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Fig. 1: Schematic illustration of  the 
sodium iodide symporter (NIS).  
With permission reproduced from 
Spitzweg et al., 2001c. 

1. Introduction 

The sodium iodide symporter (NIS) 

The sodium iodide symporter and its role as therapy gene 

The sodium iodide symporter (NIS) represents an intrinsic plasma membrane glycoprotein 

with 13 transmembrane domains localized at the 

baslolateral membrane of thyroid follicular cells that 

mediates the active transport of iodide in the thyroid 

gland (Fig. 1). Cloning and molecular characterization 

of the NIS gene (Spitzweg and Morris, 2002b) allowed 

investigation of its expression and regulation in 

thyroidal and nonthyroidal tissues (Spitzweg et al., 

1998; Spitzweg et al., 1999b; Spitzweg et al., 2000a; 

Spitzweg et al., 2001b; Spitzweg and Morris, 2002b; Unterholzner et al., 2006; Willhauck 

et al., 2008c), its pathophysiological role in benign and malignant thyroid disease as well its 

potential role in diagnosis and therapy of cancer outside the thyroid gland (Spitzweg et al., 

1999a; Spitzweg et al., 2000a; Spitzweg and Morris, 2002b). 

NIS-mediated iodide transport is inhibited by the Na+/K+-ATPase inhibitor ouabain, as well 

as thiocyanate (SCN-) and perchlorate (ClO4
-) (Spitzweg and Morris, 2002b). TSH is the 

main stimulatory regulator of thyroidal NIS expression as well as of its proper membrane 

targeting, acting through the adenylate cyclase-cAMP mediated pathway (Spitzweg and 

Morris, 2002b).  

NIS represents one of the oldest and most successful targets for molecular imaging and 

targeted radionuclide therapy. Functional NIS expression in differentiated thyroid 

carcinomas allows not only postoperative localization and ablation of the thyroid remnant as 

well metastases, but also provides the possibility of subsequent postablative 131I total body 

scanning that can diagnose local and metastatic residual and recurrent disease followed by 
131I ablation, thereby improving the prognosis of thyroid cancer patients significantly and 

making thyroid cancer one of the most manageable cancers (Spitzweg et al., 2001c; 

Spitzweg and Morris, 2002b). Thyroidal NIS expression therefore provides the molecular 

basis for the most effective form of systemic anticancer radiotherapy available to the 

clinician today. 
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Fig. 2: The role of the NIS gene as 
diagnostic and therapeutic gene. 
With permission reproduced from Spitzweg 
et al., 2007a 

Cloning of the NIS gene in 1996 has provided us with a powerful new reporter and therapy 

gene, that allowed the development of a promising cytoreductive gene therapy strategy 

based on NIS gene transfer in extrathyroidal tumors followed by radioiodine application 

(Fig. 2). Many of the characteristics of NIS suggest that it represents an ideal therapy gene 

due to several advantages: 

 

1. High degree of efficacy 

NIS is already being used clinically as molecular 

basis of 131I therapy, an already approved 

anticancer therapy in thyroid cancer with a well-

understood therapeutic window and safety profile. 

 

2. High bystander effect 

NIS gene therapy is associated with a substantial 

bystander effect based on the crossfire effect of the beta-emitter 131I with a path length of up 

to 2.4 mm. A bystander effect is desirable for any kind of gene therapy strategy, because it 

reduces the level of transduction efficiency required for a therapeutic response. 

 

3. Dual function of NIS as a diagnostic and therapeutic gene 

In its role as reporter gene NIS allows direct, non-invasive imaging of functional NIS 

expression by 123I-scintigraphy, 123I-SPECT- or 124I-PET-imaging, as well as exact 

dosimetric calculations before proceeding to therapeutic application of 131I. 

 

4. High degree of specificity 

Native expression of NIS outside the thyroid is very low not causing significant morbidity 

after 131I application, as known from the extensive experience with 131I therapy in thyroid 

cancer. 

 

5. Normal human gene and protein 

NIS as a normal human gene and protein implies that its expression in cancer cells is 

unlikely to be toxic or to elicit a significant immune response that could limit its efficacy. 

 

In their pioneer studies C. Spitzweg and J.C. Morris chose prostate cancer as the initial 

tumor model and used the prostate-specific antigen (PSA) promoter to achieve prostate-
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specific iodide accumulation, which resulted in a significant therapeutic effect after 

application of 131I, even in the absence of iodide organification (Spitzweg et al., 1999c; 

Spitzweg et al., 2000b; Spitzweg et al., 2001a; Kakinuma et al., 2003). In preparation of the 

first phase I clinical study on 131I therapy of locally recurrent prostate cancer after local NIS 

gene transfer, these data were confirmed in extensive biotoxicity and efficacy studies in rats 

and in a preclinical large animal model in beagle dogs after intraprostatic injection of a 

replication-incompetent adenovirus without significant toxicity outside the prostate and 

thyroid gland (Dwyer et al., 2005b). After further extensive preclinical evaluation in several 

tumor models by various groups including our own, NIS has been characterized as a 

promising target gene for the treatment of non-thyroid cancers following selective NIS gene 

transfer into tumor cells which allows therapeutic application of radioiodine (Spitzweg et 

al., 1999c; Spitzweg et al., 2000b; Spitzweg et al., 2001a; Spitzweg et al., 2001c; Spitzweg 

and Morris, 2002b; Kakinuma et al., 2003; Dingli et al., 2004; Cengic et al., 2005; Dwyer et 

al., 2005a; Scholz et al., 2005; Dwyer et al., 2006a; Dwyer et al., 2006b; Spitzweg et al., 

2007; Willhauck et al., 2007; Willhauck et al., 2008b; Willhauck et al., 2008c; Hingorani et 

al., 2010a; Li et al., 2010; Penheiter et al., 2010; Trujillo et al., 2010). 

As logical consequence of these pioneer studies in the NIS gene therapy field, the next 

crucial step towards clinical application of the promising NIS gene therapy concept, has to 

be the evaluation of gene transfer methods that own the potential to achieve sufficient 

tumor-selective transgene expression levels not only after local or regional but also after 

systemic application to be able to reach tumor metastases.  

Only a limited number of studies have investigated systemic NIS gene delivery approaches 

with the aim of NIS-targeted radionuclide therapy of metastatic disease. An oncolytic 

measles virus encoding human NIS was applied systemically in a multiple myeloma mouse 

model and allowed to enhance the oncolytic potency of the virus after 131I application 

(Dingli et al., 2004). In a more recent study, an oncolytic vesicular stomatitis virus (VSV) 

was designed to express NIS to be able to monitor virus replication by 123I scintigraphic 

imaging in addition to stimulation of the oncolytic potency by the combination with 131I 

therapy, which was successfully investigated in a multiple myeloma mouse model after 

systemic vesicular stomatitis virus application (Goel et al., 2007). 

 

Iodide organification and alternative radionuclides 

Following NIS transduction the achieved radiation dose responsible for a therapeutic effect 

of trapped 131I is determined by a variety of factors, including the rate of iodide uptake and 
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efflux, the rate of radiocative decay, as well as the possibility of iodide recirculation. In 

contrast to extrathyroidal tumors, in the thyroid gland thyroid peroxidase-catalyzed 

oxidation and incorporation of iodide into tyrosyl residues along the thyroglobulin 

backbone, a process called iodide organification, increases the effective half-life and 

therefore therapeutic efficacy of accumulated radioioidine (Spitzweg and Morris, 2002b). 

Many studies demonstrating a therapeutic effect of 131I and alternative radionuclides such as 
188Re and 211At following NIS gene transfer in various non-organifying tumor models 

(Spitzweg et al., 1999c; Spitzweg et al., 2000b; Spitzweg et al., 2001c; Petrich et al., 2006; 

Willhauck et al., 2007 Dadachova et al., 2005; Willhauck et al., 2008a), clearly demonstrate 

that iodide organification is not a mandatory requirement for a therapeutic effect of 131I. In 

addition, in non-thyroidal tumors with rapid iodide efflux, therapeutic efficacy of NIS-

targeted radionuclide therapy can be significantly enhanced by application of alternative 

radionuclides, such as the beta-emitter 188Re or the alpha-emitter 211At, that are known to be 

also transported by NIS, but offer the possibility of higher energy deposition in a shorter 

time period due to their higher energy and shorter half-life (188Re: physical half-life 16.7 h, 

E = 0,764 MeV, path length 23-32 mm; 211At: physical half-life 7,2 h, high linear energy 

transfer 97 keV/µm) as compared to 131I (physical half-life 8 d, E = 0,134 MeV, therapeutic 

range 2.6-5 mm), which has convincingly been demonstrated by several groups, including 

our own studies in the prostate cancer model (Dadachova et al., 2005; Petrich et al., 2006; 

Willhauck et al., 2007; Willhauck et al., 2008a). 

 

The sodium iodide symporter and its role as reporter gene 

Cloning of NIS has provided us not only with a powerful therapeutic gene, but also with one 

of the most promising reporter genes available today. NIS has many characteristics of an 

ideal reporter gene, as it represents a non-immunogenic protein with a well-defined body 

biodistribution and expression, that mediates the transport of readily available radionuclides, 

such as 131I, 123I, 125I, 124I, 99mTc, 188Re or 211At, and allows signal amplification by the 

accumulation of the radionuclide.  

The field of gene therapy has made considerable strides in the last decade by the 

development of new vectors and an increasing repertoire of therapeutic genes. Non-invasive 

monitoring of the in vivo distribution of viral and non-viral vectors, as well as monitoring of 

the biodistribution, level and duration of transgene expression have been recognized as 

critical elements in the design of clinical gene therapy trials. The need for this technology is 



Introduction 

 

 5 

further highlighted by the advent of replication-competent viruses for cancer gene therapy 

where it is critically important to monitor biodistribution, replication and elimination in 

vivo. 

Several investigators have studied the potential of NIS as novel reporter gene in various 

applications, demonstrating that in vivo imaging of radioiodine accumulation correlates well 

with the results of ex vivo gamma counter measurements as well as NIS mRNA and protein 

analysis (Spitzweg et al., 1999c; Spitzweg et al., 2001a; Spitzweg and Morris, 2002b; 

Dingli et al., 2003b; Kakinuma et al., 2003; Scholz et al., 2005; Spitzweg et al., 2007; 

Willhauck et al., 2007; Willhauck et al., 2008b). 

Furthermore, in several studies NIS was successfully used as a reporter gene to monitor in 

vivo biodistribution of replication-competent viral vectors, including oncolytic measles virus 

in liver cancer and myeloma xenograft models, oncolytic vesicular stomatitis virus in a 

myeloma xenograft model, as well as oncolytic adenovirus in a colon cancer xenograft 

model using conventional 123I- or 99mTc-gamma camera imaging or 99mTc-SPECT/CT fusion 

imaging (Blechacz et al., 2006; Goel et al., 2007; Merron et al., 2007).  

 

Taken together, the pioneer work in the prostate cancer model by J. C. Morris and C. 

Spitzweg (Spitzweg et al., 1999c; Spitzweg et al., 2000b; Spitzweg et al., 2001a; Kakinuma 

et al., 2003) and consecutive work in other tumor models by several groups including our 

own has convincingly demonstrated the gene therapy and oncology communities the 

enormous potential of NIS as novel reporter and therapy gene that has paved the way for the 

development of an innovative and potentially curative cytoreductive gene therapy strategy.  

 

Cancer Gene Therapy 

Cancer gene therapy represents one of the most rapidly evolving areas in preclinical and 

clinical cancer research. Two of the most important problems to overcome are lack of 

selectivity of the existing vectors and low efficiency of gene transfer. Cancer gene therapy is 

the transfer to and expression of genetic material in malignant human cells for a therapeutic 

purpose. This relatively narrow definition can be extended to include gene delivery to tumor 

and normal immune cells for modulating antitumor immune response. The term gene 

therapy encompasses a range of approaches, including corrective gene therapy to restore the 

normal function of a deleted or mutated gene (usually a tumor suppressor gene) or negate 

the effect of a tumor promoting gene (oncogene), cytoreductive gene therapy to deliver an 
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exogenous gene that causes cell death and immunomodulatory gene therapy to induce gene 

expression that enhances immune responses against tumor tissues. Identifying and 

elaborating sophisticated selective gene therapy systems may amount to nothing unless 

genes can be targeted to a significant fraction of clonogenic cells. To date most studies have 

focused on locoregional gene delivery by direct injection or infusion, a technique with 

limited relevance to clinical situations such as metastatic disease in which systemic delivery 

systems are needed. For this reason vector development represents an extremely active field 

of investigation (Verma and Somia, 1997). Vectors for gene therapy can be considered 

under the headings of viral and non-viral systems. 

 

Viral vector systems 

Viruses are attractive vehicles for gene delivery since they have evolved specific and 

efficient means of entering human cells and expressing their genes. The main challenge for 

viral vector development lies in harnessing the targeting efficiency of viruses, while 

abrogating their ability to cause infection and disease. Modifying the viral genome to 

remove sequences required for viral replication and pathogenicity represents a means of 

achieving these goals. The removed viral coding sequences can be replaced with exogenous 

therapeutic genes. Such genetically engineered viruses theoretically retain wild-type viral 

cellular tropism and ensure transgene expression in the target cell population without 

causing ongoing infection. Attempts to alter the natural tropisms of viruses by manipulating 

the viral components that mediate cell binding and internalization represent a means of 

redirecting viruses specifically to chosen target cells (Krasnykh et al., 1996). To date most 

viral vector development has focused on retrovirus, adenovirus, adeno-associated virus, 

herpes simplex virus and pox virus.  

The use of adenoviruses has emerged as a powerful approach for increasing transduction 

efficiency and therapeutic efficacy in cancer gene therapy. 

Adenoviruses are double strand DNA viruses. More than 40 adenovirus serotypes in 6 

groups (A to F) have been identified. Group C viruses (serotypes Ad2 and Ad5) have been 

most extensively evaluated as candidates for gene delivery (Zhang et al., 1999). However, 

up to 70% of the general population have neutralizing antibodies to Ad2 and Ad5 that 

accelerate adenovirus clearance after initial administration. Adenoviruses enter cells by 

binding to the coxsackievirus- (CAR) and adenovirus receptor, which facilitates interaction 

of viral arginine-glycine-aspartate (RGD) sequences with cellular intergrins. After 

internalization the virus escapes from cellular endosomes, partially disassembles and 
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translocates to the nucleus, where viral gene expression begins. Clearly administering 

replicating adenoviruses in patients with cancer, of whom many are immune suppressed, 

raises important safety concerns. Therefore, efforts have been made to render adenovirus 

incapable of replication (so-called replication defective adenovirus). It has been achieved by 

deleting one or more of the early adenovirus genes E1 to E4. Replication defective 

adenoviruses have a number of potential advantages as vectors for targeted gene delivery, as 

they can be produced in high titers (1010 to 1011 infectious units per ml), they can infect 

nondividing cells, and gene expression occurs without integration into the host genome. 

Furthermore, the use of replication-competent adenoviruses has emerged as a powerful 

approach for increasing transduction efficiency and therapeutic efficacy by an additional 

oncolytic effect due to selective virus replication (oncolytic virotherapy). The first example 

of conditionally replicative adenovirus was ONYX 015, targeting cancer cells with a 

defective p53 pathway (Everts and Van Der Poel, 2005). Tumor-selective replication of 

adenoviruses has also been achieved by the application of tissue- or tumor-specific 

promoters to drive the expression of genes essential for viral replication, such as E1A. This 

has been investigated in a variety of tumor models, including prostate cancer using the 

prostate-specific antigen (PSA) or rat probasin promoter to drive E1 expression, and in liver 

cancer using the AFP promoter (Everts and Van Der Poel, 2005). Overall, replicating 

adenovirus-based gene therapy vectors are the most widely used platform for gene delivery 

offering high promise for cancer treatment, and have already been used safely in human 

clinical trials (Everts and Van Der Poel, 2005). The major hurdles of effective oncolytic 

virotherapy, in particular after systemic application, have been antiviral immune responses, 

inefficient viral spread within the tumor and significant virus pooling in the liver, reducing 

the levels of viable virus reaching the tumor resulting in limited transduction efficiency. In 

order to enhance the antitumor effect of oncolytic virotherapy the combination with 

conventional anticancer strategies, such as chemotherapy, radiotherapy, or gene therapy as a 

multimodal cancer therapy approach has been the major focus of studies in the recent years.  

 

Non-viral vector systems 

Delivering genes to target organs with synthetic vectors is a vital alternative to virus-based 

methods. For systemic delivery polycationic molecules are used to condense DNA into sub-

micrometer particles termed polyplexes, which are efficiently internalized into cells, while 

DNA is protected from nucleases. Several polycations, like polyethylenimine (PEI), bear an 

intrinsic endosomolytic mechanism, which allows the transition of the polyplexes from the 
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endosome to the cytoplasm (Meyer and Wagner, 2006). Non-viral gene delivery systems are 

characterized by ease of synthesis, lower immunogenicity and greater flexibility. In recent 

years they have also been significantly improved in terms of toxicity profiles, tumor-

selectivity and transduction efficiency, and therefore represent highly promising gene 

delivery vehicles for systemic gene therapy approaches. 

Since these non-viral systems do not show selectivity to specific target cells, they can either 

be used in a more universal way or their surface may be chemically or biologically modified 

for specific targeting. Moreover, they offer an enhanced biosafety profile since they can be 

generated protein-free or non-immunogenic or humanized protein / peptides resulting in 

lower immunogenicity. A further benefit of synthetic transfer systems is that they can easily 

be synthesized in large quantities at rather low cost and offer a higher loading capacity for 

DNA. However, the major drawback of synthetic vectors is their limited transduction 

efficacy compared to viral vectors after in vivo application, which is currently mainly 

compensated by the application of larger quantities of vector formulation. 

Most synthetic vectors are generally based on formulations of chemically defined, positively 

charged polymers (polycations or cationic lipids), which interact electrostatically with the 

negatively charged nucleic acids. The resulting "polyplexes" or "lipoplexes" protect DNA 

from degradation and are positively charged themselves due to an excess of polymer used to 

form compact nanosized complexes suitable for cell entry. Cell entry mainly occurs due to 

interaction with the negatively charged cell membranes followed by endocytosis of 

polyplexes. 

Over the last decades a huge variety of polymers, mainly cationic polymers or cationic 

lipids have been investigated to generate synthetic gene carriers. To date, systemic 

administration of polycationic polymers has often resulted in toxic responses, which is 

mostly linked to the positive surface of the vectors making them incompatible for clinical 

applications. The existing synthetic cationic systems can be divided in two groups: non-

degradable and degradable polymers. Non-degradable polymers like linear- (LPEI) or 

branched polyethylenimine (BPEI) are "static" structures, which cannot be degraded, 

metabolized and eliminated by the body. In consequence they can accumulate in cells or 

organs leading to undesired and uncontrollable long-term toxicity in living systems. In this 

thesis a novel class of branched polycations based on oligoethylenimine (OEI)-grafted 

polypropylenimine dendrimers (G2-HD-OEI) were used for systemic NIS gene delivery in a 

syngenic neuroblastoma (Neuro 2A) mouse model (Klutz et al., 2009) and human 

hepatocellular carcinoma (HCC) xenograft mouse model (HuH7). Low toxicity in 
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association with high transfection efficiency was observed in different tumor cell lines in 

vitro using this polymers. Further, polyplexes formed by these biodegradable polymers 

prevented aggregation with erythrocytes and toxic side effects after systemic administration 

in vivo (Russ et al., 2008a). 

A main approach in gene therapy is the efficient and specific delivery of therapeutic genetic 

material into selected cells in order to prevent the unspecific toxicity. The addition of 

specific targeting ligands to polyplexes may enhance transfection efficiency and allows a 

more specific delivery of therapeutic genes. For this purpose, a number of ligands targeting 

to specific cellular receptors have been exploited, including carbohydrates, proteins, 

peptides, vitamins or antibodies. For example an anti-CD3-antibody was covalently coupled 

to PEI for specific delivery of polyplexes to a CD3 expressing T cell leukaemia cell line 

(Kircheis et al., 1997) or RGD-PEI conjugates were used for gene delivery to integrin 

expressing endothelial tumor cells (Kunath et al., 2003). Promising results were obtained 

with transferrin coupled polyplexes, which led to several-hundred-fold increase in 

transfection efficiency in selected cell lines (Kircheis et al., 1997). Further, mannose was 

applied for targeting of mannose receptor on dendritic cells (Kircheis et al., 1997), and 

galactose for targeting of the asioaloglycoprotein receptor on hepatocytes (Zanta et al., 

1997).  

The epidermal growth factor receptor (EGFR) is upregulated in a broad range of epithelial 

tumors, such as liver cancer, and has therefore been evaluated as a target structure for gene 

delivery vectors (De Bruin et al., 2007). EGF, the natural ligand of the EGFR, has strong 

growth promoting properties by activation of the receptor tyrosine kinase via 

phosphorylation and thereby represents a strong tumor promoting agent. Therefore, a 

synthetic ligand with high receptor affinity which does not activate the receptor tyrosine 

kinase is required to function as a feasible ligand to target gene delivery vectors to EGFR-

expressing tumor cells. In this context, Li et al. discovered a new EGFR ligand by phage 

display library analysis called GE11 (Sequence: CYHWYGYFPQNVI) which showed high 

affinity towards EGFR with no significant activation potential at the receptor tyrosine 

kinase (Li et al., 2005). 

In the current study, we evaluated the efficacy of  novel synthetic nanoparticle vectors based 

on linear polyethylenimine (LPEI), shielded by attachment of polyethylene glycol (PEG) 

and coupled with the synthetic EGFR-specific peptide GE11 for targeting the NIS gene to 

human hepatocellular carcinoma (HCC) cells.  
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Aims of the thesis 

Currently available data clearly demonstrate the enormous potential of NIS as a novel 

reporter and therapy gene. As logical consequence of the pioneer work in the prostate cancer 

model by J.C. Morris and C. Spitzweg and the consecutive work in other tumor models in 

the NIS gene therapy field, the next crucial step towards clinical application of the 

promising NIS gene therapy concept, has to be the evaluation of gene transfer methods that 

own the potential to achieve sufficient tumor-selective transgene expression levels not only 

after local or regional but also after systemic application to be able to reach tumor 

metastases.  

The fist aim of the thesis was to explore the potential of a replication-deficient adenovirus 

for local NIS gene transfer in vitro and in vivo in a HCC (HepG2) xenograft mouse model. 

Further, we compared the therapeutic efficacy of 131I and 188Re after local adenoviral NIS 

gene transfer in this HCC xenograft model. 

The second aim of the thesis was to characterize the biodistribution of functional NIS 

expression after systemic NIS gene transfer using branched polycations based on 

oligoethylenimine (OEI)-grafted polypropylenimine dendrimers for tumor-specific NIS 

gene delivery in a syngenic neuroblastoma (Neuro2A) mouse model and human 

hepatocellular carcinoma (HCC) xenograft mouse model (HuH7). Based on the in vivo 

imaging and ex vivo biodistribution analysis data, therapeutic efficacy of 131I was analyzed. 

The third aim of the thesis was to further enhance tumor selectivity by the application of 

novel nanoparticle vectors based on linear polyethylenimine (LPEI), shielded by 

polyethylene glycol (PEG), and coupled with the synthetic peptide GE11 as an EGFR-

specific ligand for targeting the NIS gene to EGFR-expressing human HCC (HuH7) cells. 

Biodistribution of functional NIS expression and the therapeutic efficacy of 131I were 

analyzed after systemic, EGFR-targeted NIS gene delivery. 

Based on the role of NIS as a potent and well characterized reporter gene allowing non-

invasive imaging of functional NIS expression by 123I-scintigraphy and 123I-SPECT-CT 

imaging, these studies allowed detailed characterization of in vivo vector biodistribution as 

well as localization, level and duration of transgene expression, an essential prerequisite for 

exact planning and monitoring of clinical gene therapy trials with the aim of 

individualization of the NIS gene therapy concept in the clinical setting.  



