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1 Introduction 
 

1.1 Early life stress model 

1.1.1 Early life stress as a risk factor 

Early life events can have a life-long impact on physical and mental health. There is 

increasing evidence that childhood trauma and neglect can profoundly influence 

behavior and increase risk for depression, anxiety disorders and substance abuse (de 

Wilde et al., 1992; Dube et al., 2001) (Kendler et al., 1995; Johnson et al., 2002). The 

quality of mother-infant interactions is of crucial importance during early 

development. Abundant evidence shows that postnatal disruption of the normal 

mother-infant interaction can lead to critical changes in the developing 

neuroendocrine response to stress in rodents. In fact, numerous studies have shown 

that early life stress can alter behavioral and neuroendocrine responsiveness and brain 

morphology. Subsequent dysregulation of the hypothalamic-pituitary-adrenal (HPA) 

axis can increase the vulnerability to psychiatric diseases (Arborelius et al., 1999; 

Jaffee et al., 2002; Newport et al., 2002; Iversen et al., 2007; Rikhye et al., 2008).  

Such findings have raised the question of whether similar processes take place in the 

human infant and, if so, through which mechanism early life adversity programs the 

infant HPA axis. To address these questions, I will first briefly describe the anatomy 

and regulation of the HPA axis and focus on critical time windows for programming 

by adverse events. A rodent model of early life stress will be introduced to show how 

early experiences modulate behavioral, cognitive and physiological development. 

1.1.2 Hypothalamic-pituitary-adrenal (HPA) axis 

Hyperactivity of the HPA axis is one of the key findings described in major 

depression (Holsboer, 2000). Secretion of hypothalamic corticotrophin-releasing 

hormone (CRH) from nerve terminals in the median eminence into the hypophysial 

portal circulation stimulates the synthesis of the precursor protein 

proopiomelanocortin (POMC), its cleavage and release as adrenocorticotrophic 

hormone (ACTH) from the anterior pituitary. Although CRH is the primary ACTH 

secretagogue, other neuroactive peptides, in particular arginine vasopressin (AVP), 
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are coexpressed in parvocellular neurons of the hypothalamic paraventricular nucleus 

(PVN); these act synergistically with CRH to stimulate ACTH release under sustained 

stress (Plotsky et al., 1991; Sawchenko et al., 1993). When released into the systemic 

circulation, ACTH stimulates adrenocortical synthesis and release of cortisol (human) 

or corticosterone (rodents) from the adrenal gland, which in turn, inhibits CRH and 

AVP production via a negative feedback loop (Figure 1). 

 

 

 

 

 

    
Figure1. The hypothalamic-pituitary-adrenal (HPA) axis. The neuropeptides corticotrophin-
releasing hormone (CRH) and arginine vasopressin (AVP) are expressed in the parvocelluar 
neurons of the hypothalamic nucleus paraventricularis. The co-release of CRH and AVP into the 
portal blood vessels leads to potent stimulation of anterior pituitary ACTH secretion and POMC 
transcription. ACTH is derived from the POMC precursor mRNA and in turn stimulates secretion 
and synthesis of stress hormones (corticosteroids; CORT) by the adrenal glands. The activational 
effects of the HPA axis are counteracted by the inhibitory effects of CORT on the hypothalamus 
and pituitary and serve to attenuate and determinate the stress response. Adopted from 
(Murgatroyd et al., 2010) 
 
 

1.1.3 Stress hypo-responsive period (SHRP) 

Rodents undergo a period in early postnatal development during which they exhibit a 

reduced response to stress (stress hypo-responsive period, SHRP). This period has 

been suggested to last from  approximately postnatal day (PND) 4 to PND 14 

(Schapiro et al., 1962; Sapolsky and Meaney, 1986; Walker et al., 1986; Levine, 

1994, 2001) in rats and from PND 1-12 in mice (Cirulli et al., 1994; Schmidt et al., 

2002; Schmidt et al., 2003). This period is characterized by lower baseline plasma 

corticosterone concentrations than those measured at later stages of development and 
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in mature mice, and by blunted CRH and ACTH responses to acute stressors. During 

the SHRP, the adrenal gland is relatively insensitive to ACTH stimulation, resulting in 

only a minimal amount of corticosterone release upon stress (Stanton et al., 1988; 

Rosenfeld et al., 1991). The HPA axis is a dynamic system which undergoes postnatal 

maturation. During the first two weeks of life, the rodent brain passes through a 

number of critical developmental processes including dendritic outgrowth, 

synaptogenesis, and the formation of neural circuits. As a consequence, adverse 

events during the SHRP can lead to long term behavioral and physiological changes 

later in life. For example, during the SHRP, neonatal rat pups displayed increased cell 

death of neurons and glia in several cortical regions when subjected to a single (24 

hour) bout. However, the same paradigm is less harmful when applied outside the 

SHRP (Zhang et al., 2002). The quality of maternal behaviors, such as 

licking/grooming and feeding received during the early weaning period have 

significant impact on anxiety- and depression-like behaviour and HPA activity and 

these effects can persist into adulthood (Liu et al., 1997). Based on these observations, 

several animal models have been developed building up on the manipulation of the 

interaction between mother and pups during the critical period; one of these is 

maternal separation.  

1.1.4 Maternal separation (MS) of newborn mice 

Neonatal maternal separation (MS) has been used as a model of adverse early life 

events to induce long-term changes in behaviour and neuroendocrine regulation 

(Anisman et al., 1998; Slotten et al., 2006). This model is based on the observation 

that dams often leave their pups for foraging for 15-30 minutes, while a mother living 

in a harsh environment (e.g. drought) may have to forage for up to 2-3 hours, 

exposing the pups to increased separation stress. In the MS model, pups are separated 

for 3 hours daily from their mother during the first 10 days of life.  These 

manipulations are normally performed in the morning with the pups removed to an 

incubator or heating pad to maintain body temperature. From postnatal day 11, pups 

are reared by their mother, undisturbed in the home cage until PND 21 when they are 

weaned and housed in sex-matched groups (3-5 mice per cage). 

Maternal separation performed in this time window (PND 1-10) can confer 

detrimental effects to the neonatal pups when they reach adulthood. Until weaning, 
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pups are almost entirely dependent on their mother for the maintenance of body 

temperature, nutrition, and protection from predators, and in addition, their brains are 

undergoing significant development (the rodent brain at birth is thought to correspond 

to that of a human infant’s at gestational age 23-24 weeks). In this respect, early 

trauma can impose severe changes to the offspring. In general, many early-life stress 

paradigms induce persistent increases in anxiety- and depression-like behaviours, as 

well as hyperactivation of the HPA axis.  

As adults, animals that have experienced maternal separation stress show several 

behavioural alterations. They spend more time in the closed arm of the elevated plus 

maze when compared with control animals, suggesting an anxiety-like phenotype 

(Romeo et al., 2003). Slotten and colleagues (Slotten et al., 2006) pointed out that 

adult rats previously exposed to 3 hours of daily separation (PND 3-15) preferentially 

stayed in the closed protected arm of the T-maze compared with the control rats. In 

addition, MS animals also exhibit depression-like behaviour. For example, rodents 

exposed to 3 hours of daily separation during the first two weeks of life spend more 

time floating in the force swim test when compared with control animals; this is 

thought to reflect depression-like behaviour. Maternal separation can also produce 

other depression-like syndromes, including increased consumption of ethanol 

(Pohorecky, 1981, 2006) and signs of anhedonia (the inability to perceive or respond 

appropriately to pleasurable stimuli) (Matthews and Robbins, 2003). 

Maternal separation can lead to long-lasting alterations of neuroendocrine 

regulation. When compared with control animals, adult MS offspring displays higher 

levels of basal corticosterone (CORT) and adrenocorticotropic hormone (ACTH), and 

increased level of hypothalamic CRH and AVP in the PVN. The adult MS animals 

exhibit resistance to glucocorticoid-mediated feedback, as evident from a failure of 

the dexamethasone suppression test (Murgatroyd et al., 2009). Furthermore, MS 

treated animals show decreased levels of gama amino butyric acid A (GABAA) 

receptor expression in the medial prefrontal cortex, noradrenergic (NA) cell body 

regions of the nucleus tractus solitarius and the locus coeruleus (Caldji et al., 2000). 

Moreover, reduced levels of brain-derived neurotropic factor (BDNF) and 

synaptophysin mRNA densities were detected (Lippmann et al., 2007; Aisa et al., 

2009). Maternal separation can also inhibit neurogenesis in the hippocampus，which 
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consequently impairs memory formation. Aisa and colleagues (Aisa et al., 2009) 

found that MS treated animals showed spatial learning deficits when tested in the 

Morris Water Maze compared with non-handled controls. 

1.1.5 Early life environment and the epigenome 

A critical question concerns the mechanisms coupling early social environment to 

long-term alterations of behaviour and stress responses later in life. Recent findings 

from rodent models implied that epigenetic mechanisms, especially DNA 

methylation, are mediating the gene X environment dialogue by laying down stable 

marks in the genome, thus affecting the phenotype later in life. In the rat, different 

levels of maternal care early in life can lead to DNA methylation changes that persist, 

along with altered behavioral and neuroendocrine phenotypes in adulthood. Meaney 

and coworkers (Weaver et al., 2004) showed that pups reared under high maternal 

care, including licking/grooming and arch-back nursing (LG-ABN), have increased 

glucocorticoid receptor (GR) expression in the hippocampus when compared with 

pups reared by low LG-ABN dams. This higher glucocorticoid receptor (NR3C1, GR) 

mRNA expression is associated with lower DNA methylation in the promoter region 

of the GR, thereby facilitating the binding of the transcription factor nerve growth 

factor-induced protein A (NGFI-A). The authors further performed a series of 

experiments to show that the impact of early experience can be reversed by later 

interventions in adulthood, e.g. environmental enrichment, cross-fostering or 

treatment with histone deacetylase (HDAC) inhibitors.  This example demonstrated 

that changes in the epigenome established by the environment during early 

development can be reversed in adulthood, indicating the plasticity of DNA 

methylation processes in the adult brain. 

In humans, adverse events such as childhood abuse can also lead to epigenetic 

programming in the adult brain. McGowan and coworkers (McGowan et al., 2009) 

found that DNA methylation at a neuron-specific GR promoter was significantly 

higher in the hippocampus of suicide victims who had suffered from childhood abuse 

than in controls or non-abused suicide victims. The increased DNA methylation in 

suicide victims who underwent childhood abuse is associated with decreased levels of 

GR mRNA as well as the GR 1F splice variant, suggesting a functional correlation 

between DNA methylation and GR mRNA expression. Thus, the findings in rodent 
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models implicating early environmental exposure in programming the epigenome also 

appears to apply to humans.  In sum, results both from animal models and humans 

indicate the plasticity of the epigenome when exposed to environmental stimuli, 

opening the possibility of developing approaches for early diagnosis, prevention, and 

treatment of disease. 

 

1.2 DNA methylation and MeCP2 

1.2.1 Epigenetics 

The term “epigenetics” was first introduced by the developmental biologist Conrad 

Waddington in 1940 to describe the gene-environment interactions that result in 

specific phenotypes (Waddington, 1942; Van Speybroeck, 2002). While Waddington 

originally used this concept in a developmental context, the term’s current use has 

extended to describe the study of heritable changes (both mitotic and meiotic) in gene 

expression that are not due to changes in DNA sequence (Russo, 1996). The concept 

of epigenetics was recently revised by the British scientist Adrian Bird who proposed  

that epigenetic events are the structural adaptation of chromosomal regions (genes) to 

register, signal or perpetuate altered activity states (Bird, 2007). In this new definition 

of epigenetics, both chromatin marks and DNA modifications, regardless of their 

heritability, are considered as epigenetic events. DNA methylation and histone 

modifications are the two main mechanisms of epigenetic regulation. Whereas histone 

modifications are often transient events, DNA methylation is thought of as a stable 

modification of DNA. In our studies, we focused on DNA methylation. 

1.2.2 DNA methylation 

DNA methylation is a covalent chemical modification involving the addition of a 

methyl group to the fifth position of the pyrimidine ring in the nucleotide cytosine. 

This modification can be inherited through cell division. DNA methylation is 

normally removed during zygote formation and reestablished by de novo methylation. 

In mammals, DNA methylation mostly occurs in the context of CpG dinucleotides, 

which consist of a cytosine immediately followed by a guanine (Richards, 2006). In 
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addition, recent research revealed that DNA methylation can also appear in a non-

CpG manner, although the function of this is still not very clear (Barres et al., 2009). 

It has been suggested that about 25% of all methylation in embryonic stem (ES) cells 

occurs in a non-CpG context. Non-CpG methylation disappears during differentiation, 

but is restored in induced pluripotent stem cells, suggesting that non-CpG methylation 

might play a role in the establishment and maintenance of pluripotency (Lister et al., 

2009). 

 About 70% of all CpG dinucleotides are methylated across the genome (Ehrlich 

et al., 1982), except for the high CpG density regions called CpG islands (Bird, 1986; 

Gardiner-Garden and Frommer, 1987). The common formal definition of a CpG 

island is a region spanning at least 200 bp in length and containing a GC percentage 

greater than 50% with an observed/expected CpG ratio of more than 60%. Another 

recent study revised the rules for CpG island prediction in order to exclude other GC-

rich genomic sequences such as Alu repeats. Accordingly, CpG islands are defined as 

DNA regions of >500 bp with a GC content >55% and observed CpG/expected CpG 

ratio of 0.65 (Takai and Jones, 2002). CpG islands are normally present within or 

close to the promoter region responsible for regulating the transcription rate of a gene. 

Typically, CpG islands are free of methylation. New studies by Weber and coworkers 

(Weber et al., 2007) have pointed out that DNA methylation at a given CpG island is 

dependent on the CpG density of the promoter. High CpG promoters are 

unmethylated and promoters with low CpG contents tend to be hypermethylated. 

DNA methylation has been shown to play important roles in mammalian 

development. For example, DNA methylation is essential for establishing tissue-

specific gene expression patterns. In addition, DNA methylation is also associated 

with a number of key processes such as X-chromosome inactivation, parental 

imprinting, suppression of repetitive elements and carcinogenesis (Bird, 2002).  

1.2.3 DNA methyltransferases 

In mammalian cells, DNA methylation occurs mainly at the 5 position of CpG 

dinucleotides and is catalyzed by DNA methyltransferases (DNMTs). There are four 

known DNMTs which can be subcategorized into two groups by their functions: de 

novo and maintenance DNA methylation. 



INTRODUCTION 

                                                                                                                                                    8                                                                                                                                                             

The addition of methyl groups to previously unmethylated DNA, the so called de 

novo methylation, is catalyzed by two enzymes: DNMT3a and DNMT3b. Compared 

with DNMT3a, DNMT3b shows relatively low expression in most tissues except for 

the testis, suggesting a crucial function for DNMT3b in spermatogenesis (Okano et 

al., 1998a; Robertson et al., 1999; Xie et al., 1999). DNMT3a and DNMT3b are 

essential for normal development (Okano et al., 1999). Dnmt3a homozygous 

knockout mice appear normal at birth but die after 4 weeks of age; while Dnmt3b 

homozygous knockout mice show various embryonic defects and die before E15.5. 

Combined knock-out of Dnmt3a and Dnmt3b produces more severe symptoms than 

those of Dnmt3a and Dnmt3b alone. This indicates that Dnmt3a and Dnmt3b have at 

least partially overlapping functions in the establishment of cellular DNA methylation 

patterns during development.   

Maintenance DNA methylation activity is essential for preserving DNA 

methylation patterns in each cellular DNA replication cycle. DNMT1 functions as a 

maintenance DNA methyltransferase, and specifically recognizes hemi-methylated 

CpGs following DNA replication of the daughter strand. DNMT1 is responsible for 

transmitting DNA methylation patterns to the daughter strand. Dnmt1 is essential for 

mammalian development, because null mutants show widespread demethylation in 

the embryo and die at E9.5 (Li et al., 1992). Dnmt1 mRNA expression is also 

observed in low-proliferation tissues such as the adult heart and brain. These 

unexpected results suggest a new role of Dnmt1 in addition to its known role to 

maintain DNA methylation levels during cell division. Recent finding suggests that 

DNMT1 can interact with methyl-CpG binding proteins as well as with HDACs and 

histone methyltransferases to exert transcriptional repression (Tatematsu et al., 2000; 

Fuks et al., 2003a; Kimura and Shiota, 2003). 

In 1998, scientists seeking to identify a putative de novo DNA methyltransferase 

discovered the DNMT2 gene (Okano et al., 1998b). DNMT2 contains the well-

conserved catalytic domain. However, only traceable methyltransferase activity of the 

DNMT2 gene was found using in vitro systems (Hermann et al., 2003). Moreover, 

Dnmt2 knockout ES cells show normal de novo or maintenance methyltransferase 

function (Okano et al., 1998b). Consistent with this finding, Dnmt2 knockout mice 

fail to display an abnormal phenotype. Recent research showed that human DNMT2 

can work as a tRNA methyltransferase which specifically methylates cytosine 38 in 
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the anticodon loop (Goll et al., 2006). However, it is not known how many RNA 

species can be methylated by Dnmt2. Thus the functions of DNMT2 still need to be 

determined in the future. 

DNMT3L is highly expressed in the testis and embryos, and is likely to play a 

role in the setting of imprints in oocytes (Bourc'his et al., 2001; Margot et al., 2003). 

Unlike the other DNMTs, no functionally relevant catalytic motif was mapped in the 

DNMT3L protein sequence and DNMT3L has not been associated with intrinsic 

enzymatic activity until now.   

1.2.4  Readers of DNA methylation  

The best documented function of DNA methylation is gene silencing. DNA 

methylation may affect gene expression in two ways. Firstly, if the DNA sequence is 

methylated, the methylation of DNA itself might impede the binding of a specific 

transcriptional factor to its recognition site and suppress gene expression. For 

example, a methylated DNA sequence can interfere with the binding of transcription 

factors such as E2F, NGFI-A or CREB (Iguchi-Ariga and Schaffner, 1989; 

Campanero et al., 2000; Weaver et al., 2004), thereby preventing transcriptional 

activation. While the consequence of DNA methylation is generally thought of as 

transcriptional silencing, methylation of repressor protein-binding sites can lead to 

increased gene expression. For example, the imprinted gene insulin-like growth factor 

2 (Igf2) can be activated if the upstream repressor sites are differentially methylated in 

the paternal allele (Eden et al., 2001).  

Secondly, methylated DNA might recruit proteins known as methyl-CpG-

binding domain proteins (MBDs). These can recruit additional proteins, such as 

histone deacetylases (HDACs) and other chromatin remodeling complexes known to 

promote the formation of a condensed chromatin structure that is inaccessible to 

transcription regulators (Jones et al., 1998; Nan et al., 1998; Wade et al., 1999; Fuks 

et al., 2003b). These methyl-CpG-binding domain proteins serve as readers and 

writers of epigenetic marks/signatures and provide a platform on which DNA 

methylation and chromatin modifications are carried out. There are 5 MBDs in 

mammals, namely, MeCP2, MBD1, MBD2, MBD3 and MBD4. Among these, 

MeCP2, MBD1, MBD4 bind to methylated DNA sequences through a conserved 
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methyl-CpG binding domain (MBD). MBD3, which contains amino acid substitutions 

in the well-conserved methyl-CpG-binding domain, is involved in transcriptional 

repression as a component of a co-repressor complex irrespective of the DNA 

methylation status (Saito and Ishikawa, 2002).  

Besides the MBD family proteins, other proteins such as Kaiso, ZBTB4, and 

ZBTB38 are able to preferentially bind to methylated DNA in a sequence-specific 

manner through their zinc finger binding domains (Prokhortchouk et al., 2001; Filion 

et al., 2006). 

1.2.5  MeCP2 

1.2.5.1 Rett syndrome and MeCP2 

MeCP2 is the founding member of the methyl-CpG-binding protein family. MeCP2 

was firstly purified by Adrian Bird’s group from rat brain in 1992 (Lewis et al., 1992). 

It has been extensively studied since 1999 because patients with the 

neurodevelopmental disorder Rett syndrome harbor mutations in the MECP2 gene 

(Amir et al., 1999). It is estimated that one out of 10,000-20,000 females develops 

Rett syndrome (Percy, 2002). Newer reports suggest that Rett syndrome can also 

occur in males with much more severe symptoms (Hardwick et al., 2007). Rett 

syndrome is a progressive disease characterized by normal early development 

followed by mental retardation, loss of speech, stereotype hand movements and other 

neurological symptoms (Hagberg et al., 1983). It is thought that mutations in MECP2 

account for up to 96% of classic Rett syndrome cases (Shahbazian and Zoghbi, 2001).  

MeCP2 is also essential in mice: Mecp2-null animals exhibit phenotypic 

similarities of Rett syndrome; they show a period of normal postnatal development 

followed by hindlimb clasping, breath difficulties, reduced mobility, brain size and 

body weight, and death at around 8 weeks of age (Chen et al., 2001; Guy et al., 2001). 

Moreover, conditional deletion of the Mecp2 gene in cells of the neuronal lineage 

results in the same phenotype, indicating that the absence of normal MeCP2 function 

in neurons may be sufficient to cause disease. In addition, mice expressing a truncated 

MeCP2 protein (Mecp2308) that retains partial function display a less severe 

phenotype than that displayed by Mecp2-null mice (Shahbazian et al., 2002a). 

Furthermore, Mecp2 deletion in post-mitotic neurons leads to milder defects of RTT-
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like phenotypes, suggesting that mature neurons require continuous expression of 

MeCP2 to function properly (Chen et al., 2001). 

The mammalian central nervous system requires tightly adjusted MeCP2 levels 

for its proper function. MECP2 duplications in human have been found to cause a 

progressive postnatal neurological disorder with features of Rett syndrome. MECP2 

duplication in a girl produced effects with features of Rett syndrome in the presence 

of preserved speech (Ariani et al., 2004), while MECP2 duplication in a boy led to 

mental retardation and typical clinical features of Rett syndrome (Meins et al., 2005; 

Van Esch et al., 2005). Consistent with these findings, Mecp2 overexpression in 

transgenic mice results in severe neural defects in postnatal life (Collins et al., 2004). 

Mecp2-depleted neurons do not suffer severe irreversible damage since the restoration 

of Mecp2 can largely reverse the Rett syndrome phenotypes in mice (Luikenhuis et 

al., 2004). 

1.2.5.2 MeCP2 gene structure 

MeCP2, located at Xq28 in the human genome (Quaderi et al., 1994), comprises 4 

exons spanning a region of more than 75 kb in length. In mammals, MeCP2 is an 84 

kDa protein which is composed of three functional domains (Figure 2): the methyl-

CpG binding domain (MBD) (amino acids 78-160) which is responsible for 

recognizing and binding to methylated CpGs, the transcriptional repression domain 

(TRD) (amino acids 207-310) which recruits a corepressor complex including Sin3A 

and histone deacetylases, and a C-terminal region which contains a proline-rich 

protein interaction surface capable of binding to group II WW domains. MeCP2 

contains a nuclear localization signal (NLS: amino acid 255-271) which resides in the 

middle of the transcriptional repression domain and is responsible for transport of the 

protein into the nucleus (Chandler et al., 1999). 

MeCP2 encodes two splice variants (Kriaucionis and Bird, 2004; Mnatzakanian 

et al., 2004). MeCP2α, which contains a distinct N-terminus is more abundant than 

another isoform (MeCP2β) in mouse tissues and human brain. In addition, MeCP2β 

mRNA has an upstream open reading frame that inhibits its translation, leading to 

lower translational efficiency. As a consequence, > 90% of the MeCP2 in mouse brain 
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corresponds to MeCP2α. Both protein isoforms are nuclear and colocalize with 

densely methylated heterochromatic foci in mouse cells (Kriaucionis and Bird, 2004). 

MeCP2 is ubiquitously expressed in normal tissues. Although MeCP2 shows low 

levels of expression during early stages of development, MeCP2 is widely expressed 

in embryonic and adult tissues, with high concentrations in brain, lung, pituitary and 

spleen, moderate in kidney and heart, and very low expression levels in liver, stomach 

and small intestine (Shahbazian et al., 2002b). 

 

Figure 2. Structure of the MeCP2 gene and mRNA. Alternative splicing for the MeCP2α 
isoform is shown in green and for the MeCP2β isoform in blue. The region encoding the MBD 
(Methyl-CpG Binding Domain) is depicted in cyan. The TRD (Transcription Repression Domain) 
is shown in red (Adopted from Kriaucionis and Bird, 2004). 

