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Abbreviations 

aa    amino acid 

ABI    Abelson-interacting protein 

ABD    actin-binding domain 

ABP    actin-binding protein 

ADF    actin-depolymerizing factor 

ADMIDAS   adjacent to metal-ion-dependent adhesion site 

Ala    alanine 

Alk    activin-receptor-like kinase 

α-NAC    nascent-polypeptide-associated complex and co-activator-α 

ANK    ankyrin 

Arg    arginine 

Arp2/3 complex  actin-related protein 2/3 complex 

Asp    asparagine 

ATP    adenosine triphosphate 

ATPase   adenosine triphosphatase 

bFGF    basic firbroblast growth factor 

BM    basement membrane 

BMP    bone morphogenetic protein 

Ca2+    calcium-ion 

Cdc42    cell division cycle 42 

CH    calponin homology domain 

CH-ILKBP   CH domain-containing ILK-binding protein 

Col    collagen 

CPI-17    protein-kinase-C-dependent phosphatase inhibitor of 17 kDa 

CR16    corticosteroids and regional expression-16 

Crk    v-crk sarcoma virus CT10 oncogene homolog 

Dbl    diffuse B-cell-lymphoma 

DEJ    dermal-epidermal junction 

DLL4    Delta-like-4 

DNA    deoxyribonucleic acid 

Dock180   180-kDa protein downstream of CRK 
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DRF    diaphanous-related formin 

E    embryonic day 

EB    embryoid bodies 

EC    endothelial cell 

ECM    extracellular matrix 

ELMO1   engulfment and motility 1 

Ena/Vasp   enabled/vasodilator-stimulated phosphoprotein 

Eng    endoglin 

EPC    endothelial precursor cell 

EPU    epidermal proliferative unit 

EST    expressed sequence tag 

FA    focal adhesion 

F-actin    filamentous actin 

FAK    focal adhesion kinase 

FC    focal complexes 

FERM    4.1, ezrin, radixin, moesin 

FGF    fibroblast growth factor 

FN    fibronectin 

G-actin   globular actin 

GAP    GTPase activating protein 

GEF    guanine nucleotide exchange factor 

GDI    guanine nucleotide dissociation inhibitor 

GDP    guanosine diphosphate 

GIT    G-protein-coupled receptor kinase interacting protein 

GRAF    GTPase regulator associated with FAK 

GSK3β   glycogen-synthase kinase-3β 

GTP    guanosine triphosphate 

GTPase   guanosine triphosphatase 

HeLa    Henrietta Lacks 

HF    hair follicle 

HM    hair matrix 

HS    hair shaft 

HSPC300   haematopoietic stem-cell progenitor 

ICAM-1   intercellular adhesion molecule-1 
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I-EGF    integrin epidermal growth factor–like 

IFE    interfollicular epidermis 

Ig    immunoglobulin 

IL    interleukin 

ILK    integrin linked kinase 

ILKAP    ILK-associated phosphatase 

IMC    inner membrane clasp 

IPP complex   ILK-PINCH-Parvin complex 

IRS    inner root sheath 

JNK    c-Jun N-terminal kinase 

K    keratin 

kAE1    kidney anion exchanger 

kDa    kilodalton 

LAD-III   leukocyte-adhesion deficiency type III 

LAP    latency associated peptide 

LDV    leucine-aspartic acid-valine 

LLC    Lewis lung carcinoma 

LIM    Lin11, Isl1, Mec3 

LIMBS   ligand-induced metal ion binding site 

LIMK    LIM kinase 

Ln    laminin 

LTBP    latent TGFβ-binding protein 

MAdCAM-1   mucosal addressin cell adhesion molecule-1 

Mg2+    magnesium-ion 

MHC    myosin heavy chain 

MIDAS   metal-ion-dependent adhesion site 

MLC    myosin regulatory light chain 

MLCK    MLC kinase 

MLCP    MLC phosphatase 

MLP    muscle LIM protein 

MM    metanephric mesenchyme 

µm    micrometer 

Mn2+    manganese-ion 

mRNA    messenger RNA 
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MYPT1   myosin phosphatase-targeting subunit 1 

Nap125   Nck-associated protein 

NLS    nuclear localization signals 

NPF    nucleation promoting factor 
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PIR121   p53-inducible mRNA 

PIX    PAK-interacting exchange factor 

PKB    protein kinase B/Akt 
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Summary 

The development and homeostasis of multicellular organisms critically depends on the ability 

of cells to migrate on and to adhere to glycoproteins of the extracellular matrix (ECM), which 

is secreted and organized by cells. Key receptors for components of the ECM are the 

members of the integrin protein family, which not only mediate adhesion to the ECM but also 

sense and transmit ECM-derived mechano-chemical cues to facilitate the appropriate cellular 

responses. This signaling function of integrins depends on the recruitment of various signaling 

and adaptor molecules to the cytoplasmic tails of integrins. Among the recruited adaptor 

molecules is the actin-binding protein α-Parvin. Although in vitro studies indicate that α-

Parvin is essential for integrin signaling by providing a linkage to the actin cytoskeleton, its 

functions in vivo have not been analyzed. 

In this study, we analyzed the in vivo functions of α-Parvin, which forms a ternary complex 

with the integrin linked kinase (ILK) and particularly interesting Cysteine-Histidin-rich 

protein (PINCH). Constitutive deletion of the α-Parvin-gene in mice resulted in embryonic 

lethality due to severe cardiovascular defects. The vascular defects were due to poor blood 

vessel-coverage by mural cells, compromised angiogenic remodeling, formation of 

aneurysms, blood vessel dilations and rupture of blood vessels leading to hemorrhages and 

edemas. Mechanistically, the vascular smooth muscle cell (vSMC) dysfunction resulted from 

increased contractility, which in turn was due to elevated RhoA-activity. 

To investigate the in vivo functions of α-Parvin specifically in keratinocytes, we conditionally 

deleted α-Parvin-gene using the Cre/loxP system. The consequences ranged from severely 

compromised epidermal homeostasis to hair follicle morphogenesis in vivo and impaired 

adhesion and migration of α-Parvin -deficient keratinocytes in vitro. Impaired adhesion of α-

Parvin-deficient keratinocytes resulted in locally confined detachments of the epidermis and 

displacement of integrin expressing cells into suprabasal layers of the epidermis and was 

accompanied by delayed differentiation and ectopic proliferation of suprabasal keratinocytes. 

In conclusion, our data define a crucial function of α-Parvin in vascular development, 

epidermal homeostasis and hair follicle morphogenesis in vivo. 
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Introduction 

1) The integrin family of adhesion receptors 
 

Integrins are a family of glycosylated, heterodimeric, type I transmembrane adhesion 

receptors. Each integrin heterodimer is composed of one α- and one β-subunit that are non-

covalently associated to form a shared ligand binding interface at their extracellular globular 

head domains (Arnaout et al., 2005; Luo et al., 2007). Therefore, both subunits contribute to 

the binding specificity of a given integrin heterodimer for its extracellular ligand(s). Their 

main ligands are components of the ECM but also a considerable number of soluble ligands 

and cell-surface molecules can be recognized by certain members of the integrin family 

(Humphries et al., 2006). The name “integrin” refers to their ability to integrate cues from the 

extracellular environment with the cells’ interior organization (Tamkun et al., 1986). This 

property together with the ability to modulate growth factor receptor signaling makes 

integrins important regulators of a broad range of cellular processes including adhesion, 

migration, proliferation, survival and differentiation, which are crucial for the development 

and homeostasis of multicellular organisms (Humphries et al., 2006; Hynes, 2002; Legate et 

al., 2009; Sheppard, 2000). In line with their essential function in multicellular organisms, 

integrins are evolutionary conserved but restricted to metazoans (Whittaker and Hynes, 2002), 

where the number of subunits increases with the complexity of the organism. While the 

integrin repertoire of the nematode Caenorhabditis elegans comprises only two integrins, 

formed by two α- and one β-subunits, in the fruit fly Drosophila melanogaster, a set of five 

integrins is assembled by the combination of five α-subunits with one β-subunit. In mammals, 

18 α- and 8 β-subunits are known to form 24 distinct integrin heterodimers that have 

overlapping substrate specificity and cell-type-specific expression patterns (Humphries et al., 

2006; Hynes, 2002). 
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Figure 1: The integrin family of adhesion receptors 
Depicted are the 24 mammalian integrin heterodimers arranged according to their main ligand binding 

specificity and leukocyte-specific expression. The nine α-subunits containing an αA/I-domain are indicated (*). 

See text for details. Figure modified from (Hynes, 2002). 

 

According to their main ligand binding specificity and leukocyte-specific expression, 

integrins can be classified into four major groups (Figure 1) (Hynes, 2002): 

1) Integrins that preferentially bind to ligands containing the tripeptide sequence RGD 

(arginine-glycine-aspartic acid); they consist of the αV heterodimers αvβ1, αvβ3, αvβ5, αvβ6 

and αvβ8 as well as α5β1, α8β1, the platelet integrin αIIbβ3. Ligands for this group include 

fibronectin (FN), vitronectin (VN), thrombospondin, osteopontin and tenascin. 

2) Collagen (Col) binding integrins are the β1 heterodimers α1β1, α2β1, α10β1 and α11β1. 

3) The β1 heterodimers α3β1, α6β1, α7β1 and the α6β4 integrin are the main receptors for 

laminin (Ln). However, the collagen-receptors α1β1, α2β1 and α10β1 can also bind laminin 

(Humphries et al., 2006). 

4) Leukocyte specific integrins are the α4β7 and αEβ7 heterodimers and the β2 heterodimers 

αLβ2, αMβ2, αXβ2, αDβ2. They recognize the tripeptide motif LDV (leucine-aspartic acid-

valine) or structurally related motifs, and thereby mediate binding to ligands such as VCAM-1 

(vascular cell adhesion molecule-1), mucosal addressin cell adhesion molecule-1 (MAdCAM-

1) and intercellular adhesion molecule-1 (ICAM-1). 

The two related integrins α9β1 and α4β1 also bind to the LDV motif in FN and additionally 

recognize Ig-superfamily counter receptors such as VCAM-1. 
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2) Integrin structure and ligand binding 
 

Both integrin subunits are type I transmembrane proteins, containing a short C-terminal 

cytoplasmic segment of about 20-50 amino acids (aa), a  helical transmembrane segment of 

25-29 aa and a long extracellular segment of up to 1104 aa for α- and 778 aa for β-subunits. 

The only exception is the β4 subunit, with a long cytoplasmic segment of about 1000 aa that 

links the α6β4 integrin to intermediate filaments. 

 

 

Figure 2: Integrin structure and conformational changes 
Schematic representation of the integrin structure and conformational changes that switch integrins between 

states of low and high ligand-binding affinities. See text for details. Figure modified from (Luo et al., 2007) 

 

At their extracellular N-termini, a seven-bladed β-propeller domain of the α-subunit non-

covalently associates with the βA/I domain of the β-subunit to form the globular ligand-

binding “head” of the integrin heterodimer. A long (~170 Å) stalk or leg region separates the 

globular head from the membrane. The β-subunits-stalk consists of a Hybrid, a PSI (plexin-

semaphorin-integrin), four I-EGF (integrin epidermal growth factor–like) and a β-tail domain, 

whereas the α-subunit stalk is formed by Thigh (Immunoglobulin (Ig)-like), Genu, Calf-1 and 

Calf-2 (β-sandwich) segments. Importantly, the ectodomain of integrins can switch between 

an extended “active” and a bent “inactive” conformation, which is referred to as the 

“switchblade” model and involves separation of the cytoplasmic tails and the transmembrane 



Introduction 

19 

segments. Bending occurs at the Genu domain of the α-subunit and between I-EGF domains 1 

and 2 of the β-subunit. Additionally, a “swing-out” of the Hybrid domain in the extended 

conformation results in a shift from a closed (low affinity) to an open (high affinity) 

conformation of the βA/I domain (Figure 2). The collagen-binding and the leukocyte specific 

α-subunits additionally contain an N-terminal von Willebrand factor A (vWFA) domain 

inserted into their β-propeller which is known as the αA/I domain. Structurally, this αA/I 

domain is highly similar to the βA/I domain, and likewise can adopt a closed (low affinity) or 

open (high affinity) conformation. Both domains contain a conserved metal-ion-dependent 

adhesion site (MIDAS), which physiologically is occupied by Mg2+ and is important for 

ligand binding. Substitution of Mg2+ by Mn2+ results in conformational alterations and 

induces the open (high affinity) conformation. Two additional metal-ion-binding sites, 

LIMBS (ligand-induced metal ion binding site) and ADMIDAS (adjacent to metal-ion-

dependent adhesion site), that physiologically bind Ca2+, are present in βA/I but not in αA/I 

and contribute to the regulation of the affinity state. Ligand binding is mainly mediated by the 

βA/I domain in integrins lacking an αA/I domain. However, in the nine integrins containing 

an αA/I domain, it is the αA/I domain that predominantly contributes to ligand binding (see 

Figure 1) (Arnaout et al., 2005; Hynes, 2002; Luo et al., 2007). 

 

3) Bidirectional signaling of integrins 
 

One important feature of integrins is their ability to transmit signals across the membrane in a 

bidirectional manner. Their ability to elicit intracellular responses upon ligand binding is 

referred to as “outside-in signaling”, which in turn depends on the reversible activation of 

integrins by intracellular signals, referred to as “inside-out signaling”. 

 

3.1) Inside-out signaling 

 

The affinity of integrins for their ligand(s) is tightly regulated. Without activating signals, 

integrins are believed to adopt a bent, inactive conformation. Upon the appropriate stimuli 

long range conformational changes take place in the transmembrane- and extracellular-

domains, resulting in extended integrins with high affinity for their ligands (Figure 2). 

Physiologically, this is particularly important in platelets that must aggregate only upon 
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activation. While inappropriate activation of the platelet integrin αIIbβ3 and subsequent 

binding to its major ligand fibrinogen results in thrombosis, defective integrin αIIbβ3 

signaling results in bleeding disorders such as Glanzmann thrombasthenia (Bennett, 2005; 

George et al., 1990; Lefkovits et al., 1995). Integrin activation is achieved by the binding of 

cytoplasmic proteins to the β integrin tails to enable separation of α- and β-transmembrane 

and cytoplasmic segments (Shattil et al., 2010; Wegener and Campbell, 2008; Wegener et al., 

2007). An electrostatic salt bridge between Asp723 and Arg995 in the β3 and αIIb 

cytoplasmic tails, respectively, is implicated in preventing integrin activation by mediating a 

super weak interaction between integrin cytoplasmic tails (Hughes et al., 1996) and mutations 

of the corresponding residues in the conserved GFFKR motif in α4 and αL that disrupted this 

interaction resulted in integrin activation (Imai et al., 2008; Lu and Springer, 1997). However, 

no obvious phenotype was observed in mice upon replacement of the corresponding Asp by 

an Ala residue in the β1 integrin tail, questioning the importance of the putative salt bridge, at 

least for β1 integrins in vivo (Czuchra et al., 2006). Several studies also indicate an important 

regulatory function of transmembrane domain interactions for integrin activation, which are 

primarily mediated by an inner (IMC) and an outer (OMC) membrane clasp (Lau et al., 2009), 

although the αIIbβ3 salt bridge might contribute to the association of the transmembrane 

domains (Kim et al., 2009). While artificially preventing the separation of the transmembrane 

domains inhibited integrin activation (Lu et al., 2001; Luo et al., 2004; Zhu et al., 2008), 

mutations that interfere with the transmembrane association resulted in constitutive integrin 

activation (Gottschalk, 2005; Hughes et al., 1996; Li et al., 2005b; Luo et al., 2005; Luo et al., 

2004; Partridge et al., 2005). 

 

3.1.1) Cytoplasmic regulators of integrin inside-out signaling 

 

In vitro and in vivo studies identified talin as key-regulator of integrin activation. Talin is a 

large (~270kDa) cytoplasmic protein composed of a globular head domain and a flexible rod 

domain. The 47-kDa talin head domain (THD) is comprised of a FERM (4.1, ezrin, radixin, 

moesin) domain, consisting of subdomains F1, F2 and F3, and a F0 subdomain (Calderwood 

et al., 2002; Garcia-Alvarez et al., 2003; Rees et al., 1990). Talin binds to lipids of the plasma 

membrane and to a conserved membrane proximal NPxY-motif and additional membrane 

proximal residues in the cytoplasmic tail of integrin β-subunits, leading to the separation of 

integrin cytoplasmic tails and transmembrane domains; this is thought to be the final common 
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step required for integrin activation (Lim et al., 2007; Nieswandt et al., 2007; Petrich et al., 

2007; Simonson et al., 2006; Tadokoro et al., 2003). Binding to β-integrin tails mainly occurs 

via the phospho-tyrosine binding (PTB)-like F3 subdomain (Garcia-Alvarez et al., 2003), 

which is sufficient for β3 integrin activation (Calderwood et al., 2002). However, additional 

regions of the THD are required for β1 integrin activation (Bouaouina et al., 2008). 

Other PTB-domain containing proteins can also bind to the NPxY-motif, but in contrast to 

talin they are not able to activate integrins (Calderwood et al., 2003), suggesting that pure 

binding to the NPxY is not sufficient for integrin activation. Indeed, additional interactions 

between talin and membrane proximal regions of the β3 integrin cytoplasmic tail and plasma 

membrane lipids are required for integrin activation, and mutations that disrupt these 

interactions prevent integrin activation (Knezevic et al., 1996; Ulmer et al., 2003; 

Vinogradova et al., 2002; Wegener et al., 2007). Although the THD is sufficient for integrin 

activation (in the presence of kindlin), formation of multimolecular adhesion structures, such 

as focal adhesions (FA), additionally requires the talin rod domain (Zhang et al., 2008a). The 

rod domain primarily mediates the linkage to vinculin and the actin cytoskeleton, and it 

consists of 62 amphipathic α-helices that are assembled into helical bundles. In addition, the 

rod domain contains a second integrin binding site and a homodimerization motif, which 

might facilitate integrin clustering and FA formation (Critchley and Gingras, 2008). 

Regulation of talin function can take several forms. An autoinhibitory interaction between the 

talin rod and head domains represents an important regulatory mechanism in integrin inside-

out signaling. Phosphatidylinositol-4,5-bisphosphate disrupts this interaction and thereby 

contributes to talin activation (Goksoy et al., 2008; Martel et al., 2001). In hematopoietic 

cells, talin recruitment to the plasma membrane is controlled by the small guanosine 

triphosphatase (GTPase) Rap1 and its effector Rap1-GTP-interacting adaptor molecule 

(RIAM) (Lee et al., 2009), representing another example of how integrin activation by talin 

can be regulated. Additionally, tyrosine phosphorylation at the membrane proximal NPxY 

motif of β-integrin tails is thought to serve as a regulatory switch that negatively influences 

talin binding while at the same time promoting binding of proteins such as Dok1, that 

compete with talin for the NPxY motif (Legate and Fassler, 2009; Oxley et al., 2008). 

However, in vivo, no obvious phenotype was observed upon the replacement of the 

corresponding tyrosine by non-phosphorylateable phenylalanine in the β1 integrin tail (Chen 

et al., 2006; Czuchra et al., 2006), whereas the respective mutation in β3 integrins resulted in 

a mild bleeding phenotype due to defects in outside-in signaling (Law et al., 1999), and 

impaired pathological angiogenesis (Mahabeleshwar et al., 2006). 
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Although talin is essential for integrin activation, recent studies revealed that integrin 

activation additionally requires the presence of kindlins (Ma et al., 2008; Montanez et al., 

2008; Moser et al., 2008; Ussar et al., 2008). In mammals, kindlin-1, -2, and -3 comprise the 

kindlin family (Siegel et al., 2003). Kindlin-1 expression is mainly restricted to epithelial cells 

of tissues such as skin, intestine, and kidneys. While kindlin-2 is widely expressed, most 

prominently in skeletal and smooth muscle cells, expression of kindlin-3 is confined to the 

hematopoietic system (Jobard et al., 2003; Siegel et al., 2003; Ussar et al., 2006). Structurally, 

kindlins closely resemble the THD. However, a pleckstrin homology (PH) domain is inserted 

into the F2 subdomain of the kindlin FERM domain (Goult et al., 2009; Kloeker et al., 2004). 

Like in talin, kindlin binding to the β integrin tails is primarily mediated by the PTB-like F3 

subdomain (Moser et al., 2008; Shi et al., 2007; Ussar et al., 2008). However, in contrast to 

talin, kindlin binding to the β integrin tails does not occur at the membrane proximal NPxY 

motif but at the membrane distal NxxY motif, and additionally depends on Thr/Thr or Ser/Thr 

residues, located between these two motifs (Ma et al., 2008; Montanez et al., 2008; Moser et 

al., 2009a; Moser et al., 2008; Shi et al., 2007; Ussar et al., 2008). 

Although it is widely accepted that talin and kindlin synergistically activate integrins and thus 

are both required for efficient integrin activation, mechanistic details about how this 

synergistic effect is achieved remain largely elusive. The non-overlapping binding sites could 

allow simultaneous binding of talin and kindlin to one integrin tail. However, sequential 

binding or binding to different integrin-tails and transactivation are also possibilities (Moser 

et al., 2009b). 

The importance of kindlins for integrin activation and outside-in signaling is demonstrated by 

the severe consequences of kindlin loss-of-function in vivo. 

Loss-of-function mutations in human Kindlin-1 were identified as cause of a rare 

genodermatosis known as Kindler syndrome, characterized by defects in epithelial cell-

adhesion subsequently resulting in poikiloderma, cutaneous atrophy and susceptibility to skin 

cancer (Jobard et al., 2003; Siegel et al., 2003). Deletion of kindlin-1 in mice resulted in a 

similar skin phenotype, although intestinal defects were more pronounced and finally led to 

perinatal lethality due to severe ulcerative colitis (Ussar et al., 2008). In the meantime 

gastrointestinal abnormalities have also been reported in man. 

Kindlin-2 deletion in mice resulted in early embryonic lethality at the peri-implantation stage 

due to severe endoderm and epiblast detachment from the basement membrane (Montanez et 

al., 2008). 
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Finally, the deletion of kindlin-3 in mice resulted in defective platelet aggregation and severe 

bleedings due to impaired integrin activation, although talin expression was unaltered (Moser 

et al., 2008). Furthermore, kindlin-3 was found to be required for leukocyte adhesion and 

extravasation (Moser et al., 2009a). In humans, kindlin-3 mutation leads to a rare disease 

known as leukocyte-adhesion deficiency type III (LAD-III) characterized by severe bleedings 

and leukocyte adhesion and extravasation defects (Kuijpers et al., 2009; Malinin et al., 2009; 

Mory et al., 2008; Svensson et al., 2009). 

 

3.2) Integrin avidity and clustering 

 

Affinity modulation is essential to control the binding of an integrin to its ligand. As 

individual integrin-ligand interactions are relatively weak, firm adhesion of a cell to the ECM 

requires the collective binding of multiple integrins. The synergistic effect of multiple weak 

interactions is known as avidity. Integrin avidity occurs by clustering integrins into adhesive 

units. In cultured cells, several types of adhesive units can be distinguished based on size, 

morphology, localization and protein composition. These include nascent adhesions (Choi et 

al., 2008), which can subsequently mature into focal complexes (FCs), FAs and fibrillar 

adhesions (Geiger et al., 2001). Podosomes and invadopodia are related but structurally 

distinct adhesive structures characteristic for monocytic and tumor cells, respectively (Linder, 

2009). 

A vast number of cytoplasmic adaptor and signaling molecules are recruited to and organized 

within these adhesive units, which not only mediate the linkage to the F (filamentous)-actin 

cytoskeleton but also function as a signaling platform, orchestrating complex intracellular 

responses and signaling crosstalks upon integrin ligand engagement. Collectively, these 

processes are referred to as outside-in signaling. 

 

3.3) Outside-in signaling 

 

Integrins regulate a vast number of cellular processes such as adhesion, migration, 

proliferation, survival and differentiation. However, their short cytoplasmic tails lack 

enzymatic activity. Instead, integrin signaling relies on the recruitment of signaling and 

adaptor molecules. 
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To date, the “integrin adhesome” comprises far over 180 molecules, which are found to be 

associated with integrin adhesions (Schiller et al., 2011; Zaidel-Bar and Geiger, 2010; Zaidel-

Bar et al., 2007). Among them, more than 40 proteins can bind directly, although not 

simultaneously, to β integrin cytoplasmic tails, while so far, only a few are known to directly 

interact with the cytoplasmic tails of α subunits (Legate and Fassler, 2009). 

Recruitment and direct binding of adaptor and signaling molecules to the cytoplasmic tails 

creates a platform for the assembly of additional adaptor and signaling molecules and finally 

results in the formation of a highly complex and dynamic multimolecular adhesion and 

signaling machinery. Spatiotemporal control of assembly/disassembly and molecular 

composition as well as cell-type and developmental specific expression of its constituents 

additionally contribute to the complexity of this machinery. 

 

3.3.1) Linkage to the actin cytoskeleton 

 

One key function of the integrin adhesome is the linkage to and regulation of the actin 

cytoskeleton. The physical linkage to the actin cytoskeleton depends on and is mediated by 

the actin-binding capability of several members of the adhesome. Talin, α-actinin, filamin and 

tensin can directly link integrins to the actin cytoskeleton by binding to both the β integrin 

cytoplasmic tail and F-actin. However, firm linkage to the actin cytoskeleton additionally 

depends on actin-binding proteins indirectly associated with integrins via adaptor molecules. 

For instance, although talin can provide the initial connection to the actin cytoskeleton, 

vinculin recruitment to talin reinforces the linkage (Humphries et al., 2007; Legate et al., 

2009). Vinculin is additionally connected to integrins by its association with paxillin, which in 

turn binds to the ILK-PINCH-Parvin (IPP) complex through a direct interaction with ILK and 

Parvin. ILK can also directly bind to β integrin cytoplasmic tails and through Parvin provides 

another crucial link to the actin cytoskeleton. Furthermore, ILK can bind to kindlin, which, by 

its association with migfilin, indirectly connects ILK to filamin and thus to the actin 

cytoskeleton. Taken together this exemplifies, that multiple proteins synergize to firmly link 

the actin cytoskeleton to integrins and that the individual components of the adhesome are 

highly interconnected. The IPP complex and especially α-Parvin are the main focus of this 

thesis and therefore will be discussed in more detail in a separate chapter. 
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4) Rho GTPases regulate actin cytoskeleton dynamics 
 

The adhesome facilitates not only the physical anchorage of the actin cytoskeleton, but also 

regulates its dynamics. Key regulators of the actin cytoskeleton and its dynamics are members 

of the Rho family of small (~21kDa) GTPases (Rho GTPases). The Rho family is a subfamily 

of the Ras (rat sarcoma) superfamily and comprises more than 22 members in humans. The 

most prominent and best studied representatives are RhoA (Ras homologous), Rac1 (Ras-

related C3 botulinum toxin substrate 1) and Cdc42 (cell division cycle 42). Like other small 

GTPases, most Rho GTPases cycle between an inactive (GDP-bound) and an active (GTP-

bound) state and thereby function as molecular switches (Figure 3) (Bustelo et al., 2007). In 

the GTP-bound state, Rho GTPases specifically interact with diverse effector proteins to 

control not only cytoskeletal dynamics, but also many other essential cellular processes such 

as gene expression, membrane trafficking, microtubule dynamics, proliferation and 

cytokinesis (Heasman and Ridley, 2008; Jaffe and Hall, 2005). 

Tight regulation of these processes requires the spatiotemporal control of Rho GTPases, 

which is mainly mediated by three classes of regulatory proteins: GEFs (guanine nucleotide 

exchange factors), GAPs (GTPase activating proteins), and GDIs (guanine nucleotide 

dissociation inhibitors) (Figure 3). 

 

 

Figure 3: Cycling of Rho GTPases is controlled by GAPs, GEFs and GDIs 
Cycling of Rho GTPases between an inactive GDP-bound and an active GTP-bound state is controlled by GEFs 

and GAPs. GDIs sequester Rho GTPase in an inactive state and negatively regulate their membrane association 

by masking a lipid moiety at the C-terminus of Rho GTPases. Figure taken from (Etienne-Manneville and Hall, 

2002). 
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In humans, over 70 distinct GEFs are known, most of which belong to the Dbl (diffuse B-cell-

lymphoma) family. GEFs facilitate the exchange of GDP for GTP and thus are required for 

the activation of Rho GTPases (Garcia-Mata and Burridge, 2007). 

Similar to the large number of GEFs, around 80 GAPs are encoded in the human genome. 

GAPs inactivate Rho GTPases by enhancing their intrinsically inefficient GTPase activity 

(Garcia-Mata and Burridge, 2007; Moon and Zheng, 2003; Tcherkezian and Lamarche-Vane, 

2007). 

In contrast to GEFs and GAPs, only three GDIs have been identified in humans. GDIs inhibit 

the guanine nucleotide exchange and sequester Rho GTPases in an inactive state in the 

cytosol. Upon dissociation from the inhibitory GDIs, Rho GTPases can translocate to 

membranes and interact with GEFs, GAPs, and effector proteins. Membrane anchorage is 

facilitated by the post-translational isoprenylation at the C-terminus of most Rho GTPases. 

Binding of GDIs masks this hydrophobic lipid moiety and thus prevents membrane 

association of Rho GTPases (DerMardirossian and Bokoch, 2005; Wennerberg and Der, 

2004). 

