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Zusammenfassung

Die Grundlage dieser Arbeit sind generalisierte lineare Modelle (GLMs). Im Gegensatz
zum gewöhnlichen linearen Modell erlauben sie zum einen die Verteilung der Responseva-
riable und zum anderen den Einfluss des Prädiktors auf die Responsevariable nicht linear
durch die Linkfunktion zu modellieren. Hierbei wird vorausgesetzt, dass die Verteilung der
Responsevariable aus der Klasse der Exponentialfamilien stammt und die Linkfunktion be-
kannt sowie zweimal stetig diffenrenzierbar und monoton steigend ist. Die Schätzung der
über das Modell festgelegten Parameter, stellt hinsichtlich einer möglichst guten Prognose
in vielen Datensituationen eine Herausforderung dar. Als Strategien zur Bewältigung dieser
Herausforderung haben sich Variablen-Selektion (lediglich eine Teilmenge von Parametern
wird ungleich Null geschätzt) und Variablen-Grouping (die Parameter verschiedener Ko-
variablen werden gleich geschätzt) etabliert.

Bei GLMs haben sich in den letzten Jahren neben anderen Methoden Shrinkage-
Verfahren für Variablen-Selektion und -Grouping bewährt. Skrinkage-Verfahren zeichnen
sich durch ihre jeweiligen Penalisierungsregionen aus. Eine Klasse von Penalisierungs-
regionen, die diese Eigenschaften auf den Schätzer induziert, sind spezielle Polytope.
Es werden theoretische Ergebnisse zu Polytopen, die die beiden Effekte ermöglichen,
präsentiert und hierauf basierend neue Penalisierungsregionen entwickelt. Hierbei wird auf
die Lösungsalgorithmen eingegangen. In Simulationsstudien und realen Datensituationen
zeigt sich, dass die vorgestellten Methoden die etablierten Konkurrenzverfahren in vielen
Situationen dominieren.

Eine Verallgemeinerung der GLMs sind (generalisierte) Single-Index Modelle (SIMs).
Hierbei handelt es sich um GLMs mit unbekannter Linkfunktion. Neben dem Pa-
rametervektor des linearen Prädiktors ist zusätzlich die Linkfunktion innerhalb des
Lösungsalgorithmus zu schätzen. Es werden Algorithmen zur Schätzung von SIMs mit
linearem und additiven Prädiktor entwickelt. Hierbei werden vor dem Hingrund der
Variablen-Selektion sowohl Boosting als auch Penalisierungsansätze verfolgt. Neben den
Algorithmen steht insbesondere die Auswirkung von fehlspezifierten Linkfunktionen auf
Variablen-Selektion im Fokus dieser Arbeit. Es zeigt sich in Simulationstudien und Echt-
datenbeispielen, dass das simultane Schätzen von Linkfunktion und linearen beziehungs-
weise nicht parametrischen Einflusstermen sowohl die Vorhersage als auch die Schätzung
der Einflussterme und die Variablenselektion verbessert.
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Summary

This thesis is based on Generalized Linear Models (GLMs). In contrast to (ordinary)
linear models GLMs are able to model the distribution of the response variable and a
non linear influence of the linear predictor on the response variable. Hereby it is assumed
that the distribution of the response variable is from a simple exponential family and the
link function is known, twice differentiable, and monotonically increasing. The estimation
of the model parameter in consideration of best prediction is a challenge in many data
situations. Established strategies for performing good prediction in complex data situations
are variable selection (only a subset of parameters are estimated non zero) and variable
clustering (parameter of different covariates are estimated equal).

In the last year for variable selection and variable clustering in GLMs shrinkage proce-
dures become very popular. Shrinkage procedures are characterized by its penalty region
or term. A wide class of penalty regions which induce variable selection and clustering are
special types of polytopes. Theoretical results about these polytopes are presented and
new shrinkage procedures are developed. Beyond the evaluation of the new procedures the
focus is on corresponding the algorithms. It is shown by simulation studies and real data
problems that the new methods outperform established methods in many situations.

A generalization of GLMs are (generalized) single index models (SIMs). We consider
SIMs as GLMs with unknown link function. For the solution of SIMs the parameter vector
of the linear predictor and the link function must be estimated inner the algorithm. Algo-
rithms for the estimation of SIMs with linear and additive predictor are presented. Against
the background of variable selection we use boosting as well as penalization approaches
for the estimation of SIMs. Apart the algorithms the impact of misspecified link functions
on the variable selection is a central point of this thesis. In simulation studies and real
data problems it is illustrated that simultaneous estimation of the link function and linear
respectively non parametric terms improves prediction, estimation of influential terms, and
variable selection.
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Chapter 1

Introduction and Remarks

To meet the different contents of this thesis, it is divided into two parts. The first part
is about generalized linear models (GLMs) which is proposed by Nelder and Wedderburn
(1972). The second part is based on single index models (SIMs). Härdle et al. (1993) or Cui
et al. (2009) define SIMs as GLMs where the response function is twice differentiable. In
contrast to this we consider a SIM as a GLM with twice differentiable and monotonically
increasing response function. We prefer the monotonicity constraint because of better
interpretability. Additionally, by monotonicity SIMs are quite close to classical GLMs.
However, this thesis is about regularized estimators for SIMs and GLMs. The focus is
on two regularization techniques, namely penalization and boosting. In this thesis we
consider regularization procedures which induce variable selection. Basis of all regression
problems in thesis is the log-likelihood function l(θ) which has to be maximized, where θ is
a parameter vector the log-likelihood depends on. Alternatively −l(θ) has to be minimized.

Penalized log-likelihood problems have the form

�θ = argminθ

�
−l(θ) +

�
l�

k=1

λkPk(θ)

��

where λk > 0 is a weight for the kth penalty term Pk(θ) > 0, k = 1, ..., l, each depending

on θ. So there is a tradeoff between the sum penalty term
��

l

k=1 λkPk(θ)
�
and the

negative log-likelihood function. On the one hand the log-likelihood must be maximized,
on the other hand the sum of penalty terms must become small. In the case of penalized
log-likelihood problems the regularization is part of the optimization problem. There are
many advantages and motivations for the penalization of likelihood functions which are
discussed in the introductions of the first three chapters.

Boosting techniques are based on weak learning proposed by Shapire (1990) in context
of classification. Freund and Shapire (1997) establish the first boosting algorithm. In
the following years boosting techniques are widely developed for solving wide classes of
regression models (see Bühlmann and Yu, 2003; Tutz and Binder, 2006; Bühlmann and
Hothorn, 2007; Hothorn et al., 2010). Especially componentwise boosting became very
popular. In this thesis boosting techniques are used for maximizing the log-likelihood

1



2 1. Introduction and Remarks

function. In componentwise boosting the log-likelihood is maximized by small steps. In
each step only one covariate is updated. This means that not all covariates are estimated
but only one is estimated “a little bit in the right direction”. By early stopping the
model becomes sparse, if not all covariates are updated when the algorithm is stopped. In
contrast to penalization the regularization of componentwise boosting techniques is part of
the algorithm. Componentwise boosting regularizes by weak learning only one component
in each boosting iteration.

Guideline Through the Thesis

The first part of this thesis is about penalization of GLMs. It focuses on penalty terms
that induce

variable clustering: highly correlated covariates are estimated equal apart from sign

variable selection: low influential covariates are shrunken to zero.

All presented penalty terms are polytopes. Two of them are correlation driven. In chapter
2 we present a general framework for polytopes as penalty regions in regression and present
the V8 procedures which performs variable selection and variable clustering. Hereby clus-
tering is controlled by correlation. In chapter 3 we present a further correlation driven
penalty region with variable selection and clustering property. We call it the pairwise
fused lasso and it is inspired by fused lasso from Tibshirani et al. (2005). In contrast to the
fused lasso the new procedure does not depend on ordered covariates. The last chapter of
the first part is the generalization of the OSCAR penalty from Bondell and Reich (2008)
to GLMs.

The second part of this thesis is about SIMs (with monotonically increasing response
function). The first chapter of this part (chapter 5) presents a boosting technique for
estimating sparse SIMs. It is a generalization of the procedures proposed by Tutz and
Leitenstorfer (2011). In contrast to Tutz and Leitenstorfer (2011) the new procedure
(FlexLink) is not only for normal distributed response and includes variable selection.
The following chapter 6 generalizes the FlexLink to additive predictors. In chapter 7 a
regularization of SIMs by penalty terms is given. The response function and the parameter
vector are penalized by an appropriate term and the corresponding penalized log-likelihood
problem is solved.

Software and Publications

Apart from chapter 2 all computations are carried out using the statistical software R
(see R Development Core Team, 2010) and the related packages which are indicated in
the respective chapters and sections. In chapter 2 we use MATLAB from Mathworks (see
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http://www.mathworks.de/products/matlab/index.html) for the computation and il-
lustration of the simulations study and the data example. The graphical illustration of poly-
topes in chapter 2 and 4 are carried out by polymake (see http://polymake.org/doku.php
and Gawrilow and Joswig (2000)).

Parts of this thesis are published as technical reports or as articles in journals. These
articles and technical reports are done in cooperation with coauthors. Part I of this thesis
is based on

Petry S. and G. Tutz (2011). Shrinkage and variable selection by polytopes. Journal
of Statistical Planning and Inference (to appear). (chapter 2)

Petry S., C. Flexeder and G. Tutz (2010). Pairwise fused lasso. Technical Report
102, Department of Statistics LMU Munich. (chapter 3)

Petry S. and G. Tutz (2011). The Oscar for generalized linear models. Technical
Report 112, Department of Statistics LMU Munich. (chapter 4)

and part II is based on

Tutz G. and S. Petry (2011). Nonparametric estimation of the link function includ-
ing variable selection. Statistics and Computing (to appear), 21. (chapter 5)

In general each chapter can be seen as an autonomous unit.
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Chapter 2

Shrinkage and Variable Selection by
Polytopes

Constrained estimators that enforce variable selection and grouping of highly correlated
data have been shown to be successful in finding sparse representations and obtaining
good performance in prediction. We consider polytopes as a general class of compact
and convex constraint regions. Well established procedures like LASSO (Tibshirani, 1996)
or OSCAR (Bondell and Reich, 2008) are shown to be based on specific subclasses of
polytopes. The general framework of polytopes can be used to investigate the geometric
structure that underlies these procedures. Moreover, we propose a specifically designed
class of polytopes that enforces variable selection and grouping. Simulation studies and an
application illustrate the usefulness of the proposed method.

2.1 Introduction

We consider the linear normal regression model

y = Xβ + �, � ∼ Nn(0, σ
2I),

where the response y = (y1, ..., yn)T and the design X = (x1|...|xp) are based on n iid
observations. Since the methods considered are not equivariant we will use standardized
data.Therefore, y = (y1, ..., yn)T is the centered response and xj = (x1j, ..., xnj)T the j-th
standardized predictor, j ∈ {1, ..., p}, so that

n�

i=1

yi = 0,
n�

i=1

xij = 0,
n�

i=1

x2
ij
= 1, ∀ j ∈ {1, ..., p},

holds.
In normal distribution regression problems one typically uses the ordinary least squares

estimator �βOLS. The underlying loss function is the quadratic loss or sum of squares

Q(β|y, X) := �y −Xβ�2

7



8 2. Shrinkage by Polytopes

and �βOLS minimizes the unconstrained regression problem

�βOLS = argminβ {Q(β|y, X)} .

When c is appropriately chosen the contours of the quadratic loss

Sc(β|y, X) = {β ∈ IRp : Q(β|y, X) ≤ c}

form hyperellipsoids centered at �βOLS. Moreover, Q(β|y, X) is upper semicontinuous
and strictly convex, which are properties that guarantee an unique solution of constrained
estimates.

Constraining the domain of β can be motivated by non-sample information given by
some scientific theory. For example in economical input-output-systems it is assumed that
the inputs have a positive influence on the output. Then the domain of the estimate is
restricted by βinput > 0. More general, there is a mathematical motivation to constrain
the parameter domain of a regression problem. James and Stein (1961) proposed the
first shrinkage estimator which became known in the literature as James-Stein-estimator.
The expression “shrinkage” is due to the geometrical interpretation of Hoerl and Kennard
(1970). Hoerl and Kennard (1970) described that the length of the OLS-vector |�βOLS|

tends to be longer than the length of the true parameter vector |βtrue|. This effect can
be overcome by restricting the parameter domain to a centrosymmetric region around the
origin of the parameter space.

Hoerl and Kennard (1970) used centered p-dimensional spheres with radius t which
yields ridge regression. Centrosymmetric regions around the origin are a general concept
to compensate for the “|βtrue| < |�βOLS|-effect” since the properties of the loss function
Q(β|y, X) together with compactness and convexity of the domain guarantee existence
and uniqueness of the solution. In the following we will call regions with the three properties
convexity, compactness, and centrosymmetry penalty regions.

The term penalty region is commonly used when the problem is represented in its
penalized form. For some constrained regression problems there exist alternative formula-
tions which have equivalent solutions. For example, the constrained version of the ridge
estimator is

�β = argminβ

�
�y −Xβ�2 , s.t.

p�

j=1

β2
j
≤ t, t ≥ 0

�
. (2.1)

For fixed t the corresponding penalized regression problem has the form

�β = argminβ

�
�y −Xβ�2 + λ

p�

j=1

β2
j
, λ ≥ 0

�
. (2.2)

The proof of the equivalence is based on the theory of Lagrangian multipliers and can be
found in Luenberger (1969) where the equivalence for a set of constraints is shown by using
a vector λT

∈ IRp. It should be noted, that not every constrained regression problem can
be given as a penalized regression problem.
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It is intuitively clear that a penalty region determines the properties of the estimate
beyond of tackling the “|βtrue| < |�βOLS|-problem”. Therefore the penalty regions should
be carefully designed. We will focus on two properties of estimates:

Variable selection: Coefficients whose corresponding predictors have vanishing or low
influence on the response should be shrunk to zero.

Grouping : For a group of highly correlated variables it can be advantageous that esti-
mated coefficients differ not too strongly.

A well-established shrinkage procedure that includes variable selection is the LASSO (Tib-
shirani, 1996). One criticism of the LASSO, which has been pointed out by Zou and Hastie
(2005), is the behavior when predictors are highly correlated. In that case the LASSO tends
to select only one or two from the group of the correlated influential predictors. Therefore,
Zou and Hastie (2005) proposed the Elastic Net (EN) which tends to include the whole
group of highly correlated predictors. The EN enforces the grouping effect as stated in The-
orem 1 of Zou and Hastie (2005) where a relation between sample correlation and grouping
was given. The EN does not use the sample correlation explicitly, the grouping effect is
achieved by a second penalty term together with a second tuning parameter which do not
depend on the sample correlation. In a similar way Bondell and Reich (2008) introduced
the OSCAR by including an alternative penalty term that enforces grouping. OSCAR also
selects variables and shows the grouping effect. Also a relation between sample correlation
and grouping may be derived. An alternative penalty that explicitly uses the correlation
and enforces the grouping property was proposed by Tutz and Ulbricht (2009) under the
name correlation-based penalty. Variable selection was obtained by combining boosting
techniques with the correlation based penalty.

We will consider established procedures within the general framework of constraint re-
gions based on polytopes and introduce a correlation-based penalty region called V8, which
groups and selects variables. In Section 2.2 we give some basic concepts of polytope theory.
Based on these concepts the LASSO is discussed in Section 2.2.2 and OSCAR in Section
2.2.3. The embedding into the framework of polytopes allows to derive some new results for
these procedures. In Section 2.3 we introduce the V8 procedure and give algorithms that
solve the constrained least squares problem. In Section 2.4 the V8 procedure is compared
to established procedures on the basis of simulations.

2.2 Polytopes as Constraint Region

Polytopes provide a simple class of compact and convex regions that are useful as con-
straint regions. They were implicitly used in established regression procedures like LASSO
(Tibshirani, 1996) or OSCAR (Bondell and Reich, 2008). In general, polytopal constrained
regression problems can be reformulated as linear constrained regression problems (cf. The-
orem 1). But in practice it can be hard to reformulate the polytopal constrained regression
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problem as a linear constrained problem. One objective of this article is to use geometri-
cal arguments for analyzing and designing polytopal penalty regions. In the following the
geometric background and the mathematical foundation of polytopes is shortly sketched.

2.2.1 Some Concepts in Polytope Theory

Let in general a ≤ b denote that ar ≤ br for all components of a, b ∈ IRm. In the following
hyperplanes and corresponding halfspaces play an important role. Definitions are given in
the Appendix (see Definition A 1).

Polytopes are a class of fundamental geometric objects defined in IRp. The dimension
of a polytope is the dimension of its affine hull and a p-dimensional polytope is called
p-polytope. There are two ways to describe polytopes: V-polytopes and H-polytopes.

Definition 1 (V-Polytope) A V-Polytope is the convex hull of a finite point set V ⊂ IRp:

P (V) := conv(V).

Definition 2 (H-Polytope) A subset P ⊂ IRp is called an H-Polytope if it is the bounded
intersection of a finite number of closed lower linear halfspaces. For A ∈ IRm×p, t ∈ IRm

P (A, t) := {x ∈ IRp : Ax ≤ t}

describes an H-Polytope if P (A, t) is bounded.

The intuitive question is whether there exists a relation between H-polytopes and V-
polytopes. The answer is given in Ziegler (1994) where the following theorem is shown
to hold.

Theorem 1 (Main Theorem) A subset P ⊆ IRp is the convex hull of a finite point set
(a V-Polytope)

P = conv(V), for some V ⊂ IRp×n

if and only if it is a bounded intersection of closed (lower linear) halfspaces (an H-Polytope)

P = P (A, t) = {x ∈ IRp : Ax ≤ t} , for some A ∈ IRm×p, t ∈ IRm.

However, the transformation from H- to V-representation and vice versa can be computa-
tionally expensive. The number of producing halfspaces and of vertices is an indicator for
the computational costs.

Each row of the system of inequalities Ax ≤ t describes a linear lower closed halfspace.
It represents the normal vector of a hyperplane generating a corresponding halfspace.
A vertex of a p-polytope P is an element v ∈ P which can not be given as a convex
combination of the remaining elements P \ {v} (see Figure 2.1 where the five vertices are
easily identified). Although in Definition 1 a general finite set V is used to describe P it
is sufficient to use only the vertices of P to define the same polytope P . In other words,
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Figure 2.1: Illustration of the H- and V-representation of the Polytope P . The closed

lower halfspaces are on the opposite side of the illustrated normal vectors. The intersection

of these halfspaces is P which is shown by the shaded area. The graphed intersection of

the hyperplanes are the five vertices of P . The convex hull of the five vertices produces the

same polytope P .

let P = conv(V) be a V-polytope and E(V) ⊆ V be the set of all vertices of P then
P = conv(V) = conv(E(V)) holds. We assume V = E(V) in the following. It is obvious
that every point x of a polytope P = conv(V) can be presented as the convex combination
of all vertices,

x =
�

i∈I

λivi, λi ≥ 0,
�

i∈I

λi = 1, vi ∈ V , (2.3)

where I is the index set of all vertices. In addition, we only consider H-polytopes whose
description is not redundant. This means the leaving out of any row of Ax ≤ t will change
the polytope.

Alternatively, a polytope can be described by its faces. The definition of faces of a
polytope are based on supporting hyperplanes or shortly supports (for a definition see
Def.2 in the Appendix).

Definition 3 (Faces of a Polytope) Let P ⊂ IRp be a p-polytope and H ⊂ IRp be a
support of P . Then the intersection P ∩ H is called face of P . A k-dimensional face is
called k-face. A 0-face is a vertex, an 1-face is an edge, and a (p− 1)-face is a facet.

An important feature is that every face is a convex hull of vertices but not every convex
hull of vertices is a face. Hence, not every convex combination of vertices lies on the surface
of the polytope, but every facet is the convex hull of q ≥ p vertices (see Ziegler, 1994).
The linear hull of these q vertices is the intersecting support which produces this facet.
The intersecting support is given by one row of Ax ≤ t in Definition 2. A p-polytope P is
called simplicial iff every facet of P contains the minimal number of p vertices.

The special class of polytopes which is of interest here is the following.
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Figure 2.2: Illustration of Definition 3. Four hyperplanes F , G, H, I and their relationship

to P : I is not a support because I ∩ P = ∅. H is not a support because P is not entirely

contained in one of the both closed halfspaces H+ or H−. F and G are supports. P ∩G is

a vertex of P . P ∩ F is a facet of P . (In IR2 an edge is also a hyperplane.)

Definition 4 A p-polytope P is called centrosymmetric, if

1. the origin is an inner point of P : 0 ∈ P .

2. If v ∈ P then −1 · v ∈ P .

It is intuitively clear that a centrosymmetric p-polytope can be scaled up or down in two
ways

1. Multiplying the right hand side of Ax ≤ t with s > 0.

2. Multiplying all vertices with s > 0.

2.2.2 LASSO

The famous LASSO, proposed by Tibshirani (1996), is very popular because of its variable
selection property and has been used in many fields of statistics. The LASSO constraint
region is given by

p�

j=1

|βj| ≤ t, t > 0, (2.4)

which corresponds to a p-polytope. The H-representation of the constraint region is ob-
tained by rewriting the absolute value function |.| in (2.4). The result is a system of
inequations

Lβ ≤ t, (2.5)
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where L is a (2p× p)-matrix. Each row of L is one of the 2p variations of entries −1 or +1
and t is a 2p-dimensional vector whose entries are equal to t > 0. An example for the case
p = 3 can be found in the Appendix (Example A 1). More concise, the LASSO constraint
region is a p-crosspolytope, which is scaled up or down by the tuning parameter t > 0.
(For the definition of a p-crosspolytope see Ziegler (1994), p. 8.). The underlying polytope
is simplicial and this property is maintained by scaling up or down. An illustration in IR3

is given in Figure 2.3.
The vertices of the LASSO penalty region are

L = {t · e1, −t · e1, ..., t · ep, −t · ep, t > 0} , (2.6)

where ej, j = 1, ..., p, denotes the j-th unit vector of IRp. Therefore the V-representation
of the LASSO penalty region is P = conv(L).

Since the constraint (2.4) is determined by the 2p constraints specified in the rows of
(2.5), it is easy to transform the LASSO problem in constrained form,

�βL = argminβ

�
�y −Xβ�2 , s.t.

p�

j=1

|βj| ≤ t, t ≥ 0

�
,

into a penalized regression problem,

�βL = argminβ

�
�y −Xβ�2 + λ

p�

j=1

|βj|, λ ≥ 0

�
.

If the OLS estimate exists and
�

p

j=1 |βOLSj | = t0 then �βL is the contact point of
the contour of the loss function Sc(β|y, X) and the penalty region

�
p

j=1 |βj| ≤ t, 0 <
t < t0. The variable selection property of the LASSO can be illustrated by using the
V-representation. Although not all convex combinations of vertices are on the surface
the solution of a polytopal constrained regression problem lies on the surface. So with
respect to the simpliciality of the LASSO penalty region variable selection is performed if
the solution is a convex combination of less than p vertices of its penalty region, i.e. at
least one of the λis in (2.3) is zero. Thus, in IR3 one can distinguish three cases of LASSO
solutions:

1. If the LASSO solution lies on a vertex only one coefficient is nonzero, i.e. only one
λi in (2.3) is 1.

2. If the LASSO solution lies on an edge that connects two axes, two λis in (2.3) are
non-zero.

3. If the LASSO solution lies on a facet, three λis in (2.3) are non-zero.

In the first two cases variables are selected.
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Figure 2.3: LASSO constraint region in IR3.

2.2.3 OSCAR

Bondell and Reich (2008) proposed a shrinkage methods called OSCAR, which stands for
Octagonal Shrinkage and Clustering Algorithm for Regression. Its constraint region is

p�

j=1

�
|βj|+ c ·

�

j<k

max {|βj|, |βk|}

�
≤ t. (2.7)

Bondell and Reich (2008) also give an alternative representation of their penalty region.
Let |β|(k) denote the absolute value of the component of β ∈ IRp whose rank is k so that
|β|(1) ≤ |β|(2) ≤ . . . ≤ |β|(p) holds. With |β|(.) the OSCAR penalty region (2.7) is equivalent
to

p�

j=1

[c(j − 1) + 1] · |β|(j) ≤ t. (2.8)

First we discuss the penalty region in the implicitly given H-representation. Then we
derive the vertices as a new result. That is helpful because the V-representation allows an
alternative perspective on the grouping property of OSCAR.

The analysis of the OSCAR penalty region in H-representation is based on segmentation
of the p-dimensional parameter space IRp. First we partition IRp in the 2p orthants, which
are regions for which the signs of components are fixed. Second we segment every orthant
in p! regions which are defined by a fixed order of ranks of |βj|, j = 1, ..., p. Figure 2.4
illustrates the segmentation for one orthant in IR3.

The absolute value function |.| in the OSCAR penalty term corresponds to the orthants
and the segmentation of each orthant is given by the sum of pairwise maximum norms. It
is seen from (2.8) that the OSCAR penalty region is an H-polytope which depends on the
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Figure 2.4: The region described by the shortly dashed lines corresponds to the ordering

|βj | ≤ |βk| ≤ |βi|, long dashed lines correspond to the ordering |βj | ≤ |βi| ≤ |βk| holds and

solid lines correspond to the ordering |βi| ≤ |βj | ≤ |βk|.

order of ranks of |βj| and on the sign constellation with the order of ranks being linked to
the weights [c(j − 1) + 1].

For the derivation of the penalty region, P (A(c), t), we consider first the orthant with
only positive signs. For this orthant we create a (p! × p)-matrix �A(c) where every row
represents one of the p! permutation of the p weights [c(j − 1) + 1], j = 1, ..., p. In a
second step we form (2p− 1) matrices �A(c), which are constructed by changing the sign in
one column of �A(c). Finally we combine these matrices obtaining the (2p · p!)× p-matrix
A(c). The matrices built in the second step correspond to the orthants. Example A 2 in
the Appendix shows the H-representation of an OSCAR penalty region.

Therefore the OSCAR penalty region with the tuning parameters t > 0 and c > 0 is
represented by the intersection of 2p · p! hyperplanes, which shows the high complexity of
the OSCAR penalty region. It is remarkable that the 2p · p! constraints sum up to one
constraint given in (2.7).

On OSCAR’s Vertices

Hitherto the OSCAR penalty region is considered only as a H-polytope. The Main Theorem
(Theorem 1) suggests to consider the OSCAR penalty region as a V-polytope. The vertices
of the OSCAR penalty region have a simple structure which is given in the following
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proposition.

Proposition 1 Let an p-dimensional OSCAR penalty region with the tuning parameters
t > 0 and c > 0 be given. Then the set of vertices of the OSCAR penalty region is the set
of points with the following properties:

1. From the p components 1 ≤ m ≤ p components are nonzero and the absolute value
of these components is equal. The remaining p−m components are zero.

2. The 1 ≤ m ≤ p nonzero components of a vertex have the absolute value

v(m) :=
t�

p

j=p+1−m
[c(j − 1) + 1]

. (2.9)

For the proof see Appendix (Proof A 1).

Corollary 1 Under the conditions of Proposition 1 one obtains:

1. The OSCAR penalty region is the convex hull of 3p − 1 vertices,

2. The OSCAR penalty region is simplicial.

For the proof see Appendix (Proof A 2). It is remarkable that (2.9) depends not only on
the penalty level t and the tuning parameter c but also on the dimension of the problem p.

Figure 2.5 shows the OSCAR penalty region for different tuning parameters. For fixed
tuning parameter t and p (2.9) becomes smaller by increasing c. So for graphical illustration
we adjust t so that the axis intercepts are equal. The first row of Figure 2.5 explains the
naming of OSCAR. It illustrates that orthogonal projections of an OSCAR penalty region
on any βi-βj-plane form an octagon, which may be shown by using orthogonal projections
of the vertices on any βi-βj-plane. Because of symmetry, in Figure 2.5 only one projection
is shown. For further illustration the set of all vertices of an OSCAR penalty region in the
case p = 3 are given in the Appendix (Example A 3).

In general, the parameter c controls the form of the OSCAR penalty region. For
c → 0 it converges to the LASSO penalty region. This can be shown by considering the
limit c → 0 within the system of inequations. It is noteworthy that for c → ∞ and
p > 2 the OSCAR penalty region does not converge to a p-dimensional cube (p-cube),
which would enforce extreme grouping but no variable selection. A p-cube would make
sense only if all predictors were very highly correlated. Rather for c → ∞ the OSCAR
converges to a specific polytope. This can be derived by considering the following limit:
limc→∞ v(m1)/v(m2) = (

�
p

j=p+1−m2
(j − 1))/(

�
p

j=p+1−m1
(j − 1)), where v(.) is given by

(2.9). In the limit the ratio v(m1)/v(m2) depends only onm1 andm2, the different numbers
of nonzero components of vertices. Hence for c → ∞ the form of the OSCAR polytope is
fixed but does not converge to a p-cube.

Bondell and Reich (2008) describe the grouping (or clustering) property of OSCAR by
giving a relation between correlation and grouping. Another perspective on the properties



2.3 The V8 procedure 17

c = 0.1 c = 0.5 c = 2.0

Figure 2.5: The OSCAR penalty region with three different tuning parameter c. In the

first row the projections in to a βi-βj-plane is shown. In the second row a oblique view is

shown.

variable selection and grouping is obtained by considering vertices. From Figure 2.5 it is
seen that grouping of three variables is forced by the vertices in the middle of the orthants.
In general, for grouping of more than two predictors vertices with more than two nonzero
components seem to be necessary. Grouping or variable selection is performed if less than
p vertices take part in the convex combination of the OSCAR solution. Bondell and Reich
(2008) give an upper bound criterion for the relationship between the tuning parameter
c and the correlation of predictors but they do not use correlation directly for generating
the penalty.

2.3 The V8 procedure

In the following a correlation driven polytope is proposed, which uses the correlation within
data to define the penalty region.

