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Zusammenfassung
Wir untersuchen das zweidimensionale Widom-Rowlinson-Gittermodell. Dieses
diskrete Spin-Modell beschreibt eine Oberfläche, welche mit einem Gasgemisch im
Verhältnis eins zu eins besprüht wird. Hierbei soll die Mischung aus zwei sich
auf kurzer Distanz stark abstoßenden Gasen bestehen. Die verwendete Gasmenge
wird mit einem positiven Parameter beschrieben, den wir Aktivität nennen.

Für unser Hauptergebnis hinterlegen wir den Stern-Graphen (Z2,�). Wir kön-
nen zeigen, dass höchstens zwei ergodische Widom-Rowlinson Maße existieren,
falls die Aktivität den Wert 2 übersteigt. Diese Aussage lässt sich in zwei Schrit-
ten beweisen:

Der erste Schritt verwendet recht allgemeine Argumente. Wir entwickeln eine
hinreichende Bedingung für die Existenz von höchstens zwei ergodischen Widom-
Rowlinson-Maßen. Die Bedingung besagt, dass mit nicht beliebig kleiner Wahr-
scheinlichkeit ein 1∗Lasso – ein zum Rand 1∗verbundener 1∗Kreis – existiert.
Unser Ansatz basiert auf der sogenannten „infinite cluster method”: Wir verhindern
die (Ko-)Existenz von gewissen Arten unendlicher Cluster. Hierfür verschärfen wir
zuerst die bisherigen Resultate in diese Richtung für allgemeine zweidimensionale
abhängige Perkolation.

Im zweiten Schritt zeigen wir, dass die im ersten Schritt hergeleitete hinre-
ichende Bedingung für Aktivitäten größer 2 erfüllt ist. Dazu müssen wir die
Wahrscheinlichkeiten von Konfigurationen, die 1∗Lassos aufweisen, mit denen, die
0Lassos aufweisen, vergleichen. Dies erreichen wir durch die Konstruktion einer
injektiven Abbildung von dem Raum der Konfigurationen mit einem 0Lasso in den
komplementären Raum. Bildlich gesprochen soll die Injektion gewisse Teile eines
0Kreises mit 1Spins füllen und dadurch ein 1∗Lasso bilden.
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Abstract
We consider the two-dimensional Widom-Rowlinson lattice model. This discrete
spin model describes a surface on which a one to one mixture of two gases is
sprayed. These gases shall be strongly repelling on short distances. We indicate
the amount of gas by a positive parameter, the so called activity.

The main result of this thesis states that given an activity larger than 2, there
are at most two ergodic Widom-Rowlinson measures if the underlying graph is the
star lattice (Z2,�). This falls naturally into two parts:

The first part is quite general and establishes a new sufficient condition for
the existence of at most two ergodic Widom-Rowlinson measures. This condition
demands the existence of 1∗lassos, i.e., 1∗circuits 1∗connected to the boundary,
with probability bounded away from zero. Our approach is based upon the infinite
cluster method. More precisely, we prevent the (co)existence of infinite clusters
of certain types. To this end, we first have to improve the existing results in this
direction, which will be done in a general setting for two-dimensional dependent
percolation.

The second part is devoted to verify the sufficient condition of the first part
for activities larger than 2. To this end, we have to compare the probabilities of
configurations exhibiting 1∗lassos to the ones exhibiting 0lassos. This will be done
by constructing an injection that fills certain parts of 0circuits with 1spins and,
hereby, forms a 1∗lasso.
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Chapter 1

Introduction

Some of the most interesting natural macroscopic phenomena can be explained by
their microscopic dynamics, like ferromagnetism or demixing of gases. Unfortu-
nately, the microscopic structure usually consists of many different aspects and,
altogether, is quite complex. Therefore, a natural question arises: which of these
microscopic interactions is sufficient or even responsible for the macroscopic phe-
nomenon? The answer is quite difficult to derive from physical experiments, since
it is not always possible to exclude all but one microscopic interaction. Fortunately,
concentrating on a single aspect is not a problem in mathematics.

For this task Lanford together with Ruelle and independently of them Do-
brushin introduced the elegant concept of Gibbs measures in the late sixties, see
[Do] and [LR]. From a probabilistic point of view Gibbs measures are “simply“
probability measures on a state space of infinitely many particles with some a priori
determined conditional probabilities, which implement the microscopic structure.
In this setup macroscopic phenomena are tail events, i.e., events that do not de-
pend on the state of finitely many particles. It is the case that Gibbs measures are
not necessarily uniquely specified by their microscopic structure. The existence
of multiple Gibbs measures – the so called phase transition – corresponds to the
existence of several possible distinct macroscopic states. Which macroscopic state
really occurs could (for example) depend on the past and not on the microscopic
structure. For a thorough introduction in the well-established theory of Gibbs
measures see [Geo].

As the title of this thesis alludes to, we approach this question from the perspec-
tive of dependent percolation in two dimensions. More precisely, we will consider
interacting systems in which each node of the square lattice Z2 is equipped with
a random “spin” taking value either 0 or 1. Two lattice nodes are called adjacent
if their Euclidean distance is 1, and ∗adjacent if their distance is 1 or

√
2. The

lattice then splits into maximal connected or ∗connected subsets, called clusters
resp. ∗clusters, on which the nodes take the same spin. In this way we obtain
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clusters of 0spins, called 0clusters, and ∗clusters of 1spins, called 1∗clusters. The
analysis of these clusters is in the focus of percolation theory, where some of the
most beautiful proofs can be found. The charm of this mathematical area is in its
elegant proofs – mostly based upon simple geometric ideas – and in its elementary
– easily explained – problems, which a priori seem to be nearly impossible to solve
and, afterwards, appear to be so obvious.

In some lattice models of statistical physics the occurrence of interesting macro-
scopic phenomena can be investigated by percolation methods, since the existence
of an infinite cluster equipped with the same spin value is a macroscopic phe-
nomenon itself. This results in a physically rewarding and mathematically beau-
tiful area of research.

Ising Model

A well-known example is the (two-dimensional) Ising model introduced by Wil-
helm Lenz [Le], which describes the phenomenon of ferromagnetism. It assumes
that the atomic structure of e.g. iron equals a graph. Furthermore, the so called
“spins of electrons“ of each pair of atoms can either differ or be in agreement.
Therefore, each node has spin value + or − and two nodes have the same “spin of
electrons” if their spin values coincide. On the one hand, adjacent atoms have the
tendency to align their spin values. On the other hand, an increasing tempera-
ture and, therefore, an increased movement implies the opposite effect. The Ising
model combines both contrary forces to one parameter that describes the level of
interaction between adjacent nodes. The parameter is called coupling constant and
is reciprocally proportional to the temperature, i.e., a smaller coupling constant
means less alignment and more chaos in form of higher entropy.

The Ising measures are modeled as Gibbs measures: Given a finite observation
window ∆ ⊂ Z2, a fixed outside configuration π ∈ {−1,+1}Z2 , and a coupling
constant J > 0, the probability of a configuration σ ∈ {−1,+1}Z2 is

νπ∆,J(σ) :=
1

Zπ
∆,J

1{σ=π off ∆}
∏

x,y∈Z2

x adjacent to y
x or y∈∆

exp[J(−1{σ(x) 6=σ(y)})] ,

where 1{σ=π off ∆} means that the configuration σ coincides with π in ∆c and Zπ
∆,J

is the normalising constant. This formalism describes our above microscopic struc-
ture, since each pair of adjacent nodes with different spin values is penalised and,
therefore, aligned ones are immediately rewarded. We call a probability measure
ν on {−1,+1}Z2 an Ising measure with coupling constant J if it satisfies the DLR
equality for ν .∆,J(.), i.e., for all finite ∆ ⊂ Z2

ν(.|F∆c)(ω) = νω∆,J(.)
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for ν-almost all ω ∈ Ω. The abbreviation DLR honors Dobrushin, Lanford, and
Ruelle for their fundamental papers [Do] and [LR].

Because of the physical background we can expect the existence of a critical
coupling constant Jc below which all +clusters and −clusters are finite. Above
this critical coupling constant we expect either a single infinite +cluster or a single
infinite −cluster, i.e., two different macrostates. The first of these macrostates
can be pictured as an infinite +ocean with finite −∗islands; correspondingly, the
other macrostate can be thought of as an infinite −ocean with finite +∗islands.
From a more probabilistic point of view, for J < Jc we expect one unique Ising
measure exhibiting the above described typical configuration; in the case J > Jc
the occurrence of multiple Ising measures can be anticipated, i.e., phase transition.
More precisely, the set of Ising measures should be a closed interval, where each of
the two extremal points typically exhibits one of the above described macrostates.
Even though Ernst Ising assumed otherwise, see [Isi], our expectations are met if
the underlying graph is for example the two-dimensional lattice (Z2,�) , where �
denotes the horizontal and vertical edges with length one.

Let us recall the historical milestones towards a proof that this is indeed the
case. First, Peierls showed in [Pe] that phase transition occurs in the Ising model.
Second, the fact that every translation invariant Ising measure is a convex com-
bination of only two extremal Ising measures was first derived for large J by
Gallavotti and Miracle-Sole in [GM]; later on, this result was completed for J > Jc
by Messager and Miracle-Sole in [MM]. Third, a remarkable approach to extend
the result of Messager and Miracle-Sole to all Ising measures was made by Russo
in [Ru]. Unfortunately, he did not quite achieve his goal, but, nonetheless, intro-
duced very useful methods. Fourth and last, based upon the seminal work of Russo
[Ru], independently of each other Aizenman [Aiz] and Higuchi [Hig79] obtained
the existence of at most two extremal Ising measures.

In the year 2000 a simplified approach to the result of Russo, Aizenman, and
Higuchi was published by Georgii and Higuchi [GH]. In particular, they developed
a new geometrical approach – “the butterfly method“ – for the result of Messager
and Miracle-Sole.

Widom-Rowlinson Model

Another well-known example for this beautiful area of research is the Widom-
Rowlinson lattice model, which is a discrete version of the continuous Widom-
Rowlinson model introduced by Widom and Rowlinson in [WR]. It was first anal-
ysed by Lebowitz and Gallavotti in [LG]. Based upon Peierls’ method, they showed
that phase transition occurs. This model explains the phenomenon of demixing of
two strongly repelling gases. Let us describe the situation for two dimensions more
precisely. Consider an equal (1:1) mixture of two gases that are strongly repelling
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on a short distance and spray it on a surface. The Widom-Rowlinson lattice model
assumes that the surface equates a graph and that at most one gas particle can
be attached to each node. Furthermore, the strong repulsion of the two gases is
implemented by suppressing that adjacent nodes have different types of particles.
This causes a tendency towards a loosely packed configuration of particles. We call
a configuration feasible if it satisfies this condition. The amount of gas sprayed
on the surface, which obviously also influences the number of vacant nodes, will
be modeled by an activity parameter. This situation is somewhat similar to the
one described by the Ising model. We strengthen this analogy by saying a node
is equipped with a +spin respectively −spin respectively 0spin if a particle of one
type of gas is attached to it, respectively a particle of the other type respectively
no particle at all.

Once again, the Widom-Rowlinson measures are modeled as Gibbs measures:
For a finite observation window ∆ ⊂ Z

2, a fixed outside configuration π ∈
{−1, 0,+1}Z2 , and an activity λ > 0 the probability of a configuration σ ∈
{−1, 0,+1}Z2 is

µπ∆,λ(σ) =
1

Zπ
∆,λ

1{π=σ off ∆}1F (σ)
∏
x∈∆

λ|σ(x)| ,

where F stands for all feasible configurations in {−1, 0,+1}Z2 and Zπ
∆,λ is the

normalising constant. This formalism was designed to coincide with the micro-
scopic structure described above. A probability measure µ on {−1, 0,+1}Z2 is
called a Widom-Rowlinson measure with activity λ if it satisfies the DLR equality
regarding the microscopic structure µ.∆,λ(.), i.e., for all finite ∆ ⊂ Z2

µ(.|F∆c)(ω) = µω∆,λ(.)

for µ-almost all ω ∈ {−1, 0,+1}Z2 .
Due to the physical background we would anticipate the existence of a critical

activity. More precisely, we would expect that below this critical activity only one
infinite Widom-Rowlinson measure exists. Its typical configuration should be one
single infinite 0∗ocean with finite +islands and finite −islands. Above the critical
activity we would expect two macrostates that exhibit either an infinite +ocean
with finite ∗islands or an infinite −ocean with finite ∗islands. Consequently, the
set of Widom-Rowlinson measures should have the same topological structure as
the set of Ising measures. Interestingly, the existence of a unique critical activity
depends on the underlying graph, see [BHW] and [Hä02]. Nonetheless, there is a
widespread belief in the above described pattern for the square lattice.
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Comparison of Both Models

Let us compare these two somewhat similar and also fundamental different mod-
els. Evident differences are that the Ising model exhibits two spin values and no
forbidden configurations, whereas the Widom-Rowlinson lattice model has three
spin values and forbidden configurations. Also the microscopic interaction of the
Widom-Rowlinson measure is significantly more complex: On the one hand, the
microscopic interaction of the Ising model only takes place on edges. More pre-
cisely, the knowledge which edges connect two nodes with different spin values,
together with the spin value of a single node, uniquely determines the whole config-
uration. On the other hand, the microscopic interaction of the Widom-Rowlinson
lattice model takes place on both edges and nodes. More precisely, the knowledge
which edges connect two nodes with different spin values, together with the spin
value of a single node, does not uniquely determine the whole configuration. In-
stead, only the nodes with 0spins are known. For the whole configuration we also
need to know the spin value of each cluster not equipped with 0spins.

These differences, especially the additional spin value, weaken the methods
developed for the Ising model. Consequently, we have considerably less insight in
the set of Widom-Rowlinson measures. Nonetheless, some methods can be carried
over. For example, Lebowitz and Gallavotti used Peierls’ method of [Pe] to show
the occurrence of phase transition in the Widom-Rowlinson lattice model in [LG].

The Last Attempt by Higuchi et alii

The last1 attempt to show that there exist at most two ergodic Widom-Rowlinson
measures was undertaken by Higuchi and his PhD-student Takei in [HT] in 2004.
Primarily, it was based upon the butterfly method, which was developed by Georgii
and Higuchi to simplify the proof of the corresponding statement in the Ising
model. Unfortunately, the butterfly method does not provide the existence of at
most two ergodic Widom-Rowlinson measures. But it verifies the non-coexistence
of an infinite +cluster, an infinite 0cluster, and an infinite −cluster. Fortunately,
this is sufficient to compare ergodic Widom-Rowlinson measures with Bernoulli
percolation. This results in the existence of at most two ergodic Widom-Rowlinson
measures for activities larger than 8pc/(1 − pc) ≈ 12 if the underlying graph is
(Z2,�), where pc denotes the critical activity for Bernoulli percolation on (Z2,�).
Higuchi and Takei’s work of 2004 [HT] proceeds with the findings of Higuchi from
1983, see [Hig83], that phase transition occurs if the activity exceeds 8pc/(1−pc) ≈
12 and the underlying graph is (Z2,�). The integer 8 = 23 is a consequence of
the fact that at most 4 disjoint +clusters could be combined by adding one +spin.

1At least to the best knowledge of the author.
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Moreover, in this framework Higuchi also showed the absence of phase transition
for activities smaller than pc/(1− pc) ≈ 3/2.

These results could be carried over to the graph (Z2,�), where � denotes the
set of horizontal, vertical, or diagonal edges with length 1 or

√
2. This would

derive the existence of exactly two different ergodic Widom-Rowlinson measures
for activities larger than 8(1− pc)/pc ≈ 5, 5 as well as the existence of one unique
Widom-Rowlinson measure for activities smaller than (1− pc)/pc ≈ 0, 7.

Main Result

This thesis shows that there exist at most two ergodic Widom-Rowlinson measures
if the activity is at least 2 and the underlying graph is (Z2,�). More formally,
let WR∗ER(λ) denote the set of ergodic Widom-Rowlinson measures with activity
λ and µ+∗

λ respectively µ−∗λ the measures with activity λ and + respectively −
boundary condition, if the underlying graph is (Z2,�). The main result of this
thesis is the following.

Theorem 1.1 Let λ ≥ 2. Then WR∗ER(λ) = {µ+∗
λ , µ−∗λ }.

Notice that this statement does not imply phase transition.
But how to deduce this theorem? Our aim for the next paragraphs is to

establish some intuition. Since the reader is probably more familiar with the Ising
model, we first argue how one can prove the result of Messager and Miracle-Sole
based upon (more or less) the core ideas developed in this thesis for the Widom-
Rowlinson model. We do this on an intuitive level, which easily could be made
rigorous. Therefore, any reader not familiar with the Ising model is advised to
skip the next two paragraphs.

Intuition

Let us begin by applying the Burton-Keane uniqueness theorem to derive the
uniqueness of the infinite +cluster, infinite +∗cluster, infinite −cluster as well as
the infinite −∗cluster for ergodic Ising measures. It is sufficient to show that an
ergodic Ising measure ν that differs from ν+

λ exhibits an infinite −cluster on the
upper half plane {(x, y) : x ≥ 0} ν-almost surely, since, by symmetry, additionally
assuming ν 6= ν−λ implies the coexistence of an infinite −cluster and an infinite
+cluster on the upper half plane. This, together with the ergodic theorem, con-
tradicts the uniqueness of the infinite clusters (see [GH, Proof of Cor. 3.2]) and,
therefore, proves the existence of at most two ergodic Ising measures.

For contradiction let ν be an ergodic Ising measure that differs from ν+
λ and that

assigns positive ν-probability to the absence of infinite −clusters on the upper half
plane. Since the absence of an infinite −cluster on the upper half plane is invariant
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under any translation almost surely, see [GH, Shift Lemma 3.4], the ν-almost sure
absence of an infinite−cluster on the upper half plane follows. Nonetheless, ν 6= ν+

λ

implies the ν-almost sure existence of an infinite−cluster, see [GH, Proof of Lemma
2.1]. Due to extremal decomposition we can exchange the property ”ergodic“ with
the property ”extremal“, since all considered events are tail events ν-almost surely,
like uniqueness and existence of infinite clusters or absence of an infinite cluster
in half planes. Our next step towards a contradiction is the application of the
following new statement, see [Cars, Theorem 1].

There exists no probability measure on {0, 1}Z2 that satisfies the follow-
ing conditions: a) positive association, which roughly says that spins of
the same type are attracted to each other; b) bounded energy, which
is a bit stricter than finite energy; c) a single infinite 0cluster exists
almost surely; d) at most one infinite 1∗cluster exists almost surely;
e) the probability that a node is contained in the infinite 1∗cluster is
bounded from below by a strictly positive constant not depending on
the node.

Fortunately, all Ising measures have bounded energy and all extremal Ising mea-
sures are positively associated. Consequently, it is sufficient to show condition
e) for ν to derive a contradiction. To this end, let ν±∆,λ denote the finite Ising-
measure on the finite reflection invariant observation window ∆ with activity λ
and +spins on the upper and −spins on the lower half plane as boundary condition.
Note that given any node (x, 0) in ∆, by symmetry, the existence of a +∗circuit
around (x, 0) +∗connected to the boundary of ∆ – a so called +∗lasso around
(x, 0) – has ν±∆,λ-probability at least 1/2. The ν-almost sure absence of infinite
−clusters on the upper half plane implies that any box [−n, n]2 is surrounded by
a ∗circuit equipped with +spins on the upper half plane. This, together with the
above observation with respect to ν±∆,λ and the strong Markov property, shows that
an infinite +∗cluster exists ν-almost surely and that with ν-probability at least
ν+
λ (~0

+←→∞)/2 > 0, any node of the x-axis is contained in the infinite +∗cluster.
Since there exists no infinite −cluster in any translate of the upper half plane
ν-almost surely, see [GH, Shift Lemma 3.4], this lower bound holds for all nodes
and not only for the ones on the x-axis. Consequently, all conditions of the above
theorem are satisfied, which leads to a contradiction and, therefore, to the result
of Messager and Miracle-Sole.

Let us take a brief pause to reflect on the core idea of this approach for the
Ising model.

The most crucial (well-known) observation based upon flip-reflection
symmetry was that with ν±∆,λ-probability at least 1/2, a +∗lasso exists
in ∆.
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In order to apply this, we assumed the absence of an infinite −cluster in the
upper half plane. The new result for non-coexistence is also an essential building
block, which follows naturally if we come this far and want to achieve the result of
Messager and Miracle-Sole. But how to translate this approach into the Widom-
Rowlinson model? We try to convey some intuition for the answer in the next
paragraphs.

First of all, the Burton-Keane uniqueness theorem – once again – guarantees
the uniqueness of all kinds of infinite clusters, see [HT, Prop. 3.5.]. Consequently,
we can distinguish eight different scenarios depending on which type of infinite
cluster exists. A first fruitless attempt would be to copy the ansatz of the crucial
observation above. Hereby, the problem is that because of the 0spins the flip-
reflection symmetry lost its edge, since it only compares +∗lassos to −∗lassos.
We, however, would need to compare ∗lassos equipped with + or −spins to 0lassos.
But how can we alter the core idea? Let us begin by recalling that the butterfly
method precludes the coexistence of an infinite −∗cluster, an infinite 0cluster, and
an infinite +∗cluster. Furthermore, it is sufficient for our aim to preclude the
existence of infinite 0clusters, see [HT, Prop. 3.2.]. Hence, we only have to further
exclude three of the eight scenarios, namely

i) the sole existence of a single infinite 0cluster,

ii) the sole coexistence of an infinite 0cluster and an infinite +∗cluster, and

iii) the sole coexistence of an infinite −∗cluster and an infinite 0cluster.

By symmetry, eliminating the second scenario also prevents the third scenario. So,
how can one preclude the first and the second scenario? Note that in both sce-
narios each finite subset is encircled by a circuit equipped with 0spins and +spins
almost surely. This observation, together with the stochastic domination and the
strong Markov property, leads us to consider Widom-Rowlinson measures on finite
subgraphs with 0spins as boundary conditions denoted by µ0∗

∆,λ. Nonetheless, the
core idea of the Ising model should stay the same, only interpreted to the new
setting, i.e., the µ0∗

∆,λ-probability of the existence of a +∗lasso should be bounded
away from zero. But how can we prove this? Let us answer this question in the
next paragraph and first check if it enables us to achieve our aim. Fortunately,
these +∗lassos either strangle infinite 0clusters (if the corresponding +∗circuits are
large enough) or imply the existence of an infinite +∗cluster (if the corresponding
+∗circuits stay small). Consequently, they prevent scenario i), i.e., the existence of
a sole infinite 0cluster, and, therefore, we only have to consider the second scenario,
i.e., coexistence of a single infinite 0cluster and a single infinite +∗cluster. Once
again, the +∗lassos help us. They show that condition e) of the above theorem
for non-coexistence is satisfied and, therefore, prevent the coexistence. Hence, this
approach leads to the proof of Theorem 1.1.
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But why are the µ0∗
∆,λ-probabilities of the existence of a +∗lasso bounded away

from zero? This is indeed a bit tricky. We have to consider the well-known col-
orblind version of the finite Widom-Rowlinson measures – called the site-random
cluster model, see [GHM, Sec. 6.7] – and prove the corresponding statement with
respect to 1∗lassos in this model. The advantages of this measure are that no
configurations are forbidden and that it can easily be retransformed into the cor-
responding Widom-Rowlinson measure. But how to control the probability of the
existence of a 1∗lasso in a finite observation window ∆ with respect to this mea-
sure? First, note that a configuration in {0, 1}∆ exhibits either a 1∗lasso or a
0lasso. Second, we will construct an injective map from the set of configurations
exhibiting a 0lasso to its complement, i.e., the set of configurations exhibiting a
1∗lasso. This construction is indeed quite complex and, therefore, we describe it in
more detail in the next paragraph. For now we are content with the idea that the
map fills certain parts of certain 0circuits with 1spins, which results in a configu-
ration with a 1∗lasso. Hereby, the number of 1∗clusters joined together is (more
or less) smaller than the number of added 1spins. On the one hand, each finite
1∗cluster in the site-random cluster model originally could have been a −∗cluster
or a +∗cluster in the underlying finite Widom-Rowlinson model. On the other
hand, each added 1spin at least doubles the probability for activities larger than
2. Consequently, because of the map’s injectivity, the probability of the existence
of a 1∗lasso is larger than the one for a 0lasso.

Let us describe the construction of the injective map from the set of config-
urations exhibiting a 0lasso to its complement more precisely: First, the map
should only add 1spins and never delete them, which makes it easier for us to
compare the probabilities of the argument and the mapped configuration. This is
the case because, hereby, the decrease of 1∗clusters can be compensated by the
increase of 1spins. The injectivity is important because it enables us to compare
the probability of the whole set of 0lassos to the probability of the set of 1∗lassos.
Unfortunately, the injectivity is also the tricky part. This is the case because the
other conditions would be satisfied, for example, by simply equipping the maximal
0circuit with 1spins, which is obviously not injective. A first fruitless approach
towards the construction of such an injective map would only fill the parts of
the maximal 0circuit that are essential to obtain a new 1circuit and, therefore, a
1∗lasso. Unfortunately, this map is not injective either. The main reason for this
is that we consider 1paths in both the exterior and the interior of the maximal
0circuit. Consequently, our next approach would be to fill the parts of the maxi-
mal 0circuit such that we obtain a new 1circuit in the union of the interior of the
maximal 0circuit and the maximal 0circuit itself. Fortunately, if we sufficiently
trim its domain the map is injective and all of its outputs exhibit a 1∗lasso. So,
we just have to find a second map on the remaining domain that complements the
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first one. Recall that for the first map we only considered 1paths in the interior
of the maximal 0circuit. Intuition suggests to complement this map by a second
map considering only 1paths in the exterior of a certain 0circuit. As we will see
later on, this approach indeed works. Unfortunately, this injection only achieves
our aim, i.e., the probability of the set of 1∗lassos is bounded away from zero, for
activities larger than 24/3. Fortunately, we can present a workaround by comparing
the probabilities of two (instead of only one) configurations exhibiting 0lassos and
the corresponding configurations with 1∗lassos for activities larger than 2.

Brief Overview

The remainder of this thesis is organised as follows. In Chapter 2 we introduce ba-
sic definitions and notations needed throughout the thesis. Chapter 3 is dedicated
to show the non-coexistence of different infinite clusters in the general setting of
dependent percolation theory. For our new result regarding non-coexistence in
Subsection 3.1.1 the underlying probability measure does not have to be invariant
under translation, rotation, or reflection. The general setting tempts us to play a
little with infinite clusters, which leads to some other related results2 presented in
the rest of Chapter 3. The main part of Chapter 3 is published in [Cars]. Chapter
4 first introduces the Widom-Rowlinson model. Then a sufficient condition for
the absence of phase transition in the two-dimensional Widom-Rowlinson model is
derived. Last, we establish the sufficient condition mentioned above for the exis-
tence of at most two ergodic Widom-Rowlinson measures. Chapter 5 constructs the
non-trivial injective map and, afterwards, establishes a connection to the Widom-
Rowlinson model. This already verifies the sufficient condition of Chapter 4 for
activities larger than 24/3 ≈ 5/2. Last, we show how to alter the injective map to
extend this result to activities larger than 2 and, therefore, verify Theorem 1.1.

All proofs presented in this thesis are based on simple geometric ideas, even
though some proofs can get a bit technical.

Further Thoughts

Obviously, there are some important questions that cannot be answered by the
author. Nonetheless, in this section the author tries to share his intuition for some
issues.

Is it possible to weaken the condition λ ≥ 2? This is a tough question and if the
author knew how to achieve this he would have done it. However, this condition
is "only" essential for Chapter 5, which compares the probability that a 1∗lasso
occurs with the probability that a 0lasso occurs. So, establishing this comparison

2These results are not really necessary for Theorem 1.1
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for lower activities would extend the main result of this thesis to these activities.
But, from the limited intuition of the author, this seems to be impossible, at least
based on the method of Chapter 5.

Could the new method be used for other underlying graphs? Well, this depends.
Chapter 3 and Chapter 4 could be gerneralised to other graphs, like the standard
square or the triangular lattice. But Chapter 5 crucially depends on the fact that
the cardinality of the set of 1∗lassos (more generally, 1lassos with respect to the
underlying graph) is larger then the cardinality of the set of 0lassos (more generally,
0lassos with respect to the matching pair of the underlying graph), otherwise
an injection is impossible. Consequently, this chapter cannot be carried over to
the standard square lattice, where there are less configurations exhibiting 1lassos
than configurations exhibiting 0∗lassos. On the bright side, we could use this
method for the triangular lattice. The author expects that the main result could
be derived for activities larger than 4, since flipping a single 0node of a 0circuit
can join three disjoint 1clusters, of which two are inside the 0circuit. On the other
hand, this result can also be derived by a simple standard comparison to Bernoulli
percolation. But some further new thoughts could decrease this boundary, just
like we will decrease the boundary from 24/3 to 2 for the star lattice.

What’s New?

Since most of this thesis is original research, it is easier to point out which results
were already well-known or at least common knowledge:

• The uniqueness of infinite clusters, i.e., the Burton Keane uniqueness theo-
rem;

• Basic facts of the Widom-Rowlinson model, i.e., more or less the whole Sec-
tions 4.1 to 4.3;

• The butterfly method, i.e., Subsection 4.5.4;

• Splitting the set of finite configurations regarding lassos, i.e., Lemma 4.28.

In general, good indicators for a well-known statement are both the omission of a
proof and the explicit mentioning that it is well-known.

In this context the author would like to state that he and, therefore, this thesis
was influenced by many different mathematicians and their works, in fact, too
many to list here. Nonetheless, the author would like to explicitly mention Hans-
Otto Georgii, Kai Cieliebak, and Thomas Richthammer.
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Chapter 2

Preliminaries

First of all, recall the usual order of operations ”BIDMAS“, which stands for brack-
ets, indices, division, multiplication, addition, subtraction. To avoid several brack-
ets we add the rule that intersections apply before unions, i.e.,

A ∩B ∪ C = (A ∩B) ∪ C A ∪B ∩ C = A ∪ (B ∩ C) .

In this chapter we establish the fundamental notations of graphs needed through-
out the thesis.

Let us begin by recalling that a graph G = (N,E) consists of a set of nodes N
and a set of edges E, each connecting two nodes. Furthermore, a set of nodes S is
called a cluster regarding G if it is a maximal connected component of this graph,
i.e., given any node of S as a starting point, each node of S and only nodes of S
can be reached by walking over edges from node to node.

Recall that our main result refers to the (realisation of the) graph (Z2,�),
where

� := {{x, y} ⊂ Z2 : |x− y| ∈ {1,
√

2}}

denotes the set of horizontal, vertical, and diagonal edges with length 1 or
√

2.
Consequently, we only1 consider this graph (Z2,�) and its matching pair (Z2,�),
where the set of horizontal and vertical edges with length one is denoted by

� := {{x, y} ⊂ Z2 : |x− y| = 1} .

The main reason for this is that we want to stay as elementary as possible, even
though some generalisations could be made in Chapter 3 and 4.

These two graphs have a special relation to each other comparable to dual
graphs in edge percolation; they are matching pairs. For definitions and a rigorous

1The exception that “proves” the rule can be found in Chapter 3 Section 3.2
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introduction, we refer the interested reader to [K]. A consequence of this relation is
that a cluster with respect to (Z2,�) cannot cross a cluster with respect to (Z2,�),
which is essential if an infinite cluster of one type shall preclude an infinite cluster
of the other type. More precisely, if we split Z2 into two sets V andW , then either
there exists an infinite cluster in V with respect to (Z2,�), or every finite subset
of Z2 is encircled by a cluster in W with respect to (Z2,�).

This thesis deals with interacting systems, in which each node of the square
lattice Z2 is equipped with a random “spin”. In particular, we analyse whether
infinite clusters equipped with the same spin value exist if the underlying graph
is (Z2,�) or (Z2,�). For convenience, let us introduce a simple notation: we add
a star ∗ to any graph theoretical object to indicate that the underlying graph is
(Z2,�); otherwise – if the object refers to (Z2,�) – we refrain from using any
index.

The most fundamental term regarding graphs is when two nodes are connected
by an edge.

Definition 2.1 (adjacent, ∗adjacent) A node x ∈ Z2 is called adjacent to a set
B ⊂ Z2 if x ∈ Z2 \ B and there exists a node y ∈ B with |x − y| = 1. Likewise,
x ∈ Z2 is called ∗adjacent if x ∈ Z2 \B and the Euclidean distance to some y ∈ B
is 1 or

√
2.

In particular, a node is not adjacent or ∗adjacent to itself. We define the
boundary and ∗boundary of a subset B as

∂B := {x ∈ Z2 : x is adjacent to B}

and
∂∗B := {x ∈ Z2 : x is ∗ adjacent to B} .

The following definition of a path includes the self-avoiding property, i.e., a
node does not appear twice.

Definition 2.2 (path, ∗path) We call a finite sequence of nodes (x1, . . . , xn),
n ≥ 0, a path if it is self-avoiding, i.e.,

xi = xj ⇒ i = j ,

and if every pair of successive nodes is connected by an edge, i.e., for all 1 ≤ i, j ≤ n

|i− j| = 1⇒ xi is adjacent to xj .

Likewise, a ∗path is defined on (Z2,�). More precisely, exchanging adjacent
with ∗adjacent in the definition of a path leads to ∗paths.

The node x1 (resp. xn) is called the starting (resp. ending) node.
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Note that by this definition, paths are always finite, which will be extended in
the following.

Definition 2.3 ((two-sided) infinite path, (two-sided) infinite ∗path) A
sequence of nodes (xi)i≥1 is an infinite path if for all n ≥ 1, (x1, . . . , xn) is a
path. A sequence of nodes, (xi)i∈Z, is called a two-sided infinite path if the se-
quences (xi)i≥1 and (xi)i<1 are two disjoint infinite paths, whose starting nodes are
adjacent to each other.

An infinite ∗path and a two-sided infinite ∗path is defined accordingly.

We say a path hits ∆ ⊂ Z2 if one of its nodes belongs to ∆ and a path touches
∆ if it hits the boundary ∂∆.

Next, we define a special kind of path that encircles a finite subset of Z2.

Definition 2.4 (circuit, ∗circuit) A path (x1, . . . , xn) is called a circuit if the
starting node x1 is adjacent to or coincides with the ending node xn.

Likewise, a ∗path is called a ∗circuit if its starting node is ∗adjacent to or
coincides with its ending node.

The interior of a circuit C, denoted by intC, is the set of nodes in Z2 \C that
is ∗enclosed by C, i.e., a node is contained in intC if all infinite ∗paths starting
in this node hit C eventually. The exterior of a circuit C, extC, is defined as
Z

2 \ (C ∪ intC). For the sake of completeness, we explicitly define the interior of
a ∗circuit D, also denoted by intD, as the set of nodes in Z2 \D that is enclosed
by D and the exterior of D, extD, as Z2 \ (D ∪ intD).

Whenever a set ∆ ⊂ Z2 is contained in the union of a circuit (resp. ∗circuit)
C and its interior intC we say C is a circuit (resp. ∗circuit) around ∆. We add
the term “strictly“ to indicate that ∆ lies in the interior of C. Most of the times,
circuits will be around the origin ~0. Therefore, if we omit the phrase “around x”
we usually mean “around the origin”. Later on, we will compare (∗)circuits with
respect to their interior, i.e., we say C is larger than D if C is a (∗)circuit around
D.

By misuse of notation, a path or a circuit is often interpreted as a set.
As mentioned earlier, we will consider interacting systems in which each node

is equipped with a random “spin” and analyse the occurrence of certain maximal
connected or ∗connected subsets on which the nodes take the same spin. To this
end, we connect the purely graph theoretical objects to our spaces of configurations,
namely {0, 1}Z2 and {−1, 0, 1}Z2 .

Definition 2.5 (0path, 1path ) Let σ ∈ {0, 1}Z2. We call a path P a 0path[σ]
if the configuration σ equips its nodes with 0spins, i.e., P ⊂ σ−1(0). Likewise, we
say a path P is a 1path[σ] if all of its nodes take spin value one.
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Definition 2.6 (−path, 0path, +path ) Let π ∈ {−1, 0, 1}Z2. We call a path
P a −path[π] (resp. 0path[π] resp. +path[π]) if P is contained in π−1(−1) (resp.
π−1(0) resp. π−1(1)).

Usually, we omit the underlying configuration if it is evident within the context.
We extend these definitions in the obvious way to 0∗paths, 1∗paths, −∗paths,

+∗paths, 0∗circuits, and so on.
Let A,B,C ⊂ Z2. We say A is 0connected to B in C and write A 0←→ B in C

for the existence of a 0path that belongs to C, starts in A, and ends in B. Analog
occurrences will be denoted by A 1∗←→ B in C and called A is 1∗connected to B
in C, and so on. For C = Z

2 the phrase “in Z2” is usually omitted. We exchange
B with ∞ to express that a corresponding infinite path, which is contained in C,
exists and starts in A.

Definition 2.7 (0cluster) Let σ ∈ {0, 1}Z2. A 0cluster[σ] is a subset S ⊂ σ−1(0)
such that

a) all nodes of S are 0connected in S, i.e., for all nodes x, y ∈ S

x
0←→ y in S ;

b) no node of the complement Sc is 0connected to S, i.e., one cannot find a node
z ∈ Sc so that

z
0←→ S ,

or equivalently all nodes of the boundary ∂S take spin value 1.

In other words S is a maximal connected component of σ−1(0).
For π ∈ {−1, 0, 1}Z2 we define a 0cluster[π] accordingly.

Once again, the configuration is usually omitted and we analogously define
0∗cluster, 1cluster, 1∗cluster, 0circuit, 1∗circuit, −cluster, +cluster, and so on.

Let ∆ be a finite subset of Z2. If a 1∗circuit around the origin in ∆ relative
to a configuration σ exists we denote the largest of these by Cmax 1∗

∆ (σ); otherwise
Cmax 1∗

∆ (σ) is the empty set. Note that Cmax 1∗
∆ (σ) is indeed well-defined. Analo-

gously, we denote the minimal 1∗circuit by Cmin 1∗
∆ (σ). Once again, we extend these

notations to other spin values and to circuits, e.g., the maximal 0circuit around
the origin in ∆ for a configuration σ is denoted by Cmax 0

∆ (σ).
Last, let us write ∆ b Γ to indicate that ∆ is a finite subset of Γ.



Chapter 3

Planar Dependent Node Percolation

In this chapter we analyse the non-(co)existence of certain infinite clusters in two-
dimensional dependent node percolation. While the first section focuses on the
sufficiency of certain conditions for the non-coexistence, the second section provides
an example showing that certain conditions are not sufficient for the occurrence of
an infinite 1cluster in the triangular lattice.

All probability measures of this chapter will be defined on the same measurable
space (Ω,F), where the sample space Ω is the set of configurations {0, 1}Z2 and
F is the σ-algebra generated by the projections (px)x∈Z2 .

3.1 Non-Coexistence of Infinite Clusters

This section deals with the question “Under which conditions (on the underlying
probability measure) does an infinite 0cluster preclude the occurrence of an infinite
1∗cluster?”. For this task three approaches are outlined in the following.

First, we show that there exists no probability measure on (Ω,F) with the
following four properties. Spins of the same type are in some sense attracted to
each other, which later on will be formalised as positive association. A single
infinite 0cluster exists almost surely, at most one infinite 1∗cluster exists almost
surely, and certain probabilities are bounded away from zero. The latter condition
contains a slightly stricter version of the finite energy, called the bounded energy.
Further, the bounded energy enables us to refrain from assuming invariance with
respect to translation, reflection or rotation.

Second, we show how to derive the non-coexistence of a sole infinite 1∗cluster
and a sole infinite 0cluster if we assume the finite energy condition, positive asso-
ciation, and a kind of invariance under translation. In contrast to the well-known
argument of Zhang, see [GHM, Proof of Theorem 5.18], these assumptions suit
the Burton-Keane uniqueness theorem better. Instead of additionally requiring
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invariance under rotation or reflection, we only need to further assume positive
association.

As positive association is often difficult to verify or does not hold at all, the third
part analyses the structure of an infinite 0cluster or an infinite 1∗cluster under a
quite weak condition on the underlying probability measure. More precisely, under
this condition, the existence of infinitely many disjoint infinite 1∗paths follows from
the occurrence of an infinite 1∗cluster. The same holds with respect to 0paths and
0clusters. This result could be useful as a first step towards a proof by contradiction
of an analogue to Corollary 3.15 that softens or alters the requirement of positive
association. As Häggström and Mester showed in [HM], in general dispensing with
positive association is not possible. A more detailed discussion of this can be found
at the beginning of Section 3.1.3, see page 28.

3.1.1 Dispensing With Invariance Under Translation, Re-
flection, and Rotation

As described above, we want to dispense with the assumptions of invariance under
translation, reflection, and rotation. Nonetheless, spins of the same type have to
be attracted to each other, which is formalised in the following definition.

Definition 3.1 (increasing event, positively associated) An event A is called
increasing if ξ ∈ A and η ≥ ξ (pointwise) implies η ∈ A.

We say a probability measure µ on {0, 1}Z2 is positively associated, if

µ(A ∩B) ≥ µ(A)µ(B)

for all increasing events A and B.

Furthermore, we need to control the probabilities of certain local configurations
regardless of their exact position, which leads to the following definition.

Definition 3.2 (bounded energy) We say a probability measure µ on {0, 1}Z2

satisfies the bounded energy condition if for all n ∈ N, there exists a strictly positive
constant cn such that

µ(η on ∆|ξ off ∆) > cn

for all ∆ ⊂ Z2 with |∆| = n, all η ∈ {0, 1}∆, and for µ-almost all ξ ∈ {0, 1}∆c.

In fact, it is sufficient to verify this condition for n = 1, because the general case
then follows by induction with cn = cn1 .

Note that the bounded energy condition is quite weak. For example, it is
satisfied by Gibbs measures relative to any shift-invariant and absolutely summable
potential; cf. [Geo]. Nonetheless, it is stricter than the finite energy condition that
allows cn to be zero, rigorously defined on page 27.

