DISSERTATION ZUR ERLANGUNG DES DOKTORGRADES DER FAKULTÄT FÜR CHEMIE UND PHARMAZIE DER LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

HETEROPHOSPHOLE UND METALLKOMPLEXE VON AMINOPHOSPHONSÄUREN

SYNTHESE, REAKTIVITÄT, SPEKTROSKOPIE UND STRUKTURCHEMIE

VORGELEGT VON

WOLFGANG BETZL MASTER OF SCIENCE

AUS

WASSERBURG A. INN

2011

<u>Erklärung</u>

Diese Dissertation wurde im Sinne von § 13 Abs. 3 bzw. 4 der Promotionsordnung vom 29. Januar 1998 (in der Fassung der sechsten Änderungssatzung vom 16. August 2010) von PROF. DR. KONSTANTIN KARAGHIOSOFF betreut.

EHRENWÖRTLICHE VERSICHERUNG

Diese Dissertation wurde selbständig, ohne unerlaubte Hilfe erarbeitet.

Wasserburg, 19. Februar 2012

Wolfgang Betzl

Dissertation eingereicht am:	19.12.2011
1. Gutachter:	PROF. DR. KONSTANTIN KARAGHIOSOFF
2. Gutachter:	PROF. DR. THOMAS MATTHIAS KLAPÖTKE
Mündliche Prüfung am:	13.01.2012

Meinen Eltern gewidmet

Ein Spektrum hat nichts mit einem Drum Speck zu tun HELMUT HACKL

Blaue Chemie (CAROLINE MITTERMAIER)

DANKSAGUNG

Dankbarkeit ist das Gedächtnis des Herzens. JEAN BAPTISTE MASSILLON (1663–1742)

An erster Stelle möchte ich hier meinem Doktorvater **PROF. DR. KONSTANTIN KARAGHIOSOFF** danken, der mich bei der Anfertigung dieser Arbeit in vielerlei Hinsicht unterstützt hat. Durch seinen unermüdlichen Einsatz, seinen guten Ideen und seiner steten Diskussionsbereitschaft – insbesondere bei der Interpretation der NMR-Spektren – hat er entscheidend zum Erfolg meines Promotionsprojektes beigetragen. Insbesondere möchte ich hier auch seine Bemühungen erwähnen, den NMR-Geräten und dem Röntgendiffraktometer zu jeder Tages- und Nachtzeit wertvolle Daten zu entlocken.

PROF. DR. THOMAS M. KLAPÖTKE danke ich für die freundliche Aufnahme an seinem Leerstuhl, das mir entgegengebrachte Vertrauen und die freundliche Übernahme des Zweitgutachtens.

Bei den Mitgliedern der Arbeitskreise KARAGHIOSOFF und KLAPÖTKE möchte ich mich für die nette Arbeitsatmosphäre im Arbeitskreis und die schöne Zeit bedanken. Meinen Laborkollegen danke ich für die gute Arbeitsatmosphäre und die moralische Unterstützung. Der Sekretärin unseres Lehrstuhls, Frau **IRENE SCHECKENBACH**, möchte ich für Ihre Unterstützung im Kampf mit der universitären Bürokratie danken. **NorBERT MAYR** gilt mein Dank für die freundliche Hilfe bei Hardware- und Softwareproblemen. Bei den "Coffein-Dealern" des Arbeitskreises **HENDRIK RADIES** und **ANIAN NIEDER** möchte ich mich für die Versorgung mit Kaffee, Zucker und Milch bedanken.

Nicht fehlen darf an dieser Stelle der Dank an die Lehramtsstudenten ANDREAS MÖRGENTHALER, TANJA STEGER, MARKUS SCHULLER und STEPHAN OXYNOS, meine F-Praktikanten NICO JAHN, MAXIMILIAN KOPPENWALLNER, CHRISTINA HETTSTEDT, LYDIA KLIER und SEBASTIAN WIMMER sowie die Bachelor-Studenten CHRISTOPH HEINZL, ANNA KALINNIK und AMRA BLUME (damals hieß sie noch MULAHASANOVIĆ). Sie alle haben wertvolle Beiträge zu dieser Arbeit geleistet. Ferner konnte ich selbst viel durch die Betreuung lernen.

Weiter möchte ich dem gesamten X-Ray Team für die Messung zahlreicher Datensätze sowie **PD DR. OLIVER M. OECKLER** und **DR. KARIN Lux** für ihren Rat bei einigen kristallographischen Problemen danken. Bei der analytischen Abteilung im Hause möchte ich mich für die Messungen, welche im Rahmen dieser Dissertation von ihnen durchgeführt wurden, ebenfalls ganz herzlich bedanken. Besonders möchte ich in diesem Zusammenhang **PETER MAYER** und **CHRISTINE NEUMANN** für die Messung unzähliger NMR-Spektren danken.

Bei **PD Dr. HANS-CHRISTIAN BÖTTCHER** möchte ich mich für die freundliche Überlassung von Metallcarbonylen sowie für rat- und

tatkräftige Unterstützung bei der Untersuchung der Koordinationschemie von Heterophospholen bedanken.

Meinen Laborkolleginnen **CHRISTINA HETTSTEDT** und **AMRA BLUME** danke ich für das Ertragen meiner Launen während dem Verfassen meiner Dissertation und das Korrekturlesen der Arbeit.

Ein besonderer "Dank" gilt an dieser Stelle auch **KARL THEODOR M. N. J. J. P. F. J. S. FREIHERR VON UND ZU GUTTENBERG** dafür, dass er es geschafft hat die Promotion zu einer Lachnummer zu degradieren.

Dem Begabtenförderungswerk der katholischen Kirche **Cusanuswerk** möchte ich für die Aufnahme in die Promotionsförderung und die finanzielle und ideelle Unterstützung danken.

Last but not least gilt mein größter Dank jedoch meiner Familie. Ohne ihre moralische und finanzielle Unterstützung wäre dieses Studium nicht möglich gewesen. Meiner Freundin **CAROLINE MITTERMAIER** danke ich für ihre Liebe und den Halt den sie mir gibt.

Danke!

Kurz-Inhaltsverzeichnis

Kurz-Inhaltsverzeichnis	i
Inhaltsverzeichnis	. ii
Abkürzungen und Konventionen	xii
Erläuterungen zu den Kristallstrukturen	xiv
1. Einleitung und Aufgabenstellung	. 1
2. Arylphosphane und deren Hydrolyseprodukte	. 4
3. Strukturen von (Amino)phosphin- und (Amino)phosphonsäuren	
und deren Metallsalze	57
4. Anellierte 1,4,2-Diazaphosphole1	13
5. 2 <i>H</i> -1,2,3-Diazaphosphole1	36
6. 1,3,4-Chalkogenazaphosphole1	57
7. 1,3,4,2-Oxadiazaphosphole und Polyazaphosphapentalene1	64
8. Addition von Alkoholen an Heterophosphole1	69
9. Koordinationschemie von Heterophospholen1	82
10. Zusammenfassung1	87
11. Experimenteller Teil1	98
Angang 1: Kristallographische Daten2	92
Angang 2: Literaturverzeichnis	06
Angang 3: Formelverzeichnis	13
Angang 4: Lebenslauf	23

Inhaltsverzeichnis

Kurz-Inhaltsverzeichnis	i
Inhaltsverzeichnis	ii
Abkürzungen und Konventionen	. xii
Erläuterungen zu den Kristallstrukturen	xiv
1. Einleitung und Aufgabenstellung	1
1.1. Heterophosphole	1
1.2. Aufaabenstellung	2
2. Arvlphosphane und deren Hydrolyseprodukte	4
2.1. Allgemeines zu Organophosphin- und	
Diorganophosphinigsäuren	4
2.2. (Bis(trifluormethyl)phenyl)-phosphan-Derivate	6
2.2.1. Synthese	6
2.2.2. Kenntnisstand	7
2.2.3. $(2.6-(CF_3)_2C_6H_3)-PCI_2$ (13a)	8
2.2.4. (2.6-(CF ₂) ₂ C ₆ H ₂) ₂ PCI (11)	9
2 2 4 1 Molekül- und Kristallstruktur von 11	10
2.25 (2.6-(CF ₂) ₂ C _c H ₂)-P(NFt ₂) ₂ (13b) und	10
$(2.4 - (CF_2)_2 C_2 H_2) - P(NFt_2)_2 (16b)$	12
226 (24-(CF ₂) ₂ C ₆ H ₂)-PCl ₂ (165)	16
$2 2 7 (2 6 (CF_2)_2 C_2 H_2) - PO_2 H_2 (1a)$	16
2.2.7.1 Molekül- und Kristallstruktur von 1a	17
2.2.7.1. Molekul und Kristalistruktul von Turringer	19
2.3 Reaktionen der Bis(trifluormethyl)nhenyl)-nhosnhane	23
2.3.1 Reaktionen der Diaminonhosphane 13h und 16h mit	25
Chalkogenen	23
2 3 2 Hydrolyse von 11	25
2.3.2.1 Molekül- und Kristallstruktur von 17	25
2.3.2.1. Molekül- und Kristallstruktur von 18	27
2.3.2.2.1 Molekul- ulu Kiistalisti uktui Voli 10	29
2.3.3. Salze VOII $(2,0^{-}(CF_3)_2C_6H_3)^{-}PO_2H_2 (Ta) \dots (Ta)$	27
2.3.3.1. $(\text{IMEDAID})(2,0^{-}(\text{CI}_{3})_{2}\text{C}_{6}\text{II}_{3}^{2}\text{FO}_{2}\text{II}_{2}^{2} \times 4 \text{II}_{2}\text{O}(21) \dots \dots $	25
2.3.3.2. $MII(2,0^{-}(CF_3)_2C_6II_3^{-}FC_2II)_2(22)$	20
2.3.3.3. $ZII(2,0^{-}(CF_3)_2C_6\Pi_3^{-}PO_2\Pi_{12}(23)$	20
2.3.3.4. $SI_3(2,0^-(Cr_3)_2C_6\Pi_3^-PO_2\Pi)_6 \times 0$ MEOH $\times 0$ $\Pi_2O(24)$	40
2.3.3.5. $[NI(\Pi_2 \cup)_6](N\Pi_4)_2(2,0-(U\Gamma_3)_2U_6\Pi_3-PU_2\Pi)_4 \times 0.33\Pi_2U$	4 E
(23)	45
2.4. FINORIER AFYIPHOSPHARE $C_6 \Pi_n \Gamma_{(5-n)} - PKR$	47
	40
2.4.1.1. Synumese	40
2.4.1.2. $C_6F_5 = P(NEl_2)_2$ (20d)	49
2.4.1.3. $C_6F_5 - PCI_2$ (28D)	
2.4.1.4. $C_6F_5 - PO_2H_2$ (29)	51
2.4.2. (Irifiuorpnenyi)aicniorpnospnane (30)	52
2.4.2.1. Synthese	52
$2.4.2.2.$ $C_{6}F_{3}H_{2}-PCI_{2}$ (30)	53
2.5. Pyridin-2-yl-phosphane	54

		2.5.1	. Synthese	54
		2.5.2	. Lithiierung von 2-Brompyridin	54
		2.5.3	. $(2-C_5H_4N)-P(NEt_2)_2$ (33a)	55
		2.5.4	. $(2-C_5H_4N)-PO_2H_2$ (34)	55
3.		Struk	kturen von (Amino)phosphin- und (Amino)phosphonsäuren	
		und o	deren Metallsalze	57
	3.	1.	Allgemeines zu Aminophosphonsäuren	57
	3.	2.	Molekül- und Kristallstruktur von (R/S) -1-	
	A	minoe	thylphosphonsäure (35)	57
	3	3.	Molekül- und Kristallstruktur von 2-Aminoethylphosphonsäure	•
			(36)	60
	3	4	Molekül- und Kristallstruktur von	
	5.		(R/S)-1-Aminopropylphosphonsäure (37)	63
	З	5	Molekül- und Kristallstruktur von	05
	5.		$(P/S) = 1 - \Lambda \min(-1 - nhenyl-methylphosphinsäure (38))$	64
	S	6	Molekül- und Kristallstruktur von	
	5.	.0.	$1_{\text{Aminoethyl}}$ $1_{\text{dinboshonsäure}}$ (30)	66
	2	7	Molekül und Kristellstruktur von N (Deenhonemethyl)glycin	00
	з.	./.		60
	\mathbf{r}	0	(40)	09
	5.	.8.	Molekul- und Kristalistruktur von	72
	2	0	Guaniainiummetnyipnosphonsaure-Hyarat (41)	12
	3.	.9.	Molekul- und Kristalistruktur von	
			Aminomethanphosphonsaure <i>semi</i> -hydronitrat	
	_		$(HO_3P-CH_2-NH_3) \times [(H_2O_3P-CH_2-NH_3)NO_3] (42) \dots$	/4
	3.	.10.	$[Ca(O_3P-CH_2-NH_3)_{4/2}(H_2O)_2] \times 4 H_2O (43)$	//
	3.	.11.	$Li(O_3P-CH_2-NH_3) \times H_2O$ (44)	79
		3.11.	1. Modifikation 1 (44i)	80
		3.11.	2. Modifikation 2 (44ii)	82
		3.11.	3. Modifikation 3 (44iii)	85
	3.	.12.	$[K(O_3P-CH_2-NH_3)_{2/2}(H_2O)_{4/2}] (45)$	88
	3.	.13.	Ca(HO ₃ P-CH ₂ -PO ₃ H) (46)	91
	3.	.14.	K ₂ (HO ₃ P-CH ₂ -PO ₃ H) (47)	93
	3.	15.	$[Na(H_2O)_{4/2}(H_2O)_2][Mg(O_3PCO_2)_{3/3}(H_2O)_{2/2}]$ (48)	96
	3.	16.	$[Cr(H_2O)_6]Cl_2(O_3PCH_2(NHC(NH)_2) \times (HO_3PCH_2(NHC(NH)_2) \times$	
			H ₂ O (49)	99
	3.	16.1.	(R/S)-Phosphonsäure-2,4,6-tris(<i>tert</i> -butyl)phenyl-ester	
			(50)1	.02
		3.16.2	2. Molekül- und Kristallstruktur von (R/S)-MesO-PO ₂ H ₂ (50)1	.03
	3.	17.	(-)-Menthyl-OPCl ₂ (53a)1	.04
	3.	18.	(-)-Menthyl-OPO ₂ H ₂ (53b)1	.05
	3.	19.	((–)-MenthylO) ₃ P (54)1	.05
	3.	.20.	Phosphonsäure-bis((–)-menthyl)-ester (56)	.06
	3.	.21.	Neue Komplexe der Tritylphosphinsäure ($Ph_3CPO_2H_2$) (57)1	06
	5.	3.21	1. $Ph(O_2HPCPh_2)_2$ (58) 1	07
		3.21	$2 [Ca(H_2\Omega)_{\epsilon}](\Omega_2HPCPh_2)_2 \times 6 H_2\Omega (59) \qquad 1$	09
	З	.22	Methylphosphinsäure (60) und Dimethylphosphinsäure (61) 1	17
4	5.	Anell	ierte 1.4.2-Diazanhosphole	13
ſ,	Δ	1	Synthese	13
	Г I			

	4.2.	Synthese der Ausgangsverbindungen	115
	4.2.1	2-Amino-4-phenyl-1,3-thiazol (64)	115
	4.2.2	2. 2-Bromessigsäure-(–)-menthyl-ester (65a)	115
	4.2.3	 2-Bromessigsäure-(-)-pantolactyl-ester (65d) 	116
	4.2	2.3.1. Molekül- und Kristallstruktur von 2-Amino-4-phenyl-	
		1,3-thiazol-3-ium-2-bromacetat (64a)	117
	4.3.	Synthese von N-Alkyl-cycloimminium-Salzen ausgehend von	า
		2-Amino-4-phenyl-1,3-thiazol und 2-Aminopyridin und	
		2-Bromessigsäurealkylestern	119
	4.3.1	Molekül- und Kristallstruktur von 68a × CH_2Cl_2	123
	4.3.2	2. Molekül- und Kristallstruktur von 68b	124
	4.3.3	 Molekül- und Kristallstruktur von 68c 	126
	4.3.4	4. Molekül- und Kristallstruktur von 68c × $\frac{1}{2}$ CHCl ₃	127
	4.4.	Synthese neuer 4H-1,4,2-Diazaphosphole	128
	4.4.1	5-Phenyl-1,4,2-diazaphospholo[5,4-b]-1,3-thiazol (70e)).129
	4.4.2	4H-1,4,2-Diazaphospholo[5,4- <i>b</i>]-1,3-thiazole und	
		4H-1,4,2-diazaphospholo[4,5-a]pyridine	129
	4.4.3	3. Zusammenfassung der NMR-Daten	130
	4.4.4	H. Hydrolyse von /0e	131
	4.4	1.4.1. Molekul- und Kristalistruktur von 73 × CDCl ₃	132
	4.4.5	b. Hydrolyse von 70a	.133
F	4.4	H.S.I. Kristalistruktur von 680 × 72 MeCN	.133
э.	2 <i>П</i> -1 5 1	4 Dichlarphaephanyl 24 1 2 2 diazaphaephala 77	.120
	J.I. 511	Synthese der Hydrazone 78 aus Acetylverbindungen	.137
	5.1	1 1 Molekül- und Kristallstruktur von (E)-1-Dhenvl-2-	
	5.1	(1-(thionhen-2-vl)ethyliden)hydrazin (78f)	140
	5.1	1.2. Molekül- und Kristallstruktur von (<i>F</i>)-1-	
	511	(1-(Furan-2-vl)ethvliden)-2-phenvlhvdrazin (78g)	141
	5.1	1.3. Molekül- und Kristallstruktur von (E) -1-Methyl-2-	
		(1-(2-phenvlhvdrazon)ethvl)-1H-pyrrol (78h)	142
	5.1.2	2. Synthese von 2,5-substituierten	
		2H-1,2,3-Diazaphospholen 79	143
	5.1.3	8. Synthese der 4-Dichlorphosphanyl-	
		2H-1,2,3-Diazaphosphole 77	149
	5.2.	$2H-1,2,3$ -Diazaphosphole mit $\mathbb{R}^4 \neq \mathbb{H}$ 74	151
	5.2.1	Synthese der Hydrazone 75	152
	5.2.2	 Synthese der 2H-1,2,3-Diazaphosphole 74 	153
6.	1,3,4	4-Chalkogenazaphosphole	157
	6.1.	1,3,4-Thiazaphosphole 86	157
	6.1	1. Kristallstruktur von 4-Hydroxy-2-phenyl-1,3-thiazol-	4 5 0
	C D	3-ium-bromid-hydrat (90) × H ₂ O	158
	6.2.	Auf dem weg zur Darstellung von 1,3,4-Selenazaphosphole	n 100
	671	Synthese der Ausgangeverhindungen	100
	0.2.1 6 2 2	Synulese del Ausyaliysverbilduligen	101
7	0.2.2	Aikyileluliy voli Selellobelizalillu	161
/.	י,כ,י 71		16/
	/		+

	7.1.1	. Umsetzung von 2,2,2-Trifluor-N'-methylacetohydrazid	
_	2	(100c) mit PCI ₃	164
/.	.2.	Polyazaphosphapentalene	160
	/.2.1	. Umsetzung von 1H-Tetrazoi-1,5-diamin (103) mit	100
		$P(NEt_2)_3$	100
	1.2.2	. Umsetzung 5-Amino-1H-tetrazoi-Derivaten mit	100
0	الد: الم ۸	(ULH2)PUI2	168
ð.		Abbängigkeit der ² 1 Kennlungekenstante vom	109
ð.	.1.	Diederwinkel in Pheenbaren	170
0	Ъ	Addition yon Alkoholon on 2 Mathyl E phonyl	170
0.	.2.	Addition von Alkonolen an 2-Methyl-5-phenyl- $2H$ 1.2.4.2 triazanhaenhal (118)	171
0	2	Addition yon Alkoholon on 2 Mathevy/corbonyl 5 phonyl	. 1 / 1
0.		1.2.4 thiszaphocobol (86b)	172
0	1	Addition yon Alkoholon on 2 E. Dimothyl	1/3
0.	.4.	Addition von Aikonolen dit 2,5-Dimetriyi- 2H 1.2.2 diazanbeenhel (70a)	176
Q	5	Addition yon Alkoholon on 70°	170
0. Q	.J. 6	Addition von 115 an 71a	100
0. Q	.0.	Addition von Alkoholen an 70e	100
0	./. Koor	dinationschemie von Heterophospholen	197
۶. ۵	1	Umationschemie von Heterophospholen	102
9.		1 3 4 -thiazanhosnhol (86c) mit	
		Bis $(u^2$ -chlor(1, 5-cyclooctadien)rhodium) (1/9)	183
q	2	Umsetzung von 2-Methovycarbonyl-5-phenyl-	105
		1.3.4 -thiazanhosphol (86b) mit Ni($(\Omega)_{\ell}$ (152)	185
q	З	Imsetzung von 2-Ethoxycarbonyl-5-nbenyl-	105
		1.3.4 -thiazaphosphol (86c) mit $Fe_2(CO)_2$ (154)	186
10	Zusa	mmenfassung	187
10.	2030 N 1	Arvlnhosnhane Phosnhin- und Phosnhonsäuren	187
_	10.1	1 Elektronischer Finfluss der $(CF_2)_2C_2H_2$ -Grunne	187
	10.1	2 (2.6-(CE_3) ₂ C ₆ H ₂)-PO ₂ H ₂ (1a)	188
	10.1.	3. Arylphosphane und Arylphosphinsäuren mit besonderen	100
	_0	Substituenten	189
1(0.2.	Aminophosphon und -phosphinsäuren	190
_	10.2.	1. Freie Säuren	191
	10.2.	2. Metall-Phosphonat-Salze	192
1(0.3.	Heterophosphole	194
_	10.3.	1. Anellierte 1,4,2-Diazaphosphole	194
	10.3.	2. $2H-1,2,3$ -Diazaphosphole	195
	10.3.	3. 1,3,4-Thiazaphosphole	196
	10.3.4	4. Polyazaphosphapentalene	196
	10.3.	5. 1,2-Additionen von Alkoholen an Heterophospholen	196
11.	Expe	rimenteller Teil	198
1	1.1.	Analytik	198
	11.1.	1. NMR-Spektroskopie	198
	11.	1.1.1. Standards und Messfrequenzen	198
	11.	1.1.2. Locksignal	198
	11.	1.1.3. Temperatur	198

11.1.1.4. Integralausbeuten	199
11.1.2. Massenspektrometrie	199
11.1.3. Schwingungsspektroskopie	199
11.1.4. Röntgenanalytik an Einkristallen	199
11.1.5. Schmelzpunkte	200
11.1.6. Elementaranalyse	200
11.2. Arbeitstechnik	200
11.2.1. Allgemeine Schlenktechnik	200
11.2.2. Abfüllen von NMR-Proben unter Schlenk-Bedingungen	200
11.3. Chemikalien	201
11.3.1. Absolute Lösemittel	201
11.3.2. Stickstoffbasen (NEt ₃ und TMEDA)	201
11.3.3. Eduktspektren	201
11.3.3.1. Dichlor(phenyl)phosphan	201
11.4. Experimente	202
11.4.1. Ausgangsverbindungen	202
11.4.1.1. Tris(dimethylamino)phosphan (200a)	202
11.4.1.2. Tris(diethylamino)phosphan (200b)	202
11.4.1.3. Phenylphosphinsäure (201)	204
11.4.2. Arylphosphane und deren Hydrolyseprodukte	205
11.4.2.1. (2,6-Bis(trifluormethyl)phenyl)-dichlorphosphan	
(13a)	205
11.4.2.2. Bis(2,6-bis(trifluormethyl)phenyl)-chlorphosphan	
(11)	206
11.4.2.3. Bis(diethylamino)(2,6-bis(trifluormethyl)phenyl)	
phosphan (13b) und Bis(diethylamino)	
(2,4-bis(trifluormethyl)phenyl)phosphan (16b)	207
11.4.2.4. 2,4-Bis(trifluormethyl)phenyl)-dichlorphosphan (16a) 208
11.4.2.5. (2,6-Bis(trifluormethyl)phenyl)-phosphinsäure (1a).	209
11.4.2.6. Umsetzung von 13b und 16b mit Schwefel	210
11.4.2.7. Umsetzung von 13b und 16b mit Selen	210
11.4.2.8. Umsetzung von 13b und 16b mit Tellur	211
11.4.2.9. Hydrolyse von 11	211
11.4.2.10. Einkristalle von 17	211
11.4.2.11. Einkristalle von 18	212
11.4.2.12. (TMEDAH ₂)-(2,6-(CF ₃) ₂ C ₆ H ₃ -PO ₂ H) ₂ × 4 H ₂ O (21)	212
11.4.2.13. $Mn(2,6-(CF_3)_2C_6H_3-PO_2H)_2$ (22)	213
11.4.2.14. $Zn(2,6-(CF_3)_2C_6H_3-PO_2H)_2$ (23)	213
11.4.2.15. $Sr_3(2,6-(CF_3)_2C_6H_3-PO_2H)_6 \times 6 \text{ MeOH} \times 8 H_2O(24)$	214
11.4.2.16. $[Ni(H_2O)_6](NH_4)_2(2,6-(CF_3)_2C_6H_3-PO_2H)_4 \times 0.33 H_2O_2C_6H_3-PO_2H)_4 \times 0.33 H_2O_2C_6H_3-PO_2H_3$	
(25)	214
11.4.2.17. Bis(diethylamino)pentafluorphenylphosphan (28a).	215
11.4.2.18. Umsetzung von (Pentafluorphenyl)lithium mit PCl ₃ .	
11.4.2.19. Umsetzung von (Pentafluorphenyl)magnesiumchlori	a
	216
11.4.2.20. NEt ₂ /CI-Austausch von 28a	21/
11.4.2.21. Hydrolyse von Bis(diethylamino)	240
pentariuorpnenyipnosphan (28a)	218

11.4.2.22.	(Pentafluorphenyl)phosphinsäure (29)	218
11.4.2.23.	(2,3,6-Trifluorphenyl)dichlorphosphan (30a)	219
11.4.2.24.	(2,3,4-Trifluorphenyl)dichlorphosphan (30b)	220
11.4.2.25.	Bis(diethylamino)-pyridin-2-yl-phosphan (33a)	221
11.4.2.26.	Pyridin-2-yl-phosphinsäure (34)	221
11.4.3. St	rukturen von (Amino)phosphin- und	
(A	mino)phosphonsäuren und deren Metallsalze	223
11.4.3.1.	Allgemeine Arbeitsvorschrift zur Kristallisation von	
	(Amino)phosphin- und (Amino)phosphonsäuren	223
11.4.3.2.	(<i>R</i> / <i>S</i>)-1-Aminoethylphosphonsäure (35)	223
11.4.3.3.	2-Aminoethylphosphonsäure (36)	223
11.4.3.4.	(<i>R</i> / <i>S</i>)-1-Aminopropylphosphonsäure (37)	223
11.4.3.5.	(R/S)-1-Amino-1-phenyl-methylphosphonsäure (38)223
11.4.3.6.	Aminoethyl-1,1-diphosphonsäure (39)	223
11.4.3.7.	<i>N</i> -(Phosphonomethyl)glycin (40)	224
11.4.3.8.	Guanidiniummethylphosphonsäure-Hydrat (41)	224
11.4.3.9.	Aminomethanphosphonsäure <i>semi</i> -hydronitrat (42)	224
11.4.3.10.	$[Ca(O_3P-CH_2-NH_3)_{4/2}(H_2O)_2] \times 4 H_2O (43)$	224
11.4.3.11.	$Li(O_3P-CH_2-NH_3) \times H_2O$ (Modifikation 1) (44i)	225
11.4.3.12.	$Li(O_3P-CH_2-NH_3) \times H_2O$ (Modifikation 2) (44ii)	225
11.4.3.13.	$Li(O_3P-CH_2-NH_3) \times H_2O$ (Modifikation 3) (44iii)	225
11.4.3.14.	$[K(O_3P-CH_2-NH_3)_{2/2}(H_2O)_{4/2}] (45) \dots$	226
11.4.3.15.	$Ca(HO_3P-CH_2-PO_3H)$ (46)	226
11.4.3.16.	$K_2(HO_3P-CH_2-PO_3H)$ (47)	226
11.4.3.17.	$[Mg(O_{3}PCO_{2})_{3/3}(H_{2}O)_{2/2}] [Na(H_{2}O)_{4/2}(H_{2}O)_{2}] (48)$	227
11.4.3.18.	$[Cr(H_2O)_6]Cl_2(O_3PCH_2(NHC(NH)_2) \times$	
	$(HO_3PCH_2(NHC(NH)_2) \times H_2O(49)$	227
11.4.3.19.	Dichlor(2,4,6-tris(<i>tert</i> -butyl)phenoxy)phosphan (5	1)228
11.4.3.20.	(R/S)-Phosphonsäure-2,4,6-tris(<i>tert</i> -butyl)	
	phenyl-ester (50)	228
11.4.3.21.	Dichlor((1R,2S,5R)-2-(1-methylethyl)-	
	5-methylcyclohexyloxy)phosphan (53a)	229
11.4.3.22.	Phosphonsäure-(1R,2S,5R-2-(1-methylethyl)-	
	5-methyl-cyclohexyl)-ester (53b)	230
11.4.3.23.	Tris((1R, 2S, 5R) - 2 - (1 - methylethyl) -	
	5-methylcyclohexyl)phosphit (54)	230
11.4.3.24.	Tritylphosphinsäure ($Ph_3CPO_2H_2$) (57)	231
11.4.3.25.	$Pb(O_2HPCPh_3)_2$ (58)	232
11.4.3.26.	$[Ca(H_2O)_6](O_2HPCPh_3)_2) \times 6 H_2O (59)$	232
11.4.3.27.	Methylphosphinsäure (60) und Dimethylphosphin-	
	säure (61)	232
11.4.3.28.	Dimethylphosphinsäure (61)	233
11.4.3.29.	Methylphosphinsäure (60)	233
11.4.4. An	ellierte 1,4,2-Diazaphosphole	235
11.4.4.1.	2-Amino-4-phenyl-1,3-thiazol (64)	235
11.4.4.2.	2-Bromessigsäure-(1R, 2S, 5R)-2-(1-methylethyl)-	
	5-methylcyclohexyl-ester (65a)	235

	11.4.4.3.	2-Bromessigsäure-(3 <i>R</i>)-4,4-dimethyl-2-oxooxolan-
	11.4.4.4.	2-Amino-4-phenyl-1,3-thiazol-3-ium-2-bromacetat
		(64a)237
	11.4.4.5.	2-Amino-3-(2-((1R, 2S, 5R)-2-(propan-2-yl)-
		5-methylcyclohexyloxy)-2-oxoethyl)-4-phenyl-
		1,3-thiazol-3-iumbromid (68a)237
	11.4.4.6.	2-Amino-3-(2-methoxy-2-oxoethyl)-4-phenyl-
		1,3-thiazol-3-iumbromid (68b)238
	11.4.4.7.	2-Amino-3-(2-ethoxy-2-oxoethyl)-4-phenyl-
		1,3-thiazol-3-iumbromid (68c)239
	11.4.4.8.	2-Amino-3-(2-((1R, 2S, 5R)-2-(propan-2-yl)-
		5-methylcyclohexyloxy)-2-oxoethyl)-4-phenyl-
		1,3-thiazol-3-iumchlorid (68d)239
	11.4.4.9.	2-Amino-1-(2-((1R, 2S, 5R)-2-(propan-2-yl)-
		5-methylcyclohexyloxy)-2-oxoethyl)pyridiniumbromid
		(69a)
	11.4.4.10.	3-((1R, 2S, 5R)-5-Methyl-2-(propan-2-yl)
		cyclohexyloxycarbonyl)-5-phenyl-
		1,4,2-Diazaphospholo[5,4-b]-1,3-thiazol (70a)241
	11.4.4.11.	3-Methoxycarbonyl-5-phenyl-1,4,2-Diazaphospholo
		[5,4- <i>b</i>]-1,3-thiazol (70b)242
	11.4.4.12.	3-Ethoxycarbonyl-5-phenyl-1,4,2-diazaphospholo
		[5,4- <i>b</i>]-1,3-thiazol (70c)242
	11.4.4.13.	5-Phenyl-1,4,2-diazaphospholo[5,4-b]-1,3-thiazol
	_	(70e)243
	11.4.4.14.	3-((1 <i>R</i> , 2 <i>S</i> , 5 <i>R</i>)-5-Methyl-2-(propan-2-yl)
		cvclohexvloxvcarbonvl)-1.4.2-diazaphospholo
		[4.5- <i>a</i>]pvridin (71a)
	11.4.4.15.	(2-Iminium-4-phenyl-1.3-thiazol-3(2H)-yl)
		methylphosphinat-Chloroform (73 x CDCl ₃)
	11.4.4.16.	2-Amino-3-(2-((1R, 2S, 5R)-2-(propan-2-vl)-
		5-methylcyclohexyloxy)-2-oxoethyl)-4-nhenyl-
		1 3-thiazol-3-iumchlorid-Acetonitril (68d) x
		¹ / ₂ MeCN 245
1 -	145 2 <i>H</i>	-1 2 3-Diazanhosnhole 246
	11451	1-Methyl-2-(propan-2-vliden)hvdrazin
	11.1.5.1.	(Acetonmethylhydrazon) (78a) 246
	11 4 5 2	1-Phenyl-2-(propan-2-yliden)hydrazin
	11.4.5.2.	$(\Delta cetonnbenylbydrazon)$ (78d) 246
	11 4 5 3	1-Ethyliden-2-nhenyl-hydrazin
	11.4.5.5.	$(\Delta cetaldehydnhenylhydrazon) (78e) 247$
	11 4 5 4	1-Methyl-2-(1-(thionhen-2-yl)ethyliden)hydrazin
	····	$(2-\Delta cetylthionhen-methylhydrazon)$ (78c) 247
	11 4 5 5	1-Phonyl-2-(1-(thionhon-2-yl)othyliden)hydrazin
	±±. + .J.J.	$\frac{1}{2} - \Delta cetylthionhen-nhenylhydrazon) (72f) 242$
	11156	(2 - Acceptinophen phenyinyalazon) (701)240 1-(1-(Euran-2-yl)ethyliden)-2-phenylhydrazin
	11.4.3.0.	$(2 - \Lambda cet v) f u ran-2 - y r cu y nuch y - 2 - p n cu y nu y u a 2 nu z - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -$
		(2-Acetyliulali-pilenylliyula2011) (709)245

11.4.5.7.	1-Methyl-2-(1-(2-phenylhydrazon)ethyl)-1 <i>H</i> -pyrrol
11.4.5.8.	1-(1-(Biphenyl-4-yl)ethyliden)-2-phenylhydrazin
	(4'-Phenylacetophenon-phenylhydrazon) (78i)250
11.4.5.9.	1,4-Bis(1-(2-phenylhydrazon)ethyl)benzen
	(1,4-Diacetylbenzen-bis(phenylhydrazon) (78j)251
11.4.5.10.	1-Phenyl-2-(1-phenylethyliden)hydrazin
	(Acetophenonphenylhydrazon) (78k)252
11.4.5.11.	1-(1-(Naphthalen-1-yl)ethyliden)-2-phenylhydrazin
	(1-Acetyl-naphthalen-phenylhydrazon) (781)252
11.4.5.12.	2,5-Dimethyl-2H-1,2,3-diazaphosphol (79a)
	(Methode 1)253
11.4.5.13.	2,5-Dimethyl-2 <i>H</i> -1,2,3-diazaphosphol (79a)
	(Methode 2)
11.4.5.14.	5-Methyl-2-phenyl- $2H$ -1,2,3-diazaphosphol (/9d)254
11.4.5.15.	2-Phenyl- $2H$ -1,2,3-diazaphosphol (79e)255
11.4.5.16.	2-Phenyl-5-(thiophen-2-yl)-2H-1,2,3-diazaphosphol
	(79f)
11.4.5.17.	5-(Furan-2-yi)-2-phenyi-2H-1,2,3-diazaphosphoi
11 / E 10	(799)
11.4.5.10.	5-(Dipiteriyi-4-yi)-2-piteriyi-2/-1,2,5-uiazapitospitoi
11 / 5 10	(791)237 1 4 Bis(2 phonyl 2H 1 2 2 diazaphosphol E yl)
11.4.5.19.	$\frac{1}{4} - \frac{1}{2} \left(\frac{2}{1} - \frac{1}{2} - 1$
11 4 5 20	25-Dinhenvl-2H-1 = 23-diazanhosnhol (79k) 258
11 4 5 21	5-(Nanhthalen-1-vl)-2-nhenvl-
11.4.3.21.	2H-1 2 3-diazanhosphol (791) 259
11.4.5.22.	4-Dichlorphosphanyl-2,5-dimethyl-
111101221	2H-1.2.3-diazaphosphol (77a)
11.4.5.23.	4-Dichlorphosphanyl-5-methyl-2-phenyl-
	2 <i>H</i> -1,2,3-diazaphosphol (77d)
11.4.5.24.	4-Dichlorphosphanyl-2-phenyl-
	2H-1,2,3-diazaphosphol (77e)261
11.4.5.25.	4-Dichlorphosphanyl-5-(furan-2-yl)-2-phenyl-
	2H-1,2,3-diazaphosphol (77g)
11.4.5.26.	Umsetzung von (78k) mit PCI_3 in Toluen262
11.4.5.27.	4-Dichlorphosphanyl-5-(naphthalen-1-yl)-2-phenyl-
	2H-1,2,3-diazaphosphol (77l)263
11.4.5.28.	1-Methyl-2-((5R)-2-methyl-5-(prop-1-en-2-yl)
	cyclohex-2-enyliden)hydrazin ((R)-(-)-Carvon-
	methylhydrazon) (75a)263
11.4.5.29.	1-((5R)-2-Methyl-5-(prop-1-en-2-yl)cyclohex-
	2-enyliden)-2-phenylhydrazin ((R)-(-)-Carvon-
	phenylhydrazon) (75b)264
11.4.5.30.	1-(2,4-Dinitrophenyl)-2-((5R)-2-methyl-5-
	(prop-1-en-2-yi)cyclohex-2-enyliden)hydrazin
	$((\kappa)-(-)-Carvon-(2,4-dinitrophenyl)hydrazon) (75c) 265$

11.4.5.31.	1-Cyclopentyliden-2-phenylhydrazin	
	(Cyclopentanonphenylhydrazon) (75d)260	6
11.4.5.32.	1-Cyclohexyliden-2-phenylhydrazin	
	(Cyclohexanonphenylhydrazon) (75e)260	6
11.4.5.33.	Umsetzung von 1-Methyl-2-((5R)-2-methyl-	
	5-(prop-1-en-2-yl)cyclohex-2-enyliden)hydrazin	
	(75a) mit PCl ₃ 26	7
11.4.5.34.	2-Phenyl-2H,4H,5H,6H-cyclopenta[d]-	
	1,2,3-diazaphosphol (74d)26	7
11.4.5.35.	2-Phenyl-4,5,6,7-tetrahydro-	
	2H-1,2,3-benzodiazaphosphol (74e)268	8
11.4.6. 1,3	3,4-Chalkogenazaphosphole270	0
11.4.6.1.	(((2-Methoxy-2-oxoethyl)sulfanyl)-	
	(phenyl)methyliden)azanium-bromid (88b)270	D
11.4.6.2.	(((2-Ethoxy-2-oxoethyl)sulfanyl)(phenyl)methyliden)	_
	azanium-bromid (88c)270	D
11.4.6.3.	2-Methoxycarbonyl-5-phenyl-1,3,4,-thiazaphosphol	
	(86b)	1
11.4.6.4.	2-Ethoxycarbonyi-5-phenyi-1,3,4,-thiazaphosphoi	
	(86C)	T
11.4.6.5.	4-Hydroxy-2-phenyl-1,3-thiazoi-3-ium-bromid-	h
11 4 6 6	Nydrat (90 × H_2 U)	2
11.4.0.0.	2.4 Diphonyl 1.2.2.4 diselensediphocehoten	Z
11.4.0.7.	2,4-Dipiteinyi-1,3,2,4-diselenadipitosphetaii-	ว
11/68	2,4-uiseloii (WOOLLINS-Redgeliz) (93)27. Solonobonzamid (87a)	כ כ
11/17 1 3	3 4 2 - 0 vadiazanhosnhole und Polyazanhosnha-	ر
и.т./. I,. по	ntalene 27	5
11 4 7 1	Stöchiometrische Umsetzung von 2 2 2-Trifluor-	5
±±.1./.±.	N'-methylacetohydrazid (100c) mit PCl ₂ und NEt ₂ 27	5
11472	Umsetzung von 2 2 2-Trifluor-N'-methylacetohydrazid	2
11.11/121	(100c) mit PCl ₂ und NFt ₂ im Überschuss	6
11.4.7.3.	Umsetzungen von 1 <i>H</i> -Tetrazol-1.5-diamin (103) mit	0
	PCl ₃	6
11.4.7.4.	Umsetzung von 1 <i>H</i> -Tetrazol-1,5-diamin (103) mit	-
	P(NEt ₂) ₃	7
11.4.7.5.	Umsetzung von 1-Methyl-1H-tetrazol-5-amin (108)	
	mit (CICH ₂)PCl ₂	7
11.4.8. Ad	dition von Alkoholen an Heterophosphole	9
11.4.8.1.	Addition von (–)-Menthol (115) an 2-Methyl-	
	5-phenyl-2H-1,2,4,3-triazaphosphol (118)279	9
11.4.8.2.	Addition von Cholesterol (116) an 2-Methyl-5-phenyl-	
	2H-1,2,4,3-triazaphosphol (118)279	9
11.4.8.3.	Addition von Adamantan-1-ol (117) an 2-Methyl-	
	5-phenyl-2 <i>H</i> -1,2,4,3-triazaphosphol (118)280	0
11.4.8.4.	Addition von (-)-Menthol (115) an 2-Methoxycarbonyl-	
	5-phenyl-1,3,4,-thiazaphosphol (86b)280	0

11.4.8.5.	Addition von Cholesterol (116) an 2-Methoxycarbonyl-
11.4.8.6.	Addition von Adamantan-1-ol (117) an
	2-Methoxycarbonyl-5-phenyl-1,3,4,-thiazaphosphol (57b)281
11.4.8.7.	Addition von Adamantan-1-ol (117) an
	(86b) in Anwesenheit von Schwefel hzw. Selen 282
11.4.8.8.	Addition von Triphenylmethanol (125) an
	2-Methoxycarbonyl-5-phenyl-1,3,4,-thiazaphosphol
	(86b) in Anwesenheit von Schwefel bzw. Selen
11.4.8.9.	Addition von (–)-Menthol (115) an 2,5-Dimethyl-
	2H-1,2,3-diazaphosphol (79a)284
11.4.8.10.	Addition von Cholesterol (116) an 2,5-Dimethyl-
11 4 0 11	2H-1,2,3-diazaphosphol (79a)285
11.4.8.11.	Addition von Adamantan-1-ol (117) an
11 / 0 17	2,5-Dimetryi- $2H$ -1,2,3-diazaphosphoi (79a)286 Addition von () Monthol (115) on 700
11.4.0.12. 11 / Q 12	Addition von $(-)$ -Menthol (115) an 70a in
11.4.0.15.	Addition von (-)-Mentilor (115) an 70a m Anwesenheit von Schwefel 287
11.4.8.14.	Addition von (–)-Pantolacton (130) an 70a in
1111101111	Anwesenheit von Schwefel
11.4.8.15.	Addition von (–)-Menthol (115) an 71a in
	Anwesenheit von Schwefel
11.4.8.16.	Addition von (–)-Menthol (115) an 70e in
	Anwesenheit von Schwefel289
11.4.9. Ko	ordinationschemie von Heterophospholen
11.4.9.1.	Umsetzung von 2-Ethoxycarbonyl-5-phenyl-
11 4 0 0	$1,3,4,-$ thiazaphosphol (86c) mit [{Rh(COD)Cl} ₂] (149)290
11.4.9.2.	Umsetzung von 2-Methoxycarbonyl-5-phenyl-
11 / 0 2	1,3,4,-thiazaphosphor (86D) mit Ni(CO) ₄ (152)290
11.4.9.5.	1.3.4 -thiazaphosphol (86c) mit $E_{P_0}(CO)_0$ (154) 291
Angang 1. Krista	$\frac{1}{2} \frac{1}{2} \frac{1}$
Angang 2: Litera	iturverzeichnis
Angang 3: Form	elverzeichnis
Angang 4: Leber	nslauf

Abkürzungen und Konventionen

(–)-Menthyl-	(1R, 2S, 5R)-2-(1-methylethyl)-5-methylcyclohexyl			
(–)-Pantolactyl-	(3R)-4,4-dimethyl-2-oxooxolan-3-yl-			
(2-C₅H₄N)-	Pyridin-2-yl-			
Ac	Acetyl- $(H_3C-C(O)-)$			
b.p	Siedepunkt (boiling point)			
bs	breites Singulett (NMR)			
bzgl.	bezüglich			
bzw.	Beziehungsweise			
ca.	circa			
CCDC	Cambridge Crystallographic Data Centre			
CIP-	Nomenklatur nach Cahn, Ingold, Prelog			
Nomenklatur	(R/S Übereinkunft)			
CIC	coordination-induced shift			
CIS	$(\Delta \delta(X) = \delta_{\text{Produkt}}(X) - \delta_{\text{Edukt}}(X))$			
CNDO	Complete Neglect of Differential Overlap			
COD	(1Z,5Z)-Cycloocta-1,5-dien			
COSY	Correlation Spectroscopy			
Су	Cyclohexyl- $(C_6H_{11}-)$			
d	Dublett (NMR)			
DABCO	1,4-Dazabicyclo[2.2.2]octan			
DCC	N,N'-Dicyclohexylcarbodiimid			
DIBAL	Diisobutylaluminiumhydrid (ⁱ Bu ₂ AlH)			
DMA	N,N-Dimethylacetamid			
DMAP	4-(Dimethylamino)-pyridin			
DMF	N,N-Dimethylformamid			
DMSO	Dimethylsulfoxid			
EA	Elementaranalyse			
EDC	1-Ethyl-3-(3-dimethylaminopropyl)carbodiimid			
EDTA	Ethylendiamintetraessigsäure			
EDTMP	Ethylendiamintetra(methylphosphonsäure)			
ee	Enantiomerenüberschuss			
EXSY	Exchange Spectroscopy			
Hal	Halogen(id) (F, Cl, Br, I)			
НМВС	Heteronuclear Multiple Bond Correlation			
HMDS	Hexamethyldisilazan ((Me ₃ Si) ₂ NH)			
HMQC	Heteronuclear Multiple Quantum Coherence			
i.d.R.	in der Regel			
<i>i</i> -PrMgCl × LiCl	"Turbo-Grignard"-Reagenz			
m	Multiplett (NMR); medium(IR)			
m.p.	Schmelzpunkt (melting point)			
MeCN	Acetonitril			
Mes	Mesityl- (2,4,6-Trimethylphenyl-)			
Mes*	Supermesityl- (2,4,6-Tris(<i>tert</i> -butyl)phenyl-)			
MS	Massenspektrometrie			
n. b.	nicht bestimmt			

<i>n-</i> BuLi	<i>n</i> -Butyllithium		
NEt ₃	Triethylamin		
ⁿ J _{XY}	Spin-Spin-Kopplungskonstante über n Bindungen		
non	Nonett (NMR)		
q	Quartett (NMR)		
quint	Quintett (NMR)		
R _f	Retentionsfaktor		
r _{kov}	Kovalenz-Radius		
r _{vdW}	van-der-Waals-Radius		
S	Singulett (NMR); strong (IR)		
S.	siehe		
sept	Septett (NMR)		
TBME	<i>tert</i> -Butylmethylether		
TBP	trigonale Bipyramide		
THF	Tetrahydrofuran		
TMEDA	N,N,N',N'-Tetramethylethan-1,2-diamin		
TMS	Trimethylsilyl-		
tridec	Tridecett (13 Linien; NMR)		
Trt	Trityl- (Triphenylmethyl-)		
Ts	Tosyl- (4-Methylphenylsulfonyl-)		
v.a.	vor allem		
W	weak (IR)		
XRD	Röntgendiffraktometrie (x-ray diffraction)		

Erläuterungen zu den Kristallstrukturen

In dieser Arbeit sind 40 Kristallstrukturen diskutiert und zahlreiche Abbildungen erläutert. Für die Diskussionen gelten dabei folgende Konventionen: Die Abstände zwischen den Atomen werden, wie in der Kristallographie üblich, in Ångström (1 Å = 100 pm) angegeben. Die Größe der thermischen Auslenkungsellipsoide beträgt in allen Abbildungen 50 % der Aufenthaltswahrscheinlichkeit. In einigen Abbildungen wird aus Gründen der Übersichtlichkeit auf die Darstellung von Teilen der organischen Reste verzichtet. Die genaue Auswahl der dargestellten Atome ist jeweils in der Bildunterschrift spezifiziert.

Die kristallographischen Daten der einzelnen Verbindungen können in tabellarischer Form Anhang 1 entnommen werden. In mindestens einer der Abbildungen werden alle in der Tabelle der ausgewählten Strukturparameter genannten Atome mit ihren Bezeichnungen markiert. Um einen Eindruck der räumlichen Lage der Moleküle zu gewährleisten sind in den einzelnen Abbildungen jeweils kleine Koordinatenkreuze eingezeichnet.

Die kovalenten Bindungen in den Molekülen sind jeweils durch durchgezogene Striche markiert, andere intra- und intermolekulare Wechselwirkungen, wie z.B. Wasserstoffbrückenbindungen, P-F-Kontakte oder Metall-Sauerstoff-Kontakte sind zur besseren Unterscheidung durch gestrichelte Linien angedeutet.

1. Einleitung und Aufgabenstellung

1.1. Heterophosphole

Phosphole sind, ebenfalls wie die analogen Pyrrole und Arsole, formal 6п-Systeme, die die Hückelregel erfüllen. Röntgenstrukturen¹ zeigen jedoch, dass nur im Falle des Stickstoffs im Pyrrol ein planar umgebenes dreibindiges Heteroatom vorliegt. In den analogen Verbindungen 1H-Phosphol und 1*H*-Arsol liegen jedoch pyramidale tertiäre Phosphan- bzw. Arsan-Strukturen vor. Im dynamischen ¹H-NMR-Spektrum kann zwar eine deutliche Erniedrigung der Inversionsbarriere am Heteroatom (P bzw. As) im Vergleich zu acyclischen Phosphanen und Arsanen beobachtet werden,² photoelektronenspektroskopische Messungen sowie CNDO/2-Rechnungen⁴ weisen jedoch auf eine nichtaromatische Struktur im Grundzustand hin. Die entsprechenden sechsgliedrigen Heterocyclen wie beispielsweise Phosphabenzole oder Arsabenzole sind im Gegensatz dazu echte Heteroaromaten.^{5, 6} Heterophosphole stellen maximal ungesättigte fünfgliedrige Ringe dar, die mindestens ein $\sigma^2 \lambda^3$ -Phosphoratom (1 π -Elektron) und mindestens ein weiteres Heteroatom (2 π-Elektronen) enthalten.

Der Fokus der Forschung auf dem Gebiet der Heterophosphole lag bisher v.a. auf der ungewöhnlichen Bindungssituation und der niedrigen Koordinationszahl des Phosphors sowie auf dem Einfluss des aromatischen Charakters auf die Reaktivität der Heterophosphole.

Durch die aromatische Stabilisierung ist die -P=N- bzw. -P=C(R)-Doppelbindung verglichen mit der in analogen acyclischen Verbindungen – Phosphaalkene (-P=C(R)-) bzw. Iminophosphane (-P=N-) – verhältnismäßig reaktionsträge gegenüber 1,2-Additionen, da diese Reaktion das konjugierte Elektronensystem zerstören würde. So reagiert das $\sigma^2 \lambda^3$ -Phosphoratom – im Gegensatz zum $\sigma^3 \lambda^3$ -Phosphor – nicht mit Luftsauerstoff, Schwefel, Selen, Thiophosphorylchlorid, Alkylhalogeniden, Ketonen, Ammoniak, Aminen, Magnesium, Natrium oder aromatischen Aldehyden.^{7, 8}

¹ P. Coggon, J. F. Engel, A.T. McPhail, L. D. Quinn, *J. Am. Chem. Soc.* **1970**, 92, 5779–5780.

² W. Egan, R. Tang, G. Zon, K. Mislow, J. Am. Chem. Soc. **1971**, 93, 6205–6216.

³ W. Schäfer, A. Schweig, G. Markl, H. Hauptmann, F. Mathey, *Angew. Chem.* **1973**, *85*, 140–141; *Angew. Chem. Int. Ed.* **1973**, *12*, 145–146.

⁴ H. L. Hase, A. Schweig, H. Hahn, J. Radloff, *Tetrahedron* **1973**, *29*, 469–473.

⁵ A. J. Ashe III, *J. Am. Chem. Soc.* **1971**, *93*, 3293–3295.

⁶ G. Märkl, H. Hauptmann, J. Advena, *Angew. Chem.* **1972**, *84*, 440–442; *Angew. Chem. Int. Ed.* **1972**, *11*, 440–443.

⁷ A. F. Vasilev, L. V. Vilkov, N. P. Ignatova, N.N. Mel'nikov, V. V. Negrebetskii, N. I. Shvetsov-Shilovskii, L. S. Khaikin, *J. Prakt. Chem.* **1972**, *314*, 808–814.

⁸ N. P. Ignatova, N.N. Mel'nikov, N. I. Shvetsov-Shilovskii, *Khim. Geterotsikl. Soedin.* **1967**, *4*, 753–755.

Analog zu anderen Heterocyclen besitzen Heterophosphole mehrere reaktive Zentren. So können beispielsweise 2*H*-1,2,3-Diazaphosphole an den beiden σ^2 -Heterogliedern N und P mit ihrem freien Elektronenpaar, sowie am Kohlenstoff bzw. an der P=C-Doppelbindung reagieren (Schema 1).⁹

Schema 1: Reaktivität von 2H-1,2,3-Diazaphospholen.

1.2. Aufgabenstellung

Die vorliegende Arbeit konzentriert sich auf einen weiteren, bislang kaum untersuchten, Aspekt der Chemie der Heterophosphole – der Anwendung der Heterophosphole als Ausgangssubstanzen zur Synthese neuer Organophosphor-Verbindungen.

Das $\sigma^2 \lambda^3$ -Phosphoratom in Heterophospholen stellt ein prochirales Zentrum dar. Durch die 1,2-Additionsreaktion von polaren Reagenzien an die P=C- bzw. P=N-Doppelbindung wird ein chirales heterocyclisches Phosphan erzeugt. Im Rahmen dieser Arbeit sollen der Einfluss von chiralen Substituenten am Heterophosphol und der Einfluss chiraler Reagenzien auf die Stereoselektivität der 1,2-Additionsreaktion systematisch untersucht werden.

Die Reaktion von Heterophospholen mit Wasser stellt eine Besonderheit dar. Sie wurde an verschiedenen Beispielen gründlich untersucht. So erfolgt bei der Hydrolyse von Azaphospholen im ersten Schritt eine Addition des Wassers an die P=C-Bindung unter Bildung des entsprechenden Phosphanoxids. Anschließend wird – abhängig vom Heterophosphol – die P-N- bzw. P-C-Bindung unter Bildung der entsprechenden Aminophosphinsäure hydrolytisch gespalten. Bei Verwendung eines Überschusses an Wasser kann der Phosphor vollständig in Form von Phosphonsäure abgespalten werden (Schema 2).

Schema 2: Hydrolyse von 4*H*-1,4,2-Diazaphospholen.

Die kontrollierte Hydrolyse von Azaphospholen bietet so einen Zugang zu Aminophosphin- und -phosphonsäuren, die auf anderem Wege nur schwer darzustellen sind. Ein weiterer Themenbereich der vorliegenden

⁹ J. H. Weinmaier, G. Brunnhuber, A. Schmidpeter, *Chem. Ber.* **1980**, *113*, 2278–2290.

Arbeit stellt die Komplex- und Strukturchemie der Substanzklasse der Aminophosphin- und -phosphonsäuren dar. Der Schwerpunkt dabei soll auf der strukturdirigierenden Wirkung der gebildeten Wasserstoffbrückenbindungen in den freien Säuren im Kristall und dem Koordinationsverhalten der Aminophosphin- und –phosphonsäuren gegenüber Metall-Kationen liegen.

2. Arylphosphane und deren Hydrolyseprodukte

2.1. Allgemeines zu Organophosphin- und Diorganophosphinigsäuren

(Organo)phosphinsäuren (RPH(O)(OH)) II und Phosphanoxide mit zwei organischen Resten (RR`PH(O)) **IV** liegen analog zu den (n = 1 - 3)Sauerstoffsäuren des Phosphors H₃PO_n im Tautomeriegleichgewicht mit den entsprechenden dreifach koordinierten Phosphonigen (RP(OH)₂) I bzw. Phosphinigen Säuren (RR'P(OH)) III (Schema 3). Im Allgemeinen liegt das Gleichgewicht auf der Seite der vierfach koordinierten Spezies II bzw. IV.¹⁰

Schema 3: Tautomeriegleichgewicht zwischen der dreifach und vierfach koordinierten Form in Organophosphin- und Organophosphinsäuren.

Die dreifach koordinierte Form der Phosphonigen **I** bzw. Phosphinigen Säure **III** kann durch Koordination an Übergangsmetalle oder durch Einführung von elektronenziehenden Resten stabilisiert werden. Die Bis(trifluormethyl)phosphinigsäure ((CF₃)₂POH) ist die bislang einzige gut Diorganophosphinigsäure, charakterisierte bei der das Tautomeriegleichgewicht bei Raumtemperatur vollständig auf der Seite der dreifach koordinierten Form liegt. ^{11, 12, 13} Die dreifach koordinierte trivalente Form der Bis(pentafluorphenyl)phosphinigsäure ($(C_6F_5)_2POH$) kann nur in Lösemitteln mit starken Donoreigenschaften wie z.B. THF, Diethylether, DMF oder DMSO stabilisiert werden. Stärker elektronenziehende Substituenten stabilisieren die trivalente Form weiter, wohingegen sterisch anspruchsvolle Substituenten das Gleichgewicht in Richtung des Phosphanoxid-Tautomers verschieben.^{13, 14}

Der 2,6-(CF₃)₂C₆H₃-Substituent stellt hier eine Besonderheit dar. Der elektronenziehende Effekt dieser Gruppe übertrifft die der C₆F₅-Gruppe und ist vergleichbar mit dem des *p*-Tetrafluorpyridylsubstituenten. ¹⁵ Jedoch ist auch der starke sterische Anspruch des 2,6-(CF₃)₂C₆H₃-

¹⁰ A. F. Holleman, E. Wiberg, N. Wiberg, *Lehrbuch der anorganischen Chemie*, 101. Auflage, de Gruyter, Berlin, **1995**.

¹¹ B. Hoge, B. Kurscheid, *Angew. Chem.* **2008**, *120*, 6920–6922; *Angew. Chem. Int. Ed.* **2008**, *47*, 6814–6816.

¹² B. Hoge, P. Garcia, H. Willner, H. Oberhammer, *Chem. - Eur. J.* **2006**, *12*, 3567–3574.

¹³ B. Hoge, S. Neufeind, S. Hettel, W. Wiebe, C. Thösen, *J. Organomet. Chem.* **2005**, 690, 2382–2387.

¹⁴ B. Hoge, J. Bader, *J. Fluorine Chem.* **2007**, *128*, 857–861.

¹⁵ B. Hoge, B. Kurscheid, S. Peuker, W. Tyrra, H. T. M. Fischer, *Z. Anorg. Allg. Chem.* **2007**, *633*, 1679–1685.

Substituenten und dessen Einfluss auf die Reaktivität und Koordiantionschemie von Interesse.

Phosphin- und Phosphonsäuren werden ferner häufig in der Aufbereitung von wässrigen Salzmischungen eingesetzt. In der Literatur wird die Trennung von zwei Metallsalzen voneinander beschrieben. Ziel hierbei ist es durch Einsatz einer lipophilen Organophosphinsäure oder -phosphonsäure eines der beiden Metallkationen durch Koordination in die organische Phase zu überführen. ¹⁶, ¹⁷ Viele Organophosphinund -phosphonsäuren zeichnen sich jedoch häufig durch eine sehr geringe Löslichkeit in unpolaren Lösemitteln aus. Die Einführung von fluorierten Substituenten erhöht häufig die Löslichkeit in organischen Lösemitteln. Daher sind die Entwicklung von effizienten Synthesen fluorierter Organophosphorverbindungen und die Darstellung von Organophosphonund -phosphinsäuren von hohem Interesse.

Ein Ziel dieser Arbeit ist die Synthese von Organophosphonund -phosphinsäuren sowie die Untersuchung der Strukturchemie der entsprechenden Organophosphonat- und –phosphinat-Salze. Hauptaugenmerk liegt hier auf den Koordinationsmodi der Säuren an die Metallsalze und den Trends (soweit vorhanden) in den ausgebildeten Strukturmotiven.

Es existieren im Wesentlichen zwei verschiedene Zugangsrouten zu Organophosphin- **1**, **2** und –phosphonsäuren **3**.

Zum einen kann der organische Rest durch Alkylierung von Phosphinsäure (H_3PO_2) oder Phosphinaten **4** eingeführt werden (Schema 4).¹⁸ Für die Einführung von Aryl-Resten ist die Verwendung von Pd(0)-Katalysatoren notwendig.¹⁹

Schema 4: Synthesestrategie zur Darstellung von Organophosphin- und – phosphonsäuren durch Alkylierung von Phosphinsäuren bzw. Phosphinaten.

¹⁶ C. D. Edlin, D. Parker, J. J. B. Perry, C. Chartroux, K. Gloe, *New J. Chem.* **1999**, *23*, 819–826.

¹⁷ K. Takeshitaa, K. Watanabea, Y. Nakanoa, M. Watanabe, *Hydrometallurgy* **2003**, *70*, 63–71.

¹⁸ E. A. Boyd, A. C. Regan, *Tetrahedron Lett.* **1994**, *35*, 4223–4226.

¹⁹ M. Kalek, J. Stawinski, *Tetrahedron* **2009**, 65, 10406–10412.

Eine weitere Synthesestrategie zur Darstellung der Verbindungen **1**, **2**, **3** stellt die Hydrolyse von Dichlor- 6 bzw. Chlorphosphanen **7** und ggf. anschließende Oxidation dar (Schema 5).

Schema 5: Synthesestrategien zur Darstellung von Organophosphin- und – phosphonsäuren aus Dichlor- bzw. Chlorphosphanen.

Somit können aus den gut zugänglichen monosubstituierten Dichlorphosphanen **6** und disubstituierten Chlorphosphanen **7** die entsprechenden Organophosphin- **1**, **2** und –phosphonsäuren **3** leicht dargestellt werden. Des Weiteren können die Verbindungen **6** und **7** an den Chloratomen weiter derivatisiert werden und stellen so wertvolle Ausgangssubstanzen zur Synthese von Organophosphorverbindungen dar.

2.2. (Bis(trifluormethyl)phenyl)-phosphan-Derivate

Die systematische Untersuchung der Synthese von Bis(trifluormethyl)phenyl-phosphanen ist aus mehreren Gründen interessant. Zum einen steht 1,3-Bis(trifluormethyl)benzen eine sehr günstige Ausgangsverbindung zu Synthese von fluorsubstituierten Arylphosphanen zur Verfügung. Zum anderen stellt die Steuerung der Regioselektivität Lithiierungsreaktion der eine synthetische Herausforderung dar. Durch seinen hohen sterischen Anspruch und seinen starken –I-Effekt beeinflusst der (CF₃)₂C₆H₃-Substituent dabei die Reaktivität entsprechenden Phosphane. Diese interessanten der Zwischenprodukte können Synthese einer Vielzahl zur von Organophosphorverbindungen verwendet werden, deren Eigenschaften durch die $(CF_3)_2C_6H_3$ -Gruppe beeinflusst werden.

2.2.1. Synthese

Bis(trifluormethyl)phenyl-phosphan-Derivate lassen sich durch Reaktion von lithiiertem 1,3-Bis(trifluormethyl)benzen mit PCl₃ darstellen. 1,3-Bis(trifluormethyl)benzen kann mit *n*-Butyllithium entweder in *ortho*-Position zu beiden CF₃-Gruppen oder *ortho* zu einer CF₃-Gruppe deprotoniert werden (Schema 6). Durch Zugabe des Deaggregations-Additivs TMEDA kann die Bildung des 2,6-(CF₃)₂C₆H₃Li-TMEDA-Adduktes (**8c**) bevorzugt werden. Ohne Zugabe von TMEDA bilden sich die beiden Isomere **8a** und **8b** im Verhältnis 1:3,²⁰ was in etwa einer statistischen Produktverteilung der Lithiierungsreaktion entspricht.

²⁰ L. Heuer, P. G. Jones, R. Schmutzler, *J. Fluorine Chem.* **1990**, *4*6, 243–254.

Schema 6: Lithiierung von 1,3-Bis(trifluormethyl)benzen.

In der Literatur ist die Reaktion von lithiiertem 1,3-Bis(trifluormethyl)benzen im Überschuss mit PCI_3 beschrieben. Aus dem komplexen Produktgemisch kann das Diarylchlorphosphan **9a** (26 %) als Hauptprodukt isoliert werden (Schema 7).^{21, 22}

Schema 7: Darstellung von (2,4-(CF₃)₂C₆H₃)-(2,6-(CF₃)₂C₆H₃)-PCI (**9a**).

2.2.2. Kenntnisstand

In der Literatur sind bislang einige der Reaktionsprodukte aus der Umsetzung von lithiiertem 1,3-Bis(trifluormethyl)benzen mit PCl₃ oder $PCl_n(NR_2)_{3-n}$ beschrieben (Schema 8).^{11, 20, 22, 23, 24, 25, 26, 27, 28}

Für die Monoarylphosphane **13a–d** und **14** sind dabei – mit Ausnahme von $(2,6-(CF_3)_2C_6H_3)-PCI_2$ (**13a**) – nur unzureichende Synthesen

²¹ J. Escudie, C. Couret, H. Ranaivonjatovo, M. Lazraq, J. Satge, *Phosphorus, Sulfur Silicon Relat. Elem.* **1987**, *31*, 27–31.

 ²² A. S. Batsanov, S. M. Cornet, L. A. Crowe, K. B. Dillon, R. K. Harris, P. Hazendonk, M. D. Roden, *Eur. J. Inorg. Chem.* 2001, 1729–1737.

²³ N. B. Karlstédt, A. A. Borisenko, V. L. Foss, J. Gen. Chem. USSR **1992**, 62, 1242–1245.

²⁴ K. Miqueu, J.-M. Sotiropoulos, G. Pfister-Guillouzo, V. Rudzevich, V. Romanenko, G. Bertrand, *Eur. J. Inorg. Chem.* **2004**, 381–387.

²⁵ T. G. Meyer, P. G. Jones, R. Schmutzler, *Z. Naturforsch., B: Chem. Sci.* **1993**, 48, 875– 885.

²⁶ A. S. Batsanov, S. M. Cornet, K. B. Dillon, A. E. Goeta, P. Hazendonk, A. L. Thompson, J. Chem. Soc., Dalton Trans. **2002**, 4622–4628.

²⁷ M. Yam, C.-W. Tsang, D. P. Gates, *Inorg. Chem.* **2004**, *43*, 3719–3723.

²⁸ T. G. Meyer, P. G. Jones, R. Schmutzler, *Z. Naturforsch., B: Chem. Sci.* **1993**, 48b, 875–885.

beschrieben. Das Dichlorphosphan **13a** und das $(2,6-(CF_3)_2C_6H_3)-P(NEt_2)_2$ (**13b**) sind nur unvollständige NMR-Daten publiziert. In der Literatur sind bislang keine $(2,4-(CF_3)_2C_6H_3)$ -substituierten Monoarylphosphane beschrieben. Die Verbindungen $(2,6-(CF_3)_2C_6H_3)-PO_2H_2$ (**1a**) und $(2,6-(CF_3)_2C_6H_3)-PO_3H_2$ (**3a**) sind als Oxidationsprodukte von $(2,6-(CF_3)_2C_6H_3)-PH_2$ (**13c**) beschrieben und durch ihre ³¹P-NMR-Verschiebung charakterisiert.²³

Schema 8: Literaturbeschriebene Reaktionsprodukte von $(CF_3)_2C_6H_3Li$ mit $PCI_n(NR_2)_{3-n}$.

Für die Umsetzung eines Überschusses der $(CF_3)_2C_6H_3Li$ -Isomere **8a** und **8b** mit Chlorphosphanen sind in der Literatur die Bildung der Diarylphosphane **9**^{20, 22, 26} und **10**^{11, 20, 26} beschrieben. Das Diarylchlorphosphan **11** ist in der Synthese von **13a** als Nebenprodukt beschrieben und durch einen ³¹P-NMR-Verschiebung charakterisiert (vgl. 2.2.4).²³

2.2.3. $(2,6-(CF_3)_2C_6H_3)-PCI_2$ (13a)

 $(2,6-(CF_3)_2C_6H_3)-PCl_2$ (**13a**) kann durch Reaktion des (2,6- $(CF_3)_2C_6H_3Li$)-TMEDA-Adduktes (**8c**) mit PCl₃ dargestellt werden (Schema 9).²⁰ Da PCl₃ ein mehrfachsubstituierbares Reagenz ist, kann die Reaktion nur schwer auf der Stufe des einfach substituierten Dichlorphosphans **13a** angehalten werden.

Schema 9: Synthese von 13a.

Durch Verwendung von Bis(dialkylamino)chlorphosphanen und anschließende Umsetzung mit Chlorwasserstoff wird eine Mehrfachsubstitution am Phosphor vermieden. D. P. GATES berichtet von dieser Reaktionsstrategie, jedoch wird auch bei dieser Synthese nur 30 % Ausbeute erhalten. $^{\rm 27}$

Bei äquimolarer Umsetzung von **8c** mit PCI_3 wird nur eine 30–40 % Umsetzung im ³¹P-NMR-Spektrum beobachtet. Bei Verwendung von zwei Äquivalenten **8**c reagiert das PCl₃ vollständig ab und im ³¹P-NMR-Stektrum der Reaktionsmischung kann als einzige lösliche Verbindung 13a beobachtet werden. Aus der braun-schwarzen hochviskosen Lösung kann das Dichlorphosphan 13a mit bis zu 54 %-iger Ausbeute als farblose vollständig NMR-spektroskopisch Flüssigkeit isoliert und erstmals charakterisiert werden. Die NMR-Daten sind in Kapitel 2.2.8 zusammengefasst und diskutiert.

Führt man die Reaktion von **8c** mit PCI_3 bei höherer Temperatur wie z.B. 0 °C oder Raumtemperatur durch, so können vermehrt Nebenprodukte mit P-F-Bindungen wie z.B. PF₃, $PCIF_2$, PCI_2F oder das bereits von R. SCHMUTZLER beschriebene (2,6-(CF₃)₂C₆H₃)-PF₂ (**13d**)²⁸ beobachtet werden. Diese Produkte können nur durch Nebenreaktionen der CF₃-Gruppe entstehen, was bemerkenswert ist, da die CF₃-Gruppe normalerweise als chemisch sehr inert gilt.

Diese Nebenreaktionen können durch die Einhaltung einer niedrigen Reaktionstemperatur (-78 °C) und dem möglichst langsamen Zutropfen von **8c** unterdrückt werden.

2.2.4. $(2,6-(CF_3)_2C_6H_3)_2PCI(11)$

 $(2,6-(CF_3)_2C_6H_3)_2PCI$ (**11**) stellt auf Grund des großen sterischen Anspruchs der $(2,6-(CF_3)_2C_6H_3)$ -Gruppe eine synthetisch interessante Verbindung dar. In der Literatur wird deren Synthese aus **8c** und PCl₃ beschrieben.²³

Schema 10: Synthese von 11.

Der dort angegebene Siedepunkt und die ³¹P-NMR-Verschiebung konnten jedoch nicht reproduziert werden. Im Rahmen dieser Arbeit wurden die korrekten Werte erhalten. **11** kann bei der Umsetzung von zwei Äquivalenten **8c** mit PCl₃ bei 0 °C neben **13a** mit 36 %-iger Ausbeute als farbloser kristalliner Feststoff isoliert und erstmals vollständig NMRspektroskopisch charakterisiert werden. Die NMR-Daten sind in Kapitel 2.2.8 zusammengefasst und diskutiert. Ferner konnten für eine Röntgenstrukturanalyse geeignete Einkristalle gewonnen werden und die Molekülstruktur von **11** aufgeklärt werden. Die Molekülstruktur von **11** wurde bereits von E. NIECKE²⁹ beim CCDC hinterlegt, jedoch nicht diskutiert und publiziert. Die Ausbeute von **11** hängt dabei stark von der Reaktionsführung ab und variierte je nach Reaktionstemperatur und Zutropfgeschwindigkeit von **8c** zu PCl₃ zwischen 17 und 36 %.

11 zeichnet sich durch eine für die Substanzklasse der Chlorphosphane außergewöhnlich geringe Reaktivität aus. Wird die Verbindung mehrere Stunden in einem THF-Wasser-Gemisch gerührt, so kann nur 30 % Hydrolyse beobachtet werden.

Das analoge $(2,6-(CF_3)_2C_6H_3)_2-PNEt_2$ **15** kann auf analoge Weise durch Umsetzung von **8c** mit Cl₂PNEt₂ nicht dargestellt werden.

2.2.4.1. Molekül- und Kristallstruktur von 11

Einkristalle von **11** können durch Resublimation in Form von großen farblosen Prismen erhalten werden. Die Verbindung kristallisiert in der triklinen Raumgruppe P-1. Die asymmetrische Einheit besteht aus zwei Molekülen (Abbildung 1). Die intramolekularen Wechselwirkungen sind als gestrichelte Linien dargestellt. Die Fluoratome in den CF₃-Gruppen sind dabei teilweise fehlgeordnet.

Abbildung 1: Molekülstruktur von **11**; asymmetrische Einheit; thermische Auslenkungsellipsoide mit 50 % Aufenthaltswahrscheinlichkeit.

Ausgewählte Strukturparameter sind in Tabelle 1 angegeben. Das Phosphoratom ist pyramidal durch zwei Kohlenstoffatome und ein Chloratom koordiniert, der Winkelbereich erstreckt sich von 93.7(1)– 107.6(1)°. Die P-Cl-Abstände entsprechen mit 2.077(1) bzw. 2.067(1) Å P-Cl-Einfachbindungen. Im Vergleich zu anderen bekannten R₂PCl-Strukturen, in denen der P-Cl-Bindungsabstand typischerweise zwischen 2.06–2.35 Å liegt,²² erweist sich der in **11** beobachtete P-Cl-Abstand als

²⁹ M. Nieger, E. Niecke, R. Serwas, *CCDC Private Communication*, **2002**.

verhältnismäßig kurz. Die P-C-Abstände entsprechen einer P-C-Einfachbindung. Die Bindungsabstände und –winkel im organischen Rest zeigen keine Besonderheiten.

Bindungsabstände [Å]		Bindungswinke	l [°]		
P1-Cl1	2.077(1)	Cl1-P1-C11	104.8(1)		
P1-C11	1.873(3)	Cl1-P1-C21	93.7(1)		
P1-C21	1.866(2)	C11-P1-C21	106.2(1)		
P2-Cl2	2.067(1)	Cl2-P2-C31	107.6(1)		
P2-C31	1.871(3)	Cl2-P2-C41	95.2(1)		
P2-C41	1.877(2)	C31-P2-C41	104.6(1)		
P-F-Kontakte					
Bindungsabstände [Å]		Bindungswinkel [°]			
F372-P2	2.775(1)	F372-P2-Cl2	168.2(1)		
F382-P2	2.946(1)	F382-P2-C41	158.0(1)		
F483-P2	2.909(1)	F483-P2-C31	165.3(1)		
F181-P1	2.808(1)	F181-P1-Cl1	162.4(1)		
F171-P1	2.866(1)	F171-P1-C21	162.3(1)		
F282-P1	2.910(1)	F282-P1-C11	164.8(1)		
$\Sigma(r_{kov}(PF)) = 1.74 \text{ Å}; \Sigma(r_{vdW}(PF)) = 3.27 \text{ Å}^{30}$					

 Tabelle 1: Ausgewählte Strukturparameter in der Kristallstruktur von 11.

In der Elementarzelle befinden sich vier Moleküle, die jeweils paarweise durch das Inversionszentrum ineinander überführt werden. Innerhalb der Kristallpackung sind zwischen den einzelnen Molekülen keine Wechselwirkungen erkennbar (Abbildung 2).

Abbildung 2: Kristallstruktur von **11**; Elementarzelle; thermische Auslenkungsellipsoide mit 50 % Aufenthaltswahrscheinlichkeit.

Auffällig an dieser Struktur sind die kurzen P-F-Abstände. Die P-F-Abstände der zum Phosphor hinweisenden Fluoratome sind alle kürzer als die Summe der van-der-Waals-Radien und liegen im Bereich von 2.775– 3.112 Å. Dies ist vor allem durch den großen Raumbedarf der CF₃-Gruppen bedingt und erklärt die große ⁴J_{PF}-Kopplungskonstante von

³⁰ A. Bondi, J. Phys. Chem. **1964**, 68, 441–451.

44.9 Hz. Auffällig ist hierbei, dass die jeweils rückseitig zu den P-C- bzw. P-Cl-Bindungen liegenden Fluoratome dabei die mit einigem Abstand kürzesten P-F-Abstände aufweisen (s. Tabelle 1). Diese kurzen Abstände sind wahrscheinlich auf elektronische Wechselwirkungen zwischen den Fluoratomen und den Bindungsorbitalen am Phosphor zurückzuführen.

Diese Struktur kann sehr gut mit der bekannten Struktur von $(2,4-(CF_3)_2C_6H_3)(2,6-(CF_3)_2C_6H_3)PCI$ (**9a**)²² verglichen werden. Auch hier finden sich zwei verkürzte P-F-Abstände von 2.890 und 2.897 Å. In der Arbeit von J. ESCUDIE werden ebenfalls die Festkörper- und Lösungs-NMR-Daten verglichen. Aus dem Vergleich der Kopplungskonstanten im Festkörper und in Lösung und der Bindungsabstände kann geschlossen werden, dass die P-F-Kontakte sowohl im Festkörper als auch in Lösung vorliegen. Diese Beobachtung erklärt die geringe Reaktivität von **11**, da hier der nucleophile Angriff am Phosphoratom durch die P-F-Kontakte blockiert ist.

2.2.5. $(2,6-(CF_3)_2C_6H_3)-P(NEt_2)_2$ (13b) und (2,4-(CF₃)_2C₆H₃)-P(NEt₂)_2 (16b)

 $(2,6-(CF_3)_2C_6H_3)-P(NEt_2)_2$ (**13b**) wurde als Zwischenprodukt in der Synthese des Dichlorphosphans **13a** beschrieben, allerdings nur durch eine ³¹P-NMR-Verschiebnung charakterisiert.²⁷

Setzt man analog zu dieser Synthese 1,3-Bis(trifluormethyl)benzen mit einem leichten Überschuss an TMEDA und *n*-BuLi und anschließend mit 0.6 Äquivalenten P(NEt₂)₂Cl um, so kann nach destillativer Aufarbeitung ein oranges Öl mit 73 %-iger Ausbeute isoliert werden. Das erhaltene Öl enthält die beiden isomeren Verbindungen **13b** und $(2,4-(CF_3)_2C_6H_3)-$ P(NEt₂)₂ (**16b**) (Schema 11) die destillativ nicht weiter aufgetrennt werden können.

Schema 11: Synthese von 13b und 16b.

16b ist dabei das erste Beispiel eines mit nur einem $2,4-(CF_3)_2C_6H_3$ -Rest substituierten Phosphans und stellt ein wertvolles Reagenz zur Einführung des $(2,4-(CF_3)_2C_6H_3)$ -P-Restes dar.

Die NMR-Signale von **13b** und **16b** konnten vollständig zugeordnet werden und die Zuordnung wurde mittels zweidimensionaler NMR-Spektroskopie (¹H,¹H-COSY45, ¹H,¹³C-HMQC, ¹H,¹³C-HMBC) verifiziert. Die

2D-NMR-Spektren sind exemplarisch in Abbildung 3 bis Abbildung 5 dargestellt.

Abbildung 3: Aromatischer Bereich (6.3–8.2 ppm) im ${}^{1}\text{H},{}^{1}\text{H}-\text{COSY45-Spektrum von 13b}$ (rot) und **16b** (blau) (ca. 0.1 M in C₆D₆; Aufnahme mit Feldgradiententechnik; Matrix 1024×512; sinbell auto; keine Symmetrisierung).

Im ¹H,¹H-COSY45 (Abbildung 3) können die Signale der Protonen von **13b** und **16b** leicht zugeordnet werden. Die beobachteten Spinsysteme sind dabei blau bzw. rot markiert.

Abbildung 4: Aromatischer Bereich (¹H: 6.6–8.1 ppm; ¹³C: 115.0–155.0 ppm) im ¹H, ¹³C-HMQC-Spektrum von **13b** (rot) und **16b** (blau) (ca. 0.1 \bowtie in C₆D₆; Aufnahme mit Feldgradiententechnik; Matrix 2048×1024; sinbell auto).

Im dargestellten aromatischen Bereich des ${}^{1}H, {}^{13}C-HMQC-Spektrums$ (Abbildung 4) kann die Zuordnung der ${}^{13}C-Signale$ der CH-Atome nachvollzogen werden. In der Projektion der ${}^{13}C-Achse$ ist das ${}^{13}C-\{{}^{1}H\}-NMR-Spektrum dargestellt.$

Abbildung 5: Ausschnitt (¹H: 2.0–8.5 ppm; ¹³C: 115.0–156.0 ppm) des ¹H,¹³C-HMBC-Spektrums von **13b** (rot) und **16b** (blau) (ca. 0.1 \bowtie in C₆D₆; Aufnahme mit Feldgradiententechnik; Matrix 2048×1024; sinbell auto).

Im abgebildeten Bereich des ¹H,¹³C-HMBC-Spektrums (Abbildung 5) kann die Zuordnung der quartären Kohlenstoffatome über ^{2,3,4}J_{CH}-Kopplungen zu den Protonen der Verbindungen **13b** und **16b** nachvollzogen werden. In der Projektion der ¹³C-Achse ist das ¹³C-{¹H}-NMR-Spektrum dargestellt. Die NMR-Daten sind in Kapitel 2.2.8 zusammengefasst und diskutiert.
2.2.6. (2,4-(CF₃)₂C₆H₃)-PCl₂ (16a)

Bei der äquimolaren Reaktion lithiiertem 1,3von Bis(trifluormethyl)benzen mit PCl₃ bei 0 °C können im ³¹P-NMR-Spektrum als Hauptprodukte neben den breiten Multipletts für die gebildeten Trisarylphosphane ³¹ Diarylchlorphosphane²² und die die beiden monosubstituierten Aryldichlorphosphane 13a und das bislang unbekannte Dichlorphosphan 16a identifiziert werden (Schema 12). Auf Grund der hohen Reaktivität des Dichlorphosphans 16a kann die Reaktion nur schwer auf der Stufe des einfachsubstituierten Dichlorphosphans angehalten werden.

Schema 12: Synthese des (2,4-(CF₃)₂C₆H₃)-PCl₂ (**16a**).

16a kann nur in Spuren im ³¹P-NMR-Spektrum nachgewiesen werden. Eine präparativ effiziente Darstellung von **16a** sollte durch NEt₂/Cl-Austausch von $(2,6-(CF_3)_2C_6H_3)-PNEt_2$ (**16b**) erfolgen, da so eine Mehrfachsubstitution am Phosphor vermieden werden kann.

2.2.7. $(2,6(CF_3)_2C_6H_3)-PO_2H_2$ (1a)

 $(2,6-(CF_3)_2C_6H_3)-PO_2H_2$ (**1a**) ist bislang ausschließlich als Oxidationsprodukt von $(2,6-(CF_3)_2C_6H_3)-PH_2$ ³¹P-NMR-spektroskopisch identifiziert und nur unzureichend charakterisiert worden.²³

Schema 13: Synthese von 1a.

Präparativ einfacher kann **1a** durch Hydrolyse des Dichlorphosphans **13a** in wässrigem THF dargestellt und nach Umkristallisation aus CHCl₃ als farbloser Feststoff in sehr guten Ausbeuten isoliert werden (Schema 13). Die luft- und wasserstabile Verbindung kann erstmals vollständig NMRspektroskopisch charakterisiert werden. **1a** ist sehr gut in mit Wasser mischbaren Lösemitteln wie Methanol, Acetonitril und THF löslich. In anderen organischen Lösemitteln wie z.B. CHCl₃, Benzen oder Diethylether löst sich **1a** deutlich schlechter.

³¹ J. A. S. Howell, N. Fey, J. D. Lovatt, P. C. Yates, P. McArdle, D. Cunningham, E. Sadeh, H. E. Gottlieb, Z. Goldschmidt, M. B. Hursthouse, M. E. Light, *J. Chem. Soc., Dalton Trans.* **1999**, 3015–3028.

Die Phosphinsäure **1a** erweist sich als besonders stabil gegenüber Oxidation zur entsprechenden Phosphonsäure. Sie zeigt keine Reaktion mit H_2O_2 , einem ansonsten breit verwendeten Reagenz zur Überführung von Phosphin- in Phosphonsäuren. Sehr wahrscheinlich ist hier die Verwendung von noch stärkeren Oxidationsmitteln, wie etwa NO_2 , erforderlich.¹⁵

2.2.7.1. Molekül- und Kristallstruktur von 1a

Für die Röntgenbeugung geeignete Einkristalle von **1a** wurden durch Umkristallisation aus THF oder Methanol gewonnen. Die Verbindung kristallisiert in Form von farblosen Plättchen in der monoklinen Raumgruppe $P2_1/c$ mit vier Molekülen in der Elementarzelle (Abbildung 7 links). Die asymmetrische Einheit besteht aus einem Molekül (Abbildung 6). Die kurzen PF-Kontakte sind dabei als gestrichelte Linien dargestellt. Für die Diskussion der Kristallstruktur von **1a** werden nur P-F-Kontakte mit einem Abstand von unter 3.0 Å berücksichtigt.

Ausgewählte Strukturparameter können Tabelle 2 entnommen werden. Das Phosphoratom ist verzerrt tetraedrisch durch zwei Sauerstoff-, ein Wasserstoff- und ein Kohlenstoffatom koordiniert, der Winkelbereich am Phosphoratom erstreckt sich von 105.3–115.3°. Die P-O-Abstände liegen mit 1.488(4) bzw. 1.538(3) Å im Bereich zwischen einer P–O-Einfachbindung und einer P=O-Doppelbindung. Der P-C-Abstand entspricht dem einer P-C-Einfachbindung. Die Bindungsabstände und –winkel im organischen Rest zeigen keine Besonderheiten.

Abbildung 6: Molekülstruktur von **1a** im Kristall; asymmetrische Einheit mit intramolekularen Wechselwirkungen; thermische Auslenkungsellipsoide mit 50 % Aufenthaltswahrscheinlichkeit.

Die Konformation der CF₃-Gruppen wird durch die P-F-Kontakte bestimmt. Analog zu **11** können auch in dieser Verbindung zwei außergewöhnlich kurze P-F-Abstände beobachtet werden, die mit 2.898(3) bzw. 2.973(3) Å deutlich kürzer als die Summe der VAN-DER-WAALS-Radien

sind und jeweils auf der Rückseite der P1-O1- bzw. P1-H1-Bindung liegen. Die beobachteten P-F-Abstände sind sehr gut mit denen in der Molekülstruktur von **11** vergleichbar.

Bindungsabstän	de [Å]		Bindun	gswinkel [°]	
P1-01	1.488(4)		01-P1	-02 1	.15.3(2)	
P1-02	1.538(3)		01-P1	-C1 1	.11.2(2)	
P1-C1	1.831(5)		O1-P1	-H1 1	.10.1(2)	
P1-H1	2.257(43)		O2-P1	-C1 1	.08.6(2)	
			O2-P1	-H1 1	.05.3(20)	
			C1-P1	-H1 1	.05.6(20)	
	P-F	-Kc	ontakte			
Bindungsabstän	de [Å]		Bindun	gswinkel [°]	
F82-P1	2.898(3)		F82-P	1–H1 1	.77.0(20)	
F71-P2	2.973(3)		F71-P	1–01 1	.61.8(2)	
Σ(r,	(PF) = 1.74	∔Å; :	Σ(r _{vdW} (PF))) = 3.27 Å ³	0	
	H-Brücken					
X–H…Y	<i>d</i> (X–H)	d([H…Y)	$d(X \cdots Y)$	<(X-H…Y)	
$02-H2\cdots01$	1.12(8)	1.3	39(8)	2.466(5)	157(8)	

Tabelle 2: Ausgewählte Strukturparameter in der Kristallstruktur von **1a**.

Abbildung 7: Kristallstruktur von **1a**; oben: Elementarzelle mit intramolekularen P-F-Kontakten; unten: Ketten entlang *a*-Richtung; thermische Auslenkungsellipsoide mit 50 % Aufenthaltswahrscheinlichkeit; Symmetriecodes: a = -1+x, y, z.

Strukturbestimmendes Motiv in der Kristallstruktur sind die Wasserstoffbrückenbindungen der Phosphinsäuregruppen (O2–H2…O1), durch die sich Ketten in *a*-Richtung ausbilden (Abbildung 7 rechts). Die organischen Reste sind dabei alle in eine Richtung ausgerichtet, die CF₃-Gruppen stehen jeweils "auf Lücke" zueinander und die Phenylringe

stehen dabei exakt übereinander und sind parallel im Abstand von 4.600(7) Å zueinander ausgerichtet.

Abbildung 8: Kristallstruktur von **1a**; Projektion der Elementarzelle entlang der *a*-Achse; thermische Auslenkungsellipsoide mit 50 % Aufenthaltswahrscheinlichkeit.

Dadurch bilden sich in der Kristallstruktur von **1a** Stränge aus. Die Packung der Ketten in der Elementarzelle sind in der gezeigten Projektion in Abbildung 8 dargestellt.

2.2.8. Vergleich der NMR-Daten

Die ³¹P- und ¹⁹F-NMR-Verschiebungen liegen im erwarteten Bereich³² für Arylphosphinsäuren, Aryldichlor-, Arylbis(dialkylamino)- bzw. Diarylchlorphosphane und können Tabelle 3 entnommen werden.

Das ¹⁹F- und ³¹P-NMR-Spektrum von 2,6-(CF₃)₂C₆H₃-PO₂H₂ **1a** zeigt trotz der räumlichen Nähe der Fluoratome zum Phosphor und der vorhandenen P-F-Wechselwirkungen (vgl. 2.2.7.1) nur eine kleine ⁴J_{PF}-Kopplungskonstante von 6.5 Hz.

Demgegenüber sind die P-F-Kopplungskonstanten der Phosphane mit Werten von 41–85 Hz für ${}^{4}J_{PF}$ -Kopplungen sehr groß. ³³ Die beobachteten *"trough-space*"-Kopplungskonstanten sind gut mit den von E. FLUCK beobachteten Werten für ${}^{4,5}J_{PF}$ -Kopplungen in 1,3-diaza-2,4-diphosphetidinen (Schema 14) vergleichbar. ³⁴

³² J. C. Tebby, *CRC Handbook of Phosphorus-31 Nuclear Magnetic Resonance Data*, CRC Press, Boston, **1991**.

³³ S. Berger, S. Braun, H.-O. Kalinowski, *NMR-Spektroskopie von Nichtmetallen*, Band 3: ³¹*P-NMR-Spektroskopie*, Thieme, Stuttgart, **1993**.

³⁴ E. Fluck, D. Wachtler, *Liebigs Ann. Chem.* **1979**, 1125–1129.

Schema 14: ^{4,5}*J*_{PF}-Kopplungen in 1-3-Diaza-2,4-diphosphetidinen.

Die große Kopplungskonstante von 70 Hz wird durch die räumliche Nähe der Fluoratome zum Phosphoratom und den, sowohl im Festkörper als auch in Lösung vorhandenen und bereits in Abschnitt 2.2.4.1 diskutierten, Phosphor-Fluor-Wechselwirkungen verursacht.

Dabei zeigt sich der Trend, dass die Diethylaminophosphane $PR_n(NEt_2)_{(3-n)}$ -Derivate (n = 1, 2) tendenziell kleinere P-F-Kopplungskonstanten aufweisen als die entsprechenden $PR_nCl_{(3-n)}$ -Derivate (n = 1, 2,) (vgl. Tabelle 3). Ferner zeigt sich für die Substanzklasse der Chlor-substituierten Phosphane $PR_nCl_{(3-n)}$ (n = 1, 2,), dass die ${}^{4}J_{PF}$ -Kopplungskonstante mit der Anzahl der in *ortho*-Position an den Phenylringen gebundenen CF_3-Gruppen sinkt. Für eine CF_3-Gruppe kann eine Kopplungskonstante von ca. 85 Hz, für zwei CF_3-Gruppen 61–65 Hz, für drei CF_3-Gruppen 42 bzw. 59 Hz, sowie für vier CF_3-Gruppen eine Kopplungskonstante von 42 Hz beobachtet werden.

chemische verschiebungen in ppin, Roppinigskonstanten in riz.						
	δ^{31} P	$\delta^{19}F_o$	$\delta^{19}F_{ ho}$	${}^{4}J_{PF}$	$^{1}J_{PH}$	³ J _{PNCH}
13a	148.3	-53.2		61.5		
17	151.9	n. b.	n. b.	84.5		
Ar‴PCl ₂ ³⁵	n. b.	n. b.		85.2		
13b	114.5	-55.9		41.5		8.3
16b	93.2	-59.0	-63.4	49.9		7.7
11	78.2	-53.6		41.9		
Ar'2PCI 15	67.2	-57.0	-63.4	65		
ArAr'PCl 22	67.3	-54.9 -58.8	-64.0	41.7 56.8		
Ar' ₂ PNEt ₂ 15	49.6	-57.9	-62.9	54		6.8
1a	12.1	-56.8		6.5	607.9	
Ar' ₂ P(O)H ¹ 5	7.5	-57.8	-63.6	8	545	
Ar" ₃ P ³¹	-17.6	-57.9		55		
Ar"Ph2P 36	n. b.		n. b.	53		
Ar‴ ₃ P ³¹	-5.3		-63.4			

Tabelle 3: ³¹P- und ¹⁹F-NMR-Daten von o-(CF₃)C₆H₄-Derivaten; Ar = 2,6-(CF₃)₂C₆H₃-; Ar' = 2,4-(CF₃)₂C₆H₃-; Ar'' = 2-(CF₃)C₆H₄-; Ar''' = 4-(CF₃)C₆H₄-; chemische Verschiebungen in nom: Kopplungskopstanten in Hz

³⁵ T. Schaefer, K. Marat, A. Lemire, A. F. Janzen, Org. Magn. Res. **1982**, 18, 90–91.

³⁶ M. A. Beckett, J. C. Tebby, J. J. Thompson, B. J. Williams, S. C. Withington, *Phosphorus, Sulfur Silicon Relat. Elem.* **1990**, *51/52*, 277.

chemische Verschiebungen in ppm; Kopplungskonstanten in Hz.					
δ^{1} H	13a	11	13b	16b	1a
C ₃ -H	8.02	7.90	7.56	7.91	8.15
³ Ј _{НН}	7.7	7.9	7.9		7.9
⁴ Ј _{РН}		2.2			3.3
C ₄ -H	7.78	7.68	6.88-6.81		7.93
³ Ј _{НН}	7.7	7.9			7.9
C₅-H	8.02	7.90	7.56	7.41	8.15
³ Ј _{НН}	7.7	7.9	7.9	6.1	7.9
⁴ <i>J</i> _{PH}		2.2			3.3
C ₆ -H				7.66	
³ Ј _{НН}				6.1	
P-H					7.94
$^{1}\mathcal{J}_{PH}$					607.9
⁵ J _{FH}					2.0
CH ₂			3.02-2.82	3.02-2.82	
CH₃			0.93	0.93	
³ Ј _{НН}			7.2	7.1	

Tabelle 4: ¹H-NMR-Daten von (CF₃)₂C₆H₃-Derivaten;

Tabelle 4 zeigt die ¹H-NMR-Daten der Bis(trifluormethyl)phenyl-Derivate **13a**, **11**, **13b**, **16b** und **1a**. Die Verschiebungen und Kopplungskonstanten liegen im erwarteten Bereich für aromatische Protonen.

Die ¹³C-NMR-Daten können Tabelle 5 entnommen werden. Im Vergleich unsubstituierten Phenyl-Derivaten den zeigen die zu Bis(trifluormethyl)phenyl-Derivate außergewöhnlich große ${}^{1}J_{PC}$ -Kopplungen. Die ¹J_{PC}-Kopplungen der 2,6-substituierten Derivate sind dabei im Vergleich zu den 2,4-Bis(trifluormethyl)phenyl-Derivaten etwa doppelt so groß. Für die ^{2/3}J_{PC}-Kopplungen zeigt sich betragsmäßig kein einheitlicher Trend. Während die Kopplungen der Chlor-Derivate der Trifluormethylsubstituierten Verbindungen im Vergleich zur Phenylverbindung kleiner sind, zeigt sich für die Diethylamino-Derivate der umgekehrte Trend. Für die 2,4-(CF₃)₂C₆H₃-substituierte Verbindung **16b** kann ein Vergleich der $^{2}J_{PC}$ -Kopplungen zu der unsubstituierten (C6) und der CF₃-substituierten (C2) ortho-Position gezogen werden. Es zeigt sich hier, dass die CF₃- $^{2}J_{PC}$ substituierte Position mit 20.6 Hz eine deutlich größere Kopplungskonstante zeigt als die unsubstituierte Position (5.2 Hz).

Schema 15: Nummererierungsschema für die in Tabelle 5 diskutierten Verbindungen.

_ 12 _	chemise	che Verschi	lebungen ir	і ррт; кор	plungskon	stanten in	HZ.
δ''C	13a	11	13b	16b	1a	PhPCl ₂	$PhP(NEt_2)_2$ 37
C1	138.9	139.6	146.8	148.6		140.2	130.9
$^{1}J_{PC}$	106.2	86.1	93.6	41.2		52.3	15.18
³ J _{FC}				1.0			
J_{CH}			5.5	6.2		n. b.	n. b.
C2	134.9	134.5	134.2	132.8	133.2	130.1	142.0
² J _{FC}	32.2	33.0	30.8	31.0	32.8		
² J _{PC}	21.9	14.1	16.1	20.6	5.5	31.3	4.0
J _{CH}	8.3	7.8	7.8	8.1	7.7	n. b.	n. b.
C3	131.5	131.4	130.6	124.3	132.7	128.9	128.1
$^{3}J_{FC}$	5.6	3.2	6.8	4.9			
$^{3}J_{PC}$		3.2			1.7	7.9	3.2
$^{1}J_{CH}$	167.6	166.9	163.4	163.4	171.1	n h	n h
^{2/3} Ј _{СН}		7.8	7.8	6.4		II. D.	11. D.
C4	132.9	130.6	127.8	130.4	130.8	132.6	127.2
$^{4}J_{PC}$							1.6
$^{2}J_{FC}$				33.1			
⁴ J _{FC}				2.0	6.9		
² Ј _{СН}			1.2	8.4	8.2	n h	n h
$^{1}J_{CH}$	170.0	169.5	166.4		167.9	II. D.	II. D.
C5	131.5	131.4	130.6	127.6	132.7	128.9	128.1
³ J _{FC}	5.6	3.2	6.8	2.8			
$^{3}J_{PC}$		3.2			1.7	7.9	3.2
$^{1}J_{CH}$	167.6	166.9	163.4	160.2	171.1	n h	n h
² Ј _{СН}		7.8	7.8	7.2		II. D.	11. D.
C6	134.9	134.5	134.2	133.0	133.2	130.1	142.0
² J _{FC}	32.2	33.0	30.8		32.8		
$^{2}J_{PC}$	21.9	14.1	16.1	5.2	5.5	31.3	4.0
$^{1}J_{CH}$				164.2		n. b.	n. b.
J _{CH}	8.3	7.8	7.8	1.8	7.7		
C_o -CF ₃	123.5	123.5	124.9	124.8	123.4		
$^{1}J_{FC}$	276.1	275.9	275.4	276.1	274.6		
$^{3}J_{PC}$	4.6	1.8		2.7	4.5		
³ Ј _{СН}		4.5	2.6		4.4		
C_p - CF_3				124.3			
$^{1}J_{FC}$				272.0			
³ Ј _{СН}				3.9			
CH ₂			43.8	43.1			42.8
$^{2}J_{PC}$			19.7	21.4			16.8
$^{1}J_{CH}$			134.2	135.0			n h
² <i>J</i> _{CH}			4.3	4.2			II. D.
CH₃			13.7	14.5			14.6
³ J _{PC}							3.2
$^{1}J_{CH}$			125.2	125.6			n. b.

Tabelle 5: 13 C-NMR-Daten der (CF₃)₂C₆H₃-Derivate;

³⁷ K. S. Dunne, S. E. Lee, V. Gouverneur, *J. Organomet. Chem.* **2006**, 691, 5246–5259.

Zusammenfassend kann man feststellen, dass die Bis(trifluormethyl)phenyl-phosphane auf Grund der räumlichen Nähe der Fluoratome zum Phosphor sehr große ${}^{4}J_{PF}$ -Kopplungen zeigen. Für die Chlor-substituierten Phosphane sinkt diese mit steigendem räumlichem Anspruch am Phosphor. Ferner ist die außergewöhnlich große ${}^{1}J_{PC}$ -Kopplung auffällig. Für die ${}^{2}J_{PC}$ -Kopplung zu den *ortho*-Positionen im 2,4-(CF₃)₂C₆H₃- -Ring können deutlich größere Kopplungskonstanten für die CF₃-substituierte Position im Vergleich zur unsubstituierten Position gefunden werden.

2.3. Reaktionen der Bis(trifluormethyl)phenyl)phosphane

2.3.1. Reaktionen der Diaminophosphane 13b und 16b mit Chalkogenen

Aminophosphane sind auf Grund des Elektronenschubs der Aminogruppen sehr elektronenreich und weisen eine erhöhte Basizität am Phosphor auf. Durch die Einführung der stark elektronenziehenden $((CF_3)_2C_6H_3)$ -Gruppe ist eine Verringerung dieser Basizität zu erwarten. Mit Chloroform zeigen die Verbindungen eine Reaktion, in deren Verlauf das Phosphoratom chloriert wird.

Die elektronische Situation am Phosphor kann durch Umsetzung der Aminophosphane mit Chalkogenen abgeschätzt werden (Schema 16). $\sigma^{3}\lambda^{3}$ -Phosphane können durch Sauerstoff und Schwefel in der Regel leicht während oxidiert werden, die höheren Homologen nur mit Phosphanen elektronenreichen reagieren. Die Bilduna von Tellurophosphoranen durch Oxidation eines Phosphans mit elementarem Tellur kann nur mit sehr elektronenreichen Phosphanen wie z. B. P(NMe₂)₃ und P(NEt₂)₃ beobachtet werden.³⁸

Schema 16: Oxidation von 13b und 16b durch Chalkogene.

³⁸ N. Kuhn, H. Schumann, Hans; G. Wolmershäuser, *Z. Naturforsch., B: Chem. Sci.* **1987**, *42*, 674–678.

Die Diaminophosphane 13b und 16b werden mit Schwefel, Selen und Tellur umgesetzt. Bei der Reaktion mit Schwefel wird nach 12 h 71 % Umsatz beobachtet. Die Sulfide 13b1 und 16b1 können ³¹P- und ¹⁹F-NMR-spektroskopisch identifiziert und charakterisiert werden. Hierbei kann beobachtet werden, dass 16b deutlich schneller oxidiert wird als 13b. Während die Edukte noch im Verhältnis von 13b/16b = 1.7:1 eingesetzt wurden, so liegt das Produktverhältnis nach 12 h bei **13b1/16b1** = 1.4:1. Das 2,4-substituierte Bis(diethylamino)phosphan 16b ist somit reaktiver als das 2,6-substituierte Derivat 13b. Noch deutlicher zeigt sich der Reaktivitätsunterschied bei der Oxidation durch das unreaktivere Selen. Nach 12 h kann hier nur ein Umsatz von 33 % beobachtet werden. Die gebildeten Produkte können identifiziert und ³¹Pund ¹⁹F-NMRspektroskopisch charakterisiert werden. Im ³¹P-NMR-Spektrum können ⁷⁷Se-Satelliten $(^{1}J_{SeP} = 768.4 \text{ Hz})$ beobachtet werden (**13b2**), ${}^{1}J_{SeP} = 817.4 \text{ Hz} (16b2)$). Das Produktverhältnis nach 12 h hat sich im Vergleich zu den Ausgangssubstanzen mehr als umgedreht und liegt hier bei 13b2/16b2 = 1:6.2. Dies bestätigt die leichtere Oxidierbarkeit von 16b. Bei der Reaktion mit Tellur kann auch nach mehreren Tagen Reaktionszeit kein Umsatz beobachtet werden. Der Elektronenzug der Bis(trifluormethyl)phenyl-Gruppe senkt die Reaktivität von 13b und 16b soweit, dass sie nicht mehr von elementarem Tellur oxidiert werden können.