Generally, the affinity of MBD proteins for methylated DNA is 3-10-fold higher 

than for unmethylated DNA and may depend on sequence context (Fraga et al., 2003). 

In vitro binding assays revealed that MeCP2 is bound with high affinity to DNA 

containing AT sequences (AT≥4) adjacent to methylated CpGs (Klose et al., 2005). 

1.2.5.3 MeCP2 function 

Several diverse functions have been reported for MeCP2, including transcriptional 

repression, activation of transcription, nuclear organization, and splicing. MeCP2 was 

initially thought of as a global repressor since it can bind to regulatory DNA 

sequences and exert strong transcriptional repression (Jones et al., 1998; Kokura et al., 

2001). However, transcriptional profiling of brains derived from Mecp2-null mice 

showed only subtle changes in gene expression compared with wild type mice (Tudor 

et al., 2002). Moreover, when RNA was isolated from the cerebellum of Mecp2 

mutant mice, similar expression profiles were obtained by microarray analysis (Jordan 

et al., 2007). At this step, the lack of obvious changes in gene expression indicated 

that the transcriptional changes in Mecp2 mutant mice might only occur in some 

subsets of cells and might not be detected when whole cortex or hippocampus are 

processed.  



INTRODUCTION 

                                                                                                                                                    13                                                                                                                                                             

MeCP2 also confers gene activation. Recent studies of  Mecp2-null mice showed 

that MeCP2 rather activates  than represses  hypothalamic gene expression (Chahrour 

et al., 2008). Although there remains the possibility that some genes are affected by 

one or more indirect interactions, chromatin immunoprecipitation (ChIP) assay 

proved the binding of MeCP2 to the promoter region of some activated genes 

(Chahrour et al., 2008).  

Because DNA methylation is important in the regulation of imprinted gene 

expression, it has been proposed that Mecp2-deficient mice might show dys-

regulation of imprinted gene expression due to altered chromatin configuration. 

Several imprinted genes, including Dlx5, Dlx6 and Ube3A, have been reported to 

show abnormal expression levels in the brain of Mecp2-null mice (Horike et al., 2005; 

Makedonski et al., 2005; Samaco et al., 2005). The reason for such dysregulation 

might be the loss of MeCP2-dependent chromatin looping on the imprinted allele.  

MeCP2 has also been ascribed a role as regulator of splicing. In the brain, 

MeCP2 works as a modulator of alternative splicing via an interaction with the RNA-

binding protein YB-1 (Young et al., 2005). The MeCP2-YB-1 complex is very 

sensitive to RNAse treatment, suggesting that this interaction requires RNA for its 

formation and stability. Microarray analysis of mRNA from cerebral cortex of RTT 

mutant mice (Mecp2308/Y) revealed altered splicing of some genes following loss of 

functional MeCP2.  

1.2.5.4 Post-translational modifications of MeCP2 

Using a candidate gene approach, brain-derived neurotrophic factor (Bdnf) was first 

identified as a direct target for MeCP2 in cultured neurons. It was found that MeCP2, 

together with the co-repressor molecule Sin3a, forms a complex to maintain the 

repressed state of the Bdnf gene (Chen et al., 2003; Martinowich et al., 2003). 

Treatment of cultured neurons with potassium chloride (KCl), which induces 

membrane depolarization and calcium influx through opening of L-type voltage- 

sensitive calcium channels, leads to MeCP2 phosphorylation at serine 421 in the rat 

(Zhou et al., 2006). Phosphorylation of this residue promotes MeCP2’s dissociation 

from DNA, as demonstrated by southwestern assays (Chen et al., 2003). Zhou and 

coworkers (Zhou et al., 2006) demonstrated that Calmodulin-dependent Protein 
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Kinase II (CaMKII) mediates the phosphorylation of MeCP2 at serine 421 and 

underpins activity-dependent BDNF transcription. Moreover, it was reported that 

MeCP2 phosphorylation at serine 80 in the rat is critical for the association of MeCP2 

with chromatin (Tao et al., 2009). Calcium influx in neurons elicits dephosphorylation 

at S80 and probably contributes to the dissociation of MeCP2 from the chromatin. All 

these data support the concept that phosphorylation may be part of a reversible 

mechanism for adjustable, neuronal-activity controlled, gene repression by MeCP2. 

 

1.3 The pituitary gland  

 

The pituitary gland, or hypophysis, is a small endocrine gland (pea-sized in the adult 

human male) located at the base of the brain. It is functionally connected to the 

hypothalamus by the median eminence via the pituitary stalk. Anatomically, the 

pituitary gland is composed of two lobes: the larger anterior pituitary 

(adenohypophysis) and the smaller posterior pituitary (neurohypophysis). In rodents, 

there is a third component, the intermediate lobe (pars intermedia) that is located 

between the adeno- and neurohypophses; in humans, the intermediate lobe is only a 

small rudimentary structure. The anterior pituitary receives neurohormonal signals 

(hypothalamic releasing factors/hormones via the median eminence), whereas the 

posterior pituitary is directly innervated by the hypothalamus, with nerve endings that 

release the so-called neurohypophysial hormones oxytocin and arginine vasopressin 

from cell bodies in the magnocellular division of the paraventricular nucleus. Whereas 

the hypothalamic hormones that reach the anterior pituitary do not enter the general 

blood stream, neurohypophysial oxytocin and vasopressin are secreted into the 

general blood stream and act at distal peripheral organs such as the uterus and 

mammary glands (oxytocin-targets) and kidneys, liver, and heart (vasopressin-

targets).  

The anterior pituitary is derived from ectodermal cells in Rathke’s pouch to 

generate morphologically-distinct cell types: corticotropes, thyrotropes, gonadotropes, 

somatotropes, and lactotropes. There is also a sixth cell type which is non-hormone 

producing, the folliculostellate cells. During development, under the control of 
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various pituitary specific transcriptional factors and growth factors, these endocrine 

cells arise in the following sequence: corticotropes, thyrotropes, gonadotropes, 

somatotropes, and lastly, lactotropes. Somatotropes constitute approximately 50% of 

the cell population, lactotropes (10-25%), corticotropes (10-20%), thyrotropes (10%), 

and gonadotropes (10%) (Horvath and Kovacs, 1988). Of particular interest in the 

context of this study is the corticotropes which produce pro-opiomelanocortin 

(POMC), which is then proteolytically cleaved to adrenocorticotrophic (ACTH), β-

endorphin and αMSH, as well as other small peptides whose function is still 

incompletely understood. 

 

Figure 3. Schematic diagram of the human pituitary. The pituitary gland is located at the base 
of the skull between the optic nerves. The anterior pituitary comprises 5 main cell types that 
synthesize and release (into the blood stream) the adenohypophyseal hormones 
adrenocorticotrophic (ACTH) (target: adrenal cortex), luteinizing hormone (LH) and follicle-
stimulating hormone (FSH) (gonads), growth hormone (GH) (skeletal and metabolic tissues), 
prolactin (PRL) (mammary glands), and thyroid-stimulating hormone (TSH) (thyroid). AVP and 
oxytocin are released from hypothalamic nerve terminals contacting the posterior lobe and then 
into the general circulation.  

  Rodent anterior pituitary (from now on, referred to simply as pituitary) cells, 

including corticotropes, proliferate and differentiate during postnatal development. 

Friend (Friend, 1979) showed that the weight of the rat pituitary increases more than 

3-fold during the first 10 days of life and doubles over the next 15 days. Pituitaries 

from adult rats weigh 5 times more than those of 25-day-old animals. Interestingly, 

the different pituitary cell types proliferate at different rates; they are first detectable 

in fetuses aged 15.5 days. While embryonic corticotropes arise from undifferentiated 
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cells, those produced postnatally derive from pre-existing corticotropes (Taniguchi et 

al., 2000; Taniguchi et al., 2002).  

 

1.4 Pomc  gene 

1.4.1 Pomc gene structure and function 

The pro-opiomelanocortin (Pomc) gene, localized at chromosome 12 in mouse, 

encodes a cDNA comprising 1007 nucleotides spanning 3 exons and 2 introns. 

Computational analysis (CpGPlot, EMBOSS) and previous literature (Gardiner-

Garden and Frommer, 1994) revealed 2 CpG islands within the mouse Pomc gene 

locus: CpG island 1 (CGI 1), flanking the Pomc transcription start site and CpG island 

2 (CGI 2), approximately 5 kb downstream, encompassing the third exon of the Pomc 

gene. The Pomc gene is predominantly expressed in the anterior and intermediate 

lobes of the pituitary. Pomc mRNA is also detected in the hypothalamus (Gee et al., 

1983), amygdala, cortex, testes (Chen et al., 1984), lymphoid cells (Lolait et al., 

1986), adrenal medulla (Evans et al., 1983), ovaries, placenta (Chen et al., 1986) and 

some tumor tissues (Lacaze-Masmonteil et al., 1987; DeBold et al., 1988). The size of 

the mature POMC transcript in the pituitary is about 1200 nucleotides, while in the 

hypothalamus, POMC mRNA transcripts seem to be identical to pituitary except for 

longer poly(A) tails (Jeannotte et al., 1987). In testis, POMC-derived transcripts are 

about 400 bases shorter than those in the pituitary (Chen et al., 1984; Lacaze-

Masmonteil et al., 1987). This truncated POMC mRNA transcript contains no exon 1 

or exon 2 sequences, and is transcribed from the transcription initiation site near the 

5’ end of exon 3. Since the peptide translated from this form of POMC mRNA lacks a 

signal peptide, it can not be secreted (Clark et al., 1990). Therefore, its role in 

peripheral tissues is unresolved. 

POMC is a 241-amino-acid precursor polypeptide, which is cleaved in a tissue- 

specific fashion by prohormone convertases to yield a variety of bio-active peptides, 

including α-melanocortin stimulating hormone (α-MSH), β-endorphin, β-lipotropin 

(β-LPH) and adrenocorticotropin (ACTH). There are eight potential cleavage sites 

within the POMC precursor and different tissues contain specific convertases to 

produce a variety of biologically-active peptides. In the anterior pituitary, ACTH and 
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β-lipotropin are the major cleavage products. In the intermediate lobe, POMC can be 

cleaved into the following peptides: corticotrophin-like intermediate peptide (CLIP), 

γ-lipotropin (γ-LPH), β-endorphin, α-MSH and γ-melanophore stimulating hormone 

(γ-MSH). POMC-derived peptides play diverse roles in pathophysiology, including 

obesity, depression, skin pigmentation, adrenal development, and regulation of the 

HPA axis. In other tissues, including the hypothalamus, placenta and epithelium, all 

eight potential cleavage sites may be used to produce peptides responsible for energy 

homeostasis, pain, perception, melanocyte stimulation and immune responses.  

 

Figure 4. Mouse Pomc gene, mRNA, pro-hormone and peptides.The pro-opiomelanocortin 
(Pomc) gene encodes a cDNA comprising 1007 nucleotides spanning 3 exons and 2 untranslated 
introns. The Pro-POMC is a 241-amino-acid precursor polypeptide, which is cleaved in a tissue- 
specific fashion by prohormone convertases to yield a variety of bio-active peptides. In the 
corticotrope cells of the anterior pituitary, adrenocorticotropic hormone (ACTH) and β-lipotropin 
(β-LPH) are products under the control of corticotropin releasing hormone (CRH). In the 
intermediate lobe of the pituitary, alpha-melanocyte stimulating hormone (α-MSH), corticotropin-
like intermediate lobe peptide (CLIP), γ-lipotropin and β-endorphin are products generated under 
the control of dopamine. α- and γ-MSH are collectively referred to as melanotropin or intermedin.  

Anterior pituitary POMC synthesis and ACTH secretion are regulated by CRH 

released from neurohemal axon terminals in the median eminence of the 

hypothalamus. AVP, produced in parvocellular neurons of the hypothalamic 

paraventricular nucleus (PVN), acts synergistically with CRH to activate POMC 

transcription in the pituitary. CRH binds with high affinity to CRH-type 1 receptors 

(Vita et al., 1993; Timpl et al., 1998), thus stimulating cAMP production by adenylate 

cyclase (Giguere et al., 1982; Aguilera et al., 1983; Litvin et al., 1984; 

Grammatopoulos and Chrousos, 2002) and leading subsequently to activation of 

protein kinase A (PKA) (Reisine et al., 1985; Kovalovsky et al., 2002). This is 

followed by an influx of extracellular calcium through L-type voltage-dependent 

calcium channels (Kuryshev et al., 1996). As a consequence, calcium calmodulin 



INTRODUCTION 

                                                                                                                                                    18                                                                                                                                                             

kinase II (CaMKII) becomes activated (Kovalovsky et al., 2002). These signaling 

events ultimately converge on POMC transcription and ACTH secretion (von Dreden 

et al., 1988; Kovalovsky et al., 2002).  

1.4.2 Experience-dependent POMC methylation 

To date, the methylation status of POMC has been studied exclusively in human 

tissues. The human POMC gene contains two CpG islands (Gardiner-Garden and 

Frommer, 1994). The intronic POMC  promoter is located in the downstream CpG 

island and is barely expressed in most tissues. The upstream CpG island shows high 

tissue-specificity. Over-secretion of ACTH from non-pituitary tissues, resulting in 

severe Cushing’s disease, is thought to be due to activation of a (normally) tissue-

specific POMC promoter in ectopic tissues (Ye et al., 2005). The promoter contains a 

CpG island. The same study confirmed the causal relationship between DNA 

methylation and POMC gene expression. In ACTH-secreting tumors and POMC-

expressing DMS-79 cell lines, POMC is unmethylated at the pituitary-specific 

promoter region. In contrast, in non-ACTH-secretion tumors, this region is heavily 

methylated (Newell-Price et al., 2001). In addition, POMC is heavily methylated at 

the same region in a number of normal ACTH-non-expressing tissues including: 

pancreas, spleen, lung, testes and peripheral blood leukocytes (Newell-Price et al., 

2001). In thymic carcinoid patients, hypomethylation in the 5’ promoter region of the 

POMC gene is negatively correlated with over-expression of the POMC mRNA 

transcript (Ye et al., 2005).  

POMC DNA methylation can be altered by environmental conditions. For 

example, in a neonatal model of obesity, bisulfite sequencing of DNA isolated from 

the hypothalamus revealed hypermethylation of CpG dinucleotides within two Sp-1- 

related binding sequences in the POMC promoter. These two sites are essential for the 

mediation of leptin and insulin effects on POMC expression. Accordingly, gain of 

methylation within Sp1-related binding sites correlated with less activation of POMC 

expression by leptin or insulin signaling (Plagemann et al., 2009).  
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1.5 Goals of the thesis 

In both human and rodents, extensive research has shown that early-life experience 

has a profound impact on adult physiology and behaviour. Different environmental 

experiences in early life might contribute to the vulnerability for depression and 

anxiety later in life. However, the detailed mechanisms mediating these effects remain 

elusive. Using maternal separation as a paradigm of early life stress, the present work 

aimed to: 

� Examine neuroendocrine profiles in animals that had experienced stress (maternal 

separation) during the first 10 days of life 

� Analyze changes in Pomc methylation and gene expression 

� Investigate age-associated changes of the expression of Pomc mRNA in 

pituitaries from animals subjected to early life stress 

� Examine whether the effects of maternal separation are expressed differently in 

the two sexes   

� Identify the molecular mechanisms underlying the long-term effects of maternal 

separation on altered Pomc expression 
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2 Materials and methods 
 

2.1 Materials 

2.1.1 Chemicals 

Consumable Supplier Consumable Supplier 

1kb DNA ladder Fermentas 3mm filter paper Wattman 

Agar Gibco Agarose (low-melting point) Gibco 

Agarose (universal) Peqlab  Ampicillin Roth 

Antibiotic/antimycotic Gibco Boric acid Biomol 

Bradford assay Biorad Bromophenol blue Biorad 

Bovine serum albumin (BSA) Sigma Chloroform Roth 

Chloroform (RNase free) Merck Coomassie blue Biorad 

Developing emulsion (slides)  Kodak Developing solution (film) Kodak 

Developing solution (slides)  Kodak DMSO Sigma 

dNTPs (set of 4)  Fermentas DTT Sigma 

Dulbecco’s minimum essential 
medium (DMEM) 

Gibco EDTA Sigma 

Ethanol  Merck Ethidiumbromide Biomol 

Ficoll 400  Sigma Fixing solution (films) Kodak 

Fixing solution (slides)  Kodak bovine serum Gibco 

Formaldehyde  Merck Formamide Sigma 

L-Glutathione reduced  Sigma Glutathionine Sepharose Amersham 

Glycerine  Sigma Glycerol  Biomol 

Glycogen Fermentas Guanidine thiocyanate Merck 

IPTG  Fermentas Isoamylalkohol  Merck 

β-mercaptoethanol  Merck Methanol Merck 

Oligonucleotides  MWG /Sigma Optimem medium Gibco 

Paraformaldehyde  Sigma Phosphate buffered saline 
(PBS) 

Gibco 

Phenol  Appligene Ponceau Sigma 

2-propanol Merck 2-propanol (RNase free) Merck 
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Protein marker Fermentas Poly(d(I-C)) Roche 

Potassium chloride Sigma SDS Biomol 

Siliconising fluid Merck Sodium acetate Merck 

TEMED Sigma Tris Riedel-de Haen 

Triton X-100 Roth Trypsin Gibco 

Tryptone  Roth X-Gal Sigma 

Yeast extract Gibco Zeocin Invitrogen 

γ32P-ATP Amersham 32P-dCTP Perkin Elmer 

 

2.1.2 Restriction endonucleases 

Enzyme Supplier Enzyme  Supplier 

BamHI Fermentas BglII Fermentas 

EcoRI Fermentas EcoRV Fermentas 

HindIII Fermentas NcoI Fermentas 

PstI Fermentas SacI Fermentas 

SmaI Fermentas XbaI Fermentas 

XhoI Fermentas   

 

2.1.3 Modifying enzymes 

Enzyme Supplier Enzyme Supplier 

SssI CpG methylase NEB T4-DNA-Ligase Fermentas 

T4 DNA polymerase  Fermentas CIAP Fermentas 

DNA pol. I, Klenow fragment  NEB DNA polymerase (Taq.) Fermentas 

DNA polymerase (Pfu) Fermentas DNaseI  Fermentas 

Proteinase K  Boehringer 
Mannheim 

Proteinase K (RNase free) Sigma 

RNase  Sigma RNase inhibitor  Fermentas 
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2.1.4 Antibodies 

2.1.4.1 Primary antibodies against mouse  

Antibody Epitope Host Supplier 

Anti-flag M2 (monoclonal) Mouse Sigma 

Anti-acetyl-histone 
H3 

ARTKQTATK*APRKQLC 

K* is acetylated 

Rabbit Millipore 

Anti-H3K9me2 Rme2KSTG Rabbit Millipore 

Anti-total MeCP2 C-PRPNREEPVDSRTP Rabbit Upstate 

Anti-total MeCP2 NH2-CSMPRPNREEPVDSRTPV-C Rabbit Home-made 

Anti-pS421 MeCP2 C-MPRGG pSLES Rabbit Gifted by Greenberg’s 
lab (Zhou et.al., 2006) 

Anti-pS438 MeCP2 NH2-CMPRGGPpSLES-C Rabbit Home-made 

Anti-pS80 MeCP2 Not available Rabbit Gifted by Jifan Tao’s 
lab (Tao et.al., 2009) 

Anti-pS97 MeCP2 EASApSPKQR Rabbit Home-made 

Anti-POMC Amino acids 6-266 of Human POMC Mouse DAKO 

Anti-total CaMKII Amino-terminus of human CaMKII Rabbit Cell Signaling 

Anti-phospho 
(Thr286)-CaMKII 

Synthetic phosphopeptide flanking 
Thr286 of human CaMKII 

Rabbit Cell Signaling 

Anti-RNA Pol II CTD  RNA Pol II CTD repeat YSPTpSPS Rabbit Home-made 

Anti-HDAC1 EEKPEAKGVKEEVKLA Rabbit Abcam 

Anti-HDAC2 C-SGEKTDTKGTKSEQLSNP Rabbit Abcam 

Anti-HDAC4 Not available Rabbit Abcam 

Anti-DNMT1 EKDDREDKENAFKR Mouse Acris 

Anti-DNMT3a Bacteria expressed HIS-tag DNMT3a Mouse Acris 

Anti-DNMT3b Bacteria expressed HIS-tag DNMT3b Mouse Acris 
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2.1.4.2 Secondary antibodies 

 

Antibody  Epitope Host Supplier 

Anti-rabbit (594) rabbit IgG Goat Perbio 

Anti-mouse (488) mouse IgG Goat Santa Cruz 

Anti- rabbit (HRP) rabbit IgG Goat Sigma 

 

2.1.5 Vectors 

Vector Supplier 

pCpGL-Basic 

pCpGL-Pomc 

pCpGL-Pomc-∆CpG6-8 

pCpGL-Pomc-∆Dis-prom 

Gifted by Michael Rehli (Klug and Rehli, 2006) 

Own construct 

Own construct 

Own construct 

pRK7-Flag 

pRK7-Flag-MeCP2 

pRK7-Flag-MeCP2-∆C 

pRK7-Flag-S438A MeCP2 

pRK7-Flag-S97A MeCP2 

Gifted by Anke Hoffmann (Hoffmann and Spengler, 2008)  

Own construct 

Own construct 

Own construct 

Own construct 

pGEM-T  Promega 

His-tag MeCP2 1-250 Gifted by Adrian Bird (Kriaucionis and Bird, 2004) 

CaMKII 1-280 Gifted by Anthony R Means  (Planas-Silva and Means, 1992) 

CaMKII T286D Gifted by Gina Turrigiano  (Pratt et al., 2003) 

CaMKII Gifted by Anthony R Means  (Planas-Silva and Means, 1992) 

MBD1 Own construct 

MBD2 Gifted by Samson T. Jacob (Majumder et al., 2006)   

MBD3 Gifted by Samson T. Jacob (Majumder et al., 2006)  

GST-MeCP2 Own construct 
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2.1.6 Plastics 

Consumable Supplier Consumable Supplier Consumable Supplier 

Filtertips Sarstedt PCR plates/caps  ABgene Cell culture plates Greiner 

Pipette tips Sarstedt Scalpels Merck Micro test plates Greiner 

Cuvette 1mm Biorad X-ray cassette Kodak   

 

2.1.7 Molecular biology kits 

Consumable Supplier Consumable Supplier 

NucleoSpin PCR purification 
Kit 

Macherey-
Nagel 

96-PCR purification plate Macherey-
Nagel 

Protease inhibitor cocktail Sigma Phosphatase inhibitor cock- 
tail 1+2 

Sigma 

Magna ChIP G kit Millipore Montage SEQ96 sequencing  
reaction cleanup kit 

Millipore 

BigDyeTerminator v3.1 Cycle 
sequencing kit 

ABI NucleoSpin plasmid quick- 
prep 

Macherey 
Nagel 

RNeasy Qiagen Lipofectamine reagent Invitrogen 

Superscript II RT Kit Invitrogen Picogreen DNA quantifica- 
tion reagent 

Molecular 
probes 

Bio-spin 6 columns Biorad LightCycler FastStart DNA 
master SYBR Green I 

Roche 

TRIzol® Reagent Invitrogen pGEM-T vector system Promega 

 

2.1.8 Cell lines  

Name Derived tissue Morphology Supplier Reference 

AtT-20/D16v-
F2 

Mouse pituitary 
epithelial-like 
tumor cell line 

epithelial ATCC (Buonassisi et al., 
1962) 

LLC-PK1 porcine kidney epithelial ATCC (Perantoni and 
Berman, 1979) 

Neuro2a Murine 
neuroblastoma 

Neuronal ATCC (Olmsted et al., 
1970) 

AtT20 (v1bR) Mouse pituitary 
epithelial-like 

epithelia Gifted by Dr. (Serradeil-Le Gal 
et al., 2007) 
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tumor cell line Eric Clauser 

INSERM U970 

 

2.1.9 Bacterial strains 

DH5α from Invitrogen 

PIR1 from Invitrogen 

2.1.10 Primer sequences 

2.1.10.1 Primers for RT-PCR 

Oligo name Sequence Region Product 
size (bp) 

POMC F, 5’-GAA GAT GCC GAG ATT CTG CT-3’ 

R, 5’-TTT CAG TCA GGG GCT GTT C-3’ 

