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Zusammenfassung

Die dunkle Energie, die ungefähr 73% der gesamten Energiedichte des Universumes aus-
macht und dessen Ausdehnung beschleunigt, ist eines der größten ungelösten Probleme der
modernen Physik. Auf ihre Natur kann aus ihrem Einfluss auf die Entwicklung des Univer-
sums und das Strukturwachstum geschlossen werden, welches die Verteilung von Galaxien
und Gas auf kosmologischen Maßstäben beeinflusst. Akkurate Modelle, die die Effekte
von nicht-linearer Entwicklung, Bias und Rotverschiebungsverzerrungen mit einbeziehen,
sind notwendig, um präzise Informationen aus dem großskaligen Leistungsspektrum der
Galaxien abzuleiten. In dieser Dissertation präsentiere ich ein Modell des Leistungsspek-
trums, das mithilfe von 50 Simulationen der Dunklen Materieverteilung getestet wird.
Die Ergebnisse zeigen, dass dieses einfache Modell eine akkurate Beschreibung des Leis-
tungsspektrums für k . 0.15hMpc−1 sowohl der Dunklen Materie als auch der Halos, im
reellen und im Rotverschiebungsraum, darstellt. Obwohl das Modell nur auf großen Skalen
Gültigkeit besitzt, ist die Bestimmung der Zustandsgleichung der Dunklen Energie wDE

präziser, als wenn nur die Baryonischen akustischen Oszillationen alleine berechnet wer-
den, und die in der Form des Leistungsspektrums beinhaltete Information vernachlässigt
wird. Das Modell wird dann auf das Leistungsspektrum von circa 90000 hellen roten
Galaxien (LRGs) aus den 7646 deg2 der nördlichen Galaktischen Hemisphäre der siebten
Datenveröffentlichung des Sloan Sky Digital Survey angewandt. Die Fehler und die Ko-
rrelationsmatrizen werden aus den 160 LasDamas Katalogen gerechnet, welche die LRGs
und die Geometrie der Himmelsdurchmusterung simulieren. Um kosmologische Parame-
ter in fünf verschiedenen Parameterräumen zu messen, benutze ich die LRG Verteilung
zusammen mit der neuesten Messung von Temperatur- und Polarisationsfluktuationen im
kosmischen Mikrowellenhintergrund, die Relation zwischen Leuchtkraft und Distanz von
Typ 1a Supernovae, und die präzise Messung des lokalen Hubble Parameters. Die Anal-
yse zeigt, dass unser Universum geometrisch flach ist und dass es aus 4% Baryonen, 23%
Dunkler Materie und 73% Dunkler Energie besteht. Ich messe wDE = −1.025+0.066

−0.065 ohne
Zeitsabhängigkeit: das ist vereinbar mit einer Kosmologischen Konstante. In den nächsten
Jahren werden neue Experimente die Verteilung der Galaxien mit viel höherer Präzision,
als es heutzutage möglich ist, messen und Modelle, wie das hier benutzte, werden erlauben,
das gesamte Potenzial von Beobachtungen auszunutzen, um akkurate Bestimmungen der
kosmologischen Parameter zu erhalten.
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Abstract

Dark energy, which constitutes about 73% of the total energy density and causes the Uni-
verse expansion to accelerate, is one of the most important open problems in physics. The
nature of dark energy can be inferred from its effects on the evolution of the Universe and
the growth of structures as it influences the distribution of galaxies and gas at cosmological
scales at low and intermediate redshifts. To extract unbiased information from the large
scale galaxy power spectrum, accurate models, encoding the distortions due to non-linear
evolution, bias and redshift space distortions, are needed. In this thesis I present a model
for the full shape of the power spectrum and test its validity against a suite of 50 large
volume, moderate resolution N-body dark matter simulations. My results indicate that
this simple model provides an accurate description of the full shape of the dark matter and
halo power spectrum, both in real and redshift space, for k . 0.15hMpc−1. Even though
its application is restricted to large scales, this prescription can provide tighter constraints
on the dark energy equation of state parameter wDE than those obtained by modelling the
baryonic acoustic oscillations signal only, where the information of the broad-band shape of
the power spectrum is discarded. I then apply this model to a measurement of the power
spectrum of the distribution of about 90000 luminous red galaxies (LRGs) across 7646
deg2 in the Northern Galactic Cap from the seventh data release of the Sloan Sky Digital
Survey. The errors and mode correlations are estimated from the 160 LasDamas mock
catalogues, created in order to simulate the LRG galaxies and the survey geometry. Using
the galaxy distribution, in combination with the latest measurement of the temperature
and polarisation anisotropy in the cosmic microwave background, the luminosity-distance
relation from the largest available type 1a supernovae dataset and a precise determination
of the local Hubble parameter, I obtain cosmological constraints for five different parame-
ter spaces. The analysis performed in this thesis shows that the Universe is geometrically
flat and composed by about 4% of baryons, 23% of cold dark matter and 73% of dark
energy. I measure wDE to be −1.025+0.066

−0.065 without any evidence of time dependence, which
is compatible with a cosmological constant. In the next years new experiments will allow
to measure the clustering of galaxies with a precision much higher than today, and models
like the one used here will provide valuable tools in order to achieve the full potentials of
the observations and obtain unbiased constraints on the cosmological parameters.
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Chapter 1
Introduction

The publication of the equations of general relativity (Einstein, 1915, 1916) revolutionised
our understanding of the nature of gravitation and of the Universe. Their first cosmological
solutions, together with the realisation that galaxies are large objects outside the Milky
Way and receding from us, (e.g., Einstein, 1917; Friedmann, 1922; Opik, 1922; Friedmann,
1924; Lemâıtre, 1927; Hubble, 1929) showed that our Universe is not static but expanding.

Just before the second world war, Zwicky (1937) proved that the mass associated to
light in clusters of galaxies is much smaller than the one inferred from dynamics. This
showed that standard, light emitting matter, usually referred to as baryons, only constitutes
about 15% of the gravitational matter and that the majority of it is dark matter. In the
last decade of the 20th century, it became evident that dark and ordinary matter were
insufficient to describe accurately a variety of cosmological observations. It was at the end
of that decade that the relation between luminosity and distance of Type 1a supernovae
(SNIa) revealed that in the Universe about 73% of the total energy density comes from
an extra component, which causes the cosmic expansion to accelerate (Riess et al., 1998;
Perlmutter et al., 1999). The combination of SNIa observations (see Kowalski et al., 2008;
Amanullah et al., 2010, for more recent results) with other independent experiments, like
the measurements of the temperature fluctuations in the cosmic microwave background
(CMB, e.g. Hinshaw et al., 2003; Spergel et al., 2003, 2007; Komatsu et al., 2009, 2011),
the analysis of distribution of the galaxies on large scales (e.g. Efstathiou et al., 2002;
Percival et al., 2002; Tegmark et al., 2004; Eisenstein et al., 2005; Sánchez et al., 2006,
2009; Percival et al., 2010; Reid et al., 2010a; Blake et al., 2011) and the number density
of clusters as function of mass (e.g., Vikhlinin et al., 2009), draw a picture of a nearly flat
universe dominated by an exotic component, called dark energy, with about 23% of the
total energy content in the form of dark matter and with only 4% of baryons.

The nature of dark energy is one of the most important open problems in physics today
and its understanding has deep implications in the comprehension of the fundamental laws
of nature. The most basic model of dark energy describes it as a cosmological constant Λ,
for which density and pressure are constant and related by the equation of state parameter
wΛ = pΛ/ρΛ = −1. The only known mechanism that can produce a cosmological constant
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is the vacuum energy, but its density is, with a cut-off at the Planck scale, about 120 orders
of magnitude larger than the measured one. A large number of alternative models has been
explored in recent years. They are mostly separated in two groups: one where dark energy
is modelled as an evolving field, like quintessence (for reviews see, e.g., Peebles & Ratra,
2003; Copeland et al., 2006), the other in which the equations of general relativity are
modified in order to describe the acceleration as a dynamic effect (for a review see, e.g.,
Tsujikawa, 2010).

Many present day and future galaxy redshift surveys, like the Baryonic Oscillation
Spectroscopic Survey (BOSS, Schlegel et al., 2009; Eisenstein et al., 2011), the Panoramic
Survey Telescope & Rapid Response System (Pan-STARRS, Kaiser et al., 2002), the Dark
Energy Survey (DES, Abbott et al., 2005), the Hobby Eberly Telescope Dark Energy
Experiment (HETDEX, Hill et al., 2004) and, on a longer time scale, the space based
Euclid mission (Laureijs, 2009), have been designed to constrain the dark energy equation
of state parameter and its time evolution with very high accuracy. Some of these surveys are
also optimised to measure the baryonic acoustic oscillations (BAO), a signature imprinted
in the galaxy distribution by the acoustic fluctuations in the baryon-photon fluid in the
young and hot universe.

In this work I will concentrate on the distribution of galaxies on large scales as a means
to study the evolution and composition of the universe. The large scale structure of the
universe (LSS) is usually analysed statistically, in particular through the two-point corre-
lation function and its Fourier transform the power spectrum. Cosmological information
is extracted from the broad band shape of those functions as well as the BAOs. The lat-
ter shows up in the power spectrum as a quasi-harmonic series of dumped oscillations at
wave numbers 0.01hMpc−1 . k . 0.4 h Mpc−1 (Sugiyama, 1995; Eisenstein & Hu, 1998,
1999), and in the two-point correlation function as a unique broad and quasi-gaussian
peak at scales r ∼ 100− 110h−1 Mpc (Matsubara, 2004). The BAOs where first detected
in the correlation function of the luminous red galaxies (LRG) sample drawn from the
Sloan Digital Sky Survey (SDSS) by Eisenstein et al. (2005) and the power spectrum of
the two-degree Field Galaxy Redshift Survey (2dFGRS) by Cole et al. (2005). The BAO
feature has been object of intensive studies as a powerful tool to probe the geometry of the
Universe. The acoustic scale is related to the sound horizon scale at the drag epoch, i.e.
when the baryons where released from the photons. Because of the very high photon to
baryon ratio, this happened slightly later that the epoch in which these two components
decoupled (Komatsu et al., 2009). As this scale depends only on the plasma physics after
the big bang and can be calibrated using CMB data, it is in principle possible to use the
BAO scale as a standard ruler. Measuring the apparent size of the BAO in the directions
parallel and perpendicular to the line of sight, it is possible to measure the redshift depen-
dence of the Hubble parameter H and the angular diameter distance DA and thus constrain
cosmological parameters (Blake & Glazebrook, 2003; Hu & Haiman, 2003; Linder, 2003;
Seo & Eisenstein, 2003; Wang, 2006; Guzik et al., 2007; Seo & Eisenstein, 2007; Seo et al.,
2008; Shoji et al., 2009; Seo et al., 2010; Percival et al., 2010). It has been shown, however,
that the use of the BAOs alone comes at the price of discarding important information
encoded in the broad band shape of the power spectrum and correlation function (Sánchez
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et al., 2008; Shoji et al., 2009; Blake et al., 2011). For more recent cosmological analyses
based on the LSS see, e.g. Percival et al. (2007); Cabré & Gaztañaga (2009a); Gaztañaga
et al. (2009); Sánchez et al. (2009); Percival et al. (2010); Reid et al. (2010a); Kazin et al.
(2010); Blake et al. (2011); Tinker et al. (2011).

The shape of the power spectrum and of the correlation function, as well as the ampli-
tude and position of the BAO feature (Crocce & Scoccimarro, 2008; Sánchez et al., 2008;
Smith et al., 2008), are affected by: i) non-linear evolution of the clustering; ii) bias, caused
by the fact that galaxies, that we observe, do not trace perfectly the matter distribution
(e.g. McDonald, 2006; Matsubara, 2008b; Jeong & Komatsu, 2009); iii) redshift space dis-
tortions, that arise when deriving the distance of an object from its observed redshift,
which is the sum of a cosmological part and the doppler shift due to the peculiar velocity
of the emitter (e.g. Scoccimarro, 2004; Cabré & Gaztañaga, 2009a,b; Jennings et al., 2011;
Reid & White, 2011).

The increasing accuracy and volume of the present day and future galaxy redshift
surveys will allow to measure with very high precision the signal from galaxy clustering and
the BAO feature. In order to extract unbiased and accurate cosmological information, in
particular the characteristics of dark energy, systematic effects and the impact of non-linear
evolution, bias and redshift space distortions need to be carefully analysed and modelled.
The two main frameworks in which it is possible to model the large scale structure of the
universe are the halo model (HM, see Cooray & Sheth, 2002, for a review) and perturbation
theory (PT, see Bernardeau et al., 2002, for a review). Neither PT nor HM are accurate
enough for next generation of galaxy surveys. In particular, it has been proved that PT
can describe the power spectrum accurately only on very large scales or at high redshift,
when contributions up to third order are included (Jeong & Komatsu, 2006, 2009). In the
past few years different schemes to improve PT have been proposed. In this work I will
concentrate on one of these approaches, renormalised perturbation theory (RPT, Crocce &
Scoccimarro, 2006a,b). The basic idea of RPT is to reorganise all the contributions in the
standard PT such that each term is always positive and dominant in a small range of scales.
Matarrese & Pietroni (2007, 2008) proposed a method based on the renormalisation group
equations and their findings are analogous to RPT. An alternative approach within PT is to
truncate the expansion series and introduce a physically motivated closure equation in order
to obtain a closed system (e.g., Pietroni, 2008; Taruya & Hiramatsu, 2008; Taruya et al.,
2009), similarly to what is done in fluid dynamics introducing the equation of state. It is
possible to improve PT also through the renormalisation of the model parameters, relating
them to observable quantities (e.g., McDonald, 2006, 2007; Smith et al., 2009). The analysis
of perturbations in Lagrangian space, i.e. following the trajectories of the particles instead
of the density and velocity fluctuations (Euclidean approach), leads naturally to a partial
resummation of the terms in the standard PT and an improvement over it (Matsubara,
2008a,b).

With the exception of, e.g., Matsubara (2008b) and Taruya et al. (2010), the approaches
just introduced can describe the clustering of dark matter only, and it is non trivial to
include into the models the effects of bias and redshift space distortions. Because of this,
different phenomenological approaches based on some flavour of PT have been developed
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in the past years with the goal of introducing in a relatively simple way these effects (e.g.,
McDonald, 2006; Crocce & Scoccimarro, 2008; Sánchez et al., 2008; Jeong & Komatsu,
2009).

Plan for the thesis

Following this approach, in Chapter 4, I will present a model of the large scale power
spectrum inspired by RPT that, with the introduction of few parameters, can describe
accurately the the full shape of the two-point statistics when both the bias and redshift
space distortions are included. This model is then applied to the power spectrum that
I measure from a LRG catalogue. Combining it with information from CMB, SNIa and
an independent measurement of the local Hubble parameter, I extract tight cosmological
constraints.

The basic cosmological concepts and quantities used throughout this work are pre-
sented in Section 2.1. Section 2.2 describes briefly the perturbation theory approach and
how renormalized perturbation theory can improve it. In Chapter 3 I depict some of
the observational evidences that suggested first and confirmed later that the Universe is
geometrically close to flat and dominated by a dark energy component. In particular I
illustrate the experiments that I use in Chapter 5 to extract cosmological constraints: the
large scale structure of the Universe, cosmic microwave background, Type 1a supernovae
and the measurement of the local Hubble parameter.

My model for the full shape of the large scale power spectrum is presented and tested
in Chapter 4. In Section 4.1 I describe the set of simulations used to check the accuracy of
the model and some technical details about the computation of the power spectrum from
simulation boxes. The model, based on the approach used for the correlation function by
Crocce & Scoccimarro (2008) and Sánchez et al. (2008, 2009), is explained in Section 4.2.
Finally in Section 4.3 I describe the tests that I perform against the dark matter and halo
power spectra, both in real and redshift space, and I show the range of scales in which
the model is accurate and can recover unbiased constraints on the dark energy equation of
state parameter.

In Chapter 5 I apply my model to the power spectrum measured from a LRG sample
taken from the seventh data release of Sloan Digital Sky Survey (Sections 5.1.1 and 5.2.1).
The mock catalogues used in order to estimate the errors and correlations are presented in
Section 5.1.2 and their power spectrum and covariance are shown in Section 5.2.2. Sections
5.3.1 and 5.3.2 present the parameter spaces analysed and the procedure that I use to
extract cosmological information. Similarly to what is done in Chapter 4, in Section 5.3.3
I test the model against the mock catalogues in order to access the validity of the model
also in presence of a complex geometry. In Section 5.4 I combine the power spectrum with
the cosmic microwave background, the type Ia supernovae and the measurement of the
Hubble parameter and constrain cosmological parameters for the five parameter spaces.

In Chapter 6, I summarise the results of this work and draw my conclusions.



Chapter 2
General relativity and cosmology

The theory of general relativity (GR, Einstein, 1915, 1916) allowed a new understanding of
the nature of gravity and of the history and composition of our Universe (for early studies
see e.g., Einstein, 1917; Friedmann, 1922, 1924; Lemâıtre, 1927). Few years later Hubble
(1929) discovered that galaxies are receding from us at a velocity proportional to their
distance, which gave observational support to the cosmological theories just developed,
that predicted that the Universe was not stationary but expanding. In this chapter I
introduce the basic quantities and equations to describe the evolution of a homogeneous
and isotropic universe (Section 2.1) and the principal concepts of cosmological perturbation
theory (Section 2.2).

2.1 Homogeneous and isotropic universe

The Copernican principle states that the Universe is homogeneous, i.e. there are no priv-
ileged positions, and isotropic, i.e. there are no privileged directions. This is clearly non
valid at relatively small scales, where matter is distributed in clumps separated by large
voids, but the principle holds at extremely large scales, as shown by galaxy number counts
and observations of X-ray, γ-ray and the cosmic microwave background (CMB, the latter
will be described in Section 3.2.3).

Under these assumptions, the metric gµν is described by the Friedmann-Lemâıtre-
Robertson-Walker (FLRW) one:

ds2 = gµνdx
µdxν = −dt2 + a2(t)

[
dr2

1− kr2
+ r2

(
dθ2 + sin2 θdφ2

)]
, (2.1)

where a(t) is the scale factor, t, r, θ and φ are the time and the three comoving spatial
coordinates, i.e. stationary with respect to changes in a(t), in spherical representation and
k is the curvature. The physical coordinates, which evolve with time, are related to the
comoving ones by the scale factor. In this work, the scale factor is normalised to a = 1 at
present day. The value of k defines whether the geometry is flat (k = 0), open (k = −1)
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or closed (k = +1). Through the whole thesis I use the following index conventions: greek
indices run over the time (0) and space coordinates (1,2,3), latin indices indicate only space
coordinates and repeated indices, one upper and one lower, are summed over. I also use a
unit system in which ~ = c = kB = 1.

The evolution of the universe can be computed inserting the metric from equation (2.1)
into the general relativity equation:

Gµν = Rµν −
1

2
gµνR = 8πGTµν . (2.2)

Rµν and R = gµνRµν are the Ricci tensor and scalar, respectively, and are non-linear
functions of the metric, G is Newton’s constant and Tµν is the energy-momentum tensor,
that for perfect fluids with density ρ and pressure p has, in the rest frame, the form:

T ν
µ = Tµαg

αν =


−ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

 . (2.3)

Solving equation (2.2) with the FLRW metric, it is possible to obtain two coupled
differential equations, known as Friedmann equations :(

ȧ

a

)2

=
8πG

3
ρ− k

a2
(2.4a)

and
ä

a
= −4πG

3
(ρ+ 3p). (2.4b)

The two equations relate the rate of the expansion or contraction and the acceleration of
the universe to the curvature and the densities and pressures of its constituents. The left
hand sides of the equation (2.4) are usually parametrized through the Hubble parameters
H = ȧ/a and the deceleration parameter q = −äa/ȧ2. Often the Hubble parameter is
denoted by the dimensionless quantity h = H/100 km s−1 Mpc−1.

Densities are commonly indicated by Ωi = ρi/ρcr, where the ρcr = 3H2
0/8πG, dubbed

critical density, is defined from equation (2.4a) assuming flatness, k = 0. With this defini-
tion it is easy to see the present day relation between the total density and the curvature:

Ω− 1 =
k

H2
0

. (2.5)

Ω = 1 if and only if the universe is geometrically flat. Higher and lower values of density
requires the geometry to be, respectively, close or open, thus k = +1 or k = −1. It is also
possible to define a density of curvature as Ωk = −k/H2

0 , with which Ω + Ωk = 1 for a = 1.
From the time component of the conservation of T µν , or equivalently from combining

equations (2.4), it is possible to obtain an equation for the time evolution of the densities:

ρ̇

ρ
= −3

ȧ

a
(1 +

p

ρ
). (2.6)
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Assuming that pressure and density of each cosmic component are related by an equation
of state parameter w:

p = wρ, (2.7)

equation (2.6) implies a simple evolution of the densities: ρi ∝ a−3(1+wi). Assuming the
density of the components and the correspnding wi, it is possible to calculate the curvature
and the time evolution of the universe. In the same way from the cosmic history it is
possible to infer, assuming the values of equation of state parameter, information regarding
densities and curvature.

Observations, some of which are introduced in Chapter 3, show that the Universe
is undergoing an accelerated expansion with H0 = H(a = 1) ≈ 70 km s−1 Mpc−1 and
q0 = q(a = 1) < 0 (Gong & Wang, 2007), is close to geometrically flat (k ≈ 0) and that
the main components are: i) standard matter, referred to in the literature as baryons ;
ii) dark matter, that interacts only gravitationally; iii) radiation, photons and relativistic
particles, and iv) dark energy, responsible for the acceleration of the expansion. Baryons
and dark matter contribute to about 4% and 23% of the total energy density budget and
are composed by non-relativistic particles with wb = wDM = 0. The sum of baryons and
dark matter is usually referred to as matter and its density, as well as the one for the
two components separately, evolves like ρM ∝ a−3, as expected by the matter conservation
in an isolated system. Radiation, being relativistic, has w = 1/3 and its density evolves
as ρrad ∝ a−4. The extra factor 1/a comes from the adiabatic change in the energy of
radiation as the volume of the universe changes. This also means that radiation, although
now negligible (Ωrad ≈ 10−4), was dominant at early times. The nature of dark energy is
one of the most puzzling open problems in modern physics. The simplest model, which
agrees with a large range of observations, is that dark energy is described by a cosmological
constant, Λ, with wΛ = −1. Because of this, its density ρΛ = Λ/8πG ≈ a0 is constant in
time. The model just depicted is usually called ΛCDM.

The scale factor is often indicated by the redshift z = λ2/λ1 − 1, i.e. the change
in wavelength of a photon between the emission at time t1 and its observation at t2.
Since the energy of a photon, assuming that the emitter and the observer are stationary
with respect to their comoving coordinates, scales as the inverse of the scale factor, its
wavelength is λ(t) ∝ a(t). Thus z = a(t2)/a(t1)− 1 or, if the photon is observed at present
time, z = a−1 − 1, with a the scale factor at emission. Assuming the value of H0, the
cosmological densities and a generic form of the dark energy equation of state parameter,
it is possible to convert redshifts into comoving distances between the emitter and the
observer:

DC =
1

H0

∫ z

0

dz′

E(z′)
(2.8)

with

E2(z) = ΩM (1 + z)3+Ωk (1 + z)2+Ωr (1 + z)4+ΩDE exp

{
−3

∫ z

0

d z′

z′
[1 + w(z′)]

}
. (2.9)

In the cosmological constant case, the argument of the exponent in equation (2.9) be-
comes 0. The time passed from the emission at redshift z, called look back time, can be
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Figure 2.1: Time evolution of
the Universe for different val-
ues of the density of matter
(Ωm) and cosmological constant
(ΩΛ). The upper line corre-
sponds to a flat ΛCDM universe
with 30% of matter and 70% of
dark energy. The lower three
show the scale factor evolution
in open, flat and closed mat-
ter dominated scenarios. Figure
from: http://map.gsfc.nasa.

gov/universe/uni_fate.html

easily computed as tL = H−1
0

∫ z
0

dz′ [(1 + z′)E(z′)]−1. The redshift, which can be in prin-
ciple measured for each light source, makes it possible to analyse the three dimensional
distribution of objects and to obtain the age of the Universe when their light was emitted.

Figure 2.1 shows the time evolution of the scale factor of the universe for four different
combinations of matter and dark energy density with the same present day value of H.
Given that H0 > 0, all the cases shown began at a = 0 with a singularity, the big bang,
characterised by infinite density and temperature and infinitesimal size. About 10−35

seconds after the big bang, it is believed that a short phase of exponential expansion,
called inflation, occurred. By the time it finished, ∼ 10−32 seconds later, the universe
had increased its size at least by a factor e60. Inflation has been introduced in order to
explain why our Universe is almost flat and very uniform, as well as the origin of density
fluctuations (see, e.g., Liddle, 1999; Liddle & Lyth, 2000, for more details). Afterwards
the expansion continues, while the temperature decreases adiabatically. Circa 3 minutes
after the big bang, the temperature of the universe is around T = 109K: at this stage
protons and neutrons can combine and form deuterium, helium and very small quantities
of lithium and beryllium. At about z = 3000, since the radiation density decreases much
more rapidly than that of the matter, the former stops dominating the energy budget and
the latter becomes the most important component. At z = 1000, i.e. about 300,000 years
after the big bang, the thermal energy of the photons drops below 1 eV (T ∼ 104K) and
the electrons can combine with the nuclei forming neutral atoms, mostly hydrogen. This
epoch is dubbed recombination. The photons are then free to stream and we observe them
now as the CMB (see Section 3.2.3). The processes just described occure for all the models
depicted in Figure 2.1, although at times that depend on the exact values of the density
and equation of state parameters. If there is no cosmological constant, i.e. ΩΛ = 0, matter
will continue to be the dominant component and its gravitational pull will decelerate the

http://map.gsfc.nasa.gov/universe/uni_fate.html
http://map.gsfc.nasa.gov/universe/uni_fate.html
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expansion of the universe. If the density is Ω > 1, as represented by the orange in the
figure, the pull will be enough to eventually stop the expansion and the scale factor will
begin to decrease, reaching a new singularity: the big crunch. If Ω ≤ 1 the expansion will
continue forever, but with two different asymptotes at infinite. In the case of the total
density being less than one, shown by the blue line in Figure 2.1, the gravitational mass
is not enough to stop the expansion and the rate of expansion will always remain strictly
positive. Ω = 1 divides the two cases just described: the Hubble parameter tends to zero
at infinity and the expansion will stop asymptotically (green line). If the a cosmological
constant is present and Ω ≤ 1 or k/a2 < 3ρΛ, an accelerated expansion phase begins
and dark energy becomes dominant. In the case shown in Figure 2.1 with a red line, the
acceleration begins at zacc ≈ 0.7 and the universe undergoes a transition from matter to
Λ dominated at z ≈ 0.3. As the matter density becomes negligible the expansion becomes
exponential, as in the inflationary epoch.