Although Rho GTPases are primarily controlled by GEFs, GAPs and GDIs, accurate Rho 

signaling additionally requires tight regulation of the expression, stability, activity, 

localization and scaffolding of Rho GTPases, GEFs, GAPs, GDIs, effector proteins and 

upstream regulatory components in a spatiotemporal and cell context-dependent manner 

(Bustelo et al., 2007). Many GEFs and GAPs are controlled by a wide variety of regulatory 

mechanisms (Bos et al., 2007; Rossman et al., 2005; Schmidt and Hall, 2002; Tcherkezian 

and Lamarche-Vane, 2007). Both activity and subcellular localization of GEFs and GAPs are 

frequently determined by phosphorylation, binding of phospholipids, and/or interaction with 

regulatory and adaptor proteins. Additionally, GEFs and GAPs can function as scaffolding 

proteins and thereby couple the activity of Rho GTPases to specific effectors and downstream 

signaling pathways. Furthermore, a particular Rho GTPase often can be controlled by a 

number of different GEFs and GAPs, and although some GEFs and GAPs are specific for a 

certain Rho GTPase, others are more promiscuous. Cell type-specific expression of some 

GEFs and GAPs adds another layer of complexity to Rho GTPase signaling. The highly 

complex regulation of Rho GTPase signaling provides cells with the flexibility to coordinate 

and integrate actin cytoskeleton dynamics and other Rho-mediated processes with a variety of 

different stimuli and signaling pathways. Particularly for dynamic processes such as cell 

migration, Rho GTPase-mediated integration of actin cytoskeleton dynamics with integrin 

signaling and other signaling pathways is of utmost importance. 
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5) Actin cytoskeleton dynamics 
 

The actin cytoskeleton is not a static entity, but is highly dynamic and flexible. Tight 

spatiotemporal control of its dynamics is essential for processes such as cell morphology, cell 

polarity, directional migration, cytokinesis, tissue homeostasis, wound healing, and 

embryonic development. Although Rho GTPases are key regulators of actin cytoskeleton 

dynamics, numerous additional proteins, collectively referred to as actin-binding proteins 

(ABPs), are required to facilitate the dynamic assembly and disassembly of actin fibers, their 

organization into higher order structures such as bundles or dendritic networks and the 

controlled rearrangement or breakdown of these structures. 

Assembly of actin filaments requires the polymerization of globular actin monomers (G-actin) 

into F-actin, which generates the protrusive force required for cell migration. However, 

spontaneous de novo formation of actin filaments is kinetically hampered, due to the 

instability of short dimeric and trimeric actin intermediates. Instead, initiation of new actin 

filaments depends on and is regulated by ABPs, which can catalyze the rate limiting 

nucleation step and therefore are known as “nucleators”. The best characterized nucleators are 

the heptameric actin-related protein 2/3 (Arp2/3) complex, formins and spire (Firat-Karalar 

and Welch, 2011; Goley and Welch, 2006). Unlike formins and spire, which nucleate the 

linear actin filaments characteristic of protrusive finger-like structures known as filopodia, the 

Arp2/3 complex is thought to promote branched actin filaments by nucleating new daughter 

filaments at the side of existing mother filaments. Accordingly, the Arp2/3 complex is 

essential for the formation of lamellipodia, which are thin, sheet-like cellular protrusions at 

the leading edge of migrating cells, characterized by a branched network of actin-fibers. 

However, the existence of branched actin filaments in the lamellipodium was recently 

challenged and is debated (Insall, 2011; Koestler et al., 2008; Small, 2010; Urban et al., 

2010). Alternatively, the lamellipodium might be comprised of cross-linked linear actin 

filaments. Once nucleated, the growth of actin filaments is kinetically favorable and 

eventually must be restricted. ABPs known as “capping proteins” can bind to the fast growing 

“barbed-ends” of actin filaments and thereby prevent further actin filament elongation. 

Conversely, proteins preventing the binding of capping proteins such as the diaphanous-

related formin (DRF) mDia or Ena/Vasp (enabled/vasodilator-stimulated phosphoprotein), 

promote filament elongation (Ridley, 2006; Ridley et al., 2003). Other ABPs, including actin-

depolymerizing factor (ADF)/cofilin, are critically involved in the disassembly and 
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reorganization of actin filaments. On the one hand, these proteins can sever and/or 

depolymerize actin fibers and thus facilitate actin fiber disassembly. On the other hand, they 

can also promote the assembly of new filaments by increasing the number of free barbed ends 

and the G-actin pool in the cell. Several ABPs also bind to G-actin and either inhibit actin 

polymerization by sequestering G-actin (e.g. thymosin β4), or promote F-actin formation by 

increasing the local availability of polymerization competent actin monomers (e.g. profilin). 

Finally, various ABPs, including α-actinin, filamin, fascin, and the molecular motor protein 

myosin II, can cross-link individual actin fibers and thereby facilitate the formation of more 

complex structures such as actin bundles and dendritic networks. Myosin II not only cross-

links actin filaments, but also provides tension and contractility to the actin cytoskeleton. 

Myosin II is essential for the maturation of nascent adhesions and the formation of stress 

fibers, which are contractile bundles consisting of actin fibers cross-linked by bipolar myosin 

filaments and α-actinin (Vicente-Manzanares et al., 2009). Interestingly, although tension is 

known to promote the maturation of FA, the contractile properties of myosin II were found to 

be dispensable for initial adhesion maturation. Instead, the actin bundling activity of a motor-

deficient myosin II mutant was sufficient to rescue the initial adhesion maturation in cells 

where myosin II or α-actinin had been depleted by RNA interference (RNAi) (Choi et al., 

2008). Integrins play a major role in the complex organization and orchestration of actin 

cytoskeleton dynamics by establishing the physical linkage to the ECM and by controlling 

key signaling pathways, which frequently culminate in the activation or inhibition of Rho 

GTPases. 

 

6) Regulation of actin cytoskeleton dynamics by Rho 

GTPases 
 

Spatiotemporal control of actin cytoskeleton dynamics critically depends on and is mediated 

by Rho GTPases. Through their interaction with specific effector proteins, Rho GTPases not 

only control actin cytoskeleton dynamics and contractility but also regulate the formation and 

maturation of adhesion complexes. Although the constantly advancing knowledge about other 

Rho family members frequently reveals their important functions for actin cytoskeleton 

dynamics, RhoA, Rac1, and Cdc42 remain the best studied. Therefore, the discussion will be 

limited to these three prototypic members, which when activated, promote and regulate the 
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formation of prominent and morphologically distinct actin-based structures, namely 

lamellipodia (Rac1), filopodia (Cdc42) and stress fibers (RhoA). 

 

6.1) RhoA promotes stress fiber formation and adhesion 

maturation 

 

RhoA primarily promotes the maturation of nascent adhesions and the formation of stress 

fibers through its effectors Rho-associated serine/threonine kinase (ROCK) and the DRF 

mDia (Burridge and Wennerberg, 2004). ROCK is essential for the formation of stress fibers 

and FCs, and pharmacological inhibition of ROCK or expression of dominant-negative 

ROCK inhibits their formation (Riento and Ridley, 2003). Through the formin mDia, RhoA 

promotes polymerization, elongation, and bundling of linear actin filaments, whereas RhoA-

mediated activation of ROCK results in increased phosphorylation of the regulatory light 

chain of myosin II (MLC) at Thr18 and Ser19, which activates the contractile and cross-

linking functions of myosin II (Amano et al., 2010; Burridge and Wennerberg, 2004; Jaffe 

and Hall, 2005; Legate et al., 2009). ROCK primarily promotes MLC phosphorylation 

through the inhibition of MLC phosphatase (MLCP) by phosphorylating Thr696 and Thr853 

of the regulatory myosin phosphatase-targeting subunit 1 (MYPT1). Although ROCK can 

directly phosphorylate MLC at Ser19 in vitro, the Ca2+-dependent myosin light chain kinase 

(MLCK) might be the physiologically more relevant kinase in vivo (Amano et al., 2010; Jaffe 

and Hall, 2005). Additionally, the RhoA effector citron kinase also phosphorylates MLC at 

Thr18 and Ser19, although this may only play a role during cytokinesis (Burridge and 

Wennerberg, 2004). 

ROCK not only controls MLC phosphorylation, but it also activates LIM (Lin11, Isl1, Mec3) 

kinase (LIMK). LIMK in turn phosphorylates cofilin at Ser3, resulting in the inactivation of 

cofilin and thus contributing to the stability of stress fibers (Jaffe and Hall, 2005). 

However, RhoA controls stress fiber formation and adhesion maturation primarily through the 

regulation of myosin II activity. While assembly of nascent adhesions in the lamellipodium is 

myosin II-independent and instead depends on actin polymerization, adhesion maturation into 

FCs and FAs at the lamellipodium-lamellum interface is myosin II-dependent and depletion 

of myosin II by RNAi or pharmacological inhibition with blebbistatin prevents adhesion 

maturation and promotes the formation of nascent adhesions (Choi et al., 2008). Although the 

cross-linking activity of myosin II is sufficient for the initial maturation of nascent adhesions, 
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ATPase activity of myosin II contributes to adhesion maturation at later stages and is required 

for the formation of stress fibers and trailing edge retraction at the rear of migrating cells 

(Burridge and Wennerberg, 2004; Choi et al., 2008; Legate et al., 2009; Ridley et al., 2003; 

Riento and Ridley, 2003). 

 

6.2) Rac1 and Cdc42 promote membrane protrusions at the 

leading edge of migrating cells 

 

The formation of sheet-like membrane protrusions at the leading edge of migrating cells, 

known as lamellipodia, largely depends on, and is driven by, Arp2/3 complex-mediated actin 

polymerization. The Arp2/3 complex needs to be activated by nucleation promoting factors 

(NPFs) to enable efficient actin polymerization (Goley and Welch, 2006). Both Rac1 and 

Cdc42 can activate the Arp2/3 complex through members of the WASP/WAVE (Wiskott-

Aldrich syndrome protein)/(WASP-family verprolin-homologous protein) protein families, 

which are class I NPFs (Goley and Welch, 2006). WAVE proteins together with ABI 

(Abelson-interacting protein), HSPC300 (haematopoietic stem-cell progenitor), Nap125 (Nck-

associated protein), and PIR121 (p53-inducible mRNA) form a pentameric heterocomplex, 

referred to as the WAVE complex (Goley and Welch, 2006; Takenawa and Suetsugu, 2007). 

In the active state, Rac1 interacts with Nap125 and PIR121 and thereby activates the WAVE 

complex to stimulate Arp2/3 complex-mediated actin polymerization. Activation of the 

WAVE complex also involves IRSp53 (insulin-receptor substrate), which binds to both 

WAVE and Rac1, and additionally promotes the activity of the WAVE complex. 

Interestingly, IRSp53 binding to Cdc42 reduces the affinity of IRSp53 for WAVE (Goley and 

Welch, 2006; Jaffe and Hall, 2005; Takenawa and Suetsugu, 2007). 

While Rac1 promotes Arp2/3 activity through the WAVE complex, WASP family members 

mediate the Cdc42-induced activation of the Arp2/3 complex. WASP proteins adopt an auto-

inhibited conformation and direct binding of active Cdc42 is required for the activation of 

WASPs. Additionally, WASP proteins are thought to be inhibited by members of the WIP 

(WASP-interacting protein) family, including WIP, CR16 (corticosteroids and regional 

expression-16) and WICH (WIP- and CR16-homologous protein) (Takenawa and Suetsugu, 

2007). Activation of the WASP-WIP complex is facilitated by the Cdc42 effector TOCA-1 

(transducer of Cdc42-dependent actin assembly 1) and can be enhanced by phosphorylation of 

WASP through members of the Src family of tyrosine kinases. 
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Both Rac1 and Cdc42 also activate Ser/Thr kinases of the PAK (p21-activated kinase) family. 

PAKs phosphorylate and thereby activate LIMKs (Edwards et al., 1999), which results in the 

inhibition of cofilin. Additionally, PAKs are implicated in regulating myosin II activity. On 

the one hand, PAK-mediated phosphorylation of both MLCK and myosin heavy chain (MHC) 

decreases myosin II activity (Sanders et al., 1999; van Leeuwen et al., 1999). On the other 

hand, PAK can directly phosphorylate MLC, which increases myosin II activity (Chew et al., 

1998). 

Although Rac1 and Cdc42 use similar downstream signaling pathways to regulate the actin 

cytoskeleton, they promote morphologically distinct actin-based protrusive structures. While 

Rac1 promotes dendritic actin organization in lamellipodia, Cdc42 is thought to be the main 

mediator of the parallel linear actin filaments constituting filopodia. However, filopodia can 

also form in the absence of Cdc42, indicating that other Rho GTPases such as Rif (Rho in 

filopodia)/RhoF can compensate for Cdc42 function (Czuchra et al., 2005; Ridley, 2006). 

Furthermore, filopodia also form in the absence of either WASP (Snapper et al., 2001), the 

Arp2/3 complex or WAVE (Steffen et al., 2006), indicating that actin polymerization in 

filopodia neither depends on the formation of lamellipodia nor is mediated by the Arp2/3 

complex but instead might be facilitated by other actin nucleators, such as formins, which in 

contrast to the Arp2/3 complex promote linear actin filaments (Schirenbeck et al., 2005). 

Indeed, Cdc42 and Rif bind to and activate the DRF mDia2, which also localizes to filopodia 

(Pellegrin and Mellor, 2005; Peng et al., 2003). RhoA also promotes actin polymerization 

through the DRF mDia1. Interestingly, although RhoA activity was thought to be restricted 

mainly to the cell body and the retracting rear, recent studies revealed that RhoA is also active 

at the leading edge and that its activity directly coincides with leading edge protrusion, 

whereas Cdc42 and Rac1 are activated 2µm behind the leading edge with a delay of 

approximately 40s (Machacek et al., 2009). Thus RhoA-mediated actin polymerization might 

initiate leading edge protrusion, whereas Rac1 and Cdc42 are required to sustain the 

protrusion (Spiering and Hodgson, 2011). This exemplifies, that tight spatiotemporal control 

of Rho GTPases and their effectors is essential for the complex orchestration of actin 

dynamics. 
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7) Integrin signaling contributes to the spatiotemporal 

control of Rho GTPases 
 

Spatiotemporal control of Rho GTPases largely depends on the activity and localization of 

GEFs and GAPs. By controlling both the recruitment and activity of multiple GEFs and 

GAPs, integrins are critically involved in the regulation of Rho GTPases. Upon ligand 

engagement, integrins recruit non-receptor tyrosine kinases such as FAK (focal adhesion 

kinase) and members of the Src family of tyrosine kinases (SFK), which elicit multiple 

signaling pathways and critically contribute to the regulation of GEFs and GAPs (Huveneers 

and Danen, 2009). FAK recruitment to integrins and autophosphorylation at tyrosine 397 

creates a high affinity binding site for the SH2 (Src-homology 2) domain of Src. Upon 

binding to FAK, Src subsequently trans-phosphorylates FAK on additional tyrosine residues, 

which fully activates the kinase activity of FAK and creates new binding sites for additional 

proteins (Huveneers and Danen, 2009; Mitra and Schlaepfer, 2006). This active FAK-Src 

complex facilitates the recruitment and phosphorylation of p130Cas, which in turn binds to 

Crk (v-crk sarcoma virus CT10 oncogene homolog) and thereby recruits a complex of 

Dock180 (180-kDa protein downstream of CRK) and ELMO1 (engulfment and motility 1), 

which serves as a GEF for Rac1. Additionally, the active FAK-Src complex promotes the 

phosphorylation of the adaptor protein paxillin, leading to the recruitment of a complex 

consisting of PAK, the ArfGAP PKL(paxillin-kinase linker)/GIT (G-protein-coupled receptor 

kinase interacting protein) and β-PIX (PAK-interacting exchange factor-beta), which is a GEF 

for Rac1 and Cdc42 (Huveneers and Danen, 2009). Interestingly, several studies also 

demonstrate an important function for β-Parvin in the regulation of α- and β-PIX (Filipenko et 

al., 2005; Matsuda et al., 2008; Mishima et al., 2004; Rosenberger et al., 2003). Finally, other 

Rac GEFs such as Vav and Tiam (T-cell lymphoma invasion and metastasis) are also 

regulated by SFK (Huveneers and Danen, 2009). Thus, integrin-mediated activation of the 

FAK-Src complex and recruitment of adaptor proteins such as β-Parvin, promote membrane 

protrusion by activating Rac1 and Cdc42 at sites of adhesion. 

However, for efficient cell spreading and migration, protrusive and contractile activities need 

to be tightly balanced. This balance in part is facilitated by an extensive cross-talk between 

Rho GTPases. For instance, Rac1-mediated production of reactive oxygen species leads to the 

inactivation of phosphatases which otherwise inhibit p190RhoGAP-mediated RhoA 

inactivation. Conversely, through its effector ROCK, which phosphorylates and activates the 
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Rac1 GAP FilGAP, RhoA negatively influences Rac1 activity (Huveneers and Danen, 2009). 

The balance between contractility and protrusion also depends on FAK, which recruits and 

regulates not only multiple GAPs for RhoA, including p190RhoGAP, GRAF (GTPase 

regulator associated with FAK) and PSGAP (PH- and SH3-domain-containing RhoGAP) but 

also several Rho GEFs, such as PDZRhoGEF and p190RhoGEF (Schaller, 2010). Thus FAK 

essentially contributes to the balance between RhoA-mediated contractility and Rac1 

facilitated protrusion by controlling both Rac1/Cdc42 and RhoA activities. In summary, 

integrin signaling profoundly affects the spatiotemporal coordination of actin cytoskeleton 

dynamics through Rho GTPases and thus integrates ECM derived mechano-chemical cues 

with the dynamic organization of the actin cytoskeleton. Although many more details than 

presented here already have been unraveled, precise understanding of how these complex 

processes are regulated in space and time, and how they are integrated with growth factor 

signaling and other signaling pathways still requires further extensive research. 

 

8) The IPP complex 
 

8.1) Formation of the IPP complex: identification, structure 

and expression of ILK, PINCH and Parvin 

 

Integrin-mediated outside-in signaling depends on the recruitment of cytoplasmic adaptor and 

signaling molecules and is essential for the dynamic organization of the actin cytoskeleton 

and its linkage to integrin adhesions. Key components of the cytoplasmic integrin machinery 

are ILK, PINCH and Parvin, which together form the ternary IPP complex (Tu et al., 2001; 

Wu, 2001), whose assembly precedes its recruitment to integrin adhesions in mammalian cells 

(Zhang et al., 2002b) (Figure 4). 
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Figure 4: The IPP complex and its binding partners 
Schematic representation of the IPP complex and some of its binding partners. Through Parvins, the IPP 

complex links integrins to the actin cytoskeleton. See text for details. Figure taken from (Legate et al., 2006) 

 

ILK was identified in 1996 in a yeast two hybrid (Y2H) screen for β1 integrin-binding 

proteins (Hannigan et al., 1996), and was found to be ubiquitously expressed throughout 

development and adulthood (Li et al., 1997; Nikolopoulos and Turner, 2001; Sakai et al., 

2003). ILK, which is conserved throughout the metazoan lineage (Bendig et al., 2006; 

Mackinnon et al., 2002; Yasunaga et al., 2005; Zervas et al., 2001), is composed of five 

ankyrin (ANK) repeats at its N-terminus (Chiswell et al., 2008) and a C-terminal Ser/Thr 

kinase-like domain (Hannigan et al., 1996). Additionally, a PH domain, which is believed to 

bind phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P3), is interspersed between the 

N-terminal ANK repeats and the C-terminal kinase-like domain (Delcommenne et al., 1998; 

Pasquali et al., 2007). 

In 1999, PINCH was identified as direct binding partner of ILK in an Y2H screen for proteins 

that bind to the ANK repeats of ILK (Tu et al., 1999; Wu, 1999). PINCH is a LIM-only 

protein, composed of five LIM domains (Rearden, 1994). PINCH is conserved among 

metazoans (Hobert et al., 1999) and in mammals, two highly homologous isoforms (82% 

identical at the amino acid sequence level in humans), have been identified (Rearden, 1994; 

Zhang et al., 2002a), referred to as PINCH-1 (also known as LIMS1) and PINCH-2 (LIMS2). 

In contrast to PINCH-1, which is ubiquitously expressed at embryonic and adult stages, 

PINCH-2 expression is slightly more restricted and absent in early embryonic development 

(Braun et al., 2003; Wickstrom et al., 2010b). Direct binding to ILK is facilitated by the first 

LIM domain of both PINCH-1 and PINCH-2 and the second ANK repeat of ILK (Li et al., 

1999; Tu et al., 1999; Velyvis et al., 2001). However, recent structural data revealed that the 
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first LIM domain of both PINCH-1 and PINCH-2 binds in a highly similar and competitive 

manner not only to ANK 2 of ILK but also to ANK 3-5 and that ANK 4 provides the strongest 

contribution to the binding interface (Chiswell et al., 2010; Chiswell et al., 2008). 

Parvin, the third member of the IPP complex, was identified in 2000 in a screen for paxillin 

LD1 (leucine-rich sequence) domain binding proteins and at that time was termed actopaxin 

due to its ability to bind to both paxillin and actin (Nikolopoulos and Turner, 2000). 

Subsequently, Y2H screening for novel ILK-binding partners and expressed sequence tag 

(EST)-database mining for proteins with homology to the actin-binding domain of α-actinin, 

revealed that Parvins form an evolutionary conserved family of ILK-binding proteins, with 

three members in mammals and a single isoform in the invertebrates Caenorhabditis and 

Drosophila, whereas the unicellular organisms Dictyostelium and Saccharomyces lack 

recognizable Parvin isoforms (Olski et al., 2001; Tu et al., 2001; Yamaji et al., 2001). The 

three mammalian isoforms are referred to as α-Parvin (also known as actopaxin or CH-ILKBP 

(CH domain-containing ILK-binding protein)), β-Parvin (also known as affixin) and γ-Parvin. 

While α-Parvin and β-Parvin are closely related (74% identity and 85% similarity), γ-Parvin is 

more divergent and only shares 42% identity and 67% similarity with α-Parvin. Structurally, 

Parvins are characterized by the presence of two calponin homology domains (CH1 and CH2) 

in the C-terminal region, which are separated by a linker-sequence of about 60 aa. Particularly 

the CH2 domain, which facilitates the direct binding of all three isoforms to the kinase-like 

domain of ILK (Fukuda et al., 2009; Tu et al., 2001; Yamaji et al., 2001; Yoshimi et al., 

2006), is highly homologous, with 84% identity and 94% similarity between α-Parvin and β-

Parvin, and 50% identity and 71% similarity between α-Parvin and γ-Parvin. The CH1-

domain is preceded by an N-terminal region with little homology between the three isoforms. 

Two putative nuclear localization signals (NLS) and three potential SH3 (Src homology 3)-

binding sites are situated in this region in both α-Parvin and β-Parvin but not in γ-Parvin 

(Olski et al., 2001). While α-Parvin is ubiquitously expressed, β-Parvin expression is enriched 

in heart and skeletal muscle, and γ-Parvin expression is restricted to the haematopoietic 

system (Chu et al., 2006; Olski et al., 2001; Tu et al., 2001; Yamaji et al., 2001). 
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8.1.1) Distinct IPP complexes assemble in mammalian cells 

 

The binding of the different Parvin and PINCH isoforms to ILK is mutually exclusive and 

their partially overlapping expression patterns potentially permits the assembly of up to six 

molecularly and functionally distinct IPP complexes (Fukuda et al., 2003a; Montanez et al., 

2009; Zhang et al., 2002a). Thus the ternary IPP complex in mammalian cells can consist of 

ILK, connected via its N-terminal ANK-repeats to the first LIM-domain of either PINCH-1 or 

PINCH-2, and via its C-terminal kinase-like domain to the second CH-domain either of α-, β-, 

or γ-Parvin. However, it is not clear if all combinations are physiologically relevant, or if 

there is a preference for certain IPP complex combinations. 

It has been shown that the stability of IPP constituents critically depends on the assembly of a 

complete complex; depletion of either ILK, PINCH or Parvin results in proteasome-dependent 

degradation of the two remaining constituents, which complicates functional analyses of 

individual IPP members (Fukuda et al., 2003a; Li et al., 2005a). However, proteasomal 

degradation is not complete and the presence of residual amounts of IPP constituents suggests 

potential IPP-independent functions for the individual IPP members. 

Although overexpression or up-regulation of the alternative PINCH or Parvin isoforms 

generally restores the protein levels of the IPP complex and is sufficient for its recruitment 

into adhesion complexes, this does not always functionally compensate for the loss of a 

particular Parvin or PINCH isoform (Wickstrom et al., 2010b). 

For instance, whereas depletion of β-Parvin in vSMCs can be fully compensated by α-Parvin, 

β-Parvin is unable to functionally compensate for the loss of α-Parvin in these cells, even 

though expression of β-Parvin is elevated upon α-Parvin deletion and is sufficient to rescue 

protein-levels and recruitment of ILK and PINCH to FAs. However, β-Parvin is sufficient to 

functionally compensate for the loss of α-Parvin in fibroblasts (Montanez et al., 2009). 

Similarly, whereas depletion of PINCH-2 can be fully compensated by PINCH-1, 

overexpression of PINCH-2 in HeLa (Henrietta Lacks) cells is unable to functionally 

compensate for the loss of PINCH-1, despite stabilizing the protein levels of ILK and Parvin 

(Fukuda et al., 2003a). In contrast, PINCH-2 compensates for the loss of PINCH-1 in 

cardiomyocytes (Liang et al., 2009; Liang et al., 2005), and artificial expression of PINCH-2 

functionally compensates for the depletion of PINCH-1 in mouse embryonic fibroblasts 

(MEFs) (Stanchi et al., 2005). Taken together, this indicates overlapping as well as cell-type- 

and isoform-specific functions of distinct IPP complexes, which likely depend on the 

recruitment and interaction with shared and isoform and/or cell-type specific binding partners. 
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8.2) IPP interaction partners 

 

8.2.1) ILK-associated proteins 

 

Apart from binding to Parvins and PINCHs, ILK either directly or indirectly associates with a 

variety of additional proteins. Since there are no alternative isoforms of ILK, direct ILK-

binding partners may be shared by all the distinct IPP complexes. However, direct interaction 

with ILK was not confirmed for all ILK-associated molecules and thus might depend on the 

presence of specific PINCH and/or Parvin isoforms. Additionally, direct interactions might be 

stabilized by the simultaneous binding to both ILK and specific PINCH or Parvin isoforms, 

and thus might be favored by certain IPP complexes. Paxillin, for instance, has been shown to 

bind to ILK as well as to α- and γ-Parvin, but not to β-Parvin (Nikolopoulos and Turner, 

2000; Nikolopoulos and Turner, 2001; Yoshimi et al., 2006). Similarly, thymosin-β4 binds to 

both ILK and PINCH-1, whereas its interaction with PINCH-2 has not been reported (Bock-

Marquette et al., 2004; Fan et al., 2009). 

Direct ILK binding partners, either shown by Y2H experiments, interaction of recombinant 

proteins or co-crystallization studies, include β1 and β3 integrins (Hannigan et al., 1996; 

Pasquet et al., 2002; Yamaji et al., 2002), paxillin (Nikolopoulos and Turner, 2001; 

Nikolopoulos and Turner, 2002), thymosin β4 (Bock-Marquette et al., 2004; Fan et al., 2009), 

ELMO-2 (Ho et al., 2009), EphA1 (Yamazaki et al., 2009), kAE1 (kidney anion exchanger) 

(Keskanokwong et al., 2007), the serine/threonine phosphatase ILKAP (ILK-associated 

phosphatase) (Leung-Hagesteijn et al., 2001), PKB (protein kinase B)/Akt (McDonald et al., 

2008; Persad et al., 2001), Rictor (McDonald et al., 2008), Src (Kim et al., 2008) and the 

muscle LIM protein (MLP/CRP3) (Postel et al., 2008). 

Additionally, Caenorhabditis UNC-112/kindlin-2 directly binds to ILK, suggesting that the 

ILK-kindlin-2 interaction in mammalian cells, observed by co-immunoprecipition of kindlin-

2 and ILK, also might be direct (Mackinnon et al., 2002; Montanez et al., 2008). 

α- and β-tubulin as well as the tubulin binding proteins ch-TOG, RUVBL1, (Dobreva et al., 

2008; Fielding et al., 2008) and IQGAP (Wickstrom et al., 2010a) also have been shown to be 

associated with ILK. However, evidence for their direct interaction with ILK has not been 

reported. 
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Thus, the IPP complex, through the plethora of ILK interactions, can connect integrins not 

only to regulators of the actin and microtubule cytoskeleton but also to essential signaling 

pathways downstream of Src, PKB/Akt and Ephrins. 

 

8.2.2) PINCH-associated proteins 

 

PINCH-1 or PINCH-2 specific interactions could provide signaling specificity to distinct IPP 

complexes. Although several binding partners of PINCH-1 have been described, no PINCH-2 

interactors have been reported so far. Among the identified PINCH-1 binding partners is the 

SH2- and SH3-containing adaptor protein Nck-2, which directly binds via its third SH3-

domain to the LIM4 domain of PINCH-1. Mutations that interfere with the PINCH-1-Nck-2 

interaction negatively affect both the recruitment of PINCH-1 into FAs and the organization 

of the actin cytoskeleton (Vaynberg et al., 2005; Velyvis et al., 2003). Through its SH3 

domains, Nck-2 also associates with IRS-1, whereas its SH2 domain facilitates the interaction 

with growth factor receptors such as PDGFRβ (platelet derived growth factor receptor β). 

