].

A qualitative difference between the sudden expansion
in an optical lattice compared to steady-state transport

measurements in condensed matter systems is that, in the latter
case, the background density determines transport coefficients,
whereas in the former case, the density itself becomes time
dependent [17] and all particles participate in the dynamics.
As a consequence, in diffusive regimes, the dependence of
the diffusion coefficient on density needs to be accounted for.
In the ballistic case, as we shall see, the expansion velocity
always depends on all momenta that are occupied in the initial
state and not on just those close to the Fermi wave vector.
Therefore, a parameter regime complementary to condensed
matter systems can be accessed with cold atoms.

Theoretical results for the expansion of interacting bosons
or fermions in optical lattices are mostly available for the
1D case, for which exact numerical methods give access
to at least the short time dynamics via the adaptive time-
dependent density matrix renormalization group (tDMRG)
method [28–31] or exact diagonalization (ED) [4,5]. The
richness of the nonequilibrium physics encountered in the
expansion manifests itself in the observation of the dynamical
emergence of coherence [4,8,11,32], which, for bosons, leads
to the phenomenon of dynamical quasicondensation [4,11,32]
and the intriguing phenomenon of the fermionization of the
momentum distribution function (MDF) [5,15,33,34]. In the
case of a two-component Fermi gas, the short-time dynamics
of the MDF and correlation functions [8], the emergence of
metastable states [9,10] and the time evolution of density
profiles for specific initial conditions have been investigated
[8,9,35–37].

In the present work we study the 1D Hubbard model and
we concentrate on the sudden expansion starting from initial
states that are Mott insulators (MI), that is, that have an
integer filling of ninit = 1, Tomonaga-Luttinger (TL) liquids
(ninit < 1), or systems in a harmonic trap. In the latter
case, depending on filling and interaction strength, several
phases may coexist in separate shells [38]. We analyze the
dependence of the expanding cloud’s radius Rn(t) on time
t and search for conditions to obtain ballistic dynamics, for
which Rn(t) = Vex t is a necessary criterion. In that case, the
expansion velocity Vex is a well-defined quantity, and, as a
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key result of our work, we clarify its dependence on the initial
conditions.

Our main results are: (i) In the regime of low densities,
that is, ninit � 1, we observe a linear growth of the cloud’s
radius with time, allowing us to define Vex. (ii) In general,
the expansion speed Vex depends in a nonmonotonic way on
the initial density. In the case of the expansion from a MI,
Vex = √

2J , independently of U . (iii) Our findings are robust
against the presence of a harmonic trap in the initial state.

Note that, in a generic system, one expects ballistic
dynamics in the long time limit, where the gas becomes so
dilute that interactions cease to matter. Here we show that
ballistic dynamics sets in immediately after the gas is released
from the trap when the density is actually still comparable to
the initial density.

The structure of the paper is the following: In Sec. II we
introduce the model and define the radius of the cloud. Section
III discusses the expansion from a box trap, that is, starting
from a homogeneous density. We first show that the dynamics
is ballistic by analyzing the radius and the particle currents
and second, we present a detailed analysis of the expansion
velocity as a function of density and interaction strength.
In Sec. IV we test our findings against the inhomogeneity
introduced by a harmonic trap. We summarize our findings in
Sec. V. In Appendix A we discuss the diffusion equation in
one dimension. Appendix B contains a finite-size analysis of
the expansion velocity for various cases.

II. MODEL AND SETUP

Our study is carried out for the 1D Hubbard model:

H0 = −J

L−1∑
i=1,σ=↑↓

(c†i+1,σ ci,σ + H.c.) + U

L∑
i=1

ni,↑ni,↓. (1)

c
†
iσ is a fermionic creation operator with spin σ =↑ ,↓ acting

on site i, niσ = c
†
iσ ciσ , ni = ∑

σ niσ , U is the onsite repulsion,
and J is the hopping matrix element. Open boundary condi-
tions are imposed, L � 100 is the number of lattice sites, and
N is the number of particles. We set h̄ and the lattice spacing to
unity and thus measure time, velocity, and particle current in
the appropriate units in terms of the hopping matrix element.

We prepare initial states as the ground state of H = H0 +
Hconf [8]. We consider two cases. First, the expansion from a
box trap [i.e., 〈ni〉 �= 0 for i1 < i � i2; (i2 − i1) = Linit, ninit =
N/Linit] enforced by using Hconf = ∑

i εini with a large εi �
U for i � i1; i2 < i and zero otherwise. The second example
is the expansion from a harmonic trap, for which Hconf =
V

∑
i(i − i0)2ni . We turn off Hconf at t = 0. In our tDMRG

runs, we use a Krylov-space based method [39,40], with time
steps of δt J = 0.25 and we enforce a discarded weight of
10−4 or smaller.

The main quantity of interest is the radius of the particle
cloud that we define via

Rn =
√√√√ 1

N

L∑
i=1

〈ni〉(i − i0)2 − R2
n(t = 0) . (2)

For the expansion from a box, i0 = L/2 + 0.5.
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FIG. 1. (Color online) Box trap: Typical contour plot of the
density 〈ni(t)〉 during the expansion from a MI (U = 8J , ninit = 1,
Linit = 20). The slanted lines indicate the speed 2J at which the MI
melts.

III. EXPANSION FROM A BOX TRAP

We first discuss this idealized case to avoid the complication
of dealing with particles originating from different shells, as
would be the case with a harmonic trap (note though, that
box-like traps can also be generated in experiments [41,42]). A
typical example for the time evolution of the density 〈ni(t)〉 is
shown in Fig. 1 for the expansion from a MI with U = 8J . The
MI melts on a time scale of tmelt � Linit/(2J ), where 2J is the
largest possible velocity in the empty lattice since the single-
particle dispersion is εk = −2J cos(k) [8]. For t > tmelt, two
particle clouds form that propagate into opposite directions,
visible as two intense jets (compare Refs. [4,5,36,43–45]).

In Fig. 2 we display the radius Rn(t) at U = 8J for various
initial densities at U = 8J . Clearly, for ninit � 1, Rn(t) = Vext .
We stress that Rn(t) ∼ t sets in immediately after the gas
is released from the trap. This includes, in particular, the
expansion from a MI at any U , while for ninit > 1, the radius
deviates from Rn(t) ∼ t [9]. Based on the observation of
Rn(t) ∼ t on short and intermediate times, when local densities
are still large, together with the fact that interacting particles
behave similar to noninteracting ones (which, in the absence
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FIG. 2. (Color online) Box trap: Radius Rn(t) for initial densities
ninit = 0.2, 0.4, 0.8, 1 at U = 8J and Linit = 40 (corresponding to
N = 8, 16, 32, 40).
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FIG. 3. (Color online) Box trap: Total particle current in each half
of the system as a function of time, that is, JL/2(t) := ∑

i>L/2 ji , for
(a) U = 8J , (b) U = 2J , and ninit = 0.2, 0.4, 0.6, 0.8, 1. We observe
that after some transient dynamics 〈JL/2(t)〉 = const, supporting the
observation of ballistic transport.

of disorder, expand with Rn ∼ t), we classify the dynamics as
ballistic.

In our situation, the notion of ballistic dynamics is strongly
corroborated by analyzing the time dependence of the total
particle current in each half of the system, JL/2 = ∑

i>L/2 ji

[ji = −iJ
∑

σ (c†i+1σ ciσ − H.c.)], which is shown for U/J =
2,8 in Fig. 3. After the two jets in Fig. 1 are well separated from
each other, JL/2 takes a constant value, which we consider a
hallmark feature of ballistic dynamics [45].

However, in one dimension, there is a subtlety as certain
solutions of the diffusion equation can also give rise to a linear
increase of the radius with time (if properly defined). Such a
scenario happens in the dilute limit (which we do not study
here), yet it results in a strong dependence of the expansion
velocity on the total particle, which is clearly different from
our case as we shall see below. Further details are given in
Appendix A.

The observation of a linear increase of the cloud radius with
time implies that Vex should be fully determined by properties
of the initial state, such as the MDF, energy per particle, or
density. In the noninteracting case, this is obvious since Vex

can be calculated from the knowledge of the MDF. To guide
the interpretation of the interacting case and to understand the
dependence of Vex on U and ninit, we next study the two exactly
solvable limits U = 0 and U = ∞.

A. Box trap, Vex at U = 0

At U = 0, opening the trap simply means that particles will
propagate with a velocity vk = 2J sin(k) with a probability
given by the MDF nk in the initial state, which is nk =
(1/N )

∑
l,m,σ e−i(l−m)k〈c†lσ cmσ 〉 . The momenta are chosen to

match the open boundary conditions in the box, that is,
k = πl

Linit+1 ; l = 1, . . . ,Linit. By a straightforward evaluation of

R2
n(t) from Eq. (2) and using the time dependence of creation

and annihilation operators, known exactly at U = 0, we obtain

Vex as the average velocity of all particles in the initial state:

V 2
ex = 1

N

∑
k

v2
k nk . (3)

In the U = 0 case, the initial MDF thus completely determines
the expansion velocity. However, this is an over-complete set
of constraints: For a very large N , where boundary conditions
cease to matter, we can evaluate Eq. (3) analytically:

V 2
ex = 2J 2[kF − cos(kF ) sin(kF )]/kF , (4)

which yields the full dependence on the initial density at U = 0
through kF ∝ ninit alone. We can interpret Eq. (4) in two ways:
If U = 0,kF = πninit/2, whereas for U = ∞,kF = πninit.
Using ED we have verified the validity of Eq. (4) by extracting
Vex from the time dependence of Rn(t) for N ∼ 160 (see
Fig. 8 in Appendix B).

B. Box trap, Vex at U �= 0

In the interacting case we extract the expansion velocity
Vex from the tDMRG data (i.e., the slope of curves such as the
ones shown in Fig. 2). The results for selected values of U are
collected in the main panel of Fig. 4 (symbols). We emphasize
four main observations: (i) For the expansion from the MI
we obtain Vex = √

2J at any U > 0. (ii) At a fixed density,
Vex increases monotonically with U . (iii) For U > 4J , the
maximum of the expansion velocity is at an incommensurate
density 0.5 < ninit < 1. (iv) The expansion velocity is always
very different from characteristic velocities of the initial state
and much smaller than 2J , the largest possible velocity. It
is also much smaller than the charge velocity [46] at small
densities and at ninit = 1, where the charge velocity drops to
zero, Vex remains finite.