2.2 Cosmological perturbation theory

The Copernican principle allows for relatively simple solutions of equation (2.2). In reality
the distribution of matter is not homogeneous and, given the non-linear nature of such
equations, it is not possible to solve them exactly for realistic metrics. For sufficiently
large scales, or high redshifts, the deviations from homogeneity and isotropy are “small”
and it is possible to apply perturbation theory (PT; see, e.g., Bardeen, 1980; Kodama
& Sasaki, 1984; Durrer, 1994; Bernardeau et al., 2002; Dodelson, 2003, for more detailed
explanations). The full metric and energy-momentum, indicated with a tilde, can then be
decomposed into a background part, described in Section 2.1 by the FLRW metric, and
deviations δgµν and δTµν :

g̃µν = gµν + δgµν and T̃µν = Tµν + δTµν . (2.10)

The fluctuations δgµν and δTµν are separated into three different modes: scalar-, vector-
and tensor-like. It is possible to demonstrate (Kodama & Sasaki, 1984) that the three
components are decoupled. In the rest of this work I will concentrate on scalar modes,
since they connect the metric perturbations to density, pressure and velocity. Vector-like
perturbations are damped by the cosmic expansion and tensor modes are related to the
propagation of gravitational waves.

Scalar perturbations can be generally described by four functions for the metric (A, B,
HL and HT) and four for the energy momentum tensor (δ, v, πL and πT, Kodama & Sasaki,
1984). The functional form of these variables depends on the choice of the coordinate
system, commonly referred to as gauge. Gauge transformations are characterised by two
degrees of freedom. It is therefore possible to chose a combination of the eight variables
of above and obtain six gauge invariant quantities. Common examples of gauge invariant
variables are the Bardeen potentials Φ and Ψ and the four generalisations of the energy-
momentum perturbations ∆, V , Γ and Π (Bardeen, 1980). In the conformal Newtonian
gauge the energy momentum perturbations can be identified with the following physical
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quantities: i) δ(x, t) = ρ(x, t)/ρ̄(t) − 1, the density contrast in the point x at time t with
respect to the mean value ρ̄(t); ii) v(x, t) the peculiar velocity, i.e. the intrinsic velocity
of objects with respect to the comoving coordinates; iii) the isotropic and iv) anisotropic
pressure fluctuations.

Applying equation (2.2) to the scale invariant scalar modes of δgµν and δTµν it is
possible to obtain two equations that connect the potentials Φ and Ψ to the density ∆
(generalised Poisson equation) and to the anisotropic pressure Π. The conservation of
the energy-momentum tensor produces the generalised version of the continuity and Euler
equations. In order to break the degeneracies between the six variables two assumptions
are usually made: i) isotropic pressure, i.e. Π = 0 or equivalently πT = 0, which implies
that Φ = −Ψ and ii) adiabadicity, i.e. Γ = 0 which corresponds to postulate that density
and pressure perturbations are related by δp = wδρ, the same equation of state as the
corresponding mean values (equation 2.7).

The continuity and Euler equations, written for the conformal Newtonian gauge, read:

∂δ(x, τ)

∂τ
+∇{[1 + δ(x, τ)] v(x, τ)} = 0 (2.11a)

and

∂v(x, τ)

∂τ
+H(τ)v(x, τ) + v(x, τ) · ∇v(x, τ) = −∇φ(x, τ) +

1

ρ
∇ [p (πL + πT)] , (2.11b)

where τ is the conformal time defined by dτ = dt/a, H = H/a and φ is the gravitational
potential sourced by density fluctuations. With the assumptions described above and the
use of the Poisson equation to substitute φ with δ, equations (2.11) become, in Fourier
space1:

∂δ(k, τ)

∂τ
+ θ(k, τ) = −

∫
d3k1d3k2

(2π)3
δD(k− k1 − k2)α(k1,k2)δ(k1, τ)θ(k2, τ) (2.12a)

and

∂θ(k, τ)

∂τ
+H(τ)θ(k, τ) +

2

3
ΩmH2(τ)δ(k, τ) =

−
∫

d3k1d3k2

(2π)3
δD(k− k1 − k2)β(k1,k2)θ(k1, τ)θ(k2, τ),

(2.12b)

where θ(x, τ) = ∇ · v(x, τ) and

α(k1,k2) =
(k1 + k2) · k1

k2
1

, β(k1,k2) =
|k1 + k2|2k1 · k2

2k2
1k

2
2

. (2.13)

The last two equations describe the non-linear coupling between different modes k.

1Through all this thesis we use the Fourier transform convention: a(x) = (2π)−3
∫

d3k a(k)eikx and
a(k) =

∫
d3x a(x)e−ikx
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At linear order, the right hand sides of equations (2.12), that are of second order in
the perturbations, can be neglected. Differentiating equation (2.12a) with respect to τ
and substituting ∂θ(k, τ)/∂τ with equation (2.12b), it is possible to obtain a second order
differential equation for the density perturbation, that has a generic solution of the kind
δ1(k, τ) = D+

1 (τ)A(k) + D−1 (τ)B(k). D+
1 and D−1 are an increasing and a decreasing

function of time only, which contain information about the cosmological parameters, and
A and B are functions of the wave number only. Considering only the growing mode, called
linear growth factor, the linear solutions of equations (2.12) are:

δ1(k, τ) = D1(τ)δ(k, 0), θ1(k, τ) = −H(τ)f(τ)D1(τ)δ(k, 0), (2.14)

where f(τ) = d lnD1(τ)/d ln a and δ(k, 0) is the initial density contrast. For simplicity
I have dropped the superscript “+” of D1. The linear growth factor as function of scale
factor a is

D1(a) =
5ΩM

2
E(a)

∫ a

0

da′

a′E(a′)
(2.15)

Beyond the linear regime, equations (2.12) can be solved perturbatively through recur-
sive substitutions and assuming that at order n all the factors δ and θ on the right hand
sides are set to their linear theory values. For an Einstein-de Sitter cosmology (Ωm = 1
and ΩΛ = 0), it is possible at each order to factorize the time and k dependance into two
separate functions. Noting that in this case D1 = a and f = 1, the full solutions can then
be written as

δ(k, τ) =
∞∑
n=1

an(τ)δn(k), (2.16a)

θ(k, τ) = −H(τ)
∞∑
n=1

an(τ)θn(k) (2.16b)

with

δn(k) =

∫
d3q1 . . . d

3qn
(2π)3n−3

δD(k−
n∑
i=1

qi)Fn(q1, . . . ,qn)δ(q1, 0) . . . δ1(qn, 0) (2.17a)

and

θn(k) =

∫
d3q1 . . . d

3qn
(2π)3n−3

δD(k−
n∑
i=1

qi)G1(q1, . . . ,qn)δ1(q1, 0) . . . δ1(qn, 0). (2.17b)

The PT kernels F and G couple modes with different wave-numbers. Comparing equations
(2.17) and (2.14), it is clear that at linear order (i.e. n = 1), the kernels are F1 = G1 = 1.
At any higher order they can be computed recursively from:

Fn(q1, . . . ,qn) =
n−1∑
m=1

Gm(q1, . . . ,qm)

(2n+ 3)(n− 1)
[(2n+ 1)α(k1,k2)Fn−m(qm+1, . . . ,qn)

+2β(k1,k2)Gn−m(qm+1, . . . ,qn)] ,

(2.18a)
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Gn(q1, . . . ,qn) =
n−1∑
m=1

Gm(q1, . . . ,qm)

(2n+ 3)(n− 1)
[3α(k1,k2)Fn−m(qm+1, . . . ,qn)

+2nβ(k1,k2)Gn−m(qm+1, . . . ,qn)] ,

(2.18b)

where k1 = q1 + . . .+ qm, k2 = qm+1 + . . .+ qn. For n = 2, the kernels are:

F2(q1,q2) =
5

7
+

1

2

q1 · q2

q1q2

(
q1

q2

+
q2

q1

)
+

2

7

(q1 · q2)2

q2
1q

2
2

(2.19a)

G2(q1,q2) =
3

7
+

1

2

q1 · q2

q1q2

(
q1

q2

+
q2

q1

)
+

4

7

(q1 · q2)2

q2
1q

2
2

. (2.19b)

Available data do not agree with the Einstein-de Sitter model, and therefore the per-
turbative approach just shown becomes in principle not valid. However for ΛCDM-like
cosmologies the separability of time and wave-number can be approximatively maintained
when the proper growth factor D and its logarithmic derivative f are used. Equations
(2.16) can therefore be written as

δ(k, τ) =
∞∑
n=1

Dn
1 (τ)δn(k, τ), (2.20a)

θ(k, τ) = −H(τ)f(τ)
∞∑
n=1

Dn
1 (τ)θn(k, τ). (2.20b)

In principle with the few ingredients listed above, it would be possible to describe the full
density and velocity field at cosmological scales. Unfortunately, we do not have access to the
exact initial conditions, set by the inflation, and we cannot observe the dynamical evolution
of the Universe, since its timescales are much longer than human ones. Without this
information, it is only possible to treat the perturbations statistically, assuming that they
are a stochastic realisation of a given process. In the rest of this dissertation I concentrate
on the density fluctuations. A stochastic process can be described as a collection of n-
point ensemble averages, denoted by 〈δ1 . . . δn〉. Without loss of generality, the mean
of the fluctuations can be set to zero by definition, i.e. 〈δ(k, τ)〉 = 0. From the two-
point ensemble average, i.e. the variance, the power spectrum or its Fourier transform the
correlation function can be defined as

〈δ(k1, τ)δ∗(k2, τ)〉 = (2π)3P (k, τ)δ3
D(k1 − k2) (2.21a)

and
〈δ(x)δ∗(x + r)〉 = ξ(r), (2.21b)

respectively, where δ3
D(k) is the three dimensional Dirac delta function. If the process

is Gaussian, the mean and variance are sufficient to describe the full system, and the
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higher order statistics can be decomposed as products and sums of the one- and two-point
averages. Observational constraints (e.g., Komatsu et al., 2011) show that deviations from
this primordial Gaussianity, if present, are very small; therefore I assume these deviations
to be null.

Because of the assumption that the Universe is isotropic, the power spectrum and
the correlation function are independent of the direction of the wave number k or the
separation r and it is possible therefore to substitute the vectors with their moduli. Given
the definition of equation (2.21a) and the perturbative expansion of equation (2.16a),
the power spectrum itself can be expanded in series as P (k, τ) =

∑
n Pn(k, τ), where

Pn(k, τ) = D2n
1 (τ)Pn(k). At linear order the power spectrum is simply

P1(k, τ) = D2
1(τ)P (k, 0), (2.22)

with P (k, 0) the initial power spectrum, while the next order contribution is the sum of
two terms, each combining two linear power spectra: P2(k, τ) = P22(k, τ)+P13(k, τ), where

P22(k, τ) =
1

4π3

∫
d3q|F2(k− q,q)|2P1(|k− q|, τ)P1(q, τ) (2.23a)

and

P13(k, τ) =
3

4π3
P1(k, τ)

∫
d3qF3(k,q,−q)P1(q, τ). (2.23b)

As all the averages of an odd number of δ(k, 0) are zero, these are the only two contributions
at second order. The third order is given by P3(k, τ) = P15(k, τ) + P24(k, τ) + P33(k, τ),
where each term is a complex double integral and combines three linear power spectra at
different wave-numbers (for the explicit expression of these three terms see, e.g., appendix
A in Carlson et al., 2009).

The shape of the initial power spectrum, P (k, 0) = Pprim(k)T 2(k), depends on how
inflation converted quantum fluctuations into cosmological ones (Pprim(k)) and on how the
fluctuations at a given scale behave when they enter in the causal horizon as the universe
expands, which is encoded in the transfer function, T (k). Standard inflationary models
predict that primordial cosmological perturbations are created as a nearly scale invariant
power law, i.e. Pprim(k) ∝ kns , with the spectral index ns ≈ 1. Perfect scale invariance
is equivalent to the condition that the power spectrum is Harrison-Zel’dovich-Peebles:
k̄3P (k̄, τcros) = const when k̄ = H(τcros), i.e. when it crosses the horizon at τcros. The form
of T (k) depends on when a given mode k enters the horizon. Very small scales, i.e. large
values of k, cross it in the radiation dominated era, where the photon pressure and the
expansion create a damped oscillator that suppresses the amplitude of the perturbation.
Well within the matter dominated era, instead, all the density perturbations grow asD+

1 (τ).
This means that T (k →∞)→ 0 and T (k → 0)→ 1. The initial power spectrum P (k, 0) is
therefore approximately described by a double power law (kns at very large scales and k−i,
with i > 0 at very small scales) connected smoothly and with a peak, also called turnover,
at the scale corresponding to the horizon scale at the matter-radiation equality.

The linear power spectrum P1(k, τ) and the first three perturbation terms P2(k, τ),
P3(k, τ) and P4(k, τ) as computed from standard perturbation theory are shown in the
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Figure 2.2: Left panel: non-linear power spectrum, green line, decomposed according to
perturbation theory as the sum of the linear term, blue line, and the first three perturbation
terms, red, violet and cyan lines. Solid and dashed lines indicates positive and negative
contributions, respectively. Note the different convention in the figure: the index of the
series starts from 0 instead then from 1. Right panel: same non-linear power spectrum
decomposed according to renormalised perturbation theory. The terms P

(0)
RPT and P

(n)
RPT,

for n > 0 in the figure are equivalent to G2(k, τ)P (k, 0) and Pn+1MC(k, τ) from equation
(2.25). Figures from Crocce & Scoccimarro (2006a).

left panel of Figure 2.2 with blue, red, violet and cyan lines, respectively, as a function
of the wave number rescaled by the dimensionless Hubble parameter. Solid and dashed
lines denote positive and negative contributions. Note that in the figure a convention is
used, according to which the starting index of the series expansion is “0” and not “1”, as
done here. This figure shows clearly the main problem of standard perturbation theory:
with the exception of the linear power spectrum, each term has both positive and negative
contributions and their absolute amplitudes do not decrease substantially with increasing
order nor do their maxima or minima shift significantly to smaller scales. Because of
this it is not possible to predict the sign and amplitude of any term before computing
it explicitly, which makes the choice of where to truncate the PT expansion problematic.
Therefore PT can be used to describe only the mildly non-linear regime. At low redshift,
this translates into the fact that this theory holds only for scales k . 0.1hMpc−1, if the
first two perturbative contributions are used. It has been shown (e.g., Jeong & Komatsu,
2006, 2009) that at higher redshift, e.g. z = 4− 5, the same terms can describe the power
spectrum up to k ≈ 0.4hMpc−1.

In the last few years, however, many different approaches to improve PT have been
studied. In this work I concentrate on renormalised perturbation theory (RPT, Crocce &
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Scoccimarro, 2006a,b), as it is the base of the phenomenological model that is described in
Section 4.2. Approaches based on renormalisation group equations, inspired by quantum
field theory, are complementary to RPT (e.g., Matarrese & Pietroni, 2007, 2008). It is
possible also to use equation (2.20a) to construct a sequence of n-point ensemble aver-
age and introduce a closure equation in order to truncate the series (e.g., Pietroni, 2008;
Taruya & Hiramatsu, 2008; Taruya et al., 2009). This is similar to what is done in fluid
dynamics when introducing an equation of state. PT can also be improved renormalising
the parameters of the model in order to obtain observational quantities (e.g., McDonald,
2006, 2007; Smith et al., 2009).

In few words, RPT consists of a reorganisation of the terms in the PT expansion shown
above. At first all the terms in the standard perturbative expansion that are proportional
to the primordial power spectrum, like P13 and P15, are grouped together into a common
factor G(k, τ), called renormalized propagator, that encodes the loss of information of the
initial conditions due to non-linear evolution. G(k, τ) ≈ D1(τ) at very large scales and
decreases at increasing k approximatively as a gaussian with zero mean and characteristic
width

k?(τ) =

[
1

6π2

∫
dk P1(k, τ)

]−1/2

. (2.24)

It is interesting to note that, by definition, k? increases with the inverse of D1(z) (Crocce
et al., 2011). The remaining terms are organised according to the number n of initial modes
coupled and enclosed into the mode coupling power spectrum PnMC(k, τ). As example the
lower order, and prototype, of P2MC(k, τ) is P22 of equation (2.23a). The full non-linear
power spectrum is described by RPT as

P (k, τ) = G2(k, τ)P (k, 0) +
∞∑
n=2

PnMC(k, τ). (2.25)

The right panel of Figure 2.2 shows the linear power spectrum multiplied by the renor-
malized propagator as P

(0)
RPT (blue line) and the first three mode coupling terms, in red,

violet and cyan. Note that P
(n)
RPT, for n > 0 in the figure are the same as P(n+1)MC(k, τ) in

equation (2.25). The advantage of RPT over standard PT is clear: in the former case each
term is positive and is dominant over a restricted range of wave-numbers, which increases
with the number of initial modes coupled. This makes, in principle, simple to decide where
to truncate the series of equation (2.25) if a given precision at wave number k is required.
Recently a multi-fluid approach based on RPT and designed to describe the dark matter
and baryon power spectra has been proposed by Somogyi & Smith (2010).

A complementary approach to the one just described, called Eulerian, is Lagrangian
perturbation theory (LPT), in which the particle trajectories, instead of the density and
velocity fields, are followed. This is done through a map Ψ(q, τ), the displacement field,
which connects the initial Lagrangian position q to the Eulerian position x at any time τ :

x(q, τ) = q + Ψ(q, τ). (2.26)
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It has been shown (Matsubara, 2008a,b) that LPT leads naturally to a partial resummation
of an infinite number of Eulerian PT terms and has some analogy with RPT. In the mildly
non-linear regime, LPT and RPT are very similar: they both describe the power spectrum
as a damped linear component plus a small contribution due to mode coupling and they
have the same damping scale given by equation (2.24). However in LPT all the perturbative
terms are suppressed in the same way, which makes impossible to use it at non-linear scales.

In this chapter I have introduced the basic equations and quantities that characterise
the composition and history of a homogeneous and isotropic universe and I have presented
the main concepts of perturbation theory. These notions are the basis of the work exposed
in the rest of this thesis.



Chapter 3
Observational evidence

Observations, analysed within the framework described in Chapter 2, show that the Uni-
verse is close to geometrically flat (i.e. Ωk ≈ 0), composed of dark energy, which behave
similarly to a cosmological constant with wDE = −1 and ΩΛ ≈ 0.73, cold dark matter, for
which ΩDM ≈ 0.23 and baryons with Ωb ≈ 0.04 and that primordial density fluctuations
are adiabatic, nearly Gaussian and almost scale invariant (see e.g. Komatsu et al., 2011)

In this chapter I describe some of the observations that I use to constrain cosmological
parameters in Chapter 5. Since it is the main topic of my doctoral work, in Section 3.1 I
introduce the most important concepts related to the large scale structure of the Universe
(LSS). Then in Section 3.2 I describe briefly type Ia supernovae (Section 3.2.1), the direct
measurement of the local Hubble parameter (Section 3.2.2) and the cosmic microwave
background (Section 3.2.3).

In Section 3.3 I show that the use of different independent observations is important in
cosmology. In fact, each of the tests described in this chapter is more or less sensitive to
certain parameters or combinations of parameters and presents strong degeneracies among
some of them. The use of the combined information from different sources can break some
of the degeneracies and allow to obtain more accurate cosmological parameters.

3.1 Large Scale Structure

Dark matter composes about the 85% of the total gravitational mass in the Universe, in-
fluencing its evolution, both in terms of background and perturbations, much more than
baryons. Despite this fact, dark matter interacts only gravitationally and we cannot di-
rectly measure its distribution. We can observe mostly photons emitted by stars, gas or
dust and we can trace dark matter through the distribution of these sources or through
its effects on the path of the light. The latter is called gravitational lensing and is not
discussed in this thesis. I will concentrate on the distribution of light sources, in particular
galaxies.

Galaxies are biased tracers of the underlying matter distribution, i.e. they do not trace
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it exactly. The relation between galaxies and the dark matter distribution changes with
redshift and depends upon the mass m, the luminosity L and the assembly history of the
galaxies, as it has been measured both observationally and with numerical simulations (e.g.,
Davis & Geller, 1976; Norberg et al., 2001, 2002; Zehavi et al., 2002; Phleps et al., 2006;
Croton et al., 2007; Dalal et al., 2008; Reid et al., 2010b). Assuming that the connection
between galaxy and dark matter densities is local, i.e. that it can be described as function
of the local coordinates only, and that δDM(k) � 1, the galaxy density contrast can be
written as (Fry & Gaztanaga, 1993):

δg(k, z,m, L) = f(δDM(k, z)) =
∞∑
n=0

bn(z,m, L)

n!
δnDM(k, z). (3.1)

At lowest order all the terms n > 1 can be discarded and Pg(k, z,m, L) = b2
1(z,m, L)PDM(k, z),

with b1 the linear bias. I assume that the term b0, which is related with the stochasticity
of the galaxy bias, is uncorrelated with δDM(k, z) (e.g. Yoshikawa et al., 2001; Jeong &
Komatsu, 2009). High mass objects tend to grow and cluster in over-dense regions and to
be almost absent where the density is low: this enhances the density fluctuations, causing
an increase of the power spectrum amplitude and thus b1 > 1. Low mass and luminosity
galaxies are instead more homogeneously distributed, which results in a decrease of the
power spectrum and in a bias less than unity. The coefficients in equation (3.1) cannot be
determined within the perturbation theory approach, thus either they are considered as
free parameters or a different theoretical framework must be used. The halo model (HM,
see Cooray & Sheth, 2002, for a review) provides a way to compute, although only approx-
imate, the values of the bias parameters both for haloes, i.e. bound structures that form
due to gravitational collapse of dark matter in over-dense regions, and galaxies, that form
in these haloes. One of the basic ingredients of the HM is the mass function n(z,M), which
represents the comoving number density of haloes of mass M at redshift z. The functional
form of n(z,M) depends upon the cosmology and the dynamics of the formation of haloes.
It has been first determined analytically assuming that the collapse is spherical (Press &
Schechter, 1974) and later improved by allowing for the formation of ellipsoidal structures
(Sheth & Tormen, 1999; Sheth et al., 2001). The mass function has also been measured
from N-body numerical simulations, providing a higher accuracy (see, e.g., Jenkins et al.,
2001; Warren et al., 2006; Tinker, 2007; Pillepich et al., 2010). The latter approach is
limited by the resolution and the volume of the simulation, which regulate the smaller and
larger halo masses achievable and therefore the mass range over which the measurement
is precise. From the density contrast of haloes with mass M that collapsed at redshift z1

and that are at z in a volume V containing mass MV and using the expansion of equation
(3.1), it is in principle possible to estimate the bias parameters as complex functions of the
n(z,M) and its derivatives. Assuming the mass function from Sheth & Tormen (1999) the
linear bias is

b1(z,m) = 1 +
qν − 1

δsc(z)
+

2p

δsc(z) (1 + (qν)p)
, (3.2)

where p ≈ 0.3, q ≈ 0.75, δsc(z) is the critical density which causes the spherical collapse
at z and ν = δ2

sc(z)/σ2(m), where the denominator is the variance of the initial density
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contrast, extrapolated linearly to present epoch, in a sphere of radius determined by the
mass and the mean density of the halo as R = (3m/4πρ̄)1/3. Equation (3.2) shows that
the bias grows with mass, according to the idea that higher dark matter over-densities
collapsed earlier. The bias of a halo sample with masses within the limits M1 and M2 can
be measured with a weighted average:

b1 eff(z, [M1,M2]) =

∫M2

M1
dM ′ b1(z,M ′)n(z,M ′)∫M2

M1
dM ′ n(z,M ′)

. (3.3)

Haloes provide the potential well in which gas can fall, cool and form stars and galaxies.
Although the physics of this process is very complicated, haloes can be populated with
galaxies statistically according to the conditional probability of finding Ngal in a halo of
mass M , whose mean, or first moment, is 〈Ngal|M〉. This relation depends on the type,
luminosity and mass of the galaxies considered. The linear bias of a class of galaxies can
be easily computed as:

b1 gal(z,m, L) =

∫∞
0

dM 〈Ngal|M〉b1(z,M)n(z,M)∫∞
0

dM 〈Ngal|M〉n(z,M)
. (3.4)

The analysis of the matter distribution, and the computation of the power spectrum
and correlation function, is further complicated by the fact that the physical or comoving
coordinates of the galaxies cannot in general be measured directly but are inferred, assum-
ing a set of cosmological parameters, from the observed angular positions and redshifts of
the objects. The latter is given by the sum of the contributions from the cosmological ex-
pansion and the Doppler shift due to its peculiar motion along the line of sight. Therefore,
when obtaining the distance assuming that the redshift is only cosmological, the resulting
map of the galaxy distribution is distorted and appears to be anisotropic. On large scales
the motion of objects is dominated by a coherent inflow towards the dense regions, which
therefore appear denser than they are and squeezed in the direction parallel to the line
of sight. This is usually called Kaiser effect (Kaiser, 1987). At these scales, the three
dimensional redshift space power spectrum can be linked to the real space isotropic one
by Ps(k, µ) = (1 + βµ2)

2
Pr(k), where β = f/b1 and µ is the cosine of the angle between

the vector k and the line of sight. The spherically averaged power spectrum becomes
Ps(k) =

∫
dµPs(k, µ) = SlinPr(k), with the Kaiser factor

Slin =
Ps(k)

Pr(k)
= 1 +

2

3
β +

1

5
β2. (3.5)

On small scales the random motions within virialized structures dominate, making them
appear elongated along the line of sight, an effect called fingers-of-god (Jackson, 1972),
and decreasing the amplitude of the spherically averaged power spectrum. The linear
theory description of equation (3.5) is only valid asymptotically on extremely large scales
and deviations induced by fingers-of-god are measurable even at scales k > 0.03hMpc−1

(Scoccimarro, 2004; Angulo et al., 2008; Jennings et al., 2011). In the halo model approach



20 3. Observational evidence

described above a generic galaxy sample is decomposed into central and satellite galaxies.
The former are assumed to lie at or near the centre of the dark matter haloes while the later
are objects gravitationally bound to the potential of massive haloes that already contain
a central galaxy. In this way, the signature of the fingers-of-god effect can be associated
with the contribution of the satellite galaxies, which then are responsible for the most
important non-linear redshift space distortions. In order to minimise their impact on the
power spectrum shape, different approaches have been proposed. For example, Tegmark
et al. (2004) analysed the second data release of SDSS compressing the fingers-of-god
into isotropic structures and, more recently, Reid & Spergel (2009) and Reid et al. (2009)
proposed a method to reconstruct the underlying halo density field from a galaxy sample by
identifying fingers-of-god like structures and replacing them by one single halo, minimising
de facto the impact of satellites.

