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Abstract

Dynamical processes occurring in geophysical flows are characterised by the nonlin-
ear interaction of various scales of motion. The accurate numerical representation
of such flows is limited by the available number of mesh points covering the domain
of interest. Numerical simulations applying uniformly distributed grid cells waste
mesh points in regions of large motion scales whereas coexisting small-scale pro-
cesses cannot be adequately resolved.

The current thesis offers the design, implementation, and application of an adaptive
moving mesh algorithm for dynamically variable spatial resolution to the numerical
simulation of nonlinear geophysical flows. For this purpose, the established geophys-
ical flow solver EULAG was modified and extended. The non-hydrostatic, anelastic
equations of EULAG are rigorously implemented in time-dependent generalised co-
ordinates. This setting enables moving mesh adaptation by solving the equations in
a straightforward approach developed in this thesis.

The methodological development of the new adaptive solver is divided into three
tasks: (i) The flux-form Eulerian advection scheme MPDATA employed in EULAG
was extended. For transport equations in conservative form, a mass conservation
law enters naturally and implies a unique compatibility condition for the solution
algorithm. Here, extensions of the Eulerian MPDATA integration were developed,
implemented and tested to provide full compatibility with the generalised anelastic
mass conservation law (GMCL) under adaptive moving meshes.

(ii) A machinery performing the numerical generation of an adaptive moving curvi-
linear mesh was designed and implemented in EULAG. For this purpose, an auxiliary
set of parabolic moving mesh partial differential equations (MMPDESs) was employed
to redistribute the existing mesh cells temporally. The solutions of the MMPDEs
provide the mesh coordinates and the adaptation properties of the generated mov-
ing mesh (e.g. local mesh density) are controlled by a monitor function that varies
horizontally and temporally. The form of the monitor function depends inter alia
on the flow state.

(iii) An efficient coding of the mesh adaptation machinery was successfully incor-
porated into the computational framework of EULAG. For this task, the approx-
imation of the advective contravariant mass flux in MPDATA was developed and
implemented in EULAG so to minimise errors of the incompatibility with the GMCL.

The developed adaptive moving mesh solver was thoroughly investigated by simulat-
ing a number of relevant atmospheric problems. The advection of a passive tracer in
a two-dimensional shear flow demonstrated the capability of the solver to automat-
ically adapt the local resolution to the evolving small-scale filamentary structures.
For this flow, the expected advantage of the mesh adaptation was achieved: the
computing time (and the error) was reduced significantly by a factor of 26 (by 20%)
compared to high-resolution uniform mesh computations. Another advantage of
adaptive simulations is the appearance of new physical phenomena. Here, insta-
bilities occurring at the interface of an idealised rising thermal with the ambient
air could be simulated in much greater detail. The representation of the associated
mixing processes is of direct relevance for simulating cumulus convection in realis-
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tic atmospheric flows. There, the process of fine-scale mixing, i.e. entrainment and
detrainment, between the cloudy and the ambient air could be better resolved by
mesh adaptation.

The first application of the developed adaptive mesh solver in the three-dimensional
parallelised modelling framework of EULAG to an idealised baroclinic wave life cy-
cle demonstrated the accurate representation of the synoptic-scale flow (improved
statistics) and the ability to resolve coexisting mesoscale processes. Focussing the
adaptation to the developing frontal zone indicated the excitation of internal gravity
waves which were nearly absent in simulations applying a uniform mesh with the
same number of mesh points. As before, significant savings in computing time (at
least a factor of 2) compared to equivalent results of a high-resolution uniform mesh
computation were achieved for the three-dimensional simulations.