Interestingly, Nck-2 also associates with PAK, WASP and DOCK180. Thus, Nck-2 connects 

the IPP complex to both growth factor receptor signaling and mediators of actin cytoskeleton 

dynamics. Another PINCH-1-specific interaction partner, which binds to the LIM5 domain of 

PINCH-1, is the Ras-suppressor protein RSU-1, which negatively regulates Rac1 and JNK (c-

Jun N-terminal kinase) signaling (Dougherty et al., 2005; Kadrmas et al., 2004; Legate et al., 

2006). 

Additionally, the G-actin binding and sequestering protein thymosin-β4 binds to LIM4 and 

LIM5 of PINCH-1, promoting cardiomyocyte migration and survival (Bock-Marquette et al., 

2004). PINCH-2 can functionally compensate for the loss of PINCH-1 in ventricular 

cardiomyocytes (Liang et al., 2005), indicating that PINCH-2 might also be able to bind to 

thymosin-β4, although this needs to be experimentally verified. 

Finally, PINCH-1 associates and negatively regulates the phosphatase PP1α, and thus 

indirectly promotes phosphorylation and activation of PKB/Akt. Association of PP1α and 

PINCH-1 depends on a KFVEF-motif in the LIM5-domain of PINCH-1 (Eke et al., 2010), 

which is conserved in PINCH-2, raising the possibility that PINCH-2 might also be able to 

associate with PP1α (Braun et al., 2003). 

Since most studies focused on PINCH-1 and did not explicitly exclude a possible binding of 

the identified PINCH-1 interactors to PINCH-2, a direct comparison of the PINCH-1 and 
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PINCH-2 interactomes is required to determine whether binding partners are specific or 

shared between PINCH isoforms. 

 

8.2.3) Parvin-associated proteins 

 

The most prominent structural feature of Parvins is the presence of two tandemly arranged 

CH domains in the C-terminal region. Through the second CH domain, Parvins bind to the 

kinase-like domain of ILK, which is the only binding partner known to be shared by all three 

mammalian isoforms. 

The tandem arrangement of two CH domains serves as the actin-binding domain (ABD) in a 

variety of actin binding proteins, including α-actinin, spectrin, filamin, plectin, dystonin, 

dystrophin, and utrophin (Gimona et al., 2002). Although Parvin CH domains diverge 

considerably from the typical type-1 and type-2 CH domains and are therefore classified as 

type-4 and type-5 CH domains (Gimona et al., 2002), they also can facilitate actin binding 

(Olski et al., 2001). However, direct binding to actin was verified only for α-Parvin (Olski et 

al., 2001) and could not be confirmed for β-Parvin and γ-Parvin (Yamaji et al., 2004; Yamaji 

et al., 2001; Yoshimi et al., 2006). Instead, β- and γ-Parvin might indirectly link the IPP 

complex to the actin cytoskeleton by binding directly to α-actinin (Yamaji et al., 2004; 

Yoshimi et al., 2006), which α-Parvin does not bind (Nikolopoulos and Turner, 2002). 

Binding of β-Parvin to α-actinin depends on the CH2 domain and the linker sequence between 

the two CH-domains (Yamaji et al., 2004). In contrast to β-Parvin, both α-Parvin and γ-

Parvin, via their CH2-domains also bind to paxillin, which through its interaction with 

vinculin provides an additional link to the actin cytoskeleton, and profoundly affects actin 

cytoskeletal dynamics by recruiting important actin-regulators such as the GIT-Pix-PAK 

complex (Nayal et al., 2006; Nikolopoulos and Turner, 2000; Yamaji et al., 2004; Yoshimi et 

al., 2006). Additionally, α-Parvin also binds to the paxillin family member Hic-5 (Lorenz et 

al., 2008; Nikolopoulos and Turner, 2000). In contrast to α-Parvin, both β- and γ-Parvin 

directly bind to α-Pix through their CH1 domains (Mishima et al., 2004; Rosenberger et al., 

2003; Yoshimi et al., 2006), and β-Parvin additionally can bind to β-PIX (Matsuda et al., 

2008). Furthermore, through its CH1 domain, β-Parvin binds to dysferlin and both proteins 

co-localize at the sarcolemma of skeletal muscles, suggesting a potential function of β-Parvin 

in membrane repair (Matsuda et al., 2005). Based on luciferase-complementation assays, β-

Parvin was recently suggested to interact with PKB/Akt, and thereby interfering with the 
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interaction between ILK and PKB/Akt (Kimura et al., 2010). Two additional binding partners 

for α-Parvin have been identified. However, it is not known, whether they also can bind to β- 

and/or γ-Parvin. The first one is CdGAP, a Cdc42- and Rac-specific GAP that concentrates at 

the ends of actin stress fibers. Binding to CdGAP is mediated by the N-terminus of α-Parvin 

and critically depends on residues 21-25 of α-Parvin (LaLonde et al., 2006). 

The second one is the Ser/Thr kinase TESK1 (testicular protein kinase 1). Through its C-

terminus α-Parvin directly binds to and thereby inhibits TESK1, which, when active, 

phosphorylates and inhibits cofilin. Interestingly, the binding of ILK and TESK1 to α-Parvin 

seems to be mutually exclusive and might be regulated through N-terminal phosphorylation of 

α-Parvin at Ser4 and Ser 8. Adhesion to FN promotes the phosphorylation of α-Parvin at these 

residues and negatively affects its association with TESK1, which finally results in 

inactivation of cofilin and stabilization of actin fibers (LaLonde et al., 2005). 

 

8.3) Functions of the IPP complex 

 

Many of the IPP interactors are involved in the linkage and/or regulation of the actin 

cytoskeleton. Accordingly it is not surprising that the IPP complex plays a fundamental role in 

the organization and regulation of the actin cytoskeleton and its dynamics, with profound 

effects on cell-adhesion, spreading and migration. Furthermore, several studies indicate an 

important function of the IPP complex for cell survival. 

 

8.3.1) In vitro functions 

 

In vitro studies in HeLa cells identified distinct functions of α- and β-Parvin in the regulation 

of the actin cytoskeleton, cell spreading, migration and survival. RNAi-mediated depletion of 

α-Parvin in HeLa cells stimulates Rac activation and cell spreading, whereas cell spreading is 

reduced upon knockdown of β-Parvin (Zhang et al., 2004). This antagonistic effect might be 

explained by the distinct binding partners of α- and β-Parvin. While α-Parvin binds to the 

Rac/Cdc42 GAP CdGAP, which negatively regulates cell spreading by inactivating Rac 

(LaLonde et al., 2006), β-Parvin stimulates Rac activity by binding to the Rac/Cdc42 GEF α-

Pix (Mishima et al., 2004). However, Erk (extracellular signal-regulated protein kinase) 

dependent phosphorylation of α-Parvin or expression of a phosphomimetic mutant form of α-
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Parvin (Ser4/8Asp), promote cell spreading and migration (Clarke et al., 2004). Interestingly, 

the phosphomimetic α-Parvin mutant exhibits impaired binding to TESK1, resulting in 

activation of TESK1, cofilin inhibition and stabilization of actin fibers (LaLonde et al., 2005). 

Additionally, α-Parvin is required to facilitate membrane translocation of PKB/Akt, and thus 

promotes cell survival by protecting cells from apoptosis (Fukuda et al., 2003b), whereas 

overexpression of β-Parvin promotes apoptosis (Zhang et al., 2004). Interestingly it has been 

reported, that β-Parvin negatively regulates the ILK-PKB/Akt interaction, which might 

explain the pro-apoptotic effect of β-Parvin in HeLa cells (Kimura et al., 2010). Although 

studies in HeLa cells have revealed distinct functions for α- and β-Parvin, it appears that the 

specific functions of the Parvin-isoforms critically depend on the cell context. 

Overexpression of PINCH-2 in HeLa cells interferes with the PINCH-1-ILK interaction and 

results in reduced cell spreading and migration (Zhang et al., 2002a). Additionally, similar to 

α-Parvin, PINCH-1 is crucial for cell survival. Phosphorylation of PKB/Akt at both Ser473 

and Thr308 is required for the activation of PKB/Akt and depletion of PINCH-1 results in 

reduced phosphorylation of both residues in HeLa cells. PINCH-1 might regulate the 

phosphorylation and activation of PKB/Akt indirectly by binding and inhibiting PP1α (Eke et 

al., 2010). Additionally, PINCH-1 has been shown to prevent activation of the intrinsic 

apoptosis pathway by negatively regulating Bim through Erk (Chen et al., 2008). Although 

increased expression of PINCH-2 is sufficient for stabilization and recruitment of ILK and α-

Parvin to FAs, PINCH-2 fails to compensate for the defects in PKB/Akt phosphorylation, 

survival, spreading and migration in PINCH-1-depleted HeLa cells (Fukuda et al., 2003a). 

However, PINCH-2 can functionally compensate for the loss of PINCH-1 in cardiomyocytes 

(Liang et al., 2009; Liang et al., 2005) and in MEFs (Stanchi et al., 2005), indicating that the 

downstream signaling pathways of PINCH isoforms are also cell context dependent. 

Similar to the depletion of PINCH-1, depletion of ILK in HeLa cells also impairs cell 

spreading, migration and survival. In contrast to the depletion of PINCH-1, depletion of ILK 

in these cells only reduced phosphorylation of PKB/Akt on Ser473, without affecting Thr308 

phosphorylation (Fukuda et al., 2003a). Similarly in fibroblasts, deletion of ILK results in 

defects in cell adhesion, spreading and migration. Additionally, formation of stress fibers and 

maturation of FAs into fibrillar adhesions are impaired in ILK-deficient fibroblasts. Fibrillar 

adhesions are essential for the assembly and organization of the FN matrix. Accordingly, FN 

matrix assembly is hampered in ILK-deficient fibroblasts. Unlike in HeLa cells, deletion of 

ILK in fibroblasts diminishes their proliferation rate but does not result in altered 

phosphorylation of PKB/Akt and apoptosis (Sakai et al., 2003; Stanchi et al., 2009). 
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8.3.2) ILK is a pseudokinase 

 

Although the C-terminal kinase-like domain of ILK has significant sequence homology to 

Ser/Thr protein kinases, essential residues required for kinase activity are not conserved in 

ILK (Hanks et al., 1988). Nevertheless, several studies showed Ser/Thr kinase activity 

towards several substrates including the cytoplasmic tail of β1 integrin (Hannigan et al., 

1996), PKB/Akt, GSK3β (glycogen-synthase kinase-3β), MLC, MYPT1, α-NAC (nascent-

polypeptide-associated complex and co-activator-α), Myelin basic protein, CPI-17 (protein 

kinase C-dependent phosphatase inhibitor of 17 kDa), PHI-1 (phosphatase holoenzyme 

inhibitor-1), and β-Parvin (Legate et al., 2006). However, the putative kinase activity of ILK 

has been a matter of controversy and there are striking arguments against ILK being a 

functional kinase under physiological conditions (Boudeau et al., 2006). First, in Drosophila 

and Caenorhabditis, the absence of ILK results in muscle detachment and embryonic 

lethality, but expression of kinase-dead versions of ILK are sufficient to completely restore 

the wild-type phenotype. This indicates that the putative kinase activity, at least in 

invertebrates, is dispensable in vivo. Furthermore, the phenotypes of PKB/Akt or GSK3β (or 

downstream signaling molecule β-catenin) deficient mutants, both suggested to be important 

downstream targets of ILK, differ strikingly from the phenotype of ILK deficient mutants 

(Mackinnon et al., 2002; Zervas et al., 2001). Second, although Ser473 phosphorylation of 

PKB/Akt is impaired in heart, skeletal muscle, Schwann cells, and macrophages in the 

absence of ILK (Pereira et al., 2009; Troussard et al., 2003; Wang et al., 2008; White et al., 

2006), phosphorylation of PKB/Akt and/or GSK3β is not altered when ILK is deleted in 

fibroblasts, chondrocytes, or keratinocytes (Grashoff et al., 2003; Lorenz et al., 2007; Sakai et 

al., 2003). This indicates that the putative kinase activity of ILK is only required in certain 

cell-types, if at all. Third, mice carrying different point-mutations (R211A, S343A or S343D) 

in the ILK-gene, which have been reported to result in kinase-dead or hyperactive versions of 

ILK, are phenotypically normal and without obvious alterations in PKB/Akt or GSK-3β 

phosphorylation. This clearly excludes an essential function of the putative ILK-kinase 

activity in vivo (Lange et al., 2009). Only when the presumptive ATP-binding site is mutated 

(K220A/M) mice develop kidney agenesis/dysgenesis and die shortly after birth. However, 

neither phosphorylation of PKB/Akt or GSK-3β in vivo nor phosphorylation of MBP in vitro 

was impaired by these mutations. Thus, loss of the putative ILK-kinase activity cannot 
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explain the observed phenotype. Instead, the K220A/M mutations strikingly and specifically 

interfere with the binding of α-Parvin to ILK, suggesting that this interaction is crucial for 

kidney development. Indeed, loss of α-Parvin results in similar kidney defects (Lange et al., 

2009; Montanez et al., 2009). Finally, the high-resolution crystal structure of the ILK kinase-

like domain clearly demonstrates, that ILK is a pseudokinase unable to hydrolyze ATP, and 

that the pseudoactive site is essential for the ILK-α-Parvin interaction (Fukuda et al., 2009). 

Collectively, these data identify ILK as a pseudokinase. ILK-associated changes in PKB/Akt 

phosphorylation and other potential substrates are likely indirect and depend on ILK’s 

function as an essential scaffolding protein to locally orchestrate signaling networks 

downstream of integrins. 

 

8.3.3) In vivo functions 

 

8.3.3.1) Invertebrates 

 

Studies in invertebrates, which only possess a limited number of integrins and IPP 

components, clearly demonstrate that the IPP complex is essential for the linkage of integrins 

to the actin cytoskeleton. 

In Caenorhabditis, orthologues of β-integrin (PAT-3), ILK (PAT-4), PINCH (UNC-97), and 

Parvin (PAT-6) co-localize in FA-like structures known as dense bodies and M-lines. Dense 

bodies and M-lines are sites of muscle attachment, where actin- and myosin-filaments are 

connected to the basal sarcolemma and the underlying basement membrane (BM). Genetic 

deletion of β integrin or any of the IPP constituents impairs dense body and M-line assembly 

and results in a PAT (paralyzed and arrested at the twofold stage) phenotype, which is defined 

by muscle detachment from the body wall and embryonic lethality (Lin et al., 2003; 

Mackinnon et al., 2002; Norman et al., 2007). 

The Drosophila orthologues of β integrin (βPS), ILK and PINCH, also co-localize at muscle 

attachment sites and at basal junctions of the wing epithelium. Loss-of-function mutations or 

deletion of either β integrin, ILK or PINCH, results in embryonic lethal muscle detachment 

from the body wall and blister formation in the wings of adult chimeras due to defective cell-

adhesion (Brown, 1994; Clark et al., 2003; Zervas et al., 2001). However, the cell adhesion 

defects differ between β integrin and the ILK or PINCH mutants. Loss of β integrin impairs 
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the linkage between the cell membrane and the ECM, whereas loss of ILK or PINCH leads to 

the detachment of actin filaments from the plasma-membrane (Clark et al., 2003; Zervas et 

al., 2001). In contrast to ILK mutants, β integrin and PINCH mutants additionally exhibit 

defects in midgut morphogenesis and dorsal closure, which indicates that cell migration is 

compromised in these mutants, but not in ILK mutants (Brown, 1994; Kadrmas et al., 2004; 

Zervas et al., 2001). Interestingly, PINCH negatively regulates JNK activity by binding to 

RSU-1 and thereby integrates integrin and JNK signaling, which is essential for dorsal closure 

(Kadrmas et al., 2004). Thus in Drosophila, ILK might be dispensable for cell migration, 

whereas β integrin and PINCH are critically required, suggesting that β integrin and PINCH 

also can function in an ILK-independent manner. Indeed, in contrast to mammalian IPP 

complexes, individual IPP constituents can be recruited to adhesion complexes independently 

both in Drosophila and Caenorhabditis (Clark et al., 2003; Lin et al., 2003; Zhang et al., 

2002b), suggesting IPP complex-independent functions in these organisms. 

 

8.3.3.2) Vertebrates 

 

8.3.3.2.1) Zebrafish 

 

The essential function of the IPP complex in vivo has also been demonstrated in zebrafish 

(Danio rerio). In the zebrafish heart and skeletal muscle, ILK, PINCH and β-Parvin co-

localize at sarcomeric Z-disks and costameres and are part of the cardiac mechanical stretch 

sensor. Antisense-mediated depletion either of ILK, PINCH-1, PINCH-2, or β-Parvin, 

phenocopies the embryonic lethal ILK-(L308P)-mutant main squeeze (MSQ), which is 

characterized by a progressive reduction of cardiac contractility. Although binding of β-

Parvin to ILK is impaired in MSQ mutants, β-Parvin still localizes to costameres of 

cardiomyocytes and skeletal muscle, whereas depletion either of β-Parvin, PINCH-1, or 

PINCH-2 results in severe reduction of ILK protein levels. Loss of β-Parvin is accompanied 

by reduced phosphorylation of PKB/Akt at Ser 473 and the concomitant decrease of stretch-

responsive atrial natriuretic factor (ANF) and vascular endothelial growth factor (VEGF) 

expression. Overexpression of VEGF or constitutively active PKB/Akt, reconstitutes the 

cardiac function, indicating that the β-Parvin- IPP complex-dependent regulation of PKB/Akt 

signaling plays an essential role in the zebrafish heart. Although it was reported in these 
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studies, that the cardiac and skeletal muscle ultrastructure was unaffected by the loss of ILK, 

PINCH-1/2 or β-Parvin (Bendig et al., 2006; Meder et al., 2011), a different study provided 

evidence for the detachment of the sarcolemma from the ECM following increased 

mechanical force in skeletal muscles of ILK- or β-Parvin-depleted zebrafish (Postel et al., 

2008). Thus, the IPP complex not only regulates PKB/Akt-signaling but also is required to 

reinforce the integrin-actin linkage in this organism. 

 

8.3.3.2.2) Mammals 

 

In mice, genetic deletion either of β1 integrin (Fassler and Meyer, 1995; Stephens et al., 

1995), ILK (Sakai et al., 2003), PINCH-1 (Li et al., 2005a; Liang et al., 2005), or α-Parvin 

(Montanez et al., 2009), results in embryonic lethality, whereas mice lacking PINCH-2, β-

Parvin, γ-Parvin or both β- and γ-Parvin are phenotypically normal, likely due to 

compensation by PINCH-1 or α-Parvin, respectively (Chu et al., 2006; Montanez et al., 2009; 

Stanchi et al., 2005). 

Embryos lacking β1 integrin and ILK die between day 5.5 and 6.5 of embryonic (E5.5-E6.5) 

development, whereas PINCH-1 deleted embryos survive slightly longer, until E6.5-E7.5. 

PINCH-2 is not expressed at this early developmental stage and thus cannot compensate for 

the loss of PINCH-1 (Braun et al., 2003).  

The early lethality at the peri-implantation stage resulting from deletion of β1 integrin, ILK, 

or PINCH-1, complicates functional analyses. Embryoid bodies (EB) can recapitulate most 

aspects of early embryonic development and therefore have been employed to study the 

consequences of β1 integrin, ILK and PINCH-1 deletion. These studies revealed that β1 

integrin is required for Ln secretion and assembly of the BM (Aumailley et al., 2000; Li et al., 

2002), whereas secretion of Ln was unaffected in EBs lacking ILK or PINCH-1. However, in 

the absence of ILK or PINCH-1, EBs failed to form an amniotic cavity, displayed a distorted 

epiblast polarization, abnormal localization of F-actin, and impaired adhesion of primitive 

endoderm and epiblast to the BM (Li et al., 2005a; Sakai et al., 2003). These defects were 

more pronounced in EBs lacking ILK compared to PINCH-1, which may explain the slightly 

longer survival of PINCH-1 deficient embryos. Additionally, cell-cell adhesion and endoderm 

survival was impaired in EBs lacking PINCH-1 but not in EBs lacking ILK, suggesting an 

IPP-independent function of PINCH-1 in these processes (Li et al., 2005a). 
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While deletion of β1 integrin, ILK, or PINCH-1 results in death at the peri-implantation stage, 

embryos lacking α-Parvin develop normally until E9.5, but die between E11.5 and E14.5 from 

severe cardiovascular defects (Montanez et al., 2009). Additionally, these embryos show 

severe kidney agenesis/dysgenesis due to impaired ureteric bud (UB) invasion into the 

metanephric mesenchyme (MM) (Lange et al., 2009). This suggests that β-Parvin can 

compensate for the loss of α-Parvin during early mouse development, but fails to substitute 

for α-Parvin-specific functions at later stages. 

Although β-Parvin is expressed in vSMCs and is sufficient to rescue protein-levels and 

adhesion recruitment of ILK and PINCH, β-Parvin cannot functionally compensate for the 

loss of α-Parvin in these cells. Without α-Parvin, vSMCs are hypercontractile and fail to 

establish a persistent leading edge due to elevated RhoA-ROCK signaling and enhanced 

phosphorylation of MLC. Although the random motility of these cells is increased, their 

directional migration is severely impaired, resulting in the inefficient recruitment of vSMCs to 

endothelial tubes and insufficient coverage of blood-vessels. Accordingly, remodeling of 

blood-vessels is rudimentary in the absence of α-Parvin, and is accompanied by the formation 

of micro-aneurysms, dilations and rupture of vessels, hemorrhages and edemas (Montanez et 

al., 2009). 

Although constitutive deletion of β1 integrin, ILK, PINCH-1 and α-Parvin demonstrate that 

they are essential for mammalian development, analysis of their functions in adult animals 

and/or in specific organs is precluded due to embryonic lethality. Tissue-specific deletion and 

knock-in strategies to introduce specific point-mutations have been employed to overcome 

this limitation. 

Similar to the constitutive ablation of α-Parvin, vSMC-specific deletion of ILK also results in 

increased RhoA activity and ROCK/MLC-dependent hypercontractility of vSMCs. Embryos 

lacking ILK specifically in vSMCs die around E18.5 due to severe vascular defects, including 

micro-aneurysms, inefficient recruitment of vSMCs to the vessel-wall, insufficient coverage 

and stabilization of blood-vessels, dilation and rupture of vessels as well as hemorrhages and 

edemas (Kogata et al., 2009). 

Tissue-specific ablation of ILK in Schwann cells also leads to Rho-mediated 

hypercontractility in these cells, leading to defective myelination of axons (Pereira et al., 

2009). Additionally, mice harboring a point mutation in the potential ATP-binding site of 

ILK, which specifically abrogates the ILK-α-Parvin interaction, develop kidney defects 

similar to mice lacking α-Parvin and die shortly after birth. Collecting duct epithelial cells 

from these mice display enhanced contractile properties and increased random migration but 
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are impaired in their directional migration, indicating that the ILK-α-Parvin interaction is 

required for persistent migration in these cells, possibly by negatively regulating RhoA 

activity (Lange et al., 2009). Collectively, these studies indicate that the α-Parvin plays an 

essential role in the regulation of RhoA activity in certain cell-types. Although vSMC-specific 

deletion of β1 integrin, similar to the loss of ILK and α-Parvin, also leads to vascular leakage 

and instability, these defects result from impaired differentiation and abnormal proliferation 

of vSMCs but are not due to increased MLC phosphorylation and hypercontractility of 

vSMCs (Abraham et al., 2008). This is consistent with a loss of the RhoA/ROCK-promoting 

function of α5β1 integrins upon deletion of β1 integrin. Thus, β1 integrin signaling promotes 

RhoA/ROCK signaling, whereas the α-Parvin is required to prevent excessive RhoA activity 

in certain cell types. 

One possibility is that the α-Parvin directly counteracts the RhoA/ROCK promoting function 

of α5β1 integrins by recruiting or activating Rho GAPs and/or by displacing or inhibiting Rho 

GEFs. Alternatively, the α-Parvin-IPP complex could be required for αvβ3 integrin mediated 

signaling, which promotes Rac activation and negatively regulates β1 integrin recycling to the 

membrane (Danen et al., 2002; Danen et al., 2005). 

Constitutive and conditional deletion of integrins and members of the IPP complex have 

identified important functions in a broad variety of tissues and cell-types, including 

skeleton/chondrocytes (Aszodi et al., 2003; Grashoff et al., 2003; Terpstra et al., 2003), 

heart/cardiomyocytes (Liang et al., 2009; Liang et al., 2005; Shai et al., 2002; White et al., 

2006), vasculature/endothelial cells (Friedrich et al., 2004) and vSMCs (Abraham et al., 2008; 

Kogata et al., 2009; Montanez et al., 2009), skeletal muscle/myocytes (Gheyara et al., 2007; 

Wang et al., 2008), skin/keratinocytes (Brakebusch et al., 2000; Lorenz et al., 2007; Nakrieko 

et al., 2008; Raghavan et al., 2000), nervous system/neurons, Schwann cells and neural crest 

cells (Breau et al., 2006; Niewmierzycka et al., 2005; Pereira et al., 2009), kidney/podocytes 

and UB epithelial cells (Dai et al., 2006; El-Aouni et al., 2006; Kanasaki et al., 2008; Pozzi et 

al., 2008; Smeeton et al., 2010) and many more. A detailed discussion of integrin and IPP 

function in these numerous tissues and cell-types would exceed the scope of this introduction. 

Therefore, the focus will be on their function in the vascular system and in the skin. 
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9) Development of the vascular system 
 

The first functional organ to form in vertebrate development is the cardiovascular system. It 

comprises the heart, blood vessels and lymphatic vessels. Blood vessels and lymphatic vessels 

are branched tubular networks, lined by endothelial cells (ECs). They facilitate the transport 

of gases, liquids, nutrients, signaling molecules and circulating cells. Insufficient blood supply 

results in ischaemia and severe pathological deficiencies, which are often fatal. In tumors, on 

the other hand, increased angiogenesis can promote tumor growth, and extravasation of tumor 

cells into lymphatic or blood vessels facilitates their metastatic spread, primarily into lymph 

nodes and the lung (Armulik et al., 2005). 

 

9.1.1) Vasculogenesis 

 

Early during embryogenesis, cells of mesodermal origin differentiate into endothelial 

precursor cells (EPCs), also referred to as angioblasts. EPCs then cluster into so-called blood 

islands, which coalesce to form a capillary network, known as primary capillary plexus. This 

process, which leads to the de novo formation of blood vessels, is referred to as 

vasculogenesis. The dorsal aorta, the cardinal vein and the yolk-sac vasculature are directly 

generated by vasculogenesis (Adams and Alitalo, 2007) (Figure 5). 
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Figure 5: Vasculogenesis, angiogenesis and lymphangiogenesis 
Vasculogenic fusion of blood islands results in the formation of a primary capillary plexus, which is extensively 

remodeled during angiogenesis. Pericytes associate with capillaries and immature blood vessels, whereas large 

and mature vessels are supported by vSMCs. Lymphangiogenesis is initiated by the sprouting of lymphatic ECs 

(LEC) from embryonic veins. For details see text. Figure taken from (Adams and Alitalo, 2007). 

 

9.1.2) Angiogenesis 

 

In a process known as angiogenesis, the primary vascular plexus extends and is extensively 

remodeled, which eventually results in the formation of a hierarchical system consisting of 

major arteries and veins, smaller (pre-capillary) arterioles and (post-capillary) venules, and a 

branched network of fine capillaries (Figure 5). During angiogenesis, new vessels can sprout 

from existing vessels (sprouting angiogenesis) or can be generated by splitting 

(intussusception) of vessels through the insertion of tissue pillars (Djonov and Makanya, 

2005) (non-sprouting angiogenesis). While some vessels regress and become eliminated 

(pruned), others branch, fuse and/or mature. Maturation of vessels requires the recruitment of 

pericytes and vSMCs, collectively referred to as mural cells, to newly formed endothelial 

tubes. While capillaries and immature blood vessels are covered by pericytes, which are 

embedded in the BM and establish direct connections with ECs through focal cell-cell 
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contacts, larger vessels are ensheathed by vSMCs, which are separated from the endothelium 

by the vascular BM (Adams and Alitalo, 2007). 

Mural cells not only mechanically stabilize vessels, but also prevent excessive proliferation 

and sprouting of EC and thus are required to facilitate a quiescent and mature vessel 

phenotype. In addition, vSMCs control the vascular tone through contraction or relaxation of 

their actomyosin cytoskeleton (Armulik et al., 2005; Bergers and Song, 2005). 

 

9.1.3) Regulation of sprouting angiogenesis 

 

Angiogenic sprouting is tightly regulated. ECs have to reverse their polarity and adopt motile 

and invasive features, which includes the activation and/or secretion of proteases to locally 

dissolve the vascular BM. Furthermore, endothelial sprouts have to elongate in a polarized, 

coordinated, and directional way. 

