Dissertation zur Erlangung des Doktorgrades der Fakultät für Chemie und Pharmazie der Ludwig-Maximilians-Universität München

Einbau unnatürlicher Aminosäuren in Proteine zur bioorthogonalen Modifizierung sowie Untersuchung des Dewar-Reparaturmechanismus durch (6-4) Photolyasen

> Emine Kaya aus Wetzlar

> > 2011

Erklärung

Diese Dissertation wurde im Sinne von § 13 Abs. 3 bzw. 4 der Promotionsordnung vom 29. Januar 1998 (in der Fassung der sechsten Änderungssatzung vom 16. August 2010) von Prof. Dr. Thomas Carell betreut.

Ehrenwörtliche Versicherung

Diese Dissertation wurde selbstständig, ohne unerlaubte Hilfe erarbeitet.

München, den 24.11.2011

Emine Kaya

Dissertation eingereicht am 24.11.2011

- 1. Gutachter: Prof. Dr. Thomas Carell
- 2. Gutachter: Prof. Dr. Dirk Trauner

Mündliche Prüfung am 10.01.2012

"Always look on the bright side of life." (Eric Idle, Monty Python's Life of Brian)

Danksagung

Meinem Doktorvater, *Prof. Dr. Thomas Carell*, danke ich ganz herzlich für die spannende und vielseitige Themenstellung und das entgegengebrachte Vertrauen in meine wissenschaftlichen Fähigkeiten. Ich danke zudem für die exzellenten Arbeitsbedingungen, die angenehme Atmosphäre und für die wissenschaftliche Freiheit, die er mir gewährt hat.

Den Mitgliedern meiner Prüfungskommission danke ich für ihre Bemühungen bei der Evaluierung meiner Arbeit. Bei *Prof. Dr. Dirk Trauner* möchte ich mich herzlich für die freundliche Übernahme des Koreferates bedanken.

Ein besonderer Dank gilt den Mitarbeitern *Frau Slava Gärtner* und *Frau Sabine Voß* für die große Hilfsbereitschaft in den organisatorischen Herausforderungen des Doktoranden-Alltags.

Prof. Dr. Manfred T. Reetz möchte ich ganz herzlich für seine Gastfreundschaft am Max-Planck-Institut für Kohlenforschung (Mülheim a. d. Ruhr) bedanken. Er und seine Mitarbeiter, insbesondere *Dr. Despina Bougioukou*, waren mir eine große Hilfe bei der gerichteten Evolution der Pyrrolysyl-tRNA Synthetase.

Für die Durchführung des Umlaufs danke ich *Slava Gärtner*. Für das Korrekturlesen dieser Arbeit danke ich *Michael Gattner*, *Christian Deiml*, *Dr. Milan Vrabel*, *Korbinian Heil* und *Dr. Markus Müller*.

Allen Mitarbeitern der Arbeitsgruppe danke ich für die angenehme Atmosphäre. Mit Euch habe ich nicht nur die Wirren des Laboralltags auf sehr lustige Weise durchgestanden, sondern auch legendäre Ausflüge erlebt. Bei *Dr. Milan Vrabel* möchte ich mich an dieser Stelle für die unterschiedlichen Vorstellungen entschuldigen, wie eine Reaktion auszusehen hat. Ich kann jedoch wirklich nichts dafür, dass Proteine keine organischen Lösemittel mögen. *Christian Deiml* danke ich für seine Hilfsbereitschaft und ein offenes Ohr. Sei es um ein fehlgeschlagenes Experiment zu verfluchen, das Warum zu diskutieren oder sich mit mir über das ein oder andere Erfolgserlebnis zu freuen. Danke für die Überstunden an der Orbitrap und vor allem für Deine liebe Art. Ich wünsche Dir viel Erfolg in Deinem neuen Job und freu mich auf Deinen Besuch in Kalifornien. Meinem "Nachfolger" und

Laborkollegen Michael Gattner danke ich für die sehr gute Zusammenarbeit, das Schließen von Wissenslücken (Capitol-Versicherung) und für unzählige Lachkrämpfe. Ich wünsche Dir viel Erfolg für Deine Doktorarbeit und hoffe, dass Du nicht gleich rot wirst, wenn Du das hier liest. Dr. Sabine Schneider danke ich für konstruktive Diskussionen, gemütliches Beisammensein an Freitag-Abenden und die Spanferkelnase. Bei Dr. Markus Müller möchte ich mich für konstruktive Diskussionen, hilfreiche Tipps und leckeren, vegetarischen Zwiebelkuchen bedanken. Korbinian Heil danke ich für viele, viele Antworten auf ebenso viele Fragen von mir sowie Tim Gehrke für kurze, treffende Bemerkungen und für fünf Kuchenstücke (siehe Spanferkelnase).

Für die tatkräftige Unterstützung im Labor möchte ich mich bei meinen F-Praktikantinnen/Bachelor-Studentinnen *Susanne Ciniawsky*, *Stephanie Kloppe* und *Monika Dienst* bedanken.

In 4 1/2 Jahren durchlebt man einige Mädelsabend-Konstellationen. An dieser Stelle danke ich den Beteiligten *Dr. Stephanie Schorr, Dr. Corinna Kaul* und *Dr. Aline Gegout* für die frühen sowie *Dorothea Matschkal, Veronika Reiter, Dr. Viviana Fluxa, Sandra Koch* und *Ines Thoma* für die späten Abende. Ganz herzlich möchte ich mich auch bei *Dr. Stephanie Schorr* und *Dr. Christian Trindler* für schweißtreibende Ausflüge in die Berge, zum Kletterfels und auf die Skipiste, bedanken. Dass ich jetzt Skifahr'n kann ist unter anderem Eurem tatkräftigen Einsatz auf dem Hasliberg zuzuschreiben.

Meinem Freund, *Dr. Vladimir Sofiyev*, danke ich für die aufregendste Zeit in meinem Leben - auch wenn wir sie teilweise weit getrennt voneinander erlebt haben. Du hast mich bei sehr vielen Dingen gut beraten und ermutigt.

Mein größter Dank gilt meiner Familie, mit deren Unterstützung diese Arbeit erst möglich geworden ist. Ich danke Euch für Alles.

Liste der Publikationen

- E. Kaya, M. Vrabel, Ch. Deiml, S. Prill, V. Fluxa und T. Carell, Angew. Chem. Int. Ed. (angenommen). "A Genetically encoded Norbornene-Amino Acid Allows Mild and Selective Cu-free Click Modification of Proteins".
- A. F. Glas, E. Kaya, S. Schneider, K. Heil, D. Fazio, M. J. Maul und T. Carell, J. Am. Chem. Soc. 2010, 132, 3254-3255. "(6-4) Photolyases Initiate a 4π Electrocyclic Ring Opening of Dewar DNA Lesions to Enable Dewar Repair".
- 3. E. Kaya, K. Gutsmiedl, M. Vrabel, M. Müller, P. Thumbs und T. Carell, *ChemBioChem* **2009**, *10*, 2858-2861. *"Synthesis of Threefold Glycosylated Proteins using Click Chemistry and Genetically Encoded Unnatural Amino Acids"*.
- A. F. Glas, M. J. Maul, M. Cryle, T. R. M. Barends, S. Schneider, E. Kaya, I. Schlichting und T. Carell, *Proc. Nat. Acad. Sci.* **2009**, *106*, 11540-11545. "The archaeal cofactor F₀ is a light-harvesting antenna chromophore in eukaryotes".

Konferenzbeiträge

- 1. Poster-Präsentation: "*Incorporation of unnatural amino acids into proteins for click chemistry*". Heidelberg, September 2010, EMBL-Konferenz "Chemical Biology".
- 2. Vortrag: "*Incorporation of unnatural amino acids into proteins*". Bayer CropScience in Monheim, Mai 2009, GDCh Meeting.
- Poster-Präsentation: "Identification of a novel (6-4) Photolyase". Les Houches (Frankreich), Januar 2009, 8th Winter Research Conference "Oxidative DNA Damage".

INHALTSVERZEICHNIS

1	ZUSAMMENFASSUNG					
	1.1	Ein	IBAU UNNATÜRLICHER AMINOSÄUREN IN PROTEINE	. 5		
	1.2	Dev	war-Reparatur durch (6-4) Photolyasen	.7		
2	S	 .2 DEWAR-REPARATUR DURCH (6-4) PHOTOLYASEN		13		
	2.1	Inc	CORPORATION OF UNNATURAL AMINO ACIDS INTO PROTEINS	13		
	2.2	Rei	PAIR OF DEWAR-LESIONS BY (6-4) PHOTOLYASES	15		
3	Eı	NBAU	UNNATÜRLICHER AMINOSÄUREN IN PROTEINE	19		
	3.1	Dei	R GENETISCHE CODE UND SEINE NATÜRLICHE ERWEITERUNG	19		
	3	5.1.1	Selenocystein	22		
	3	5.1.2	Pyrrolysin	23		
	3.2	Ein	IBAU UNNATÜRLICHER AMINOSÄUREN IN PROTEINE	25		
	3.3	Bic	OORTHOGONALE MODIFIKATION VON PROTEINEN	29		
	3	3.3.1	1,3-dipolare Cycloadditionen	30		
	3	3.3.2	Staudinger Reaktion und Staudinger Ligation	31		
	3	3.3.3	Photoinduzierte 1,3-dipolare Cycloaddition	32		
	3	3.3.4	Diels-Alder Reaktion	32		
	3.4	Au	FGABENSTELLUNG	33		
	3.5	ER	GEBNISSE UND DISKUSSION	34		
	3	5.5.1	Klonierung der Co-Expressionsplasmide	34		
	3	5.5.2	Screening für geeignete PyIRS-Substrate	41		

	3.5.3	Aufreinigung von YFP _{Lys114Alkin} 45
	3.5.4	Bestimmung der Suppressions-Effizienz46
	3.5.5	Mehrfach-Einbau des Alkin-Analogons in Proteine
	3.5.6	Funktionalisierung von Alkin-Lysin im Protein51
	3.5.7	Einbau eines Alloc-Derivats von Pyrrolysin zur kupferfreien Click- Reaktion
	3.5.8	Genetische Kodierung von Norbornen- und Hydroxylamin-Aminosäuren zur Durchführung Kupfer-freier Click-Reaktionen
	3.5.9	Iterative Saturierungsmutagenese von <i>M. mazei</i> PyIRS zur Generierung neuer Substratspezifität
	3.5.10	Einbau von Norb-Lysin in die <i>humane</i> Polymerase κ
	3.5.11	Bioorthogonale Modifizierung von genetisch kodierten Norbornenen in Proteinen
	3.5.12	Aktivitätsbestimmung der Click-modifizierten <i>h</i> Pol κ _{Gln163Norb} 75
	3.5.13	Bioorthogonale PEGylierung von Norb-Lysin in Proteinen
4	Dewar-	REPARATUR DURCH (6-4) PHOTOLYASEN81
4	4.1 DN	A-Photoschäden
	4.1.1	Bildung und Eigenschaften von DNA-Photoschäden82
	4.1.2	Reparatur von DNA-Photoschäden84
	4.1.3	(6-4)-Photolyase
4	4.2 Auf	GABENSTELLUNG
4	4.3 Ero	GEBNISSE UND DISKUSSION92
	4.3.1	Enzymatische Reparatur von Dewar-Schäden92

	4.3	3.2 Charakterisierung des Übergangszustandes bei der Dewar-Reparatur.	96
5	MA	FERIALIEN UND METHODEN	99
	5.1	Allgemeine Chemikalien und Lösungsmittel	99
	5.2	GERÄTE	99
	5.3	DNA- UND PROTEINSTANDARDS	01
	5.4	PLASMIDE OHNE INSERTS	02
	5.5	SPEZIELLE SYSTEME	02
	5.6	ENZYME UND ANTIKÖRPER1	04
	5.7	PUFFER1	04
	5.8	LÖSUNGEN1	06
	5.9	Medien1	07
	5.10	Antibiotika (1000x Stocklösungen)1	80
	5.11	INDUKTIONSMITTEL ZUR PROTEINEXPRESSION1	80
	5.12	<i>Е. соц-</i> Stämme1	09
	5.13	MIKROBIOLOGISCHE METHODEN1	09
	5.14	MOLEKULARBIOLOGISCHE METHODEN1	12
	5.15	PROTEINCHEMISCHE METHODEN1	26
	5.16	ANALYTISCHE METHODEN1	31
	5.17	BIOCHEMISCHE METHODEN1	35
6	Lite	RATURVERZEICHNIS1	37
7	Ави	ÜRZUNGSVERZEICHNIS1	61
8	Ant	IANG1	65

1 ZUSAMMENFASSUNG

1.1 EINBAU UNNATÜRLICHER AMINOSÄUREN IN PROTEINE

Der in vivo Einbau unnatürlicher Aminosäuren mit besonderer Reaktivität an definierten Positionen in Proteine ist die Methode der Wahl, um Proteineigenschaften zu ändern oder diese mit gewünschten Funktionen auszustatten. Hierzu bedarf es eines orthogonalen tRNA/Aminoacyl-tRNA Synthetase (AaRS) Paares für die entsprechende Aminosäure.^[1-2] Seit neuestem wird in diesem Zusammenhang das Pyrrolysin-System verwendet, welches sich insbesondere in E. coli zum Einbau Aminosäuren seiner Orthogonalität unnatürlicher aufgrund zur E. coli-Translationsmaschinerie eignet.^[3-6] Pyrrolysin (Pyl) wurde als 22. natürliche Aminosäure identifiziert und wird mittels eines orthogonalen PyltRNA_{CUA}/PylRS Paares sowie eines internen Amber-codon (UAG) translatiert.^[7-9] In der Natur konnte Pyl im aktiven Zentrum von Mono-, Di- und Trimethylamin Methyltransferasen von methanogenen Archaea nachgewiesen werden.^[10-12] Während dieser Dissertation wurde das Pyl-System aus Methanosarcina mazei MS in E. coli angewendet, um den Einbau reaktiver Pyrrolysin-Analoga in Proteine und deren bioorthogonale Glykosylierung zu erzielen (Schema 1.1).

Schema 1.1: Struktur von Pyrrolysin sowie der Alkin-(1) und Alken-(2) Derivate.

Ein Expressionssystem basierend auf dem Vektor pET-Duet1 (Novagen) wurde kloniert, welches neben der PyIRS und drei PyItRNA_{CUA}-Kopien auch ein Zielprotein (mit ein bis drei internen *Amber*-Codons) kodierte. Bei Zugabe der unnatürlichen Aminosäure zur Expressionskultur konnten so bis zu drei unnatürliche Alkin- bzw. Alken-Aminosäuren in ein YFP-Molekül eingebaut werden.^[13]

Schema 1.2: Cu(I) katalysierte Click-Reaktion von dreifach Alkin-modifiziertem YFP mit Zuckeraziden.

Die Alkingruppen im Protein wurden anschließend über die Cu(I)-katalysierte Huisgen-Meldal-Sharpless Reaktion mit Zuckeraziden modifiziert (**Schema 1.2**). Anschließend wurden die Position der Alkine sowie die erfolgreiche Glykosylierung über eine detaillierte Peptid-Analyse mittels moderner nano-HPLC MS/MS nachgewiesen.

Um die Katalyse mit Cu(I) zu vermeiden, welches zur Denaturierung von Proteinen führen kann, wurde im Rahmen dieser Arbeit zudem der genetische Einbau von Norbornen- und Hydroxylamin-Aminosäuren im Protein erreicht (**Schema 1.3**). Norbornene haben eine sehr reaktive Doppelbindung und sind daher geeignete Substrate für eine Vielzahl von Reaktionen. Sie stehen zum Beispiel als geeignete Reaktionspartner in 1,3-dipolaren Cycloadditionen zur Verfügung.^[14-15] Die Aminogruppe in Hydroxylaminen hingegen kann mit Aldehyden stabile Oxime bilden.

Schema 1.3: Struktur der Hydroxylamin-(11) und Norbornen-(12) Derivate von Pyl.

Da die Wildtyp PyIRS diese Aminosäuren nicht oder nur unzureichend einbaut, wurde das Protein zur Generierung der gewünschten Substratspezifität über iterative Saturierungsmutagenese (ISM) evolviert.^[16] Hierbei wurden die für die Substraterkennung wichtigen Reste sukzessive randomisiert und eine daraus resultierende verbesserte Substratspezifität in einem in dieser Arbeit entwickeltem *in vivo* Fluoreszenz-Assay nachgewiesen.

Schema 1.4: Cu(I)-freie Click-Reaktionen am Norbornen-Rest in der humanen Polymerase κ.

Im Anschluss wurde das Norbornen-Derivat in die *humane* Polymerase κ eingebaut und ermöglichte deren Fluoreszenz-Markierung mittels drei verschiedener Cu(I)-freier Click-Reaktionen: (i) einer photo-induzierten dipolaren Cycloaddition mit Tetrazol, (ii) einer dipolaren Cycloaddition mit Hydrazonoyl-Chlorid sowie (iii) einer inversen Diels-Alder-Reaktion mit Tetrazin (**Schema 1.4**).^[17]

1.2 DEWAR-REPARATUR DURCH (6-4) PHOTOLYASEN

UV-Strahlung führt in der DNA zur Bildung mutagener Cyclobutan Pyrimidine Dimere (CPD) und Pyrimidin(6-4)pyrimidon Photoprodukte [(6-4) Photoprodukte].^[18] Bei (6-4) Photoprodukten führt eine UV-A/B Bestrahlung zusätzlich durch eine 4π sigmatrope

Umlagerung zur Bildung der korrespondierenden Dewar Valenz-Isomere (**Schema 1.5**).^[19]

Schema 1.5: Bildung UV-induzierter DNA-Schäden in einer Dipyrimidin-Sequenz.

Als Reaktion auf die stetige Belastung durch UV-Strahlen haben viele Organismen einen direkten, lichtabhängigen Reparaturmechanismus entwickelt, der von CPD bzw. (6-4) Photolyasen katalysiert wird.^[20-22] CPD Photolyasen und (6-4) Photolyasen gehören der Familie der Photolyase/Cryptochrom-Blaulicht-Rezeptoren an. Sie binden FADH⁻ als katalytischen Cofaktor, welcher im angeregten Zustand die Reparatur des jeweiligen Photoschadens durch Elektronentransfer initiiert.^[23-25] Ein weiterer Cofaktor der Photolyasen fungiert als Photoantenne.^[26-27] Dieser ist nicht essentiell, erleichtert jedoch die Photonenabsorption und erhöht somit die Effizienz dieser lichtabhängigen Katalyse. Als zweitem Cofaktor stehen Photolyasen Methenyltetrahydrofolat (MTHF) oder 7,8-Didemethyl-8-hydroxy-5-deazaflavin (F₀) zur Verfügung.

Um die Reparatur von (6-4) Photoprodukten durch (6-4) Photolyasen zu untersuchen, synthetisierte die Arbeitsgruppe *Carell* unterschiedliche (6-4) Photoschäden

(**Schema 1.6**) in DNA.^[28] Sie konnte zeigen, dass T(6-4)T und T(6-4)C effizient, das Analogon T(6-4)C* jedoch schlechter durch die (6-4) Photolyase repariert wird.

Schema 1.6: UV-induzierte T(6-4)T, T(6-4)C, T(6-4)C*, T(Dew)T, T(Dew)C und T(Dew)C* Schäden ausgehend aus den Sequenzen TpT, TpC und TpC*.

Im Rahmen dieser Arbeit wurden die entsprechenden Dewar Valenz-Isomere dieser (6-4) Schäden in DNA erzeugt (**Schema 1.6**) und auf ihre Reparatureigenschaft durch die (6-4) Photolyase aus *Drosophila* getestet. Es konnte nachgewiesen werden, dass die (6-4) Photolyase T(Dew)C, jedoch nicht T(Dew)T repariert. T(Dew)C*, welches ebenfalls synthetisiert und in Reparaturassays eingesetzt wurde, konnte ebenfalls durch die (6-4) Photolyase erkannt und umgewandelt werden. Während der Reparatur des T(6-4)C* kam es jedoch zur Akkumulierung eines Zwischenproduktes. Bei diesem Intermediat handelte es sich vermutlich um die korrespondierende T(6-4)C* Spezies. Um zu beweisen, dass die enzymatische Reparatur von Dewar-Schäden über das (6-4) Intermediat verläuft, wurden weitere enzymatische Untersuchungen durchgeführt. Hierzu wurden die Dewar-Schäden T(Dew)T, T(Dew)C und T(Dew)C* in Reparaturassays mit einer (6-4) Photolyase-

Mutante (H365N) repariert, welche (6-4) Schäden nicht reparieren kann aber weiterhin die Elektroneninjektion auf den Pyrimidindimer katalysiert. Es konnte eine Akkumulierung der (6-4) Intermediate sowohl für T(Dew)C* als auch für T(Dew)C nachgewiesen werden. Damit ist gezeigt, dass auch diese Umwandlung sehr wahrscheinlich über Elektronentransfer erfolgt. Eine T(Dew)T Umwandlung konnte nicht beobachtet werden. Die hier gewonnen Ergebnisse verdeutlichen die beiden Funktionen von (6-4) Photolyasen: neben der Reparatur von (6-4) Schäden katalysieren sie auch die 4π sigmatropische Umwandlung von Dewar-Isomeren zu den (6-4) Spezies.

Um den Dewar-Reparaturmechanismus weiter aufzuklären, wurden zwei zusätzliche Dewar-Isomere in DNA-Strängen hergestellt: die synthetischen Derivate T(Dew)U und T(Dew)meC (**Schema 1.7**). Sie besitzen aufgrund ihrer Methyllierungsmuster veränderte Elektronendichten im 5'-Ringsystem und stellen Hybrid-Strukturen der Isomere T(Dew)T und T(Dew)C dar. Die Reparatureigenschaften dieser synthetischen Derivate wurden mit denen der natürlichen Dewar-Isomeren verglichen. Dies sollte klären, warum die (6-4) Photolyase T(Dew)C, jedoch nicht T(Dew)T reparieren kann.

Schema 1.7: Strukturen der synthetischen Dewar-Schäden T(Dew)U und T(Dew)meC.

Dabei stellte sich eine abnehmende Reparaturaktivität des Enzyms gegenüber den Substraten in der Reihenfolge T(Dew)C > T(Dew)U > T(Dew)meC > T(Dew)T heraus, wobei wie erwartet keine Reparatur des T(Dew)T-Schadens stattfand. In keinem Assay konnte das jeweilige (6-4) Intermediat nachgewiesen werden. Dies deutete auf eine langsame 4π sigmatrope Umlagerung der Dewar-Schäden hin, auf welche eine schnell ablaufende, nicht Raten-bestimmende Reparatur der (6-4) Spezies in die intakten Basen folgt. Die Reihenfolge, in der die angebotenen Substrate von der (6-4) Photolyase repariert werden, bekräftigte die Ausgangshypothese, wonach die Methylgruppe an der C5'-Position und die dadurch veränderte Elektronendichte Einfluss auf die Reparaturfähigkeit des Dewar-Isomers hat. Die erhöhte Elektronendichte führt zur Verringerung der Spindichte in der 3'-Base des Schadens und somit zur Destabilisierung der negativen Ladung in der oben beschriebenen Reihenfolge. Im Falle von T(Dew)T ist die Aufnahme des Elektrons in die 3'-Base nicht mehr möglich. Mittels ab initio Berechnungen, welche in Zusammenarbeit mit der Arbeitsgruppe von Prof. Dr. Regina De Vivie-Riedle durchgeführt wurden, konnte zudem gezeigt werden, dass hierfür ein hyperkonjugativer Effekt verantwortlich ist.

2 SUMMARY

2.1 INCORPORATION OF UNNATURAL AMINO ACIDS INTO PROTEINS

The genetic encoding and *in vivo* incorporation of unnatural amino acids (UAAs) with unique reactivity at a defined site is a desirable method to evolve new protein functions and enhance their properties. This method requires an orthogonal tRNA/aminoacyl-tRNA synthetase (AaRS) pair.^[1-2]

Pyl has been identified as the 22nd amino acid that is translated by an orthogonal pyrrolysyl-tRNA/pyrrolysyl-tRNA synthetase (PyltRNA_{CUA}/PyIRS) pair.^[3-6] This amino acid has been identified^[7-9] in the active site of mono-, di-, and trimethylamine methyl-transferases from methanogenic *archae* and is encoded by an in-frame *Amber*-codon (UAG).^[10-12] We have employed the pyrrolysine system of *Methanosarcina mazei* for incorporation of reactive pyrrolysine (Pyl) derivatives (**Scheme 2.1**) that were later on used for site-specific glycosylation.

Scheme 2.1: Structures of pyrrolysine and its alkyne (1) and alkene (2) analogs.

We created an expression system based on the vector pET-Duet1 (Novagen) encoding a recombinant PyIRS and three copies of PyItRNA_{CUA} in the first and the protein of interest (including the *Amber*-codon) in the second multiple cloning site. By insertion of more than one *Amber*-codon into the open reading frame of YFP we showed that incorporation of up to three artificial alkyne or alkene amino acids is possible.^[13]

Scheme 2.2: Cu(I) catalyzed click-reaction of threefold alkyne-modified YFP with sugar-azides.

The alkyne functionalities in the protein were then modified with sugar moieties by the Cu(I)-catalyzed Huisgen-Meldal-Sharpless reaction (**Scheme 2.2**). Using modern peptide-fragment-based proteomic mass spectrometry techniques the position of the alkyne units and the corresponding glycosylated sites were verified.

In order to avoid the use of Cu(I), which is known to danaturate more delicate proteins, we focused on norbornene and hydroxylamine derivatives of pyrrolysine (**Scheme 2.3**). Norbornenes have a highly reactive double bond and are therefore useful derivatives for a variety of reactions. For example, one could perform efficient 1,3-dipolar cycloaddition reactions under mild conditions as we published before on norbornene containing oligonucleotides.^[15] The amine moiety of the hydroxylamine amino acid can react with various ketones or aldehydes to form stable oximes.

Scheme 2.3: Structures of hydroxylamine (11) and norbornene (12) analogs of Pyl.

As the substrate specificity of PyIRS for the new amino acids was not sufficient we engineered the enzyme using iterative saturation mutagenesis (ISM).^[16] In the course

of ISM the residues of interest in the enzyme were saturated stepwise and increased substrate specificity was reflected in higher fluorescence intensity due to incorporation of the UAAs into our YFP expression assay.

Scheme 2.4: Cu(I)-free click-reaction with the norbornene moiety in human polymerase κ.

The norbornene analog was then incorporated into *human* polymerase κ and used for labeling of the protein with fluorescent dyes by different copper-free clickreactions (**Scheme 2.4**): (i) a dipolar cycloaddition reaction of nitrilimines generated from the corresponding hydrazonoyl chloride or (ii) photocleavage from tetrazole and (iii) an inverse electron demand Diels-Alder reaction with tetrazine.^[17]

2.2 REPAIR OF DEWAR-LESIONS BY (6-4) PHOTOLYASES

UV irradiation of DNA gives rise to the formation of cyclobutane pyrimidine dimers (CPD) and pyrimidine(6-4)pyrimidone photoproducts [(6-4) photoproducts] as the major photolesions.^[18] The (6-4) photoproducts undergo a 4π sigmatropic rearrangement upon further irradiation with UV-A/B to give the corresponding Dewar valence isomers (**Scheme 2.5**).^[19]

Scheme 2.5: Formation of UV-induced DNA-lesions in a di-pyrimidine sequence.

In response to the constant challenge of UV irradiation, organisms have developed a direct light-induced repair reaction catalyzed by CPD and (6-4) photolyases, respectively.^[20-22] CPD photolyases und (6-4) photolyases are members of the photolyase/cryptochrome blue-light receptor family. These enzymes bind two chromophores: FADH⁻ acts as a catalytically essential cofactor, which transfers an electron to the lesion upon photoexcitation.^[23-25] This leads to repair of the photolesion. The other chromophore can either be methenyltetrahydrofolate (MTHF) or 7,8-didemethyl-8-hydroxy-5-deazaflavine (F₀).^[26-27] In contrast to FADH⁻ these cofactors are not essential but act as light-harvesting cofactors.

In order to investigate the repair of (6-4) photoproducts by (6-4) photolyases *Carell* and coworkers created different (6-4) photolesions in DNA (**Scheme 2.6**).^[28] They could show that T(6-4)T and T(6-4)C were efficiently repaired by the enzyme while repair of the $T(6-4)C^*$ analog was less efficient.

Scheme 2.6: UV-induced T(6-4)T, T(6-4)C, T(6-4)C^{*}, T(Dew)T, T(Dew)C, and T(Dew)C^{*} lesions derived from TpT, TpC, and TpC^{*} sequences, respectively.

In this study, repair assays with the Drosophila (6-4) photolyase and the corresponding Dewar lesions T(Dew)T, T(Dew)C, and T(Dew)C* were performed. The assays revealed different repairability of the Dewar isomers by the enzyme. The (6-4) photolyase repaired T(Dew)C, but not T(Dew)T. During repair of T(Dew)C*, T(6-4)C^{*} occurs as a repair intermediate. To prove that the enzyme converts the Dewar isomers into the respective (6-4) lesions, all three Dewar-lesion containing oligonucleotides were repaired with a mutant enzyme (H365N), which is able to transfer an electron to the di-pyrimidine lesion but is unable to repair (6-4) lesions. In these experiments we observed the accumulation of the (6-4) lesion intermediate not only for the T(Dew)C* but also for the T(Dew)C. No rearrangement of the T(Dew)T lesion was observed, showing that in this case the Dewar to (6-4) rearrangement is In summary the impossible. this data shows two functions of the (6-4) photolyases: these enzymes not only split (6-4) lesions but also catalyze the 4π sigmatropic rearrangement of Dewar isomers to the corresponding (6-4) species.

In order to understand the different repairabilities of T(Dew)T and T(Dew)C, DNA containing the synthetic derivatives T(Dew)U and T(Dew)meC (**Scheme 2.7**) were also investigated in repair assays. These lesions differ in the electron density of the 3' and 5' ring system and represent hybrids of the naturally occurring lesions.

Scheme 2.7: Structures of the synthetic lesions T(Dew)U und T(Dew)meC.

Our studies revealed that the repairability is indeed influenced by the electron density resulting from different methylation patterns. The ability of the (6-4) photolyase to repair the Dewar isomers was decreased in the order T(Dew)C > T(Dew)U > T(Dew)meC > T(Dew)T. No repair could be observed for T(Dew)T, in agreement with previous results. In all other cases, no (6-4) intermediate could be detected. Thus, the 4π electrocyclic ring opening reaction, which gives rise to the (6-4) lesion as an intermediate, is subsequently followed by the fragmentation to the repaired dipyrimidine.

The results clearly show the effect of the electron density. A higher electron density in the 3' ring system destabilizes the negative charge introduced by the FADH⁻ cofactor. Our results were in agreement with *ab initio* calculations performed by the group of *Prof. Dr. Regina De Vivie-Riedle*. Herein, a hyperconjugative effect was found to change the stability of the intermediate.

3 EINBAU UNNATÜRLICHER AMINOSÄUREN IN PROTEINE

3.1 DER GENETISCHE CODE UND SEINE NATÜRLICHE ERWEITERUNG

Die Biosynthese von Proteinen erfolgt über die Übersetzung (Translation) der genetischen Information in eine Aminosäure-Sequenz und basiert auf dem genetischen Code. Hierbei sind es insbesondere RNA-Polymerasen, neben einer Vielzahl von regulatorischen und prozessierenden Faktoren, die den Fluss der genetischen Information einleiten:^[29-31] eine definierte DNA-Sequenz wird in einen mobilen Informationsträger, die sogenannte *messenger* RNA (mRNA), umgeschrieben (Transkription).

Abbildung 3.1: Ribosomale Proteintranslation. Während der dargestellten Elongation der Peptidkette wandert das Ribosom entlang der mRNA und rekrutiert mit Hilfe von Translationsfaktoren Aminoacyl-tRNAs. Hierbei katalysiert das Ribosom den Transfer der wachsenden Peptidkette der P-Stelle auf die jeweils neue Aminoacyl-tRNA an der A-Stelle.

Diese mRNA stellt ein Programm dar, nach dem die Ribosomen, große RNA/Protein-Komplexe, die Aminosäure-Bausteine in der vorgegebenen Sequenz sukzessive zu einer Peptidkette zusammenfügen.^[32-34] Die Übersetzung erfolgt dabei stets nach demselben Prinzip: das Ribosom liest die genetische Sequenz aus den vier Nukleobasen A, G, C und U als Triplett-Codon aus und übersetzt jedes dieser Codons mit einer sehr geringen Fehlerrate von 10⁻⁵ bis 10⁻³ in je eine Aminosäure.^[35] Somit werden der Biosynthese Apparatur 4³=64 mögliche Triplett-Codons angeboten, welche es in die 20 kanonischen Aminosäuren zu übersetzen gilt.^[36-42] Der genetische Code wird daher als degeneriert bezeichnet.^[39, 43] Als "Übersetzungshilfe" stehen dem ribosomalen Komplex sogenannte transfer RNAs (tRNAs) zur Verfügung.^[44-45] Dies sind kleine RNA-Oligomere mit einer Länge von 70-80 bp und einer charakteristischen L-förmigen Faltung. Durch ihr Anticodon, welche komplementär zu den Triplett-Codons der mRNA sind, sowie die Acylierung (Beladung) mit der entsprechenden Aminosäure erfüllen sie alle Voraussetzungen, um die Übersetzung der RNA- in eine Aminosäuresequenz zu ermöglichen (Abbildung 3.1).^[46] Doch nicht alle Triplett-Codons stehen ihnen als Substrat zur Verfügung. Neben den 61 Triplett-Kombinationen, die eine definierte Aminosäure bestimmen (sense Codons), existieren drei sogenannte Stopp-Codons (nonsense Codons), welche das Ende der Translation signalisieren. Statt eine beladene tRNA zu binden, um so die Peptidkette zu verlängern, rekrutieren Stopp-Codons Release Faktoren (RFs),^[47] welche den Zerfall des ribosomalen Komplexes katalysieren und somit die Translation beenden. Die Natur hat dafür die Tripletts UGA (Opal-Codon), UAA (Ochre-Codon) sowie UAG (Amber-Codon) vorgesehen, und - so glaubte man lange Zeit - keine "passende" tRNA bereitgestellt.

Die Dechiffrierung des genetischen Codes erfolgte Mitte der 1960er Jahre.^[48] Zu dieser Zeit war kein Organismus bekannt, der nicht den erst kürzlich aufgeklärten Regeln gehorchte. Es wurde in dieser Zeit viel über die Evolution des genetischen Codes spekuliert und nachgedacht. Die wohl bekannteste Hypothese aus dieser Zeit ist die frozen accident Theorie von Francis Crick (1968).^[49] Hierin postulierte Crick, dass nach den Anfängen des genetischen Codes immer mehr Aminosäuren in das Repertoire der frühen Organismen hinzukamen, bis eine ausreichende Komplexität erreicht wurde. Auf diesem Level "erstarrte" die Evolution, da jeder weitere Gewinn an Komplexität nachteilig für den Organismus wäre. Crick vermutete, dass ein immer höher werdendes Maß an Komplexität zu Beginn der Entwicklung von Vorteil war, dass aber ab einem kritischen Punkt jede weitere Veränderung des Codes irgendwann zu viele intakte Proteine "gefährden" würde. J. Tze-Fei Wong hingegen postulierte in seiner Co-Evolutions-Hypothese, dass der genetische Code die Konsequenz aus einer Serie von graduellen Veränderungen im Laufe der Evolution war, bei denen biosynthetisch verwandte Aminosäuren ähnliche Codons zugewiesen wurden.^[50] Eine andere, ebenfalls populärer Theorie, versuchte die Entwicklung des genetischen Codes als Kompromiss früher Organismen zwischen Robustheit und Mutagenität zu verstehen. Hiernach ist Robustheit die treibende Kraft für den genetischen Code, Aminosäure-Substitutionen in Proteinen zu verhindern. Die Mutagenität stellt jedoch sicher, dass die Evolution der Organismen voranschreitet.^[51-52]

Abbildung 3.2 Natürliche Erweiterungen des genetischen Codes. Neben Neudefinitionen einiger *sense*-Codons wurden im Laufe der Erweiterung des genetischen Codes auch *nonsense*-Codons umprogrammiert; diese werden in einigen Organismen zur Kodierung von Aminosäuren verwendet.

All diese Theorien haben eines gemeinsam: sie alle verstehen den genetischen Code als universell und nicht mehr veränderbar.^[53-55] Doch mit der Entdeckung einiger natürlicher Erweiterungen des genetischen Codes musste diese Annahme erweitert werden (siehe **Abbildung 3.2**).^[10] Die ersten Abweichungen vom Standard-Code wurden in einigen Organismen gefunden, in denen einzelne *sense*-Codons für eine andere Aminosäure umprogrammiert wurden.^[56-60] Weitaus wichtiger war jedoch die Entdeckung der sogenannten *nonsense*-Suppression: Durch Neudefinition von *nonsense*-Codons und die Bereitstellung einer nicht-kanonischen Aminoacyl-tRNA waren einzelne Organismen nun in der Lage, den Einbau anderer nicht-kanonischer Aminosäuren zu ermöglichen.^[7, 61-62] Statt die Termination der Translation zu katalysieren, konnte das neu definierte Stopp-Codon eine tRNA rekrutieren und das "Weiterlesen" erlauben. Auf diese Weise war es einigen Organismen gelungen, zwei

weitere Bausteine in ihr Aminosäure-Repertoire aufzunehmen: Selenocystein und Pyrrolysin (**Schema 3.1**).

Schema 3.1: Strukturen der 21. natürlichen Aminosäure Selenocystein und der 22. natürlichen Aminosäure Pyrrolysin.

3.1.1 SELENOCYSTEIN

Der Einbau der 21. natürlichen Aminosäure Selenocystein (Sec) erfolgt über nonsense-Suppression am Opal-Codon (UGA).^[63] Sec konnte mittlerweile im aktiven Zentrum von Selenoproteinen in Organismen aus allen drei Lebensreichen gefunden werden. Archaea, Bakterien und Eukaryoten unterscheiden sich dabei in der Art des cotranslationellen Einbaus von Sec, der Mechanismus ist in allen Fällen jedoch sehr komplex.^[64-65] Der Einbau von Sec in Bakterien wurde weitestgehend in E. coli erforscht und aufgeklärt.^[66] Hier zeigt sich, dass eine ungewöhnliche tRNA-Spezies, die sogenannte tRNA^{Sec}, eine zentrale Rolle spielt.^[67] Diese wird, ähnlich wie eine natürliche tRNA^{Ser}, von der Seryl-tRNA Synthetase als Substrat erkannt und in SertRNA^{Sec} umgewandelt. An der Ser-tRNA^{Sec} erfolgt im Anschluss die Bildung von Selenocystein durch die Selenocystein Synthase (SeIA).^[68-69] Dieses Enzym verwendet aktiviertes Selen, in Form von Selenophosphat,^[70-71] und überträgt es auf den Serin-Rest. Die dabei geformte Sec-tRNA^{Sec} bindet nun GTP und den speziellen Translationsfaktor SelB.^[72] Dieser Komplex besitzt eine hohe Affinität zu einer einzigartigen mRNA-Struktur im Zieltranskript, welcher aufgrund seiner Funktion als SECIS Element (selenocysteine insertion element) bezeichnet wird.^[73-74] Diese Wechselwirkungen zwischen dem Translationsfaktor SelB und dem Struktur-Element SECIS erlauben es dem Organismus zwischen einem UGA^{Sec} sense-Codon und einem UGA nonsense-Codon zu unterscheiden.

Abbildung 3.3: Schematische Darstellung der tRNA^{Sec}-Beladung mit Selenocystein in Eukaryoten und *Archae*.

Der Mechanismus, welcher dem Einbau von Sec in *Archaea* und Eukaryoten zugrunde liegt, konnte in den letzten Jahren ebenfalls aufgeklärt werden (siehe **Abbildung 3.3**). Auch hier existiert ein SECIS-Element, welcher sich nicht wie bei Bakterien unmittelbar nach dem UGA *sense*-Codon befindet, sondern am 3'-UTR. Lange Zeit konnte kein Homolog von SelA gefunden werden. Dies änderte sich mit der Identifizierung der O-Phosphoseryl-tRNA Kinase (PTSK).^[68, 75] Dieses Enzym phosphoryliert Ser-tRNA^{Sec} zu O-phosphoseryl-tRNASec (Sep-tRNA^{Sec}), welches von einem SelA-ähnlichem Protein, der Sep-tRNA:Sec-tRNA Synthase (SepSecS),^[67, 76] zur gewünschten SectRNA^{Sec} Spezies umgewandelt wird und durch Erkennung des SECIS-Elements mittels Translationsfaktoren an das vorgesehene *Opal*-Codon transportiert wird.

3.1.2 PYRROLYSIN

Pyrrolysine (Pyl) wurde im Jahr 2002 als 22. Mitglied der Aminosäure-Familie entdeckt. Die Verbreitung von Pyl ist im Gegensatz zu Sec geringer und beschränkt sich neben der Existenz in einigen methanogenen Archaea, den *Methanosarcinae*, auf das Bakterium *Desulfitobacterium hafniense* und den Symbionten *Olavius algarvensis*.^[77-78] Pyl bildet in diesen Organismen die essentielle Aminosäure in den aktiven Zentren von Mono-, Di- und Trimethylamin-Methyltransferasen (MtmB, MtbB bzw. MttB).^[79-83] Im Gegensatz zu Selenocystein erfolgt die Kodierung von Pyrrolysin über ein internes *Amber*-Codon (UAG),^[11] wobei kein SECIS-homologes Element im mRNA-Transkript benötigt wird.^[84-85] Auch die Beladung der tRNA ist grundlegend verschieden.^[12] Anders als Selenocystein existiert Pyrrolysin als freie, biosynthetisch hergestellte Aminosäure.^[9, 78, 85-86] Der entsprechende Biosyntheseweg konnten insbesondere durch Studien von *Krzycki* ^[87-88] und *Geierstanger* ^[89] aufgeklärt

werden. Sie konnten zeigen, dass die mehrstufige Synthese von Pyrrolysin von zwei Lysinen ausgeht und von insgesamt drei Enzymen (PylB, PylC und PylD) katalysiert wird (**Schema 3.2**). PylB, ein *radical* SAM-Enzym,^[90-91] katalysiert die erste Reaktion zur Generierung von Pyrrolysin. Hierzu wandelt es ein L-Lysin Molekül in D-Ornithin, welches dem nächsten Enzym der Kaskade, PylC, zur Verfügung steht. PylC zeigt Homologien zu D-Aminosäure Ligasen und verknüpft unter ATP-Verbrauch D-Ornithin mit einem weiteren L-Lysin Molekül, um ein Dipeptid zu erhalten. Die ε -Aminogruppe des Dipeptids wird im letzten Schritt durch die Dehydrogenase PylD oxidiert, welche eine spontane Kondensations-Zyklisierung zum Pyrrolring ermöglicht. Die für die Pyrrolysin-Biosynthese verantwortlichen Enzyme befinden sich auf dem Genabschnitt *pylTSBCD*, welches zwei weitere Transkripte kodiert.^[12]

Schema 3.2: Biosynthese von Pyrrolysin durch die Enzyme PyIB, PyIC und PyID.

Es handelt sich dabei um ein orthogonales pyrrolysyl-tRNA_{CUA}/pyrrolysyl-tRNA Synthetase (PyIT/PyIRS) Paar,^[9] welches für die Einbringung dieser besonderen Aminosäure in die ribosomale Translation verantwortlich ist. PyIRS erkennt dabei spezifisch die Aminosäure Pyrrolysin und aktiviert diese, wie alle natürlichen tRNA Synthetasen,^[92] durch Adenylierung mit Hilfe von ATP. In einem zweiten Schritt überträgt sie das aktivierte Pyrrolysyl-Adenylat auf das 3'-CCA Ende von PyIT. Diese wiederum ist mit ihrem Anticodon in der Lage, an interne *Amber*-Codons in der mRNA zu binden und die Termination der Translation zu supprimieren.

3.2 EINBAU UNNATÜRLICHER AMINOSÄUREN IN PROTEINE

Posttranslationale Modifizierung (PTM) von Proteinen spielen in biologischen Prozessen eine wichtige Rolle.^[93-95] Hierzu werden definierte Aminosäuren im bereits synthetisierten Protein kovalent modifiziert, was zur Generierung einer gewünschten Funktion des Makromoleküls führt. So führt etwa die Phosphorylierung von Proteinen an freien Hydroxy-Gruppen an den Aminosäuren Serin, Threonin und Tyrosin zu Konformationsänderungen.^[96-99] Diese Konformationsänderung wird oft in molekularen Signalkaskaden verwendet, um eine Feinregulierung der Aktivität beteiligter Proteine zu realisieren. Die mehrfache Ubiquitinierung eines Proteins an Lysinen hingegen markiert das Protein als "Abfall" und katalysiert den Transport zum Proteasom.^[100-102] Eine weitere, essentielle PTM in höheren Organismen ist die kovalente Anlagerungen von zum Teil komplexen Zuckerstrukturen an Asparagin-, Serin- oder Threonin-Resten. Diese sogenannte Glykosylierung ist ein wichtiger Bestandteil in Strukturproteinen, verleiht membrangebundenen Signalproteinen ihre Rezeptoreigenschaft, erhöht die Diversität und Interaktion von Antikörpern und ist essentiell für die Aktivität einiger Hormone.^[103-107] Die Natur kennt eine Vielzahl weiterer PTMs, mit der sie durch Modifizierung einzelner Aminosäuren neue Proteinfunktionen erschafft. Das Forschungsgebiet des Protein Engineerings beschäftigt sich unter anderem mit der Nachahmung dieser natürlichen Möglichkeiten, um ebenfalls durch gezielte Modifizierung einzelner Proteinreste gänzlich neue Proteineigenschaften zu generieren.^[1, 108-117] Rein chemische Ansätze, wie Reaktionen an natürlichen Aminosäure-Resten, sind jedoch auf wenige reaktive Reste limitiert und häufig nicht sehr effizient. Letzteres führt häufig auch zu inhomogenen Produkten. Zu diesen Seitenketten spezifischen Reaktionen gehört Beispiel die Reaktion von primären Aminen (Lysine) zum mit N-Isothiocyanat-Derivaten^[118-119] Hydroxysuccimidestern oder oder die Maleimidkupplung freier Cystein-Reste.^[120] Des Weiteren wurden Carboxygruppen (Glutamat, Aspartat und der C-Terminus) mit Carbodiimiden funktionalisiert.^[121-122] Um die Limitierung dieser Methode zu umgehen, wird der Einbau unnatürlicher Aminosäuren (UAAs) in Proteine angestrebt. Dieser hat sich in den letzten Jahren zu einem spannenden und vielversprechenden Forschungsgebiet entwickelt. Ziel der Bemühungen ist es, neue und einzigartige funktionelle Gruppen in Proteine einzuführen, um diese selektiv und effizient in bioorthogonalen Reaktionen zu adressieren. Zunächst wurde versucht, unnatürlichen Aminosäuren durch rein chemische Ansätze in das Makromolekül einzubringen. Hierzu wurde die klassische Festphasen-Synthese von Peptiden eingesetzt^[123-126] - eine Methode, die schnell an ihre Grenzen stößt. Während Proteine zum Teil aus sehr vielen Aminosäuren aufgebaut sind und daher eine beträchtliche Größe erreichen können, ist die Festphasensynthese limitiert auf Polypeptide mit weniger als 100 Aminosäuren. Der Aufwand ist dabei trotz automatisierter Geräte beträchtlich, verbraucht viel Material und bedarf aufgrund von Nebenprodukten anschließend der chromatographischen Reinigung des gewünschten Peptids. Es wurde versucht, die Limitierung in der Größe des synthetischen Peptids, welches die unnatürliche Aminosäure enthält, durch semisynthetische Ansätze zu beheben. Hierzu wurde das Produkt der Peptid-Festphasensynthese gereinigt und über *native* oder *expressed chemical ligation* mit ribosomal hergestellten Protein-Einheiten oder ebenfalls synthetischen Peptiden zu dem gewünschten Protein verknüpft (**Schema 3.3**).^[127-131] Diese semisynthetischen

Eines der wichtigen Ziele dieser Methodenentwicklung ist es jedoch, Proteine mit geringem Aufwand auf biochemischen Wege mit unnatürlichen Aminosäure-Resten herzustellen. Daher konzentrierten sich immer mehr Forschungsgruppen darauf, durch Manipulation des Translationsapparates eine Modifikation in das Protein einzubringen. Hierzu müssen Wege gefunden werden, tRNAs mit der unnatürlichen Aminosäure zu beladen und dem Ribosom als Substrat zur Verfügung zu stellen. Hecht und Chamberlin gelang dies in in vitro Translationssystemen, indem eine tRNA chemisch aminoacyliert wurde.^[139-140] Die Gruppe von Barciszewski erreichte die Aminoacylierung unter Hochdruck-Bedingungen,^[141] während Suga spezielle cis- und trans-Ribozyme entwickelte, welche die tRNA katalytisch bzw. autokatalytisch beladen.^[142] Ein kritischer Punkt hierbei stellt die Wahl der tRNA und insbesondere des Anticodons dar. Hierzu wurden entweder bestehende sense-Codons unter Ausschluss der dazugehörigen Aminoacyl-tRNA im Translationssystem verwendet oder nonsense-Codons unter Kompetition mit release Faktoren eingesetzt.^[143-147] Eine elegante Alternative stellten die Gruppen von Hohsaka und Sisido vor,^[148-150] indem sie durch Neugestaltung der Anticodon Region der tRNA vier- und fünf-Basen Anticodons generierten (Abbildung 3.4). Diese können an ein speziell dafür vorgesehenes vier- bzw. fünf-Basen Codon in der mRNA binden und durch sogenannten frameshift die unnatürliche Aminosäure ohne Kompetition mit natürlichen Aminosäuren oder release Faktoren in die wachsende Polypeptid-Kette einführen.

Unter den zur Verfügung stehenden Methoden zum Einbau unnatürlicher Aminosäuren in Proteine ist ohne Zweifel der Durchbruch mit dem in vivo Einbau genetisch codierter UAAs gelungen. Hierzu wurden orthogonale tRNA/AminoacyltRNA Synthetase (tRNA/AaRS) Paare speziell für die unnatürliche Aminosäure der Wahl zum Teil evolviert, die auf molekularbiologischem Wege in den Zielorganismus eingebracht wurden.^[1, 114] Die manipulierte Zelle ist so in der Lage, die neue tRNA und AaRS selbst herzustellen und selektiv die exogen angebotene Aminosäure in die Amber-Translation einzubringen. Besonders häufig wird dabei die Suppressionsmethode verwendet.^[151-153] Das Zielprotein wird dafür ebenfalls mittels molekularbiologischer Methoden in den Organismus eingeführt, wobei das entsprechende Gen an der gewünschten Position ein Amber-Codon besitzt. Auf diese Weise produziert die Zelle sowohl die AaRS, die korrespondierende tRNA_{CUA} als auch ein mRNA-Transkript mit internem Amber-Codon, welches in Anwesenheit der unnatürlichen Aminosäure in das modifizierte Protein translatiert wird (Abbildung 3.5). Diese Aminosäure konkurriert dabei für gewöhnlich mit RF1, so dass bei nicht ausreichenden Mengen beladener tRNA_{CUA} die Translations-Termination an der Amber-Position stattfindet.^[154-156] Diese Technologie geht daher häufig mit sehr hohem Verbrauch der unnatürlichen Aminosäure einher, da diese für eine effiziente Translations-Termination der Zelle in hohen Konzentrationen zur Verfügung gestellt werden muss.

Abbildung 3.5: Einbau unnatürlicher Aminosäuren durch die Amber-Suppressionstechnologie.
Auf diese Weise ist es der Gruppe von *Peter G. Schultz* gelungen, mittels speziell evolvierter, orthogonaler Tyr-tRNA_{CUA}/Tyrosyl-tRNA Synthetase Paare eine Vielzahl unnatürlicher, meist aromatischer Aminosäuren in das Repertoire von *E. coli* und einiger eukaryotischer Zellen aufzunehmen.^[1, 114, 157] Diese Aminosäuren wurden anschließend in bioorthogonalen Reaktionen am Protein eingesetzt. Alternativ wenden *Yokoyama* ^[6, 151] und *Chin* ^[158-161] die *Amber*-Suppression unter Verwendung der Pyl-tRNA_{CUA}/Pyrrolysyl-tRNA Synthetase aus *Methanosarcina Mazei* in bakteriellen und eukaryotischen Zellkulturen an. PylRS akzeptiert keine endogenen Aminosäuren und ist zudem aufgrund eines flexiblen aktiven Zentrums in der Lage, eine Vielzahl von Pyrrolysin-Analoga zu erkennen.^[3, 5, 159] Da zudem Kristallstrukturen des aktiven Zentrums zur Verfügung stehen, könnte durch gerichtete Evolution der PylRS ihr Substratspektrum weiter ausgedehnt werden.^[6, 162]

3.3 BIOORTHOGONALE MODIFIKATION VON PROTEINEN

Es sind zwei Schritte notwendig, um die Anwendung bioorthogonaler Reaktionen an Proteinen durchführen zu können. Zum Einen bedarf es des Einbaus unnatürlicher Aminosäuren mit Hilfe synthetischer (Peptidsynthese), semisynthetischer (*native* bzw. *expressed chemical ligation*) oder biosynthetischer (*Amber*-Suppression) Methoden (siehe *Abschnitt 3.2*).

Diese neuartige Aminosäure muss sich in ihrer Reaktivität grundlegend von denen der natürlichen Aminosäuren unterscheiden, um so als Partner für eine bioorthogonale Modifizierung zur Verfügung zu stehen. Ziel ist es, durch Einbau neuer funktioneller Gruppen und bioorthogonaler Reaktionen eine Vielzahl biochemischer und zellulärer Fragestellungen über Struktur, Funktion und Dynamik Proteinen zu untersuchen. So könnten Proteine mit Fluorophoren, von Zuckerstrukturen, PEG-Ketten und vielen weiteren Liganden modifiziert werden.^{[145,} ^{163-166]} Bei der Methodenentwicklung und der Strategie für die bioorthogonale Addressierung von UAAs in Proteinen muss jedoch eine Vielzahl an Kriterien beachtet werden, um erfolgreiche Studien durchführen zu können.^[113] Die Reaktion muss unter physiologischen Bedingungen bei neutralem pH, niedrigen Temperaturen und in wässriger Umgebung stattfinden können. Zudem muss die Reaktion effizient und schnell ablaufen und gegebenenfalls mit niedrigen Proteinkonzentrationen (insbesondere in *in vivo* Reaktionen) erfolgen. Des Weiteren müssen Nebenreaktionen vermieden werden, sei es mit dem chemischen Liganden oder eventuellen Nebenprodukten. Trotz dieser Vorgaben stehen eine Vielzahl milder Reaktionen zur Verfügung, die bei Anwesenheit der entsprechenden funktionellen Gruppen im Protein deren bioorthogonale Modifizierung erlauben würden.

3.3.1 1,3-DIPOLARE CYCLOADDITIONEN

Die 1,3-dipolare Cycloaddition zwischen einem Azid und einem Alkin, bei der ein Tetrazol entsteht, wurde als erstes von *Huisgen* beschrieben. *Sharpless* und *Meldal* gelang es,^[167-168] diese Reaktion durch katalytische Mengen von Kupfer(I) sehr schnell durchzuführen (**Schema 3.4**). Aufgrund dieser schnellen Reaktionskinetik, der Durchführbarkeit in Wasser und der Vielzahl an möglichen Derivaten wurde diese Cu(I) katalysierte Click-Reaktion ausgiebig zur Modifizierung von Biomolekülen eingesetzt.^[169-174]

Schema 3.4: Kupfer(I) katalysierte 1,3-dipolare Cycloaddition.

Die Verwendung von Cu(I) schränkt diese Methode ein. Cu(I) ist vermutlich durch dessen Einfluss auf die Zellteilung und den Metabolismus,^[175-176] sowie aufgrund der Komplex-Bildung mit Proteinstrukturen toxisch, was die Anwendung der Cu(I) katalysierten Alkin-Azid Click-Reaktion Zellen (CuAAC) in und an einschränkt. Um diese Nachteile zu umgehen, wurden Proteinstrukturen verschiedene kupferfreie Varianten dieser Click-Reaktion entwickelt. So konnten Bertozzi und Mitarbeiter zeigen, dass die Ringspannung in Cyclooktinen ausreicht, um die Reaktivität der Dreifachbindung auch ohne Metallkatalyse zu erhöhen (**Schema 3.5**).^[177-178] Ihnen gelang es, diese Reaktion trotz sehr langsamer Kinetik zur Modifizierung von Glykoproteinen sowohl in vivo als auch in vitro anzuwenden.[179]

Schema 3.5: Kupfer-freie 1,3-dipolare Click-Reaktion am Cyclooktin.

3.3.2 STAUDINGER REAKTION UND STAUDINGER LIGATION

Eine weitere, sehr milde Funktionalisierung stellt die Staudinger Reaktion dar. Hierbei wird ein primäres Amin aus der Reaktion zwischen einem Azid und einem Phosphin generiert. Das Phosphoratom greift dabei den endständigen Stickstoff des Azids an, welches zur Bildung eines terminalen Phosphoazids führt. Dieses zerfällt in wässriger Lösung unter N₂-Abspaltung zum Azaylid und hydrolysiert anschließend zum Amin-Endprodukt.^[180] In einer Abwandlung dieser Reaktion, der sogenannten Staudiner Ligation, verwendeten *Bertozzi* et al. Phosphin-Derivate mit benachbarten elektrophilen Carbonylgruppen (**Schema 3.6**).^[181] Diese stabilisieren das Ylid-Intermediat, welches nach Hydrolyse zu einem stabilen Amid reagiert, wodurch zwei Moleküle "ligiert" werden können.

Schema 3.6: Staudinger Ligation.

Hierdurch wurde unter anderem gezeigt, dass durch Verwendung von entsprechender Phosphin-Derivate die Markierung Azid-funktionalisierter

Zelloberflächen mit Biotin möglich ist.^[181] Die Staudinger Ligation wird seither in einer Vielzahl von Anwendungen als bioorthogonale Reaktion verwendet.^[182-186]

3.3.3 PHOTOINDUZIERTE 1,3-DIPOLARE CYCLOADDITION

Lin und Mitarbeiter orientierten sich bei der Entwicklung bioorthogonaler Click-Reaktionen an der von *Huisgen* beschriebenen photoinduzierten 1,3-dipolaren Cycloaddition zwischen einem Diaryltetrazol und einem Alken-Dipolarophil. Hierbei erfolgt unter UV-Bestrahlung die Cycloreversion des Tetrazolderivats unter N₂-Abspaltung. Der dadurch generierte 1,3-Nitrilimin-Dipol zyklisiert anschließend spontan mit der dipolarophilen Doppelbindung zum Pyrazolin (**Schema 3.7**).