A cumbersome side-effect of the successful and efficient numerical simulations was
the extremely time-consuming tuning of the adaptation parameters, especially of
the monitor function. So far, only a very limited number of monitor functions were
tested. Systematic research will yield improved specifications of the monitor function
for distinct atmospheric flows. In summary, the results obtained in this thesis show
the capability and potential of adaptive moving mesh methods to simulate multiscale
atmospheric flows with higher numerical accuracy and a broader coverage of motion
scales. However, the adaptive moving mesh method adds substantial user complexity
to the modelling system EULAG.
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Chapter 1
Introduction

The enormous range of scales of physical processes in geophysical flows together with
their nonlinear interactions poses a formidable challenge for numerical modelling.
Thanks to the steadily increasing computing power and advances in numerical mod-
elling systems, realistic simulations of transient three-dimensional atmospheric and
oceanic flows have become practical nowadays'. However, the current resources still
do not allow to resolve many important multiscale phenomena accurately. For many
problems of scientific and public interest, there is a demand to increase the resolu-
tion of current atmospheric and oceanic flow solvers by orders of magnitude.

For instance, consider tropical cyclone prediction: Here, the scales of the processes
involved range from the large-scale tropical environment with ~ @(10%-107) m, the
scale the tropical cyclone itself ~ O(10°-10%) m, the scale of embedded phenomena
like the eyewall and rainbands ~ (O(103-10%) m, while the boundary layer turbu-
lence responsible for heat and moisture fluxes from the ocean is ~ O(10-102) m
and smaller. These flow scales span (at least) seven orders of magnitude. Clearly,
this resolution is far beyond that what can be achieved with the computing systems
available today. The range of scales of the processes in tropical cyclone flows is by
no means an exception. A similar complexity is encountered in many atmospheric
modelling applications. Figure shows a snapshot taken from a combined obser-
vational and numerical study of a|CATP event that occurred north to the Hawaiian

islands over the Pacific ocean (Kiihnlein, 2006). For this case, the atmospheric

IFor instance, this becomes evident in the success story of daily numerical weather prediction,
e.g. Kalnay et al.| (1998).

2The term especially refers to turbulence occurring several kilometers above the Earth’s
surface in an environment free of clouds and strong convective updrafts (Dutton and Panofsky,
1970). Among others, the prediction of the occurrence of is important because of its hazard
to airplanes, which is due to locally strong wind shears.
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Figure 1.1: (a) Vertical section as derived from dropsondes deployed along the flight track of the NOAA
Gulfstream-IV (G-IV) research aircraft through a frontal system in the region of a mid-latitude cyclone during the
North Pacific Experiment (NORPEX) 1998. Shown is potential temperature § (K, orange-white shaded, Af = 2 K)
and horizontal velocity v, (ms~!, black contour lines, Av;, = 4 ms~1). (b) Horizontal section through the mid-
latitude cyclone at z = 4 km of potential temperature 6 (K, black contour lines, A@ = 1 K) as obtained from an
attendant mesoscale numerical simulation. The short south-north-aligned violet line in about the centre of (b) over
the front indicates the region along the vertical section shown in (a) where the G-IV research aircraft encountered
moderate-to-severe m at the flight altitude of =~ 12.5 km. The m encounter occurred in the region of the
dropsonde deployed at 2118 UTC. See for further discussion. Courtesy of (a): M. A. Shapiro,
NOAA.

flow comprises the excitation of internal gravity waves! from an intensifying frontal
zone at mid-tropospheric levels. These internal gravity waves propagated upwards
into the lower stratosphere, where they played a decisive role in the generation of
strong localised bursts of [CAT] Again, the processes involved range over a contin-
uous spectrum of scales from the large-scale, i.e. synoptic- to planetary-scale, flow
environment ~ O(10%-107) m, cross-frontal scale ~ O(10°) m, mesoscale internal
gravity waves ~ O(10%-10°) m, embedded moist convection ~ O(10%) m, down to
microscales of the ~ 0(10-10?) m.

Because of the complexity of the problem, numerical modelling is the only method to
produce a nearly complete spatio-temporal prediction of nonlinear multiscale geo-
physical flows. In this thesis, an attempt to extend the capabilities of numerical

models will be undertaken that offers the means to better cope with the large scale

nternal gravity waves (sometimes called buoyancy waves) refer to internal oscillations in a stably
stratified fluid where the force acting in the vertical direction is buoyancy due to Earth’s gravity.



differences of the processes in geophysical flows.