Now, we are ready to state our first result.
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Theorem 3.3 There does not exist any probability measure µ on {0, 1}Z2 satisfy-
ing all of the following conditions:

i) µ is positively associated;

ii) µ satisfies the bounded energy condition;

iii) there exists a single infinite 0cluster µ-almost surely;

iv) there exists at most one infinite 1∗cluster µ-almost surely;

v) there exists a constant c > 0 such that µ(x
1∗←→∞) ≥ c for all x ∈ Z2.

Note that conditions iv) and v) imply that with µ-probability at least c, as defined
in v), a sole infinite 1∗cluster exists. The occurrence of finite clusters of both types
is not precluded by any condition of Theorem 3.3. Moreover, the conditions are
modelled on the ones of Sheffield’s theorem [Sheff, Theorem 9.3.1], which states
that an infinite 1cluster and an infinite 0cluster cannot coexist if the underlying
measure satisfies a kind of translation invariance (amongst others).

Proving Theorem 3.3

In the remainder of this subsection, we present a proof by contradiction of this
theorem. To this end, let µ be a probability measure on {0, 1}Z2 satisfying all
assumptions i)-v) of Theorem 3.3.

We derive the contradiction in the following way: Let ∆ b Z2 be an arbitrary
(but fixed) set containing the origin. We show that with probability at least ε > 0,
the infinite 1∗cluster contains a 1∗circuit around ∆. Moreover, ε does not depend
on the choice of ∆. So, if ∆ b Z2 is large enough such that µ(∆

0←→∞) ≥ 1−ε/2,
then the impossible event “there exists a 1∗circuit around ∆ as well as an infinite
0path starts in ∆” has probability at least ε/2, which is a contradiction. Thus, an
infinite 1∗cluster prohibits the existence of an infinite 0cluster.

But how do we deduce the existence of ε? Our strategy consists of the following
three steps: First, if x, y ∈ Z2 are sufficiently far away from ∆ the event that there
exists a 1∗path from x to y in ∆c occurs with probability at least c2/2, where c
is as defined in property v). Second, a 1∗path from x to y in ∆c could be either
clockwise or counterclockwise coiled around the origin and the existence of both
types implies the existence of a 1∗circuit around ∆. Third, there exist x, y ∈ ∆c

such that with probability at least c2/4, a clockwise 1∗path from x to y in ∆c

exists and with probability at least c2/4 a counterclockwise 1∗path from x to y in
∆c exists. This, together with the positive association and step two, implies that
with probability at least c4/24 = ε, a 1∗circuit around ∆ exists.

For the first step, we introduce a special ∗circuit, which consists of a 0path and
a 1∗path that are connected to form a ∗circuit.
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Definition 3.4 (mixed 1∗
0 circuit) Let n,m ≥ 0 and (x1, . . . , xn) be a 1∗path

and (y1, . . . , ym) be a 0path with xn
∗∼ y1 and x1

∗∼ ym. We call the composition
(x1, . . . , xn, y1, . . . , ym) a mixed 1∗

0 circuit.

Note that a 1∗circuit or a 0circuit is also a mixed 1∗
0 circuit.

The purpose of this definition is the following: Let ∆ ⊂ Γ b Z2 and x, y ∈ Γc.
The existence of both a mixed 1∗

0 circuit in Γ around ∆ and a 1∗path from x to y
implies that one can also find a 1∗path from x to y not hitting ∆. Therefore, such
a circuit “shields” ∆ from “outside” ∗paths.

The next definition simplifies the proof of the following lemma and, therefore,
will be stated right here, even though it is not really required till the next subsec-
tion.

Definition 3.5 (infinite boundary) Let us consider the event that a sole in-
finite 0cluster and a sole infinite 1∗cluster coexist. Then fill the finite holes of
the infinite 1∗cluster, i.e., flip the spin of all 0clusters ∗encircled by the infinite
1∗cluster. Let each node of this filled infinite 1∗cluster be the centre of a square
with side length 3/2. Given all this, the infinite boundary, which is illustrated in
Figure 3.1, is defined as the topological boundary of the union of these squares.

Note that the infinite boundary is always well-defined, since all nodes ∗adjacent
to the infinite 1∗cluster are contained in the infinite 0cluster. Furthermore, by def-
inition, it indicates which side contains the infinite 0cluster. We usually interpret
the infinite boundary as a curve.

Lemma 3.6 (Shield lemma) For all ∆ b Z
2, µ-almost surely there exists a

mixed 1∗
0 circuit around ∆.

Proof: It is sufficient to take ∆ = {−d, . . . , d}2. We distinguish three cases.
First, we assume that all 1∗clusters meeting ∂∗∆ are finite. Then there exists

a 0circuit around ∆, which, in particular, is a mixed 1∗
0 circuit in ∆c.

The second case “only finite 0clusters meet ∂∗∆” is solved analogously.
Now, we turn our attention to the remaining case that the infinite 0cluster and

the infinite 1∗cluster (exist and) meet ∂∗∆. Thus, the infinite boundary (exists
and) splits Z2 into two sets S0 and S1∗ such that the one side S0 consists of the
infinite 0cluster plus all its finite ∗holes, i.e., ∗clusters encircled by the infinite
0cluster, and the other side S1∗ consists of the infinite 1∗cluster plus all its finite
holes, i.e., clusters encircled by the infinite 1∗cluster.

Because of the case assumption the infinite boundary hits ∂∗∆. Let x, x′ ∈
∂∗∆ ∩ S0 and y, y′ ∈ ∂∗∆ ∩ S1∗ be the nodes such that the infinite boundary first
enters ∂∗∆ between x and y and last exits ∂∗∆ between x′ and y′. In particular, x
is adjacent to y, x′ is adjacent to y′, the nodes x, x′ belong to the infinite 0cluster,
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Figure 3.1: Black (resp. white) balls represent the nodes equipped with spins of
value one (resp. zero). The horizontal, vertical, and diagonal lines from ball to
ball represent the ∗edges. The infinite boundary is illustrated by the green curve.

and y, y′ belong to the infinite 1∗cluster. Since all 1∗clusters in S0 are finite and
encircled by the infinite 0cluster, which contains x and x′, one can find a 0path
from x to x′ in S0 ∩∆c. Likewise, there exists a 1∗path from y to y′ in S1∗ ∩∆c.
The 0path and the 1∗path are the two ingredients of a mixed 1∗

0 circuit around ∆.
Therefore, we have shown the existence in the third case.

The lemma follows from the fact that almost surely one of these three cases
occurs. �

Notice that only conditions iii) and iv) were used in this proof. The next lemma,
which completes our first step towards proving Theorem 3.3, relies on properties
i) and v) in combination with the shield lemma.

Lemma 3.7 For all ∆ b Z2, there exists a set Γ b Z2 such that for all x, y ∈ Γc,
the event “x and y are 1∗connected in ∆c” occurs with probability at least c2/2.

Proof: Fix an arbitrary ∆ b Z2. Due to the shield lemma, we can choose Γ b Z2

such that with probability at least 1−c2/2, a mixed 1∗
0 circuit around ∆ in Γ exists.

Let x, y ∈ Γc. The uniqueness of the infinite 1∗cluster yields the existence of a
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1∗path from x to y as soon as x and y belong to this infinite 1∗cluster. Properties
i) and v) imply that the latter event has probability at least c2. Moreover, by the
choice of Γ, we can conclude that with probability at least c2/2, there exists in
addition a mixed 1∗

0 circuit around ∆ in Γ. Under these conditions, a 1∗path from
x to y in ∆c can be found. �

In our next step, the ∗paths from x to y off ∆ b Z2 are distinguished into two
classes according to whether they run clockwise or counterclockwise around the
origin. If ∗paths of both types exist, one can also find a ∗circuit around ∆. To this
end, we introduce the winding number around the origin, which for convenience
will only be defined for polygons, i.e., for piecewise linear continuous curves in R2.

Definition 3.8 (winding number) Let n ≥ 0 be a natural number and let P :
[0, 1] → R

2 \ [−n, n]2 be a polygon. We identify R2 with C and rewrite P (t) in
polar form P (t) = r(t)eiθ(t), where θ(.) is a continuous function. The winding
number

W (P ) :=
θ(1)− θ(0)

2π

describes the fractional turns of the polygon around the origin and, therefore,
around the box [−n, n]2.

We refer to [Bear] for an alternative definition and elementary properties.
Now, we are ready to define the two classes.

Definition 3.9 (clockwise and counterclockwise polygons) Let x and y be
two nodes and let P : [0, 1] → R

2 \ [−n, n]2 be a polygon from P (0) = x to
P (1) = y. When W (P ) is negative P is called a clockwise polygon in ([−n, n]2)c.
When W (P ) is positive P is called a counterclockwise polygon in ([−n, n]2)c.

The next lemma is a special case of the “Topological Lemma” in [GKR]. It says
that a ∗circuit exists if one can find a clockwise ∗path as well as a counterclockwise
∗path. Therefore, it concludes our second step. Obviously, ∗paths can be thought
of as polygons.

Lemma 3.10 Let ∆ := {−n, . . . , n}2 and x, y ∈ ∆c. We assume that there exist
a clockwise ∗path P from x to y in ∆c and a counterclockwise ∗path Q from x to
y in ∆c. Then a ∗circuit around ∆ in P ∪Q exists.

Proof: We consider the closed polygon C(t) := P (2t)1t<1/2 + Q(2 − 2t)1t≥1/2.
Standard properties of the winding number yield

W (C) = W (P )−W (Q) ,
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which is negative, because the first summand is negative and the second one is
positive. So the origin belongs to a bounded component of R2 \C. Consequently,
there exists a ∗circuit around ∆ that walks along a section of P in the direction
of y and then a section of Q backwards. �

The aim of our third step is to verify the existence of two nodes x, y such that
the probabilities of the events “there exists a clockwise 1∗path from x to y around
∆”, in short x 1∗y y around ∆, and “there exists a counterclockwise 1∗path from x

to y around ∆”, in short x 1∗xy around ∆, are bounded from below by a strictly
positive constant, which does not depend on ∆.

The phrase “x is on the left side of ∆” means that one can find d ∈ N such
that x ∈ {(i, j) : i ≤ −d} and ∆ ⊂ [−d, d]2 hold. Accordingly, “a node is on the
right side of ∆” is used.

First we pursue the following idea: A 1∗path, that starts on the left side
and ends on the right side of the origin, becomes a clockwise polygon when it is
sufficiently shifted upwards.

The existential quantifier of the next lemma could be replaced with a univer-
sal quantifier, but stating the weaker version simplifies the modification for the
theorem in the next subsection.

Lemma 3.11 For all Γ b Z2, there exist a node x on the left side and a node y
on the right side of Γ such that

∃h > 0 : µ(xh
1∗y yh around Γ) ≥ c2/4 (3.1)

∃h < 0 : µ(xh
1∗xyh around Γ) ≥ c2/4 , (3.2)

where xh := x+ (0, h) and yh := y + (0, h).

Proof: Since the proofs of (3.1) and (3.2) are obviously similar, we only verify
(3.1). The idea is more or less the same as in Lemma 3.7.

Fix an arbitrary Γ b Z
2 and choose m ∈ N such that Γ ⊂ [−m,m]2. Let

x := (−m− 1, 0) and y := (m+ 1, 0), which, therefore, are on the left respectively
on the right side of Γ, and assume for contradiction that

∀h > 0 : µ(xh
1∗y yh around Γ) < c2/4 . (3.3)

Let P (h) be the shortest path from xh to yh, i.e.,

P (h) := ((−m− 1, h), (−m,h), . . . , (m,h), (m+ 1, h)) .
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The bounded energy condition ensures the existence of a constant δ > 0 depending
on m such that with probability at least δ, for all h > 0, all spins of P (h) take the
value 1. In particular, for all h > m

µ
(
xh

1∗y yh around Γ
)
≥ δ . (3.4)

Let δ′ := δc2/4 and let Λ b Z2 be such that Λ contains {−m, . . . ,m}2 and

µ
(

Λ
0←→∞

)
> 1− δ′/2 . (3.5)

Due to Lemma 3.7, there exists a square {−l, . . . , l}2 including Λ such that for all
h > l

µ
(
xh

1∗←→ yh around Λ
)
≥ c2/2 .

This, together with

{xh
1∗y yh around Λ} ∪ {xh

1∗xyh around Λ} = {xh
1∗←→ yh around Λ} ,

implies that for all h > l

max
{
µ
(
xh

1∗y yh around Λ
)
, µ
(
xh

1∗xyh around Λ
)}
≥ c2/4 . (3.6)

Additionally, considering (3.3) and

∀h > l : {xh
1∗y yh around Λ} ⊂ {xh

1∗y yh around Γ}

yields that for all h > l,

µ
(
xh

1∗y yh around Λ)
)
< c2/4 .

Hence, (3.6) implies that for all h > l

µ(xh
1∗xyh around Λ) ≥ c2/4 ,

which, together with (3.4) and the positive association, yields

µ
(
xl+1

1∗xyl+1 around Λ, xl+1
1∗y yl+1 around Λ

)
≥ δc2/4 = δ′ .

Given this event, Lemma 3.10 ensures the existence of a 1∗circuit around Λ, a
contradiction to (3.5). �
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Notice that the proof of this lemma relies on all five conditions of µ, but, for-
tunately, the bounded energy condition is used only once to verify the existence
of a constant δ > 0 such that (3.4) holds. Keeping this in mind will help us by
proving the result of the next subsection, where µ′ does not satisfy the bounded
energy condition. Before we turn towards this, we obtain Theorem 3.3 by applying
Lemmas 3.7, 3.10, and 3.11.

Proof of Theorem 3.3: Let ∆ b Z2 be large enough so that

µ(∆
0←→∞) ≥ 1− c4/25 . (3.7)

Lemma 3.7 allows us to choose a square {−m, . . . ,m}2 =: Γ with ∆ ⊂ Γ such
that with probability at least c2/2, for any two distinct points x, y ∈ Γc, x and
y are 1∗connected in ∆c. This, together with {xh

1∗y yh around ∆} ∪ {xh
1∗x

yh around ∆} = {xh
1∗←→ yh in ∆c}, implies that

max
{
µ(xh

1∗y yh around ∆), µ(xh
1∗xyh around ∆)

}
≥ c2/4 (3.8)

for all h ∈ Z. Applying Lemma 3.11 gives the existence of nodes x on the left side
and y on the right side of Γ such that

∃h > 0 : µ(xh
1∗y yh around ∆) ≥ c2/4 (3.9)

∃h < 0 : µ(xh
1∗xyh around ∆) ≥ c2/4 . (3.10)

The inequalities (3.8), (3.9), and (3.10) yield that there exists a k ∈ Z such
that

µ
(
xk+1

1∗y yk+1 around ∆
)
, µ
(
xk

1∗xyk around ∆
)
≥ c2/4 . (3.11)

Moreover, since {xk+1
1∗y yk+1 around ∆} and {xk

1∗xyk around ∆} are increasing
events, we can conclude that

µ
(
xk+1

1∗y yk+1 around ∆, xk
1∗xyk around ∆

)
≥ c4/16 .

Thus, because of Lemma 3.10 a 1∗circuit around ∆ occurs with probability at least
c4/16, a contradiction to (3.7). So, the measure µ cannot exist. �

3.1.2 Exploiting translation invariance

This subsection gives an alternative to Zhang’s argument that dispenses with the
assumption of invariance under reflection and rotation.
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Both ways to verify non-coexistence – Zhang’s argument and our alternative
– are based upon the uniqueness of an infinite 0cluster and an infinite 1∗cluster,
which can be derived by applying the Burton-Keane uniqueness theorem stated
later on in this subsection. Our approach to the non-coexistence is (more or less)
a version of Theorem 3.3 similar to Sheffield’s theorem [Sheff, Theorem 9.3.1]. In
order to minimise the assumptions, in this version the conditions ii) and v) of
Theorem 3.3 are replaced by a kind of translation invariance.

The following theorem requires the infinite boundary as defined on page 20.

Theorem 3.12 There does not exist any probability measure µ′ on {0, 1}Z2 which
possesses all of the following properties:

i’) µ′ is positively associated;

ii’) there exists a single infinite 0cluster µ′-almost surely;

iii’) there exists at most one infinite 1∗cluster µ′-almost surely;

iv’) the occurrence of an infinite 1∗cluster has positive probability;

v’) the distribution of the infinite boundary – conditioned on its existence – is
translation-invariant.

This theorem is modelled on Sheffield’s theorem [Sheff, Theorem 9.3.1], which
proves the non-coexistence of an infinite 0cluster and an infinite 1cluster. Probably
Sheffield’s proof would be strong enough to verify Theorem 3.12; but since it is a
bit involved, we prefer to alter the proof of Theorem 3.3, which can be done with
only one small modification.

Proof of Theorem 3.12: The strategy is to show that the conditions i) and iii)-
v) of Theorem 3.3 are satisfied and that a sufficiently close analogon to equation
(3.4), which is the only point where the bounded energy condition enters the proof,
can be verified.

The conditions i),iii) and iv) of Theorem 3.3 are equal to the first three condi-
tions of Theorem 3.12.

Condition v) is a consequence of conditions ii’), iii’), iv’) and v’): Since the
set of edges is countably infinite and the infinite boundary exists with positive
probability, there exists an edge that intersects the infinite boundary with positive
probability η. Let a and b be the nodes connected by this edge and assume without
loss of generality that with probability η/2, the infinite 1∗cluster contains a and the
infinite 0cluster contains b. Because the infinite boundary is translation-invariant,
shifting does not change the probability and, consequently, for all z ∈ Z2

µ′(z
1∗←→∞) ≥ η/2 > 0 .
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Next, we verify a sufficiently close analogue to equation (3.4) with the notation
of the proof of Lemma 3.11:

Denote by ζ the probability that an infinite 1∗cluster exists, i.e.,

ζ := µ′(Z2 1∗←→∞) > 0 .

Let Ξ b Z2 be large enough so that with probability at least 3ζ/4, the infinite
boundary exists and hits Ξ. We recall that ∆ was defined in the proof of Lemma
3.11 as an arbitrary (but fixed) finite set of Z2. Take two translates Ξ′ and Ξ′′ of
Ξ such that every node of Ξ′ is on the left side of ∆ and every node of Ξ′′ is on
the right side of ∆.

By subadditivity of µ′, the infinite boundary hits both sets Ξ′ and Ξ′′ with
probability at least ζ/2. Moreover, one can find two pairs x, x′ and y, y′ of adjacent
sites in Ξ′ resp. Ξ′′ such that the event{

x
1∗←→∞, x′ 0←→∞, y 1∗←→∞, y′ 0←→∞

}
occurs with positive probability ε, say.

Take a square [−i, i]2 with Ξ′ ∪ Ξ′′ ⊂ [−i, i]2 such that with probability at
least δ := ε/2, the part of the boundary that starts between x and x′ and ends
between y and y′ exists and is contained in [−i, i]2. Since the distribution of the
infinite boundary is translation-invariant, for all h ∈ Z, the event that the part of
the infinite boundary starting between xh and x′h and ending between yh and y′h
exists and is contained in [−i, i]× [−i+h, i+h] occurs with probability at least δ,
where xh is defined by x+ (0, h). Moreover, given this event, one can in fact find
a 1∗path from xh to yh in [−i, i]× [−i+ h, i+ h]. This, obviously, implies that for
all h > 2 max{i,m}

µ
(
xh

1∗y yh around ∆
)
≥ δ ,

which is sufficiently close to (3.4). �

An important building block for the main result of this subsection, namely the
next corollary, is the Burton-Keane uniqueness theorem. One of its assumptions
is the finite energy condition, which was discovered by Newman and Schulman in
[NewS], is rigorously defined below, and roughly says that every local configuration
is compatible with anything that happens elsewhere.

Definition 3.13 (finite energy) A probability measure µ on {0, 1}Z2 satisfies
the finite energy condition if for every finite set ∆ ⊂ Z2,

µ(η on ∆|ξ off ∆) > 0

for all η ∈ {0, 1}∆ and µ-a.e. ξ ∈ {0, 1}∆c.
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Now we are ready to state the Burton-Keane uniqueness theorem.

Theorem 3.14 (Burton-Keane uniqueness theorem) Let P be a probability
measure on (Ω,F). If P is invariant under translations and has finite energy, then
there exists at most one infinite 0cluster, infinite 1cluster, infinite 0∗cluster, and
infinite 1∗cluster.

For the elegant proof we refer the interested reader to the original paper [BK],
which is a must read for anyone interested in random geometry.

The Burton-Keane uniqueness theorem, together with Theorem 3.12, implies
our second result, namely the next corollary, which corresponds to the theorem of
Gandolfi, Keane and Russo. Instead of any kind of invariance under reflections or
rotations, it takes advantage of the finite energy condition.

Corollary 3.15 Let ρ be an ergodic and positively associated probability measure
on {0, 1}Z2 that satisfies the finite energy condition. Then, the coexistence of an
infinite 1∗cluster and an infinite 0cluster has ρ-probability zero.

Proof: Because of the Burton-Keane uniqueness theorem at most one infinite
1∗cluster as well as at most one infinite 0cluster exist. We assume for contradic-
tion that both of them coexist with strictly positive probability. The ergodicity
yields that this event occurs with ρ-probability one. So, all conditions of Theorem
3.12 are satisfied and the contradiction is shown. �

Moreover, the proofs and definitions can be adapted to generalise this result to
a wide range of underlying graphs.

Remark 3.16 Let (G,G∗) = ((N,E), (N,E∗)) be a matching pair of amenable
and transitive graphs, in the sense of [K]. Let ρ be an ergodic and positively
associated probability measure on {0, 1}N that satisfies the finite energy condition.
Then, the coexistence of an infinite 1∗cluster with respect to G∗ and an infinite
0cluster with respect to G has ρ-probability zero.

3.1.3 A Single Infinite 1∗Cluster Has Unbounded Width

This section shows that the bounded energy condition and the occurrence of an
infinite 1∗cluster is sufficient for the existence of infinitely many disjoint infinite
1∗paths.

The author hopes that this could perhaps lead to a similar statement as Corol-
lary 3.15 with a weakened version of positive association. To this end, one would
“only” have to show that the number of disjoint 1∗paths, starting in the subset
∆ b Z2, is proportional to the cardinality of ∆, in order to reproduce the argument
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of the Burton-Keane uniqueness theorem. Given the limited imagination of the
author, this seems to be impossible. But we will discuss another – more promising
– ansatz after the following statement of the subsection’s main result.

Theorem 3.17 Let ν be a probability measure on {0, 1}Z2 satisfying the bounded
energy condition. Then, ν-almost surely on the event that an infinite 1∗cluster
exists, one can find infinitely many disjoint infinite 1∗paths. Analogously, the ex-
istence of an infinite 0cluster guarantees the occurrence of infinitely many disjoint
infinite 0paths.

Before proving this theorem, let us first make two remarks.
First, if we assume – in addition to the bounded energy – the coexistence and

uniqueness of the infinite 0cluster and the infinite 1∗cluster, then Theorem 3.17
even yields the existence of infinitely many two-sided infinite 1∗paths, see page
15 for the definition. These two-sided infinite 1∗paths exhibit a natural order.
The first one P1 is contained in the boundary of the infinite 0cluster. The second
of these two-sided infinite 1∗paths is contained in the boundary of the union of
P1, the infinite 0cluster, and all finite 0clusters adjacent to P1. Since there exist
infinitely many 1∗paths, this procedure can be continued indefinitely. So, the
infinite 1∗cluster looks like wall bars. An analogous statement holds for the infinite
0cluster and the lattice splits into one 1∗wall bar and one 0wall bar.

Second, Theorem 3.17 could also be useful as a first step towards a proof by
contradiction of an analogue of Corollary 3.15 that weakens or alters the condition
of positive association. If the infinite boundary is not too rugged and both the
bounded energy condition and ergodicity hold, then it seems to be counterintuitive
that unique infinite clusters of both types coexist. For, on the one hand, the infinite
0cluster is not allowed to intersect the intermediate space between the first and
the nth two-sided infinite 1∗path as above, which has infinite “length”, “width”
at least n, and is not too rugged. On the other hand, ergodicity suggests that
the infinite 0cluster should be evenly spread over Z2 and, therefore, fray out the
infinite boundary.

This intuition can be made rigorous under the – absurd – further assumption
of negative association, which means that any two increasing events are negatively
correlated. Namely, subdivide the lattice into squares of the same size such that
these squares can be interpreted as nodes of a new lattice. Call two squares
adjacent if their distance is one. Furthermore, call a square occupied if it is met
by the infinite 0cluster; otherwise it is called vacant. Given the coexistence, the size
of the squares can be chosen so large that by exploiting the negative association, a
standard path counting argument shows the finiteness of all vacant square-clusters.
Let N be a number that exceeds the diameter of the squares. A two-sided infinite
square-path is formed by the squares that are hit by the N +1th two-sided infinite
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1∗path. By choice of N , these squares are contained in the random set of nodes
between the first and the 2N+1th two-sided infinite 1∗path. Therefore, all of them
are necessarily vacant, which is impossible because all clusters of vacant squares
are finite.

Proving Theorem 3.17

In the rest of this subsection we prove Theorem 3.17. To this end, from now on let
ν be a probability measure on {0, 1}Z2 satisfying the bounded energy condition.

Our aim is to show that given the existence of an infinite 1∗cluster, one can
find infinitely many infinite 1∗paths. To this end, we first have to check the
measurability of the latter event, where the corresponding σ-algebra is generated
by the cylinder sets.

Lemma 3.18 The number A of infinite 1∗paths is tail measurable.

Proof: The statement is a direct consequence of the identity

{A ≥ n} =
⋃
l∈N

⋂
k≥l

⋃
m≥k

⋂
i≥m

{Ak,i ≥ n} ,

which holds for all n ∈ N. Here, Ak,i is the maximal number of disjoint 1∗paths
in {−i, . . . , i}2 \ {−k, . . . , k}2 from ∂∗{−k, . . . , k}2 to ∂∗{−i+ 1, . . . , i− 1}2. �

Next, we show that configurations with a given number of disjoint infinite
1∗paths exhibit a necklet with this number of 1pearls around any finite set, as is
defined now.

Definition 3.19 (necklet with N 1pearls around Γ) Let N ∈ N, σ ∈ {0, 1}Z2,
and Γ b Z2. We call C a necklet with N 1pearls around Γ with respect to σ if C
is a circuit around Γ with |C ∩ σ−1(1)| = N .

The proof of the following existence statement is more or less a direct conse-
quence of the well-known max-flow min-cut theorem of Ford and Fulkerson; cf.
[FF]. Since this is the only point where the max-flow min-cut theorem (and its
notation) is needed, we use the original notation of [FF] without defining it.

To avoid misunderstandings let us recall that an infinite ∗path is defined as
an infinite sequence whereas a two-sided infinite ∗path requires a two-way infinite
sequence.

Lemma 3.20 (Bottleneck lemma) Let σ ∈ {0, 1}Z2 be a configuration that pos-
sesses exactly N disjoint infinite 1∗paths. Then, for all Γ b Z2, there exists a
necklet with N 1pearls around Γ.
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Proof: Fix an arbitrary Γ b Z2 and a configuration σ such that one can find
exactly N disjoint infinite 1∗paths with respect to σ. Let the set S of sources be
the ∗boundary of a square {−s, . . . , s}2 large enough so that it contains Γ and N
disjoint infinite 1∗paths starting in this square. Furthermore, the set T of sinks is
defined as the ∗boundary of a square {−t, . . . , t}2 large enough so that S ⊂ intT
and there exist N disjoint 1∗paths from S to T . The set of intermediate nodes R
is intT \ (S ∪ intS). An undirected arc {x, y} connects x and y if and only if these
two nodes belong to R∪S ∪T and are ∗adjacent. We define the capacity function
c(., .) of an arc {x, y} as

c(x, y) =

{
1 if x, y ⊂ σ−1(1),

0 otherwise.

Consequently, since there are N disjoint 1∗paths from S to T , the maximal flow
value of this network is N . Applying the max-flow min-cut theorem, see [FF, page
11 plus section 7 and 10], shows the existence of a cut C separating S from T ,
whose cut capacity is N .

Let B be the set of nodes that are connected to S by a ∗path not intersecting
an arc of the cut C. The union of B and all its finite holes is a simple ∗connected
set that contains S. Therefore, erasing all loops of this union’s ∗boundary leads
to a uniquely determined circuit around S, denoted by Bo. By definition of B,
the set Bi of all nodes in the interior of Bo ∗adjacent to Bo form a circuit around
intS. Furthermore, a node of Bi and a node of Bo ∗adjacent to each other are also
connected by an arc of the cut C.

Now we are ready to construct the necklet: First, take the set D of nodes of
Bi ∩ σ−1(0) and combine it with the set E of nodes in Bi ∩ σ−1(1) ∗adjacent to
Bo ∩ σ−1(1). Since N disjoint 1∗paths connect S to T and the capacity of C is
N , the set E consists of exactly N nodes. Nonetheless, there may be more than
N nodes equipped with 1spins in Bi, which is equivalent to the case that D ∪ E
is not a circuit. Fortunately, we can circumvent these nodes using 0paths in Bo.
This is the case because by definition of E, the set F of nodes in Bo ∗adjacent to
Bi \ (D ∪E) is contained in σ−1(0). A moment’s thought reveals that D ∪E ∪ F
is a necklet with N 1pearls around Γ with respect to σ. �

Now, let us gain some insight into the structure of infinite 1∗clusters under
fairly general conditions on the measure.

Proof of Theorem 3.17: Since ({0, 1},P({0, 1})) is a perfect space, Theorem
3.3 of [Sok] implies that ν is a Gibbs measure for a suitable specification (γΛ)ΛbZ2 .
Since ν satisfies the bounded energy condition, there exist constants cn > 0 such
that γΛ(η|ξ) ≥ cn for ν-almost all configurations ξ ∈ {0, 1}Z2 , whenever |Λ| = n
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and η is a local configuration on Λ. Applying the extremal decomposition [Geo,
Theorem (7.26)] yields that the bounded energy condition holds for Pν-almost all
extremal Gibbs measure specified by (γΛ)ΛbZ2 , where Pν is the unique weight on
the set of extremal Gibbs measure with barycentre ν. So, we may assume without
loss of generality that ν is trivial on the tail σ-field.

We further assume without loss of generality ν(Z2 1∗←→∞) > 0. The triviality
of ν on the tail σ-field then implies ν(Z2 1∗←→∞) = 1. Consequently, we just have
to verify that infinitely many disjoint infinite 1∗paths ν-almost surely exist. The
proof of the other statement is similar.

By assumption, the number A of infinite 1∗paths is at least one ν-almost surely.
We will show that ν(A = ∞) = 1 or, equivalently, that ν(A = N) = 0 for all
N ≥ 1.

Suppose the contrary. Tail triviality, together with Lemma 3.18, implies the
existence of some N ≥ 1 with ν(A = N) = 1. Because ν satisfies the bounded
energy condition we can choose an ε > 0 such that

ν

(
η on S

∣∣∣∣ξ off S
)
≥ ε (3.12)

for all S ⊂ Z2 with |S| ≤ 5N , η ∈ {0}S and for ν-almost all ξ ∈ {0, 1}Sc . Let
Γ b Z2 be large enough so that

ν(Γ
1∗←→∞) > 1− ε/4 . (3.13)

The bottleneck lemma ensures the ν-almost-sure existence of a necklet with N
1pearls around Γ ∪ ∂∗Γ. Let ∆ b Z2 be large enough so that with probability at
least 1− ε/2, there exists a 0necklet with N 1pearls around Γ ∪ ∂∗Γ in ∆.

Denote by C the maximal 0necklet with N 1pearls around Γ ∪ ∂∗Γ in ∆; if it
does not exist C is ∅. Hence, intC is a well-defined random set, which is deter-
mined from outside. Let S be the set of nodes in intC ∗adjacent to a 1pearl of C,
under the condition C 6= ∅. Otherwise S is ∅. Once again S is a well-defined ran-
dom set, which is determined from outside of intC and |S| ≤ 5N always holds. If
C 6= ∅ and all spins of S take the value zero, a 0circuit around Γ exists. Hence, the
inequality (3.12) yields that the existence of a 0circuit around Γ in ∆ has proba-
bility at least (1−ε/2)ε, a contradiction to (3.13). Consequently, ν(A ∈ N) = 0. �
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3.2 Non-Existence of Infinite Clusters

First of all, let us introduce a new definition exclusively for this section. Given a
distance R ∈ R+, we say a probability measure P on {0, 1}Z2 is R-independent if
the spin values of two regions at least R apart are P-independent of each other.

This section suggests that the conditions R-independence, positive association,
ergodicity, and large density µ(p~0 = 1) are not sufficient for the occurrence of an
infinite 1∗cluster. More precisely, we will construct a probability measure µ on
{0, 1}Z2 , whose density µ(p~0 = 1) is arbitrary close to one, that also satisfies all
other conditions, and which exhibits no infinite cluster µ-almost surely. On a first
glance, this seems to be contrary to the findings of Liggett et alii in [LSS]. But
in fact it only stresses one important aspect in [LSS], namely that the distance
R for the R-independence was fixed. In our example, however, R depends on the
density µ(p~0 = 1).

The amenability of the underlying graph plays a crucial role for our counterex-
ample. By dropping this condition Häggström was able to show that a sufficiently
large density ensures the existence of an infinite 1cluster, see [Hä96]. More pre-
cisely, he considered regular trees and automorphism invariant probability mea-
sures.

This measure is based upon the Bernoulli Percolation with density 1/2 on the
triangular lattice graph (Z2,�), where � is the set of horizontal and vertical edges
with length one and the diagonal edges with length

√
2 looking like a slash, i.e.,

� := {{x, y} ∈ Z2 × Z2 : |x− y| = 1 or x+ (1, 1) = y} .

Note that the graph (Z2,�) is its own matching pair. To indicate the underly-
ing graph we add � in front of the corresponding graph theoretical objects, e.g.,
�adjacent, �circuit or 1�circuit. The existence of an infinite cluster on (Z2,�)

is denoted by {Z2 1�←→∞}.
Now we are ready to construct the above described probability measure by

filling certain 1�circuits with 1spins.

Theorem 3.21 For all ε ∈]0, 1[, there exists an Rε-independent, positively asso-
ciated, and ergodic probability measure µε on {0, 1}Z

2 so that with µε-probability at
least 1− ε, each node is equipped with a 1spin, i.e.,

µε({σ ∈ {0, 1}Z
2

: σ(~0) = 1}) ≥ 1− ε ,

and, nonetheless, an infinite 1�cluster does not occur µε-almost surely, i.e.,

µε(Z
2 1�←→∞) = 0 .
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Proof: Our proof starts with some well-known facts of the Bernoulli measure with
density p on {0, 1}Z2 , denoted by φp. By definition, φp is translation invariant and,
moreover, by Kolmogorov’s 0-1-law, the tail events have probability one or zero.
It is the case that for each translation invariant event A, there exists a tail event
B with φp(A \ B ∪ B \ A) = 0, which can be proved by an approximation of A
by local events. This fact, together with the tail triviality, verifies that translation
invariant events have φp-probability one or zero and, therefore, the ergodicity of
φp follows. It is also well-known that φp is also positively associated, which can be
proved similar to the positive association of extremal Widom-Rowlinson measures
in Chapter 4.

Due to Remark 3.16, φ1/2 exhibits no infinite 0�cluster or infinite 1�cluster,
in short

φ1/2

(
{Z2 1�←→∞} ∪ {Z2 0�←→∞}

)
= 0 .

Consequently, for any δ ∈]0, 1[ there exists a square ∆ b Z2 with ~0 ∈ ∆ so that
with φ1/2-probability at least 1− δ, a 1�circuit around the origin in ∆ exists.

Next, we construct the measure µε based upon φ1/2. To this end, fix a square
∆ b Z2 with ~0 ∈ ∆ so large that with φ1/2-probability at least 1− ε, there exists
a 1�circuit around the origin in ∆. We denote the translation by trx and call m
the map from the space of configurations {0, 1}Z2 to {0, 1}Z2 that equips a node x
with spin value 1 if and only if there exists a 1�circuit around x in trx(∆), i.e., x
has spin value 1 or there exists a 1�circuit strictly around x in trx(∆). This leads
to the probability measure

µε := φ1/2 ◦m−1

with µε({σ ∈ {0, 1}Z
2

: σ(x) = 1}) ≥ 1− ε.
Let us check that µε satisfies the remaining required conditions. Because of the

inheritance of ergodicity the measure µε is ergodic. The positive association of µε
follows from the monotonicity of the map m, i.e., the event m−1(A) is increasing if
A is increasing. Furthermore, µε is Rε-independent with Rε = 2 maxy,z∈∆ |y−z|+2.
This is the case because the underlying measure is a Bernoulli measure and the
mapped configuration on a set Γ is independent of the underlying configuration in
{x ∈ Z2 : dist(x,Γ) > diam(∆)}, i.e., for ω ∈ {0, 1}Z2

m(ω)|Γ = m(σ)|Γ

for all σ ∈ {0, 1}Z2 with ω = σ on {x ∈ Z2 : dist(x,Γ) ≤ diam(∆)}.
Last, we have to deduce the µε-almost sure absence of an infinite 1�cluster.

To this end, we will show that each 0�circuit with respect to σ ∈ {0, 1}Z2 around
a finite subset Λ with ∆ ⊂ Λ is also a 0�circuit with respect to m(σ) around
Λ. For this it is sufficient to note that each 0�circuit[σ] C around ∆ is also a
0�circuit[m(σ)]. This is the case because each node x of C is 0�connected[σ]
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to the boundary of trx(∆c) by C, which is equivalent to the non-existence of a
1�circuit around x in trx(∆) and, therefore, x has also 0spin[m(σ)]. Furthermore,
recall that φ1/2-almost surely no infinite 1�cluster occurs. Consequently, each
Γ b Z2 is encircled by a 0�circuit around Γ φ1/2-almost surely, which, together
with the above observation, leads to the following fact: For each Γ b Z2, there
exists a 0�circuit around Γ µε-almost surely. This concludes the proof. �

We give an interesting alternative to the last paragraph of the previous proof,
which could be called the Chain Mail approach. Instead of showing that the
absence of an infinite 1�cluster is preserved by the map m, we can verify that
the occurrence of an infinite 1�cluster is preserved by the map m. More precisely,
given the occurrence of an infinite 1�cluster, there exists an infinite 1�path P and,
therefore, each node x of this infinite �path P is encircled by a 1�circuit in trx(∆)

on m−1({Z2 1�←→ ∞}). By construction, the largest of these 1�circuits intersect
or are �adjacent to each other and, therefore, form an infinite 1�connected set in⋃
y∈P try(∆).
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Chapter 4

Two-Dimensional Widom-Rowlinson
Lattice Model

For a better understanding of the following brief outline of this chapter, recall
that the Widom-Rowlinson measures will be defined as Gibbs-measures, i.e., as
probability measures on the whole configuration space equipped with a certain
local structure.

The first section defines the local structure by probability kernels, called the
finite Widom-Rowlinson measures. As the name already alludes, these kernels
are certain probability measures on the configuration space of a finite observa-
tion window under arbitrary allowed boundary conditions. Subsequent to this we
give reason but no rigorous proof for some well-known properties, like positive
association.

The second section is dedicated to define the (infinite) Widom-Rowlinson mea-
sures and state some of their well-known properties. More precisely, probabil-
ity measures on the whole (infinite) configuration space will be called (infinite)
Widom-Rowlinson measures if they exhibit the above local structure, i.e., the prob-
ability measure conditioned on the outside of any local observation window has
to coincide with a finite Widom-Rowlinson measure. Following the definition, we
state (but do not prove) some well-known properties of the Widom-Rowlinson
measures, which fall naturally into three parts. First the local structure immedi-
ately implies some well-known properties. Then further properties follow from the
Gibbs theory. Last we link the occurrence of different Widom-Rowlinson measures
to percolation, which is also well-known.

After establishing the Widom-Rowlinson model, we turn to define a related
well-known finite model in the third section, called the site-random-cluster model.
It can be thought of as a color blind version of the finite Widom-Rowlinson mea-
sure, where color blind means that it cannot detect the difference between −1 and
1. Another point of view is to interpret it as a perturbation in favour of many
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clusters of the finite Bernoulli node percolation.
The fourth section is dedicated to a new (but not surprising) sufficient condition

for the uniqueness of the Widom-Rowlinson measures.
Last we show a new sufficient condition for the existence of at most two ergodic

measures µ+
λ and µ−λ , which will be done in five subsections.

Nearly all statements of Section 4.1 to 4.3 except Lemma 4.19 and Corollary
4.20 could be universalised to higher dimensions of the underlying mosaic.

Although the results of this chapter do not really depend on the underlying
two-dimensional graph, the results of the next chapter do; they were developed for
the graphs (Z2,�) and (Z2,�), especially the latter one. Furthermore, we have
to combine the results of Chapter 4 and 5 to reduce the activity, above which the
ergodic Widom-Rowlinson measures are known. Consequently, there is no need
to state the results of this chapter with respect to a more general matching pair.
Especially since they easily can be carried over to other adequate matching pairs.

4.1 The Finite Widom-Rowlinson Model

Since one of our main concerns is to stay as elementary as possible, we only in-
troduce the Widom-Rowlinson model for the graph (Z2,�) and, thus, will be able
to use the notations of Chapter 2 and 3. We choose the graph (Z2,�) instead of
(Z2,�), because our main result Theorem 1.1 refers to this graph.

Let us begin with the measurable space (Ω,F) on which both the finite and
infinite Widom-Rowlinson measures will be defined. The sample space Ω is the set
of configurations {−1, 0, 1}Z2 , where, by misuse of notation, we often refer to the
−1spins (resp. 1spins) as −spins (resp. +spins). The σ-algebra F is generated by
the projections (px)x∈Z. But sometimes coarser σ-algebras FΛ that are generated
by (px)x∈Λ, Λ ⊂ Z2, we be needed and called local if the observation window is
finite, i.e., Λ b Z2. Extending this terminology, an event is called local if it is
measurable with respect to a local σ-algebra.