Schema 3.7: Photoinduzierte 1,3-dipolare Cycloaddition. Durch UV-Belichtung wird aus dem Diaryltetrazol unter Stickstoff-Abspaltung ein Nitrilimin generiert, welches eine reaktive Doppelbindung angreifen kann.

Es gelang den Forschern, diese Reaktion bei moderater UV-Bestrahlung mit hohen Ausbeuten durchzuführen.^[187] Unter anderem gelang ihnen die *in vivo* Makrierung Alken-modifizierter Proteine in *E. coli*, welche sie aufgrund der Fluoreszenz-Eigenschaften des Pyrazolin-Rings detektieren konnten.^[188]

3.3.4 DIELS-ALDER REAKTION

Die Diels-Alder Reaktion ist ein klassisches Beispiel für die Verknüpfung zweier Moleküle in wässriger Umgebung unter sehr milden Bedingungen. Es verwundert daher kaum, dass diese Reaktion sehr früh Anwendung in der bioorthogonalen Modifizierung von Biomolekülen fand. Unter anderem konnten *Fox* und Mitarbeiter in einer sehr schnell ablaufenden inversen hetero-Diels-Alder Reaktion zwischen Tetrazin (Dien) und *trans*-Cycloocten (Dienophil) die Zyklisierung zum Dihydropyrazin nachweisen (**Schema 3.8**).

Schema 3.8: Diels-Alder Reaktion. Im dargestellten Reaktionsschema reagiert *trans*-Cyclookten mit einem Tetrazin unter Stickstoffabspaltung und Isomerisierung zum Dihydropyrazin.

Diese Reaktion verwendeten sie, um ein *trans*-Cyclookten-modifiziertes Thioredoxin zu funktionalisieren.^[189] *Hildebrand* und Mitarbeiter hingegen konjugierten Antikörper mit Norbornen-Resten, welche sowohl biochemisch als auch zellulär in einer inversen hetero-Diels-Alder Reaktion mit einem Tetrazin-Derivat bioorthogonal modifiziert werden konnte.^[190]

3.4 AUFGABENSTELLUNG

Im Rahmen dieser Arbeit sollte der *in vivo*-Einbau unnatürlicher Aminosäuren in Proteine ermöglicht werden. Diese Aminosäuren sollten dabei synthetisch hergestellt werden und sich in ihrer Reaktivität grundlegend von denen natürlicher Aminosäuren unterscheiden, um bioorthogonale Modifikationen am Protein zu erlauben. Hierzu sollte das Pyrrolysin-System aus *Methanosarcina mazei*, bestehend aus dem orthogonalen pyl-tRNA_{CUA}/pyl-tRNA Synthetase Paar (PylT/PyIRS), sowie einem

Zielprotein mit internem *Amber*-Codon molekularbiologisch in *E. coli* eingebracht werden. Die gentechnisch veränderten Zellen würden die angebotenen UAAs auf PyIT beladen und diese der ribosomalen Proteinsynthese zugänglich machen. Hierdurch könnte durch *Amber*-Suppression die Aminosäure am internen Stopp-Codon im Zielprotein eingebaut werden. Dieses Ziel sollte auf zwei unterschiedlichen Wegen erreicht werden: zum Einen sollte der Wildtyp-PyIRS eine Bibliothek aus Pyrrolysin-Analoga angeboten und auf deren Einbau hin untersucht werden. Zum Anderen sollte durch gerichtete Evolution eine Bibliothek an PyIRS-Varianten erzeugt werden, um auf diese Weise eine Mutante zu erhalten, die eine ausgesuchte unnatürliche Aminosäure akzeptiert und in das Zielprotein einbaut.

Nach erfolgreichem Einbau der reaktiven UAA in ein Protein der Wahl sollte diese bioorthogonal modifiziert werden. Die Reaktionen am Protein sollten dabei spezifisch physiologischen Bedingungen ablaufen. Hierdurch die und unter würde Modifizierung des Proteins mit unterschiedlichen Liganden ortsspezifische gewährleistet werden. Das Protein sollte im nativen Zustand vorliegen. Auf diese Weise könnten zum Beispiel Fluorophore für FRET-Messungen eingeführt, Alternativen zur Glykoprotein-Synthese durch Einbau von Zuckermodifikationen etabliert oder neue Methoden zur PEGylierung von Proteinen erhalten werden.

3.5 ERGEBNISSE UND DISKUSSION

3.5.1 KLONIERUNG DER CO-EXPRESSIONSPLASMIDE

3.5.1.1 pTRP-Duet1: Mm pyIST und pTRP-Duet1: Mm pyIS3T

Die *Methanosarcina mazei pylT* wurde aus zwei synthetischen DNA-Einzelsträngen (*Metabion*) hergestellt. Hierzu wurden die beiden komplementären DNA-Einzelstränge *fw*-pylT: 5'-GGC CGC <u>GGA AAC CTG ATC ATG TAG ATC GAA TGG ACT CTA AAT CCG TTC AGC CGG GTT AGA TTC CCG GGG TTT CCG CCA C-3'</u> und *rv*-pylT: 5'-TTA AG<u>T GGC GGA AAC CCC GGG AAT CTA ACC CGG CTG AAC GGA TTT AGA GTC CAT TCG ATC TAC ATG ATC AGG TTT CCG C-3' (*pylT*-Abschnitt ist unterstrichen) in einer Konzentration von 50 µM zusammengegeben und hybridisiert. Der resultierende Doppelstrang wurde über die Schnittstellen Notl und</u>

AfIII in die erste *multiple cloning site* des Vektors pET-Duet1 (*Novagen*) ligiert. Für die Kodierung von drei *pylT*-Kopien (pyl3T) wurde ein synthetisches Konstrukt (*Metabion*) mit der Sequenz 5'-GGC CGC <u>GGA AAC CTG ATC ATG TAG ATC GAA</u> <u>TGG ACT CTA AAT CCG TTC AGC CGG GTT AGA TTC CCG GGG TTT CCG CCA</u> TAC ATG TTA T<u>GG AAA CCT GAT CAT GTA GAT CGA ATG GAC TCT AAA TCC</u> <u>GTT CAG CCG GGT TAG ATT CCC GGG GTT TCC GCC A</u>TA CAT GTT AT<u>G GAA</u> <u>ACC TGA TCA TGT AGA TCG AAT GGA CTC TAA ATC CGT TCA GCC GGG TTA</u> <u>GAT TCC CGG GGT TTC CGC CA</u>C-3' (*pylT*-Abschnitte sind unterstrichen) ebenfalls aus zwei DNA-Einzelsträngen generiert und in den Vektor pET-Duet1 über die Schnittstellen Notl und AfIII insertiert.

In einer PCR-Reaktion wurde das Gen py/S aus genomischer DNA von M. mazei (DSM 3647) mit den Primern fw-pylS: 5'-GGA TCC CAT GGA TAA AAA ACC ACT AAA CAC TC-3' und rv-pyIS: 5'-GCG GCC GCT TAC AGG TTG GTA GAA ATC CCG-3' amplifiziert. Das PCR-Produkt wurde zunächst in den pCR®4Blunt TOPO® Vektor (Invitrogen) ligiert und sequenziert. Anschließend wurde das Gen über die Schnittstellen BamHI und Notl in die erste multiple cloning site des Vektors pET-Duet1:Mm pyIT (bzw. pyI3T) eingebracht. Der hieraus resultierende Vektor pET-Duet1:Mm pyIST (bzw. pyIS3T) ermöglichte die Expression einer N-terminal His6fusionierten pyrrolysyl-tRNA Synthetase und der korresponierenden pyrrolysyl-tRNA unter der Kontrolle des ersten T7-Promoters. Für die konstitutive Expression von PyIS und PyIT wurde dieser T7-Promoter durch einen Tryptophan-Promoter aus E. coli (GenBank: K01792.1) ersetzt. Hierzu wurde der ursprüngliche T7 Promoter-1 mit den Restriktionsenzymen Clal und Xbal herausgeschnitten und durch die synthetische E. coli pTRP-Region 5'- ATC GAT CTT ACT CCC CAT CCC CCT GTT GAC AAT TAA TCA TCG AAC TAG TTA ACT AGTA CGC AGG GGC ATC TAG A-3' (Metabion) ersetzt.

Abbildung 3.6: Vektor-Karte von pTRP-Duet1: Mm pyIS3T: zielgen.

Der resultierende Vektor wurde pTRP-Duet1:Mm pyIST (bzw. pyIS3T) genannt. Dieser besaß eine noch ungenutzte zweite *multiple cloning site*, welche die Expression eines weiteren Proteins unter der Regulation eines T7 Promoters ermöglichte (siehe **Abbildung 3.6**). Diese Eigenschaft wurde genutzt, um das mit einer unnatürlichen Aminosäure zu modifizierende Zielprotein herzustellen. Die Gene, welche an einer ausgesuchten Position ein *Amber*-Stoppcodon (TAG) besaßen, wurden standardmäßig via pCR4[®]-Blunt TOPO[®]-Klonierung und über die Restriktionsschnittstellen Ndel und Kpnl insertiert. Zuvor wurde bei der PCR-Amplifzierung des Zielgens durch Wahl entsprechender *rv*-Primer die Sequenz zur Kodierung eines StrepII-Tags eingebracht. Die resultierenden Genprodukte sollten daher bei Anwesenheit der unnatürlichen Aminosäure während der Expression die entsprechende Aminosäure an der gewünschten Position enthalten und über einen C-terminalen StrepII-Tag verfügen. Im Rahmen dieser Arbeit wurde dieses Expressionssystem für mehrere Zielproteine angewendet.

3.5.1.2 pTRP-Duet1: Mm pyIST: mutⁿ-yfp und pTRP-Duet1: Mm pyIS3T: mutⁿ-yfp

Die Wahl von mut-YFP als Zielprotein für den Einbau unnatürlicher Aminosäuren diente anfänglich dem einfachen *Screening* nach geeigneten Aminosäuren für die wt-PyIRS. Dieses *Screening* erfolgte durch Detektion der YFP-Fluoreszenz, welche bei erfolgreichem Einbau der Aminosäure und somit Expression von Volllängen-YFP produziert wurde. Später in dieser Arbeit wurde mut-YFP auch genutzt, um die pyrrolysyl-tRNA Synthetase für den verbesserten Einbau von Hydroxylamin- und

Norbornen-Aminosäuren zu evolvieren. Das nicht mutierte eyfp (*Clontech*) Gen im Expressionsvektor pDEST007 wurde von *Dr. Markus Müller* zur Verfügung gestellt. Der Vektor wurde sowohl zur Expression von nicht modifiziertem eYFP mit N-terminalem Strep-TagII als auch zur ortsgerichteten Mutagenese zur *Amber*-Suppression verwendet.

Für die Generierung der YFP-Mutanten wurde das Gen *eyfp* aus dem Expressionsvektor pDEST-007:eypf mit den Primern *fw*-eyfp: 5'-CAT ATG ATG GTG AGC AAG GGC G-3' und *rv*-eyfp: 5'-GGT ACC TTA TCC GGA TTT TTC GAA TTG AGG ATG ACT CCA TGC GCT AGC CAT CTT AAG GAT AGA TCT CTT GTA CAG-3' amplifiziert. Hierbei kodiert der Primer *rv*-eyfp zusätzlich für den StreplI-Tag, welcher beim Genprodukt zu einem C-terminalen StreplI-Tag führte. Nach TOPO[®]-Klonierung in den Vektor pCR4[®]-Blunt und Sequenzierung diente dieses Konstrukt als Templat für die ortsgerichtete Mutagenese zu *mut*¹-, *mut*²-, *mut*³- und *mut*⁴-*yfp* mit Hilfe des QuikChange[®] Site-Directed Mutagenesis Kits (*Stratagene*). Folgende Primer und Template wurden hierbei eingesetzt:

Tabelle 3.1: Übersicht der *mismatch*-Primer zur Generierung der *Amber*-Codons in mut^{1} , mut^{2} , mut^{3} und mut^{4} -yfp.

Mutante	Position	<i>fw</i> - und <i>rv</i> -Primer	pCR4 [®] -Blunt- Templat
mut ¹ yfp	K114	5'-GCG CCG AGG TG <u>T AG</u> T TCG AGG GCG ACA CCC-3' 5'-GGG TGT CGC CCT CGA A <u>CT A</u> CA CCT CGG CGC-3'	eyfp
mut ² -yfp	K27 K114	5'-CGT AAA CGG CCA C <u>TA G</u> TT CAG CGT GTC CG-3' 5'-CGG ACA CGC TGA A <u>CT A</u> GT GGC CGT CTA CG-3'	mut ¹ yfp
mut⁴-yfp	K27 K114 L132 L138	5'-GCA TCG ACT TC <u>T AG</u> G AGG ACG GCA ACA TC <u>T</u> <u>AG</u> G GGC ACA AGC TGG-3' 5'-CCA GCT TGT GCC C <u>CT A</u> GA TGT TGC CGT CCT C <u>CT A</u> GA AGT CGA TGC-3'	mut ² yfp

Bei der Mutation zur Generierung von *mut⁴-yfp* mittels der eingesetzten Primer wurde durch Sequenzierung der Mutageneseprodukte neben der gewünschten vierfach Mutante auch eine dreifach Mutante nachgewiesen, die im weiteren Verlauf dieser Arbeit ebenfalls verwendet wurde (*mut³-yfp* bzw. 3 mut-YFP mit UAAs an den Positionen 27, 114 und 133).

Die hieraus resultierenden mutierten Gene wurden jeweils in die zweite *multiple cloning site* des Vektors pTRP-Duet1:Mm pyIST (bzw. pyIS3T) über die Schnittstellen Ndel und KpnI eingebracht, so dass deren Transkription vom T7-Promoter kontrolliert wurde.

Der Vektor pTRP-Duet1:Mm pylST:mut¹yfp wurde sowohl zur Expression der Allocund Alkin-modifizierten Varianten von YFP-Lys114Amber als auch zur Iterativen Saturierungsmutagenese (ISM) der PylRS verwendet. Hierzu wurde das Plasmid in BL21(DE3)-*E. coli* Zellen (*Invitrogen*) transformiert.

3.5.1.3 pTRP-Duet1: Mm pyIS3T: mut-poln

Der Vektor pExp007-poln^[191] wurde als Templat zur PCR-Amplifizierung der Aminosäuren 1-578 der *S. cerevisiae* Polymerase η verwendet. Hierzu kamen die PCR-Primer *fw*-polη 5'-CAT ATG TCA AAA TTT ACT TGG AAG G-3' und *rv*-polη 5'-GGT ACC TTA TTT TTC GAA TTG AGG ATG ACT CCA TTG TAA ATC TAT AAT ATC GAA ATT AG-3' zum Einsatz, wobei *rv*-polη zudem einen C-terminalem Streplltag generierte. Nach TOPO[®]-Klonierung in den Vektor pCR4[®]-Blunt und Sequenzierung diente dieses Plasmid als Templat für die QuikChange[®] ortsgerichtete Mutagenese mit den Primern *fw*-q144amber-polη 5'-GGA AGC ACT AAA AAA ATG TAG TTA GCT CAT ACC GAT CCA TAC AGC C-3' und *rv*q144amber-polη 5'-GGC TGT ATG GAT CGG TAT GAG CTA ACT ACA TTT TTT TAG TGC TTC C-3'. Nach Verifizierung des gewünschten Gens durch Sequenzierung wurde dieses über die Schnittstellen Ndel und Kpnl in den Vektor pTRP-Duet1: Mm pylS3T inseriert.

3.5.1.4 pTRP-Duet1: Mm pyIS3T: mut-I19_f(ab)

Der Genabschnitt des *humanen* L19 F(ab)-Fragmentes mit zwei *Amber*-Codons und C-terminalem His₆- und c-Myc-Tag wurde von *Geneart* bezogen. Die Aminosäuresequenz ist im Anhang dargestellt. Zusammenfassend besteht dieser Proteinkomplex aus einer leichten Kette mit einer sekretorischen OmpA-Sequenz am N-Terminus und einer Val111*Amber* Substitution. Die schwere Kette besitzt eine sekretorische PhoA-Sequenz am N-Terminus, eine Ala114*Amber* Substitution sowie C-terminale Affinitätstags (His₆- und c-Myc-Tag). Die kodierenden Genabschnitte wurden - durch eine ribosomale Bindestelle getrennt - über die Schnittstellen Ndel

und Kpnl hinter den T7-Promoter 2 in den Vektor pTRP-Duet1: Mm pylS3T eingebracht. Die beiden sekretorischen Sequenzen OmpA und PhoA wurden verwendet, um die Proteinketten unmittelbar nach ihrer *in vivo* Translation in *E. coli* in die oxidierende Umgebung des Periplasmas zu transportieren. Nur hier konnte sich aus den einzelnen Ketten unter Disulfidbrückenbildung das funktionsfähige Heterodimer bilden.

3.5.1.5 pACYC-pGLN:norS3T

Das aus der ISM erhaltene Plasmid pTRP-Duet1:norS3T:mut¹yfp (siehe Abschnitt 3.5.9), welches das Gen für die optimierte NorRS kodierte, wurde mit den Restriktionsenzymen ApaLI und Notl verdaut, um das für die NorRS kodierende Gen herauszuschneiden. Das ca. 2.2 kb große DNA-Fragment wurde in die erste multiple cloning site des mit den gleichen Restriktionsenzymen verdauten Vektors pACYC-Duet1 (Novagen) ligiert. Anschließend wurde der T7-Promoter 1 dieses Vektors mit folgender Promoter-Region und Shine Dalgarno Sequenz (GeneArt, Regensburg) über die Restriktionsschnittstellen Clal und Ncol ersetzt: 5'-TCA TCA ATC ATC CCC ATA ATC CTT GTT AGA TTA TCA ATT TTA AAA AAC TAA CAG TTG TCA GCC TGT CCC GCT TAT AAT ATC ATA CGC CGT TAT ACG TTG TTT ACG CTT TGA GGA AGC C-3'. Bei diesem Promoter handelte es sich um pGLN, welcher in E. coli die Expression der GInRS konstitutiv reguliert. Der hieraus resultierende Vektor pACYC-pGIn:norS wurde anschließend mit den Enzymen NotI und PacI verdaut, um die zweite *multiple cloning site* inklusive des T7-Promoter 2 durch ein synthetisches PyIT-Operon (GeneArt) zu ersetzen. Dieses Operon bestand aus drei Kopien der py/T, welche durch die E. coli Promoter und Terminator-Regionen der Lys-tRNA (proK und terK) flankiert waren. Die Sequenz des eingesetzten PyIT-Operons ist wie folgt: 5'-GCG GCC TGC TGA CTT TCT CGC CGA TCA AAA GG CAT TTT GCT ATT AAG GGA TTG ACG AGG GCG TAT CTG CGC AGT AAG ATG CGC CCC GCA TTG GAA ACC TGA TCA TGT AGA TCG AAT GGA CTC TAA ATC CGT TCA GCC GGG TTA GAT TCC CGG GGT TTC CGC CAT ACA TGT TAT GGA AAC CTG ATC ATG TAG ATC GAA TGG ACT CTA AAT CCG TTC AGC CGG GTT AGA TTC CCG GGG TTT CCG CCA TAC ATG TTA TGG AAA CCT GAT CAT GTA GAT CGA ATG GAC TCT AAA TCC GTT CAG CCG GGT TAG ATT CCC GGG GTT TCC GCC AAA TTC GAA AAG CCT GCT CAA CGA GCA GGC TTT TTT GCC TTA AG-3'

(*pyIT*-Abschnitte sind unterstrichen, *proK* und *terK* sind fett hervorgehoben). Das hieraus resultierende Plasmid wurde als pACYC-pGLN:norS3T bezeichnet.

Abbildung 3.7: Vektorkarten von pACYC-pGLN: norS3T und eines Coexpressionsplasmids für das Zielgen.

Die Vorteile gegenüber des zuvor verwendeten Coexpressionsplasmids pTRP-Duet1:Mm pyIST waren vielfältig. Zum Einen handelte es sich bei dem verwendeten Plasmid pACYC-Duet1 um ein low copy Plasmid. Dieses führt, wie in der Literatur bekannt, in Kombination mit dem sehr starken konstitutiven Promoters pGLN^{[153, 192-} ^{193]} für gleichbleibend hohe - aber nicht zu hohe und somit eventuell nachteilige -Konzentrationen der AaRS. Das ebenfalls sehr starke und literaturbekannte LystRNA Operon^[153] sollte zudem hohe tRNA-Konzentrationen in der Zelle bereitstellen, noch bevor die induktive Genexpression des Zielproteins stattfand. Zum Anderen ermöglichte die Chloramphenicol-Resistenz und der ori des Plasmids die Cogroßen Transformation mit einer Anzahl kommerziell erhältlichen an Expressionsplasmiden. Diese besitzen für gewöhnlich eine Ampicillin-Resistenzkassette und einen kompatiblen ori. Somit konnte das Zielprotein durch Wahl des zweiten Plasmids einfach ausgetauscht und in Kombination mit den für das jeweilige Protein bereits optimierten Expressionsplasmiden eingesetzt werden (Abbildung 3.7).

3.5.1.6 pPSG-IBA33:hpolk

Das Gen für eine verkürzte Version (Aminosäuren 19-526) der *humanen* Polymerase κ (*h*Polκ) wurde von *Dr. Stephanie Schorr* und *Christian Deiml* in den Vektor pPSG-IBA33 eingebracht und für die Expression optimiert. Hierzu wurde der Genabschnitt mit den Primern *fw*-polk: 5'-AGC GGC TCT TCA ATG GGC CTG AAC GAT AAT AAA GCA GGA ATG GAA GGA T-3' und *rv*-polk: 5'-AGC GGC TCT TCT CCC TTG TTG GTG TTT CCT GTC CTC TTC-3' über PCR amplifiziert. Anschließend wurde das ca. 1.5 kb lange PCR-Produkt in einer zweistufigen Stargate[®]-Klonierung über den Vektor pENTRY-IBA10 (*IBA*) in den Vektor pPSG-IBA33 (*IBA*) transferiert. Dieser Vektor ermöglichte die T7-kontrollierte Expression eines C-terminal His₆-Fusionsproteins. Mittels der QuikChange[®]-Methode zur ortsgerichteten Mutagenese und den Primern *fw*-q163amber-polk 5'-GCT AAG AGG CTG TGC CCA TAG CTT ATA ATA GTG CCC CCC-3' und *rv*-q163amber-polk 5'-GGG GGG CAC TAT TAT AAG CTA TGG GCA CAG CCT CTTA GC-3' wurde anschließend ein *Amber*-Codon an der Position 163 (Gln) eingebracht.

3.5.2 SCREENING FÜR GEEIGNETE PYLRS-SUBSTRATE

Um zu testen, ob eine ausgesuchte unnatürliche Aminosäure von der pyrrolysyltRNA Synthetase akzeptiert wird, wurden BL21(DE3) Zellen mit dem Plasmid pET-Duet1: Mm pylST: mut-yfp in Anwesenheit der unnatürlichen Aminosäure kultiviert und mit IPTG zur Expression der Proteine PylRS und mut-YFP sowie der tRNA PylT angeregt. Im Falle des erfolgreichen Einbaus der unnatürlichen Aminosäure in YFP würde die *in vivo* Detektion von YFP möglich sein. Bei ausbleibendem Einbau der Aminosäure in der durch das *Amber*-Codon vorgegebenen Position würde kein Fluoreszenzsignal durch die Zellen produziert werden. Zunächst wurde getestet, ob dieses *Screening*-System sich dazu eignet, den erfolgreichen Einbau einer Aminosäure nachzuweisen.

Hierzu wurde in einer Positivkontrolle den Zellen eine unnatürliche Aminosäure angeboten, welche als geeignetes PyIRS-Substrat bekannt war. Dabei handelte es sich um das kommerziell erhältliche N-ε-Cyclopentyloxycarbonyl-L-lysin (Cyc,

Schema 3.9).^[5] In einer Negativkontrolle wurde den Zellen keine unnatürliche Aminosäure angeboten. Dieses sollte zum Einen ausschließen, dass die Zellen eine endogene Aminosäure an die Amber-Position in YFP einbauen und zum Anderen, dass das verkürzte YFP eine (Rest-)Fluoreszenz besitzt. Hierzu wurden die Zellen in einer 5 mL-Übernachtkultur in LB-Medium mit 100 µg/mL Carbenicillin bei 37 °C und 200 rpm kultiviert. Am folgenden Tag wurden 100 µL dieser Kultur abzentrifugiert un in 1 mL frischem LB-Medium (mit 100 μ g/mL Carbenicillin und 1 μ M IPTG) resuspendiert. Die Positivkontrolle wurde zusätzlich mit 1 mM Cyc versetzt. Nachdem die durch IPTG induzierte Protein- und tRNA-Expression für 3 h bei 37 °C und 200 rpm stattgefunden hatte, wurden 15 µL der Kultur auf einen Objektträger überführt und an einem TCS SPE spectral confocal microscope (Leica) mit inversem Aufbau und einem HCX FL APO 63x/140-0.60 Öl-Objektiv analysiert. Die Zellen wurden hierbei mit einer Wellenlänge von 488 nm angeregt. Die Fluoreszenz-Unterschiede der beiden Kulturen zeigten in der Tat, dass sich dieser Versuchsaufbau dazu eignet, zwischen erfolgreichem und nicht erfolgreichem Einbau einer unnatürlichen Aminosäure mittels des Pyrrolysin-Systems zu unterscheiden.

Abbildung 3.8: Fluoreszenzmikroskopische Analyse. a) eYFP produzierende BL21(DE3)-Zellen; b) 1 mut-YFP ohne UAA; c) 1 mut-YFP mit Cyc (links: Durchlicht; mitte: Fluoreszenz; rechts: Überlagerung).

Wie in Abbildung 3.8 dargestellt, produzierten die Zellen der Negativkontrolle kein detektierbares Fluoreszenzsignal. Ein solches Signal konnte jedoch deutlich in den Zellen mit Cyc nachgewiesen werden. Da diese Screening-Methode zudem mit äußerst Material- und Zeitaufwand einherging und aufgrund der einfachen geringem Durchführung ideale Voraussetzungen für reproduzierbare Resultate bot, wurde es als Screening-System in dieser Arbeit beibehalten um neue Substrate für die pyrrolysyltRNA-Synthetase zu identifizieren. Diese unnatürlichen Aminosäuren, welche von Veronika Ehmke und Dr. Milan Vrabel synthetisiert worden waren, wurden so gewählt, dass sie sich für die Cu(I)-katalysierte Cycloaddition eigneten. Daher stellten diese Lysin-Derivate entweder endständige Alkin- oder Azid-Gruppen zur Verfügung. Anfänglich wurden die Derivate 1, 2 und 3 im oben beschriebenen Screening-System getestet (Schema 3.10). Keines dieser Derivate zeigte jedoch eine detektierbare YFP-Fluoreszenz, was darauf schließen ließ, dass sie nicht durch die PyIRS erkannt und auf die PylT geladen wurden. Somit war auch der Einbau in die wachsende Peptidkette an der vorgesehenen Position während der ribosomalen Proteinbiosynthese nicht möglich.

Schema 3.10: Strukturen der ersten drei Pyl-Derivate, welche im Rahmen dieser Arbeit auf cotranslationalen Einbau getestet wurden.

Es bestand die Möglichkeit, dass der Einbau aufgrund zu geringer Konzentrationen in der Zelle verhindert wurde, da zum Beispiel die Zellen die angebotene Aminosäure nicht aufnehmen konnten. Daher wurde oder nur schlecht versucht. den Konzentrationsgradienten zwischen dem Cytoplasma und dem umgebenden Medium zu erhöhen, um den Transport in die Zelle zu erleichtern. Hierzu wurde die Aminosäurekonzentration im Expressionsmedium von 1 mM auf 5 mM erhöht. Durch Fluoreszenzmikroskopie konnte auch bei diesen Bedingungen kein Einbau der bereitgestellten unnatürlichen Aminosäure nachgewiesen werden.

Schema 3.11: Strukturen der Pyl-Derivate 4 und 5.

Es wurden zwei weitere Pyl-Derivate (**4** und **5**) synthetisiert und auf den *in vivo* Einbau in *E. coli* mit Hilfe des Pyrrolysin-Systems getestet (**Schema 3.11**). Während die Fluoreszenz-Mikroskopie auch für das Pyl-Derivat **5** keinen Nachweis für den Einbau in YFP_{Lys114Amber} lieferte, konnte dieser für die Aminosäure **4** erzielt werden. Sowohl bei einer Konzentration von 1 mM als auch 5 mM konnte die YFP-spezifische Fluoreszenz bei 527 nm detektiert werden (**Abbildung 3.9**).

Abbildung 3.9: Fluoreszenzmikroskopische Analyse. Analyse der 1 mut-YFP Produktion in Anwesenheit von 1 mM **4** (links: Durchlicht; mitte: Fluoreszenz; rechts: Überlagerung).

Die Aminosäure 4, welche über eine endständige Alkingruppe verfügt, unterscheidet sich hierbei in der Carbamat-Gruppe von den getesteten Pyl-Derivaten 3 und 5. Der Sauerstoff der Carbamat-Funktion ist eine elektronenreiche Position im Aminosäurerest, die bei Betrachtung der in der Literatur beschriebenen, erfolgreich eingebauten Pyrrolysin-Analoga essentiell für die Erkennung durch PyIRS zu sein scheint.^[3, 5-6, 8] Die elektronenreiche Einheit fehlte in den getesteten Aminosäuren 3 und 5. Vermutlich bindet diese auf die gleiche Weise an das Enzym wie der Stickstoff des Pyrrol-Rings des natürlichen Substrats Pyrrolysin. Mit diesem positiven Screening-Ergebnis würde es möglich sein, ein Protein mit der unnatürlichen Aminosäure 4 herzustellen, die anschließend eine ortsspezifischen Cu(I)-katalysierte Cycloaddition erlaubte. Die Derivate 1 und 2 wurden nicht akzeptiert, obwohl sie über die für die Substraterkennung wichtige Carbamant-Funktion verfügten. Vermutlich war die Position des Alkin-Rests am Cyclopentan-Ring falsch für die Erkennung durch PyIRS.

3.5.3 AUFREINIGUNG VON YFPLYS114ALKIN

Um nachzuweisen, dass sich Alkin-Lysin 4 nicht nur für den Einbau in Proteine sondern auch zur selektiven Modifizierung im Proteinkontext eignet, wurde dieses Derivat in größerem Maßstab zur Proteinproduktion eingesetzt. Als Zielprotein wurde YFP gewählt, da es für die heterologe Expression in *E. coli* in relativ großen Mengen geeignet ist und Protokolle zur YFP-Expression zur Verfügung standen. Zudem ist YFP ein thermostabiles Protein. Es lässt sich nach der Herstellung für längere Zeit lagern und ist aufgrund seiner Stabilität ein geeignetes Modell für die Ausarbeitung der durchzuführenden Click-Reaktionen. Diese wurden. wie schon bei bioorthogonalen Modifizierungen mit Alkin-haltiger DNA gezeigt, bei Raumtemperatur durchgeführt. Bei weniger thermostabilen Proteinen könnte dies zur Denaturierung führen, da die Click-Reaktion unter Umständen über mehrere Stunden erfolgen muss. Lange Reaktionszeiten können auf die komplexe Proteinstruktur zurückgeführt werden, welche die Zugänglichkeit der Aminosäure für den Reaktionspartner erschwert. Dadurch wird die Reaktion langsamer ablaufen. In den für DNA-Modifizierung üblichen Click-Bedingungen hingegen lief die Reaktion meist schneller ab, da in DNA eingebrachte Funktionalitäten für gewöhnlich weniger sterisch behindert sind. Ein weiterer Vorteil von YFP für die Durchführung dieser Experimente bestand in dessen Fluoreszenz- und Absorptionsverhalten. Die Fluoreszenz ermöglichte noch während der Expression in E. coli die Überprüfung auf die gewünschte Proteinproduktion mittels einfacher Fluoreszenzmikroskopie. Die Absorptionsmaxima bei 488 und 514 nm wiederum erlaubten eine spezifische Detektion der YFP-haltigen Fraktionen während der Aufreinigung am ÄKTA[®] Purifier. Zudem kann durch visuelle Überprüfung der Fluoreszenz nach der Reaktion festgestellt werden, ob das Protein durch die Derivatisierung denaturiert ist oder noch nativ vorliegt.

Zur Herstellung von YFP wurden, wie schon für das Substrat-*Screening* beschrieben, BL21(DE3)-Zellen mit dem Plasmid pTRP-Duet1:Mm pylST:mut¹-yfp transformiert. Die Herstellung von YFP_{Lys114Alkin} (1 mut-YFP) erfolgte standardmäßig in 2 L-Schüttelkulturen in LB-Medium mit 100 µg/mL Carbenicillin. Es wurden zusätzlich 2 mM von **4** während der Wachstumsphase der Zellen hinzugefügt um eine möglichst effiziente Aufnahme der Aminosäure in das Cytoplasma zu gewährleisten. Da auch PylRS und PylT bereits in dieser Phase konstitutiv hergestellt wurden, sollte zudem eine Beladung der tRNA mit **4** noch vor der Produktion des Zielproteins ermöglicht werden. Bei einer OD_{600nm} von 0.6 wurde die Produktion von YFP durch Zugabe von 1 mM IPTG induziert und erfolgte für 3 h. Die Zellen wurden am Fluoreszenzmikroskop auf YFP-Fluoreszenz untersucht und bei bestehender Fluoreszenz zentrifugiert. Die Zellen wurden für die Proteinreinigung aufgeschlossen um das klare Lysat über StrepII-Affinitätschromatographie und anschließender Mono Q-Ionenaustauscher Chromatographie zu reinigen (**Abbildung 3.10**). Die YFPhaltigen Fraktionen wurden gesammelt und in YFP Puffer A (10 mM Tris-HCI pH 8, 2 mM EDTA) in einer Konzentration von ca. 1 mg/mL überführt. Die Proteinmenge wurde mittels des Bradford-Assays bestimmt und ergab eine Ausbeute von ca. 0.3 mg/L(Schüttelkultur).

3.5.4 BESTIMMUNG DER SUPPRESSIONS-EFFIZIENZ

Um die Suppressions-Effizienz des angewendeten Pyl-Systems in *E. coli* mit Alkin-Lysin **4** zu bestimmen wurde die Ausbeute von YFP_{Lys114Alkin} mit der Ausbeute des natürlichen Proteins verglichen. Hierzu wurde das Plasmid pDEST-007:eyfp in BL21(DE3) Zellen transformiert und diese Zellen in Abwesenheit einer unnatürlichen Aminosäure zur Proteinproduktion eingesetzt. Nach der Reinigung über Strepll-Affinitätschromatographie und Mono Q-Ionenaustauscher Chromatographie wurden ca. 3 mg/L(Schüttelkultur) an eYFP gewonnen (siehe **Abbildung 3.10**). Dieser Wert war niedriger als der in der Literatur angegebene Wert für die Gewinnung von eYFP aus *E. coli*. Hierfür können mehrere Faktoren verantwortlich sein, wie etwa die geringe Sauerstoffversorgung in den Kulturkolben. Das könnte durch Verringerung der Kulturvolumina oder durch Fermentation unter konstanter Sauerstoffzufuhr verbessert werden. Dadurch könnten höhere Zelldichten erreicht und somit mehr

Abbildung 3.10: SDS-PAGE der rekombinanten Proteine eYFP sowie YFP_{Lys114Amber}. Die durch Coommassie-Färbung sichtbar gemachten Proteine wurden über StrepII-tag Affinitäts- sowie Mono Q Ionenaustauscherchromatographie gereinigt.

Vergleicht man die Ausbeuten der Proteine eYFP und YFP_{Lvs114Amber}, welche unter ähnlichen Bedingungen erzielt wurden, so war eine Verringerung der Ausbeute um den Faktor 10 zu verzeichnen. Die Suppressions-Effizienz ist somit nicht optimal. Dies könnte eine Folge der geringeren Substrataffinität der PyIRS zum Alkin-Analogon gegenüber Pyrrolysin sein. Fluoreszenz mikroskopische Untersuchungen mit Cyc und dem Alkin-Analogon zeigten bereits eine geringere Fluoreszenzintensität der YFP_{Lys114Alkin}- gegenüber der YFP_{Lys114Cyc}-produzierenden *E. coli*-Zellen (siehe Abbildung 3.8c und Abbildung 3.9). Wie in der Literatur bereits beschrieben,^[5] wird Cyc von der PyIRS schlechter auf die korrespondierende tRNA geladen als das natürliche Substrat Pyrrolysin. Daher liegt die Annahme nahe, dass eine ineffiziente Beladung des Alkin-Lysin auf PylT zur geringen Suppressions-Effizienz führte. Ein weiterer Grund hierfür könnte auch die schlechte Aufnahme des Pyl-Analogons 4 in die Zellen sein, wodurch ebenfalls nicht genügend PylT-Moleküle durch die PylRS aktiviert wurden. Des Weiteren könnte die Konzentration dieser beiden Faktoren, PyIT und PyIRS, in den Zellen zur schlechten Suppressionsrate beigetragen haben. Diese Möglichkeit wurde in Betracht gezogen. Daher wurden im Laufe dieser Arbeit durch den Gebrauch eines veränderten Expressionssystems (siehe Abschnitt 3.5.1.5 und 3.5.10) höhere Konzentrationen von PyIRS und PyIT bereitgestellt.

3.5.5 MEHRFACH-EINBAU DES ALKIN-ANALOGONS IN PROTEINE

Nachdem der *in vivo*-Einbau des Alkin-Lysins mit Hilfe des Pyl-Systems erfolgreich war, sollten im nächsten Schritt mehrere Alkin-Funktionalitäten in ein Protein eingebracht werden. Hierzu wurden die Plasmide pTRP-Duet1:Mm pylST:mutⁿ-yfp (n: 2-4) jeweils in BL21(DE3)-Zellen transformiert. Die Proteine YFP_{Lys27Alkin-Lys114Alkin} (2 mut-YFP), YFP_{Lys27Alkin-Lys114Alkin-Lys132Alkin} (3 mut-YFP) sowie YFP_{Lys27Alkin-Lys114Alkin-Lys132Alkin} (4 mut-YFP) wurden wie die Einfach-Mutante exprimiert und gereinigt. Nach der zweistufigen Reinigung wurde die Ausbeute der einzelnen Mutanten über Bradford-Assay bestimmt und mit den Ausbeuten für eYFP und 1 mut-YFP verglichen:

YFP-Variante	Ausbeute in mg/L
eYFP	3.5
1 mut-YFP	0.3
2 mut-YFP	0.1
3 mut-YFP	0.03
4 mut-YFP	-

Tabelle 3.2: Proteinausbeuten von eYFP sowie dessen Ein- und Mehrfachmutanten.

Diese Werte zeigten neben der bereits beschriebenen Reduktion der Ausbeute von 1 mut-YFP im Vergleich zu eYFP eine weitere Reduktion für jede weitere Amber-Suppression. Während für 1 mut-YFP noch 0.3 mg/L Protein gewonnen werden konnten, reduzierte sich dies bei einer weiteren kodierten Alkin-Aminosäure in 2 mut-YFP um den Faktor 3 auf 0.1 mg/L. Dieser Effekt wurde auch bei der Einführung einer dritten Alkin-Aminosäure in 3 mut-YFP beobachtet. Die Ausbeute verringerte sich hierbei um den selben Faktor auf ca. 0.03 mg/mL. Eine YFP-Mutante mit vier genetisch kodierten Alkin-Lysinen konnte nicht in den Mengen hergestellt werden, die für eine Aufreinigung nötig gewesen wären.

Die hier erzielten Ausbeuten zeigten deutlich, dass die Suppressions-Effizienz einen limitierenden Einfluss auf die Proteinmenge besitzt. Je häufiger das Stopp-Codon überlesen werden muss, desto geringer sind die Ausbeuten des vollständigen Proteins. Dies liegt vor Allem an der Art der Terminations-Suppression: die Bindung von PyIT an das Codon UAG steht in Konkurrenz zur Bindung des release Faktors 1 (RF1).^[154-156] Dieser erkennt das Amber-Codon während der ribosomalen Proteinbiosynthese und katalysiert den Abbruch der Translation. In E. coli wird dieses Codon selten zur Translations-Termination verwendet.^[194] Daher sollte die Amber-Suppression zu wenigen Kreuzreaktionen mit anderen Genen, an dessen Ende sich das Amber-Codon befindet, führen. Dies gilt jedoch nicht zwingend für die Konzentrationen und Aktivität von RF1 in der Zelle. Da RF1 auch für die Erkennung des Ochre-Codons UAA verantwortlich ist, würde die benötigte und vorhandene RF1-Konzentration in der Zelle ausreichen, um die Suppressions-Effizienz durch Verdrängung von PyIT deutlich herabzusetzen. Um nachzuweisen, dass die Anzahl der Stopp-Codons für die verringerten Ausbeuten verantwortlich waren, wurde eine Westernblot-Analyse durchgeführt (siehe Abbildung 3.11). Hierzu wurden die Proteine eYFP, 1 mut-, 2 mut-, 3 mut- und 4 mut-YFP unter Standardbedingungen exprimiert. Als Kontrolle wurden zudem Expressionen in Anwesenheit von Cyc sowie in Abwesenheit von unnatürlichen Aminosäuren durchgeführt. Nach erfolgter Expression wurden je 30 µL der Zellen durch Aufkochen in SDS-Auftragspuffer aufgeschlossen und die Proteinkonzentration in der löslichen Fraktion durch Amidoblack Färbung bestimmt. Je ca. 7 µg Gesamtproteinmenge wurden über SDS-PAGE getrennt und für eine Western-Blot Analyse verwendet. Hierzu wurde ein sequenzspezifischer polyklonaler anti-GFP Antikörper (in Hasen hergestellt) verwendet, da eYFP eine Mutante des enhanced Green fluorescent protein (eGFP_{Thr203Tvr}) ist. Diese Proteine sind daher fast sequenzidentisch. Da der verwendete polyklonale Antikörper mehrere Seguenzabschnitte erkannte, konnten zudem auch Abbruchfragmente des Proteins nachgewiesen werden. Nach der sekundären Immunoreaktion mit einem anti-Rabbit HRP-Konjugat (Sigma Aldrich) wurden die YFP-Varianten auf der Membran über Chemilumineszenz visualisiert.

Abbildung 3.11: Analyse der Suppressionseffizienz. Western-Blot von eYFP sowie der Proteine 1 mut-, 2 mut-, 3 mut- und 4 mut-YFP in Abwesenheit einer UAA, in Anwesenheit von 5 mM Cyc bzw.
4.

Anhand der Western-Blot Analyse konnten die Abbruch-Fragmente an der zweiten, dritten und vierten Amber kodierten Position eindeutig bestimmt werden. Die erste Amber kodierte Position 27, welches durch Translations-Termination bei den Konstrukten 2 mut-, 3 mut- und 4 mut-YFP zu einem ca. 2.9 kDa schweren Peptid führte, konnte mit dieser Analyse aufgrund der zu geringen Größe nicht detektiert werden. Bei Betrachtung der Ergebnisse für die Expression in Abwesenheit einer unnatürlichen Aminosäure konnte daher nur das Abbruchfragment an Position 114 in 1 mut-YFP mit einem Molekulargewicht von ca. 12.9 kDa identifiziert werden. In den anderen Konstrukten endete die Translation des Proteins am ersten Amber-Codon und war nicht auf dem Western-Blot zu erkennen. In Anwesenheit von Cyc während der Expression konnte das Vollängen-YFP gebildet werden. Der Anteil am vollständigen Protein nahm jedoch mit der Anzahl der Amber-Codons ab. Im Falle des Alkin-Lysins 4 war ein ähnliches Ergebnis zu beobachten, jedoch sah man hier zusätzlich die einzelnen Abbruchfragmente, wie sie aus der Position der Amber-Codons zu erwarten waren. Aus dieser Analyse ließ sich also schlussfolgern, dass mit steigender Anzahl an Amber-Codons die Konkurrenz-Ereignisse mit RF1 zunahmen und daher vermehrt unvollständig translatierte Proteine gebildet wurden. Man kann diese kompetitive Reaktion daher als Grund für die reduzierte Suppressions-Effizienz ansehen.

Dieses Ergebnis wurde gestützt durch die fluoreszenzmikroskopische Untersuchung der unterschiedlichen Expressionskulturen in Anwesenheit der Alkin-Aminosäure. Je

öfter das *Amber*-Stoppcodon zur Einführung der unnatürlichen Aminosäure präsent war, desto schwächer war die beobachtete *in vivo* YFP-Fluoreszenz der Zellen. Im Falle der vierfach-Mutante konnte keine Fluoreszenz mehr detektiert werden.

3.5.6 FUNKTIONALISIERUNG VON ALKIN-LYSIN IM PROTEIN

Um zu zeigen, dass die genetische Kodierung von Alkinen in Proteine eine wertvolle Methode zur ortsspezifischen Funktionalisierung von Proteinen darstellt, wurden YFP-Proteine mit bis zu drei Alkin-Aminosäuren hergestellt und über die Cu(I)-katalysierte Click-Reaktion glykosyliert. Ziel war es, diese Methode als einfache Alternative zur meist nicht steuerbaren, natürlichen Glykosylierung von Proteinen zu etablieren. Hierzu wurden von *Dr. Milan Vrabel* und *Peter Thumbs* die entsprechenden Zuckerazide synthetisiert.

Schema 3.12: Strukturen der Zuckerazide. Diese wurden für die Cu(I) katalysierte Click-Reaktion an YFP verwendet.

Es handelte sich dabei um das Galactose-Azid **6**, das biologisch relevante N-Acetylneuraminsäure-Derivat **7** sowie die Mannose-Azide **8** und **9**, wie sie in **Schema 3.12** dargestellt sind. Für die Click-Reaktion wurden 500 eq des jeweiligen Zuckerazids mit dem Protein (1 mut-, 2 mut- bzw. 3 mut-YFP) in YFP-Puffer gemischt. Anschließend wurde eine frisch angesetzte Lösung aus CuSO₄ (100 eq), L-(+)-Natriumascorbat (100 eq) sowie TBTA-Ligand (200 eq) hinzugegeben. Bei dieser Reaktion wird die aktive Cu(I)-Spezies *in situ* aus Cu(II)SO₄ und L-(+)-Natriumascorbat als Reduktionsmittel hergestellt. Um auszuschließen, dass unter diesen Bedingungen unspezifische Reaktionen am Protein stattfinden, wurden die Click-Reaktionen zudem an eYFP durchgeführt. Die Reaktionslösung wurde über Nacht bei RT inkubiert und ohne weitere Aufreinigungsschritte über SDS-PAGE getrennt. **Abbildung 3.12** zeigt die Trennung der Click-Reaktionen mit 3 mut-YFP über SDS-PAGE. Die Gele für 2 mut- und 3 mut-YFP waren vergleichbar).

Abbildung 3.12: Click-Reaktionen an 1 mut-YFP. Spur 1) eYFP; 2) 1 mut-YFP; 3) 1 mut-YFP mit 6; 4) 1 mut-YFP mit 7; 5) 1 mut-YFP mit 8; 6) 1 mut-YFP mit 7; 7) 1 mut-YFP mit 9.

Hierbei zeigte sich, dass durch die gewählten Reaktionsbedingungen das Protein nicht denaturiert wird. In diesem Fall wären die mit Coomassie angefärbten Proteinbanden deutlich schwächer als die ebenfalls auf dem Gel aufgetragene Kontrolle des nicht-derivatisierten Proteins. Die Proteinbanden besaßen jedoch eine ähnliche Intensität wie die gleiche Menge des nicht modifizierten Proteins. Für den Nachweis der erfolgreichen Derivatisierung von 1 mut- bzw. 3 mut-YFP mit den Zuckeraziden 6-9 wurden die Proteinbanden aus dem Gel ausgeschnitten und (chymo)tryptisch verdaut. Die Peptide wurden anschließend über HPLC-MS/MS analysiert.

MVSKGEELF<u>TGVVPILVELDGDVNGHK*F</u>SVSGEGEGDATYGKLTLKFICTTGKLP VPWPTLVTTFGYGLQCFARYPDHMKQHDFFKSAMPEGYVQERTIF<u>FKDDGNYKT</u> **RAEVK*FEGDTLVNR**IELK**GIDFK*EDGNILGHK**LEYNYNSHNVYIMADKQKNGIKV NFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSYQSALSKDPNEKRDHM VLLEFVTAAGITLGMDELYKRSILKMASAWSHPQFEKSG

Abbildung 3.13: YFP-Sequenz mit Positionen der Amber-codierten Alkin-Lysinen (K*). Die für die Peptid-MS/MS chymotryptisch erzeugten Fragmente sind unterstrichen, die tryptisch erzeugten Fragmente sind fett dargestellt.

Abbildung 3.13 zeigt die Peptidfragmente, die durch den Verdau von 3 mut-YFP mit Trypsin bzw. Chymotrypsin resultierten. Während der Verdau mit Trypsin die Detektion der Modifikationen an Position 114 sowie 132 ermöglichte, war für die Detektion der Modifikationen an Position 27 ein Verdau mit Chymotrypsin erforderlich. Die auf diese Weise erzeugten Fragmente konnten aufgrund ihrer Molekulargewichte über HPLC-MS/MS an einem Orbitrap-Massenspektrometer nachgewiesen werden. Des Weiteren konnten, wie in **Abbildung 3.14** gezeigt, durch MS-Sequenzierung dieses Peptids die kritischen B- und Y-lonen gefunden werden. Die Ergebnisse der nano-HPLC MS/MS Analyse für die Positionen 27 und 132 waren vergleichbar und bewiesen den korrekten Einbau der Alkin-Aminosäure (siehe **Abbildungen 8.1** und **8.2**, *Anhang*). Zudem konnten auch die Click-Produkte mit den Aziden **6-9** durch die MS/MS-Sequenzierung nachgewiesen werden. Sie sind repräsentativ durch das MS/MS Spektrum des Click-Produkts an Position 114 mit **8** in **Abbildung 8.3** (*Anhang*) dargestellt.

Abbildung 3.14: MS/MS Spektrum des Peptids AEVK*FEGDTLVNR (K* = Position des Alkin-Lysins).

Die gewonnenen Daten wurden mit Hilfe eines Suchalgorithmus innerhalb der Xcalibur bioworks Software (*Thermo Finnigan*) mit den theoretisch ermittelten Molekulargewichten der glykosylierten Peptide verglichen. Die totale Sequenzabdeckung der Daten lag meist bei sehr guten 70 bis 80%.

In **Tabelle 8.1** (*Anhang*) sind die wichtigsten, experimentell gefundenen Peptidfragmente von 1 mut- bzw. 3 mut-YFP aufgelistet, welche die Alkin-Aminosäure bzw. deren Glykosylierungsprodukt besitzen. Über die HPLC-MS/MS Analyse konnte folglich eindeutig bewiesen werden, dass die nicht-kanonische Alkin-Aminosäure an den korrekten Positionen in der Sequenz in das Protein eingebaut wurde und über die Cu(I) katalysierte Click-Reaktion glykosyliert werden konnte.

3.5.7 EINBAU EINES ALLOC-DERIVATS VON PYRROLYSIN ZUR KUPFERFREIEN CLICK-REAKTION

Das in der Literatur beschriebene Alloc-Lysin^[5] (siehe **Schema 3.13**), welches über eine reaktive Alkenfunktion verfügt, sollte aufgrund seiner Eigenschaft als PyIRS-Substrat als *Amber*-kodierte unnatürliche Aminosäure in Proteine eingeführt werden.

Alloc-Lys(OH)

Ziel war die kupferfreie Katalyse mit Nitriloxiden, wie sie bereits an DNA gezeigt wurde.^[195] Zunächst wurde über YFP-Fluoreszenzmikroskopie und Western-Blot Analyse die Akzeptanz dieser Aminosäure in dem oben beschriebenen *E. coli*-System getestet.

Schema 3.13: Struktur des kommerziell erhältlichen Alloc-Lysins. Die Aminosäure verfügt über eine reaktive Doppelbindung, welche in einer kupferfreien Click-Reaktion mit Nitriloxiden untersucht werden sollte.

Abbildung 3.15: Analyse der Suppressionseffizienz mit Alloc-Lysin. Western-Blot der Proteine 1 mut-, 2 mut-, 3 mut- und 4 mut-YFP in Anwesenheit von 5 mM Alloc-Lysin.

Wie die in **Abbildung 3.15** dargestellte Western-Blot Analyse zeigt, war auch der Einbau des Alloc-Lysins in 1 mut-, 2 mut- und 3 mut-YFP erfolgreich. Ebenso wie die genetische Kodierung des Alkin-Lysins **4**, war bei der Einführung mehrerer Alloc-Derivate eine Abnahme des vollständig translatierten YFP zu beobachten. Bei steigender Anzahl an *Amber*-Codons nahm die Intensität der Bande für das Volllängenprotein ab (ca. 29 kDa), während eine gleichzeitige Zunahme an Abbruchfragmenten zu verzeichnen war.

Schema 3.14: Dansyl-Derivat 10. Dieses reagiert mit N-Chlorosuccinimid *in situ* zu einem Nitriloxid^[195], welches in einer 1,3-dipolaren Cycloadditions Reaktion eingesetzt werden sollte.

Das erfolgreich in das Protein eingebrachte Alloc-Derivat sollte im Anschluss über eine kupferfreie Click-Reaktion selektiv mit Nitriloxiden modifiziert werden. Hierzu wurde ein entsprechendes Dansyl-Derivat **10** von *Stefan Prill* bereitgestellt (**Schema 3.14**). Nitriloxide sind sehr reaktive Moleküle die allgemein mit Nukleophilen reagieren, so dass die Möglichkeit von Nebenreaktionen mit entsprechenden Gruppen im Protein bestand, zum Beispiel mit primären Aminogruppen in den Lysinen. Um dies zu untersuchen wurden zunächst Modifizierungsreaktionen mit natürlichen Proteinen durchgeführt. Hierzu wurden 10, 20, 50 und 100 eq des Dansyl-Nitriloxides zu eYFP in YFP-Puffer zugegeben und für eine Stunde bei Raumtemperatur inkubiert.

Abbildung 3.16: a) Coommassie-Färbung und b) Fluoreszenz-Aufnahme der Nitriloxid-Reaktion. Das Nitriloxid 10 wurde auf seine Reaktivität mit natürlichen Aminosäure-Resten getestet. Hierzu wurde es in 10-100 fachem Überschuss zu eYFP hizugegeben. Auch bei der geringsten Konzentration von 10 eq konnte eine nicht-selektive Reaktion mit dem Protein detektiert werden (fluoreszierende Banden in b).

Die Reaktionslösungen wurden ohne weitere Aufreinigung über SDS-PAGE getrennt und an einer Gelapparatur auf Fluoreszenz getestet (λ_{ex} 337 nm; λ_{em} 492 nm). Wie in **Abbildung 3.16** gezeigt ist, fand bei jeder der eingesetzten Nitriloxid-Mengen eine unspezifische Reaktion mit den natürlichen Aminosäureresten im Protein statt. Aufgrund dieses unspezifischen Verhaltens wurde die Kupfer-freie Click-Reaktion zwischen dem *Amber*-kodierten Alloc-Derivat und Nitriloxiden nicht weiter verfolgt.

3.5.8 GENETISCHE KODIERUNG VON NORBORNEN- UND HYDROXYLAMIN-AMINOSÄUREN ZUR DURCHFÜHRUNG KUPFER-FREIER CLICK-REAKTIONEN

Da sich Nitriloxide aufgrund ihrer hohen Reaktivität mit nukleophilen Proteinresten nicht zur kupferfreien Clickreaktion von Proteinen eigneten, wurde der genetische Einbau anderer reaktiver Funktionen zur Durchführung bioorthogonaler Reaktionen an Proteinen erforscht. Hierzu wurde der Einbau von Hydroxylamin-Aminosäuren sowie Norbornen-Aminosäuren getestet. Die Einführung einer Hydroxylamin-Aminosäure würde eine besonders nukleophile Aminofunktion im Protein bereitstellen, welche bei der Reaktion mit Aldehyden stabile Oxime bilden kann. Im Gegensatz hierzu wären Enamine, welche bei der Reaktion mit den natürlichen Aminogruppen der Lysine oder mit dem N-Terminus entstehen könnten, unter physilogischen Bedingungen nicht stabil. Norbornene hingegen haben eine sehr reaktive Doppelbindung. Sie ermöglichen neben der dipolaren Cycloaddition mit den bereits getesteten Nitriloxiden eine Vielzahl anderer Reaktionen. So war es der Gruppe von Lin gelungen, Norbornene über Maleimid-Kupplung in Proteine einzubringen und in einer photoinduzierten dipolaren Cycloaddition mit Tetrazinen selektiv zu modifizieren.^[188] Norbornene sind zudem geeignete Reaktionspartner für Tetrazine in inversen hetero-Diels-Alder-Reaktionen. Diese ließen sich ohne Katalyse unter physiologischen (wässrigen) Bedingungen durchführen. Des Weiteren sollte untersucht werden, ob sich Nitrilimine aus Tetrazol-Verbindungen, analog zur Generierung von Nitriloxiden mit N-Chlorosuccinimid (NCS), herstellen ließen.^[195] Das hierdurch entstehende Hydrazonoyl-Chlorid könnte dann zur selektiven Funktionalisierung von Norbornenen in einer dipolaren Cycloaddition am Protein verwendet werden. Aufgrund der besonderen Reaktivität von Norbornenen ist deren Einführung in Proteine von großem Interesse. In dieser Arbeit sollte dies jedoch nicht mehr auf synthetischem Wege über die wenig ortsspezifische Maleimid-Kupplung erfolgen, sondern zum ersten Mal über ein orthogonales tRNA/AaRS-Paar während der Proteinbiosynthese.

Schema 3.15: Strukturen des Hydroxylamin-Lysins 11 und des Norbornen-Lysins 12.