Currently, the most common approach for the (horizontal) spatial discretisation in
numerical models of the atmosphere is to employ uniform meshes. They are based
on either a grid point/cell or spectral representation in the simulation domain. The
restriction to distribute the grid points uniformly can be resolved by using an adap-
tive mesh method that applies finer or coarser mesh sizes in distinctive regions of
interest. This means adaptive mesh methods provide variable spatial resolution over
the simulation domain within a single numerical solver. As a result, a locally im-
proved mesh resolution can be applied in limited regions without the requirement
to increase the mesh resolution throughout the entire simulation domain. In par-
ticular, if a nonlinear physical flow problem involves local small-scale processes, an
adaptive mesh focussing on (or zooming into) these regions represents a powerful
means for the numerical simulation. The technique can be employed to resolve in a
consistent manner local small-scale processes and the larger-scale flow at the same
time. Usually, only a fraction of the computational expense (i.e. and memory

requirements) of a comparable simulation using a globally fine mesh will be required.

Adaptive meshes may be either static or dynamic. In the static case, a variable spa-
tial resolution is defined in advance of the simulation and is then kept constant over
the entire course of the integration. Thereby, the mesh adaptation regions must
be known a priori and the static adaptation is thus best suited for stationary or
quasi-stationary features, e.g. to better resolve flow interaction with topography or
the storm track regions in the mid-latitudes of the Earth’s atmosphere. In addition,
static mesh adaptation can also be used to achieve an improved resolution in certain
predefined geographical regions of interest, e.g. in the context of regional modelling.
In fact, static adaptive meshes are employed in geophysical flow modelling for some
time (Anthes, [1970), and have already been proven immensely beneficial for a va-
riety of applications, see e.g. |[Fox-Rabinovitz et al.| (1997); Dornbrack et al.| (1998);
Sullivan et al.| (1998); Dornbrack et al.| (2002); Lane et al. (2003)); Kiihnlein| (2006));
Laprise| (2008); |Abiodun et al.| (2008)); [Rotunno et al. (2009)). Traditionally, either
mesh nesting (Clark and Farley, [1984) or mesh stretching (Anthes, 1970; Staniforth
and Mitchell, [1978) techniques have been used. Latest developments also consider
unstructured mesh techniques on the sphere, see e.g. Szmelter and Smolarkiewicz
(2010Db)).

Dynamic mesh adaptation is a time-dependent generalisation of the static mesh
adaptation approach. With a dynamic mesh, the spatial resolution or the discrete

mesh geometry is not only variable in space over the simulation domain but is also
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allowed to vary in time during the integration. The approach provides additional
flexibility for the mesh adaptation in that the resolution can be adjusted locally
in response to the evolution of the flow or to changing forcings. For instance, a
dynamically adaptive mesh method technically enables to continuously track mov-
ing and transient features of significance with a locally improved resolution. These
features may be tropical cyclones, fronts in a mid-latitude synoptic-scale flow envi-
ronment, or a density current in an Alpine valley, just to name a few. Because the
evolution of the features to be adapted is not known in advance, the dynamic mesh
adaptation must functionally depend, either directly or indirectly, on the prognostic
solution fields of the numerical flow solver. Therefore, the term solution-adaptive
mesh method is appropriate and is used throughout this text. As an aside, it is
obvious that flow solvers with a solution-adaptive (or dynamic) mesh capability are

also suitable to employ static mesh adaptation.

Solution-adaptive mesh methods are relatively new and unexplored in the area of
geophysical flow modelling. The first application in the context of atmospheric flows
was reported by Skamarock et al.| (1989) about two decades ago. They investigated
solution-adaptive multiple component grids for numerical weather prediction ap-
plications. They combined a finite-difference solver for the hydrostatic primitive
equations with the adaptive mesh technique developed by Berger and Oliger| (1984),
where fine (overlapping) component grids were placed automatically according to
Richardson-type estimates of the truncation error in the coarse grid solution. The
adaptive solver was successfully applied to test problems of barotropic cyclone ad-
vection and the baroclinic instability of an unstable jet flow.