Now let us turn to the first task of this section: the definition of the finite
Widom-Rowlinson measures on (Z2,�). A configuration π ∈ {−1, 0, 1}Z2 is said
to be feasible if all ∗adjacent nodes x, y ∈ Z2 take spin values of the same algebraic
sign, i.e., they satisfy π(x)π(y) 6= −1. The set of feasible configurations is denoted
by F .

Definition 4.1 (finite Widom-Rowlinson measure) Let Λ b Z2, λ > 0 and
ω ∈ F . Then the probability kernel from (Ω,FΛc) to (Ω,F)

µω∗Λ,λ(σ) = 1{ω=σ off Λ}
1F (σ)

Zω∗
Λ,λ

∏
x∈Λ

λ|σ(x)|
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is called the finite Widom-Rowlinson measure for the observation window Λ, activ-
ity λ and boundary condition ω, where σ ∈ Ω is the locally modified configuration,
1{ω=σ off Λ} is short for

∏
x∈Λc 1{σ(x)}(ω(x)) and

Zω∗
Λ,λ =

∑
σ∈F :

ω=σ off Λ

∏
x∈Λ

λ|σ(x)|

is the normalising constant, often called the partition function.

Obviously, the three pure boundary conditions −(.) = −1, 0(.) = 0 and +(.) =
+1 are going to play an important role and, therefore, we denote the corresponding
finite Widom-Rowlinson measures by µ+∗

Λ,λ, µ
0∗
Λ,λ and µ−∗Λ,λ and call them the finite

Widom-Rowlinson measure with +boundary condition, with 0boundary condition
and with −boundary condition.

Let us adjust two definitions of the first chapter to the new setting.

Definition 4.2 (increasing events) An event E ∈ F is called increasing, if
σ ∈ E and π ≥ σ (pointwise) implies π ∈ E.

Note that for all nodes x ∈ Z2 and i ∈ {−1, 0, 1} the event {ω ∈ Ω : ω(x) ≥ i} is
local and increasing and, therefore, the σ-algebra F is also generated by the set of
local increasing events, which is closed under intersections.

Based upon the previous definition, we can redefine the “positive association”
property.

Definition 4.3 (positively associated) Let µ be a probability measure on (Ω,F)
and ∆ ⊂ Z2. We say µ is positively associated if for all increasing sets A,B ∈ F

µ(A ∩B) ≥ µ(A)µ(B) .

The next definition is crucial for comparing probability measures, which is more
or less the content of this chapter.

Definition 4.4 (stochastically dominated) Let µ and ν be probability mea-
sures on (Ω,F). We say µ stochastically dominates ν if for all increasing sets
A ∈ F

ν(A) ≤ µ(A) .

Note that two probability measures coincide if and only if they stochastically
dominate each other.

A closely related idea is the coupling of two measures.
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Definition 4.5 (coupling) Let X and Y be two Ω-valued random variables, µ
and µ′ their distributions and P a probability measure on Ω × Ω. We say P is a
coupling of X and Y or of µ and µ′ if

P({(ω, ω′) : ω ∈ .}) = µ(.)

P({(ω, ω′) : ω′ ∈ .}) = µ′(.) ,

i.e., P has marginals µ and µ′.

The stochastic domination µ ≤ µ′ is in fact equivalent to the existence of a
coupling P of µ and µ′, whose first coordinate is P-almost surely smaller than its
second. This characterisation is called Strassen’s Theorem and the fact that the
existence of such a coupling can be derived from µ ≤ µ′ is too involved to sketch
it here in full generality, see [Li, page 72] for a proof.

Now we are ready to list some well-known properties of the finite Widom-
Rowlinson measures.

Lemma 4.6 The finite Widom-Rowlinson measures satisfy the following condi-
tions:

i) µω∗Λ,λ is Markovian, i.e., for ∆ ⊂ Λ b Z
2 the µω∗Λ,λ-probability of the con-

figuration in ∆ only depends on the ∗boundary of ∆, which means for any
B ∈ F∆

µω∗Λ,λ(B|F∆c)(ξ) = µω∗Λ,λ(B|F∂∗∆)(ξ)

= µξ∗∆,λ(B)

for µω∗Λ,λ-almost all ξ.

ii) there exists a coupling PΛ of X and Y with distributions µω∗Λ,λ and µω′∗Λ,λ with
P({(σ, σ′) : σ ≤ σ′}) = 1, in short PΛ(X ≤ Y ) = 1, if ω ≤ ω′ (pointwise);

iii) µω∗Λ,λ ≤ µω
′∗

Λ,λ for ω ≤ ω′;

iv) µω∗Λ,λ is positively associated;

v) µ+∗
Λ,λ ≤ µ+∗

Λ′,λ for Λ′ ⊂ Λ b Z2;

vi) µ−∗Λ,λ ≤ µ−∗Λ′,λ for Λ ⊂ Λ′ b Z2;

vii) µ+∗
Λ,λ ◦ f = µ−∗Λ,λ for any Λ b Z2,

where f : {−1, 0, 1}Z2 → {−1, 0, 1}Z2
;ω 7→ −ω denotes the spin-flip.
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As the lemma is well-known, we only present the core ideas of the proof and
refer the interested reader to [GHM, Proof of Theorem 4.8 and Theorem 4.11].

Idea of the proof: By definition, the first property is obvious.
The second property is a consequence of Holley’s inequality in [GHM], i.e., it

follows from the ergodic Markov theorem, the observation that for a ∈ {−1, 0, 1}

µξ∗Λ,λ (px ≥ a) (4.1)

is increasing in ξ ∈ F and the following construction of two Markov chains (Xn)n∈N
with values in {σ ∈ Ω : σ = ω off Λ} and (Yn)n∈N with values in {σ ∈ Ω : σ =
ω′ off Λ}. Pick X0 according to µω∗Λ,λ and Y0 according to µω′∗Λ,λ. In each time-step
the values of both Xn and Yn at some random node x is altered according to
the conditioned probability µXn∗x,λ respectively µYn∗x,λ , where the same dice is rolled
for both modifications. Obviously, the Markov chain (Yn)n∈N eventually hits the
maximal feasible configuration ξ, which is larger than the maximal configuration
ν with µω

′∗
Λ,λ(ν) > 0. From that moment on, the construction, together with the

monotonicity of (4.1), guarantees Yn ≥ Xn. Since the limiting distributions of
Xn (resp. Yn) stays µω∗Λ,λ (resp. µω′∗Λ,λ) as n tends to infinity, we have constructed
a coupling PΛ to µω∗Λ,λ and µω′∗Λ,λ respectively to limnXn and limn Yn that satisfies
PΛ(limnXn ≤ limn Yn) = 1.

The third property is a direct consequence of the second one.
The fourth property follows from the idea used for the second property with

one little modification, namely instead of comparing µω∗Λ,λ to µω′∗Λ,λ we compare µω∗Λ,λ

to gµω∗Λ,λ for any increasing positive local function g such that gµω∗Λ,λ is a probability
measure. Note that for µω∗Λ,λ (p. = ξ(.) off x) > 0

µω∗Λ,λ (px ≥ a|p. = ξ(.) off x)

µω∗Λ,λ (px < a|p. = ξ(.) off x)
≤
gµω∗Λ,λ (px ≥ a|p. = ξ(.) off x)

gµω∗Λ,λ (px < a|p. = ξ(.) off x)

holds and implies

µω∗Λ,λ (px ≥ a|p. = ξ(.) off x) ≤ gµω∗Λ,λ (px ≥ a|p. = ξ(.) off x) .

Analogously to the previous idea we obtain µω∗Λ,λ ≤ gµω∗Λ,λ for any such g, which,
in particular, is already sufficient if we consider g = 1B(.)+1

µω∗Λ,λ(B)+1
for any local and

increasing B.
The next two properties are direct consequences of the previous two and the

last one follows immediately from the definition. ©

Calling µω∗Λ,λ Markovian refers to the possibility of interpreting µω∗Λ,λ(.|F∆c) as a
Markov chain indexed by ∆ b Z2, where ∆c \ ∂∗∆ is the past, ∂∗∆ the presence,
and ∆ the future.
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4.2 The Infinite Widom-Rowlinson Model
In this section we first define the infinite Widom-Rowlinson measures and then
state some basic well-known properties.

4.2.1 Definition and Direct Consequences

Recall that an infinite Widom-Rowlinson measure should exhibit the accurate local
structure, which justifies the following definition.

Definition 4.7 (Widom-Rowlinson measure) Let λ > 0. We call a probabil-
ity measure µ on (Ω,F) an infinite Widom-Rowlinson measure with activity λ if
it satisfies the DLR equality regarding the finite Widom-Rowlinson measures, i.e.,
for all Λ b Z2

µ(.|FΛc)(ω) = µω∗Λ,λ(.)

for µ-almost all ω ∈ Ω.
The set of infinite Widom-Rowlinson measures with activity λ on (Z2,�) is

denoted by WR∗(λ). Recall that we omit the star if the underlying graph is (Z2,�).
In particular, WR(λ) denotes the set of Widom-Rowlinson measures with activity
λ on (Z2,�).

The abbreviation DLR honors Dobrushin, Lanford and Ruelle for their fundamen-
tal papers [Do] and [LR]. This approach was developed in a more general frame-
work and leads to the theory of Gibbs measures. For a thorough introduction see
[Geo].

The existence of an infinite Widom-Rowlinson measure is in fact well-known,
but since it can be done on an elementary level establishing some insight, we will
discuss it in the next paragraph.

Due to property v) of Lemma 4.6, for any local increasing event B, the proba-
bility µ+∗

Λn,λ
(B) converges to the same limit for all increasing sequences Λn of finite

subsets with
⋃
n∈N Λn = Z

2, which we refer to by writing limΛ↗Z2 µ+∗
Λ,λ(B) . Since

F is generated by local increasing events and Ω is compact, there exists a unique
probability measure on (Ω,F), denoted by µ+∗

λ (.), that satisfies

µ+∗
λ (B) = lim

Λ↗Z2
µ+∗

Λ,λ(B)

for all local events B. The independence from the explicit sequence Λn implies the
automorphism invariance of µ+∗

λ (.). Moreover, by property i) of Lemma 4.6, for
all local events B ∈ FΛ and C ∈ FΓ ⊂ FΛc

µ+∗
λ (1C(.)µ.∗Λ,λ(B)) = lim

∆↗Z2
µ+∗

∆,λ(1C(.)µ.∗Λ,λ(B))

= lim
∆↗Z2

µ+∗
∆,λ(B ∩ C) = µ+∗

λ (B ∩ C)
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holds, which implies that µ+∗
λ (.) is in fact an infinite Widom-Rowlinson measure.

Consequently, the set of infinite Widom-Rowlinson measures with activity λ on
(Z2,�) is non-empty.

The local structure entails that some properties of the finite Widom-Rowlinson
measures can be carried over to the infinite Widom-Rowlinson measures. For
example the spin-flip relation between between µ+∗

Λ,λ and µ−∗Λ,λ, see the seventh
property of Lemma 4.6, can be extended to the corresponding infinite Widom-
Rowlinson measures

µ+∗
λ ◦ f = µ−∗λ

and also leads to
µ−∗λ (B) := lim

Λ↗Z2
µ−∗Λ,λ(B)

for all local events B. Furthermore, the third property of Lemma 4.6, together
with the DLR equation, ensures the next well-known lemma.

Lemma 4.8 (Sandwich property) Each infinite Widom-Rowlinson measure µ ∈
WR∗(λ) is stochastically dominated by µ+∗

λ and stochastically dominates µ−∗λ , i.e.,

µ−∗λ ≤ µ ≤ µ+∗
λ .

This leads to the following well-known characterisation of the existence of dif-
ferent infinite Widom-Rowlinson measures, which we called phase transition.

Lemma 4.9 The following four statements are equivalent:

i) |WR∗(λ)| > 1

ii) µ+∗
λ 6= µ−∗λ

iii) ∃x ∈ Z2 : µ+∗
λ (px = +) > µ−∗λ (px = +)

iv) ∃x ∈ Z2 :
∫
µ+∗
λ (dω)ω(x) > 0

Additionally, the third condition is equivalent to

iii’) ∃x ∈ Z2 : µ+∗
λ (px = −) < µ−∗λ (px = −)

and the fourth item is equivalent to

iv’) ∃x ∈ Z2 :
∫
µ−∗λ (dω)ω(x) < 0.
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Once again, we refer to [GHM, Proof of Theorem 4.15] and only describe the
core ideas.

Idea of the proof: The equivalence of the first two conditions follows from the
Sandwich property in combination with the fact that F is also generated by local
increasing events.

Symmetry implies that for all nodes x ∈ Z2

µ+∗
λ (px = i) = µ−∗λ (px = j)

holds if i = −j. Hence, the equivalence of the third and fourth condition follows.
The implication of the third to the second condition is obvious. The reverse

implication could be shown by a coupling argument, but we prefer a more elemen-
tary argument, used by Lebowitz and Martin-Löf in [LeMa-L, Proof of Lemma 2].
To this end, let us assume condition ii), µ+∗

λ 6= µ−∗λ , and, therefore, the existence
of an event B ∈ F with µ+∗

λ (B) 6= µ−∗λ (B). Because F is generated by local in-
creasing events, we can even pick a local increasing event A ∈ F∆ with ∆ b Z2

and µ+∗
λ (A) 6= µ−∗λ (A). Note that fA(σ) :=

∑
x∈∆ σ(x)− 1A(σ) is also increasing.

The Sandwich property leads to both

µ+∗
λ (A) > µ−∗λ (A)

and
Eµ+∗

λ
(fA) ≥ Eµ−∗λ (fA) .

A short calculation shows that the latter observation is equivalent to

µ+∗
λ (A)− µ−∗λ (A)

|∆|
≤ Eµ+∗

λ
(p~0)− Eµ−∗λ (p~0) .

By symmetry, the right side equals

2µ+∗
λ (p~0 = +)− 2µ+∗

λ (p~0 = −)

and the third condition follows. ©

The first statement of Lemma 4.6 is similar to the DLR equation, but there also
exists a somewhat stronger version, which is based upon the following definition.

Definition 4.10 (determined from outside) A finite random subset S of Z2

is said to be determined from outside if {S = Λ} ∈ FΛc for any Λ b Z2. The
corresponding outside σ-algebra is

FSc := {A ∈ F : A ∩ {S = Λ} ∈ FΛc for all Λ b Z2}
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Due to the countability of the finite subsets of Z2, the – above announced –
next well-known property follows from the local structure.

Lemma 4.11 (Strong Markov property) Let µ be an infinite Widom-Rowlin-
son measure and S a µ-almost surely finite random set determined from outside.
Then µ satisfies the strong Markov property, i.e., for µ-almost all ω ∈ Ω

µ(.|FSc)(ω) = µω∗S(ω),λ(.) .

4.2.2 Consequences of the Gibbs-Theory

Since we have defined the infinite Widom-Rowlinson measures as a special Gibbs
measures, we can benefit from the well-established Gibbs theory. In particular,
it is well-known that WR∗(λ) is a compact and convex set, if we consider the
topology of local convergence, see [Geo, page 59]. Hence, analysing this set can be
done by considering its boundary.

Definition 4.12 (extremal) We say an infinite Widom-Rowlinson measure with
activity λ is extremal if it is not the non-trivial convex combination of two different
infinite Widom-Rowlinson measures with activity λ.

We denote the set of extremal infinite Widom-Rowlinson measures with activity
λ by

WR∗EX(λ) .

Furthermore, if for all local eventsA the limit of µω∗Λ,λ(A) is unique, then limΛ=Z2 µω∗Λ,λ

denotes the unique infinite Widom-Rowlinson measure that coincides with these
limits. In other words, if we can write limΛ↗Z2 µω∗Λ,λ(A) for all local events A, then
limΛ=Z2 µω∗Λ,λ denotes the unique infinite Widom-Rowlinson measure with

lim
Λ=Z2

µω∗Λ,λ(A) = lim
Λ↗Z2

µω∗Λ,λ(A)

for all local events A, e.g.,
lim

Λ=Z2
µ+∗

Λ,λ = µ+∗
λ .

The next characterisation follows from general Gibbs theory, see [Geo, Theorem
(7.7) and (7.12)].

Lemma 4.13 The conditions i)-iii) are equivalent:

i) µ ∈WR∗EX(λ)

ii) µ ∈WR∗(λ) is tail-trivial, i.e., all tail events have µ-probability one or zero.
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iii) limΛ=Z2 µω∗Λ,λ = µ for µ-almost all ω

Idea of the proof: If A is a non-trivial tail event, then the identity

µ(.) = µ(A)µ(.|A) + µ(Ac)µ(.|Ac)

implies that µ is not extremal because µ(.|A) and µ(.|Ac) are two different Widom-
Rowlinson measures.

The third condition follows from the second one on account of the following
two observations. By the definition of Widom-Rowlinson measures and the reverse
martingal theorem, for any local event B

lim
Λ↗Z2

µω∗Λ,λ(B) = µ(B|
⋂

∆bZ2

F∆c)(ω)

for µ-almost all ω and by the tail triviality, µ(.|
⋂

∆bZ2 F∆c) = µ(.) .
Summing up, we know that

lim
Λ=Z2

µω∗Λ,λ(.) = µ(.)

for µ-almost all ω.
The reverse implication iii)⇒ii) is also a consequence of

µ(.|
⋂

∆bZ2

F∆c) = lim
Λ=Z2

µω∗Λ,λ(.) = µ(.) , (4.2)

which still holds. More precisely, µ(.|
⋂

∆bZ2 F∆c) = µ(.) implies that any event A
is µ-stochastically independent of the tail-σ-algebra, which implies that any tail
event B satisfies µ(B) = µ(B)µ(B) and, therefore, µ is evidently tail trivial.

The implication of the second to the first condition follows from the fact that
an extremal Widom-Rowlinson measure is determined by the probability of its tail
events. More precisely, if we assume that a measure µ ∈WR∗(λ) is tail trivial and
µ = sµ′ + (1 − s)µ′′, then the Radon-Nikodym theorem guarantees the existence
of a density f with µ′ = fµ, which in fact is tail measurable. For the exact cal-
culations see [Geo, Proof 2) of Prop. (7.3)]. Hence, µ-almost surely f = 1 and,
consequently, µ = µ′ = µ′′. ©

The equality of Lemma (4.13) iii) especially holds for increasing events and,
therefore, the next remark follows from the positive association of finite Widom-
Rowlinson measures.

Remark 4.14 All extremal Widom-Rowlinson measures are positively associated.
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Recall that we are interested in the subset of all translation-invariant infinite
Widom-Rowlinson measures and, in particular, in the extremal points of this con-
vex subset.

Definition 4.15 (ergodic) We say a translation-invariant Widom-Rowlinson
measure with activity λ is ergodic if it is not the non-trivial convex combination
of two different translation-invariant Widom-Rowlinson measures with activity λ.
Let

WR∗ER(λ)

denote the set of ergodic infinite Widom-Rowlinson measures with activity λ.

In Chapter 3 a probability measure was called ergodic if it is translation-invariant
and trivial on the translation-invariant σ-algebra, i.e., all translation-invariant
events have probability one or zero. Fortunately, because of the following remark
we do not have to break with that habit.

Corollary 4.16 An infinite Widom-Rowlinson measure µ is ergodic if and only if
it is translation-invariant as well as trivial on the translation-invariant σ-algebra.

For the proof we refer the interested reader to [Geo, Theorem (14.15)] and note
its similarity to the equivalence ii)⇐⇒ i) of Lemma 4.13.

For example, the Widom-Rowlinson measures µ+∗
λ and µ−∗λ are extremal as well

as ergodic, since the Sandwich property leads to

µ+∗
λ , µ−∗λ ∈WR∗EX(λ) ,

which, together with the translation-invariance of these measures, implies

µ+∗
λ , µ−∗λ ∈WR∗EX(λ) ∩WR∗ER(λ) .

It is the case that similarly to Lemma 4.13 iii), there also exists a limit theorem
for ergodic Widom-Rowlinson measures, see [Geo, Theorem (14.20) (b)]. It states
that if µ is an ergodic Widom-Rowlinson measure, then for any local event A,

lim
Λ↗Z2

1/|Λ|
∑
x∈Λ

µ
trx(ω)∗
trx(Λ),λ(A) = µ(A)

holds for µ-almost all ω, where trx denotes the translation by x. However, this does
not imply positive association, as it is the case with extremal Widom-Rowlinson
measures, since this property can be lost by the arithmetic mean.

Another similarity of extremal and ergodic Gibbs-measures is that eachWidom-
Rowlinson measure (resp. translation-invariant Widom-Rowlinson measure) is a
weighted average of extremal (resp. ergodic) Widom-Rowlinson measures, see [Geo,
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Theorem (7.26) resp. Theorem (14.17)]. More precisely, any Widom-Rowlinson
measure (resp. translation-invariant Widom-Rowlinson measure) with activity λ is
represented as the barycentre of a mass distribution on WR∗EX(λ) (resp. WR∗ER(λ)),
which is called the extremal (resp. ergodic) decomposition.

For the moment this similarity is the last statement that uses the general theory
of Gibbs measures and we return to more elementary arguments.

4.2.3 Connecting Phase Transition to Percolation

Before we begin with the characterisation of phase transition in terms of perco-
lation, let us first verify the uniqueness of pure infinite clusters regarding ergodic
Widom-Rowlinson measures, i.e., for any ergodic Widom-Rowlinson measure µ,
there exists at most one infinite −∗cluster (resp. infinite 0cluster resp. infinite
+∗cluster) µ-almost surely. To this end, we introduce the following notation.

Definition 4.17 For t ∈ {−∗, 0,+∗,−0, 0+} the event that a sole infinite tcluster
occurs is denoted by Et, e.g., E−∗. Accordingly, for t ∈ {−∗, 0,+∗,−0, 0+} the
event of finiteness of all tclusters is denoted by Ft.

The letter E alludes to the existence of one corresponding infinite cluster and the
letter F alludes to the f initeness of all corresponding clusters. Furthermore, all
events of this definition are translation-invariant.

For the next statement recall that intersections apply before unions.

Lemma 4.18 For each type of spin, there exists at most one pure infinite cluster
WR∗ER(λ)-almost surely.

Proof: Fix a measure µ ∈ WR∗ER(λ) and recall the Burton-Keane uniqueness
theorem, which assumes ergodicity and the finite energy condition. Unfortunately,
because a +spin and a −spin may not be ∗adjacent, µ does not satisfy the latter
assumption.

For a workaround of this problem, consider the following maps from {−1, 0, 1}Z2

to {0, 1}Z2 . Denote by m−7→0 the change of all −spins to 0spins, i.e.,

m−7→0 : {−1, 0, 1}Z2 → {0, 1}Z2

;σ 7→ 1σ−1(1)

and denote by m07→1
−7→0

the change of all 0spins to 1spins and, afterwards, of all
−spins to 0spins, i.e.,

m07→1
−7→0

: {−1, 0, 1}Z2 → {0, 1}Z2

;σ 7→ 1σ−1(1)∪σ−1(0) .

The inheritance of ergodicity guarantees that the two resulting probability dis-
tributions µ ◦ m−1

−7→0 and µ ◦ m−1
0 7→1
−7→0

are also ergodic. Moreover, both probability
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distributions satisfy the finite energy condition, which will be proved rigorously
in the next paragraph. The intuitive reason for this is that the µ-probability of
inserting a 0spin at a given node x conditioned on the outside is bounded away
from zero, i.e., one can find an ε > 0 so that

µ(px = 0|F∂∗x) ≥ ε

µ-almost surely.
By symmetry, it is sufficient to show that µ ◦m−1

−7→0 satisfies the finite energy
condition, i.e., for all x ∈ Z2 and j = 0, 1

µ ◦m−1
−7→0

(
{σ ∈ {0, 1}Z2

: σ(x) = j}
∣∣F ′xc) > 0 , (4.3)

where F ′xc stands for the σ-algebra on {0, 1}Z2 generated by projections on xc. It
suffices to verify that for an arbitrary node x ∈ Z2, for j = 0, 1, and for all A ∈ F ′xc
with µ ◦m−1

−7→0(A) > 0 ∫
A

1{σ(x)=j} dµ ◦m−1
−7→0 > 0 (4.4)

holds. To this end, fix an arbitrary node x ∈ Z2 and an arbitrary set A ∈ F ′xc
with µ ◦m−1

−7→0(A) > 0. The case j = 0 follows from:∫
A

1{σ(x)=0} dµ ◦m−1
−7→0 =

∫
m−1
−7→0(A)

1{σ(x)∈{−1,0}} dµ

=

∫
m−1
−7→0(A)

µ
(
σ(x) ∈ {−1, 0}

∣∣∣m−1
−7→0(F ′xc)

)
dµ

≥
∫
m−1
−7→0(A)

µ+∗
xc,λ

(
σ(x) ∈ {−1, 0}

)︸ ︷︷ ︸
>0

dµ > 0 .

The more complicated case j = 1 remains to be shown, i.e.,∫
A

1{σ(x)=1} dµ ◦m−1
−7→0

!
> 0 . (4.5)

Let us first assume

µ
(
m−1
−7→0(A) ∩

{
σ ∈ {−1, 0, 1}Z2

: σ(y) ≥ 0 for all y ∈ ∂∗x
})

> 0 (4.6)

and prove it rigorously later on. The intuitive reason for (4.6) is that the set
m−1
−7→0(A) cannot distinguish between −spins and 0spins and, moreover, inserting
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0spins is always possible. Considering µ (σ(x) = 1| Fxc) > 0 on {σ ∈ {−1, 0, 1}Z2
:

σ(y) ≥ 0 for all y ∈ ∂∗x} leads to our aim (4.5):

0 <

∫
m−1
−7→0(A)∩{σ(y)≥0 for all y∈∂∗x}

1{σ(x)=1}︸ ︷︷ ︸
>0

dµ

≤
∫
m−1
−7→0(A)

1{σ ∈ {−1, 0, 1}Z2

: σ(x) = 1}︸ ︷︷ ︸
=m−1
−7→0(σ∈{0,1}Z2

:σ(x)=1)

dµ

=

∫
A

1{σ(x)=1} dµ ◦m−1
−7→0 .

It remains to show (4.6). To this end, recall that the set m−1
−7→0(A) has positive

µ-probability. Hence, we can fix an ω ∈ {−1, 0, 1}∂∗x with

µ(m−1
−7→0(A) ∩ ω) > 0 ,

where ω denotes {σ ∈ {−1, 0, 1}Z2
: σ(y) = ω(y) for all y ∈ ∂∗x}. After fixing the

configuration on ∂∗x, we forget all restrictions on

∆ := ω−1 ({−1, 0}) ,

i.e., we consider the set

B := m−1
−7→0(A) ∩ 1(∂∗x)\∆ ∈ F∆c .

By definition, m−1
−7→0(A) ∩ ω ⊂ B and, therefore, µ(B) > 0. Moreover, it is the

case that

B ∩ {σ ∈{−1, 0, 1}Z2

: σ(y) = 0 for all y ∈ ∆}
⊂ m−1

−7→0(A) ∩ {σ ∈ {−1, 0, 1}Z2

: σ(y) ≥ 0 for all y ∈ ∂∗x} .

Now we are ready to verify (4.6):

µ
(
m−1
−7→0(A) ∩ {σ ∈ {−1, 0, 1}Z2

: σ(y) ≥ 0 for all y ∈ ∂∗x}
)

≥ µ
(
B ∩ {σ ∈ {−1, 0, 1}Z2

: σ(y) = 0 for all y ∈ ∆}
)

=

∫
B

µ({σ ∈ {−1, 0, 1}Z2

: σ(y) = 0 for all y ∈ ∆}|F∆c)︸ ︷︷ ︸
>0

dµ > 0 .

Consequently, we can apply the Burton-Keane uniqueness theorem to both
probability distributions µ ◦m−1

−7→0 and µ ◦m−1
07→1
−7→0

.
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Note that the +∗clusters (resp. −0clusters) for µ coincide with the 1∗clusters
(resp. 0clusters) for µ ◦m−1

−7→0 and the −∗clusters (resp. 0+clusters) regarding µ
coincide with the 0∗clusters (resp. 1clusters) regarding µ ◦m−1

0 7→1
−7→0

. Therefore, the

Burton-Keane uniqueness theorem ensures the µ-almost sure uniqueness of the
infinite +∗cluster, the infinite −0cluster, the infinite −∗cluster and the infinite
0+cluster.

The µ-almost sure uniqueness of the infinite 0cluster follows from the unique-
ness of the infinite −0cluster and the infinite 0+cluster. More precisely, assume
for contradiction that with positive µ-probability, the uniqueness of the infinite
0cluster fails. Then, by ergodicity of µ, at least two infinite 0clusters exist µ-
almost surely. Two non-exclusive scenarios can occur; these two infinite 0clusters
are separated by an infinite −∗cluster or by an infinite +∗cluster. If the first sce-
nario occurs, then the infinite −∗cluster has at least two infinite holes, i.e. , at least
two infinite 0+clusters exist; otherwise (the second scenario) the infinite +∗cluster
has at least two infinite holes, i.e. , at least two infinite −0clusters exist. Both
scenarios are contrary to the uniqueness of the infinite −0cluster and the infinite
0+cluster. �

The ∗connectedness of the boundary of a simply connected set is essential
for our argument that the infinite 0cluster is unique. An alternative proof that
modifies the original proof of the Burton-Keane uniqueness theorem and does not
depend on the ∗connectedness of the boundary can be found in [HT, Prop. 3.5].

We can strengthen this uniqueness result for two-dimensional extremal and
ergodic Widom-Rowlinson measures, which was partially done in [HT, Prop. 3.6].
The planarity of the underlying mosaic is essential for the application of Corollary
3.15.

Lemma 4.19 There exists at most one pure infinite cluster WR∗ER(λ)∩WR∗EX(λ)-
almost surely, i.e., for any ergodic as well as extremal Widom-Rowlinson measure
µ ∈WR∗ER(λ) ∩WR∗EX(λ), we know that

a) µ(E+∗ ∩ E−0) = 0;

b) µ(E0+ ∩ E−∗) = 0 .

Proof: Fix an arbitrary µ ∈ WR∗ER(λ) ∩WR∗EX(λ) and recall Corollary 3.15 of
Chapter 3.

Note that the map m−7→0 of the proof of Lemma 4.18 is increasing, so that
{m−7→0 ∈ A} is an increasing event if A was an increasing event. Thus, the
measure µ◦m−1

−7→0 is – in addition to the finite energy condition and the ergodicity
– positively associated. Applying Corollary 3.15 in the same way as the Burton-
Keane uniqueness theorem in the proof of Lemma 4.18, we can conclude that the
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coexistence of an infinite +∗cluster and an infinite −0cluster has µ-probability
zero, i.e.,

µ(E+∗ ∩ E−0) = 0 .

Similar arguments based upon the monotone map m−1
07→1
−7→0

yield

µ(E0+ ∩ E−∗) = 0 .

This concludes the proof of Lemma 4.19. �

Taking the statements of Lemma 4.19 and Lemma 4.18 together, we know that
µ-almost surely for any ergodic as well as extremal Widom-Rowlinson measure
µ ∈WR∗ER(λ)∩WR∗EX(λ), there exists either a sole pure infinite cluster or no pure
infinite cluster at all.

Based upon symmetry, this statement can be strengthend regarding the mea-
sure µ−∗λ , µ+∗

λ .

Corollary 4.20 Let λ > 0. Then µ+∗
λ -almost surely there exists either a single

infinite +∗cluster or a single infinite 0cluster or no pure infinite cluster at all, i.e.,

µ+∗
λ (E0 ∪ E+∗ ∪ F−∗ ∩ F 0 ∩ F+∗) = 1

µ+∗
λ (E−0 ∩ E+∗) = 0 .

The analogous statements regarding µ−∗λ also hold, i.e.,

µ−∗λ (E−∗ ∪ E0 ∪ F−∗ ∩ F 0 ∩ F+∗) = 1

µ−∗λ (E−∗ ∩ E0+) = 0 .

Proof: It is sufficient to prove the first part of the corollary regarding µ+∗
λ . The

second part then follows by symmetry.
Because µ+∗

λ is both ergodic and extremal, Lemma 4.19 and Lemma 4.18 guar-
antee that µ+∗

λ -almost surely there exists either a sole infinite pure cluster or no
pure infinite cluster at all. Consequently, it is sufficient to show that an infinite
−∗cluster occurs with µ+∗

λ -probability zero.
Assume the contrary, i.e., with positive µ+∗

λ -probability, there exists a sole infi-
nite −∗cluster. By ergodicity, this cluster occurs µ+∗

λ -almost surely. This, together
with symmetry and stochastical domination, gives

1 = µ+∗
λ (E−∗) = µ−∗λ (E+∗) ≤ µ+∗

λ (E+∗)

and verifies the µ+∗
λ -almost sure coexistence of an infinite −∗cluster and an infinite

+∗cluster, which have to be separated by an infinite 0cluster. This is a contradic-
tion to Lemma 4.19. �
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The following well-known lemma states that the existence of a certain cluster
is in fact equivalent to phase transition. For convenience, we include the items of
Lemma 4.9 and refer to [HT, Prop. 5.2.].

Lemma 4.21 Let λ > 0. The following statements are equivalent:

i) |WR∗(λ)| > 1

ii) µ+∗
λ 6= µ−∗λ

iii) ∃x ∈ Z2 : µ+∗
λ (px = +) > µ−∗λ (px = +)

iii’) ∃x ∈ Z2 : µ+∗
λ (px = −) < µ−∗λ (px = −)

iv) ∃x ∈ Z2 :
∫
µ+∗
λ (dω)ω(x) > 0

iv’) ∃x ∈ Z2 :
∫
µ−∗λ (dω)ω(x) < 0

v) µ+∗
λ (Z2 +∗←→∞) = 1

v’) µ−∗λ (Z2 −∗←→∞) = 1

Idea of the proof: By symmetry, the equivalence of v) and v’) is obvious.
Corollary 4.20 states that there µ+∗

λ -almost surely exists either

a) a sole infinite +∗cluster or

b) a sole infinite 0cluster or

c) no pure infinite clusters at all.

Consequently, for the equivalence i)-iv) ⇐⇒ v), it is sufficient to show that only
case a) implies phase transition.

Let us begin with i)⇐v), i.e., case a) implies phase transition: By symmetry, the
µ+∗
λ -almost sure existence of an infinite +∗cluster is equivalent to the µ−∗λ -almost

sure existence of an infinite −∗cluster and, therefore, by Lemma 4.19, µ+∗
λ 6= µ−∗λ .

The implication ¬iii)⇐ ¬v), i.e., case b) and c) precludes phase transition,
can be verified as follows: The µ+∗

λ -almost sure existence of an infinite 0cluster
(case b)) or the non-existence of a pure infinite cluster (case c)) guarantees that
any finite subset of Z2 is encircled by a 0circuit µ+∗

λ -almost surely. Hence, for all
x ∈ Z2 and ε > 0 there exists a Γx,ε with x ∈ Γx,ε so that with µ+∗

λ -probability at
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least 1− ε, there exists a 0circuit in Γx,ε strictly around x. This, together with the
strong Markov property and symmetry, verifies the following identities:

µ+∗
λ (px = −) ≥ µ+∗

λ (px = −, Cmax 0
Γx,ε 6= ∅)

=

∫
µ+∗
λ (dω)1{Cmax 0

Γx,ε
6=∅}(ω)µ+∗

λ (px = −|F(
intCmax 0

Γx,ε

)c)(ω)

=

∫
µ+∗
λ (dω)1{Cmax 0

Γx,ε
6=∅}(ω)µ0∗

intCmax 0
Γx,ε

(ω),λ(px = −)

=

∫
µ+∗
λ (dω)1{Cmax 0

Γx,ε
6=∅}(ω)µ0∗

intCmax 0
Γx,ε

(ω),λ(px = +)

= µ+∗
λ (px = +, Cmax 0

Γx,ε 6= ∅)
≥ µ+∗

λ (px = +)− ε .

By letting ε tend to zero, we have

µ+∗
λ (px = −) ≥ µ+∗

λ (px = +) .

This, together with symmetry, implies that for any node x ∈ Z2,

µ+∗
λ (px = +) ≤ µ+∗

λ (px = −) = µ−∗λ (px = +)

holds (¬iii)) and, therefore, the absence of phase transition |WR∗(λ)| = 1. ©

Note that already the existence of a Widom-Rowlinson measure µ with

µ(Z2 +∗←→∞) > 0

implies µ+∗
λ (Z2 +∗←→∞) = 1 and, therefore, phase transition.

4.3 Site-Random-Cluster Measure

In this section we define and briefly analyse the (finite) site-random-cluster measure
with activity λ and free (resp. wired) boundary condition on (Z2,�), denoted by
φf∗Λ,λ (resp. φw∗Λ,λ).

Definition 4.22 (free site-random-cluster measure) Let λ > 0 and Λ b Z2.
Then

φf∗Λ,λ : {0, 1}Z2 → [0, 1];σ 7→ 1{σ=0 off Λ}
2κ

f∗(σ)

Zf∗
Λ,λ

∏
x∈Λ

λσ(x)
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is called the free site-random-cluster measure with activity λ on {0, 1}Λ, where
1{σ=0 off Λ} is short for

∏
x∈Λc 1{0}(σ(x)), κf∗(σ) is the number of ∗clusters in

σ−1(1) and Zf∗
Λ,λ is the normalising constant, i.e.,

Zf∗
Λ,λ =

∑
σ∈{0,1}Z2

σ=0 off Λ

2κ
f∗(σ)

∏
x∈Λ

λσ(x) .

We can link this distribution to the finite Widom-Rowlinson measure with zero
boundary condition, see [HT, Lemma 5.1].

Remark 4.23 Let λ > 0 and Λ b Z2.

a) It is the case that

µ0∗
Λ,λ({ω ∈ {−1, 0, 1}Z2

: 1ω−1(1)∪ω−1(−1) ∈ .}) = φf∗Λ,λ(.) .

In other words, select X ∈ {−1, 0, 1}Z2 according to µ0∗
Λ,λ. The distribution

of X2 then coincides with the free site-random-cluster measure with activity
λ on {0, 1}Λ, φf∗Λ,λ.

b) Let βf∗Λ (.|.) denote a stochastic kernel that conditioned on σ ∈ {0, 1}Z2

with σ = 0 off Λ, βf∗Λ (.|σ), is uniformly distributed on {ω ∈ {−1, 0, 1}Z2
:

ω is feasible, 1ω−1(1)∪ω−1(−1) = σ}. Then∫
φf∗Λ,λ(dω)βf∗Λ (.|ω) = φf∗Λ,λβ

f∗
Λ (.) = µ0∗

Λ,λ(.)

holds.

In other words, choose Y ∈ {0, 1}Λ according to φf∗Λ,λ. If we flip the spin
values of all ∗clusters of Y (.)−1(1) independently of each other with probabil-
ity 1

2
, then the resulting distribution is the finite Widom-Rowlinson measure

with activity λ and free boundary condition on {0, 1}Λ, µ0∗
Λ,λ.

After establishing this connection, it is natural to ask if we can define a site-
random-cluster measure with a link to the distribution µ+∗

Λ,λ and, therefore, to the
occurrence of phase transition.

Definition 4.24 (wired site-random-cluster measure) Let λ > 0 and Λ b
Z

2. Then

φw∗Λ,λ : {0, 1}Z2 → [0, 1];σ 7→ 1{σ=1 off Λ}
2κ

w∗(σ)

Zw∗
Λ,λ

∏
x∈Λ

λσ(x)
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is called the wired site-random-cluster measure with activity λ on {0, 1}Λ, where
1{σ=1 off Λ} is short for

∏
x∈Λc 1{1}(σ(x)), κw∗(σ) is the number of ∗clusters in

σ−1(1) not ∗adjacent to Λc and Zw∗
Λ,λ the normalising constant, i.e.,

Zw∗
Λ,λ =

∑
σ∈{0,1}Λ
σ=1 off Λ

2κ
w∗(σ)

∏
x∈Λ

λσ(x) .

In analogy to Remark 4.23 this measure corresponds to the finite Widom-
Rowlinson measure with plus boundary condition, see [HT, Lemma 5.1].

Remark 4.25 Let λ > 0 and Λ b Z2.

a) It is the case that

µ+∗
Λ,λ({ω ∈ {−1, 0, 1}Z2

: 1ω−1(1)∪ω−1(−1) ∈ .}) = φw∗Λ,λ(.) .

In other words, select X ∈ {−1, 0, 1}Z2 according to µ+∗
Λ,λ. If we flip all

spin values of X(.)−1(−1), then the distribution of the resulting configuration
equals the wired site-random-cluster measure with activity λ on {0, 1}Λ, φw∗Λ,λ.

b) We know that
φw∗Λ,λβ

f∗
Λ (.) = µ+∗

Λ,λ(.)

holds, where βw∗Λ (.|.) is the stochastic kernel that conditioned on a configu-
ration σ ∈ {0, 1}Z2 with σ = 1 off Λc, i.e., βw∗Λ (.|σ), is uniformly distributed
on {ω ∈ {−1, 0, 1}Z2

: ω is feasible, ω = 1 off Λ,1ω−1(1)∪ω−1(−1) = σ}.

In other words, choose Y from {0, 1}Z2 according to φw∗Λ,λ. If we flip the spin
values of all ∗clusters of Y (.)−1(1) that are not ∗adjacent to Λc independently
of each other with probability 1

2
, then the distribution of the resulting config-

uration equals the finite Widom-Rowlinson measure with activity λ and plus
boundary condition on {0, 1}Λ, µ+∗

Λ,λ.

Note that this remark would justify defining an infinite wired site-random-cluster
measure on {0, 1}Z2 by µ+∗

λ with flipped −1spins. This seems to be interesting
on its own right, but we prefer to directly analyse the infinite Widom-Rowlinson
measure.

As intended, we can add another equivalent condition to Lemma 4.21.