Zunächst wurde getestet, ob die PyIRS aus *M. mazei* das Hydroxylamin-Lysin (HA-Lysin) **11** bzw. das Norbornen-Lysin (Norb-Lysin) **12** als Substrate akzeptierte (**Schema 3.15**). Hierzu wurden BL21(DE3) *E. coli*-Zellen mit dem Plasmid pTRP-Duet:MmpyIS3T:mut¹-yfp transformiert und zur Co-Expression in Anwesenheit von 5 mM **11** bzw. **12** verwendet. Anschließend wurde über YFP-Fluoreszenzmikroskopie der Einbau in das Zielprotein überprüft. Wie die Fluoreszenz mikroskopischen Aufnahmen zeigten (**Abbildung 3.17**), konnte nur ein schwaches Fluoreszenz-Signal für die in Anwesenheit von **11** durchgeführte Expression detektiert werden. Dies wird

sicher durch eine schlechte Substrataffinität der PyIRS zu **11** und somit einen ineffizienten Einbau von **11** in YFP verursacht worden sein.

Abbildung 3.17: Fluoreszenzmikroskopische Analyse. Analyse der 1 mut-YFP Produktion in Anwesenheit von **11** (links: Durchlicht; mitte: Fluoreszenz; rechts: Überlagerung). In Anwesenheit von 12 konnte keine YFP-Produktion detektiert werden.

Die 1 mut-YFP-Expression in Anwesenheit von **12** war nicht erfolgreich, da keine Fluoreszenz detektiert werden konnte. Diese Aminosäure wurde entweder nicht in die Zelle aufgenommen oder nicht von der eingesetzten Aminoacyl-tRNA Synthetase akzeptiert. Norb-Lysin **12** verfügt zwar über die für die Substraterkennung kritische Carbamat-Funktion, doch besitzt **12** den großen, hydrophoben Norbornen-Rest, was die Aminosäure merklich von den akzeptierten Derivaten **4** und **11** unterscheidet. Um zu beweisen, dass aufgrund ungünstiger Wechselwirkungen zwischen dem Norbornenrest und PyIRS kein Einbau von **12** stattfand, wurde eine in der Literatur beschriebene PyIRS_{Tyr306Ala-Tyr348Phe}-Mutante generiert.^[6]

Abbildung 3.18: Fluoreszenzmikroskopische Analyse. Analyse der 1 mut-YFP Produktion in Anwesenheit von **12** mit Hilfe der Mutante PyIRS-Tyr306Ala-Tyr348Phe (links: Durchlicht; mitte: Fluoreszenz; rechts: Überlagerung).

Diese Mutante besitzt eine größere Affinität zu Pyl-Derivaten mit großen hydrophobem Resten als das Wildtyp-Protein. Hierzu wurden die entsprechenden Reste in zwei Schritten über die QuikChange[®] Methode ausgetauscht. Die

Mutagenese-PCR erfolgte hierbei auf dem Plasmid pTRP-Duet:MmpyIS3T:mut¹-yfp, welches nach erfolgreicher Mutagenese (pTRP-Duet:mut-pyIS3T:mut¹-yfp) unmittelbar im YFP Expressions-*Screening* eingesetzt werden konnte. Die Fluoreszenz mikroskopische Untersuchung mit der PyIRS_{Tyr306Ala-Tyr348Phe}-Mutante ergab, dass die Zellen bei Zugabe von 5 mM ein schwaches Fluoreszenzsignal und somit geringe Mengen Norb-Lysin enthaltendes YFP produzierten (**Abbildung 3.18**).

3.5.9 Iterative Saturierungsmutagenese von *M. mazei* PyLRS zur Generierung Neuer Substratspezifität

Es konnte gezeigt werden, dass HA-Lysin **11** durch die *M. mazei* PyIRS moderat akzeptiert und somit in den Translationsmechanismus eingebracht werden konnte. Des Weiteren ließ sich durch Punktmutationen in diesem Enzym eine neue Substratspezifität erzeugen, welche zur genetischen Kodierung der chemisch attraktiven Norbornen-Aminosäure **12** führte. Im nächsten Schritt wurde nun versucht, die Affinität der pyrrolysyl-tRNA Synthetase sowohl für **11** als auch für **12** durch gerichtete Evolution des aktiven Zentrums zu erhöhen. Eine Mutanten-Bibliothek der PyIRS sollte daher erzeugt und mit Hilfe des YFP Expressions-*Screenings*, ausgeführt in 96 *well*-Platten, auf Einbau der unnatürlichen Aminosäuren getestet werden. Als Methode zur Generierung der Bibliothek wurde die Iterative Saturierungsmutagenese (ISM, siehe *Abschnitt 5.14.3*) gewählt.

Abbildung 3.19: Aktives Zentrum der PyIRS aus *M. mazei* im Komplex mit adenyliertem Pyrrolysin (PDB 2Q27H). Der Ausschnitt zeigt die für die ISM ausgesuchten Reste in rot, pink und grün (Asp408 und Ser399 ausgenommen).

Basierend auf der Co-Kristallstruktur der M. mazei PyIRS mit adenyliertem Pyrrolysin (PDB 2Q27H),^[8] wurden fünf Reste im aktivem Zentrum des Proteins für die ISM ausgesucht, die bei der Substratbindung beteiligt sind (Abbildung 3.19). Tyr384 spielt eine besonders wichtige Rolle für die Substrataffinität, da es im natürlichen Substrat den Pyrrol-Rest erkennt und durch Substitution erreicht werden kann, dass ganz neue Lysin-Derivate erkannt werden. Zudem wurden für die nächsten Saturierungsschritte Tyr306 und Trp417 sowie Val401 und Ile405 ausgesucht. Insgesamt sollten sowohl für HA-Lysin 11 sowie für Norb-Lysin 12 diese fünf Reste in drei Zyklen saturiert werden. Die Saturierung der PyIRS erfolgte auf dem Plasmid pTRP-Duet:MmpyIS3T:mut¹yfp mittels NNK-degenerierter Primer und der QuikChange[®] bzw. MegaPrimer-Methode (siehe Abschnitt 5.14.3). Entsprechend der Anzahl der randomisierten Positionen wurden unterschiedlich große Bibliotheken im YFP Expressions-Screening getestet. Diese Arbeit wurde in den Laboren von Prof. Dr. Manfred T. Reetz am Max-Planck-Institut für Kohlenforschung (Mülheim a. d. Ruhr) durchgeführt.

Zyklus	Position	NNK-Kombinationsmöglichkeiten	getestete Bibliothek
1	Tyr384	4.4.2=32	ca. 100 (1 x 96)
2	Tyr306/Trp417	32·32=1024	ca. 1200 (12 x 96)
3	Val401/lle405	32·32=1024	1200-1400 (14 x 96)

Tabelle 3.3: Größe de	r getesteten	Mutanten-Bibliotheken.
-----------------------	--------------	------------------------

3.5.9.1 NNK-Saturierung von Tyr384

Die Saturierung der Position Tyr384 erfolgte über die QuikChange[®] ortsgerichtete Mutagenese unter Verwendung NNK-degenerierter Primer. Der Erhalt des PCR-Produktes wurde über Agarosegelelektrophorese nachgewiesen. Die PCR-Reaktion wurde mit Dpnl verdaut, über das QiaQuick PCR purification kit (*Qiagen*) gereinigt und in elektrokompetente BL21(DE3)GOLD transformiert. Die gewünschte NNK-Degenerierung wurde durch Sequenzierung eines Plasmid-Gemisches mehrerer Kolonien bestätigt. Es wurden ca. 10³ Kolonien pro Transformationsreaktion erhalten, welche somit die Mindestgröße der Bibliothek bei einer randomisierten Position (4·4·2=32) sicherstellte. Um alle Aminosäuren abzudecken wurde eine dreimal größere Bibliothek auf Einbau der Aminosäure **11** bzw. **12** über das YFP Expressions-*Screening* getestet. Hierzu wurde eine 96-*well* Platte mit 93 Kolonien der Bibliothek und drei Kontroll-Kulturen (Zellen in A12-C12 produzierten Wildtyp-PyIRS) inokuliert und über Nacht kultiviert. Für die YFP-Expression in Anwesenheit von HA- bzw. Norb-Lysin wurden jeweils 100 µL der Übernachtkulturen auf je eine 96-*well* Platte mit 2 mM **11** bzw. **12** kopiert. In der Negativ-Kontrolle A12 wurde weder eine unnatürliche Aminosäure noch IPTG hinzugegeben. In einer weiteren Kontrolle (B12) wurde keine unnatürliche Aminosäure, jedoch 1 mM IPTG hinzugefügt. In der Positiv-Kontrolle C12 wurde die Wildtyp-PyIRS Kultur in Anwesenheit von 5 mM des Alkin-Lysins **4** getestet. Nach der YFP-Expression wurden die Zellen gewaschen und für die Fluoreszenzmessung am GENios *plate reader (TECAN)* in schwarze 96-*well* Mikrotiterplatten überführt.

Tabelle 3.4: Ergebnisse des Expressions-Assays mit der PyIRS Tyr384NNK Bibliothek in
Anwesenheit von 2 mM HA-Lysin. Die Zellen A12-C12 produzierten wt-PyIRS. A12: - IPTG / - UAA;
B12: + IPTG, - UAA; C12: + IPTG, + 5 mM Alkin-Lysin.

	1	2	3	4	5	6	7	8	9	10	11	12
Α	66	21	31	21	16	26	38	32	41	23	28	54
В	126	41	56	193	56	33	35	202	54	182	37	36
С	27	41	39	29	55	23	78	34	44	36	26	3,809
D	54	24	56	256	53	233	67	239	50	230	54	58
Е	40	43	21	22	21	35	40	52	49	55	33	45
F	27	53	146	30	136	220	34	45	52	34	88	78
G	40	34	23	25	98	21	106	54	26	36	80	34
н	28	10	24	73	58	49	51	30	52	53	55	16

Tabelle 3.5 Ergebnisse des Expressions-Assays mit der PyIRS Tyr384NNK Bibliothek inAnwesenheit von 2 mM Norb-Lysin. Die Zellen A12-C12 produzierten wt-PyIRS. A12: - IPTG / -UAA; B12: + IPTG, - UAA; C12: + IPTG, + 5 mM Alkin-Lysin.

	1	2	3	4	5	6	7	8	9	10	11	12
Α	58	26	38	22	21	26	37	34	44	23	28	47
В	102	39	56	118	48	30	40	97	56	102	39	40
С	26	39	38	29	127	27	62	39	41	42	28	4,109
D	83	11	57	84	19	100	74	122	58	138	64	64
Е	37	46	29	29	26	37	41	122	132	59	38	49
F	34	48	98	33	74	113	38	59	68	38	203	78
G	33	37	26	26	66	25	78	129	23	38	66	33
н	34	50	35	76	66	51	53	33	60	45	48	18

Die Ergebnisse der YFP-Expression durch die Tyr384NNK-Bibliothek in Anwesenheit von **11** bzw. **12** sind in **Tabelle 3.4** und **3.5** dargestellt. Die Zellen, welche keine

Aminosäure an die Amber-Position in 1 mut-YFP einbauen konnten, produzierten nur verkürztes Protein, welches nicht fluoresziert (Intensitäten von ca. 10-40 a.u.). Wie erwartet, traf dies auf die Expressionskulturen in A12 und B12 zu, denen keine unnatürliche Aminosäure angeboten wurde. Da die Wildtyp-PyIRS keine endogenen Aminosäuren akzeptiert, wurde in diesen Zellen kein Volllängen-YFP produziert. Die Positiv-Kontrolle in C12 fluoreszierte aufgrund des effizienten Einbaus von 4 in YFP sehr stark. Die Zugabe von 11 bzw. 12 führte bei ca. 80% der getesteten PyIRS-Mutanten nicht zur Produktion von Volllängen-YFP. Die Emissionsintensität entsprach hier den der Negativkulturen und lag zwischen 10-50 a.u. (z. B. D2, E3 und B7 in Tabelle 3.4). In ca. 10% der Kolonien wurde eine PyIRS-Mutante exprimiert, die eine geringe Affinität zu der angebotenen Aminosäure 11 bzw. 12 besaß. So betrug die Fluoreszenzintensität in den Kulturen H4 und F12 (Tabelle 3.5) ca. 80 a.u. Für beide unnatürlichen Aminosäuren konnten acht Hits ermittelt werden. Diese Mutanten produzierten aufgrund einer entsprechenden Substrataffinität zur angebotenen Aminosäure das Volllängen-YFP und somit ein Fluoreszenzsignal von über 100 a.u. Damit konnten sie von weniger effizienten PyIRS-Mutanten unterschieden werden.

			1147 1199	384	399
a)	Consensus	IS	GTCTATGGGGATACCCTTGATGTAATGCACGGAGACCTGGAACTTTCCTCTGC		
	wt pyls		GTCTATGGGGATACCCTTGATGTAATGCACGGAGACCTGGAACTTTCCTCTGC	Tyr	Ser
	384NNK DO	800	GTCTATGGGGATACCCTTGATGTAATGCACGGAGACCTGGAACTTTCCTCTGC	Tyr	Ser
	384NNK D	04	GTCTATGGGGATACCCTTGATGTAATGCACGGAGACCTGGAACTTTCCTCTGC	Tyr	Ser
	384NNK B	808	GTCTATGGGGATACCCTTGATGTAATGCACGGAGACCTGGAACTTTCCTCTGC	Tyr	Ser
	384NNK D	010	GTCTATGGGGATACCCTTGATGTAATGCACGGAGACCTGGAACTTTCCTCTGC	Tyr	Ser
	384NNK B	310	GTCTATGGGGATACCCTTGATGTAATGCACGGAGACCTGGAACTTTCCTTTGC	Tyr	Phe
	384NNK B	304	GTCTATGGGGATACCCTTGATGTAATGCACGGAGACCTGGAACTTTCCTCGC	Tyr	Ser
	384NNK F	03	GTCTATGGGGATACCCTTGATGTAATGCACGGAGACCTGGAACTTTCCTCTGC	Tyr	Ser
	384NNK F	06	GTCTATGGGGATACCCTTGATGTAATGCACGGAGACCTGGAACTTTCCTTTGC	Tyr	Phe
			+	-	
			1147 1199	384	
b)	Consensus	IS	GTCTTTGGGGATACCCTTGATGTAATGCACGGAGACCTGGAACTTTCCTCTGC		
,	wt pvls		GTCTATGGGGGATACCCTTGATGTAATGCACGGAGACCTGGAACTTTCCTCTGC	Tvr	
	384NNK B	304	GTCTATGGGGATACCCTTGATGTAATGCACGGAGACCTGGAACTTTCCTCTGC	Tyr	
	384NNK C	:05	GTCTTTGGGGATACCCTTGATGTAATGCACGGAGACCTGGAACTTTCCTCTGC	Phe	
	384NNK D	008	GTCTATGGGGATACCCTTGATGTAATGCACGGAGACCTGGAACTTTCCTCTGC	Tyr	
	384NNK E	:08	GTCTTTGGGGGATACCCTTGATGTAATGCACGGAGACCTGGAACTTTCCTCTGC	Phe	
	384NNK G	:08	GTCTTTGGGGGATACCCTTGATGTAATGCACGGAGACCTGGAACTTTCCTCTGC	Phe	
	384NNK E	:09	GTCTTTGGGGGATACCCTTGATGTAATGCACGGAGACCTGGAACTTTCCTCTGC	Phe	

Abbildung 3.20: Vergleich der wt-Sequenz und der Sequenzergebnisse der PyIRS Tyr384NNK *Hits* für a) HA-Lysin und b) Norb-Lysin. Die saturierte Position 384 sowie die Position 399 sind grau hinterlegt. Die resultierenden Aminosäuren an diesen Positionen sind rechts aufgeführt (fett).

Tyr

Phe

384NNK D10 GTCTATGGGGATACCCTTGATGTAATGCACGGAGACCTGGAACTTTCCTCTGC

384NNK F11 GTCTTTGGGGATACCCTTGATGTAATGCACGGAGACCTGGAACTTTCCTCTGC

Die Sequenzierung der besten PyIRS-Mutanten, welche die Norbornen- bzw. Hydroxylamin-Aminosäure besonders effizient einbauten, zeigten jeweils eine klare Präferenz für einen bestimmten Aminosäure-Rest an der Position 384 (**Abbildung 3.20**). Der Einbau der Norbornen-Aminosäure wurde in fünf von acht *Hits* (63%) durch die bereits bekannte und hier unabhängig reproduzierte Tyr384Phe-Mutante verbessert (**Abbildung 3.20 b**).^[6] In den übrigen *Hits* war keine Mutation des Tyr384 vorhanden. Die Ergebnisse der Sequenzierung der *Hits* für HA-Lysin sind in **Abbildung 3.20 a** dargestellt und identifizierten die Wildtyp-Aminosäure an Position 384 als bevorzugten Rest für den Einbau von **11** in Proteine. Aufgrund der Homogenität der Sequenzergebnisse, welche eine klare Präferenz für bestimmte Aminosäuren an Position 384 bewies, handelte es sich bei den detektierten Fluoreszenzsignalen demnach nicht um Artefakte. Somit war das hier angewendete YFP Expressions-*Screening* eine geeignete Methode für die gerichtete Evolution der PyIRS.

Obwohl das YFP Expressions-Screening für HA-Lysin keine favorisierte Tyr384-Substitution ergab, handelte es sich bei den seguenzierten Hits teilweise um Mutanten. Die Sequenzierung führte zur Identifizierung der spontanen Mutation Ser399Phe. Diese Mutation im aktiven Zentrum des Enzyms wurde auch in späteren Saturierungszyklen (siehe Abschnitt 3.5.9.2 und 3.5.9.3) spontan generiert, war aber in den sequenzierten Templat-Plasmiden nicht vorhanden. Da die Substitution von Serin 399 zu Phenylalanin jedoch nicht zu einer erhöhten Substrataffinität zu den unnatürlichen Aminosäuren führte. wurden für die weitere Iterative Saturierungsmutagenese stets eine PyIRS_{Ser399}-Variante als Templat verwendet.

Die *Hits* für HA-Lysin produzierten im Durchschnitt ein höheres Fluoreszenzsignal als solche für Norb-Lysin. Das höchste Fluoreszenzsignal wurde von der Wildtyp-PyIRS unter Zugabe der Alkin-Aminosäure (C12) erzeugt. Vergleicht man die Fluoreszenzintensitäten unter Beachtung der Sequenzergebnisse, stellt sich eine große Abweichung der Fluoreszenzintensität bei gleicher Sequenz heraus. Die *Hits* F11 und G08 besaßen die gleiche Sequenz, zeigten jedoch in Anwesenheit von **12** unterschiedlich starke Fluoreszenz. Vermutlich wurde dies durch unterschiedliche Zelldichten in den einzelnen Kulturen verursacht. Die Positiv-Kontrolle in C12 war sehr dicht gewachsen, da sie im Gegensatz zu den anderen Kulturen nicht mit einer einzelnen Kolonie, sondern mit einer Glycerinkultur inokuliert worden war. Die

Ungenauigkeit der Messmethode könnte daher durch Ermittlung der Zelldichten und durch deren Einbeziehung in die Auswertung der Fluoreszenzintensitäten minimiert werden. Um jedoch das *Screening* für neue PyIRS-Varianten so schnell und einfach wie möglich zu gestalten, wurden Unterschiede in den Zelldichten nicht näher quantifiziert. Stattdessen wurden die Grenzen für einen *Hit* mit einer größeren Abweichung definiert. In diesem ersten ISM-Zyklus wurden für Norb-Lysin alle Klone mit einer Fluoreszenzintensität >100 a.u. ausgewertet, während Intensitäten >200 a.u. als *Hit*-Kriterium für HA-Lysin definiert wurden. Auf diese Weise wurden jeweils genügend Klone sequenziert, um einen eventuell bevorzugten Rest an Position 384 der PyIRS zu ermitteln.

3.5.9.2 NNK-Saturierung von Tyr306 und Trp417

Die Aminosäuren 306 und 417 der M. mazei PyIRS wurden über die MegaPrimer-Methode in einer PCR-Reaktion saturiert. Hierzu wurde ein NNK-degenerierter forward Primer für die Position 306 in Kombination mit einem MNN-degenerierten reverse Primer für die Position 417 verwendet. Als Templat wurde für die Erstellung der zweiten Bibliothek für 11 das aus dem Klon D4 gereinigte Plasmid des ersten Saturierungszyklus eingesetzt. Das Plasmid, welches aus dem Hit F11 gewonnen wurde und eine Tyr384Phe-Mutante der PyIRS kodierte, diente als Templat für die Erstellung der zweiten Bibliothek für 12. Der Erfolg der MegaPrimer PCR wurde durch Agarosegelelektrophorese sichergestellt. Nach Dpnl-Verdau der PCR-Reaktionen und anschließender Reinigung wurden diese separat in elektrokompetente BL21(DE3)GOLD-Zellen transformiert. Ein Plasmid-Pool aus vereinigten Einzelkolonien wurde zur Verifizierung der gewünschten NNK-Degenerität gereinigt und sequenziert. Demnach lag die gewünschte NNK-Degenerität für die Position 306 vor, an der Position 417 war jedoch eine Tendenz für eine NNT-Degenerität erkennbar. In der Theorie würde eine NNT-Degenerität an Position 417 eine Bibliothek der Größe (4·4·2)·(4·4·1)=32·16=512 erforderlich machen, um alle möglichen Codon-Kombinationen abzudecken. Diese Kombinationen deckten aber nicht alle 20 Aminosäuren an der Position 417 ab. Eine Abweichung von der gewünschten Degenerität wird in der Regel durch unterschiedliche Kupplungseffizienzen der eingesetzten Phosphoramidit-Bausteine während der Primer-Synthese verursacht. So könnte eine bessere Kupplung des Thymidin- gegenüber dem konkurrierenden Guanidin-Phosphoramidit an der K-
Position des Primers ursächlich für die Präferenz von T sein. Als Konsequenz lag das reverse Primer-Gemisch in der MegaPrimer PCR nicht im gewünschten T:G-Verhältnis vor. Es handelte sich jedoch nicht um eine vollständige Verschiebung des T:G-Verhältnisses zugunsten von T. Daher wurde versucht, durch Testen einer größeren Bibliothek (oversampling) alle möglichen Aminosäuren an Position 417 abzudecken. Dies wurde durch eine sehr gute Transformationseffizienz ermöglicht, welche bei >10³ Klonen pro Transformationsreaktion lag und damit höher als die benötigten 32-32=1024 Klone. Es wurden für die unnatürlichen Aminosäuren 11 und 12 jeweils zwölf 96-well Platten wie oben beschrieben inokuliert und im YFP Expressions-Screening eingesetzt. Die Ergebnisse des zweiten ISM-Zyklus sind im Anhang in Tabelle 8.2 und Tabelle 8.3 dargestellt. Wie schon im ersten Zyklus beobachtet, akzeptierte die Mehrheit der getesteten PyIRS-Mutanten nicht die angebotene unnatürliche Aminosäure. Die entsprechenden Zellen produzierten daher keine Fluoreszenz (0-50 a.u.). In ca. 5% der Zellen konnte eine niedrige Fluoreszenzintensität detektiert werden (80-100 a.u.), während 8% der Klone keine Verbesserung der Substraterkennung im Vergleich zum Ausgangsklon hatten. Im Durschnitt konnte ein Hit pro 96-well Platte identifiziert werden, deren YFP-Fluoreszenzintesitäten bei 300 bis 1000 a.u. lagen (blau hinterlegte Felder). Die Plasmide wurden aus den Kulturen mit einer Fluoreszenzintensität >400 isoliert und sequenziert. Wie schon für die Sequenzergebnisse der Tyr384NNK-Saturierung wurden auch in diesen Hits bevorzugte Reste für einen verbesserten Einbau von 11 bzw. 12 ermittelt (Abbildung 3.21).

		906	927	.1241	1262 30	06	417
a)	Consensus	TCCAAACCTTGCGAACT	ACCTG	.ATAAACCCTGGAI	AGGGGCAGG		
	wt-pyls	TCCAAACCTTTACAACT	ACCTG	.ATAAACCCTGGAI	AGGGGCAGG Ty	r	Trp
	HI A5	TCCAAACCTTGCTAACT	ACCTG	.ATAAACCCTGGAI	AGGGGCAGG A	La	Trp
	HII C7	TCCAAACCTTGCTAACT	ACCTG	.ATAAACCCTGGAI	AGGGGCAGG A	La	Trp
	HII F9	TCCAAACCTTGCGAACT	ACCTG	.ATAAACCCTGGAI	AGGGGCAGG A	La	Trp
	HIII E10	TCCAAACCTTTACAACT	ACCTG	.ATAAACCCTGGAI	AGGGGCAGG Ty	r	Trp
	HXII H2	TCCAAACCTTTACAACT	ACCTG	.ATAAACCCTGGAI	AGGGGCAGG Ty	r	Trp
	HV C3	TCCAAACCTTGCGAACT	ACCTG	.ATAAACCCTGGAI	AGGGGCAGG A	La	Trp
	HVI B5	TCCAAACCTTTGTAACT	ACCTG	.ATAAACCCTGGAI	AGGGGCAGG Cy	/s	Trp
	HVII H2	TCCAAACCTTGCGAACT	ACCTG	.ATAAACCCTGGAI	AGGGGCAGG A	La	Trp
	HIX D2	TCCAAACCTTTACAACT	ACCTG	.ATAAACCCTGGAI	AGGGGCAGG Ty	ŗr	Trp
	HIX F6	TCCAAACCTTGCGAACT	ACCTG	.ATAAACCCTGGAI	AGGGGCAGG AJ	La	Trp
	HX C2	TCCAAACCTTTACAACT	ACCTG	.ATAAACCCTGGAI	AGGGGCAGG Ty	ŗr	Trp
	HX D11	TCCAAACCTTGCGAACT	ACCTG	.ATAAACCCTGGAI	AGGGGCAGG A	La	Trp
	HX G11	TCCAAACCTTGCTAACT	ACCTG	.ATAAACCCTGGAI	AGGGGCAGG A	La	Trp
	HXI G3	TCCAAACCTTTACAACT	ACCTG	.ATAAACCCTGGAI	AGGGGCAGG Ty	ŗr	Trp
	HXII H2	TCCAAACCTTGCGAACT	ACCTG	.ATAAACCCTGGAI	AGGGGCAGG A	La	Trp
		+++					
• •		906	927	.1241	1262 30	06	417
b)	Consensus	TCCAAACCTTGGGAACT	ACCTG	.ATAAACCCTGGAI	AGGGGCAGG		
	wt-pyls	TCCAAACCTTTACAACT	ACCTG	. ATAAACCCTGGAI	AGGGGCAGG Ty	ŗr	Trp
	NI G1	TCCAAACCTTGGGAACT	ACCTG	. ATAAACCCTGGAI	AGGGGCAGG GI	ЧУ	Trp
	NI A10	TCCAAACCTTGGGAACT	ACCTG	.ATAAACCCTGGAI	AGGGGCAGG GI	Lу	Trp
	NII B8	TCCAAACCTTGGGAACT	ACCTG	.ATAAACCCTGGAI	AGGGGCAGG GI	Lу	Trp
	NIII H8	TCCAAACCTTGGTAACT	ACCTG	.ATAAACCCTGGAI	AGGGGCAGG GI	Lу	Trp
	NV H7	TCCAAACCTTGGGGAACT	ACCTG	.ATAAACCCTGGAI	AGGGGCAGG GI	Lу	Trp
	NVI B4	TCCAAACCTTGGGAACT	ACCTG	.ATAAACCCTGGAI	AGGGGCAGG GI	Lу	Trp
	NVI E2	TCCAAACCTTGGGAACT	ACCTG	.ATAAACCCACGAI	AGGGGCAGG GI	Lу	Trp
	NVII C2	TCCAAACCTTTGGAACT	ACCTG	.ATAAACCCAAGAI	AGGGGCAGG GI	Lу	Trp
	NIX C9	TCCAAACCTTGGGAACT	ACCTG	.ATAAACCCTGGAI	AGGGGCAGG GI	Lу	Trp
	NXI C2	TCCAAACCTTGGGAACT	ACCTG	.ATAAACCCTGGAI	AGGGGCAGG GI	LУ	Trp
	NXI G1	TCCAAACCTTGGGAACT	ACCTG	.ATAAACCCTGGAI	AGGGGCAGG GI	Lу	Trp
	NXI E6	TCCAAACCTTGGTAACT	ACCTG	.ATAAACCCTGGAI	AGGGGCAGG GI	Lу	Trp
		+++		++			

Die Aminosäure Trp417 in der PyIRS wurde in keinen der *Hits* ausgetauscht, was auf eine bereits optimierte Besetzung im Wildtyp-Enzym für Lysin-Derivate schließen ließ. Hingegen wurde Tyr306 sowohl für **11** als auch für **12** bevorzugt durch einen kleinen, unpolaren Rest ausgetauscht. Für Norb-Lysin war stets die Substitution zu Glycin verantwortlich für den verbesserten Einbau, während der Einbau von HA-Lysin zu 60% durch eine Alanin-Substitution begünstigt wurde. Eine Tyr306Cys-Substitution konnte zwar ebenfalls nachgewiesen werden, die entsprechende Expressionskultur produzierte jedoch das schwächste Fluoreszenzsignal aus den sequenzierten *Hits*. Da sich die Aminosäure 306 am Zugang zum aktiven Zentrum

der PyIRS befindet, war vermutlich eine verbesserte Aufnahme der Aminosäuren in das Enzym Ursache für deren effizienteren Einbau in Proteine.

Aus diesem zweiten ISM-Zyklus konnten PyIRS-Varianten gewonnen werden, die einen verbesserten Einbau der unnatürlichen Aminosäuren in Proteine ermöglichten. Für die Erkennung von Norb-Lysin war diese eine PyIRS-Tyr384Phe-Tyr306Gly-Mutante (N-IX C9), wohingegen HA-Lysin am effizientesten durch PyIRS-Tyr306Ala (H-V C3) in die Translation eingebracht wurde.

3.5.9.3 NNK-Saturierung von Ile401 und Val405

Die NNK-Saturierung der Reste 401 und 405 zur Evolvierung einer AaRS für HA-Lysin wurde mit der QuikChange[®]-Methode durchgeführt. Die PCR erfolgte auf dem Plasmid H-V C3 des zweiten ISM-Zyklus unter Verwendung der NNK-degenerierten Primer für die Positionen 401 und 405. Da unterschiedliche QuikChange®-PCR Ansätze nicht das gewünschte PCR-Produkt für die dritte Norb-Lysin Bibliothek lieferten, wurde alternativ die MegaPrimer-Methode angewendet. Mittels des NNKdegenerierten forward Primers für die Positionen 401/405 und dem Sequenzier-Primer DuetDown1 rv wurde diese auf dem Plasmid N-IX C9 durchgeführt und führte zum gewünschten PCR-Produkt. Nach DpnI-Verdau, Reinigung und Transformation in elektrokompetente BL21(DE3)GOLD wurde die Transformationseffizienz mit 10³ Klonen pro Transformationsreaktion bestimmt. Nach Bestätigung der NNK-Degenerität für die Positionen 401 und 405, wurde das YFP Expressions-Screening in zwölf 96-well Platten zunächst für die Hydroxylamin-Aminosäure durchgeführt (siehe Tabelle 8.4, Anhang). Da durch Ungenauigkeit des automatisierten Koloniensammlers nicht alle Flüssigkulturen angeimpft wurden, konnten aus einigen wells keine Daten gewonnen werden. Um für Norb-Lysin eine höhere Toleranz für derartige Verluste zu gewährleisten, wurde die Größe der Bibliothek von zwölf auf 14 96-well Platten erhöht. Die Genauigkeit des automatisierten Koloniensammlers war in dieser Bibliothek sehr gut, so dass fast alle Flüssigkulturen angeimpft wurden. Zusätzlich zu den Klonen der beiden Bibliotheken wurden auch positive und negative Kontrollen getestet. Diese befanden sich für die Aminosäure 11 in den Platten I und VII und für 12 in den Platten I und VIII. In diesen Platten produzierten die Kulturen A12 und B12 die Wildtyp-PyIRS, C12 und D12 die Hits aus der NNK-Saturierung von Tyr384, sowie E12-H12 die Hits aus der NNK-Saturierung von Tyr306 und Trp417. In die Kulturen A12 und E12 wurde keine unnatürliche Aminosäure hinzugegeben, während B12 und F12 mit 5 mM Alkin-Aminosäure versetzt wurden. Alle anderen Kulturen in der Spalte 12 wurden in Anwesenheit von 2 mM 11 bzw. 12 kultiviert. Die Fluoreszenz der Kontroll-Kulturen in F12 zeigten, dass die PyIRS-Mutanten ihre Spezifität für die Alkin-Aminosäure beibehalten hatten. Die Kontrollkulturen A12 und E12 besaßen keine Fluoreszenz. Somit waren die bisher generierten PyIRS-Mutanten nicht in der Lage, endogene Aminosäuren zu akzeptieren und erfüllten somit ein Hauptkriterium zur Generierung neuer orthogonaler tRNA/AaRS-Paare. Die verbesserten Substrataffinitäten, erzeugt durch die ersten beiden ISM-Zyklen, wird durch Vergleich der Fluoreszenzintensitäten von C12 und D12 mit G12 und H12 deutlich. Die Hits des ersten ISM-Zyklus produzierten YFP-Signale mit Intensitäten von 100-200 a.u., während dieses in den Hits des zweiten Zyklus dreimal höher vorlag. Ziel war es, in der nun vorliegenden Bibliothek optimierte Reste für die Positionen 401 und 405 zu identifizieren, die eine noch bessere Substrataffinität für **11** bzw. **12** lieferten. Es konnten in beiden Bibliotheken höhere Fluoreszenzsignale detektiert werden (siehe **Tabelle 8.5**, *Anhang*), jedoch war die Zunahme der Signale nicht so hoch wie in den ersten beiden Zyklen. Dies könnte eine Eigenschaft der PyIRS-Reste sein, welche jeweils optimiert wurden. In den ersten beiden Zyklen wurden die Reste saturiert, welche die Aufnahmeeffizienz (Rest 306) und Substratspezifität (Rest 384) sehr stark beeinflussten. Die Reste 401 und 405 veränderten folglich die Aktivität der PyIRS in geringerem Maße oder waren für die globale Aktivität dieses Enzyms bereits natürlich optimiert.

`		1190 1242	401	405
a)	Consensus	TTTCCTCTGCAGTAGTCGGACCCATACCGCTTGACCGGGAATGGGGTATTGAT		
	wt-pyls	TTTCCTCTGCAGTAGTCGGACCCATACCGCTTGACCGGGAATGGGGTATTGAT	Val	Ile
	HI A3	TTTCCTCTGCAGTAGTCGGACCCATACCGCTTGACCGGGAATGGGGTATTGAT	Val	Ile
	HI C7	TTTCCTCTGCAGTTGTCGGACCCAAGCCGCTTGACCGGGAATGGGGTATTGAT	Val	Lys
	HI A8	TTTCCTTTGCAGTAGTCGGACCCATACCGCTTGACCGGGAATGGGGTATTGAT	Val	Ile
	HI B11	TTTCCTCTGCAGTAGTCGGACCCATACCGCTTGACCGGGAATGGGGTATTGAT	Val	Ile
	HIII B7	TTTCCTCTGCAGTAGTCGGACCCATACCGCTTGACCGGGAATGGGGTATTGAT	Val	Ile
	HV F3	TTTCCTCTGCAGTAGTCGGACCCATACCGCTTGACCGGGAATGGGGTATTGAT	Val	Ile
	HVI H4	TTTCCTCTGCAGTTGTCGGACCCAAGCCGCTTGACCGGGAATGGGGTATTGAT	Val	Lys
	HIX F6	TTTCCTCTGCAGTTGTCGGACCCAAGCCGCTTGACCGGGAATGGGGTATTGAT	Val	Lys
	HIX H6	TTTCCTTTGCAGTGGTCGGACCCCATCCGCTTGACCGGGAATGGGGTATTGAT	Val	Lys
	HXI D10	TTTCCTCTGCAGTAGTCGGACCCATACCGCTTGACCGGGAATGGGGTATTGAT	Val	Ile
		+ + +++		
		1190 1242	401	405
b)	Consensus	TTTCCTCTGCAGTGGTCGGACCCTGGCCGCTTGACCGGGAATGGGGTATTGAT		
	wt-pyls	TTTCCTCTGCAGTAGTCGGACCCATACCGCTTGACCGGGAATGGGGTATTGAT	Val	Ile
	NIII D4	TTTCCTCTGCAGTGGTCGGACCCCGTCCGCTTGACCGGGAATGGGGTATTGAT	Val	Arg
	NIII H11	TTTCCTCTGCAGTTGTCGGACCCTTGCCGCCTTGACCGGGAATGGGGTATTGAT	Val	Leu
	NIII E12	TTTCCTCTGCAGTGGTCGGACCCCTGCCGCCTTGACCGGGAATGGGGTATTGAT	Val	Leu
	NVIII D8	TTTCCTCTGCAGTTGTCGGACCCCGGCCGCCTTGACCGGGAATGGGGTATTGAT	Val	Arg
	NVIII E8	TTTCCTCTGCAGTTGTCGGACCCAGGCCGCCTTGACCGGGAATGGGGTATTGAT	Val	Arg
	NVIII C9	TTTCCTCTGCAGTAGTCGGACCCTGTCCGCCTTGACCGGGAATGGGGTATTGAT	Val	Cys
	NIX B1	TTTCCTCTGCAGTGGTCGGACCCTGGCCGCTTGACCGGGAATGGGGTATTGAT	Val	Trp
	NIX E3	TTTCCTCTGCAGTGGTCGGACCCCTGCCGCCTTGACCGGGAATGGGGTATTGAT	Val	Leu
	NIX C5	TTTCCTCTGCAGTTGTCGGACCCTGGCCGCTTGACCGGGAATGGGGTATTGAT	Val	Trp
	NIX E5	TTTCCTCTGCAGTGGTCGGACCCTGGCCGCTTGACCGGGAATGGGGTATTGAT	Val	Trp
	NIX D8	TTTCCTCTGCAGTAGTCGGACCCATACCGCTTGACCGGGAATGGGGTATTGAT	Val	Ile
	NIX G9	TTTCCTCTGCAGTGGTCGGACCCAAGCCGCTTGACCGGGAATGGGGTATTGAT	Val	Lys
	NIX C11	TTTCCTCTGCAGTAGTCGGACCCATACCGCTTGACCGGGAATGGGGTATTGAT	Val	Ile
	NX B4	TTTCCTCTGCAGTAGTCGGACCCTTGCCGCTTGACCGGGAATGGGGTATTGAT	Val	Leu
		+ +++		

Die Klone mit den höchsten Fluoreszenzintensitäten wurden sequenziert (**Abbildung 3.22**). Während diese keine Substitution an der Position 401 besaßen, konnte für HA-Lysin eine begünstigende Ile401Lys-Substitution detektiert werden. Die Mutation konnte in 60% der sequenzierten Klone nachgewiesen werden, während die übrigen *Hits* weiterhin Isoleucin an Position 401 besaßen. Aus den Sequenzergebnissen von 14 identifizierten *Hits* der Norb-Lysin Bibliothek war keine eindeutige Präferenz für die Position 401 erkennbar. Jedoch besaßen die Klone, welche die höchste Fluoreszenzintensitäten hatten, häufig eine Substitution hin zu den basischen Aminosäuren Lysin oder Arginin. Da die Arginin-Substitution öfter vertreten war, wurde diese Mutation für die weiterführenden Studien des Pyrrolysin-Systems in Kombination mit Norbornenen verwendet.

Nach drei Zyklen Iterativer Saturierungsmutagenese der PyIRS konnte für den Einbau von Norb-Lysin **12** die PyIRS-Tyr384Phe-Tyr306Gly-IIe401Arg-Mutante generiert werden. Die Aminosäure **12** wurde wie beschrieben nicht durch die Wildtyp-Variante des Proteins erkannt.

Die gewonnene Mutante PyIRS-Tyr306Ala-IIe401Lys hingegen besaß eine um den Faktor vier höhere Affinität zum HA-Lysin **11** im Vergleich zum Wildtyp-Protein. Damit wurden zusammenfassend zwei PyIRS-Enzyme erzeugt, die jeweils **12** bzw. **11** effizient erkannten.

Im weiteren Verlauf dieser Arbeit galt das besondere Interesse der Kodierung von Norbornenen in Proteine und deren bioorthogonale Modifizierung. Dies lag insbesondere an der durch den Arbeitskreis *Carell* entwickelten Methoden zur bioorthogonalen Modifizierung von Norbornenen in DNA-Molekülen und sollte nun auf die wichtige Biomolekül-Klasse der Proteine übertragen werden.

3.5.10 EINBAU VON NORB-LYSIN IN DIE HUMANE POLYMERASE K

Nachdem der Einbau von Norb-Lysin in Proteine durch gerichtete Evolution der pyrrolysyl-tRNA Synthetase aus *M. mazei* ermöglicht worden war, sollte dessen bioorthogonale Funktionalisierung in Proteinen erforscht werden. Hierzu wurde eine verkürzte Version der humanen Polymerase κ (hPolκ) gewählt, welche das aktive Zentrum mit den Aminosäuren 19-526 umfasst. Polymerase k ist ein Mitglied der Y-Familie der Polymerasen und als solche für das Überlesen von DNA-Schäden, wie 8oxoG oder Cyclobutanpyrimidin-Dimere, verantwortlich.^[196-200] Eine Vielzahl an Forschungsgruppen beschäftigt sich mit ihrer biochemischen sowie strukturellen Charakterisierung.^[196-200] Ziel dieser Arbeit war es, an einem sensitiven, humanen Protein den Beweis zu erbringen, dass Kupfer-freie Click-Reaktionen Norbornenen unter physiologischen und nicht-denaturierenden Bedingungen möglich sind. Bei der Wahl der Reaktionsbedingungen wurde daher auf einen physiologischen pH-Wert, niedrige Temperaturen und kurze Reaktionszeiten geachtet. Diese sollten den Erhalt der Proteinstruktur und Enzymaktivität gewährleisten. Durch Primerverlängerungs-Studien sollte im Anschluss die Enzymaktivität untersuchen werden.

hPolk wurde von Dr. Stephanie Schorr und Christian Deiml standardmäßig mit einer Ausbeute von ca. 50 mg/L Expressionskultur rekombinant hergestellt. Hierzu wurde Plasmid pPSG-IBA33:hpolk in BL21(DE3)-Zellen transformiert und in das Autoinduktionsmedium (siehe Abschnitt 5.9) heterolog exprimiert. Die Aufreinigung erfolgte zunächst über eine Ni-NTA-Affinitätschromatographie, da das rekombinante Protein über einen C-terminalen His₆-Tag verfügt. Ein zweiter Reinigungschritt erfolgte mittels einer Heparin-Ionenaustauscher Chromatochraphie, wobei die verwendeten Heparin-Puffer A und B (pH 7.4) kein DTT enthielten. Die Reinheit des Proteins wurde über SDS-PAGE bestimmt und bei Bedarf durch eine Gelfiltrationschromatographie in *Heparin-Puffer A* pH 7.4 (ohne DTT) weiter erhöht. Für den Einbau der unnatürlichen Aminosäure Norb-Lysin wurde das entsprechende Plasmid pPSG-IBA33:hpolk_{Gln163Amber} mit dem für das Norb-Lysin System kodierende Plasmid pACYC-pGLN:norS3T in BL21(DE3)-Zellen co-transformiert und unter den gleichen Bedingungen wie das Wildtyp-Protein, jedoch in Anwesenheit von 2 mM Norb-Lys, hergestellt (Abbildung 3.23). Die Protein-Ausbeute durch die Amber-Suppression nach der dreistufigen Reinigung betrug ca. 2 mg/L Expressionskultur und war somit um einen Faktor von 25 geringer als die des Wildtyp-Proteins. Die gereinigten Proteinmengen waren jedoch für die durchzuführenden Untersuchungen zur bioorthogonalen Modifizierung ausreichend.

Abbildung 3.23: SDS-PAGE zur Aufreinigung von *h***Polk**_{Gln163Norb}**.** Spur 1: PageRuler Unstained Protein Ladder (*Fermentas*); 2: Zelllysat; 3: Durchfluss der Ni-NTA Chromatographie; 4: Eluat der Ni-NTA Chromatographie; 5: Durchfluss der Heparin Chromatographie; 6-9: eluierte Fraktionen der Heparin Chromatographie.

3.5.11 BIOORTHOGONALE MODIFIZIERUNG VON GENETISCH KODIERTEN NORBORNENEN IN PROTEINEN

Die in $hPol\kappa_{Gln163Norb}$ eingebrachte Norbornen-Funktionalität diente im Anschluss als Reaktionspartner für die selektive und ortsspezifische Modifizierung des Proteins unter physiologischen Bedingungen und unter Ausschluss von Kupfer(I).

Schema 3.16: Strukturen des Hydrazonoylchlorid-Derivats 13, des Tetrazol-Derivats 14 sowie des Tetrazin-Derivats 15. Die dargestellten Moleküle wurden für die Fluoreszenzmarkierung von Norbornenen in Proteine unter Kupfer-freien Reaktionsbedingungen verwendet.

Nitriloxide, welche mit Norbornenen in einer dipolaren Cycloaddition reagieren können, sind aufgrund ihrer unspezifischen Reaktivität mit natürlichen Proteinresten (siehe Abschnitt 3.5.7) nicht geeignet. Stattdessen wurden Nitrilimin-Derivate getestet. Diese reagieren ebenfalls in einer schnell ablaufenden 1,3-dipolaren Cycloaddition mit Norbornenen. Wir vermuteten aber, dass sie aufgrund ihrer schwächeren Elektrophilie die unerwünschte Reaktion mit primären Aminen nicht eingehen würden. Um dies zu untersuchen, synthetisierte Dr. Milan Vrabel das Hydrazonoylchlorid-Derivat 13. In einer anderen Studie sollten Nitrilimine in einer photochemischen Reaktion aus Tetrazolen gewonnen^[188] und in der Click-Reaktion mit dem Norbornen-Rest eingesetzt werden. Bei dieser Reaktion sollte das Nitrilimin durch UV-Belichtung (302 nm) des Tetrazol-Derviats 14 unter Abspaltung von Stickstoff generiert werden. Die aus dem Hydrazonovlchlorid 13 und dem Tetrazol 14 generierten Nitrilimin-Derivate bildeten mit Norbornenen fluoreszierende Produkte, welche mit UV-Licht angeregt werden konnten. Dies sollte eine einfache Detektion der gewünschten Reaktionen ermöglichen. Eine dritte Möglichkeit um den genetisch kodierten Norbornen-Rest chemisch zu adressieren, bestand in der Reaktion mit Tetrazinen in einer inversen hetero-Diels-Alder Reaktion. Das fluoreszierendes Tetrazin-Derivat **15** wurde von *Stefan Prill* synthetisiert und sollte ebenfalls einen leichten Nachweis der Reaktion über Fluoreszenzdetektion ermöglichen. Die Strukturen der Liganden **13-15** sind in **Schema 3.16** aufgeführt.

Die Modifizierungsreaktionen an $hPol\kappa_{Gln163Norb}$ erfolgten in *Polk-Reaktionspuffer* (50 mM Tris-HCl pH 7.4, 1 mM EDTA, 450 mM NaCL und 5 % Glycerin). Um unerwünschte Nebenreaktionen auszuschließen wurde $hPol\kappa$, welches nicht über das *Amber*-kodierte Norb-Lysin verfügte, rekombinant hergestellt, gereinigt und ebenfalls in den Click-Reaktionen getestet. Hierzu wurden zu einer 100 µM Proteinlösung je 100 eq der Verbindungen **13-15** hinzugegeben und für 1 h bei Raumtemperatur inkubiert. Für die photoinduzierte Click-Reaktion mit **14** wurde das Reaktionsgemisch zuvor für 10 min mit einer UV-Handlampe bestrahlt. Die Fluoreszenzaufnahmen der aufgetrennten Click-Reaktionen (siehe **Abbildung 3.24**) zeigten in keinen Fällen eine Reaktion mit dem natürlichen Protein *h*Polk (Spuren 1, 3 und 5), während in allen Fällen die Reaktion mit *h*Polk_{Gln163Norb} nachgewiesen werden konnte (Spuren 2, 4 und 6).

Abbildung 3.24: a) Fluoreszenzaufnahme und b) Coomassie-Färbung der aufgetrennten Click-Reaktionen an *h*Polκ (Spuren 1, 3 und 5) und *h*Polκ_{Gin163Norb} (Spuren 2, 5 und 6). Spuren 1 und 2: Clickprodukt + 13; Spuren 3 und 4: Clickprodukt + 14; Spuren 5 und 6: Clickprodukt + 15.

Zur weiteren Analyse der Click-Reaktionen wurden die Proteinbanden im Gel tryptisch verdaut und über hochauflösende nano-HPLC MS/MS aufgetrennt. Diese Ergebnisse zeigten nicht nur den Einbau von Norb-Lysin im gewünschten Sequenzkontext (siehe **Abbildung 3.25**). Vielmehr konnte nachgewiesen werden,

dass die selektive Derivatisierung dieser Aminosäure sowohl durch die Nitrilimin-Derivate, als auch durch die inverse hetero-Diels-Alder Reaktion mit Tetrazinen möglich war. Für die Behandlung mit dem Hydrazonoylchlorid-Derivat **13** war die theoretische Masse $m/z_{calc.} = 2031.06$ für das Peptid LCPX¹LIIVPPNFDK (mit X¹ als Produkt aus der Reaktion mit **13**) zu erwarten. Diese Masse stimmte sehr gut mit dem gefundenen Wert von $m/z_{gefunden} = 2031.10$ überein. Des Weiteren konnten, wie in **Abbildung 3.25** gezeigt, durch MS-Sequenzierung dieses Peptids die kritischen B- und Y-lonen gefunden werden. Die Ergebnisse der nano-HPLC MS/MS Analyse für die Modifizierungsreaktionen **14** und **15** waren vergleichbar und bewiesen auch hier die ortspezifische und selektive Adressierung der Norbornen-Aminosäure (siehe **Abbildungen 8.4 - 8.7**, *Anhang*).

Abbildung 3.25: MS/MS Spektrum des Peptids LCPX¹LIIVPPNFDK. Dieses wurde durch tryptischen Verdau von hPolk_{Gln163Norb} nach Click-Reaktion mit **13** generiert (X¹³ ist die Position des Hydrazonoylchlorid-modifizierten Norb-Lysins).

3.5.12 AKTIVITÄTSBESTIMMUNG DER CLICK-MODIFIZIERTEN hPOLKGLN163NORB

Um zu beweisen, dass die Kupfer-freien Click-Reaktionen am Norbronenrest die Proteinstruktur nicht angriffen und somit die Aktivität des Enzyms nicht beeinträchtigten, wurde die Aktivität der Polymerase in Primerverlängerungs-Studien bestimmt. Hierbei wurden die entsprechenden Click-Reaktionen mit 13, 14 und 15 an hPolk_{Gin163Norb} durchgeführt und die resultierenden Click-Produkte anschließend in Primerverlängerungs-Reaktionen getestet. Diese wurden mit der Aktivität der unmodifizierten hPolk_{Gln163Norb} und der Wildtyp-Polymerase verglichen. Modifizierte und nicht-modifizierte *h*Polk_{Gln163Norb}-Varianten wurden in den Konzentrationen 1 µM, 0.5 µM und 0.1 µM zur Reaktionslösung gegeben. Die Wildtyp-Polymerase, die voraussichtlich die maximale Aktivität besaß, wurde in der niedrigsten Konzentration von 0.1 µM in der Reaktion eingesetzt. Die Reaktionslösung bestand aus einem 30mer DNA-Templat, einem Fluoreszenz markierten 13-mer Primer sowie allen dNTPs. Die Primerverlängerungs-Reaktion wurde nach 30 min bei 37 °C durch Zugabe von Urea-Auftragspuffer gestoppt und über ein 20%-iges denaturierendes Polyacrylamidgel getrennt.

Templat: 3'-CTGGAGCGCTACCGCGGTGCTAGTAGGCCG-5' Primer: 5'-FluoGACCTCGCGATGG-3' Primer Verlängerung → hPolκ

Abbildung 3.26: Denaturierende PAGE der Primerverlängerungs-Produkte mit *h*Polk und *h*Polk_{Gin163Norb}. Spur 1: Marker; 2: Primer; 3: Produkt von 0.1 μ M *h*Polk; 4-6: Produkte von 1, 0.5 und 0.1 μ M *h*Polk_{Gin163Norb} + **13**; 7-9: Produkte von 1, 0.5 und 0.1 μ M *h*Polk_{Gin163Norb} + **14**; 7-9: Produkte von 1, 0.5 und 0.1 μ M *h*Polk_{Gin163Norb} + **15**.

Die erfolgreiche Verlängerung des Fluoreszenz markierten Primers wurde anhand der Fluoreszenz der Gelbanden am LAS3000 image reader (FujiFilm) detektiert (Abbildung 3.26). Hieraus ist zu entnehmen, dass alle getesteten Polymerase-Varianten aktiv waren. Die mit der Konzentration von 0.1 µM eingesetzte WildtyphPolk zeigte wie erwartet die maximale Enzymaktivität, während fast alle anderen Proteine eine vergleichbare Aktivtät besaßen (zum Beispiel Spuren 3, 6, 9 und 15). Nur die photoinduzierte Click-Reaktion mit 14 führte zur Abnahme der Polymerase-Aktivität (Spuren 10-12). Dies könnte durch die Behandlung des Proteins mit UV-Licht (302 nm) verursacht worden sein, welche zur teilweisen Denaturierung der Polymerase führen könnte.^[201] Der Erhalt der Enzymaktivität war insbesondere für die Modifizierung des Proteins mit Hydrazonoylchlorid-generierten Nitriliminen von großer Bedeutung (Spuren 7-9). Diese neue Methode war damit nicht nur sehr einfach, schnell und effizient durchzuführen, sondern erwies sich mit den milden Reaktionsbedingungen (pH 7.4) als äußerst schonende Alternative zu Kupfer(I)katalysierten Click-Reaktionen. Die hier dargestellten Ergebnisse könnten aufgrund der sehr empfindlichen Natur des getesteten Proteins auf eine Vielzahl anderer Proteine übertragen werden. Somit konnte durch gerichtete Evolution des Pyrrolysin-Systems der Einbau von Norbornenen in Proteine ermöglicht werden. Durch Anwendung mehrerer Modifizierungreaktionen, unter anderem unter Verwendung von Nitriliminen, wurde eine sichere und schonende Methode zur bioorthogonalen Modifizierung von Proteinen etabliert. Um die Aussagekraft dieser Ergebnisse zu erhöhen, ist es jedoch notwendig, die Effizienz der Modifizierungsreaktionen zu bestimmen. Hierzu bedarf es noch der Quantifizierung des Click-Produkts. Dies könnte entweder über Bestimmung der veränderten Gesamtproteinmasse nach der Modifizierung oder über Quantifizierung der Fluoreszenzintensität des Click-Produkts erfolgen.

3.5.13 BIOORTHOGONALE PEGYLIERUNG VON NORB-LYSIN IN PROTEINEN

Ein sehr wichtiger Anwendungsbereich für die bioorthogonale Modifizierung von Proteinen ist die PEGylierung. Die Einführung von PEG-Ketten auf Proteinoberflächen ist besonders bei therapeutischen Proteinen erwünscht. Diese Modifizierung erhöht nicht nur das Molekulargewicht der Proteine und somit die Halbwertszeit im Blut (*clearance*), sondern reduziert ungewollte Immunreaktionen durch Abschirmung antigener Strukturen auf der Proteinoberfläche. PEG-Ketten werden klassisch in nicht bioorthogonalen Reaktionen, wie zum Beispiel durch Maleimidkupplung, in Proteine eingebracht, was häufig zu heterogenen PEG-Protein-Gemischen führt. Die Einführung neuer reaktiver Gruppen in Proteine wird daher als Methode der Wahl gesehen, solche PEG-Ketten ortsspezifisch und quantitativ in Proteine einzubringen.

Schema 3.17: Strukturen der PEG-Derivate 16, 17 und 18.

Es sollte gezeigt werden, dass die hier etablierte Methode des Einbaus und der Funktionalisierung von Norbornen-Aminosäuren in Proteine sich für eine solche anwendungsbezogene Problemstellung eignete. Hierzu wurden PEGylierte Tetrazol-, Hydrazonoylchlorid- und Tetrazinderivate **16-18** von *Dr. Milan Vrabel* synthetisiert (**Schema 3.17**). Diese wurden, wie in *Abschnitt 5.15.4.3* beschrieben, zur Funktionalisierung von hPolk_{Gln163Norb} unter Kupfer-freien Reaktionsbedingungen eingesetzt.

Abbildung 3.27: a) Fluoreszenzaufnahme und b) Coomassie-Färbung der PEGylierungs-Reaktionen an hPolκ (Spuren 2, 5 und 6) und hPolκ_{Gln163Norb} (Spuren 1, 3 und 5). Spuren 1 und 2: Click-Produkt + 16; Spuren 3 und 4: Clickprodukt + 17; Spuren 5 und 6: Clickprodukt + 18.

Die SDS-PAGE Analyse zeigte auch hier die selektive Bildung der gewünschten Click-Produkte (Abbildung 3.27), welche bei der Umsetzung mit 16 und 17 Norbornen-Aminosäure fluoreszierten. In Abwesenheit der konnte keine Produktbildung beobachten werden (Spuren 2 und 4), welches die Selektivität dieser Methode bestätigte. Hingegen fluoreszierten die mit 16 und 17 umgesetzten *h*Polk_{Gln163Norb}-Banden (Spuren 1 und 3), was auf die Bildung der fluoreszierenden Pyranzonyl-Verbindung schließen ließ. Eine Auswertung der mit Tetrazin umgesetzten Proteine war in diesem Fall nicht möglich (Spuren 5 und 6), da das eingesetzte Tetrazinderivat 18 nicht fluoreszierte. Zudem wäre die durch PEGylierung verursachte Massedifferenz von + 1 kDa auf dem verwendeten Gel nicht detektierbar. Die Aktivität der PEGylierten hPolkGln163Norb-Varianten wurden ebenfalls in Primerverlängerungs-Studien bestimmt und mit der unmodifizierten *h*Polk_{Gln163Norb} sowie der Wildtyp-Polymerase verglichen (siehe **Abbildung 3.28**).

Abbildung 3.28: Denaturierende PAGE der Primer Verlängerungsprodukte mit *h*Polk und *h*Polk_{Gln163Norb} nach PEGylierung. Spur 1: Marker; 2: Primer; 3: Produkt von 0.1 μ M *h*Polk; 4-6: Produkte von 1, 0.5 und 0.1 μ M *h*Polk_{Gln163Norb} + **16**; 7-9: Produkte von 1, 0.5 und 0.1 μ M *h*Polk_{Gln163Norb} + **17**; 7-9: Produkte von 1, 0.5 und 0.1 μ M *h*Polk_{Gln163Norb} + **18**.