At U = 0, the first observation is a consequence of particle-
hole symmetry, reflected in the MDF: nk is point symmetric
about the point (kF = π/2,nkF

). Since v2
kF +δkF

= v2
kF −δkF

,

from Eq. (3), we conclude Vex = √
2J . The MDF at U > 0

has the same symmetry property, hence we expect a similar
behavior, confirmed by tDMRG. Of course, Eq. (3) does not
directly apply to the interacting case. Since the total energy
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FIG. 4. (Color online) Box trap: Main panel: Vex vs ninit at U/J =
0, 0.5, 2, 8, ∞ for Linit = 20 [see the legend, symbols are tDMRG,
the solid and the dashed lines are derived from Eq. (4)]. Inset: Vex

from tDMRG (open squares: U = 8J , open triangles: U = 2J ) vs
Vref (solid symbols) from noninteracting reference systems at a finite
temperature (see Sec. III C for details).
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EU = 〈H0〉 is conserved, for U > 0, Eq. (3) is incompatible
with this initial condition set by U > 0 and ninit. However,
we shall see that the observation of Vex = √

2J for U >

0 can also be understood as a consequence of symmetry
properties.

We can further use the exact result Eq. (4) to explain
the observations (ii)–(iv). The U = 0 and U = ∞ result are
the solid and the dashed lines in the main panel of Fig. 4,
respectively, and therefore, increasing U from U = 0 to
U = ∞ at a fixed density simply takes us from the limit
of a noninteracting two-component Fermi gas to the limit
of noninteracting spinless fermions. To understand that the
maximum of Vex is at an incommensurate ninit for U > 4J ,
one needs to take into account that on the one hand, in a
1D cosine band, the maximum velocity is at k = π/2, but
on the other hand, the density of states takes its minimum
there. As a consequence of this competition, that is, the
decrease of vk vs the increase of the density of states as
one moves away from π/2, the largest expansion velocity
is at ninit �= 1. Finally, property (iv) is a consequence of all
particles propagating and not just those with momenta close
to kF .

On a technical note, we have checked the dependence
of Vex on particle number, keeping ninit = N/Linit fixed.
Finite-size effects are the largest at small initial densities, yet
for densities ninit � 0.5, our tDMRG results obtained with
Linit = 40 show little quantitative differences compared to
smaller Linit and Vex becomes independent of N as shown in
Appendix B.

C. Reference systems

It is now a compelling question to ask how many constraints
suffice to determine the expansion velocity. From the solution
of the noninteracting case, we conclude that density and
energy are relevant quantities. To check this conjecture for
the interacting case, we construct noninteracting reference
systems that are at a finite temperature [47]. The temperature
is chosen such that the reference system has the same energy
as the interacting system and the same particle number, and it
lives in the same box potential of length Linit.

Hence we solve this set of equations:

N =
∑
k,σ

f (εk − μ,T ) , (5)

EU =
∑
k,σ

εkf (εk − μ,T ) , (6)

V 2
ref = 1

N

∑
k,σ

v2
kf (εk − μ,T ) , (7)

where f (x,T ) is the Fermi function. We proceed as illustrated
in Fig. 5. For a given U and N we compute the total energy
EU in the initial state with DMRG. First, we find the chemical
potential μ = μ(T ) from Eq. (5), which only depends on N .
Using this μ(T ) curve, we determine the pair of (μ,T ), for
which we get the right energy EU . From these results, Eq.
(7) yields the expansion velocity Vref of the reference system.
Obviously the maximum velocity that these reference systems,
which have the dispersion εk = −2J cos(k) of the empty
lattice, can produce is Vref = √

2J at any density ninit � 1
as T → ∞. Within that constraint, the agreement between

0 0.2 0.4 0.6 0.8
T [J]

-2

-1.5

-1

μ(
T

,n
=0

.4
) [

J]

0 0.2 0.4 0.6 0.8 1
T [J]

-30

-25

-20

-15

-10

E
(T

,μ
) [

J]

Ref. system
U=8J
U=2J
U=0

0 0.2 0.4
T [J]

0.5

1

1.5

V
re

f2  (T
,μ

) [
J2 ]

0 2 4 6 8 10
T [J]

0
0.5
1
1.5
2
2.5
3

V
re

f2 (T
,μ
) [

J2 ]

(a) (b)

(c) (d)

FIG. 5. (Color online) These plots illustrate how the noninter-
acting reference systems are constructed using Eqs. (5)–(7) for the
example of ninit = 0.4 for (a)–(c) Linit = 40 and (d) Linit = 160. (a)
Temperature dependence of the chemical potential at fixed ninit = 0.4.
(b) Total energy from Eq. (6) as a function of temperature. (c) V 2

ref

as a function of temperature. The horizontal lines in (b) are DMRG
results for EU for the initial states used in the expansion at zero
temperature for U = 0,2J,8J , while in (c) they mark the resulting
V 2

ref = V 2
ref (E,n). (d) As T increases, V 2

ref → 2J 2 from below, that is,
this is the largest expansion velocity that the reference systems can
produce for ninit � 1.

Vex and our reference systems is excellent, as we illustrate
for U/J = 2 and 8 in the inset of Fig. 4. Apart from those
densities for which, at U = 8J , Vex >

√
2J , Vref ≈ Vex within

our numerical accuracy. In the particular case of ninit = 1,
our reference systems also yield Vref = √

2J independently of
EU , consistent with the tDMRG results of Fig. 4. This is a
consequence of the aforementioned symmetry property of the
MDF, which also applies to T > 0.

IV. EXPANSION FROM A HARMONIC TRAP

Our results so far establish a relation between properties of
the initial state and the expansion velocity that could be probed
in experiments. We next test the robustness of our predictions
for Vex = Vex(U,ninit) against the inhomogeneity induced by a
harmonic potential.

We focus on three types of initial states: (i) Only a TL,
that is, 〈ni〉 < 1 in the entire trap, (ii) a MI shell in the
center, surrounded by TL wings, and (iii) a three-shell structure
with an incommensurate density in the center 〈ni〉 > 1,
surrounded by first, a MI shell and second, a TL shell with
〈ni〉 < 1. For a given U > 0, these regimes are separated
by critical characteristic densities ρ1 and ρ2, where ρ =
N

√
V/J is the effective density in a system with a harmonic

trap [3,38].
For all three cases, Rn(t) is shown in Fig. 6 for U/J = 2

and 8. We observe that, after releasing the particles from the
harmonic trap, the cloud still expands with Rn(t) ∼ t in cases
(i) and (ii), that is, Rn(t) ∼ t [see Figs. 6(a) and 6(b)], whereas
in case (iii) the increase of the radius is slower than linear in t

[see Figs. 6(c) and 6(d)]. In that regime and for U > 4J , the
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FIG. 6. (Color online) Harmonic trap: Radius of the particle cloud
for the expansion from a harmonic trap for (a) N = 10,30 at U = 8J ,
(b) N = 10,20 at U = 2J , (c) N = 48 at U = 8J , and (d) N = 30
at U = 2J . For U = 8J , these parameters correspond to the initial
states shown in the insets of Fig. 7. The solid lines are fits to the
data, dotted lines are guides to the eye. We find Rn(t) �∼ t whenever
densities in the center of the trap are larger than one and Rn(t) ∼ t

otherwise.

system can be viewed as a mixture of single atoms propagating
with velocities vk ∼ J and two fermions repulsively bound
into a doublon, which, due to energy conservation, does not
decay on time scales ∝1/J and is much slower with typical
velocities vd

k ∼ J 2/U [9,16]. For illustration, the values of ρ1

and ρ2 as well as typical density profiles are included in Fig. 7
for U = 8J (vertical lines and lower insets, respectively). As
is evident from Fig. 7, the overall dependence of Vex = Vex(ρ)
resembles that of the expansion from a box trap, with a
maximum in Vex emerging as U � 4J . Most importantly, as
soon as the MI forms in the center of the trap, indicated by the
vertical solid line at ρ = ρ1, the expansion velocity approaches
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FIG. 7. (Color online) Harmonic trap: Vex vs ρ (U/J =
2, 8, 40, ∞, V = 0.016J ). The vertical solid line marks the forma-
tion of a MI shell in the trapped system at ρ1 and the vertical dashed
line the formation of a core with 〈ni〉 > 1 at ρ2, both for U = 8J .
The horizontal line is Vex = √

2J . Symbols are tDMRG results, the
dashed line was obtained from ED. We have verified that the results
are remarkably stable against changes in the particle number at fixed
ρ by producing the Vex = Vex(ρ) curve at a different V (see Fig. 10
in Appendix B). Lower insets: typical initial density profiles in the
regimes ρ < ρ1, ρ1 < ρ < ρ2, and ρ2 < ρ for U = 8J .

a constant value at Vex �
√

2J from above. The contribution
to Vex of low-density shells surrounding the MI is suppressed
by increasing U or ρ since both favor a large relative fraction
of all particles in the MI shell to minimize the contribution
from the interaction energy. In contrast to the expansion from
the box, the limit of U = ∞ (dashed line) is approached very
slowly since the shell structure in a trap depends strongly on
U and ρ.

V. SUMMARY

We studied the sudden expansion of a spin-balanced two-
component gas in 1D, released from a trap. Our main results
are twofold: First, the cloud expands ballistically as long as
initial densities are small, including, in particular, the MI state.
Second, the expansion velocity, defined through Rn(t) = Vext

strongly depends on initial density and thus its measurement
can provide information on the initial state. For instance,
deviations from our predictions could indicate the presence
of defects in the initial state preparations. Our quantitative
predictions can be tested in an experiment that realizes the
setup of Ref. [17] in 1D.