16b erweist sich als leichter oxidierbar als **13b**. Dies ist wahrscheinlich dem größeren sterischen Anspruch der $2,6-(CF_3)_2C_6H_3$ -Gruppe zuzuschreiben. In einer Arbeit von U. BECKMANN³⁹ wird die Basizität der Phosphane mit der ¹J_{SeP}-Kopplungskonstante der entsprechenden selenierten Verbindungen korreliert. Durch lineare Regressionsanalyse wurde folgender Zusammenhang gefunden:

 ${}^{1}J_{PSe} = 7.60 \cdot pK_{B} + 646; (R^{2} = 0.9492)$ (Gleichung 1)

Mit den experimentell bestimmten ${}^{1}J_{SeP}$ -Kopplungskonstanten der λ^{5} -Phosphan-Selone **13b2** und **16b2** können somit nach Gleichung 1 die pK_{B} -Werte der Diaminophosphane **13b** und **16b** mit 16.10 bzw. 22.55 extrapoliert werden. Die geringe Reaktivität gegenüber Selenl und die großen pK_{B} -Werte der Diaminophosphane **13b** und **16b** belegen den starken elektronenziehenden Effekt des $(CF_{3})_{2}C_{6}H_{3}$ -Substituenten. Die im Vergleich zu **13b2** deutlich größere ${}^{1}J_{SeP}$ -Kopplungskonstante und der daraus errechnete wesentlich größere pK_{B} -Wert von **16b2** weist zudem darauf hin, dass der 2,4-(CF_{3})_{2}C_{6}H_{3}-Substituent einen deutlich größeren – I-Effekt auf die Bis(diethylamino)phosphan-Gruppe als der 2,6-(CF_{3})_{2}C_{6}H_{3}-Substituent ausübt.

³⁹ U. Beckmann, D. Süslüyan, P. C. Kunz, *Phosphorus, Sulfur Silicon Relat. Elem.*, im Druck.

2.3.2. Hydrolyse von 11

Diarylchlorphosphane können in der Regel leicht zu den entsprechenden Phosphanoxiden hydrolysiert werden. Die Hydrolysereaktion des Chlorphosphans **11** zum $(2,6-(CF_3)_2C_6H_3)_2-P(O)H$ (**17**) (Schema 17) zeigt jedoch ein unerwartetes Ergebnis:

Schema 17: Hydrolyse von 11.

Bei der Umsetzung von **11** mit Wasser in THF kann nach 4 h Reaktionszeit noch ca. 72 % Ausgangssubstanz zurückgewonnen und nur 8 % des erwarteten Hydrolyseproduktes **17** beobachtet werden. Ferner lassen sich drei bislang in der Literatur nicht beschriebene Verbindungen isolieren und NMR-spektroskopisch charakterisieren. Die NMR-Daten der erhaltenen Produkte können Tabelle 6Tabelle 6 entnommen werden. Aus der Reaktionslösung der Hydrolysereaktion können die Verbindungen **17** und **18** in einkristalliner Form isoliert und durch Röntgenbeugung charakterisiert werden (s. Kapitel 2.3.2.1 und 2.3.2.2).

	11	17	18	19	20		
$\delta^{ m 31}$ P	77.9	2.8	156.7	-69.1	18.4		
$\delta^{ m 19}$ F	-54.1	-54.8	−55.6 (CF ₃) −181.2 (P-F)	-58.2	n. b.		
$^{1}J_{PF}$			962.9				
$^{4}J_{PF}$	41.9	5.8	39.6	32.9	5.8		
$^{1}J_{PH}$		558.0		248.5			
$^{5}J_{FF}$			15.4				
$^{4}J_{\rm FH}$		1.3		2.4			

Tabelle 6: ³¹P- und ¹⁹F-NMR-Daten von **11**, **17**, **18**, **19** und **20** in CDCl₃; chemische Verschiebungen in ppm; Kopplungskonstanten in Hz.

Die geringe Reaktivität des Chlorphosphans **11** kann durch die starken intramolekularen P-F-Wechselwirkungen erklärt werden (vgl. 2.2.4.1), die sowohl im Kristall als auch in Lösung beobachtet werden können.

Für das Phosphanoxid **17** kann das Gleichgewicht zwischen der vierfach koordinierten Form und der der dreifach koordinierten Phosphinigsäure **17a** diskutiert werden (Schema 18).

Schema 18: Tautomeriegleichgewicht von 17a/17.

Löst man die Einkristalle von **17** in verschiedenen Lösemitteln so kann das Gleichgewicht im ³¹P-NMR-Spektrum beobachtet werden (Tabelle 7).

 Tabelle 7: Lage des Tautomeriegleichgewichtes zwischen 17 und 17a.

Lösemittel	Anteil 17	Anteil 17a				
CDCl ₃	100 %	0 %				
DMA	87 %	13 %				
Et ₂ O	82 %	18 %				
³¹ P- und ¹⁹ F-NMR-Da	³¹ P- und ¹⁹ F-NMR-Daten in Et ₂ O:					
17 : δ^{31} P = 1.0; δ^{19} F = -55.1; ${}^{4}J_{PF}$ = 5.8 Hz; ${}^{1}J_{PH}$ = 558.0 Hz;						
17a : δ^{31} P = 100.0;	$\delta^{19}F = -55.1; {}^{4}J_{PF} =$	36.7 Hz				

Das Gleichgewicht zwischen den tautomeren Verbindungen **17** und **17a** wird durch das Vorhandensein der *Cross-Peaks* im ³¹P,³¹P-EXSY-Spektrum (in Abbildung 9 rot markiert) belegt.

Abbildung 9: rechts: Ausschnitt ((-20)-120 ppm) aus dem ³¹P,³¹P-EXSY-Spektrum von 17 aufgelöst in Diethylether (ca. 0.1 м; Matrix 4096×256; Mischzeit: 0.8 s; Y: zerofill: 16); links: ³¹P-{¹H}-NMR-Signal von 17a (ca. 0.1 м in Et₂O).

Die für Aryldifluor- und Diarylfluorphosphane beschriebene Disproportionierungsreaktion zu den analogen Oligophosphanen und Fluorphosphoranen⁴⁰ kann hier auf Grund des hohen sterischen Anspruchs der 2,6-Bis(trifluormethyl)phenyl-Gruppe nicht beobachtet werden.

⁴⁰ C. Brown, M. Murray, R. Schmutzler, *J. Chem. Soc. C*, **1970**, 878–881.

Die beiden in Spuren beobachteten unerwarteten Reaktionsprodukte **19** und **20** entstehen durch eine Disproportionierungsreaktion von **17** zur Diarylphosphinsäure **20** und dem entsprechenden Phosphan **19**, die bei der Hydrolyse von sekundären Halogenphosphanen – abhängig von den Substituenten – auftreten kann. Die für Ph₂PCI bekannte Reaktion⁴¹ kann beispielsweise für (C₆F₅)₂PCI nicht beobachtet werden.⁴² Die Triebkraft für die Bildung des Fluorphosphans **18** ist die hohe P-F-Bindungsenergie und die in **11** vorhandenen P-F-Kontakte(vgl. 2.2.4.1).

2.3.2.1. Molekül- und Kristallstruktur von 17

Das Phosphanoxid **17** kristallisiert aus Chloroform in Form von farblosen Nadeln. Die Verbindung kristallisiert in der monoklinen Raumgruppe $P2_1/n$ und die asymmetrische Einheit besteht aus einem Molekül (Abbildung 10). Die intramolekularen Wechselwirkungen sind als gestrichelte Linien dargestellt.

Ausgewählte Strukturparameter können Tabelle 8 entnommen werden. Das Phosphoratom ist verzerrt tetraedrisch durch zwei Kohlenstoff-, ein Wasserstoff- und ein Sauerstoffatom koordiniert, der Winkelbereich erstreckt sich von 100.1–116.1°. Der P-O-Abstand liegt mit 1.483(3) Å im Bereich einer P=O-Doppelbindung. Die P-C-Abstände entsprechen P-C-Einfachbindungen. Die Bindungsabstände und –winkel im organischen Rest zeigen keine Besonderheiten. Es können keine Wechselwirkungen zwischen Donoratomen (F, O) und den Wasserstoffatomen der Verbindung beobachtet werden, die einen Donor-Wasserstoff-Abstand von unter 2.1 Å aufweisen.

Wie schon in der Struktur von **11** und **1a** ist auch hier die Konformation der CF₃-Gruppen durch P-F-Kontakte fixiert. Es können vier kurze PF-Abstände beobachtet werden, die mit 2.878(2)–3.105(2) Å deutlich kürzer als die Summer der van-der-Waals-Radien sind und auf der Rückseite der P-O-, P-H- bzw. P-C-Bindungen liegen (Abbildung 10). die beobachteten P-F-Kontakte sind mit denen der bereits in Abschnitt 2.2.4.1 bzw. 2.2.7.1 diskutierten P-F-Abständen in **11** bzw. **1a** vergleichbar.

⁴¹ C. Dörken, *Chem. Ber.* **1888**, *21*, 1505–1515.

⁴² D. D. Magnelli, G. Tesi, J. U. Lowe, W. E. McQuistion, *Inorg. Chem.* **1966**, *5*, 457–461.

Abbildung 10: Molekülstruktur von 17; asymmetrische Einheit mit intramolekularen Wechselwirkungen; thermische Auslenkungsellipsoide mit 50 % Aufenthaltswahrscheinlichkeit.

Wie schon in der Struktur von **11** und **1a** ist auch hier die Konformation der CF₃-Gruppen durch P-F-Kontakte fixiert. Es können vier kurze P-F-Abstände beobachtet werden, die mit 2.878(2)–3.105(2) Å deutlich kürzer als die Summe der VAN-DER-WAALS-Radien sind und auf der Rückseite der P-O-, P-H- bzw. P-C-Bindungen liegen (Abbildung 10). Die beobachteten P-F-Kontakte sind mit denen der bereits in Abschnitt 2.2.4.1 bzw. 2.2.7.1 diskutierten P-F-Abständen in **11** bzw. **1a** vergleichbar.

Bindungsabstände [Å]		Bindungswinke	I [°]			
P1-01	1.483(3)	01-P1-C11	116.1(2)			
P1-C11	1.855(4)	O1-P1-C21	110.9(1)			
P1-C21	1.819(3)	O1-P1-H1	100.1(10)			
P1-H1	1.40(3)	C11-P1-C21	108.3(2)			
		C11-P1-H1	110.1(10)			
		C21-P1-H1	108.2(9)			
	P-F-Ko	ontakte				
Bindungsabs	stände [Å]	Bindungswinkel [°]				
F171-P1	2.879(3)	F171-P1-O1	170.0(1)			
F271-P1	2.878(2)	F271-P1-H1	172.6(11)			
F182-P1	3.105(2)	F182-P1-C21	161.5(2)			
F282-P1	2.922(2)	F282-P1-C11	157.4(1)			
	$\Sigma(r_{kov}(PF)) = 1.74 \text{ Å}; \ \Sigma(r_{vdW}(PF)) = 3.27 \text{ Å}^{30}$					

Tabelle 8: Ausgewählte Strukturparameter in der Kristallstruktur von 17.

In der Elementarzelle befinden sich vier Moleküle, zwischen denen keine intermolekularen Wechselwirkungen beobachtet werden können (Abbildung 11).

Abbildung 11: Kristallstruktur von **17**: Elementarzelle; thermische Auslenkungsellipsoide mit 50 % Aufenthaltswahrscheinlichkeit.

Die Molekülstruktur von **17** stellt das erste strukturell charakterisierte Phosphanoxid mit mindestens einem *ortho*-CF₃-substituierten Phenyl-Rest am Phosphor dar. In der vergleichbaren Molekülstruktur der Phosphinsäure $(2,4-(CF_3)_2C_6H_3)_2PO_2H^{15}$ können ähnliche P-F-Kontaktdistanzen von 3.017(1) bzw. 3.109(1) Å beobachtet werden, die auf der Rückseite der beiden P-O-Bindungen liegen. Diese P-F-Wechselwirkungen werden aber in der Literatur nicht diskutiert.

2.3.2.2. Molekül- und Kristallstruktur von 18

Das Fluorphosphan **18** kristallisiert aus Chloroform in Form von farblosen Prismen in der triklinen Raumgruppe P-1. Die asymmetrische Einheit besteht aus einem Molekül (Abbildung 12 links). Die P-F-Kontakte sind als gestrichelte Linien dargestellt. In der Elementarzelle befinden sich zwei Moleküle (Abbildung 12 rechts), zwischen denen keine Wechselwirkungen beobachtet werden.

Ausgewählte Strukturparameter können Tabelle 9 entnommen werden. Das Phosphoratom ist pyramidal durch zwei Kohlenstoff- und ein Fluoratom koordiniert, der Winkelbereich erstreckt sich von 100.3(2)– 108.1(2)°.

Abbildung 12: Molekülstruktur von 18 im Kristall; links: asymmetrische Einheit mit PF-Kontakten; rechts: Elementarzelle; thermische Auslenkungsellipsoide mit 50 % Aufenthaltswahrscheinlichkeit.

Der P1-F1-Abstand ist mit 1.509(5) Å im Vergleich zu Standardwerten¹⁰ deutlich verkürzt. In der CCDC-Datenbank ist nur ein Beispiel für eine Verbindung mit einem ähnlichen Strukturmotiv ("C₂PF") am $\sigma^3 \lambda^3$ -Phosphoratom aufgeführt.⁴³ In der in Schema 19 gezeigten Verbindung wird ebenfalls ein sehr kurzer P-F-Bindungsabstand von 1.536(5) bzw. 1.539(5) Å berichtet.

Schema 19: Vergleichsverbindung

Die P-C-Abstände entsprechen P-C-Einfachbindungen. Die Bindungsabstände und –winkel im organischen Rest zeigen keine Besonderheiten.

Analog zu den anderen Strukturen sind auch hier die CF₃-Gruppen an kurzen P-F-Kontakten beteiligt. In dieser Struktur (**18**) können ebenfalls vier kurze P-F-Abstände beobachtet werden, die mit 2.832(4)–3.027(3) Å kürzer als die Summe der VAN-DER-WAALS-Radien sind. Drei dieser Kontakte liegen dabei rückseitig zu den P-F- bzw. P-C-Bindungen. Der F281–P1-Kontakt liegt rückseitig zur Position des freien Elektronenpaars am Ψ -tetraedrisch koordinierten Phosphoratom.

Bindungsabstär	nde [Å]	Bindungswinkel [°]		
P1-F1	1.509(5)	F1-P1-C11	108.1(2)	
P1-C11	1.864(6)	F1-P1-C21	100.3(2)	
P1-C21	1.865(5)	C11-P1-C21	105.5(3)	
	P-F-Ko	ntakte		
Bindungsabstär	nde [Å]	Bindungswinke	[°]	
F173-P1	2.832(4)	F173-P1-F1	172.2(2)	
F182-P1	2.987(4)	F182-P1-C21	155.6(2)	
F271-P1	2.933(4)	F271-P1-C11	164.1(2)	
F281-P1	3.027(3)			
Σ	(r _{kov} (PF)) = 1.74 Å; Σ	:(r _{vdW} (PF)) = 3.27 Å	30	

 Tabelle 9: Ausgewählte Strukturparameter in der Kristallstruktur von 18.

Auf Grund ihrer kristallographischen Ähnlichkeit ist hier bei der Strukturlösung trotz der unterschiedlichen Raumgruppe auch die Möglichkeit in Betracht zu ziehen, dass es sich bei den vermessenen Einkristallen anstatt um Verbindung **18** um das Phosphanoxid **17** oder die Phosphinigsäure **17a** handeln könnte.

⁴³ P. B. Hitchcock, M. J. Maah, J. F. Nixon, M. Green, *J. Organomet. Chem.* **1994**, 466, 153–158.

Einkristalle von **18**; ca. 0.02 M in CDCl₃.

Der wichtigste Befund, der darauf schließen lässt, dass es sich bei der Verbindung um das Fluorphosphan **18** handelt, ist das NMR-Spektrum der aufgelösten Kristalle (Abbildung 13). Das mit * markierte Dublett ist einer nicht identifizierten Verbindung zuzuordnen.

Die chemischen Verschiebungen und P-F-Kopplungskonstanten im ³¹Pund ¹⁹F-NMR-Spektrum entsprechen analogen, in der Literatur beschriebenen, Diarylfluorphosphanen.²⁰

2.3.3. Salze von (2,6-(CF₃)₂C₆H₃)-PO₂H₂ (1a)

In der Phosphinsäure **1a** sollte der $(2,6-(CF_3)_2C_6H_3)$ -Substituent sterisch und elektronisch das Koordinationsverhalten der $-PHO_2^-$ -Funktion stark beeinflussen. Metallkomplexe von **1a** sind in der Literatur bislang nicht bekannt. Um einen ersten Einblick in das Koordinationsverhalten von **1a** zu gewinnen wurde die Reaktion von **1a** mit einer Reihe von Übergangsmetallsalzen (u.a. $MnCl_2 \times 4 H_2O$, $Zn(NO_3)_2 \times 6 H_2O$, $SrCl_2 \times 6 H_2O$, Ni $Cl_2 \times 6 H_2O$) untersucht. Als Lösemittel wurden Methanol, Acetonitril, THF, Aceton bzw. deren Mischungen mit Wasser verwendet, in denen sowohl **1a** als auch die eingesetzten Metallsalze gut löslich sind. In allen Fällen wurde ein Äquivalent an Base (KOH, NH₃) verwendet um eine Koordination des Phosphinat-Anions zu begünstigen.

Es hat sich herausgestellt, dass die Einstellung eines neutralen bis schwach basischen pH-Wertes für die Kristallisation der Metallphosphinate von entscheidender Bedeutung ist. Ein zu hoher pH-Wert kann zur Bildung des entsprechenden schwerlöslichen Metallhydroxids führen, wohingegen ein zu niedriger pH-Wert zur Kristallisation der freien Säure **1a** (vgl. 2.2.7.1) führt.

In den beschriebenen Strukturen 21-25 ist der Phosphor verzerrt Sauerstoff-, ein Wasserstoffdurch zwei und tetraedrisch ein Kohlenstoffatom koordiniert. Die P-O-Bindungslängen liegen im Bereich zwischen einer P-O-Einfachbindung und einer P=O-Doppelbindung. Der P-C-Abstand entspricht dem einer P-C-Einfachbindung und die Bindungsabstände und -winkel im organischen Rest zeigen keine Besonderheiten. Die 2,6-Bis(trifluormethyl)phenyl)-phosphinat-Anionen zeigen intramolekulare P-F-Wechselwirkungen analog zu denen die in der Struktur der freien Säure 1a beobachtet werden können. Für die Wasserstoffbrückenbindungen wurden Diskussion der nur Wechselwirkungen mit einem Wasserstoff-Donor-Abstand von unter 2.1 Å berücksichtigt. Ausgewählte Strukturparameter der Strukturen sind in Tabellen 9–13 aufgeführt.

2.3.3.1. $(TMEDAH_2)(2,6-(CF_3)_2C_6H_3-PO_2H)_2 \times 4 H_2O (21)$

Wird $(2,6-(CF_3)_2C_6H_3)-PCl_2$ (**13a**) nach der Synthese *in situ* hydrolysiert, so können dabei Einkristalle von **21** aus Chloroform in Form von farblosen Prismen erhalten werden (Schema 20).

Schema 20: Darstellung von 21.

Die Verbindung kristallisiert in der triklinen Raumgruppe P-1. Die asymmetrische Einheit besteht aus einer halben Formeleinheit, die zweite Hälfte der Formeleinheit wir durch das Inversionszentrum in der Elementarzelle erzeugt (Abbildung 14). Die P-F-Kontakte sind als gestrichelte Linien dargestellt. Die ausgebildeten Wasserstoffbrückenbindungen sind in Abbildung 15 gezeigt. In der Elementarzelle befindet sich eine Formeleinheit.

Abbildung 14: Kristallstruktur von 21; links: asymmetrische Einheit mit P-F-Kontakten; rechts: Elementarzelle; thermische Auslenkungsellipsoide mit 50 % Aufenthaltswahrscheinlichkeit.

Ausgewählte Strukturparameter können Tabelle 10 entnommen werden. Die Kristallpackung wird durch intermolekulare Wasserstoffbrückenbindungen zwischen Wassermolekülen und den Sauerstoffatomen der Phosphinsäure und den Protonen der Ammoniumgruppen bestimmt. Durch die Wasserstoffbrücken zwischen den Wassermolekülen und den Phosphinsäuregruppen (O-H···O) bilden sich Doppelstränge entlang der a-Richtung aus, wobei die (2,6- $(CF_3)_2C_6H_3$)-Substituenten nach "außen" zeigen (Abbildung 15). Diese Ketten werden durch die Sauerstoffatome der Phosphinsäuregruppen und die Wassermoleküle H101-O1-H102 aufgebaut. Die Wassermoleküle H201-O2-H202 überbrücken diese Ketten, so dass sich annelierte 16-gliedrige alternierende 12-gliedrige und Ringe bilden. Die Doppelstränge werden durch weitere Wasserstoffbrückenbindungen über Tetramethylethylen-1,2-diammonium-Kationen die Kristall im zusammengehalten, wobei O2 (im Wassermolekül H201-O2-H202) als H-Akzeptor und die NH-Gruppe im Kation als H-Donoren wirken (Abbildung 15).

 Tabelle 10: Ausgewählte Strukturparameter in der Kristallstruktur von 21.

Abbildung 15: Kristallstruktur von **21**; H-Brückennetzwerk (Phenylrest aus Übersichtlichkeitsgründen weggelassen) thermische Auslenkungsellipsoide mit 50 % Aufenthaltswahrscheinlichkeit; Symmetriecodes: a = 1-x, 2-y, 1-z; b = -1+x, 1+y, z.

Die nach außen zeigenden $(2,6-(CF_3)_2C_6H_3)$ -Substituenten stehen dabei senkrecht zu den Doppelsträngen. Zwischen den Substituenten können keine Wechselwirkungen beobachtet werden (Abbildung 16).

Abbildung 16: Kristallstruktur von **21**; links: Projektion entlang der *a*-Achse; rechts: Projektion entlang der *b*-Achse; thermische Auslenkungsellipsoide mit 50 % Aufenthaltswahrscheinlichkeit.

2.3.3.2. $Mn(2,6-(CF_3)_2C_6H_3-PO_2H)_2$ (22)

Einkristalle von $Mn(2,6-(CF_3)_2C_6H_3-PO_2H)_2$ (**22**) können durch Salzmetathese von Kalium(2,6-bis(trifluormethyl)phenylphosphinat) mit $MnCl_2 \times 4 H_2O$ aus Methanol in Form von farblosen Nadeln erhalten werden (Schema 21).

Schema 21: Darstellung von 22.

Die Verbindung ist das erste strukturell charakterisierte wasserfreie Manganphosphinat und kristallisiert in der monoklinen Raumgruppe $P2_1/c$. Die asymmetrische Einheit besteht aus einer Formeleinheit (Abbildung 17 links). In der Elementarzelle befinden sich vier Formeleinheiten (Abbildung 17 rechts). Ausgewählte Strukturparameter können Tabelle 11 entnommen werden.

Abbildung 17: Kristallstruktur von 22; links: asymmetrische Einheit mit P-F-Kontakten; rechts: Elementarzelle; thermische Auslenkungsellipsoide mit 50 % Aufenthaltswahrscheinlichkeit.

Tabelle 11: Ausgewählte Strukturpa	arameter in der Kristallstruktur von 22.

Bindungsabstände [Å]	Bindungswinkel [°]		
P1-011	1.496(1)	C1-P1-O11	109.0(1)	
P1-012	1.494(1)	C1-P1-012	109.1(1)	
P1-C1	1.843(2)	C1-P1-H1	106.2(10)	
P1-H1	1.27(2)	O11-P1-O12	118.2(1)	
		O11-P1-H1	106.2(9)	
		O12-P1-H1	107.4(9)	
P2-021	1.490(2)	C11-P2-O21	107.7(1)	
P2-022	1.490(2)	C11-P2-O22	110.1(1)	
P2-C11	1.838(2)	C11-P2-H2	102.2(9)	
P2-H2	1.35(2)	O21-P1-O22	118.3(1)	
		O21-P1-H2	110.2(8)	
		O22-P1-H2	107.2(8)	
011-Mn1	2.021(1)	011-Mn1-012	110.1(1)	
012-Mn1	2.023(1)	011-Mn1-021	114.7(1)	
O21-Mn1	2.014(2)	011-Mn1-022	103.2(1)	
022-Mn1	2.023(1)	012-Mn1-021	109.6(1)	
		012-Mn1-022	109.7(1)	
		021-Mn1-022	109.3(1)	
	P-F-Ko	ntakte		
Bindungsabstände [Å]	Bindungswinkel [°]	
F71-P1	2.929(1)	F71-P1-H1	173.1(1)	
F81-P1	2.980(2)	F81-P1-O11	158.0(1)	
F172-P2	2.984(2)	F172-P2-O21	160.3(1)	
F182-P2	2.894(1)	F182-P2-H2	173.5(1)	
Σ(r _{kov} (P	F)) = $1.74 \text{ Å; } \Sigma$	Σ(r _{vdW} (PF)) = 3.27 Å ³⁰		

Mangan ist dabei tetraedrisch (Winkelbereich 103.2–114.7°) von vier Sauerstoffatomen koordiniert (Abbildung 18 A), die Mn-O-Abstände sind mit 2.014(2)–2.023(1) Å etwas kürzer als die Abstände der in der Literatur beschriebenen oktaedrischen [Mn(O₂MeP-CH₂NH₃)₂]Cl₂ × 2 H₂O- Struktur⁴⁴ und liegen im Bereich bekannter wasserfreier Mangan(II)phosphat-Strukturen⁴⁵. Das Phosphinat-Anion wirkt dabei als überbrückender Ligand zwischen zwei tetraedrisch koordinierten Mn(II)-Kationen, wodurch über die Mn(II)-Atome eckenverknüpfte jeweils um 90° versetzte 8-gliedrige Ringe gebildet werden. Durch diese Verknüpfung bilden sich Ketten entlang der *a*-Achse aus (Abbildung 18 B, C). Die organischen Reste der Phosphinsäuren stehen dabei abwechselnd nach außen: der Phenylring (C11–C16) in (+*b*+*c*)- bzw. (-*b*-*c*)-Richtung sowie der Phenylring (C1–C6) in (-*b*+*c*)- bzw. (+*b*-*c*)-Richtung.

 Abbildung 18: Kristallstruktur von 22; A: Verknüpfende Koordination der Phosphinat-Anionen an Mn(II); B: Verknüpfung der P- (pink) und Mn-Tetraeder (grau); C: Projektion entlang der c-Achse; die organischen Reste sind aus Übersichtlichkeitsgründen weggelassen; thermische Auslenkungsellipsoide mit 50 % Aufenthaltswahrscheinlichkeit; Symmetriecodes: a = 2-x, 1-y, -z; b = 1-x, 1-y, -z; c= 1+x, y, z.

⁴⁴ T. Glowiak, W. Sawka-Dobrowolska, Acta Crystallogr., Sect. B: Struct. Sci. **1977**, 33, 2763–2766.

⁴⁵ M. Sathiyendiran, R. Murugavel, *Inorg. Chem.* **2002**, *41*, 6404–6411.

Zwischen den ausgebildeten Ketten können keine Wechselwirkungen beobachtet werden.

2.3.3.3. $Zn(2,6-(CF_3)_2C_6H_3-PO_2H)_2$ (23)

 $Zn(2,6-(CF_3)_2C_6H_3-PO_2H)_2$ (**23**) wurde durch Salzmetathese von $NH_4(2,6-(CF_3)_2C_6H_3-PO_2H)$ mit $Zn(NO_3)_2 \times 6$ H₂O dargestellt (Schema 22).

Schema 22: Darstellung von 23.

Einkristalle der Verbindung, die für eine Röntgenstrukturanalyse geeignet sind, wurden aus einer Aceton-Wasser-Mischung (2:1; v/v) in Form von farblosen Blöcken erhalten. Die Verbindung kristallisiert wasserfrei in der monoklinen Raumgruppe $P2_1/c$. Die in Abbildung 19 links dargestellte asymmetrische Einheit besteht aus einer Formeleinheit, die P-F-Kontakte sind als gestrichelte Linien dargestellt. Ausgewählte Strukturparameter können Tabelle 12 entnommen werden.

Abbildung 19: Kristallstruktur von 23; links: asymmetrische Einheit mit P-F-Kontakten; rechts: Elementarzelle; thermische Auslenkungsellipsoide mit 50 % Aufenthaltswahrscheinlichkeit.

Bindungsabstände [Å]	Bindungswinkel [°]		
P1-011	1.510(1)	C11-P1-O11	108.4(1)	
P1-012	1.496(1)	C11-P1-O12	111.9(1)	
P1-C11	1.841(2)	C11-P1-H1	96.2(7)	
P1-H1	1.48(2)	O11-P1-O12	117.2(1)	
		O11-P1-H1	112.0(7)	
		O12-P1-H1	109.2(7)	
P2-021	1.499(1)	C21-P2-O21	111.2(1)	
P2-022	1.504(1)	C21-P2-O22	106.7(1)	
P2-C21	1.840(2)	C21-P2-H2	102.4(9)	
P2-H2	1.24(2)	O21-P2-O22	118.3(1)	
		O21-P2-H2	109.7(8)	
		O22-P2-H2	107.3(8)	
011-Zn1	1.952(1)	011-Zn1-012	111.1(1)	
012-Zn1	1.914(2)	011-Zn1-021	116.8(2)	
021-Zn1	1.932(1)	011-Zn1-022	104.8(1)	
022-Zn1	1.945(1)	012-Zn1-021	107.1(1)	
		012-Zn1-022	105.3(1)	
		021-Zn1-022	111.2(1)	
	P-F-Ko	ntakte		
Bindungsabstände [Å]	Bindungswinkel [°]		
F172-P1	2.930(1)	F172-P1-H1	164.8(1)	
F182-P1	2.952(1)	F182-P1-O11	165.14(7)	
F271-P2	2.930(1)	F271-P2-O22	154.8(1)	
F282-P2	3.291(1)	F282-P2-H2	174.1(8)	
Σ(r _{kov} (Pl	F)) = 1.74 Å; Z	$\Sigma(r_{vdW}(PF)) = 3.27 \text{ Å}^{30}$)	

 Tabelle 12: Ausgewählte Strukturparameter in der Kristallstruktur von 23.

In der Elementarzelle befinden sich vier Formeleinheiten (Abbildung 19 rechts). Zink ist dabei tetraedrisch (Winkelbereich 104.8–116.8°) von vier Sauerstoffatomen koordiniert, die Zn-O-Abstände sind mit 1.914(2)–1.952(1) Å sehr gut mit denen in der analog aufgebauten Zn(O₂HPPh)-Struktur vergleichbar.⁴⁶

Die Kristallstruktur von **23** ist analog zu der von **22** und der in der Literatur beschriebenen Zn(O₂HPPh)-Struktur aufgebaut. Das Phosphinat-Anion überbrückt die Zn(II)-Kationen und es bilden sich Ketten in *a*-Richtung, die aus am Zn-Atom eckenverknüpften, jeweils um 90° versetzten, 8-gliedrige Ringe gebildet werden. (Abbildung 20 A, B). Die organischen Reste der Phosphinsäuren stehen dabei abwechselnd nach außen: der Phenylring (C11–C16) in (+*b*+*c*)- bzw. (-*b*–*c*)-Richtung sowie der Phenylring (C21–C26) in (-*b*+*c*)- bzw. (+*b*–*c*)-Richtung.

⁴⁶ M. Shieh, K. J. Martin, P. J. Squattrito, A. Clearfield, *Inorg. Chem.* **1990**, *29*, 958-963.

Abbildung 20: Kristallstruktur von **23**; Verknüpfende Koordination der Phosphinat-Anionen an Zn(II); B: Verknüpfung der P- (pink) und Zn-Tetraeder (grau); C: Projektion entlang der *c*-Achse; die organischen Reste sind aus Übersichtlichkeitsgründen weggelassen; thermische Auslenkungsellipsoide mit 50 % Aufenthaltswahrscheinlichkeit; Symmetriecodes: a = -x, 2-y, 1-z; b = -1+x, y, z; c = 1-x, 2-y, 1-z.

Zwischen den durch die Kristallstruktur verlaufenden Ketten können keine Wechselwirkungen beobachtet werden.

2.3.3.4. $Sr_3(2,6-(CF_3)_2C_6H_3-PO_2H)_6 \times 6 \text{ MeOH} \times 8 H_2O$ (24)

Das Strontiumsalz von $(2,6-(CF_3)_2C_6H_3)-PO_2H_2$ kristallisiert mit sechs Molekülen Methanol und acht Molekülen Wasser aus einer methanolischen Lösung von K $(2,6-(CF_3)_2C_6H_3-PO_2H)$ und SrCl₂ × 6 H₂O (Schema 23). Die Verbindung ist das erste strukturell charakterisierte Sr-Phosphinat-Salz.

Schema 23: Darstellung von 24.

Das Phosphinat **24** kristallisiert in der orthorhombischen Raumgruppe *Pbcn* mit vier Formeleinheiten in der Elementarzelle. Die asymmetrische Einheit besteht aus einer halben Formeleinheit, die zweite Hälfte wird durch die durch Sr1 verlaufende Gleitspiegelebene *n* generiert (Abbildung 21). Die Wasserstoffbrückenbindung und die P-F-Kontakte sind als gestrichelte Linien dargestellt.

Abbildung 21: Kristallstruktur von **24**; asymmetrische Einheit mit H-Brücken und P-F-Kontakten; thermische Auslenkungsellipsoide mit 50 % Aufenthaltswahrscheinlichkeit.

Ausgewählte Strukturparameter sind in Tabelle 13 aufgeführt. Durch Anwendung der Gleitspiegelebene *n* bilden sich Ketten aus drei Sr-Einheiten: Sr2…O7…Sr1…O7a…Sr2a (Abbildung 22).

Der Phosphinat-Ligand wirkt in dieser Struktur nicht überbrückend wie in **22** und **23**, sondern koordiniert nur einfach an Strontium. Die restliche Koordinationssphäre des Strontiums wird von zwei Wasser- und zwei Methanol-Molekülen, sowie einem weiteren überbrückenden Wassermolekül gefüllt. So wird Sr2 von sieben Sauerstoffatomen und Sr1 von acht Sauerstoffatomen koordiniert (Abbildung 22).

Abbildung 22: vereinfachte Darstellung der doppelten asymmetrischen Einheit von **24**; die Phosphinat-Liganden sind durch P-Tetraeder (pink) angedeutet; die Koordination von Sr ist durch graue Polyeder veranschaulicht; thermische Auslenkungsellipsoide mit 50 % Aufenthaltswahrscheinlichkeit; Symmetriecodes: a = -x, y, 0.5–z.

Die Koordination von Sr2 kann am besten mit einem 1:4:2-Polyeder beschrieben werden, die Koordination von Sr1 mit einem 1:4:3 Polyeder. Die Sr-O-Abstände sind mit 2.435(2)–2.876(3) Å vergleichbar mit denen in der bekannten Struktur von wasserfreiem Phosphonat-Salzes Sr(HO₃PC₆H₅)₂.⁴⁷

⁴⁷ J. W. Stone, M. D. Smith, H.-C. zur Loye, *J. Chem. Cryst.* **2007**, *37*, 103–108.

Bindunas	abstände [Å]	Bindunaswi	nkel [°]	Bindungswir	kel [°]
P1-011	1.495(2)	C11-P1-O11	108.8(1)	011-P1-012	117.8(1)
P1-012	1.504(2)	C11-P1-O12	109.5(1)	O11-P1-H1	112.2(10)
P1-C11	1.850(3)	C11-P1-H1	99.7(10)	012-P1-H1	107.3(10)
P1-H1	1.36(2)		()		()
P2-021	1.505(2)	C21-P2-O21	107.8(1)	021-P2-022	118.8(1)
P2-022	1.493(2)	C21-P2-O22	109.6(1)	O21-P2-H2	106.8(11)
P2-C21	1.853(3)	C21-P2-H2	103.6(10)	O22-P2-H2	109.1(11)
P2-H2	1.27(2)		()		
P3-031	1.494(2)	C31-P3-O31	108.7(1)	O31-P3-O32	117.6(1)
P3-032	1.485(2)	C31-P3-O32	108.2(1)	O31-P3-H3	112.7(10)
P3-C31	1.844(4)	C31-P3-H3	102.3(10)	O22-P3-H3	106.2(10)
P3-H3	1.36(2)		()		
05-Sr1	2.527(3)	05-Sr1-06	103.3(1)	07-Sr1-05a	78.8(1)
06-Sr1	2.526(2)	05-Sr1-07	66.7(1)	07-Sr1-06a	149.5(1)
07-Sr1	2.876(3)	05-Sr1-012	72.9(1)	07-Sr1-07a	132.7(1)
012-Sr1	2.625(2)	05-Sr1-05a	85.5(1)	07–Sr1–012a	70.6(1)
		05-Sr1-06a	143.4(1)	012–Sr1–05a	135.0(1)
		05-Sr1-07a	78.8(1)	012–Sr1–O6a	76.2(1)
		05-Sr1-012a	135.1(1)	012–Sr1–07a	70.6(1)
		06-Sr1-07	72.7(1)	012-Sr1-012a	147.2(1)
		06-Sr1-012	80.9(1)	05a-Sr1-07a	66.7(1)
		06-Sr1-05a	143.4(1)	05a-Sr1-012a	72.9(1)
		06-Sr1-06a	90.5(1)	06a-Sr1-07a	72.7(1)
		06-Sr1-07a	149.5(1)	06a-Sr1-012a	80.9(1)
		06-Sr1-012a	76.2(1)	07a-Sr1-012a	123.9(1)
		07-Sr1-012	123.9(1)		()
01-Sr2	2.528(3)	01-Sr2-02	86.3(1)	03-Sr2-04	109.7(1)
02-Sr2	2.542(3)	01-Sr2-03	158.6(1)	03-Sr2-07	81.6(1)
03-Sr2	2.516(3)	01-Sr2-04	81.2(1)	03-Sr2-021	81.9(1)
04-Sr2	2.524(3)	01-Sr2-07	119.7(1)	03-Sr2-032	111.2(1)
07-Sr2	2.723(2)	01-Sr2-021	83.5(1)	04-Sr2-07	69.8(1)
021-Sr2	2.549(2)	01-Sr2-032	78.3(1)	04-Sr2-021	74.7(1)
032-Sr2	2.435(2)	02-Sr2-03	76.2(1)	04-Sr2-032	115.4(1)
		02-Sr2-04	154.3(1)	07-Sr2-021	132.7(1)
		02-Sr2-07	135.6(1)	07-Sr2-032	69.3(1)
		02-Sr2-021	81.6(1)	021-Sr2-032	157.2(1)
		02-Sr2-032	83.58(8)		(_)
		Symmetriecode:	a = -x, y, 0).5-z	
		P-F-K	ontakte		
Bindungs	abstände [Å]	Bindungswi	nkel [°]		
F172-P1	2.978(2)	F172-P1-H1	167.3(1)		
F183-P1	2.943(2)	F183-P1-O12	160.2(1)́		
F273-P2	2.967(2)	F273-P2-021	156.9(1)		
F282-P2	2.914(2)	F282-P2-H2	173.4(1)		
F371-P3	2.978(2)	F371-P3-O32	159.9(1)		
F381-P3	2.941(2)	F381-P3-H3	169.4(1)		
	Σ($r_{kov}(PF)) = 1.74 \text{ Å};$	$\Sigma(r_{vdw}(PF)) =$	3.27 Å ³⁰	

Tabelle 13: Ausgewählte Strukturparameter in der Kristallstruktur von 24.

H-Brücken							
X–H…Y	<i>d</i> (X–H)	<i>d</i> (H…Y)	<i>d</i> (X…Y)	<(X-H…Y)			
01-H104…O31	0.83(3)	1.85(3)	2.672(3)	172(3)			
O2-H204…O11	0.72(3)	2.06(3)	2.754(4)	165(3)			
O3-H302…O21	0.74(2)	2.07(2)	2.804(3)	170(4)			
O4-H401…O12	0.70(3)	2.02(3)	2.718(3)	176(6)			
O5-H501…O31	0.78(2)	1.95(2)	2.726(3)	173(4)			
O6-H604…O22	0.88(4)	1.87(4)	2.717(3)	161(4)			
07-H702…022	0.81(3)	1.93(3)	2.734(3)	173(3)			

Abbildung 23: Kristallstruktur von **24**; vereinfachte Projektion der Elementarzelle entlang der *a*-Achse; organische Reste aus Übersichtlichkeitsgründen weggelassen: A: H-Brücken innerhalb der Sr2-O7-Sr1-O7a-Sr2a-Einheiten; A, B: H-Brücken zwischen den Sr2-O7-Sr1-O7a-Sr2a-Einheiten; C: Projektion der Elementarzelle entlang der *c*-Achse; D: Projektion der Elementarzelle entlang der *b*-Achse; P-Koordinationspolyeder (pink)

deuten die Phosphinat-Liganden an; thermische Auslenkungsellipsoide mit 50 % Aufenthaltswahrscheinlichkeit; Symmetriecodes: b = 1+x, 1-y, 0.5+z; c = 1-x, 1-y, 1-z; d = 1+x, 1-y, 0.5+z; e = 1+x, y, 1+z; f = 1-x, y, 1.5-z; g = 1+x, y, z; h = 1-x, y, 0.5-z.

Die Kristallstruktur wird durch eine Reihe von Wasserstoffbrückenbindungen zwischen den Wasserbzw. Methanol-Molekülen den Phosphinat-Gruppen und bestimmt. Die Wasserstoffbrückenbindungen 01–H104…O31, 04–H401…O12, 05-H501…O31 verbrücken die Sauerstoffatome innerhalb der Sr2-O7-Sr1-07a-Einheiten (Abbildung 23 A), die übrigen Wasserstoffbrückenbindungen (Abbildung 23 B) verknüpfen die "Dreier-Einheiten" zu Ketten, die in c-Richtung durch die Elementarzelle verlaufen. (Abbildung 23 C+D). Durch die Elementarzelle verlaufen zwei solcher Ketten. Die organischen Reste stehen dabei von den Ketten nach "außen" ab (durch pinke P-Koordinationspolyeder angedeutet). Zwischen den organischen Resten der Ketten bestehen keine Wechselwirkungen.

2.3.3.5. $[Ni(H_2O)_6](NH_4)_2(2,6-(CF_3)_2C_6H_3 PO_2H)_4 \times 0.33 H_2O(25)$

 $[Ni(H_2O)_6](NH_4)_2(2,6-(CF_3)_2C_6H_3-PO_2H)_4 \times 0.33 H_2O$ (25) bildet sich durch Salzmetathese von $NH_4(2,6-(CF_3)_2C_6H_3-PO_2H)$ mit $NiCl_2 \times 6 H_2O$ in Methanol (Schema 24) und ist das erste strukturell charakterisierte Nickelphosphinat-Salz.

Schema 24: Darstellung von 25.

Abbildung 24: Kristallstruktur von 25; links: asymmetrische Einheit mit H-Brücken und P-F-Kontakten; b: primäre und sekundäre Koordinationssphäre am Ni (Koordinationspolyeder NiO_6 (grau), Phosphinat-Anionen durch pinke PHCO₂-Tetraeder angedeutet); thermische Auslenkungsellipsoide mit 50 % Aufenthaltswahrscheinlichkeit; Symmetriecodes: a = 1+x, y, z; b = 2-x, 1-y, 1-z; c = x, -1+y, z; d = 1-x, -y, 1-z; e = 1-x, 1-y, 1-z; f = -1+x, -1+y, z.

Die Verbindung kristallisiert in der triklinen Raumgruppe P-1. Die asymmetrische Einheit ist in Abbildung 24 dargestellt und besteht aus zwei Phosphinat-Anionen, einem Ammonium-Ion und der Hälfte des $[Ni(H_2O)_6]^{2+}$ -Oktaeders Das Nickelatom liegt dabei auf dem Inversionszentrum. Die Position des Sauerstoffatoms O4 ist zu 16.4 % besetzt, die H-Atome des freien Kristallwassers konnten nicht gefunden werden. Die Wasserstoffbrückenbindungen und P-F-Kontakte sind als gestrichelte Linien dargestellt.

Ausgewählte Strukturparameter sind in Tabelle 14 aufgeführt.

14	bene I Hi Musge	warnee Struktur	purumeter m ut			
Bindungsabstände [Å]		Bindungs	winkel [°]	Bindungswinkel [°]		
P1-011	1.507(2)	C11-P1-O11 109.7(1) O11-P1-C		011-P1-01	.2 117.0(1)	
P1-012	1.504(2)	C11-P1-O12	109.5(1)	O11-P1-H1	108.4(11)	
P1-C11	1.845(2)	C11-P1-H1 101.5(O12-P1-H1	109.5(11)	
P1-H1	1.30(2)					
P2-021	1.509(1)	C21-P2-O21	110.4(1)	021-P2-02	117.6(1)	
P2-022	1.498(1)	C21-P2-O22	107.9(1)	O21-P2-H2	109.1(8)	
P2-C21	1.842(2)	C21-P2-H2	102.2(8)	O22-P2-H2	108.6(8)	
P2-H2	1.300(17)					
Ni1-01	2.064(1)	01-Ni1-01a	180.0	O1d-Ni1-O	3d 87.7(1)	
Ni1-O1d	2.064(1)	01-Ni1-02	88.4(1)	02-Ni1-02	d 180.0	
Ni1-02	2.059(1)	01-Ni1-02d	91.6(1)	02-Ni1-03	87.0(1)	
Ni1-O2d	2.059(1)	01-Ni1-03	87.7(1)	02-Ni1-03	a 93.0(1)	
Ni1-03	2.048(1)	01-Ni1-03d	92.3(1)	O2d-Ni1-O	3 93.0(1)	
Ni1-O3d	2.048(1)	01d-Ni1-02	91.6(1)	02d-Ni1-0	3d 87.0(1)	
		01d-Ni1-02d	88.4(1)	03-Ni1-03	d 180.0	
		O1d-Ni1-O3 92.3(1)				
		Symmetriecod	le: d = 1-x, -y	/, 1-z		
		P-F-	-Kontakte			
Bindungsabstände [Å]		Bindungs	winkel [°]			
F172-P1	2.951(2)	F172-P1-H1	170.9(10)			
F183-P1	2.953(2)	F182-P1-O11 161.3(1)				
F271-P2	2.914(1)	F271-P2-H2 171.0(8)				
F281-P2	2.944(1)	F283-P2-O22 165.9(1)				
$\Sigma(r_{kov}(PF)) = 1.74 \text{ Å}; \Sigma(r_{vdW}(PF)) = 3.27 \text{ Å}^{30}$						
H-Brücken						
X–H…Y		<i>d</i> (X–H)	<i>d</i> (H…Y)	<i>d</i> (X…Y)	<(X-H…Y)	
01-H11…011		0.81(2)	1.97(2)	2.756(2)	165(2)	
01-H12…022		0.82(2)	1.88(2)	2.697(2)	175(3)	
02-H21…011		0.81(1)	2.01(2)	2.772(2)	156(2)	
02-H22…021		0.81(2)	1.88(2)	2.680(2)	167(2)	
O3-H31…O21		0.82(2)	1.96(2)	2.739(2)	160(2)	
O3-H32…O12		0.81(1)	1.91(1)	2.714(2)	173(2)	
N1-H101…O12		0.87(2)	1.99(2)	2.796(3)	154(2)	
N1-H103…O22		0.94(3)	1.85(3)	2.764(3)	164(3)	
N1-H104…O21		0.91(3)	1.98(3)	2.871(3)	168(3)	

 Tabelle 14: Ausgewählte Strukturparameter in der Kristallstruktur von 25.

Der $(2,6-(CF_3)_2C_6H_3)-PO_2H$ -Ligand ist unter diesen Bedingungen nicht in der Lage, einen Wasserliganden aus der primären Solvatationshülle des Nickels zu verdrängen. Es werden keine direkten Phosphinat-Nickel-Wechselwirkungen beobachtet. Die Phosphinat-Anionen und die Ammonium-Kationen sind in der sekundären Koordinationssphäre über Wasserstoffbrücken an die Wasser-Liganden des $[Ni(H_2O)_6]^{2+}$ -Oktaeders gebunden (Abbildung 24 rechts).

Das Nickelatom ist oktaedrisch von sechs Wassermolekülen koordiniert – Winkelbereich 87.7(1)– 93.0(1)°. Die Ni-O Abstände entsprechen mit 2.048(1)–2.064(1) Å den Abständen in literaturbekannten Nickelphosphonat-hydrat-Strukturen.⁴⁸

In der Elementarzelle befinden sich zwei Formeleinheiten, die durch das Inversionszentrum ineinander überführt werden. Die Nickelatome befinden sich auf der Flächenmitte der *ac*-Fläche (½; 0; ½). Die Phenylringe in der Mitte der Elementarzelle sind parallel im Abstand von 3.67–3.78 Å ausgerichtet. Zwischen den beiden Formeleinheiten können keine Wechselwirkungen beobachtet werden (Abbildung 25).

Abbildung 25: Kristallstruktur von **25**; links: Elementarzelle; rechts: Projektion der 2×2×2-Superzelle in *a*-Richtung; thermische Auslenkungsellipsoide mit 50 % Aufenthaltswahrscheinlichkeit.

2.4. Fluorierte Arylphosphane C₆H_nF_(5-n)-PRR'

Der C₆H_nF_(5-n)-Rest in fluorierten Arylphosphanen stellt ebenfalls einen elektronisch interessanten Substituenten dar. Er verfügt – in Abhängigkeit vom Substitutionsmuster – über einen etwas schwächeren Elektronenzug im Vergleich zum ((CF₃)₂C₆H₃)-Substituent¹⁵ und einen deutlich geringeren sterischen Anspruch. Ferner erhöht die Einführung von Fluoratomen in Arylphosphane die Löslichkeit in organischen Lösemitteln.

⁴⁸ C. Bellitto, E. M. Bauer, S. A. Ibrahim, M. R. Mahmoud, G. Righini, *Chem. - Eur. J.* **2003**, *9*, 1324–1331.

2.4.1. Pentafluorphenylphosphane

Die Chemie der C_5F_5 -substituierten Phosphane ist in der Literatur gut untersucht, wobei die Verbindungen meist nur ³¹P- und ¹⁹F-NMR spektroskopisch charakterisiert sind.

Die Pentafluorphenylphosphinsäure ($C_6F_5-PO_2H_2$) **(26)** selbst ist, trotz ihrer verhältnismäßig einfachen Zugänglichkeit, nur als Produkt der Co-Pyrolyse von C_6F_5 -P(OCH₂)₂ und MeOH beschrieben und nur ¹H- und ³¹P-NMR-spektroskopisch charakterisiert.⁴⁹

2.4.1.1. Synthese

Die Einführung des C₆F₅-Substituenten in Phosphanen gelingt durch Reaktion eines metallierten Pentafluorbenzen-Derivates mit einem Metallierung kann dabei Chlorphosphan. Die entweder durch 50 Pentafluorbenzen *n-*BuLi Deprotonierung von mit oder durch Brompentafluorbenzen Metallierung durch Reaktion von mit Magnesium^{51, 52} oder durch Transmetallierung mit dem "Turbo-Grignard"-Reagenz^{53, 54} bewirkt werden (Schema 25).

Schema 25: Synthese von Pentafluorphenylphosphanen.

⁴⁹ R. D. Chambers, K. B. Dillon, T. A. Straw, *J. Fluorine Chem.* **1992**, *56*, 385–388.

⁵⁰ T. M. Klapötke, B. Krumm, P. Mayer, *Z. Naturforsch., B: Chem. Sci.* **2004**, *59*, 547– 553.

⁵¹G. Mancino, A. J. Ferguson, A. Beeby, N. J. Long, T. S. Jones, *J. Am. Chem. Soc.* **2005**, 127, 524–525.

⁵² F. M. Piller, A. Metzger, M. A. Schade, B. A. Haag, A. Gavryushin, P. Knochel, *Chem. - Eur. J.* **2009**, *15*, 7192–7202.

⁵³ M. R. Biscoe, C. Uyeda, R. Breslow, *Org. Lett.* **2004**, *6*, 4331–4334.

⁵⁴ M. Abarbri, F. Dehmel, P. Knochel, *Tetrahedron Lett.* 1999, **40**, 7449–7453.

Bei der Darstellung von C₆F₅Li (**27a**) muss penibel auf die Einhaltung von niedrigen Temperaturen und den strikten Ausschluss von Feuchtigkeit geachtet werden, da perfluorierte aromatische Lithium-Verbindungen zur explosionsartigen Zersetzung bzw. Polymerisation neigen.⁵⁵

2.4.1.2. C₆F₅-P(NEt₂)₂ (28a)

Die Darstellung von $C_6F_5-P(NEt_2)_2$ (**28a**) ist in der Literatur durch Reaktion von $C_6F_5-PCl_2$ mit HNEt₂ beschrieben. Die Verbindung wurde ³¹P-, ¹⁹F- und ¹H-NMR-spektroskopisch charakterisiert.^{56, 57}

Es ist gelungen die Synthese von $C_6F_5-P(NEt_2)_2$ deutlich zu vereinfach und zu optimieren, indem die Verbindung durch Umsetzung von C_6F_5Li (**27a**) mit $P(NEt_2)_2Cl$ dargestellt wurde und in sehr guter Ausbeute (83 %) isoliert wurde (Schema 26). Das Diaminophosphan (**28a**) wurde erstmals vollständig NMR-spektroskopisch charakterisiert.

$$C_{6}F_{5}-H \xrightarrow[-C_{4}H_{10}]{n-BuLi} C_{6}F_{5}-Li \xrightarrow[-LiCl]{CIP(NEt_{2})_{2}} C_{6}F_{5}-P(NEt_{2})_{2}$$
27a 28a 83 %

Schema 26: Synthese von 28a.

Soweit literaturbekannt stimmen die beobachteten NMR-Daten von **28a** mit den publizierten überein. Abweichungen sind auf die unterschiedlichen verwendeten Lösemittel zurückzuführen.

Bei der 1:1-Umsetzung von **27a** mit PCl₃ wird die Bildung eines Gemischs beobachtet, das hauptsächlich aus nicht abreagiertem PCl₃, dem Dichlorphosphan **28b** und dem dreifach substituierten Phosphan **28d** besteht (Schema 27). Trotz breiter Variation der Reaktionsbedingungen konnte der Anteil des Dichlorphosphans **28b** am Reaktionsgemisch nicht erhöht werden.

 $C_{6}F_{5}-H \xrightarrow{2) PCl_{3}} PCl_{3} + C_{6}F_{5}-PCl_{2} + (C_{6}F_{5})_{3}P$ 58 % **28b** 5 % **28d** 14 %

Schema 27: 1:1-Umsetzung von C_6F_5Li (27a) mit PCI_3 .

Das Chlorphosphan (C_6F_5)₂PCl (**28c**) kann unter diesen Bedingungen nicht im Reaktionsgemisch beobachtet werden. Das erhaltene Reaktionsgemisch spricht für eine erhöhte Reaktivität von C_6F_5 –PCl₂ (**28b**) und (C_6F_5)₂PCl (**28c**) gegenüber der Li-Verbindung **27a**. Die Li-Verbindung **27a** erweist sich als zu reaktiv für die Synthese des Dichlorphosphans **28b** aus PCl₃.

⁵⁵ T. M. Klapötke, B. Krumm, K. Polborn, *Eur. J. Inorg. Chem.* **1999**, 1359–1366.

⁵⁶ G. G. Furin, S. A. Krupoder, A. I. Rezvukhin, T. M. Kilina, G. G. Yakobson, J. Fluorine Chem. **1983**, 22, 345–376.

⁵⁷ M. G. Barlow, M. Green, R. N. Haszeldine, H. G. Higson, *J. Chem. Soc. B* **1966**, 1025–1030.

2.4.1.3. C₆F₅-PCl₂ (28b)

Die Darstellung von **28b** ist in der Literatur ausführlich beschrieben. Sie durch Reaktion von C_6F_5MgBr erfolat zugänglich aus PCI_{3} .⁴² Brompentafluorbenzen Magnesium und mit Diese Reaktionsführung erweist sich jedoch in mehrerlei Hinsicht als ungünstig. Zum Einen ist die Grignard-Reaktion mit dem elektronenarmen Brompentafluorbenzen als schwer zu starten und läuft oft nur unvollständig ab. So wurde trotz Aktivierung des Magnesiums mit DIBAL und Aktivierung des gebildeten Grignard-Reagenzes mit LiCl das Dichlorphosphan 28b nur mit einer Ausbeute von etwa 10 % isoliert. Zum Anderen wird die Bildung von Bromphosphanen (C_6F_5 -PClBr, C_6F_5 -PBr₂) beobachtet.

Wird das Grignard-Reagenz, wie von P. KNOCHEL beschrieben, ausgehend von Brompentafluorbenzen durch Transmetallierung mit ^{*i*}PrMgBr × LiCl erzeugt, ⁵⁴ so wird C₆F₅-PCl₂ (**28b**) mit einer besseren Ausbeute von etwa 25 % isoliert. Die Transmetallierungsreaktion gelingt dabei bei sehr milden Bedingungen. Bei Verwendung eines Überschusses von ^{*i*}PrMgBr × LiCl können im ³¹P-NMR-Spektrum die bislang unbekannten Verbindungen **28f** und **28g** als Reaktionsprodukte des Turbo-Grignard-Reagenzes mit PCl₃ beobachtet werden. Trotz Verwendung eines Überschusses an PCl₃ kann auch (C₆F₅)₃P (**28d**) als Nebenprodukt beobachtet werden. Das Chlorphosphan **28c** kann erneut nicht in der Reaktionslösung beobachtet werden. Dies spricht für eine erhöhte Reaktivität von **28b** und **28c** gegenüber der Grignard-Verbindung (Schema 28).

Schema 28: Transmetallierung von Brompentafluorbenzen und anschließende Umsetzung mit PCl₃.

Die effektivste Synthese von 28b stellt der NEt₂/Cl-Austausch von 28a mit Chlorwasserstoff dar. Als Zwischenprodukt wurde dabei das bislang $C_6F_5 - P(NEt_2)CI$ (**28e**) isoliert unbekannte und vollständig NMRspektroskopisch charakterisiert. Nach ca. 3 h Reaktionszeit ist der NEt₂/Cl-Austausch vollständig und das Dichlorphosphan 28b kann in guantitativer Ausbeute isoliert werden. Somit wurde das Dichlorphosphan 28b in einer einfachen und schnellen zweistufigen Synthese in guten Ausbeuten als farbloses Öl isoliert und vollständig NMR-spektroskopisch charakterisiert. Die ${}^{31}P$ - und ${}^{13}C$ -NMR-Daten der dargestellten C₆F₅-substituierten Phosphane sind in Tabelle 15 zusammengefasst.

chemische Verschledungen in ppm; Kopplungskonstanten in Hz.							
	28a	28b	28c	28d	28e	28f	28g
δ ³¹ Ρ	80.0	136.0	11.6 ⁵¹	-73.3	106.8	78.8	-35.3
${}^{3}\mathcal{J}_{PF}$	< $\Delta_{1/2}$	62.4	37 ⁵¹	36.0	53.2	46.3	31.5
³ Ј _{РН}	10.4				12.0	19.1	19.7
δ ¹³ C (C _i)	116.6	113.5	n. b.	104.9 ⁵⁸	113.4	n. b.	n. b.
$^{1}\mathcal{J}_{PC}$	52.5	83.1	n. b.	n. b.	64.7	n. b.	n. b.
δ ¹³ C (C _o)	145.8	147.0	n. b.	137.9 ⁵⁸	146.7	n. b.	n. b.
$^{2}J_{PC}$	12.2	18.7	n. b.	n. b.	18.7	n. b.	n. b.
δ ¹³ C (C _m)	137.4	137.4	n. b.	143.4 ⁵⁸	137.3	n. b.	n. b.
$^{3}J_{PC}$	2.8	9.4	n. b.	n. b.	5.3	n. b.	n. b.
δ ¹³ C (C _p)	140.4	144.2	n. b.	147.8 ⁵⁸	142.5	n. b.	n. b.
$^{4}J_{PC}$	2.4	n. b.	n. b.	n. b.	n. b.	n. b.	n. b.
δ ¹³ C (CH ₂)	44.3				45.0		
$^{2}J_{PC}$	19.1				17.5		
δ ¹³ C (CH ₃)	14.6				13.7		
$^{3}J_{PC}$	n. b.				6.2		

Tabelle 15: ³¹P- und ¹³C-NMR-Daten der C₆F₅-substituierten Phosphane **28a–f**; chemische Verschiebungen in ppm; Kopplungskonstanten in Hz.

Für die mono-C₆F₅-substituierten Phosphane **28a**, **28b**, **28e** und **28f** zeigt sich der Trend, dass die ${}^{3}J_{PF}$ -Kopplungskonstante im Dichlorphosphan **28a** mit 62.4 Hz am größten ist und diese mit der Substitution der Chloratome sinkt. Für das Diaminophosphan **28a** kann die ${}^{3}J_{PF}$ -Kopplung im Rahmen der Linienbreite nicht mehr beobachtet werden. Für die Kopplungen des Phosphors zu den Kohlenstoffkopplungen im C₆F₅-Ring kann ein analoger Trend beobachtet werden. So sinkt beispielsweise die ${}^{1}J_{PC}$ -Kopplungskonstante von 83.1 Hz im Dichlorphosphan **28b** auf 64.7 Hz im Chloraminophosphan **28e** und 52.5 Hz im Diaminophosphan **28a**.

2.4.1.4. $C_6F_5 - PO_2H_2$ (29)

Die C₆F₅–PO₂H₂ (**29**) ist in der Literatur als Produkt der Co-Pyrolyse von C₆F₅-P(OCH₂)₂ und MeOH beschrieben. Die Verbindung wurde nur ¹H- und ³¹P-NMR-spektroskopisch charakterisiert.⁴⁹ In der Dissertation von O. SCHÖN ist die effizientere Synthese durch Hydrolyse des Dichlorphosphans **28b** beschrieben. Die Verbindung konnte von O. SCHÖN vollständig NMR-spektroskopisch, sowie durch Röntgenbeugung am Einkristall charakterisiert werden.⁵⁹

Im Rahmen dieser Arbeit wurde die Phosphinsäure **29** durch saure Hydrolyse der (Pentafluorphenyl)phosphane **28a** und **28b** dargestellt (Schema 29).

⁵⁸ H. J. Frohn, H. Maurer, *J. Fluorine Chem.* **1986**, *34*, 129–146.

⁵⁹ O. Schön, Organophosphorchalkogenide, Dissertation an der Ludwig-Maximilians-Universität, München, **2007**.

Schema 29: Synthese von 29.

Durch den elektronenziehenden Pentafluorphenyl-Rest erweist sich **29** dabei als sehr sauer. Bei der sauren Hydrolyse von **28a** kann **29** auf Grund der Säurestärke und der beschränkten Löslichkeit der Verbindung in organischen Lösemitteln nur als das Diethylammoniumsalz isoliert werden. Bei der Hydrolyse von **28b** dagegen wurde die Säure **29** ohne Nebenprodukte isoliert.

2.4.2. (Trifluorphenyl)dichlorphosphane (30)

In der Literatur sind bislang keine Synthesen und analytische Daten und analytische Daten für (Trifluorphenyl)dichlorphosphane (**30**) beschrieben. Lediglich die symmetrische Verbindung $(3,4,5-C_6F_3H_2)-PCl_2$ in einer theoretischen Arbeit⁶⁰ beschrieben.

2.4.2.1. Synthese

 $(2,3,6-C_6F_3H_2)-PCI_2$ (**30a**) und das $(2,3,4-C_6F_3H_2)-PCI_2$ (**30b**) wurden durch Reaktion der entsprechenden Grignard-Verbindungen (**31**) mit PCI₃ hergestellt. Die Grignard-Reagenzien **31a** und **31b** wurden durch Reaktion der respektiven Bromtrifluorbenzen-Derivate mit Magnesium in Gegenwart von LiCl generiert (Schema 30).

$$C_{6}H_{2}F_{3} - Br \xrightarrow{\text{LiCl}} C_{6}H_{2}F_{3} - MgBr \times \text{LiCl} \xrightarrow{\text{PCl}_{3}} C_{6}H_{2}F_{3} - PCl_{2}$$
31 30

Schema 30: Synthese der Dichlor(trifluorphenyl)phosphane 30.

Bei der Umsetzung von Bromtrifluorbenzen mit Magnesium ohne Lithiumchlorid, kann die Grignard-Reaktion nur schwer gestartet werden. Durch Zusatz von Lithiumchlorid gelingt die Metallierung bei sehr milden Bedingungen. Während $(2,3,4-C_6F_3H_2)MgBr$ (**31b**) bereits beschrieben war,⁶¹ wurde das 2,3,6-Isomer im Rahmen dieser Arbeit erstmals erzeugt und umgesetzt.

⁶⁰ E. S. Kozlov, E. G. Kapustin, *J. Mol. Struct.* **2001**, *598*, 277–285.

⁶¹G.-D. Zhu, V. B. Gandhi, J. Gong, S. Thomas, K. W. Woods, X. Song, T. Li, R. B. Diebold, Y. Luo, X. Liu, R. Guan, V. Klinghofer, E. F. Johnson, J. Bouska, A. Olson, K. C. Marsh, V. S. Stoll, M. Mamo, J. Polakowski, T. J. Campbell, R. L. Martin, G. A. Gintant, T. D. Penning, Q. Li, S. H. Rosenberg, V. L. Giranda, *J. Med. Chem.* **2007**, *50*, 2990–3003.

2.4.2.2. $C_6F_3H_2-PCI_2$ (30)

Im Rahmen dieser Arbeit wurde $(2,3,4-C_6F_3H_2)MgBr$ (**31b**) und das in der Literatur bislang nicht beschriebene $(2,3,6-C_6F_3H_2)MgBr$ (**31a**) in Anlehnung an eine Synthese von P. KNOCHEL⁵² als Lithiumchlorid-Addukte bei sehr milden Bedingungen dargestellt und anschließend mit zwei Äquivalenten PCl₃ umgesetzt (Schema 31).

Schema 31: Synthese der $C_6F_3H_2$ -PCl₂ (30).

Tabelle 16: ³¹ P- und ¹⁹ F-NMR-Daten der Dichlorphosphane 30a und 30b	und 28b;
chemische Verschiebungen in ppm; Kopplungskonstanten in Hz.	

CITC	moene versemebungen		
	30a	30b	28b
δ ³¹ Ρ	137.7	148.0	136.0
³ Ј _{РF} (С2-F)	54.3	65.7	62.4
³ Ј _{РF} (С6-F)	78.8		62.4
³ Ј _{РН} (С6-Н)		3.3	
δ ¹⁹ F (F2)	-127.2	-129.3	-131.8-(-132.0)
³ J _{FF}	21.0	19.2	
⁴ J _{FH}	8.2		
${}^{4}J_{FF}$		9.1	
δ ¹⁹ F (F3) Σ ¹⁹ F (F4)	-142.1-(-142.5)	-130.3-(-130.5)	-160.1-(-160.3)
0 F (F4) 37			-145.8
⁻ J _{FF}			21.0
⁻ J _{FF}			6.4
⁵ J _{PF}			1.2
δ ¹⁹ F (F5)			-160.1-(-160.3)
δ ¹⁹ F (F6)	-108.5		-131.8-(-132.0)
J_{FH}	8.3		

Bemerkenswert bei dieser Reaktion ist es, dass – im Gegensatz zur Umsetzung von $C_6F_5MgBr \times LiCl$ (**27c**) mit PCl_3 – hier die Dichlorphosphane **30a** und **30b** neben nicht abreagiertem PCl_3 als einzige Reaktionsprodukte beobachtet werden können. Eine Mehrfachsubstitution

am Phosphor kann nicht beobachtet werden. Die 31 P- und 19 F-NMR-Daten sind in Tabelle 16 zusammengefasst.

Die chemischen Verschiebungen und ${}^{3}J_{PF}$ -Kopplungskonstanten sind gut mit denen von C₆F₅-PCl₂ (**28b**) vergleichbar.

2.5. Pyridin-2-yl-phosphane

Der Pyridin-2-yl-Rest ((2-C₅H₄N)-) stellt durch sein σ^2 -Stickstoffatom vor Allem in koordinationschemischer Hinsicht einen interessanten Substituenten dar. Pyridin-2-yl-phosphane können gegenüber Metallen als mehrzähnige Liganden wirken. In der Literatur ist eine Vielzahl von tertiären (2-C₅H₄N)-substituierten Phosphanen und deren Metallkomplexe beschrieben.⁶²

2.5.1. Synthese

Der (2-C₅H₄N)-Substituent kann durch die Metallierung des kommerziell erhältlichen 2-Brompyridins mit *n*-BuLi ⁶³ oder Alkylmagnesiumhalogeniden⁶⁴ und anschließender Umsetzung mit einem Halogenphosphan eingeführt werden (Schema 32).

Schema 32: Synthese von Pyridin-2-yl-phosphanen.

Für $(2-C_5H_4N)-PCI_2$ (**33c**) sind in der Literatur weder Synthese noch analytische Daten publiziert. Die Synthese von $(2-C_5H_4N)-PO_2H_2$ (**34**) ist in der Literatur bislang nur ausgehend von $(2-C_5H_4N)-PH_2$ beschrieben. Die Verbindung wurde lediglich durch seine ³¹P-NMR-Verschiebung charakterisiert⁶⁵.

2.5.2. Lithiierung von 2-Brompyridin

Die Lithiierungsreaktion von 2-Brompyridin ist ausführlich in der Literatur beschrieben.⁶³ Dabei ist strikt auf die Einhaltung der Reaktionstemperatur von –78 °C zu achten. Wird die Lithiierung bei 0 °C durchgeführt und das Lithium-Derivat mit PCl₃ umgesetzt, so kann im ³¹P-

⁶² A. M. Kluwer, I. Ahmad, J. N. H. Reek, *Tetrahedron Lett.* **2007**, *48*, 2999–3001.

⁶³ A. Kotschy, J. Faragó, A. Csámpai, D. M. Smith, *Tetrahedron* **2004**, *60*, 3421–3425.

⁶⁴ N. Furukawa, T. Shibutani, H. Fujihara, *Tetrahedron Lett.* **1987**, *28*, 5845–5848.

⁶⁵G. U. Spiegel, O. Stelzer, *Chem. Ber.* **1990**, *123*, 989–993.

NMR-Spektrum keine Reaktion beobachtet werden. Nach Quenchen der Reaktionslösung mit Wasser wird 2-Butylpyridin isoliert. Der Brom-Magnesium-Austausch findet nur bei niedrigen Temperaturen statt, bei 0 °C wird der Pyridinring alkyliert.

Das bei –78 °C gebildete (2-C₅H₄N)Li (**32a**) ist sehr reaktiv. Setzt man die Verbindung mit PCl₃ um, so wird nur die Mehrfacharylierung am Phosphor beobachtet. Im ³¹P-NMR-Spektrum der Reaktionslösung wird neben nicht abreagiertem PCl₃ das (2-C₅H₄N)₃P (**33b**) anhand seiner charakteristischen ³¹P-NMR-Verschiebung ($\delta^{31}P = 0.37$)⁶² identifiziert.

Schema 33: Umsetzung von (2-C5H4N)Li (32a) mit PCl₃.

Eine alternative Synthesestrategie zur direkten Darstellung von (2- C_5H_4N)– PCl_2 wäre beispielsweise die Umsetzung von (2- C_5H_4N)-Metall-Verbindungen mit PCl_3 . (2- C_5H_4N)Li (**32a**) erweist sich dabei als zu reaktiv. Die Untersuchung der Reaktivität von anderen Verbindungen, wie z.B. (2- C_5H_4N)-cupraten, (2- C_5H_4N)-Magnesium- oder (2- C_5H_4N)-Zinkhalogeniden, wurde im Rahmen dieser Arbeit nicht durchgeführt.

2.5.3. (2-C₅H₄N)-P(NEt₂)₂ (33a)

Das bislang in der Literatur nicht beschriebene $(2-C_5H_4N)-P(NEt_2)_2$ (**33a**) wurde in Anlehnung an die publizierten Synthese für die analoge Dimethylamino-Verbindung⁶⁶ dargestellt. Die Verbindung wurde in sehr guten Ausbeuten isoliert und vollständig NMR-spektroskopisch charakterisiert (Schema 34).

Schema 34: Synthese von 33a.

Das Diaminophosphan **33a** wurde als gelbliches, hydrolyseempfindliches, leicht bewegliches Öl erhalten, das sich im Laufe der Zeit intensiver gelb verfärbt.

2.5.4. $(2-C_5H_4N)-PO_2H_2$ (34)

 $(2-C_5H_4N)-PO_2H_2$ (**34**) ist in der Literatur bislang praktisch unbekannt. Sie wurde als Nebenprodukt bei der Alkylierungsreaktion von $(2-C_5H_4N)-PH_2$ gefunden und ³¹P-NMR-spektroskopisch identifiziert.⁶⁵

⁶⁶ K. Nishide, S. Ito, M. Yoshifuji, *J. Organomet. Chem.* **2003**, 682, 79–84.

Durch alkalische Hydrolyse von **33a** wurde die Phosphinsäure **34** in Ausbeuten von ca. 40 % isoliert und vollständig NMR-spektroskopisch charakterisiert.

Schema 35: Synthese von 34 × 0.11 HNEt₂.

Die Verbindung liegt dabei in der zwitterionischen Pyridinium-Phosphinat-Struktur vor und wird unter diesen Reaktionsbedingungen mit ca. 0.11 Molekülen Diethylamin pro Phosphinsäuremolekül (Anteil bestimmt im ¹H-NMR) als gelbes Pulver erhalten (Schema 35).

3. Strukturen von (Amino)phosphin- und (Amino)phosphonsäuren und deren Metallsalze

3.1. Allgemeines zu Aminophosphonsäuren

Aminophosphin- und Aminophosphonsäuren stellen die Phosphoranaloga der ubiquitären Aminosäuren dar. Sie weisen in Ihrer Reaktivität Gemeinsamkeiten aber auch Unterschiede zu den analogen Carbonsäuren auf.

Die Bildung von Oligo- Polypeptid-analogen Strukturen aus Aminophosphin- bzw. –phosphonsäuren erweist sich beispielsweise auf Grund der Oxophilie des Phosphors als schwierig.

Analog zu den Aminosäuren zeigen auch die Phosphoranalogen Verbindungen häufig biologische Aktivität. Beispiele hierfür sind das Herbizid *N*-(Phosphonomethyl)glycin (Glyphosat), das Osteoporose-Medikament Alendronsäure und das Anti-Krebsmedikament Samarium(¹⁵³Sm)lexidronam – das Phosphor-analoge Verbindung des entsprechenden ¹⁵³Sm-EDTA-Komplexes.

Dieses Kapitel behandelt die Strukturchemie der Aminophosphonund -phosphinsäuren, sowie die der entsprechenden Metallkomplexe. Der Schwerpunkt der Untersuchungen liegt hier auf den ausgebildeten interund intramolekularen Wechselwirkungen innerhalb der Strukturen, wie z.B. Wasserstoffbrückenbindungen sowie auf den dadurch ausgebildeten Strukturmotiven. Ein weiterer Aspekt der untersuchten Strukturen sind die Metall-phosphonat bzw. -phosphinat-Wechselwirkungen in den Salzen.

Wie erwartet, ist der Phosphor in den im Folgenden beschriebenen und (Amino)phosphonsäure-Strukturen (Amino)phosphonatverzerrt tetraedrisch koordiniert. Die P-O-Bindungslängen liegen im Bereich zwischen einer P-O-Einfachbindung und einer P=O-Doppelbindung. Der P-P-C-Einfachbindung. C-Abstand entspricht dem einer Die Bindungsabstände und -winkel im organischen Rest zeigen keine Besonderheiten. Für die Diskussion der Kristallstrukturen wurden Wasserstoffbrückenbindungen bis zu einem Donor-Wasserstoff-Abstand von 2.1 Å berücksichtigt. Ausgewählte Strukturparameter der Strukturen können den Tabellen 16-36 entnommen werden.

3.2. Molekül- und Kristallstruktur von (*R/S*)-1-Aminoethylphosphonsäure (35)

Das Racemat der 1-Aminoethan-phosphonsäure (**35**) kristallisiert in der tetragonalen Raumgruppe $P4_2bc$ mit acht Molekülen in der Elementarzelle (Abbildung 26 C). Die in Abbildung 26 A dargestellte asymmetrische Einheit besteht aus einem Molekül, das in der zwitterionischen Ammonium-hydrogenphosphonat-Struktur vorliegt. Die intermolekularen Wasserstoffbrückenbindungen sind als gestrichelte Linien dargestellt

(Abbildung 26 B). Ausgewählte Strukturparameter können Tabelle 17 entnommen werden.

Abbildung 26: Molekülstruktur von 35 im Kristall: A: asymmetrische Einheit; B: intermolekulare Wasserstoffbrücken; C: Elementarzelle; thermische Auslenkungsellipsoide mit 50 % Aufenthaltswahrscheinlichkeit; Symmetriecodes: a = 0.5-y, 0.5-x, -0.5+z; b = 0.5+x, 0.5-y, z; c = 0.5-y, 0.5-x, 0.5+z; d = y, -x, -0.5+z; e = -x, -y, z; f = -y, x, 0.5+z; g = -0.5+x, 0.5-y, z.

|--|

Bindung	sabstände [Å]	Bindungswinkel [°]		Bindungs	vinkel [°]
P1-01	1.500(2)	01-P1-02	111.1(1)	02-P1-03	107.3(1)
P1-02	1.571(2)	01-P1-03	117.9(2)	O2-P1-C1	106.2(1)
P1-03	1.492(2)	O1-P1-C1	106.5(1)	O3-P1-C1	107.1(1)
P1-C1	1.827(2)		_		

H-Brücken						
X–H…Y	<i>d</i> (X–H)	<i>d</i> (H…Y)	<i>d</i> (X…Y)	<(X-H…Y)		
O2-H001…O1	1.13(3)	1.55(3)	2.595(2)	151(2)		
N1-H101…O3	0.94(2)	1.84(2)	2.772(3)	175(2)		
N1-H102…O1	0.98(2)	1.84(2)	2.775(3)	159(2)		
N1-H103…O3	0.86(2)	2.06(2)	2.863(3)	155(2)		

Die Verbindung bildet im Kristall eine Reihe von Wasserstoffbrückenbindungen aus.

Abbildung 27: Kristallstruktur von 35, Ketten in *c*-Richtung: A: vereinfachte Projektion der doppelten Elementarzelle in *c*-Richtung (organischer Rest aus Übersichtlichkeitsgründen weggelassen); C: Projektion in *c*-Richtung; D: Projektion in *a*-Richtung; E: Projektion der 2×2×1-Superzelle in *c*-Richtung; thermische Auslenkungsellipsoide mit 50 % Aufenthaltswahrscheinlichkeit.

Auffällig ist dabei die außergewöhnlich kurze Wasserstoffbrückenbindung zwischen den Phosphonsäuregruppen (O2-H001…O1). Diese Wasserstoffbrücke ist das strukturbestimmende Element in der Kristallstruktur von **35**. Die Moleküle sind durch diese Wasserstoffbrücke in Ketten in *c*-Richtung angeordnet (Abbildung 27 C). Durch die Elementarzelle verlaufen vier dieser Stränge, die durch die 4₂-Schraubenachse und die Gleitspiegelebenen ineinander überführt werden (Abbildung 27 A). Die Sauerstoffatome bilden in der Kette eine in *c*-Richtung und den Winkel γ halbierend ausgerichtete Ebene. Die NH₃-Gruppe steht nach außen und die Methylgruppen zeigen im "Reißverschluss-Prinzip" nach innen (Abbildung 27 B). Die (*R*)- und (*S*)-Enantiomere der Verbindung sind abwechselnd angeordnet.

Über die Wasserstoffbrücken der Ammonium-Gruppen werden die Ketten miteinander quervernetzt und bilden so das Wasserstoffbrücken-Netz aus, das die Kristallstruktur von **35** bestimmt (Abbildung 27 D).

3.3. Molekül- und Kristallstruktur von 2-Aminoethylphosphonsäure (36)

Diese Struktur ist bereits in der Literatur beschrieben.⁶⁷ In der Arbeit ist jedoch das ausgebildete Wasserstoffbrücken-Netzwerk nur unzureichend diskutiert. Zum Vergleich mit den anderen im Rahmen dieser Arbeit kristallisierten Aminophosphon- und phosphinsäuren, wurde die Verbindung aus wässriger alkalischer Lösung kristallisiert. Die Molekülund Kristallstruktur von **36** wird hier im Rahmen dieser Arbeit v.a. im Hinblick auf die ausgebildeten Wasserstoffbrücken erneut diskutiert.

Abbildung 28: Molekülstruktur von **36** im Kristall: A: asymmetrische Einheit; B: intermolekulare Wasserstoffbrücken; thermische Auslenkungsellipsoide mit 50 % Aufenthaltswahrscheinlichkeit; Symmetriecodes: a = -x, 0.5+y, 0.5-z; b = 0.5-x, 0.5+y, z; c = x, 1.5-y, -0.5+z; d = 0.5-x, -0.5+y, z; e = 0.5+x, 1.5-y, 1-z; f = x, 1.5-y, 0.5+z; g = -x, -0.5+y, 0.5-z; h = -0.5+x, 1.5-y, 1-z.

⁶⁷ Y. Okaya, Acta Cryst. **1966**, 20, 712–15.

2-Aminoethan-phosphonsäure (36) kristallisiert der in orthorhombischen Raumgruppe Pbca. Die in Abbildung 28 dargestellte asymmetrische Einheit besteht aus einem Molekül, das in der zwitterionischen Form als Ammonium-Hydrogenphosphonat vorliegt. Die intermolekularen Wasserstoffbrückenbindungen sind als gestrichelte Linien dargestellt (Abbildung 28). Ausgewählte Strukturparameter können Tabelle 18 entnommen werden.

Bindungsabstände [Å] Bindungswinkel [°]		Bindungswinkel [°]				
P1-01	1.514(1)	01-P1-02	115.7(1)	02-P1-03	111.8(1)	
P1-02	1.503(1)	01-P1-03	107.4(1)	O2-P1-C1	108.4(1)	
P1-03	1.573(1)	O1-P1-C1	107.4(1)	O3-P1-C1	105.4(1)	
P1-C1	1.807(1)					
	H-Brücken					
X	–H···Υ	<i>d</i> (X–H)	<i>d</i> (H…Y)	$d(X \cdots Y)$	<(X-H…Y)	
O3-H301·	01	0.98(3)	1.56(3)	2.542(1)	177(2)	
N1-H101.	01	0.86(2)	1.934(18)	2.778(1)	165(1)	
N1-H102·	02	0.96(2)	1.859(17)	2.765(1)	157(1)	
N1-H103-	02	0.91(2)	2.044(18)	2.927(1)	163(2)	

 Tabelle 18: Ausgewählte Strukturparameter in der Kristallstruktur von 36.

Die Verbindung bildet eine Reihe von Wasserstoffbrückenbindungen aus. Analog zu **35** ist auch hier die sehr kurze Wasserstoffbrückenbindung zwischen den Phosphonsäuregruppen (O3-H301…O1) das strukturbestimmende Element in der Kristallstruktur. Die Moleküle sind durch diese Wasserstoffbrücke in Ketten in *a*-Richtung angeordnet. Durch die Elementarzelle verlaufen sechs dieser Stränge (Abbildung 29 A). In der Kette sind die organischen Reste abwechselnd in (01–1)- bzw. (0–11)-Richtung ausgerichtet (Abbildung 29 B, C).

Über die Wasserstoffbrücken der Ammonium-Gruppen werden die Ketten miteinander quervernetzt und bilden so die Kristallstruktur von **36**. Das so aufgebaute Wasserstoffbrücken-Netzwerk ist durch die Projektion in der $2 \times 2 \times 2$ -Superzelle in *a*-Richtung (Abbildung 29 D) veranschaulicht.

Abbildung 29: Kristallstruktur von **36**; die H-Brücken sind als gestrichelte Linien dargestellt: A: Elementarzelle; Ketten in *a*-Richtung: B: Projektion in *a*-Richtung; C: Projektion in *b*-Richtung; D: Projektion der 2×2×2-Superzelle in a-Richtung (Koordinationspolyeder: PCO₃: pink); thermische Auslenkungsellipsoide mit 50 % Aufenthaltswahrscheinlichkeit.

3.4. Molekül- und Kristallstruktur von (*R/S*)-1-Aminopropylphosphonsäure (37)

Das Racemat der 1-Aminopropan-phosphonsäure (37) kristallisiert in der monoklinen Raumgruppe $P2_1/c$ mit vier Molekülen in der Elementarzelle. Die asymmetrische Einheit besteht aus einem Molekül, das in der zwitterionischen Ammonium-Hydrogenphosphonat Struktur vorliegt links ist in Abbilduna 30 gezeigt. Die intermolekularen und Wasserstoffbrückenbindungen sind in Abbildung 30 rechts als gestrichelte Linien dargestellt. Ausgewählte Strukturparameter können Tabelle 19 entnommen werden.

Abbildung 30: Molekülstruktur von 37 im Kristall: links: asymmetrische Einheit; rechts: intermolekulare Wasserstoffbrücken; thermische Auslenkungsellipsoide mit 50 %
Aufenthaltswahrscheinlichkeit; Symmetriecodes: a = x, 1+y, z; b = 2-x, -y, 1-z; c = 2-x, 0.5+y, 1.5-z; d = 2-x, -0.5+y, 1.5-z; e = x, -1+y, z.

Bindungsabstände [Å] Bindungswinkel [°]		inkel [°]	Bindungsw	inkel [°]	
P1-011	1.488(3)	O11-P1-O12	115.7(1)	012-P1-013	105.7(1)
P1-012	1.506(2)	O11-P1-O13	113.6(2)	012-P1-C1	110.8(1)
P1-013	1.562(2)	O11-P1-C1	107.4(1)	O13-P1-C1	103.0(1)
P1-C1	1.824(3)				
H-Brücken					

 Tabelle 19: Ausgewählte Strukturparameter in der Kristallstruktur von 37.

H-Brücken						
X–H…Y	<i>d</i> (X–H)	<i>d</i> (H…Y)	$d(X \cdots Y)$	<(X-H…Y)		
N1-H101…O11	0.82(4)	2.07(4)	2.888(4)	176(4)		
N1-H102…O11	0.78(4)	2.09(5)	2.810(4)	154(4)		
N1-H103…O12	0.83(3)	2.04(3)	2.845(3)	163(3)		

Anders als in den beiden oben diskutierten Kristallstrukturen der Phosphonsäuren **35** und **36** ist das Proton der Phosphonsäure-Gruppe hier nicht am Wasserstoffbrückenbindungssystem beteiligt. Die Struktur wird durch die Wasserstoffbrückenbindungen der Ammonium-Funktionalität bestimmt. Durch die ausgebildeten Wasserstoffbrückenbindungen bildet **37** im Kristall Schichten aus, die senkrecht zur *a*-Achse orientiert und in Abbildung 31 B und C veranschaulicht sind.

Abbildung 31: Kristallstruktur von **37**: A: Elementarzelle; Schichten senkrecht zur *a*-Achse: B: Projektion in b-Richtung; C: Projektion in c-Richtung; thermische Auslenkungsellipsoide mit 50 % Aufenthaltswahrscheinlichkeit.

Durch die Elementarzelle (Abbildung 31 A) verlaufen zwei dieser Schichten, wobei zwischen den Schichten keine intermolekularen Wechselwirkungen beobachtet (Abbildung 31 B, C) werden.

3.5. Molekül- und Kristallstruktur von (*R*/*S*)-1-Amino-1-phenyl-methylphosphinsäure (38)

(R/S) 1-Amino-1-phenyl-methylphosphinsäure (**38**) kristallisiert in der orthorhombischen Raumgruppe $Pca2_1$. Die asymmetrische Einheit besteht aus einem Molekül in der zwitterionischen Ammonium-Phosphinat-Struktur vorliegt. Die intermolekularen Wasserstoffbrückenbindungen sind in Abbildung 32 links als gestrichelte Linien dargestellt. In der Elementarzelle befinden sich vier Moleküle (Abbildung 32 rechts). Ausgewählte Strukturparameter können Tabelle 20 entnommen werden.

Abbildung 32: Molekülstruktur von **38** im Kristall: links: asymmetrische Einheit mit intermolekularen H-Brücken; rechts: Elementarzelle mit H-Brücken; thermische Auslenkungsellipsoide mit 50 % Aufenthaltswahrscheinlichkeit; Symmetriecodes: a = 0.5-x, y, -0.5+z; b = 0.5+x, 1-y, z; c = -x, 1-y, -0.5+z; d = 0.5-x, y, 0.5+z; e = -x, 1-y, 0.5+z; f = -0.5+x, 1-y, z.

Tabelle 20: Ausgewahlte Strukturparameter in der Kristallstruktur vor
--

Bindungsabstände [Å] Bindungswinkel [°]		Bindungsw	inkel [°]		
P1-011	1.498(1)	011-P1-012	117.2(1)	O12-P1-H1	109.7(7)
P1-012	1.488(1)	O11-P1-H1	109.1(6)	O12-P1-C1	111.0(1)
P1-H1	1.292(14)	O11-P1-C1	107.4(1)	H1-P1-C1	101.2(7)
P1-C1	1.838(2)				

H-Brücken						
X–H…Y	<i>d</i> (X–H)	<i>d</i> (H…Y)	$d(X \cdots Y)$	<(X-H…Y)		
N1-H2…O11	0.84(2)	1.90(2)	2.705(2)	160(2)		
N1-H3…O12	0.99(2)	1.78(2)	2.712(2)	156(1)		
N1-H4…O11	0.86(2)	1.96(2)	2.804(2)	168(2)		

Analog zur Kristallstruktur von **37** ist auch hier das Proton der Phosphinsäure-Gruppe nicht am Wasserstoffbrückennetzwerk beteiligt. Es zeigt sich der Trend, dass sich nur bei Aminophosphonsäuren, die einen nicht sterisch anspruchsvolleren Rest (H, Me) am *a*-Kohlenstoff tragen, die Wasserstoffbrückenbindungen der Phosphon- bzw. Phosphinsäuregruppen (O-H···O) als strukturbestimmendes Element erweisen.

Durch die ausgebildeten Wasserstoffbrückenbindungen bildet **38** im Kristall Schichten senkrecht zur *b*-Achse aus, die in Abbildung 33 gezeigt sind.

Abbildung 33: Kristallstruktur von **38**: oben: Projektion der Struktur entlang der a-Achse; unten: Projektion der Struktur entlang der c-Achse; thermische Auslenkungsellipsoide mit 50 % Aufenthaltswahrscheinlichkeit.

Die Phenylreste der Verbindung sind dabei in *b*-Richtung ausgerichtet. Es können keine Wechselwirkungen zwischen den Schichten beobachtet werden.

3.6. Molekül- und Kristallstruktur von 1-Aminoethyl-1,1-diphosphonsäure (39)

Die Struktur von **39** ist bereits in der Literatur beschrieben.⁶⁸ Zum Vergleich mit den anderen im Rahmen dieser Arbeit kristallisierten Aminophosphon- und phosphinsäuren, wurde die Verbindung aus neutraler bis leicht alkalischer wässriger Lösung kristallisiert. Die Molekül- und Kristallstruktur von **39** wird hier im Rahmen dieser Arbeit v.a. im Hinblick auf die ausgebildeten Wasserstoffbrücken erneut diskutiert.

39 kristallisiert in der zwitterionischen Ammonium-Phosphonsäure-Hydrogenphosphinat-Form in der triklinen Raumgruppe *P*–1 mit vier Molekülen in der Elementarzelle. Die asymmetrische Einheit besteht aus zwei unabhängigen Molekülen. Ausgewählte Strukturparameter können Tabelle 21 entnommen werden. Die Wasserstoffbrückenbindungen in der Struktur sind in Abbildung 34 unten als gestrichelte Linien dargestellt.

⁶⁸ A. V. Dudko, V. V. Bon, A. N. Kozachkova, N. V. Tsarik, V. I. Pekhn'o, Ukr. Khim. Zh. (Russ.) **2008**, 74, 104–108.

Abbildung 34: Molekülstruktur von **39** in Kristall: oben: asymmetrische Einheit; unten: Wasserstoffbrücken (CH-Atome aus Übersichtlichkeitsgründen weggelassen); thermische Auslenkungsellipsoide mit 50 % Aufenthaltswahrscheinlichkeit; Symmetriecodes: a = 2-x, -y, 2-z; b = -1+x, y, z; c = 1-x, -y, 1-z; d = 1+x, -1+y, z.

Die Kristallstruktur wird durch eine Reihe von Wasserstoffbrückenbindungen bestimmt. Es können fünf Wasserstoffbrückenbindungen, mit einem Wasserstoff-Akzeptor-Abstand von unter 2.1 Å beobachtet werden.

3. Strukturen von (Amino)phosphin- und (Amino)phosphonsäuren und deren Metallsalze

Tabelle 21: Ausgewählte Strukturparameter in der Kristallstruktur von 39.					
Bindungsabstände [Å]		Bindungswin	kel [°]	Bindungswinkel [°]	
P11-0111	1.502(1)	O111-P11-O112	113.2(1)	O112-P11-O113	110.3(1)
P11-0112	1.524(2)	O111-P11-O113	113.3(1)	O112-P11-C11	105.3(1)
P11-0113	1.542(2)	O111-P11-C11	108.4(1)	O113-P11-C11	105.8(1)
P11-C11	1.845(2)				
P12-0121	1.502(2)	0121-P12-0122	112.2(1)	0122-P12-0123	110.1(1)
P12-0122	1.539(2)	0121-P12-0123	114.3(1)	O122-P12-C11	104.8(1)
P12-0123	1.533(1)	O121-P12-C11	110.2(1)	O123-P12-C11	104.5(1)
P12-C11	1.843(2)				
P21-0211	1.521(2)	O211-P21-O212	114.8(1)	O212-P21-O213	112.8(1)
P21-0212	1.510(2)	O211-P21-O213	110.1(1)	O212-P21-C21	108.0(1)
P21-0213	1.545(1)	O211-P21-C21	107.3(1)	O213-P21-C21	103.0(1)
P21-C21	1.835(2)				
P22-0222	1.497(2)	0222-P22-0223	112.9(1)	0223-P22-0224	112.8(1)
P22-0223	1.512(1)	0222-P22-0224	110.5(1)	O223-P22-C21	108.0(1)
P22-0224	1.556(2)	O222-P22-C21	108.5(1)	O224-P22-C21	103.5(1)
P22-C21	1.840(2)				

abelle 21: Ausgewählte Struktu	rparameter in der	[.] Kristallstruktur	von 39
--------------------------------	-------------------	-------------------------------	---------------

H-	Brücken	

X–H…Y	<i>d</i> (X–H)	<i>d</i> (H…Y)	<i>d</i> (X…Y)	<(X-H…Y)
0123-H3…0223	0.84	1.78	2.449(2)	135
O213-H5…O111	0.84	1.97	2.533(2)	124
O224-H6…O121	0.84	1.85	2.535(2)	138
N11-H113…O212	0.94(3)	1.82(3)	2.754(3)	179(3)
N21-H212…O121	0.90(3)	1.94(3)	2.817(2)	167(3)
N21-H213…O111	0.80(3)	2.08(3)	2.862(3)	163(3)

Die Wasserstoffbrückenbindungen der Phosphonsäuregruppen verknüpfen die Moleküle dabei zu Ketten, die in (101)-Richtung verlaufen. Durch die Wasserstoffbrücken der NH-Atome werden diese Stränge zur dreidimensionalen Kristallstruktur verknüpft. Die dreidimensionale Verknüpfung ist durch die Projektionen der 2×2×2-Superzelle in Abbildung 35 B+C illustriert.

Abbildung 35: Kristallstruktur von 39: A: Ketten in (101)-Richtung. B+C: Projektionen der 2×2×2-Superzelle; thermische Auslenkungsellipsoide mit 50 %
 Aufenthaltswahrscheinlichkeit Symmetriecodes: a = 2-x, -y, 2-z; c = 1-x, -y, 1-z.

3.7. Molekül- und Kristallstruktur von *N*-(Phosphonomethyl)glycin (40)

Die Struktur von **40** ist bereits in der Literatur beschrieben.⁶⁹ Zum Vergleich mit den anderen im Rahmen dieser Arbeit kristallisierten Aminophosphon- und phosphinsäuren, wurde die Verbindung aus neutraler bis leicht alkalischer wässriger Lösung kristallisiert. Die Molekül- und Kristallstruktur von **40** wird hier im Rahmen dieser Arbeit v.a. im Hinblick auf die ausgebildeten Wasserstoffbrücken erneut diskutiert. Die Verbindung kristallisiert als Zwitterion in der monoklinen Raumgruppe $P2_1/c$ mit vier Molekülen in der Elementarzelle (Abbildung 36 C). Die

⁶⁹ W. S. Sheldrick, M. Morr, *Acta Crystallogr., Sect. B: Struct. Sci.* **1981**, *37*, 733–734.

asymmetrische Einheit besteht aus einem Molekül und ist in Abbildung 36 A gezeigt. Ausgewählte Strukturparameter können Tabelle 22 entnommen werden. Die Wasserstoffbrückenbindungen in der Struktur von **40** sind in Abbildung 36 B als gestrichelte Linien dargestellt.

Abbildung 36: Molekülstruktur von 40 im Kristall: A: asymmetrische Einheit; B: Wasserstoffbrücken (gestrichelte Linien) der dimeren Struktur; C: Elementarzelle; thermische Auslenkungsellipsoide mit 50 % Aufenthaltswahrscheinlichkeit; Symmetriecodes: a = 1-x, -y, 1-z; b = -x, -y, 1-z; c = x, -0.5-y, -0.5+z; d = x, -1+y, z; e = 1-x, 0.5+y, 1.5-z; f = 1+x, y, z.

3. Strukturen von (Amino)phosphin- und (Amino)phosphonsäuren und deren Metallsalze

Bindungs	Bindungsabstände [Å] Bindungswinkel [°]			Bindun	Bindungswinkel [°]			
P1-011	1.500(1)	011-P1-012	118.6(1)	012-P1-01	.3 111.8(1)			
P1-012	1.501(1)	O11-P1-O13	106.0(6)	012-P1-C1	106.4(1)			
P1-013	1.573(1)	O11-P1-C1 109.0(6		013-P1-C1	104.1(1)			
P1-C1	1.817(1)							
H-Brücken								
Х	-H…Y	<i>d</i> (X–H)	<i>d</i> (H…Y)	$d(X \cdots Y)$	<(X-H…Y)			
N1-H1…C)12	0.93(2)	1.88(2)	2.716(2)	149(1)			
N1-H2…C	011	0.85(2)	1.99(2)	2.809(2)	161(2)			
O31-H31	L…011	0.84(2)	1.74(3)	2.569(1)	171(2)			
013-H131	L…012	0.82(2)	1.80(2)	2.608(1)	174(2)			

Tabelle 22: Ausgewählte Strukturparameter in der Kristallstruktur von 40.

Durch die Wasserstoffbrücke zwischen den Hydrogenphosphonat-Gruppen (O13-H131····O12) bilden sich Dimere (Abbildung 36 B) aus. Diese Dimere werden durch die Wasserstoffbrücke zwischen der Carbonsäure und der Hydrogenphosphonat-Gruppe (O31-H311···O11) zu Ketten, die in *a*-Richtung verlaufen, verknüpft (Abbildung 37 links).

Abbildung 37: Kristallstruktur von **40**: links: Ketten in *a*-Richtung durch die O-H···O-Brückenbindungen; rechts: Projektion der 2×2×2-Superzelle in *a*-Richtung; thermische Auslenkungsellipsoide mit 50 % Aufenthaltswahrscheinlichkeit.

Durch die Wasserstoffbrücken zwischen den NH-Atomen und den Hydrogenphosphonat-Gruppen werden die Ketten miteinander vernetzt. Die dreidimensionale Anordnung der Ketten ist in der Projektion der 2×2×2-Superzelle in a-Richtung veranschaulicht (Abbildung 37 rechts). Analog zu den oben diskutierten Strukturen erweisen sich hier erneut die O-H···O-Brückenbindungen als Strukturbestimmend. Dieses primäre Strukturmotiv wird durch die Wasserstoffbrücken zwischen den NH-Atomen und den Hydrogenphosphonat-Gruppen zur dreidimensionalen Struktur vernetzt. In dieser Verbindung liegen die Carbonsäure- und die Phosphonsäure-Funktion in ähnlicher Umgebung vor. Die Phosphonsäure als stärkere Säure protoniert das basische Amin N1, wohingegen die Carbonsäure protoniert vorliegt.

3.8. Molekül- und Kristallstruktur von Guanidiniummethylphosphonsäure-Hydrat (41)

Die Struktur von **41** ist bereits in der Literatur beschrieben.⁷⁰ Zum Vergleich mit den anderen im Rahmen dieser Arbeit kristallisierten Aminophosphon- und phosphinsäuren, wurde die Verbindung aus neutraler wässriger Lösung kristallisiert. Die Molekül- und Kristallstruktur von **41** wird hier im Rahmen dieser Arbeit v.a. im Hinblick auf die ausgebildeten Wasserstoffbrücken erneut diskutiert.

Die Verbindung kristallisiert in der zwitterionischen Form als Monohydrat in der monoklinen Raumgruppe C2/c mit acht Molekülen in der Elementarzelle, die in Abbildung 38 C dargestellt ist. Die asymmetrische Einheit besteht aus einem Molekül (Abbildung 38 A). Die freien Wassermoleküle werden zur Hälfte durch die zweizählige Drehachse (0, y, 1/4) generiert, auf der die Sauerstoffatome O1 und O2 liegen. Ausgewählte Strukturparameter sowie die Daten der Wasserstoffbrückenfindungen Die Tabelle 23 entnommen werden. ausgebildeten können Wasserstoffbrückenbindungen in der Kristallstruktur sind in Abbildung 38 B veranschaulicht.

Bindungsabst	ände [Å]	Bindungswinkel [°]		Bindungswinkel [°]		
P1-011 1.5	503(1)	011-P1-012	111.0(1)	012-P1-013	107.0(1)	
P1-012 1.5	580(1)	O11-P1-O13	116.5(1)	O12-P1-C1	105.3(1)	
P1-013 1.5	511(1)	O11-P1-C1	107.5(1)	O13-P1-C1	108.9(1)	
P1-C1 1.8	818(1)					

 Tabelle 23: Ausgewählte Strukturparameter in der Kristallstruktur von 41.

H-Brücken							
X–H…Y	<i>d</i> (X–H)	<i>d</i> (H…Y)	$d(X \cdots Y)$	<(X-H…Y)			
01-H101…011	0.82(2)	1.95(2)	2.755(1)	169(2)			
O2-H201…O11	0.94(3)	2.01(3)	2.917(1)	162(2)			
012-H121…013	0.72(2)	1.86(2)	2.576(1)	174(3)			
N1-H1…O1	0.82(2)	2.00(2)	2.802(1)	166(2)			
N2-H2…O11	0.81(2)	2.12(2)	2.895(2)	160(2)			
N2-H3…013	0.85(2)	2.11(2)	2.901(2)	154(2)			

⁷⁰ W. Sawka-Dobrowolska, T. Glowiak, R. Tyka, Acta Crystallogr., Sect. C: Cryst. Struct. Commun. **1984**, 40, 174–176.

Abbildung 38: Molekülstruktur von **41** im Kristall: A: asymmetrische Einheit; B: Wasserstoffbrücken (gestrichelte Linien); C: Elementarzelle mit H-Brücken; thermische Auslenkungsellipsoide mit 50 % Aufenthaltswahrscheinlichkeit; Symmetriecodes: a = -x, y, 0.5-z; b = 0.5-x, 0.5+y, 0.5-z; c = 0.5+x, 0.5+y, z.

Durch die Wasserstoffbrücken zwischen den Wassermolekülen und den Phosphonat-Gruppen bilden sich Dimere aus (Abbildung 39 oben).

Abbildung 39: Kristallstruktur von **41**: oben: Dimer-Bildung durch H-Brücken zwischen den Wassermolekülen und den Phosphonat-Gruppen; unten: Schichten in der Kristallstruktur senkrecht *c*-Achse; thermische Auslenkungsellipsoide mit 50 % Aufenthaltswahrscheinlichkeit.

Die übrigen Wasserstoffbrücken vernetzen diese Dimere zu Schichten, die senkrecht zur *c*-Achse orientiert sind (Abbildung 39 unten). Zwischen den Schichten können schwache Wechselwirkungen zwischen den H-Atomen an N2 und den Phosphonat-Gruppen beobachtet werden.

3.9. Molekül- und Kristallstruktur von Aminomethanphosphonsäure *semi*-hydronitrat (HO₃P-CH₂-NH₃) × [(H₂O₃P-CH₂-NH₃)NO₃] (42)

Das *semi*-Hydronitrat-Salz der Aminomethanphosphonsäure kristallisiert aus einer wässrigen salpetersauren Lösung der Säure bei einem pH = 1 (Schema 36).

Schema 36: Darstellung von 42.

42 kristallisiert in der monoklinen Raumgruppe $P2_1/c$ mit vier Formeleinheiten in der Elementarzelle. Die asymmetrische Einheit besteht aus einem Molekül [H₃N-CH₂-PO₃H₂]⁺NO₃⁻ und einem Molekül H₃N⁺-CH₂-

 PO_3H^- und ist in Abbildung 40 links dargestellt. Auf der rechten Seite sind die Wasserstoffbrückenbindungen in der Kristallstruktur von **42** durch gestrichelte Linien angedeutet. Ausgewählte Strukturparameter sind in Tabelle 24 aufgeführt.

Abbildung 40: Kristallstruktur von 42: A: asymmetrische Einheit; B: H-Brücken; thermische Auslenkungsellipsoide mit 50 % Aufenthaltswahrscheinlichkeit; Symmetriecodes: a = 1+x, 0.5-y, -0.5+z; b = 1+x, y, z; c = 1+x, 0.5-y, 0.5+z; d = 2x, 1-y, 2-z; e = x, 0.5-y, -0.5+z.