Chapter 1 

 

 11 

2. Chapter 1 

 

Comparison study of 131I and 188Re therapy 

in liver cancer after tumor-specific in vivo 

sodium iodide symporter (NIS) gene 

transfer 
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Abstract 

 We recently reported therapeutic efficacy of 131I in hepatocellular carcinoma (HCC) 

cells stably expressing the sodium iodide symporter (NIS) under the control of the tumor-

specific alpha-fetoprotein (AFP) promoter. In the current study we investigated the efficacy 

of adenovirus-mediated in vivo NIS gene transfer followed by 131I and 188Re administration 

for the treatment of HCC xenografts. We used a replication-deficient adenovirus carrying 

the hNIS gene linked to the mouse AFP promoter (Ad5-AFP-NIS) for in vitro and in vivo 

NIS gene transfer. Functional NIS expression was confirmed by in vivo γ-camera imaging, 

followed by analysis of NIS protein and mRNA expression. Human HCC (HepG2) cells 

infected with Ad5-AFP-NIS concentrated 50% of the applied activity of 125I, which was 

sufficiently high for a therapeutic effect in an in vitro clonogenic assay. Four days after 

intratumoral injection of Ad5-AFP-NIS (3 x 109 PFU) HepG2 xenografts accumulated 

14.5% ID/g 123I with an effective half-life of 13 h (tumor absorbed dose 318 mGy/MBq 
131I). In comparison, 9.2% ID/g 188Re was accumulated in tumors with an effective half-life 

of 12.8 h (tumor absorbed dose 545 mGy/MBq). After adenovirus-mediated NIS gene 

transfer in HepG2 xenografts administration of a therapeutic dose of 131I or 188Re (55.5 

MBq) resulted in a significant delay in tumor growth and improved survival, with 188Re 

being mildly more potent than 131I. In conclusion, a therapeutic effect of 131I and 188Re was 

demonstrated in HepG2 xenografts after tumor-specific adenovirus-mediated in vivo NIS 

gene transfer. 
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Introduction 

 Hepatocellular carcinoma (HCC) is a common cancer with increasing incidence 

world wide. It is estimated that only about 5% of HCC patients are suitable for liver 

transplantation (Jelic, 2009) and surgical resection rates vary between 9% and 27% (Lee et 

al., 1982; Lai et al., 1995). However, the majority of patients have unresectable disease that 

is generally considered incurable, for which the direction of treatment is palliative. Despite 

novel treatment strategies including cryosurgery, percutaneous ethanol injection, 

radiofrequency thermal ablation and chemoembolization, the prognosis of patients suffering 

from advanced HCC has remained poor. Therefore, the development of alternative 

therapeutic approaches, including gene therapy, is required to improve the management of 

these patients.  

 In order to investigate an innovative gene therapy approach, in an earlier study we 

examined the feasibility of 131I therapy of HCC following stable transfection with the 

sodium iodide symporter (NIS) using a mouse alpha-fetoprotein (AFP) promoter construct 

to target NIS expression to HCC cells (Willhauck et al., 2008b). NIS mediates the active 

transport of iodide across the basolateral membrane of benign and malignant thyroid cells 

and represents the molecular basis for the diagnostic and therapeutic application of 

radioiodine, which has been successfully used for over 70 years in the treatment of thyroid 

cancer patients (Spitzweg et al., 2001c; Hingorani et al., 2010a). Since its cloning in 1996 

NIS has been characterized as a novel promising target gene for the development of a novel 

gene therapy strategy based on selective NIS gene transfer into tumor cells followed by 

diagnostic and therapeutic application of radioiodine (Dai et al., 1996; Smanik et al., 1996; 

Spitzweg and Morris, 2001). The capacity of the NIS gene to induce radioiodine 

accumulation in non-thyroidal tumors has been investigated in a variety of tumor models by 

several groups including our own (Spitzweg et al., 1999c; Spitzweg et al., 2000b; Spitzweg 

and Morris, 2002b; Kakinuma et al., 2003; Dingli et al., 2004; Cengic et al., 2005; Dwyer et 

al., 2005a; Scholz et al., 2005; Dwyer et al., 2006a; Dwyer et al., 2006b; Willhauck et al., 

2007; Willhauck et al., 2008a; Willhauck et al., 2008b; Hingorani et al., 2010a; Li et al., 

2010; Penheiter et al., 2010; Trujillo et al., 2010). Taken together, the potential of NIS as a 

novel reporter and therapy gene for the treatment of extrathyroidal tumors has been 

convincingly demonstrated. In order to achieve tumor selectivity with maximal tumor-

specific cytotoxicity and minimal side effects in healthy organs, functional NIS gene 

expression can be transcriptionally targeted by application of tissue- or tumor-specific 
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promoters (Hart, 1996; Peerlinck et al., 2009). In our earlier study, we applied a mouse AFP 

promoter construct consisting of the basal promoter and the enhancer I and demonstrated 

tumor-specific iodide uptake activity in a hepatocellular carcinoma cell line (HepG2) stably 

transfected with the human NIS gene under the control of the AFP promoter, which resulted 

in an up to 93% cell killing after 131I exposure in an in vitro clonogenic assay. After 

application of a therapeutic 131I dose (55.5 MBq) the amount of accumulated radioiodide in 

xenografts derived from stably transfected NIS expressing HCC cells was high enough to 

significantly inhibit tumor growth (Willhauck et al., 2008b). 

 To further improve the NIS gene therapy concept towards a possible clinical 

application, in the current study we developed a replication-deficient adenovirus carrying 

the human NIS gene linked to the same AFP promoter construct (Ad5-AFP-NIS) that allows 

in vivo NIS gene delivery. 

 Because extrathyroidal tumors are not able to organify iodide after NIS gene 

transfer, the limited iodide retention time may hamper therapeutic efficacy of 131I therapy. 

The application of 188Rhenium, which is also transported via NIS, but characterized by a 

shorter physical half-life and decay properties superior to 131I may provide a powerful tool 

to enhance therapeutic efficacy of NIS-mediated radionuclide therapy. 188Re has already 

been successfully used by our own group to enhance the therapeutic efficacy of NIS-

mediated radionuclide therapy in a prostate cancer xenograft model. We showed significant 

therapeutic efficacy with a tumor volume reduction of 85% after 188Re application as 

compared to 73% after 131I treatment (Willhauck et al., 2007). In addition, Dadachova et al. 

demonstrated a more pronounced growth inhibiting effect in NIS-expressing mammary 

tumors in a transgenic mouse model after application of 188Re (Dadachova et al., 2005). 

 In the current study, we therefore examined accumulation and therapeutic efficacy of 
131I in direct comparison with 188Re in a HCC xenograft mouse model after tumor-specific, 

adenovirus-mediated in vivo NIS gene transfer.  
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Materials and Methods 

Cell culture 

 The human HCC cell line (HepG2; ATCC-HB-8065) and the human prostate cancer 

cell line (LNCaP; ATCC-CRL-1740) were cultured in RPMI (Invitrogen Life Technologies 

Inc., Karlsruhe, Germany) supplemented with 10% fetal bovine serum (v/v) (PAA; Colbe, 

Germany) and 1% penicillin/streptomycin (v/v). The human melanoma cell line (1205 Lu, 

kindly provided by Meenhard Herlyn, The Wistar Institute, Philadelphia, USA) was grown 

in MCDB 153 medium (Invitrogen Life Technologies Inc.) supplemented with 20% 

Leibovitz´s L-15 medium (v/v) (Invitrogen Life Technologies Inc.), 2% fetal bovine serum 

(v/v), 5 µg/ml insulin (Sigma, Munich Germany) and 1% penicillin/streptomycin (v/v). 

Cells were maintained at 37 °C and 5% CO2 in an incubator with 95% humidity. The cell 

culture medium was replaced every second day and cells were passaged at 85% confluency. 

 

Recombinant adenovirus production 

A replication-deficient human recombinant type 5 adenovirus (Ad5) carrying the 

human NIS gene linked to a mouse AFP promoter construct consisting of the basal promoter 

and enhancer element I (Willhauck et al., 2008b) (kindly provided by Markus Geissler, 

Esslingen, Germany) was developed in collaboration with ViraQuest Inc. (North Liberty, 

IA, USA) (Ad5-AFP-NIS). The human NIS cDNA was cut from the pcDNA plasmid 

(kindly provided by Sissy M. Jhiang, Ohio State University, Columbus, OH, USA) using 

EcoRI and cloned into the shuttle vector (pVQAd-AscI-NpA). The AFP promoter construct 

was cloned into the pVQAd-AscI-NpA using Kpn I and Xho I. The resulting shuttle vector 

construct contains the full-length NIS cDNA coupled to the AFP promoter. 

As controls, a replication-deficient adenovirus carrying the NIS cDNA under the 

control of the unspecific cytomegalovirus (CMV) promoter generated as described 

previously (Ad5-CMV-NIS) (Spitzweg et al., 2001a) and an empty virus (Ad5-control) 

were used.  

 

Adenovirus-mediated NIS gene transfer in vitro 

For in vitro infection experiments, HepG2 or control cells (LNCaP and 1205 Lu) 

(1.5 × 105 cells/ml in 12-well plates) were washed and incubated with OptiMEM (Invitrogen 

Life Technologies Inc.) containing Ad5-AFP-NIS (60 MOI = multiplicity of infection) for 

2.5 h. Medium was replaced by fresh culture medium and virus-infected cells were further 
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maintained for 4 days, before iodide accumulation was measured (see below) to determine 

levels of functional NIS protein expression. All adenoviral infections were carried out at 

least in triplicates. 

 
125I uptake assay 

Following infection with Ad5-AFP-NIS or Ad5-control, iodide uptake of HepG2 or 

control cells was determined at steady-state conditions (Weiss et al., 1984) as described 

previously (Spitzweg et al., 1999c). Results were normalized to cell viability and expressed 

as cpm/A 490 nm. 

 

Cell viability assay 

Cell viability was measured using the commercially available MTS-assay (Promega 

Corp., Mannheim, Germany) according to the manufacturer´s recommendations as 

described previously (Unterholzner et al., 2006). 

 

Clonogenic assay 

HepG2 cells were infected with Ad5-AFP-NIS (60 MOI) as described above. Four 

days following infection, cells were incubated for 7 h with 29.6 MBq (0.8 mCi), 14.8 MBq 

(0.4 mCi) or 7.4 MBq (0.2 mCi) 131I in Hank´s balanced salt solution supplemented with 

10 µM NaI and 10 mM HEPES (pH 7.3) at 37 °C. After incubation with 131I, a clonogenic 

assay was performed as described previously (Mandell et al., 1999; Spitzweg et al., 2000b). 

 

Establishment of xenograft tumors in nude mice  

 HepG2 and 1205 Lu xenografts were established in 5 weeks old female CD-1 nu/nu 

mice (Charles River, Sulzfeld, Germany) by subcutaneous injection of 1 x 107 HepG2 cells 

suspended in 100 µl PBS and 100 µl Matrigel Basement Membrane Matrix (Becton 

Dickinson, Bedford, MA, USA) or 1.5 x 106 1205 Lu cells suspended in 100 µl PBS into the 

flank region. LNCaP xenografts were established in male CD-1 nu/nu by subcutaneous 

injection of 1 x 106 cells suspended in 250 µl PBS and 250 µl of Matrigel Basement 

Membrane Matrix (Becton Dickinson, Bedford, MA, USA) into the flank region. Animals 

were maintained under specific pathogen-free conditions with access to mouse chow and 

water ad libidum. The experimental protocol was approved by the regional governmental 

commission for animals (Regierung von Oberbayern, Munich, Germany). 
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Adenovirus-mediated NIS gene delivery in xenograft tumors in nude mice 

Experiments started when tumors had reached a size of 3-5 mm. After a 10-day 

pretreatment with L-T4 (l-thyroxine, Sanofi-Aventis, Frankfurt am Main, Germany) (5 

mg/l) in their drinking water to maximize radioiodine uptake in the tumor and reduce iodide 

uptake by the thyroid gland, animals were anesthetized with ketamine (Hameln 

pharmaceuticals, Hameln, Germany) (100 µg/g) and xylazine 2% (v/v) (Bayer, Leverkusen, 

Germany) (10 µg/g). Thereafter, 3 × 109 PFU (diluted with PBS to a total volume of 100 µl) 

of the recombinant Ad5-AFP-NIS or Ad5-control were injected at five different injection 

sites directly into the tumor using tuberculin syringes with a 30-gauge x 0.5-inch needle. 

The needle was moved to various sites within the tumor during injection to maximize the 

area of virus exposure. To investigate tumor specificity of the virus construct in the case of 

virus leakage, a cohort of tumor-bearing mice received 3 x 109 PFU of either the non-

specific Ad5-CMV-NIS or the tumor-specific Ad5-AFP-NIS systemically via tail vein 

injection.  

 

Radionuclide uptake studies in vivo  

Four days after intratumoral or intravenous injection of Ad5-AFP-NIS, Ad5-control 

or Ad5-CMV-NIS, mice received 18.5 MBq (0.5 mCi) 123I or 111 MBq (3 mCi) 188Re 

intraperitoneally (i.p.) and radionuclide biodistribution was monitored by serial imaging on 

a gamma camera (Forte, ADAC Laboratories, Milpitas, CA, USA) equipped with a VXHR 

(Vantage Extra High Resolution) collimator (123I) or a medium-energy general purpose 

(MEGP) collimator (188Re) as described previously (Willhauck et al., 2007; Willhauck et 

al., 2008a). Regions of interest were quantified and expressed as a fraction of the total 

amount of applied radionuclide per gram tumor tissue. The retention time within the tumor 

was determined by serial scanning after radionuclide injection and dosimetric calculations 

were performed according to the concept of MIRD, with the dosis factor of RADAR-group 

(www.doseinfo-radar.com). 

 

Analysis of NIS mRNA expression using quantitative real-time PCR 

 After infection with Ad5-AFP-NIS total RNA was isolated from HepG2 xenografts 

using the RNeasy Mini Kit (Qiagen, Hilden, Germany) according to the manufacturer’s 

recommendations. Single stranded oligo (dT)-primer cDNA was generated using 

Superscript III Reverse Transcriptase (Invitrogen Life Technologies Inc., Karlsruhe, 

Germany). Following primers were used: hNIS (5`-TGCGGGACTTTGCAGTACATT-3´) 
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and (5`-TGCAGATAATTCCGGTGGACA-3´), GAPDH: (5`-

GAGAAGGCTGGGGCTCATTT-3´) and (5`-CAGTGGGGACACGGAAGG-3´). 

Quantitative real-time PCR (qPCR) was performed with the cDNA from 1 µg RNA using 

the SYBR green PCR master mix (Qiagen, Hilden, Germany) in a Rotor Gene 6000 

(Corbett Research, Morthlake, New South Wales, Australia). Relative expression levels 

were calculated using the comparative ∆∆Ct method and internal GAPDH for 

normalization.  

 

Indirect immunofluorescence assay  

 Indirect immunofluorescence staining using an antibody against Ki67 (Abcam, 

Cambridge, UK) was performed on frozen tissue sections as described previously 

(Willhauck et al., 2007).  

 

Immunohistochemical analysis of NIS protein expression 

 Immunohistochemical staining of frozen tissue sections derived from HepG2 

xenografts after adenovirus-mediated gene delivery was performed as described previously 

(Spitzweg et al., 2007). For histological examination parallel slides were also routinely 

stained with hematoxylin and eosin. 

 

Western blot analysis 

Membrane proteins were prepared from virus infected HepG2 xenografts as 

described previously (Castro et al., 1999) and subjected to electrophoresis on a 4 - 12% Bis-

Tris-HCl buffered polyacrylamide gel. After transfer of proteins to nitrocellulose 

membranes by electroblotting, membranes were preincubated in 2% low fat dried milk in 

TBS-T (20 mM Tris, 137 mM NaCl, and 0.1% Tween 20). Western blot analysis was 

performed using a mouse monoclonal antibody directed against amino acid residues 468-

643 of human NIS (kindly provided by John C. Morris, Mayo Clinic, Rochester, MN, USA) 

(dilution 1:3000) as described previously (Spitzweg et al., 1999c). 

 

Radionuclide therapy study in vivo 

Following a 10-day L-T4 pretreatment as described above, 4 groups of mice (each 

n=6) were established. Each mouse received 55.5 MBq 131I or 188Re as a single i.p. injection 

4 days after intratumoral injection of Ad5-AFP-NIS (3 x 109 PFU) or Ad5-control virus (3 x 

109 PFU), respectively. In addition, two further groups of mice were treated with saline 
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instead of radionuclides after injection of either Ad5-AFP-NIS (n=6) or Ad5-control virus 

(n=6). Tumor size was measured before and twice a week after treatment for up to seven 

weeks using a caliper. Tumor volume was estimated using the equation: tumor volume = 

length x width x height x 0.52.  

Mice were sacrificed before the end of the 7-week observation period, when tumors started 

to necrotize, in case of weight loss of more than 10% or impairment of drinking and eating 

behavior.  

 

Statistical methods 

 All in vitro experiments were carried out in triplicates. Results are represented as 

means +/- SD of triplicates. Statistical significance was tested using Student´s t-test.  
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Results 

Iodide uptake studies in vitro 

Transduction conditions using Ad5-AFP-NIS were optimized in HepG2 cells by 

measurement of perchlorate-sensitive iodide uptake activity (data not shown). At a dose of 

60 MOI we achieved highest transduction efficiency at low cytotoxicity, which was used for 

all subsequent in vitro experiments. The perchlorate-sensitive iodide uptake activity was 

measured at various time points after Ad5-AFP-NIS infection (data not shown). Maximum 

iodide uptake activity was observed 4 days following infection, when cells showed a 102-

fold increase in perchlorate-sensitive 125I accumulation as compared to cells infected with 

the control virus (Ad5-control) (Fig. 1A). Tumor specificity of Ad5-AFP-NIS was 

confirmed by infection of control cancer cell lines (LNCaP, 1205 Lu) not expressing AFP 

showing lack of perchlorate-sensitive iodide uptake activity (Fig. 1A). 

 
Fig. 1: 125I uptake was measured in HepG2 cells following infection with either Ad5-AFP-NIS or Ad5-control. 
LNCaP and 1205 Lu served as controls. HepG2 cells infected with Ad5-AFP-NIS showed a 102-fold increase 
in perchlorate-sensitive 125I accumulation. In contrast, no iodide uptake above background level was observed 
in HepG2 cells transfected with an Ad5-control virus or control cells transfected with Ad5-AFP-NIS 
(***p<0.001). 
 

In vitro clonogenic assay using 131I 

An in vitro clonogenic assay was performed to determine the therapeutic efficacy of 

increasing doses (7.4 MBq (0.2 mCi), 14.8 MBq (0.4 mCi), 29.6 MBq (0.8 mCi)) of 131I in 

HepG2 cells after adenovirus-mediated NIS gene transfer (Fig. 1B). While up to 95% of 

NIS-transduced HepG2 cells were killed by exposure to 131I in a dose dependent manner, 

98% of uninfected HepG2 cells survived the treatment with 29.6 MBq 131I. Since HepG2 

cells infected with Ad5-AFP-NIS without radioiodine treatment (saline only) had similar 
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survival rates, we assume that virus infection per se had no influence on cell survival of 

HepG2 cells. 

 

Fig. 1: In an in vitro clonogenic assay, HepG2 cells infected with Ad5-AFP-NIS were exposed for 7 h to 7.4 
MBq (0.2 mCi), 14.8 MBq (0.4 mCi) or 29.6 MBq (0.8 mCi) 131I. resulting in cell killing rates of 
approximately 52%, 73% and 95%. Ad5-AFP-NIS-infected HepG2 cells incubated with NaCl instead of 131I as 
well as non-infected HepG2 cells incubated with 29.6 MBq (0.8 mCi) 131I showed almost no unselective cell 
death (***p<0.001). Results are expressed as means +/- SD. 
 

Radionuclide uptake studies after in vivo NIS gene transfer 

Radionuclide biodistribution was monitored in tumor bearing mice 4 days after 

intratumoral injection of Ad5-AFP-NIS (3 x 109 PFU) using a gamma camera. While no 

radionuclide accumulation was detected in tumors after infection with Ad5-control (left 

flank) NIS-transduced HepG2 tumors (right flank) showed a significant uptake of 123I and 
188Re (Fig. 2A, B). As determined by serial scanning, 14.5% ID/g (percentage of the 

injected dose per gram tumor tissue) 123I and 9.2% ID/g 188Re were accumulated 2 h post 

injection (p.i.) in NIS-transduced xenograft tumors with effective half-lifes of 12.3 h for 131I 

and 13 h for 188Re. The absorbed doses to the tumor were calculated to be 318 mGy/MBq 
131I as compared to 545 mGy/MBq for 188Re. In addition to tumoral uptake, significant 

radionuclide accumulation was observed in tissues physiologically expressing NIS, 

including stomach and thyroid. In this context it is important to mention that the uptake in 

the stomach appears to be higher than usually seen in humans, which is most probably due 

to higher levels of NIS protein expression in murine gastric mucosa and pooling of gastric 

juices due to the anesthesia for a prolonged period during imaging procedure. 

 In addition, tumor specificity of Ad5-AFP-NIS was confirmed by infection of 

control tumor xenografts (LNCaP, 1205 Lu) which did not result in tumoral iodide uptake 

activity (Fig. 2C, D).  
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Fig. 2: Radionuclide uptake studies in vivo:  123I (A) and 188Re (B) scans of nude mice, bearing HepG2 
xenografts located on the right and left flank, 6 h after administration of 18.5 MBq (0.5 mCi) 123I or 111 MBq 
(3 mCi) 188Re. Four days following intratumoral injection of Ad5-AFP-NIS (right) and Ad5-control (left) Ad5-
AFP-NIS infected tumors trapped 14.5% ID/g 123I (A) and 9.2% ID/g 188Re (B), while Ad5-control infected 
tumors showed no radionuclide uptake (A and B). In contrast, control LNCaP xenografts (C) and 1205 Lu 
xenografts (D) infected with Ad5-AFP-NIS showed no tumoral iodide accumulation. Radionuclides were also 
accumulated physiologically in bladder, stomach and thyroid gland. 
 

In order to further confirm tumor-specificity of the AFP promoter, we injected virus 

systemically via the tail vein of HCC xenograft bearing mice. Four days after systemic 

injection of 3 x 109 PFU Ad5-CMV-NIS high levels of iodide uptake were observed in the 

liver due to hepatic pooling of the adenovirus (Fig. 3B), whereas no iodide accumulation 

was observed in the tumor. In contrast, after administration of Ad5-AFP-NIS we did not 

observe significant iodide uptake in non-target organs like liver or lungs as determined by 
123I scintigraphy (Fig. 3A), although it is expected that most of the Ad5-AFP-NIS is also 

pooled in the liver after tail vein injection. Interestingly, despite significant hepatic 

adenovirus pooling a low level of iodide uptake could also be observed in HCC xenografts 

after systemic injection of Ad5-AFP-NIS underlining tumor specificity and high activity of 

the AFP promoter used in our study. These data were confirmed by ex vivo biodistribution 

analysis by gamma counter analysis showing that 48% ID/g were accumulated in the liver 

after i.v. injection of Ad5-CMV-NIS, whereas following injection of Ad5-AFP-NIS only 

1% ID/g was accumulated in the liver (Fig. 3C) and 3.7% ID/g in the tumor. 
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Fig. 3: In vivo imaging of 123I biodistribution in nude mice after i.p. administration of 18.5 MBq (0.5 mCi) 123I 
4 days after intravenous administration of Ad5-AFP-NIS (A) or Ad5-CMV-NIS (B). Images shown were 
acquired 4 h after radioiodide administration. Following systemic application of Ad5-CMV-NIS high levels of 
iodide accumulation were observed in the liver without iodide uptake in the tumor (B). In contrast, after i.v. 
application of Ad5-AFP-NIS no iodide accumulation was observed in the liver or other non-target organs, 
while a low level of iodide uptake was observed in the tumor (3.7% ID/g) (A). Gamma counter analysis 
showed accumulation of 48% ID/g in the liver after i.v. injection of Ad5-CMV-NIS, whereas livers of Ad5-
AFP-NIS injected mice accumulated only 1% ID/g (C). Results are expressed as means +/- SD (***p<0.001). . 
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Analysis of NIS mRNA expression in HepG2 xenografts  

 In order to assess NIS mRNA expression after local adenoviral NIS gene transfer in 

vivo, mRNA of tumors was extracted and analyzed by quantitative real-time PCR (qPCR) 

with a pair of NIS-specific oligonucleotide primers. qPCR analysis revealed a 33-fold 

increase in NIS mRNA expression in HepG2 xenografts 4 days after intratumoral injection 

of Ad5-AFP-NIS as compared to mock-transduced tumors. Furthermore, no significant NIS 

mRNA expression above background level was detected in untreated tumors (Fig. 4).  

 

 
Fig. 4: Analysis of human NIS mRNA expression in HepG2 xenografts. A significant NIS mRNA level was 
observed after intratumoral injection of Ad5-AFP-NIS. In contrast, no significant NIS expression above 
background level was found in tumors after infection with Ad5-control or in untreated tumors (***p<0.001). 
 