Furthermore, it would be interesting to study the radius
of an expanding cloud and the expansion velocity for other
experimentally relevant systems such as the Bose-Hubbard
model or spin imbalanced mixtures. While we have presented
phenomenological evidence for ballistic dynamics, we have
here not touched upon a potential relation with integrability
and nontrivial conservation laws [24], leaving this for future
research. It also remains as an open question to identify
interacting models in one dimension and parameter regimes
in which diffusive dynamics dominates during the sudden
expansion, which might be challenging since even noninte-
grable models may have very large conductivities (see, e.g.,
Ref. [26]).
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FIG. 8. (Color online) Box trap: Comparison between the exact
result for Vex [Eq. (4) of the main text, valid in the limit of large
particle numbers] and exact diagonalization in the limits U = 0 and
U = ∞. ED data are shown for Linit = 40 and Linit = 160. In the
latter case we find very good agreement between the analytical result
(lines) and the ED data (symbols) for all densities.
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ninit � 0.6, finite-size effects are remarkably small.
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APPENDIX A: LINEAR INCREASE OF THE RADIUS FROM
A NONLINEAR DIFFUSION EQUATION

Here we discuss solutions of the diffusion equation in
one dimension in the limit of a very dilute gas. Since the
sudden expansion scenario considered in this paper involves
the propagation of all particles, the dependence of the diffusion
constant D on the local density n(x,t) becomes relevant, and
as a consequence, the relevant diffusion equation is in general a
nonlinear one (see, e.g., [17]). Focusing on the very dilute limit
we use D ∼ 1/n(x,t) (see the discussion in Refs. [17,48]).
The resulting diffusion equation (after rescaling of the time
variable)

∂tn(x,t) = ∂x

1

n
∂xn (8)

has a self-similar solution with particle number conservation
in 1D [49]:

n(x,t) = 2t

x2 + v2t2
. (9)

First of all, one realizes that our definition of the radius Rn(t)
[Eq. (2)] cannot be used here. In the analysis of experimental
data, it is common practice to define the radius as the half-width
at half-maximum of the expanding cloud [17]. Using this
definition, the solution Eq. (9) yields indeed Rn(t) = vt ,
similar to the ballistic dynamics discussed in our work.
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FIG. 10. (Color online) Harmonic trap: Expansion velocity for
V = 0.008J and V = 0.016J as a function of effective density ρ =
N · √

V/J for U = 8J . The expansion velocity is remarkably stable
against changing the particle number at fixed ρ.

We would like to stress, though, that the sudden expansion
described in the main text is genuinely different in some
important respects. First, Eq. (8) is only valid in the dilute
limit while the time-dependent DMRG gives us access to
short and intermediate time scales only where the gas is not
necessarily a dilute one yet. Second, Eq. (9) is a solution
for which the expansion velocity v depends strongly on the
particle number via N = ∫ ∞

−∞ n(x,t)dx = 2π/v, which is not
observed in our case (compare Figs. 4 and 9). Based on
these differences, we conclude that diffusive dynamics is very
unlikely to be realized for the 1D Hubbard model in the sudden
expansion.

APPENDIX B: FINITE-SIZE EFFECTS

Here we address the question of how our results for the
expansion velocity depend on the overall particle number at
a fixed density ninit. First, we consider the box trap and we
compare our analytical result for large N [Eq. (3)] to exact
diagonalization in the noninteracting limits in Fig. 8. For N =
40 we find good qualitative agreement with small finite-size
effects, which are the most pronounced for ninit < 0.5. For
N = 160, the deviations between the analytical expression
for N → ∞ and data for a finite N are already barely
visible except for very low densities. Second, we study the
interacting system expanding from different box traps with
Linit = 10, 20, 40 at a fixed density for U = 8J . Figure 9
shows Vex as a function of density. As in the noninteracting case
finite-size effects are remarkably small whenever ninit � 0.6
even for the smaller particle numbers.

Finally, we turn to the expansion from a harmonic trap and
analyze Vex for two different trapping potentials, V = 0.008J

and V = 0.016J . Figure 10 shows Vex as a function of effective
density ρ = N

√
V/J . We find that the expansion velocity is

very robust against changing the particle number at a fixed
ρ. Overall, our results for the expansion velocity exhibit only
minor finite-size effects in all studied cases.
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4.4 Sudden expansion of a one-dimensional Bose gas
in the presence of defects

After the discussion of the two-component Fermi gas it is an intriguing ques-
tion what a similar expansion setup would yield for bosonic particles. For
the sudden expansion of bosons the dynamical emergence of coherence in
the form of a dynamical quasi-condensation at finite momenta has been re-
ported for both, the expansion of hardcore (U → ∞) bosons [78] and the
expansion from a bosonic Mott insulators in the presence of strong repulsive
interactions [79]. This phenomenon consist of dynamically developing quasi-
long range correlations emerging during the sudden expansion of the bosonic
gas. As a signature, the time-dependent momentum distribution function of
the bose gas develops sharp peaks at two distinct momenta. In the case of
hardcore bosons, these momenta are given by k = ±π/2a, where a is the
lattice spacing [78]. The value can be explained taking into account global
energy conservation: Since the initial Fock state of hardcore bosons has a
total energy of zero, energy conservation requires that if a quasi-condensate
or Bose-Einstein condensate to forms, it should form at points with zero
average kinetic energy. Given the dispersion relation of the hardcore bosons

εk = −2J cos(k) , (58)

and setting the lattice spacing to unity, such points are given by k = ±π/2a.
While a Fock state of hardcore bosons is completely uncorrelated, the Mott
insulating state has exponentially decaying correlations. Yet, the qualitative
features of the dynamical quasi-condensation are also found in the latter case,
studying softcore bosons at large repulsive interactions. The precise position
of the peaks in the momentum distribution functions has been shown to have
a weak U -dependence by time-dependent DMRG simulations [79].

Here we revisit both, hardcore and repulsively interacting softcore bosons,
to study the expansion velocity in the same manner as in Chap. 4.3, namely
by calculating the cloud radius via

Rn =

√√√√ 1

N

L∑

i=1

〈ni〉(i− i0)2 −R2
n(t = 0) . (59)

where i0 is the center of the trap. Furthermore, we investigate the time-
dependent momentum distribution function to determine whether or not it
indicates dynamical quasi-condensation:
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nk(t) =
1

L

∑

l,m

ei(l−m)k〈b†l (t)bm(t)〉 . (60)

The initial states considered in the following are pure Fock states in real
space, i.e., states that are generated by applying a string of creation operators
to the vacuum

|ψ〉 =
∏

{ri}

b†ri |0〉 . (61)

The motivation to study states given by Eq. (61) comes from two aspects:
First, the effect of dynamical quasi-condensation at finite momenta in inter-
acting systems is larger for pure Fock states, as each particle is localized and
thus the state is completely uncorrelated and. Furthermore all momentum
Eigenstates of the initial trap are equally populated. Hence, the change in
both, the structure of correlations and the momentum distributions is more
drastic starting from a Fock state. Second, an experimental protocol to ob-
serve the dynamical quasi-condensation may be chosen similar to the one
described in Chap. 4.2, namely using a ramp of the optical lattice that effec-
tively ”freezes” the density distribution [217]. In that case, the initial state
will be a Fock state in real-space and, depending on the two-body interac-
tions during the preparation, is prone to have defects in the form of empty
or doubly occupied lattice sites. In the following, we first present our results
for the exact time evolution of hardcore bosons and then discuss preliminary
results for the interacting case, restricted to small systems and a number of
bosons per site of three.

4.4.1 Hardcore Bosons

For simplicity we start with hardcore bosons described by

H0 = −J
∑

i

(b†i+1bi +H.c.) , (62)

with a hardcore constraint (b†i )
2 = 0. This Hamiltonian can be exactly

mapped to free spinless fermions via the Jordan-Wigner transformation al-
lowing for full diagonalization of very large systems, see, e.g., Ref. [218]. The
results for the hardcore bosons are summarized in Fig. 4.3 and 16. The panel
(a) of Fig 4.3 shows the initial density profiles. Since in the hardcore limit,
there are no double occupancies, we restrict the discussion to a number I
of holes in the initial state. Panel (b) of Fig. 4.3 shows an exemplary result
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Figure 15: Real-time evolution of hardcore bosons starting from a Fock state
with Linit = 40, N = Linit − I particles and I defects. (a) Initial particle
density at t = 0 for I = 0, 3, 7. (b) Time-dependent particle density for
I = 3. The initial state melts at a velocity of 2J which defines a ”light cone”
for the dynamics. The dynamics of the impurities in the center of the trap
does not influence Vex (see Fig 16).

of the time evolution, namely for I = 3. Since this is a non-interacting sys-
tem, the dynamics is those of free particles. Mapping Eq. (62) to spinless
fermions, one obtains the usual dispersion relation of the tight binding chain,
namely Eq. (58). The velocity of a particle with momentum k is given by
the derivative of Eq. (58) and thus

vk = 2J sin(k) . (63)

This implies that the maximum velocity cannot exceed 2J which defines the
light cone like structure formed by the boundaries of the cloud in the panel
(b) of Fig 4.3. Furthermore, for the non-interacting system, the average
velocity has to be fully determined by the momentum distribution in the
initial state, namely

V 2
ex = 4J2

∑

k

sin2(k)nk . (64)

For a pure Fock state in real space, the initial momentum distribution
is flat, therefore Vex =

√
2J . This is confirmed by calculating the radius

Rn(t) for clouds of hardcore bosons with different defect numbers I in panel
(a) of Fig 16. The curves coincide perfectly for any I studied. Panel (b)
of Fig 16 addresses the dynamical quasi-condensation at finite momenta in
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Figure 16: (a) Time-dependent radius of the cloud for different defect concen-
trations. Independently of the defect concentration the cloud expands with
an average expansion velocity of Vex =

√
2J as obtained from a linear fit

(solid line). (b) Momentum distribution of hardcore bosons at time tJ = 30
for I = 0, 3, 7. While all defect densities considered still show a clear signa-
ture of quasi-condensates at finite momenta, the peaks are less pronounced
for larger I.

the presence of defects. We plot the momentum distribution of the hardcore
bosons after expanding for tJ = 30. Comparing the clean Fock state with
I = 3 and I = 7 we find that only the peak height is affected and scales as
1/
√
NI , where NI is the number of particles between two defects. Thus, we

conclude that the expansion velocity for the sudden expansion from a Fock
state and the qualitative notion of dynamical quasi-condensation at finite
momenta are not affected by the presence of holes in the case of hardcore
bosons.