At very large scales, both the bias and the Kaiser effect are scale independent and their
only effect is to change the amplitude of the power spectrum or the correlation function.
At smaller scales the two effects are functions of the wave-number or distance and distort
the shape of the two-point statistics by damping their amplitudes. These effects add to the
distortions introduced by non-linear evolution. In Section 4.3 I will discuss further these
effects using results from numerical simulations.

Besides the full shape, the power spectrum and correlation contain a feature called
baryonic acoustic oscillation (BAO), which is related to the physics of the primordial
baryon-photon plasma. Before recombination, photons, electrons and nuclei where locked
into a plasma traversed by sound waves generated by inflation. Short after recombination,
at the drag epoch, the baryons where release from the photon pull and those waves froze
after having travelled a comoving distance of about 110h−1 Mpc. This left a signal in the
galaxy distribution, where a small statistical excess of objects separated by this distance
can be observed. In the correlation function it corresponds to a quasi gaussian peak
(Matsubara, 2004), while in the power spectrum it shows up as damped quasi-harmonic
oscillations (Sugiyama, 1995; Eisenstein & Hu, 1998, 1999). The physical scale of the BAOs
can be computed very accurately in linear theory, suggesting that they can be used as a
standard ruler. In reality, although they are at very large scales, BAOs are modified by
non-linear evolution in two ways: i) their amplitude is decreased with respect to linear
theory and ii) their position is shifted towards smaller scales by a few percent (Crocce &
Scoccimarro, 2008; Sánchez et al., 2008; Smith et al., 2008). Besides this, bias and redshift
space distortions modify additionally the BAO signal.

In addition to the the signature of the initial conditions, namely the spectral in-
dex and the primordial amplitude, the shape of the power spectrum is characterised
by three scales (Silk, 1968; Dodelson, 2003; Shoji et al., 2009): i) the Hubble horizon
at matter-radiation equality rH(zeq) = 1/ [aeqH(zeq)], ii) the sound horizon at the drag

epoch rs(zd) =
∫ t(zd)

0
dt cs(t)/a(t), with the sound speed of the baryon-photon plasma

cs(t) = 4Ωr/
{√

3 [1 + a(t)] 3Ωb

}
and iii) the Silk damping scale kd ∝ (Ωbh

2)
1/2

(ΩMh
2)

1/4
.

In the power spectrum they can be identified, respectively, with the turnover, the BAO and
the large k damping scales and depend mainly on matter, baryon and photon densities. At
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redshift z, their apparent sizes in direction perpendicular and parallel to the line of sight,
respectively δθ(z) and δz(z), are related to the physical ones by the inverse of the angular
diameter distance DA(z) and the Hubble parameter H(z) (e.g., Shoji et al., 2009). DA is
defined, in terms of DC (equation 2.8), as

DA(z) =
1

1 + z


1

H0
√

Ωk
sinh

[√
ΩkH0DC(z)

]
Ωk > 0

DC(z) Ωk = 0
1

H0

√
|Ωk|

sin
[√
|Ωk|H0DC(z)

]
Ωk < 0

. (3.6)

DA(z) and H(z) are functions of all the density and equation of state parameters and are
sensitive in particular to dark energy and curvature. When the radial and angular infor-
mation is combined, for instance when considering the spherical averaged power spectrum,

the apparent size of the scales described above is proportional to [H(z)/D2
A(z)]

1/3
.

The left panel of Figure 3.1 shows, with circles, the power spectrum measured from
the two-degree Field Galaxy Redshift Survey (2dFGRS, Colless et al., 2003; Cole et al.,
2005). The errors indicated by bars are computed using lognormal mock catalogues (LN,
Coles & Jones, 1991), while the ones indicated with the shaded area in the lower panel are
derived from a jack-knife resampling of the data. The dashed and solid lines show a model
power spectrum, defined by the parameters listed in the upper panel, before and after the
convolution with the window function of the survey (see Section 5.2.1 for more details).
The lower panel shows the same information of the upper one, but divided by a reference
power spectrum without BAOs computed with the formulae of Eisenstein & Hu (1998,
1999). The right panel of Figure 3.1 shows, with filled circles, the large scale correlation
function computed from the luminous red galaxy sample (LRGs, Eisenstein et al., 2005)
in the third data release of the Sloan Digital Sky Survey (SDSS, York et al., 2000). The
error-bars are computed from a set of mock catalogues. The three upper solid lines show
models with different values of ΩMh

2, while the lower one shows the correlation function
without the BAO feature. Note that the vertical axis of the outer plot mixes logarithmic
and linear scaling. The inner plot is a zoom around the BAO peak. These two figures,
besides showing an example of the measured power spectrum and correlation function, are
historically very important, since they represent the first detection of the BAO signature
in the galaxy distribution.

The large scale galaxy distribution has been used intensively in the past years to extract
cosmological information, alone or in combination with other independent datasets (e.g.,
Efstathiou et al., 1990; Baumgart & Fry, 1991; Feldman et al., 1994; Efstathiou et al.,
2002; Percival et al., 2002; Tegmark et al., 2004; Cole et al., 2005; Eisenstein et al., 2005;
Sánchez et al., 2006; Percival et al., 2007; Cabré & Gaztañaga, 2009a; Gaztañaga et al.,
2009; Sánchez et al., 2009; Kazin et al., 2010; Percival et al., 2010; Reid et al., 2010a; Blake
et al., 2011; Tinker et al., 2011). Some authors (e.g., Percival et al., 2010) extracted the
BAO signal from the power spectrum and based their cosmological analysis on this feature
alone. This approach has the advantage that BAOs are easier to model than the full shape
of the power spectrum or the correlation function, but on the other hand the information
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Figure 3.1: Left panel: power spectrum from the two-degree Field Galaxy Redshift Survey,
circles, with errors determined from lognormal mocks, bars, and jack-knife resampling of
the data, shaded areas. The dashed and solid lines show a model power spectrum with
the parameters listed in the upper panel, before and after convolving it with the survey
window function. The lower panel shows the same power spectra of the upper one divided
by one without BAO oscillations. Figure from Cole et al. (2005). Right panel: large scale
correlation function of the luminous red galaxy sample from Sloan Digital Sky Survey. The
errors are computed from a set of mock catalogues. The three upper lines are for models
with different values of Ωmh

2, the lower line represents a model without BAO. The vertical
axis of the outer panel mixes linear and logarithmic scaling. The inner panel shows a zoom
around 100 h−1 Mpc. Figure from Eisenstein et al. (2005).

encoded in the broad band shape of the galaxy two-point statistics is discarded, which
causes a degradation of the accuracy at which cosmological parameters can be constrained
(Sánchez et al., 2008; Shoji et al., 2009; Blake et al., 2011).

In the next years several new galaxy redshift surveys will allow to measure the large scale
clustering pattern of the Universe and the BAO feature with a precision much higher than
what is possible with present-day datasets. Thanks to this, it will be possible to constrain
the cosmological parameters with a higher accuracy, in particular the ones related to dark
energy. In order to obtain unbiased constraints it is necessary to use models that can
account accurately for the effects of non-linear evolution, bias and redshift space distortions
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in the full shape of the two-point and higher order statistics. Motivated by this, I propose a
new model of the full shape of the power spectrum, presented in Section 4.2, which thanks
to a few parameters describes accurately the clustering of biased objects in redshift space
and can be successfully applied to a galaxy catalogue (see Chapter 5).

3.2 Additional observations

This section introduces the basic concepts of type 1a supernovae and cosmic microwave
background and describes a precise measurement of the local Hubble parameter.

3.2.1 Type Ia supernovae

Type Ia supernovae (SNIa) provided the first observational evidence that the expansion of
the Universe is accelerating and that dark energy constitutes about the 73% of the total
energy density. They are among the brightest object in the Universe, visible also at z > 1,
and are caused by the thermonuclear runaway of white dwarf stars. The signature of SNIa
does not vary much from object to object and from the time evolution of the observed
luminosity, the light curve, it is possible to infer the absolute luminosity L: correcting for
these differences makes them standard candles. From L and the measured flux F it is
possible to infer the luminosity distance of the object at redshift z, which is defined as:

DL(z) ≡
√

L

4πF
= (1 + z)2DA(z). (3.7)

Equation (3.7) can also be rewritten as µ = 5 log(DL/10pc), where µ = m − M − K
is called distance modulus. The apparent and absolute magnitudes are defined as m =
−2.5 log(F/F0) and M = −2.5 log(L/L0), where F0 and L0 are a reference flux and lumi-
nosity, which cancel out in the definition of µ. The last term in the distance modulus is
the K-correction, that accounts for the fact that the light observed at a given wavelength
was emitted at a shorter one. Therefore knowing the luminosities and fluxes, or the ab-
solute and apparent magnitudes, and the redshifts of a set of SNIa it is possible to infer
the density parameters Ωi and wDE. However, a general consensus about the physics of
SNIa and the impact of selection effects, intrinsic differences between the objects and of
the effects of galactic and intergalactic medium has not yet been reached. This produces
tensions between different models of light curves, which result in different estimations of
the luminosities of objects, making the analysis of systematic effects very complicated.

Evidences of the existence of dark energy were found independently by two groups
(Riess et al., 1998; Perlmutter et al., 1999) analysing the luminosity-distance relation, or
Hubble diagram, measured from two relatively small samples of SNIa. Figure 3.2 shows
the luminosity-distance relation from Perlmutter et al. (1999) (coloured circles with error
bars) and seven models specified by the parameters annotated on the upper right corner.
The vertical axis shows the effective rest-frame B magnitude, which is analogous of the
distance modulus. It rescales the measured peak magnitude according to the width of the
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Figure 3.2: Luminosity-distance relation from SNIa observations, dots with error bars,
compared with seven models, with parameters listed in the upper right corner. The vertical
axis shows the effective rest-frame B magnitude, corrected for the width of the light curve,
the extinction and the K-correction. Figure from Perlmutter et al. (1999)

light curve, to the extinction due to the medium between the SNIa and the observer and
to the K-correction.

Over the past decade SNIa observations where carried out with a large number of
telescopes, subjected to different systematics and with a statistically small number of
objects, ranging between few and few hundreds. In order to increase the number of objects,
many samples have been built combining different observations in a uniform way: e.g. the
Union compilation (Kowalski et al., 2008), the Sloan Digital Sky Survey-II Supernova
Survey set (SDSS SN, Kessler et al., 2009), the Constitution set (Hicken et al., 2009), the
Union2 compilation (Amanullah et al., 2010) and the Supernova Legacy Survey Three Year
Data (SMLS3, Sullivan et al., 2011). In Chapter 5 I use two of these datasets: the Union2
and the SDSS SN.

The Union2 sample consists of 557 SN drawn from 17 datasets in the redshift range
0.015 ≤ z ≤ 1.4. It is the largest available supernovae sample to date and is used in
the main analysis of this thesis. All the objects have been selected according to common
criteria and the distance information has been extracted using the light-curve fitter salt2
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(Guy et al., 2007). Furthermore, the analysis of systematic effects is improved with respect
to previous similar works, in particular the Union and Constitution sets. Amanullah et al.
(2010) showed that the cosmological constraints obtained with or without the inclusion of
systematic errors do not change substantially, a part from a decrease in the uncertainties
at which they are determined. In Section 5.4 I make use of the luminosity-distance relation
from the Union2 with both statistic and systematic errors. In Sections 5.4.1 and 5.4.3, I
also test the impact of neglecting the systematic uncertainties in my analysis.

The SDSS SN sample consists of 288 SNIa from 5 different experiments. The objects
have been chosen according to the same criteria and all light curves measured have been
fitted with mlcs2k2 (Jha et al., 2007) and salt2 in order to measure the distance modulus.
Since most of the objects contained in this sample are also part of the Union2, the results
obtained with these samples, when the salt2 is used, are only slightly different, mostly
because of the lower number of SNIa in SDSS SN. Therefore I use only the luminosity-
distance relation obtained with mlcs2k2. In Sections 5.4.1 and 5.4.3 I discuss the results
obtained when these data are used. Hicken et al. (2009) and Kessler et al. (2009) have
shown that the use of different models of light curves can have important effects on the
inferred distance modulus. They found that the differences between the luminosity-distance
relation obtained from mlcs2k2 and salt2 can give rise to tensions in the cosmological
constraints up to the 1-2σ level. These offsets can be diminished with a careful selection
of SNIa and using larger samples, but a better understanding of their origin is important
in order to obtain reliable cosmological information.

3.2.2 Hubble parameter

Nearby SNIa and other standard candles can be used in order to measure directly the
local Hubble parameter. In fact, for small redshifts, assuming that peculiar motions are
negligible, the recession velocity of a galaxy v and its physical distance d are relate linearly
by v = cz = H0d. With an accurate measurement of the distance, obtained from Cepheids
and SNIa, and of the redshift of nearby galaxies it is possible to measure directly H0.
Cepheids are variable stars which show a tight correlation between period and luminosity
and that can be therefore used as standard candels. In Chapter 5 I use a measurement of
the Hubble parameter as a prior knowledge when constraining cosmological parameters.

The Supernovae and H0 for the Equation of State Program (SHOES, Riess et al., 2009)
aims at the direct measurement of the Hubble parameter at present epoch, H0, to better
than 5% accuracy. The SHOES team identified 6 nearby spectroscopically typical SNIa,
that have been observed before maximum luminosity, that are subject to low reddening and
that reside in galaxies containing Cepheids. Thanks to 260 Cepheids observed with the
Near-Infrared Camera and Multi-Object Spectrometer (NICMOS) on the Hubble Space
Telescope (HST) in the 6 host galaxies and in the galaxy NGC 4258, which hosts a water
maser that allows a precise determination of the distance, the authors could calibrate
directly the peak luminosity of the SNIa. Combining this 6 objects with 240 SNIa at
redshift z < 0.1, they measured the Hubble parameter H0 = 74.2± 3.6 km s−1Mpc−1. The
error includes both statistical and systematic uncertainties.
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Figure 3.3: Left panel: WMAP 7 years full sky map of the CMB fluctuations. The
anisotropies are shown in a linear scale between -200 and 200 µK. Figure from http:

//lambda.gsfc.nasa.gov. Right panel: CMB angular power spectrum from the WMAP7,
black circles, ACBAR, red circles, and QUaD, green circles. The solid line shows the the
best fit ΛCDM model as obtained from WMAP data alone. Figure from Komatsu et al.
(2011).

Using spectral properties of early-type galaxies, Moresco et al. (2011) recently con-
strained the Hubble parameter to H0 = 72.6 ± 2.9 km s−1Mpc−1 at 68% confidence level.
While finishing the work presented in Chapter 5, Riess et al. (2011) refined the analysis of
the SHOES program and obtained H0 = 73.8± 2.4 km s−1Mpc−1.

3.2.3 Cosmic microwave background

The observations of the temperature fluctuations in the CMB provide one of the most
striking evidences that the Universe is homogeneous and isotropic to a very high degree.
Its spectrum, i.e. the intensity as function of the frequency, is the most perfect black body
known and has a temperature of 2.728± 0.004K (Fixsen et al., 1996). If this is subtracted
from the CMB signal and foreground emissions, mostly due to the diffuse signal from the
Milky Way and point-like sources, are accounted for, fluctuations of the order of 10−5K
become visible.

The left panel in Figure 3.3 shows a full sky map of the temperature fluctuations in
the CMB as measured by the Wilkinson microwave anisotropy probe (WMAP) satellite
after 7 years of observations (WMAP7, Jarosik et al., 2011; Komatsu et al., 2011; Larson
et al., 2011). The fluctuations are shown in a linear scale between -200 and 200 µK. The
temperature angular power spectrum, computed from the coefficients of the expansion in
spherical harmonics of the CMB anisotropies, is shown in the right panel of Figure 3.3
(Komatsu et al., 2011). The black circles with error bars are computed from the WMAP7
data, the red and green circles from the two ground based experiments Arcminute Cos-
mology Bolometer Array (ACBAR, Kuo et al., 2007; Reichardt et al., 2009) and QUEST
at DASI (QUaD, Brown et al., 2009). The red solid line shows the best fit ΛCDM model,
when WMAP data alone are used (ΩΛ = 0.73, ΩM = 0.27). Cosmological information is

http://lambda.gsfc.nasa.gov
http://lambda.gsfc.nasa.gov
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encoded in the CMB power spectrum through its shape and the position and amplitude
of the peaks. The low multipole amplitude is directly related to the initial conditions.
The apparent position of the peaks is proportional, similarly to the BAO scale in the
galaxy power spectrum, to the ratio of the angular diameter distance to the recombination
DA(zrec), and the sound horizon scale at the same epoch rs(zrec). The relative amplitudes
of the second and third peaks with respect to the first one are proportional to the baryon
density and to the matter to radiation densities ratios, respectively (e.g., Hu et al., 2001).
Finally the Silk damping decreases the amplitude of the small scale CMB power spectrum
as well as the galaxy one.

In Chapter 5 I use CMB measurements from five different experiments. WMAP7
make available measurements of the temperature angular power spectrum in the multipole
range 2 ≤ l ≤ 1000 and of the temperature-E polarisation cross power spectrum in the
range 2 ≤ l ≤ 450. Measurements of higher multipoles can be obtained from other four
experiments which observe the CMB temperature anisotropies on smaller areas of the sky
with a much higher resolution. I use the measurements of the temperature angular power
spectrum in i) 14 bandpowers in the range 910 ≤ l ≤ 1850 from ACBAR, ii) 6 bandpowers
in the range 855 ≤ l ≤ 1700 from the Cosmic Background Imager (CBI, for latest results
see Sievers et al., 2009), iii) 7 bandpowers in the range 925 ≤ l ≤ 1400 from the 2003
flight of the Balloon Observations Of Millimetric Extragalactic Radiation and Geophysics
(BOOMERanG Jones et al., 2006; MacTavish et al., 2006; Montroy et al., 2006; Piacentini
et al., 2006) and iv) 11 bandpowers in the range 974 < l < 1864 from the final release
of QUaD. I also use E and B polarisation (EE and BB) and the cross temperature-E
polarisation (TE) angular power spectra measurements from the latter three experiment.
i) CBI: EE in 7 bandpowers in the range 860 ≤ l ≤ 1800, BB in 5 bandpowers in the range
0 ≤ l ≤ 5000 and TE in 8 bandpowers in the range 860 ≤ l ≤ 1800; ii) BOOMERanG: EE
and BB in 3 bandpowers in the range 600 < l < 1000 and TE in 6 bandpowers in the range
450 ≤ l ≤ 950; iii) QUaD: EE, BB and TE in 17 bandpowers in the range 488 < l < 1864.
In order to avoid complex correlations, I discard, for these four experiments, values of l
that overlap with the multipoles measured from WMAP.

In the next years the Planck satellite (Ade et al., 2011) will measure the signal from
temperature and polarisation CMB anisotropies with unprecedented precision, improving
substantially the accuracy at which we can constrain cosmological parameters.

3.3 Combining experiments

In the previous sections I have introduced some of the most used probes in cosmological
analyses and I have briefly described how the observed quantities depend upon the expan-
sion rate, curvature, density and equations of state parameters. Each experiment can be
more sensitive to a subset of parameters than to another and is subject to degeneracies
among some of them. Because of it, not all cosmological parameters can be constrained
with high accuracy. Figure 3.4 (Reid et al., 2010a) shows the two-dimensional constraints
from CMB, SNIa and LLS data, with blue and green shaded areas and solid lines, respec-
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Figure 3.4: Two-dimensional marginalised constraints from CMB (blue shaded areas), SNIa
(green shaded areas) and LSS (solid lines); the inner and outer contours show the 68 and
95% confidence levels. Left panel: ΩM−ΩΛ plane for a ΛCDM model with free curvature.
Right panel: ΩM − wDE for a flat cosmology. Figure from Reid et al. (2010a)

tively; the inner and outer contours show the 68 and 95 % confidence limits. The left
panel shows the results in the ΩM − ΩΛ plane for a model in which dark energy is given
by a cosmological constant and curvature is allowed to vary. The right Panel depicts the
constraints in the ΩM − wDE plane for a flat model. This example shows clearly that it
is not possible to extract accurate information about densities, curvature and dark en-
ergy equation of state parameter from each experiment individually because of the strong
degeneracies. Thanks to the fact that the latter are different in the three cases shown,
when their information is combined it is possible to obtain very accurate constraints on
cosmological parameters. Besides this, the fact that all three intersect in the same region
of the parameter space, highlights the consistency between them.

The results shown in Figure 3.4 and from other works (e.g. Sánchez et al., 2009; Aman-
ullah et al., 2010; Komatsu et al., 2011; Percival et al., 2010), concur to describe a Universe
where dark energy dominates the energy budget with about 73% of the total, geometry is to
very high degree Euclidean and wDE does not exhibit any time evolution and is consistent
with -1 with a 5-10% accuracy.



Chapter 4
A new model for the full shape of the matter
power spectrum

In this chapter a new phenomenological model for the large scale power spectrum, able to
account for non-linear bias and redshift space distortions, is presented and tested against
numerical simulations. In section 4.1 I describe the simulations used in this analysis and
the power spectra measured from them. Section 4.2 presents the model and Section 4.3
explains the tests performed in order to probe its accuracy. The content of this chapter is
based on the work published in Montesano et al. (2010).

4.1 N-body simulations and the computation of the

power spectrum

In this section I briefly describe the L-BASICC II ensemble of N-Body simulations used in
my analysis and give some technical details about the methodology to compute the power
spectra from these simulations. The basic equations used to compute the power spectrum
can be found in Appendix A.1.

4.1.1 The L-BASICC II N-Body simulations

I use an ensemble of 50 moderate resolution, very large volume dark matter N-Body simu-
lations called L-BASICC II (Angulo et al., 2008; Sánchez et al., 2008). These are analogues
to the L-BASICC simulations used in Angulo et al. (2008) and represent the evolution of
the dark matter density field in a universe characterised by a flat ΛCDM cosmology con-
sistent with the constraints on cosmological parameters obtained from the combination of
CMB and LSS information of Sánchez et al. (2006) and Spergel et al. (2007). The values of
the cosmological parameters and other specifications of the simulations are listed in Table
4.1.
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matter density Ωm 0.237
baryonic density Ωb 0.041
scalar spectral index ns 0.954
Amplitude of density

σ8 0.77
fluctuations
Hubble constant H0 73.5 km s−1 Mpc−1

Number of particles Np 4483

Particle mass Mp 1.75× 1012 h−1M�
Softening length ε 200 h−1 kpc
Comoving box side 1340 h−1 Mpc
Comoving volume 2.41 h−3Gpc3

Total volume of the ensemble 120 h−3Gpc3

Table 4.1: Cosmological pa-
rameters and specifications of
the L-BASICC II simulations.

z = 0 z = 0.5 z = 1
1 M < 3.5 M < 2.9 M < 2.6
2 3.5 ≤M < 5.95 2.9 ≤M < 4.65 2.6 ≤M < 3.8
3 M ≥ 5.95 M ≥ 4.65 M ≥ 3.8

Table 4.2: Mass limits in units
of 1013h−1M� for the three halo
sub catalogues at the three red-
shift outputs of the simulations.
The limits at z=0 are the same
as in Sánchez et al. (2008)

The position and the velocity of all the particles in the simulations are stored in three
snapshots at redshifts z = 0, 0.5 and 1. Halo catalogues are constructed from the dark
matter distribution at each redshift using a Friend-of-Friends algorithm (FoF, Davis et al.,
1985), with a linking length parameter b = 0.2 and selecting all the haloes with more than
10 particles, which corresponds to a minimum halo mass of 1.75× 1013 h−1M�.

From each halo catalogue I extract three sub-samples selected according to the mass
limits shown in Table 4.2 (all the value are in units of 1013h−1M�). I choose these limits
in order to include about half of the total number of haloes in mass range 1 and the
remaining equally divided between samples 2 and 3. The number of haloes (Nh) and the
corresponding shot noise terms (1/n̄), a scale independent poisson term arising from the
discretization of the density field (see also Appendix A.1), for each mass bin at each redshift
are given in Table 4.3.

4.1.2 Power spectrum computation and shot noise

In order to compute the power spectra, the dark matter particles or haloes are assigned to
a grid of 10083 cells using the triangular shaped cloud (TSC) as mass assignment scheme
(MAS). I then compute the Fourier transform of the obtained density field using a fast
Fourier transform (FFT) algorithm as implemented by the free software fftw1 (Fastest
Fourier Transform in the West, Frigo & Johnson, 2005). I correct the amplitude of the
Fourier modes for the effects of the MAS as in the first line of equation (A.4b), spheri-

1http://www.fftw.org/

http://www.fftw.org/


4.1 N-body simulations and the computation of the power spectrum 31

z = 0 z = 0.5 z = 1
bin Nh 1/n̄ Nh 1/n̄ Nh 1/n̄
tot 465903 5164 294204 8178 143531 16764
1 262232 9175 151976 15832 69457 34642
2 101825 23630 71551 33628 36852 65291
3 101846 23625 70678 34043 37221 64644

Table 4.3: Number of haloes
(Nh) and shot noise term (1/n̄,
in units of h−3 Mpc3) for the to-
tal halo sample and the three
mass bins defined in Table 4.2
for redshift 0, 0.5 and 1.

cally average them in shells of thickness ∆k = 2π/L = 0.0047hMpc−1 and subtract the
shot noise contribution 1/ñ. For this configuration the Nyquist wave number is kN =
2.36hMpc−1 and the computed power spectrum is exact for k < 67%kN = 1.58hMpc−1

(see Appendix A.1 for more details). To obtain the redshift space power spectrum, I shift
the position of the dark matter particles or haloes along one axis, converting their peculiar
velocity into a displacement in comoving coordinates.