Western blot analysis 

Four days following intratumoral injection of Ad5-AFP-NIS or Ad5-control, NIS 

protein expression levels were determined in HepG2 cell xenografts by Western blot 

analysis using a mouse monoclonal antibody directed against amino-acid 468-643 of the 

human NIS protein. Western blotting of membrane proteins derived from Ad5-AFP-NIS-

infected xenografts revealed a NIS-specific band of a molecular weight of approximately 90 

kDa, which was not detected in tumors transduced with Ad5-control (Fig. 5A).  
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Fig. 5: Western blot analysis of HepG2 xenografts 4 days following infection with Ad5-AFP-NIS or Ad5-
control. NIS protein was detected as a major band of approximately 90 kDa in Ad5-AFP-NIS infected HepG2 
xenografts, while Ad5-control infected HepG2 xenografts did not show NIS protein expression (A). 
 

Immunohistochemical analysis of NIS protein expression in HepG2 xenografts 

Immunohistochemical analysis of HepG2 xenografts using a mouse monoclonal 

hNIS-specific antibody revealed a heterogeneous staining pattern with areas of primarily 

membrane-associated NIS-specific immunoreactivity in tumors after intratumoral 

application of Ad5-AFP-NIS (Fig. 5B, white arrows). In contrast, tumors treated with Ad5-

control showed no NIS-specific immunoreactivity (Fig. 5C). Parallel control slides with the 

primary and secondary antibodies replaced in turn by PBS and isotype-matched non 

immune immunoglobulin were negative (data not shown).  

 

 

Fig. 5: Immunohistochemical staining of HepG2 xenografts 4 days after infection with Ad5-AFP-NIS showed 
heterogeneous, primarily membrane-associated NIS-specific immunoreactivity (B). In contrast, HepG2 
xenografts infected with Ad5-control did not reveal NIS-specific immunoreactivity (C). Magnification: 400 x 
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Radionuclide therapy study in vivo 

After 2 - 3 weeks of tumor growth (average tumor diameter 3 - 5 mm) and 4 days 

after local virus application, 4 groups of mice (131I group: Ad5-AFP-NIS (n=6), 188Re group: 

Ad5-AFP-NIS (n=6) and control groups with Ad5-control and 131I (n=6) or 188Re (n=6)) 

were administered 55.5 MBq (1.5 mCi) 131I or 188Re per mouse by a single i.p. injection, 

whereas two other control groups (saline groups: Ad5-AFP-NIS (n=6) or Ad5-control 

(n=6)) were treated with saline instead of radionuclides. All saline treated tumors and 

tumors infected with the control virus continued their growth throughout the observation 

period (increase in tumor size: Ad5-control/131I: 26.9-fold; Ad5-control/188Re: 25.2-fold; 

Ad5-control/saline: 24.5-fold; Ad5-AFP-NIS/saline: 23-fold) (Fig. 6A). In contrast, NIS 

transduced tumors showed a significant delay in tumor growth after injection of 131I or 
188Re. 3 - 5 weeks following radionuclide injection therapeutic efficacy of 188Re seemed to 

be more pronounced as compared to 131I. However, differences were mild without reaching 

statistical significance. While all of the mice in the control groups had to be killed within the 

first 5 weeks after onset of the experiments due to excessive tumor growth, 85% of mice 

treated with 131I or 188Re after local in vivo NIS gene transfer survived approx. 7 - 8 weeks 

(Fig. 6B). None of the mice showed adverse effects after virus or radionuclide 

administration. 
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Fig. 6: Radionuclide therapy studies in vivo. Growth of Ad5-AFP-NIS infected HepG2 xenografts (solid 
symbols) and Ad5-control infected HepG2 xenografts (open symbols) in nude mice following injection of 55.5 
MBq (1.5 mCi) 131I, 188Re (solid lines) or saline (dashed lines). Radionuclide therapy after intratumoral 
injection of Ad5-AFP-NIS resulted in a significant delay of tumor growth (A, **p<0.01) that was associated 
with markedly improved survival (B, Kaplan-Meier-plot) as compared to control groups that were injected 
with Ad5-control followed by saline or radionuclide application (*p<0.05). 
 

 Histological evaluation of HepG2 xenografts showed a significant degree of necrosis 

(arrows) in NIS-transduced tumors 4 weeks after radionuclide treatment (131I or 188Re) (Fig. 

7A, B), while saline treated tumors exhibited only small areas of necrosis (arrows) (Fig. 

7C).  

 

 

Fig. 7: Histological evaluation of of HepG2 tumors showed a significant degree of necrosis after NIS-
mediated 131I (A) or 188Re-therapy  (B). In contrast, NIS-transduced tumors followed by saline injection 
showed no significant necrosis (C). Magnification: 400 x 
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Discussion 

 Gene therapy for HCC represents a new technology that, more than any currently 

available therapy, takes direct advantage of our new understanding of tumor carcinogenesis 

at the molecular level. A variety of gene therapy strategies have been examined for HCC in 

the recent years, such as immunomodulatory gene therapy including cytokine gene transfer, 

cytoreductive gene therapy using the herpes simplex virus thymidine kinase/ganciclovir 

system and the cytosine deaminase/5-fluorocytosine system, antiangiogenic gene therapy, 

corrective gene therapy aiming at restoration of p53 expression as well as oncolytic viral 

therapy (Sangro et al., 2005). However, none of these therapeutic approaches has reached 

the clinical area yet. 

As one of the oldest and most successful targets of molecular imaging and therapy, 

cloning and characterization of NIS has provided us with a powerful new therapy gene, that 

allowed the development of a promising cytoreductive gene therapy strategy based on NIS 

gene transfer in extrathyroidal tumors followed by targeted radionuclide therapy (Smanik et 

al., 1996; Smanik et al., 1997; Dai et al., 1996; Hingorani et al., 2010a). In its dual role as 

reporter and therapy gene NIS allows direct, non-invasive imaging of functional NIS 

expression by 123I-scintigraphy and 124I-PET-imaging as well as exact dosimetric 

calculations before proceeding to therapeutic application of 131I or alternative radionuclides 

(Spitzweg and Morris, 2002b; Dingli et al., 2003b; Hingorani et al., 2010a).  

 As one of the first groups to explore the efficacy of NIS gene therapy in 

extrathyroidal tumors we chose prostate cancer as initial tumor model and used the PSA and 

probasin promoters to transcriptionally target functional NIS expression to prostate cancer 

cells, that resulted in a highly significant therapeutic effect after application of 131I in vitro 

and in vivo (Spitzweg et al., 1999; Spitzweg et al., 2000b; Kakinuma et al., 2003). In 

further studies we were able to confirm these data by the successful application of other 

tumor-specific promoters, such as the carcinoembryonic antigen (CEA) promoter and the 

calcitonin promoter, to induce tumor-specific iodide accumulation in colon and medullary 

thyroid cancer cells, respectively (Cengic et al., 2005; Scholz et al., 2005; Spitzweg et al., 

2007). Moreover, based on our promising preliminary work and the proof-of-principle of 

tumor-specific NIS gene therapy in prostate cancer, a first phase I clinical trial was 

approved after extensive toxicity and efficacy studies in rats and large animal models at the 

Mayo Clinic for radioiodine therapy of locally recurrent prostate cancer after local 

adenoviral NIS gene transfer (Dwyer et al., 2005b). 
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 In addition, in the prostate cancer model we have convincingly demonstrated that the 

application of the alternative radionuclides 188Re and 211At, which are also transported by 

NIS, is capable of significantly enhancing therapeutic efficacy of NIS-mediated 

radionuclide therapy (Willhauck et al., 2007; Willhauck et al., 2008a). While the high 

energy alpha emitter 211At with a maximal path length of only 70 µm was more potent in 

smaller tumors as compared to 131I, therapeutic efficacy of 188Re (maximal path length of up 

to 10.4 mm) was superior in larger tumors (Willhauck et al., 2007; Willhauck et al., 2008a). 

 In liver cancer Chen et al. reported that stop of tumor growth could be achieved in 

vivo in a subcutanous HCC rat model after 131I application following retroviral NIS gene 

transfer under control of the albumin promoter (Chen et al., 2006). However, application of 

the albumin promoter implies the problem of possible substantial toxicity to normal 

hepatocytes, which, in our opinion, significantly impairs the feasibility of this approach. We 

have therefore chosen to apply the tumor-specific AFP promoter to transcriptionally target 

NIS expression selectively to liver cancer cells thereby minimizing toxicity in normal liver 

cells and other organs (Willhauck et al., 2008b). AFP is a 70 kilo-dalton protein that is 

exclusively expressed in the yolk sac and liver of mammals during embryonic development 

and after birth only reexpressed in neoplastic transformation or injury to the liver as well as 

in teratocarcinomas. Due to its tumor-specific regulation, AFP is widely used as highly 

specific tumor marker for HCC and teratocarcinomas and the AFP promoter therefore 

represents an ideal means for HCC-specific transcriptional targeting of therapeutic genes 

(Ido et al., 2001; Lu et al., 2003). 

 As a next crucial step towards clinical application of the NIS gene therapy approach 

in liver cancer patients, in the current study we performed in vivo NIS gene transfer into 

HCC xenograft tumors using a replication-deficient human adenovirus carrying the human 

NIS gene linked to the AFP promoter (Ad5-AFP-NIS) and examined radionuclide 

accumulation and therapeutic efficacy of 131I and 188Re. 

 We decided to use a recombinant adenovirus serotype 5 vector for our experiments 

since it was demonstrated that these vectors are highly efficient for in vivo gene transfer 

upon intratumoral administration due to high titers they can produce and their ability to 

infect non-dividing cells (Zhang et al., 1999). In addition, using adenoviral vectors efficient 

in vivo gene transfer has been demonstrated in numerous tissue types, including glioma 

(Lang et al., 2003), bladder carcinoma (Pagliaro et al., 2003), ovarian cancer (Wolf et al., 

2004) and liver tissue (Faivre et al., 2004; Herve et al., 2008) tested either alone or in 

combination with chemotherapy or radiotherapy. It is known that adenoviral gene transfer is 
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dependent on several critical steps, including virus attachment to the cellular 

coxsackievirus-adenovirus receptor (CAR), internalization via endocytosis, endosome 

escape and transport of virion DNA to the cell nucleus (Svensson and Persson, 1984). 

Expression of CAR was shown to be a crucial prerequisite for successful adenovirus cell 

entry (Bergelson et al., 1997). In this context it was shown that hepatic tissue, especially 

hepatocellular carcinoma cells including HepG2 cells, highly express CAR (Nakamura et 

al., 2003). In addition, in liver cancer the possibility of regional virus application via the 

hepatic artery maximizes regional toxicity with minimal systemic toxicity, still allowing to 

reach disseminated HCC tumors throughout the liver. Even after systemic application most 

of the adenovirus is passively pooled in the liver. With the tool of transcriptional targeting 

by application of the AFP promoter NIS expression can be actively targeted to tumor cells 

thereby avoiding toxicity to normal hepatocytes. 

 In the current study, after in vitro characterization of Ad5-AFP-NIS in human HCC 

cells, HepG2 tumors injected with Ad5-AFP-NIS were demonstrated to accumulate 14.5% 

ID/g of the total radioiodine administered with an average effective half-life of 12.3 h. In 

comparison, NIS expressing tumors accumulated approximately 9.2% ID/g 188Re, with an 

effective half-life of 13 h. These data are consistent with previous biodistribution studies in 

different tumor models showing higher amounts of accumulated iodide than 188Re in NIS 

expressing tumors suggesting a higher affinity of NIS for iodide than for 188Re (Kang et al., 

2004; Dadachova et al., 2005; Willhauck et al., 2007). In our study, a tumor absorbed dose 

of 545 mGy / MBq 188Re was calculated, which was 1.7 times higher than for 131I (318 mGy 

/ MBq). In contrast, Dadachova et al. showed a radiation dose 4.5 times higher for 188Re 

than for 131I in NIS expressing mammary adenocarcinomas in MMTV-NeuT mice 

(Dadachova et al., 2005). Similarly in one of our earlier studies in NIS-expressing prostate 

cancer xenografts, the tumor absorbed dose was increased 4.5-fold after application of 188Re 

as compared to 131I (Willhauck et al., 2007). This difference might be due to a more 

inhomogeneous NIS expression pattern and therefore heterogeneous radionuclide 

accumulation after adenoviral in vivo NIS gene transfer as compared to stably or 

endogenously NIS expressing tumor models in the former studies. 

 To further confirm tumor-specificity of the AFP promoter construct we administered 

Ad5-AFP-NIS systemically via the tail vein, which did not result in any iodide uptake in the 

liver or other non-target organs demonstrating selectivity and safety of this construct, 

despite the significant adenovirus pooling in the liver as demonstrated by i.v. application of 

the unspecific Ad5-CMV-NIS, that resulted in high levels of hepatic iodide uptake. 
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Interestingly, even after systemic tail vein injection of Ad5-AFP-NIS and pooling of most of 

the virus in the liver, enough virus particles reached the peripheral HCC xenografts to 

induce a low level of iodide uptake of approx. 4% ID/g, demonstrating high tumor 

specificity and promoter activity of our adenoviral vector. These data confirm that 

transcriptional tumor targeting by application of the AFP promoter allows to restrict NIS 

expression to tumor cells to avoid toxicity to normal hepatocytes suggesting a safe gene 

transfer method even in the case of virus leakage or after systemic application. 

Tumoral NIS expression was further confirmed by real-time qPCR, Western blot 

analysis as well as NIS-specific immunostaining, which was primarily membrane-associated 

and showed a heterogeneous pattern throughout the tumor.  

 Our comparative 131I and 188Re therapy experiments after in vivo NIS gene transfer in 

HepG2 xenografts were performed with a single injection of 55.5 MBq (1.5 mCi) 131I or 
188Re. Using each of the radionuclides tumor growth of NIS-transduced HepG2 xenografts 

was significantly delayed which was associated with markedly improved survival. The 

therapeutic effect of the NIS-mediated radionuclide therapy was less pominent in the current 

study as compared to earlier studies in other tumor models showing tumor volume 

reductions of up to 80 - 90% (Spitzweg et al., 2000b; Spitzweg et al., 2001a; Dingli et al., 

2003a; Faivre et al., 2004; Dwyer et al., 2006a; Dwyer et al., 2006b; Willhauck et al., 2007; 

Willhauck et al., 2008a). This might be due to the extraordinarily high proliferation rate of 

HepG2 tumors that showed a Ki67 index of approximately 70% in contrast to 35% in the 

LNCaP tumors used in our earlier studies (Spitzweg et al., 2000b; Spitzweg et al., 2001a; 

Willhauck et al., 2007; Willhauck et al., 2008a). Given the fact that tumors with such a high 

proliferation index are usually treated with systemic cytotoxic chemotherapy, such as 

etoposid and cisplatin, and do not respond well to radiation therapy, the observed level of 

tumor growth delay in contrast to the explosive growth of control tumors can be interpreted 

as highly significant therapy effect. Further, histological examination of NIS-transduced 

HepG2 cell tumors revealed a significant degree of necrosis after radionuclide therapy with 
131I or 188Re, which was not seen after application of saline suggesting significant 

therapeutic efficacy. These data also demonstrate that measurement of tumor size alone is 

not sufficient for proper analysis of therapeutic efficacy of molecularly targeted therapies 

including NIS-mediated radionuclide therapy. It will therefore be important to analyze 

antiproliferative and antiangiogenic effects by ex vivo immunohistochemical analysis as 

well as in vivo imaging modalities which is currently being studied. 
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Our data are consistent with previously published studies showing significant 

therapeutic efficacy of NIS-mediated radioiodide therapy in HCC. Faivre et al., who applied 

an adenovirus carrying the rat NIS gene under control of the unspecific CMV promoter 

intratumorally or via the portal vein demonstrated strong tumor growth inhibition up to 

complete tumor regression after application of 131I in a HCC rat model (Faivre et al., 2004). 

In a more recent study, Herve et al. applied a recombinant adenovirus carrying the NIS gene 

under control of the tumor-specific hepatocarcinoma-intestine-pancreas promoter 

intratumorally or via the hepatic artery showing growth inhibition of orthotopic liver tumors 

after application of 131I (Herve et al., 2008). 

 In our study the growth retardation of NIS transduced HepG2 xenografts was 

slightly more pronounced after administration of 188Re than after injection of 131I, however, 

differences were mild without reaching statistical significance. In contrast, in our previous 

study in stably NIS expressing prostate cancer xenotransplants the application of 188Re 

resulted in a significantly improved tumor volume reduction of 85% as compared to 73% 

after injection of 131I when treating larger tumors (Willhauck et al., 2007). The difference in 

therapeutic efficacy of 188Re and 131I as seen in the prostate cancer model were attenuated in 

the hepatoma model used in the current study which is consistent with the dosimetry data. 

While the tumor absorbed dose in the current study was only increased approx. 1.7-fold 

after application of 188Re, the dose delivered to the tumor in the prostate cancer model was 

4.5-fold higher compared to that by 131I as already outlined above. In addition, due to the 

aggressive growth behaviour of the HepG2 cells adenoviral NIS gene transfer had to be 

carried out approximately 2 - 3 weeks following tumor cell implantation, when tumors had 

reached a size of only 3 - 5 mm in diameter, therefore the tumors were smaller than those 

used in the prostate cancer study. The beta particles emitted by 188Re are characterized by a 

longer path length with a maximum range of 10.4 mm as compared to 131I (maximum path 

length of up to 2.4 mm) resulting in a more pronounced crossfire effect which is attenuated 

in small tumors due to energy deposition beyond the tumor borders. 

 In conclusion, a therapeutic effect of 131I and 188Re has been demonstrated in HepG2 

cell xenografts after tumor-specific, adenovirus-mediated in vivo NIS gene transfer, opening 

new perspectives for HCC therapy. Provided that further studies aiming at systemic and 

regional in vivo gene delivery in orthotopic multifocal HCC models will confirm therapeutic 

efficacy of AFP promoter-targeted NIS gene therapy, these data clearly demonstrate the 

potential of NIS as a novel therapeutic gene allowing targeted radionuclide therapy of HCC. 
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Statement of Translational Relevance 

Based on the effective administration of radioiodine in the management of thyroid 

cancer, cloning of the sodium iodide symporter (NIS) has paved the way for the 

development of a novel gene therapy strategy based on targeted NIS expression in cancer 

cells followed by therapeutic application of 131I. Our pioneer studies have convincingly 

demonstrated the oncology communities the enormous potential of NIS as a novel reporter 

and therapy gene and allowed the approval of a first phase I clinical trial for radioiodine 

therapy of prostate cancer after local adenoviral NIS gene transfer. The next crucial step 

towards clinical application in metastatic cancer, has to be the evaluation of gene transfer 

methods that own the potential to achieve sufficient tumor-selective transgene expression 

levels after systemic application.  

The present report is the first preclinical study convincingly demonstrating the high 

potential of polycations based on polypropylenimine dendrimers for tumor-specific delivery 

of the NIS gene after systemic application resulting in a significant therapeutic effect of 131I 

in a neuroblastoma mouse model. This translational study therefore opens the exciting 

prospect of NIS-targeted radionuclide imaging and therapy of metastatic cancer using 

polyplex-mediated systemic NIS gene delivery.  
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Abstract  

 Purpose: We have recently reported significant therapeutic efficacy of radioiodine 

therapy in various tumor mouse models following transcriptionally targeted sodium iodide 

symporter (NIS) gene transfer. These studies demonstrated the high potential of NIS as a 

novel diagnostic and therapeutic gene for the treatment of extrathyroidal tumors. As a next 

crucial step towards clinical application of NIS-mediated radionuclide therapy we aim at 

systemic delivery of the NIS gene to target extrathyroidal tumors even in the metastatic 

stage.  

Experimental Design: Therefore, in the current study, we used synthetic polymeric vectors 

based on pseudodendritic oligoamines with high intrinsic tumor affitnity (G2-HD-OEI) to 

target a NIS-expressing plasmid (CMV-NIS-pcDNA3) to neuroblastoma (Neuro2A) cells.  

Results: Incubation with NIS-containing polyplexes (G2-HD-OEI/NIS) resulted in a 51-fold 

increase in perchlorate-sensitive iodide uptake activity in Neuro2A cells in vitro. Using 123I 

scintigraphy and ex vivo gamma counting Neuro2A tumors in syngeneic A/J mice were 

demonstrated to accumulate 8-13 % ID/g 123I with a biological half-life of 13 h, resulting in 

a tumor absorbed dose of 247 mGy/MBq 131I after intravenous application of G2-HD-

OEI/NIS. Non-target organs, including liver, lung, kidneys and spleen revealed no 

significant iodide uptake. Moreover, 2 cycles of systemic NIS gene transfer followed by 131I 

application (55.5 MBq) resulted in a significant delay in tumor growth associated with 

markedly improved survival. 

Conclusions: In conclusion, our data clearly demonstrate the high potential of novel 

pseudodendritic polymers for tumor-specific NIS gene delivery after systemic application 

opening the prospect of targeted NIS-mediated radionuclide therapy of non-thyroidal tumors 

even in metastatic disease.  
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Introduction 

 The exact mechanism by which iodide is actively transported across the basolateral 

membrane of thyroid follicular cells has been clarified by cloning and characterization of 

the sodium iodide symporter (NIS) 13 years ago (Dai et al., 1996; Smanik et al., 1996; 

Smanik et al., 1997). NIS, an intrinsic transmembrane glycoprotein with 13 putative 

transmembrane domains, is responsible for the ability of the thyroid gland to concentrate 

iodide, the first and rate-limiting step in the process of thyroid hormonogenesis (De et al., 

2000; Spitzweg et al., 2000a). Moreover, due to its expression in follicular cell-derived 

thyroid cancer cells, NIS provides the molecular basis for the diagnostic and therapeutic 

application of radioiodine, which has been successfully used for more than 60 years in the 

treatment of thyroid cancer patients and therefore represents the most effective form of 

systemic anticancer radiotherapy available to the clinician today (Spitzweg et al., 2001c). 

Since its cloning in 1996 NIS has been identified and characterized as a novel promising 

target gene for the treatment of extrathyroidal tumors following selective NIS gene transfer 

into tumor cells which allows diagnostic and therapeutic application of radioiodine and 

alternative radionuclides, such as 188Re and 211At (Spitzweg et al., 2001c; Spitzweg and 

Morris, 2002b; Willhauck et al., 2007; Willhauck et al., 2008a). We have proven the 

feasibility of extrathyroidal radioiodine therapy after induction of iodide uptake by ex vivo 

stable NIS transfection or local adenoviral NIS gene transfer using tissue-specific 

promoters, such as the prostate specific antigen (PSA) promoter, alpha fetoprotein (AFP) 

promoter, carcinoembryonic antigen (CEA) promoter and the calcitonin promoter to 

specifically target NIS expression to prostate, liver, colon and medullary thyroid cancer 

cells, respectively (Spitzweg et al., 1999c; Spitzweg et al., 2000b; Spitzweg et al., 2001a; 

Kakinuma et al., 2003; Cengic et al., 2005; Scholz et al., 2005; Spitzweg et al., 2007; 

Willhauck et al., 2008b). Further, cloning of NIS has provided us not only with a powerful 

therapeutic gene, but also with one of the most promising reporter genes available today, 

that allows direct, non-invasive imaging of functional NIS expression by 123I-scintigraphy 

and 124I-PET-imaging, as well as exact dosimetric calculations before proceeding to 

therapeutic application of 131I (Spitzweg and Morris, 2002b; Dingli et al., 2003b). 

Therefore, in its role as reporter gene NIS provides a direct way to monitor the in vivo 

distribution of viral and non-viral vectors, as well as biodistribution, level and duration of 

transgene expression – all critical elements in the design of clinical gene therapy trials 

(Spitzweg and Morris, 2002b; Dingli et al., 2003b). 
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 As logical consequence of our pioneer studies in the NIS gene therapy field, the next 

crucial step towards clinical application of the promising NIS gene therapy concept, has to 

be the evaluation of gene transfer methods that own the potential to achieve sufficient 

tumor-selective transgene expression levels not only after local or regional but also after 

systemic application to be able to reach tumor metastases.  

Viral vectors are the most commonly used gene transfer systems employed in 

clinical trials due to their high potency in gene transfer (Everts and Van Der Poel, 2005). 

However, the limitations associated with viral vectors including induction of immune and 

inflammatory responses, limited transgene loading size, potential toxicity and 

tumorigenicity as well as high production costs have encouraged researchers to focus on 

alternative gene transfer vehicles.  