Exon2/3 221 

HPRT1 F, 5’-ACC TCT CGA AGT GTT GGA TAC AGG-3’ 

R, 5’-CTT GCG CTC ATC TTA GGC TTT G-3’ 

Exon7/9 168 

GAPDH F, 5’-CCA TCA CCA TCT TCC AGG AGC GAG-3’ 

R, 5’-GAT GGC ATG GAC TGT GGT CAT GAG-3’ 

Exon3/4 

+5 

326 

MeCP2 

 

DNMT1 

F, 5’-ACA GCG GCG CTC CAT TAT C-3’ 

R, 5’-CCC AGTTAC CGT GAA GTC AAA A-3’ 

F, 5’-GGA AGG CTA CCT GGC TAA AGT CAA G-3’ 

R, 5’-ACT GAA AGG GTG TCA CTG TCC GAC-3’ 

Exon3/4 

 

Exon2/3 

237 

 

216 

Oligo-dT 5’-TTT TTT TTT TTT TTT TTT TT-3’   

 

2.1.10.2 Primers for bisulfite sequencing 

Primer 

 pair 

Sequence Region Product  

size (bp) 

Prom-core  F, 5’-GTT TTT TAG GTA GAT GTG TTT TG-3’ 

R, 5’-CTA CTC TTA ACC TCT TTT CTC TTC-3’ 

Core  

promoter 

203 
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Prom-distal  5’-TTT TTT TAT TAT TGG GGA AAT TT-3’ 

5’-CAA AAC ACA TCT ACC TAA AAA A-3 

Distal  

promoter 

290 

 

5’-UTR 5’-TTT TTA TTT AGA TTA TTT TGT TAG TTT AGT-3’ 

5’-TAA TAT CTT ATA AAA CCA AAA TCT CAA TTC-3 

5’ UTR 283 

Exon3 

 

5’-TTA TTA GGT TTG GAG TAG GTT TTG G-3’ 

5’-ACA CCC TCA CTA ACC CTT CTT ATA-3’ 

Coding  

region 

204 

 

2.1.10.3 Oligonucleotides for EMSA  

Oligo name sequence 

EMSA 1 

wild type 

For    5’-GTGGGAAATCTGCGACATAACAAATCC-3’ 

Rev   3’-CCTTTAGACGCTGTATTGTTTAGGGTG-5’ 

EMSA1 

AT all Mut 

For    5’-GTGGGACACCTGCGACACACCAGACCC-3’ 

Rev   3’-CCTGTGGACGCTGTGTGGTCTGGGGTG-5’ 

EMSA1 

AT2+3 Mut 

For    5’-GTGGGAAATCTGCGACACACCAGACCC-3’ 

Rev   3’-CCTTTAGACGCTGTGTGGTCTGGGGTG-5’ 

EMSA1 

AT3 Mut 

For    5’-GTGGGAAATCTGCGACATAACAGACCC-3’ 

Rev   3’-CCTTTAGACGCTGTATTGTCTGGGGTG-5’ 

EMSA2 

wild type 

For    5’-GTGGACGCACATAGGTAATTCCACTCCGATCT-3’ 

Rev   3’-CTGCGTGTATCCATTAAGGTGAGGCTAGAGTG-5’ 

EMSA2 

CpG8 Mut 

For    5’-GTGGACGCACATAGGTAATTCCACTCTGATCT-3’ 

Rev   3’-CTGCGTGTATCCATTAAGGTGAGACTAGAGTG-5’ 

EMSA2 

CpG all Mut 

For    5’-GTGGAAGCACATAGGTAATTCCACTCTGATCT-3’ 

Rev    3’-CTTCGTGTATCCATTAAGGTGAGACTAGAGTG-5’ 

EMSA2 

AT Mut 

For    5’-GTGGACGCACATAGGTCAGTCCACTCCGATCT-3’ 

Rev   3’-CTGCGTGTATCCTGTCTGGTGAGGCTAGAGTG-5’ 

Negtive 
control 

For    5’-GTGGCCTCCGCGCTTTCCAGGCAGATGTGCC -3’ 

Rev   3’-CGGAGGCGCGAAAGGTCCGTCTACACGGGTG-5’ 

Positive  

control 

For    5’-GTGATATGGTTTCAGAATAAGCGCTCTAAGTTTAAGAAATT-3’ 

Rev   3’-TATACCAAAGTCTTATTCGCGAGATTCAAATTCTTTAAGTG -5’ 
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2.1.10.4 Primers for ChIP assay 

Oligo name Sequence 

POMC-prom-F 5’-AAT CTG CGA CAT AAC AAA TCC CC-3’ 

POMC-prom-R 5’-AGA ACT GGA CAG AGG CTT AGC GT-3’ 

POMC-exon3-F 5’-GCT CTT CAA GAA CGC CAT C -3’ 

POMC-exon3-R 5’-TGA AGA TCA GAG CCG ACT GT -3’ 

POMC-CpGL-F 5′-GAG CAA ACA GCA GAT TAA AAG GAA T -3′ 

POMC-CpGL-R 5′-GAT CGG AGT GGA ATT ACC TAT GTG-3′ 

 

2.1.10.5 Primers for vector construction and sequencing 

Oligo name Sequence 

POMC-pro-Luc-forward 5’-GGA TCC TGA GAT TTT GGT TTC ACA AGA TAT-3’ 

POMC-pro-Luc-reverse 5’-AAG CTT GTG GCC TCT CTT AGT CAC TGC T-3’ 

MeCP2 mut S438A-F 5’-CCC GAG GAG GCC GAC TGG AAA GCG ATG GC-3’ 

MeCP2 mut S438A-R 5’-GCC ATC GCT TTC CAG TCG GCC TCC TCG GG-3’ 

MeCP2 S97A Seq-F 5’-GAA GCC TCG GCT CGA CCC AAA CAG CGG-3’ 

MeCP2 S97A Seq-R 5’-CCG CTG TTT GGG TCG AGC CGA GGC TTC-3’ 

MeCP2-seq-1604-R 5’-ATC CAC AGG CTC CTC TCT GTT-3’ 

MeCP2-seq-1612-F 5’-AAA GGT GGG AGA CAC CTC CT-3’ 

MeCP2 mut S97A-F 5’-GAA GCC TCG GCT CGA CCC AAA CAG CGG-3’ 

MeCP2 mut S97A-R 5’-CCG CTG TTT GGG TCG AGC CGA GGC TTC-3’ 

T7 5’-TAA TAC GAC TCA CTA TAG GG-3’ 

Sp6 5’-CAT TTA GGT GAC ACT ATA G-3’ 
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2.2  Methods 

2.2.1 Animals and maternal separation 

2.2.1.1 Animals 

Pregnant C57BL/6N mice were obtained from Charles River Laboratory (Charles 

River, Sulzfeld, Germany), upon arrival they were housed under standard conditions 

at the animal facility of Max-Planck Institute of Psychiatry [temperature controlled 

(21°C) environment and 12h light:12h dark cycle (lights on at 06:00)]. Both male and 

female pups were used in this experiment. All procedures were approved by the 

Regierung von Oberbayern and were accordance with European Union Directive 

86/609/EEC.  

 

2.2.1.2 Separation paradigm 

Maternal separation was used as early life stress (ELS) paradigm. Before pups were 

born, all dams were randomly assigned to one of the groups: control group (Ctrl) and 

early life stress group (ELS). For all groups, the day of birth was considered as 

postnatal day (PND) 0. For the ELS group, the pups were removed from their dam 

daily for 3 hours for 10 consecutive days from PND1-10. The pups were placed in a 

clean cage with a heat pad (~32°C) to maintain body temperature. During this period, 

there is no physical contact between the pups and their dam. After 3 hours separation, 

the pups were placed back in the home cage with their mother. For the control group, 

litters remained undisturbed with their mother throughout the whole experiment.  In 

both groups, pups remained with their mother until PND21, and then they were 

housed in sex-matched group with 3−5 mice per cage. 

2.2.1.3 Neuroendocrine measurements 

For measurements of corticosterone and ACTH in plasma, commercial 

radioimmunoassay (RIA) kits (DRG diagnostics, Marburg) were used according to 

the manufacture’s protocol.  
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2.2.2 DNA analysis 

2.2.2.1 DNA extraction  

Mouse pituitary DNA was purified by phenol-chloroform extraction. 500 µl lysis 

buffer (1% SDS, 5 mM EDTA, 100 mM NaCl, 0.5 mg/ml freshly prepared proteinase 

K (Roche #3115879) and 10 mM Tris-HCl, pH8.0) was added to a 1.5 ml reaction 

tube containing pituitary tissue, then the solution was incubated overnight at 56 °C. 

On the following day, the clear lysate was cooled down on ice for 30 minutes and 200 

µl of salt solution (4.21 M NaCl, 0.63 M KCl, 10 mM Tris-HCl (pH 8.0)) was added. 

The tube was incubated on ice for 1 hour and centrifuged for 10 minutes at maximum 

speed (14,000 g) in a cooled microfuge. The supernatant was transferred to a fresh 

tube and 1 volume of cold Phenol /Chloroform was added. The tube was vortexed for 

1 minute and centrifuged for 2−3 minutes at maximum speed at 4 °C. The upper 

aqueous phase was transferred carefully without touching the inter-phase to a fresh 

tube, 2–2.5 volume of pure ethanol and 1 µl glycogen (10 mg/ml) was added, then 

DNA was precipitated overnight at -20 °C. After centrifugation 15 minutes at 

maximum speed in a precooled centrifuge, the pellet was washed with 70% ethanol. 

The pellet was air dried for 5 minutes at 60 °C.  25-50 µl of TE (10mM Tris-Cl, pH 

7.5, 1mM EDTA) buffer or distilled water was added to each sample. PicoGreen 

reagent (Molecular Probes) was used to quantify DNA concentration.  

2.2.2.2 PCR reaction  

Standard PCR was performed in a Biometra T-Gradient thermocycler (Biometra, 

Germany) with Fermentas Taq polymerase. 

If not indicated otherwise, the following PCR conditions were used: 

Step Temperature Time  Cycles PCR mix 

Initial 
denaturation 

95 °C 5 mins 1 2 µl template 

Denaturation 95 °C 1 min  2.5 µl 10×reaction buffer 

Annealing 56 °C 1 min 35 1.5 µl dNTPs (10 mM each) 

Elongation 72 °C 1 min  1.5 µl forward primer (10 pmol/µl) 
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Final elongation 72 °C 10 mins 1 1.5 µl reverse primer (10 pmol/µl) 

 

Storage 

 

10 °C 

 

pause 

 3 µl MgCl2  (25 mM)  

1U Taq polymerase 

add water to 25 µl 

 

Table 1. Standard PCR temperature profile and PCR mix. 

 

2.2.2.3 Agarose gel electrophoresis 

Agarose gel electrophoresis was used to analyse the quality of DNA and to separate 

fragments by size. Depending on the size of the DNA molecules, agarose solutions 

ranged from 0.8 to 2% (w/v) in 1 x TBE buffer (90 mM Tris, 90 mM Boric acid, 2 

mM EDTA). Ethidium bromide was added to a final concentration of 0.25 µg/µl. The 

samples to be analyzed were mixed with 1x loading dye (6x loading dye: 40% v/v 

sucrose, 0.25% xylene cyanol, and 0.25% bromophenol blue). The voltage applied 

depended on desired separation, gel strength and chamber sizes. In general, the 

voltage applied was between 4−5 V/cm. As size standard, a 1kb DNA ladder 

(Fermentas) was used. The DNA or RNA was visualized on a UV transilluminator. 

2.2.2.4 Recovery of DNA from agarose gels  

The desired DNA band was cut out from an 0.8% low melting point agarose gel on a 

UV transilluminator and transferred into a 1.5 ml tube. The Macherey-Nagel PCR 

purification kit was used to recover the DNA fragment from the gel. 100 µl of NT 

buffer was added to the tube and incubated at 65 °C on a thermomixer (Eppendorf, 

Germany) with gentle shaking until gel melting. The mixture was transferred to a 

PCR purification column and processed according to manufacturer’s instructions. . 

2.2.2.5 Bisulfite sequencing 

Genomic DNA (200 ng) isolated from mouse pituitary was digested overnight with 

EcoRI, sodium bisulfite converted (Qiagen EpiTect Bisulfite kit) and aliquots used for 

PCR reactions. Products were cloned into the pGEM-T vector (Promega), and 

recombinant clones were picked to perform colony PCR. Products were checked for 

correct insert size by gel electrophoresis. After purification of PCR products 
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(NucleoFast PCR Cleanup Plate, Macherey-Nagel, Germany), BigDye sequencing 

reactions were performed. For each amplicon, at least 24 independent recombinant 

clones were analyzed on an ABI Prism 3700 capillary sequencer. 

 

 

Figure 5. Bisulfite sequencing flowchart. Genomic DNA from mouse pituitary was overnight 
restriction enzyme digested and then bisulfite converted. Treatment of DNA with bisulfite 
converts cytosine (C) residues to uracil (U), but leaves 5-methylcytosine residues unaffected. In 
the following PCR reaction, the uracil will appear as a thymidine (T). PCR products were then 
subcloned into pGEM-T vector. Recombinant clones, identified by color selection, were picked as 
template in the colony PCR. For each amplicon, at least 24 independent recombinants were 
analyzed on an ABI 3730 capillary sequencer. Sequencing files were assembled by the computer 
program--Bioedit and methylation patterns of each animal were deduced. 

 

2.2.2.6 Chromatin immunoprecipitation (ChIP) 

Chromatin immunoprecipitation experiments were performed with AtT20 cells and 

mouse pituitaries to investigate the binding of MeCP2 at the Pomc promoter. For in 

vivo ChIP, frozen pituitary tissue was first chopped up using scissors and then washed 

with 1 ml 1×PBS containing protease inhibitor (1:100 dilution, Sigma). AtT20 cells or 

pituitary tissues were incubated for 10 minutes at 37 °C in the presence of 1% 

formaldehyde. Formaldehyde treatment was quenched by addition of glycine to a final 
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concentration of 125 mM. The chromatin immunoprecipitation protocol was based on 

the Upstate Biotechnology ChIP Kit (Magna ChIP G, Millipore) protocol with the 

following modifications: samples were sonicated for 12 cycles of: [30 seconds "ON" / 

30 seconds "OFF"] with the Bioruptor TM from Diagenode (cat # UCB-200) in a wet 

ice bath. After sonication, 5 µl of the sheared material was loaded on a 1% agarose gel 

to check fragment sizes. The DNA smear on the gel should range between 200 bp and 

1000 bp. DNA concentrations of the chromatin samples were determined with a 

SmartSpec Plus spectrophotometer (Bio-Rad). The sonicated samples were either 

subjected to immunoprecipitation or stored at -20 °C until further use. Chromatin 

samples 5 OD were then subjected to immunoprecipitation using antibodies specific 

to the MeCP2 C-terminus or phospho-RNA pol II according to the Upstate ChIP kit 

protocol. To reduce unspecific binding in the immunoprecipitation, antibodies were 

pre-incubated with chromatin DNA on a rotating platform in the cold room overnight, 

and the Dynabeads Protein G (Invitrogen) were added on the following day and 

incubated for an additional 1 hour in the cold room with rotation. After reverse 

crosslinking, protein digestion, and DNA purification, immunoprecipitates were 

dissolved in 50 µl TE buffer and subjected to standard or real-time PCR. 

2.2.2.7 Sequential ChIP 

For sequential ChIP assays, the initial ChIP was performed with the indicated 

antibodies, chromatin was eluted with 50 µl dithiothreitol (DTT) (10 mM), and a 

second ChIP was then carried out. Amplified products were quantified by real-time 

PCR. The relative binding of the immunoprecipitated proteins at the Pomc locus was 

calculated from real-time PCR data. 

 

2.2.3 RNA analysis  

2.2.3.1 RNA isolation 

Total RNAs from pituitary tissues or cell lines were isolated using the TRIzol reagent 

(Invitrogen). All plastic and glassware used was rinsed with water containing 0.05% 

diethypyrocarbonate (DEPC) and autoclaved before use to inactivate RNAses. All 

experiments were performed on ice. Pituitary tissues or cell lines were homogenized 
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in 1 ml of TRIzol reagent. The homogenized samples were incubated for 5 minutes at 

room temperature to permit complete disruption of nucleoprotein complexes. 0.2 ml 

of chloroform was added to the sample per 1 ml TRIzol reagent. Tubes were shaken 

vigorously by vortexing for 15 seconds and incubated at room temperature for 2−3 

minutes. Then all the samples were subjected to centrifugation at no more than 

12,000×g for 15 minutes at 4 °C. RNA stays exclusively in the aqueous phase. The 

aqueous phase was transferred to a fresh tube, and 0.5 ml of isopropyl alcohol (2-

propanol) was added per 1 ml of TRIzol reagent. Samples were incubated at room 

temperature for 10 minutes and centrifuged at no more than 12,000×g for 10 minutes 

at 4 °C. The supernatant was entirely discarded. The RNA pellet was washed once 

with 75% ethanol, adding at least 1 ml of 75% ethanol per 1 ml of TRIzol Reagent. 

Then the samples were mixed by vortexing and centrifuged at no more than 7,500×g 

for 5 minutes at 4 °C. RNA pellets were air dried for 5−10 minutes and dissolved in 

30 µl of DEPC-treated water. RNA concentrations were measured by RiboGreen. 

2.2.3.2 cDNA synthesis and subsequent gene-specific PCR  

Synthesis of cDNAs was carried out in 20 µl reaction volume. Total RNA (200 ng) 

isolated from mouse pituitary or cell lines was subjected to reverse transcription in the 

presence of 1 µl oligo (dT) (100 pm), 1.5 µl dNTP (10 mM each) mix and filled up 

with distilled water to 12 µl. Then the mixture was heated to 65 °C for 5 minutes and 

quick chilled on ice. The contents of the tube were collected by brief centrifugation. 

5× First-Strand buffer and 0.1M DTT were added to the tube, and then the samples 

were incubated at 42 °C for 2 minutes. In the next step, either 1 µl (200 units) of 

Superscript II RT transcriptase or 1 µl water for the negative control was added to the 

tube and then all the samples were incubated at 42 °C for 50 minutes. Finally, the 

reaction was terminated by heating at 70 °C for 15 minutes. The cDNA was used as 

template for amplification in PCR reactions. 

2.2.3.3 Quantitative PCR analysis 

Pomc mRNA expression level in the pituitary was analyzed by qRT-PCR, using the 

LightCyclerR FastStart DNA MasterPLUS SYBR Green I reagent (Roche 

Diagnostics GmbH, Germany). All experiments were performed according to 

manufacturer’s instructions. Reaction volumes were adjusted to 10 µl in each 
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experiment and contained 5 µl of distilled water, 0.5 µl of forward primer (10 

pmol/µl), 0.5 µl of reverse primer (10 pmol/µl) and 5x PCR-Mix (prepared by adding 

14 µl of reagent 1a to 1b from the Roche kit). Primers used for qRT-PCR were 

designed across exons to avoid genomic DNA contamination. The primers for POMC, 

MeCP2, DNMT1 and the housekeeping genes glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) and hypoxanthine guanine phosphoribosyl transferase 1 

(HPRT1) were listed in the previous parts. Experiments were performed in triplicates 

on the LightcyclerR 2.0 instrument (Roche Diagnostics GmbH) under the following 

PCR conditions: initial denaturation: 40 cycles of denaturation, annealing, and 

elongation (see Table 2 reaction conditions in the LightCyclerR for POMC, MeCP2 

and the housekeeping genes GAPDH and HPRT1 for reaction conditions). 

Fluorescence was assessed each cycle after the elongation phase. At the end of each 

run, a melting curve (50−95°C with 0.1 °C/sec) was generated to asses linearity of the 

amplification process. Crossing points (Cp) were calculated with the 

LightCyclerRSoftware 4.0 (Roche Diagnostics GmbH, Germany) using the absolute 

quantification fit-points method. Threshold and noise band were set in all compared 

runs to the same level. Relative gene expression was determined by the 2-∆CT method 

(Livak and Schmittgen, 2001) using the real PCR efficiency calculated from an 

external standard curve. Cp was normalized to the housekeeping genes GAPDH and 

HPRT, respectively, and values calculated relative to the expression mean of each 

group. 

 

 

genesene Preincubation Denaturation Annealing Elongation 

Pomc 95 °C/10 min 95 °C/10 sec 56° C/5 sec 72 °C/8 sec 

Mecp2 95 °C/10 min 95 °C/10 sec 56° C/5 sec 72 °C/10 sec 

Dnmt1 95 °C/10 min 95 °C/10 sec 61°C/5 sec 72 °C/10 sec 

Gapdh 95°C/10 min 95 °C/10 sec 65 °C/5 sec 72 °C/13 sec 

Hprt1 95 °C/10 min 95°C/10 sec 57 °C/5 sec 72° C/8 sec 

 

Table 2. Amplification conditions of qRT-PCR 



                                                                                 MATERIALS AND METHODS 

                                                                                                                                                    35                                                                                                                                                             

2.2.4 Plasmids 

2.2.4.1 Standard and parental plasmids 

pCpGL-Basic vector (graciously gifted by Michael Rehli, University Hospital 

Regensburg, Germany) was created by replacement of the enhancer/promoter region 

(PstI/NheI fragment) of the CpG-free plasmid pCpG-mcs (Invivogen, San Diego, CA) 

to a short CpG-free linker (5’-CTG CAG GAC TAG TGG ATC CAG ATC TTA 

AGC TTA GTC CAT GGA CAA TTG CTA GC-3’) containing several restriction 

sites. A CpG-free luciferase coding region was released from pMOD-LucShS 

(Invivogen) by digestion with MfeI (blunted using Klenow polymerase) and NcoI, 

and subcloned into NheI (blunted) and NcoI digested, linker ligated CpG-free 

backbone. The CpG-free luciferase vector containing R6K origin of replication was 

maintained in E.coli PIR1 cells (Invitrogen, Karlsruhe, Germany). This bacterial 

strain was grown in low salt LB medium (Tryptone, 10 g/l; yeast extract, 5 g/l; NaCl, 

5 g/l and pH 7.0 adjusted by NaOH) supplied with 25 µg/ml of Zeocine (Invitrogen) 

as antibiotics.  

pRK7-FLAG vector was created by cloning the oligonucleotides encoding the 

FLAG-epitope into the HindIII and BamHI digested pRK7 vector. These 

oligonucleotides encode for the short hydrophilic 8 amino acid (aa) peptide Asp-Tyr-

Lys-Asp-Asp-Asp-Asp-Lys. This epitope is likely to be located on the surface of a 

fusion protein due to its hydrophilic nature and, therefore, accessible to antibodies. 

The small size limits interference with the fusion protein’s function and 

transportation. 

2.2.4.2 Reporter constructs 

pCpGL-Pomc luciferase vector contains the promoter region of the mouse Pomc gene. 

A fragment spanning 550 bp of the mouse Pomc gene was amplified from genomic 

DNA isolated from the mouse corticotrope cell line AtT20 by PCR. The primers used 

for this PCR reaction contained a BamHI site in the forward primer and a HindIII site 

in the reverse primer. The PCR product was first cloned into pGEM-T (Promega) 

vector and verified by sequencing. The Pomc promoter fragment was then released 

from the pGEM-Pomc vector by BamHI and HindIII double digestion and purified on 

an agarose gel.  CpGL-basic vector which contained a CpG free backbone was also 
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double digested with BamHI and HindIII and dephosphorylated by adding 1U of calf 

intestinal alkaline phosphatase (CIAP) to avoid recircularization of the cloning vector. 

After gel purification of the backbone vector, the Pomc promoter fragment was 

ligated into the BamHI/HindIII site of pCpGL-Basic vector.  

pCpGL-Pomc-∆CpG6-8 containing a deletion of CpG residues 6−8 was 

generated by insertion of a BglII/HindIII fragment of previously described pCpGL-

Pomc into the BglII/HindIII site of the pCpGL-basic vector. pCpGL-Pomc-∆Dis-

prom vector containing only the proximal Pomc promoter was obtained by cloning a 

PstI/HindIII fragment of previously described pCpGL-Pomc into the PstI/HindIII site 

of the pCpGL-basic vector. 