I compute the real and redshift-space power spectra of the dark matter distribution
(PDM) at redshift 0, 0.5 and 1, and the corresponding power spectra of the total halo cata-
logues and the three mass sub-samples, which I label as P h

tot, P
h
11, P h

22 and P h
33 respectively.

I also compute the cross power spectra for the three possible combinations of the mass bins
at each redshift (P h

12, P h
13 and P h

23).

The FoF algorithm, used to create the halo catalogues, is intrinsically exclusive: two
haloes must be separated by a distance larger that the sum of their radii or they would
be identified as a single more massive halo. This introduces an exclusion effect in the halo
catalogues which is visible in both the correlation functions and the power spectra of these
samples. In the correlation function the exclusion effect is clearly visible at small scales,
where it becomes negative. As an example, the left panel of Figure 4.1 shows the mean
correlation function obtained from the total halo catalogue at z = 0 in our ensemble of
simulations: after reaching its maximum value at r ≈ 2h−1 Mpc, it decreases converging
to ξ = −1 as r → 0. The right panel of Figure 4.1 shows the mean power spectrum with
and without the shot noise subtracted (solid and long-dashed lines, respectively) for the
same sample and redshift. The dot-dashed lines show their corresponding 1− σ variance.
The shot noise amplitude is indicated by the horizontal dashed line. It is important to
notice that when the shot noise is subtracted, the power spectrum becomes negative for
k & 1hMpc−1. Tests show that this feature is independent of the shot noise amplitude
or the dimension of the grid used for the FFT. This clearly points to the fact that in the
presence of the exclusion effect the noise is not Poisson anymore and is possibly scale-
dependent.

The problem of the existence and impact of the exclusion effect in the power spectrum
has been already addressed in previous analyses. Smith et al. (2007) point out that the
exclusion effect may give rise to a scale dependent noise term which may lead to a misin-
terpretation of the shape of the power spectrum; Casas-Miranda et al. (2002) and Manera
& Gaztanaga (2009) found that biased objects present non Poisson noise. Since the under-
standing and modelling of the influence of the exclusion effect on the power spectrum is
beyond the scope of this thesis, I do not address specifically this problem here. Nonethe-
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Figure 4.1: Left panel: log-linear scaling of the mean real-space correlation function ξ(x)
(solid line) of the total halo sample from the ensemble of simulations. The dotted lines
indicate the variance from the different realisations. The signature of the exclusion effect in
the halo sample can be clearly seen at r < 2h−1 Mpc. Right panel: mean power spectrum
with and without the shot noise subtracted (solid and long-dashed lines, respectively) from
the ensemble of simulations and their corresponding 1-σ variance (dot-dashed lines) for the
total halo sample. The amplitude of the shot noise is indicated by the horizontal dashed
line. To enhance the negative part of the power spectrum at small scales, I use linear
vertical axis for P (k) < 200hMpc−1 instead of logarithmic.

less, as is explained Section 4.2, the model of the shape of the power spectrum contains
few free parameters that can partially absorb possible deviations from white noise. This
issue is addressed again in Section 4.3.4.

4.2 Modelling the full shape of the power spectrum

The increasing volume of the new large galaxy redshift surveys requires accurate models
of the LSS observations in order to extract the maximum amount of information from
the data without introducing systematic effects. In Section 2.2, I introduced the basic
concepts of renormalised perturbation theory and how it can improve over standard PT
in describing the dark matter power spectrum at non-linear scales. However, in order to
describe the galaxy clustering, it is necessary to include into the modelling the distortions
due to bias and redshift space effects.

As a first step towards a phenomenological model of the power spectrum, I introduce
two approximations in the two terms in the right hand side of equation (2.25). First I
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assume that the propagator is described by the growth factor times a Gaussian damping

G(k, z) = D1(z) exp

[
−
(

k√
2k?

)2
]
, (4.1)

where the scale k? is given by equation (2.24). Secondly I reduce the full mode coupling∑∞
n=2 PnMC(k, τ) to its lowest order contribution: P22 from equation (2.23a). Equation

(4.1) is almost exact in the large-k limit and is a good approximation for the propagator
for small values of k.

Crocce & Scoccimarro (2008) proposed a model for the large scale correlation function
motivated by the RPT formalism. In this ansatz the correlation function is given by

ξNL(r) = b2
[
ξL(r)⊗ e−(k?r)2 + AMC ξ

′
L(r) ξ

(1)
L (r)

]
, (4.2)

where b, k? and AMC are treated as free parameters, and the symbol ⊗ denotes a convolu-
tion. The factor b encodes the change in the large scale amplitude caused by the linear bias
b1 and the Kaiser factor Slin; AMC quantifies the relative amplitude of the mode coupling
term with respect to the linear one. ξ′L is the derivative of the linear correlation function

and ξ
(1)
L (r) is defined by

ξ
(1)
L (r) ≡ r̂ · ∇−1ξL(r) =

1

2π2

∫
dk kPL(k) j1(kr), (4.3)

with j1(y) denoting the spherical Bessel function of order one. The two terms in equation
(4.2) are, respectively, the linear correlation function convolved with the Fourier trans-
form of the approximated propagator of equation (4.1) and the leading order contribution
to ξMC from the lowest order approximation of the mode coupling power spectrum of
equation (2.23a). Sánchez et al. (2008) compared this model with the results of N-body
simulations and found that it is able to give an accurate description of the full shape of
the correlation function, including the effects of bias and redshift space distortions, for
volumes up to two orders of magnitude larger than present day datasets. Sánchez et al.
(2009) successfully used this model to obtain constraints on cosmological parameters from
the correlation function of a sample of luminous red galaxies drawn from the data release
6 of the SDSS as measured by Cabré & Gaztañaga (2009a).

In this analysis, I follow the same approach and model the non-linear power spectrum
as

P (k, z) = b2
[
e−(k/k?)2Plin(k, z) + AMCP22(k, z)

]
, (4.4)

and treat b, k? and AMC as free parameters. In the next section I show that this model
allows to obtain unbiased constraints on the dark energy equation of state parameter by
accurately describing the full shape of the power spectrum measured in real and redshift
space.

Panel a of Figure 4.2 shows the linear theory power spectrum (solid line) and P22(k)
(dashed line) computed assuming the cosmological parameters of the L-BASICC II simu-
lations. Panel b shows PL(k) divided by a reference power spectrum without BAO (Eisen-
stein & Hu, 1998) and P22(k) divided by the corresponding term derived applying equation
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Figure 4.2: Panel a: Linear the-
ory (solid line) and lowest order
non-linear (dashed line) power
spectra. Panel b: ratio between
the power spectra of panel a
and reference ones without oscil-
lations. P22(k) shows small oscil-
lations out of phase with respect
to Plin(k), generating a net shift
of the BAO peaks when summed.

(2.23a) to the smooth power spectrum. Both power spectra show oscillations, although
in P22(k) they have a smaller amplitudes and are out of phase with respect to the ones
in PL(k). When these two terms are summed as in equation (4.4), the BAOs are shifted
towards smaller scales with respect to the ones in the linear power spectrum, in agreement
with the findings of Crocce & Scoccimarro (2008), Sánchez et al. (2008) and Smith et al.
(2008).

P22(k) does not have the same shape as P2 MC(k): the latter in fact decreases faster than
the former and at k ∼ 0.15− 0.2hMpc−1 it is roughly 1.5− 2 times smaller. But at those
scales the amplitude of the three mode coupling, P3 MC(k), is already around 1/4− 1/2 of
P2 MC(k) and should be included in the model, as can be seen comparing Figures 4.2 and
2.2. P22(k) is thus somewhat larger than P2 MC(k) + P3 MC(k) and the difference becomes
more and more important with increasing wave number. I will come back to this again in
section 4.3, where I discuss the range of scales in which the model of equation (4.4) can be
applied to a measurement of the power spectrum.

It can be expected that this model is less efficient at describing the shape of the power
spectrum in redshift-space than in real-space. In fact, in equation (4.4) I do not include
redshift space distortions explicitly and I let the free parameters compensate some of their
effects. The lack of a model for the redshift space distortions will be particularly visible
for the dark matter, since the associated scale dependence is stronger than for the haloes
(Scoccimarro, 2004; Angulo et al., 2008).
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4.3 Model in practice and discussion

In this section I test whether or not the model described in section 4.2 can give an accurate
description of the power spectrum including the effects of non-linear evolution, redshift
space distortions and bias. In section 4.3.1 I describe the test that I implement to determine
if the model returns unbiased constraints on the dark energy equation of state parameter
wDE. Sections 4.3.2-4.3.4 describe the results obtained when each of these scale dependent
effects is included in the measurement of the power spectrum.

4.3.1 Testing the model

When measuring the power spectrum from an observational dataset, it is necessary to
assume a fiducial cosmology in order to map the observed galaxy redshifts and angular
positions into comoving distances. Under the assumption that a wide solid angle is covered,
different choices of the parameters change the distances between objects, which modify the
shape of the power spectrum. However, it is possible to take into account these distortions
by rescaling the power spectrum from the fiducial cosmology to the true one multiplying
the wave number by the factor (Eisenstein et al., 2005):

α =
Dfid

V (z)

Dmodel
V (z)

(4.5)

and the amplitude of the power spectrum by 1/α3. The effective distance DV(z) to the
redshift z is

DV(z) =

[
D2

A(z)
z

H(z)

]1/3

, (4.6)

with DA(z) the comoving angular diameter distance of equation 3.6.
Following Angulo et al. (2008) and Sánchez et al. (2008), I consider here the simple case

in which all cosmological parameters, except wDE, are fixed to the values in Table 4.1. In
this case equation (4.5) allows to relate univocally the dark energy equation of state with
the wave number stretch parameter α (Huff et al., 2007). Therefore, from the constraints
on α, as obtained from the mean power spectra of the L-BASICC II simulations, and using
equation (4.5), it is possible to relate the value of α with constraints on the dark energy
equation of state parameter. This relation is shown in figure 12 from Angulo et al. (2008).

I consider α free and, using a Markov chain Monte Carlo technique (MCMC, Gilks
et al., 1996; Christensen & Meyer, 2000), I explore the parameter space defined by θ =
(k?, b, AMC, α). I assume that the likelihood function follows a Gaussian form

L ∝ exp

[
−1

2
χ2(θ)

]
, (4.7)

where

χ2(θ) = [d− t(θ)]T C−1 [d− t(θ)] (4.8)
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Figure 4.3: Correlation matrix Cij/
√
CiiCjj, where Cij are the elements of the covariance

matrix C, for the real-space dark matter power spectra at z = 0 (left), z = 0.5 (center) and
z = 1 (right). At z = 1 the correlation matrix is close to diagonal, but at lower redshifts,
when non-linearities become increasingly important, a significant correlation between dif-
ferent modes appears and becomes more important for larger scales, i.e. smaller k, as the
redshift decreases. A similar result is obtained for the redshift-space power spectrum.

is the standard χ2, in which d is an array containing the fitted data, in this case the
computed power spectrum, t(θ) contains the model computed for a given set of parameters
θ and C is the covariance matrix of the measurement.

I compute the covariance matrix C for the dark matter and the halo power spectra as

Cij =
1

Nreal − 1

Nreal∑
l=1

[
Pl(ki)− P̄ (ki)

] [
Pl(kj)− P̄ (kj)

]
, (4.9)

where Pl(ki) corresponds to the measurement of the power spectrum at the i-th k-bin in
the l-th realisation and P̄ (ki) corresponds to the mean power spectrum from the ensemble
at the same wavenumber.

Figures 4.3 and 4.4 show the correlation matrices Cij/
√
CiiCjj of the power spectra of

the real-space dark matter and total halo samples respectively. In both figures, the three
panels correspond, from left to right, to z = 0, 0.5 and 1. In all cases I observe that
the correlation between different modes, due to non linear mode coupling, is stronger at
z = 0 and decreases at increasing redshift. At z = 0 the correlation matrix of the total halo
sample shows strong correlations for k & 0.1hMpc−1. In order to obtain robust constraints
on α these correlations must be included when fitting our model to the L-BASICC II mean
power spectrum. For more detailed studies on the covariance of the power spectrum using
theoretical models and large numerical simulations see, e.g., Hamilton et al. (2006), Smith
(2009) and Takahashi et al. (2009).

The MCMC requires a prior knowledge of the parameter space. I assume flat priors
given by
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Figure 4.4: Same as in Figure 4.3 but for the total halo samples at z = 0 (left), z = 0.5
(center) and z = 1 (right) in real space. As for dark matter, the mode coupling becomes
more important at larger scales as the redshift decreases. A similar result is obtained for
the redshift space catalogue and for the other halo catalogues.

• 0hMpc−1< k? < 0.35hMpc−1,

• 0 ≤ AMC < 10,

• 0.5 ≤ α < 1.5.

The bias parameter b is analytically marginalised over an infinite flat prior using equation
F2 in Lewis & Bridle (2002). In order to obtain an estimate of the amplitude of the model
power spectrum, I compute a value of b and its variance by maximizing the likelihood
function of equation (4.7) while the other parameters are kept fixed to their mean values
obtained from the MCMC.

4.3.2 Non-linear evolution

The circles in Figure 4.5 show the mean real-space dark matter power spectra from the
L-BASICC II simulations at z = 0, 0.5 and 1 (panels a, b and c respectively). Dot-dashed
lines show the corresponding variances from the estimates in the different realizations. In
order to highlight the signature of the acoustic oscillations, Figure 4.6 shows, with the same
symbols, the power spectra divided by a smooth linear theory power spectrum without
BAOs computed using the fitting formulas of Eisenstein & Hu (1998). The comparison
with the linear power spectrum (dashed lines) shows that non linearities change the broad
band shape of the power spectrum at small scales and damp the BAO feature. I explore
the constraints on the stretch parameter obtained by applying the model described in
section 4.2 to these measurements.

The lines in the panels a, b and c of Figure 4.7 show the mean value of α obtained from
the measurements at z = 0, 0.5 and 1 (solid lines), together with its correspondent 68%
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Figure 4.5: Mean power spectra computed from the simulations (circles for real space
and triangles for redshift space), their variance (dash-dotted lines) and the model power
spectrum as obtained through the fitting (solid lines) as function of the wavenumber in
comoving units for the dark matter catalogue at redshift 0, 0.5 and 1.0 (left, centre and
right respectively), in log-log scaling. The maximum wavenumber used for the fit is kmax =
0.15hMpc−1 and is indicated by the vertical arrow.

Figure 4.6: Power spectra of Figure 4.5 divided by a smooth reference power spectrum
(Eisenstein & Hu, 1998) in order to enhance the BAO oscillations, in linear scaling. For
comparison the linear power spectrum, divided by the smooth power spectrum, is shown
(dashed lines). The upper horizontal lines are drawn to the values corresponding to the
Kaiser boost factor (section 4.3.3 and Table 4.5). The smooth power spectrum is the same
for all the plots. The maximum wavenumber used for the fit is kmax = 0.15hMpc−1 and is
indicated by the vertical arrow.

and 95% confidence levels (dot-dashed lines), as function of kmax, the maximum value of
k included in the fit. As smaller scales (larger values of kmax) are taken into account, the
width of the allowed region for α decreases due to the larger number of modes included in
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Figure 4.7: Mean value of α obtained from the MCMC (blue solid line for real space, red
long-dashed line for redshift space), 1, 2 − σ confidence level (dotted lines) as function of
kmax for dark matter (real space: panels a, b and c; redshift space: panels d, e and f ) and
the total halo catalogue (real space: panels g, h and i ; redshift space: panels j, k and l) at
z=0, 0.5, 1 from left to right. The horizontal dashed lines indicate α = 1.

the fit. At z = 0, the mean value of α remains consistent with 1 at a 1-σ level for kmax .
0.16hMpc−1, with α = 0.999±0.007 for kmax = 0.15hMpc−1. At higher redshifts the value
of kmax for which this holds increases, due to the smaller impact of non-linearities. The first
row of the upper part of Table 4.4 lists the obtained values of α for kmax = 0.15hMpc−1.
The solid lines in Figures 4.5 and 4.6 show the model power spectrum of equation (4.4)
computed using the mean values of the four parameters obtained for this range in k. This
model is able to accurately describe the effects of non-linear evolution in both the broad-
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z = 0 z = 0.5 z = 1

αreal

DM 0.999± 0.007 1.001± 0.006 1.001± 0.006
tot 1.001± 0.011 0.995± 0.011 0.994± 0.014
11 0.999± 0.014 1.006± 0.014 0.999± 0.017
22 1.006± 0.017 1.006± 0.013 1.005± 0.023
33 1.003± 0.016 0.997± 0.012 0.987± 0.016
12 1.002± 0.013 1.004± 0.01 0.987± 0.015
13 1.002± 0.01 0.991± 0.012 0.991± 0.018
23 0.995± 0.013 1.004± 0.014 1.005± 0.013

αred

DM 0.994± 0.007 1.001± 0.007 1.005± 0.008
tot 1.002± 0.012 0.997± 0.01 0.987± 0.012
11 0.999± 0.016 1.008± 0.016 0.998± 0.016
22 1.007± 0.02 1.01± 0.018 1.006± 0.026
33 0.998± 0.017 0.994± 0.014 0.981± 0.015
12 1.002± 0.014 1.006± 0.012 0.982± 0.014
13 1.008± 0.011 0.993± 0.012 0.978± 0.018
23 0.997± 0.015 1.006± 0.014 1.006± 0.014

Table 4.4: Mean values of
α and their 1-σ confidence
levels as recovered from the
mean dark matter and halo
samples power spectra of the
three redshifts outputs of the
L-BASICC II simulations for
kmax = 0.15hMpc−1. The
upper part is for real space,
the lower for redshift space.
See Section 4.1.2 for the def-
inition of the different sam-
ples listed in the second
column.

Figure 4.8: 1 and 2 σ contours of likelihood map in the k? − α plane obtained from the
MCMC for dark matter at redshift 0 (left), 0.5 (centre), 1 (right) and kmax = 0.15hMpc−1.
Background areas within dashed lines are for real space, foreground ones within solid lines
are for redshift space.

band shape of the power spectrum and the damping of the acoustic oscillations, up to the
maximum value of k included in the fit, which is indicated by a vertical arrow.

The dashed contours in Figure 4.8 show the two-dimensional marginalized constraints
in the k? − α plane obtained for kmax = 0.15hMpc−1 at z = 0, 0.5 and 1 (panels a, b
and c respectively). The contours correspond to ∆χ2 = 2.3 and 6.17 which, assuming a
two-dimensional gaussian likelihood, are equivalent to the 68% and 95% confidence levels.
This convention is used throughout the chapter. While the constraints on the stretch
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Figure 4.9: 1 and 2 σ contours of likelihood map in the k?−AMC plane obtained from the
MCMC for dark matter at z = 0 (left), 0.5 (centre), 1 (right) for kmax = 0.15hMpc−1.
Background areas within dashed lines are for real space, foreground ones within solid lines
are for redshift space.

parameter are very tight, there is a wide allowed region for k? whose mean value is larger
than the theoretical prediction of Equation (2.24). The mean value k? shows a tendency
to increase with redshift, as the BAO feature is less damped, but the allowed range for this
parameter is too large to compare this evolution with D1(z)−1. The wide allowed range
for k? is caused by a strong degeneracy between this parameter and AMC. This can be
seen in Figure 4.9, which shows the two-dimensional constraints in the k? − AMC plane
for the dark matter power spectrum at z = 0, 0.5 and 1. The degeneracy arises because
it is possible to provide a good description of the overall shape of the power spectrum by
compensating an increase in the damping of the first term of equation (4.4) (a decrease of
k?) by increasing the amplitude of the mode coupling contribution (using a higher value
of AMC). Besides this, the value of AMC obtained at z = 0 is about 30% smaller than the
expected, confirming that the P22(k, z) is somewhat bigger than the sum of the RPT two
and three mode coupling. This makes the value of k? larger than the theoretical value of
equation (2.24). In Figure 4.9 it is also noticeable that the values of AMC increase with
redshift due to the smaller relative amplitude of P22(k), which decreases as the growth
factor squared, with respect to the linear power spectrum.

4.3.3 Redshift space distortions

If we were to observe dark matter directly and to measure its distribution using the red-
shift, the large scale amplitude of the measured power spectrum would be boosted by the
coherent inflow towards overdensities and its shape would be damped by fingers-of-god.
With numerical simulations, thanks to the knowledge of the position and velocity of dark
matter particles, it is however possible to test the impact of redshift space distortions on
the dark matter distribution.
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Figure 4.5 shows the mean redshift-space dark matter power spectra (triangles) from the
L-BASICC II simulations at z = 0, 0.5 and 1 (panels a, b and c respectively), together with
the corresponding variances from our ensemble of simulations (dot-dashed lines). Figure 4.6
shows the same power spectra divided by a smooth linear theory power spectrum without
acoustic oscillations. Since the smooth power spectrum is the same in real and redshift-
space, it is possible to see both the increase in amplitude and the change in shape towards
smaller scales in the latter case. In this section I test if the parameterization of the model
of equation (4.4) contains enough freedom to take into account these distortions.

The dashed lines in the panels d, e and f of Figure 4.7 show the mean value of the
stretch parameter obtained by applying the model of equation (4.4) to the mean redshift-
space power spectra as a function of kmax at z = 0, 0.5 and 1, respectively. The dot-
dashed lines indicate the corresponding 68% and 95% confidence levels. At z = 1, also
when dealing with redshift-space information the model is able to recover constraints on
α consistent with one at the 1 − σ level for k < 0.18hMpc−1. The constraints degrade
at lower redshifts as non-linear redshift space distortions become more important and, at
z = 0, our results are only marginally consistent with α = 1. The first row of the lower part
of Table 4.4 lists the constraints on α obtained for kmax = 0.15hMpc−1. In all cases, the
errors on this parameter increase with respect to the real-space case. In all the panels of
Figures 4.5 and 4.6 the solid upper line shows the model power spectrum in redshift space
with the parameters fixed to the mean value obtained from the MCMC. This decrease in
accuracy is due to the combination of two facts: first, I do not include explicitly redshift
space distortions in the model; second, the impact of fingers-of-god is very important and
modifies substantially the mildly non-linear shape of the power spectrum.

The shaded contours within solid lines in Figure 4.8 show the two-dimensional 68% and
95% marginalized constraints in the k? − α plane obtained from the mean redshift-space
power spectrum from the L-BASICC II simulations for kmax = 0.15hMpc−1 at z = 0 (panel
a), 0,5 (b) and 1 (c). As in the case of real-space, there is no degeneracy between these
parameters. Redshift space distortions increase the damping of the BAO signal. This
is reflected in the mean values of k? being systematically lower than the ones obtained
from real-space data. Figure 4.9 shows the correspondent constraints in the k? − AMC

plane. The scale-dependent effects introduced by redshift-space distortions cause these
two parameters to follow a different degeneracy than in the real-space case although the
qualitative behaviour is maintained.

Using equation (3.5), it is possible to compute the theoretical expectation value of
the Kaiser boost factor, which for the dark matter case, where b = 1, is simply given as
Slin = 1 + 2f/3 + f/5. This value can be compared with the ratio of the real and redshift
space power spectra, Sfit = Ps(k, z)/Pr(k, z), directly measured from the L-BASICC-II
simulations on large scales, where non-linear effects and scale dependent redshift space
distortions are negligible. At linear order, these two power spectra are Pr(k, z) ≈ Plin(k, z)
and Ps(k, z) ≈ b2

sPlin(k, z). Therefore, the value of Sfit can be obtained by computing the
bias bs of the redshift space power spectrum as described in Section 4.3.1. The values of
Sfit obtained for the dark matter case are listed, together with the theoretical values Slin,
in Table 4.5. The three values of Slin are also indicated in Figure 4.6 with the upper dotted
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beff b Slin Sfit

z = 0

DM 1 1.003± 0.003 1.34 1.32± 0.01
tot 1.89 1.89± 0.01 1.17 1.17± 0.01
11 1.63 1.65± 0.01 1.20 1.20± 0.02
22 1.90 1.84± 0.01 1.17 1.17± 0.02
33 2.54 2.49± 0.01 1.12 1.12± 0.02
12 1.76 1.75± 0.01 1.18 1.17± 0.02
13 2.04 2.04± 0.01 1.16 1.17± 0.01
23 2.20 2.12± 0.01 1.14 1.15± 0.02

z = 0.5

DM 1 0.999± 0.003 1.56 1.55± 0.01
tot 2.73 2.65± 0.01 1.18 1.18± 0.01
11 2.31 2.33± 0.01 1.22 1.22± 0.02
22 2.59 2.57± 0.02 1.19 1.19± 0.02
33 3.42 3.39± 0.02 1.14 1.14± 0.02
12 2.45 2.45± 0.01 1.20 1.21± 0.02
13 2.81 2.79± 0.01 1.18 1.18± 0.01
23 2.98 2.95± 0.02 1.17 1.17± 0.02

z = 1

DM 1 0.996± 0.003 1.69 1.70± 0.01
tot 3.87 3.80± 0.02 1.15 1.16± 0.01
11 3.27 3.37± 0.02 1.18 1.20± 0.02
22 3.58 3.67± 0.03 1.17 1.18± 0.03
33 4.62 4.73± 0.03 1.13 1.14± 0.02
12 3.42 3.50± 0.02 1.17 1.18± 0.02
13 3.89 3.98± 0.02 1.15 1.15± 0.02
23 4.07 4.18± 0.03 1.14 1.15± 0.02

Table 4.5: Effective lin-
ear bias (beff) computed
from the halo model pre-
scription, values of b ob-
tained from the fit in real
space as described at
the end of section 4.3.1,
theoretical linear Kaiser
boost factors Slin (equa-
tion 3.5) and Kaiser
boost factors obtained
from the fit (Sfit) at all
redshift, for dark mat-
ter and all the halo cat-
alogues. All the ranges
correspond to the 68%
confidence level.

lines. As can be seen the agreement between the theoretical and the recovered values is
excellent at all redshifts.

4.3.4 Halo bias

Because of gravitational instability, dark matter clusters and forms haloes. In this section
I analyse the accuracy of the model of equation (4.4) in describing their distribution, both
in real and redshift space.