 Delivering genes to target organs with synthetic vectors is a vital alternative to virus-

based methods. For systemic delivery polycationic molecules are used to condense DNA 

into sub-micrometer particles termed polyplexes, which are efficiently internalized into 

cells, while DNA is protected from nucleases. Several polycations, like polyethylenimine 

(PEI), bear an intrinsic endosomolytic mechanism, which allows the transition of the 

polyplex from the endosome to the cytoplasm (Meyer and Wagner, 2006). Non-viral vectors 

can be easily synthesized and convince especially by their absent immunogenicity and 

enhanced biocompatibility. The “golden standard” of PEI-based gene carriers is LPEI, the 

linear form of polyethylenimine, with a molecular weight of 22 kDa, also known as the 

commercially available JetPEI®. The major drawback of LPEI is its significant toxicity 

after systemic application due to acute and long-term toxic effects (Chollet et al., 2002). 

Therefore, several biodegradable polymers were developed for gene transfer (Forrest et al., 

2003; Kloeckner et al., 2006a) aiming to reduce the toxicity profile while maintaining high 

transduction efficiency comparable to the standard synthetic gene vectors. We have recently 

developed a series of biodegradable carriers based on low molecular weight polycations 

crosslinked either via ester or disulfide bonds (Kloeckner et al., 2006b; Russ et al., 2008a; 

Russ et al., 2008), demonstrating very promising toxicity profiles and similar or even 

superior transfection efficiency in comparison with LPEI (Russ et al., 2008). Continuing 

this work, a novel class of branchend polycations was synthesized based on 

oligoethylenimine (OEI)-grafted polypropylenimine dendrimers (G2-HD-OEI) (Russ et al., 

2008a). Low toxicity in association with high transfection efficiency was observed in 

different tumor cell lines in vitro using these polymers. Moreover, polyplexes formed by 

these biodegradable polymers prevented aggregation with erythrocytes and toxic side effects 
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after systemic administration in vivo. Transgene expression was almost exclusively detected 

intratumorally in tumor bearing mice, whereas with polyplexes based on linear PEI 

transgene expression in lung was more than 100 times higher than in the tumor (Russ and 

Wagner, 2007; Russ et al., 2008a; Russ et al., 2008). Apparently, polyplexes based on 

branched polycations exhibit a high intrinsic tumor affinity, significantly improving tumor-

specific targeting of transgene expression, one of the major hurdles of gene therapy. In this 

context, Dufes et al. showed that systemic injection of polypropylenimine dendrimer 

nanoparticles containing a TNFα expression plasmid regulated by telomerase gene promoter 

leads to tumor-specific transgene expression, resulting in tumor regression and improved 

survival in various tumor models (Dufes et al., 2005). 

In the current study, we applied the above described OEI-grafted polypropylenimine 

dendrimers (G2-HD-OEI) as novel biodegradable and highly efficient non-viral gene 

delivery vehicles for systemic NIS gene transfer in a syngeneic neuroblastoma mouse 

model. Based on its dual function as reporter and therapy gene, NIS was used for non-

invasive imaging of vector biodistribution by 123I-scintigraphy followed by assessment of 

the therapy response after application of 131I.  
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Materials and Methods 

Cell culture 

 The murine neuroblastoma (Neuro2A) cell line (ATCC-CCL-131) was cultured in 

DMEM (1g/L glucose) supplemented with 10% fetal bovine serum (v/v) (PAA; Colbe, 

Germany) and 1% penicillin /streptomycin. Cells were maintained at 37°C and 5% CO2 in 

an incubator with 95% humidity. The cell culture medium was replaced every second day 

and cells were passaged at 85% confluency. 

 

Plasmids and polycation 

 The expression vector CMV-NIS-pcDNA3 (pCMV-NIS) containing the full-length 

NIS cDNA coupled to the CMV promoter was kindly provided by Dr. S. M. Jhiang, Ohio 

State Univesity, Columbus, OH, USA. As control, NIS cDNA was removed using EcoRI 

and re-ligated into the same expression vector in antisense direction (pCMV-antisense/NIS). 

G2-HD-OEI was synthesized as described previously (Russ et al., 2008a) and used as a 5 

mg/ml stock solution.  

 

Polyplex formation 

 Plasmid DNA was condensed with polymers at indicated conjugate/plasmid (c/p) - 

ratios (w/w) in HEPES buffered glucose (HBG: 20 mM HEPES, 5% glucose (w/v), pH 7.4) 

as described (Russ, 2008) and incubated at room temperature for 20 min. prior to use. Final 

DNA concentration of polyplexes for in vitro studies was 4 µg/ml, for in vivo studies 

200 µg/ml.  

 

Transient transfection 

 For in vitro transfection experiments, Neuro2A cells were grown to 60-80% 

confluency. Cells were incubated for 4 h with polyplexes in the absence of serum and 

antibiotics followed by incubation with growth medium for 24 h. Transfection efficiency 

was evaluated by measurement of iodide uptake activity as described below.  

 
125I uptake assay 

 Following transfections, iodide uptake of Neuro2A cells was determined at steady-

state conditions as described by Weiss et al. (Weiss et al., 1984). Results were normalized 
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to cell survival measured by cell viability assay (see below) and expressed as cpm/A 490 

nm. 

 

Cell viability assay 

 Cell viability was measured using the commercially available MTS-assay (Promega 

Corp., Mannheim, Germany) according to the manufacturer´s recommendations as 

described previously (Unterholzner et al., 2006).  

 

Establishment of Neuro2A tumors  

 Neuro2A tumors were established in syngeneic male A/J mice (Harlan Winkelmann, 

Borchen, Germany) by subcutaneous injection of 1 x 106 Neuro2A cells suspended in 

100 µl PBS into the flank region. Animals were maintained under specific pathogen-free 

conditions with access to mouse chow and water ad libitum. The experimental protocol was 

approved by the regional governmental commission for animals (Regierung von 

Oberbayern). 

 

NIS gene transfer and radioiodine biodistribution studies in vivo 

 Experiments started when tumors had reached a tumor size of 8-10 mm after a 10-

day pretreatment with L-T4 (intraperitoneal (i.p.) injection of 2 µg L-T4/day (Henning, 

Sanofi-Aventis, Germany) diluted in 100 µl PBS) to suppress thyroidal iodine uptake. For 

systemic in vivo gene transfer polyplexes (c/p 2) were applied via the tail vein at a DNA 

dose of 2.5 mg/kg (i.e. for a 20 g mouse 250 µl polyplex in HBG at 200 µg/ml DNA); either 

NIS containing polyplexes (G2-HD-OEI/NIS) or polyplexes with the control vector (G2-

HD-OEI/antisense-NIS). Two groups of mice were established and treated as follows: (1) 

i.v. injection of G2-HD-OEI/NIS (n=24); (2) i.v. injection of G2-HD-OEI/antisense-NIS 

(control vector) (n=9). As an additional control, in a subset of mice treated with G2-HD-

OEI/NIS (n=9) the specific NIS-inhibitor sodium-perchlorate (NaClO4 2 mg/per mouse) 

was injected i.p. 30 min. prior to 123I administration. 24 h after polyplex application, mice 

were injected i.p. with 18.5 MBq (0.5 mCi) 123I and iodide biodistribution was assessed 

using a gamma camera equipped with UXHR collimator (Ecam, Siemens, Germany) as 

described previously (Willhauck et al., 2007; Willhauck et al., 2008a). Regions of interest 

were quantified and expressed as a fraction of the total amount of applied radionuclide per 

gram tumor tissue. The retention time within the tumor was determined by serial scanning 
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after radionuclide injection, and dosimetric calculations were performed according to the 

concept of MIRD, with the dosis factor of RADAR-group (www.doseinfo-radar.com). 

 

Analysis of radioiodine biodistribution ex vivo 

 For ex vivo biodistribution studies, mice were injected with G2-HD-OEI/NIS (n=24) 

or G2-HD-OEI/antisense-NIS (n=9) as described above followed by i.p. injection of 

18.5 MBq 123I 24 h later. A subset of NIS-transduced mice (n=9) was treated with sodium-

perchlorate prior to 123I administration as an additional control. Two, 6 and 12 h after 123I 

injection, mice were sacrificed and organs of interest were dissected, weighed and 

radioiodide uptake was measured in a gamma counter (5 NIS-transduced animals per time 

point (G2-HD-OEI/NIS) and 3 mice of each control). Results were reported as percentage of 

injected dose per organ (% ID/organ). 

 

Analysis of NIS mRNA expression using quantitative real-time PCR 

 Total RNA was isolated from Neuro2A tumors or other tissues using the RNeasy 

Mini Kit (Qiagen, Hilden, Germany) according to the manufacturer’s recommendations. 

Single stranded oligo (dT)-primer cDNA was generated using Superscript III Reverse 

Transcriptase (Invitrogen). Following primers were used: hNIS (5`-

TGCGGGACTTTGCAGTACATT-3´) and (5`-TGCAGATAATTCCGGTGGACA-3´), 

GAPDH: (5`-GAGAAGGCTGGGGCTCATTT-3´) and (5`-

CAGTGGGGACACGGAAGG-3`). Quantitative real-time PCR (qPCR) was performed 

with the cDNA from 1µg RNA using the SYBR green PCR master mix (Quiagen) in a 

Rotor Gene 6000 (Corbett Research, Morthlake, New South Wales, Australia). Relative 

expression levels were calculated using the comparative ∆∆Ct method and internal GAPDH 

for normalization.  

 

Immunohistochemical analysis of NIS protein expression 

 Immunohistochemical staining of frozen tissue sections derived from Neuro2A 

tumors after systemic gene delivery was performed as described previously (Spitzweg et al., 

2007).  

 

Radioiodine therapy study in vivo 

 Following a 10-day L-T4 pretreatment as described above, two groups of mice were 

established receiving 55.5 MBq 131I as a single i.p. injection 24 h after systemic application 
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of G2-HD-OEI/NIS (n=6) or G2-HD-OEI/antisense-NIS (n=6), respectively. As control, 

two further groups of mice were treated with saline instead of 131I after injection of either 

G2-HD-OEI/NIS (n=6) or G2-HD-OEI/antisense-NIS (n=6). A further control group was 

injected with saline only (n=6). The treatment consisting of systemic polyplex application 

followed by 131I or saline application after 24 h was repeated once on day three and four, 

respectively. Tumor sizes were measured before treatment and daily thereafter for up to four 

weeks. Tumor volume was estimated using the equation: tumor volume = length x width x 

height x 0.52. Experiments were repeated twice, tumor volumes are expressed as means of 

12 mice per group. 

 

Indirect immunofluorescence assay 

 Indirect immunofluorescence was performed on frozen sections as described 

previously (Willhauck et al., 2007).  

 

Statistical methods 

 All in vitro experiments were carried out in triplicates. Results are represented as 

mean +/- SD of triplicates. Statistical significance was tested using Student´s t test. 



Chapter 2 

 

 44 

Results 

Iodide uptake studies in vitro 

 Transfection conditions using G2-HD-OEI/NIS were optimized in Neuro2A cells by 

measurement of perchlorate-sensitive iodide uptake activity 24 h following polyplex 

application (data not shown). We found an optimal c/p ratio of 2, which resulted in highest 

transfection efficiency at low cytotoxicity. This ratio was used in all subsequent 

experiments. 24 h after transfection with G2-HD-OEI/NIS, Neuro2A cells showed a 51-fold 

increase in 125I accumulation as compared to cells incubated with empty G2-HD-OEI (Fig. 

1). Furthermore, no perchlorate-sensitive iodide uptake above background level was 

observed in cells transfected with the control vector G2-HD-OEI/antisense-NIS. Polyplex-

mediated NIS gene transfer did not alter cell viability as measured by MTS-assay (Fig. 1). 

 
Fig. 1: Iodide uptake was measured in Neuro2A cells following in vitro transfection with G2-HD-OEI/NIS, 
control vector G2-HD-OEI/antisense-NIS, or with G2-HD-OEI alone. Neuro2A cells transfected with G2-HD-
OEI/NIS showed a 51-fold increase in perchlorate-sensitive 125I accumulation. In contrast, no perchlorate-
sensitive iodide uptake above background level was observed in cells transfected with control vector or 
without DNA (***p <0.001). 
 

In vivo radioiodine biodistribution studies 

 To investigate the iodide uptake activity in Neuro2A tumors after systemic in vivo 

NIS gene transfer, 123I distribution was monitored in tumor bearing mice 24 h after G2-HD-

OEI/DNA administration by gamma camera imaging. While no iodide accumulation was 

detected in tumors after application of G2-HD-OEI/antisense-NIS (Fig. 2C), significant 

iodide uptake was observed in 85% (13 out of 15) of Neuro2A tumors following systemic 

injection of G2-HD-OEI/NIS, in addition to physiological iodide accumulation in thyroid, 

stomach and bladder (Fig. 2A). As determined by serial scanning, approximately 8-13% 
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ID/g 123I was accumulated in NIS-transduced tumors with a biological half-life of 13 h. 

Considering a tumor mass of 1 g, an effective half-life of 12 h for 131I and a tumor absorbed 

dose of 247 ± 94 mGy/MBq 131I were calculated (Fig. 2D). To confirm that tumoral iodide 

uptake was indeed NIS-mediated, a subset of G2-HD-OEI/NIS injected mice (n=9) received 

sodium-perchlorate 30 min prior to 123I administration. In all experiments a single injection 

of 2 mg sodium-perchlorate completely blocked tumoral iodide accumulation in addition to 

abolished physiological iodide uptake in stomach and thyroid gland (Fig. 2B). Moreover, no 

significant iodide uptake was observed in non-target organs, including lung, liver, kidney or 

spleen which confirms tumor-specificity of nanoparticle-mediated NIS gene delivery. 

 

 
Fig. 2: 123I gamma camera imaging of mice harbouring Neuro2A tumors 4 h following i.p. injection of 
18.5 MBq 123I after G2-HD-OEI-mediated NIS gene delivery. While mice treated with control vectors (G2-
HD-OEI/antisense-NIS) showed no tumoral iodide uptake (C), treatment with G2-HD-OEI/NIS induced 
significant tumor-specific iodide accumulation in Neuro2A tumors with accumulation of 8-13% ID/g 123I (A), 
which was completely abolished upon pretreatment with NaClO4 (B). Iodide was also accumulated 
physiologically in thyroid, stomach and bladder (A, C). 
Time course of 123I accumulation in Neuro2A tumors after systemic polyplex-mediated NIS gene delivery 
followed by injection of 18.5 MBq 123I as determined by serial scanning (D). Maximum tumoral radioiodine 
uptake was 8-13% ID/g tumor with an average effective T1/2 of 12 h for 131I (D). 
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Ex vivo radioiodine biodistribution studies 

 Ex vivo biodistribution analysis confirmed significant iodide uptake in tumors 

following systemic NIS gene transfer (Fig. 3). While NIS-transduced Neuro2A tumors 

accumulated 6-8% ID/organ 123I 2 hours after radioiodine injection, mock-transduced 

tumors showed no significant iodide uptake. In both groups the thyroid gland and the 

stomach accumulated approx. 40% and 39% ID/organ (data not shown). Noteworthy, the 

average tumor weight in this experiment was approximately 0.7 g. Further, a single 

perchlorate injection prior to radioiodine application significantly blocked iodide uptake in 

NIS-transduced tumors and in physiologically NIS-expressing tissues, including thyroid and 

stomach, throughout the observation period up to 12 h. In addition, no significant iodide 

uptake above background levels was observed in non-target organs, including lung, liver, 

kidney or spleen confirming tumor-specific NIS gene delivery (see also Fig. 2A). 
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Fig. 3: Evaluation of iodide biodistribution ex vivo 2, 6 and 12 hours following injection of 18.5 MBq 123I. 
While tumors in NIS-transduced mice showed high perchlorate-sensitive iodide uptake activity (up to 6-8% 
ID/organ), non-target organs revealed no significant iodide accumulation. No iodide accumulation was 
measured after injection of control vector. Results were reported as percent of injected dose per organ ± SD.  
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Analysis of NIS mRNA expression by quantitative real-time PCR analysis 

 In order to assess NIS mRNA expression after systemic NIS gene transfer, mRNA of 

various tissues was extracted and analyzed by quantitative real-time PCR (qPCR) with a 

pair of NIS-specific oligonucleotide primers 24 h after NIS gene transfer. Only a low 

background level of NIS mRNA expression was detected in untreated tumors or tumors 

after application of G2-HD-OEI/antisense-NIS. In contrast, a significant level of NIS gene 

expression was induced in Neuro2A tumors after systemic injection of G2-HD-OEI/NIS 

(Fig. 4A). As expected, administration of the competitive NIS inhibitor sodium-perchlorate 

had no influence on NIS mRNA expression in NIS transduced tumors. Furthermore, no 

significant NIS mRNA expression above background level was detected in non-target 

organs, like liver and lung after systemic application of G2-HD-OEI/NIS or G2-HD-

OEI/antisense-NIS (Fig. 4A).  

 

 

Fig. 4: Analysis of human NIS mRNA expression in Neuro2A tumors and non-target organs by qPCR. A 
significant level of NIS mRNA expression was induced in Neuro2A tumors after systemic NIS gene transfer 
with or without sodium-perchlorate pretreatment. Only a low background level of NIS mRNA expression was 
detected in untreated tumors, which was set as 1 arbitrary unit. Moreover, no significant NIS expression above 
background level was found in tumors after application of G2-HD-OEI/antisense-NIS or non-target organs, 
like liver and lung. Results were reported as NIS/GAPDH ratios. 
 

Analysis of NIS protein expression in Neuro2A tumors 

 Immunohistochemical analysis of Neuro2A tumors using a mouse monoclonal NIS-

specific antibody revealed a heterogeneous staining pattern with clusters of primarily 

membrane-associated NIS-specific immunoreactivity in tumors after systemic application of 

G2-HD-OEI/NIS (Fig. 4B, left, white arrows). In contrast, tumors treated with G2-HD-

OEI/antisense-NIS (Fig. 4B, right) or untreated tumors showed no NIS-specific 
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immunoreactivity. Parallel control slides with the primary and secondary antibodies 

replaced in turn by PBS and isotype-matched non immune immunoglobulin were negative 

(data not shown).  

 

Fig. 4: Immunohistochemical staining of Neuro2A tumors 24 h after G2-HD-OEI/NIS application showed 
clusters of primarily membrane-associated NIS-specific immunoreactivity (left). In contrast, Neuro2A tumors 
treated with the control plasmid (G2-HD-OEI/antisense-NIS) did not reveal NIS-specific immunoreactivity 
(right). Magnification: 320x 
 

Radioiodine therapy studies after in vivo NIS gene transfer 

 24 h after systemic administration of G2-HD-OEI/NIS or G2-HD-OEI/antisense-NIS 

polyplexes, a therapeutic dose of 55.5 MBq (1.5 mCi) 131I or saline was injected i. p. This 

cycle consisting of systemic NIS gene transfer followed by radioiodine or saline 

administration was repeated once on day 3 and 4 (Fig. 5A). As an additional control, tumor 

growth of mice injected with saline only was assessed (n=6). 

 Mice treated with G2-HD-OEI/NIS or G2-HD-OEI/antisense-NIS followed by 

application of saline and mice treated with G2-HD-OEI/antisense-NIS followed by 

application of 131I as well as saline treated mice showed an exponential tumor growth. In 

contrast, NIS-transduced (G2-HD-OEI/NIS) and 131I-treated tumors showed a significant 

delay in tumor growth (Fig. 5A). While all mice in the control groups had to be killed within 

two weeks after the onset of the experiments due to excessive tumor growth, 70 % of the 

mice treated with 131I after injection of G2-HD-OEI/NIS survived approx. four weeks (Fig. 

5B). Importantly, none of these mice showed major adverse effects of radionuclide or 

polyplex treatment in terms of lethargy or respiratory failure. However, a minor body 

weight loss of 3-5% was observed in mice after systemic administration of polyplexes. 
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Fig 5: Radioiodine treatment of Neuro2A tumors after systemic polyplex-mediated NIS gene transfer in vivo. 
24 h after i. v. polyplex injection (big arrow), 55.5 MBq 131I was injected i.p. (small arrow). This treatment 
cycle was repeated once on day 3 and 4. 131I therapy after systemic G2-HD-OEI/NIS application resulted in a 
significant delay in tumor growth (A, **p<0.01) which was associated with markedly improved survival (B, 
Kaplan-Meier-plot (**p<0.01)) as compared to the control groups that were injected with saline only, with G2-
HD-OEI/NIS followed by saline application, or with G2-HD-OEI/antisense-NIS followed by saline or 131I 
application. 
 

Immunofluorescence analysis 

 Three to four weeks after treatment, mice were sacrificed, tumors were dissected and 

processed for immunofluorescence analysis. Immunofluorescence analysis using a Ki67-

specific antibody (green) and an antibody against CD31 (red, labeling blood vessels) 

showed striking differences between NIS-transduced (Fig. 6A) and mock-transduced 131I-

treated tumors (Fig. 6B). As compared to mock-transduced tumors (G2-HD-OEI/antisense-

NIS), NIS-transduced tumors (G2-HD-OEI/NIS) exhibited a significantly lower 

intratumoral blood vessel density and proliferation index after 131I therapy.  
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Fig. 6: Immunofluorescence analysis using a Ki67-specific antibody (green) and an antibody against CD31 
(red, labelling blood vessels) showed significantly decreased proliferation and blood vessel density in NIS-
transduced tumors (A) following 131I treatment as compared to mock-transduced tumors (B). Slides were 
counterstained with DAPI nuclear stain. Magnification 100x 
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Discussion 

 As one of the oldest and most successful targets of molecular imaging and therapy, 

cloning and characterization of NIS has provided us with a powerful new reporter and 

therapy gene, that allowed the development of a promising cytoreductive gene therapy 

strategy based on NIS gene transfer in extrathyroidal tumors followed by targeted 

radionuclide therapy (Spitzweg et al., 2001c). Many of the characteristics of NIS, which 

have been confirmed by our work to date, suggest that it represents an ideal therapy gene 

due to several advantages. NIS as a normal human gene and protein implies that its 

expression in cancer cells is unlikely to be toxic or to elicit a significant immune response 

that could limit its efficacy. In addition, NIS gene therapy is associated with a substantial 

bystander effect based on the crossfire effect of the beta-emitter 131I with a path length of up 

to 2.4 mm. A bystander effect is desirable for any kind of gene therapy strategy, because it 

reduces the level of transduction efficiency required for a therapeutic response (Dingli et al., 

2003b). In its dual role as reporter and therapy gene NIS allows direct, non-invasive 

imaging of functional NIS expression by 123I-scintigraphy and 124I-PET-imaging, as well as 

exact dosimetric calculations before proceeding to therapeutic application of 131I (Spitzweg 

and Morris, 2002b; Dingli et al., 2003b). Moreover, NIS is already being used clinically as 

molecular basis of 131I therapy, an already approved anticancer therapy in thyroid cancer 

with a well-understood therapeutic window and safety profile (Spitzweg et al., 2001c).  

 The capacity of the NIS gene to induce radioiodine accumulation in non-thyroidal 

tumors has been investigated in a variety of tumor models by several groups including our 

own (Spitzweg et al., 1999c; Spitzweg et al., 2000b; Spitzweg et al., 2001a; Dohan et al., 

2003; Kakinuma et al., 2003; Cengic et al., 2005; Scholz et al., 2005; Spitzweg et al., 2007; 

Willhauck et al., 2007; Willhauck et al., 2008a; Willhauck et al., 2008b). In our initial 

studies in the prostate cancer model we used the prostate-specific antigen (PSA) promoter to 

achieve prostate-specific iodide accumulation, which resulted in a significant therapeutic 

effect after application of 131I, and alternative radionuclides such as 188Re and 211At even in 

the absence of iodide organification (Spitzweg et al., 1999c; Spitzweg et al., 2000b; 

Spitzweg et al., 2003; Scholz et al., 2004; Willhauck et al., 2007; Willhauck et al., 2008a). 