4.4.2 Expansion velocity for Bosonic Fock states with repulsive
interactions

Next we move on to the Bose-Hubbard model with repulsive interactions. To
simulate the time-evolution of the interacting system we employ the Krylov
subspace approach discussed in Chap. 2.3 with a time step of δt = 0.0625/J
and keep the discarded weight below 10−4. In addition, the simulation of
bosonic dynamics often requires an additional truncation in the local physical
dimension. While in principle all bosons can occupy a single lattice site
this situation is strongly suppressed by the repulsive interactions. Hence
the unfavorable original physical dimension d = N , can be replaced by a
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Figure 17: (a) Radius Rn(t) as a function of time for the sudden expansion
from a clean n = 1 Fock state and different repulsive interactions U/J =
4, 10, 20. (b) Preliminary result for the average expansion velocity obtained
via a linear fit to Rn(t) for the clean Fock states as a function of interaction
U .

more practical number. In line with the previous literature [79], we restrict
the number bosons per lattice site to three. It is reasonable that multiply
occupied site are more probable in the groundstate than during the dynamics
induced by expanding from a Fock state with 〈ni〉 = 1 for every occupied
site. Hence, as a first check, we calculate the ground state of a initial box
of L = 10 lattice sites at density n = 1, which corresponds to the particle
number also used to simulate the sudden expansion from the Fock states
in the following. For instance, we find 〈(b†i )4b4i 4〉 ≤ 10−5 for U ≥ 10J .
For U = 4J , 〈(b†i )4b4i 〉 ∼ 10−3, which is still reasonable but indicates that
calculations for U ≤ 4J have to be repeated with larger d. Also note that
all results for the interacting systems are preliminary in the sense that the
dependence on the size of the initial box is not discussed. However, if the
finite size effects in the expansion velocity are similar to those observed in
Chap. 4.3 for Fermions, they will be small at density n = 1.

We analyze the dynamics for the sudden expansion in the presence of
repulsive interactions starting from pure Fock states in Fig. 17 and 18. Panel
(a) of Fig. 17 shows the radius of an expanding cloud with N = 10 particles
for U/J = 4, 10, 20 and a local particle number cutoff d = 3, where Rn(t) ∼ t
within reasonable accuracy. Hence, we can define the expansion velocity Vex

as in Chap. 4.3 to obtain a preliminary result for the expansion velocity Vex

as a function of U , which is depicted in panel (b) of Fig 17. The data exhibits
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Figure 18: Time dependence of the kinetic energy 〈T 〉 (a) and number of
double occupancies 〈nD〉 for the sudden expansion from a clean Fock states
in the presence of repulsive interactions U/J = 4, 10, 20. Dashed lines are
guides to the eye. The solid blue line is a short time evolution with high
accuracy and smaller time step for U = 4J . The Fock state we use as
initial state has a higher kinetic energy than the groundstate, except for
the hardcore limit. Hence the formation of double occupancies is allowed at
finite U and we find that it takes place at very short time scales. The data
shown in panel (b) is directly obtained from the one in panel (a) via energy
conservation.

a distinct minimum close to the critical U ≈ 3.3J for the superfluid-to-Mott-
insulator-transition [219, 220, 221] and as stated above Vex =

√
2J in both

non-interacting limits. Note that this behavior is different from the dynamics
expected from the groundstate of the trap. In that case Vex → 0 as U → 0
and Linit → ∞, since the groundstate is a quasi-condensate at the smallest
momentum eigenstate of the trap.

Next, we investigate the dynamical formation of double occupancies and
its possible relation to the minimum in our data for Vex(U). To this end we
calculate the time-dependence of the kinetic energy 〈T 〉 and the number of
double occupancies

〈nD〉 =
L∑

i=1

〈(b†i )2b2i 〉 . (65)

The results are shown in Fig. 18: While 〈T 〉 = 0 and 〈nD = 0〉 in the
initial state by construction, there is a tendency to dynamically form double
occupancies to lower the kinetic energy. This process is forbidden in the
hardcore limit and does not change the kinetic energy for non-interacting
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Figure 19: Radius for the sudden expansion starting from bosonic Fock states
with defects. (a) Single simulation of the density profile shown in the inset,
which contains two doublons and two holes for different interaction strengths
U/J = 4, 10, 20. The result for a clean Fock state with U = 20J is plotted
for comparison. (b) Result obtained from taking the average over all defect
configurations with ten particles, one hole and one doublon in direct com-
parison with the result for a clean Fock state with the same particle number
at U = 10J . In both panels the slope of the radius is qualitatively smaller in
the presence of defects, yet Rn(t) also deviates from an increase linear in t.

bosons. For U/J = 4, 10, 20 though, we find that the number of double
occupancies has a maximum after very short times tJ ≤ 1. This observation
is a possible explanation for the minimum in our data for Vex(U) around the
critical U where the system seems to be able to decrease its kinetic energy
most.

Finally, we investigate the sudden expansion in the presence of defects.
Figure 19 shows the time-dependent radius Rn(t) for two different setups.
Panel (a) shows simulations of the initial state depicted in the inset at
U/J = 4, 10, 20. We place two doublons and two holes in the initial density,
symmetrically distributed around the center of the trap. For comparison
we plot the result for a clean Fock state at U = 20J , which is close to the
hardcore limit. Panel (b) shows the radius at U = 10J for a clean Fock state
compared to the result obtained by taking the average over all initial states
that contain one doublon and one hole. In both studied cases the slope of
the radius exhibits an overall slight decrease. Yet, Rn(t) is no longer clearly
linear, hence the average expansion velocity has to be determined by appro-
priate approximations. While fitting only large times would work, one could,
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Figure 20: Dynamically emerging peaks in the momentum distribution as in-
dicator of dynamical quasi-condensation during the sudden expansion from
Fock states in the presence of repulsive interactions. (a) Momentum dis-
tribution at tJ = 4 for the sudden expansion from clean Fock states at
U/J = 4, 10, 20. We find clear peaks close to π/2 (vertical black dashed
lines) for U ≥ 10J . (b) Snapshots of the momentum distribution function
of an interacting bose gas expanding from a clean Fock state with U = 10J
at tJ = 0, 1, 2, 3, 4, 5. The flat momentum distribution function of the initial
state immediately develops two peaks which then move to ±π/2.

if the density profile was close enough to a gaussian, study the width of a
gaussian fitted to the density as function of time.

4.4.3 Dynamical quasi-condensation during the sudden expansion
from bosonic Fock states with repulsive interactions

The last point we address in our study of the dynamics of bosonic Fock
states is if there is the possibility of dynamical quasi-condensation at finite
momenta in the presence of defects for the fully interacting system. In panel
(a) of Fig. 20 we plot the momentum distribution function of a Fock state
evolving in the presence of repulsive interaction U/J = 4, 10, 20 after a short
time tJ = 4. The momentum distributions already exhibit a clear notion
of a peak at finite momentum. However, the peak position only approaches
π/2 for U ≥ 10J . While for a Fock state 〈T (t = 0)〉 = 0, Fig 18(a) suggests
a finite kinetic energy for long times, possibly explaining the deviation of
the peak position from π/2. Now we want to investigate the observed peak
positions in the clean case in more detail. To this end, Fig. 20 (b) compares
the momentum distribution function during the sudden expansion from a
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Figure 21: (a) Momentum distribution for the expansion from initial states
with 20% defects for U/J = 10, 20 at tJ = 7 compared to the result from
a clean Fock state with the same particle number. The curves qualitatively
agree in the sense that momenta close to ±π/2 are macroscopically occupied,
indicating that this effect is robust against the presence of defects. (b) Time-
dependence of the kinetic energy for the sudden expansion starting from the
initial state depicted in the inset of Fig. 19, which has a defect concentration
of 20%.

clean Fock state at U = 10J . We observe how the momentum distribution
develops from the flat distribution of the initial state to the one with peaks
close to ±π/2. A possible explanation for the peak positions could be to
relate the average kinetic energy per particle 〈T 〉/N and the peaks in the
momentum distribution function at a given time t via the dispersion relation
[Eq. (58)]. Yet, this simple picture cannot explain the actual peak positions.
If it would, the momentum distribution function for the expansion from a
clean Fock state at U = 10J at t = 5/J would correspond to a kinetic energy
per particle of 〈T 〉/N = −0.209J . Based on our data for 〈T 〉/ at U − 10J in
Fig 18 (a) this is not the case.

Now we repeat the calculations in the presence of defects, namely doubly
occupied and empty lattice sites. To work with a fixed particle number
(N = 10), we assume that we have exactly one hole per doubly occupied site.
Fig. 21 (a) shows the momentum distribution at tJ = 7 for U/J = 10, 20 for
two fixed symmetric configurations with 20% defects, namely two holes and
two doublons. The macroscopic occupation of finite momenta is still a visible
feature at strong repulsive interactions. However, the peak positions do not
agree exactly. To shed more light on this matter Fig. 20(b) presents the time
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Figure 22: Averaged results for 10% defects. (a) Snapshots of the averaged
particle density during the sudden expansion from states with 10% defects.
(b) Momentum distribution at tJ = 5 averaged over all defect configurations
for N = 10, compared to the one obtained from a clean Fock state.

dependence of the kinetic energy 〈T 〉 for the sudden expansion starting from a
clean Fock state compared to the result obtained for the Fock state with 20%
defects. While the qualitative features, namely a minimum at short times
and the approach of a stationary value at large times, remain unchanged,
the quantitative values depend on the defect concentration much stronger
than the position of the peaks in nk. The reduced dynamical formation of
double occupancies is no big surprise since the state with 20% defects has
less unpaired particles. Yet, the open question remains what determines the
exact position of the peak in nk.