Es zeigte sich, dass in allen Fällen die Aktivitäten der PEGylierten Proteine geringer als die der unmodifizierten und der Wildtyp-Polymerase waren. Dies könnte durch die Einführung der relativ großen PEG-Gruppen an die Position 163 der Polymerase hervorgerufen sein, welche sich in der Nähe des aktiven Zentrums befindet. Das Eindrehen der PEG-Kette in die Polymerase könnte eventuell den Zugang der Nukleosid-Triphosphate oder des dsDNA-Strangs erschweren und die Primerverlängerung behindern.

Zusammenfassend lässt sich sagen, dass der Einbau unnatürlicher Aminosäuren unter Verwendung orthogonaler tRNA/AaRS-Paare möglich ist. Die Verwendung des hier dargestellten Pyrrolysin-Systems in *E. coli* erlaubt es, in Kombination mit der gerichteten Evolution der PyIRS, eine große Bandbreite neuartiger Aminosäuren mit besonderer Reaktivität in Proteine einzubauen. Jedoch hat sich im Laufe dieser Arbeit gezeigt, dass die Suppressions-Effizienz oftmals nicht ausreicht, um große Mengen des gewünschten Proteins mit unnatürlicher Aminosäure herzustellen. Eine 10- bis 20-fache Abnahme der Ausbeute an cotranslational modifiziertem Protein gegenüber dessen Wildtyp-Variante schränkt demnach die Wahl des zu modifizierenden Proteins ein. Die bioorthogonalen Adressierung der unnatürlichen Aminosäuren in YFP_{Lys114Alkin} sowie *h*PolK_{Gln163Norb} mit Cu(I)-katalysierten bzw.

kupferfreien Click-Reaktionen eignet sich sehr gut für die gewünschte ortsspezifische Modifizierung des Proteins, ohne dieses zu denaturieren.

In Zukunft wäre eine weitere Optimierung des eingesetzten Pyrrolysin-Systems hinsichtlich der Proteinausbeuten nötig - zum Beispiel durch Verringerung der RF1-Konzentration im Expressionsstamm, der Entwicklung von reaktiven Aminosäuren mit guter Zellaufnahme oder durch molekularbiologische Ansätze zur verbesserten Proteinexpression. In Kombination mit den hier dargestellten Click-Reaktionen wäre das optimierte System eine sehr robuste Methode für die ortsgerichtete Modifizierung von Proteinen.

4 DEWAR-REPARATUR DURCH (6-4) PHOTOLYASEN

4.1 DNA-PHOTOSCHÄDEN

Sonnenenergie ist die treibende Kraft allen Lebens auf der Erde. Viele Organismen haben sich im Laufe der Evolution - jeder auf seine Weise - darauf spezialisiert, die in Form von Sonnenlicht eingebrachte Energie zu nutzen: poikilotherme Lebewesen zum Beispiel brauchen Sonnenwärme zur Aufrechterhaltung ihrer Körpertemperatur während in der Photosynthese Sonnenenergie chemisch gebunden wird.

Schema 4.1: Hauptsächlich entstehende DNA-Photoschäden aus einer TpT-Sequenz.

Allerdings birgt der kurzwellige und energiereiche UV-Anteil auch Gefahren für Organismen, die der Sonne besonders ausgesetzt sind. Bedingt durch die Absorption der DNA- (und auch RNA-)Basen im fernen UV-Bereich (UV-B und UV-C), führt diese bei Pyrimidinen zu strukturellen Veränderungen in Form von Pyrimidindimeren (siehe **Schema 4.1**).^[202-203] Ähnlich wie die Produkte ionisierender

Strahlung, oxidativem Stress und toxischer Chemikalien (z.B. alkylierende Reagenzien) stellen diese sogenannten Photoprodukte DNA-Schäden dar, welche die genetische Integrität einer Zelle beeinträchtigen können.^[204-207]

4.1.1 BILDUNG UND EIGENSCHAFTEN VON DNA-PHOTOSCHÄDEN

Während der UV-induzierten Dimerisierung benachbarter Pyrimidine können unterschiedliche Photoprodukte entstehen. Mit 70-80% stellen cis-syn Cyclobutanpyrimidindimere (CPD-Schäden) den Hauptanteil dar. während Pyrimidin(6-4)pyrimidon Photoprodukte [(6-4)-Photoprodukte] und ihre Dewar einen Anteil von 20-30% an den Gesamtphotoschäden Valenz-Isomere ausmachen.^[203, 208] Der CPD-Schaden entsteht durch Anregung benachbarter Pyrimidine in den ersten angeregten Singulettzustand, aus dem eine $[2\pi+2\pi]$ Cycloaddition erfolgt. Hierbei werden kovalente Bindungen zwischen den Doppelbindungen der Kohlenstoffe 5 und 6 (C5 und C6) der Pyrimidine gebildet (Schema 4.2).^[18, 209] Theoretisch können zwölf Isomere des CPD-Schadens entstehen. Allerdings wurden bisher nur drei Isomere in DNA nachgewiesen, deren häufigster Vertreter das cis-syn Isomer ist.[210-211]

Schema 4.2: UV-induzierte Bildung des cis-syn CPD-Schadens.

Auch die $[2\pi+2\pi]$ Cycloaddition zum T(6-4)T-Photoprodukt [bzw. T(6-4)C-Photoprodukt] erfolgt aus einem angeregten Zustand der beteiligten Pyrimidine heraus. Hierbei reagiert die C4-Carbonylgruppe (Aminogruppe) des 3'-Thymins (Cytosins) mit der C5-C6-Doppelbindungen des 5'-Thymins. Das in dieser Paterno-Büchi-Reaktion entstehende Oxetan (Azetidin) ist bei Temperaturen über -80 °C instabil, so dass es zur Ringöffnung durch Aufhebung der Bindung zwischen C4 und dem Sauerstoff kommt (**Schema 4.3**). Somit findet bei der Bildung des (6-4)- Photoprodukts ein Gruppentransfer vom C4 der 3'-Base zum C5 der 5'-Base statt.^[212-216] Während die weitere Bestrahlung des CPD-Schadens mit Wellenlängen aus dem fernen UV zur teilweisen Photoreversion des Dimers in die ursprünglichen Basen führt, ist eine solche Umkehrung in die intakten Basen im Falle des (6-4) Photoprodukts nicht möglich. Infolge dieser Photoreversion nimmt daher der Anteil des (6-4) Photoprodukts bei erhöhter UV-Strahlendosis auf bis zu 40% der Gesamtphotoschäden zu.^[217]

Schema 4.3: UV-induzierte Bildung des T(6-4)T Photoprodukts über ein Oxetanintermediat.

Weiteren unterscheiden sich diese Des beiden Schäden in ihrem Absorptionsverhalten. Aufgrund des Verlustes der Aromatizität weist der CPD-Schaden weder die für Nukleobasen typische Absorption bei 260 nm auf, noch absorbiert er bei höheren Wellenlängen (>300 nm). Das (6-4) Photoprodukt hingegen besitzt charakteristische Absorptionsbanden bei 310-360 nm, weshalb eine photometrische Diskriminierung des (6-4) Photoprodukts möglich ist. Durch weitere Absorption von UV-Strahlen >300 nm kann das (6-4) Photoprodukt in sein Dewar Valenz-Isomer überführt werden.^[18, 210, 218] Die Quantenausbeute dieser sogenannte Photoisomerisierung liegt bei ca. 5%.^[219-220] Die Umwandlung kann zwar durch Bestrahlung der Dewar-Schäden mit UV-B rückgängig gemacht werden, verläuft jedoch viel langsamer.^[221] Somit kann sich der Anteil der Dewar-Isomere gegenüber ihrer (6-4) Spezies erhöhen, weshalb auch diese Photoschäden biologisch relevant sind.^[222] Ein weiterer Vertreter der UV-induzierten DNA-Schäden, welches in bakteriellen Sporen identifiziert werden konnte. ist das sogenannte Sporenphotoprodukt.^[223-224] Die Bildung dieses DNA-Schadens wird durch hohe Konzentrationen an Dipikolinsäure, Ca²⁺-Ionen und die Verpackung der stark dehydratisierten Sporen-DNA in small acid soluble proteins (SASPs) begünstigt.^[225]

4.1.2 REPARATUR VON DNA-PHOTOSCHÄDEN

Die effiziente Beseitigung dieser DNA-Schäden ist für das Überleben der Zelle von großer Wichtigkeit. Findet diese nicht statt, würden sowohl DNA- als auch RNA-Polymerasen in der Ausübung ihrer Funktionen beeinträchtigt oder gar gehindert werden. Wichtige Prozesse wie die Replikation oder Transkription würden somit in der betroffenen DNA-Region unvollständig oder nur fehlerhaft stattfinden. Das Ergebnis sind Mutationen, Beeinträchtigung des Zellwachstums und der Zelltod.^[226-228] Andererseits können UV-Schäden an der DNA durch Mutationen ein unkontrolliertes Wachstum der betroffenen Zelle hervorrufen. So ist die UV-Belastung beim Menschen maßgeblich an der Entstehung von Hautkrebs beteiligt.^[229]

Insbesondere Organismen, die der Sonne stark ausgesetzt sind, haben als Reaktion auf die Gefahren durch DNA-Photoschäden im Laufe der Evolution unterschiedliche Arten der Reparatur entwickelt. Man unterscheidet hierbei zwischen zwei Mechanismen.^[230] Zum Einen existieren Enzyme, die durch direkte Reversion den Schaden in die intakten Basen umwandeln können. In dem zweiten, weitaus komplexeren Weg, sind mehrere Faktoren beteiligt, strukturelle Veränderungen in der DNA zu erkennen, auszuschneiden und zu ersetzen (excision repair). Diese kann entweder über base excision repair (BER), nucleotide excision repair (NER) oder mismatch repair (MMR) erfolgen.^[231-233] BER, NER und MMR unterscheiden sich der Schadensspezifität auch im biochemischen Mechanismus neben der Schadenserkennung und der Zusammensetzung Komplexität und der Reparaturenzyme.

(6-4)-Photoprodukte werden aufgrund der hohen strukturellen Deformation, welche sie in der DNA verursachen, relativ effizient über NER entfernt. CPD-Schäden hingegen stellen ein wesentlich schlechteres Substrat für diesen Reparaturweg dar.^[234] Durch Untersuchungen zur Bildung und Reparatur von Photoschäden in *E. coli* konnte jedoch nachgewiesen werden, dass CPD-Schäden spezifisch und mit einer hohen Reparatureffizienz unabhängig von der NER beseitigt werden.^[235-236] Ursache hierfür ist die CPD-Photolyase, ein photoreaktivierendes Enzym, welches spezifisch die Spaltung des CPD-Schadens in die ursprünglichen Pyrimidine katalysiert. Die Reversion erfolgt in einem Schritt. Daher handelt es sich um eine

"direkte" Reparatur, während die NER als "indirekte" Reparatur bezeichnet wird. Neben der Existenz der CPD-Photolyase in *E. coli* konnte diese auch in einer Reihe weiterer Organismen fast aller Lebensreiche identifiziert werden.^[19, 237-238] Aufgrund ihrer Sequenzhomologien erfolgte eine Einteilung in Klassen I (Bakterien, Pilze und Haloarchaea), Klasse II CPD-Photolyasen (Eukaryoten, Bakterien, pathogene sowie parasitäre Organismen) und Klasse III CPD-Photolyasen.^[18, 22, 230, 239] Letzere wurden von *Sancar* und Mitarbeitern in Bakterien gefunden und als nahe Verwandte von pflanzlichen Cryptochromen identifiziert.

Eine weitere Enzymaktivität wurde zunächst in *Drosophila melanogaster* ^[240] und später auch in anderen Organismen ^[241] beschrieben, die in der Lage ist, (6-4) Photoprodukte spezifisch zu reparieren. Diese ist, in Anlehnung an die ähnliche (CPD) Photolyase, als (6-4)-Photolyase bezeichnet worden.

4.1.3 (6-4)-PHOTOLYASE

Wie schon für die CPD-Photolyase wurden auch im Fall der (6-4) Photolyase große Anstrengungen unternommen, dieses Enzym sowohl biochemisch als auch strukturell zu charakterisieren. Der Durchbruch gelang mit der Aufklärung der Kristallstruktur der (6-4) Photolyase aus *Drosophila melanogaster* in Komplex mit dem (6-4) Photoprodukt durch die Gruppen *Carell* und *Schlichting*.^[25] Diese und viele weitere Cokristallstrukturen der (6-4) Photolyase mit ihren natürlichen Substraten lieferten wichtige Erkenntnisse bezüglich Substraterkennung und Reparaturmechanismus.^[25-26, 28]

(6-4) Photolyasen sind weniger verbreitet als CPD-Photolyasen, da (6-4) Photoprodukte im Allgemeinen ein besseres Substrat für die NER sind. Nach und nach konnte diese Enzymaktivität jedoch in unterschiedlichen Organismen, vor allem Pflanzen, Insekten und Amphibien, nachgewiesen werden. So gelang es erstmals im Jahr 1993, (6-4) Photolyasen aus *D. melanogaster* ^[240] und später in *Arabidopsis thaliana* und *Xenopus laevis* zu isolieren.^[242-245]

4.1.3.1 Chromophore

Photolyasen binden zwei Chromophore: ein Flavin-Adenin-Dinukleotid (FAD) im aktivem Zentrum sowie 5,10-Methenyltetrahydrofolylpolyglutamat (MTHF) oder 7,8-

Didemethyl-8-hydro-5-deazaflavin (F₀) im Interdomänenloop (**Schema 4.4**).^[26, 246-249] FAD ist ein in der Natur sehr häufiger Cofaktor und nimmt bei enzymatischen Katalysen im Allgemeinen die Rolle eines ubiquitären Redoxpartners ein, der Einund Zwei-Elektronenübertragungen durchführen kann. Grundsätzlich kann FAD in drei verschiedenen Redox-Zuständen existieren: dem vollständig oxidierten FAD, dem mit einem Elektron reduzierten, neutralen und radikalischen Semichinon FADH⁰ sowie dem mit zwei Elektronen vollständig reduzierten FADH⁻. Während bei vielen anderen Flavoproteinen das Semichinon die aktive Form darstellt, ist es in der Photolyase FADH⁻. Zwischen der Photolyase und anderen Flavoproteinen gibt es kaum Homologien. Teilhomologien konnten hingegen zu anderen Nukleotidbindenden Proteinen, wie der Aminoacyl-tRNA-Synthetase, festgestellt werden.^[238] Das vollständig oxidierte FAD bindet bereits während der Proteinsynthese in das aktive Zentrum und katalysiert dessen korrekte Faltung.^[230] Anschließend wird es in die aktive Form FADH⁻ überführt. Dieses überträgt nach Anregung durch Photonenabsorption ein Elektron auf das Photodimer, welches gespalten wird.^[250]

Schema 4.4: Strukturen des essentiellen Cofaktors FAD sowie der Photoantennen F0 und 5,10-MTHF.

Die Bindung zum zweiten Chromophor (MTHF oder F₀) erfolgt am Interdomänenloop nah an der Proteinoberfläche und ist weniger stabil. In seiner Funktion als Photoantenne ist es zwar nicht essentiell für die Ausübung der Enzymaktivität, steigert aber dessen Effizienz. Der zweite Chromophor absorbiert Photonen und überträgt die Anregungsenergie auf das FADH⁻ über Förster-Transfer. Hierdurch kann bei limitierenden Lichtbedingungen die Reparaturrate um das 10 bis 100 fache werden.^[247, 250] MTHF absorbiert maximal erhöht bei 360 nm, durch Wechselwirkungen zum Protein verschiebt sich das Absorbtionsmaximum auf 370 -420 nm. Ähnlich verhält es sich mit F_0 . Das ungebundene Deazaflavin zeigt bei 420

nm maximale Absorption. Durch Bindung und Deprotonierung dieses Cofaktors findet in gebundener Form ebenfalls eine Rotverschiebung statt (um 20 nm).^[26]

4.1.3.2 Struktur

(6-4)-Photolyasen sind monomere Proteine mit einer Größe von ca. 60 kDa und zwei nicht-kovalent gebundenen Chromophoren. Bereits ihre Sequenz lässt große Ähnlichkeit zu den Klasse-I-CPD-Photolyasen erkennen (ca. 36 % Homologie). So ist der C-Terminus, welcher das aktive Zentrum ausbildet, besonders hoch konserviert. Elf der 14 essentiellen Reste im aktiven Zentrum sind sich ähnlich; acht von ihnen sind identisch. Bei Betrachtung der Kristallstruktur der (6-4) Photolyase aus *D. melanogaster* lässt sich wie bei den CPD-Photolyasen eine Einteilung in zwei Domänen erkennen: eine N-terminale α/β -Domäne, welche ca. 130 Aminosäuren umfasst, sowei eine α -helicale Domäne am C-Terminus, die das katalytische Zentrum der Photolyasen darstellt. Die Verknüpfung beider Domänen miteinander erfolgt über einen Interdomänenloop, in dem sich der zweite Chromophor befindet. Welches der beiden Chromophore den zweiten Cofaktor darstellt, ist nicht aus der Aminosäure-Sequenz des Interdomänenloops zu erschließen. Dieser ist zum Teil höher konserviert als die katalytische Domäne.

Abbildung 4.1: Kristallstruktur der (6-4) Photolyase aus Drosophila im Komplex mit T(6-4)T Photoprodukt in dsDNA (PDB: 3CVU).

Innerhalb des aktiven Zentrums befindet sich das FAD in der Nähe einer kleinen Öffnung, welche aus DNA-bindenden Resten aufgebaut ist. Diese ermöglichen aufgrund ihrer Größe und Ladung das Eindrehen des (6-4) Schadens aus der α -Helix heraus (*base flipping*). Hierdurch wird die für die Reparatur notwendige Nähe zum FAD, welches in einer untypischen U-Konformation gebunden wird, geschaffen. In **Abbildung 4.1** ist die erste Cokristallstruktur einer (6-4) Photolyase (aus *D. melanogaster*) in Komplex mit dem T(6-4)T Photoprodukt dargestellt.^[25]

4.1.3.3 Reaktionsmechanismus

Die (6-4) Photolyase erkennt den (6-4) Schaden innerhalb der DNA-Helix und dreht ihn um fast 180 ° aus der Helix heraus in das aktive Zentrum des Proteins. Dieser Zustand wird durch zahlreiche DNA-Protein Wechselwirkungen stabilisiert. Zusätzlich schirmen hydrophobe Reste den eingedrehten (6-4) Schaden nach außen hin ab.

Die Bindung des (6-4) Photoprodukts erfolgt lichtunabhängig und wird von einer Photonen-induzierten Reversion des Schadens gefolgt (Schema 4.5). Der Reaktionsmechanismus, welcher zur Reparatur der (6-4) Photoprodukte führt, wird in der Literatur kontrovers diskutiert.^[203, 251-256] Unstrittig ist, dass im natürlichen System die Photoantenne der (6-4) Photolyase durch Absorption eines Photons angeregt wird und diese Anregungsenergie effizient auf das FADH⁻ überträgt.^[256] Dabei erfahren beide Chromophore einen π - π *-Übergang. Die Übertragung der Anregungsenergie erfolgt über Förster-Transfer. Hier zeigt sich, dass weder Abstand noch Orientierung der beiden Chromophore zueinander zufällig gewählt sind, sondern für diese Art der distanzabhängigen Energieübertragung optimiert wurden.^[26] Der Abstand zwischen den Chromophoren ist größer als zwischen FADH⁻ und dem (6-4) Photoprodukt. Dies verhindert einen Elektronentransfer vom FADH⁻ auf die Photoantenne, welche ein höheres Reduktionspotential als das Substrat besitzt. Das angeregte FADH⁻ (*FADH⁻) transferiert ein Elektron auf den (6-4) Schaden und wird dabei selbst zum Semichinon FADH⁰ oxidiert. Die Elektroneninjektion leitet die Reparatur des Schadens ein, welche mit einem Rücktransfer des Elektrons zu FADH⁰ abschließt. Vergleiche mit CPD-Photolyasen haben gezeigt, dass diese ihr Substrat mit einer weitaus höheren Effizienz reparieren. Während CPD-Photolyasen die Reparatur mit einer Quantenausbeute von 0.7 bis 0.98 katalysieren, beträgt die Quantenausbeute bei der (6-4) Photolyase bei gleicher Bestrahlungsintensität weniger als 1%.^[219]

Schema 4.5: Möglicher Reparaturmechanismus der (6-4) Photolyasen.

Der signifikanteste Unterschied der beiden Photolyasen betrifft jedoch den Reparaturmechanismus. Durch einfache enzymatische Spaltung des Pyrimidin-Dimers, wie er bei der Photoreversion des CPD-Schadens erfolgt, würde das (6-4) Photoprodukt aufgrund des intramolekularen Gruppentransfers bei dessen Bildung nicht in die ursprünglichen Basen überführt werden können. Daher wurde zunächst angenommen, dass die (6-4) Photolyase den Schaden erneut in ein Oxetan- bzw. Azetidin-Intermediat umwandeln muss (**Schema 4.5**), um den Gruppentransfer rückgängig zu machen. Hierbei könnten zwei essentielle Histidin-Reste im aktiven Zentrum der (6-4) Photolyase durch Ladungskontakte mit dem Schaden die Bildung des Übergangszustandes forcieren.^[256] Durch die Wechselwirkungen würde die Aminogruppe N3 des 3'-Pyrimidinonrings protoniert werden. Das dabei entstehende Acyliminium-Ion könne somit durch die relativ schwach nukleophile OH-Gruppe angegriffen werden und zur Bildung des Oxetan-Intermediats führen. Durch Elektronentransfer vom angeregten FADH* auf das Oxetan-Intermediat entstünde anschließend ein Radikal-Anion, welches nach Elektronen-Rücktransfer in die intakte Bipyrimidin-Sequenz zerfallen würde. Der Protonierungszustand der Histidine, der für diesen Mechanismus grundlegend wäre, würde auch die starke pH-Abhängigkeit der (6-4) Photolyase erklären. Trotz dieser zahlreichen Untersuchungen zum viergliedrigen Übergangszustand bei der Reparatur von (6-4) Photoprodukten, konnte dieser experimentell nie nachgewiesen werden. Insbesondere die von Arbeitsgruppen Carell und Schlichting veröffentlichten Cokristallstrukturen der (6-4) Photolyase, welche das Enzym mit ihrem Substrat vor und nach in situ Reparatur zeigen, sprechen gegen das Oxetanmodell.^[25] Die Kristallstrukturen zeigen, dass die räumliche Anordung der Histidine im aktiven Zentrum die Protonierung von N3 nicht ermöglichen können. Stattdessen würden extensive Wasserstoffbrückenbindungen zwischen der C5-OH Gruppe mit einem Wassermolekül und His365 gebildet werden, welche zur Protonierung der Hydroxygruppe an C5 führen könnten (Schema 4.6). Dadurch würde diese eine bessere Abgangsgruppe darstellen und könne direkt transferiert werden.

Schema 4.6: Postulierter Mechanismus von Carell und Schlichting.^[25]

Ebenfalls unklar ist die Reparaturaktivität der (6-4) Photolyase gegenüber den Dewar-Isomeren. *Sancar* und Mitarbeiter konnten in der Tat eine geringfügige Reparatureffizienz der (6-4) Photolyase aus *D. melanogaster* gegenüber T(Dew)T nachweisen,^[253] während Studien von *Iwai* und *Todo* keine Dewar-Reparaturaktivität

nachweisen konnten.^[243, 257] Hierbei bedarf es in Zukunft weiterer Untersuchungen, um die Reparatureigenschaft der (6-4) Photolyasen bezüglich der T(Dew)T sowie T(Dew)C Schäden aufzuklären.

4.2 AUFGABENSTELLUNG

Während durch biochemische und strukturelle Studien mit CPD- und (6-4) Photolyasen die Bindung und der Reparaturmechanismus von CDP- und (6-4) Photoschäden weitestgehend aufgeklärt wurden, ist dies nicht der Fall für die Reparatur von Dewar-Schäden. *Sancar* und Mitarbeitern war es zum ersten Mal gelungen, die (6-4) Photolyase als Reparaturenzym dieser Photoschäden zu identifizieren.^[253] Jedoch bescheinigten ihre Untersuchungen mit der (6-4) Photolyase aus *D. melanogaster* diesem Enzym nur eine geringe Dewar-Reparatureffizienz und eine niedrige Quantenausbeute von <1%. Hingegen konnte eine solche Reparaturaktivität durch Studien von *Iwai* und Mitarbeiter mit der (6-4) Photolyase aus *Xenopus laevis* nicht nachgewiesen werden.^[257]

Rahmen dieser Arbeit sollten Dewar-Schäden auf ihre enzymatische Im Reparaturfähigkeit hin untersucht werden. Hierzu sollten DNA-Stränge mit den beiden Dewar-Schäden T(Dew)T und T(Dew)C sowie dem unnatürlichen Derivat T(Dew)C* synthetisiert werden. Die Synthese von T(Dew)C* würde, wie für die natürlichen Dewar-Isomere, durch die zweistufige Belichtung einer Dipirimidin-Sequenz mit 254 nm und 365 nm erfolgen, wobei eine Thymidin/N4-Methylcytosin (TpC*) Sequenz zu belichten wäre. Die drei Dewar-Isomere sollten anschließend in Reparatur-Studien mit der (6-4) Photolyase aus D. melanogaster eingesetzt werden (siehe Abschnitt 5.17.1). Ihre unterschiedlichen Substitutionen an der 3'-Base sollten helfen, den Reparaturmechanismus der Dewar-Isomere aufzuklären. Im Anschluss sollten zwei weitere Dewar-Schäden, T(Dew)U und T(Dew)5meC, synthetisiert und ebenfalls auf ihre Reparatureigenschaft hin untersucht werden. Die zusätzlichen Substitutionsmuster an der 3'- und 5'-Base dieser Dewar-Schäden erzeugen "Hybrid"-Isomere aus den T(Dew)C und T(Dew)T Schäden. Auf diese Weise sollten Unterschiede in der Reparierbarkeit von T(Dew)C und T(Dew)T durch die (6-4) Photolyase erklärt werden.

4.3 ERGEBNISSE UND DISKUSSION

4.3.1 ENZYMATISCHE REPARATUR VON DEWAR-SCHÄDEN

Die (6-4) Photolyase aus *D. melanogaster* wurde, wie bereits beschrieben,^[25] rekombinant in *E. coli* hergestellt. Hierzu wurde das Plasmid pDEST-007:*phr(6-4)* in RosettaTM2-Zellen transformiert und die Proteinexpression in 5 L TB-Medium durchgeführt. Das Protein wurde aus den Zellen über eine StrepII-Tag Säule und Heparin-Säule gereinigt, in Assay-Puffer (50 mM Tris-HCl pH 7.6, 1 mM EDTA, 5 mM DTT, 100 mM NaCL, 5% Glycerin) überführt und bei Bedarf unter Sauerstoff-Ausschluss in einer *GloveBox* bei 4 °C gelagert. Die zu testenden Dewar-Substrate T(Dew)T und T(Dew)C sowie T(Dew)C* wurden von *Dr. Andreas Glas* synthetisiert und aufgereinigt.

Für die Reparatur von (6-4) Photoschäden war die einstündige Belichtung von äquimolaren Mengen an Substrat und der (6-4) Photolyase ausreichend, um eine vollständige Reparatur des (6-4) Photoschadens zu erzielen. Das Reaktionsgemisch wurde anschließend mittels HPLC analysiert (siehe *Abschnitt 5.16.1.6*). Da jedoch im Fall der Dewar-Reparatur nur von einer sehr geringen Reparatureffizienz auszugehen war,^[253] wurde die Belichtungszeit mit Weißlicht von einer bis auf sieben Stunden verlängert sowie ein Überschuss von zehn Äquivalenten an (6-4)-Photolyase eingesetzt.

Abbildung 4.2: Reparaturassay der Wildtyp (6-4) Photolyase mit 5'-AGGT(Dew)C*GGC-3'. (I) HPL-Chromatogramm ungeschädigter DNA; (II) HPL-Chromatograms vor Reparatur; (III) HPL-Chromatogramm nach Reparatur. Die Detektion der HPL-Chromatogramme erfolgte über die Absorption bei 260 nm.

Die Analyse dieser mittels HPLC erzielten Ergebnisse ergab ein unterschiedliches Reparaturverhalten der Wildtyp (6-4) Photolysase gegenüber den einzelnen Dewar-Isomeren. Die (6-4)-Photolyase aus Drosophila war in der Lage, die eingesetzte Menge an T(Dew)C-Schaden durch Umwandlung in die intakten Basen nach sieben Stunden vollständig umzusetzen. Jedoch konnte die hier verwendete (6-4) Photolyase, in Übereinstimmung mit der von Todo und Iwai untersuchten (6-4) Photolyase aus *Xenopus laevis*,^[243, 257] den T(Dew)T-Schaden auch nach verlängerter Belichtungszeit nicht reparieren. Bei der in Abbildung 4.2 dargestellten T(Dew)C*-Reparatur konnte neben dem Edukt und dem reparierten DNA-Strang eine weitere Spezies, vermutlich eine T(6-4)C* Zwischenstufe, nachgewiesen werden. Um die erzeugten DNA-Stränge nach T(Dew)C*-Reparatur genauer zu charakterisieren, wurden der Assay nochmals in einem größeren Maßstab durchgeführt. Die Stränge wurden von Dr. Andreas Glas isoliert, enzymatisch abgebaut und mittels HPLC und HPLC-MS eindeutig als Edukt (Dewar-Schaden), Produkt (ungeschädigte DNA) beziehungsweise als (6-4) Intermediat nachgewiesen. Somit handelte es sich bei der Reparatur der Dewar-Schäden um eine zweistufige Katalyse. Im vorliegenden Fall wurde in einem ersten Schritt T(Dew)C* in den korrespondierenden (6-4) Schaden umgewandelt. Da die weitere Reparatur von T(6-4)C* in die intakten Basen sehr langsam läuft, reichert sich dieses als Intermediat an. Im Fall des natürlichen T(Dew)C-Schadens verhinderte die schnelle nachfolgende Reparatur des T(6-4)C-Schadens dessen Anreicherung und damit den Nachweis.

Anschließend sollte mit unterschiedlichen Kontrollexperimenten der Beweis erbracht werden, dass die (6-4) Photolyase für die beobachtete Reparatur der Dewar-Schäden verantwortlich war. Zum Einen wurde der Strang in Abwesenheit des Reparaturenzyms mit Weißlicht belichtet, um auszuschließen, dass es sich um eine rein photoinduzierte Umlagerung handelte. Des Weiteren wurde statt der (6-4) Photolyase eine vollständig reduzierte FADH⁻-Lösung verwendet. Dies sollte klären, ob die Umlagerung der Dewar-Schäden in ihre (6-4) Spezies und anschließend in die intakten Basen lediglich des reduzierten Cofaktors bedarf. In beiden Fällen konnte keine Reparatur beobachtet werden.

Um die Reparatur der Dewar-Schäden näher zu charakterisieren, wurden weitere enzymatische Untersuchungen durchgeführt. Versuche mit der (6-4) Photolyase, deren FAD-Cofaktor im oxidierten Zustand vorlag, sollten klären, ob die Reparatur von Dewar-Schäden durch Elektroneninjektion vom Cofaktor induziert wird. In der für keinen der Dewar-Schäden die Tat konnte Umwandlung in den korrespondierenden (6-4) Schaden beobachtet werden (siehe Abbildung 4.3, Mitte). Somit handelt es sich bei der enzymatischen Umwandlung von T(Dew)C bzw. T(Dew)C* um einen Elektronen katalysierten Prozess. Die (6-4) Photolyase ist demnach in der Lage, durch Injektion eines Elektrons in den Dewar-Schaden die 4π sigmatrope Umlagerung, welche zur Schadensbildung führte, wieder umzukehren. Zudem wurden Reparaturassays mit einer H365N-Mutante der (6-4) Photolyase aus D. melanogaster durchgeführt, welche nicht in der Lage ist, (6-4) Schäden zu reparieren. Dies sollte zur Anreicherung des postulierten und für die T(Dew)C*-Reparatur bereits nachgewiesenen (6-4) Intermediats führen. Die entsprechenden (6-4) Intermediate konnten auf diese Weise in der Tat sowohl für die Reparatur von T(Dew)C als auch für T(Dew)C* angereichert werden (siehe **Abbildung 4.3 b** und **c**, rechts). Die Bildung des T(6-4)T konnte hingegen nicht beobachtet werden, welches einen weiteren Nachweis für die fehlende Reparatureigenschaft der (6-4) Photolyase gegenüber T(Dew)T lieferte (Abbildung 4.3 a, rechts).

Mit diesen Studien konnte neben der (6-4) Photoreaktivierung eine zweite enzymatische Aktivität der (6-4) Photolyasen bestimmt werden. Es handelt sich dabei um die 4π sigmatrope Umlagerung von Dewar-Schäden zu ihren korrespondierenden (6-4) Isomeren, welche anschließend in die reparierten Dinukleotide gespalten wird. Beide Prozesse sind lichtabhängig. Die ausbleibende Reparatur des T(Dew)T-Schadens erklären wir derzeit mit dem Vorliegen eines recht elektronenreichen Ringsystems der 5'-Base des Dinukleotidschadens erklärt werden, welche möglicherweise den Elektronentransfer vom Enzym-Cofaktor unmöglich macht.

4.3.2 CHARAKTERISIERUNG DES ÜBERGANGSZUSTANDES BEI DER DEWAR-REPARATUR

Um den Reparaturmechanismus weiter aufzuklären und insbesondere die unterschiedlichen Reparatureigenschaften zwischen T(Dew)T und T(Dew)C zu verstehen, wurde eine Reihe synthetischer Dewar-Derivate hergestellt. Die in Abbildung 4.4 dargestellten Dewar-Schäden in DNA-Strängen wurden von Korbinian Heil hergestellt und sollten mit ihren unterschiedlichen Elektronendichten des 5'-Ringsystems deren Einfluss auf die Reparaturfähigkeit des jeweiligen Schadens aufklären. Die Unterschiede in den Elektronendichten sollten dabei durch unterschiedliche Substituentsmuster der Basen ermöglicht werden. Daher wurden zum Einen die natürlichen Dewar-Schäden T(Dew)T und T(Dew)C verwendet, welche über unterschiedliche Substituenten an der C5-Position (T:-Me,-OH; C:-Me, -NH₂,) sowie C5'-Position (T:-Me; C:-H) verfügten. Zusätzlich wurden die Dewar-Derivate T(Dew)U und T(Dew)meC getestet, welche Hybrid-Subsitutionsmuster an den Positionen C5 und C5' etablieren. T(Dew)U und T(Dew)meC wurden, analog zur Herstellung der natürlichen Schäden, durch zweistufige Belichtung und Aufreinigung der jeweiligen Stränge mit mittigen TpU- und TpmeC- (meC: 5-Methylcytosin) Sequenzen gewonnen. Die Stränge wurden in Reparaturassays mit äquimolaren Mengen an (6-4) Photolyase eingesetzt und über HPLC-Analyse ausgewertet.

Wie aus Abbildung 4.4 zu entnehmen ist, ergab sich aus den Messungen eine abnehmende Reparaturaktivität des Enzyms gegenüber den Substraten in der Reihenfolge T(Dew)C > T(Dew)U > T(Dew)meC > T(Dew)T heraus, wobei wie erwartet keine Reparatur des T(Dew)T-Schadens stattfand. In keinem Assay konnte das jeweilige (6-4) Intermediat nachgewiesen werden. Dies deutet auf eine langsame 4π sigmatrope Umlagerung der Dewar-Schäden hin, welche von einer schnell ablaufenden Reparatur der (6-4) Spezies in die intakten Basen gefolgt wird. Die Reihenfolge, in der die angebotenen Substrate von der (6-4) Photolyase repariert werden, bekräftigte die Ausgangshypothese, welche der Methylgruppe an der C5'-Position eine wichtige Rolle zusprach. Demzufolge erhöht dieser Substitutent die Elektronendichte Dewar-Schaden im und reduziert die Möglichkeit der Einelektroneninduktion durch den reduzierten und lichtangeregten Cofaktor.

Abbildung 4.4: Reparaturassays der Wildtyp (6-4) Photolyase mit den Dewar-Isomeren T(Dew)T, T(Dew)C, T(Dew)U und T(Dew)T. (I) HPL-Chromatogramm der Assays nach 1 h Belichtung; (II) HPL-Chromatogramm vor Reparatur; (III) HPL-Chromatogramm des ungeschädigten Strangs. Die Detektion der HPL-Chromatogramme erfolgte über die Absorption bei 260 nm.

Diese Beobachtung konnten durch ab initio Berechnungen in der Arbeitsgruppe von Prof. Dr. Regina De Vivie-Riedle gestützt werden. Hierzu berechnete Dr. Benjamin Fingerhut die Aktivierungsenergien und die Stabilisierung der Übergangszustände, wie sie bei der Reparatur der Dewar-Isomere gebildet werden, in Abhängigkeit der die durchgeführten C5'-Methylgruppe. Sowohl Berechnungen in wässriger Umgebung mittels des polarizable continuum model (PCM) als auch in enzymatischer Umgebung mittels QM/MM zeigten, dass die Methylgruppe an C5' den Übergangszustand destabilisiert, welches die Aktivierungsenergie heraufsetzt. Es konnte gezeigt werden, dass hierfür ein hyperkonjugativer Effekt verantwortlich ist.

5 MATERIALIEN UND METHODEN

5.1 ALLGEMEINE CHEMIKALIEN UND LÖSUNGSMITTEL

Alle Laborchemikalien und Lösungsmittel wurden in Biochemika-Qualität von *AppliChem* (Darmstadt), *Boehringer* (Mannheim), *Merck* (Darmstadt), *Roth* (Karlsruhe) und *Sigma/Aldrich/Fluka* (Deisenhofen) bezogen.

5.2 GERÄTE

Gerät	Geräte-Typ, <i>Hersteller</i>		
Agarose-Gelkammern	Mini Sub-Cell GT MINI, Bio-Rad (München)		
Analysenwaage	Sartorius MC1 Typ RC210P, Sartorius (Göttingen)		
Elektrotransformator	MicroPulser™, BIO-RAD (München)		
FPLC-System	Äkta Purifier, GE Healthcare (München)		
French-Press Zellaufschlusskammer	FRENCH® PRESSURE CELL PRESS Typ FA-078AE, <i>Thermo Electron Corporation</i> (Dreieich)		
Gel-Belichtungsapparatur	Transilluminator UVT-28 S/M, Herolab (Wiesloch)		
Gel-Belichtungsapparatur	IDA 1_2, <i>raytest</i> (Straubenhardt)		
Hochdruckhomogenisator	EmulsiFlex-05, AVESTIN (Ottawa)		
Inkubator	INCUBATOR IS, noctua (Wiesloch)		
Inkubator	innova® 44 Incubator Shaker Series, <i>NEW BRUNSWICK SCIENTIFIC</i> (New Brunswick)		
Kolbenhubpipetten	eppendorf reference, eppendorf (Hamburg)		
Laborwaage	Sartorius MC1 Typ LC620D-00V1, Sartorius (Göttingen)		
Lyophille	Lyophille Alpha 2-4 LD plus, Christ (Osterode)		
NanoDrop	ND-1000 UV/VIS, <i>peqlab</i> (Erlangen)		
pH-Elektrode	BlueLine 16 pH, SCHOTT Instruments (Mainz)		
pH-Meter	MP220, METTLER TOLEDO (Schwerzenbach)		
Photometer	BioPhotometer, <i>eppendorf</i> (Hamburg)		

Rotor	SORVALL SLA-3000 SUPER-LITE [®] , <i>Thermo Electron Corporation</i> (Dreieich)
Rotor	SORVALL SS-34, Thermo Electron Corporation (Dreieich)
Schwenkschüttler	POLYMAX 104D, Heidolph Instruments (Kelheim)
SDS-Gelkammern	Mini-PROTEAN® 3 Cell, Bio-Rad (München)
Thermoschüttler	Thermomixer comfort, eppendorf (Hamburg)
Speedvac	Speedvac Plus, Thermo Life Sciences (Dreieich)
Tiefkühlschrank	VIP Series -86 °C, SANYO (Bad Nenndorf)
Tischzentrifuge	Heraeus BioFuge _{fresco} , <i>Thermo Electron Corporation</i> (Dreieich)
Trans-Blotter	TRANS-BLOT ® SD SEMI-DRY TRANSFER CELL, <i>BIO-RAD</i> (München)
Wasseraufbereitungsanlage	Waters Millipore System, Millipore (Schwalbach)
Zentrifuge	eppendorf Centrifuge Typ 5810 R, eppendorf (Hamburg)
Zentrifuge	SORVALL Evolution RC, <i>Thermo Electron Corporation</i> (Dreieich)

5.3 DNA- UND PROTEINSTANDARDS

Pre-Stained SeeBlue® Plus2 Protein Standard (*Invitrogen*)

PageRuler™ Unstained Protein Ladder (*Fermentas*)

MagicMark™ XP Protein Standard (*Invitrogen*)

5.4 PLASMIDE OHNE INSERTS

pET-Duet1, *Novagen* (Schwalbach) pACYC-Duet1, *Novagen* (Schwalbach) pENTRY-IBA 10, *IBA GmbH* (Goettingen) pPSG-IBA 33, *IBA GmbH* (Goettingen)

5.5 SPEZIELLE SYSTEME

5.5.1 PLASMIDPRÄPARATION AUS E. COLI:

5.5.1.1 peqGOLD Plasmid Miniprep Kit, *peqlab* (Erlangen)

Komponente	Zusammensetzung
Lösung I pH 8.0	50 mM Tris-HCl, 10 mM EDTA, 100 mg/mL RNase A
Lösung II	200 mM Natriumhydroxid, 1% (w/v) SDS
Lösung III pH 5.5	3 M Kaliumacetat
DNA-Waschpuffer pH 6.5	1.0 M NaCl, 50 mM MOPS, 15% (v/v) Ethanol
Elutionspuffer-Puffer pH 8.5	10 mM Tris

5.5.2 ISOLATION VON DNA AUS AGAROSEGELEN:

5.5.2.1 MinElute Gel Extraction Kit, Qiagen (Hilden)

Komponente	Zusammensetzung
QG-Puffer	mit pH-Indikator
PE-Puffer pH 6.5	1.0 M NaCl, 50 mM MOPS, 15 % (v/v) Ethanol
EB-Puffer pH 8.5	10 mM Tris-HCI

5.5.3 KLONIERUNG:

5.5.3.1 Zero Blunt[®] TOPO PCR Cloning Kit for Sequencing, *Invitrogen* (Karlsruhe)

Komponente	Zusammensetzung
pCR [®] 4Blunt-TOPO [®] Vektor	10 ng/µL
Salzlösung	1.2 M NaCl, 0.06 M MgCl ₂

5.5.3.2 StarGate[®] Standard Entry Cloning Set, *IBA GmbH* (Goettingen)

Komponente	
pENTRy-IBA10	
StarSolution E	

5.5.3.3 StarGate[®] Transfer Reagent Set, *IBA GmbH* (Goettingen)

Komponente
Destinations-Vektor
StarSolution A1
StarSolution A2

StarSolution A3

5.5.4 ORTSSPEZIFISCHE MUTAGENESE:

5.5.4.1 QuikChange[®] Site-Directed Mutagenesis Kit, *Agilent Technologies* (Santa Clara, CA, USA)

Komponente

PfuUltra [™] HF DNA Polymerase (2.5 U/µL)		
10x PfuUltra [™] HF Reaktionspuffer		
DpnI Restriktionsenzym (NEB, 20 U/µL)		
XL10-Gold ultrakompetente Zellen		
XL10-Gold β-Mercaptoethanol (β-ME) Mix		

5.6 ENZYME UND ANTIKÖRPER

Alle Restriktionsenzyme wurden, wenn nicht anders beschrieben, von *New England Biolabs (NEB*, Frankfurt) bezogen. Phusion[®] Hot Start DNA-Polymerase ist ein Produkt von *Thermo Fisher Scientific* (Dreieich), KOD-XL Polymerase von *Novagen* (Darmstadt) und PfuUltraTM HF DNA-Polymerase von *Agilent Technologies* (Santa Clara, CA, USA). Verwendete Ligase, *Antarctic* Phosphatase und andere DNAmodifizierende Enzyme wurden von *NEB* bezogen. Anti-GFP Antikörper (polyklonal, aus Hasen) wurde ebenfalls bei *NEB* (*Cell Signaling Technology*[®]) gekauft. Anti-*Rabbit* HRP-Konjugat ist ein Produkt von *Sigma Aldrich* (Deisenhofen).

5.7 PUFFER

DNasel-Puffer:

10 mM Tris-HCl pH 7.6, 2.5 mM MgCl₂, 0.5 mM CaCl₂

Strep-Puffer A und B:

Puffer A: 100 mM Tris, 150 mM NaCl, 1mM Na₂EDTA Puffer B: 2.5 mM Desthiobiotin in Puffer A His-Puffer A und B:

50 mM Tris-HCl pH 7.4, 500 mM NaCl Puffer A: 20 mM Imidazol Puffer B: 250 mM Imidazol

Heparin-Puffer A und B:

50 mM Tris-HCl pH 7.6 bzw. pH 7.4, 1 mM Na₂EDTA, 5% (v/v) Glycerin, (5 mM DTT) Puffer A: 100 mM NaCl Puffer B: 800 mM NaCl

YFP-Puffer A und B:

Puffer A: 10 mM Tris-HCl pH 8, 2 mM Na₂EDTA Puffer B: 1 M NaCl in Puffer A

Polk-Reaktionspuffer:

10 mM Tris-HCl pH 7. 4, 1 mM Na₂EDTA, 5% (v/v) Glycerin, 450 mM NaCl

Primerverlängerungs-Puffer:

25 mM Tris-HCl pH 7.5, 5 mM MgCl₂, 0.05 mg/mL BSA, 1 mM DTT, 10% Glycerin

50x TAE Puffer:

2 M Tris-Acetat pH 8.3, 100 mM Na₂EDTA

10x SDS Laufpuffer:

0.25 M Tris, 1.92 M Glycin, 1% (w/v) SDS

Western-Blot Transferpuffer:

48 mM Tris, 39 mM Glycin, 0.0375% (w/v) SDS, 20% (v/v) Methanol

10x PBS Puffer: pH 7.2

40 mM KH₂PO₄, 160 mM Na₂HPO₄, 1.15 M NaCl

PBS-T Puffer:

1x PBS Puffer pH 7.2, 0.1% (v/v) Tween 20

10x Agarosegel-Auftragspuffer:

50.0% (v/v) Glycerin, 0.2% (w/v) SDS, 0.05% (w/v) Bromphenolblau, 0.05% (w/v) Xylencyanol FF

2x SDS-Auftragspuffer:

62.5 mM Tris-HCl pH 6.8, 4.0% (w/v) SDS, 20.0% (w/v) Glycerin, 5.0% (w/v) β -Mercaptoethanol

5.8 LÖSUNGEN

12%-iges SDS Trenngel:

6.6 mL ddH₂O, 8 ml Acrylamid-Lösung (30%, *Roth*), 5 mL 1.5 M Tris pH 8.8, 200 μ L 10%-ige (w/v) SDS-Lösung, 200 μ L 10%-ige (w/v) APS-Lösung, 20 μ L TEMED

5%-iges SDS Sammelgel:

5.5 mL ddH₂O, 1.3 mL Acrylamid-Lösung (30%, *Roth*), 1 mL 1 M Tris-HCl pH 6.8, 80 μ L 10%-ige (w/v) SDS-Lösung, 80 μ L 10%-ige (w/v) APS-Lösung, 8 μ L TEMED

Bradfordlösung:

0.01% (v/v) *Coomassie*-Brilliant-Blau G 250, 5.0% (v/v) Ethanol, 10.0% (v/v) H₃PO₄ (85%-ig)

Coomassie Färbelösung:

0.25% (w/v) Coomassie, 10% (v/v) Essigsäure, 20% (v/v) Ethanol

Coomassie Entfärberlösung:

10% (v/v) Essigsäure, 20% (v/v) Ethanol

Amidoblack Färbelösung:

90% (v/v) Methanol, 10% (v/v) Essigsäure, Amidoblack 10B (Zugabe bis OD₆₁₅ 10)

Amidoblack Waschlösung:

90% (v/v) Methanol, 10% (v/v) Essigsäure

2x TBE-Harnstoff Auftragspuffer:

12% (v/v) Ficoll, 0.01% (w/v) Bromophenolblau, 0.02% (w/v) Xylencyanol FF, 7 M Harnstoff in TBE- buffer

10x TBE Puffer:

89 mM Tris-HCl pH 8.0, 89 mM Borsäure, 20 mM EDTA

20% denaturierende PAGE:

32 mL Rotiphorese Sequenziergel-Konzentrat (*Bio-Rad*), 4 mL 8.3 M Harnstoff, 4 mL 10x TBE, 200 μL 10% APS, 20 μL TEMED

5.9 MEDIEN

LB-Medium

1% (w/v) Pepton, 0.5% (w/v) Hefeextrakt, 1% (w/v) NaCl

TB-Medium:

1.2% (w/v) Pepton, 2.4% (w/v) Hefeextrakt, 0.4% (v/v) Glycerin; nach Autoklavieren: 17 mM KH_2PO_4 , 72 mM K_2HPO_4

LB-Agar:

LB-Medium mit 1.5% (w/v) Agar

S.O.C.-Medium:

0.5% (w/v) Pepton, 0.5% (w/v) Hefeextrakt, 10 mM NaCl, 2.5 mM KCl; pH 7.2; nach Autoklavieren: 5.0 mM MgCl₂, 5.0 mM MgSO₄

Autoinduktions-Medium (AI-Medium):

LB-Medium ohne Salz [1% (w/v) Pepton, 0.5% (w/v) Hefeextrakt], 1% (v/v) Glycerin, 0.1% (w/v) Glucose, 0.35% (w/v) Lactose, 2 mM MgSO₄ in Puffer [50 mM Na₂HPO₄, 50 mM KH₂PO₄, 25 mM (NH₄)SO₄]

(LB-Medium ohne Salz, Puffer sowie Lösungen wurden in konzentrierter Form einzeln angesetzt, sterilisiert und vor Gebrauch zusammengegeben)

5.10 ANTIBIOTIKA (1000x STOCKLÖSUNGEN)

Carbenicillin:	100 mg/ml in ddH ₂ O
	J J 24

Chloramphenicol: 34 mg/ml in Ethanol_{abs.}

Kanamycin: 2.5 mg/ml in ddH₂O

5.11 INDUKTIONSMITTEL ZUR PROTEINEXPRESSION

IPTG (1000x Stocklösung):	1 M in ddH ₂ O
Anhydrotetracyclin (100x Stocklösung):	2mg/mL in DMF

5.12 E. COLI-STÄMME

Stamm	Genotyp	Hersteller
One Shot [®] Top10	F ⁻ , <i>mcr</i> A (<i>mrr-hsd</i> RMS- <i>mcr</i> BC) 80/acZ M15 /acX74 recA1 ara 139 (ara-leu)7697 galU galK rpsL (StrR) endA1 nupG	<i>Invitrogen</i> , Karlsruhe
NEB5α	F^{-} , endA1, hsdR17(rK ⁻ mK ⁺), supE44, thi-1, recA1, gyrA1, gyrA (Nalr), relA1, Δ(laclZYAargF), U169 deoR (ΦdlacD(lacZ))	<i>NEB</i> (Frankfurt)
NEB-Turbo	F', proA ⁺ B ⁺ laclq ΔlacZM15/fhuA2 Δ(lac-proAB)glnV zgb-210::Tn10 (Tet ^R) endA1 thi-1 Δ(hsdSmcrB)5	NEB (Frankfurt)
T7 Express	fhuA2 lacZ::T7 gene1 [lon] ompT gal sulA11 R(mcr- 73::miniTn10Tet ^S)2 [dcm] R(zgb-210::Tn10Tet ^S) endA1 Δ(mcrC-mrr)114::IS10	<i>NEB</i> (Frankfurt)
Rosetta™ 2(DE3)	F^{-} ompT hsdS _B (r _B ⁻ m _B ⁻) gal dcm (DE3) pRARE2 (Cam ^R)	<i>Novagen</i> (Schwalbach)
BL21 (DE3)GOLD	F ⁻ <i>ompT hsdS</i> (r ⁻ m ⁻) <i>dcm</i> ⁺ Tet ^r gal λ(DE3) endA Hte	<i>Agilent Technologies</i> (Santa Cruz, CA)
XL10-Gold	TetrD(mcrA)183 D(mcrCB-hsdSMR-mrr)173 endA1 supE44 thi-1 recA1 gyrA96 relA1 lac Hte [F´ proAB laclqZDM15 Tn10 (Tetr) Amy Camr]	Agilent Technologies (Santa Cruz, CA)

5.13 MIKROBIOLOGISCHE METHODEN

5.13.1 TRANSFORMATION CHEMISCH-KOMPETENTER E. COLI-ZELLEN

50 µL chemisch-kompetente *E. coli* (Lagerung bei -80 °C) sowie das zu transformierende Plasmid (Lagerung bei -20 °C) wurden ca. 5 min auf Eis aufgetaut. Anschließend wurden 50-100 ng Plasmid-DNA zu den chemisch-kompetenten Zellen gegeben und 30 min auf Eis inkubiert, bevor der Hitzeschock zur Aufnahme der DNA für 30 s bei 42 °C erfolgte. Die Zellen wurden für weitere 2 min auf Eis inkubiert, anschließend in 950 µL S.O.C.-Medium aufgenommen und für 1 h bei 37 °C in einem Thermoschüttler bei 400 rpm regeneriert. Anschließend wurde die Zellsuspension für 1 min bei 10,250x g abzentrifugiert, der Überstand verworfen, das Zellpellet in 50 µL Medium resuspendiert und auf eine bei 37 °C vorgewärmte LB-Agaroseplatte mit entsprechendem Antibiotikum ausgestrichen. Die angeimpfte Platte wurde bei 37 °C

über Nacht inkubiert. Zur kurzzeitigen Lagerung wurde diese mit Parafilm verschlossen und bei 4 °C aufbewahrt.

5.13.2 TRANSFORMATION ELEKTROKOMPETENTER *E. COLI-*ZELLEN

50 µL elektrokompetente E. coli-Zellen (Lagerung bei -80 °C) sowie das zu transformierende Plasmid (Lagerung bei -20 °C) wurden ca. 5 min auf Eis aufgetaut. Anschließend wurden ca. 50-100 ng Plasmid-DNA zu den elektrokompetenten Zellen gegeben und 1 min auf Eis inkubiert. Die Zellen wurden in eine vorgekühlte Elektroporationsküvette überführt und am Elektroporator mit einem Spannungsimpuls behandelt. Nach Aufnahme in 950 µL S.O.C.-Medium wurden diese zur Regenerierung 1 h bei 37 °C in einem Thermoschüttler bei 400 rpm inkubiert. Die Zellsuspension wurde 1 min bei 13000 rpm in einer Tischzentrifuge zentrifugiert, der Überstand verworfen, das Zellpellet in 50 µl Medium resuspendiert und auf eine bei 37 °C vorgewärmte LB-Agaroseplatte mit entsprechendem Antibiotikum ausgestrichen. Die angeimpfte Platte wurde bei 37 °C über Nacht inkubiert. Zur kurzzeitigen Lagerung wurde diese mit Parafilm verschlossen und bei 4 °C aufbewahrt.

5.13.3 HERSTELLUNG VON ÜBERNACHT-KULTUREN

Für *E. coli*-Übernachtkulturen (ÜN-Kulturen) wurden 5 mL LB- oder TB-Medium mit dem zur Selektion nötigem Antibiotikum versetzt und in ein 12 ml *SnapCap* gegeben. Zum Animpfen wurde mit einer sterilen Pipettenspitze die gewünschte Bakterienkolonie von einer Agar-Platte in das Kulturröhrchen überführt. Die Kultur wurde ca. 16 h bei 37 °C und 200 rpm im Schüttler inkubiert.

5.13.4 INDUKTION DER PROTEINEXPRESSION

Zur Herstellung des Proteins wurde das jeweilige Expressionsplasmid in den geeigneten *E. coli*-Expressionsstamm transformiert und als 5 mL-ÜN-Kultur kultiviert. Am nächsten Tag wurde diese Kultur in 1 L Medium überführt, welches zur Selektion der gewünschten Zellen mit dem entsprechenden Antibiotikum versetzt worden war. Die Kultivierung erfolgte bei 37 °C in geeigneten Kulturkolben, die eine optimale

Protein	Expressionsstamm	Medium	Induktion	Expression
<i>dm</i> phr(6-4)	Rosetta™ 2(DE3)	TB-Medium 5x 1 L	bei OD 1; 2 mg/L Anhydrotetracyclin	16 h bei 16 °C
wt-YFP	T7 Express	LB-Medium 2x 1 L	bei OD 0.6; 2 mg/L Anhydrotetracyclin	3 h bei 37 °C
mut-YFP	T7 Express	LB-Medium 2x 1 L	bei OD 0.6; 238 mg/L IPTG	3 h bei 37 °C
wt-/mut-polk	T7 Express	Al-Medium 2x 0.5 L	nach 4 h (Verbrauch der Glucose)	16 h bei 25 °C

Sauerstoffversorgung ermöglichten. Je nach Protein wurden unterschiedliche Proteinexpressionsbedingungen gewählt, die im Folgenden aufgeführt sind.

Nach der Expression wurden die Bakteriensuspensionen in Zentrifugenbecher überführt und für 8 min bei 108,166x g zentrifugiert, der Überstand verworfen und die Zellen anschließend bis zum Zellaufschluss bei -20 °C gelagert.

5.13.5 ZELLAUFSCHLUSS IM DURCHFLUSSHOMOGENISATOR

Um Zellen aus größeren Expressionsansätzen aufzuschließen, wurde der Durchflusshomogenisator verwendet. Hierzu wurden die Zellpellets in Aufschlusspuffer und einer Tablette *Protease Inhibitor Complete EDTA-free (Roche)* resuspendiert (Endvolumen ca. 50 mL). Zum Kühlen wurde der Homogenisator zunächst mit 4 °C kaltem Aufschlusspuffer durchgespült. Bei einem Druck in der Homogenisatorkammer von 10,000-15,000 psi erfolgte der Zellaufschluss in zwei bis drei Durchgängen. Anschließend wurde die Suspension bei 38,724x g für 30 min bei 4 °C zentrifugiert und das Lysat für die weitere Aufreinigung vorbereitet.