Taken together, our pioneer work in the prostate cancer model and consecutive work in 

other tumor models, such as medullary thyroid, colon and hepatocellular cancer (Cengic et 

al., 2005; Scholz et al., 2005; Spitzweg et al., 2007; Willhauck et al., 2008b) has 

convincingly demonstrated the enormous potential of NIS as novel reporter and therapy 
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gene. Based on our promising preliminary work and the proof-of-principle of tumor-specific 

NIS gene therapy in prostate cancer including extensive toxicity studies, a first phase I 

clinical trial was approved at the Mayo Clinic for radioiodine therapy of locally recurrent 

prostate cancer after local adenoviral NIS gene transfer (Dwyer et al., 2005b). One of the 

major hurdles on the way to efficient and safe application of the NIS gene therapy concept 

in the clinical setting, in particular in metastatic disease, is optimal tumor-specific targeting 

in the presence of low toxicity and high transduction efficiency of gene delivery vectors, 

with the ultimate goal of systemic vector application. Only a limited number of studies have 

investigated systemic NIS gene delivery approaches with the aim of NIS-targeted 

radionuclide therapy of metastatic disease. An oncolytic measles virus encoding human NIS 

was applied systemically in a multiple myeloma mouse model and allowed to enhance the 

oncolytic potency of the virus after 131I application (Dingli et al., 2004). In a more recent 

study, an oncolytic vesicular stomatitis virus was designed to express NIS to be able to 

monitor virus replication by 123I scintigraphic imaging in addition to stimulation of the 

oncolytic potency by the combination with 131I therapy, which was successfully investigated 

in a multiple myeloma mouse model after systemic vesicular stomatitis virus application 

(Goel et al., 2007). 

 In the current study we have utilized a non-viral gene delivery system for tumor-

targeted NIS gene transfer in the neuroblastoma mouse model Neuro2A. The syngeneic 

Neuro2A mouse model develops well vascularized tumors with leaky vasculature thereby 

allowing intratumoral accumulation of polyplexes with subsequent diffusion from the blood 

vessel into the tumor tissue (Smrekar et al., 2003). Similar effects were observed with 

hepatoma models like the human xenografts HepG2 and HuH7, while other xenograft 

models such as the A549 lung carcinoma model were less susceptible to polyplex-mediated 

gene delivery (Smrekar et al., 2003). Branched polycations based on oligoethylenimine 

(OEI)-grafted polypropylenimine dendrimers (G2-HD-OEI) have recently been 

characterized as biodegradable synthetic gene delivery vectors with high in vivo 

transduction efficiency and remarkable intrinsic tumor affinity in the presence of low 

toxicity (Russ et al., 2008a). G2-HD-OEI complexed with the human NIS cDNA under the 

control of the unspecific CMV promoter revealed high transfection efficiency in vitro 

resulting in a 51-fold increase in iodide uptake activity in Neuro2A cells at an optimal 

polymer to plasmid w/w ratio of 2 that provided highest transfection efficiency at low 

cytotoxicity. Following systemic application of NIS-conjugated G2-HD-OEI via the tail 

vein in vivo, 85% of Neuro2A tumors in a syngeneic mouse model showed tumor-specific 
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123I accumulation with approximately 8-13 % ID/g, a biological half-life of 13 h and a 

calculated effective half-life of 12 h for 131I. In contrast, mice pretreated with the 

competitive NIS-inhibitor sodium-perchlorate or mice injected with control vectors showed 

no tumoral iodide uptake, confirming that the observed radioiodine accumulation in the 

tumors was mediated by functional NIS expression. These data are consistent with a 

recently published study by Chisholm et al., demonstrating tumor-specific targeting of NIS 

in various xenograft tumor mouse models by nano-SPECT/computer tomography imaging 

of radioiodine biodistribution using polypropylenimine dendrimers for systemic NIS gene 

delivery (Chisholm et al., 2009). 

 In addition, in our study in vivo 123I scintigraphic imaging studies were confirmed by 

ex vivo biodistribution experiments revealing significant tumoral radioiodine accumulation, 

while no iodide uptake was measured in non target organs, like lung, liver, spleen or 

kidneys. Tumoral NIS expression was further confirmed by real time q-PCR as well as NIS-

specific immunoreactivity, which was primarily membrane-associated and occured in 

clusters. The patchy staining pattern nicely correlates with experiments using PEI-based 

polyplexes carrying the beta-galactosidase reporter gene, in which a heterogeneous and 

patchy distribution of transgene activity in transduced tumors was observed (Kircheis et al., 

2001b). These data are also consistent with previously reported studies using luciferase as 

reporter gene for the evaluation of transduction efficiency and tumor specificity of various 

oligoethylenimine acrylate ester-based pseudodendrimers including G2-HD-OEI. After 

systemic polyplex application high luciferase activity was found selectively in tumor tissue, 

while no significant expression was detected in non-target organs concomitant with absent 

or low toxicity (Russ et al., 2008a; Russ et al., 2008). In contrast, when standard LPEI were 

used as gene delivery vectors, high luciferase activity was observed in the lung and acute or 

long-term toxic effects were observed (Goula et al., 1998; Chollet et al., 2002; Russ et al., 

2008). In our study, even after repeated injection of G2-HD-OEI followed by administration 

of 131I no major side effects occured. Data from previous studies suggest that polyplexes 

formed with branched structures like G2-HD-OEI do not show pronounced aggregation with 

erythrocytes that usually results in high transgene expression in the first vascular bed 

encountered, namely the lung. Consequently such polymers are able to deliver the nucleic 

acid payload toward the tumor site, most probably due to passive tumor targeting, that 

occurs due to the imperfect and leaky tumor vasculature combined with an inadequate 

lymphatic drainage (Maeda, 2001).  
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 In our mouse studies 123I uptake of 40 % ID was detected in the thyroid gland and 39 

% ID in the stomach 2h after 123I injection, resulting from endogenous NIS expression in 

thyroid and stomach, which has been described by several groups including our own 

(Spitzweg and Morris, 2002b). However, in the current study, 123I uptake in the stomach 

was significantly higher than that expected in humans, which may be the result of increased 

NIS expression in the murine gastric mucosa and may also be caused by pooling of gastric 

juices as mice were anaesthetized for prolonged period for serial imaging. In addition, due 

to exquisite regulation of thyroidal NIS expression by TSH, 123I accumulation in the thyroid 

gland can effectively be down regulated by thyroid hormone treatment as shown in humans 

(Wapnir et al., 2004).  

 Most importantly, systemic polyplex-mediated NIS gene transfer resulted in tumor-

specific iodide uptake activity in Neuro2A tumor bearing mice which was sufficiently high 

for a significant therapeutic effect of 131I. After two cycles of systemic polyplex application 

followed by 131I injection tumor-bearing mice showed a significant delay of tumor growth 

associated with a significantly prolonged survival. In addition, immunofluorescence analysis 

showed markedly reduced proliferation associated with decreased blood vessels density 

inside and surrounding the tumor after systemic polyplex-mediated NIS gene transfer 

followed by 131I application, suggesting radiation-induced tumor stroma cell damage in 

addition to tumor cell death. The crossfire effect of 131I with a maximum path length of up 

to 2.4 mm might be responsible for stromal cell damage leading to reduced angiogenesis 

and secretion of growth-stimulatory factors, thereby enhancing therapeutic efficacy.  

 Following polyplex-mediated systemic NIS gene delivery, therapeutic efficacy of 

NIS-targeted radionuclide therapy could be further stimulated by application of alternative 

radionuclides, such as the beta-emitter 188Re or the alpha-emitter 211At. Both are known to 

be also transported by NIS, but offer the possibility of higher energy deposition in a shorter 

time period due to their higher energy and shorter half-lifes. This has convincingly been 

demonstrated by several groups, including our own studies in the prostate cancer model 

described above (Dadachova et al., 2002; Petrich et al., 2006). In view of the patchy and 

heterogeneous expression pattern of NIS protein expression after polyplex-mediated 

systemic NIS gene transfer, 188Re might be a promising alternative radionuclide due to the 

longer path length of the beta particles (mean range 3.1 mm, maximum range 10.4 mm) and 

therefore superior crossfire effect, which will be addressed in future studies. 

 Moreover, tumor-specific targeting could be enhanced by coupling of tumor-

targeting ligands, such as the serum glycoprotein transferrin (Tf) or epidermal growth factor 
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(EGF) (Kircheis et al., 2001a; De Bruin et al., 2007), and further optimized by application 

of tumor-specific promoters as shown in our earlier work (Spitzweg et al., 1999c; Spitzweg 

et al., 2000b; Kakinuma et al., 2003; Cengic et al., 2005; Scholz et al., 2005; Spitzweg et 

al., 2007; Willhauck et al., 2008b).  

 In conclusion, our data clearly demonstrate the high potential of branched 

polycations based on oligoethylenimine (OEI)-grafted polypropylenimine dendrimers for 

tumor-specific delivery of the NIS gene after systemic application. Based on the role of NIS 

as a potent and well characterized reporter gene allowing non-invasive imaging of 

functional NIS expression by 123I-scintigraphy and 124I-PET imaging, this study allowed 

detailed characterization of in vivo biodistribution of polyplex-mediated functional NIS 

expression by gamma camera imaging, which is an essential prerequisite for exact planning 

and monitoring of clinical gene therapy trials with the aim of individualization of the NIS 

gene therapy concept in the clinical setting. Tumor-specific iodide accumulation was further 

demonstrated to be sufficiently high for a significant delay of tumor growth associated with 

increased survival in syngeneic mice bearing neuroblastoma tumors after two cycles of NIS-

polyplex application followed by 131I therapy. This study therefore opens the exciting 

prospect of NIS-targeted radionuclide therapy of metastatic cancer using polyplexes based 

on biodegradable polymers for systemic NIS gene delivery. 
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Abstract 

We evaluated the therapeutic concept of tumor-selective radioiodine therapy 

following systemic nonviral delivery of the sodium iodide symporter (NIS) gene in a 

clinically important tumor model of human hepatocellular cancer (HCC). Incubation with 

synthetic gene delivery vectors (polyplexes), in which a NIS expressing plasmid was 

condensed with pseudodendritic oligoamines (G2-HD-OEI polymer), resulted in a 44-fold 

increase of perchlorate-sensitive iodide uptake in HCC cells in vitro as compared to mock-

transduced cells. Polyplexes were injected via the tail vein in a HCC xenograft mouse model 

followed by analysis of radioiodine distribution after i.p. injection of 123I using γ-camera or 

SPECT-CT imaging. After systemic NIS gene delivery HCC tumors accumulated 6 - 11% 

ID/g 123I with an effective half-life of 10 h for131I resulting in a tumor absorbed dose of 281 

mGy/MBq, while tumors transduced with control vectors showed no iodide uptake. After 2 

cycles of polymer application followed by 131I application, a significant delay in tumor 

growth was observed associated with markedly improved survival. 

These results clearly demonstrate that systemic NIS gene transfer using novel biodegradable 

non-viral gene carriers is capable of inducing tumor-targeted radioiodine uptake in a liver 

cancer model, which therefore represents a promising innovative strategy for NIS-mediated 

radioiodine therapy of advanced HCC. 
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Introduction 

Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide and 

third most common cause of cancer mortality (Shariff et al., 2009). Due to limited response 

to conventional chemo- or radiotherapy, surgery, including partial hepatectomy or liver 

transplantation, is currently the only potentially curative therapy available for patients with 

resectable disease. Despite a variety of alternative therapeutic options, including locally 

ablative therapies, such as radiofrequency thermal ablation and chemoembolization, the 

prognosis for advanced HCC has remained poor. Thus, in addition to novel strategies for 

early diagnosis, new therapeutic strategies have to be explored, such as multikinase 

inhibitors, immunotherapy, as well as gene therapy (Gerolami et al., 2003).  

 In order to investigate an innovative, alternative therapeutic approach, in an earlier 

study we examined the feasibility of 131I therapy of HCC following stable transfection with 

the sodium iodide symporter (NIS) using a mouse alpha-fetoprotein (AFP) promoter 

construct to target NIS expression to HCC cells (Willhauck et al., 2008b). NIS is a 

transmemebrane glycoprotein that mediates the uptake of iodide into thyroid follicular cells 

(Dai et al., 1996; Smanik et al., 1996). The presence of NIS at the basolateral membrane of 

thyroid follicular cells has been exploited for many years for diagnostic imaging purposes as 

well as for ablative therapy of differentiated thyroid cancer using radioactive iodide (131I). 

This non-invasive therapy has proven to be a safe and effective treatment for thyroid cancer, 

even in advanced metastatic disease (Van Nostrand and Wartofsky, 2007). In order to 

extend the use of NIS-mediated radioiodine therapy to other types of cancer, we have 

proven the feasibility of extrathyroidal radioiodine therapy after induction of iodide uptake 

by ex vivo NIS transfection or local adenoviral in vivo NIS gene transfer using tissue-

specific promoters, such as the prostate-specific antigen (PSA) promoter, the 

carcinoembryonic antigen (CEA) promoter and the calcitonin promoter to specifically target 

NIS expression to prostate, colon and medullary thyroid cancer, respectively (Spitzweg et 

al., 1999c; Spitzweg et al., 2000b; Spitzweg et al., 2001a; Cengic et al., 2005; Scholz et al., 

2005; Spitzweg et al., 2007; Willhauck et al., 2007; Willhauck et al., 2008a). In the liver 

cancer model we applied the AFP promoter for HCC-specific delivery of the NIS gene and 

demonstrated tumor-specific iodide uptake activity that allowed a therapeutic effect of 131I 

in a HCC xenograft mouse model (Willhauck et al., 2008b).  

After the proof of principle of the NIS gene therapy concept in liver cancer in our 

study outlined above and by other investigators after retroviral or local/regional adenoviral 
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NIS gene delivery (Faivre et al., 2004; Chen et al., 2006; Herve et al., 2008), the next 

crucial step towards clinical application has to be the evaluation of gene delivery vehicles 

that allow tumor-selective transgene expression in the presence of a sufficiently high 

transduction efficiency after systemic application to be able to reach disseminated tumor 

manifestations. In the evaluation of systemic application of gene delivery vectors, the dual 

function of NIS as therapy and reporter gene provides the advantage of detailed 

characterization and direct monitoring of in vivo vector biodistribution as well as 

localization, level and duration of transgene expression, which have been recognized as 

critical elements in the design of clinical gene therapy trials (Spitzweg and Morris, 2002b; 

Dingli et al., 2003b; Baril et al., 2010). Several research groups, including our own have 

demonstrated the potential of NIS as reporter gene in various applications, showing that in 

vivo imaging of radioiodine accumulation by 123I- or 99mTc-scintigraphy as well as 123I-

SPECT-CT fusion or 124I-PET imaging correlates well with the results of ex vivo gamma 

counter measurements as well as NIS mRNA and protein analysis. In addition, SPECT-CT 

imaging using 123I provides significant advantages for exact localization and quantitative 

analysis of NIS-mediated radioiodine accumulation due to enhanced resolution and 

sensitivity (Spitzweg et al., 1999c; Spitzweg et al., 2000b; Spitzweg et al., 2001a; Dingli et 

al., 2003b; Groot-Wassink et al., 2004; Dwyer et al., 2005a; Blechacz et al., 2006; Carlson 

et al., 2006; Goel et al., 2007; Merron et al., 2007; Spitzweg et al., 2007; Willhauck et al., 

2007; Willhauck et al., 2008a; Willhauck et al., 2008b; Willhauck et al., 2008c; Carlson et 

al., 2009; Klutz et al., 2009; Baril et al., 2010; Li et al., 2010; Penheiter et al., 2010; 

Trujillo  et al., 2010; Watanabe et al., 2010). 

With the aim of systemic delivery of therapeutic genes, we have developed a series 

of biodegradable synthetic vectors based on low molecular weight polycations crosslinked 

either via ester or disulfide bonds (Kloeckner et al., 2006b; Russ et al., 2008a; Russ et al., 

2008), demonstrating very promising toxicity profiles and similar or even superior 

transfection efficiency in comparison with LPEI (linear polyethylenimine), the golden 

standard of PEI-based gene carriers (Russ et al., 2008). In a recent study, we have 

demonstrated the high potential of synthetic, biodegradable polymeric vectors based on 

pseudodendritic oligoethylenimine (OEI)-grafted polypropylenimine dendrimers (G2-HD-

OEI) with high intrinsic tumor affinity for tumor-specific delivery of the NIS gene. After 

intravenous application of NIS-conjugated polyplexes in a syngeneic neuroblastoma mouse 

model NIS-mediated radioiodine accumulation was mainly restricted to the tumor and 
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sufficiently high for a significant delay of tumor growth associated with improved survival 

(Klutz et al., 2009). 

Here we apply this concept of NIS gene delivery with biodegradable OEI-grafted 

polypropylenimine dendrimers in a human HCC xenograft mouse model. Based on its dual 

function as reporter and therapy gene, NIS was used for non-invasive imaging of vector 

biodistribution by 123I-scintigraphy and 123I-single photon emission computed tomography-

computed tomography (SPECT-CT) imaging followed by assessment of the therapy 

response after application of 131I.  
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Materials and Methods  

Cell culture 

 The human hepatoma cell line (HuH7, JCRB 0403) was cultured in DMEM/F12 

medium (Invitrogen Life Technologies Inc., Karlsruhe, Germany) supplemented with 10% 

fetal bovine serum (v/v) (PAA; Colbe, Germany), 5% L-glutamine (Invitrogen Life 

Technologies Inc.) and 1% penicillin/streptomycin. Cells were maintained at 37°C and 5% 

CO2 in an incubator with 95% humidity. The cell culture medium was replaced every other 

day and cells were passaged at 85% confluency. 

 

Plasmids and polymers 

 The expression vector CMV-NIS-pcDNA3 (pCMV-NIS) containing the full-length 

NIS cDNA coupled to the CMV promoter was kindly provided by Dr. S. M. Jhiang, Ohio 

State Univesity, Columbus, OH, USA. As a control, NIS cDNA was removed using EcoRI 

and re-ligated into the same expression vector in antisense direction (pCMV-antisense-NIS). 

 G2-HD-OEI was synthesized as described previously (Russ et al., 2008a) and used 

as a 5 mg/ml stock solution.  

 

Polyplex formation 

 Plasmid DNA was condensed with polymers at indicated conjugate/plasmid (c/p) - 

ratios (w/w) in HEPES buffered glucose (HBG: 20 mM HEPES, 5% glucose (w/v), pH 7.4) 

and incubated at room temperature for 20 min. prior to use as described previously (Russ, 

2008). Final DNA concentrations of polyplexes for in vitro studies were 4 µg/ml, for in vivo 

studies 200 µg/ml.  

 

Transient transfection 

 For in vitro transfection experiments, HuH7 cells were grown to 60 - 80% 

confluency. Cells were incubated for 4 h with polyplexes in the absence of serum and 

antibiotics followed by incubation with growth medium for 24 h. Transfection efficiency 

was evaluated by measurement of iodide uptake activity as described below.  
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125I uptake assay 

 Following transfections, iodide uptake of HuH7 cells was determined at steady-state 

conditions as described previously (Spitzweg et al., 1999c). Results were normalized to cell 

survival measured by cell viability assay (see below) and expressed as cpm/A490 nm. 

 

Cell viability assay 

 Cell viability was measured using the commercially available MTS-assay (Promega 

Corp., Mannheim, Germany) according to the manufacturer´s recommendations as 

described previously (Willhauck et al., 2007). 

 

Establishment of HuH7 xenografts 

 HuH7 xenografts were established in female CD-1 nu/nu mice (Charles River, 

Sulzfeld, Germany) by subcutaneous injection of 5 x 106 HuH7 cells suspended in 100 µl 

PBS into the flank region. Animals were maintained under specific pathogen-free conditions 

with access to mouse chow and water ad libitum. The experimental protocol was approved 

by the regional governmental commission for animals (Regierung von Oberbayern). 

 

NIS gene transfer and radiodine biodistribution studies in vivo 

 Experiments started when tumors had reached a tumor size of 8 - 10 mm and after a 

10-day pretreatment with L-T4 (l-thyroxine, Henning, Sanofi-Aventis, Frankfurt, Germany) 

(5 mg/l) in their drinking water to maximize radioiodine uptake in the tumor and reduce 

iodide uptake by the thyroid gland. For systemic in vivo gene transfer polyplexes (c/p 2) 

were applied via the tail vein at a DNA dose of 2.5 mg/kg (i.e. for a 20 g mouse 250 µl 

polyplex in HBG at 200 µg/ml DNA), either NIS containing polyplexes (G2-HD-OEI/NIS) 

or polyplexes with the control vector (G2-HD-OEI/antisense-NIS). Two groups of mice 

were established and treated as follows: (1) i.v. injection of G2-HD-OEI/NIS (n=24); (2) i.v. 

injection of G2-HD-OEI/antisense-NIS (control vector) (n=9). As an additional control, in 

mice treated with G2-HD-OEI/NIS (n=9) the specific NIS-inhibitor sodium-perchlorate 

(NaClO4, 2 mg/per mouse) was injected i.p. 30 min. prior to 123I administration. 24 h after 

polyplex application, mice were injected i.p. with 18.5 MBq (0.5 mCi) 123I, and radioiodine 

biodistribution was monitored by serial imaging on a gamma camera (Ecam, Siemens, 

Germany) equipped with a UXHR (Ultra Extra High Resolution) collimator (123I) as 

described previously (Willhauck et al., 2007). Regions of interest were quantified and 

expressed as a fraction of the total amount of applied radioiodine per gram tumor tissue. The 
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retention time within the tumor was determined by serial scanning after radioiodine 

injection, and dosimetric calculations were performed according to the concept of MIRD, 

with the dosis factor of RADAR-group (www.doseinfo-radar.com). 

 

SPECT-CT imaging 

 For SPECT-CT imaging the same groups of mice were prepared as outlined above 

and 24 h after polyplex application. Mice were injected i.p. with 50 MBq (1. 35 mCi) 123I, 

followed by monitoring of radioiodine biodistribution by serial imaging (1, 3, 5 h after 123I 

application) on a NanoSPECT/CT (Mediso Ltd., Hungary), CT scans were taken covering 

the same FOV as the SPECT scans. Total scan time was between 30 and 40 minutes, with 

48 projections and a scan time of 20 seconds per projection in the case of the SPECT scans. 

 The SPECT component of the NanoSPECT/CT uses 4 detector heads, each 

comprising a NaI(TI) crystal with a size of 262 mm x 255 mm x 6.35 mm. It gives an axial 

field of view of 20 mm and, with the medium-resolution aperture/collimator (9 pinholes per 

head) that was used in this study, has a spatial resolution of about 1.2 mm. The CT 

component employs a continuously operating miniature micro focus x-ray tube with a 

maximum anode current of less than 0.2 mA. The detector has an active area of 98.6 mm x 

49.2 mm and consists of 1024 x 2048 pixels. It provides an axial field of view of 45 mm and 

a maximum spatial resolution of 48 microns. 

 

Analysis of radioiodine biodistribution ex vivo 

 For ex vivo biodistribution studies, mice were injected with G2-HD-OEI/NIS (n = 

24) or G2-HD-OEI/antisense-NIS (n = 9) as described above followed by i.p. injection of 

18.5 MBq 123I 24 h later. A subgroup of NIS-transduced mice (n = 9) was treated with 

sodium-perchlorate prior to 123I administration as an additional control. Two, 6 and 12 h 

after 123I injection, mice were sacrificed and tumors as well as organs of interest were 

dissected, weighed and radioiodine uptake was measured using a gamma counter (5 NIS-

transduced animals per time point (G2-HD-OEI/NIS) and 3 mice of each control). Results 

were reported as percentage of injected dose per organ (% ID/organ). 

 

Analysis of NIS mRNA expression using quantitative real-time PCR 

 Total RNA was isolated from HuH7 tumors or other tissues using the RNAeasy Mini 

Kit (Qiagen, Hilden, Germany) according to the manufacturer`s recommendations and 
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quantitative real-time PCR (qPCR) was performed as described previously (Klutz et al., 

2009). 

Immunohistochemical analysis of NIS protein expression 

 Immunohistochemical staining of frozen tissue sections derived from HuH7 tumors 

after systemic NIS gene delivery was performed using a mouse monoclonal antibody 

directed against amino acid residues 468-643 of human NIS (kindly provided by John C. 

Morris, Mayo Clinic, Rochester, MN, USA) as described previously (Spitzweg et al., 2007). 

 

Radioiodine therapy study in vivo 

 Following a 10-day L-T4 pretreatment as described above, two groups of mice were 

established receiving 55.5 MBq 131I as a single i.p. injection 24 h after systemic application 

of G2-HD-OEI/NIS (n = 6) or G2-HD-OEI/antisense-NIS (n = 6), respectively. As control, 

two further groups of mice were treated with saline instead of 131I after injection of either 

G2-HD-OEI/NIS (n = 6) or G2-HD-OEI/antisense-NIS (n = 6). An additional control group 

was treated with saline only (n = 6). The treatment consisting of systemic polyplex 

application followed by 131I or saline application after 24 h was repeated once on days seven 

and eight. Tumor sizes were measured before treatment and daily thereafter for up to 30 

days. Tumor volume was estimated using the equation: tumor volume = length x width x 

height x 0.52.  