In spite of a high level of research activity in recent years, see e.g. |[Jablonowski
(2004); [Nikiforakis (2009)) !, as yet, solution-adaptive mesh methods have not found
widespread application. The great majority of efforts nowadays is still concerned
with basic research in the methods themselves rather than with the study of physical
problems or operational prediction using solution-adaptive mesh methods. A note-
worthy exception is the numerical weather prediction modelling system OMEGA
(Operational Multiscale Environment Model with Grid Adaptivity) (Bacon et al.)
2000). The model has been applied in an operational forecast mode to the disper-
sion modelling of chemical tracers and hurricane prediction (Gopalakrishnan et al.,
2002).

Major open research issues in solution-adaptive mesh methods are the definition

of mesh refinement criteria, i.e. dynamic criteria that reliably indicate in which re-

1See also the DFG priority program Metstrém “http://metstroem.mi.fu-berlin.de”.



gions of the domain a finer or coarser mesh is required. The formulation of sub-grid
scale closure models that are applicable on (dynamically) adaptive meshes is a ma-
jor issue, too. Furthermore, it is unclear how different mesh adaptation strategies —
changing the number of mesh points, moving mesh points, and changing the order of
the numerical approximation — should best be combined for geophysical applications

(Weller et al., [2010)).

1.1 Adaptive moving mesh methods

Most of the solution-adaptive mesh solvers being developed in the area of geophys-
ical flows are based on so-called h-refinement methods, where the basic strategy
is to insert or remove mesh points in order to adapt the resolution locally, see
e.g. Jablonowski (2004)); Behrens (2006). Recent examples of adaptive geophysical
flow solvers based on h-refinement adaptive strategies are given by Hubbard and
Nikiforakis (2003); [Jablonowski et al. (2006); Lauter et al.| (2007); St-Cyr et al.
(2008)); [Weller| (2009)). These works investigated a variety of adaptive mesh tech-
niques for applications on the sphere using benchmark flows of pure scalar advection
and shallow-water equations with a view towards next-generation global weather and

climate models.

In contrast, r-refinement methods, which are also known as continuous dynamic grid
adaptation (CDGA) methods (e.g. Dietachmayer and Droegemeier, [1992)) or moving
mesh methods (e.g. Budd et al., [2009)), keep the total number of mesh points fixed
during the simulation but relocate the available mesh points to vary the resolution
over the domain. Hence, r-refinement methods aim to minimise the error of the
computations through an optimal distribution of the available mesh points. The idea
of r-refinement methods is different from h-refinement methods, where a maximum
of the error in the computations may be achieved through insertion of sufficient

additional mesh points.

The area of moving mesh methods is a large research field of applied mathematics.
The particular designs and implementations of moving mesh methods can differ
significantly!. A complete overview of the variety of the published techniques is
beyond the scope of this thesis. For an up-to-date overview and a discussion of

the most common approaches, the interested reader is referred to the review article

L As applies to the field of h-refinement methods.
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by Budd et al. (2009). In addition, a textbook solely devoted to the topic has
been issued just recently (Huang and Russell, 2011)), acknowledging the growing
role of moving mesh methods play in modern computational modelling. Despite the
increasing interest in moving mesh methods in recent years (Weller et al., 2010)), they
are in a relatively early stage of their development compared to the more matured h-
refinement methods (Budd et al.| |2009; Huang and Russell, 2011)). In the following,
aspects of moving mesh methods with particular relevance to the present thesis are
addressed.