Strukturbestimmend sind hier erneut drei auffällig kurze Wasserstoffbrückenbindungen ($O-H\cdots O$) durch sich Ketten bilden, die in (201)-Richtung orientiert sind (Abbildung 41 A). Durch die Elementarzelle verlaufen vier dieser Ketten.

3. Strukturen von (Amino)phosphin- und (Amino)phosphonsäuren und deren Metallsalze

Tabelle 24: Ausgewählte Strukturparameter in der Kristallstruktur von 42.							
Bindungsa	abstände [Å]	Bindungswi	nkel [°]	Bindung	swinkel [°]		
P1-011	1.505(1)	011-P1-012	114.6(1)	012-P1-013	107.5(1)		
P1-012	1.507(1)	O11-P1-O13	110.7(1)	O12-P1-C1	109.3(1)		
P1-013	1.563(1)	O11-P1-C1	107.6(1)	O13-P1-C1	106.9(1)		
P1-C1	1.806(1)						
P2-021	1.556(1)	021-P2-022	107.7(1)	022-P2-023	113.2(1)		
P2-022	1.534(1)	021-P2-023	114.7(1)	O22-P2-C2	104.5(1)		
P2-023	1.486(1)	O21-P2-C2	106.2(1)	O23-P2-C2	109.8(1)		
P1-C2	1.798(1)						
	H-Brücken						
Y	′_HV	d(X - H)	d(HV)	$d(X \dots X)$	<(X_HV)		

1.790(1)								
H-Brücken								
X–H…Y	<i>d</i> (X–H)	<i>d</i> (H…Y)	<i>d</i> (X…Y)	<(X-H…Y)				
O13-H131…O113	0.84(2)	1.81(2)	2.627(1)	166(2)				
O21-H211…O11	0.77(2)	1.80(2)	2.541(1)	163(2)				
O22-H221…O12	0.67(3)	1.80(3)	2.466(1)	175(3)				
N1-H2…O23	0.91(2)	2.01(2)	2.876(1)	160(1)				
N1-H3…O112	0.85(2)	2.10(2)	2.903(1)	159(2)				
N2-H4…O23	0.93(2)	1.86(2)	2.771(1)	167(2)				
N2-H5…O11	0.90(2)	2.00(2)	2.877(1)	165(2)				
N2-H6012	0 90(2)	1 93(2)	2 797(1)	161(1)				

Abbildung 41: Kristallstruktur von **42**; Koordinationspolyeder PO₃C (pink), NCH₃ (blau): A: Ketten durch kurze O-H···O-Brückenbindungen; B: Vernetzung der Ketten durch kurze N-H···O-Brückenbindungen; C: Projektion der Struktur in *c*-Richtung; thermische Auslenkungsellipsoide mit 50 % Aufenthaltswahrscheinlichkeit; Symmetriecodes: c = 1+x, 0.5-y, 0.5+z; d = 2-x, 1-y, 2-z.

Durch die beiden kurzen Wasserstoffbrücken zwischen den NH-Atomen und den Phosphonat-Gruppen (N2-H4···O23; N2-H6···O12) werden die Ketten zu Schichten verknüpft, die senkrecht zur *b*-Achse orientiert sind (Abbildung 41 B). Die Schichten werden durch die drei schwachen Wasserstoffbrücken (N1-H2···O23, N1-H3···O112, N2-H5···O11) miteinander verknüpft (Abbildung 41 C).

3.10. $[Ca(O_3P-CH_2-NH_3)_{4/2}(H_2O)_2] \times 4 H_2O$ (43)

Das Calciumsalz der Aminomethanphosphonsäure kristallisiert mit sechs Molekülen Wasser aus einer wässrigen Lösung von Natrium(ammoniummethylphosphonat) und Calciumchlorid (Schema 37).

Schema 37: Darstellung von 43.

Calcium(ammoniummethylphosphonat)-hexahydrat (**43**) kristallisiert in der monoklinen Raumgruppe C2/c mit vier Formeleinheiten in der Elementarzelle.

 Abbildung 42: Kristallstruktur von 43: A: asymmetrische Einheit; B: ausgebildetes Netzwerk in der bc-Ebene; C: Projektion der Elementarzelle entlang der b-Achse (Koordinationspolyeder: CaO₆ (grau), PCO₃ (pink), NCH₃ (blau); H301–O3–H302-Molekül auf Übersichtlichkeitsgründen weggelassen; H-Brücken (rot); thermische Auslenkungsellipsoide mit 50 % Aufenthaltswahrscheinlichkeit. Die asymmetrische Einheit besteht aus einer halben Formeleinheit (Abbildung 42 A), die zweite Hälfte wird durch das durch Ca1 verlaufende Inversionszentrum und die ebenfalls durch Ca1 verlaufende Gleitspiegelebene *c* generiert. Das Wassermolekül H301–O3–H302 ist dabei nur zur Hälfte besetzt. O2 liegt auf einer zweizähligen Drehachse, so dass die zweite Hälfte des Wassermoleküls symmetriegeneriert wird.

Das Phosphonat-Anion wirkt hier als überbrückender Ligand und bildet so mit den Ca-Atomen ein gewelltes Netzwerk aus kantenverknüpften 16gliedrigen Ringen, das in der *bc*-Ebene liegt. Durch die Elementarzelle verlaufen zwei dieser Netzebenen (Abbildung 42 B, C). Die nicht-Cagebundenen Wassermoleküle liegen zwischen den Netzebenen (Abbildung 42 C) und vernetzen diese über Wasserstoffbrückenbindungen. Ausgewählte Strukturparameter können Tabelle 25 entnommen werden.

Bindungsa	abstände [Å]	Bindungswi	nkel [°]	Bindungswinkel [°]		
P1-011	1.519(1)	O11-P1-O12	111.1(1)	012-P1-013		113.5(1)
P1-012	1.528(1)	O11-P1-O13	112.7(1)	O12-P1-C1		103.9(1)
P1-013	1.516(1)	O11-P1-C1	108.4(1)	O13-P1-C1		106.6(1)
P1-C1	1.824(1)					
Ca1-01	2.356(1)	01-Ca1-O1e	180.0	01e-Ca1-01	3c	84.0(1)
Ca1-011	2.310(1)	01-Ca1-011	92.1(1)	011-Ca1-01	1e	180.0
Ca1-013	2.307(1)	01-Ca1-011e	87.9(1)	011-Ca1-01	3a	90.5(1)
		01-Ca1-013a	84.0(1)	011-Ca1-01	3c	89.5(1)
		01-Ca1-013c	96.0(1)	011e-Ca1-0	13a	89.5(1)
		01e-Ca1-011	87.9(1)	011e-Ca1-0	13c	90.5(1)
		01e-Ca1-011e	92.1(1)	013a-Ca1-O	13c	180.0
		01e-Ca1-013a	96.0(1)			
	Symmetriecod	es: a = x, 1-y, -	-1/2+z; c = 0).5-x, -0.5+y,	0.5-z	;
e = 0.5-x, 0.5-y, -z						
H-Brücken						
X	(–H…Y	<i>d</i> (X–H)	<i>d</i> (H⋯Y)	<i>d</i> (X…Y)	<((X–H…Y)
N1-H1…O	11	0.91(3)	1.93(3)	2.837(2)	172(2)
N1-H2…O	13	0.87(2)	1.99(2)	2.847(2)	171(2)
O1-H101··	·04	0.87(3)	2.09(3)	2.933(2)	162(2)
O1-H102··	·012	0.87(2)	1.82(2)	2.695(1)	170(2)
02-H201··	·012	0.86(2)	1.98(2)	2.789(1)	157((2)
O3-H301…	·02	0.88(2)	1.82(2)	2.649(3)	155((1)
O4-H401··	·012	0.88(2)	1.77(2)	2.648(2)	173((3)

 Tabelle 25: Ausgewählte Strukturparameter in der Kristallstruktur von 43.

Das Ca-Atom ist durch sechs Sauerstoffatome oktaedrisch von vier Phosphonsäure- und zwei Wassermolekülen koordiniert (Abbildung 43). Die Wassermoleküle (O1) liegen dabei auf einer Achse und weisen mit 2.356(1) Å einen etwas längeren Abstand zum Calcium auf als die Phosphonsäuren (2.307(1) bzw. 2.310(1) Å). Die Ca-O-Abstände sind dabei gut mit denen in der bekannten Ca-EDTMP-Struktur⁷¹ vergleichbar.

⁷¹ K. D. Demadis, E. Barouda, N. Stavgianoudaki, H. Zhao, *Cryst. Growth Des.* **2009**, 9,1250–1253.

Es koordinieren nur die Sauerstoffatome O11 und O13 der Phosphonat-Gruppe zum Calcium.

Abbildung 43: Kristallstruktur von 43: A: Koordinationssphäre von Ca1; B: Koordinationsnetzwerk; thermische Auslenkungsellipsoide mit 50 % Aufenthaltswahrscheinlichkeit; Symmetriecodes: b = 1.5-x, 1.5-y, -z; d = 1.5-x, -0.5+y, -0.5-z; f = x, 2-y, 0.5+z.

Das halbbesetzte Wassermolekül H301–O3–H302 trägt keinen strukturbestimmenden Beitrag zum Wasserstoffbrückennetzwerk bei und wird daher bei der Diskussion der Wasserstoffbrückenbindungen vernachlässigt.

Mit Ausnahme der Wasserstoffbrücke O2-H201…O12 verknüpfen alle in der Kristallstruktur beobachteten Wasserstoffbrückenbindungen die ausgebildeten zweidimensionalen Koordinationspolyeder (Abbildung 42 C). Über die Wasserstoffbrücke O2-H201…O12 werden die Schichten miteinander verknüpft. In Abbildung 42 C sind die ausgebildeten Wasserstoffbrückenbindungen zur besseren Unterscheidung durch rote gestrichelte Linien veranschaulicht.

Die Kristallstruktur von **43** kann gut mit der in der Literatur beschriebenen isostrukturellen Struktur von $[Mg(O_3P-CH_2-NH_3)_{4/2}(H_2O)_2] \times 2 H_2O^{72}$ verglichen werden, die aus analogen in der *bc*-Ebene ausgerichteten Netzebenen besteht. Das freie Kristallwasser ist über eine Wasserstoffbrückenbindung, analog zum Wassermolekül H401–O4–H402 in der Struktur von **43**, gebunden. Eine Quervernetzung der Schichten kann in der Struktur Mg(O_3P-CH_2-NH_3)_{4/2}(H_2O)_2] \times 2 H_2O nicht beobachtet werden.

3.11. $Li(O_3P-CH_2-NH_3) \times H_2O$ (44)

Das bislang nicht in der Literatur beschriebene Lithium-Salz der Aminomethylphosphonsäure wurde durch Reaktion von stöchiometrischen Mengen der Phosphonsäure mit Li_2CO_3 bzw. LiOH in Wasser und Methanol dargestellt. Es wurden drei verschiedene Modifikationen der

⁷² M. Lutz, G. Müller, *Inorg. Chim. Acta* **1995**, *232*, 189–193.

Kristallstruktur von **44** in einkristalliner Form erhalten, die im Folgenden diskutiert werden.

3.11.1. Modifikation 1 (44i)

Das Lithiumsalz der Aminomethanphosphonsäure **44i** kristallisiert mit einem Molekül Wasser aus einer wässrigen Lösung der Säure in Gegenwart von Lithiumcarbonat (Schema 38).

Schema 38: Darstellung von 44i.

Das Lithiumsalz **44i** kristallisiert in der monoklinen Raumgruppe $P2_1/c$ mit acht Formeleinheiten in der Elementarzelle. Die asymmetrische Einheit besteht aus zwei Formeleinheiten und ist in Abbildung 44 links dargestellt.

Abbildung 44: Kristallstruktur von **44i**: links: asymmetrische Einheit; rechts: Elementarzelle; thermische Auslenkungsellipsoide mit 50 % Aufenthaltswahrscheinlichkeit; Symmetriecodes: c = 2-x, -y, 1-z; d = 2-x, -0.5+y, 0.5-z.

Ausgewählte Strukturparameter können Tabelle 26 entnommen werden. Die Li-Atome sind durch jeweils vier Sauerstoffatome tetraedrisch von drei Phosphonsäure- und einem Wassermolekül koordiniert (Abbildung 45 A). Die Li-O-Abstände liegen mit 1.898(4)–2.013(4) Å im Bereich von bekannten Lithiumphosphonat-Strukturen. ⁷³ Zwei der drei Sauerstoffatome der Phosphinat-Liganden koordinieren an die Li-Kationen. Jeweils eines der Sauerstoffatome koordiniert dabei an zwei Li-Kationen, ein Weiteres zu einem Li-Kation. Es bilden sich so viergliedrige (-Li–O-)₂-Ringe aus kantenverknüpften LiO₄-Tetraedern aus, die mit achtgliedrigen

⁷³ M. Li, J.-F. Xiang, S.-P. Chen, S.-M. Wu, L.-J. Yuan, H. Li, H.-J. He, J.-T. Sun, *J. Coord. Chem.* **2008**, *61*, 372–383.

 $(-Li-O-P-O-)_2$ -Ringen entlang der *a*-Achse alternieren (Abbildung 45 A, C). Durch die Elementarzelle verlaufen zwei dieser Ketten.

Bindungsab	stände [Å]		Bindungswir	ikel [°]	Bindung	swink	kel [°]
P1-011	1.510(2)	011	1-P1-012	111.4(1)	012-P1-013		113.9(1)
P1-012	1.514(2)	011	1-P1-013	113.6(1)	012-P1-C1		103.8(1)
P1-013	1.511(2)	011	1-P1-C1	107.5(1)	013-P1-C1		105.7(1)
P1-C1	1.818(2)						
P2-021	1.511(2)	021	1-P2-022	114.4(1)	022-P2-023		113.0(1)
P2-022	1.511(2)	021	1-P2-023	111.2(1)	O22-P2-C2		102.4(1)
P2-023	1.521(2)	021	1-P2-C2	107.4(1)	023-P2-C2		107.7(1)
P2-C2	1.818(2)						
Li1-01	1.936(5)	01-	-Li1-012	114.2(2)	012-Li1-013	b	117.0(2)
Li1-012	1.948(4)	01-	-Li1-013b	103.8(2)	012-Li1-022		92.9(2)
Li1b-013	1.950(4)	01-	-Li1-022	121.5(2)	013b-Li1-02	2	108.1(2)
Li1-022	1.918(4)	<u></u>					
Li2-02	1.973(5)	02-	-Li2-012	123.9(2)	012-Li2-021	а	116.7(2)
Li2-012	1.905(4)	02-	-Li2–O21a	98.0(2)	012-Li2-022		91.2(2)
Li2a-021	1.898(4)	02-	-Li2-022	110.5(2)	021a-Li2-02	2	118.0(2)
Li2-022	2.013(4)						
Symmetriecodes: $a = -x$, $-y$, $1-z$; $b = 1-x$, $-y$, $1-z$.							
			H-Br	ücken			
X-	H···Y		d(X-H)	$d(H \cdots Y)$	$d(X \cdots Y)$	<	(X–H…Y)

	Tabelle	26:	Ausgewählte	Struktur	parameter	von	44i .
--	---------	-----	-------------	----------	-----------	-----	--------------

H-Brücken								
X–H…Y	<i>d</i> (X–H)	<i>d</i> (H⋯Y)	<i>d</i> (X…Y)	<(X-H…Y)				
N1-H1…O13	0.80(3)	2.01(3)	2.784(3)	163(3)				
N1-H3…O11	0.86(3)	1.94(3)	2.751(2)	156(2)				
N2-H4…O21	0.85(3)	1.98(3)	2.795(3)	160(2)				
N2-H5…O23	0.91(3)	1.86(3)	2.718(2)	158(3)				
O1-H101…O23	0.74(4)	2.10(4)	2.839(3)	175(4)				
01-H102…011	0.86(3)	1.96(3)	2.776(3)	158(3)				
O2-H202…O23	0.96(4)	1.92(4)	2.869(3)	170(4)				

Die Wassermoleküle und die Ammonium-Gruppen weisen von den ausgebildeten $[100]^{\infty}$ -Ketten nach außen (Abbildung 45 C). Die Wasserstoffbrücken (Abbildung 45 B) N1-H3…O11 und N2-H5…O23 verknüpfen die eindimensionalen Koordinationspolymere miteinander in *b*-Richtung, wohingegen die übrigen Wasserstoffbrücken die Ketten in *c*-Richtung verknüpfen.

Abbildung 45: Kristallstruktur von **44i**: A: Koordinationsketten in *a*-Richtung; B: H-Brücken; thermische Auslenkungsellipsoide mit 50 % Aufenthaltswahrscheinlichkeit;; C: Projektion des ausgebildeten eindimensionalen Koordinationspolymers in *a*-Richtung; Symmetriecodes: c = 2-x, -y, 1-z; d = 2-x, -0.5+y, 0.5-z; e = x, -1+y, z; f = x, 0.5-y, 0.5+z; g = 1-x, 1-y, 1-z.

3.11.2. Modifikation 2 (44ii)

Einkristalle einer weiteren Modifikation von **44**, die zur Röntgenbeugung geeignet sind, kristallisieren aus einer wässrigen Lösung von Aminomethanphosphonsäure und Lithiumhydroxid (Schema 39). Auf Grund der beschränkten Löslichkeit von Lithiumhydroxid in Wasser wird die Neutralisationsreaktion bei 70 °C durchgeführt.

Schema 39: Darstellung von 44ii.

Das Lithiumsalz **44ii** kristallisiert ebenfalls in der monoklinen Raumgruppe $P2_1/c$. Die Zellparameter sind dabei sehr ähnlich, es befinden sich hier vier Formeleinheiten in einer im Vergleich zu **44i** in etwa halb so großen Elementarzelle. Die asymmetrische Einheit besteht hier nur aus einer Formeleinheit und ist in Abbildung 46 links dargestellt.

Abbildung 46: Kristallstruktur von 44ii: links: asymmetrische Einheit; rechts: Wasserstoffbrückenbindungen; thermische Auslenkungsellipsoide mit 50 % Aufenthaltswahrscheinlichkeit; Symmetriecodes: d = -0.5+x, 2.5-y, -0.5+z; e = -0.5-x, 0.5+y, 1.5-z; f = 0.5-x, -0.5+y, 1.5-z; g = 1-x, 2-y, 2-z; h = 1+x, y, z; j = 0.5-x, 0.5+y, 1.5-z.

Im Kristall liegen eine Reihe von Wasserstoffbrückenbindungen zwischen den Protonen der Wassermoleküle bzw. der Ammonium-Gruppen und den Sauerstoffatomen der Phosphonat-Gruppen vor. Die Wasserstoffbrückenbindungen sind in Abbildung 46 rechts veranschaulicht. Relevante Abstände und Winkel können, neben anderen ausgewählten Strukturparametern, Tabelle 27 entnommen werden.

Die Li-Atome sind wie in **44i** durch jeweils vier Sauerstoffatome tetraedrisch von drei Phosphonsäure- und einem Wassermolekül koordiniert (Abbildung 47 A). Die Li-O-Abstände liegen mit 1.908(3)– 1.990(3) Å im Bereich derer von Modifikation 1 (**44i**). Im Unterschied zur Modifikation 1 (**44i**) koordinieren hier alle drei Sauerstoffatome der Phosphinat-Liganden zu jeweils einem Lithium-Atom und wirken so als überbrückende Liganden. Es bildet sich so ein Netzwerk aus

eckenverknüpften LiO₄- und PCO₃-Tetraedern, das aus alternierenden achtgliedrigen (-Li–O–P–O-)₂-Ringen und 16-gliedrigen (-Li–O–P–O-)₄-Ringen aufgebaut ist. Die so gebildeten Netzwerkebenen verlaufen in *b*-Richtung und halbieren den Winkel β (Abbildung 47 A+B). Durch die Elementarzelle verlaufen zwei dieser Koordinationsebenen (Abbildung 47 C), die durch die Wasserstoffbrückenbindungen quervernetzt werden.

Bindungsabstände [Å]		Bindungswinkel [°]		Bindungswinkel [°]	
P1-011	1.532(1)	011-P1-012	113.4(1)	012-P1-013	112.8(1)
P1-012	1.511(1)	O11-P1-O13	111.7(1)	O12-P1-C1	107.4(1)
P1-013	1.523(1)	O11-P1-C1	104.3(1)	O13-P1-C1	106.5(1)
P1-C1	1.823(2)				
Li1-01	1.990(3)	01-Li1-011	109.2(1)	011-Li1-012c	118.0(1)
Li1-011	1.962(3)	01-Li1-012	103.4(1)	011-Li1-013a	111.9(1)
Li1c-012	1.908(3)	01-Li1-013a	110.0(1)	012c-Li1-013a	103.9(1)
Li1b-013	1.982(3)				

 Tabelle 27: Ausgewählte Strukturparameter in der Kristallstruktur von 44ii.

Symmetriecodes: a = 0.75-x, -0.5+y, 0.5-z; b = 0.75-x, 0.5+y, 0.5-z; c = 1-x, 1-y, -z

H-Brücken						
X–H…Y	<i>d</i> (X–H)	<i>d</i> (H…Y)	<i>d</i> (X…Y)	<(X-H…Y)		
N1-H2…O12	0.94(2)	1.89(2)	2.795(2)	159(2)		
N1-H3…O11	0.87(2)	1.88(2)	2.751(2)	172(2)		
O1-H101…O11	0.81(2)	1.97(2)	2.782(2)	176(2)		
O1-H101…O13	0.81(3)	2.03(3)	2.826(2)	166(3)		

Der entscheidende Unterschied in den beiden Modifikationen **44i** und **44ii** liegt im Koordinationsmodus der Phosphinat-Liganden. In Modifikation 1 koordinieren nur zwei Sauerstoffatome der Phosphonat-Gruppe an Lithium, wodurch sich ein eindimensionales Koordinationspolymer bildet, wohingegen in Modifikation 2 alle drei Sauerstoffatome der Phosphonat-Gruppe an Lithium koordinieren und sich so ein zweidimensionales Koordinationspolymer bildet. Die Koordinationspolymere sind jeweils durch Wasserstoffbrückenbindungen miteinander verbunden.

Abbildung 47: Kristallstruktur von 44ii: A+B: Koordinationsebenen (A. Projektion in *a*-Richtung; b: Projektion in *b*-Richtung); C: Elementarzelle; thermische Auslenkungsellipsoide mit 50 % Aufenthaltswahrscheinlichkeit.

3.11.3. Modifikation 3 (44iii)

Einkristalle einer dritten Modifikation des Lithiumsalzes der Aminomethanphosphonsäure **44** wurden durch langsames Eindiffundieren von MeOH in eine wässrige Lösung äquimolarer Mengen der Säure und LiOH erhalten (Schema 40). In dieser Modifikation kristallisiert das Salz in der monoklinen Raumgruppe $P2_1/c$ mit vier Formeleinheiten in der Elementarzelle.

Schema 40: Darstellung von 44iii.

Die asymmetrische Einheit (Abbildung 48 A) besteht aus einer Formeleinheit. Die Sauerstoffatome der Phosphonat-Gruppe sind dabei auf zwei Positionen fehlgeordnet, welche dabei zu jeweils 54.5 (A) bzw. 45.5 % (B) besetzt. Die Verbindung bildet eine Reihe von Wasserstoffbrückenbindungen aus, die in Abbildung 48 B exemplarisch für Split-Position A gezeigt sind. Abstände und Winkel für die die Wasserstoffbrückenbindungen der beiden Split-Positionen können – neben anderen Strukturparametern - Tabelle 28 entnommen werden. Das Li-Atom wird durch vier Sauerstoffatome (O11, O13, O13, O1) verzerrt tetraedrisch von drei Phosphonsäure- und einem Wassermolekül koordiniert (Abbildung 48 C). Die Li-O-Abstände liegen mit 1.817(6)-2.103(6) Å im Bereich der anderen beiden Modifikationen. 011 koordiniert dabei zu einem Lithium-Atom, O13 ist mit zwei Lithium-Atomen verknüpft, O12 koordiniert nicht an Lithium. Durch diesen Koordinationsmodus bilden sich viergliedrige $(-Li-O-)_2$ -Ringe aus, die sich – analog zu Modifikation 1 - mit achtgliedrigen (-Li-O-P-O-)₂-Ringen abwechseln (Abbildung 48 D) und so Ketten entlang der a-Achse ausbilden. Es verlaufen vier solcher Ketten durch die Elementarzelle (Abbildung 49 links).

Abbildung 48: Kristallstruktur von **44iii**: A: asymmetrische Einheit; B: H-Brücken ; C: Koordinationssphäre von Li1; D: Koordinationsketten mit intracatenalen H-Brücken; thermische Auslenkungsellipsoide mit 50 % Aufenthaltswahrscheinlichkeit; In B und C ist aus Übersichtlichkeitsgründen nur die Split-Position A dargestellt; Symmetriecodes: d = -x, 2-y, -z; e = -0.5+x, 1.5-y, -0.5+z; f = -1+x, y, z; g = 0.5-x, -0.5+y, 0.5-z;h = 1-x, 1-y, -z.

3. Strukturen von (Amino)phosphin- und (Amino)phosphonsäuren und deren Metallsalze

Tabelle 28: Ausgewahlte Strukturparameter der Kristallstruktur von 4411.							
Bindungsal	ostände [Å]	Bindungswinkel [°]		Bindungswinkel [°]			
P1-011A	1.564(6)	O11A-P1-O12A	108.9(3)	012A-P1-013A	115.3(3)		
P1-012A	1.538(2)	O11A-P1-O13A	115.3(3)	O12A-P1-C1	107.1(1)		
P1-013A	1.452(5)	O11A-P1-C1	106.5(2)	O13A-P1-C1	103.0(2)		
P1-C1	1.819(1)						
P1-011B	1.442(7)	O11B-P1-O12B	116.6(4)	O12B-P1-O13B	107.3(4)		
P1-012B	1.528(5)	O11B-P1-O13B	113.9(4)	O12B-P1-C1	107.6(2)		
P1-013B	1.583(7)	O11B-P1-C1	107.1(3)	O13B-P1-C1	103.4(2)		
Li1-01	1.949(2)	01-Li1-011A	100.3(2)	011A-Li1-013Ab	110.5(3)		
Li1-011A	1.817(6)	01-Li1-013Ab	125.4(2)	011A-Li1-013Ac	117.5(3)		
Li1a-013A	1.972(5)	01-Li1-013Ac	107.6(2)	O13Ab-Li1-O13Ac	96.8(2)		
Li1c-013A	2.103(6)						
Li1a-011B	2.065(7)	01-Li1-011B	102.8(2)	O11B-Li1-O13Bb	115.1(3)		
Li1c-013B	1.868(7)	01-Li1-013Bb	118.3(2)	011B-Li1-013Bc	115.4(3)		
Li1a-013B	1.870(6)	01-Li1-013Bc	118.5(3)	O13Bb-Li1-O13Bc	87.2(3)		
Li1c-022	1.868(7)						
Symmetriecodes: $a = -1+x$, y, z; $b = 1+x$, y ,z; $c = 1-x$, -y, 1-z.							

Tabelle 28: Ausgewählte	Strukturparameter der	Kristallstruktur von 44iii .

H-Brücken						
X–H…Y	$d(X-H)$ $d(H\cdots Y)$		$d(X \cdots Y)$	<(X-H…Y)		
N1-H1…O13A	0.86(2)	2.08(2)	2.918(5)	166(2)		
N1-H2…O12A	0.89(2)	1.86(2)	2.705(3)	156(2)		
N1-H3…O11A	0.81(2)	2.03(2)	2.814(6)	163(2)		
01-H101…012A	0.84(2)	2.08(2)	2.869(6)	156(2)		
N1-H2…O12B	0.89(2)	1.94(2)	2.780(4)	156(2)		
N1-H3…O11B	0.81(2)	1.98(2)	2.771(6)	163(2)		
01-H102…012B	0.86(2)	1.82(2)	2.664(6)	165(2)		

Abbildung 49: Kristallstruktur von 44iii: links: Elementarzelle. rechts: Projektion in a-Richtung, Quervernetzung der Stränge durch intercatenale H-Brücken.; thermische Auslenkungsellipsoide mit 50 % Aufenthaltswahrscheinlichkeit.

Die	in	der	Kristalls	truktur	von	44iii	ausgebil	deten
Wasserst	offbr	ückenbir	ndungen	stabili	sieren	zum	Einen	die
Koordinationsketten (N1-H1···O13A), zum Anderen werden die $[100]^{\infty}$ -Ketten miteinander verbrückt (Abbildung 49 rechts). Die starke Wasserstoffbrückenbindung (N1-H2···O12A) verknüpft die Ketten in b-Richtung miteinander, die übrigen Wasserstoffbrücken verknüpfen die Stränge in *c*-Richtung. Die Verknüpfung der Ketten durch die Wasserstoffbrücken ist analog zu der in Modifikation 1. Wesentlicher Unterschied zwischen 44i und 44iii ist die Ausbildung der intracatenalen Wasserstoffbrücke im Lithiumsalz 44iii.

3.12. $[K(O_3P-CH_2-NH_3)_{2/2}(H_2O)_{4/2}]$ (45)

Kalium(ammoniummethylphosphonat)-dihydrat (45) wird in einkristalliner Form aus einer mit Ammoniak neutralisierten wässrigen Lösung von Aminomethanphosphonsäure und Kaliumhydroxid (Schema 41) bei Raumtemperatur dargestellt.

Schema 41: Darstellung von 45.

Das Salz kristallisiert in der orthorhombischen Raumgruppe Pca2₁ mit vier Formeleinheiten in der Elementarzelle.

Bindungsa	abstände [Å]	Bindungswink	(el [°	Bindungswink	el [°]	
P1-011	1.526(2)	O11-P1-O12	112.2(2)	012-P1-013	113.1(2)	
P1-012	1.522(3)	O11-P1-O13	112.8(1)	O12-P1-C1	106.0(2)	
P1-013	1.514(2)	O11-P1-C1	106.1(2)	O13-P1-C1	106.0(2)	
P1-C1	1.811(4)					
K1-01	2.762(3)	01-K1-01d	88.2(1)	O1d-K1-O13a	154.8(1)	
K1-01d	2.958(3)	01-K1-02	159.8(1)	02-K1-02c	76.9(1)	
K1-02	2.676(3)	01-K1-02c	84.6(1)	02-K1-013	93.1(1)	
K1-02c	2.739(3)	01-K1-013	103.4(1)	O2-K1-O13a	94.9(1)	
K1-013	2.739(2)	01-K1-013a	86.4(1)	02c-K1-013	165.7(1)	
K1-013a	2.855(3)	O1d-K1-O2	82.0(1)	O2c-K1-O13a	70.3(1)	
		O1d-K1-O2c	84.7(1)	013-K1-013a	121.4(1)	
O1d-K1-O13 83.8(1)						
Symmetriecodes: a = 1-x, 1-y, -0.5+z; c = 0.5-x, y, -0.5+z;						

|--|

d = 0.5 - x, y, 0.5 + z.

H-Brücken							
X–H…Y	<i>d</i> (X–H)	<i>d</i> (H⋯Y)	$d(X \cdots Y)$	<(X-H…Y)			
N1-H1…O12	1.00(4)	1.75(4)	2.710(4)	160(4)			
N1-H2…O11	0.87(5)	1.94(5)	2.808(4)	176(5)			
N1-H3…O12	0.92(5)	1.95(5)	2.835(4)	163(3)			
O1-H101…O11	0.73(3)	2.09(3)	2.813(4)	168(3)			
O1-H102…O13	0.74(3)	1.98(3)	2.707(4)	170(3)			
O2-H202…O11	0.73(7)	2.05(3)	2.774(4)	174(5)			

Die asymmetrische Einheit besteht aus einer Formeleinheit und ist in Abbildung 50 A dargestellt. Die Wasserstoffbrückenbindungen zwischen den Ammonium- und Wasserprotonen und den Sauerstoffatomen der Phosphonat-Gruppe sind in Abbildung 50 B visualisiert. Abbildung 50 C zeigt die Elementarzelle mit Wasserstoffbrücken und K-O-Kontakten. Ausgewählte Strukturparameter können Tabelle 29 entnommen werden.

Abbildung 50: Kristallstruktur von **45**: A: asymmetrische Einheit; B: Wasserstoffbrückenbindungen; C: Elementarzelle (die H-Brücken und K-O-Kontakte sind durch gestrichelte Linien angedeutet); thermische Auslenkungsellipsoide mit 50 % Aufenthaltswahrscheinlichkeit; Symmetriecodes: b = -x, 1-y, 0.5+z; e = x, y, -1+z; f = -x, -y, 0.5+z; g = 0.5+x, -y, z; h = -x, -y, -0.5+z.

Die K-Atome in der Kristallstruktur von **45** sind durch sechs Sauerstoffatome, die von vier Wassermolekülen und zwei Phosphoratomen stammen, verzerrt oktaedrisch koordiniert. Die K-O-Abstände liegen mit 2.676(3)–2.958(3) Å im Bereich von literaturbekannten Werten für das $(KHO_3P)_2COH-(CH_2)_4-COH(PO_3HK)_2 \times 2 H_2O-Salz$. ⁷⁴ Die Phosphonat-Liganden koordinieren in dieser Verbindung nur mit jeweils einem der Sauerstoffatome an zwei Kaliumatome, die anderen beiden Sauerstoffatome zeigen keine Wechselwirkungen zum Metall.

Abbildung 51: Kristallstruktur von **45**: A: Koordinationssphäre von K (graue Polyeder; Phosphonat-Liganden durch pinke Polyeder angedeutet; B: Kettenbildung durch μ^2 -H₂O-Moleküle (intrafaciale H-Brücken durch rote gestrichelte Linien angedeutet; Phosphonat-Liganden durch pinke Polyeder angedeutet); C+D: Netzebenen in *ac*-Orientierung (Phosphonat-Gruppen durch pinke Tetraeder und Ammonium-Gruppen durch blaue Tetraeder angedeutet); thermische Auslenkungsellipsoide mit 50 % Aufenthaltswahrscheinlichkeit.

⁷⁴ J.-P. Silvestre, H. Khadraoui, H. Gillier, D. El Manouni, Y. Leroux, A. Neuman, T. Prange, N. Q. Dao, *Phosphorus, Sulfur Silicon Relat. Elem.* **2001**, *170*, 91–113.

Die beiden Phosphonat-Liganden sind in *cis*-Position am KO₆-Oktaeder angeordnet (Abbildung 51 A). Durch die vier μ^2 -H₂O-Moleküle bilden sich Zickzack-Ketten in *c*-Richtung (Abbildung 51 B), die durch die O13-Atome der Phosphonat-Gruppe in *a*-Richtung zu in *ac*-Orientierung ausgerichteten Schichten quervernetzt sind (Abbildung 51 C).

Die Kalium-Atome der Schichten verlaufen auf Höhe von $b = \frac{1}{2}$ durch die Elementarzelle (s. Abbildung 50 C). Die Schichten werden durch die Wasserstoffbrücken O1-H101····O11, O1-H102····O13 und O2-H202····O11 zwischen den Protonen der Wassermoleküle und den Sauerstoffatomen der Phosphonat-Gruppen stabilisiert (Abbildung 51 B). Durch die Wasserstoffbrückenbindungen zwischen den NH-Atomen und den Sauerstoffatomen der Phosphonat-Gruppen werden die Schichten in *b*-Richtung miteinander vernetzt (Abbildung 51 C+D).

3.13. Ca(HO₃P-CH₂-PO₃H) (46)

Einkristalle von Calizum-methan-bis(hydrogenphosphonat) (46), die zur geeignet Röntgenbeugung sind, wurden aus einer mit NaOH neutralisierten wässrigen Lösung von äquimolaren Mengen Methandiphosphonsäure und Calciumchlorid erhalten (Schema 42).

Schema 42: Darstellung von 46.

Calium-methan-bis(hydrogenphosphonat) (**46**) kristallisiert in der monoklinen Raumgruppe C2/c mit vier Formeleinheiten in der Elementarzelle (Abbildung 52 rechts).

Abbildung 52: Kristallstruktur von **46**: doppelte asymmetrische Einheit mit H-Brückenbindungen; thermische Auslenkungsellipsoide mit 50 % Aufenthaltswahrscheinlichkeit; Symmetriecodes: a = -x, y, 0.5-z; c = -0.5+x, 0.5+y, z; d = -0.5+x, 0.5+y, z; e = 1-x, y, 0.5-z; f = -1+x, y, z; g = 0.5-x, 0.5+y, 0.5-z.

Die asymmetrische Einheit besteht aus einer halben Formeleinheit und ist in Abbildung 52 links abgebildet. Die restliche Formeleinheit wird durch die Gleitspiegelebene *c* und das Inversionszentrum an Position des Ca-Atoms generiert. Ausgewählte Strukturparameter können Tabelle 30 entnommen werden.

Bindungsabstände [Å]		Bindungswinkel [°]		Bindungswinkel [°]	
P1-01	1.492(2)	01-P1-02	110.7(1)	02-P1-03	105.8(1)
P1-02	1.589(2)	01-P1-03	116.3(1)	O2-P1-C1	104.7(1)
P1-O3	1.515(2)	01-P1-C1	111.6(1)	O3-P1-C1	107.0(1)
P1-C1	1.800(2)				
Ca2-01	2.264(2)	01–Ca2–O1b	180.0	01b-Ca2-03h	86.6(1)
Ca2-02	2.449(2)	01–Ca2–O2g	97.1(1)	02g-Ca2-02i	180.0
Ca2-03	2.344(2)	01-Ca2-02i	82.9(1)	O2g-Ca2-O3d	98.6(1)
		01-Ca2-03d	86.6(1)	02g-Ca2-03h	81.4(1)
		01-Ca2-03h	93.3(1)	02i-Ca2-03d	81.4(1)
		O1b-Ca2-O2g	82.9(1)	02i-Ca2-O3h	98.61(6)
		01b-Ca2-02i	97.1(1)	O3d-Ca2-O3h	180.0
		O1b-Ca2-O3d	93.3(1)		

Tabelle 30: Ausgewählte Strukturparameter in der Kristallstruktur von 46.

Symmetriecodes: b = -x, 1-y, -z; d = -0.5+x, 0.5+y, z; g = 0.5-x, 0.5+y, 0.5z; h = 0.5-x, 0.5-y, -z; i = -0.5+x, 0.5-y, -0.5+z.

H-Brücken							
X–H…Y	<i>d</i> (X–H)	<i>d</i> (H…Y)	$d(X \cdots Y)$	<(X-H…Y)			
02-H21…03	0.58(3)	2.04(3)	2.613(2)	178(6)			

Die Ca-Atome sind oktaedrisch durch sechs Sauerstoffatome von sechs verschiedenen Phosphonat-Anionen koordiniert (Abbildung 53). Die Ca-O-Abstände sind mit 2.344 (2)-2.449(2) Å im Bereich von bekannten Ca-Diphosphonat-Strukturen – wie beispielsweise $[Ca{Cl_2C(PO_3H)_2}(H_2O)_5]^{75}$ - und sind etwas länger als die in der Struktur von $Ca(O_3P-CH_2-NH_3)_2$ (43) beobachteten Abstände (vgl. 3.10). Der Methanbis(hydrogenphosphonat)-Ligand fungiert in dieser Struktur als auervernetzender Ligand. Es kann keine chelatisierende Koordination durch den Diphosphonat-Ligand beobachtet werden.

Jedes Sauerstoffatom der Phosphonat-Gruppe ist dabei an Calcium koordiniert, wodurch sich ein – durch die Wasserstoffbrücke (O2–H21···O3) zusätzlich vernetztes – dreidimensionales Koordinationspolymer bildet. Dieses besteht aus durch $CH_2(PO_3H)_2$ -Liganden vernetzten CaO_6 -Oktaedern. Die Anordnung der CaO_6 -Oktaeder in der Elementarzelle ist in Abbildung 53 rechts veranschaulicht.

⁷⁵ M. Kontturi, S. Peraniemi, J. J. Vepsalainen, M. Ahlgren, *Eur. J. Inorg. Chem.* 2004, 2627–2631.

Abbildung 53: Kristallstruktur von 46; H-Atome aus Übersichtlichkeitsgründen weggelassen: links: Projektion des Koordinationspolymers entlang der *a*-Achse mit Ca-(grau) und P-Koordinationspolyedern (pink); rechts: Anordnung der CaO₆-Oktaeder in der Elementarzelle; thermische Auslenkungsellipsoide mit 50 % Aufenthaltswahrscheinlichkeit.

In der Projektion der Struktur in *a*-Richtung (Abbildung 53 links) ist die schichtweise Anordnung der Kristallstruktur bestehend aus alternierenden Schichten, bestehend aus CaO_6 -Oktaedern (grau) und Diphosphonat-Liganden (pink), veranschaulicht.

3.14. K₂(HO₃P-CH₂-PO₃H) (47)

Einkristalle des Kaliumsalzes der Methan-bis(phosphonsäure) (**47**), die zur Röntgenstrukturanalyse geeignet sind, wurden aus einer wässrigen Lösung von Methandiphosphonsäure und zwei Äquivalenten Kaliumhydroxid gewonnen (Schema 43).

Schema 43: Darstellung von 47.

Kalium-methan-bis(hydrogenphosphonat) (47) kristallisiert in der triklinen Raumgruppe P-1 mit zwei Formeleinheiten in der Elementarzelle (Abbilduna 54 B). Die asymmetrische Einheit besteht aus einer Formeleinheit und ist in Abbildung 54 A dargestellt. Die ausgebildeten Wasserstoffbrückenbindungen sind durch gestrichelte Linien veranschaulicht. das P11-C1-P12-Rückrad der Diphosphonsäure ist entlang der *b*-Achse ausgerichtet.

Abbildung 54: Kristallstruktur von 47: A: asymmetrische Einheit mit H-Brückenbindungen; B: Elementarzelle mit H-Brückenbindungen; C: Koordinationssphäre am K; thermische Auslenkungsellipsoide mit 50 % Aufenthaltswahrscheinlichkeit; Symmetriecodes: b = -1+x, 1+y, z; d = x, -1+y, z; e = 2-x, -y, -z; f = 2-x, -1-y, 1-z; h = 1-x, -y, 1-z; i = 1-x, 1-y, -z. j = x, -1+y, 1+z; k = 2-x, -y, 1-z; l = x, 1+y, z; m = 1-x, 1-y, 1-z.

Strukturparameter sowie Parameter der Wasserstoffbrücken der Kristallstruktur von **47** können Tabelle 31 entnommen werden.

Die K-Atome sind verzerrt oktaedrisch durch sechs Sauerstoffatome von sechs verschiedenen Phosphonat-Anionen koordiniert (Abbildung 54 C). Die K-O-Abstände liegen mit 2.740(3)–2.919(2) Å im Bereich des literaturbekannten (KHO₃P)₂COH-(CH₂)₄-COH(PO₃HK)₂ × 2 H₂O-Salz⁷⁴ und sind gut vergleichbar mit den K-O-Abständen im Kalium-Salz 45 (vgl. 3.12). Der Methan-bis(hydrogenphosphonat)-Ligand fungiert in dieser als guervernetzender Ligand. Die Sauerstoffatome Struktur der Phosphonat-Gruppen koordinieren jeweils zu einem (0113, 0121, 0122), drei (0112, 0123) und (0111) Kalium-Atomen. zwei Dieses Koordinationsmuster Ausbilduna führt zur von KO₆-Oktaeder-Doppelsträngen, die aus zwei Strängen kantenverknüpfter Oktaeder bestehen. Der zweite Strang steht dabei "auf Lücke" zum ersten Strang. Die Kanten der Oktaeder des zweiten Stranges sind dabei jeweils mit den Kanten benachbarter Oktaeder des ersten Stranges verknüpft (Abbildung 55 links). Die Doppelstränge sind dabei in *b*-Richtung orientiert und werden durch die Methan-bis(hydrogenphosphonat)-Liganden verknüpft (Abbildung 55 rechts).

3. Strukturen von (Amino)phosphin- und (Amino)phosphonsäuren und deren Metallsalze

Bindungsabstände [Å]Bindungswinkel [°]Bindungswinkel [°]Bindungswinkel [°]P11-01111.497(3)0111-P11-0112115.6(1)0112-P11-0113109.4(1)P11-01121.513(3)0111-P11-0113110.6(2)0112-P11-C1109.8(2)P11-01131.581(3)0111-P11-C1110.5(2)0113-P11-C199.9(1)P11-C11.805(4)P12-01211.494(3)0121-P12-0122117.1(1)0122-P12-0123105.8(2)P12-01221.515(3)0121-P12-0123110.8(1)0122-P12-C1105.8(1)P12-01231.586(3)0121-P12-C1111.8(2)0123-P12-C1104.7(1)P12-C11.801(4)K1-01112.741(3)0111-K1-0112b168.0(1)0112b-K1-0123a100.5(1)K1-0113h2.815(2)0111-K1-012176.0(1)0113h-K1-012177.2(1)K1-01142.776(2)0111-K1-012176.0(1)0113h-K1-0121146.8(1)K1-01212.755(3)0111-K1-0123a85.3(1)0121-K1-0123a118.3(1)K1-0123a2.823(3)0112b-K1-012178.7(1)K2-01112.740(3)0111-K2-0111g78.2(1)0112-K1-0123a73.4(1)K2-0112a2.803(3)0111-K2-0112a156.0(1)0112a-K2-0122h82.2(1)K2-0112a2.803(3)0111-K2-0112a156.0(1)0112a-K2-0122h82.2(1)K2-0122h2.919(2)0111-K2-012ah168.9(1)0112a-K2-0122h<	Tabelle 31: Ausgewahlte Strukturparameter in der Kristallstruktur von 47.							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Bindungsa	bstände [Å]	Bindungswinke	el [°]	Bindungswink	kel [°]		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	P11-0111	1.497(3)	O111-P11-O112	115.6(1)	O112-P11-O113	109.4(1)		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	P11-0112	1.513(3)	O111-P11-O113	110.6(2)	O112-P11-C1	109.8(2)		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	P11-0113	1.581(3)	O111-P11-C1	110.5(2)	O113-P11-C1	99.9(1)		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	P11-C1	1.805(4)						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	P12-0121	1.494(3)	0121-P12-0122	117.1(1)	0122-P12-0123	105.8(2)		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	P12-0122	1.515(3)	O121-P12-O123	110.8(1)	O122-P12-C1	105.8(1)		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	P12-0123	1.586(3)	O121-P12-C1	111.8(2)	O123-P12-C1	104.7(1)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P12-C1	1.801(4)						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	K1-0111	2.741(3)	O111-K1-O112b	168.0(1)	O112b-K1-O123a	100.5(1)		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	K1-0112b	2.776(2)	0111-K1-0113h	97.0(1)	O113h-K1-O121	77.2(1)		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	K1-0113h	2.815(2)	O111-K1-O121	76.0(1)	0113h-K1-0121i	146.8(1)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	K1-0121	2.755(3)	0111-K1-0121i	90.5(1)	O113h-K1-O123a	118.3(1)		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	K1–0121i	2.746(2)	O111-K1-O123a	85.3(1)	0121-K1-0121i	73.4(1)		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	K1-0123a	2.823(3)	O112b-K1-O113h	89.5(1)	O121-K1-O123a	157.4(1)		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			O112b-K1-O121	95.8(1)	0121i-K1-0123a	94.5(1)		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			0112b-K1-0121i	78.7(1)				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	K2-0111	2.740(3)	0111-K2-0111g	78.2(1)	0111g-K2-0123a	73.4(1)		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	K2-0111g	2.775(2)	0111-K2-0112a	156.0(1)	O112a-K2-O121c	96.3(1)		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	K2–O112a	2.803(3)	0111-K2-0121c	102.8(1)	0112a-K2-0122h	82.2(1)		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	K2-0121c	2.705(2)	0111-K2-0122h	108.9(1)	O112a-K2-O123a	72.6(1)		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	K2-0122h	2.919(2)	O111-K2-O123a	84.8(1)	0121c-K2-0122h	97.9(1)		
O111g-K2-O121c90.6(1)O122h-K2-O123a96.2(1)O111g-K2-O122h167.1(1)167.1(1)96.2(1)Symmetriecodes: $a = -1+x, y, z; b = -1+x, 1+y, z; c = x, -1+y, z; g = 1-x, -y, -z;$ $h = 1-x, -y, 1-z; i = 1-x, 1-y, -z.$	K2–O123a	2.850(2)	O111g-K2-O112a	87.3(1)	O121c-K2-O123a	160.7(1)		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			O111g-K2-O121c	90.6(1)	O122h-K2-O123a	96.2(1)		
Symmetriecodes: a = -1+x, y, z; b = -1+x, 1+y, z; c = x, -1+y, z; g = 1-x, -y, -z; h = 1-x, -y, 1-z; i = 1-x, 1-y, -z.			0111g-K2-0122h	167.1(1)				
h = 1-x, -y, 1-z; i = 1-x, 1-y, -z.	Symme	etriecodes: a =	= -1+x, y, z; b = -1+	x, 1+y, z; d	c = x, -1+y, z; g = 1-	·x, -y, -z;		
			h = 1-x, -y, 1-z; i	= 1-x, 1-y	γ, −z.			

H-Brücken						
X–H…Y	<i>d</i> (X–H)	<i>d</i> (H…Y)	$d(X \cdots Y)$	<(X-H…Y)		
0113-H113…0122	0.91(5)	1.63(5)	2.538(4)	171(4)		
0123-H123…0112	1.17(6)	1.40(6)	2.559(3)	171(4)		

Die Wasserstoffbrückenbindung O123-H123····O112 verknüpft zwei Methan-bis(hydrogenphosphonat)-Liganden miteinander in *c*-Richtung gestrichelte (Abbildung 55; rechts rote Linien). Die Wasserstoffbrückenbindung O113-H113····O122 verknüpft die Phosphonat-Liganden in *b*-Richtung innerhalb der Doppelstränge.

Tabelle 31:	Ausgewählte	Strukturpar	ameter in	der Krista	llstruktur	von 47 .
	/ labgemainte	Scharcenpun			motraitear	

Abbildung 55: Kristallstruktur von 47; H-Atome aus Übersichtlichkeitsgründen weggelassen: links: Doppelstränge aus KO₆-Oktaedern mit K-Koordinationspolyedern (grau); rechts: Projektion der Superzelle in *b*-Richtung (P- (pink) und K-Koordinationspolyedern (grau); H-Brücken durch rote Linien angedeutet); thermische Auslenkungsellipsoide mit 50 % Aufenthaltswahrscheinlichkeit.

3.15. $[Na(H_2O)_{4/2}(H_2O)_2][Mg(O_3PCO_2)_{3/3}(H_2O)_{2/2}]$ (48)

Einkristalle von (Magnesium-Natrium)phosphonoformiat-pentahydrat **(48)** wurden aus einer Lösung von (Trinatrium)phosphonoformiathexahydrat und Magnesiumchlorid-hexahydrat (molares Verhältnis 2:3) erhalten (Schema 44).

Schema 44: Darstellung von 48.

Die Verbindung kristallisiert in der monoklinen Raumgruppe *P*2₁/*c*. Die asymmetrische Einheit besteht aus einer Formeleinheit. In der Elementarzelle (Abbildung 56 rechts) befinden sich vier Formeleinheiten von **48**. Die asymmetrische Einheit ist in Abbildung 56 links dargestellt; Wasserstoffbrückenbindungen und Metall-Sauerstoff-Kontakte sind durch gestrichelte Linien angedeutet. Die Formiat-Gruppe ist dabei coplanar zur Mg2-O11-P1-Ebene ausgerichtet, wodurch sich durch die chelatisierende Koordination des Phosphonoformiat-Liganden am Magnesium ein planarer fünfgliedriger Ring ausbildet (Innenwinkelsumme: 539.68). Ausgewählte Strukturparameter der Verbindung können Tabelle 32 entnommen werden.

Abbildung 56: Kristallstruktur von **48**: links: asymmetrische Einheit mit H-Brückenbindungen (gestrichelte Linien); rechts: Elementarzelle (Koordinationspolyeder: Na (blaugrau), Mg (ockerbraun), P (pink)); thermische Auslenkungsellipsoide mit 50 % Aufenthaltswahrscheinlichkeit; Symmetriecodes: b = 1-x, 0.5+y, 0.5-z; e = 1-x, 1-y, 1-z; f = 1-x, -0.5+y, 0.5-z; g = -x, 1-y, -z; h = 1-x, 1-y, -z; j = -1+x, 1.5-y, -0.5+z; k = x, 1.5-y, 0.5+z; l = x, 1.5-y, -0.5+z.

Die Phosphonoformiat-Anionen koordinieren über ihre Phosphonat-Gruppe zu jeweils drei Magnesium-Atomen. Die Magnesium- und Natrium-Atome sind jeweils verzerrt oktaedrisch durch sechs Sauerstoffatome koordiniert. Die Koordinationssphäre des Magnesiums besteht dabei aus zwei μ^2 -Wasser-Molekülen (O3, O4), den Sauerstoffatomen zweier Phosphonat-Gruppen überbrückender (012, 013) einem und chelatisierend gebundenem Phosphonoformiat-Anion (O11-P1-C1-O1). Die Mg-O-Abstände sind mit 2.015(1)-2.158(1) Å gut mit jenen in der literaturbekannten $[Mg(O_3P-CH_2-NH_3)_{4/2}(H_2O)_2] \times 2 H_2O-Struktur^{72}$ vergleichbar. Die Natrium-Atome sind ausschließlich durch Wassermoleküle (zwei μ^1 - (05, 07) und vier μ^2 -H₂O-Moleküle (03, 04, 06, O6q) koordiniert. Die Na-O-Abstände liegen mit 2.308(1)-2.612(1) Å im Bereich von bekannten Strukturen mit dem $[Na(H_2O)_6]^+$ -Strukturmotiv.⁷⁶

⁷⁶ P. King, R. Clerac, C. E. Anson, A. K. Powell, *Dalton Trans.* **2004**, 852–861.

3. Strukturen von (Amino)phosphin- und (Amino)phosphonsäuren und deren Metallsalze

Tabelle 32: Ausgewählte Strukturparameter in der Kristallstruktur von 48.								
Bindungsal	ostände [Å]	Bindungswi	Bindungswinkel [°] Bindungsw		swinkel [°]			
P1-011	1.518(1)	O11-P1-O12	114.5(1)	P1-C1-O1	117.1(1)			
P1-012	1.519(1)	O11-P1-O13	114.9(1)	P1-C1-O2	119.7(1)			
P1-013	1.515(1)	O11-P1-C1	102.0(1)	01-C1-02	123.1(1)			
P1-C1	1.855(1)	012-P1-013	110.9(1)	O11-P1-C1-C	01 1.0(1)			
C1-01	1.267(2)	O12-P1-C1	104.1(1)	011-P1-C1-C)2 –175.7(1)			
C1-02	1.264(2)	013-P1-C1	109.2(1)					
Mg2-01	2.108(1)	01-Mg2-03	172.0(1)	O3-Mg2-O130	c 88.7(1)			
Mg2-03	2.134(1)	01-Mg2-04	93.1(1)	04-Mg2-011	86.5(1)			
Mg2-04	2.158(1)	O1-Mg2-O11	82.9(1)	04-Mg2-012t	b 90.2(1)			
Mg2-011	2.082(1)	O1-Mg2-O12b	86.3(1)	04-Mg2-0130	c 168.1(1)			
Mg2-012	2.061(1)	01-Mg2-013c	98.7(1)	011-Mg2-012	2b 168.5(1)			
Mg2-013	2.015(1)	O3-Mg2-O4	79.5(1)	011-Mg2-013	3c 93.9(1)			
		O3-Mg2-O11	99.7(1)	012b-Mg2-03	13c 91.5(1)			
		O3-Mg2-O12b	90.6(1)					
Na1-03	2.408(1)	O3-Na1-O4	66.1(1)	04-Na1-07	168.2(1)			
Na1-04	2.612(1)	O3-Na1-O5	90.8(1)	05-Na1-06	93.0(1)			
Na1-05	2.326(1)	O3-Na1-O6	156.2(1)	O5-Na1-O6d	174.4(1)			
Na1-06	2.308(1)	O3-Na1-O6d	84.9(1)	05-Na1-07	96.1(1)			
Na1-O6d	2.349(1)	O3-Na1-O7	115.2(1)	O6-Na1-O6d	174.4(1)			
Na1-07	2.422(1)	04-Na1-05	95.6(1)	06-Na1-07	87.6(1)			
		04-Na1-06	90.1(1)	O6d-Na1-O7	82.4(1)			
		O4-Na1-O6d	86.1(1)					
Symmetried	codes: b = 1-	-x, 0.5+y, 0.5-z;	c = 1 - x, -y	, -z; d = 2-x, -	-y, 1-z;			
		H-B	rücken					
Х-	-H…Y	<i>d</i> (X–H)	<i>d</i> (H…Y)	<i>d</i> (X…Y)	<(X-H…Y)			
03-H310	2	0.86(2)	1.90(2)	2.751(1)	171(2)			
03-H32…0	5	0.87(2)	1.85(2)	2.708(2)	173(2)			
04-H41···013		0.84(2)	1.94(2)	2.722(1)	153(2)			
04-H42···07		0.87(2)	2.00(2)	2.818(2)	156(2)			
05-H51···02		0.86(2)	1.90(2)	2.732(2)	162(2)			
05-H52…0	1	0.77(2)	2.03(2)	2.797(2)	172(2)			
06-H61…0	11	0.80(2)	1.89(2)	2.681(2)	177(2)			
06-H62…0	2	0.73(2)	2.05(2)	2.777(2)	170(2)			
07-H710	12	0.79(2)	2.01(2)	2.776(1)	164(2)			

- u ing alam Kuiata Hatau data . .

Durch die μ^2 -Wasser-Moleküle werden die MgO₆- und NaO₆-Oktaeder über Kanten miteinander verknüpft. Die so entstehenden Ketten aus vier kantenverknüpften Oktaedern sind in Abbildung 57 A dargestellt. Über die Phosphonoformiat-Liganden sind die "Vierereinheiten" miteinander verknüpft. Die Wasserstoffbrückenbindungen O3-H31···O2; O4-H41···O13; 04-H42···07; 05-H51···02; 06-H61···011 und 07-H71···012 verlaufen der vier kantenverknüpften innerhalb Oktaeder. dabei Diese Wasserstoffbrücken sind in Abbildung 57 A durch rote gestrichelte Linien angedeutet. Die Wasserstoffbrücken O3-H32····O5; O5-H52····O1 und O6-H62····O2 verknüpfen die "Vierereinheiten" miteinander und sind in Abbildung 57 A durch grüne gestrichelte Linien visualisiert.

Abbildung 57: Kristallstruktur von **48**; H-Atome aus Übersichtlichkeitsgründen weggelassen: A: Koordinationspolyeder von Mg (ockerbraun) und Natrium (blaugrau); B: Projektion der Kristallstruktur in *c*-Richtung; C: Projektion der Kristallstruktur in *b*-Richtung; thermische Auslenkungsellipsoide mit 50 % Aufenthaltswahrscheinlichkeit, Symmetriecodes. Symmetriecodes: g = -x, 1-y, -z.

In den Projektionen in Abbildung 57 B und C ist die schichtweise Anordnung der MgO_6 - und NaO_6 -Oktaeder in der Kristallstruktur von **48** veranschaulicht.

3.16. $[Cr(H_2O)_6]Cl_2(O_3PCH_2(NHC(NH)_2) \times (HO_3PCH_2(NHC(NH)_2) \times H_2O (49))$

Einkristalle des Salzes **49** werden aus einer wässrigen Lösung von (Guanidinium)methylphosphonsäure und Chrom(III)chlorid in Form von blassgrünen Kristallen (Schema 45).

Die Strukturdaten der Wasserstoffbrückenbindungen und weitere ausgewählte Strukturparameter können entnommen werden.

Schema 45: Darstellung von 49.

49 kristallisiert in der triklinen Raumgruppe P-1mit zwei Formeleinheiten in der Elementarzelle (Abbildung 58 B). Die asymmetrische Einheit (Abbildung 58 A) besteht aus einer Formeleinheit des Salzes. Die Wasserstoffbrückenbindungen sind in Abbildung 58 C als gestrichelte Linien visualisiert.

Abbildung 58: Kristallstruktur von 49: A: asymmetrische Einheit; B: Elementarzelle (H-Brücken und Cr-O-Kontakte als gestichelte Linien); C: ausgebildete H-Brückenbindungen (CrO₆-Koordinationspolyeder (grau)); thermische Auslenkungsellipsoide mit 50 % Aufenthaltswahrscheinlichkeit; Symmetriecodes: a = -1+x, y, z; b = -x, -y, -z; c = 1-x, 1-y, -z; d = 1+x, y, z; e = 1-x, -y, -z.

Tabelle 33: Ausgewanite Strukturparameter in der Kristallstruktur von 49 .							
Bindungsal	ostände [Å]	Bindungswinkel [°]		Bindungswinkel [°]		kel [°]	
P1-011	1.508(1)	011	-P1-012	115.3(1)	012-P1-013		112.1(1)
P1-012	1.508(1)	011	-P1-013	107.5(1)	O12-P1-C11		108.9(1)
P1-013	1.576(1)	011	-P1-C11	107.8(1)	O13-P1-C11		104.5(1)
P1-C11	1.810(2)						
P2-021	1.511(1)	021	-P2-022	109.6(1)	022-P2-023		111.4(1)
P2-022	1.564(1)	021	-P2-023	114.6(1)	O22-P2-C21		105.3(1)
P2-023	1.512(1)	021	-P2-C21	107.7(1)	O23-P2-C21		107.7(1)
P2-C21	1.810(2)						
Cr1-01	1.949(1)	01-	-Cr1-02	88.4(1)	02-Cr1-06		89.4(1)
Cr1-02	1.980(1)	01-	-Cr1-03	90.4(1)	03-Cr1-04		89.7(1)
Cr1-03	1.980(1)	01-	-Cr1-04	179.8(1)	03-Cr1-05		87.9(1)
Cr1-04	1.983(1)	01-	-Cr1-05	88.5(1)	03-Cr1-06		179.2(1)
Cr1-05	1.968(1)	01-	-Cr1-06	90.3(1)	04-Cr1-05		91.6(1)
Cr1-06	1.942(1)	02-	-Cr1-03	90.8(1)	04-Cr1-06		89.5(1)
		02-	-Cr1-04	91.5(1)	05-Cr1-06		92.0(1)
		02-	-Cr1-05	176.6(1)			
			H-B	rücken		-	
X-	-H…Y		<i>d</i> (X–H)	<i>d</i> (H⋯Y)	$d(X \cdots Y)$	<	<(X–H…Y)
01-H101…	011	0).72(3)	1.88(3)	2.597(2)	178	3(3)
O1−H102…	023	0).73(2)	1.84(2)	2.573(2)	172	2(3)
O2-H201…	Cl1	0).78(2)	2.51(1)	3.218(2)	153	3(2)
O2−H202…	022	0).78(3)	1.74(3)	2.524(2)	178	3(4)
O3-H302…	012	0).82(3)	1.80(3)	2.596(2)	166	5(3)
04-H401…012		0).75(3)	1.94(3)	2.685(2)	172	2(2)
O4-H402…O22		0).72(2)	1.93(2)	2.646(2)	172	2(3)
O5-H501…O21		0).76(1)	1.84(1)	2.583(2)	164	ł(2)
O5-H502…O11		0).77(2)	1.82(2)	2.591(2)	173	3(3)
O6-H601…	023	0).79(3)	1.80(3)	2.583(2)	177	7(2)
O6−H602…	021	0).71(3)	1.86(3)	2.564(2)	173	3(3)
013-H131·	··O2	0).82(4)	1.84(4)	2.625(2)	161	L(4)

Das Chrom(III)-Kation ist oktaedrisch durch sechs Wassermoleküle koordiniert. Die Phosphonat-Liganden befinden sich in der sekundären Koordinationssphäre des Metallions und sind über Wasserstoffbrückenbindungen zu den Wasser-Protonen gebunden. Es wird keine direkte Phosphonat-Chrom-Koordination beobachtet. An den Wasserstoffbrücken zu den Phosphonat-Anionen sind alle Protonen des $[Cr(H_2O)_6]^{3+}$ -Komplexes mit Ausnahme von H201 und H301 beteiligt. H201 zeigt eine schwache Wechselwirkung zu Cl1 (O2–H201…Cl1).

An jeden $Cr(H_2O)_6$ -Oktaeder binden fünf Phosphonat-Liganden chelatisierend an die Protonen zweier benachbarter Wasserliganden, sowie ein überbrückender Phosphonat-Ligand (O4–H401…O12) und ein Chlor-Atom (O2–H201…Cl1). Die zweite Koordinationssphäre am Cr(III)-Kation ist in Abbildung 58 C und Abbildung 59 veranschaulicht. Die Phosphonat-Liganden sind dabei durch PO₃C-Tetraeder (pink) angedeutet, die Koordinationssphäre am Chrom ist durch den blaugrauen CrO₆-Oktaeder veranschaulicht.

Abbildung 59: Kristallstruktur von 49; zweite Koordinationssphäre am Cr: links: Verknüpfung des [Cr(H₂O)₆]₃₊-Oktaeders mit den Phosphonat-Liganden über H-Brücken; rechts: schematische Darstellung der überbrückenden Phosphonat-Liganden (gestrichelte Line ≙ Phosphonat-Anion); thermische Auslenkungsellipsoide mit 50 % Aufenthaltswahrscheinlichkeit.

3.16.1. (*R/S*)-Phosphonsäure-2,4,6tris(*tert*-butyl)phenyl-ester (50)

(R/S)-Phosphonsäure-2,4,6-tris(*tert*-butyl)phenyl-ester (**50**) wurde in zwei Stufen aus 2,4,6-Tris(*tert*-butyl)-phenol und PCl₃ und anschließender Hydrolyse des gebildeten Dichlorphosphans **51** in quantitativer Ausbeute dargestellt (Schema 46).

Schema 46: Synthese von 50 und 51.

Die bereits in der Literatur ⁷⁷ beschriebene Synthese des Zwischenproduktes Mes*O–PCl₂ (**51**) wurde verbessert. Die Ausbeute konnte von 73 % auf "quantitativ" gesteigert werden und die in der Literatur fehlenden PC-Kopplungen konnten vervollständigt werden.

Durch den starken sterischen Anspruch des Supermesityl-Rests kann eine Mehrfachsubstitution am Phosphor vermieden werden und so das monosubstituierte Dichlorphenoxyphosphan **51** isoliert werden. Die anschließende Hydrolyse erfolgte quantitativ. Der Phosphonsäureester **50** wurde mit quantitativer Ausbeute isoliert und die bislang nicht in der

⁷⁷ H. Lang, M. Leise, L. Zsolnai, *J. Organomet. Chem.* **1990**, *386*, 349–363.

Literatur beschriebene Verbindung wurde NMR-spektroskopisch sowie durch Röntgenbeugung an Einkristallen vollständig charakterisiert.

Der sterische Anspruch der beiden *ortho*-Methylgruppen des Mesityl-Rests reicht schon nicht mehr aus, um eine Mehrfachsubstitution zu verhindern. Trotz Verwendung eines Überschusses an PCI₃ kann bei der Umsetzung von MesOH und PCI₃ nur das Gleichgewicht aus MesOPCI₂ (**52a**), (MesO)₂PCI (**52b**) und (MesO)₃P (**52c**) beobachtet werden. Trennt man die Hilfsbase ab und entfernt die flüchtigen Bestandteile, so destilliert aus dem erhaltenen gelben wachsartigen Feststoff *in vacuo* weiteres PCI₃ ab, bis das Gleichgewicht vollständig zum (MesO)₃P (**52c**) verschoben ist (Schema 47).

Schema 47: Reaktion von MesOH mit PCl₃.

3.16.2. Molekül- und Kristallstruktur von (*R/S*)-MesO-PO₂H₂ (50)

Der Supermesityl-ester der Phosphonsäure (**50**) kristallisiert aus THF in der monoklinen Raumgruppe $P2_1/c$. Die asymmetrische Einheit ist in Abbildung 60 links dargestellt und besteht aus einem Molekül.

Abbildung 60: Molekülstruktur von **50**: links: asymmetrische Einheit mit H-Brücke (O3– H3…O2); rechts: ausgebildete Ketten in *c*-Richtung (CH-Atome aus Übersichtlichkeitsgründen weggelassen); thermische Auslenkungsellipsoide mit 50 % Aufenthaltswahrscheinlichkeit; Symmetriecode: a = x, 0.5-y, 0.5+z. Die Elementarzelle enthält vier Moleküle (Abbildung 61 links). Strukturbestimmend ist hier erneut eine Wasserstoffbrückenbindung zwischen den Phosphonsäure-Gruppen (O3–H3···O2), die in Abbildung 60 visualisiert ist. Ausgewählte Strukturparameter der Struktur können Tabelle 34 entnommen werden.

Bindungsabstände [Å]		Bindungswinkel [°]		Bindungswinkel [°]			
P1-01	1.58(1)	01-P1-02	113.9(1)	02-P1-03	113.4(1)		
P1-02	1.47(2)	01-P1-03	107.0(1)	O2-P1-H1	112.9(8)		
P1-03	1.54(2)	O1-P1-H1	102.6(8)	O3-P1-H1	106.1(7)		
P1-H1	1.29(2)						
H Brücken							

Tabelle 34: Ausgewählte Strukturparameter in der Kristallstruktur von 50.

H-Brücken							
X–H…Y	<i>d</i> (X–H)	<i>d</i> (H…Y)	d(X…Y)	<(X-H…Y)			
03-H3···02	0.83(3)	1.70(3)	2.516(2)	170(3)			

Abbildung 61: Kristallstruktur von **50**: links: Elementarzelle mit H-Brücke (gestrichelte Linie); rechts: Projektion der Struktur in *a*-Richtung (Mes*-Rest nur durch ein C-Atom angedeutet); thermische Auslenkungsellipsoide mit 50 % Aufenthaltswahrscheinlichkeit.

Durch die Wasserstoffbrücken der Phosphinsäuregruppen (O3–H3···O2) bilden sich in der Kristallstruktur Ketten die in *c*-Richtung orientiert sind (Abbildung 61). Innerhalb der Kette wechseln sich die (R)- und (S)-Isomere ab (s. a. Abbildung 61 links). Zwischen den Mes*-Resten der Ketten können keine Wechselwirkungen beobachtet werden. Die Mes*-Reste greifen dabei im "Reißverschluss-Prinzip" ineinander. Durch die Elementarzelle verlaufen zwei dieser Ketten (Abbildung 61 rechts).

3.17. (-)-Menthyl-OPCl₂ (53a)

(–)-Menthyl-OPCl₂ **(53a)** wurde in Anlehnung an eine Synthese von J.-M. BRUNEL⁷⁸ dargestellt, erstmals in Reinsubstanz mit 90 %-iger Ausbeute isoliert sowie vollständig NMR-spektroskopisch charakterisiert (Schema 48).

⁷⁸ J.-M. Brunel, G. Buono, *J. Org. Chem.* **1993**, *58*, 7313–7314.

Schema 48: Synthese von 53a und 53b.

Die Verbindung wird als farbloses, leicht bewegliches Öl erhalten. Die Zuordnung der ¹H- und ¹³C-NMR-Signale (vgl. 11.4.3.21) erfolgt mittels ein- und zweidimensionaler NMR-Spektroskopie. Es wurden keine ARBUSOV-Umlagerungsprodukte beobachtet.

3.18. (-)-Menthyl-OPO₂H₂ (53b)

Der Phosphonsäure-(–)-menthylester (**53b**) ist in der Literatur als Produkt einer palladiumkatalysierten Reaktion von (–)-Menthol mit Phospinsäure beschrieben.⁷⁹ Die Verbindung wurde im Rahmen dieser Arbeit in einer einfachen zweistufigen "Eintopf-Synthese" durch Umsetzung von (–)-Menthol mit PCl₃ und anschließender Hydrolyse des gebildeten Dichlorphosphans **53a** in einer Gesamtausbeute von 90 % synthetisiert (Schema 48). Die beobachteten NMR-Daten entsprechen denen in der Literatur.⁷⁹

3.19. ((-)-MenthylO)₃P (54)

Bei der Umsetzung von (–)-Menthol mit PCI_3 im Molverhältnis 2:1 wurde nicht das erwartete Chlorphosphan ((–)-MenthylO)₂PCl (**55**) erhalten, es bildet sich vielmehr das Phosphit ((–)-MenthylO)₃P (**54**) (Schema 49).

Schema 49: Synthese von und 54.

Das Chlorphosphan **55** ist in der Literatur mit einer Verschiebung von $\delta^{31}P = 165 \text{ ppm}^{80}$ bzw. $\delta^{31}P = 147.46 \text{ ppm}^{81}$ beschrieben. Die chemische

⁷⁹ L. Coudray, I. Abrunhosa-Thomas. J.-L. Montchamp, *Tetrahedron Lett.* **2007**, *48*, 6505–6508.

⁸⁰ V. V. Nesterov, E. V. Grishkun, O. I. Kolodyazhnyi, *Russ. J. Gen. Chem.* **2004**, *74*, 1947–1948; Übersetzung von: *Zh. Obsh. Khim.* **2004**, *74*, 2060–2061.

Verschiebung des Phosphits **54** ist in der Literatur mit δ^{31} P = 143.9 ppm⁸² angegeben.

Das im Rahmen dieser Arbeit erhaltene Reaktionsprodukt wurde mit einer chemischen Verschiebung von $\delta^{31}P = 147.5$ ppm charakterisiert und kann auf Grund der Kopplung zu drei (–)-Menthyl-Resten (Quartett; ${}^{3}J_{PH} = 8.8$ Hz) als Tris((–)-menthyl)phosphit **54** identifiziert werden

Die von P. BAŁCZEWSKI⁸¹ beschriebene Verschiebung für ((–)-MenthylO)₂PCI (**55**) ist somit der Verbindung **54** zuzuordnen. Die anschließend durchgeführte Hydrolyse führt zur Abspaltung eines Mentholrestes und zur Bildung des Diesters (**56**).

3.20. Phosphonsäure-bis((-)-menthyl)-ester (56)

Schema 50: Synthese von 56.

Die Verbindung wurde durch Hydrolyse von **54** dargestellt (Schema 50). Die analytischen Daten stimmen mit publizierten Daten überein.⁸¹

3.21. Neue Komplexe der Tritylphosphinsäure (Ph₃CPO₂H₂) (57)

Tritylphosphinsäure (Triphenylmethylphosphinsäure) (**57**) wurde nach einer Synthese von M. R. FOSSE ⁸³ aus Triphenylmethanol und Natriumphosphinat unter sauren Bedingungen dargestellt (Schema 51).

$$Ph_{3}C-OH \xrightarrow{1) AcOH/H_{2}SO_{4}} Ph_{3}C-P^{+}-OH H F^{+}OH H F^{-}OH H F$$

Schema	51:	Synthese	von	57 .
--------	-----	----------	-----	-------------

Die Verbindung wurde in guten Ausbeuten isoliert und vollständig NMRspektroskopisch charakterisiert. Der von J.-L. MONTCHAMP⁸⁴ angegebene

⁸¹ P. Bałczewski, A. Szadowiak, A. Bodzioch, T. Białas, W. M. Wieczorek, M. Szyrej, J. Organomet. Chem. **2007**, 692, 997–1009.

⁸² T. Bartik, L. Markó, I. Gerdes, P. Heimbach, W. Knott, H.-G. Schulte, *Chirality* **1991**, *3*, 324–330.

⁸³ M. R. Fosse, Bull. Soc. Chim. France **1910**, 7, 231–235.

Schmelzpunkt und die angegebenen ¹³C-NMR Daten konnten nicht reproduziert werden. Die vollständigen NMR-Daten sind in Abschnitt 11.4.3.24 aufgeführt.

3.21.1. Pb(O₂HPCPh₃)₂ (58)

Einkristalle von Blei(II)tritylphosphinat (**58**) wurden durch Reaktion von Tritylphosphinsäure mit Blei(II)nitrat in Methanol gewonnen (Schema 52). In der Literatur sind bislang keine Metall-Tritylphosphinat-Salze beschrieben.

Schema 52: Darstellung von 58.

Das Salz kristallisiert in der monoklinen Raumgruppe P-1 mit zwei Formeleinheiten in der Elementarzelle (Abbildung 62 rechts). Die asymmetrische Einheit besteht aus einer Formeleinheit und ist in Abbildung 62 links gezeigt.

Abbildung 62: Kristallstruktur von **58**: links: asymmetrische Einheit (H-Brücken als gestichelte Linien); rechts: Elementarzelle; thermische Auslenkungsellipsoide mit 50 % Aufenthaltswahrscheinlichkeit; Symmetriecodes: a = 1-x, 1-y, 1-z; b = -x, 1-y, 1-z;.

⁸⁴ Y. Belabassi, A. F. Gushwa, A. F. Richards, J.-L. Montchamp, *Phosphorus, Sulfur Silicon Relat. Elem.* **2008**, 183, 2214–2228.

Tabelle 35: Ausgewahlte Strukturparameter in der Kristalistruktur von 58.					
Bindungsal	ostände [Å]	Bindungswinkel [°]		Bindungswii	nkel [°]
P1-011	1.519(3)	O11-P1-O12	117.2(2)	O12-P1-C1	107.0(2)
P1-012	1.508(3)	O11-P1-C1	108.5(1)	O12-P1-H1	115.6(16)
P1-C1	1.869(4)	O11-P1-H1	105.4(16)	C1-P1-H1	101.9(19)
P1-H1	1.23(4)				
P2-021	1.498(3)	021-P2-022	116.9(2)	022-P2-C20	106.6(2)
P2-022a	1.522(3)	O21-P2-C20	110.0(2)	O22-P2-H2	110(2)
P2-C20	1.869(4)	O21-P2-H2	108.9(18)	C20-P2-H2	104.1(16)
P2-H2	1.33(5)				
Pb1-011	2.259(3)	O11-Pb1-O12b	78.7(1)	O12b-Pb1-O21	158.9(1)
Pb1-O12b	2.436(2)	O11-Pb1-O21	93.5(1)	O12b-Pb1-O22	81.8(1)
Pb1-021	2.482(2)	O11-Pb1-O22	89.6(1)	O21-Pb1-O22	78.5(1)
Pb1-022	2.245(3)				
Symmetriecodes: $a = -x, 1-y, 1-z, b = 1-x, 1-y, 1-z.$					

Tabelle 35: Ausgewählte Strukturparameter in der Kristallstruktur von 58.

Die Bindungsabstände und –winkel am Phosphor- und Blei-Zentrum sind in Tabelle 35 aufgeführt. Die Struktur kann gut mit den analog aufgebauten Strukturen von Blei(II)diphenylphosphinat $(Pb(O_2PPh_2)_2)^{85}$ und Blei(II)bis(*tert*-butyl)phosphinat $(Pb(O_2P^tBu_2)_2)^{86}$ verglichen werden. Die Pb-O-Abstände in der Struktur von **58** entsprechen mit 2.245(3)– 2.482(2) Å sehr gut denen in den bekannten Blei(II)phosphinat-Strukturen.^{85, 86}

Die Bleiatome sind wippenförmig durch vier Sauerstoffatome koordiniert (Abbildung 63 links). Das freie Elektronenpaar, O11 und O22 nehmen die äquatorialen Positionen der Ψ -trigonal bipyramidalen Koodinationssphäre am Bleiatom ein, O12 und O21 besetzen die axialen Positionen. Der Winkel zwischen den axialen Positionen (O12b-Pb1-O21) und der zwischen den äquatorialen Positionen (O11-Pb1-O22) ist mit 158.9 bzw. 89.6(1)° im Vergleich zur optimalen trigonal bipyramidalen Koordination (180 bzw. 120°) deutlich verkleinert.

Abbildung 63: Kristallstruktur von 58 (Phenyl-Gruppen aus Übersichtlichkeitsgründen weggelassen): links: Koordination am Pb-Atom (blaugrauer Polyeder); rechts: Kette entlang der *a*-Achse; thermische Auslenkungsellipsoide mit 50 %
 Aufenthaltswahrscheinlichkeit; Symmetriecodes: a = -x, 1-y, 1-z, b = 1-x, 1-y, 1-z.

⁸⁵ P. Colamarino, P. L. Orioli, W. D. Benzinger, H. D. Gillman, *Inorg. Chem.* **1976**, *15*, 800–804.

⁸⁶ V. Chandrasekhar, A. Chandrasekaran, R. O. Day, J. M. Holmes, R. R. Holmes, *Phosphorus, Sulfur Silicon Relat. Elem.* **1996**, *115*, 125–139.

Die Bindungsabstände zu den beiden Atomen an den äquatorialen Positionen O11 und O22 sind mit 2.259(3) bzw. 2.245(3) Å deutlich kürzer als die Bindungsabstände zu den beiden Atomen an den axialen Positionen O12b und O21 (2.436(2) bzw. 2.482(2) Å). Die Phosphinat-Anionen agieren hier als überbrückende Liganden zwischen den Bleiatomen. Eine chelatisierende Koordination kann nicht beobachtet werden. Durch diese Koordination bilden sich doppelt Phosphinat-verbrückte Ketten aus eckenverknüpften aus. Die achtgliedrigen Ringe sind um ca. 90 ° (Winkel zwischen der O11-O12-Pb1- und der O21-O22-Pb1-Ebene: 89.9(1)°) gegeneinander verkippt. Durch die Elementarzelle verläuft eine dieser Ketten (Abbildung 63 rechts).

3.21.2. $[Ca(H_2O)_6](O_2HPCPh_3)_2 \times 6 H_2O$ (59)

Einkristalle von Calciumtritylphosphinat-dodecahydrat (**59**) wurden durch Umsetzung von Tritylphosphinsäure mit Calciumhydroxid in Methanol gewonnen (Schema 53).

Schema 53: Darstellung von 59.

Die Verbindung kristallisiert in Form farbloser Tafeln in der monoklinen Raumgruppe P-1. Die asymmetrische Einheit (Abbildung 64 links) besteht aus einer halben Formeleinheit, die zweite Hälfte wird durch das Inversionszentrum generiert. Das Calcium-Atom liegt in der Elementarzelle auf der Position des Inversionszentrums (1/2, 1/2, 1/2). Somit befindet sich eine Formeleinheit in der Elementarzelle (Abbildung 64 rechts).

Abbildung 64: Kristallstruktur von **59**: links: asymmetrische Einheit; rechts: Elementarzelle mit H-Brücken (gestrichelte Linien); thermische Auslenkungsellipsoide mit

50 % Aufenthaltswahrscheinlichkeit; Symmetriecodes: a = 1-x, 1-y, 1-z; b = -1+x, -1+y, z; c = 2-x, 2-y, 1-z.

Ausgewählte Strukturparameter können Tabelle 36 entnommen werden. Die räumliche Anordnung des Wasserstoffbrückennetzwerkes ist in Abbilduna 64 rechts aezeiat. Die zwölf in der Kristallstruktur eingeschlossenen Wassermoleküle lassen sich in zwei Kategorien unterteilen. In der primären Koordinationshülle des Calciums befinden sich sechs Wassermoleküle, die das Ca-Atom oktaedrisch koordinieren. Der Winkelbereich im CaO₆-Oktaeder liegt dabei zwischen 84.0-96.0°. Die Koordinationshülle bilden sekundäre die über Wasserstoffbrückenbindungen an den [Ca(H₂O)₆]-Oktaeder gebundenen Phosphinat-Anionen und die restlichen sechs Wassermoleküle.

Die primäre und sekundäre Koordinationssphäre am Ca ist in Abbildung 65 links gezeigt. Die Wasserstoffbrücken der Wassermoleküle O1–O3 zu den freien Wassermolekülen O4–O6 und den Sauerstoffatomen der Phosphinat-Gruppen sind in Abbildung 65 links rot dargestellt. Über die grün dargestellten Wasserstoffbrücken O1–H012…O4 und O3–H032…O4 sind die CaO₆-Oktaeder in *a*-Richtung miteinander verknüpft. Durch die ebenfalls grün angedeuteten Wasserstoffbrücken O2–H021…O11 und O2–H022…O5 sind die Oktaeder in *b*-Richtung miteinander verknüpft.

Bindungsabstände [Å]		Bindungsw	Bindungswinkel [°]		Bindungswinkel [°]	
P1-011	1.519(2)	O11-P1-O12	116.8(1)	012-P1-C1		110.9(1)
P1-012	1.497(2)	O11-P1-C1	110.2(1)	O12-P1-H1		109.7(7)
P1-C1	1.868(2)	O11-P1-H1	104.7(7)	C1-P1-H1		103.6(7)
P1-H1	1.331(17)					
Ca1-01	2.365(2)	01-Ca1-O1a	180.0	01a-Ca1-O3a		96.0(1)
Ca1-O1a	2.365(2)	01-Ca1-O2	87.7(1)	02-Ca1-02a		180.0
Ca1-02	2.327(2)	01-Ca1-O2a	92.3(1)	02-Ca1-O3		93.4(1)
Ca1-O2a	2.327(2)	01-Ca1-O3	96.0(1)	02-Ca1-O3a		86.5(1)
Ca1-03	2.328(2)	01-Ca1-O3a	84.0(1)	02a-Ca1-03	3	86.5(1)
Ca1-O3a	2.328(2)	01a-Ca1-O2	92.3(1)	02a-Ca1-03	3a	93.4(1)
		01a-Ca1-02a	87.7(1)	03-Ca1-03	а	180.0
		01a-Ca1-O3	84.0(1)			
Symmetriecodes: $a = 1-x, 1-y, 1-z$.						
H-Brücken						
X-	-H…Y	<i>d</i> (X–H)	<i>d</i> (H…Y)	<i>d</i> (X⋯Y)	<	<(X−H…Y)
01-H011…06 0.84		0.84(3)	1.93(3)	2.769(3)	172	2(3)
01-Н012…04 0.8		0.82(3)	1.97(3)	2.783(3)	168	3(3)
O2-H021…O11 0		0.99(3)	1.77(3)	2.751(3)	178	8(4)
02-H022…05		0.76(3)	2.09(3)	2.842(3)	172	2(2)
O3-H031…O12		0.84(3)	1.90(3)	2.734(3)	175	5(3)
O3-H032…O4		0.82(3)	2.10(3)	2.915(3)	170	(3)
O4-H041…O6		0.81(2)	2.03(2)	2.818(3)	166	(2)
O4-H042…O11		0.88(3)	1.93(3)	2.815(2)	178	8(4)
O5-H052…O11		0.81(4)	1.95(4)	2.752(3)	177	'(4)
O6-H061…O5		0.75(3)	2.09(3)	2.825(3)	170	(3)
O6-H062…O12		0.96(3)	1.76(3)	2.714(3)	170	(3)

Tabelle 36: Ausgewählte Strukturparameter in der Kristallstruktur von 59.

Durch die ausgebildeten Wasserstoffbrückenbindungen bilden sich in der *ab*-Ebene orientierte Schichten aus. Die ausgebildeten Schichten in der Kristallstruktur von **59** sind in der Darstellung der $2 \times 2 \times 2$ -Superzelle in Abbildung 65 rechts illustriert. Die Trityl-Reste der Phosphinat-Anionen zeigen in *c*-Richtung in den Raum zwischen den Schichten. Zwischen den Schichten können keine Wechselwirkungen beobachtet werden.

Abbildung 65: Kristallstruktur von 59 (Trityl-Rest aus Übersichtlichkeitsgründen weggelassen): links: primäre und sekundäre Koordinationshülle am Ca; rechts: 2×2×2-Superzelle; Koordinationspolyeder für Ca (blaugrau) und P (pink); thermische Auslenkungsellipsoide mit 50 % Aufenthaltswahrscheinlichkeit.

Das Phosphoratom ist verzerrt tetraedrisch koordiniert. Durch den geringen Raumbedarf des Protons am Phosphor ist der Winkel zwischen den Sauerstoffatomen mit 116.8(1)° deutlich größer als 109.47°.

	Р–О ^і [Å]	P−O ^{II} [Å]	O ^I -P-O ^{II} [°]
	1.519(3)	1.508(3)	117.2(2)
FD(O ₂ TFCFT ₃) ₂ (38)	1.498(3)	1.522(3)	116.9(2)
$Ca(O_2HPCPh_3)_2 \times 12 H_2O(59)$	1.497(2)	1.519(2)	116.8(1)
$Ca_3(O_2HPCPh_3)_4(O_2CCH_3)_2 \times 4 MeOH^{87}$	1.488(18)	1.513(19)	116.1(1)
$Sr(O_2HPCPh_3)_2 \times 2 MeOH^{87}$	1.500(15)	1.504(15)	116.7(1)
$Ba(O_2HPCPh_3)_2 \times 2 MeOH^{87}$	1.502(4)	1.502(4)	116.4(2)
$Na(O_2HPCPh_3)_2 \times 4 H_2O \times MeOH^{87}$	1.497(2)	1.499(2)	116.2(1)
$Cs(O_2HPCPh_3)_2 \times H_2O^{87}$	1.493(3)	1.500(3)	117.1(2)
$Mg(H_2PO_2)_2 \times 6 H2O^{88}$	1.507(3)	1.507(3)	116.2(3)

Tabelle 37: Ausgewählte Strukturparameter einiger Metall-Phosphinate.

⁸⁷ U.-S. Chen-Leh, *Kristallstrukturen und Synthese von neuen Metall-Phosphinaten*, Masterarbeit Ludwig-Maximilians-Universität, München, **2008**.

⁸⁸ J. L. Galigne, Y. Dumas, Acta Crystallogr., Sect. B: Struct. Sci. **1973**, 29, 1115–1119.

In Tabelle 37 sind die P–O-Abstände und der O–P–O-Winkel für einige Phosphinatsalze zusammengefasst. Der O–P–O-Winkel ist in allen Salzen im Vergleich zum Tetraederwinkel vergrößert und liegt bei etwa 116.5(4)°.

3.22. Methylphosphinsäure (60) und Dimethylphosphinsäure (61)

Die Methylphosphinsäure (**60**) kann beispielsweise durch Hydrolyse des sehr reaktiven Me-PCl₂ erhalten werden. Eine einfachere Synthese ist in der Literatur von A. C. $REGAN^{18}$ aus $NH_4PH_2O_2$, HMDS und MeI beschrieben (Schema 54 oben).

Schema 54: Darstellung von Methylphosphinsäure (60).

Im Rahmen dieser Arbeit wurde dieses Synthesekonzept auf die Verwendung von Natriumphosphinat erweitert. So wurde eine neue einfache Synthesemethode für die Dimethylphosphinsäure (61) entwickelt. Bei Umsetzung von NaPH₂O₂ mit HMDS wird intermediär das Na(P(OSiMe₃)₂)-Salz gebildet, das mit zwei Äguivalenten MeI zur Dimethylphosphinsäure (61) umgesetzt werden kann (Schema 54 unten). Im Rahmen dieser Arbeit wurde eine neue einfache "Einpot"-Synthese der Phosphinsäure **61** entwickelt und optimiert. Die beobachteten ¹H- und ³¹P-NMR-Daten von (**61**) stimmen unter Berücksichtigung der unterschiedlichen verwendeten Lösemittel mit Literaturwerten⁸⁹ überein. Die fehlenden ¹³C-NMR-Daten der Verbindung wurden vervollständigt.

Die Darstellung der Phosphinsäure **60** von Synthese nach A. C. REGAN¹⁸ wurde reproduziert werden. Die Abweichungen der beobachteten NMR-Daten von **60** von Literaturwerten⁹⁰ können auf die unterschiedlichen verwendeten Lösemittel zurückgeführt werden.

⁸⁹ U. Wannagat, R Münstedt, Rainer, *Phosphorus, Sulfur Silicon Relat. Elem.* **1987**, *2*9, 233–238.

⁹⁰ C. Fougère, E. Guénin, J. Hardouin, M. Lecouvey, *Eur. J. Org. Chem.* **2009**, 6048–6054.

4. Anellierte 1,4,2-Diazaphosphole

4.1. Synthese

1,4,2-Diazaphosphole (**62**) lassen sich durch Alkylierung von Imidamiden und anschließender [4+1]-Cyclokondensation mit PCl₃ oder durch [3+2]-Cyclokondensationsreaktionen der Imidamide mit (ClCH₂)PCl₂ darstellen (Schema 55). ⁹¹, ⁹², ⁹³ Acyclische Imidamide können beispielsweise aus den entsprechenden Nitrilen durch basenkatalysierte Addition von Aminen dargestellt werden. ⁹⁴ Der Substituent R³ am Alkylbromid sollte dabei elektronenziehend sein, um einerseits die Alkylierung zu erleichtern und andererseits eine hinreichende Acidität der Protonen der Methylengruppe zu gewährleisten, um die [4+1]-Cyclokondensation zum 4*H*-1,4,2-Diazaphosphol zu ermöglichen.

Schema 55: Synthesestrategie zur Darstellung von 1,4,2-Diazaphospholen.

Die stark basischen acyclischen Imidamide fallen meist als Hydrochloride an und zeichnen sich durch eine sehr geringe Löslichkeit aus. Die Löslichkeit der Imidamide kann durch die Verwendung von cyclischen aromatischen Systemen erhöht werden. Einige Beispiele für mögliche cyclische Substanzklassen sind in Schema 56 gezeigt.⁹⁵

⁹¹ K. Karaghiosoff, C. Cleve, A. Schmidpeter, Phosphorus, *Sulfur Silicon Relat. Elem.* **1986**, *28*, 289–296.

⁹² K. Karaghiosoff, R. K. Bansal, N. Gupta, *Z. Naturforsch., B: Chem. Sci.* **1992**, *47*, 373–378.

⁹³ R. K. Bansal, R. Mahnot, D. C. Sharma, K. Karaghiosoff, *Synthesis* **1992**, 267–269.

⁹⁴ N. Zhang, S. Ayral-Kaloustian, T. Nguyen, R. Hernandez, J. Lucas, C. Discafani, C. Beyer, *Bioorg. Med. Chem.* **2009**, *17*, 111–118.

⁹⁵ K. Karaghiosoff, R. Mahnot, C. Cleve, N. Gandhi, R. K. Bansal, A. Schmidpeter, *Chem. Ber.* **1995**, *128*, 581–587.

Schema 56: Beispiele für geeignete cyclische Imidamid-Systeme für die Darstellung von 1,4,2-Diazaphospholen.

Bei der [3+2]-Cyclokondensation von 2-Amino-1,3-thiazol mit $(CICH_2)PCI_2$ wird neben dem als Hauptprodukt gebildeten annelierten 1*H*-1,4,2-Diazaphosphol **63a** auch die Bildung des isomeren 4*H*-1,4,2-Diazaphosphols **62a** beobachtet (Schema 57).⁹⁵

Schema 57: Bildung von Isomeren annelierten 1,4,2-Diazaphospholen.

Für das nicht aromatische 2-Amino-4,5-dihydro-1,3-thiazol-System kann diese Isomerenbildung interessanterweise nicht beobachtet werden und es wird nur das 1H-1,4,2-Diazaphosphol-Derivat **63b** erhalten. Setzt man 2-Amino-benzo[d]-1,3-thiazol-Derivate ein, so beobachtet man, dass hier die 4H-Isomere 62c als Hauptprodukt auftreten und die isomeren 1H-1,4,2-Diazaphosphole **63c** nur dann auftreten, solange kein sterisch anspruchsvoller Substituent (R¹) in räumlicher Nähe des Brückenkopf-Stickstoffatoms vorhanden ist. Für die übrigen in Schema 56 aufgeführten cyclischen Imidamid-Systeme wird nur die Bildung des 4H-1,4,2-Diazaphosphol-Isomers beobachtet.⁹⁵ Als Hauptunterscheidungskriterium zwischen den gebildeten 1H- und 4H-1,4,2-Diazaphospholen kann hier die ²J_{PH}-Kopplungskonstante zum H-Atom der benachbarten CH-Einheit verwendet werden. Für die 1*H*-1,4,2-Diazaphosphole 63 können Kopplungskonstanten von 52–57 Hz beobachtet werden, während die Signale der 4H-1,4,2-Diazaphosphol-Derivate 62 im Vergleich zu denen der 1*H*-Isomeren tieffeldverschoben sind und ${}^{2}J_{PH}$ -Kopplungskonstanten von 29-32 Hz aufweisen.91,95

4.2. Synthese der Ausgangsverbindungen

Um den sterischen Einfluss von Substituenten in räumlicher Nähe des σ^2 -Stickstoffatoms im Imidamid-System zu untersuchen, wurden als Ausgangsverbindungen an Position 4 substituierte 1,3-Thiazole gewählt. Diese können aus a-(Brommethyl)ketonen und Thioharnstoff dargestellt werden. Das 2-Amino-4-phenyl-1,3-thiazol wurde auf Grund der günstigen kommerziellen Verfügbarkeit von ω -Bromacetophenon und Thioharnstoff als Ausgangsverbindung gewählt.

Durch die Veresterung von chiralen Alkoholen mit Bromessigsäure kann am C3 im 4*H*-1,4,2-Diazaphosphol ein chiraler Substituent eingeführt werden. Als sterisch anspruchsvolle, enantiomerenrein günstig verfügbare, Alkohole bieten sich hier (–)-Menthol ((1*R*, 2*S*, 5*R*)-2-(1-methylethyl)-5methylcyclohexan-1-ol) und (–)-Pantolacton ((3*R*)-3-Hydroxy-4,4dimethyloxolan-2-on) an.

4.2.1. 2-Amino-4-phenyl-1,3-thiazol (64)

Die Verbindung wurde nach einer Synthese von S. BALALAIE⁹⁶ durch eine DABCO-katalysierte HANTZSCH-Thiazolsynthese aus ω -Bromacetophenon und Thioharnstoff in guten Ausbeuten dargestellt (Schema 58).

Schema 58: Synthese von 64.

Die erhaltenen NMR-Daten entsprechen den in der Literatur beschriebenen Werten.

Das analoge 2-Amino-4-phenyl-1,3-oxazol kann nicht auf diesem Weg hergestellt werden. Auch die publizierte Synthese⁹⁷ aus Harnstoff und ω -Bromacetophenon in DMF bei 105 °C konnte nicht reproduziert werden.

4.2.2. 2-Bromessigsäure-(-)-menthyl-ester (65a)

Die Synthese von **65a** ist in der Literatur als carbodiimid- aktivierte Veresterung – unter Verwendung von beispielsweise DCC ⁹⁸ oder EDC/DMAP⁹⁹ – oder durch Kondensation von 2-Bromessigäurebromid mit (–)-Menthol unter Verwendung von Pyridin als Base¹⁰⁰ beschrieben.

⁹⁶ S. Balalaie, S. Nikoo, S. Haddadi, *Synth. Commun.* **2008**, *38*, 2521–2528.

⁹⁷ G. Crank, H.R. Khan, Aust. J. Chem. **1985**, 38, 447–458.

⁹⁸ L. Streinz, B. Koutek, D. Saman, *Synlett* **2001**, *6*, 809–811.

⁹⁹ T. Kurtan, N. Nesnas, Y.-Q. Li, X. Huang, K. Nakanishi, N. Berova, *J. Am. Chem. Soc.* **2001**, *123*, 5962–5973.

¹⁰⁰ P. Deprez, J. Royer, H.-P. Husson, *Tetrahedron Asymmetry* **1991**, *2*, 1189–1192.

Die Veresterung von 2-Bromessigsäure mit (–)-Menthol und die Isolierung des Esters erwies sich jedoch praktisch als nicht trivial. Die von STREINZ beschriebene Synthese⁹⁸ konnte nicht reproduziert werden.

Aus der Reaktionslösung wurde als Nebenprodukt das Carbamat **202** isoliert (Schema 59) und anhand der bekannten Elementarzelle ¹⁰¹ röntgenographisch identifiziert.

Schema 59: Bildung des Nebenproduktes 202.

Die Synthese von **65a** kann effizienter durch Umsetzung von 2-Bromessigsäurebromid mit (–)-Menthol durchgeführt werden. Die Reaktionsführung und die Isolierung des gebildeten Esters kann durch Verwendung von Kaliumcarbonat deutlich vereinfacht und verbessert werden (Schema 60).

Schema 60: Synthese von 65a.

Die erhaltenen analytischen Daten des isolierten Esters **65a** entsprechen denen in der Literatur. Der 2-Bromessigsäureester **65a** zeigt im Vergleich zum 2-Bromessigsäuremethyl- (**65b**) und 2-Bromessigsäureethylester (**65c**) eine geringere Elektrophilie an der Methylengruppe. So kann beispielsweise Thiobenzamid, das mit **65b** und **65c** problemlos abreagiert, mit **65a** nicht mehr alkyliert werden.

4.2.3. 2-Bromessigsäure-(-)-pantolactyl-ester (65d)

Die Verbindung ist in der Literatur als Produkt einer DCC-aktivierten Veresterung von (–)-Pantolacton und 2-Bromessigsäure ohne Angabe experimenteller Details oder analytischer Daten beschrieben. ¹⁰² **65d** wurde analog zu **65a** aus 2-Bromessigäurebromid und (–)-Pantolacton hergestellt und in Reinsubstanz isoliert (Schema 61).

¹⁰¹ M. Ratajczak-Sitarz, M. Naruszewicz, Z. Kosturkiewicz, J. Jozkowiak, M. D. Rozwadowska, *Pol. J. Chem.* **1996**, *70*, 310–319.

¹⁰² Y. Valenrod, J. Myung, R. N. Ben, *Tetrahedron Lett.* **2004**, *45*, 2545–2549.

Schema 61: Synthese von 65d.

Der erhaltene Ester erweist sich dabei als sehr instabil und neigt zur Hydrolyse. So wird beispielsweise bei der Umsetzung mit 2-Amino-4phenyl-1,3-thiazol (**64**) und 2-Aminopyridin, trotz strikter Einhaltung von Schlenkbedingungen, keine Alkylierung erhalten. Im Massenspektrum des Reaktionsgemisches wurden die Kationen **66** bzw. **67** (Schema 62) nachgewiesen, was die Hydrolyseempfindlichkeit des gebildeten Esters **65d** belegt.

Schema 62: nachgewiesene Kationen im Reaktionsgemisch von 65d mit 64.

Somit zeigt sich, dass Pantolacton nicht als chiraler Baustein zur Synthese chiraler Heterophosphole geeignet ist.

4.2.3.1. Molekül- und Kristallstruktur von 2-Amino-4-phenyl-1,3-thiazol-3-ium-2bromacetat (64a)

Wie oben beschrieben kann bei der Umsetzung des Thiazols **64** mit dem 2-Bromessigsäureester **65d** keine Alkylierung des Thiazolrings beobachtet werden. Aus dem offenen NMR-Rohr kristallisiert das Thiazolium-Salz **64a** aus THF.

Schema 63: Bildung des Thiazolium-Salzes 64a.

Die Bildung des Salzes kann durch Hydrolyse des Esters **65d** und anschließende Protonierung des Thiazols **64** durch 2-Bromessigsäure erklärt werden (Schema 63). Die Verbindung kristallisiert in der

orthorhombischen Raumgruppe *Pbca*. Die asymmetrische Einheit (Abbildung 66 links) besteht aus zwei Formeleinheiten und in der Elementarzelle befinden sich sechzehn Formeleinheiten (Abbildung 66 rechts).

Abbildung 66: Kristallstruktur von **64a**; links: asymmetrische Einheit; rechts: Elementarzelle; thermische Auslenkungsellipsoide mit 50 % Aufenthaltswahrscheinlichkeit.

Die Bindungsverhältnisse im Molekül zeigen keine Auffälligkeiten. Der Bindungsabstand zu den exocyclischen Stickstoffatomen N1 und N3 liegen dabei mit 1.318(3) bzw. 1.319(3) Å im Bereich zwischen einer C-N-Einfach- und einer C=N-Doppelbindung.

Die Parameter der ausgebildeten Wasserstoffbrückenbindungen zwischen dem Kation und dem Bromacetat-Anion können Tabelle 38 entnommen werden. Die räumliche Anordnung ist in Abbildung 67 links gezeigt.

H-Brücken					
X–H…Y	<i>d</i> (X–H)	<i>d</i> (H…Y)	$d(X \cdots Y)$	<(X–H…Y)	
N1-H12…O311	0.87(2)	1.88(2)	2.750(3)	175(2)	
N2-H21…O312	0.71(2)	1.99(2)	2.693(2)	175(2)	
N3-H31…O411	0.87(2)	1.90(2)	2.748(3)	166(2)	
N3-H32…O311	0.86(2)	2.09(2)	2.745(3)	133(2)	
N4-H41…O412	0.85(2)	1.83(2)	2.676(2)	173(2)	

Tabelle 38: Wasserstoffbrückenbindungen in der Kristallstruktur von 64a.

Abbildung 67: Kristallstruktur von **64a**; links: H-Brücken (gestrichelte Linien); rechts: ausgebildete Dimere (H-Brücken durch gestrichelte Linien angedeutet); thermische Auslenkungsellipsoide mit 50 % Aufenthaltswahrscheinlichkeit; Symmetriecode: a = 1-x, 2-y, -z.

Über die vier kurzen Wasserstoffbrücken werden jeweils ein Kat- und ein Anion miteinander verknüpft. Die Wasserstoffbrückenbindung (N3– H32…O311) verknüpft jeweils zwei dieser Ionenpaare zu Dimeren (Abbildung 67 rechts). Jeweils zwei dieser Dimere sind mit einem Winkel von 0.79(1)° praktisch parallel zueinander leicht versetzt im Abstand von ca. 3.6–3.8 Å angeordnet. Zwischen den Dimeren werden keine Wechselwirkungen beobachtet.

4.3. Synthese von N-Alkyl-cycloimminium-Salzen ausgehend von 2-Amino-4-phenyl-1,3-thiazol und 2-Aminopyridin und 2-Bromessigsäurealkylestern

Die *N*-Alkyl-cycloimminium-Salze wurden ausgehend von 2-Amino-4phenyl-1,3-thiazol (**64**) und 2-Aminopyridin in Anlehnung an die in der Literatur beschriebenen Synthesen^{92, 93, 103} durch Umsetzung mit 2-Bromessigsäurealkylestern **65** in THF bzw. Aceton hergestellt (Schema 64).