2.2.4.3 Expression vectors 

The MeCP2 expression vectors (graciously gifted by Adrian Bird, University of 

Edinburgh, UK) consist of the mouse MeCP2_alpha variant in pRL-SV40 (Promega) 

and of a cDNA for the first 205 amino acids of human MeCP2 with a C-terminal His-

tag in the pet30b vector (Novagen), respectively. N-terminal Flag-tagged forms of 

different MeCP2 constructs were obtained by PCR-cloning of wild type (F; aag gga 

tcc gcc gcc gct gcc gcc acc gc, R; tct gat atc ctc agc taa ctc tct cgg tc) or of a form 

deleted of the 45 C-terminal amino acids of MeCP2 (F; aag gga tcc gcc gcc gct gcc 

gcc acc gc, R; tct gat atc ctc agc taa ctc tct cgg tc) into the BamHI and EcoRI sites of 

pRK7-Flag (Hoffmann et al., 2006). The MeCP2 riboprobe (nt 612–1,604; Acc. No. 

NM_010788) contains the conserved sequence within exons 3 and 4 of the mouse 

Mecp2 gene. A corresponding PCR-product (F; aaa ggt ggg aga cac ctc ct, R; tcc aca 

ggc tcc tct ctg tt) was cloned in the pGEM-T vector (Promega) and antisense 

riboprobes were generated as previously described (Dragich et al., 2007). Expression 

vectors for MBD2 and MBD3 (graciously gifted by Samson T. Jacob, Ohio State 

University, US) contain the mouse MBD2 or MBD3 cDNAs in the pcDNA3.1 vector 

(Invitrogen) (Ghoshal et al., 2004). The MBD1 expression vector contains the full 

length cDNA for mouse MBD1 (Acc. No. NM_013594; F; tac ctc tag aat ggc tga gga 

ctg gct gga ctg, R; ttt cta gaa aca att tgc aaa gaa ttt tca gg) inserted in the pRK7 

expression vector. CaMKII expression vectors contained either full-length CaMKII 

(1-317) or CaMKII (1-290), which is constitutive active due to the absence of the 

calmodulin-binding domain (graciously gifted by Anthony R Means Dept. of 
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Pharmacology and Cancer Biology, Duke University Medical Center, P. O. Box 3813 

Durham, NC). The constitutive active CaMKII (T286D) contains a replacement of 

Thr 286, which locates in the autoinhibitory domain by Asp (graciously gifted by 

Gina Turrigiano, Department of Biology, Volen National Center for Complex 

Systems, Brandeis University, Waltham, MA 02454, USA). 

2.2.4.4 Recombinant protein construct 

The plasmid GST-MeCP2 (pGex2tk-MeCP2) was used to produce recombinant 

MeCP2 protein for EMSA experiment. For prokaryotic expression, the MeCP2-alpha 

cDNA was PCR amplified (F; aag gga tcc gta gct ggg atg tta gg, R; tct gat atc ctc agt 

ggt gga gga gga g) and inserted into the BamHI and SmaI sites of pGex2tk 

(Pharmacia). All constructs used in this study were entirely sequence verified. 

2.2.4.5 Site-directed mutagenesis 

In order to test the specificity of phospho-MeCP2 antibodies, the phospho residue Ser 

97 and Ser438 were replaced in MeCP2 by alanine using site-directed mutagenesis. 

Site-directed mutagesis was performed using a two step PCR method. The pRK-Flag-

MeCP2 vector was used as the parental vector. The oligonucleotides for this 

mutagenesis are listed below: 

S97A Sense: 5’-GAA GCC TCG GCT CGA CCC AAA CAG CGG-3’ 

S97A Antisense: 5’-CCG CTG TTT GGG TCG AGC CGA GGC TTC-3 

S438A Sense: 5’-CCC GAG GAG GCC GAC TGG AAA GCG ATG GC-3’ 

S438A Antisense: 5’-GCC ATC GCT TTC CAG TCG GCC TCC TCG GG-3’ 

Briefly, the first PCR contained 50 ng vector DNA, 125 ng of oligonuleotide 

(sense or antisense), 1 µl of dNTP (10mM), 10x Pfu reaction buffer, 1 µl Turbo Pfu 

polymerase (Fermentas) and filled up to 50 µl with distilled water. After initial 

denaturation for 3 minutes at 95 °C, 10 amplification cycles (95 °C, 30 sec; 60 °C , 60 

sec; 68 °C, 10 mins) were carried out. 

In the second PCR reaction, 25 µl of sense and 25 µl of antisense PCR product 

were taken from the first PCR. Following addition of 0.5 µl of Pfu polymerase, PCR 
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reactions were performed as below. After the first initial denaturation of 3 minutes at 

95 °C, 20 amplification cycles (95 °C, 30 sec; 56 °C, 60 sec; 68 °C, 10 mins) were 

performed. 2 µl of PCR product were taken to check amplification progress by gel 

electrophoresis. Then PCR products were purified by spin column (Macherey-Nagel). 

50 µl of water was added to elute the PCR product. In order to remove the parental 

vector, DpnI digestion was performed which contained 45 µl of eluate, 5 µl of 10x 

buffer and 1 µl of DpnI (10U/µl). After incubating the sample at 37 °C for 90 

minutes, the sample was heat inactivated at 65 °C for 10 minutes, then purified by 

phenol/chloroform and ethanol precipitation. Finally, DNA was resuspended in 10 µl 

of water. 2 µl of vector DNA was transformed in electrical competent bacteria. 

Sequencing was carried out to verify the mutation. 

2.2.4.6 In vitro  methylation  

The CpG methyltransferase, M.SssI (New England Biolabs), can methylate all 

cytosine residues (C5) within the double-stranded dinucleotide recognition sequence 

5'...CG...3'. The protocol was as follows: in the first step, 32 mM SAM stock was 

freshly diluted to 1600 µM. Then reaction was set up in a volume of 20 µl by adding 

the following reagents: 11 µl of nuclease free water, 2 µl of 10×NEBuffer, 2 µl of 

diluted SAM from previous step, 4 µg of plasmid DNA and 1 µl of SssI methylase (4 

U/µl). The reaction was incubated at 37 °C for 1 hour. Then the reaction was stopped 

by heating at 65 °C for 20 minutes. After phenol/chloroform purification and ethanol 

precipitation, the vector was ready to use. 

2.2.4.7 Site-directed DNA methylation 

Site-directed DNA methylation was performed to methylate specific CpG 

dinucleotides (CpG 6−8) in a Pomc promoter vector (CpGL-Pomc). 5 µg of CpGL-

Pomc vector was double digested with BglII and HindIII whereby only CpG 6−8 

remained in the backbone vector. To prevent recircularization of the cloning vector, 

Calf Intestinal Alkaline Phosphatase (CIAP), which removes 5´ phosphates from the 

vector DNA, was added to the digestion system. The vector DNA was first purified on 

a PCR cleanup column; then in vitro methylation was carried out as mentioned above. 

In the control, all steps remained the same with one exception: in the in vitro 

methylation step, 1 µl of water was added instead of 1U of Methylase SssI. In 
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parallel, 5 µg POMC PCR products were also double digested with BglII and HindIII. 

After PCR product purification, the PCR product was ligated to the backbone vector 

which contained methylated CpG 6−8. After overnight ligation, the product was 

subjected to phenol/chloroform purification and ethanol precipitation. To verify the 

methylation status of the plasmid vector, bisulfite sequencing was performed. The 

final patch DNA methylation product was enough for 3 transfections (3 wells) in a 12-

well plate.  

2.2.4.8 Plasmid preparations 

I) Small-scale preparations 

In order to screen positive recombinants, plasmid DNA was extracted from E.coli. 

Colonies were picked from an agar plate and incubated in 1.5 ml growth medium 

supplemented with appropriate antibiotics (Zeocin, 25 µg/ml; Ampicilin 100-200 

µg/ml). The cultures were incubated 6−8 hours or overnight at 37 °C in a shaker 

(rotation 200 rpm). 1.5 ml of each overnight culture was transferred in a 1.5 ml 

reaction tube and centrifuged (10 min, 9000 g, RT) to pellet the bacteria. The cell 

pellet was resuspended in 200 µl TEG (25 mM Tris pH 8.0, 10 mM EDTA, 100 µg/ml 

RNase A, and 1% glucose) on a shaking platform or vortexer, lysed by adding 200 µl 

alkaline SDS (200 mM NaOH, 1% (w/v) SDS) and mixed by inverting the tube for 

6−8 times. After incubation at RT for 5 minutes, 200 µl of 3M KAc was added. The 

tube was inverted again for 6−8 times and then kept on ice for 10 minutes before  

centrifugation (10 min, 13,000g, RT). The plasmid DNA in the supernatant was 

transferred into a new 1.5 ml tube and 500 µl of isopropanol was added. The tube was 

incubated on ice for 30 minutes and then centrifuged (20 min, 13,000 g, 4 °C) to 

pellet the plasmid DNA. The pellet was washed with 70% ethanol and centrifuged (5 

min, 13,000 g, 4 °C). The supernatant was carefully aspirated; the pellet was air-dried 

and redissolved in 25 µl TE (10 mM Tris, 1 mM EDTA). The plasmid DNA can be 

used immediately or stored in a -20 °C freezer. 

II) Large-scale preparations  

To obtain 100 µg of plasmid DNA or more, maxiprep was performed. A single clone 

was picked from the agar plate, then incubated overnight at 37 °C with vigorous 

shaking in 2 ml of SOB (tryptone 20 µg/ml, yeast extract 5 µg/ml, NaCl 10 mM, KCl 
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2.5 mM) medium with appropriate antibiotics. On the next day, 2 ml of the overnight 

culture was added to a 500 ml flask containing 40 ml of TBA (tryptone, 12 µg/ml; 

yeast extract, 24 µg/ml; glycerol, 0.4%) and 10 ml of TBB (KH2PO4, 0.17 M; 

K2HPO4, 0.72 M) with appropriate antibiotics. The culture was incubated overnight at 

37 °C with shaking (200 rpm). The plasmids were purified using a Macherey-Nagel 

plasmid maxiprep kit. 

2.2.5 Cell culture and transfection experiments 

2.2.5.1 Cell cultures  

LLC-PK1 cells are an epithelial cell line (ATCC No. CL-101) originally derived from 

porcine (pig) kidneys. The cells show a fibroblastic-like morphology and were grown 

in Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 10% fetal calf 

serum (FCS). In this study, LLC-PK1 cells were used for transfection of pRK-MeCP2 

vectors by electroporation to validate MeCP2 antibodies. 

AtT-20/D16v-F2 (mouse pituitary epithelial-like tumor cell line) cells (ATCC 

No. CRL-1795) are corticotrope and are derived from a neuroendocrine tumor, which 

endogenously expresses two distinct somatostatin receptor subtypes (SRIF). They are 

used in transfection studies to investigate endocrine and exocrine secretory pathways, 

in particular ACTH (adrenocorticotropic hormone) and beta-endorphin. The F2 

subclone of AtT-20 (see ATCC CCK-89) was developed by B. Gumbiner. This clone 

had been used successfully by Moore et al. (Moore et al., 1983a, b) for several DNA 

mediated transfection studies relating to endocrine and exocrine secretory pathways. 

In this study, AtT20 cells were used for the investigation of Pomc gene activation by 

various treatments and stimuli. AtT20 cells were grown in DMEM supplemented with 

10% FCS. 

Neuro2A is a mouse neuroblastoma cell line (ATCC No. CCL-131) established 

by R.J. Klebe and F.H. Ruddle in 1969 (Klebe, 1969) from a spontaneous tumor of an 

albino mouse strain and are neuronal in morphology. In this study, we extracted DNA 

from Neuro2A cells and performed bisulfite sequencing to check Pomc DNA 

methylation status. Neuro2A cells were grown in DMEM supplemented with 10% 

FCS. 
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AtT-20 (V1bR) cells are corticotrope cells with the mouse vasopressin V1b 

receptor stably expressed. These cells were kindly gift from Dr. Eric Clauser 

(INSERM U970, Paris, France). They were used in transfection studies to investigate 

Pomc luciferase activity after AVP treatment as well as in ICC experiments to 

examine MeCP2 phosphorylation after AVP treatment. AtT20 (V1bR) cells were 

grown in 50% MF12/50% DMEM Glutamax supplemented with 10% FCS, 10% Nu 

serum (BD biosciences), geneticin (0.5 mg/ml) and 1% Penicillin/streptomycin 

(Biochrom) as antibiotic. 

2.2.5.2 Primary pituitary cell culture  

For mouse primary pituitary cell culture, tissues were removed from adult male mice 

(~6 weeks old) and stored in HD-buffer (Hepes 25 mM, NaCl 137 mM, KCl 5 mM, 

Na2HPO4 0.7 mM, glucose 10 mM, Partricin (A2812, Biochrom) 25 mg/l, and 

Penicillin/Streptomycin (A2213, Biochrom) 105 units/l). After washing several times 

with HD-buffer, pituitaries were chopped up into small pieces by scissors. The HD-

buffer was removed, then 5 ml of collagenase (Worthington Biochem) solution was 

added to the cells to dissociate the extracelluar matrix. After incubation of the cells in 

a 37 °C incubator about 2 hours, 35 ml of cell culture medium (50 ml FCS (Gibco), 5 

ml glutamine (Biochrom), 5 ml Pen/Strep (Biochrom), 5 ml Partricin (Biochrom), 

MEM-vitamins (Biochrom), 2.5 mg insulin (Sigma), 2.5 mg transferrin (Sigma), 30 

pm T3 (Sigma), 10 µg sodium selenite (Sigma) in 500 ml DMEM medium (Gibco)) 

was added to stop the reaction. Living cells were counted by acridine orange/ethidium 

bromide staining and pituitary cells were seeded into 12-well culture plates at a 

concentration of 100.000 cells/ml. Two days later, growth medium was replaced with 

fresh culture medium and cells treated either with KCl (55 mM) or AVP (100 nM). 

The calmodulin kinase II inhibitor (1 µM, EMD Chemicals, Gibbstown, USA) or the 

AVP V1b receptor antagonist--SSR149415 (1 µM, Axon1114, Axon medchem) were 

added to the medium 30 minutes before stimulation. 

2.2.5.3 Transfection 

LLC-PK1 cells were seeded one day before electroporation. They were harvested by 

trypsinisation and resuspended in 1x Electroporation buffer (1x EP buffer) (50 mM 

K2HPO4, 20 mM CH3KO2, 20 mM KOH) to adjust to a concentration of 2 x 107 



                                                                                 MATERIALS AND METHODS 

                                                                                                                                                    42                                                                                                                                                             

cells/ml. 1 x 106 cells in 50 µl of this was added to a 100 µl mixture containing 200 ng 

of pRK-MeCP2 vector, 2 µg CaMKII vector, 4 µl MgSO4, 20 µl 5 x EP buffer, 2 µg 

PAM carrier DNA, and water. This was incubated at room temperature for 10 

minutes, placed in a cuvette and then electroporated using a BTX 600 electroporator 

(290 V, 500 µF, 360 Ω). After pulse delivery, the cells were immediately transferred 

to 6-well culture dishes containing 2 ml of DMEM+10% FCS and incubated 

overnight at 37 °C with 5% CO2.  

AtT20 cells were transfected using lipofectamine reagent. One day before 

transfection, 1 x 105 AtT20 cells were seeded in 1 ml DMEM+10% FCS onto 12-well 

tissue culture dishes and grown until 50−80% confluence. The medium was removed 

prior to transfection and the cells were rinsed with 200 µl of Opti-MEM without FCS. 

For each well, 6 µl of lipofectamine reagent was mixed with 2 µg of pCpGL-Pomc-

luciferase vector and 0.5 µg pRK7-β-gal which was mixed in 100 µl of Opti-MEM 

medium without serum. The plasmid Opti-MEM mixture was added to Lipofectamine 

Opti-MEM mixture dropwise, then the mixtures was incubated for 45 minutes at room 

temperature to allow complexes to form. These complexes were added to the rinsed 

cells and incubated for 6 hours. After this 400 µl of DMEM+20%FCS was added, and 

cells incubated overnight at 37 °C. 24 hours after transfection, luciferase activity was 

measured. 

2.2.5.4 Luciferase assays 

To measure promoter activity, cells were washed twice with PBS and then thoroughly 

lysed in 100 µl lysis buffer (75 mM Tris-HCl, 10 mM MgCl2, 1% Triton X-100, 2 

mM ATP, 1 mM DTT). 80 µl of aliquots were measured in a LKB luminometer for 20 

seconds. As an internal control of transfection efficiency, the luciferase readings were 

nomalized on β-galactosidase activity from a cotransfected expression vector (pRK7-

β-gal) (Hoffmann et al., 2003). The β-gal activity in the extracts was measured as 

described previously (Spengler et al., 1993).  

2.2.6 Protein preparations 

2.2.6.1 Recombinant proteins 
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Recombinant GST-MeCP2 fusion proteins were used for EMSA experiment. 

Following transformation of pGEX-2TK-MeCP2 into DH5α bacteria, single colonies 

were grown at 37 °C in 50 ml 2YT (0.16% tryptone, 0.1% yeast extract, 0.1% NaCl) 

overnight, to which a futher 450ml 2YT was added and grown for 3 hours until an OD 

600 of 0.5−1.0 was reached. After that, they were incubated at a final concentration of 

1 mM IPTG for another 2 hours at 30 °C. The GST-MeCP2 protein was purified 

using glutathione-sepharose beads (Hoffmann et al., 2003). Eluted GST-MeCP2 was 

shown to be of at least 95% purity as judged by Coomasie blue staining. The 

concentration of GST-MeCP2 was determined using Bradford assays and aliquots 

were stored at -80 °C until usage.  

2.2.6.2 Protein concentration and purity 

Bradford assays were applied to determine the concentration of all proteins used in 

this study. The assay is based on the observation that the absorbance maximum for an 

acidic solution of Coomasie Brilliant Blue G-250 shifts from 465 nm to 595 nm when 

binding of the dye to proteins occurs. Both hydrophobic and ionic interactions 

stabilize the anionic form of the dye, causing a visible colour change. The 

concentrated assay buffer was first diluted 1:5 and standards were prepared containing 

a range of 20 to 200 µg protein (BSA). The samples were diluted (3 µl in 200 µl 

water) to an estimated concentration of 20 to 200 µg/ml. 800 µl Bradford reagent was 

added to each sample and protein standards, and the absorbance was measured at 590 

nm. Protein concentrations of samples were deduced from the standard curve. 

Coomassie blue staining was then further used to assess the purity and integrity of 

recombinant protein preparations. Protein samples were loaded onto an SDS-PAGE 

gel with a size marker and fractionated at 150 V. The gel was then soaked in 0.2% 

Coomassie blue for 1 h and destained in 40% methanol, 50% acetic acid solution over 

night. The gel was then blotted on to paper and dried. All proteins used in the study 

were of at least 95% purity. 

2.2.6.3 Electrophoretic mobility shift assay (EMSA) 

EMSA was used to determine the affinity of a protein for a particular DNA sequence. 

In these EMSA experiments, recombinant GST-MeCP2 protein was incubated with 

20,000 cpm of double-stranded end labelled oligonucleotides. Sense and antisense 
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oligonucleotides contained the CpG dinucleotide neighboured by an AT rich sequence 

and an overhanging GTG for end labelling. The oligonucleotides used for EMSA 

experiment are listed in Figure 6. In order to show the importance of the methylated 

CpG dinucleotide and the adjacent AT rich sequence to MeCP2 binding, a series of 

mutated oligonuleotides were designed. They either contained a mutated CpG 

dinucleotide to abolish DNA methylation or carried mutation(s) in the AT rich region. 

An oligonucleotide encoding a previously reported MeCP2 binding site was used as 

positive control. This binding site was identified previously as high affinity MeCP2 

binding site (Klose et al., 2005). 

 

Figure 6. Oligonucleotides derived from the Pomc promoter region used in the EMSA 
experiments. CpG dinucleotides are shadowed in gray and AT runs in yellow. The location and 
sequence of the oligonucleotides used for the EMSA experiments are underlined. The sequence 
marked in cyan indicates Pomc exon1.  

In the EMSA experiment, oligonucleotides were annealed in a reaction volume 

of 40 µl containing 1 µg/µl of each of the sense and antisense oligonucleotides and 4 

µl of annealing buffer (1.5 M NaCl, 100 mM Tris-HCl pH 7.9). The oligonucleotides 

were heated at 85 °C for 10 minutes to ensure DNA double-strand separation, and 

then slowly cooled down to room temperature by switching off the heat-block to 

allow for efficient annealing of the sense to the antisense strands. The double-strand 

oligonucleotides were in vitro methylated (see in vitro methylation) by CpG 

methyltransferase (M.SssI, NEB). Unmethylated and methylated oligonucleotides 
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were diluted to 50 ng/ml and used in parallel in the labelling reaction. For the 

labelling reaction, the mastermix was prepared as follow: 1.5 µl of oligo mix (50 

ng/µl), 2.0 µl  of 10×Klenow buffer, 3.0 µl  32P-dCTP, 4.0 µl  of dATG, 1 µl of 

Klenow enzyme and water to 20 µl. This mastermix was incubated at room 

temperature for 45 minutes and 4 µl of dCTP (5 mM) was added. The mixture was 

incubated again for 5 minutes at room temperature and the oligonucleotides were 

purified by biospin column. 1 µl of the mixture was taken for counting. The labelled 

oligonucleotides were dissolved to 20.000 cpm/µl by distilled water. A working stock 

of 20.000 cpm/µl labelled oligonucleotide was used for all EMSA experiments. The 

binding reaction was then performed using 5 µg of GST-MeCP2 protein in a volume 

of 20 µl reaction buffer (10 mM Tris-HCl pH 8, 3 mM MgCl2, 66 mM KCl, 100 

µg/ml BSA, 12% glycerol, 1 µg/µl of dI/dC, 1 mM DTT). This was incubated on ice 

for 5 minutes and then 20,000 cpm of labelled oligonucleotide was added and the 

whole reaction was incubated for a further 25 minutes at room temperature. 3 µl of 

6×DNA loading dye was added and the samples were loaded on a 5% polyacrylamide 

gel (non denaturating). The gel, which was pre-run for 30 minutes (4°C; 150V; 0.5x 

TBE) was run with the samples at 100V for around 1 hour at 4°C. Hereafter, the gel 

was dried and subjected to autoradiography overnight. 

2.2.6.4 Western blots 

Transfected or non-transfected AtT20 and LLC-PK1 cells were used for western 

blots. Cells were seeded in 10 cm or 6-well plates 24 hours before harvesting. The 

cells were first washed twice with cold 1−5 ml 1x PBS. Then cells were scrapped in 

0.2 to 0.5 ml TE buffer with protease inhibitor cocktail (1/100) and phosphatase 

inhibitor cocktail (1/100). The cells were disrupted by ultrasonification for 3 minutes 

(30-second interval) in an ice bath.  An aliquot of 3 µl was kept at this step for 

measuring protein concentration by Bradford. The remaining cell lysates were added 

4x Laemmli buffer (200 mM Tris-HCl pH 6.8, 8% SDS, 40% glycerol, 0.4% 

Bromophenol blue, 0.1% β-mercaptoethanol) according to the volume. The cells were 

heated to 95 °C in a heatblock for 5 minutes to denature proteins. All the samples 

were kept in the -20 °C freezer ready to use. An 8% SDS-PAGE gel was prepared. 50 

µg of whole cell extract (WCE) was loaded to each well. The SDS-PAGE gel was run 

at 120 V in the cold room with a water flow for cooling. When the 35 kD pre-stained 
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maker reached the bottom of the gel, the proteins were transferred to a nitrocellulose 

membrane in a transfer chamber at 50 V for 2 hours in the cold room. The membrane 

was briefly stained with Ponceau red to check if the proteins had transferred from the 

gel to the membrane. Unspecific binding of the antibodies to the membrane was 

blocked by placing the membrane in blocking buffer (10 mM Tris, 0.5 M NaCl, 0.1% 

Tween, 5% BSA, pH 7.6) which was incubated on a shaker at room temperature for 1 

hour. The blocking solution was poured off and the membranes incubated with the 

primary antibody in a shaker over night at 4 °C. Membranes were then washed 5 

minutes three times with TBST (0.1 % Tween-20) to remove unbound antibody and 

then incubated for 1 hour at RT with the second conjugated antibody. The membranes 

were washed as before. A 1:1 mixture of the chemiluminescent reagent was prepared 

and added to the membrane for 2 minutes. Then the membrane was dried slightly and 

wrapped in saran wrap. The first film was exposed for 30 second to check signal 

appearance and then exposure time was adjusted to the strength of the signals. 