Lemma 4.26 The following statements are equivalent:

i) |WR∗(λ)| > 1

ii) ∃ x ∈ Z2 : lim supΛ↗Z2 φw∗Λ,λ(x
1∗←→∞) > 0.
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The proof is a direct consequence of the identity

µ+∗
λ (x

+∗←→∞) = inf
Γ↗Z2

µ+∗
λ (x

+∗←→ Γc)

= inf
Γ↗Z2

inf
Λ↗Z2

µ+∗
Λ,λ(x

+∗←→ Γc)

= inf
Λ↗Z2

inf
Γ↗Z2

µ+∗
Λ,λ(x

+∗←→ Γc)

= inf
Λ↗Z2

µ+∗
Λ,λ(x

+∗←→∞)

= lim sup
Λ↗Z2

µ+∗
Λ,λ(x

+∗←→∞)

= lim sup
Λ↗Z2

φw∗Λ,λ(x
1∗←→∞)

and Lemma 4.21.
A site-random-cluster measure can be thought of as a color-blind finite Widom-

Rowlinson measure and, therefore, some information is lost by considering a site-
random-cluster measure in comparison to the finite Widom-Rowlinson measure.
The advantage of this model is that all configurations are possible and, moreover,
it even has bounded energy, which enables us to change spin values without loosing
our grip on the probability, see chapter 5.

4.4 A Condition for the Absence of Phase Transi-
tion

This section presents a new sufficient condition for the absence of phase transition,
closely related to µ+∗

λ (x
+∗←→ ∞). At the end the analogous result regarding the

absence of phase transition on the graph (Z2,�) will be stated.
First, let us recall the following notation. In order to specify the underlying

configuration of a mathematical object we add the configuration in brackets, e.g.,
we write “the 0circuit[σ]” instead of “the 0circuit w.r.t. σ”.

To prepare the proof of the main result of this section, we first split the con-
figuration space {0, 1}Λ with Λ b Z2 into two disjoint sets depending on which
circuit around the origin is larger, the 0circuit or the 1∗circuit. To this end, we
introduce the following definition.

Definition 4.27 (lasso, ∗lasso) Let ∆ be a simply ∗connected finite subset of Z2

and fix a node x ∈ ∆. Further, let C be a circuit around x contained in ∆ and let
P be a path starting in C, ending in ∂(∆c) and contained in ∆. We call the union
C ∪ P a lasso around x in ∆.

Analogously, a ∗lasso around x in ∆ consists of a ∗path attached to a ∗circuit.
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We extend this definition to 0lassos[σ], 1lassos[σ], 0∗lassos[σ], and so on, where
σ stands for the underlying configuration. Most of the times, lassos will be around
the origin ~0. Therefore, if we omit the phrase “around x” we usually mean “around
the origin”. Furthermore, we omit “in ∆” if it clear from the context.

Now, we verify a slightly more general relation as the one announced above,
namely that a configuration σ ∈ {0, 1}Λ on a local observation window Λ b Z2

exhibits either a 1∗lasso as well as a 0∗lasso or a 0lasso or a 1lasso.

Lemma 4.28 For all simply ∗connected sets Λ b Z2 with ~0 ∈ Λ, the set of con-
figurations {0, 1}Λ is a disjoint union of the following three sets

{σ ∈ {0, 1}Λ : ∃ 1lasso[σ]}
{σ ∈ {0, 1}Λ : ∃ 0lasso[σ]}
{σ ∈ {0, 1}Λ : ∃ 1∗lasso[σ] ∧ ∃ 0∗lasso[σ]} .

Proof: First, we argue why it is sufficient to show

{0, 1}Λ = {σ ∈ {0, 1}Λ : ∃ 0lasso[σ]} ] {σ ∈ {0, 1}Λ : ∃ 1∗lasso[σ]} . (4.7)

Since flipping all spins is bijective, equality (4.7) is equivalent to

{0, 1}Λ = {σ ∈ {0, 1}Λ : ∃ 1lasso[σ]} ] {σ ∈ {0, 1}Λ : ∃ 0∗lasso[σ]} . (4.8)

Now Lemma 4.28 follows from the intersection of (4.7) and (4.8), because a lasso
is also a ∗lasso and it is impossible for a 1lasso and a 0lasso to coexist. Therefore,
it is sufficient to verify (4.7), which will be done in the sequel.

Note that the origin can be interpreted as a 1∗circuit if it takes value 1; other-
wise it can be interpreted as a 0circuit. Hence, we can always find a 1∗circuit or a
0circuit and compare the size of the maximal 1∗circuit to the size of the maximal
0circuit. This is the case because the non-existence of a 1∗circuit, i.e., Cmax 1∗ = ∅,
implies that even the smallest 0circuit – the origin – is larger than every 1∗circuit.
Further, the absence of a 0circuit implies that the origin has spin value 1 and –
interpreted as a ∗circuit – is larger than every 0circuit.

There are two types of configurations depending on whether the maximal
1∗circuit is larger than the maximal 0circuit or the other way around. In the
first case, by case assumption, the maximal 1∗circuit is 1∗connected to ∂∗(Λc) and
therefore, is part of a 1∗lasso. In the second case, by case assumption, the maximal
0circuit is 0connected to ∂(Λc) and therefore, is part of a 0lasso. Consequently,

{0, 1}Λ = {σ ∈ {0, 1}Λ : ∃ 0lasso[σ]} ∪ {σ ∈ {0, 1}Λ : ∃ 1∗lasso[σ]} (4.9)
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holds. Since (Z2,�) and (Z2,�) are matching pairs, the existence of a 1∗lasso
prevents the existence of a 0lasso, i.e.,

{σ ∈ {0, 1}Λ : ∃ 1∗lasso[σ]} ⊂ {σ ∈ {0, 1}Λ : @ 0lasso[σ]} . (4.10)

Combining the equations (4.9) and (4.10) yields (4.7). �

Note that as an immediate consequence a configuration σ ∈ {−1, 0, 1}Λ on a
local observation window Λ b Z2 exhibits either a 0lasso or a − + ∗lasso, i.e., a
∗lasso in σ−1({−1, 1}). This implies that a configuration WR∗(λ)-almost surely
exhibits either a 0lasso or a +∗lasso or a −∗lasso in Λ b Z

2, i.e., for any µ ∈
WR∗(λ), the previous property holds µ-almost surely.

Up to now, all statements of this chapter were more or less well-known. This
does not apply to the next theorem.

Theorem 4.29 Let λ > 0. If

lim sup
Λ↗Z2

µ+∗
Λ,λ(∃ 0lasso in Λ) > 0 ,

then phase transition does not occur, i.e.,

|WR∗(λ)| = 1 .

Proof: Assume that the condition holds and for contradiction that phase transi-
tion occurs.

We note three direct consequences. First, we can fix a sequence of finite subsets
Λn of Z2 containing the origin with Λn ↗ Z

2 and an ε > 0 such that

lim sup
n→∞

µ+∗
Λn,λ

(∃ 0lasso in Λn) ≥ ε .

Second, due to Lemma 4.21 there exists an infinite +∗cluster µ+∗
λ -almost surely.

Third, the µ+∗
λ -almost sure finiteness of all −0clusters follows from Corollary 4.20.

Because of the last two statements we can find two integers k,m with k ≤ m
so that with µ+∗

λ -probability at least 1− ε/2, the infinite +∗cluster hits Λk and all
−0clusters intersecting Λk are contained in Λm. Note that this event is increasing
and implies that for all i ≥ m with µ+∗

λ -probability at least 1−ε/2, a +∗lasso in Λi

exists, which is a local increasing event. Thus, for all i ≥ m the µ+∗
Λi,λ

-probability
of the existence of a +∗lasso is at least 1− ε/2, which leads to

lim sup
n→Z2

µ+∗
Λn,λ

(∃ 0lasso in Λn) ≤ ε/2 ,

a contradiction. �

Next, we translate this statement to the underlying graph (Z2,�).
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Theorem 4.30 Let λ > 0. If

lim sup
Λ↗Z2

µ+
Λ,λ(∃ 0∗lasso in Λ) > 0 ,

then phase transition does not occur, i.e.,

|WR(λ)| = 1 .

The proof of this theorem is almost a copy of the previous one.

4.5 A Condition for the Existence of at Most Two
Ergodic Measures

In this section the following new sufficient condition for the existence of at most
two ergodic Widom-Rowlinson measures, namely µ−∗λ and µ+∗

λ , will be shown. We
call a ∗lasso a ±∗lasso if all of its nodes have −spin or +spin.

Theorem 4.31 Let λ > 0. If

lim inf
Λ↗Z2

∂∗Λ is a circuit

µ0∗
Λ,λ(∃ ±∗lasso in Λ) > 0 ,

then
WR∗ER(λ) = {µ−∗λ , µ+∗

λ } .

Note that this theorem does not imply phase transition.
The proof falls naturally into four cases according to how many pure infinite

clusters can (co)exist, where by saying pure infinite cluster we mean the infinite
−∗cluster, the infinite 0cluster and the infinite +∗cluster.

First of all, let us establish a sound basis for the following distinction of cases.

Lemma 4.32 Let ∆ b Z2 be the interior of a circuit and λ > 0. Then for all
events A ∈ F∆

µ+∗
∆,λ(A) = µω∗∆,λ(A)

holds for all ω ∈ F with +spins on ∂∆. In particular, nothing more than feasibility
is required of the spins[ω] in ∂∗∆ \ ∂∆.

Proof: The key observation is that each node in ∆ ∗adjacent to ∂∗∆ is also
∗adjacent to ∂∆, i.e.,

{x ∈ ∆ : x ∗adjacent to ∂∗∆} = {x ∈ ∆ : x ∗adjacent to ∂∆} . (4.11)
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The inclusion “ ⊃“ is obvious and “ ⊂“ is a consequence of the following. If there
would exist a node x in ∆ ∗adjacent to ∂∗∆ and not to ∂∆ then we could connect
x to ∆c without hitting ∂∆, a contradiction to the definition of ∂∆.

The same reasoning implies that all nodes of (∂∗∆) \ (∂∆) are adjacent to ∂∆.
Consequently, for an ω ∈ F with +spins on ∂∆ we know that

ω(x) =

{
+ , if x ∈ ∂∆

0,+ , if x ∈ (∂∗∆) \ (∂∆) .
(4.12)

The lemma follows from the identity (4.11) , the observation (4.12) , and the
definition of the finite Widom-Rowlinson measures. �

A direct consequence is a useful sufficient condition for identifying a Widom-
Rowlinson measure as µ+∗

λ respectively µ−∗λ .

Corollary 4.33 Let µ ∈WR∗(λ). If each finite subset ∆ b Z2 is µ-almost surely
surrounded by a +∗circuit (resp. a −∗circuit), then µ = µ+∗

λ (resp. µ = µ−∗λ ).

Proof: Since, by symmetry, the statements are equivalent, we only show the first
one. To this end, assume that each finite subset ∆ b Z2 is encircled by a +∗circuit
µ-almost surely. Further, let A be an arbitrary increasing local event and ∆ b Z2

so that ~0 ∈ ∆ and A ∈ F∆.
By our assumptions, for all ε > 0 there exists a finite subset Γ b Z

2 that
contains a +∗circuit in Γ around ∆ with µ-probability at least 1 − ε. Therefore,
the strong Markov property leads to

µ(A) ≥ µ(A,Cmax +∗
Γ\∆ 6= ∅)

≥
∫
µ(dω)1{Cmax +∗

Γ\∆ 6=∅}(ω)µω∗intCmax +∗
Γ\∆

(A)

=

∫
µ(dω)1{Cmax +∗

Γ\∆ 6=∅}(ω)µ+∗
intCmax +∗

Γ\∆
(A)

≥
∫
µ(dω)1{Cmax +∗

Γ\∆ 6=∅}(ω)µ+∗
λ (A)

≥ (1− ε)µ+∗
λ (A) ,

where the identity follows from Lemma 4.32.
By letting ε tend to zero, we obtain that for all increasing local events A,

µ(A) ≥ µ+∗
λ (A)

holds and the lemma follows from the sandwich property. �
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4.5.1 No Pure Infinite Cluster

This subsection analyses Widom-Rowlinson measures without pure infinite cluster.
Recall that we denote the absence of an infinite +∗cluster (resp. −∗cluster resp.

0cluster) by F+∗ (resp. F−∗ resp. F 0), where the letter F alludes to the f initeness
of all corresponding clusters.

Because of Corollary 4.33 it is not surprising that absence of pure infinite
clusters implies absence of phase transition.

Proposition 4.34 Let λ > 0. If there exists a µ ∈ WR∗(λ) with µ(F−∗ ∩ F 0 ∩
F+∗) > 0, then |WR∗(λ)| = 1.

Proof: The basic idea is to show that each finite subset is µ-almost surely
surrounded by both a −∗circuit and a +∗circuit and, therefore, the conclusion
µ+
λ = µ = µ−λ follows from the previous lemma.
Note that the event F−∗ ∩F 0 ∩F+∗ is tail measurable. By extremal decompo-

sition, without loss of generality we can assume µ ∈WR∗EX(λ) with µ(F−∗ ∩ F 0 ∩
F+∗) = 1.

We first prove that each finite subset is µ-almost surely surrounded by a
0circuit. To this end, fix an arbitrary finite subset ∆ b Z2. Because of the µ-almost
sure finiteness of all −∗clusters and +∗clusters, the union of ∆, all −∗clusters
meeting ∆, and all +∗clusters meeting ∆ is µ-almost surely finite. Note that the
union’s outer ∗boundary, defined as the set of nodes of the ∗boundary that are
∗adjacent to infinite ∗paths never hitting the ∗boundary, is a 0circuit surrounding
∆.

Next, we show that each finite subset of Z2 is µ-almost surely surrounded by a
+∗circuit or a −∗circuit. Therefore, fix an arbitrary finite subset ∆ b Z2. Because
of µ(F 0) = 1, the union of ∆ and all 0clusters meeting ∆ is µ-almost surely finite
and its boundary is either a +∗circuit or a −∗circuit surrounding ∆. Since the
events “each finite subset is surrounded by a −∗circuit” and “each finite subset is
surrounded by a +∗circuit” are tail events, at least one of them occurs µ-almost
surely.

It remains to verify that both tail events occur µ-almost surely. To this end,
fix ∆ b Z

2 with ~0 ∈ ∆ and without loss of generality assume that each finite
subset is µ-almost surely surrounded by a +∗circuit. Consequently, for all ε > 0
there exist finite subsets Γ,Λ b Z2 so that with µ-probability at least 1 − ε, we
can find a +∗circuit in Γ surrounding ∆ as well as a 0circuit in Λ surrounding Γ.
The strong Markov property, together with the symmetry of µ0∗

intCmax 0
Λ\Γ ,λ

, ensures
that with µ-probability at least 1− ε, a −∗circuit in Γ encircles ∆. More precisely,
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the strong Markov property guarantees

1− ε ≤ µ(Cmax +∗
Γ\∆ 6= ∅, Cmax 0

Λ\Γ 6= ∅)

=

∫
µ(dω)µ(Cmax +∗

Γ\∆ 6= ∅, Cmax 0
Λ\Γ 6= ∅|F(intCmax 0

Λ\Γ )c)(ω)

=

∫
µ(dω)1{Cmax 0

Λ\Γ 6=∅}
(ω)µ0∗

intCmax 0
Λ\Γ (ω),λ(C

max +∗
Γ\∆ 6= ∅)

=

∫
µ(dω)1{Cmax 0

Λ\Γ 6=∅}
(ω)µ0∗

intCmax 0
Λ\Γ (ω),λ(C

max−∗
Γ\∆ 6= ∅)

=

∫
µ(dω)µ(Cmax−∗

Γ\∆ 6= ∅, Cmax 0
Λ\Γ 6= ∅|F(intCmax 0

Λ )c)(ω)

= µ(Cmax−∗
Γ\∆ 6= ∅, Cmax 0

Λ\Γ 6= ∅) ,

where the third equality follows from symmetry. Since ∆ was arbitrary, the tail-
triviality of µ concludes the proof. �

4.5.2 One Pure Infinite Cluster

We devote this subsection to analyse a Widom-Rowlinson measure with a sole pure
infinite cluster.

Recall that we denote the occurrence of one infinite +∗cluster (resp. −∗cluster
resp. 0cluster) by E+∗ (resp. E−∗ resp. E0), where the letter E alludes to the
existence of one corresponding infinite cluster.

Recall Corollary 4.33 on page 61 and let us begin with two immediate conse-
quences.

Proposition 4.35 Let µ ∈ WR∗(λ). If there exists a sole infinite −∗cluster as
well as all 0clusters and +∗clusters are finite µ-almost surely, then the under-
lying probability measure µ coincides with the Widom-Rowlinson measure with
−boundary condition, in short

µ(E−∗ ∩ F 0 ∩ F+∗) = 1 ⇒ µ = µ−∗λ .

The analogous result µ = µ+∗
λ holds for the µ-almost sure occurrence of a sole infi-

nite +∗cluster as well as the µ-almost sure finiteness of all 0clusters and −∗clusters,
in short

µ(F−∗ ∩ F 0 ∩ E+∗) = 1 ⇒ µ = µ+∗
λ .

Proof: Our proof of the first implication starts with the observation that the
µ-almost sure finiteness of all 0+clusters follows from µ(E−∗ ∩ F 0 ∩ F+∗) = 1.
This is the case because the ∗boundary of the infinite −∗cluster is only equipped
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with 0spins. Consequently, the existence of an infinite 0+cluster would imply an
infinite hole in the infinite −∗cluster and, therefore, an infinite 0path (contained
in both the infinite hole and the ∗boundary of the infinite −∗cluster) would occur,
a contradiction to µ(F 0) = 1.

Hence, for any ∆ b Z2, the union of ∆ and all 0+clusters meeting ∆ is µ-almost
surely finite and, therefore, any finite subset of Z2 is surrounded by a −∗circuit
µ-almost surely. By Corollary 4.33, µ = µ−∗λ follows.

The second implication is a consequence of the first one and symmetry. �

Unfortunately, we are not able to show that µ is a convex combination of µ−∗λ
and µ+∗

λ if only a sole infinite 0cluster exists. This leads us to the search of a
condition that precludes this event.

Proposition 4.36 Let λ > 0. If

lim inf
Λ↗Z2

∂∗Λ is a circuit

µ0∗
∆,λ(∃ ±∗lasso in ∆) > 0 ,

then F−∗ ∩ E0 ∩ F+∗ is impossible WR∗(λ)-almost-surely, i.e., for any measure
µ ∈WR∗(λ), this set F−∗ ∩ E0 ∩ F+∗ has µ-probability zero.

Proof: We fix ε ∈]0, 1[ so that

lim inf
Λ↗Z2

∂∗Λ is a circuit

µ0∗
∆,λ(∃ ±∗lasso in ∆) ≥ ε

holds. Let Γ b Z2 with ~0 ∈ Γ be so large that for any ∆ with ∂∗∆ is a circuit
encircling Γ

µ0∗
∆,λ(∃ ±∗lasso in ∆) ≥ ε/2

holds, which due to Lemma 4.28 is equivalent to

µ0∗
∆,λ(∃ 0lasso in ∆) ≤ 1− ε/2 . (4.13)

We proceed by showing that F−∗ ∩ E0 ∩ F+∗ is a tail event WR∗(λ)-almost-
surely. To this end, note that the existence of an infinite 0cluster and the event
“any finite subset of Z2 is encircled by a 0circuit” are tail-events and, moreover,
the intersection of the previous two events equals F−∗∩E0∩F+∗ WR∗(λ)-almost-
surely.

Consequently, it is sufficient to show that for any extremal Widom-Rowlinson
measure, the event F−∗∩E0∩F+∗ has probability zero. To this end, let us suppose
the contrary, i.e., assume the existence of an extremal Widom-Rowlinson measure
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µ ∈ WR∗EX (λ) with µ(F−∗∩E0∩F+∗) = 1 and fix it. By case assumption, we also
know µ(Z2 −+∗←→∞) = 0. Thus, we can find Γ1,Γ2,Γ3 b Z2 with Γ ⊂ Γ1 ⊂ Γ2 ⊂ Γ3

so that with µ-probability 1−ε/4, the infinite 0cluster meets Γ1, which is encircled
by a 0circuit contained in Γ2, and a 0circuit contained in Γ3 encircles Γ2, in short

µ(Γ1
0←→∞, Cmax 0

Γ2\Γ1
6= ∅, Cmax 0

Γ3\Γ2
6= ∅) ≥ 1− ε/4 . (4.14)

Given the slight generalisation {Cmax 0
Γ3\Γ2

6= ∅,Γ1
0←→ Cmax 0

Γ3\Γ2
, Cmax 0

Γ2\Γ1
6= ∅} of the

event in (4.14) one can always find a 0lasso in intCmax 0
Γ3\Γ2

, i.e.,

{Cmax 0
Γ3\Γ2

6= ∅,Γ1
0←→ Cmax 0

Γ3\Γ2
, Cmax 0

Γ2\Γ1
6= ∅}

⊂ {Cmax 0
Γ3\Γ2

6= ∅,∃0lasso in intCmax 0
Γ3\Γ2
} . (4.15)

The strong Markov property ensures the identity in the following chain of inequal-
ities

1− ε/4
(4.14)
≤µ(Γ1

0←→∞, Cmax 0
Γ2\Γ1

6= ∅, Cmax 0
Γ3\Γ2

6= ∅)

≤
∫
µ(dω)1Cmax 0

Γ3\Γ2
6=∅(ω)µ(Γ1

0←→ Cmax 0
Γ3\Γ2

, Cmax 0
Γ2\Γ1

6= ∅|F(intCmax 0
Γ3\Γ2

)c)(ω)

=

∫
µ(dω)1Cmax 0

Γ3\Γ2
6=∅(ω)µ0∗

intCmax 0
Γ3\Γ2

(Γ1
0←→ Cmax 0

Γ3\Γ2
, Cmax 0

Γ2\Γ1
6= ∅)

(4.15)
≤
∫
µ(dω)1Cmax 0

Γ3\Γ2
6=∅(ω)µ0

intCmax 0
Γ3\Γ2

(∃0lasso in intCmax 0
Γ3\Γ2

)

(4.13)
≤
∫
µ(dω)1Cmax 0

Γ3\Γ2
6=∅(ω)(1− ε/2)

≤1− ε/2 ,

which is a contradiction. �

4.5.3 Two Pure Infinite Clusters

This subsection analyses a Widom-Rowlinson measure with two pure infinite clus-
ters.

Let us begin with the absurd case.

Lemma 4.37 Let λ > 0. The event E−∗∩F 0∩E+∗ is impossible WR∗(λ)-almost-
surely, i.e., for any Widom Rowlinson measures µ, the event E−∗ ∩ F 0 ∩ E+∗ has
µ-probability zero.
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Proof: Assume for contradiction that there exists an extremal Widom-Rowlinson
measure µ ∈ WR∗EX(λ) with µ(E−∗ ∩ F 0 ∩ E+∗) > 0 and fix it. By tail triviality
of µ, the tail-event F 0 occurs µ-almost surely, which implies that any finite sub-
set ∆ b Z2 is encircled by a −+∗circuit, i.e., a ∗circuit equipped with −spins or
+spins. Since two ∗adjacent nodes never have strict opposite spin values µ-almost
surely, we can even state that any finite subset ∆ b Z2 is encircled by a −∗circuit
or a +∗circuit µ-almost surely. But this is a contradiction either to the existence
of an infinite −∗cluster or to the existence of an infinite +∗cluster depending on
which ∗circuit occurs infinitely often. �

Since the remaining two cases are similar, we deal with them in one proposition.

Proposition 4.38 Let λ > 0. If

lim inf
Λ↗Z2

∂∗Λ is a circuit

µ0∗
∆,λ(∃ ± ∗lasso in ∆) > 0 ,

then the set E−∗∩E0∩F+∗∪F−∗∩E0∩E+∗ is impossible WR∗(λ)-almost surely.

Proof: We restrict ourselves to show that the set F−∗ ∩ E0 ∩ E+∗ is impossible
WR∗(λ)-almost surely, since the rest of the statement follows by symmetry. By
extremal decomposition, it is sufficient to show that for any extremal Widom-
Rowlinson measure µ ∈ WR∗EX(λ), the event F−∗ ∩ E0 ∩ E+∗ has µ-probability
zero.

Let us begin by verifying that F−∗ ∩ E0 ∩ E+∗ is a tail-event WR∗(λ)-almost
surely, which will be done by applying the Shield Lemma of Chapter 3, see page
20. To this end, we map the configurations of {−1, 0, 1}Z2 to {0, 1}Z2 by flipping
all −spins and denote this map by m−7→+. Since all finite −∗clusters are encircled
by 0circuits WR∗(λ)-almost surely, the event m−7→+(F−∗ ∩ E0 ∩ E+∗) exhibits a
sole infinite 0cluster and a sole infinite 1∗cluster. Therefore, all conditions – the
uniqueness of both infinite clusters – of the Shield Lemma are met and, given the
“flipped“ event m−7→+(F−∗ ∩E0 ∩E+∗), any finite subset ∆ b Z2 is encircled by a
mixed 1∗

0 circuit. Consequently, given the event F−∗ ∩ E0 ∩ E+∗, any finite subset
∆ b Z2 is encircled by a mixed +∗

0 circuit WR∗(λ)-almost surely, since any sequence
of subsets tending to Z2 is met by the infinite +∗cluster eventually. Summing up,
we can characterise the event F−∗∩E0∩E+∗ by the intersection of the tail-events
”an infinite 0cluster occurs“, ”an infinite +∗cluster occurs“ and ”any finite subset
∆ b Z2 is encircled by a mixed +∗

0 circuit“, which implies that F−∗∩E0∩E+∗ itself
is a tail-event WR∗(λ)-almost surely.

Hence, fix a measure µ ∈WR∗EX(λ) and let us assume for contradiction µ(F−∗∩
E0 ∩ E+∗) = 1. Recall that there exists an ε > 0 so that

lim inf
Λ↗Z2

∂∗Λ is a circuit

µ0∗
∆,λ(∃ ± ∗lasso in ∆) ≥ ε . (4.16)
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Fix an arbitrary node x ∈ Z2. Inequality (4.16), together with symmetry, enables
us to fix a Γ b Z2 with ~0, x ∈ Γ so that for any ∆ with ∂∗∆ is a circuit encircling
Γ

µ0∗
∆,λ(∃ +∗lasso around x in ∆) ≥ ε/3 . (4.17)

Since all −∗clusters are finite µ-almost surely, for any ∆ b Z2 with ∂∗∆ is a
circuit encircling Γ, there exists a ∆′ b Z2 larger than ∆ so that with probability
at least 1/2, one can find a 0+circuit in ∆′ around ∆. Considering the strong
Markov property entails the following identities

0 < c := µ+∗
λ (0

+∗←→∞)ε/6

≤ µ+∗
λ (x

+∗←→∞)(ε/3)µ(Cmax 0+
∆′\∆ 6= ∅)

= µ+∗
λ (x

+∗←→∞)

∫
µ(dω)1{Cmax 0+

∆′\∆ 6=∅}(ω)(ε/3)

(4.17)
≤ µ+∗

λ (x
+∗←→∞)

∫
µ(dω)1{Cmax 0+

∆′\∆ 6=∅}(ω)

µω∗intCmax 0+
∆′\∆ ,λ

(∃+∗lasso around x)

=

∫
µ(dω)1{Cmax 0+

∆′\∆ 6=∅,∃+∗lasso around x in intCmax 0+
∆′\∆ }(ω)µ+∗

λ (x
+∗←→∞)

≤
∫
µ(dω)1{Cmax 0+

∆′\∆ 6=∅,∃+∗lasso around x in intCmax 0+
∆′\∆ }(ω)

µ+∗
λ (x

+∗←→ Cmax +∗
intCmax 0+

∆′\∆ (ω)
(ω))

≤
∫
µ(dω)1{Cmax 0+

∆′\∆ 6=∅,∃+∗lasso around x in intCmax 0+
∆′\∆ }(ω)

µω∗intCmax +∗
intCmax 0+

∆′\∆

(x
+∗←→ Cmax +∗

intCmax 0+
∆′\∆

)

= µ(Cmax 0+
∆′\∆ 6= ∅,∃+∗lasso around x in intCmax 0+

∆′\∆ , x
+∗←→ Cmax +∗

intCmax 0+
∆′\∆

)

≤ µ(x
+∗←→ ∆c) ,

where the last but one inequality follows from Lemma (4.32) and positive associ-
ation of µ+∗

λ . Summing up, if ∆ tends to Z2, then with probability at least c > 0,
any x is contained in the infinite +∗cluster, i.e., for any x ∈ Z2

µ(x
+∗←→∞) ≥ c .

To apply Theorem 3.3 on page 19 we have to map {−1, 0, 1}Z2 to {0, 1}Z2

monotonously, which will be done by exchanging −spins for 0spins, denoted by
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m−7→0. The advantage of this kind of mapping is that the event {m−7→0 ∈ A}
is increasing if A is increasing and, therefore, the measure µ′ := µ ◦ m−1

−7→0 has
positive associations. Furthermore, there still exists one infinite 1∗cluster as well
as one infinite 0cluster µ′-almost surely, since every finite −∗cluster is encircled by
a 0circuit µ-almost surely. By construction of µ′, the bounded energy property is
also satisfied. This is the case because of the following two facts:

a) every 0spin[m−7→0(ξ)] of a mapped configurationm−7→0(ξ) could be a 0spin[ξ]
in the underlying configuration ξ;

b) for any node y, the µ-probability that y takes spin value 0 or + is strictly
positive if we condition on the event that ∂∗y is equipped with 0 or +spins.

Thus, we can apply Theorem 3.3 and obtain a contradiction to our assumption
µ(F−∗ ∩ E0 ∩ E+∗) = 1. �

4.5.4 Three Pure Infinite Clusters

In this section we prove that the coexistence of all three pure infinite clusters has
probability zero WR∗ER(λ)-almost surely. This can be achieved by the butterfly-
method, which first appeared in [GHM] and later on in [GH], was developed by
Georgii and Higuchi for an analogous statement in the two-dimensional Ising-
model, and is originally based upon Zhang’s argument. It is straight forward to
apply this method to the Widom-Rowlinson model, as done in [HT, Lemma 6.5,
Prop. 6.6]. For self containment, we will modify this approach in such a way that
it is based upon our Theorem 3.12.

Our general aim is to show that given the event E−∗∩E0∩E+∗, Corollary 3.15
ensures the existence of a special kind of infinite −0cluster, which is contrary to
the uniqueness of the pure infinite clusters and, therefore, to ergodicity.

Let us begin by stating a sufficient condition for flip-reflection-invariance, which
obviously is stronger than translation-invariance. To this end, we need the follow-
ing definitions.

Definition 4.39 (halfplane, boundary line, +∗arc, −∗arc) For n ∈ (N∪N+
1/2) = {r ∈ R : 2r ∈ N}, we call

Hup(n) := {(x, y) ∈ Z2 : y ≥ n}

the upper halfplane of level n and

lhor(n) := {(x, y) ∈ R2 : y = n}

the horizontal boundary line of level n. We define the lower, left, right halfplane
of level n, and the vertical boundary line of level n accordingly.
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For any ∆ b Z2, a +∗path P either in Hup(n) ∩∆c or in Hdown(n) ∩∆c that
satisfies the following conditions is called a horizontal +∗arc of level n around ∆.
The starting node of P lies on the left side1 of ∆ and has Euclidean distance at
most 1/2 from lhor(n). The ending node of P lies on the right side of ∆ and has
Euclidean distance at most 1/2 from lhor(n).

A vertical +∗arc of level n around ∆ is defined accordingly.

The above mentioned sufficient condition falls naturally in two parts: the flip-
reflection-stochastic-domination and the flip-reflection-stochastic-subordination.

Lemma 4.40 Let λ > 0, n ∈ N∪(N+1/2) and µ ∈WR∗(λ). If for any arbitrary
∆ b Z2 there exists µ-almost surely an

horizontal + ∗arc of level n around ∆

horizontal − ∗arc of level n around ∆

vertical + ∗arc of level n around ∆

vertical − ∗arc of level n around ∆,

then

µ(.)


≥ µ ◦ f ◦Rhor(n)(.)

≤ µ ◦ f ◦Rhor(n)(.)

≥ µ ◦ f ◦Rvert(n)(.)

≤ µ ◦ f ◦Rvert(n)(.)

,

where f flips the spin values, Rhor(n) is the reflection in the horizontal boundary
line of level n, lhor(n), and so on.

Proof: We restrict ourselves to the first case for n = 0, since the proofs of the
other cases are similar.

First of all, fix an arbitrary finite subset ∆ b Z2 with ~0 ∈ ∆ and an arbitrary
increasing event A ∈ F∆.

Next, we introduce two nomenclatures. We say a circuit C is reflection-
invariant if C equals its reflection Rhor(0)(C). Furthermore, we say a random
circuit C, whose realisations C(ω) are reflection-invariant circuits, stochastically
dominates its flipped reflection if ω|C(ω) ≥ f ◦Rhor(0)(ω)|C(f◦Rhor(0)(ω)) and, there-
fore,

µω∗intC(ω)(.) ≥ µ
f◦Rhor(0)(ω)∗
intC(f◦Rhor(0)(ω))(.) .

Note that for two circuits C ′ and C ′′ that stochastically dominate their flipped
reflection, the maximal circuit in C ′ ∪ C ′′ is also such a circuit. This is the

1The phrase "on the left side" was introduced on page 23.
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case because a node of C ′ ∪ C ′′ belongs to C ′ if and only if the reflected node
Rhor(0)(x) belongs to C ′, which follows from the fact that both circuits C ′ and
C ′′ are reflection-invariant. Consequently, given a finite subset Γ b Z2 and the
existence of such a circuit in Γ, there exists a maximal circuit in Γ stochastically
dominating its flipped reflection. By case assumption, for every ε > 0 there exists
a Γ b Z2 so that with µ-probability at least 1− ε, one can find a horizontal +∗arc
of level 0 around ∆ in Γ, denoted by P = P (ε,∆,Γ); otherwise let P be the empty
set. Without loss of generality assume that P is contained in Hup(0). The union
of P and its reflection Rhor(0)(P ), denoted by C, is a ∗circuit around ∆ in Γ, if
P 6= ∅. In case P 6= ∅ the expansion C ′ := ∂∗(intC) is a random circuit around ∆
in Γ that stochastically dominates its flipped reflection, which follows from Lemma
4.6 by an analogous argument as in Lemma 4.32. More precisely (briefly recalling
the reasoning of Lemma 4.32), all nodes in intC ∗adjacent to C ′ are also adjacent
to C and all nodes in C ′ \ C are adjacent to C. Therefore, for any ω ∈ {C 6= ∅}
and

ω′(x) =

{
+1 for x ∈ Cc ∩ C ′ ∩Hup(0)

ω(x) else
,

it is the case that

µω∗intC(ω)(.) = µω
′∗

intC(ω)(.) .

Consequently, the construction of C and Lemma 4.6 ensures that C ′ := ∂∗(intC) is
a random circuit around ∆ in Γ that stochastically dominates its flipped reflection.

Let Cmax denote the maximal circuit around ∆ in Γ that is reflection-invariant
and stochastically dominates its flipped reflection. Note that intCmax is determined
from outside and, by choice of Γ, exists with probability at least 1− ε.

The strong Markov property guarantees the following first and last identity

µ(A) ≥ µ(A,Cmax 6= ∅)

=

∫
µ(dω)1{Cmax 6=∅}(ω)µω∗intCmax(ω)(A)

≥
∫
µ(dω)1{Cmax 6=∅}(ω)µ

f◦Rhor(0)(ω)∗
intCmax(f◦Rhor(0)(ω))(A)

=

∫
(µ ◦ f ◦Rhor(0)) (dω)1{Cmax 6=∅}(f ◦Rhor(0)(ω))µω∗intCmax(ω)(A)

= (µ ◦ f ◦Rhor(0)) (A, (f ◦Rhor(0)(Cmax)) 6= ∅)
≥ µ ◦ f ◦Rhor(0)(A)− ε ,

where the second inequality follows, since Cmax stochastically dominates its flipped
reflection. The lemma thus follows by letting ε tend to zero and ∆ to Z2. �
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Note that the sufficient conditions of Lemma 4.40 are tail-events and, therefore,
the opposite events – the occurrence of butterflies – are also tail-events.

Definition 4.41 (butterfly) We say a butterfly exists if one can find two half-
planes H and H ′ with H ]H ′ = Z2 so that there exists either an infinite −0cluster
in both H and in H ′, or an infinite 0+cluster in both H and in H ′.

The next step is to show the existence of at least one butterfly under certain
conditions.

Lemma 4.42 (Butterfly Lemma) Let λ > 0. Given the event E−∗ ∩E0 ∩E+∗,
a butterfly exists WR∗(λ)-almost surely.

Proof: Pick a measure µ ∈ WR∗EX(λ) with µ(E−∗ ∩ E0 ∩ E+∗) = 1. Moreover,
assume for contradiction that the absence of a butterfly has positive µ-probability,
which – in fact – by tail triviality, has µ-probability one.

Since all conditions of Lemma 4.40 are satisfied, µ is flip-reflection invari-
ant at each level and, therefore, invariant under translations. This leads to µ ∈
WR∗EX(λ) ∩WR∗ER(λ), which, together with Lemma 4.19 on page 51, is contrary
to µ(E−∗ ∩ E0 ∩ E+∗) = 1. �

Corollary 4.43 Let λ > 0. The event E−∗ ∩ E0 ∩ E+∗ is impossible WR∗ER(λ)-
almost surely.

Proof: Suppose the contrary, i.e., let µ ∈ WR∗ER(λ) be so that the translation-
invariant event E−∗ ∩ E0 ∩ E+∗ has positive µ-probability, which – in fact – by
ergodicity, has µ-probability one. By extremal decomposition and Lemma 4.42,
there exists a butterfly µ-almost surely. Without loss of generality assume that
one can find a −0cluster in Hup(0) as well as in Hdown(−1).

We denote by E−0
up, down(z, 0) the event that the node (z, 0) is contained in an

infinite −0cluster in Hup(0) as well as in an infinite −0cluster in Hdown(0) and say
that given this event, (z, 0) pins the “up,down −0butterfly”.

Next, we show that E−0
up, down(0, 0) has positive µ-probability. To this end, fix

∆ b Z
2 with ~0 ∈ ∆ so large that with µ-probability at least 1/2, the infinite

−0cluster in Hup(0) as well as the infinite −0cluster in Hdown(−1) meet ∂∆ and
denote this event by A. Note that A is measurable with respect to F∆c and the
µω∗∆ -probability of the event B that all nodes of ∆ are equipped with 0spins is
uniformly (in ω ∈ F ) bounded away from zero by a positive constant δ. Thus, the
Markov property ensures the following identity

0 < c := δ/2 ≤
∫

(dω)1A(ω)µω∗∆ (B) = µ(A,B) ≤ µ(E−0
up, down(z, 0)) .



72 CHAPTER 4. TWO-DIMENSIONAL WIDOM-ROWLINSON LATTICE MODEL

The ergodicity of µ, together with the Ergodic Theorem, verifies that infinitely
many nodes of the positive x-axis pin the “up,down −0butterfly” µ-almost surely.
But since the Ergodic Theorem also implies that infinitely many nodes of the posi-
tive x-axis are contained in the infinite +∗cluster, this is contrary to the uniqueness
of the infinite +∗cluster. �

4.5.5 Proof of Theorem 4.31

For the sake of completeness, we give the formal proof of Theorem 4.31. To this
end, recall that Lemma 4.18 states that for each spin, there exists WR∗ER(λ)-almost
surely at most one infinite pure cluster.

Proof: Fix µ ∈ WR∗ER(λ). Since each pure infinite cluster is unique, see Lemma
4.18, we can distinguish cases according to the number of pure infinite clusters.
These cases are obviously translation-invariant and by ergodicity, occur with µ-
probability one or zero.

First, let us consider the case that no pure infinite cluster F−∗∩F 0∩F+∗ exists
at all. To this end, recall Proposition 4.34 and note that µ = µ+∗

λ = µ−∗λ follows
from µ(F−∗ ∩ F 0 ∩ F+∗) = 1.

Next, we consider the events with at least one pure infinite cluster and discover
that all of them except E−∗ ∩ F 0 ∩ F+∗ and F−∗ ∩ F 0 ∩ E+∗ are µ-null sets:

• Corollary 4.43 yields that the existence of three pure infinite clusters E−∗ ∩
E0 ∩ E+∗ has µ-probability zero;

• Lemma 4.37 and Proposition 4.38 imply that the existence of two pure infinite
clusters F−∗∩E0∩E+∗∪E−∗∩F 0∩E+∗∪E−∗∩E0∩F+∗ has µ-probability
zero;

• Proposition 4.36 ensures that the occurrence of one sole infinite cluster,
namely the infinite 0cluster, has µ-probability zero.

Consequently, we have either µ(F−∗ ∩ E0 ∩ F+∗) = 1, which by Proposition 4.35
implies µ = µ+∗

λ , or µ(E−∗ ∩ F 0 ∩ F+∗) = 1, which gives µ = µ−∗λ . �



Chapter 5

A Combinatorial Approach to the
Sufficient Condition

This chapter is dedicated to analyse the structure of the space of configurations
that are equipped with 0spins outside of a set Λ b Z2, in short {σ ∈ {0, 1}Z2

:
σ = 0 off Λ}, when Λ is simply ∗connected. Recall that a configuration exhibits
either a 1∗lasso or a 0lasso in Λ, see Lemma 4.28 on page 58, and, therefore, this
configuration space can be split into {∃ 0lasso in Λ} and {∃ 1∗ lasso in Λ}. We
connect these two subsets with a non-trivial injection that (more or less) adds
more 1spins than it reduces the number of 1∗clusters. This property enables us to
compare the φf∗Λ,λ-probability of the domain with the φf∗λ,Λ-probability of the image
if the activity is at least two.

First let us recall and extend a useful notation. In order to specify the un-
derlying configuration of an object we add the configuration in brackets, e.g., we
write “the maximal 0circuit[σ] in Λ” instead of “the maximal 0circuit in Λ w.r.t.
σ”, which is denoted by Cmax 0

Λ (σ). Multiple configurations in a bracket express
that a certain property holds for these configuration, e.g., C is a 0circuit[σ, π].