Real space

As described in Section 3.1, haloes form preferentially where the dark matter density is
high and their mass tends to be larger in denser regions. The auto and cross halo power
spectra for two mass bins i and j are, at linear order, related to the dark matter one by
the scale-independent bias factor of equation (3.3):

P h
ij(k, z) = b1 eff(z, i)b1 eff(z, j)PDM(k, z). (4.10)
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The results of numerical simulations have shown that this simple picture is only valid
on very large scales and that, due to the effects of non-linear evolution, halo bias is a
strong function of both scale and halo mass (e.g. Smith et al., 2007; Angulo et al., 2008).
These distortions must be carefully modelled in order to obtain unbiased constraints on
cosmological parameters from the full shape of the halo power spectrum.

Circles and dot-dashed lines in Figure 4.10 show the mean real space power spectra and
the corresponding variances at z = 0 for the total halo sample of the simulations, P h

tot(k)
(panel b), the three mass bins described in section 4.1.1, P h

11(k), P h
22(k) and P h

33(k) (panels
a, d and g), as well as their respective cross power spectra, P h

12(k), P h
13(k) and P h

23(k)
(panels c, e and f ). To increase the dynamical range of the plot, these power spectra have
been divided by the same non-wiggle linear-theory power spectrum as in Figure 4.6.

I obtain constraints on the parameter space defined in section 4.3.1 for different values
of kmax by applying the model of equation (4.4) to our measurements of the halo auto and
cross power spectra. As an example, panels g, h and i of Figure 4.7 show the constraints on
α as a function of kmax obtained from P h

tot(k) in real space for z = 0, 0.5 and 1, respectively.
The dot-dashed lines correspond to their 68% and 95% confidence levels. Due to the lower
number densities of the halo samples, the variances of these power spectra are larger than
for the dark matter case and increase with increasing redshift. This leads to an increase
in the allowed regions for α with respect to the ones obtained using PDM(k). Despite this
difference, these results show a similar qualitative behavior to the constraints obtained
from the dark matter power spectrum, with a mean value consistent with α = 1 up to
k . 0.15hMpc−1. The constraints on α obtained from the fits at different redshifts for
kmax = 0.15hMpc−1 are listed in the upper part of Table 4.4. The solid lines in Figure
4.10 show the model power spectrum of equation (4.4) computed using the mean values of
the four parameters obtained for this value of kmax.

The background shaded areas within dashed lines in Figure 4.11 show the 68% and
95% confidence levels of the two-dimensional constraints in the k? − α plane as obtained
using the mean auto and cross power spectra in real space for the different halo samples
at z = 0. Although the allowed region is larger than in the dark matter case, the overall
result here does not change: α is consistent with 1 and uncorrelated with both k? and
AMC, which makes this results robust. The constraints of the latter two parameters are
quite weak due to the same degeneracy described in Section 4.3.2

In contrast to the behaviour found in the analysis of the dark matter power spectrum,
when applied to the different halo samples the ability of the model to obtain unbiased
constraints on the stretch parameter degrades with increasing redshift and at z = 1 they
are only marginally consistent with α = 1. This is related to the mass resolution of the
L-BASICC II simulations: the smallest halo mass that can be resolved corresponds to
Mhalo = 1.75 × 1013h−1M�. While at z = 0 these haloes are moderately biased tracers of
the underlying dark matter distribution, at z = 1 they are much rarer objects that reside
in very dense, and thus highly non-linear, regions. Hence, an accurate description of the
shape of the power spectrum of such high mass objects at high redshifts requires a more
detailed model of the non-linear distortions than that of equation (4.4).

The shape of the cross power spectra P h
12(k), P h

13(k) and P h
23(k) is described as accurately
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Figure 4.10: Mean power spectra computed from the simulations (circles for real space and
triangles for redshift space), their variance (dash-dotted lines), the model power spectrum
as obtained through the fitting (solid lines) and the linear power spectrum (dashed lines)
as function of the wavenumber in comoving units at z=0 for the total halo catalog (tot),
the three mass bins (11, 22 and 33 ) and the three cross mass bins (12, 13 and 23 ) divided
by a smooth reference power spectrum (Eisenstein & Hu, 1998). Lower horizontal lines
indicate the linear bias, b2 for the halo mass bin as computed from the halo catalogue
prescription, the upper one indicate b2Slin (Table 4.5). The maximum wavenumber used
for the fit is kmax = 0.15hMpc−1 and is indicated by the vertical arrow.

as for the other four cases by the model of equation (4.4). As can be seen in Table 4.4, in
all cases the constraints on α derived from these measurements are in good agreement with
α = 1 and are tighter than the ones derived from their corresponding auto power spectra.
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Figure 4.11: 1 and 2 σ contours of the likelihood map obtained from the MCMC in the k?−α
plane for all the haloes catalogues at redshift 0 for kmax = 0.15hMpc−1. Background areas
within dashed lines are for real space, foreground ones within solid lines are for redshift
space.

As stated in Section 4.1.2, the halo catalogues are affected by the exclusion effect
introduced by the Friend-of-Friends algorithm used to identify them. To account for a
possible difference in the large scale amplitude of the shot-noise as could be caused by this
effect, I repeat the analysis adding a constant term to the model of equation (4.4) which
I allow to vary over a wide flat prior. The results indicate that such a term is degenerate
with k? and AMC, while the constraints of α are not affected.

I measure the value of b from all the real space halo power spectra at the three redshifts
as described at the end of Section 4.3.1. These values are listed in corresponding column
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in Table 4.5. The recovered b2 is shown by the lower dotted lines in Figure 4.10. Using
the linear bias prescriptions of equations (3.3) and (3.4) I compute the effective bias for
the halo mass bins listed in Table 4.3: the third column of Table 4.5 lists the effective bias
as beff = b1 eff(z, i), for i = tot, 1, 2, 3 and beff =

√
b1 eff(z, i)b1 eff(z, j), for i, j = 1, 2, 3.

The values of b and beff show a reasonable agreement with the measurements from the
simulation with the exception of the high mass sample, for which the mass function is not
sufficiently accurate (e.g. Warren et al., 2006).

Redshift space

Redshift space distortions modify the amplitude and shape of the halo power spectra less
strongly than in the dark matter case (Smith et al., 2007; Angulo et al., 2008; Matsubara,
2008b). This comes clear when comparing the redshift space halo power spectra at z = 0,
triangles in Figure 4.10, with the real space counterpart (circles) and with the dark matter
power spectra in Figure 4.6. The other two redshifts investigated show the same trend.

On large scales, the impact of the Kaiser effect is reduced because the increase of
the clustering signal due to the coherent inflow towards denser regions is relatively less
important when b1 > 1 than for values smaller than unity. This picture agrees with the
theoretical prediction of equation (3.5), whose values for the halo auto and cross power
spectra at z = 0, 0.5 and 1 are shown in the second to last column in Table 4.5. The values
Slin are computed using beff , but the results are very similar if it is substituted with the
fitted real space bias br. The increase in amplitude is of the order of 15-20% and decreases
with mass and with increasing redshift.

As already described in Section 3.1, fingers-of-god are caused by random motion of
particles within bound structures. In haloes this effect is greatly reduced as their peculiar
motion is small.

Panels j, k and l of Figure 4.7 shows the constraints on α as a function of kmax obtained
from P h

tot(k) in redshift space for z = 0, 0.5 and 1, respectively. The two-dimensional
marginalised constraints in the k? − α plane obtained by applying the model of equation
(4.4) with kmax = 0.15hMpc−1 to the seven redshift space halo power spectra at z = 0
are illustrated in Figure 4.11. From both figures it is clear that the difference between real
and redshift space constraints obtained for the haloes is less significant than in the dark
matter case, which agrees with the expectation described above. As before the constraints
on k? are broaden due to the degeneracy between this parameter and AMC; nonetheless
k? seems to prefer smaller values in redshift space, in agreement with the more significant
damping of the BAO features.

From the fitted real and redshift space bias parameters in the model, br and bs, I can
measure the Kaiser boost factor as Sfit = b2

s/b
2
r . These values are listed in the last column

of Table 4.5 and they show a remarkable agreement with the theoretical predictions. The
upper dotted lines in Figure 4.10 correspond to the value of b2

effSlin.
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Chapter 5
Cosmological Parameters

Here I apply the model described and tested in the previous chapter to the measured power
spectrum of a luminous red galaxy sample extracted from the seventh data release of the
Sloan Digital Sky Survey (Abazajian et al., 2009). In Section 5.1 I describe the galaxy
sample and the mock catalogues that we use to estimate the errors. Their power spectra
are shown in Section 5.2. Section 5.3.1 illustrates the five cosmological scenarios that I
explore combining the galaxy power spectrum with the data from the cosmic microwave
background, type 1a supernovae and an accurate measurement of the local Hubble param-
eter. In Section 5.3.2 I explain briefly how the cosmological parameters are extracted. In
Section 5.3.3 I test the model against the mock catalogues power spectrum. Section 5.4
shows the main results of this chapter, the cosmological parameters obtained combining
the different experiments for the five models explored. Finally in Section 5.5 I compare
my results with similar works recently published. This chapter based on Montesano et al.
(2011).

5.1 The galaxy sample and the mock catalogues.

In this section I describe the galaxy sample (Section 5.1.1) and the mock catalogues (Section
5.1.2) that I use.

5.1.1 The luminous red galaxy sample from the 7th data release
of SDSS

The data release 7 (DR7, Abazajian et al., 2009) is the last data release of the second phase
of SDSS, know as SDSS-II. From the 929,555 galaxies, whose spectra have been measured,
we use the subsample of luminous red galaxies (LRGs, Eisenstein et al., 2001) presented
in Kazin et al. (2010) and publicly available1. The catalogue contains 89,791 LRGs, in the
redshift range 0.16 < z < 0.44 (z̄ = 0.314), from the large contiguous area of 7646 deg2

1http://cosmo.nyu.edu/~eak306/SDSS-LRG.html

http://cosmo.nyu.edu/~eak306/SDSS-LRG.html
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Figure 5.1: Angular dis-
tribution of the luminous
red galaxies

Figure 5.2: Spline fit to the
redshift distribution of the
LRGs (dot-dashed line) and
the original and modified n(z)
of the mock catalogues (dashed
and solid lines, respectively)

in the Northern Galactic Cap. The full survey also includes three equatorial stripes, that
we do not consider. This causes a loss of less than 10% in galaxy number and volume,
but the resulting geometry is simpler. Furthermore, the use of the Northern Galactic Cap
only allows us to obtain an estimate of the statistical errors more accurate than for the
full survey (see Section 5.1.2). Figures 5.1 and 5.2 show, respectively, the LRG angular
footprint and, with the dot-dashed line, a smooth spline fit to the number density of the
sample as function of redshift. Together with the LRGs catalogue, I use a random one
with about fifty times more objects, designed to reproduce the geometry and completeness
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matter density Ωm 0.25
cosmological constant density ΩΛ 0.75
baryonic density Ωb 0.04
Hubble parameter [km s−1 Mpc−1] H 70
amplitude of density fluctuations σ8 0.8
scalar spectral index ns 1.0
number of particles Np 12803

box size [h−1 Mpc] V 2400
particle mass [1010M�] Mp 45.73
softening length [h−1kpc] ε 53

Table 5.1: Cosmological parameters
and specifications of the LasDamas-
Oriana simulations

of the galaxy sample and to have a radial number density proportional to the dot-dashed
line in Figure 5.2.

5.1.2 The mock catalogues

In order to test the analysis technique and to estimate the errors associated to the LRG
sample, I use the LasDamas mock catalogues (McBride et al., in prep.). The mocks
have been constructed from a suite of 40 large dark matter N-body simulations, dubbed
Oriana, that reproduce a part of a universe characterised by a geometrically flat ΛCDM
cosmology. The cosmological parameters and specifications of the simulations are listed
in Table 5.1. From each simulation a halo catalogue has been extracted using a Friend-
of-Friend algorithm with linking length 0.2 times the mean inter-particle separation. In
order to match the LRG clustering signal, the haloes have then been populated with
mock galaxies using a halo occupation distribution (HOD, Berlind & Weinberg, 2002)
within the halo model approach. The HOD parameters have been chosen in order to
reproduce the galaxy number density and the projected correlation function of the observed
SDSS DR7 samples. From each simulation two (four) mock catalogues of the full SDSS
DR7 volume (Northern Galactic Cap only) have been extracted. These mock catalogues,
together with the mocks from two smaller companions of Oriana and the corresponding
random catalogues, are publicly available2.

For this thesis I use the 160 mock catalogues of the LRGs in the Northern Galactic
Cap region. I modify the mocks and the corresponding random catalogue, which have the
radial number density shown by the dashed line in Figure 5.2, in order to reproduce the
one of the LRG. The resulting n(z) is indicated by the solid line. The mock catalogues
contain on average 91137 galaxies.

2http://lss.phy.vanderbilt.edu/lasdamas

http://lss.phy.vanderbilt.edu/lasdamas
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5.2 The power spectra

From the dataset and mock catalogues just described I compute the power spectra and the
covariance matrix that will be used in the rest of the chapter. They are presented in this
section.

5.2.1 The LRG power spectrum

To compute the power spectrum and the window function I need to convert the observed
angular positions and redshifts of the galaxies and the random points into comoving coor-
dinates. This is done first inferring radial distances from the measured redshifts and then
converting the spherical coordinates into cartesian ones. To do the first step I assume as
fiducial the cosmology of the LasDamas simulations, shown in Table 5.1.

I compute the power spectrum, as well as the survey window function, using the estima-
tor introduced by Feldman et al. (1994, thereafter FKP). Percival et al. (2004, thereafter
PVP) proposed a modification of the FKP approach to take into account the relative bi-
ases between populations with different luminosities. In Appendix B.1 I show that, thanks
to the fact that the LRG sample is almost volume limited and composed of a relatively
homogeneous class of galaxies, the shape of the power spectra recovered with the two
methods are in excellent agreement at linear and mildly non-linear scales. In Appendix
A.2 I summarise the most important equations of both estimators.

At first I correct the galaxy catalogue for the loss of objects due to fibre collisions
(Zehavi et al., 2002; Masjedi et al., 2006). The SDSS spectrographs are fed by optical
fibres plugged on plates, forcing the fibres to be separated by at least 55”. It is then
impossible, in a single exposure, to obtain spectra of galaxies nearer than this angular
distance. The problem is partially alleviated by multiple exposures, but it is not possible
to observe all the objects in crowded regions. Assuming that in a given region of the n
galaxies that satisfy the selection criteria one can measure only m ≤ n redshifts due to
fibre collisions and assuming that the missed galaxies have the same redshift distribution
of the observed ones, I assign to the latter a weight wi = n/m. This ensures that the
sum of the weights in a given region of the sky is equal to the number of selected galaxies
n. Secondly to each LRG and random object at position x, where the number density is
n(x), I associate a weight w(x) = (1 + pwn(x))−1, with pw = 40000h−3Mpc3. This value
has been chosen in order to minimise the variance of the measured power spectrum in
the range 0.02hMpc−1 ≤ k ≤ 0.2 h Mpc−1. In Appendix B.1 I show the results of the
tests of the impact of different choices of pw and corrections, namely fibre collision and
completeness, on the recovered power spectrum.

To compute the power spectrum I assign the LRGs and the random objects, weighted
as described before, to a cubic grid with N = 10243 cells and side L = 2200h−1 Mpc using
TSC as MAS. For each cell, I compute the F (x) field of equation (A.5a). I then perform
the fast Fourier transform using fftw (Frigo & Johnson, 2005). As I have done in Section
4.1.2 with the L-BASICC simulations, I correct each Fourier mode as shown in the first
line of equation (A.4b). Finally I spherically average the Fourier modes and subtract the
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shot noise of equation (A.9a).
The window function is evaluated similarly. I assign the objects of the random cat-

alogue to four cubic grids with N = 10243 cells and sides L = 2200, 4400, 8800 and
17600 h−1 Mpc and compute the field G(x) of equation (A.10a). I use the four grids with
different dimensions in order to be able to compute the window function up to very large
scales. For each box, I perform the FFT, correct the Fourier modes, spherically average
and subtract the shot noise (equation A.11a). For each window function G2(k), I discard
all the modes with wave-number k > 0.65 kN and, when two or more window functions
overlap, I consider only the one computed in the larger volume. This choice is motivated by
the fact that, for a given band in wavenumber, the larger volume window function has been
computed averaging over a larger number of modes than the ones from smaller volumes.
Finally I merge the four window functions in order to obtain a single curve.

According to equation (A.8), the observed power spectrum Po(k) just described is a con-
volution of the “true” power spectrum Pt(k) with the window function. This convolution
is computationally time consuming, in particular when it has to be performed repetitively.
Therefore I transform this convolution into a matrix multiplication:

Po(ki) =
∑
n

W (ki, kj)Pt(kj)− C G2(ki). (5.1)

W (ki, kj) = ajk
2
j

∫ 1

−1
d cos(θ)G2(|ki − kj|) is the window matrix normalised such that∑

jW (ki, kj) = 1 ∀i. The weights aj corresponding to the wavenumber kj are derived
using the Gauss-Legendre decomposition. The second term in the right hand side arises
from the integral constraint (Percival et al., 2007) and C is a constant determined by
requiring that Po(0) = 0.

The LRG power spectrum is shown in panel a) of Figure 5.3 with blue dots connected
by a solid line. I also show the linear (green dashed line) and the model (red solid line)
power spectra computed from the best fit parameters obtained assuming a flat ΛCDM
cosmology (see section 5.4.1 for more details). Both power spectra have been convolved
with the window function as in equation (5.1). The blue shaded area shows the variance
from the mock catalogues. The panel b) shows the same quantities, with the same colour
and line coding, but divided by a smooth linear power spectrum without BAOs (Eisenstein
& Hu, 1998).

Panel c) in Figure 5.3 shows every third row of the window matrix W (ki, kj). Because
of the relatively simple and uniform geometry of the sample used, the window function has
its maximum at k = 0hMpc−1 and decreases very steeply. This translates into very sharp
peaks at kj ∼ ki in the window matrix rows, as shown in the figure.

5.2.2 The mock power spectra and covariance matrix

I compute the power spectra from the 160 realisations and the window function as described
for the LRG sample in the previous section. I then compute the mean P̄ (k), the standard
deviation and the covariance matrix C as in equation (4.9).
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Figure 5.3: Panel a): LRGs power spectrum
(blue dots connected with solid line) and cor-
responding 1-σ error bars from the mock cat-
alogues (shaded area). The green dashed and
the red solid lines show, respectively, the lin-
ear and model power spectra computed using
the mean value of the cosmological parame-
ters of the ΛCDM cosmology show in the last
column of Table 5.4 and convolved with the
window function. Panel b): power spectra
of panel a) divided by a linear power spec-
trum without BAOs (Eisenstein & Hu, 1998).
Panel c): rows of the window matrix cor-
responding to the k-bands of the measured
LRG power spectrum. For clarity only every
third row is shown.
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Panel a) of Figure 5.4 shows the mean power spectrum and its variance (blue dots with
solid line and shaded area) from of the mock catalogues. The green dashed and the red
solid lines show the linear and the best fit model power spectra (see Section 5.3.3 for more
details) convolved with the window function of the mocks. Panel b) of Figure 5.4 shows the
same power spectra of panel a) divided by a power spectrum without oscillations Pnw(k).

The correlation matrix of the mock catalogues, defined as Cij/
√
CiiCjj, is shown in

Figure 5.5. The mode correlation caused by the convolution with the window function is
visible in particular near the diagonal. Non linear mode coupling is present at small scales
and its strength increases with increasing k. Although the correlation becomes important
for k > 0.2hMpc−1, it is non-negligible already at k ≈ 0.1hMpc−1. Recently Samushia
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Figure 5.4: Panel a): mean power spectrum (blue dots connected by solid line) with 1-
σ variance (blue shaded area) from the mock catalogues. The linear and model power
spectra, convolved with the window function, are shown with green dashed and red solid
line, respectively. Panel b): same power spectra divided by a linear power spectrum without
BAOs (Eisenstein & Hu, 1998)

et al. (2011) showed that different methods to construct the random catalogues can affect
the estimated covariance matrix.

The version of the mocks available when writing this thesis does not contain information
about the luminosity of the galaxies, completeness or fibre collisions. I cannot therefore
test the impact of different estimators and corrections on the errors. However I test the
impact of different pw on the power spectra and errors as measured from the mocks: the
results are reported in Appendix B.2.

5.3 Methodology

In Sections 5.3.1 and 5.3.2, I present the parameter spaces used in Section 5.4 and the
method used to extract cosmological information. I test the model against the LasDamas
and the LRG power spectra (Section 5.3.3).

5.3.1 Parameter spaces

Within the framework outlined in Chapter 2 I analyse five different cosmological models,
explored using five different combinations of the LRG power spectrum and the experiments
described in Section 3.2. The combinations are: CMB, CMB+PLRG(k), CMB+PLRG(k)+H0,
CMB+PLRG(k)+SNIa and CMB+PLRG(k)+H0+SNIa.

The “concordance” ΛCDM model is the simplest model able to successfully describe a
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Figure 5.5: Correlation matrix as computed
from the mock catalogues.

large variety of cosmological datasets. It describes a geometrically flat (Ωk = 0) universe
with a cosmological constant Λ, whose equation of state parameter wDE = −1 is constant
in space and time, and pressureless cold dark matter (CDM) as main components. This
cosmology can be characterised by six parameters: the baryon and dark matter density
ωb = Ωbh

2, ωDM = ΩDMh
2, the scalar spectral index ns and the amplitude As of the

primordial fluctuations, the optical dept τ , assuming instantaneous reionisation, and the
ratio between the horizon scale at decoupling and the angular diameter distance to the
corresponding redshift Θ:

θΛCDM = (ωb, ωDM, ns, As, τ,Θ; b, k?, AMC, ASZ). (5.2)

The four parameters after the semicolon are related to the modelling of the matter power
spectrum (b, k? and AMC from equation 4.4) and of the CMB angular power spectrum (ASZ,
the amplitude of the contribution to the CMB at large l from the Sunyaev-Zeldovich effect).
These parameters will be marginalised over when showing the cosmological constraints in
the section 5.4.

If I then drop one or both assumptions about the geometry and the value of wDE, I
obtain three cosmologies characterised by the following parameter spaces:

• variable curvature, wDE = −1:

θkΛCDM = (ωb, ωDM,Ωk, ns, As, τ,Θ; b, k?, AMC, ASZ); (5.3)

• zero curvature, wDE = const:

θwCDM = (ωb, ωDM, wDE, ns, As, τ,Θ; b, k?, AMC, ASZ); (5.4)

• variable curvature, wDE = const:

θkwCDM = (ωb, ωDM,Ωk, wDE, ns, As, τ,Θ; b, k?, AMC, ASZ). (5.5)
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Parameter lower limit upper limit
ωb = Ωbh

2 0.005 0.1
ωDM = ΩDMh

2 0.01 0.99
Ωk -0.3 0.3
wDE (w0) -2 0
wa -2 2
ns 0.5 1.5
log(1010As) 2.7 4
τ 0.01 0.8
100Θ 0.5 10
k? 0.01 0.35
AMC 0 5
ASZ 0 2

Table 5.2: Prior ranges for the fundamental
cosmological and the model parameters

As last case, I consider a flat Universe in which wDE(a) evolves with time. I adopt the
parametrisation proposed by Linder (2003):

wDE(a) = w0 + wa(1− a). (5.6)

Although not physically motivated, it can describe accurately a big variety of equations of
state derived from scalar fields with the use of only two parameters: its value today, w0,
and its first derivative with respect to a, wa. The resulting parameter space is:

θwaCDM = (ωb, ωDM, w0, wa, ns, As, τ,Θ; b, k?, AMC, ASZ). (5.7)

Other cosmological quantities can be derived from the ones just listed. In particular I
am interested in:

θder = (ΩDE,ΩM, H, t0, σ8, zre). (5.8)

The density of dark energy, ΩDE, is obtained from a combination of Ωk, ωM = ωb + ωDM

and Θ. From there, the total matter density ΩM = 1 − Ωk − ΩDE, the Hubble parameter
h =

√
ωM/ΩM and the age of the universe t0 =

∫ 1

0
da/ [aH(a)] are derived. The present

day rms of linear density fluctuation in a sphere of radius 8h−1 Mpc, σ8, is computed
from As. From τ , H, Ωb and ΩDM it is possible to estimate the redshift of reionisation zre

(Tegmark et al., 1994).

5.3.2 Practical issues

To constrain the sets of cosmological and model parameters just described, I use the Markov
Chain Monte Carlo technique as implemented in the free software cosmomc3 (Cosmolog-
ical MonteCarlo, Lewis & Bridle, 2002). The CMB and linear matter power spectra are

3http://cosmologist.info/cosmomc/

http://cosmologist.info/cosmomc/


58 5. Cosmological Parameters

computed with a modified version of camb (Code for Anisotropies in the Microwave Back-
ground, Lewis et al., 2000) that allows to consider time varying wDE

4(Fang et al., 2008).
For each choice of parameter space and probes I run eight independent chains. Their ex-
ecution is stopped when the Gelman & Rubin (1992) criterion R < 1.02 is satisfied. The
MCMC requires some prior knowledge of the parameter space that is explored. I assume
for all the primary parameters (equations 5.2-5.5 and 5.7) flat priors in the ranges listed
in Table 5.2. The model parameter b is analytically marginalised over an infinite flat prior
as in the previous chapter.

All likelihoods used to compare the results from the cosmological probes described
in sections 5.1.1, 3.2.1, 3.2.2 and 3.2.3 with the corresponding models are assumed to be
Gaussian. In the case of the LRGs power spectrum I use the likelihood function of equation
(4.7).

In section 5.1.1 I assumed a fiducial cosmology in order to convert redshifts and angles
to physical coordinates. Different choices of the parameters result in modifications of the
measured LRG power spectrum. The ideal case would be to recompute, for each step of
the MCMC chain, the power spectrum and the window function according to the given
cosmology, but this is not computationally feasible. It is possible to incorporate these
distortions in the power spectrum thanks to the factor α of equation (4.5). Thus at each
step of the chain I multiply the wave-number of the model power by 1/α and its amplitude
by α3 in order to rescale it to the fiducial cosmology.

5.3.3 Testing the model

In this section I fit the model of equation (4.4) against the mock catalogues in order to test
whether it provides an accurate description of the measured power spectrum and unbiased
constraints on the dark energy equation of state parameter also when a complex geometry
is involved. I also test the stability of the cosmological parameters of in the wCDM case as
the maximum k included in the analysis varies, when CMB and the PLRG(k) are combined.