2.2.6.5 Protein de-phosphorylation  

De-phosphorylation was performed to demonstrate the specificity of the phospho-438 

MeCP2 antibody. For an antibody that only binds its phospho-site when the protein is 

denatured, treating the membrane with phosphatase post-transfer is preferable to treat 

the non-denatured lysate. After SDS-PAGE gel electrophoresis, the proteins were 

transferred to a nitrocellulose membrane which had been blocked by pretreatment with 

5% BSA in TBS with 0.1% Triton X-100 for one hour at room temperature. The 

membrane was cut to obtain a slot containing at least one sample duplicated in the 

other piece. The two pieces of membrane were placed in separate containers with 3−5 

ml CIP buffer inside. The CIP enzyme was added to the container with the piece to be 

de-phosphorylated. After incubation at 37°C for one hour, the samples were subjected 

to the standard western blot procedure. 

2.2.6.6 Immunohistochemistry 

Pituitary slides, primary pituitary or AtT20 cells were fixed with 4% 

paraformaldehyde in phosphate-buffered saline (PBS) for 5 minutes. Coverslips were 

washed with PBS for 5 minutes, and then blocked for 2 hours with blocking solution 

(50 mg/ml BSA, 50 mg/ml goat serum, 0.5% Triton X-100, 50 mM Tris-HCl, 50 mM 
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NaCl and pH7.4). Coverslips were incubated with the following primary antibodies 

diluted in blocking solution overnight in a humidifying chamber at 4°C: total MeCP2 

(1:400); pS438-MeCP2 (1:400), CaMKII (1:500), pCaMKII (1:500) and ACTH 

(1:400). Coverslips were washed three times with PBS for 10 minutes. Secondary 

antibodies were diluted in blocking solution, and incubations were performed at room 

temperature for 2 hours. Coverslips were washed with PBS three times for 10 minutes 

then DAPI was added at 1:6000 in PBS for 5 minutes. After washing with PBS three 

times for 10 minutes, the coverslips were mounted.  

2.2.7 Statistical analysis and computer software 

CpG island analyses was performed using the online program CpG Plot 

(http://www.ebi.ac.uk/Tools/emboss/cpgplot/) and EMBOSS (Rice et al., 2000). The 

heatmap was generated using the online free software Heatmap Builder. Primers were 

designed according to the general guidelines by the software Oligo 6. For pituitary 

corticotrope cell counting, the total cell number was counted automatically by the 

software of Cell C; and the corticotrope cell number was counted manually using the 

software Image J. Graphs were drawn by the software Sigma Plot and Microsoft 

Excel. All statistical analyses were performed by Microsoft Excel. All figures were 

designed through CoralDraw software version 10 (Corel Corporation, Ottawa).
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3 Results 

 

3.1 Biometric data 

3.1.1 Experimental design 

 

We carried out maternal separation (MS) to model early life stress. This maternal 

separation model is based on the fact that in the wild field, the dam will leave the nest 

ranging from 15 minutes to 3 hours for foraging. The higher rank of the mother, the 

less time she will spend. During her absence, it is very stressful for the litters. It is 

also suggested that the first 10 days of life is a critical time window for mouse 

development. This traumatic event early in life can lead to severe consequences at 

later stage when they reach adulthood.   

 

Figure 7.  Maternal separation model and experimental design. 

The procedure of maternal separation is as following: the new born mice were 

separated 3 hours daily from their mother from postnatal day 1 to day 10. After P10, 

all the mice lived with their mother. In this experiment, 4 time-points were 

investigated: P10, 6 weeks, 3 months and 1 year. Both male and female mice were 

used for biometric, neuroendocrine, gene expression and DNA methylation analysis. 

Male mice were used for the behavioral tests and the investigation of molecular 

mechanisms. 
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3.1.2 Behavioral analysis of adult offspring  

To assess long-term alterations in behavior due to early life stress exposure, we 

performed a series of behavioral tests. Only male mice were used in the experiments, 

and these data had been published previously (Murgatroyd et al., 2009). In summary, 

early life stress (ELS) produced long-lasting behavioral changes for the following 

criteria. First, adult ELS mice (6-week-old) showed memory deficits in an inhibitory 

avoidance task. Second, ELS mice had increased immobility in the force swim test. In 

contrast, anxiety-like behavior was unaffected by early life stress in the elevated plus-

maze, novelty-induced hypophagia and light-dark avoidance test. 

3.1.3 Biometric data 

3.1.3.1 Body weight 

 There were no significant body weight differences (p > 0.05, t-test) between ELS and 

control mice through all timepoints (6 weeks, 3 months and 1 year) in both sexes 

(Figure 8). These data supported the idea that ELS is a psychological stressor rather 

than a physical intervention such as sickness or famine. 

 
Figure 8. Mouse body weight after early life stress.  There is no difference in body weight 
between control and early life stress (ELS) mice at all ages in both sxes. Data are mean ± S.E.M 
(n=8−10/group). 

 
3.1.3.2 Thymus weight 

 

Thymus glands of control and ELS mice were dissected and weighed at each 

timepoint. The relative weight (mg/100g BW) of the thymus in ELS mice was 

significantly lower (p < 0.05, t-test) than controls (Figure 9), which is in according 
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with the fact that ELS mice had higher levels of corticosterone (Figure 11) in the 

plasma. 

 
Figure 9. Reduced thymus weight after early life stress. As compared with controls, early life 
stress mice showed involution of thymus weight at all ages in both genders, indicative of higher 
levels of corticosterone (Cort) in the blood. Data are mean ± S.E.M (n=8-10/group). *p<0.05 (t-
test).      

 
 
3.1.3.3 Adrenal weight 
 

 Adrenal glands from male and female mice were also dissected and weighed. The 

relative weight of adrenal gland (mg/100g BW) was significantly higher in the ELS 

group than the controls (p < 0.05, t-test) in both genders (Figure 10). Furthermore, 

adrenals weighed significantly less in males than females irrespective of rearing 

condition. Previous study demonstrated that adrenal gland growth and function is 

under the control of pituitary derived ACTH. The hypertrophy of the adrenals in the 

ELS group predicted a hyper-secretion of ACTH compared with control mice.  

 

Figure 10. Increased adrenal weight after early life stress. As compared with controls, early 
life stress mice showed larger adrenals at all ages in both genders, predicting higher level of 
adrenalcorticoal (ACTH) in the blood. Data are mean ± S.E.M (n=8−10/group). *p < 0.05 (t-test).   
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3.1.4 Plasma corticosterone (Cort) levels 

 Basal evening and morning plasma corticosterone levels were measured. In both 

conditions, plasma corticosterone concentrations were higher in ELS mice compared 

with controls in both genders. Female animals had a higher overall concentration of 

corticosterone than males (Figure 11). 

 
Figure 11. Increased serum levels of corticosterone (Cort) after early life stress. ELS mice at 
6 week, 3 month and 1 year time points presented with increased serum corticosterone levels 

under peak and basal conditions. Data are mean ± S.E.M (n=8−10/group). *p < 0.05 (t-test). 

 

3.1.5 Pomc mRNA expression 

 

Basal Pomc mRNA expression in mouse pituitary was measured by quantitive real 

time PCR (q-PCR). As shown in Figure 12, ELS mice produced a significant increase 

of Pomc mRNA level in the pituitary compared with controls from 10 days old mice 

up to 1 year. To facilitate comparation of relative mRNA level between different 

timepoints and between genders, cDNA from mouse pituitary AtT20 cells was used as 

the general standard throughout the experiments. As shown in Figure 12, basal Pomc 

mRNA expression slightly increased with age irrespective of gender. Furthermore, 

when compared the Pomc mRNA levels between genders, baseline Pomc mRNA 

expression in females was significantly higher than in males. 
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Figure 12. Pomc mRNA level after early life stress. Pomc mRNA was significantly higher in 
the pituitaries of ELS mice at all time points both in male (left) and female (right) animals as 
determined by qPCR analysis. Data are mean ± S.E.M (n = 8−10/group). *p < 0.05 (t-test). 

Pomc mRNA is expressed both in the anterior lobe and intermediate lobe of the 

pituitary, but processed differently by cell type specific enzyme usage. To address the 

question whether Pomc mRNA expression could be altered due to early life stress 

exposure in the intermediate lobe, we dissected the intermediate lobe (6-week-old) 

from the anterior pituitary and tested the Pomc mRNA levels from anterior lobe and 

intermediate lobe separately by real-time PCR. The results showed that early life 

stress resulted in upregulation of Pomc mRNA in the anterior pituitary. On the 

contrary, early life stress did not influence Pomc mRNA in the intermediate lobe 

(Figure 13). 

 
Figure 13. Early life stress produced increased level of Pomc mRNA in the anterior 
pituitary. (A) Representative bright-field autoradiographs of pituitary sections (6-week-old 
males) hybridized with a 35S-labeled oligonucleotide probe complementary to Pomc mRNA from 
a Ctrl (upper) or ELS (lower) mouse. AP, anterior pituitary; IL, intermediate lobe; PP, posterior 
pituitary. Scale bar, 500 µm. In situ hybridization showed that Pomc expression is much higher in 
ELS mice. (B) Pomc mRNA expression was significantly higher in ELS than controls in the 
mouse anterior pituitary (6-week-old males). (C) ELS did not influence Pomc mRNA expression 
in the intermediate pituitary. Data are mean ± S.E.M (n = 8−10/group). *p < 0.05 (t-test). 
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3.1.6 Serum ACTH level and AVP-CRH challenge test 

 

ACTH, which is cleavaged enzymatically from POMC in the antior pituitary, was also 

measured in the blood of 6-week-old mice. Consistent with the Pomc expression 

patterns in the pituitary, blood ACTH levels were also higher in ELS mice than 

controls in both genders. Early life stress also increased sensitivity of the pituitary-

adrenal axis to the hypothalamic secretagogues CRH and AVP in both genders. When 

the mice were treated with AVP and CRH peptides, the early life stress (ELS) group 

mice displayed much higher responsiveness compared with control mice (Figure 14).  

 

Figure 14. Early life stress increased sensitivity of the pituitary-adrenal axis to CRH and 
AVP in both genders. Under basal conditions, blood ACTH levels were higher in ELS mice (6-
week-old) in both genders. ELS mice displayed much higher responsiveness compared with 

control mice after AVP and CRH application. Data are mean ± S.E.M (n = 8−10/group). *p < 0.05 
(t-test). 

 

3.2  Pomc DNA methylation status 

3.2.1 DNA methylation at the Pomc gene locus in naïve mice 

Here, we used the in-bred mouse strain C57BL/6N. All mice were housed under the 

same condition. The only difference between control mice and ELS mice came from 

the maternal separation procedure.  External stimulations can change the phenotypes 

later in life; we hypothesized that epigenetic processes could be responsible for this 

fact. DNA methylation is a stable epigenetic mark at CpG dinucleotides, which often 

couples to lasting changes in gene transcription. Methylation of cytosine residues 
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within CpG dinucleotides can result in gene silencing; such CpGs are conspicuously 

under-represented in mammalian genomes and typically cluster with GC-rich regions 

called CpG islands (CGI). In the case of Pomc gene, computational analysis 

(CpGPlot, EMBOSS) and previous literature (Gardiner-Garden and Frommer, 1994) 

revealed 2 CpG islands within mouse Pomc gene locus: CpG island 1 (CGI 1) which 

surrounds the Pomc transcription start site and CpG island 2 (CGI 2) which lies 

approximately 5 kb downstream, encompassing the third exon of Pomc gene.  

 

Figure 15. DNA methylation status at the Pomc gene locus. (A). Schematic diagram of the 
mouse Pomc gene. Exons are indicated by open (numbered) boxes and CGIs by numbered bars, 
and the distribution of CpG residues are listed according to their position. (B). Sequence analysis 
of bisulfite-converted DNA isolated from the pituitaries of naive C57/BL6 mice (3-month-old) 
showed sparse methylation in the core promoter (CGI 1) and the coding region (CGI2). In 
contrast, high levels of CpG methylation were found at the far distal promoter region of the Pomc 
gene. Comparing the DNA methylation level between male and female revealed that males show 
higher level of DNA methylation than females. Data are mean ± S.E.M (n=8-10/group). *p < 0.05 
(t-test). 

To investigate the DNA methylation status at the Pomc gene locus, sodium 

bisulfite conversion was performed with genomic DNA isolated from pituitaries. Four 

pairs of primers were designed to cover the entire CGI 1 and part of CGI 2 (Figure 

15). Sodium bisulfite treatment of DNA samples converts non-methylated cytosines 

(C) to uracils (U), which are then replaced by thymidine (T) in the subsequent PCR 
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reactions. Methylated cytosines (mC) are unaffected by sodium bisulfite reaction and 

the differences in methylation status are thus apparent and easily detected on sequence 

reads. 

The pituitary was dissected away from the brain, and genomic DNA was isolated 

and treated with sodium bisulfite. Sequence analysis of bisulfite-converted DNA 

isolated from the pituitaries of naive C57BL/6N mice (3 months old) showed sparse 

methylation in the core promoter CGI 1 and the coding region CGI 2. In contrast, we 

found high levels of CpG methylation clustered at the far distal promoter region of 

Pomc encompassing CpG1 to CpG16 (Figure 15); this region has been shown in the 

previous literature to play a critical role in Pomc gene regulation. When DNA 

methylation was compared between genders, male mice showed higher levels of DNA 

methylation than females at the Pomc distal promoter region (Figure 15 and Figure 

16). 

3.2.2 Early life stress dependent DNA methylation  

As shown in the previous chapter (Figure 12), ELS induced higher levels of Pomc 

mRNA in the pituitary; therefore we wondered whether DNA methylation might play 

a role in regulating Pomc gene expression during early life adverse events. Bisufite 

sequencing was performed between ELS and control mice aged 10 days, 6 weeks, 3 

months and 1 year in both genders. The results showed that no differential DNA 

methylation was observed at all time points either in the coding region, which is 

confined as CGI 2 (CpG 30-45), or in the core promoter region (CpG 17-28)  as well 

as in the 5’ UTR (CpG 1-5). By contrast, ELS induced hypomethylation at the Pomc 

distal promoter region ranging from CpG 6 to CpG 16. To facilitate the comparison of 

DNA methylation through age and between genders, heatmaps were deduced to 

illustrate the DNA methylation status. DNA methylation levels were transformed into 

graded-color, ranging from 0% of methylation (yellow) to 100% of methylation (red). 

In these heatmaps, the x-axis represents a single CpG residue from CpG 6 to CpG 16 

at the Pomc distal promoter region, and every single row stands for a single mouse 

subjected to bisulfite mapping.  

The heatmap showed that early life stress produced a significant decline of DNA 

methylation through the Pomc distal promoter in ELS mice aged 10 days, 6-week, 3 

months, and 1 year in both genders. Importantly, this region has been shown to be a 
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critical area both for pituitary specific Pomc gene expression and Pomc activation 

from upstream secretagogues, such as CRH and AVP. Overall, these findings revealed 

that ELS triggered a heterogeneous response in CpG hypomethylation and indicated a 

functional role for the detected changes. 

In addition, examination of the methylation status of all CpGs found within the 

Pomc promoter of naïve mice revealed a general decline in methylation in 1-year aged 

mice compared with 6-week aged animals, with 30% of all CpG residues showing a 

significant decline (Figure 16B). Correspondingly, increased levels of Pomc mRNA 

expression was observed in 1 year old naïve mice compared with 6 weeks animals 

(Figure 12), indicating that age-associated DNA hypomethylation might contribute to 

the elevated Pomc mRNA expression. However, in contrast to males, females did not 

show any age-associated drift in DNA methylation (Figure 16D).  

Figure 16. Early life stress induced hypomethylation at the Pomc distal promoter region. (A 
and C). Comparison of the DNA methylation status from ELS and control mice aged 10 days, 6 
weeks, 3 months and 1 year, the results showed hypomethylation of multiple CpG residues 
throughout the far distal promoter region in ELS mice both in males (A) and females (C). (B). 
Analysis of overall methylation of the distal promoter revealed age-related substantial reductions 
in methylation. (D) Overall DNA methylation of female control mice did not show any age-
associated drift. *p < 0.05 (t-test) 
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3.2.3 Pomc DNA methylation in different tissues 

The DNA methylation status at the Pomc distal promoter ranging from CpG 6 to CpG 

16 from different tissues was studied by bisulfite mapping. As shown in Figure 17, the 

Pomc gene showed a tissue-specific DNA methylation pattern. In normal non-

expressing tissues, such as adrenal, kidney, spleen, thymus, hippocampus and the non-

expressing cell line Neuro2A (data not shown), the Pomc distal promoter was hyper-

methylated. In contrast, Pomc gene had relatively less methylation in the pituitary. 

Furthermore, in the corticotrope cell line AtT20 in which Pomc was highly expressed, 

the promoter region was free of DNA methylation. 

 

Figure 17. Pomc DNA methylation status in different tissues. Bisulfite sequencing analysis 
using DNA from different mouse tissues (6-week-old) including pituitary, hypothalamus, 
hippocampus, prefrontal cortex (PFC), adrenal gland, kidney, liver, spleen and thymus revealed a 
tissue-specific DNA methylation pattern. In normal Pomc non-expressing tissues such as kidney, 
thymus and adrenal, Pomc was hyermethylated at the distal promoter, especially at the region 
ranging from CpG6 to CpG8.  

3.2.4 DNA methylation of Pomc pseudogene 

In the early stage of our research, we found that the DNA methylation pattern in exon 

3 (CGI 2) always displayed an all-or-nothing pattern. In short, if one CpG residue was 

unmethylated in the clone, all the CpGs were totally free of methylation. In contrast 

however, if one CpG residue was methylated, all the CpGs in the clone were fully 
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methylated. Careful sequence analysis detected however slight difference in DNA 

sequence between the two classes of clones. A sequence blast was performed, and we 

found that the fully methylated sequence belonged to the Pomc pseudogene (also 

known as Pomc2 or Pomc-ps1) which locates to chromosome 19 in the mouse 

genome. Sequence alignment between Pomc and its pseudogene was performed and 

the results showed that this non-transcribed Pomc pseudogene was a homology of 

Pomc exon 3 with an identity of 90% (data not shown). 

3.3  DNA methylation controls Pomc gene expression 

Given the role of DNA methylation in controlling gene expression, we next examined 

whether methylation alone is sufficient to repress Pomc gene activity. Bisulfite 

sequencing results showed differential DNA methylation pattern between ELS and 

controls at the Pomc distal promoter, especially in the region ranging from CpG 6 to 

CpG 8. Pomc reporter constructs with methylated or unmethylated CpGs were 

transfected into the AtT20 mouse pituitary cell line. In this experiment, selectively 

methylated CpG 6-8 induced a 43% reduction of Pomc promoter activity, while 

deletion of this region diminished reporter activity by 68% (Figure 18B). These 

results demonstrated the functional importance of this region for regulation of Pomc 

gene expression. We also examined Pomc reporter activity after in vitro methylation 

of the entire promoter, including the core promoter and the distal promoter. Such 

methylation completely abolished luciferase activity. Taken together, these findings 

suggested that DNA methylation at CpG 6-8 is critical for controlling Pomc gene 

expression. Bisulfite sequencing proved the success of site-directed DNA methylation 

(Figure 18C).  

 



RESULTS 

                                                                                                                                                    59                                                                                                                                                             

Figure 18. DNA methylation controls Pomc gene expression. (A) Schematic representation of 
Pomc luciferase constructs. The parental Pomc-Luc construct (mock) contains the entire mouse 
Pomc promoter. M.CpG6-8 indicates that only CpG 6-8 were in vitro methylated by site-directed 
DNA methylation using a CpG-free vector. ∆CpG 6-8 is devoid of CpG 6 to 8. M.All-CpG 
indicates that all the CpGs in the Pomc promoter were completely methylated by CpG methylase 
SssI. ∆Distal-Prom lacks the entire distal promoter. (B) Entire vector or site-specific promoter 
(CpG 6-8) methylation reduced reporter activity by 99% and 40%, respectively. Deletion of either 
CpGs 6-8 or the entire distal promoter reduced reporter activity by 68% and 90%, respectively, in 
AtT20 cells. (C) Bisulfite sequencing confirmed the success of site-directed DNA methylation. 
Data are mean ± SD, three independent experiments were performed.  *p < 0.05 (t-test). 

Hypothalamic derived peptides corticotrophin-releasing-hormone (CRH) and 

arginine vasopressin (AVP) stimulate transcription of Pomc and secretion of ACTH in 

vivo and in ACTH producing pituitary tumor AtT20 cells.  Previous studies showed 

the importance of the distal promoter for the regulation of Pomc activity after CRH 

and AVP stimulation. In our study, we questioned whether DNA methylation in the 

Pomc distal promoter could affect AVP and CRH-dependent stimulation of Pomc 

expression. From the literature (Ventura et al., 1999) and our RT-PCR experiment, we 

know that AVP v1b receptor expression is barely detectable in normal AtT20 cells. 

To overcome this problem, a new AtT20 cell line with v1b receptor stably expressed 

was used. In this cell line, the mouse AVP v1b receptor gene was intergrated into the 

mouse genome resulting in stable expression of the mouse v1b receptor. Methylated 

and unmethylated Pomc reporter were transfected into AtT20 cells (AVP v1bR), 24 

hours after transfection, the cells were treated with the peptides AVP (10-7 M), CRH 

(10-8 M) or both. After 2 hours of treatment, luciferase activity was measured. 

According to the results in Figure 19, if the reporter is unmethylated, the Pomc 

promoter activity was increased by 38%, 22% and 67% respectively upon CRH, AVP 

or CRH+AVP treatment in the cultured cells compared with the non-treated control. 

However, if the Pomc reporter was methylated at CpG 6-8, CRH treatment alone 

failed to activate Pomc expression. On the contrary, AVP treatment alone can still 

increase the Pomc mRNA expression by 22% when compared with the non-treated 

control. A synergic effect of Pomc promoter activation (31% increases) was also 

observed when the methylated reporter was treated with both AVP and CRH. Taken 

together, DNA methylation plays a critical role in the regulation of Pomc gene 

expression both under basal condition and activated conditions. 
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Figure 19. DNA methylation at CpGs 6-8 strongly blocked Pomc activation stimulated by 
CRH, but not by AVP. AVP (10-7 M) and CRH (10-8 M) activated Pomc promoter activity when 
the Pomc reporter was free of DNA methylation. If the Pomc reported was site-directed 
methylated at CpG 6-8, CRH treatment alone failed to stimulate Pomc mRNA expression. In 
contrast, AVP or AVP+CRH treatment increased Pomc luciferase activity compared with non-
treated control. Values represent mean ± S.D. Three independent experiments were performed. 
The asterisks indicate significant difference. (*, P<0.05) 

 

3.4  MeCP2 binds to the Pomc promoter and represses gene 

activity 

3.4.1 MeCP2 represses Pomc gene expression 

In our previous results (Figure 18), we proved that DNA methylation could repress 

Pomc gene expression. The next question was, by which mechanism does DNA 

methylation repress Pomc gene expression? It is generally accepted that DNA 

methylation at CpG dinucleotides (
m
CG) is interpreted by a family of methyl CpG-

binding domain (MBD) proteins. These epigenetic readers (except MBD4) can serve 

as an epigenetic platform. Histone deacetylases (HDACs) and DNA 

methyltransferases (DNMTs) can be recruited to confer transcriptional repression and 

gene silencing. After cotransfecting a series of MBD family proteins with the 

methylated reporter plasmid into AtT20 cells, we found that MBD1, MBD2 and 

MBD3 have moderate effects on DNA methylation-directed Pomc repression. In 
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contrast, we found that the founding member of MBD family protein, MeCP2, 

significantly suppressed Pomc gene activity (Figure 20A).  

 

Figure 20. MeCP2 strongly represses Pomc gene expression in vitro and in vivo.  (A) After 
cotransfecting a series of MBD proteins with methylated reporter plasmid into AtT20 cells, we 
found that MeCP2 significantly suppressed Pomc gene activity, while MBD1, MBD2 and MBD3 
had moderate effect. (B) Pomc mRNA level between wild type and MeCP2 KO was tested by 
qRT-PCR. The results showed a two-fold increase of Pomc mRNA levels in MeCP2 KO mouse 
pituitary compared with controls. 