Angiogenic sprouts are guided by ECs located at the front of the tip and referred to as tip 

cells. Similar to axonal growth cones, tip cells extend filopodia to sense attractive and 

repulsive guidance cues in their environment. Notch signaling is essential for the specification 

of tip cells and impaired Notch signaling increases tip cell formation, which leads to excessive 

sprouting, branching and fusion of endothelial tubes (Adams and Alitalo, 2007). 

Expression of the Notch ligand DLL4 (Delta-like-4) in tip cells is induced by VEGFA 

(vascular endothelial growth factor A). This results in activation of Notch signaling in 

adjacent cells which suppresses the expression of VEGFR2 (VEGF receptor) (and VEGFR3 

in zebrafish) in these cells and prevents the formation of additional sprouts. 

Tip cells, in contrast, express high levels of VEGFR2 which help to guide the elongating 

sprout along a spatial concentration gradient of a ECM-anchored isoform of VEGFA 

(VEGF164 in mice, VEGF165 in humans) (Adams and Alitalo, 2007). 

Interestingly, guidance of endothelial sprouts frequently parallels axonal path finding and 

similar guidance cues are used by ECs and neurons. Repulsive cues for ECs include the class 

3 semaphorin SEMA3E and netrin-1, which prevent abnormal vascular patterning by 

interacting with their corresponding endothelial receptors Plexin D1 and UNC5B 

(uncoordinated-5B), respectively. Accurate vascular patterning also depends on the 

expression of ROBO4 (magic roundabout) on ECs, and SLIT proteins might function as 

repulsive cues for ROBO4 expressing ECs. However, it is not clear, if SLIT proteins can 

directly interact with ROBO4 (Adams and Alitalo, 2007). 
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Sprouting ends when elongating endothelial sprouts fuse with existing capillaries or the tips of 

other sprouts, which results in the formation of new vascular connections. Fusion requires the 

establishment of new cell-cell contacts between ECs. Furthermore, ECs have to revert to a 

non-migratory phenotype. However, inappropriate fusion may result in arteriovenous shunts, 

known as anastomoses, and thus fusion needs to be regulated. Repulsive cues are thought to 

prevent the inappropriate fusion of non-matching capillary sprouts (Adams and Alitalo, 2007). 

 

9.1.4) Maturation of vessels 

 

Maturation of vessels is supported by the onset of blood flow, which results in enhanced 

oxygen supply. This in turn lowers the local production of pro-angiogenic VEGFA, which 

results in pruning of immature vessels, whereas maturation prevents vessel regression in the 

absence of VEGFA. Assembly of a vascular BM and suppression of EC-proliferation and 

sprouting further promote the maturation of vessels. Additionally, recruitment of mural cells 

to nascent vessels is essential for vessel maturation. While ECs, in particular tip cells, secrete 

PDGFB (platelet-derived growth factor B), mural cells express the corresponding receptor 

PDGFRβ (PDGF receptor β), which is essential for proliferation and recruitment of mural 

cells to blood-vessels and for their association with the vessel-wall. Similar to VEGFA, 

spatial presentation of PDGFB is essential for the recruitment of mural cells. PDGFB contains 

a retention motif, which by binding to heparin sulfate proteoglycans facilitates the anchorage 

of PDGFB to the ECM. Consequently, mural cell coverage is impaired in mice that express a 

mutant form of PDGFB that lacks the retention motif (Armulik et al., 2005; Lindblom et al., 

2003). 

Interestingly, ECs also secrete sphingosine-1-phosphate (S1P), and PDGFRβ might cooperate 

with S1P-receptors, which belong to the G-protein coupled receptor family (Allende and 

Proia, 2002; Spiegel and Milstien, 2003). S1P1, S1P2 and S1P3 have been shown to be 

involved in vascular development, and deletion of S1P1 results in insufficient investment of 

blood-vessels by mural cells, which might be partially due to impaired Rac activation (Kono 

et al., 2004; Liu et al., 2000). 

TGFβ (transforming growth factor β) signaling also plays an important role in mural cells. 

TGFβ and latency associated peptide (LAP) form a latent complex, which is anchored to the 

ECM through the latent TGFβ-binding protein (LTBP) (ten Dijke and Arthur, 2007). TGFβ 

signaling, together with serum response factor (SRF), myocardin, CRP1 and CRP2, and δEF1, 
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promotes differentiation of progenitor cells into mural cells (Adams and Alitalo, 2007). 

Deletion of TGFβ1, its receptors TGFβ receptor-2 (Tgfbr2) and activin-receptor-like kinase-1 

and -5 (Alk1 and Alk5), the accessory receptor endoglin (Eng), or the downstream effector 

SMAD5, all result in severe cardiovascular defects and embryonic lethality (Armulik et al., 

2005). 

 

9.1.5) Integrins in the vascular system 

 

Integrins play a major role in the development and homeostasis of the vascular system. ECs 

express several integrins, including the β1 integrins α1β1, α2β1, α3β1, α4β1, α5β1, α6β1 and 

α9β1, the αV integrins αvβ3 and αvβ5, as well as α6β4. The integrin repertoire of mural cells 

is less well characterized, although they were shown to express α1β1, α2β1, α3β1, α4β1, 

α5β1, α6β1, α9β1, α6β4 and, in addition, α7β1 and α8β1 (Avraamides et al., 2008; Silva et al., 

2008). Genetic and pharmacological approaches revealed critical functions of several 

integrins in the vasculature. However, as shown for αV integrins, results between 

pharmacological inhibition and genetic ablation can differ significantly. 

While the majority of mice lacking the αV integrin subunit die between E10.5 and E11.5 due 

to vascular defects in placental blood vessels, 20% complete embryonic development but die 

shortly after birth. These mice display enlarged and leaky vessels in the brain and intestine, 

accompanied by severe hemorrhages (Bader et al., 1998). However, deletion of αV 

specifically in ECs does not affect blood vessels in the brain, whereas specific deletion of αV 

in neuronal cells results in vascular defects in the brain that closely resemble those of mice 

completely lacking αV integrins (McCarty et al., 2005). Similar vascular defects in the brain 

are also observed in mice lacking the β8 integrin subunit, which is expressed by neither ECs 

nor mural cells, but instead is expressed by glia cells. This indicates, that the vascular defects 

in brain are due to the loss of αvβ8 in glia cells but not in ECs (McCarty et al., 2002; Zhu et 

al., 2002). 

Studies using antagonists or blocking antibodies specific for the αV integrins αvβ3 and αvβ5 

indicate an essential function for these integrins in pathological angiogenesis. Endothelial 

expression of αvβ3 increases during neovascularization in tumors, wounds and inflamed 

tissue and is promoted by angiogenic growth factors and cytokines, including bFGF (basic 

fibroblast growth factor), TNFα (tumor necrosis factor α) and IL8 (interleukin 8) (Brooks et 

al., 1994a). Furthermore, αvβ3 specific antagonists induce caspase 8-dependent apoptosis in 
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ECs (Stupack et al., 2001) and inhibit angiogenesis, indicating that this integrin is important 

for EC survival and migration (Brooks et al., 1994a; Brooks et al., 1994b; Brooks et al., 1995; 

Friedlander et al., 1995; Friedlander et al., 1996; Fu et al., 2007). However, genetic ablation 

of β3 and/or β5 (and hence αvβ3 and αvβ5) does not impair physiological angiogenesis but 

promotes tumor angiogenesis, possibly due to elevated levels of VEGFR-2 in the absence of 

αvβ3 (Reynolds et al., 2004; Reynolds et al., 2002). Moreover, migration and proliferation of 

αvβ3-deficient ECs is increased in response to VEGF (Reynolds et al., 2004). In contrast, 

tumor angiogenesis is impaired when both Tyrosine 747 and Tyrosine 759 in the β3 

cytoplasmic tail are replaced by Phenylalanine (Mahabeleshwar et al., 2006). Consistently, 

adhesion, spreading, migration and capillary tube formation are compromised in the mutant 

ECs (Mahabeleshwar et al., 2006). 

Genetic ablation of the β1 integrin subunit (and hence all β1 integrin heterodimers) 

demonstrates a key function for β1 integrins in vascular development. In the absence of β1 

integrin, EC proliferation and branching of blood vessels is impaired in EBs and only host 

derived blood vessels form in β1-deficient teratomas (Bloch et al., 1997). Furthermore, 

endothelial-specific deletion of the β1 integrin subunit in mice results in embryonic lethality 

by E10.5 due to severe vascular defects. Although vasculogenesis and formation of larger 

vessels is unaffected, angiogenesis in the embryo and yolk sac is severely compromised in 

mice lacking β1 integrins in ECs (Tanjore et al., 2008). Similarly, endothelial-specific 

deletion of ILK results in severe vascular defects and embryonic lethality around E11.5 

(Friedrich et al., 2004). 

Specific deletion of the β1 integrin subunit in mural cells also results in severe vascular 

defects, which are characterized by insufficient investment of the vessel wall by mural cells. 

Although mural cell specific deletion of ILK and constitutive deletion of α-Parvin both lead to 

similar vascular defects, these defects are due to increased RhoA/ROCK mediated 

contractility, whereas β1 integrin-deficient mural cells are not hypercontractile. Instead, 

proliferation of mural cells is increased and their differentiation is compromised in the 

absence of β1 integrins (Abraham et al., 2008; Kogata et al., 2009; Montanez et al., 2009). 

Constitutive deletion of the integrin α5 subunit results in embryonic lethality between E10 

and E11. The mutant embryos lack posterior somites and have a truncated posterior. 

Furthermore, vascular development is severely impaired, demonstrating an essential role of 

the α5β1 integrin heterodimer in the development of the vasculature (Yang et al., 1993). 

Depletion of α5β1 also results in defects in the formation of the vasculature in EBs and 
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teratomas, which are similar to the defects in β1 deficient EBs and teratomas, albeit milder 

(Francis et al., 2002; Taverna and Hynes, 2001). 

Consistent with the essential function of the α5β1 integrin in vascular development, mutation 

or constitutive deletion of its ligand FN in mice results in similar defects, including a severely 

compromised cardiovascular system and lack of somites (Astrof et al., 2007; Gettner et al., 

1995; Takahashi et al., 2007). 

In addition to αvβ3, αvβ5 and α5β1, the integrin heterodimers α4β1 and α9β1 are also FN 

receptors expressed by ECs and mural cells. Although genetic ablation of the integrin α9 

subunit does not result in recognizable abnormalities in blood vessels, mice lacking α9β1 

integrin fail to develop a normal lymphatic system and die between 6 and 12 days after birth 

due to respiratory failure caused by an accumulation of pleural fluid (Huang et al., 2000b). 

This suggests an essential function for α9β1 in the lymphatic vasculature. 

Deletion of the α4 integrin subunit in mice results in embryonic lethality between E10 and 

E12, due to impaired chorio-allantoic fusion during placentation and defects in the 

development of the epicardium and coronary vessels, which lead to cardiac hemorrhages 

(Yang et al., 1995). Although it is not clear if α4 has a relevant function in physiological 

angiogenesis, its expression is increased during tumor angiogenesis and in response to 

angiogenic growth factors and cytokines. Furthermore, α4β1 can promote the association of 

VCAM-1 expressing vSMCs with ECs during neovascularization, whereas α4β1 antagonists 

impair survival of mural cells and ECs and inhibit tumor angiogenesis (Garmy-Susini et al., 

2005). This suggests a pro-angiogenic function for α4β1. 

Vascular development is normal in mice lacking the Col and LN-binding integrins α1β1 or 

α2β1. However, tumor angiogenesis is reduced in mice lacking α1β1 (Pozzi et al., 2000), 

whereas in the absence of α2β1, tumor angiogenesis is increased in melanomas and also in 

Lewis lung carcinomas (LLC), although only upon PLGF (placental growth factor) treatment 

(Zhang et al., 2008b). Thus, these integrins are dispensable for vascular development but 

might have modulatory functions during pathological angiogenesis. 

Genetic ablation of the α6 integrin subunit, which prevents formation of α6β1 and α6β4, does 

not result in obvious vascular defects. Instead, mice lacking either the integrin subunit α6 or 

β4 die immediately after birth due to impaired hemidesmosome formation and severe 

detachment of the epidermis from the underlying dermis (Dowling et al., 1996; Georges-

Labouesse et al., 1996; van der Neut et al., 1996). However, integrin α6β1 is expressed on 

capillary ECs (Lee et al., 2006) and the β4 integrin subunit is present on the endothelium of 

tumors (Nikolopoulos et al., 2004), and blocking antibodies against the α6 integrin subunit 
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impair EC tube formation (Lee et al., 2006). Additionally RNAi-mediated reduction of the α6 

integrin subunit impairs EC migration and tube formation in the brain microvasculature (Lee 

et al., 2006). Although a mutant form of the β4 subunit with a truncated cytoplasmic tail is 

sufficient to prevent the skin defects that result from the complete deletion of β4, tumor 

angiogenesis is reduced in mice expressing this truncated β4 subunit. While EC proliferation 

is normal, adhesion and migration are reduced in ECs expressing the truncated β4 subunit 

(Nikolopoulos et al., 2004). Thus, the α6 heterodimers α6β1 and α6β4 are dispensable for 

physiological angiogenesis but might negatively regulate tumor angiogenesis. 

Integrins expressed in mural cells but not in ECs, are also implicated to play a role in vascular 

development. In mice, deletion of the α7 integrin subunit results in partial embryonic lethality, 

accompanied by cerebrovascular hemorrhages and vSMC hypoplasia as well as defects in the 

development of the placenta. Defects in vSMCs are also present in mice that continue to 

develop in the absence of the α7 integrin subunit. The vSMCs in the surviving mice are 

hyperplastic and hypertrophic (Flintoff-Dye et al., 2005; Welser et al., 2007). This suggests 

that the α7β1 integrin plays a role in mural cells thereby contributing to vascular 

development. 

Finally, the integrin heterodimer α8β1 is also expressed in mural cells but not in ECs. With 

increasing number of passages, cultured vSMC convert from a contractile, low proliferative 

phenotype to a less contractile and more proliferative “synthetic” phenotype. Interestingly, 

while the expression of the integrin subunit α8 is reduced with increasing number of passages, 

overexpression of the integrin α8 subunit in cultured rat-vSMCs promotes the switch from the 

synthetic to the contractile phenotype in a Rho-dependent manner (Zargham et al., 2007). 

However, vSMC differentiation was not altered in vSMC of mice lacking the α8 integrin 

subunit (Marek et al., 2010). 

In summary several integrins are implicated to play a role in the vasculature. Differences 

between pharmacological and genetic approaches, as well as between physiological and 

pathological angiogenesis indicate that, although some integrins (e.g. α5β1) are essential for 

vascular development, others are dispensable but might have specific modulatory functions, 

which, under physiological conditions, can be compensated by alternative integrins and/or 

signaling pathways. Future studies are required to resolve these discrepancies and to define 

the signaling specificities of different integrins. The IPP complex and in particular the α-

Parvin is essential for vascular development by regulating actin cytoskeleton dynamics, 

migration and contractility of vSMC. Defining the signaling specificities of distinct IPP 

complexes will provide further insight into the underlying molecular mechanisms. 
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10) Development and architecture of the skin 
 

The skin is the largest organ of the body and serves as a barrier that prevents dehydration and 

protects the organism against a variety of external threats of physical, chemical and biological 

nature including ultraviolet radiation, extreme temperatures, trauma, toxic or harmful 

substances and infectious organisms. Skin is composed of an outer stratified squamous 

epithelium, the epidermis, which is separated from the underlying mesenchymal dermis by a 

BM. (Fuchs and Raghavan, 2002; Lippens et al., 2009). Underneath the dermis lies the 

adipose subcutis or hypodermis. Additional components of skin are epidermal appendages 

such as hair follicles (HFs) and sweat glands, which derive from the epidermis. 

 

10.1.1) Morphogenesis of the epidermis 

 

During embryogenesis, the epidermis develops from a single layer of ectoderm. Wnt-

signaling is required for the specification of the epidermis by repressing FGF signaling, which 

promotes a neural fate, and promoting BMP (bone morphogenetic proteins) signaling (Stern, 

2005). From E9.5 to E12.5, the developing epidermis consists of a monolayer of multipotent 

epithelial progenitor cells. Their differentiation results in the formation of the periderm, a 

protective layer which initially covers the epithelial cells but is shed into the amniotic fluid 

when a functional epidermis has formed towards the end of embryonic development 

(M'Boneko and Merker, 1988). Starting at E12.5, mesenchymal cues induce a differentiation 

program in epithelial cells, which first leads to the formation of a mitotically active 

intermediate layer (stratum intermedium). The stratification of the epidermis successively 

increases through further differentiation and by E17.5 the epidermis consists of several 

transcriptionally, functionally, and morphologically distinct layers of keratinocytes, which are 

in consecutive stages of differentiation (Blanpain and Fuchs, 2006; Koster and Roop, 2007) 

(Figure 6). 
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Figure 6: The epidermis is a stratified squamous epithelium 
Schematic representation of the epidermis. Proliferation is restricted to keratinocytes in the basal layer of the 

epidermis, which firmly adhere to the BM through hemidesmosomes. Delamination of basal keratinocytes and 

sequential differentiation gives rise to the suprabasal layers of the epidermis, which are morphologically and 

functionally distinct and express different markers as indicated on the right side. See text for details. Figure is 

modified from (Fuchs, 2008). 

 

Proliferation is confined to the basal layer of keratinocytes (basal keratinocytes), which are in 

direct contact with the underlying BM. The proliferating basal keratinocytes are characterized 

by the expression of keratin 5 and 14 as well as several integrins. Upon commitment to a 

terminal differentiation program, basal keratinocytes withdraw from the cell cycle, down 

regulate integrins, delaminate from the BM and translocate to the stratum spinosum, which is 

the first suprabasal layer. In contrast to basal keratinocytes, keratinocytes in the spinous layer 

are characterized by the expression of keratin 1 and 10 (Fuchs, 2008). Alternatively or 

additionally, asymmetric cell division, with a mitotic spindle oriented perpendicular to the 

BM, contributes to the formation of the spinous layer, at least during development (Lechler 

and Fuchs, 2005). However, in tail skin from adult mice, only 3% of dividing basal 

keratinocytes display spindle orientations perpendicular to the BM (Clayton et al., 2007). 
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Keratinocytes of the spinous layer further differentiate as they translocate to the stratum 

granulosum. Expression of loricrin is characteristic for keratinocytes in the granular layer. 

Finally, terminal differentiation of keratinocytes from the granular layer results in the 

formation of the stratum corneum, which consists of enucleated and dead keratinocytes, also 

referred to as corneocytes. Corneocytes are characterized by the presence of filaggrin and a 

cornified envelope of cross-linked lipids and proteins, which essentially contributes to the 

barrier function of the skin (Fuchs, 2008). During adult life, corneocytes are constantly shed 

off from the body surface in a process referred to as desquamation (Milstone, 2004). The shed 

corneocytes are replenished through the proliferation of basal keratinocytes and their 

successive terminal differentiation, which results in the continuous renewal of the epidermis 

throughout life. 

The homeostasis of the epidermis and its remarkable ability to regenerate after injury depends 

on stem cells residing in the interfollicular epidermis (IFE), the bulge region of HFs and in 

sebaceous glands (SC). Stem cells are infrequently dividing cells with a high potential of self-

renewal. In the epidermal proliferative unit (EPU) model, asymmetric lateral division of a 

single stem cell, positioned in the center of a discrete epidermal unit in the IFE, generates 

transit amplifying cells (TA), which in turn can undergo a limited number of divisions before 

being committed to terminally differentiate (Potten, 1981). Challenging the EPU model, a 

single progenitor model questions the existence of TAs. Instead, asymmetric lateral division 

of stem cells might directly result in the generation of post-mitotic cells committed for 

differentiation (Clayton et al., 2007). 

 

10.1.2) Morphogenesis and cycling of the HF 

 

Mammalian skin is characterized by the presence of hair, which physically protects the skin, 

contributes to thermoregulation, has sensory functions and plays an important role in social 

interactions (Botchkarev and Paus, 2003). Hair is formed by the HF, which together with the 

arrector pili muscle and the sebaceous gland is organized into a functional pilosebaceous unit 

(Schneider et al., 2009). In the HF, keratinocytes terminally differentiate into dead 

trichocytes, which condense into a fiber with high tensile strength, commonly known as hair, 

but more specifically referred to as the hair shaft (HS) (Schmidt-Ullrich and Paus, 2005). 

Morphogenesis of the HF is initiated during embryonic development and depends on the 

reciprocal interaction and signaling crosstalk between the epithelium and the underlying 
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mesenchyme. The involved signals include components of the Wnt, hedgehog, TGF-β/BMP, 

FGF and TNF signaling pathways (Schneider et al., 2009). 

Inductive cues from the mesenchyme are thought to promote the proliferation of epithelial 

cells, which subsequently extend locally into the mesenchyme to form the hair placode. The 

hair placode first becomes morphologically recognizable by E14. In turn, signals derived from 

the epithelial cells in the placode induce the clustering of underlying mesenchymal fibroblasts 

into a dermal condensate, which is the precursor of the dermal papilla. Inductive cues from 

the dermal papilla promote further proliferation and differentiation of keratinocytes, which 

subsequently extend deeper into the mesenchyme to eventually encapsulate the dermal papilla 

in a structure referred to as the hair bulb. In the hair bulb, melanocytes derived from neural 

crest cells, form the pigmentary unit of the hair follicle. Melanocytes produce melanin, the 

pigment of the HS. Melanin is stored in melanosomes and is transferred to terminally 

differentiating keratinocytes of the HS, which in the end results in the pigmentation of the HS 

(Botchkarev and Paus, 2003). Highly proliferative keratinocytes in the hair bulb are in close 

proximity to the dermal papilla and are known as hair matrix (HM) keratinocytes. 

Proliferation and differentiation of HM keratinocytes critically depends on regulatory signals 

from the dermal papilla and results in the formation of six concentric layers of the HS 

(Medulla, Cortex and Cuticle) and the inner root sheath (IRS) (Huxley’s layer, Henley’s layer 

and Companion layer). The inner root sheath separates the hair shaft from the outermost layer 

of the HF, known as the outer root sheath (ORS) (Botchkarev and Paus, 2003). Keratinocytes 

from the ORS are continuous with the basal layer of the IFE, and as such express Keratin 5 

and 14, and are in direct contact with the BM that surrounds the HF. HF development in mice 

is asynchronous. Vibrissa are induced at E12.5, whereas primary tylotrich guard hairs are 

initiated by E14.5, and secondary non-tylotrich intermediate (awl and auchene) and downy 

(zigzag) hairs start to develop between E17 and birth. By postnatal day 8 (P8), all HFs 

complete morphogenesis but HF elongation and maturation continues up to P14, by which 

time all HF bulbs reside deep in the subcutis and are in close vicinity to the panniculus 

carnosum muscle layer (Botchkarev and Paus, 2003; Schmidt-Ullrich and Paus, 2005). 
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Figure 7: Hair follicle morphogenesis and cycling 
Schematic representation of distinct stages of HF-morphogenesis and cycling. After HF-morphogenesis is 

completed, HF cycle between stages of apoptosis driven regression (catagen), relative quiescence (telogen) and 

active growth (anagen). See text for details. Figure taken from (Fuchs, 2007). 

 

After HF morphogenesis is completed, HFs cycle between alternating phases of growth 

(anagen), rapid regression (catagen), and relative quiescence (telogen) throughout adult life 

(Schneider et al., 2009) (Figure 7). By P17 the HF cycle is initiated by the first catagen, which 

lasts about two to three days. Apoptosis of HM, IRS and ORS keratinocytes results in the 

degeneration of the non-permanent part of the HF, which comprises the region below the stem 

cell-containing HF bulge. Importantly, retraction of the remaining epithelial strand brings the 

dermal papilla into close proximity to the HF bulge. Following a resting telogen phase of 

several days, inductive signals from the dermal papilla promote the proliferation of stem cells 

in the bulge and thereby initiate the first anagen phase, which eventually results in the 
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regeneration of a mature HF. During the anagen phase, TA keratinocytes, derived from stem 

cells in the bulge, migrate along the ORS-underlying BM towards the bulb region, where they 

differentiate into the distinct HF lineages of the mature HF. Although the old HS, known as 

club hair, might be retained for several hair cycles, it eventually will be shed in a process 

referred to as exogen. In mice, the initial hair cycles are synchronous. However, synchronous 

cycling becomes confined to regional domains in aging animals and telogen phases 

successively get prolonged, leading to an increased duration of the hair cycle. Signals that 

regulate cycling include anagen promoting components of the Wnt, BMP and Shh signaling 

pathways, whereas FGF5 promotes the induction of catagen (Botchkarev and Paus, 2003; 

Schneider et al., 2009). 

 

10.1.3) Integrins in the epidermis 

 

Tight adhesion of basal and ORS keratinocytes to the underlying BM is essential for 

epidermal homeostasis. Integrins are the key mediators of this adhesion and play an essential 

structural and functional role in epidermal homeostasis, HF development/maintenance and 

wound healing. Conversely, abnormal expression of integrins or altered integrin signaling is 

involved in the development and progression of skin carcinomas and a psoriasis-like disease 

(Watt, 2002). 

With the exception of αvβ8, which is expressed only in suprabasal layers, expression of the 

other epidermal integrins normally is confined to the basal layer of the epidermis and to 

keratinocytes of the ORS. Integrins constitutively expressed in the epidermis include the 

laminin receptors α3β1 and α6β4 as well as the collagen receptor α2β1 and the vitronectin 

receptor αvβ5 which is expressed at a low level. Additionally, the fibronectin receptor α5β1 

and the fibronectin and tenascin receptors αvβ6 and α9β1 are induced or upregulated in cell 

culture and during pathological conditions such as wounding or tumorigenesis (Watt, 2002). 

Unlike other integrins, the α6β4 integrin heterodimer facilitates the linkage to intracellular 

keratin filaments and is a major component of hemidesmosomes, which tightly anchor 

keratinocytes to the BM. While α6β4 localization is restricted to the basal membrane, other 

integrins also localize to lateral and apical surfaces of basal keratinocytes. In mice, genetic 

ablation of either the α6 or the β4 subunit impairs hemidesmosome-formation and results in 

neonatal lethality due to severe epidermal detachment from the BM (Dowling et al., 1996; 

Georges-Labouesse et al., 1996; van der Neut et al., 1996). However, differentiation of 
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keratinocytes is normal in regions of partial attachment to the BM, indicating that α6β4 is not 

essential for this process. Similar defects in humans are characteristic for the autosomal 

recessive disorder junctional epidermolysis bullosa, which is caused by mutations in the genes 

for the α6 or the β4 integrin subunits. 

The constitutive deletion of the α3 integrin subunit also results in epidermal detachment. 

However these defects are less pronounced than the absence of α6β4 and are accompanied by 

a defective organization and rupture of the BM (DiPersio et al., 1997). Lack of α3 also affects 

the organization of the glomerular BM, impairs lung and kidney development and results in 

death shortly after birth (Kreidberg et al., 1996). Conclusively, the BM defects indicate that 

the α3β1 integrin heterodimer is essential for the organization and integrity of BMs. Genetic 

deletion of both α6β4 and α3β1 does not result in a more severe phenotype than the individual 

deletion of either heterodimer. Furthermore, even in the simultaneous absence of both 

heterodimers, proliferation, stratification and epidermal morphogenesis before blister 

formation are normal, indicating that both heterodimers are dispensable for epidermal 

development but are critically required for the organization of and attachment to the BM 

(DiPersio et al., 2000). Interestingly, in adult skin α3β1 is required for HF morphogenesis and 

maintenance. Growth and differentiation of HFs is severely impaired in skin-grafts from α3 

deficient mice. Additionally, the BM of the IFE but not of the HF is disorganized in the α3-

deficient skin-grafts (Conti et al., 2003). 

Genetic ablations of the integrin subunits α2 (Chen et al., 2002; Holtkotter et al., 2002), α9 

(Huang et al., 2000b), and β5 (Huang et al., 2000a) have not been reported to result in a skin-

related phenotype, although migration is severely compromised in β5-deficient keratinocytes 

in vitro (Huang et al., 2000a) and α2β1 is critically required for the adhesion of keratinocytes 

to type I collagen (Zhang et al., 2006). 

 

10.1.4) The function of β1 integrins in the epidermis 

 

Conditional deletion of genes specifically in the epidermis and its appendages can be achieved 

by crossing mice in which the gene of interest has been modified by the insertion of two loxP-

recombination sequences, with mice expressing the Cre-recombinase transgene under the 

control of the keratin-5 (K5) or keratin-14 (K14) promotor. Cre-mediated recombination 

results in the excision of the DNA-sequence between the two loxP-sites, leading to the 

disruption of the gene of interest. When controlled by the K5 or K14 promotor, Cre-
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expression and Cre-mediated disruption of the gene of interest is restricted to basal and ORS 

keratinocytes, which are the progenitors for keratinocytes of the IRS, HS, and the suprabasal 

layers of the IFE. Consequently the gene of interest is disrupted in the progeny, resulting in 

conditional deletion in all keratinocytes of the epidermis and its appendages. 