Numerical flow solvers that adopt solution-adaptive moving mesh methods consists
of two main components. One component is the machinery used to move the mesh,
i.e. the mesh generation component. The other component is the physical model of
the governing flow equations and their discretisation on the moving mesh. A com-
mon principle for the mesh generation in moving mesh methods is to use generalised
coordinate mappings from a transformed space S; where the computational problem
is solved (ideally chosen as a fixed regular computational mesh), into the physical
space S, where the actual geophysical flow problem is posed; hence the coordinate
mappings S; — S,, describe the adaptive (irregular) mesh in S,. Typically, the po-
sitions® of the mesh nodes in S, are determined by solving (in computational space
S:) an appropriate system of auxiliary partial differential equations. The latter are
often referred to as moving mesh equations. A so-called monitor function is incor-
porated in the moving mesh equations to guide the evolution of the adaptive mesh
in the physical domain. Typically, the monitor function is designed to give some
measure of the local error of the flow computations (defined for instance in terms of
numerical truncation error or based upon heuristic criteria of the simulated flow).
One approach for the integration of the governing geophysical flow equations on
moving meshes adopted here is to formulate and solve them in time-dependent gen-
eralised coordinates. However, note that many other approaches exist, see e.g. (Budd
et al., |2009; Huang and Russell, 2011).

An advantage of moving mesh methods is that they allow to maintain the basic
structure of a rectangular computational mesh during the simulation. There is no
need to deal with the insertion or deletion of mesh points, an issue that always com-
plicates the implementation of h-refinement methods, e.g. due to the requirement
of some form of nested data structure. The conserved rectangular data structure in

moving mesh methods also provides efficient numerical calculations and low memory

! Another possibility is to determine the mesh velocity instead of the mesh positions; e.g.|Cao et al.
(2003).



requirements. In addition, moving mesh methods are perfectly suited for parallel
computational architectures, because they add little or no communication overhead
compared to uniform mesh solvers. Favourable parallelisation characteristics are
essential in the area geophysical flow modelling, where the use of supercomputers
with hundreds to thousands of parallel processors has become reality nowadays,
e.g. Prusa et al.| (2008)); [Taylor et al.| (2008]).

The characteristic of a conserved rectangular data structure makes moving mesh
methods the preferred technique to become part of existing established geophysical
flow modelling systems. The latter traditionally rely on fixed rectangular compu-
tational meshes. In particular, this aspect is followed in the present thesis where a
adaptive moving mesh scheme is introduced in the multiscale geophysical flow solver
(Prusa et al., 2008).

Another aspect of moving mesh methods worth mentioning is their quasi-Lagrangian
nature. In contrast to h-refinement methods, the mesh points can follow the flow,
i.e. moving features like vortices or fronts, without the need for costly topological
changes in the computational mesh geometry. In addition, if the discretisation of the
governing geophysical flow equations is performed in time-dependent generalised co-
ordinates, no interpolations of the prognostic variables are required under the mesh
movement. If the mesh moves downwind, significantly larger time steps of the ex-
plicit numerical flow solver may be possible due to a less restrictive CFL stability
condition. In contrast, a mesh movement against the wind requires to reduce the
time step accordingly for the stability of the integration.

A shortcoming of moving mesh methods is that they are generally less flexible than
h-refinement methods to adapt effectively to arbitrary flow features; see e.g. (Fiedler
and Trapp, 1993; Piggott et al., 2005)) for discusssions. For an illustrating example,
imagine a frontal zone or a squall line stretching across the entire simulation domain
between the boundaries. Then, a moving mesh method adapting to this front is able
to improve the resolution across the elongated feature, though it cannot improve ef-
fectively the resolution along the feature. An improvement of the resolution along
the adaptation feature during the simulation could be achieved by the dynamic in-
sertion of additional mesh points, as possible in a h-refinement method.

As an aside, note that combinations of both methods in so-called rh-refinement
methods do also exist, e.g. [Szmelter et al.| (1992); Lang et al. (2003)); Piggott et al.
(2005)).