Since these experiments were done under over-expression, we were interested to 

know whether MeCP2 is expressed in pituitary cells. RT-PCR, western blot and 

immunohistochemistry results revealed the presence of MeCP2 in pituitary cells 

(Figure 21A). To examine the repressive role of MeCP2 in vivo, pituitaries from 

MeCP2 knockout mice were subjected to gene expression analysis. The results 

confirmed the repressor role of MeCP2 for Pomc expression as evidenced by over 2-

fold increased mRNA levels compared with wild type mice (Figure 20B). 

 

Figure 21. MeCP2 is expressed in pituitary cells. (A) RT-PCR and western blot results showed 
that MeCP2 is expressed in mouse pituitary and the pituitary cell line-AtT20 both at the mRNA 
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and protein levels. Mouse hypothalamic tissue and the hypothalamic cell line N6 were used as 
positive controls. (B) MeCP2 is strongly expressed in the cell nuclei of the mouse pituitary and 
colocalizes with ACTH-positive cells. Scale bar, 50 µm. 

To further investigate the distribution of MeCP2 in the mouse pituitary, 

immunohistochemistry experiments were performed using antibodies against total 

MeCP2 (red) and ACTH (green) in naïve mouse pituitary slides. The results in Figure 

21B showed that MeCP2 is ubiquitously expressed in the cell nuclei of the mouse 

pituitary and colocalized with ACTH positive cells. 

 

3.4.2 MeCP2 binds to the Pomc promoter in vitro 

To investigate whether MeCP2 can be directly bound to the Pomc promoter, 

electrophoretic mobility shift assay (EMSA) experiments were performed using 

recombinant GST-MeCP2 protein. According to previous reports, MeCP2 DNA 

binding depends on two criteria: firstly, MeCP2 preferentially binds to methyl-CpG 

sites and secondly, binding is increased in case A/T bases ([A/T≥4]) are present 

adjacent to methyl-CpG. The sequence [A/T≥4] was found previously to be essential 

for high-affinity binding at selected sites and at known MeCP2 target regions such as 

in the Bdnf and Dlx6 genes. Based on these MeCP2 binding criteria, Pomc DNA 

sequences of far upstream 5’ UTR, promoter (CGI 1) and exon3 (CGI 2) were 

analyzed. The results revealed that only the DNA sequence in the distal promoter 

fulfilled the two criteria for MeCP2 binding. The far upstream promoter failed the test 

because of the very low density of CpG sites in that region. In contrast, exon3 

behaved differently. Although there were plenty of CpG sites (CGI 2), A/T ([A/T≥4]) 

runs were rarely found adjacent to methyl-CpG. Three pairs of oligonucleotides were 

designed for the EMSA experiments. Oligonucleotide EMSA1 was located in the 

distal promoter which contained CpG 6 together with 3 A/T runs adjacent to CpG 6. 

EMSA2 was located next to EMSA1 which covered CpG 7 and CpG 8. As a negative 

control, we also designed a pair of oligonucleotides named control (Ctrl) in the 

promoter spanning CpG 14-16, but in this sequence there were no A/T ([A/T≥4]) runs 

adjacent to CpG dinucleotides (Figure 22A).  
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Figure 22. MeCP2 is bound to the Pomc promoter in vitro. (A) Schematic diagram of the Pomc 
promoter. The distribution of CpG residues is indicated according to their position by vertical 
bars. The positions of the respective oligonucleotides used for EMSA experiments are shown. (B) 
EMSA experiments showed that MeCP2 recognized specifically methylated CpG 
oligonucleotides. MeCP2 was bound strongly to methylated, but not to unmethylated EMSA1 and 
EMSA2 oligonucleotides as well as the positive control. Self-competition experiments and pre-
incubation with the MeCP2 antibody proved the specificity of MeCP2 binding to the methylated 
EMSA1 and EMSA 2. (C) MeCP2 showed no binding in the middle of the Pomc promoter 
(Control) irrespective of its methylation status. (D) The positive control shows that MeCP2 
preferentially binds to methylated oligonucleotides. Representative autoradiograms (n = 3 
independent experiments each) are shown. 

Sense and antisense oligonucleotides were first slowly annealed to form a double 

strand and then in vitro methylated. Both methylated and unmethylated 

oligonucleotides were subjected to an end-labeling step with 35S. End-labeled 

oligonucleotides together with GST-MeCP2 protein were loaded on the PAGE gel 

and were fractionated. 

The results of the EMSA experiments in Figure 23B agree with previous 

evidence for high affinity MeCP2 binding, to methylated CpGs adjacent to A/T sites. 

MeCP2 specifically bound to the region spanning CpG 6 to CpG 8 (EMSA1 and 

EMSA2), with an affinity (KD =6.48 nM and 5.86 nM respectively), which is 

comparable to the positive control (Figure 22D). In contrast the control 
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oligonucleotide in the middle of the Pomc promoter showed no binding at all 

irrespective of the methylation status (Figure 22C). The specificity of the 

protein/DNA complex was further confirmed by a super shift assay, in which the 

protein/DNA complex disappeared during the gel electrophoresis upon addition of 

MeCP2 antibody. Self-competition tests were also performed using an excess (1:10, 

1:100, 1:1000) of unlabelled methylated or unmethylated oligonucleotides. The 

results showed that DNA binding was gradually reduced with increased amount of 

methylated oligonuceotide, while the unmethylated oligonucleotide had much less 

effect.   

To further decipher the importance of methyl-CpG and the adjacent A/T sites for 

MeCP2 binding, a series of mutations were generated.  The set of mutations tested is 

shown in the left part of Figure 23, with the parent oligonucleotide sequence depicted 

above. In the case of EMSA1 (CpG 6), A/T runs were essential for MeCP2 binding. 

For example, if AT3 was mutated alone, the binding was reduced by 75%, and if AT2 

and AT3 were mutated together, only 14% binding remained compared with the wild 

type. Furthermore, if AT runs were completely mutated; the MeCP2 binding was 

almost abolished (Figure 23A). In the case of EMSA2, it might have a different 

binding mechanism compared with EMSA1 because there were two CpG sites (CpG 7 

and CpG 8) and only one A/T run in the oligonucleotide. As shown in Figure 23B, 

mutations occurring in one of the CpGs impaired protein/DNA complex formation, 

while mutations in both CpG 7 and CpG 8 completely destroyed the protein/DNA 

complex.  The AT run was also a key element for MeCP2 binding in EMSA2. As 

shown in Figure 23B, the DNA/protein complex was strongly impaired after mutation 

of A/T sites adjacent to CpG dinucleotides. 

In summary, in vitro binding experiments showed that MeCP2 was efficiently 

bound to sequences present at the Pomc distal promoter region spanning CpG 6 to 

CpG 8, while MeCP2 showed less binding to other parts, such as the proximal 

promoter (CpG 14-16). Mutational studies revealed that both the methylated CpG(s) 

and the AT runs were essential for high affinity MeCP2 binding. 
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Figure 23. Methylated CpGs and AT runs were essential for MeCP2 binding to Pomc 
promoter derived oligonucleotides. (A) Binding specificity of MeCP2 for EMSA1 was 
investigated by base substitutions of AT clusters adjacent to the methylated CpG. The sequence of 
the parent oligonucleotides is listed above the scheme. The results indicated a strong decline of 
MeCP2 binding resulting from the absence of AT sequences adjacent to methylated CpG 6. (B) 
Binding specificity of MeCP2 for EMSA2 was investigated by mutagenesis of either CpG(s) or 
AT cluster adjacent to methylated CpG residues. The results indicated a strong decline of MeCP2 
binding for mutated CpG sites or mutated AT sequences flanking  methylated CpGs. 

 

3.4.3 MeCP2 represses Pomc gene expression in vivo 

Chromatin immunoprecipitation (ChIP) is a technique to investigate the binding of a 

particular protein of interest to chromatinized DNA. In our experiment, we sought to 

confirm the repressive function of MeCP2 at the Pomc locus in vivo. A sequential-

ChIP experiment from mouse pituitary was performed to prove this hypothesis. The 

first (primary) round of the ChIP was carried out with antibodies against acetylated 

histone H3 (H3Ac), a mark of transcriptional active chromatin, or dimethylhistone H3 

Lys-9 (H3K9me2), a mark of transcriptional repressive chromatin. The anti-C-

terminal MeCP2 antibody was used for the second (secondary) round of ChIP, which 

we performed on half of the product of the primary ChIP; the remaining product from 

the first ChIP was saved for analysis of the primary ChIP. DNA recovered from both 

ChIP steps was analyzed by real-time PCR for the presence of the Pomc promoter. By 
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doing so, we were able to simultaneously evaluate the activity of Pomc as well as 

MeCP2 occupancy at the Pomc promoter. Two pairs of primers were designed for this 

ChIP experiment. The first primer pair was located in the Pomc distal promoter region 

spanning CpG 6 and CpG 10 and producing a 154 bp PCR amplicon. As a control, the 

second primer pair was designed in the coding region (exon3) which lies 6 kb 

downstream (Figure 24A). 

 

Figure 24. MeCP2 is bound to the repressed state of the Pomc promoter in vivo Seq-ChIP was 
performed on pituitary chromatin isolated from naїve mice. (A) Schematic representation of the mouse 
Pomc gene indicating the position of PCR-amplified regions in the ChIP experiment. (B) More Pomc 
DNA was recovered when the primary ChIP was conducted with anti-acetyl histone H3 (H3Ac) than 
with anti-dimethyl-histone H3 Lys9 (H3K9me2). (C) Secondary ChIP with anti-C-terminal MeCP2 on 
the samples recovered from B indicated that MeCP2 preferentially associates with dimethyl-histone H3 
Lys-9 at the Pomc promoter. Values represent mean ± SD. Three independent experiments were 
performed. The asterisks are used to indicate significant difference (*, P < 0.05). 

 

When we performed the primary ChIP, we recovered more Pomc DNA with 

anti-acetyl histone H3 than with anti-dimethyl histone H3 Lys-9 (Figure 24B). 

However, when we performed the second round ChIP with anti-MeCP2, we recovered 

significantly more Pomc from chromatin that had been initially immunoprecipitated 

with anti-dimethyl-histone H3 Lys-9 than from chromatin that had been initially 
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immunoprecipitated with anti-acetyl histone H3 (Figure 24C). In summary, the results 

from Seq-ChIP indicated that MeCP2 is preferentially associated with the 

transcriptionally inactive, dimethyl-histone H3 Lys-9 marked Pomc promoter in mice 

pituitaries. 

 

3.4.4 MeCP2 recruits repressor complexes to the Pomc 

promoter  

MeCP2 suppresses gene transcription by recruiting corepressors, such as HDACs and 

DNMTs, to its target DNA binding sites. To determine which corepressors coexist 

within the same protein complex resident at the promoter region of Pomc, sequential 

ChIP assays were performed. In this sequential ChIP assay, an initial ChIP was 

performed with an antibody that recognizes MeCP2. The precipitated chromatin-DNA 

complex was washed and eluted, and a second immunoprecipitation (IP) was 

performed with MeCP2, Hdac1, Hdac2, Hdac4, Dnmt1, Dnmt3a, Dnmt3b or control 

istope IgG antibodies. When the first ChIP was performed with anti-MeCP2, the 

second ChIP showed the presence of Hdac2, Dnmt1, and to a lesser extent Hdac1, in 

the MeCP2-DNA complex (Figure 25). In contrast, the Pomc promoter was not 

enriched for Hdac4, Dnmt3a and Dnmt3b binding. The specificity of these results was 

supported by performing the sequential ChIP experiment in the reverse order (data not 

shown).  

ChIP was first performed with antibodies against either MeCP2, corepressors 

(HDACs and DNMTs) or control rabbit IgG on chromatin derived from naïve mouse 

pituitaries. Immunocomplexes were dissociated from the beads and 50% of the first 

immunoprecipitation (IP) were reverse cross-linked and subjected to PCR analysis. 

The remaining eluate of the first IP reaction was subject to a second round of ChIP 

with an antibody against MeCP2 or control rabbit IgG. PCR analysis was performed 

on the eluates both from the first ChIP and second ChIP. The results revealed that 

Hdac1, Hdac2 and Dnmt1 exist in Pomc distal promoter region in the first ChIP. The 

co-occupancy of Hdac1 with MeCP2, Hdac2 with MeCP2 and Dnmt1 with MeCP2 

was proved by the second ChIP with MeCP2. 
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Figure 25. MeCP2 is associated with repressor complexes (HDACs and DNMTs) at the Pomc 
promoter region. Sequential ChIP assays were performed after an initial immunoprecipitation (IP) 
with anti-MeCP2. After a second IP with anti-Hdac1, anti-Hdac2, or anti-Dnmt1, DNA from the 
distal promoter, but not from the coding region (exon3) could be amplified. No DNA was 
recovered following immunoprecipitation by Hdac4, Dnmt3a, Dnmt3b or isotype IgG antibodies.  

 

3.5   Phosphorylation of MeCP2 in pituitary cells  

3.5.1 Depolarization dependent MeCP2 phosphorylation in 

pituitary cells  

Protein phosphorylation is an important posttranslational modification that can 

modulate the function of a protein by adding a phosphate group to serine, tyrosine, or 

threonine residues. Previous results showed that phosphorylation of MeCP2 at serine 

421 in cultured rat neurons can precede the release of MeCP2 from the Bdnf promoter 

resulting in an increase in BDNF expression (Zhou et al., 2006; Tao et al., 2009). We 

wondered whether such phosphorylation of MeCP2 is also present in pituitary cells. 

To address this question, immunocytofluorescence (ICC) experiments were 

performed using an antibody against total MeCP2, which recognizes MeCP2 

irrespective of its phosphorylation status and an antibody against pS438 of MeCP2 

(which is homologous to S421 MeCP2 in rat) in pituitary primary cells. Double 

staining experiments using antibodies against MeCP2 and ACTH, the later is a marker 

for pituitary corticotrope cells, revealed the ubiquitous expression pattern of MeCP2 

in pituitary cells with higher expression levels in corticotropes (Figure 21 and 26A). 

Moreover, MeCP2 was phosphorylated at serine 438 in cultured mouse primary 

pituitary cells upon membrane depolarization by 55 mM KCl. Under basal conditions, 

the pS438 MeCP2 signal was barely detectable. In contrast, when primary cells were 

subjected to membrane depolarization using elevated levels of extracelluar potassium 
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to activate L-type voltage-sensitive calcium channels (L-VSCCs), MeCP2 S438 

phosphorylation could be readily detected in cultured mouse pituitary cells (Figure 

26B).  

 

 
Figure 26. MeCP2 is phosphorylated at serine 438 in pituitary primary cells upon membrane 
depolarization. (A) Total MeCP2 (red) showed similar levels of immunoreactivity under different 
conditions. MeCP2 colocalizes with the corticotrope cell marker ACTH (green) in primary 
pituitary cells. (B) MeCP2 is phosphorylated at serine 438 after KCl treatment of primary pituitary 
cells. Pre-treatment of the cells with a CaMKII inhibitor prevented the increase of phospho-
MeCP2 after membrane depolarization by KCl treatment. Scale bar, 10 µM. 

Previous research showed that cells treated with KCl undergo calcium influx 

resulting in activation of calmodulin-dependent Protein Kinase II (CaMKII). To 

address this question, pituitary primary cells were treated with 55 mM KCl for 1 hour 

and the activity of phospho-CaMKII, which is the activated form of CaMKII, was 

monitored by immunostaining. As shown in Figure 27A, the phosphorylated form of 

CaMKII was significantly increased after KCl treatment without influencing the total 

level of CaMKII (Figure 27B). Previous research revealed that MeCP2 

phosphorylation was mediated by CaMKII activity, therefore we asked whether 

pS438 phosphorylation was affected if CaMKII activity is blocked by 

pharmacological treatment. The results supported the role of CaMKII in the mediation 

of MeCP2 phosphorylation on serine 438 as evidenced by reduced pS438 MeCP2 

immunostaining when the primary cells were pre-treated with a CaMKII inhibitor 

before KCl stimulation. 
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Figure 27. Phospho-CaMKII immunostaining was increased after membrane depolarization 
of primary pituitary cells. (A) KCl treated pituitary primary cells showed increased pCaMKII 
(red) and ACTH (green) staining as compared with the non-treated condition. Pre-treatment with a 
CaMKII inhibitor prevented the increase of phospho-CaMKII immunoreactivity after membrane 
depolarization by KCl treatment. (B) In contrast, total CaMKII immunoreactivity was unchanged 
under both conditions. Scale bar, 5µM.  
 

Given the heterogeneous nature of pituitary primary cells, we asked whether 

phosphorylation of MeCP2 at serine 438 could take place in the homogeneous 

corticotrope cell line-AtT20.  

 

Figure 28. MeCP2 is phosphorylated at site 438 in AtT20 corticotrope cells upon membrane 
depolarization. Western blots of whole cell extracts from AtT20 cells demonstrated an increased 
level of phosphorylation of MeCP2 at serine 438 when cells were depolarized by KCl. CIP 
treatment proved the specificity of the pS438 MeCP2 antibody. Total MeCP2 levels remained the 
same for all testing conditions. 

Immunoblot analysis of MeCP2-S438 phosphorylation in corticotrope AtT20 

cells showed that depolarization increased levels of MeCP2-pS438 immunoreactivity 

when compared with controls without influencing levels of total MeCP2. To confirm 
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the specificity of pS438 MeCP2, calf intestinal phosphatase (CIP) treatment was 

carried out to dephosphorylate MeCP2 residues before primary antibody incubation. 

After phosphatase treatment, the pS438 MeCP2 antibody can not detect any signal 

any more. Total MeCP2 signal was not affected by this treatment (Figure 28).  

 

3.5.2 Phosphorylation of MeCP2 at S438 reduces Pomc 

promoter occupancy 

As already shown, MeCP2 overexpression suppresses methylated Pomc reporter 

activity; we further hypothesized that Pomc expression is regulated by MeCP2 

phosphorylation. To address this hypothesis, CpG 6−8 methylated Pomc reporter 

plasmids were cotransfected with the expression vector MeCP2, constitutively active 

CaMKII, or MeCP2 together with CaMKII in AtT20 cells.  MeCP2 transfection alone 

reduced Pomc reporter activity, while, CaMKII has the opposite effect. When MeCP2 

was cotransfected with CaMKII, we observed complete reversal of the repression by 

MeCP2. To further investigate the role of phosphorylation of MeCP2 at serine 438 in 

regulating Pomc gene activity, a Flag-tagged mutant MeCP2 expression plasmid 

(S438A) was constructed, in which serine 438 was replaced by alanine. As a 

consequence, MeCP2 can not be phosphorylated at this site any more. When AtT20 

cells were transfected with MeCP2 (S438A) in the absence or presence of CaMKII, 

the reporter activity was repressed by MeCP2 (S438A), while cotransfection of 

CaMKII could not reverse MeCP2-directed repression any more (Figure 29A).  

Previous reports indicated that phosphorylation of MeCP2 at serine 421 (pS438 

in mouse) can derepress gene activity by loss of MeCP2 binding from its target DNA 

sequence. To test whether MeCP2 occupancy is altered upon membrane 

depolarization at the Pomc locus, ChIP experiments were carried out using CpG 6−8 

methylated reporter constructs in control or membrane-depolarized cells. The results 

showed a strong reduction of MeCP2 occupancy and increased Pomc luciferase 

activity following depolarization, while pretreatment with a specific CaMKII inhibitor 

reversed the depolarization-induced dissociation (Figure 29B). 
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Figure 29. Phosphorylation of MeCP2 at serine 438 can rescue Pomc expression by 
promoting dissociation of MeCP2 from the Pomc promoter. (A) CaMKII modulates repressive 
actions of MeCP2 at the Pomc promoter. Cotransfecting a constitutively active CaMKII plasmid 
with a Pomc site-dircted methylated vector stimulated Pomc expression and overrided the 
repressive effects of further cotransfection with MeCP2. Activated CaMKII could not rescue 
Pomc expression when cotransfected with the mutated form MeCP2 (S438A). (B) Membrane 
depolarization relieved MeCP2 occupancy at the Pomc promoter. AtT20 cells were depolarized 
with 55 mM KCl (1 hour). ChIP experiments showed reduced MeCP2 occupancy at Pomc 
promoter (black bar, left), paralleled by increased Pomc luciferase activity of the promoter (gray 
bar, right). Pretreatment of AtT20 cells with a CaMKII inhibitor reversed these effects. Data are 
mean ± SD. Three independent experiments were performed.  

 

3.5.3 AVP elicits MeCP2 phosphorylation in pituitary cells 

Previous research showed that AVP actives Pomc mRNA expression through calcium 

pathways. We hypothesized that CaMKII activity might be altered during AVP 

treatment in primary pituitary cells. To address this question, pituitary primary cells 

were treated with AVP (10-7 M) for 2 hours, the activity of phospho-CaMKII was 

monitored by immunostaining. As shown in Figure 30A, the phosphorylated form of 

CaMKII was significantly increased after AVP treatment without influencing the total 

levels of CaMKII. As we have already shown that MeCP2 phosphorylation is 

mediated by CaMKII activity, we hypothesized that MeCP2 could be phosphorylated 

when primary pituitary cells were treated with AVP peptide. The results showed that 

this was indeed the case. Interestingly, most of the pS438-MeCP2 positive cells 

colocalized well with ACTH suggesting that MeCP2 phosphorylation at serine 438 

occurred predominantly in corticotrope cells (Figure 30B). The reason for this result 

could be explained by the fact that the AVP v1b receptor only exists in corticotrope 
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cells in the pituitary. Pre-incubation with 10-6 M SSR149415, a specific antagonist of 

the v1b receptor, completely abolished AVP-induced MeCP2 phosphorylation.  

 

Figure 30. AVP induced MeCP2 phosphorylation and dissociation from the Pomc promoter 
region. (A) Immunostaining of total and activated p-CaMKII in primary pituitary cells. AVP 
treatment activated p-CaMKII without changing the level of total CaMKII. Pretreatment of the 
cells with the AVP v1b receptor antagonist SSR149419 completely abolished AVP induced 
activation of p-CaMKII. Both CaMKII and p-CaMKII (red) colocalized with the corticotrope cell 
marker ACTH (green). Scale bar: 10 µM. (B) AVP induced MeCP2 phosphorylation at serine 438 
without altering total MeCP2 level. Scale bar: 10 µM (C) AVP treatment of AtT20 cells relieved 
MeCP2 occupancy at the Pomc promoter. AtT20 cells were treated with 100 nM AVP for 2 hours. 
ChIP experiments showed reduced MeCP2 occupancy at the Pomc promoter (black bars, left), 
paralleled by increased Pomc luciferase activity of the promoter (gray bar, right). Pretreatment of 
AtT20 cells with SSR149415 reversed these effects. Data are mean ± SD. Three independent 
experiments were performed. 

 

Next we asked whether AVP can induce MeCP2 phosphorylation in corticotrope 

cells. To answer this question, homogeneous corticotrope AtT20 cells were used to 

monitor MeCP2 phosphorylation level using immunostaining.  Previous research 

showed that AVP activates Pomc expression through binding to its specific V1b 

receptor at the corticotrope cell membrane, and triggers intracellular calcium influx. 

However, from the literature (Ventura et al., 1999) and our experiments, we know that 

AVP v1b receptor expression is barely detectable in normal AtT20 cells. To solve this 

problem, an AtT20 cell clone with v1b receptor stably expressed was used. 

Corticotrope AtT20 cells were treated with 10-7 M AVP or DMSO for 2 hours. After 

treatment the cells were fixed and stained with MeCP2 and ACTH. As the results 

show in Figure 31, pS438-MeCP2 can only be detected when AtT20 cells were 

treated with AVP. Pre-treatment of cells by SSR149415 half an hour before AVP 

treatment completly abolished AVP-induced MeCP2 phosphorylation in AtT20 cells 

suggesting the specificity of AVP for MeCP2 phosphorylation.   
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Figure 31. AVP induced MeCP2 phosphorylation in AtT20 (v1bR) cells.  AVP induced 
MeCP2 phosphorylation at serine 438 through binding to the v1b receptor. Nuclear staining of p-
MeCP2 (red) colocalized with ACTH (green). Scale bar: 10 µM 

AVP-induced phosphorylation of MeCP2 at serine 438 can also reduce MeCP2 

occupancy at the Pomc promoter as tested by ChIP experiments. CpG 6−8 methylated 

Pomc reporter was transfected into the AtT20 (v1b receptor expressed) cell line. 24 

hours after transfection, the cells were treated with 10-7 M AVP peptide for 2 hours. 