¹⁰³ R. K. Bansal, V. Kabra, R. Munjal, N. Gupta, *Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem.* **1994**, *33B*, 992–994.

Schema 64: Alkylierung von 2-Amino-4-phenyl-1,3-thiazol und 2-Aminopyridin.

Die bislang unbekannten Aminothiazoliumbromide **68a** und **68c** wurden erstmals dargestellt und vollständig NMR-spektroskopisch charakterisiert. Die Verbindung **68b** ist bereits in der Literatur durch R. K. BANSAL beschrieben und ¹H-NMR-spektroskopisch charakterisiert.¹⁰³ Das Mentholderivat **69a** wurde erstmals dargestellt und charakterisiert. Von den Salzen **68a–c** wurden durch Umkristallisation aus Dichlormethan für die Röntgenstrukturanalyse geeignete Einkristalle gewonnen.

Die Methylengruppe der 2-Bromessigsäureester **65** stellt eine geeignete NMR-Sonde für die Verfolgung der Alkylierung dar, da hier zwischen den Edukten (**65a–d**) und Produkten (**68a–c**, **69a**) die deutlichste Änderung beobachtet werden kann (Tabelle 39).

	$\delta^{1}H$	δ ¹³ C	
65a	3.73, 3.82	26.2	
65b	3.86 ¹⁰⁴	25.5^{104}	
65c	3.84 ¹⁰⁵	26.3 ¹⁰⁵	
65d	3.88	26.7	
68a	4.91, 5.28	49.4	
68b	4.76	48.0	
68c	4.98	49.5	
69a	5.16, 5.27	54.2	
a : R = (-)-Menthyl, b : R = Me, c : R = Et,			
d : (–)-Pantolactyl			

Tabelle 39: ¹H- und ¹³C-NMR-Verschiebungen der Methylengruppen in **56**, **68** und **69**.

Die ¹H- und ¹³C-NMR-Signale der dargestellten Salze wurden mittels ein- und zweidimensionaler NMR-Spektroskopie zugeordnet. In Abbildung 68 und Abbildung 69 sind exemplarisch das ¹H,¹H-COSY45- und das ¹H,¹³C-HMBC-Spektrum von **68a** gezeigt.

 ¹⁰⁴ T. M. Werkhoven, R. van Nispen, J. Lugtenburg, *Eur. J. Org. Chem.* **1999**, 2909–2914.
 ¹⁰⁵ A. van der Klei, R. L. P. de Jong, J. Lugtenburg, A. G. M. Tielens, *Eur. J. Org. Chem.* **2002**, 3015–3023.

Abbildung 68: Ausschnitt (0.5–2.2 ppm) des ¹H, ¹H-COSY45-Spektrums von **68a** (ca. 0.01 M in CDCl₃ bei 40 °C; Aufnahme mit Feldgradiententechnik; Matrix 2048×2048; sinbell auto; keine Symmetrisierung).

Abbildung 69: Ausschnitt (¹H: 0.5–2.2 ppm; ¹³C: 5.0–56.0 ppm) aus dem ¹H,¹³C-HMBC-Spektrum von **68a** (ca. 0.01 M in CDCl₃ bei 40 °C; Aufnahme mit Feldgradiententechnik; Matrix 2048×2048; sinbell auto).

In den nachfolgend diskutierten Hydrochlorid- und Hydrobromid-Strukturen der Verbindungen **68a** × CH_2Cl_2 , **86b**, **86c**, **68c** × $\frac{1}{2}$ **CHCl**₃ und **68d** × $\frac{1}{2}$ **MeCN** werden in Anlehnung an eine Publikation von J. S. SHERFINSKI ¹⁰⁶ Wasserstoffbrückenbindungen zwischen den NH-Atomen und den Halogenid-Anionen bis zu einem Wasserstoff-Halogenid-Abstand von 2.8 Å diskutiert.

4.3.1. Molekül- und Kristallstruktur von 68a × CH₂Cl₂

Die Verbindung kristallisiert in der orthorhombischen Raumgruppe $P2_12_12_1$ mit vier Formeleinheiten in der Elementarzelle (Abbildung 70 B). Die asymmetrische Einheit ist in Abbildung 70 A gezeigt und besteht aus einer Formeleinheit. Die Bindungsverhältnisse im organischen Molekül zeigen keine Auffälligkeiten. Der Bindungsabstand zum exocyclischen Stickstoffatom (C1–N2) liegt dabei mit 1.313(2) Å im Bereich zwischen einer C–N-Einfach- und einer C=N-Doppelbindung. Ein Chloratom (Cl21/Cl22) des Dichlormethanmoleküls ist dabei fehlgeordnet. Die beiden Positionen sind dabei zu 37.7 (Cl21) bzw. 62.3 % (Cl22) besetzt.

Abbildung 70: Kristallstruktur von **68a** × **CH**₂**Cl**₂; A: asymmetrische Einheit mit Wasserstoffbrückenbindungen (gestrichelte Linien); B: Elementarzelle; thermische Auslenkungsellipsoide mit 50 % Aufenthaltswahrscheinlichkeit; Symmetriecodes: a = 2-x, 0.5+y, 0.5-z; b = 1.5-x, 1-y, 0.5+z.

In der Kristallstruktur von **68a \times CH_2Cl_2** werden zwei Wasserstoffbrückenbindungen zwischen den NH-Atomen und den Bromid-Ionen beobachtet. Die Wasserstoffbrücken sind in Abbildung 70 A dargestellt. Die Parameter können Tabelle 40 entnommen werden. Die Solvensmoleküle zeigen keine Wechselwirkung zum Salz **68a**.

¹⁰⁶ J. S. Sherfinski, R. E. Marsh, *Acta Crystallogr., Sect. B: Struct. Sci.* **1975**, *31*, 1073–1076.
H-Brücken					
X-H···Y $d(X-H) d(H···Y) d(X···Y) < (X-H···Y)$					
N2-H221…Br1	0.76(3)	2.73(3)	3.462(2)	162(3)	
N2-H222…Br1	0.83(2)	2.48(2)	3.293(2)	168(2)	

Tabelle 40: Wasserstoffbrückenbindungen in der Kristallstruktur von 68a × CH₂Cl₂.

Durch die Wasserstoffbrückenbindungen zum Bromid-Ion bilden sich Ketten in *a*-Richtung aus (Abbildung 71 links). Durch die Elementarzelle (Abbildung 70 B) verlaufen zwei dieser Ketten. Die Anordnung der Stränge ist in einer Projektion der $3 \times 3 \times 3$ -Superzelle der Kristallstruktur von **68a** × **CH**₂**Cl**₂ in *a*-Richtung in Abbildung 71 rechts veranschaulicht.

Abbildung 71: Kristallstruktur von 68a × CH₂Cl₂; links: Ketten in *a*-Richtung (Solvensmolekül aus Übersichtlichkeitsgründen weggelassen); rechts: Projektion der 3×3×3-Superzelle in *a*-Richtung; thermische Auslenkungsellipsoide mit 50 % Aufenthaltswahrscheinlichkeit; Symmetriecodes: a = 2-x, 0.5+y, 0.5-z; b = 1.5-x, 1-y, 0.5+z.

Die Dichlormethanmoleküle sind nicht durch Wasserstoffbrückenbindungen in das oben beschriebene Netzwerk eingebunden, sondern befinden sich in den durch das Netzwerk ausgebildeten Kavitäten (Abbildung 71 rechts).

4.3.2. Molekül- und Kristallstruktur von 68b

Die Verbindung kristallisiert aus Dichlormethan in der triklinen Raumgruppe *P*-1 in Form von farblosen Blöcken. Die asymmetrische Einheit (Abbildung 72 A) besteht aus zwei Formeleinheiten und in der Elementarzelle (Abbildung 72 B) befinden sich vier Formeleinheiten der Verbindung. Die Bindungswinkel und –abstände im Molekül zeigen keine Abweichungen von Standardwerten. Die Bindungsabstände zu den exocyclischen Stickstoffatomen (C1–N2 bzw. C13–N4) liegen dabei mit 1.312(5) Å bzw. 1.305(6) Å im Bereich zwischen einer C–N-Einfach- und einer C=N-Doppelbindung.

Abbildung 72: Kristallstruktur von 68b; A. asymmetrische Einheit; B: Elementarzelle mit H-Brücken (gestrichelte Linien); C: Dimer-Bildung durch H-Brücken (Substituenten am 1,3-Thiazolring aus Übersichtlichkeitsgründen weggelassen); thermische Auslenkungsellipsoide mit 50 % Aufenthaltswahrscheinlichkeit; Symmetriecodes: a = 1-x, -y, 1-z; b = 1+x, y, z; c = 2-x, 1-y, -z; d = 1-x, 1-y, -z.

Die Aminogruppen am 1,3-Thiazolring (N2, N4) binden über Wasserstoffbrückenbindungen zu den Bromid-Anionen. Die Parameter der Wasserstoffbrückenbindungen können Tabelle 41 entnommen werden. Die Moleküle werden, wie in Abbildung 72 C gezeigt, über die Wasserstoffbrücken der Aminogruppen zu Dimeren verknüpft, so dass sich achtgliedrige (-H41-N4-H42-Br1-)₂- bzw. (-H21-N2-H22-Br2-)₂-Ringe bilden.

Die Dimere zeigen untereinander keine Wechselwirkungen.

H-Brücken						
X–H…Y	<i>d</i> (X–H)	<i>d</i> (H…Y)	<i>d</i> (X…Y)	<(X-H…Y)		
N2-H21…Br2	0.92(2)	2.39(2)	3.290(3)	166(2)		
N2-H22…Br2	0.81(3)	2.50(3)	3.299(4)	171(3)		
N4-H41…Br1	0.82(3)	2.47(3)	3.293(4)	173(2)		
N4-H42…Br1	0.85(4)	2.55(4)	3.392(4)	169(3)		

 Tabelle 41:
 Wasserstoffbrückenbindungen in der Kristallstruktur von 68b.

4.3.3. Molekül- und Kristallstruktur von 68c

Die Verbindung kristallisiert in der monoklinen Raumgruppe $P2_1/n$ mit acht Formeleinheiten in der Elementarzelle (Abbildung 73 B).

Abbildung 73: Kristallstruktur von **68c**; A. asymmetrische Einheit; B: Elementarzelle; C: H-Brücken (gestrichelte Linien); D: Ketten in *a*-Richtung durch H-Brücken (Substituenten am 1,3-Thiazolring aus Übersichtlichkeitsgründen weggelassen); Projektion in *b*-Richtung; thermische Auslenkungsellipsoide mit 50 % Aufenthaltswahrscheinlichkeit; Symmetriecodes: a = 1+x, y, z; b = -0.5+x, 1.5-y, -0.5+z.

Die asymmetrische Einheit (Abbildung 73 A) besteht aus zwei Formeleinheiten. Die Bindungsparameter im Molekül entsprechen denen in Verbindung **68b**. Die Kristallstruktur von **68c** wird durch die Wasserstoffbrückenbindungen zwischen den NH-Atomen und den Bromid-Ionen bestimmt. Anders als in **68b** (vgl. 4.3.2) bildet sich hier keine dimere Struktur aus. Durch die Wasserstoffbrückenbindungen (Tabelle 42) werden Ketten ausgebildet, die in *a*-Richtung verlaufen (Abbildung 73 C+D).

H-Brücken						
X–H…Y	<i>d</i> (X–H)	<i>d</i> (H…Y)	$d(X \cdots Y)$	<(X-H…Y)		
N1-H11…Br2	0.84(2)	2.53(2)	3.305(2)	153(2)		
N1-H12…Br1	0.81(2)	2.58(2)	3.380(2)	166(1)		
N3-H31…Br1	0.89(1)	2.49(2)	3.339(1)	158(1)		
N3-H32…Br2	0.85(2)	2.38(2)	3.202(2)	162(2)		

Tabelle 42: Wasserstoffbrückenbindungen in der Kristallstruktur von 68c.

Zwischen den Ketten im Kristall können keine Wechselwirkungen beobachtet werden.

4.3.4. Molekül- und Kristallstruktur von $68c \times \frac{1}{2} CHCl_3$

Die Kristallstruktur der Verbindung ähnelt der von **68c. 68c** × $\frac{1}{2}$ **CHCl**₃ kristallisiert in der triklinen Raumgruppe *P*–1. Die asymmetrische Einheit (Abbildung 74 A) besteht aus zwei Formeleinheiten. In der Elementarzelle (Abbildung 74 C) befinden sich vier Formeleinheiten. Die Bindungsabstände und -winkel im Molekül sind vergleichbar mit denen in **68b**.

Abbildung 74: Kristallstruktur von 68c × ½ CHCl₃; A: asymmetrische Einheit mit H-Brückenbindungen (gestrichelte Linien); B: Elementarzelle; C: Ketten in *a*-Richtung durch H-Brücken (Substituenten am 1,3-Thiazolring und CHCl₃ aus Übersichtlichkeitsgründen weggelassen); thermische Auslenkungsellipsoide mit 50 % Aufenthaltswahrscheinlichkeit.

Die Kristallstruktur von **68c** × ¹/₂ **CHCl**₃ zeigt im Vergleich zur lösemittelfreien Verbindung **68c** ähnliche Wasserstoffbrückenbindungen. Die Parameter der Wasserstoffbrückenbindungen können Tabelle 43 entnommen werden. Die räumliche Anordnung der Brückenbindungen ist in Abbildung 74 A dargestellt. Zwischen dem Salz **86c** und dem Solvensmolekül kann eine schwache Wechselwirkung des CH-Atoms des Chloroforms und Br1 diskutiert werden (d(H11…Br1) = 2.89 Å; <(C1-H11…Br1) = 168°).

Analog zur Kristallstruktur von **68c** (vgl. 4.3.3) werden auch in dieser Struktur durch die Wasserstoffbrückenbindungen Ketten in *a*-Richtung ausgebildet. Die Ketten zeigen untereinander keine Wechselwirkungen.

H-Brücken					
X–H…Y	<i>d</i> (X–H)	<i>d</i> (H…Y)	$d(X \cdots Y)$	<(X-H…Y)	
N11-H111Br1	0.88	2.49	3.360(6)	169	
N11-H112…Br2	0.88	2.41	3.266(6)	163	
N31–H311…Br2	0.88	2.55	3.360(6)	154	
N31-H312…Br1	0.88	2.53	3.358(6)	158	

Tabelle 43: Wasserstoffbrückenbindungen in der Kristallstruktur von 68c × 1/2 CHCl₃.

4.4. Synthese neuer 4*H*-1,4,2-Diazaphosphole

Die *N*-Alkylcycloimminium-Salze reagieren mit PCl_3 und NEt_3 als Hilfsbase im Rahmen einer Cyclokondensationsreaktion zu den entsprechenden 4*H*-1,4,2-Diazaphospholen.

Schema 65: Cyclokondensation zu anellierten 4H-1,4,2-Diazaphospholen 70 und 71.

Voraussetzung für den Ringschluss ist eine ausreichende Aktivierung der *N*-CH₂-Gruppe durch die benachbarte Esterfunktion. Bleibt die Aktivierung aus, so erfolgt lediglich eine Substitution am Stickstoffatom und die resultierenden Aminodichlorphosphane werden isoliert.^{92, 107}

¹⁰⁷ R. K. Bansal, D. C. Sharma, R. Mahnot, *Tetrahedron Lett.* **1991**, *21*, 6433–6436.

Durch Umsetzung von 2-Aminopyridinen und 1,3-Thiazol-Derivaten mit $(CICH_2)PCI_2$ kann in einer Hantzsch-analogen [3+2]-Cyclokondensationsreaktion der 4*H*-1,4,2-Diazaphospholring aufgebaut werden (Schema 65).^{91, 95}

Auf Grund der geringen Löslichkeitsunterschiede zwischen den 1,4,2-Diazaphospholen **70** bzw. **71** und Triethylammoniumchlorid erwies sich die Isolierung der gebildeten Produkte als schwierig. Die Heterophosphole konnten mit 8–21 %-iger Ausbeute isoliert werden.

4.4.1. 5-Phenyl-1,4,2-diazaphospholo[5,4-*b*]-1,3thiazol (70e)

Das 1,4,2-Diazaphosphol **70e** wurde durch [3+2]-Cyclokondensation von 2-Amino-4-phenyl-1,3-thiazol mit (CICH₂)PCl₂ dargestellt. Bei der Reaktion wird regiospezifisch das 4H-12,4-Diazaphosphol **70e** gebildet. Umsetzung "unsubstituierten" bei der des 2-Amino-1,3-Das thiazphosphols mit (CICH₂)PCl₂ als Hauptprodukt gebildete 1H-Isomer 63a wurde hier nicht beobachtet. Die Phenylgruppe am 1,3-Thiazolring weist offenbar einen hinreichend hohen sterischen Einfluss auf die Regiospezifität der Reaktion auf. Das neue Heterophosphol 70e wurde mit 18 %-iger Ausbeute als farbloser, hydrolyseempfindlicher Feststoff in Reinsubstanz isoliert und vollständig NMR-spektroskopisch charakterisiert.

4.4.2. 4*H*-1,4,2-Diazaphospholo[5,4-*b*]-1,3thiazole und 4*H*-1,4,2-diazaphospholo[4,5*a*]pyridine

Die [4+1]-Cyclokondensationsreaktion der 2-Amino-1,3-thiazol-3-ium-Salz **68** und 2-Amino-pyridinium-Salze **69** mit PCl₃ verläuft sehr langsam, kann jedoch sehr gut im ³¹P-NMR verfolgt werden. Die Polarität des verwendeten Lösemittels ist hier entscheidend. Im sehr polaren Acetonitril verläuft die Reaktion bei erhöhten Temperaturen (50 °C) in sechs Tagen quantitativ zum entsprechenden 4*H*-1,4,2-Diazaphosphol, wahrend in unpolareren Lösemitteln wie Toluen nur der erste Reaktionsschritt zum *N*-Dichlorphosphanyl-Derivat **72** beobachtet werden kann. Diese Ergebnisse sind sehr gut mit denen von BANSAL¹⁰³ vergleichbar, der berichtet, dass nur bei der Umsetzung von 2-Amino-3-(2-Phenoxy-2-oxoethyl)-1,3thiazol-3-iumbromid mit PCl₃ in Toluen der Ringschluss zum 1,4,2-Diazaphosphol in Spuren beobachtet werden kann.

Setzt man beispielsweise **68a** mit PCI_3 in Acetonitril um (Schema 66), so kann nach 24 h Reaktionsdauer bei Raumtemperatur im Reaktionsgemisch fast exklusiv das entsprechende Aminodichlorphosphan **72a** (92 %) beobachtet werden. Das 4*H*-1,4,2-Diazaphosphol **70a** wurde unter diesen Bedingungen nur zu 5 % gefunden.

Schema 66: [4+1]-Cyclokondensation von 68a mit PCI₃.

Bei 50 °C kann eine langsame Ringschlussreaktion beobachtet werden. Der Reaktionsverlauf, wie er im ³¹P-NMR beobachtet werden kann, ist in Tabelle 44 dargestellt.

······································		
	72a	70a
δ^{31} P (MeCN)	147.1	249.0
24 h bei Raumtemperatur	92 %	5 %
12 h bei 50 °C	63 %	28 %
6 d bei 50 °C	5 %	89 %

Tabelle 44: Reaktionsverlauf der [4+1]-Cyclokondensation von **68a** mit PCl₃.

Unter diesen Bedingungen können die neuen Heterophosphole **70a–c** und **71a** erstmals synthetisiert, in Reinsubstanz isoliert und charakterisiert werden. Die Verbindungen **70a** und **71a** stellen die ersten chiralen Vertreter der 4*H*-1,4,2-Diazaphospole dar.

Ferner zeigt sich, dass auch die Phenylgruppe am 1,3-Thiazolring zu der geringen Reaktionsgeschwindigkeit beiträgt. Die entsprechenden 2-Amino-3-(2-alkoxy-2-oxoethyl)-1,3-thiazol-3-ium-bromide reagieren unter gleichen Bedingungen bereits in 12 h zum 4*H*-1,4,2-Diazaphosphol.

4.4.3. Zusammenfassung der NMR-Daten

Die chemischen Verschiebungen der dargestellten 1,4,2-Diazaphosphole liegen im Bereich homologer anellierter 4H-1,4,2-Diazaphosphole.^{92, 93, 95} ³¹P-Verschiebungen zeigen Die eine auffällige Abhängigkeit vom verwendeten Lösemittel. Die Verschiebungen der 1,4,2-Diazaphospholo[5,4-*b*]-1,3-thiazole 70a–c liegen in Acetonitril im Vergleich zu Chloroform um 3.1–3.5 ppm zu höherem Feld verschoben. 70e zeigt diesen Effekt im weit geringeren Maße. Die Verschiebung des 1,4,2-diazaphospholo[4,5-a]pyridins **71a** liegt in Acetonitril um 13.6 ppm zu höherem Feld verschoben im Vergleich zum Signal in Chloroform. Die ³¹P- und ¹³C-{¹H}-NMR Daten der Verbindungen sind in Tabelle 45 zusammengefasst. Die Kopplungen zum Phosphor im ¹H- und ¹³C-NMR belegen die Bildung der anellierten Heterophosphole.

	Ph N^{+} N^{+} R^{3} $2F$	$\frac{Ph_{5}}{N_{5}^{4}} \sqrt{7a}$ $R^{3} \frac{3}{2}P^{-N^{1}}$		$R^{3} \frac{1}{2} P^{-N^{1}}$	
	70a: R ³ = CC 70b: R ³ = CC 70c: R ³ = CC 70e: R ³ = H	$D_2(-)$ -Menthyl D_2 Me D_2 Et	71a : R ³ = CO ₂ (-)-	Menthyl	
	70a	70b	70 c	70e	71a
δ^{31} P (CDCl ₃)	252.1	251.6	251.4	223.6	229.8
δ ³¹ P (MeCN)	249.0	248.1	247.9	222.0	216.2
² J _{PH}				32.0 Hz	
C3	157.0	156.3	156.9	149.7	149.2
$^{1}J_{PC}$	70.4 Hz	68.7 Hz	69.0 Hz	66.2 Hz	69.5 Hz
C5	135.8	135.7	135.7	132.8	127.8
³ J _{PC}	2.0 Hz	2.2 Hz	2.0 Hz	а	а
C6	113.9	113.9	113.8	111.4	112.6
$^{4}J_{\rm PC}$	1.3 Hz	1.5 Hz	1.4 Hz	0.6 Hz	2.5 Hz
C7					127.2
⁴ J _{PC}					а
C7a	160.3	160.0	160.2	155.7	
$^{2}J_{PC}$	17.6 Hz	17.7 Hz	17.8 Hz	17.9 Hz	
C8					117.9
³ J _{PC}					9.5 Hz
C8a					153.2
$^{2}J_{\rm PC}$					14.6 Hz
C=0	159.9	160.9	160.6		160.9
$^{2}J_{PC}$	14.8 Hz	15.7 Hz	15.5 Hz		13.9 Hz

Tabelle 45: ³¹P- und ¹³C-NMR-Daten von **70a,b,c,e**, **71a**.

a: nicht aufgelöst

4.4.4. Hydrolyse von 70e

Die Hydrolyse von **70e** verläuft in zwei Schritten. Nach der Addition von Wasser an die P=C-Doppelbindung wird in einem zweiten Schritt die P-N-Bindung gespalten und das Aminophosphinsäure-Derivat **73** gebildet (Schema 67).

Schema 67: Hydrolyse von 70e.

Für die Röntgenstrukturanalyse geeignete Kristalle der Verbindung können aus einer Lösung in Chloroform gewonnen werden.

4.4.4.1. Molekül- und Kristallstruktur von $73 \times \text{CDCl}_3$

Die Verbindung kristallisiert mit einem Molekül CDCl₃ in der triklinen Raumgruppe P-1 mit zwei Molekülen in der Elementarzelle aus einem offenen NMR-Rohr. Die kristallographisch nicht unterscheidbare Wasserstoff- bzw. Deuterium-Position am Chloroform wurde auf Grund des verwendeten Lösemittels mit Deuterium besetzt. Die Bindungsverhältnisse im Molekül zeigen keine Auffälligkeiten. Der Bindungsabstand zu dem exocyclischen Stickstoffatom (C1–N2) liegt dabei mit 1.309(4) Å im Bereich zwischen einer C–N-Einfach- und einer C=N-Doppelbindung. 73 liegt im Festkörper als zwitterionisches Imminum-Phosphinat-Tautomer vor. Die asymmetrische Einheit ist in Abbildung 75 links gezeigt. Zwischen den H-Atomen der Imminium-Gruppe und der Sauerstoffatomen der Phosphinat-Gruppen bilden sich Wasserstoffbrückenbindungen. Die Bindungsabstände und -winkel der Wasserstoffbrückenbindungen und andere ausgewählte Strukturparameter können Tabelle 46 entnommen werden.

Abbildung 75: Kristallstruktur von **73 × CDCl**₃; links: asymmetrische Einheit mit H-Brücken (gestrichelte Linien); rechts: "Strukturmotiv" der ausgebildeten Ketten in *a*-Richtung (nicht an der H-Brücken beteiligte Bereiche der Moleküle weggelassen); thermische Auslenkungsellipsoide mit 50 % Aufenthaltswahrscheinlichkeit; Symmetriecodes: a = -x, -y, 1-z; b = 1-x, -y, 1-z.

Bindungsabstände [Å]		Bindungswinkel [°]		Bindungswinkel [°]			
P1-011	1.485(3)	011-P1-012	119.4(1)	012-P1-C4		107.3(1)	
P1-012	1.495(3)	011-P1-C4	110.1(1)	O12-P1-H1		109.1(10)	
P1-C4	1.822(3)	O11-P1-H1	108.7(1)	C4-P1-H1		100.6(10)	
P1-H1	1.37(2)						
H-Brücken							
X–H…Y		<i>d</i> (X–H)	<i>d</i> (H…Y)	$d(X \cdots Y)$	<((X–H…Y)	
N2-H2…O12		0.97(4)	1.86(4)	2.815(4)	169(3)	
N2-H3···O11		0.76(3)	2.02(3)	2.740(4)	158(3)	

|--|

Die Wasserstoffbrückenbindungen verbinden die Phosphinsäuremoleküle, wodurch polymere Ketten entlang der *a*-Achse ausgebildet werden. Das "Strukturmotiv" der Kette ist in Abbildung 75 rechts gezeigt. Die polymere Kette wird aus kantenverknüpften, durch die Wasserstoffbrücken aufgebauten, 14-gliedrigen Ringen gebildet.

Abbildung 76: Kristallstruktur von **73 × CDCl₃**; A: Elementarzelle mit H-Brücken (gestrichelte Linien);; B+C: Projektionen der Kristallstruktur entlang der *a*- bzw. *b*-Achse; thermische Auslenkungsellipsoide mit 50 % Aufenthaltswahrscheinlichkeit.

Die Anordnung der Stränge in der Kristallstruktur von $73 \times CDCl_3$ ist durch die Projektionen Abbildung 76 B+C erläutert. Zwischen den Ketten können keine Wechselwirkungen beobachtet werden. Durch die Elementarzelle verläuft einer dieser Stränge (Abbildung 76).

4.4.5. Hydrolyse von 70a

Aus einer NMR-Probe der Umsetzung von **68a** mit PCI_3 ohne Hilfsbase in refluxierendem Acetonitril wurde aus dem offenen NMR-Rohr als Hydrolyseprodukt der Reaktion das Chlorid des entsprechenden N-Alykl-1,3-thiazols **68d** in einkristalliner Form isoliert.

4.4.5.1. Kristallstruktur von 68d × ½ MeCN

Die Verbindung kristallisiert mit einem halben Molekül Acetonitril pro Formeleinheit in der monoklinen Raumgruppe $P2_1$ mit vier Formeleinheiten in der Elementarzelle (Abbildung 78 A). Die asymmetrische Einheit, die aus zwei Formeleinheiten besteht, ist in Abbildung 77 links dargestellt

Abbildung 77: Kristallstruktur von **68d** × ½ **MeCN**; links: asymmetrische Einheit; rechts: H-Brücken (gestrichelte Linien; Solvensmolekül aus Übersichtlichkeitsgründen weggelassen); thermische Auslenkungsellipsoide mit 50 % Aufenthaltswahrscheinlichkeit; Symmetriecode: a = -1+x, y, z.

Die Kristallstruktur zeigt im Vergleich zu **68a** × **CH**₂**Cl**₂ analoge Wasserstoffbrückenbindungen sowohl innerhalb des Moleküls als auch zum Halogen (Abbildung 77 rechts), so dass auch hier Stränge in *a*-Richtung (Abbildung 78 B) in der Kristallstruktur beobachtet werden können. Die Wasserstoffbrückenbindungen zu den Chlorid-Anionen in **68d** × ¹/₂ **MeCN** weisen im Vergleich zu denen zu den Bromid-Anionen in **68a** × **CH**₂**Cl**₂ keine signifikant kürzeren Abstände auf. Die Parameter der ausgebildeten Wasserstoffbrückenbindungen können Tabelle 47 entnommen werden. Das Solvensmolekül zeigt keine Wechselwirkung zum Salz **68d**.

H-Brucken						
X–H…Y	<i>d</i> (X–H)	<i>d</i> (H…Y)	$d(X \cdots Y)$	<(X-H…Y)		
N12-H1…Cl2	0.89(4)	2.34(4)	3.188(3)	158(3)		
N12-H2…Cl1	0.94(3)	2.29(3)	3.182(3)	159(3)		
N32-H3…Cl1	0.75(3)	2.50(3)	3.219(3)	164(4)		
N32-H4…Cl2	1.00(3)	2.21(3)	3.144(3)	154(3)		

 Tabelle 47:
 Wasserstoffbrückenbindungen in der Kristallstruktur von 68d × ½ MeCN.

Analog zur Struktur von $68a \times CH_2Cl_2$ können auch in der Kristallstruktur von $68d \times MeCN$ keine Quervernetzung der Ketten beobachtet werden.

Es verlaufen zwei Stränge durch die Elementarzelle (Abbildung 78 A). Die Anordnung der Stränge in der $2 \times 2 \times 2$ -Superzelle und die Position der Solvensmoleküle in den Kavitäten der Struktur ist in Abbildung 78 C veranschaulicht.

Abbildung 78: Kristallstruktur von **68d** × ½ **MeCN**; A: Elementarzelle mit H-Brücken (gestrichelte Linien); B: Ketten in *a*-Richtung (Solvensmolekül und Substituenten am Thiazolring aus Übersichtlichkeitsgründen weggelassen); C: Projektion der 2×2×2-Superzelle in *a*-Richtung; thermische Auslenkungsellipsoide mit 50 % Aufenthaltswahrscheinlichkeit; Symmetriecode: a = -1+x, y, z.

5. 2H-1,2,3-Diazaphosphole

2H-1,2,3-Diazaphosphole **74** können durch Reaktion von PCl₃ mit *N'*-monosubstituierten Hydrazonen **75**, die in a-Stellung zum Imin-Kohlenstoff mindestens zwei Protonen tragen, dargestellt werden (Schema 68).¹⁰⁸

Schema 68: Synthese von 2H-1,2,3-Diazaphospholen.

In Abhängigkeit von den Substituenten bildet sich während der Reaktion eine kovalentes oder ionisches Hydrochlorid **76** aus. Der frei werdende Chlorwasserstoff kann dabei thermisch ausgetrieben werden oder mit einer Base abgefangen werden.

Setzt man die gebildeten 1,2,3-Diazaphosphole **74** mit polaren Nucleophilen RX (z.B. Alkoholen) um, so wird eine 1,2-Addition an der P=C-Doppelbindung beobachtet, wobei der elektronegativere Teil X an den Phosphor bindet. Für ($R^4 = H$) kann das Ringsystem in einer anschließenden 1,2-Eliminierungsreaktion rearomatisieren (Schema 69).

Schema 69: Additions-Eliminierungs-Reaktionen bei 1,2,3-Diazaphospholen.

So kann beispielsweise durch Umsetzung von an Position 4 unsubstituierten 1,2,3-Diazaphospholen ($R^4 = H$) mit Chlorphosphanen auf diese Weise das Wasserstoffatom durch eine Phosphan-Gruppe substituiert werden.

¹⁰⁸ J. Luber, A. Schmidpeter, *Angew. Chem.* **1976**, *88*, 91–92; *Angew. Chem. Int. Ed.* **1976**, *15*, 111–112.

5.1. 4-Dichlorphosphanyl-2*H*-1,2,3-diazaphosphole 77

4-Dichlorphosphanyl-2*H*-1,2,3-diazaphosphole **77** können direkt aus den entsprechenden Hydrazonen **78** durch Umsetzung mit einem Überschuss an PCI_3 oder durch Umsetzung von an Position 4 unsubstituierten 1,2,3-Diazaphospholen **79** mit PCI_3 dargestellt werden (Schema 70).

Schema 70: Synthese von 4-Dichlorphosphanyl-2*H*-1,2,3-diazaphospholen.

In der Literatur ist bislang das 4-Dichlorphosphanyl-2,5-dimethyl-2*H*-1,2,3-diazaphosphol (**77a**) und das 4-Dichlorphosphanyl-5-ethyl-2methyl-2*H*-1,2,3-diazaphosphol (**77b**) beschrieben. ^{109,9,110,111} Des Weiteren sind eine Reihe am exocyclischen σ^3 -P-Atom von **77a** derivatisierten Verbindungen in der Literatur beschrieben.^{110,111} Die in der Literatur beschrieben Verbindungen **77a** und **77b** stellen destillierbare Flüssigkeiten dar.

Im Rahmen dieser Arbeit wurde die Synthese einer Reihe neuer 4-Dichlorphosphanyl-2*H*-1,2,3-diazaphosphole **77** mit unterschiedlichen Substituenten am Ring ausgehend von den entsprechenden Hydrazonen versucht. Die Ergebnisse sind im Folgenden dargestellt.

5.1.1. Synthese der Hydrazone 78 aus Acetylverbindungen

Hydrazone stellen Kondensationsprodukte aus Ketonen oder Aldehyden mit Hydrazinen dar (Schema 71).¹¹² Die Wahl der Reaktionsbedingungen ist hier für eine erfolgreiche Kondensation entscheidend. Durch die Variation von Lösemittel, Reaktionstemperatur und Katalysator wurden die Bedingungen für das jeweilige Hydrazon optimiert. Die dargestellten Hydrazone erweisen sich dabei häufig als nicht luft- und – vor allem im Falle der Phenylhydrazone – als nicht lichtstabil. Die Methylhydrazone sind häufig noch instabiler und können oft nicht in Reinsubstanz isoliert werden. Die Hydrazone wurden – mit Ausnahme von Acetaldehydphenylhydrazon (**78e**) und 1-Acetyl-naphthalen-phenylhydrazon (**78l**) – als *E*-Isomer

¹⁰⁹ J. Luber, A. Schmidpeter, *Chem. Commun.* **1976**, 887–888.

¹¹⁰ M. D. Mikoluk, R. G. Cavell, *Inorg. Chem.* **1999**, *38*, 1971–1981.

¹¹¹ M. D. Mikoluk, R. McDonald, R. G. Cavell, *Inorg. Chem.* **1999**, *38*, 2791–2801.

¹¹² H. G. O. Becker, R. Beckert, G. Domschke, E. Fanghänel, W. D. Habicher, P. Metz, D.

Pavel, K. Schwetlick, Organikum, 21. Auflage, Wiley-VCH, Weinheim, 2001.

erhalten. Für die beiden erstgenannten Verbindungen wurde die Bildung eines E/Z-Isomerengemisches beobachtet.

			R ² = Me R ⁵ = Me Thiophen-2yl	78a 78c
0= ≪Me	R ² N ₂ H ₃ [H ⁺] - H ₂ O ►	$N = \langle R^5 \\ R^2 - NH Me \rangle$	$\begin{array}{l} R^2 = Ph \\ R^5 = Me \\ H \\ Thiophen-2yl \\ Furan-2-yl \\ 1-Methyl-1H-pyrrol-2-yl \\ Biphenyl-4-yl \\ C_{14}H_{13}N_2 \\ Ph \\ Naphthalen-1-yl \end{array}$	78d 78e 78f 78g 78h 78i 78i 78j 78k 78l

Schema 71: Synthese der Hydrazone 78.

Die meisten in dieser Arbeit beschrieben Hydrazone (Schema 71) sind in der Literatur erwähnt. In der Regel waren jedoch weder Synthesen noch Analytik-Daten vorhanden. NMR-Daten in der Literatur erwiesen sich häufig als nicht korrekt.

Die Synthese von Acetonmethylhydrazon (**78a**) wurde in einer Synthese von P. T. GILLS¹¹³ durch Umsetzung von Methylhydrazin und Aceton beschrieben. Die neuere Synthese von J. L CAVILL¹¹⁴ konnte nicht reproduziert werden. Die Synthese von **78a** wurde optimiert, die Verbindung in sehr guten Ausbeuten (90 %) dargestellt und erstmals vollständig NMR-spektroskopisch charakterisiert. Acetonphenylhydrazon (**78d**) wurde analog zu **78a** dargestellt und NMR-spektroskopisch charakterisiert. Die Verbindung erwies sich als nicht luft- und licht-stabil. Im Kühlschrank kann die Verbindung unter Schutzgas im Dunkeln etwa eine Woche gelagert werden.

Acetaldehydphenylhydrazon (**78e**) wurde analog einer literaturbekannten Synthese¹¹⁵ mit einem E/Z-Isomerenverhältnis von 5:6 bzw. 6:5 dargestellt. Die Synthese wurde optimiert. Die in o. g. Arbeit publizierten ¹H-NMR-Daten erwiesen sich jedoch als nicht korrekt; Die NMR-Daten wurden im Rahmen dieser Arbeit korrigiert und vervollständigt. Das analoge Methylhydrazon konnte zwar in Spuren NMR-spektroskopisch nachgewiesen, jedoch nicht in akzeptabler Ausbeute und Reinheit isoliert werden.

2-Acetylthiophen-phenylhydrazon (**78f**) wurde unter Abwandlung einer Synthese von T. LEMSTER¹¹⁶ in sehr guten Ausbeuten dargestellt und erstmals vollständig charakterisiert. Die Bildung des Hydrazons erfolgt –

¹¹³ P. T. Gills, K. F. Schimmel, J. Org. Chem. **1967**, 21,2865–2868.

¹¹⁴ J. L. Cavill, R. L. Elliott, G. Evans, I. L. Jones, J. A. Platts, A. M. Ruda, N. C. O. Tomkinson, *Tetrahedron* **2006**, *62*, 410–421.

¹¹⁵ A. R. Maguire, S. J. Plunkett, S. Papot, M. Clynes, R. O'Connor, S. Touhey, *Bioorg. Med. Chem.* **2001**, *9*, 745–762.

¹¹⁶ T. Lemster, U. Pindur, G. Lenglet, S. Depauw, C. Dassi, M.-H. David-Cordonnier, *Eur. J. Med. Chem.* **2009**, *44*, 3235–3252.

anders als in der Literatur beschrieben – erst nach Zugabe von Essigsäure als Katalysator. Die Signale im ¹H- und ¹³C-NMR-Spektrum wurden mit Hilfe von 2D-NMR-Spektren zugeordnet. Einkristalle von 78f wurden aus Ethvlacetat gewonnen. 2-Acetylthiophen-methylhydrazon (78c) wurde 2-Acetylthiophen unter Säurekatalyse in Cyclohexan aus und dargestellt, ist jedoch Raumtemperatur Methylhydrazin bei in Reinsubstanz nicht stabil. Die Verbindung zersetzt beim Abfiltern an der Luft heftig unter Rauchentwicklung.

2-Acetylfuran-phenylhydrazon (**78g**) ist in der Literatur beschrieben. Es wurden jedoch keine Angaben bezüglich Synthese oder Analytik gefunden. Die Verbindung wurde aus 2-Acetylfuran und Phenylhydrazon unter Essigsäurekatalyse hergestellt und vollständig NMR-spektroskopisch charakterisiert. Sie ist stark lichtempfindlich und kann nur wenige Tage im Kühlschrank unter Lichtausschluss gelagert werden. Einkristalle wurden aus Cyclohexan gewonnen werden.

2-Acetyl-1-methylpyrrol-phenylhydrazon (**78h**) war bislang in der Literatur nicht beschrieben. Die Verbindung wurde in guten Ausbeuten (69 %) hergestellt und isoliert, erwies sich jedoch als nur begrenzt an Luft und Licht haltbar.

4'-Phenylacetophenon-phenylhydrazon (**78i**) wurde mit 57 %-iger Ausbeute in Chloroform dargestellt. Das gebildete Phenylhydrazon ist sehr lichtempfindlich und sollte daher zügig isoliert und unter Luft- und Lichtausschluss im Kühlschrank gelagert werden. Im Kühlschrank verfärbt sich das Produkt innerhalb einer Woche langsam von beigefarben nach violett-braun.

1,4-Diacetylbenzen-bis(phenylhydrazon) (**78j**) ist in der Literatur bislang nur unzureichend beschrieben. Es wurden keine Synthese oder analytische Daten gefunden. Die Verbindung wurde in sehr guten Ausbeuten (94 %) durch Reaktion von Phenylhydrazin mit 1,4-Diacetylbenzen in Chloroform unter Essigsäurekatalyse dargestellt und vollständig NMR-spektroskopisch charakterisiert.

Acetophenonphenylhydrazon (**78k**) wurde in Cyclohexan in mittleren Ausbeuten (57 %) dargestellt. Die erhaltenen analytischen Daten entsprechen den Literaturwerten.¹¹⁷

Das in der Literatur bislang nicht beschriebene 1-Acetyl-naphthalenphenylhydrazon (**78I**) wurde mit 89 %-iger Ausbeute hergestellt und charakterisiert. Das E/Z- bzw. Z/E-Isomerenverhältnis kann aus dem ¹H-NMR-Spektrum mit 3.0:1 bestimmt werden.

1-Acetyl-1H-Imidazol kann nicht in das entsprechende Hydrazon überführt werden. Der Imidazol-Rest stellt eine gute Abgangsgruppe dar, so dass nur das *N*'-Phenylacetohydrazid isoliert und Anhand der Elementarzelle identifiziert wurde.¹¹⁸ Ebenso wurde bei der Umsetzung

 ¹¹⁷ A. M. Asiri, A. A. Bahajaj, I. M. I. Ismail, N. A. Fatani, *Dyes Pigm.* **2006**, *71*, 103–108.
 ¹¹⁸ J. Kumar Ray, a T. Kumar Mahato, K. Chinnakali, H. –K. Fun, *Acta Crystallogr., Sect. C: Cryst. Struct. Commun.* **1997**, *C53*, 1621–1622.

von 1-(2,4,6-Trimethylphenyl)ethan-1-on mit Phenylhydrazin unter Essigsäurekatalyse keine Hydrazonbildung beobachtet. Es wurde ausschließlich die Bildung von *N*'-Phenylacetohydrazid beobachtet. Bei Verwendung von *p*-Toluensulfonsäure als Katalysator wurde keine Reaktion beobachtet.

Bei der Umsetzung von Pinakolon (3,3-Dimethylbutan-2-on) mit Hydrazinen wurde die Bildung der entsprechenden Hydrazone nicht beobachtet.

5.1.1.1. Molekül- und Kristallstruktur von (*E*)-1-Phenyl-2-(1-(thiophen-2yl)ethyliden)hydrazin (78f)

Das *E*-Isomer der Verbindung kristallisiert aus Ethylacetat in der orthorhombischen Raumgruppe $P2_12_12_1$ mit vier Molekülen in der Elementarzelle ohne den Einschluss von Lösemittelmolekülen. Die asymmetrische Einheit und die Elementarzelle sind in Abbildung 79 gezeigt. Zwischen den Molekülen können keine Wechselwirkungen beobachtet werden. Die Bindungswinkel und -abstände im Molekül zeigen keine Besonderheiten. Das Molekül ist planar. Die Hydrazongruppe zwischen den beiden aromatischen Ringen zeigt C-N- und N-N-Bindungsabstände, die zwischen einer C-N- bzw. N-N-Einfachbindung und einer C=N- bzw. N=N-Doppelbindung liegen. Das N2-Atom ist planar koordiniert (Winkelsumme: 359.8(42)°). Die Bindungsparameter der Hydrazongruppe können Tabelle 48 entnommen werden.

Abbildung 79: Molekülstruktur von **78f** im Kristall; A: asymmetrische Einheit; B: Elementarzelle; C: Projektion der 2×2×2-Superzelle in (110)-Richtung; thermische Auslenkungsellipsoide mit 50 % Aufenthaltswahrscheinlichkeit.

Die π-Systeme des Thiophen- und des Phenylrings sind so durch die Hydrazongruppe miteinander verbunden.

-					-
Bindungs	abstände [Å]] Bindungswinkel [°]		Torsionswink	cel [°]
N2-C21	1.382(4)	N1-N2-C21	120.8(2)	C1-N1-N2-C21	-179.4(3)
N1-N2	1.363(3)	N1-N2-H2	120(2)	N1-N2-C21-C26	9.4(4)
N1-C1	1.286(3)	C21-N2-H2	119(2)	N2-N1-C1-C11	-177.8(2)
C1-C11	1.456(4)	N2-N1-C1	117.8(2)	N1-C1-C11-S1	-6.0(3)
		N1-C1-C11	116.3(2)		

 Tabelle 48: Ausgewählte Strukturparameter in der Kristallstruktur von 78f.

Die Moleküle sind im Kristall entlang der *a*-Achse in vier Stapeln angeordnet (Abbildung 79 B). Jedes Molekül besitzt die gleiche Orientierung innerhalb des jeweiligen Stapels. In der Projektion der $2 \times 2 \times 2$ -Superzelle in (110)-Richtung (Abbildung 79 C) ist die Anordnung der Moleküle innerhalb der Kristallstruktur in parallelen Zickzack-Schichten verdeutlicht.

5.1.1.2. Molekül- und Kristallstruktur von (*E*)-1-(1-(Furan-2-yl)ethyliden)-2phenylhydrazin (78g)

E-Isomer kristallisiert aus Cyclohexan Das von 78g in der orthorhombischen Raumgruppe Pbca. Die asymmetrische Einheit (Abbildung 80 A) besteht aus einem Molekül und in der Elementarzelle (Abbildung 80 B) befinden sich acht Moleküle. Zwischen den Molekülen können keine Wechselwirkungen beobachtet werden.

Die Bindungswinkel und abstände im Phenyl- und Furanring zeigen keine Auffälligkeiten. Die C-N- und N-N-Bindungsabstände in der Hydrazongruppe liegen zwischen denen einer C-Nbzw. N-N-Einfachbindung und einer C=N- bzw. N=N-Doppelbindung. Das N2-Atom ist, wie in der Struktur von 78f, planar koordiniert (Winkelsumme: 357.7(3)°). Die Bindungsparameter der Hydrazongruppe können Tabelle 49 entnommen werden. Analog zu **78f** sind auch hier die π-Systeme des Furan- und des Phenylrings durch die Hydrazongruppe miteinander verbunden. Das Molekül ist fast planar gebaut, die beiden Ringe sind nur minimal gegeneinander geneigt (Tabelle 49).

Bindungs	abstände [Å]	Bindungswinkel [°]		Torsionswink	cel [°]	
N2-C21	1.397(2)	N1-N2-C21	118.6(1)	C1-N1-N2-C21	168.2(1)	
N1-N2	1.362(2)	N1-N2-H1	118.5(1)	N1-N2-C21-C22	-4.0(2)	
N1-C1	1.303(2)	C21-N2-H1	120.8(1)	N2-N1-C1-C11	179.2(1)	
C1-C11	1.449(2)	N2-N1-C1	117.2(1)	N1-C1-C11-O1	-6.1(2)	
		N1-C1-C11	116.2(1)			

Tabelle 49: Ausgewählte Strukturparameter in der Kristallstruktur von 78g

Abbildung 80: Molekülstruktur von **78g** im Kristall; A: asymmetrische Einheit; B: Elementarzelle; C: Projektion der 2×2×2-Superzelle in *a*-Richtung; thermische Auslenkungsellipsoide mit 50 % Aufenthaltswahrscheinlichkeit.

Die Abbildung $2 \times 2 \times 2$ -Superzelle (Abbildung 80 C) veranschaulicht die Anordnung der Moleküle in der Kristallpackung. Es bilden sich Schichten in der *ac*-Ebene aus.

5.1.1.3. Molekül- und Kristallstruktur von (*E*)-1-Methyl-2-(1-(2phenylhydrazon)ethyl)-1*H*-pyrrol (78h)

Das *E*-Isomer von **78h** kristallisiert in der monoklinen Raumgruppe $P2_1/n$ ohne den Einschluss von Lösemittelmolekülen mit vier Molekülen in der Elementarzelle (Abbildung 81 B). Die asymmetrische Einheit besteht aus einem Molekül und ist in Abbildung 81 A gezeigt. Zwischen den Molekülen in der Kristallpackung können erneut keine Wechselwirkungen beobachtet werden.

Die Bindungswinkel und -abstände im Molekül zeigen keine Besonderheiten im Vergleich zu Standardwerten. Die Bindungsabstände und -winkel der Hydrazongruppe liegen, wie schon in den Strukturen von **70f** und **70g**, im Bereich einer C-N- bzw. N-N-Einfachbindung und einer C=N- bzw. N=N-Doppelbindung. Das N2-Atom ist planar koordiniert (Winkelsumme: 352.2(3)°). Die Bindungsparameter der Hydrazongruppe können Tabelle 50 entnommen werden.

Abbildung 81: Molekülstruktur von **78h** im Kristall; A: asymmetrische Einheit; B: Elementarzelle; C: Projektion der 2×2×2-Superzelle in *a*-Richtung; thermische Auslenkungsellipsoide mit 50 % Aufenthaltswahrscheinlichkeit.

Die Hydrazongruppe ist koplanar zum Pyrrol-Ring ausgerichtet, die Phenylgruppe ist gegenüber der Hydrazongruppe leicht verdreht (19.0(2)°).

 Tabelle 50: Ausgewählte Strukturparameter in der Kristallstruktur von 78h.

Bindungsabstände [Å]		Bindungswinkel [°]		Torsionswinkel [°]		
N2-C21	1.388(2)	N1-N2-C21	118.7(1)	C1-N1-N2-C21	-172.9(1)	
N1-N2	1.376(2)	N1-N2-H1	117.9(1)	N1-N2-C21-C26	-19.0(2)	
N1-C1	1.285(2)	C21-N2-H1	115.6(1)	N2-N1-C1-C11	177.3(1)	
C1-C11	1.454(2)	N2-N1-C1	116.9(1)	N1-C1-C11-N3	-2.6(2)	
		N1-C1-C11	118.8(1)			

In der Kristallpackung sind die Moleküle in Stapeln entlang der *a*-Achse ausgerichtet. Die stapelförmige Anordnung der Moleküle im Festkörper ist in der Projektion der $2 \times 2 \times 2$ -Superzelle (Abbildung 81 B) entlang der *a*-Achse gezeigt.

5.1.2. Synthese von 2,5-substituierten 2*H*-1,2,3-Diazaphospholen 79

Die 2,5-disubstituierten 2*H*-1,2,3-Diazaphosphole **79** wurden aus den Hydrazonen **78** durch Umsetzung mit PCI_3 dargestellt. In der Literatur ist

diese Synthese als Reaktion der entsprechenden Hydrazone mit PCl₃ in unpolaren Lösemitteln wie Benzen⁹ oder einem Überschuss von PCl₃¹¹⁹ ohne den Zusatz von Hilfsbasen beschrieben. Der entstehende Chlorwasserstoff wird dabei thermisch ausgetrieben (Schema 72). Das 2,5-Dimethyl-2*H*-1,2,3-Diazaphosphol **(79a)** beispielsweise kann so mit 64 %-iger Ausbeute isoliert werden. Im ³¹P-NMR kann in Spuren die Bildung von 1,5-Dimethyl-1*H*-1,2,3-diazaphosphol **(79a1)** nachgewiesen werden.

Schema 72: Synthese von 2,5-Dimethyl-2H-1,2,3-Diazaphosphol (79a).

Im Rahmen dieser Arbeit wurde die Synthese durch Verwendung der Hilfsbase NEt₃ und dem polaren Lösemittel Acetonitril deutlich verbessert. **79a** wird nach dieser Synthese bei niedrigen Temperaturen in sehr guter Ausbeute (86 %) isoliert. Die analytischen Daten entsprechen denen in der Literatur.¹²⁰

Durch Verwendung von NEt₃ als Hilfsbase und dem polaren Lösemittel Acetonitril kann eine Reihe von teilweise neuen Diazaphospholen unter – im Vergleich zu literaturbeschriebenen Synthesen – milderen Bedingungen dargestellt werden (Schema 73).

Schema 73: Synthese der 2H-1,2,3-Diazaphosphole 79.

¹¹⁹ J. H. Weinmaier, J. Luber, A. Schmidpeter, S. Pohl, *Angew. Chem.* **1979**, *91*, 442–443; *Angew. Chem. Int. Ed.* **1979**, *18*, 412–413.

¹²⁰ J. Högel A. Schmidpeter, *Chem. Ber.* **1985**, *118*, 1621–1631.

So wurde das 5-Methyl-2-phenyl-2*H*-1,2,3-Diazaphosphol (**79d**) unter milden Bedingungen in guten Ausbeuten dargestellt. Die gefunden NMR-Daten entsprechen den in der Literatur.^{120, 121}

Für das 2-Phenyl-2*H*-1,2,3-Diazaphosphol (**79e**) sind bislang in der Literatur weder Synthese noch analytische Daten beschrieben. Die Verbindung wurde in guten Ausbeuten dargestellt und vollständig charakterisiert.

Die [4+1]-Cyclokondensationsreaktion zum 2-Phenyl-5-(thiophen-2-yl)-2*H*-1,2,3-diazaphosphol (**79f**), 5-(Furan-2-yl)-2-phenyl-2*H*-1,2,3diazaphosphol (**79g**) und 5-(Biphenyl-4-yl)-2-phenyl-2*H*-1,2,3diazaphosphol (**79i**) verlaufen sehr langsam. Die gebildeten neuen Heterophosphole wurden isoliert und NMR-spektroskopisch charakterisiert.

Bei der Umsetzung von 2-Acetyl-1-methylpyrrol-phenylhydrazon (**78h**) wurde die Bildung des entsprechenden 5-(1-Methyl-1*H*-pyrrol-2-yl)-2-phenyl-2H-1,2,3-diazaphosphols nicht im ³¹P-NMR beobachtet.

Die Bildung des 1,4-Bis(2-phenyl-2*H*-1,2,3-diazaphosphol-5-yl)benzens (**79j**) wurde im ³¹P-NMR nachgewiesen. Auf Grund des geringen Löslichkeitsunterschieds im Vergleich zu den Nebenprodukten wurde die Verbindung nicht in Reinsubstanz isoliert.

Für das 2,5-Diphenyl-2*H*-1,2,3-diazaphosphol (**79k**) sind in der Literatur zwar schlecht aufgelöste ¹H-NMR-Daten, ¹²² jedoch keine Synthese beschrieben. Die Verbindung wurde nur in geringer Reinheit isoliert. Die nicht-phosphorhaltigen Verunreinigungen können nicht durch Extraktion oder Festkörperdestillation entfernt werden. Die Zuordnung der ¹H- und ¹³C-NMR-Daten erfolgt unter Verwendung von ¹H,¹H-COSY45-, ¹H,¹³C-HMQC-, ¹H,¹³C-HMBC-Spektren. In Abbildung 82 und Abbildung 83 sind das ¹H,¹H-COSY45- und das ¹H,¹³C-HMCQ-Spektrum von **79k** gezeigt. Die vier Spinsysteme sind dabei farbig markiert.

¹²¹ V. V. Negrebetskii, N. P. Ignatova, A. V. Kessenikh, N. N. Mel'nikov, N. I. Shvetsov-Shilovskii, *J. Struct. Chem.* **1971**, *11*, 589–594; Übersetzung von: *Zh. Strukt. Khim.* **1970**, *11*, 633–639.

¹²² G. Märkl, C. Martin, *Tetrahedron Lett.* **1973**, *45*, 4503–4506.

Abbildung 82: aromatischer Bereich (6.6–8.2 ppm) im ¹H,¹H-COSY45-Spektrum von **79k** (ca. 0.1 м in C₆D₆; Aufnahme mit Feldgradiententechnik; Matrix 2048×2048; sinbell auto; keine Symmetrisierung): C4-H (rosa), N2-Ph (rot), C5-Ph (grün), Verunreinigungen (blau).

Abbildung 83: ¹H,¹³C-HMQC-Spektrum von **79** (ca. 0.1 м in C₆D₆; Aufnahme mit Feldgradiententechnik; Matrix 3276×8192; sinbell auto): C4-H (rosa), N2-Ph (rot), C5-Ph (grün), Verunreinigungen (blau).

Bei der Umsetzung von 1-Acetyl-naphthalen-phenylhydrazon (**78I**) mit PCl₃ und NEt₃ in Acetonitril wurde die Bildung des bislang nicht in der Literatur beschriebene 5-(Naphthalen-1-yl)-2-phenyl-2H-1,2,3diazaphosphol (**79I**) im ³¹P-NMR nachgewiesen. Die Reaktion verläuft dabei sehr langsam und das Cyclokondensationsprodukt tritt erst nach mehreren Tagen auf. In Tabelle 51 sind die NMR-Daten des 2*H*-1,2,3-Diazaphospholrings für die dargestellten Heterophosphole zusammengefasst. Die chemischen Verschiebungen und Kopplungskonstanten liegen im typischen Bereich für 2*H*-1,2,3-Diazaphosphole.

rdi 7 , enemisene verseniebangen in ppin, koppidingskonstanten in riz.							
	δ ³¹ D	δ^{1} H	² 7	δ^{13} C	² 7	δ^{13} C	³ 7-a
	UF	(C4-H)	JPH	(C4)	JbC	(C5)	JPC
79a ¹	231.6	7.04	44.6	135.1	35.2	155.4	8.5
79d ²	226.5	7.26	45.9	138.2	35.2	157.2	9.7
79e ¹	219.8	7.94	45.5	137.8	39.2	146.8	9.5
79f ²	228.5	7.80	44.4	134.1	36.9	n. b.	n. b.
79g ²	225.6	7.96	45.9	134.6	37.4	n. b.	n. b.
79i ²	229.8	8.29	44.6	135.0	36.4	n. b.	n. b.
79j ²	229.3	n. b.	45.2	n. b.	n. b.	n. b.	n. b.
79k ²	230.1	7.78	44.7	135.0	36.0	159.3	9.1
79I ³	225.8	n. b.	42.0	n. b.	n. b.	n. b.	n. b.
1: in CDCl ₃ ; 2: in C_6D_6 ; 3: in MeCN							

Tabelle 51: Vergleich der ³¹P-, ¹H- und ¹³C-NMR-Daten des 2*H*-1,2,3-Diazaphospholrings für **79**; chemische Verschiebungen in ppm; Kopplungskonstanten in Hz.

Die Hydrazone **78** wurden mit jeweils äquimolaren Mengen an PCl₃ umgesetzt. Der Forschritt der Reaktion wurde im ³¹P-NMR bis zur vollständigen Umsetzung des eingesetzten PCl₃ beobachtet.

Schema 74: Nebenreaktion zum 1*H*-Indol.

Trotz vollständigem Umsatz im ³¹P-NMR traten bei der Aufreinigung des Reaktionsgemisches bei der Synthese der 2-Phenyl-1,2,3-2*H*-Diazaphosphole (**79d-k**) stets Probleme auf, das gebildete Heterophosphol von den nicht-phosphorhaltigen Nebenprodukten bzw. Ausgangssubstanzen zu trennen. Hierfür können mehrere mögliche Gründe angeführt werden. Zum Einen könnte über die hygroskopischen Hydrazone Wasser in die Reaktion mit eingeschleppt werden zum Anderen stellt die Zersetzung der licht- und sauerstoffempfindlichen Phenylhydrazone eine potentielle Quelle für Nebenreaktionen dar.

Des Weiteren spielt eine bekannte Nebenreaktion der Phenylhydrazone mit PCl₃ zum entsprechenden 1*H*-Indol¹²³ **80** (Schema 74) in Acetonitril eine wichtige Rolle. Sie kann zwar durch das Abfangen des gebildeten Chlorwasserstoffs mit NEt₃ und die niedrige Reaktionstemperatur unterdrückt, aber nicht verhindert werden. In Dichlormethan und bei Raumtemperatur beispielsweise stellt das 1*H*-Indol das Hauptprodukt der Umsetzung von Phenylhydrazonen mit PCl₃ dar.¹²³

5.1.3. Synthese der 4-Dichlorphosphanyl-2*H*-1,2,3-Diazaphosphole 77

In der Literatur sind bislang nur zwei Vertreter der 4-Dichlorphosphanyl-2H-1,2,3-Diazaphosphole 77 beschrieben. Dies sind die 4-Dichlorphosphanyl-2*H*-1,2,3-Diazaphosphole 77a und 77b, die als destillierbare Flüssigkeiten anfallen.¹⁰⁹ Für die Substanzklasse der Chlorbis(2H-1,2,3-diazaphosphol-4-yl)-phosphane 81 ist nur das Chlor-bis(2,5dimethyl-2H-1,2,3-diazaphosphol-4-yl)-phosphan (81a) in der Literatur beschrieben.⁹ Die Reaktivität der P=C-Doppelbindung gegenüber PCl₃ ist dabei stark abhängig von den Substituenten am Diazaphosphol. Die ³¹P-NMR-Daten der dargestellten Verbindungen sind in Tabelle 52 zusammengefasst.

4-Dichlorphosphanyl-2,5-dimethyl-2*H*-1,2,3-diazaphosphol (**77a**) wurde nach der literaturbekannte Synthese¹¹⁰ dargestellt und in Reinsubstanz isoliert. Die in der Literatur fehlenden ¹³C-NMR-Daten wurden vervollständigt.

4-Dichlorphosphanyl-5-methyl-2-phenyl-2H-1,2,3-diazaphosphol (**77d**) wurde im Reaktionsgleichgewicht der Reaktion des Hydrazons **78d** mit einem Überschuss von PCl₃ neben dem 2*H*-1,2,3-Diazaphosphol **79d**, dem kovalenten Hydrochlorid 3-Chlor-5-methyl-2-phenyl-3,4-dihydro-2*H*-1,2,3-diazaphosphol **79d × HCl** und dem Chlor-bis(5-methyl-2-phenyl-2*H*-1,2,3-diazaphosphol-4-yl)-phosphan (**81d**) identifiziert. Die beobachteten ³¹P-NMR-Verschiebungen und ²J_{PP}-Kopplungskonstanten sind mit denen der bekannten Verbindungen **77a** und **81a** vergleichbar.⁹

¹²³ C. Baccolini, R. Dalpozzo, E. Errani, *Tetrahedron* **1987**, *43*, 2755–2760.

Schema 75: Synthese der 2H-1,2,3-Diazaphosphol-Daerivate 77 und 81.

Bei der Umsetzung von Acetaldehydphenylhydrazon (**78e**) mit einem Überschuss an PCl₃ in Toluen ohne Base kann kein Ringschluss zum 2*H*-1,2,3-Diazaphosphol beobachtet werden. Wird die Umsetzung in Acetonitril unter Zugabe von NEt₃ durchgeführt, so kann das 4-Dichlorphosphanyl-2-phenyl-2*H*-1,2,3-diazaphosphol (**77e**) im ³¹P-NMR des Reaktionsgleichgewichtes mit 24 %-igem Anteil beobachtet werden.

Das 4-Dichlorphosphanyl-5-(furan-2-yl)-2-phenyl-2*H*-1,2,3diazaphosphol **77g** wurde durch Umsetzung von **78g** mit einem Überschuss an PCl₃ in Toluen im Gleichgewicht mit dem 2*H*-1,2,3-Diazaphosphol **79g** und dem kovalenten Hydrochlorid **79g × HCl** beobachtet. Besonders auffällig ist hier die kleine ${}^{2}J_{PP}$ -Kopplungskontante von **77g**. Grund hierfür ist wahrscheinlich die durch den Furanyl-Rest eingeschränkte Rotierbarkeit der C4-PCl₂-Bindung.

 $\label{eq:schema 76: Koordination des Furanyl-Sauerstoff-Atoms am \sigma^3-P.Atom von \textbf{77g}; vorgeschlagene Struktur.$

Die große ${}^{2}J_{PP}$ -Kopplungskonstante von ca. 80 Hz in den 4-Dichlorphosphanyl-2*H*-1,2,3-Diazaphospholen **77a, d, e** wird vermutlich durch den großen Überlapp der freien Elektronenpaare der Phosphoratome verursacht. Durch Koordination des Sauerstoffatoms des Furanyl-Restes ist die Rotierbarkeit der C4–PCl₂-Bindung eingeschränkt und so der Überlapp der freien Elektronenpaare verringert (Schema 76).

Ch	chemische Verschiebungen in ppm; Kopplungskonstanten in Hz.						
	δ ³¹ P (σ ² -P)	δ ³¹ Ρ (σ ³ -Ρ)	$^{2}J_{\mathrm{PP}}$	R⁵			
77a ¹	248.3	157.7	79.1	Me			
77d ²	241.6	157.2	79.8	Me			
77e ¹	232.8	156.7	88.3	Н			
77g ²	241.5	157.6	19.5	Furan-2-yl			
77I ³	242.8	156.1	20.1	Naphthalen-2-yl			
81a ¹	247.5	53.3	27.0	Me			
81d ²	240.5	51.9	28.0	Me			

Tabelle 52: ³¹P-NMR-Daten der dargestellten 4-Dichlorphosphanyl-2*H*-1,2,3-Diazaphosphole **77** und Chlor-bis(2*H*-1,2,3-diazaphosphol-4yl)-phosphane **81**; chemische Verschiebungen in ppm: Kopplungskonstanten in Hz

1: in CDCl₃; 2: in C₆D₆; 3: in MeCN

Bei der Umsetzung von **78k** mit einem Überschuss an PCl₃ in Toluen wurde keine Bildung des entsprechenden 4-Dichlorphosphanyl-2,5-2*H*-1,2,3-diazaphosphols **77k** beobachtet. Nach Einstellung des Reaktionsgleichgewichtes liegen im Reaktionsgemisch das 2,5-Diphenyl-2*H*-1,2,3-diazaphosphol **79k** und das kovalente Hydrochlorid 3-Chlor-2,5-diphenyl-3,4-dihydro-2*H*-1,2,3-diazaphosphol **79k** × **HCI** vor.

Bei der Umsetzung von 1-Acetyl-naphthalen-phenylhydrazon (781) mit einem Überschuss an PCl₃ verläuft die Ringschlussreaktion ebenfalls sehr langsam. In unpolaren Lösemitteln wie Toluen wurde keine Reaktion beobachtet. In Acetonitril unter Verwendung von NEt₃ wurde 4-Dichlorphosphanyl-5-(naphthalen-1-yl)-2-phenyl-2*H*-1,2,3-diazaphosphol 771 im 31P-NMR-Spektrum nachgewiesen. Analog zu 77g wird auch hier eine vergleichsweise kleine ${}^{2}J_{PP}$ -Kopplungkonstante von ca. 20 Hz beobachtet. Durch den sterisch anspruchsvollen Rest R⁵ ist auch hier die Rotierbarkeit der C4–PCl₂-Bindung Für freie eingeschränkt. einen optimalen Überlapp der freien Elektronenpaare der Phosphoratome müssen die Chloratome in Richtung des Naphthalen-Substituenten rotiert werden.

Zusammenfassend kann gesagt werden, dass die außergewöhnlich große ${}^{2}J_{PCP}$ -Kopplungskonstante sehr stark abhängig vom Substituenten R⁵ ist (vgl. Tabelle 52). Für R⁵ = H kann ein optimaler Überlapp der freien Elektronenpaare am P-Atom erreicht und eine Kopplungskonstante von 88 Hz beobachtet werden, wohingegen die Kopplungskonstante für R⁵ = Me auf ca. 80 Hz sinkt. Bei Substituenten, die die freie Rotierbarkeit der C4–PCl₂-Bindung einschränken, sinkt die ${}^{2}J_{PCP}$ -Kopplungskonstante auf ca. 20 Hz.

5.2. 2H-1,2,3-Diazaphosphole mit R⁴ \neq H 74

Durch [4+1]-Cyclokondensation von PCl₃ mit *N*'-monosubstituierten Hydrazonen, die in a-Stellung zum Imin-Kohlenstoff genau zwei Protonen tragen, können 2*H*-1,2,3-Diazaphosphole mit $R^4 \neq H$ **74** dargestellt werden (vgl. Schema 68).¹⁰⁸

5.2.1. Synthese der Hydrazone 75

Die Hydrazone können aus den analogen Ketonen durch Umsetzung mit Hydrazinderivaten dargestellt werden (Schema 77).¹¹²

Schema 77: Synthese der Hydrazone 75.

Auch hier ist die Wahl der Reaktionsbedingungen nicht trivial. Durch die Variation von Lösemittel, Reaktionstemperatur und Katalysator werden die Bedingungen für das jeweilige Hydrazon optimiert. Die dargestellten Hydrazone erweisen sich dabei häufig als nicht luft- und – vor Allem im Falle der Phenylhydrazone – als nicht lichtstabil. Die Methylhydrazone erweisen sich häufig als nicht stabil isolierbar. Analog zu den Hydrazonen **78** kann nur die Bildung eines der beiden möglichen *E/Z*-Isomere beobachtet werden.

Das bislang nicht in der Literatur beschriebene (5R)-1-methyl-2-(2-methyl-5-(prop-1-en-2-yl)cyclohex-2-enyliden)hydrazin ((R)-(-)-Carvon-methylhydrazon) (**75a**) wurde unter TsOH-Katalyse aus Benzen in guten Ausbeuten als gelbes, wenig viskoses Öl dargestellt.

Für (5*R*)-1-(2-Methyl-5-(prop-1-en-2-yl)cyclohex-2-enyliden)-2phenylhydrazin ((*R*)-(-)-Carvon-phenylhydrazon) (**75b**) sind in der Literatur keine spektroskopischen Daten und Synthesen beschrieben. Die Verbindung wurde aus Cyclohexan unter HCl- oder TsOH-Katalyse in quantitativer Ausbeute als oranger Feststoff isoliert und NMRspektroskopisch charakterisiert, erweist sich jedoch nur als kurz haltbar und wandelt sich sehr schnell in ein braunes Zersetzungsprodukt um. In polareren Lösemitteln wie beispielsweise 1,4-Diaoxan kann nur eine teilweise Umsetzung zum Hydrazon beobachtet werden. Bei Verwendung der schwächeren Säure Essigsäure als Katalysator wird ebenfalls nur eine teilweise Umsetzung erhalten.

1-(2,4-Dinitrophenyl)-2-((5R)-2-methyl-5-(prop-1-en-2-yl)cyclohex-2enyliden)hydrazin ((R)-(-)-Carvon-2',4'-dinitrophenylhydrazon) (**75c**) ist bislang in der Literatur nur unzureichend beschrieben. Die Verbindung kann in Anlehnung an eine allgemeine Synthese zur Synthese von (2,4-Dinitrophenyl)hydrazonen¹²⁴ in sehr guten Ausbeuten als leuchtend roter Feststoff dargestellt und charakterisiert werden. (2,4-

¹²⁴ A. I. Sitkin, V. I. Klimenko, *Russ. J. Org. Chem.* **2005**, *41*, 423–428; Übersetzung von: *Zh. Organ. Khim.* **2005**, *41*, 431–436.

Dinitrophenyl)hydrazin ist in trockenem Zustand explosiv und ist daher nur in angefeuchtetem Zustand kommerziell erhältlich. Die Einstellung der Stöchiometrie erweist sich daher als schwierig. Bei Verwendung von getrocknetem (2,4-Dinitrophenyl)hydrazin kann **75c** in sehr guten Ausbeuten erhalten und spektroskopisch charakterisiert werden.

Bei der Umsetzung von (-)-Menthon ((2S,5R)-2-(1-methylethyl)-5-methylcyclohexan-1-on) mit Hydrazinderivaten unter neutralen oder aciden Bedingungen kann zwar die Bildung der entsprechenden Hydrazone beobachtet werden, das benachbarte asymmetrische Zentrum (C5) racemisiert jedoch im Laufe der Reaktion.

Die Phenylhydrazone 1-Cyclopentyliden-2-phenylhydrazin (Cyclopentanonphenylhydrazon) (**75d**) und 1-Cyclohexyliden-2phenylhydrazin (Cyclohexanonphenylhydrazon) (**75e**) sind in der Literatur bislang nur unzureichend beschrieben. Die Verbindungen können in guten bis sehr guten Ausbeuten dargestellt werden.

5.2.2. Synthese der 2*H*-1,2,3-Diazaphosphole 74

Bei der Umsetzung von (5*R*)-1-Methyl-2-(2-methyl-5-(prop-1-en-2-yl)cyclohex-2-enyliden)hydrazin ((*R*)-(-)-Carvon-methylhydrazon) (**75a**) mit PCl₃ kann nur die Reaktion des sauren NH-Proton mit PCl₃ beobachtet werden. In der Reaktionslösung können die bislang unbekannten Chlorphosphane **82a** ($\delta^{31}P = 157.1$; q, $^{3}J_{PH} = 13.6$ Hz) und **83a** ($\delta^{31}P = 142.2$, sept, $^{3}J_{PH} = 12.7$ Hz) identifiziert werden (Schema 78).

Schema 78: Umsetzung von 75a mit PCl₃.

Die Ringschlussreaktion zum 2*H*-1,2,3-Diazaphosphol kann auch bei Zugabe eines Überschusses an NEt₃ und Rückflusskochen der Reaktionsmischung nicht beobachtet werden.

Die (–)-Carvon-Hydrazone **75b** und **75c** zeigen mit PCl₃ keine Reaktion zum entsprechenden Diazaphosphol. Dies dürfte wahrscheinlich zum Einen am MICHAEL-System des Carvons liegen, zum Anderen an der geringen Stabilität von **75b** und der stark eingeschränkten Löslichkeit von **75c**. Auch nach Silylierung von **75c** zum 1-(2,4-dinitrophenyl)-2-((5R)-2-methyl-5-(prop-1-en-2-yl)cyclohex-2-en-1-ylidene)-1-

(trimethylsilyl)hydrazin (**84c**) wird bei Umsetzung mit PCI_3 das entsprechende 2H-1,2,3-Diazaphosphol **74c** nicht beobachtet

Um den sterischen Einfluss der anellierten Cycloalkanringe auf die 2*H*-1,2,3-Diazaphosphole zu untersuchen werden die Phenylhydrazone von Cyclopentanon **75d** und Cyclohexanon **75e** dargestellt. Das 2H,4H,5H,6H-cyclopenta[d]-1,2,3-diazaphosphol-Ringsystem ist bislang mit dem Methyl-¹⁰⁸ **74da**, Acetyl-¹²⁵ **74db** und Ethoxycarbonyl-Substituenten¹²⁵ **74dc** am N2-Atom in der Literatur beschrieben. Es kann jedoch nur für das Methylderivat **74da** eine ³¹P-NMR-Verschiebung gefunden werden ($\delta^{31}P = 204.4$; ³ $J_{PH} = 7.8$ Hz). Das bislang unbekannte 2-Phenyl-2H,4H,5H,6H-cyclopenta[d]-1,2,3-diazaphosphol **(74d)** wurde aus **75d** dargestellt und vollständig NMR-spektroskopisch charakterisiert (Schema 79).

Schema 79: Synthese von 74d, e.

Die NMR-Signale können mit Hilfe ein- und zweidimensionaler NMR-Spektroskopie zugeordnet werden. Abbildung 84 zeigt exemplarisch den aliphatischen Bereich des ¹H, ¹H-COSY45-Spektrums von **74d**.

Für den 4,5,6,7-Tetrahydro-2*H*-1,2,3-benzodiazaphosphol-Bicyclus sind bislang – neben am Cyclohexanring substituierten Verbindungen¹²⁶ – das am N2-Atom Acetyl-¹²⁷ **74eb** und das Cyclohexyl-substituierte¹²⁸ Derivat **74ed** in der Literatur beschrieben. Als neuer Vertreter dieser Substanzklasse wurde im Rahmen dieser Arbeit das 2-Phenyl-4,5,6,7-tetrahydro-2*H*-1,2,3-benzodiazaphosphol (**74e**) isoliert und NMR-spektroskopisch charakterisiert.

Tabelle 53: ³¹ P-, ¹ I	H- und ¹³ C-	-NMR-Daten d	es 2H-1,2	2,3-Diazaphosp	holrings v	on 74 ;
chemisch	e Verschiel	bungen in ppn	n; Kopplu	ngskonstanten	in Hz.	
	5 31 D	5 ¹³ C (CA)	1 -	5 ¹³ C (CE)	2 -	

	δ^{31} P	δ^{13} C (C4)	$^{1}J_{PC}$	δ^{13} C (C5)	² J _{PC}	
$74d^1$	202. 4	159.4	39.3	169.7	6.7	
$74da^1$	204. 4	n. b.	n. b.	n. b.	n. b.	
74e ¹	215. 9	153.2	35.9	156.8	8.9	
74eb ¹	224. 7	160.0	37.8	159.2	10.9	
1: in CDCl ₃ ;						

 ¹²⁵ X. Guo, L. Feng, Q. Wang, Z. Li, F. Tao, *J. Heterocycl. Chem.* **2006**, *43*, 353–359.
 ¹²⁶ V. Padmavathi, T. V. R. Reddy, A. Balaiah, K. A. Reddy, D. B. Reddy, *Phosphorus*,

Sulfur Silicon Relat. Elem. **2002**, *177*, 1223–1235. ¹²⁷ R. Chen, B. Cai, G. Li, *Synthesis* **1991**, 783–784.

¹²⁸ B. A. Arbuzov, E. N. Dianova, E. Y. Zabotina, I. Z. Akhmetkhanova, *Zh. Obsh. Khim.* **1990**, *60*, 35–39.

Die NMR-Daten können Tabelle 53 entnommen werden. Der Ringschluss verläuft dabei im Vergleich zu **74d** deutlich langsamer. Intermediär wird dabei im ³¹P-NMR-Spektrum das Dichlorphosphan **82e** ($\delta^{31}P = 144.2$) und das kovalente Hydrochlorid 3-Chlor-2-phenyl-3,3a,4,5,6,7-hexahydro-2*H*-1,2,3-benzodiazaphosphol (**74e**) × HCl ($\delta^{31}P = 115.6$, ²*J*_{PH} = 17.6 Hz) beobachtet.

Abbildung 84: Aliphatischer Bereich (1.7-3.0 ppm) im ¹H, ¹H-COSY45-Spektrum von **74d**; (ca. 0.1 M in C₆D₆; Aufnahme mit Feldgradiententechnik; Matrix 2048x2048; zerofilling 4; sinbell auto; keine Symmetrisierung): **74d** (rot), nicht identifizierte Verunreinigungen (grün).

6. 1,3,4-Chalkogenazaphosphole

Von den vier möglichen 1,3,4-Chalkogenazaphosphol-Ringsystemen **85** sind bislang nur 1,3,4-Thiazaphosphole **86** beschrieben worden. Das Ringsystem kann durch eine Alkylierung von Chalkogenoamiden **87** durch Bromalkane mit einer Methylengruppe in *a*-Stellung zum Brom und einer anschließenden [4+1]-Cyclokondensation mit PCl₃ aufgebaut werden (Schema 80)¹²⁹.

Schema 80: Strategie zur Darstellung von 1,3,4-Chalkogenazaphospholen.

Der Rest R² am Amid muss dabei hinreichend elektronenschiebend sein (z.B. Ph, NR₂) um eine ausreichende Nucleophilie des Chalkogenatoms zu gewährleisten, während der Substituent R⁵ am Alkylbromid hingegen elektronenziehender Natur sein sollte (z.B. CO_2R , CN), um die Alkylierungsreaktion zu erleichtern. Zum anderen ist eine hinreichende Acidität der Methylen-Protonen nötig um die anschließende [4+1]-Cyclokondensation zum 1,3,4-Chalkogenazaphosphol **85** zu ermöglichen

1,3,4-Oxazaphosphole **89** sind bislang nicht in der Literatur beschrieben. Sie können ebenfalls nicht nach o.g. Synthesestrategie dargestellt werden, da hier die Alkylierung am Sauerstoffatom nicht gelingt. Bei der Umsetzung von Benzamid (**87a**) mit 2-Bromessigsäuremethylester (**65b**), 2-Bromessigsäureethylester (**65c**) oder 2-Bromacetonitril (**65e**) wurde in allen drei Fällen keine Alkylierung des Benzamids beobachtet.

6.1. 1,3,4-Thiazaphosphole 86

Die literaturbekannte Verbindungen 2-Methoxycarbonyl-5-phenyl-1,3,4,-thiazaphosphol (**86b**) und 2-Ethoxycarbonyl-5-phenyl-1,3,4,thiazaphosphol (**86c**) können nach literaturbekannten Synthesen dargestellt werden (Schema 81).^{129, 130}

Schema 81: Synthese der 1,3,4-Thiazaphosphole 86b,c.

¹²⁹ A. Schmidpeter, K. Karaghiosoff, C. Cleve, D. Schomburg, *Angew. Chem.* **1985**, *97*, 125–127; *Angew. Chem. Int. Ed.* **1985**, *24*, 123–124.

¹³⁰ S. Sharma, *Int. J. Chem. Sci.* **2003**, *1*, 245–254.

Im ersten Schritt wird Benzamid mit Bromessigsäurederivaten alkyliert und die erhaltenen S-Alkylthiocarboxamidiniumbromide **88** anschließend mit PCI_3 zum 1,3,4-Thiazaphosphol umgesetzt.

Die Synthesen zur Darstellung von **88** können optimiert und die in der Literatur lückenhaften analytischen Daten vervollständigt werden. Die teilweise unzureichenden Synthesen zur Darstellung und Isolierung der 1,3,4-Thiazaphosphole **86** konnten im Rahmen dieser Arbeit verbessert und die lückenhaften analytischen Daten vervollständigt werden.

Werden die *S*-Alkylthiocarboxamidiniumbromide **88** längere Zeit in $CDCl_3$ gelöst aufbewahrt, so verändert sich das NMR-Sepktrum der Verbindung. Das Signal für S-CH₂-Gruppe verschwindet im aliphatischen Bereich und es kann ein neues Signal im aromatischen Bereich beobachtet werden. Die gebildete Verbindung kann in einkristalliner Form isoliert und röntgendiffraktometrisch analysiert werden.

6.1.1. Kristallstruktur von 4-Hydroxy-2-phenyl-1,3-thiazol-3-ium-bromid-hydrat (90) × H₂O

4-Hydroxy-2-phenyl-1,3-thiazol-3-ium-bromid-hydrat (**90**) × H₂O bildet sich in Lösung aus **88c** durch eine intramolekulare Ringschlussreaktion. Ein Reaktionsmechanismus, der die Bildung von **90** × H₂O erklärt, ist in Schema 82 gezeigt.

Die Verbindung liegt im Kristall als Enol-Tautomer vor. Die Enol-Form ist bei hier durch die Aromatisierung des 1,3-Thiazolrings stabilisiert.

 $90 \times H_2O$ kristallisiert mit einem Wassermolekül pro Formeleinheit in der monoklinen Raumgruppe $P2_1/c$ mit vier Formeleinheiten in der Elementarzelle. Die asymmetrische Einheit und die ausgebildeten Wasserstoffbrückenbindungen sind in Abbildung 85 A+B gezeigt.

Das Enol-Tautomer der Verbindung ist durch die Aromatizität des 1,3-Thiazolrings stabilisiert. Der 1,3-Thiazolring ist planar gebaut (Innenwinkelsumme: 539.99°; Torsionswinkel < 1°), die Bindungslängen liegen zwischen denen einer Einfach- und Doppelbindung. Der Phenylring ist um 18.70° gegen den Thiazolring gedreht.

Abbildung 85: Kristallstruktur von **90** × **H**₂**O** (H-Brückenbindungen sind durch gestrichelte Linien angedeutet); A: asymmetrische Einheit; B: H-Brückenbindungen; C: Doppelstränge in a-Richtung; thermische Auslenkungsellipsoide mit 50 % Aufenthaltswahrscheinlichkeit; Symmetriecodes: a = 2-x, 0.5+y, 0.5-z; b = 1-x, 0.5+y, 0.5-z; c = x, 0.5-y, 0.5+z; d = 1-x, 1-y, 1-z.

Die Kristallstruktur wird durch eine Reihe von Wasserstoffbrückenbindungen bestimmt. Die Bindungslängen und –winkel der Wasserstoffbrückenbindungen sind in Tabelle 54 aufgeführt.

H-Brücken						
X–H…Y	<i>d</i> (X–H)	<i>d</i> (H…Y)	$d(X \cdots Y)$	<(X-H…Y)		
02-H201…01	1.19(2)	1.36(2)	2.545(3)	171(1)		
N1-H11…Br1	0.81(2)	2.44(2)	3.255(2)	174(2)		
02–H202… Br1	1.25(4)	2.08(4)	3.327(3)	174(3)		
02–H203… Br1	1.24(4)	2.07(4)	3.314(3)	173(4)		

Tabelle 54: Wasserstoffbrückenbindungen in der Kristallstruktur von $90 \times H_2O$.

Durch die Wasserstoffbrückenbindungen bilden sich in der Kristallstruktur Doppelstränge aus alternierenden achtgliedrigen und sechzehngliedrigen Ringen (Abbildung 85 C) aus.

Abbildung 86: Kristallstruktur von **90** × H_2O (H-Brückenbindungen sind durch gestrichelte Linien angedeutet); A: Projektion der Kristallstruktur in *a*-Richtung; B: Projektion der Kristallstruktur in *b*-Richtung; thermische Auslenkungsellipsoide mit 50 % Aufenthaltswahrscheinlichkeit.

Die Doppelstränge sind in *a*-Richtung orientiert. Zwischen den Strängen können keine Wechselwirkungen beobachtet werden. Es verlaufen drei dieser Stränge durch die Elementarzelle (vgl. Abbildung 86 A).

6.2. Auf dem Weg zur Darstellung von 1,3,4-Selenazaphospholen 91

Das analog zu den bekannten 1,3,4-Thiazaphospholen **86** aufgebaute 1,3,4-Selenazaphosphol-Ringsystem **91** ist bislang nicht in der Literatur beschrieben. Interessant bei diesem Ringsystem ist vor Allem die Untersuchung der Stabilität des Heterophospholrings und die Größe der ${}^{2}J_{SeP}$ -Kopplung im NMR.

In der Literatur sind bislang selenhaltige Heterophosphole, wie 1,2-Selenaphosphole **92**¹³¹ und 1,3-Selenaphosphole **93**^{131, 132, 133} beschrieben. 1,3-Selenaphosphole beispielsweise können durch [4+1]-Cyclokondensation von Alkenderivaten mit PCI_3^{133} oder Reaktion von 1,2,3-Selenadiazolen mit Phosphalkinen¹³³ dargestellt werden (Schema 83).

 ¹³¹ S. Asmus, L. Nyulászi, M. Regitz, J. Chem. Soc., Perkin Trans. 2 2001, 1968–1972.
 ¹³² L. Nyulászi, P. Várnai, S. Krill, M. Regitz, J. Chem. Soc., Perkin Trans. 2: Phys. Org.

¹³² L. Nyulaszi, P. Varnai, S. Krill, M. Regitz, *J. Chem. Soc., Perkin Trans. 2: Phys. Org. Chem.* **1995**, 315–318.

¹³³ B. Burkhart, S. Krill, Y. Okano, W. Ando, M. Regitz, *Synlett* **1991**, 356–358.

Schema 83: Darstellung von 1,3-Selenaphospholen 93.

1,2-Selenaphosphole **92** entstehen z.B. durch Reaktion von Alkinen mit 1,2,4-Selenadiphospholen mittels einer [4+2]/retro-[4+2]-Cycloadditionsreaktion¹³¹ (Schema 84).

Schema 84: Reaktion von Alkinen mit 1,2,4-Selenadiphospholen.

Die 1,2- und 1,3-Selenaphosphole zeigen Selen-Phosphor-Kopplungskonstanten von ca. 440 bzw. 50 Hz.¹³¹ Das neue 1,3,4-Selenazaphosphol-Ringsystem **91** sollte also ${}^{2}J_{SeP}$ -Kopplungen von ca. 50 Hz zeigen

Die Strategie zur Darstellung des neuen 1,3,4-Selenazaphosphol-Ringsystems **91** orientiert sich an der Synthese der analogen 1,3,4-Thiazaphosphol-Verbindungen **86**. Sie geht von Selenobenzamid **(87b)** aus, das zuerst am Se-Atom alkyliert und anschließend mit PCl₃ zum Heterophosphol **91** umgesetzt wird (Schema 85)

Schema 85: Strategie zur Darstellung von 1,3,4-Selenazaphosphole.

6.2.1. Synthese der Ausgangsverbindungen

Das Selenobenzamid (**87b**) wurde durch Reaktion von Benzonitril mit dem sog. WOOLLINS-Reagenz **95** (2,4-Diphenyl-1,3,2,4diselenadiphosphetan-2,4-diselon), dem Selenanalogon des LAWESSON-Reagenzes, dargestellt (Schema 86).¹³⁴

¹³⁴ G. Hua, Y. Li, A. M. Z. Slawin, J. D. Woollins, Org. Lett. **2006**, *8*, 5251–5254.

Schema 86: Synthese des WOOLLINS-Reagenzes und von Selenobenzamid.

Zur Darstellung des WOOLLINS-Reagenzes sind in der Literatur zwei Syntheserouten beschrieben:¹³⁵ Der im Rahmen dieser Arbeit gewählte Weg verläuft über das Zwischenprodukt Pentaphenylpentaphospholan (96), das durch Reduktion von Dichlor(phenyl)phosphan mit Magnesium zugänglich ist. Die in der Literatur beschriebene Aufarbeitung der Reaktion mit Wasser sollte jedoch vermieden werden, um die Freisetzung des Phenylphosphans hochtoxischen zu vermeiden. Das qebildete Pentaphenylpentaphospholan (96) wird in einem zweiten Reaktionsschritt mit grauem Selen zum WOOLLINS-Reagenz umgesetzt (Schema 86). Die Synthese wurde optimiert und die Verbindungen 96 und 95 in 60 bzw. 89 %-iger Ausbeute isoliert und charakterisiert. Der alternative Reaktionsweg der Umsetzung von Natriumselenid – dargestellt aus den Elementen in flüssigem Ammoniak – mit Dichlor(phenyl)phosphan zum 2,4,5-Triphenyl-1,3,2,4,5-diselenatriphospholan und 2,4,5-Triphenyl-1,3,2,4,5-diselenatriphospholan-2-selenon und anschließender Umsetzung mit grauem Selen zum WOOLLINS-Reagenz wurde auf Grund des apparativ deutlich höheren Aufwandes bei nur geringfügig besserer Ausbeute nicht verfolgt.

Die von WOOLLINS angegeben NMR-Daten für Selenobenzamid (**87b**) konnten nicht reproduziert werden, das Produkt wurde von WOOLLINS¹³⁴ nicht in Reinsubstanz isoliert. Die Aufarbeitung konnte im Rahmen dieser Arbeit optimiert werden, die Produktreinheit wurde wesentlich verbessert und die korrekten NMR-Daten erhalten.

Durch eine O/Se-Austauschreaktion von Benzamid mit dem WOOLLINS-Reagenz zum Selenobenzamid (**87b**) und 2,4,6-Triphenyl-1,3,5-trioxa-2,4,6-triphosphinan-2,4,6-trion könnte eine Nutzung aller vier Selen-Atome in **95** erreicht werden. Die Austauschreaktion, die bei Verwendung von *N*,*N*-disubstituierten Amiden¹³⁶ sehr gute Ergebnisse liefert, führt jedoch bei der Verwendung von primären Amiden zu deutlich schlechten Ausbeuten (vgl. Tabelle 55).

¹³⁵ I. P. Gray, P. Bhattacharyya, A. M. Z. Slawin, J. D. Woollins, *Chem. - Eur. J.* **2005**, *11*, 6221-6227.

¹³⁶ J. Bethke, K. Karaghiosoff, L. A. Wessjohann, *Tetrahedron Lett.* **2003**, *44*, 6911–6913.

eingesetztes Amid	isoliertes Selenoamid	Ausbeute	
Benzamid	Se Ph NH ₂ 87b	43 %	
Pentafluorbenzamid	Se C ₆ F ₅ NH ₂ 87c	34 %	
Trifluoracetamid	Se F ₃ C NH ₂ 87d	6 %	
Pentafluorpropanamid	Se C ₂ F ₅ NH ₂ 87e	4 %	

 Tabelle 55:
 O/Se-Austauschreaktion zur Synthese von Selenoamiden 87

6.2.2. Alkylierung von Selenobenzamid

Bei der Umsetzung der Selenoamiden **87** mit den 2-Bromessigsäureestern **65a–c** und 2-Bromacetonitril (**65e**) wurde in keinem Fall die Bildung von *Se*-Alkylthiocarboxamidiniumbromiden **94** beobachtet. In allen Fällen wurde das Selenoamid nach der Umsetzung wieder unverändert isoliert.

NMR der Umsetzung von Selenobenzamid (87b) mit Im 2-Bromessigsäureethylester (**65c**) kann im 77 Se-NMR in DMSO-d⁶ ein stark Tieffeld verschobenes Signal beobachtet werden (δ^{77} Se = 763.4). Die starke Verschiebung zu tiefen Feld deutet auf die Bildung einer aromatischen Spezies Analog intramolekularen hin. zur Ringschlussreaktion zum 4-Hydroxy-2-phenyl-1,3-thiazol-3-ium-bromidhydrat (90) \times H₂O, die beim S-Alkylthiocarboxamidiniumbromide 88c beobachtet werden konnte (vgl. 6.1.1), kann auch hier die Bildung von 4-Hydroxy-2-phenyl-1,3-selenazol-3-ium-bromid (97) postuliert werden.

Das Ringsystem der 1,3,4-Selenazaphosphole **91** konnte auf Grund der mangelnden Alkylierbarkeit der Selenoamide **87b–e** nicht dargestellt werden.

7. 1,3,4,2-Oxadiazaphosphole und Polyazaphosphapentalene

7.1. 2-Chlor-2,3-dihydro-1,3,4,2-oxadiazaphosphole 98

Das 2-Chlor-2,3-dihydro-1,3,4,2-oxadiazaphosphol-Ringsystem **98** kann durch Reaktion von Hydrazonaten **99** mit PCI_3^{137} oder durch Umsetzung von Hydraziden **100** mit PCI_3 in Anwesenheit von NEt_3^{138} aufgebaut werden (Schema 87). Die Heterocyclen **98** sind in der Literatur durch die Siedepunkte, IR-Banden und ¹H-NMR-Verschiebungen charakterisiert.

Schema 87: Synthese von 2-Chlor-2,3-dihydro-1,3,4,2-oxadiazaphospholen 98.

Ferner ist in der Literatur die Spiro-Verbindung **101** als Reaktionsprodukt der Hydrazide **100a** und **100b** mit PCl₅ beschrieben (Schema 88).¹³⁹

Schema 88: Darstellung der Spiro-Verbindung 101.

Für die Verbindungen **101a** und **101b** können in der Literatur Schmelzpunkte, IR-Banden, ³¹P-NMR-Daten und elementaranalytische Daten gefunden werden.¹³⁹

7.1.1. Umsetzung von 2,2,2-Trifluor-*N*'methylacetohydrazid (100c) mit PCl₃

Für das Hydrazid (**100c**) wird ein tautomeres Gleichgewicht zwischen der Keto- und der Enol-Form **99c** formuliert (Schema 89).

¹³⁷ M. Chihaoui, A. B. H. Amor, B. Baccar, *J. Soc. Chim. Tunisie* **1986**, *2*, 15–17.

¹³⁸ H. Kimura, H. Konno, N. Takahashi, Bull. Chem. Soc. Jpn. **1993**, 66, 327–329.

¹³⁹ S. K. Tupchienko, T. N. Dudchenko, A. D. Sinitsa, Russ. J. Gen. Chem. **1989**, 59,

^{1333–1337;} Übersetzung von: *Zh. Obsh. Khim.* **1989**, *59*, 1500–1505.

Schema 89: Umsetzung von 100c mit PCl₃.

PCl₃ reagiert dabei auf Grund der Oxophilie des Phosphors bevorzugt am Sauerstoffatom. Bei stöchiometrischer Umsetzung von **100c** mit PCl₃ und NEt₃ (**100c**:PCl₃:NEt₃ = 1:1:2) bildet sich exklusiv das 2-Chlor-3methyl-5-trifluormethyl-2,3-dihydro-1,3,4,2-oxadiazaphosphol (98c). Die vollständig NMR-spektroskopisch Verbindung kann isoliert und Bei Verwendung eines Basen-Überschusses charakterisiert werden. (**100c**:PCl₃:NEt₃ = 1:1:10) wird neben dem erwarteten Produkt **98c** auch Spiro-Verbindung 5-Chlor-1,6-dimethyl-3,8-bis(trifluormethyl)-4,9die dioxa-1,2,6,7-tetraaza- λ^5 -phosphaspiro[4.4]nona-2,7-dien (**102c**) und in Dichlorphosphanyl-2,2,2-trifluor-N-methyl-Spuren das ethencarbohydrazonat (102c) im Reaktionsgemisch beobachtet. Die chemische Verschiebung der Spiro-Verbindung 101c ist gut mit denen der literaturbekannten Spiro-Verbindungen 101a und 101b vergleichbar. In Tabelle 56 sind die ³¹P- und ¹⁹F-NMR-Daten der neu synthetisierten Verbindungen zusammengefasst.

verschiedungen in ppm; kopplungskonstanten in Hz.						
	$\delta^{ m 31}$ P	³ Ј _{РН}	δ^{19} F (CF ₃)			
98c ¹	157. 5	10.4	-67.7			
102c ²	176. 7	n. b.	-71.8			
101c ²	_ 30.9	8.4	-71.7			
101a ¹³⁹	_ 40.9	n. b.	n. b.			
101b ¹³⁹	- 45.6	n. b.	n. b.			
	4 . 0	D D . M /	~ • •			

 Tabelle 56: Vergleich der ³¹P-, und ¹⁹F-NMR-Daten von 98c, 102c, 101c; chemische Verschiebungen in ppm; Kopplungskonstanten in Hz.

1: in C_6D_6 ; 2: in MeCN

Die Bildung der Spiro-Verbindung **101c** ist bemerkenswert, da im Laufe der Reaktion das Phosphoratom zur fünfwertigen Phosphaspiro-Verbindung **101c** oxidiert wird, wohingegen die literaturbekannten Derivate **101a** und **101b** direkt aus $\sigma^5 \lambda^5$ -PCl₅ dargestellt wird.

Im NMR-Spektrum von **101c** sind sowohl die beiden Methylgruppen und auch die beiden Trifluormethylgruppen chemisch äquivalent. Bei angenommener trigonal bipyramidaler Koordination des Phosphors kann folgendes Struktur-Gleichgewicht für die Verbindung postuliert werden (Schema 90):

Schema 90: postulierte Struktur von 101c.

Die beiden Strukturen können durch Berry-Pseudorotation ineinander überführt werden. Im NMR-Spektrum ist ein Mittelwert des mobilen Gleichgewichts zu sehen.

7.2. Polyazaphosphapentalene

7.2.1. Umsetzung von 1*H*-Tetrazol-1,5-diamin (103) mit P(NEt₂)₃

Anhand von Umsetzungen 1*H*-Tetrazol-1,5-diamin (**103**) mit Phosphor(III)-Precursoren soll untersucht werden, ob der Ringschluss zum Hexazaphosphapentalen-Derivat **106** möglich ist (Schema 91). Ferner soll die Stabilität der Verbindungen gegenüber Oligomerisierung untersucht werden. Für 1,2-diamino-substituierte aromatische Fünfringe ist bislang keine Ringschlussreaktion zum Bicyclus beschrieben.

Für 1,2-Diamino-benzen ist die Ringschlussreaktion zum 1H-Benz[d]-1,3,2-diazaphosphol beschrieben. Die Verbindung erweist sich jedoch als instabil gegenüber Trimerisierung¹⁴⁰.

Bei Umsetzungen von 1*H*-Tetrazol-1,5-diamin (**103**) stellt die geringe Löslichkeit der Verbindung ein Problem dar. Bei der Umsetzung von **103** mit PCl₃ in Anwesenheit von NEt₃ wird eine lebhafte Reaktion beobachtet. Im ³¹P-NMR-Spektrum der Reaktionslösung wird ein AM-Spinsystem mit einer PP-Kopplungskonstante von 179.0 Hz beobachtet werden. Die bicyclischen Hexazaphosphapentalen-Derivate **106** und **107** können in der Reaktionslösung jedoch nicht beobachtet werden.

¹⁴⁰ G. Bratulescu, *Rev. Roum. Chim.* **2007**, *52*, 467–469.

Schema 91: Umsetzung von 1,5-Diamino-1*H*-tetrazol (103) mit P(NEt₂)₃und PCl₃.

Bei der Umsetzung von **103** mit P(NEt₂)₃ können in der Reaktionslösung Hauptprodukte beobachtet werden. Neben drei den beiden Zwischenprodukten 1-*N*-[Bis(diethylamino)-phosphanyliden]-1*H*-1,2,3,4tetrazole-1,5-diamin (104) und 5-N-[Bis(diethylamino)-phosphanyliden]-1*H*-1,2,3,4-tetrazole-1,5-diamin (105) kann ein stark tieffeldverschobenes Signal bei 295.4 ppm beobachtet werden. Dieses Signal kann der zweifachkoordinierten Phosphorspezies 106 zugeordnet werden. Die ³¹P-NMR-Daten sind in Tabelle 57 zusammengefasst.

Tabelle 57: ³¹P-NMR-Daten der Umsetzung von **103** mit P(NEt₂)₃; chemische
Verschiebungen in ppm; Kopplungskonstanten in Hz.

VCISCIICI	versenrebungen in ppin, köpplungskonstanten in riz.							
	δ^{31} P $^{1}J_{PH}$		³ J _{PNCH}	Int _{rel}				
104	24.7	562.6	12.5	43 %				
105	21.7	570.5	11.9	18 %				
106	295.4			19 %				

Im NMR kann auf Grund des schnellen Protonenaustausches nicht den vier möglichen 1,2,3,4-Tetrazol[5,1-e]-1,2,4,3zwischen triazaphosphol-Tautomeren und dem 1,2,3,4-Tetrazol[5,1-e]-1,2,4,3triazaphosphol-id-Anion unterschieden werden. Die gebildeten Verbindungen erweisen sich jedoch als nicht temperaturstabil. Nach Erhitzen der Verbindung auf 50 °C kann keine Intensität im ³¹P-NMR beobachtet werden. 106 erweist sich dabei – im Gegensatz zu 1H-Benz[d]-1,3,2-diazaphosphol – als stabil gegen Oligomerisierung.

7.2.2. Umsetzung 5-Amino-1*H*-tetrazol-Derivaten mit (CICH₂)PCl₂

Bei der Umsetzung der 5-Amino-tetrazol-Derivate **108**, **111**, **113** mit (CICH₂)PCl₂ in Acetonitril (Schema 92) wurde in Lösung keine Bildung der entsprechenden Hexazaphosphapentalen-Derivate **110**, **112**, **114** nachgewiesen. Die gebildeten Produkte erweisen sich als unlöslich in allen polaren aprotischen Lösemitteln.

Schema 92: Umsetzung von 5-Amino-1*H*-tetrazol-Derivaten mit (CICH₂)PCl₂.

Als Zwischenprodukt kann bei der Umsetzung von **108** mit (CICH₂)PCl₂ das alkylierte Zwischenprodukt **109** ($\delta^{31}P = 163.5$, ${}^{2}J_{PH} = 15.4$ Hz) beobachtet werden. Die gebildeten Produkte sind unlöslich in polaren aprotischen Lösemitteln und können daher nicht eindeutig identifiziert und vom Triethylammoniumchlorid-Salz getrennt werden.

8. Addition von Alkoholen an Heterophosphole

Die Reaktionen von Heterophospholen mit Alkoholen sind bislang kaum untersucht worden. Es ist zwar beispielsweise die Addition von Ethanol an 2,5-Dimethyl-2*H*-1,2,3-diazaphosphol **79a** in der Literatur beschrieben,¹⁴¹ es wurden jedoch keine Untersuchung bzgl. der Stereochemie dieser Reaktion durchgeführt.

Die planar gebauten Heterophosphole stellen prochirale Verbindungen dar. Die 1,2-Addition von polaren Verbindungen wie z.B. Alkoholen an die P=C- bzw. P=N-Doppelbindung erzeugt ein dreifachkoordiniertes chirales Phosphoratom und im Falle der P=C-Doppelbindung ggf. ein zweites Chiralitätszentrum am benachbarten Kohlenstoffatom. In Abbildung 87 sind die beiden Angriffsseiten dieser enantiofacialen Reaktion am Beispiel des 2,5-Diphenyl-1,3,4-thiazaphosphols (**86f**)¹²⁹ gezeigt.

Abbildung 87: enantiofaciale Angriffsseiten auf die P=C-Doppelbindung im 2,5-Diphenyl-1,3,4-thiazaphosphol (**86f**).