The keratinocyte-restricted deletion of the β1 integrin subunit, which prevents the formation 

of all epidermal β1 integrin heterodimers, results in severe defects in epidermal homeostasis, 

wound healing and HF morphogenesis (Brakebusch et al., 2000; Grose et al., 2002; Lopez-

Rovira et al., 2005; Raghavan et al., 2000). Mice lacking β1 integrins in the epidermis and its 

appendages either die shortly after birth due to epidermal detachments and dehydration, when 

Cre-expression is driven by the K14-promotor (Raghavan et al., 2000), or within several 

weeks after birth, when Cre-expression is under the control of the K5-promotor (Brakebusch 

et al., 2000). This discrepancy can be explained by differences in the onset of Cre-transgene 

expression and its expression levels. In the absence of β1 integrins, assembly and organization 

of the IFE-underlying BM is severely impaired, whereas BM integrity around HFs is 

unaffected. BM defects are accompanied by reduced expression levels of the α6β4 integrin 

and a significant reduction/instability of hemidesmosomes leading to pronounced blister 

formation at the dermal-epidermal junction (DEJ). Although keratinocyte proliferation is 

reduced in the absence of β1 integrins, mutant epidermis eventually becomes hyperplastic due 

to a delay in terminal differentiation. However, differentiation per se is not impaired in the 

absence of β1 integrins, and basal keratinocytes lacking β1 integrins do not prematurely 

differentiate. This argues against β1 integrins being required to prevent premature 

differentiation of keratinocytes. HF morphogenesis is also distorted in the absence of β1 

integrins and due to a progressive loss of hair mutant animals develop severe alopecia four to 

six weeks after birth. Defects associated with mutant HFs include reduced proliferation of 

HM keratinocytes, ORS hyperplasticity, stunted and prematurely arrested HF growth, and 

severe morphological HF abnormalities. Furthermore, from P9, macrophages and 

granulocytes infiltrate and accumulate around miss-formed mutant HFs, accompanied by an 

upregulation of pro-inflammatory cytokines. Due to an abnormal deposition of ECM 

components, the dermis of mutant mice becomes fibrotic at later stages. In vitro, β1-deficient 

keratinocytes are compromised in their adhesion to and spreading on various ECM 

components, as well as in their migratory capacity. Although proliferation of mutant 

keratinocytes is reduced in vitro and under physiological conditions in vivo, expansion of 

keratinocytes that escaped Cre-mediated deletion partially compensates for the proliferation 

defects during wound healing in vivo (Piwko-Czuchra et al., 2009), indicating that defects in 
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wound healing are due to impaired keratinocyte adhesion and migration rather than to a 

reduced proliferation rate (Grose et al., 2002). 

 

10.1.5) The function of ILK in the epidermis 

 

Similar to the conditional deletion of β1 integrin in keratinocytes, conditional ablation of ILK 

in the epidermis also results in severe defects in epidermal homeostasis and HF 

morphogenesis. Mice lacking ILK in keratinocytes die around P4, when Cre-expression is 

driven by the K14-promotor (ILK-K14) (Nakrieko et al., 2008). In these mice, keratinocyte 

proliferation is reduced in HFs and also in vitro. In contrast, mice with a K5-Cre-mediated 

deletion of ILK in the epidermis survive to adulthood (ILK-K5) (Lorenz et al., 2007). These 

mice are characterized by ectopic hyper-proliferation of integrin expressing keratinocytes in 

suprabasal layers of the epidermis from P7 and by the accumulation of proliferative 

keratinocytes in the ORS. Additionally, proliferation of ILK-K5 keratinocytes is increased in 

vitro. Irrespective of whether deletion is mediated by K5-Cre or by K14-Cre, keratinocyte-

restricted deletion of ILK results in discontinuous distribution of the hemidesmosome integrin 

heterodimer α6β4, keratinocyte detachment from the BM and blister formation at the DEJ, 

disruption of the IFE-underlying BM, delayed terminal differentiation of keratinocytes and 

severe defects in hair follicle morphogenesis. These defects are highly reminiscent of the 

defects in mice lacking β1 integrin specifically in keratinocytes. Similarly, when ILK deletion 

in keratinocytes is mediated by K5-Cre, ORS and IFE become hyperplastic and macrophages 

infiltrate and accumulate around mutant HFs. Additionally, the morphology and polarity of 

ILK-deficient keratinocytes is severely compromised in vivo and in vitro. In vitro, adhesion, 

spreading and migration of ILK-deficient keratinocytes is severely compromised and 

directional migration and velocity is strongly reduced in these cells. Mutant keratinocytes fail 

to form stable lamellipodia and formation of FCs and FAs is reduced in vitro. Furthermore, 

actin cytoskeleton organization is severely distorted in ILK-deficient keratinocytes. While no 

change in Rac1 activity is detectable in ILK-K5 keratinocytes, activation of Rac1 is reduced 

and active Cdc42 distribution is altered in ILK-K14 keratinocytes (Lorenz et al., 2007; 

Nakrieko et al., 2008). 

The striking similarities between the phenotypes of mice lacking β1 integrins or ILK in the 

epidermis demonstrate an essential function of ILK downstream of β1 integrins in epithelial 

cells. K5-mediated deletion of PINCH-1 in keratinocytes also results in a similar phenotype 
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(Lorenz-Baath, unpublished data). However, defects in cell-cell contacts might be more 

pronounced in the PINCH-1-deficient epidermis, although similar defects have been reported 

in the epidermis of ILK-K14 mice (Nakrieko et al., 2008). Differences between ILK- and 

PINCH-1-deficient keratinocytes suggest an IPP complex-independent function for PINCH-1. 

However, it is currently not clear whether IPP constituents can function in an IPP complex-

independent manner in mammals. Alternatively, upon deletion of one IPP component, 

residual amounts of the remaining constituents could exert a dominant negative effect, which 

might result in additional cellular defects. Further studies are required to discern IPP-

dependent and independent functions of its constituents and to identify and characterize 

potential PINCH and Parvin isoform-specific functions. 
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Aim of the thesis 

 

The β1 integrins and members of the IPP complex are essential for mammalian development. 

Genetic ablation of either the β1 integrin subunit, or PINCH-1, or ILK results in embryonic 

lethality during the peri-implantation stage. The mammalian Parvin isoforms are essential 

components of the IPP complex. They connect the IPP complex to the actin cytoskeleton and 

are crucially involved in the regulation of actin cytoskeleton dynamics, cell adhesion, 

spreading, migration and survival. While β- and γ-Parvin are dispensable for mammalian 

development, the in vivo function of α-Parvin has not been analyzed. 

 

Aim 1 
 

 

Analysis of the in vivo consequences of the constitutive deletion of α-Parvin-gene in mice 

and characterization of the resulting alterations in vitro. 

 

 

Constitutive deletion of α-Parvin results in embryonic lethality between E11.5 and E14.5, 

preventing the functional analysis of α-Parvin in adult animals. Furthermore, global gene-

deletion complicates the discrimination between primary and secondary defects. The Cre-lox 

system enables gene disruption in a tissue specific and/or inducible manner and is a versatile 

tool to analyze the in vivo function of α-Parvin in various organs and cell types during 

development and in adult animals. 

 

Aim 2 
 

 

Generation of floxed α-Parvin mice by means of homologous recombination to enable the 

conditional deletion of α-Parvin-gene in specific cell types and organs. 

 



Aim of the thesis 

67 

Integrins are essential for skin homeostasis. They are involved in the deposition and 

organization of BM components, control keratinocyte adhesion, spreading and migration and 

influence proliferation, survival and differentiation of keratinocytes. How exactly integrins 

facilitate the spatiotemporal control of all this processes is unclear. Certainly it depends on 

the recruitment and assembly of signaling and adaptor molecules to the cytoplasmic tails of 

integrins. Among the numerous molecules recruited to the integrin cytoplasmic tails, the IPP 

complex has emerged to be a key component of integrin signaling. However, the underlying 

molecular mechanisms still remain largely elusive, necessitating the detailed functional 

analysis of its components in vivo and in vitro. 

 

Aim 3 
 

 

Analysis of the in vivo consequences of the K5-Cre mediated conditional deletion of α-Parvin 

in keratinocytes to identify the functional relevance of  α-Parvin in epidermal morphogenesis 

and homeostasis. 
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Short summaries of publications 

Publication 1: α-Parvin controls vascular mural cell 

recruitment to vessel wall by regulating RhoA/ROCK 

signalling 
 

Together with ILK and PINCH, α-Parvin forms a ternary complex (IPP complex) whose 

assembly precedes its recruitment to FAs. The IPP complex is essential for the integration of 

integrin signaling with actin cytoskeleton organization and dynamics. To analyze the function 

of α-Parvin in vivo, we used homologous recombination to constitutively delete the α-Parvin 

gene in mice. 

The constitutive deletion of α-Parvin-gene in mice resulted in embryonic lethality between 

E11.5 and E14.5 due to severe cardiovascular defects. Heart defects in α-Parvin-deficient 

embryos likely contributed to the early lethality and included a persistent single outflow tract 

due to defective septation of the truncus arteriosus, pericardial effusion, reduction of 

cardiomyofibrils and abnormal organization and shape of cardiomyocytes. 

The vasculature of α-Parvin-deficient embryos and yolk-sacs was poorly remodeled due to 

compromised recruitment of mural cells to blood vessels. Micro-aneurysms and insufficient 

investment of the vessel wall by mural cells resulted in the dilation and rupture of blood 

vessels, leading to edemas and severe bleedings in α-Parvin-deficient embryos. Defective 

mural cell recruitment and vessel coverage was due elevated RhoA/ROCK/MLC2 signaling 

resulting in the hypercontractility of α-Parvin-deficient vSMCs, which failed to polarize their 

cytoskeleton to form stable membrane protrusions and were severely impaired in their 

directional migration. 

Our studies demonstrate that α-Parvin is essential for vascular development in vivo by 

negatively regulating RhoA/ROCK/MLC2-mediated contractility in vSMCs. This function is 

specific for α-Parvin, since β-Parvin, although expressed in these cells, cannot compensate 

for the loss of α-Parvin. 
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Publication 2: α-Parvin controls epidermal homeostasis 

and hair follicle morphogenesis by regulating adhesion 

and migration of keratinocytes 
 

Epidermal homeostasis and HF morphogenesis critically depend on β1 integrins and the FA-

proteins ILK and PINCH-1, which together with α-Parvin form the IPP complex facilitating 

integrin signaling and linkage to the actin cytoskeleton. To analyze the in vivo function of  α-

Parvin in epidermal morphogenesis and homeostasis, we generated mice carrying a floxed α-

Parvin-gene, allowing the conditional deletion of α-Parvin in keratinocytes. 

In this manuscript we report that K5-Cre-mediated deletion of α-Parvin in keratinocytes 

severely impairs FA-formation, adhesion, spreading and migration of keratinocytes in vitro, 

resulting in local disruptions at the DEJ and severely compromised HF morphogenesis and 

cycling in vivo. Defects in integrin-dependent adhesion were accompanied by severe 

distortions in BM-integrity, compromised hemidesmosome formation, and displacement of 

proliferative basal keratinocytes into suprabasal layers of the epidermis. Ectopic 

hyperproliferation in suprabasal layers, suprabasal expression of integrins and delayed 

differentiation were observed in the mutant epidermis and likely contributed to the 

development of a severe epidermal hyperplasia, which clearly preceded the recruitment of 

inflammatory granulocytes and macrophages. In vitro, velocity and directionality of 

migration were severely impaired in α-Parvin-deficient keratinocytes due to defects in FA-

formation and compromised actin cytoskeleton organization, resulting in inefficient migration 

of keratinocytes toward the dermal papilla in vivo and the accumulation of proliferative 

keratinocytes in the ORS during HF morphogenesis. HF-growth during anagen was 

completely inhibited, resulting in progressive hair loss and persistent alopecia. 

We conclude that α-Parvin is crucially required for IPP-dependent integrin signaling and 

control of actin cytoskeletal dynamics in keratinocytes and thus is essential for epidermal 

homeostasis and hair follicle development in vivo. 
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a-parvin controls vascular mural cell recruitment
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During blood vessel development, vascular smooth muscle

cells (vSMCs) and pericytes (PCs) are recruited to nascent

vessels to stabilize them and to guide further vessel

remodelling. Here, we show that loss of the focal adhesion

(FA) protein a-parvin (a-pv) in mice leads to embryonic

lethality due to severe cardiovascular defects. The vascular

abnormalities are characterized by poor vessel remodel-

ling, impaired coverage of endothelial tubes with vSMC/

PCs and defective association of the recruited vSMC/PCs

with endothelial cells (ECs). a-pv-deficient vSMCs are

round and hypercontractile leading either to their accu-

mulation in the tissue or to local vessel constrictions.

Because of the high contractility, a-pv-deficient vSMCs

fail to polarize their cytoskeleton resulting in loss of

persistent and directed migration. Mechanistically, the

absence of a-pv leads to increased RhoA and Rho-kinase

(ROCK)-mediated signalling, activation of myosin II and

actomyosin hypercontraction in vSMCs. Our findings

show that a-pv represents an essential adhesion check-

point that controls RhoA/ROCK-mediated contractility

in vSMCs.

The EMBO Journal advance online publication, 1 October 2009;

doi:10.1038/emboj.2009.295

Subject Categories: cell & tissue architecture; development

Keywords: angiogenesis; contractility; integrin; migration/

parvin

Introduction

The cardiovascular system is the first functional organ that

develops in vertebrate embryos. Vascular development starts

with the differentiation and expansion of endothelial cell (EC)

precursors that coalesce into a primitive vascular network.

This vascular plexus is then extended and remodelled by a

process called angiogenesis, which involves sprouting,

branching and fusion (Risau, 1997). Once the ECs are

assembled into vascular tubes, they become surrounded by

mural cells (MCs) of the smooth muscle cell lineage, referred

to as pericytes (PCs) and vascular smooth muscle cells

(vSMCs). PCs are associated with capillaries, small venules

and immature blood vessels in which they are enclosed by a

single basement membrane (BM). In contrast, vSMCs are

associated with mature and large blood vessels in which

they form one or several sheets around the BM of ECs. The

vSMC/PCs are essential for blood vessel development, as

they provide mechanical support required to counterbalance

the increasing blood pressure, control ECs proliferation, limit

further sprouting and regulate the vascular tone with their

highly contractile actomyosin cytoskeleton (Adams and

Alitalo, 2007).

The vSMC/PCs differentiate from the mesenchyme and

migrate around the growing blood vessels. The migration to

and spreading on developing blood vessels are tightly regu-

lated by growth factors and extracellular matrix (ECM)

proteins, and their receptors such as integrins. Integrins are

heterodimeric cell adhesion molecules composed of a and b
subunits. When bound to the ECM they cluster and form focal

adhesions (FAs), through which they relay signals into cells

(Hynes, 2002; Legate et al, 2009). In vitro and in vivo studies

have shown that integrin adhesion has essential functions in

angiogenesis and vascular remodelling. For instance,

deletion of the b1 integrin gene in ECs impairs angiogenesis

(Carlson et al, 2008; Tanjore et al, 2008) and deletion in MCs

impairs their ability to spread, differentiate and support

vessel wall stability (Abraham et al, 2008). Conversely,

ablation of genes encoding for integrin ligands such as

fibronectin (FN), laminin a4 or collagen 4a1/2 has also a

fatal effect on blood vessel formation (George et al, 1993;

Thyboll et al, 2002; Pöschl et al, 2004). How integrins execute

these properties is less clear.

The cytoplasmic domains of integrins are short and lack

enzymatic activity, and therefore they trigger signalling by

recruiting kinases such as FAK and src, and adaptor proteins

such as integrin-linked kinase (ILK), PINCH and parvins.

Parvins are a family of adaptor proteins consisting of three

members; a-parvin/actopaxin/CH-ILKBP (a-pv), which is

ubiquitously expressed; b-parvin/affixin (b-pv), which is

enriched in heart and skeletal muscle; and g-parvin (g-pv)

whose expression is restricted to haematopoietic cells

(Nikolopoulos and Turner, 2000; Olski et al, 2001; Tu et al,

2001; Yamaji et al, 2001; Chu et al, 2006). Together with

ILK and PINCH they form a ternary protein complex (IPP

complex) that localizes to FAs. Parvins consist of an

N-terminal polypeptide stretch followed by a single actin-

binding domain (ABD) that consists of two in tandem

arranged calponin homology (CH) domains. The ABD

domain enables parvins to recruit F-actin to FAs and associate

with stress fibres. Additional parvin-binding partners are

actin binding and regulatory proteins including paxillin,

Hic5, a-actinin, CdGAP and a-PIX, which explains the pro-

minent functions of parvins in integrin-mediated adhesion

and actin-dependent processes such as cell shape regulation

and cell migration (Legate et al, 2006).

Vascular tone, which is regulated by the actomyosin-

mediated contractility of the vSMCs, controls the bloodReceived: 10 July 2009; accepted: 15 September 2009
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pressure and tissue perfusion. The contraction and relaxation

of smooth muscle actin (SMA) filaments in vSMCs are

controlled through phosphorylation of the myosin light

chain (MLC). The phosphorylation of MLC is mediated by

myosin light chain kinase (MLCK) and reversed by myosin

light chain phosphatase (MLCP). Vasodilators activate MLCP,

which causes MLC dephosphorylation and relaxation,

whereas vasoconstrictors induce phosphorylation and inhibi-

tion of MLCP activity, which in turn stabilizes MLC phos-

phorylation and leads to contraction (Karnam, 2006).

Vasoconstrictor agonists promote contractility of vSMCs

through RhoA-mediated activation of ROCK, which in turn

can either indirectly activate MLC through phosphorylation

and inactivation of MLCP, or by directly phosphorylating

MLC (Amano et al, 1996; Kimura et al, 1996). The parvin-

binding partner ILK has also been shown to directly phos-

phorylate MLC and thereby modulate vSMC contraction

(Wilson et al, 2005). A basal RhoA activity is required for

cardiovascular homeostasis, whereas a sustained hyperacti-

vation of RhoA is a common feature of several cardiovascular

pathologies. Furthermore, RhoA signalling is also critical for

cell polarity and directed cell migration (Danen et al, 2005) by

promoting the maturation of integrin adhesion sites, forma-

tion of stress fibres and cell contraction at the rear (Xu et al,

2003). Therefore, a tight regulation of RhoA in vSMCs

is crucial for the mature vascular system but may be equally

important during the recruitment of vSMCs to developing

vessels.

To directly address the function of a-pv in vivo, we

generated mice and cells lacking a-pv expression. Our find-

ings indicate that a-pv controls vSMC/PC recruitment to

developing vessels and vessel wall stability by regulating

RhoA/ROCK signalling in vSMCs.

Results

Loss of a-pv leads to severe cardiovascular defects

To explore the functions of a-pv in vivo, we disrupted the a-pv

gene by homologous recombination in embryonic stem

(ES) cells and generated a-pv mutant mice (Supplementary

Figure 1A and B). Mice heterozygous for the a-pv null mutation

(a-pvþ /�) were viable and phenotypically normal (data not

shown). a-pvþ /� intercrosses failed to yield newborn

a-pv homozygous mutant (a-pv�/�) mice. Timed mating of

a-pvþ /� intercrosses showed that a-pv�/�mice were present at

the expected Mendelian ratio up to embryonic day (E) 11.5

(Supplementary Table 1). Lethality of a-pv�/�mice commenced

at around E10.5 and no alive a-pv�/� mice were found later

than E14.5 (Supplementary Table 1). Western blot analysis of

E9.5 a-pv�/� embryo and yolk sac (YS) lysates showed loss of

a-pv expression, unaltered or increased levels of b-pv and

slightly decreased levels of ILK and PINCH1 when compared

with wild-type (wt) lysates (Supplementary Figure 1C and D).

Development of a-pv�/� embryos was normal until E9.5

(data not shown). Growth retardation was first evident in

E10.5 a-pv�/� embryos (Figure 1A). a-pv�/� embryos dis-

played different degrees of cardiovascular abnormalities in-

cluding aberrant vascular beds with dilated blood vessels and

pericardial effusion (Figure 1A and B; Supplementary Figure

2A). By E12.5, a-pv�/� embryos showed whole-body edema

and severe bleedings due to vessel rupture (Figure 1A and B;

Supplementary Figure 2B).

Aberrant cardiac morphogenesis and disrupted

sarcomeric integrity in a-pv�/� embryos

To examine the heart abnormalities, we performed histologi-

cal analysis of serial sections of wt and a-pv�/� embryonic

hearts. Heart chambers developed normally in a-pv�/�

embryos (data not shown). However, although E12.5 wt

embryos showed septation of the truncus arteriosus resulting

in an ascending aorta and pulmonary trunk (Figure 1C),

a-pv�/� embryos showed a defective septation of the truncus

arteriosus leading to a persistent single outflow tract (OFT)

(Figure 1C).

Cell-ECM adhesion mediated by integrins is required to

stabilize myofibrils (Fässler et al, 1996). Immunostaining of

a-actinin and desmin, important Z-disc proteins that cross-

link sarcomeric actin and connect Z-discs with adjacent

myofibrils, showed reduced numbers of cardiomyofribrils in

a-pv�/� embryos compared with wt littermates (Figure 1D

and data not shown). Moreover, wt cardiomyocytes were

elongated and aligned in a parallel manner, while a-pv�/�

cardiomyocytes were round and distributed in a random

pattern (Figure 1D). In line with earlier reports (Chen et al,

2005), we found that a-pv is localized at FAs as well as at

Z-disc of the sarcomeres in normal cardiomyocytes (data not

shown). Together, these data indicate that a-pv is required for

the development of the OFT of the heart and for maintaining

the structure and stability of sarcomeres, but not for initiating

cardiomyofibrillogenesis. Because of the well-known func-

tions of integrins, ILK and parvins for cardiac muscle mor-

phogenesis and function (Fässler et al, 1996; Chen et al, 2005;

Bendig et al, 2006), we focused our further analysis on the

vascular defects.

Defective MC coverage in a-pv�/� embryos

To study the vascular abnormalities of a-pv�/� embryos in

more detail, we performed whole mount immunostaining of

wt and a-pv�/� embryos and YSs using antibodies against

CD31, aSMA and anti-neuron glial 2 (NG2) to visualize ECs

and MCs, respectively. Immunostaining for CD31 revealed the

presence of a vascular plexus with microvessel and macro-

vessel containing blood cells in E10.5 and E11.5 a-pv�/�

embryos and YSs (Figure 2A; Supplementary Figure 2C). In

addition, isolated primary ECs from a-pv�/� YSs did not

show differences in their ability to adhere and spread on

collagen I (Col I) and FN (Supplementary Figure 2D and E

and data not shown). Furthermore, ECs differentiated from

a-pv�/� ES cells were able to migrate and form blood vessel-

like structures comparable to wt ECs (Supplementary Figure

2F), suggesting that the vascular defects do not arise from

defects in ECs.

However, a-pv�/� vessels were frequently enlarged and

exhibited multiple microaneurysms, whereas in other areas

they were constricted (Figure 2A–C; Supplementary Figure

3A). Vessel enlargement was associated with reduced MC

coverage (Figure 2A; Supplementary Figure 3B). MCs directly

interact with ECs and regulate vessel sprouting. Consistently

with this function, the number of vascular sprouts was

significantly increased in the vascular plexus of a-pv�/�

embryos (Supplementary Figure 3C and D).

To assess the defect in MC coverage, we analysed the

hindbrain vasculature, which is particularly rich in these

cells (Abramsson et al, 2007). Quantitative analysis of EC

coverage by PCs revealed that in wt embryos, the PCs were
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tightly associated with ECs and the relative proportion of

endothelial staining (CD31) overlapping with PC staining

(NG2) per total vessel area was 58% (±9.6) (Figure 2D

and E). In contrast, the PCs of a-pv�/� embryos frequently

stretched away from the endothelium, and covered only 23%

(±2.4) of the endothelial area (Figure 2D and E).

Furthermore, analysis of the distance from the growing

endothelial edge to the closest PCs revealed that in E10.5

wt embryos, the PCs arrived to the growing front of the

vascular plexus marked by the tip cells, whereas in a-pv�/�

littermates PCs failed to reach the growing vascular front

(Figure 2F). No differences could be detected in E11.5 em-

bryos, indicating that lack of a-pv is a result of a delay in PC

recruitment in vivo (Figure 2F). Poor MC coverage and

impaired MC/EC association were also observed in blood

vessels of a-pv�/� YSs and placentas (Supplementary Figure

4A and B). Collectively, these results indicate that a-pv is

dispensable for vasculogenesis, but required for vascular

maturation and MC investment into vessel walls.

a-pv regulates spreading and polarity of MCs

Successful MC coverage of the vascular bed depends on a

number of factors including proliferation, survival, spreading

and migration (Beck and D’Amore, 1997). We found no

apparent defects in MC proliferation or increased apoptosis

of E9.5, E10.5, E11.5 and E12.5 a-pv�/� embryos

(Supplementary Figure 5 and data not shown). However, in

contrast to wt vSMCs/PCs, which spread and showed strong

and often punctate aSMA staining at the plasma membrane

and thin filamentous staining in the cytoplasm (Figure 3A

and B), a-pv�/� vSMC/PCs displayed a round shape and

showed thick aSMA-positive actin bundles traversing the

cytoplasm in a criss-cross manner (Figure 3A and B;

Supplementary Figure 6).

To analyse this defect in more detail, we isolated SMA-

positive cells from wt and a-pv�/� YSs and tested their ability

to adhere and spread on ECM proteins. No difference in the

ability of wt and a-pv�/� cells to adhere to laminin-111

(LN111), FN or Col I was observed (Figure 3C). In addition,

the cell surface expression pattern of integrins was also

unaltered (data not shown). However, despite their ability

to adhere to ECM substrates, a-pv�/� cells remained round

even after an overnight culture and developed multiple

membrane protrusions, whereas wt cells spread within

60 min after plating (Figure 3D and E). Live video microscopy

showed that wt cells were able to extend lamellipodia and

spread to adopt a flattened shape. In contrast, a-pv�/� cells

displayed continuous, highly dynamic and instable mem-

brane ruffling at the cell cortex, leading to the formation of

multiple retraction fibres (Supplementary Movies 1 and 2). To

further analyse the morphology of the cells, we performed

computational analysis of the cell shape (shape factor;

Figure 1 Embryonic lethality and cardiovascular defects in the absence of a-pv expression. (A) Gross examination of wt and a-pv�/� embryos.
(B) a-pv�/� embryos display bleedings (arrowhead), whole-body edema (asterisks) and enlarged vessels (arrows). (C) Hematoxylin and eosin
staining of frontal sections through the heart outflow tract (OFT) of E12.5 wt and a-pv�/� embryos. Bar: 50 mm. (D) Confocal sections of E12.5-
13.5 hearts from wt and a-pv�/� embryos. Cardiomyocytes were labelled with a-actinin. Bar: 10 mm. A, atrium; V, ventricle; Av, aortic valve; Pv,
pulmonary valve; RVOT, right ventricular OFT; LVOT, left ventricular OFT.
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described in detail in Materials and methods), of individual

cells plated for 3 h on FN. We found that 490% of the wt

cells reached a shape factor value between 0.25 and 0.75,

indicating that they contain a single broad lamella

(Figure 3F). In contrast, more than half of the a-pv�/� cells

adopted a value below 0.25, which corresponds to an un-

polarized cell with either an elongated or a highly complex

outline of the plasma membrane (Figure 3F). Importantly, the

spreading and shape defects were rescued by re-expressing

a-pv-GFP in a-pv�/� SMA-positive cells (Figure 3G–I).

Sustained cell contraction leads to retraction, followed

by cell rounding and formation of retraction fibres, which

are, unlike stress fibres, not associated with myosin (M)

(Cramer and Mitchison, 1995). To examine whether cell

spreading, shape and polarity defects of the a-pv�/� cells

were a consequence of abnormal cell contraction, we per-

formed double immunostaining of wt and a-pv�/� cells using

anti-aSMA and anti-M-II antibodies and found that the actin

protrusions of a-pv�/� cells lacked M-II (Figure 4A). The

majority of the M-II signal was observed in the thick cortical

actin bundles of the a-pv�/� cells, whereas stress fibres

were positive in wt cells (Figure 4A). These data further

indicate that the actin protrusions of a-pv�/� cells are

retraction fibres.

a-pv controls RhoA/ROCK-mediated cell contraction

The morphological analysis suggested that the a-pv�/� SMA-

positive cells were highly contractile. Sustained contraction

Figure 2 Reduced MC coverage and defective MC/EC association in the absence of a-pv�/�. (A) Whole mount immunostaining of the head
vasculature. ECs were labelled with CD31 (green) and vSMC with aSMA (red). Bar: 0.2 mm. (B) Quantification of the diameter of the
macrovessels (I) and microvessel (II, III, IV) from the head vasculature. Values are mean±s.e.m.; *P¼ 0.012 (I); *P¼ 0.039 (II); P¼ 0.091 (III);
*P¼ 0.01 (IV). (C) CD31 and aSMA whole mount immunostaining of the right subclavian artery. Note the defective vSMC coverage and the
presence of local constriction (red arrows) of a-pv�/� vasculature. Bar: 50 mm. (D–F) Whole mount immunostaining of E10.5-115 hindbrain
endothelium CD31 (red) and associated PCs (green) from wt and a-pv�/� embryos. Bar: 50mm (D) and 20mm (E, F). (D) Reduced MC coverage
in the peripheral region of the hindbrain of a-pv�/� embryos. (E) Defective MC/EC association in a-pv�/� vasculature (arrow). (F) Delayed PC
recruitment in a-pv�/� embryos. The distance of the endothelial edge (line) to the closest PC (arrows) is labelled.
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of vSMCs can be mediated by the RhoA/ROCK/MLC2

signalling pathway (Karnam, 2006). To determine RhoA

activity in primary vSMCs, we measured Rho-GTP binding

to the Rhotekin-Rho binding domain and found a significant

increase in RhoA-GTP levels in primary a-pv�/� cells

(Figure 4B). Consistent with the increased RhoA activity,

a-pv�/� cells showed higher levels of phospho-MLC2 than wt

cells (Figure 4C). Increased levels of RhoA-GTP and elevated

levels of phospho-MLC2 were also observed in immortalized

SMA-positive cells derived from E9.5 a-pv�/� embryos

(Figure 4D and E; Supplementary Figure 7A and B).