2.3.1 The V8-polytope

The V8-polytope is called V8 because it is a V-polytope for which projections on any
βi-βj-plane are octagons. The construction focuses on the grouping property, which was
advocated in particular by Zou and Hastie (2005) and is behind OSCAR (Bondell and
Reich, 2008) and correlation-based penalties (Tutz and Ulbricht, 2009). The grouping of
highly correlated variables is enforced by shrinking the corresponding coefficients toward
a common coefficient. From a geometrical point of view this means: if two variables xi
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and xj are highly correlated the estimated coefficients should lie on the face of a polytopal
penalty region where |βi| = |βj| holds. This suggests to design correlation driven polytopes
where the correlation between predictors determines the form of the polytope. Although
highly correlated covariates do not necessarily have the same influence on the response, in
the case of high correlation, selection procedures like the LASSO tend to pick out only one
of the highly correlated covariates. When introducing the elastic net Zou and Hastie had
explicitly considered an example where the explanatory variables were just noisy versions
of the same variable. In cases like this the same parameter seems warranted. Moreover,
also in correlation based procedures the data still determine the coefficient, the penalty
just enforces the effect of identical parameters. Only for perfect correlation the correlations
are strictly set equal.

The V8-polytope should feature the following properties:

(P1) The orthogonal projection of the polytope on every βi-βj-plane, 1 ≤ i ≤ j ≤ p, is a
(convex) octagon.

(P2) The octagons are centrosymmetric.

(P3) Four vertices of each octagon lie on the axis at the values ±t, two on the βi-axis and
two on the βj-axis.

(P4) The four remaining vertices are on the bisecting line of the βi-βj-plane where |βi| =
|βj|.

The OSCAR penalty region shares all of these properties, which may be shown by project-
ing the vertices of the OSCAR penalty region on any βi-βj-plane. For the V8-polytope in
addition the penalty region is supposed to depend on the estimated correlation between
two predictors, ρij := corr(xi, xj) by use of a function c : [−1, 1] �→ [0, 1]. In general,
every function c(ρij) with the following properties is appropriate:

(1) c(0) = 1 .

(2) c(1) = c(−1) = 0.

(3) c(ρij) = c(−ρij).

(4) c(.) is increasing in [−1, 0] and decreasing in (0, 1].

In the following we use
c(ρij) := 1− |ρij|

k, k ≥ 1. (2.10)

The vertices described by (P3) are defined as the same vertices as for the LASSO L and
do not depend on the correlation. The vertices characterized by (P4) for any βi-βj-plane,
1 ≤ i ≤ j ≤ p, are specified by

Bij =

�
b ∈ IRp : |bi| =

t

1 + c(ρij)
, |bj| =

t

1 + c(ρij)
, bk = 0, k �= i, j

�
.
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It is obvious that |Bij| = 4. The assumptions (1)–(4) of the function c(.) induce the
following properties on Bij. If ρij → 0 the elements of Bij become redundant because they
are convex combinations of L. The projection on any βi-βj-plane converges to a diamond
with side length

√
2t and so variable selection is enforced. For |ρij| → 1 the four elements

{+tei, −tei, +tej, −tej} ⊂ L become redundant because they are convex combinations of
Bij. In this case the octagon converges to a square with side length 2t and grouping of the
variables xi and xj is enforced. For k = 1 in (2.10) this behavior is illustrated in the first
row of Figure 2.6. With B =

�
i<j

Bij the vertices of the V8 penalty region are V = L∪B.

There are
�
p

2

�
different sets Bij, and so |V| = 2p + 4 ·

�
p

2

�
= 2p2. An example for the case

p = 4 is given in the Appendix (Example A 4). It is obvious that V is convex and that for
ρij = 0, ∀i �= j, the V8 penalty region is the same as for LASSO. Figure 2.7 illustrates the
V8 penalty region for correlation structure given by ρ12 = 0.2, ρ13 = 0.5, ρ23 = 0.8. Here
we choose k = 1 in (2.10) again.

ρ = 0.1 ρ = 0.5 ρ = 0.9

Figure 2.6: V8-polytopes with unique correlation ρij between all pairs i-j where k = 1 in

(2.10).

In summary, the V8 constraint region enforces variable selection through the LASSO
vertices and enforces grouping through the vertices that are added by use of the correlation
between two variables.

2.3.2 Solving Polytopal Constrained Regression Problems

In general, a polytopal constrained regression problem can be formulated as follows:

�β = argminβ

�
�y −Xβ�2 , s.t. β ∈ P

�
, (2.11)
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Figure 2.7: Top left: An oblique view of the V8 penalty region. Top right: Orthogonal

projection on the β1-β2-plane where ρ12 = 0.2. Bottom left: Orthogonal projection on the

β1-β3-plane where ρ13 = 0.5. Bottom right: The orthogonal projection on the β2-β3-plane

where ρ23 = 0.8. k = 1 is used in (2.10).

where P is a polytope. Based on the Main Theorem (see Theorem 1) there are two different
ways to formulate (2.11). If P is an H-polytopes then (2.11) has the form

�β = argminβ

�
�y −Xβ�2 , s.t. Aβ ≤ t

�
. (2.12)

This is a linearly constrained regression problem with the quadratic loss function which
can be solved with established tools like lsqlin routine in MATLAB.

When P from (2.11) is a V-polytope let V = {v1, ..., vnV } denote the set of vertices of
P and I := {1, ..., nV } is the index set of V . Every point β ∈ P is a convex combination
of elements of V . The convex combination can be written in matrix notation

β = V · λ with V = (v1| · · · |vnV ) and λ = (λ1, ..., λnV )
T (2.13)

with λi ≥ 0,
�

i∈I λi = 1, vi ∈ V . So (2.11) turns into a quadratic optimization problem
in λ,

�λ = argminλ

�
�y −XV · λ�2 , s.t. λi ≥ 0,

�

i∈I

λi = 1, ∀i ∈ I

�
. (2.14)

For �λ the estimate �β is obtained by

�β = V · �λ. (2.15)

Since the transformation from H- to V-representation of a polytope can be computa-
tionally very expensive it is advisable to use the representation that is available. Thus we
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need an algorithm to find the optimal convex combination of vertices for solving problem
(2.14).

The definition of centrosymmetry (cf. Definition 4) states v ∈ P ⇔ −1 · v ∈ P . Thus
the set V of all vertices of a centrosymmetric polytope includes two subsets of vertices V+

and V− for which

V− = {−1 · v : v ∈ V+} , V+ = {−1 · v : v ∈ V−} ,
V+ ∩ V− = ∅, V = V+ ∪ V−,

(2.16)

holds. The structure allows to use only one of these two subsets, because each subset is its
complement multiplied by −1. The idea is graphically illustrated for p = 2 by Figure 2.8.

Figure 2.8: The solid vertices are elements of V+. The remaining vertices of V− are

produced by multiplying with −1.

It is obvious that the reduction of the set of vertices changes the constraint in (2.14).
We take V+ and its index set of vertices I+ = {1, ..., nV +}. With v+

i
, i ∈ I+, we denote

the elements of V+. Now we structure V in the following way. The first nV + elements of V
are equal to V+ and the second part of V is given by vnV ++i = −1 · v+

i
. Then, subject to

the convexity constraint of λ, for every β ∈ P holds

β =
�

i∈I

λivi =
�

i∈I+
λiv

+
i
+

�

i∈I+
λnV ++ivnV ++i

=
�

i∈I+
λiv

+
i
+

�

i∈I+
λnV ++i · (−1) · v+

i
=

�

i∈I+
(λi − λnV ++i)v

+
i

=
�

i∈I+
λ+
i
v+
i
.

Due to the convexity constraint of λ it is easy to show that
�

i∈I+(λi − λnV ++i) =�
i∈I+ λ+

i
∈ [−1, +1]. Analogously to (2.13) we convey V+ into a matrix V + =
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�
v+
1 | · · · |v

+
nV +

�
. With the reduced set of vertices (2.14) turns into

�λ
+
= argminλ+

�
��y −XV +

· λ+
��2

, s.t.
�

i∈I+
|λ+

i
| ≤ 1

�
(2.17)

where λ+ = (λ+
1 , ..., λ

+
nV +

)T . Analogously to (2.15) the estimate �β is obtained by

�β = V +
· �λ

+
. (2.18)

The constraint
�

i∈I+ |λ+
i
| ≤ 1 in (2.17) is a LASSO penalty. The equal sign holds if �βOLS

is not a inner point of the constraining polytope. We assume that the tuning parameter
t is appropriately chosen. The constrained regression problem (2.17) can be solved with
the LARS algorithm from Efron et al. (2004) quite efficiently. So if a centrosymmetric

V-polytope constrains the quadratic loss function the estimate is given by �β = V +
· �λ

+

with �λ
+
given by (2.17)

2.4 Simulation study

In this section we investigate the performance of several methods. All simulations are
based on the linear model

y = Xβtrue + �, � ∼ N(0, σ2In).

Each setting depends on the true parameter βtrue and the true covariance matrix of the
predictors Cov(X) = Σ = {σi, j}i, j. The V8 penalty depends on ρi, j and so we investigate
different covariance matrices for normally distributed variables. Each data set consists of
a training and a validation data set. The latter is used to determine the tuning param-
eters. The denotation ntrain/nvali is used to describe the number of observation of the
corresponding data sets. For each simulation scenario we use 50 replications.

For every method we use the following procedure to measure the performance. We
center the response and standardize the predictors of the training data set. xtrain =
(xtrain

1 , ..., xtrain

p
)T denotes the vector of means in the training data set and ytrain is the

mean of the response of the training data set. We use the transformed training data set to
fit different models specified on a grid of tuning parameters. By retransformation of the
coefficients we get a set of models M. The validation data set is used to determine the

model �β
opt

∈ M which minimizes the prediction error on the validation data set

�β
opt

= argmin�β∈M

�
nvali�

i=1

�
yvali
i

− (ytrain + (xvali

i
− xtrain)T �β

�2
�
.

For the V8 we use the validation data set to determine t and k in (2.10) where k ∈ {1, 2, 3}.

Finally, we quantify the performance of �β
opt

by computing two model assessment measure-

ments. The first is the mean squared error of prediction MSE = (βtrue
− �β

opt

)TΣ(βtrue
−
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�β
opt

) (where σ2 is omitted), the second is the mean squared error for the estimation of
the parameter vector MSEβ. The MSE and MSEβ of the 50 replications are illustrated
by boxplots. The standard deviation of the medians is calculated by bootstrapping with
B = 500 bootstrap iterations.

Since we focus on shrinkage procedures with variable selection and the grouping prop-
erty we compare V8, OSCAR, and Elastic Net (EN). It is remarkable that the EN penalty
region is not polytopal. We add LASSO in our comparison because it is a special case of
these three procedures. For the OSCAR we use the MATLAB-code which was available in
2007 on Bondell’s homepage. The procedure tuned out to be computational very expen-
sive. Therefore it was not possible to provide OSCAR for all settings. For computing the
LASSO and EN we use also a MATLAB-routine (see Sjöstrand, 2005).

The settings are described in the following:

Sim 1 Let the underlying parameter vector be βtrue = (3, 0, 0, 1.5, 0, 0, 0, 2)T and stan-
dard error σ = 3. The correlation between the i-th and j-th predictor follows

σi, j = ρ|i−j|, ∀i, j ∈ {1, ..., 8}. (2.19)

The numbers of observations are 20/20. We choose different value for ρ, ρ ∈

{0.5, 0.7, 0.9}. Tibshirani (1996) used a similar setting for ρ = 0.5. For ρ = 0.7
this setting is equivalent ot the first setting of Bondell and Reich (2008). For ρ = 0.9
the range of pairwise correlations is the largest.

Sim 2 This setting is the same as the first setting excepting βtrue =
(3, 2, 1.5, 0, 0, 0, 0, 0)T . For ρ = 0.7 this setting is equivalent to the second
setting of Bondell and Reich (2008).

Sim 3 In this setting the correlation is given by (2.19) but the coefficient vector is βtrue =
(0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85)T . For ρ = 0.5 we get the third setting
of Tibshirani (1996) and for ρ = 0.7 we get the third setting of Bondell and Reich
(2008).

Sim 4 In this setting there are p = 100 predictors. The parameter vector is structured in
blocks,

βtrue = (2, ..., 2� �� �
10

, 0, ..., 0� �� �
10

, 4, ..., 4� �� �
10

, 0, ..., 0� �� �
10

,−2, ..., −2� �� �
10

, 0, ..., 0� �� �
10

,

0, ..., 0� �� �
15

, 2, ..., 2� �� �
5

, 0, ..., 0� �� �
20

)T

and σ = 15. Between the first six blocks of 10 variables there is no correlation.
Within these six blocks we use the correlation structure from (2.19). The remaining
40 variables are uncorrelated. The numbers of observations are 200/200. As noted
above this setting could not be analyzed by OSCAR.
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Sim 5 The last setting is equal to the forth setting but numbers of observations changes
to 50/50. So there is the p ≥ n case where the OLS does not exist. The OSCAR is
not calculable.

The results are summed up in Table 2.1. For illustration we show the simulation scenarios
with ρ = 0.9 in Figure 2.9.

Figure 2.9: Boxplots of the mean squared error of prediction MSE and the mean squared

error of β, MSEβ, for the different procedures and the five simulation settings with ρ = 0.9.
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MSEβ MSE MSEβ MSE MSEβ MSE
ρ = 0.5 ρ = 0.7 ρ = 0.9

Sim 1

LASSO
3.152 3.128 5.197 3.426 7.055 2.558
(0.455) (0.392) (0.665) (0.413) (0.880) (0.429)

V8
3.334 3.206 6.490 3.845 8.942 2.638
(0.394) (0.321) (0.688) (0.340) (0.495) (0.311)

OSCAR
2.995 3.376 5.837 3.484 7.167 2.082
(0.469) (0.351) (0.478) (0.342) (0.727) (0.314)

EN
3.244 3.419 5.676 3.483 7.627 2.949
(0.546) (0.458) (0.576) (0.480) (1.000) (0.577)

Sim 2

LASSO
3.419 3.527 4.661 3.597 7.475 2.046
(0.620) (0.306) (0.603) (0.406) (0.659) (0.236)

V8
3.088 3.048 4.347 2.842 5.376 1.920
(0.359) (0.232) (0.603) (0.406) (0.261) (0.221)

OSCAR
2.905 3.536 4.263 3.357 4.835 1.982
(0.349) (0.335) (0.301) (0.309) (0.495) (0.174)

EN
3.336 3.111 4.870 2.936 7.618 1.667
(0.555) (0.421) (0.547) (0.273) (0.684) (0.186)

Sim 3

LASSO
4.104 3.904 4.882 3.272 8.405 2.527
(0.201) (0.373) (0.467) (0.281) (1.094) (0.239)

V8
3.163 3.419 3.590 3.081 4.233 1.942
(0.205) (0.337) (0.271) (0.287) (0.297) (0.294)

OSCAR
1.963 2.644 1.065 2.291 0.455 0.966
(0.277) (0.431) (0.436) (0.234) (0.108) (0.276)

EN
4.923 4.600 6.647 3.651 9.130 2.692
(0.255) (0.454) (0.420) (0.408) (1.083) (0.249)

Sim 4

LASSO
91.736 90.709 100.463 73.466 156.118 73.466
(4.695) (3.249) (4.657) (3.232) (7.800) (1.712)

V8
77.429 77.511 74.947 64.996 103.720 64.505
(3.960) (3.265) (2.038) (3.089) (3.130) (1.881)

OSCAR
— — — — — —
(—) (—) (—) (—) (—) (—)

EN
97.818 89.189 104.211 72.760 164.128 70.958
(3.778) (3.589) (5.130) (2.200) (7.583) (1.944)

Sim 5

LASSO
213.602 260.045 259.152 270.264 298.498 215.500
(7.369) (12.753) (12.542) (11.104) (13.134) (12.688)

V8
175.526 221.260 175.526 195.957 181.008 159.129
(6.433) (14.614) (5.972) (6.579) (10.058) (7.650)

OSCAR
— — — — — —
(—) (—) (—) (—) (—) (—)

EN
228.235 262.936 275.566 254.742 317.582 212.603
(9.050) (10.609) (8.712) (14.413) (16.670) (8.267)

Table 2.1: Median of mean squared errors of prediction MSE and the median of mean

squared errors of β, MSEβ. The corresponding standard deviations are estimated by boot-

strapping with 500 bootstrap iterations given in brackets.



26 2. Shrinkage by Polytopes

It is obvious that Simulation 1 is a challenge for the V8 procedure. Forced by the
underlying correlation structure the V8 tries to group the influential variable with their
neighbors that have no influence on the response. As expected, for the second setting
the V8 procedure shows better performance. It competes well with OSCAR, the other
procedures perform worse in particular in terms of MSE.

Although we are mainly interested in procedures with variable selection property we
chose setting 3 because it was often used in the literature (see Bondell and Reich, 2008;
Tibshirani, 1996; Zou and Hastie, 2005). In this setting the OSCAR is the best procedure
because it can group all the variables. All other procedures are unable to do this. But
the setting shows that adding new vertices to the LASSO penalty yields definitely better
results. The performance of the LASSO is topped by both polytopes with additional
vertices (OSCAR and V8). The V8 is the second best in both criteria.

The two last simulations show that the V8 procedure works quite well especially for the
p � n-case. LASSO as well as EN were outperformed by V8. The computational costs of
the OSCAR were so high that it was not possible to include it in the competition.

2.5 Data Example

The body fat data set has been published by Penrose et al. (1985). The aim was to estimate
the percentage of body fat of 252 men by use of thirteen regressors. The regressors are
age (1), weight (lbs) (2), height (inches) (3), neck circumference (4), chest circumference
(5), abdomen 2 circumference (6), hip circumference (7), thigh circumference (8), knee
circumference (9), ankle circumference (10), biceps (extended) circumference (11), forearm
circumference (12), and wrist circumference (13). All circumferences are measured in cm.
Some of the predictors are highly correlated, i.e. ρij ≈ 0.9. The response has been calcu-
lated from the equation by Siri (1956) using the body density determined by underwater
weighting. In order to compare the performances of the different procedures we split the
data at random into 25 training sets with ntrain = 151 and test sets with ntest = 101. For
the second tuning parameter of the V8 we chose k = 1 because in the simulation study
it turned out to work quite well. The remaining tuning parameters were determined by
tenfold cross-validation on the training data set. Afterwards we estimated the model on
the whole training data set. The median of prediction errors across 25 random splits were
22.03 (LASSO), 21.32 (V8), 21.99 (OSCAR) and 23.30 (Elastic Net). The corresponding
boxplots are shown in Figure 2.10. It is seen that correlation based penalization has the
best performance in terms of mean squared errors. The OSCAR and the EN depend on
two tuning parameters. So the computational costs are high especially for fine grids. The
OSCAR procedure has the highest costs and does not preform better than the V8.
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Figure 2.10: Boxplots of different methods for 25 random splits of the body fat data set

with ntrain = 151 and ntest = 101.

2.6 Concluding Remarks

It has been shown that polytopes are very flexible geometric objects which are useful
for constraining regression problems. In particular their flexibility can be used to design
specific polytopes that incorporate additional information contained in the data. The V8
procedure has been designed in this spirit as a correlation-based V-polytope. Although
one can see it as an advantage that OSCAR and the elastic net do not need additional
weights their inclusion is an option in the construction of estimators.

For the computation of least squares problems which are constrained by centrosym-
metric V-polytopes a modification of the LARS-algorithm has been proposed. V8 works
quite well, in particular in the p � n case because it uses the efficient LARS-Algorithm.
Therefore, it can be applied where OSCAR fails because of its high computational costs.
The second tuning parameter of V8, k, has no great influence on the results. So we chose
k = 1. In this case V8 uses only one tuning parameter, which reduces computational costs
for searching optimal tuning parameters.

We restricted attention here to penalty regions which do not assume order information
in the predictors. Therefore, we considered only the LASSO and OSCAR as specific poly-
tope based procedures. If order information is available, as for example in signal regression,
a successful strategy is to use the Fused Lasso (Tibshirani et al., 2005), which is also a
polytopal penalized regression problem with polytopes that reflect the order of predictors.

Of course it is possible to use the presented algorithm for OSCAR by substituting V +

of (2.17) in an appropriate way. The vertices are given in Proposition 1. But the large
numbers of vertices of the OSCAR penalty makes the algorithm not more efficient than
the original algorithm proposed by (Bondell and Reich, 2008).



28 2. Shrinkage by Polytopes



Chapter 3

Pairwise Fused Lasso

The Fused Lasso penalty from Tibshirani et al. (2005) combines variable selection with
clustering neighbored predictors. In this chapter the Fused Lasso penalty is generalized to
unordered predictors. This chapter is based on Petry et al. (2010).

3.1 Introduction

Regularized estimation of regression parameters has been investigated thoroughly within
the last decade. With the introduction of LASSO, proposed by Tibshirani (1996), methods
for sparse modeling in the high-predictor case became available. In the following years
many alternative regularized estimators which include variable selection were proposed,
among them the elastic net (Zou and Hastie, 2005), SCAD (Fan and Li, 2001), the Dantzig
selector (Candes and Tao, 2007) and boosting approaches (for example Bühlmann and Yu,
2003; Bühlmann and Hothorn, 2007). Meanwhile most procedures are also available for
generalized linear models (GLMs). Since we will also work within the GLM framework in
the following some notation is introduced.

Let the generalized linear model (GLM) with response function h(.) be given by

µ = E(y|X) = h(1β0 +Xβ),

where y = (y1, ..., yn)T is the response vector and X is the design matrix. It is assumed
that the predictors are standardized,

�
n

i=1 xij = 0 and (n − 1)−1
�

n

i=1 x
2
ij

= 1, ∀j ∈

{1, ..., p}. In the linear predictor η = 1β0 + Xβ the intercept β0 is separated because
usually it is not penalized. With β0 = (β0, β

T ) we denote the parameter vector including
the intercept β0. Given the ith observation X i the yi are (conditionally) independent
observations from a simple exponential family

f(yi|θi,φ) = exp

�
yiθi − b(θi)

φ
+ c(yi,φ)

�
, (3.1)

where θi is the natural parameter of the family, φ is a scale or dispersion parameter and
b(.), c(.) are specific functions corresponding to the type of the family.

29
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Penalized likelihood estimates of coefficients have the general form

�β0 = argminβ0
{l(β0) + Pλ(β)} ,

where Pλ(β) is the penalty term that regularizes the estimates and l(β0) is the negative
log-likelihood function which corresponds to (3.1). Hoerl and Kennard (1970) propose the
Ridge regression estimator. They use

PR

λ
(β) = λ

p�

j=1

β2
j

as penalty term. The ridge estimator has frequently smaller prediction error than ordinary
maximum likelihood (ML) estimates but does not select predictors. The LASSO penalty

PL

λ
(β) = λ

p�

j=1

|βj|

proposed by Tibshirani (1996) has the advantage that coefficients whose corresponding
predictors have vanishing or low influence on the response are shrunk to zero.

In the case of highly correlated influential covariates the LASSO procedure tends to
select only few of these. Zou and Hastie (2005) present the elastic net (EN) to avert this
property of the LASSO. The EN combines variable selection with grouping variables. In
terms of Zou and Hastie (2005) an estimator exhibits the grouping property if it tends to
estimate the absolute value of coefficients (nearly) equal if the corresponding standardized
predictors are highly correlated. As discussed by Zou and Hastie (2005) the LASSO does
not group predictors and estimates maximal n predictors unequal to 0. The EN avoids
this effects. Its penalty term is the sum of LASSO and ridge penalty

PL

λ1
(β) + PR

λ2
(β)

and is a strongly convex penalty which can also perform variable selection. Nowadays R
packages for solving the LASSO- or the EN-penalized likelihood problems for GLMs are
available. For example Goeman (2010a) and Friedman et al. (2010b) proposed algorithms
to solve elastic net penalized regression problems. Both algorithms are available as R-
packages penalized and glmnet. Lokhorst et al. (2007) and Park and Hastie (2007b)
provided the R-packages the lasso2 and glmpath for solving LASSO penalized regression
problem.

More recently, several alternative methods that also show grouping have been proposed.
Bondell and Reich (2008) proposed OSCAR for Octagonal Shrinkage and Clustering Al-
gorithm for Regression. An attractive feature of OSCAR is that it can group very strictly.
For specific choice of the tuning parameters the estimates of coefficients are exactly equal.
Therefore one obtains clustered predictors where one cluster shares the same coefficient.
Typically one big cluster has estimates zero representing the predictors that have not been
selected. Tutz and Ulbricht (2009) considered correlation based regularization terms that
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explicitly take the correlation of predictors into account. In order to obtain variable se-
lection the correlation-based penalty is used within a boosting algorithm. Alternatively
an LASSO term has to be added to the correlation-based terms (see Anbari and Mkhadri,
2008).

In the present chapter an alternative method that enforces the grouping effect is pro-
posed. It uses penalty terms that are similar to the Fused Lasso (FL) proposed by Tibshi-
rani et al. (2005) and shows good performance in terms of variable selection and prediction.

3.2 Pairwise Fused Lasso (PFL)

The original fused lasso (Tibshirani et al., 2005) was developed for ordered predictors or
signals as predictors and metrical response. For such kind of predictors it is possible to use
the distances between predictors to obtain clustering. For example if the predictors are
signals depending on frequencies the predictor is ordered by the frequency. This suggests
that adjacent frequencies should have similar influence on the response. Or in others
words small chances of the frequency should only have small influence on the response. For
inducing variable selection (Tibshirani et al., 2005) add an LASSO term to the penalization
of adjacent coefficients. Thus the fused lasso penalty

P FL

λ1,λ2
(β) = λ1

p�

j=1

|βj|+ λ2

�

j=2

|βj − βj−1|, λ1, λ2 ≤ 0, (3.2)

penalizes the difference between the coefficients of adjacent predictors βj and βj−1. With
proper selection of tuning parameters adjacent predictors are fused or grouped. The first
summand (the LASSO term) of the fused lasso penalty enforces variable selection, the
second enforces fusion.

The pairwise fused lasso (PFL), which is proposed here, extends the fused lasso (Tib-
shirani et al., 2005) to situations where the predictors have no natural ordering. Fusion
refers to all possible pairs of predictors and not only to adjacent ones. Thus, the pairwise
fused lasso penalty is defined by

P PFL

λ,α
(β) = λ

�
α

p�

j=1

|βj|+ (1− α)
p�

j=2

j−1�

k=1

|βj − βk|

�
, (3.3)

where λ > 0 and α with α ∈ [0, 1] are the tuning parameters. The first term of the pairwise
fused lasso penalty is the LASSO penalty and accounts for variable selection, the second
term represents the sum of the absolute values of all pairwise differences of regression
coefficients. This part of the penalty induces clustering.

By using all pairwise differences the pairwise fused lasso assumes no ordering of the
predictors. For categorical predictors a similar penalty has been used for factor selection in
ANOVA by Bondell and Reich (2009), and for categorical variable selection by Gertheiss
and Tutz (2010).
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Of cause it is possible to give the PFL penalty term (3.3) alternatively by

P PFL

λ1,λ2
(β) = λ1

p�

j=1

|βj|+ λ1

p�

j=2

j−1�

k=1

|βj − βk|, λ1, λ2 ≤ 0, (3.4)

which is more similar to (3.2). We prefer the notation of Equation (3.3) because the range
of one tuning parameter, namely α, is known. For special choices of λ and α in (3.3) on
the one hand and λ1 and λ2 in (3.4) on the other hand the result are equal.

Soil Data - An Illustrating Example

In the soil data, which were used by Bondell and Reich (2008), the response is rich-cove
forest diversity (measured by the number of different plants species) in the Appalachian
Mountains of North Carolina and the explaining covariates are 15 characteristics. Twenty
areas of the same size were surveyed. The number of observations was 20 which is close to
the number of predictors which was 15. The data can be partitioned into two blocks. On
the one hand there is a group of 7 highly correlated predictors. This group contains cationic
covariates, 4 cations (calcium, magnesium, potassium, and sodium) and 3 measurements
that are very close to them. The other group of covariates contains 4 other chemical
elements and 4 other soil characteristics, for example pH-value. The correlations within
this group is not very high. It is remarkable that the design matrix has not full rank.

For illustration we use four different methods, LASSO and three PFL methods. The first
segments of the coefficient paths are given in Figure 3.1 and demonstrate the selecting and
grouping property. In the left column of Figure 3.1 the paths of the cationic type covariates
are shown and in the right column the path of remaining covariates are illustrated. It is seen
that there is a strong similarity between the LASSO and the PFL method for α = 0.98.
For large values of the tuning parameter λ, i.e. small values of |β|, the LASSO selects
only few covariates. This effect is also seen in the group of the highly correlated cationic
covariates. As discussed by Zou and Hastie (2005) or Breiman (1996) variable selection
inner groups of highly correlated covariates can induces instability to the estimate. For
smaller value of α the selection part becomes weaker and the fusion part stronger. It is
seen that for α = 0.9 and more distinctly for α = 0.1 the highly correlated variables are
fused, but there is hardly any effect beside selection for the weaker correlated variables in
the second column of Figure 3.1.

Extended Versions of Fused Lasso

The pairwise fused lasso penalty (3.3) can be modified by adding different weights to
achieve an improvement of the prediction accuracy or of the mean squared error of the
estimated parameter vector. Accordingly, a modification of the penalty term is

P PFL

λ,α,w (β) = λ

�
α

p�

j=1

wj|βj|+ (1− α)
p�

j=2

j−1�

k=1

wjk|βj − βk|

�
, (3.5)
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Figure 3.1: First segments of the solution paths for standardized coefficients on the

whole soil data set for decreasing tuning parameter λ. Left column: paths of the cationic

covariates. Right column: paths of the non cationic covariates. First row: coefficient

path of the LASSO. Second row: coefficient path of PFL model with small clustering part

(α = 0.98). Third row: coefficient path of PFL model with α = 0.9. Fourth row: coefficient

path of PFL model with dominating fusion part (α = 0.02).
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where wj and wjk are additional weights. One possibility is to choose wj = |βML

j
|−1 and

wjk = |βML

j
− βML

k
|−1, where βML

i
denotes the ith component of maximum likelihood

estimate. This choice is motivated by the adaptive LASSO (Zou, 2006) and its oracle
properties. These data-dependent weights can yield better prediction error if the maximum
likelihood is well conditioned. In contrast to the simple pairwise fused lasso (3.3) where
all parameters have the same amount of shrinkage strength the penalty term (3.5) varies
the shrinkage effect across coefficients. Large values of |βML

i
| yield small weights wi and

consequently weaker shrinkage of the corresponding parameters. If the maximum likelihood
estimates of the jth and the kth predictor have nearly the same value the weight wjk

becomes high. So wjk causes a great influence of |βj − βk| on the penalized negative log-
likelihood problem. Because of the great weight the difference |βj −βk| must become small
by minimizing the penalized negative log-likelihood.