For convenience, we only consider configurations in {0, 1}Λ, which could eas-
ily be extended to {0, 1}Z2 equipped with 0spins off Λ. For example by writing
{∃ 0lasso} = {σ ∈ {0, 1}Λ : ∃ 0lasso[σ]} we actually mean {σ ∈ {0, 1}Z2

: σ =
0 off Λ, ∃ 0lasso[σ] in Λ}.



74 CHAPTER 5. A COMBINATORIAL APPROACH TO THE SUFFICIENT CONDITION

5.1 A Non-Trivial Injection

This section’s goal is to construct an injection from

{∃ 0lasso in Λ} = {σ ∈ {0, 1}Z2

: σ = 0 off Λ,∃ 0lasso[σ] in Λ}

into

{∃ 1∗lasso in Λ} = {σ ∈ {0, 1}Z2

: σ = 0 off Λ,∃ 1∗lasso[σ] in Λ}

in such a manner that we only add 1spins and are able to control the decrease
in the number of 1∗clusters. Note that we cannot control the φf∗Λ,λ-probability by
simply flipping all spin values in Λ.

First of all, let us define a special path P that is a unique connection from the
starting node x to the ending node y in P .

Definition 5.1 (induced path) We call a path (x1, . . . , xn) an induced path if
there exists only one path from x1 to xn in the set {x1, . . . , xn}, i.e., for all 1 ≤
i, j ≤ n

|i− j| = 1 ⇐⇒ xi is adjacent to xj .

Accordingly, we define an induced circuit, which is uniquely defined by its
interior, in the following way.

Definition 5.2 (induced circuit) A circuit (c1, . . . , cn) is called an induced cir-
cuit if (c1, . . . , cn) is a path and

1 ≤ i, j ≤ n with i− j = 1 mod n ⇐⇒ xi is adjacent to xj .

Furthermore, we denote by iC (Λ) the set of induced circuits around ~0 in Λ.

We extend these definitions in the obvious way to induced 0paths[σ], induced
1paths[σ], induced 0circuits[σ], induced 1circuits[σ] for a configuration σ. An
induced circuit iC is also a circuit and, therefore, the interior of iC, denoted by
intiC, is the set of nodes encircled by iC.

Recall that Cmax 0
Λ (σ) denotes the maximal 0circuit[σ] in Λ. From now on, we

add the index i to the left upper side of such an object to indicate that we mean
the maximal induced 0circuit[σ] in Λ, e.g.,

iCmax 0
Λ (σ) := max iC

(
σ−1(0) ∩ Λ

)
.

Let us state some obvious notes.
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Remark 5.3 As opposed to a circuit, an induced circuit is uniquely defined by
its interior, which is – in contrast to the interior of a circuit – always simply
∗connected.

Furthermore, for any configuration σ ∈ {0, 1}Λ, the maximal induced 0circuit[σ]
iCmax 0

Λ (σ) is always smaller than and contained in the maximal 0circuit[σ] Cmax 0
Λ (σ).

Last, the interior of the maximal induced 0circuit[σ] around ~0 in Λ, intiCmax 0
Λ (σ),

is a ∗cluster that contains the origin or is ∗adjacent to it.

Next, let us consider the domain of our future injection: For an arbitrary simply
∗connected set Λ b Z2 with ~0 ∈ Λ, let

A0
Λ = A0 := {σ ∈ {0, 1}Λ : ∃ 0lasso[σ] in Λ, ~0 ∈ Cmax 0

Λ (σ)}

A1
Λ = A1 := {∃ 0lasso in Λ,~0 /∈ Cmax 0

Λ , ∂∗Cmax 0
Λ

1∗
6←→ ∂∗Cmax 1

Λ }

A2
Λ = A2 := {∃ 0lasso in Λ,~0 /∈ Cmax 0

Λ , ∂∗Cmax 0
Λ

1∗←→ ∂∗Cmax 1
Λ } ,

and note that these sets decompose the set {∃ 0lasso}, i.e.,

{σ ∈ {0, 1}Λ : ∃ 0lasso[σ]} = A0
Λ ] A1

Λ ] A2
Λ .

Now we define “the injection” and comment it afterwards:

Definition 5.4 (mΛ, iCfill(σ)) For an arbitrary simply ∗connected set Λ b Z
2

with ~0 ∈ Λ, let

mΛ : {σ ∈ {0, 1}Λ : σ = 0 off Λ,∃ 0lasso in Λ} →
→ {σ ∈ {0, 1}Λ : σ = 0 off Λ,∃ 1∗lasso inΛ};

σ 7→ 1σ−1(1)∪iCfill(σ)

be “the injection”, where

iCfill(σ) =


~0 for σ ∈ A0

Λ

min iC
(
Cmax 0

Λ (σ) ∪ σ−1(1) ∩ extCmax 0
intCmax 0

Λ (σ)
(σ)
)

for σ ∈ A1
Λ

max iC
(
Cmin 0
extCmax 1

Λ (σ)
∪ σ−1(1)

)
for σ ∈ A2

Λ .

The above presentation of the injection might suggest that a whole 0circuit[σ]
is filled with 1spins, but a closer look reveals that iCfill(σ) is often equipped with
both 0spins[σ] and 1spins[σ]. This definition turns out to be convenient, since the
induced circuit iCfill(σ) is uniquely defined by its interior.

The first part of the following lemma roughly says that for i = 1, 2 and σ ∈ AiΛ,
we could define iCfill(σ) with respect to the induced circuit iCmax 0

Λ (σ) respectively
iCmin 0

extCmax 1
Λ (σ)

. The second part states some obvious consequences of the definition.
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Remark 5.5 For an arbitrary simply ∗connected set Λ b Z2 with ~0 ∈ Λ, the map
mΛ is well defined as well as

iCfill(σ) = min iC
(
iCmax 0

Λ (σ) ∪ σ−1(1) ∩ extCmax 0
intCmax 0

Λ (σ)(σ)
)

for σ ∈ A1
Λ (5.1)

iCfill(σ) = max iC
(
iCmin 0

extCmax 1
Λ (σ) ∪ σ

−1(1)
)

for σ ∈ A2
Λ (5.2)

and

σ|(iCfill(σ))c = m(σ)|(iCfill(σ))c (5.3)
σ−1(1) ∪ iCfill (σ) = m(σ)−1(1) (5.4)

hold.

Proof: Identity (5.1) follows from iCmax 0
Λ (σ) ≤ Cmax 0

Λ (σ) , Equation (5.2) from
iCmin 0

extCmax 1
Λ (σ)

≥ Cmin 0
extCmax 1

Λ (σ)
. The last two equalities are evident. �

It remains to show that the mapmΛ is injective. For this, the difference between
σ and mΛ(σ) plays an important role, which is the content of the next definition.

Definition 5.6 (special paths) By definition, the set {x ∈ Λ : σ(x) 6= mΛ(σ)(x)}
is part of an induced circuit in σ−1(0). We interpret {x ∈ Λ : σ(x) 6= mΛ(σ)(x)}
as the union of 0paths[σ], which we denote by P1(σ), . . . , PN(σ)(σ), and call special
paths.

Note that
m(σ) = 1σ−1(1)]

⊎
1≤i≤N(σ) Pi(σ) .

The proof of the injectivity of mΛ falls naturally into three steps by considering
the maps mΛ|A0

Λ
, mΛ|A1

Λ
and mΛ|A2

Λ
separately. Each step consists of two parts.

First we show some properties of the image of the map in question, which will later
on imply that the three images are disjoint. Then we prove that the respective
map is injective.

Let us begin with the first map mΛ|A0
Λ
.

Proposition 5.7 For all simply ∗connected sets Λ b Z
2 with ~0 ∈ Λ, the map

mΛ|A0
Λ
is injective and the image of mΛ|A0

Λ
is a subset of

{∃ 1∗lasso,~0 ∈ Cmax 1∗
Λ } .

This proposition simply relies on flipping the origin’s spin value and will be
proved in the Subsection 5.1.1.

Next, we consider mΛ|A1
Λ
.
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Proposition 5.8 For all simply ∗connected sets Λ b Z
2 with ~0 ∈ Λ, the map

mΛ|A1
Λ
is injective and the image of mΛ|A1

Λ
is a subset of

{∃ 1∗lasso, Cmax 1
Λ 6= ∅,~0 /∈ Cmax 1

Λ

1∗
6←→ Cmax 1

intCmax 1
Λ
} .

Idea of the proof: Fix a configuration σ ∈ A1
Λ.

The main idea is that we fill parts of the maximal induced 0circuit[σ] to turn
σ into m(σ) and we empty parts of a “maximal” induced 1circuit[m(σ)] to change
m(σ) to σ. These parts are the intersections of both mentioned circuits.

More precisely, consider the maximal 0circuit[σ], add all 1clusters[σ] adjacent
to it and take the smallest induced circuit of this set, which equals iCfill

Λ (σ). By
the choice of σ, there exists a node contained in both the maximal 0circuit[σ] and
iCfill

Λ (σ). Recall that m(σ) is the configuration that matches σ with the one ex-
ception that all spin values in iCfill

Λ (σ) are one. Since iCfill
Λ (σ) ∩Cmax 0(σ) 6= ∅, the

configuration m(σ) exhibits a 1∗lasso. We will show that iCfill
Λ (σ) is the minimal

induced 1circuit[m(σ)] in the exterior of the maximal 0circuit[m(σ)], which enables
us to locate iCfill

Λ (σ) by considering only the configuration m(σ). The maximal cir-
cuit in the union of iCfill

Λ (σ) and all 0clusters[m(σ)] adjacent to iCfill
Λ (σ) equals the

maximal 0circuit[σ]. Therefore, the map mΛ|A1
Λ
is invertible. ©

The complete proof will be given in Subsection 5.1.2.
Only the analysis of mΛ|A2

Λ
is left.

Proposition 5.9 For all simply ∗connected sets Λ b Z
2 with ~0 ∈ Λ, the map

mΛ|A2
Λ
is injective and the image of mΛ|A2

Λ
is a subset of

{∃ 1∗lasso,~0 /∈ Cmax 1
Λ

1∗←→ Cmax 1
intCmax 1

Λ
} .

Idea of the proof: Fix a configuration σ ∈ A2
Λ.

The main idea is similar to the one for Proposition 5.8. The only difference is
that we fill parts of a “minimal” induced 0circuit[σ] to turn σ into m(σ) and we
empty parts of the maximal induced 1circuit[m(σ)] to turn m(σ) into σ.

More precisely, consider the minimal 0circuit[σ] in the exterior of the maximal
1circuit[σ], add all 1clusters[σ] adjacent to it and take the largest induced circuit
of this set. The resulting induced circuit equals iCfill

Λ (σ). By the choice of σ, there
exists a node contained in both the maximal 0circuit[σ] and iCfill

Λ (σ). Let m(σ) be
the configuration matching σ except that all spin values in iCfill

Λ (σ) are one. Since
iCfill

Λ (σ) ∩ Cmax 0(σ) 6= ∅, the configuration m(σ) exhibits a 1∗lasso. Obviously,
iCfill

Λ (σ) is the maximal induced 1circuit[m(σ)], which enables us to locate iCfill
Λ (σ)

by looking at the configuration m(σ). Consider the minimal induced circuit in the
union of iCfill

Λ (σ) and all 0clusters[m[σ)] adjacent to iCfill
Λ (σ). We will show that
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this circuit equals the minimal induced 0circuit[σ] in the exterior of the maximal
1circuit[σ]. Therefore, the map mΛ|A2

Λ
is invertible. ©

For the complete proof we refer to Subsection 5.1.3.
Given these propositions, the following theorem and, therefore, the injectivity

of mΛ is quite evident.

Theorem 5.10 For all simply ∗connected sets Λ b Z2 with ~0 ∈ Λ, the map mΛ

is injective and {σ 6= mΛ(σ)} ⊂ σ−1(0). In particular, we can interpret mΛ as a
filling of some parts of a 0circuit.

Proof: Theorem 5.10 is a direct consequence of Proposition 5.7, 5.8, and 5.9. In
particular, {σ 6= mΛ(σ)} ⊂ σ−1(0) directly follows from the definition of the map
mΛ. �

Since flipping all spins is bijective, we can state a very close version of Theorem
5.10.

Theorem 5.11 For all simply ∗connected sets Λ b Z2 with ~0 ∈ Λ, the map

f ◦mΛ ◦ f : {∃ 1lasso} → {∃ 0∗lasso}

is injective and {σ 6= f ◦mΛ ◦ f(σ)} ⊂ σ−1(1), where f flips the spin values. In
particular, we can interpret f ◦mΛ ◦ f as emptying some parts of a 1circuit.

A direct consequence of this Theorem is the following.

Corollary 5.12 For all simply ∗connected sets Λ b Z2 with ~0 ∈ Λ and for all
λ ≤ 1

µ+
Λ,λ(∃ 1lasso in Λ) ≤ 2µ+

Λ,λ(∃ 0∗lasso in Λ)

holds.

Proof: Choose an arbitrary configuration σ ∈ {∃1lasso}. Let κw(σ) be the number
of 1clusters[σ] not adjacent to Λc. Note that

κw(σ) ≤ 1 + κw(f ◦mΛ ◦ f(σ))

holds, since f ◦ mΛ ◦ f empties some parts of one 1circuit[σ]. Consequently, we
know that for any λ ≤ 1,

Zw
Λ,λφ

w
Λ,λ(σ) =λ

∑
x∈Λ σ(x)2κ

w(σ)

≤λ
∑
x∈Λ σ(x)21+κw(f◦mΛ◦f(σ))

≤λ
∑
x∈Λ f◦mΛ◦f(σ)(x)21+κw(f◦mΛ◦f(σ))

=Zw
Λ,λ2φ

w
Λ,λ(f ◦mΛ ◦ f(σ))



5.1. A NON-TRIVIAL INJECTION 79

holds, where the latter inequality is a consequence of both σ−1(0) ⊂ (f ◦ mΛ ◦
f(σ))−1(0) and λ ≤ 1 This concludes the proof. �

This, together with Theorem 4.30, implies the absence of phase transition of the
Widom-Rowlinson model on (Z2,�), i.e., |WR(λ)| = 1 for λ ≤ 1. But the absence
of phase transition is already known for activities smaller than pc/(1− pc) ≈ 3/2,
see [Hig83], where pc denotes the critical probability of Bernoulli node-percolation
on (Z2,�).
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5.1.1 Proof of Proposition 5.7

We prove Propositions 5.7, 5.8 and 5.9 using the same approach: First some
properties of the map’s image are shown. Then we verify that the considered
map is injective.

Lemma 5.13 For all simply ∗connected sets Λ b Z2 with ~0 ∈ Λ, the image of
mΛ|A0

Λ
is equal to

{∃ 1∗lasso,~0 ∈ Cmax 1∗
Λ } .

Proof: Let Λ b Z2 be given and recall that the domain A0
Λ of the map mΛ|A0

Λ

equals

{∃ 0lasso,~0 ∈Cmax 0
Λ } =

={∃ 0lasso,~0 ∈ Cmax 0
Λ , ∂∗~0

1∗←→ ∂∗(Λc)}

={∃ 0lasso,~0 ∈ Cmax 0
Λ , ∂∗~0

1∗←→ ∂∗(Λc), ∂~0
0←→ ∂(Λc)}

={~0 ∈ Cmax 0
Λ , ∂∗~0

1∗←→ ∂∗(Λc), ∂~0
0←→ ∂(Λc)} ,

where the first identity holds because the origin is contained in the maximal
0circuit, whose nodes are all ∗weakly 1∗connected to Λc. By saying a node x
is ∗weakly 1∗connected to Λc we mean that ∂∗x is 1∗connected to ∂∗(Λc). The
second equality follows from the existence of a 0lasso and the fact that the maximal
0circuit contains the origin.

Since the map mΛ|A0
Λ
simply flips the spin of the origin, the image of mΛ|A0

Λ
is

{~0 ∈ Cmax 1∗
Λ ,∂∗~0

1∗←→ ∂∗(Λc), ∂~0
0←→ ∂(Λc)} =

= {∃ 1∗lasso,~0 ∈ Cmax 1∗
Λ , ∂∗~0

1∗←→ ∂∗(Λc), ∂~0
0←→ ∂(Λc)} .

The same arguments as above – used in reverse – verify

mΛ|A0
Λ
(A0

Λ) = {∃ 1∗lasso,~0 ∈ Cmax 1∗
Λ }

and therefore the lemma. �

It remains to observe that mΛ is injective, which will be done in the next
lemma. Here this is quite obvious, whereas in the next subsections the injectivity
requires more involved arguments, partly based upon observations made in the
first lemmas describing the image of mΛ.

Lemma 5.14 For all simply ∗connected sets Λ b Z2 with ~0 ∈ Λ, the map mΛ|A0
Λ

is injective.

Proof: Let Λ b Z2 be given and recall that mΛ simply flips the spin of the origin.
This is obviously injective. �
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5.1.2 Proof of Proposition 5.8

It may help the reader to refresh the core idea of this subsection, see page 77.
Let Λ b Z

2 be a simply ∗connected set with ~0 ∈ Λ. We only prove the
statement of Proposition 5.8 for this fixed set Λ. Sometimes, we even omit the
index Λ, e.g., m denotes the map mΛ in the sequel.

Recall that the domain A1 of the map m is defined as

{∃ 0lasso,~0 /∈ Cmax 0
Λ , ∂∗Cmax 0

Λ

1∗
6←→ ∂∗Cmax 1

Λ } .

The existence of a 0lasso implies that the maximal 0circuit, which is weakly
0connected to Λc, is larger than every 1circuit (if a 1circuit exists at all), where
by saying is weakly 0connected to Λc we mean that its boundary is 0connected to
∂(Λc). Moreover, one can find a second 0circuit in intCmax 0

Λ again larger than any
1circuit, since the origin is not contained in the maximal 0circuit and the maximal
0circuit is not ∗weakly 1∗connected to the maximal 1circuit. This implies (in fact
it is equivalent) that the maximal 0circuit in intCmax 0

Λ exists and is 0∗connected
to Cmax 0

Λ . Summing up, we can state

A1 = {∃0lasso,~0 /∈ Cmax 0
Λ , ∂∗Cmax 0

Λ

1∗
6←→ ∂∗Cmax 1

Λ ,

Cmax 0
Λ > Cmax 1

Λ , ∅ 6= Cmax 0
intCmax 0

Λ

0∗←→ Cmax 0
Λ , Cmax 0

intCmax 0
Λ

> Cmax 1
Λ } (5.5)

Figure 5.1 illustrates the properties of a configuration of A1.
After analysing the domain, we state some useful fundamental relations be-

tween σ ∈ A1 and m(σ).
For this task recall the definition of the circuit

iCfill(σ) = min iC
(
Cmax 0

Λ (σ) ∪ σ−1(1) ∩ extCmax 0
intCmax 0

Λ (σ)(σ)
)

(5.6)

for σ ∈ A1, see page 75. In other words, this circuit, iCfill(σ), is the minimal
induced circuit that satisfies the following two conditions:

• It is contained in the union of the maximal 0circuit[σ], Cmax 0
Λ (σ), and the

set of nodes equipped with 1spins[σ], σ−1(1);

• It is strictly larger than the “second largest“ 0circuit[σ], Cmax 0
intCmax 0

Λ (σ)
(σ).

Note that this description equates our definition.
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0

Figure 5.1: In this figure the white squares represent nodes with 0spins[σ,m(σ)]
and the black squares are nodes with 1spins[σ,m(σ)]. The gray squares are nodes
equipped with 0spins[σ] and 1spins[m(σ)]. The maximal 0circuit[σ] is indicated
by a blue curve and consists of white and gray squares. The circuit iCfill(σ) is
indicated by a red curve and consists of black and gray squares. The “second
largest” 0circuit[σ], Cmax 0

intCmax 0
Λ (σ)

(σ), is indicated by a green curve.

Remark 5.15 Let σ ∈ A1. Then the following properties hold

σ−1(1) ∪ Cmax 0
Λ (σ) ⊃ m(σ)−1(1) (5.7)

σ−1(0) = m(σ)−1(0) ∪ Cmax 0
Λ (σ) (5.8)

iCfill(σ) ∩ Cmax 0
Λ (σ) 6= ∅ (5.9)

∂∗iCfill(σ)
σ−1(1)∗←→ ∂∗(Λc) (5.10)

Cmax 0
intCmax 0

Λ (σ)(σ) ⊂ σ−1(0) ∩m(σ)−1(0) (5.11)

Cmax 0
Λ (σ) ≥ Cmin 1

extCmax 0
Λ (m(σ))(m(σ)) . (5.12)
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Proof: Fix a configuration σ ∈ A1. By the definitions of both the configuration

m(σ) = 1σ−1(1)∪iCfill(σ) (5.13)

and the circuit

iCfill(σ) = min iC
(
Cmax 0

Λ (σ) ∪ σ−1(1) ∩ extCmax 0
intCmax 0

Λ (σ)(σ)
)
,

the statements (5.7) and (5.8) are evident.
For the next properties let us first define the ”half-open” respectively ”open”

annulus specified by the maximal 0circuit[σ] and the ”second largest“ 0circuit[σ]
by ]

Cmax 0
intCmax 0

Λ (σ)(σ), Cmax 0
Λ (σ)

]
:= Cmax 0

Λ (σ) ∪ intCmax 0
Λ (σ) ∩ extCmax 0

intCmax 0
Λ (σ)(σ)

respectively]
Cmax 0
intCmax 0

Λ (σ)(σ), Cmax 0
Λ (σ)

[
:= intCmax 0

Λ (σ) ∩ extCmax 0
intCmax 0

Λ (σ)(σ) .

Next, recall the description of iCfill(σ) after (5.6). In particular, the second con-
dition of this description said that the circuit iCfill(σ) is strictly larger than the
"second largest" 0circuit[σ], Cmax 0

intCmax 0
Λ (σ)

(σ). Moreover, the first condition, together
with minimality of iCfill(σ), immediately implies that iCfill(σ) is smaller than the
maximal 0circuit[σ], Cmax 0

Λ (σ). Summing up, we know that iCfill(σ) lies in the
”half-open” annulus, i.e.,

iCfill(σ) ⊂
]
Cmax 0
intCmax 0

Λ (σ)(σ), Cmax 0
Λ (σ)

]
. (5.14)

Further, by definition, we know that all nodes of iCfill(σ) not contained in the
maximal 0circuit[σ] are equipped with 1spins[σ], i.e.,

iCfill(σ) ∩ (Cmax 0
Λ (σ))c ⊂ σ−1(1) . (5.15)

In other words, a node of iCfill(σ) has 1spin[σ] if and only if it belongs to the ”open”
annulus, in short for all x ∈ iCfill(σ)

σ(x) = 1 ⇐⇒ x ∈
]
Cmax 0
intCmax 0

Λ (σ)(σ), Cmax 0
Λ (σ)

[
.

Property (5.9) is a consequence of these two Observations (5.14) and (5.15),
together with the choice of

σ ∈ A1
(5.5)
⊂ {π ∈ {0, 1}Λ : Cmax 0

intCmax 0
Λ (π)(π)

0∗←→ Cmax 0
Λ (π), } ,
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i.e., the maximal 0circuit[σ] and the "second largest" 0circuit[σ] are 0∗connected.
Since every node of Cmax 0

Λ (σ) is ∗weakly 1∗connected[σ] to Λc, Property (5.10)
follows from Property (5.9).

As before iCfill(σ) is strictly larger than the "second largest" 0circuit[σ], see
(5.14). Hence, since we only change spin values in iCfill(σ), see (5.3), inclusion
(5.11) follows.

The last Statement (5.12) is a direct consequence of the facts that iCfill(σ) is
smaller than the maximal 0circuit[σ], see (5.14), and that iCfill(σ) is a 1circuit[m(σ)]
∗weakly 1∗connected[m(σ)] to Λc, see (5.13) and (5.10). �

These remarks enable us to describe the image of m|A1 .

Lemma 5.16 Let σ ∈ A1. Then mΛ(σ) is an element of

{∃ 1∗lasso,~0 /∈ Cmax 1
Λ 6= ∅, Cmax 1

Λ

1∗
6←→ Cmax 1

intCmax 1
Λ
} .

Proof: Let σ ∈ A1 and recall that
iCfill(σ) = min iC

(
Cmax 0

Λ (σ) ∪ σ−1(1) ∩ extCmax 0
intCmax 0

Λ (σ)(σ)
)
.

A direct consequence of the definition of iCfill(σ) is that the ∗boundary of every
node of iCfill(σ) is 0∗connected[σ,m(σ)] in (iCfill(σ))c to Cmax 0

intCmax 0
Λ (σ)

(σ), i.e., for all
nodes z ∈ iCfill(σ)

∂∗z
0∗←→ Cmax 0

intCmax 0
Λ (σ)(σ) in (iCfill(σ))c (5.16)

holds.
Since the circuit iCfill(σ) is a 1circuit[m(σ)], see (5.4), which is ∗weakly 1∗con-

nected[m(σ)] to Λc, see (5.9) and (5.4), the existence of a 1∗lasso[m(σ)] follows,
i.e.,

m(σ) ∈ {∃ 1∗lasso} .
But we have already verified the existence of a 0circuit[m(σ)], e.g. Cmax 0

intCmax 0
Λ (σ)

(σ),
see (5.10), which, therefore, has to be smaller than the 1circuit[m(σ)] iCfill(σ) that
is ∗weakly 1∗connected[m(σ)] to Λc. Consequently, the origin cannot be contained
in the maximal 1circuit[m(σ)], i.e.,

m(σ) ∈ {~0 /∈ Cmax 1
Λ 6= ∅} .

Recall that the circuit iCfill(σ) intersects the maximal 0circuit[σ], see (5.9),
which is 0connected[σ] to the boundary of Λc, see (5.5), and that the configuration
σ equals m(σ) outside of iCfill(σ). Hence, there exists a node y ∈ iCfill(σ) with

∂y
0←→ ∂(Λc) in (iCfill(σ))c ,
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i.e., we can find a node y ∈ iCfill(σ) that is weakly 0connected[σ,m(σ)] to Λc. This,
together with (5.16), implies that y ∈ iCfill(σ) satisfies

∂(Λc)
0←→ ∂∗y

0∗←→ Cmax 0
intCmax 0

Λ (σ)(σ) in (iCfill(σ))c . (5.17)

Thus, one cannot find two disjoint 1circuits[m(σ)] in extCmax 0
intCmax 0

Λ (σ)
(σ) , since both

would have to intersect the node y. This, together with the fact that iCfill(σ) is a
1circuit[m(σ)], see (5.4), strictly larger than the 0circuit[σ,m(σ)] Cmax 0

intCmax 0
Λ (σ)

(σ),
see (5.11), implies

m(σ) ∈ {Cmax 1
Λ

1∗
6←→ Cmax 1

intCmax 1
Λ
} ,

which concludes the proof. �

It may help the reader to – once again – refresh the core idea of this subsection
described on page 77. Our next step is to “connect” a configuration m(σ) to the
original configuration σ ∈ A1. More precisely, we want to determine both iCfill (σ)
from m(σ) ∈ m(A1) and

iCempty(m(σ)) := max iC
(
Cmin 1
extCmax 0

Λ (m(σ))(m(σ)) ∪m(σ)−1(0)
)

= max iC
(
iCmin 1

extCmax 0
Λ (m(σ))(m(σ)) ∪m(σ)−1(0)

)
(5.18)

from σ ∈ A1, where the identity follows from
iCmin 1

extCmax 0
Λ (m(σ))(m(σ)) ≥ Cmin 1

extCmax 0
Λ (m(σ))(m(σ))

and
iCmin 1

extCmax 0
Λ (m(σ))(m(σ)) ⊂ Cmin 1

extCmax 0
Λ (m(σ))(m(σ)) .

Little is known, but iCempty(m(σ)) is the circuit that changes m(σ) into σ if it is
emptied.

Lemma 5.17 Let σ ∈ A1. Then the minimal induced 1circuit[m(σ)] in the exte-
rior of the maximal 0circuit[m(σ)], iCmin 1

extCmax 0
Λ (m(σ))

(m(σ)), equals iCfill (σ) and the
maximal induced 0circuit[σ] iCmax 0

Λ (σ) equals iCempty(m(σ)), i.e.,
iCmin 1

extCmax 0
Λ (m(σ))(m(σ)) = iCfill (σ) (5.19)

iCempty(m(σ)) = iCmax 0
Λ (σ) . (5.20)

Proof: Since iCfill (σ) is a 1circuit[m(σ)], see (5.4), that is ∗weakly 1∗connect-
ed[σ,m(σ)] to Λc, see additionally (5.10), we know that Cmax 0(m(σ)) ⊂ intiCfill(σ) ,
which, together with (5.4), leads to

iCmin 1
extCmax 0

Λ (m(σ))(m(σ)) ≤ iCfill (σ) .
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On the other hand

iCfill(σ) = min iC
(
Cmax 0

Λ (σ) ∪ σ−1(1) ∩ extCmax 0
intCmax 0

Λ (σ)(σ)
)

= min iC
(

(Cmax 0
Λ (σ) ∪ σ−1(1)) ∩ extCmax 0

intCmax 0
Λ (σ)(σ)

)
(5.11)
≤min iC

(
(Cmax 0

Λ (σ) ∪ σ−1(1)) ∩ extCmax 0
Λ (m(σ))

)
(5.7)
≤min iC

(
m(σ)−1(1) ∩ extCmax 0

Λ (m(σ))
)

=iCmin 1
extCmax 0

Λ (m(σ))(m(σ)) .

Both inequalities together give (5.19). This in turn implies the following:

m(σ)−1(1)
(5.4)
= σ−1(1) ∪ iCfill(m(σ))

(5.19)⇐⇒ m(σ)−1(0) = σ−1(0) \ iCmin 1
extCmax 0

Λ (m(σ))(m(σ)) ,

which verifies

σ−1(0) ⊂ m(σ)−1(0) ∪ Cmin 1
extCmax 0

Λ (m(σ))(m(σ)) . (5.21)

On the one hand

iCempty(m(σ)) = max iC
(
Cmin 1
extCmax 0

Λ (m(σ))(m(σ)) ∪m(σ)−1(0)
)

(5.21)
≥max iC

(
σ−1(0)

)
=iCmax 0

Λ (σ)

and on the other hand

iCempty(m(σ)) = max iC
(
Cmin 1
extCmax 0

Λ (m(σ))(m(σ)) ∪m(σ)−1(0)
)

(5.12)
≤max iC

(
Cmax 0

Λ (σ) ∪m(σ)−1(0))
)

(5.8)
=iCmax 0

Λ (σ) .

Considering both inequalities yields (5.20). �

Having established the above “connection” between σ and m(σ), we are ready
to see that

m−1 : m(A1)
!→ A1; m(σ) 7→ 1− 1m(σ)−1(0)∪iCempty(m(σ))

!
= σ

is a well-defined promising candidate for the inverse map, which is illustrated in
Figure 5.1.
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Lemma 5.18 Let σ ∈ A1. Then 1 − 1m(σ)−1(0)∪iCempty(m(σ)) = σ, i.e., the map
mΛ|A1 is injective.

Proof: It is sufficient to show

iCfill(σ) ∩ σ−1(0)
!

= iCempty(m(σ)) ∩m(σ)−1(1)

if we want to prove 1− 1m(σ)−1(0)∪iCempty(m(σ)) = σ.

"⊂" This inclusion is a consequence of

iCfill(σ)
(5.19)
= iCmin 1

extCmax 0
Λ (m(σ))(m(σ)) ⊂ m(σ)−1(1)

and
iCfill(σ) ∩ σ−1(0)

(5.1)
⊂ iCmax 0

Λ (σ)
(5.20)
= iCempty (m(σ)) .

"⊃" This inclusion is a consequence of

iCempty(m(σ))
(5.20)
= iCmax 0

Λ (σ) ⊂ σ−1(0)

and

iCempty(m(σ)) ∩m(σ)−1(1)
(5.18)
⊂ iCmin 1

extCmax 0
Λ (m(σ))(m(σ))

(5.19)
= iCfill(σ) ,

which concludes the proof. �
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5.1.3 Proof of Proposition 5.9

The structure of this subsection is similar to the previous two subsections. It may
help the reader to refresh the core ideas of this subsection, described on page 77.

Now, let us consider our domain

A2 = {∃ 0lasso, ∂∗Cmax 0
Λ

1∗←→ ∂∗Cmax 1
Λ }

= {∃ 0lasso, ∂∗Cmax 0
Λ

1∗←→ ∂∗Cmax 1
Λ , Cmax 0

Λ > Cmax 1
Λ } , (5.22)

where the second identity follows from the fact that the maximal 0circuit is weakly
0connected to Λc and, therefore, is larger than every 1circuit.

As before, we state some fundamental relations between σ and m(σ).

Remark 5.19 Let σ ∈ A2. Then the following properties hold:

σ−1(1) ∪ Cmin 0
extCmax 1

Λ (σ)(σ) ⊃ m(σ)−1(1) (5.23)

σ−1(0) = m(σ)−1(0) ∪ Cmin 0
extCmax 1

Λ (σ)(σ) (5.24)
iCfill(σ) ∩ Cmin 0

extCmax 1
Λ (σ)(σ) ∩ Cmax 0(σ) 6= ∅ (5.25)

Proof: First of all, recall that

m(σ) = 1σ−1(1)∪iCfill(σ)

and that for our case

iCfill (σ) = max iC
(
Cmin 0
extCmax 1

Λ (σ)(σ) ∪ σ−1(1)
)
. (5.26)

These definitions immediately imply the first two Properties (5.23) and (5.24).
Recall that the maximal 0circuit[σ] is larger than the maximal 1circuit[σ], since

it is weakly 0connected[σ] to Λc. Because of this, the minimal 0circuit[σ] in the
exterior of the maximal 1circuit[σ], Cmin 0

extCmax 1
Λ (σ)

(σ), exists and is contained in the
annulus ]

Cmax 1
Λ (σ), Cmax 0

Λ (σ)
]

:= extCmax 1
Λ (σ) ∩ intCmax 0

Λ (σ) ∪ Cmax 0
Λ (σ) .

Consequently, each node of the maximal 0circuit[σ] that is ∗weakly 1∗connected[σ]
to the maximal 1circuit[σ] also belongs to the minimal 0circuit[σ] in the exterior
of the maximal 1circuit[σ]. Because of

σ
(5.22)
∈ {∂∗Cmax 0

Λ (σ)
1∗←→ ∂∗Cmax 1

Λ (σ)}
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such a node exists and, therefore,

Cmin 0
extCmax 1

Λ (σ)(σ) ∩ Cmax 0(σ) 6= ∅

follows. Moreover, at least one of these nodes in

Cmin 0
extCmax 1

Λ (σ)(σ) ∩ Cmax 0(σ)

has to be weakly 0connected[σ] to Λc in]
Cmin 0
extCmax 1

Λ (σ)(σ), ∂∗Λ
[

:= extCmin 0
extCmax 1

Λ (σ)(σ) ∩ Λ .

This is the case because a 0lasso[σ] exists and, therefore, we could follow a 0path
from ∂(Λc) to the maximal 0circuit[σ] and then through the maximal 0circuit[σ]
to Cmin 0

extCmax 1
Λ (σ)

(σ); the first node x in Cmin 0
extCmax 1

Λ (σ)
(σ) reached this way satisfies the

required feature.
If a node of Cmin 0

extCmax 1
Λ (σ)

(σ) is ∗weakly 0∗connected to Λc in the annulus]
Cmin 0
extCmax 1

Λ (σ)(σ), ∂∗Λ
[
,

then it also belongs to iCfill (σ) , since it cannot be “circumvented“ by a 1path of

iCfill (σ)
Def.
= max iC

(
Cmin 0
extCmax 1

Λ (σ)(σ) ∪ σ−1(1)
)
.

Consequently, the node x also belongs to the circuit iCfill (σ).
Summing up, the node x belongs to

iCfill (σ) ∩ Cmin 0
extCmax 1

Λ (σ)(σ) ∩ Cmax 0(σ) ,

which implies the last Property (5.25). �

Once again, we need further (more involved) relations between a configuration
σ ∈ A2 and the corresponding configuration m(σ). More precisely, we have to find
a circuit iCempty(m(σ)) that changes m(σ) to σ if it is emptied. Our candidate is

iCempty(m(σ)) := min iC
(
Cmax 1

Λ (m(σ)) ∪m(σ)−1(0) ∩ extCmax 1∗
intCmax 1

Λ (m(σ))(m(σ))
)

= min iC
(
iCmax 1

Λ (m(σ)) ∪m(σ)−1(0) ∩ extCmax 1∗
intCmax 1

Λ (m(σ))(m(σ))
)
,

(5.27)

where the identity follows from iCmax 1
Λ (m(σ)) ≤ Cmax 1

Λ (m(σ)) and iCmax 1
Λ (m(σ)) ⊂

Cmax 1
Λ (m(σ)).
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Lemma 5.20 Let σ ∈ A2. Then the maximal induced 1circuit[m(σ)] equals the
circuit iCfill (σ) and the minimal induced 0circuit[σ] in the exterior of the maximal
1circuit[σ] equals iCempty(m(σ)), in short

iCmax 1
Λ (m(σ)) = iCfill (σ) (5.28)

iCempty(m(σ)) = iCmin 0
extCmax 1

Λ (σ)(σ) . (5.29)

Proof: On the one hand, the inequality iCmax 1
Λ (m(σ)) ≥ iCfill (σ) follows from

σ−1(1) ∪ iCfill (σ) = m(σ)−1(1) ,

see (5.4). On the other hand, we also know that

iCfill(σ)
Def.
= max iC

(
Cmin 0
extCmax 1

Λ (σ)(σ) ∪ σ−1(1)
)

(5.23)
≥iCmax 1

Λ (m(σ))

holds. Both inequalities together imply (5.28), which immediately leads to

Cmin 0
extCmax 1

Λ (σ)(σ) ∩ iCfill(σ) ⊂ iCmax 1(m(σ)) ⊂ Cmax 1(m(σ)) . (5.30)

We further know that

Cmin 0
extCmax 1

Λ (σ)(σ) ≤ iCmin 0
extCmax 1

Λ (σ)(σ) ≤ iCfill(σ) . (5.31)

holds. Indeed, the first inequality is obvious and the second one follows from the
definition of iCfill(σ) as max iC

(
Cmin 0
extCmax 1

Λ (σ)
(σ) ∪ σ−1(1)

)
. A further fact is

iCfill(σ) ∩ Cmin 0
extCmax 1

Λ (σ)(σ)
(5.25)
6= ∅ . (5.32)

These two Relations (5.31) and (5.32) prove that all 1∗circuits in intiCfill(σ) have
to be contained in intCmin 0

extCmax 1
Λ (σ)

(σ), which gives us the following inclusion

Cmin 0
extCmax 1

Λ (σ)(σ) ⊂ extCmax 1∗
intiCfill(σ)(σ)

(5.3)
= extCmax 1∗

intiCfill(σ)(m(σ))

(5.28)
= extCmax 1∗

intiCmax 1
Λ (m(σ))(m(σ)) = extCmax 1∗

intCmax 1
Λ (m(σ))(m(σ)) .

Therefore,

Cmin 0
extCmax 1

Λ (σ)(σ) ∩ (iCfill(σ))c ⊂ m(σ)−1(0) ∩ extCmax 1∗
intCmax 1

Λ (m(σ))(m(σ)) , (5.33)
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since the inclusion

Cmin 0
extCmax 1

Λ (σ)(σ) ∩
(iCfill(σ)

)c ⊂ m(σ)−1(0)

follows from Cmin 0
extCmax 1

Λ (σ)
(σ) ⊂ σ−1(0) and (5.3).

Next, by definition of iCfill(σ) and m(σ), we know that iCfill(σ) ⊂ m(σ)−1(1)∩
extCmax 1

Λ (σ), which immediately implies

Cmax 1
Λ (σ) ≤ Cmax 1∗

intCmax 1
Λ (m(σ))(m(σ)) . (5.34)

So, on the one side,

iCempty(m(σ)) = min iC
(
Cmax 1

Λ (m(σ)) ∪m(σ)−1(0) ∩ extCmax 1∗
intCmax 1

Λ (m(σ))(m(σ))
)

(5.30),(5.33)
≤min iC

(
Cmin 0
extCmax 1

Λ (σ)(σ) ∩ iCfill(σ) ∪ Cmin 0
extCmax 1

Λ (σ)(σ) ∩ (iCfill(σ))c
)

=iCmin 0
extCmax 1

Λ (σ)(σ)

holds. On the other side, it is the case that

iCempty(m(σ))
(5.27)

= min iC
(
iCmax 1

Λ (m(σ)) ∪m(σ)−1(0) ∩ extCmax 1∗
intCmax 1

Λ (m(σ))(m(σ))
)

(5.28)
= min iC

(
iCfill(σ) ∪m(σ)−1(0) ∩ extCmax 1∗

intCmax 1
Λ (m(σ))(m(σ))

)
(5.31)
≥min iC

(
Cmin 0
extCmax 1

Λ (σ)(σ) ∪m(σ)−1(0) ∩ extCmax 1∗
intCmax 1

Λ (m(σ))(m(σ))
)

(5.34)
≥min iC

(
Cmin 0
extCmax 1

Λ (σ)(σ) ∪m(σ)−1(0) ∩ extCmax 1
Λ (σ)

)
m(σ)−1(0)⊂σ−1(0)

≥min iC
(
Cmin 0
extCmax 1

Λ (σ)(σ) ∪ σ−1(0) ∩ extCmax 1
Λ (σ)

)
=iCmin 0

extCmax 1
Λ (σ)(σ) .

Taking both inequalities together yields (5.29). �

Now, we have gathered enough to finally analyse the image of m|A2 .

Lemma 5.21 Let σ ∈ A2. Then

m(σ) ∈ {∃ 1∗lasso, Cmax 1
Λ

1∗←→ Cmax 1
intCmax 1

Λ
} .