Then the cells were harvested, fixed and sonicated to obtain the DNA fragments in the 

size ranging from 200 to 500 bp. ChIP experiments were performed using the 

antibody against total MeCP2, in parallel, luciferase assays were carried out to 

monitor Pomc promoter activity. To recover Pomc fragment only from the transfected 

reporter, the forward ChIP primer targeted the vector backbone, and the reverse 

primer was located in the Pomc insert. The results showed a 29% of reduction of 

MeCP2 occupancy and increased Pomc luciferase activity following AVP treatment. 

Pretreatment of AtT20 cells with SSR149415 completely blocked the dissociation of 

MeCP2 due to AVP treatment (Figure 30C).  

3.5.4 Early life stress induces phosphorylation of MeCP2 in the 

pituitary  

Previous results showed that MeCP2 is phosphorylated in pituitary cells upon 

membrane depolarization or AVP stimulation. We sought to know whether MeCP2 
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phosphorylation status is altered after early life stress in mouse pituitary sections.  To 

address this issue, immunohistochemistry was performed on formalin fixed paraffin 

embedded pituitary sections obtained from ELS and control mice. The results 

revealed no differential regulation in total MeCP2 protein in the pituitary between 

ELS and control mice (data not shown).  

 

Figure 32. Early life stress induces phosphorylation of MeCP2 in mouse pituitary. ELS led to 
increased immunostaining of pS438-MeCP2 (red) and ACTH (green) in the anterior pituitary of 3-
month-old mice. pMeCP2 is colocalized with ACTH, which is the marker for pituitary 
corticotrope cells. White arrow heads indicate positive pS438-MeCP2 staining. The images that 
are shown are representative of five mice per group. Scale bar: 50 µM 

However, comparing pS438 MeCP2 immunoreactivity revealed an increased 

immunostaining of pS438-MeCP2 in ELS mice compared with controls. Interestingly, 

most pS438-MeCP2 positive cells were colocalized well with ACTH. This supports 

our hypothesis that the early-life stress paradigm produced increased levels of AVP 

from the PVN of the hypothalamus which induced a tissue-specific phosphorylation 

of MeCP2.  
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3.6 Reduced occupancy of MeCP2 after ELS 

3.6.1 ELS did not affect the corticotrope cell number 

Early life stress leads to higher levels of Pomc mRNA expression in the pituitary. 

ACTH, which is enzymatically cleaved from Pro-POMC in pituitary corticotrope cells, 

was also upregulated after early maternal separation. As we know, pituitary cells 

proliferate postnatally. We wondered whether early life adversity could affect the 

development of corticotrope cells.  

 

Figure 33.  Corticotrope cell number is not altered during early life stress. Representative 
pictures of immunostaining showed no difference in corticotrope cell ratios between control (Ctrl) 
and early life stress (ELS) in 3-month old pituitaries. DAPI (blue) staining was used to mark the 
cell nuclei in all cells, while ACTH (green) positive cells indicated the corticotrope cells in the 
anterior pituitary. Scale bar: 50 µM. (B) The number of labeled cells with DAPI (total number) 
and ACTH (corticotrope cell) in 10-day old and 3-month old mice pituitaries. Pituitary slides (8 
sections/animal, 5 mice per group) 

To answer this question, immunohistochemistry experiments were performed 

using an antibody against ACTH to mark corticotrope cells in the anterior pituitary 
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and DAPI to stain the total cell population. The total cell number of anterior pituitary 

and ACTH-positive cells were counted and compared between control and ELS mice. 

Pituitary slides (8 sections/animal, 5 mice per group) from10-day and 3-month-old 

mice were used for this experiment (Figure 33). The results revealed no difference in 

the ratio of the corticotrope cells with 4.56 ± 0.15 in the control group and 4.65 ± 0.31 

in the ELS group at PND 10 and ratios of 3.93 ± 0.16 and 3.95 ± 0.14 at 3 months of 

age, respectively. In summary, these immunohistochemistry results imply that ELS 

did not affect postnatal development of the corticotrope cell population. 

 

3.6.2 ELS reduces MeCP2 occupancy at the Pomc promoter 

Previous EMSA experiments indicated that MeCP2 preferentially binds to methylated 

DNA sites in the Pomc distal promoter region. Sequential ChIP experiments 

performed in mouse pituitary revealed that MeCP2 was associated with a 

transcriptional inactive state of the Pomc promoter. In addition, bisufite sequencing 

results showed that early life stress (ELS) induced hypomethylation at the Pomc distal 

promoter.  Taken together, we speculated that the difference in DNA methylation 

would result in differential occupancy of MeCP2 at the Pomc promoter, which in turn 

will affect Pomc mRNA expression. To test this hypothesis, in vivo ChIP experiments 

were performed using mouse pituitaries from 6 weeks old mice. Two antibodies were 

used in this in vivo ChIP: activated RNA Pol II, which is an indicator of Pomc 

transcription and C-terminal MeCP2 (antibody against total MeCP2). Two pairs of 

primers were designed for this ChIP experiment. The first primer pair was located in 

the Pomc distal promoter region spanning CpG 6 and CpG 10 and producing a 154 bp 

PCR amplicon. As a control, the second primer pair was designed in the coding region 

(exon3) which lies 6 kb downstream (Figure 24A). 
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Figure 34. ELS altered MeCP2 and RNA polI II occupancy at the Pomc locus in 6 weeks old 
mice pituitaries. (A) ChIP analysis using the pituitaries of control and ELS mice revealed 
increased binding of RNA pol II at the Pomc promoter region. (B) ChIP analysis showed that ELS 
mice displayed decreased binding of MeCP2 at the Pomc promoter region. (C) Monitoring MeCP2 
mRNA expression levels showed no difference between pituitaries from ELS mice and control 
mice in 6 weeks old mice. Values expressed as mean ± S.E.M; ChIP, n = 8 animals/group; RT-
PCR, n = 6-8/group * P < 0.05. 

In vivo ChIP analysis revealed increased activated RNA pol II occupancy at the 

Pomc promoter of ELS mice, reflecting increased Pomc gene transcription (Figure 

34A). When we performed the ChIP experiment using anti-MeCP2 antibody, the 

results showed that total MeCP2 occupancy was reduced in the ELS group (Figure 

34B). These results agree with the findings of less DNA methylation in the ELS 

group. A statistical analysis was performed and the results demonstrated a negative 

correlation between total MeCP2 antibody and RNA Pol II binding (p < 0.05, data not 

shown). Monitoring MeCP2 mRNA expression levels showed no differences between 

pituitaries from ELS mice and control mice in 6 weeks old mice (Figure 34C). 

We also investigated MeCP2 occupancy status in 10 days old mouse pituitary. 

ELS mice also displayed reduced MeCP2 occupancy at the Pomc promoter region 

compared with control litters (Figure 35A). Although Pomc mRNA level was 

markedly increased in 10 days old mice (Figure 12, 35A), the DNA methylation level 

did not differ between control and ELS mice of this age. Given that 10 days old 

control and ELS mice have similar methylation patterns, the differences in MeCP2 

occupancy indicated that ELS-induced phosphorylation of MeCP2 at serine 438 leads 

to relief of MeCP2 occupancy from the Pomc promoter. There was no difference for 

MeCP2 mRNA expression levels between pituitaries from ELS mice and control mice 

in 10 days old mice (Figure 35C). 
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Figure 35. ELS leads to reduced occupancy of MeCP2 at the Pomc locus in 10 days old mice. 
(A) qRT-PCR analysis revealed ELS mice displayed increased level of Pomc mRNA expression 
compared with controls in 10-days old mice pituitaries. (B) ChIP analysis showed that ELS mice 
displayed decreased binding of MeCP2 at the Pomc promoter region. (C) Monitoring MeCP2 
mRNA expression levels showed no difference between pituitaries from ELS mice and control 
mice in 10-days old mice. Values expressed as mean ± S.E.M; ChIP, n = 8 animals/group; RT-
PCR, n = 6−8/group * P < 0.05. 

 

3.6.3 Early life stress reduces recruitment of Dnmt1 occupancy to 

the Pomc promoter  

Which mechanism is responsible for the loss of methylation during early life 

experience? As we know, the pituitary gland almost doubles in volume during the first 

10 days of life and continutes to enlarge until adulthood. The mitosis of existing cells 

contributes to the increase in number during early postnatal development. To maintain 

DNA methylation pattern during cell mitosis, DNA methyltransferases are recruit. 

Dnmt1 is known control DNA methylation maintenance during cell division. MeCP2, 

which can directly bind to methylated or hemimethylated DNA sequence, can tether 

Dnmt1 and promote DNA methylation. Our previous experiment showed that Dnmt1 

is associated with MeCP2 at the Pomc promoter.  Early life stress leads to reduced 

MeCP2 occupancy at the Pomc promoter. We questioned whether ELS could affect 

Dnmt1 recruitment at the Pomc promoter resulting in loss of DNA methylation during 

pituitary cell proliferation.  
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Figure 36. Sequential ChIP experiment showed that ELS reduced MeCP2 and Dnmt1 
occupancy at the Pomc locus in 6 weeks old mice pituitaries. (A) The first ChIP using an 
antibody against MeCP2 revealed decreased binding of MeCP2 at the Pomc promoter region. (B) 
The second ChIP using an antibody against Dnmt1 showed that ELS mice displayed lower level 
binding of Dnmt1 at the Pomc promoter region compared with controls. (3 pituitaries were pooled, 
n = 8/group; * P < 0.05) (C) Monitoring Dnmt1 mRNA expression levels showed no difference 
between pituitaries from ELS and control mice in 6 weeks old animals. Values expressed as mean 
± S.E.M; ChIP, three pituitaries were pooled, n = 8/group; RT-PCR, n = 8/group * P < 0.05. 

 

 

Figure 37. Sequential ChIP experiment showed that ELS reduced MeCP2 and Dnmt1 
occupancy at the Pomc locus in 10 days old mice pituitaries. (A) The first ChIP using an 
antibody against MeCP2 revealed decreased binding of MeCP2 at Pomc promoter region. (B) The 
second ChIP using an antibody against Dnmt1 showed that ELS mice displayed lower level 
binding of Dnmt1 at Pomc promoter region compared with controls. (C) Monitoring Dnmt1 
mRNA expression levels showed no difference between pituitaries from ELS and control mice in 
10 days old animals. Values expressed as mean ± S.E.M; ChIP, five pituitaries were pooled, n = 
8/group; RT-PCR, n = 8/group * P < 0.05. 

To address this question, a sequential ChIP experiment was performed using the 

first antibody against MeCP2 and the second antibody against Dnmt1 for comparing 

ELS and control pituitaries. When we performed the ChIP experiment using anti-

MeCP2 antibody, the results showed that total MeCP2 occupancy was reduced in ELS 

group (Figure 36A, 37A) as we showed previously by simple ChIP both in 10-day-old 

pituitary and in 6-week-old mice (Figure 34, 35). When we performed the second 

round ChIP with anti-Dnmt1, we recovered significantly more Pomc from chromatin 
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from control mice than from ELS mice both in 10-day old and 6-weeks old mice 

pituitaries (Figure 36B, 37B). Monitoring the mRNA expression of Dnmt1 by qRT-

PCR revealed no difference in basal Dnmt1 expression levels between pituitaries from 

ELS and control mice both in 10-day and 6-week-old mice (Figure 36C, 37C).    

 

3.7  Home-made MeCP2 antibody generation 

3.7.1 Peptides used for MeCP2 antibody generation 

 

The polyclonal antibody antitotal MeCP2 that recognizes MeCP2 irrespective of its 

phosphorylation status was generated by injecting New Zealand White rabbits with 

the KLH-conjugated peptide NH2-CSMPRPNREEPVDSRTPV-CONH2 

corresponding to amino acids 480-496. The antiserum was purified by affinity-

chromatography on a column that was coupled to MeCP2 480-496 peptide, and the 

affinity-purified anti-total MeCP2 antibody was eluted. 

The polyclonal antibody MeCP2 pS438 that recognizes the phosphorylated 

serine 438 was generated by injecting New Zealand White rabbits with the KLH-

conjugated peptide NH2-CMPRGGpSLES-CONH2 (phosphor-serine). The antiserum 

was purified by affinity chromatography on a column that was coupled to 

unphosphorylated MeCP2 S438 peptide. The flow-through was then passed over a 

second column that was conjugated to phosphorylated MeCP2 S438 peptide, and the 

affinity-purified anti-MeCP2 pS438 antibody was eluted. 

The polyclonal antibody MeCP2 pS97 that recognizes the phosphorylated serine 

97 was generated by injecting New Zealand White rabbits with the KLH-conjugated 

peptide NH2-EASApSPKQR (phosphor-serine). The antiserum was purified by 

affinity chromatography on a column that was coupled to unphosphorylated MeCP2 

S97 peptide (Figure 38). 
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Figure 38. Protein sequence alignment of e1 forms of mouse, human and rat MeCP2. The 
peptides used for generation of the different MeCP2 antibodies are boxed in color. pS97 and 
pS438 phosphorylation sites are pointed out by arrows in the MeCP2 protein sequence. 

 

3.7.2 MeCP2 constructs used for antibody validation 
 

MeCP2 expression constructs were transfection into LLC-PK1 cells for testing 

MeCP2 antibodies. The position of the S97 and S438 phosphorylation site and the 

total MeCP2 site are marked in the wild type MeCP2 construct in Figure 39. Wild 

type, mutated or truncated versions of MeCP2 were tagged at their amino termini with 

the Flag-epitope. The phosphor-acceptor residue serine 97 was replaced by alanine in 

MeCP2 (S97A) and the phosphor-acceptor residue serine 438 was replaced by alanine 

as well (S438A). In the case of MeCP2∆C, the terminal 45 amino acids containing the 

recognition sequence for anti-MeCP2 were deleted. 
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Figure 39. Schematic of MeCP2 expression constructs used for MeCP2 antibodies validation. 
The position of the S97 and S438 phosphorylation site and the total MeCP2 site are marked in the 
wild type MeCP2 construct. Wild type, mutated or truncated versions of MeCP2 were tagged at 
their amino termini with the Flag-epitope. The phosphor-acceptor residue serine 97 was replaced 
by alanine in MeCP2 (S97A) and the phosphor-acceptor residue serine 438 was replaced by 
alanine as well (S438A). In the case of MeCP2∆C, the terminal 45 amino acids containing the 
recognition sequence for anti-MeCP2 were deleted. 

 

3.7.3 Antibody validation by western blot 

3.7.3.1 Characterization of the anti-total MeCP2 antibody 

Flag-tagged MeCP2 (0.1 µg each) expression vector was transfected into LLC-PK1 

cells and immuoblotted whole cell extracts (WCE) were tested with anti-MeCP2 

(1:1,000), a commercial MeCP2 antibody (1:1,000, Up-MeCP2), or an anti-Flag 

antibody (1:1,000). No signals were detected in mock-transfected cells, MeCP2 

transfected cells tested with the preimmune serum, or following pre-absorption of the 

MeCP2 antibodies on a GST-MeCP2 fusion protein (Figure 40). 

Similar signals were detected by anti-MeCP2 antibodies in MeCP2 transfected 

cells. In contrast to the Flag-antibody, neither of the anti-MeCP2 antibodies detected 

transfected MeCP2∆C, indicating their specificity. 
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Figure 40. Characterization of the anti-total MeCP2 antibody. 

 

3.7.3.2 Characterization of the anti-phospho MeCP2-S438      

antibody 

MeCP2 was cotransfected in the absence or presence of calmodulin kinase (CaMKII) 

or of two different forms of constitutively active calmodulin kinases [containing 

either a C-terminal truncation (CaMKII*) or a point mutation (T286D)]. Immunoblots 

were tested with either anti-MeCP2 or anti-MeCP2-pS438. Signals detected by 

MeCP2-pS438 were specific to the phosphorylated form of MeCP2 (Figure 41A).  

In the following experiment, the specificity of MeCP2-pS438 was tested. Wild 

type MeCP2 and mutated MeCP2 (S438A) were separately transfected in the absence 

and presence of CaMKII* and immunoblots were tested with anti MeCP2-pS438 or 

anti-Flag antibodies, respectively. MeCP2-pS438 detected MeCP2 solely in the 

presence of CaMKII* and of serine 438. Retesting of the same immunoblots with the 

anti-Flag antibody proved that all samples contained comparable levels of MeCP2 

proteins (Figure 41B).  

Calf intestine phosphatase (CIP) was used to further confirm the specificity of 

the MeCP2-pS438 antibody. WCE from cells cotransfected with Flag-tagged MeCP2 

and CaMKII* were treated with calf intestine phosphatase. Preincubation with CIP 

entirely abolished the detection of MeCP2 by the MeCP2-pS438 antibody. In contrast, 

the anti-Flag antibody detected similar levels of MeCP2 expression, irrespective of 

CIP pretreatment. In parallel, we also tried to dephosphorylate the protein after SDS-

PAGE. After protein transfer, the blotting membrane was treated with CIP by 

incubation at 37 °C for 1 hour. Both methods lead to similar results (Figure 41C). 
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Figure 41. Characterization of the anti-phospho MeCP2-S438 antibody. 

 

3.7.3.3 Characterization of the anti-phospho MeCP2-S97 

antibody 

Serine 97 phosphorylation of MeCP2 occurs under rest conditions. Wild type and 

mutated MeCP2 (S97A) were transfected into LLC-PK1 cells. Immunoblots were 

tested with either anti-total-MeCP2 or anti-MeCP2-pS97. Signals detected by 

MeCP2-pS97 were specific to the phosphorylated form of MeCP2. An aliquot of 

MeCP2-pS80 (equal to pS97 in mouse) antibody (generous gift from Jifang Tao 

UCLA, USA) was used as a positive control (Figure 42).  
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Figure 42. Characterization of the anti-phospho S97-MeCP2 antibody. 

3.7.4 Antibody validation by immunocytochemistry (ICC) 

 

Immunocytochemistry experiments were performed to validate MeCP2 antibodies. To 

test the C-terminal anti-total MeCP2 antibody, wild type MeCP2 and MeCP2∆C 

expression constructs were transfected into LLC-PK1 cells. MeCP2 antibody from 

rabbit and Flag antibody from mouse were used for staining. As shown in Figure 43, 

the MeCP2 antibody detected expression of the wild type MeCP2 construct 

exclusively in the nuclei of transfected LLC-PK1 cells. By contrast, following 

expression of MeCP2∆C, no signal was detected, while the Flag antibody detected 

both MeCP2 proteins. 

In the second experiment, the specificity of MeCP2-pS97 was tested. Wild type 

MeCP2 and mutated MeCP2 (S97A) were separately transfected in LLC-PK1 cells. 

LLC-PK1 cells were fixed and incubated with anti MeCP2-pS97 and anti-flag 

antibodies. The anti-MeCP2-pS97 antibody detected the phosphorylated form of 

MeCP2 exclusively in the nuclei under resting conditions. When the residue serine 97 

was mutated to alanine, the anti-MeCP2-pS97 failed to detect any signal in the cell. 

While the flag antibody proved the successful transfection of the MeCP2-S97A 

expression plasmid to the cells (Figure 44).  

In the last experiment, the specificity of MeCP2-pS438 was tested (Figure 45). 

Wild type MeCP2 and mutated MeCP2 (S438A) were separately transfected in the 

absence and presence of CaMKII and immunostainings were tested with anti-total-
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MeCP2, anti-MeCP2-pS438 and anti-Flag antibodies. Anti-total-MeCP2 antibody can 

detect the signal irrespective of the phosphorylation status of MeCP2. MeCP2-pS438 

detected MeCP2 solely in the presence of transfected CaMKII and the wild type 

MeCP2 construct. In contrast, when the residue serine 438 was mutated to alanine, the 

anti-MeCP2-pS438 antibody failed to detect any signal. The flag antibody can still 

prove the successful transfection of MeCP2-S438A expression plasmid to the cells. 

 

Figure 43. Total MeCP2 antibody validation using immunocytochemistry. Immunostaining of 
Flag-tagged wild type and C-terminal deletion MeCP2 in LLC-PK1 cells showed that total 
MeCP2 specifically recognized the C-terminal epitope of the MeCP2 protein. Total MeCP2 
antibody failed to detect any signal from overexpression of C-terminal deletion MeCP2 (∆C-
MeCP2). The flag antibody proved the successful transfection of ∆C-MeCP2 expression plasmid 
into the cells. Scale bar: 10 µM 
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Figure 44. pS97-MeCP2 antibody validation using immunocytochemistry. Immunostaining of 
Flag-tagged wild type and mutated form (serine 97 to alanine) MeCP2 in LLC-PK1 cells showed  
pS97-MeCP2 antibody specifically recognized phosphor-serine 97 of MeCP2 protein in the cell 
nuclei. pS97-MeCP2 antibody failed to detect any signal from overexpression of mutated form 
(S97A) of MeCP2. The flag antibody proved the successful transfection of S97A-MeCP2 
expression plasmid into the cells. Scale bar: 10 µM 

 

 

Figure 45. pS438 MeCP2 antibody validation using immunocytochemistry. Immunostaining 
of Flag-tagged wild type and S438A phosphorylation site MeCP2 in LLC-PK1 cells showed 
pS438 MeCP2 specifically recognized phosphor-serine 438 of MECP2 protein in the cell nuclei. 
pS97 MeCP2 antibody failed to detect any signal from overexpression of mutated form (serine 97 
to alanine) of MeCP2. The Flag antibody proved the successful transfection of MeCP2 expression 
plasmids to the cells. Scale bar: 10 µM 
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4 Discussion 

4.1  Early life stress programs HPA axis activity 

In rodents and humans, adverse experience during early life can result in long-term 

changes in neuroendocrine, behavioral and cognitive functions as well as alterations 

in metabolism. In an attempt to find out more about the detailed mechanisms 

responsible for these alterations, this study used a mouse model of early life stress 

(ELS):  3 hours daily maternal separation. Previous research showed that the first ten 

days of life is very critical time window for development of the mouse brain. So, 

interruption of the normal maternal-pup interaction during this period is considered as 

a severe stressor and determinant of mouse physiology and behavior, reflected in  

long-lasting activation of the HPA axis in C57BL/6N mice. In this study, mouse 

subjected to ELS exposure were found to have larger adrenals and a smaller thymus 

gland, both physiological correlates of prolonged activation of the HPA axis. In 

addition, corticosterone secretion was significantly increased for between 6 weeks and 

1 year. Further, Pomc mRNA levels in the pituitary were markedly increased, as 

shown by qRT-PCR and in situ hybridization.    

4.2  Altered DNA methylation after ELS 

Previous experiments indicated that maternal behavior can epigenetically program 

gene expression (Weaver et al., 2004; Murgatroyd et al., 2009). In the present study 

using an inbred mouse strain, all the mice were housed in the same environment with 

food and water ad libitum; thus, maternal separation was the only environmental 

variable imposed. The results obtained show that ELS leads to hypomethylation of a 

key regulatory region of the pituitary Pomc gene. These epigenetic events are 

accompanied by persistent upregulation of Pomc mRNA expression, and 

consequently, sustained hyperactivation of the HPA axis; the ELS-induced endocrine 

phenotype lasted for at least 1 year. In addition, previous experiments from this 

laboratory (Murgatroyd et al., 2009) on the same cohort of mice found that ELS mice 

displayed increased immobility in the forced swim test, which is an index of 

depression-like behavior in rodents, consistent with the well-established links between 

hypersecretion of adrenocorticoids and mood disturbances in humans. 
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Growing evidence suggests that epigenetic mechanisms, such as DNA 

methylation, affect gene expression in an age-dependent manner. For example, the 

amount of total 5-methylated cytosine was decreased in DNA extracted from 

uncultured peripheral blood human lymphocyte compared between young donors and 

old subjects (Singhal et al., 1987; Drinkwater et al., 1989), and a gradual global loss 

of cytosine DNA methylation was observed in various mouse, rat and human tissues 

(Wilson et al., 1987; Fuke et al., 2004). These observations indicate the possible 

importance of DNA methylation in the ageing process. Global hypomethylation has 

been proposed to affect genetic stability and might be a mechanism responsible for 

cellular senescence (Suzuki et al., 2002).  

Besides global DNA hypomethylation, some specific genes display 

hypermethylation during ageing, probably resulting in the the inactivation of key 

regulatory genes in cancer (Ottaviano et al., 1994; Li et al., 2005; Esteller, 2008). In 

prostate cancer, hypermethylation of the pi-class glutathione S-transferase gene 

(GSTP1) promoter was reported as a very common genomic alteration. As a 

consequence, GSTP1 expression is lost even at the earliest stages of tumorigenesis 

(Lee et al., 1994).  