Another possibility is to include the correlation among predictors into the penalty.
Zou and Hastie (2005) showed a relationship between correlation and grouping such that
strongly correlated covariates tend to be in or out of the model together, but the correlation
structure was not used explicitly in the penalty term. A regularization method, which is
based on the idea that highly correlated covariates should have (nearly) the same influence
on the response except to their sign, is the correlation based penalty considered by Tutz
and Ulbricht (2009). Coefficients of two predictors are weighted according to their marginal
correlation. As a result, the intensity of penalization depends on the correlation structure.
Inspired by this consideration the penalty term of the pairwise fused lasso can be extended
to

P PFL

λ,α, �ρ (β) = λ

�
α

p�

j=1

|βj|+ (1− α)
p�

j=2

j−1�

k=1

1

1− |�ρjk|
|βj − sign(�ρjk)βk|

�
, (3.6)

where �ρjk denotes the estimated marginal correlation between the jth and the kth predictor.
The factor sign(�ρjk) is caused by the fact that two negatively correlated predictors have
the same magnitude of influence but different signs. That is, for �ρjk → 1, the coefficients
�βj and �βk are nearly the same and for ρjk → −1, �βj will be close to −�βk, respectively.
In the case of uncorrelated predictors (�ρjk = 0) we obtain the usual, unweighted pairwise
fused lasso penalty.

Since the marginal correlation measures the interaction between the predictors xj and
xk without taking further covariates into account, we also investigate the correlation based
penalty in Equation (3.6) with partial correlations instead of the marginal ones. The
partial correlation determines to what extent the correlation between two variables depends
on the linear effect of the other covariates (Whittaker, 1990). Thereby, the aim is to
eliminate this linear effect. We compute the partial correlation matrix with the R package
corpcor (Schäfer et al., 2009). In this package a method for the regularization of (partial)
correlation matrix is implemented. Especially in ill conditioned problems the regularization
of (partial) correlation matrices makes sense. In general the correlation based weights can
be substituted by any dependency measurement which is normed on [−1, 1]. A combination
of correlation based weights and maximum likelihood weights is possible. But this quite
complicate penalty term does not improve the performance.
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3.2.1 Solving the Penalized ML Problem

In this section we discuss two procedures for solving the PFL problem

�β
PFL

0 = argminβ0

�
l(β0) + P PFL

λ,α
(β)

�
,

where P PFL

λ,α
(β) can be modified to include weights or correlation terms. The first approach

works only for normally distributed response. It is based on the LARS algorithm from
Efron et al. (2004). The second procedure is a generic algorithm based on local quadratical
approximation (LQA). The basic principles of this algorithm were given by Osborne et al.
(2000) and Fan and Li (2001). The general LQA algorithm can solve a very wide class of
penalized likelihood problems (see Ulbricht, 2010b) and is available as the R-package lqa
(Ulbricht, 2010a). We will give a short introduction to the algorithm in the second part of
this section.

Metric Regression and the LARS approach

We assume that y is centered and the response is normally distributed. Then one has to
solve the penalized least square problem

�β
PFL

= argminβ

�
�y −Xβ�2 + P PFL

λ,α
(β)

�
. (3.7)

It is helpful to reparameterize the problem as follows. Let new parameters be defined by

θjk = βj − βk, 1 ≤ k < j ≤ p,
θj0 = βj, 1 ≤ j ≤ p,

(3.8)

with the restriction
θjk = θj0 − θk0, 1 ≤ k < j ≤ p. (3.9)

Let 0
p×(p2)

be a p×
�
p

2

�
-matrix zero matrix. Then we expand design matrix X with 0

p×(p2)
to a new design matrix (X|0

p×(p2)
). The corresponding parameter vector is

θ = (θ10, ..., θp0, θ21, ..., θp(p−1))
T . (3.10)

With the PFL penalty having the form

P PFL

λ,α
(θ) = λ

�
α

p�

j=1

wj0|θj0|+ (1− α)
p−1�

j=1

p�

k=j+1

wjk|θjk|

�
,

the restriction (3.9) is incorporated by using an additional quadratic penalty term�
p−1
j=1

�
p

k=j+1(θj0 − θk0 − θjk)2 weighted by a large tuning parameter γ. This yields

�θ
PFL

= argminθ

�
�y − (X|0

p×(p2)
)�2

+γ
�

p−1
j=1

�
p

k=j+1(θj0 − θk0 − θjk)2

+λ
�
α
�

p

j=1 wj0|θj0|+ (1− α)
�

p−1
j=1

�
p

k=j+1 wjk|θjk|
��

.

(3.11)
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For γ → ∞ the restriction (3.9) is fulfilled. The reparameterization (3.8) allows to formu-
late the approximate estimator (3.11) as a LASSO type problem. Similar reparameteriza-
tions were used by Zou and Hastie (2005) to represent the elastic net problem as a LASSO
type problem. In the present problem one uses

�θ
PFL

= argminθ

�
�y0 −

�Dθ�2

+λ
�
α
�

p

j=1 wj0|θj0|+ (1− α)
�

p−1
j=1

�
p

k=j+1 wjk|θjk|
��

,
(3.12)

where y0 = (yT , 0T

(p2)
)T and 0 denotes a zero vector of length

�
p

2

�
. �D is the design matrix

�D =

�
X|0

p×(p2)√
γC

�
,

where the matrix C is the p ×
��

p

2

�
+ p

�
-matrix which accounts for the restriction (3.9)

which is equivalent to

θj0 − θk0 − θjk = 0, 1 ≤ k < j ≤ p. (3.13)

So the restriction (3.9) is fulfilled if Cθ = 0(p2)
and C has the following form. Let δjk,

1 ≤ k < j ≤ p, denote a p-dimensional row vector with −1 at the kth and +1 at the jth
component and zero otherwise. Let τm denote a

�
p

2

�
-dimensional row vector whose mth

component is −1 and zero otherwise. Then all constrains given by (3.9) resp. (3.13) can
be summarized in matrix notation

C =





δ21 τ 1

δ31 τ 2
...

...
δp1 τ p−1

δ32 τ p

δ42 τ p+1
...

...
δp(p−1) τ(p2)





. (3.14)

Let Θ = {(i, j)|0 ≤ j < i < p} denote the index set of the components of θ given by (3.10)
one obtains

�θ
PFL

= argminθ

�
�y0 −

�Dθ�2 + λ(
p�

j=1

|α · θj0|+
p−1�

j=1

p�

k=j+1

|(1− α) · θjk|)

�

= argminθ

�
�y0 −

�Dθ�2 + λ(
�

t∈Θ

|α · θt|+ |(1− α) · θt|)

�
. (3.15)
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Equation (3.15) is a LASSO problem on the expanded design matrix �D weighted by α and
(1− α). The weights can be included by multiplying �D with the reciprocals of weights

D = �D diag(α · w10, ..., α · wp0, (1− α) · w21, ..., (1− α) · wp(p−1))
−1, (3.16)

to obtain

�θ
PFL

= argminθ

�
�y0 −Dθ�2 + λ(

�

t∈Θ

|θt|)

�
.

Finally to get �β
PFL

we have to multiply the first p components of �θ
PFL

with
α−1 diag(αw10, ..., αwp0). For the correlation based pairwise fused lasso we have to modify

the submatrix C of �D. If sign(�ρjk) = −1 then δjk, 1 ≤ k < j ≤ p, is a p-dimensional
row vector where the kth and the jth component are +1 and all remaining are zero (see
equation (3.6)). It is remarkable that for wjk = 1, 0 ≤ 1 < k ≤ p, in (3.16) we get the
unweighted PFL as given in (3.3).

Generalized Linear Models and the LQA Approach

A general class of penalized generalized linear models can be fitted by using the local
quadratic approximation (LQA) approach (Ulbricht, 2010b). The LQA algorithm solves
penalized minimization problems

�β0 = argminβ0

�
l(β0) + P δ

λ(β)
�
, (3.17)

where l(β0) is the negative log-likelihood of the underlying generalized linear model and
the penalty term is a sum of J penalty functions having the form

P δ

λ(β) =
J�

j=1

pλj ,j(|a
T

j
β|), (3.18)

where the aj are known vectors of constants.Let the superscript δ denote the specific
penalty family, e.g. P PFL

λ,α
(β) denotes the pairwise fused lasso penalty. The penalty pro-

posed by Fan and Li (2001) has the special structure P δ

λ
(β) =

�
p

j=1 pλ(|βj|). Since for
that structure the vectors aj have only one non-zero element it cannot be used to include
interactions between the predictors. Hence, the approach of Fan and Li (2001) can be
applied only to penalty families such as ridge and LASSO, but not to the fused lasso or
pairwise fused lasso.

In 3.18 the sum of all J penalty functions pλj ,j(|a
T

j
β|) determines the penalty region,

the number J of penalty functions is in general not equal to the number of regressors p.
Furthermore, the type of the penalty function and the tuning parameter λj do not have
to be the same for all J penalty functions. It is easily seen that the pairwise fused lasso
penalty can be described by

P PFL

λ,α
(β) =

p+(p2)�

j=1

pλ,α,j(|a
T

j
β|).
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The first p penalty functions are

pλ,α,j(·) = λ · α|aT

j
β|, j = 1, . . . , p,

where aj = (0, . . . , 0, 1, 0, . . . , 0)T is a p-dimensional vector of zeros apart from the jth
position which is 1. This part represents the LASSO term of the PFL penalty. The
remaining

�
p

2

�
penalty functions are for the difference penalty term. They are given by

pλ,α,j(·) = λ (1− α) |aT

j
β|, j = p+ 1, . . . , p̃+ p

where the p-dimensional vectors aj have the form aj = (0, . . . ,−1, 0, . . . , 1, 0, . . . , 0). They
describe the differences between two parameters.

An often applied principle in solving convex optimization problems is to use a quadratic
approximation of the objective function. If the objective function is twice continuously dif-
ferentiable iterative procedures of the Newton type are applied. Therefore, we need the
gradient and the Hessian of the objective function. Since the first term of (3.17) is the
negative log-likelihood, we can use the corresponding score function and expected Fisher
information matrix. For the second term, one cannot proceed the same way because it
includes L1-norm terms. Therefore, Ulbricht (2010b) developed a quadratic approxima-
tion of the penalty term (3.18) which is shortly sketched in the following. Based on this
approximation, Newton-type algorithms can be applied.

Let the following properties hold for all J penalty functions:

1. pλ,j : IR≥0 → IR≥0 with pλ,j(0) = 0,

2. pλ,j is continuous and monotone in |aT

j
β|,

3. pλ,j is continuously differentiable for all aT

j
β �= 0, i.e. dpλ,j

�
|aT

j
β|
�
/d|aT

j
β| ≥ 0 for

all aT

j
β ≥ 0.

Let β(k) denote the approximation of the estimate �β at the kth iteration of the LQA
algorithm. Then the first order Taylor expansion of the jth penalty function in the neigh-
borhood of β(k) can be written as

pλ,j
�
|aT

j
β|
�
≈ pλ,j

�
|aT

j
β(k)|

�
+

1

2

p�
λ,j

�
|aT

j
β(k)|

�
��

aT
j
β(k)

�2
+ c

�
βTaja

T

j
β − βT

(k)aja
T

j
β(k)

�
(3.19)

which is a quadratic function of β. Thereby, p�
λ,j

�
|aT

j
β(k)|

�
= dpλ,j

�
|aT

j
β|
�
/d|aT

j
β| ≥ 0

denotes the first derivative and c is a small positive integer (for our computations we choose
c = 10−8). Using matrix notation and summation over all J penalty functions the Taylor
expansion is equivalent to

J�

j=1

pλ,j
�
|aT

j
β|
�
≈

J�

j=1

pλ,j
�
|aT

j
β(k)|

�
+

1

2

�
βTaλβ − βT

(k)aλβ(k)

�
, (3.20)
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with

aλ =
J�

j=1

p�
λ,j

�
|aT

j
β(k)|

�
��

aT
j
β(k)

�2
+ c

aja
T

j
(3.21)

which does not depend on the parameter vector β. Since an intercept is included in the
model, the penalty matrix is extended to

a∗
λ
=

�
0 0T

0 aλ

�
, (3.22)

where 0 is the p-dimensional zero vector. Then, starting with the initial value b(0), the
update step of this Newton-type algorithm based on local quadratic approximations of the
penalty term is

b(k+1) = b(k) −
�
F (b(k)) + a∗

λ

�−1 �
−s(b(k)) + a∗

λ
b(k)

�
. (3.23)

Corresponding to the log-likelihood l(b), s(b) and F (b) denote the score function and
Fisher information matrix, respectively. Iterations are carried out until the relative distance
moved during the kth step is less or equal to a specified threshold �, i.e. the termination
condition is

�b(k+1) − b(k)�

�b(k)�
≤ �, � > 0. (3.24)

3.3 Simulation Study

In this section we investigate the performance of the pairwise fused lasso and compare it
to established procedures. All simulations are based on the generalized linear model

E(y|X) = h(Xβtrue),

where h(.) is the canonical response function. 50 replications are performed for every
simulation scenario and in each replication we generate a training, a validation and a
test data set. The observation numbers of the corresponding data sets are denoted by
ntrain/nvali/ntest. We use training data set to fit the models defined by the different tuning
parameter(s). With B we denote the corresponding set of parameter vectors. By the
minimizing the predictive deviance on the validation data set we determined the optimal

tuning parameters and corresponding parameter vector �β
opt

0 ,

�β
opt

0 = argmin�β0∈B

�
−2(l(yvali, h(�β0 +Xvali

�β))− l(yvali, yvali))
�
,

where yvali is the response vector of the validation data set and h(�β0 + Xvali
�β) is the

estimated expectation based on β0 ∈ B and on the matrix of covariates of the validation
data set Xvali. Finally we use the test data set to evaluate the prediction by the predictive
deviance on the test dataset,

Devtest = −2(l(ytest, �ytest)− l(ytest, ytest)).
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Here �ytest = h(�βopt

0 +Xvali
�β
opt

) is the estimated expectation based on the optimal parame-

ter vector �β
opt

0 and the matrix of covariates of the test data set X test. With ytest we denote
the observed response values of the test data set. Further we use the mean squared error
between the true parameter vector and the estimate βopt

MSEβ = �βtrue −
�β
opt

�
2

to measure the accuracy of the estimate of β. The result are illustrated by boxplots. We
do not show the outliers because of graphical reasons. As abbreviation for the differently
weighted PFLs we will use the following:

PFL denotes PFL penalty with all weights set to 1.

PFL.ml denotes PFL penalty with ML-weights.

PFL.cor denotes PFL penalty with correlation driven weights.

PFL.pcor denotes PFL penalty with partial correlation driven weights.

We give the LASSO, EN, and the ML estimates for comparison. We calculate the LASSO
and the EN estimates by the LQA routine. Since we investigate a regularization method with
both variable selection and grouping property, we use the following simulation scenarios.

Normal Regression

Setting 1: This setting is specified by the parameter vector βtrue = (3, 1.5, 0, 0, 0, 2, 0, 0)T

and standard error σ = 3. The correlation between the i-th and the j-th predictor is

corr(i, j) = 0.9|i−j|, ∀i, j ∈ {1, . . . , 8} . (3.25)

We chose 20/20/200 for the numbers of observations.

Setting 2: We consider p = 20 predictors and the parameter vector is structured into
blocks:

βtrue =
�
0, . . . , 0� �� �

5

, 2, . . . , 2� �� �
5

, 0, . . . , 0� �� �
5

, 2, . . . , 2� �� �
5

�T
.

The standard error σ is 15 and the correlation between two predictors xi and xj is
corr(i, j) = 0.5 for i �= j. The numbers of observations are 50/50/400.

Setting 3: This setting has also p = 20 predictors and parameter vector is given by

βtrue =
�
5, 5, 5, 2, 2, 2, 10, 10, 10, 0, . . . , 0� �� �

11

�T
,
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and the standard deviation of the error term is σ = 15. The design matrix X is
specified in the following way. First we generate three auxiliary predictors Zj ∼

Nn(0, I), j ∈ {1, 2, 3}. With these predictors we generate

X i = Z1 + �̃i, i ∈ {1, 2, 3},

X i = Z2 + �̃i, i ∈ {4, 5, 6},

X i = Z3 + �̃i, i ∈ {7, 8, 9},

with �̃i ∼ Nn(0, 0.01I), i ∈ {1, . . . , 9}. The predictors X i, i ∈ {10, . . . , 20}, are
white noise, i.e. X i ∼ Nn(0, I). Thus, within the first three blocks of 3 variables
there is a quite high correlation, but there is no correlation between these blocks.
The observation numbers are 50/50/400.

The results are summed up in Figure 3.2.

Binary Regression

In each simulation scenario the observation numbers ntrain/nvali/ntest correspond to
100/100/400. The way of generating the matrices of covariates is equal to the normal
case. But the predictor η = Xβtrue from the normal case is multiplied by a factor a in or-
der to realize a appropriate domain for the logistic response function. We choose a so that
the range of the predictor is approximately the interval [−4, 4]. Thus, for each setting we
determine a factor a and multiply the true parameter vector from the normal case by this
factor. The corresponding factor a and the modified parameter vector for each simulation
setting are given by:

Setting 1:
a = 0.40 → βtrue = (1.2, 0.6, 0, 0, 0, 0.8, 0, 0)T .

Setting 2:
a = 0.15 → βtrue =

�
0, . . . , 0� �� �

5

, 0.3, . . . , 0.3� �� �
5

, 0, . . . , 0� �� �
5

, 0.3, . . . , 0.3� �� �
5

�T
.

Setting 3:
a = 0.10 → βtrue =

�
0.75, 0.75, 0.75, 0.3, 0.3, 0.3, 1.5, 1.5, 1.5, 0, . . . , 0� �� �

11

�T
.

We use the canonical response function and so the response is modeled by yi = Bin(1, (1+
exp(−xT

i
βtrue))

−1). In Figure 3.3 the results are illustrated by boxplots.

Poisson Regression

Analogously to the simulation study on binary responses, the predictor η = Xβtrue is
multiplied by a factor a. Since the value range of the mean µ = exp(η) should be approx-
imately in the interval [0, 8], we determine for each setting the corresponding factor a. We
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Figure 3.2: Boxplots of the MSEβ and Devtest for simulations with normal distributed

response.

model the response by yi = Pois(exp(xT

i
βtrue)). The modified parameter vectors and the

factor a determine the settings:

Setting 1:
a = 0.15 → βtrue = (0.45, 0.225, 0, 0, 0, 0.3, 0, 0)T

Setting 2:
a = 0.05 → βtrue =

�
0, . . . , 0� �� �

5

, 0.1, . . . , 0.1� �� �
5

, 0, . . . , 0� �� �
5

, 0.3, . . . , 0.3� �� �
5

�T
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Figure 3.3: Boxplots of the MSEβ and Devtest for simulations with binomial distributed

response.

Setting 3:
a = 0.03 → βtrue =

�
0.15, 0.15, 0.15, 0.06, 0.06, 0.06, 0.3, 0.3, 0.3, 0, . . . , 0� �� �

11

�T

Figure 3.4 sums up the result by boxplots.

Summing Up the Result

The results of the simulation studies are summarized in Table 3.1. It is seen that the PFL
is competitive in terms of the predictive test deviance (Devtest) and the MSEβ. The simu-
lation study gives no clear indication which weights are best. Both performance measure-
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Figure 3.4: Boxplots of the MSEβ and Devtest for simulations with Poisson distributed

response.

ments for the correlation based weights are quite similar. Across all settings the correlation
based weights seem to perform quite well. In general, apart from the ML based estimate,
the PFL penalties distinctly outperform the LASSO and are strong competitors for the
elastic net. The pairwise penalization seems to be an appropriate way for improving the
performance of estimates. But the methods based on ML weights are strongly influenced
by the instability of the ML estimate. In ill conditioned cases it can be an appropriate way
to replace the MLE by a regularized estimate which does not select variables like the ridge
estimator. It is remarkable that in contrast to the elastic net the PFL penalty enforces
identical coefficients for “similar” variables, where the meaning of “similar” is specified by
the chosen weights.
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PFL PFL.ml PFL.cor PFL.pcor EN LASSO ML
Normal distribution

Setting 1
MSEβ

7.90 10.54 7.64 8.64 8.95 11.64 55.22
(0.88) (0.68) (0.94) (0.61) (0.57) (1.83) (8.13)

Devtest
52.17 54.33 51.25 52.85 52.32 56.13 76.79
(2.05) (3.35) (1.90) (2.31) (2.68) (2.86) (4.62)

Setting 2
MSEβ

20.39 20.82 20.35 21.53 22.37 54.01 284.16
(0.25) (0.52) (0.20) (1.50) (1.57) (3.77) (22.11)

Devtest
218.82 219.21 218.82 223.90 223.04 232.50 336.00
(3.01) (2.66) (2.82) (2.52) (2.05) (3.05) (12.71)

Setting 3
MSEβ

189.15 543.81 48.07 54.40 90.79 330.20 4057.24
(44.89) (51.63) (76.95) (70.67) (58.76) (26.06) (315.11)

Devtest
76.12 74.90 76.66 76.39 76.22 76.60 103.97
(1.37) (1.00) (1.24) (1.00) (1.34) (1.30) (2.77)

Binomial distribution

Setting 1
MSEβ

0.97 1.27 1.01 1.0404 1.06 1.42 6.00
(0.12) (0.13) (0.11) (0.11) (0.14) (0.15) (1.23)

Devtest
354.66 354.11 353.04 353.66 353.24 354.49 384.20
(4.50) (3.31) (4.53) (4.54) (4.55) (5.38) (4.34)

Setting 2
MSEβ

0.47 0.47 0.48 0.52 0.53 0.84 8.46
(0.01) (0.01) (0.01) (0.02) (0.03) (0.05) (1.39)

Devtest
368.18 368.46 368.26 368.91 372.20 380.85 528.39
(2.22) (3.05) (0.99) (2.60) (3.51) (2.97) (40.19)

Setting 3
MSEβ

2.13 4.17 1.48 1.75 1.73 3.30 399.04
(0.33) (0.26) (0.43) (0.35) (0.24) (0.44) (100.04)

Devtest
300.64 287.81 299.71 299.21 299.34 300.14 544.94
(2.36) (4.36) (3.63) (2.99) (3.71) (3.66) (51.69)

Poisson distribution

Setting 1
MSEβ

0.23 0.25 0.23 0.23 0.22 0.32 5.70
(0.01) (0.02) (0.01) (0.01) (0.02) (0.05) (1.06)

Devtest
246.19 250.30 242.14 246.06 244.20 249.11 408.90
(6.44) (6.50) (5.40) (6.66) (6.88) (6.05) (55.29)

Setting 2
MSEβ

0.05 0.05 0.05 0.06 0.07 0.15 1.54
(0.00) (0.00) (0.00) (0.00) (0.01) (0.02) (0.14)

Devtest
461.56 464.22 461.23 457.51 462.09 491.67 929.31
(4.53) (4.15) (3.08) (7.00) (6.04) (5.59) (61.26)

Setting 3
MSEβ

0.19 0.59 0.26 0.26 0.21 0.42 20.19
(0.03) (0.04) (0.03) (0.03) (0.04) (0.05) (2.58)

Devtest
507.66 463.25 511.19 506.18 506.36 513.92 1061.44
(12.33) (8.10) (18.07) (15.28) (18.65) (19.69) (63.48)

Table 3.1: Results of the simulation scenarios.
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3.4 Data Example

In this section we give two real data examples. One for the Binomial case and one for the
normal case. In both cases we split the data set 50 times in two parts. First the training
data set with ntrain observations and second the test data set with ntest observations. We
use the training data set to learn the model by a 5-fold cross validation. The model is
determined by the parameter vector �βtrain. The test data set is used for measuring the
predictive deviance Devtest = −2(l(ytest, �ytest)− l(ytest, ytest), where l(., .) denotes the log
likelihood function and �ytest = h((1, X test)βtrain) is the modeled expectation for the test
data set.

Biopsy Data Set

The Biopsy Data Set is from the R-package MASS from Venables and Ripley (2002). It
contains 699 observations and 9 covariates. We exclude the 16 observations with missing
values. The covariates are whole-number scores between 0 and 10 about cell properties.
Their description is given in Table 3.2.

Number Explanation
1 clump thickness
2 uniformity of cell size
3 uniformity of cell shape
4 marginal adhesion
5 single epithelial cell size
6 bare nuclei
7 bland chromatin
8 normal nucleoli
9 mitoses

Table 3.2: Explanation of the covariates of the Biopsy Data Set

The response contains two classes of breast cancer “benign” or “malignant” and so we
fit a logistic regression model. For ntrain we choose ntrain = 400. We give the predictive
deviance in Figure 3.5 and in Table 3.3. In Figure 3.6 the estimates are shown.

PFL PFL.ml PFL.cor PFL.pcor EN LASSO ML
49.2292 49.6492 49.4307 48.18492 48.6917 49.4356 51.5290
(10.8875) (10.9686) (11.3377) (10.7444) (8.8604) (11.0634) (27.7673)

Table 3.3: The median of predictive deviance on test data for the Biopsy Data Set. We

give bootstrap variance of the medians in brackets. The bootstrapped variance is based on

B = 500 bootstrap samples.
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Figure 3.5: Boxplots of the predictive deviance Devtest for the Biopsy Data Set
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Figure 3.6: Boxplots of the coefficient estimates for the Biopsy Data Set
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In contrast to the Elastic Net estimates the grouping property of the PFL is stronger.
Further it is remarkable that different models have similar predictive deviances. In some
replications the MLE leads to perfect discrimination of the response groups and the pro-
cedures gives warning.

Bones Data Set

This study aims at estimating the age at date of death of 87 persons. Since we choose the
normal model. The underlying data set contains 20 covariates. These covariates are bones
characteristics and the gender of the deceased person and given in Table 3.4. Some of the

Number Explanation
1 gender
2 size of an compact bone
3 femur class
4 type I osteon
5 type II osteon
6 osteon fragments
7 osteon population density
8 Haverssche canals
9 non Haverssche canals
10 Volkmannsche canals
11 resorption lacuna
12 percentage of resorption lacuna
13 percentage of general lamellae
14 percentage of osteonal bones
15 percentage of fragmental bones
16 surface of an osteon
17 surface of a resorption lacuna
18 quotient of the surface of a resorption lacuna

and the surface of an osteon
19 activation frequency
20 bone formation rate

Table 3.4: Explanation of the covariates of the Bones Data Set

covariates are highly correlated, i.e. ρij ≈ 0.9. The data based on the Basel-Kollektiv
and are provided by Stefanie Doppler from the Department of Anthropology and Human
Genetics of the Ludwig-Maximilians-Universität (see Doppler, 2008). It is a collection of
excavation of a graveyard. So the age at date of death of the persons is known and the
skeletons are in a quite good conditions.

We randomly split the data set 25-times into a test data set with 60 observations and
a test data set with 27. The predictive deviance on test data and for each method are
given in Table 3.5 and illustrated in Figure 3.7. We give standardized estimates by
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PFL PFL.ml PFL.cor PFL.pcor EN LASSO ML
3.1969 3.1085 3.2367 3.1873 3.1432 3.1873 4.4276
(0.9178) (0.7589) (0.9112) (0.8401) (0.8366) (0.9212) (0.8909)

Table 3.5: The median of predictive deviance on test data for the Bones Data Set. We

give bootstrap variance of the medians in brackets. The bootstrapped variance is based on

B = 500 bootstrap samples.
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Figure 3.7: Boxplots of the predictive deviance for the Bones Data Set

boxplots of the coefficient estimates in Figure 3.8. Because for standardized covariates the
grouping effect appears. The MLE-weighted PFL tends to group the covariates 12,13, and
14. It has the best predictive deviance. In general it is remarkable that variable selection
dominates clustering in the other cases. Apart from the MLE and the MLE-weighted PFL
the results are very similar. Although the MLE is quite ill conditioned the MLE-weighted
PFL outperforms the remaining procedures.

3.5 Concluding Remarks

We proposed a regularization method that enforces the grouping property by including
pairwise differences of coefficients in the penalty term. It works for linear as well as
generalized linear models and is strong a competitor for the lasso and the elastic net.
Although it uses fusion methodology it does not assume that a metric on predictors is
available. Therefore it can used for common regression problems.
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Figure 3.8: Boxplots of the predictors for the Bones Data Set



Chapter 4

The OSCAR Penalty for Generalized
Linear Models

The Octagonal Selection and Clustering Algorithm in Regression (OSCAR) proposed by
Bondell and Reich (2008) has the attractive feature that highly correlated predictors can
obtain exactly the same coefficient yielding clustering of predictors. Estimation methods
are available for linear regression models. It is shown how the OSCAR penalty can be
used within the framework of generalized linear models. An algorithm that solves the
corresponding maximization problem is given. The estimation method is investigated in a
simulation study and the usefulness is demonstrated by an example from water engineering.
This chapter is based on Petry and Tutz (2011a).

4.1 Introduction

Within the last decades various regularization techniques for generalized linear models
(GLMs) have been developed. Most methods aim at stabilizing estimates and finding
simpler models. In particular variable selection has been a major topic. One of the oldest
methods is ridge regression, which has been proposed by Hoerl and Kennard (1970). In
ridge regression the parameter space is restricted to a p-sphere around the origin

�
p

j=1 β
2
j
≤

t, t ≥ 0. Another popular shrinkage methods is the LASSO for Least Absolute Shrinkage
and Selection Operator (Tibshirani, 1996), where the parameter space is restricted to a
p-crosspolytope

�
p

j=1 |βj| ≤ t, t ≥ 0. The restriction induces shrinkage and variables
selection. In general, restricted parameter spaces are called penalty regions. For many
penalty regions the problem can be transformed into a penalized likelihood problem by
adding a penalty term to the log-likelihood. For ridge regression the penalty term is
λ
�

p

j=1 β
2
j
and for the LASSO it is λ

�
p

j=1 |βj|, with λ ≥ 0 in both cases. A combination
of the ridge and the LASSO uses λ1

�
p

j=1 β
2
j
+ λ2

�
p

j=1 |βj|. It is well known as the elastic
net (Zou and Hastie, 2005).