Somit stellen Heterophosphole Vorläufer für die Synthese chiraler Phosphane dar. Sollte es möglich sein, die 1,2-Addition stereoselektiv durchzuführen, so können auf diesem Weg enantioselektiv chirale Phosphane auf einfache Weise dargestellt werden (Schema 93). Im Folgenden soll zum Einen der Einfluss von chiralen Substituenten am Heterophosphol auf die Stereoselektivität der 1,2-Addition untersucht werden, zum Anderen soll Untersucht werden, ob eine der beiden Angriffsrichtungen am Heterophosphol durch Verwendung von chiralen Reagenzien bevorzugt wird und so die heterocyclischen Phosphane stereoselektiv dargestellt werden können.

Bei zwei neu entstehenden Chiralitätszentren sind vier mögliche Reaktionsprodukte denkbar. Nach der CIP-Nomenklatur ist das Reaktionsprodukt R/R, S/S, R/S oder S/R konfiguriert. Dabei stellen jeweils das R/R- und das S/S- bzw. das R/S- und das S/R-Produkt Enantiomere dar, die in achiraler Umgebung nicht unterschieden werden können.

¹⁴¹ J. G. Kraaijkamp, D. M. Grove, G. van Koten, J. M. Ernsting, A. Schmidpeter, K. Goubitz, C. H. Stam, H. Schenk, *Inorg. Chim. Acta* **1997**, *265*, 47–57.

Schema 93: Synthesekonzept am Beispiel eines 1,3,4-Thiazaphosphols 86.

Für die Untersuchungen des Additionsverhaltens wurden aus zweierlei Gründen die beiden chiralen Alkohole (–)-Menthol (**115**) und Cholesterol (**116**) verwendet: Zum Einen soll der Einfluss der chiralen Information des Alkohols auf die Diastereoselektivität der Additionsreaktion untersucht werden, zum Anderen stellt der chirale Alkohol eine optimale NMR-Sonde dar, da so maximal vier Diastereomere entstehen, die alle im NMR-Spektrum beobachtet werden können. Der chirale Alkohol macht so eine Zugabe von Lanthanid-Shiftreagenzien überflüssig. Die beiden Alkohole **115** und **116** sind Naturstoffe und so zu einem günstigen Preis enantiomerenrein erhältlich.

Zur Untersuchung des Additionsverhaltens von Alkoholen an die P=Cbzw. P=N-Doppelbindung werden sterisch anspruchsvolle Verbindungen gewählt um zum Einen die Selektivität der 1,2-Addition zu erhöhen und zum Anderen für Alkylalkohole eine anschließende ARBUSOV-Umlagerung der gebildeten Produkte zu vermeiden.

8.1. Abhängigkeit der ²J_{PCH}-Kopplungskonstante vom Diederwinkel in Phosphanen

Die vicinale Kopplung in NMR-Spektren hängt von den Substituenten, den Bindungsabständen und dem Diederwinkel ϕ ab. Die Abhängigkeit der Kopplung vom Dieder-Winkel wurde von KARPLUS theoretisch vorhergesagt und für gesättigte Kohlenwasserstoffe mit folgender Gleichung beschrieben:^{142, 143 3} $J(\phi) = A + B \cos(\phi) + C \cos(2\phi)$;

Dieser Befund ist auch auf andere Systeme übertragbar. Durch Vergleich von ${}^{2}J_{PCH}$ -Kopplungskonstanten von Verbindungen mit bekanntem PCH-Dieder-Winkeln kann empirisch eine Beziehung zwischen der Kopplungskonstante und dem Dieder-Winkel für Phosphane aufgestellt werden. Die von D. GAGNAIRE empirisch aufgestellte sog. KARPLUS-Kurve – die Darstellung der Kopplungskonstante in Abhängigkeit vom Diederwinkel – ist in Abbildung 88 dargestellt:

¹⁴² M. Karplus, J. Chem. Phys. **1959**, 30, 11–15.

¹⁴³ M. Karplus, J. Am. Chem. Soc. **1963**, 85, 2870–2871.

¹⁴⁴ J. P. Albrand, D. Gagnaire, J. B. Robert, *Chem. Commun.* **1968**, 1469–1470.

Abbildung 88: Winkelabhängigkeit der ²*J*_{PCH}-Kopplungskonstante.

Bei Addition von Alkoholen an eine P=C-Doppelbindung kann über die beobachtete ${}^{2}J_{PCH}$ -Kopplungskonstante auf den Diederwinkel und die Konformation der Bindung geschlossen werden.

8.2. Addition von Alkoholen an 2-Methyl-5-phenyl-2H-1,2,4,3-triazaphosphol (118)

Die 1,2-Addition von Alkoholen an 2-Methyl-5-phenyl-2*H*-1,2,4,3triazaphosphol (**118**) wird unter Verwendung der beiden chiralen Alkoholen (–)-Menthol (**115**) und Cholesterol (**116**), sowie des achiralen Alkohols Adamantan-1-ol (**117**) untersucht (Schema 94).

Schema 94: Addition von Alkoholen an 118.

Die Addition des Alkohols an die P=N-Doppelbindung verläuft bei Raumtemperatur innerhalb weniger Stunden vollständig. Im ³¹P-NMR-

Spektrum (Abbildung 89) wurde die Bildung der beiden diastereomeren Additionsprodukte **119a** und **120a** im Verhältnis 1:1 beobachtet. Die Verbindungen wurden anhand ihrer Kopplungsmuster im protonengekoppelten ³¹P-NMR-Spektrum identifiziert. Die ³¹P-NMR-Daten der Additionsprodukte von Alkoholen an **118** sind in Tabelle 58 zusammengefasst.

Abbildung 89: Ausschnitt (93–87 ppm) des ³¹P-NMR-Spektrums der Umsetzung von **118** mit **115** (ca. 0.2 M in MeCN).

Neben den Kopplungen zur NH-Gruppe (30.4 bzw. 30.0 Hz) und der zur N2-Me-Gruppe (10.3 bzw. 9.9 Hz) wurde die Bindung des Menthols am Phosphor durch die ${}^{3}J_{POCH}$ -Kopplung in den Menthol-Ring (10.3 bzw. 9.9 Hz) nachgewiesen.

Die Addition von Cholesterol (**116**) an **118** verläuft auf analoge Art. Die Additionsprodukte **119b** und **120b** können ebenfalls im Verhältnis von etwa 1:1 beobachtet werden.

Führt man die Additionsreaktion mit dem achiralen Alkohol Adamantan-1-ol (**117**) durch, so können die beiden gebildeten Enantiomere **119c** und **120c** im NMR nicht unterschieden werden.

117 ; Cf	117 ; chemische Verschiedungen in ppm; Kopplungskonstanten in Hz.							
119a/120a			119b /	/ 120b	119c/120c			
δ^{31} P	92.4	87.8	81.9	80.9	87.4			
² J _{PNH}	30.4	30.0	30.4	30.4	24.0			
³ Ј _{РОСН}	10.3	9.9	10.1	10.1				
³ J _{PNCH}	10.3	9.9	10.1	10.1	11.9			
Int _{rel}	48 %	48 %	18 %	22 %	93 %			

Tabelle 58: ³¹ P-NMR-Daten der Umsetzung von 118 mit den Alkoholen 115,	116	und
117 ; chemische Verschiebungen in ppm; Kopplungskonstanten in Hz	Ζ.	

8.3. Addition von Alkoholen an 2-Methoxycarbonyl-5-phenyl-1,3,4-thiazaphosphol (86b)

Zur Untersuchung der Additionsreaktion von Alkoholen 2an Methoxycarbonyl-5-phenyl-1,3,4-thiazaphosphol (**86b**) werden die Alkohole (-)-Menthol (115), Cholesterol (116), Adamantan-1-ol (117), Triphenylmethanol (125) und 2,4,6-Tris(*tert*-butyl)-phenol **(126)** verwendet (Schema 95). Bei der 1,2-Addition werden zwei asymmetrische Zentren generiert. Somit können bis zu vier isomere Verbindungen erhalten werden. Die Umsetzung von 86b mit Alkoholen verläuft innerhalb von wenigen Stunden guantitativ zu den Additionsprodukten 121-124. Die ³¹P-NMR-Daten der Additionsprodukte von **115**, **116** und **117** an **86b** sind in Tabelle 60 zusammengefasst.

Schema 95: Addition von Alkoholen an 86b.

Im ³¹P-NMR-Spektrum (Abbildung 90) der Umsetzung von **86b** mit dem chiralen Alkohol **115** werden im ³¹P-NMR der Reaktionslösung (Abbildung 90) vier Isomere im Verhältnis (3.7:3.9:1.8:1) beobachtet.

Abbildung 90: Ausschnitt (210–195 ppm) des ³¹P-NMR-Spektrums der Umsetzung von **86b** mit **115** (ca. 0.07 μ in THF).

Alle vier Isomere zeigen eine Kopplung zum Menthol-Substituenten. Für die beiden Hauptprodukte können keine weiteren PH-Kopplungen beobachtet werden, die beiden Nebenprodukte zeigen eine weitere große ${}^{2}J_{PCH}$ -Kopplung (s.a. Tabelle 59).

Aufgrund der beobachteten ${}^{2}J_{PCH}$ -Kopplungskonstante von 25–30 Hz kann auf eine ekliptische Konformation der P–C5-Bindung in den gebildeten heterocyclischen Phosphanen geschlossen werden (vgl. Abschnitt 8.1). Die Addition der Alkoxy-Gruppe am Phosphor und des Protons am C5-Atom kann dabei von der gleichen Seite der Doppelbindung (*syn*-Addition; Verbindungen **121**, **122**) oder von unterschiedlichen Seiten (*anti*-Addition; Verbindungen **123**, **124**). Für die *syn*-Addition ergibt sich so ein Winkel von ca. 120° zwischen dem freien Elektronenpaar und dem Wasserstoff an C5, für die *anti*-Addition ergibt sich ein Winkel von 0° (Schema 96).

Schema 96: Sägebockprojektionen der Additionsprodukte 121-124.

Aus der KARPLUS-Kurve¹⁴⁴ (Abbildung 88) ergeben sich daher Erwartungswerte für die ${}^{2}J_{PCH}$ -Kopplungskonstante von ca. 5 Hz für **121** und **122** bzw. ca. 25 Hz für **123** und **124**. Somit können die beiden Hauptsignale bei 208.7 und 208.4 ppm den *syn*-Additionsprodukten **121** und **122** und die kleineren Signale bei 198.5 bzw. 195.8 ppm den *anti*-Additionsprodukten **123** und **124** zugeordnet werden. Das *syn/anti*-Verhältnis wurde aus dem ³¹P-NMR-Spektrum mit 2.7:1 bestimmt.

Das Auftreten der beiden *anti*-Isomere zeigt, dass die 1,2-Additionsreaktion des Alkohols am 1,3,4-Thiazaphosphol – wie erwartet – nicht konzertiert abläuft. Durch die räumliche Nähe des Protons am Alkohol treten die *syn*-Additionsprodukte als Hauptprodukte auf.

Mit Hilfe von DFT-Rechnungen wurden die chemischen Verschiebungen und Kopplungskonstanten für die Verbindungen **121a–124a** berechnet. Die Zuordnung der Signale aus dem experimentellen ³¹P-NMR-Spektrum zu den vier Diastereomeren erfolgt über die relative chemische Verschiebung der einzelnen Strukturen und kann Tabelle 59 entnommen werden.

Die mittels DFT-Methoden ermittelten chemischen Verschiebungen sind in verhältnismäßig guter Übereinstimmung mit den Messwerten, wodurch eine relativ gesicherte Zuordnung der Signale möglich ist. Die berechneten J_{PH} -Kopplungen liegen, soweit im Experiment bestimmt, in der Größenordnung der gemessenen Werte. Eine detailliertere Analyse wird hier nicht durchgeführt, da die Größe eine starke Abhängigkeit von geometrischen und elektronischen Strukturparametern zeigt, die auf dem verwendeten Niveau der Theorie nur bedingt berücksichtigt werden können.145

Tabelle 59: Vergleich der experimentellen und berechneten ³¹P-NMR-Daten für die Umsetzung von **86b** mit **115**; die relative chemische Verschiebung bezieht sich auf die mit identischer Methode und Basis berechnete bzw. die experimentelle Verschiebung; chemische Verschiebungen in ppm: Kopplungskonstanten in Hz

CIICIIII					
		121a	122a	124a	123a
s 31 n	exp.	208.7	208.4	198.5	195.8
υP	theo.1	178.6	168.8	153.6	153.0
$(\delta^{31}P)_{rel}$	exp.	93.7	94.0	103.9	106.6
	theo.1	113.6	123.4	138.6	139.2
² Ј _{РСН}	exp.	< <i>Δ</i> _{1/2}	< <i>Δ</i> _{1/2}	29.5	24.8
	theo.1	9.8	9.1	38.2	39.0
³ J _{POCH}	exp.	8.3	7.5	8.5	< <i>Δ</i> _{1/2}
	theo.1	9.2	9.0	9.5	6.9
In	Int _{rel}		35 %	16 %	9 %

 $\delta^{31}P(\mathbf{86b})_{exp.} = 302.4; \ \delta^{31}P(\mathbf{86b})_{theo.} = 292.2; \ (\delta^{31}P)_{rel} = \delta^{31}P(\mathbf{86b}) - \delta^{31}P$

1: DFT/B3LYP mit aug-cc-pVQZ-Basis an S und P, aug-cc-pVDZ-Basis an O,

N, C-2, C-5 und C=O, sonst cc-pVDZ; Standard: PH₃ mit aug-cc-pVQZ-

Basis an P und cc-pVDZ-Basis an H

Die Addition von Menthol an die P=C-Doppelbindung verläuft nicht stereoselektiv. Bei den gebildeten Produkten wird am Phosphor zu 49 % die (*R*)- und zu 44 % die (*S*)-Konfiguration erhalten.

Für die Reaktion von 86b mit 116 kann im Reaktionsspektrum eine vergleichbare Produktverteilung erhalten werden. Die Signale können analog zur oben beschriebenen Umsetzung mit (-)-Menthol zugeordnet werden. Die Reaktion verläuft auch hier nicht stereoselektiv. Das syn/anti-Verhältnis beträgt 2.4:1.

Bei der Umsetzung von **86b** mit dem achiralen Alkohol **117** bilden sich ebenfalls die heterocyclischen Phosphane **121c-124c** mit einem syn/anti-Verhältnis von 2:1. Die gebildeten Phosphane wurden durch Zugabe von Schwefel bzw. Selen *in situ* oxidiert und NMR-spektroskopisch charakterisiert.

Die Addition von Triphenylmethanol (125) an 86b verläuft nicht eindeutig zu den entsprechenden Phosphanen 121d-124d. Neben den zahlreichen Ringöffnungsprodukten kann eine Reihe von Verbindungen mit einer P-gebundenen Methylgruppe identifiziert werden, was nur durch eine Umesterungsreaktion der Esterfunktion am Thiazaphosphol 86b und anschließender Addition von Methanol an die P=C-Doppelbindung erklärt werden kann. Durch Zugabe von Schwefel wurden die gebildeten Phosphane in situ oxidiert und so weitere Folgereaktionen unterdrückt. Die gebildeten Produkte wurden isoliert und NMR-spektroskopisch charakterisiert.

¹⁴⁵ M. Kaupp, M. Bühl, V. G. Malkin, *Calculation of NMR and EPR Parameters – Theory and* Applications, Wiley-VCH, Weinheim, 2004.

Der sterische Anspruch von 2,4,6-Tris(*tert*-butyl)-phenol (**126**) ist zu groß, so dass auch bei Zugabe von Oxidationsmitteln keine Addition an die P=C-Doppelbindung beobachtet werden kann.

	δ^{31} P	$^{2}J_{PCH}$	³ J _{POCH}	Int _{rel}	
121a	208.7	n. b.	8.3	33 %	
122a	208.4	n. b.	7.5	35 %	
123a	195.8	24.8	n. b.	9 %	
124a	198.5	29.5	8.5	16 %	
121b	202.1	n. b.	n. b.	31 %	
122b	202.0	n. b.	n. b.	31 %	
123b	191.0	29.3	7.3	15 %	
124b	191.9	29.3	7.3	16 %	
121c	105.2	n h		16.0%	
122c	195.2	II. D.		10 70	
123c	107 1	20 5		9 0/2	
124c	102.1	30.3		0 70	
121ca	110 5	15.0		n h	
122ca	119.5	15.0		II. D.	
123ca	11/2	11 2		n h	
124ca	114.5	11.5		II. D.	
121cb	110.0	03		500%	
122cb	110.0	5.5		J970	
123cb	116 3	14.7		300%	
124cb	110.5	14.2		50%	

 Tabelle 60: ³¹P-NMR-Daten der Umsetzung von 86b mit den Alkoholen 115, 116 und 117; chemische Verschiebungen in ppm; Kopplungskonstanten in Hz.

8.4. Addition von Alkoholen an 2,5-Dimethyl-2*H*-1,2,3-diazaphosphol (79a)

Die 1,2-Additionsreaktion von sterisch anspruchsvollen Alkoholen an 2,5-Dimethyl-2*H*-1,2,3-diazaphosphol (**79a**) verläuft überraschend (Schema 97). Nach Einstellung des Reaktionsgleichgewichts kann nur eine minimale Umsetzung des Diazaphosphols beobachtet werden.

Durch Zugabe von grauem Selen können die gebildeten Phosphane **128** und **129** irreversibel oxidiert und das Gleichgewicht so auf die rechte Seite gezogen werden. Die selenierten Produkte werden im ³¹P-NMR (Abbildung 91) anhand der ⁷⁷Se-Satelliten identifiziert. Die ³¹P-NMR-Daten der Additionsprodukte **128** und **129** sind in Tabelle 61 zusammengefasst.

Schema 97: Addition von 115 an 79a.

Trotz Zugabe des Oxidationsmittels Selen wird nur eine 76 %-ige Umsetzung von **79a** im ³¹P-NMR-Spektrum beobachtet. Die Additionsreaktion verläuft auch hier nicht stereoselektiv. Die (*R*)- und (*S*)- Isomere **128ca** bzw. **129ca** werden im Verhältnis 1.2:1 gebildet. Im ³¹P-NMR-Spektrum zeigen die Verbindungen **128ca** bzw. **129ac** eine Aufspaltung zum Sextett.

Abbildung 91: Ausschnitt (85–87 ppm) des ³¹P-NMR-Spektrums der Umsetzung von **79a** mit **115** (ca. 0.2 м in THF).

Die Kopplungen zum Menthyl-Rest, zur N2-Me-Gruppe und die Kopplung zu einem der beiden Protonen am C4-Atom sind zufällig im Rahmen der Messgenauigkeit gleich groß und so erscheint das ausgebildete Dublett aus Dubletts aus Quartetts im Rahmen der Linienbreite als Sextett.

Bei der Umsetzung von **79a** mit **116** in Anwesenheit von grauem Selen wird lediglich eine 39 %-ige Umsetzung zu den selenierten Verbindungen **128bb** bzw. **129bb** beobachtet. Die ³¹P-NMR-Verschiebungen von **128bb** und **129bb** liegen zu nahe zusammen, so dass im Rahmen der Linienbreite ($\Delta_{1/2} \approx 33.6$ Hz) nur ein Signal beobachtet wird. Bei der 1,2- Additionsreaktion von **79a** mit **117** können trotz Zugabe von Selen die selenierten Enantiomere **128cb** und **129bc** nur in Spuren (1%) im ³¹P-NMR-Spektrum nachgewiesen werden. Auch durch die Verwendung des stärkeren Oxidationsmittels Schwefel kann nicht mehr Umsatz erhalten werden.

 Tabelle 61: ³¹P-NMR-Daten der Umsetzung von 79a mit den Alkoholen 115, 116 und 117 in Anwesenheit von Selen;

 chemische Verschiebungen in ppm: Kopplungskonstanten in Hz

chemische verschiebungen in ppin, Kopplungskonstanten in nz.						
	128ab/129ab		128ab/129ab 128bb/129bb		128cb/129cb	
δ^{31} P	91.6	90.7	87.4	73.9		
² Ј _{РСН}	10.2	10.0	10.5	10.5		
³ Ј _{РОСН}	10.2	10.0	10.5			
$^{3}J_{PNCH}$	10.2	10.0	10.5	10.5		
$^{1}J_{SeP}$	875.7	880.0	883.0	n. b.		
Int _{rel}	35 %	41 %	38 %	1 %		

Bei der Umsetzung von **74d** und **74e** mit den sterisch anspruchsvollen Alkoholen Triphenylmethanol (**125**), 2,4,6-Tris(*tert*-butyl)-phenol (**126**) und 2,4,6-Trimethylphenol (**127**) wurde keine Umsetzung beobachtet. Auch bei Zugabe von Schwefel und Selen können die entsprechenden Additionsprodukte nur in Spuren beobachtet werden.

8.5. Addition von Alkoholen an 70a

Um den Einfluss des chiralen Substituenten am Heterophosphol zu untersuchen, wird **70a** mit den beiden chiralen Alkoholen (–)-Menthol (**115**) und (–)-Pantolacton (**130**) umgesetzt (Schema 98). Die beiden verwendeten chiralen Alkohole unterscheiden sich dabei in ihrem sterischen Anspruch. Die ³¹P-NMR-Daten der Additionsprodukte der Alkohole **115** und **130** am chiralen Heterophosphol **70a** sind in Tabelle 62 zusammengefasst

Schema 98: Addition von Alkoholen an 70a.

Das Phosphorzentrum ist für die Phosphane **131** und **133** (*R*) konfiguriert, für die Verbindungen **132** und **134** entsprechend (S) konfiguriert. Die geschwefelten Verbindungen haben nach der CIP-Nomenklatur die umgekehrte Konfiguration.

Im Reaktionsspektrum der Umsetzung von **70a** mit (–)-Menthol werden lediglich zwei der vier möglichen diastereomeren Reaktionsprodukte beobachtet (Abbildung 92 links).

Abbildung 92: links: Ausschnitt (200–(–50 ppm)) des ³¹P-NMR-Spektrums der Umsetzung von **70a** mit **115** (ca. 0.2 M in CDCl₃); rechts: Sägebockprojektionen der Additionsprodukte **131** und **132**.

Auf Grund der beobachteten Kopplungskonstanten wurden die beiden Signale bei 194.5 bzw. 192.5 ppm den *syn*-Additionsprodukten **131a** und **132a** zugeordnet. Die beobachtete Aufspaltung ist der ${}^{3}J_{POCH}$ -Kopplung zum Menthol-Rest zuzuordnen. Die Kopplung zum Wasserstoff am C3-Kohlenstoffatom wurde im Rahmen der Linienbreite nicht beobachtet. Bei ekliptischer Konformation der P-C3-Bindung kann aus der KARPLUS-Kurve (Abbildung 88) so auf einen Winkel zwischen dem freien Elektronenpaar am Phosphor und dem Proton am C3-Kohlenstoff von ca. 120° geschlossen werden (Abbildung 92 rechts). Eine *anti*-Addition wird hier nicht beobachtet. Das (*R/S*)- bzw. (*S/R*)-Isomer liegt im Verhältnis 1.9:1 vor. Der Enantiomerenüberschuss für die Addition am Phosphor liegt somit bei *ee* = 31 %.

In Anwesenheit von Schwefel werden die *anti*-Additionsprodukte neben den syn-Additionsprodukten in Spuren im ³¹P-NMR beobachtet. Bzgl. der Addition am Phosphor wird auch hier ein Isomerenverhältnis der am Phosphorzentrum (*S*)- bzw. (*R*) konfigurierten Verbindungen von 1.9:1 und somit ein Enantiomerenüberschuss von ee = 31 % beobachtet.

Für die Additionsreaktion des sterisch weniger anspruchsvollen Alkohols **130** können ohne die Zugabe von Schwefel nur Ringabbauprodukte

beobachtet werden. Bei *in situ*-Oxidation der gebildeten Phosphane durch Zugabe von Schwefel werden alle vier Additionsprodukte beobachtet. Erneut ist hier eine der beiden Additionsrichtungen am Phosphor bevorzugt (ee = 26 %).

	δ^{31} P	² Ј _{РСН}	³ Ј _{РОСН}	Int _{rel}	ee
131a/132a	194.5		6.8	28 %	21.0/
	192.5		8.0	54 %	51 %
121-2/122-2	113.1	11.8	7.3	60 %	
131ad/152aa	112.2	11.6	7.2	32 %	21.0/
122/124	110.2	17.6	10.0	2 %	51 %
155aa/154aa	109.3	19.0	9.1	4 %	
121ha/122ha	116.5	16.0	7.1	48 %	
13100/13200	113.3	13.0	6.9	28 %	26.0%
133ba/134ba	112.6	14.4	7.2	12 %	20 70
	111.8-111.4			3 %	

 Tabelle 62: ³¹P-NMR-Daten der Umsetzung von 70a mit den Alkoholen 115 und 130;

 chemische Verschiebungen in ppm; Kopplungskonstanten in Hz.

8.6. Addition von 115 an 71a

Die 1,2-Additionsreaktion am chiralen Heterophosphol **71a** wird durch Umsetzung von **71a** mit (–)-Menthol (**115**) mit und ohne Zugabe des Oxidationsmittels Schwefel untersucht (Schema 99). Die ³¹P-NMR-Daten der Umsetzungen können Tabelle 63 entnommen werden.

Schema 99: Addition von 115 an 71a in Anwesenheit von Schwefel.

Ohne Zugabe von Schwefel wurde zwischen **71a** und **115** keine Reaktion beobachtet. Bei Zugabe von Schwefel werden im ³¹P-NMR-Spektrum alle vier möglichen Isomere im Verhältnis 10.1:10.1:1.0:2.9 beobachtet. Für die Reaktion am Phosphorzentrum kann dabei – anders als bei der ebenfalls chiralen Verbindung **70a** – keine Enantioselektivität beobachtet werden.

verschiedungen in ppm; Kopplungskonstanten in Hz.						
	δ^{31} P $^{2}J_{PCH}$ $^{3}J_{POCH}$		³ Ј _{РОСН}	Int _{rel}		
125ha/126ha	98.7	12.6	12.6	42 %		
122Da/120Da	97.3	12.4	12.4	42 %		
127ha/128ha	96.0	10.4	10.4	4 %		
137Da/138Da	94.2	10.3	10.3	12 %		

 Tabelle 63: ³¹P-NMR-Daten der Umsetzung von 71a mit (–)-Menthol (115); chemische Verschiebungen in ppm; Kopplungskonstanten in Hz.

8.7. Addition von Alkoholen an 70e

Die Addition von (–)-Menthol (**115**) (Schema 100) an **70e** verläuft nur sehr langsam.

Schema 100: Addition von 115 an 70e.

Nach Einstellung des Reaktionsgleichgewichts wurden die Verbindungen (**139a**)/(**140a**) ($\delta^{31}P = 165.3$; $\delta^{31}P = 164.6$) bzw. (**139aa**)/(**140aa**) ($\delta^{31}P = 113.1$; $\delta^{31}P = 111.4$) nur zu jeweils 1 % im ³¹P-NMR-Spektrum der Reaktionslösung beobachtet. Die beiden isomeren Verbindungen treten dabei jeweils im Verhältnis 1:1 auf.

9. Koordinationschemie von Heterophospholen

Heterophosphole stellen durch die Anwesenheit von mehreren möglichen Koordinationsstellen in einem Molekül interessante Liganden in der Koordinationschemie dar.

In der Literatur sind bislang nur wenige Beispiele für Heterophosphol-Metall-Komplexe beschrieben. Schema 101 zeigt einige Beispiele für Metallkomplexe von 1,2,3-Diazaphospholen:^{146, 147, 148}

Schema 101: Beispiele für literaturbekannte Heterophosphol-Metall-Komplexe.

Die Koordination des Azaphosphols über die zweifach koordninerten Phosphor- bzw. Stickstoff-Atome scheint dabei mehr von den sterischen und elektronischen Eigenschaften der Substituenten am Azaphosphol als von den spezifischen Donoreigenschaften der σ^2 -Phosphor bzw. σ^2 -Stickstoff-Atome abzuhängen, so dass sich durch Variation der Substituenten der Liganden die Koordinationsstelle ändern kann.¹⁴⁸

Für das elektronenarme 1,3,4-Thiazaphosphol-System sind bislang keine Metallkomplexe in der Literatur beschrieben.

¹⁴⁶ V. D. Romanenko, V. L. Rudzevich, A. O. Gudima, M. Sanchez, A. B. Rozhenko, A. N. Chernega, M. R. Mazieres, *Bull. Soc. Chim. Fr.* **1993**, *130*, 726–732.

¹⁴⁷ J. G. Kraaijkamp, G. van Koten, K. Vrieze, D. M. Grove, E. A. Klop, A. L. Spek, A. Schmidpeter, *J. Organomet. Chem.* **1983**, *256*, 375–389.

¹⁴⁸ K. C. Dash, H. Schmidbaur, A. Schmidpeter, *Inorg. Chim. Acta* **1980**, *4*6, 167–170.

9.1. Umsetzung von 2-Ethoxycarbonyl-5-phenyl-1,3,4,-thiazaphosphol (86c) mit Bis(µ²-chlor(1,5-cyclooctadien)rhodium) (149)

In der Literatur ist die Substitution der überbrückenden Chloratome in $[{Rh(COD)Cl}_2]$ (**149**) durch Umsetzung von **149** mit einem bzw. zwei Äquivalenten sekundärer Lithiumphosphaniden, wie z. B. LiPPh₂ oder LiPMePh beschrieben.¹⁴⁹

Die Umsetzung des Thiazaphosphols **86c** mit $[{Rh(COD)Cl}_2]$ (**149**) im Verhältnis 1:1 wurde überraschend der Komplex **151** als einziges Produkt isoliert (Schema 102).

Schema 102: Umsetzung von 86c mit 149.

Die Bildung von **151** ist von der verwendeten Konzentration abhängig. Der gebildete Komplex dismutiert sehr schnell in eine Vielzahl verschiedener Komplexverbindungen. **151** wurde im ³¹P-NMR-Sektrum anhand der Kopplungen zu ¹⁰³Rh identifiziert. Die beobachteten Verschiebungen, ²J_{PP}- und ¹J_{RhP}-Kopplungen sind gut mit denen der überbrückenden σ^2 -P-Liganden des Komplexes [{Rh(μ^2 -PPh₂)(PEt₃)₂}₂]¹⁴⁹ vergleichbar. Die übrigen beobachteten Kopplungen liegen im typischen Bereich für Rhodium-Phosphan-Komplexe. ¹⁵⁰, ¹⁵¹ Die ²J_{PP}-Kopplungskonstanten sind vergleichbar mit denen in Tris(phosphan)rhodium(I)-Halogeniden.

Die vorgeschlagene Struktur von **151** (s. Schema 102) ergibt sich aus den drei im ³¹P-NMR (Abbildung 93) erhaltenen Signale (Tabelle 64).

	Kopplungskonstanten in Hz.						
	δ^{31} P	$^{1}\mathcal{J}_{RhP}$	² J _{RhP}	² J _{PP}	² J _{PP}	² J _{PP}	
P ^A	210.9	160.2	87.8	18.9	23.8		
P ^B	174.4	177.6		18.9		13.9	
P ^C	142.8	121.1			23.8	13.9	

 Tabelle 64: 31P-NMR-Daten von 151; chemische Verschiebungen in ppm;

 Kopplungskonstanten in Hz.

¹⁴⁹ E. W. Burkhardt, W. C. Mercer, G. L. Geoffrey, *Inorg. Chem.* **1984**, *23*, 1779–1782.

¹⁵⁰ P. S Pergosin, R. W. Kunz, NMR Basic Principles and Progress; 16: ³¹P and ¹³C NMR of Transition Metal Phosphine Complexes, P. Diel, E. Fluck, R. Kosfeld Eds., Springer, Heidelberg, **1979**.

¹⁵¹ T. H. Brown, P. J. Green, *J. Am. Chem. Soc.* **1970**, *92*, 2359–2362.

Die Signale zeigen neben den Aufspaltungen durch die Kopplung zum Rhodium weitere Kopplungen zu zwei am selben Rhodium-Kern gebundenen Phosphorkernen. Die Kopplungskonstante der *trans* gebunden Liganden ist dabei etwas größer als die zu den *cis* gebundenen Liganden.¹⁵⁰

Signal A ($\delta^{31}P = 210.9$) zeigt eine weitere, deutlich kleinere Rhodium-Phosphor-Kopplung, die im Bereich einer ${}^{2}J_{RhP}$ -Kopplung liegt.

Abbildung 93: Hauptsignale des ³¹P-NMR-Spektrums der Darstellung von **151** (ca. 0.2 M in CDCl₃).

Aus dem oben beschriebenen Kopplungsmuster wurden folgende Strukturvorschläge abgeleitet: der Komplex **151** bzw. die dreikernige Struktur **151a** (Schema 103):

Schema 103: Strukturvorschläge für die Komplexe 151 bzw. 151a.

Die beiden möglichen Strukturen können nicht Anhand ihres ³¹P-Spektrum unterschieden werden. Weitere, für die Unterscheidung der beiden möglichen Strukturen nötige Analytik, wie beispielsweise ¹⁰³Rh-NMR-Spektren konnten auf Grund der Instabilität der Verbindung in Lösung gegen Umlagerungen nicht durchgeführt werden. Wegen der Luftempfindlichkeit und Reaktivität gegenüber der Matrix kann der Komplex **151** im FAB⁺-Spektrum nur in Spuren nachgewiesen werden. Das FAB⁻-Spektrum zeigt das Chlorid-Ion.

Bei der Umsetzung von **86c** mit dem homologen Iridium-Komplex $[{Ir(COD)Cl}_2]$ (**150**) wurden im ³¹P-NMR nur eine große Zahl hochfeldverschobener Signale beobachtet, was auf Ringabbaureaktionen durch den Iridium-Komplex schließen lässt.

9.2. Umsetzung von 2-Methoxycarbonyl-5-phenyl-1,3,4,-thiazaphosphol (86b) mit Ni(CO)₄ (152)

Wird eine gelbe Lösung des 1,3,4-Thiazaphosphols **86b** in THF mit Nickeltetracarbonyl (**152**) im Verhältnis 1:1 versetzt (Schema 104), so wird eine lebhafte Gasentwicklung beobachtet und die Lösung verfärbt sich sofort dunkelbraun.

Schema 104: Umsetzung von 86b mit Ni(CO)₄ (152).

Im ³¹P-NMR-Spektrum der Reaktionslösung wurde als einzige Verbindung neben einigen breiten Signalen polymorpher Verbindungen der Nickel-Komplex **153** identifiziert.

Die Verbindung zeigt einen *"coordination-induced shift*" im Vergleich zum freien Liganden von $\Delta \delta = -20.7$. Wird die Umsetzung in anderen

Lösemitteln wie beispielsweise Diethylether oder Toluen durchgeführt, so wird die Bildung einer Vielzahl verschiedener Isomere beobachtet.

9.3. Umsetzung von 2-Ethoxycarbonyl-5-phenyl-1,3,4,-thiazaphosphol (86c) mit Fe₂(CO)₉ (154)

Dieisennonacarbonyl (**154**) ist zur Darstellung von Komplexen der Zusammensetzung [$LFe(CO)_4$] besser geeignet als das unreaktive Eisenpentacarbonyl.

Schema 105: Umsetzung von **86c** mit Fe₂(CO)₉ **(154)**.

154 löst sich in THF unter Bildung von Eisenpentacarbonyl (**155**) und der reaktiven Spezies [Fe(THF)(CO)₄] (**156**). Diese bildet mit **86c** eine Reihe von isomeren Verbindungen mit einem CIS von $\Delta \delta = -39.8$ bis -58.4 (Schema 105). Der literaturbekannte [LFe(CO)₄]-Komplex mit L = **79a** zeigt dabei lediglich einen CIS von $\Delta \delta = -1.3^{152}$. Der hier beobachtete große CIS deutet auf eine P-Koordination des von **86c** an den Eisenkern hin.

¹⁵² J. H. Weinmaier, H. Tautz, A. Schmidpeter, S. Pohl, *J. Organomet. Chem.* **1980**, *185*, 53–68.

10. Zusammenfassung

Die vorliegende Arbeit stellt die Ergebnisse der Untersuchungen aus zwei Themengebieten vor. Der erste Teil der Arbeit widmet sich der Synthese sowie der Komplex- und Strukturchemie von (Amino)phosphinund -phosphonsäuren. Anhand von mehr als 20 neuen Kristallstrukturen systematisch die Koordinationseigenschaften wurden erstmals von dieser interessanten Verbindungsklasse Vertretern untersucht. Im Mittelpunkt des Interesses bei der Analyse der Kristallstrukturen stand die Koordination Art und Weise der der Phosphinatobzw. Phosphonatoliganden an das Metallzentrum sowie die Rolle der Wasserstoffbrückenbindungen bei der Ausbildung der Kristallstruktur.

Das zweite behandelte Themengebiet der vorliegenden Dissertation stellt die Entwicklung und Optimierung von Synthesewegen zu chiralen und achiralen Heterophospholen, sowie die Untersuchung der Stereoselektivität der 1,2-Additionsreaktion an der Phosphor-Element-Doppelbindung dar.

10.1. Arylphosphane, Phosphin- und Phosphonsäuren

10.1.1. Elektronischer Einfluss der (CF₃)₂C₆H₃-Gruppe

Die $(CF_3)_2C_6H_3$ -Gruppe ist sterisch besonders anspruchsvoll und übt gleichzeitig einen starken elektronischen Einfluss. Die Einführung dieses Substituenten in Phosphane und die Reaktivität der dargestellten Organophosphorverbindungen wurde untersucht.

CHLORPHOSPHANE

Durch Umsetzung von lithiiertem 1,3-Bis(trifluormethyl)benzen mit PCl₃ wurde erstmals ein präparativ wertvoller Zugang zum entsprechenden Chlor- **11** und den Dichlorphosphanen **13a** und **16a** entwickelt (Kapitel 2.3.2).

Es ist gelungen die Molekülstruktur von **11** im Kristall durch Röntgenbeugung am Einkristall aufzuklären. Besonders auffällig an dieser

Molekülstruktur sind die kurzen P-F-Kontakte (vgl. Kapitel 2.2.4.1), die die Reaktivität des Chlorphosphans **11** maßgeblich beeinflussen.

BIS(DIETHYLAMINO)PHOSPHANE

Im Rahmen dieser Arbeit wurde eine Synthese zu den bislang unbekannten und als potentielle Ausgangsverbindungen sehr wertvollen Bis(diethylamino)phosphanen **13b** und **16b** entwickelt (Kapitel 2.2.5).

Das Bis(diethylamino)phosphan **16b** erweist sich dabei als leichter oxidierbar durch Chalkogene. Durch die experimentell bestimmten ${}^{1}J_{SeP}$ -Kopplungskonstanten wurden die p K_{B} -Werte der Phosphane **13b** (p K_{B} = 16.10) und **16b** (p K_{B} = 22.55) abgeschätzt. Die errechneten p K_{B} -Werte zeigen zum Einen den starken Elektronenzug der -(CF₃)₂C₆H₃-Gruppen und weisen zum Anderen darauf hin, dass der 2,4-(CF₃)₂C₆H₃-Rest einen deutlich größeren –I-Effekt aufweist als der 2,6-(CF₃)₂C₆H₃-Substituent (Kapitel 2.3.1).

(2,6-(CF₃)₂C₆H₃)₂PHO

Das Phosphanoxid **17** wurde im Rahmen dieser Arbeit erstmals hergestellt und in Reinsubstanz isoliert. Es steht im Gleichgewicht mit der entsprechenden Phosphinigsäure **17a**. Das Verhältnis **17/17a** ist dabei vom verwendeten Lösemittel abhängig.

10.1.2. $(2,6-(CF_3)_2C_6H_3)-PO_2H_2$ (1a)

Im Rahmen dieser Arbeit wurde für die Phosphinsäure **1a** eine effektive Synthese entwickelt und die analytischen Daten wurden vervollständigt. Ferner wurde die Molekülstruktur von **1a** im Festkörper durch Röntgenbeugung am Einkristall ermittelt (Kapitel 2.2.7).

Des Weiteren wurden die Kristallstrukturen von fünf 2,6-Bis(trifluormethyl)phenylphosphinat-Salzen 21-25 bestimmt. Die Ergebnisse dieser Strukturen zeigen, dass, wie bereits in der Literatur berichtet, das P-gebundene Wasserstoffatom keine Wasserstoffbrücken ausbildet. Besonders bemerkenswert sind hier die beiden isostrukturellen Strukturen der wasserfrei kristallisierenden Salze Mn(2,6-(CF₃)₂C₆H₃- PO_2H_2 (**22**) und $Zn(2,6-(CF_3)_2C_6H_3-PO_2H)_2$ (**23**) (Kapitel 2.3.3).

Der Phosphinat-Ligand koordiniert in allen fünf Strukturen über beide Sauerstoffatome. Der Ligand wirkt in allen Fällen überbrückend, eine chelatisierende Koordination wurde nicht beobachtet. In den Salzen 22-24 werden direkte Metall-Phosphinat-Kontakte beobachtet. In den beiden wasserfreien Salzen 22 und 23 wirkt der Phosphinat-Ligand überbrückend zwischen den Metall-Kationen. In den wasserhaltigen Salzen koordiniert der Ligand im Sr-Salz 24 sowohl an das Sr-Kation als auch über Wasserstoffbrückenbindungen zu den Wassermolekülen. In den Salzen 21 25 koordiniert Phosphinat lediglich über und das Wasserstoffbrückenbindungen Wassermolekülen den bzw. zu Ammoniumkationen.

10.1.3. Arylphosphane und Arylphosphinsäuren mit besonderen Substituenten

Der präparative Zugang und die Charakterisierung mittels Multikern-NMR-Spektroskopie von acht neuen Organophosphorverbindungen (**28a,b,e**, **29**, **30a,b**, **33a** und **34**) ist in den Kapiteln 2.4 und 2.5 beschrieben.

Dichlorphosphans 28b Die Svnthese des ausgehend von den sich entsprechenden C₆F₅-Grignard-Reagenzien 27b,c erweist als ungünstig, da auf diese Weise 28b nur in schlechten Ausbeuten erhalten werden kann. Die analoge C_6F_5Li -Spezies **27a** hingegen erweist sich als zu reaktiv gegenüber PCl₃. Im Rahmen dieser Arbeit wurde daher ein einfacher und effizienter Zugang zum Bis(diethylaminophosphan) 28a entwickelt. Ausgehend von dieser wertvollen Ausgangsverbindung wurde das Dichlorphosphan 28b in quantitativer Ausbeute dargestellt. Ferner wurde erstmals eine effiziente Synthesestrategie für die Pentafluorphenyl-Phosphinsäure **29** entwickelt. Ausgehend von **28a** kann die starke Säure 29 nur in schlechten Ausbeuten als Diethylaminosalz isoliert werden. Die Synthese gelingt effektiver über die Zwischenstufe des Dichlorphosphans **28b** und anschließender Hydrolyse.

Der Pyridin-2-yl-Rest stellt synthetisch eine Herausforderung dar. Die lithiierte Spezies ist zu reaktiv gegenüber PCl₃; es wird das dreifach substituierte Phosphan **33b** erhalten. Im Rahmen dieser Arbeit konnte das bislang unbekannte Bis(diethylaminophosphan) **33a** dargestellt werden und daraus die Phosphinsäure **34** × 0.11 HNEt₂ erstmals systematisch synthetisiert werden.

10.2. Aminophosphon und -phosphinsäuren

Im Rahmen dieser Arbeit wurde die Molekülstruktur im Kristall von acht Aminophosphon--phosphinsäuren (35-42)durch freien und Röntgenbeugung am Einkristall bestimmt. Ferner ist es gelungen die Aminophosphonat-Metallsalzen Kristallstruktur von sechs (43 - 49)auszulösen. Im letzten Teil von Kapitel 3 ist die Synthese von Phosphonsäure-Supermesitylund -(-)-Menthylestern sowie die Darstellung und Kristallstruktur von zwei Tritylphosphinat-Metallsalzen beschrieben.

10.2.1. Freie Säuren

Strukturbestimmend sind hier die ausgebildeten Wasserstoffbrückenbindungen. Die Säuren liegen im Kristall in allen Fällen in der zwitterionischen Ammonium-hydrogenphosphonat- bzw. phosphinat-Struktur vor. Die Kristallstrukturen können hinsichtlich ihrer Strukturelemente in drei Gruppen unterteilt werden.

KETTEN ALS STRUKTURBESTIMMENDES ELEMENT

Bei der ß-Aminophosphonsäure **36** und den a-Aminophosphonsäuren $H_2N-CHR-PO_3H_2$ (**35**: R = Me; **42**: R = H) mit sterisch wenia anspruchsvollen Substituenten R sind die starken Wasserstoffbrücken zwischen den Hydrogenphosphonat-Gruppen strukturbestimmend. Durch diese Wasserstoffbrücken werden die Moleküle im Kristall zu Ketten verknüpft (Primärstruktur). Diese Ketten sind durch die Wasserstoffbrücken zwischen den Ammonium- und Phosphonat-Gruppen quervernetzt (Sekundärstruktur).

DISÄUREN – DIMERE ALS STRUKTURBESTIMMENDES ELEMENT

In der Kristallstruktur der Diphosphonsäure **39** und der Phosphono-Carbonsäure **40** werden als strukturbestimmendes Motiv durch die Wasserstoffbrücken der Hydrogenphosphonat-Gruppen Dimere ausgebildet (Primärstruktur). Durch die nicht dissoziierte Phosphonsäurebzw. Carbonsäuregruppe werden diese zu Ketten verknüpft (Sekundärstruktur).

SCHICHTEN ALS STRUKTURBESTIMMENDES ELEMENT

Bei den a-Aminophosphon- bzw. –phosphinsäuren mit sterisch anspruchsvolleren Resten am a-Kohlenstoffatom (**37**: R = Et; **38**: R = Ph) ist das H-Atom der Hydrogenphosphonat-Gruppe nicht am Wasserstoffbrückensystem beteiligt. In der Kristallstruktur der Säure **41** werden durch Wasserstoffbrücken zu den Strukturwasser-Molekülen Dimere ausgebildet. Durch die Wasserstoffbrücken der Ammonium-Gruppen der Säuren **37**, **38** und **41** werden als strukturbestimmendes Element Schichten ausgebildet.

10.2.2. Metall-Phosphonat-Salze

Mit Ausnahme von **49** können in allen untersuchten Salzen (**43**–**48**) direkte Metall-Phosphonat-Wechselwirkungen beobachtet werden. Dies ist

bemerkenswert, da die Metallsalze aus wässriger Lösung kristallisiert wurden; Die Methan-bis(hydrogenphosphonate) **46** und **47** kristallisieren wasserfrei aus. In **49** liegt der Phosphonsäure-Ligand in der sekundären Koordinationssphäre des Metallions und ist über Wasserstoffbrücken an die Wassermoleküle des $[Cr(H_2O)_6]^{3+}$ -Oktaeders gebunden.

Die Primärstruktur der Salze wird durch die Metall-Phosphonat- bzw. Metall-Wasser-Wechselwirkungen bestimmt, die Sekundärstruktur wird durch die Wasserstoffbrückenbindungen zwischen den Ammonium-, Wasser und Phosphonat-Gruppen definiert.

KOORDINATIONSMODUS DER PHOSPHONATE AN DEN METALLZENTREN

In den Metall-Phosphonat-Salzen **43–48** wirkt der Phosphonat-Ligand als überbrückender Ligand, eine chelatisierende Koordination kann nicht beobachtet werden. Dabei wird sowohl die Koordination von nur einem Sauerstoffatom der Phosphonat-Gruppe an zwei Metall-Kationen (**45**), als auch die Koordination von zwei Sauerstoffatomen an je ein Metall-Kation (**43**) und die Koordination von allen drei Sauerstoffatomen der Phosphonat-Gruppe an je ein Metall-Kation (**44ii, 46, 48**) beobachtet.

In den Salzen 44i, 44iii und 47 liegen innerhalb des Salzes verschiedene Koordinationsmodi nebeneinander vor: In den Salzen 44i und 44iii koordiniert ein Sauerstoffatom an ein Metallzentrum und ein Sauerstoffatom der Phosphonat-Gruppe an zwei Metall-Kationen. In der Kristallstruktur von 47 werden für alle 6 Sauerstoffatome der Phosphonat-Gruppen Metall-Sauerstoff-Wechselwirkungen beobachtet. Drei Sauerstoffatome koordinieren an ein Metall-Kation, zwei der Sauerstoffatome an je zwei Kationen und eines der O-Atome an drei Metall-Zentren.

MODIFIKATIONEN VON $Li(O_3P-CH_2-NH_3) \times H_2O$

Ferner ist es im Rahmen dieser Arbeit gelungen drei Modifikationen von $Li(O_3P-CH_2-NH_3) \times H_2O$ (44) strukturell zu charakterisieren. Die Modifikationen kristallisieren aus wässriger Lösung bei Raumtemperatur bzw. bei 70 °C oder aus wässriger Lösung durch eindiffundieren von Methanol. In den Modifikationen 44i und 44iii bilden Ketten in a-Richtung die Primärstruktur aus, in Modifikation 44ii werden durch die Metall-Sauerstoff-Wechselwirkungen als primäres Strukturmotiv Schichten ausgebildet. Die Primärstruktur wird dabei jeweils durch die Wasserstoffbrückenbindungen guervernetzt.

TRITYLPHOSPHINATE

Im Rahmen dieser Arbeit ist es erstmals gelungen, zwei Metallsalze (**58**, **59**) der Tritylphosphinsäure zu isolieren und deren Kristallstruktur durch Röntgenbeugung an Einkristallen aufzuklären. Die Salze kristallisieren aus methanolischer Lösung. Das Bleitritylphosphinat (**58**) ist dabei analog zu den Bleisalzen der Diphenyl- und Bis(*tert*-butyl)phosphinsäure aufgebaut.

10.3. Heterophosphole

10.3.1. Anellierte 1,4,2-Diazaphosphole

Beim Aufbau des 1,4,2-Diazapholspholrings ausgehend von 2-Amino-1,3-thiazolen ist in der Literatur die Frage nach der Regioselektivität der [3+2]-Cyclokondensationsreaktion zum Heterophosphol ausführlich diskutiert.⁹¹⁻⁹⁵

Durch Verwendung des phenylsubstituierten 2-Aminothiazols **64** konnte der Einfluss von sterisch anspruchsvollen Gruppen im Umfeld des σ^2 -Stickstoffatoms am Thiazolring auf die Regioselektivität der [3+2]Cyclokondensation gezeigt werden. Auf diese Weise wurde das neue 1,4,2-Diazaphosphol **70e** regioselektiv dargestellt.

NEUE ANELLIERTE 1,4,2-DIAZAPHOSPHOLE

Im Rahmen dieser Arbeit ist es gelungen erstmals einen chiralen Substituenten in das 1,4,2-Diazaphosphol-Ringsystem einzuführen. Die Synthese des 2-Bromessigsäurementhylesters **(65a)** wurde deutlich vereinfacht und optimiert, sowie über dieses Reagenz die chirale Gruppe in das Heterophosphol eingeführt. Somit ist es gelungen fünf neue 1,4,2-Diazaphzosphole zu synthetisieren, darunter die ersten chiralen Vertreter **70a** und **71a** dieser Substanzklasse.

10.3.2. 2H-1,2,3-Diazaphosphole

Die Darstellung von 2*H*-1,2,3-Diazaphospholen geht von entsprechenden Hydrazonen aus. In der Literatur sind zwar eine Reihe von Hydrazonen als auch von 1,2,3-Diazaphospholen beschrieben, nur in den wenigsten Fällen finden sich jedoch verlässliche und reproduzierbare experimentelle Details. Im Fokus dieser Arbeit stand daher neben der Synthese von neuen Vertretern der 1,2,3-Diazaphosphole die Entwicklung von brauchbaren Synthesen und die Vervollständigung der analytischen Daten der dargestellten Hydrazone und Phosphole.

Die Synthesen der bereits in der Literatur beschriebenen Phosphole **79a,d,k** wurden optimiert und die analytischen Daten vervollständigt. Ferner ist es im Rahmen dieser Arbeit gelungen eine Reihe neuer Diazaphosphole darzustellen und NMR-spektroskopisch zu charakterisieren.

4-DICHLORPHOSPHANYL-2H-1,2,3-DIAZAPHOSPHOLE

In der Literatur sind bislang nur zwei Vertreter der Substanzklasse der 4-Dichlorphosphanyl-2*H*-1,2,3-Diazaphosphole (**77a** und **77b**) und ein Vertreter der Chlor-bis(2*H*-1,2,3-diazaphosphol-4-yl)-phosphane **81** beschrieben.

Im Rahmen dieser Arbeit konnten sechs neue Verbindungen dieser beiden Substanzklassen erstmals synthetisiert und NMR-spektroskopisch charakterisiert werden. Besonders auffällig ist hier die erstmals diskutierte Abhängigkeit der ${}^{2}J_{PP}$ -Kopplungskonstante vom sterischen Anspruch des
Substituenten R^5 . Die beobachtete Kopplungskonstante variiert dabei von 88.3 Hz für R^5 = H in **77e** bis zu 20.1 HZ für R^5 = Naphthalen-1-yl in **77l**.

Eine Ausnahme stellt hier **77g** dar. Die auffallend kleine ${}^{2}J_{PP}$ -Kopplungskonstante in **77g** (19.5 Hz) wird sehr wahrscheinlich durch eine schwache Koordination des Furan-2-yl-Rests an den $\sigma^{3}\lambda^{3}$ -Phosphor verursacht, wodurch die freie Rotation der P-C4-Bindung eingeschränkt wird.

10.3.3. 1,3,4-Thiazaphosphole

Die Synthesen der literaturbekannten Verbindungen **86** und **88** wurden optimiert und die fehlenden NMR-spektroskopischen Daten ergänzt.

Im Rahmen dieser Arbeit wurde auch die Möglichkeit untersucht die bislang unbekannten 1,3,4-Oxazaphosphole und 1,3,4-Selenazaphosphole zu synthetisieren. Der Aufbau des Ringsystems nach dem Synthesekonzept der 1,4,3-Thiazaphosphole gelingt jedoch nicht.

10.3.4. Polyazaphosphapentalene

Es ist im Rahmen dieser Arbeit erstmals gelungen das bislang unbekannte Ringsystem der Tetrazol[1,5-e]-1,2,4,3-triazaphosphole **106** zu synthetisieren.

Das Hexazaphosphapentalen **106** wurde bei der Reaktion von 1*H*-Tetrazol-1,5-diamin (**103**) mit $P(NEt_2)_3$ (**200b**) im Reaktionsgemisch ³¹P-NMR-spektroskopisch nachgewiesen.

10.3.5. 1,2-Additionen von Alkoholen an Heterophospholen

Im Rahmen dieser Arbeit wurde die Stereoselektivität der 1,2-Additionsreaktion von H-aktiven Verbindungen an die P=C- bzw. P=N-Bindung in Heterophospholen untersucht.

Als H-aktive Verbindungen wurden sterisch anspruchsvolle Alkohole mit den Heterophospholen **70a**, **71a**, **71e**, **79a**, **86b** und **118** umgesetzt. Bei

allen Phospholen mit Ausnahme von **71a** und **79a** verläuft die Reaktion spontan bei Raumtemperatur ab.

Durch den Betrag der ${}^{2}J_{PH}$ -Kopplungskonstanten in den Additionsprodukten wurde nach einer Karplus-analogen Beziehung der Diederwinkel zwischen dem freien Elektronenpaar am Phosphor und dem H-Atom am benachbarten C-Atom abgeschätzt. Bei den Umsetzungen wurden mit Ausnahme der Addition an **70a** alle grundsätzlich möglichen Isomere beobachtet.

Bei der Addition von chiralen Alkoholen an achirale Heterophosphole kann kein Einfluss auf die Stereoselektivität der 1,2-Additionsreaktion beobachtet werden.

Überaschenderweise hat auch der chirale Substituent in **71a** keinen Einfluss auf die Stereochemie der Additionsreaktion.

Lediglich das chirale Diazaphosphol **70a** zeigt ein anderes Reaktionsverhalten: Bei der Addition von (–)-Menthol an **70a** können nur die *syn*-Additionsprodukte **131a** und **132a** im ³¹P-NMR-beobachtet werden. Das (R/S)- bzw. (S/R)-Isomerenverhältnis liegt bei 1.9:1, der Enantiomerenüberschuss für die Addition am Phosphor beträgt somit *ee* = 31 %.

Bei *in situ*-Oxidation der 1,2-Additionsprodukte durch Schwefel werden die Sulfide aller vier möglichen Additionsprodukte beobachtet. Der Enantiomerenüberschuss der Additionsreaktion von (–)-Menthol an **70a** beträgt ee = 31 %. Für die Addition von (–)-Pantolacton **70a** in Anwesenheit von Schwefel liegt ein Enantiomerenüberschuss von ee = 26 % vor.

11. Experimenteller Teil

11.1. Analytik

11.1.1. NMR-Spektroskopie

Für die Aufnahme von NMR-Spektren standen drei Geräte der Firma JEOL zur Verfügung:

Eclipse 270+(B = 6.34545 T; 270 MHz)Eclipse 400+(B = 9.38977 T; 400 MHz)ECX 400(B = 9.39916 T; 400 MHz)

11.1.1.1. Standards und Messfrequenzen

Die Standards für alle Messungen werden extern angewendet.

Kern	Standard	Messfrequenz [MHz]		
	$(\delta = 0.00 \text{ ppm})$	J270	J400	J400e
^{1}H	Me ₄ Si	270.1661	399.7821	400.1823
¹³ C	Me ₄ Si	67.9395	100.5345	100.6259
¹⁹ F	CCl₃F	254.1885	376.1711	376.5475
³¹ P	H ₃ PO ₄ (85 %)	109.3651	161.8347	161.9967
^{14}N	MeNO ₂		28.8894	28.8894
¹⁵ N	MeNO ₂	27.3859	40.5247	40.5098
⁷⁷ Se	Me ₂ Se	51.5247	76.2444	76.3207

Sollte für die ¹H-NMR- oder ¹³C-NMR-Spektroskopie ein interner Standard benötigt werden, wird auf das Signal der vollständig nicht deuterierten Verunreinigung des verwendeten deuterierten Lösemittels referenziert. Als Referenz für dieses Signal werden die chemischen Verschiebungswerte aus der Literatur¹⁵³ verwendet.

11.1.1.2. Locksignal

Um auch aus Reaktionslösungen ohne deuterierte Lösemittel eine gute Qualität der Spektren zu erzielen, werden Kapillaren mit deuterierten Lösemitteln als Locksubstanz verwendet. Hierzu werden Schmelzpunktsbestimmungskapillaren mit einem Durchmesser von 0.9– 1.1 mm zu ca. dreiviertel mit Benzen-[d⁶] befüllt und dann abgeschmolzen.

11.1.1.3. Temperatur

Alle NMR-Messungen werden standardgemäß bei Raumtemperatur vorgenommen. Sollte nicht bei Raumtemperatur gemessen worden sein,

¹⁵³ H. E. Gottlieb, V. Kotlyar, A. Nudelman, J. Org. Chem. **1997**, 62, 7512–7519.

so wird die jeweilige Messtemperatur explizit zusammen mit den jeweiligen Daten angegeben.

11.1.1.4. Integralausbeuten

Die Anteile der jeweiligen Verbindungen am Gesamtphosphorgehalt in Lösung werden aus den Integralen der ermittelt und sind bezüglich des NOE-Effektes unkorrigiert. Alle Prozentangaben in ³¹P-NMR-Spektren sind so zu interpretieren. Es handelt sich somit um den Prozentanteil am Gesamtphosphor in Lösung, nicht um molare Prozentanteile. Sollten sich in einem Spektrum die angegebenen Prozentanteile identifizierter Verbindungen nicht zu 100 % aufaddieren, werden die zur Vollständigkeit fehlenden Anteile von nicht identifizierten Verbindungen eingebracht.

11.1.2. Massenspektrometrie

Die Massenspektren werden mit einem MStation JMS 700 der Firma JEOL angefertigt. Es stehen mehrere Ionisationsmöglichkeiten zur Verfügung aus denen die für die zu messende Verbindung die jeweils am geeignetsten erscheinende eingesetzt wurde. Für Neutralverbindungen kommen EI, DEI, FAB und ESI in Betracht. Für ionisch aufgebaute Verbindungen ist nur FAB als Ionisationsmethode geeignet, wobei hier nur eines der beiden Ionen in einer Messung erfasst werden kann. Die Probenpräparation stellt eine weitere Einschränkung der Methode dar, so müssen die Substanzen hierbei kurzfristig der Atmosphäre ausgesetzt werden und in eine leicht protische Matrix von *para*-Nitrobenzylakohol eingebettet werden, was teilweise zur Zersetzung der Verbindung führte.

11.1.3. Schwingungsspektroskopie

Die Infrarotspektren wurden an einem Perkin Elmer Spektrum BX FT-IT-System mit einer Dura-SamplIR II-ATR-Einheit der Firma Smith Detecton aufgenommen.

Ramanspektren wurden mit einem Spektrum 2000 NRI FT-IR der Firma Perkin Elmer gemessen. Luftempfindliche Feststoffe wurden direkt im Reaktionsgefäß, unempfindliche Substanzen in Präparategläsern vermessen.

11.1.4. Röntgenanalytik an Einkristallen

Für die Röntgenbeugung wurde das Gerät XCaliburCCD der Firma Oxford Diffraction benutzt. Luftempfindliche Kristalle werden unter Schutzgas aus dem Schlenkgefäß entnommen und sofort auf einen Objektträger in einen Tropfen perfluoriertes Öl (KEL-F[®]) überführt. Nach Selektion eines Kristalls unter dem Polarisationsstereomikroskop wird dieser direkt auf die Spitze eines dünnen Glasfadens aufgebracht und bei laufender Kristallkühleinheit auf das Goniometer des Diffraktometers montiert.

11.1.5. Schmelzpunkte

Die Bestimmung der Schmelzpunkte erfolgt mit einem Gerät der Firma Büchi, Modell B540. Die Substanzen werden in Kapillaren abgefüllt. Bei luft- oder hydrolyseempfindlichen Proben wird die Kapillare oben abgeschmolzen und schnellstmöglich vermessen. Die Schmelzpunkte sind unkorrigiert.

11.1.6. Elementaranalyse

Die Elementaranalytik für C, H, N wurde von der zentralen Analytik des Departments Chemie und Biochemie der LMU München mit einem C, H, N Analysator Elementar Vario EL durchgeführt.

11.2. Arbeitstechnik

11.2.1. Allgemeine Schlenktechnik

Soweit angegeben, wurden die Reaktionen mittels Schlenktechnik unter Inertgasatmosphäre durchgeführt. Als Inertgas wurde Argon von der Firma Messer Griesheim mit einer Reinheit von 4.6 in 50 L Stahlflaschen verwendet. Die eingesetzten Glasgeräte werden vor der Verwendung in einem auf 130 °C temperierten Trockenschrank aufbewahrt. Die jeweils für die Reaktionen benötigten Glasgeräte wurden vor Gebrauch mit Wacker Silicon-Hochvakuumfett (mittel) gefettet und anschließend viermal mit einem Heißluftgebläse im Vakuum (2–6 · 10⁻² mbar) ausgeheizt, sowie mit Argon gespült.

11.2.2. Abfüllen von NMR-Proben unter Schlenk-Bedingungen

Zur Vorbereitung NMR-Proben von luftoder von feuchtigkeitsempfindlichen Substanzen wurde ein speziell konstruierter Probenhalter eingesetzt. Dieser besteht aus einem ca. 7 cm langen Glasrohr, an dem im oberen Drittel ein Schlenkhahn angebracht ist. Das obere Ende ist mit einer NS 14.5-Schliffhülse versehen und kann so mit einem Schliffstopfen verschlossen werden. Am unteren Ende befindet sich ein GL18-Gewinde, das mit einer gelochten Plastiküberwurfmutter (QuickFit[®]), in die ein mit einem kleinen Korkbohrer mittig gelochtes Silikonseptum eingelegt wird, verschlossen werden kann. In diesen Halter kann nur von oben ein Standard-NMR-Röhrchen durch das Septum soweit eingeschoben werden, bis die Halterung verschlossen und über die Schlenkanlage evakuiert, ausgeheizt und mit Inertgas gespült werden kann. Die Probe wird unter Inertgasgegenstrom mit einer 1 mL-Spritze in das Probenrohr injiziert, das Probenrohr so weit nach oben geschoben, bis im Inertgasgegenstrom eine Kappe aufgesetzt werden kann. Bei sehr empfindlichen Proben werden zur Gewährleistung optimaler Inertbedingungen NMR-Röhrchen mit aufgesetzten NS 5-Schliff verwendet. Diese Methode vermeidet das umständliche Verfahren des Abschmelzens der NMR-Röhrchen.

11.3. Chemikalien

Die eingesetzten Chemikalien wurden entweder kommerziell von den Firmen MERCK, FLUKA/ALDRICH/RIEDL-DE-HÄHN, ACROS ORGANICS, ABCR und CHEMETALL bezogen oder waren im Arbeitskreis KLAPÖTKE/KARAGHIOSOFF vorhanden.

11.3.1. Absolute Lösemittel

Die verwendeten Kohlenwasserstoffe Pentan, Hexan, Benzen, Toluen werden ebenso wie die Ether THF, Diethylether und *tert*-Butylmethylether (TBME) über elementarem Natrium mit Benzophenon als Indikator getrocknet und vor Verwendung abdestilliert. Dichlormethan wird über Calciumhydrid und Acetonitril über Phosphorpentoxid getrocknet, beide werden vom Trockenmittel vor Verwendung frisch abdestilliert.

11.3.2. Stickstoffbasen (NEt₃ und TMEDA)

Die verwendeten Stickstoffbasen NEt₃ und TMEDA wurden mit Kaliumhydroxid vorgetrocknet, anschließend 24 h mit Calciumhydrid refluxiert.¹⁵⁴ Das getrocknete Amin wird unter Argon-Atmosphäre auf trockenes Molekularsieb (4 Å) destilliert und unter Argon aufbewahrt.

11.3.3. Eduktspektren

Zum Vergleich mit dargestellten Verbindungen wurden – soweit in der Literatur nicht vorhanden – Spektren von eingesetzten Verbindungen aufgenommen.

11.3.3.1. Dichlor(phenyl)phosphan

Für Dichlor(phenyl)phosphan konnten in der Literatur keine Werte für Phosphor-Kohlenstoff-Kopplungen gefunden werden.

³¹P-NMR (109.4 MHz, CDCl₃): δ /ppm = 162.1 (t, ³J_{PH} = 8.2 Hz). ¹H-NMR (270.2 MHz, CDCl₃): δ /ppm = 7.62–7.54 (m, 2H, C_o-H), 7.14– 7.02 (m, 3H, C_m-H, C_p-H). ¹³C-{¹H}-NMR (67.9 MHz, CDCl₃): δ /ppm = 140.2 (d, ¹J_{PC} = 52.3 Hz , C_i), 132.6 (s, C_p), 130.1 (d, ²J_{PC} = 31.4 Hz, C_o), 128.9 (d, ⁴J_{PC} = 8.9 Hz, C_m).

¹⁵⁴ W. L. F. Armarego, Christina L. L. Chai, *Purification of Laboratory Chemicals*, 6th edition, Elsevier, Oxford, **2009**.

11.4. Experimente

11.4.1. Ausgangsverbindungen

11.4.1.1. Tris(dimethylamino)phosphan (200a)

$$Me^{-78 \circ C} Me^{-78 \circ C} Me_{2} NMe_{2}$$

In einem ausgeheizten und mit Ar-Atmosphäre gefüllten 4 L-Dreihalskolben mit aufgesetztem kühlbaren Tropftrichter und KPG-Rührer wird PCl_3 (43.62 mL, 68.665 g, 500.0 mmol) in Diethylether (abs., 2 L) vorgelegt und auf -78 °C gekühlt. Anschließend wir in den kühlbaren Tropftrichter bei –78 °C Dimethylamin (201.85 mL, 135.240 a, 3000.0 mmol; $\rho = 0.67 \text{ g} \cdot \text{cm}^{-3} @ 7 \circ \text{C}$ einkondensiert. Das einkondensierte Dimethylamin wird über einen Zeitraum von etwa 2 h zu dem PCl₃ getropft, wobei eine starke Niederschlagbildung beobachtet werden kann. Nach beendetem Zutropfen wird die Reaktionslösung langsam auf Raumtemperatur erwärmt. dabei muss auf einen ausreichenden Druckausgleich geachtet werden. Der Reaktionsfortschritt wird im ³¹P-NMR überwacht.

Das entstandene Dimethylammoniumchlorid wird abgefiltert und dreimal mit Diethylether (abs., je 100 mL) gewaschen. Das Lösemittel wird vom Filtrat abdestilliert und der erhaltene Rückstand wird bei Atmosphärendruck destilliert. Man erhält Tris(dimethylamino)phosphan (**200a**)(b.p. = 115 °C, 54.561 g, 334.3 mmol, 67 %) als farblose Flüssigkeit.

³¹P-NMR (162.0 MHz, Et₂O): δ /ppm = 125.1 (bs; $\Delta_{V_2} \approx 75$ Hz). ³¹P-NMR (161.8 MHz, C₆D₆): δ /ppm = 124.0 (bs; $\Delta_{V_2} \approx 54$ Hz). ¹H-NMR (399.8 MHz, C₆D₆): δ /ppm = 2.36 (d, ³J_{PH} = 9.2 Hz). ¹³C-NMR (100.5 MHz, C₆D₆): δ /ppm = 38.0 (qdq, ¹J_{CH} = 133.9 Hz, ²J_{PC} = 19.0 Hz, ⁴J_{CH} = 4.5 Hz). ¹⁴N-NMR (28.9 MHz, C₆D₆): δ /ppm = -353 (s).

11.4.1.2. Tris(diethylamino)phosphan (200b)

$$Et \xrightarrow{\mathsf{H}} Et \xrightarrow{\mathsf{PCI}_3} \underbrace{\xrightarrow{\mathsf{Et}_2\mathsf{O}}}_{0 \ \mathsf{o} \ \mathsf{C}} \underbrace{\mathsf{Et}_2\mathsf{N}}_{\mathsf{P}} \underbrace{\mathsf{NEt}_2}_{\mathsf{NEt}_2}$$

Die literaturbekannte Synthese¹⁵⁵ zur Darstellung von **200b** wurde optimiert und die Verbindung vollständig NMR-spektroskopisch charakterisiert.

¹⁵⁵ K. Yamana, Y. Nishijima, A. Oka, H. Nakano, O. Sangen, H. Ozaki, T. Shimidzu, *Tetrahedron* **1989**, *45*, 4135–4140.

In einem ausgeheizten und mit Ar-Atmosphäre gefüllten 2 L-Schlenkkolben mit aufgesetztem kühlbaren Tropftrichter wird PCI₃ (43.62 mL, 68.665 g, 500.0 mmol) in Diethylether (abs., 750 mL) gelöst und 0 °C abgekühlt. Anschließend wird eine auf 0 °C gekühlte Lösung von Diethylamin (309.04 mL, 219.420 g, 3000.0 mmol)) in Diethylether (abs., 250 mL) über einen Zeitraum von ca. 2 h zugetropft. Während des Zutropfens kann die Bildung von großen Mengen eines farblosen Niederschlages beobachtet werden. voluminösen Nach beendetem Zutropfen wird die Reaktionslösung langsam auf Raumtemperatur erwärmt, wobei auf einen ausreichenden Druckausgleich geachtet werden und über Nacht bei dieser Temperatur gerührt. sollte, Der Reaktionsfortschritt wird im ³¹P-NMR überwacht.

Der gebildete farblose Diethylammoniumchlorid wird abgefiltert und dreimal mit Diethylether (abs., je 75 mL) gespült.

Aufbau der Schlenkfritte

Anschließend wird das Lösemittel *in vacuo* entfernt und der erhaltene Rückstand im Vakuum destilliert.

Aufbau der Destillationsapparatur

Man erhält Tris(diethylamino)phosphan (**200b**) als farblose, wenig viskose Flüssigkeit (104.613 g, 85 %, b.p. = $53-58 \circ C@8.4 \cdot 10^{-2}$ mbar).

³¹P-NMR (109.4 MHz, CDCl₃): δ /ppm = 119.3 (tridec, ³J_{PH} = 8.1 Hz). ¹H-NMR (270.2 MHz, CDCl₃): δ /ppm = 3.19 (dq, ³J_{PH} = 8.1 Hz, ³J_{HH} = 7.1 Hz, 12H, NCH₂CH₃), 1.290 (t, ³J_{HH} = 7.1 Hz, 18H, NCH₂CH₃). ¹³C-{¹H}-NMR (67.9 MHz, CDCl₃): δ /ppm = 39.3 (d, ²J_{PC} = 20.0 Hz, NCH₂CH₃), 14.0 (d, ³J_{PC} = 3.0 Hz, NCH₂CH₃)

11.4.1.3. Phenylphosphinsäure (201)

In einem 100 mL-Kolben wird Wasser (3.60 mL, 3.604 g, 200 mmol) in 1,4-Dioxan (50 mL) gelöst und Dichlor(phenyl)phosphan (13,56 mL, 17.898 g, 100 mmol), gelöst in 1,4-Dioxan (2.5 mL), innerhalb von 30 min zugetropft, wobei eine lebhafte Gasentwicklung beobachtet werden kann. Während der Reaktion wird die Temperatur der Reaktionsmischung mit einem Wasserbad bei Raumtemperatur gehalten. Die Reaktionslösung wird 1 h bei Raumtemperatur gerührt und das Lösemittel anschließend *in vacuo* entfernt. Man erhält Phenylphosphinsäure (**201**) als farblosen Feststoff in quantitativer Ausbeute (14.900 g).

³¹P-NMR (109.4 MHz, CDCl₃): δ /ppm = 23.0 (d, ¹J_{PH} = 572.0 Hz). ¹H-NMR (270.2 MHz, CDCl₃): δ /ppm = 11.11 (s, 1H, P-OH), 7.79–7.70 (m, 2H, C_o-H), 7.58 (d, ¹J_{PH} = 572.0 Hz, 1H, P-H), 7.58–7.51 (m, 1H), 7.46–7.40 (m, 2H). ¹³C-{¹H}-NMR (67.9 MHz, CDCl₃): δ /ppm = 133.1 (d, J_{PC} = 2.7 Hz, C_p), 130.9 (d, J_{PC} = 12.3 Hz, C_o), 130.4 (d, ¹J_{PC} = 136.8 Hz, C_i), 128.8 (d, J_{PC} = 14.1 Hz, C_m).

11.4.2. Arylphosphane und deren Hydrolyseprodukte

11.4.2.1. (2,6-Bis(trifluormethyl)phenyl)dichlorphosphan (13a)

In einem ausgeheizten und mit Ar-Atmosphäre gefüllten 100 mL-Schlenkkolben wird TMEDA (6.34 mL, 4.880 g, 42.0 mmol) in Diethylether (abs., 30 mL) vorgelegt und eine 2.5 molare Lösung von *n*-BuLi in Hexan (16 ml, 40.0 mmol) zugegeben. Die Lösung wird auf –78 °C gekühlt und 1,3-Bis(trifluormethyl)benzen (6.16 mL, 8.564 g, 40.0 mmol) langsam über eine Spritze zugetropft, wobei eine lebhafte Gasentwicklung eintritt und sich die Reaktionslösung dabei braun verfärbt. Es wird 30 min bei –78 °C und anschließend weitere 60 min bei Raumtemperatur gerührt, wobei sich die Braunfärbung deutlich intensiviert.

In einem weiteren ausgeheizten und mit Ar-Atmosphäre gefüllten 250 mL- Schlenkkolben wird PCl₃ (1.74 mL, 2.747 g, 20.0 mmol) in Diethylether (abs., 20 mL) vorgelegt, auf –78 °C gekühlt und die Lösung von (2,6-bis(trifluormethyl)phenyl)lithium über einen Zeitraum von 60 min zugetropft. Die Reaktionsmischung wird 30 min bei –78 °C und anschließend über Nacht bei Raumtemperatur gerührt, gefiltert und zweimal mit Diethylether (abs., je 10 mL) gespült.

Das Lösemittel wird *in vacuo* entfernt und der schwarz-braune Rückstand im Vakuum destilliert. Man erhält (2,6-Bis(trifluormethyl)phenyl)dichlorphosphan (3.378 g, 54 %, b.p. = 45 °C@ $7.5 \cdot 10^{-2}$ mbar) als farblose, leicht bewegliche Flüssigkeit.

³¹P-NMR (109.4 MHz, CDCl₃): δ /ppm = 148.3 (sept, ⁴J_{PF} = 61.5 Hz). ¹⁹F-NMR (254.2 MHz, CDCl₃): δ /ppm = -53.2 (d, ⁴J_{PF} = 61.5 Hz). ¹H-NMR (270.2 MHz, CDCl₃): δ /ppm = 8.02 (d, ³J_{HH} = 7.7 Hz, 2H, C_m-H), 7.78 (t, ³J_{HH} = 7.7 Hz, 1H, C_p-H). ¹³C-{¹H}-NMR (67.9 MHz, CDCl₃): δ /ppm = 138.9 (d, ¹J_{PC} = 106.2 Hz, C_i), 134.9 (qd, ²J_{FC} = 32.2 Hz, ²J_{PC} = 21.9 Hz, C_o), 132.9 (s, C_p), 131.5 (q, ³J_{FC} = 5.6 Hz, C_m), 123.5 (qd, ¹J_{FC} = 276.1 Hz, ³J_{PC} = 4.6 Hz, CF₃). ¹³C-{¹⁹F}-NMR (67.9 MHz, CDCl₃): δ /ppm = 138.9 (d, ¹J_{PC} = 106.2 Hz, C_i), 134.9 (dd, ²J_{PC} = 21.9 Hz, J_{CH} = 8.3 Hz, C_o), 132.9 (d, ¹J_{CH} = 170.0 Hz, C_p), 131.5 (d, ¹J_{CH} = 167.6, C_m), 123.5 (d, ³J_{PC} = 4.6 Hz, CF₃).

11.4.2.2. Bis(2,6-bis(trifluormethyl)phenyl)chlorphosphan (11)

In einem ausgeheizten und mit Ar-Atmosphäre gefüllten 100 mL-Schlenkkolben wird TMEDA (9.51 mL, 7.321 g, 63.0 mmol) in Diethylether (abs., 25 mL) vorgelegt und eine 2.5 molare Lösung von *n*-BuLi in Hexan (24 ml, 60.0 mmol) zugegeben. Die Lösung wird auf 0 °C gekühlt und 1,3-Bis(trifluormethyl)benzen (9.24 mL, 12.847 g, 60.0 mmol) langsam über eine Spritze zugetropft, wobei eine lebhafte Gasentwicklung eintritt, sich die Reaktionslösung braun verfärbt und nach ca. 10 min deutlich viskoser wird. Es wird 15 min bei 0 °C und anschließend weitere 60 min bei Raumtemperatur gerührt, wobei sich die Braunfärbung deutlich intensiviert.

In einem weiteren ausgeheizten und mit Ar-Atmosphäre gefüllten 250 mL- Schlenkkolben wird PCI_3 (2.61 mL, 4.120 g, 30.0 mmol) in Diethylether (abs., 10 mL) vorgelegt, auf 0 °C gekühlt und die Lösung von (2,6-bis(trifluormethyl)phenyl)lithium über einen Zeitraum von 10 min zugetropft. Die Reaktionsmischung wird 15 min bei 0 °C und anschließend über Nacht bei Raumtemperatur gerührt. Anschließend wir *n*-Pentan (abs., 10 mL) zugegeben, gefiltert und zweimal mit *n*-Pentan (abs., je 10 mL) gespült.

Das Lösemittel wird in vacuo entfernt und der schwarz-braune Rückstand im Vakuum destilliert. Nachdem das (2,6b.p. = 47-Bis(trifluormethyl)phenyl)dichlorphosphan (1.411 g, 15 %, 53 °C@8·10⁻² mbar) vollständig abdestilliert ist, kann Bis(2,6bis(trifluormethyl)phenyl)chlorphosphan aus dem braunen Rückstand in Form von farblosen Kristallen (5.379 g, 36 %, 110 °C@ $8 \cdot 10^{-2}$ mbar) absublimiert werden.

³¹P-NMR (109.4 MHz, CDCl₃): δ/ppm = 78.2 (tridec, ${}^{4}J_{PF}$ = 41.9 Hz). ¹⁹F-NMR (254.2 MHz, CDCl₃): δ/ppm = -53.6 (d, ${}^{4}J_{PF}$ = 41.9 Hz). ¹H-NMR (270.2 MHz, CDCl₃): δ/ppm = 7.90 (dd, ${}^{3}J_{HH}$ = 7.9 Hz, ⁴J_{PH} = 2.2 Hz, 2H, C_m-H), 7.68 (t, ${}^{3}J_{HH}$ = 7.9 Hz, 1H, C_p-H). ¹³C-{¹H}-NMR (67.9 MHz, CDCl₃): δ/ppm = 139.6 (d, ${}^{1}J_{PC}$ = 86.1 Hz, C_i), 134.5 (qd, ${}^{2}J_{FC}$ = 33.0 Hz, ${}^{2}J_{PC}$ = 14.1 Hz, C_o), 131.4 (dq, ³J_{FC} = 3.2 Hz, ${}^{3}J_{PC}$ = 3.2 Hz, C_m), 130.6 (s, C_p), 123.5 (qd, ${}^{1}J_{FC}$ = 275.9 Hz, ³J_{PC} = 1.8 Hz, CF₃). ¹³C-{¹⁹F}-NMR (67.9 MHz, CDCl₃): δ/ppm = 139.6 (d, ${}^{1}J_{PC}$ = 86.1 Hz, C_i), 134.5 (dd, ${}^{2}J_{PC}$ = 14.1 Hz, J_{CH} = 7.8 Hz, C_o), 131.4 (dd, ${}^{1}J_{CH}$ = 166.9 Hz, ${}^{3}J_{CH}$ = 7.8 Hz, C_m), 130.6 (d, ${}^{1}J_{CH}$ = 169.5, C_p), 123.5 (dd, ${}^{3}J_{CH} = 4.5 \text{ Hz}$, ${}^{3}J_{PC} = 1.8 \text{ Hz}$, CF₃). **XRD:** *P*-1; *a* = 8.2289(3) Å; *b* = 8.8432(3) Å; *c* = 26.1416(8) Å; *a* = 82.811(3)°; β = 87.158(3)°; γ = 65.843(3)°; *V* = 1722.08(10) Å³; *Z* = 4.

In einem ausgeheizten und mit Ar-Atmosphäre gefüllten 50 mL-Schlenkkolben wird TMEDA (3.77 mL, 2.902 g, 25.0 mmol) in Diethylether (abs., 20 mL) vorgelegt und eine 2.5 molare Lösung von *n*-BuLi in Hexan (10 ml, 25 mmol) zugegeben. Die Lösung wird auf 0 °C gekühlt und 1,3-Bis(trifluormethyl)benzen (3.08 mL, 4.282 g, 20.0 mmol) langsam über eine Spritze zugetropft, wobei eine lebhafte Gasentwicklung eintritt und sich die Reaktionslösung dabei braun verfärbt. Es wird 15 min bei 0 °C und anschließend weitere 30 min bei Raumtemperatur gerührt, wobei sich die Braunfärbung deutlich intensiviert.

In einem weiteren ausgeheizten und mit Ar-Atmosphäre gefüllten 100 mL- Schlenkkolben wird PCl₃ (0.44 mL, 0.687 g, 5.0 mmol) in Diethylether (abs., 5 mL) vorgelegt und Tris(diethylamino)phosphan (2.74 mL, 2.474 g, 10.0 mmol) zugegeben. Die Lösung trübt bei der Zugabe leicht ein, klart aber nach 5 min rühren bei Raumtemperatur wieder auf. Die Lösung von Bis(diethylamino)chlorphosphan wird auf 0 °C gekühlt und die Lösung von (2,6-bis(trifluormethyl)phenyl)lithium über einen Zeitraum von 30 min zugetropft. Die Reaktionsmischung wird 15 min bei 0 °C und anschließend über Nacht bei Raumtemperatur gerührt. Anschließend wird n-Pentan (abs., 10 mL) zugegeben, gefiltert und zweimal mit n-Pentan (abs., je 10 mL) gespült.

Das Lösemittel wird *in vacuo* entfernt und der schwarz-braune Rückstand im Vakuum destilliert. Man erhält eine 1.7:1-Mischfraktion von Bis(diethylamino)(2,6-bis(trifluormethyl)phenyl)phosphan (**13b**) und Bis(diethylamino)(2,4-bis(trifluormethyl)phenyl)phosphan (**16b**) (4.264 g, 73 %, b.p. = 57 °C@5.1·10⁻² mbar) als leuchtend oranges, leicht bewegliches Öl, das destillativ nicht mehr weiter aufgetrennt werden kann.

³¹P-{¹H}-NMR (162.0 MHz, **C₆D₆):** δ /ppm = 114.5 (sept, ${}^{4}J_{\text{PF}} = 41.5 \text{ Hz}, 63 \%, \mathbf{13b}, 93.2 (q, {}^{4}J_{\text{PF}} = 49.9 \text{ Hz},$ 37 %, **16b**). ³¹P-{¹⁹F}-NMR (162.0 MHz, C₆D₆): δ /ppm = 114.5 (non, ³J_{PH} = 8.3 Hz, 63 %, **13b**), 93.2 (non, ${}^{3}J_{PH} = 7.7$ Hz, 37 %, **16b**). ¹⁹F-NMR (376.5 MHz, C_6D_6): $\delta/\text{ppm} = -55.9$ (d, ${}^4J_{PF} = 41.5$ Hz, 63 %, 13b), -59.0 (d, ${}^{4}J_{PF}$ = 49.9 Hz, 18 %, **16b** C₂-CF₃), -63.4 (s, 19 %, **16b** C₄-CF₃). ¹H-NMR (400.2 MHz, C₆D₆): δ /ppm = 7.91 (s, 1H, 16b C₃-H), 7.66 (d, ${}^{3}J_{HH} = 6.1$ Hz, 1H, **16b** C₆-H), 7.56 (d, ${}^{3}J_{HH} = 7.9$ Hz, 1.7 · 2H, **13b** C_m-H), 7.41 (t, ${}^{3}J_{HH} = 6.1 \text{ Hz}$, 1H, **16b** C₅-H), 6.88–6.81 (m, 1.7 · 1H, **13b** C_p-H), 3.02–2.82 (m, (1+1.7) · 8H, CH₂), 0.93 (t, ${}^{3}J_{HH} = 7.2$ Hz, 1.7 · 12H, **13b** CH₃), 0.93 (t, ${}^{3}J_{HH} = 7.1$ Hz, 12H, **16b** CH₃). 13 C-{¹H}-NMR (100.6 MHz, **C₆D₆):** δ /ppm = 148.6 (dq, ¹J_{PC} = 41.2 Hz, ³J_{FC} = 1.0 Hz, **16b** C₁), 146.8 $(d, {}^{1}J_{PC} = 93.6 \text{ Hz}, \mathbf{13b} \text{ C}_{i}), 134.2 (qd, {}^{2}J_{FC} = 30.8 \text{ Hz}, {}^{2}J_{PC} = 16.1 \text{ Hz}, \mathbf{13b} \text{ C}_{o}), 133.0 (d, {}^{2}J_{PC} = 5.2 \text{ Hz}, \mathbf{16b} \text{ C}_{o}), 132.8 (qd, {}^{2}J_{FC} = 31.0 \text{ Hz},$ ${}^{2}J_{PC} = 20.6 \text{ Hz}$, **16b** C₂), 130.6 (q, ${}^{3}J_{FC} = 6.8 \text{ Hz}$, **13b** C_m), 130.4 (q, ${}^{2}J_{FC}$ = 33.1 Hz, , **16b** C₄), 127.8 (s, **13b** C_p), 127.6 (q, ${}^{3}J_{FC}$ = 2.8 Hz, **16b** C₅), 124.9 (q, ${}^{1}J_{FC} = 275.4 \text{ Hz}$, **13b** CF₃), 124.8 (qd, ${}^{1}J_{FC} = 276.1 \text{ Hz}$, ${}^{3}J_{PC} = 2.7$ Hz, **16b** C₂-CF₃), 124.3 (sept, ${}^{3}J_{FC} = 4.9$ Hz, **16b** C₃), 124.3 (q, ${}^{1}J_{FC} = 272.0$ Hz, **16b** C₄-CF₃), 43.8, (d, ${}^{2}J_{PC} = 19.7$ Hz, **13b** N-<u>C</u>H₂CH₃), 43.1 (d, ${}^{2}J_{PC} = 21.4 \text{ Hz}$, **16b** N-<u>C</u>H₂CH₃), 14.5 (s, **16b** N-CH₂<u>C</u>H₃), 13.7 (s, **13b** N-CH₂<u>C</u>H₃). ¹³C-{ⁱ⁹F}-NMR (100.6 MHz, C₆D₆): δ/ppm = 148.6 (dt, ${}^{1}J_{PC} = 41.2 \text{ Hz}, J_{CH} = 6.2 \text{ Hz}, 16b \text{ C}_{1}, 146.8 \text{ (dt, } {}^{1}J_{PC} = 93.6 \text{ Hz},$ ${}^{3}J_{CH} = 5.5 \text{ Hz}, \mathbf{13b} \text{ C}_{i}$, 134.2 (dd, ${}^{2}J_{PC} = 16.1 \text{ Hz}, {}^{2}J_{CH} = 7.8 \text{ Hz}, \mathbf{13b} \text{ C}_{o}$), 133.0 (ddd, ${}^{1}J_{CH} = 164.2 \text{ Hz}$, ${}^{3}J_{PC} = 5.2 \text{ Hz}$, ${}^{2}J_{CH} = 1.8 \text{ Hz}$, **16b** C₆), 132.8 $(dd, {}^{2}J_{PC} = 20.6 \text{ Hz}, {}^{2}J_{CH} = 8.1 \text{ Hz}, 16b \text{ C}_{2}), 130.6 (dd, {}^{1}J_{CH} = 163.4 \text{ Hz},$ $^{2}J_{CH} = 7.8$ Hz, **13b** C_m), 130.4 (d, $^{2}J_{CH} = 8.4$ Hz, **16b** C₄), 127.8 (dt, ${}^{1}J_{CH} = 166.4 \text{ Hz}, {}^{2}J_{CH} = 1.2 \text{ Hz}, \mathbf{13b} \text{ C}_{p}, 127.6 \text{ (dd, } {}^{1}J_{CH} = 160.2 \text{ Hz},$ ${}^{2}J_{CH} = 7.2 \text{ Hz}$, **16b** C₅), 124.9 (d, ${}^{3}J_{CH} = 2.6 \text{ Hz}$, **13b** CF₃), 124.8–124.7 (m, **16b** C₂-CF₃), 124.3 (dd, ${}^{1}J_{CH} = 163.4 \text{ Hz}$, ${}^{3}J_{CH} = 6.4 \text{ Hz}$, **16b** C₃), 124.3 (t, ${}^{3}J_{CH} = 3.9 \text{ Hz}$, **16b** C₄-CF₃), 43.8 (tdq, ${}^{1}J_{CH} = 134.2 \text{ Hz}$, ${}^{2}J_{PC} = 19.7 \text{ Hz}, {}^{2}J_{CH} = 4.3 \text{ Hz}, \mathbf{13b} \text{ N-}\underline{CH}_{2}\text{CH}_{3}), 43.1 (tdq, {}^{1}J_{CH} = 135.0 \text{ Hz}, {}^{2}J_{PC} = 21.4 \text{ Hz}, {}^{2}J_{CH} = 4.2 \text{ Hz}, \mathbf{16b} \text{ N-}\underline{CH}_{2}\text{CH}_{3}), 14.5 (q, {}^{1}J_{CH} = 125.6 \text{ Hz},$ **16b** N-CH₂<u>C</u>H₃), 13.7 (q, ${}^{1}J_{CH} = 125.2$ Hz, **13b** N-CH₂<u>C</u>H₃).

11.4.2.4. 2,4-Bis(trifluormethyl)phenyl)dichlorphosphan (16a)

In einem ausgeheizten und mit Ar-Atmosphäre gefüllten 50 mL-Schlenkkolben wird eine 2.5 molare Lösung von n-BuLi in Hexan (4 ml, 10.0 mmol) in Diethylether (abs., 20 mL) vorgelegt, die Lösung wird auf gekühlt und 1,3-Bis(trifluormethyl)benzen (1.54 mL, 2.141 g, 0 °C 10.0 mmol) langsam über eine Spritze zugetropft, wobei eine lebhafte Gasentwicklung eintritt und man eine klare farblose Lösung erhält. Es wird 30 min bei 0 °C gerührt und anschließend PCl₃ (0.87 mL, 1.373 g, 10.0 mmol) über einen Zeitraum von 30 min über eine Spritze zugetropft, wobei eine stark exotherme Reaktion beobachtet werden kann und sich große Mengen eines farblosen Niederschlags bilden. Die Reaktionsmischung wird 60 min bei 0 °C und anschließend über Nacht bei Raumtemperatur gerührt. Da im NMR der Reaktionslösung kaum phosphorhaltige Reaktionsprodukte gefunden werden konnten, wird das Lösemittel in vacuo entfernt und der Rückstand in Dichlormethan (abs., 10 mL) gelöst.

³¹P-NMR (109.4 MHz, CH₂Cl₂): δ /ppm = 151.9 (q, ⁴J_{PF} = 84.5 Hz, 16a, 1.4 %) 148.3 (sept, ⁴J_{PF} = 61.4 Hz, 13a, 14.4 %), 74.1–70.9 (m, R₂PCl, 27.2 %), -10.2–(–12.1) (m, R₃P, 31.7 %).

11.4.2.5. (2,6-Bis(trifluormethyl)phenyl)phosphinsäure (1a)

In einem 25 mL-Kolben wird (2, 6 -Bis(trifluormethyl)phenyl)dichlorphosphan (13a) (1.654 g, 5.2 mmol)in THF (10 mL) gelöst und anschließend Wasser (2 mL) langsam über eine Spritze zugetropft. Die trübe Lösung klart während der stark exothermen Reaktion dabei auf und es kann eine lebhafte Gasentwicklung beobachtet werden. Nachdem die Reaktion abgeklungen ist, wird weitere 2 h bei Raumtemperatur gerührt und die flüchtigen Bestandteile anschließend in vacuo entfernt. Der zurückbleibende farblose Feststoff wird anschließend in Chloroform (10 mL) refluxiert, die überstehende Lösung abfiltriert und der Rückstand dreimal mit kaltem Chloroform (je 5 mL) gewaschen. Man erhält **1a** als farblosen Feststoff (1.285 g, 88 %). Im ¹³C-NMR kann das Signal des ispo-Kohlenstoffs am Phenylring nicht beobachtet werden.

m.p. = 176 °C. ³¹P-{¹⁹F}-NMR (109.4 MHz, DMSO-d⁶): $\delta/\text{ppm} = 8.0 \text{ (d, } {}^{1}J_{\text{PH}} = 590.5 \text{ Hz}\text{)}. {}^{31}\text{P}-{}^{1}\text{H}-\text{NMR}$ (109.4 MHz, DMSO-d⁶): $\delta/\text{ppm} = 8.0 \text{ (sept, } {}^{4}J_{\text{PF}} = 6.0 \text{ Hz}\text{)}. {}^{19}\text{F}-\text{NMR}$ (254.2 MHz, DMSO-d⁶): $\delta/\text{ppm} = -54.4 \text{ (d, } {}^{4}J_{\text{PF}} = 6.0 \text{ Hz}\text{)}. {}^{31}\text{P}-{}^{19}\text{F}-\text{NMR}$ (109.4 MHz, D₃COD): $\delta/\text{ppm} = 12.1 \text{ (d, } {}^{1}J_{\text{PH}} = 607.9 \text{ Hz}\text{)}, 11.7 ({}^{1}J_{\text{PD}} = 92.9 \text{ Hz}\text{)}.$ ${}^{31}\text{P}-{}^{1}\text{H}-\text{NMR}$ (109.4 MHz, D₃COD): $\delta/\text{ppm} = 12.1 \text{ (sept, } {}^{4}J_{\text{PF}} = 6.5 \text{ Hz}\text{)}, 11.7 \text{ (sept, } {}^{4}J_{\text{PF}} = 6.5 \text{ Hz}, {}^{1}J_{\text{PD}} = 92.9 \text{ Hz}\text{)}.$ (254.2 MHz, D₃COD): δ /ppm = -56.8 (d, ${}^{4}J_{PF}$ = 6.5 Hz). ¹H-NMR (270.2 MHz, CD₃OD): δ /ppm = 8.15 (dd, ${}^{3}J_{HH}$ = 7.9 Hz, ${}^{4}J_{PH}$ = 3.3 Hz, 2H, C_m-H), 7.94 (dsept, ${}^{1}J_{PH}$ = 607.9 Hz, ${}^{5}J_{FH}$ = 2.0 Hz, 1H, PH), 7.93 (t, ${}^{3}J_{HH}$ = 7.9 Hz, 1H, C_p-H). ¹³C-{¹H}-NMR (67.9 MHz, CD₃OD): δ /ppm = 133.2 (qd, ${}^{2}J_{FC}$ = 32.8 Hz, ${}^{2}J_{PC}$ = 5.5 Hz,, C_o), 132.7 (d, ${}^{3}J_{PC}$ = 1.7 Hz, C_m), 130.8 (sept, ${}^{4}J_{FC}$ = 6.9 Hz, C_p), 123.4 (qd, ${}^{1}J_{FC}$ = 274.6 Hz, ${}^{3}J_{PC}$ = 4.5 Hz, CF₃). ¹³C-{¹⁹F}-NMR (67.9 MHz, CD₃OD): δ /ppm = 133.2 (dd, ${}^{2}J_{CH}$ = 7.7 Hz, J_{PC} = 5.5 Hz, C_o), 132.7 (d, ${}^{1}J_{CH}$ = 171.1 Hz, C_m), 130.8 (dt, ${}^{1}J_{CH}$ = 167.9 Hz, ${}^{2}J_{CH}$ = 8.2 Hz, C_p), 123.4 (dd, ${}^{3}J_{CH}$ = 4.4 Hz, ${}^{3}J_{PC}$ = 4.4 Hz, CF₃). XRD: P2₁/C; a = 4.5994(9) Å; b = 14.441(3) Å; c = 14.729(3) Å; β = 95.33(3)°; V = 974.1(3) Å³; Z = 4.

11.4.2.6. Umsetzung von 13b und 16b mit Schwefel

In einem ausgeheizten und mit Ar-Atmosphäre gefüllten NMR-Röhrchen wird eine Spatelspitze Schwefel in C_6D_6 (0.5 mL) suspendiert und anschließend 0.1 mL einer 1.7:1-Mischung von **13b** und **16b** über eine Spritze zugegeben. Die Suspension wird vermengt und nach 12 h wird der Reaktionsfortschritt mittels ³¹P- und ¹⁹F-NMR-Spektroskopie kontrolliert.

³¹P-{¹H}-NMR (162.0 MHz, C₆D₆): δ/ppm = 114.7 (sept, ⁴J_{PF} = 41.5 Hz, 23 %, 13b), 93.2 (q, ⁴J_{PF} = 49.9 Hz, 6 %, 16b), 79.6 (s, 40 %, 13b1), 73.0 (s, 29 %, 16b1). ³¹P-{¹⁹F}-NMR (162.0 MHz, C₆D₆): δ/ppm = 114.7 (non, ³J_{PH} = 9.4 Hz, 23 %, 13b), 93.2 (non, ³J_{PH} = 8.6 Hz, 6 %, 16b), 79.6 (non, ³J_{PH} = 12.5 Hz, 40 %, 13b1), 73.0 (non, ³J_{PH} = 11.8 Hz, 29 %, 16b1). ¹⁹F-NMR (376.5 MHz, C₆D₆): δ/ppm = -52.0 (s, 41 %, 13b1), -54.5 (s, 15 %, 16b1 C₂-CF₃), -55.6 (d, ⁴J_{PF} = 41.5 Hz, 23 %, 13b), -58.7 (d, ⁴J_{PF} = 49.9 Hz, 3 %, 16b C₂-CF₃), -63.0 (s, 3 %, 16b C₄-CF₃), -63.5 (s, 15 %, 16b1 C₄-CF₃).

11.4.2.7. Umsetzung von 13b und 16b mit Selen

In einem ausgeheizten und mit Ar-Atmosphäre gefüllten NMR-Röhrchen wird eine Spatelspitze Selen in C_6D_6 (0.5 mL) suspendiert und anschließend 0.1 mL einer 1.7:1-Mischung von **13b** und **16b** über eine Spritze zugegeben. Die Suspension wird vermengt und nach 12 h wird der Reaktionsfortschritt mittels ³¹P- und ¹⁹F-NMR-Spektroskopie kontrolliert.

³¹P-{¹H}-NMR (162.0 MHz, C₆D₆): δ/ppm = 114.6 (sept, ⁴J_{PF} = 41.5 Hz, 54 %, 13b), 93.2 (q, ⁴J_{PF} = 49.9 Hz, 13 %, 16b), 74.0 (s, ¹J_{SeP} = 768.4 Hz, 4 %, 13b2), 70.2 (s, ¹J_{SeP} = 817.4 Hz, 25 %, 16b2). ³¹P-{¹⁹F}-NMR (162.0 MHz, C₆D₆): δ/ppm = δ/ppm = 114.6 (non, ³J_{PH} = 8.7 Hz, 54 %, 13b), 93.2 (non, ³J_{PH} = 8.1 Hz, 13 %, 16b), 74.0 (non, ³J_{PH} = 12.7 Hz, ¹J_{SeP} = 768.4 Hz, 4 %, 13b2), 70.2 (non, ³J_{PH} = 9.6 Hz, ¹J_{SeP} = 817.4 Hz, 25 % 16b2). ¹⁹F-NMR (376.5 MHz, C₆D₆): δ/ppm = -51.6 (s, 4 %, 13b2), -53.9 (s, 12 %, 16b2 C₂-CF₃), -55.7 (d, ⁴J_{PF} = 41.5 Hz, 60 %, 13b), -58.9 (d, ⁴J_{PF} = 49.9 Hz, 6 %, 16b C₂-CF₃), -63.2 (s, 7 %, 16b C₄-CF₃), -63.6 (s, 12 %, 16b2 C₄-CF₃).

11.4.2.8. Umsetzung von 13b und 16b mit Tellur

In einem ausgeheizten und mit Ar-Atmosphäre gefüllten NMR-Röhrchen wird eine Spatelspitze Tellur in C_6D_6 (0.5 mL) suspendiert und anschließend 0.1 mL einer 1.7:1-Mischung von **13b** und **16b** über eine Spritze zugegeben. Die Suspension wird vermengt und nach 12 h wird der Reaktionsfortschritt mittels ³¹P- und ¹⁹F-NMR-Spektroskopie kontrolliert. Auch nach 7 d kann kein Umsatz bei Raumtemperatur beobachtet werden.

³¹P-{¹H}-NMR (162.0 MHz, C₆D₆): δ /ppm = 114.7 (sept, ⁴J_{PF} = 41.5 Hz, 60 %, 13b), 93.2 (q, ⁴J_{PF} = 49.9 Hz, 36 %, 16b). ³¹P-{¹⁹F}-NMR (162.0 MHz, C₆D₆): δ /ppm = δ /ppm = 114.7 (non, ³J_{PH} = 9.3 Hz, 60 %, 13b, 93.2 (non, ³J_{PH} = 8.2 Hz, 36 %, 16b). ¹⁹F-NMR (376.5 MHz, C₆D₆): δ /ppm = -55.6 (d, ⁴J_{PF} = 41.5 Hz, 65 %, 13b), -58.8 (d, ⁴J_{PF} = 49.9 Hz, 17 %, 16b C₂-CF₃), -63.1 (s, 18 %, 16b C₄-CF₃).

11.4.2.9. Hydrolyse von 11

In einem 25 mL-Kolben wird $(2,6-(CF_3)_2C_6H_3)_2$ PCI **(11)** (0.069 g, 0.14 mmol) in THF (1 mL) gelöst und Wasser (1.00 mL, 1.000 g, 55.5 mmol) langsam über eine Spritze zugetropft. Bei der Zugabe von Wasser erwärmt sich die Lösung leicht und es kann eine Gasentwicklung beobachtet werden. Die Reaktionslösung wird nach Beendigung der Gasentwicklung 4 h bei Raumtemperatur gerührt und anschließend alle flüchtigen Bestandteile *in vacuo* entfernt. Man erhält 134 mg eines farblosen Feststoffes, der in CDCl₃ aufgenommen wird und im NMR vermessen wird.

³¹P-{¹⁹F}-NMR (109.4 MHz, CDCl₃): δ /ppm = 156.7(s, 12 %, 18), 77.9 (s, 83 %, 11), 18.4 (s, 1 %, 20), 2.8 (d, ¹J_{PH} = 558.0 Hz, 3 %, 17), -69.1 (d, ¹J_{PH} = 248.5 Hz, 1 %, 19). ³¹P-{¹H}-NMR (109.4 MHz, CDCl₃): δ /ppm = 156.7 (dtridec, ¹J_{PF} = 962.9 Hz, ⁴J_{PF} = 39.6 Hz, 14 %, 18), 77.9 (tridec, ⁴J_{PF} = 41.9 Hz, 72 %, 11), 18.4 (tridec, ⁴J_{PF} = 5.8 Hz, 2 %, 20), 2.8 (tridec, ⁴J_{PF} = 5.8 Hz, 8 %, 17), -69.1 (tridec, ⁴J_{PF} = 32.9 Hz, 2 %, 19). ¹⁹F-NMR (254.2 MHz, CDCl₃): δ /ppm = -54.1 (d, ⁴J_{PF} = 41.9 Hz, 85 %, 11), -54.8. (dd, ⁴J_{PF} = 5.8 Hz, ⁴J_{FH} = 1.3 Hz, 2 %, 17), -55.6 (dd, ⁴J_{PF} = 39.6 Hz, ⁵J_{FF} = 15.4 Hz, 9 %, 18 CF₃), -58.2 (dd, ⁴J_{PF} = 32.9 Hz, ⁴J_{FH} = 2.4 Hz, 2 %, 19), -181.2 (dtridec, ¹J_{PF} = 962.9 Hz, ⁵J_{FF} = 15.4 Hz, 1 %, 18 P-F)

11.4.2.10. Einkristalle von 17

Die Einkristalle von **17** werden in ein NMR-Röhrchen gegeben und in Diethylether (abs., 0.5 mL) gelöst.