In this work, DNA methylation drifts during ageing were found at the Pomc gene 

locus. In male control mice, analysis of overall DNA methylation at the distal 

promoter revealed a steady age-related decrease of DNA methylation: from 60% at 6 

weeks to 30% at 1 year as shown in Figure 16. ELS mice also displayed age-

associated DNA hypomethylation, but the effects occurred much earlier than in 

controls. In contrast, DNA methylation levels in females changed less during the 

ageing process, both in the control and ELS groups. In fact, a functional correlation 

between age-associated DNA hypomethylation and increased Pomc transcription in 

the pituitary was observed. These data agree with previous reports that Pomc mRNA 

levels increase with age (Nelson et al., 1988).  

In addition to the observed associations of DNA methylation levels with age, 

there is evidence that DNA methylation levels are also influenced by gender. Several 

studies found higher global DNA methylation levels in males (Fuke et al., 2004; El-

Maarri et al., 2007). Gender differences in DNA methylation can also occur in a gene-

specific manner. For example, gender-specific DNA methylation differences have 
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been intensively investigated with respect to the ERα promoter and a recent report 

suggested that maternal behavior in rodents might regulate DNA methylation status in 

ERα promoter and therefore be responsible for long-lasting effects on gender-specific 

ERα gene expression (Champagne et al., 2006; Kurian et al., 2010). Specifically, 

Champagne and coworkers indicated that variations in maternal care during the early 

postnatal period affect ERα expression in the medial preoptic area (MPOA) by 

altering ERα promoter methylation and that ERα expression is higher in the offspring 

of high LG-ABN dams (Champagne et al., 2006). Correspondingly, the levels of 

cytosine methylation across the ERα promoter were decreased in the adult female 

offspring of high LG mothers, compared with low LG mothers. In another 

experiment, Kurian and colleagues showed that the natural variation in maternal care 

might be responsible for the gender-difference in behavior and neuronal morphology 

in adulthood (Kurian et al., 2010). These authors found that sex differences in DNA 

methylation of the ERα promoter within the developing rat preoptic area (POA), with 

males exhibiting more DNA methylation within ERα promoter than females. They 

suggested that maternal behavior plays a role in this gender-specific pattern of DNA 

methylation. Since the rodent mother tends to groom the anogenital region of her male 

offspring, it was proposed that grooming behavior may lead to increased estradiol 

secretion, thereby down-regulating ERα expression by increasing methylation at the 

ERα promoter. Together, these results suggest that maternal behavior in early life may 

leave stable epigenetic marks in the genome that organizes long-lasting sex 

differences in the brain.  

Gender-specific DNA methylation differences were found at the Pomc gene 

locus in the pituitary in the present research. Males exhibited more DNA methylation 

within the Pomc distal promoter than females as revealed by bisulfite mapping of the 

entire promoter region and part of coding region (Figure 16). Notably, gender-specific 

differences were only found in the distal promoter region known to be important for 

Pomc gene expression in transfection experiments (Figure 18). Gender differences in 

DNA methylation were negatively correlated with Pomc gene expression in the 

pituitary, with higher levels of Pomc mRNA in female mice compared to male mice. 

Clinical reports indicate that men and women have different susceptibilities to a 

number of diseases. Concerning psychiatric disorders, women develop anxiety, 

depression, phobia, or panic disorders more often than men, whereas men more often 
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display antisocial behavior and substance abuse (Bebbington, 1996; Weich et al., 

2001). From the present results, it would appear that increased expression of Pomc 

mRNA in female mice, resulting from hypomethylation in Pomc distal promoter, 

might contribute to differential susceptibility to psychiatric disorders between the 

genders.   

4.3  Site-directed in vitro DNA methylation assay 

Here, bisulfite sequencing revealed that DNA methylation decreased at the Pomc 

distal promoter after ELS. To prove a potential causal relationship between DNA 

methylation on Pomc expression, site-directed DNA methylation assays were 

performed. To this end, a CpG-free luciferase reporter (pCpGL-basic) was used. Since 

traditional luciferase vectors contain a number of CpG residues in the backbone that 

might repress a CpG-free promoter when the backbone DNA is methylated (Klug and 

Rehli, 2006), the novel pCpGL vector was designed so as to be free of CpGs in the 

entire sequence, and the reporter was only repressed in the presence of functionally 

important methylated CpG residues in the promoter fragment inserted. Results 

showed that if CpG 6−8 is methylated, Pomc luciferase activity is decreased by 40% 

(Figure 18). In another transfection experiment, deletion of this region (CpG 6−8) 

diminished reporter activity by 60%. All these results thus provide support for the 

functional importance of this region in the regulation of Pomc gene expression. 

4.4  MeCP2 represses pituitary Pomc expression 

DNA methylation is interpreted by a family of methyl-CpG-binding domain (MeCP) 

proteins which can recruit additional proteins (e.g. histone deacetylase (HDAC) and 

other chromatin remodeling complexes) to induce gene silencing. It was hypothesized 

that methylated DNA in the distal promoter region will recruit specific methyl-CpG-

binding domain proteins to silence Pomc gene expression. To examine this, a series of 

MBD family proteins were co-transfected with methylated Pomc reporter constructs 

into the AtT20 cell line, derived from pituitary corticotropes. Our results showed that, 

compared with the other MBD family members, MeCP2 induced strong repression of 

Pomc expression. RT-PCR and western blot revealed that MeCP2 is strongly 

expressed in both, the pituitary in vivo and in AtT20 cells at the mRNA and protein 
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levels. These results with MeCP2 are the first to describe this protein’s function as a 

repressor in the pituitary. Previous research on MeCP2 was predominantly focused on 

the brain, and it was not until recently that MeCP2 was reported to play a role in 

peripheral tissues such as cardiac and skeletal muscle (Alvarez-Saavedra et al., 2010). 

Since MeCP2 is widely expressed in a number of tissues, all of these new 

observations suggest roles of MeCP2 in non-neural tissues. 

For high affinity DNA binding of MeCP2, two criteria must be met. The first one 

is the presence of methylated CpG dinucleotides; the second one is the presence of 

[AT≥4] runs close to a methylated CpG. Searching for potential binding sites in the 

Pomc DNA sequence revealed that both criteria were fulfilled in the distal promoter 

region; the 5’ UTR region has AT runs but lacks CpG dinucleotides, whereas the 

coding region has CpGs but no AT runs. To test MeCP2 binding to Pomc in vitro, 

electrophoretic mobility shift assays (EMSAs) were performed, using recombinant 

MeCP2 and oligonucleotides that located in the distal promoter and core promoter 

region. Two pairs of oligonucleotides that covered the distal promoter region were 

designed, along with another oligonucleotide that targeted the middle region of the 

promoter to serve as a control. The results showed that MeCP2 preferentially binds to 

the methylated oligonucleotides in the distal promoter region of Pomc; in contrast, the 

control oligonucleotide did not bind, irrespective of whether it was methylated or not. 

Binding specificity was also tested by adding excess unlabelled oligonucleotides or by 

adding MeCP2 antibody. When unlabelled oligonucleotides or MeCP2 antibody was 

added to the reaction, MeCP2 binding was abolished. Further, a series of mutation 

studies showed the importance of methylated CpG and AT runs for MeCP2 binding. 

For example, when the wild type oligonucleotide was methylated at CpG6, about 5% 

of oligonucleotide was bound, whereas no binding was observed with unmethylated 

oligonucleotide. When one of the AT runs was mutated, binding was significantly 

affected, and an effect was seen when CpG7+8 were methylated. Taken together, 

these results indicate that the Pomc distal promoter (CpG6−8) contains context-

specific, high-affinity MeCP2 DNA-binding sites that are important for the regulation 

of Pomc gene expression. 

EMSA experiments indicated that MeCP2 binds to the Pomc distal promoter. In 

order to confirm the repressive function of MeCP2 at this locus, sequential ChIP 
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(seqChIP) on mouse pituitary was performed, using antibodies against either active 

(H3Ac) or repressive (H3K9me2) histone marks  in the first round of ChIP. A second 

round of ChIP with anti-MeCP2 antibody showed that MeCP2 is preferentially 

associated with H3K9me2 at the Pomc promoter region. To further indentify the 

corepressor recuited by MeCP2 to the Pomc promoter, another seq-ChIP was 

performed on mouse pituitaries. MeCP2 antibody was used for the first round ChIP. 

In the second round, antibodies against either HDACs (Hdac1, Hdac2, Hdac4) or 

DNMTs (Dnmt1, Dnmt3a, Dnmt3b) were used. Sequential ChIP assays demonstrated 

that MeCP2 is associated with Hdac2 as well as Dnmt1 at the Pomc promoter. 

Previous literature indicated that HDAC2 and Brg1, the ATPase subunit of Swi/Snf 

complex, are involved in the GR-directed trans-repression  of Pomc in the rat pituitary 

(Bilodeau et al., 2006). In vivo, Brg1 is required to stabilize the interaction between 

GR and Nur77 (also called NGFI-B) as well as between HDAC2 and Nur77. Nur77 

residues in the NurRE site in the Pomc distal promoter region, where MeCP2 binds 

with high affinity. It should be noted that a number of reports have indicated an 

interaction between MeCP2 and HDACs (Nan et al., 1998; Suzuki et al., 2003); thus, 

it is possible that MeCP2 is also involved in GR-mediated trans-repression in the 

Pomc promoter and that Hdac2 mediates this event. 

4.5  Experience-dependent phosphorylation of MeCP2 

In the brain, neuronal activity can dynamically regulate gene transcription through 

phosphorylation of MeCP2 in response to diverse extracellular stimuli. For example, 

previous studies showed that phosphorylation of MeCP2 at serine 421 in cultured rat 

neurons precedes the release of MeCP2 from the Bdnf promoter, resulting in an 

increase in BDNF expression (Chen et al., 2003). It was shown that MeCP2 

phosphorylation is controlled by neuron activity-dependent calcium influx and a 

CaMKII mediated mechanism. In spite of the ubiquitous expression of MeCP2 

(Shahbazian et al., 2002b), its functions have so far only been studied in the context of 

the brain. Previous research pointed out that altered MeCP2 expression in cardiac and 

skeletal tissues has detrimental effects during normal development (Alvarez-Saavedra 

et al., 2010). Phospho-MeCP2(438) (homolous to rat phospho-421 MeCP2) antibody 

recognizes MeCP2 in the mouse heart isolated as early as E12.5 days, whereas 

MeCP2 cannot be detected in heart from adult mice or Mecp2-/Y null mice. This 
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finding suggests that MeCP2 phosphorylation is not brain specific, and supports a 

functional role for MeCP2 in tissues besides brain. In the present study, it was found 

that MeCP2 is ubiquitously expressed in pituitary cells, with high expression in 

corticotrope cells. Moreover, MeCP2 was found to be phosphorylated at serine 438 in 

cultured mouse primary pituitary cells upon membrane depolarization by KCl (Figure 

26B); the latter was associated with an increase in the expression of Pomc mRNA 

(Figure 29B). Notably, membrane depolarization induced phosphorylation of MeCP2 

was not confined to corticotrope cells, as evidenced by the presence of phospho-438 

MeCP2 in ACTH- positive and -negative cells (Figure 26B). The idea that MeCP2 

phosphorylation is required for activity-dependent activation of the Pomc gene was 

supported by overexpression of a non-phosphorylatable mutant form of MeCP2 

(S438A), which inhibits Pomc induction in response to active CaMKII; it was also 

shown that the latter inhibition is dependent on DNA binding (Figure 29). Thus, 

MeCP2 phosphorylation at serine 438 results in a decreased binding of MeCP2 to 

Pomc promoter. 

MeCP2 phosphorylation occurs in response to physiological stimuli such as light 

exposure during the subjective night or cocaine administration (Mao et al., ; Zhou et 

al., 2006). It was therefore asked whether MeCP2 phosphorylation could be triggered 

in a psychological context in the pituitary. As we know, MeCP2 phosphorylation is 

driven by calcium influx and CaMKII activity. Previous research showed that AVP 

activates Pomc expression through binding to the V1b receptor at the corticotrope cell 

membrane; this event initiated calcium influx. Results shown in Figure 30 

demonstrate that increased calcium levels stimulate CaMKII enzymatic activity, 

resulting in phosphorylation of MeCP2 in pituitary cells upon AVP stimulation. 

Interestingly, MeCP2 phosphorylation occurs predominantly in corticotrope cells 

expressing the AVP V1b receptor (Figure 30B). Supporting this, it was found that 

AVP-induced MeCP2 phosphorylation can be  blocked by pre-treatment with the 

AVP V1b receptor antagonist---SSRI 149415 (Figure 30B). Specificity of the effect 

was further demonstrated in an experiment in corticotrope AtT20 cells which had 

been stably transfected with an AVP V1b receptor since they lack expression of this 

receptor (Figure 31).  
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Previous research in our laboratory has shown that ELS produces long-lasting 

elevations of the levels of AVP mRNA and peptide in the hypothalamus. The present 

results show that MeCP2 phosphorylation status can be dynamically regulated by 

AVP in pituitary cells (Figure 30). Taken together, these findings suggest that ELS 

can trigger the dynamic modification of MeCP2 via AVP stimulation. Our results 

demonstrate that early life adversity can lead to epigenetic marking of the genome by 

reducing MeCP2 occupancy at the Pomc promoter in ELS mice (Figure 34, 35).  

During mammalian cell division, DNA methylation patterns can be faithfully 

copied to the newly synthesized daughter strand. This process depends on the 

maintenance of DNA methyltransferase activity. Pituitary cells proliferate postnatally, 

especially during the first postnatal days. During this process, a co-repressor complex, 

comprising MeCP2, Hdac2 and Dnmt1, appears to contribute to maintaining DNA 

methylation in dividing pituitary cells. Maternal separation induces AVP expression 

in the hypothalamic PVN which, in turn, leads to higher levels of MeCP2 

phosphorylation. As a consequence, MeCP2 dissociates from the Pomc promoter, 

resulting in a loss of binding of co-repressors such as Hdac2 and Dnmt1. Dnmt1 is a 

methyltransferase which is responsible for maintenance of DNA methylation patterns 

during cell replication. Due to the loss of Dnmt1 binding at the Pomc promoter, when 

pituitary cells experienced mitosis, the DNA methylation pattern cannot be faithfully 

maintained, leading to passive DNA demethylation. On the other hand, the DNA 

methylation pattern is well preserved during pituitary cell mitosis in control animals 

due to the relatively higher levels of MeCP2 as well as Dnmt1 at the Pomc promoter. 

4.6 Model  

Early life stress produced long-lasting alterations of the HPA axis characterized by 

elevated corticosterone level, increased Pomc mRNA levels in the pituitary as well as 

hypersecretion of ACTH into the blood. Epigenetic mechanisms, especially DNA 

methylation, appear to be responsible for controlling Pomc gene expression by 

recruiting MeCP2 to silence the gene. We showed that ELS mice displayed reduced 

occupancy of MeCP2 at the Pomc promoter both in early postnatal days (PND10) and 

in adulthood (6 weeks). As shown previously, MeCP2 preferentially binds to 

methylated CpG residues. This decreased occupancy of MeCP2 in ELS mice at the 
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Pomc locus could result from hypo-methylation of multiple CpG residues (CpG 6−8) 

at the Pomc distal promoter region. As a consequence, reduced CpG methylation level 

weakened the MeCP2 binding affinity to its recognition sites. However, there seems 

to be a distinct MeCP2 binding pattern in early postnatal days. We observered a 

reduced MeCP2 occupancy in Pomc promoter region, which correlated with higher 

Pomc mRNA level in ELS mice, while this differential binding could not be explained 

by methylation alterations since there was no difference in DNA methylation between 

ELS mice and controls. This paradoxical finding implied that MeCP2 binding could 

be regulated by other mechanisms besides DNA methylation, such as phosphorylation.  

Immunostaining of primary pituitary cells showed that MeCP2 is phosphorylated 

at serine 438 by membrane depolarization after KCl treatment. Interestingly, 

treatment of primary pituitary cells with hypothalamic peptide AVP could also induce 

MeCP2 phosphorylation at serine 438 by activation of CaMKII activity. MeCP2 

serves as a platform, to which Hdac2 and Dnmt1 can bind, to repress Pomc gene 

activity. Pituitary cells proliferate postnatally, especially during the early postnal days. 

During this process, this co-repressor complex (MeCP2, Hdac2 and Dnmt1) could 

help the pituitary cells to maintain DNA methylation during pituitary cell mitosis. 

Maternal separation induced higher levels of AVP expression in the PVN of the 

hypothalamus which in turn leads to higher level of MeCP2 phosphorylation. As a 

consequence, MeCP2 becomes phosphorylated and dissociated from the Pomc 

promoter resulting in loss binding of co-repressor complex such as Hdac2 and Dnmt1. 

Dnmt1 is a methyltransferase which is responsible for maintenance of DNA 

methylation pattern during cell replication. Due to the loss of Dnmt1 binding at the 

Pomc promoter during mitosis, DNA methylation pattern could not be faithfully 

maintained, probably promoting passive DNA demethylation. On the contrary, in the 

control animals DNA methylation pattern is well preserved during pituitary cell 

mitosis since relatively higher level of MeCP2 as well as Dnmt1 are present at the 

Pomc promoter. 
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Figure 46. Model of how early life stress (ELS) leads to epigenetic upregulation of Pomc gene 
expression. Early life stress produces long-lasting increases in the activity of the HPA axis, 
characterized by increased pituitary Pomc mRNA expression, ACTH secretion and elevated levels 
of corticosterone. Epigenetic mechanisms, especially DNA methylation, appear to be responsible 
for controlling Pomc gene expression by recruiting MeCP2 to silence the gene under baseline 
(control) conditions. ELS mice display reduced occupancy of MeCP2 at the Pomc promoter, 
resulting from hypomethylation of multiple CpG residues (CpG 6−8) in the distal promoter region 
of Pomc. In addition, MeCP2 binding affinity is also regulated by phosphorylation at serine 438. 
When MeCP2 is phosphorylated at serine 438, the configuration of MeCP2 protein might change 
and MeCP2 dissociates from the Pomc promoter, leading to loss of binding of co-repressor 
complexes such as Hdac2 and Dnmt1. Pituitary cells proliferate postnatally. During this mitosis, 
co-repressor complexes (MeCP2, Hdac2 and Dnmt1) may facilitate maintenance of DNA 
methylation. The maternal separation (ELS) paradigm induces higher levels of AVP expression in 
the hypothalamic PVN (Murgatroyd et al., 2009) which, in turn, leads to higher levels of MeCP2 
phosphorylation. As a consequence, MeCP2 proteins, together with co-repressor complexes, 
dissociate from the Pomc promoter, resulting in increased Pomc expression. Dnmt1 is a 
methyltransferase involved in maintenance of DNA methylation patterns during cell replication. It 
is hypothesized that loss of Dnmt1 binding at the Pomc promoter during mitosis, does not allow 
faithful duplication of the parental DNA methylation pattern and results in passive DNA 
demethylation. On the contrary, the DNA methylation pattern is well preserved during pituitary 
cell mitosis in control animals because of the relatively higher levels of MeCP2 and Dnmt1 at the 
Pomc promoter. 
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5 Summary 

Early-life stress (ELS) can lead to enduring changes in the structure and function of 

neural circuits and endocrine pathways, resulting in altered vulnerability thresholds 

for stress-related disorders such as depression and anxiety.    

The question addressed in this work was whether epigenetic mechanisms contribute to 

the long-term programming of altered hypothalamus-pituitary-adrenal axis activity in 

ELS (maternal separated on postnatal days 1-10) mice.  

Adrenocorticotropic hormone (ACTH), a key pituitary mediator of the adrenocortical 

response to stress, is encoded by the proopiomelanocortin (Pomc) gene. Corticotropin 

releasing hormone (CRH) and arginine vasopressin (AVP) are the main upstream  

neural regulators of Pomc gene expression and the post-translational processing of its 

peptidergic products, whereas glucocorticoids, secreted by the adrenals in response to 

stress, exert negative feedback actions on Pomc synthesis and ACTH secretion. It was 

shown that Pomc mRNA level is persistently increased in ELS mice and leads to 

sustained hypersecretion of glucocorticoids. Interestingly, ELS causes a reduction in 

DNA methylation at a critical regulatory region of the Pomc gene; this occurs with 

some delay after onset of the stress and persists for up to 1 year. A series of 

experiments (including reporter-, EMSA-, IHC- and ChIP-assays) supported the 

concept that the adverse early-life event induces changes in Pomc gene methylation 

and results in persistently upregulated expression of the Pomc gene. Interestingly, 

stress-induced changes in DNA-methylation were found to be more pronounced in 

males than in females, raising the possibility that epigenetic encoding occurs in a sex-

specific manner; this may help to explain sex differences in susceptibility to stress-

related disorders.  

Collectively, the results of this study indicate that epigenetic mechanisms can serve to 

translate environmental cues into stable changes (“cellular memory”) in gene 

expression in post-mitotic tissues, without the need for alterations in the genetic code. 

Keywords:  early life stress (ELS), proopiomelanocortin (Pomc), epigenetics, DNA 

methylation, MeCP2                         
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7 Abbreviations 
 
7.1 Standard 
 
35S Sulphor-isotope 35 5’UTR 5' Untranslated region 

5hmC 5’ Hydroxymethyl cytosine 5mC 5’ Methyl cytosine 

aa Amino acids A Adenine 

C Cytosine cDNA Complementary DNA 

cm,mm Centimeter, Millimeter cpm Counts per Minute 

DNA Deoxyribonucleic acid EMSA Electrophoretic mobility shift assay 

G Guanine g Gram 

h, min, sec Hour, Minute, Second kb Kilobase 

kDa Kilodalton l Litre 

µ Micro m Milli 

M Molar mRNA Messenger RNA 

n Nano OD Optical density 

PCR Polymerase chain reaction RNA Ribonucleic acid 

rRNA Ribosomal RNA RT Room temperature 

RT-PCR Reverse transcription PCR T Thymine 

Tm Melting temperature U Uracil 

Vol Volume W Watt 

 
 
7.2 Buffers and substances 
 
Ac Acetate ATP Adenosine-5'-triphosphate 

BSA Bovine serum albumin ddH2O di-distilled water 

DEPC Diethylpyrocarbonate DMEM Dulbecco's Modified Eagle Medium 

DMSO Dimethyl sulfoxide dNTP Deoxyribonucleotide 

DTT Dithiothreitol EDTA Ethylendiamintetraacetate 

FCS Fetal calf serum GST Glutathione-S-transferase 

HEPES 4-(2-hydroxyethyl)-1-
piperazineethanesulfonic acid 

IPTG Isopropyl β-D-1-thiogalactopyranoside 

PAGE Polyacrylamid gel electrophoresis PBS Phosphate buffered saline 

SDS Sodium dodecyl sulfate TBS Tris-buffered saline 
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TE Tris-EDTA buffer TEMED Tetramethylethylenediamine 

Tris Tris-(hydroxymethyl)- 

aminomethane 

X-Gal Bromo-chloro-indolyl- 

galactopyranoside 

 
 
7.3 Non-standard 
 
ACTH Adrenocorticotropic hormone AP-1 Activator protein 1 

AVP Arginine vasopressin AVP v1bR AVP v1b receptor  

CaMKII Calcium/calmodulin kinase II cAMP Cyclic adenosine monophosphate  

CGI CpG island ChIP Chromatin immunoprecipitation 

CpG Cytosine-phosphate- guanine CRH Corticotropin-releasing hormone 

DEX Dexamethasone Dnmt DNA-methyl-transferase 

E.coli Escherichia coli ELS Early-life stress 

FLAG DYKDDDDK GAPDH Glyceraldehyde-3-phosphate 
dehydrogenase 

GR Glucocorticoid receptor H3Ac Histone 3 acetylation 

H3K9me2 Histone 3 lysine 9 dimethylation HAT Histone acetyltransferase 

HDAC Histone deacetylase His Histone 

HPA Hypothalamic-pituitary-adrenal HPRT Hypoxanthine guanine phosphoribosyl 
transferase 

MeCP2 Methyl CpG binding protein 2 NGFI-B Nerve growth factor-induced protein B 

Nur77 Orphan receptor family nuclear 
protein 

RNA Pol II RNA polymerase II 

POMC Proopiomelanocortin PVN Paraventricular nucleus 

SP1 Transcription factor SP1 SSRI Selective serotonin re-uptake inhibitors 
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