Proof: By (5.4), the circuit iCfill (σ) is a 1circuit[m(σ)], which, by (5.25), inter-
sects the maximal 0circuit[σ]. The intersection is ∗weakly 1∗connected[σ] to Λc.
Since also σ−1(1) ⊂ m(σ)−1(1), we can conclude that

m(σ) ∈ {∃ 1∗lasso} .
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So, it only remains to show that

m(A2)
!
∈ {Cmax 1

Λ
1∗←→ Cmax 1

intCmax 1
Λ
} . (5.35)

Since Cmin 0
extCmax 1

Λ (σ)
(σ) is the minimal 0circuit[σ] outside of the maximal 1circuit[σ],

every node of Cmin 0
extCmax 1

Λ (σ)
(σ) is ∗weakly 1∗connected[σ,m(σ)] to the maximal

1circuit[σ], i.e., for all x ∈ Cmin 0
extCmax 1

Λ (σ)
(σ)

∂∗x
1∗←→ Cmax 1

Λ (σ) (5.36)

with respect to σ and, therefore, also with respect to m(σ) = 1σ−1(1)∪iCfill(σ). A
further fact is

iCfill(σ) ∩ Cmin 0
extCmax 1

Λ (σ)(σ)
(5.25)
6= ∅ . (5.37)

A consequence of (5.36) and (5.37) is

∂∗iCfill(σ)
1∗←→ Cmax 1

Λ (σ) (5.38)

with respect to σ and m(σ). Therefore, by (5.28), the statement (5.35) will be
proved once we have shown that the right side of (5.38) equals Cmax 1

intCmax 1
Λ (m(σ))

(m(σ)).
Summing up, we know everything but the last identity in the following:

Cmax 1
Λ (m(σ))

1∗←→ iCmax 1
Λ (m(σ))

(5.28)
= ∂∗iCfill(σ)

(5.38)
1∗←→

1∗←→ Cmax 1
Λ (σ)

!
= Cmax 1

intCmax 1
Λ (m(σ))(m(σ)) ,

where the first 1∗connection is obvious. The latter identity will be proven in the
remainder.

"≤": By the definition of iCfill(σ), we know that Cmax 1
Λ (σ) ⊂ intiCfill(σ)

(5.28)
=

intiCmax 1
Λ (m(σ)) .A consequence of this, together withm(σ) = 1σ−1(1)∪iCfill(σ),

is Cmax 1
Λ (σ) ≤ Cmax 1

intCmax 1
Λ (m(σ))

(m(σ)) .

"≥": It is the case that

Cmax 1
intCmax 1

Λ (m(σ))(m(σ)) =Cmax 1
intiCmax 1

Λ (m(σ))(m(σ))

(5.28)
=Cmax 1

intiCfill(σ)(m(σ))

(5.3)
=Cmax 1

intiCfill(σ)(σ)

≤Cmax 1
Λ (σ) ,
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which concludes the proof. �

Last, we have to show the invertibility of m|A2 . Our candidate for the inverse
map is

m−1 : m(A2)
!→ A2; m(σ) 7→ 1− 1m(σ)−1(0)∪iCempty(m(σ))

!
= σ ,

which is illustrated in Figure 5.2.



0

Figure 5.2: In this figure the white squares represent nodes with 0spin[σ,m(σ)].
The gray squares stand for nodes with 0spin[σ] and 1spin[m(σ)]. The black squares
are nodes with 1spin[σ,m(σ)]. The circuit iCfill(σ) is indicated by a red curve.
The circuit iCempty(m(σ)) is indicated by a blue curve. The maximal 1circuit[σ] is
indicated by a green curve.

Lemma 5.22 Let σ ∈ A2. Then 1 − 1m(σ)−1(0)∪iCempty(m(σ)) = σ , i.e., the map
mΛ|A2 is injective.

Proof: It is sufficient to show that
iCfill(σ) ∩ σ−1(0)

!
= iCempty(m(σ)) ∩m(σ)−1(1)

for each σ ∈ A2.
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"⊂" This direction is a consequence of

iCfill(σ)
(5.28)
= iCmax 1

Λ (m(σ)) ⊂ m(σ)−1(1)

and
iCfill(σ) ∩ σ−1(0)

(5.2)
⊂ iCmin 0

extCmax 1
Λ (σ)(σ)

(5.29)
= iCempty (m(σ)) .

"⊃" This implication follows from

iCempty(m(σ))
(5.29)
= iCmin 0

extCmax 1
Λ (σ)(σ) ⊂ σ−1(0)

and

iCempty(m(σ)) ∩m(σ)−1(1)
(5.27)
⊂ iCmax 1

Λ (m(σ))
(5.28)
= iCfill(σ) ,

which concludes the proof. �

Consequently, we have proved the third and, therefore, all propositions.
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5.2 The Connection to theWidom-Rowlinson Model
The section is dedicated to establish a connection between the injection m and
the Widom-Rowlinson model. More precisely, we look at the number of 1∗clusters
that are joined by filling the circuit iCfill(σ).

In the sequel we often consider nodes of the ∗boundary of a node x. For this
we introduce the following notation that intuitively describes the relative location
of these nodes to x.

Definition 5.23 Let x ∈ Z2. The nodes ∗adjacent to the node x are denoted by

•x, •
x, x•, •x, x•, •x, x•, x• ,

where the bullet shall indicate the position of the node (in question) relative to x.

Note that we refrain from using the standard orientation, i.e., the node •x does not
have to be (x1−1, x2). Instead we specify the orientation by explicitly determining
one of these nodes, e.g., set •x := (x1 + 1, x2).

Up to now we interpreted the injective map m of the last section as a filling of
the circuit iCfill(σ), which consists of 0paths[σ] and 1paths[σ]. These 0paths[σ] are
within a 0circuit[σ], Cempty(m(σ)). From another point of view this map m fills
0paths[σ] that are contained in the 0circuit[σ] Cempty(m(σ)) and whose beginning
and ending nodes are adjacent to 1paths[σ]. These 1paths[σ] combined with the
above 0paths[σ] form the circuit iCfill(σ). The difference of this to the former
approach is that we start with the 0circuit[σ] Cempty(m(σ)) instead of iCfill(σ).

The setting of the next lemma describes a 0path[σ] of iCfill(σ) ∩ Cempty(m(σ))
and its surroundings. The statement, however, investigates how many 1∗clusters
are combined by filling such a 0path[σ]. Before approaching this question rigor-
ously, let us establish some intuition: Obviously, at most every second node of the
∗boundary of the to-be-filled path can belong to a different 1∗cluster. Moreover,
if we interpret the ∗boundary as a path, then it seems plausible that this path
makes turns as little as possible, since otherwise two non-consecutive nodes are
∗adjacent. In the next lemma we pursue this intuition. To this end, we need paths
and circuits that may intersect themselves.

Definition 5.24 (non-self-avoiding (∗)path, non-self-avoiding (∗)circuit)
We call a finite sequence of nodes (x1, . . . , xn), n ≥ 1, a non-self-avoiding path if
every pair of successive nodes is connected by an edge, i.e., for all 1 ≤ i, j ≤ n

|i− j| = 1⇒ xi is adjacent to xj .

Once again, the node x1 (resp. xn) is called the starting (resp. ending) node.
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A non-self-avoiding path (x1, . . . , xn) is called a non-self-avoiding circuit if the
starting node x1 is adjacent to the ending node xn.

Accordingly, we define a non-self-avoiding ∗path and a non-self-avoiding ∗circuit.

Let us prepare the first part of the following lemma by interpreting its setting
and, hereby, introducing some notation: Let k ≥ 3, (p1, . . . , pk) an induced path,
P := (p2, . . . , pk−1) and ∆ := ∂∗P ∪ P . Set p2• = p3 and pk−2 = •pk−1. We
further assume that p1 ∈ {•p2,

•
p2} and pk ∈ {

•
pk−1, pk−1•}. We interpret ∂∗P as a

non-self-avoiding ∗circuit and ∂∗P \ {p1, pk} as two non-self-avoiding ∗paths. The
non-self-avoiding ∗path containing p2•

will be referred to as the “lower“ part and

denoted by ∆down; the other non-self-avoiding ∗path as the “upper“ part, ∆up.
Consequently, we can say the induced path (p1, . . . , pk) splits ∆ into three disjoint
parts, an “upper“ part ∆up, a “lower“ part ∆down, and (p1, . . . , pk).

Lemma 5.25 a) As above, let k ≥ 3 and (p1, . . . , pk) an induced path with p1 ∈
{•p2,

•
p2} and pk ∈ {

•
pk−1, pk−1•} if we set p2• = p3 and •pk−2 = pk−1. Further,

let P := (p2, . . . , pk−1), ∆ := ∂∗P ∪ P , ∆up the “upper“ part of ∆ and ∆down the
“lower“ part of ∆. Further, let σ ∈ {0, 1}∆ be such that

i) {p1, . . . , pk} ⊂ σ−1(0) ;

ii) ∃ x, y ∈ ∆down with x 6= y, x ∼ p2, y ∼ pk−1, {x, y} ⊂ σ−1(1), and x 1= y .

If there are at least |P |+ 2 disjoint 1∗clusters ∗adjacent to P , then

1) P forms a straight line, i.e., for all j with 2 ≤ j ≤ k − 1

pj = p2 + (j − 2)(p3 − p2) ; (5.39)

2) the length of P is odd and at least 3;

3) if we set •pi := pi−1 for all i with 3 ≤ i ≤ k − 1, then it is the case that

•p2, p2•
,
•
p3, p4•

,
•
p5, . . . , pk−3•

,
•

pk−2, pk−1•
, pk−1

• ⊂ σ−1(1)

•p2,
•
p2, p3•

,
•
p4, . . . , pk−4•

,
•

pk−3, pk−2•
,
•

pk−1, pk−1• ⊂ σ−1(0)
, (5.40)

which is illustrated in Figure 5.3.

b) Let C an induced circuit strictly around the origin. Furthermore, let π ∈
{0, 1}C∪∂∗C be a configuration such that C is a 0circuit[π]. Then the number of
1∗clusters[π] ∗adjacent to C is at most |C|+ 2.
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p2p2 pk−1pk−2p3

Figure 5.3: This graphic illustrates ∆\ (•p2∪pk−1•). The black squares are nodes
that have taken spin value 1. The white squares are nodes with spin value 0. The
gray squares are nodes, which spin values cannot be specified in generality.

Proof: Our strategy consists of three steps, where the second step decomposes into
four cases. First, given an arbitrary induced path Q, we define a non-self-avoiding
circuit R(Q) such that its cardinality is 2|Q|+ 6 and it contains the ∗boundary of
Q. Second, we prove the first part of the lemma. More precisely, we (more or less)
take away both nodes x and y from R(P ), together with all nodes ∗adjacent to
them. Note that the rest of R(P ) decomposes into at most two non-self-avoiding
paths, called P1 and P2. The lemma (more or less) follows from the fact that at
most every second node of P1 or P2 can be hit by a “new” 1∗cluster. Third, with
the aid of the non-self-avoiding circuit R(Q) defined in the first step, we prove the
second part of the lemma.

Let us note, right here, that instead of defining R(Q) we could use ∂∗Q to
derive this lemma. This would be easier at the beginning, namely step one, but
later on we would have to argue more carefully. This is the case because ∂∗Q
depends more on the whole path Q than R(Q).

First Step: First we recursively define R(Q) and simultaneously prove

|R(Q)| = 2|Q|+ 6

for all induced paths Q.
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If the path Q consists of one node (base case) we define R(Q) by ∂∗Q. A
moment’s thought reveals |∂∗Q| = 2|Q|+ 6 = 8 . Furthermore, R(Q) = (r1, . . . , r8)
satisfies the following additional (technical) property, called the “unique index”:
For all nodes z such that (Q, z) is an induced path, there exists exactly one index
i such that ri = z and {ri−1, ri+1} = {•z, z•}, where •z shall be the ending node of
Q and the indices i− 1 and i+ 1 are to be understood modulo 8.

Figure 5.4 may help the reader to understand the inductive step n − 1 → n:
Let Q′ := (q1, . . . , qn−1) be an arbitrary induced path and let R(Q′) := (r1, . . . , rm)

q1

q6

q2 q3 q4 q5
r10

r11
r25 r12

q25
r26

q26

r2

r1
r70
q33

q7

q8

q9

q10 q11 q12 q13 q14 q15

q16

q17

q18

q19

q20

q21q22q23q24

q27 q28 q29

q30

q31

q32

r3

r4r5r6

r7

r8

r9
r27

r28r29r30r31r32

r33

r34 r35 r36 r37 r38

r39

r40

r41

r42

r43 r44 r45 r46 r47 r48 r49 r50

r51

r52

r53

r54

r55

r56

r57

r58r59
r60
r64

r61
r63

r62

r65

r66

r67

r68

r69

r'70r'71r'72

r13 r14

r15

r16

r17

r18r19r20r21

r22

r23

r24

Figure 5.4: This graphic illustrates the non-self-avoiding circuits R(Q′) =
(r1, . . . , r70) and R(Q) = (r1, . . . , r69, r′70, r′71, r′72). The red node q33 = r70 =
ri is the node qn = Q\Q′, which is subtracted from R(Q′), and the red nodes r′70,
r′71 and r′72 are added to the result to get R(Q).

be the corresponding non-self-avoiding circuit, which contains ∂∗Q′, satisfies

|R(Q′)| = 2|Q′|+ 6 ,

and exhibits the “unique index” property. Further, let qn be a node so that adding
the node qn to Q′ = (q1, . . . , qn−1) results in an induced path Q = (Q′, qn) =
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(q1, . . . , qn). Set •qn = qn−1 and let i be the unique index such that ri = qn and
{ri−1, ri+1} = { •qn, qn•

}. The cardinality of the path (ri+1, . . . , rm, r1, . . . , ri−1) is

2|Q′|+ 5 = 2|Q|+ 3. We define R(Q) by the non-self-avoiding circuit

C := (qn
•, qn•, qn•, ri+1, . . . , rm, r1, . . . , ri−1) ,

whose cardinality is 2|Q|+ 6. To check that C exhibits the unique index property
take any z adjacent to qn and set •z = qn, then, by definition of R(Q), the existence
of two different indices i, j with {ri−1, ri+1} = {rj−1, rj+1} = {•z, z•} implies that
the node z• also belongs to Q. Therefore, (Q, z) cannot be an induced path, since
the supposedly ending node z would have two adjacent nodes of Q, namely •z
and z•. Consequently, the “unique index“ property is satisfied. Moreover, R(Q)
contains both ∂∗Q′ \ qn and ∂∗Q \ ∂∗Q′, which, taken together, equals ∂∗Q. Thus,
R(Q) is well-defined for all induced paths Q.

Interlude: Before turning towards the second step, we exclude |P | = 1, 2 by
testing all possibilities, which is done in Figure 5.5.

Second Step: Recall the setting of the first part of the lemma. From now on
assume |P | ≥ 3 and R(P ) = (r1, . . . , rm) and set p2• = p3 and •pk−1 = pk−2. Recall
that the node p2 is adjacent to x ∈ ∆down, pk−1 is adjacent to y ∈ ∆down, and x, y
have spin value 1. Further, there are only two possible locations for x, namely p2•
or •p2, and two possible locations for y, namely pk−1•

or pk−1•.

Before we subtract certain nodes of R(P ) and, afterwards, split the remaining
set into two non self-avoiding paths, we try to establish some intuition by describing
this in an easier setting. To this end, assume that ∂∗P is a circuit C = (c1, . . . , cm).
A consequence of this assumption is R(P ) = C. Pick the indices i and j so that
ci = x and cj = y, which are uniquely determined in this setting. Recall that P
has at least three nodes and that we set p2• = p3 and •pk−1 = pk−2. Without loss
of generality let C be enumerated so that 3 ≤ i < j ≤ m − 2. Consequently, the
intersection

{ci−2, ci−1, ci = x, ci+1, ci+2} ∩ {cj−2, cj−1, cj = y, cj+1, cj+2}

is contained in
{ci = x, ci+1, ci+2, cj−2, cj−1, cj = y} .

Now, in a first step, if x = •p2 then subtract the nodes ci−2 =
•
p2, ci−1 = •p2,

ci+1 = •p2, and ci+2 = p2•
from C \ci, which are all ∗adjacent to ci = x, and denote

the resulting set by C ′, i.e.,

C ′ = C ′(x = •p2) := C \ {ci−2, ci−1, ci, ci+1, ci+2} = C \ { •p2,
•p2, •p2, •p2, p2•

} ;
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p2p1

p3

x

p2 p3p1

p4

y

x

y

Figure 5.5: The figure illustrates all possibilities – up to rotation and reflection
– for |P | = 1, 2. The black (resp. white) squares represent nodes that take spin
value 1 (resp. 0). The spin values of the gray and red squares cannot be specified
in generality. The path (p1, p2, p3) resp. (p1, p2, p3, p4) splits the left resp. the right
illustration in two parts, namely the upper half consisting of the red nodes and
the lower half consisting of the lower and right nodes.
Obviously, in both graphics at most one 1∗cluster can hit the upper part, which is
the case if one of the red squares has spin value 1. Moreover, in the left graphic at
most one 1∗cluster can hit the lower part, since the nodes x and y are ∗adjacent
and all other nodes of the lower part are adjacent to them. In the right graphic
at most two 1∗clusters can hit the lower part. This is the case if and only if the
node p3•

has 0spin; otherwise one 1∗cluster hits the lower part, because the nodes

x and y are 1∗connected by p3•
. Summing up, on the left side there are at most

two 1∗clusters ∗adjacent to P = (p2) and on the right side there are at most three
1∗clusters ∗adjacent to P = (p2, p3).

in the alternative case x = p2•
subtract the nodes ci−2 = •p2, ci−1 = •p2, and ci+1

from C \ ci, which are all ∗adjacent to ci = x, and denote the resulting set by C ′,
i.e.,

C ′ = C ′(x = p2•
) := C \ {ci−2, ci−1, ci, ci+1} = C \ {•p2, •p2, p2•

, a} .

Note that the set C ′ has lost at least four and at most five nodes in comparison to C
depending on the exact position of x relative to p2 with p2• = p3. In a second step,
in the same manner we subtract the nodes cj−2 = pk−1•

, cj−1 = pk−1•, cj+1 = pk−1
•,

and cj+2 =
•

pk−1 from C ′ \ cj if y = cj = pk−1• and denote the resulting set by C ′′;
in the case y = pk−1•

we subtract the nodes cj−1, cj+1 = pk−1•, and cj+2 = pk−1•
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from C ′ \ cj and denote the resulting set by C ′′; Note that 2 ≤ |C ′ \ C ′′| ≤ 5,
since the nodes cj+1 and cj+2 are subtracted in any case. Moreover, the nodes x
and y may not be adjacent and, therefore, ci+1 cannot coincide with y. Note that
|C ′ \ C ′′| = 2 can only occur if only the nodes cj+1 and cj+2 are subtracted from
C ′. This happens if ci+2 coincides with y and is already subtracted from C to get
C ′, i.e., x = •p2 and y = pk−1•

. In particular, in this case, ci+1 = cj−1 and in total

seven nodes are subtracted from C to get C ′′. Summing up, the decrease of nodes
from C to C ′′ is at least seven and at most ten, in short and more precisely

|C \ C ′′| = |C| − 7− 1ci+1 6=cj−1
− 1•p2=x,ci+1 6=cj−1,ci+2 6=cj−1

− 1p2•=y,ci+1 6=cj−1,ci+1 6=cj−2

Now let us return to our more general setting.
Similar as above, we determine the shape of certain parts ofR(P ) = (r1, . . . , rm)

“around“ x and y depending on the exact location of x and y:

1. If x = •p2 , then there exists an index i such that ri−2 =
•
p2, ri−1 = •p2,

ri = x = •p2, ri+1 = •p2, and ri+2 = p2•
, where the indices should be

understood modulo |R(P )| = m. Consequently,

R(P ) = (r1, . . . ,
•
p2,
•p2, •p2, •p2,p2•

, . . . , rm)

holds;

2. If x = p2•
, then there exists an index i such that ri−2 = •p2, ri−1 = •p2, and

ri = x = p2•
, where the indices should be understood modulo |R(P )| = m.

Consequently,

R(P ) = (r1, . . . , •p2, •p2,p2•
, ri+1, . . . , rm)

holds;

3. If y = pk−1• , then there exists an index i such that ri−2 = pk−1•
, ri−1 = pk−1•,

ri = x = pk−1•, ri+1 = pk−1
•, and ri+2 =

•
pk−1, where the indices should be

understood modulo |R(P )| = m. Consequently,

R(P ) = (r1, . . . ,pk−1•
,pk−1•,pk−1•,pk−1

•, •pk−1, . . . , rm)

holds;
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4. If y = pk−1•
, then there exists an index j such that rj = x = pk−1•

, rj+1 =

pk−1•, and ri+1 = pk−1•
, where the indices should be understood modulo

|R(P )| = m. Consequently,

R(P ) = (r1, . . . , rj−1,pk−1•
,pk−1•,pk−1•, . . . , rm)

holds.

Once again, without loss of generality assume 3 ≤ i < j ≤ m − 2, which implies
that the intersection

{ri−2, ri−1, ri, ri+1, ri+2} ∩ {rj−2, rj−1, rj, rj+1, rj+2}

has to be contained in
{ri, ri+1, ri+2, rj−2, rj−1, rj} .

Note that ri = x and rj = y cannot coincide or be adjacent to each other. Now
subtract these at least seven entries from R(P ), specified by the four statements
above and printed in bold type. This splits R(P ) into at most two non-self-avoiding
paths P1 and P2 that satisfy the following:

|P1|+ |P2| = |R(P )| − 7− 1ri+1 6=rj−1
− 1x=•p2,ri+1 6=rj−1,ri+2 6=rj−1

− 1y=pk−1•,ri+1 6=rj−1,ri+1 6=rj−2

= 2|P | − 1− 1ri+1 6=rj−1
− 1x=•p2,ri+1 6=rj−1,ri+2 6=rj−1

− 1y=pk−1•,ri+1 6=rj−1,ri+1 6=rj−2
,

where one of these paths is the empty set if ri+1 = rj−1 or ri+1 is adjacent to rj−1.
There are at most d|P1|/2e resp. d|P2|/2e disjoint 1∗clusters hitting P1 resp.

P2, since at most every second node can be hit by a “new” 1∗cluster.
We distinguish between four cases according to how many entries we subtract

from R(P ):
First Case: If we subtract 10 entries, then |P1| + |P2| = 2|P | − 4 follows.

Therefore, at most

d|P1|/2e+ d|P2|/2e ≤ d|P1|/2 + |P2|/2e+ 1 = d|P | − 2e︸ ︷︷ ︸
=|P |−2

+1 = |P | − 1

1∗clusters can hit P1 or P2. Recall that the nodes x and y have 1spin and, therefore,
by construction, at most two disjoint 1∗clusters can hit the nodes that were sub-
tracted from R(P ). Summing up, one can find at most |P |+ 1 disjoint 1∗clusters
hitting ∂∗P . This is a contradiction to the assumption of the lemma that there are
|P |+ 2 disjoint 1∗clusters hitting ∂∗P , which means that this case is impossible.
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Second Case: If we subtract 9 entries from R(P ), then |P1|+ |P2| = 2|P | − 3.
Note that either |P1| or |P2| is odd and

d|P1|/2e+ d|P2|/2e ≤ d|P1|/2 + |P2|/2e+ 1 = d|P | − 3/2e︸ ︷︷ ︸
=|P |−1

+1 = |P |

is an upper bound for the number of disjoint 1∗clusters hitting P1∪P2. This upper
bound can only be reached if both |P1| and |P2| are odd, which is not the case.
Therefore, at most |P | − 1 disjoint 1∗clusters hit P1 ∪ P2. Once again, since at
most two disjoint 1∗clusters can hit the nodes that were subtracted from R(P ),
one can find at most |P |+1 disjoint 1∗clusters hitting ∂∗P . This is a contradiction
to the assumption of the lemma that there are |P | + 2 disjoint 1∗clusters hitting
∂∗P . Again, this case is impossible.

Third Case: If we subtract 8 entries from R(P ), then |P1| + |P2| = 2|P | − 2.
Thus, at most

d|P1|/2e+ d|P2|/2e ≤ d|P1|/2 + |P2|/2e+ 1 = d|P | − 1e︸ ︷︷ ︸
=|P |−1

+1 = |P |

1∗clusters can hit P1∪P2. Note that the inequality above can only be an equality,
if both |P1| and |P2| are odd. In particular, in this case neither P1 nor P2 are
the empty set and, therefore, the nodes ri+1 and rj−1 do not coincide and are
not adjacent to each other. Consequently, we know that p2•

= x and pk−1•
= y

holds. Further, assuming that |P | disjoint 1∗clusters hit P1∪P2 implies that every
second node of both P1 and P2 has to be hit by a “new” 1∗cluster, beginning at
the starting nodes and ending at the ending nodes.

Note that at most two disjoint 1∗clusters can hit the nodes subtracted from
R(P ). So, if at most |P |−1 disjoint 1∗clusters hit P1∪P2 then this is a contradiction
to our assumption that at least |P | + 2 disjoint 1∗clusters hit P . Thus, we only
have to consider the event that |P | disjoint 1∗clusters hit P1 ∪ P2 in the sequel.
Recall all consequences of this, stated in the last paragraph.

Remember that we set p2• = p3 and •pk−1 = pk−2 at the beginning of the
second step. Furthermore, we know that x = p2•

, y = pk−1•
, ri+1 6= rj−1, and the

nodes ri+1 and rj−1 are not adjacent to each other. Therefore, we subtracted the
following 8 nodes from R(P ) to get P1 ∪ P2:

•p2, •p2, p2•
, ri+1, rj−1, pk−1•

, pk−1•, and pk−1• .

Hence, P1 or P2 starts in •p2 and ends in pk−1
•; without loss of generality say P1.

Recall that both nodes, namely •p2 and pk−1
•, have 1spin, since every second node

of P1 has to be hit by a “new” 1∗cluster, beginning at the starting node and ending
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at the ending node. Because of the same reasoning the second node •p2 and the
second to last node •pk−1 of P1 have 0spin. We can even determine the position of p4

as p3• = p4 if we set •p3 = p2: Assume for contradiction p4 ∈ {
•
p3, p3•

}: If p4 =
•
p3

then the starting node of P1, namely •p2, is ∗adjacent to or coincides with the
third node of P1. This is a contradiction to the fact that every second node of P1

has to be hit by a “new” 1∗cluster, beginning at the starting node •p2. Otherwise,
p4 = p3•

implies that the third node •p2 of P1 is ∗adjacent to both the fourth node

p2
• and fifth node p2• of P1. Once again, we have derived a contradiction to the

fact that every second node of P1 has to be hit by a “new” 1∗cluster, beginning at
the starting node. Since now the position of p4 is known, we can determine the
position of ri+1 as p2• = p3•

and, therefore, p3•
⊂ σ−1(0), as the starting node of P2

has to be hit by a new 1∗cluster, which, in particular, must not be 1connected to
x by ri+1. Moreover, •p3, being the third node of P1, is equipped with a 1spin.

The last paragraph gives the induction base, i = 3, of the following proof by
induction that P forms a straight line, i.e., (5.39), and that the configuration of
∂∗P \ {•p2, pk−1•} is as in (5.40).

Our induction hypothesis is that for all 3 ≤ j ≤ i with i < k − 1,

pj+1 = p2 + (j − 1)(p3 − p2)

and that for •pj = pj−1,

i) if j is even then the node •pj has 0spin and pj
•

has 1spin;

ii) if j is odd then the node •pj has 1spin and pj
•

has 0spin.

We prove our induction step, i→ i+ 1 with i+ 1 < k−1, only for even i, since
the case for odd i is obviously similar: Set pi−1 = •pi. By induction hypothesis, the
node •pi has 0spin and pi•

has 1spin. So, the node pi+1 being equipped with a 0spin

cannot coincide with pi•
, which has 1spin. For contradiction assume pi+1 =

•
pi. This

implies that the (i-3)-th node of P2, namely pi•
, is ∗adjacent to both the (i-2)-th

and the (i-1)-th node of P2, namely pi• and pi•. But this is a contradiction, since
the (i-3)-th node of P2 is equipped with a 1spin and every second node of P1 has
to be hit by a “new” 1∗cluster, beginning at the starting node.

Summing up, we have proved that P forms a straight line, i.e., (5.39), and the
configuration of ∂∗P \ {•p2, pk−1•} evidently is as in (5.40).
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Fourth Case: If we subtract 7 entries of R(P ), then ri+1 = rj−1 and one path,
say P2, is the empty set. Once again, one can find at most

d|P1|/2e = d|P | − 1/2e = |P |

1∗clusters in P1. Note that this bound can only be reached if every second node of
P1 is hit by a “new” 1∗cluster, beginning at the starting node. If we further assume
that the nodes x and y are ∗adjacent then at most |P |+1 disjoint 1∗clusters can hit
∂∗P , which is contrary to the assumption that at least |P |+ 2 disjoint 1∗clusters
hit ∂∗P . Hence, the node x is not ∗adjacent to the node y and, therefore, the
path (x, ri+1 = rj−1, y) forms a straight line. We have four possibilities to check:
ri+1 ∈ {p2, p2•, p2•

•
, •p2}.

i) If ri+1 = p2 then, by construction of R(P ), a node pl of P with l > 3
coincides with the node •p2. This is a contradiction to our condition that P
is an induced path.

ii) If ri+1 = p2• then the first part of the lemma follows from an easy sketch,
which is left for the reader to draw.

iii) If ri+1 ∈ {p2•
•
, •p2} then at most |P | + 1 disjoint 1∗clusters are ∗adjacent to

P . This is the case because the third node •p3 = p2
• of P1 is ∗adjacent to the

fourth and fifth node of P1, namely p3
• and p3•. Therefore, not every second

node of P1 can be hit by a “new” 1∗cluster, beginning at the starting node.
It may help the reader to draw a sketch.

Consequently, the first part of the lemma follows.
Third Step: Fix an induced circuit C and a configuration π as required in

the second part of the lemma. Our aim is to verify that at most |C| + 2 disjoint
1∗clusters[π] can be ∗adjacent to C. For this, it suffices to check that

|∂∗C| ≤ 2|C|+ 1 (5.41)

holds, since at most 1 + d |∂
∗C|
2
e disjoint 1∗clusters[π] can be ∗adjacent to C.

Recall that C =: (c1, . . . , cn) is an induced circuit strictly around the origin
and, therefore, C consists of at least 8 nodes, in short n ≥ 8. Hence, the circuit
C has to make a turn, say at c2. More precisely, set c1 := c2• and without loss of
generality assume that c3 = c2•

.

Figure 5.6 may help the reader in the following: The set C\c2 can be interpreted
as an induced path and the non-self-avoiding circuit R(C \ c2) of step one is well-
defined. Moreover, it is the case that

|R(C \ c2)| = 2|C \ c2|+ 6 = 2|C|+ 4 .
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By construction of R(C \ c2) =: (r1, . . . , r2|C|+4), the node c2 appears at least twice
in R(C \ c2) and the nodes c1 and c3 each appear once in R(C \ c2). Hence, it is
the case that

|R(C \ c2) \ C| ≤ 2|C| .
The only node of ∂∗C not contained in R(C \ c2) can be •c2, in short

∂∗C \R(C \ c2) ⊂ {•c2} .

Summing up, we know that

c2 c1

c3 r1

r 2r 3
r 4

r k

r k1

r k2 r k3

Figure 5.6: The graphic illustrates ∂∗c2. The gray squares are not contained in C.
Whereas, the white squares belong to C. The red square can but does not have
to belong to R(C \ c2). Without loss of generality we assume that R(C \ c2) =
(r1, . . . , rk, . . . r2|C|+4) starts in c2•.

|∂∗C| ≤ |R(C \ c2) \ C|+ 1 ≤ 2|C|+ 1

holds and, therefore, (5.41) follows, which concludes the proof. �

We will need a special observation regarding this lemma:

Corollary 5.26 In the situation of Lemma 5.25 a) there are at most |P | + 1
disjoint 1∗clusters in ∆down ∗adjacent to P .

Proof: Once again, we exclude |P | = 1, 2 by checking all possibilities. Since for
|P | ≥ 3 the node •p3 lies in ∆up, our statement follows directly from Lemma 5.25. �

Now, we are ready to establish the direct connection to the Site-Random-
Cluster model and, therefore, to the Widom-Rowlinson model. Hereby, the activity
has to be at least 24/3, which will be reduced to 2 later on. Nonetheless, the
following proof points out the problem for activities in [2, 24/3[.
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Proposition 5.27 Let Λ b Z2∗ be a simply connected set with 0 ∈ Λ. Then the
injective map mΛ of Theorem 5.10 satisfies

φf∗Λ,λ(σ) ≤


8φf∗Λ,λ(mΛ(σ)) ∀σ ∈ A0

Λ, λ ≥ 2

4φf∗Λ,λ(mΛ(σ)) ∀σ ∈ A1
Λ, λ ≥ 24/3

8φf∗Λ,λ(mΛ(σ)) ∀σ ∈ A2
Λ, λ ≥ 2.

(5.42)

In particular,

µ0∗
Λ,λ(∃ 0lasso in Λ) ≤8µ0∗

Λ,λ(∃ −+∗lasso in Λ) ∀λ ≥ 24/3 .

Proof: The proof falls naturally into three parts depending on whether σ belongs
to A0

Λ, A1
Λ, or A2

Λ.
First Part: Let σ ∈ A0

Λ and recall that m|A0
Λ
flips the spin of the origin. There-

fore, at most four disjoint 1∗clusters[σ] are combined, which verifies the statement
for m|A0

Λ
.

Second Part: The statement for m|A1
Λ
is more involved: Let σ ∈ A1

Λ. Recall
that the induced 0paths[σ] P1(σ), . . . , PN(σ)(σ), N(σ) ≥ 1, are contained in the
maximal induced 0circuit[σ] and let them be numbered clockwise. Moreover, m|A1

Λ

flips the spin values of these special paths. For 1 ≤ j ≤ N , the starting node of Pj
is weakly 1connected[σ] to the ending node of Pj−1 in intCmax 0(σ), where P0 = PN .

In the following three paragraphs we will distinguish three cases to prove that

κ(σ)− κ(m(σ)) ≤ 2 +
∑

1≤i≤N(σ)

|Pi(σ)|≤2

|Pi(σ)|+
∑

1≤i≤N(σ)

|Pi(σ)|≥3

(|Pi(σ)|+ 1) , (5.43)

where κ(σ) is the number of 1∗clusters[σ].
If N(σ) = 1 and P1(σ) is the maximal 0circuit[σ], i.e., the map m fills the whole

circuit Cmax 0
Λ (σ) = iCfill(σ), then there are at most |P1(σ)| + 2 disjoint 1∗clusters

∗adjacent to P1(σ), see Lemma 5.25 b). These 1∗clusters are combined into one
1∗cluster by applying the map m. In this case Inequality (5.43) follows.

If N(σ) = 1 and P1(σ) is the maximal 0circuit[σ] minus one or two nodes, then
at most |P1(σ)|+ 4 disjoint 1∗clusters are ∗adjacent to Cmax 0

Λ (σ), see Lemma 5.25
b), and, therefore, to P1(σ). Because of σ ∈ A1 ⊂ {~0 /∈ Cmax 0

Λ } the maximal
0circuit[σ] consists of at least 8 nodes and, therefore, |P1(σ)| ≥ 6. Consequently,
in this case Inequality (5.43) follows.

In the alternative case when |Cmax 0
Λ (σ) \

⋃
1≤i≤N(σ) Pi(σ)| > 2, for each path

Pj(σ) we are in the setting of Lemma 5.25 a). Thus, for each 1 ≤ j ≤ N(σ) there
are at most |Pj|+ 2 disjoint 1∗clusters[σ] ∗adjacent to Pj and this bound can only
be reached if |Pj| ≥ 3. Moreover, one can find at least one 1cluster[σ] adjacent to
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both Pj and Pj−1 for each 1 ≤ j ≤ N(σ). An evident consequence is that there
are at most ∑

1≤i≤N
|Pi|≤2

|Pi|+
∑

1≤i≤N
|Pi|≥3

(|Pi|+ 1)

disjoint 1∗clusters[σ] ∗adjacent to
⋃

1≤i≤N Pi. Consequently, Inequality (5.43)
holds in all three cases.

This inequality, together with λ ≥ 24/3, guarantees the following inequalities
for all σ ∈ A1

Λ:

Zf∗
Λ,λφ

f∗
Λ,λ(σ) =λ

∑
x∈Λ σ(x)2κ(σ)

(5.43)
≤λ

∑
x∈Λ σ(x)2

κ(mΛ(σ))+2+
∑

1≤i≤N
|Pi|≤2

|Pi|+
∑

1≤i≤N
|Pi|≥3

(|Pi|+1)

λ≥2

≤4λ

∑
x∈Λ σ(x)+

∑
1≤i≤N
|Pi|≤2

|Pi|
2
κ(mΛ(σ))+

∑
1≤i≤N
|Pi|≥3

(|Pi|+1)

λ≥24/3

≤4λ

∑
x∈Λ σ(x)+

∑
1≤i≤N
|Pi|≤2

|Pi|+
∑

1≤i≤N
|Pi|≥3

|Pi|
2κ(mΛ(σ))

=4λ
∑
x∈Λ mΛ(σ)(x)2κ(mΛ(σ))

=4Zf∗
Λ,λφ

f∗
Λ,λ(mΛ(σ))

This proves the corresponding inequality in (5.42).
Third Part: Last, we prove Inequality (5.42) for the map m|A2

Λ
: Let σ ∈ A2

Λ.
Recall that

A2 ⊂ {Cmax 1
Λ 6= ∅}

and m|A2
Λ
flips the spins of the induced 0paths[σ] P1(σ), . . . , PN(σ)(σ), N(σ) ≥ 11,

which are contained in Cmin 0
extCmax 1 .

In the case N = 1 and |Cmin 0
extCmax 1 \ P1| ≤ 2 we can verify

κ(σ)− κ(m(σ)) ≤ |P1|+ 3 (5.44)

similar to the corresponding statement in the second part of this proof.
For the remaining cases we are in the setting of Lemma 5.25 a) and all nodes

of
∂∗Cmin 0

extCmax 1 ∩ intCmin 0
extCmax 1 ∩ σ−1(1)

are 1∗connected[σ] to Cmax 1
Λ and, therefore, to each other. In other words, there

exists only one 1∗cluster[σ] in intCmin 0
extCmax 1 ∗adjacent to

⋃
1≤i≤N Pi.

1From now on we omit mentioning σ if the underlying configuration is uniquely determined
by the context.
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By definition of iCfill, for each 1 ≤ j ≤ N there exists at least one 1cluster[σ] in
extCmin 0

extCmax 1 adjacent to both Pj and Pj+1 with PN+1 := P1. This, together with
Corollary 5.26, implies that there are at most

∑
1≤i≤N |Pi| disjoint 1∗clusters[σ] in

∂∗Cmin 0
extCmax 1 ∩ extCmin 0

extCmax 1

∗adjacent to
⋃

1≤i≤N Pi. Summing up, there are at most 1 +
∑

1≤i≤N |Pi| disjoint
1∗clusters ∗adjacent to

⋃
1≤i≤N Pi, one inside Cmin 0

extCmax 1 and
∑

1≤i≤N |Pi| outside
Cmin 0
extCmax 1 , in short

κ(σ)− κ(mΛ(σ)) ≤
∑

1≤i≤N

|Pi| , (5.45)

where κ(σ) is the number of 1∗clusters[σ]. These inequalities (5.44) and (5.45)
lead to

ZΛ,λφ
f∗
Λ,λ(σ) =λ

∑
x∈Λ σ(x)2κ(σ)

(5.44),(5.45)
≤λ

∑
x∈Λ σ(x)2κ(mΛ(σ))+3+

∑
1≤i≤N |Pi|

λ≥2

≤8λ
∑
x∈Λ σ(x)+

∑
1≤i≤N |Pi|2κ(mΛ(σ))

=8λ
∑
x∈ΛmΛ(σ)(x)2κ(mΛ(σ))

=8ZΛ,λφ
f∗
Λ,λ(mΛ(σ))

for all σ ∈ A2
Λ and λ ≥ 2, which proves the last part of (5.42). �

After this proof we can identify the exact point that undoes our above approach
to

φf∗Λ,λ(∃ 0lasso) ≤ 8φf∗Λ,λ(∃ 1∗lasso)

for λ ∈ [2, 24/3[, namely the configurations that exhibit special paths Pi(σ) with
|Pi(σ)|+ 2 disjoint 1∗clusters[σ] ∗adjacent to them. The next section is dedicated
to bypass this problem.
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5.3 Compensation of Outliers
Recall that for all simply connected sets Λ b Z2, the map

mΛ : {ω ∈ {0, 1}Z2

: ω =0 off Λ,∃ a 0lasso[ω] in Λ} →
→ {ω ∈ {0, 1}Z2

: ω = 0 off Λ,∃ a 1∗lasso[ω] in Λ}

is an injection, which satisfies

φf∗Λ,λ(π) ≤ 8φf∗Λ,λ(mΛ(π))

for all λ ≥ 24/3. If we consider activities λ ∈ [2, 24/3[, then, in general, this inequal-
ity is wrong, since the number of 1∗clusters joined by mΛ could be significantly
larger than the number of 1spins added. Fortunately, the subset

{π : φf∗Λ,λ(π) > 8φf∗Λ,λ(m(π))}

can be determined a bit more precisely. It is contained in A1
Λ as Proposition 5.27

shows. Moreover, it is very small in comparison to A1
Λ and, therefore, these outliers

will be compensated by other configurations. In particular, for every outlier π there
exists a configuration σ, which has a one-to-one correspondence to π, such that

φf∗Λ,λ(π) ≤ 8φf∗Λ,λ(mΛ(σ))

and
φf∗Λ,λ(σ) ≤ 8φf∗Λ,λ(mΛ(π))

for all λ ≥ 2. In this section we will make this rigorous.