³¹P-{¹⁹F}-NMR (109.4 MHz, Et₂O): δ /ppm = 100.0 (s, 18 %, 17a), 1.0 (d, ¹J_{PH} = 558.0 Hz, 82 %, 17). ³¹P-{¹H}-NMR (109.4 MHz, Et₂O): δ /ppm = 100.0 (tridec, ⁴J_{PF} = 36.7 Hz, 18 %, 17a), 1.0 (tridec, ⁴J_{PF} = 5.8 Hz, 82 %, 17). ¹⁹F-NMR (254.2 MHz, Et₂O): δ /ppm = -55.1 (d, ${}^{4}J_{PF} = 5.8 \text{ Hz}$, **17**), -55.1. (d, ${}^{4}J_{PF} = 36.7 \text{ Hz}$, **17a**). **XRD:** $P2_{1}/n$; a = 9.3152(18) Å; b = 8.1119(13) Å; c = 22.052(4) Å; $\beta = 93.407(17)^{\circ}$; $V = 1663.4(5) \text{ Å}^{3}$; Z = 4.

³¹P-{¹⁹F}-NMR (109.4 MHz, CDCl₃): δ /ppm = 2.8 (d, ¹J_{PH} = 558.0 Hz, 17). ³¹P-{¹H}-NMR (109.4 MHz, CDCl₃): δ /ppm = 2.8 (tridec, ⁴J_{PF} = 5.8 Hz, 17). ¹⁹F-NMR (254.2 MHz, CDCl₃): δ /ppm = -54.8. (dd, ⁴J_{PF} = 5.8 Hz, ⁴J_{FH} = 1.3 Hz, 17).

³¹P-{¹⁹F}-NMR (162.0 MHz, DMA): δ /ppm = 101.8 (s, 13 %, 17a), 2.1 (d, ¹J_{PH} = 558.0 Hz, 87 %, 17). ³¹P-{¹H}-NMR (162.0 MHz, DMA): δ /ppm = 101.8 (tridec, ⁴J_{PF} = 36.7 Hz, 13 %, 17a), 2.1 (tridec, ⁴J_{PF} = 5.8 Hz, 87 %, 17).

11.4.2.11. Einkristalle von 18

Die Einkristalle von **18** werden in ein NMR-Röhrchen gegeben und in deuteriertem Chloroform (0.5 mL) gelöst.

Auf Grund der mäßigen Qualität der vermessenen Einkristalle kann die Struktur nur mit einer Restelektronendichte von 4.908 (s. a. Anhang) lösbar. Diese Restelektronendichte ist im Abstand von 1.291 Å vom Phosphor in Richtung der Position des freien Elektronenpaars am Ψ tetraedrisch koordinierten Phosphoratom lokalisiert.

³¹P-{¹⁹F}-NMR (109.4 MHz, CDCl₃): δ /ppm = 156.7(s). ³¹P-{¹H}-NMR (109.4 MHz, CDCl₃): δ /ppm = 156.7 (dtridec, ¹J_{PF} = 962.9 Hz, ⁴J_{PF} = 39.6 Hz). ¹⁹F-NMR (254.2 MHz, CDCl₃): δ /ppm = -55.6 (dd, ⁴J_{PF} = 39.6 Hz, ⁵J_{FF} = 15.4 Hz, 12F, CF₃), -181.2 (dtridec, ¹J_{PF} = 962.9 Hz, ⁵J_{FF} = 15.4 Hz, 1F, P-F). ¹H-NMR (270.2 MHz, CDCl₃): δ /ppm = 7.94 (dd, ³J_{HH} = 8.0 Hz, ⁴J_{PH} = 1.7 Hz, 2H, C_m-H), 7.70 (t, ³J_{HH} = 8.0 Hz, 1H, C_p-H). XRD: P-1; a = 8.1411(4) Å; b = 9.5031(5) Å; c = 12.2439(6) Å; a = 99.478(4)°; β = 101.413(4)°; γ = 112.423(5)°; V = 827.63(7) Å³; Z = 2.

11.4.2.12. (TMEDAH₂)-(2,6-(CF₃)₂C₆H₃-PO₂H)₂ × 4 H₂O (21)

In einem ausgeheizten und mit Ar-Atmosphäre gefüllten 25 mL-Schlenkkolben wird TMEDA (0.79 mL, 0.610 g, 5.25 mmol) in Diethylether (abs., 3 mL) vorgelegt und eine 2.5 molare Lösung von *n*-BuLi in Hexan (2 ml, 5.0 mmol) zugegeben. Die Lösung wird auf 0 °C gekühlt und 1,3-Bis(trifluormethyl)benzen (0.77 mL, 1.070 g, 5.0 mmol) langsam über eine Spritze zugetropft, wobei eine lebhafte Gasentwicklung eintritt und sich die Reaktionslösung dabei braun verfärbt. Es wird 30 min bei 0 °C und anschließend weitere 60 min bei Raumtemperatur gerührt, wobei sich die Braunfärbung deutlich intensiviert.

In einem weiteren ausgeheizten und mit Ar-Atmosphäre gefüllten 50 mL- Schlenkkolben wird PCl_3 (0.44 mL, 0.687 g, 5.0 mmol) in Diethylether (abs., 10 mL) vorgelegt, auf 0 °C gekühlt und die Lösung von (2,6-bis(trifluormethyl)phenyl)lithium über einen Zeitraum von 30 min zugetropft. Die Reaktionsmischung wird 30 min bei 0 °C, 30min bei Raumtemperatur gerührt und anschließend *n*-Pentan (abs., 10 mL) zugegeben. Nach 12 h Reaktionszeit wir Diethylether (20 mL) und anschließend vorsichtig mit Wasser (30 mL) gequenched, wobei eine leichte Gasentwicklung beobachtet werden kann.

Die Reaktionsmischung wir dreimal mit Chloroform (je 50 mL) extrahiert, die vereinigten organischen Phasen mit Na_2SO_4 getrocknet und das Lösemittel anschließend *in vacuo* entfernt. Aus dem braunen öligen Rückstand können durch lösen in Chloroform (2 mL) und anschließendem Filtern durch Silicagel farblose Einkristalle von **21** in Form von farblosen Prismen erhalten werden.

XRD: *P*-1; a = 7.2223(4) Å; b = 8.6441(4) Å; c = 13.1937(3) Å; $a = 104.960(3)^{\circ}$; $\beta = 100.045(3)^{\circ}$; $\gamma = 91.765(4)^{\circ}$; V = 781.08(6) Å³; Z = 1.

11.4.2.13. $Mn(2,6-(CF_3)_2C_6H_3-PO_2H)_2$ (22)

 $2,6-(CF_3)_2C_6H_3-PO_2H_2$ (**1a**) (0.028 g, 0.1 mmol) wird in Methanol (1 mL) gelöst und anschließend KOH (0.006 g, 0.1 mmol) und MnCl₂ × 4 H₂O (0.010 g; 0.05 mmol) zugegeben. Einkristalle von **22** können aus der schwach rosa Lösung durch langsames Verdunsten des Lösemittels gewonnen werden.

XRD: $P2_1/c$; a = 9.4120(2) Å; b = 14.8185(4) Å; c = 15.7836(4) Å; $\beta = 94.152(2)^\circ$; V = 2195.59(9) Å³; Z = 4.

11.4.2.14. $Zn(2,6-(CF_3)_2C_6H_3-PO_2H)_2$ (23)

2,6-(CF₃)₂C₆H₃-PO₂H₂ (**1a**) (0.014 g, 0.05 mmol) wird in einer Wasser-Aceton-Mischung (3 mL; 2:1 (v/v)) gelöst und anschließend 3.8 µL einer 25 %-igen wässrigen Ammoniaklösung (0.05 mmol) und Zn(NO₃)₂ × 6 H₂O (0.015 g; 0.05 mmol) zugegeben. Einkristalle von **23** können aus der farblosen Lösung durch langsames Verdunsten des Lösemittels gewonnen werden.

XRD: $P2_1/c$; a = 8.7285(3) Å; b = 15.3282(5) Å; c = 15.4161(5) Å; $\beta = 91.070(3)^\circ$; V = 2062.22(14) Å³; Z = 4.

11.4.2.15. $Sr_3(2,6-(CF_3)_2C_6H_3-PO_2H)_6 \times 6 \text{ MeOH} \times 8 H_2O$ (24)

 $2,6-(CF_3)_2C_6H_3-PO_2H_2$ (**1a**) (0.028 g, 0.1 mmol) wird in Methanol (1 mL) gelöst und anschließend KOH (0.006 g, 0.1 mmol) und SrCl₂ × 6 H₂O (0.013 g; 0.05 mmol) zugegeben. Einkristalle von **24** können aus der farblosen Lösung durch langsames Verdunsten des Lösemittels gewonnen werden.

XRD: *Pbcn*; a = 21.0107(5) Å; b = 15.6484(3) Å; c = 24.2524(6) Å; V = 7973.8(3) Å³; Z = 4.

11.4.2.16. $[Ni(H_2O)_6](NH_4)_2(2,6-(CF_3)_2C_6H_3-PO_2H)_4 \times 0.33 H_2O$ (25)

 $2,6-(CF_3)_2C_6H_3-PO_2H_2$ (**1a**) (0.028 g, 0.1 mmol) wird in Methanol (2 mL) gelöst und anschließend 7.5 µL einer 25 %-igen wässrigen Ammoniaklösung (0.1 mmol) und NiCl₂ × 6 H₂O (0.012 g; 0.05 mmol) zugegeben. Einkristalle von **25** können aus der blass grünen Lösung durch langsames Verdunsten des Lösemittels gewonnen werden.

XRD: *P*-1; *a* = 8.1121(4) Å; *b* = 11.5457(3) Å; *c* = 15.5076(6) Å; *a* = 106.788(3)°, β = 103.276(4)°; γ = 100.434(3)°; *V* = 1304.79(9) Å³; *Z* = 1.

In einem ausgeheizten und mit Ar-Atmosphäre gefüllten 50 mL-Schlenkkolben wird PCl_3 (1.45 mL, 2.289 g, 16.7 mmol) in Diethylether (abs., 25 mL) vorgelegt und Tris(diethylamino)phosphan (9.13 mL, 8.245 g, 33.3 mmol) zugegeben. Die Lösung trübt bei der Zugabe leicht ein, klart aber nach 5 min Rühren bei Raumtemperatur wieder auf und wird anschließend für 30 min gerührt.

In einem weiteren ausgeheizten und mit Ar-Atmosphäre gefüllten 250 mL- Schlenkkolben wird Pentafluorbenzen (5.55 mL, 8.403 g, 50.0 mmol) in Diethylether (abs., 150 mL) vorgelegt und auf –78 °C gekühlt. Anschließend wird über einen Zeitraum von 30 min eine 15 %-ige Lösung von *n*-BuLi in Hexan (31.4 ml, 50.0 mmol) zugegeben, wobei eine schwache Gasentwicklung beobachtet werden kann. Die Reaktionslösung wird bei –78 °C für 1 h gerührt und anschließend wird die zuvor erstellte Lösung von Bis(diethylamino)chlorphosphan über einen Zeitraum von 30 min langsam zugetropft. Die Reaktionslösung wird für 1 h bei –78 °C gerührt, anschließend langsam auf Raumtemperatur erwärmt und über Nacht bei dieser Temperatur gerührt. Anschließend wird *n*-Pentan (abs., 10 mL) zugegeben, gefiltert und zweimal mit *n*-Pentan (abs., je 10 mL) gespült.

Das Lösemittel wird *in vacuo* entfernt und der bräunliche Rückstand im Vakuum destilliert. Man erhält $C_6F_5-P(NEt_2)_2$ (**28a**) (14.205 g, 83 %, b.p. = 84 °C@1.2·10⁻¹ mbar) als farbloses, leicht bewegliches Öl, das sich im Laufe der Zeit gelblich verfärbt.

³¹P-{¹⁹F}-NMR (109.4 MHz, CDCl₃): δ /ppm = 80.0 (non, ³J_{PH} = 10.4 Hz). ³¹P-{¹H}-NMR (109.4 MHz, CDCl₃): δ /ppm = 80.0 (s). ¹⁹F-NMR (254.2 MHz, CDCl₃): δ /ppm = -136.6-(-136.8) (m, 2F, C_o-F), -155.7-(-156.0) (m, 1F, C_p-F), -162.5 (bs, 2F, C_m-F). ¹H-NMR (270.2 MHz, CDCl₃): δ /ppm = 2.91 (dq, ³J_{PH} = 10.4 Hz, ³J_{HH} = 7.1 Hz, 8H, NCH₂CH₃), 0.95 (t, ³J_{HH} = 7.1 Hz, 12H, NCH₂CH₃). ¹³C-{¹⁹F}-NMR (67.9 MHz, CDCl₃): δ /ppm = 145.8 (d, ²J_{PC} = 12.2 Hz, C_o), 140.4 (d, ⁴J_{PC} = 2.4 Hz, C_p), 137.4 (d, ³J_{PC} = 2.8 Hz, C_m), 116.6 (d, ¹J_{PC} = 52.5 Hz, C_i), 44.3 (tdq, ¹J_{CH} = 124.4 Hz, ²J_{PC} = 19.1 Hz, ²J_{CH} = 4.3 Hz, N<u>C</u>H₂CH₃), 14.6 (q, ¹J_{CH} = 125.6 Hz, NCH₂CH₃).

11.4.2.18. Umsetzung von (Pentafluorphenyl)lithium mit PCl₃

In einem ausgeheizten und mit Ar-Atmosphäre gefüllten 25 mL-Schlenkkolben wird Pentafluorbenzen (0.22 mL, 0.366 g, 2.0 mmol) in Diethylether (abs., 10 mL) vorgelegt und auf -78 °C aekühlt. Anschließend wird über einen Zeitraum von 15 min eine 2.5 molare Lösung von *n*-BuLi in Hexan (0.8 ml, 2.0 mmol) zugegeben. Die erhaltene klare Lösung wird für 1 h bei dieser Temperatur gerührt und anschließend in einen kühlbaren Tropftrichter überführt. Beim Umfüllen muss darauf geachtet werden, dass die Lösung immer unterhalb von -30 °C gehalten wird. In einem zweiten ausgeheizten und mit Ar-Atmosphäre gefüllten 25 mL- Schlenkkolben wird PCl_3 (0.17 mL, 0.275 g, 2.0 mmol) in Diethylether (abs., 6 mL) vorgelegt, auf -78 °C gekühlt und die Lösung von (Pentafluorphenyl)lithium über einen Zeitraum von ca. 45 min zugetropft. Die Reaktionslösung wird für 2 h bei dieser Temperatur gerührt, anschließend langsam auf Raumtemperatur gebracht und über Nacht gerührt.

³¹P-NMR (109.4 MHz, CDCl₃): δ /ppm = 220.1 (bs, 58 %, PCl₃), 179.4 (s, 4 %), 178.9 (s, 4 %), 136.2 (t, ${}^{3}J_{PF}$ = 62.7 Hz, 5 %, **28b**), 1.7 (bs, 14 %), -73.4 (sept, ${}^{3}J_{PF}$ = 36.2 Hz, 14 %, **28d**).

11.4.2.19. Umsetzung von (Pentafluorphenyl)magnesiumchlorid mit PCl₃

In einem ausgeheizten und mit Ar-Atmosphäre gefüllten 25 mL-Schlenkkolben wird Brompentafluorbenzen (1.25 mL, 2.470 g, 10.0 mmol) in THF (abs., 8 mL) vorgelegt und auf -78 °C gekühlt. Anschließend wird über einen Zeitraum von 20 min eine 14 %-ige Lösung von i-PrMgCl und LiCl (1:1) in THF (13.34 ml, 17.7 mmol) zugegeben und die erhaltene Reaktionssuspension für 30 min bei -78 °C araue gerührt und anschließend für 1 h bei Raumtemperatur gerührt. In einem weiteren ausgeheizten und mit Ar-Atmosphäre gefüllten 50 mL- Schlenkkolben wird PCl₃ (1.09 mL, 1.171 g, 12.5 mmol) in THF (abs., 15 mL) vorgelegt und auf -78 °C gekühlt. Anschließend wird über einen Zeitraum von 30 min Reaktionssuspension des (Pentafluorphenyl)magnesiumchloriddie Lithiumchlorid-Adduktes zugetropft, für 15 min bei dieser Temperatur gerührt und anschließend über Nacht bei Raumtemperatur gerührt.

³¹P-{¹H}-NMR (162.0 MHz, C₆D₆): δ /ppm = 220.1 (s, 35 %; PCl₃), 202.7 (s, 6 %), 194.3 (s, 3 %), 176.0 (s, 3 %), 136.9 (t, ³J_{PF} = 62.4 Hz, 25 %, **28b**), 78.8 (t, ³J_{PF} = 46.3 Hz, 9 %, **28f**), 37.5–36.8 (m, 5 %), – 35.3 (quint, ³J_{PF} = 31.5 Hz, 8 %, **28g**), –73.3 (sept, ³J_{PF} = 36.0 Hz, 3 %, **28d**). ³¹P-{¹⁹F}-NMR (162.0 MHz, C₆D₆): δ /ppm = 220.1 (s, 35 %; PCl₃), 202.7 (s, 6 %), 194.3 (s, 3 %), 176.0 (s, 3 %), 136.9 (s, 25 %, **28b**), 78.8 (sept, ${}^{3}J_{PH} = 19.1$ Hz, 9 %, **28f**), 37.1 (bs, 5 %), -35.3 (septd, ${}^{3}J_{PH} = 19.7$ Hz, ${}^{2}J_{PH} = 6.2$ Hz, 8 %, **28g**), -73.3 (s, 3 %, **28d**).

11.4.2.20. NEt₂/Cl-Austausch von 28a

In einem ausgeheizten und mit Ar-Atmosphäre gefüllten 100 mL-Schlenkkolben wird $C_6F_5-P(NEt_2)_2$ (**28a**) (3.523 g, 10.3 mmol) in *n*-Pentan (abs., 40 mL) gelöst und anschließend auf 0 °C gekühlt. Anschließend wird wasserfreier Chlorwasserstoff mit einer Geschwindigkeit von ca. 1-2 Blasen pro Sekunde durch die Lösung geblubbert. Nach ca. 15 min ist die Argonatmosphäre vollständig verdrängt und der Beginn der Reaktion kann durch das Ausfallen eines farblosen Niederschlages beobachtet werden. Nach ca. 90 min wird der Reaktionsfortschritt NMR-spektroskopisch kontrolliert. In der Reaktionslösung lieat ein 1:1.6-Gemisch aus (Pentafluorphenyl)dichlorphosphan 28b und (Diethylamino)(pentafluorphenyl)chlorphosphan (28e) vor.

³¹P-{¹⁹F}-NMR (109.4 MHz, C₆D₆): δ/ppm = 136.0 (s, , 44 %, 28b), 106.8 (quint, ${}^{3}J_{PH}$ = 12.0 Hz, 56 %, 28e). ${}^{31}P$ -{¹H}-NMR (109.4 MHz, C₆D₆): δ/ppm = 136.0 (t, ${}^{3}J_{PF}$ = 62.4 Hz, 38 %, 28b), 106.8 (t, ${}^{3}J_{PF}$ = 53.2 Hz, 62 %, 28e). ${}^{19}F$ -NMR (254.2 MHz, C₆D₆): δ/ppm = -131.5-(-131.7) (m, 1.4 · 2F, 28e C₀-F), -131.8-(-132.0) (m, 2F, 28b C₀-F), -145.8 (ttd, ${}^{3}J_{FF}$ = 21.0 Hz, ${}^{4}J_{FF}$ = 6.4 Hz, ${}^{5}J_{PF}$ = 1.2 Hz, 1F, 28b C₀-F), -150.9 (ttd, ${}^{3}J_{FF}$ = 20.9 Hz, ${}^{4}J_{FF}$ = 4.9 Hz, ${}^{5}J_{PF}$ = 1.5 Hz, 1.4 · 1F, 28e C_p-F), -160.1-(-160.3) (m, 2F, 28b C_m-F), -161.6-(-161.8) (m, 1.4 · 2F, 28e C_m-F). ¹H-NMR (270.2 MHz, C₆D₆): δ/ppm = 2.92 (dq, ${}^{3}J_{PH}$ = 12.5 Hz, ${}^{3}J_{HH}$ = 7.1 Hz, 4H, NCH₂CH₃, 28e), 0.89 (t, ${}^{3}J_{HH}$ = 7.1 Hz, 6H, NCH₂CH₃, 28e). ${}^{13}C$ -{ ${}^{19}F$ }-NMR (67.9 MHz, C₆D₆): δ/ppm = 147.0 (d, ${}^{2}J_{PC}$ = 18.7 Hz, 28b C₀), 146.7 (d, ${}^{2}J_{PC}$ = 18.7 Hz, 28e C₀), 144.2 (s, 28b C_p) 142.5 (s, 28e C_m), 113.5 (d, ${}^{1}J_{PC}$ = 83.1 Hz, 28b C_i), 113.4 (d, ${}^{1}J_{PC}$ = 64.7 Hz, 28e C_i), 45.0 (tdq, ${}^{1}J_{CH}$ = 126.6 Hz, ${}^{3}J_{PC}$ = 6.2 Hz, ${}^{2}J_{CH}$ = 3.1 Hz, 28e NCH₂CH₃).

Nach ca. 3 h Reaktionszeit wird die Reaktion beendet, die HCl-Atmosphäre durch Argon verdrängt und die viskose Suspension mit *n*-Pentan (abs., 50 mL) versetzt. Der ausgefallene Niederschlag von Diethylammoniumchlorid wird abgefiltert, mit zweimal mit *n*-Pentan (abs., je 10 mL) gespült und das Lösemittel anschließend *in vacuo* entfernt. Man erhält (Pentafluorphenyl)dichlorphosphan (**28b**) in quantitativer Ausbeute (2.683 g, 10.0 mmol)als farbloses hydrolyseempfindliches Öl. ³¹P-{¹⁹F}-NMR (109.4 MHz, C₆D₆): δ /ppm = 136.0 (s). ³¹P-{¹H}-NMR (109.4 MHz, C₆D₆): δ /ppm = 136.0 (t, ³J_{PF} = 62.4 Hz). ¹⁹F-NMR (254.2 MHz, C₆D₆): δ /ppm = -131.8-(-132.0) (m, 2F, C_o-F), -145.8 (ttd, ³J_{FF} = 21.0 Hz, ⁴J_{FF} = 6.4 Hz, ⁵J_{PF} = 1.2 Hz, 1F, C_p-F), -160.1-(-160.3) (m, 2F, C_m-F). ¹³C-{¹⁹F}-NMR (67.9 MHz, C₆D₆): δ /ppm = 147.0 (d, ²J_{PC} = 18.7 Hz, C_o), 144.2 (s, C_p), 137.4 (d, ⁴J_{PC} = 9.4 Hz, C_m), 113.5 (d, ¹J_{PC} = 83.1 Hz, C_i).

11.4.2.21. Hydrolyse von Bis(diethylamino)pentafluorphenylpho sphan (28a)

In einem 25 mL-Kolben wird $C_6F_5-P(NEt_2)_2$ (**28a**) (1.292 g, 3.8 mmol) in THF (10 mL) gelöst und anschließend 20 mL einer halbkonzentrierten wässrigen HCI-Lösung (ca. 18 %) zugegeben. Die Reaktionslösung wurde 1 h bei Raumtemperatur gerührt und die flüchtigen Bestandteile anschließend abrotiert. Der erhaltene Rückstand wird säulenchromatographisch aufgetrennt (Kieselgel 0.035–0.070 mm; MeOH; $R_f \approx 0.60$). Man erhält nach Entfernen des Lösemittels einen leicht gelblichen Feststoff. Nach Umkristallisieren aus Dichlormethan erhält man Diethylammonium-(pentafluorphenyl)phosphinat) **29** × HNEt₂ (0.406 g, 1.3 mmol, 5 %) als farbloses mikrokristallines Pulver.

³¹P-{¹⁹F}-NMR (109.4 MHz, CDCl₃): $\delta/\text{ppm} = 3.4$ (d, ${}^{1}J_{PH} = 612.0 \text{ Hz}$). ${}^{31}P-{}^{1}H}-NMR$ (109.4 MHz, CDCl₃): $\delta/ppm = 3.4$ (s). ¹⁹**F-NMR (254.2 MHz, CDCl₃):** δ /ppm = -136.9-(-137.1) (m, 2F, C₀-F), -144.6 (t, ${}^{3}J_{FF} = 19.9$ Hz, 1F, Cp-F), -160.0-(-160.3) (m, 2F, C_m-F). ¹H-NMR (270.2 MHz, CDCl₃): δ /ppm = 9.31 (bs, 2H, NH), 7.82 (d, ${}^{1}J_{\text{PH}} = 612.0 \text{ Hz}, 1\text{H}, \text{PH}), 3.46 \text{ (s, 4H, NCH}_{2}\text{CH}_{3}), 1.43 \text{ (t, }{}^{3}J_{\text{HH}} = 5.3 \text{ Hz},$ 6H, NCH₂CH₃). ¹³C-{¹⁹F}-NMR (67.9 MHz, CDCl₃): δ/ppm = 147.0 (s, C_m), 143.8 (s, C_p), 137.6 (d, ${}^2J_{PC}$ = 10.5 Hz, C_o), 42.3 (t, ${}^1J_{CH}$ = 141.0 Hz, $(q, {}^{1}J_{CH} = 130.5 \text{ Hz}, N_{C}H_{2}CH_{3}).$ **MS** (FAB+): NCH_2CH_3 , 11.3 [H₂NEt₂]⁺, 102.2 (100) [HNEt₃]⁺. **MS** (FAB–): m/z (%) = 74.2 (26) m/z (%) = 231.1 (100) [C₆F₅-PHO₂]⁻.

11.4.2.22. (Pentafluorphenyl)phosphinsäure (29)

In einem 25 mL-Kolben wird $C_6F_5-PCl_2$ (**28b**) (0.385 g, 1.4 mmol)in THF (10 mL) gelöst und anschließend Wasser (2 mL) langsam über eine Spritze zugetropft. Während der Wasser-Zugabe erwärmt sich Reaktionslösung stark und es kann eine lebhafte Gasentwicklung beobachtet werden. Nachdem die Reaktion abgeklungen ist, wird weitere bei Raumtemperatur gerührt und die flüchtigen Bestandteile 3 h anschließend in vacuo entfernt. Der zurückbleibende farblose Feststoff wird anschließend in Chloroform (2 mL) refluxiert, die überstehende Lösung abfiltriert und der Rückstand zweimal mit kaltem Chloroform (je 1 mL) gewaschen. Man erhält **29** als farblosen Feststoff (0.178 g, 54 %). Das Signal des ispo-Kohlenstoffs am Phenylring konnte – analog zu 2,6- $(CF_3)_2C_6H_3-PO_2H_2$ (**1a**) – nicht beobachtet werden.

³¹P-{¹⁹F}-NMR (109.4 MHz, CDCl₃): δ /ppm = 5.4 (d, ¹J_{PH} = 633.6 Hz). ³¹P-{¹H}-NMR (109.4 MHz, CDCl₃): δ /ppm = 5.4 (bs). ¹⁹F-NMR (254.2 MHz, CDCl₃): δ /ppm = -136.5 (bs, 2F, C_o-F), -144.8 (bs, 1F, Cp-F), -159.8 (bs, 2F, C_m-F). ¹H-NMR (270.2 MHz, CDCl₃): δ /ppm = 7.79 (d, ¹J_{PH} = 633.6 Hz, 1H, PH). ¹³C-{¹⁹F}-NMR (67.9 MHz, CDCl₃): δ /ppm = 147.1 (s, C_m), 144.1 (bs, C_p), 137.6 (d, ²J_{PC} = 11.0 Hz, C_o).

11.4.2.23. (2,3,6-Trifluorphenyl)dichlorphosphan (30a)

In einem ausgeheizten und mit Ar-Atmosphäre gefüllten 25 mL-Schlenkkolben wird Lithiumchlorid (0.265 g, 3.25 mmol) im dynamischen Vakuum mit dem Heißluftföhn dreimal ca. 15 min getrocknet, bis das hygroskopische Salz trocken und fein pulvrig ist. Anschließend werden Magnesiumspäne (0.304 g, 12.5 mmol) zugegeben, trocken mit dem Lithiumchlorid verrührt und in vacuo für ca. 10 min geheizt. Anschließend wird THF (abs., 5 mL) zugegeben, die Suspension auf 0 °C gekühlt und 2-Brom-1,3,4-trifluorbenzen (1.020 g, 4.83 mmol) langsam über einen Zeitraum ca. 10 min über eine Spritze zugegeben. von Die Reaktionsmischung wird 30 min bei 0 °C und 2 h bei Raumtemperatur gerührt, anschließend gefiltert und mit THF (abs., 5 mL) gespült.

In einem weiteren ausgeheizten und mit Ar-Atmosphäre gefüllten 50 mL-Schlenkkolben mit aufgesetztem Tropftrichter wird PCl₃ (0.87 mL, 1.373 g, 10.0 mmol) in THF (abs., 2 mL) vorgelegt, auf –78 °C gekühlt und anschließend die braune Lösung des (2,3,6-trifluorphenyl)magnesiumbromid-Lithiumchlorid-Adduktes über einen Zeitraum von ca. 10 min zugetropft und mit THF (abs., 5 mL) nachgespült. Die Reaktionslösung wird 10 min bei –78 °C und über Nacht bei

Raumtemperatur gerührt. Im ³¹P- und ¹⁹F-NMR kann die 56 %-ige Umsetzung von 2-Brom-1,3,4-trifluorbenzen zum Dichlorphosphan-Derivat **30a** beobachtet werden.

³¹P-{¹H}-NMR (109.4 MHz, C₆D₆): δ/ppm = 219.0 (bs, 70 %, PCl₃), 137.7 (dd, ${}^{3}J_{PF}$ = 78.8 Hz, ${}^{3}J_{PF}$ = 54.3 Hz, 27 %, **30a**). ${}^{31}P-{}^{19}F$ }-NMR (109.4 MHz, C₆D₆): δ/ppm = 219.0 (bs, 62 %, PCl₃), 137.7 (s, 33 %, **30a**). ${}^{19}F$ -NMR (254.2 MHz, C₆D₆): δ/ppm = -108.5 (dd, ${}^{3}J_{PF}$ = 78.8 Hz, J_{FH} = 8.3 Hz, 1F, **30a** F6), -116.8 (bs, 0.15 · 1F), -127.2 (ddd, ${}^{3}J_{PF}$ = 54.3 Hz, ${}^{3}J_{FF}$ = 21.0 Hz, ${}^{4}J_{FH}$ = 8.2 Hz, 1F, **30a** F2), -135.4-(-135.7) (m, 0.15 · 1F), -142.1-(-142.5) (m, 1F, **30a** F3), -154.4 (bs, 0.15 · 1F).

11.4.2.24. (2,3,4-Trifluorphenyl)dichlorphosphan (30b)

In einem ausgeheizten und mit Ar-Atmosphäre gefüllten 25 mL-Schlenkkolben wird Lithiumchlorid (0.265 g, 3.25 mmol) im dynamischen Vakuum mit dem Heißluftföhn dreimal ca. 15 min getrocknet, bis das hygroskopische Salz trocken und fein pulvrig ist. Anschließend werden Magnesiumspäne (0.304 g, 12.5 mmol) zugegeben, trocken mit dem Lithiumchlorid verrührt und in vacuo für ca. 10 min geheizt. Anschließend wird THF (abs., 5 mL) zugegeben, die Suspension auf 0 °C gekühlt und 1-Brom-2,3,4-trifluorbenzen (1.055 g, 5.0 mmol) langsam über einen Spritze zugegeben. Zeitraum von ca. 10 min über eine Die Reaktionsmischung wird 15 min bei 0 °C und 1.5 h bei Raumtemperatur gerührt, anschließend gefiltert und mit THF (abs., 5 mL) gespült. In einem mit Ar-Atmosphäre gefüllten 50 mLweiteren ausgeheizten und Schlenkkolben mit aufgesetztem Tropftrichter wird PCl₃ (0.87 mL, 1.373 g, 10.0 mmol) in THF (abs., 2 mL) vorgelegt, auf -78 °C gekühlt und Lösung anschließend die braune des (2,3,4trifluorphenyl)magnesiumbromid-Lithiumchlorid-Adduktes über einen Zeitraum von ca. 10 min zugetropft und mit THF (abs., 5 mL) nachgespült. Die Reaktionslösung wird 10 min bei –78 °C und über Nacht bei Raumtemperatur gerührt. Im ³¹P- und ¹⁹F-NMR kann die 40 %-ige Umsetzung von 1-Brom-2,3,4-trifluorbenzen zum Dichlorphosphan-Derivat **30b** beobachtet werden.

³¹P-{¹H}-NMR (109.4 MHz, THF): δ /ppm = 219.2 (bs, 64 %, PCl₃), 148.0 (d, ³J_{PF} = 65.7 Hz, 20 %, **30b**). ³¹P-{¹⁹F}-NMR (109.4 MHz, THF): δ /ppm = 219.2 (bs, 64 %, PCl₃), 148.0 (d, ³J_{PH} = 3.3 Hz, 20 %, **30b**). ¹⁹F-NMR (254.2 MHz, THF): δ /ppm = -127.9-(-128.3) (m, 2F), -129.3 (ddd, ${}^{3}J_{PF} = 65.7 \text{ Hz}$, ${}^{3}J_{FF} = 19.2 \text{ Hz}$, ${}^{4}J_{FF} = 9.1 \text{ Hz}$, 1F, **30b** F2), -130.3-(-130.5) (m, 2F, **30b**), -161.3-(-161.7) (m, 1F).

11.4.2.25. Bis(diethylamino)-pyridin-2-ylphosphan (33a)

In einem ausgeheizten und mit Ar-Atmosphäre gefüllten 50 mL-Schlenkkolben wird PCl₃ (1.16 mL, 1.831 g, 13.3 mmol) in THF (abs., 25 mL) vorgelegt und P(NEt₂)₃ (7.30 mL, 6.596 g, 26.7 mmol) zugegeben. Die Lösung trübt bei der Zugabe leicht ein, klart aber nach 5 min rühren bei Raumtemperatur wieder auf und wird anschließend für 30 min gerührt.

In einem weiteren ausgeheizten und mit Ar-Atmosphäre gefüllten 250 mL- Schlenkkolben wird 2-Brompyridin (3.83 mL, 6.320 g, 40.0 mmol) in THF (abs., 150 mL) vorgelegt und auf –78 °C gekühlt. Anschließend wird über einen Zeitraum von 45 min eine 2.5 molare Lösung von n-BuLi (16.0 mL, 40.0 mmol) zugegeben, wobei Hexan sich die in Reaktionslösung gelb verfärbt. Die Reaktionslösung wird bei –78 °C für 1 h gerührt und anschließend zuvor erstellte Lösung von Bis(diethylamino)chlorphosphan über einen Zeitraum von 30 min langsam zugetropft und anschließend mit THF (abs., 10 mL) nachgespült. Die Reaktionslösung wird für 2 h bei –78 °C gerührt, anschließend langsam auf Raumtemperatur erwärmt und über Nacht bei dieser Temperatur gerührt. Anschließend wird *n*-Pentan (abs., 10 mL) zugegeben, gefiltert und zweimal mit *n*-Pentan (abs., je 10 mL) gespült. Das Lösemittel wird *in* vacuo entfernt und der orange-bräunliche Rückstand im Vakuum destilliert. Man erhält Bis(diethylamino)-pyridin-2-yl-phosphan (**33a**) (7.998 g, 79 %, b.p. = 110 °C@1.6 \cdot 10⁻¹ mbar) als gelbliches, leicht bewegliches Öl, das sich im Laufe der Zeit intensiver gelb verfärbt.

³¹P-NMR (109.4 MHz, C₆D₆): δ /ppm = 94.9 (non, ³J_{PH} = 8.5 Hz). ¹H-NMR (270.2 MHz, C₆D₆): δ /ppm = 8.63-8.60 (m, 1H), 7.51-7.47 (m, 1H), 7.19-7.13 (m, 1H), 6.67-6.61 (m, 1H), 3.19-3.03 (m, 8H, NCH₂CH₃), 0.95 (td, ³J_{HH} = 7.0 Hz, ⁴J_{PH} = 1.0 Hz, 12H, NCH₂CH₃). ¹³C-{¹H}-NMR (67.9 MHz, C₆D₆): δ /ppm = 166.6 (d, J_{PC} = 13.1 Hz, C3), 149.9 (d, J_{PC} = 7.3 Hz, C6), 134.5 (d, J_{PC} = 2.2 Hz, C4), 126.5 (d, J_{PC} = 24.4 Hz, C2), 120.9 (d, J_{PC} = 2.2 Hz, C5), 43.7 (d, ²J_{PC} = 16.8 Hz, NCH₂CH₃), 16.7 (d, ³J_{PC} = 3.3 Hz, NCH₂CH₃).

11.4.2.26. Pyridin-2-yl-phosphinsäure (34)

In einem 25 mL-Kolben wird $(2-C_5H_4N)-P(NEt_2)_2$ (33a) (1 mL) in THF (5 mL) gelöst und anschließend 10 mL einer halbkonzentrierten wässrigen HCl-Lösung (ca. 18%) zugegeben. Die Reaktionslösung wurde 2 h bei Raumtemperatur gerührt und die flüchtigen Bestandteile anschließend abrotiert. Der erhaltene gelbe wachsartige Rückstand wird säulenchromatographisch aufgetrennt (Kieselgel 0.035–0.070 mm; MeOH). Auf der Säule zeichnen sich zwei gelbe Banden ab, wobei sich die zweite Fraktion als das gewünschte Produkt herausstellt. Nach Entfernen des Lösemittels erhält man 34×0.11 NHEt₂ (0.238 g, ca. 40 %) als gelbes Pulver.

³¹P-NMR (109.4 MHz, CDCl₃): δ /ppm = 1.4 (d, ¹J_{PH} = 568.3 Hz). ¹H-NMR (270.2 MHz, CDCl₃): δ /ppm = 9.6 (bs, 0.4 H, N-H), 8.89 (d, ³J_{HH} = 4.9 Hz, 1H), 8.35-8.25 (m, 2H), 7.84 (t, ³J_{HH} = 6.1 Hz, 1H), 7.79 (d, ¹J_{PH} = 568.3 Hz, 1H, P-H), 2.98 (tq, ³J_{HH} = 6.5 Hz, ³J_{HH} = 6.5 Hz, 0.11 · 8H, NCH₂CH₃), 1.36 (t, ³J_{HH} = 7.3 Hz, 0.11 · 8H, NCH₂CH₃). ¹³C-{¹H}-NMR (67.9 MHz, CDCl₃): δ /ppm = 155.5 (d, J_{PC} = 117.2 Hz, C2), 143.8 (d, J_{PC} = 9.6 Hz, C4), 143.4 (d, J_{PC} = 7.9 Hz, C6), 129.3 (d, J_{PC} = 14.5 Hz, C3), 127.3 (d, J_{PC} = 1.8 Hz, C5), 42.2 (s, NCH₂CH₃), 11.3 (s, NCH₂CH₃).

11.4.3. Strukturen von (Amino)phosphin- und (Amino)phosphonsäuren und deren Metallsalze

11.4.3.1. Allgemeine Arbeitsvorschrift zur Kristallisation von (Amino)phosphinund (Amino)phosphonsäuren

Die Phosphon- und Phosphinsäuren werden in 1–2 mL Wasser suspendiert und auf 70 °C erwärmt. Sollte sich die Säure auch unter diesen Bedingungen nicht in Wasser lösen wir solange tropfenweise mit einer 2.5-molaren wässrigen NaOH-Lösung neutralisiert, bis sich eine klare Lösung einstellt. Der pH-Wert der erhaltenen Lösung liegt dabei – je nach Säurestärke der eingesetzten Säure – im schwach sauren bis schwach alkalischen Bereich (pH \approx 6–8). Aus den erhaltenen Lösungen kristallisieren die Phosphon- bzw. Phosphinsäuren durch langsames Verdunsten des Lösemittels.

11.4.3.2. (*R/S*)-1-Aminoethylphosphonsäure (35)

XRD: $P4_2bc$; a = 11.5730(2) Å; b = 11.5730(2) Å; c = 8.0136(3) Å; V = 1073.30(5) Å³; Z = 8.

11.4.3.3. 2-Aminoethylphosphonsäure (36)

XRD: *Pbca*; a = 8.7395(4) Å; b = 10.3383(6) Å; c = 10.7333(6) Å; V = 969.77(9) Å³; Z = 4.

11.4.3.4. (*R/S*)-1-Aminopropylphosphonsäure (37)

XRD: $P2_1/c$; a = 10.9664(10) Å; b = 6.2012(3) Å; c = 9.4973(7) Å; $\beta = 107.131(9)^\circ$; V = 617.21(8) Å³; Z = 4.

11.4.3.5. (R/S)-1-Amino-1-phenylmethylphosphonsäure (38)

XRD: $Pca2_1$; a = 8.6423(4) Å; b = 11.0954(5) Å; c = 8.6962(4) Å; V = 833.88(7) Å³; Z = 4.

11.4.3.6. Aminoethyl-1,1-diphosphonsäure (39)

XRD: *P*-1; a = 7.2453(5) Å; b = 8.8909(4) Å; c = 11.3452(7) Å; $a = 80.071(4)^{\circ}$, $\beta = 89.949(5)^{\circ}$; $\gamma = 86.321(4)^{\circ}$; V = 718.36(7) Å³; Z = 2.

11.4.3.7. N-(Phosphonomethyl)glycin (40)

XRD: $P2_1/c$; a = 8.6788(4) Å; b = 7.9529(3) Å; c = 9.8316(5) Å; $\beta = 105.982(5)^\circ$; V = 652.36(5) Å³; Z = 4.

11.4.3.8. Guanidiniummethylphosphonsäure-Hydrat (41)

XRD: C2/c; a = 13.1792(4) Å; b = 7.4719(2) Å; c = 13.8659(4) Å; $\beta = 104.246(3)^{\circ}$; V = 1323.44(7) Å³; Z = 8.

11.4.3.9. Aminomethanphosphonsäure *semi*hydronitrat (42)

Aminomethanphosphonsäure (0.028 g, 0.25 mmol) wird in Wasser (2 mL) suspendiert und anschließend solange tropfenweise mit einer 2.5molaren wässrigen NaOH-Lösung versetzt, bis sich eine klare farblose Lösung einstellt (pH = 7). Anschließend wird Bleinitrat (0.083 g, 0.25 mmol) zugegeben, wobei sich ein farbloser Niederschlag bildet, der erst nach Ansäuern mit 2 molarer Salpetersäure bei pH = 1 in Lösung gebracht werden kann. Aus dieser Lösung kristallisiert (**42**) durch langsames Verdunsten des Lösemittels.

XRD: $P2_1/c$; a = 5.4423(1) Å; b = 21.2709(5) Å; c = 9.1130(2) Å; $\beta = 92.202(2)^\circ$; V = 1054.17(4) Å³; Z = 4.

11.4.3.10. $[Ca(O_3P-CH_2-NH_3)_{4/2}(H_2O)_2] \times 4 H_2O$ (43)

Aminomethanphosphonsäure (0.028 g, 0.25 mmol) wird in Wasser (2 mL) suspendiert und anschließend solange tropfenweise mit einer 2.5molaren wässrigen NaOH-Lösung versetzt, bis sich eine klare farblose Lösung einstellt (pH = 7) und anschließend Calciumchlorid (0.028 g, 0.25 mmol) zugegeben. Aus der so erhaltenen farblosen Lösung können Einkristalle von **43** durch langsames Verdunsten des Lösemittels erhalten werden.

XRD: C2/c; a = 21.7740(8) Å; b = 7.1090(2) Å; c = 10.3003(4) Å; $\beta = 114.035(4)^{\circ}$; V = 1456.16(10) Å³; Z = 4.

11.4.3.11. Li($O_3P-CH_2-NH_3$) × H₂O (Modifikation 1) (44i)

Aminomethanphosphonsäure (0.056 g, 0.50 mmol) wird in Wasser (2 mL) suspendiert und anschließend Lithiumcarbonat (0.018 g, 0.25 mmol) zugegeben. Nach 1–2 min klart die Suspension auf und eine lebhafte Gasentwicklung kann beobachtet werden. Aus der erhaltenen farblosen Lösung kristallisiert **44i** durch langsames Verdunsten des Lösemittels in Modifikation 1.

XRD: $P2_1/c$; a = 10.2884(5) Å; b = 9.1149(4) Å; c = 10.9223(4) Å; $\beta = 103.765(4)^\circ$; V = 994.85(8) Å³; Z = 4.

11.4.3.12. Li($O_3P-CH_2-NH_3$) × H₂O (Modifikation 2) (44ii)

Aminomethanphosphonsäure (0.028 g, 0.25 mmol) wird in Wasser (3 mL) suspendiert und anschließend Lithiumhydroxid (0.006 g, 0.25 mmol) zugegeben. Die Suspension wird anschließend auf 70 °C erwärmt und 1 h bei dieser Temperatur gerührt, bis eine klare, farblose Lösung erhalten wird. Kristalle einer zweiten Modifikation von **44ii** werden durch langsames Verdunsten des Lösemittels bei Raumtemperatur erhalten.

XRD: $P2_1/c$; a = 5.7743(3) Å; b = 9.3638(4) Å; c = 9.4912(5) Å; $\beta = 107.593(5)^\circ$; V = 489.18(4) Å³; Z = 4.

11.4.3.13. Li($O_3P-CH_2-NH_3$) × H₂O (Modifikation 3) (44iii)

Aminomethanphosphonsäure (0.028 g, 0.25 mmol) wird in Wasser (1 mL) suspendiert und anschließend Lithiumhydroxid (0.006 g, 0.25 mmol) zugegeben. Die Suspension wird so lange bei Raumtemperatur gerührt, bis sich die Feststoffe vollständig gelöst haben

und eine klare farblose Lösung erhalten wird. Kristalle einer dritten Modifikation von **44iii** werden durch langsames Eindiffundieren von Methanol in die wässrige Lösung bei Raumtemperatur erhalten.

XRD: $P2_1/c$; a = 5.1407(3) Å; b = 9.1292(5) Å; c = 10.9184(6) Å; $\beta = 103.414(5)^\circ$; V = 498.43(5) Å³; Z = 4.

11.4.3.14. $[K(O_3P-CH_2-NH_3)_{2/2}(H_2O)_{4/2}]$ (45)

Aminomethanphosphonsäure (0.028 g, 0.25 mmol) wird in Wasser (2 mL) suspendiert und anschließend tropfenweise mit einer 25 %-igen wässrigen Ammoniaklösung neutralisiert, bis eine klare, farblose Lösung erhalten wird. Anschließend wird Kaliumhydroxid (0.014 g, 0.25 mmol) zugegeben. Einkristalle von **45** können aus der farblosen Lösung durch langsames Verdunsten des Lösemittels gewonnen werden.

XRD: $Pca2_1$; a = 10.4448(10) Å; b = 10.2928(9) Å; c = 6.4334(5) Å; V = 691.63(10) Å³; Z = 4.

11.4.3.15. Ca(HO₃P-CH₂-PO₃H) (46)

Methan-bis(phosphonsäure) (0.044 g, 0.25 mmol) wird in Wasser (2 mL) gelöst und die stark saure Lösung (pH = 2) tropfenweise mit einer 2.5-molaren wässrigen NaOH-Lösung neutralisiert und anschließend Calciumchlorid (0.028 g, 0.25 mmol) zugegeben. **46** kristallisiert in aus der farblosen Lösung durch langsamen Verdunsten des Lösemittels.

XRD: C2/c; a = 7.8049(11) Å; b = 8.0388(11) Å; c = 9.6316(16) Å; $\beta = 102.565(15)^{\circ}$; V = 589.83(16) Å³; Z = 4.

11.4.3.16. K₂(HO₃P-CH₂-PO₃H) (47)

Methan-bis(phosphonsäure) (0.044 g, 0.25 mmol) wird in Wasser (1.5 mL) gelöst und die stark saure Lösung (pH = 2) mit Kaliumhydroxid

(0.028 g, 0.50 mmol) neutralisiert. Aus der erhaltenen klaren, farblosen Lösung kristallisiert **47** durch langsames Verdunsten des Lösemittels.

XRD: *P*-1; *a* = 7.3306(9) Å; *b* = 7.632(1) Å; *c* = 8.2385(11) Å; *a* = 65.199(3)°, β = 70.124(13)°; γ = 61.307(13)°; *V* = 361.43(10) Å³; *Z* = 2.

11.4.3.17. $[Mg(O_3PCO_2)_{3/3}(H_2O)_{2/2}]$ $[Na(H_2O)_{4/2}(H_2O)_2]$ (48)

(Trinatrium)phosphonoformiat-hexahydrat (0.075 g, 0.25 mmol) wird n Wasser (3 mL) gelöst und anschließend Magnesiumchlorid-hexahydrat (0.076 g, 0.375 mmol) zugegeben. Einkristalle von **48** können aus der farblosen Lösung durch langsames Verdunsten des Lösemittels gewonnen werden.

XRD: $P2_1/c$; a = 8.2890(3) Å; b = 11.7650(4) Å; c = 9.7835(3) Å; $\beta = 106.327(3)^\circ$; V = 915.61(5) Å³; Z = 4.

11.4.3.18. $[Cr(H_2O)_6]Cl_2(O_3PCH_2(NHC(NH)_2) \times (HO_3PCH_2(NHC(NH)_2) \times H_2O (49))$

(Guanidinium)methylphosphonsäure (0.038 g, 0.25 mmol) wird bei 60 °C in Wasser (1 mL) gelöst und anschließend bei Raumtemperatur Chrom(III)chlorid-hexahydrat (0.022 g, 0.08 mmol), gelöst in Wasser (1 mL), zugegeben. Für die Röntgenstrukturanalyse geeignete Kristalle von **49** können aus der grünen Lösung durch langsames Verdunsten des Lösemittels gewonnen werden.

XRD: *P*-1; *a* = 6.9086(4) Å; *b* = 12.5871(7) Å; *c* = 12.5884(7) Å; *a* = 85.637(4)°, β = 86.508(4)°; γ = 75.715(5)°; *V* = 1056.75(11) Å³; *Z* = 2.

11.4.3.19. Dichlor(2,4,6-tris(*tert*butyl)phenoxy)phosphan (51)

In einem ausgeheizten und mit Ar-Atmosphäre gefüllten 250 mL-Schlenkkolben wird 2,4,6-Tris(*tert*-butyl)-phenol (26.243 g, 100.0 mmol) bei 0 °C in Pentan (abs., 50 mL) vorgelegt und anschließend PCl₃ (43.62 mL, 68.665 g, 500.0 mmol) und NEt₃ (27.88 mL, 20.238 g, 200.0 mmol), gelöst in Pentan (abs., 20 mL), über einen Zeitraum von 90 min zugetropft. Die Lösung wird 12 h bei Raumtemperatur gerührt, anschließend filtriert und zweimal mit Pentan (abs., je 20 mL) gewaschen. Die flüchtigen Bestandteile des gelben Filtrats werden *in vacuo* abgezogen und man erhält Mes*-OPCl₂ (**51**) als gelben Feststoff (36.324 g) in quantitativer Ausbeute.

³¹P-NMR (109.4 MHz, CDCl₃): δ /ppm = 201.8 (s). ¹H-NMR (270.2 MHz, CDCl₃): δ /ppm = 7.29 (s, 2H, C_m-H), 1.46 (s, 18H, o-C(C<u>H</u>₃)₃), 1.28 (s, 9H, p-C(C<u>H</u>₃)₃). ¹³C-{¹H}-NMR (67.9 MHz, CDCl₃): δ /ppm = 146.7 (d, ⁵J_{PC} = 2.0 Hz, C_p), 146.0 (d, ²J_{PC} = 4.5 Hz, C_i), 141.7 (d, ³J_{PC} = 3.4 Hz, C_o), 124.2 (d, ⁴J_{PC} = 2.1 Hz, C_m), 35.9 (d, ⁶J_{PC} = 1.3 Hz, p-C(CH₃)₃), 32.6 (d, ⁵J_{PC} = 6.6 Hz, o-C(C<u>H</u>₃)₃), 31.5 (s, p-C(C<u>H</u>₃)₃), 29.6 (d, ⁴J_{PC} = 14.7 Hz, o-C(CH₃)₃),

11.4.3.20. (*R*/*S*)-Phosphonsäure-2,4,6tris(*tert*-butyl)phenyl-ester (50)

In einem ausgeheizten und mit Ar-Atmosphäre gefüllten 100 mL-Schlenkkolben wird Mes*-OPCl₂ (**51**) in THF (abs., 50 mL) gelöst, auf 0°C gekühlt und H₂O (5 mL, 5.000 g, 275 mmol) sehr langsam zugegeben, wobei eine sehr lebhafte Gasentwicklung einsetzt und sich Lösung stark erhitzt. Nach abklingen der Reaktion werden zur Vervollständigung der Reaktion weitere 10 mL Wasser zugegeben und die Reaktionslösung für 1 h bei Raumtemperatur gerührt. Das Lösemittel wird abdestilliert und der erhaltene Feststoff *in vacuo* getrocknet. Man erhält (R/S)-Phosphonsäure-2,4,6-tris(*tert*-butyl)phenyl-ester (**50**) als gelben Feststoff (32.613 g) in quantitativer Ausbeute. Einkristalle der Verbindung, die für die Röntgenstrukturanalyse geeignet sind, können aus THF erhalten werden.

³¹P-NMR (109.4 MHz, DMSO-d⁶): δ /ppm = 1.3 (d, ¹J_{PH} = 684.7 Hz). ¹³C{¹H}-NMR (67.9 MHz, DMSO-d⁶): δ /ppm = 145.9 (d, ²J_{PC} = 8.3 Hz, C_i), 145.5 (d, ⁵J_{PC} = 2.0 Hz, C_p), 141.5 (d, ⁵J_{PC} = 3.1 Hz, C_o), 123.7 (d, ⁵J_{PC} = 1.6 Hz, C_m), 35.8 (s, o-<u>C</u>(CH₃)₃), 34.8 (s, p-<u>C</u>(CH₃)₃), 32.2 (s, o-C(C<u>H</u>₃)₃), 31.9 (s, p-C(C<u>H</u>₃)₃). ¹H-NMR (270.2 MHz, DMSO-d⁶): δ /ppm = 7.27 (s, 2H, C_m-H), 7.25 (d, ¹J_{PH} = 684.7 Hz, 1H, P-H), 4.11 (s, 1H, P-OH), 1.41 (s, 18H, o-C(C<u>H</u>₃)₃), 1.27 (s, p-C(C<u>H</u>₃)₃). XRD: P2₁/c; a = 9.5908(9) Å; b = 23.5770(14) Å; c = 9.3680(8) Å; β = 117.036(12)°; V = 1886.83(33) Å³; Z = 4.

11.4.3.21. Dichlor((1*R*,2*S*,5*R*)-2-(1-methylethyl)-5-methylcyclohexyloxy)phosphan (53a)

In einem ausgeheizten und mit Ar-Atmosphäre gefüllten 100 mL-Schlenkkolben wird 1*R*,2*S*,5*R*-2-(1-methylethyl)-5-methyl-cyclohexanol ((–)-Menthol) (7.814 g, 50.0 mmol) bei 0 °C in THF (abs., 30 mL) vorgelegt und anschließend PCl₃ (13.09 mL, 20.600 g, 150.0 mmol) über Zeitraum von 45 min zugetropft, wobei eine einen lebhafte Gasentwicklung beobachtet werden kann. Die Lösuna wird auf Raumtemperatur aufgewärmt und für ca. 12 h gerührt, bis kein HCl mehr entweicht. Die flüchtigen Bestandteile werden in vacuo entfernt und (-)-Menthyl-OPCl₂ (53a) wird als hydrolyseempfindliches, farbloses, leicht bewegliches Öl (11.585 g, 45 mmol, 90 %) erhalten.

³¹P-NMR (109.4 MHz, CDCl₃): δ /ppm = 176.5 (d, ³J_{PH} = 13.9 Hz). ¹H-NMR (270.2 MHz, CDCl₃): δ /ppm = 4.49 (dtd, ³J_{PH} = 13.9 Hz, ³J_{HH} = 10.5 Hz, ³J_{HH} = 4.5 Hz, 1H, C1-H), 2.37 (dddd, ²J_{PH} = 12.1 Hz, ³J_{PH} = 4.5 Hz, ³J_{HH} = 3.2 Hz, ³J_{HH} = 2.0 Hz, 1H, C6-H^e), 2.02 (septd, ³J_{HH} = 6.9 Hz, ³J_{HH} = 2.1 Hz, 1H, C7-H), 1.75-1.64 (m, 2H, C4-H^e, C3-H^e), 1.58-1.33 (m, 2H, C5-H, C2-H^a), 1.23 (td, J_{HH} = 12.2 Hz, J_{HH} = 10.8 Hz, 1H, C6-H^a), 1.13-0.98 (m, 1H, C3-H^a), 0.94 (d, ³J_{HH} = 6.5 Hz, 3H, C10-H), 0.94-0.85 (m, 1H, C4-H^a), 0.92 (d, ³J_{HH} = 7.0 Hz, 3H, C8-H), 0.81 (d, ³J_{HH} = 6.9 Hz, 3H, C9-H). ¹³C{¹H}-NMR (67.9 MHz, CDCl₃): δ /ppm = 83.26 (d, ²J_{HH} = 9.9 Hz, C1), 48.8 (d, ³J_{HH} = 2.6 Hz, C2), 43.4 (d, ³J_{HH} = 1.4 Hz, C6), 34.0 (C4), 31.7 (C5), 25.2 (C8), 23.0 (C3), 22.2 (C7), 21.4 (C10), 16.2 (C9).

11.4.3.22. Phosphonsäure-(1R,2S,5R-2-(1methylethyl)-5-methyl-cyclohexyl)ester (53b)

In einem ausgeheizten und mit Ar-Atmosphäre gefüllten 50 mL-Schlenkkolben wird (–)-Menthyl-OPCl₂ (**53a**) (6.97 g, 27.11 mmol) in THF (abs., 12 mL) vorgelegt und anschließend Wasser (0.98 mL, 0.976 g, 54.21 mmol) langsam zugetropft, wobei eine lebhafte Gasentwicklung beobachtet werden kann. Nach beendeter HCI-Entwicklung werden weiter 3 mL Wasser zur Vervollständigung der Reaktion zugegeben und für ca. 2 h bei Raumtemperatur gerührt. Die flüchtigen Bestandteile werden *in vacuo* entfernt und Phosphonsäure-(1R,2S,5R-2-(1-methylethyl)-5methyl-cyclohexyl)-ester (**53b**) wird als zähflüssiges, klares, farbloses Öl (6.072 g) in quantitativer Ausbeute erhalten.

³¹P-NMR (109.4 MHz, CDCl₃): δ /ppm = 7.8 (dd, ¹J_{PH} = 701.1 Hz, ³J_{PH} = 8.8 Hz). ¹H-NMR (270.2 MHz, CDCl₃): δ /ppm = 12.66 (s, 1H, POH), 6.81 (d, ¹J_{PH} = 701.1 Hz, 1H, PH), 4.49 (tdd, ³J_{HH} = 10.6 Hz, ³J_{PH} = 9.3 Hz, ³J_{HH} = 4.5 Hz, 1H, C1-H), 2.18–2.03 (m, 2H, C6-H^e, C7-H), 1.69–1.60 (m, 2H, C4-H^e, C3-H^e), 1.49–1.29 (m, 2H, C5-H, C2-H^a), 1.20 (td, J_{HH} = 12.1 Hz, J_{HH} = 11.0 Hz, 1H, C6-H^a), 1.06–0.95 (m, 1H, C3-H^a), 0.90 (d, ³J_{HH} = 6.5 Hz, 3H, C10-H), 0.90 (d, ³J_{HH} = 7.0 Hz, 3H, C8-H), 0.87–0.81 (m, 1H, C4-H^a), 0.78 (d, ³J_{HH} = 6.9 Hz, 3H, C9-H). ¹³C{¹H}-NMR (67.9 MHz, CDCl₃): δ /ppm = 78.1 (d, ²J_{HH} = 6.9 Hz, C1), 48.3 (d, ³J_{HH} = 6.4 Hz, C2), 43.0 (d, ³J_{HH} = 0.8 Hz, C6), 34.0 (C4), 31.7 (C5), 25.7 (C8), 23.0 (C3), 22.0 (C7), 20.9 (C10), 15.7 (C9).

11.4.3.23. Tris((1*R*,2*S*,5*R*)-2-(1-methylethyl)-5methylcyclohexyl)phosphit (54)

In einem ausgeheizten und mit Ar-Atmosphäre gefüllten 100 mL-Schlenkkolben wird PCl₃ (8.72 mL, 13.733 g, 100.0 mL) bei 0 °C in THF (abs., 50 mL) vorgelegt und anschließend 1R, 2S, 5R-2-(1-methylethyl)-5-methyl-cyclohexanol ((-)-Menthol) (31.254 g, 200.0 mmol) und NEt₃ (27.87 mL, 20.234 g, 200 mmol), gelöst in THF (abs., 20 mL), über einen Zeitraum von 30 min zugetropft. Die Reaktionslösung wir 24 h bei Raumtemperatur gerührt, filtriert und die flüchtigen Bestandteile*in vacuo*entfernt. Der Rückstand wird zweimal mit Pentan (abs., je 50 mL) extrahiert. Das Lösemittel wird entfernt und man erhält ((-)-Menthyl))₃P (**54**) verunreinigt durch Phosphonsäure-bis((1R,2S,5R)-2-(1-methylethyl)-5-methylcyclohexyl)-ester (**56**) als farblosen Feststoff (14.044 g).

³¹P-NMR (109.4 MHz, CDCl₃): δ /ppm = 147.5 (q, ³J_{PH} = 8.8 Hz, 79 %, **54**), 6.0 (dt, ¹J_{PH} = 686.9 Hz, ³J_{PH} = 8.7 Hz, R₂-P(O)H, 21 %, **56**).

11.4.3.24. Tritylphosphinsäure (Ph₃CPO₂H₂) (57)

$$Ph_{3}C-OH \xrightarrow{1) AcOH/H_{2}SO_{4}} Ph_{3}C-P^{+}-OH \xrightarrow{I} H \mathbf{57}$$

In einem 1 L-Kolben wird Triphenylmethanol (50.0 g, 192 mmol) in einer Mischung von Essigsäure (100 %, 200 g) und Schwefelsäure (95-98 %, 60 g) gelöst und auf 50 °C erwärmt. Anschließend wird bei dieser Temperatur eine Lösung von Natriumphosphinat (30.0 g, 341 mmol) in Essigsäure (100 %, 125 g) über einen Zeitraum von 60 min zugetropft. Die orange-rote Lösung wird über Nacht bei 50 °C gerührt und die erhaltene zitronengelbe Suspension anschließend in 2 L Wasser gegossen. Nach 1 h Rühren bei Raumtemperatur wird der aufgefallene farblose Feststoff abgefiltert und in einer wässrigen NaOH-Lösung (0.3 M, 1 L) aufgenommen und auf 90 °C erwärmt. Bei 60-70 °C wird das nicht gelöste Nebenprodukt Triphenylmethan abgefiltert. Das Filtrat wird langsam mit Salzsäure (37 %, 150 mL) neutralisiert (pH < 7) um Die Phosphinsäure 57 als farblosen voluminösen Feststoff auszufällen. Die neutralisierte Lösung wird 2 h bei Raumtemperatur gerührt und der gebildete Feststoff anschließend abgefiltert. Nach Umkristallisieren aus Essigsäure erhält man Tritylphosphinsäure (57) als farblosen voluminösen Feststoff (39.5 g, 67 %).

m.p. = 235–239 °C; ³¹P-{¹H}-NMR (162.0 MHz, CDCl₃): $\delta/\text{ppm} = 42.0$ (s, ¹ $J_{PC} = 90.1$ Hz). ³¹P-NMR (162.0 MHz, CDCl₃): $\delta/\text{ppm} = 42.0$ (d, ¹ $J_{PH} = 571.2$ Hz). ¹H-NMR (400.2 MHz, CDCl₃): $\delta/\text{ppm} = 11.75$ (s, 1H, PH(O)O<u>H</u>), 7.47 (d, ¹ $J_{PH} = 571.2$ Hz, 1H, P<u>H</u>(O)OH), 7.32–7.15 (m, 15H, Ph₃). ¹³C-{¹H}-NMR (100.6 MHz, CDCl₃): $\delta/\text{ppm} = 139.9$ (d, ² $J_{PC} = 3.4$ Hz, C_i), 130.4 (d, ⁴ $J_{PC} = 7.0$ Hz, C_m), 128.3 (d, ³ $J_{PC} = 1.2$ Hz, C_o), 127.4 (d, ⁵ $J_{PC} = 2.0$ Hz, C_p), 51.5 (d, ¹ $J_{PC} = 90.1$ Hz, <u>C</u>Ph₃).
11.4.3.25. Pb(O₂HPCPh₃)₂ (58)

Blei(II)nitrat (0.099 g, 0.3 mmol) wird in Methanol (4 mL) gelöst und Tritylphosphinsäure (**57**) (0.092 g, 0.3 mmol) zugegeben. Es wird solange bei Raumtemperatur gerührt, bis eine klare farblose Lösung erhalten wird. Einkristalle von **58** können durch langsames Verdunsten des Lösemittels erhalten werden.

XRD: *P*-1; *a* = 10.6679(4) Å; *b* = 12.5969(6) Å; *c* = 13.4187(6) Å; *a* = 63.861(5)°, β = 82.622(4)°; γ = 84.916(4)°; *V* = 1604.37(12) Å³; *Z* = 2.

Calciumhydroxid (0.022 g, 0.3 mmol) wird in Methanol (4 mL) gelöst und Tritylphosphinsäure (**57**) (0.092 g, 0.3 mmol) zugegeben. Die Lösung wird bei 40 °C gerührt, bis sich die Feststoffe vollständig gelöst haben. Einkristalle von **59** können bei Raumtemperatur aus der klaren farblosen Lösung durch langsames Verdunsten des Lösemittels erhalten werden.

XRD: *P*-1; *a* = 8.0801(6) Å; *b* = 8.9318(8) Å; *c* = 17.1206(14) Å; *a* = 75.530(7)°, β = 82.137(6)°; γ = 67.380(7)°; *V* = 1103.22(16) Å3; *Z* = 2.

11.4.3.27. Methylphosphinsäure (60) und Dimethylphosphinsäure (61)

Die Synthese wird in Anlehnung an eine Synthese von A. C. REGAN¹⁸ durchgeführt.

In einem ausgeheizten und mit Ar-Atmosphäre gefüllten 25 mL-Schlenkkolben wird Natriumphosphinat (0.880 g, 10.0 mmol) mit Hexamethyldisilazan (2.10 mL, 1.614 g, 10.0 mmol) vermengt und für 2 h auf 110 °C erhitzt. Die abgekühlte Reaktionsmischung wird in Dichlormethan (abs., 10 mL) aufgenommen, auf 0 °C gekühlt und anschließend Iodmethan (0.62 mL, 1.419 g, 10.0 mmol) zugegeben. Die Reaktionsmischung wird 12 h bei Raumtemperatur gerührt, gefiltert und anschließend das Lösemittel *in vacuo* entfernt.

Das erhaltene trübe Öl wird mit Methanol (2 mL) versetzt, wobei die Lösung sofort aufklart. Nach 15 min Rühren bei Raumtemperatur wird das Lösemittel *in vacuo* entfernt. Man erhält ein farbloses hochviskoses Öl (0.510 g).

³¹P-NMR (109.4 MHz, CDCl₃): δ/ppm = 55.9 (sept, ${}^{2}J_{PH}$ = 14.4 Hz, 31 %, Me₂PO₂H), 34.1 (dq, ${}^{1}J_{PH}$ = 549.4 Hz, ${}^{2}J_{PH}$ = 15.3 Hz, 69 %, MePO₂H₂). 13 C-{ 1 H}-NMR (67.9 MHz, CDCl₃): δ/ppm = 16.7 (d, ${}^{1}J_{PC}$ = 96.3 Hz, <u>Me</u>PO₂H₂), 16.1 (d, ${}^{1}J_{PC}$ = 95.7 Hz, <u>Me</u>₂PO₂H). 1 H-NMR (270.2 MHz, CDCl₃): δ/ppm = 7.24 (dq, ${}^{1}J_{PH}$ = 549.3 Hz, ${}^{3}J_{HH}$ = 2.2 Hz, 1H, MeP<u>H</u>(O)OH), 1.53 (dq, ${}^{2}J_{PH}$ = 14.4 Hz, ${}^{4}J_{HH}$ = 3.5 Hz, 0.3 × 6H, <u>Me</u>₂PO₂H), 1.52 (d, ${}^{2}J_{PH}$ = 15.3 Hz, 3H, <u>Me</u>PH(O)OH).

11.4.3.28. Dimethylphosphinsäure (61)

Die Synthese wird in Anlehnung an eine Synthese von A. C. REGAN¹⁸ durchgeführt.

In einem ausgeheizten und mit Ar-Atmosphäre gefüllten 50 mL-Schlenkkolben Natriumphosphinat (8.788 g, 100.0 mmol) mit Hexamethyldisilazan (20.96 mL, 16.139 g, 100.0 mmol) vermengt und für 2 h auf 110 °C erhitzt. Die Reaktionsmischung in Dichlormethan (abs., 100 mL) aufgenommen, auf 0 °C gekühlt und anschließend Iodmethan (12.45 mL, 28.388 g, 200.0 mmol) zugegeben. Die Reaktionsmischung wird 24 h bei Raumtemperatur gerührt, gefiltert und anschließend das Lösemittel *in vacuo* entfernt.

Das erhaltene trübe Öl wird in Dichlormethan (50 mL) suspendiert und anschließend Methanol (50 mL) zugegeben, bis die Lösung aufklart. Nach 30 min Rühren bei Raumtemperatur wird das Lösemittel *in vacuo* entfernt. Man erhält ein farbloses hochviskoses Öl (9.389 g, 99 %).

³¹P-NMR (109.4 MHz, CDCl₃): δ /ppm = 55.9 (sept, ²J_{PH} = 14.4 Hz). ¹³C-{¹H}-NMR (67.9 MHz, CDCl₃): δ /ppm = 16.1 (d, ¹J_{PC} = 95.7 Hz, <u>Me</u>₂PO₂H). ¹H-NMR (270.2 MHz, CDCl₃): δ /ppm = 10.9–10.7 (s, 1H, Me₂PO₂H), 1.53 (dq, ²J_{PH} = 14.4 Hz, ⁴J_{HH} = 3.5 Hz, 6H, <u>Me</u>₂PO₂H)

11.4.3.29. Methylphosphinsäure (60)

Die Synthese wird nach einer Synthese von A. C. REGAN¹⁸ durchgeführt.

In einem ausgeheizten und mit Ar-Atmosphäre gefüllten 100 mL-Schlenkkolben wird Ammoniumphosphinat (16.606 g, 200.0 mmol) mit Hexamethyldisilazan (41.31 mL, 32.222 g, 200.0 mmol) vermengt und für 2 h auf 110 °C erhitzt. Die abgekühlte rot-braune Reaktionsmischung wird in Dichlormethan (abs., 50 mL) aufgenommen, auf 0 °C gekühlt und anschließend Iodmethan (12.50 mL, 28.388 g, 200.0 mmol) zugegeben. Die Reaktionsmischung wird 12 h bei Raumtemperatur gerührt, gefiltert und anschließend das Lösemittel *in vacuo* entfernt.

Das erhaltene trübe gelblich gefärbte Öl wird in Dichlormethan (75 mL) suspendiert und anschließend Methanol (ca. 60 mL) zugegeben, bis die Lösung aufklart. Die Lösung wird für 60 min bei Raumtemperatur gerührt und das Lösemittel anschließend *in vacuo* entfernt. Man erhält ein farbloses zähes Öl (13.931 g, 87 %).

³¹P-NMR (109.4 MHz, CDCl₃): δ /ppm = 34.1 (dq, ¹J_{PH} = 549.4 Hz, ²J_{PH} = 15.3 Hz). ¹³C-{¹H}-NMR (67.9 MHz, CDCl₃): δ /ppm = 16.7 (d, ¹J_{PC} = 96.3 Hz). ¹H-NMR (270.2 MHz, CDCl₃): δ /ppm = 7.24 (dq, ¹J_{PH} = 549.3 Hz, ³J_{HH} = 2.2 Hz, 1H, MePH(O)OH), 1.52 (d, ²J_{PH} = 15.3 Hz, 3H, <u>Me</u>PH(O)OH).

11.4.4. Anellierte 1,4,2-Diazaphosphole

11.4.4.1. 2-Amino-4-phenyl-1,3-thiazol (64)

Die Verbindung kann in Anlehnung an eine Synthese von S. BALALAIE⁹⁶ dargestellt werden. In einem 2 L Rundkolben wird ω -Bromacetophenon (39.815 g, 200.0 mmol), Thioharnstoff (18.268 g, 240.0 mmol) und 1,4-Dazabicyclo[2.2.2]octan (2.243 mg, 20.0 mmol, 10 mol%) in einer 1:1-Mischung (v/v)aus Ethanol und Wasser (1 L) gelöst. Die Reaktionsmischung wird bei Raumtemperatur gerührt, wobei nach ca. 20 min die Ausbildung eines elfenbeinfarbenen Niederschlags beobachtet werden kann. Nach einer Reaktionszeit von 48 h bei Raumtemperatur wird Das Lösemittel abrotiert und der erhaltenen Feststoff mit Wasser gewaschen und anschließend aus Ethanol umkristallisiert. Man erhält 2-Amino-4-phenyl-1,3-thiazol (64) als elfenbeinfarbenen Feststoff (25.582 g, 145.1 mmol, 73 %). Die erhaltenen ¹H-NMR-Daten entsprechen denen der Literatur.

¹H-NMR (399.8 MHz, DMSO-d⁶): δ /ppm = 7.00 (s, 1H, C5-H), 7.05 (s, 2H, NH₂), 7.25 (tt, ³J_{HH} = 7.3 Hz, ⁴J_{HH} = 1.3 Hz, 1H, C_p-H), 7.39–7.32 (m, 2H, C_m-H), 7.76–7.81 (m, 2H, C_o-H). ¹³C-{¹H}-NMR (100.5 MHz, DMSO-d⁶): δ /ppm = 102.0 (C5), 126.1 (C_o), 127.7 (C_p), 129.0 (C_m), 135.5 (C_i), 150.4 (C4), 168.7 (C2). MS (DEI+, 70 eV): m/z (%) = 176.1 (100) [M]⁺.

11.4.4.2. 2-Bromessigsäure-(1R, 2S, 5R)-2-(1methylethyl)-5-methylcyclohexyl-ester (65a)

In einem 100 mL-Schlenkkolben wird (–)-Menthol ((1*R*, 2*S*, 5*R*)-2-(propan-2-yl)-5-methylcyclohexan-1-ol) (15.627 g, 100.0 mmol) und Kaliumcarbonat (6.910 g, 50.0 mmol) in Dichlormethan (abs., 100 mL) suspendiert. Die Suspension wird aus 0 °C gekühlt und anschließend 2-Bromessigsäurebromid (8.68 mL, 20.184 g, 100.0 mmol) langsam über einen Zeitraum von ca. 15 min zugetropft. Die Reaktionslösung wird 30 min bei 0 °C und anschließend 12 h bei Raumtemperatur gerührt. Die Reaktion wird anschließend mit Wasser (50 mL) gequenched und die Reaktionsmischung dreimal mit Diethylether (je 50 mL) extrahiert, die vereinigten organischen Phasen mit Wasser (100 mL) gewaschen und anschließend gründlich mit Na₂SO₄ getrocknet. Nach Entfernen des Lösemittels *in vacuo* erhält man 2-Bromessigsäure-(1*R*, 2*S*, 5*R*)-2-(1-methylethyl)-5-methylcyclohexyl-ester (**65a**) als farbloses, leicht viskoses Öl (26.444 g, 95.4 mmol, 95 %). Die erhaltenen NMR-Daten sind gut mit publizierten Daten⁹⁸ vergleichbar.

¹H-NMR (CDCl₃, 270.2 MHz): δ /ppm = 4.64 (td, J = 10.9 Hz, J = 4.4 Hz, 1H, C1-H), 3.82 (s, 1H, C12-Ha), 3.73 (s, 1H, C12-Hb), 1.94-1.88 (m, 1H, C6-He), 1.82 (septd, J = 7.0 Hz, J = 2.7 Hz, 1H, C7-H), 1.63-1.58 (m, 2H, C4-He, C3-He), 1.50-1.29 (m, 2H, C5-H, C2-Ha), 1.05-0.91 (m, 2H, C3-Ha, C6-Ha), 0.87-0.76 (m, 1H, C4-Ha), 0.83 (d, J = 6.5 Hz, 3H, C10-H), 0.81 (d, J = 7.0 Hz, 3H, C8-H), 0.67 (d, J = 7.0 Hz, 3Hz, 3Hz, 3Hz), 0.67 (d, J = 7.0 Hz, 3Hz), 0.67 (d, J = 7.0 Hz), 0.67 (d,¹³C-{¹H}-NMR $J = 7.0 \, \text{Hz},$ 3H, C9-H). (CDCl₃, 67.9 MHz): δ /ppm = 167.2 (C11), 76.5 (C1), 47.0 (C2), 40.5 (C6), 34.2 (C4), 31.4 (C5), 26.2 (C12), 26.2 (C8), 23.4 (C3), 22.0 (C7), 20.7 (C10), 16.3 (C9). **MS** (**DEI+**, **70 eV**): $m/z = 277.2 (1) [M]^+$, 275.2 (1) [M]⁺, 263.2 (1), 261.2 (1), 235.2 (3), 233.1 (2), 197.2 (29) [M-Br]⁺, 193.1 (5), 179.2 (2), 138.2 (100), 123.2 (23), 95.2 (36), 81.1 (20), 55.1 (7), 41.1 (5), 28.1 (4).

11.4.4.3. 2-Bromessigsäure-(3*R*)-4,4-dimethyl-2-oxooxolan-3-yl-ester (65d)

In einem 100 mL-Schlenkkolben wird (-)-Pantolacton ((3R)-3-Hydroxy-4,4-dimethyloxolan-2-on) (6.507 g, 50.0 mmol) in Dichlormethan (abs., 100 mL) gelöst, Kaliumcarbonat (3.455 g, 25.0 mmol) zugegeben und die Suspension auf 0 °C gekühlt. Anschließend wird 2-Bromessigsäure (4.34 mL, 10.092 g, 50.0 mmol) langsam über einen Zeitraum von 15 min zugetropft und die Reaktionslösung auf Raumtemperatur gebracht. die Reaktionslösung wird für 1.5 h refluxiert und der Reaktionsforschritt dabei dünnschichtchromatographisch verfolgt. Nach beendeter Reaktion wird die angekühlt, mit (50 mL) gequenched Lösung Wasser und die Reaktionsmischung dreimal mit Diethylether (je 50 mL) extrahiert. Die vereinigten organischen Phasen werden mit Wasser (100 mL) gewaschen und anschließend gründlich mit Na₂SO₄ getrocknet. Nach Entfernen des Lösemittels in vacuo wird das erhaltene Rohprodukt im Vakuum destilliert. Man erhält 2-Bromessigsäure-(3R)-4,4-dimethyl-2-oxooxolan-3-yl-ester erhalten (8.731 g, 34.8 mmol, 70 %, als farbloses Öl (**65d**) b.p. = 90 °C@ $1.5 \cdot 10^{-1}$ mbar).

¹**H-NMR (399.8 MHz, CDCl₃):** δ /ppm = 4.13 (s, 1H, C3-H), ABX₃Y₃-Spinsystem: (δ_A = 4.03, δ_B = 3.95, J_{AB} = 8.9 Hz, J_{BX} = J_{BY} = 0.6 Hz, 2H,

C5<u>H</u>₂), 3.88 (s, 1H, C2'-H), 3.88 (s, 1H, C2'-H), 1.22 (s, 3H, Me), 1.06 (s, 3H, Me). ¹³C-{¹H}-NMR (100.5 MHz, CDCl₃): δ /ppm = 180.2 (C=O), 173.5 (C=O), 78.1 (C5), 77.0 (C3), 42.0 (C4), 26.7 (C2'), 23.8 (Me), 20.0 (Me). MS (FAB+): $m/z = 251.04 \text{ [M+H]}^+$, 131.1 [Pantolacton+H]⁺.

11.4.4.4. 2-Amino-4-phenyl-1,3-thiazol-3-ium-2-bromacetat (64a)

XRD: *Pbca*; a = 16.9561(4) Å; b = 11.5525(3) Å; c = 24.9104(7) Å; Z = 8.

11.4.4.5. 2-Amino-3-(2-((1R, 2S, 5R)-2-(propan-2-yl)-5-methylcyclohexyloxy)-2-oxoethyl)-4-phenyl-1,3-thiazol-3iumbromid (68a)

Zu einer Lösung von 2-Amino-4-phenyl-1,3-thiazol (3.525 g, 20.0 mmol) in THF (20 mL) wird 2-Bromessigsäure-(1*R*, 2*S*, 5*R*)-2-(1-methylethyl)-5methylcyclohexyl-ester (5.544 g, 20.0 mmol) (**65a**) bei Raumtemperatur gegeben. Die Reaktionslösung wird für 24 h refluxiert wobei die Bildung eines farblosen Niederschlages beobachtet werden kann. Der ausgefallene Feststoff wird abgefiltert, mit kaltem THF (20 mL) gewaschen und anschließend *in vacuo* getrocknet. Man erhält 2-Amino-3-(2-((1*R*, 2*S*, 5*R*)-2-(propan-2-yl)-5-methylcyclohexyloxy)-2-oxoethyl)-4-phenyl-1,3-thiazol-3-iumbromid (**68a**) als farblosen Feststoff (1.719 g, 3.8 mmol, 19 %).

Die Verbindung kristallisiert mit einem Molekül Dichlormethan in der Kristallpackung aus einer heißgesättigten Lösung von (**68a**) in Dichlormethan.

¹H-NMR (CDCl₃, 400.2 MHz, 40 °C): δ /ppm = 0.65 (d, ³J_{HH} = 6.9 Hz, 3H, C8'<u>H</u>₃), 0.73–0.81 (m, 1H, C4'-H^a), 0.79 (d, ³J_{HH} = 6.9 Hz, 3H, C9'<u>H</u>₃),

0.87 (d, ${}^{3}J_{HH} = 6.5 \text{ Hz}$, 3H, C10 $'\underline{H}_{3}$), 0.90–1.04 (m, 2H, C3'-H^a, C6'-H^a), 1.23-1.33 (m, 1H, C2'-H), 1.34-1.45 (m, C5'-H), 1.53-1.66 (m, 2H, C3'-H^e, C4'-H^e), 1.79–1.86 (m, C7'-<u>H</u>), 1.96–2.05 (m, 1H, C6'-H^e), 4.67 (td, J = 10.9 Hz, J = 4.3 Hz, 1H, C1'-H), AB-Spinsystem: ($\delta_A = 4.91$, $\delta_{\rm B} = 5.28, J_{\rm AB} = 18.1$ Hz, 2H, N-CH₂), 6.52 (s, 1H, C5-H), 7.26–7.31 (m, 2H, C_o-H), 7.40-7.45 (m, 2H, C_m-H), 7.46-7.52 (m, 1H, C_p-H), 9.94 (s, 2H, NH₂). ¹³C-{¹H}-NMR (CDCl₃, 100.6 MHz, 40 °C): δ/ppm = 16.2 (C9'), 20.8 (C10'), 21.9 (C7'), 23.3 (C3'), 25.9 (C8'), 31.5 (C5'), 34.1 (C4'), 40.5 (C6'), 46.8 (C2'), 49.4 (N-CH₂), 77.2 (C1'), 104.9 (C5), 128.2 (C_i), 129.2 (C_m), 129.7 (C_o), 130.8 (C_p), 140.9 (C4), 165.2 (C=O), 169.9 (C2). **MS** (FAB+): m/z (%) = 373.2 (100) [M-Br]⁺. **MS** (FAB-): m/z (%) = 80.9 (97) [Br]⁻, 78.9 (100) [Br]⁻. HRMS (FAB+): m/z = 373.1950 (ber. 373.1944 für $C_{21}H_{29}N_2O_2S^+$). **HRMS (FAB–)**: m/z = 80.9163 (Br-81, 49.3%), 78.9183 (Br-79, 50.7%) (ber. 80.916289 für Br-81 (49.31 %), 78.918336 für Br-79 (50.69 %)). XRD a = 9.1546(3) Å; b = 16.4548(5) Å; $(68a \times CH_2Cl_2):$ $P2_{1}2_{1}2_{1};$ c = 16.6882(5) Å; V = 2513.86(14) Å³; Z = 4.

11.4.4.6. 2-Amino-3-(2-methoxy-2-oxoethyl)-4phenyl-1,3-thiazol-3-iumbromid (68b)

Zu einer Lösung von 2-Amino-4-phenyl-1,3-thiazol (3.525 g, 20.0 mmol) in THF (20 mL) wird 2-Bromessigsäuremethylester (65b) (1.89 mL, 3.059 g, 20.0 mmol) bei Raumtemperatur gegeben. Die Reaktionslösung wird für 12 h bei Raumtemperatur gerührt. Während dieser Zeit fällt eine geringe Menge eines farblosen Niederschlages aus. Zur Vervollständigung der Reaktion wird die Lösung für 3 d refluxiert. Der ausgefallene Feststoff wird abgefiltert, mit kaltem THF (20 mL) gewaschen und anschließend in vacuo getrocknet. Man erhält 2-Amino-3-(2-methoxy-2-oxoethyl)-4phenyl-1,3-thiazol-3-iumbromid (68b) als farblosen Feststoff (3.414 g, 10.4 mmol, 52 %). Einkristalle der Verbindung, die für die Röntgenstrukturanalyse geeignet sind, können durch Umkristallisieren aus Dichlormethan erhalten werden.

¹H-NMR (CDCl₃, 399.8 MHz): δ /ppm = 3.66 (s, 3H, O<u>Me</u>), 4.76 (s, 2H, N-CH₂), 7.07 (s, 1 H, C5-H), 7.34–7.75 (m, 5H, Ph), 10.00 (s, 2H, NH₂). ¹³C-{¹H}-NMR (CDCl₃, 100.5 MHz): δ /ppm = 48.0 (N-CH₂), 53.1 (Me), 105.7 (C5), 128.0 (C_i), 129.2 (C_o), 129.4 (C_p), 130.5 (C_m), 140.0 (C4), 166.4 (C=O), 169.6 (C2). MS (FAB+): m/z (%) = 249.1 (100) [M-Br]⁺. MS (FAB-): m/z (%) = 80.9 (97) [Br]⁻, 78.9 (100) [Br]⁻. HRMS (FAB+): m/z = 249.0698 (ber. 249.0692 für C₁₂H₁₃N₂O₂S⁺). HRMS (FAB-): m/z = 80.9163 (Br-81, 49.3 %), 78.9183 (Br-79, 50.7 %) (ber. 80.916289 für Br-81 (49.31 %), 78.918336 für Br-79 (50.69 %)). XRD:

11.4.4.7. 2-Amino-3-(2-ethoxy-2-oxoethyl)-4phenyl-1,3-thiazol-3-iumbromid (68c)

Zu einer Lösung von 2-Amino-4-phenyl-1,3-thiazol (3.525 g, 20.0 mmol) in THF (20 mL) wird 2-Bromessigsäureethylester (**65c**) (2.20 mL, 3.340 g, 20.0 mmol) bei Raumtemperatur gegeben. Die Reaktionslösung wird für 2 d refluxiert, wobei die Bildung geringer Mengen eines farblosen Niederschlages beobachtet werden kann. Der ausgefallene Feststoff wird abgefiltert, mit kaltem THF (20 mL) gewaschen und anschließend *in vacuo* getrocknet. Man erhält 2-Amino-3-(2-ethoxy-2-oxoethyl)-4-phenyl-1,3thiazol-3-iumbromid (**68c**) als farblosen Feststoff (1.192 g, 3.5 mmol, 17 %). Durch Umkristallisieren aus Dichlormethan können Einkristalle der Verbindung, die für die Röntgenstrukturanalyse geeignet sind gewonnen werden. Aus Chloroform kristallisiert die Verbindung mit einem halben Solvensmolekül in der Kristallpackung.

¹H-NMR (CDCl₃, **399.8** MHz): δ /ppm = 1.18 (t, ³J_{HH} = 7.2 Hz, 3H, OCH₂CH₃), 4.17 (q, ³J_{HH} = 7.2 Hz, 2H, O<u>CH₂CH₃</u>), 4.98 (s, 2H, N-CH₂), 6.67 (s, 1H, C5-H), 7.27-7.49 (m, 5H, Ph), 9.84 (s, 2H, NH₂). ¹³C-{¹H}-NMR (CDCl₃, **100.5** MHz): δ /ppm = 14.1 (OCH₂CH₃), 25.7 (OCH₂CH₃), 49.5 (N-CH₂), 105.9 (C5), 128.2 (C_i), 129.3 (C_o), 129.7 (C_p), 130.8 (C_m), 140.5 (C4), 165.8 (C=O), 169.8 (C2). MS (FAB+): m/z (%) = 263.1 (100) [M-Br]⁺. MS (FAB-): m/z (%) = 80.9 (97) [Br]⁻, 78.9 (100) [Br]⁻. HRMS (FAB+): m/z = 363.0854 (ber. 263.0849 für C₁₃H₁₅N₂O₂S⁺). HRMS (FAB-): m/z = 80.9163 (Br-81, 49.3 %), 78.9183 (Br-79, 50.7 %) (ber. 80.916289 für Br-81 (49.31 %), 78.918336 für Br-79 (50.69 %)). XRD (68c): P2₁/n; a = 9.4315(3) Å; b = 14.2728(7) Å; c = 22.4061(6) Å; β = 94.996(3)°; V = 3004.71(19) Å³; Z = 4. XRD (68c × ½ CHCl₃): P-1; a = 9.3594(5) Å; b = 10.4333(6) Å; c = 18.7261(10) Å; a = 90.423(4)°, β = 95.818(4)°; γ = 105.775(4)°; V = 1749.49(17) Å³; Z = 2.

11.4.4.8. 2-Amino-3-(2-((1*R*, 2*S*, 5*R*)-2-(propan-2-yl)-5-methylcyclohexyloxy)-2-oxoethyl)-4-phenyl-1,3-thiazol-3iumchlorid (68d)

Die Verbindung kristallisiert aus einer hydrolysierten Lösung von 68a, PCl₃ und NEt₃ in Acetonitril.

XRD (68d × $\frac{1}{2}$ H₃CCN): $P2_1$; a = 9.0416(4) Å; b = 12.7684(9) Å; c = 20.5066(10) Å; $\beta = 92.199(4)^\circ$; V = 2365.68(23) Å³; Z = 2.

11.4.4.9. 2-Amino-1-(2-((1R, 2S, 5R)-2-(propan-2-yl)-5-methylcyclohexyloxy)-2-oxoethyl)pyridiniumbromid (69a)

2-Aminopyridin (0.471 g, 5.0 mmol) wird in Aceton (10 mL) gelöst und 2-Bromessigsäure-(1R, 2S, 5R)-2-(1-methylethyl)-5anschließend methylcyclohexyl-ester (65a) (1.386 g, 5.0 mmol) bei Raumtemperatur zugegeben. Nach ca. 10 min beginnt aus der orangen Lösung ein farbloser Niederschlag auszufallen. zur Vervollständigung der Reaktion wird über Niederschlag wird abgefiltert, Nacht refluxiert. Der mit kaltem Aceton(50 mL) gewaschen und anschließend in vacuo getrocknet. Man 2-Amino-1-(2-((1R, 2S, 5R)-2-(propan-2-yl)-5erhält methylcyclohexyloxy)-2-oxoethyl)pyridiniumbromid (69a) als farblosen Feststoff (1.375 g, 3.7 mmol, 74 %).

¹H NMR (DMSO-d⁶, 400.2 MHz): δ/ppm = 0.68 (d, ³J_{HH} = 6.9 Hz, 3H, $C8'H_3$), 0.80 (s, 1H, C4'-H^a), 0.84 (d, ${}^{3}J_{HH}$ = 7.0 Hz, 3H C9'H₃), 0.87 (d, ${}^{3}J_{HH} = 6.5 \text{ Hz}, 3\text{H}, C10'\text{H}_{3}), 0.92-1.08 (m, 2\text{H}, C3'-\text{H}^{a}, C6'-\text{H}^{a}), 1.26-1.34$ (m, 1H, C2'-H), 1.38–1.50 (m, 1H, C5'-H), 1.57–1.66 (m, 2H, C3'-H^e, C4'-H^e), 1.82–1.91 (m, 1H, C7'-H), 1.94–2.00 (m, 1H, C6'-H^e), 4.65 (td, J = 10.8 Hz, J = 4.2 Hz, 1H, C1'-H), AB-Spinsystem: ($\delta_A = 5.16$, $\delta_{\rm B}$ = 5.27, $J_{\rm AB}$ = 18.1 Hz, 2H, N-CH₂), 6.94 (t, J = 6.9 Hz, 1H, C5-H), 7.13 (d, J = 9.0 Hz, 1H, C3-H), 7.92 (t, J = 8.0 Hz, 1H, C4-H), 8.06 $(d, J = 6.8 \text{ Hz}, 1\text{H}, C6\text{-H}), 8.66 (s, 2\text{H}, N\text{H}_2).$ ¹³C-{¹H}-NMR (DMSO-d⁶, **100.6 MHz):** $\delta/\text{ppm} = 16.7$ (C8'), 21.3 (C10'), 22.4 (C7'), 23.2 (C3'), 25.8 (C9'), 31.4 (C5'), 34.1 (C4'), 40.9 (C6'), 47.0 (C2'), 54.2 (N-CH2), 76.6 (C1'), 113.4 (CH), 115.6 (CH), 141.1 (CH), 143.6 (CH), 155.3 (C2), 165.9 (C=O). **MS (FAB+):** m/z (%) = 291.2 (100) [M-Br]⁺. **MS (FAB-):** m/z (%) = 80.9 (97) [Br]⁻, 78.9 (100) [Br]⁻. **HRMS** (FAB+): m/z = 291.2073 (ber. 291.2067 für $C_{17}H_{27}N_2O_2^+$). **HRMS (FAB–)**: m/z = 80.9163 (Br-81, 49.3%), 78.9183 (Br-79, 50.7%) (ber. 80.916289 für Br-81 (49.31 %), 78.918336 für Br-79 (50.69 %)).

11.4.4.10. 3-((1R, 2S, 5R)-5-Methyl-2-(propan-2yl)cyclohexyloxycarbonyl)-5-phenyl-1,4,2-Diazaphospholo[5,4-b]-1,3thiazol (70a)

In ausgeheizten und mit Ar-Atmosphäre gefüllten 50 mL-Schlenkkolben aufgesetztem Tropftrichter wird 2-Amino-3-(2-((1R, 2S, 5R)-2mit (propan-2-yl)-5-methylcyclohexyloxy)-2-oxoethyl)-4-phenyl-1,3-thiazol-3iumbromid (68a) (0.453 g, 1.0 mmol) in Acetonitril (abs., 10 mL) suspendiert, PCI_3 (87 μ L, 0.137 g, 1.0 mmol) zugegeben und die Suspension auf 0 °C gekühlt. Anschließend wird NEt₃ (0.53 mL, 0.405 g, 4.0 mmol), gelöst in Acetonitril (abs., 3 mL), über einen Zeitraum von 15 min zugetropft, wobei sich ein farbloser Niederschlag aus Triethylammoniumchlorid bildet und die Lösung sich schwach gelb verfärbt. Die Reaktionslösung wird auf Raumtemperatur erwärmt und bei 50 °C für 7 d gerührt. Der Reaktionsfortschritt wird im ³¹P-NMR überwacht. Nach beendeter Reaktion werden die flüchtigen Bestandteile in vacuo entfernt und der Rückstand zweimal mit einer Mischung aus Diethylether und n-Pentan (abs., 3:1 v/v, je 20 mL) extrahiert. Die organischen Extrakte werden vereinigt und nach Entfernen des Lösemittels in vacuo wird 3-((1R, 2S, 5R)-5-Methyl-2-(propan-2-yl)cyclohexyloxycarbonyl)-5-phenyl-1,4,2-Diazaphospholo[5,4-b]-1,3-thiazol (70a) als oranges Öl erhalten (0.039 g, 0.10 mmol, 10 %).

³¹P-NMR ³¹P-NMR **CDCl₃):** δ /ppm = 252.1. (109.4 MHz, (109.4 MHz, MeCN): δ/ppm = 249.0. ¹H-NMR (270.2 MHz, CDCl₃): δ /ppm = 0.69 (d, J = 6.9 Hz, 3H, C8'<u>H</u>₃), 0.76–0.83 (m, 1H, C4'-H^a), 0.85 $(d, J = 6.5 \text{ Hz}, 3\text{H}, C9'-\text{H}), 0.90 (d, J = 7.0 \text{ Hz}, 3\text{H}, C10'\underline{H}_3), 1.20-1.51$ (m, 2H, C3'-H^a, C6'-H^a), 1.51–1.67 (m, 4H, C2'-H, C3'-H^e, C4'-H^e, C5'-H), 1.76–1.83 (m, 1H, C7'-H), 1.91–1.99 (m, 1H, C6'-H^e), 4.55 (td, J = 10.93 Hz, J = 4.4 Hz, 1H, C1'-H), 7.00 (d, ${}^{5}J_{PH} = 2.3$ Hz, 1H, C6-H), ¹³C-{¹H}-NMR (67.9 MHz, 5H, Ph). 7.38-7.43 (m, $CDCl_3$): δ /ppm = 16.5 (C8'), 20.8 (C10'), 22.1 (C7'), 23.6 (C3'), 26.6 (C9'), 31.4 (C5'), 34.2 (C4'), 40.6 (C6'), 46.9 (C2'), 75.3 (C1'), 113.9 (d, ${}^{4}J_{PC} = 1.3 \text{ Hz}$, C6), 126.8 (C_o), 128.7 (C_m), 129.4 (C_p), 131.9 (C_i), 135.8 (d, ${}^{3}J_{PC} = 2.0 \text{ Hz}$, C5), 157.0 (d, ${}^{1}J_{PC} = 70.4 \text{ Hz}$, C3), 159.9 (d, $^{2}J_{PC} = 14.8$ Hz, CO), 160.3 (d, $^{2}J_{PC} = 17.6$ Hz, C7a). MS (DEI, 70 eV): m/z (%) = 400.1 (100) [M]⁺, 262.0 (100) [M-Menthyl]⁺.

11.4.4.11. 3-Methoxycarbonyl-5-phenyl-1,4,2-Diazaphospholo[5,4-b]-1,3-thiazol (70b)

In ausgeheizten und mit Ar-Atmosphäre gefüllten 50 mL-Schlenkkolben mit aufgesetztem Tropftrichter wird 2-Amino-3-(2-methoxy-2-oxoethyl)-4phenyl-1,3-thiazol-3-iumbromid (68b) (0.329 g, 1.0 mmol) in Acetonitril (abs., 10 mL) suspendiert, PCI_3 (87 μ L, 0.137 g, 1.0 mmol) zugegeben und auf 0 °C gekühlt. Anschließend wird eine Lösung von NEt₃ (0.53 mL, 0.405 g, 4.0 mmol) in Acetonitril (abs. 2 mL) über einen Zeitraum von ca. 15 min zugetropft. Währen des Zutropfens kann die Bildung eines Triethylammoniumchlorid-Niederschlags und die Gelbfärbung der Lösung beobachtet werden. Die Reaktionslösung wird auf Raumtemperatur erwärmt und bei 50 °C für 7 d gerührt. Nach Beendigung der Reaktion (³¹P-NMR) werden die flüchtigen Bestandteile der Suspension *in vacuo* entfernt und der Rückstand zweimal mit einer Mischung aus Diethylether und *n*-Pentan (abs., 3:1 v/v, je 20 mL) extrahiert. Die vereinigten organischen Extrakte werden in vacuo vom Lösemittel befreit und man 3-Methoxycarbonyl-5-phenyl-1,4,2-diazaphosphol[5,4-b]-1,3erhält thiazol (**70b**) als hellbraunes Öl (0.042 mg, 0.15 mmol, 15 %).

³¹P-NMR (109.4 MHz, CDCl₃): δ /ppm = 251.6. ³¹P-NMR (109.4 MHz, MeCN): δ /ppm = 248.1. ¹H-NMR (270.2 MHz, CDCl₃): δ /ppm = 3.39 (s, 3H, OMe), 7.01 (d, ⁵J_{PH} = 2.4 Hz, C6-H), 7.36-7.45 (m, 5H, Ph). ¹³C-{¹H}-NMR (67.9 MHz, CDCl₃): δ /ppm = 51.9 (s, OMe), 113.9 (d, ⁴J_{PC} = 1.5 Hz, C6), 126.9 (C_{m/o}), 128.7 (C_{m/o}), 129.4 (C_p), 131.9 (d, ⁴J_{PC} = 0.6 Hz, C_i) 135.7 (d, ³J_{PC} = 2.2 Hz, C5), 156.3 (d, ¹J_{PC} = 68.7 Hz, C3), 160.0 (d, ²J_{PC} = 17.7 Hz, C7a), 160.9 (d, ²J_{PC} = 15.7 Hz, CO).

In ausgeheizten und mit Ar-Atmosphäre gefüllten 50 mL-Schlenkkolben mit aufgesetztem Tropftrichter wird 2-Amino-3-(2-ethoxy-2-oxoethyl)-4-

phenyl-1,3-thiazol-3-iumbromid (68c) (0.342 g, 1.0 mmol) in Acetonitril suspendiert, PCI_3 (87 μ L, 0.137 g, 1.0 mmol) zugegeben und die Suspension auf 0 °C gekühlt. Anschließend wird NEt₃ (0.53 mL, 0.405 g, 4.0 mmol), gelöst in Acetonitril (abs. 2 mL), über einen Zeitraum von ca. zugetropft, wobei sich die Lösung 15 min qelb verfärbt und Triethylammoniumchlorid farbloser Feststoff ausfällt. als Die Reaktionsmischung wird auf Raumtemperatur erwärmt und für 7 d bei 50 °C gerührt, bis im ³¹P-NMR eine vollständige Umsetzung zum Diazaphosphol beobachtet werden kann. Anschließend werden alle flüchtigen Bestandteile in vacuo entfernt und der Rückstand zweimal mit einer Mischung aus Diethylether und *n*-Pentan (abs., 3:1 v/v, je 20 mL) extrahiert. Die vereinigten organischen Extrakte werden in vacuo vom 3-Ethoxycarbonyl-5-phenyl-1,4,2-Lösemittel befreit und diazaphosphol[5,4-b]-1,3-thiazol (**70c**) wird als hellbraunes Öl erhalten (0.023 mg, 0.08 mmol, 8 %).

³¹P-NMR (109.4 MHz, CDCl₃): δ /ppm = 251.4. ³¹P-NMR (109.4 MHz, MeCN): δ /ppm = 247.9. ¹H-NMR (270.2 MHz, CDCl₃): δ /ppm = 1.05 (t, ³J_{HH} = 7.1 Hz, 3H, OCH₂CH₃), 3.89 (q, ³J_{HH} = 7.1 Hz, 2H, OCH₂CH₃), 7.00 (d, ⁵J_{PH} = 2.4 Hz, C6-H), 7.36-7.46 (m, 5H-Ph). ¹³C-{¹H}-NMR (67.9 MHz, CDCl₃): δ /ppm = 14.0 (OCH₂CH₃), 61.3 (OCH₂CH₃), 113.8 (d, ⁴J_{PC} = 1.4 Hz, C6), 126.8 (C_{m/o}), 128.7 (C_{m/o}), 129.4 (C_p), 131.9 (C_i), 135.7 (d, ³J_{PC} = 2.0 Hz, C5), 156.9 (d, ¹J_{PC} = 69.0 Hz, C3), 160.2 (d, ²J_{PC} = 17.8 Hz, C7a), 160.6 (d, ²J_{PC} = 15.5 Hz, CO).

11.4.4.13. 5-Phenyl-1,4,2-diazaphospholo[5,4-*b*]-1,3-thiazol (70e)

In ausgeheizten und mit Ar-Atmosphäre gefüllten 50 mL-Schlenkkolben mit aufgesetztem Tropftrichter wird 2-Amino-4-phenyl-1,3-thiazol (64) (1.762 g, 10.0 mmol) in Acetonitril (abs., 20 mL) suspendiert, auf 0 °C gekühlt und anschließend (CICH₂)PCl₂ (1.00 mL, 1.514 g, 10.0 mmol) zugegeben. Anschließend wird NEt₃ (4.16 mL, 3.036 g, 30.0 mmol), gelöst in Acetonitril (abs., 5 mL), über einen Zeitraum von 30 min zugetropft, wobei sich ein farbloser Niederschlag aus Triethylammoniumchlorid bildet und die Lösung sich gelb verfärbt. Die Suspension wird für 48 h bei Raumtemperatur gerührt und der Reaktionsfortschritt im ³¹P-NMR überwacht. Nach beendeter Reaktion werden die flüchtigen Bestandteile in vacuo entfernt und der zurückbleibende Rückstand mit Diethylether (abs., 20 mL) extrahiert. Das Triethylammoniumchlorid wird abfiltriert und dreimal mit Diethylether (abs., je 5 mL) gewaschen. Nach Entfernen des Lösemittels wird 5-Phenyl-1,4,2-diazaphospholo[5,4-*b*]-1,3-thiazol (**70e**) als farbloser Feststoff erhalten (0.395 g, 1.8 mmol, 18 %).