Finally, to obtain a more quantitative result for the robustness of the dy-
namical emergence of peaks in the momentum distribution function at finite
momentum in the presence of defects, we consider a defect concentration of
10%, but average the expectation values of interest over all possible defect
configurations. With a box size of 10, N = 10 particles, one hole and one dou-
blon, the number of possible configurations is 90. First we study snapshots of
the averaged particle density 〈ni〉av in Fig 22(a) for times t ≤ 5/J . The aver-
aging gives rise to smooth density profiles that could for instance be fitted by
gaussians, which is not the case for densities like the one shown in the inset
of Fig 19(a). In Fig. 22(b) we compare the momentum distribution at tJ = 5
to the one obtained from the dynamics of a clean Fock state. Besides slightly
smaller and broader peaks, this clearly shows our main result, namely that
the dynamical quasi-condensation at finite momenta is robust against small
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defect concentrations for sufficiently large repulsive interactions.
To summarize our results for the sudden expansion of bosons starting

from Fock states we have investigated the phenomenon of dynamical quasi-
condensation in the presence of defects. For hardcore bosons, we find that
neither the dynamical quasi-condensation nor the expansion velocity are in-
fluenced by a finite concentration of holes in the initial state. For the in-
teracting case we present preliminary results using a small box trap of 10
sites and study the sudden expansion for clean Fock states in the presence
of double occupancies and holes. For true quasi-condensation a scaling of
the peak height with linear the particle number N is required [222]. Yet,
we observe a macroscopically occupation of momenta close to π/2, which is
qualitatively robust against the presence of defects. Furthermore we investi-
gate the dynamical formation of double occupancies and the time-dependence
of the kinetic energy. While the interacting system indeed balances kinetic
energy and interaction energy dynamically, the time-dependence of the ki-
netic energy alone cannot explain the observed peak positions on the limited
timescales studied up to now.
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Figure 23: Sketch of the signatures of the FFLO-state. Left: Pairing across
the mismatched Fermi surface at finite polarization. The resulting pairs have
a finite center of mass momentum Q = kF,↑ − kF,↓, which is proportional to
the polarization. Right: Sketch of the spatial structure of the groundstate
spin imbalanced Fermi gas in the partially polarized phase. The superfluid
order parameter is modulated with Q, while the excess majority fermions
form a spin-density wave with modulation 2Q. The distribution of single
fermions is thus peaked at the nodes of the pair distribution.

4.5 Long-time behavior of the momentum distribution
during the sudden expansion of a spin-imbalanced
Fermi gas in 1D

In this chapter we study the attractive Hubbard model and analyze the time
dependence of the momentum distribution functions (MDF) of spin imbal-
anced mixtures, during the sudden expansion. In one spatial dimension and
in the presence of attractive interactions, a two-component Fermi gas exhibits
a partially polarized phase which has been shown to be the analogue of the
FFLO phase [81, 82, 83, 84, 85, 86, 87]. The FFLO state (see Ref. [88] for a
review) was originally proposed to allow for superfluidity at a finite polariza-
tion of the system [89, 90]. The mechanism that allows for fermionic pairing
across the mismatched Fermi surfaces is to form pairs with a finite center-of-
mass momentum Q = kF,↑ − kF,↓ which is proportional to the magnetization
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(see the left panel of Fig. 23 for a sketch). In that phase the superfluid order
parameter, which is proportional to the Schrödinger wave function of the
condensate (see Ref. [222] for a review), oscillates with a spatial modulation
Q. The right panel of Fig. 23 sketches this characteristic feature of FFLO
phase: The pair wavefunction oscillates with 1/Q while the excess majority
fermions, in this case spin-up, form a spin density waves with modulation
1/(2Q). Pictorially speaking, the majority fermions occupy the nodes of the
pair condensate. Since true long-range-order in one spatial dimension re-
placed by a power-law decay of correlations the one-dimensional analogue is
usually called ”of FFLO-type” in the literature (see Ref. [94] for a recent
review).

Motivated by the recent experimental investigation of one-dimensional
spin-imbalanced ultra-cold fermions [95], we want to study the fate of FFLO-
like correlations. In particlular, Ref. [95] has experimentally accessed the spa-
tial structure of a spin-imbalanced fermi gas in a harmonic confining poten-
tial, and reports a partially polarized phase in the center of the trap and fully
polarized wings, in agreement with the theoretical predictions [87, 91, 93].
Yet, a strong experimental indication that the initial state in the trap really
is of the FFLO-type is missing. Hence, our aim is to investigate whether a
sudden expansion setup is suitable to prove that the initial state is of the
FFLO-type. Furthermore, we are interested in the long-time limit where the
behavior of the then very dilute gas should be fully determined by its initial
conditions through its conserved quantities.

We work with the Fermi-Hubbard model [Eq. (57)] but as opposed to
Chap. 4.3 now with attractive interactions and a global polarization of P =
(N↑−N↓)/N where Nσ =

∑〈niσ〉. To determine the fate of the FFLO state
during the sudden expansion, we first simulate the real-time evolution of the
three momentum distributions of interest: The one for the minority fermions,
the one for the majority fermions and the one of the pairs. Furthermore, we
investigate the spatial structure by calculating the lowest natural orbital,
i.e., the eigenvector of the pair-pair density matrix corresponding to the
largest eigenvalue. In both cases we find that while the initial state clearly
is of the FFLO-type, the distinct features, namely the peaks at ±Q in the
momentum distribution of the pairs, and the nodal structure of the lowest
natural orbital that accommodates the excess majority spins, are quickly lost
during the sudden expansion. We find the dominant mechanism behind their
disappearance to be a quantum distillation [204]. This fast process causes a
spatial separation of pairs and single majority fermions on very short time
scales. Afterwards the expansion of the separated gases is described by almost
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time-independent momentum distributions.
In addition to obtaining a fast convergence towards stationary momentum

distributions from the DMRG data, we are able to relate their shape to
the initial conditions and the conserved quantities of the integrable Fermi-
Hubbard model in terms of the corresponding Bethe ansatz solution [27].
The stationary form of the momentum distributions should in principle be
observable in the corresponding expansion experiment and could serve as
indirect indicator for the FFLO correlations in the initial state.
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Long-time behavior of the momentum distribution during the sudden expansion of
a spin-imbalanced Fermi gas in one dimension
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We study the sudden expansion of spin-imbalanced ultracoldlattice fermions with attractive interactions in
one dimension after turning off the longitudinal confining potential. We show that the momentum distribution
functions of majority and minority fermions approach stationary values very fast due to a quantum distillation
mechanism that results in a spatial separation of pairs and majority fermions. As a consequence, Fulde-Ferrell-
Larkin-Ovchinnikov (FFLO) correlations are lost during the expansion. Furthermore, we argue that the shape of
the stationary momentum distribution functions can be understood by relating them to the integrals of motion in
this integrable quantum system. We discuss our results in the context of proposals to observe FFLO correlations,
related to recent experiments by Liaoet al., Nature467, 567 (2010).

PACS numbers: 05.70.Ln,05.30.-d,02.30.Ik,03.75.-b

The combination of strong correlations and quantum fluctu-
ations makes one-dimensional (1D) systems the host of exotic
phases and physical phenomena [1, 2]. Those phases and phe-
nomena, in many occasions first predicted theoretically, have
been observed in condensed matter experiments and have be-
gun to be studied with ultracold atomic gases [2]. A system of
particular interest in recent years has been the spin imbalanced
1D Fermi gas. Following theoretical predictions [3–8], its
grand canonical phase diagram has recently been investigated
experimentally [9]. The major interest in this model comes
from the fact that its entire partially polarized phase has been
theoretically shown [5, 6, 10–14] (for a review, see [15]) to
be the 1D-analogue of the Fulde-Ferrell-Larkin-Ovchinnikov
(FFLO) state [16, 17]. The FFLO phase was introduced to
describe a possible equilibrium state in which magnetism and
superconductivity coexist thanks to the formation of pairswith
finite center-of-mass momentum leading to a spatially oscil-
lating order parameter. The existence of such a phase has re-
mained controversial in dimensions higher than one, both in
experimental [18, 19] and theoretical studies [20–22].

An important challenge in ultracold fermion experiments,
which may have already realized the FFLO state [9], is to
confirm the existence of FFLO correlations (for recent pro-
posals see,e.g., [23–26]). A direct measurement of the pair
momentum distribution function (MDF) in the partially po-
larized state [5, 6, 13] has been suggested to provide such an
evidence [27]. However, this remains very difficult because
after turning off all confining potentials, the transverse expan-
sion (in the directions of very tight confinement) dominates
over the longitudinal one [28]. Another interesting possibility
is to let the gas expand in the 1D lattice after turning off the
longitudinal confining potential, and then measure the density
profiles or the MDFs of the independent species and/or pairs

after some expansion time. Crucial aspects of such an exper-
iment have already been successfully carried out, namely the
control over the trapping potential and the measurement of the
density profiles after the expansion [29–31]. For 1D gases, in-
teractions effects during the expansion cannot in general be
neglected, leading to fundamentally different behavior ofob-
servables before and after the expansion. For example, the ex-
pansion of the Tonks-Girardeau gas in 1D results in a bosonic
gas with a fermionic MDF [32–34], and initially incoherent
(insulating) states of bosons [35, 36] and fermions [37] can
develop quasi-long range correlations during the expansion.

The question we are set to address is the fate of the MDFs of
fermions and pairs during an expansion in one dimension, as
described by the attractive Hubbard model. We use a combi-
nation of numerical simulations, based on the time-dependent
renormalization group approach (t-DMRG) [38, 39], and ana-
lytical (Bethe-Ansatz) results. We first show that the MDFs of
majority and minority fermions become stationary after a rel-
atively short expansion time,t ∼ L0/J , whereL0 is the initial
size of the cloud andJ is the hopping amplitude. For strong
interactions, we explain this behavior in terms of a quantum
distillation process [40], as a consequence of which FFLO
correlations get destroyed during the expansion. Finally,we
discuss how these stationary MDFs can be theoretically under-
stood within the framework of the Bethe-Ansatz. Our results
suggest that the final form of the MDFs of minority and ma-
jority fermions are related to the distributions of Bethe-Ansatz
rapidities (a full set of conserved quantities) of this integrable
lattice system.