Re-expression of a-pv in the immortalized cells induced

normal cell spreading, accompanied by loss of retraction

fibres and reduced RhoA-GTP and phospho-MLC2 levels

(Figure 4D and E; Supplementary Figure 7A–D).

Importantly, immunostaining of tissue sections of YSs

also revealed elevated MLC2 phosphorylation in vSMC/PCs

in the vascular plexus of E13.5 a-pv�/� embryos (Figure 4F),

indicating that activation of the RhoA/ROCK/MLC2 signalling

pathway is also elevated in vivo.

To test whether increased RhoA and MLC2 activity leads to

increased contractile properties of vSMCs, we seeded wt or

a-pv�/� cells in 3D collagen gels and observed gel contrac-

tion over a time period of 48 h. Indeed, a-pv�/� cells showed

a two-fold increase in gel contraction compared with wt cells

(Figure 5A and B).

Consistent with increased RhoA/ROCK signalling, addition

of Y-27632, an inhibitor of ROCK, to collagen gels normalized

the collagen gel contraction (Figure 5B). Interestingly, treat-

ment of a-pv�/� cells with ML-9, an inhibitor of MLCK, did

not change the contractile properties of a-pv�/� cells (data

not shown). Finally, when cells were cultured in the presence

of Y-27632, wt and a-pv�/� cells displayed similar morpho-

logy (Figure 5C and D). Collectively, these results indicate

that a-pv controls vSMC contraction through negatively

regulating the RhoA/ROCK/MLC2 signalling pathway.

Figure 3 Impaired cell spreading and cell shape of MCs in the absence of a-pv�/�. (A) Whole mount immunostaining of vasculature of E13.5
YSs. ECs were labelled with CD31 and MCs with NG2. Bar: 20 mm. (B) Whole mount immunostaining of vasculature of E13.5 YSs. MCs were
labelled with aSMA. Bar: 10 mm. (C) Adhesion assay of isolated wt and a-pv�/� SMA-positive cells on different ECM substrates. Values are
mean±s.e.m. (D) Brightfield images and immunofluorescence staining for aSMA (red) and a-pv (green) of wt and a-pv �/� SMA-positive cells
seeded of FN (10mg/ml). Bar: 50 and 10 mm, respectively. (E) Quantification of cell area and (F) shape factor of wt and a-pv�/� SMA-positive
cells. Values are mean±s.e.m; ***P¼ 0.0001 (G–I) Re-expression of a-pv-GFP restores size and shape of a-pv�/� SMA-positive cells. Green
represents the EGFP signal and the cytoskeleton is visualized with aSMA (red). Bar: 20mm. Values are mean±s.e.m; ***P¼ 0.0001.
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a-pv controls MC recruitment and directed cell

migration

MC recruitment to angiogenic vessels depends on platelet-

derived growth factor BB (PDGF-BB)-mediated directed

migration (Hellström et al, 1999; Abramsson et al, 2007). As we

observed defects in this process, we next determined whether

a-pv�/� SMA-positive cells were able to respond to PDGF-BB.

To this end, we stimulated serum-starved primary wt and

a-pv�/� cells with 100 ng/ml PDGF-BB and measured the

phosphorylation levels of downstream signalling molecules.

PDGF-BB treatment triggered a comparable increase in Erk

and Akt phosphorylation in wt and a-pv�/� cells, indicating

that loss of a-pv did not impair PDGFR signalling per se

(Figure 6A and data not shown). To test whether a-pv�/�

cells were still capable of migrating towards a source of

PDGF-BB, we performed both chemokinesis and chemotaxis

assays using Transwell motility chambers and found that

a-pv�/� cells exhibited accelerated rates of random chemo-

kinetic migration, but migrated less efficiently towards a

PDGF-BB gradient compared with wt cells (Figure 6B and

C). Similar results were observed in cells migrating to a

source of serum (data not shown). These data indicate that

a-pv is required for persistent directed migration.

Cell polarity is essential for directed migration. Live video

microscopy over a period of 12 h showed that wt cells

extended stable lamellipodia in the direction of the move-

ment, while a-pv�/� cells continuously formed lamellipodia-

like protrusions that were highly instable and appeared

randomly at different parts of the cells, causing continuous

changes in the direction of cell movement (Supplementary

Movies 3 and 4). Similar migration behaviour was observed

in the immortalized cells, whereas re-expression of a-pv

restored normal cell motility (Supplementary Movies 5, 6

and 7). Tracking of individual cells combined with statistical

analysis confirmed that a-pv�/� cells moved significantly less

persistently than wt cells (Figure 6D). In the presence of

Y-27632, a-pv�/� cells formed stable lamellipodia, and the

persistence of cell motility was restored to the level of wt cells

(Figure 6D; Supplementary Movies 8 and 9).

Rac activity is essential for the establishment of lamellipo-

dia and directed cell migration. It has been shown that a-pv

can regulate Rac activity in HeLa and osteosarcoma cells by

controlling the activity of the Rac/Cdc42 GAP CdGAP

(LaLonde et al, 2006). To assess whether dysregulation of

Rac activity is also involved in the altered lamellipodial

dynamics of a-pv�/� SMA-positive cells, we determined Rac

activity in immortalized cells during the first 90 min of

spreading on FN. Adhesion to FN induced a transient increase

in Rac-GTP levels that peaked after 10 min of spreading and

was comparable in wt and a-pv�/� cells (Supplementary

Figure 4 Elevated RhoA activity in the absence of a-pv. (A) Immunofluorescence staining for aSMA (red) and M-II (green) of wt and a-pv�/�

SMA-positive cells. Note that actin protrusions of a-pv�/� cells lack M-II staining. Bar: 25 mm. Freshly isolated a-pv�/� SMA-positive cells show
increased RhoA activity. Values are mean þ /� s.e.m.; **P¼ 0.0012 (B) and increased phosphorylation of MLC2 (C). Total MLC2 served as
loading control. Immortalized a-pv�/� SMA-positive cells show increased RhoA activity (D) and increased phosphorylation of MLC2 (E). (F)
Immunofluorescence analysis of E13.5 YS sections with aSMA (red) and phospho-MLC2 (green) shows increased phosphorylation of MLC2
in vivo. Bar: 20 mm.
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Figure 7E and F). Although in wt cells Rac-GTP levels re-

mained stable for 30 min and gradually decreased to basal

levels after 90 min of spreading, a-pv�/� cells showed a rapid

decrease in Rac-GTP levels to baseline levels already after

10 min (Supplementary Figure 7E and F). The early decrease of

Rac-GTP levels in a-pv�/� cells correlated with a strong

increase in RhoA activity at this time point (Supplementary

Figure 7G and H). Moreover, Y-27632-mediated inhibition

of ROCK normalized Rac activity in a-pv�/� cells

(Supplementary Figure 7I). These results indicate that Rac

activation occurs normally in a-pv�/� cells, but its sustained

activation is suppressed through elevated RhoA/ROCK activity.

a-pv-mediated regulation of RhoA is specific to MCs

and is not compensated by b-pv

The interaction of parvins with ILK is necessary to target both

proteins to FAs and to prevent degradation of the IPP complex

(Legate et al, 2006). As the IPP complex is an important

regulator of cell shape and cell migration, we tested whether

loss of a-pv affects the stability and subcellular localization of

the other members of the complex. WB analysis revealed

normal levels of ILK and PINCH1 in a-pv�/� SMA-positive

cells, whereas the levels of b-pv were increased when com-

pared with wt cells (Figure 7A). Immunostaining showed

normal ILK localization in FAs (Figure 7B). In addition,

immunoprecipitation experiments from wt and a-pv�/�

cells showed that ILK co-precipitated with b-pv both in the

presence and absence of a-pv (Figure 7C). Furthermore, in wt

cells both a- and b-pv associated with ILK, but not with each

other (Figure 7C).

To assess whether the function of a-pv in regulating cell

contractility is specific for vSMCs, we isolated and investi-

gated wt and a-pv�/� fibroblasts (Supplementary Figure 8A).

Like ECs, fibroblast lacking a-pv did not show apparent

defects in spreading and actin cytoskeleton organization. In

addition, there was no apparent difference in the levels of

MLC2 phosphorylation in these cells (Supplementary Figure

8B and data not shown).

It has been suggested that ILK modulates vSMC contrac-

tility by directly phosphorylating MLC (Wilson et al, 2005).

To test whether loss of a-pv could lead to hyperphosphoryla-

tion of MLC through ILK, we depleted ILK in wt cells

using siRNA and found increased levels of MLC2 phosphor-

ylation and reduced levels of a-pv (Figure 7D). To further

confirm that the elevated RhoA/ROCK signalling was

due to the loss of a-pv and not due to an upregulation of

b-pv, we depleted b-pv in wt and a-pv�/� cells. Depletion

of b-pv had no effect on MLC2 phosphorylation (Figure 7E),

whereas depletion of a-pv in wt cells increased

the levels of MLC2 phosphorylation (Figure 7F). Together,

these data suggest that (i) b-pv can stabilize ILK and PINCH1

protein levels and localize them into FAs in the absence of

a-pv, (ii) a- and b-pv exist in separate complexes containing

ILK, (iii) the spreading and shape defects are exclusively

due to the absence of a-pv and (iv) the ILK/a-pv

complex is a negative regulator of MLC2 phosphorylation in

these cells.

Figure 5 Increased collagen matrix contraction in the absence of a-pv. (A) Three-dimensional collagen gel containing wt and a-pv�/� SMA-
positive cells. (B) Quantification of collagen gel area. a-pv�/� SMA-positive cells display higher collagen matrix contraction capacity than wt
cells. Note that in the presence of ROCK inhibitor Y-27632 (1.5mM) wt and a-pv�/� cells show similar contraction capacity. (C) Wt and a-pv�/�

SMA-positive cells seeded on FN for 15 min in the absence and presence of Y-27632 (1.5mM) and stained with aSMA (red) and phospho-MLC2
(green). Bar: 25 mm. (D) Quantification of shape factor of wt and a-pv�/� SMA-positive cells in the absence and presence of Y-27632. Values are
mean±s.e.m.
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Discussion

The results of our study show that a-pv is a central regulator

of vascular maturation and blood vessel stability. Disruption

of the a-pv gene in mice results in embryonic lethality due to

severe cardiovascular defects. In the absence of a-pv, vascu-

lar beds are aberrantly organized and abnormally covered by

MCs. a-pv�/� vSMCs display defects in cell spreading, polar-

ity and directed migration. These cellular defects are caused

by increased RhoA/ROCK activity that leads to elevated

MLC2 phosphorylation and aberrant cell contractility.

The pump function of the heart has a critical role in

embryonic development, growth and survival by transporting

oxygen and nutrients through the vascular network and by

promoting organogenesis such as vascular remodelling and

formation of haematopoietic stem cells (Lucitti et al, 2007;

Adamo et al, 2009; North et al, 2009). Therefore, severely

impaired heart function caused either by defects during heart

morphogenesis or by abnormal cardiomyocyte organization

and sarcomere assembly can lead to embryonic lethality as

early as E10.5-12.5 (Huang et al, 2003). Integrin-mediated cell

adhesion has an essential function during cardiac develop-

ment (Sengbusch et al, 2002). In this study, we report that

a-pv is required for the remodelling of the OFTand formation

and/or stability of cardiomyofribrils, which likely contributes

to the early embryonic lethality of the a-pv�/� mice. These

observations are in line with earlier studies reporting that b1

integrins, ILK and parvins have an essential function in heart

development, cardiomyocyte contraction and integrity in

different model organisms (Fässler et al, 1996; Chen et al,

2005; Bendig et al, 2006).

Deletion of a-pv also leads to severe vascular defects,

including impaired vascular remodelling, vessel dilatation,

formation of microaneurysms and vessel rupture. As cell

type-specific ablation of the ILK gene in mice revealed an

important function for ILK in vascular development and EC

survival (Friedrich et al, 2004), it was important to determine

whether a-pv would act in co-operation with ILK to regulate

the endothelium. Interestingly, we found no increase in

apoptosis of a-pv�/� ECs. Furthermore, a-pv�/� ECs adhere,

spread and are able to migrate and form vascular networks

comparable to wt ECs. This suggests that the defects in the

vascular endothelium of a-pv�/� embryos are likely cell non-

autonomous and arise from cells that regulate vascular

remodelling and stability. In line with this hypothesis, we

observed vascular abnormalities already in E10.5 embryos, a

developmental stage when flow-dependent remodelling de-

fects are still of minor importance. Although this observation

indicates that vascular abnormalities develop independent of

the heart defect, we need to determine the contribution of the

defective heart function on the abnormal vascular remodel-

ling (Lucitti et al, 2007) at later developmental stages by

deleting the a-pv gene exclusively in cardiomyocytes using

the Cre/loxP system. To this end, we have generated a-pv

floxed mice.

Functional blood vessels consist of endothelial tubes

surrounded by tightly associated and organized vSMC/PCs

that provide stability to vessels. Dysfunction of vSMC/PCs is

Figure 6 Normal PDGF-BB signalling but impaired directed cell migration of a-pv�/� SMA-positive cells. (A) Wt and a-pv�/� SMA-positive
cells stimulated for 15 min with 100 ng/ml PDGF-BB show similar phosphorylation of Erk. Total Erk served as loading control.
(B) Quantification of chemokinetic migration. Note that a-pv�/� cells display higher rates of random migration compared with wt cells.
(C) Quantification of chemotactic migration using 20 ng/ml PDGF-BB as chemoattractant (24 h). Control medium without PDGF-BB was used
to assess baseline migration. Note that although all cells migrated towards PDGF-BB, the ratio of stimulated/unstimulated migration is reduced
in a-pv�/� cells. (D) Quantification of persistent motility of wt and a-pv�/� vSMCs (12 h) seeded on FN. Note that a-pv�/� cells move less
persistently than wt cells, whereas in the presence of Y-27632 (0.5mM), wt and cells display similar persistent motility. Values are mean±s.e.m;
***P¼ 0.0001; NS, not significant.
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associated with dilated vessels, formation of microaneurysms

and vessel wall disruption (Hellström et al, 2001; Boucher

et al, 2003). The same defects were also observed in a-pv�/�

embryos. Consistently, the endothelial tubes of a-pv�/�

embryos are poorly covered with vSMC/PCs, and the few

recruited cells fail to properly spread around the endothelial

tube. To surround and stabilize the vascular endothelium,

MCs have to proliferate and migrate to vessels. Integrin-

mediated adhesion has an important function in both of

these functions. This was shown by deleting the b1 integrin

gene in MCs, which leads to aberrant proliferation of these

cells and deficient vessel wall stability (Abraham et al, 2008),

and by ablating the a4 integrin subunit, which impairs

migration of vSMCs/PCs to developing blood vessels

(Grazioli et al, 2006). We found no requirement of a-pv for

proliferation or survival of vSMC/PCs indicating that the poor

vSMC/PCs investment is not caused by a deficiency of vSMC/

PCs. This finding also suggests that b1 integrin function is not

completely compromised in the absence of a-pv, a notion

further supported by the findings that a-pv�/� cells adhere

normally to various ECM substrates and that ILK is normally

recruited to integrin adhesion sites. Moreover, the restricted

phenotype of the a-pv�/� mice to the cardiovascular system

indicates that a-pv is indispensable for only a specific subset

of signals downstream of b1 integrin.

Cell migration is directed by gradients of chemoattractants

and/or repulsive molecules as well as by ECM molecules that

serve as haptotactic tracks. During vascular development,

MCs are attracted by a gradient of PDGF-BB produced by ECs

to migrate directionally towards newly formed vessels

(Hellström et al, 1999; Abramsson et al, 2007). Our results

show that a-pv�/� MCs are improperly recruited to the

vascular endothelium and that a-pv�/� vSMC-like cells dis-

play accelerated random motility but migrate less efficiently

towards PDGF-BB or towards a serum source. Interestingly,

a-pv�/� vSMCs are still capable of responding to PDGF-BB

stimulation by activating mitogenic signalling pathways.

These findings suggest that a-pv does not control recruitment

Figure 7 ILK/a-pv complex is a negative regulator of MC contractility. (A) Western blot analysis of IPP proteins in wt and a-pv�/� SMA-
positive cells. Note that a-pv�/� cells show similar protein levels of ILK and PINCH1, and increased protein levels of b-pv compared with wt.
(B) Immunofluorescence staining for paxillin (green) and F-actin (red) (a, b) and ILK (green) and aSMA (red) (c, d) of wt and a-pv�/� SMA-
positive cells seeded of FN. Bar: 25 mm. (C) Immunoprecipitation experiments from wt and a-pv�/� SMA-positive cells. Note that both a- and
b-pv co-immunoprecipitate with ILK but not with each other. (D) ILK depletion by two siRNA duplexes in wt cells induces increased MLC2
phosphorylation accompanied by reduced levels of a-pv. (E) b-pv depletion by two siRNA duplexes in wt and a-pv�/� cells does not change the
levels of MLC2 phosphorylation. (F) a-pv depletion by two siRNA duplexes in wt cells induces increased MLC2 phosphorylation.
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of MCs through regulating PDGFR signalling per se, but rather

by regulating the molecular machinery required for efficient

directional motility of MCs.

In response to a pro-migratory stimulus, cells polarize in

the direction of the chemotactic gradient by extending a

lamellipodium at the leading edge. Integrin-mediated

adhesions then form directly behind the lamellipodium to

stabilize the lamella and to exert a force between the ECM

and the cytoskeleton required for the advance of the leading

edge. To move the cell body forward, adhesions are

subsequently disassembled at the cell rear, which is then

pulled in the direction of motility by the contractile machin-

ery of the actomyosin network (Ridley et al, 2003). Integrins

and Rac establish a positive feedback loop within the leading

edge that forms and maintains the lamella, whereas RhoA is

necessary for the generation of contractile forces and tail

retraction (Burridge and Wennerberg, 2004). Our results

show that a-pv�/� vSMC fail to spread due to enhanced

RhoA/ROCK activity leading to elevated MLC2 phosphoryla-

tion and increased cell contractility. This finding is consistent

with earlier observations showing that cell spreading requires

a transient downregulation of RhoA activity (Ren et al, 1999).

Suppression of RhoA activity is necessary to promote lamel-

lipodial protrusion during migration (Arthur et al, 2000;

Arthur and Burridge, 2001). This is partly achieved

by negative regulation of RhoA activity by Rac, which is

transiently activated on cell adhesion to induce lamellipodia

formation (Sander et al, 1999; del Pozo et al, 2000).

On the other hand, RhoA activation restricts lamellae forma-

tion by inhibiting Rac activity (Tsuji et al, 2002; Worthylake

and Burridge, 2003). We could also show that a-pv is not

required for Rac activation induced by cell adhesion in vSMC-

like cells. However, Rac activity is rapidly suppressed during

the spreading of a-pv�/� SMA-positive cells. This down-

regulation occurs concomitantly with a robust upregulation

of RhoA activity. These observations together with the

finding that defects in cell spreading and in directional

motility can be rescued with ROCK inhibitors and that the

ROCK-inhibited cells are able to establish lamellipodia and

normalize their Rac activity strongly suggests that the aber-

rant RhoA activity is the primary defect in a-pv�/� SMA-

positive cells. ROCK-mediated activation of MLC2, which is

located both at the leading edge and at the rear of the cell,

leads to a global contraction of the cells and loss of cell

polarity (Matsumura and Hartsthorne, 2008). Thus, as a

consequence of the elevated RhoA activity and the subse-

quent suppression of Rac activity, a-pv�/� vSMC are not able

to properly establish a stable leading edge and a cell

rear, resulting in highly inefficient and non-directional cell

motility.

The mechanisms by which integrin adhesion regulates

RhoA activity are complex, and it seems that distinct integrin

heterodimers use different strategies to regulate this activity,

even in response to the same extracellular ligand (Danen

et al, 2005). The parvin-binding partner ILK has been shown

to negatively regulate RhoA activity (Yamazaki et al, 2009),

but also to positively regulate vSMC contraction through

direct phosphorylation of MLC2 (Wilson et al, 2005). The

interaction of parvins with ILK is necessary to target both

proteins to FAs and to prevent degradation of the IPP complex

(Legate et al, 2006). However, ILK levels and localization to

FAs are apparently not altered in a-pv�/� vSMCs. In addition,

b-pv levels are upregulated in these cells, and b-pv, which

also localizes to FAs, binds ILK also in the absence of a-pv.

These results suggest that the b-pv upregulation acts to

stabilize the IPP complex in the absence of a-pv, and is

sufficient to localize this complex to FAs. However, we also

show that a- and b-pv exist in separate complexes, and that

the b-pv/ILK complex is unable to compensate for the loss of

a-pv as a negative regulator of vSMC contractility.

Furthermore, we found that depletion of ILK in wt SMA-

positive cells triggers MLC2 phosphorylation accompanied by

a dramatic reduction in a-pv levels, whereas the depletion of

b-pv has no effect on MLC2 phosphorylation. Moreover, it

has been observed that a vSMC/PCs specific-deletion of ILK

leads to MCs dysfunction also associated with a RhoA-de-

pendent hypercontractility phenotype (Kogata et al, 2009).

This clearly indicates that ILK does not contribute to the

hyperphosphorylation of MLC2 through directly phosphory-

lating MLC2 in a-pv�/� cells and that the recruitment of

a-pv and ILK form a mechanosensory complex at FAs of

contractile cell types such as vSMCs. This complex has an

essential function in downregulating RhoA-dependent con-

tractility to allow efficient cell spreading and migration.

Consistent with our observations, a similar mechanism for

ILK has been recently observed in the nervous system

(Pereira et al, 2009). How the ILK/a-pv complex downregu-

lates RhoA is not known. This might occur through a-pv-

dependent recruitment of negative regulator(s) of the RhoA/

ROCK/MLC2 signalling pathway to this complex. As we

observed the RhoA downregulation only in certain

cell types, the negative regulators recruited by the ILK/a-pv

complex are likely to be expressed in a cell type-specific

manner.

Materials and methods

Generation of a-parvin-deficient mice
A 400 bp a-parvin cDNA fragment derived from ESTclone AI006605
was used to screen a 129/Sv mouse P1-derived artificial chromo-
some library. Five positive PAC clones were identified and used to
generate the a-parvin targeting construct. To abolish a-parvin gene
function, an IRES-b-galactosidase cassette and a neomycin resis-
tance gene was inserted into exon 2. Genotyping of wt and
recombinant alleles was performed by Southern blot using an
external probe after PstI digestion of genomic DNA. Wt and mutant
mice were genotyped by PCR using a three-primer system; forward
1 (F1) 50-GGAATGAACGCCATCAACCT-30, F2 50-GATTAGATAAATGC
CTGCTC-30, reverse (R) 50-TTGCGTGAGTTTGGATCGAC-30.

Antibodies
The following antibodies were used: rabbit antibody against
a-parvin (Chu et al, 2006); rabbit antibody against b-parvin (Chu
et al, 2006); rat antibody against CD31 (PharMingen); rabbit
antibody against desmin (Oldberg); Cy3-conjugated mouse anti-
body against aSMA (Sigma); rabbit antibody against anti-NG2
(Chemicon); mouse antibody against GAPDH (Calbiochem); rabbit
antibody against ILK (Cell Signalling Technology); rabbit antibody
against myosin light chain (MLC2) (Santa Cruz); rabbit antibody
against phospho-MLC2 (Cell Signaling); mouse antibody against
paxillin (Transduction Laboratories); Cy3-and FITC-conjugated
antibodies specific for mouse IgG, rabbit IgG and rat IgG (Jackson
Immunochemicals Laboratories Inc.; West Grove, PA, USA) were
used as secondary antibodies. TRITC-conjugated phalloidin was
used to detect F-actin (Molecular Probes; Eugene, OR, USA).

Isolation of SMA-positive cells
Embryos and YSs were harvested and washed in PBS. For each
embryo, the tail was removed and used for genotyping. YSs were
treated with Type I collagenase (2 mg/ml) (Invitrogen) in PBS at
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371C for 45 min. The tissue was then passed through a fine-tip
Pasteur pipette with a 2-mm diameter. Cells were plated on tissue
culture plates coated with 10 mg/ml FN and cultured in DMEM
medium containing 10% fetal bovine serum and antibiotics. After
60 min of culture, the SMA-positive cells had attached to dish, and
the medium containing visceral endoderm cells and ECs was
carefully aspirated. After 2 days in culture, SMA-positive cells were
used for experiments.

The same protocol was used to isolate SMA-positive cells from
E9.5 embryos, which were subsequently immortalized using the
SV40 T-large oncogene. SMA-positive cells were isolated and
characterized by western blot and immunofluorescence analyses.
To avoid changes in the contractile properties of the cells,
experiments were performed with low (8–10) cell passages.

Transient expression of a-pv
a-pv-GFP was generated by cloning the murine a-pv cDNA (gift
from Dr A Noegel, University of Cologne) into the pEGFP-C1 vector
(Clontech). Primary cells were transiently transfected with Lipo-
fectamine 2000 transfection reagent (Invitrogen) according to the
manufacturer’s protocol.

Adhesion assay
Cells (1�105 cells/well) were plated onto 96-well plates coated with
FN, LN or collagen I. After 45 min incubation, cells were lysed in a
substrate buffer (7.5 mM NPAG (Sigma), 0.1 M Na citrate pH 5,
0.5% Triton X-100) over night at 371C. The reaction was stopped by
adding 50 mM Glycine pH 10.4, 5 mM EDTA after which OD 405 was
measured.

Immunoprecipitation
Cells were lysed in lysis buffer (in 150 mM NaCl, 50 mM Tris pH 8,
10 mM EDTA, 1% Triton X-100, 0,05% sodium deoxycholate
supplemented with protein inhibitors (Roche) and phosphatase
inhibitors (Sigma)) and 0.5 mg of cell lysate was incubated with
anti-a-parvin rabbit polyclonal or anti-b-parvin rabbit polyclonal
antibodies for 30 min on ice. Immunocomplexes were then bound to
protein G-beads (Sigma) for 1 h, washed in lysis buffer, resuspended
in SDS sample buffer (Invitrogen) and analysed by SDS–PAGE.

RhoA activation assay and affinity precipitation of cellular
GTP-Rho and Rac
Freshly isolated cells from the YSs were seeded on FN (10mg/ml) for
10 min and a quantitative assay for RhoA activity was performed
using G-LISA RhoA Activation Assay Biochem Kit following the
manufacturer’s instructions (Cytoskeleton, Inc., CO).

For affinity precipitation of GTP-Rho and Rac, immortalized cells
were lysed in lysis buffer (50 mM Tris, pH 7.4, 1% Triton X-100,
0.1% SDS, 500 mM NaCl, 10 mM MgCl2, supplemented with
protease inhibitors (Roche)). Cell lysates were clarified by
centrifugation at 900 r.p.m. at 41C for 10 min, and equal volumes
of lysates were incubated with GST–Rhotekin (Rho) beads or GST-
PAK-CRIB beads at 41C for 60 min. The beads were washed four
times with buffer B (50 mM Tris, pH 7.4, 1% Triton X-100, 150 mM
NaCl, 10 mM MgCl2, supplemented with protease inhibitors
(Roche)). Bound Rho and Rac proteins were detected by western
blotting using monoclonal antibodies against RhoA and Rac1 (Santa
Cruz Biotechnology).

siRNA-mediated ILK and parvin depletions
siRNA duplexes for ILK, a-parvin, b-parvin and scrambled control
were purchased from Sigma. Two siRNA duplexes (50-CAGUGUAAU
CGAUCGAUGAATT-30 and 50-CCAUAUGGAUCUCUCUACATT-30 for
ILK; 50-CGACAAUGGUCGAUCCAAA-30 and 50-GAACAAGCAUCUGA
AUAAA-30 for a-parvin; 50-CAAACACCUGAAUAAGCUA-30 and 50-CC
UGACUCCUGACAGCUUU-30 for b-parvin) were transfected into
SMA-positive cells using Lipofectamine 2000 (Invitrogen) according
to the manufacturer’s protocol. Experiments were carried out 48 h
after transfection.

SDS–PAGE and immunoblotting
Cells were lysed in lysis buffer (150 mM NaCl, 50 mM Tris pH 7,4,
1 mM EDTA, 1% Triton X-100 supplemented with protease
inhibitors (Roche) and phosphatase inhibitors (Sigma)), homo-
genized in Laemmli sample buffer and boiled for 5 min. Cell lysates

were resolved by SDS–PAGE gels. Proteins were then electrophor-
etically transferred from gels onto nitrocellulose membranes,
followed by incubation with antibodies. Bound antibodies were
detected using enhanced chemiluminescence (Millipore Corpora-
tion, Billerica, USA).