5.3.1 Nullification Paths and Their Impact

Let Λ b Z2 be such that ∂∗Λ can be interpreted as a circuit. Without loss of
generality we assume the existence of a configuration π ∈ A1 ⊂ {0, 1}Z2 with at
least |P (π)|+ 5 disjoint 1∗clusters ∗adjacent to P (π) = P1(π)∪ . . .∪PN(π)(π) and
fix it. A moment’s thought, together with Lemma 5.25, reveals N(π) > 2, see the
second part of the proof of Proposition 5.27. Moreover, it is the case that

φf∗Λ,2(π) > 8φf∗Λ,2(m(π)) ,

where the configuration m(π) coincides with π off iCfill(π) and equips each node of
iCfill(π) with 1spins. The circuit iCfill(π) is the minimal induced circuit in the union
of the maximal 0circuit[σ] and all 1clusters[σ] adjacent to the maximal 0circuit[σ]
(vide Definition 5.4). Remember that we called Cmax 0

intCmax 0
Λ (π)

(π) the “second largest”
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0circuit[π] and defined it as the maximal 0circuit[π] in intCmax 0
Λ (π). By definition,

iCfill(π) is contained in the “half-open“ annulus]
Cmax 0
intCmax 0

Λ (π)(π), Cmax 0
Λ (π)

]
:= extCmax 0

intCmax 0
Λ (π)(π) ∩ intCmax 0

Λ (π) ∪ Cmax 0
Λ (π)

and its nodes are equipped with 1spins[π] if and only if they belong to the ”open”
annulus ]

Cmax 0
intCmax 0

Λ (π)(π), Cmax 0
Λ (π)

[
:= extCmax 0

intCmax 0
Λ (π)(π) ∩ intCmax 0

Λ (π) .

From now on we omit mentioning π if the context uniquely determines the under-
lying configuration.

Recall that the special paths P1, . . . , PN are the induced 0paths[π] of maximal
length in

{x ∈ Λ : π(x) 6= m(π)(x)} = π−1(0) ∩m(π)−1(1)
(5.1)
⊂ iCmax 0(π) .

Note that the right side of the latter inclusion is contained in Cmax 0(π).

Definition 5.28 (fixed paths) The induced 1paths[π] of maximal length in iCfill\
P are called the fixed 1paths and denoted by Q1, . . . , QN . The induced 0paths[π]
of maximal length in Cmax 0(π) \ P are called the fixed 0paths and denoted by
O1, . . . , ON .

Calling these paths “fixed paths” hints to the fact that π = m(π) along these paths.
The fixed and the special paths are illustrated in Figure 5.7.

In this paragraph we enumerate the above fixed paths and the special paths:
First of all, order them clockwise such that

(P1, Q1, P2, Q2, . . . , PN , QN) = iCfill

and
(P1, O1, P2, O2, . . . , PN , ON) = Cmax 0 ,

i.e., the starting nodes of Qi and Oi are adjacent to the ending nodes of Pi. Now
we specify which path shall be Q1 and, therefore, disambiguate the indices. To
this end, take the ∗paths that start in ~0, end in

Q :=
⋃

1≤i≤N

Qi ,

and are contained in intiCfill(π)∪Q. Interpret them as polygons and consider the
ones of minimal (euclidean) length. Note that these ∗paths "of minimal length"
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Figure 5.7: In this figure the white squares represent nodes with 0spin[π]. The
black squares are nodes with 1spin[π]. The 0paths[π] P1, . . . , P6 are indicated by
green curves. The 1paths[π] Q1, . . . , Q6 are indicated by red curves respectively a
red dot. The 0paths[π] O1, . . . , O6 are indicated by blue curves respectively a blue
dot. The “blue and green“ circuit is the maximal induced 0circuit[π].

intersect Q only at their ending nodes. Consider these ending nodes and let Q1

be the 1path in Q containing the minimal (w.r.t. the lexicographic order) node of
the considered ones.

Let B(Γ) the number of 1∗clusters ∗adjacent to Γ ⊂ Λ. The map mΛ fills
P =

⋃
1≤i≤N Pi and, hereby, B(P ) 1∗clusters[π] ∗adjacent[π] to P are merged into

one 1∗cluster[mΛ(π)]. Since only some special paths cause problems, we want to
fill one special path after another instead of filling them all at once, which should
give us a better leverage on the probability of a single special path. Thus, we are
interested in the number of 1∗clusters that are assigned to a special path Pj and,
therefore, merged by filling Pj. A first (fruitless) attempt would be to consider
the number of 1∗clusters ∗adjacent to Pj. This would imply that

∑
1≤j≤N B(Pj)

1∗clusters are joined by filling one special path after another. But since one can
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find 1∗clusters ∗adjacent to several special paths (e.g. Q1), the real number of
1∗clusters B(P ) merged by filling P is smaller than this sum. Consequently, this
approach overestimates the number of merged 1∗clusters. The lesson of this is
that we have to assign each 1∗cluster ∗adjacent to P to a special path such that
each 1∗cluster is only considered once.

Definition 5.29 (assignment of 1∗clusters) A 1∗cluster ∗adjacent to the spe-
cial paths Pj1 , . . . , Pjk is assigned to Pmax{j1,...,jk}.

Lemma 5.25 implies that no more than |Pi| + 2 disjoint 1∗clusters can be
∗adjacent to a special path Pi. In other words, there are at most |Pi|+ 2 disjoint
1∗clusters ∗adjacent to Pi. Moreover, for j 6= N , the 1∗cluster containing Qj is
always ∗adjacent to Pj+1 and, therefore, is never assigned to Pj. Consequently, the
maximal possible number of 1∗clusters assigned to the special path Pj is |Pj|+1. As
for the excluded case j = N , the maximal possible number of 1∗clusters assigned
to PN is |PN |+ 2.

Definition 5.30 (bad path) We call a special path Pi with i 6= N a bad path if
|Pi|+ 1 disjoint 1∗clusters are assigned to it.

Note that |Pi| + 2 disjoint 1∗clusters are ∗adjacent to a bad path Pi and,
therefore, Pi forms a straight line (vide Lemma 5.25). Furthermore, since filling
a bad path joins more assigned 1∗clusters than it adds 1spins and the number of
bad paths is not known, up to now we were not able to control the probability for
any activity in [2, 24/3[.

Due to the choice of π at least one special path is bad. Without loss of generality
we assume Pi =: (p1, . . . , pn) is bad[π], where the nodes of Pi are enumerated
clockwise, and set pj• = pj+1 for all j with 1 ≤ j ≤ n− 1.

The following lemma has two main tasks: First, it shall identify the configura-
tion in ∂(p1, p2, p3)∪ ∂(

•
p1,
•
p2,
•
p3). Second, it ensures that there is some “distance”

between the bad path Pi and Q∪ (P \ Pi). Later on, we need this “space” to alter
the i-th special path without influencing the other special paths.

Lemma 5.31 The following statements are true:

a) The bad[π] induced path Pi = (p1, . . . , pn) consists of at least three nodes, i.e.,
n ≥ 3 .

b) The ∗boundary of Pi belongs to Λ, in short

∂∗Pi ⊂ Λ . (5.46)
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c) If the node
•
•
p2 belongs to Λ and is equipped with a 0spin, then the nodes

•

 ••p1

, ••p1,

•
•
•
p1 or the nodes

•
•
•
p3,

•
•
p3,

 ••p3

• are not contained in Λ, in short

•
•
p2 ∈ π−1(0) ∩ Λ⇒



•

 ••p1

, ••p1,

•
•
•
p1 ∈ Λc

or
•
•
•
p3,

•
•
p3,

 ••p3

• ∈ Λc .

(5.47)

Moreover, the spin values of ∂(p1, p2, p3)∪∂(
•
p1,
•
p2,
•
p3) are illustrated in Figure

5.8.

d) The union Q of all fixed 1paths is not adjacent to the nodes
•
p1,
•
p2, or

•
p3, in

short

Q(π) ∩ ∂(
•
p1,
•
p2,
•
p3) = ∅ . (5.48)

e) No special path except Pi meets ∂(p1, p2, p3) ∪ ∂(
•
p1,
•
p2,
•
p3), in short

(P \ Pi) ∩
(
∂(p1, p2, p3) ∪ ∂(

•
p1,
•
p2,
•
p3)
)

= ∅ . (5.49)

Proof: Our strategy consists of three steps: First, we state some direct conse-
quences of Lemma 5.25, which prove Lemma 5.31 a) and b). Next, Implication
(5.47) and, therefore, Figure 5.8 will be verified. Last, we turn to the Identities
(5.48) and (5.49).

First Step: First of all, the path Pi is bad and, therefore, |Pi| + 2 disjoint
1∗clusters are ∗adjacent to Pi. Hence, by definitions of Pi, all assumptions of
Lemma 5.25 are satisfied and we can state some immediate consequences:

i) The length of the path Pi is at least three, i.e., n ≥ 3;

ii) The path Pi forms a straight line, i.e., for all j with 1 ≤ j ≤ n

pj = p1 + (j − 1)(p2 − p1) ;
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iii) The configuration in (p1, p2, p3) ∪ ∂∗(p1, p2, p3) \ (•p1 ∪ p3•) is known. More
precisely, if we set •pn = pn−1 and pj• = pj+1 for 1 ≤ j < n then it is the
case that

•p1, p1•
,
•
p2, p3•

,
•
p4, . . . , pn−3•

,
•

pn−2, pn−1•
, pn−1

• ⊂ π−1(1)

•p1,
•
p1, p2•

,
•
p3, . . . , pn−4•

,
•

pn−3, pn−2•
,
•

pn−1, pn−1• ⊂ π−1(0)
,

which is illustrated in Figure 5.8;

iv) Each node of π−1(1)∩∂∗P \ (•p1∪pn•) is contained in a different 1∗clusters.
In other words, the nodes of π−1(1)∩∂∗P \(•p1∪pn•) are contained in disjoint
1∗clusters. In particular, the nodes •p1, p1•

, p3
•, and p3•

are not 1∗connected

and the nodes
•
•
p1 and

•
•
p3 are equipped with 0spins if they belong to Λ at all.

Next we show that a further consequence of Lemma 5.25 is ∂∗Pi ⊂ Λ: On the
one side, by the clockwise enumeration, the nodes

•p1, •p1, p2•
, . . . , pn•

, pn•, pn•

are contained in Cmax 0(π) ∪ intCmax 0(π) and, therefore, in Λ. On the other side,
due to item iii) the nodes

•p1,
•
p2,
•
p4, . . . ,

•
pn−3,

•
pn−1, pn

•

are contained in π−1(1), which is a subset of Λ. We still have to show that the
remaining nodes

•
p1,
•
p3, . . . ,

•
pn−2,

•
pn

of ∂∗Pi are also contained in Λ. To this end, note that each of these nodes is
adjacent to a node in Λ, namely p1, p3, . . . , pn−2, pn. Hence, if •p1,

•
p3, . . . ,

•
pn−2, or

•
pn belongs to Λc it is contained in the circuit ∂∗Λ. But this is impossible, because

these nodes are dead ends for paths in Λc, i.e., ∂ •pi ∩ Λc ⊂
•
•
pi for i = 1, 3, . . . , n.

Second Step: The aim of this step is to prove Implication (5.47), which because
of the item iii) and iv) of the first step confirms Figure 5.8.

Let us begin by proving that at least one of the two nodes
•
•
p1 and

•
•
p3 is not

contained in Λ if the node
•
•
p2 belongs to Λ and is equipped with a 0spin: To this

end, recall that by definition, the nodes p1, p2, and p3 are numbered clockwise and
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contained in the maximal 0circuit. Now, assume for contradiction that the node
•
•
p2 takes spin value 0 and that the nodes

•
•
p1,
•
•
p2, and

•
•
p3 belong to Λ. On the one

hand, by the latter assumption and the fact ∂∗Pi ⊂ Λ (proved in step one), the
clockwise path

(p1,
•
p1,

•
•
p1,

•
•
p2,

•
•
p3,
•
p3, p3)

lies in Λ. It is also a 0path, which follows immediately from the statements iii) and

iv) of step one and the assumption that the node
•
•
p2 has 0spin. On the other hand,

we can interpret Cmax 0
Λ \ p2 as a counterclockwise 0path starting in p1 and ending

in p3. The construction of both 0paths, together with the opposite algebraic sign
of the winding numbers of both 0paths, guarantees the existence of a 0circuit in
the union of both 0paths, whose interior contains the node p2, a contradiction to
the fact that p2 belongs to the maximal 0circuit. Summing up, at least one of

the two nodes
•
•
p1 and

•
•
p3 is not contained in Λ if the node

•
•
p2 belongs to Λ and is

equipped with a 0spin, see Figure 5.8.
Now, we are ready to conclude this step by proving Implication (5.47). To

this end, for the remainder of this paragraph assume that
•
•
p2 is contained in Λ

and equipped with a 0 spin. By this assumption and step one, the following two
statements hold:

{ •p1,

•
•
p2} ⊂ ∂

•
•
p1 ∩ Λ (5.50)

{ •p3,

•
•
p2} ⊂ ∂

•
•
p3 ∩ Λ (5.51)

In particular, both nodes
•
•
p1 and

•
•
p3 are adjacent to a node in Λ, namely

•
•
p2. Hence,

the statement of the last paragraph implies that at least one of the two nodes
•
•
p1

and
•
•
p3 belongs to the circuit ∂∗Λ. If

•
•
p1 belongs to the circuit ∂∗Λ then because

of (5.50) the circuit ∂∗Λ has to hit •

 ••p1

 and

•
•
•
p1 before and after it hits

•
•
p1.

More precisely, this is the case because the above observation (5.50) ensures that

the nodes •p1 and
•
•
p2 belong to Λ and, therefore, are never contained in the circuit
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∂∗Λ. Analogously,
•
•
p3 ∈ ∂∗Λ and (5.51) implies

•
•
•
p3,

 ••p3

• ∈ ∂∗Λ. The Implication

(5.47) follows.
Third Step: Next, we prove Identity (5.48): Recall that Q is equipped with

1spins and contained in intiCmax 0
Λ (π). Consequently, the nodes in ∂(

•
p1,
•
p2,
•
p3) that

are equipped with 0spins, namely p1, p2, p3,
•
•
p3, and

•
•
p1, cannot be contained in Q.

Moreover, the node
•
•
p2 ∈ ∂(

•
p1,
•
p2,
•
p3) adjacent to •p2 ∈ extiCmax 0

Λ (π) cannot belong
to Q ⊂ intiCmax 0

Λ (π), either. If the node •p1 was in Q it would belong to Qi−1, see
Figure 5.7, and, therefore, is weakly 1connected to the node p1•

, which is contrary

to observation iv) above. Accordingly, p3
• ∈ Q implies p3

• ∈ Qi and, therefore,
is also contrary to the fourth observation above. This concludes the proof of the
desired Identity (5.48).

Last, we verify Identity (5.49): Because of {p1, p2, p3}∪ ∂(p1, p2, p3) ⊂ ∂Pi ∪Pi
and •p1 ∪ p3

• ⊂ π−1(1)

(P \ Pi) ∩
(
∂(p1, p2, p3) ∪ {p1, p2, p3} ∪ •p1 ∪ p3

•) = ∅

holds.

The following three paragraphs are dedicated to verify
•
•
p1 /∈ P \Pi by assuming

the contrary
•
•
p1 ∈ P \ Pi. This assumption, together with

•
•
p1

0←→ p1 in extiCfill(π)

by •p1, implies that
•
•
p1 is the ending node of Pi−1 or the starting node of Pi+1.

Recall that we enumerated the nodes and paths clockwise, which, together with

the location of p2 in Pi, yields that
•
•
p1 is the ending node of Pi−1, whose boundary

is 1connected to p1•
in intCmax 0(π) by Qi−1. We distinguish two cases, namely ••p1

• =

•
•
p2 ∈ π−1(1)∪Λc and

 ••p1

• ∈ π−1(0)∩Λ, and show that a contradiction

can be derived from both case assumptions. Figure (5.8) may help the reader in
the following:

First Case: Assume

 ••p1

• ∈ π−1(1) ∪ Λc. The third observation of the first

step, together with the fact that Pi is clockwise enumerated, ensures that the node
•
p2 is equipped with a 1spin[π], see Figure 5.8, and belongs to extCmax 0(π). By
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p1 p2 p3

p1 p2 p3

p1 p2 p3

p1 p2 p3

p1 p2 p3

p1 p2 p3

p1 p2 p3

p1 p2 p3

p1 p2 p3

Figure 5.8: The upper figure illustrates the surroundings of the first three nodes

of the bad path Pi(π) if the node
•
•
p2 belongs to π−1(1) ∪ Λc. The (non-exclusive)

lower two figures illustrate the surroundings of the first three nodes of the bad

path Pi(π) if the node
•
•
p2 belongs to π−1(0). Black squares are nodes equipped

with 1spins. White squares are nodes with spin value 0. The spin value of the grey
squares cannot be specified in general. Red squares are nodes that are contained
in Λc. The striped red and black respectively white squares are either nodes with
1spin respectively 0spin or contained in Λc.

case assumption, the node
•
•
p2 either has 1spin or does not lie in Λ at all. If it has

1spin then the node
•
•
p2 belongs to extCmax 0

Λ (π), since it has 1spin and is adjacent
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to •p2 ∈ extCmax 0
Λ (π). Summing up, the node

•
•
p2 is contained in extCmax 0

Λ (π) ∪ Λc.

Consequently, the nodes

•
•
•
p1 and •p1 have to be the predecessor and successor of

•
•
p1

in the maximal 0circuit and the node •

 ••p1

 has to be the starting node of the

1path Qi−1 ending in p1•
. This is a contradiction to remark iv) above, which says

“•p1 and p1•
are not 1∗connected”.

Second Case: Assume

 ••p1

• ∈ π−1(0)∩Λ. This, together with
•
•
p1 ∈ P \Pi ⊂ Λ

and our above Implication (5.47), implies
•
•
p3 ∈ Λc. Consequently, there are two

possible locations for the starting node of the 1path Qi−1, namely •

 ••p1

 and

•
•
•
p1:

i) The 1path Qi−1 ending in p1•
starts in •

 ••p1

: As above, this is a contradic-

tion to remark iv).

ii) The 1path Qi−1 ending in p1•
starts in

•
•
•
p1: An immediate consequence of this

assumption is that the node

•
•
•
p1 – as a part of Q – belongs to the interior of the

maximal 0circuit. This, together with the facts that the maximal 0circuit is

numbered clockwise and goes through •p1 from
•
•
p1 to p1, gives that the node

•

 ••p1

 also belongs to the interior of the maximal 0circuit. Summing up,

both nodes

•
•
•
p1 and •

 ••p1

 belong to the interior of the maximal 0circuit.

Therefore, because of
•
•
p1 ∈ intCmax 0

Λ the node
•
•
p2 is belongs to the maximal
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0circuit. Moreover, because of
•
•
p3 ∈ Λc and •p2 ∈ π−1(1) the node

•
•
•
p2 also has

to be contained in the maximal 0circuit. But, by definition of iCfill(π), the

node
•
•
p1 cannot be the ending node of Pi−1 as assumed, since

•
•
•
p2 belongs to

the special path Pi−1 and is also adjacent to Qi−1.

The proof of
•
•
p3 /∈ P \ Pi is analogous.

It remains to prove
•
•
p2 /∈ P \Pi and, therefore, Equality (5.49), which concludes

the lemma. Let us assume the contrary, i.e.,
•
•
p2 ∈ P \ Pi. Recall that we have

already shown that
•
•
p2 is a dead end for special paths, i.e., ∂(

•
•
p2) ∩ (P \ Pi) ⊂

•
•
•
p2.

Hence, it is the ending or starting node of a special path. Moreover, because of

Implication (5.47) one of the nodes
•
•
p1 or

•
•
p3 lies in Λc; without loss of generality say

•
•
p3. This, together with •p2 ∈ extCmax 0(π), implies that the remaining two nodes

adjacent to
•
•
p2, namely

•
•
•
p2 and

•
•
p1, are the nodes in the maximal 0circuit[π] before

and after
•
•
p2. Thus, there exists no node adjacent to

•
•
p2 that could be the starting

or ending node of a fixed 1path, a contradiction to the fact that
•
•
p2 has to be the

ending or starting node of a special path. �

As mentioned earlier, we want to find a configuration σ such that transforming
π into m(σ) and σ into m(π) adds roughly speaking more 1spins than 1∗clusters
are merged. Our first step towards this is to define a configuration π′ satisfying
this condition for the i-th special path.

Before rigorously defining π′ in the next proposition, we first describe some of its
required properties to get a better understanding of its purpose: The configuration
π′ shall be a local modification of π, more precisely π′ will be an element of A1

and will coincide with π outside of {p1,
•
p1,
•
p2,
•
p3, p3} , i.e.,

π′ ∈ A1 (R1)

{x ∈ Λ : π(x) 6= π′(x)} ⊂ {p1,
•
p1,
•
p2,
•
p3, p3} . (R2)
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Furthermore, iCfill(π′) should bypass p2 using { •p1,
•
p2,
•
p3}, i.e.,

iCfill(π′) = { •p1,
•
p2,
•
p3} ∪ iCfill(π) \ p2 . (R3)

Note that because of (5.49) and (5.48) the right side of Equation (R3) is an induced
circuit. Let Bj(π) the number of 1∗clusters[π] assigned[π] to Pj(π) and Bj(π

′) the
number of 1∗clusters[π] assigned[π′] to Pj(π′). By changing π to π′ only the bad
path Pi(π) should be influenced, i.e.,

P (π′) =
⋃
j 6=i

Pj(π) ∪ Pi(π′) (R4)

Bj(π) = Bj(π
′) ∀j 6= i , (R5)

where P (π) was defined as
⋃

1≤j≤n Pj(π). For the next property define mi
loc(π) as

the configuration 1π−1(1)∪Pi(π) and mi
loc(π

′) as the configuration 1π′−1(1)∪Pi(π′). We
can interpret mi

loc(.) as a map that fills the special path Pi(.). If we change π to
mi
loc(π

′), then we “add” more 1spins than we “join” assigned 1∗clusters, i.e.,
|mi

loc(π
′)−1(1)| − |π−1(1)| ≥ Bi(π) = |Pi(π)|+ 1 . (R6)

If we change π′ to mi
loc(π), then we “add” more 1spins than we “join” assigned

1∗clusters, i.e.,
|mi

loc(π)−1(1)| − |π′−1
(1)| ≥ Bi(π

′) . (R7)

The last required property is that

mi
loc(π) and mi

loc(π
′) have the same number of 1∗clusters . (R8)

The properties (R6), (R7), and (R8) confirm our intention to compare mi
loc(π)

with π′ and mi
loc(π

′) with π, since we “add“ more 1spins than we join assigned
1∗clusters (at least) regarding the i-th special path.

Now, let us define π′: To this end set π′′ := 1
π−1(1)\ •p2

.

Proposition 5.32 Let

π′ = 1
π′′−1(1)∪{p1,

•
p1,p3,

•
p3}\(Cmax 0(π′′)∪extCmax 0(π′′))

.

This configuration satisfies

π′ =



1π′′−1(1) if p1,
•
p1, p3, ,

•
p3 /∈ intCmax 0(π′′)

1π′′−1(1)∪p1
if p1 ∈ intCmax 0(π′′) and •

p1, p3,
•
p3 /∈ intCmax 0(π′′)

1π′′−1(1)∪p3
if p3 ∈ intCmax 0(π′′) and p1,

•
p1,

•
p3 /∈ intCmax 0(π′′)

1π′′−1(1)∪{p1,p3} if p1, p3 ∈ intCmax 0(π′′) and •
p1,

•
p3 /∈ intCmax 0(π′′)

1
π′′−1(1)∪{p1,

•
p1}

if p1,
•
p1 ∈ intCmax 0(π′′) and p3,

•
p3 /∈ intCmax 0(π′′)

1
π′′−1(1)∪{ •p3,p3}

if p3,
•
p3 ∈ intCmax 0(π′′) and p1,

•
p1 /∈ intCmax 0(π′′)

(5.52)



122 CHAPTER 5. A COMBINATORIAL APPROACH TO THE SUFFICIENT CONDITION

and the requirements (R1),. . . , (R8).

We demonstrate the change of the configuration π into π′ in Figure 5.9 and
Figure 5.10. The accuracy of the illustrations will be proved in Lemma (5.36).

p1 p2 p3

p1 p2 p 3

p1 p2 p 3

p1 p2 p 3

p2 p 3p1

p1 p2 p 3

p1 p2 p 3

p1 p2 p 3

p1 p2 p 3



 '= ' '

 '= ' '1{p1 }

 '= ' '1{p1 , p 3}

 '= ' '1{p3 }

Figure 5.9: This figure illustrates the case
•
•
p2 ∈ π−1(1)∪Λc: The left side illustrates

π. The right side illustrates the four possibilities of π′. Black squares are nodes
with spin value 1. White squares are nodes with spin value 0. Grey squares are
nodes, which will not concern us. The striped red and black respectively white
squares are either nodes with 1spin respectively 0spin or contained in Λc



5.3. COMPENSATION OF OUTLIERS 123

p1 p2 p3

p1 p2 p3

p1 p2 p3

p1 p2 p3

p2 p3p1

p1 p2 p3

p1 p2 p3



 '= ' '

 '= ' '1{p1 , p 1}

 '= ' '1{p3, p3 }

Figure 5.10: This figure illustrates the case
•
•
p2 ∈ π−1(0)∩Λ: The left side illustrates

π. The right side illustrates the three possibilities of π′. Black squares are nodes
with spin value 1. White squares are nodes with spin value 0. Grey squares are
nodes, in which we are not interested. Red squares are nodes in Λc. The striped
red and black respectively white squares are either nodes with 1spin respectively
0spin or contained in Λc
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For now we take this proposition for granted and verify it in the next subsection,
since the proof is longish and technical. The downside of this is that until then
we have to believe the statement after “on the other hand” in the next paragraph
and convince ourselves of its correctness in the next subsection.

On the one hand, the configuration π′ is uniquely determined by π, since by
construction, π′ is uniquely determined by π′′ and π′′ is uniquely determined by
π. On the other hand (this is the part we have to believe in until we read the
next subsection), π is uniquely determined by π′, since the shape of Pi(π′) = R
uniquely defines π (vide Corollary 5.40). So there exists a one-to-one correspon-
dence between Pi(π′) and Pi(π) and the following is well-defined:

Definition 5.33 (nullification path) A nullification path is a special path like
Pi(π

′), which is the result of the transformation of a bad path Pi(π), described in
Proposition 5.32.

The Inequality (R6) ensures that a bad path can never be a nullification path
and vice versa.

Definition 5.34 (very special paths) A very special path is a special path that
is either a bad path or a nullification path.

The above Properties (R2), (R3), (R4), and (R5) ensure that a nullification
path can always be changed into a bad path (and vice versa) without influencing
the other special paths. Hence, the configuration σ in the next paragraph is indeed
well-defined.

The configuration π uniquely determines a corresponding configuration σ in the
following way: All nullification[π] paths are changed into the corresponding bad[σ]
paths and all bad[π] paths are changed into the corresponding nullification[σ]
paths.

Note that π and σ could differ in more than one special path and all above
Inequalities (R6), (R7), (R8), deal with configurations differing in only one special
path. So, if we want to compare these configurations we need to “connect” them
by configurations differing only in one special path: Let 1 ≤ i1, . . . , iL ≤ N(π)
the indices of the very special paths[π]. With the help of these indices we will
inductively define L + 1 configurations “connecting” π and σ. Let π0 := π. We
define πj such that the only difference of πj and πj−1 is the ij-th special path: If
Pij(πj−1) is a bad[πj−1] path, then Pij(πj) is a nullification[πj] path. If Pij(πj−1)
is a nullification[πj−1] path, then Pij(πj) is a bad[πj] path. In particular πL = σ.

Recall (vide the remark after Definition 5.29 on page 113)

BN(π0) ≤ |PN(π0)|+ 2 . (5.53)
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Next, we can use a telescope-argument:

Zf∗
Λ,λ(π)φf∗Λ,λ(π) = λ|π

−1(1)|2κ(π)

= λ|π
−1
0 (1)|2κ(π0)−

∑
1≤i≤N(π0)Bi(π0)

∏
1≤i≤N(π0)

2Bi(π0)

= λ|π
−1
0 (1)|2κ(m(π0))

∏
1≤i≤N(π0)

2Bi(π0)

(R8),λ≥2

≤ 2κ(m(πL))λ|π
−1
0 (1)|+Bi1 (π0)+...BiL (π0)

∏
1≤j≤N(π0):

j 6={i1,...,iL}

2Bj(π0)

(R6),(R7)
≤ 2κ(m(σ))λ|Pi1 (σ)|+|π−1

1 (1)|+Bi2 (π0)+...BiL (π0)
∏

1≤j≤N(π0):

j 6={i1,...,iL}

2Bj(π0)

(R6),(R7)
≤ . . . ≤ 2κ(m(σ))λ|Pi1 (σ)|+...|PiL (σ)|+|π−1

L (1)|
∏

1≤j≤N(π0):

j 6={i1,...,iL}

2Bj(π0)

λ≥2

≤ 2κ(m(σ))λ|P1(σ)|+...+|PN−1(σ)|+|π−1
L (1)|2BN (π0)

(5.53)
≤ 2κ(m(σ))λ|P1(σ)|+...+|PN−1(σ)|+|π−1

L (1)|2PN (π0)+2

λ≥2

≤ 2κ(m(σ))λ|m(σ)−1(1)|22

= Zf∗
Λ,λ(m(σ))4φf∗Λ,λ(m(σ)) .

Summing up, for all λ ≥ 2,

φf∗Λ,λ(π) ≤ 4φf∗Λ,λ(m(σ)) (5.54)

holds. For all λ ≥ 2,

φf∗Λ,λ(σ) ≤ 4φf∗Λ,λ(m(π)) (5.55)

can be derived in the same way. This, together with (5.54), yields

φf∗Λ,λ(π) + φf∗Λ,λ(σ) ≤ 4φf∗Λ,λ(m(σ)) + 4φf∗Λ,λ(m(π)) ∀λ ≥ 2 . (5.56)

Now we are ready to prove the next theorem.

Theorem 5.35 Let λ ≥ 2 and Λ b Z2 so that ∂∗Λ can be interpreted as a circuit.
Then eight times the φf∗Λ,λ-probability of the set {∃ 1 ∗ lasso} is larger than the
φf∗Λ,λ-probability of the set {∃ 0lasso}, i.e.,

φf∗Λ,λ(∃ 0lasso) ≤ 8φf∗Λ,λ(∃ 1∗lasso) .
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Proof: We split A1 into three subsets A1
1, A1

2, and A1
3: Let A1

1 the set of con-
figurations without a very special path. This definition immediately implies that
there exists no bad path in A1

1. Consequently, there are at most |P |+ 2 1∗clusters
∗adjacent to P and, therefore, for all λ ≥ 2

φf∗Λ,λ(A
1
1) ≤ 4φf∗Λ,λ(m(A1

1)) (5.57)

holds. Let A1
2 the set of configurations such that the very special path with the

lowest index is a bad path. Let A1
3 the set of configurations such that the very

special path with the lowest index is a nullification path.
Let g be the bijective map from A1

2 to A1
3 changing all bad paths to nullification

paths and all nullification paths to bad paths. So, for all λ ≥ 2

φf∗Λ,λ(∃0lasso) = φf∗Λ,λ(A0) + φf∗Λ,λ(A1) + φf∗Λ,λ(A2)

= φf∗Λ,λ(A0 ∪ A2) + φf∗Λ,λ(A
1
1) + φf∗Λ,λ(A

1
2) + φf∗Λ,λ(A

1
3)

(5.42)
≤ 8φf∗Λ,λ(m(A0 ∪ A2)) + φf∗Λ,λ(A

1
1) +

∑
ξ∈A1

2

(
φf∗Λ,λ(ξ) + φf∗Λ,λ(g(ξ))

)
(5.57)
≤ 8φf∗Λ,λ(m(A0 ∪ A2)) + 4φf∗Λ,λ(m(A1

1)) +
∑
ξ∈A1

2

(
φf∗Λ,λ(ξ) + φf∗Λ,λ(g(ξ))

)
(5.56)
≤ 8φf∗Λ,λ(m(A0 ∪ A2 ∪ A1

1)) + 4
∑
ξ∈A1

2

(
φf∗Λ,λ(m(ξ)) + φf∗Λ,λ(m(g(ξ)))

)
= 8φf∗Λ,λ(m(A0 ∪ A2 ∪ A1

1)) + 4φf∗Λ,λ(m(A1
2 ∪ A1

3))

≤ 8φf∗Λ,λ(∃1∗lasso)

holds, where the last inequality is a consequence of m(∃ 0lasso) ⊂ {∃ 1∗ lasso}.
This concludes the proof of the theorem. �

5.3.2 The Proof of Theorem 1.1

Finally we are ready to prove the main result of this thesis:

Theorem 1.1 Let λ ≥ 2. Then WR∗ER(λ) = {µ+∗
λ , µ−∗λ }.

Proof: Theorem 5.35, together with Lemma 4.28, Theorem 4.31, and Remark
4.23, verifies Theorem 1.1. �

Nonetheless, we still have to verify Proposition 5.32.
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5.3.3 The Proof of Proposition 5.32

First of all, we recall the statement of the proposition. We set π′′ := 1
π−1(1)\

•
p2

.

Proposition 5.32 Let

π′ = 1
π′′−1(1)∪{p1,

•
p1,p3,

•
p3}\(Cmax 0(π′′)∪extCmax 0(π′′))

.

This configuration satisfies

π′ =



1π′′−1(1) if p1,
•
p1, p3, ,

•
p3 /∈ intCmax 0(π′′)

1π′′−1(1)∪p1
if p1 ∈ intCmax 0(π′′) and •

p1, p3,
•
p3 /∈ intCmax 0(π′′)

1π′′−1(1)∪p3
if p3 ∈ intCmax 0(π′′) and p1,

•
p1,

•
p3 /∈ intCmax 0(π′′)

1π′′−1(1)∪{p1,p3} if p1, p3 ∈ intCmax 0(π′′) and •
p1,

•
p3 /∈ intCmax 0(π′′)

1
π′′−1(1)∪{p1,

•
p1}

if p1,
•
p1 ∈ intCmax 0(π′′) and p3,

•
p3 /∈ intCmax 0(π′′)

1
π′′−1(1)∪{ •p3,p3}

if p3,
•
p3 ∈ intCmax 0(π′′) and p1,

•
p1 /∈ intCmax 0(π′′)

((5.52))

and the Requirements (R1),. . . , (R8).

We illustrated the change of the configuration π into the configuration π′ in
Figure 5.9 and Figure 5.10.

First of all, let us recall some basic facts: We called Cmax 0
intCmax 0

Λ (π)
(π) the “sec-

ond largest” 0circuit[π] and defined it as the maximal 0circuit[π] in intCmax 0
Λ (π).

Because of π ∈ A1 the “second largest” 0circuit[π] is 0∗connected to the maximal
0circuit[π], i.e.,

Cmax 0
intCmax 0

Λ (π)(π)
0∗←→ Cmax 0

Λ (π) .

By definition, iCfill(π) is contained in the “half-open“ annulus]
Cmax 0
intCmax 0

Λ (π)(π), Cmax 0
Λ (π)

]
:= extCmax 0

intCmax 0
Λ (π)(π) ∩ intCmax 0

Λ (π) ∪ Cmax 0
Λ (π)

and its nodes are equipped with 1spins[π] if and only if they belong to the ”open”
annulus ]

Cmax 0
intCmax 0

Λ (π)(π), Cmax 0
Λ (π)

[
:= extCmax 0

intCmax 0
Λ (π)(π) ∩ intCmax 0

Λ (π) .

Moreover, by definition each node of iCfill(π) is ∗weakly 0∗connected to the “second
largest“ 0cicuit[π] in intiCfill(π). The first three nodes of Pi, namely p1, p2, and
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p3, are contained in Cmax 0
Λ (π), the node •p2 belongs to extCmax 0

Λ (π), and the path
(p1•
, p2•

, p3•
) is contained in the “open” annulus

]
Cmax 0
intCmax 0

Λ (π)(π), Cmax 0
Λ (π)

[
.

The latter statement follows from the clockwise enumeration and {p1•
, p3•
} ⊂ π−1(1)

and {p1, p2, p3} ⊂ Cmax 0
Λ (π).

The rest of this subsection is dedicated to prove the proposition. For conve-
nience, we divide the proof into a sequence of 8 lemmas.

First of all, we note that π′ obviously satisfies

{x ∈ Λ : π(x) 6= π′(x)} ⊂ {p1,
•
p1,
•
p2,
•
p3, p3} . (R2)

Furthermore,

Cmax 0(π′) = Cmax 0(π′′) (5.58)

follows from Cmax 0(π′′) ⊂ π′−1(0) ⊂ π′′−1(0) , where the first inclusion implies “≥”
in (5.58) and the second one implies “≤”.

Now we tend to verify Identity (5.52) and, hereby, establish some intuition.

Lemma 5.36 The configuration π′ can be described in the following way:

π′ =



1π′′−1(1) if p1,
•
p1, p3, ,

•
p3 /∈ intCmax 0(π′′);

1π′′−1(1)∪p1
if p1 ∈ intCmax 0(π′′),

•
p1, p3,

•
p3 /∈ intCmax 0(π′′);

1π′′−1(1)∪p3
if p3 ∈ intCmax 0(π′′), p1,

•
p1,

•
p3 /∈ intCmax 0(π′′);

1π′′−1(1)∪{p1,p3} if p1, p3 ∈ intCmax 0(π′′),
•
p1,

•
p3 /∈ intCmax 0(π′′);

1
π′′−1(1)∪{p1,

•
p1}

if p1,
•
p1 ∈ intCmax 0(π′′), p3,

•
p3 /∈ intCmax 0(π′′);

1
π′′−1(1)∪{ •p3,p3}

if p3,
•
p3 ∈ intCmax 0(π′′), p1,

•
p1 /∈ intCmax 0(π′′).

((5.52))

Moreover, we know that for i = 1, 3,

pi ∈ intCmax 0(π′′) and •pi /∈ intCmax 0(π′′)⇒
•
•
p2 ∈ π−1(1) ∪ Λc (5.59)

•
pi ∈ intCmax 0(π′′)⇒

•
•
p2 ∈ π−1(0) ∩ Λ . (5.60)

In particular, the Illustrations 5.9 and 5.10 are correct.
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Proof: First of all, note that there are 24 = 16 cases which nodes of {p1,
•
p1, p3, ,

•
p3}

belong to intCmax 0(π′′). Our strategy consists of three steps: First, we show that
for i = 1, 3, •pi ∈ intCmax 0(π′′) implies pi ∈ intCmax 0(π′′) and, therefore, seven
cases are excluded. Second, for {j, i} = {1, 3}, we derive pi /∈ intCmax 0(π′′) from
•
pj ∈ intCmax 0(π′′), which excludes another three cases. A side product is the proof
of Implication (5.60). Note that these two steps already verify Identity (5.52). Our
last step shows our remaining Addendum (5.59).

First Step: Because of π−1(0) ⊂ π′′−1(0) the maximal 0circuit[π′′] is larger than
the maximal 0circuit[π], i.e.,

Cmax 0(π) ≤ Cmax 0(π′′) .

Note that the nodes •p1 and •p3 belong to Cmax 0(π) ∪ extCmax 0(π). So, if the node
•
p1 respectively •p3 is contained in intCmax 0(π′′) then p1 respectively p3, being a
node of Cmax 0(π), also belongs to intCmax 0(π′′).

Second Step: For the second step it is sufficient to show the following two im-
plications:

i) p3 /∈ intCmax 0(π′′) follows from p1,
•
p1 ∈ intCmax 0(π′′);

ii) p1 /∈ intCmax 0(π′′) is a consequence of p3,
•
p3 ∈ intCmax 0(π′′).

Both implications can be shown analogously and, therefore, we only prove the first
one in the sequel. Furthermore, as we will see, the proof of i) verifies Implication
(5.60) for i = 1 and, moreover, the proof of ii) would analogously verify Implication
(5.60) for i = 3.

If the node
•
•
p3 is contained in Λc then the nodes p3,

•
p3 are ∗weakly 1∗connect-

ed[π, π′′] to Λc by p3
•, which immediately gives us p3,

•
p3 /∈ intCmax 0(π′′). So, it is

sufficient to show the following:

i’) A consequence of p1,
•
p1 ∈ intCmax 0(π′′) is

•
•
p3 ∈ Λc.

Because the node p2 belongs to the maximal 0circuit[π], there exists a 1∗path[π]
in extCmax 0(π) starting ∗adjacent to p2 and ending ∗adjacent to Λc. The only
possible starting node for this 1∗path[π] is •p2 = ∂∗p2 ∩ extCmax 0(π) ∩ π−1(1).

Further note that
•
•
p2 is the only node that could have a 1spin[π] and is ∗adjacent

to •p2. These observations, together with {x ∈ Λ : π(x) 6= π′′(x)} =
•
p2, implies

that one of the following three scenarios has to occur:
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a) At least one of the nodes
•
•
p1 and

•
•
p2 is contained in Λc;

b) The node
•
•
p2 is the starting node of a 1∗path[π, π′′] ending ∗adjacent to Λc;

c) The node
•
•
p3 is contained in Λc.