³¹P-NMR (109.4 MHz, CDCl₃): δ /ppm = 223.6 (d, ²J_{PH} = 32.0 Hz). ¹H-NMR (270.2 MHz, CDCl₃): δ /ppm = 7.01 (d, ⁵J_{PH} = 2.3 Hz, 1H, C6-H), 7.49-7.61 (m, 5H, Ph), 9.06 (d, ²J_{PH} = 32.0 Hz, 1H, C3-H). ¹³C-{¹H}-NMR (67.9 MHz, CDCl₃): δ /ppm = 111.4 (d, ⁴J_{PC} = 0.6 Hz, C6), 127.7 (C_o), 129.4 (C_m), 130.0 (C_p), 130.1 (C_i), 132.8 (C5), 149.7 (d, ¹J_{PC} = 66.2 Hz, C3), 155.7 (d, ²J_{PC} = 17.9 Hz, C7a). MS (DEI, 70 eV): *m*/*z* (%) = 218.0 (100) [M]⁺, 160.1 (5), 133.1 (13), 102.1(15), 83.0 (9), 77.1 (5), 51.1 (4), 50.1 (2).

11.4.4.14. 3-((1R, 2S, 5R)-5-Methyl-2-(propan-2yl)cyclohexyloxycarbonyl)-1,4,2diazaphospholo[4,5-*a*]pyridin (71a)

In ausgeheizten und mit Ar-Atmosphäre gefüllten 50 mL-Schlenkkolben Tropftrichter wird 2-Amino-1-(2-((1R, 2S, 5R)-2aufgesetztem mit (propan-2-yl)-5-methylcyclohexyloxy)-2-oxoethyl)pyridiniumbromid (**69a**) (0.371 g, 1.0 mmol) in Acetonitril (abs., 10 mL) suspendiert, PCl₃ (87 μ L, 0.137 g, 1.0 mmol) zugegeben und die Suspension auf 0 °C gekühlt. Anschließend wird eine Lösung von NEt_3 (0.53 mL, 0.405 g, 4.0 mmol) Acetonitril (abs. 2 mL) über einen Zeitraum von ca. 15 min zugetropft, wobei eine Gelb-Färbung der Lösung und die Ausbildung eines Triethylammoniumchlorid-Niederschlags beobachtet werden kann. Die Suspension wird auf Raumtemperatur erwärmt und zur Vervollständigung der Reaktion für 7 d bei 50 °C gerührt. Der Reaktionsfortschritt wird im ³¹P-NMR überwacht und nach beendeter Reaktion werden alle flüchtigen Bestandteile in vacuo entfernt. Der Rückstand wird dreimal zweimal mit einer Mischung aus Diethylether und *n*-Pentan (abs., 3:1 v/v, je 20 mL) extrahiert. Die organischen Extrakte werden vereinigt und das Lösemittel wird in vacuo entfernt. Man erhält 3-((1R, 2S, 5R)-5-Methyl-2-(propan-2yl)cyclohexyloxycarbonyl)-1,4,2-diazaphospholo[4,5-a]pyridin (**71a**) als oranges Öl (0.067 g, 0.21 mmol, 21 %).

³¹P-NMR (161.8 MHz, CDCl₃): δ /ppm = 229.8. ³¹P-NMR (161.8 MHz, MeCN): δ /ppm = 216.2. ¹H-NMR (399.8 MHz, CDCl₃): δ /ppm = 0.80 (d, J = 7.0 Hz, 3H, C8'<u>H</u>₃), 0.89-0.93 (m, 1H, C4'-H), 0.91 (d, J = 7.0 Hz, 3H, C9'<u>H</u>₃), 0.93 (d, J = 6.5 Hz, 3H, C10'<u>H</u>₃), 1.09-1.25 (m, 2H, C3'-H^a, C6'-H^a), 1.49-1.64 (m, 2H, C5'-H, C2'-H), 1.67-1.78 53 (m, 2H, C3'-H^e, C4'-H^e), 1.92-2.04 (m, 1H, C7'-H), 2.09-2.17 (m, 1H, C6'-H^e), 5.00 (td, J = 10.8 Hz, J = 4.4 Hz, 1H, C1'-H), 7.07-7.17 (m, 1H, C5-H), 7.45–7.59 (m, 1H, C8-H), 7.83–7.92 (m, 1H, C7-H), 9.63–9.69 (m, 1H, C6-H). ¹³C-{¹H}-NMR (100.5 MHz, CDCI₃): δ /ppm = 15.1 (C8'), 19.1 (C10'), 20.4 (C7'), 22.2 (C3'), 25.1 (C9'), 29.9 (C5'), 32.6 (C4'), 39.4 (C6'), 45.5 (C2'), 73.4 (C1'), 112.6 (d, ⁴J_{PC} = 2.5 Hz, C6), 117.9 (d, ³J_{PC} = 9.5 Hz, C8), 127.2 (s, C7), 127.8 (s, C5), 149.2 (d, ¹J_{PC} = 69.5 Hz, C3), 153.2 (d, ²J_{PC} = 14.6 Hz, C8a), 160.9 (d, ²J_{PC} = 13.9 Hz, C0). **MS** (DEI, 70 eV): m/z (%) = 318.1 (4) [M]⁺.

11.4.4.15. (2-Iminium-4-phenyl-1,3-thiazol-3(2*H*)-yl)methylphosphinat-Chloroform (73 × CDCl₃)

XRD: *P*-1; *a* = 7.5221(6) Å; *b* = 7.8760(8) Å; *c* = 14.2176(12) Å; *a* = 99.887(8)°, β = 100.663(7)°; γ = 104.120(7)°; *V* = 781.70(13) Å³; *Z* = 2.

11.4.4.16. 2-Amino-3-(2-((1R, 2S, 5R)-2-(propan-2-yl)-5-methylcyclohexyloxy)-2-oxoethyl)-4-phenyl-1,3-thiazol-3iumchlorid-Acetonitril (68d) × ½ MeCN

XRD: $P2_1$; a = 9.0416(4) Å; b = 12.7684(9) Å; c = 20.5066(10) Å; $\beta = 92.199(4)^\circ$; V = 2365.68(23) Å³; Z = 2.

11.4.5. 2H-1,2,3-Diazaphosphole

11.4.5.1. 1-Methyl-2-(propan-2-yliden)hydrazin (Acetonmethylhydrazon) (78a)

In einem 500 mL-Kolben wird Aceton (200 mL, 158 g, 2720 mmol) auf 0 °C gekühlt. Innerhalb von 30 min wird Methylhydrazin (52.95 mL, 46.070 g, 1000.0 mmol) zugegeben. Nach 30 min wird die Reaktionslösung auf Raumtemperatur erwärmt und 18 h bei dieser Temperatur gerührt. Anschließend wird die Reaktionsmischung gründlich mit Na₂SO₄ getrocknet und das Lösemittel abdestilliert.

Nach Destillation bei Atmosphärendruck erhält man Acetonmethylhydrazon (b.p = 102-105 °C, 77.539 g, 90 %) als farblose Flüssigkeit.

¹H-NMR (400.2 MHz, C₆D₆): δ /ppm = 5.55 (s, 1H, NH). 3.25 (s, 3H, CH₃), 2.32 (s, 3H, CH₃), 2.19 (s, 3H, CH₃). ¹³C-NMR (100.6 MHz, C₆D₆): δ /ppm = 145.1 (sept, ²J_{CH} = 6.5 Hz), 38.2 (q, ¹J_{CH} = 134.4 Hz), 25.2 (qq, ¹J_{CH} = 126.5 Hz, ⁴J_{CH} = 3.1 Hz), 16.4 (qq, ¹J_{CH} = 126.6 Hz, ⁴J_{CH} = 3.4 Hz). ¹⁴N-{¹H}-NMR (28.9 MHz, C₆D₆): δ /ppm = 53, -281. ¹⁵N-NMR (40.5 MHz, C₆D₆): δ /ppm = 52.0 (s, 1N, C=N), -280.6 (d, 1N, ¹J_{NH} = 74.9 Hz, NH). MS (DEI+, 70 eV): *m*/*z* (%) = 127.26 (12), 115.22 (17), 99.22 (23), 86.22 (17) [M]⁺, 85.21 (47) [M-H]⁺, 75.19 (26), 71.21 (14), 70.20 (17), 60.18 (12), 59.19 (27), 58.18 (28), 57.19 (12), 56.18 (62), 43.15 (100), 42.16 (41), 41.17 (21), 30.16 (16), 28.14 (14), 18.12 (16), 15.13 (23).

11.4.5.2. 1-Phenyl-2-(propan-2-yliden)hydrazin (Acetonphenylhydrazon) (78d)

In einem 500 mL-Kolben wird Aceton (200 mL, 158 g, 2720 mmol) vorgelegt und auf 0 °C gekühlt. Innerhalb von 45 min wird Phenylhydrazin (49.2 mL, 54.070 g, 500.0 mmol) zugetropft. Die Reaktionslösung wird auf Raumtemperatur erwärmt und 24 h bei dieser Temperatur gerührt. Anschließend wird das nicht abreagierte Aceton abdestilliert und das gebildete Wasser abdestilliert. Nachdem alle flüchtigen Bestandteile abdestilliert sind, verbleibt Acetonphenylhydrazon als orange-braune, ölige Flüssigkeit (73.945 g, 99 %). Die Verbindung erweist sich als luft- und

lichtempfindlich und zersetzt sich im Kühlschrank unter Licht- und Luftausschluss innerhalb einer Woche.

¹H-NMR (270.2 MHz, CDCl₃): δ /ppm = 7.30-7.24 (m, 2H, C_m-H), 7.11-7.05 (m, 2H, C_o-H), 6.87 (t, ³J_{HH} = 7.8 Hz, 1H, C_p-H), 2.07 (s, 3H, Me), 1.85 (s, H, Me). ¹³C-{¹H}-NMR (67.9 MHz, CDCl₃): δ /ppm = 146.1 (C=N), 144.2 (C_i), 129.3 (C_m), 119.6 (C_p), 113.1 (C_o), 25.3 (Me), 15.6 (Me).

11.4.5.3. 1-Ethyliden-2-phenyl-hydrazin (Acetaldehydphenylhydrazon) (78e)

In einem ausgeheizten und mit Ar-Atmosphäre gefüllten 100 mL-Schlenkkolben mit aufgesetztem Tropftrichter wird Phenylhydrazin (20.04 ml, 21.628 g, 200.0 mmol) in Toluen (abs., 50 mL) gelöst auf 0 °C gekühlt. Zu der roten Lösung wird anschließend Acetaldehyd (16.94 mL, 13.215 g, 300.0 mmol), gelöst in Toluen (10 mL), über einem Zeitraum von 15 min zugetropft. Die erhaltene gelb-braune Emulsion wird auf Raumtemperatur erwärmt und anschließend Essigsäure (0.5 mL) als Katalysator zugegeben. Nach einer Reaktionszeit von 3 h bei dieser Temperatur kann aus der Reaktionsmischung bei Atmosphärendruck bei 93–96 °C ein gelbes Öl abdestilliert werden, das in der Vorlage erstarrt. Man erhält Acetaldehydphenylhydrazon (22.513 g, 167.8 mmol, 84 %) als leuchtend gelben Feststoff mit einem E/Z- bzw. Z/E-Isomerenverhältnis von 5:6.

¹**H-NMR (270.2 MHz, CDCl₃):** δ /ppm = 7.30–7.19 (m, 1·2H+1.2·2H), 7.09–9.03 (m, 1·2H+1.2·1H), 7.00–6.95 (m, 1.2·2H), 6.90–6.67 (m, 1·1H+1.2·1H), 6.67 (q, J = 5.6 Hz, 1·1H), 1.98 (d, J = 5.6 Hz, 1.2·3H), 1.85 (d, J = 5.6 Hz, 1·3H). ¹³**C-{¹H}-NMR (67.9 MHz, CDCl₃):** δ /ppm = 145.5, 145.3, 137.3, 135.3, 129.3, 129.3, 120.2, 119.6, 113.1, 112.6, 18.1, 12.2.

> 11.4.5.4. 1-Methyl-2-(1-(thiophen-2yl)ethyliden)hydrazin (2-Acetylthiophen-methylhydrazon) (78c)

In einem 100 mL-Kolben wird 1-(Thiophen-2-yl)ethan-1-on (2-Acetylthiophen) (5.39 mL, 6.309 g, 50.0 mmol) in Cyclohexan (40 mL) vorgelegt und Methylhydrazin (2.86 g, 2.304 g, 50.0 mmol) zugegeben.

Anschließend wird *p*-Toluensulfonsäure (1.0 g) zugegeben und die Reaktionslösung bei Raumtemperatur für 3 d gerührt, wobei der Reaktionsfortschritt dünnschichtchromatographisch verfolgt wird. Durch zweimaliges Waschen mit Wasser (je 50 mL) wird die *p*-Toluensulfonsäure entfernt und die organische Phase gründlich mit MgSO₄ getrocknet. Die Reaktionslösung wird *in vacuo* eingeengt, bis die Bildung von feinen gelben Nadeln beobachtet werden kann. Der ausgefallene Feststoff zersetzt sich heftig beim Abfiltern und Trocknen und ist in Reinsubstanz bei Raumtemperatur nicht stabil handhabbar.

11.4.5.5. 1-Phenyl-2-(1-(thiophen-2yl)ethyliden)hydrazin (2-Acetylthiophen-phenylhydrazon) (78f)

einem 250 mL-Kolben wird 1-(Thiophen-2-yl)ethan-1-on (2-In Acetylthiophen) (5.39 mL, 6.309 g, 50.0 mmol) in Ethanol (70 mL) vorgelegt und anschließend Phenylhydrazin (5.01 mL, 5.407 g, 50.0 mmol) Die Reaktionsmischung wird für 3 h refluxiert zugegeben. und anschließend Essigsäure (0.5 mL) zugegeben. Die Lösung verfärbt sich von gelborange nach rot und nach kurzer Zeit beginnt ein kristalliner Feststoff auszufallen. Die Lösung wird zur Vervollständigung der der Reaktion für 1 h refluxiert, anschließend auf Raumtemperatur gekühlt. Der ausgefallene Feststoff wird abgefiltert und mit kaltem Isohexan gewaschen. Man erhält 2-Acetylthiophen-phenylhydrazon als karamellfarbene Nadeln (6.234 g, 58 %). Für die Röntgenstrukturanalyse geeignete Einkristalle der Verbindung können durch Umkristallisieren aus Ethylacetat erhalten werden.

m.p. = 99.5–100.5 °C. ¹**H-NMR (399.8 MHz, CDCl₃):** δ/ppm = 7.30– 7.25 (m, 2H, C_m-H), 7.23 (dd, ³J_{HH} = 5.1 Hz, ⁴J_{HH} = 1.1 Hz, 1H, C5-H), 7.16–7.12 (m, 3H, C3-H, C_o-H), 6.98 (dd, ³J_{HH} = 5.1 Hz, ³J_{HH} = 3.7 Hz, 1H, C4-H), 6.87 (tt, ³J_{HH} = 7.3 Hz, ⁴J_{HH} = 1.2 Hz, 1H, C_p-H), 2.24 (s, 3H, Me). ¹³C-{¹H}-NMR (100.5 MHz, CDCl₃): δ/ppm = 145.1 (C=N), 144.8 (C_i), 137.8 (C2), 129.2 (C_m), 127.0 (C3), 126.0 (C4), 123.8 (C5), 120.3 (C_p), 113.2 (C_o) 12.4 (Me). **IR (ATR):** $\tilde{\nu}$ /cm⁻¹ = 3350 (m), 3088 (w), 3069 (w), 2571 (w), 2277 (w), 1937 (w), 1784 (w), 1716 (w), 1597 (s), 1573 (m), 1529 (w), 1501 (s), 1450 (m), 1426 (m), 1373 (w), 1350 (w), 1319 (m), 1251 (s), 1235 (s), 1172 (w), 1152 (w) 1138 (s), 1074 (m), 1057 (m), 1044 (m), 994 (w), 976 (w), 944 (w), 893 (w), 847 (m), 828 (w), 822 (m), 748 (s), 722 (m), 701 (s), 692 (s), 638 (w). **MS (DEI+,** 70 eV): *m/z* (%) = 218.2 (5), 217.2 (15), 216.2 (100) [M]⁺, 132.2 (10), 124.2 (25), 109.1 (7), 93.2 (5), 92.2 (14), 91.2 (55), 77.2 (7). **EA**: C₁₂H₁₂N₂S (216.3): ber. (%): C: 66.63, H: 5.59, N: 12.95, S: 14.82; gef. (%): C: 66.73, H: 5.43, N: 13.04, S: 15.29. **XRD:** $P2_12_12_1$; a = 5.5469(4) Å; b = 8.5763(7) Å; c = 23.3139(19) Å; V = 1109.09(15) Å³; Z = 4.

11.4.5.6. 1-(1-(Furan-2-yl)ethyliden)-2phenylhydrazin (2-Acetylfuranphenylhydrazon) (78g)

In einem 100 mL-Kolben wird 1-(Furan-2-yl)ethan-1-on (2-Acetylfuran) (5.505 g, 50.0 mmol) in Dichlormethan (50 mL) gelöst und anschließend (5.01 mL, 5.407 g, 50.0 mmol) und Essigsäure (1 mL) zugegeben. Die Reaktionslösung wird für 3 h refluxiert und anschließend über Nacht bei Raumtemperatur gerührt, wobei sich die rote Lösung braun verfärbt. Das Lösemittel wird abdestilliert und das Rohprodukt anschließend bei Atmosphärendruck bei 110 °C als oranges Öl abdestilliert. Bei Raumtemperatur beginnt das Produkt in Form brauner Nadeln auszukristallisieren. Nach Umkristallisieren aus Cyclohexan erhält man 2-Acetylfuran-phenylhydrazon als braune Nadeln (3.250 g, 32 %), die für die Röntgenstrukturanalyse geeignet sind. Das Produkt sollte unter Lichtund Luftausschluss im Kühlschrank gelagert werden um die Zersetzung zu verlangsamen.

¹H-NMR (400.2 MHz, CDCl₃): δ /ppm = 7.42 (dd, ³J_{HH} = 1.8 Hz, ⁴J_{HH} = 0.8 Hz, 1H, C5-H), 7.28–7.22 (m, 2H, C_m-H), 7.14–7.10 (m, 2H, C_o-H), 6.85 (tt, ³J_{HH} = 7.3 Hz, ⁴J_{HH} = 1.2 Hz, 1H, C_p-H), 6.61 (dd, ³J_{HH} = 3.4 Hz, ⁴J_{HH} = 0.8 Hz, 1H, C3-H), 6.43 (dd, ³J_{HH} = 3.4 Hz, ³J_{HH} = 1.8 Hz, 1H, C4-H), 2.18 (s, 3H, Me). ¹³C-{¹H}-NMR (100.6 MHz, CDCl₃): δ /ppm = 144.8 (C=N), 142.6 (C_i), 142.4 (C5), 134.4 (C2), 129.2 (C_m), 120.3 (C_p), 113.2 (C_o), 111.5 (C4), 107.2 (C3), 11.5 (Me). MS (DEI+, 70 eV): m/z (%) = 202.2 (1), 201.2 (14), 200.2 (100) [M]⁺, 171.2 (14), 108.2 (20), 92.2 (16), 91.2 (39), 77.2 (18). XRD: Pbca; a = 11.5073(6) Å; b = 7.7141(4) Å; c = 23.2713(11) Å; V = 2065.76(18) Å³; Z = 8.

In einem 100 mL-Kolben wird 1-(1-Methyl-1H-pyrrol-2-yl)ethan-1-on (2-Acetyl-1-Methylpyrrol) (4.74 mL, 4.926 g, 40.0 mmol) in Dichlormethan (40 mL) gelöst und mit Phenylhydrazin (4.01 mL, 4.326 g, 40.0 mmol) versetzt. Nach Zugabe von Essigsäure (0.5 mL) wird die Reaktionslösung für 3 h refluxiert und anschließend für 12 h bei Raumtemperatur gerührt. Die zunächst rote Reaktionslösung ve4rfärbt sich während dieser Zeit braun. Das Lösemittel wird *in vacuo* entfernt und die flüchtigen Bestandteile anschließend abdestilliert. Aus dem rotbraunen öligen Rückstand kristallisiert nach kurzer Zeit 2-Acetyl-1-methylpyrrol-phenylhydrazon in Form rotbrauner Nadeln aus (5.865 g, 69 %).

¹**H-NMR** (400.2 MHz, CDCl₃): δ /ppm = 7.31-7.26 (m, 2H, C_m-H), 7.10-7.06 (m, 2H, C_o-H), 6.96 (dd, ³J_{HH} = 4.1 Hz, ⁴J_{HH} = 1.7 Hz, 1H, C5-H), 6.87 (tt, ³J_{HH} = 7.3 Hz, ⁴J_{HH} = 1.1 Hz, 1H, C_p-H), 6.41 (dd, ³J_{HH} = 3.8 Hz, ⁴J_{HH} = 1.8 Hz, 1H, C3-H), 6.14 (dd, ³J_{HH} = 4.1 Hz, ³J_{HH} = 3.8 Hz, 1H, C4-H), 4.01 (s, 3H, N-Me), 2.20 (s, 3H, Me). ¹³C-{¹H}-NMR (100.6 MHz, CDCl₃): δ /ppm = 145.5 (C=N), 137.8 (C_i), 129.2 (C_m), 126.4 (C2), 119.5 (C5), 112.7 (C_p), 110.7 (C_o), 107.8 (C3), 106.8 (C4), 38.5 (N-Me), 13.1 (Me). MS (DEI+, 70 eV): m/z (%) = 214.3 (15), 213.3 (100) [M]⁺, 132.2 (17), 123.2 (16), 121.2 (16), 108.2 (24), 92.2 (10), 91.2 (66), 80 (10), 77.2 (6). XRD: $P2_1/n$; a = 6.7010(4) Å; b = 10.3984(6) Å; c = 16.9455(11) Å; $\beta = 99.894(6)^{\circ}$; V = 1163.20(12) Å³; Z = 4.

In einem 100 mL-Kolben wird 1-(Biphenyl-4-yl)ethan-1-on (4'-Phenylacetophenon) (4.906 g, 25.0 mmol) in Chloroform (70 mL) gelöst, Phenylhydrazin (2.50 mL, 2.703 g, 25.0 mmol) langsam zugegeben und die Reaktionslösung bei Raumtemperatur gerührt. Nach ca. 5 min beginnt ein gelblicher Feststoff aufzufallen. Die Reaktionslösung wird 2 h refluxiert und die Lösung anschließend auf 0 °C. Das beige Produkt wird abgesaugt, mit kaltem Chloroform gespült und sofort in ein abgedunkeltes Gefäß im Kühlschrank überführt, da sich das Produkt am Licht sofort zersetzt und sich der Feststoff von beige nach violett verfärbt. Die Ausbeute kann durch Einengen des Lösemittels erhöht werden, wobei sich das Produkt langsam am Licht in Lösung zu zersetzten beginnt. Die Reaktionsdauer sollte ferner keinesfalls über 4 h hinaus verlängert werden um die Zersetzung des Produktes zu vermeiden. Es wird 4'-Phenylacetophenon-phenylhydrazon als beigefarbener Feststoff erhalten (4.068 g, 57 %).

m.p. = 192–193.2 °C. ¹H-NMR (270.2 MHz, $DMSO-d^{6}$): δ /ppm = 9.32 (bs, 1H, NH), 7.90–7.84 (m, 2H), 7.72–7.67 (m, 4H), 7.51–7.45 (m, 2H), 3.37 (tt, ${}^{3}J_{HH}$ = 7.3 Hz, ${}^{4}J_{HH}$ = 1.3 Hz, 1H), 7.29–7.20 (m, 4H), 6.80-6.74 (m, 1H), 2.28 (s, 3H, Me). ¹³C-{¹H}-NMR (67.9 MHz, DMSO-d⁶): δ /ppm = 146.6 (C=N), 140.7 (C_q), 140.3 (C_q), 139.6 (C_a), 138.9 (C_a), 129.5 (CH), 129.5 (CH), 128.0 (CH), 127.1 (CH), 127.0 (CH), 126.3 (CH), 119.5 (CH), 113.4 (CH), 13.3 (Me). IR (ATR): \tilde{v} /cm⁻¹ = 3344 (m), 3044 (w), 3028 (w), 1902 (w), 1690 (w), 1600 (s), 1571 (m), 1549 (m), 1504 (m), 1481 (m), 1452 (m), 1421 (m), 1403 (m), 1390 (m), 1372 (m), 1333 (m), 1292 (w), 1251 (s), 1212 (w), 1171 (w), 1135 (m), 1124 (m), 1067 (m), 993 (w), 912 (w), 889 (w), 840 (m), 778 (w), 765 (m), 750 (s), 724 (m), 685 (s), 633 (w). MS (DEI+, 70 eV): m/z (%) = 288. (3), 287.2 (23), 286.2 (100) [M]⁺, 285.2 (12), 195.2 (9), 194.2 (50), 179.2 (10), 178.2 (9), 153.2 (29), 152.2 (47), 151.2 (11), 92.2 (12). 91.2 (17), 77.2 (7). **EA:** C₂₀H₁₈N₂ (286.4): ber. (%): C: 83.88, H: 6.34, N: 9.78; gef. (%): C: 82.96, H: 6.42, N: 9.56.

> 11.4.5.9. 1,4-Bis(1-(2phenylhydrazon)ethyl)benzen (1,4-Diacetylbenzen-bis(phenylhydrazon) (78j)

In einem 250 mL-Kolben wird 1-(4-Acetylphenyl)ethan-1-on (1,4-Bis(acetyl)benzen) (8.109 g, 50.0 mmol) in Chloroform (100 mL) gelöst und anschließend Phenylhydrazin (100.0 mmol, 10.814 g, 10.02 mL) zugegeben. Die Reaktionslösung erwärmt sich deutlich und nach ca. 5 min beginnt das Produkt auszufallen. Zur Vervollständigung der Reaktion wird für 12 h bei Raumtemperatur gerührt, das Lösemittel anschließend Diethylether der entfernt erhaltene Feststoff in (100 mL) und aufgenommen. Der zitronengelbe Feststoff wird abgesaugt und mit kaltem Man 1,4-Diacetylbenzen-Diethylether gewaschen. erhält bis(phenylhydrazon als zitronengelber Feststoff (16.014 g, 94 %).

¹H-NMR (400.2 MHz, DMSO-d⁶): δ /ppm = .9.29 (bs, 2H, NH), 7.80 (s, 4H), 7.27-7.20 (m, 8H), 6.78-6.74 (m, 2H, C_p-H), 2-26 (s, 6H, Me). ¹³C-{¹H}-NMR (100.6 MHz, DMSO-d⁶): δ /ppm = 146.6 (C=N), 140.8 (C_i), 138.8 (C1), 139.5 (C_m), 125.6 (C2), 119.5 (C_p), 113.4 (C_o), 13.3 (Me). **MS (DEI+, 70 eV):** m/z (%) = 344.4 (3), 343.4 (26), 342.2 (100) [M]⁺, 250.3 (10), 235 (14), 209.3 (8), 171.3 (9), 143.2 (21), 117.2 (23), 102.2 (8), 93.2 (11), 92.2 (24), 77.2 (11).

11.4.5.10. 1-Phenyl-2-(1phenylethyliden)hydrazin (Acetophenonphenylhydrazon) (78k)

In einem 100 mL-Kolben wird 1-Phenyl-entan-1-on (Acetophenon) (11.67 mL, 12.015 g, 100 mmol) in Cyclohexan (50 mL) gelöst und anschließend Phenylhydrazin (10.02 mL, 10.814 g, 100 mmol) zugegeben. Die Reaktionslösung erwärmt sich dabei leicht und nach ca. 15 min beginnt ein gelber Niederschlag auszufallen. Die Reaktionsmischung wird 24 h bei Raumtemperatur gerührt. Anschließend wird der gelbe Feststoff abfiltriert und mit Cyclohexan gewaschen. Man erhält Acetophenonphenylhydrazon (11.989 g, 57 %) als gelben Feststoff.

¹H-NMR (399.8 MHz, CDCl₃): δ /ppm = 7.78-7.82 (m, 2H), 7.18-7.41 (m, 7H), 6.88 (tt, ³J_{HH} = 7.3 Hz, ⁴J_{HH} = 1.2 Hz, 1H), 2.24 (s, 3H). ¹³C-{¹H}-NMR (100.5 MHz, CDCl₃): δ /ppm = 145.2 (C_q), 141.1 (C_q), 139.1 (C_q), 129.2 (CH), 128.3 (CH), 127.9 (CH), 125.5 (CH), 120.2 (CH), 113.2 (CH), 11.8 (CH₃).

11.4.5.11. 1-(1-(Naphthalen-1-yl)ethyliden)-2phenylhydrazin (1-Acetyl-naphthalenphenylhydrazon) (78l)

In einem ausgeheizten und mit Ar-Atmosphäre gefüllten 250 mL-Schlenkkolben mit aufgesetztem Tropftrichter wird Phenylhydrazin (20.04 mL, 21.628 g, 200.0 mmol) zusammen mit Essigsäure (0.5 mL) in Cyclohexan (35 mL) gelöst und auf 0 °C gekühlt. Anschließend wird eine Lösung aus 1-(Naphthalen-1-yl)ethanon (30.42 mL, 34.042 g, 200.0 mmol) in Cyclohexan (15 mL) langsam über einen Zeitraum von 15 min zugetropft. Die gelbe Reaktionslösung wird 30 min bei 0 °C und 24 h bei Raumtemperatur gerührt. Anschließend werden die flüchtigen Bestandteile *in vacuo* und der Rückstand im Vakuum destilliert. Man erhält 1-Acetyl-naphthalen-phenylhydrazon (43.230 g, 89 %, b.p. = $61-66 \, ^{\circ}C@3.1 \cdot 10^{-2} \, mbar$) als braun-gelbe, stark viskose Flüssigkeit mit einem E/Z- bzw. Z/E-Isomerenverhältnis von 3.0:1.

¹**H-NMR (270.2 MHz, CDCl₃):** δ /ppm = 8.37–8.28 (m, 3·1H), 7.97–7.80 (m, 3·5H), 7.73–7.67 (m, 1·1H), 7.62–7.44 (m, 3·7H), 7.40–7.35 (m, 1·1H), 7.32–7.23 (m, 1·2H), 7.21–7.12 (m, 1·4H), 6.92–6.85 (m, 1·4H), 6.81–6.73 (m, 1·1H), 2.43 (s, 3·3H, CH₃), 2.42 (s, 1·3H, CH₃). ¹³C-{¹H}-NMR (67.9 MHz, CDCl₃): δ /ppm = 145.3, 145.2, 134.2, 133.9, 133.8, 131.0, 129.4, 129.3, 129.2, 129.0, 128.8, 128.5, 128.5, 127.3, 126.8, 126.3, 126.1, 126.0, 125.9, 125.5, 125.3, 125.1, 120.3, 119.5, 113.3, 112.6, 25.4, 16.9.

11.4.5.12. 2,5-Dimethyl-2*H*-1,2,3-diazaphosphol (79a) (Methode 1)

Die Verbindung kann nach einer Synthese von A. SCHMIDPETER⁹ dargestellt werden.

In einem ausgeheizten und mit Ar-Atmosphäre gefüllten 500 mL-Schlenkkolben mit aufgesetztem Tropftrichter wird PCl₃ (43.62 mL, 250 mL) vorgelegt und 500 mmol) in Toluen (abs., 68.665 q, Acetonmethylhydrazon (78a) (43.070 g, 500 mmol) über einen Zeitraum von 30 min zugetropft. In einer stark exothermen Reaktion bildet sich dabei ein farbloser Niederschlag, der sich beim Erhitzen der Lösung fast unter lebhafter Gasentwicklung wieder auflöst. vollständig Die Reaktionsmischung wird für 48 h unter Rückfluss erhitzt. Im ³¹P-NMR kann **79a** ($\delta^{31}P = 229.8$; ${}^{2}J_{PH} = 44.6$ Hz) als Hauptprodukt identifiziert werden. Der Reaktionsansatz wird filtriert das Lösemittel bei Atmosphärendruck abdestilliert. Der verbleibende Rückstand wird anschließend bei 70 mbar 2,5-Dimethyl-2*H*-1,2,3-diazaphosphol destilliert. erneut (b.p. = 73 °C @ 70 mbar, 36.495 g, 64 %) wird als leicht gelbliche Flüssigkeit erhalten.

³¹P-NMR (109.4 MHz, CDCl₃): δ /ppm = 231.6 (d, ²J_{PH} = 44.6 Hz). ¹H-NMR (270.2 MHz, CDCl₃): δ /ppm = 7.04 (d, ²J_{PH} = 44.5 Hz, 1H, C4-H), 3.69 (d, ³J_{PH} = 7.6 Hz, 3H, N-Me), 2.16 (d, ⁴J_{PH} = 1.5 Hz, 3H, Me). ¹³C-{¹H}-NMR (67.9 MHz, CDCl₃): δ /ppm = 155.4 (d, ¹J_{PC} = 8.5 Hz, C5), 135.1 (d, ¹J_{PC} = 35.2 Hz, C4), 41.0 (d, ²J_{PC} = 19.3 Hz, N-Me), 15.6 (d, ³J_{PC} = 2.2 Hz, C5-Me). ¹³C-NMR (67.9 MHz, CDCl₃): δ /ppm = 155.4 (dqd, ²J_{PC} = 8.5 Hz, ²J_{CH} = 6.4 Hz, ²J_{CH} = 1.7 Hz, C5), 135.1 (ddq, ¹J_{CH} = 169.1 Hz, ¹J_{PC} = 35.2 Hz, ³J_{CH} = 3.2 Hz, C4), 41.0 (qd, ¹J_{CH} = 139.5 Hz, ²J_{PC} = 19.3 Hz, N-Me), 15.6 (qdd, ¹J_{CH} = 127.6 Hz, ³J_{PC} = 2.2 Hz, ³J_{CH} = 2.0 Hz, C5-Me).

11.4.5.13. 2,5-Dimethyl-2*H*-1,2,3-diazaphosphol (79a) (Methode 2)

In einem ausgeheizten und mit Ar-Atmosphäre gefüllten 1000 mL-Schlenkkolben mit aufgesetztem Tropftrichter wird Acetonmethylhydrazon (**78a**) (43.070 g, 500 mmol) und NEt₃ (209.07 mL, 151.785 g, 1500 mmol) in Acetonitril (abs., 250 mL) vorgelegt und auf 0 °C gekühlt. Anschließend wird unter starkem Rühren PCl₃ (43.62 mL, 68.665 g, 500 mmol), gelöst in Acetonitril (abs., 50 mL), über einen Zeitraum von 90 min zugetropft. In einer stark exothermen Reaktion bildet sich dabei farbloser Niederschlag aus Triethylammoniumchlorid. ein Die Reaktionsmischung wird für 12 h bei Raumtemperatur gerührt und der Reaktionsverlauf im ³¹P-NMR überwacht. Nach beendeter Reaktion wird der Reaktionsansatz filtriert und das Lösemittel bei Atmosphärendruck abdestilliert. Der verbleibende Rückstand wird anschließend bei 70 mbar 2,5-Dimethyl-2*H*-1,2,3-diazaphosphol erneut destilliert. (b.p. = 73 °C @ 70 mbar, 49.059 g, 86 %) wird als leicht gelbliche Flüssigkeit erhalten.

³¹P-NMR (109.4 MHz, CDCl₃): δ /ppm = 231.6 (d, ²J_{PH} = 44.6 Hz). ¹H-NMR (270.2 MHz, CDCl₃): δ /ppm = 7.04 (d, ²J_{PH} = 44.5 Hz, 1H, C4-H), 3.69 (d, ³J_{PH} = 7.6 Hz, 3H, N-Me), 2.16 (d, ⁴J_{PH} = 1.5 Hz, 3H, Me). ¹³C-{¹H}-NMR (67.9 MHz, CDCl₃): δ /ppm = 155.4 (d, ¹J_{PC} = 8.5 Hz, C5), 135.1 (d, ¹J_{PC} = 35.2 Hz, C4), 41.0 (d, ²J_{PC} = 19.3 Hz, N-Me), 15.6 (d, ³J_{PC} = 2.2 Hz, C5-Me). ¹³C-NMR (67.9 MHz, CDCl₃): δ /ppm = 1.7 Hz, C5), 135.1 (ddq, ¹J_{CH} = 169.1 Hz, ¹J_{PC} = 35.2 Hz, ³J_{CH} = 3.2 Hz, C4), 41.0 (qd, ¹J_{CH} = 139.5 Hz, ²J_{PC} = 19.3 Hz, N-Me), 15.6 (qdd, ¹J_{CH} = 127.6 Hz, ³J_{PC} = 2.2 Hz, ³J_{CH} = 2.0 Hz, C5-Me).

11.4.5.14. 5-Methyl-2-phenyl-2*H*-1,2,3diazaphosphol (79d)

In einem ausgeheizten und mit Ar-Atmosphäre gefüllten 1000 mL-Schlenkkolben mit aufgesetztem Tropftrichter wird Acetonphenylhydrazon (**78d**) (15.000 g, 101.2 mmol) und NEt₃ (42.32 mL, 30.721 g, 303.6 mmol) in Acetonitril (abs. 50 mL) gelöst und anschließend aus 0 °C gekühlt. Anschließend wird eine Lösung von PCl₃ (8.85 mL, 13.900 g, 101.2 mmol) in Acetonitril (abs., 10 mL) über einen Zeitraum von ca. 30 min zugetropft. Die Lösung wird 2 d bei Raumtemperatur gerührt. Nach beendeter Reaktion werden die flüchtigen Bestandteile *in vacuo* entfernt und der verbleibende Rückstand zweimal mit Diethylether (abs., je 50 mL) extrahiert. Die vereinigten Extrakte werden vom Lösemittel befreit und man erhält 5-Methyl-2-phenyl-2*H*-1,2,3-Diazaphosphol als braunfarbenes Öl (16.937 g, 95 %).

³¹P-NMR (161.8 MHz, C₆D₆): δ /ppm = 226.5 (d, ²J_{PH} = 45.9 Hz). ¹H-NMR (399.8 MHz, C₆D₆): δ /ppm = 7.89-7.90 (m, 2H, C_o-H), 7.26 (d, ²J_{PH} = 45.9 Hz, 1H, C4-H), 7.28-7.21 (m, 2H, C_m-H), 6.81 (tt, ³J_{HH} = 7.1 Hz, 4J_{HH} = 1.1 Hz, C_p-H), 2.30 (d, ⁴J_{PH} = 1.6 Hz, 3H, CH₃). ¹³C-{¹H-}-NMR (100.5 MHz, C₆D₆): δ /ppm = 157.2 (d, ²J_{PC} = 9.7 Hz, C5), 144.9 (d, ²J_{PC} = 11.9 Hz, C_i), 138.2 (d, ¹J_{PC} = 35.2 Hz, C4), 129.8 (C_m), 126.9 (d, ⁵J_{PC} = 1.5 Hz, C_p), 120.4 (d, ³J_{PC} = 10.1 Hz, C_o), 16.3 (d, ³J_{PC} = 1.9 Hz, CH₃).

11.4.5.15. 2-Phenyl-2H-1,2,3-diazaphosphol (79e)

In einem ausgeheizten und mit Ar-Atmosphäre gefüllten 250 mL-Schlenkkolben mit aufgesetztem Tropftrichter wird Acetaldehydphenylhydrazon (78e) (13.418 g, 100 mmol) in Acetonitril (abs., 75 mL) gelöst, NEt₃ (41.81 mL, 30.357 g, 300 mmol) zugegeben und auf 0 °C gekühlt. Anschließend wird zu der orange-gelben Lösung PCl₃ 100 mmol) über einen Zeitraum von 30 min (8.72 mL, 13.733 g, zugetropft, wobei sich ein farbloser Niederschlag bildet. Die wird 12 d bei Raumtemperatur gerührt Reaktionsmischung und anschließend alle flüchtigen Bestandteile in vacuo entfernt. Der Rückstand wird dreimal mit Et₂O (abs., je 100mL) extrahiert, die organischen Extrakte vereinigt und das Lösemittel anschließend entfernt. Man erhält 2-Phenyl-2*H*-1,2,3-diazaphosphol (14.381g, 88.7 mmol, 89 %) als gelben, wachsartigen Feststoff.

³¹P-NMR (162.0 MHz, CDCl₃): δ /ppm = 219.8 (d, ²J_{PH} = 45.5 Hz). ¹H-NMR (400.2 MHz, CDCl₃): δ /ppm = 8.36 (dd, ³J_{PH} = 5.3 Hz, ³J_{HH} = 4.0 Hz, 1H, C5-H), 7.94 (dd, ²J_{PH} = 45.5 Hz, ³J_{HH} = 4.0 Hz, 1H, C4-H), 7.86-7.82 (m, 2H, C₀-H), 7.45-7.40 (m, 2H, C_m-H), 7.30 (tt, ³J_{HH} = 7.4 Hz, ⁴J_{HH} = 1.2 Hz, 1H, C_p-H). ¹³C-{¹H}-NMR (67.9 MHz, CDCl₃): δ /ppm = 146.8 (d, ²J_{PC} = 9.5 Hz, C5), 137.8 (d, ¹J_{PC} = 39.2 Hz, C4), 129.3 (C_m), 126.9 (C_p), 120.5 (d, J_{PC} = 9.4 Hz, C_o). ¹³C-NMR (67.9 MHz, CDCl₃): δ /ppm = 146.8 (ddd, ¹J_{CH} = 184.9 Hz, ²J_{PC} = 9.5 Hz, ²J_{CH} = 2.2 Hz, C5), 137.8 (ddd, ¹J_{CH} = 172.4 Hz, ¹J_{PC} = 39.1 Hz, ${}^{2}J_{CH} = 9.7$ Hz, C4), 129.8–128.1 (m, C_m), 126.6 (dtt, ${}^{1}J_{CH} = 162.3$ Hz, ${}^{2}J_{CH} = 7.5$ Hz, ${}^{3}J_{CH} = 1.3$ Hz, C_p), 121.1–119.2 (m, C_o).

11.4.5.16. 2-Phenyl-5-(thiophen-2-yl)-2*H*-1,2,3diazaphosphol (79f)

In einem ausgeheizten und mit Ar-Atmosphäre gefüllten 100 mL-Schlenkkolben mit aufgesetztem Tropftrichter wird 2-Acetylthiophenphenylhydrazon (**78f**) (5.840 g, 27.0 mmol) und NEt₃ (11.29 mL, 8.196 g, 81.0 mmol)in Acetonitril (abs. 44 mL) gelöst, auf 0 °C gekühlt und anschließend PCl₃ (2.36 mL, 3.708 g, 27.0 mmol), gelöst in Acetonitril (abs. 10 mL), über einen Zeitraum von ca. 30 min zugetropft. Die Reaktionslösung trübt sich dabei langsam ein. Die Reaktionslösung wird für 4 d bei Raumtemperatur gerührt, wobei der Reaktionsfortschritt im ³¹P-NMR verfolgt wird.

Nach beendeter Reaktion werden die flüchtigen Bestandteile *in vacuo* entfernt und der Rückstand mit Diethylether (abs., 20 mL) versetzt, gefiltert und zweimal mit Diethylether (abs., je 20 mL) gespült. Nach Entfernen des Lösemittels erhält man 2-Phenyl5-(thiophen-2-yl)-2*H*-1,2,3-diazaphosphol – verunreinigt durch einige nicht-phosphorhaltige Verunreinigungen – als gelb-orangen wachsartigen Feststoff.

³¹P-NMR (162.0 MHz, C₆D₆): δ /ppm = 228.5 (d, ²J_{PH} = 44.4 Hz). ¹H-NMR (400.2 MHz, C₆D₆): δ /ppm = ..., 7.80 (d, ²J_{PH} = 44.4 Hz, 1H; C4-H), ¹³C-{¹H}-NMR (67.9 MHz, C₆D₆): δ /ppm = ..., 134.1 (d, ¹J_{PC} = 36.9 Hz, C4),

11.4.5.17. 5-(Furan-2-yl)-2-phenyl-2*H*-1,2,3diazaphosphol (79g)

In einem ausgeheizten und mit Ar-Atmosphäre gefüllten 100 mL-Schlenkkolben mit aufgesetztem Tropftrichter wird 2-Acetylfuranphenylhydrazon (**78g**) (3.000 g, 15.0 mmol) und NEt₃ (6.27 mL, 4.554 g, 45.0 mmol)in Acetonitril (abs. 50 mL) gelöst, auf 0 °C gekühlt und anschließend PCl₃ (1.31 mL, 2.060 g, 15.0 mmol), gelöst in Acetonitril (abs. 10 mL), über einen Zeitraum von ca. 30 min zugetropft, wobei sich die Reaktionslösung dabei langsam eintrübt Reaktionslösung wird für 2d bei Raumtemperatur gerührt, wobei der Reaktionsfortschritt im ³¹P-NMR verfolgt wird.

Nach beendeter Reaktion werden die flüchtigen Bestandteile *in vacuo* entfernt und der Rückstand mit Diethylether (abs., 50mL) versetzt, gefiltert und zweimal mit Diethylether (abs., je 20 mL) gespült. Nach Entfernen des Lösemittels erhält man 5-(Thiophen-2-yl)-2-phenyl-2*H*-1,2,3-diazaphosphol – verunreinigt durch einige nicht-phosphorhaltige Verunreinigungen – als braunes Öl.

³¹P-NMR (109.4 MHz, C₆D₆): δ /ppm = 225.6 (d, ²J_{PH} = 45.9 Hz). ¹H-NMR (270.2 MHz, C₆D₆): δ /ppm = ..., 7.96 (d, ²J_{PH} = 45.9 Hz, 1H; C4-H), ¹³C-{¹H}-NMR (67.9 MHz, C₆D₆): δ /ppm = ..., 134.6 (d, ¹J_{PC} = 37.4 Hz, C4),

11.4.5.18. 5-(Biphenyl-4-yl)-2-phenyl-2*H*-1,2,3diazaphosphol (79i)

In einem ausgeheizten und mit Ar-Atmosphäre gefüllten 100 mLaufgesetztem Tropftrichter (4'-Schlenkkolben mit wird Phenylacetophenon-phenylhydrazon) (78i) (4.009 g, 14.0 mmol) und NEt₃ (5.85 mL, 2.250 g, 42.0 mmol) in Acetonitril (abs., 40 mL) suspendiert und auf 0 °C gekühlt. Anschließend wird PCl₃ (1.22 mL, 1.923 g, 14.0 mmol), gelöst in Acetonitril (abs., 10 mL), über einen Zeitraum von etwa 30 min zugetropft. Auf Grund der eingeschränkten Löslichkeit des Hydrazons in Acetonitril wird THF (abs., 20 mL) hinzugefügt und die Reaktionsmischung 5 d bei Raumtemperatur gerührt. Anschließend werden die flüchtigen Bestandteile in vacuo entfernt und der Rückstand mit Diethylether (abs. 50 mL) extrahiert, filtriert und das Lösemittel entfernt. man erhält 5-(Biphenyl-4-yl)-2-phenyl-2H-1,2,3-diazaphosphol (**79i**) – verunreinigt durch einige nicht-phosphorhaltige Verunreinigungen – als braunes Öl.

³¹P-NMR (162.0 MHz, C₆D₆): δ /ppm = 229.8 (d, ²J_{PH} = 44.6 Hz). ¹H-NMR (400.2 MHz, C₆D₆): δ /ppm = ..., 8.29 (d, ²J_{PH} = 44.6 Hz, 1H; C4-H), ¹³C-{¹H}-NMR (67.9 MHz, C₆D₆): δ /ppm = ..., 135.0 (d, ¹J_{PC} = 36.4 Hz, C4),

11.4.5.19. 1,4-Bis(2-phenyl-2*H*-1,2,3diazaphosphol-5-yl)benzen (78j)

In einem ausgeheizten und mit Ar-Atmosphäre gefüllten 100 mL-Schlenkkolben mit aufgesetztem Tropftrichter wird (1,4-Diacetylbenzenbis(phenylhydrazon) (78j) (4.000 g, 11.7 mmol) zusammen mit NEt₃ (19,54 mL, 14.183 g, 140.2 mmol) in THF (abs., 100 mL) gelöst und auf 0 °C gekühlt. Anschließend wird eine Lösung von PCl₃ (2.04 mL, 3.208 g, 23.4 mmol) in THF (abs., 10 mL) über einen Zeitraum von 15 min Reaktionsmischung zugetropft. Die wird anschließend 3 d bei Raumtemperatur gerührt. Im ³¹P-NMR kann die Bildung von 78j beobachtet werden. Die Reaktionsmischung wird bis zur Einstellung des Reaktionsgleichgewichtes 18 h refluxiert. Die flüchtigen Bestandteile werden in vacuo entfernt. Die Löslichkeitsunterschiede zwischen den Nebenprodukten und 78i sind jedoch die zu gering, um Reaktionsmischung durch aufzureinigen. Extraktion Für eine Festkörperdestillation erweist sich das Produkt als thermisch nicht stabil genug.

³¹P-NMR (162.0 MHz, C₆D₆): δ /ppm = 229.3 (d, ²J_{PH} = 45.2 Hz).

11.4.5.20. 2,5-Diphenyl-2*H*-1,2,3-diazaphosphol (79k)

In einem ausgeheizten und mit Ar-Atmosphäre gefüllten 100 mL-Schlenkkolben mit aufgesetztem Tropftrichter wird Acetophenonphenylhydrazon (**78k**) (4.205 g, 20.0 mmol) in Acetonitril (abs., 25 mL) gelöst, NEt₃ (8.36 mL, 6.071 g, 60.0 mmol) hinzugegeben und die Reaktionsmischung auf 0 °C gekühlt. Anschließend wird eine Lösung von PCl₃ (1.75 mL, 2.747 g, 20.0 mmol) in Acetonitril (abs., 10 mL) über einen Zeitraum von 30 min zugetropft. Die Reaktionslösung wird 24 h bei Raumtemperatur gerührt und nach beendeter Reaktion das Lösemittel *in vacuo* entfernt. Der Rückstand wird mit Pentan (abs. 50 mL) extrahiert, das Triethylammoniumchlorid abgefiltert und das Filtrat vom Lösemittel befreit. Der erhaltene gelbe Feststoff wird einer Feststoffdestillation unterworfen und man erhält 2,5-Diphenyl-2*H*-1,2,3-diazaphosphol – verunreinigt durch nicht-phosphorhaltige Verbindungen – als blassgelben Feststofff.

³¹P-NMR (161.8 MHz, C₆D₆): δ /ppm = 230.1 (d, ²J_{PH} = 44.7 Hz). ¹H-NMR (399.8 MHz, C₆D₆): δ /ppm = 7.91–7.88 (m, 2H, C_o-H), 7.81– 7.77 (m, 2H, C_o[']-H), 7.78 (d, ²J_{PH} = 44.7 Hz, 1H, C4-H), 7.22–7.17 (m, 2H, C_m-H), 7.16-7.06 (m, 1H, C_p-H), 7.06–6.99 (m, 2H, C_m[']-H), 6.91 (tt, ³J_{HH} = 7.3 Hz, ⁴J_{HH} = 1.2 Hz, 1H, C_p[']-H). ¹³C-{¹H}-NMR (100.5 MHz, C₆D₆): δ /ppm = 159.3 (d, ²J_{PC} = 9.1 Hz, C5), 144.7 (d, ²J_{PC} = 11.6 Hz, C_i), 135.0 (d, ¹J_{PC} = 36.0 Hz, C4), 134.3 (d, ³J_{PC} = 2.8 Hz, C_i'), 129.5 (s, C_m), 129.1 (s, C_m'), 128.7 (s, C_p), 127.0 (d, ⁶J_{PC} = 1.6 Hz, C_p'), 127.0 (d, ³J_{PC} = 1.0 Hz, C₀), 120.4 (d, ⁴J_{PC} = 9.9 Hz, C₀').

11.4.5.21. 5-(Naphthalen-1-yl)-2-phenyl-2*H*-1,2,3-diazaphosphol (79l)

In einem ausgeheizten und mit Ar-Atmosphäre gefüllten 100 mL-Schlenkkolben mit aufgesetztem Tropftrichter wird 1-Acetyl-naphthalenphenylhydrazon (**78I**) (0.260 g, 1.0 mmol) zusammen mit NEt₃ (0.42 mL, 0.304 g, 3.0 mmol) in Acetonitril (abs., 10 mL) gelöst und auf 0 °C gekühlt und anschließend eine Lösung von PCl₃ (0.17 mL, 0.275 g, 2.0 mmol) in Acetonitril (abs., 10 mL) über einen Zeitraum von ca. 10 min zugetropft.

Die orange Suspension wird 30 min bei 0 °C und 24 h bei Raumtemperatur gerührt. Im ³¹P-NMR der Reaktionslösung kann die Bildung von 5-(Naphthalen-1-yl)-2-phenyl-2H-1,2,3-diazaphosphol (**79I**) im Reaktionsgleichgewicht nachgewiesen werden.

³¹P-NMR (162.0 MHz, MeCN): δ /ppm = 225.8 (d, ²J_{PH} = 42.0 Hz, 1 %, **79I**), 219.9 (bs, 82 %, PCl₃), 117.3 (t, J_{PH} = 23.5 Hz, 16 %, **79I × HCI**).

11.4.5.22. 4-Dichlorphosphanyl-2,5-dimethyl-2H-

In einem ausgeheizten und mit Ar-Atmosphäre gefüllten 500 mL-Schlenkkolben mit aufgesetztem Tropftrichter wird PCl₃ (87.24 mL, 137.330 g, 1000 mmol) in Toluen (abs., 100 mL) vorgelegt und auf 0 °C gekühlt. Anschließend wird Acetonmethylhydrazon (78a) (8.784 g, 115 mmol) über einen Zeitraum von 30 min zugetropft. Die farblose trübe Reaktionsmischung wird für 30 min bei 0 °C und anschließend für 12 h unter Rückfluss gekocht, bis sich der Gleichgewichtszustand eingestellt hat. sich der entstandene Niederschlag Dabei löst unter lebhafter Gasentwicklung auf und es kann eine leichte Gelbfärbung beobachtet werden. Das Lösemittel wird bei Atmosphärendruck abdestilliert und der verbleibende Rest im in vacuo destilliert. 4-Dichlorphospan-2,5-dimethyl-2H-1,2,3-diazaphosphol (b.p. = 72 °C @ $1.6 \cdot 10^{-2}$ mbar, 4.454 g, 18 %) wird als blass gelbe Flüssigkeit erhalten. Im Reaktionssumpf kann neben verbleibenden 77a auch das Chlor-bis(2,5-dimethyl-2H-1,2,3diazaphosphol-4-yl)-phosphan (**81a**) ($\delta^{31}P = 247.5$ (d, $^{2}J_{PP} = 27.0$ Hz, 2P, σ^2 -P), 53.3 (t, $^2J_{PP} = 27.0$ Hz, 1P, σ^3 -P)) beobachtet werden.

³¹P-NMR (109.4 MHz, CDCl₃): δ /ppm = 248.3 (d, ²J_{PP} = 79.1 Hz, 1P, σ^2 -P), 157.7 (d, ${}^2J_{PP}$ = 79.1 Hz, 1P, σ^3 -P). ¹H-NMR (270.2 MHz, CDCl₃): δ /ppm = 3.83–3.72 (m, 3H, N-Me), 2.32–2.18 (m, 3H, Me). ¹³C-{¹H}-**NMR** (67.9 MHz, CDCl₃): $\delta/\text{ppm} = 156.2$ (ddd, $J_{PC} = 23.5$ Hz, $J_{PC} = 4.1 \text{ Hz}, \text{ C5}), 149.8 \text{ (dd, } J_{PC} = 65.6 \text{ Hz}, J_{PC} = 54.1 \text{ Hz}), 41.8 \text{ (d,}$ ${}^{2}J_{PC} = 17.7$ Hz, N-Me), 15.0 (d, ${}^{3}J_{PC} = 7.7$ Hz, C5-Me).

11.4.5.23. 4-Dichlorphosphanyl-5-methyl-2phenyl-2H-1,2,3-diazaphosphol (77d)

In einem ausgeheizten und mit Ar-Atmosphäre gefüllten 100 mL-Schlenkkolben mit aufgesetztem Tropftrichter wird PCI_3 (8.72 mL, 13.733 g, 100.0 mmol) in Toluen (abs., 20 mL) vorgelegt und auf 0 °C gekühlt. Anschließend wird Acetonphenylhydrazon (**78d**) (1.482 g, 10.0 mmol), gelöst in Toluen (abs., 10 mL), über einen Zeitraum von ca. 15 min zugetropft. Die Reaktionsmischung wird für 3 d refluxiert, anschließend wird NEt₃ (2.37 mL, 1.720 g, 17.0 mmol) hinzugefügt und für weitere 12 h refluxiert. Die flüchtigen Bestandteile werden *in vacuo* entfernt und der Rückstand mit Diethylether (abs., 30 mL) extrahiert. Man erhält ein braunes Öl.

³¹P-{¹H}-NMR (109.4 MHz, C₆D₆): δ /ppm = 241.6 (d, ²J_{PP} = 79.8 Hz, 77d σ²-P), 240.5 (d, ²J_{PP} = 28.2 Hz, **81d** σ²-P), 225.4 (s, **79d**), 177.6 (s, 79d × HCl), 157.2 (d, ²J_{PP} = 79.8 Hz, **77d** σ³-P), 51.9 (t, ²J_{PP} = 28.0 Hz, **81d** σ³-P). ³¹P-NMR (109.4 MHz, C₆D₆): δ /ppm = 241.6 (d, ²J_{PP} = 79.8 Hz, **77d** σ²-P), 240.5 (d, ²J_{PP} = 28.2 Hz, **81d** σ²-P), 225.4 (d, ²J_{PH} = 45.9 Hz, **79d**), 177.6 (d, ²J_{PH} = 16.7 Hz, **79d** × HCl), 157.2 (d, ²J_{PP} = 79.8 Hz, **77d** σ³-P), 51.9 (t, ²J_{PP} = 28.0 Hz, **81d** σ³-P).

11.4.5.24. 4-Dichlorphosphanyl-2-phenyl-2*H*-1,2,3-diazaphosphol (77e)

In einem ausgeheizten und mit Ar-Atmosphäre gefüllten 100 mL-Schlenkkolben mit aufgesetztem Tropftrichter wird PCl₃ (4.36 mL, 6.866 g, 50.0 mmol)) zusammen mit NEt₃ (8.36 mL, 6.071 g, 60.0 mmol) in Acetonitril (abs., 25 mL) gelöst und auch 0 °C gekühlt. Anschließend wird eine Lösung von Acetaldehydphenylhydrazon (**78e**) in Acetonitril (abs., 25 mL) über einen Zeitraum von ca. 15 min zugetropft. Die Reaktionsmischung wird 30 min bei 0 °C, 24 h bei Raumtemperatur gerührt und anschließend ca. 3.5 h refluxiert.

Die flüchtigen Bestandteile der orange-braunen Suspension werden *in vacuo* entfernt und der Rückstand mit Diethylether (abs., 60 mL) extrahiert, nach ca. 3 h Extraktionszeit abgefiltert und das Filtrat *in vacuo* vom Lösemittel befreit. Man erhält ein bräunliches Öl.

³¹P-NMR (162.0 MHz, CDCl₃): δ /ppm = 232.8 (d, ²J_{PP} = 88.3 Hz, **77e** σ²-P, 12 %), 156.7 d, ²J_{PP} = 88.3 Hz, **77e** σ³-P, 12 %), 155.2 (s, 19 %), 150.5 (s, 2 %), 149.9 (bs, 3 %), 149.5 (s, 6 %), 147.6 (bs, 46 %).

11.4.5.25. 4-Dichlorphosphanyl-5-(furan-2-yl)-2phenyl-2H-1,2,3-diazaphosphol (77g)

In einem ausgeheizten und mit Ar-Atmosphäre gefüllten 100 mL-Schlenkkolben mit aufgesetztem Tropftrichter wird PCl₃ (4.37 mL, 6.866 g, 50.0 mmol) in Toluen (abs. 20 mL) gelöst, auf 0 °C gekühlt und anschließend eine Lösung von 2-Acetylfuran-phenylhydrazon (**78g**) (1.001 g, 5.0 mmol) in Toluen (abs., 5 mL) über einen Zeitraum von 15 min zugetropft. Die Reaktionsmischung wird für 3 d refluxiert. Anschließend wird NEt₃ (2.37 mL, 1.720 g, 17.0 mmol) hinzugefügt und für weitere 12 h refluxiert. Die flüchtigen Bestandteile werden *in vacuo* entfernt und der Rückstand mit Diethylether (abs., 30 mL) extrahiert. Man erhält ein braunes Öl.

³¹P-{¹H}-NMR (162.0 MHz, C₆D₆): δ /ppm = 241.5 (d, ²J_{PP} = 19.5 Hz, 77g σ²-P), 225.5 (s, 79g), 177.6 (s, 79g × HCl), 157.6 (d, ²J_{PP} = 19.5 Hz, 77g σ³-P). ³¹P-NMR (162.0 MHz, C₆D₆): δ /ppm = 241.5 (d, ²J_{PP} = 19.5 Hz, 77g σ²-P), 225.5 (d, ²J_{PH} = 45.9 Hz, 79g), 177.6 (d, ²J_{PH} = 17.3 Hz, 79g × HCl), 157.6 (d, ²J_{PP} = 19.5 Hz, 77g σ³-P).

11.4.5.26. Umsetzung von (78k) mit PCl₃ in Toluen

In einem ausgeheizten und mit Ar-Atmosphäre gefüllten 100 mL-Schlenkkolben mit aufgesetztem Tropftrichter wird PCl₃ (8.72 mL, 13.733 g, 100.0 mmol) in Toluen (abs. 15 mL) vorgelegt, auf 0 °C gekühlt und anschließend eine Lösung von Acetophenonphenylhydrazon (**78k**) (4.205 g, 20.0 mmol) über einen Zeitraum von etwa 30 min zugetropft. Die kräftig gelbe Suspension wird mehrere Tage bei Raumtemperatur gerührt, bis sie anschließend 3d refluxiert wird. Die festen Bestandteile werden abgefiltert und man erhält nein klares braunes Filtrat. ³¹P-NMR (162.0 MHz, Toluen): δ /ppm = 228.8 (d, ²J_{PH} = 44.7 Hz, 79k), 220.1 (bs, PCl₃), 115.4 (d, ²J_{PH} = 48.1 Hz, 79k × HCl).

11.4.5.27. 4-Dichlorphosphanyl-5-(naphthalen-1yl)-2-phenyl-2*H*-1,2,3-diazaphosphol (77l)

In einem ausgeheizten und mit Ar-Atmosphäre gefüllten 100 mL-Schlenkkolben mit aufgesetztem Tropftrichter wird PCl₃ (0.44 mL, 0.687 g, 5.0 mmol) in Acetonitril (abs., 10 mL) gelöst, auf 0 °C gekühlt und anschließend 1-Acetyl-naphthalen-phenylhydrazon (**78I**) (0.260 g, 1.0 mmol) und NEt₃ (0.73 mmol, 1.012 g, 10.0 mmol), gelöst in Acetonitril (abs., 10 mL), über einen Zeitraum von ca. 10 min zugetropft. Die Reaktionslösung wird 30 min bei 0 °C und 24 h bei Raumtemperatur gerührt. Im ³¹P-NMR der Reaktionslösung kann die Bildung von 4-Dichlorphosphanyl-5-(naphthalen-1-yl)-2-phenyl-2*H*-1,2,3-diazaphosphol **77I** im Reaktionsgleichgewicht nachgewiesen werden.

³¹P-NMR (108.4 MHz, MeCN): δ /ppm = 242.8 (d, ²J_{PP} = 20.1 Hz, 1 %, **77I** σ^2 -P), 225.8 (d, ²J_{PH} = 42.0 Hz, 0.2 %, **79I**), 219.5 (bs, 92 %, PCl₃), 156.1 (d, ²J_{PP} = 20.1 Hz, 1 %, **77I** σ^3 -P), 149.3 (bs, 4 %), 148.5 (bs, 1 %).

11.4.5.28. 1-Methyl-2-((5R)-2-methyl-5-(prop-1en-2-yl)cyclohex-2-enyliden)hydrazin ((R)-(-)-Carvon-methylhydrazon) (75a)

In einem 50 mL-Kolben wird (R)-(-)-Carvon (6.27 ml, 6.009 g, 40.0 mmol) in Benzen (20 mL) gelöst und Methylhydrazin (6.28 ml, 5.528 g, 120 mmol) zugegeben. Anschließend wird Toluolsulfonsäure (1 g) als Katalysator zugegeben. Die Reaktionslösung wird für 2.5 h am Wasserabscheider gekocht, bis sich die erforderliche Wassermenge

abgeschieden hat. Die flüchtigen Bestandteile werden *in vacuo* und die erhaltene gelbe Flüssigkeit im Vakuum destilliert.

(*R*)-(–)-Carvon-methylhydrazon (**75a**) (4.700 g, 66 %, b.p. = 92–100 °C@ $3.3 \cdot 10^{-3}$ mbar) wird als zitronengelbe, wenig viskose Flüssigkeit erhalten.

¹H-NMR (400.2 MHz, CDCl₃): δ/ppm = 5.82-5.78 (m, 1H), 4.74-4.70 (m, 2H), 4.67 (s, 1H, NH), 2.94 (s, 3H, N-Me), 2.57 (ddd, J = 15.6 Hz, J = 4.4 Hz, J = 1.1 Hz, 1H), 2.39-2.29 (m, 1H), 2.20-2.12 (m, 1H), 2.06-1.96 (m, 1H), 1.89-1.84 (m, 1H), 1.82-1.79 (m, 3H), 1.71-1.70 (m, 3H).
¹³C-{¹H}-NMR (100.6 MHz, CDCl₃): δ/ppm = 148.2, 146.4, 132.9, 127.6, 109.6, 40.7, 38.1, 29.7, 28.1, 20.5, 17.6.

MS

11.4.5.29. 1-((5R)-2-Methyl-5-(prop-1-en-2yl)cyclohex-2-enyliden)-2phenylhydrazin ((R)-(-)-Carvonphenylhydrazon) (75b)

In einem 50 mL-Kolben wird (R)-(-)-Carvon (6.27 ml, 6.009 g, 40 mmol) in Cyclohexan (20 mL) gelöst und Phenylhydrazin (11.83 ml, 12.977 g, 120 mmol) zugegeben. Anschließend wird Toluolsulfonsäure (1 g) als Katalysator zugegeben. Die gelblich-orange Lösung wird 3.5 h am Wasserabscheider gekocht, bis sich die erforderliche Wassermenge abgeschieden hat, wobei sich die Reaktionsmischung intensiv rot verfärbt. Die Toluolsulfonsäure wird durch viermalige Extraktion mit Wasser (je 50 mL) entfernt und die organischen Phasen anschließend mit Na₂SO₄ gründlich getrocknet. Die flüchtigen Bestandteile *in vacuo* entfernt und der erhaltene orange Feststoff im Vakuum bei 70 °C getrocknet.

(R)-(-)-Carvon-phenylhydrazon (**75b**) wird quantitativ (9.736 g) als oranger Feststoff erhalten, der sich innerhalb kurzer Zeit braun verfärbt.

¹**H-NMR (270.2 MHz, CDCl₃):** δ /ppm = 7.28–7.21 (m, 2H, C_m-H), 7.12–7.07 (m, 2H, C_o-H), 6.83 (tt, ³J_{HH} = 7.3 Hz, ⁴J_{HH} = 1.2 Hz, 1H, C_p-H), 5.96–5.91 (m, 1H), 4.84–4-80 (m, 2H), 2.75–2.67 (m, 1H), 2.56–2-39 (m, 1H), 2.35–2.21 (m, 1H), 2.18–2.02 (m, 2H), 1.97–1.95 (m, 3H), 1.80–1.78 (m, 3H). ¹³C-{¹H}-NMR (67.9 MHz, CDCl₃): δ /ppm = 148.3, 145.6, 144.5, 133.5, 129.3, 128.7, 119.9, 113.1, 110.2, 41.0, 30.1, 28.2, 20.8, 18.0.

In einem 500 mL-Kolben wird 2,4-Dinitrophenylhydrazin (trocken, **Achtung Explosiv, wenn trocken**, 8.894 g, 45.0 mmol) in Ethanol (250 mL) suspendiert. Anschließend wird eine mit 1 mL konzentrierter Salzsäure versetzte Lösung von (R)-(-)-Carvon (7.03 ml, 6.743 g, 45.0 mmol) in Ethanol (50 mL) innerhalb von ca. 30 min zugetropft. Beim Zutropfen dickt sich die erhaltene Suspension deutlich ein. Diese wird für 2 h refluxiert und anschließend über Nacht in den Kühlschrank gestellt.

Der erhaltene Feststoff wird abgefiltert, mit kaltem Ethanol gespült und im Vakuum getrocknet. (R)-(-)-Carvon-(2,4-dinitrophenyl)hydrazon (**75c**) (13.949 g, 94 %) wird als leuchtend roter Feststoff erhalten. Das erhaltene Produkt ist unlöslich in Cyclohexan, Diethylether und Ethanol, teilweise löslich in TBME und Acetonitril sowie gut löslich in DMSO, Benzol, Chloroform und Aceton.

¹**H-NMR (270.2 MHz, CDCl₃):** δ /ppm = 11.29 (s, 1H, NH), 9.13 (dd, ⁴*J*_{HH} = 2.6 Hz, ⁵*J*_{HH} = 0.3 Hz, 1H, C3'-H), 8.31 (ddd, ³*J*_{HH} = 9.6 Hz, ⁴*J*_{HH} = 2.6 Hz, ⁵*J*_{HH} = 0.7 Hz, 1H, C5'-H), 7.99 (d, ³*J*_{HH} = 9.6 Hz, 1H, C6'-H), 6.30-6.24 (m, 1H), 4.89-4.82 (m, 2H), 2.89-2.82 (m, 1H), 2.60-2.48 (m, 1H), 2.44-2.33 (m, 1H), 2.29-2.14 (m, 2H), 1.99-1.98 (m, 3H), 1.80-1.80 (m, 3H). ¹³C-{¹H}-NMR (67.9 MHz, CDCl₃): δ /ppm = 154.4, 146.8, 145.1, 135.3, 132.8, 130.1, 123.6, 116.7, 111.1, 40.8, 30.2, 29.4, 20.7, 17.9.

¹**H-NMR (399.8 MHz, DMSO-d⁶):** δ /ppm = 11.01 (s, 1H, NH), 8.83 (d, ⁴J_{HH} = 2.5 Hz, 1H, C3'-H), 8.37 (dd, ³J_{HH} = 9.5 Hz, ⁴J_{HH} = 2.5 Hz, 1H, C5'-H), 7.88 (d, ³J_{HH} = 9.6 Hz, 1H, C6'-H), 6.31–6.28 (m, 1H), 4.82–4.80 (m, 2H), 2.85–2.80 (m, 1H), 2.45–2.37 (m, 1H), 2.34–2.27 (m 2H), 2.19– 2.10 (m, 1H), 1.93–1.91 (m, 3H), 1.76–1.74 (m, 3H). ¹³C-{¹H}-NMR (100.5 MHz, DMSO-d⁶): δ /ppm = 154.8, 147.3, 144.4, 135.6, 131.7, 130.1, 123.0, 116.1, 110.5, 40.2, 29.5, 28.9, 20.4, 17.5.

EA: C₁₆H₁₈N₄O₄ (330.34): ber. (%): C: 58.17, H: 5.49, N: 16.96, gef. (%): C: 58.62, H: 5.22, N: 17.17. **MS (DEI+, 70 eV):** *m/z* (%) = 330.42 (60) [M]⁺, 289.38 (100), 253.34 (4), 207.35 (3), 107.30 (15), 93.27 (10), 91.26 (22), 79.25(13), 77.24 (13), 53.23 (13), 41.21 (10).

11.4.5.31. 1-Cyclopentyliden-2-phenylhydrazin (Cyclopentanonphenylhydrazon) (75d)

In einem 250 mL-Kolben wird Cyclopentanon (16.824 g, 200.0 mmol) in Cyclohexan (100 mL) gelöst und anschließend Phenylhydrazin (20.04 mL, 21.628 g, 200.0 mmol) hinzugegeben. Nach Zugabe von Toluolsulfonsäure (1 g) wird die braune Reaktionslösung zunächst bei Raumtemperatur gerührt und anschließend, da sich keine Reaktion einstellt, ca. 3 h am Wasserabscheider refluxiert, bis sich die erwartete Wassermenge abgestellt hat. Während des Erhitzens bilden sich in der Reaktionslösung helle, voluminöse Flocken.

Nach Abkühlen auf Raumtemperatur wird dem Ansatz Wasser und Cyclohexan zu, bis sich der Feststoff vollständig gelöst hat. Die organische Phase wird dreimal mit Wasser (je 75 mL) extrahiert und die vereinigten wässrigen Phasen mit Cyclohexan (50 mL) extrahiert. Die vereinigten tiefroten organischen Phasen werden gründlich mit Na₂SO₄ gründlich getrocknet und das Lösemittel *in vacuo* entfernt. Man erhält Cyclopentanonphenylhydrazon als gelbes Pulver (17.023 g, 49%).

¹H-NMR (399.8 MHz, CDCl₃): δ /ppm = 7.26-7.20 (m, 2H), 7.04-7.00 (m, 2H), 6.82 (tt, ³J_{HH} = 7.3 Hz, ⁴J_{HH} = 1.1 Hz, 1H, C_p-H), 6.64 (s, 1H), 2.48 (tt, J = 7.2 Hz, J = 1.2 Hz, 2H), 2.22-2.28 (m, 2H), 1.82 (dq, J = 47.6 Hz, J = 7.0 Hz, 3H). ¹³C-{¹H}-NMR (100.5 MHz, CDCl₃): δ /ppm = 156.9 (C_q), 145.9 (C_q), 129.1 (CH), 119.5 (CH), 112.8 (CH), 33.1 (CH₂), 26.4 (CH₂), 24.9 (CH₂).

11.4.5.32. 1-Cyclohexyliden-2-phenylhydrazin (Cyclohexanonphenylhydrazon) (75e)

In einem 250 mL-Kolben wird Cyclohexanon (19.628 g, 200.0 mmol) in Cyclohexan (100 mL) gelöst und Phenylhydrazin (20.04 g, 21.628 g, 200.0 mmol) zugegeben, wobei sich sofort ein orange-roter Niederschlag bildet Die Reaktionslösung wird über Nacht gerührt und der erhaltene Feststoff abgefiltert und *in vacuo* getrocknet. Man erhält Cyclohexanonphenylhydrazon als lachsfarbenen, flockigen Feststoff in quantitativer Ausbeute (37.647 g).

¹H-NMR (**399.8** MHz, CDCl₃): δ/ppm = 7.26–7.20 (m, 2H), 7.05–7.01 (m, 3H), 6.98 (s, 1H), 6.81 (tt, J = 7.3 Hz, J = 0.4 Hz, 1H), 2.34 (tt, J = 24.1 Hz, J = 6.5 Hz, 3H), 1.77-1.60 (m, 5H). ¹³C-{¹H}-NMR (**100.5** MHz, CDCl₃): δ/ppm = 150.6 (C_q), 146.0 (C_q), 129.1 (CH), 119.4

(CH), 112.8 (CH), 35.3 (CH₂), 26.9 (CH₂), 25.8 (CH₂), 25.6 (CH₂), 25.3 (CH₂).

11.4.5.33. Umsetzung von 1-Methyl-2-((5*R*)-2methyl-5-(prop-1-en-2-yl)cyclohex-2enyliden)hydrazin (75a) mit PCl₃

In einem ausgeheizten und mit Ar-Atmosphäre gefüllten 50 mL-Schlenkkolben wird (R)-(-)-Carvon-methylhydrazon (**75a**) (1.783 g, 10 mmol) in Acetonitril (abs., 20 mL) gelöst. Zu der zitronengelben Lösung wird bei Raumtemperatur PCl₃ (0.87 mL, 1.373 g, 10 mmol) und NEt₃ (4.18 mL, 3.036 g, 30 mmol) gegeben. Nach ca. 5 min bildet sich ein farbloser Niederschlag.

Nach 3 d rühren bei Raumtemperatur zeigt das ³¹P-NMR als Hauptprodukt (93 %) die Bildung von 1-(Dichlorphosphanyl)-1-methyl-2-((5*R*)-2-methyl-5-(prop-1-en-2-yl)cyclohex-2-en-1-yliden)hydrazin (**82a**). Als Nebenprodukt wird das 1-(Chlor((1-methyl-2-((5*R*)-2-methyl-5-(prop-1-en-2-yl)cyclohex-2-en-1-yliden)hydrazin-1-yl))phosphanyl)-1-methyl-2-((5*R*)-2-methyl-5-(prop-1-en-2-yl)cyclohex-2-en-1-yliden)hydrazin (**83a**) mit 5 %-igem Anteil beobachtet.

Das entstandene farblose Triethylammoniumchlorid wird abfiltriert und das rotbraune Filtrat mit weiteren 4 mL NEt₃ (29 mmol) versetzt. Nach weiteren 24 h rühren bei Raumtemperatur kann im ³¹P-NMR keine Veränderung des Produktverhältnisses beobachtet werden.

³¹P-NMR nach 3d rühren bei Raumtemperatur:

³¹P-NMR (162.0 MHz, MeCN): δ/ppm = 217.9 (bs, 2 %, PCl₃), 157.1 (q, ${}^{3}J_{PH} = 13.6$ Hz, 93 %, **82a**), 142.2 (sept, ${}^{3}J_{PH} = 12.7$ Hz, 5 %, **83a**).

³¹P-NMR nach Zugabe von weiterem NEt₃:

³¹P-NMR (162.0 MHz, MeCN): δ/ppm = 217.9 (bs, 1 %, PCl₃), 157.1 (q, ${}^{3}J_{PH} = 13.6$ Hz, 93 %, 82a), 142.2 (sept, ${}^{3}J_{PH} = 12.7$ Hz, 6 %, 83a).

11.4.5.34. 2-Phenyl-2*H*,4*H*,5*H*,6*H*-cyclopenta[*d*]-1,2,3-diazaphosphol (74d)

In einem ausgeheizten und mit Ar-Atmosphäre gefüllten 50 mLaufgesetztem Tropftrichter Schlenkkolben mit wird Cyclopentanonphenylhydrazon (75d) (1.742 g, 10.0 mmol) in Acetonitril (abs., 20 mL) gelöst, NEt₃ (4.18 mL, 3.036 g, 30.0 mmol) zugegeben und auf 0 °C gekühlt. Anschließend wird zu der Lösung PCl₃ (0.87 mL, 1.373 g, 10 mmol) über einen Zeitraum von 30 min zugetropft, wobei sich ein farbloser Niederschlag bildet. Die Reaktionsmischung wird 48 h bei Raumtemperatur gerührt und anschließend alle flüchtigen Bestandteile in vacuo entfernt. Der braune Rückstand wird 24 h in einer Soxhlett-Apparatur mit *n*-Pentan (abs., 150mL) extrahiert und anschließend das Lösemittel entfernt. Man erhält 2-Phenyl-2H,4H,5H,6H-cyclopenta[d]-1,2,3-diazaphosphol (**74d**) (0.103 g, 5 %) als gelbes viskoses Öl.

³¹P-NMR (162.0 MHz, CDCl₃): δ/ppm = 202.4 (s). ¹³C-{¹H}-NMR (100.6 MHz, CDCl₃): δ/ppm = 169.7, (d, ²J_{PC} = 6.7 Hz, C6a), 159.4 (d, ¹J_{PC} = 39.3 Hz, C3a), 145.5 (d, ²J_{PC} = 11.7 Hz, C_i), 129.5 (s, C_m), 126.2 (d, ⁵J_{PC} = 1.4 Hz, C_p), 120.0 (d, ³J_{PC} = 10.6 Hz, C_o), 29.6 (d, ³J_{PC} = 3.1 Hz, C5), 27.2 (d, ²J_{PC} = 11.5 Hz, C4), 26.7 (d, ³J_{PC} = 2.3 Hz, C6). ¹³C-NMR (100.6 MHz, CDCl₃): δ/ppm = 169.9-169.5 (m, C6a), 159.8-159.2 (m, C3a), 145.3-145.7 (m, C_i), 129.5 (dd, ¹J_{CH} = 161.0 z, J = 8.2 Hz, C_m), 126.2 (dtd, ¹J_{CH} = 162.6 Hz, J = 7.5 Hz, J = 1.4 Hz, C_p), 120.0 (dm, ¹J_{CH} = 161.4 Hz, C_o), 29.6 (tdq, ¹J_{CH} = 131.3 Hz, J = 3.3 Hz, J = 3.1 Hz, C5), 27.2 (tdq, ¹J_{CH} = 133.2 Hz, J = 3.3 Hz, J = 3.1 Hz, C4), 26.7 (tm, ¹J_{CH} = 131.3 Hz, C6). ¹H--NMR (400.2 MHz, CDCl₃): δ/ppm = 7.77-7.74 (m, 2H, C_o-H), 7.41-7.35 (m, 2H, C_m-H), 7.23 (tt, ³J_{HH} = 7.4 Hz, ⁴J_{HH} = 1.2 Hz, 1H, C_p-H), 3.06 (td, ³J_{HH} = 7.2 Hz, ³J_{PH} = 4.8 Hz, 2H, C4-H), 2.96 (td, ³J_{HH} = 7.5 Hz, 2H, C5-H).

11.4.5.35. 2-Phenyl-4,5,6,7-tetrahydro-2*H*-1,2,3benzodiazaphosphol (74e)

In einem ausgeheizten und mit Ar-Atmosphäre gefüllten 50 mL-Schlenkkolben mit aufgesetztem Tropftrichter wird Cyclohexanonphenylhydrazon (**75e**) (1.883 g, 10 mmol) in Acetonitril (abs., 20 mL) gelöst, NEt₃ (4.18 mL, 3.036 g, 30 mmol) zugegeben und auf 0 °C gekühlt. Anschließend wird zu der Lösung PCl₃ (0.87 mL, 1.373 g, 10 mmol) über einen Zeitraum von 30 min zugetropft, wobei sich ein farbloser Niederschlag bildet

Nach 48 h Reaktionsdauer bei Raumtemperatur können im ³¹P-NMR 2-Phenyl-4,5,6,7-tetrahydro-2*H*-1,2,3-benzodiazaphosphol (**74e**) ($\delta^{31}P = 215.9, 56\%$) und 2-Cyclohexyliden-1-(dichlorphosphanyl)-1phenylhydrazin ($\delta^{31}P = 144.2, 39\%$) als Hauptprodukte identifiziert werden. Die Reaktionsmischung wird weitere 72 h bei Raumtemperatur gerührt und anschließend alle flüchtigen Bestandteile *in vacuo* entfernt. Der braune Rückstand wird 3 h in einer Soxhlett-Apparatur mit *n*-Pentan (abs., 150mL) extrahiert und anschließend das Lösemittel entfernt. Man erhält 2-Phenyl-4,5,6,7-tetrahydro-2*H*-benzo-1,2,3-diazaphosphol (0.193 g, 0.9 mmol, 9 %) als gelben, wachsartigen Feststoff.

³¹P-NMR (162.0 MHz, CDCl₃): δ/ppm = 215.9 (s). ¹³C-{¹H}-NMR (100.6 MHz, CDCl₃): δ/ppm = 156.8, (d, ${}^{2}J_{PC}$ = 8.9 Hz, C7a), 153.2 (d, ${}^{1}J_{PC}$ = 35.9 Hz, C3a), 145.5 (d, ${}^{2}J_{PC}$ = 8.9 Hz, C_i), 129.5 (s, C_m), 126.4 (d, ${}^{5}J_{PC}$ = 1.4 Hz, C_p), 120.0 (d, ${}^{3}J_{PC}$ = 10.0 Hz, C_o), 25.5 (d, ${}^{3}J_{PC}$ = 1.4 Hz, C7), 23.6 (d, ${}^{3}J_{PC}$ = 17.1 Hz, C5), 23.4 (d, ${}^{4}J_{PC}$ = 18.7 Hz, C6), 22.8 (d, ${}^{2}J_{PC}$ = 19.8 Hz, C4). ¹³C-NMR (100.6 MHz, C₆D₆): δ/ppm = 156.6-157.0 (m, C7a), 153.2 (dm, ${}^{1}J_{PC}$ = 35.9 Hz, C3a), 144.7-145.2 (m, C_i), 129.5 (dd, ${}^{1}J_{CH}$ = 160.1 Hz, J = 8.2 Hz, C_m), 126.4 (dtd, ${}^{1}J_{CH}$ = 162.4 Hz, J = 7.6 Hz, J = 1.4 Hz, C_p), 120.0 (dm, ${}^{1}J_{CH}$ = 156.4 Hz, C_o), 25.4-25.7 (m, C7), 23.6 (tdq ${}^{1}J_{CH}$ = 129.2 Hz, J = 17.1 Hz, J = 4.3 Hz, C5), 23.4 (tm, ${}^{1}J_{CH}$ = 127.5 Hz, C6), 23.0-22.0 (m, C4). ¹H-NMR (400.2 MHz, CDCl₃): δ/ppm = 7.93-7.87 (m, 2H, C_o-H), 7.06-7.00 (m, 2H, C_m-H), 6.88 (tt, ${}^{3}J_{HH}$ = 7.3 Hz, ${}^{4}J_{HH}$ = 1.2 Hz, 1H, C_p-H), 2.81 (td, J = 6.5 Hz, ${}^{4}J_{PH}$ = 2.2 Hz, 2H, C7-H), 2.63-2.57 (m, 2H, C4-H), 1.47-1.40 (m, 2H, C6-H), 1.35-1.28 (m, 2H, C5-H).

11.4.6. 1,3,4-Chalkogenazaphosphole

11.4.6.1. (((2-Methoxy-2-oxoethyl)sulfanyl)-(phenyl)methyliden)azanium-bromid (88b)

In einem 1 L-Rundkolben wird bei Raumtemperatur Thiobenzamid (13.720 g, 100.0 mmol) in Diethylether (500 mL) gelöst und anschließend zur kräftig gelben Lösung 2-Bromessigsäuremethylester (**65b**) (9.47 mL, 15.297 g, 100.0 mmol) innerhalb 30 min zugetropft. Der Ansatz wird für 24 h bei Raumtemperatur gerührt, wobei nach wenigen Minuten ein farbloser Feststoff auszufallen beginnt. Der Feststoff wird anschließend abfiltriert, dreimal mit Diethylether (je 50 mL) und *in vacuo* getrocknet.

(((2-Methoxy-2-oxoethyl)sulfanyl)(phenyl)methyliden)azanium-bromid (**88b**) wird als farbloses, voluminöses Produkt (19.239 g, 66 %) erhalten.

¹H-NMR (399.8 MHz, CDCl₃): δ /ppm = 12.50 (s, 1H, NH), 11.83 (s, 1H, NH), 8.11 (d, J_{HH} = 8.0 Hz 2H, C_o -H), 7.70 (t, J_{HH} = 7.3 Hz, 1H, C_p -H), 7.54 (t, J_{HH} = 7.4 Hz, 1H, C_m -H), 4.75 (s, 2H, SCH₂CO₂Me), 3.81 (s, 3H, OCH₃). ¹³C-{¹H}-NMR (100.5 MHz, CDCl₃): δ /ppm = 186.9 (C=N), 166.5 (C=O), 136.2 (C_i), 129.7 (CH), 129.6 (CH), 129.3 (CH), 53.7 (SCH₂CO₂Me), 37.0 (OCH₃).

11.4.6.2. (((2-Ethoxy-2oxoethyl)sulfanyl)(phenyl)methyliden) azanium-bromid (88c)

In einem 1 L-Rundkolben wird bei Raumtemperatur Thiobenzamid (27.440 g, 200.0 mmol) in Diethylether (600 mL) gelöst. Zu dieser kräftig gelben Lösung wird anschließend 2-Bromessigsäureethylester (**65c**) (22.12 mL, 33.402 g, 200.0 mmol) innerhalb 30 min zugetropft. Die Ansatz wird 24 h gerührt, wobei sich ein gelber Feststoff bildet. Der entstandene Niederschlag abfiltriert, dreimal mit Diethylether (je 50 mL) gewaschen und *in vacuo* getrocknet.

Manerhält(((2-Ethoxy-2-
oxoethyl)sulfanyl)(phenyl)methyliden)azanium-bromid(88c)apricotfarbenes Produkt (51.349 g, 84 %).

¹H-NMR (400.2 MHz, CDCl₃): δ /ppm = 12.34 (s, 1H, NH), 11.72 (s, 1H, NH), 8.05–8.01 (m, 2H, C_o–H), 7.63 (tt, ³J_{HH} = 7.5 Hz, ⁴J_{HH} = 1.2 Hz, 1H, C_p–H), 7.50–7.44 (m, 2H, C_m–H), 4.69 (s, 2H, SC<u>H</u>₂CO₂Et), 4.19 (q, ³J_{HH} = 7.2 Hz, 2H, OC<u>H</u>₂CH₃), 1.22 (t, ³J_{HH} = 7.2 Hz, 3H, OCH₂C<u>H</u>₃). ¹³C-{¹H}-NMR (100.6 MHz, CDCl₃): δ /ppm = 186.8 (C=N), 165.8 (C=O), 135.9 (Ci), 129.5 (CH), 129.3 (CH), 129.1 (CH), 62.9 (S<u>C</u>H₂CO₂Et), 37.0 (O<u>C</u>H₂CH₃), 13.9 (OCH₂CH₃).

11.4.6.3. 2-Methoxycarbonyl-5-phenyl-1,3,4,thiazaphosphol (86b)

In einem ausgeheizten und mit Ar-Atmosphäre gefüllten 500 mL-Schlenkkolben mit aufgesetztem Tropftrichter wird (((2-Methoxy-2oxoethyl)sulfanyl)(phenyl)methyliden)azanium-bromid (**88b**) (14.509 g, 50.0 mmol) in Acetonitril (abs., 200 mL) suspendiert, PCl₃ (4.36 mL, 6.866 g, 50.0 mmol) zugegeben und die Reaktionsmischung auf 0 °C gekühlt. Anschließend wird bei dieser Temperatur NEt₃ (27.88 mL, 20.238 g, 200.0 mmol) über einen Zeitraum von ca. 30 min zugetropft, wobei ein farbloser Feststoff auszufallen beginnt. Die Suspension wird für 2 h bei 0 °C und anschließend 12 h bei Raumtemperatur gerührt. Der Reaktionsfortschritt wird im ³¹P-NMR verfolgt.

Nach beendeter Reaktion werden die flüchtigen Bestandteile *in vacuo* entfernt und der Rückstand mit THF (abs., 150 mL) extrahiert, das Triethylammoniumchlorid abgefiltert und dreimal mit kaltem THF (je 50 mL) gewaschen. Nach Entfernen des Lösemittels erhält man 2-Methoxycarbonyl-5-phenyl-1,3,4,-thiazaphosphol (**86b**) als blass gelben Feststoff (11.101 g, 94 %). Bei Extraktion mit Diethylether kann nur eine Ausbeute von 46 % erreicht werden.

³¹P-NMR (109.4 MHz, CDCl₃): δ /ppm = 302.4 (s). ¹H-NMR (270.2 MHz, CDCl₃): δ /ppm = 8.09-8.05 (m, 2H, Ph), 7.53-7.45 (m, 3H, Ph), 3.94 (s, OCH3). ¹³C-{¹H}-NMR (67.9 MHz, CDCl₃): δ /ppm = 182.2 (d, ²J_{PC} = 21.2 Hz, C2), 167.4 (d, ¹J_{PC} = 75.8 Hz, C5), 163.7 (d, ²J_{PC} = 14.5 Hz, C=O), 134.3 (d, ³J_{PC} = 7.9 Hz, C_i), 131.9 (C_p), 129.4 (C_m), 128.0 (d, ⁴J_{PC} = 1.0 Hz, C_o), 52.9 (OCH₃).

11.4.6.4. 2-Ethoxycarbonyl-5-phenyl-1,3,4,thiazaphosphol (86c)

In einem ausgeheizten und mit Ar-Atmosphäre gefüllten 500 mL-Schlenkkolben mit aufgesetztem Tropftrichter wird (((2-Ethoxy-2oxoethyl)sulfanyl)(phenyl)methyliden)azanium-bromid (**88c**) (15.210 g, 50.0 mmol) in Acetonitril (abs., 200 mL) suspendiert, PCl₃ (4.36 mL, 6.866 g, 50.0 mmol) zugegeben und die entstandene Suspension auf 0 °C gekühlt. Anschließend wird NEt₃ (27.88 mL, 20.238 g, 200.0 mmol) über einen Zeitraum von ca. 30 min zugetropft, wobei ein farbloser Feststoff auszufallen beginnt. Die Suspension wird für 2 h bei 0 °C und anschließend 12 h bei Raumtemperatur gerührt. Der Reaktionsfortschritt wird im ³¹P-NMR verfolgt.

Nach beendeter Reaktion wird das Lösemittel *in vacuo* abgezogen, der Rückstand mit Diethylether (abs., 150 mL) extrahiert, das Triethylammoniumchlorid abgefiltert und zweimal mit kaltem Diethylether (je 50 mL) gewaschen. Nach Entfernen des Lösemittels von Filtrat erhält man 2-Ethoxycarbonyl-5-phenyl-1,3,4,-thiazaphosphol (**86c**) als gelben Feststoff (9.803 g, 78%).

³¹P-NMR (162.0 MHz, CDCl₃): δ /ppm = 302.9 (s). ¹H-NMR (400.2 MHz, CDCl₃): δ /ppm = 8.07-8.04 (m, 2H, Ph), 7.50-7.44 (m, 3H, Ph), 4.39 (q, ³J_{HH} = 7.1 Hz, 2H, OCH₂CH₃), 1.40 (t, ³J_{HH} = 7.1 Hz, 3H, OCH₂CH₃). ¹³C-{¹H}-NMR (100.6 MHz, CDCl₃): δ /ppm = 181.9 (d, ²J_{PC} = 21.2 Hz, C2), 168.0 (d, ¹J_{PC} = 76.0 Hz, C5), 163.2 (d, ²J_{PC} = 14.5 Hz, C=O), 134.3 (d, ³J_{PC} = 7.7 Hz, C_i), 131.7 (C_p), 129.2 (C_m), 127.8 (d, ⁴J_{PC} = 1.2 Hz, C_o), 62.0 (O<u>C</u>H₂CH₃), 14.27 (OCH₂<u>C</u>H₃).

11.4.6.5. 4-Hydroxy-2-phenyl-1,3-thiazol-3ium-bromid-hydrat (90 × H₂O)

XRD: $P2_1/c$; a = 8.4591(2) Å; b = 14.4531(3) Å; c = 9.4892(3) Å; $\beta = 113.279(3)^\circ$; V = 1065.71(5) Å³; Z = 4.

11.4.6.6. Pentaphenylpentaphospholan (96)

In einem ausgeheizten und mit Ar-Atmosphäre gefüllten 1 L-Dreihalsrundkolben aufgesetztem Tropftrichter, Rückflusskühler mit Blasenzähler sowie Schliffhahn wird Magnesium (12.155 g, 500.0 mmol) über Nacht trocken gerührt und so aktiviert.¹⁵⁶ Das aktivierte Magnesium wird in Tetrahydrofuran (abs., 350 mL) suspendiert und eine Lösung von Dichlor(phenyl)phosphan (67.85 mL, 89.490 g, 500.0 mmol) in THF (abs., 50 mL) wird über einem Zeitraum von 60 min zugetropft, sodass die Reaktion konstant am Sieden gehalten wird. Zur Vervollständigung der

¹⁵⁶ K. V. Baker, J. M. Brown, N. Hughes, A. J. Skarnulis, A. Sexton, *J. Org. Chem.* **1991**, *56*, 698–703.

stark exothermen Reaktion wird 12 h unter Rückfluss erhitzt. Das Lösemittel wird *in vacuo* entfernt und der farblosen Rückstand mit einem Gemisch aus Toluen (abs., 500 mL) und *n*-Hexan (abs., 100 mL) versetzt. Das MgCl₂ wird abgefiltert und zweimal mit Toluen (abs., je 100 mL) gewaschen.

Nach Entfernen des Lösemittels erhält man Pentaphenylpentaphospholan (**96**) als farblosen Feststoff (32.537 g, 60 %).

³¹P-NMR (109.4 MHz, C_6D_6): δ /ppm = -0.2-(-5.6) (m, 95%, 96), -21.1 (bs, 1%, (PhP)₆), -47.5 (bs, 4%, (PhP)₄). ¹H-NMR (270.2 MHz, C_6D_6): δ /ppm = 8.11-7.79 (m, 2H), 7.47-7.29 (m, 1H), 7.19-6.69 (m, 2H).

11.4.6.7. 2,4-Diphenyl-1,3,2,4diselenadiphosphetan-2,4-diselon (WOOLLINS-Reagenz) (95)

In einem ausgeheizten und mit Ar-Atmosphäre gefüllten 1 L-Schlenkkolben mit aufgesetztem Rückflusskühler mit Blasenzähler wird Pentaphenylpentaphospholan (**96**) (26.179 g, 48.4 mmol) in Toluol (abs., 500 mL) gelöst. Zu der gelblichen Lösung wird graues Selen (38.240 g, 484.3 mmol) gegeben und das Reaktionsgemisch 72 h unter Rückfluss erhitzt. Die erhaltene rote Suspension wird mit einer G4-Schlenkfritte abgefrittet und zweimal mit Toluen (abs., je 100 mL).

Nach Trocknen des Filterkuchens im Vakuum erhält man 2,4-Diphenyl-1,3,2,4-diselenadiphosphetan-2,4-diselon (WOOLLINS-Reagenz) (**95**) (57.497 g, 89 %) als rotes Pulver.

m.p. = 196–204 °C

11.4.6.8. Selenobenzamid (87a)

In einem ausgeheizten und mit Ar-Atmosphäre gefüllten 250 mL-Schlenkkolben mit aufgesetztem Rückflusskühler mit Blasenzähler wird WOOLLINS-Reagenz (**95**) (5.320 g, 10.0 mmol) in Toluol (abs., 120 mL) suspendiert. Nach Zugabe von Benzonitril (2.062 g, 20.0 mmol) wird das rote Reaktionsgemisch 6 h unter Rückfluss erhitzt. Sobald das Reaktionsgemisch abgekühlt ist, wird die Reaktion durch Zugabe von 1 mL Wasser gequenched und die nun dunkelrote Lösung eine weitere Stunde unter Rückfluss erhitzt. **Der dabei entstehende hochgiftige Selenwasserstoff wird in eine auf 0 °C <u>gekühlte</u> alkalische Wasserstoffperoxidlösung geleitet.**

Das Lösemittel wird in vacuo entfernt und erhaltene aelbe Feststoff wird der säulenchromatographisch aufgetrennt (Kieselgel 0.035-0.070 mm; $CH_2CI_2/AcOEt = 9:1;$ $R_f(Produkt) = 0.40).$ Nach Entfernen des Lösemittels und Umkristallisation aus Dichlormethan/n-Hexan erhält man Selenobenzamid (87a) (2.464 g, 67 %) als gelbe Nadeln.

m.p. = 121–122 °C. ¹**H-NMR (400.2 MHz, CDCl₃):** δ /ppm = 8.69 (bs, 1H, NH), 7.88–7.85 (m, 2H, C_o-H), 7.84 (bs, 1H, NH), 7.54 (tt, ³J_{HH} = 7.4 Hz, ⁴J_{HH} = 1.3 Hz, 1H, C_p-H), 7.40–7.35 (m, 2H, C_m-H). ¹³C-{¹H}-NMR (100.6 MHz, CDCl₃): δ /ppm = 208.1 (C=Se), 142.2, 132.3, 128.7, 126.9. ⁷⁷Se-{¹H}-NMR (76.3 MHz, CDCl₃): δ /ppm = 241.0.

11.4.7. 1,3,4,2-Oxadiazaphosphole und Polyazaphosphapentalene

11.4.7.1. Stöchiometrische Umsetzung von 2,2,2-Trifluor-N'-methylacetohydrazid (100c) mit PCl₃ und NEt₃

In einem ausgeheizten und mit Ar-Atmosphäre gefüllten 25 mL-Schlenkkolben wird 2,2,2-Trifluor-N'-methylacetohydrazid (**100c**) (1.040 g, 7.3 mmol) in Acetonitril (abs., 40 mL) gelöst. Anschließend wird PCl₃ (0.64 mL, 1.006 g, 7.3 mmol) und NEt₃ (2.04 mL, 1.482 g, 14.6 mmol) zugegeben. Bei Zugabe von NEt₃ färbt sich die leicht gelblich gefärbte Lösung intensiv gelb und es kann die Bildung eines farblosen Niederschlags beobachtet werden. Die Reaktionsmischung wird 3 h unter Rückfluss gekocht. Im ³¹P-NMR wurde die Bildung des 2-Chlor-3-methyl-5-trifluormethyl-2,3-dihydro-1,3,4,2-oxadiazaphosphols (**98c**) ($\delta^{31}P = 155.4$, ³J_{PH} = 10.5 Hz) beobachtet.

Der Niederschlag wird abgefiltert und das erhaltene Filtrat bei Atmosphärendruck destilliert. Man erhält **98c** bei 80 °C als Mischfraktion mit Acetonitril.

³¹P-NMR nach 3 h kochen:

³¹P-NMR (109.4 MHz, MeCN): δ /ppm = 219.6 (s, 1 %, PCl₃), 155.4 (q, ³J_{PH} = 10.5 Hz, 96 %, **98c**), -9.5 (1 %), -32.8 (1 %), -50.9 (1 %), -52.0 (1 %).

NMR nach Destillation:

³¹P-NMR (162.0 MHz, C₆D₆): δ /ppm = 157.5 (q, ³J_{PH} = 10.4 Hz, 98c). ¹⁹F-NMR (376.5 MHz, C₆D₆): δ /ppm = -67.7 (s, 98c). ¹H-NMR (400.2 MHz, C₆D₆): δ /ppm = 4.20 (d, ³J_{PH} = 10.5 Hz, 98c CH₃), 2.79 (s, MeCN). ¹³C-{¹H}-NMR (100.6 MHz, C₆D₆): δ /ppm = 218.5 (s, 98c C5), 118.4 (MeCN), 118.0 (q, ¹J_{FC} = 268.4 Hz, 98c CF₃), 34.6 (d, ²J_{PC} = 6.5 Hz, 98c Me), 1.9 (MeCN).

11.4.7.2. Umsetzung von 2,2,2-Trifluor-N'methylacetohydrazid (100c) mit PCl₃ und NEt₃ im Überschuss

In einem ausgeheizten und mit Ar-Atmosphäre gefüllten 25 mL-Schlenkkolben wird 2,2,2-Trifluor-N'-methylacetohydrazid (**100c**) (0.124 g, 0.9 mmol) in Acetonitril (abs., 10 mL) gelöst. Anschließend wird PCl₃ (0.09 mL, 0.137 g, 1.0 mmol) und NEt₃ (1.39 mL, 1.012 g, 10.0 mmol) zugegeben. Bei Zugabe von NEt₃ kann eine massive Niederschlagsbildung und eine Verfärbung der Suspension nach dottergelb beobachtet werden. Die Reaktionsmischung wird 3 h refluxiert.

Neben dem 2-Chlor-3-methyl-5-trifluormethyl-2,3-dihydro-1,3,4,2-oxadiazaphosphols (**98c**) können hier als Hauptprodukte auch das Dichlorphosphanyl-2,2,2-trifluor-*N*-methyl-ethencarbohydrazonat (**102c**) und die Spiro-Verbindung 5-Chlor-1,6-dimethyl-3,8-bis(trifluormethyl)-4,9-dioxa-1,2,6,7-tetraaza- λ^5 -phosphaspiro[4.4]nona-2,7-dien (**101c**) beobachtet werden.

³¹P-NMR (162.0 MHz, MeCN): δ/ppm = 221.6 (39 %, PCl₃), 176.7 (bs, 1 %, 102c), 155.4 (q, ${}^{3}J_{PH} = 10.4$ Hz, 23 %, 98c), 5.2 (s, 2 %), -7.7 (s, 3 %), -30.9 (sept, ${}^{3}J_{PH} = 8.4$ Hz, 30 %, 101c), -49.0 (s, 3 %). ¹⁹F-NMR (376.5 MHz, MeCN): δ/ppm = -67.7 (s, 28 %, 98c), -69.7 (bs, 0.5 %), -70.6 (bs, 1 %), -71.5 (bs, 3 %), -71.7 (s, 61 %, 2CF₃, 101c), 71.7 (bs, 5 %), -71.8 (s, 1 %, 102c).

11.4.7.3. Umsetzungen von 1*H*-Tetrazol-1,5diamin (103) mit PCl₃

In einem ausgeheizten und mit Ar-Atmosphäre gefüllten 50 mL-Schlenkkolben wird 1H-Tetrazol-1,5-diamin (**103**) (0.100 g, 1.0 mmol) mit NEt₃ (0.42 mL, 0.304 g, 3.0 mmol) und Acetonitril (abs., 10 mL) versetzt und die Suspension 5 min bei Raumtemperatur gerührt. Anschließend wir über einen Zeitraum von 10 min PCl₃ (0.09 mL, 0.134 g, 1.0 mmol) zugetropft, wobei sich ein farbloser Niederschlag bildet, und die Reaktionslösung 24 h gerührt. Das Lösemittel wird *in vacuo* entfernt und das Rohprodukt in THF (abs., 20 mL) für 3 d gerührt. Anschließend wird der Niederschlag abfiltriert und das Lösemittel des Filtrats *in vacuo* entfernt. ³¹P-{¹H}-NMR (162.0 MHz, CDCl₃): δ /ppm = 152.1 (d, J_{PP} = 179.0 Hz, 31 %), 139.7 (d, J_{PP} = 179.0 Hz, 35 %), 113.3 (t, J_{PP} = 100.0 Hz, 16 %), -7.4 (bs, 18 %).