5.13.6 ZELLAUFSCHLUSS IN DER FRENCH-PRESS

Der Zellaufschluss erfolgte alternativ über die *French-Press*. Dafür wurden die Zellpellets im Aufschlusspuffer und einer Tablette *Protease Inhibitor Complete EDTA-free* (*Roche*) resuspendiert (Endvolumen ca. 30 mL). Die Zellsuspension wurde in den eisgekühlten Zylinder der *French-Press* überführt. Alle Teile der *French-Press*, die mit der Zellsuspension in Berührung kamen, wurden ebenfalls auf

Eis vorgekühlt. Der Aufschluss erfolgte bei einem maximalen Druck von 1,500 psi. Durch ein Ventil wurden die aufgeschlossenen Zellen abgeführt und in einem 50-mL-Gefäß auf Eis gelagert. Dieser Vorgang wurde je nach Aufschlussgrad der Zellen drei bis vier Mal wiederholt. Die weitere Aufarbeitung des Zelllysats erfolgte analog zum Aufschluss mittels des Hochdruckhomogenisators.

5.14 MOLEKULARBIOLOGISCHE METHODEN

5.14.1 POLYMERASE KETTEN REAKTION (POLYMERASE CHAIN REACTION, PCR)

Die Polymerase-Ketten-Reaktion (PCR) ist die enzymatische Amplifizierung von definierten DNA-Abschnitten mit Hilfe kurzer DNA-Oligonukleotide (*Primer*). In diesem zyklischen Prozess, bestehend aus Denaturierung des Templats, Primer-*Annealing* und Primer-Elongation, wird die Menge des DNA-Abschnitts theoretisch bei jedem Zyklus verdoppelt. Die *Annealing*-Temperatur (T_M) des *Primers* lässt sich empirisch bestimmen. Hierbei werden die Gesamtlänge des *Primers* sowie dessen Zusammensetzung (GC-Gehalt) betrachtet. Überhängenden Anteile werden dabei nicht berücksichtigt. Für die verwendete Phusion[®] Hot Start DNA-Polymerase (*Thermo Scientific*) wurden zusätzlich 3 °C zu dem ermittelten Wert addiert.

Der Erfolg der PCR und somit der Erhalt des gewünschten PCR-Produkts sind stark abhängig von der Konzentration des eingesetzten Templats, weshalb standardmäßig drei verschiedene Templat-Konzentrationen eingesetzt wurden (10-100 ng). Die Amplifizierung von *phr (6-4)* aus cDNA von *Drosophila melanogaster* wurde von Dr. Melanie Maul durchgeführt und bereits beschrieben. Die Zusammensetzung der PCR-Reaktionen mit der Phusion[®] Hot Start DNA-Polymerase (*Thermo Scientific*) sowie das Schema des PCR-Programms sind wie folgt.

Komponente	Menge
DNA-Templat	xμL
5x Phusion GC Reaktionspuffer	10 µL
10 mM dNTPs	5 µL
10 µM <i>forward</i> Primer	2 µL
10 μM <i>reverse</i> Primer	2 µL
Phusion [®] Hot Start DNA-Polymerase	1 µL
ddH ₂ 0	(30-x) µL

Zyklus	Anzahl	Dauer	Temperatur
Denaturierung	1	5 min	98 °C
Denaturierung		30 s	98 °C
Annealing	20	30 s	(<i>T_M</i> +3) °C
Elongation		20 s/kb	72 °C
Elongation	1	40 s/kb	72 °C
Reaktions-Ende	1	-	4 °C

5.14.2 ORTSGERICHTETE MUTAGENESE

Die von der Firma *Stratagene (Agilent Technologies)* vertriebene QuikChange[®] Methode zur ortsgerichteten Mutagenese basiert auf der enzymatischen Amplifizierung von zirkulärer Plasmid-DNA mit Primern, welche durch Fehlpaarung an der gewünschten Nukleotidsequenz einen Basenaustausch generieren. Mit Hilfe dieser Methode können je nach verwendeten Primern Basen (und somit Aminosäuren des Genprodukts) ausgetauscht, entfernt oder eingefügt werden. Auch die gleichzeitige Mutation mehrerer benachbarter Basen (Aminosäuren) ist möglich.

5.14.2.1 Amplifizierungsreaktion

Zur Ampflizierung der DNA wurde die vom Hersteller empfohlene PfuUltra[®] HF DNA Polymerase sowie nach Herstellerempfehlung entworfene *forward* und *reverse* Primer verwendet. Diese wurden so gewählt, dass sie komplementär zueinander im gewünschten Sequenzkontext am Templat anlagern. Es wurden standardmäßig Primer der Länge von 25-45 bp und der Schmelztemperatur von ca. 79 °C eingesetzt. Schmelztemperaturen (T_M) wurden nach der vom Hersteller vorgegebenen Formel berechnet:

$$T_M = 81.5^{\circ}C + 0.41 \cdot GC(\%) \cdot \frac{675}{MM(\%)}$$

GC: GC-Gehalt des Primers in % MM: Anteil der Fehlpaarungen im Primer in %

Das Pipettierschema der PCR-Reaktionen und das PCR-Programm zur ortsspezifischen Mutagenese sind in den nachfolgenden Tabellen aufgeführt.

Komponente (für 50 µl PCR-Ansatz)	Menge
ddH ₂ O	37 µl
10x PfuUltra [®] HF Reaktionspuffer	5 µl
10 mM dNTPs	2 µl
10 µM <i>forward</i> Primer	2 µl
10 μM <i>reverse</i> Primer	2 µl
PfuUltra [®] HF DNA Polymerase	1 µl
Templat-Plasmid (25 ng/µl)	1 µl

Zyklus	Anzahl	Dauer	Temperatur
Denaturierung	1	3 min	95 °C
Denaturierung		1 min	95 °C
Annealing	20	1 min	55 °C
Elongation		1 min/kb	72 °C
Elongation	1	2 min/kb	72 °C
Reaktions-Ende		-	4 °C

Der Erhalt des PCR-Produkts wurde durch Agarosegelelektrophorese mit 10 µl der PCR-Reaktion nachgewiesen.

5.14.2.2 DpnI-Verdau

Die Produkte dieser PCR-Methode sind mutierte Plasmide mit versetzten Einzelstrang-Brüchen, welche sich vom eingesetzten Templat durch fehlende Methylierung der Nukleobasen unterscheiden. Durch Behandlung des Templat/PCR-Produkt-Gemischs mit dem Methylierungs-sensitiven Restriktionsenzym Dpnl kann daher selektiv das Templat degradiert werden. Hierzu wurden zunächst 1 µl Dpnl (*NEB*) zu 40 µl der PCR-Reaktion gegeben und über Nacht bei 37 °C inkubiert. Anschließend wurden erneut 1 µl Dpnl zur PCR-Reaktion hinzugegeben und für 3 h bei 37 °C inkubiert. Das PCR-Produkt wurde anschließend über das PCR *Purification Kit* (*Qiagen*) von überschüssigen Primern, Nukleotiden, DNA-Abbauprodukten und den eingesetzten Enzymen gereinigt. Das PCR-Produkt wurde hierzu mit 200 µl PB-Puffer gemischt und an eine QIAquick *spin column* durch Zentrifugation in einer Tischzentrifuge bei 13,000 rpm für 1 min zwei Mal mit 750 µl PE-Puffer gewaschen und anschließend getrocknet. Durch Zugabe von 30 µl EB-Puffer und Zentrifugation nach obigen Bedingungen wurde die DNA eluiert.

5.14.2.3 Transformation in XL10-Gold ultrakompetente Zellen

Zur *in vivo*-Ligation der Einzelstrangbrüche sowie zur Amplifizierung des mutierten Plasmids wurde das PCR-Produkt nach Herstellerangaben in XL10-Gold[®] ultrakompetente *E. coli*-Zellen transformiert. Hierzu wurden 50 µl der Zellen auf Eis aufgetaut und mit 2 µl β-ME *mix* versetzt. Nach vorsichtigem Durchmischen wurden die Zellen für weitere 10 min auf Eis inkubiert. Anschließend wurden 2 µl des Dpnlbehandelten und aufgereinigten PCR-Produkts zu den Zellen gegeben und für 30 min auf Eis inkubiert. Der Hitzeschock erfolgte für 30 s bei 37 °C. Nach Abkühlen der Zellen für 2 min auf Eis wurden diese in 950 µl S.O.C.-Medium aufgenommen und für 1 h bei 37 °C und 200 rpm regeneriert. Die Zellsuspension wurde 1 min bei 13,000 rpm in einer Tischzentrifuge zentrifugiert, der Überstand verworfen, das Zellpellet in 50 µl Medium resuspendiert und auf eine bei 37 °C vorgewärmte LB-Agaroseplatte mit entsprechendem Antibiotikum ausgestrichen. Die angeimpfte

Platte wurde bei 37 °C über Nacht inkubiert. Anschließend wurden bis zu sechs Kolonien zur Amplifizierung der Plasmid-DNA als Übernacht-Kulturen kultiviert. Die Plasmid-DNA wurd, wie in *Abschnitt 5.5.1* beschrieben, isoliert und die eingeführte Mutation durch Sequenzierung verifiziert.

5.14.3 ITERATIVE SATURIERUNGS-MUTAGENESE (ISM)

Die Iterative Saturierungsmutagenese (ISM) wurde von Prof. Dr. Manfred T. Reetz entwickelt^[16, 258-260] und sieht die sukzessive Randomisierung ausgesuchter Proteinreste vor. Die ISM basiert auf der Annahme, dass die für die Enzymaktivität wichtigen Reste einen kooperativen Effekt haben. Die Mehrfachmutante mit der gewünschten Eigenschaft könne daher sukzessiv erzeugt werden, indem nacheinander wenige Reste durch Saturierung optimiert werden. Diese dienen anschließend als Ausgangspunkt für die Saturierung der noch zu optimierenden Reste. Pro Zyklus könne so ein Hit erzeugt werden, dessen optimierte Eigenschaft ein Vielfaches des jeweiligen Ausgangspunktes sei. Dabei spiele die Reihenfolge, in der die Aminosäuren nacheinander saturiert werden, eine geringe Rolle. Vielmehr werde am Ende unabhängig von der Seguenz der Randomisierung stets eine ähnliche Mehrfachmutante erzeugt, welche die gewünschte Enzymaktivität vorweist. Der Vorteil von ISM gegenüber der gleichzeitigen Saturierung aller zu optimierenden Positionen liegt in der geringen Größe der zu untersuchenden Gesamtbibliothek. Dies kann durch folgendes Rechenbeispiel verdeutlicht werden: Bei insgesamt sieben Positionen würde deren gleichzeitige NNK-Saturierung 32⁷=3.4·10¹⁰ unterschiedliche Kombinationsmöglichkeiten erzeugen (siehe unten). Saturiert man jedoch iterativ maximal zwei Positionen und verwendet für den nächsten Saturierungsschritt den Hit des vorangegangenen Zyklus, so wären nur noch $32^{1}+32^{2}+32^{2}+32^{2}=3104$ Klone für die Untersuchung der Positionen erforderlich.

In dieser Arbeit wurde ISM angewendet, um ausgewählte Reste der PyIRS mittels degenerierter Primer sukzessive zu randomisieren. Das Prinzip dieser Methode beruht auf der ortsgerichteten Mutagenese. Es wurden jedoch Primer ausgewählt, die statt eines definierten Codons eine NNK-Degenerierung an der gewünschten Position der Gen-Sequenz besaßen. Bei der NNK-Degenerierung werden die ersten beiden Positionen eines Triplet-Codons mit allen vier DNA-Basen stöchiometrisch besetzt (N-Degenerierung), wobei die letzte Base des Triplet-Codons entweder ein

Thymin oder ein Guanin (K-Degenerierung; komplementär: M-Degenerierung) sein kann. Hierdurch werden 4·4·2=32 Codons erzeugt, die alle 20 natürlichen Aminosäuren und ein Stopp-Codon kodieren. Die Saturierung der ausgesuchten Aminosäuren erfolgte über mehrere Mutations-Reaktionen, bei der jeweils ein bis zwei Aminosäuren verändert wurden. Die Mutationsprodukte wurden mittels des YFP Expressions-*Screenings* auf verbesserten Einbau der unnatürlichen Aminosäure getestet. Die effektivsten PyIRS-Mutanten wurden sequenziert und in einer nächsten Mutations-Reaktion als Templat eingesetzt. Zur Durchführung dieser Reaktionen wurden zwei unterschiedliche Methoden angewendet. Die Saturierung einer Aminosäure oder mehrerer benachbarter Aminosäuren erfolgte über die QuikChange[®]-Methode. Das Pipettierschema dieser Saturierungs-Reaktion und das PCR-Programm waren wie folgt:

Komponente (für 50 µl PCR-Ansatz)	Menge
ddH ₂ O	26.5 µl
10 x KOD Hot Start Reaktionspuffer	5 µl
2 mM dNTPs	5 µl
2.5 µM forward NNK-Primer	5 µl
2.5 µM <i>reverse</i> MNN-Primer	5 µl
25 mM MgSO₄	2 µl
KOD [®] Hot Start DNA Polymerase	0.5 µl
Templat-Plasmid (25 ng/µl)	1 µl

Zyklus	Anzahl	Dauer	Temperatur
Denaturierung	1	3 min	95 °C
Denaturierung		1 min	95 °C
Annealing	20	1 min	52-58 °C
Elongation		1 min/kb	72 °C
Elongation	1	2 min/kb	72 °C
Reaktions-Ende		-	4 °C

Im Falle mehrerer, nicht benachbarter Aminosäuren oder bei nicht erfolgreicher QuikChange[®]-Saturierung erfolgte die Mutations-Reaktion über die MegaPrimer-Methode. Hierbei wird in einer ersten PCR-Reaktion ein Abschnitt auf dem Plasmid über zwei Primer amplifiziert, der in einer zweiten PCR-Reaktion als QuikChange[®]-Primer eingesetzt wird. Beide PCR-Reaktionen erfolgten nacheinander in einem einzigen Reaktions-Ansatz. Folgendes Pipettierschema und PCR-Programm wurden für die Saturierungs-Mutagenese mittels der MegaPrimer-Methode angewendet:

Komponente (für 50 µl PCR-Ansatz)	Menge
ddH ₂ O	32.5 µl
10 x KOD Hot Start Reaktionspuffer	5 µl
2 mM dNTPs	5 µl
2.5 µM forward NNK-Primer	2 µl
2.5 µM <i>reverse</i> MNN-Primer	2 µl
25 mM MgSO₄	2 µl
KOD [®] Hot Start DNA-Polymerase	0.5 µl
Templat-Plasmid (50 ng/µl)	1 µl

Zyklus	Anzahl	Dauer	Temperatur
Denaturierung	1	3 min	95 °C
Denaturierung		1 min	95 °C
Annealing	5	1 min	52-58 °C
MegaPrimer-Elongation		1 min/kb	72 °C
Denaturierung	20	1 min	95 °C
Annealing/Elongation		1 min/kb	68 °C
Elongation	1	2 min/kb	72 °C
Reaktions-Ende	1	-	4 °C

Die Analyse des PCR-Produkts über Agarosegelelektrophorese, Dpnl-Verdau und Aufreinigung erfolgte wie in *Abschnitt 5.14.2.2* beschrieben. Die aufgereinigten PCR-Produkte wurden in elektrokompetente BL21(DE3)GOLD *E. coli*-Zellen (*Novagen*) transformiert und auf LB-Agarplatten mit entsprechendem Antibiotikum ausplattiert. Diese sogenannte Bibliothek wurde anschließend in YFP Expressions-*Screenings* eingesetzt.

5.14.4 YFP Expressions-Screening

Nach Transformation der Plasmid-basierten PyIRS-Bibliothek in den E. coli-Expressionsstamm BL21(DE3)GOLD wurden einzelne Kolonien als Flüssigkulturen kultiviert und in Anwesenheit der unnatürlichen Aminosäure auf effizienten Einbau in YFP_{Lvs114Amber} getestet. Hierzu wurden Einzelkolonien von der LB-Agarplatte entweder per Hand oder mit dem colony picker QPIX (Genetix) in 2 mL-deep-well Platten (Nalgene) überführt. In jedem well wurden zuvor 800 µL LB-Medium mit 100 µg/mL Carbenicillin vorgelegt. Die Kulturen wurden über Nacht bei 37 °C und 800 rpm in einem Vibrationsschüttler inkubiert. Bei der Saturierung einer Aminosäureposition wurden >90 Klone (eine 96 well-Platte mit Kontrollen) getestet. Die Größe der Bibliothek für die Saturierung von zwei Aminosäurepositionen war >1100 (12-14 96 well-Platten mit Kontrollen). Von diesen Vorkulturen wurden mit Hilfe eines Platten-Replikationsroboters je 100 µL in neue 2 mL-deep-well Platten überführt, in denen 900 µL LB, 100 µg/mL Carbenicillin, 1 mM IPTG, und 2 mM der unnatürlichen Aminosäure vorgelegt wurden. In Positivkontrollen wurden den Zellen ein bekanntes PyIRS-Substrat in einer Konzentration von 5 mM angeboten. In den Negativkontrollen wurde dem Medium keine unnatürliche Aminosäure hinzugefügt. Die YFP-Expression fand für 4 h bei 37 °C und 800 rpm in einem Vibrationsschüttler statt. Anschließend wurden die Zellen für 8 min bei 4,000 rpm in einer Eppendorf-Zentrifuge zentrifugiert und der Überstand verworfen. Die Zellen wurden in 500 µL PBS resuspendiert und erneut unter obigen Bedingungen zentrifugiert. Der Überstand wurde abermals verworfen und die Zellen in 150 µL PBS resuspendiert. Nach Transfer der Kulturen in schwarze 96 well Microtiterplatten wurde die YFP-Fluoreszensintensität der Zellen an einem GENios plate reader (TECAN) ausgelesen. Hierzu wurde bei λ_{Ex} = 485 nm angeregt und die Fluoreszenz bei λ_{Em} = 520 nm gemessen.

5.14.5 AGAROSEGELELEKTROPHORESE

Bei der Agarosegelelektrophorese werden DNA-Fragmente aufgrund ihrer unterschiedlichen Größe getrennt. Längs der Laufrichtung liegt eine Spannung von ca. 100 V an. Die DNA Fragmente wandern zur Anode und werden dabei durch die polymere Struktur des Agarosegels in ihrer Laufgeschwindigkeit beeinflusst (sog. Siebeffekt). Kleine/kompakte DNA-Moleküle wandern schneller als große/lineare DNA-Moleküle. Die DNA kann dabei durch Verwendung des Fluoreszenzfarbstoffes Ethidiumbromid (λ_{Abs} = 300 nm, λ_{Em} = 595 nm), welcher in dsDNA interkaliert, detektierbar gemacht werden. Es wurden je nach zu erwartender Fragmentgröße 0.8-2.0%-ige Agarosekonzentrationen verwendet. Die Gele wurden stets frisch vorbereitet. Hierzu wurde Agarose in 1x TAE Puffer durch Aufkochen gelöst. Nach Abkühlen der Lösung wurde 0.1 µL Ethidiumbromid/1 mL Agarosegel in das noch flüssige Gel hinzugegeben und in die Gelgieß-Apparatur (*peqlab*) gegossen.

5.14.6 DNA ISOLIERUNG

5.14.6.1 Isolierung von DNA aus Agarosegelen unter Verwendung des MinElute-Gel-Extraction Kits (*Qiagen*)

Die zu isolierende DNA-Bande wurde zunächst mit einem Skalpell über dem UV-Transilluminator entsprechenden Sicherheitsvorkehrungen unter aus dem Agarosegel ausgeschnitten, in ein 1.5 mL-Reaktionsgefäß überführt und gewogen. Anschließend wurde das Gelstück mit dem dreifachen des Gewichtes an QG-Puffer überschichtet und im Thermomixer bei 55 °C für 10 min inkubiert, so dass es sich vollständig auflöste. Isopropanol wurde im Verhältnis 1:1 zum Gelvolumen hinzugegeben und durch mehrmaliges invertieren gemischt. Die Probe wurde nun auf die im Umfang des Kits mitgelieferte Säule gegeben und 1 min bei 13,000 rpm in einer Tischzentrifuge zentrifugiert. Der Durchfluss wurde verworfen und die gebundene DNA zwei Mal mit je 750 µL PE-Puffer gewaschen. Die Säule wurde dazu jeweils 1 min bei 13,000 rpm zentrifugiert und der Durchfluss verworfen. Die Säule wurde durch erneute Zentrifugation getrocknet, mit 20 µL EB-Puffer überschichtet und zur Elution der DNA für 5 min bei Raumtemperatur inkubiert. Durch Zentrifugation unter obigen Bedingungen wurde die gebundene DNA isoliert.

5.14.6.2 Isolierung von Plasmid-DNA unter Verwendung des peqGOLD Plasmid Miniprep Kits (*peqlab*)

Die während der Klonierung erzeugten Plasmidkonstrukte wurden zur Amplifizierung in One Shot[®] Top10 E. coli-Zellen transformiert und anschließend als Übernacht-Kulturen kultiviert. Am nächsten Morgen wurden die Bakterien zentrifugiert (4,000 rpm, 10 min), der Überstand verworfen und das entstandene Sediment in 250 µL Lösung I resuspendiert. Diese Suspension wurde in ein 1.5 mL-Reaktionsgefäß überführt, 250 µL Lösung II hinzugegeben und mehrmals invertiert. Die alkalische Lyse erfolgte für 5 min bei Raumtemperatur und wurde anschließend durch Zugabe von 350 µL Lösung III zur Neutralisation abgestoppt. Die Reaktionslösung wurde mehrmals invertiert und für 4 min auf Eis inkubiert. Im Anschluss wurde das Reaktionsgefäß in einer Tischzentrifuge mit 13,000 rpm für 15 min zentrifugiert. Der Überstand wurde in eine im Kit mitgelieferte HiBind Miniprep Zentrifugensäule überführt und 1 min mit 13,000 rpm zentrifugiert. Die an die Säule gebundene DNA wurde zwei Mal mit 750 µL DNA-Waschpuffer überschichtet und anschließend mit 13,000 rpm 1 min erneut zentrifugiert. Der Durchfluss wurde verworfen und die Säule erneut, zum vollständigen Entfernen des Waschpuffers, unter obigen Bedingungen zentrifugiert. Die Säule wurde nun mit 50 µL Elutionspuffer überschichtet. Nach Inkubation für 5 min erfolgte die Elution der an die Säule gebundenen DNA durch erneute Zentrifugation. Die aufgereinigte DNA wurde bei -20 °C gelagert.

5.14.7 RESTRIKTION VON DNA

Restriktionsreaktionen von Plasmiden bzw. DNA-Fragmenten wurde mit Restriktionsenzymen (*NEB*) in den vom Hersteller empfohlenen Bedingungen durchgeführt. Für den präparativen Verdau von Plasmiden bzw. DNA-Fragmenten wurden 2-10 µg DNA eingesetzt und die Reaktionen wie in nachfolgender Tabelle angesetzt. Die Reaktion erfolgte bei den Temperaturoptima der verwendeten Restriktionsenzyme (20-60 °C) in den vom Hersteller empfohlenen Puffer.

Komponente	Menge
Restriktionsenzym 1 (10 U/µL)	2 µL
Restriktionsenzym 2 (10 U/µL)	2 µL
2-10 µg DNA	×μL
10x NEB-Puffer	2.5 μL
100x BSA-Lösung (abhängig vom Enzym)	(0.25 µL)
ddH ₂ O	(18.5-x) µl (-0.25 µL)

Die verdauten DNA-Stränge wurden bei Bedarf dephosphoryliert und über Agarosegelelektrophorese aufgetrennt.

Im Falle des analytischen Verdaus mit Restriktionsenzymen wurden 100-150 ng DNA für 1 h in folgendem Ansatz verdaut:

Komponente	Menge
Restriktionsenzym 1 (10 U/µL)	0.2 µL
Restriktionsenzym 2 (10 U/µL, nur bei Doppelrestriktion)	0.2 μL
100-150 ng DNA	1 μL
10x NEB-Puffer	1 μL
100x BSA-Lösung (abhängig vom Enzym)	(0.1 µL)
ddH ₂ O	7.6 μl (-0.1 μL)

Die verdauten DNA-Stränge wurden über Agarosegelelektrophorese aufgetrennt und in einem *image reader* analysiert.

5.14.8 DEPHOSPHORYLIERUNG LINEARISIERTER VEKTOREN

Präparative Restriktionsreaktionen von Vektoren wurden bei der Verwendung von nur einem Restriktionsenzym dephosphoryliert, bevor sie in weiteren Klonierungsschritten eingesetzt wurden. Die Dephosphorylierung wurden nach dem unten dargestellten Schema durchgeführt und für 30 min bei 37 °C im Thermomixer inkubiert. Anschließend wurde die Reaktion durch Inaktivierung der *Antarctic* Phosphatase (5 min bei 65 °C) gestoppt.

Komponente	Menge
Antarctic Phosphatase (NEB, 10 000 U/mL)	1 µL
linearisierter Vektor (2-10 µg)	25 µL
10x Antarctic Phosphatase-Puffer	3 µL
ddH ₂ O	1 µl

5.14.9 LIGATION

Zum Einbau eines DNA-Fragments (*Insert*) in einen linearisierten Vektor wurden diese mit den gleichen Restriktionsenzymen verdaut, so dass diese nun überlappende und komplementäre Einzelstrang-Überhänge (*sticky ends*) besaßen. In der Ligationsreaktion wurden Vektor und Insert, wenn nicht anders beschrieben, im molaren Verhältnis 1:5 wie folgt eingesetzt:

Komponente	Menge
Vektor (~100 ng)	1.5 µL
Insert	12 µL
10x T4 DNA-Ligasepuffer (NEB)	1 µL
T4 DNA-Ligase (<i>NEB</i> ; 400 000 U/mL)	0,5 µL
ddH ₂ O	15.5 µL

Die Ligation wurde 1 h bei Raumtemperatur inkubiert und anschließend in One Shot[®] Top10 *E. coli*-Zellen transformiert.

5.14.10 PCR[®]4BLUNT-TOPO[®] KLONIERUNG

Die pCR[®]4Blunt-TOPO[®] Klonierung ermöglicht die direkte Selektion von rekombinanten Plasmiden durch den Strangbruch innerhalb des letalen *E. coli*-Gens *ccdB*. Dieses Gen bildet ein Fusionskonstrukt mit einem auf dem Vektor kodierten *lacZα* Gens über dessen C-Terminus. Das Konstrukt wird durch den Einbau des PCR-Produkts zerstört und somit die Expression des letalen Genprodukts inhibiert, so dass nur Zellen, welche mit einem rekombinanten Vektor transformiert wurden, überleben. Die Insertion des PCR-Produkts erfolgt über die Topoisomerase I, welche an den linearen pCR[®]4Blunt-TOPO[®] Vektors assoziiert ist. Hierzu bindet das PCR-Produkt zunächst an die Enden des Vektors und wird durch die Topoisomerase I in den Vektor ligiert. Dabei löst sich die Topoisomerase I und ein überhängendes Fragment des Vektors ab. Die Reaktion wurde in einem 1.5 mL -Reaktionsgefäß auf Eis wie folgt angesetzt:

Komponente	Menge
pCR®4Blunt-TOPO® Vector (10 ng/µL)	1 µL
Salzlösung (1.2 M NaCl, 0.06 M MgCl ₂)	1 µL
PCR-Produkt	2 µL
ddH ₂ O	2 µL

Dieser Ansatz wurde bei Raumtemperatur für 15 min inkubiert und in chemischkompetente One Shot[®] Top10 *E. coli*-Zellen transformiert.

5.14.11 STARGATE[®]-TECHNOLOGIE

Bei der Klonierungsstrategie mittels der Stargate[®]-Technologie (*IBA* Goettingen) werden PCR-Produkte über kurze kombinatorische Sequenzen (*forward* Primer: 5'-Phosphat-ATGG... und *reverse* Primer: 5'-Phosphat-TCCC...) unmittelbar in einen *Entry*-Vektor eingebracht. Der daraus generierte Donor-Vektor ermöglicht den Transfer des *Inserts* in verschiedene Expressionsvektoren der Stargate[®]-Familie. Die einzelnen Transferreaktionen werden von der Star-Combinase[®] (*IBA*) katalysiert.

5.14.11.1 Generierung des Donor-Vektors

Das PCR-Produkt wurde nach Herstellerangaben ohne Start- und Stoppcodon und mit den kombinatorischen Sequenzen mit Hilfe entsprechender Primer generiert. Anschließend wurde es über ein präparatives Agarosegel aufgereinigt und wie folgt in den Vektor pENTRY-IBA10 (*IBA*) transferiert:

Komponente	Menge
PCR-Produkt (12 nM)	14 µL
pENTRy-IBA10	10 µL
StarSolution E	1 µL

Nach vorsichtigem Durchmischen wurde der Reaktionsansatz 1 h bei 22 °C inkubiert. 10 µL dieses Ansatzes wurden zur Amplifizierung in chemisch-kompetente OneShot[®] TOP10 *E. coli*-Zellen transformiert. Der Donor-Vektor wurde aus den Zellen aufgereinigt, zur Kontrolle des Konstrukts analytisch mit den Restriktionsenzymen Xbal und HindIII verdaut und schließlich sequenziert.

5.14.11.2 Generierung des Expressions-Vektors

Nach Verifizierung des Donor-Vektors durch Restriktionsverdau und Sequenzierung wurde dieser wie folgt in einen Destinations-Vektors übertragen:

Komponente	Menge
Donor-Vektor (2 ng/µL)	12 µL
Destinations-Vektor	10 µL
StarSolution A1	1 µL
StarSolution A2	1 µL
StarSolution A3	1 µL

Die Transferreaktion wurde für 1 h bei 30 °C inkubiert und anschließend zur Amplifizierung in chemisch-kompetente OneShot[®] TOP10 *E. coli*-Zellen transformiert. Der Donor-Vektor wurde aus den Zellen aufgereinigt und zur Kontrolle des Konstrukts analytisch mit den Restriktionsenzymen Xbal und HindIII verdaut.

5.15 PROTEINCHEMISCHE METHODEN

5.15.1 SDS-POLYACRYLAMID-GELELEKTROPHORESE (SDS-PAGE)

SDS (<u>sodium dodecyl sulfate</u>, Natriumdodecylsulfat) ist ein anionisches Detergenz, das die Eigenladungen von Proteinen maskiert. Hierbei entstehen Micellen mit konstanter negativer Ladung pro Masseeinheit. Die Micellen enthalten ca. 1.4 g SDS pro 1 g Protein. Bei der Vorbereitung der Proteinproben werden diese mit einem Überschuss an SDS für 10 min bei 95 °C aufgekocht, so dass sich Tertiär- und Sekundärstrukturen der Proteine durch Auflösung der Wasserstoffbrückenbindungen und Streckung der Moleküle auflösen. Disulfidbrücken zwischen Cysteinen werden durch Zugabe eines Reduktionsmittels, wie zum Beispiel Dithiothreitol (DTT) oder β -Mercaptoethanol, aufgespalten. Derart behandelte Proteine besitzen ein gleiches Masse/Ladungs-Verhältnis und ermöglichen es somit, sie ausschließlich ihrer Größe nach zu trennen. Durch den Siebeffekt des vernetzten Polyacrylamidgels wandern große Proteine langsamer als kleine Proteine durch das Gel. Polyacrylamidgele bilden sich durch radikalische Polymerisation von Acrylamidmonomeren mit vernetzendem Bisacrylamid. Als Katalysator wird TEMED, als Radikalstarter APS verwendet.

Zur Trennung der Proteine wird ein diskontinuierliches System aus Sammel- und Trenngel verwendet, da hierbei schärfere Banden entstehen als bei einer kontinuierlichen Gelektrophorese. Der pH-Wert des Sammelgels (pH 6.8) ist dafür verantwortlich, dass Proteine sich in der Mitte eines wandernden elektrischen Felds, welches zwischen einem Leit- (CI⁻) sowie einem Folge-Ion (Glycin) aufgebaut wird, zu konzentrierten Stapeln sammeln und somit gleichzeitig ins Trenngel (pH 8.8) einlaufen. Dort findet, wie oben beschrieben, die Trennung nach Proteinmasse statt.

Das Probenvolumen, welches in die Probentaschen des Sammelgels gegeben wurde, variierte je nach Proteinkonzentration zwischen 5-20 µL. Die entsprechende

Menge an 2x SDS-Auftragspuffer wurde hinzugegeben und für 10 min bei 95 °C aufgekocht. Als Marker wurde *See-Blue*® *Plus2 PreStrained Standard (Invitrogen)* verwendet. Die Elektrophorese wurde in 1x SDS-Laufpuffer bei 15 mA pro Gel durchgeführt. Das Gel wurde bei Bedarf in einer LAS3000 Gelapparatur auf Fluoreszenz von Proteinbanden getestet und anschließend mit Coomassie gefärbt. Überschüssiger Farbstoff wurde hierbei durch Waschen mit Entfärber-Lösung entfernt.

5.15.2 WESTERN-BLOT

Der Vorgang des Western-*Blotting* umfasst das Fixieren bzw. die Übertragung von Proteinen auf eine Nitrocellulosemembran und die anschließende Immunodetektion. Der Transfer der Proteine vom Polyacrylamidgel auf die Membran erfolgt durch Anlegen einer Spannung (Elektro*blotting*). Aus einer Expressionskultur wurde nach Expressionsinduktion in Abständen von 30 min 1 mL Probe entnommen und zusätzlich die OD bestimmt. Die Probe wurde 4 min bei 10,000x g abzentrifugiert, das Pellet mit 30 μ L/OD₆₀₀ = 1 2x SDS-Auftragspuffer für 10 min bei 95 °C aufgekocht. Die Proteinkonzentration wurde über *Amidoblack* Färbung bestimmt. Es wurden 7 μ g der Proteinprobe über SDS-PAGE aufgetrennt.

Die aufgetrennten Proteine wurden durch Anlegen eines elektrischen Feldes auf eine Nitrocellulose-Membran (*Schleicher und Schüll*) übertragen. Hierzu wurden zwölf Filterpapiere (*Whatman*papiere) und eine Nitrocellulosemembran auf die Größe des Trenngels zugeschnitten und mit Western-Blot Transferpuffer getränkt. Sechs *Whatman*papiere wurden als Stapel in die Transfer-Apparatur gelegt und mit der Nitrocellulose-Membran bedeckt. Das Gel wurde auf die Membran gelegt und mit den restlichen *Whatman*papieren bedeckt.

Der Proteintransfer erfolgte bei 15 V und 2.5 mA/cm² für 1 h. Nach dem Blotten wurde die Membran 1 h mit Blockpuffer (5% BSA in PBS-T) gesättigt. Das auf der Membran immobilisierte Protein wurde mittels einer indirekten Methode durch Markierung mit einem primären sowie einem sekundären Antikörper nachgewiesen. In der primären Reaktion kam ein GFP-sequenzspezifischer Antikörper (anti-GFP, polyklonal aus Hasen, *NEB Cell Signaling Technology*) zum Einsatz. Hierzu erfolgte eine einstündige Inkubation mit dem primären Antikörper (1:5000 in PBS-T Puffer)

auf einem Schwenkschüttler für ca. 16 h bei 4 °C. Die Membran wurde mehrmals bei Raumtemperatur mit PBS-T Puffer gewaschen, um unspezifisch gebundenen Antikörper zu entfernen. In der sekundären Reaktion wurde die Membran mit einem anti-*Rabbit* HRP-konjugierten Antikörper (*Sigma Aldrich*) behandelt. Dies erfolgte durch Inkubation mit dem Antikörper (1:2,000 in PBS-T Puffer) für eine Stunde bei Raumtemperatur auf einem Schwenkschüttler. Unspezifisch gebundener sekundärer Antikörper wurde durch mehrmaliges Waschen in PBS-T Puffer entfernt. Durch Zugabe des HRP-Substrats, H₂0₂, innerhalb einer *Enhanced Chemoluminescence*-(ECL)-Lösung (*Lumi-Light Western Blotting Substrate, Roche*) wurde der gebundene sekundäre Antikörper detektierbar gemacht. Nach Überschichtung der Membran mit 5 mL ECL-Lösung für 2 min erfolgte die Detektion der Chemolumineszenz im LAS3000.

5.15.3 PROTEIN CHROMATOGRAPHISCHE METHODEN

5.15.3.1 StrepII-Tag Affinitätschromatographie

Die hohe Bindungsselektivität des StrepII-Tags an Streptavidin ermöglicht die hoch effiziente Reinigung von Proteinen. Hierzu wurde das im Zelllysat enthaltene, lösliche Protein über einen *Superloop* an das Säulenmaterial (5 mL Strep-Tactin[®] Superflow[®], *IBA* Goettingen) gebunden. Dabei interagiert das StrepII-Tag-Protein mit dem auf dem Säulenmaterial immobilisierten Streptavidin. Unspezifisch gebundenes Protein wurde mit Strep-Puffer A von der Säule gewaschen. Die Elution erfolgte mit Puffer B, der zusätzlich freies Desthiobiotin enthält. Dabei kommt es zur kompetitiven Verdrängung des gebundenen Proteins von der Säule. Alle Schritte wurden bei einer Flussrate von 1 mL/min und 4 °C durchgeführt um eine vorzeitige Denaturierung des Proteins zu vermeiden. Die Fraktionsgröße betrug 5 mL. Das Eluat wurde vereinigt, in Amicon[®] Ultra Zentrifugenfiltern (*Millipore*) aufkonzentriert und in den für das jeweilige Protein geeigneten Puffer umgepuffert.

5.15.3.2 Ni-NTA Affinitätschromatographie

Ni-NTA Affinitätssäulen zeichnen sich durch eine besonders hohe Bindungskapazität aus. Hierbei interagiert ein am C- oder N-Terminus des rekombinanten Proteins lokalisierte Polyhystidin-Sequenz mit den im Säulenmaterial gebundenen zweiwertigen Nickel-Ionen. Die Bindung der Ni²⁺-Ionen im Säulenmaterial erfolgt über Nitrilotriessigsäure-Reste. Der daraus resultierende oktaedrische Komplex mit dem Trägermaterial und Wasser-Molekülen kann einen stabilen Chelat-Komplex mit Histidinen bilden. Die Elution des Fusionsproteins erfolgt mit Imidazol, welche die gebundenen Histidine kompetitiv aus dem Chelat-Komplex verdrängt. Alternativ kann auch ein Puffer mit niedrigem pH-Wert verwendet werden, der zur Protonierung des Imidazol-Rings im Histidin führt. Bei der Aufreinigung über Ni-NTA Affinitätschromatographie wurde das im Zelllysat enthaltene, lösliche Protein über einen Superloop auf eine HisTrap HP-Säule (CV = 1 mL) aufgetragen. Unspezifisch gebundenes Protein wurde mit His-Puffer A mit 20 mM Imidazol von der Säule gewaschen. Die Elution erfolgte mit His-Puffer B, welcher 250 mM Imidazol enthält. Alle Schritte wurden bei einer Flussrate von 1 mL/min und 4 °C durchgeführt um eine vorzeitige Denaturierung des Proteins zu vermeiden. Die Fraktionsgröße betrug 5 mL. Das Eluat wurde vereinigt, in Amicon[®] Ultra Zentrifugenfiltern (*Millipore*) aufkonzentriert und in den für das jeweilige Protein geeigneten Puffer umgepuffert.

5.15.3.3 Kationenaustauscher-Chromatographie

Bei DNA-bindenden Proteinen sowie bei physiologischem pH positiv geladenen Proteinen wurde in einem zweiten Reinigungsschritt eine HiTrap Heparin HP-Säule (CV = 1 mL) bei einem Volumenfluss von z = 1 mL/min verwendet. Das in diesen Säulen immobilisierte Heparin dient als schwacher Kationenaustauscher, welches zusätzlich ähnliche Struktureigenschaften wie DNA aufweist. Diese beiden Eigenschaften wurden genutzt, um sowohl genomische DNA von *E. coli* als auch Proteine mit anderen Ladungseigenschaften kompetitiv zum immobilisierten Heparin vom Protein zu trennen. Hierzu wurde das aus dem ersten Reinigungschritt gewonnene Protein aufkonzentriert, in Heparin-Puffer A umgepuffert und auf die Heparin-Säule aufgetragen. Diese wurde mit 5-10 CV Heparin-Puffer A gewaschen. Es folgte eine Gradientenelution über 15 CV mit Heparin-Puffer B in 1 mL-Fraktionen. Die Protein enthaltenden Fraktionen (detektiert über eine Absorption bei 280 nm) wurden gesammelt, über Amicon[®] Ultra Zentrifugenfilter (*Millipore*) aufkonzentriert und umgepuffert.

5.15.3.4 Anionenaustauscher-Chromatographie

Proteine, welche bei physiologischem pH negativ geladenen sind, wurden in einem zweiten Reinigungsschritt über eine Mono Q PC 1.6/5-Säule (CV = 1 mL) aufgereinigt. Hierzu wurde das über Affinitätschromatographie teilweise aufgereinigte Protein, in der vorliegenden Arbeit verschiedene YFP-Varianten, in YFP-Puffer A umgepuffert und auf die Mono Q-Säule aufgetragen. Nach Waschen der Säule mit YFP-Puffer A für 5 CV erfolgte eine Gradientenelution über 15 CV mit YFP-Puffer B. Die Fraktionsgröße betrug 1 mL. Die Protein enthaltenden Fraktionen (detektiert über eine Absorption bei 280 nm und YFP-Absorption bei 488 nm) wurden gesammelt, über Amicon[®] Ultra Zentrifugenfilter (*Millipore*) aufkonzentriert und umgepuffert.

5.15.4 POSTTRANSLATIONALE PROTEINMODIFIZIERUNG

5.15.4.1 Cu(I)-katalysierte Alkin-Azid Cycloaddition (CuAAC) von Proteinen

Für die posttranslationale Modifizierung von Alkin-YFP mit Fluoreszin- und Zuckeraziden wurden 0.1 nmol des aufgereinigten Proteins mit 500 Äquivalenten des korrespondierenden Azids (0.1 M in DMSO) in einem Endvolumen von 5 µL gemischt. 0.4 µL einer Lösung - bestehend aus 10 nmol CuSO₄, 10 nmol Natrium-Ascorbat und 20 nmol Tris[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]amin (TBTA) - wurde frisch angesetzt und zur Protein/Azid-Lösung hinzugegeben und über Nacht bei Raumtemperatur inkubiert. Die Proben wurden anschließend mit SDS-Auftragspuffer aufgekocht und über SDS-PAGE getrennt. Im Fall der Cycloaddition mit Fluoreszin-Azid wurde das Gel vor der Coomassie-Färbung in der LAS3000 Gelaufnahme-Apparatur auf Fluoreszenz (Sybr-Green Anregung) untersucht. Die Proteinbanden wurden anschließend tryptisch bzw. chymotryptisch verdaut und über nano-HPLC MS/MS analysiert.

5.15.4.2 Cu(I)-freie Cycloaddition von Proteinen mit Nitriloxiden

Um Reaktionsbedingungen zur Cu(I)-freien Cycloaddition von Proteinen mit Nitriloxid-Derivaten zu ermitteln, die nicht zur Modifizierung natürlicher Proteinreste führten, wurde ein Dansyl-Nitriloxid im Überschuss mit rekombinantem eYFP für unterschiedliche Reaktionszeiten inkubiert. Die Proben wurden anschließend mit SDS-Auftragspuffer aufgekocht und über SDS-PAGE getrennt. Das Gel wurde vor der *Coomassie*-Färbung in der LAS3000 Gelaufnahme-Apparatur auf Fluoreszenz (*Sybr-Green* Anregung) untersucht.

5.15.4.3 Cu(I)-freie Cycloaddition von Proteinen mit Tetrazin-, Hydrazonoylchloridund Tetrazolderivaten

Für die Cu(I)-freie Cycloaddition von Proteinen wurde sowohl Norbornen-modifizierte Proteine als auch natürliche Proteine (zum Ausschluss von Nebenreaktionen) verwendet. Hierzu wurden 5 µg des rekombinanten Proteins jeweils mit 100 eq der Tetrazin-, Hydrazonoylchlorid- sowie Tetrazolderivate gemischt und auf ein Endvolumen von 10 µL mit dem jeweiligen Proteinpuffer aufgefüllt. Im Falle der Cycloaddition mit Tetrazin wurde das Reaktionsgemisch zuvor für 10 min bei 306 nm mit einer UV-Handlampe bestrahlt, um das Nitrilimin zu generieren. Die Cycloaddition erfolgte für eine Stunde bei Raumtemperatur. Die Proben wurden anschließend mit SDS-Auftragspuffer aufgekocht und über SDS-PAGE getrennt. Das Gel wurde vor der *Coomassie*-Färbung in der LAS3000 Gelaufnahme-Apparatur auf Fluoreszenz (*Sybr-Green* Anregung) untersucht. Für die Bestimmung der Aktivität derivatisierter hPolk wurde diese unmittelbar nach der Cycloaddition in Primerverlängerungs-Experimenten eingesetzt. Die eingesetzten Tetrazin-, Hydrazonoylchlorid- sowie Tetrazolderivate wurden stets frisch als 25 mM Stammlösungen in DMF bzw. H₂O hergestellt.

5.16 ANALYTISCHE METHODEN

5.16.1 PROTEINMESSUNG

5.16.1.1 Warburg-Formel

Proteine können mittels Absorptionsmessung quantifiziert werden, da die aromatischen Aminosäuren Phenylalanin, Tryptophan sowie Tyrosin ihre Absorptionsmaxima in der Nähe von 280 nm aufweisen. Bei einer statistisch ermittelten Anzahl von aromatischen Aminosäuren in Proteinen gilt, dass eine Absorptionseinheit bei 280 nm einer Konzentration von 1 mg/mL Protein entspricht. Ist die Aminosäure-Sequenz bekannt kann man durch die Multiplikation mit dem entsprechenden Faktor (f) die exakte Proteinkonzentration des vorliegenden Proteins

bestimmen. Um die Absorption evtl. vorhandener Nukleinsäuren und Nukleotide zu berücksichtigen, gilt folgende Formel:

exakte Proteinkonzentration = f x Proteinkonzentration = $(1,55 \times A_{280nm}) - (0,76 \times A_{260nm})$

5.16.1.2 Bradford-Assay

Der Bradford-Assay basiert auf der Verschiebung des Absorptionsmaximums von Coomassie-Brilliant-Blau von 465 nm auf 595 nm, wenn sich anionische Gruppen Die des Proteins an den Farbstoff anlagern. Sensitivität dieser Quantifizierungsmethode reicht von 0.1 mg/mL bis 30 mg/mL Protein pro mL Nachweisreagenz. Hierzu wurden 950 µL Bradford-Reagenz mit 50 µL Proteinlösung versetzt, bei Raumtemperatur für 1-5 min inkubiert und die Absorption bei 595 nm in einem Spektrophotometer bestimmt. Die zur Proteinbestimmung herangezogene Kalibrierfunktion basierte auf einer BSA-Verdünnungsreihe.

5.16.1.3 Amidoblack-Konzentrationsbestimmung

Die Konzentration SDS-haltiger Proteinlösungen wurde mittels *Amidoblack*-Färbung bestimmt. Hierzu wurden 5 µL der Proteinprobe zunächst mit 195 µL ddH₂O verdünnt und zu 800 µL *Amidoblack* Färbelösung in einem 1.5 mL-Reaktionsgefäß gegeben. Nach vorsichtiger Durchmischung durch Invertieren des Reaktionsgefäßes wurde die Lösung für 10 min bei Raumtemperatur in einer Tischzentrifuge bei 13000 rpm zentrifugiert. Der Überstand wurde verworfen, das *Proteinpellet* in 1 mL *Amidoblack* Waschlösung aufgenommen und erneut nach obigen Bedingungen zentrifugiert. Die Waschlösung wurde verworfen und das *Proteinpellet* bei Raumtemperatur an der Luft getrocknet. Nach Aufnahme des Proteins in 1 mL 0.2 M NaOH wurde die optische Dichte bei 615 nm gemessen. Zum Kalibrieren des Photometers für diese Messung wurden vier BSA-Konzentrationen mit *Amidoblack* gefärbt und eine Kalibriergerade ermittelt.

5.16.1.4 Proteolytischer "in Gel"-Verdau von Proteinen

Zur Identifizierung der aufgereinigten und modifizierten Proteine wurde standardmäßig ein proteolytischer Verdau mit Trypsin oder Chymotrypsin

vorgenommen. Die dadurch entstandenen Fragmente lieferten einen für das jeweilige Protein charakteristischen Peptid-"Fingerabdruck".

Alle verwendeten Geräte (Glasplatte, Pinzette, Skalpell) wurden vor Beginn des Versuchs mit Isopropanol gereinigt. Die mit Coomassie-Brilliant-Blau gefärbte und zu analysierende Proteinbande wurde mit einem Skalpell aus dem SDS-Gel ausgeschnitten, in kleine Stücke geschnitten und in ein 1.5 mL-Reaktionsgefäß überführt. Die Gelstücke wurden zunächst zwei Mal für 10 min bei Raumtemperatur mit ddH₂O anschließend mit 200 µL gewaschen und 50 mM Ammoniumbicarbonat/Acetonitril (im Verhältnis 1:1) überschichtet. Diese Lösung wurde nach 15 min entfernt und die Gelstücke mit 100 µL 50 mM Ammoniumbicarbonat für 15 min rehydriert. Nach Entfernen der Lösung wurden die Gelstücke mit 100 µL 50 mM Ammoniumbicarbonat und nach 15 min zusätzlich mit 100 µL Acetonitril überschichtet. Nach Abnehmen der Lösungen wurden 100 µL Acetonitril zugegeben, nach 15 min wieder entfernt und bei Raumtemperatur getrocknet. Die Reduktion der Disulfidbrücken erfolgte in 10 mM DTT, welches als Lösung frisch in 50 mM Ammoniumbicarbonat gelöst wurde, für 45 min bei 56 °C. Nach Abkühlen der Reaktionslösung auf Raumtemperatur, wurden die reduzierten Disulfidbrücken derivatisiert. Dies erfolgte in 100 µL einer Iodacetamid-Lösung (55 mM in 50 mM Ammoniumbicarbonat) für 30 min bei Raumtemperatur im Dunkeln. Die Gelstücke wurden gewaschen (zwei Mal für je 15 min bei Raumtemperatur mit 200 µL 50 mM Ammoniumbicarbonat/Acetonitril im Verhältnis 1:1) und durch Zugabe von 100 µL Acetonitril getrocknet. Nach Abnahme des Acetonitrils und vollständigem Trocknen der Gelstücke erfolgte der Verdau der Proteine im Gel. Hierzu wurden 1 µg Trypsin bzw. Chymotrypsin (sequencing grade, Promega) in 100 µL 25 mM Ammoniumbicarbonat überführt, zu den Gelstücken gegeben und über Nacht bei 37 °C inkubiert. Der Überstand wurde anschließend in ein separates 1.5 mL-Reaktionsgefäß überführt. Zur Elution der Peptide wurden die Gelstücke mit 100 µL 25 mM Ammoniumbicarbonat überschichtet und im Ultraschallbad für 15 min inkubiert. Zu dieser Lösung wurden 100 µL Acetonitril hinzugegeben und erneut im Ultraschallbad für 15 min inkubiert. Der Überstand wurde abgenommen und in das separate Reaktionsgefäß überführt. Zur vollständigen Elution der Peptide wurden die Gelstücke mit je 100 µL 5%-iger Ameisensäure und Acetonitril für 15 min im Ultraschallbad inkubiert. Nachdem die Elutionslösungen im separaten Reaktionsgefäß vereinigt wurden, wurde das Eluat in einer *Speedvac* auf 40 µL eingeengt und über nano-HPLC MS/MS analysiert.

5.16.1.5 Nano-HPLC MS/MS

Zur Analyse der Peptide über nano-HPLC MS/MS wurden 15 µL des verdauten Proteins zunächst auf eine Dionex C18 Nano Trap Säule (100 µm) aufgetragen und direkt auf eine Dionex C18 PepMap 100 Säule (3 µm) eluiert und chromatographisch getrennt. Die aufgetrennten Peptide wurden über Tandem MS und anschließender *High Resolution* MS (*HR*-MS) an einem Dionex Ultimate 3000 LC Thermo Finnegan LTQ-FT MS System detektiert. Vor dem zweiten Detektionsschritt erfolgt bei dieser Analysemethode die Fragmentierung der Peptide (überwiegend an den peptidischen Bindungen) unter Protonierung der Fragmente. Bei dieser Methode wurden zwei Ionen-Serien berücksichtigt, da die Fragmentierung der Peptide sowohl vom N-Terminus (B-Ionen Serie) als auch vom C-Terminus (B-Ionen Serie) erfolgen kann. Die hieraus erhaltenen Peptid- und Fragmentmassen wurden über den SEQUEST Algorithmus des Programms "Xcalibur bioworks" und den Datenbank-Sequenzen des untersuchenden Proteins ausgewertet. Als Suchkriterium zu wurden tryptisch/chymotriptische Peptide mit bis ungeschnittenen zu zwei Erkennungssequenzen festgelegt. Es wurden nur monoisotropische lonen bei der Suche berücksichtigt. Die Massen der unnatürlichen Aminosäuren sowie deren Modifizierungsprodukte wurden berechnet und in den Suchalgorithmus eingegeben. Abweichungen zwischen gefundenen und berechneten Peptidmassen durften hierbei nicht größer als 10 ppm sein. Bei der Analyse der Fragment-Daten wurden sowohl einfach- als auch zweifach-positiv geladene Fragmente ermittelt.

5.16.1.6 Reverse Phase High Performance Liquid Chromatography (RP-HPLC)

Die analytische RP-HPLC wurde auf einer Anlage der Firma Waters durchgeführt (Anlage 2996 Photodiode Array Detector und 2695 Seperations Modul). Die Trennung erfolgte auf einer Nucleodur 100-3 C18 Säule der Firma Machery-Nagel. Als mobile Phase diente ein Gemisch aus Puffer A (0.1 M Triethylammoniumacetat in ddH₂O) und Puffer B (0.1 M Triethylammoniumacetat in 80% Acetonitril) mit einem Konzentrationsgradienten von 0 auf 25% Puffer B in 45 min, welche mit einem Fluss von 0.5 mL/min über die Säule gegeben wurde.

5.17 BIOCHEMISCHE METHODEN

5.17.1 REPARATURASSAYS MIT DER (6-4) PHOTOLYASE

Die Aktivität der (6-4) Photolyase wurde mit Hilfe eines HPLC-Reparaturassays bestimmt. Dazu wurde Doppelstrang-DNA mit mittigem T(6-4)T bzw. den T(6-4)C Schaden mit Wildtyp als auch mutierten Varianten der (6-4) Photolyase aus *Drosophila* in Heparin-Puffer A unter Weißlicht (1 x 15 W, Abstand 20 cm), in einem Gesamtvolumen von 50 μ L, inkubiert. Je nach Assay-Typ wurde die Inkubation mit unterschiedlichen Enzym/DNA-Verhältnissen durchgeführt. Anschließend wurde die Reaktion bei 95 °C für 5 min abgestoppt und das denaturierte Protein durch Zentrifugation für 15 min bei 13,000 rpm entfernt. Der Überstand wurde über analytische RP-HPLC analysiert.