Zou and Hastie (2005) showed that variable selection leads to unsatisfying results in
the case of multicollinearity, that is, if some of the covariates are highly correlated. Then

51
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procedures like the LASSO tend to include only a few covariates from a group of the
highly correlated covariates. They show that for the elastic net a grouping property holds,
which means that the estimated parameters of highly correlated covariates are similar up
to sign. An alternative penalty region that enforces grouping of variables was proposed by
Bondell and Reich (2008) under the name OSCAR for Octagonal Selection and Clustering
Algorithm in Regression. For LASSO and the elastic net (EN) several methods have been
proposed to solve the penalized log-likelihood problem in generalized linear models (GLMs);
(see Park and Hastie, 2007b; Goeman, 2010a; Friedman et al., 2010a). For OSCAR it seems
that algorithms are available only for the linear model. In the following estimation methods
for OSCAR are proposed that work within the more general GLM framework.

In Section 4.2 we give a short overview on GLMs. In Section 4.3 the OSCAR penalty
region is discussed. In Section 4.4 we use the results of Section 4.3 and present an algorithm
for estimating the corresponding restricted regression problem based on the active set
method. A simulation study is presented in Section 4.5, which uses settings that are
similar to the settings used by Bondell and Reich (2008). A real data example with water
engineering background is given in Section 4.6.

4.2 Generalized Linear models

We consider data (y, X) where y = (y1, ..., yn)T is the response andX is the (n×p) matrix
of explanatory variables that contains n observations xT

i
= (xi1, ..., xip), i = 1, ..., n. In

GLMs (McCullagh and Nelder, 1983) it is assumed that the distribution of yi|xi is from a
simple exponential family

f(yi|θi,φ) = exp

�
yiθi − b(θi)

φ
+ c(yi,φ)

�
, (4.1)

where θi is the natural parameter and φ is a dispersion parameter; b(.) and c(.) are specific
functions corresponding to the type of the family. In addition, it is assumed that the
observations are (conditionally) independent. For given data the conditional expectation
of yi|xi, µi = E(yi|xi), is modeled by

g(µi) = ηi or µi = h(ηi),

where ηi = β0 + xT

i
β is the linear predictor, g(.) is the link function and h(.) = g−1(.) is

the response function. Let β0 = (β0, β
T )T denote the parameter vector that includes the

intercept. Then the corresponding design matrix is Z = (1n, X) and the linear predictor
is η = Zβ0. The maximum likelihood estimate (MLE) is given by

�β0 = argmaxβ0

�
n�

i=1

li(β0)

�

where li(β0) is the likelihood function of the ith observation. The maximum likelihood
problem can be iteratively solved by

�β
(l+1)

0 = argminβ0

�
βT

0Z
T �W

(l)
Zβ0 − 2βT

0Z
T �W

(l)
�y(l)

�
, (4.2)
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where
�y(l) = Z�β

(l)

0 + ( �D
(l)
)−1(y − �µ(l))

is the working response vector,

�W
(l)

= ( �D
(l)
)T (�Σ

(l)
)−1 �D

(l)

is the weight matrix with the derivative matrix of the response function,

�D
(l)

= diag

�
∂h(�η(l)

i
)

∂η

�n

i=1

,

and the matrix of variances

�Σ
(l)

= diag
�
φV (h(�η(l)

i
))
�n

i=1
,

all of them evaluated at the previous step. V (.) is the variance function, which is determined
by the distributional assumption and �µ(l) is the estimated prediction of the previous step.

The update is repeated until ��β
(l+1)

0 − �β
(l)

0 �/��β
(l)

0 � < ε for small ε. The re-weighted least
square estimates

�β
(l+1)

0 =
�
ZT �W

(l)
Z
�−1

ZT �W
(l)
�y(l)

is also known as Fisher scoring. The algorithm we will present uses a constrained Fisher
scoring combined with the active set method that uses the specific structure of the OSCAR
penalty.

4.3 The OSCAR Penalty Region

In the following we consider standardized covariates, that is,
�

n

i=1 xij = 0 and (n −

1)−1
�

n

i=1 x
2
ij
= 1. When Bondell and Reich (2008) introduced the OSCAR for the normal

linear regression they also centered the responses by using
�

n

i=1 yi = 0. If all covariates
and the response are centered no intercept has to be estimated. Then the OSCAR can be
given as the constrained least-squares problem

�β = argmaxβ
�
�y −Xβ�2, s.t. β ∈ Oc, t(β)

�
, (4.3)

with OSCAR penalty region given by

Oc, t(β) =

�
β :

p�

j=1

|βj|+ c
�

1≤j<k≤p

max {|βj|, |βk|} ≤ t

�
. (4.4)

The first sum
�

p

j=1 |βj| is the LASSO penalty which induces variable selection. The second
sum c

�
1≤j<k≤p

max {|βj|, |βk|} accounts for clustering of similar variables. With c ≥ 0
and t > 0 an equivalent form of the OSCAR penalty (4.4) is

Oc, t(β) =

�
β :

p�

j=1

{c(j − 1) + 1} |β(j)| ≤ t

�
, (4.5)
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where |β(1)| ≤ |β(2)| ≤ ... ≤ |β(p)| and |β(j)| denotes the jth largest com-
ponent of |β| = (|β1|, ..., |βp|)T . The parameter c controls the clustering and
t the amount of shrinkage. Bondell and Reich (2008) gave a MatLab-code at
http://www4.stat.ncsu.edu/~bondell/software.html which solves the least square
problem under constraints

Oα, t(β) =

�
β : (1− α)

p�

j=1

|βj|+ α
�

1≤j<k≤p

max {|βj|, |βk|} ≤ t

�
(4.6)

=

�
β :

p�

j=1

{α(j − 1) + (1− α)} |β(j)| ≤ t

�
(4.7)

where α ∈ [0, 1] and t > 0. If α = 0, respectively c = 0, the OSCAR is equivalent to
the LASSO. For appropriate values of c, α and t the penalty regions (4.4) and (4.6) are
equivalent. In the following we use Oα, t(β) from (4.6) and (4.7).

In contrast to the Elastic Net penalty the OSCAR enforces that parameters obtain
the same value. Bondell and Reich (2008) derived a relationship between the clustering
of covariates (which obtain the same value) and their correlation. The word octagonal
in OSCAR is motivated by the geometry of the penalty region. The projection of the
penalty region into each βi-βj-plane is an octagon. The octagonal shape accounts for the
estimation of identical parameters as well as variable selection because the coordinates
of the vertices have a very specific structure. In particular the absolute values of the
coordinates of a vertex on the surface are equal or zero. So each convex combination of
vertices on the surface describes an area with specific properties. If less than p vertices
are convexly combined one obtains variable selection and/or clustering. For illustration,
Figure 4.1 shows an OSCAR penalty region in IR3.

Figure 4.1: OSCAR penalty region from two different perspectives. On the right it is the

projection on a βi-βj-plane.

In Petry and Tutz (2011b) it is shown that the OSCAR penalty is the intersection of
2p · p! halfspaces. So Oα, t(β) can be rewritten into a system of inequations Aβ ≤ t where
A is the (2p · p!) × p-dimensional matrix A = (a1, ..., a2p·p!)T that contains the normal
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vectors aq of each generating hyperplane. Each normal vector aq is characterized by two
attributes:

1. The vector of signs of the components of the normal vector,

sign(aq) = (sign(aq1), ..., sign(aqp))
T

This attribute is induced by the absolute value of the components of β (see (4.6) or
(4.7)).

2. The vector of ranks of the absolute value of the components of the normal vector

rank(|aq|) = (rank(|aq1|), .., rank(|aqp|))
T ,

which is a p-dimensional vector. Its jth entry is the position of aqj in the order
|aq(1)| ≤ |aq(2)| ≤ ... ≤ |aq(p)| where |aq(j)| denotes the absolute value of the jth
largest component of |(|aq) = (|aq1|, ..., |aqp|)T . This attribute is induced by using the
pairwise maximum norm in (4.6) or the ordered components like in (4.7) respectively.

Each row of A is given by signs and a permutation of the weights w =
{α(j − 1) + (1− α) : j = 1, ..., p} given in (4.7). Each half space refers to one constraint
of the restricted optimization problem that can be written as

aq = (α · (rank(|aq|)− 1) + (1− α))T diag(sign(aq)) ≤ t. (4.8)

Already for small dimensional cases the dimension of A becomes very large, for example,
if p = 5 the matrix A is 3840× 5-dimensional.

4.4 The glmOSCAR Algorithm

For GLMs the least-squares problem (4.3) turns into the restricted maximum likelihood
problem

�β0 = argmaxβ0

�
n�

i=1

li(β0), s.t. β0 ∈ IR×Oα, t(β)

�
,

where li(.) is the log-likelihood of a GLM. In contrast to the linear normal regression, where
responses are easily centered, now an unrestricted intercept has to be included. The new
penalty region is IR×Oα, t, which can be rewritten as an system of inequations

(0, A)β0 ≤ t, (4.9)

where β0 = (β0, β
T )T . The region (4.9) is an unbounded intersection of subspaces called

polyhedron. Each row of (4.9) refers to one constraint. In general a constraint of a system
of inequations is called active if the equal sign holds in the corresponding row of the
system of inequations. If the equal sign holds the solution lies on the corresponding face
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of the polyhedron. Only the active constraints have an influence on the solution. The
remaining constraints are fulfilled but have no influence on the solution, and are called
inactive constraints. Removing inactive constraints has no influence on the solution of the
constrained log-likelihood problem. The solution is unique and each point in IRp can be
represented by the intersection of p hyperplanes of dimension p−1. Therefore, the number
of constraints can be reduced from 2p ·p! to p. Only by numerical reasons sometimes in the
algorithm more than p constraints are set active. Because of (4.8) and (4.9) for an given
parameter vector β0 an active constraint from (4.9) has the following form

a(β0)β0 = (0, ((1− α) · (rank(|β|)− 1) + α)T diag(sign(β)))β0 = t. (4.10)

It is important that rank(|β|) is a p-dimensional vector where all elements of {1, 2, ..., p}
are used as entries. If some elements of |β| are equal the assembly of their ranks is arbitrary.

The following algorithm is an active set method combined with Fisher scoring. There
are two parts.

AS (Active Set): This step accounts for the creation of the active set and is indexed by
(k).

FS (Fisher Scoring): This step solves the restricted ML problem. It is indexed by (l) in
analogy to (4.2). The constraints are given by the active set that is determined by
the AS-step.

First we initialize k = 0 and choose an initial value �β
(0)

0 , for instance, the MLE.

AS-step

We set k to k+1. With �β
(k−1)

0 we determine a(�β
(k−1)

0 ) = a(k) as given in (4.10). The new
active constraint a(k) is added as a new row to (0, A)(k−1)β0 ≤ t if a(k) is not a row of
(0, A)(k−1)

�
(0, A)(k−1)

a(k)

�
β0 = (0, A)(k)β0 ≤ t. (4.11)

Finally we remove all inactive constraints from (0, A)(k)β0 ≤ t.

FS-step

We have to solve the constrained ML problem

�β
(k)

0 = argminβ0

�
−

n�

i=1

li(β0), s.t. (0, A)(k)β0 ≤ t

�
, (4.12)

which is a combination of the unconstrained least square problem (4.2) and the penalty
region (0, A)(k)β0 ≤ t from the AS. For clarity we do not use double indexing. For solving
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(4.12) we use the following constrained Fisher scoring

�β
(l+1)

0 = argminβ0

�
βT

0Z
T �W

(l)
Zβ0 − 2βT

0Z
T �W

(l)
�y(l),

s.t. (0, A)(k)β0 ≤ t

�
.

(4.13)

It is solved iteratively with the quadprog package from R (see Turlach, 2009). The con-

strained update (4.13) is repeated up to convergence δ2 = �β̂
(l)

0 − β̂
(l+1)

0 �/�β̂
(l)

0 � ≤ ε, for

small ε. After convergence �β
(l+1)

0 is the solution of (4.12). With �β
(k)

0 we start the AS-step
again.

The AS-step envelops the FS-step. Both loops are repeated until δ1 =

�β̂
(k)

0 − β̂
(k+1)

0 �/�β̂
(k)

0 � ≤ ε, for small ε.

Algorithm: glmOSCAR

Step 1 (Initialization) Choose �β
(0)

0 and set δ1 = ∞.

Step 2 (Iteration)

AS: While δ1 > ε.

Determine a(k) as described in (4.10).

Determine (0, A)(k) as described in (4.11) and remove the inactive con-
straints.

FS: Set δ2 = ∞.

Solve �β
(k+1)

0 = argmin
�
−
�

n

i=1 li(β0), s.t. (0, A)(k)β0 ≤ t
�

using a con-
strained Fisher scoring from (4.13) up to convergence δ2 < ε.

After converging the constrained Fisher scoring (4.13) compute δ1 =
�β̂(k)

0 −β̂
(k+1)
0 �

�β̂(k)
0 �

and go to AS.

This algorithm can be generalized to a wide class of linearly restricted GLMs if the re-
stricting halfspaces are defined by sign and rank.

4.5 Simulation Study

The settings of the simulation study are similar to the settings of Bondell and Reich (2008).
However, we adapt the true parameter vectors to GLMs with canonical link function by
scaling and changed the number of observations for some settings. We compare the OSCAR
penalty with the MLE and two established methods:
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LASSO: The LASSO penalty, which uses the penalty λ
�

p

j=1 |βj|,

Elastic Net (EN): The EN, which uses a combination of the LASSO penalty term and
the ridge term λ

�
α
�

p

i=1 |βj|+ (1− α)
�

p

i=1 β
2
j

�
.

Several program packages in R that fit the EN and the LASSO for GLMs are available (for
example Lokhorst et al., 2007; Park and Hastie, 2007a; Friedman et al., 2008; Goeman,
2010b). We use the R-package glmnet (see Friedman et al., 2008, 2010a; Simon et al.,
2011).

The predictive performance is measured by the predictive deviance

Dev(y, �µ,φ) = −2φ
�

i

(l(yi, µi)− l(yi, yi)),

where �µ is the estimated prediction based on data (y, X). First we fit the models for
different tuning parameters on a training data set with ntrain observations to get a set of

parameter vector B = {�β
[1]

0 , ..., �β
[q]

0 } where the superscript [q] indicates the tuning param-
eter constellation. Then a validation data set with nvali observations is used to determine
the optimal tuning parameter constellation that minimizes the predictive deviance on the
validation data set

�β
[opt]

0 = argmin�β0∈B

�
Dev(yvali, h(Zvali

�β0),φ)
�
.

The test data is used to measure the predictive deviance

Devtest = Dev(ytest, h(Ztest
�β
[opt]

0 ),φ).

In addition we give the mean square error of β MSEβ = p−1�βtrue −
�β
[opt]

�2. We will
consider the following settings.

Normal Case

For completeness we repeat the simulation study from Bondell and Reich (2008) with small
modifications as described above. The generating model for all data sets is y = Xβtrue+ε
where ε ∼ N(0, σI).

Norm1 The true parameter vector is β1 = (3, 2, 1.5, 0, 0, 0, 0, 0)T and the covariates
are from N(0, Σ) where Σ = {σij}i, j with σij = 0.7|i−j|, i, j = 1, ..., 8. The number
of observations are ntrain = 20, nvali = 20, and ntest = 100. As Bondell and Reich
(2008) we choose σ = 3 for the standard deviation of the error term.

Norm2 This setting is the same as Norm1 but the true parameter vector is β2 =
(3, 0, 0, 1.5, 0, 0, 0, 2)T .

Norm3 This setting is the same as Norm1 and Norm2 but the true parameter vector is
β3 = 0.85 · 18.
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Norm4 The true parameter vector is

β4 = (0, ..., 0� �� �
10

, 2, ..., 2� �� �
10

, 0, ..., 0� �� �
10

, 2, ..., 2� �� �
10

)T .

In each block of ten the covariates are from a N(0, Σ) where Σ = {σij}i, j with
σij = 0.5 if i �= j and σii = 1, i, j = 1, ..., 10. Between the four blocks there
is no correlation. The number of observations are ntrain = 100, nvali = 100, and
ntest = 500. The standard deviation of the error term is σ = 15 (compare Bondell
and Reich, 2008).

Norm5 The true parameter vector is

β5 = (3, ..., 3� �� �
15

, 0, ..., 0� �� �
25

)T .

and the number of observations are ntrain = 50, nvali = 50, and ntest = 250. The
covariates are generated as follows. V1, V2, and V3 are iid from a univariate N(0, 1)
with Xi = V1+εi, i = 1, ..., 5, Xi = V2+εi, i = 6, ..., 10, Xi = V3+εi, i = 11, ..., 15,
Xi ∼ N(0, 1), i = 16, ..., 40. where εi ∼ N(0, 0.16). So only the influential covari-
ates are parted in three blocks of five. Inner each block the covariates are correlated.
Between these blocks there is no correlation. The non influential covariates are un-
correlated and the standard deviation of the error term is σ = 15 (compare Bondell
and Reich, 2008).

The results of this part of the simulation study is shown in Figure 4.2.

Poisson case

In the first three settings we divide the true parameter vector of the first three setting from
Bondell and Reich (2008) by 4. The generating model of the Poisson setting has the form
yi ∼ Pois(xT

i
βtrue). The covariates are generated in the same way as in the normal case

NormX.

Pois1 The true parameter vector is β1 = (0.75, 0.5, 0.375, 0, 0, 0, 0, 0)T . The number of
observations are ntrain = 20, nvali = 20, and ntest = 100.

Pois2 This setting is the same as Pois1 apart from the true parameter vector which is
β2 = (0.75, 0, 0, 0.375, 0, 0, 0, 0.5)T .

Pois3 This setting is the same as Pois1 and Pois2 apart from the true parameter vector
β3 = 0.2125 · 18.

Pois4 For this setting we divide the true parameter vector from Bondell and Reich (2008)
by 20

β4 = (0, ..., 0� �� �
10

, 0.1, ..., 0.1� �� �
10

, 0, ..., 0� �� �
10

, 0.1, ..., 0.1� �� �
10

)T .

The number of observations are ntrain = 100, nvali = 100, and ntest = 500.
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Figure 4.2: Boxplots ofMSEβ and Devtest of the 5 settings in the normal case (see Bondell

and Reich, 2008).

Pois5 The true parameter vector Bondell and Reich (2008) is divided by 30

β5 = (0.1, ..., 0.1� �� �
15

, 0, ..., 0� �� �
25

)T .
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The number of observations are ntrain = 100, nvali = 100, and ntest = 500.

The result of this part of the simulation study is shown in Figure 4.3.

Binomial case

In all setting covariates are generated in the same way as in the corresponding Poisson
setting PoisX. The generating model is yi ∼ Bin(xT

i
βtrue). For the first three settings we

divide the true parameter vector of the first three setting from Bondell and Reich (2008)
by 2.

Bin1 The true parameter vector is β1 = (1.5, 1, 0.75, 0, 0, 0, 0, 0)T . The number of
observations are ntrain = 100, nvali = 100, and ntest = 500.

Bin2 This setting is the same as Bin1 but the true parameter vector is β2 =
(1.5, 0, 0, 0.75, 0, 0, 0, 1)T .

Bin3 This setting is the same as Bin1 and Bin2 but the true parameter vector β3 =
0.425 · 18.

Bin4 We divide the true parameter vector from Bondell and Reich (2008) by 10

β4 = (0, ..., 0� �� �
10

, 0.2, ..., 0.2� �� �
10

, 0, ..., 0� �� �
10

, 0.2, ..., 0.2� �� �
10

)T .

and increase the number of observations to ntrain = 200, nvali = 200, and ntest = 1000

Bin5 The true parameter vector Bondell and Reich (2008) is divided by 15

β5 = (0.2, ..., 0.2� �� �
15

, 0, ..., 0� �� �
25

)T .

The number of observations is equal to Bin4.

In Figure 4.4 the results are illustrated by boxplots.
The results are summarized in Table 4.1. As a general tendency, it is seen that the

procedures with clustering or grouping property outperform the LASSO, with the exception
of settings Norm2 and Bin2. In the third settings the exact clustering of OSCAR seems
to have an advantage over the non-exact grouping of the Elastic Net. Here the OSCAR
dominates the other estimates. In the fourth setting OSCAR and EN outperform the
LASSO, but the EN is the best for both criteria for all distributions. In the fifth setting
the differences of the predictive deviance are quite small. With the exception of setting
Bin2 the OSCAR is the best or second best for both criteria. In summary, the OSCAR for
GLMs is a strong competitor to the Elastic Net, which outperforms the LASSO.



62 4. OSCAR for GLMs

l l
l

l

OSCAR EN LASSO MLE

0.
00

0.
10

0.
20

M
SE

 o
f β

OSCAR EN LASSO MLE

10
0

20
0

30
0

pr
ed

ic
tiv

e 
de

vi
an

ce

Pois1

l
ll

l
l

l

l

l

OSCAR EN LASSO MLE

0.
00

0.
10

0.
20

M
SE

 o
f β l

l

lll

l

OSCAR EN LASSO MLE
10

0
20

0
30

0

pr
ed

ic
tiv

e 
de

vi
an

ce

Pois2

l

l

l
l
ll

l

l

l
l

OSCAR EN LASSO MLE

0.
00

0.
04

0.
08

0.
12

M
SE

 o
f β

l

OSCAR EN LASSO MLE

10
0

20
0

30
0

pr
ed

ic
tiv

e 
de

vi
an

ce

Pois3

l

l
l

l

OSCAR EN LASSO MLE

0.
00

0
0.

00
4

0.
00

8

M
SE

 o
f β

l

OSCAR EN LASSO MLE

50
0

60
0

70
0

80
0

pr
ed

ic
tiv

e 
de

vi
an

ce

Pois4

l
l

l

OSCAR EN LASSO MLE

0.
00

0
0.

00
4

0.
00

8

M
SE

 o
f β ll

l

ll

l
l

OSCAR EN LASSO MLE

50
0

60
0

70
0

80
0

pr
ed

ic
tiv

e 
de

vi
an

ce

Pois5

Figure 4.3: Boxplots of MSEβ and Devtest of the 5 Poisson settings.
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Figure 4.4: Boxplots of MSEβ and Devtest of the 5 binomial settings.
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OSCAR Elastic Net LASSO MLE

Normal Case (Results of predictive deviances are divided by 100)

β1
MSEβ 0.4095 (0.0754) 0.4303 (0.0667) 0.4724 (0.0781) 2.1195 (0.1283)
Devtest 11.93 (0.270) 11.87 (0.321) 11.93 (0.328) 15.95 (0.531)

β2
MSEβ 0.5985 (0.0587) 0.6484 (0.0555) 0.5981 (0.0750) 1.5609 (0.3545)
Devtest 12.48 (0.265) 12.58 (0.226) 12.64 (0.400) 15.44 (0.950)

β3
MSEβ 0.1212 (0.0610) 0.2272 (0.0333) 0.6321 (0.0733) 1.9654 (0.1888)
Devtest 11.27 (0.371) 11.72 (0.495) 12.54 (0.268) 15.45 (0.936)

β4
MSEβ 0.9893 (0.0449) 0.7034 (0.0609) 1.7730 (0.0753) 6.7606 (0.4305)
Devtest 1332.13 (15.919) 1293.09 (12.569) 1403.87 (23.670) 1912.99 (63.918)

β5
MSEβ 2.0738 (0.2089) 1.6770 (0.1335) 3.8346 (0.2317) 64.4542 (3.9849)
Devtest 754.37 (26.295) 742.73 (21.561) 770.61 (18.180) 3053.32 (192.65)

Poisson Case

β1
MSEβ 0.0339 (0.0053) 0.0341 (0.0045) 0.0388 (0.0071) 0.2710 (0.0459)
Devtest 160.01 (12.845) 159.17 (8.859) 170.15 (13.045) 354.85 (58.980)

β2
MSEβ 0.0422 (0.0055) 0.0370 (0.0050) 0.0391 (0.0049) 0.2116 (0.0534)
Devtest 142.75 (4.031) 143.50 (4.108) 145.98 (4.727) 261.91 (42.965)

β3
MSEβ 0.0071 (0.0027) 0.0165 (0.0031) 0.0342 (0.0046) 0.3171 (0.0590)
Devtest 126.84 (5.399) 131.85 (5.928) 139.03 (6.500) 302.63 (51.125)

β4
MSEβ 0.0027 (0.0003) 0.0018 (0.0002) 0.0049 (0.0002) 0.0333 (0.0032)
Devtest 611.19 (8.774) 595.71 (9.000) 632.49 (7.975) 1295.12 (43.155)

β5
MSEβ 0.0028 (0.0004) 0.0022 (0.0002) 0.0050 (0.0002) 0.0515 (0.0035)
Devtest 596.93 (7.479) 594.78 (6.857) 606.44 (6.359) 1192.28 (119.52)

Binomial Case

β1
MSEβ 0.0908 (0.0140) 0.0790 (0.0115) 0.0968 (0.0188) 0.3642 (0.0809)
Devtest 398.41 (3.693) 397.71 (4.283) 400.76 (4.194) 428.32 (10.937)

β2
MSEβ 0.0883 (0.0134) 0.0875 (0.0152) 0.0800 (0.0096) 0.2504 (0.0194)
Devtest 456.17 (5.394) 455.39 (6.554) 455.07 (6.657) 480.13 (7.296)

β3
MSEβ 0.0309 (0.0053) 0.0376 (0.0040) 0.0958 (0.0089) 0.3262 (0.0475)
Devtest 432.73 (4.484) 430.86 (5.779) 445.72 (5.523) 469.44 (7.657)

β4
MSEβ 0.0104 (0.0005) 0.0095 (0.0005) 0.0155 (0.0009) 0.1921 (0.0136)
Devtest 956.02 (7.059) 946.90 (7.069) 975.07 (6.156) 1354.75 (33.367)

β5
MSEβ 0.0119 (0.0009) 0.0093 (0.0008) 0.0155 (0.0010) 0.1806 (0.0221)
Devtest 1052.56 (6.903) 1048.43 (6.005) 1051.21 (7.999) 1366.61 (25.889)

Table 4.1: Summary of the results of the Simulation study
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4.6 Application

The data were collected in water engineering in Southern California and contain 43 years
worth of precipitation measurements. They are available from the R-package alr3 (see
Weisberg, 2011, 2005). The response variable is the stream runoff near Bishop (CA) in
acre-feet. There are six covariates which are the snowfall in inches at different measurement
stations labeled by APMAM, APSAB, APSLAKE, OPBPC, OPRC, and OPSLAKE. The covariates are
grouped by its position. The covariates with labels that start with the same letter are
quite close to each other and are highly correlated. The correlation structure is shown in
Figure 4.5. We consider two cases: First we fit a linear normal model to predict the stream
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Figure 4.5: Correlation structure of the covariates of the water data.

runoff. Then we split the response variable in two parts by setting the response yi = 0 if
yi < median(y) and yi = 1 if yi ≥ median(y). With this binary response we fit a GLM
with binomial distribution and logit link. The tuning parameter are determined by

AIC = 2
n�

i=1

li(β0) + 2(df + 1).
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Bondell and Reich (2008) proposed for df the number of coefficients that are absolute
unique but non zero, or, in other words, the number of distinct non zero entries of |β|.
We use the AIC to determine the tuning parameters because the MLE exists, which is
necessary for using the quadprog procedure (see Turlach, 2009). Cross-validation does not
work, especially in the binomial case, because the MLE does not exist for all sub-samples.
For the binomial case c = 0.9 and for the normal case c = 0.2 was determined. The EN
and the LASSO paths were calculated with the glmnet (see Friedman et al., 2008, 2010a;
Simon et al., 2011). For the EN we determine α = 0.9 in the normal case and α = 0.5
in the binomial case. The coefficient buildups of standardized coefficients for the different
procedures are shown in Figure 4.6, OSCAR is in the first row, LASSO in the second row,
and the Elastic Net is in the third row of Figure 4.6. On the left the solution paths of the
normal distribution case and on the right of the binomial distribution case are given. The
dotted horizontal line show the optimal tuning parameter t. The coefficient buildups of
the OSCAR show a strong influence of the measurement stations that have names starting
with “O”. Especially in the normal case the clustering and the variable selection of OSCAR
is quite impressive. All variables of the group starting with “O” are estimated equal and
the second group is shrunken to zero for AIC optimal t. In the binary case clustering and
variable selection is somewhat weaker, but still impressive, in particular when compared
to to the elastic net. For optimal t OPBPC and OPSLAKE are clustered as well as two weaker
correlated covariates (APMAM and OPRC). Only the variable APSAB is shrunken to zero. In the
normal case the clustering coefficient buildups of EN and LASSO are quite similar. In the
binomial case the EN has at least a tendency to cluster the covariates starting with “O”.
The exact clustering of covariates is easy to interpret, especially in the normal case. The
snowfall at adjacent measurement stations has the same influence on the stream runoff.
But only the influence of the snowfall at the measurement stations that have names starting
with “O” have non-zero influence. The remaining (starting with an “A”) are shrunk to
zero.

4.7 Conclusion and Remarks

We adapt the OSCAR penalty to GLMs. For solving the constrained log-likelihood problem
we present an algorithm which combines the active set method and Fisher scoring. It turns
out that the OSCAR is quite competitive. In the simulation study it is the best or second
best (with the exception of one setting) in terms of the MSEβ and the predictive deviance.
Especially in the normal case the result of the data example is good to interpret. The
snowfall at closed measurement stations is quite similar and so it can be assumed that
their influence on the stream runoff is nearly equal. The data example also illustrates that
the LASSO picks only two highly correlated covariates out of the group of three.
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Figure 4.6: Coefficient buildups for the water data. The left column shows the normal

case and the right column shows the binary distribution case. In the first row the solution

paths of the OSCAR are given, the second row shows the LASSO- and the third row the

EN-paths.
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Chapter 5

Nonparametric Estimation of the
Link Function Including Variable
Selection

Nonparametric methods for the estimation of the link function in generalized linear models
are able to avoid bias in the regression parameters. But for the estimation of the link
typically the full model, which includes all predictors, has been used. When the number of
predictors is large these methods sometimes fail since the full model can not be estimated.
This chapter is based on Tutz and Petry (2011). It presents a boosting type method
is proposed that simultaneously selects predictors and estimates the link function. The
method performs quite well in simulations and real data examples.