Whole embryo immunohistochemistry
Staged embryos were dissected in PBS and genotyped by PCR. YSs
and embryos were fixed overnight in fixation buffer (80%
methanol, 20% DMSO). Samples were rehydrated in 0.1% Tween-
20 in PBS, incubated in blocking buffer (10% goat serum, 5% BSA
in PBS) for 2 h, and exposed to primary antibody overnight at 41C.
After 5–7 h wash with 0.1% Tween-20 in PBS, samples were
incubated with secondary antibodies overnight at 41C.

Histology of tissue sections, immunostaining and
morphological analysis
Immunohistochemistry and immunofluorescence studies of em-
bryos, YSs and cells were performed as described earlier in
Montanez et al (2008). Analysis of vessel diameter was performed
as described by Grazioli et al (2006). Three embryos of each genotype
were analysed. The area and the shape factor (4parea/perimeter2) of
cells were analysed using the MetaMorph software. The data
represent three independent assays (150 cells/experiment).

Migration assay
Chemotactic and chemokinetic migration assays were performed in
3-mm pore size chamber inserts (BD Falcon). For chemotaxis assays,
4�104 cells were plated into the chamber and transferred into 24-
well plates containing serum-free medium with or without 20 ng/ml
PDGF-BB. For chemokinesis assays, 4�104 cells in serum-free
medium with or without 20 ng/ml PDGF-BB were plated into the
chamber and transferred into 24-well plates containing serum-free
medium.

After overnight incubation, the cells in the bottom part of the
chamber were stained with a crystal violet solution and counted.
Five microscopic fields per chamber were analysed. Data are
represented as percentage of total cell number/field±s.d. The assay
was performed in triplicate in three independent assays.

Collagen matrix contraction assay
Cells were suspended in a collagen mixture (1.6 mg/ml collagen I
(INAMED), 7.5% NaHCO3 in cell culture medium (MEM)) with a
final concentration of 4�105 cells/ml. A measure of 100ml of the
collagen-cell mixture was placed in a 24-well suspension culture
plate (Greiner) and incubated for 1 h under standard cell culture
conditions causing the polymerization of the collagen. Finally, 2 ml
of cell culture medium (DMEMþ 10% serum) was applied on top of
the gel. The area of the collagen lattices was calculated after 24 and
48 h of culture. The assay was performed in triplicate in three
independent assays.

Statistical analysis
The statistical analysis was performed using the Mann–Whitney
test. The values are presented as meanþ s.e.m. At least three
independent experiments were performed.

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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Abstract 

 

The focal adhesion (FA) protein α-Parvin (αPv) has been shown to regulate integrin signaling 

and integrin-actin linkage. Here we report that the conditional deletion of the αPv gene in 

keratinocytes leads to impaired hair follicle (HF) morphogenesis, epidermal hyperplasia and 

micro-blistering. Expression of integrin α6 was reduced on αPv-deficient keratinocytes, 

leading to defects in hemidesmosome (HD) formation and integrin-dependent adhesion 

associated with rupture of the basement membrane and the presence of proliferating 

keratinocytes in suprabasal layers of the epidermis. Suprabasal expression of integrins was 

accompanied by disturbed and delayed terminal differentiation of αPv-deficient 

keratinocytes. The defects in FA formation/maturation and actin cytoskeleton organization 

resulted in impaired migration of primary αPv-deficient keratinocytes which is likely the 

cause for the impaired HF morphogenesis and cycling and progressive loss of hair. Our data 

demonstrate that αPv is required for epidermal homeostasis and HF development by 

facilitating integrin signaling and actin cytoskeleton organization in keratinocytes. 

 



Introduction 

 

Skin constitutes the interface to the external environment. It prevents dehydration and 

protects against environmental threads of physical, chemical and biological nature. These 

vital functions depend on the establishment and maintenance of a tight barrier, which is 

formed by the outermost compartment of skin, the epidermis. The epidermis is a stratified 

squamous epithelium, consisting of multiple layers of keratinocytes that are separated from 

the mesenchyme-derived dermis by a basement membrane (BM). Proliferation is restricted to 

the basal layer, where keratinocytes adhere to the BM. Once basal keratinocytes commit to a 

program of terminal differentiation, they exit the cell cycle, detach from the BM and 

translocate sequentially from the basal layer to the spinous layers, to the granular layers and 

finally to the cornified layers of the epidermis. Keratinocyte transition is accompanied by the 

successive differentiation of basal keratinocytes into terminally differentiated corneocytes, 

which are shed from the skin surface (Fuchs and Raghavan, 2002). Throughout life the 

epidermis is continuously renewed by the proliferation and differentiation of basal 

keratinocytes, which are replenished by stem cells that reside in the basal layer of the 

epidermis, the sebaceous gland and the HF bulge (Fuchs, 2008). The HF and sebaceous gland 

are epidermal appendages that form a pilosebaceous unit. Its major function is the production 

of the hair shaft (HS), which is enveloped by the inner-root-sheath (IRS) and the outer-root-

sheath (ORS) of the HF. The ORS is contiguous with the basal layer of the interfollicular 

epidermis (IFE) and is surrounded by the BM. HF morphogenesis is initiated during 

embryogenesis by epithelial progenitors in response to inductive cues from the underlying 

mesenchyme and is completed by postnatal day 14 (P14). Thereafter, HFs cycle between 

phases of apoptosis-dependent regression (catagen), quiescence (telogen), and growth 

(anagen) (Paus and Cotsarelis, 1999). During HF growth, bulge-derived keratinocytes of the 

ORS migrate along the BM towards the distal HF bulb, where they come in close proximity 

with the dermal papilla (DP), a specialized mesenchymal compartment enclosed by the hair 

bulb. In the hair bulb, ORS keratinocytes differentiate into highly proliferative hair matrix 

(HM) keratinocytes. Terminal differentiation of HM keratinocytes results in the specification 

of the distinct HF linages of the IRS and the HS. Keratinocyte differentiation as well as HF 

morphogenesis and cycling critically depend on epithelial-mesenchymal signaling crosstalk. 

Epidermal homeostasis, keratinocyte differentiation, and HF morphogenesis depend on the 

ability of keratinocytes to adhere to and migrate along the extracellular matrix (ECM). This is 

to a large extent facilitated by integrins. They are cell-ECM receptors composed of an α- and 



a β-subunit. Integrins switch from an inactive conformation with low ligand affinity to an 

active conformation with high ligand affinity. Integrin “activation” is regulated by 

cytoplasmic proteins such as talin and kindlin in a process referred to as inside-out signaling 

(Moser et al., 2009). Basal and ORS keratinocytes express the α2β1, α3β1 and α6β4 integrins 

(Commo and Bernard, 1997; Watt, 2002). Additionally, basal keratinocytes express αvβ5 and 

upregulate α5β1, α9β1 and αvβ6 under pathological conditions such as wound healing and in 

cell culture (Watt, 2002). Adhesion to the BM is mediated by the laminin (Ln) binding α6β4 

integrin heterodimer, which is a central component of HDs and connects the BM to keratin 

intermediate filaments. The β1 integrins also contribute to the adhesion of basal keratinocytes 

to the BM and are required for deposition and integrity of the BM, keratinocyte proliferation 

and differentiation, HF morphogenesis and cycling and wound healing (Brakebusch et al., 

2000; Grose et al., 2002; Raghavan et al., 2000). 

The short cytoplasmic tails of integrins lack intrinsic enzymatic activity. Instead integrins 

depend on the recruitment of signaling and adaptor molecules to accomplish downstream 

signaling events (outside-in signaling) and to enforce the linkage to the actin cytoskeleton. 

The integrin linked kinase (ILK), which directly binds to β1-integrin cytoplasmic tails, has 

been identified as a key component required for integrin functions. Through its N-terminal 

ankyrin repeats ILK binds to the LIM-only proteins PINCH-1 and PINCH-2, and through its 

C-terminal kinase-like domain ILK binds to the CH (calponin homology) domain-containing 

proteins α-, β-, or γ-Parvin (αPv, βPv and γPv). Together ILK, PINCH and Parvin form a 

ternary complex (IPP-complex), whose assembly in the cytosol precedes its recruitment to 

integrin adhesions. Assembly of the ternary IPP-complex is required for the stability of its 

constituents and genetic ablation of one component results in a proteasome dependent 

downregulation of the remaining constituents (Fukuda et al., 2003; Grashoff et al., 2004; 

Legate et al., 2006). 

Genetic ablation of ILK in the epidermis and its appendages alters BM integrity, epidermal 

homeostasis and HF development/maintenance and results in epidermal detachments from the 

BM and the progressive loss of hair (Lorenz et al., 2007; Nakrieko et al., 2008). 

Parvins regulate cell adhesion, spreading, migration and survival by controlling actin 

cytoskeleton dynamics via direct binding to actin and modulating the activity of actin 

regulators (Legate et al., 2006). αPv is widely expressed, βPv expression is enriched in heart 

and skeletal muscle and γPv expression is restricted to the hematopoietic system (Chu et al., 

2006; Nikolopoulos and Turner, 2000; Olski et al., 2001; Tu et al., 2001; Yamaji et al., 2001). 



Deletion of αPv in mice leads to embryonic lethality due to cardiovascular defects (Montanez 

et al., 2009). The functions of αPv in epidermal homeostasis, however, are not known. 

To analyze the function of αPv in epidermal homeostasis we conditionally deleted αPv gene 

in the epidermis. Here we show that αPv is required for epidermal homeostasis and HF 

morphogenesis and maintenance. Mice lacking αPv in the epidermis progressively loose hair 

and develop a persistent alopecia. This is accompanied by epidermal detachments from the 

BM and hyperplasticity of the epidermis and the ORS due to the accumulation of ectopically 

proliferating keratinocytes in suprabasal layers of the epidermis and in the ORS. Surface 

expression of integrin α6 is reduced on αPv-deficient keratinocytes, which display 

disorganized actin cytoskeleton organization and impaired cell adhesion, spreading, 

migration and differentiation. Our data indicate that αPv regulates HF morphogenesis and 

epidermal homeostasis by controlling keratinocyte adhesion and migration. 



Results 

 

Keratinocyte restricted deletion of αPv leads to progressive hair loss 

 

To analyze the function of αPv in the epidermis and its appendages we deleted the αPv gene 

in basal keratinocytes by generating αPv-floxed mice (αPvfl/fl) (Sup. Fig. 1) and intercrossing 

them with mice expressing Cre recombinase under the control of the K5 promotor (K5-Cre) 

(Ramirez et al., 2004). K5-Cre-expressing αPvfl/+ K5Cre control (αPv Ctrl) and αPvfl/fl K5Cre 

mutant mice (αPv K5) were born at the expected Mendelian ratio. No macroscopic 

differences were observed until skin pigmentation set in at around postnatal day (P) 3 to 4. 

From P4 on, αPv K5 mice showed irregular skin pigmentation. By P7, control mice 

developed a homogenous hair coat, whereas αPv K5 mice displayed a patchy hair coat. 

Sparse hair with partial alopecia persisted for about 4 weeks (Sup. Fig. 2A). Thereafter αPv 

K5 gradually lost hair, resulting in complete and persistent alopecia at around 8 weeks of age 

(Fig. 1A). Western-blot (WB) analysis of protein lysates of keratinocytes isolated from one 

week old mice showed loss of αPv protein and reduced ILK and Pinch protein levels in αPv 

K5 mice compared to control mice (Fig. 1B). We did not detected βPv expression in 

keratinocyte lysates. 

To characterize the expression of αPv in skin, we performed immunostaining using an 

antibody specific for αPv (Chu et al., 2006) on back-skin sections from 2-week-old mice and 

tail-skin from 2-month-old mice. In the skin of control mice, αPv was found highly expressed 

in basal keratinocytes of interfollicular epidermis (IFE) and outer-root-sheath (ORS) (Fig. 

1C). αPv was evenly distributed around the cortex of basal keratinocytes in control IFE (Fig. 

1D). No αPv-specific signal was detected in the epidermis of αPv K5 mice, except for some 

locally restricted areas adjacent to intense integrin α6 staining and in a few suprabasal cells 

(Fig. 1C). ILK expression was absent in IFE of αPv K5 mice while clearly present in IFE of 

control mice (Fig. 1E). Taken together, these data showed that the efficient deletion of αPv in 

keratinocytes destabilizes the IPP-complex and results in gradual hair loss followed by 

persistent alopecia. 

 

 

 

 



Deletion of αPv impairs HF development and epidermal homeostasis 

 

To morphologically characterize the consequences of keratinocyte-restricted αPv-deletion, 

we performed hematoxylin and eosin (H&E) staining on back-skin sections of control and 

αPv K5 mice. No differences in epidermal morphology were found between control and αPv 

K5 mice before P3. At later stages, in contrast to control skin, progressive epidermal 

hyperplasia and locally confined epidermal detachments at the dermal-epidermal junction 

(DEJ) were observed in the skin of αPv K5 mice (Fig. 2C, E, F and 3A). From P3 on, αPv K5 

mice also displayed impaired HF morphogenesis (Fig. 2A-F and 3A, B). At P14, HFs of 

control mice reached an average length of 1100µm. In contrast, 68% of HFs of αPv K5 mice 

were shorter than 400µm with an average length of 270µm and thus entirely remaining in the 

dermal compartment (Fig. 2B, C and 3A, B). HS and dermal papilla were either severely 

distorted or completely absent in those prematurely growth arrested HFs (Fig. 3A) and only 

32% of HFs of αPv K5 mice reached into the subcutaneous fat layer (Fig. 2B, C and 3A, B). 

At P23, HFs of both control and αPv K5 mice were in telogen, indicating that HF regression 

was not impaired in the absence of αPv (Fig. 2D). HF of control mice elongated during the 

following anagen phase and by P28 reached into the subcutis. In contrast, HFs of αPv K5 

mice remained confined to the dermis (Fig. 2E). By P56, complete resorption of HFs resulted 

in aberrant melanin depositions in the dermis of αPv K5 mice (Fig. 2F). These results showed 

that αPv is required for HF morphogenesis and epidermal homeostasis. 

 

Deletion of αPv results in decreased surface expression of integrin α6 

 

The IPP complex is a major mediator of integrin signaling (Legate et al., 2009). Next, we 

analyzed surface expression of integrins on control and αPv-null keratinocytes by FACS 

analysis using antibodies against several integrin subunits. Surface levels of integrins β1, β4, 

α2, αv and α5 were not altered in αPv-null keratinocytes compared to control cells (Fig. 4A, 

C). However, surface expression of integrin α6 on αPv-null keratinocytes was significantly 

reduced compared to control cells (Fig. 4A, C). To investigate whether integrin localization 

was affected upon deletion of αPv, immunohistochemistry using antibodies against β1, β4 

and α6 integrins was performed on back-skin sections from 2-week-old mice. While in the 

epidermis of control mice integrin β1 expression was restricted to basal keratinocytes, in the 

epidermis of αPv K5 mice β1 integrin expressing cells were also found in suprabasal cell-



clusters (Fig. 5A). In control mice, basal keratinocytes showed a continuous integrin β4 and 

α6 staining that was restricted to the basal membrane (Fig. 1C and Fig. 5A, B). In contrast, 

basal keratinocytes of αPv K5 mice showed a discontinuous integrin β4 and α6 staining (Fig. 

1C and Fig. 5A, B) and suprabasal cells expressing β4 integrin on their entire surface were 

observed in areas where the BM was disrupted (Fig. 5B). These data showed that deletion of 

αPv results in decreased surface expression of integrin α6 and ectopic expression of β1 and 

β4 integrins in suprabasal layers of the epidermis. 

 

Abnormal cell-polarity, impaired HD formation and compromised adhesion to and 

organization of the BM in the absence of αPv 

 

Discontinuous integrin α6 and β4 staining and reduced integrin α6 surface expression 

suggested defective HD formation. To investigate, whether HD formation was compromised 

in the absence of αPv, electron microscopy (EM) was performed on back-skin sections from 

2-week-old control and αPv K5 littermates. Ultrastructural analyzes showed the absence of 

HDs in areas where basal keratinocytes had detached from the BM in the skin of αPv K5 

mice (Fig. 5C, D and Sup. Fig. 5). In the skin of control mice the BM was continuous and 

was located between the epidermis and the dermis. In contrast, in the skin of αPv K5 mice the 

BM was frequently disrupted or displaced into the dermis. (Fig. 5D and Sup. Fig 5). EM 

analyzes also revealed a complete lack of caveolae in αPv-deficient BM-detached basal 

keratinocytes (Fig. 5D). Additionally, edemas and lose cell-cell contacts were observed in the 

epidermis of αPv K5 mice (Sup. Fig. 5). 

Cell adhesion, shape and polarity as well as cell-cell contacts depend on the correct 

organization of the actin cytoskeleton. In the epidermis of control mice, actin localized at the 

apical and lateral side of basal keratinocytes. In contrast, in the epidermis of αPv K5 mice 

actin was frequently localized at the basal side of basal keratinocytes and actin cables were 

observed between loosely connected adjacent cells (Fig. 5E). Furthermore, in contrast to 

control mice, in αPv K5 mice β-catenin (Fig. 5F) as well as E-cadherin (Fig. 5G) were found 

at the basal side of basal keratinocytes that were detached from the BM. Together, these data 

indicated that αPv is required for adhesion and polarization of keratinocytes. 

 

 



Deletion of αPv compromises adhesion and impairs recruitment of the IPP complex and 

paxillin into FAs of keratinocytes 

 

To analyze actin organization and subcellular distribution of the IPP complex in vitro, 

phalloidin-staining to visualize filamentous actin and immunostaining using antibodies 

against αPv, ILK, Pinch and paxillin were performed on primary keratinocytes isolated from 

control and αPv K5 mice. While αPv, ILK, Pinch and paxillin were colocalizing at FAs in 

control keratinocytes, in αPv-null keratinocytes paxillin-containing FAs were either missing 

or strongly reduced in size without detectable αPv, ILK and Pinch signals (Fig. 6B-D, Sup. 

Fig. 4B-D). αPv-null keratinocytes displayed a roundish or spiky cell morphology and were 

less spread than control keratinocytes (Fig. 6A-D and Sup. Fig. 4A-D). αPv was localizing to 

the tip of actin stress-fibers in control keratinocytes. In contrast, formation of stress-fibers 

was impaired in αPv-null keratinocytes (Fig. 6A and Sup. Fig. 4A). 

To analyze whether the in vivo detachment of keratinocytes primarily resulted from abnormal 

BM organization or defective integrin-mediated adhesion to the BM, adhesion of primary 

keratinocytes to ECM components was analyzed in vitro. While integrin-independent binding 

to poly-L-Lysine was not affected by the deletion of αPv, integrin-dependent binding of αPv-

null keratinocytes to fibronectin (FN), collagen type-I (Col-I) and laminin 332 (Ln332) was 

significantly reduced compared to control cells (Fig. 6E). 

 

Ectopic hyperproliferation upon loss of αPv 

 

To investigate whether the hyperplastic epidermis and ORS observed in αPv K5 mice were a 

consequence of increased proliferation, immunostaining using the proliferation markers Ki67 

and phospho-Histone 3 was performed on skin sections from 2-week-old animals. In HFs of 

control mice, proliferation was mainly observed in HM-keratinocytes surrounding the DP 

(Fig. 7A). In contrast, in HFs of αPv K5 mice, proliferative cells accumulated in the ORS and 

partially were absent from the hair bulb (Fig. 7A). In the epidermis of control mice, 

proliferative cells were found in the basal layer of the epidermis (Fig. 7B-D). In contrast in 

the epidermis of αPv K5 mice, about 30% of Ki67-positive keratinocytes were observed in 

suprabasal layers (Fig.7 B, C). However, the percentage of proliferating cells in the basal 

layer of the epidermis was not different between control and αPv K5 mice (Fig. 7B-D). These 



data suggested that hyperplasia in αPv-deficient epidermis and ORS is due, at least in part to 

ectopic proliferation of keratinocytes in suprabasal layers of the epidermis and in the ORS. 

 

Deletion of αPv results in delayed keratinocyte-differentiation 

 

Ectopic proliferation and expression of integrin β1 and β4 by suprabasal cells could be a 

consequence of delayed differentiation and/or abnormal translocation of undifferentiated 

basal keratinocytes to suprabasal layers. To assess whether αPv regulates keratinocyte 

differentiation, immunohistochemistry using epidermal differentiation markers was 

performed on back skin sections of 2-week-old mice. In the epidermis of control mice, 

expression of K5 was restricted to the basal layer (Fig. 8A), K10 was found to be expressed 

in the first suprabasal cell-layer (spinous layer) (Fig. 8B) and loricrin expression was 

confined to the stratum granulosum (Fig. 8C). In contrast, in the epidermis of αPv K5 mice 

expression of K5 was detected in the basal layer and additionally in up to five suprabasal 

layers (Fig. 8A) and K10 (Fig. 8B) and loricrin (Fig. 8C) were expressed in all suprabasal 

layers. Together these data suggested that αPv controls differentiation of keratinocytes. 

Wound-healing responses and recruitment of inflammatory cells upon blister-formation at the 

DEJ could additionally contribute to the hyperproliferation. To analyze whether loss of αPv 

in the epidermis results in the recruitment of inflammatory cells, we performed 

immunostaining on back-skin sections of control and αPv K5 mice using markers for 

granulocytes (gr1) and macrophages (mac1). At P14, both granulocyte and macrophage 

infiltrates were found in areas with disrupted or displaced BM and around distorted HFs in 

the skin of αPv K5 mice, whereas no signs of inflammation could be observed in the skin of 

control mice (Fig. 8D, E). Although epidermal hyperplasia, abnormal polarity of 

keratinocytes and defects in BM-integrity were already obvious in skin of αPv K5 mice at P7 

(Sup. Fig. 3A-D), no signs of inflammation were detected in back-skin sections from 1-week-

old control and αPv K5 animals (Sup. Fig. 3E). These data provided evidence that 

hyperproliferation precedes the inflammatory response rather than being its consequence. 

 

Impaired directional migration upon αPv deletion 

 

The accumulation of proliferative cells in the ORS and their partial absence in the hair bulb 

indicate compromised downward migration of keratinocytes from the bulge region. To 



analyze whether αPv regulates migration of keratinocytes, we performed in vitro wound-

healing migration assays with primary keratinocytes isolated from control and αPv K5 

animals. Control keratinocytes closed the wound within 24h, whereas αPv-null keratinocytes 

failed to efficiently migrate into the wound (Fig. 9A). Single-cell tracking revealed two 

reasons for the impaired wound closure (Fig. 9B). First, whereas control keratinocytes 

migrated with an average speed of 0.56 ±0.19 µm/min, αPv-null keratinocytes were 

significantly slower, only migrating with an average speed of 0.34 ±0.16 µm/min. Therefore 

the accumulated distance migrated by αPv-null keratinocytes (481.92 ± 227.85 µm) was 

significantly shorter than that of control keratinocytes (808.52 ± 275.12 µm). Second, αPv-

null keratinocytes were impaired in their directionality. The directionality index determined 

for control keratinocytes was 0.34 ± 0.14, whereas it was only 0.14 ± 0.09 for αPv-null 

keratinocytes. Both defects together resulted in a significantly reduced euclidean migration 

distance of αPv-null (62.59 ± 40.76 µm) compared to control (262.23 ± 107.13 µm) 

keratinocytes and thus in the impaired wound-closure. 



Discussion 

 

In the present manuscript, we reported that αPv is essential for epidermal homeostasis and HF 

morphogenesis and cycling. Conditional deletion of the αPv gene in keratinocytes in mice 

resulted in locally confined epidermal detachments at the DEJ, abnormal BM organization, 

epidermal hyperplasia and progressive and persistent alopecia due to impaired HF 

development and maintenance. Loss of αPv also resulted in delayed keratinocyte-

differentiation and accumulation of proliferating keratinocytes in suprabasal layers of the 

epidermis and in the ORS of HFs. We reported that loss of αPv is required for the proper 

expression and distribution of integrins, actin cytoskeleton organization and polarity of 

keratinocytes 

Epidermal detachments from the BM upon keratinocyte-restricted deletion of αPv indicate 

that αPv is essential for the adhesion of keratinocytes to the BM. The adhesion of basal 

keratinocytes to the BM largely is mediated by the hemidesmosomal integrin α6β4 (Watt, 

2002). Here we show that in the absence of αPv the surface levels of the α6 integrin subunit 

are reduced. Moreover, our analyses showed absence of HDs in αPv K5 mice, indicating that 

αPv is required for HD formation/maintenance. Additionally, deletion of αPv in keratinocytes 

resulted in splitting of the interfollicular BM and its displacement into the dermis, indicating 

that αPv is required for BM-integrity. These results are in line with previous data showing 

that β1 integrins and ILK are required for HD formation/maintenance and BM-integrity 

(Brakebusch et al., 2000; Lorenz et al., 2007; Nakrieko et al., 2008; Raghavan et al., 2000). A 

direct interaction of the IPP-complex with the α6β4 integrin heterodimer has not been 

reported, suggesting that loss of αPv might indirectly affect HD assembly/stability. One 

possibility is that defects in BM integrity compromise the assembly/stability of HDs (Litjens 

et al., 2006). Additionally, the integrin heterodimer α3β1 has been suggested to be involved 

in the nucleation of HDs (Litjens et al., 2006; Sterk et al., 2000). However, although BM 

integrity is severely compromised in α3β1-deficient mice, HDs are not affected (DiPersio et 

al., 1997). This might be due to a compensatory function of other β1 integrins and suggests 

that impaired BM integrity is not the primary cause for the defective HD 

assembly/maintenance in αPv-deficient epidermis, that αPv facilitates BM integrity 

downstream of integrin α3β1 and that αPv is required to facilitate β1 integrin-dependent HD 

assembly/stability, possibly by affecting surface expression and/or localization of the integrin 

α6 subunit. 



Integrin-dependent adhesion of αPv-deficient keratinocytes to ECM-components was also 

severely compromised in vitro, suggesting that epidermal detachments are due to impaired 

integrin-mediated adhesion. Although reduced surface expression of the integrin α6 subunit 

in αPv-deficient keratinocytes likely contributes to the compromised adhesion to Ln332, it 

cannot explain the defects in the adhesion to Col-I and FN. This indicates, that αPv 

additionally facilitates adhesion through β1 integrins such as the collagen receptor α2β1, the 

fibronectin receptor α5β1 and the laminin receptor α3β1. 

Adhesion to the ECM depends on the clustering of integrins into adhesive structures such as 

FAs. Maturation and strengthening of FAs in turn requires the linkage of integrins to the actin 

cytoskeleton. The IPP-complex facilitates the linkage of integrins to the actin cytoskeleton 

through Parvins. Although small paxillin-containing FAs could form in the absence of αPv, 

ILK and Pinch were absent from FAs and αPv-deficient keratinocytes displayed a poorly 

organized actin cytoskeleton with an almost complete lack of actin stress fibers. This 

indicates that actin cytoskeleton organization and recruitment of ILK and Pinch-1 to FAs 

critically depend on αPv and suggests that the adhesion defects of αPv-deficient keratinocytes 

are due to a combination of reduced surface expression of integrin α6, defective organization 

of the actin cytoskeleton and compromised FA formation/maturation. 

Rho GTPases are major regulators of actin cytoskeleton dynamics and although Rac1 

activation was normal during spreading on Ln332 in the absence of ILK (Lorenz et al., 2007), 

Rac1 activation was reduced during in vitro wound healing assays in ILK-deficient 

keratinocytes (Nakrieko et al., 2008), indicating a critical function of the IPP complex in the 

regulation of Rho GTPases during keratinocyte migration. Additionally, αPv negatively 

regulates RhoA activity in vascular smooth muscle cells (Montanez et al., 2009), suggesting 

that αPv might regulate keratinocyte-migration by controlling the organization of the actin 

cytoskeleton via Rho GTPase signaling. Whether αPv regulates Rho GTPases in 

keratinocytes remains to be elucidated. 

In addition to the adhesion defects, filamentous (f)-actin, β-catenin and E-cadherin localized 

to the basal membrane of αPv-deficient basal keratinocytes in vivo, indicating that αPv is 

required to maintain cell-polarity. E-cadherin and β-catenin are core components of adherens 

junctions, which facilitate cell-cell adhesion and are linked to the actin cytoskeleton 

(Yonemura, 2011). Loosely connected cells and edemas (Sup. Fig. 5) in the epidermis of 

αPv-deficient animals suggest that αPv facilitates formation or stabilization of cell-cell 

contacts. Cell polarity and adherens junctions depend on the correct organization of the actin 

cytoskeleton, suggesting that αPv might indirectly affect polarity and cell-cell adhesion by 



controlling the organization of the actin cytoskeleton. Defects in cell-cell adhesion also have 

been reported in embryoid bodies in the absence of Pinch-1 but not in the absence of ILK and 

it has been suggested that these differences could be due to an IPP complex-independent 

functions of Pinch-1 in cell-cell adhesion (Li et al., 2005). However, how Pinch-1 and αPv 

can control cell-cell adhesion in an IPP-independent manner currently is not known and 

needs to be elucidated. 

Keratinocyte-restricted deletion of ILK results in suprabasal expression of integrins, 

inflammation, delayed terminal differentiation, ectopic proliferation in suprabasal layers of 

the epidermis and epidermal hyperplasia (Lorenz et al., 2007). In line with these findings, we 

observed strikingly similar defects in the epidermis of αPv-deficient mice. It has been 

suggested that inflammation is required to trigger the epidermal hyperproliferation in mice 

expressing integrins in suprabasal layers (Romero et al., 1999). However, hyperthickening of 

αPv-deficient epidermis clearly preceded the accumulation of inflammatory granulocytes and 

macrophages, indicating that inflammation is not the primary cause for hyperproliferation in 

αPv-deficient epidermis but rather results from disturbed epidermal homeostasis in the 

absence of αPv. 