5.17.2 PRIMERVERLÄNGERUNGS-STUDIEN MIT HUMANER POLYMERASE K

Beim Vergleich der Restaktivität der posttranslational modifizierten *humanen* Polymerase κ mit dem Wildtyp-Protein wurden unterschiedliche Konzentrationen der Polymerase eingesetzt. Zunächst wurde ein 5'-Fluoreszeinmarkierter 13mer-DNA Einzelstrang mit einem nichtmarkiertem 30mer-Templatstrang im Verhältnis 1:1.5 hybridisiert. Die Hybridisierung erfolgte in einem Thermoschüttler bei zunächst 95 °C für 5 min und langsamen Abkühlen auf 4 °C in 45 min im Primerextensions-Puffer. Der Primer wurde in einer Konzentration von 1 µM eingesetzt und in verschiedenen Verhältnissen mit der Polymerase gemischt. Die Reaktion wurde durch Zugabe von 200 µM dNTPs gestartet und nach 30 min bei 37 °C durch Zugabe von TBE-Harnstoff Auftragspuffer beendet. Die Produkte der Primerextensions-Experimente wurden auf einem 20%-igem denaturierendem Polyacrylamid-Harnstoffgel getrennt. Dies erfolgte in einer Protean xi Cell Gelkammer (*Bio-Rad*) bei einer konstanten Stromstärke von 35 mA und maximal 800 V in 1x TBE Puffer. Anschließend wurden die Gele im LAS3000 über Detektion des Fluoreszinsignals analysiert.
6 LITERATURVERZEICHNIS

- [1] L. Wang, J. Xie, P. G. Schultz, *Annu. Rev Biophys. Biomol. Struct.* **2006**, *35*, 225-249. *Expanding the genetic code*.
- [2] Q. Wang, A. R. Parrish, L. Wang, *Chem. Biol.* 2009, 16, 323-336. Expanding the genetic code for biological studies.
- [3] T. Fekner, X. Li, M. M. Lee, M. K. Chan, *Angew. Chem. Int. Ed.* **2009**, *48*, 1633-1635. *A pyrrolysine analogue for protein click chemistry*.
- [4] Z. Hao, Y. Song, S. Lin, M. Yang, Y. Liang, J. Wang, P. R. Chen, Chem. Comm. 2011, 47, 4502-4504. A readily synthesized cyclic pyrrolysine analogue for site-specific protein "click" labeling.
- [5] C. R. Polycarpo, S. Herring, A. Berube, J. L. Wood, D. Soll, A. Ambrogelly, FEBS Lett. 2006, 580, 6695-6700. Pyrrolysine analogues as substrates for pyrrolysyl-tRNA synthetase.
- [6] T. Yanagisawa, R. Ishii, R. Fukunaga, T. Kobayashi, K. Sakamoto, S. Yokoyama, Chem. Biol. 2008, 15, 1187-1197. Multistep engineering of pyrrolysyl-tRNA synthetase to genetically encode N(epsilon)-(o-azidobenzyloxycarbonyl) lysine for site-specific protein modification.
- [7] M. Ibba, D. Söll, *Curr. Biol.* **2002**, *12*, 464-466. *Genetic code: introducing pyrrolysine*.
- [8] J. M. Kavran, S. Gundlapalli, P. O'Donoghue, M. Englert, D. Soll, T. A. Steitz, Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 11268-11273. Structure of pyrrolysyl-tRNA synthetase, an archaeal enzyme for genetic code innovation.
- C. Polycarpo, A. Ambrogelly, A. Berube, S. M. Winbush, J. A. McCloskey, P.
 F. Crain, J. L. Wood, D. Soll, *Proc. Natl. Acad. Sci. U. S. A.* 2004, 101, 12450-12454. *An aminoacyl-tRNA synthetase that specifically activates pyrrolysine*.
- [10] A. Ambrogelly, S. Palioura, D. Soll, *Nat. Chem. Biol.* **2007**, *3*, 29-35. *Natural expansion of the genetic code*.
- [11] J. A. Krzycki, *Curr. Opin. Microbiol.* **2005**, *8*, 706-712. *The direct genetic encoding of pyrrolysine.*

- [12] D. G. Longstaff, R. C. Larue, J. E. Faust, A. Mahapatra, L. Zhang, K. B. Green-Church, J. A. Krzycki, Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 1021-1026. A natural genetic code expansion cassette enables transmissible biosynthesis and genetic encoding of pyrrolysine.
- [13] E. Kaya, K. Gutsmiedl, M. Vrabel, M. Muller, P. Thumbs, T. Carell, *Chembiochem* **2009**, *10*, 2858-2861. *Synthesis of threefold glycosylated proteins using click chemistry and genetically encoded unnatural amino acids.*
- [14] N. K. Devaraj, R. Upadhyay, J. B. Haun, S. A. Hilderbrand, R. Weissleder, Angew. Chem. Int. Ed. **2009**, 48, 7013-7016. Fast and sensitive pretargeted labeling of cancer cells through a tetrazine/trans-cyclooctene cycloaddition.
- [15] K. Gutsmiedl, D. Fazio, T. Carell, *Chemistry* **2010**, *16*, 6877-6883. *Highdensity DNA functionalization by a combination of Cu-catalyzed and cu-free click chemistry*.
- [16] M. T. Reetz, J. D. Carballeira, *Nat. Protoc.* **2007**, *2*, 891-903.
- [17] E. Kaya, M. Vrabel, C. Deiml, S. Prill, V. Fluxa, T. Carell, *Angew. Chem. Int. Ed.* (angenommen). *A genetically encoded norbornene-amino acid allows mild and selective Cu-free click modification of Proteins.*
- [18] A. Sancar, *Chem. Rev.* **2003**, *103*, 2203-2237. *Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors.*
- [19] A. Sancar, J. Biol. Chem. **2008**, 283, 32153-32157. Structure and function of photolyase and in vivo enzymology: 50th anniversary.
- [20] J. E. Cleaver, E. Crowley, *Front. Biosci.* **2002**, *7*, d1024-1043. UV damage, DNA repair and skin carcinogenesis.
- [21] H. Ikehata, T. Ono, *J. Radiat. Res. (Tokyo)* **2011**, *52*, 115-125. *The mechanisms of UV mutagenesis.*
- [22] M. Muller, T. Carell, Curr. Opin. Struct. Biol. 2009, 19, 277-285. Structural biology of DNA photolyases and cryptochromes.
- [23] S. Krapf, T. Koslowski, T. Steinbrecher, Phys. Chem. Chem. Phys. 2010, 12, 9516-9525. The thermodynamics of charge transfer in DNA photolyase: using thermodynamic integration calculations to analyse the kinetics of electron transfer reactions.

- [24] A. A. Zieba, C. Richardson, C. Lucero, S. D. Dieng, Y. M. Gindt, J. P. M. Schelvis, J. Am. Chem. Soc. 2011, 133, 7824-7836. Evidence for Concerted Electron Proton Transfer in Charge Recombination between FADH(-) and (306)Trp(center dot) in Escherichia coli Photolyase.
- [25] M. J. Maul, T. R. Barends, A. F. Glas, M. J. Cryle, T. Domratcheva, S. Schneider, I. Schlichting, T. Carell, *Angew. Chem. Int. Ed.* 2008, 47, 10076-10080. *Crystal structure and mechanism of a DNA (6-4) photolyase*.
- [26] A. F. Glas, M. J. Maul, M. Cryle, T. R. Barends, S. Schneider, E. Kaya, I. Schlichting, T. Carell, *Proc. Natl. Acad. Sci. U. S. A.* 2009, 106, 11540-11545. The archaeal cofactor F0 is a light-harvesting antenna chromophore in eukaryotes.
- [27] Y. T. Kao, C. Saxena, L. Wang, A. Sancar, D. Zhong, *Cell Biochem. Biophys.* **2007**, *48*, 32-44. *Femtochemistry in enzyme catalysis: DNA photolyase*.
- [28] A. F. Glas, S. Schneider, M. J. Maul, U. Hennecke, T. Carell, *Chemistry* 2009, 15, 10387-10396. *Crystal structure of the T(6-4)C lesion in complex with a (6-4) DNA photolyase and repair of UV-induced (6-4) and Dewar photolesions.*
- [29] N. J. Fuda, M. B. Ardehali, J. T. Lis, *Nature* **2009**, *461*, 186-192. *Defining mechanisms that regulate RNA polymerase II transcription in vivo*.
- [30] T. Juven-Gershon, J. T. Kadonaga, *Dev. Biol.* **2010**, 339, 225-229. *Regulation of gene expression via the core promoter and the basal transcriptional machinery*.
- [31] L. A. Selth, S. Sigurdsson, J. Q. Svejstrup, Annu. Rev. Biochem. 2010, 79, 271-293. Transcript Elongation by RNA Polymerase II.
- [32] P. B. Moore, T. A. Steitz, *Annu. Rev. Biochem.* **2003**, *72*, 813-850. *The structural basis of large ribosomal subunit function.*
- [33] P. B. Moore, T. A. Steitz, Trends Biochem. Sci. 2005, 30, 281-283. The ribosome revealed.
- [34] T. M. Schmeing, V. Ramakrishnan, *Nature* **2009**, *461*, 1234-1242. *What recent ribosome structures have revealed about the mechanism of translation.*
- [35] I. Wohlgemuth, C. Pohl, M. V. Rodnina, *EMBO J.* **2010**, *29*, 3701-3709. *Optimization of speed and accuracy of decoding in translation.*

- [36] F. H. Crick, Symp. Soc. Exp. Biol. **1958**, *12*, 138-163. On protein synthesis.
- [37] A. D. Hershey, M. Chase, J. Gen. Physiol. **1952**, 36, 39-56. Independent functions of viral protein and nucleic acid in growth of bacteriophage.
- [38] A. I. Ivanov, et al., *Proc. Natl. Acad. Sci. U. S. A.* **2004**, *101*, 16216-16221. Genes required for Drosophila nervous system development identified by RNA interference.
- [39] M. Nirenberg, *Trends Biochem. Sci.* **2004**, *29*, 46-54. *Historical review: Deciphering the genetic code--a personal account.*
- [40] M. W. Nirenberg, J. H. Matthaei, Proc. Natl. Acad. Sci. U. S. A. 1961, 47, 1588-1602. The dependence of cell-free protein synthesis in E. coli upon naturally occurring or synthetic polyribonucleotides.
- [41] J. D. Watson, F. H. Crick, *Clin. Orthop. Relat. Res.* **2007**, *462*, 3-5. *Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid.*
- [42] C. Weissmann, P. Borst, R. H. Burdon, M. A. Billeter, S. Ochoa, Proc. Natl. Acad. Sci. U. S. A. 1964, 51, 682-690. Replication of Viral Rna, Iii. Double-Stranded Replicative Form of Msw Phage Rna.
- [43] G. E. Palade, J. Biophys. Biochem. Cytol. **1955**, 1, 59-68. A small particulate component of the cytoplasm.
- [44] F. Chapeville, F. Lipmann, G. Von Ehrenstein, B. Weisblum, W. J. Ray, Jr., S. Benzer, Proc. Natl. Acad. Sci. U. S. A. 1962, 48, 1086-1092. On the role of soluble ribonucleic acid in coding for amino acids.
- [45] M. B. Hoagland, M. L. Stephenson, J. F. Scott, L. I. Hecht, P. C. Zamecnik, J. Biol. Chem. 1958, 231, 241-257. A soluble ribonucleic acid intermediate in protein synthesis.
- [46] C. Francklyn, J. J. Perona, J. Puetz, Y. M. Hou, RNA 2002, 8, 1363-1372. Aminoacyl-tRNA synthetases: versatile players in the changing theater of translation.
- [47] S. Inge-Vechtomov, G. Zhouravleva, M. Philippe, *Biol. Cell.* **2003**, *95*, 195-209. *Eukaryotic release factors (eRFs) history*.
- [48] M. Nirenberg, et al., *Cold Spring Harb. Symp. Quant. Biol.* **1966**, *31*, 11-24. *The RNA code and protein synthesis.*

- [49] F. H. Crick, J. Mol. Biol. **1968**, 38, 367-379. The origin of the genetic code.
- [50] J. T. Wong, *Bioessays* **2005**, *27*, 416-425. *Coevolution theory of the genetic code at age thirty.*
- [51] C. J. Epstein, *Nature* **1966**, *210*, 25-28. *Role of the amino-acid "code" and of selection for conformation in the evolution of proteins.*
- [52] T. M. Sonneborn, Science **1965**, *148*, 1410. *Nucleotide Sequence of a Gene: First Complete Specification*.
- [53] K. Ikehara, Y. Niihara, *Curr. Med. Chem.* **2007**, *14*, 3221-3231. Origin and evolutionary process of the genetic code.
- [54] E. V. Koonin, A. S. Novozhilov, *IUBMB Life* **2009**, *61*, 99-111. *Origin and evolution of the genetic code: the universal enigma*.
- [55] G. Sella, D. H. Ardell, J. Mol. Evol. 2006, 63, 297-313. The coevolution of genes and genetic codes: Crick's frozen accident revisited.
- [56] R. D. Knight, S. J. Freeland, L. F. Landweber, *Nat. Rev. Genet.* 2001, 2, 49-58. *Rewiring the keyboard: evolvability of the genetic code*.
- [57] R. D. Knight, L. F. Landweber, Cell 2000, 101, 569-572. The early evolution of the genetic code.
- [58] M. A. Santos, G. Moura, S. E. Massey, M. F. Tuite, *Trends Genet.* **2004**, *20*, 95-102. *Driving change: the evolution of alternative genetic codes*.
- [59] S. Sengupta, X. Yang, P. G. Higgs, *J. Mol. Evol.* **2007**, *64*, 662-688. *The mechanisms of codon reassignments in mitochondrial genetic codes*.
- [60] S. Yokobori, T. Suzuki, K. Watanabe, *J. Mol. Evol.* **2001**, *53*, 314-326. *Genetic code variations in mitochondria: tRNA as a major determinant of genetic code plasticity.*
- [61] C. Allmang, A. Krol, *Biochimie* **2006**, *88*, 1561-1571. *Selenoprotein synthesis: UGA does not end the story*.
- [62] M. A. Santos, C. Cheesman, V. Costa, P. Moradas-Ferreira, M. F. Tuite, Mol. Microbiol. 1999, 31, 937-947. Selective advantages created by codon ambiguity allowed for the evolution of an alternative genetic code in Candida spp.

- [63] W. Leinfelder, E. Zehelein, M. A. Mandrand-Berthelot, A. Böck, *Nature* **1988**, 331, 723-725. Gene for a novel tRNA species that accepts L-serine and cotranslationally inserts selenocysteine.
- [64] A. Böck, *BioFactors* **2000**, *11*, 77-78.
- [65] A. Böck, K. Forchhammer, J. Heider, W. Leinfelder, G. Sawers, B. Veprek, F. Zinoni, *Mol. Microbiol.* **1991**, *5*, 515-520. *Selenocysteine: the 21st amino acid*.
- [66] M. Thanbichler, A. Böck, *Methods. Enzymol.* **2002**, 347, 3-16. Selenoprotein biosynthesis: purification and assay of components involved in selenocysteine biosynthesis and insertion in Escherichia coli.
- [67] Y. Araiso, R. L. Sherrer, R. Ishitani, J. M. Ho, D. Soll, O. Nureki, *Nucleic Acids Res.* **2008**, *36*, 1187-1199. *Structural insights into RNA-dependent eukaryal and archaeal selenocysteine formation*.
- [68] R. L. Sherrer, J. M. Ho, D. Soll, Nucleic Acids Res. 2008, 36, 1871-1880. Divergence of selenocysteine tRNA recognition by archaeal and eukaryotic Ophosphoseryl-tRNASec kinase.
- [69] D. Su, M. J. Hohn, S. Palioura, R. L. Sherrer, J. Yuan, D. Soll, P. O'Donoghue, IUBMB Life 2009, 61, 35-39. How an obscure archaeal gene inspired the discovery of selenocysteine biosynthesis in humans.
- [70] U. Burkard, D. Soll, *Nucleic Acids Res.* **1988**, *16*, 11617-11624. *The unusually long amino acid acceptor stem of Escherichia coli selenocysteine tRNA results from abnormal cleavage by RNase P*.
- [71] A. Sauerwald, W. Zhu, T. A. Major, H. Roy, S. Palioura, D. Jahn, W. B.
 Whitman, J. R. Yates, 3rd, M. Ibba, D. Soll, *Science* 2005, 307, 1969-1972.
 RNA-dependent cysteine biosynthesis in archaea.
- [72] C. Baron, E. Westhof, A. Böck, R. Giege, J. Mol. Biol. 1993, 231, 274-292.
 Solution structure of selenocysteine-inserting tRNA(Sec) from Escherichia coli.
 Comparison with canonical tRNA(Ser).
- [73] M. Thanbichler, A. Böck, *EMBO J.* **2002**, *21*, 6925-6934. *The function of SECIS RNA in translational control of gene expression in Escherichia coli.*

- [74] Z. Liu, M. Reches, I. Groisman, H. Engelberg-Kulka, Nucleic Acids Res. 1998, 26, 896-902. The nature of the minimal 'selenocysteine insertion sequence' (SECIS) in Escherichia coli.
- [75] B. A. Carlson, X. M. Xu, G. V. Kryukov, M. Rao, M. J. Berry, V. N. Gladyshev,
 D. L. Hatfield, *Proc. Natl. Acad. Sci. U. S. A.* 2004, 101, 12848-12853.
 Identification and characterization of phosphoseryl-tRNA[Ser]Sec kinase.
- [76] S. Palioura, R. L. Sherrer, T. A. Steitz, D. Soll, M. Simonovic, Science 2009, 325, 321-325. The human SepSecS-tRNASec complex reveals the mechanism of selenocysteine formation.
- [77] Y. Zhang, V. N. Gladyshev, *Nucleic Acids Res.* **2007**, *35*, 4952-4963. *High content of proteins containing 21st and 22nd amino acids, selenocysteine and pyrrolysine, in a symbiotic deltaproteobacterium of gutless worm Olavius algarvensis.*
- [78] G. Srinivasan, C. M. James, J. A. Krzycki, Science 2002, 296, 1459-1462. Pyrrolysine encoded by UAG in Archaea: charging of a UAG-decoding specialized tRNA.
- [79] B. Hao, W. Gong, T. K. Ferguson, C. M. James, J. A. Krzycki, M. K. Chan, Science 2002, 296, 1462-1466. A new UAG-encoded residue in the structure of a methanogen methyltransferase.
- [80] J. A. Soares, L. Zhang, R. L. Pitsch, N. M. Kleinholz, R. B. Jones, J. J. Wolff, J. Amster, K. B. Green-Church, J. A. Krzycki, *J. Biol. Chem.* 2005, 280, 36962-36969. The residue mass of L-pyrrolysine in three distinct methylamine methyltransferases.
- [81] S. A. Burke, J. A. Krzycki, J. Biol. Chem. 1997, 272, 16570-16577. Reconstitution of Monomethylamine:Coenzyme M methyl transfer with a corrinoid protein and two methyltransferases purified from Methanosarcina barkeri.
- [82] D. J. Ferguson, Jr., N. Gorlatova, D. A. Grahame, J. A. Krzycki, J. Biol. Chem.
 2000, 275, 29053-29060. Reconstitution of dimethylamine:coenzyme M methyl transfer with a discrete corrinoid protein and two methyltransferases purified from Methanosarcina barkeri.

- [83] D. J. Ferguson, Jr., J. A. Krzycki, J. Bacteriol. 1997, 179, 846-852. Reconstitution of trimethylamine-dependent coenzyme M methylation with the trimethylamine corrinoid protein and the isozymes of methyltransferase II from Methanosarcina barkeri.
- [84] D. G. Longstaff, S. K. Blight, L. Zhang, K. B. Green-Church, J. A. Krzycki, Mol. Microbiol. 2007, 63, 229-241. In vivo contextual requirements for UAG translation as pyrrolysine.
- [85] Y. Zhang, P. V. Baranov, J. F. Atkins, V. N. Gladyshev, J. Biol. Chem. 2005, 280, 20740-20751. Pyrrolysine and selenocysteine use dissimilar decoding strategies.
- [86] C. Hertweck, Angew. Chem. Int. Ed. **2011**, 50, 9540-9541. Biosynthesis and charging of pyrrolysine, the 22nd genetically encoded amino Acid.
- [87] M. A. Gaston, R. Jiang, J. A. Krzycki, *Curr. Opin. Microbiol.* **2011**, *14*, 342-349. *Functional context, biosynthesis, and genetic encoding of pyrrolysine.*
- [88] M. A. Gaston, L. Zhang, K. B. Green-Church, J. A. Krzycki, Nature 2011, 471, 647-650. The complete biosynthesis of the genetically encoded amino acid pyrrolysine from lysine.
- [89] S. E. Cellitti, W. Ou, H. P. Chiu, J. Grunewald, D. H. Jones, X. Hao, Q. Fan, L.
 L. Quinn, K. Ng, A. T. Anfora, S. A. Lesley, T. Uno, A. Brock, B. H.
 Geierstanger, *Nat. Chem. Biol.* 2011, 7, 528-530. *D-Ornithine coopts* pyrrolysine biosynthesis to make and insert pyrroline-carboxy-lysine.
- [90] P. A. Frey, A. D. Hegeman, F. J. Ruzicka, *Crit. Rev. Biochem. Mol. Biol.* 2008, 43, 63-88. *The Radical SAM Superfamily*.
- [91] M. Rother, J. A. Krzycki, *Archaea* **2010**, 2010. *Selenocysteine, pyrrolysine, and the unique energy metabolism of methanogenic archaea*.
- [92] R. Giege, M. Sissler, C. Florentz, *Nucleic Acids Res.* **1998**, *26*, 5017-5035. *Universal rules and idiosyncratic features in tRNA identity.*
- [93] F. Mateo, M. Vidal-Laliena, M. J. Pujol, O. Bachs, *Biochem. Soc. Trans.* 2010, 38, 83-86. Acetylation of cyclin A: a new cell cycle regulatory mechanism.
- [94] J. Ouyang, A. Valin, G. Gill, *Methods Mol. Biol.* **2009**, 497, 141-152. *Regulation of transcription factor activity by SUMO modification.*

- [95] M. A. Glozak, E. Seto, Oncogene 2007, 26, 5420-5432. Histone deacetylases and cancer.
- [96] Q. Tian, J. Wang, *Neurosignals* **2002**, *11*, 262-269. *Role of serine/threonine protein phosphatase in Alzheimer's disease*.
- [97] K. Friedbichler, A. Hoelbl, G. Li, K. D. Bunting, V. Sexl, F. Gouilleux, R. Moriggl, Front. Biosci. 2011, 17, 3043-3056. Serine phosphorylation of the Stat5a C-terminus is a driving force for transformation.
- [98] L. Raptis, R. Arulanandam, M. Geletu, J. Turkson, *Exp. Cell. Res.* **2011**, *317*, 1787-1795. *The R(h)oads to Stat3: Stat3 activation by the Rho GTPases*.
- [99] C. I. Santos, A. P. Costa-Pereira, *Biochim. Biophys. Acta* **2011**, *1816*, 38-49. *Signal transducers and activators of transcription-from cytokine signalling to cancer biology.*
- [100] N. L. Lehman, Acta Neuropathol. **2009**, *118*, 329-347. The ubiquitin proteasome system in neuropathology.
- [101] P. Low, Gen. Comp. Endocrinol. **2011**, 172, 39-43. The role of ubiquitinproteasome system in ageing.
- [102] A. Daulny, W. P. Tansey, *DNA Repair* **2009**, *8*, 444-448. *Damage control: DNA repair, transcription, and the ubiquitin-proteasome system*.
- [103] G. A. Ngoh, H. T. Facundo, A. Zafir, S. P. Jones, *Circ. Res.* 2010, 107, 171-185. O-GlcNAc signaling in the cardiovascular system.
- [104] D. Shental-Bechor, Y. Levy, *Curr. Opin. Struct. Biol.* **2009**, *19*, 524-533. *Folding of glycoproteins: toward understanding the biophysics of the glycosylation code.*
- [105] L. Medvedova, R. Farkas, *Endocr. Regul.* **2004**, *38*, 65-79. *Hormonal control of protein glycosylation: role of steroids and related lipophilic ligands.*
- [106] I. Braakman, N. J. Bulleid, *Annu. Rev. Biochem.* **2011**, *80*, 71-99. *Protein folding and modification in the mammalian endoplasmic reticulum*.
- [107] J. Roth, Zuber, C. S. Park, I. Jang, Y. Lee, K. G. Kysela, V. Le Fourn, R. Santimaria, B. Guhl, J. W. Cho, *Mol. Cells* **2010**, *30*, 497-506. *Protein N-glycosylation, protein folding, and protein quality control.*

- [108] G. J. Bernardes, B. Castagner, P. H. Seeberger, ACS Chem. Biol. **2009**, *4*, 703-713. Combined approaches to the synthesis and study of glycoproteins.
- [109] B. G. Davis, Angew. Chem. Int. Ed. **2009**, 48, 4674-4678. The linear assembly of a pure glycoenzyme.
- [110] N. Floyd, B. Vijayakrishnan, J. R. Koeppe, B. G. Davis, Angew. Chem. Int. Ed.
 2009, 48, 7798-7802. Thiyl glycosylation of olefinic proteins: S-linked glycoconjugate synthesis.
- [111] L. Liu, C. S. Bennett, C. H. Wong, *Chem. Comm.* **2006**, 21-33. *Advances in glycoprotein synthesis*.
- [112] J. Kalia, R. T. Raines, *Curr. Org. Chem.* **2010**, *14*, 138-147. *Advances in Bioconjugation*.
- [113] R. K. Lim, Q. Lin, *Chem. Comm.* **2010**, *46*, 1589-1600. *Bioorthogonal chemistry: recent progress and future directions*.
- [114] C. C. Liu, P. G. Schultz, *Annu. Rev. Biochem.* **2010**, 79, 413-444. *Adding new chemistries to the genetic code*.
- [115] I. S. Carrico, *Chem. Soc. Rev.* **2008**, 37, 1423-1431. *Chemoselective modification of proteins: hitting the target.*
- [116] E. M. Sletten, C. R. Bertozzi, *Angew. Chem. Int. Ed.* **2009**, *48*, 6974-6998. *Bioorthogonal chemistry: fishing for selectivity in a sea of functionality.*
- [117] C. Kan, J. D. Trzupek, B. Wu, Q. Wan, G. Chen, Z. Tan, Y. Yuan, S. J. Danishefsky, J. Am. Chem. Soc. 2009, 131, 5438-5443. Toward homogeneous erythropoietin: chemical synthesis of the Ala1-Gly28 glycopeptide domain by "alanine" ligation.
- [118] M. Morpurgo, E. A. Bayer, M. Wilchek, J. Biochem. Biophys. Methods 1999, 38, 17-28. N-hydroxysuccinimide carbonates and carbamates are useful reactive reagents for coupling ligands to lysines on proteins.
- [119] J. M. Hooker, A. P. Esser-Kahn, M. B. Francis, J. Am. Chem. Soc. 2006, 128, 15558-15559. Modification of aniline containing proteins using an oxidative coupling strategy.

- [120] J. M. Chalker, G. J. Bernardes, Y. A. Lin, B. G. Davis, *Chem. Asian. J.* 2009,
 4, 630-640. *Chemical modification of proteins at cysteine: opportunities in chemistry and biology*.
- [121] M. A. Gilles, A. Q. Hudson, C. L. Borders, Jr., Anal. Biochem. 1990, 184, 244248. Stability of water-soluble carbodiimides in aqueous solution.
- [122] T. L. Schlick, Z. Ding, E. W. Kovacs, M. B. Francis, *J. Am. Chem. Soc.* **2005**, 127, 3718-3723. *Dual-surface modification of the tobacco mosaic virus*.
- [123] R. B. Merrifield, Adv. Enzymol. Relat. Areas Mol. Biol. 1969, 32, 221-296.Solid-phase peptide synthesis.
- [124] J. S. Nowick, K. S. Lam, T. V. Khasanova, W. E. Kemnitzer, S. Maitra, H. T. Mee, R. Liu, J. Am. Chem. Soc. 2002, 124, 4972-4973. An unnatural amino acid that induces beta-sheet folding and interaction in peptides.
- [125] R. Ramage, J. Green, T. W. Muir, O. M. Ogunjobi, S. Love, K. Shaw, Biochem. J. 1994, 299, 151-158. Synthetic, structural and biological studies of the ubiquitin system: the total chemical synthesis of ubiquitin.
- [126] Y. Shin, K. A. Winans, B. J. Backes, S. B. Kent, J. A. Ellman, C. R. Bertozzi, J. Am. Chem. Soc. 1999, 121, 11684-11689. Fmoc-Based Synthesis of Peptide-Thioesters.
- [127] A. Brik, E. Keinan, P. E. Dawson, *J. Org. Chem.* **2000**, *65*, 3829-3835. *Protein synthesis by solid-phase chemical ligation using a safety catch linker.*
- [128] P. E. Dawson, S. B. Kent, *Annu. Rev. Biochem.* **2000**, 69, 923-960. *Synthesis of native proteins by chemical ligation.*
- [129] S. Mezzato, M. Schaffrath, C. Unverzagt, Angew. Chem. Int. Ed. 2005, 44, 1650-1654. An orthogonal double-linker resin facilitates the efficient solidphase synthesis of complex-type N-glycopeptide thioesters suitable for native chemical ligation.
- [130] T. W. Muir, Annu. Rev. Biochem. 2003, 72, 249-289. Semisynthesis of proteins by expressed protein ligation.
- [131] B. L. Nilsson, M. B. Soellner, R. T. Raines, *Annu. Rev Biophys. Biomol. Struct.***2005**, 34, 91-118. *Chemical synthesis of proteins*.

- [132] R. David, M. P. Richter, A. G. Beck-Sickinger, *Eur. J. Biochem.* 2004, 271, 663-677. *Expressed protein ligation. Method and applications*.
- [133] K. L. Kiick, E. Saxon, D. A. Tirrell, C. R. Bertozzi, *Proc. Natl. Acad. Sci. U. S. A.* 2002, 99, 19-24. *Incorporation of azides into recombinant proteins for chemoselective modification by the Staudinger ligation.*
- [134] M. Shogren-Knaak, H. Ishii, J. M. Sun, M. J. Pazin, J. R. Davie, C. L. Peterson, Science 2006, 311, 844-847. Histone H4-K16 acetylation controls chromatin structure and protein interactions.
- [135] P. Van de Vijver, D. Suylen, A. Dirksen, P. E. Dawson, T. M. Hackeng, Biopolymers 2010, 94, 465-474. N-epsilon-(thiaprolyl)-lysine as a handle for site-specific protein conjugation.
- [136] R. R. Flavell, T. W. Muir, *Acc. Chem. Res.* **2009**, *42*, 107-116. *Expressed protein ligation (EPL) in the study of signal transduction, ion conduction, and chromatin biology*.
- [137] F. I. Valiyaveetil, M. Leonetti, T. W. Muir, R. Mackinnon, *Science* **2006**, *314*, 1004-1007. *Ion selectivity in a semisynthetic K+ channel locked in the conductive conformation*.
- [138] M. E. Vazquez, M. Nitz, J. Stehn, M. B. Yaffe, B. Imperiali, *J. Am. Chem. Soc.* **2003**, 125, 10150-10151. Fluorescent caged phosphoserine peptides as probes to investigate phosphorylation-dependent protein associations.
- [139] J. D. Bain, E. S. Diala, C. G. Glabe, D. A. Wacker, M. H. Lyttle, T. A. Dix, A. R. Chamberlin, *Biochemistry* **1991**, *30*, 5411-5421. *Site-specific incorporation of nonnatural residues during in vitro protein biosynthesis with semisynthetic aminoacyl-tRNAs*.
- [140] S. M. Hecht, B. L. Alford, Y. Kuroda, S. Kitano, J. Biol. Chem. 1978, 253, 4517-4520. "Chemical aminoacylation" of tRNA's.
- [141] M. Giel-Pietraszuk, J. Barciszewski, *FEBS J.* **2006**, 273, 3014-3023. *Charging of tRNA with non-natural amino acids at high pressure*.
- [142] M. Ohuchi, H. Murakami, H. Suga, *Current opinion in chemical biology* 2007, 11, 537-542. The flexizyme system: a highly flexible tRNA aminoacylation tool for the translation apparatus.

- [143] P. C. Cirino, Y. Tang, K. Takahashi, D. A. Tirrell, F. H. Arnold, Biotechnol. Bioeng. 2003, 83, 729-734. Global incorporation of norleucine in place of methionine in cytochrome P450 BM-3 heme domain increases peroxygenase activity.
- [144] G. N. Cohen, D. B. Cowie, C. R. Hebd. Seances Acad. Sci. 1957, 244, 680 683. [Total replacement of methionine by selenomethionine in the proteins of Escherichia coli].
- [145] B. M. Eisenhauer, S. M. Hecht, *Biochemistry* **2002**, *41*, 11472-11478. *Sitespecific incorporation of (aminooxy)acetic acid into proteins*.
- [146] N. E. Fahmi, L. Dedkova, B. Wang, S. Golovine, S. M. Hecht, J. Am. Chem. Soc. 2007, 129, 3586-3597. Site-specific incorporation of glycosylated serine and tyrosine derivatives into proteins.
- [147] T. Kanamori, S. Nishikawa, I. Shin, P. G. Schultz, T. Endo, Proc. Natl. Acad. Sci. U. S. A. 1997, 94, 485-490. Probing the environment along the protein import pathways in yeast mitochondria by site-specific photocrosslinking.
- [148] T. Hohsaka, Y. Ashizuka, H. Murakami, M. Sisido, Nucleic Acids Res. 2001, 29, 3646-3651. Five-base codons for incorporation of nonnatural amino acids into proteins.
- [149] T. Hohsaka, M. Sisido, *Curr. Opin. Chem. Biol.* **2002**, *6*, 809-815. *Incorporation of non-natural amino acids into proteins.*
- [150] M. Sisido, T. Hohsaka, Appl. Microbiol. Biotechnol. 2001, 57, 274-281. Introduction of specialty functions by the position-specific incorporation of nonnatural amino acids into proteins through four-base codon/anticodon pairs.
- [151] N. Hino, A. Hayashi, K. Sakamoto, S. Yokoyama, Nat Protocols 2006, 1, 2957-2962. Site-specific incorporation of non-natural amino acids into proteins in mammalian cells with an expanded genetic code.
- [152] E. A. Rodriguez, H. A. Lester, D. A. Dougherty, *Proc. Natl. Acad. Sci. U. S. A.* **2006**, *103*, 8650-8655. *In vivo incorporation of multiple unnatural amino acids through nonsense and frameshift suppression.*
- [153] Y. Ryu, P. G. Schultz, *Nat. Methods* **2006**, *3*, 263-265. *Efficient incorporation of unnatural amino acids into proteins in Escherichia coli.*

- [154] E. Ilegems, H. M. Pick, H. Vogel, *Protein Eng. Des. Sel.* **2004**, *17*, 821-827. Downregulation of eRF1 by RNA interference increases mis-acylated tRNA suppression efficiency in human cells.
- [155] S. Sando, A. Ogawa, T. Nishi, M. Hayami, Y. Aoyama, Bioorg. Med. Chem. Lett. 2007, 17, 1216-1220. In vitro selection of RNA aptamer against Escherichia coli release factor 1.
- [156] K. Wang, H. Neumann, S. Y. Peak-Chew, J. W. Chin, Nat. Biotechnol. 2007, 25, 770-777. Evolved orthogonal ribosomes enhance the efficiency of synthetic genetic code expansion.
- [157] L. Wang, P. G. Schultz, *Angew. Chem. Int. Ed.* **2004**, *44*, 34-66. *Expanding the genetic code*.
- [158] A. Gautier, D. P. Nguyen, H. Lusic, W. An, A. Deiters, J. W. Chin, J. Am. Chem. Soc. 2010, 132, 4086-4088. Genetically encoded photocontrol of protein localization in mammalian cells.
- [159] S. M. Hancock, R. Uprety, A. Deiters, J. W. Chin, J. Am. Chem. Soc. 2010, 132, 14819-14824. Expanding the genetic code of yeast for incorporation of diverse unnatural amino acids via a pyrrolysyl-tRNA synthetase/tRNA pair.
- [160] H. Neumann, S. Y. Peak-Chew, J. W. Chin, *Nat. Chem. Biol.* 2008, *4*, 232-234. *Genetically encoding N(epsilon)-acetyllysine in recombinant proteins*.
- [161] D. P. Nguyen, H. Lusic, H. Neumann, P. B. Kapadnis, A. Deiters, J. W. Chin, J. Am. Chem. Soc. 2009, 131, 8720-8721. Genetic encoding and labeling of aliphatic azides and alkynes in recombinant proteins via a pyrrolysyl-tRNA Synthetase/tRNA(CUA) pair and click chemistry.
- [162] T. Plass, S. Milles, C. Koehler, C. Schultz, E. A. Lemke, *Angew. Chem. Int. Ed.* **2011**, *50*, 3878-3881. *Genetically encoded copper-free click chemistry*.
- [163] A. Deiters, T. A. Cropp, D. Summerer, M. Mukherji, P. G. Schultz, *Bioorg. Med. Chem. Lett.* 2004, *14*, 5743-5745. *Site-specific PEGylation of proteins containing unnatural amino acids.*
- [164] A. Deiters, B. H. Geierstanger, P. G. Schultz, Chembiochem 2005, 6, 55-58. Site-specific in vivo labeling of proteins for NMR studies.

- [165] H. Murakami, T. Hohsaka, Y. Ashizuka, K. Hashimoto, M. Sisido, Biomacromolecules 2000, 1, 118-125. Site-directed incorporation of fluorescent nonnatural amino acids into streptavidin for highly sensitive detection of biotin.
- [166] Z. Zhang, J. Gildersleeve, Y. Y. Yang, R. Xu, J. A. Loo, S. Uryu, C. H. Wong,
 P. G. Schultz, Science 2004, 303, 371-373. A new strategy for the synthesis of glycoproteins.
- [167] V. V. Rostovtsev, L. G. Green, V. V. Fokin, K. B. Sharpless, Angew. Chem. Int. Ed. 2002, 41, 2596-2599. A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective "ligation" of azides and terminal alkynes.
- [168] C. W. Tornoe, C. Christensen, M. Meldal, J. Org. Chem. 2002, 67, 3057-3064. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides.
- [169] A. Deiters, T. A. Cropp, M. Mukherji, J. W. Chin, J. C. Anderson, P. G. Schultz, J. Am. Chem. Soc. 2003, 125, 11782-11783. Adding amino acids with novel reactivity to the genetic code of Saccharomyces cerevisiae.
- [170] J. Gierlich, G. A. Burley, P. M. Gramlich, D. M. Hammond, T. Carell, Org. Lett.
 2006, 8, 3639-3642. Click chemistry as a reliable method for the high-density postsynthetic functionalization of alkyne-modified DNA.
- [171] A. J. Link, D. A. Tirrell, *J. Am. Chem. Soc.* **2003**, *125*, 11164-11165. *Cell surface labeling of Escherichia coli via copper(I)-catalyzed* [3+2] cycloaddition.
- [172] A. Salic, T. J. Mitchison, *Proc. Natl. Acad. Sci. U. S. A.* **2008**, *105*, 2415-2420. A chemical method for fast and sensitive detection of DNA synthesis in vivo.
- [173] T. S. Seo, X. Bai, H. Ruparel, Z. Li, N. J. Turro, J. Ju, Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 5488-5493. Photocleavable fluorescent nucleotides for DNA sequencing on a chip constructed by site-specific coupling chemistry.
- [174] A. E. Speers, G. C. Adam, B. F. Cravatt, J. Am. Chem. Soc. 2003, 125, 4686-4687. Activity-based protein profiling in vivo using a copper(i)-catalyzed azidealkyne [3 + 2] cycloaddition.
- [175] A. E. Speers, B. F. Cravatt, *Chem. Biol.* **2004**, *11*, 535-546. *Profiling enzyme activities in vivo using click chemistry methods*.

- [176] F. Wolbers, P. ter Braak, S. Le Gac, R. Luttge, H. Andersson, I. Vermes, A. van den Berg, *Electrophoresis* 2006, 27, 5073-5080. *Viability study of HL60 cells in contact with commonly used microchip materials*.
- [177] C. R. Becer, R. Hoogenboom, U. S. Schubert, Angew. Chem. Int. Ed. 2009, 48, 4900-4908. Click chemistry beyond metal-catalyzed cycloaddition.
- [178] R. B. Turner, P. Goebel, B. J. Mallon, A. D. Jarrett, *J. Am. Chem. Soc.* 1973, 95, 790-792. *Heats O Hydrogenation 9. Cyclic Acetylenes and Some Miscellaneous Olefins.*
- [179] F. L. Lin, H. M. Hoyt, H. van Halbeek, R. G. Bergman, C. R. Bertozzi, J. Am. Chem. Soc. 2005, 127, 2686-2695. Mechanistic investigation of the staudinger ligation.
- [180] Y. G. Gololobov, L. F. Kasukhin, *Tetrahedron* **1992**, *48*, 1353-1406. *Recent Advances in the Staudinger Reaction*.
- [181] E. Saxon, C. R. Bertozzi, *Science* **2000**, 287, 2007-2010. *Cell surface engineering by a modified Staudinger reaction*.
- [182] C. Gauchet, G. R. Labadie, C. D. Poulter, J. Am. Chem. Soc. 2006, 128, 9274-9275. Regio- and chemoselective covalent immobilization of proteins through unnatural amino acids.
- [183] G. A. Lemieux, C. L. De Graffenried, C. R. Bertozzi, J. Am. Chem. Soc. 2003, 125, 4708-4709. A fluorogenic dye activated by the staudinger ligation.
- [184] S. J. Luchansky, S. Argade, B. K. Hayes, C. R. Bertozzi, *Biochemistry* 2004, 43, 12358-12366. *Metabolic functionalization of recombinant glycoproteins*.
- [185] H. Ovaa, P. F. van Swieten, B. M. Kessler, M. A. Leeuwenburgh, E. Fiebiger, A. M. van den Nieuwendijk, P. J. Galardy, G. A. van der Marel, H. L. Ploegh, H. S. Overkleeft, *Angew. Chem. Int. Ed.* 2003, *42*, 3626-3629. *Chemistry in living cells: detection of active proteasomes by a two-step labeling strategy.*
- [186] A. Watzke, M. Kohn, M. Gutierrez-Rodriguez, R. Wacker, H. Schroder, R. Breinbauer, J. Kuhlmann, K. Alexandrov, C. M. Niemeyer, R. S. Goody, H. Waldmann, Angew. Chem. Int. Ed. 2006, 45, 1408-1412. Site-selective protein immobilization by Staudinger ligation.

- [187] Y. Wang, C. I. Vera, Q. Lin, Org. Lett. **2007**, 9, 4155-4158. Convenient synthesis of highly functionalized pyrazolines via mild, photoactivated 1,3-dipolar cycloaddition.
- [188] W. Song, Y. Wang, J. Qu, M. M. Madden, Q. Lin, Angew. Chem. Int. Ed. 2008, 47, 2832-2835. A photoinducible 1,3-dipolar cycloaddition reaction for rapid, selective modification of tetrazole-containing proteins.
- [189] M. L. Blackman, M. Royzen, J. M. Fox, J. Am. Chem. Soc. 2008, 130, 13518-13519. Tetrazine ligation: fast bioconjugation based on inverse-electrondemand Diels-Alder reactivity.
- [190] N. K. Devaraj, R. Weissleder, S. A. Hilderbrand, *Bioconjugate Chem.* 2008, 19, 2297-2299. *Tetrazine-based cycloadditions: application to pretargeted live cell imaging*.
- [191] M. Ober, H. Muller, C. Pieck, J. Gierlich, T. Carell, J. Am. Chem. Soc. 2005, 127, 18143-18149. Base pairing and replicative processing of the formamidopyrimidine-dG DNA lesion.
- [192] S. Morgan, R. Larossa, A. Cheung, B. Low, D. Soll, Arch. Biol. Med. Exp. (Santiago) 1979, 12, 415-426. Regulation of biosynthesis of aminoacyltransfer RNA synthetases and of transfer-RNA in Escherichia coli.
- [193] J. Plumbridge, D. Soll, *Mol. Gen. Genet.* **1989**, 216, 113-119. Characterization of cis-acting mutations which increase expression of a glnS-lacZ fusion in Escherichia coli.
- [194] C. Alff-Steinberger, R. Epstein, J. Theor. Biol. **1994**, 168, 461-463. Codon preference in the terminal region of E. coli genes and evolution of stop codon usage.
- [195] K. Gutsmiedl, C. T. Wirges, V. Ehmke, T. Carell, Org. Lett. 2009, 11, 2405-2408. Copper-free "click" modification of DNA via nitrile oxide-norbornene 1,3dipolar cycloaddition.
- [196] R. Betous, L. Rey, G. Wang, M. J. Pillaire, N. Puget, J. Selves, D. S. Biard, K. Shin-ya, K. M. Vasquez, C. Cazaux, J. S. Hoffmann, *Mol. Carcinog.* 2009, 48, 369-378. *Role of TLS DNA polymerases eta and kappa in processing naturally occurring structured DNA in human cells.*

- [197] I. G. Minko, M. B. Harbut, I. D. Kozekov, A. Kozekova, P. M. Jakobs, S. B. Olson, R. E. Moses, T. M. Harris, C. J. Rizzo, R. S. Lloyd, *J. Biol. Chem.* **2008**, 283, 17075-17082. *Role for DNA polymerase kappa in the processing of N2-N2-guanine interstrand cross-links*.
- [198] E. Ohashi, T. Hanafusa, K. Kamei, I. Song, J. Tomida, H. Hashimoto, C. Vaziri, H. Ohmori, Genes Cells 2009, 14, 101-111. Identification of a novel REV1-interacting motif necessary for DNA polymerase kappa function.
- [199] R. Vasquez-Del Carpio, T. D. Silverstein, S. Lone, M. K. Swan, J. R. Choudhury, R. E. Johnson, S. Prakash, L. Prakash, A. K. Aggarwal, *PLoS One* **2009**, *4*, e5766. *Structure of human DNA polymerase kappa inserting dATP opposite an 8-OxoG DNA lesion*.
- [200] O. Ziv, N. Geacintov, S. Nakajima, A. Yasui, Z. Livneh, Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 11552-11557. DNA polymerase zeta cooperates with polymerases kappa and iota in translesion DNA synthesis across pyrimidine photodimers in cells from XPV patients.
- [201] R. L. Wells, A. Han, Int. J. Radiat. Bio.I Relat. Stud. Phys. Chem. Med. 1985, 47, 17-21. Differences in sensitivity between human, mouse and Chinese hamster cells to killing by monochromatic ultraviolet light.
- [202] K. Heil, D. Pearson, T. Carell, *Chem. Soc. Rev.* **2011**, *40*, 4271-4278. *Chemical investigation of light induced DNA bipyrimidine damage and repair.*
- [203] S. T. Kim, K. Malhotra, C. A. Smith, J. S. Taylor, A. Sancar, J. Biol. Chem.
 1994, 269, 8535-8540. Characterization of (6-4) photoproduct DNA photolyase.
- [204] C. Auerbach, J. M. Robson, *Nature* **1946**, *157*, 302. *Chemical production of mutations*.
- [205] J. A. Butler, B. E. Conway, L. Gilbert, K. A. Smith, *Acta Unio Int. Contra Cancrum* **1951**, *7*, 443-447. *Chemical analogies in the action of ionizing radiations and of radiomimetic chemicals on nucleic acid.*
- [206] J. Cadet, et al., *Biol. Chem.* **2002**, 383, 933-943. *Recent aspects of oxidative DNA damage: guanine lesions, measurement and substrate specificity of DNA repair glycosylases.*

- [207] T. Lindahl, B. Nyberg, *Biochemistry* **1974**, *13*, 3405-3410. *Heat-induced deamination of cytosine residues in deoxyribonucleic acid*.
- [208] D. L. Mitchell, R. S. Nairn, *Photochem. Photobiol.* **1989**, *49*, 805-819. *The biology of the (6-4) photoproduct.*
- [209] R. O. Rahn, J. L. Hosszu, *Photochem. Photobiol.* **1969**, *10*, 131-137. *Photochemical Studies of Thymine in Ice.*
- [210] M. N. Khattak, S. Y. Wang, Tetrahedron 1972, 28, 945-957. Photochemical Mechanism of Pyrimidine Cyclobutyl Dimerization.
- [211] A. Wacker, H. Dellweg, L. Trager, A. Kornhauser, E. Lodemann, G. Turck, R. Selzer, P. Chandra, M. Ishimoto, *Photochem. Photobiol.* **1964**, *3*, 369-394. *Organic Photochemistry of Nucleic Acids*.
- [212] D. L. Mitchell, R. S. Nairn, *Photochem. Photobiol.* **1989**, *49*, 805-819. *The Biology of the (6-4) Photoproduct*.
- [213] M. H. Patrick, S. Y. Wang, A. J. Varghese, C. S. Rupert, Tex. J. Sci. 1967, 19, 434-472. Studies on Mechanism of Thymine-Derived Photoproduct Formation in Uv-Irradiated DNA.
- [214] A. J. Varghese, S. Y. Wang, *Science* **1967**, *156*, 955-957. *Ultraviolet Irradiation of DNA in Vitro and in Vivo Produces a 3rd Thymine-Derived Product.*
- [215] A. J. Varghese, S. Y. Wang, *Science* **1968**, *160*, 186-187. *Thymine-Thymine Adduct as a Photoproduct of Thymine*.
- [216] S. Y. Wang, M. H. Patrick, A. J. Varghese, C. S. Rupert, Proc. Natl. Acad. Sci. U. S. A. 1967, 57, 465-472. Concerning Mechanism of Formation of Uv-Induced Thymine Photoproducts in DNA.
- [217] W. Yang, Protein Sci. **2011**, 20, 1781-1789. Surviving the sun: Repair and bypass of DNA UV lesions.
- [218] G. B. Sancar, A. Sancar, DNA Repair **2006**, 408, 121-156. Purification and characterization of DNA photolyases.
- [219] D. G. Lemaire, B. P. Ruzsicska, Photochem. Photobiol. 1993, 57, 755-769. Quantum yields and secondary photoreactions of the photoproducts of dTpdT, dTpdC and dTpdU.

- [220] K. Haiser, B. P. Fingerhut, K. Heil, A. Glas, T. T. Herzog, B. M. Pilles, W. J. Schreier, W. Zinth, R. de Vivie-Riedle, T. Carell, *Angew. Chem. Int. Ed.* 2011, doi: 10.1002/anie.201106231. *Mechanism of UV-Induced DNA Dewar-Lesion Formation*.
- [221] L. S. Kan, L. Voituriez, J. Cadet, J. Photochem. Photobiol. B 1992, 12, 339-357. The Dewar valence isomer of the (6-4) photoadduct of thymidylyl-(3'-5')thymidine monophosphate: formation, alkaline lability and conformational properties.
- [222] J. Cadet, E. Sage, T. Douki, *Mutat. Res.* **2005**, *571*, 3-17. *Ultraviolet radiationmediated damage to cellular DNA*.
- [223] C. Desnous, D. Guillaume, P. Clivio, *Chem. Rev.* **2010**, *110*, 1213-1232. Spore photoproduct: a key to bacterial eternal life.
- [224] K. Heil, A. C. Kneuttinger, S. Schneider, U. Lischke, T. Carell, *Chemistry* **2011**, *17*, 9651-9657. *Crystal structures and repair studies reveal the identity and the base-pairing properties of the UV-induced spore photoproduct DNA lesion.*
- [225] T. Douki, B. Setlow, P. Setlow, Photochem. Photobiol. 2005, 81, 163-169. Effects of the binding of alpha/beta-type small, acid-soluble spore proteins on the photochemistry of DNA in spores of Bacillus subtilis and in vitro.
- [226] F. R. de Gruijl, H. J. van Kranen, L. H. Mullenders, J. Photochem. Photobiol. B
 2001, 63, 19-27. UV-induced DNA damage, repair, mutations and oncogenic pathways in skin cancer.
- [227] M. R. Hussein, J. Cutan. Pathol. **2005**, 32, 191-205. Ultraviolet radiation and skin cancer: molecular mechanisms.
- [228] H. L. Lo, S. Nakajima, L. Ma, B. Walter, A. Yasui, D. W. Ethell, L. B. Owen, BMC Cancer 2005, 5, 135. Differential biologic effects of CPD and 6-4PP UVinduced DNA damage on the induction of apoptosis and cell-cycle arrest.
- [229] H. S. Black, F. R. deGruijl, P. D. Forbes, J. E. Cleaver, H. N. Ananthaswamy,
 E. C. deFabo, S. E. Ullrich, R. M. Tyrrell, *J. Photochem. Photobiol. B* 1997, 40,
 29-47. *Photocarcinogenesis: an overview.*

- [230] A. Sancar, *Adv. Protein Chem.* **2004**, 69, 73-100. *Photolyase and cryptochrome blue-light photoreceptors*.
- [231] L. H. Mullenders, A. van Hoffen, M. P. Vreeswijk, H. J. Ruven, H. Vrieling, A. A. van Zeeland, *Rec. Res. Canc. Res.* 1997, 143, 89-99. Ultraviolet-induced photolesions: repair and mutagenesis.
- [232] Z. Palomera-Sanchez, M. Zurita, *DNA Repair* **2011**, *10*, 119-125. *Open, repair and close again: chromatin dynamics and the response to UV-induced DNA damage*.
- [233] N. Tuteja, R. Tuteja, *Crit. Rev. Biochem. Mol. Biol.* **2001**, 36, 261-290. Unraveling DNA repair in human: molecular mechanisms and consequences of repair defect.
- [234] H. Park, K. Zhang, Y. Ren, S. Nadji, N. Sinha, J. S. Taylor, C. Kang, Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 15965-15970. Crystal structure of a DNA decamer containing a cis-syn thymine dimer.
- [235] A. Sancar, F. W. Smith, G. B. Sancar, *J. Biol. Chem.* **1984**, 259, 6028-6032. *Purification of Escherichia coli DNA photolyase*.
- [236] G. B. Sancar, F. W. Smith, M. C. Lorence, C. S. Rupert, A. Sancar, J. Biol. Chem. 1984, 259, 6033-6038. Sequences of the Escherichia coli photolyase gene and protein.
- [237] G. B. Sancar, Nucleic Acids Res. **1985**, 13, 8231-8246. Sequence of the Saccharomyces cerevisiae PHR1 gene and homology of the PHR1 photolyase to *E.* coli photolyase.
- [238] S. Weber, *Biochim. Biophys. Acta.* **2005**, 1707, 1-23. *Light-driven enzymatic catalysis of DNA repair: a review of recent biophysical studies on photolyase.*
- [239] N. Ozturk, Y. T. Kao, C. P. Selby, I. H. Kavakli, C. L. Partch, D. Zhong, A. Sancar, *Biochemistry* 2008, 47, 10255-10261. *Purification and characterization of a type III photolyase from Caulobacter crescentus.*
- [240] T. Todo, H. Takemori, H. Ryo, M. Ihara, T. Matsunaga, O. Nikaido, K. Sato, T. Nomura, Nature 1993, 361, 371-374. A New Photoreactivating Enzyme That Specifically Repairs Ultraviolet Light-Induced (6-4)Photoproducts.

- [241] X. Zhao, D. Mu, *Histol. Histopathol.* **1998**, *13*, 1179-1182. *(6-4) photolyase: light-dependent repair of DNA damage*.
- [242] J. J. Chen, D. L. Mitchell, A. B. Britt, *Plant Cell* **1994**, *6*, 1311-1317. *A Light-Dependent Pathway for the Elimination of UV-Induced Pyrimidine (6-4) Pyrimidinone Photoproducts in Arabidopsis.*
- [243] K. Hitomi, S. T. Kim, S. Iwai, N. Harima, E. Otoshi, M. Ikenaga, T. Todo, J. Biol. Chem. 1997, 272, 32591-32598. Binding and catalytic properties of Xenopus (6-4) photolyase.
- [244] S. T. Kim, K. Malhotra, J. S. Taylor, A. Sancar, *Photochem. Photobiol.* 1996,
 63, 292-295. *Purification and partial characterization of (6-4) photoproduct* DNA photolyase from Xenopus laevis.
- [245] S. Nakajima, et al., *Nucleic Acids Res.* **1998**, 26, 638-644. Cloning and characterization of a gene (UVR3) required for photorepair of 6-4 photoproducts in Arabidopsis thaliana.
- [246] J. L. Johnson, S. Hammalvarez, G. Payne, G. B. Sancar, K. V. Rajagopalan,
 A. Sancar, *Proc. Natl. Acad. Sci. U. S. A.* **1988**, *85*, 2046-2050. *Identification of the 2nd Chromophore of Escherichia-Coli and Yeast DNA Photolyases as 5,10-Methenyltetrahydrofolate*.
- [247] M. S. Jorns, B. Y. Wang, S. P. Jordan, L. P. Chanderkar, *Biochemistry* 1990, 29, 552-561. *Chromophore Function and Interaction in Escherichia-Coli DNA Photolyase Reconstitution of the Apoenzyme with Pterin and or Flavin Derivatives*.
- [248] R. Kort, H. Komori, S. Adachi, K. Miki, A. Eker, Acta Crystallogr. D 2004, 60, 1205-1213. DNA apophotolyase from Anacystis nidulans: 1.8 angstrom structure, 8-HDF reconstitution and X-ray-induced FAD reduction.
- [249] T. Todo, S. T. Kim, K. Hitomi, E. Otoshi, T. Inui, H. Morioka, H. Kobayashi, E. Ohtsuka, H. Toh, M. Ikenaga, *Nucleic Acids Res.* **1997**, *25*, 764-768. *Flavin adenine dinucleotide as a chromophore of the Xenopus (6-4)photolyase.*
- [250] G. Payne, A. Sancar, *Biochemistry* **1990**, 29, 7715-7727. *Absolute action spectrum of E-FADH2 and E-FADH2-MTHF forms of Escherichia coli DNA photolyase*.