From now on assume p1,
•
p1 ∈ intCmax 0(π′′): The first two scenarios a) and

b) are impossible, since in both scenarios the node •p1, which is contained in
intCmax 0(π′′), is ∗weakly 1∗connected[π′′] to Λc, a contradiction. Thus, the third
scenario has to occur and we have verified i’). Moreover, we have also proved Im-
plication (5.60) for i = 1 by precluding scenarios a) and b) under the assumption
p1,
•
p1 ∈ intCmax 0(π′′).
Third Step:We now turn to show Implication (5.59) for i = 1, since in the other

case i = 3 the implication can be proved analogously. To this end, for contradiction

assume that p1 ∈ intCmax 0(π′′), •p1 /∈ intCmax 0(π′′), and
•
•
p2 ∈ π−1(0) ∩ Λ. By

definition of π′ and p1 ∈ Cmax 0(π) ≤ Cmax 0(π′′), the first two assumptions are
equivalent to p1 ∈ π′−1(1) and

•
p1 ∈ Cmax 0(π′′) = Cmax 0(π′) ⊂ π′−1(0) . (5.61)

Moreover, the nodes •p2 and
•
•
p1 have to be the nodes before and after •p1 in the

maximal 0circuit[π′′, π′]. This is the case because the other two nodes •p1 and p1

adjacent to •p1 are equipped with 1spins[π′′, π′], i.e., ∂ •p1 ∩ π′′−1(0) = {
•
•
p1,
•
p2} . But

since the node
•
•
p2 is also equipped with a 0spin, belongs to Λ, and is adjacent to

the nodes •p2 and
•
•
p1, the maximal 0circuit[π′′, π′] would go through

•
•
p2 from •p2 to

•
•
p1 instead of going through •p1 from •

p2 to
•
•
p1. This is the case because this way

the node •p1 belongs to the interior of the maximal 0circuit[π′′, π′] instead of being
part of it. Hence, we know that the node •p1 does not belong to Cmax 0(π′′), which
contradicts (5.61). Implication (5.59) for i = 1 follows, which concludes the proof.
�

One of our aims is to show
iCfill(π′) = { •p1,

•
p2,
•
p3} ∪ iCfill(π) \ p2 (R3)
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and an important building block of the definition of iCfill is the maximal 0circuit.
Consequently, it will be useful that a great part of the maximal 0circuit[π] is
contained in the maximal 0circuit[π′, π′′]. To this end and because we need the
following set a lot, we define it as

K :=
•
p2 ∪ Cmax 0(π) \ ∂∗ •p2 .

Note that the node •p2 does not belong to ∂∗ •p2.

Lemma 5.37 The set K is contained in the maximal 0circuit[π′′, π′], in short

K ⊂ Cmax 0(π′′) = Cmax 0(π′) . (5.62)

Proof: Because of (5.58) only

K ⊂ Cmax 0(π′′)

remains to be shown for (5.62). This will done by verifying the following two
conditions:

i) All nodes of K are ∗weakly 1∗connected[π′′] to Λc;

ii) K is contained in a 0circuit[π′′].

Note that the second statement does not demand a 0circuit[π′].
Let us begin with i): It may help the reader to look at Figures 5.9 and 5.10

while reading the following paragraph, whose aim is to show that the node •p2 is
∗weakly 1∗connected[π′′] to Λc.

Let us assume without loss of generality that the nodes
•
•
p1,
•
•
p2, and

•
•
p3 belong to

Λ; otherwise our aim is evident. Note that p2, as a node of Cmax 0(π), is ∗weakly
1∗connected[π] to Λc. Consequently, there exists a 1∗path[π] in extCmax 0(π) start-
ing ∗adjacent to p2 and ending ∗adjacent to Λc. The only possible starting node
for this 1∗path[π] is •p2 = ∂∗p2∩extCmax 0(π)∩π−1(1). Further, since the only node

equipped with a 1spin[π] ∗adjacent to •p2 is
•
•
p2, this node

•
•
p2 is also a starting node

of a 1∗path[π] in extCmax 0(π) \ •p2 to ∂∗(Λc). This, together with the fact that the

configurations π and π′′ coincide off •p2, implies that the node
•
•
p2 is a starting node

of a 1∗path[π′′] to ∂∗(Λc). Consequently, the node •p2 is ∗weakly 1∗connected[π′′]
to Λc.

For i) we still have to show that K \ •p2 is ∗weakly 1∗connected[π′′] to Λc. But
this is the case because of the following four observations:
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a) By definition, K \ •p2 = Cmax 0(π) \ ∂∗ •p2 = Cmax 0(π) \ (∂∗
•
p2 ∪

•
p2) . Therefore,

each node of K \ •p2 is ∗weakly 1∗connected[π] to Λc by a 1∗path[π] not
starting in •p2;

b) By Figures 5.9 and 5.10, the node •p2 is a dead end for 1∗paths[π], i.e., ∂∗ •p2∩

π−1(1) ⊂
•
•
p2 . Thus, if a 1∗path[π] of a) meets the node •p2 then it ends in •p2 .

Consequently, subtracting the node •p2 from such a 1∗path[π] always results

in a 1∗path[π] that ends in
•
•
p2;

c) By definition, the configuration π coincides with π′′ off •p2. Hence, a shortened
1∗path[π] of b) is also a 1∗path[π′′];

d) Because of ∂∗ •p2∩Λc ⊂ {
•
•
p1,

•
•
p2,

•
•
p3}, which follows from Lemma 5.31 b), these

shortened 1∗paths[π] ending in
•
•
p2 still end ∗adjacent to Λc.

The proof of condition ii) is a bit more involved, although it is straightforward
to identify the 0circuit[π′′] containing K:

K ′ := K ∪ { •p1,
•
p3} ∪ p11 •

p1 /∈Cmax 0(π)
∪ p31 •

p3 /∈Cmax 0(π)
,

where by misuse of notation

p11 •
p1 /∈Cmax 0(π)

=

{
p1

•
p1 /∈ Cmax 0(π);

∅ otherwise.

Obviously, K ′ ⊂ π′′−1(0) holds. It remains to show that K ′ is a circuit: Because
of p1•

⊂ π−1(1) the node x in Cmax 0(π) \ p2 successive to p1 is either •p1 or •p1.

Analogously, the node y in Cmax 0(π)\p2 successive to p3 is either p3• or
•
p3. On the

one hand, there exists a (counterclockwise) path in Cmax 0(π) \ {p1, p2, p3} starting
in x and ending in y, which never hits •p2 and which could hit, if at all, the nodes
•
p1 and •p3 only in {x, y}. On the other hand, by case-by-case analysis, the path
{x, y, •p1,

•
p2,
•
p3}∪p11 •

p1 /∈Cmax 0(π)
∪p31 •

p3 /∈Cmax 0(π)
is a (clockwise) path starting in x

and ending in y, which hits the other (counterclockwise) path only in its starting
and ending node. Hence, the union of both (clockwise and counterclockwise) paths
is a circuit, see Lemma 3.10, and, by definition, equals K ′. This implies the second
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condition. �

Now (more precisely, because of •p2 ∈ Cmax 0(π′′)) we are ready to prove the
first requirement:

Lemma 5.38 The configuration π′ of Proposition 5.32 satisfies

π′ ∈ A1 Def.
= {∃ 0lasso in Λ,~0 /∈ Cmax 0

Λ , ∂∗Cmax 0
Λ

1∗
6←→ ∂∗Cmax 1

Λ } . (R1)

Proof: First, let us verify the existence of a 0lasso[π′]. Because of π−1(0) ⊂
π′′−1(0) the maximal 0circuit[π′′] is larger than the maximal 0circuit[π], i.e.,

Cmax 0
Λ (π′′) ≥ Cmax 0

Λ (π) . (5.63)

Since we have chosen π so that there exists a 0lasso[π], the circuit Cmax 0
Λ (π) is

weakly 0connected[π] to Λc and, therefore, weakly 0connected[π′′] to Λc. Fur-
ther, π′ coincides with π′′ off intCmax 0(π′′), see (5.52). Thus, the larger maximal
0circuit[π′, π′′] Cmax 0

Λ (π′′)
(5.58)
= Cmax 0

Λ (π′) is also weakly 0connected[π′, π′′] to Λc

and we know that there exists a 0lasso[π′].
Second, the origin does not belong to Cmax 0

Λ (π′) because

~0
π∈A1

/∈ Cmax 0
Λ (π)

(5.63)
≤ Cmax 0

Λ (π′′)
(5.58)
= Cmax 0

Λ (π′) .

At last, it remains to show that the maximal 1circuit[π′] is not ∗weakly 1∗con-
nected to the maximal 0circuit[π′], which means that a 0circuit is squeezed in
between Cmax 1

Λ (π′) and Cmax 0
Λ (π′). Little is known, but the “second largest”

0circuit[π], Cmax 0
intCmax 0

Λ (π)
(π), does this job: It is the case that the “second largest”

0circuit[π] is also a 0circuit[π′], since by definition, π coincides with π′ in the in-
terior of the maximal 0circuit[π]. Second, by definition of iCfill(π), all nodes of
iCfill(π) are ∗weakly 0∗connected to the “second largest” 0circuit[π] in intiCfill(π).
In particular, the node p2 has this feature. The only node ∗adjacent to p2 that
both belongs to the interior of iCfill(π) and is equipped with a 0spin[π] is p2•

, Conse-

quently, a 0∗path[π, π′] in intiCfill(π) starts in p2•
and ends ∗adjacent to the “second

largest” 0circuit[π]. This 0∗path can be extended by p2 ∈ π′−1(0) and, therefore,

the node •p2 ∈ K
(5.62)
⊂ Cmax 0(π′) is ∗weakly 0∗connected[π′] to the “second largest”

0circuit[π], which is also a 0circuit[π′]. Property (R1) follows, which concludes this
lemma. �

The next lemma may be a bit technical, but for certain cases it provides insight
into the shape of Pi(π).
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Lemma 5.39 If the node p3 has 1spin[π′], then Pi(π) consists of {p1, p2, p3}, i.e.,

p3 ∈ π′−1(1)⇒ |Pi(π)| = n = 3 . (5.64)

Proof: For the proof, assume p3 ∈ π′−1(1) and, therefore, p3 ∈ intCmax 0(π′′) =
intCmax 0(π′). Recall that there are |Pi(π)| + 2 disjoint 1∗clusters[π] ∗adjacent to
the bad[π] path Pi(π), which, due to Lemma 5.25, determines the spin values[π]
in ∂∗Pi(π) \ {•p1, pn•} and further implies that |Pi(π)| is odd, Pi(π) is a straight
line segment, and |Pi(π)| = n ≥ 3.

We prove n = 3 by assuming the contrary n > 3 and, therefore, n ≥ 5: Our
clockwise enumeration of Pi(π), together with p4 = p3• ∈ Cmax 0

Λ (π), implies that
the node •p3 belongs to extCmax 0(π).

On the one hand, this paragraph shows that the node p3 is ∗weakly 1∗con-
nected[π′] to Λc: To this end, note that the definition of K, together with p4 ∈
Cmax 0

Λ (π) and

K
(5.62)
⊂ Cmax 0(π′′) ,

implies p4 ∈ Cmax 0(π′′). Consequently, the node p4 is ∗weakly 1∗connected[π′′] to
Λc by a 1∗path[π′′]. In other words, there exists a 1∗path[π′′] that is contained in
extCmax 0

Λ (π′′) and starts ∗adjacent to p4. The starting node of this ∗path has to
be •p4 because

∂∗p4 ∩ π−1(1) ∩ extCmax 0
Λ (π′′) =

•
p4

holds, which follows from these three facts:

a) By {p3, p4, p5} ⊂ Cmax 0(π), the nodes •p4, p4•
, and p4• are contained in the

interior of the maximal 0circuit[π] and, therefore in the interior of the max-
imal 0circuit[π′′] due to π−1(0) ⊂ π′′−1(0), i.e.,

{•p4, p4•
, p4•} ⊂ intCmax 0(π) ⊂ intCmax 0(π′′) .

b) By case assumption, the nodes •p4 = p3 and p4• = p5 are contained in the
maximal 0circuit[π] and, therefore, in the union of the maximal 0circuit[π]
and its interior, i.e.,

{•p4, p4•} = {p3, p5} ⊂ Cmax 0(π) ⊂ Cmax 0(π′′) ∪ intCmax 0(π′′) .

c) Since Pi(π) is a bad[π] path, the nodes •p4 and p4
• have 0spin[π] and, there-

fore, have 0spin[π′′], in short

{•p4, p4
•} ⊂ π−1(0) ⊂ π′′−1(0) .
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Because of π′′−1(1) ⊂ π′−1(1) all 1∗paths[π′′] are also 1∗paths[π′]. Consequently,
the node p3 is ∗weakly 1∗connected[π′] to Λc, since p3 is ∗adjacent to •p4.

On the other hand, because of p3 ∈ π′−1(1) the definition of π′ implies that
p3 ∈ intCmax 0(π′′) = intCmax 0(π′), which is impossible, since p3 is ∗weakly 1∗con-
nected[π′] to Λc. �

It will turn out that the set

R := (p1,
•
p1,
•
p2,
•
p3, p3, . . . , pn) ∩ π′−1

(0)

equals Pi(π′). Right now, we are just able to describe R in an explicit way. To
this end, recall that by construction of π′, only the nodes p1,

•
p1, p3, and

•
p3 could

be contained in π′−1(1).

Corollary 5.40 The exact shape of R is determined by π′:

R =



(p1,
•
p1,
•
p2,
•
p3, p3, . . . , pn) p1, p3 ∈ π′−1(0)

(
•
p1,
•
p2,
•
p3, p3, . . . , pn) p1 ∈ π′−1(1), p3 ∈ π′−1(0)

(p1,
•
p1,
•
p2,
•
p3) p1 ∈ π′−1(0), p3 ∈ π′−1(1)

(
•
p1,
•
p2,
•
p3) p1, p3 ∈ π′−1(1)

(
•
p2,
•
p3, p3, . . . , pn) p1,

•
p1 ∈ π′−1(1)

(p1,
•
p1,
•
p2) p3,

•
p3 ∈ π′−1(1)

In particular, the set R =: (r1, . . . , rm) can be interpreted as a path and for i = 1, 3

pi ∈ R ⇐⇒ pi ∈ Cmax 0(π′) (5.65)
•
pi ∈ R ⇐⇒

•
pi ∈ Cmax 0(π′) . (5.66)

Proof: The exact shape of R is a direct consequence of (5.64) and the description
of π′, see (5.52).

Note that for x ∈ {p1,
•
p1, p3,

•
p3}, we know that x /∈ R is equivalent to x ∈

π′−1(1), which is equivalent to x ∈ intCmax 0(π′), see Description (5.52) of π′.
Summing up, it is a fact that

x /∈ R ⇐⇒ x ∈ intCmax 0(π′)

and, therefore,

x ∈ R ⇐⇒ x ∈ Cmax 0(π′) ∪ extCmax 0(π′) .
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So, on the one hand,
x ∈ R⇐ x ∈ Cmax 0(π′)

is obvious.
On the other hand, assume for contradiction that

x ∈ R ∩ extCmax 0(π′)

and, therefore, x /∈ Cmax 0(π) because Cmax 0(π) ≤ Cmax 0(π′). This, together
with p1, p3 ∈ Cmax 0(π), implies x ∈ { •p1,

•
p3}. We restrict ourselves to the case

x =
•
p1, since deriving the contradiction for x =

•
p3 is similar. Recall that the node

x =
•
p1 does not belong to the maximal 0circuit[π], in short x =

•
p1 /∈ Cmax 0(π).

Therefore, because of p1•
∈ π−1(1), the nodes •p1 and p1• = p2 have to be the

nodes in Cmax 0(π) \ p1 adjacent to p1. Recall that the node p3•
is equipped with a

1spin[π] and distinguish two cases whether •p3 is a node in Cmax 0(π) or not:

i) If •p3 ∈ Cmax 0(π), then the set { •p1,
•
p2,
•
p3} ∪ Cmax 0(π) \ (p2 ∪ p3) can be

interpreted as a 0circuit[π′′].

ii) If •p3 /∈ Cmax 0(π), then the set { •p1,
•
p2,
•
p3} ∪Cmax 0(π) \ p2 can be interpreted

as a 0circuit[π′′].

This holds (in both cases) because the set { •p1,
•
p2,
•
p3} ∪ Cmax 0(π) is contained in

π′′−1(0) and the maximal 0circuit[π], Cmax 0(π), hits the nodes p1, p2, and p3 one
after another, but never hits the nodes •p1 and

•
p2. In both cases x =

•
p1 belongs to a

0circuit[π′′] larger than Cmax 0(π) and, therefore, has to be contained in Cmax 0(π′′)∪
intCmax 0(π′′). This is a contradiction to the assumption x ∈ extCmax 0(π′) =
extCmax 0(π′′). Consequently, the implication

x ∈ R⇒ x ∈ Cmax 0(π′)

holds, which concludes the proof. �

Now let us define the right side of (R3) as M , i.e.,

M := { •p1,
•
p2,
•
p3} ∪ iCfill(π) \ p2 = (P (π) \ Pi(π)) ∪R ∪Q(π) ∪ {p1,

•
p1, p3,

•
p3} ,

where the second identity follows from iCfill(π) = P (π) ∪ Q(π) and the explicit
description of R. Our aim is to show condition (R3), i.e., M = iCfill(π′) . To this
end, we need two fundamental relations between the set M and π′:
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Lemma 5.41 Take the ”half-open“ annulus]
Cmax 0
intCmax 0(π)(π), Cmax 0(π′)

]
:= extCmax 0

intCmax 0(π)(π) ∩ intCmax 0(π′) ∪ Cmax 0(π′)

and thin it by subtracting all nodes of the open annulus]
Cmax 0
intCmax 0(π)(π), Cmax 0(π′)

[
:= extCmax 0

intCmax 0(π)(π) ∩ intCmax 0(π′)

equipped with 0spins[π]. Then the resulting set contains M , in short

M ⊂ Cmax 0(π′) ∪ π′−1(1) ∩ intCmax 0(π′) ∩ extCmax 0
intCmax 0(π)(π) . (5.67)

Furthermore, a node ofM has 0spin[π′] value if and only if it belongs to P (π)\Pi(π)
or R, in short

M ∩ π′−1(0) = (P (π) \ Pi(π)) ∪R . (5.68)

Moreover, the paths P1, . . . , Pi−1, R, Pi+1, . . . , Pn are not adjacent to each other.
In other words they can be interpreted as clusters in (P (π) \ Pi(π)) ∪R.

Proof: The definition of K, together with the explicit description of R and the
fact that the set P (π) \ Pi(π) is not ∗adjacent to •p2, see (5.49), gives

(P (π) \ Pi(π)) ∪R ⊂ K ∪ {p1,
•
p1, p3,

•
p3} ∩R .

Since the maximal 0circuit[π′] contains K, see (5.62), and also {p1,
•
p1, p3,

•
p3} ∩R,

see (5.65), we even know that the maximal 0circuit[π′] contains the right side,
K ∪ {p1,

•
p1, p3,

•
p3} ∩R, of the latter inclusion. Summing up, we know that

(P (π) \ Pi(π)) ∪R ⊂ Cmax 0(π′) . (5.69)

Recall that the part of iCfill(π) equipped with 1spins[π], denoted by Q(π), lies
between the maximal 0circuit[π] and the ”second largest“ 0circuit[π]. Further, the
maximal 0circuit[π′, π′′] is larger than the maximal 0circuit[π]. These observations,
together with the fact that the nodes p1,

•
p1, p3, and

•
p3 are always in extCmax 0

intCmax 0(π)

and either in R or in π′−1(1) ∩ intCmax 0(π′), imply

{p1,
•
p1, p3,

•
p3} ∩Rc ∪Q(π) ⊂ π′−1(1) ∩ extCmax 0

intCmax 0(π) ∩ intCmax 0(π′) . (5.70)

These two Observations (5.69) and (5.70) prove (5.67) and (5.68).
It remains to show that P1, . . . , Pi−1, R, Pi+1, . . . , Pn are not adjacent to each

other. By definition, we already know that the special[π] paths P1, . . . , Pi−1, Pi,
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Pi+1, . . . , Pn are not adjacent to each other. Consequently, it is sufficient to show
that R is not adjacent to Pj for all j 6= i. But this becomes obvious if we consider
the explicit description of R, see Corollary 5.40, and the fact that the nodes •p1,•
p2, and

•
p3 are not adjacent to P \Pi, see Identity (5.49) of Lemma (5.31) on page

114. �

Now we are ready to verify the next two requirements:

Lemma 5.42 The configuration π′ of Proposition 5.32 satisfies

iCfill(π′) = { •p1,
•
p2,
•
p3} ∪ iCfill(π) \ p2 (R3)

and

P (π′) =
⋃
j 6=i

Pj(π) ∪ Pi(π′) , (R4)

where P (π) is defined as
⋃

1≤j≤n Pj(π).

Proof: We begin by outlining the structure of the proof: First, we state two items
connecting π with π′ and characterising M . Then, we show that Equality (R3)
follows from these statements. Next, we prove the two items of the first step. As
a last step, we give the proof that the enumeration of special paths of π and π′

starts at the same node, which implies Requirement (R4).
First Step: Let us state the following two observations: First, the ”second

largest“ 0circuit[π] is also the ”second largest“ 0circuit[π′], in short

Cmax 0
intCmax 0(π′)(π

′) = Cmax 0
intCmax 0(π)(π) (5.71)

Second, adding nodes of the exterior of the ”second largest” 0circuit[π] equipped
with 1spins[π] to the circuit M will not result in a smaller induced circuit than M
itself, in short

M = min iC
(
M ∪ π−1(1) ∩ extCmax 0

intCmax 0(π)(π)
)
. (5.72)

The next two steps verify that the Observations (5.71) and (5.72), which will be
proved afterwards in the fourth step, imply the lemma.

Second Step: Recall thatM equals the right side of (R3). Keeping this in mind,
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the Identity (R3) is a direct consequence of

M ={ •p1,
•
p2,
•
p3} ∪ iCfill(π) \ p2 (5.73)

(5.67)
≥min iC

(
Cmax 0(π′) ∪ π′−1(1) ∩ extCmax 0

intCmax 0(π)(π)
)

(5.71)
= min iC

(
Cmax 0(π′) ∪ π′−1(1) ∩ extCmax 0

intCmax 0(π′)(π
′)
)

Def.
=iCfill(π′)

(5.71)
= min iC

(
Cmax 0(π′) ∪ π′−1(1) ∩ extCmax 0

intCmax 0(π)(π)
)

≥min iC
(
M ∪ π−1(1) ∩ extCmax 0

intCmax 0(π)(π)
)

(5.72)
=M , (5.74)

where the second inequality is a consequence of M ≤ Cmax 0(π′), which follows
from (5.67), and π′|intM = π|intM , which is a consequence of the definition of M
and the fact that π coincides with π′ off {p1,

•
p1,
•
p2,
•
p3, p3}.

Third Step: Now let us turn towards proving our Assumptions (5.71) and (5.72)
of the first step.

We begin with (5.71), i.e., our first aim is to show that the “second largest”
0circuit[π] coincides with the “second largest” 0circuit[π′]: There exists no circuit
in the “open” annulus]

M,Cmax 0(π′)
[

:= extM ∩ intCmax 0(π′) ,

because M
(5.67)
≤ Cmax 0(π′), •p2

(5.62)
∈ Cmax 0(π′), and •p2

Def.
∈ M . This observation,

together with M ∩ intCmax 0(π′) ⊂ π′−1(1), see (5.67), implies

Cmax 0
intCmax 0(π′)(π

′) = Cmax 0
intM (π′) . (5.75)

Note that p2 is a dead end for paths in intM , i.e., |∂p2∩M | = 3. Consequently, one
cannot find a circuit that is contained in intM and hits the node p2. Additionally
considering intM Def.

= intiCfill(π) ∪ p2 gives

Cmax 0
intM (π′) = Cmax 0

intiCfill(π)(π
′) . (5.76)

Moreover, we can also state

Cmax 0
intiCfill(π)(π

′) ≤ Cmax 0
intCmax 0(π)(π

′) = Cmax 0
intCmax 0(π)(π) = Cmax 0

intiCfill(π)(π
′) ,
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where the inequality is a consequence of intiCfill(π) ⊂ intCmax 0(π) and the first
identity follows from π|intCmax 0(π) = π′|intCmax 0(π), which, together with the defini-
tion of iCfill(π) for π ∈ A1, also gives the last equality. In particular, it is a fact
that

Cmax 0
intiCfill(π)(π

′) = Cmax 0
intCmax 0(π)(π) . (5.77)

Thus, Identity (5.71) follows from Equalities (5.75), (5.76), and (5.77).
In order to prove (5.72), we first claim that the set M , which was defined as

the right side of (R3), i.e.,

M = { •p1,
•
p2,
•
p3} ∪ iCfill(π) \ p2 ,

is an induced circuit. Indeed, this is a consequence from the following three facts:

a) By definition, iCfill(π) is an induced circuit;

b) By definition, iCfill(π) contains the nodes p1, p2, and p3;

c) By (5.49) and (5.48), iCfill(π) \ {p1, p2, p3} does not hit the set ∂(
•
p1,
•
p2,
•
p3).

Now we are ready to verify (5.72), i.e., M is the minimal element of

iC
(
M ∪ π−1(1) ∩ extCmax 0

intCmax 0(π)(π)
)
.

First of all, let us characterise the minimal element, before we show that it coincides
with M : The fact π′|intM = π|intM , together with the – already verified – Identity
(5.71), implies

miniC
(
M ∪ π−1(1) ∩ extCmax 0

intCmax 0(π)(π)
)

= min iC
(
M ∪ π′−1(1) ∩ extCmax 0

intCmax 0(π′)(π
′)
)
. (5.78)

It remains to prove that this minimal element (5.78) is indeedM : To this end, note
that by definition of iCfill(π), each of its nodes is ∗weakly 0∗connected[π] to the
second largest circuit Cmax 0

intCmax 0(π)(π) in intiCfill(π). As p2 ∈ π′−1(0) ∩ π−1(0) and
π′|intM = π|intM , this implies that each node of M is ∗weakly 0∗connected[π′] to
the “second largest“ 0circuit[π, π′], Cmax 0

intCmax 0(π)(π)
(5.71)
= Cmax 0

intCmax 0(π′)(π
′), in intM =

intiCfill(π) ∪ p2. Hence, M is the smallest circuit in

iC
(
M ∪ π′−1(1) ∩ extCmax 0

intCmax 0(π′)(π
′)
)
,

which, together with (5.78), implies (5.72).
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Fourth Step: The following paragraphs show that the same node x is responsible
for the enumeration (vide the paragraph after Definition 5.28 on page 111) of the
special paths[π] and the special paths[π′].

To this end, we introduce some useful notation: Let W (.) be the set of ∗paths
that start in ~0, end in Q(.), and are contained in intiCfill(.) ∪ Q(.). Further, let
Wmin(.) be the set of ∗paths of W (.) with minimal (euclidean) length. Obviously,
the ∗paths of Wmin(.) hit Q(.) only in their ending nodes. Now we are ready to
note that in order to show that the same node x is responsible for the enumeration
of the special paths[π] and the special paths[π′], it is sufficient to verify

Wmin(π) = Wmin(π′) ,

which will be done in the sequel:
This paragraph shows Wmin(π) ⊂ W (π′) : First of all, recall

Q(π′) = Q(π) ∪ {p1,
•
p1, p3,

•
p3} ∩Rc (5.79)

and note that

intiCfill(π′) = intiCfill(π) ∪ p2 (5.80)

follows from (R3), which was proved in the second step. An immediate consequence
of both Identities (5.79) and (5.80) is

W (π) ⊂ W (π′) .

This, together with Wmin(π) ⊂ W (π) , which follows from the definition, verifies

Wmin(π) ⊂ W (π′) . (5.81)

This paragraph shows Wmin(π′) ⊂ W (π) : By definition, it is the case that

Wmin(π′) ⊂ W (π′) .

We take the fact for granted that a ∗path of W (π′) \W (π) is never a ∗path with
”minimal length” of W (π′), in short

(W (π′) \W (π)) ∩Wmin(π′) = ∅ , (5.82)

and prove it in the next but one paragraph. The Identity (5.82) and the Observa-
tion Wmin(π′) ⊂ W (π′) lead to our aim of this paragraph

Wmin(π′) ⊂ W (π) . (5.83)
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The two Observations (5.83) and (5.81) imply that the ∗paths ofWmin(π) have
the same length as the ∗paths of Wmin(π′) and, therefore, they verify our aim

Wmin(π) = Wmin(π′) .

It remains to prove Identity (5.82), i.e., ∗paths of W (π′) \W (π) do not belong
toWmin(π′): Let us assume for contradiction that there exists a ∗path S belonging
to W (π′) ∩ (W (π))c ∩Wmin(π′), in short

S ∈ (W (π′) \W (π)) ∩Wmin(π′) .

So, because of (5.79) and (5.80) the ∗path S has to hit p2 or has to end in Q(π′) \
Q(π), which is a subset of {p1,

•
p1, p3,

•
p3}. In both cases (S hits p2 and S ends in

Q(π′) \ Q(π)) we are going to derive a contradiction: To this end, we first note
that

∂∗p2 ∩ iCfill(π′) = {p1•
, p1,
•
p1,
•
p2,
•
p3, p3} ∪ p3•

1p3
•
∈Q(π) (5.84)

follows from (R3), which was proved in the second step.

i) Assume that S hits p2. Due to (5.84) the ∗path S has to go through p2•
or p2• to hit p2. But such a ∗path does not belong to Wmin(π′), since we
can construct a strictly shorter path of W (π′): To this end, recall that the
∗paths were interpreted as polygons and we considered the ones with minimal
euclidean length, see page 111. Now, shorten S by all nodes after p2 and
p2 itself. Note that we cut off at least two nodes. Because of (5.84) the
shortened ∗path has to end in p2•

or p2•. We consider these two cases in the

following and derive a contradiction in each case.

First, assume that the shortened ∗path ends in p2•. Obviously, its length
is at least

√
2 + 1 shorter than the length of S. Hence, if we prolong the

shortened ∗path by p2•
and p1•

∈ Q(π′), the resulting ∗path is strictly shorter

than S. Moreover, it belongs to W (π′), a contradiction to S ∈ Wmin(π′).

Second, assume that the shortened ∗path ends in p2•
. Recall that this short-

ened ∗path has at least two nodes less than S. Prolonging this short-
ened ∗path by one node, namely p1•

∈ Q(π′), leads to a ∗path that be-

longs to W (π′). Moreover, it is strictly shorter than S, a contradiction to
S ∈ Wmin(π′).

Summing up, S does not hit p2.
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ii) It remains to show that S does not end in •p1, p1,
•
p3, or p3. Because of (5.84)

and the fact that S does not hit p2 we can exclude the nodes •p1,
•
p3 as ending

nodes of S.

Further, the node p1 can be eliminated: If S ends in p1 then, due to (5.84)
and S ∩ p2 = ∅, the node p2•

has to be the last but one node of S. Thus,

shortening S by its ending node cuts away an edge of length
√

2. Prolonging
the shortened ∗path by p1•

∈ Q(π′) adds an edge of length 1. Obviously, this

prolonged ∗path is an element of W (π′) and, moreover, is strictly shorter
than S, a contradiction.

Last, p3 cannot be the ending node of S. This is the case because p3 ∈ Q(π′)
and (5.64) imply p3•

∈ Q(π′), which, together with (5.84), verifies

∂∗p2 ∩ iCfill(π′) = {p1•
, p1,
•
p1,
•
p2,
•
p3, p3, p3•

} .

So, if p3 is the ending node of S then the second but last node of S has to
be p2•

, since we already know S ∩ p2 = ∅. Hence, as before shortening S by

its ending node and prolonging the resulting ∗path by p1•
∈ Q(π′) produces

a ∗path of W (π′) strictly shorter than S, a contradiction.

Thus, the enumeration of the special paths[π] and the special paths[π′] starts
in the same node x.

The identity M
(5.74)
= iCfill(π′), together with Lemma (5.41), implies Require-

ment (R4). �

Next we consider the other special paths and analyse if our modification of the
bad path influences the number of 1∗clusters assigned to them.

Lemma 5.43 The configuration π′ of Proposition 5.32 satisfies (R5), i.e., the
numbers of 1∗clusters assigned to the special paths P1, . . . , Pi−1, Pi+1, . . . , Pn do
not change if π is replaced by π′.

Proof: The Observation {p1,
•
p1,
•
p2, p3,

•
p3} ⊂ {π 6= π′}, see (5.52), and Figure 5.8

guarantee that at most five 1∗clusters[π] are affected. Hereby, we can distinguish
three non-exclusive scenarios2:

i) In the case
•
•
p2 ∈ Λc∪π−1(0)∩Λ the set •p2 is the whole 1∗cluster[π] containing

•
p2, which implies that changing π to π′ deletes this 1∗cluster[π] •p2 completely.

2It may help the reader to compare these scenarios with Figures 5.9 and 5.10.
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ii) If p1 ∈ π′−1(1), then changing π to π′ joins two 1∗clusters[π] that contain
the nodes p1•

and •p1.

iii) If p3 ∈ π′−1(1), then changing π to π′ joins two 1∗clusters[π] that contain
the nodes p3•

and p3
•.

All other 1∗clusters are not affected. More precisely, their shapes stay the same
and they still touch the same special paths after changing π to π′. Consequently,
we only have to consider the behaviour of these 1∗clusters[π] ∗adjacent to p1 or
p3. Recall that these 1∗clusters[π] are disjoint, since Pi(π) is bad[π].

If the first scenario occurs, then the 1∗cluster ∗adjacent to the other special
paths are not affected, since •p2 is not ∗adjacent to

⋃
j 6=i Pj (vide (5.49)).

Let us consider the second scenario: We call K1 resp. K2 the 1∗cluster[π]
containing the node •p1 resp. p1•

. Changing π to π′ merges K1 and K2 into a new

1∗cluster[π′]
K ′ := K1 ∪ p1 ∪K2 ∪

•
p11 •p1∈π′−1(1)

.

Note that Pi(π) is the special path[π] with the highest index ∗adjacent to K1 and

K2 and, therefore, •p1 and •

 ••p1

 are not contained in
⋃
j>i Pj. Since also the

set ∂∗{p1,
•
p1} \

•p1, •

 ••p1

 is not ∗adjacent to
⋃
j 6=i Pj (vide (5.49)) and K

′ is

adjacent to •p2 ∈ Pi(π′), this implies that Pi(π′) is still the special path with the
highest index ∗adjacent to the new 1∗cluster[π′] K ′ . Again the 1∗clusters assigned
to the other special paths are not affected.

In a final step we consider the third scenario: Let’s call K3 resp. K4 the
1∗cluster[π] containing p3

• resp. p3•
. Since Pi(π) is bad, we know that i 6= N(π)

and that Pi(π) is the special path[π] with the highest index ∗adjacent to K3 and,

therefore, the node

 ••p3

• is not contained in
⋃
j>i Pj. By definition and (5.64),

K4 contains Qi(π) and, therefore, is adjacent to Pi+1(π) = Pi+1(π′) and is not
assigned[π] to Pi(π). Recall that the 1∗cluster[π′]

K ′′ := K3 ∪ p3 ∪K4 ∪
•
p31 •p3∈π′−1(1)

is assigned[π′] to the special path with the highest index and, therefore, is as-
signed[π′] to the same special path K4 was assigned[π] to, whose index is at least
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i+ 1. Once again this is the case because the set K3 ∪ p3 ∪
•
p31 •p3∈π′−1(1)

is disjoint
and not ∗adjacent to a special path with higher index than the special path K4

was assigned[π] to. This follows from the following four facts:

a) K3 was assigned[π] to Pi(π);

b) the node p3• is adjacent to or contained in K4;

c) the node

 ••p3

• is not contained in
⋃
j>i Pj, since it is adjacent to or con-

tained in K3;

d) the set ∂∗{p3,
•
p3} \


 ••p3

•, p3•

 is disjoint to
⋃
j 6=i Pj (vide (5.49)).

So, the number of 1∗clusters assigned to any other special path is not affected by
changing π to π′. �

After we negated our previous question, whether the number of 1∗clusters
assigned to the other special paths is influenced by our modification, it remains
to prove the inequalities regarding the number of 1∗clusters assigned to the bad
path. This will enable us to compare the φf∗Λ,λ-probabilities.

Lemma 5.44 The configuration π′ of Proposition 5.32 satisfies

|mi
loc(π

′)−1(1)| − |π−1(1)| ≥ Bi(π) = |Pi(π)|+ 1 (R6)

and

|mi
loc(π)−1(1)| − |π′−1

(1)| ≥ Bi(π
′) (R7)

and

mi
loc(π) and mi

loc(π
′) have the same number of 1 ∗ clusters . (R8)

Proof: By construction of π′, all 1∗clusters[π] not ∗adjacent[π] to Pi(π) are also
1∗clusters[π′] not ∗adjacent[π′] to Pi(π′) (and vice versa), which proves Property
(R8).

It is the case that

|mi
loc(π

′)−1(1) \ π−1(1)| = |{p1,
•
p1,
•
p3, p3, . . . , pn}| = n+ 1 = |Pi(π)|+ 1
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follows from Corollary (5.40), together with the fact that R equates Pi(π′), see
(5.68) in combination with (R3) and the definition of M . Therefore, Property
(R6) is satisfied.

Next, we verify Property (R7): By construction of π′′, the identity

mi
loc(π)

−1
(1) \ π′′−1

(1) = Pi(π) ∪ •p2

holds and, therefore,

|mi
loc(π)

−1
(1)| − |π′′−1

(1)| = |Pi(π)|+ 1 .

This, together with π′′−1(1) ⊂ π′−1(1) and (Description (5.52) may help the reader
to understand the following cases)

π′−1(1)\π′′−1(1) =



∅ if p1,
•
p1, p3, ,

•
p3 /∈ intCmax 0(π′′)

p1 if p1 ∈ intCmax 0(π′′) and •
p1, p3,

•
p3 /∈ intCmax 0(π′′)

p3 if p3 ∈ intCmax 0(π′′) and p1,
•
p1,

•
p3 /∈ intCmax 0(π′′)

{p1, p3} if p1, p3 ∈ intCmax 0(π′′) and •
p1,

•
p3 /∈ intCmax 0(π′′)

{p1,
•
p1} if p1,

•
p1 ∈ intCmax 0(π′′) and p3,

•
p3 /∈ intCmax 0(π′′)

{ •p3, p3} if p3,
•
p3 ∈ intCmax 0(π′′) and p1,

•
p1 /∈ intCmax 0(π′′)

implies that

|mi
loc(π)

−1
(1)| − |π′−1

(1)| =

=



|Pi(π)|+ 1 if p1,
•
p1, p3, ,

•
p3 /∈ intCmax 0(π′′)

|Pi(π)| if p1 ∈ intCmax 0(π′′) and •
p1, p3,

•
p3 /∈ intCmax 0(π′′)

|Pi(π)| if p3 ∈ intCmax 0(π′′) and p1,
•
p1,

•
p3 /∈ intCmax 0(π′′)

|Pi(π)| − 1 if p1, p3 ∈ intCmax 0(π′′) and •
p1,

•
p3 /∈ intCmax 0(π′′)

|Pi(π)| − 1 if p1,
•
p1 ∈ intCmax 0(π′′) and p3,

•
p3 /∈ intCmax 0(π′′)

|Pi(π)| − 1 if p3,
•
p3 ∈ intCmax 0(π′′) and p1,

•
p1 /∈ intCmax 0(π′′)

(5.85)

If p1 ∈ intCmax 0(π′′), then p1 ∈ π′−1(1) and two disjoint 1∗clusters[π] are merged
into one 1∗cluster[π′] (this equates scenario 2 in the proof of the last lemma).
If p3 ∈ intCmax 0(π′′), then p3 ∈ π′−1(1) and again two disjoint 1∗clusters[π]
are merged into one 1∗cluster[π′] (this equates to scenario 3 in the proof of the
last lemma). A consequence of such a merging is that the number of 1∗clusters
assigned[π′] to Pi(π′) decreases by one in comparison to Bi(π). Moreover, •p1 or
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•
p3 contained in π′−1(1) implies that

•
•
p2 ∈ π−1(0), see (5.60), and, therefore, that a

1∗cluster[π] vanishes, namely the one only consisting of the node •p2, see Figures
5.9 and 5.10. Summing up, since Bi(π) = |Pi(π)|+ 1, we know that

Bi(π
′) ≤



|Pi(π)|+ 1 if p1,
•
p1, p3, ,

•
p3 /∈ intCmax 0(π′′)

|Pi(π)| if p1 ∈ intCmax 0(π′′) and •
p1, p3,

•
p3 /∈ intCmax 0(π′′)

|Pi(π)| if p3 ∈ intCmax 0(π′′) and p1,
•
p1,

•
p3 /∈ intCmax 0(π′′)

|Pi(π)| − 1 if p1, p3 ∈ intCmax 0(π′′) and •
p1,

•
p3 /∈ intCmax 0(π′′)

|Pi(π)| − 1 if p1,
•
p1 ∈ intCmax 0(π′′) and p3,

•
p3 /∈ intCmax 0(π′′)

|Pi(π)| − 1 if p3,
•
p3 ∈ intCmax 0(π′′) and p1,

•
p1 /∈ intCmax 0(π′′)

.

(5.86)

We write “≤”, since the 1∗cluster only consisting of •p2 could also completely vanish

by changing π to π′ if
•
•
p2 ∈ Λc (which could occur in the first four cases). However,

even without taking this into consideration, (5.85) and (5.86) imply (R7). �

At last all required properties of π′ are shown and, therefore, Proposition 5.32
is verified.



... and frustration!
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bad path, 113
boundary

infinite boundary, 20

boundary line, 68
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bounded energy, 18
butterfly, 71

circuit, 15
0circuit, 16
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0 circuit, 20
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finite Widom-Rowlinson measure, 38
fixed paths, 111

graph, 13

halfplane, 68
left, 68
lower, 68
right, 68
upper, 68

hit, 15

increasing event, 18, 39
infinite boundary, 20
the injection, 75

lasso, 57

necklet with 1pearls, 30
nullification path, 124

path, 14
+path, 16
−path, 16
0path, 15, 16
1path, 15
infinite, 15
two-side infinite, 15
bad, 113
clockwise, 22
counterclockwise, 22
ending node, 14
fixed, 111
induced, 74
non-self-avoiding, 95
nullification, 124
special, 76
starting node, 14
very special, 124

polygons
clockwise, 22
counterclockwise, 22

positively associated, 18, 39

site-random-cluster measure
free, 54
wired, 55

special paths, 76
stochastically dominated, 39

touch, 15

very special paths, 124

Widom-Rowlinson measure, 42
ergodic, 47
extremal, 45
finite, 38

winding number, 22
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