Mock catalogues

In this section I follow the method described in Section 4.3.1 and assume all the parameters
fixed, except for wDE. Under this assumption, equation (4.5) links univocally variations of
the dark energy equation of state parameter to stretches α of the model power spectrum.
Therefore I consider the latter as a a free parameter.

Using a MCMC approach, I explore the parameter space defined by θ = (k?, b, AMC, α).
I chose priors with a constant probability within the following ranges:

• 0hMpc−1< k? < 0.35hMpc−1,

• 0 ≤ AMC < 10,

• 0.5 ≤ α < 1.5.

4http://camb.info/ppf/

http://camb.info/ppf/
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Figure 5.6: Marginalised constraints on the
parameters k?, AMC and α as function of
the maximum value of k (kmax) used to fit
the model of equation (4.4) to the LasDamas
mean power spectrum. The mean values and
the standard deviation are indicated, respec-
tively, by circles connected with solid lines
and shaded areas. Before the convolution
with the window function the model is com-
puted for k ≤ 0.2hMpc−1.

The bias b is marginalised analytically over an infinite flat prior.
Figure 5.6 shows, from top to bottom, the one-dimensional marginalised constraints on

the parameters k?, AMC and α when varying the maximum value of the wave number kmax

of the measured power spectrum used to perform the fit; we keep the minimum k fixed to
0.02hMpc−1. The blue circles connected by solid lines and the shaded areas correspond
to the mean and the standard deviation of these parameters. For every kmax the model
is evaluated for k ≤ 0.2hMpc−1 and then convolved with the window function. Since
each row of W (ki, kj) is sharply peaked at kj ∼ ki, the main contribution to Po(ki) comes
from modes near ki: therefore the constraints shown in Figure 5.6 depend weakly on the
exact wave number range in which the model is computed, as long as it is larger than
the range of the measured power spectrum that I fit. As kmax increases, more modes are
included in the fit and the errors decrease. The value of α that I obtain are compatible with
unity for all the kmax considered. In Section 4.3 I show that, in the redshift range of the
LRGs catalogue, the model is accurate for k . 0.15hMpc−1. Considering that the volume
of the L-BASICC II simulations is much larger that the one sampled by the LRGs and
consequently that the errors in the former case are smaller than in the latter, I decide to
further consider scales 0.02hMpc−1 ≤ k ≤ 0.15 h Mpc−1. The constraints on k? and AMC

exhibit, respectively, a monotonic increase and decrease as function of kmax. As explained
Section 4.3, the approximate mode coupling power in equation (4.4) is about 30% larger
that the exact value at k ≈ 0.15− 0.2hMpc−1: this forces AMC to decrease to ∼ 0.7− 0.6
and k? to increase in order to maintain the shape of the resulting power spectrum unvaried.

Figure 5.7 shows the two-dimensional marginalised constraints in the k? − α plane as
obtained from the mock catalogues for kmax = 0.15hMpc−1. The inner dark and outer light
shaded areas represent regions whose volumes are 68% and 95% of the total likelihood. This
representation of the two-dimensional constraints will be used through all section 5.4. The
independence of α from k? or AMC makes the constraints on the former robust. The latter
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Figure 5.7: Two-dimensional marginalised
constraints in the k?− α plane obtained ap-
plying the model of equation (4.4) to the
LasDamas mean power spectrum. The re-
sults are show for kmax = 0.15hMpc−1.
The inner dark and outer light areas rep-
resent the 68% and 95% confidence level,
respectively.

two parameters, instead, are strongly degenerate, as it is possible to describe accurately
the overall shape of the power spectrum compensating an increase (decrease) of k? with a
decrease (increase) of AMC.

The model power spectrum indicated by a solid line in both panels of Figures 5.4 has
been computed using the mean values of the parameters as obtained in this section using
kmax = 0.15hMpc−1: k? = 0.26hMpc−1, AMC = 0.67. The bias has been computed
maximising the likelihood of equation (4.7) with all the other parameters fixed.

The luminous red galaxy sample

After testing the robustness of our model at mildly non-linear scales, I test here the depen-
dence of the cosmological parameters upon kmax. I use the wCDM cosmology defined in
equation (5.4) and the combination of the LRG power spectrum and CMB measurements.
Figure 5.8 shows the one-dimensional marginalised constraints on the parameters ωb, ωDM,
wDE, ΩDE, σ8 and h as function of kmax. The circles connected by solid lines and the shaded
areas show the mean and the standard deviation as obtained from the MCMC. The model
is computed for k < 0.2hMpc−1 and then convolved with the window function; as before,
the measured parameters are insensitive to its exact value. Although some parameters are
more stable with respect to changes of kmax than others, there are no significant trends or
deviations.

I also test the impact of using CMB measurements from WMAP only. In this case I
obtain the same constraints, but with errors larger by 5-10%, due to the loss of information
at small angular scales, i.e. large multipoles l. Appendix B.3 describes how the results just
described depend upon pw and wi.

A more extensive analysis of the wCDM cosmology is presented in section 5.4.3.
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Figure 5.8: One-dimensional marginalised
constraints of the wCDM parameter space
on the parameters ωb, ωDM, wDE, ΩDE, σ8

and h as function of kmax as obtained when
combining the LRG power spectrum with the
CMB data. Circles connected by solid line
and shaded areas are, respectively, the mean
and the 68% confidence level. The model is
computed for k < 0.2hMpc−1 and then con-
volved with the window function.

5.4 Results: the cosmological parameters

In this section I present the constraints on the cosmological parameters obtained from the
five cosmological scenarios presented in section 5.3.1.

5.4.1 The concordance cosmology

The flat ΛCDM cosmology, parametrized by the first six quantities of equation (5.2), is
the minimal model able to describe data coming from a variety of independent probes.
Table 5.3 summarises the complete list of one-dimensional constraints for the primary and
derived cosmological parameters obtained in this section. I quote the mean values and
width of the posterior distribution containing 68% of the total area5 as obtained for the
five different combinations of the four experiments used in this work. This convention will
be followed in the rest of this chapter.

The CMB experiments described in section 3.2.3 provide measurements of the temper-
ature and polarization angular power spectra with very high accuracy. The blue shaded

5For a Gaussian distribution this corresponds to the standard deviation.



62 5. Cosmological Parameters

Table 5.3: Marginalised constraints on the cosmological parameters of the ΛCDM param-
eter space from the combination of probes listed in the header of the table. The quoted
values are the mean and widths of the posterior distribution containing 68% of the total
area.

CMB CMB+P (k) CMB+P (k) CMB+P (k) CMB+P (k)
+H0 +SNIa +H0+SNIa

100ωb 2.254+0.052
−0.052 2.258+0.048

−0.048 2.259+0.050
−0.049 2.252+0.047

−0.047 2.260+0.047
−0.047

100ωDM 10.96+0.52
−0.52 11.23+0.36

−0.36 11.10+0.35
−0.35 11.22+0.34

−0.33 11.13+0.33
−0.32

100Θ 1.0400+0.0023
−0.0022 1.0404+0.0020

−0.0020 1.0406+0.0020
−0.0021 1.0403+0.0021

−0.0020 1.0406+0.0020
−0.0020

τ 0.088+0.015
−0.015 0.087+0.014

−0.014 0.086+0.014
−0.014 0.085+0.014

−0.015 0.087+0.014
−0.014

ns 0.963+0.013
−0.013 0.963+0.011

−0.012 0.963+0.011
−0.011 0.961+0.012

−0.011 0.963+0.011
−0.011

log(1010As) 3.065+0.033
−0.033 3.075+0.031

−0.031 3.068+0.033
−0.033 3.070+0.032

−0.032 3.071+0.032
−0.032

ΩDE 0.741+0.026
−0.026 0.730+0.018

−0.018 0.737+0.017
−0.017 0.730+0.017

−0.017 0.735+0.015
−0.016

Age [Gyr] 13.− 0.112+0.111 13.723+0.094
−0.094 13.711+0.095

−0.093 13.735+0.094
−0.092 13.710+0.091

−0.094

ΩM 0.259+0.026
−0.026 0.270+0.018

−0.018 0.263+0.017
−0.017 0.270+0.017

−0.017 0.265+0.016
−0.015

σ8 0.796+0.027
−0.027 0.807+0.022

−0.022 0.799+0.022
−0.022 0.804+0.021

−0.021 0.802+0.021
−0.021

zre 10.4+1.2
−1.2 10.4+1.1

−1.2 10.3+1.2
−1.2 10.3+1.2

−1.2 10.4+1.2
−1.2

H0 [km s−1 Mpc−1] 71.7+2.4
−2.3 70.8+1.6

−1.6 71.3+1.5
−1.5 70.7+1.5

−1.5 71.2+1.4
−1.4

areas enclosed within dashed lines in panel a) of Figure 5.9 show the 68% and 95% con-
fidence level in the ΩDM − H0 as obtained when CMB information only is used. The
apparent position of the peaks in the CMB power spectra is proportional to their physical
scale, which depends on the composition of the early universe (baryons, dark matter and
radiation), and the comoving angular diameter distance to the last scattering surface, a
function of H0 and of the density and equation of state parameters of matter, dark en-
ergy and curvature. Since here I consider a flat geometry and fix wDE to -1, a degeneracy
between the matter density and the Hubble parameter appears. It has been shown by
Percival et al. (2002) that this effect, together with the preservation of the relative am-
plitude of the peaks, leads, in a ΛCDM universe, to a degeneracy along the curve defined
by ΩMh

3 ' const, which is highlighted in Figure 5.9, panel a), by the dotted line. The
accurate detection of the third peak in the temperature power spectrum, whose relative
amplitude with respect to the first two is proportional to the matter-radiation ratio, helps
reducing this degeneracy. I obtain ΩM = 0.259 ± 0.026, H0 = 71.7+2.4

−2.3 km s−1 Mpc−1 and
ωDM = (10.96± 0.52)× 10−2.

The inclusion of information from the large scale structure can break or reduce some of
the degeneracies in the CMB. The shape of the power spectrum depends upon ΩMh and,
more weakly, Ωb/ΩM (e.g., Efstathiou et al., 2002; Sánchez & Cole, 2008). Thanks to this,
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Figure 5.9: Panel a): two-dimensional marginalised constraints of the ΛCDM parame-
ter space in the ΩM − H0 plane. Blue, red and green shaded areas enclosed in dashed,
solid and dot-dashed lines show the constraints from CMB alone, CMB+PLRG(k) and
CMB+PLRG(k)+H0+SNIa, respectively. The inner darker and the outer lighter areas cor-
respond the 68% and 95% confidence level. The black dotted line that runs across the
figure shows the locus defined by equation ΩMH

3
0 ' const. Panel b): two-dimensional

marginalised constraints in the ΩM − σ8 plane, for the same combinations of experiments.

the errors on the cosmological parameters decrease up to about 30%. In particular, I mea-
sure a decrease in the allowed region by about one third in the three parameters considered
before: ΩM = 0.27±0.018, H0 = 70.8±1.60 km s−1 Mpc−1 and ωDM = (11.23± 0.36)×10−2.
The two-dimensional constraints in the ΩM−H0 plane are shown in panel a) of Figure 5.9
with the red shaded areas within solid lines.

When the SNIa and H0 measurements are also used, I obtain ΩM = 0.265 ± 0.015,
H0 = 71.2 ± 1.4 km s−1 Mpc−1 and ωDM =

(
11.13+0.33

−0.32

)
× 10−2, which means a 10-15%

increase in accuracy. The two-dimensional 68% and 95% confidence levels for the former
two parameters, when all the four probes are used, are shown in panel a) of Figure 5.9 by
the green shaded areas enclosed inside the dot-dashed lines.

Panel b) of Figure 5.9 shows the two-dimensional marginalised constraints in the ΩM−σ8

plane for the same combination of datasets with the same colours and line styles as panel
a). The correlation between the two parameters is caused by the fact that an increase
(decrease) of ΩM causes a decrease (increase) in the amplitude of the power spectrum that
can be compensated by a larger (smaller) value of σ8. For the three cases shown in the
figure I find that the one-dimensional constraints on the latter parameter are, respectively,
σ8 = 0.796± 0.027, σ8 = 0.807± 0.022 and σ8 = 0.802± 0.021; the error on the latter two
decreases by 20 and 22% respectively to the CMB alone result.
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no systematics mlcs2k2

100ωb 2.258+0.046
−0.048 2.244+0.047

−0.046

100ωDM 11.16+0.28
−0.29 11.61+0.31

−0.31

100Θ 1.0405+0.0020
−0.0020 1.0402+0.0021

−0.0020

τ 0.087+0.014
−0.014 0.084+0.014

−0.014

ns 0.963+0.011
−0.011 0.957+0.011

−0.011

log(1010As) 3.072+0.033
−0.033 3.081+0.031

−0.032

ΩDE 0.734+0.013
−0.013 0.709+0.016

−0.016

Age [Gyr] 13.− 0.089+0.089 13.765+0.090
−0.090

ΩM 0.266+0.013
−0.013 0.291+0.016

−0.016

σ8 0.803+0.020
−0.020 0.822+0.021

−0.021

zre 10.4+1.2
−1.2 10.3+1.2

−1.2

H0 [km s−1 Mpc−1] 71.0+1.2
−1.2 69.1+1.3

−1.3

Table 5.4: Marginalised constraints on
the cosmological parameters of the
ΛCDM parameter space from the com-
bination of CMB+PLRG(k)+H0+SNIa
when systematic errors are not consid-
ered and when the mlcs2k2 SNIa light
curve fitter is used.

The solid lines in panels a) and b) of Figure 5.3 show the model power spectrum
computed using the cosmological parameters listed in the last column of Table 5.3 and the
model parameters k? = 0.29hMpc−1 and AMC = 0.77, as obtained from the MCMC for
kmax = 0.15hMpc−1. The bias has been computed maximising the likelihood of equation
(4.7) with all the other parameters fixed.

Effects of supernovae systematics and light curve fitters

Uncertainties in the modelling of SNIa can affect the cosmological parameters and associ-
ated errors extracted using a given dataset. To test the impact of systematics and light
curve fitters on the results just presented, I re-analyse the ΛCDM cosmology with two dif-
ferent SNIa settings. First I use the same Union2 set, but neglecting the systematic errors
provided with the data; then I substitute this dataset with the SDSS SN sample analysed
with mlcs2k2; both datasets are described in Section 3.2.1. The one-dimensional con-
straints that I extract from the combination of all four probes using these supernovae data
are listed in Table 5.4. As expected, and in agreement with Amanullah et al. (2010), ignor-
ing systematic errors globally reduces the errors on the recovered values of the parameters
without changing sensibly the mean value. For example I obtain ΩM = 0.266± 0.013 (14%
decrease with respect to the corresponding case in Table 5.3), H0 = 71.0+1.2

−1.2km s−1 Mpc−1

(12%), ωDM =
(
11.16+0.28

−0.29

)
× 10−2 (14%) and σ8 = 0.803± 0.020 (5%). On the other hand,

the use of mlcs2k2 changes the posterior distribution sensibly, without influencing its
width. We measure that ΩM, ωDM and H0 change by more than 1.5-2σ. This shift agrees
with the findings in Kessler et al. (2009) and suggests that the choice of the model used to
fit the light curves can bias sensibly the cosmological results obtained.
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Table 5.5: Marginalised constraints on the cosmological parameters of the kΛCDM param-
eter space from the combination of probes listed in the header of the table. The quoted
values are as in Table 5.3.

CMB CMB+P (k) CMB+P (k) CMB+P (k) CMB+P (k)
+H0 +SNIa +H0+SNIa

100ωb 2.232+0.052
−0.050 2.250+0.048

−0.047 2.252+0.050
−0.049 2.245+0.050

−0.048 2.247+0.049
−0.050

100ωDM 11.06+0.50
−0.50 11.29+0.44

−0.45 11.30+0.45
−0.45 11.30+0.42

−0.41 11.31+0.43
−0.44

100Θ 1.0396+0.0022
−0.0022 1.0401+0.0022

−0.0021 1.0402+0.0022
−0.0022 1.0400+0.0021

−0.0021 1.0400+0.0022
−0.0021

τ 0.086+0.014
−0.015 0.085+0.014

−0.014 0.085+0.014
−0.014 0.085+0.014

−0.014 0.085+0.015
−0.014

100Ωk −4.90+4.39
−5.10 0.16+0.54

−0.54 0.30+0.49
−0.49 0.14+0.51

−0.53 0.30+0.48
−0.47

ns 0.956+0.013
−0.013 0.961+0.012

−0.012 0.961+0.012
−0.012 0.960+0.012

−0.012 0.960+0.012
−0.012

log(1010As) 3.062+0.033
−0.033 3.072+0.030

−0.031 3.073+0.032
−0.032 3.072+0.032

−0.032 3.073+0.033
−0.033

ΩDE 0.597+0.132
−0.149 0.731+0.019

−0.019 0.736+0.016
−0.016 0.730+0.016

−0.016 0.734+0.015
−0.015

Age [Gyr] 15− 1.37+1.46 13.65+0.27
−0.27 13.58+0.23

−0.24 13.67+0.26
−0.26 13.59+0.24

−0.24

ΩM 0.452+0.200
−0.175 0.267+0.020

−0.021 0.261+0.017
−0.017 0.269+0.018

−0.017 0.263+0.016
−0.015

σ8 0.773+0.032
−0.032 0.808+0.024

−0.025 0.809+0.026
−0.026 0.808+0.025

−0.025 0.810+0.025
−0.026

zre 10.3+1.2
−1.2 10.3+1.2

−1.1 10.3+1.2
−1.2 10.3+1.2

−1.1 10.4+1.2
−1.2

H0 [km s−1 Mpc−1] 57.3+11.5
−12.0 71.3+2.5

−2.4 72.1+2.1
−2.0 71.1+2.2

−2.2 71.9+1.9
−2.0

5.4.2 Curvature

In this section I analyse the cosmological constraints obtained when the curvature of space
is considered as a free parameter. The full list of parameters (mean plus the 68% confidence
level) is shown in Table 5.5 for the combination of experiments listed in the header of the
table.

The blue shaded areas within dashed lines in panel a) of Figure 5.10 and in Figure
5.11 show the two-dimensional marginalised constraints in the ΩDE − ΩM and ΩDE − H0

planes, respectively, as obtained from CMB data alone. The plots show a very strong
degeneracy between these parameters. As stated in Section 5.4.1, the apparent size of the
CMB acoustic peaks depends on their physical size and the angular diameter distance.
Given that the density of curvature, Ωk, is small and that it scales as the inverse square of
the scale factor, it affects much more DA than the dynamics of the early universe. Thus
it is always possible to find combinations of Ωk, ωm and ωb that keep fixed the location of
the CMB peaks. Therefore, the constraints on the derived parameters are much weaker
than the ones obtained in the previous section: ΩDE = 0.6+0.13

−0.15, ΩM = 0.45+0.20
−0.17 and

H0 = 57±12 km s−1 Mpc−1. The measured curvature, Ωk =
(
−4.9+4.4

−5.1

)
×10−2, is compatible

with flatness at about the 1σ level.
Both panels of Figure 5.10 and Figure 5.11 show, with red shaded areas enclosed in solid
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Figure 5.10: Two-dimensional marginalised constraints of the kΛCDM parameter space in
the ΩDE −ΩM plane. Colour and line coding is the same as in Figure 5.9. Panel b) zooms
into panel a) in order to highlight the constraints obtained when combining CMB with the
other datasets used in this work. The diagonal dotted line corresponds to a flat Universe.

lines, the same parameter planes as above when explored combining CMB and large scale
structure information. Panel b) of Figure 5.10 shows a zoom of the constraints of panel
a) in the area around ΩDE = 0.73 and ΩM = 0.28 in order to show with more details the
constraints when more information is added to CMB data. The galaxy power spectrum is
very sensitive to the matter density. Additionally the BAOs allow to measure the angular
diameter distance to the mean redshift of the LRG sample, z̄ = 0.28. The degeneracies
in the CMB alone are therefore strongly reduced when LSS measurements are included.
The four variables discussed in the previous paragraphs become ΩDE = 0.731 ± 0.019,
ΩM = 0.267−0.020

−0.021, H0 = 71.3± 2.5 and Ωk = (1.6± 5.4)× 10−3: their errors are almost one
order of magnitude smaller than in the CMB only case. With respect to the corresponding
ΛCDM case, the uncertainties on the first three quantities increase up to 50%.

The inclusion of SNIa and H0 measurement decreases the errors on curvature by about
10% (Ωk =

(
3+4.8
−4.7

)
× 10−3) and on the other three parameters considered before by

circa 20% (ΩDE = 0.734+0.015
−0.015, ΩM = 0.263+0.016

−0.015 and H0 = 71.9+1.9
−2.0). When comparing

with the results from the previous section, the errors on dark energy and matter density
are unchanged, while increasing by less than 40% for the Hubble parameters. The two-
dimensional marginalised constraints in the ΩDE −ΩM and ΩDE −H0 planes are shown in
panel b) of Figure 5.10 and in Figure 5.11 with green shaded lines enclosed by dot-dashed
lines.
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Figure 5.11: Two-dimensional marginalised
constraints of the ΛCDM parameter space in
the ΩDE−H0 plane. Colour and line coding
is the same as in Figure 5.9.

Table 5.6: Marginalised constraints on the cosmological parameters of the wCDM param-
eter space from the combination of probes listed in the header of the table. The quoted
values are as in Table 5.3.

CMB CMB+P (k) CMB+P (k) CMB+P (k) CMB+P (k)
+H0 +SNIa +H0+SNIa

100ωb 2.242+0.053
−0.054 2.251+0.049

−0.050 2.256+0.049
−0.049 2.250+0.051

−0.052 2.257+0.048
−0.050

100ωDM 11.01+0.53
−0.53 11.25+0.43

−0.43 11.28+0.44
−0.44 11.26+0.40

−0.41 11.25+0.40
−0.40

100Θ 1.0397+0.0023
−0.0022 1.0402+0.0022

−0.0022 1.0403+0.0021
−0.0021 1.0403+0.0021

−0.0021 1.0404+0.0020
−0.0020

τ 0.088+0.015
−0.015 0.086+0.015

−0.015 0.087+0.014
−0.014 0.086+0.015

−0.014 0.086+0.014
−0.014

wDE −0.742+0.324
−0.303 −1.022+0.129

−0.128 −1.069+0.107
−0.106 −1.009+0.069

−0.069 −1.025+0.066
−0.065

ns 0.959+0.014
−0.014 0.962+0.012

−0.012 0.962+0.012
−0.012 0.961+0.012

−0.012 0.963+0.012
−0.012

log(1010As) 3.064+0.032
−0.033 3.073+0.034

−0.033 3.076+0.033
−0.032 3.073+0.032

−0.032 3.074+0.032
−0.031

ΩDE 0.637+0.123
−0.133 0.732+0.028

−0.028 0.743+0.020
−0.020 0.729+0.018

−0.018 0.735+0.015
−0.016

Age [Gyr] 14.062+0.431
−0.396 13.733+0.118

−0.117 13.692+0.095
−0.099 13.736+0.102

−0.102 13.713+0.090
−0.089

ΩM 0.363+0.133
−0.123 0.268+0.028

−0.028 0.257+0.020
−0.020 0.271+0.018

−0.018 0.265+0.016
−0.015

σ8 0.726+0.085
−0.090 0.818+0.065

−0.064 0.838+0.059
−0.060 0.810+0.042

−0.043 0.817+0.043
−0.042

zre 10.6+1.2
−1.2 10.4+1.2

−1.2 10.4+1.1
−1.1 10.4+1.2

−1.2 10.3+1.2
−1.2

H0 [km s−1 Mpc−1] 63.1+10.6
−11.2 71.2+3.8

−3.8 72.8+2.8
−2.8 70.7+2.0

−2.0 71.4+1.7
−1.7
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5.4.3 Beyond the cosmological constant

In sections 5.4.1 and 5.4.2 I assume that dark energy is modelled as a cosmological constant.
Despite its simplicity and its success in describing simultaneously many independent obser-
vations, the present day value of the density of dark energy does not have a solid physical
explanation; this led, in the past decade, to the exploration of a large number of alternative
models, most of which present a time dependent equation of state parameter6. Ideally, one
would like to be able to constrain the full time, or redshift, dependence of wDE(z) in order
to restrict the range of possible models. Usually, parametric forms for this parameter are
assumed, which allow to measure time dependencies, but do not necessarily reproduce the
correct wDE(z). It is possible to overcome some of these limitations with non-parametric
approaches and principal component analysis (see e.g., Huterer & Starkman, 2003; Serra
et al., 2009; Holsclaw et al., 2010). In this section I assume the simplest parametric form
possible: wDE is a constant, independent of time, with a flat prior in the range [−2, 0].
Deviations from this value would suggest that the cosmological constant is not a viable
model of dark energy. If this is the case, the results shown in the previous two sections
could be biased as consequence of wrongly assuming that dark energy is described by Λ.
In section 5.4.5 I will analyse an alternative scenario in which wDE is parametrized as a
linear function of the scale factor.

Table 5.6 lists the constraints on the cosmological parameters as obtained for the dif-
ferent combinations of datasets analysed in this work. They are in perfect agreement with
the ones presented with the previous two parameter spaces.

The left panel of Figure 5.12 shows the constraints in the ΩDE − wDE plane. The
horizontal dotted line corresponds to wDE = −1. If the CMB alone is considered a strong
degeneracy between these two parameters is present, as shown by the blue shaded areas
enclosed by dashed lines. The reason for this degeneracy is analogous to the case analysed in
the previous section when curvature is left as a free parameter. In fact, while dark energy is
subdominant at early times and does not influence the physical scale of the acoustic peaks,
its equation of state and density have a strong effect in the angular diameter distance to
the last scattering surface. Thus different combinations of ωDM, ωb and wDE can result
in the same apparent position of the acoustic oscillations in the CMB temperature power
spectrum. The constraints on the dark energy density and equation of state parameters
are therefore very weak: ΩDE = 0.64+0.12

−0.13 and wDE = −0.74+0.32
−0.30.