The Hubbard model (in standard notation [41]) reads:

H0 = −J
L−1∑

ℓ=1

(c†ℓ+1,σcℓ,σ + H.c.) + U

L∑

ℓ=1

nℓ↑nℓ↓ . (1)
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As the initial state, we always take the ground state of a
trapped system. Two different trapping potentials are consid-
ered: (i) a box (i.e., particles confined into a region of length
L0 and (ii) a harmonic trap,Htrap = V0

∑L
ℓ=1 nℓ (ℓ−L/2)2.

We study lattices withL sites,N particles, and a global po-
larization ofp = (N↑ −N↓)/N , whereNσ =

∑
ℓ〈nℓσ〉. All

positions are given in units of the lattice spacing and momenta
in inverse units of the lattice spacing (~ = 1).

The expansion is triggered by suddenly turning off the con-
fining potential, thus allowing particles to expand in the lat-
tice. We then follow the time-evolution using the numerically
exact t-DMRG algorithm [38, 39]. We use a Krylov-space
based time-evolution method and enforce discarded weights
of 10−4 or smaller with a time-step ofδt = 0.25/J . Our
main focus is on the time-evolution of the three MDFs: the
ones for majority (σ = ↑) and minority fermions (σ = ↓), de-
noted bynk,σ and the pair MDF,nk,p. These functions are
computed from the corresponding one-particle density matri-
ces via a Fourier transform

nk,λ =
1
L

∑

ℓ,m

ei(ℓ−m)k〈ψ†ℓ,λψm,λ〉 (2)

whereψ†ℓ,σ = c†ℓσ, ψ†ℓ,p = c†ℓ,↑c
†
ℓ,↓ andλ stands for↑, ↓, p. We

normalize the MDFs so that
∑

k nk,λ = Nλ. In particular,
Np =

∑
ℓ〈nℓ↑nℓ↓〉 is the total double occupancy.

We first discuss the expansion from a box. The initial den-
sity is fixed ton = N/L0 = 0.8. In our t-DMRG sim-
ulations, which were carried out forN = 8 andN = 16
(L0 = 10 and 20, respectively) and various values ofU , we
were able to reach times of ordertmax ∼ 80/J for largeU and
tmax ∼ 40/J for intermediate values ofU ∼ 4J . tmax also
depends onp, with small values ofp being more demanding.

Typical results for the three MDFs of interest are presented
in Fig. 1 for U = −10J andp = 0.5 (see the supplemen-
tary material for more data [42]). During the time evolu-
tion, they are all seen to quickly approach time-independent
forms. In Fig.1(a), it is apparent that the MDF of the majority
fermions becomes narrower and develops small oscillationsin
the vicinity ofk = 0 as time passes. We find that those oscilla-
tions become smaller in amplitude and get restricted to smaller
values ofk after long expansion times,i.e., they seem to be a
transient feature not present in the asymptotic distributions.
The momentum distribution of the minority spins [Fig.1(b)],
on the other hand, becomes broader during the time evolution.

The time evolution of the MDF of the pairs, depicted in
Fig. 1(c), yields information on the fate of FFLO correlations
in the expanding cloud. In the FFLO state,nk,p has maxima
atQ = ±(kF↑−kF↓) [5]. These are visible in thet = 0 curve
(dashed line), where±Q are marked by vertical lines. As the
comparison ofnk,p(t > 0) with the initialnk,p(t = 0) shows,
the peaks at±Q rapidly disappear, andnk,p(t) becomes nar-
rower. In addition, new and shallower peaks form atk < Q.
Since we do not find those peaks at the same values ofk for
other values ofN whenN/L0 andP are the same, and we
do not find them for all values ofU , N/L0, andP studied,
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FIG. 1: (Color online) MDF for the expansion from a box trap
(U = −10J , N = 8, p = 0.5): (a) nk,↑, (b) nk,↓, and (c)nk,p.
The insets show the difference∆λ (λ =↑, ↓, p, see text) between the
MDF at a timet compared to the one at the largest time reached in
the simulation. The vertical lines in the main panel in (c) mark the
position of the FFLO wave-vectorQ = ±πnp.

they appear to be related to finite-size effects. Hence, the dou-
ble peak structure innk,p(t = 0), which makes evident the
presence of FFLO correlations in the initial state, is foundto
disappear during the expansion. Even though the FFLO corre-
lations are lost during the expansion, the integral over thepair
MDF, which equals the total double occupancy, does not van-
ish. This implies that not all interaction energy is converted
into kinetic energy and that some fraction of the original pairs
remains by the time the MDFs have become stationary. While
in most experiments the particle clouds can only expand by
a factor ofO(10) or less [31], the stationarity of the various
MDFs should be observable as well as the fact that the total
double occupancy is finite.

In order to quantify how the three MDFs above approach
stationary forms, in the insets in Fig.1, we plot ∆λ(t) =∑

k |nk,λ(t) − nk,λ(tmax)|/
∑

k nk,λ(tmax) vs t. These re-
sults make apparent that the approach is close to exponen-
tial for nk,↑ andnk,↓ [insets in Fig.1(a) and1(b)], while it
is power law fornk,p [inset in Fig.1(c)] [43]. Remarkably,
for the parameters of Fig.1, already attJ ∼ 10, all ∆λ are
. 10%. This means that the stationary MDFs obtained in
this work should be achievable in current optical lattice setups
[31]. A comparison between expansions from different box
sizes suggests that the emerging time scale in the observables
with exponential relaxation is proportional toL0. The origin
of that time scale will be unveiled in the discussion below.

To understand how the FFLO state breaks down as the gas
expands, we calculate the eigenvectorΦ0,ℓ of the pair-pair
density matrixP (ℓ,m) = 〈ψ†ℓ,pψm,p〉 that corresponds to
the largest eigenvalue.|Φ0,ℓ|, shown in Fig.2(a), unveils the
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FIG. 2: (Color online) Natural orbital|Φ0| corresponding to the
largest eigenvalue of the pair-pair correlatorP (ℓ, j) (dashed lines)
and spin density〈Sz

i 〉 (solid lines, rescaled by a factor of1/6). (a)
t = 0, (b) tJ = 10. These results are forU = −10J , p = 0.75,
L = 500, andN = 16.

spatial structure of the quasi-condensate in the initial state:
it has an oscillatory behavior with nodes (see also Ref. [5]).
In these nodes, the spin density has its maxima to accommo-
date the majority fermions [Fig.2(a)], indicative of the spin-
density wave character with a modulation of(2Q)−1 in the
FFLO state. During the expansion, the nodes in|Φ0,ℓ| dis-
appear while|Φ0,ℓ| develops a maximum atL/2, exceeding
its initial value [see Fig.2(b)]. The latter is a consequence
of a quantum distillation mechanism, described in Ref. [40]
for U > 0, which allows the unpaired fermions to move
away from the center of the system (i.e., they escape from
the nodes of|Φ0,ℓ(t = 0)|). Loosely speaking, during first-
order processes unpaired fermions exchange their positions
with the pairs (a minority fermion hops towards the center of
the trap), allowing the former to expand while the pairs move
towards the center of the trap. This occurs over a time scale
proportional toL0 and inversely proportional toJ , which ex-
plains the time scale observed in the exponential approach of
the majority and minority fermions to their stationary values.
Once the unpaired fermions have spatially separated them-
selves from the pairs, they form a non-interacting gas whose
MDF is stationary. On much longer time scales (assuming
U > 4J), we expect the pairs to slowly expand as well.
This transient dynamics of the pairs may be the reason for the
power-law, as opposed to exponential, relaxation observedfor
nk,p(t) in Fig. 1(c).

In a recent work [44], extrema in the spin-density of the
expanding gas were observed in numerical calculations using
various approaches. By comparing with the time-dependence
of the order parameter within a time-dependent Bogoliubov-
deGennes approach, it was argued that they are related to
FFLO correlations. Our results show that, in a lattice sys-
tem, the nodal structure of the FFLO state is ultimately lost
as the system expands. Note, however, that in Ref. [44] the
main focus was on rather small polarizationsp [3, 4, 8] lead-
ing to a wide partially polarized core before the expansion.
We therefore expect the quantum distillation mechanism to
take much longer to depolarize the core than what has so far
been reached in numerical simulations [44], leaving this case
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FIG. 3: (Color online) MDFs for the expansion from a harmonic
trap: (a)nk,↑, (b) nk,↓ and (c)nk,p. These results were obtained
for N = 8, U = −10J , p = 0.75, V = 0.016J , and at times
tJ = 0, 90, 100. Inset in (a): initial density〈ni〉 (solid line) and
spin-density profile2〈Sz

i 〉 (dashed line).

as an open question.

We are now in a position to explain the anticorrelated be-
havior ofnk,↑ andnk,↓ mentioned in the discussion of Fig.1.
For large values ofU ,Np is essentially equal toN↓ and is ap-
proximately unchanged during the expansion, rendering the
interaction energy almost time independent. This implies that
also the kinetic energyEkin = −2J

∑
k cos k(nk,↑ + nk,↓)

is approximately conserved, which is only possible if the two
MDFs behave in the opposite way during the expansion. The
broadening of the minority MDFnk,↓ with respect to the ini-
tial state is a direct consequence of the spatial separationof
excess fermions from the pairs, leaving the latter confined in
the center of the cloud. Since in the center the local polar-
ization decreases, the stationary form ofnk,↓ is well approxi-
mated by the equilibrium one for equal populationsN↑ = N↓
instead ofN↑ > N↓ [42].

In relation with experiments, it is also important to incorpo-
rate the harmonic confinement. To that end, we have prepared
a spin-imbalanced system withU = −10J in a harmonic trap
with V0 > 0 for t < 0, and then quenched the trapping po-
tential toV0 = 0 at t = 0. For the parameters of Fig.3, the
partially polarized phase that sits in the core is surrounded by
fully polarized wings (see the inset in Fig.3). During the ex-
pansion, one can see that the behavior of the MDFs is very
similar to the one starting from a box in Fig.1. All MDFs
become stationary shortly after the release from the trap. The
stationarynk,↑ is narrower whilenk,↓ is broader than their
corresponding initial distributions, and the double peak struc-
ture innk,p disappears.