- [251] S. Asgatay, C. Petermann, D. Harakat, D. Guillaume, J. S. Taylor, P. Clivio, J. Am. Chem. Soc. 2008, 130, 12618-12619. Evidence that the (6-4) photolyase mechanism can proceed through an oxetane intermediate.
- [252] S. K. Matus, J. L. Fourrey, P. Clivio, *Org. Biomol. Chem.* **2003**, *1*, 3316-3320. Synthesis of the TT pyrimidine (6-4) pyrimidone photoproduct-thio analogue phosphoramidite building block.
- [253] X. Zhao, J. Liu, D. S. Hsu, S. Zhao, J. S. Taylor, A. Sancar, J. Biol. Chem.
 1997, 272, 32580-32590. Reaction mechanism of (6-4) photolyase.
- [254] M. K. Cichon, S. Arnold, T. Carell, Angew. Chem. Int. Ed. 2002, 41, 767-770. A (6-4) photolyase model: repair of DNA (6-4) lesions requires a reduced and deprotonated flavin.
- [255] J. Yamamoto, K. Hitomi, R. Hayashi, E. D. Getzoff, S. Iwai, *Biochemistry* 2009, 48, 9306-9312. *Role of the carbonyl group of the (6-4) photoproduct in the (6-4) photolyase reaction.*
- [256] K. Hitomi, H. Nakamura, S. T. Kim, T. Mizukoshi, T. Ishikawa, S. Iwai, T. Todo, *J. Biol. Chem.* 2001, 276, 10103-10109. *Role of two histidines in the (6-4) photolyase reaction.*
- [257] J. Yamamoto, K. Hitomi, T. Todo, S. Iwai, Nucleic Acids Res. 2006, 34, 4406-4415. Chemical synthesis of oligodeoxyribonucleotides containing the Dewar valence isomer of the (6-4) photoproduct and their use in (6-4) photolyase studies.
- [258] M. T. Reetz, D. Kahakaev, J. Sanchis, *Mol. Biosyst.* 2009, *5*, 115-122.
- [259] M. T. Reetz, D. Kahakeaw, J. Sanchis, *Mol. Biosyst.* **2009**, *5*, 115-122. Shedding light on the efficacy of laboratory evolution based on iterative saturation mutagenesis.
- [260] J. Sanchis, et al., *Appl. Microbiol. Biotechnol.* **2008**, *81*, 387-397. *Improved PCR method for the creation of saturation mutagenesis libraries in directed evolution: application to difficult-to-amplify templates.*

7 ABKÜRZUNGSVERZEICHNIS

(<i>h</i>)polŋ	(<i>humane</i>) Polymerase η
(Na ₂)EDTA	(Dinatrium-) Ethylendiamintetraessigsäure
A	Adenosin
a.u.	ohne Einheit
AaRS	Aminoacyl-tRNA Synthetase
abs.	absolut
add	auffüllen auf
AmpR	Ampicillin Resistenz
APS	Ammoniumpersulfat
BER	Basen Exzisionsreparatur (base excision repair)
BSA	Bovines Serumalbumin
C	Cytosin
C	Kohlenstoff
ca.	circa
CMR	Chloramphenicol Resistenz
CPD	Cyclobutanpyrimidin Dimer
CRY	Cryptochrom
CRY-DASH	Cryptochrom-Drosophila, Arabidopsis, Synechocystis, Human
CuAAC	Cu(I) katalysierte Alkin-Azid Cycloaddition
CV	Säulenvolumen (column volume)
Сус	N-ε-cyclopentyloxycarbonyl-L-lysin
dest.	destilliert
DNA	Desoxyribonukleinsäure (deoxyribonucleic acid)
dNTP	Desoxyribonukleintriphosphat
DSBR	Doppelstrangbruch-Reparatur (double strand break repair)
dsDNA	doppelsträngige DNA (double strand DNA)
DTT	Dithiotreithol
eGFP	enhanced green fluorescent protein
eq	Äquivalente
eYFP	enhanced yellow fluorescent protein
F ₀	7,8-Didemethyl-8-hydro-5-deazaflavin
FAD	Flavinadenindinukleotid

Fluo	Fluoreszein
FRET	Förster-Resonanzenergietransfers
fw	forward
g	Erdbeschleunigung
G	Guanosin
GInRS	Glutaminyl-tRNA Synthetase
НА	Hydroxylamin
HRP	Meerrettichperoxidase (horse radish peroxidase)
IPTG	Isopropyl-β-thiogalactopyranosid
ISM	Iterative Saturierungsmutagenese
LB	lysogeny broth
MALDI	Matrix Assisted Laser Desorption/Ionization
MMR	Falschpaarungs-Reparatur (mismatch repair)
mRNA	Boten-Ribonukleinsäure (messenger Ribonucleic acid)
MS	Massenspektrum
MtbB	Dimethylamin-Methyltransferase
MTHF	5,10-Methenyltetrahydrofolylpolyglutamat
MtmB	Monomethylamin-Methyltransferase
MttB	Trimethylamin-Methyltransferase
mut	mutiert
MW	Molekulargewicht (molecular weight)
Ν	Stickstoff
NADH	Nicotinamidadenindinukleotid
NCS	N-Chlorosuccinimid
NER	Nukleotid-Exzisionsreparatur (nucleotide excision repair)
Norb	Norbornen
NorRS	Norb-Lysyl-tRNA Synthetase
OD	optische Dichte
PBS	Phosphatgepufferte Salzlösung (phosphate-buffered saline)
PBS-T	PBS mit <i>Tween</i> 20
PCM	polarizable continuum model
PCR	Polymerase-Kettenreaktion (polymerase chain reaction)
PDB	Protein-Datenbank (protein database)
PEG	Polyethylenglycol
pGLN	GInRS-Promoter

Роік	Polymerase κ
proK	Lys-tRNA-Promoter
PSTK	O-Phosphoseryl-tRNA Kinase
PTM	Posttranslationale Modifikation
pTRP	Tryptophan-Promoter
Pyl	Pyrrolysin
PyIRS	pyrrolysyl-tRNA Synthetase
PyIT	Pyl-tRNA
RF	release Faktor
RNA	Ribonukleinsäure (<i>Ribonucleic acid</i>)
RP-HPLC	Reverse Phase High Performance Liquid Chromatography
rv	reverse
SASP	small acid soluble proteins
SDS	Natriumdodecylsulfat (Sodiumdodecylsulfate)
PAGE	Polyacrylamid-Gelelektrophorese
Sec	Selenocystein
SECIS	selenocysteine insertion element
SepSecS	Sep-tRNA:Sec-tRNA Synthase
SerRS	Seryl-tRNA-Synthetase
SSBR	Einzelstrangbruch-Reparatur (single strand break repair)
ssDNA	einzelsträngige DNA (single strand DNA)
Т	Thymidin
TAE	Tris-Acetat-EDTA
ТВ	terrific broth
ТВТА	Tris[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]amin
terK	Lysyl-tRNA-Terminator
tRNA	transfer RNA
U	Uracyl
UAA	unnatürliche Aminosäure
ÜN	über Nacht
UV	ultraviolett
wt	Wildtyp
λ_{Abs}	Absorptions-Wellelänge
λ_{Em}	Emmissions-Wellenlänge
λ_{max}	Wellenlänge bei maximaler Absorption

8 ANHANG

Tabelle 8.1: Übersicht	der gefundenen	Peptidmassen	([M+H] ⁺) nac	ch der	Click-Reaktion	von
3 mut-YFP mit den Zuck	eraziden 6-9 und	deren Artefakt-	-Wahrscheinl	ichkeit	(min. p-Wert).	

Protein	Peptidsequenz	[M+H] ⁺	min. p-Wert
eYFP	R.AEVKFEGDTLVNRIELK.G	1961,07	5,40x10 ⁻⁰⁵
	R.AEVKFEGDTLVNR.I	1477,76	7,88x10 ⁻⁰²
1 mut	R.AEVK*FEGDTLVNR.I	1559,77	2,28x10 ⁻¹¹
	K.TRAEVK*FEGDTLVNR.I	1816,92	8,20x10 ⁻¹¹
1 mut ⁶	R.AEVK⁵FEGDTLVNR.I	1764,84	3,06x10 ⁻⁰⁶
1 mut ⁷	R.AEVK ⁷ FEGDTLVNR.I	1937,91	2,08x10 ⁻⁰³
1 mut ⁸	R.AEVK ⁸ FEGDTLVNR.I	1864,93	2,06x10 ⁻⁰⁶
	K.TRAEVK ⁸ FEGDTLVNR.I	2122,08	5,86x10 ⁻⁰²
1 mut ⁹	R.AEVK ⁹ FEGDTLVNR.I	1808,87	8,40x10 ⁻⁰⁵
3 mut	F.TGVVPILVELDGDVNGHK*F.S	2091,08	1,00x10 ⁻³⁰
	F.FKDDGNYKTRAEVK*F.E	1899,92	3,84x10 ⁻⁰⁵
	R.AEVK*FEGDTLVNR.I	1559,77	7,03x10 ⁻¹⁰
	K.GIDFK*EDGNILGHK.L	1624,80	3,52x10 ⁻¹²
3 mut ⁹	F.TGVVPILVELDGDVNGHK ⁹ F.S	2340,17	5,76x10 ⁻⁰⁵
	R.AEVK ⁹ FEGDTLVNR.I	1808,87	7,08x10 ⁻⁰⁴
	K.GIDFK ⁹ EDGNILGHK.L	1873,89	3,61x10 ⁻⁰²

Abbildung 8.1: MS/MS Spektrum des chympotryptisch erzeugten Peptids TGVVPILVELDGDVNGHK*F (K* = Position des Alkin-Lysins) aus 3 mut-YFP. Die tabellarische Aufstellung der Ionen-Serien aus der B- und Y-Fragmentierung ist unten dargestellt.

Abbildung 8.2: MS/MS Spektrum des tryptisch erzeugten Peptids GIDFK*EDGNILGHK (K* = Position des Alkin-Lysins) aus 3 mut-YFP. Die tabellarische Aufstellung der Ionen-Serien aus der B- und Y-Fragmentierung ist unten dargestellt.

Abbildung 8.3: MS/MS Spektrum des tryptisch erzeugten Peptids TGVVPILVELDGDVNGHK⁸F (K* = Position des Click-Produkts von Alkin-Lysin + 8) aus 3 mut-YFP. Die tabellarische Aufstellung der Ionen-Serien aus der B- und Y-Fragmentierung ist unten dargestellt.

Tabelle	8.2:	Ergebnisse	des	Expressions-Assays	mit	der	PyIRS	Tyr306NNK-Trp417NNK
Biblioth	ek in .	Anwesenheit	: von l	HA-Lysin.				

	1	2	3	4	5	6	7	8	9	10	11	12	V	1	2	3	4	5	6	7	8	9	10	11	12
Α	9	17	40	22	313	53	47	45	18	17	24	34	A	17	18	7	24	7	26	32	42	29	27	26	147
В	22	121	33	38	28	30	34	33	24	25	21	42	В	51	36	40	43	37	62	39	37	43	42	189	121
С	22	36	22	92	17	24	29	30	114	25	20	22	C	22	17	34	34	33	29	44	16	37	36	40	34
D	12	49	28	112	59	34	45	47	39	31	30	48	D	34	32	158	68	154	40	22	41	37	16	40	60
E	34	74	45	29	35	42	44	42	42	78	36	18	E	44	48	38	39	67	38	28	18	44	33	56	85
F	43	20	43	42	67	42	41	42	46	49	50	40	F	44	75	43	44	33	41	50	60	49	60	60	64
G	88	53	177	123	43	38	50	55	31	42	14	213	G	30	38	23	63	25	52	13	44	34	37	28	135
н	42	41	56	49	38	168	86	57	48	76	45	54	н	47	694	62	48	84	55	54	45	210	45	48	73
	1	2	3	4	5	6	7	8	9	10	11	12	V	1 1	2	3	4	5	6	7	8	9	10	11	12
Ä	23	23	28	42	23	36	26	30	40	35	42	38		19	26	26	28	29	31	32	28	36	31	66	72
H÷.	3.0	50	57	40	46	42	56	49	51	56	37	54		42	36	27	14	97	50	34	50	33	33	10.8	78
F	35	171	43	64	40	30	670	45	43	74	46	53		21	19	15	19	20	129	10	21	15	27	47	59
H	22	44	57	10.4	21	50	50	40	60	61	57	05	H	20	47	120	50	20	27	12	41	44	40	41	220
F	47	44	42	42	21	20	55	24	41	44	70	50	L L	20	20	22	25	20	20	25	21	20	25	40	47
F	41	50	52	40	41	14.0	55	54	526	57	07	42	-	44	40	23	27	10	241	25	45	41	<u>20</u> E1	40	41
F	40	50	52	40	60	25	51	27	1520	72	01	202		43	40	20	26	10	241	20	45	41	25	42	20
1	50	147	51	00	03	170	50	50	15	54	30	203		91	50	20	20	150	33	30	44	40	30	40	21
п	50	141	51	55	44	172	53	52	51	54	13	20	H	01	130	122	44	40	30	48	41	43	48	20	31
		<u> </u>	<u> </u>	4	5	6	7	0	<u> </u>	10		10		1.	<u> </u>	<u> </u>	6	L =	C .	-	<u> </u>	0	10	44	10
H-	1	2	3	4	5	6	(ð	9	10	11	12		1	2	3	4	5	6	(8	3	10	11	12
HA-	31	17	21	24	30	41	53	31	40	65	68	51		46	41	45	41	38	47	32	42	46	47	35	43
B	97	415	111	78	111	91	104	106	91	10.4	79	99		36	35	144	49	33	51	26	78	50	45	39	108
C	38	284	22	23	26	39	80	80	55	191	81	55		37	79	50	48	51	24	82	39	52	34	45	46
	47	51	62	54	124	48	54	117	96	56	110	53		84	324	55	47	45	52	57	55	36	53	50	38
E	34	24	56	40	40	60	55	67	65	336	92	55	E	34	39	46	48	39	24	45	87	37	47	44	58
F	64	56	60	64	56	59	161	63	60	76	69	46	F	50	325	51	43	212	408	55	62	42	50	48	35
G	53	44	111	42	24	38	48	67	43	97	56	208	G	40	49	36	39	37	45	41	186	43	41	184	51
Н	60	48	103	60	62	61	61	94	72	57	72	44	Н	305	43	61	45	49	96	54	50	48	60	40	41
	<u> </u>				-		-											-		-					
IV	1	2	3	4	5	6	7	8	9	10	11	12	X	1	2	3	4	5	6	7	8	9	10	11	12
IV A	1 19	2 19	3 20	4	5 20	6 22	7	8 263	9 30	10 21	11 119	12 18	X	1 92	2 291	3 36	4	5 42	6 38	7 45	8 39	9 42	10 34	11 75	12 44
IV A B	1 19 22	2 19 36	3 20 19	4 14 46	5 20 22	6 22 17	7 17 11	8 263 19	9 30 27	10 21 30	11 119 27	12 18 29	A	1 92 97	2 291 50	3 36 127	4 27 56	5 42 54	6 38 49	7 45 50	8 39 49	9 42 32	10 34 51	11 75 24	12 44 66
IV A B C	1 19 22 24	2 19 36 19	3 20 19 15	4 14 46 21	5 20 22 13	6 22 17 17	7 17 11 5	8 263 19 25	9 30 27 20	10 21 30 18	11 119 27 28	12 18 29 33	A B C	1 92 97 68	2 291 50 324	3 36 127 34	4 27 56 30	5 42 54 32	6 38 49 43	7 45 50 42	8 39 49 26	9 42 32 43	10 34 51 47	11 75 24 35	12 44 66 42
IV A B C D	1 19 22 24 71	2 19 36 19 180	3 20 19 15 83	4 14 46 21 252	5 20 22 13 97	6 22 17 17 74	7 17 11 5 18	8 263 19 25 201	9 30 27 20 16	10 21 30 18 69	11 119 27 28 22	12 18 29 33 37	A B C	1 92 97 68 54	2 291 50 324 83	3 36 127 34 48	4 27 56 30 58	5 42 54 32 151	6 38 49 43 49	7 45 50 42 48	8 39 49 26 50	9 42 32 43 50	10 34 51 47 53	11 75 24 35 674	12 44 66 42 40
IV A B C D E	1 19 22 24 71 27	2 19 36 19 180 49	3 20 19 15 83 23	4 14 46 21 252 102	5 20 22 13 97 23	6 22 17 17 74 67	7 17 11 5 18 23	8 263 19 25 201 27	9 30 27 20 16 29	10 21 30 18 69 30	11 119 27 28 22 33	12 18 29 33 37 31	A B C D E	1 92 97 68 54 25	2 291 50 324 83 36	3 36 127 34 48 41	4 27 56 30 58 32	5 42 54 32 151 28	6 38 49 43 49 70	7 45 50 42 48 179	8 39 49 26 50 104	9 42 32 43 50 29	10 34 51 47 53 40	11 75 24 35 674 49	12 44 66 42 40 33
IV A B C D E F	1 19 22 24 71 27 18	2 19 36 19 180 49 24	3 20 19 15 83 23 27	4 14 46 21 252 102 26	5 20 22 13 97 23 26	6 22 17 17 74 67 82	7 17 11 5 18 23 20	8 263 19 25 201 27 25	9 30 27 20 16 29 96	10 21 30 18 69 30 32	11 119 27 28 22 33 53	12 18 29 33 37 31 32	A B C D E F	1 92 97 68 54 25 77	2 291 50 324 83 36 100	3 36 127 34 48 41 52	4 27 56 30 58 32 78	5 42 54 32 151 28 37	6 38 49 43 49 70 77	7 45 50 42 48 179 48	8 39 49 26 50 104 22	9 42 32 43 50 29 48	10 34 51 47 53 40 51	11 75 24 35 674 49 55	12 44 66 42 40 33 50
IV A B C D E F G	1 19 22 24 71 27 18 28	2 19 36 19 180 49 24 24	3 20 19 15 83 23 27 24	4 14 46 21 252 102 26 16	5 20 22 13 97 23 26 24	6 22 17 17 74 67 82 27	7 17 11 5 18 23 20 23	8 263 19 25 201 27 25 31	9 30 27 20 16 29 96 93	10 21 30 18 69 30 32 34	11 119 27 28 22 33 53 29	12 18 29 33 37 31 32 172	A B C D E F G	1 92 97 68 54 25 77 206	2 291 50 324 83 36 100 48	3 36 127 34 48 41 52 208	4 27 56 30 58 32 78 40	5 42 54 32 151 28 37 45	6 38 49 43 49 70 77 41	7 45 50 42 48 179 48 61	8 39 49 26 50 104 22 21	9 42 32 43 50 29 48 44	10 34 51 47 53 40 51 45	11 75 24 35 674 49 55 684	12 44 66 42 40 33 50 205
IV A B C D E F G H	1 19 22 24 71 27 18 28 21	2 19 36 19 180 49 24 24 59	3 20 19 15 83 23 27 24 30	4 14 46 21 252 102 26 16 120	5 20 22 13 97 23 26 24 33	6 22 17 17 74 67 82 27 36	7 17 11 5 18 23 20 23 40	8 263 19 25 201 27 25 31 36	9 30 27 20 16 29 96 93 42	10 21 30 18 69 30 32 34 53	11 119 27 28 22 33 53 53 29 158	12 18 29 33 37 31 32 172 47		1 92 97 68 54 25 77 206 43	2 291 50 324 83 36 100 48 50	3 36 127 34 48 41 52 208 58	4 27 56 30 58 32 78 40 52	5 42 54 32 151 28 37 45 47	6 38 49 43 49 70 77 41 58	7 50 42 48 179 48 61 56	8 39 49 26 50 104 22 21 48	9 42 32 43 50 29 48 44 59	10 34 51 47 53 40 51 45 49	11 75 24 35 674 49 55 684 56	12 44 66 42 40 33 50 205 50
IV A B C D E F G H	1 19 22 24 71 27 18 28 21	2 19 36 19 180 49 24 24 59	3 20 19 15 83 23 27 24 30	4 14 46 21 252 102 26 16 120	5 20 22 13 97 23 26 24 33	6 22 17 17 74 67 82 27 36	7 17 11 5 18 23 20 23 40	8 263 19 25 201 27 25 31 36	9 30 27 20 16 29 96 93 42	10 21 30 18 69 30 32 34 53	11 119 27 28 22 33 53 29 158	12 18 29 33 37 31 32 172 47	A B C D E F G H	1 92 97 68 54 25 77 206 43	2 291 50 324 83 36 100 48 50	3 36 127 34 48 41 52 208 58	4 27 56 30 58 32 78 40 52	5 42 54 32 151 28 37 45 47	6 38 49 43 49 70 77 41 58	7 45 50 42 48 179 48 61 56	8 39 26 50 104 22 21 48	9 42 32 43 50 29 48 44 59	10 34 51 47 53 40 51 45 49	11 75 24 35 674 49 55 684 56	12 44 66 42 33 50 205 50
IV A B C D E F G H	1 19 22 24 71 27 18 28 21	2 19 36 19 180 49 24 24 24 59	3 20 19 15 83 23 27 24 30	4 14 46 21 252 102 26 16 120 4	5 20 22 13 97 23 26 24 33	6 22 17 17 74 67 82 27 36	7 17 11 5 18 23 20 23 40 7	8 263 19 25 201 27 25 31 36 8	9 30 27 20 16 29 96 93 42 9	10 21 30 18 69 30 32 34 53	11 119 27 28 22 33 53 29 158 11	12 18 29 33 37 31 32 172 47	X A B C C D C F G H	1 92 97 68 54 25 77 206 43	2 291 50 324 83 36 100 48 50 2	3 36 127 34 48 41 52 208 58 3	4 27 56 30 58 32 78 40 52 4	5 42 54 32 151 28 37 45 47 5	6 38 49 43 49 70 77 41 58 6	7 45 50 42 48 179 48 61 56 7	8 39 49 26 50 104 22 21 48 8	9 42 32 43 50 29 48 44 59 9	10 34 51 47 53 40 51 45 49 10	11 75 24 35 674 49 55 684 56 11	12 44 66 42 40 33 50 205 50 12
IV A B C D E F G H	1 19 22 24 71 27 18 28 21 21 19	2 19 36 19 180 49 24 24 59 24 59 2 16	3 20 19 15 83 23 27 24 30 3 12	4 14 46 21 252 102 26 16 120 4 4	5 20 22 13 97 23 26 24 33 5 5 15	6 22 17 17 74 67 82 27 36 6 52	7 17 11 5 18 23 20 23 40 7 19	8 263 19 25 201 27 25 31 36 36 8 63	9 27 20 16 29 96 93 42 9 16	10 21 30 18 69 30 32 34 53 10 17	11 119 27 28 22 33 53 29 158 11 24	12 18 29 33 37 31 32 172 47 12 20	X A B C D E E F G H X A	1 92 97 68 54 25 77 206 43 1 88	2 291 50 324 83 36 100 48 50 2 187	3 36 127 34 48 41 52 208 58 58 3 63	4 27 56 30 58 32 78 40 52 40 52 4	5 42 54 32 151 28 37 45 47 5 47	6 38 49 43 49 70 77 41 58 6 26	7 45 50 42 48 179 48 61 56 7 44	8 39 49 26 50 104 22 21 48 8 8 47	9 42 32 43 50 29 48 44 59 9 271	10 34 51 47 53 40 51 45 49 10 54	11 75 24 35 674 49 55 684 56 11 60	12 44 66 42 40 33 50 205 50 12 41
	1 19 22 24 71 27 18 28 21 1 19 25	2 19 36 19 180 49 24 24 59 24 59 24 59 24 59 2 16 35	3 20 19 15 83 23 27 24 30 3 12 32	4 14 46 21 252 102 26 16 120 4 4 37	5 20 22 13 97 23 26 24 33 5 5 15 37	6 22 17 74 67 82 27 36 6 52 46	7 17 11 5 18 23 20 23 40 7 19 19	8 263 19 25 201 27 25 31 36 36 8 63 28	9 20 16 29 96 93 42 9 16 34	10 21 30 18 69 30 32 34 53 10 17 34	11 119 27 28 22 33 53 29 158 1158 11 24 30	12 18 29 33 37 31 32 172 47 12 20 36	X A B C D E F G H X A B	1 92 97 68 54 25 77 206 43 1 88 51	2 291 50 324 83 36 100 48 50 2 187 39	3 36 127 34 48 41 52 208 58 58 3 63 38	4 27 56 30 58 32 78 40 52 40 52 4 23 38	5 42 54 32 151 28 37 45 47 47 5 47 46	6 38 49 43 49 70 77 41 58 6 26 36	7 45 50 42 48 179 48 61 56 7 44 37	8 39 49 26 50 104 22 21 48 8 47 46	9 42 32 43 50 29 48 44 59 9 271 45	10 34 51 47 53 40 51 45 49 10 54 43	11 75 24 35 674 49 55 684 56 11 60 23	12 44 66 42 40 33 50 205 50 12 41 17
	1 19 22 24 71 27 18 28 21 1 19 25 53	2 19 36 19 49 24 24 59 2 16 35 72	3 20 19 15 83 23 27 24 30 3 12 32 1074	4 14 252 102 26 16 120 4 4 37 52	5 20 22 13 97 23 26 24 33 5 5 15 37 247	6 22 17 17 74 67 82 27 36 27 36 52 46 230	7 17 11 5 18 23 20 23 40 7 19 19 19 11	8 263 19 25 201 27 25 31 36 8 63 28 21	9 27 20 16 29 96 93 42 9 16 34 39	10 21 30 18 69 30 32 34 53 10 17 34 26	11 119 27 28 22 33 53 29 158 11 24 30 28	12 18 29 33 37 31 32 172 47 12 20 36 21	X A B C D E F G H X A B C	1 92 97 68 54 25 77 206 43 1 88 51 44	2 291 50 324 83 36 100 48 50 48 50 2 187 39 43	3 36 127 34 48 41 52 208 58 58 3 63 38 39	4 27 56 30 58 32 78 40 52 4 23 38 54	5 42 54 32 151 28 37 45 47 45 47 46 55	6 38 49 43 49 70 77 41 58 6 26 36 48	7 45 50 42 48 179 48 61 56 7 44 37 214	8 39 26 50 104 22 21 48 8 47 46 48	9 42 43 50 29 48 44 59 9 271 45 56	10 34 51 47 53 40 51 45 49 10 54 43 56	11 75 24 35 674 49 55 684 56 684 56 11 60 23 45	12 44 66 42 40 33 50 205 50 12 41 17 40
	1 19 22 24 71 27 18 28 21 1 19 25 53 19	2 19 36 19 180 49 24 24 59 24 59 2 16 35 72 30	3 20 19 15 83 23 27 24 30 3 12 32 1074 35	4 14 252 102 26 16 120 4 4 37 52 92	5 20 22 13 97 23 26 24 33 5 15 37 247 26	6 22 17 74 67 82 27 36 6 52 46 230 39	7 17 11 5 18 23 20 23 40 7 19 19 11 33	8 263 19 25 201 27 25 31 36 8 63 28 21 34	3 30 27 20 16 29 96 93 42 9 16 34 39 24	10 21 30 18 69 30 32 34 53 10 17 34 26 45	11 119 27 28 22 33 53 29 158 11 24 30 28 22	12 18 29 33 37 31 32 172 47 12 20 36 21 48	X A B C D E F G H X A B C D	1 92 97 68 54 25 77 206 43 1 88 51 44 44	2 291 50 324 83 36 100 48 50 48 50 2 187 39 43 43	3 36 127 34 48 41 52 208 58 58 3 63 38 39 46	4 27 56 30 58 32 78 40 52 4 23 38 54 38	5 42 54 32 151 28 37 45 47 45 5 47 46 55 123	6 38 49 43 70 77 41 58 6 26 36 48 38	7 45 50 42 48 179 48 61 56 7 44 37 214 39	8 39 26 50 104 22 21 48 8 47 46 48 43	9 42 32 43 50 29 48 44 59 9 271 45 56 48	10 34 51 47 53 40 51 45 49 10 54 43 56 223	11 75 24 35 674 49 55 684 55 684 56 11 60 23 45 40	12 44 66 42 40 33 50 205 50 12 41 17 40 91
V A B C D E F G H V A B C D E	1 19 22 24 71 27 18 28 21 1 19 25 53 19 39	2 19 36 19 180 49 24 24 24 59 2 16 35 72 30 87	3 20 19 15 83 23 27 24 30 3 3 3 12 32 1074 35 31	4 14 46 21 252 26 16 120 4 4 37 52 92 24	5 20 22 13 97 23 26 24 33 5 15 37 247 26 8	6 22 17 17 74 67 82 27 36 52 46 230 39 30	7 17 11 5 18 23 20 23 40 7 19 19 11 33 22	8 263 19 25 201 27 25 31 36 8 63 28 21 34 32	9 30 27 20 16 29 96 93 42 9 34 39 34 39 24 58	10 21 30 18 69 30 32 34 53 10 17 34 26 45 36	11 119 27 28 22 33 53 29 158 11 24 30 28 22 39	12 18 29 33 37 31 32 172 47 12 20 36 21 48 47		1 92 97 68 54 25 77 206 43 1 88 51 44 46 307	2 291 50 324 83 36 100 48 50 2 187 39 43 43 43 21	3 36 127 34 48 41 52 208 58 58 38 38 39 46 53	4 27 56 30 58 32 78 40 52 4 23 38 54 38 39	5 42 54 32 151 28 37 45 47 45 47 46 55 123 53	6 38 49 43 70 77 41 58 6 26 36 48 38 43	7 45 50 42 48 61 56 7 44 37 214 39 53	8 39 49 26 50 104 22 21 48 8 47 46 48 43 57	9 42 32 43 50 29 48 44 59 9 271 45 56 48 40	10 34 51 47 53 40 51 45 49 10 54 43 56 2223 49	11 75 24 35 674 49 55 684 56 11 60 23 45 40 58	12 44 66 42 40 33 50 205 50 12 41 17 40 91 44
	1 19 22 24 71 27 18 28 21 19 25 53 19 39 24	2 19 36 19 180 49 24 24 24 59 2 16 35 72 30 87 40	3 20 19 15 83 23 27 24 30 3 3 12 32 1074 35 31 73	4 14 46 21 252 26 16 120 4 4 4 37 52 92 24 60	5 20 22 13 97 23 26 24 33 5 5 5 5 5 5 5 5 7 7 247 26 8 32	6 22 17 17 74 67 82 27 36 52 46 230 39 30 125	7 17 11 5 18 23 20 23 40 7 19 19 19 11 33 22 32	8 263 19 25 201 27 25 31 36 8 63 28 21 34 32 37	9 30 27 20 16 93 93 42 9 16 34 39 24 58 32	10 21 30 18 69 30 32 34 53 10 17 34 26 45 36 55	11 119 27 28 22 33 53 29 158 11 24 30 28 22 39 36	12 18 29 33 37 31 32 172 47 12 20 36 21 48 47 47		1 92 97 68 54 25 77 206 43 1 88 51 44 46 307 57	2 291 50 324 83 36 100 48 50 2 187 39 43 43 43 21 88	3 36 127 34 48 41 52 208 58 3 63 38 38 39 46 53 48	4 27 56 30 58 32 78 40 52 4 23 38 54 38 39 51	5 42 54 32 151 28 37 45 47 45 47 46 55 123 53 69	6 38 49 43 49 70 77 41 58 6 26 36 48 38 43 53	7 45 50 42 48 61 56 7 44 37 214 39 53 71	8 39 49 26 50 104 22 21 48 8 48 48 43 57 47	9 42 32 43 50 29 48 44 59 271 45 56 48 40 47	10 34 51 47 53 40 51 45 49 10 54 43 56 223 49 48	11 75 24 35 6674 49 55 684 56 11 60 23 45 40 58 43	12 44 66 42 40 33 50 205 50 12 41 17 40 91 44 52
	1 19 22 24 71 27 18 28 21 1 19 25 53 19 39 24 57	2 19 36 19 180 49 24 24 59 24 59 2 18 35 72 30 87 40 27	3 20 19 15 83 23 27 24 30 3 12 32 1074 35 31 73 31	4 14 252 26 16 120 4 4 37 52 24 60 38	5 20 22 13 97 23 26 24 33 5 15 37 247 26 8 32 34	6 22 17 17 74 67 82 27 36 52 46 230 39 30 125 29	7 17 11 5 18 23 20 23 40 7 19 19 19 11 33 22 32 32	8 263 19 25 201 27 25 31 36 8 63 28 63 28 28 21 34 32 37 39	9 30 27 20 16 93 42 9 16 34 39 24 58 32 63	10 21 30 18 69 30 32 34 53 10 17 34 26 45 36 55 48	11 119 27 28 22 33 53 29 158 11 24 30 28 22 39 36 166	12 18 29 33 37 31 32 172 47 12 20 36 21 48 47 47 47 150		1 92 97 68 54 25 77 206 43 43 1 88 51 44 46 307 57 68	2 291 50 324 83 36 100 48 50 2 187 39 43 43 43 21 88 148	3 36 127 34 48 41 52 208 58 3 63 38 39 46 53 48 362	4 27 56 30 58 32 78 40 52 4 23 38 38 39 51 41	5 42 54 32 151 28 37 45 47 46 55 53 69 45	6 38 49 43 49 70 77 41 58 6 26 36 48 38 43 53 61	7 45 50 42 48 61 56 7 44 37 214 39 53 71 40	8 39 26 50 104 22 21 48 8 47 46 48 43 57 47 31	9 42 32 43 50 29 48 44 59 271 45 56 48 40 47 309	10 34 51 47 53 40 51 45 49 10 54 43 56 223 49 48 57	11 75 24 35 674 49 55 684 49 55 684 49 56 11 60 23 45 40 58 43 60	12 44 66 42 40 33 50 205 50 12 41 17 40 91 44 52 63
	1 19 22 24 71 27 18 28 21 1 19 25 53 19 39 24 57 43	2 19 36 19 180 49 24 24 59 2 16 35 72 30 87 40 27 28	3 20 19 15 83 23 27 24 30 31 32 31 73 31 57	4 14 46 21 252 26 16 120 4 4 4 37 52 92 24 60 38 144	5 20 22 13 97 23 26 24 33 5 15 37 247 26 8 32 34 33	6 22 17 17 74 67 82 27 36 52 46 230 39 30 125 29 47	7 17 11 5 18 23 20 23 40 7 19 19 11 33 22 32 32 32 43	8 263 19 25 201 27 25 31 36 8 63 28 21 34 32 37 39 39	9 30 27 20 16 93 42 93 42 9 16 34 39 24 58 32 63 43	10 21 30 18 69 30 32 34 53 10 17 34 26 45 36 55 48 50	11 119 27 28 22 33 53 29 158 11 24 30 28 22 39 36 166 24	12 18 29 33 37 31 32 172 47 12 20 36 21 48 47 47 47 150 49		1 92 97 68 54 25 77 77 206 43 43 1 88 51 44 46 50 50	2 291 50 324 83 36 100 48 50 2 187 39 43 43 43 21 88 148 48	3 36 127 34 48 41 52 208 58 38 38 38 39 46 53 48 362 42	4 27 56 30 58 32 78 40 52 4 23 38 54 38 39 51 41 49	5 42 54 32 151 28 37 45 47 46 55 53 69 45 38	6 38 49 43 49 70 77 41 58 6 26 36 48 38 43 53 61 35	7 45 50 42 48 61 56 7 44 37 214 39 53 71 40 43	8 39 26 50 104 22 21 48 8 47 46 48 43 57 47 31 34	9 42 32 43 50 29 48 44 59 9 271 45 56 48 40 47 309 46	10 34 51 47 53 40 51 45 49 10 54 43 56 223 49 48 57 46	11 75 24 35 674 49 55 684 56 11 60 23 45 40 58 43 60 45	12 44 66 42 40 33 50 205 50 12 41 17 40 91 44 52 63 31
	1 19 22 24 71 27 18 28 21 1 9 25 53 19 39 24 57 43	2 19 36 19 24 24 59 2 16 35 72 30 87 40 27 28	3 20 19 15 83 23 27 24 30 3 12 32 1074 35 31 73 31 57	4 14 46 21 252 26 16 120 4 4 37 52 92 24 60 38 144	5 20 22 13 97 23 26 24 33 5 15 37 247 26 8 32 34 33	6 22 17 17 74 67 82 27 36 52 46 230 39 30 125 29 47	7 17 11 5 18 23 20 23 40 7 19 19 11 33 22 32 32 32 43	8 263 19 25 201 27 25 31 36 8 63 28 21 34 32 37 39 39 39	9 30 27 20 16 93 42 9 16 34 39 24 58 32 63 43	10 21 30 18 69 30 32 34 53 10 17 34 26 45 36 55 48 50	11 119 27 28 22 33 53 29 158 11 24 30 28 22 39 36 166 24	12 18 29 33 37 31 32 172 47 12 20 36 21 48 47 47 150 49		1 92 97 68 54 25 77 77 206 43 43 1 88 51 44 46 50 50	2 2911 50 324 83 36 100 48 50 2 187 39 43 43 43 43 43 43 43 43	3 36 127 34 48 41 52 208 58 3 63 38 39 46 53 48 39 46 53 48 362 42	4 27 56 30 58 32 78 40 52 4 23 38 51 41 49	5 42 54 32 151 28 37 45 47 45 47 46 55 123 53 69 45 38	6 38 49 43 49 70 77 41 58 6 26 36 48 38 43 53 61 35	7 45 50 42 48 61 56 7 44 37 214 39 53 71 40 43	8 39 26 50 104 22 21 48 8 47 46 48 43 57 47 31 34	9 42 32 43 50 29 48 44 59 9 271 45 56 48 40 47 309 46	10 34 51 47 53 40 51 45 49 10 54 43 56 223 49 48 57 46	11 75 24 35 674 49 55 684 56 11 60 23 45 40 58 43 60 45	12 44 66 42 40 33 50 205 50 12 41 17 40 91 44 52 63 31
	1 19 22 24 71 27 18 28 21 19 25 53 19 39 24 57 43	2 19 36 19 180 49 24 24 59 2 16 35 72 30 87 40 27 28 2	3 20 19 15 83 23 27 24 30 3 12 32 1074 35 31 73 31 57 31	4 14 252 102 26 16 120 4 4 4 37 52 92 24 60 38 144 4	5 20 22 13 97 23 26 24 33 5 15 37 247 26 8 32 34 33 5 5 5 5 5 5 5 5 5 5 5 5 5	6 22 17 74 67 82 27 36 52 46 52 46 230 39 30 125 29 47 6	7 17 11 5 18 23 20 23 40 7 19 19 19 19 11 33 22 32 32 32 43 7	8 263 19 25 201 27 25 31 36 8 63 28 21 34 32 37 39 39 8 8	9 30 27 20 16 93 42 9 16 34 39 24 58 32 63 43 43	10 21 30 18 69 32 34 53 10 17 34 26 45 36 55 48 50 10 10	11 119 27 28 22 33 53 29 158 11 24 30 28 22 39 36 166 24 11	12 18 29 33 37 31 32 172 47 12 20 36 21 48 47 47 150 49 12		1 92 97 68 54 25 77 206 43 43 1 88 51 44 46 50 50	2 291 50 324 83 36 100 83 50 2 187 39 43 43 43 21 88 148 48 148 2	3 36 127 34 48 41 52 208 58 3 63 38 38 39 46 53 48 362 42 3	4 27 56 30 58 32 78 40 52 4 23 38 54 38 54 38 39 51 41 49 4	5 42 54 32 151 28 37 45 47 46 55 123 53 69 45 38 5	6 38 49 43 49 70 77 41 58 6 26 36 48 38 43 53 61 35 6	7 45 50 42 48 61 56 7 44 37 214 39 53 71 40 43 7	8 39 26 50 104 22 21 48 8 47 46 48 43 57 47 31 34 8	9 42 32 43 50 29 48 44 59 271 45 56 48 40 47 309 46 9 3	10 34 51 47 53 40 51 45 49 10 54 43 56 223 49 48 57 46 10	11 75 24 35 674 49 55 684 56 11 60 23 45 40 58 43 60 45 11	12 44 66 42 205 50 12 41 17 40 91 44 52 63 31
	1 19 22 24 71 27 18 28 21 1 19 25 53 19 39 24 57 43 1 30	2 19 36 19 24 24 59 2 16 35 72 30 87 40 27 28 2 38	3 20 19 15 83 27 24 30 3 12 32 1074 35 31 73 31 57 3 3 24	4 14 252 102 26 16 120 4 4 4 37 52 92 24 60 38 144 4 69	5 20 22 13 37 23 26 24 33 5 15 37 247 26 8 32 34 33 5 27	6 22 17 74 67 82 27 36 52 46 52 46 230 39 30 125 29 47 6 17	7 17 11 5 18 23 20 23 40 7 19 19 11 33 22 32 32 32 43 7 12	8 263 19 25 201 27 25 31 36 8 63 28 21 34 32 37 39 39 39 8 130	9 30 27 20 16 9 34 34 34 34 34 34 34 34 34 34 34 34 32 63 43 9 24 58 32 63 43	10 21 30 89 30 32 34 53 10 17 34 26 45 36 55 48 50 10 13	11 119 27 28 22 33 53 29 158 11 24 30 28 22 39 36 166 24 11 102	12 18 29 33 37 31 32 172 47 12 20 36 21 48 47 47 150 49 12 22		1 92 97 68 54 25 77 206 43 1 88 51 44 46 51 57 68 50 77 68 50	2 2911 50 3244 83 36 100 48 50 2 187 39 43 43 43 21 88 148 48 22 25	3 36 127 34 48 41 52 208 58 58 3 63 38 39 46 53 48 39 46 53 48 362 42 3 26	4 27 56 30 58 32 78 40 52 4 23 38 54 38 54 38 39 51 41 49 4 26	5 42 54 32 151 28 37 45 47 47 46 55 53 63 45 38 5 33	6 38 49 43 49 70 77 77 77 41 58 6 36 36 36 38 38 43 53 61 35 6 10	7 45 50 42 48 61 56 7 44 37 214 39 53 71 40 43 7 41	8 39 26 50 104 22 21 48 43 57 46 48 43 57 47 31 34 8 22	9 42 32 43 50 29 48 44 59 271 45 56 48 40 47 309 46 9 25	10 34 51 47 53 40 51 54 49 10 54 43 56 223 49 48 57 46 10 23	11 75 24 35 674 49 55 684 56 684 56 11 60 23 45 40 58 43 60 45 11 24	12 44 66 42 205 50 12 41 17 40 91 44 52 63 31 12 24
	1 19 22 24 71 27 18 28 21 1 19 25 53 19 39 24 57 43 1 30 31	2 19 36 19 180 49 24 24 59 2 16 35 72 2 87 40 27 28 87 40 27 28 50	3 20 19 15 83 23 27 24 30 3 12 32 1074 35 31 73 31 57 3 3 24 46	4 14 21 252 26 102 102 102 102 102 102 102 102 102 102	5 20 22 13 37 26 24 33 5 15 37 247 26 8 32 34 33 5 5 27 488	6 22 17 17 74 67 82 27 36 52 46 52 46 230 39 30 125 29 47 6 17 29	7 17 11 5 23 20 23 40 7 19 19 19 19 11 33 22 32 32 32 32 43 7 12 34	8 263 19 25 27 25 31 36 63 28 21 34 32 31 34 32 37 39 39 8 130 86	9 30 27 20 16 9 34 34 34 34 39 24 58 32 63 43 9 24 58 32 63 43 10	10 21 30 18 63 32 34 53 10 17 34 26 45 36 55 48 50 10 13 35	11 119 27 28 22 33 53 29 158 11 24 30 28 22 39 36 166 24 11 102 23	12 18 29 33 37 172 47 12 20 36 21 48 47 47 150 49 12 22 24		1 92 97 68 54 25 77 206 43 1 88 51 1 88 51 44 44 46 50 50 1 1 29 45	2 291 50 324 83 36 100 48 50 2 187 39 43 43 43 21 8 8 43 43 21 8 8 8 8 8 8 8 8 8 2 25 31	3 36 127 34 48 41 52 208 58 3 63 38 39 46 53 38 39 46 53 38 39 42 42 33 26 33	4 27 56 30 58 32 78 40 52 4 23 38 54 38 39 51 41 49 4 26 55	5 42 54 32 151 28 37 45 47 47 46 55 123 53 63 45 38 5 33 20	6 38 49 70 77 41 58 6 26 36 36 48 38 43 35 35 6 10 29	7 45 50 42 48 61 56 7 44 37 214 39 53 71 40 43 7 41 26	8 39 26 50 104 22 21 48 8 47 46 48 43 57 47 31 34 8 22 27	9 42 32 43 50 29 48 44 59 271 45 56 48 40 47 309 46 9 25 153	10 34 51 47 53 40 51 45 49 10 54 43 56 223 49 48 57 46 10 23 185	11 75 24 35 674 49 55 684 56 11 60 23 45 40 58 43 60 45 58 43 60 45 11 24 45	12 44 66 42 33 50 205 50 12 41 17 40 91 17 40 91 17 40 91 17 40 91 17 40 91 17 40 91 17 40 91 12 44 44 22 50 50 50 50 50 50 50 50 50 50 50 50 50
	1 19 22 24 71 27 18 28 21 1 19 25 53 19 24 57 43 1 30 31 37	2 19 36 19 180 49 24 24 59 2 16 35 72 30 87 40 27 28 2 38 50 45	3 20 19 15 83 23 27 24 30 3 12 32 1074 35 7 31 57 3 3 1 57 3 24 46 44	4 14 21 252 26 16 120 4 4 37 52 92 24 60 38 144 4 69 38 25	5 20 22 13 97 23 26 24 33 5 15 37 247 26 8 32 34 33 33 5 5 27 488 36	6 22 17 17 67 82 27 36 52 46 52 46 230 39 30 125 29 47 6 17 29 36	7 17 11 5 18 23 20 23 40 7 19 19 19 11 33 22 32 32 43 7 12 34 36	8 263 19 25 201 27 36 63 28 21 34 32 34 32 37 39 39 39 8 130 86 28	9 30 27 20 16 99 96 93 42 9 16 34 39 24 58 32 63 43 43 9 23 10 34	10 21 30 32 34 53 10 17 34 26 45 55 55 55 50 10 13 35 30	11 119 27 28 22 33 53 29 158 11 24 30 28 22 39 36 166 24 24 11 102 23 26	12 18 29 33 37 31 32 172 47 12 20 36 21 48 47 47 150 49 12 22 24 29		1 92 97 68 54 25 77 206 43 1 88 51 44 46 51 50 50 1 1 29 45 31	2 291 50 324 83 36 100 48 50 2 187 39 43 43 43 21 88 8 43 43 21 848 48 225 31 33	3 36 127 34 48 41 52 208 58 3 63 38 39 46 53 38 39 46 53 38 39 46 53 38 39 42 42 42 42 42 42 43 44 52 58 58 58 58 58 58 58 58 58 58	4 27 56 30 58 32 78 40 52 4 23 38 54 39 51 41 49 41 49 55 127	5 42 54 32 151 28 37 45 47 45 55 123 53 53 38 5 33 20 14	6 38 49 70 77 41 58 6 26 36 48 36 48 36 43 53 53 6 10 29 14	7 45 50 42 48 179 48 61 56 7 44 37 214 39 53 7 1 40 43 7 41 26 51	8 39 266 50 104 22 21 48 43 47 46 48 43 57 47 31 34 8 22 27 13	9 42 32 43 50 29 48 44 59 271 45 56 48 40 47 309 46 9 25 153 44	10 34 51 47 53 40 51 45 49 10 54 43 56 223 49 48 57 46 10 23 185 32	11 75 24 35 674 49 55 684 55 684 56 11 60 23 45 40 58 45 40 45 8 32	12 44 66 42 33 50 205 50 12 41 17 40 91 17 40 91 17 40 91 17 40 91 17 40 91 12 44 44 52 63 31 11 224 22 9
	1 19 22 24 71 27 18 28 21 1 19 25 53 19 24 57 43 1 30 31 37 39	2 19 36 19 180 49 24 24 59 2 16 35 72 30 87 72 30 87 40 27 28 87 40 27 28 50 45 50	3 20 19 15 83 23 27 24 30 3 12 32 1074 35 57 3 1 57 3 3 24 46 44 50	4 14 21 252 26 16 120 4 4 37 52 92 24 60 38 144 4 69 38 25 24	5 20 22 13 97 23 26 24 33 5 15 37 247 26 8 32 34 33 33 5 27 488 36 41	6 22 17 17 67 82 27 36 52 46 230 39 30 125 29 47 6 17 29 36 35	7 17 11 5 23 20 23 40 7 19 19 11 33 22 32 32 43 7 12 34 36 38	8 263 19 25 201 27 25 31 36 63 28 21 34 32 37 39 39 8 130 86 28 23 22 22 22 20 27 25 201 27 25 201 27 25 201 27 25 201 27 25 201 27 25 201 27 25 201 201 201 201 201 201 201 201	9 30 27 20 16 93 42 9 16 34 39 24 58 32 63 43 43 9 23 10 34 41	10 21 30 32 34 53 10 17 34 26 45 36 55 55 48 50 10 13 35 30 30	11 119 27 28 22 33 53 29 158 11 24 30 28 22 39 36 166 24 11 102 23 26 58	12 18 29 33 37 31 32 47 12 20 36 21 48 47 47 150 49 12 22 24 29 78		1 92 97 68 54 25 77 2066 43 51 44 466 50 50 1 1 29 45 307 57 68 50 1 29 45 31 32 32 32 32 32 32 37 32 37 37 32 37 37 37 37 37 37 37 37 37 37	2 291 50 324 83 36 100 48 50 2 187 39 43 43 43 21 88 81 84 84 8 48 225 31 33 229	3 36 127 34 48 41 52 208 58 3 8 38 39 46 53 46 53 46 53 46 53 42 42 3 26 33 27 17	4 27 56 30 58 32 78 40 52 4 23 38 54 38 54 39 51 41 49 4 26 55 127 51	5 42 54 32 151 28 37 45 47 45 47 46 55 123 53 69 45 38 5 33 20 14 21	6 38 49 70 77 41 58 6 26 36 48 38 43 53 6 10 29 14 35	7 45 50 42 48 179 48 61 56 7 44 37 214 39 53 71 40 43 7 41 26 51 45	8 39 49 26 50 104 22 21 48 48 47 46 48 43 57 47 31 34 8 22 27 13 47	9 42 32 43 50 29 48 44 59 271 45 56 48 40 47 309 46 9 25 153 44 34	10 34 51 47 53 40 51 45 49 48 57 49 48 57 46 10 223 185 32 41	11 75 24 35 674 49 55 684 55 684 56 11 60 23 45 40 58 45 40 45 58 40 45 51 40 58 45 40 45 53 37	12 44 66 42 33 50 205 50 12 41 17 40 91 17 40 91 17 40 91 17 40 91 17 23 31 12 24 32 29 46
	1 19 22 24 71 27 18 28 21 1 19 25 53 19 24 53 19 24 53 19 24 53 19 24 53 19 39 24 43 1 30 31 37 39 33 33	2 19 36 19 180 49 24 24 59 2 18 35 72 30 87 40 27 28 87 40 27 28 50 50 39	3 20 19 15 83 23 27 24 30 3 12 32 1074 35 31 57 3 3 31 57 3 24 46 44 50 32	4 14 252 102 26 16 120 4 4 37 52 92 24 60 38 144 4 69 38 25 24 13	5 20 22 13 97 23 26 24 33 5 15 37 247 26 8 32 33 33 5 5 27 488 36 41 31	6 22 17 74 67 82 27 36 52 46 230 39 30 125 29 47 47 6 17 29 36 35 37	7 17 11 5 18 23 20 23 40 7 19 19 19 19 19 11 33 22 32 32 32 32 32 32 32 32 32 33 33	8 263 19 25 201 27 31 36 63 28 21 34 32 39 39 39 8 130 86 28 21 34 32 37 39 39 39 39 8 8 8 8 8 8 8 8 8 8 8 8 8	9 30 27 20 16 93 42 9 16 34 39 24 58 32 63 43 43 9 23 10 34 41 39	10 21 30 32 34 53 10 17 34 26 45 36 55 55 8 8 50 10 13 35 30 30 53	11 119 27 28 22 33 53 29 158 11 24 30 28 22 39 36 166 24 11 102 23 26 58 38	12 18 29 33 37 31 32 172 47 12 20 36 21 48 47 47 150 49 12 22 24 29 78 27		1 92 97 68 54 25 77 2066 43 1 1 88 51 44 46 51 50 50 50 1 1 29 45 31 32 25	2 291 50 324 83 36 100 48 50 2 187 39 43 43 21 88 148 48 148 225 31 33 29 39	3 36 127 34 48 41 52 208 58 38 39 46 53 46 53 48 26 33 27 17 24	4 27 56 30 58 32 78 40 52 4 23 38 54 39 51 41 49 4 26 55 127 51 23	5 42 54 32 151 28 37 45 47 45 47 45 55 123 53 63 45 53 83 8 5 33 20 14 21 22	6 38 49 43 70 77 77 41 58 6 26 36 48 38 43 53 6 10 29 14 35 34	7 45 50 42 48 61 56 7 44 37 214 39 53 71 40 43 7 41 26 51 45 35	8 39 49 26 50 104 22 21 48 48 47 46 48 43 57 47 31 34 8 22 27 13 47 29	9 42 32 43 50 29 48 44 59 271 45 56 48 40 47 309 46 9 25 153 44 34 27	10 34 51 47 53 40 51 45 49 48 57 49 48 57 46 10 23 185 32 41 26	11 75 24 35 674 49 55 684 55 684 56 11 60 23 45 40 58 43 60 45 58 43 60 45 58 43 60 45 58 43 60 45 57 41 32 37 13	12 44 66 42 33 50 205 50 12 41 17 40 91 44 52 63 31 12 24 24 229 46 47
	1 19 22 24 71 27 18 28 21 1 19 25 53 19 39 24 57 43 1 30 31 37 39 33 69	2 19 36 19 180 49 24 24 59 2 16 35 72 30 87 40 27 28 50 45 50 39 62	3 20 19 15 83 23 27 24 30 3 12 32 1074 35 31 73 31 57 3 3 24 46 44 50 32 49	4 14 21 252 102 26 16 120 4 4 4 37 52 92 24 60 38 144 4 69 38 25 24 13 50	5 20 22 13 97 23 26 24 33 35 5 5 5 7 247 26 8 32 34 33 35 5 27 488 36 41 31 31 43	6 22 17 74 67 82 27 36 52 46 230 39 30 125 29 47 6 17 29 47 6 17 29 36 35 37 62	7 17 18 23 20 23 40 7 19 19 11 33 22 32 32 32 32 32 32 32 32	8 263 19 25 201 27 25 31 36 63 28 21 34 32 39 39 39 8 130 8 8 8 21 34 32 37 39 39 8 8 23 39 8 8 8 24 37 39 39 8 8 8 8 24 37 39 39 8 8 8 8 8 8 8 8 8 8 8 8 8	9 30 27 20 16 93 42 9 34 29 63 34 39 24 58 32 63 34 32 63 31 0 34 41 39 55	10 21 30 18 69 32 34 53 10 17 34 26 45 36 55 48 50 10 13 35 30 53 48	11 119 27 28 22 33 29 158 11 24 30 28 22 39 36 166 24 11 102 23 26 58 38 49	12 18 23 33 37 31 32 172 47 12 20 36 21 48 47 47 150 49 12 22 24 29 78 27 54		1 92 97 68 54 25 77 2066 43 51 44 46 50 50 1 1 29 50 1 1 29 50 1 32 25 33	2 291 50 324 83 36 50 48 50 2 187 39 43 43 43 43 21 88 148 48 148 225 31 33 29 39 31	3 36 127 34 48 41 52 208 58 3 63 38 39 46 53 38 39 46 53 38 39 46 53 32 42 42 326 33 27 17 24 227 227 227 227 227 227 227	4 27 56 30 58 32 78 40 52 4 23 38 54 38 39 51 41 49 4 26 55 51 127 51 23 30 30 55 55 55 55 55 55 55 55 55 5	5 42 54 32 151 28 37 45 47 45 55 123 53 69 45 38 5 33 20 14 21 22 27	6 38 49 43 70 77 41 58 6 26 36 43 53 61 29 10 29 14 43 35 34 45	7 45 50 42 48 179 48 61 56 7 44 37 214 39 53 71 40 43 71 40 43 71 40 43 51 51 51 53 53 53 53 53 53 53 53 53 53	8 39 49 26 50 104 22 21 48 48 43 57 46 48 43 57 47 31 34 8 22 27 13 47 29 36	9 42 32 43 50 29 48 44 59 271 45 56 48 40 47 309 46 9 25 153 44 34 27 35	10 34 51 47 53 40 51 45 49 48 57 49 48 57 46 10 23 185 32 41 26 40	11 75 674 49 55 684 55 684 56 11 60 23 45 40 58 43 60 58 43 60 58 43 60 58 43 50 11 24 55 53 23 77 13 50	12 44 66 42 50 50 50 50 12 41 17 40 91 44 52 63 31 12 24 32 29 46 47 46
	1 19 22 24 71 27 18 28 21 1 19 25 53 19 39 24 57 43 1 30 31 37 33 69 70	2 19 36 19 180 49 24 24 59 2 16 35 72 30 87 40 27 28 87 40 27 28 50 50 39 62 35	3 20 19 15 83 23 27 24 30 31 32 1074 35 31 73 31 73 31 57 31 57 31 57 33 24 46 44 450 32 49 33	4 14 252 102 26 16 120 4 4 4 37 52 92 24 60 38 144 4 69 38 144 4 69 38 25 24 15 25 24 15 25 24 15 25 26 15 25 26 16 15 25 26 16 15 25 26 16 15 25 26 16 15 25 26 16 15 26 16 15 26 16 15 26 16 15 26 16 15 26 16 15 26 16 15 26 16 16 15 26 16 16 16 16 16 16 16 16 16 1	5 20 22 13 37 23 26 24 33 35 5 5 7 247 26 8 32 34 33 5 27 488 36 41 31 31 43 58	6 22 17 74 67 82 27 36 52 46 230 39 30 125 29 47 47 6 17 29 36 35 37 62 88	7 17 18 23 20 23 40 7 19 19 11 33 22 32 32 32 32 43 7 12 34 36 38 35 34 32	8 263 19 25 201 27 25 31 36 63 28 21 34 32 37 39 39 39 8 130 8 8 28 21 34 32 37 39 39 39 39 8 130 8 8 28 21 34 32 37 39 39 39 39 37 37 39 39 37 39 39 30 8 8 8 8 8 8 8 8 8 8 8 8 8	9 30 27 20 16 96 93 42 9 34 29 63 42 63 42 63 43 24 58 32 63 43 24 58 32 63 43 31 0 10 34 41 39 55 32	10 21 30 18 69 32 34 53 10 17 34 26 45 36 55 48 50 10 13 35 30 30 30 30 30 31 48 30 30 30 30 32 34 53 53 53 55 55 55 55 55 55 55	11 119 27 28 22 33 29 158 11 24 30 28 22 39 36 166 24 11 102 23 26 58 38 49 52	12 18 29 33 37 31 32 172 47 12 20 36 21 48 47 47 150 49 12 22 47 150 49 12 22 47 54 87 54 87		1 92 97 68 54 25 77 2066 43 1 1 88 51 44 46 307 57 68 50 1 1 1 29 50 1 1 29 50 43 30 1 29 50 43 1 1 1 1 1 1 1 1 1 1 1 1 1	2 291 50 324 83 36 100 48 50 2 187 39 43 43 43 21 88 148 43 21 88 148 225 31 33 229 33 31 21	3 36 127 34 48 41 52 208 58 3 63 38 39 46 53 38 39 46 53 48 362 42 326 33 27 17 24 27 27 22	4 27 56 30 58 32 78 40 52 4 23 38 54 38 39 51 41 49 41 49 4 26 55 127 51 23 30 29 29	5 42 54 32 151 28 37 45 47 46 55 123 53 69 45 38 5 33 20 14 21 22 27 25	6 38 49 43 70 77 77 41 58 6 26 36 48 38 43 53 61 35 61 35 61 35 61 35 10 29 14 45 27 14 58 58 58 58 58 58 58 58 58 58	7 45 50 42 48 61 179 48 61 56 7 44 37 214 39 53 71 40 43 71 40 43 71 40 43 51 51 53 53 71 40 53 53 53 53 53 53 53 53 53 53	8 39 49 26 50 104 22 21 48 48 43 57 46 48 43 57 47 31 34 8 22 27 13 47 29 36 26	9 42 32 43 50 29 48 44 59 271 45 56 48 40 47 309 46 47 309 46 3 30 3 44 40 25 56 48 40 47 309 46 25 25 25 3 50 27 27 27 27 27 27 27 27 27 27 27 27 27	10 34 51 47 53 40 51 45 49 10 54 43 56 223 49 48 57 46 10 23 185 32 41 26 40 32	11 75 24 35 674 49 55 684 55 684 56 11 60 23 45 40 58 43 60 45 58 43 60 45 11 24 53 23 77 13 50 23	12 44 66 42 50 205 50 12 41 17 40 91 44 52 63 31 12 24 32 29 46 47 46 83