With the inclusion of the LRG data, the degeneracies of the CMB only case are broken,
as shown in the panel a) of Figure 5.12 (solid line enclosing red areas). From the same
figure it is clear that the impact of supernovae and H0 (dot-dashed line enclosing green
areas) information is much larger in this framework than in the previous two. In order to
understand what causes such a difference, I show in panel b) of Figure 5.12 also the two-
dimensional constraints obtained from the combination of CMB+PLRG(k)+SNIa (dashed
lines enclosing blue areas). The horizontal line corresponds to wDE = −1. The plot shows
clearly that supernovae have a large constraining power for this parameter space. The
supernovae luminosity-distance relation traces the expansion history of the Universe and

6All theories of modified gravity can be also represented through an effective wDE(z).
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Figure 5.12: Panel a): two-dimensional marginalised constraints of the wCDM parameter
space in the wDE − ΩDE plane. Colour and line coding is the same as in Figure 5.9.
Panel b): same as the panel a), but for CMB+PLRG(k), red areas within solid lines,
CMB+PLRG(k)+SNIa, blue areas within dashed lines, and CMB+PLRG(k)+H0+SNIa,
green areas within dot-dashed lines. Note that the right panel is a zoom of the left one
in the region occupied by the CMB+PLRG(k) contours. The dotted horizontal lines show
wDE = −1

clearly identifies the transition between the deceleration and acceleration phases (Riess
et al., 2004). This transition depends on the densities of the cosmic components and is
very sensitive to the dark energy equation of state. The inclusion of a precise measurement
of H0 increases the precision on the parameters by a small factor. The constraints on the
dark energy equation of state are i) wDE = −1.02± 0.13, from CMB+PLRG(k), ii) wDE =
−1.07± 0.11, from CMB+PLRG(k)+H0, iii) wDE = −1.009± 0.069, CMB+PLRG(k)+SNIa
and iv) wDE = −1.025+0.066

−0.065, from CMB+PLRG(k)+H0+SNIa. Therefore the inclusion of
the large scale structure measurements decreases the error on wDE by about a factor 3 and
SNIa further halve it.

The main result of this section is that, when combining CMB, LSS, SNIa information
with the prior on H0, the equation of state of dark energy parameter is constrained to be
-1 with about 6.5% accuracy. This, although perfectly compatible with the cosmological
constant models, does not exclude other dark energy scenarios. Excluding CMB, which
has very little constraining power, the other three experiments give access only to redshift
z . 1. Furthermore many dark energy models can be tuned in order to mimic Λ at
low redshifts and deviate from it at earlier epochs. In order to narrow down the range
of possible models even further, more precise measurements spanning a larger range of
redshifts, together with the inclusion of tests of the growth of structures, will be necessary.
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no systematics mlcs2k2

100ωb 2.257+0.047
−0.048 2.264+0.048

−0.049

100ωDM 11.21+0.40
−0.40 11.05+0.41

−0.41

100Θ 1.0405+0.0021
−0.0021 1.0411+0.0021

−0.0022

τ 0.087+0.014
−0.014 0.089+0.014

−0.014

wDE −1.007+0.046
−0.046 −0.875+0.054

−0.055

ns 0.962+0.012
−0.012 0.964+0.012

−0.012

log(1010As) 3.074+0.032
−0.032 3.072+0.032

−0.033

ΩDE 0.732+0.013
−0.014 0.704+0.017

−0.017

Age [Gyr] 13.719+0.091
−0.090 13.795+0.095

−0.093

ΩM 0.268+0.014
−0.013 0.296+0.017

−0.017

σ8 0.809+0.036
−0.036 0.752+0.037

−0.037

zre 10.4+1.2
−1.1 10.5+1.1

−1.2

H0 [km s−1 Mpc−1] 71.0+1.2
−1.2 67.2+1.5

−1.5

Table 5.7: Marginalised constraints on
the cosmological parameters of the
wCDM parameter space from the com-
bination of CMB+PLRG(k)+H0+SNIa
when systematic errors are not consid-
ered and when the mlcs2k2 SNIa light
curve fitter is used.

Effects of supernovae systematics and light curve fitters

Similarly to what has been done in section 5.4.1, I test the impact of SNIa systematic effects
and different light curve fitters on the measured cosmological parameters. The constraints
for these two cases are listed in Table 5.7. As before, I find that neglecting systematics
does not change the mean values of the parameters, but generally reduces the associated
errors. In particular the constraints on the dark energy equation of state are reduced by
almost 30%, wDE = −1.01 ± 0.046. The use of the data from the SDSS SN project, with
the light curves fitted with mlcs2k2, changes some of the parameters, as for instance
H0, wDE and ΩM, by more than 2-σ with respect to the values in my standard case. In
particular I measure wDE to be −0.875+0.054

−0.055. This highlights, better than for the ΛCDM
case, the importance of SNIa modelling in improving cosmological constraints from future
generation experiments.

5.4.4 Curvature and dark energy equation of state as free pa-
rameters

I now analyse the accuracy that can be achieved when both wDE and Ωk are considered as
free parameters. The full list of constraints on the cosmological parameters for the kwCDM
cosmology is summarised in Table 5.8.

The introduction of an extra degree of freedom with respect to the previous two sec-
tions affects the CMB degeneracy already discussed. The two-dimensional marginalised
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Table 5.8: Marginalised constraints on the cosmological parameters of the kwCDM param-
eter space from the combination of probes listed in the header of the table. The quoted
values are as in Table 5.3.

CMB CMB+P (k) CMB+P (k) CMB+P (k) CMB+P (k)
+H0 +SNIa +H0+SNIa

100ωb 2.236+0.052
−0.052 2.241+0.047

−0.047 2.255+0.048
−0.048 2.246+0.047

−0.047 2.251+0.050
−0.049

100ωDM 11.04+0.52
−0.52 11.29+0.43

−0.44 11.32+0.46
−0.45 11.27+0.43

−0.43 11.30+0.45
−0.46

100Θ 1.0397+0.0022
−0.0022 1.0400+0.0020

−0.0021 1.0401+0.0021
−0.0021 1.0401+0.0022

−0.0022 1.0402+0.0021
−0.0022

τ 0.087+0.014
−0.014 0.086+0.014

−0.014 0.087+0.015
−0.015 0.086+0.014

−0.014 0.085+0.014
−0.014

100Ωk −2.72+6.28
−6.51 2.72+2.18

−2.13 1.69+2.11
−1.92 0.33+0.71

−0.72 0.45+0.65
−0.65

wDE −0.907+0.524
−0.607 −0.685+0.200

−0.207 −0.856+0.262
−0.272 −0.973+0.091

−0.088 −0.981+0.083
−0.084

ns 0.956+0.013
−0.013 0.959+0.012

−0.012 0.962+0.012
−0.012 0.960+0.012

−0.012 0.961+0.012
−0.012

log(1010As) 3.063+0.033
−0.032 3.074+0.032

−0.032 3.077+0.032
−0.033 3.072+0.032

−0.032 3.073+0.031
−0.032

ΩDE 0.566+0.139
−0.153 0.671+0.047

−0.045 0.710+0.042
−0.043 0.728+0.017

−0.017 0.733+0.016
−0.017

Age [Gyr] 15.01+1.78
−1.88 13.11+0.47

−0.45 13.24+0.57
−0.58 13.61+0.33

−0.32 13.53+0.29
−0.29

ΩM 0.461+0.197
−0.176 0.302+0.030

−0.031 0.273+0.026
−0.026 0.268+0.017

−0.017 0.262+0.016
−0.016

σ8 0.725+0.109
−0.117 0.692+0.080

−0.077 0.757+0.106
−0.102 0.797+0.044

−0.045 0.802+0.044
−0.043

zre 10.6+1.3
−1.3 10.7+1.2

−1.2 10.6+1.2
−1.2 10.4+1.2

−1.1 10.4+1.2
−1.2

H0 [km s−1 Mpc−1] 56.7+11.2
−11.5 67.2+3.4

−3.3 70.8+3.2
−3.2 71.0+2.2

−2.2 71.9+2.0
−2.0

constraints in the wDE −Ωk and wDE −ΩDE planes from CMB data only are shown in the
panels of Figure 5.13 with the blue shaded areas within dashed lines. By comparing panel
b) of Figure 5.13 with panel a) of Figure 5.12 it becomes clear that the allowed area in the
parameter space increases because of the larger degeneracy. This causes the errors on Ωk

and wDE to increase by 50-60% with respect to the corresponding cases in sections 5.4.2
and 5.4.3.

The red contours within solid lines in both panels of Figure 5.13 show the constraints
in the wDE − Ωk and wDE − ΩDE planes from the combination of CMB with the LRG
data. The inclusion of the power spectrum reduces the region allowed by CMB alone to a
one-dimensional degeneracy, that can be broken using the information of the amplitude of
PLRG(k). Because of this a degeneracy arises between the bias and the shape of the power
spectrum when both the curvature and the dark energy equation of state are treated as free
parameters. When considering the range of scales 0.02hMpc−1 ≤ k ≤ 0.15 h Mpc−1 larger
values of wDE, ΩM and Ωk and lower values of σ8 can be compensated by unphysically
large biases b and larger values of AMC in order to obtain a comparable χ2. The use of a
finite flat prior on b would decrease the large Ωk and wDE tail and reduce the degeneracy.
Alternatively, the detection of the turnover in the power spectrum, not possible nowadays
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Figure 5.13: Panel a): two-dimensional marginalised constraints of the kwCDM parameter
space in the wDE − Ωk plane. Colour and line coding is the same as in Figure 5.9. The
horizontal and vertical dotted lines show the values of these parameters for the flat ΛCDM
case. Panel b): two-dimensional marginalised constraints in the wDE − ΩDE plane. The
vertical dotted line shows wDE = −1

because of the still too small volume probed by galaxy surveys, might help in constraining
better its overall shape and break the degeneracy just described.

The addition of H0 and supernovae measurements breaks the bias-shape degeneracy,
returning parameters perfectly consistent with the ΛCDM cosmology. As for the previous
section, the biggest change in precision is due to the SN, which improves the accuracy
of the three parameters previously discussed by a factor 2-3. The final constraints, when
all four probes are used, are shown in the two panels of Figure 5.13 by the green shaded
areas enclosed within dot-dashed lines. For the quantities shown in the plot we obtain
Ωk = (4.5± 6.5)× 10−3 (36% increase in the errors with respect to kΛCDM case), wDE =
−0.981+0.083

−0.084 (29% increase in the errors with respect to the wCDM case) and ΩDE =
0.733+0.016

−0.017 (8% increase with respect to both).

5.4.5 Time varying dark energy equation of state parameter

In section 5.4.3 I encode possible deviations from the cosmological constant model with
a constant effective dark energy equation of state. In this section I include explicitly a
time dependency on wDE through the simple parameterization of equation (5.6). I treat
the two parameters of this model, w0 and wa as free. I consider only the case in which
the curvature is held fixed to 0. The constraints on the cosmological parameters for the
cosmology analysed in this section from the different combinations of probes are listed in
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Table 5.9: Marginalised constraints on the cosmological parameters of the waCDM param-
eter space from the combination of probes listed in the header of the table. The quoted
values are as in Table 5.3.

CMB CMB+P (k) CMB+P (k) CMB+P (k) CMB+P (k)
+H0 +SNIa +H0+SNIa

100ωb 2.249+0.052
−0.053 2.253+0.050

−0.049 2.255+0.049
−0.049 2.251+0.050

−0.050 2.257+0.049
−0.048

100ωDM 10.99+0.52
−0.52 11.27+0.43

−0.43 11.31+0.43
−0.43 11.30+0.43

−0.44 11.29+0.45
−0.45

100Θ 1.0399+0.0022
−0.0022 1.0402+0.0022

−0.0022 1.0402+0.0021
−0.0021 1.0401+0.0022

−0.0022 1.0403+0.0021
−0.0021

τ 0.088+0.015
−0.015 0.086+0.014

−0.014 0.086+0.014
−0.014 0.086+0.015

−0.015 0.086+0.014
−0.014

w0 −0.71+0.47
−0.49 −0.75+0.44

−0.48 −1.04+0.31
−0.31 −0.98+0.14

−0.14 −1.00+0.14
−0.14

wa −0.32+1.00
−1.01 −0.63+1.07

−0.99 −0.11+0.85
−0.86 −0.15+0.52

−0.52 −0.13+0.53
−0.53

ns 0.961+0.014
−0.013 0.961+0.012

−0.012 0.962+0.012
−0.012 0.960+0.012

−0.012 0.962+0.012
−0.012

log(1010As) 3.065+0.033
−0.033 3.074+0.031

−0.032 3.075+0.032
−0.033 3.074+0.032

−0.033 3.075+0.032
−0.032

ΩDE 0.665+0.102
−0.102 0.702+0.055

−0.054 0.741+0.027
−0.028 0.728+0.018

−0.018 0.734+0.016
−0.016

Age [Gyr] 13.921+0.295
−0.295 13.741+0.118

−0.115 13.699+0.102
−0.104 13.733+0.109

−0.105 13.710+0.104
−0.104

ΩM 0.335+0.102
−0.102 0.298+0.054

−0.055 0.259+0.028
−0.027 0.272+0.018

−0.018 0.266+0.016
−0.016

σ8 0.742+0.082
−0.080 0.770+0.108

−0.104 0.837+0.077
−0.076 0.810+0.043

−0.044 0.818+0.045
−0.045

zre 10.5+1.2
−1.2 10.4+1.2

−1.2 10.4+1.2
−1.2 10.4+1.2

−1.2 10.4+1.1
−1.1

H0 [km s−1 Mpc−1] 65.0+9.9
−9.7 68.2+6.4

−6.2 72.6+3.7
−3.7 70.6+2.0

−2.0 71.4+1.7
−1.7

Table 5.9.

Panel a) of Figure 5.14 shows the two-dimensional marginalised constraints in the w0−
wa plane from CMB alone (blue shaded areas within dashed lines), CMB plus LRG power
spectrum (red shaded areas within solid lines) and the combination of CMB, PLRG(k), H0

and SNIa (green shaded areas within dot-dashed lines). The vertical and horizontal dotted
lines at w0 = −1 and wa = 0 show the values of the two parameters for the ΛCDM case.
In the three cases a degeneracy is visible, which is reduced as more independent data are
included. From CMB alone I obtain w0 = −0.71+0.47

−0.49 and wa = −0.32+1.00
−1.01; the inclusion of

the LRGs power spectrum information does not change substantially the one-dimensional
constraints (w0 = −0.75+0.44

−0.48 and wa = −0.63+1.07
−0.99) but increases by almost a factor 2 the

figure of merit (Albrecht et al., 2006). As shown in the previous two sections, supernovae
have an important role in constraining dark energy properties and the inclusion of their
infomation reduces the errors in the two parameters by about a factor 3 and 2, with respect
to the CMB+PLRG case. The one-dimensional constraints from the combination of all the
datasets are w0 = −1.00± 0.14 and wa = −0.13± 0.53. The attempt to constrain also the
time evolution of the dark energy equation of state parameter results in a degradation of
its value at present.
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Figure 5.14: Panel a): two-dimensional marginalised constraints of the waCDM parameter
space in the w0 − wa plane. Colour and line coding is the same as in Figure 5.9. The
vertical and horizontal dotted lines show the values of these parameters for the flat ΛCDM
case (w0 = −1 and wa = 0). The dotted diagonal line shows the equation wDE(ap) =
−0.97 = w0 + (1−ap)wa, where ap = 0.65 is the pivot scale factor from the combination of
CMB and PLRG(k) (see text). Panel b): two-dimensional marginalised constraints in the
w0 − ΩDE plane. The vertical line is for w0 = −1.

From these results it is possible to reconstruct the time dependence of the dark energy
equation of state parameter. The thick dashed, solid and dot-dashed lines in Figure 5.15
show the value of wDE(z) from CMB, CMB plus PLRG(k) and the combination of the four
probes, respectively. The corresponding 1-σ errors, which vary with redshift, are indicated
by the shaded areas within the thin lines. They are computed according to Albrecht et al.
(2006) as:

〈δw2
DE(a)〉 = 〈(δw0 + (1− a)δwa)2〉. (5.9)

In the redshift range shown in the plot, wDE is always compatible with a cosmological
constant at the 1σ level. Furthermore the errors show a minimum at a redshift called
“pivot” (Huterer & Turner, 2001; Hu & Jain, 2004; Albrecht et al., 2006). For the three
cases shown in Figure 5.15, I obtain a pivot redshift of zp = 0.4 (CMB), zp = 0.54
(CMB+PLRG(k)) and zp = 0.3 (CMB+PLRG(k))+H0+SNIa) and an equation of state
wDE(zp) = −0.80 ± 0.37, wDE(zp) = −0.97 ± 0.29 and wDE(zp) = −1.03 ± 0.07. It is
interesting to note that in the last case the precision is comparable to the one presented in
Section 5.4.3. The diagonal dotted line in panel a) of Figure 5.14 shows that the degeneracy
between w0 and wa is very close to w0 + (1− ap)wa = −0.97, where ap = 0.65 is the pivot
scale factor from the CMB+PLRG(k) constraints.

Panel b) of Figure 5.14 shows the two-dimensional marginalised constraints in the
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Figure 5.15: wDE(z) as function of the
redshift z as obtained from the con-
straints shown in panel a) of Figure 5.14.
The thick dashed blue, solid red and
green dot-dashed lines correspond to the
mean wDE(z) for CMB, CMB+PLRG(k) and
CMB+PLRG(k)+H0+SNIa. The blue, red
and green shaded areas enclosed within
the outermost dashed, solid and dot-dashed
lines show the 68% confidence level for the
same three combinations as computed from
equation (5.9).

w0−ΩDE plane. This figure illustrates that the addition of large scale structure information
to the CMB data halves the errors on the dark energy density from ΩDE = 0.66± 0.10 to
ΩDE = 0.702 ± 0.055. The inclusion of SNIa and H0 measurements decreases the errors
further by 70% to ΩDE = 0.734± 0.016.

5.5 Comparison with previous studies

In this section I compare the results shown in this chapter with some recent works focused
on the analysis of the large scale structure of the Universe.

The LRG distribution from the SDSS DR7 has already been used in order to extract
cosmological parameters by Reid et al. (2010a). The analysis in that work differs from
the one I have performed mostly in five important details: i) all the LRGs from the
Northern Galactic Cap and the 3 southern stripes were used (110576 galaxies in 7931
deg2), ii) thanks to the count-in-cylinders technique (CiC, Reid & Spergel, 2009; Reid
et al., 2009), the authors extracted a halo catalogue from the LRG distribution and then
computed the halo power spectrum, iii) they computed the covariance matrix from 10000
lognormal catalogues (LN, Coles & Jones, 1991), iv) they used a model based on halofit
(Smith et al., 2003), that required additional calibration against numerical simulations and
v) they analysed the power spectrum in the range 0.02hMpc−1 < k < 0.2 h Mpc−1. The
advantage of using the reconstructed underlying density field, instead of the galaxies, is
that the intra-halo peculiar motions, which cause the fingers-of-god, are erased, leaving
weaker small scale redshift-space distortions. They combine their LRG power spectrum
with the 5th year data from the WMAP satellite (WMAP5, Komatsu et al., 2009) and the
Union Supernovae dataset. The comparison between the results in table 3 of Reid et al.
(2010a) and the corresponding ones in this chapter (third column in Tables 5.3, 5.5, 5.6
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and third and fifth columns in Table 5.8) shows that, with the exception of the ΛCDM case
and despite the smaller k modes used here, the errors that I obtain are slightly smaller and
that there are significant offsets in some of the parameters. For the CMB+PLRG(k) in the
kΛCDM, wCDM cosmologies and for the CMB+PLRG(k)+SNIa in the kwCDM case I find
our values of ΩM and of H0 to be 1.8-2.5σ larger and smaller, respectively, than the results
reported in Reid et al. (2010a). In the two latter cases the reported values of the dark
energy equation of state parameter are wDE = −0.79 ± 0.15 and wDE = −0.99 ± 0.11 (to
be compared with my results of wDE = −1.02± 0.13 and wDE = −0.97± 0.09). As a test,
I apply the model of equation (4.4) to the power spectrum from Reid et al. (2010a)7 and I
explore the wCDM parameter space. This shows that i) the decrease of the recovered errors
is not related to the use of the small scale CMB information (ACBAR, BOOMERanG, CBI,
QUAD), ii) the offsets just discussed are related to differences in the shape of the measured
power spectrum or window function and not to the model used.

Percival et al. (2010) analysed almost 900,000 galaxies from the combination of the
full SDSS DR7 galaxy sample and the two-degree Field Galaxy Redshift Survey (2dFGRS,
Colless et al., 2003) and extracted the BAO feature from the power spectrum in 7 redshift
bins. The main cosmological implications are shown in their table 5 and can be compared
with the third column in Tables 5.3, 5.5 and 5.6 and with Table 5.8. Their overall results
are compatible with the ones presented in Section 5.4 and with the findings of Reid et al.
(2010a). Despite the much smaller sample that I use, the constraints that I obtain are
comparable or tighter than the ones of Percival et al. (2010). As an example, for the
wCDM case I measure, from CMB+PLRG(k), wDE = −1.02 ± 0.13, while they report the
value wDE = −0.97 ± 0.17, which corresponds to an improvement of about 25% in my
results. This comparison suggests the importance of the use of the full information content
in the galaxy power spectrum, as already noticed by different authors (e.g., Sánchez et al.,
2008; Shoji et al., 2009; Blake et al., 2011).

The correlation function has also been intensively used with similar goals. Sánchez et al.
(2009) applied the model of equation (4.2) to the correlation function for the LRG sample
from the SDSS DR6, as measured by Cabré & Gaztañaga (2009a). Combining this with
Union SNIa sample and the CMB measurements from WMAP5, as well as the position
of the BAO peak along the line of sight in the two-dimensional correlation function from
Gaztañaga et al. (2009), they extracted cosmological parameters for the same parameter
spaces presented in this chapter. The overall results of Sánchez et al. (2009) are consistent
with the ones presented in section 5.4. Combining the CMB and large scale scale structure
information, the constraints in Sánchez et al. (2009) are very similar to the results of
this thesis. Interestingly the errors on the cosmological parameters presented here are
systematically smaller when curvature is kept as a free variable and larger for the wCDM
and waCDM cases. This shows that the models and the measurements of the power
spectrum and the correlation function, although generally coherent, might have some small
differences in the sensitivity to cosmological parameters for different parameter spaces.
In the kwCDM case, the constraints of Sánchez et al. (2009) show the same bias-shape

7publicly available at http://lambda.gsfc.nasa.gov/toolbox/lrgdr/

http://lambda.gsfc.nasa.gov/toolbox/lrgdr/
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degeneracy that shifts the values of Ωk and wDE towards higher values with respect to
the flat ΛCDM paradigm (compare panel a of Figure 5.13 with figure 14 in Sánchez et al.
2009). The inclusion of SNIa and of H0 (radial BAO) in mine (their) analysis leads to the
tightest constraints in both works. For flat and non flat ΛCDM models, the differences are
negligible, while for the other three cases, where SNIa measurements play an important
role, the errors that I obtain are larger: this is due to the inclusion in my analysis of
the supernovae systematic errors, which where neglected in Sánchez et al. (2009). When
I do not use the systematics, I obtain tighter constraints, shown by the middle column
of Table 5.7. In this case I measure the dark energy equation of state parameter to be
wDE = −1.007 ± 0.046, about 11% tighter than the corresponding value measured by
Sánchez et al. (2009) wDE = −0.969± 0.052.

A more recent analysis of the correlation function from the DR7 LRG sample has been
made by Chuang et al. (2010), using a simplified version of the model presented by Reid
et al. (2010a). They combined this measurement with WMAP7 and Union2 data in order to
extract cosmological parameters. Some of their constraints are offset by 1-2σ with respect
to my findings, while their measurements of the dark energy equation of state parameter
are compatible with what I obtain, once the SNIa systematics are neglected. Carnero et al.
(2011) measured the angular correlation function and detected the BAO feature from the
LRGs in the SDSS DR7 photometric catalogue, which consists of a sample of about 1.5
million galaxies. Fixing all the other parameters, except H0, to the best fit from WMAP7,
they measure wDE to be −1.03± 0.16.

Also the small scale clustering has been used to perform cosmological analyses. From
the small scale projected correlation function and mass-number ratio in clusters, modelled
in the halo model framework, Tinker et al. (2011) extracted cosmological and model param-
eters, obtaining, when combining with WMAP7, ΩM = 0.290±0.016 and σ8 = 0.826±0.02.
The difference between these results and the values of Table 5.3 might be due to the smaller
number of cosmological degrees of freedom and the higher number of model parameters.

In a recent article Blake et al. (2011) presented the first cosmological results from the
WiggleZ survey (Drinkwater et al., 2010). They used a sample of about 130,000 emission
line galaxies across 1000 deg2 in the redshift range 0.3 < z < 0.9. From the correlation
function, the power spectrum, the BAOs and the band-filtered correlation function of
the sample (Xu et al., 2010) they extracted BAO parameters, like the effective distance
DV(z) of equation (4.6) and the “acoustic parameter”, defined by A(z) ≡ DV

√
ΩMH2

0/cz
(Eisenstein et al., 2005). From those, they measured cosmological parameters for the
kΛCMD and the wCDM models. When using LSS information only, the uncertainties
are large but the results show a strong preference for the presence of dark energy, with
wDE = −1.6+0.6

−0.7. Combining the BAO parameters with WMAP7 distance priors they
measured the dark energy equation of state parameter to be wDE = −0.982+0.154

−0.189, which
became wDE = −1.026± 0.081 if also Union2 SN are used. Those results are in agreement
with mine, although their uncertainties are about 20-30% larger than the ones that I show in
Table 5.6. The agreement between my results and the findings in Blake et al. (2011) shows
that both analyses, despite the differences in the galaxies selected, the survey volume and
geometry and the procedure used to extract cosmological information, are robust enough
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for the precision achievable today.



Chapter 6
Conclusion and outlook

The increasing quantity and quality of information from large galaxy redshift surveys de-
mands models able to describe the clustering of the galaxy distribution with high accuracy.
The shape of the power spectrum, the tool most commonly used to analyse galaxy cluster-
ing, is distorted by non-linear evolution, bias and redshift-space distortions. These effects
complicate the relation between the observations and the predictions of linear perturba-
tion theory, making the interpretation of these measurements in terms of constraints on
cosmological parameters more difficult.