5.1 Introduction

In generalized linear models (GLMs), for given data (yi, xi), i = 1, . . . , n, the conditional
expectation of yi|xi, µi = E(yi|xi), is modeled by

g(µi) = ηi or µi = h(ηi),

where ηi = β0 + xT

i
β is the linear predictor, g(.) is the link function and h(.) = g−1(.) is

the response function.
Usually it is assumed that the response function h(.) is fixed and known, for exam-

ple h(.) = exp(.) yields the loglinear model which represents the canonical link model
if responses follow a Poisson distribution. In applications, typically the link function is
unknown and frequently the canonical link function is used. But it is well known that mis-
specification of the link function can lead to substantial bias in the regression parameters
(see Czado and Santner (1992) for binomial responses). That may be avoided by flexible
modeling of the link.

When responses are metrically scaled, a flexible generalization of classical approaches is
the so-called single-index model. It assumes that h(.) is unknown and has to be estimated
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by nonparametric techniques. The model may be seen as a special case of projection
pursuit regression, which assumes that µi has additive form h1(xT

i
β1) + · · · + hm(xT

i
βm)

with unknown functions h1, . . . , hm, which transform the indices xT

i
βj (see Friedman and

Stützle, 1981). In single index models only one index, xT

i
β, is assumed. The difference

between a single index model and a GLM is that in the former the transformation function
h(.) is not restricted and unknown whereas in GLMs it is assumed that h(.) is known and
strictly monotone, hence invertible. Although single index models are useful in dimension
reduction, strict monotonicity, as assumed in GLMs, is very helpful when parameters
are to be interpreted. Therefore we will focus on monotonic response functions. Then
nonparametric estimation of the function h(.) may be seen as estimation of the unknown
link function in a GLM.

Estimation of the unknown link function when the underlying distribution is from
a simple exponential family was considered for example by Weisberg and Welsh (1994),
Ruckstuhl and Welsh (1999) and Muggeo and Ferrara (2008). Weisberg and Welsh (1994)
proposed to estimate regression coefficients using the canonical link and then estimate the
link via kernel smoothers given the estimated parameters. Then parameters are reesti-
mated. Alternating between estimation of link and parameters yields consistent estimates.
But all these approaches do not select predictors.

The main advantage of the presented approach is that it combines estimation of the
link function with variable selection. In the last decade the traditional forward/backward
procedures for the selection of variables have been widely replaced by regularized estimation
methods that implicitly select predictors, among them the LASSO (Tibshirani, 1996),
which was adapted to GLMs by Park and Hastie (2007b), the Dantzig selector (James and
Radchenko, 2008), SCAD (Fan and Li, 2001) and boosting approaches (Bühlmann and
Hothorn, 2007; Tutz and Binder, 2006). However, in all of these procedures selection is
always based on a known response function. If the assumed response function is wrong the
performance of these selection procedures can be strongly affected. For illustration let us
consider a small simulation study.

We fitted a Poisson model with the true response function having sigmoidal form
hT (η) = 10/(1 + exp(−5 · η)). The parameter vector of length p = 20 was βT =
(0.2, 0.4, −0.4, 0.8, 0, . . . , 0) and covariates were drawn from a normal distribution X ∼

N(0p, Σ) with Σ = {σij}i, j∈{1, ..., p} where σij = 0.5, i �= j, σii = 1.
We generated N = 50 data sets with n = 200 observations and fitted the model by using

the usual maximum likelihood (ML) procedure based on the canonical log-link (without
variable selection). In addition, we applied three alternative fitting methods that include
variable selection: the nonparametric flexible link procedure derived in Section 5.2.2, the
LASSO for generalized linear models (Lokhorst et al., 2007) and a boosting procedure
(Hothorn et al., 2009, 2010). The latter procedure is based on componentwise boosting,
which is also the selection procedure used in the flexible link procedure. While the flexible
link procedure selects a link function, ML estimates as well as LASSO and boosting use
the canonical link. It is seen in the upper four panels from Figure 5.1 that LASSO and
boosting, which include variable selection perform distinctly better than classical maxi-
mum likelihood fitting. But the best results are obtained if the link function is estimated
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nonparametrically. In particular the parameters of predictors that are not influential are
estimated more stably and closer to zero. The dominance of the flexible procedure is also
seen in the two lower panels from Figure 5.1, which shows the mean squared error for the
estimation of the parameter vector and the predictive deviance on an independently drawn
test data set with n = 1000. For more details see Section 5.3.

For normally distributed responses various estimation methods for single-index models
have been proposed. One popular technique is based on average derivative estimation
(see Stoker, 1986; Powell et al., 1989; Hristache et al., 2001). Alternatively M -estimation
has been applied, which considers the unknown link function as an infinite dimensional
nuisance parameter (see e.g. Klein and Spady, 1993). Other authors focus (more) on the
estimation of h(.). Based on kernel regression techniques, Härdle et al. (1993) investigated
the optimal amount of smoothing in single-index models when simultaneous estimating β
and the bandwidth. Yu and Ruppert (2002) suggested to use penalized regression splines.
They also allow for partially linear terms in the model and report more stable estimates
compared to earlier approaches based on local regression (e.g. Carroll et al., 1997). Tutz
and Leitenstorfer (2011) proposed a boosted version of the penalized regression splines
approach, but without variable selection. More recently, Gaiffas and Lecue (2007) proposed
an aggregation algorithm with local polynomial fits and investigated optimal convergence
rates. Bayesian approaches were proposed by Antoniadis et al. (2004). More general
distribution models have been considered by Weisberg and Welsh (1994) who proposed an
algorithm that alternates between the estimation of β and h(.).

In the following we will extend the penalized regression splines approach used by Yu and
Ruppert (2002) and Tutz and Leitenstorfer (2011) to the more general case of responses
that follow a simple exponential family and include variable selection. Both articles, Yu
and Ruppert (2002) as well as Tutz and Leitenstorfer (2011), consider Gaussian responses
only and do not provide tools for variable selection. In Section 5.2 the estimation procedure
is given, in Section 5.3 the method is compared to competitors. In Section 5.4 a modified
version that allows to reduce the false positives is introduced. Applications are given in
Section 5.5.

5.2 Estimation

5.2.1 Data Generating and Approximating Model

We assume that the data generating model is

E(yi|xi) = µi = hT (ηi),

where hT (.) is the unknown true transformation function and ηi = xT

i
β is the linear

predictor. Given xi the yi are (conditionally) independent observations from a simple
exponential family

f(yi|θi,φ) = exp

�
yiθi − b(θi)

φ
+ c(yi,φ)

�
, (5.1)
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Figure 5.1: Estimates of coefficient vector in simulation study for flexible link, boosting,

LASSO and ML and the mean squared error for parameter vector and predictive deviance

for simulation setting.
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where θi is the natural parameter of the family, φ is a scale or dispersion parameter and
b(.), c(.) are specific functions corresponding to the type of the family. For uniqueness we
will assume that for the true parameter ||β|| = 1 holds and that the linear predictor ηi
contains no intercept. Thus, the magnitude of ||β|| and the intercept are absorbed into
hT (.). With ||.|| we denote the Euclidean norm.

The approximating model that is fitted has the form

µi = h0(h(ηi)),

where h0(.) is a fixed transformation function, which has to be chosen. The function
h(.) is considered as unknown and has to be estimated. Typically, the choice of h0(.)
depends on the distribution of the response. When the response is binary a canonical
choice is the logistic distribution function. The main advantage of specifying a fixed link
function is that it may be selected such that the predictor is automatically mapped into
the admissible range of the mean response. For example, the logistic distribution function
has values from [0, 1], which is appropriate for binary responses. Thus, in contrast to
procedures that estimate hT (.) directly, we estimate the inner function h(.), as for example
Muggeo and Ferrara (2008) did.

The function h(.) will be approximated by expansion in basis functions

h(ηi) =
k�

s=1

αsφs(ηi) = ΦT

i
α, (5.2)

where φ1, . . . , φk denote the basis functions. As basis functions we use natural B-splines of
degree 3 (see Dierckx, 1993), which are provided by the fda package in R (see Ramsey and
Silverman, 2005; Ramsay et al., 2010). One problem with basis functions is that a sequence
of knots {τj}k1 has to be placed in a certain domain [ηmin, ηmax] where the response function
is to be estimated. Since the parameter vector is normalized by setting ||β|| = 1, one
can infer from the Cauchy-Schwarz-inequality that the range of ηi = xT

i
β, i ∈ {1, ..., n}

is restricted to [−u, u] where u = maxi=1, ..., n{||xi||}. We will use equidistant knots on
[−u, u]. As in P-spline regression (Eilers and Marx, 1996), a high number of knots is
used and the smoothness of the function estimate is controlled by appropriate penaliza-
tion. As penalty term for the estimation of α we use the integral of the squared second

derivation of the approximated response function h(.) given by (5.2),
�

u

−u

�
d2

dη2
h(η)

�2
dη,

which can be given in matrix form as P = αTKα with symmetric matrix K = {kij},

kij =
�

u

−u

�
d2

dη2
φi(η)

��
d2

dη2
φj(η)

�
dη. We will use the B-spline basis of the fda package

(Ramsey and Silverman, 2005; Ramsay et al., 2010) where the penalty matrix K is imple-
mented.

5.2.2 Estimation of Parameters Including Variable Selection

Componentwise boosting techniques have been successfully used to select relevant predic-
tors in classical linear and generalized linear models (see, for example, the overview given
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by Bühlmann and Hothorn (2007). The basic principle is to update within one step only
one single component, in our case one coefficient of the predictor. With the link function
being unknown also the coefficients of basis functions have to be estimated. In contrast to
the selection procedure for the components of β the estimation of the coefficients of basis
functions includes no selection step. Since the underlying link function is assumed to be
smooth, estimates are updated by using penalized estimation.

We will use likelihood-based boosting techniques, which aim at the maximization of the
log-likelihood. As usual in boosting no explicit penalty on the log-likelihood is specified.
Regularization is obtained implicitly by stopping the iteration procedure. The specific
advantages of boosting techniques concerning the trade-off between bias and variance have
been derived by Bühlmann and Yu (2003). Moreover, it has been shown that in special
cases boosting is very similar to LASSO regularized estimates (see Efron et al., 2004). The
penalization techniques that are used here follow the same principles as likelihood-based
boosting outlined in Tutz and Binder (2006).

Computation of estimates uses boosting techniques in two stages, once for the estima-
tion of the parameter vector β and once for the estimation of the vector of basis coefficients
α. Before giving the algorithm we will consider the two stages (and initialization) sepa-
rately. For simplicity we will use matrix notation with X denoting the design matrix of

predictors, and �β
(l)
, �η(l) = X�β

(l)
denoting the parameter estimate and the fitted predictor

in the lth step. Moreover, Φ(l) = (Φ(l)
1 , . . . , Φ(l)

n
)T with Φ(l)

i
= (φ1(�η(l)i

), . . . ,φk(�η(l)i
))T

is the current design matrix for the basis functions. In the following, for data (yi,xi),
i = 1, . . . , n, let l(α, β) =

�
i
(yiθi − b(θi))/φ denote the log-likelihood of the model. It

depends on α through h(ηi) = ΦT

i
α and on β through µi = h0(h(xT

i
β)), where θi = θ(µi)

for a known function θ(.).

Initialization

We need two initialization values, �β
(0)

and �α(0). For �β
(0)

we choose �β
(0)

= 0p. The

initialization value for the coefficient vector of the basis functions �α(0) is generated by
approximating h(η) by a linear function, s · η+ t, where t = h−1

0 (ȳ) and the slope is chosen
as a small value (s = 0.0001).

Boosting for Fixed Predictor

For fixed predictor �η(l−1) = X�β
(l−1)

the estimation of the response function corresponds
to fitting the model µ = h0(Φ

(l−1)�α(l−1) + Φ(l−1)�a(l)) where Φ(l−1)�α(l−1) is a fixed offset
that represents the previously fitted value. One step of penalized Fisher scoring has the
form

�a(l) = νh ·
�
(Φ(l−1))T ( �D

(l−1)
)T (�Σ

(l−1)
)−1 �D

(l−1)
Φ(l−1) + λK

�−1

×

×(Φ(l−1))T ( �D
(l−1)

)T (�Σ
(l−1)

)−1(y − �µ(l−1))
(5.3)
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where

�D
(l−1)

= diag

�
∂h0(�h(l−1)(�η(l−1)

i
))

∂�h(l−1)(η)

�n

i=1

(5.4)

is the estimate of the derivative matrix evaluated at the estimate of the previous step
h0(�h(l−1)(η)) and

�Σ
(l−1)

= diag
�
σ2(h0(�h(l−1)(�η(l−1)

i
)))

�n

i=1
(5.5)

is the matrix of variances evaluated at h0(�h(l−1)(η)). K is the penalty matrix which
penalizes the second derivation of the estimated (approximated) response function. The
shrinkage parameter, which makes the procedure a weak learner, is fixed by νh = 0.1.

Componentwise Boosting for Fixed Response Function

Let �h(l−1)(.) be fixed and the design matrix have the form X = (x1|...|xp) with cor-
responding response vector y = (y1, ..., yn)T . Componentwise boosting means to up-
date one parameter within one boosting step. Therefore one fits the model µ =

h0(�h(l−1)(X�β
(l−1)

+ xT

j
�b(l)
j
)), where X�β

(l−1)
is a fixed offset and only the variable xj is

included in the model. Then penalized Fisher scoring for parameter �b(l)
j

has the form

�b(l)
j

= νp
�
xT

j
( �D

(l−1)

η
)T (�Σ

(l−1)
)−1 �D

(l−1)

η
xj

�−1

xT

j
( �D

(l−1)

η
)T (�Σ

(l−1)
)−1(y − �µ(l−1)), (5.6)

where νp = 0.1 and

�D
(l−1)

η
= diag

�
∂h0(�h(l−1)(�η(l−1)

i ))
∂η

�n

i=1

= diag

�
∂h0(�h(l−1)(�η(l−1)

i ))

∂�h(l−1)(η)
·
∂�h(l−1)(�η(l−1)

i )
∂η

�n

i=1

(5.7)

is the matrix of derivatives evaluated at the values of the previous iteration and

�Σ
(l−1)

= diag
�
σ2(h0(�h(l−1)(�η(l−1)

i
)))

�n

i=1
(5.8)

is the variance from the previous step.
The basic algorithm given below computes updates of the parameter vector and the

coefficients of the basic functions. In each step it is decided which update is best and only
one is executed. Thus in each step either the parameter vector or the coefficients of the
basic functions are refitted.
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Algorithm: FlexLink

Step 1 (Initialization)

Set �β
(0)

= 0, �η(0) = 0 and determine �α(0) as described previously. Compute
�D

(0)
= diag

�
∂h0(�h(0)(�η(0)

i
))/∂�h(0)(η)

�n

i=1
, �D

(0)

η
= diag

�
∂h0(�h(0)(�η(0)

i
))/∂η

�n

i=1
,

�Σ
(0)

= diag
�
σ2(h0(�h(0)(�η(0)

i
)))

�n

i=1
.

Step 2 (Iteration)

For l = 1, 2, . . . , M

1. Predictor update

Compute for every j ∈ {1, . . . , p} the penalized estimate �b
(l)

j
=

(0, . . . ,�b(l)
j
, . . . , 0) based on one-step Fisher scoring (5.6) and determine the

candidate update �β
(l)

j
= �β

(l−1)
+ �b

(l)

j
.

Standardize �β
(l)

j
by computing �β

(l)

j
/||�β

(l)

j
|| and the corresponding log-

likelihood function l(�α(l−1), �β
(l)

j
).

Choose the parameter vector �β
(l)

opt
= argmaxj l(�α

(l−1), �β
(l)

j
), which maxi-

mizes the log-likelihood function and set �β
(l)

= �β
(l)

opt

2. Response function update

Compute �a(l) as described in (5.3) and set �α(l) = �α(l−1) + �a(l)

Compute �h(l)(�η(l−1)) = Φ(l−1)�α(l) and l(�α(l), �β
(l−1)

).

3. Update choice

If l(�α(l), �β
(l−1)

) > l(�α(l−1), �β
(l)
) then �α(l) is updated and �β remains un-

changed, �β
(l)

= �β
(l−1)

.

If l(�α(l), �β
(l−1)

) ≤ l(�α(l−1), �β
(l)
) then �β

(l)
is updated and �α remains un-

changed, �α(l) = �α(l−1).

Further Details

If the transformation hT (.) in the generating model is considered as a response function
it has to be monotone. The approximating transformation is given by h0(�h(.)) where the
outer function h0(.) is already a monotonically increasing link function. In order to obtain
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a monotonically increasing response function h0(�h(.)) we have to restrict the estimation of
�h(.) by a monotonicity constraint.

A sufficient condition for the B-Spline basis expansion to be monotonically increasing
is that the components of the coefficient vector α are ordered such that αi ≤ αi+1 holds.
In boosting methods this inequality must hold after every update step, �α(l−1)

i
+ �a(l)

i
≤

�α(l−1)
i+1 + �a(l)

i+1. Therefore we constrain every update step �a to be from

A =
�
a(l) : a(l)2 − a(l)1 ≥ �α(l−1)

1 − �α(l−1)
2 , ..., a(l)

k
− a(l)

k−1 ≥ �α(l−1)
k−1 − �α(l−1)

k

�
. (5.9)

Monotone functions can be obtained in several ways. After computing �α(l) in the lth step
one can monotonize the components by use of isotone regression, provided for example
by the R-routine isoreg. Alternatively, one can solve the optimization problem that is
behind the Fisher step in (5.3) with the additional restriction that �a is from A. Therefore
one minimizes

aTΦT �W
(l−1)

Φa− 2aTΦT �W
(l−1)

( �D
(l−1)

)−1(y − �µ(l−1)), s.t. a ∈ A

where �W
(l−1)

= ( �D
(l−1)

)T (�Σ
(l−1)

)−1 �D
(l−1)

. Solutions can be obtained by use of the R-
package quadprog (see Turlach, 2009) which is able to solve a quadratic optimization
problem with linear constraints. Results are very similar. In our applications we use
quadprog. For the use of similar constraints see also Gertheiss et al. (2009).

In step 3 of the algorithm a selection step is included in which it is determined if the
coefficients of parameters or the link function is updated. We tried several alternatives,
but updating one of the sets of coefficients turned out to be most efficient.

Choice of Tuning Parameter

There are two tuning parameters in the model: the number of boosting iterations m
which mainly steers variable selection and λ which controls the smoothness of the response
function and the number of response function updates. For determining the appropriate
pair of tuning parameters π = (m, λ) we use K-fold cross validation (CV). There are
several reasons to use this procedure and not to work with information-based criteria
as used for example by Tutz and Leitenstorfer (2011). On the one hand Hastie (2007)
suggests to use CV in boosting procedures because the effective degrees of freedom can be
underestimated by using the trace of the hat-matrix. On the other hand the complexity of
a SIM fit involves two stages, first the complexity of the predictor fit, and second the fit of
the response function. Therefore, a hat matrix that includes both stages is not available.
In addition, the two restrictions (monotonicity of the response function and normalization
of β) make the problem of finding appropriate hat matrices even more difficult.

In K-fold cross validation the data set is split K-times into a test data set of size n/K
and a training data set of size n−n/K. For every tuple of tuning parameters π the model is

fitted on the κ-th training data set obtaining �γκ

π = (�ακ

π, �β
κ

π). Then the predictive deviance
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on the κ-th test set Dev(yκ

test, �µ(�γ
κ

π|X
κ

test)) is computed. The final πopt is determined by

πopt = argminπ∈M×Λ

�
K�

κ=1

Dev(yκ

test, �µ(�γ
κ

π|X
κ

test))

�
(5.10)

Unless otherwise mentioned we choose m ∈ M := {1, ..., 1000} and λ ∈ Λ :=
{0.01, 0.1, 1, 10, 100}.

5.3 Simulation Studies

Measures of Model Assessment

Some care should be taken when estimates are compared. We assume µi = hT (xT

i
β) where

hT (.) is the unknown true transformation function and for the true parameter (without
intercept) ||β|| = 1 holds and the magnitude of ||β|| as well as the intercept are absorbed
into hT (.). Let the generating model without restrictions be given by µi = hG(β0 + xT

i
β0)

with unrestricted parameter vector β0, where hG is any monotone function. Then the
model can always be rewritten in the corresponding standardized true response function
hT (.) by

µi = hG(β0 + xT

i
β0) = hG(β0 + ||β0||(x

T

i
β0/||β0||)) = hT (ηi),

with ηi = β0 + ||β0||ηi, ηi = xT

i
β, β = β0/||β0||. In particular when a given link function

like the canonical link is used, estimates cannot be compared directly to the parameters
||β0|| for some generating link function hG(.). Therefore estimated parameters are also
standardized and one considers �β = �βcan/||�βcan||, where �βcan is the estimate resulting
from the canonical link model.

Comparisons in this article always refer to corresponding standardized estimates �β.
Therefore the difference between β and �β is measured by

MSEβ = ||β − �β||2,

where ||β|| = 1 and ||�β|| = 1. In addition, the accuracy of prediction is investigated by
use of the predictive deviances on an independent test set

Devtest = Dev(ytest, �µ(�γπopt
|Xtest)).

The number of observations in the test data set is chosen by ntest = 5 · ntrain.

Procedures and Results

We compare our procedure with three other procedures:

The boosting procedure mboost with canonical link function (see Hothorn et al.,
2009, 2010).
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L1 penalized GLM with canonical link function computed by the R-package lasso2
(see Lokhorst et al., 2007).

The ML-estimator with canonical link function for the full model.

In addition, we include a modified version of FlexLink which truncates small coefficients
to zero. Although the FlexLink algorithm is able to return null estimates, it can happen
that some variables are selected just once or twice and the corresponding estimates have
non-zero but very small values. In particular, false positive error rates improve by setting
these small values to zero. For details of the modified algorithm, which is referred to as
FlexLink (cut), see Section 5.4.

The predictor matrix was generated as a N(0p, Σ)-distribution with Σ =
{σij}i, j∈{1, ..., p} where σij = 0.5, i �= j, σii = 1. We use two parameter vectors with
p = 20,

βa = (0.2, 0.4, −0.4, 0.8, 0, ..., 0)T ,
βb = (0.5, 0.5, −0.5, −0.5, 0, ..., 0)T ,

to generate η = Xβ. As distributions of the response we consider normal, Poisson and
binomial distribution. Further we consider two different response functions for every dis-
tribution. So 12 different simulations settings were investigated. They are denoted in the
following way, �dis� �resp� �beta�. For example, the setting Bin2b has binomial distributed
response, uses the second response function and βb is the true parameter vector. The true
response functions that are used below, an approximation by the canonical link and the
50 estimated response function are shown in Figure 5.2. The estimated response functions
are for the case βa. First we will describe the considered distributions and then discuss
results.

(1) Normal Distribution
In the normal distribution case we use the response functions

1. hT (η) = 3 · η3

2. hT (η) = sgn(η)5 · 3
√
η

which are shown in the first row of Figure 5.2. In addition an approximation of hT (.) to
the canonical response function, which in this case is linear, is shown Therefore, hcan(η) =
a + b · η is computed where a and b are chosen to minimize

� 2

−2(h(η) − hcan(η))2dη. The
approximation is shown by the grey line. For the first first response function the error term
is ε ∼ N(0, 9I) and for the second ε ∼ N(0, I) where I = diag 1n

i=1.

(2) Poisson Distribution
In the Poisson case we consider the response functions:

1. hT (η) =
10

1 + exp(−5 · η)

2. hT (η) =
10

1 + exp(−10 · η − 10)
+

10

1 + exp(−10 · η + 10)
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Figure 5.2: True response functions (black lines), approximating canonical response func-

tions (dashed lines) and estimated response functions (grey) of simulation study.
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They are shown in the second row of Figure 5.2. Also the approximation of hT (.) by the
canonical response function is given.

Figure 5.3: Boxplots of model assessment measurements MSEβ (left) and Devtest (right)

in the Poisson case.
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(3) Binomial Distribution
For binomial responses the true response functions are

1. hT (η) = exp(− exp(−2 · η − 0.5)),

2. hT (η) =
0.25

1 + exp(−15 · η − 10)
+

0.75

1 + exp(−15 · η + 10)
.

Figure 5.2 shows the response function and the approximating canonical response function.
The second response function corresponds to the Gumbel-link and can be approximated
by the canonical logit-link quite well.

The results of the simulations are summarized in Table 5.1. Box plots are given only
for the Poisson distribution in Figure 5.3. Performance in terms of MSE and predictive
deviance is about the same as for FlexLink. It is seen from Table 5.1 and Figure 5.3
that for the normal and the Poisson distribution FlexLink (and FlexLink (cut)) distinctly
outperform LASSO and mboost in all settings. MSE as well as prediction is strongly
improved by allowing for flexible link functions and selection of variables.

The picture is not so clear for binomial distributions. The binomial case is a challenge
for the estimation of the unknown link function because the information in 0− 1 observa-
tions is weak and the true link function does not differ so much from the canonical link.
It is seen that all the selection procedures yield better results than MLE but there is not
so much difference among the selection procedures. Nevertheless, the flexible procedure
yields the best results in three of the four scenarios in terms of MSE. Of course artificial
response functions can be constructed that are far from the canonical link and therefore
will favour flexible procedures. But we preferred to use link functions which are not too
strange. Even in the case of link functions that are not too far from the canonical link the
flexible procedure is a strong competitor.

5.4 Modified Estimator and Selection of Predictors

MSE and predictive deviance are important criteria in the comparison of fitting procedures.
However, in selection procedures the performance should also refer to the precision of the
selection. Criteria by which selection can be measured are in particular hit rate (proportion
of correctly identified influential variables) and false positives (proportion of non-influential
variables dubbed influential).

One problem with simple boosting procedures is that some predictors are selected just
once or twice. The corresponding estimated parameters are very small but are not equal
to zero. Performance of selection can be easily improved by cutting off these small values.
In the procedure called FlexLink (cut) we use a truncated version of �β. The components
of estimate �β are compared to 1/p, where p is the number of predictors, and components
that are smaller than 1/p are set to zero. Then the new estimate is re-standardized to
have Euclidean norm 1. When used in the cross-validation procedure (5.10) one obtains
the new optimal tuning parameter π̃opt. Of course, the threshold for the cut-off could be
optimized, we simply tried the threshold 1/p and found that it worked well.
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FlexLink FlexLink (cut) mboost LASSO MLE
Normal distribution

Norm1a
MSEβ 0.0072 0.0046 0.0620 0.2705 0.1224
Dev(test) 0.7493 0.7778 3.4226 4.3310 3.5184

Norm2a
MSEβ 0.0044 0.0018 0.0163 0.0159 0.0419
Dev(test) 2.8895 2.8265 9.1622 9.0386 9.5827

Norm1b
MSEβ 0.0439 0.0401 0.0604 0.0446 0.1431
Dev(test) 19.3224 19.4391 27.5937 28.0246 28.3730

Norm2b
MSEβ 0.0032 0.0011 0.0065 0.0080 0.0224
Dev(test) 4.5385 4.3072 12.0554 12.0587 12.5424

Poisson distribution

Pois1a
MSEβ 0.0092 0.0063 0.0664 0.0615 0.1619
Dev(test) 979.60 966.41 2711.83 2696.37 2995.60

Pois2a
MSEβ 0.0123 0.0088 0.0708 0.0539 0.1246
Dev(test) 1262.12 1218.33 2354.94 2320.07 2445.86

Pois1b
MSEβ 0.0105 0.0065 0.0266 0.0232 0.0803
Dev(test) 1067.16 1063.71 2265.70 2226.17 2384.33

Pois2b
MSEβ 0.0253 0.0208 0.0896 0.0691 0.1395
Dev(test) 1256.51 1229.08 1806.42 1780.39 1846.76

Binomial distribution

Bin1a
MSEβ 0.0761 0.0804 0.0797 0.0843 0.1798
Dev(test) 813.30 809.57 802.25 796.64 886.73

Bin2a
MSEβ 0.0732 0.0734 0.0905 0.0800 0.2197
Dev(test) 760.35 761.97 818.05 789.27 1336.62

Bin1b
MSEβ 0.0836 0.0788 0.0610 0.0719 0.1515
Dev(test) 981.58 982.99 967.42 979.92 1070.33

Bin2b
MSEβ 0.0904 0.0948 0.0939 0.0930 0.1938
Dev(test) 988.73 998.56 1029.98 986.38 1411.32

Table 5.1: Medians of the model assessment measures for the settings of the simulation

study.

As is seen from Table 5.2, which gives the means of hits and false positive rates for
all settings, the truncated version of FlexLink shows distinct improvement. False positive
rates are much smaller, hit rates are in most cases the same as in simple FlexLink, or
slightly smaller. Comparison to mboost and LASSO are strongly in favour of FlexLink.
The effect is illustrated in Figure 5.4 where hits and false positive rates for one setting
are plotted in a ROC-type way. The best performance would be the point (false positive
rate, hit rate)=(0,4). Among the considered procedures FlexLink (cut) shows the best
approximation to the optimal point.

In our (not yet optimized implementation) computational cost is not too high. For fixed
tuning parameter λ the search across 100 boosting iterations to select the best one takes
15 sec for the noisy miner data considered in the next section. The function gl1ce from
package lasso2, which fits the LASSO, takes about 10 sec if optimized over 100 tuning
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parameters. The boosting procedure mboost, which computes fits for the canonical link,
is much faster.