The fact that the MDFs become stationary after the expan-
sion from a box or a harmonic trap is in itself not surprising,as
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in the limit of long expansion times, the cloud becomes very
dilute with, for the attractive case, the typical inter-particle
distance being much larger than the bound-state size. Hence,
one may assume that pairs and unpaired particles are essen-
tially noninteracting. The MDF in such an asymptotic limit
should be determined by the initial conditions right after the
quench. For instance, for generic models, the total energy
(which is conserved during the expansion) plays a fundamen-
tal role in determining the expansion dynamics (see Ref. [45]
for a related work forU > 0). For an integrable model, such
as the (attractive) Hubbard model of Eq. (1), all integrals of
motion are in principle known from the Bethe Ansatz and are
conserved during the expansion [41]. We will argue below
how to interpret the shape of certain stationary MDFs in terms
of such integrals of motion. This is closely related to the pre-
viously studied fermionization of the MDF of an expanding
gas of hard-core bosons [32–34].

For the model studied here, we first note that the for-
mation of a distinct minimum in the difference distribution
δnk = nk,↑ − nk,↓ is reminiscent of the corresponding dis-
tribution of real-valued charge rapidities (for intermediateU )
in the ground state in a box. From the point of view of the
rapidity distributions, they need to be determined right after
turning off the trap and the subsequent expansion does not
play any role; it is the MDFs which will evolve and asymp-
totically approach the former as the expansion proceeds [46].
We can calculate the pre-quench values of the rapidities by
numerically solving the Bethe-Ansatz equations for a system
of sizeL0 and open boundary conditions [47]. For the ground
state of the attractive Hubbard model, we have two types of
rapidities present: real- and complex-valued charge rapidities
(κν andκσ) which correspond to unpaired fermions and pairs,
respectively (ν = 1, . . . , N↑ −N↓, σ = 1, . . . , 2N↓, with κσ

andκ∗σ appearing pairwise.).
To calculate the effect of the quench of the trapping poten-

tial exactly is in principle possible but complicated in prac-
tice [48], so we will make some simplifying assumptions. To
start, we assume that the number of pairs is conserved during
the quench, and thus no pure-spin excitations are produced.
Further, we use the observation that the overlap between the
pre-quench eigenstate and the post-quench state has a maxi-
mum amplitude for components of the latter with the same set
of rapidities [48]. We then identify, asymptotically, the dis-
tribution of real-valued charge rapidities with that of unpaired
fermions (δnk), and of the real part of complex-valued (string)
charge rapidities with that of minority fermions (nk,↓) – since
they remain paired. Finally, we model the quench by convolv-
ing the pre-quench distributionsρ1 = (1/2)

∑
ν δ(k ± κν)

andρ2 = (1/2)
∑

σ δ(k ± Reκσ) with the (periodized) ker-
nels: (i) L0 sinc2(kL0/2) for the former and (ii) a simple
Lorentzian for the latter. The first choice is inspired by the
exact result for the release of a single particle from a box,
while the second choice is done for simplicity given that the
results are relatively featureless in comparison. Illustrative re-
sults are shown in Fig.4 and the agreement is very good, spe-
cially away from the Brillouin-zone center. Note that there
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FIG. 4: (Color online) Comparison of the stationary MDFsδnk =
nk,↑ − nk,↓ [(a),(b)] andnk,↓ [(c),(d)] for the expansion from a box
with N = 8, p = 0.5 [(a),(c): U = −4J , (b),(d): U = −10J ] to
the form expected from the rapidities known from the Bethe-Ansatz:
t-DMRG (solid lines), models discussed in the text (dashed lines).
The vertical lines mark the positions of the rapidities.

are no fitting parameters in the case ofδnk and a single fitting
parameter, the width of the Lorentzian, in the case ofnk,↓.

In conclusion, we demonstrated that the initial FFLO state
is destroyed during the expansion of an attractively interacting
partially polarized 1D Fermi gas, and that direct signatures of
the FFLO phase in the initial pair MDF are washed out. In ad-
dition, the MDFs of majority and minority fermions as well as
the one of pairs rapidly take a stationary form, on time scales
accessible to experiments. Our analysis further suggests that
the shape of the MDFs can be related to the distribution of ra-
pidities, which constitute a full set of integrals of motionfor
this integrable quantum model. Measuring such asymptotic
distributions and comparing them to the ones expected theo-
retically for an FFLO state can provide an indirect proof of
the realization of that putative phase in the experiments such
as the one in Ref. [9].
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Supplementary material

Additional results for the MDFs of a spin-imbalanced Fermi gas
with attractive interactions

We here provide additionalt-DMRG results for the MDFs
nk,λ of a spin-imbalance Fermi gas with attractive interac-
tions, expanding from a box trap. Figure5 contains data for
N = 16 (with U = −10J , p = 0.75, L0 = 20). In this
case we were able to reach maximum times oftmax ∼ 30/J .
Nevertheless, a fast approach towards a stationary form is ob-
vious from this figure, corraborating the conclusions of the
main text (see the discussion of Fig. 1 of the main text). The
same applies to the qualitative trends:nk,↑ shrinks whilenk,↓
broadens.

In Fig. 6, we display results forU = −4J andN = 8 with
a polarization ofp = 0.5. In this case, the convergence to
a stationary form is evident in all three MDFs. Note that, in
contrast to the case ofU = −10J discussed in the main text,
nk,↑ does not exhibit any transient fluctuations at smallk.
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FIG. 5: MDFs for (a) spin up, (b) spin down, and (c) pairs for the
expansion from a box trap withU = −10J , N = 16, p = 0.75,
L0 = 20, plotted at timestJ = 0, 10, 20, 30. The circles in the
central panel represent the MDF of an unpolarized gas withN↑ =
N↓ = 1.

Discussion of the qualitative behavior of the MDFs of the
spin-imbalanced Fermi gas with attractive interactions

Comparing Figs. 1(a)-(b) of the main text, as well as
Fig. 6(a) and (b) shown here in the supplementary material,
we see that the momentum distributionnk,↑ of the majority
component shrinks during the expansion, whereas the distri-
butionnk,↓ of the minority component broadens significantly.
This is the result of collisions between up and down fermions
which take place in the inner part of the system, where both
spin components are present, and transfer momenta between
them. In the long time limit and for|U | > J , the pairs phase
separate from unbound fermions, such that the cloud develops

a two-shell structure with a fully paired core and fully polar-
ized wings containing the excessN↑−N↓ fermions. This sug-
gests that the asymptotic momentum distribution of the mi-
nority component should be approximated by its ground state
value before the expansion calculatedin the absenceof excess
fermions, that is forN↑ = N↓. The results for the MDFnk,↓
that we obtain using this assumption are plotted in Figs.5 and
6 with circles. Indeed, we see a rather good agreement with
the stationary form of the MDFnk,↓, where the latter was
calculated witht-DMRG. In particular, in the limit of large
initial polarizationp → 1, the number of pairs is very small.
In this low density (or equivalently, strong-coupling) regime
the ground state momentum distribution becomes equal to
the square of the Fourier transform of the molecular wave-
function for the relative motion:

nk↓ = n↓
|U |3√

U2 + 16J2

1
(−4J cos k +

√
U2 + 16J2)2

. (3)

The corresponding shrinking of the majority momentum dis-
tribution during the expansion can then be understood from
conservation of total energy. Indeed, for|U | ≫ J the num-
ber of double occupancies remains close toNp = N↓ dur-
ing the expansion, implying that the interaction energy in the
Hubbard model is essentially time independent. As a conse-
quence, the kinetic energyEkin = −2J

∑
k cos k(nk,↑+nk,↓)

is also conserved, implying that the distributionnk,↑ must
shrink to compensate the broadening ofnk,↓.

Time-evolution of the MDFs of a two-component Fermi gas with
repulsive interactions

We have also studied the time-evolution of other 1D mod-
els during the expansion, including most notably the repulsive
Hubbard model withp = 0 (compare [1]).

TheU > 0 case turns out to be a numerically much harder
problem for t-DMRG, as entanglement grows much faster
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FIG. 6: MDFs for (a) spin up, (b) spin down, and (c) pairs for
the expansion from a box trap withU = −4J , N = 8, p = 0.5,
L0 = 10, plotted at timestJ = 0, 20, 40. The circles in the central
panel represent the MDF of an unpolarized gas withN↑ = N↓ = 2.
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FIG. 7: MDF nk,σ = nk,↑ = nk,↓ for the expansion from a box
trap withU = 8J , N = 8, p = 0, plotted at timestJ = 0, 5, 10, 20.
We observe that in the case of repulsive interactions, much shorter
times can be reached than forU < 0. On the accessible time scales,
the MDF still changes, yet at its edge, the curves fortJ = 10 and
tJ = 20 lie on top of each other.

(see the review [2] for how entanglement growth limitst-
DMRG). Therefore, we resorted to exploiting non-Abelian
symmetries as well, restricting the analysis top = 0, allowing
us to reacht ∼ 25/J for U = 8J (see Fig.7). In the case of
U = 8J , there are no pairs, and hence over the full extent of
the expanding cloud, majority and minority fermions can still
interact, whereas in the case ofU < 0 andp > 0, fast ma-
jority fermions escape [3] and the pairs and majority fermions
mostly decouple due to the quantum distillation mechanism
that is described in the main text. This is likely the reason

why in the repulsive gas withU > 0 andp = 0, there is a
stronger entanglement during the expansion. On the accessi-
ble time scales, the MDFnk,σ of the repulsive gas still un-
dergoes changes, yet in the edge of the MDF, the curves at
the longest times coincide (see also [1]). The case ofU > 0
thus sets an example where the quantum simulation with ultra-
cold atomic gases could help us to go to longer times than
what is currently possible with numerical methods to clarify
the asymptotic behavior of the MDF (compare the relaxation
dynamics problem studied in Ref. [4]). Note that for the ex-
pansion of a repulsive gas with initial densities〈ni〉 ≤ 1, the
double-occupancydecreases[1], in contrast to the attractive
case, discussed in the main text. In the attractive case, thesur-
vival of a certain fraction of the initial double occupancy is
expected due to the presence of pairs.