In einem ausgeheizten und mit Ar-Atmosphäre gefüllten 50 mL-Schlenkkolben 1H-Tetrazol-1,5-diamin (**103**) (0.100 g, 1.0 mmol) in Acetonitril (abs., 10 mL) suspendiert und unter Rühren -30 °C gekühlt. Anschließend wird eine Lösung aus P(NEt₂)₃ (0.247 g, 1.0 mmol) in Acetonitril (abs., 10 mL) über einen Zeitraum vom ca. 30 min zugetropft. Die gebildete orange-braune Suspension wird 24 h bei Raumtemperatur gerührt. Zur Entnahme von NMR-Proben die überstehende, niederschlagsfreie Phase verwendet.

³¹P-{¹H}-NMR (162.0 MHz, CDCl₃): δ/ppm = 295.4 (bs, 20 %, 106), 177.4 (s, 2 %), 165.5 (s, 3 %), 106.8 (s, 5 %), 102.2 (s, 4 %), 25.5 (s, 9 %), 24.7 (s, 42 %, 104), 21.7 (s, 16 %, 105). ³¹P-NMR (162.0 MHz, CDCl₃): δ/ppm = 295.4 (bs, 19 %, 106), 177.3 (s, 1 %), 165.5 (s, 3 %), 106.8 (s, 4 %), 102.1 (s, 4 %), 25.5 (dnon, ¹J_{PH} = 594.6 Hz, ³J_{PH} = 12.7 Hz, 7 %), 24.7 (dnon, ¹J_{PH} = 562.6 Hz, ³J_{PH} = 12.5 Hz, 43 %, 104), 21.7 (dnon, ¹J_{PH} = 570.5 Hz, ³J_{PH} = 11.9 Hz, 18 %, 105).

11.4.7.5. Umsetzung von 1-Methyl-1H-tetrazol-5-amin (108) mit (CICH₂)PCl₂

In einem ausgeheizten und mit Ar-Atmosphäre gefüllten 25 mL-Schlenkkolben wird von 1-Methyl-1*H*-tetrazol-5-amin (**108**) (0.198 g, 2.0 mmol) mit NEt₃ (0.83 mL, 0.607 g, 6.0 mmol) und Acetonitril (abs., 10 mL) versetzt und die Suspension auf 0 °C gekühlt.

Anschließend wir über einen Zeitraum von 5 min (CICH₂)PCl₂ (0.20 mL, 0.303 g, 2.0 mmol) über eine Spritze zugegeben, wobei sich ein farbloser Niederschlag bildet und die Reaktionslösung sich gelb verfärbt. Die Reaktionsmischung wird für 5 h refluxiert. Nach dieser Zeit kann als Hauptprodukt 5-Amino-4-((dichlorphosphanyl)methyl)-1-methyl-1*H*-tetrazol-4-ium-chlorid (**109**) beobachtet werden. Nach Zugabe von weiterem NEt₃ (0.83 mL, 0.607 g, 6.0 mmol) und 7 h Rückflusskochen können im ³¹P-NMR keine Signale mehr beobachtet werden. Die gebildeten Produkte können nicht von Triethylammoniumchlorid getrennt werden.

NMR nach 5 h Rückflusskochen:

³¹**P-NMR (109.4 MHz, MeCN):** δ /ppm = 220.7 (bs, 2 %), 163.5 (t, ²J_{PH} = 15.4 Hz, 60 %, **109**), 123.8–123.1 (m, 10 %), 111.5 (s, 13 %), 30.2 (dquint, J_{PH} = 41.1 Hz, J_{PH} = 8.9 Hz, 9 %), 18.1 (quint, J_{PH} = 8.4 Hz, 6 %).

11.4.8. Addition von Alkoholen an Heterophosphole

11.4.8.1. Addition von (-)-Menthol (115) an 2-Methyl-5-phenyl-2*H*-1,2,4,3triazaphosphol (118)

In einem ausgeheizten und mit Ar-Atmosphäre gefüllten 10 mL-Schlenkkolben wird 2-Methyl-5-phenyl-2H-1,2,4,3-triazaphosphol (**118**) (0.177 g, 1.0 mmol) in Acetonitril (abs., 5 ml) gelöst und anschließend (–)-Menthol (**115**) (0.156 g, 1.0 mmol) zugegeben. Die Reaktionsmischung wird für 5 h bei Raumtemperatur gerührt.

³¹P-NMR (162.0 MHz, MeCN): δ /ppm = 92.4 (ddq, ²J_{PNH} = 30.4 Hz, ³J_{POCH} = 10.3 Hz, ³J_{PNCH} = 10.3 Hz, 48 %, **119a/120a**), 87.8 (ddq, ²J_{PNH} = 30.0 Hz, ³J_{POCH} = 9.9 Hz, ³J_{PNCH} = 9.9 Hz, 48 %, **119a/120a**), 9.9 (dm, ¹J_{PH} = 664.4 Hz, 2 %), 7.6 (d, ¹J_{PH} = 684.0 Hz, 1 %), 3.5 (dd, ¹J_{PH} = 603.4 Hz, J_{PH} = 10.1 Hz, 2 %).

11.4.8.2. Addition von Cholesterol (116) an 2-Methyl-5-phenyl-2*H*-1,2,4,3triazaphosphol (118)

In einem ausgeheizten und mit Ar-Atmosphäre gefüllten 10 mL-Schlenkkolben wird 2-Methyl-5-phenyl-2*H*-1,2,4,3-triazaphosphol (**118**) (0.177 g, 1.0 mmol) in Acetonitril (abs., 5 ml) gelöst und anschließend Cholesterol (**116**) (0.387 g, 1.0 mmol) zugegeben. Nach 24 h Rühren bei Raumtemperatur bildet sich ein farbloser Niederschlag, der Abfiltriert und in Benzen aufgenommen wird.

³¹P-NMR (162.0 MHz, C₆D₆): δ /ppm = 81.9 (ddq, ²J_{PNH} = 30.4 Hz, ³J_{POCH} = 10.1 Hz, ³J_{PNCH} = 10.1 Hz, 18 %, **119b/120b**), 80.9 (ddq, ²J_{PNH} = 30.4 Hz, ³J_{POCH} = 10.1 Hz, ³J_{PNCH} = 10.1 Hz, 22 %, **119b/120b**), 10.1 (ddq, ¹J_{PH} = 670.9 Hz, ³J_{POCH} = 7.8 Hz, ³J_{PNCH} = 7.8 Hz, 53 %).

11.4.8.3. Addition von Adamantan-1-ol (117) an 2-Methyl-5-phenyl-2*H*-1,2,4,3triazaphosphol (118)

In einem ausgeheizten und mit Ar-Atmosphäre gefüllten 10 mL-Schlenkkolben wird 2-Methyl-5-phenyl-2*H*-1,2,4,3-triazaphosphol (**118**) (0.177 g, 1.0 mmol) in Acetonitril (abs., 5 ml) gelöst und anschließend Adamantan-1-ol (**117**) (0.152 g, 1.0 mmol) zugegeben. Die Lösung wird für 2 d bei Raumtemperatur gerührt.

³¹P-NMR (109.4 MHz, MeCN): δ /ppm = 87.4 (dq, ²J_{PNH} = 24.0 Hz, ³J_{PNCH} = 11.9 Hz, 93 %, **119c/120c**), 7.7 (dq, ¹J_{PH} = 664.9 Hz, ³J_{PNCH} = 7.8 Hz, 7 %).

11.4.8.4. Addition von (-)-Menthol (115) an 2-Methoxycarbonyl-5-phenyl-1,3,4,thiazaphosphol (86b)

In einem ausgeheizten und mit Ar-Atmosphäre gefüllten 25 mL-Schlenkkolben wird 2-Methoxycarbonyl-5-phenyl-1,3,4,-thiazaphosphol (**86b**) (0.237 g, 1.0 mmol) in THF (abs., 15 mL) gelöst und anschließend (–)-Menthol (**115**) (0.156 g, 1.0 mmol) zugegeben. Die Reaktionsmischung wird für48 h bei Raumtemperatur gerührt.

³¹P-NMR (162.0 MHz, THF): δ /ppm = 208.7 (d, ³J_{POCH} = 8.3 Hz, 33 %, **121a**), 208.4 (d, ³J_{POCH} = 7.5 Hz, 35 %, **122a**), 198.5 (dd, ²J_{PCH} = 29.5 Hz, ³J_{POCH} = 8.5 Hz, 16 %, **124a**), 195.8 (d, ²J_{PCH} = 24.8 Hz, 9 %, **123a**), 67.9-61.8 (m, 7 %).

11.4.8.5. Addition von Cholesterol (116) an 2-Methoxycarbonyl-5-phenyl-1,3,4,thiazaphosphol (86b)

In einem ausgeheizten und mit Ar-Atmosphäre gefüllten 25 mL-Schlenkkolben wird 2-Methoxycarbonyl-5-phenyl-1,3,4,-thiazaphosphol (**86b**) (0.119 g, 0.5 mmol) in THF (abs., 10 mL) gelöst und anschließend Cholesterol (**116**) (0.193 g, 0.5 mmol) zugegeben. Die Reaktionsmischung wird für8 d bei Raumtemperatur gerührt.

³¹P-{¹H}-NMR (109.4 MHz, THF): δ/ppm = 202.1 (s, 31 %), 202.0 (s, 31 %), 191.9s, (s, 13 %), 190.9 (s, 13 %), 137.7 (s, 1 %), 61.9 (s, 2 %), 13.4 (s, 3 %), 3.6 (s, 1 %).

³¹P-NMR (109.4 MHz, THF): δ /ppm = 202.3–201.8 (m, 68 %, 121b/122b), 191.9 (dd, ${}^{2}J_{PCH}$ = 29.3 Hz, ${}^{3}J_{POCH}$ = 7.3 Hz, 16 %, 124b), 191.0 (dd, ${}^{2}J_{PCH}$ = 29.3 Hz, ${}^{3}J_{POCH}$ = 7.3 Hz, 15 %, 123b).

11.4.8.6. Addition von Adamantan-1-ol (117) an 2-Methoxycarbonyl-5-phenyl-1,3,4,thiazaphosphol (57b)

In einem ausgeheizten und mit Ar-Atmosphäre gefüllten 10 mL-Schlenkkolben wird 2-Methoxycarbonyl-5-phenyl-1,3,4,-thiazaphosphol (**86b**) (0.237 g, 1.0 mmol) in Acetonitril (abs., 4 mL) gelöst und anschließend Adamantan-1-ol (**117**) (0.152 g, 1.0 mmol) zugegeben. Die Lösung wird für 4 d bei Raumtemperatur gerührt.

³¹P-NMR (109.4 MHz, MeCN): δ/ppm = 195.2 (s, 16 %, 121c/122c), 182.1 (d, ²J_{PCH} = 30.5 Hz, 8 %, 123c/124c), 94.5-59.9 (m, 75%).

11.4.8.7. Addition von Adamantan-1-ol (117) an 2-Methoxycarbonyl-5-phenyl-1,3,4,thiazaphosphol (86b) in Anwesenheit von Schwefel bzw. Selen

In zwei parallelen Ansätzen wird in einem ausgeheizten und mit Ar-Atmosphäre gefüllten 10 mL-Schlenkkolben wird 2-Methoxycarbonyl-5phenyl-1,3,4,-thiazaphosphol (**86b**) (0.474 g, 2.0 mmol) in THF (abs., 5 mL) gelöst und anschließend Adamantan-1-ol (**117**) (0.305 g, 2.0 mmol) sowie Schwefel (0.064 g, 0.25 mmol bzgl. S₈) bzw. graues Selen (0.158 g, 2.0 mmol) zugegeben. Die Lösung wird für 24 h bei Raumtemperatur gerührt.

Ansatz mit Schwefel als Oxidationsmittel:

³¹P-NMR (162.0 MHz, THF): δ /ppm = 119.5 (d, ²J_{PH} = 15.0 Hz, 121ca/122ca), 114.3 (d, ²J_{PH} = 11.3 Hz, 123ca/124ca).

Ansatz mit Selen als Oxidationsmittel:

³¹P-NMR (162.0 MHz, THF): δ /ppm = 196.8 (s, 4 %, 121c/122c), 183.8 (d, ²J_{PCH} = 30.5 Hz, 2 %, 123b/124b), 116.3 (d, ²J_{PH} = 14.2 Hz, ¹J_{SeP} = 894.8 Hz, 30%, 123cb/124cb), 110.0 (d, ²J_{PH} = 9.3 Hz, ¹J_{SeP} = 886.6 Hz, 59%, 121cb/122cb). 77Se-NMR (76.3 MHz, THF): δ /ppm = 453.0 (d, ¹J_{SeP} = 886.6 Hz, 121cb/122cb), 385.2 (d, ¹J_{SeP} = 894.8 Hz, 123cb/124cb).

In drei parallelen Ansätzen wird in einem ausgeheizten und mit Ar-Atmosphäre gefüllten 10 mL-Schlenkkolben wird 2-Methoxycarbonyl-5phenyl-1,3,4,-thiazaphosphol (**86b**) (0.237 g, 1.0 mmol) in THF (abs., 5 mL) gelöst und anschließend Triphenylmethanol (**125**) (0.260 g, 1.0 mmol) zugegeben. Einer der drei Ansätze wird ohne Oxidationsmittel gerührt, die anderen beiden werden mit Schwefel (0.032 g, 0.125 mmol bzgl. S₈) bzw. grauem Selen (0.079 g, 1.0 mmol) versetzt und die drei Ansätze für 24 h bei Raumtemperatur gerührt.

Ansatz ohne Oxidationsmittel:

³¹P-NMR (109.4 MHz, THF): δ /ppm = 151.1, 94.7, 16.5 (dq, ¹J_{PH} = 611.7 Hz, ³J_{PH} = 12.9 Hz), 11.3, 11.2 (d, ¹J_{PH} = 600.7 Hz), 7.1 (dq, ¹J_{PH} = 675.5 Hz, ³J_{PH} = 12.0 Hz), 5.0 (d, ¹J_{PH} = 671.1 Hz).

Ansatz mit Schwefel als Oxidationsmittel:

³¹P-NMR (109.4 MHz, THF): δ /ppm = 122.0 (d, ²J_{PH} = 14.4 Hz, 121da/122da), 117.8 (d, ²J_{PH} = 12.0 Hz, 123da/124da), 94.7 (s), 11.4 (s).

Ansatz mit Selen als Oxidationsmittel:

³¹P-NMR (109.4 MHz, THF): δ /ppm = 120.4 (d, ²J_{PH} = 13.8 Hz, 123db/124db), 114.8 (d, ²J_{PH} = 10.3 Hz, 121db/122db), 94.7, 90.8 (d, J = 19.4 Hz), 78.4 (d, J = 9.4 Hz, ¹ $J_{SeP} = 491.5$ Hz), 62.1 (d, J = 16.4 Hz).

11.4.8.9. Addition von (–)-Menthol (115) an 2,5-Dimethyl-2H-1,2,3-diazaphosphol (79a)

In einem ausgeheizten und mit Ar-Atmosphäre gefüllten 50 mL-Schlenkkolben wird 2,5-Dimethyl-2*H*-1,2,3-diazaphosphol (**79a**) (0.276 g, 2.4 mmol) in THF (abs., 12 mL) gelöst und anschließend (–)-Menthol (**115**) (0.378 g, 2.4 mmol) zugegeben. Die Reaktionslösung wird 3 d bei Raumtemperatur gerührt. Zur Einstellung des Reaktionsgleichgewichtes wird die Lösung anschließend 4 h refluxiert.Anschließend wird graues Selen (0.191 g, 2.4 mmol) und die Reaktionslösung 3 d bei Raumtemperatur gerührt, bis sich das Reaktionsgleichgewicht erneut eingestellt hat.

NMR vor Zugabe von Se und Refluxieren:

³¹P-NMR (109.4 MHz, THF): δ /ppm = 231.9 (d, ²J_{PCH} = 44.6 Hz, 94 %, **79a**), 221.3 (d, ²J_{PCH} = 34.3 Hz, 3 %, **79a1**), 143.8–143.4 (m, 0.4 %), 123.2–122.2 (m, 2 %), 118.8–118.1 (m, 1 %), 4.6 (d, ¹J_{PH} = 684.3 Hz, 0.5 %).

NMR vor Zugabe von Se nach Refluxieren:

³¹P-NMR (162.0 MHz, THF): δ /ppm = 231.9 (d, ²J_{PCH} = 44.6 Hz, 92 %, **79a**), 221.3 (d, ²J_{PCH} = 34.3 Hz, 2 %, **79a1**), 145.7–145.6 (m, 5 %), 125.2–124.6 (m, 2 %), 120.8–120.2 (m, 1 %), 6.7 (d, ¹J_{PH} = 680.4 Hz, 2 %).

NMR nach Zugabe von Se:

³¹P-NMR (162.0 MHz, THF): δ /ppm = 231.9 (d, ²J_{PCH} = 44.6 Hz, 22 %, **79a**), 221.3 (d, ²J_{PCH} = 34.3 Hz, 2 %, **79a1**), 91.6 (ddq, ²J_{PCH} = 10.2 Hz, ³J_{POCH} = 10.2 Hz, ³J_{PNCH} = 10.2 Hz, ¹J_{SeP} = 875.7 Hz, 35 %, **128ab/129ab**), 90.7 (ddq, ²J_{PCH} = 10.0 Hz, ³J_{POCH} = 10.0 Hz, ¹J_{SeP} = 880.0 Hz, 41 %, **128ab/129ab**).

11.4.8.10. Addition von Cholesterol (116) an 2,5-Dimethyl-2*H*-1,2,3-diazaphosphol (79a)

In einem ausgeheizten und mit Ar-Atmosphäre gefüllten 50 mL-Schlenkkolben wird 2,5-Dimethyl-2*H*-1,2,3-diazaphosphol (**79a**) (0.198 g, 1.7 mmol) in THF (abs., 10 mL) gelöst und anschließend Cholesterol (0.699 g, 1.7 mmol) zugegeben. Anschließend wird graues Selen (0.137 g, 1.7 mmol) und die Suspension 5 d bei Raumtemperatur gerührt.

³¹P-{¹H}-NMR (109.4 MHz, THF): δ /ppm = 231.9 (s, 59 %, 79a), 221.3 (s, 2 %, 79a1), 90.1 (s, ¹J_{SeP} = 883.0 Hz, 38 %, **128bb/129bb**).

³¹P-NMR (109.4 MHz, THF): δ /ppm = 231.9 (d, ²J_{PCH} = 44.6 Hz, 59 %, 79a), 221.3 (d, ²J_{PCH} = 34.3 Hz, 2 %, 79a1), 87.4 (ddq, ²J_{PCH} = 10.5 Hz, ³J_{POCH} = 10.5 Hz, ³J_{POCH} = 10.5 Hz, ¹J_{SeP} = 883.0 Hz, 38 %, 128bb/129bb).

11.4.8.11. Addition von Adamantan-1-ol (117) an 2,5-Dimethyl-2*H*-1,2,3-diazaphosphol (79a)

In einem ausgeheizten und mit Ar-Atmosphäre gefüllten 50 mL-Schlenkkolben wird 2,5-Dimethyl-2*H*-1,2,3-diazaphosphol (**79a**) (0.118 g, 1.3 mmol) in THF (abs., 4 mL) gelöst, Adamantan-1-ol (**117**) (0.155 g, 1.3 mmol) zugegeben und die Lösung anschließend mit grauem Selen (0.079 g, 1.00 mmol) versetzt. Die graue Suspension wird 4 h bei Raumtemperatur bis zur Einstellung des Reaktionsgleichgewichtes gerührt.

³¹P-{¹H}-NMR (109.4 MHz, THF): δ /ppm = 231.9 (s, 92 %), 221.3 (s, 2 %), 73.9 (s, 1 %), 25.0 (s, 1 %), 23.9 (s, 0.3 %), 18.7 (s, 0.3 %), 17.4 (s, 3 %). ³¹P-NMR (109.4 MHz, THF): δ /ppm = 231.9 (d, ²J_{PCH} = 44.6 Hz, 92 %, **79a**), 221.3 (d, ²J_{PCH} = 34.3 Hz, 2 %, **79a1**), 73.9 (quint, ²J_{PCH} = 10.5 Hz, ³J_{PNCH} = 10.5 Hz, 1 %, **128cb/129cb**).

11.4.8.12. Addition von (-)-Menthol (115) an 70a

In einem ausgeheizten und mit Ar-Atmosphäre gefüllten NMR-Rohr wird (-)-Menthol (**115**) (0.156 g, 1.0 mmol) in CDCl₃ (0.3 mL) suspendiert und anschließend eine Lösung von **70a** (0.400 g, 1.0 mmol) in CDCl₃ (0.3 mL) zugegeben. Die beiden Lösungen werden vermischt und die Probe nach ca. 4 h im NMR vermessen.

³¹P-NMR (109.4 MHz, CDCl₃): δ /ppm = 194.5 (d, ³J_{POCH} = 6.8 Hz, 28 %, **131a/132a**), 192.5 (d, ³J_{POCH} = 8.0 Hz, 54 %, **131a/132a**), 10.3 (dd, ¹J_{PH} = 634.1 Hz, J_{PH} = 10.3 Hz, 8 %), 9.2 (dd, ¹J_{PH} = 635.6 Hz, J_{PH} = 9.4 Hz, 9 %)

11.4.8.13. Addition von (–)-Menthol (115) an 70a in Anwesenheit von Schwefel

In einem ausgeheizten und mit Ar-Atmosphäre gefüllten NMR-Rohr wird (-)-Menthol (**115**) (0.156 g, 1.0 mmol) und Schwefel (0.032 g, 0.125 mmol bzgl. S₈) in CDCl₃ (0.3 mL) suspendiert und anschließend eine Lösung von **70a** (0.400 g, 1.0 mmol) in CDCl₃ (0.3 mL) zugegeben. Die beiden Lösungen werden vermischt und die Probe nach ca. 4 h im NMR vermessen.

³¹P-NMR (109.4 MHz, CDCl₃): δ /ppm = 113.1 (dd, ²J_{PCH} = 11.8 Hz, ³J_{POCH} = 7.3 Hz, 60 %, **131aa/132aa**), 112.2 (dd, ²J_{PCH} = 11.6 Hz, ³J_{POCH} = 7.2 Hz, 32 %, **131aa/132aa**), 110.2 (dd ²J_{PCH} = 17.6 Hz, ³J_{POCH} = 10.0 Hz, 2 %, **133aa/134aa**), 109.3 (dd, ²J_{PCH} = 19.0 Hz, ³J_{POCH} = 9.1 Hz, 4 %, **133aa/134aa**), 6.1 (s, 2 %).

11.4.8.14. Addition von (-)-Pantolacton (130) an 70a in Anwesenheit von Schwefel

In einem ausgeheizten und mit Ar-Atmosphäre gefüllten NMR-Rohr wird (-)-Pantolacton ((3*R*)-3-Hydroxy-4,4-dimethyloxolan-2-on) (**130**) (0.130 g, 1.0 mmol) und Schwefel (0.032 g, 0.125 mmol bzgl. S₈) in CDCl₃ (0.3 mL) suspendiert und anschließend eine Lösung von **70a** (0.400 g, 1.0 mmol) in CDCl₃ (0.3 mL) zugegeben. Die beiden Lösungen werden vermischt und die Probe nach ca. 4 h im NMR vermessen.

³¹P-NMR (109.4 MHz, CDCl₃): δ /ppm = 116.5 (dd, J_{PH} = 16.0 Hz, **131ba/132ba**), $J_{\rm PH} = 7.1 \, {\rm Hz},$ 48 %, 113.3 (dd, $J_{\rm PH} = 13.0 \ {\rm Hz},$ 28 %, 131ba/132ba), $J_{\rm PH} = 6.9 \, {\rm Hz},$ 112.6 (dd, $J_{\rm PH} = 14.4 \, {\rm Hz},$ 12 %, $J_{\rm PH} = 7.2 \, {\rm Hz},$ 133ba/134ba), 111.8-111.4 (m, 3 %, **133ba/134ba**), 69.3 (bs, 7%), 53.0 (td, *J*_{PH} = 20.1 Hz, *J*_{PH} = 3.6 Hz, 2 %), 11.3 (dd, $J_{PH} = 665.4 \text{ Hz}$, $J_{PH} = 11.1 \text{ Hz}$, 1 %), 10.4 (dd, $J_{\text{PH}} = 675.7 \text{ Hz}, J_{\text{PH}} = 10.8 \text{ Hz}, 1 \%), 6.1 \text{ (bs, 2 \%)}.$

11.4.8.15. Addition von (–)-Menthol (115) an 71a in Anwesenheit von Schwefel

In einem ausgeheizten und mit Ar-Atmosphäre gefüllten NMR-Rohr wird (-)-Menthol (**115**) (0.156 g, 1.0 mmol) in CDCl₃ (0.3 mL) suspendiert und anschließend eine Lösung von **71a** (0.318, 1.0 mmol) in CDCl₃ (0.3 mL) zugegeben. Die beiden Lösungen werden vermischt und die Probe nach ca. 4 h im NMR vermessen.

³¹**P-NMR** (109.4 MHz, CDCl₃): δ/ppm = 98.7 (dd, $^{2}J_{\rm PCH} = 12.6$ Hz, ${}^{3}J_{POCH} = 12.6 \text{ Hz}, 42 \%, 135aa/136aa),$ $^{2}J_{\rm PCH} = 12.4$ Hz, 97.3 (dd, ${}^{2}J_{\rm PCH} = 10.4$ Hz, ${}^{3}J_{POCH} = 12.4 \text{ Hz}, 42 \%, 135aa/136aa), 96.0$ (dd, ${}^{3}J_{POCH} = 10.4 \text{ Hz},$ $^{2}J_{\rm PCH} = 10.3$ Hz, **137**aa/**138**aa), 4%, 94.2 (dd, ${}^{3}J_{POCH} = 10.3 \text{ Hz}, 12 \%, 137aa/138aa).$

11.4.8.16. Addition von (–)-Menthol (115) an 70e in Anwesenheit von Schwefel

In zwei parallelen Ansätzen wird in einem ausgeheizten und mit Ar-Atmosphäre gefüllten NMR-Rohr (–)-Menthol (**115**) (0.156 g, 1.0 mmol) in CDCl₃ (0.3 mL) suspendiert und eine der beiden Proben mit Schwefel (0.032 g, 1.0 mmol) verwest. Anschließend wird zu beiden Proben eine Lösung von **70e** (0.218, 1.0 mmol) in CDCl₃ (0.3 mL) gegeben und die Proben nach ca. 4 h im NMR vermessen.

Ansatz ohne Oxidationsmittel:

³¹P-{¹H}-NMR (162.0 MHz, CDCl₃): δ/ppm = 223.6 (91 %, 70a), 165.3 (1 %, 139a/140a), 164.6 (1 %, 139a/140a), 24.4 (1 %), 20.0 (3 %), 11.2 (3 %), 3.9 (1 %).

Ansatz mit Schwefel als Oxidationsmittel:

³¹P-{¹H}-NMR (162.0 MHz, CDCl₃): δ/ppm = 223.6 (93 %, 70a), 113.1 (1 %, 139aa/140aa), 111.4 (1 %, 139aa/140aa), 13.0 (5 %).

11.4.9. Koordinationschemie von Heterophospholen

11.4.9.1. Umsetzung von 2-Ethoxycarbonyl-5phenyl-1,3,4,-thiazaphosphol (86c) mit [{Rh(COD)Cl}₂] (149)

In einem ausgeheizten und mit Ar-Atmosphäre gefüllten 10 mL-Schlenkkolben wird [$\{Rh(COD)Cl\}_2$] (**149**) (0.141 g, 0.25 mmol) in Dichlormethan (abs., 10 mL) suspendiert und 2-Ethoxycarbonyl-5-phenyl-1,3,4,-thiazaphosphol (**86c**) (0.063 g, 0.25 mmol) zugegeben. Die Reaktionsmischung wird 30 min bei Raumtemperatur gerührt.

Anschließend wird die Lösung auf 1–2 mL eingeengt und mit Diethylether (abs., 5 mL) überschichtet, wobei sich ein brauner Niederschlag bildet.

Der Niederschlag wird abgefiltert und in CDCl₃ aufgenommen.

³¹**P-NMR (109.4 MHz, CDCl₃):** δ /ppm = 210.9 (ddd, ¹J_{RhP} = 160.2 Hz, ²J_{RhP} = 87.8 Hz, ²J_{PP} = 23.8 Hz, ²J_{PP} = 18.9 Hz, 29.2 %), 174.4 (ddd, ¹J_{RhP} = 177.6 Hz, ²J_{PP} = 18.9 Hz, ²J_{PP} = 13.9 Hz, 29.7 %), 142.8 (ddd, ¹J_{RhP} = 121.1 Hz, ²J_{PP} = 23.8 Hz, ²J_{PP} = 13.9 Hz, 28.1 %).

11.4.9.2. Umsetzung von 2-Methoxycarbonyl-5phenyl-1,3,4,-thiazaphosphol (86b) mit Ni(CO)₄ (152)

In einem ausgeheizten und mit Ar-Atmosphäre gefüllten 25 mL-Schlenkkolben wird **86b** (0.045 g, 0.2 mmol) in THF (abs., 4 mL) und anschließend Nickeltetracarbonyl (25 μ L, 0.032 g, 0.2 mmol) langsam zugegeben, wobei sich die gelbe Reaktionslösung sofort Dunkelbraun verfärbt und eine leichte Gasentwicklung auftritt. Der Reaktionsfortschritt wird im 31 P-NMR verfolgt. Nach abgeschlossener Reaktion wird das Reaktionsgemisch eingeengt und auf -30 °C abgekühlt.

³¹P-NMR (109.4 MHz, THF): δ/ppm = 281.7 (s, 78 %, 153).

11.4.9.3. Umsetzung von 2-Ethoxycarbonyl-5phenyl-1,3,4,-thiazaphosphol (86c) mit Fe₂(CO)₉ (154)

In einem ausgeheizten und mit Ar-Atmosphäre gefüllten 50 mL-Schlenkkolben wird $Fe_2(CO)_9$ (0.151 g, 0.4 mmol) in THF (abs., 35 mL) suspendiert. Nach ca. 15 min rühren bei Raumtemperatur erhält man eine dunkelrote Lösung unter Bildung von $Fe(CO)_5$ und $[Fe(CO)_4(THF)]$.

5-Ethylcarboxy-2-phenyl-1,3,4-thiazaphosphol (**86c**) (0.104 g, 0.4 mmol) wird in THF (abs., 5 mL) gelöst und zur [Fe(CO)₄(THF)]-Lösung gegeben. Die Reaktionslösung wird 24 h bei Raumtemperatur gerührt. Anschließend werden die flüchtigen Bestandteile aus der nun grünlich-schwarzen Lösung *in vacuo* entfernt.

³¹**P-NMR (109.4 MHz, CH₂Cl₂):** δ/ppm = 263.1 (s, 31 %), 262.0 (s, 4 %), 260.6 (s, 17 %), 259.3 (s, 9 %), 258.8 (s, 10 %), 257.6 (s, 8 %), 257.4 (s, 13 %), .256.2 (s, 5 %), 244.5 (s, 2 %).

Verbindung	11	1a	17
Datensatz	fx157	nn212	ex071
Summenformel			
Molare Masse $[n \cdot mol^{-1}]$	492.63	278.09	474 18
	192.05	270.05	farbloses
Farbe, Habitus	farbloser Block	farbloser Stab	Plättchen
Größe [mm]	0.35×0.30×0.25	0.11×0.03×0.02	0.25×0.20×0.10
Kristallsystem	triklin	monoklin	monoklin
Raumgruppe	<i>P</i> -1 (# 2)	P21/c (# 14)	P2 ₁ /c (# 14)
a [Å]	8.2289(3)	4.5994(9)	9.3152(18)
b [Å]	8.8432(3)	14.441(3)	8.1119(13)
<i>c</i> [Å]	26.1416(8)	14.729(3)	22.052(4)
a [°]	82.811(3)	90	90
β[°]	87.158(3)	95.33(3)	93.407(17)
γ [°]	65.843(3)	90	90
V [ų]	1722.08(10)	974.07(34)	1663.39(52)
Z	4	4	4
$ ho_{ m calc}$ [g·cm ⁻³]	1.131	1.896	1.893
μ [mm ⁻¹]	0.440	0.361	0.300
Strahlung [Å]	MoK _a 0.71073	MoK _a 0.71073	MoK _a 0.71073
F(000)	968	552	936
θ-Bereich [°]	4.14-30.00	3.13-25.35	3.74-26.00
<i>T</i> [K]	173	173	173
Indizierungsbereich <i>h</i>	$-11 \le h \le 10$	$-5 \le h \le 5$	$-11 \le h \le 9$
Indizierungsbereich <i>k</i>	$-12 \le k \le 12$	$-17 \le k \le 17$	$-9 \le k \le 10$
Indizierungsbereich /	-36 ≤ / ≤ 32	$-17 \leq l \leq 16$	-27 ≤ / ≤ 25
gesammelte Reflexe	18974	6086	7815
unabhängige Reflexe	10045	1778	3232
beobachtete Reflexe	5628	1336	1315
Parameter	599	171	293
R _{int}	0.0281	0.0519	0.0973
S	0.885	1.161	0.767
R_{1} , ^a w R_{2}^{b} (I > σI_{0})	0.0479; 0.1146	0.0727; 0.1921	0.0513; 0.0627
R_{1} , ^a w R_{2} ^b (alle Daten)	0.0915; 0.1253	0.0962; 0.1786	0.1591; 0.0775
Wichtungsschema ^b	0.0681; 0.00	0.0905; 2.0778	0.0188; 0.00
Restdichten [e·Å ⁻³]	-0.711; 0.647	-0.360; 1.000	-0.287; 0.293
Gerät	Oxford XCalibur	KappaCCD	Oxford XCalibur
Absorptionskorrektur			
Anmerkung			
$a \cdot B_{i} = \Sigma E_{i} - E_{i} $	$\frac{1}{\Sigma} = \frac{1}{\Sigma} \frac{1}{\Sigma} = \frac{1}{\Sigma} $	$\sum \left[\sum \left[w (E_{2}^{2} - E^{2})^{2} \right] / \sum \left[\sum \left[w (E_{2}^{2} - E^{2})^{2} \right] / \sum \left[\sum \left[\sum \left[\frac{1}{2} + \frac{1}{2} \right] \right] \right] \right]$	$W(F_{2})^{2}I^{\frac{1}{2}}$

Angang 1: Kristallographische Daten

a: $R_1 = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|$; b: $wR_2 = [\Sigma [w(F_0^2 - F_c^2)^2] / \Sigma [w(F_0)^2]^{\frac{1}{2}}$; $w = [\sigma_c^2 (F_0^2) + (xP)^2 + \gamma P]^{-1}$; $P = (F_0^2 + 2F_c^2) / 3$

Verbindung	18	21	22
Datensatz	fx102	ex164	fx194
Summenformel	$C_{16}H_{6}F_{13}P$	$C_{22}H_{34}F_{12}N_2O_8P_2$	$C_{16}H_8F_{12}MnO_4P_2$
Molare Masse [g·mol ⁻¹]	476.17	744.44	609.10
Farbe, Habitus	farbloses Stäbchen	farbloser Block	farblose Nadel
Größe [mm]	0.30×0.10×0.01	0.40×0.15×0.10	0.40×0.10×0.10
Kristallsystem	triklin	triklin	monoklin
Raumgruppe	<i>P</i> -1 (# 2)	<i>P</i> -1(#2)	<i>P</i> 2 ₁ /c (# 14)
a [Å]	8.1411(4)	7.2223(4)	9.4120(2)
ЬĪÅĪ	9.5031(5)	8.6441(4)	14.8185(4)
cĪÅĪ	12.2439(6)	13.1937(3)	15.7836(4)
a [°]	99.478(4)	104.960(3)°	90 (
β[°]	101.413(4)	100.045(3)	94.152(2)
v [°]	112.423(5)	91,765(4)	90
ָר רא [ַ] ז	827.63(8)	781.08(6)	2195.59(9)
Z	2	1	4
$\rho_{calc} \left[a \cdot cm^{-3} \right]$	1.911	1.583	1.843
μ [mm ⁻¹]	0.306	0.258	0.870
Strahlung [Å]	MoK _a 0.71073	MoK _a 0.71073	MoK _a 0.71073
F(000)	468	382	1196
θ -Bereich [°]	4.20-28.90	3.76-26.00	4.12-30.12
<i>T</i> [K]	173	173	173
Indizierungsbereich h	$-10 \le h \le 10$	$-8 \le h \le 8$	$-13 \le h \le 13$
Indizierungsbereich k	$-12 \le k \le 12$	$-10 \le k \le 10$	$-20 \le k \le 20$
Indizierungsbereich /	$-15 \le l \le 15$	$-16 \le l \le 16$	$-22 \le l \le 22$
gesammelte Reflexe	11623	14716	42830
unabhängige Reflexe	3845	3056	6444
beobachtete Reflexe	2288	2399	4589
Parameter	271	269	348
Rint	0.0529	0.0318	0.0446
S	1.054	0.999	1.067
R_1 , ^a w R_2^{b} (I > σI_0)	0.0924: 0.2611	0.0287: 0.0724	0.0353: 0.0928
$R_{1,a} W R_{2}^{b}$ (alle Daten)	0.1362: 0.2916	0.0396: 0.0750	0.0553: 0.0967
Wichtungsschema ^b	0.1901: 0.00	0.0468: 0.00	0.0464: 0.3309
Restdichten $[e \cdot A^{-3}]$	-0.919: 4.908	-0.307: 0.220	-0.385: 0.541
Gerät	Oxford XCalibur	Oxford XCalibur	Oxford XCalibur
Absorptionskorrektur			
Anmerkuna			
a: $R_1 = \Sigma F_0 - F_0 $	$F_{c} / \Sigma F_{0} ; b: wR_{2} =$	$\sum [\Sigma[w(F_0^2 - F_c^2)^2]/\Sigma[$	$w(F_0)^2]^{1/2};$

 $\sum_{k=1}^{\infty} \sum_{k=1}^{\infty} \sum_{$

Verbindung	23	24	25
Datensatz	fx359	fx207	fx274
Summenformel	$C_{16}H_8F_{12}O_4P_2Zn$	C ₅₄ H ₆₄ F ₃₆ O ₂₆ P ₆ Sr ₃	C ₃₂ H ₃₆ F ₂₄ N ₂ NiO _{14.33} P ₄
Molare Masse [g·mol ⁻ ¹]	619.57	2261.73	1316.48
Farbe, Habitus	farblose Platte	farbloser Block	farbloser Block
Größe [mm]	0.8×0.4×0.1	0.30×0.40×0.05	0.25×0.20×0.05
Kristallsystem	monoklin	orthorhombisch	triklin
Raumgruppe	<i>P</i> 2 ₁ /c (# 14)	<i>Pbcn</i> (# 60)	<i>P</i> -1 (# 2)
a [Å]	8.7285(3)	21.0107(5)	8.1121(4)
ЬĪ́ÅĪ	15.3282(5)	15.6484(3)	11.5457(3)
cĪÅĪ	15.4161(5)	24.2524(6)	15.5076(6)
a [°]	90	90	106.788(3)
βΰĪ	91.070(3)	90	103.276(4)
v [°]	90)	90	100.434(3)
۲ آ ^ق ۸	2062.19(12)	7973.80(31)	1304.79(9)
Z	4	4	1
$\rho_{\rm calc}$ [q·cm ⁻³]	1.995	1.884	1.671
μ [mm ⁻¹]	1.477	2.278	0.639
Strahlung [Å]	MoK _a 0.71073	MoK _a 0.71073	MoK _a 0.71073
F(000)	1216	4496	[~] 660
θ -Bereich [°]	4.18-33.59	4.18-28.95	4.15-30.11
<i>T</i> [K]	173	100	173
Indizierungsbereich h	$-13 \le h \le 13$	$-27 \le h \le 15$	$-11 \le h \le 11$
Indizierungsbereich k	$-23 \le k \le 16$	$-19 \le k \le 17$	$-16 \le k \le 16$
Indizierungsbereich /	-22 ≤ / ≤ 17	-16 ≤ / ≤ 32	-21 ≤ / ≤ 21
gesammelte Reflexe	16055	23051	27624
unabhängige Reflexe	7328	8964	7659
beobachtete Reflexe	4215	4202	4974
Parameter	348	690	432
R _{int}	0.0421	0.0577	0.0440
S	0.808	0.680	0.897
R_{1} , ^a w R_{2}^{b} (I > σI_{0})	0.0371; 0.0700	0.0340; 0.0425	0.0402; 0.0883
R_1 , ^a w R_2 ^b (alle Daten)	0.0786; 0.0752	0.0980; 0.0465	0.0714; 0.0945
Wichtungsschema b	0.0304; 0.00	0.0088; 0.00	0.0503; 0.00
Restdichten [e·Å ⁻³]	-0.625; 1.419	-0.524; 0.549	-0.772; 0.974
Gerät	Oxford XCalibur	Oxford XCalibur	Oxford XCalibur
Absorptionskorrektur			
Anmerkung			
a: $R_1 = \Sigma F_0 $	- F _c / Σ F ₀ ; b: w	$R_2 = [\Sigma[w(F_0^2 - F_c^2)^2]$	$]/\Sigma[w(F_0)^2]^{1/2};$

 $w = [\sigma_c^2(F_0^2) + (xP)^2 + yP]^{-1}; P = (F_0^2 + 2F_c^2) / 3$

Verbindung	35	36	37
Datensatz	ex531	ex566	fx170
Summenformel	$C_2H_8NO_3P$	$C_4H_{16}N_2O_6P_2$	$C_3H_{10}NO_3P$
Molare Masse [g·mol ⁻¹]	125.06	250.13	139.09
Farba Habitus	farbloses	farblacar Black	farbloses
Tarbe, Habitus	Stäbchen		Plättchen
Größe [mm]	0.20×0.03×0.03	0.40×0.40×0.30	0.40×0.15×0.02
Kristallsystem	tetragonal	orthorhombisch	monoklin
Raumgruppe	<i>P</i> 4 ₂ <i>bc</i> (# 106)	<i>Pbca</i> (# 61)	<i>P</i> 2 ₁ /c (# 14)
a [Å]	11.5730(2)	8.7395(4)	10.9664(10)
b [Å]	11.5730(2)	10.3383(6)	6.2012(3)
<i>c</i> [Å]	8.0136(3)	10.7333(6)	9.4973(7)
a [°]	90	90	90
β[°]	90	90	107.131(9)
γ [°]	90	90	90
V [ų]	1073.30(5)	969.77(9)	617.21(8)
Z	8	4	4
$ ho_{calc}$ [g·cm ⁻³]	1.548	1.713	1.497
μ [mm ⁻¹]	0.390	0.458	0.368
Strahlung [Å]	MoK _a 0.71073	MoK _a 0.71073	MoK _a 0.71073
F(000)	464	528	296
θ-Bereich [°]	4.34-28.80	4.38-32.29	4.34-28.54
Т [К]	173	173	173
Indizierungsbereich <i>h</i>	$-15 \le h \le 15$	$-12 \le h \le 12$	$-14 \le h \le 13$
Indizierungsbereich <i>k</i>	$-14 \le k \le 15$	$-15 \le k \le 14$	$-7 \le k \le 7$
Indizierungsbereich /	$-10 \leq l \leq 10$	-16 ≤ / ≤ 14	-12 ≤ / ≤ 12
gesammelte Reflexe	13738	10834	4521
unabhängige Reflexe	1344	1649	1405
beobachtete Reflexe	965	1282	987
Parameter	96	96	107
R _{int}	0.0719	0.0349	0.0535
S	0.797	1.067	0.951
R_{1} , a WR_{2}^{b} (I > σI_{0})	0.0300, 0.0510	0.0287; 0.0776	0.0532; 0.1360
R_1 , ^a w R_2 ^b (alle Daten)	0.0553; 0.0539	0.0419; 0.0809	0.0776; 0.1459
Wichtungsschema ^b	0.0283; 0.00	0.0463; 0.0822	0.0985; 0.00
Restdichten [e·Å ⁻³]	-0.198; 0.282	-0.480; 0.286	-0.362; 0.954
Gerät	Oxford XCalibur	Oxford XCalibur	Oxford XCalibur
Absorptionskorrektur			
Anmerkung			
a: $R_1 = \Sigma F_0 - F_0 $	$F_{c}[\overline{\Sigma} F_{0}]; b: wR_{2} =$	$[\Sigma[w(F_0^2 - F_c^2)^2]/\Sigma[$	$w(F_0)^2]^{\frac{1}{2}};$

 $= \sum ||F_0| - |F_c|| / \sum |F_0|; \text{ b: } wR_2 = [\sum [w(F_0^2 - F_c^2)^2] / \sum [w(F_0)^2]^{1/2};$ $w = [\sigma_c^2(F_0^2) + (xP)^2 + yP]^{-1}; P = (F_0^2 + 2F_c^2) / 3$

Verbindung	38	39	40
Datensatz	fx164	fx103	fx165
Summenformel	$C_7H_{10}NO_2P$	$C_4H_{18}N_2O_{12}P_4$	C₃H ₈ NO₅P
Molare Masse [g·mol ⁻¹]	171.13	410.08	169.07
Farbe, Habitus	farbloser Block	farbloses Plättchen	farblose Platte
Größe [mm]	0.30×0.10×0.05	0.20×0.20×0.05	0.30×0.30×0.05
Kristallsystem	orthorhombisch	triklin	monoklin
Raumgruppe	<i>Pca</i> 2 ₁ (# 29)	<i>P</i> -1 (# 2)	<i>P</i> 2 ₁ /c (# 14)
a [Å]	8.6423(4)	7.2453(5)	8.6788(4)
b [Å]	11.0954(5)	8.8909(4)	7.9529(3)
c [Å]	8.6962(4)	11.3452(7)	9.8316(5)
a [°]	90	80.071(4)	90
β[°]	90	89.949(5)	105.982(5)
γ [°]	90	86.321(4)	90
$V[\bar{A}^{\bar{3}}]$	833.88(7)	718.36(7)	652.36(5)
Z	4	2	4
$\rho_{calc} [g \cdot cm^{-3}]$	1.363	1.896	1.721
$\mu [{\rm mm}^{-1}]$	0.279	0.592	0.387
Strahlung [Å]	MoK _a 0.71073	MoK _a 0.71073	MoK _a 0.71073
F(000)	360	424	352
θ -Bereich [°]	4.37-30.13	4.15-30.09	4.31-30.07
<i>T</i> [K]	173	173	173
Indizierungsbereich h	$-12 \le h \le 12$	$-9 \le h \le 10$	$-12 \le h \le 11$
Indizierungsbereich k	$-15 \le k \le 15$	$-12 \le k \le 12$	$-11 \leq k \leq 10$
Indizierungsbereich /	-12 ≤ / ≤ 12	-15 ≤ / ≤ 15	-13 ≤ / ≤ 9
gesammelte Reflexe	15900	7280	3884
unabhängige Reflexe	2453	4199	1912
beobachtete Reflexe	1903	3174	1469
Parameter	140	247	123
R _{int}	0.0502	0.0263	0.0239
S	0.884	0.956	0.956
R_{1} , a WR_{2}^{b} (I > σI_{0})	0.0288, 0.0541	0.0371; 0.0996	0.0298; 0.0742
R_{1} , ^a w R_{2} ^b (alle Daten)	0.0416; 0.0558	0.0510; 0.1038	0.0426, 0.0770
Wichtungsschema ^b	0.0274; 0.00	0.0518; 0.4614	0.0430; 0.00
Restdichten [e·Å⁻³]	-0.170; 0.229	-0.919, 0.724	-0.318; 0.461
Gerät	Oxford XCalibur	Oxford XCalibur	Oxford XCalibur
Absorptionskorrektur			
Anmerkung			
a: $R_1 = \Sigma F_0 - F_0 $	$F_{c}[\overline{\Sigma} F_{0}]; b: wR_{2} =$	$\sum [w(F_0^2 - F_c^2)^2]/\Sigma[$	$w(F_0)^2]^{\frac{1}{2}};$

 $= \Sigma ||F_0| - |F_c|| / \Sigma |F_0|; \text{ b: } wR_2 = [\Sigma [w(F_0^2 - F_c^2)^2] / \Sigma [w(F_0)^2]^{1/2};$ $w = [\sigma_c^2 (F_0^2) + (xP)^2 + yP]^{-1}; P = (F_0^2 + 2F_c^2) / 3$

Verbindung	41	42	43
Datensatz	fx219	fx081	fx051
Summenformel	$C_2H_{10}N_3O_4P$	$C_2H_{13}N_3O_9P_2$	$C_2H_{21}CaN_2O_{12}P_2$
Molare Masse [g·mol ⁻¹]	171.09	285.09	367.23
Farbe, Habitus	farbloser Block	farbloser Block	farblose Platte
Größe [mm]	0.40×0.35×0.30	0.35×0.30×0.10	0.40×0.30×0.05
Kristallsystem	monoklin	monoklin	monoklin
Raumgruppe	<i>C</i> 2/c (# 15)	P21/c (# 14)	<i>C</i> 2/c (# 15)
a [Å]	13.1792(4)	5.44230(10)	21.7740(8)
b [Å]	7.4719(2)	21.2709(5)	7.1090(2)
<i>c</i> [Å]	13.8659(4)	9.1130(2)	10.3003(4)
a [°]	90	90	90
β[°]	104.246(3)	92.202(2)	114.035(4)
γ [°]	90	90	90
V [Å ³]	1323.44(7)	1054.17(4)	1456.16(10)
Z	8	4	4
$ ho_{ m calc}$ [g·cm ⁻³]	1.717	1.796	1.675
$\mu [{\rm mm}^{-1}]$	0.380	0.456	0.707
Strahlung [Å]	MoK _a 0.71073	MoK _a 0.71073	MoK _a 0.71073
F(000)	720	592	772
θ-Bereich [°]	4.64-30.11	4.21-30.12	4.20-30.10
<i>T</i> [K]	173	173	173
Indizierungsbereich <i>h</i>	$-18 \le h \le 18$	$-7 \le h \le 7$	$-30 \le h \le 30$
Indizierungsbereich <i>k</i>	$-10 \le k \le 10$	-29 ≤ <i>k</i> ≤ 29	$-10 \le k \le 10$
Indizierungsbereich /	-19 ≤ / ≤ 19	$-12 \leq l \leq 12$	$-14 \leq l \leq 14$
gesammelte Reflexe	12593	20765	14020
unabhängige Reflexe	1948	3098	2140
beobachtete Reflexe	1612	2509	1772
Parameter	132	197	140
$R_{\rm int}$	0.0336	0.0345	0.0306
S	1.021	1.008	1.039
$R_{1}^{a}, WR_{2}^{b} (I > \sigma I_{0})$	0.0321; 0.0859	0.0249; 0.0695	0.0278, 0.0756
R_1 , ^a w R_2^{b} (alle Daten)	0.0393; 0.0885	0.0328; 0.0713	0.0348; 0.0775
Wichtungsschema ^D	0.0623; 0.1442	0.0454; 0.00	0.0511; 0.00
Restdichten [e·Å ⁻³]	-0.752; 0.355	-0.379; 0.408	-0.458; 0.415
Gerät	Oxford XCalibur	Oxford XCalibur	Oxford XCalibur
Absorptionskorrektur			
Anmerkung			

a: $R_1 = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|$; b: $wR_2 = [\Sigma [w(F_0^2 - F_c^2)^2] / \Sigma [w(F_0)^2]^{1/2}$; $w = [\sigma_c^2 (F_0^2) + (xP)^2 + yP]^{-1}$; $P = (F_0^2 + 2F_c^2) / 3$

Verbindung	44i	44ii	44iii
Datensatz	fx055	fx131	fx168
Summenformel	$C_2H_{14}Li_2N_2O_8P_2$	CH ₇ LiNO₄P	CH7LiNO4P
Molare Masse [g·mol ⁻¹]	269.97	134.99	134.99
Farbe, Habitus	farbloser Block	farbloser Block	farbloser Block
Größe [mm]	0.21×0.19×0.11	0.15×0.10×0.10	0.30×0.25×0.05
Kristallsystem	monoklin	monoklin	monoklin
Raumgruppe	P21/c (# 14)	P21/c (# 14)	P21/c (# 14)
a [Å]	10.2884(5)	5.7743(3)	5.1407(3)
b [Å]	9.1149(4)	9.3638(4)	9.1292(5)
<i>c</i> [Å]	10.9223(4)	9.4912(5)	10.9184(6)
a [°]	90	90	90
β[°]	103.765(4)	107.593(5)	103.414(5)
γ [°]	90	90	90
V [ų]	994.85(8)	489.18(4)	498.43(5)
Z	4	4	4
$ ho_{ m calc}$ [g·cm ⁻³]	1.802	1.832	1.799
μ [mm ⁻¹]	0.465	0.472	0.464
Strahlung [Å]	MoK _a 0.71073	MoK _a 0.71073	MoK _a 0.71073
F(000)	560	280	280
θ-Bereich [°]	4.45-30.10	4.29-30.11	4.44-30.12
<i>Т</i> [К]	173	173	173
Indizierungsbereich <i>h</i>	$-12 \le h \le 14$	$-8 \le h \le 8$	$-7 \le h \le 7$
Indizierungsbereich <i>k</i>	$-12 \le k \le 12$	$-13 \le k \le 13$	$-12 \le k \le 12$
Indizierungsbereich /	-15 ≤ / ≤ 15	$-13 \leq l \leq 13$	-15 ≤ / ≤ 15
gesammelte Reflexe	6783	5035	9212
unabhängige Reflexe	2905	1434	1471
beobachtete Reflexe	1747	1131	1198
Parameter	201	102	130
R_{int}	0.0388	0.0317	0.0386
S	0.865	1.004	1.026
$R_{1}^{a}, WR_{2}^{b} (I > \sigma I_{0})$	0.0400; 0.0920	0.0290; 0.0757	0.0271; 0.0724
R_1 , ^a w R_2^{D} (alle Daten)	0.0702; 0.0989	0.0398; 0.0777	0.0362; 0.0748
Wichtungsschema ^D	0.0471; 0.00	0.0431; 0.00	0.0472; 0.00
Restdichten [e·Å ⁻³]	-0.435; 1.068	-0.376; 0.457	-0.284; 0.405
Gerät	Oxford XCalibur	Oxford XCalibur	Oxford XCalibur
Absorptionskorrektur			
Anmerkung			

a: $R_1 = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|$; b: $wR_2 = [\Sigma [w(F_0^2 - F_c^2)^2] / \Sigma [w(F_0)^2]^{1/2}$; $w = [\sigma_c^2 (F_0^2) + (xP)^2 + yP]^{-1}$; $P = (F_0^2 + 2F_c^2) / 3$

Verbindung	45	46	47	
Datensatz	fx186	fx087	fx215	
Summenformel	CH ₉ KNO ₅ P	$CH_4CaO_6P_2$	$CH_4K_2O_6P_2$	
Molare Masse [g·mol ⁻¹]	185.16	214.06	252.18	
Farbe, Habitus	farbloses Plättchen	farbloser Block	farbloser Block	
Größe [mm]	0.20×0.10×0.02	0.15×0.10×0.10	0.15×0.10×0.05	
Kristallsystem	orthorhombisch	monoklin	triklin	
Raumgruppe	<i>Pca</i> 2 ₁ (# 29)	<i>C</i> 2/c (# 15)	P−1 (# 2)	
a [Å]	10.4448(10)	7.8049(11)	7.3306(9)	
b [Å]	10.2928(9)	8.0388(11)	7.632(1)	
c [Å]	6.4334(5)	9.6316(16)	8.2385(11)	
a [°]	90	90	65.199(13)	
β[°]	90	102.565(15)	70.124(12)	
γ [°]	90	90	61.307(13)	
$V[\tilde{A}^{3}]$	691.63(10)	589.83(16)	361.43(10)	
Z	4	4	2	
$\rho_{calc} [g \cdot cm^{-3}]$	1.778	2.410	2.317	
$\mu [{\rm mm}^{-1}]$	0.960	1.573	1.731	
Strahlung [Å]	MoK _a 0.71073	MoK _a 0.71073	MoK _a 0.71073	
F(000)	384	432	252	
θ -Bereich [°]	4.21-28.78	4.34-30.12	4.60-28.71	
<i>T</i> [K]	173	173	173	
Indizierungsbereich h	$-14 \le h \le 13$	$-10 \le h \le 10$	$-9 \le h \le 8$	
Indizierungsbereich k	$-13 \le k \le 13$	$-11 \leq k \leq 11$	$-10 \le k \le 9$	
Indizierungsbereich /	$-8 \leq l \leq 8$	-13 ≤ / ≤ 13	$-10 \leq l \leq 10$	
gesammelte Reflexe	4815	5520	2678	
unabhängige Reflexe	1536	868	1626	
beobachtete Reflexe	1092	716	1168	
Parameter	110	56	116	
R _{int}	0.960	0.0409	0.0333	
S	0.914	1.103	0.932	
R_{1} , a WR_{2}^{b} (I > σI_{0})	0.0348; 0.0348	0.0262; 0.0726	0.0353; 0.0716	
R_1 , ^a w R_2 ^b (alle Daten)	0.0583; 0.0695	0.0353; 0.0749	0.0561; 0.0752	
Wichtungsschema ^b	0.0276; 0.00	0.0360; 0.6393	0.0278; 0.00	
Restdichten [e·Å ⁻³]	-0.365; 0.372	-0.345; 0.520	-0.507; 0.567	
Gerät	Oxford XCalibur	Oxford XCalibur	Oxford XCalibur	
Absorptionskorrektur				
Anmerkung				
a: $R_1 = \Sigma F_0 - F_0 $	a: $R_1 = \Sigma F_0 - F_c / \Sigma F_0 $; b: $wR_2 = [\Sigma [w(F_0^2 - F_c^2)^2] / \Sigma [w(F_0)^2]^{\frac{1}{2}}$;			

 $= \sum ||F_0| - |F_c|| / \sum |F_0|; \text{ b: } wR_2 = [\sum [w(F_0^2 - F_c^2)^2] / \sum [w(F_0)^2]^{1/2};$ $w = [\sigma_c^2(F_0^2) + (xP)^2 + yP]^{-1}; P = (F_0^2 + 2F_c^2) / 3$

Verbindung	48	49	50
Datensatz	fx155	fx229	ex398
Summenformel	$CH_{10}MgNaO_{10}P$	$C_4H_{29}CI_2CrN_6O_{13}P_2$	$C_{18}H_{31}O_{3}P$
Molare Masse [g·mol ⁻¹]	260.36	554.18	326.4
Farbe, Habitus	farbloser Block	grüner Block	farbloser Block
Größe [mm]	0.25×0.10×0.10	0.40×0.20×0.05	0.12×0.15×0.05
Kristallsystem	monoklin	triklin	monoklin
Raumgruppe	P2 ₁ /c (# 14)	<i>P</i> -1 (# 2)	P2 ₁ /c (# 14)
a [Å]	8.2890(3)	6.9086(4)	9.5908(9)
b [Å]	11.7650(4)	12.5871(7)	23.5770(14)
<i>c</i> [Å]	9.7835(3)	12.5884(7)	9.3680(8)
a [°]	90	85.637(4)	90
β[°]	106.327(3)	86.508(4)	117.036(12)
γ [°]	90	75.715(5)	90
V [Å ³]	915.61(6)	1056.75(11)	1886.83(33)
Z	4	2	4
$ ho_{calc} [g \cdot cm^{-3}]$	1.888	1.742	1.149
$\mu [{\rm mm}^{-1}]$	0.452	1.014	0.156
Strahlung [Ă]	MoK _a 0.71073	MoK _α 0.71073	MoK _a 0.71073
F(000)	536	574	712
θ-Bereich [°]	4.09-30.11	4.16-30.10	4.20-30.10
<i>T</i> [K]	173	173	173
Indizierungsbereich <i>h</i>	$-11 \le h \le 11$	$-9 \le h \le 9$	$-10 \le h \le 13$
Indizierungsbereich <i>k</i>	$-16 \le k \le 16$	$-17 \le k \le 17$	-33 ≤ <i>k</i> ≤ 26
Indizierungsbereich /	$-13 \leq l \leq 13$	$-17 \leq l \leq 17$	$-12 \leq l \leq 13$
gesammelte Reflexe	18310	11346	11520
unabhängige Reflexe	2697	6176	5478
beobachtete Reflexe	2069	4326	2420
Parameter	167	370	323
R _{int}	0.0439	0.0313	0.0707
S S	0.927	0.891	0.818
$R_{1}, a W R_{2}^{b} (I > \sigma I_{0})$	0.0255; 0.0628	0.0327; 0.0629	0.0576; 0.0820
R_1 , " w R_2 " (alle Daten)	0.0385; 0.0647	0.0527; 0.0658	0.1549; 0.0970
Wichtungsschema	0.0363; 0.00	0.0246; 0.00	0.0315; 0.00
Restdichten [e·A ⁻³]	-0.324; 0.460	-0.464; 0.490	-0.322; 0.248
Gerät	Oxford XCalibur	Oxford XCalibur	Oxford XCalibur
Absorptionskorrektur			
Anmerkung			(=) 27 ¹¹ / ₂

a: $R_1 = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|$; b: $wR_2 = [\Sigma [w(F_0^2 - F_c^2)^2] / \Sigma [w(F_0)^2]^{1/2}$; $w = [\sigma_c^2 (F_0^2) + (xP)^2 + \gamma P]^{-1}$; $P = (F_0^2 + 2F_c^2) / 3$

Verbindung	58	59	64a
Datensatz	ex335	ex533	ex584
Summenformel	$C_{38}H_{32}O_4P_2Pb$	$C_{38}H_{56}CaO_{16}P_2$	$C_{22}H_{22}Br_2N_4O_4S_2$
Molare Masse [g·mol ⁻¹]	821.52	870.85	630.38
Farbe, Habitus	farbloser Block	farblose Tafel	farbloser Block
Größe [mm]	0.30×0.15×0.05	0.40×0.20×0.05	0.30×0.25×0.10
Kristallsystem	triklin	triklin	orthorhombisch
Raumgruppe	<i>P</i> -1 (# 2)	<i>P</i> -1 (# 2)	<i>Pbca</i> (# 61)
a [Å]	10.6679(4)	8.0801(6)	16.9561(4)
b [Å]	12.5969(6)	8.9318(8)	11.5525(3)
<i>c</i> [Å]	13.4187(6)	17.1206(14)	24.9104(7)
a [°]	63.861(5)	75.530(7)	90
β[°]	82.622(4)	82.137(6)	90
γ [°]	84.916(4)	67.380(7)	90
V [Å ³]	1604.37(14)	1103.22(17)	4879.58(22)
Z	2	1	8
$ ho_{calc} [g \cdot cm^{-3}]$	1.700	1.311	1.716
$\mu [\text{mm}^{-1}]_{n}$	5.399	0.281	3.531
Strahlung [Å]	MoK _a 0.71073	MoK _a 0.71073	MoK _a 0.71073
F(000)	808	462	2528
θ-Bereich [°]	4.20-30.20	4.18-28.90	4.27-28.87
Τ[Κ]	173	173	173
Indizierungsbereich h	$-15 \le h \le 15$	$-10 \le h \le 10$	$-12 \le h \le 22$
Indizierungsbereich k	$-17 \le k \le 17$	$-11 \leq k \leq 12$	$-13 \le k \le 15$
Indizierungsbereich /	$-18 \leq l \leq 18$	$-22 \le 1 \le 22$	$-29 \le 1 \le 32$
gesammelte Reflexe	1/056	8661	21907
unabhangige Reflexe	9361	4918	5/30
beobachtete Reflexe	/335	2419	3188
Parameter	499	356	395
R _{int}	0.0442	0.0414	0.0428
	0.915	0.738	0.713
$R_1, WR_2 (1 > OI_0)$		0.0413; 0.0647	0.0259; 0.0389
R_1, WR_2 (alle Daten)	0.0502; 0.0767	0.1023; 0.0717	0.0647; 0.0411
Wichtungsschema	0.0369; 0.00	0.0236; 0.00	
	-3.049; 2.431	-0.322; 0.39/	-0.401; 0.3/5
Geral			
ADSOLUTIONSKOLLEKUL			
Annerkung			(=)21 ¹ /2

a: $R_1 = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|$; b: $wR_2 = [\Sigma [w(F_0^2 - F_c^2)^2] / \Sigma [w(F_0)^2]^{1/2}$; $w = [\sigma_c^2 (F_0^2) + (xP)^2 + yP]^{-1}$; $P = (F_0^2 + 2F_c^2) / 3$

Verbindung	68a × CH ₂ Cl ₂	68b	68c
Datensatz	ex499	ex511	ex502
Summenformel	$C_{22}H_{31}BrCl_2N_2O_2S$	$C_{24}H_{26}Br_2N_4O_4S_2$	$C_{26}H_{30}Br_2N_4O_4S_2$
Molare Masse [g·mol ⁻¹]	538.36	658.43	686.48
Farbe, Habitus	farbloser Block	farbloser Block	farbloser Block
Größe [mm]	0.40×0.10×0.10	0.15×0.15×0.10	0.35×0.35×0.30
Kristallsystem	orthorhombisch	triklin	monoklin
Raumgruppe	P2 ₁ 2 ₁ 2 ₁ (# 19)	<i>P</i> −1 (# 2)	P2 ₁ /n (# 14)
a [Ă]	9.1546(3)	10.1242(7)	9.4315(3)
b [Ă]	16.4548(5)	12.2120(8)	14.2728(7)
<i>c</i> [Ă]	16.6882(5)	13.0238(12)	22.4061(6)
a [°]	90	62.309(8)	90
β[°]	90	74.668(7)	94.996(3)
γ [°]	90	87.479(5)	90
V [Å ³]	2513.86(14)	1369.17(22)	3004.71(19)
Z	4	2	4
$\rho_{calc} [g \cdot cm^{-3}]$	1.422	1.597	1.517
$\mu [mm^{-1}]$	1.952	3.150	2.874
Strahlung [A]	MoK _a 0.71073	MoK _a 0.71073	MoK _a 0.71073
F(000)	1112	664	1392
θ -Bereich [°]	4.13-32.76	4.18-28.94	4.32-32.47
Τ[Κ]	173	173	173
Indizierungsbereich h	$-13 \le h \le 13$	$-13 \le h \le 13$	$-10 \le h \le 14$
Indizierungsbereich k	$-24 \leq k \leq 24$	$-16 \le k \le 16$	$-1 \le k \le 20$
Indizierungsbereich /	$-24 \le 1 \le 25$	$-1/\leq l\leq 16$	$-33 \le 1 \le 32$
gesammelte Reflexe	37238	10656	18111
unabhangige Reflexe	8695	6201	9624
beobachtete Reflexe	4965	3237	4653
Parameter	403	429	463
R _{int}	0.0532	0.0362	0.0290
R_1 , WR_2 ($I > \sigma I_0$)	0.0311; 0.0462		0.0285; 0.0417
R_1, WR_2^{-1} (alle Daten)	0.0688; 0.0489	0.0835; 0.0436	0.0790; 0.0443
		0.0058; 0.00	0.0154; 0.00
Restaichten [e·A]	-0.453; 0.810	-0.422; 0.462	-0.435; 0.475
Geral			
ADSOLPTIOLISKOLLEKULL			
Annerkung			(-) 2-11/2

a: $R_1 = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|$; b: $wR_2 = [\Sigma [w(F_0^2 - F_c^2)^2] / \Sigma [w(F_0)^2]^{1/2}$; $w = [\sigma_c^2 (F_0^2) + (xP)^2 + yP]^{-1}$; $P = (F_0^2 + 2F_c^2) / 3$

Verbindung	68c × 1/2 CHCl ₃	73 × CDCl₃	68d × ½ MeCN
Datensatz	fx212	fx019	fx467
Summenformel	$C_{27}H_{31}Br_2CI_3N_4O_4S_2$	$C_{11}H_{11}CI_3DN_2O_2PS$	$CI_2S_2O_4N_5C_{44}H_{61}$
Molare Masse [g·mol ⁻ ¹]	805.85	374.61	859.03
Farbe, Habitus	farbloser Block	farbloser Block	farbloser Block
Größe [mm]	0.20×0.10×0.03	0.20×0.15×0.03	0.25×0.20×0.15
Kristallsystem	triklin	triklin	monoklin
Raumgruppe	<i>P</i> −1 (# 2)	<i>P</i> −1 (# 2)	<i>P</i> 2 ₁ / <i>c</i> (# 14)
a [Å]	9.3594(5)	7.5221(6)	9.0416(4)
b [Å]	10.4333(6)	7.8760(8)	12.7684(9)
<i>c</i> [Å]	18.7261(10)	14.2176(12)	20.5066(10)
a [°]	90.423(4)	99.887(8)	90
β[°]	95.818(4)	100.663(7)	92.199(4)
γ [°]	105.775(4)	104.120(7)	90
V [ų]	1749.49(17)	781.70(13)	2365.68(23)
Z	2	2	2
$ ho_{calc} [g \cdot cm^{-3}]$	1.530	1.591	1.206
μ [mm ⁻¹]	2.702	0.822	0.270
Strahlung [Å]	MoKa 0.71073	MoK _a 0.71073	MoK _a 0.71073
F(000)	812	380	916
θ-Bereich [°]	4.17-28.97	4.31-28.82	4.13-30.17
<i>T</i> [K]	173	173	173
Indizierungsbereich <i>h</i>	$-12 \le h \le 12$	$-9 \le h \le 9$	$-12 \le h \le 11$
Indizierungsbereich <i>k</i>	$-14 \le k \le 13$	$-10 \le k \le 10$	$-18 \le k \le 18$
Indizierungsbereich /	-21 ≤ / ≤ 23	-19 ≤ / ≤ 18	-28 ≤ / ≤ 28
gesammelte Reflexe	14784	11056	25715
unabhängige Reflexe	7858	3581	13046
beobachtete Reflexe	2909	1649	6059
Parameter	379	229	553
R_{int}	0.0655	0.0687	0.0503
S	0.831	0.767	0.775
R_{1} , ^a w R_{2}^{b} (I > σI_{0})	0.0673; 0.1409	0.0471; 0.0709	0.0476; 0.0930
R_1 , ^a w R_2 ^b (alle Daten)	0.1743; 0.1583	0.1274; 0.0821	0.1184; 0.1050
Wichtungsschema ^b	0.0601; 0.00	0.0307; 0.00	0.0430; 0.00
Restdichten [e·Å ⁻³]	-0.689; 1.526	-0.517; 0.547	
Gerät	Oxford XCalibur	Oxford XCalibur	Oxford XCalibur
Absorptionskorrektur			
Anmerkung			
a: $R_1 = \Sigma F_0 $	$- F_{c} / \Sigma F_{0} ; b: wR_{2}$	$= [\Sigma[w(F_0^2 - F_c^2)^2]/\Sigma[$	$w(F_0)^2]^{1/2};$

 $= \sum ||F_0| - |F_c|| / \sum |F_0|; \text{ b: } wR_2 = [\sum [w(F_0^2 - F_c^2)^2] / \sum [w(F_0)^2]^{1/2};$ $w = [\sigma_c^2(F_0^2) + (xP)^2 + yP]^{-1}; P = (F_0^2 + 2F_c^2) / 3$
Verbindung	78f	78g	78h
Datensatz	dx197	dx249	dx245
Summenformel	$C_{12}H_{12}N_2S$	$C_{12}H_{12}N_2O$	$C_{13}H_{15}N_3$
Molare Masse [g·mol ⁻ ¹]	216.3	200.24	213.28
Farbe, Habitus	farbloser Block	blassrosa Block	farbloser Block
Größe [mm]	0.30×0.10×0.05	0.30×0.25×0.10	0.35×0.20×0.20
Kristallsystem	orthorhombisch	orthorhombisch	monoklin
Raumgruppe	P2 ₁ 2 ₁ 2 ₁ (# 19)	<i>Pbca</i> (# 61)	<i>P</i> 2 ₁ / <i>n</i> (# 14)
a [Å]	5.5469(4)	11.5073(6)	6.7010(4)
ЬĪÅĪ	8.5763(7)	7.7141(4)	10.3984(6)
cĪÅĪ	23.3139(19)	23.2713(11)	16.9455(11)
a [°]	90	90	90
βΰĪ	90	90	99.894(6)
γ [°]	90	90	90
V [Å ³]	1109.09(15)	2065.76(18)	1163.20(12)
Z	4	8	4
$\rho_{calc} [g \cdot cm^{-3}]$	1.295	1.288	1.219
$\mu [{\rm mm}^{-1}]$	0.258	0.084	0.075
Strahlung [Å]	MoK _a 0.71073	MoK _a 0.71073	MoK _a 0.71073
F(000)	456	848	456
θ-Bereich [°]	3.78-30.12	3.92-30.12	3.68-27.50
Т [К]	173	173	173
Indizierungsbereich <i>h</i>	$-7 \le h \le 7$	$-16 \le h \le 16$	$-8 \le h \le 8$
Indizierungsbereich <i>k</i>	$-12 \leq k \leq 12$	$-10 \le k \le 10$	$-13 \le k \le 13$
Indizierungsbereich /	-32 ≤ / ≤ 32	-32 ≤ / ≤ 32	-21 ≤ / ≤ 21
gesammelte Reflexe	14505	25025	12757
unabhängige Reflexe	3263	3034	2661
beobachtete Reflexe	1381	1588	1548
Parameter	184	184	205
R _{int}	0.0913	0.0646	0.0274
S	0.920	1.062	1.057
R_{1} , ^a w R_{2}^{b} (I > σI_{0})	0.0401; 0.0654	0.0473; 0.1108	0.0409; 0.1015
R_1 , ^a w R_2 ^b (alle Daten)	0.1417; 0.0942	0.1059; 0.1448	0.0769; 0.1264
Wichtungsschema ^b	0.0335; 0.00	0.0668; 0.00	0.0685; 0.00
Restdichten [e∙Å⁻³]	-0.201; 0.220	-0.234; 0.344	-0.191; 0.152
Gerät	Oxford XCalibur	Oxford XCalibur	Oxford XCalibur
Absorptionskorrektur			
Anmerkung			
a: $R_1 = \Sigma F_0 -$	$ F_{c} / \Sigma F_{0} ;$ b: wR ₂ =	$= [\Sigma[w(F_0^2 - F_c^2)^2]/\Sigma[$	$w(F_0)^2]^{1/2};$

 $= \Sigma ||F_0| - |F_c|| / \Sigma |F_0|; \text{ b: } wR_2 = [\Sigma [w(F_0^2 - F_c^2)^2] / \Sigma [w(F_0)^2]^{1/2};$ $w = [\sigma_c^2 (F_0^2) + (xP)^2 + yP]^{-1}; P = (F_0^2 + 2F_c^2) / 3$

Verbindung	90 × H2O
Datensatz	ex219; ex293
Summenformel	$C_9H_{10}BrNO_2S$
Molare Masse [g·mol ⁻¹]	276.15
Farbe, Habitus	farblose Nadel
Größe [mm]	0.30×0.10×0.05
Kristallsystem	monoklin
Raumgruppe	<i>P</i> 2 ₁ / <i>c</i> (# 14)
a [Å]	8.4591(2)
b [Å]	14.4531(3)
c [Å]	9.4892(3)
a [°]	90
β[°]	113.279(3)
γ [°]	90
V [ų]	1065.71(5)
Z	4
$ ho_{calc} \left[g \cdot cm^{-3} \right]$	1.721
μ [mm ⁻¹]	3.998
Strahlung [Å]	MoK _a 0.71073
F(000)	552
θ-Bereich [°]	3.92-32.59
Т [К]	173
Indizierungsbereich <i>h</i>	$-12 \le h \le 12$
Indizierungsbereich <i>k</i>	$-21 \le k \le 21$
Indizierungsbereich <i>l</i>	-13 ≤ / ≤ 13
gesammelte Reflexe	15441
unabhängige Reflexe	3673
beobachtete Reflexe	2329
Parameter	167
R _{int}	0.0352
S	0.832
R_1 , WR_2^0 (I > σI_0)	0.0261; 0.0498
R_1 , " w R_2 " (alle Daten)	0.0541; 0.0524
Wichtungsschema	0.0263; 0.00
	-0.2/9; 0.494
Gerät	Oxford XCalibur
Absorptionskorrektur	
Anmerkung	

Angang 2: Literaturverzeichnis

- 1 P. Coggon, J. F. Engel, A.T. McPhail, L. D. Quinn, *J. Am. Chem. Soc.* **1970**, *92*, 5779–5780.
- 2 W. Egan, R. Tang, G. Zon, K. Mislow, J. Am. Chem. Soc. 1971, 93, 6205–6216.
- W. Schäfer, A. Schweig, G. Markl, H. Hauptmann, F. Mathey, Angew. Chem. 1973, 85, 140–141; Angew. Chem. Int. Ed. 1973, 12, 145– 146.
- 4 H. L. Hase, A. Schweig, H. Hahn, J. Radloff, *Tetrahedron* **1973**, *29*, 469–473.
- 5 A. J. Ashe III, *J. Am. Chem. Soc.* **1971**, *93*, 3293–3295.
- 6 G. Märkl, H. Hauptmann, J. Advena, *Angew. Chem.* **1972**, *84*, 440–442; *Angew. Chem. Int. Ed.* **1972**, *11*, 440–443.
- 7 A. F. Vasilev, L. V. Vilkov, N. P. Ignatova, N.N. Mel'nikov, V. V. Negrebetskii, N. I. Shvetsov-Shilovskii, L. S. Khaikin, *J. Prakt. Chem.* 1972, *314*, 808–814.
- 8 N. P. Ignatova, N.N. Mel'nikov, N. I. Shvetsov-Shilovskii, *Khim. Geterotsikl. Soedin.* **1967**, *4*, 753–755.
- 9 J. H. Weinmaier, G. Brunnhuber, A. Schmidpeter, *Chem. Ber.* **1980**, *113*, 2278–2290.
- 10 A. F. Holleman, E. Wiberg, N. Wiberg, *Lehrbuch der anorganischen Chemie*, 101. Auflage, de Gruyter, Berlin, **1995**.
- 11 B. Hoge, B. Kurscheid, *Angew. Chem.* **2008**, *120*, 6920–6922; *Angew. Chem. Int. Ed.* **2008**, *47*, 6814–6816.
- 12 B. Hoge, P. Garcia, H. Willner, H. Oberhammer, *Chem. Eur. J.* **2006**, *12*, 3567–3574.
- 13 B. Hoge, S. Neufeind, S. Hettel, W. Wiebe, C. Thösen, *J. Organomet. Chem.* **2005**, *690*, 2382–2387.
- 14 B. Hoge, J. Bader, J. Fluorine Chem. 2007, 128, 857-861.
- 15 B. Hoge, B. Kurscheid, S. Peuker, W. Tyrra, H. T. M. Fischer, *Z. Anorg. Allg. Chem.* **2007**, *633*, 1679–1685.
- 16 1 C. D. Edlin, D. Parker, J. J. B. Perry, C. Chartroux, K. Gloe, *New J. Chem.* **1999**, *23*, 819–826.
- 17 K. Takeshitaa, K. Watanabea, Y. Nakanoa, M. Watanabe, *Hydrometallurgy* **2003**, *70*, 63–71.
- 18 E. A. Boyd, A. C. Regan, *Tetrahedron Lett.* **1994**, *35*, 4223–4226.
- 19 M. Kalek, J. Stawinski, *Tetrahedron* **2009**, *65*, 10406–10412.
- 20 L. Heuer, P. G. Jones, R. Schmutzler, *J. Fluorine Chem.* **1990**, *46*, 243–254.
- 21 J. Escudie, C, Couret, H. Ranaivonjatovo, M. Lazraq, J. Satge, *Phosphorus, Sulfur Silicon Relat. Elem.* **1987**, *31*, 27–31.
- 22 A. S. Batsanov, S. M. Cornet, L. A. Crowe, K. B. Dillon, R. K. Harris, P. Hazendonk, M. D. Roden, *Eur. J. Inorg. Chem.* **2001**, 1729–1737.
- 23 N. B. Karlstédt, A. A. Borisenko, V. L. Foss, *J. Gen. Chem. USSR* **1992**, *62*, 1242–1245.

- 24 K. Miqueu, J.-M. Sotiropoulos, G. Pfister-Guillouzo, V. Rudzevich, V. Romanenko, G. Bertrand, *Eur. J. Inorg. Chem.* **2004**, 381–387.
- 25 T. G. Meyer, P. G. Jones, R. Schmutzler, *Z. Naturforsch., B: Chem. Sci.* **1993**, *48*, 875–885.
- 26 A. S. Batsanov, S. M. Cornet, K. B. Dillon, A. E. Goeta, P. Hazendonk, A. L. Thompson, *J. Chem. Soc., Dalton Trans.* **2002**, 4622–4628.
- 27 M. Yam, C.-W. Tsang, D. P. Gates, *Inorg. Chem.* **2004**, *43*, 3719–3723.
- 28 T. G. Meyer, P. G. Jones, R. Schmutzler, *Z. Naturforsch., B: Chem. Sci.* **1993**, *48b*, 875–885.
- 29 M. Nieger, E. Niecke, R. Serwas, CCDC Private Communication, 2002.
- 30 A. Bondi, J. Phys. Chem. 1964, 68, 441-451.
- 31 J. A. S. Howell, N. Fey, J. D. Lovatt, P. C. Yates, P. McArdle, D. Cunningham, E. Sadeh, H. E. Gottlieb, Z. Goldschmidt, M. B. Hursthouse, M. E. Light, *J. Chem. Soc., Dalton Trans.* **1999**, 3015–3028.
- 32 J. C. Tebby, *CRC Handbook of Phosphorus-31 Nuclear Magnetic Resonance Data*, CRC Press, Boston, **1991**.
- 33 S. Berger, S. Braun, H.-O. Kalinowski, *NMR-Spektroskopie von Nichtmetallen, Band 3:* ³¹*P-NMR-Spektroskopie*, Thieme, Stuttgart, **1993**.
- 34 E. Fluck, D. Wachtler, *Liebigs Ann. Chem.* **1979**, 1125–1129.
- 35 T. Schaefer, K. Marat, A. Lemire, A. F. Janzen, *Org. Magn. Res.* **1982**, *18*, 90–91.
- 36 M. A. Beckett, J. C. Tebby, J. J. Thompson, B. J. Williams, S. C. Withington, *Phosphorus, Sulfur Silicon Relat. Elem.* **1990**, *51/52*, 277.
- 37 K. S. Dunne, S. E. Lee, V. Gouverneur, *J. Organomet. Chem.* **2006**, 691, 5246–5259.
- 38 N. Kuhn, H. Schumann, Hans; G. Wolmershäuser, *Z. Naturforsch., B: Chem. Sci.* **1987**, *42*, 674–678.
- 39 U. Beckmann, D. Süslüyan, P. C. Kunz, *Phosphorus, Sulfur Silicon Relat. Elem.*, im Druck.
- 40 C. Brown, M. Murray, R. Schmutzler, J. Chem. Soc. C 1970, 878-881.
- 41 C. Dörken, Chem. Ber. 1888, 21, 1505–1515.
- 42 D. D. Magnelli, G. Tesi, J. U. Lowe, W. E. McQuistion, *Inorg. Chem.* **1966**, *5*, 457–461.
- 43 P. B. Hitchcock, M. J. Maah, J. F. Nixon, M. Green, *J. Organomet. Chem.* **1994**, *466*, 153–158.
- 44 T. Glowiak, W.S awka-Dobrowolska, *Acta Crystallogr., Sect. B: Struct. Sci.* **1977**, *33*, 2763–2766.
- 45 M. Sathiyendiran, R. Murugavel, *Inorg. Chem.* **2002**, *41*, 6404–6411.
- 46 M. Shieh, K. J. Martin, P. J. Squattrito, A. Clearfield, *Inorg. Chem.* **1990**, *29*, 958-963.
- 47 J. W. Stone, M. D. Smith, H.-C. zur Loye, *J. Chem. Cryst.* **2007**, *37*, 103–108.
- 48 C. Bellitto, E. M. Bauer, S. A. Ibrahim, M. R. Mahmoud, G. Righini, *Chem. Eur. J.* **2003**, *9*, 1324–1331.

- 49 R. D. Chambers, K. B. Dillon, T. A. Straw, *J. Fluorine Chem.* **1992**, *56*, 385–388.
- 50 T. M. Klapötke, B. Krumm, P. Mayer, *Z. Naturforsch., B: Chem. Sci.* **2004**, *59*, 547–553.
- 51 G. Mancino, A. J. Ferguson, A. Beeby, N. J. Long, T. S. Jones, *J. Am. Chem. Soc.* **2005**, *127*, 524–525.
- 52 F. M. Piller, A. Metzger, M. A. Schade, B. A. Haag, A. Gavryushin, P. Knochel, *Chem. Eur. J.* **2009**, *15*, 7192–7202.
- 53 M. R. Biscoe, C. Uyeda, R. Breslow, Org. Lett. **2004**, *6*, 4331–4334.
- 54 M. Abarbri, F. Dehmel, P. Knochel, *Tetrahedron Lett.* **1999**, *40*, 7449–7453.
- 55 T. M. Klapötke, B. Krumm, K. Polborn, *Eur. J. Inorg. Chem.* **1999**, 1359–1366.
- 56 G. G. Furin, S. A. Krupoder, A. I. Rezvukhin, T. M. Kilina, G. G. Yakobson, *J. Fluorine Chem.* **1983**, *22*, 345–376.
- 57 M. G. Barlow, M. Green, R. N. Haszeldine, H. G. Higson, *J. Chem. Soc. B* **1966**, 1025–1030.
- 58 H. J. Frohn, H. Maurer, J. Fluorine Chem. **1986**, 34, 129–146.
- 59 O. Schön, *Organophosphorchalkogenide*, Dissertation an der Ludwig-Maximilians-Universität , München, **2007**.
- 60 E. S. Kozlov, E. G. Kapustin, J. Mol. Struct. 2001, 598, 277–285.
- 61 G.-D. Zhu, V. B. Gandhi, J. Gong, S. Thomas, K. W. Woods, X. Song, T. Li, R. B. Diebold, Y. Luo, X. Liu, R. Guan, V. Klinghofer, E. F. Johnson, J. Bouska, A. Olson, K. C. Marsh, V. S. Stoll, M. Mamo, J. Polakowski, T. J. Campbell, R. L. Martin, G. A. Gintant, T. D. Penning, Q. Li, S. H. Rosenberg, V. L. Giranda, *J. Med. Chem.* **2007**, *50*, 2990–3003.
- 62 A. M. Kluwer, I. Ahmad, J. N. H. Reek, *Tetrahedron Lett.* **2007**, *48*, 2999–3001.
- 63 A. Kotschy, J. Faragó, A. Csámpai, D. M. Smith, *Tetrahedron* **2004**, 60, 3421–3425.
- 64 N. Furukawa, T. Shibutani, H. Fujihara, *Tetrahedron Lett.* **1987**, *28*, 5845–5848.
- 65 G. U. Spiegel, O. Stelzer, Chem. Ber. 1990, 123, 989–993.
- 66 K. Nishide, S. Ito, M. Yoshifuji, *J. Organomet. Chem.* **2003**, *682*, 79–84.
- 67 Y. Okaya, Acta Cryst. **1966**, 20, 712–15.
- 68 A. V. Dudko, V. V. Bon, A. N. Kozachkova, N. V. Tsarik, V. I. Pekhn'o, *Ukr. Khim. Zh. (Russ.)* **2008**, *74*, 104–108.
- 69 W. S. Sheldrick, M. Morr, *Acta Crystallogr., Sect. B: Struct. Sci.* **1981**, *37*, 733–734.
- 70 W. Sawka-Dobrowolska, T. Glowiak, R. Tyka, *Acta Crystallogr., Sect. C: Cryst. Struct. Commun.* **1984**, *40*, 174–176.
- 71 K. D. Demadis, E. Barouda, N. Stavgianoudaki, H. Zhao, *Cryst. Growth Des.* **2009**, 9,1250–1253.
- 72 M. Lutz, G. Müller, Inorg. Chim. Acta **1995**, 232, 189–193.
- 73 M. Li, J.-F. Xiang, S.-P. Chen, S.-M. Wu, L.-J. Yuan, H. Li, H.-J. He, J.-T. Sun, J. Coord. Chem. 2008, 61, 372–383.

- J.-P. Silvestre, H. Khadraoui, H. Gillier, D. El Manouni, Y. Leroux, A. Neuman, T. Prange, N. Q. Dao, *Phosphorus, Sulfur Silicon Relat. Elem.* 2001, *170*, 91–113.
- 75 M. Kontturi, S. Peraniemi, J. J. Vepsalainen, M. Ahlgren, *Eur. J. Inorg. Chem.* **2004**, 2627–2631.
- 76 P. King, R. Clerac, C. E. Anson, A. K. Powell, *Dalton Trans.* **2004**, 852–861.
- 77 H. Lang, M. Leise, L. Zsolnai, *J. Organomet. Chem.* **1990**, *386*, 349–363.
- 78 J.-M. Brunel, G. Buono, J. Org. Chem. 1993, 58, 7313-7314.
- 79 L. Coudray, I. Abrunhosa-Thomas. J.-L. Montchamp, *Tetrahedron Lett.* **2007**, *48*, 6505–6508.
- 80 V. V. Nesterov, E. V. Grishkun, O. I. Kolodyazhnyi, *Russ. J. Gen. Chem.* 2004, *74*, 1947–1948; Übersetzung von: *Zh. Obsh. Khim.* 2004, *74*, 2060–2061.
- P. Bałczewski, A. Szadowiak, A. Bodzioch, T. Białas, W. M. Wieczorek, M. Szyrej, J. Organomet. Chem. 2007, 692, 997–1009.
- 82 T. Bartik, L. Markó, I. Gerdes, P. Heimbach, W. Knott, H.-G. Schulte, *Chirality* **1991**, *3*, 324–330.
- 83 M. R. Fosse, Bull. Soc. Chim. France **1910**, 7, 231–235.
- 84 Y. Belabassi, A. F. Gushwa, A. F. Richards, J.-L. Montchamp, *Phosphorus, Sulfur Silicon Relat. Elem.* **2008**, *183*, 2214–2228.
- 85 P. Colamarino, P. L. Orioli, W. D. Benzinger, H. D. Gillman, *Inorg. Chem.* **1976**, *15*, 800–804.
- 86 V. Chandrasekhar, A. Chandrasekaran, R. O. Day, J. M. Holmes, R. R. Holmes, *Phosphorus, Sulfur Silicon Relat. Elem.* **1996**, *115*, 125–139.
- 87 U.-S. Chen-Leh, *Kristallstrukturen und Synthese von neuen Metall-Phosphinaten*, Masterarbeit Ludwig-Maximilians-Universität, München, **2008**.
- 88 J. L. Galigne, Y. Dumas, *Acta Crystallogr., Sect. B: Struct. Sci.* **1973**, 29, 1115–1119.
- 89 U. Wannagat, R Münstedt, Rainer, *Phosphorus, Sulfur Silicon Relat. Elem.* **1987**, *29*, 233–238.
- 90 C. Fougère, E. Guénin, J. Hardouin, M. Lecouvey, *Eur. J. Org. Chem.* **2009**, 6048–6054.
- 91 K. Karaghiosoff, C. Cleve, A. Schmidpeter, *Phosphorus, Sulfur Silicon Relat. Elem.* **1986**, *28*, 289–296.
- 92 K. Karaghiosoff, R. K. Bansal, N. Gupta, *Z. Naturforsch., B: Chem. Sci.* **1992**, *47*, 373–378.
- 93 R. K. Bansal, R. Mahnot, D. C. Sharma, K. Karaghiosoff, *Synthesis* **1992**, 267–269.
- 94 N. Zhang, S. Ayral-Kaloustian, T. Nguyen, R. Hernandez, J. Lucas, C. Discafani, C. Beyer, *Bioorg. Med. Chem.* **2009**, *17*, 111–118.
- 95 K. Karaghiosoff, R. Mahnot, C. Cleve, N. Gandhi, R. K. Bansal, A. Schmidpeter, *Chem. Ber.* **1995**, *128*, 581–587.
- 96 S. Balalaie, S. Nikoo, S. Haddadi, *Synth. Commun.* **2008**, *38*, 2521–2528.
- 97 G. Crank, H.R. Khan, Aust. J. Chem. 1985, 38, 447–458.

- 98 L. Streinz, B. Koutek, D. Saman, *Synlett* **2001**, *6*, 809–811.
- 99 T. Kurtan, N. Nesnas, Y.-Q. Li, X. Huang, K. Nakanishi, N. Berova, J. *Am. Chem. Soc.* **2001**, *123*, 5962–5973.
- 100 P. Deprez, J. Royer, H.-P. Husson, *Tetrahedron Asymmetry* **1991**, *2*, 1189–1192.
- M. Ratajczak-Sitarz, M. Naruszewicz, Z. Kosturkiewicz, J. Jozkowiak,
 M. D. Rozwadowska, *Pol. J. Chem.* **1996**, *70*, 310–319.
- 102 Y. Valenrod, J. Myung, R. N. Ben, *Tetrahedron Lett.* **2004**, *45*, 2545–2549.
- 103 R. K. Bansal, V. Kabra, R. Munjal, N. Gupta, *Indian J. Chem., Sect. B:* Org. Chem. Incl. Med. Chem. **1994**, 33B, 992–994.
- 104 T. M. Werkhoven, R. van Nispen, J. Lugtenburg, *Eur. J. Org. Chem.* **1999**, 2909–2914.
- 105 A. van der Klei, R. L. P. de Jong, J. Lugtenburg, A. G. M. Tielens, *Eur. J. Org. Chem.* **2002**, 3015–3023.
- 106 J. S. Sherfinski, R. E. Marsh, *Acta Crystallogr., Sect. B: Struct. Sci.* **1975**, *31*, 1073–1076.
- 107 R. K. Bansal, D. C. Sharma, R. Mahnot, *Tetrahedron Lett.* **1991**, *21*, 6433–6436.
- 108 J. Luber, A. Schmidpeter, *Angew. Chem.* **1976**, *88*, 91–92; *Angew. Chem. Int. Ed.* **1976**, *15*, 111–112.
- 109 J. Luber, A. Schmidpeter, Chem. Commun. 1976, 887-888.
- 110 M. D. Mikoluk, R. G. Cavell, Inorg. Chem. 1999, 38, 1971-1981.
- 111 M. D. Mikoluk, R. McDonald, R. G. Cavell, *Inorg. Chem.* **1999**, *38*, 2791–2801.
- 112 H. G. O. Becker, R. Beckert, G. Domschke, E. Fanghänel, W. D. Habicher, P. Metz, D. Pavel, K. Schwetlick, *Organikum*, 21. Auflage, Wiley-VCH, Weinheim, **2001**.
- 113 P. T. Gills, K. F. Schimmel, J. Org. Chem. 1967, 21,2865-2868.
- 114 J. L. Cavill, R. L. Elliott, G. Evans, I. L. Jones, J. A. Platts, A. M. Ruda, N. C. O. Tomkinson, *Tetrahedron* **2006**, *62*, 410–421.
- 115 A. R. Maguire, S. J. Plunkett, S. Papot, M. Clynes, R. O'Connor, S. Touhey, *Bioorg. Med. Chem.* **2001**, *9*, 745–762.
- 116 T. Lemster, U. Pindur, G. Lenglet, S. Depauw, C. Dassi, M.-H. David-Cordonnier, *Eur. J. Med. Chem.* **2009**, *44*, 3235–3252.
- 117 A. M. Asiri, A. A. Bahajaj, I. M. I. Ismail, N. A. Fatani, *Dyes Pigm.* **2006**, *71*, 103–108.
- 118 J. Kumar Ray, A. T. Kumar Mahato, K. Chinnakali, H. –K. Fun, *Acta Crystallogr., Sect. C: Cryst. Struct. Commun.* **1997**, *C53*, 1621–1622.
- 119 J. H. Weinmaier, J. Luber, A. Schmidpeter, S. Pohl, *Angew. Chem.* **1979**, *91*, 442–443; *Angew. Chem. Int. Ed.* **1979**, *18*, 412–413.
- 120 J. Högel A. Schmidpeter, Chem. Ber. 1985, 118, 1621–1631.
- 121V. V. Negrebetskii, N. P. Ignatova, A. V. Kessenikh, N. N. Mel'nikov, N. I. Shvetsov-Shilovskii, *J. Struct. Chem.* **1971**, *11*, 589–594; Übersetzung von: *Zh. Strukt. Khim.* **1970**, *11*, 633–639.
- 122 G. Märkl, C. Martin, Tetrahedron Lett. 1973, 45, 4503-4506.
- 123 C. Baccolini, R. Dalpozzo, E. Errani, *Tetrahedron* **1987**, *43*, 2755–2760.

- 124 A. I. Sitkin, V. I. Klimenko, *Russ. J. Org. Chem.* **2005**, *41*, 423–428; Übersetzung von: *Zh. Organ. Khim.* **2005**, *41*, 431–436.
- 125 X. Guo, L. Feng, Q. Wang, Z. Li, F. Tao, *J. Heterocycl. Chem.* **2006**, *43*, 353–359.
- 126 V. Padmavathi, T. V. R. Reddy, A. Balaiah, K. A. Reddy, D. B. Reddy, *Phosphorus, Sulfur Silicon Relat. Elem.* **2002**, *177*, 1223–1235.
- 127 R. Chen, B. Cai, G. Li, Synthesis 1991, 783–784.
- 128 B. A. Arbuzov, E. N. Dianova, E. Y. Zabotina, I. Z. Akhmetkhanova, *Zh. Obsh. Khim.* **1990**, *60*, 35–39.
- 129 A. Schmidpeter, K. Karaghiosoff, C. Cleve, D. Schomburg, Angew. Chem. **1985**, 97, 125–127; Angew. Chem. Int. Ed. **1985**, 24, 123– 124.
- 130 S. Sharma, Int. J. Chem. Sci. 2003, 1, 245–254.
- 131S. Asmus, L. Nyulászi, M. Regitz, *J. Chem. Soc., Perkin Trans.* 2 **2001**, 1968–1972.
- 132 L. Nyulászi, P. Várnai, S. Krill, M. Regitz, *J. Chem. Soc., Perkin Trans.* 2: Phys. Org. Chem. **1995**, 315–318.
- 133 B. Burkhart, S. Krill, Y. Okano, W. Ando, M. Regitz, *Synlett* **1991**, 356–358.
- 134 G. Hua, Y. Li, A. M. Z. Slawin, J. D. Woollins, *Org. Lett.* **2006**, *8*, 5251–5254.
- 135 I. P. Gray, P. Bhattacharyya, A. M. Z. Slawin, J. D. Woollins, *Chem. -Eur. J.* **2005**, *11*, 6221-6227.
- 136J. Bethke, K. Karaghiosoff, L. A. Wessjohann, *Tetrahedron Lett.* **2003**, *44*, 6911–6913.
- 137 M. Chihaoui, A. B. H. Amor, B. Baccar, *J. Soc. Chim. Tunisie* **1986**, *2*, 15–17.
- 138 H. Kimura, H. Konno, N. Takahashi, *Bull. Chem. Soc. Jpn.* **1993**, *66*, 327–329.
- 139S. K. Tupchienko, T. N. Dudchenko, A. D. Sinitsa, *Russ. J. Gen. Chem.* 1989, 59, 1333–1337; Übersetzung von: *Zh. Obsh. Khim.* 1989, 59, 1500–1505.
- 140 G. Bratulescu, Rev. Roum. Chim. 2007, 52, 467-469.
- 141 J. G. Kraaijkamp, D. M. Grove, G. van Koten, J. M. Ernsting, A. Schmidpeter, K. Goubitz, C. H. Stam, H. Schenk, *Inorg. Chim. Acta* 1997, 265, 47–57.
- 142 M. Karplus, J. Chem. Phys. 1959, 30, 11-15.
- 143 M. Karplus, J. Am. Chem. Soc. 1963, 85, 2870-2871.
- 144 J. P. Albrand, D. Gagnaire, J. B. Robert, *Chem. Commun.* **1968**, 1469–1470.
- 145 M. Kaupp, M. Bühl, V. G. Malkin, *Calculation of NMR and EPR Parameters – Theory and Applications*, Wiley-VCH, Weinheim, **2004**.
- 146 V. D. Romanenko, V. L. Rudzevich, A. O. Gudima, M. Sanchez, A. B. Rozhenko, A. N. Chernega, M. R. Mazieres, *Bull. Soc. Chim. Fr.* **1993**, *130*, 726–732.
- 147 J. G. Kraaijkamp, G. van Koten, K. Vrieze, D. M. Grove, E. A. Klop, A. L. Spek, A. Schmidpeter, *J. Organomet. Chem.* **1983**, *256*, 375–389.

- 148 K. C. Dash, H. Schmidbaur, A. Schmidpeter, *Inorg. Chim. Acta* **1980**, *46*, 167–170.
- 149 E. W. Burkhardt, W. C. Mercer, G. L. Geoffrey, *Inorg. Chem.* **1984**, 23, 1779–1782.
- 150 P. S Pergosin, R. W. Kunz, NMR Basic Principles and Progress; 16: ³¹P and ¹³C NMR of Transition Metal Phosphine Complexes, P. Diel, E. Fluck, R. Kosfeld Eds., Springer, Heidelberg, **1979**.
- 151 T. H. Brown, P. J. Green, J. Am. Chem. Soc. 1970, 92, 2359–2362.
- 152 J. H. Weinmaier, H. Tautz, A. Schmidpeter, S. Pohl, *J. Organomet. Chem.* **1980**, *185*, 53–68.
- 153 H. E. Gottlieb, V. Kotlyar, A. Nudelman, *J. Org. Chem.* **1997**, *62*, 7512–7519.
- 154 W. L. F. Armarego, Christina L. L. Chai, *Purification of Laboratory Chemicals*, 6th edition, Elsevier, Oxford, **2009**.
- 155 K. Yamana, Y. Nishijima, A. Oka, H. Nakano, O. Sangen, H. Ozaki, T. Shimidzu, *Tetrahedron* **1989**, *45*, 4135–4140.
- 156K. V. Baker, J. M. Brown, N. Hughes, A. J. Skarnulis, A. Sexton, *J. Org. Chem.* **1991**, *56*, 698–703.

Angang 3: Formelverzeichnis

61: R = Me, R' = Me

319

Angang 4: Lebenslauf

Persönliche Daten

Name Email	Wolfgang Betzl wolfgang.betzl@cup.uni-muenchen.de		
Geburtsjahr/-ort	23. Juli 1982 in Geburtsort Wasserburg a. Inn		
Staatsbürgerschaft	deutsch		
Schulbildung			
09/1992-06/2001 <i>06/2001</i>	<i>Luitpold-Gymnasium Wasserburg a. Inn</i> Allgemeine Hochschulreife (Abitur)		
Akademische Laut	fbahn		
10/2002-09/2005	Ludwig-Maximilians-Universität München Bachelor-Studiengang Chemie und Biochemie Bachelorarbeit: Darstellung und Charakterisierung von Hydrospirophosphoranen mit g-Hydroxycarbonsäureliganden.		
09/2005	Abschluss: Bachelor of Science (B. Sc.)		
10/2005-05/2007	Ludwig-Maximilians-Universität München Master-Studiengang Chemie Masterarbeit: Auf dem Weg zu ersten chiralen 1,2,3- Diazanhospholon und 5.5'-Bis(1, 2,3-diazanhospholon)		
05/2007	Abschluss: Master of Science (M. Sc.)		
Berufserfahrung			
09/2007-03/2011	Ludwig-Maximilians-Universität München wissenschaftlicher Mitarbeiter am Department für Chemie im Arbeitskreis Karaghiosoff Titel der Dissertation: <i>Heterophosphole und Metallkomplexe</i> <i>von Aminophosphonsäuren – Synthese, Reaktivität,</i> <i>Spektroskopie und Strukturchemie</i>		
04/2008-03/2011	Promotionsstipendiat des Cusanuswerks		
seit 04/2011	<i>Wasserburger Arzneimittelwerk GmbH</i> Compliance Supervisor		
besuchte Tagunge	en		

20.-21. März 20074th PhD Workshop on Phosphorus Chemistry -
Zandvoort, NL10.-11. März 20085th European Workshop on Phosphorus
Chemistry - Regensburg, DE

26.–27. März 2009	6 th European Workshop on Phosphorus Chemistry – Florenz, IT Titel des Vortrags: On the Way to chiral Phosphines derived from Heterophospholes
28.–29. März 2011	8th European Workshop on Phosphorus Chemistry – Münster, DE Titel des Posters: Efficient and Selective Synthesis of 2,6-Bis(trifluoromethyl)phenyl Phosphine Derivatives from 1,3-Bis(trifluoromethyl)benzene

Publikationen

Ch. Hettstedt, W. Betzl, K. Karaghiosoff, Z. Anorg. Allg. Chem., im Druck.

Sprachkenntnisse

Deutsch	Muttersprache
Englisch	Verhandlungssicher
Französisch	Grundkenntnisse

München, 19. Februar 2012

So eine Arbeit wird eigentlich nie fertig, man muss sie für fertig erklären, wenn man nach Zeit und Umständen das Mögliche getan hat.

JOHANN WOLFGANG VON GOETHE