Figure 5.4: Hits and false positive rates for setting Pois2a with jittered values. Last panel

shows the means over simulations.
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FlexLink FlexLink mboost LASSO
(cut)

hits
false

hits
false

hits
false

hits
false

pos. pos. pos. pos.
Normal case
Norm1a 1.000 0.504 1.000 0.015 0.980 0.355 0.530 0.004
Norm2a 1.000 0.445 1.000 0.006 1.000 0.369 1.000 0.406
Norm1b 1.000 0.575 1.000 0.158 1.000 0.376 1.000 0.165
Norm2b 1.000 0.504 1.000 0.000 1.000 0.355 1.000 0.431
Poisson case
Pois1a 0.995 0.370 0.990 0.038 0.965 0.265 0.980 0.326
Pois2a 1.000 0.449 1.000 0.045 0.920 0.158 0.990 0.408
Pois1b 1.000 0.439 1.000 0.025 1.000 0.283 1.000 0.309
Pois2b 1.000 0.665 1.000 0.104 1.000 0.223 1.000 0.456
Binomial case
Bin1a 0.915 0.244 0.870 0.100 0.960 0.366 0.975 0.409
Bin2a 0.980 0.306 0.955 0.133 0.975 0.390 0.985 0.430
Bin1b 1.000 0.304 1.000 0.128 1.000 0.401 1.000 0.451
Bin2b 1.000 0.394 1.000 0.160 1.000 0.405 0.446 1.000

Table 5.2: Means of the hits and false positive rates.

5.5 Applications

5.5.1 Medical Care Data

In this section, we consider the health care data from Dep and Trivedi
(1997). The original data is from the US National Medical Expenditure Sur-
vey and is available from the data archive of the Journal of Applied Economet-
rics (http://www.econ.queensu.ca/jae/1997-v12.3/deb-trevidi/). We use the
data.frame from Zeileis (2006). The response variable that is considered is the num-
ber of physician office visits (ofp), which potentially depends on the variables given in
Table (5.3). In our investigation we use only male patients, which reduces the sample size
to n = 1778 from the total available sample of 4406 individuals.

We compare the same estimating procedures as in Section 5.3. For measuring the
prediction performance, 25 splits into a training data set of ntrain = 1185 and a test data
set of ntest = 593 were used. For reducing the computational costs, the tuning parameter
λ of the FlexLink is determined by 5fold cross validation on the complete data set to
λ = 100. So only the number of optimal boosting iterations has to determined inner
each split. Figure 5.5 shows the predictive deviances in the test data and the fitted link
functions (for male patients which visit physician office maximum 30 times). It is seen
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that the link function for the flexible model differs from the canonical link in particular
for large values of the linear predictor. While the canonical link still increases distinctly,
the flexible link is very flat. The estimated link functions are very stable across splits. It
is also seen from Figure 5.5 that prediction for the flexible model with variable selection
distinctly outperforms the competitors. From Table 5.4 it is seen that the flexible link
procedure reduces the number of coefficients.

Label Explanation
exclhlth = 1 if self-perceived health is excellent
poorhlth = 1 if self-perceived health is poor
numchron number of chronic conditions

(cancer, heart attack, gall bladder problems, emphysema
, arthritis, diabetes, other heart disease)

adldiff = 1 if the person has a condition that limits activities
of daily living

noreast = 1 if the person lives in northeastern US
midwest = 1 if the person lives in the midwestern US
west = 1 if the person lives in the western US
age age in years divided by 10
black = 1 if the person is African American
married = 1 if the person is married
school number of years of education
faminc family income in 10 000
employed = 1 if the person is employed
privins = 1 if the person is covered by private health insurance
medicaid = 1 if the person is covered by Medicaid

Table 5.3: Variable description for medical care data

The estimated parameters are given in Table 5.4. Since data are strongly overdispersed
(�Φ = 7.736) we give quasi-likelihood estimates (QLE) instead of the maximum likelihood
estimates. It is seen that all covariates with p-values smaller than 0.05 for QLE were
selected by FlexLink an FlexLink (cut). The latter procedures select two more covariates,
covariate 7 and 10. In Figure 5.6 we show the error bars across 300 bootstrap samples.
The circles mark the parameter estimate from Table 5.4 and the whiskers are the 0.975-
and 0.025-quantiles determined by bootstrapping. We used simple pairwise bootstrap.
The data contains n = 1778 pairs (yi, xi), i = 1, ..., n, where yi is the response value
and xi is the corresponding vector of covariates. We sample b = 300 bootstrap samples.
Each bootstrap sample is sampled by drawing n pairs (yi, xi) with replacement. We achieve
(y∗

b
, X∗

b
), b = 1, ..., 300, bootstrap samples with n observations whereby some observations

are equal. Then we fit models on (y∗
b
, X∗

b
), b = 1, ..., 300, and achieve the corresponding

estimates �β
∗
b
. Finally we computed the quantiles of the distribution of the components of
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Figure 5.5: Left panel: Boxplots of predictive deviance on test data sets across 50 random

splits of medical care data. Right panel: Estimated response function for medical care data

across 50 random splits.

Number Variable FlexLink FlexLink (cut) mboost LASSO QLE (p-value)
1 exclhlth 0.0000 0.0000 -0.2023 -0.0382 -0.1979 (0.050)
2 poorhlth 0.2083 0.3614 0.3203 0.2546 0.3134 (0.000)
3 numchron 0.9492 0.8849 0.7042 0.7971 0.6854 (0.000)
4 adldiff 0.0000 0.0000 0.0250 0.0000 0.0258 (0.766)
5 noreast 0.0000 0.0000 -0.1623 -0.0916 -0.1318 (0.177)
6 midwest 0.0000 0.0000 0.0451 0.0000 0.0636 (0.483)
7 west 0.0419 0.0866 0.0725 0.0062 0.0840 (0.359)
8 age 0.0000 0.0000 -0.0592 0.0000 -0.0142 (0.875)
9 black 0.0000 0.0000 -0.1693 0.0000 -0.1276 (0.208)
10 married 0.0364 0.0878 0.1166 0.0734 0.1420 (0.119)
11 school 0.1725 0.1965 0.3949 0.4817 0.4224 (0.000)
12 faminc 0.0000 0.0000 0.0000 0.0000 -0.0064 (0.939)
13 employed 0.0000 0.0000 0.0138 0.0000 0.0254 (0.772)
14 privins 0.1508 0.1801 0.3318 0.2292 0.3555 (0.001)
15 medicaid 0.0000 0.0000 0.1196 0.0000 0.1462 (0.124)

Table 5.4: Parameter estimates for medical care data set.

estimates �β
∗
b
, b = 1, ..., 300.

It is remarkable that mboost selects nearly all variables. The LASSO and the FlexLink
select a similar set of variables. Further by estimating the response function flexibly there
is a tendency that the smaller values of yi are accumulated on the left side which seems
to be reasonable for an increasing response function. This effect can not be found for the
other procedures.
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Figure 5.6: The error bar plot for medical care data across 300 bootstrap samples.
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Figure 5.7: Response function of the five procedures with optimal tuning parameter

determined by 5-fold cross validation and the QLE . Grey circles mark the observed response

values yi at the estimated value �ηi.
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5.5.2 Noisy Miner Data

In this section we consider the noisy miner data from Maron (2007), which are available
at http://www.sci.usq.edu.au/staff/dunn/ Datasets/tech-glms.html. The data set
has a biological background. Three 20 minutes surveys were conducted in each of 31 2ha
belt transects in buloke woodland patches within the Wimmera Plains of western Victoria,
Australia. The considered response is the number of species from a list of birds (number
of declining species, in short declinerab). It is of particular interest how the number of
species is affected by the presence of the noisy miner, which is an aggressive competing bird.
The collected explanatory variables are given in Table (5.5). Figure 5.8 shows the fitted

Number Label Explanation
1 eucs number of eucalypts in each 2ha transect
2 area area [ha] of remnant patch vegetation

in which the transect was located
3 grazed whether the area was grazed (= 1) or not (= 0)
4 shrubs whether shrubs were present (= 1) or not (= 0)
5 buloke number of buloke trees in each transect
6 timber number of pieces of fallen timber
7 finelitt percentage of fallen litter on the ground
8 minerab number of observed noisy miners

Table 5.5: Variable description of the noisy miner data.

response function together with the approximated canonical link function. It is seen that,
in particular for large values of the linear predictor, the two link functions differ strongly;
in that area the flexible response function is much steeper than the canonical response
function. The prediction performance is measured by using 50 splits into a training data
set of ntrain = 21 and a test data set of ntest = 10. The tuning parameter λ of the FlexLink
was determined by 5-fold cross validation. Figure 5.8 shows the predictive deviances in the
test data. It is seen that prediction for the flexible model with variable selection distinctly
outperforms the competitors. Table 5.6 shows parameter estimates for the various models.
It turned out that Flex Link selects one variable, namely the number of noisy miners,
which seems to be responsible for the decrease in species. In contrast, mboost selects five
predictors and LASSO three. Since the data are strongly overdispersed (�Φ = 4.647) we
used the quasi-likelihood estimator (QLE) instead of the MLE. QLE also suggests that
only one variable in the linear predictor is relevant. The estimates turn out to be very
stable for the flexible link procedure (not shown). It seems that the exclusion of spurious
predictors together with the fitting of a link function that is far from the canonical link
makes the flexible procedure the dominating procedure in this example. This is in line with
the simulation results where spurious predictors were included and the link was different
from the standard link.
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Figure 5.8: Estimated response function for the noisy miner data and approximation by

the canonical response function (left panel), box plots for deviances over 50 random splits

(right panel)

Number Variable FlexLink FlexLink mboost LASSO QLE (p-value)
(cut)

1 eucs 0.0000 0.0000 0.0000 0.0000 0.0557 (0.264)
2 area 0.0000 0.0000 -0.0494 -0.0726 -0.0249 (0.168)
3 grazed 0.0000 0.0000 0.0000 0.0000 -0.5010 (0.430)
4 shrubs 0.0000 0.0000 0.1074 0.0000 -0.2569 (0.717)
5 buloke 0.0000 0.0000 0.0938 0.0505 0.0032 (0.345)
6 timber 0.0000 0.0000 0.0720 0.0000 0.0024 (0.896)
7 finelitt 0.0000 0.0000 0.0000 0.0000 0.0023 (0.910)
8 minerab -1.0000 -1.0000 -0.9859 -0.9961 -0.8242 (0.001)*

Table 5.6: Standardized parameter estimates for the whole noisy miner data set normed

to length equal to 1.

5.6 Concluding Remarks

A flexible estimation of the response function combined with variable selection is proposed.
It has been demonstrated that the method improves parameter estimation and prediction
in the presence of irrelevant variables. The method works for generalized linear models,
improvement is usually strong, but less impressive for binary responses where informa-
tion is weak. The modified version FlexLink (cut) shows much better variable selection
performance without suffering in accuracy concerning estimation and prediction.

We focused on the estimation of link functions for generalized linear models and there-
fore included a monotonicity restriction for the response function. In future work the mono-
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tonicity restriction will be dropped, resulting in generalized single-index models (compare
Cui et al., 2009). Then information-based criteria like AIC can be used since the hat matrix
of boosting can be derived (for AIC in single-index models compare Naik and Tsai 2001).
The use of information-based criteria is attractive because it could reduce computational
costs.



Chapter 6

Estimating Generalized Additive
Models with Flexible Link Function
Including Variable Selection

A natural extension of the Flex Link Algorithm (see chapter 5 or Tutz and Petry
(2011)) is the flexibilization of the linear predictor ηi = xT

i
γ to an additive predictor

ηi =
�

p

j=1 fj(xij). Since additionally to the more flexible predictor the response function
is unknown and has to be estimated. This leads to the class of generalized additive models
with flexible response function. We will combine the Flex Link Algorithm with compo-
nentwise boosting of smooth functions proposed by Tutz and Binder (2006) for solving the
new modeling problem.

6.1 Introduction

Methods for the estimation of the unknown link function with linear predictors have been
proposed under the name single index models (SIMs). Let data be given by (yi, xi), i =
1, . . . , n, where yi denotes the response and xi = (xi1, ..., xip)T the vector of p covariates.
In SIMs as discussed, for example, by Weisberg and Welsh (1994), Ruckstuhl and Welsh
(1999), Härdle et al. (1993), and Muggeo and Ferrara (2008), the conditional expectation
of yi given xi, yi|xi, is modeled by

E(yi|xi) = µi = hT (ηi),

where hT (.) is the unknown response function and ηi = xT

i
γ is the predictor which contains

no intercept. The unknown hT (.) has to be estimated nonparametrically. Muggeo and
Ferrara (2008) used a P-Spline approach whereas Härdle et al. (1993) used kernel functions.
For uniqueness, typically the Euclidean norm of the parameter vector γ is fixed at 1, that
is, �γ� = 1. A multiplicative factor of γ and the intercept are absorbed into the response
function hT (.). To guarantee uniqueness of the estimates of a SIM a second constraint is
necessary. Yu and Ruppert (2002) and Cui et al. (2009) set one specific component of γ to

95
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be positive. Alternatively, a monotonicity restriction on the response function guarantees
uniqueness. As in Tutz and Petry (2011) we will consider only monotonically increasing
(isotone) response functions, ∂hT (t)/∂t > 0. This induces invertibility of the response
function, which is fundamental in generalized linear models (GLMs). The inverse of the
response function is the link function, h−1

T
(.) = gT (.). With the monotonicity constraint

SIMs are equivalent to GLMs with unknown response function. Typically, when GLMs
are used the response function is considered as fixed and known. In most applications the
canonical response function h0(.) is chosen for hT (.). However, among others, Czado and
Santner (1992) showed that misspecified response functions can lead to a substantial bias
in the estimate of γ.

The same holds for the more general class of generalized additive models (GAMs). In
contrast to GLMs, where the predictor is a linear combination of covariates, in GAMs the
predictor is a sum of covariate specific unspecified functions. The conditional expectation is
modeled by a transformation hT (.) of a sum of covariate specific functions and an intercept
β0 in the form

µi = E(yi|xi) = hT (β0 +
p�

j=1

fj(xij)), s.t.

� max{xj}

min{xj}
fj(t)dt = 0, j = 1, ..., p. (6.1)

The constraint
� max{xj}
min{xj} fj(t)dt = 0, j = 1, ..., p is needed to obtain uniqueness because

a shift of a function �fj(.) = fj(t) + cj can be compensated by a shift of the intercept
�β0 = β0 − cj. An extensive discussion of GAMs was given by Hastie and Tibshirani (1990)
and Wood (2006).

As in GLMs, in GAMs usually the canonical response function h0(.) is chosen. The
focus of this chapter is on GAMs where the response function is unknown and has to be
estimated. For the estimation of the functions fj(.), which are assumed as unknown, we
use common tools of approximation. In particular, we use a B-spline basis expansion

fj(x) ≈ ψT

j
(x)βj, j = 1, ..., p, (6.2)

where ψj(x) is the vector of the mj basis functions evaluated at x and βj is the correspond-
ing coefficient vector. Let ψij := ψj(xij) denote the vector of basis function expansion of
the jth predictor function evaluated at the ith observation, that is, at the data point xij.
B-spline basis expansions have been proposed by De Boor (1978) and have become very
popular in many fields (see Eilers and Marx, 1996; Ramsey and Silverman, 2005). The
estimating model in the case of GAMs is

µi = E(yi|xi) = hT (β0 +
p�

j=1

ψT

ij
βj).

For a compact notation, let
Ψj = (ψ1j, ..., ψnj)

T (6.3)
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denote the n×mj-dimensional matrix of basis function evaluated at all observation of the
jth covariate and

Ψ = (Ψ1, .., Ψp) (6.4)

denote the n× (
�

p

j=1 mj) total design matrix without intercept.
In GAMs it is assumed that the response is from a simple exponential family

f(yi|θi, φ) = exp

�
yiθi − b(θi)

φ
+ c(yi, φ)

�
(6.5)

where θi is the natural parameter of the family, φ is a dispersion parameter and b(.), c(.)
are specific functions corresponding to the type of the family.

Procedures for the fitting of GAMs are typically based on roughness penalties that reg-
ularize the regression problem, see, in particular, Hastie and Tibshirani (1990) and Wood
(2006). Let β = (β0, β1, ..., βp)

T denote the coefficient vector including the coefficients
on basis functions as and the intercept, then the corresponding log-likelihood function is

l(β) =
n�

i=1

(yiθi − b(θi))/φ). (6.6)

An often used penalized log-likelihood estimate has the form

�β = argmaxβ

�
l(β) +

p�

j=1

λj

�
∂2

∂t2
�
ψT

j
(t)βj

�2
dt, s.t.

�
ψT

j
(t)βjdt = 0

�
,

where λj, j = 1, ..., p, are tuning parameters which have to be chosen.
For the estimation of high dimensional models it makes sense only to select and the

most relevant covariates. Breiman (1996) showed that variable selection can improve the
predictive property of an estimated model. Further variable selection tackles the problem of
overfitting by including only highly influential covariates in the estimated model. Nowadays
many algorithms and strategies for variable selection have been developed.

For GLMs the L1-penalization is a very popular way to generate variable selection. It
has been introduced by Tibshirani (1996) for linear normal regression. For GLMs com-
putationally effective algorithms to solve the corresponding penalized likelihood problem
were given by Goeman (2010a) and Park and Hastie (2007b). Another strategy for vari-
able selection is componentwise boosting with early stopping. Tutz and Binder (2006) and
Bühlmann and Hothorn (2007) presented such boosting techniques for GLMs. Also the
FlexLink algorithm from Tutz and Petry (2011) are also based on componentwise boosting.

Both techniques can be generalized to GAMs. In the case of penalization predictors
are be selected by adding penalty terms which shrink the predictor functions with low
influence on the response to a zero line. Such penalty terms were described by Avalos
et al. (2007) and Wood (2011). As in GLMs the regularization by componentwise boosting
enforces variable selection by early stopping. In each boosting iteration only one covariate
is updated. So only variables that have been updated before stopping the algorithm by an
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appropriate criterion are included in the model. For details of componentwise boosting see
Schmid and Hothorn (2008), Hothorn et al. (2010) and Tutz and Binder (2006).

The advantages of variable selection in GAMs are analogously to the advantages in
GLMs. If variables with low or no influence are excluded noise is eliminated and the pre-
dictive performance of the estimated model increases. As in GLMs a misspecified response
function is impairing the estimates and the predictive performance. If the true link func-
tion differs strongly from the assumed link function variable selection becomes biased and
prediction suffers. In the following a fitting procedure is proposed that fits the unknown
functions of the additive predictor with simultaneous selection of the relevant predictors
and estimates the unknown link function.

6.2 Flexible Link with Additive Predictor (FLAP)

The model that is assumed to hold has the form

µi = E(yi|xi) = hT (
p�

j=1

fj(xij)). (6.7)

For unspecified link function the model is not identifiable because it is equivalent to the
model E(yi|xi) = h̃T (a ·

�
p

j=1 fj(xij) + b) for constants a, b and appropriately chosen

response function h̃T . Therefore additional constraints are needed. Typically, SIMs are
constrained by �β� = 1 in order to guarantee uniqueness. Similar to this constraint we
postulate for a constant c > 0

p�

j=1

� max{xj}

min{xj}
fj(t)

2dt = c. (6.8)

In addition, each predictor function is centered by postulating

� max{xj}

min{xj}
fj(t)dt = 0, j = 1, ..., p. (6.9)

Moreover, we assume that the response function is monotonically increasing, that is,

∂hT (t)

∂t
≥ 0. (6.10)

In summary, the data generating model is given by (6.7) together with the constraints (6.8),
(6.9), and (6.10). In the estimating model the true response function is approximated by
a composition of functions of the form hT (.) = h0(h(.)), where h0(.) is a fixed response
function. The inner (unknown) function h(.) that has to be estimated is specified by a
basis expansion

h(ηi) = ΦT (ηi)α =
mh�

k=1

φk(ηi)αk,
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where Φ(ηi) = Φi is the vector of mh B-spline basis functions evaluated at ηi and α is
the corresponding basis coefficient vector of the inner function. For the predictor we use
the basis expansion described in (6.2), (6.3), and (6.4). Thus for the ith observation the
estimating model is

µi = h0(Φ
T (

p�

j=1

ψT

ij
βj)α), (6.11)

subject to constraints corresponding to (6.8), (6.9), and (6.10). Let Φ = (Φ1, ..., Φn)T

denote the basis expansion evaluated at each observation. Note that the intercept and a
multiplicative factor is absorbed into the inner function h(η) = ΦT (η)α.

6.2.1 Estimation Procedure

Let the estimating model (6.11) for all observations be given in vector form as

µ(α, β) = h0 (Φ(Ψβ)α) . (6.12)

As in GAMs we assume that the response is from a simple exponential family as described
in (6.5). While the log-likelihoods of GAMs given in (6.6) depends only on β the log-
likelihood function for the more general model is

l(α, β) =
n�

i=1

(yiθi − b(θi))/φ.

It depends on α by h(ηi) = ΦT

i
α and on β by µi = h0(h(xT

i
β)). Estimates are obtained

by minimizing the log-likelihood function l(α, β), subject to constraints. We present an
algorithm which is based on boosting techniques. Each boosting iteration splits into two
steps

1. Update of the response function with the predictor fixed.

2. Update of the predictor with the response function fixed.

Both updates are based on penalized and constrained Fisher scoring, respectively. In each
boosting iteration only one of these steps is carried out. For the updating of the predictor
we use componentwise boosting. Therefore, only one predictor function is updated within
one iteration. Early stopping ensures that not all variables are updated and variable
selection is obtained. First we give an unrestricted version of the algorithm and then we
will add the necessary constraints (6.8), (6.9), and (6.10).

Estimation of Response Function for Fixed Predictor

Let �η(l−1) = Ψ�β
(l−1)

be the fixed estimate of the predictor of the previous step . Then the

estimation of the response function corresponds to fitting the model µ = h0(�Φ
(l−1)

�α(l−1)+
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�Φ
(l−1)

�a(l)) where �Φ
(l−1)

�α(l−1) is the previously fitted value, which is included as an offset.

Note that �Φ
(l−1)

denotes the evaluation of the basis functions at the current �η(l−1). One
step of penalized Fisher scoring has the form

�a(l) = νh ·
�
(�Φ

(l−1)
)T ( �D

(l−1)

h
)T (�Σ

(l−1)
)−1 �D

(l−1)

h
�Φ

(l−1)
+ λhKh

�−1

×

×(�Φ
(l−1)

)T ( �D
(l−1)

h
)T (�Σ

(l−1)
)−1(y − �µ(l−1))

(6.13)

where

�D
(l−1)

h
= diag

�
∂h0(�h(l−1)(�η(l−1)

i
))

∂�h(l−1)(η)

�n

i=1

(6.14)

is the estimated derivative matrix evaluated at the estimate of the previous step
h0(�h(l−1)(η)), and

�Σ
(l−1)

= diag
�
σ2(h0(�h(l−1)(�η(l−1)

i
)))

�n

i=1
(6.15)

is the matrix of variances evaluated at h0(�h(l−1)(η)). Kh is the penalty matrix which
penalizes the second derivative of the estimated (approximated) response function. The
matrix Kh is symmetric and each entry has the form

Kh = {kij} , with kij =

� �
d2

dη2
φi(t)

��
d2

dη2
φj(t)

�
dt. (6.16)

The main idea of boosting is to approximate the optimum in small steps. If the step
size is too large the procedure suffers. Therefore, one uses the concept of weak learning
proposed by Shapire (1990) and Bühlmann and Yu (2003). In our procedure the weakness
of learners is enforced by large λh and small νh. The latter is fixed by using νh = 0.1. Since
λh only penalizes the second derivative of the functions the additional shrinkage parameter
νh = 0.1 is helpful to make the learner weak (see also Tutz and Binder, 2006; Schmid and
Hothorn, 2008; Hothorn et al., 2010).

Componentwise Boosting for Fixed Response Function

Let �h(l−1)(.) be the fixed estimate of the response function of the previous step. The design
matrix of the predictor is Ψ = (Ψ1, ..., Ψp) and βT = (βT

1 , ..., β
T

p
) is the corresponding

parameter vector. Componentwise boosting for additive predictors means that within
one boosting step only one subvector βj of β is updated. So we fit the model µ =

h0(�h(l−1)(Ψ�β
(l−1)

+Ψjbj)), whereΨ�β
(l−1)

is a fixed offset representing the previous update.
Therefore only the covariate xj is included in the model. The penalized Fisher scoring for
parameter βj has the form

�b
(l)

j
= νf ·

�
ΨT

j
( �D

(l−1)

η )T (�Σ
(l−1)

)−1 �D
(l−1)

η Ψj + λfKj

�−1

×

×ΨT

j
( �D

(l−1)

η )T (�Σ
(l−1)

)−1(y − �µ(l−1)),
(6.17)
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where νf = 0.1 is a fixed shrinkage parameter and

�D
(l−1)

η = diag

�
∂h0(�h(l−1)(�η(l−1)

i ))
∂η

�n

i=1

= diag

�
∂h0(�h(l−1)(�η(l−1)

i ))

∂h(l−1)(η)
·
∂�h(l−1)(�η(l−1)

i )
∂η

�n

i=1

(6.18)

is the matrix of derivatives evaluated at the values of the previous iteration, and

�Σ
(l−1)

= diag
�
σ2(h0(�h(�η(l−1)

i
)))

�n

i=1
(6.19)

is the variance from the previous step and Kj is a penalty matrix which penalizes the
second derivatives of the predictor functions. K is a symmetric matrix and is similar to
(6.16). ψjk(.) denotes the kth basis function of the jth predictor function then

Kj = {kj|kl} =

� �
d2

dt2
ψjk(t)

��
d2

dt2
ψjl(t)

�
dt.

As for the update of the response function we fix νf = 0.1 to make the procedure a weak
learner.

Constraints

As already mentioned, for uniqueness three constraints must be fulfilled. First we consider
the constraints of the predictor. The predictor is constrained in two ways. The first set of
constraints is � max{xj}

min{xj}

mj�

k=1

ψjk(t)�βjkdt = 0, j = 1, ..., p

is fulfilled if in each update step

mj�

k=1

wjkβjk = 0, j = 1, ..., p with wjk =

�
ψjk(t)dt (6.20)

holds for each predictor functions. The restricted quadratic optimization problem that
corresponds to the penalized Fisher scoring step (6.17) with the constraints (6.20) is

�bj = νf · argminb∈IRmj

�
bT
j

�
ΨT

j
( �D

(l−1)

η )T (�Σ
(l−1)

)−1 �D
(l−1)

η Ψj + λfKj

�
bj

−2bT
j
ΨT

j
( �D

(l−1)

η )T (�Σ
(l−1)

)−1(y − �µ(l−1)), s.t. (6.20)
�
.

(6.21)

We use the R-package quadprog from Turlach (2009) to solve the linear restricted quadratic
optimization problem.
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The second constraint of the predictor is

p�

j=1

� max{xj}

min{xj}
fj(t)

2dt = c.

By basis expansion we get

p�

j=1

� max{xj}

min{xj}

�
mj�

k=1

(βjkψjk(t))

�2

dt = c, (6.22)

where the choice of c is arbitrary. After updating the jth subvector of β by (6.21) we
scale β to Euclidean norm 1, �β� = 1, and by (6.22) c is fixed. We use natural cubic
B-splines (compare Dierckx, 1993). This basis expansion is provided by the fda package
in R (Ramsay et al., 2010). The B-spline basis for 8 equidistant inner knots on [−1, 1] are
shown in Figure 6.1. The maximum of all basis functions ψjk(t) inner the knots is 1. This

Figure 6.1: The cubic natural B-spline basis for 8 equidistant inner knots on the interval

[−1, 1].

maximum is realized for the first and the last basis function of each predictor function
fj(t) if the extreme values of xj are applied, i.e. ψjmj(max{xj}) = 1 or ψj1(min{xj}) = 1.
Further �β� = 1 holds and the predictor η =

�
p

j=1 ψ
T

j
βj is restricted to [−

√
p,

√
p].

This can be shown as follows. Let us consider xmax = (max{x1}, ..., max{xp})T . The
corresponding vector of basis functions is ψmax = (ψT

1 (max{x1}), ..., ψ
T

p
(max{xp}))T and

p entries of ψmax are 1 and the remaining are zero. The predictor is maximized if each
non zero component of ψmax is multiplied by βjmj = ±1/

√
p. In this case the maximal

entries of ψmax are weighted with maximal amount entries of β subject to �β� = 1 which
maximizing the L1-norm of β. p components of ψmax are 1 and the remaining are 0.
So the range of η =

�
p

j=1 ψ
T

j
βj is in [−

√
p,

√
p]. This estimation of the range is very

conservative. On the one hand the upper bound ψmax is very rough. xmax conforms that
all componentwise maxima are realized in the same observation. On the other hand the
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choice of βjmj = ±1/
√
p for all j = 1, ..., p generates (non centered) functions which are

zero except for a peak of height ±1/
√
p at the right. In the simulation study (section

6.3) and the data example (section 6.4) we fix the knots of the basis expansion of h(.)
equidistantly on this [−1, 1] and the limits are never exhausted.

Constraints for the Response function

We assume that the response function hT (.) = h0(h(.)) is monotonically non-decreasing.
Since the canonical link function is non-decreasing we have to estimate a monotonically
non-decreasing inner function h(.).

The inner function is approximated by a basis expansion h(η) ≈ ΦT (η)α. Φ is the
matrix of basis functions evaluated at η and α is the corresponding coefficient vector.
h(η) = ΦT (η)α is monotonically non-decreasing if the components of the coefficient vector
α are monotonically non-decreasing, i.e. αi ≤ αi+1 for all i = 1, ..., mh − 1. A boosting
update has the form �α(l) = �α(l−1)+�a(l). So after each update step the system of inequations
�α(l−1)
i

+�a(l)
i

≤ �α(l−1)
i+1 +�a(l)

i+1, i = 1, ..., mh−1, must be fulfilled . Each update step is restricted
on the following space

A =
�
a(l) : a(l)2 − a(l)1 ≥ �α(l−1)

1 − �α(l−1)
2 , ..., a(l)

k
− a(l)

k−1 ≥ �α(l−1)
k−1 − �α(l−1)

k

�
. (6.23)

A can be rewritten as a system of inequations. In the same way as for restricted updates of
the predictor functions we use the corresponding quadratic optimization problem of (6.13)
with linear constraints A

�a = νh · argmina

�
aT

�
ΦT �D

(l−1)
(�Σ

(l−1)
)−1 �D

(l−1)
Φ+ λhKh

�
a

−2aTΦT �D
(l−1)

(�Σ
(l−1)

)−1(y − �µ(l−1)), s.t. a ∈ A

�
.