 

Indirect immunofluorescence assay 

 Indirect immunofluorescence staining was performed on frozen tissues using an 

antibody against human Ki67 (Abcam, Cambridge, UK) and an antibody against mouse 

CD31 (BD, Pharmingen, New Jersey, USA) as described previously (Willhauck et al., 

2007). 

 

Statistical methods 

 All in vitro experiments were carried out in triplicates. Results are represented as 

mean +/- SD of triplicates. Statistical significance was tested using Student´s t test. 
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Results 

Iodide uptake studies in vitro 

 Transfection conditions using G2-HD-OEI/NIS were optimized in HuH7 cells by 

measurement of perchlorate-sensitive iodide uptake activity 24 h following polyplex 

application (data not shown). We found an optimal c/p ratio of 2, which resulted in highest 

transfection efficiency at low cytotoxicity. This ratio was used in all subsequent 

experiments. 24 h after transfection with G2-HD-OEI/NIS, HuH7 cells showed a 44-fold 

increase in 125I accumulation as compared to cells incubated with empty G2-HD-OEI (Fig. 

1). Furthermore, no perchlorate-sensitive iodide uptake above background levels was 

observed in cells transfected with the control vector G2-HD-OEI/antisense-NIS. Polyplex-

mediated NIS gene transfer did not alter cell viability as measured by MTS-assay (Fig. 1). 

 

 
Fig. 1: Iodide uptake was measured in HuH7 cells following in vitro transfection with G2-HD-OEI/NIS, 
control vector G2-HD-OEI/antisense-NIS, or with G2-HD-OEI alone. HuH7 cells transfected with G2-HD-
OEI/NIS showed a 44-fold increase in perchlorate-sensitive 125I accumulation. In contrast, no perchlorate-
sensitive iodide uptake above background level was observed in cells transfected with control vector or 
without DNA (***p <0.001). 
 

In vivo radioiodine biodistribution studies 

 To investigate the iodide uptake activity in HuH7 xenografts after systemic in vivo 

NIS gene transfer, 123I distribution was monitored in tumor bearing mice 24 h after G2-HD-

OEI/DNA administration by gamma camera imaging. While no radioiodine accumulation 

was detected in tumors after application of G2-HD-OEI/antisense-NIS (Fig. 2C), significant 

radioiodine uptake was observed in 80% (12 out of 15) of HuH7 tumors following systemic 

injection of G2-HD-OEI/NIS (Fig. 2A), in addition to physiological radioiodine 
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accumulation in thyroid, stomach and bladder (Fig. 2A, C). As determined by serial 

scanning, 6 - 11% ID/g 123I (percentage of the injected dose per gram tumor tissue) was 

accumulated in NIS-transduced xenograft tumors with a biological half-life of 11 h. 

Considering a tumor mass of 1 g and an effective half-life of 10 h for 131I, a tumor-absorbed 

dose of 281 mGy/MBq 131I was calculated (Fig. 2D). To confirm that tumoral radioiodine 

uptake was indeed NIS-mediated, a subset of G2-HD-OEI/NIS injected mice (n = 9) 

received sodium-perchlorate 30 min prior to radioiodine administration. In all experiments a 

single injection of 2 mg sodium-perchlorate completely blocked tumoral radioiodine 

accumulation in addition to abolished physiological iodide uptake in stomach and thyroid 

gland (Fig. 2B). Moreover, no significant radioiodine uptake was observed in non-target 

organs, including lungs, liver, kidney or spleen, which confirms tumor-specificity of 

nanoparticle-mediated NIS gene delivery. 

 

 

 

Fig. 2: 123I scans of nude mice harbouring HuH7 tumors 4 h following i.p. injection of 18.5 MBq 123I after G2-
HD-OEI-mediated NIS gene delivery (A). While mice treated with control vectors (G2-HD-OEI/antisense-
NIS) showed no tumoral radioiodine uptake (C), treatment with G2-HD-OEI/NIS induced significant tumor-
specific iodide accumulation in HuH7 tumors with accumulation of 6 - 11% ID/g 123I (A), which was 
completely abolished upon pretreatment with NaClO4 (B). Radioiodine was also accumulated physiologically 
in thyroid, stomach and bladder (A, C). 
Time course of 123I accumulation in HuH7 tumors after systemic polyplex-mediated NIS gene delivery 
followed by injection of 18.5 MBq 123I as determined by serial scanning using 123I-scintigraphy (D). Maximum 
tumoral radioiodine uptake was 6 - 11% ID/g for 123I with an average effective T1/2 of 10 h for 131I. 
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In a subset of mice, radioiodine biodistribution was also monitored using 123I 

SPECT-CT imaging after i.p. injection of 50 MBq 123I (Fig. 3). Tumor-selective iodide 

accumulation was confirmed following systemic G2-HD-OEI/NIS application (Fig. 3A, B). 

SPECT-CT imaging allowed a more detailed three-dimensional analysis of tumoral iodide 

accumulation revealing inhomogeneous iodide accumulation appearing as clusters of iodide 

uptake throughout the tumor. A maximum tumoral iodide uptake of approximately 7% ID/g 

was measured in mice after systemic application of G2-HD-OEI/NIS, as compared to the 

control groups injected with the control polyplexes G2-HD-OEI/antisense-NIS (2.5% ID/g) 

or after application of sodium-perchlorate (3.2% ID/g) (Fig. 3C).  

 In addition to tumoral iodide uptake, significant radioiodine accumulation was 

observed in tissues physiologically expressing NIS, including stomach and thyroid. In this 

context it is important to mention that the uptake in the stomach appears to be higher than 

usually seen in humans, which is most probably due to higher levels of NIS protein 

expression in murine gastric mucosa and pooling of gastric juices due to the anesthesia for a 

prolonged period during imaging procedure. In addition, due to exquisite regulation of 

thyroidal NIS expression by TSH, 123I accumulation in the thyroid gland can effectively be 

downregulated in patients by thyroid hormone pretreatment (Wapnir et al., 2004). 

 

 

 

Fig. 3: 123I SPECT/CT scan of tumor bearing nude mice after systemic NIS gene transfer 5 h following i.p. 
injection of 50 MBq 123I. Planar (A) and transversal (B) slides indicate tumor specific iodide accumulation. 
Time course of tumoral iodide accumulation 1, 3 and 5 h p.i. as determined by SPECT-CT scans (C). A 
maximum radioiodine uptake of 7% ID/g tumor was measured. 
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Ex vivo radioiodine biodistribution studies 

 Ex vivo biodistribution analysis confirmed significant iodide uptake in tumors 

following systemic NIS gene transfer (Fig. 4A-C). While NIS-transduced HuH7 tumors 

accumulated 6.6% ID/organ 123I 2 hours after radioiodine injection, mock-transduced 

tumors showed no significant radioiodine uptake. In both groups the thyroid gland and the 

stomach accumulated approx. 41% and 38% ID/organ (data not shown). Noteworthy, the 

average tumor weight in this experiment was approximately 0.9 g. Further, a single 

perchlorate injection prior to radioiodine application significantly blocked iodide uptake in 

NIS-transduced tumors and in physiologically NIS-expressing tissues, including thyroid and 

stomach, throughout the observation period up to 12 h. In addition, no significant 

radioiodine uptake above background levels was observed in non-target organs, including 

lung, liver, kidney or spleen confirming tumor-specificity of G2-HD-OEI (see also Fig. 2A, 

3A). 
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Fig. 4: Evaluation of iodide biodistribution ex vivo 2, 6 and 12 hours following injection of 18.5 MBq 123I. 
While tumors in NIS-transduced mice showed high perchlorate-sensitive iodide uptake activity (up to 4.7–
8.5% ID/organ), non-target organs revealed no significant radioiodine accumulation. No radioiodine 
accumulation was measured after injection of control vectors. Results were reported as percent of injected dose 
per organ ± SD.  
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Analysis of NIS mRNA expression by quantitative real-time PCR analysis 

 In order to assess NIS mRNA expression after systemic NIS gene transfer, mRNA of 

various tissues was extracted and analyzed by quantitative real-time PCR (qPCR) with a 

pair of NIS-specific oligonucleotide primers 24 h after NIS gene transfer (Fig. 5A). Only a 

low background level of NIS mRNA expression was detected in untreated tumors or tumors 

after application of G2-HD-OEI/antisense-NIS. In contrast, a significant level of NIS gene 

expression was induced in HuH7 tumors after systemic injection of G2-HD-OEI/NIS. As 

expected, administration of the competitive NIS inhibitor sodium-perchlorate had no 

influence on NIS mRNA expression in NIS-transduced tumors. Furthermore, no significant 

NIS mRNA expression above background levels was detected in non-target organs, like 

liver and lung after systemic application of G2-HD-OEI/NIS or G2-HD-OEI/antisense-NIS.  

 

 
Fig. 5: Analysis of human NIS mRNA expression in HuH7 tumors and non-target organs by qPCR. A 
significant level of NIS mRNA expression was induced in HuH7 tumors after systemic NIS gene transfer with 
or without sodium-perchlorate pretreatment. Only a low background level of NIS mRNA expression was 
detected in untreated tumors, which was set as 1 arbitrary unit. Moreover, no significant NIS expression above 
background level was found in tumors after application of G2-HD-OEI/antisense-NIS, or in non-target organs, 
like liver and lung. Results were reported as NIS/GAPDH ratios. 
 

Analysis of NIS protein expression in HuH7 xenografts 

 Immunohistochemical analysis of HuH7 tumors using a mouse monoclonal NIS-

specific antibody revealed a heterogeneous staining pattern with clusters of primarily 

membrane-associated NIS-specific immunoreactivity in tumors after systemic application of 

G2-HD-OEI/NIS (Fig. 5B, arrows). In contrast, tumors treated with G2-HD-OEI/antisense-

NIS (Fig. 5C) or untreated tumors (not shown) showed no NIS-specific immunoreactivity. 

Parallel control slides with the primary and secondary antibodies replaced in turn by PBS 

and isotype-matched non immune immunoglobulin were negative (data not shown).  
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Fig. 5: Immunohistochemical staining of HuH7 tumors 24 h after G2-HD-OEI/NIS application showed 
clusters of primarily membrane-associated NIS-specific immunoreactivity (B, arrows). In contrast, HuH7 
tumors treated with the control plasmid (G2-HD-OEI/antisense-arrows) did not reveal NIS-specific 
immunoreactivity (C). Magnification: 200x . 
 

Radioiodine therapy studies after in vivo NIS gene transfer 

 24 h after systemic administration of G2-HD-OEI/NIS or G2-HD-OEI/antisense-NIS 

polyplexes, a therapeutic dose of 55.5 MBq (1.5 mCi) 131I was injected i.p. As control saline 

was injected instead of radioiodine. This cycle consisting of systemic NIS gene transfer 

followed by radioiodine or saline administration was repeated once on days 7/8 (Fig. 6A). 

As an additional control, tumor growth of mice injected with saline only was assessed. 

 Mice treated with G2-HD-OEI/NIS or G2-HD-OEI/antisense-NIS followed by 

application of saline and mice treated with G2-HD-OEI/antisense-NIS followed by 

application of 131I as well as saline treated mice showed an exponential tumor growth. In 

contrast, NIS-transduced (G2-HD-OEI/NIS) and 131I-treated tumors showed a significant 

delay in tumor growth (Fig. 6A). While all mice in the control groups had to be killed within 

two weeks after the onset of the experiments due to excessive tumor growth, 100% of the 

mice treated with 131I after injection of G2-HD-OEI/NIS survived approx. three weeks and 

50% survived up to four weeks (Fig. 6B). Importantly, none of these mice showed major 

adverse effects of radionuclide or polyplex treatment in terms of lethargy or respiratory 

failure. However, a minor body weight loss of 3 - 5 % was observed in mice after systemic 

administration of polyplexes. 

 

 

 



Chapter 3 

 

 74 

 
Fig. 6: Radioiodine treatment of HuH7 tumors after systemic polyplex-mediated NIS gene transfer in vivo. 24 
h after i. v. polyplex injection (big arrow), 55.5 MBq 131I, or saline was injected i.p. (small arrow). This 
treatment cycle was repeated once on days 7 and 8. 131I therapy after systemic G2-HD-OEI/NIS application 
resulted in a significant delay in tumor growth (A, **p<0.01) which was associated with markedly improved 
survival (B, Kaplan-Meier-plot (**p<0.01)) as compared to the control groups that were injected with saline 
only, with G2-HD-OEI/NIS followed by saline application, or with G2-HD-OEI/antisense-NIS followed by 
saline or 131I. 

 

Immunofluorescence analysis 

 Three to four weeks after treatment, mice were sacrificed,  tumors were dissected 

and processed for immunofluorescence analysis. Immunofluorescence analysis using a 

Ki67-specific antibody (green) and an antibody against CD31 (red, labeling blood vessels) 

showed striking differences between NIS-transduced (Fig. 7A) and mock-transduced 131I-

treated tumors (Fig. 7B). As compared to mock-transduced tumors (G2-HD-OEI/antisense-

NIS), NIS-transduced tumors (G2-HD-OEI/NIS) exhibited a significantly lower 

intratumoral blood vessel density and proliferation index after 131I therapy.  
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Fig. 7: Immunofluorescence analysis using a Ki67-specific antibody (green) and an antibody against CD31 
(red, labelling blood vessels) showed significantly decreased proliferation and blood vessel density in NIS-
transduced tumors (A) following 131I treatment as compared to mock-transduced tumors (B). Slides were 
counterstained with DAPI nuclear stain. Magnification 100x 
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Discussion 

 In the present study we investigated the efficacy of synthetic nanoparticle vectors 

(G2-HD-OEI) to achieve tumor-selective NIS-mediated radioiodine accumulation in a HCC 

mouse model. After confirmation of high transduction efficiency in vitro, i.v. application of 

NIS-conjugated G2-HD-OEI in nude mice carrying HCC xenografts was demonstrated to 

result in tumor-selective radioiodine accumulation, which was high enough for a significant 

therapeutic effect after application of 131I. 

Thyroid cancer, even in advanced metastatic disease, can be effectively treated by 

radioiodine therapy, due to thyroidal expression of NIS (Dai et al., 1996; Smanik et al., 

1996; Spitzweg and Morris, 2002a). NIS expressing thyroid cancer metastases can be 

detected and treated by administration of radioiodine, while avoiding adverse effects of 

ionising radiation to other organs, which do not express NIS and thus do not concentrate 

radioiodine. NIS therefore represents one of the oldest and most successful targets for 

molecular imaging and targeted radionuclide therapy. Cloning and characterization of the 

NIS gene has therefore allowed the development of the NIS gene therapy concept based on 

NIS gene transfer into nonthyroidal tumor cells, followed by diagnostic and therapeutic 

application of radioiodine (Dai et al., 1996; Smanik et al., 1996; Hingorani et al., 2010a). 

One of the major challenges on the way to efficient application of the NIS gene therapy 

concept in the clinical setting of metastatic cancer is optimal tumor targeting in the presence 

of low toxicity and sufficiently high transduction efficiency after systemic administration of 

gene delivery vectors. Only a limited number of studies have investigated systemic NIS 

gene delivery approaches with the aim of NIS-targeted radionuclide therapy of metastatic 

disease using an oncolytic measles virus or vesicular stomatitis virus encoding human NIS 

in multiple myeloma mouse models (Dingli et al., 2004; Goel et al., 2007; Liu et al., 2010). 

In a recent study we have utilized a promising non-viral gene delivery system for tumor-

targeted NIS gene transfer in the syngeneic Neuro2A neuroblastoma mouse model. 

Branched polycations based on OEI-grafted polypropylenimine dendrimers (G2-HD-OEI) 

have recently been characterized as biodegradable synthetic gene delivery vectors with high 

in vivo transduction efficiency and remarkable intrinsic tumor affinity in the presence of low 

toxicity (Russ et al., 2008a). Following systemic application of NIS-conjugated G2-HD-OEI 

via the tail vein, 85% of Neuro2A tumors showed tumor-specific 123I accumulation which 

resulted in a significant delay of tumor growth after two cycles of systemic polyplex 

application followed by 131I injection (Klutz et al., 2009). 
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In the present study we applied this therapeutic concept in another distinct tumor 

model, and used G2-HD-OEI for systemic NIS gene delivery in a human HCC xenograft 

model. G2-HD-OEI complexed with the human NIS cDNA under the control of the 

unspecific CMV promoter revealed high transfection efficiency in vitro resulting in a 44-

fold increase in iodide uptake activity in HuH7 cells at an optimal polymer to plasmid w/w 

ratio of 2 that provided highest transfection efficiency at low cytotoxicity. Following 

systemic application of NIS-conjugated G2-HD-OEI via the tail vein in vivo, 80% of HuH7 

tumors showed tumor-specific iodide accumulation as determined by 123I-scintigraphic 

gamma camera imaging with accumulation of approximately 6 - 11% ID/g and an effective 

half-life of 10 h for 131I. In contrast, mice pretreated with the competitive NIS-inhibitor 

sodium-perchlorate or mice injected with control vectors showed no tumoral iodide uptake, 

confirming that the observed radioiodine accumulation in the tumors was mediated by 

functional NIS expression. In addition to 123I-gamma camera imaging we have used small 

animal whole body SPECT-CT imaging in a subset of animals using 123I as a radiotracer. 

Despite the widespread availability of 123I-scintigraphy, SPECT imaging is attractive for 

tracking the delivery of the NIS gene due to its higher sensitivity and enhanced resolution. 

The cross-sectional fusion imaging techniques such as SPECT-CT provide a useful means 

to improve three-dimensional spatial resolution and separate the overlapping regions of 

radioiodine uptake in vivo, thereby allowing a more robust biodistribution analysis. In our 

study 123I SPECT-CT imaging allowed a more detailed 3D analysis of NIS-mediated 

radioiodine accumulation, which appeared inhomogenous in clusters of iodide uptake 

throughout the tumor. The examination of all projections of the SPECT-CT images failed to 

detect any other NIS gene transfer-related signals, suggesting that systemic NIS gene 

transfer using G2-HD-OEI is highly tumor-specific. In addition, our data are consistent with 

several studies demonstrating the sensitivity of micro-SPECT-CT for imaging and 

quantitation of NIS-mediated radionuclide uptake (Marsee et al., 2004; Carlson et al., 2006; 

Merron et al., 2007; Carlson et al., 2009; Chisholm et al., 2009; Peerlinck et al., 2009; 

Penheiter et al., 2010). 

Moreover, 123I-scintigraphic and SPECT-CT imaging studies were confirmed by ex 

vivo biodistribution experiments revealing significant tumoral radioiodine accumulation, 

while no iodide uptake was measured in non-target organs, like lung, liver, spleen or 

kidneys. Tumor-specific NIS expression was further confirmed by real time q-PCR as well 

as NIS-specific immunoreactivity, which was primarily membrane-associated with an 

inhomogenous, patchy staining pattern, and therefore nicely correlates with the clusters of 
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iodide accumulation detected with the 123I-SPECT-CT imaging. Due to the limited polyplex 

spread in the tumor resulting in the inhomogenous transgene expression, non-viral gene 

delivery is ideally combined with therapy genes that are able to provide a bystander effect. 

The path-length of up to 2.4 mm of the beta-particles emitted by 131I causes a significant 

crossfire effect after NIS gene transfer resulting in a bystander effect, which makes NIS an 

ideal candidate gene for synthetic vector-based systemic cancer gene therapy (Dingli et al., 

2003b). 

One explanation for the remarkable tumor-selectivity of these synthetic vectors 

based on pseudodendritic oligoamines used in this study is the so-called “enhanced 

permeability and retention” (EPR)-effect: due to large endothelial fenestrations in tumor 

vasculature combined with poor lymphatic drainage circulating macromolecules can 

preferentially accumulate in solid tumors (Matsumura and Maeda, 1986; Iyer et al., 2006). 

We (Smrekar et al., 2003; Schwerdt et al., 2008) and others (Dufes et al., 2005) also 

observed an intrinsic affinity of well-vascularized tumors for polycations, as their removal 

from tumor tissue is prevented due to their affinity to tumor cells and tumor matrix. Very 

recently, we demonstrated that polyplex organ distribution and transgene expression does 

not necessarily correlate (Navarro et al., 2010). Although considerable amounts of 

polyplexes can be entrapped in non-target organs like lung and liver, expression is limited to 

tumor tissue. This can be explained by additional selectivity being achieved by the mitotic 

activity of tumor cells that is advantageous for polyplex-mediated transgene expression 

(Brunner et al., 2000). 

Most importantly, systemic polyplex-mediated NIS gene transfer resulted in tumor-

specific radioiodine uptake activity in HuH7 tumor-bearing mice which was sufficiently 

high for a significant therapeutic effect of 131I. After two cycles of systemic polyplex 

application followed by 131I injection tumor-bearing mice showed a significant delay of 

tumor growth associated with a markedly prolonged survival. In addition, 

immunofluorescence analysis showed a significantly reduced proliferation and blood vessel 

density after systemic polyplex-mediated NIS gene transfer followed by 131I application, 

suggesting radiation-induced tumor stroma cell damage in addition to tumor cell death. 

These data correlate well with the data aquired in the syngeneic neuroblastoma 

mouse model (Klutz et al., 2009), demonstrating that the application of these synthetic 

nanoparticles based on OEI-grafted pseudodendritic oligoamines for systemic NIS gene 

delivery is not restricted to a specific tumor model, but is suitable for all cancers with well-

vascularized tumors.  
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 In conclusion, our data clearly demonstrate the high potential of branched 

polycations based on oligoethylenimine (OEI)-grafted polypropylenimine dendrimers for 

tumor-specific delivery of the NIS gene after systemic application in well-vascularized 

tumors, such as liver cancer. Using NIS as reporter gene, this study allowed detailed 

characterization of in vivo biodistribution of polyplex-mediated functional NIS expression 

by 123I-scintigraphic gamma camera and 123I-SPECT-CT imaging, which is an essential 

prerequisite for exact and safe planning and monitoring of clinical gene therapy trials with 

the aim of individualization of the NIS gene therapy concept in the clinical setting. Tumor-

specific radioiodine accumulation was further demonstrated to be sufficiently high for a 

significant therapeutic effect in a HCC xenograft mouse model after two cycles of NIS-

polyplex application followed by 131I therapy. This study therefore opens the exciting 

prospect of NIS-targeted radioiodine therapy of disseminated HCC using polyplexes based 

on biodegradable polymers for systemic NIS gene delivery. 
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Statement of Translational Relevance 

 Cloning of the sodium iodide symporter (NIS) – the molecular basis of radioiodine 

therapy in thyroid cancer - has paved the way for the development of a novel gene therapy 

strategy based on targeted NIS expression in cancer cells followed by application of 131I. 

Our pioneer studies have convincingly shown the enormous potential of NIS as a novel 

reporter and therapy gene, and allowed the approval of a first phase I clinical trial for 

radioiodine therapy of prostate cancer after local adenoviral NIS gene transfer. The next 

crucial step towards clinical application in metastatic cancer has to be the evaluation of gene 

transfer methods that have the potential to achieve sufficient tumor-selective transgene 

expression levels after systemic application. 

The present report convincingly demonstrates the high potential of novel nanoparticle 

vectors based on linear polyethylenimine (LPEI), shielded by attachment of polyethylene 

glycol (PEG), and coupled with the synthetic peptide GE11 as an epidermal growth factor 

receptor (EGFR)-specific ligand for tumor-specific delivery of the NIS gene. Systemic 

application of NIS polyplexes resulted in a significant therapeutic effect of 131I in a human 

hepatocellular carcinoma mouse model. This translational study therefore opens the exciting 

perspective of NIS-targeted radionuclide therapy of metastatic cancer using EGFR-targeted 

polyplexes for systemic NIS gene delivery  
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Abstract 

 Purpose: We recently demonstrated significant tumor-selective iodide uptake and 

therapeutic efficacy of radioiodine in neuroblastoma tumors after systemic non-viral 

polyplex-mediated NIS gene delivery. 

Experimental Design: In the current study, we used novel nanoparticle vectors (polyplexes) 

based on linear polyethylenimine (LPEI), polyethylene glycol (PEG), and the synthetic 

peptide GE11 as an epidermal growth factor receptor (EGFR)-specific ligand to target a 

NIS-expressing plasmid to EGFR overexpressing human hepatocellular carcinoma (HuH7). 