[1] F. Heidrich-Meisner, M. Rigol, A. Muramatsu, A. E. Feiguin,
and E. Dagotto, Phys. Rev. A78, 013620 (2008).

[2] U. Schollwöck, Ann. Phys. (NY)326, 96 (2011).
[3] J. Kajala, F. Massel, and P. Törmä, Phys. Rev. A84, 041601(R)

(2011).
[4] S. Trotzky, Y.-A. Chen, A. Flesch, I. P. McCulloch,

U. Schollwöck, J. Eisert, and I. Bloch, Nature Phys.8, 325
(2012).
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5 Summary and Outlook

In this work we studied transport properties and real-time dynamics of low-
dimensional quantum magnets and ultra-cold atomic gases in optical lattices.
The main results, as well as a recurrent theme, were the identification of
ballistic regimes based on the analysis of the real-time evolution of density
profiles and the theoretical explanation and interpretation of the expansion
velocities.

For instance, the dynamics of energy wave-packets in the anisotropic
Heisenberg chain was first analyzed in the exactly solvable XY -limit by diag-
onalizing the lattice Hamiltonian and in the low energy limit using Luttinger
liquid theory. We then proceeded by analyzing the wave-packet dynamics far
from equilibrium for the fully interacting lattice model using adaptive time-
dependent DMRG. The expansion velocities far from equilibrium could then
be explained in terms of the differences between the momentum distribution
function of the initial state and those of the ground state, combined with the
sound velocity from Luttinger liquid theory.

In the case of cold atomic gases we focussed on the case of the sudden
expansion of an initially trapped cloud of particles. One reason for this
approach is that sudden expansion experiments recently gained interest in
the field of cold atomic gases as a technique to probe the non-equilibrium
dynamics of the underlying lattice Hamiltonian [7]. Here we investigated
the sudden expansion for three installations of the Hubbard model, namely
a spin-balanced Fermi gas with repulsive interactions, a bosonic gas with
repulsive interactions and spin-imbalanced Fermi gases with attractive inter-
actions. In each of the three cases we investigated a different aspect of the
non-equilibrium dynamics.

First, we considered a spin-balanced fermionic gas with repulsive inter-
actions and analyzed the radius of the expanding cloud. We found purely
ballistic dynamics whenever the initial density is smaller or equal to one,
independently of the strength of the repulsive interaction. We showed that
the average expansion velocity, which we define as slope of the cloud’s ra-
dius, is determined by the initial conditions over a large parameter range.
This allows to use the expansion velocity as a probe of the initial momentum
distribution, for instance in the search for quantum phase transitions. To
give an example, we showed that the expansion velocity for the expansion
from the Mott insulating phase is completely determined by symmetry with
Vex =

√
2J independently of the strength of interactions as a signature.

The expansion of hardcore bosons exhibits intriguing physical features
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such as the dynamical emergence of coherence [78, 79, 80] or the fermion-
ization of the momentum distribution [223, 224]. We studied the sudden
expansion of both hardcore and softcore bosons, which where initially pre-
pared in a Fock state, over a wide range of repulsive interaction strengths.
We investigated the dynamical emergence of a quasi-condensate at finite
momenta and the expansion velocity in the presence of defects likely to be
present in a typical experiment. We find that the phenomenon of dynamical
quasi-condensation is very robust for small systems at large interactions. Fur-
thermore we show that an admixture of defects influences the time-dependent
radius of the cloud, which can serve as an indicator of the doublon density
in the initial state.

The third type of sudden expansions studied is that of spin imbalanced
fermions in the presence of attractive interactions. This was motivated by
the ongoing search for the FFLO state [94]. The FFLO phase [89, 90], origi-
nally proposed to allow for pair condensation at a finite polarization has not
yet been detected experimentally in one-dimensional Fermi gases [95], even
though the whole partially polarized phase had been shown theoretically to
be of FFLO-type [94]. Here we investigated the time-dependent momentum
distribution functions and the spatial structure of the wave function to see
whether a sudden expansion experiment can unveil a ”smoking gun signa-
ture”. While features of the FFLO phase, such as the finite center-of-mass
momentum of the pairs, and the modulated spin texture, are quickly lost
in the expansion, we find that all relevant momentum distribution functions
quickly converge to stationary forms. The stationary form is then suggested
to exhibit signatures of conserved the quantities from the Bethe ansatz so-
lution [27]. Its distinct features and the fast convergence should make the
stationary momentum distribution observable and it may even serve as an
indirect indicator of presence of FFLO-correlations in the initial state.

Yet, all real-time dynamics presented in this thesis take place at zero tem-
perature. For the studies of low-dimensional quantum magnets we employed
linear response theory to discuss the transport properties at finite tempera-
tures. We revisited the long standing question of the temperature dependent
spin Drude weight Ds in the anisotropic spin-1/2 Heisenberg chain and ob-
tained reasonable agreement with recent numerical [58] and analytical results
[59]. Especially for the controversially discussed point of isotropic exchange
interactions our data suggests a finite Drude weight at large and interme-
diate temperatures, in agreement with the DMRG data from Ref. [58]. We
also showed how problematic the finite size extrapolation at this isotropic
point becomes when using a canonical ensemble [60]. This open question
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necessitates a conclusive theory for Ds = Ds(1/L).

We then moved on to study transverse components of the current-current
correlation functions. These are usually neglected as one considers only a
Zeeman field Bz in the theory. Including a transverse field Bx gives rise
to a qualitatively different behavior of the different spatial components of
the current-current correlation function. Here, we could show that the pre-
viously unexplored transverse current-current correlation function oscillates
with a non-trivial frequency in the presence of a transverse magnetic field.
These oscillations become coherent at low-temperatures and for large Bz.
We also showed they could also be observed in simulations of the time-
dependent current density’s transverse component at zero temperature using
time-dependent DMRG.

Finally we calculated the response functions for spin and heat transport in
dimerized spin chains which feature a field-induced gapless phase. This work
was motivated by recent experimental evidence for a similar phase diagram
in organic superconductors. We find that the spin and heat conductivity
are both greatly enhanced throughout the field-induced gapless phase due
to clear signatures of the phase transition in the current-current correlation
functions. While the study of spin and heat conductivity in the field-induced
gapless phase of dimerized spin chains, and the analysis of the transverse
current-current correlation functions yielded interesting results, we had to
resort to the exact diagonalization of small systems in both cases.

While there are still interesting problems at zero temperature like the dy-
namics of energy wave-packets in spin ladders, spin chains with impurities or
the sudden expansion of bosons starting from their groundstate, the road to
improved predictions for experiments and probably additional fundamental
insights is clearly to include finite temperatures in the real-time simulations.
For the quantum magnets, we have the copper-based materials in mind most
of the time [3]. Due to exchange couplings of the order of a thousand Kelvin,
experiments at room temperature are performed at a very small tempera-
ture for this specific material. Ultra-cold atomic gases [21] are cooled to the
coldest temperatures technology allows. Still, both types of systems have
small thermal fluctuations, which might or might not change the physics
compared to the results we obtained here. For instance, the dynamics of
spin wave-packets in the Heisenberg chain suggests ballistic dynamics in the
whole gapless phase [48], but there is also evidence for a large diffusive con-
tribution to spin transport at low but finite temperatures [163, 164]. If such a
diffusive contribution is an inherent feature of the Heisenberg chain, it should
be observable simulating the wave-packet dynamics at finite temperature.
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One extension of time-dependent DMRG to describe states at finite tem-
perature is the so-called purification method [225, 165]. It is based on the
mathematical fact that any mixed state can be rewritten as a pure state on a
larger Hilbert space. For practical purposes one uses an exact copy of the sys-
tem to serve as auxiliary space, then writes down a state where the reduced
density matrix of the system ρsys = Trauxρ is proportional to unity. Since for
a thermal ensemble, ρ = e−βH , this is a state at infinite temperature. Now,
evolving the state in imaginary time down to a smaller β can be seen as cool-
ing. For instance, this approach has been applied to calculate the specific
heat of a Heisenberg chain [165] and time-dependent correlation functions at
finite temperature [226]. However, cooling down to the desired temperature
first and then performing the time evolution may generate significantly more
entanglement than a time evolution at zero temperature [226]. One way to
circumvent the increased entanglement growth has been discovered by realiz-
ing that arbitrary unitary transformation acting on the auxiliary system do
not change the state of the system. Such transformations have been used in
Ref. [58] to calculate the spin Drude weight by reaching the long time limit
of the current-current correlation function. While a complete understanding
of the entanglement growth of purified mixed states is highly desirable, sim-
ply finding the right unitary for the system of interest might allow one to
simulate the setups of the chapters 3.8, 4.2, 4.3 and 4.4 at a small but finite
temperature.

A conceptually different approach are so called minimally entangled typ-
ical thermal states (METTS). Within this approach the full ensemble is ap-
proximated by a set of the least entangled states much smaller than the full
Hilbert space. The algorithm is formulated in Ref. [227] along with a proof of
the ergodicity of this method. Details about the implementation and the con-
vergence with respect to the size of the ensemble can be found in Ref. [228].
The outline of the algorithm is the following: One starts from a classical state
with no entanglement and calculates the imaginary time evolution until up to
the final temperature. Then the next classical state is obtained by consecu-
tive local projective measurements on every lattice site. While METTS have
been used to calculate the specific heat of spin chains at lower temperatures
[227] than previously achieved by purification [165], the applicability beyond
spin chains has to be investigated. Yet, time-evolution of a METTS-ensemble
might be a serious competitor to the purification approach outlined above.
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Nature 415, 39 [2002].

[65] D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller, Phys-
ical Review Letters 81, 3108 [1998].

[66] B. DeMarco and D. S. Jin, Science 285, 1703 [1999].

[67] A. G. Truscott, K. E. Strecker, W. I. McAlexander, G. B. Partridge,
and R. G. Hulet, Science 291, 2570 [2001].

[68] D. C. McKay and B. DeMarco, Reports on Progress in Physics 74,
054401 [2011].
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