(6.24)

The R-package quadprog (see Turlach, 2009) is able to solve such optimization problems.

6.2.2 Algorithm

The basic algorithm is given below and shows the interplay of the two steps. In each
iteration step the updates of each predictor function and the updates of the response
functions are computed. In the last step of each iteration it is evaluated which update is
to be preferred. Only the maximizer of the log-likelihood function is used used in the final
update. Thus in each iteration step either one predictor function or the response function
is updated.
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Algorithm: FLAP

Step 1 (Initialization)

Set β̂
(0)

= 0 and η̂ηη(0) = 0. Determine α(0) so that φ(t)Tα(0) = g(ȳ) + 0.01t is a line

with small gradient and intercept g(ȳ), where ȳ =
�

n

i=1 yi. Compute �D
(0)
, �D

(0)

η and

�Σ
(0)
.

Step 2 (Iteration)

For l = 1, 2, . . . , M

1. Predictor update

Compute for each j ∈ {1, . . . , p} the update �b
(l)

j
as described in (6.21) and

set b(l)
j

= (0T , . . . , (�b
(l)

j
)T , . . . , 0T )T and determine the update candidate

β(l)
j

= �β
(l−1)

+ b(l)
j
.

Compute �β
(l)

j
= β(l)

j
/||β(l)

j
|| and the corresponding log-likelihood function

l(α(l−1), �β
(l)

j
).

Choose the parameter vector �β
(l)

opt
= argmax�β(l)

j ,j=1, ..., p
l(α(l−1), �β

(l)

j
) which

minimizes the log-likelihood function and set �β
(l)

= �β
(l)

opt

2. Response function update

Compute �a(l) as described in (6.24) and set �α(l) = �α(l−1) + �a(l)

Compute ĥ(l)(η(l−1)) = Φ(l−1)�α(l) and the corresponding log-likelihood func-

tion l(�α(l), �β
(l−1)

).

3. Update choice

If l(�α(l), �β
(l−1)

) > l(�α(l−1), �β
(l)
) then α(l) is updated and �β remains un-

changed, �β
(l)

= �β
(l−1)

.

If l(�α(l), �β
(l−1)

) ≤ l(�α(l−1), �β
(l)
) then �β

(l)
is updated and �α remains un-

changed, α̂(l) = α(l−1).

Note that we transform the domain of each function by �xj = xj/(max{xj} − min{xj}),
and the range of each domain is normed to 1. By this transformation the update of each
function becomes more similar.
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Choice of Tuning Parameter

The FLAP procedure uses three tuning parameter: λf for the smoothing of the predictor
function, λh for the smoothing of the response function andmstop for the number of boosting
iterations. We use 5-fold cross-validation for determining these parameters. In each case
we use a grid of three tuning parameter values with λh ∈ {2, 1, 0.5} and λf ∈ {2, 1, 0.5}
as candidates. The maximal number of boosting iteration was set to M = 5000. All in
all, we have to cross-validate the model for nine tuning parameter constellations over 5000
boosting iterations.

Cut Version

An unsatisfying property of the presented boosting procedure is that some predictors are
updated only once or twice. To enforce variable selection we also present a cut version in
which predictors with small estimated functions are excluded based on a threshold. If in
the (l)th iteration the Euclidean length of the coefficient vector of jth predictor function

is smaller than 1/p, �β(l)
j
� < 1/p, we set this jth subvector to 0, β(l)

j
= 0. The new cut

parameter vector is restandardized to Euclidean norm 1. The optimal tuning parameter for
the cut version �λh, �λf and �mstop are also determined by cross-validation. In the simulation
study the threshold 1/p works quite well. Of course the threshold limits could be optimized.

6.3 Simulation Study

To evaluate the performance of the FLAP procedure we compare it with three established
procedures:

GAMBoost, which is a likelihood based boosting procedure which performs variable
selection by early stopping (Tutz and Binder, 2006).

mboost, which is a boosting procedure proposed by Hothorn et al. (2010) that also en-
forces variable selection by early stopping. The corresponding R-package is mboost
(Hothorn et al., 2009).

mgcv, which fits a GAM with variable selection based on penalization. For details see
Wood (2006) and Wood (2011).

We use two model assessment measurements for the comparison of models. After determin-
ing the optimal model by 5-fold crossvalidation we predict �µtest = h0(Φ(Ψtest

�β)�α) based
on an independently chosen data set (ytest, X test) and evaluate the predictive deviance

Dev(test) = −2(l(ytest, �µtest)− l(ytest, ytest)).

The other measure for accuracy of the estimated predictor functions is created by is the

MSEf =
p�

j=1

�
(f̃j(t)−

ˆ̃fj(t))
2dt,
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which compares two scaled versions of the functions.

f̃j(t) = fj(t) · F

is the true function fj(t) scaled by

F =

�
p�

j=1

�
|fj(t)|dt

�−1

and
ˆ̃fj(t) = f̂j(t) · F̂

is the corresponding estimate where

F̂ =

�
p�

j=1

�
|f̂j(t)|dt

�−1

.

We have to normalize each function by the sum of integrals of the absolutes of all functions
to make the results comparable. With MSEf we measure the goodness of fit of the predictor
in two ways. First the form of each normalized estimate is compared with the original
normalized function. Second MSEf compares the proportion of the altitudes of normalized
estimated functions with altitude of the original normalized functions which is equal to the
comparison with original function. Note that MSEf measures only the similarity of forms
and proportions of altitudes between the estimates and the true functions. It measures not
the deviation between the estimates and the true functions.

We investigate three cases of distribution: normal, Poisson, and binomial with non-
canonical response function. For the normal case we use a sigmoid response function

hNorm(η) =
20

1 + exp(−5 · η)

and so the response is generated by yi = N(hNorm(ηi), 1). In the Poisson case we use a
sigmoid response function similar to the normal case

hPois(η) =
10

1 + exp(−5 · η)

but the response is generated by yi = Pois(hPois(ηi)). For the binomial case we choose an
increasing smooth step function

hBin(η) =
0.25

1 + exp(−10 · η − 15)
+

0.75

1 + exp(−10 · η + 15)

with three levels 0, 0.25, and 1. The changeovers between the three levels are quite smooth.
The response is generated by yi = Bin(hBin(ηi)). In each setting the predictor has the same
form. The predictor η is generated by p covariate characteristic functions, η =

�
p

j=1 fj(xj).
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Beyond the distribution and the response function each setting is given by the number of
covariates, p = 5, 10, 25. Only the first five covariates have influence on the response. The
predictor function are

f1(x1) = sin(4 · x1),
f2(x2) = cos(4 · x2),
f3(x3) = 0.5 · x2

3,
f4(x4) = −0.5 · x2

4,
f5(x5) = x3

5/9,
fj(xj) = 0, j = 6, ..., p.

The covariates are drawn from a truncated normal distribution Ntrunc(µ, Σ
2) to avoid

problems with outliers. We use the R-package tmvtnorm (see Genz et al., 2011) with the
range for each covariate being restricted to [−π, π]. The mean of the generating distribution
is fixed to µ = 0p and the covariance matrix is Σ2 = {σ2

jk
}j, k=1, ..., p where σ2

jk
= 1 for j = k

and σ2
jk

= 0.5 otherwise. For the normal and the Poisson case the number of observations of
the training dataset is ntrain = 250 and the test datasets have ntest = 1000 observations. In
the binomial case the 0-1 information of the response is quite weak. Thus in contrast to the
both other cases we increase the number of observations to ntrain = 1000 and ntest = 4000.
In all cases the maximal number of boosting iterations is set to M = 5000 which is never
exhausted over all settings. Each predictor function f1(.), f2(.), ..., f5(.) is expanded by
cubic B-splines basis with 20 (inner) knots. The response function is expanded in the same
way with 50 (inner) knots (see Figure 6.1).

The results are summarized in Table 6.1. It is seen that the FLAP and the FLAP
(cut) outperform the procedures with fixed canonical response function by prediction in
nearly all cases. Only the binomial case with 25 predictors the mboost outperforms both
FLAP procedures. Especially in the Poisson case the FLAP and the FLAP (cut) work very
good. In addition to the the predictive deviance the both FLAP procedures outperform
the competitors by MSEf . In the normal case the mboost beats the other procedures in
terms of MSEf although the response function is misspecified. But the FLAP procedures
are the next best in accuracy of predictor estimation measured by MSEf . In general the
mboost performs quite well for MSEf . This is founded by the special update step of
the mboost which is controlled by the degrees of freedom (cf. Hothorn et al., 2010; Hofner
et al., 2009, 2011). This strategy seems to be very successful even if the response function is
misspecified. The MSEf of the mboost is quite close to the MSEf of the FLAP procedures.
In the binomial case the FLAP procedures are strong competitors too.

The cut version of the FLAP does not outperform the other methods in terms of
MSEf or predictive deviance (Dev(test)) but the false positive rates of FLAP (cut) are
the best across all settings. Generally mgcv includes all covariates in each setting although
the option variable selection was chosen. Further in some cases the procedure does not
converge. In the binomial case we leave out the GAMBoost. The high number of observations
increases the computational costs immensely.

For illustration we show the boxplots of MSEf and Dev(test) for the Poisson case in
Figure 6.2.
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FLAP FLAP mgcv∗ GAMBoost∗∗ mboost

(cut)
Normal distribution

p = 5

MSEf 0.0132 0.0132 0.0153 0.0238 0.0106
Dev(test) 10884.34 10954.11 26810.77 25874.14 42457.43
hits 1.000 0.988 1.000 1.000 1.000
false pos. — — — — —

p = 10

MSEf 0.0172 0.0166 0.0174 0.0235 0.0130
Dev(test) 15589.11 14254.97 28275.76 27325.15 40147.39
hits 1.000 1.000 1.000 1.000 1.000
false pos. 1.000 0.608 1.000 0.972 0.952

p = 25

MSEf 0.0209 0.0208 0.0299 0.0235 0.0188
Dev(test) 25375.87 25112.45 38757.15 27150.12 45861.43
hits 1.000 1.000 1.000 1.000 1.000
false pos. 0.906 0.539 1.000 0.753 0.834

Poisson distribution

p = 5

MSEf 0.0103 0.0103 0.0295 0.0408 0.0176
Dev(test) 1610.23 1610.23 3921.14 4593.06 4226.54
hits 1.000 1.000 1.000 1.000 1.000
false pos. — — — — —

p = 10

MSEf 0.0143 0.0138 0.0322 0.0530 0.0205
Dev(test) 2017.60 2033.99 5432.79 8127.55 4570.11
hits 1.000 1.000 1.000 1.000 1.000
false pos. 0.996 0.304 1.000 0.912 0.884

p = 25

MSEf 0.0253 0.0258 0.0489 0.0482 0.0262
Dev(test) 2877.95 2872.24 1025052 5382.05 4637.24
hits 1.000 1.000 1.000 1.000 1.000
false pos. 0.789 0.413 1.000 0.803 0.643

Binomial distribution

p = 5

MSEf 0.0132 0.0139 0.0183 — 0.0135
Dev(test) 4226.13 4264.90 4280.19 — 4235.23
hits 1.000 0.952 1.000 — 1.000
false pos. — — — — —

p = 10

MSEf 0.0182 0.0184 0.0232 — 0.0171
Dev(test) 4335.16 4324.11 4356.42 — 4325.13
hits 1.000 0.996 1.000 — 1.000
false pos. 0.912 0.232 1.000 — 0.984

p = 25

MSEf 0.0216 0.0221 0.0295 — 0.0228
Dev(test) 4455.67 4461.87 4627.87 — 4439.88
hits 0.992 0.988 1.000 — 1.000
false pos. 0.529 0.237 1.000 — 0.745

Table 6.1: Medians of the Dev(test) and MSEf for each setting of the simulation study

and the hits false positive rates across the replications. ∗ No convergence in each replication.
∗∗ No results in the binomial case because of high computational costs.
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Table 6.2: Boxplots of the predictive deviance (Dev(test)) and the accuracy of the pre-

dictor estimate (MSEf ) for the three Poisson setting.
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6.4 Data Example

The method is illustrated by modeling the death rate in the metropolitan area of Sao
Paulo. The data were recorded from January 1994 to December 1997 n = 1351 days and
are available at http://www.ime.usp.br/~jmsinger/Polatm9497.zip. We use a sub data
set which was also used by Leitenstorfer and Tutz (2007) for the modeling of monotone
functions. The response is the number of daily deaths caused by respiratory reasons of
people which are 65 years or older RES65. The covariates are given in Table 6.3.

Label Explanation
TEMPO Time in days
SO2ME.2 The 24-hours mean of SO2 concentration (in µ/m3)

over all monitoring measurement stations.
TMIN.2 The daily minimum temperature.
UMID The daily relative humidity.
DIASEM Day of the week.

(1 =Tuesday, 2 =Wednesday, ..., 7 =Monday)
CAR65 Cardialogical caused deaths per day.
OTH65 Other (non respiratory or cardiological) caused deaths per day.

Table 6.3: Table of covariates and their labels of the Sao Paulo air pollution data set.

For SO2ME.2 and TMIN.2 we consider the measurements taken 2 days before as in-
fluential. This lag was proposed by Conceicao et al. (2001). All predictors are modeled
nonparametrically. For the FLAP we used 20 knots for all covariates and for the mboost
we used the default values. For the mgcv, the default values were used, but for the co-
variate DIASEM we had to reduce the number of knots to 7. We determined the optimal
tuning parameter by a 5-fold cross-validation, where λh,λf ∈ {100, 10, 1, 0.1, 0.01}. For
both versions of the FLAP we got λh = 1 and λf = 0.01. For all boosting procedures the
maximal number of boosting iterations was fixed to 1000. In the Figures 6.2, 6.3, 6.4, and
6.5 we show the estimated functions and the estimated expectation values for the different
methods. We do not show the GAMBoost because the procedure does not work well on this
dataset.

For TEMPO the periodic character is identified by all procedures. The SO2 concentra-
tion (SO2ME.2) has an clearly increasing trend. If we neglect the high valued outliers this
covariate seems to have only a very weak influence. Increasing temperature TMIN.2 has a
decreasing influence on the response RES65. This characteristic was detected by all proce-
dures. With the FLAP this trend seems to be stronger. Beyond the outliers, the covariates
UMID and DIASEM have only a small influence on the response. The cut version of FLAP
(FLAP (cut)) does not include these covariates. Increasing number of non respiratory
caused deaths (CAR65 and OTH65) tends to increase the number respiratory caused deaths.

In contrast to the established methods with canonical link the models with estimated
link function have only two main influential covariates, TEMPO and TMIN.2. The models



6.4 Data Example 111

with canonical link functions are more complex. In them also the covariates SO2ME.2,
CAR65, and OTH65 seem to be influential.
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Figure 6.2: The estimated functions and the prediction of Sao Paulo data set estimated

by FLAP

Figures 6.2 and 6.3 also show the estimated response functions of both FLAP pro-
cedures, which are different from the canonical response functions shown in Figures 6.4
6.5.

In addition we evaluated the prediction across 50 random splits. The training data
set contains 1000 observations and the remaining observations are used as test data. For
reducing the computational costs we determined the tuning parameter λF and λh on the
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Figure 6.3: The estimated functions and the prediction of Sao Paulo data set estimated

by the cut version of the FLAP algorithm.

complete data set (n = 1351) by 5fold cross-validation, and fixed the resulting λh = 1 and
λf = 0.01 for the following investigation of prediction. Since we only had to determine
the number of optimal boosting iterations by a 5fold cross-validation on the training data
set the computational costs were strongly reduced. We used the training data for fitting
the model for given tuning parameters and measured the prediction on the test data. We
give the medians of the predictive deviances across the random splits and the deviance for
complete data set in Table 6.4. The boxplots of the predictive deviances on the test data
are given in Figures 6.6. The predictive deviance across the random splits underlines the
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Figure 6.4: The estimated functions and the prediction of Sao Paulo data set estimated

by mgcv.

FLAP FLAP (cut) mgcv mboost

complete data set 1383.06 1412.30 1547.58 1407.42
random splits 411.26 414.13 437.63 430.52

Table 6.4: Prediction measurements of the Sao Paulo data set for the different procedures.

First row: The deviance on the complete data set. Second row: Median across 50 random

splits.
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Figure 6.5: The estimated functions and the prediction of Sao Paulo data set estimated

by mboost.

results of the simulations study, prediction tends to be better when allowing for flexible
link functions.

6.5 Conclusion and Perspectives

A competitive method for estimating GAMs that model the response function non para-
metrically is presented. The method is based on componentwise boosting, by early stopping
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Figure 6.6: Boxplots of the predictive deviances across the 50 random samples of the Sao

Paulo data set.

variable selection is obtained. Especially the predictive performance improves in nearly all
simulation settings. Further the accuracy of the predictor estimate change for the better
in the Poisson and the binomial case. The mboost outperforms both versions of FLAP in
the normal case. The performance of the FLAP procedures depends strongly on the choice
of tuning parameters in this point. So other and finer grids of tuning parameters could
improve the results in the normal case. In all cases the variable selection of the FLAP
and FLAP (cut) works quite well which is reported by the hits and false positive rates.
Especially the variable selection of the cut version works very well. As in the linear case
the estimation of the response function for binary response is a challenge because of the
weak information given by 0/1. So we increase the number of observation for this settings.

By small modifications the FLAP procedures can be generalized to semiparametrical
models where smooth, linear, and categorial influences on the response are modeled. Gen-
erally the mboost performs very good concerning the MSEf . This is an argument for the
degree of freedom based update criterion proposed by Hofner et al. (2009, 2011). By a
modification in the predictor update of the FLAP procedures it is possible to use this kind
of update. The degree of freedom update can also be applied to linear, categorical and
nominal covariates. Based on this update a very generic algorithm for the estimation of a
wide class of regression models with unknown link function can be designed.
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Chapter 7

L1-Penalized Single Index Models

In this chapter we present an algorithm which combines penalization of the parameter
vector with estimation of the response function. Additionally we are interested in variable
selection and so we penalize the parameter vector by a LASSO term

�
p

j=1|βj|. Furthermore
the roughness of the response function is penalized to avoid overfitting. In contrast to
chapter 5 no boosting technique is used for the estimation.

7.1 Introduction

For the linear normal regression problem Hoerl and Kennard (1970) have shown that the
Euclidean norm of the maximum likelihood estimate tends to be longer than the Euclidean
norm of the true parameter vector. They propose the ridge estimator which penalizes the
Euclidean norm of the estimate. The ridge penalty term is given by λ

�
p

j=1 β
2
j
, where βj is

the jth component of the parameter vector β. Nelder and Wedderburn (1972) introduced
the generalized linear model (GLM) which describes a monotonically increasing influence
of a linear combination of covariates on a non-normal distributed response variable. For
the corresponding estimates the result from Hoerl and Kennard (1970) holds, too. So it
makes sense to shrink the parameter estimates to improve the predictive performance of a
model. Another very effective strategy to enhance the predictive performance of a model
is to select only the group of relevant variables. This effect is discussed by Breiman (1996).
A very popular estimator which combines variable selection and coefficient shrinkage is
the L1-penalization also known as LASSO proposed by Tibshirani (1996). The LASSO
penalty term is given by λ

�
p

j=1|βj|. In the last years many algorithms for the estimation of
L1-penalized GLMs have been proposed, for example Park and Hastie (2007b), Friedman
et al. (2010b), and Goeman (2010a). These algorithms are available in R-packages, namely
glmpath (see Park and Hastie, 2007a), glmnet (see Friedman et al., 2008), and penalized
(see Goeman, 2010b).

To be more concrete we consider a GLM for given data (yi, xi), i = 1, . . . , n. The
conditional expectation of yi|xi, µi = E(yi|xi), is modeled by

g(µi) = ηi or µi = h(ηi),
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where ηi = β0 + xT

i
β is the linear predictor, g(.) is the link function and h(.) = g−1(.)

is the response function. Given xi = (xi1, ..., xip)T the yi are (conditionally) independent
observations from a simple exponential family

f(yi|θi,φ) = exp

�
yiθi − b(θi)

φ
+ c(yi,φ)

�
, (7.1)

where θi is the natural parameter of the family, φ is a scale or dispersion parameter and
b(.), c(.) are specific functions corresponding to the type of the family. In general we
consider centered and standardized covariates, i.e.

�
n

i=1 xji = 0 and n−1
�

n

i=1 x
2
ji

= 1,
j = 1, ..., p.

For GLMs the response function h(.) is fixed and known. Often the canonical link h0(.)
is chosen regardless to correctness. But misspecified link functions can lead to substantial
bias in the regression parameters (see Czado, 1992; Czado and Santner, 1992; Czado and
Munk, 2000). That may be avoided by flexible modeling of the link. In the following
we present a procedure which combines the estimation of the link function and the L1-
penalization of the parameter vector.

7.2 Data Generating and Approximating Model

Let the data generating model be given by

E(yi|xi) = µi = hT (ηi),

where hT (.) is the unknown true transformation function and ηi = xT

i
βββ is the linear

predictor. As in GLMs it is assumed that for given xi the response yi comes from a simple
exponential family). In contrast to GLMs let the linear predictor ηi contain no intercept
because the intercept is absorbed into hT (.). Also the scaling of the parameter vector c ·β
can be compensated by the response function, i.e. h(xiβ) = �h(c · xiβ), c > 0. Therefore,
usually the Euclidean length of β is fixed to 1, that is, ||β||2 = 1 (for example, Härdle
et al., 1993). If β is restricted to the Euclidean norm 1 and the response function hT (.) is
monotonically increasing then the estimate �β is unique in our case. We will discuss later
that this restriction fails to guarantee uniqueness in our case.

We want to fit the approximating model

µi = h0(h(ηi)),

where h0(.) is a fixed transformation which has to be chosen appropriately. The inner
function h(.) is considered as unknown and has to be estimated. Typically, for h0(.) the
canonical link function is chosen in particular, to ascertain that. So it is ensured that µi is
in an admissible range. For example, in the binary case, the logistic distribution function
automatically maps the inner function h(.) into [0, 1]. We approximate the function h(.)
by expansion in basis functions

h(ηi) =
k�

s=1

αsφs(ηi) = ΦT

i
α,
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where φ1(ηi), . . . , φk(ηi) denote the basis functions evaluated at ηi. With Φ =
(Φ1, ..., Φn)T we denote the matrix containing the basis expansions evaluated at each
observation. As basis functions we use natural cubic B-splines (compare Dierckx, 1993)
which are provided by the fda package in R (Ramsay et al., 2010). The B-spline basis for
8 equidistant inner knots on [−1, 1] is shown in Figure 7.1

Figure 7.1: The cubic natural B-spline basis for 8 equidistant inner knots on the interval

[−1, 1].

7.3 Likelihood and Identification Problem

Let l(α, β) denote the log-likelihood function

lpen(α, β) =
n�

i=1

(yiθi − b(θi))/φ),

which depends on α and β by

µi = h0(
k�

s=1

αsφs(x
T

i
β)), (7.2)

where θi = θ(µi) for a known function θ(.). The penalized likelihood problem we consider
is based on the penalized log-likelihood

lp(α, β) = l(α, β)− λβ�β�1 − λαα
TKα, (7.3)

where l(α, β) is the log-likelihood, K = (kij)i, j∈{1, .., k} is a symmetric matrix which penal-
izes the roughness of the response function by the integral of the squared second derivative
of the inner function

kij =

� ∞

−∞

�
d2

dη2
φi(η)

��
d2

dη2
φj(η)

�
dη, (7.4)
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and �β�1 is the well known L1-penalization of the parameter vector of the linear predictor.

As already mentioned the scaling of β can be compensated by the response function.
But shrinkage procedures are based on scaling the coefficients by penalization. So fixing
the Euclidean length of β to 1 as proposed by Härdle et al. (1993) or Weisberg and Welsh
(1994) fails. If the penalization of β is strong, i.e. λβ is large, the coefficients become
small and the slope of the response function becomes steeper because the steepness is not
penalized by the roughness. This effect must be tackled by additional constraints. As
additional constraint, we fix the boundary coefficients of the basis expansion of the inner
function

�
k

s=1 αsφs(η), that is, α1 and αk are fixed during the estimation procedure.

First we determine the maximum likelihood estimate (MLE) �β
ML

0 = (�βML

0 , (�β
ML

)T )T

for the canonical response function h0(.). If the inner function is h(xT �β
ML

) = �βML

0 +

xT �β
ML

then by h0(h(xT �β
ML

)) = h0(�βML

0 +xT �β
ML

) the ML model is fitted. By fixing the
first and the last coefficient α1 and αk of the basis expansion of the inner function (cf. (7.2))
we estimate a monotonically increasing function h(η) =

�
k

s=1 αsφs(ηi) which is fixed at

the endpoints of the line given by �βML

0 + η, where η ∈ [bl, bu] is from a bounded interval
of IR. Hence we have to assess the domain of the linear predictor η = xTβ. Therefor we

compute the linear predictors of the MLE without intercept �ηML = X�β
ML

where X is the
matrix of covariates and determine for an appropriately chosen c the range of the domain
of the linear predictor in (7.2) respectively (7.3) to

[−u, u], with u = c ·max
�
|�ηML

|

�
and c ≥ 1. (7.5)

The choice of c is a crucial point in this procedure especially if there are outliers in the new
data set which is used for prediction. However, we initialize α(0) such that the line η+ β̂ML

0

is approximately best in the domain [−u, u] by Φ(η)�α(0), i.e. Φ(η)�α(0)
≈ η+ β̂ML

0 . Within

the algorithm we fix α(l)
1 = α(0)

1 and α(l)
k

= α(0)
k

for each step l. So the set of all feasible
solutions is restricted to smooth monotonically increasing functions with the boundary
points (−u, α(0)

1 ) and (u, α(0)
k
). At the boundaries of the domain of η all basis functions

except for two are 0, namely φs(u) = φs(−u) = 0, s = 2, ..., k − 1, and the boundary

basis functions are 1, φ1(−u) = φk(u) = 1 (see Figure 7.1). The constraints α(l)
1 = α(0)

1

and α(l)
k

= α(0)
k

are realized by solving a linear restricted weighted least squares problem in
each step of the algorithm by using the solve.QP routine of the R-package quadprog (see
Turlach, 2009).

In GLMs the response function is monotonically increasing. This property of the re-
sponse function guarantees uniqueness. So we are also interested in monotonically in-
creasing response functions. Generally a B-spline expansion generates a monotonically
increasing function if the basis coefficients are monotonically increasing: αs − αs−1 ≥ 0,
s = 2, ..., k. All in all, this is maintained by solving the corresponding weighted least
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squares problem in the algorithm under the constraints

α(l)
0 = α(0)

0

α(l)
k

= α(0)
k

α(l)
s − α(l)

s−1 ≥ 0, s = 2, ..., k.

(7.6)

The constraints (7.6) are sumed up in the set

A =
�
α ∈ IRk : α1 = α(0)

1 , αk = α(0)
k
, αs − αs−1 ≥ 0, s = 2, ..., k

�
(7.7)

The constant c from (7.5) is not a tuning parameter but fixed. The model has two
tuning parameters λα and λβ. The choice of c is not only crucial because of outliers.
Further if λα becomes small c must increase to increase the range of the domain. We stop
the algorithm if the estimate of the linear predictor is out of the fixed range. All in all, the
penalized likelihood problem with the constraints is given by

�
�αT , �β

T
�T

= argmin {−lpen(α, β)}

= argmin
�
− l(α, β) + λβ�β�1 + λααTKα,

s.t. − u ≤ xT

i
β ≤ u, i = 1, ..., n, u from (7.5),

α ∈ A from (7.7)
�
.

(7.8)

7.3.1 Estimation Procedure

The goal is to solve the penalized likelihood problem with constraints (7.8). So we consider
the penalized score equations spen(β, α) = (spen(β)T , spen(α)T )T . The corresponding
(unpenalized) score equations are

s(β) = xTDβΣ
−1(y − µ)

s(α) = Φ(η)TDαΣ
−1(y − µ)

(7.9)

where

Dβ = diag

�
∂h0(h(ηi))

∂h(η)
·
∂h(ηi)

∂η

�n

i=1

(7.10)

Dα = diag

�
∂h0(h(ηi))

∂h(η)

�n

i=1

(7.11)

are the matrix of derivatives and

Σ = diag
�
σ2(h0(h(ηi)))

�n

i=1
(7.12)
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is the matrix of variances. The score vectors corresponding to (7.3) are

spen(β) = s(β)− λβ

p�

j=1

sign(βj), (7.13)

spen(α) = s(α)− 2λαKα, (7.14)

where

sign(β) =






1, β > 0

0, β = 0

−1, β < 0.

If there exists a minimum for (7.3) spen(β, α) = 0 holds. The problem of discontinuity in
(7.13) is tackled by Goeman (2010a). We adapt the algorithm from Goeman (2010a) and
the corresponding R-package penalized. Goeman (2010a) proposes an alternative form of
(7.13). Each component of the new score vector is given by

spen(β)j =






s(β)j − λβ sign(βj), βj �= 0

s(β)j − λβ sign (spen(β)j), βj = 0 and |spen(β)j| > λβ

0, βj = 0 and |spen(β)j| ≤ λβ.

(7.15)

The second part of the score vector (7.14) is unchanged. The algorithm solves spen(β)j = 0,
j = 1, ..., p, where spen(β)j is from (7.15) and spen(α) = 0 which is from (7.14) alter-
nately until convergence. Below with (l) we indicate the loops for solving spen(α) = 0 and
spen(β) = 0, with spen(β)j from (7.15). With (m) we indicate the loop which contains these
both loops. In each iteration of the outer (m)-loop spen(α) = 0 and spen(β) = 0 are solved
alternately.