Results: Incubation of HuH7 cells with EGFR-targeted LPEI-PEG-GE11/NIS polyplexes 

resulted in a 22-fold increase in iodide uptake activity in vitro. Using 123I-scintigraphy and 

ex vivo γ-counting, HuH7 tumors in nude mice accumulated 6.5 - 9% ID/g 123I with an 

effective half-life of approx. 6 h, resulting in a tumor absorbed dose of 47 mGy/MBq 131I 

after i.v. application of LPEI-PEG-GE11/NIS, while injection of control vectors did not 

result in tumoral iodide accumulation. No significant iodide uptake was observed in organs 

like liver, lungs and kidneys. After application of the EGFR-specific antibody cetuximab 24 

h prior to administration of LPEI-PEG-GE11/NIS, tumoral iodide uptake and NIS mRNA 

expression were markedly reduced confirming the specificity of EGFR-targeted polyplexes. 

After 3 or 4 cycles of polyplex/131I application, a significant delay in tumor growth was 

observed associated with prolonged survival. 

Conclusion: These results clearly demonstrate that systemic NIS gene transfer using 

synthetic nanoparticle vectors coupled with an EGFR-targeting ligand is capable of inducing 

tumor-specific iodide uptake, which represents a promising innovative strategy for systemic 

NIS gene therapy in metastatic cancers. 
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Introduction 

 The growing understanding of the biology of the sodium iodide symporter (NIS) 

since its cloning in 1996 has paved the way for the development of a novel cytoreductive 

gene therapy strategy using NIS as powerful therapy and reporter gene (Dai et al., 1996; 

Smanik et al., 1996; Hingorani et al., 2010a). NIS, an intrinsic transmembrane glycoprotein 

with 13 putative transmembrane domains, is responsible for the ability of the thyroid gland 

to concentrate iodide, the first and rate-limiting step in the process of thyroid 

hormonogenesis (Spitzweg and Morris, 2002b). Moreover, due to its expression in follicular 

cell-derived thyroid cancer cells, NIS provides the molecular basis for the diagnostic and 

therapeutic application of radioiodine, which has been successfully used for more than 70 

years in the treatment of thyroid cancer patients representing the most effective form of 

systemic anticancer radiotherapy available to the clinician today (Spitzweg et al., 2001c). 

 After extensive preclinical evaluation in several tumor models by various groups 

including our own, NIS has been characterized as a promising target gene for the treatment 

of non-thyroid cancers following selective NIS gene transfer into tumor cells which allows 

therapeutic application of radioiodine and alternative radionuclides, such as 188Re and 211At 

(Spitzweg and Morris, 2002b; Willhauck et al., 2007; Willhauck et al., 2008a; Hingorani et 

al., 2010a). In our initial studies in the prostate cancer model we used the prostate-specific 

antigen (PSA) promoter to achieve prostate-specific iodide accumulation, which resulted in 

a significant therapeutic effect after application of 131I and alternative radionuclides such as 
188Re and 211At even in the absence of iodide organification (Spitzweg et al., 2000b; 

Spitzweg et al., 2001a; Willhauck et al., 2007; Willhauck et al., 2008a). Further, cloning of 

NIS has also provided us with one of the most promising reporter genes available today, that 

allows direct, non-invasive imaging of functional NIS expression by 123I-scintigraphy and 
124I-PET-imaging, as well as exact dosimetric calculations before proceeding to therapeutic 

application of 131I. Therefore, in its role as reporter gene NIS provides a direct way to 

monitor the in vivo distribution of viral and non-viral vectors, as well as biodistribution, 

level and duration of transgene expression – all critical elements in the design of clinical 

gene therapy trials (Spitzweg et al., 1999c; Spitzweg et al., 2001a; Spitzweg and Morris, 

2002b; Dingli et al., 2003b; Groot-Wassink et al., 2004; Goel et al., 2007; Merron et al., 

2007; Spitzweg et al., 2007; Willhauck et al., 2007; Willhauck et al., 2008b; Willhauck et 

al., 2008c; Carlson et al., 2009; Klutz et al., 2009; Peerlinck et al., 2009; Baril et al., 2010; 

Li  et al., 2010; Trujillo et al., 2010; Watanabe et al., 2010). 
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 As logical consequence of our pioneer studies in the NIS gene therapy field, the next 

crucial step towards clinical application of the promising NIS gene therapy concept, has to 

be the evaluation of gene transfer methods that own the potential to achieve sufficient 

tumor-selective transgene expression levels not only after local or regional but also after 

systemic application to be able to reach tumor metastases.  

 Delivering genes to target organs with synthetic vectors is a vital alternative to virus-

based methods. For systemic delivery polycationic molecules are used to condense DNA 

into sub-micrometer particles termed polyplexes, which are efficiently internalized into 

cells, while DNA is protected from nucleases. Several polycations, like polyethylenimine 

(PEI), bear an intrinsic endosomolytic mechanism, which allows the transition of the 

polyplex from the endosome to the cytoplasm (Meyer and Wagner, 2006). Non-viral vectors 

can be easily synthesized and convince especially by their absent immunogenicity and 

enhanced biocompatibility.  

We have recently developed a novel class of branched polycations based on 

oligoethylenimine (OEI)-grafted polypropylenimine dendrimers (G2-HD-OEI) (Russ et al., 

2008a), which showed high intrinsic tumor affinity in the presence of low toxicity and high 

transfection efficiency (Russ et al., 2008a; Russ et al., 2008). In a syngeneic neuroblastoma 

(Neuro2A) mouse model we have used these synthetic polymeric vectors to target NIS 

expression to neuroblastoma tumors. After i.v. application of NIS containing polyplexes 

(G2-HD-OEI/NIS) Neuro2A tumors were shown to accumulate 8 - 13% ID/g 123I by 

scintigraphy and ex vivo gamma counting, resulting in a tumor absorbed dose of 247 

mGy/MBq 131I. No iodide uptake was observed in non-target organs and two cycles of 

polyplex application followed by 131I (55.5 MBq) administration resulted in a significant 

delay in tumor growth associated with markedly improved survival (Klutz et al., 2009). 

Polyplexes formed with branched structures like G2-HD-OEI are able to deliver the nucleic 

acid payload primarily toward the tumor site due to passive tumor targeting based on the 

imperfect and leaky tumor vasculature combined with inadequate lymphatic drainage 

(Maeda, 2001). 

 With the aim of optimizing tumor selectivity active ligand-mediated tumor targeting 

by the application of receptor-specific ligands can be used. The epidermal growth factor 

receptor (EGFR) is upregulated in a broad range of epithelial tumors, such as liver 

cancer, and has therefore been evaluated as a target structure for gene delivery vectors 

(De Bruin et al., 2007). Epidermal growth factor (EGF), the natural ligand of the EGFR, 

has strong growth promoting properties by activation of the receptor tyrosine kinase via 
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phosphorylation and thereby represents a strong tumor promoting agent. Therefore, a 

synthetic ligand with high receptor affinity which does not activate the receptor tyrosine 

kinase is required to function as a plausible ligand to target gene delivery vectors to 

EGFR-expressing tumor cells. In this context, Li et al. discovered a new EGFR ligand by 

phage display library analysis called GE11 (Sequence: CYHWYGYFPQNVI) which 

showed high affinity towards EGFR with no significant activation potential at the 

receptor tyrosine kinase (Li et al., 2005). 

In the current study, we therefore used novel synthetic nanoparticle vectors based 

on linear polyethylenimine (LPEI), shielded by attachment of polyethylene glycol (PEG) 

and coupled with the synthetic EGFR-specific peptide GE11 for targeting the NIS gene 

to human hepatocellular carcinoma (HCC) cells. Based on its dual function as reporter 

and therapy gene, NIS was used for non-invasive imaging of vector biodistribution by 
123I-scintigraphy followed by assessment of the therapy response after application of 131I.  



Chapter 4 

 

 87 

Materials and Methods 

Cell culture 

 The human hepatoma cell line (HuH7, JCRB 0403) was cultured in DMEM/F12 

medium (Invitrogen Life Technologies Inc., Karlsruhe, Germany) supplemented with 10% 

fetal bovine serum (v/v) (PAA, Colbe, Germany), 5% L-glutamine (Invitrogen Life 

Technologies Inc.) and 1% penicillin/streptomycin. Cells were maintained at 37°C and 5% 

CO2 in an incubator with 95% humidity. Cell culture medium was replaced every second 

day and cells were passaged at 85% confluency. 

 

Plasmid and polymer synthesis 

 The NIS cDNA has been synthesized by GENEART (Regensburg, Germany) codon-

optimized for gene expression in human tissue and cloned into the plasmid pCpG-hCMV-

Luc with a backbone completely devoid of potentially immune stimulatory CpG 

dinucleotides (Navarro et al., 2010). NIS transcription is driven by the human elongation 

factor-1 alpha promoter in combination with the human cytomegalovirus enhancer element. 

The LucSh transgene was replaced by NIS cDNA using restriction enzymes NheI and BglII 

(NIS plasmid). NIS cDNA, digested with NheI and BglII, was cloned into the NheI and 

BglII restriction sites of pMOD-ZGFP (InvivoGen, San Diego, CA, USA). The resulting 

pMOD-NIS was digested with AvrII and BamHI and re-ligated into the NheI and BglII 

restriction sites of pCpG-hCMV-Luc generating a control vector featuring NIS in antisense 

direction (antisense-NIS plasmid). 

 LPEI and LPEI-based conjugates were synthesized in analogous fashion as recently 

described (Schaffert et al., 2010) and will be described in detail elsewhere (Schaefer et al, 

manuscript in preparation). In brief, LPEI-PEG-GE11 and LPEI-PEG-Cys were synthesized 

by coupling heterobifunctional (poly)ethylene glycol (NHS-PEG-OPSS, 2 kDa, Rapp 

Polymere GmbH, Tübingen, Germany) via N-hydroxy succiniminyl ester onto amine groups 

in LPEI and were subsequently purified by cation exchange chromatography. GE11 peptide 

(CYHWYGYFPQNVI, >95 % purity, synthesized by solid phase peptide (Biosynthan 

GmbH, Berlin, Germany) was coupled to the terminal OPSS group (orthopyridyl disulfide) 

and purified again by size exclusion chromatography (Superdex 75, GE Healthcare Europe 

GmbH, Freiburg, Germany). LPEI-PEG-Cys was similarly synthesized only using cysteine 

instead of GE11 peptide. The resulting conjugates were dialyzed against HBS (20 mM 
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HEPES pH 7.4, 150 mM NaCl) and stored frozen at -80°C as 1 - 5 mg/ml stock solutions 

until further use. 

 

Polyplex formation 

Plasmid DNA was condensed with polymers at indicated conjugate/plasmid (c/p) - 

ratios (w/w) in HEPES buffered glucose (HBG: 20 mM HEPES, 5% glucose (w/v), pH 7.4) 

as described previously (Russ et al., 2008a) and incubated at room temperature for 20 min. 

prior to use. Final DNA concentration of polyplexes for in vitro studies was 2 µg/ml, for in 

vivo studies 200 µg/ml.  

 

Transient transfection 

 For in vitro transfection experiments, HuH7 cells were grown to 60 - 80% 

confluency. Cells were incubated for 4 h with polyplexes in the absence of serum and 

antibiotics followed by incubation with growth medium for 24 h. Transfection efficiency 

was evaluated by measurement of iodide uptake activity as described below. 

 

125Iodide uptake assay 

 Following transfections, iodide uptake of HuH7 cells was determined at steady-state 

conditions as described previously (Spitzweg et al., 1999c). Results were normalized to cell 

survival measured by cell viability assay (see below) and expressed as cpm/A490 nm. 

 

Cell viability assay 

 Cell viability was measured using the commercially available MTS-assay (Promega 

Corp., Mannheim, Germany) according to the manufacturer´s recommendations as 

described previously (Willhauck et al., 2007). 

 

Establishment of HuH7 xenografts 

 HuH7 xenografts were established in female CD-1 nu/nu mice (Charles River, 

Sulzfeld, Germany) by subcutaneous injection of 5 x 106 HuH7 cells suspended in 100 µl 

PBS into the flank region. Animals were maintained under specific pathogen-free conditions 
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with access to mouse chow and water ad libitum. The experimental protocol was approved 

by the regional governmental commission for animals (Regierung von Oberbayern). 

 

NIS gene transfer and radioiodine studies in vivo 

 Experiments started when tumors had reached a tumor size of 8 - 10 mm after a 10-

day pretreatment with L-T4 (intraperitoneal (i.p.) injection of 2 µg L-T4/day (Henning, 

Sanofi-Aventis, Germany) diluted in 100 µl PBS) to suppress thyroidal iodine uptake. For 

systemic in vivo NIS gene transfer polyplexes (c/p 0.8) were applied intravenously (i.v.) via 

the tail vein at a DNA dose of 2.5 mg/kg (50 µg DNA in 250 µl HBG); either NIS 

containing polyplexes (LPEI-PEG-GE11/NIS) or control polyplexes (LPEI-PEG-

GE11/antisense-NIS, LPEI-PEG-Cys/NIS and LPEI/NIS). Four groups of mice were 

established and treated i.v. as follows: (1) LPEI-PEG-GE11/NIS (n=15); (2) LPEI-PEG-

GE11/antisense-NIS (n=9), (3) LPEI-PEG-Cys/NIS (n=9), (4) LPEI/NIS (n=9). As an 

additional control, mice treated with LPEI-PEG-GE11/NIS received (n=9) the competitive 

NIS-inhibitor sodium-perchlorate (NaClO4 2 mg/per mouse) 30 min. prior to 123I 

administration as a single i.p application. For competitive inhibition studies the EGFR-

specific monoclonal antibody cetuximab (Erbitux®, Merck, Darmstadt, Germany) was 

injected i.p. (0.25 mg/per mouse) 24 h prior to the LPEI-PEG-GE11/NIS application (n=4). 

24 h after polyplex application, mice were injected i.p. with 18.5 MBq (0.5 mCi) 123I and 

iodide biodistribution was assessed using a gamma camera equipped with UXHR collimator 

(Ecam, Siemens, Germany) as described previously (Willhauck et al., 2007). Regions of 

interest were quantified and expressed as a fraction of the total amount of applied 

radioiodine per gram tumor tissue. The retention time within the tumor was determined by 

serial scanning after radionuclide injection and dosimetric calculations were performed 

according to the concept of MIRD with the dosis factor of RADAR-group (www.doseinfo-

radar.com). 

 

Analysis of radioiodine biodistribution ex vivo 

 For ex vivo analysis of 123I biodistribution, mice were injected with LPEI-PEG-

GE11/NIS (n=10) or LPEI-PEG-GE11/antisense-NIS (n=6), LPEI-PEG-Cys/NIS (n=6) or 

LPEI/NIS (n=6) as described above followed by i.p. injection of 18.5 MBq 123I 24 h later. In 

addition LPEI-PEG-GE11/NIS-transduced mice (n=6) were treated with sodium-perchlorate 

prior to 123I administration as an additional control. Four and 12 h after 123I injection, mice 
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were sacrificed and indicated organs were dissected, weighed and radioiodide uptake was 

measured in a gamma counter (5 NIS-transduced animals per time point (LPEI-PEG-

GE11/NIS) and 3 mice of each control). Results were reported as percentage of injected 

dose per organ (% ID/organ). 

 

Analysis of NIS mRNA expression using quantitative real-time PCR 

 Total RNA was isolated from HuH7 tumors or other tissues using the RNeasy Mini 

Kit (Qiagen, Hilden, Germany) according to the manufacturer’s recommendations. Single 

stranded oligo (dT)-primer cDNA was generated using Superscript III Reverse 

Transcriptase (Invitrogen). Following primers were used: hNIS: (5`-

ACACCTTCTGGACCTTCGTG-3´) and (5`-GTCGCAGTCGGTGTAGAACA-3´), 

GAPDH: (5`-GAGAAGGCTGGGGCTCATTT-3´) and (5`-

CAGTGGGGACACGGAAGG-3´). Quantitative real-time PCR (qPCR) was performed 

with the cDNA from 1µg RNA using the SYBR green PCR master mix (Quiagen) in a 

Rotor Gene 6000 (Corbett Research, Morthlake, New South Wales, Australia). Relative 

expression levels were calculated using the comparative ∆∆Ct method and internal GAPDH 

for normalization. 

 

Immunohistochemical analysis of NIS protein expression 

 Immunohistochemical staining of frozen tissue sections derived from HuH7 tumors 

after systemic gene delivery was performed using a mouse monoclonal antibody directed 

against amino acid residues 468-643 of human NIS (kindly provided by John C. Morris, 

Mayo Clinic, Rochester, MN, USA) as described previously (Spitzweg et al., 2007). 

 

Radioiodine therapy study in vivo 

 Following a 10-day L-T4 pretreatment, mice receivied 55.5 MBq 131I as a single i.p. 

injection 24 h after systemic application of LPEI-PEG-GE11/NIS (n=16) or LPEI-PEG-

GE11/antisense-NIS (n=6). As a control, mice were treated with saline instead of 131I after 

injection of LPEI-PEG-GE11/NIS (n=16) or LPEI-PEG-GE11/antisense-NIS (n=6) or saline 

instead of polyplexes (n=6). Polyplex application was followed after 24 h by 131I or saline 

application in three cycles (days 0/1, 3/4, 7/8). In additional experiments mice were treated 

with 4 cycles of LPEI-PEG-GE11 followed by radioiodine (n=8) or saline (n=8) application 

on days 0/1, 3/4, 7/8 and 14/15. Tumor sizes were measured before treatment and daily 
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thereafter for up to five weeks and tumor volume estimated using the equation: tumor 

volume = length x width x height x 0.52. 

 

Indirect immunofluorescence assay 

 Indirect immunofluorescence staining was performed on frozen tissues using an 

antibody against human Ki67 (Abcam, Cambridge, UK) and an antibody against mouse 

CD31 (BD, Pharmingen, New Jersey, USA) as described previously (Willhauck et al., 

2007). 

 

Statistical methods 

 All in vitro experiments were carried out in triplicates. Results are represented as 

mean +/- SD of triplicates. Statistical significance was tested using Student´s t test. 
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Results 

EGFR-targeted NIS gene transfer in vitro 

 Transfection conditions using LPEI-PEG-GE11/NIS were optimized in HuH7 cells 

by measurement of perchlorate-sensitive iodide uptake activity 24 h following application of 

polyplexes (data not shown). We found an optimal c/p ratio of 0.8 resulting in highest 

transfection efficiency at lowest cytotoxicity. This ratio was used in all subsequent 

experiments. 24 h after transfection with LPEI-PEG-GE11/NIS, HuH7 cells showed a 22-

fold increase in 125I accumulation as compared to cells incubated with LPEI-PEG-

GE11/antisense-NIS (Fig. 1). Transfection with untargeted LPEI-PEG-Cys/NIS polyplexes 

led to significantly lower iodide uptake activity in HuH7 cells (Fig.1). Furthermore, no 

perchlorate-sensitive iodide uptake above background level was observed in cells 

transfected with the empty vector LPEI-PEG-GE11. Polyplex-mediated NIS gene transfer 

did not alter cell viability as measured by MTS-assay (Fig. 1). 

 

 

Fig. 1: Iodide uptake was measured in HuH7 cells following in vitro transfection with LPEI-PEG-GE11/NIS, 
control polyplexes LPEI-PEG-Cys/NIS, LPEI-PEG-GE11/antisense-NIS, or with LPEI-PEG-GE11 alone. 
Cells transfected with LPEI-PEG-GE11/NIS showed a 22-fold increase in perchlorate-sensitive 125I 
accumulation. After transfection with LPEI-PEG-Cys/NIS the iodide uptake was decreased to approx. 50%. In 
contrast, no perchlorate-sensitive iodide uptake above background level was observed in cells transfected with 
LPEI-PEG-GE11/antisense-NIS or without DNA (***p <0.001). 
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Induction of iodide accumulation after systemic EGFR-targeted NIS gene transfer in vivo 

 To investigate the iodide uptake activity in HuH7 tumors after systemic in vivo NIS 

gene transfer, 123I distribution was monitored in tumor bearing mice 24 h after 

administration of polyplexes (Fig. 2). High levels of iodide uptake were observed in 80% 

(12 out of 15) of HuH7 tumors following systemic injection of LPEI-PEG-GE11/NIS (Fig. 

2A), whereas no significant iodide uptake was observed in non-target organs, including 

lungs and liver confirming tumor-specificity of LPEI-PEG-GE11-mediated NIS gene 

delivery. No iodide accumulation was detected in tumors after application of LPEI-PEG-

GE11/antisense-NIS and LPEI/NIS (Fig. 2C, E), and weak tumoral iodide accumulation was 

observed after application of LPEI-PEG-Cys/NIS (Fig. 2D). To confirm that tumoral iodide 

uptake was indeed NIS-mediated, LPEI-PEG-GE11/NIS-injected mice received sodium-

perchlorate 30 min prior to 123I administration (2 mg i.p.), which completely blocked 

tumoral iodide accumulation in addition to the physiological iodide uptake in stomach and 

thyroid gland (Fig. 2B). As determined by serial scanning, approximately 6.5 - 9% ID/g 123I 

were accumulated in NIS-transduced tumors with a biological half-life of 5 h after 

application of LPEI-PEG-GE11/NIS (Fig. 2G). Considering a tumor mass of 1 g and an 

effective half-life of 6 h for 131I, a tumor absorbed dose of 47 mGy/MBq 131I was calculated. 

After application of the EGFR-specific antibody cetuximab 24 h prior to administration of 

NIS-conjugated LPEI-PEG-GE11 tumoral iodide uptake was significantly reduced to 4% 

ID/g 123I (Fig. 2F). 

 Besides tumoral uptake, significant radioiodine accumulation was observed in 

tissues physiologically expressing NIS, including stomach and thyroid. In this context it is 

important to mention that the uptake in the stomach appears to be higher than usually seen 

in humans, which is most probably due to higher levels of NIS expression in murine gastric 

mucosa and pooling of gastric juices due to the anesthesia for a prolonged period during 

imaging procedure. In addition, due to exquisite regulation of thyroidal NIS expression by 

TSH, 123I accumulation in the thyroid gland can effectively be downregulated by thyroid 

hormone treatment as shown in humans (Wapnir et al., 2004). 
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Fig. 2: 123I gamma camera imaging of mice harbouring HuH7 tumors 3 h following i.p. injection of 18.5 MBq 
123I 24 h after LPEI-PEG-GE11-mediated NIS gene delivery. While mice treated with control polyplexes 
(LPEI-PEG-GE11/antisense-NIS, LPEI/NIS) showed no tumoral iodide uptake (C, E), treatment with LPEI-
PEG-Cys/NIS led to a mild iodide uptake of 2.4% ID/g (D). Treatment with LPEI-PEG-GE11/NIS induced 
significant tumor-specific iodide accumulation in HuH7 tumors with accumulation of 6.5 - 9% ID/g 123I (A), 
which was completely abolished upon pretreatment with NaClO4 (B). Iodide was also accumulated 
physiologically in thyroid, stomach and bladder (A, C, D, E, F). After pretreatment with cetuximab the iodide 
uptake was significantly reduced to 4% ID/g (F). 
Time course of 123I accumulation in HuH7 tumors after systemic polyplex-mediated NIS gene delivery 
followed by injection of 18.5 MBq 123I as determined by serial scanning. After application of LPEI-PEG-
GE11/NIS the maximum tumoral radioiodine uptake was 6.5 - 9% ID/g tumor with an average effective t1/2 of 
6 h for 131I. Following injection of control polyplexes (LPEI-PEG-Cys/NIS, LPEI/NIS) or after pretreatment 
with cetuximab iodide accumulation was significantly decreased (G). 
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Ex vivo radioiodine biodistribution studies 

 Ex vivo biodistribution analysis confirmed induction of significant iodide uptake 

activity in tumors by systemic NIS gene transfer (Fig. 3). LPEI-PEG-GE11/NIS-transduced 

HuH7 tumors accumulated 4.3% ID/organ 123I 4 hours after radioiodine injection (Fig. 3A), 

whereas tumors transduced with control polyplexes (LPEI-PEG-Cys/NIS, LPEI-PEG-

GE11/antisense-NIS and LPEI/NIS) showed only mild (LPEI-PEG-Cys/NIS) or no 

(LPEI/NIS, LPEI-PEG-GE11/antisense-NIS) iodide uptake. In all groups the thyroid gland 

and the stomach accumulated approx. 40% and 39% ID/organ (data not shown). Further, a 

single perchlorate injection prior to radioiodine application significantly blocked iodide 

uptake in NIS-transduced tumors and in physiologically NIS-expressing tissues, including 

thyroid and stomach, throughout the observation period up to 12 h (Fig. 3B). No iodide 

uptake above background level was observed in non-target organs, including lungs, liver, 

kidneys or spleen. 
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Fig. 3: Evaluation of iodide biodistribution ex vivo 4 h (A) and 12 h (B) following injection of 18.5 MBq 123I. 
While tumors in NIS-transduced mice showed high perchlorate-sensitive iodide uptake activity (up to 4.3% 
ID/organ), non-target organs revealed no significant iodide accumulation. No iodide accumulation was 
measured after injection of control polyplexes LPEI-PEG-GE11/antisense-NIS or LPEI/NIS, or after 
pretreatment with NaClO4. A mild iodide uptake was observed after application of LPEI-PEG-Cys/NIS. 
Results were reported as percent of injected dose per organ ± SD. 