Loss of αPv resulted in severely compromised HF morphogenesis and progressive loss of 

hair. About one-third of the HFs in αPv K5 mice completed morphogenesis by P14, whereas 

the remaining two-thirds were severely distorted and prematurely growth-arrested. 

Asynchronous initiation and morphogenesis of distinct types of HFs together with a perinatal 

loss of αPv-protein can explain the development of both prematurely growth arrested and 

mature HFs in αPv K5 mice (Paus et al., 1999; Schmidt-Ullrich and Paus, 2005). Thus, in 

prematurely growth arrested HFs αPv had been deleted in early phases of HF-morphogenesis, 

leading to their premature growth arrest, whereas mature HFs had lost αPv in late stages of 

morphogenesis. However, also mature HFs displayed several morphological abnormalities, 

including a markedly reduced length, a hyperplastic ORS, interrupted HSs and a distorted 

DP. Although catagen and telogen appeared to proceed normal in HFs of αPv K5 mice, all 

HFs failed outgrowth during the following anagen phase. HF growth depends on the 

proliferation and directional migration of stem cell-derived keratinocytes from the HF bulge 

region towards the HF bulb, where they differentiate into HM keratinocytes. Directed 

migration is impaired in αPv-deficient keratinocytes, suggesting that these migration defects 

account for the accumulation of proliferative keratinocytes in the ORS of mature αPv-K5 

HFs, the impaired development of prematurely growth arrested αPv-K5 HFs and the impaired 

HF outgrowth during anagen in the absence of αPv. 



Materials and methods 

 

Generation of floxed αPv mice and intercrossing with K5-Cre mice 

 

A 129/Sv mouse P1-derived artificial chromosome (PAC) library was screened with cDNA-

probes to identify PAC-clones containing αPv-genomic DNA. Positive PAC clones were 

used to generate the αPv targeting construct, encompassing a 2.7 kb 5’-homology arm and a 

5.9 kb 3’-homology arm, targeting a region from intron 1 to intron 4 of the αPv gene. A 

neomycin-resistance cassette flanked by two frt-recognition sequences was inserted into 

intron 2 to allow the selection of neomycin-resistant ES cell clones. The first loxP sequences 

was introduced 5’ of the neomycin cassette into intron 2, the second loxP sequences was 

introduced into intron 3, thus flanking exon 3 of the αPv gene. Genotyping of wt and 

recombinant alleles was performed by Southern blot using an external probe after EcoRI 

digestion of genomic DNA. The neomycin-resistance cassette was removed by intercrossing 

αPv-floxed mice with FLP recombinase-expressing mice (Farley et al., 2000). Efficient 

removal of the neomycin-resistance cassette was confirmed by PCR. Homozygous αPv-

floxed mice lacking the neomycin-resistance cassette were viable and phenotypically normal. 

For the genotyping of αPv-floxed mice, a PCR with the three primers APE2f (forward) 5'-

GAAGGAATGAACGCCATCAAC-3', APloxPf (forward) 5'-

CTGAGTGACATGGAGTTTGAG-3' and APloxPr (reverse) 5'-

GGACTTGTGGACTAGTTAG AC-3' was used, allowing the discrimination of wt (1.1kb 

and 186bp), floxed (240bp) and Cre-mediated-recombined (595bp) alleles. For the 

keratinocyte-restricted deletion of the floxed αPv-gene, homozygous floxed αPv-females 

were mated with heterozygous floxed αPv-males, expressing the Cre-recombinase under the 

control of the keratin 5 promotor (Ramirez et al., 2004). Presence of the K5-Cre transgene in 

littermates was determined by PCR using the primers CreF (forward) 5'-

AACATGCTTCATCGTCGG-3' and CreR (reverse) 5'-TTCGGATCAGCTACACC-3'. 

 

Isolation and culture of primary keratinocytes 

 

Primary keratinocytes were isolated and cultured as previously described (Montanez et al., 

2007). Keratinocyte growth medium (KGM) was prepared from Minimal Essential Medium 

(Spinner Modification; Sigma-Aldrich), complemented with 8% chelated FCS, 45µM CaCl2, 



5mg/ml insulin (Sigma-Aldrich), 10ng/ml EGF (Sigma-Aldrich), 10mg/ml transferrin 

(Sigma-Aldrich), 10mM phosphorylethanolamine (Sigma-Aldrich), 10mM ethanolamine 

(Sigma-Aldrich), 0.36mg/ml hydrocortisone (Calbiochem), 2mM L-Glutamine (Invitrogen) 

and 1x Penicillin/Streptomycin (PAA). Keratinocytes were cultured on tissue-culture dishes 

coated with 10µg/ml Col-I (INAMED) and 10µg/ml FN (Merck). 

 

Adhesion assay 

 

Primary keratinocytes (1*105 cells/well) were plated onto 96-well plates coated with poly-L-

lysine (Sigma-Aldrich), Col-I (INAMED), FN (Merck) or Ln332 (Dr. Monique Aumailley, 

University of Cologne, Germany). After 30 min incubation, cells were lysed in substrate 

buffer (7.5mM NPAG (Sigma-Aldrich), 0.1M Na citrate pH 5, 0.5% Triton X-100) over night 

at 37°C. The reaction was stopped by adding 50mM Glycine pH 10.4, 5mM EDTA, and the 

OD 405 was measured. 

 

In vitro wound healing assay 

 

After 4h incubation in KGM supplemented with 4µg/ml Mitomycin C (Sigma-Aldrich), 

keratinocyte monolayers were gently scratched with the tip of a cell-scraper. Subsequently, 

images were captured every 10 min for 24h at 37°C and 5% CO2 using a Zeiss Axiovert 

microscope equipped with 10× NA 0.3, 20× NA 0.4, 40× NA 0.6, and 100× NA 1.3 

objectives, a motorized scanning table (Märzhäuser), a stage incubator (EMBL Precision 

Engineering) and a CCD camera (Roper Scientific MicroMAX). MetaMorph (Universal 

Imaging Corp.) software was used for microscope control and data acquisition. For single-

cell tracking and data analyzes, the ImageJ software-plugins “Manual Tracking” (Fabrice P. 

Cordelières) and “Chemotaxis and Migration Tool” (ibidi) were used. At least three 

independent experiments were performed and more than 20 individual cells were tracked for 

each experiment. 

 

FACS analyses 

 

FACS analyses were performed as previously described (Montanez et al., 2007). Primary 

keratinocytes were cultured three to four days prior to FACS analyses, to exclude suprabasal 



keratinocytes from the analyses. Antibodies used for FACS analyzes were biotinylated 

hamster antibody against integrin β1; rat antibody against integrin β4; FITC-conjugated rat 

antibody against integrin α6; biotinylated rat antibody against integrin αv; biotinylated rat 

antibody against integrin α5 (all from PharMingen, San Diego, CA); FITC-conjugated 

hamster antibody against integrin α2 (BD Biosciences); Cy5-conjugated Streptavidin 

(Jackson Immunochemicals Laboratories Inc.; West Grove, PA, USA); Anti-Rat-Alexa488 

(Invitrogen); FITC-conjugated IgG2a,k (rat) (NatuTec); biotinylated IgG2a,k (rat) 

(eBioscience); FITC-conjugated IgG2 (hamster) (PharMingen, San Diego, CA); biotinylated 

IgM (hamster) (BioLegend); biotinylated IgG2a,k (rat) (eBioscience). 

 

Epidermal lysates and cell lysates 

 

Primary keratinocytes, either directly after isolation or after cultivation for up to five days, 

were lysed in lysis buffer (50mM Tris pH 7.4, 150mM NaCl, 1mM EDTA, 1% NP40, 1% 

SDS, 1% Na-deoxycholate) supplemented with protease inhibitor cocktail tablets (Complete 

Mini, EDTA-free; Roche). Proteins were separated by SDS-PAGE and blotted onto PVDF-

membranes. For subsequent immuno-detection, the following antibodies were used: rabbit 

antibody against αPv (Chu et al., 2006); rabbit antibody against βPv (Chu et al., 2006); rabbit 

antibody against ILK (Cell Signaling Technology); mouse antibody against Pinch (BD 

Biosciences); mouse antibody against GAPDH (Calbiochem); goat anti–mouse HRP; and 

goat anti–rabbit HRP (Bio-Rad Laboratories). 

 

Histology and immunohistochemistry 

 

Histology and immunohistochemistry on skin sections was performed as previously described 

(Montanez et al., 2007). Back-skin was fixed overnight at 4°C in 4% PFA in PBS, dehydrated 

in a graded alcohol series and embedded in paraffin (Paraplast X-tra; Sigma-Aldrich) using a 

embedding machine (Shandon). For cryo-sections, unfixed back-skin was embedded in OCT 

(Shandon Cryomatrix, Thermo) and rapidly frozen. Prior to staining, cryo-sections were fixed 

with PFA, methanol or Zn-fixative (40mM ZnCl2, 3mM Calcium acetate monohydrate, 

10mM Zinc trifluoroacetate hydrate, 100mM Tris pH 6.8). For immunostaining, primary 

keratinocytes were plated overnight onto glass-coverslips coated with 10µg/ml FN and 

10µg/ml Col-I. Cells were fixed in 3% PFA, permeabilized with 0.1% Triton-X100 and 



blocked with 3% BSA (all in PBS). The following antibodies were used for 

immunohistochemistry: rabbit antibody against αPv (Chu et al., 2006); mouse antibody 

against ILK, Pinch and Paxillin (all BD Biosciences); TRITC-conjugated phalloidin and 

rabbit antibody against β-catenin (all Sigma-Aldrich); rat antibody against β4-Integrin, FITC-

conjugated rat antibody against α6-Integrin, Biotin-conjugated rat antibody against Mac-1 

(integrin αM), and PE-conjugated rat antibody against Gr1 (all PharMingen, San Diego, CA); 

Alexa488-conjugated goat antibody against rabbit, Alexa546-conjugated goat antibody 

against rabbit (Invitrogen) and Alexa546-conjugated goat antibody against mouse (all 

Invitrogen); Cy3-conjugated goat antibody against rat and Cy3-conjugated streptavidin (all 

Jackson Immunochemicals Laboratories Inc.; West Grove, PA, USA); rat antibody against β1 

integrin (Chemicon); rat antibody against E-cadherin (zymed); rabbit antibody against Ln332 

(Dr. Monique Aumailley, University of Cologne, Germany); rat antibody against Ki67 (Tec3) 

(DakoCytomation); biotin-conjugated rabbit antibody against phospho-Histone H3 (Ser10) 

(Upstate); rabbit antibodies against keratin 5 and 10 and loricrin (all Covance). Confocal 

images were acquired with a Leica TCS SP5 microscope (Leica Microsystems CMS, 

Mannheim, Germany), equipped with 20.0x NA 0.70, 40x NA 1.25, 63x NA 1.4 and 63x NA 

1.2 objectives, using Leica Application Suite Advanced Fluorescence (LAS AF) software 

version 1.6.2. build 1110. 

 

Epidermal whole mounts 

 

Whole mounts from tail-skin were prepared as previously described (Braun et al., 2003). 

Small pieces of tail-skin were incubated in 5mM EDTA in PBS at 37°C for four hours. 

Subsequently, the epidermis was carefully peeled from the dermis and fixed in Zn-fixative 

(40mM ZnCl2, 3mM Calcium acetate monohydrate, 10mM Zinc trifluoroacetate hydrate, 

100mM Tris pH 6.8) at 4°C overnight. For immunohistochemistry, rabbit antibody against 

αPv (Chu et al., 2006), mouse antibody against ILK (BD Biosciences) and FITC-conjugated 

rat antibody against α6-Integrin (PharMingen, San Diego, CA) were used. 

 

Electron microscopy 

 

Samples from back-skin were processed as described (Hess et al., 2010) by using immersion 

fixation with glutaraldehyde and OsO4, followed by epoxy resin embedding. 



Statistical analysis 

 

Statistical analyses were performed using a two-tailed T-test. Values are presented as mean 

plus standard error of the mean. P-values lower than 0.05 (*), 0.01 (**) or 0.001 (***) were 

regarded as significant. 
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Abbreviations 

αPv, βPv and γPv: α-, β-, and γ-Parvin; BM: basement membrane; CH: calponin homology; 

Col-I: collagen-I; D: dermis; DEJ: dermal-epidermal junction; DP: dermal papilla; E: 

epidermis; ECM: extracellular matrix; EGF: epidermal growth factor; EM: electron 

microscope FA: focal adhesion; FACS: fluorescence activated cell sorting; f-actin: 

filamentous actin; FCS: fetal calf serum; FN fibronectin h: hour; HD: hemidesmosome; 

H&E: hematoxylin and eosin; HF, hair follicle; HM: hair matrix; HRP: horse radish 

peroxidase; HS hair shaft; IFE: interfollicular epidermis; IL-1α: interleukin-1α; ILK: integrin 

linked kinase; IPP-complex: ILK-Pinch-Parvin-complex; IRS: inner-root-sheath; K: keratin; 

kb: kilobase; KGM: keratinocyte growth medium; LIM: Lin11, Isl1, Mec3; Ln332: Laminin 

5, Laminin 332; min: minute; µm: micrometer; ORS: outer-root-sheath; P: postnatal day; 

PAC: P1-derived artificial chromosome; PC: panniculus carnosum; PFA: paraformaldehyde; 

Pinch: particularly interesting Cys-His-rich protein; SC: subcutis; SDS-PAGE: sodium 

dodecyl sulfate polyacrylamide gel electrophoresis; WB: Western-blot. 
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Figure Legends 

 

Figure 1: Keratinocyte-restricted deletion of αPv results in complete and persistent 

alopecia 

(A) αPv Ctrl and αPv K5 mice at four month of age. (B) αPv, βPv, Pinch and ILK protein 

levels in αPv-null kidney-derived fibroblasts (αPv -/-) and primary keratinocytes from one-

week-old Ctrl and αPv K5 mice. (C) Immunostaining of αPv (red) and integrin α6 (green) on 

back-skin sections from Ctrl and αPv K5 mice at P14. Arrows indicate residual cells in αPv 

K5 skin that escaped Cre-mediated deletion. Scale bar: 20µm. (D) Whole mount staining of 

αPv (red) and integrin α6 (green) of tail-skin from two-month-old Ctrl and αPv K5 mice. 

Scale bar: 40µm. A higher magnification of the αPv-staining (white) of the boxed region is 

shown below. αPv localizes to the cell cortex of basal keratinocytes of the IFE. Scale bar: 

20µm. (E) Whole mount staining of ILK (red) and integrin α6 (green) of tail-skin from two-

month-old Ctrl and αPv K5 mice. Scale bar: 40µm. A higher magnification of the ILK-

staining (white) of the boxed region is shown below. Scale bar: 20µm. 

 

Figure 2: Keratinocyte-restricted deletion of αPv affects HF morphogenesis and results 

in epidermal hyperplasia and regional detachments from the DEJ 

H&E staining of back-skin from Ctrl and αPv K5 mice at (A) P3, (B) P7, (C) P14, (D) P23, 

(E) P28 and (F) P56. Arrows indicate areas of epidermal detachments at the DEJ; arrowheads 

indicate abnormal melanin-deposits, triangles (▲) indicate short and prematurely growth-

arrested HFs and rectangles (■) indicate long HFs. E: epidermis; D: dermis; SC: subcutis; 

PC: panniculus carnosum. Scale bar: 200µm. 

 

Figure 3: Impaired HF-cycling, epidermal hyperplasia and local detachments at the 

DEJ upon keratinocyte-restricted deletion of αPv 

H&E staining of back-skin from Ctrl and αPv K5 mice at P14. (A) Epidermis of Ctrl and αPv 

K5 mice. Asterisks indicates epidermal hyperplasia; arrows indicate epidermal detachments 

at the DEJ; triangles (▲) indicate short and prematurely growth-arrested HFs. Scale bar: 

100µm. (B) HFs of Ctrl and αPv K5 mice. Star indicates hyper-thickened ORS; rectangle (■) 

indicates long HF. Note the interrupted HS and the abnormal dermal papilla in the mutant 

HF. Scale bar: 50µm. (C) Histogram of HF length distributions at distinct stages of the HF-



cycle. The length of a minimum of 100 HFs was measured on H&E stained back-skin from 

Ctrl and αPv K5 mice. 

 

Figure 4: Reduced surface expression of α6 integrin on αPv-deficient primary 

keratinocytes 

(A) Integrin-profile of primary keratinocytes isolated from Ctrl (blue) and αPv K5 (red) mice. 

The isotype-control is shown in grey. (B) Quantification of at least three FACS integrin-

profile experiments of αPv Ctrl (blue) and αPv K5 (red) primary keratinocytes. Values of 

integrin-expression on αPv K5 were normalized to the respective integrin-expression on αPv 

Ctrl cells. 

 

Figure 5: Keratinocyte-restricted deletion of αPv impairs BM-integrity, disturbs 

keratinocyte-polarity and results in the translocation of integrin-expressing cells to 

suprabasal layers 

(A) Immunostaining of Ln332 (green) and β1 integrin (red) of back skin from Ctrl and αPv 

K5 mice at P14. Arrow indicates β1 integrin expressing suprabasal cells. Scale bar: 20µm. 

(B) Immunostaining of Ln332 (green) and β4 integrin (red) of back skin from P14 Ctrl and 

αPv K5 mice. Arrow indicates β4 integrin expressing suprabasal cells. Scale bar: 20µm. (C 

and D) EM analysis of back skin from Ctrl and αPv K5 mice at P14. Long arrows indicate 

HDs. Short arrows indicate the presence of the BM. Arrowheads indicate the presence of 

caveoli in basal keratinocytes. Scale bar: 500 nm. (E) Immunostaining of Ln332 (green) and 

f-actin (red) of back-skin from Ctrl and αPv K5 mice at P14. Arrow indicates basal f-actin 

localization in basal keratinocytes. Asterisks indicate intercellular spaces and spiky 

protrusions of f-actin. Scale bar: 10µm. (F) Immunostaining of Ln332 (green) and β-Catenin 

(red) of back-skin from Ctrl and αPv K5 mice at P14. Arrow indicates basal localization of β-

Catenin in basal keratinocytes. Asterisks indicate intercellular spaces. Scale bar: 10µm. (G) 

Immunostaining of Ln332 (green) and E-Cadherin (red) of from back-skin from Ctrl and αPv 

K5 mice at P14. Arrow indicates basal localization of E-Cadherin in basal keratinocytes. 

Asterisks indicate intercellular spaces and disruption of the BM. Scale bar: 10µm. 

 

 

 



Figure 6: Compromised FA-formation, abnormal organization of the actin-cytoskeleton 

and reduced spreading and adhesion of αPv-deficient primary keratinocytes 

Immunostaining of (A) f-actin (red) and αPv (green) (B) ILK (red) and αPv (green) (C) Pinch 

(red) and αPv (green) (D) Paxillin (red) and αPv (green) of primary keratinocytes isolated 

from Ctrl and αPv K5 mice. Scale bars: 20µm. (E) Quantification of adhesion to PLL, Ln332, 

Col-I and FN of αPv Ctrl and αPv K5 primary keratinocytes. Mean values of the percentage 

of adhering cells plus standard error of the mean are represented. At least three independent 

adhesion assays were performed. 

 

Figure 7: Keratinocyte-restricted deletion of αPv results in the accumulation of 

ectopically proliferating cells in suprabasal layers of the epidermis and in the ORS 

Immunostaining of (A and B) Ki67 (brown) (C) integrin α6 (green) and phospho-histone 3 

(red) of back-skin from Ctrl and αPv K5 mice at P14. (A) Ki67-positive cells are located in 

the bulb of αPv Ctrl HFs, whereas they accumulate in the ORS of αPv K5 HFs and fail to 

replenish proliferating cells in the bulb. Arrow indicates proliferative cells in the ORS of αPv 

K5 HFs. Asterisks indicate a region in the αPv K5 HF-bulb that is devoid of proliferative 

cells. Scale bar: 50µm. (B) Ectopic proliferation in suprabasal layers of αPv K5 epidermis. 

Arrows indicate Ki67-positive cells in suprabasal layers of αPv K5 epidermis. Scale bar: 

50µm. (C) Ectopic proliferation in suprabasal layers of αPv K5 epidermis. Arrows indicate 

phospho-histone 3-positive cells in suprabasal layers of αPv K5 epidermis. Scale bar: 20µm. 

(D) Quantification of Ki67-positive cells in basal and suprabasal layers of αPv Ctrl and αPv 

K5 epidermis. The percentage of proliferative to total cells in the basal layer of αPv Ctrl and 

αPv K5 is not significantly different, whereas proliferative cells in suprabasal layers are 

almost exclusively observed in αPv K5 epidermis, comprising approximately 30% of Ki67-

positive cells in αPv K5 epidermis. Depicted are the mean values plus standard error of the 

mean. 

 

Figure 8: Keratinocyte-restricted deletion of αPv results in delayed differentiation and 

the recruitment of inflammatory cells. 

Immunostaining of (A) integrin α6 (green) and K5 (red); (B) integrin α6 (green) and K10 

(red); (C) Ln332 (green) and loricrin (red); (D) Ln332 (green) and Mac1 (red); (E) Ln332 

(green) and Gr1 (red) of back-skin from Ctrl and αPv K5 mice at P14. Scale bars: 20µm. (A) 

Expression of keratin 5 is restricted to the basal layer of αPv Ctrl epidermis, whereas keratin 



5 additionally is expressed in suprabasal layers in αPv K5 epidermis. (B) Expression of 

keratin 10 is restricted to the first suprabasal layer of αPv Ctrl epidermis, whereas keratin 10 

is expressed in additional suprabasal layers of αPv K5 epidermis but not in the basal layer. 

(C) Expression of loricrin is restricted to the stratum granulosum in αPv Ctrl epidermis, 

whereas loricrin is expressed in all suprabasal layers of αPv K5 epidermis but not in the basal 

layer. (D) Macrophages are recruited to αPv K5 dermis in areas where the BM is disrupted, 

whereas no signs of inflammation can be recognized in αPv Ctrl dermis. Arrow indicates 

Mac1-positive macrophages in αPv K5 dermis. Star indicates the splitting and disruption of 

the BM in αPv K5 skin. (E) Granulocytes are recruited to αPv K5 dermis in areas where the 

BM is disrupted and to distorted αPv K5 HFs, whereas no signs of inflammation can be 

recognized in αPv Ctrl epidermis and around αPv Ctrl HFs. Arrows indicates Gr1-positive 

granulocytes in αPv K5 dermis and adjacent to αPv K5 HFs. Asterisk indicates the splitting 

and disruption of the BM in αPv K5 epidermis. 

 

Figure 9: Reduced migration-velocity and directionality of αPv-deficient primary 

keratinocytes 

(A) In vitro wound healing assay with αPv Ctrl and αPv K5 primary keratinocytes. While 

αPv Ctrl keratinocytes close the artificial wound within 24 hours, αPv K5 keratinocytes are 

unable to migrate efficiently into the wounded area. Colored lines represent the migration-

tracks of individual keratinocytes. (B) Quantification of the migration-parameters of αPv Ctrl 

and αPv K5 primary keratinocytes during in vitro wound healing assays. Migration-velocity 

and directionality of αPv keratinocytes are significantly reduced compared to αPv Ctrl 

keratinocytes, resulting in a severe reduction in the accumulated distance (Acc. D.) and in the 

Euclidean distance (Euc. D.) of αPv keratinocytes. Mean values plus standard error of the 

mean are represented. At least three independent scratch assay experiments were performed 

and more than 20 individual cells were tracked in randomly chosen regions in each 

experiment. 

 

Supplementary figure 1: Targeting strategy for the generation of αPv floxed animals 

The wild type (WT) αPv locus was targeted with a construct containing homology arms of 

2.7 kb and 5.9 kb (indicated by grey lines). A neomycin-resistance cassette (Neo; grey box) 

flanked by two frt-sites (grey triangles) was introduced into intron 2. The first loxP-site 

(black triangle) was inserted into intron 2 and the second loxP-site was inserted into intron 3, 



thus flanking exon 3 of the αPv gene. Binding sites for the primers a: APE2f, b: APloxPf and 

c: APloxPr are indicated by bent arrows, pointing into the direction of polymerization. The 

resulting PCR-products are indicated by black lines and their respective product size above. 

Southern blot was used to identify ES-cell clones after homologous recombination. EcoRI-

restriction-sites are indicated by grey lines and the position of the 3’ external probe is 

indicated by a black line. The genomic-fragment resulting from EcoRI digestion is indicated 

by a black line and its expected size is below. The neomycin-resistance cassette was removed 

by crossing heterozygous floxed αPv mice (fl n+) with FLP-recombinase-expressing mice 

(Farley et al., 2000), resulting in αPv floxed mice without neomycin-resistance cassette (fl n-

). Cre-recombinase mediated recombination results in the excision of exon 3 and deletion of 

the αPv gene (fl-). 

 

Supplementary figure 2: Keratinocyte-restricted deletion of αPv results in progressive 

loss of hair 

(A) αPv Ctrl and αPv K5 mice at the age of one week, two weeks, four weeks and four month 

(as in Fig.1A). Reduction of hair can be clearly recognized one week after birth and αPv K5 

mice are characterized by a complete and persistent alopecia by two month of age. (B) 

Southern-blot of ES-cell-clones after homologous recombination. Genomic DNA from ES-

cell-clones in lane 3, 8 and 10 indicates successful homologous recombination of the 

targeting vector and the αPv-gene. (C) PCR with DNA from a litter of αPv homozygous 

floxed female mated to an αPv heterozygous male, expressing the Cre-recombinase under the 

control of the K5-promotor. LoxP: PCR to distinguish the wild type (WT), floxed (fl) and 

recombined (fl-) αPv gene. CRE: PCR to determine the presence of the K5-Cre transgene. 

The first two mice (lanes 1-4) are αPv homozygous floxed and carry the K5-Cre transgene 

(fl/fl K5+). Mice of this genotype are referred to as αPv K5 in this study. The third mouse 

(lanes 5-6) is αPv homozygous floxed but does not carry the K5-Cre transgene (fl/fl K5-). 

The fourth mouse (lanes 7-8) is αPv heterozygous floxed and also does not carry the K5-Cre 

transgene (fl/+ K5-). The fifth mouse (lanes 9-10) is αPv heterozygous floxed and carries the 

K5-Cre transgene (fl/+ K5+). Mice of this genotype are referred to as αPv Ctrl and served as 

control animals in this study. 

 

 



Supplementary figure 3: Defects in HF morphogenesis and epidermal homeostasis 

precede the inflammatory response 

Cryo-section from back-skin of P7 αPv Ctrl and αPv K5 mice stained for: (A) Ln332 (green) 

and β1 integrin (red). Arrow indicates suprabasal αPv K5 keratinocytes expressing β1 

integrin. Asterisk indicates intercellular spaces in αPv K5 epidermis. Note disruption and 

displacement of the BM in αPv K5 skin. Scale bar: 20µm. (B) Ln332 (green) and β4 integrin 

(red). Asterisk indicates splitting of the BM in αPv K5 skin. Scale bar: 20µm. (C) Integrin α6 

(green) and f-actin (red). Arrow indicates localization of f-actin to the basal side of basal 

keratinocytes and discontinuous integrin α6 staining in αPv K5 epidermis. Scale bar: 20µm. 

(D) Ln332 (green) and E-Cadherin (red). Arrow indicates localization of E-Cadherin to the 

basal side of basal keratinocytes and splitting of the BM in αPv K5 epidermis. Scale bar: 

20µm. (E) Ln332 (green) and Gr1 (red). Gr1-positive granulocytes are absent from αPv K5 

skin at P7. Scale bar: 20µm. 

 

Supplementary figure 4: Compromised FA formation, abnormal organization of the 

actin cytoskeleton and reduced spreading of αPv-deficient primary keratinocytes 

Separate channels from the immunostaining of αPv Ctrl and αPv K5 primary keratinocytes in 

Fig.6: (A) f-actin (white) and below αPv (white); (B) ILK (white) and below αPv (white); (C) 

Pinch (white) and below αPv (white); (D) Paxillin (white) and below αPv (white). Scale bars: 

20µm. Note the presence of spiky and poorly spread αPv K5 cells in (B) (C) and (D). 

Paxillin-positive FA are present in spread αPv K5 keratinocytes, however their number and 

size is reduced compared to αPv Ctrl keratinocytes. FA-recruitment of ILK and Pinch is 

impaired in αPv K5 keratinocytes. 

 

Supplementary figure 5: Edemas and poor interdigitation of keratinocytes upon loss of 

αPv 

Overview of the EM-pictures from back-skin of P14 αPv Ctrl and αPv K5 mice shown in Fig. 

4C and D. Arrows indicate edemas in αPv K5 epidermis (asterisk) accompanied with poor 

interdigitation of αPv-deficient keratinocytes. Scale bar: 5µm. Note the displacement of the 

BM into the collagen-fibrils of the dermis (cross) in αPv K5 skin as highlighted with a black 

frame and the local dermal-epidermal detachment. Areas with black or white frame are 

enlarged in Fig. 4C and D. 
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