Schedule of the SIPen-algorithm

Outer Loop indicated by (m)

– First inner loop solving spen(β) = 0, with spen(β)j from (7.15). It is indicated
by (l). After convergence β(l+1) is set to β(m).

– Second inner loop solving spen(α) = 0 indicated by (l). After convergence α(l+1)

is set to α(m).

m is incremented to m+ 1

The solution of (7.14) is achieved by Fisher scoring. The estimation of L1-penalized
coefficients in GLMs with non-canonical link function is more complicate and described in
the following.
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Estimation for Fixed Response Function

In general a quadratic optimization problem is given by

�β = argminβ{Q(β)} = argminβ

�
0.5 · βTWβ − cTβ − d

�
.

�β can be found by iterating

�β
(l)

= �β
(l−1)

− t · g(�β
(l−1)

)

until convergence. The procedure is well known as gradient descrent procedure. Here

g(�β
(l−1)

) = ∂

∂βQ(�β
(l−1)

) is the gradient and 0 < t a small step size. In the case of quadrat-
ical optimization problems the optimal step size is

t(l−1)
opt = −

g(�β
(l−1)

)Tg(�β
(l−1)

)

g(�β
(l−1)

)TWg(�β
(l−1)

)
. (7.16)

The basis of the algorithm described in the following is a gradient descent algorithm.
Let �α(m) denote the basis coefficient vector of the previous step and let h(m)(.) be

the corresponding response function. With lpen(�α(m), β) we denote the log-likelihood

function with fixed response function h0(Φ(η)�α(m)). The corresponding regression prob-
lem �β = argminβ

�
−lpen(α(m), β)

�
is solved by an iteratively weighted least squares

algorithm. lpen(α(m), β) is not differentiable in each point but there are 3p subdo-
mains where ∂

∂β lpen(α
(m), β) is continuous. In each of these subdomains sign(β) =

(sign(β1), ..., sign(βp))T is constant. An upper bound to guarantee this condition is

t(l−1)
edge

= min

�
−

β(l−1)
i

spen(β)
(l−1)
i

: sign(β(l−1)
i

) = − sign(spen(β)
(l−1)
i

) �= 0

�
.

Using the statistical framework, the optimal stepsize t(l−1)
opt from (7.16) becomes

t(l−1)
opt = −

spen(�β
(l−1)

)Tspen(�β)

spen(�β
(l−1)

)TXTDT

�β(l−1)(Σ�β(l−1))−1D�β(l−1)Xspen(�β
(l−1)

)
.

Here D�β(l−1) has the form of (7.10), where the response function h0(�h(m)(.)) is fixed and

evaluated at the estimate of the previous step β(l−1),

D�β(l−1) = diag

�
∂h0(�h(m)(�η(l−1)

i
))

∂�h(m)(η)
·
∂�h(m)(�η(l−1)

i
)

∂η

�n

i=1

. (7.17)

According to this

Σ�β(l−1) = diag
�
σ2(h0(�h(m)(xT

i
β(l−1))))

�n

i=1
(7.18)



124 7. L1-Penalized Single Index Models

denotes the matrix of variances for fixed response function evaluate at the previous iteration
step. So each iteration step has the form

�β
(l)

= �β
(l−1)

−min
�
t(l−1)
opt , t(l−1)

edge

�
spen(�β

(l−1)
).

It is well known that the gradient descent algorithm needs more iterations for con-

vergence in comparison to Fisher scoring. We denote by �β
(l)

FS
the Fisher scoring based

estimate of the lth iteration. Each iteration step of the gradient descent algorithm works
in a subdomain where sign(βGD) := limt↓0 sign(β − tspen(β)) does not change. So if

sign(�β
(l)

FS
) = sign(�β

(l−1)

GD
) and t(l−1)

opt < t(l−1)
edge

hold, the Fisher scoring estimate is reasonable.
In other words the Fisher scoring step works inner one of the 3p subdomains where sign(β) is
constant. So we can restrict the problem on anm-dimensional subspace, wherem < p is the

number of non-zero elements of sign(�β
(l−1)

GD
). We denote by M =

�
j : sign(�β

(l−1)

GD, j
) �= 0

�

the index set of corresponding covariates. The parameter vector, the score function and
the Fisher information matrix to the corresponding m-dimensional subspace are termed by
�β
(l−1)

M , spen(β
(l−1)
M ), and

F (�β
(l−1)

M ) = −
∂2lpen(β

(l−1)
M )

∂βM∂βT

M
= −XT

MDT

�β(l−1)
M

Σ−1
�β(l−1)
M

D
β(l−1)
M

XM.

The components of the Fisher information matrix D�β(l)
M

andΣ�β(l−1)
M

correspond to (7.17)

and (7.18) respectively. So one iteration step of the Fisher scoring is

�β
(l)

M = �β
(l−1)

M + F (�β
(l−1)

M )−1spen(�β
(l−1)

M ).

Note that �β
(l)

M is an m-dimensional vector, where m = |M|. So we have to augment the
vector by p − m components which are equal to zero. Hence we create a p-dimensional
vector where non-zero components are placed on entries corresponding to M and zero

components are placed on entries indicated by M =
�
j : sign(�β

(l−1)

GD, j
) = 0

�
. By this we

obtain β(l)
FS

. Summarizing these results each update step has the form

β(l) =






β(l−1) + t(l−1)
edge

spen(β
(l−1)), t(l−1)

opt ≥ t(l−1)
edge

β(l)
FS

, t(l−1)
opt < t(l−1)

edge
and sign(β(l)

FS
) = sign(β(l−1)

GD
)

β(l−1) + t(l−1)
opt spen(β

(l−1)), otherwise.

(7.19)

Estimation for Fixed Predictor

As mentioned before the estimation of the inner function �h(.) with fixed predictor η(m) is
a Fisher scoring with linear constraints given in (7.7). Each Fisher scoring step has the
form

�α(l) = argminα

�
αTΦTW �α(l−1)Φα− 2αTΦTW �α(l−1)(D�α(l−1))−1(y − �µ(l−1))

+αTKα, s.t. α ∈ A

�
,

(7.20)
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where �µ(l−1) = h0(Φ�α(l−1)) and

W �α(l−1) = DT

�α(l−1)Σ
−1
�α(l−1)D�α(l−1)

D�α(l−1) = diag

�
∂h0(�h(l−1)(η(m)

i
))

∂�h(l−1)(η)

�n

i=1

Σ�α(l) = diag
�
σ2(h0(�h(l−1)(η(m)

i
)))

�n

i=1

(7.20) is iterated until convergence. One should keep in mind that Φ depends on η(m) and
the elements indicated by (m) remain unchanged during this constrained Fisher scoring.

Algorithm: SIPen

Step 1 (Initialization)

Determine the MLE and compute the domain of η as described in (7.5). Compute

�α(0) as described and fix �α(0)
1 and �α(0)

k
. Choose for �β

(0)
�= 0 a p-dimensional vector

with small Euclidean length and compute �η(0) = X�β
(0)
. Set m = 0 and �α(m) = �α(0).

Compute D�β(0) as described in (7.17) and Σ�β(0) as described in (7.18).

Step 2 (Iteration)

While ��α(m)
− �α(m−1)

�/��α(m−1)
� < δ and ��β

(m)
− �β

(m−1)
�/��β

(m−1)
� < δ and

Xβ(m)
∈ [−u, u].

1. Predictor estimation

Minimize the negative log-likelihood −l(�α(m), β) by the gradient descent
estimator described in (7.19). This loop is indicated by (l).

After convergence of (7.19) set �β
(m)

= �β
(l)
.

2. Response function estimation

Compute η(m) = X�β
(m)

.

Minimize negative log-likelihood −l(α, �β
(m)

) by the Fisher scoring de-
scribed in (7.20), where this loop is also indicated by (l).

Set �α(m) = �α(l)

Increase m by 1.
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7.3.2 Solution Path

In section 7.4 we compare the SIPen algorithm with other procedures. We pick out setting
Poisa for the illustration of a solution path. Poisa is defined by the parameter vector

βa = (0.2, 0.4, −0.4, 0.8, 0, ..., 0� �� �
16

)T

and the response function

h(η) = 10/(1 + exp(−10 · η)).

For details see section 7.4. We fix the tuning parameter λα = 10. The second tuning
parameter λβ accounts for the path. It is based on an equidistant grid s from log(0.999) to
log(0.001) with 100 values, s = (log(0.999), ..., log(0.001)). The grid of the second tuning
parameter is given by

λβ ∈ {λmax,β · exp(s)} (7.21)

and is not equidistant. For the difference of two small adjacent components of exp(s) is
small and the difference of two large adjacent components becomes large. The exponenti-
ated sequence exp(s) is scale by

λmax,β = max
�
D(0)(Σ(0))−1

|XTy|
�

where D(0) = ∂h0(ȳ)
∂η

I and Σ(0) = σ(h0(h(0)(ȳ)))I. λmax,β is an upper bound for sequences
of λβ in the case of GLMs (cf. Park and Hastie, 2007b). In Figure 7.2 the coefficient
build ups for decreasing λβ are shown. Additionally the estimated response functions at
different points of the solution path are illustrated. We chose different numbers of elements
{1, 25, 35, 60, 100} of the λβ sequence for the in illustration of the response functions. The
response function chances with increasing L1-norm of the parameter vector. While the L1-
norm of β, i.e. |β|, increases the variable selection declines. In Figure 7.3 we use the same
setting but chance the tuning parameter λα = 1. It is seen, that for small values of
|β| the response function looks like the canonical response function. The shrinkage effect
is equalized by the response function. For increasing length L1-norm of β the response
function is still estimated quite well but it becomes steeper for increasing length |β|. Similar
to the path for λα = 10 the shrinkage effect is equalized by the steepness of the response
function. The models are sparse for λα = 10 and λα = 1. The 5fold crossvalidation chose
λα = 1 because of its lower crossvalidation score, which is 201.2925 for λα = 1 in contrast
to 269.1787 for λα = 10. The shrinkage effect of the non-influential variables for λα = 1
is much stronger than for λα = 10. This becomes clearer by having a closer look on the
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Figure 7.2: Coefficient build ups and response function for λα = 10. The vertical line in

the figure of the coefficient build ups shows the optimal parameter vector determined by

5fold crossvalidation.
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estimates for the optimal tuning parameter λβ determined by a 5fold crossvalidation:

�β10 = (0.2763, 0.5413, −0.5086, 1.0677

, 0.0000, 0.0591, 0.0000, 0.0000, −0.0282, 0.0671, 0.0692, 0.0000

, 0.0000, 0.0000, −0.0009, −0.1088, −0.0317, −0.0111, 0.1275, −0.0757)T

�β1 = (0.2080, 0.4769, −0.4432, 0.9802

, 0.0000, 0.0231, 0.0000, 0.0000, −0.0113, 0.0362, 0.0390, 0.0000

, 0.0000, 0.0000, 0.0000, −0.0203, −0.0157, −0.0078, 0.0268, −0.0360)T

These estimates are given by the horizontal line in the coefficient build ups in Figure
7.2 and 7.3, �β10 corresponding to λα = 10 and �β1 corresponding to λα = 1. Another
important aspect is the form of the response function at the right boundary. It increases
very strongly so that outside of the range of the linear predictor given by the data the
predictive performance becomes worse.

7.4 Simulation Studies

The settings depend on the distributional assumption, the response function, and the
parameter vector of the linear predictor. We consider the following two parameter vectors
of length p = 20:

βa = (0.2, 0.4, −0.4, 0.8, 0, ..., 0)T

βb = (0.5, 0.5, −0.5, −0.5, 0, ..., 0)T .

We investigate normal, Poisson, and binomial distributed responses. Each setting is com-
bined with one non-canonical response function. For the normal and the Poisson distribu-
tion we use a sigmoidal response function

h(η) =
10

1 + exp(−10 · η)
.

The responses are generated by yi = N(h(ηi), 1) and yi = Pois(h(ηi)), respectively. In the
binomial case we choose a step function

h(η) =






0.1 2η < −1

0.5 −1 ≤ 2η ≤ 1

0.9 2η > 1

and the response is given by yi = Bin(h(ηi)). So we have 6 different settings denoted by
distributionparameter vector, for example Norma denotes the setting with normal distributed
response and parameter vector βa.

We compare the new procedure with the cut and uncut version of the FlexLink pro-
cedure of Tutz and Petry (2011). The FlexLink estimates the parameter vector and the
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Figure 7.3: Coefficient Build Ups and response function for λα = 1. The vertical line in

the figure of the coefficient build ups shows the optimal parameter vector determined by

5fold crossvalidation.
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link function by boosting techniques and is a direct competitor. Further we use two es-
tablished methods which use the canonical response function, namely mboost and glmnet.
The mboost is a boosting technique and the glmnet is an efficient algorithm to solve an
L1-penalized GLM. The algorithms are available in the R-packages mboost proposed by
Hothorn et al. (2009) and glmnet proposed by Friedman et al. (2008). All tuning param-
eters are determined by a 5fold crossvalidation. We use the following parameter values:

SIPen We chose λβ as described in section 7.3 and λα ∈ {100, 50, 20, 10, 5, 2, 1}. Further
we use a basis expansion of degree 3 with 100 inner knots.

FlexLink The smoothing parameter of the response function is chosen from λ ∈

{100, 10, 1, 0.1, 0.01} and the maximal number of boosting iterations is fixed by
M = 1000. The B-spline basis expansion has 50 inner knots and degree 3. The
update stepsize for the predictor and the response function is νf = νh = 0.1.

mboost In general default values are used but the maximal number of boosting iterations
is set to M = 1000. For details see Hothorn et al. (2009) and Hothorn et al. (2010)

glmnet The default values are used but the maximal number of different λ values is set to
100. The glmnet is proposed by Simon et al. (2011) with the corresponding R-package
by Friedman et al. (2008).

Each data set is split into a training and a test data set. The training data set is
used to determine the optimal tuning parameter by 5-fold crossvalidation and contains
ntrain = 200 observations. We give the predictive performance by the predictive deviance
on the independent test data set with ntest = 1000 given by

Dev(test) = −2

�
ntest�

i=1

l(ytest
i

, �µi)− (ytest
i

, ytest
i

)

�
,

where �µi = h0(
�

k

i=1 �αkφk( �β0 + xT

i
�β)), ytest

i
is the ith observation of the test data set and

the parameters �α and �β0 are estimated on the training data set. The accuracy of �β can
not be given by the ordinary mean squared error

�
p

j=1(
�βj − βj)2, since a scaling of the

estimate �β can be absorbed in the response function. So we standardize �β to Euclidean
length 1 �β = �β/��β� and give

MSEβ =
p�

j=1

(�βj − βj)
2,

where βj is the jth component of the true parameter vector, i.e. βa or βb. It is remarkable
that the true parameter vectors have Euclidean length 1. Additionally we give the mean of
the hit rate (rate of influential covariates which are selected) and false positive rate (rate
of non-influential covariates which are selected). The results are summed up in Table 7.1.
In the binary case there is only weak information and the results are quite similar across
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SIPen FlexLink
FlexLink

glmnet mboost
(cut)

Normal distribution

Norma

MSEβ 0.0294 0.0162 0.0174 0.1418 0.1498
Dev(test) 1254.88 1954.13 1995.50 24277.33 24280.76
hit 1.000 1.000 1.000 1.000 1.000
false positve 0.795 0.000 0.000 0.344 0.375

Normb

MSEβ 0.0253 0.0117 0.0145 0.0918 0.0980
Dev(test) 1221.60 2019.21 2040.61 20614.36 20592.74
hit 1.000 1.000 1.000 1.000 1.000
false positve 0.895 0.000 0.000 0.350 0.403

Poisson distribution

Poisa

MSEβ 0.0789 0.0492 0.0483 0.2471 0.2579
Dev(test) 925.97 839.64 839.19 3353.96 3328.63
hit 1.000 1.000 1.000 0.965 0.980
false positve 0.605 0.016 0.006 0.266 0.251

Poisb

MSEβ 0.0744 0.0395 0.0434 0.1536 0.1745
Dev(test) 959.30 935.42 936.75 3109.93 3099.30
hit 1.000 1.000 1.000 1.000 1.000
false positive 0.701 0.006 0.001 0.305 0.328

Binomial distribution

Bina

MSEβ 0.4165 0.4098 0.4049 0.4074 0.4230
Dev(test) 1064.79 1071.01 1067.73 1138.14 1066.23
hit 0.860 0.7950 0.810 0.855 0.865
false positve 0.323 0.128 0.126 0.316 0.339

Binb

MSEβ 0.3343 0.3762 0.3747 0.3391 0.3288
Dev(test) 1135.00 1138.29 1140.91 1199.77 1137.23
hit 1.000 0.995 0.995 1.000 1.000
false positve 0.395 0.200 0.186 0.370 0.391

Table 7.1: Medians of the model assessment measures for the settings of the simulation

study.

all procedures. We illustrate the results of the more interesting normal and Poisson cases
Norma and Poisa by boxplots in Figure 7.4.

The SIPen outperforms the estimating procedures with (fixed) canonical response func-
tion, namely mboost and glmnet, in each setting. In the normal and the binomial case
the predictive performance of the SIPen is better than the predictive performance of both
FlexLink procedures. In the normal case the predictive deviance of the SIPen is the best in
comparison with the other methods but the accuracy of the parameter estimate degrades,
i.e. the MSEβ is the worst. The L1-penalty combines shrinkage and variable selection.
But the shrinkage effect can be partially equalized by the flexible response function. Hence
many non-influential covariates are shrunken very much but not shrunken to zero. The
predictive test deviance improves without hard variable selection. This effect is known
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Figure 7.4: Boxplots for MSEβ and Dev(test) of the normal and the Poisson case settings.

For Norma the predictive deviances of mboost and glmnet are not shown because they are

much higher then for the other procedures.

from the ridge regression (see Hoerl and Kennard, 1970) and so the hits and false positive
rates of the SIPen are not very satisfying but nevertheless the predictive performance im-
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proves. For the Poisson case the predictive performance of FlexLink and FlexLink (cut)
is better than the predictive performance of SIPen. This is caused by the outer function
chosen as canonical response function h0(.) = exp(.). The inner function h(.) can be very
steep outside of the range of the linear predictor generated by the training data. The outer
function exponentiated the inner function and so the predictive deviance worsens if many
observations of the test data set are out of the range given by the training data.

7.5 Data Examples

7.5.1 Sao Paulo Air Pollution Data Set

The data set considered in the following concerns air pollution and its influence on the
number of deaths caused by respiratory reasons. For the number of death a Poisson model
is used. The data are recorded from January 1994 to December 1997 in the metropo-
lian area for Sao Paulo. We consider only the first year of the recording. There are 5
missings and so we have 360 observations. The whole data set is available on the web
at http://www.ime.usp.br/~jmsinger/Polatm9497.zip. We use a subset of covariates
that was also used by Leitenstorfer and Tutz (2007). The response variable RES65 is the
number of deaths caused by respiratory reasons of people which are 65 years or older per
day. The covariates are given in Table 7.2. The covariates SO2ME.2, TMIN.2, and UMID

Number Label Explanation
1 TEMPO Time in days
2 SEGUNDA Weekday of record: Monday.
3 TERCA Weekday of record: Tuesday.
4 QUARTA Weekday of record: Wednesday.
5 QUINTA Weekday of record: Thursday.
6 SEXTA Weekday of record: Friday.
7 SABADO Weekday of record: Saturday.
8 SO2ME.2 The 24-hours mean of SO2 concentration (in µ/m3)

over all monitoring measurement stations.
9 TMIN.2 The daily minimum temperature.
10 UMID The daily relative humidity.
11 CAR65 Cardialogical caused deaths per day.
12 OTH65 Other (non respiratory or cardiologial)

caused deaths per day.

Table 7.2: Table of covariates and their labels of the Sao Paulo air pollution data set.

describe the air quality. The covariates SEGUNDA, TERCA, QUARTA, QUINTA, SEXTA, SABADO
describe effects within one week and TEMPO represents the effect over the record time. The
covariates CAR65 and OTH65 represent a general health status. So there are representatives
for time, general health, and air quality reasoned effects.
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We split the complete data into a training and a test data set are repeat the procedure
50 times. The training data set contains 300 observation and is used to fit the model. The
tuning parameters are determined by 5fold crossvalidation on the training data set. The
test data sets are used for the calculation of the predictive test deviance. We present the
boxplots of the predictive test deviance and the plots of the selected covariates across the
50 random splits in Figure 7.5. The tuning parameters for the SIPen are chosen from λα ∈

{1000, 100, 10, 1} and the sequence of λβ is determined as described above. The tuning
parameter of both FlexLink procedures are λh ∈ {0.01, 0.1, 1, 10, 100} and the maximal
number of boosting iterations isM = 1000. The set of selected covariates across the random
splits of the glmnet and SIPen are quite similar. The models estimated by the FlexLink
and FlexLink (cut) are the sparsest. The selections property of mboost is instabil, either
many or only very few are selected. In general the trend over the year, i.e. TEMPO, is not
selected very often. In the mids of the week day-specific covariates are selected. Especially
glmnet and SIPen select Tuesday and Thursday quite often. The covariates which describe
the air quality SO2ME.2, TMIN.2, and UMID are selected by all procedures very often. glmnet
and SIPen select these variables in each random split. The mboost includes the UMID
only in combination with other covariates. The boosting procedures FlexLink, FlexLink
(cut), and mboost are not so stable by including the group of air quality covariates,
namely SO2ME.2, TMIN.2, and UMID. Especially the mbbost includes UMID very instabil.
The covariate CAR65 is also selected quite often (always by glmnet and SIPen) in contrast
to OTH65. In general the differences of the predictive test deviance are not very great.
The SIPen outperforms the other response function estimating procedures FlexLink and
FlexLink (cut) with respect to the median of predictive deviance.

Procedure SIPen FlexLink
FlexLink

glmnet mboost
(cut)

med(Dev(test)) 81.363 83.495 83.226 81.704 81.087

Table 7.3: Medians of the predictive deviance of the different procedures across the 50

random splits of the Sao Paulo air pollution data set.

7.5.2 Bodyfat Data Set

The body fat data set has already been analyzed by Penrose et al. (1985). The response is
the percentage of body fat of 252 men. The different covariates are body characteristics and
given in Table 7.4. The response has been calculated from a special equation introduced
by Siri (1956) using the body density determined by underwater weighting. For this data
set the normal distribution is used. The predictive performance of the different procedures
is measured again by the predictive deviance across 50 random splits. We split the data 50
times into a training data set with 200 observations and a test data set with 51 observations.
We proceed analogously to the Sao Paulo air pollution data and present the boxplots of
the predictive test deviance and plots of the selected covariates in Figure 7.6.
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Figure 7.5: Plots of selected covariates and the predictive deviance on the test data set

across 50 random splits.
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Label Explanaltion
1 age (in years)
2 weight (in lbs)
3 height (in inches)
4 neck circumference (in cm)
5 chest circumference (in cm)
6 abdomen 2 circumference (in cm)
7 hip circumference (in cm)
8 thigh circumference (in cm)
9 knee circumference (in cm)
10 ankle circumference (in cm)
11 biceps (extended) circumference (in cm)
12 forearm circumference (in cm)
13 wrist circumference (in cm)

Table 7.4: Table of covariates and their number of the bodyfat data set.

The FlexLink and the FlexLink (cut) procedures estimate the sparsest models. Only
the covariates 3 (height), 4 (nech circumference), 6 (abdomen 2 circumference), and 13
(wrist circumference) are selected quite reliably. The variables 6 (abdomen 2 circumference)
and 13 (wrist circumference) are selected by each procedure in each random split. The
SIPen, glmnet, and the mboost select the covariate age in each random split. Additionally,
these procedures include the covariate 12 (forearm circumference) quite often. The mboost
selects the remaining covariates 5 and 7 to 11 only in few random splits. Covariate 9
(knee circumference) is never selected by the mboost. In general the penalized regression
procedures glmnet and SIPen perform variable selection is not so strong as the boosting
procedures for this data set. The SIPen outperforms the competitive procedures but gives
not the sparsest models. The performance is quite stable in contrast to the more selective
boosting procedures. We show the medians across the random splits in Table 7.5

Procedure SIPen FlexLink
FlexLink

glmnet mboost
(cut)

med(Dev(test)) 1038.522 1160.323 1109.842 1157.516 1096.388

Table 7.5: Medians of the predictive deviance of the different procedures across the 50

random splits of the bodyfat data set.
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Figure 7.6: Plot of selected covariates and the predictive deviance on the test data set

across 50 random splits of the bodyfat data set.
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7.6 Conclusion and Remarks

A L1-penalization for SIMs is presented and it turns out that non-parametrical estimation
of the response function improves the predictive performance. In the binomial case with a
flexible modeling of the response function this improvement is quite small. All in all the
presented SIPen is a strong competitor to the FlexLink and FlexLink (cut) which also do
variable selection and estimate the response function non-parametrically. The parameter
vector β and the response function h(.) are connected by the linear predictor η = xTβ,
hence mu = h(η). So the shrinkage of the parameter vector can be partially compensated
by the response function. This effect must be tackled by additional constraints. It is a
challenge for the SIPen to achieve the same standard with respect to MSEβ as the FlexLink
and FlexLink (cut) procedures. The same holds for the hits and false positive rates. The
results are quite unsatisfying. In the real data examples the SIPen performs quite well.
Especially for the body fat data the SIPen convinces.

By a small modification the algorithm can be used for p > n. In contrast to the Fisher
scoring the gradient descent part of the algorithm needs no inverse. If only the gradient
descent update is used the algorithm works also for the p > n case.



Appendix

The parameter space is the Euclidean space IRp. With (IRp)∗ we denote the dual Euclidean
space. IRp represents the vector space of all column vectors of length p with real entries.
(IRp)∗ is the vector space of all linear functions IRp → IR which are the row vectors of
length p with real entries.

Definition A 1 (Hyperplane and Linear Halfspaces) A subset H ⊂ IRp is called hy-
perplane of IRp, if there is a linear functional c : IRp → IR, c ∈ (IRp)∗ \ {0}, and a t ∈ IR
for which

H = {x ∈ IRp : cx = t}

holds.
A subset H− ⊂ IRp is called lower linear halfspace (of IRp), if there are a linear func-

tional c : IRp → IR, c ∈ (IRp)∗, and t ∈ IR with

H−(c, t) := {x ∈ IRp : cx ≤ t}.

Analogously a subset H+ ⊂ IRp is called upper linear halfspace (of IRp), if there are a linear
functional c : IRp → IR, c ∈ (IRp)∗, and t ∈ IR with

H+(c, t) := {x ∈ IRp : cx ≥ t}.

Definition A 2 (Supporting Hyperplane) Let H a hyperplane H ⊂ IRp and K ⊂ IRp

a convex set. Then H is called supporting hyperplane or support for K if H ∩K �= ∅ and
K is entirely contained in one of the both closed halfspaces H+ or H−.

Definition A 3 (p-crosspolytope) The set

C�
p

:=

�
x ∈ IRp :

p�

i=1

|xi| ≤ 1

�
= conv{e1, −e1, ..., ep, −ep}

is called p-crosspolytope. ei, i = 1, ..., p, terms the ith base vector of IRp.

Definition A 4 (p-cube) The set

Cp := {x ∈ IRp : −1 ≤ xi ≤ 1} = conv{{+1, −1}p}

is called p-cube. {{+1, −1}p} terms the set of all 2p p-dimensional vectors whose compo-
nents are +1 or −1.
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Definition A 5 (Orthant) An orthant of the IRp is the subspace

Ω = {β ∈ IRp : 0 ≤ eiβi, ei ∈ {−1, +1}, ∀i = 1, ..., p, } .

So the sign constellation within an orthant does not change and is given by the vector
e = (ei)i=1, ..., p.

Example A 1 The H-representation of the LASSO penalty region in IR3 is

P (L, t) =
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−1 −1 1
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The generalization for p ∈ IN follows immediately.

Example A 2 For p = 3, t > 0, and c > 0 the H-representation of the OSCAR penalty
region is:
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The generalization for p ∈ IN follows immediately.
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Example A 3 Given the H-representation of an OSCAR penalty region in IR3 as in Ex-
ample A 2 the set of vertices of this penalty region is:

O =
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Proof A 1 (Propostion 1) We consider a p-dimensional OSCAR penalty region for
fixed tuning parameters t > 0 and c > 0. Let O denote the set of all vertices of this
OSCAR penalty region. As remarked every row of the system of inequalities depends on
the order of |βi| and one special orthant. For every facet determined by row of the system of
inequalities one can find exactly p elements of O which confirm to the row by meanings of
the order of |βi| and the signs. Consider the orthant with only positive values and the order
|β1| ≥ |β2| ≥ · · · ≥ |βp| then only the following p vertices are elements of the corresponding
row:

�O =










v(1)
0
0
0

.

.

.
0





,





v(2)
v(2)
0
0

.

.

.
0





,





v(3)
v(3)
v(3)
0

.

.

.
0





, . . . ,





v(p)
v(p)
v(p)
v(p)

.

.

.
v(p)










By changing the signs and permuting the rows of the vertices of �O we get the other orders
of |βi| in every orthant.

Hence every facet is defined by a p-elementic subset of O and one row of the inequation
system. The fact that no hyperplanes is ignored by a set of the kind �O and all elements of
O are used completes the proof.

Proof A 2 (Corollary 1) If m of the p components of a vertex are nonzero then there are�
p

m

�
permutations of this m components. Further there are 2m different sign combinations

which are convenient. Its well known that
�

p

m=0

�
p

m

�
ap−mbm = (a+ b)p. Now choose a = 1

and b = 2. Further 0 < m ≤ p and
�
p

0

�
1p20 = 1 holds and immediately

�
p

m=1

�
p

m

�
2m = 3p−1

follows.

The second statement follows directly from Proof A 1.

Example A 4 The set of vertices the V8 penalty region is the union of the LASSO vertices
L and vertices on the bisecting lines in every βi-βj-plane B =

�
i<j

Bij.

In IR4 the LASSO vertices are:

L =










±t
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±t
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 ,





0
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±t
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0
0
±t
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The remaining set B =
�

i<j
Bij is

B =
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t
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t
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∓

t
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.

The generalization to any finite p ∈ IN follows immediately. So The V8 penalty region is
P = conv(L ∪ B).
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