 

Analysis of NIS mRNA expression by quantitative real-time PCR analysis 

 In order to assess NIS mRNA levels after systemic NIS gene transfer, mRNA of 

various tissues was extracted and analyzed by quantitative real-time PCR (qPCR) with a 

pair of NIS-specific oligonucleotide primers 24 h after NIS gene transfer. Significant levels 

of NIS gene expression were induced in HuH7 tumors after systemic injection of LPEI-

PEG-GE11/NIS (Fig. 4A), whereas only low background levels were detected after 

application of LPEI-PEG-GE11/antisense-NIS, LPEI-PEG-Cys/NIS and LPEI/NIS. As 

expected, administration of the competitive NIS inhibitor sodium-perchlorate had no 

influence on NIS mRNA expression in NIS-transduced tumors. After application of the 

EGFR-specific antibody cetuximab tumoral NIS mRNA expression was significantly 

reduced. Furthermore, analysis of non-target organs like lungs and liver, showed no 

significant NIS mRNA expression above background level (Fig. 4A). In contrast, high 

levels of NIS mRNA were detected in the lungs of mice receiving LPEI/NIS suggesting 

unspecific pulmonary accumulation of these polyplexes due to their aggregation with 

erythrocytes (Fig. 4A). 
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Fig. 4: Analysis of human NIS mRNA expression in HuH7 tumors and non-target organs by qPCR (A). A 
significant level of NIS mRNA expression was induced in HuH7 tumors after systemic NIS gene transfer with 
or without sodium-perchlorate pretreatment (LPEI-PEG-GE11/NIS). Only a low background level of NIS 
mRNA expression was detected in untreated tumors, which was set as 1 arbitrary unit. Moreover, no 
significant NIS expression above background level was found in tumors after application of LPEI-PEG-
GE11/antisense-NIS, LPEI-PEG-Cys/NIS, LPEI-PEG-GE11/NIS + cetuximab and LPEI/NIS. After systemic 
application with LPEI/NIS a high NIS mRNA expression level was detected in the lungs, whereas non-target 
organs showed no significant NIS mRNA expression after treatment of LPEI-PEG-GE11/NIS, LPEI-PEG-
GE11/antisense-NIS, LPEI-PEG-Cys/NIS. Results were reported as NIS/GAPDH ratios. 

 

Analysis of NIS protein expression in HuH7 tumors 

 Immunohistochemical analysis of HuH7 tumors after systemic application of LPEI-

PEG-GE11/NIS revealed a heterogeneous staining pattern with clusters of primarily 

membrane-associated NIS-specific immunoreactivity (Fig. 4B). In contrast, tumors treated 

with LPEI-PEG-GE11/antisense-NIS, LPEI-PEG-Cys/NIS and LPEI/NIS (Fig. 4C-E) 

showed no NIS-specific immunoreactivity. Specificity of staining was confirmed using 

isotype-matched control immunoglobulin (data not shown).  
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Fig. 4: Immunohistochemical staining of HuH7 tumors 24 h after LPEI-PEG-GE11/NIS application using a 
hNIS specific antibody showed clusters of primarily membrane-associated NIS-specific immunoreactivity (B). 
In contrast, HuH7 tumors treated with the control polyplexes (LPEI-PEG-GE11/antisense-NIS (C), LPEI-
PEG-Cys/NIS (D), LPEI/NIS (E)) did not reveal NIS-specific immunoreactivity. Magnification: 100x 
 

Radioiodine therapy studies after in vivo NIS gene transfer 

 24 h after systemic administration of polyplexes, a therapeutic dose of 55.5 MBq 

(1.5 mCi) 131I or saline was administered. The cycle consisting of systemic NIS gene 

transfer followed by radioiodine was repeated twice on days 3/4 and 7/8. Mice treated with 

three cycles of LPEI-PEG-GE11/NIS and 131I showed a significant delay in tumor growth as 

compared to all control groups (Fig. 5A), tumor growth started again one week after the last 

treatment. Therefore, in another therapy group a fourth therapy cycle was added at days 

14/15, which further delayed tumor growth. In all control groups (LPEI-PEG-GE11/NIS or 

LPEI-PEG-GE11/antisense-NIS followed by saline, or LPEI-PEG-GE11/antisense-NIS 

followed by 131I) mice showed an exponential tumor growth and had to be killed within two 

weeks after the onset of the experiments due to excessive tumor growth (Fig. 5B). 50% of 

mice survived 3 - 4 weeks after application of 3 cycles of polyplexes followed by 131I 

application; overall survival was further enhanced by addition of another cycle of 

polyplex/131I application (Fig. 5B). Importantly, none of these mice showed major adverse 

effects due to radionuclide or polyplex treatment in terms of lethargy or respiratory failure. 

However, a minor body weight loss of 3 - 5% was observed in mice after systemic 

administration of polyplexes. 
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Fig. 5: Radioiodine treatment of HuH7 tumors after systemic polyplex-mediated NIS gene transfer in vivo. 24 
h after i.v. polyplex injection (small arrow), 55.5 MBq 131I were injected i.p. (big arrow). This treatment cycle 
was repeated twice on days 3/4 and 7/8 and additionally on days 14/15 (dotted lines). 131I therapy after 
systemic LPEI-PEG-GE11/NIS application resulted in a significant delay in tumor growth (A, **p<0.01) 
which was associated with markedly improved survival (B, Kaplan-Meier-plot (**p<0.01)) as compared to the 
control groups that were injected with saline only, with LPEI-PEG-GE11/NIS followed by saline application, 
or with LPEI-PEG-GE11/antisense-NIS followed by saline or 131I application. 
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Immunofluorescence analysis 

 Three to four weeks after treatment, mice were sacrified, and tumors were dissected 

and processed for immunofluorescence analysis using a Ki67-specific antibody (green) and 

an antibody against CD31 (red, labelling blood vessels) (Fig. 6). NIS-transduced tumors 

(LPEI-PEG-GE11/NIS) (Fig. 6B) exhibited a significantly lower intratumoral blood vessel 

density and proliferation index after 131I therapy when compared to mock-transduced tumors 

(LPEI-PEG-GE11/antisense-NIS) tumors (Fig. 6A).  

 

 

Fig. 6: Immunofluorescence analysis using a Ki67-specific antibody (green) and an antibody against CD31 
(red, labeling blood vessels) showed significantly decreased proliferation and blood vessel density in NIS-
transduced tumors (B) following 131I treatment as compared to mock-transduced tumors (A). Slides were 
counterstained with DAPI nuclear stain. Magnification 100x. 
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Discussion 

 In the present study we investigated the efficacy of novel synthetic nanoparticle 

vectors based on LPEI, shielded by attachment of PEG and coupled with the EGFR-specific 

ligand GE11 to achieve tumor-selective NIS-mediated radioiodine accumulation in a HCC 

mouse model. After confirmation of high transduction efficiency of LPEI-PEG-GE11 in 

human HCC cells in vitro, i.v. application of LPEI-PEG-GE11 in nude mice carrying HCC 

xenografts was demonstrated to result in tumor-selective, EGFR-targeted radioiodine 

accumulation, which was high enough for a significant therapeutic effect after application of 
131I. 

 As one of the oldest and most successful targets of molecular imaging and therapy, 

cloning and characterization of NIS has provided us with a powerful new reporter and 

therapy gene (Spitzweg and Morris, 2002b; Hingorani et al., 2010a). Many of the 

characteristics of NIS, which have been confirmed by our work to date, suggest that it 

represents an ideal therapy gene due to several advantages. NIS as an endogenous human 

protein implies that its expression in cancer cells is unlikely to be toxic or to elicit a 

significant immune response that could limit its efficacy. In its dual role as reporter and 

therapy gene NIS allows direct, non-invasive imaging of functional NIS expression by 123I-

scintigraphy and 124I-PET-imaging, as well as exact dosimetric calculations before 

proceeding to therapeutic application of 131I (Spitzweg and Morris, 2002b; Dingli et al., 

2003b).  

 The capacity of the NIS gene to induce radioiodine accumulation in nonthyroidal 

tumors has been investigated by several groups including our own, demonstrating the 

enormous potential of NIS as therapy gene (Spitzweg et al., 1999c; Spitzweg et al., 2000b; 

Spitzweg et al., 2001a; Spitzweg et al., 2001c; Spitzweg and Morris, 2002b; Kakinuma et 

al., 2003; Dingli et al., 2004; Cengic et al., 2005; Dwyer et al., 2005a; Scholz et al., 2005; 

Dwyer et al., 2006a; Spitzweg et al., 2007; Willhauck et al., 2007; Willhauck et al., 2008a; 

Willhauck et al., 2008b; Peerlinck et al., 2009; Hingorani et al., 2010b; Li et al., 2010; 

Trujillo  et al., 2010). However, only a limited number of studies have investigated systemic 

NIS gene delivery approaches to address one of the major hurdles on the way to efficient 

and safe application of the NIS gene therapy concept in the clinical setting in metastatic 

disease, which is optimal tumor targeting in the presence of low toxicity and high 

transduction efficiency with the ultimate goal of systemic vector application. In its function 

as reporter gene NIS provides an elegant means for non-invasive monitoring of vector 
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biodistribution as well as biodistribution, level and duration of transgene expression after 

systemic vector application (Dingli et al., 2004; Goel et al., 2007; Chisholm et al., 2009; 

Liu et al., 2010). We recently reported a systemic non-viral NIS gene delivery approach in a 

neuroblastoma mouse model (Neuro2A), where biodegradable branched polycations based 

on OEI-grafted polypropylenimine dendrimers (G2-HD-OEI) for systemic NIS gene 

application achieved tumor-specific iodide accumulation resulting in a significant 

therapeutic effect after application of 131I even in the absence of iodide organification (Klutz 

et al., 2009). This study showed for the first time a significant therapeutic effect of 

radioiodine after systemic non-viral NIS gene transfer in an experimental tumor model. The 

high intrinsic tumor affinity of G2-HD-OEI is based on passive polyplex trapping in the 

tumor caused by the typically leaky vasculature and inadequate lymphatic drainage in 

tumors (Maeda, 2001), which can be highly dependent on the tumor type (Navarro et al., 

2010). 

 The “golden standard” of polyethylenimine (PEI)-based gene carriers is LPEI, the 

linear form of PEI, with a molecular weight of 22 kDa, also known as the commercially 

available JetPEI®. The major drawback of LPEI is its significant toxicity after systemic 

application due to acute and long-term toxic effects (Chollet et al., 2002). Transgene 

expression was demonstrated to be more than 100 times higher in the lung than in the tumor 

most probably due to pronounced aggregation with erythrocytes that usually results in high 

transgene expression in the first vascular bed encountered, namely the lung (Russ et al., 

2008a; Russ et al., 2008). 

 A technique to reduce unspecific toxicity and prolong blood circulation time is 

shielding of polyplexes by PEGylation (polyethylene glycol). Zintchenko et al. showed in a 

previous study with quantoplexes (polyplexes consisting of PEI and DNA with incorporated 

negatively charged near-infrared-emitting cadmium telluride quantum dots), that PEGylated 

quantoplexes have a circulation time in the range of several minutes, whereas unshielded 

PEI polyplexes do not show circulation at all (Zintchenko et al., 2009). The modification of 

the surface of DNA complexes with PEG can block the interaction with plasma components 

and erythrocytes and strongly changes the in vivo characteristics of particles, resulting in 

reduced toxicity, prolonged circulation and gene expression in distant tumor tissue after 

systemic administration (Ogris et al., 1999). However, PEGylation also results in decreased 

cell binding capacity and subsequently reduced efficacy (Ogris et al., 1999). The addition of 

specific targeting ligands, such as peptides, proteins and carbohydrates to these shielded 
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polyplexes can be employed with the aim of active tumor targeting thereby enhancing 

transfection efficiency and tumor selectivity (De Bruin et al., 2007). 

 In the current study the EGFR was used as tumor-specific target, a transmembrane 

receptor with intrinsic tyrosine kinase activity. The upregulation to 2 x 106 EGFR per cell in 

numerous solid tumors including lung, liver, breast and bladder cancer, glioblastoma as well 

as hepatocellular carcinoma makes it an attractive target for cancer gene therapy strategies. 

EGFR-targeting has been utilized for targeted delivery of neutralizing antibodies 

(Mendelsohn and Baselga, 2006), toxins (Liu et al., 2005), and nucleid acids (Shir et al., 

2006), as well as for targeted gene delivery, either with viral (Dmitriev et al., 2000) or non-

viral gene delivery systems (Wolschek et al., 2002). The enhanced uptake of EGF-coupled 

polyplexes in EGFR-overexpressing tumor cells was shown in several experiments with an 

up to 300-fold increased transfection efficiency depending on the tumor cell line (Blessing 

et al., 2001). Studies with HuH7 HCC cells showed that 50% of these “artifical viruses” 

were already internalised after 5 minutes, whereas untargeted polyplexes reached only 

approximately 20% after a 20 min incubation (De Bruin et al., 2007). Generating polyplexes 

with EGF as targeting ligand combined with PEG as shielding moiety lead to rapid 

internalization via the EGF-receptor and significantly increased transgene expression in 

subcutaneous hepatoma tumors in mice after systemic administration (Wolschek et al., 

2002).  

 EGF, the natural ligand of the EGFR, however, has strong mitogenic and 

neoangiogenic activity possibly attenuating the anticancer effect of the therapeutic gene 

used (Li et al., 2005). For this purpose, Li et al. screened a phage display library to discover 

new EGFR binders and have found a phage clone encoding for a peptide termed GE11, 

which showed high affinity towards EGFR without activation of the receptor tyrosine 

kinase. GE11-conjugated PEI polyplexes showed high transfection efficiency in EGFR 

overexpressing tissues, while no significant activation of EGFR and no mitogenic activity of 

treated cells was observed (Li et al., 2005).  

 In our study we used LPEI-PEG-GE11 polymers and complexed them with the 

human NIS cDNA under the control of the strong human elongation factor 1 alpha 

promoter. The plasmid used is completely devoid of CpG islands, which has been described 

to result in prolonged and higher transgene expression in tumor tissue in vivo (De Wolf et 

al., 2008; Navarro et al., 2010). In vitro transfection of HuH7 cells with LPEI-PEG-

GE11/NIS resulted in a 22-fold increase in iodide uptake activity, which was significantly 

lower when polyplexes without EGFR-targeting (LPEI-PEG-Cys/NIS) were used. 
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Following i.v. application of LPEI-PEG-GE11/NIS polyplexes in mice carrying HuH7 

xenografts 80% of tumors showed tumor-specific 123I accumulation with approximately  

6.5-9% ID/g, a biological half-life of 6 hours and a tumor absorbed dose of 47 mGy / MBq 
131I. In addition, our in vivo 123I scintigraphic imaging studies were confirmed by ex vivo 

biodistribution experiments revealing significant tumoral radioiodine accumulation, whereas 

no iodide uptake was measured in non-target organs. Significance of EGFR-mediated NIS 

gene delivery was shown in mice pretreated with the EGFR-specific antibody cetuximab 24 

h prior to polyplex application. cetuximab has been shown to inhibit EGFR-mediated tumor 

cell targeting in vitro with EGF-targeted nanoparticles (Diagaradjane et al., 2008) and to 

downregulate EGFR in vitro and in vivo (Perez-Torres et al., 2006). Here we demonstrate 

that cetuximab pretreatment is able to reduce tumor-specific transfection efficiency of 

EGFR-targeted polyplexes. In line with these results, untargeted LPEI-PEG-Cys/NIS also 

showed significantly lower iodide uptake, further confirming the EGFR-specificity of LPEI-

PEG-GE11. The low, but measurable iodide uptake activity in HCC tumors after LPEI-

PEG-Cys/NIS treatment suggests that passive tumor targeting due to the “enhanced 

permeability and retention-effect” is sufficient for a low level of tumoral NIS transduction 

(Maeda, 2001), which can be significantly increased after coupling to the EGFR-specific 

ligand GE11. These data are consistent with the study by Song et al. showing enhanced 

extent and duration of accumulation of fluorescence-labelled liposomes containing GE11 

when compared to an unrelated peptide, where accumulation was significant, but less 

pronounced (Song et al., 2008). In mice treated with LPEI-PEG-GE11/NIS and the specific 

NIS-inhibitor sodium-perchlorate prior to application of radioiodine or in mice treated with 

the control vectors (LPEI-PEG-GE11/antisense-NIS) tumors showed no significant iodide 

uptake demonstrating that tumoral radioiodine accumulation after systemic EGFR-targeted 

NIS gene transfer was mediated by functional NIS protein.  

 We further confirmed tumor-specific NIS expression after systemic application of 

LPEI-PEG-GE11/NIS by real time qPCR, whereas after application of LPEI/NIS high levels 

of NIS mRNA expression were primarily detected in the lungs of treated animals. 

Intravenously applied LPEI polyplexes are known to induce high transgene expression 

activity in the lungs, which is due to aggregation with erythrocytes, but also high cellular 

toxicity (Chollet et al., 2002). Despite significant mRNA levels, no NIS activity was 

observed in lungs, which is presumably due to LPEI-mediated cell membrane damage 

inhibiting proper membrane trafficking of the NIS protein which is required for functional 

activity. With LPEI-PEG-GE11/NIS or LPEI-PEG-Cys/NIS polyplexes, no pulmonary NIS 
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mRNA or NIS activity was found suggesting prevention of polyplex aggregation in the lung 

due to PEG shielding.  

 In tumor sections NIS-specific immunoreactivity was primarily membrane-

associated and occurred in clusters. The patchy staining pattern nicely correlates with 

experiments using G2-HD-OEI polyplexes for systemic NIS gene transfer in a syngeneic 

neuroblastoma mouse model (Klutz et al., 2009) and with a study using PEI-based EGF-

coupled polymers for targeting the β-galactosidase reporter gene to HCC cells in vivo 

resulting in a heterogeneous and patchy distribution of transgene activity (Wolschek et al., 

2002). 

 Most importantly, systemic EGFR-targeted NIS gene transfer resulted in tumor-

specific iodide uptake activity in HCC tumor-bearing mice, which was sufficiently high for 

a significant therapeutic effect of 131I. After three to four cycles of systemic polyplex 

application followed by 131I injection, tumor-bearing mice showed a significant delay of 

tumor growth associated with a significantly prolonged survival. In addition, 

immunoflourescence analysis showed markedly reduced proliferation associated with 

decreased blood vessel density inside and surrounding the tumor after systemic polyplex-

mediated NIS gene transfer followed by 131I application, suggesting radiation-induced tumor 

stroma cell damage in addition to tumor cell death. The crossfire effect of 131I with a 

maximum path length of up to 2.4 mm might be responsible for stromal cell damage leading 

to reduced angiogenesis and secretion of growth-stimulatory factors, thereby enhancing 

therapeutic efficacy. 

 In conclusion, our data clearly demonstrate the high potential of novel synthetic 

nanoparticle vectors based on LPEI, shielded by PEG and coupled with the synthetic 

peptide GE11 as an EGFR-specific ligand for targeting the NIS gene to human HCC 

overexpressing EGFR. Based on the role of NIS as a potent and well characterized reporter 

gene allowing non-invasive imaging of functional NIS expression, this study allowed 

detailed characterization of in vivo biodistribution of EGFR-targeted functional NIS 

expression by gamma camera imaging, which is an essential prerequisite for exact planning 

and monitoring of clinical gene therapy trials with the aim of individualization of the NIS 

gene therapy concept in the clinical setting. Tumor-specific iodide accumulation was further 

demonstrated to be sufficiently high for a significant delay of tumor growth associated with 

increased survival in HCC xenograft bearing nude mice after three to four cycles of 

polyplex application followed by 131I therapy. This study therefore opens the exciting 
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prospect of NIS-targeted radionuclide therapy of metastatic cancer using EGFR-targeted 

polyplexes for systemic NIS gene delivery. 
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6. Summary 
Based upon the application of radioiodine that has been used for over 70 years for 

diagnostic imaging and therapy in the management of thyroid cancer due to endogenous 

expression of NIS, cloning of NIS has paved the way of a novel cytoreductive gene therapy 

strategy. 

After proof of principle of AFP promoter-mediated NIS gene delivery in a stably NIS-

transfected HCC xenograft model (Willhauck et al., 2008b) in this thesis we developed a 

replication-deficient adenovirus carrying the NIS gene under the control of the AFP 

promoter (Ad5-AFP-NIS) and applied it in a human HCC (HepG2) xenograft mouse model 

for local NIS gene delivery. To achieve tumor specificity a mouse AFP-promoter construct 

consisting of the basal promoter and enhancer I element was used for transcriptional 

targeting of the NIS gene to liver cancer cells.  

HepG2 cells infected with Ad5-AFP-NIS concentrated 50% of the applied activity of 125I, 

which was sufficiently high for a therapeutic effect in an in vitro clonogenic assay. Four 

days after intratumoral injection of Ad5-AFP-NIS in HepG2 xenografts, analysis of 123I or 
188Re accumulation by gamma camera imaging revealed high tumoral radionuclide activity. 

Tumor-specific NIS expression was further confirmed by immunohistochemistry and real 

time qPCR. After adenovirus-mediated NIS gene transfer in HepG2 xenografts 

administration of a therapeutic dose of 131I or 188Re resulted in a significant delay in tumor 

growth and improved survival, with 188Re being mildly more potent than 131I.  

As a next crucial step towards clinical application of the promising NIS gene therapy 

concept, we evaluated gene transfer methods that own the potential to achieve sufficient 

tumor-selective transgene expression levels not only after local but also after systemic 

application to be able to reach tumor-metastases.  

For this purpose, we analyzed the potential of novel biodegradable, branched polycations 

based on OEI-grafted polypropylenimine dendrimers (G2-HD-OEI) which show high 

intrinsic tumor affinity to target a NIS-expressing plasmid to neuroblastoma (Neuro2A) and 

HCC (HuH7) cells in vitro and in vivo. In vitro incubation with NIS-conjugated 

nanoparticles resulted in a 51-fold increase in perchlorate-sensitive iodide uptake activity in 

Neuro2A cells and a 44-fold increase in HuH7 cells. In vivo NIS-conjugated nanoparticle 

vectors were injected via the tail vein followed by analysis of radioiodine accumulation 

using 123I-scintigraphy, 123I SPECT-CT imaging and ex vivo gamma counting. High levels 
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of iodide uptake activity were observed in the tumor whereas non-target organs like lungs, 

liver, kidneys and spleen exhibited only mild or no significant iodide uptake. Tumor-

specific NIS expression was further confirmed by immunohistochemistry and real time 

qPCR. In addition, the achieved tumoral radioiodine uptake was high enough for a 

significant therapeutic effect of 131I in Neuro2A and HuH7 tumors, which was associated 

with significantly improved survival. 

To further improve tumor-specific targeting we analyzed the efficacy of novel synthetic 

nanoparticle vectors based on linear polyethylenimine (LPEI), shielded by attachment of 

polyethylene glycol (PEG), and coupled with the synthetic peptide GE11 as an EGFR-

specific ligand (LPEI-PEG-GE11) for targeting the NIS gene to EGFR-expressing human 

HCC (Huh7) cells. After systemic application of NIS-polyplexes high tumor-specific iodide 

activity was demonstrated, which was markedly reduced after application of the EGFR-

specific antibody cetuximab confirming the EGFR-specificity of LPEI-PEG-GE11. Further, 

after three or four cycles of polymer application followed by therapeutic application of 131I, 

tumor growth was significantly reduced associated with improved survival.  

In conclusion, these data clearly demonstrate the high potential of tumor-specific NIS gene 

therapy using viral and non-viral gene delivery vectors, which opens the exciting 

perspective of targeted NIS-mediated radionuclide therapy of extrathyroidal tumors even in 

the metastatic stage. 
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