A 42 39 40 39 42 135 136 19 130 431 51 38 B 27 53 21 39 42 135 154 38 53 43 51 38 C 24 42 30 43 37 51 54 38 53 43 47 85 C 24 42 30 43 37 26 36 40 32 41 35 35 D 35 51 50 32 48 46 44 331 117 66 42 54 E 36 36 37 22 29 20 22 30 23 21 31 32 43 31 116 77 D 35 51 50 32 48 44 331 117 66 42 54 33 31 45 58 57 F 38 36 56 42 24	31 28 23 24 24 46 51 60 116 77 25 63 148 33 16 7 58 57 42 6 29 146 49 37 44 28 32 135
A 42 33 40 33 42 133 136 131 336 131 132 43 31 20 B 27 53 21 39 73 51 54 38 53 43 47 85 B 23 29 30 25 29 67 51 58 24 46 C 24 42 30 43 37 26 36 40 32 41 35 35 C 28 30 22 27 37 39 491 31 116 77 D 35 51 50 32 48 46 44 331 117 66 42 54 D 41 95 12 31 101 39 44 42 148 33 E 36 36 37 22 30 29 78 29 19 E 39 29 48 40 46 33 31 45 58 57	31 20 23 24 24 46 51 60 116 77 25 63 148 33 16 7 58 57 42 6 29 146 49 37 44 28 32 135
B 27 53 21 53 23 53 21 53 51 54 38 53 43 47 85 C 24 42 30 43 37 26 36 40 32 41 35 35 C 28 30 25 23 67 51 56 24 46 D 35 51 50 32 48 46 44 321 117 66 42 54 D 41 95 12 31 101 39 44 42 148 33 E 36 36 37 22 29 20 22 30 29 19 E 39 29 48 40 46 33 31 45 58 57 F 38 36 56 42 24 40 34 44 115 44 33 F 53 52 56 49 31 52 49 53 29 146 </td <td>24 46 51 60 116 77 25 63 148 33 16 7 58 57 42 6 29 146 49 37 44 28 32 135</td>	24 46 51 60 116 77 25 63 148 33 16 7 58 57 42 6 29 146 49 37 44 28 32 135
C 24 42 30 43 37 26 36 40 32 41 35 35 C 28 30 22 27 37 39 491 31 116 77 D 35 51 50 32 48 46 44 331 117 66 42 54 D 41 95 12 31 101 39 44 42 148 33 E 36 36 37 22 29 20 22 30 29 78 29 19 E 39 29 48 40 46 33 31 45 58 57 F 38 36 56 42 24 40 34 44 115 44 33 F 53 52 56 49 31 52 49 53 29 146 G 383 35 22 125 23 32 110 95 28 23 28 117	116 77 25 63 148 33 16 7 58 57 42 6 29 146 49 37 44 28 32 135
D 35 51 50 32 48 46 44 331 117 66 42 54 D 41 95 12 31 101 39 44 42 148 33 E 36 36 37 22 29 20 22 30 29 78 29 19 E 39 29 48 40 46 33 31 45 58 57 F 38 36 56 42 24 40 34 43 44 115 44 33 F 53 52 56 49 31 52 49 53 29 146 G 383 35 22 125 23 32 110 95 28 23 28 117 G 30 35 31 38 47 23 36 39 44 28	148 33 16 7 58 57 42 6 29 146 49 37 44 28 32 135
E 36 36 37 22 29 20 22 30 29 78 29 19 E 39 29 48 40 46 33 31 45 58 57 F 38 36 56 42 24 40 34 43 44 115 44 33 F 53 52 56 49 31 52 49 53 23 146 G 483 35 22 125 29 32 110 95 28 23 28 117 G 30 35 31 38 47 23 36 39 44 28	58 57 42 6 29 146 49 37 44 28 32 135
F 38 36 56 42 24 40 34 43 44 115 44 33 F 53 52 56 49 31 52 49 53 29 146 G 483 35 22 125 29 32 110 95 28 23 28 117 G 30 35 31 38 47 23 36 39 44 28	29 146 49 37 44 28 32 135
G 483 35 22 125 29 32 110 95 28 23 28 117 G 30 35 31 38 47 23 36 39 44 28	44 28 32 135
H 46 40 43 44 55 28 49 41 223 50 32 72 H 34 38 40 61 57 85 35 42 30 50	30 50 58 48
II 1 2 3 4 5 6 7 8 9 10 11 12 VIII 1 2 3 4 5 6 7 8 9 10	9 10 11 12
A 30 47 37 25 28 36 29 78 20 33 36 146 A 37 35 35 36 46 36 47 43 39 55	39 55 44 70
B 44 54 48 68 55 44 28 447 47 48 56 46 B 47 57 53 56 40 49 53 61 47 47	47 47 58 169
D 56 52 54 49 155 53 59 46 59 39 58 63 D 29 65 51 59 79 61 48 62 90 55	42 50 31 80
E 46 80 40 48 97 46 36 43 52 50 51 51 E 49 70 45 53 42 44 94 45 54 38	42 50 31 80 30 55 63 44
F 68 65 39 173 55 81 62 86 89 66 57 49 F 64 180 52 38 56 63 61 136 58 177	42 50 31 80 90 55 63 44 54 38 20 51
	42 50 31 80 90 55 63 44 54 38 20 51 58 177 86 75
H 52 90 34 59 107 151 53 32 152 28 47 72 H 52 49 52 55 51 99 94 107 52 47 72	42 50 31 80 90 55 63 44 54 38 20 51 58 177 86 75 50 61 177 139
	42 50 31 80 90 55 63 44 54 38 20 51 58 177 86 75 60 61 177 139 47 70 39 50
	42 50 31 80 90 55 63 44 54 38 20 51 58 177 86 75 60 61 177 139 47 70 39 50
	42 50 31 80 90 55 63 44 54 38 20 51 58 177 86 75 60 61 177 139 47 70 39 50
III 1 2 3 4 5 6 7 8 9 10 11 12 IX 1 2 3 4 5 6 7 8 9 10	42 50 31 80 90 55 63 44 54 38 20 51 58 177 86 75 60 61 177 139 47 70 39 50 9 10 11 12
III 1 2 3 4 5 6 7 8 9 10 11 12 IX 1 2 3 4 5 6 7 8 9 10 11 12 IX 1 2 3 4 5 6 7 8 9 10 A 28 33 42 40 41 39 70 35 35 40 40 42 A 23 39 20 44 36 66 115 55 40 44 A 23 39 20 44 36 66 115 55 40 44	42 50 31 80 90 55 63 44 54 38 20 51 58 177 86 75 60 61 177 139 47 70 39 50 9 10 11 12 40 44 46 38
III 1 2 3 4 5 6 7 8 9 10 11 12 A 28 33 42 40 41 39 70 35 35 40 40 42 B 45 43 34 48 146 36 42 47 30 49 54 41 B 45 43 34 48 146 36 42 47 30 49 54 41 B 36 53 50 52 47 50 50 59 61 56	42 50 31 80 90 55 63 44 54 38 20 51 58 177 86 75 60 61 177 139 47 70 39 50 9 10 11 12 40 44 46 38 61 56 59 74
III 1 2 3 4 5 6 7 8 9 10 11 12 A 28 33 42 40 41 39 70 35 35 40 40 42 B 45 43 34 48 146 36 42 47 30 49 54 41 C 139 42 36 35 16 35 46 26 140 19 C 46 38 79 136 38 42 36 63 35 40 44 B 36 53 50 52 47 50 59 61 56 C 139 42 36 35 16 35 46 26 140 19 C 46 38 79 136 38 42 36 33 643 33	42 50 31 80 90 55 63 44 54 38 20 51 58 177 86 75 60 61 177 139 47 70 39 50 9 10 11 12 40 44 46 38 61 56 59 74 43 33 43 397
III 1 2 3 4 5 6 7 8 9 10 11 12 A 28 33 42 40 41 39 70 35 35 40 40 42 B 45 43 34 48 146 36 42 47 30 49 54 41 C 139 42 36 35 16 35 46 26 140 19 D 49 89 54 131 38 26 250 20 48 40 41 42	42 50 31 80 90 55 63 44 54 38 20 51 58 177 86 75 60 61 177 139 47 70 39 50 9 10 11 12 40 44 46 38 61 56 59 74 43 33 43 397 82 60 70 64
III 1 2 3 4 5 6 7 8 9 10 11 12 A 28 33 42 40 41 39 70 35 35 40 40 42 B 45 43 34 48 146 36 42 47 30 49 54 41 C 133 42 36 35 16 35 46 26 140 19 D 49 89 54 131 38 26 250 20 48 40 41 42 E 42 45 31 31 34 24 44 136 36 48 25 44	42 50 31 80 90 55 63 44 54 38 20 51 58 177 86 75 60 61 177 139 47 70 39 50 9 10 11 12 40 44 46 38 61 56 59 74 43 33 43 397 82 60 70 64 41 31 76 185
III 1 2 3 4 5 6 7 8 9 10 11 12 A 28 33 42 40 41 39 70 35 35 40 40 42 B 45 43 34 48 146 36 42 47 30 49 54 41 C 139 42 36 35 16 35 46 26 140 19 D 49 89 54 131 38 26 250 20 48 40 41 42 E 42 45 31 31 34 24 44 136 36 48 25 44 E 42 45 31 31 34 24 44 136 36 48 25 44 E 36 47 57 39 32 <t< td=""><td>42 50 31 80 90 55 63 44 54 38 20 51 58 177 86 75 60 61 177 139 47 70 39 50 9 10 11 12 40 44 46 38 61 56 59 74 43 33 43 397 82 60 70 64 41 31 76 165 45 167 51 50</td></t<>	42 50 31 80 90 55 63 44 54 38 20 51 58 177 86 75 60 61 177 139 47 70 39 50 9 10 11 12 40 44 46 38 61 56 59 74 43 33 43 397 82 60 70 64 41 31 76 165 45 167 51 50
III 1 2 3 4 5 6 7 8 9 10 11 12 A 28 33 42 40 41 39 70 35 35 40 40 42 B 45 43 34 48 146 36 42 47 30 49 54 41 C 139 42 36 35 16 35 46 26 140 19 C 46 38 79 136 38 42 36 643 33 D 49 89 54 131 38 26 250 20 48 40 41 42 E 42 45 31 31 34 24 44 136 36 48 25 44 B 36 53 50 51 50 39 51 43 84 42 36 33 643 33 D 49 89 50 <th< td=""><td>42 50 31 80 90 55 63 44 54 38 20 51 58 177 86 75 60 61 177 139 47 70 39 50 9 10 11 12 40 44 46 38 61 56 59 74 43 33 43 397 82 60 70 64 41 31 76 165 45 167 51 50 47 41 28 139</td></th<>	42 50 31 80 90 55 63 44 54 38 20 51 58 177 86 75 60 61 177 139 47 70 39 50 9 10 11 12 40 44 46 38 61 56 59 74 43 33 43 397 82 60 70 64 41 31 76 165 45 167 51 50 47 41 28 139
III 1 2 3 4 5 6 7 8 9 10 11 12 A 28 33 42 40 41 39 70 35 35 40 40 42 B 45 43 34 48 146 36 42 47 30 49 54 41 C 139 42 36 35 16 35 46 26 140 19 C 46 38 79 136 38 42 36 63 643 33 D 49 89 54 131 38 26 250 20 48 40 41 42 E 42 45 31 31 34 24 44 136 36 48 25 44 B 36 53 50 51 50 39 51 42 43 46 47 30 82 60 E 42 45	42 50 31 80 90 55 63 44 54 38 20 51 58 177 86 75 60 61 177 139 47 70 39 50 9 10 11 12 40 44 46 38 61 56 59 74 43 33 43 397 82 60 70 64 41 31 76 165 45 167 51 50 47 41 28 139 69 176 45 52
III 1 2 3 4 5 6 7 8 9 10 11 12 A 28 33 42 40 41 39 70 35 35 40 40 42 B 45 43 34 48 146 36 42 47 30 49 54 41 C 139 42 36 35 16 35 46 26 140 19 C 46 38 79 136 38 42 36 63 643 33 D 49 89 54 131 38 26 250 20 48 40 41 42 E 42 45 31 31 34 24 44 136 36 48 25 44 B 36 53 50 51 50 39 51 42 43 46 47 30 82 60 E 42 45	42 50 31 80 90 55 63 44 54 38 20 51 58 177 86 75 60 61 177 139 47 70 39 50 9 10 11 12 40 44 46 38 61 56 59 74 43 33 43 397 82 60 70 64 41 31 76 165 45 167 51 50 47 41 28 133 69 176 45 52
III 1 2 3 4 5 6 7 8 9 10 11 12 A 28 33 42 40 41 39 70 35 35 40 40 42 B 45 43 34 48 146 36 42 47 30 49 54 41 C 139 42 36 35 16 35 46 26 140 19 C 46 38 79 136 38 42 36 63 643 33 D 49 89 54 131 38 26 250 20 48 40 41 42 B 36 53 50 52 47 50 55 40 44 B 36 52 30 33 40 41 42 43 44 44 43 43 43 43 43 43 43 43 43 43 44 44 44	42 50 31 80 90 55 63 44 54 38 20 51 58 177 86 75 60 61 177 139 47 70 39 50 9 10 11 12 40 44 46 38 61 56 59 74 43 33 43 397 82 60 70 64 41 31 76 165 45 167 51 50 47 41 28 139 69 176 45 52 9 10 11 12
III 1 2 3 4 5 6 7 8 9 10 11 12 A 28 33 42 40 41 39 70 35 35 40 40 42 B 45 43 34 48 146 36 42 47 30 49 54 41 C 139 42 36 35 16 35 46 26 140 19 D 49 89 54 131 38 26 250 20 48 40 41 42 E 42 45 31 31 34 24 44 136 36 48 25 44 B 36 53 50 52 47 50 50 59 61 56 C 131 38 26 250 20 48 40 41 42 23 35 33 33 33 33 33 33 <th< td=""><td>42 50 31 80 90 55 63 44 54 38 20 51 58 177 86 75 60 61 177 139 47 70 39 50 9 10 11 12 40 44 46 38 61 56 59 74 443 33 43 397 82 60 70 64 41 31 76 165 45 167 51 50 47 41 28 139 59 176 45 52 9 10 11 12 43 44 31 33</td></th<>	42 50 31 80 90 55 63 44 54 38 20 51 58 177 86 75 60 61 177 139 47 70 39 50 9 10 11 12 40 44 46 38 61 56 59 74 443 33 43 397 82 60 70 64 41 31 76 165 45 167 51 50 47 41 28 139 59 176 45 52 9 10 11 12 43 44 31 33
III 1 2 3 4 5 6 7 8 9 10 11 12 A 28 33 42 40 41 39 70 35 35 40 40 42 B 45 43 34 48 146 36 42 47 30 49 54 41 C 139 42 36 35 16 35 46 26 140 19 D 49 89 54 131 38 26 250 20 48 40 41 42 E 42 45 31 31 24 44 136 36 48 25 44 F 51 52 306 54 40 50 51 50 39 51 45 74 6 38 79 32 45 6 7 8 9 10 K 1 2 3 4 56 71 50	42 50 31 80 90 55 63 44 54 38 20 51 58 177 86 75 60 61 177 139 47 70 39 50 9 10 11 12 40 44 46 38 61 56 59 74 43 33 43 397 82 60 70 64 41 31 76 165 45 167 51 50 9 10 11 12 49 44 28 139 69 176 45 52 9 10 11 12 43 44 31 33 54 40 51 388
III 1 2 3 4 5 6 7 8 9 10 11 12 A 28 33 42 40 41 39 70 35 35 40 40 42 B 45 43 34 48 146 36 42 47 30 49 54 41 C 139 42 36 35 16 35 46 26 140 19 D 49 89 54 131 38 26 250 20 48 40 41 42 E 42 45 31 31 34 24 44 136 36 48 25 44 F 51 52 306 54 40 50 51 50 39 51 45 74 6 78 8 9 10 G 28 39 60 56 30 46 41 44 38 43 123	42 50 31 80 90 55 63 44 54 38 20 51 58 177 86 75 60 61 177 139 47 70 39 50 9 10 11 12 40 44 46 38 61 56 59 74 43 33 43 397 82 60 70 64 41 31 76 165 47 10 11 12 49 14 31 36 69 176 45 52 9 10 11 12 49 44 31 33 54 40 51 388 47 50 28 28
III 1 2 3 4 5 6 7 8 9 10 11 12 A 28 33 42 40 41 39 70 35 35 40 40 42 B 45 43 34 48 146 36 42 47 30 49 54 41 C 133 42 36 35 16 35 46 26 140 19 D 49 89 54 131 38 26 250 20 48 40 41 42 E 42 45 31 31 34 24 44 136 36 48 25 44 F 51 52 306 54 40 50 51 50 39 51 45 74 6 38 51 101 45 46 54 48 54 131 38 62 19 39 50 17 113 <t< td=""><td>42 50 31 80 90 55 63 44 54 38 20 51 58 177 86 75 60 61 177 139 47 70 39 50 9 10 11 12 40 44 46 38 61 56 59 74 43 33 43 397 82 60 70 64 41 31 76 165 45 167 51 50 47 41 28 133 69 176 45 52 9 10 11 12 49 44 31 33 54 40 51 388 47 50 28 28 27 335 55 60 </td></t<>	42 50 31 80 90 55 63 44 54 38 20 51 58 177 86 75 60 61 177 139 47 70 39 50 9 10 11 12 40 44 46 38 61 56 59 74 43 33 43 397 82 60 70 64 41 31 76 165 45 167 51 50 47 41 28 133 69 176 45 52 9 10 11 12 49 44 31 33 54 40 51 388 47 50 28 28 27 335 55 60
III 1 2 3 4 5 6 7 8 9 10 11 12 A 28 33 42 40 41 39 70 35 35 40 40 42 B 45 43 34 48 146 36 42 47 30 49 54 41 C 133 42 36 35 16 35 46 26 140 19 D 49 89 54 131 38 26 250 20 48 40 41 42 E 42 45 31 31 34 24 44 136 36 48 25 44 F 51 52 306 54 40 50 51 50 39 51 45 74 6 38 51 101 45 46 54 48 54 45 167 G 28 39 33 23 <th< td=""><td>42 50 31 80 90 55 63 44 54 38 20 51 58 177 86 75 60 61 177 139 47 70 39 50 9 10 11 12 40 44 46 38 61 56 59 74 43 33 43 397 82 60 70 64 41 31 76 165 45 167 51 50 47 41 28 139 63 176 45 52 9 10 11 12 43 44 31 33 54 40 51 388 47 50 28 28 27 335 55 60 34 52</td></th<>	42 50 31 80 90 55 63 44 54 38 20 51 58 177 86 75 60 61 177 139 47 70 39 50 9 10 11 12 40 44 46 38 61 56 59 74 43 33 43 397 82 60 70 64 41 31 76 165 45 167 51 50 47 41 28 139 63 176 45 52 9 10 11 12 43 44 31 33 54 40 51 388 47 50 28 28 27 335 55 60 34 52
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	42 50 31 80 90 55 63 44 54 38 20 51 58 177 86 75 60 61 177 139 47 70 39 50 9 10 11 12 40 44 46 38 61 56 59 74 43 33 43 397 82 60 70 64 41 31 76 165 45 167 51 50 47 41 28 139 69 176 45 52 9 10 11 12 43 33 43 3397 69 176 45 52 9 10 11 12 43 33 43 333 54 40
III 1 2 3 4 5 6 7 8 9 10 11 12 A 28 33 42 40 41 39 70 35 35 40 40 42 B 45 43 34 48 146 36 42 47 30 49 54 41 C 133 42 36 35 128 35 16 35 46 26 140 19 D 43 89 54 131 38 26 250 20 48 40 41 42 E 42 45 31 31 34 24 44 136 36 48 25 44 F 51 52 306 54 40 50 51 50 39 51 45 74 G 28 39 80	42 50 31 80 90 55 63 44 54 38 20 51 58 177 86 75 60 61 177 139 47 70 39 50 9 10 11 12 40 44 46 38 61 56 59 74 43 33 43 397 82 60 70 64 41 31 76 165 45 167 51 50 47 41 28 133 69 176 45 52 9 10 11 12 49 44 31 33 54 40 51 388 47 50 28 28 27 335 55 60 34 52
III123456789101112A283342404139703535404042B4543344814636424730495441C139423635128351635462614019D49895413138262502048404142E4245313134244413636482544F5152306544050515039514574G28396056304641443843129128H539389332351475333794344H5359515241583249C127128444061644736413805828D55465458481331415762283846E4943324619672880411134849F2717357474549335044	42 50 31 80 90 55 63 44 54 38 20 51 58 177 86 75 60 61 177 139 47 70 39 50 9 10 11 12 40 44 46 38 61 56 59 74 43 33 43 397 82 60 70 64 41 31 76 165 45 167 51 50 47 41 28 133 69 176 45 52 9 10 11 12 49 44 31 33 54 40 51 388 47 50 28 28 27 335 55 60 34 52
III123456789101112A283342404139703535404042B4543344814636424730495441C139423635128351635462614019D49895413138262502048404142E4245313134244413636482544F5152306544050515039514574G28396056304641443843129128H5393325147533379434455IV123456789101112A19483344474413239335114554H53939351455241583249C127128444061644736413805828D5546545853615524158 <t< td=""><td>42 50 31 80 90 55 63 44 54 38 20 51 58 177 86 75 60 61 177 139 47 70 39 50 9 10 11 12 40 44 46 38 61 56 59 74 43 33 43 397 82 60 70 64 41 31 76 165 45 167 51 50 47 41 28 139 69 176 45 52 9 10 11 12 43 44 31 33 54 40 51 388 47 50 28 28 27 335 55 60 34 52</td></t<>	42 50 31 80 90 55 63 44 54 38 20 51 58 177 86 75 60 61 177 139 47 70 39 50 9 10 11 12 40 44 46 38 61 56 59 74 43 33 43 397 82 60 70 64 41 31 76 165 45 167 51 50 47 41 28 139 69 176 45 52 9 10 11 12 43 44 31 33 54 40 51 388 47 50 28 28 27 335 55 60 34 52
III 1 2 3 4 5 6 7 8 9 10 11 12 A 28 33 42 40 41 39 70 35 35 40 40 42 B 45 43 34 48 146 36 42 47 30 49 54 41 C 139 42 36 35 16 35 46 26 140 19 D 43 89 54 131 38 26 250 20 48 40 41 42 E 42 45 31 31 34 24 44 136 84 25 44 F 51 50 39 51 45 74 6 7 39 24 44 50 11 45 46 47 38 38 62 19 <t< td=""><td>42 50 31 80 90 55 63 44 54 38 20 51 58 177 86 75 60 61 177 139 47 70 39 50 9 10 11 12 40 44 46 38 61 56 59 74 43 33 43 397 82 60 70 64 41 31 76 165 45 167 51 50 47 41 28 139 69 176 45 52 9 10 11 12 43 44 31 33 54 40 51 388 47 50 28 28 27 335 55 60 34 52</td></t<>	42 50 31 80 90 55 63 44 54 38 20 51 58 177 86 75 60 61 177 139 47 70 39 50 9 10 11 12 40 44 46 38 61 56 59 74 43 33 43 397 82 60 70 64 41 31 76 165 45 167 51 50 47 41 28 139 69 176 45 52 9 10 11 12 43 44 31 33 54 40 51 388 47 50 28 28 27 335 55 60 34 52
III 1 2 3 4 5 6 7 8 9 10 11 12 A 28 33 42 40 41 39 70 35 35 40 40 42 B 45 43 34 48 146 36 42 47 30 49 54 41 C 133 42 36 35 128 35 16 35 46 26 140 19 D 48 50 131 38 26 250 20 48 40 41 42 E 42 45 31 31 24 44 136 36 48 25 44 F 52 306 54 40 50 51 43 31 24 44 38 31 23 51 45 74 6 38 51 45	42 50 31 80 90 55 63 44 54 38 20 51 58 177 86 75 60 61 177 139 47 70 39 50 9 10 11 12 40 44 46 38 61 56 59 74 43 33 43 397 82 60 70 64 41 31 76 165 45 167 51 50 47 41 28 139 69 176 45 52 9 10 11 12 49 44 31 33 54 40 51 388 47 50 28 28 27 335 55 60 34 52
III123456789101112A283342404139703535404042B4543344814636424730495441B4543344814636424730495441B4543344816636424730495441B36535052475050596156C139423635128351635462614019D49895413138262502048404142F5152306544050515039514574G28396056304641443843129128IW123456789101112A1948334447443832445547541395610569176IW123455789101112A52504738<	42 50 31 80 90 55 63 44 54 38 20 51 58 177 86 75 60 61 177 139 47 70 39 50 9 10 11 12 40 44 46 38 61 56 59 74 43 33 43 397 82 60 70 64 41 31 76 165 45 167 51 50 47 41 28 139 69 176 45 52 9 10 11 12 43 44 31 33 54 40 51 388 47 50 28 28 27 335 55 60 34 52
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	42 50 31 80 90 55 63 44 54 38 20 51 58 177 86 75 60 61 177 139 47 70 39 50 9 10 11 12 40 44 46 38 61 56 59 74 43 33 43 397 82 60 70 64 41 31 76 165 9 10 11 12 43 44 31 33 54 167 51 50 9 10 11 12 43 44 31 33 54 40 51 388 47 50 28 28 27 335 55 60 34 52 50
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	42 50 31 80 90 55 63 44 54 38 20 51 58 177 86 75 60 61 177 139 47 70 39 50 9 10 11 12 40 44 46 38 61 56 59 74 43 33 43 397 82 60 70 64 41 31 76 165 45 167 51 50 9 10 11 12 49 44 31 33 54 40 51 388 47 50 28 28 27 335 55 60 34 52 50 39 116 28 56 41 87 157
III123456789101112A283342404139703535404042B4543344814636424730495441C133423635126351635462614019D49895413138262502048404142E4245313134244413636482544F5152306544050515039514574G28396056304641443843129128H53338933235147533794344H5353545241583249C1712844061644738324577424749H484333335114514384457742474944H48433333511451444444444444444444444444444	42 50 31 80 90 55 63 44 54 38 20 51 58 177 86 75 60 61 177 139 47 70 39 50 9 10 11 12 40 44 46 38 61 56 59 74 43 33 43 397 82 60 70 64 41 31 76 165 45 167 51 50 47 40 51 388 54 40 51 388 47 50 28 28 27 335 55 60 34 52 50 39 316 28 56 41 37 157 60 146 52 53
III123456789101112A283342404133703535404042B4543344814636424730435441C133423635128351635462614019D43544141438625404443B3635128351635462614019D4850131548146473082E4245313134244413636482544F5152306544050515039514574G28336056304641443843129128IV123456789101112A193833379434450IV12345678910112345678910112345678910112<	42 50 31 80 90 55 63 44 54 38 20 51 58 177 86 75 60 61 177 139 47 70 39 50 9 10 11 12 40 44 46 38 81 56 59 74 43 33 43 397 82 60 70 64 41 31 76 165 45 167 51 50 47 41 28 139 69 176 45 52 9 10 11 12 49 44 31 33 54 40 51 388 47 50 28 28 27 335 55 60 34 52
III123456789101112A283342404133703535404042B4543344814636424730495441B4543344814636424730495441B43835413138262502048404142E4245313134244413636482544F5152306544050515039514574G28390051503951457473393245475041F5152306544050515039514574733932454741F533389332351475337334445011112A456789101112A456789101112A45461844736413805828IV123456<	42 50 31 80 90 55 63 44 54 38 20 51 58 177 86 75 60 61 177 139 47 70 39 50 9 10 11 12 40 44 46 38 61 56 59 74 43 33 43 397 82 60 70 64 41 31 76 165 45 167 51 50 47 41 28 133 69 176 45 52 9 10 11 12 49 44 31 33 54 40 51 388 47 50 28 28 27 335 55 60 34 52
III123456789101112A283342404133703535404042B4543344814636424730495441C139423635126351635462614019D49895413138262502048404142E4245313134244413636482544F5152306544050515039514574G28386056304641443843129128IV123456789101112A193344474413239335114552IV123456789101112A194444138361455449C1271284447441323935114549C12712844441383614554934B	42 50 31 80 90 55 63 44 54 38 20 51 58 177 86 75 60 61 177 139 47 70 39 50 9 10 11 12 40 44 46 38 61 56 59 74 43 33 43 397 82 60 70 64 41 31 76 165 45 167 51 50 47 41 28 133 69 176 45 52 9 10 11 12 49 44 31 33 54 40 51 388 47 50 28 28 27 335 55 60 34 52
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	42 50 31 80 90 55 63 44 54 38 20 51 58 177 86 75 60 61 177 139 47 70 39 50 9 10 11 12 40 44 46 38 61 56 59 74 43 33 43 397 82 60 70 64 41 31 76 165 45 167 51 50 47 41 28 139 69 176 45 52 9 10 11 12 49 44 31 33 54 40 51 388 47 50 28 28 27 335 55 60 34 52
III 1 2 3 4 5 6 7 8 9 10 11 12 A 28 33 42 40 41 39 70 35 35 40 40 42 B 45 43 34 48 146 36 42 47 30 49 54 41 B 36 53 50 52 47 50 55 50 40 44 B 36 53 50 52 47 50 51 55 40 44 B 36 54 131 38 26 250 20 48 40 41 42 44 54 45 45 15 G 28 33 60 56 30 46 41 43 84 123 13 124 44 55 131 54 45 <	42 50 31 80 90 55 63 44 54 38 20 51 58 177 86 75 60 61 177 139 47 70 39 50 9 10 11 12 40 44 46 38 61 56 59 74 43 33 43 397 82 60 70 64 41 31 76 165 45 167 51 50 47 41 28 139 69 176 45 52 9 10 11 12 43 40 51 388 47 50 28 28 27 335 55 60 34 52 59 48 9 10
III 1 2 3 4 5 6 7 8 9 10 11 12 A 28 33 42 40 41 39 70 35 35 40 40 42 B 45 43 34 48 146 36 42 47 30 49 54 41 C 133 42 36 35 126 35 163 54 13 38 24 28 36 131 38 24 28 36 36 36 36 36 36 36 36 36 36 36 36 36 42 36 36 44 36 44 36 44 36 44 36 44 36 44 36 44 36 44 36 44 36 44 36 44 36 44 36 44 36	42 50 31 80 90 55 63 44 54 38 20 51 58 177 86 75 60 61 177 139 47 70 39 50 9 10 11 12 40 44 46 38 61 56 59 74 43 33 43 397 82 60 70 64 41 31 76 165 45 167 51 50 47 41 28 133 54 40 51 388 47 50 28 28 27 335 55 60 34 52 50 39 16 28 56 41 87 157 60 146 62 53
III 1 2 3 4 5 6 7 8 9 10 11 12 A 28 33 42 40 41 39 70 35 35 40 40 42 B 45 43 34 46 146 36 42 47 30 49 54 41 B 45 43 34 46 146 36 42 47 30 49 54 41 18 36 53 50 52 47 50 50 53 64 33 64 33 36 33 313 54 51 52 47 50 35 64 50 131 54 81 45 166 47 80 10 11 12 48 50 145 44 164 47 38 45 177 42 47 50 47	42 50 31 80 90 55 63 44 54 38 20 51 58 177 86 75 60 61 177 139 47 70 39 50 9 10 11 12 40 44 46 38 61 56 59 74 43 33 43 397 82 60 70 64 41 31 76 165 45 167 51 50 47 41 28 139 69 176 45 52 9 10 11 12 43 40 51 388 47 50 28 28 27 335 55 60 34 52 59 48 9 10
III 1 2 3 4 5 6 7 8 9 10 11 12 A 28 33 42 40 41 33 70 35 35 40 40 42 B 45 43 34 48 146 36 42 47 30 49 54 41 B 45 43 34 48 146 36 42 47 30 49 54 41 B 45 43 34 48 131 38 26 250 20 44 40 41 42 44 38 50 51<	42 50 31 80 90 55 63 44 54 38 20 51 58 177 86 75 60 61 177 139 47 70 39 50 9 10 11 12 40 44 46 38 61 56 59 74 43 33 43 397 82 60 70 64 41 31 76 165 45 167 51 50 47 41 28 139 69 176 45 52 9 10 11 12 43 40 51 388 47 50 28 28 27 335 55 60 34 52 59 48 9 10
III 1 2 3 4 5 6 7 8 9 10 11 12 A 28 33 42 40 41 39 70 35 35 40 40 42 B 45 43 34 46 16 38 42 47 30 49 54 41 C 13 34 24 46 136 36 42 26 250 20 48 40 41 42 43 36 47 136 38 42 38 54 174 F 51 52 306 55 30 46 41 43 36 44 55 44 45 16 54 44 55 47 50 13 56 107 44 55 46 54 50 17 45 133 56 107 44 50	42 50 31 80 90 55 63 44 54 38 20 51 58 177 86 75 60 61 177 139 47 70 39 50 9 10 11 12 40 44 46 38 61 56 59 74 43 33 43 397 82 60 70 64 41 31 76 165 45 167 51 50 47 41 28 139 69 176 45 52 9 10 11 12 43 33 55 60 34 52 50 39 16 28 56 41 87 157 60 146 62 62
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	42 50 31 80 90 55 63 44 54 38 20 51 58 177 86 75 60 61 177 139 47 70 39 50 9 10 11 12 40 44 46 38 61 56 59 74 43 33 43 397 82 60 70 64 41 31 76 165 45 167 51 50 47 41 28 139 69 176 45 52 9 10 11 12 49 44 31 33 54 40 51 388 47 50 28 56 34 52 59 48 9 10 <
III 1 2 3 4 5 6 7 8 9 10 11 12 A 28 33 42 40 41 39 70 35 35 40 40 42 B 45 43 34 44 166 36 2 47 30 45 54 44 B 45 43 34 44 166 36 242 47 30 42 46 47 30 84 33 84 45	42 50 31 80 90 55 63 44 54 38 20 51 58 177 86 75 60 61 177 139 47 70 39 50 9 10 11 12 40 44 46 38 61 56 59 74 43 33 43 397 82 60 70 64 41 31 76 165 42 51 57 50 47 41 28 133 63 176 45 52 9 10 11 12 49 44 31 33 54 40 51 388 47 50 28 28 27 335 55 60 34 52
III 1 2 3 4 5 6 7 8 9 10 11 12 A 28 33 42 40 41 39 70 35 35 40 40 42 B 45 43 34 48 46 36 42 47 30 45 44 46 15 55 40 44 C 133 42 46 36 42 47 30 48 54 43 33 24 44 46 25 44 26 44 46 47 50 45 45 16 C 46 38 54 10 11 12 46 47 50 46 47 50 41 43 83 43 123 123 13 33 22 45 47 50 13 33 33 33 51 15 10 11 12 44 44 133 36 13 13 13<	42 50 31 80 90 55 63 44 54 38 20 51 58 177 86 75 60 61 177 139 47 70 39 50 9 10 11 12 40 44 46 38 61 56 59 74 43 33 43 397 82 60 70 64 41 31 76 165 45 167 51 50 47 41 28 133 69 176 45 52 9 10 11 12 49 44 31 33 54 40 51 388 47 50 28 28 27 335 55 60 34 52
III 1 2 3 4 5 6 7 8 9 10 11 12 A 28 33 42 40 41 39 70 35 35 40 40 42 B 45 43 34 48 46 35 50 52 40 44 B 45 43 34 44 66 15 55 40 44 B 45 33 44 54 44 45 54 44 56 7 8 9 10 H 43 84 43 40 41 42 45 41 44 43 43 123 123 123 123 123 124 44 44 132 133 145 141 142 142 143 45 67 7 8 9 10 11 123 44	42 50 31 80 90 55 63 44 54 38 20 51 58 177 86 75 60 61 177 139 47 70 39 50 9 10 11 12 40 44 46 38 61 56 59 74 43 33 43 397 82 60 70 64 41 31 76 165 45 167 51 50 47 41 28 139 63 176 45 52 3 10 11 12 49 44 31 33 54 40 51 388 47 50 28 28 27 335 55 60 34 52

Tabelle 8.3: Ergebnisse des Expressions-Assays mit der PyIRS Tyr306NNK-Trp417NNK Bibliothek in Anwesenheit von Norb-Lysin.

Tabelle 8.4: Ergebnisse des Expressions-Assays mit der PyIRS Val 401NNK-Ile405NNK Bibliothek in Anwesenheit von HA-Lysin.

	1	2	3	4	5	6	7	8	9	10	11	12	VII	1	2	3	4	5	6	7	8	9	10	11	12
Α	6	15	717	597	23	43	46	743	23	57	40	37	A	27	42	29	389	23	24	37	35	418	402	37	30
В	4	22	25	42	39	41	32	521	45	35	710	4,754	В	19	36	23	55	34	25	489	40	32	35	39	3,442
<u>L</u>	42	36	26	99	634	631	731	22	44	43	28	119	<u>c</u>	47	39	584	27	26	20	41	521	44	578	31	159
냳	161	36	39	649	558	47	46	45	44	42	34	127		515	316	587	42	49	289	38	38	54	134	371	135
F	45	43	642	599	20	30	33	50	37	45	22	03		32	970	55	492	92	91	29	49	45	20	122	32
F	31	20	552	35	599	44	683	43	19	43	46	607		37	532	10.8	32	588	45	44	25	24	42	39	553
Ь	5	34	661	36	41	32	42	128	44	45	53	596	н	35	41	42	548	28	39	41	38	37	26	620	545
	1	2	3	4	5	6	7	8	9	10	11	12	VIII	1	2	3	4	5	6	7	8	9	10	11	12
Α	19	23	21	10	7	44	12	55	17	26	377	206	A	7	8	8	9	10	8	90	334	27	44	30	339
В	524	43	50	44	445	30	9	582	424	307	36	24	В	6	7	11	9	7	11	10	43	46	439	38	31
C	32	483	47	13	37	40	9	42	26	322	45	72	C	10	8	7	7	8	11	47	110	431	36	483	26
┡	35	40	26	531	40	25	10	40	42	39	43	42		5	7	8	8	7	22	433	12	7	29	28	55
E	555	24	331	28	35	33	6	319	21	40	43	45		8	8	10	11	10	10	8	8	362	24	45	23
F	6	24	35	204	260	43	30	48	205	10	506	200	r G	0	6	5	0	7	3	10	10	3	31	430	22
片	10	7	23	286	46	36	38	24	26	28	22	37	н	10	6	11	10	8	7	9	6	7	502	39	34
	10		20	200	40	00	00	64	20	20	66			10			10						002	00	04
	1	2	3	4	5	6	7	8	9	10	11	12	IX	1	2	3	4	5	6	7	8	9	10	11	12
Α	74	20	30	4	5	578	35	623	556	37	530	35	A	393	6	168	1	340	72	11	18	78	118	32	421
В	23	16	18	31	28	36	878	25	566	38	36	22	В	40	52	483	20	99	22	17	31	34	253	34	495
С	35	536	395	45	173	560	23	29	383	19	127	40	С	29	34	2	30	511	20	527	20	36	150	22	355
	19	470	42	35	33	25	23	610	38	21	31	38	D	40	3	64	3	33	95	33	50	22	36	20	35
E	16	269	22	34	21	538	60	560	40	533	40	36	E	1	34	37	508	33	55	36	38	22	493	37	129
F	31	25	36	4	359	37	35	614	22	37	204	42	F	243	87	5	276	32	700	25	39	19	601	587	347
븝		100	34	34	21	491	25	10	21	553	42	236		2	2	17	31	13	92	67	29	21	34	20	125
	J	1400	L I ſ	0	31	11	23	10	53	34	43	11	п	3	2	11	4	2	040	01	20	31	30	401	135
IV	1	2	3	4	5	6	7	8	9	10	11	12	×	1	2	3	4	5	6	7	8	9	10	11	12
Α	37	33	35	348	49	24	34	38	50	84	35	31	A	497	19	36	55	35	28	528	38	37	316	37	33
В	502	38	25	47	43	530	46	25	33	42	233	40	В	33	468	33	21	568	384	31	39	4	63	39	40
С	616	21	54	26	22	283	42	48	44	27	148	46	С	450	32	35	19	33	513	39	38	516	39	603	599
D	36	36	109	529	24	449	25	550	44	30	345	38	D	32	504	443	37	19	534	512	34	20	31	198	21
E	22	33	426	39	28	38	39	579	6	58	34	529	E	465	37	24	72	456	19	533	22	86	37	40	45
H	460	46	58	36	10	4/4 E/9	24	57	28	356	135	23		440	36	29	371	33	42	25	10	41	41	498	225
造	25	38	45	64	23	20	38	39	38	318	459	20	н н	261	501	18	18	22	518	34	30	43	46	31	39
	20	00	40	04	20	20	00	00	00	010	400	20		201	1001	10	10		010	04	00	40	40	01	00
٧	1	2	3	4	5	6	7	8	9	10	11	12	XI	1	2	3	4	5	6	7	8	9	10	11	12
Α	19	29	23	27	38	31	20	60	31	21	404	36	A	39	6	390	264	540	24	443	37	30	21	32	519
В	68	29	23	37	612	525	596	26	39	35	49	31	В	5	8	47	27	26	35	40	22	31	34	24	36
C	31	57	39	37	34	25	39	83	24	618	36	38	C	33	7	35	22	459	32	25	45	22	22	45	22
냳	32	24	555	547	48	532	436	27	40	41	33	76		35	38	6	9	475	40	29	546	536	714	40	21
E	36	342	769	43	15	40	34	19	568	34	42	18		13	7	8	30	423	49	20	41	31	331	12	21
Hr.	34	305	23	40	36	38	37	574	36	525	16	572		8	E E	5	32	121	36	33	39	26	472	4.7.4	45
H H	23	36	23	61	46	35	39	527	35	280	23	35	н	6	6	10	33	33	35	33	508	44	502	52	437
VI	-	2	3	4	5	6	7	8	9	10	11	12	XII	1	2	3	4	5	6	7	8	9	10	11	12
	1							25	318	29	36	16	A	4	3	398	38	17	406	415	33	457	27	37	38
A	1 32	21	32	32	76	62	44	20	0.10	2.0		-			-					-		_			
AB	1 32 35	21 28	32 44	32 35	76 70	62 35	44 36	22	20	466	43	322	В	7	6	36	15	38	32	38	16	21	556	20	512
A B C	1 32 35 5	21 28 56	32 44 21	32 35 36	76 70 32	62 35 21	44 36 33	22	20	466	43 474	322 430	C	7 36	6 19	36	15 24	38 31	32	38 42	16 23	21 30	556 33	20 37	512 42
A B C D	1 32 35 5 6	21 28 56 571	32 44 21 24	32 35 36 70	76 70 32 43	62 35 21 33	44 36 33 34	22 23 247	20 36 97	466 423 209	43 474 38	322 430 47	D C	7 36 401	6 19 46	36 21 316	15 24 26	38 31 239	32 22 34	38 42 615	16 23 37	21 30 45	556 33 42	20 37 38	512 42 37
A B C D E	1 32 35 5 6 7	21 28 56 571 31	32 44 21 24 276	32 35 36 70 524	76 70 32 43 36	62 35 21 33 426	44 36 33 34 44	22 23 247 5	20 36 97 37	466 423 209 388	43 474 38 47	322 430 47 26		7 36 401 3	6 19 46 478	36 21 316 58	15 24 26 37	38 31 239 34	32 22 34 34	38 42 615 38	16 23 37 45	21 30 45 37	556 33 42 605	20 37 38 57	512 42 37 41
	1 32 35 5 6 7 7 7	21 28 56 571 31 39 39	32 44 21 24 276 33 31	32 35 36 70 524 35 27	76 70 32 43 36 25 26	62 35 21 33 426 399 67	44 36 33 34 44 29 40	22 23 247 5 67 40	20 36 97 37 37 32	466 423 209 388 21 21	43 474 38 47 20 481	322 430 47 26 43 25	D E C	7 36 401 3 36 32	6 19 46 478 33 29	36 21 316 58 505 350	15 24 26 37 534 33	38 31 239 34 30 578	32 22 34 34 34 34	38 42 615 38 44 534	16 23 37 45 43 18	21 30 45 37 39 328	556 33 42 605 562 40	20 37 38 57 579 40	512 42 37 41 42 561
A B C D E F G H	1 32 35 6 7 7 7 5 6	21 28 56 571 31 39 39 39	32 44 21 24 276 33 31 133	32 35 36 70 524 35 27 798	76 70 32 43 36 25 26 64	62 35 21 33 426 399 67 40	44 36 33 34 44 29 40 468	22 23 247 5 67 40 22	20 36 97 37 37 32 32	466 423 209 388 21 21 18	43 474 38 47 20 461 33	322 430 47 26 43 25 5	B C D E F G H	7 36 401 3 36 32 33	6 19 46 478 33 29 305	36 21 316 58 505 350 20	15 24 26 37 534 33 35	38 31 239 34 30 578 16	32 22 34 34 34 543 42	38 42 615 38 44 534 37	16 23 37 45 43 18 40	21 30 45 37 39 338 37	556 33 42 605 562 40 20	20 37 38 57 579 40 19	512 42 37 41 42 561 34

Tabelle 8.5: Ergebnisse des Expressions-Assays mit der PyIRS Val 401NNK-lle405NNK Bibliothek in Anwesenheit von Norb-Lysin.

1	1	2	3	4	5	6	7	8	9	10	11	12	VIII	1	2	3	4	5	6	7	8	9	10	11	12
Α	164	367	18	65	39	221	141	42	520	68	443	25	A	132	530	182	41	70	50	159	41	51	401	53	25
В	329	25	45	459	51	133	54	48	46	42	39	2,497	В	308	322	13	36	24	39	97	172	37	40	58	2,450
С	375	20	31	55	56	445	114	46	42	35	499	104	C	33	36	37	39	41	76	253	102	752	574	23	112
	441	40	26	41	643	502	529	448	55	510	528	113		34	150	61	86	550	504	40	847	498	593	37	100
	234	41	21	530	36	341	33	181	532	260	110	36		163	443	33	500	29	490	537	731	14	43	224	44
F	430	221	49	924	211	00	466	30	25	38	541	3,021		170	20	513	510	255	24	535	99	313	31	30	2,334
	40	21	38	202	486	21	17	62	458	37	803	433	<u>н</u>	31	593	614	551	497	73	593	28	553	<u> </u>	44	525
	40	61	30	000	400	- 21	41	02	430	JI	000	1410		31	303	1014	1001	401	113	1303	20	333	41	431	J2J
1	1	2	3	4	5	6	7	8	9	10	11	12	IX	1	2	3	4	5	6	7	8	9	10	11	12
Ä	35	278	33	39	71	331	44	44	37	415	50	81	A	31	14	563	499	49	53	19	529	53	609	463	617
В	40	41	38	39	435	590	42	25	25	37	477	320	B	672	40	35	160	433	36	36	592	615	27	596	108
С	39	40	108	20	24	414	579	409	45	308	74	474	С	50	628	125	17	700	71	47	37	498	29	670	647
D	34	24	59	19	348	523	114	38	70	45	171	55	D	40	541	22	30	39	535	44	657	36	17	50	46
E	509	38	377	37	25	104	480	62	43	29	92	458	E	31	20	717	47	691	577	39	249	242	590	41	39
F	146	513	404	423	40	106	417	405	491	37	40	59	F	33	119	441	77	542	229	35	641	57	545	387	586
6	396	10.0	55	445	128	43	39	48	481	44	467	385		264	36	442	200	29	19	37	45	730	526	10	41
п	301	100	401	1 10	44	4	00	40	40	44	292	ſŰ	п	000	024	1110	200	30	20	1 3 3	1310	40	40	10	21
Ш	1	2	3	4	5	6	7	8	9	10	11	12	X	1	2	3	4	5	6	7	8	9	10	11	12
Δ	274	38	16	307	419	230	199	47	414	10.4	25	28		388	39	16	15	41	32	480	21	41	37	32	242
B	334	425	83	45	592	62	42	45	46	548	619	23	B	628	464	22	690	607	18	58	491	118	18	486	31
С	431	521	44	493	264	25	40	578	56	41	60	566	С	386	501	488	667	438	29	29	484	30	217	38	28
D	40	40	517	703	455	46	474	24	521	55	49	43	D	40	541	691	483	65	578	527	37	39	450	464	36
E	334	48	43	466	32	238	41	30	140	539	547	745	E	117	32	68	500	493	33	34	107	38	35	15	159
F	505	24	42	22	481	35	39	149	544	36	522	611	F	555	32	459	489	47	395	72	23	31	461	120	39
6	37	51	423	[[]	267	58	50	51	34	39	519	100		439	33	100	34	488	154	37	86	32	84	32	300
п	01	ru	241	203	301	244	201	433	00	33	100	400	п	401	50	4	400	431	1 31	100	33	301	440	20	32
IV	1	2	3	4	5	6	7	8	9	10	11	12	XI	1	2	3	4	5	6	7	8	9	10	11	12
Δ	243	202	40	34	123	332	330	541	21	381	44	23	<u>A</u>	389	386	41	37	63	462	431	16	33	36	32	25
B	110	37	209	23	40	83	335	31	456	448	257	25	B	67	388	43	574	40	410	425	368	33	37	52	425
С	140	41	36	467	27	390	148	40	480	37	88	57	С	29	385	397	162	27	459	33	212	153	41	461	41
D	36	37	438	53	48	89	52	26	42	552	451	400	D	124	40	36	621	481	341	40	303	40	30	373	43
E	52	63	407	38	50	33	444	44	475	445	459	50	E	31	46	35	464	110	24	634	399	435	514	42	56
F	510	50	388	59	46	59	115	94	436	46	531	407	F	31	23	42	41	37	501	41	510	36	23	132	27
6	235	223	106	88	466	282	453	221	31	33	535	45		52	331	31	146	121	200	43	376	42	27	437	214
п	- J f	33	100	431	51	4 14	40	221	33	42	34	13	п	JΖ	420	34	140	431	330	123	30	343	51	30	314
V	1	2	3	4	5	6	7	8	9	10	11	12	XII	1	2	3	4	5	6	7	8	9	10	11	12
Ă	378	362	36	67	508	16	96	91	35	45	39	106	A	479	13	23	470	84	110	583	448	45	26	433	97
В	13	484	549	509	44	42	35	502	61	87	35	43	B	18	88	39	38	25	33	619	636	374	563	39	454
С	36	21	266	61	504	36	341	592	44	20	33	538	С	18	257	36	458	102	585	469	592	41	40	42	113
D	130	550	542	47	36	88	56	45	157	42	46	30	D	37	51	84	533	32	45	33	550	46	45	125	42
E	335	614	70	47	55	506	61	462	47	625	534	44	E	631	20	29	445	415	84	37	539	41	52	574	41
F	38	42	527	36	535	19	289	20	112	31	26	38	F	590	618 EE	186	605	60	387	122	294	401	318	201	391
н	508	67	20	635	89	511	12	57	32	488	17	26	н	330	464	567	43	161	76	12.0	37	40	556	333	32
			20		00	. 511	16		96	100		. 20		.000	104	1001	10		. 10		. 91	10	000	000	10
VI	1	2	3	4	5	6	7	8	9	10	11	12	XIII	1	2	3	4	5	6	7	8	9	10	11	12
A	219	11	31	40	19	374	37	52	384	35	76	44	A	80	19	41	6	53	162	30	12	25	110	41	26
В	181	133	365	403	40	38	394	30	432	374	34	373	В	178	17	369	15	18	26	31	216	28	33	59	51
С	474	474	22	32	19	38	61	67	153	424	37	37	С	22	337	34	305	181	26	32	181	39	34	41	79
	557	430	335	59	33	34	27	36	457	439	20	368		43	524	38	101	26	404	362	39	59	457	35	463
E	32	41	29	389	310	405	34	40	203	58	30	58	E	17	132	248	83	308	200	36	41	100	279	15.0	225
L.C.	400	117	338	01	417	29	18	33	367	292	64	39	6	93	22	439	20	22	27	32	141	37	00	38	88
H	29	265	30	41	35	375	364	22	372	343	387	48	Н	511	43	36	438	462	445	407	77	36	33	44	37
VII	1	2	3	4	5	6	7	8	9	10	11	12	XIV	1	2	3	4	5	6	7	8	9	10	11	12
Α	43	31	32	23	37	468	37	38	41	160	280	46	A	30	353	382	285	97	35	521	394	585	387	455	90
В	411	357	51	63	42	35	44	478	449	38	127	193	В	171	39	45	529	39	481	50	52	46	486	513	156
С	30	27	489	232	115	419	353	25	41	458	53	42	C	41	24	42	565	522	19	34	572	441	44	27	503
	35	34	40	422	291	93	494	542	46	371	503	35		356	46	40	472	35	504	25	32	570	548	50	485
E	29	347	441	32	540	404	16	49	29	474	466	44	E	35	47	50	452	476	402	41	40	58	27	85	531
F.	38	54	392	40	40	469	71	37	35	42	29	51		33	382	23	52	390	429	61	340	311	43	516	417
Н	36	383	47	27	417	37	301	34	418	39	37	467	Н	33	616	87	259	593	410	397	133	402	57	419	486

lonen-Serie mit +1 Ladung

Ar

lonen-Serie mit +2 Ladung	J
---------------------------	---

ninosäure	B-lonen	Y-lonen
L	114.09	-
C^	274.12	1540.82
Р	371.17	1380.79
Q	499.23	1283.74
L	612.32	1155.68
Ι	725.4	1042.59
-	838.49	929.51
V	937.55	816.43
Р	1034.61	717.36
Р	1131.66	620.3
N	1245.7	523.25
F	1392.77	409.21
D	1507.8	262.14
К	-	147.11

Aminosäure	B-lonen	Y-lonen
L	57.55	-
C^	137.56	770.91
Р	186.09	690.9
Q	250.12	642.37
L	306.66	578.34
Ι	363.2	521.8
Ι	419.75	465.26
V	469.28	408.72
Р	517.81	359.18
Р	566.33	310.66
Ν	623.35	262.13
F	696.89	205.11
D	754.4	131.57
К	-	74.06

Abbildung 8.4: MS/MS Spektrum des Peptids LCPQLIIVPPNFDK. Dieses wurde durch tryptischen Verdau von *h*Polk generiert (Q wurde in *h*Polk_{Gin163Norb} durch Norb-Lysin substituiert). Die tabellarische Aufstellung der Ionen-Serien aus der B- und Y-Fragmentierung ist unten dargestellt.

Ionen-Serie mit +1 Ladung

Ionen-Serie mit +2-Ladung

Aminosäure	B-lonen	Y-lonen
R	157.11	-
L	270.19	2123.17
C^	430.22	2010.09
Р	527.28	1850.06
Х	805.44	1753
L	918.52	1474.84
I	1031.61	1361.76
I	1144.69	1248.67
V	1243.76	1135.59
Р	1340.81	1036.52
Р	1437.87	939.47
N	1551.91	842.42
F	1698.98	728.37
D	1814	581.3
К	1942.1	466.28
Y	2105.16	338.18
R	-	175.12

Aminosäure	B-Ionen	Y-lonen
R	79.06	-
L	135.6	1062.09
C^	215.62	1005.55
Р	264.14	925.53
Х	403.22	877.01
L	459.77	737.92
Ι	516.31	681.38
Ι	572.85	624.84
V	622.38	568.3
Р	670.91	518.76
Р	719.44	470.24
Ν	776.46	421.71
F	849.99	364.69
D	907.51	291.16
к	971.55	233.64
Y	1053.08	169.59
R	-	88.06

Abbildung 8.5: MS/MS Spektrum des Peptids LCPXLIIVPPNFDK. Dieses wurde durch tryptischen Verdau von *h*Polk_{Gin163Norb} generiert (X ist die Position von Norb-Lysin). Die tabellarische Aufstellung der Ionen-Serien aus der B- und Y-Fragmentierung ist unten dargestellt.

Ionen-Serie mit +1 Ladung

lonen-Serie	mit +2	Ladung
-------------	--------	--------

Aminosäuro	D Janan	Vienen
Aminosaure	B-Ionen	r-Ionen
L	114.09	-
C^	217.1	1918.02
Р	314.15	1815.01
X ¹⁴	876.43	1717.96
L	989.52	1155.68
Ι	1102.6	1042.59
-	1215.68	929.51
V	1314.75	816.43
Р	1411.81	717.36
Р	1508.86	620.3
Ν	1622.9	523.25
F	1769.97	409.21
D	1885	262.14
К	_	147.11

Aminosäure	B-lonen	Y-lonen
L	57.55	_
C^	109.05	959.51
Р	157.58	908.01
X ¹⁴	438.72	859.48
L	495.26	578.34
I	551.8	521.8
I	608.35	465.26
V	657.88	408.72
Р	706.41	359.18
Р	754.93	310.66
N	811.95	262.13
F	885.49	205.11
D	943	131.57
К	_	74.06

Abbildung 8.6: MS/MS Spektrum des Peptids LCPX¹⁴LIIVPPNFDK. Dieses wurde durch tryptischen Verdau von hPolk_{Gln163Norb} generiert (X¹⁴ ist die Position des Photoclick-modifzierten Norb-Lysins mit **14**). Die tabellarische Aufstellung der Ionen-Serien aus der B- und Y-Fragmentierung ist unten dargestellt.

Ionen-Serie mit +1 Ladung

Ionen-Serie mit +2 Ladung

Aminosäure	B-Ionen	Y-lonen
L	114.09	-
C^	274.12	2449.24
Р	371.17	2289.21
X 15	1407.66	2192.16
L	1520.74	1155.68
Ι	1633.83	1042.59
Ι	1746.91	929.51
V	1845.98	816.43
Р	1943.03	717.36
Р	2040.08	620.3
Ν	2154.13	523.25
F	2301.2	409.21
D	2416.22	262.14
К	-	147.11

Aminosäure	B-lonen	Y-lonen
L	57.55	-
C^	137.56	1225.13
Р	186.09	1145.11
X 15	704.33	1096.58
L	760.88	578.34
Ι	817.42	521.8
Ι	873.96	465.26
V	923.49	408.72
Р	972.02	359.18
Р	1020.55	310.66
Ν	1077.57	262.13
F	1151.1	205.11
D	1208.62	131.57
К	-	74.06

Abbildung 8.7: MS/MS Spektrum des Peptids LCPX¹⁵LIIVPPNFDK. Dieses wurde durch tryptischen Verdau von hPolk_{Gln163Norb} generiert (X¹⁵ ist die Position des Diels-Alder-modifzierten Norb-Lysins mit **15**). Die tabellarische Aufstellung der Ionen-Serien aus der B- und Y-Fragmentierung ist unten dargestellt.

Lebenslauf

SCHULAUSBILDUNG

09/1990 - 07/1994	Lotteschule, Wetzlar (Grundschule)
09/1995 - 07/2000	Kestner-Schule Wetzlar (Gesamtschule)
09/2000 - 07/2003	Goetheschule Wetzlar (Oberstufengymnasium)
	- Abitur

STUDIUM

- 10/2003 11/2007 Studium der Biotechnologie an der Fachhochschule Gießen-Friedberg
- 08/2006 01/2007 Praxissemester im Max-Planck-Institut für terrestrische Mikrobiologie, Marburg
- 04/2007 11/2007 Diplomarbeit in der Arbeitsgruppe von Prof. Dr. Thomas Carell an der Ludwig-Maximilians-Universität München Thema: "Expression, Isolierung und Charakterisierung einer (6-4) Photolyase aus *Ostreococcus tauri*"
- 11/2007 Fachhochschul-Abschluss: Dipl.-Ing. für Biotechnologie

PROMOTION

Seit 01/2008 Promotionsstudium in der Arbeitsgruppe von Prof. Dr. T. Carell an der Ludwig-Maximilians-Universität München

München, 24.11.2011