In Chapter 4 I present a model for the full shape of the large-scale power spectrum which
is based on RPT and is analogous to the approach followed by Crocce & Scoccimarro (2008)
and Sánchez et al. (2008) for the two-point correlation function. I compare the model
against power spectra measured from a suite of 50 large volume, moderate resolution
N-body simulations, called L-BASICC II (Angulo et al., 2008; Sánchez et al., 2008). My
results indicate that the simple model presented here can provide an accurate description of
the full shape of the power spectrum taking into account the effects of non-linear evolution,
redshift space distortions and halo bias for scales k . 0.15hMpc−1, making it a valuable
tool for the analysis of real datasets.

When applied to the dark matter distribution, the accuracy of the model in recovering
the shape of the power spectrum increases with redshift, as non-linear effects become less
important. Even though this holds both in real and redshift space, in the latter case
the model performs slightly worse, since it does not include explicitly the effect of scale
dependent redshift space distortions. The model also gives a correct description of the
shape of the halo power spectrum for different mass ranges both for real and redshift space
information. In the latter case, due to the absence of the non-linear contribution from the
fingers-of-god effect, the scale dependence of the redshift space distortions is simplified and
the obtained constraints on the stretch parameter are similar to the ones of the real space
case.

Sánchez et al. (2008) performed a similar analysis for the shape of the large scale two-
point correlation function. Their results showed that non-linear evolution, redshift space
distortions and bias are simpler to deal with for the case of the correlation function than for
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the power spectrum, where the signature is highly scale dependent. However, it is necessary
to pursue complementary approaches to constrain cosmological parameters, in order to
allow for a comparison of the obtained results and a check for possible systematics. The
model for the shape of the power spectrum presented here is proven to provide constraints
on the stretch parameter α similar to the ones obtained by Sánchez et al. (2008). Thus,
with an accurate modelling, it is possible to extract cosmological information with the
same precision from both statistics.

Using a similar set of simulations to the L-BASICC II, Angulo et al. (2008) tested
a model in which the information from the broad band shape of the power spectrum is
discarded in order to extract a measurement of the BAO oscillations alone. A comparison
of their results with mine shows that the extra information in the full shape of the power
spectrum helps to improve the obtained constraints over the BAO alone case (see also, e.g.,
Shoji et al., 2009). In fact, despite the relatively small number of wave modes included in
our analysis, the constraints that we obtain on α are slightly tighter than those of Angulo
et al. (2008).

In Chapter 5 I apply this model to the power spectrum of about 90,000 luminous red
galaxies, extracted from the spectroscopic part of the seventh data release of the Sloan
Digital Sky survey. To estimate the covariance matrix I make use of the 160 LasDamas
mock catalogues which mimic the angular and redshift distribution of the observed LRGs.

Combining the large scale structure information with measurements of the CMB tem-
perature and polarisation power spectrum from the seven year data release of WMAP,
ACBAR, BOOMERanG, CBI and QUAD, the luminosity-distance relation from the Union2
supernova sample and a precise determination of the local Hubble parameter as a prior, I
explore the constraints in five different cosmological parameter spaces described in Section
5.3.1. The first two are the flat ΛCDM concordance model and a similar one where cur-
vature is a free parameter (kΛCDM). I also consider three cases in which the dark energy
equation of state has a parametric form: in two cases it is assumed to be constant, with
and without the assumption of a flat geometry (wCDM and kwCDM), and in the last case
(waCDM) I model wDE as a simple linear function of the scale factor as in equation (5.6).

Overall, I obtain tight constraints on the cosmological parameters for the five cases
analysed and I do not detect deviations from the flat ΛCDM paradigm. The different
combinations of the four experiments used in this analysis do not show evidence of tensions
between cosmological probes. I find that the curvature is null at 1-σ level with errors of
the order of 10−2 − 10−3. I measure the dark energy equation of state parameter to
be consistent with a cosmological constant with 13% uncertainty for CMB+PLRG(k) and
6.5% uncertainty for CMB+PLRG(k)+H0+SNIa in the flat wCDM case. If I discard the
systematic errors in the SNIa, the precision increases to 4.6%. In the kwCDM, because
of the added degree of freedom, I have a degradation of the constraints by 8.4%, when
combining all the four samples. The constraints obtained with the CMB and large scale
structure together are shifted by 1.5-2σ with respect to the best fit ΛCDM because of a
degeneracy between the bias and the power spectrum shape that allows very large, and
unphysical, values of the bias when wDE, ΩM, Ωk increase and σ8 decreases. If I assume
the parametric form of equation (5.6) for the dark energy equation of state, I do not detect
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any time variation and I obtain wDE(z = 0.54) = −0.97 ± 0.29 (CMB+PLRG(k)) and
wDE(z = 0.3) = −1.03± 0.069 (all four experiments combined). The latter is only slightly
worse than the flat wCDM result.

In the near future new and larger galaxy catalogues, in which the redshifts are measured
spectroscopically, like BOSS and HETDEX, or photometrically, like Pan-STARRS and
DES, will become available, together with the new measurements of the CMB anisotropies
from the Planck satellite (Ade et al., 2011). These datasets will enable scientists to improve
the constraints presented in Chapter 5 even further. Some of these experiments are explic-
itly designed to extract from the data the maximum amount of information about dark
energy. This will allow to exclude many classes of dark energy models or of modifications
of general relativity. In order to use the full information from the power of these new large
scale observations and to avoid introducing systematic effects, accurate models of the large
scale distribution, scale dependent bias and redshift space distortions are necessary. In
Chapter 4 I demonstrate that the model of equation (4.4) is accurate enough to describe
the power spectrum shape also for surveys with volumes larger than available nowadays.
However, extensions of the model with a more accurate treatment of the non-linear con-
tribution and the explicit inclusion of bias and redshift space distortions would allow to
include smaller scales in the analysis than now possible, helping to improve the quality of
the cosmological constrains.
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Appendix A
Power spectrum

Power spectra are typically computed using a Fast Fourier transform (FFT) algorithm
in order to speed up the computation of the Fourier transform of the density field δ(x).
Appendix A.1 describes the distortions in the power spectrum due to this procedure and
reviews different methods to correct them. Appendix A.2 lists the basic equations of the
FKP and PVP estimators proposed, respectively, by Feldman et al. (1994) and Percival
et al. (2004), which allow to measure the power spectra of galaxy samples or mock simu-
lations, taking into account their complex geometries.

A.1 Fast Fourier transform and corrections

The power spectrum is a statistical tool that allows to characterise gravitational clustering
and is defined by equation (2.21a). For a finite number N of points tracing the underlying
density field δ(k) in a limited volume V , the power spectrum becomes (Jing, 2005):

P (k) = 〈|δ(k)|2〉 − 1

n̄
, (A.1)

with n̄ = N/V the mean number density of particles. The term 1/n̄ is commonly called
shot noise, is white, i.e. scale independent, and is given by the discretisation of the density
field.

In order to increase the computation speed of the Fourier transform of the density
field, I use a fast Fourier transform (FFT) algorithm. The drawback of the FFT is that it
requires to convolve the density field δ(x) with a regular grid. The conversion of δ(x) into
a density field δd(x) on a grid with cell size H is governed by the mass assignment scheme
(MAS) function W (x). When the power spectrum is computed convolving the density with
the MAS, equation (A.1) becomes (Hockney & Eastwood, 1989)

〈|δd(k)|2〉 =
∑
n

|W (k + 2kNn)|2P (k + 2kNn) +
1

n̄

∑
n

|W (k + 2kNn)|2, (A.2)
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where n is a three dimensional integer vector and kN = π/H is the Nyquist wave number
and represent the larger value of k that is possible to achieve with the FFT. W (k) is the
Fourier transform of the MAS.

Three MAS most commonly used are the nearest grid point (NGP), cloud in cell (CIC)
and triangular shaped cloud (TSC). In three dimensions, they are defined by W (x) =∏3

i=1W (xi), where xi = x, y, z for i = 1, 2, 3 and:

WNGP(x) =

{
1 |x| < 0.5,

0 |x| ≥ 0.5,
(A.3a)

WCIC(x) =

{
1− |x| |x| < 1,

0 |x| ≥ 1,
(A.3b)

WTSC(x) =


0.75− x2 |x| < 0.5,
(1.5−|x|)2

2
0.5 ≤ |x| < 1.5,

0 |x| ≥ 1.5.

(A.3c)

The Fourier transform of the MAS is given by

W (k) =

[
3∏
i=1

sin(πki/2kN)

πki/2kN

]p
, (A.3d)

with p the order of the MAS (p = 1 for NGC, p = 2 for CIC and p = 3 for TSC).
The computation of the power spectrum with a FFT algorithm is divided roughly in

the following steps :

1. creation of a density field assigning the particles to a grid using a chosen MAS;

2. Fourier transform of the gridded density field - I have performed this step using the
free software fftw;

3. spherical average of the density field in Fourier space to obtain the left hand side of
equation(A.2);

4. solve equation (A.2) to obtain P (k).

In Jing (2005), the last point is solved with an iterative procedure based on the as-
sumption that the PS can be approximated by a power law at k > kN. This assumption
is a viable approximation when computing the power spectrum for dark matter, but it is
not applicable when dealing with the halo-halo power spectrum (see Figure 4.1 and section
4.1.2). It is also possible to approximate the solution dividing the computed 〈δd(k)〉 by

W (k) (e.g. Angulo et al., 2008)) or by [
∑

n |W (k + 2kNn)|2]
1/2

(e.g. Jeong & Komatsu,
2009). So the last two steps of the computation become:

3) correction of the amplitude of each Fourier mode for the effect of the MAS;
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4) spherical average of the density field in Fourier space to obtain the left hand side of
equation (A.2).

The recovered power spectra for the two corrections described above are

P1(k) =
〈|δd(k)|2〉
W 2(k)

− 1

n̄
= P (k) +

∑
|n|6=0

[
|W (k′)|2P (k′)

W 2(k)
+

1

n̄

|W (k′)|2

W 2(k)

]
, (A.4a)

and

P2(k) =
〈|δd(k)|2〉∑

n |W (k + 2kNn)|2
− 1

n̄
=

P (k)×

[
1 +

∑
|n|6=0 |W (k′)|2P (k′)

W 2(k)P (k)
−
∑
|n|6=0 |W (k′)|2

W 2(k)
+ . . .

]
,

(A.4b)

where k′ = k + 2kNn. Equation (A.4b) makes use of the fact that
∑

n |W (k′)|2 is finite
and that for |k| . kN,

∑
|n|6=0 |W (k′)| 6 |W (k)| and P (k′) 6 P (k).

I test the impact of the MAS and corrections on the measured power spectrum. To
do this I compare the power spectra computed with the standard Fourier transform (FT)
and with the FFT algorithm. For the FFT I use a grid of 2003 cells, filled using one
of the three MAS. I also switch on and off the corrections in equations (A.4). In order
to have the same number of modes in the two cases, the values of k used for the FT
calculation are the same as for the FFT. The power spectra for all the cases are computed
in 48 logarithmic bins between k = 0.01hMpc−1 and kN = 0.47hMpc−1. Figure A.1
shows the results of this test as the ratio between the FFT and the FT power spectra as
function of the wave-number k. Panels a, b and c correspond, respectively, to the power
spectra computed with NGP, CIC and TSC as MAS. In each panel the solid line is for the
uncorrected power spectrum Punc(k) = 〈|δd(k)|2〉 − 1/n̄, the dashed line is for the P1(k)
while the dash-dotted one is for P2(k). Since

∑
n |W (k + 2kNn)|2 = 1 in the NGP case,

P2(k) = Punc(k). The correction of the 〈|δd(k)|2〉 increases drastically the agreement with
the real P (k), and the achieved accuracy is larger the higher the order of the MAS is.
Furthermore the correction in equation (A.4b) works slightly better than equation (A.4a),
because of the inclusion, in the correcting factor, of small contribution from large values of
k. In the light of these results, in this thesis I use the TSC as MAS correcting the power
spectrum as in equation (A.4b). Choosing a very conservative limit, I assume that the
FFT gives a correct answer for the power spectrum if PFFT(k)/PFT(k) . 0.5%: this holds
for k ≈ 0.314hMpc−1 = 67%kN, which is indicated by the vertical dotted line in Figure
A.1.

A.2 The galaxy power spectrum: basic equations to

account for the geometry

The procedure described in the previous appendix is largely independent of the geometry
of the catalogue for which the power spectrum is computed. When the geometry is non
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Figure A.1: Ratio between the power spectrum computed using the FFT and the one
computed with the standard FT versus the wavenumber k. For clearness the error bars
are not shown (for k & 0.03hMpc−1 their amplitude is comparable with the thickness of
the lines). The FFT is computed on a grid of 2003 cells, that has been filled using the
NGP (left panel), CIC (central panel) and TSC (right panel). The solid black line is the
ratio between the uncorrected PFFT(k) and the PFT(k), while the dashed red line and the
dash-dotted blue line indicate the PFFT(k) corrected as in equations (A.4a) and (A.4b)
respectively. Since

∑
n |W (k + 2kNn)|2 = 1, P2(k) is equivalent to the uncorrected power

spectrum in the NGP case. The dotted vertical line outlines the 67%kN.

trivial, as it is for catalogues obtained from galaxy redshift surveys, the effects due the
redshift distribution and the angular footprint need to be accounted for in order to measure
meaningful power spectra and be able to compare them with theoretical models. In this
thesis this is done thanks to the estimator proposed by Feldman et al. (1994), which
alongside with the galaxy catalogue requires a random one created to have he same radial
and angular distribution of the data. In this section I summarise the basic equations of the
FKP and PVP estimators used to compute the power spectrum and the window function
from galaxy surveys. PVP is a generalisation of FKP and takes in account the change of
the galaxy bias with the luminosity of the galaxies (see e.g., Davis & Geller, 1976; Norberg
et al., 2001, 2002; Zehavi et al., 2002; Phleps et al., 2006).

The observed power spectrum Po(k) is obtained from the squared average Fourier trans-
form of the weighted density field defined by

FKP:F (x) =
1

N
w(x) [ng(x)− αnr(x)] , (A.5a)
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PVP:F (x) =
1

N

∫
dL

w(x, L)

b(x, L)
[ng(x, L)− αnr(x, L)] , (A.5b)

where ng(x, L) and nr(x, L) are the number density of galaxies and randoms of luminosity L
at position x. The corresponding quantities of equation (A.5a) can be obtained integrating
over the luminosity. w(x), w(x, L) are weighting functions and b(x, L), only PVP, is the
bias, relative to a specific galaxy population with luminosity L?. The normalisation N is
defined by

FKP:N2 =

∫
d3x n̄2(x)w2(x), (A.6a)

PVP:N2 =

∫
d3x

[∫
dLn̄(x, L)w(x, L)

]2

, (A.6b)

where n̄(x) and n̄(x, L) are the mean expected number densities, i.e. in absence of cluster-
ing, of galaxies of luminosity L at position x. Finally α is a constant introduced to match
the two catalogues and is chosen requiring that1 〈F (x)〉 = 0:

FKP:α =

∫
d3xw(x)ng(x)∫
d3xw(x)nr(x)

, (A.7a)

PVP:α =

∫
d3x dL [w(x, L)/b(x, L)]ng(x, L)∫
d3x dL [w(x, L)/b(x, L)]nr(x, L)

. (A.7b)

The observed power spectrum can be then written for both estimators as:

Po(k) =

∫
dk′3

(2π)3
Pt(k

′)G2(k− k′) = 〈|F (k)|2〉 − Psn, (A.8)

where Pt(k
′) is the “true” underlying power spectrum, the shot noise Psn is given by

FKP:Psn =
1 + α

N2

∫
d3x n̄(x)w2(x), (A.9a)

PVP:Psn =
1 + α

N2

∫
d3x dL n̄(x, L)

w2(x, L)

b2(x, L)
(A.9b)

and G2(k) is the window function, which encodes information about the survey geometry.
Applying the same procedure that brings from the definition of equations (A.5) to

equation (A.8) to the field

FKP: Ḡ(x) =
1

N
n̄(x)w(x), (A.10a)

PVP: Ḡ(x) =
1

N

∫
dL n̄(x, L)w(x, L). (A.10b)

1In FKP, the authors use a definition of α such that N = 1.
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it is possible to measure the window function as G2(k) = 〈|Ḡ(k)|2〉 − Gsn, where the
associated shot noise Gsn is

FKP:Gsn =
1

N2

∫
d3x n̄(x)w2(x), (A.11a)

PVP:Gsn =
1

N2

∫
d3x dL n̄(x, L)w2(x, L). (A.11b)

In Chapter 5, I use the weighting functions, designed to minimise the variance, proposed
in FKP and Cole et al. (2005):

FKP:w(x) =
wi

1 + P (k)n(x)
(A.12a)

PVP:w(x, L) =
wi b

2(x, L)

1 + P (k)
∫

dL b2(x, L)n(x, L)
. (A.12b)

The intrinsic weight of the objects, wi, can contain information about completeness and/or
fibre collision (Zehavi et al., 2002; Masjedi et al., 2006). P (k) is an estimate of the recovered
power spectrum and it is usually substituted with a constant pw, chosen in order to minimise
the variance around the wave-number k̄ for which P (k̄) ∼ pw.



Appendix B
Impact of weights on power spectra and
cosmological constraints

In Appendices B.1 and B.2 I test the impact of the values of pw and wi, introduced at
the end of Appendix A.2, and of the two estimators FKP and PVP, on the power spectra
and window functions measured from the LRG and mock catalogues described in Section
5.1. Appendix B.3 describes the influence of pw and wi on the measured cosmological
parameters.

B.1 Testing the luminous red galaxies power spec-

trum

Here I test the impact of different choices of pw, wi and estimator on the LRG power
spectrum and window function. For both estimators, FKP and PVP, I use four values of
pw = 40000, 10000, 4000, 0. I also consider four different intrinsic weights: i) wi = 1 (all
the objects have equal weight), ii) wi = c (areas with low completeness have less weight
than areas with higher one), iii) wi = fc (the loss of galaxies due to fibre collisions is
compensated as described in Section 5.2.1) and iv) wi = c × fc (both completeness and
fibre collision corrections are applied).

The left panels of Figure B.1 show the differences in the power spectra measured with
FKP (upper part) and PVP (lower part) estimators for the different choices of pw and
wi. For clarity, in the figure I show only the combinations of pw = 40000, 0 (red dashed
and blue solid lines respectively) and wi = 1, fc (diamonds and up triangles, respectively).
The shaded area shows the standard deviation as measured from the mock catalogues for
pw = 40000. All the power spectra have been divided by a non-wiggle one with the same
cosmological parameters as the mock catalogues. Different choices of pw change marginally
the shape of the power spectrum. The results for pw = 10000, 4000 fall in between the two
extreme cases shown in the left panels of Figure B.1.

On the other hand, the correction for fibre collision has an important effect. When
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Figure B.1: Left panels: comparison be-
tween power spectra computed with pw =
40000, 0 (red dashed and blue solid lines) and
wi = 1, fc (diamonds and triangles) divided
by a linear power spectrum without BAOs.
The upper panel is for the FKP, the lower
for PVP. The shaded area denotes the stan-
dard deviation computed from the mock cat-
alogues using pw = 40000. Right panel: ratio
between power spectra computed the FKP
and PVP estimators for pw = 40000, wi = fc.
The shaded area shows the standard devi-
ation computed from the mock catalogues
with pw = 40000. The dotted horizontal line
is the mean of the ratio in the plotted in-
terval. The other choices of pw and wi show
similar behaviour.

obtaining spectra of crowded fields, not all the objects of interest can be targeted with a
limited number of pointings. Because of this loss of objects, the amplitude of the highest
peaks in the density field decreases, while the low density regions are unaffected. This
causes the amplitude of the fluctuations, and consequently of the power spectrum, to be
lower. I have indeed measured a few percent scale independent decrease in the amplitude
of 〈|F (k)|2〉 (i.e. the power spectrum before subtracting the shot noise) in the case when
fibre collision correction is not applied. This difference is visible in the large scale, low
k, limit in the left two panels of Figure B.1 where the power spectrum with the fibre
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Figure B.2: Window functions G2(k) multiplied by the cube of the wave-number k as
function of k for pw = 0, 40000 (solid and dashed lines, respectively) for wi = 1. The left
panel is for FKP, the right for PVP.

collision (triangles) is always larger than the one without (diamonds). On the other hand
the shot noise (equations A.9) depends on the expected non-clustered number density (n̄)
and the associated weights, which are not influenced (or influenced in a uniform way) by
fibre collisions. This causes the shot noise to be the same in both cases, changing the
shape of the final power spectrum Po(k). This effect is clearly visible in the small scale,
large k, limit in the left panels of Figure B.1, where the fibre collision corrected power
spectra become increasingly larger than the non corrected ones. I do not show the results
when completeness correction is included, since the measured power spectra overlap almost
exactly the non corrected ones. This is because both the galaxy and the random catalogues
are weighted in the same way, therefore the density fluctuation field F (k) is unchanged.

Comparing the two left panels of Figure B.1, is it clear that the choice of the estimator
has a strong impact on the recovered power spectra: in the PVP case the amplitude is
systematically lower than for FKP. The right panel of Figure B.1 shows the ratio of the
power spectra computed with the latter estimator with respect to the one computed with
the former for the case pw = 40000, wi = fc. As before, the shaded area corresponds to
the standard deviation computed from the LasDamas catalogues. Although the amplitude
is different, the relative bias between the two estimators is scale invariant in the range
0.02hMpc−1 ≤ k ≤ 0.2 h Mpc−1. This is expected from the fact that the galaxy sample
that we use is almost volume limited and contains a very uniform population of galaxies.

Recently, Balaguera-Antoĺınez et al. (2011) have shown that, in volume limited mock
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Figure B.3: Comparison between mean
mock power spectra computed for pw =
40000, 0 (red dashed with triangles and blue
solid lines with diamonds respectively) di-
vided by a power spectrum without oscilla-
tions. The shaded area denotes the standard
deviation for pw = 40000.

catalogues of the REFLEX II cluster survey, the power spectrum computed with the PVP
estimator has higher correlations than the FKP one already at k > 0.15hMpc−1. Because
of this and the scale independent relative bias, I can safely use the power spectra as
estimated with FKP in order to constrain cosmological parameters.

The window function, describing only the radial and angular selection function of the
survey, is not affected by fibre collision effect; on the other hand different choices of pw and
the completeness correction change the weights of equations (A.12), which influence the
effective survey volume. As for the power spectrum, I do not measure differences when the
completeness weighting is applied. Figure B.2 shows the “dimensionless” window function
k3G2(k) computed with FKP (upper panel) and PVP (lower panel) for pw = 40000, 0
(dashed and solid line respectively). Although the overall shape is similar, there are small
differences in the oscillations due to different effective volumes in the two cases. The results
for pw = 10000, 4000 fall in between the two extreme cases. The difference between the FKP
and PVP window functions are negligible. When convolving these window functions with
a linear power spectrum as in equation (5.1), the differences in the range 0.02hMpc−1 ≤
k ≤ 0.2 h Mpc−1 are negligible.

B.2 Testing the power spectra of the mock catalogues

In order to test the impact of pw on the results from the LasDamas mock catalogues, I
compute the power spectra of the 160 mocks, their mean, standard deviation and covariance
matrix for pw = 40000, 10000, 4000, 0. Figure B.3 shows the mean power spectra computed
for the two extreme cases: the only difference is a small change in amplitude, which
confirms the findings of the previous section, i.e. that the impact of different pw on the
computed power spectrum is negligible. The shaded area denotes the standard deviation
for pw = 40000.

The choice of pw has, however, a large effect on the errors. Figure B.4 shows the



B.3 Impact on the cosmological parameters 93

0.1

0.2

0.3

0.4

k 
[h

/M
pc

]

pw=40000

0.1 0.2 0.3 0.4
k [h/Mpc]

0.1

0.2

0.3

0.4

k 
[h

/M
pc

]

pw=0

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Co
rr

el
at

io
n

0.05 0.10 0.15 0.20
k [h/Mpc]

0.05

0.10

0.15

0.20

k 
[h

/M
pc

]

pw=40000 - pw=0

0.15

0.10

0.05

0.00

0.05

0.10

0.15

Co
rr

el
at

io
n

Figure B.4: Left panels: Correlation matri-
ces for pw = 40000, 0 (upper and lower part
respectively). Right panel: differences be-
tween the pw = 40000 and the pw = 0 corre-
lation matrices.

correlation matrix for pw = 40000 (upper left panel) and pw = 0 (lower left panel) and
their difference (right panel). At k ∼ 0.1hMpc−1, for pw = 40000 we measure that
the correlation is systematically, although not significantly, lower than for pw = 0. This
is expected since, when using FKP, P (k ∼ 0.1) ' 40000. At larger wave-number the
power spectrum amplitude is smaller than at k ∼ 0.1hMpc−1 and the variance and the
correlation are smaller for small values of pw. This justifies my choice of using pw = 40000
in our analysis, since the amplitude of the power spectrum is of this order in the range of
scales I am interested in. If the analysis were centred on the small scale power spectrum
or correlation function, a smaller value of pw would be preferable.

B.3 Impact on the cosmological parameters

Here I test how the differences in the shape of the LRG power spectrum and the covariance
matrix influence the cosmological parameters measured assuming the wCDM cosmology. I
combine the LSS information with the WMAP7 data.

Contrary to expectations based on the results shown in Appendix B.1, the cosmological
parameters are much more sensible to pw than to wi. For a fixed pw the covariance matrix is
the same and only the shape of the power spectrum changes. As this is not affected by the
completeness corrections, also the cosmological constraints are insensitive to it. The fibre
collision correction instead changes the bias, over which I marginalise analytically, without
affecting the shot noise amplitude. Differences in the relative amplitude of the latter term
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can be absorbed at least partially by the mode coupling amplitude AMC, which is system-
atically, although not significantly, larger when the loss of galaxies due to fibre collisions
is corrected for. Because of this, cosmological constraints remain almost unchanged for
different wi. Changes of pw instead influence the covariance but only marginally the power
spectrum. The differences in the former impact marginally the cosmological parameters,
which differ by 0.5−1σ, for pw = 40000 and 0. For example I obtain the dark energy equa-
tion of state parameter to be wDE = −1.02± 0.13 for pw = 40000 and wDE = −1.10± 0.14
for pw = 0.

Given the precision that is possible to achieve with the data used in Chapter 5, the
differences just highlighted are not distinguishable from the uncertainties in the parameters.
But in future, given the big improvements expected, these effects might become important
and will need further analysis.
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