Solution-adaptive moving mesh methods have been used in number of physical dis-
ciplines, see Budd et al.| (2009)) for an overview. In atmospheric flow modelling,

solution-adaptive moving mesh methods were first applied by [Dietachmayer and
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Droegemeier| (1992)). They employed the popular mesh generator of Brackbill and
Saltzman| (1982) to simulate a number of idealised test problems of meteorologi-
cal significance. The test problems in Dietachmayer and Droegemeier| (1992)) in-
cluded a kinematic frontogenesis flow governed by a single scalar advection equa-
tion, and a two-dimensional dry rising warm thermal in a neutrally-stratified quies-
cent atmosphere governed by the incompressible Boussinesq equations in vorticity-
streamfunction formulation. The mesh adaptation was guided by means of simple
criteria based on the first- and second-order derivatives of either the transported
scalar (kinematic frontogenesis flow) or the potential temperature (rising thermal
flow). Although their moving mesh solver provided very accurate results, they added
that the solver was not competitive in terms of efficiency (i.e. execution time) against
uniform mesh computations for the modelling problems considered.

The adopted mesh generator of Brackbill and Saltzman| (1982) in Dietachmayer and
Droegemeier| (1992) formulated the mesh generation equations in a variational form
to produce satisfactory mesh concentration in desired regions while maintaining
relatively good orthogonality and smoothness. In a second publication (Dietach-
mayer} |1992)), a (simplified) more efficient adaptive mesh generator was constructed
that was built solely on the concept of equidistributing an error-indicating weight-
ing function. The new mesh generator dispensed with the explicit requirements of
smoothness and (near-)orthogonality of the mesh as in the approach of Brackbill and
Saltzman| (1982)). Dietachmayer| (1992)) demonstrated the efficiency of the resulting
solution-adaptive moving mesh solver for the modelling of interacting multiple vor-
tices in a barotropic shallow water model in spherical coordinates. In particular,
the showed that their integration using a solution-adaptive moving mesh is three
times faster than a respective uniform mesh calculation in achieving a solution of a
specified accuracy. Dietachmayer| (1992) also concluded from their results that near-
orthogonality of the mesh lines is not necessary for the successful implementation
of the solution-adaptive moving mesh method. Dietachmayer added that solution
accuracy in their solver is seriously degraded only if highly skewed mesh cells occur
in conjunction with with rapid variation of the model fields, and this possibility may
be avoided in many cases by smoothing the weight function that guides the mesh
adaptation.

Shortly thereafter, two-dimensional and fully three-dimensional solution-adaptive
moving mesh simulations of the dry rising thermal problem using the compressible
flow equations were presented in Fiedler and Trapp| (1993). They implemented a
mesh generator similar to the one developed in Dietachmayer| (1992)). To achieve a

higher efficiency, Fiedler and Trapp| applied the mesh generator on a coarser mesh



than the mesh where the actual compressible flow equations were solved. The mesh
refinement criterion was specified proportional to the magnitude of the buoyancy,
in order obtain a higher resolution in the region of the rising thermal. They found
that the integration using the solution-adaptive moving mesh is three times faster
than a respective uniform mesh calculation, whereupon nearly equivalent results
were obtained.

A more recent development is the two-dimensional solution-adaptive moving mesh
scheme for scalar advection by [Iselin et al.| (2002). There development combines the
mesh generator of Brackbill and Saltzman| (1982)) with the multidimensional posi-
tive definite advection transport algorithm (MPDATA)). They applied the flux-form
solver MPDATA to an advective transport equation (in time-dependent generalised
coordinates) in a non-conservative form. Detailed numerical tests were performed
to study the solution properties of MPDATA| with uniform and solution-adaptive
moving meshes using the problem of the advection of a cone-shaped passive tracer
in a prescribed (solid-body) rotating velocity field. The mesh refinement was guided
by a sum of first and second derivatives of the transported tracer field. For the
problem considered, they found that the mesh adaptation scheme was far more effi-
cient than the scheme using uniform meshes with similar accuracy. In a companion
publication (Iselin et al.l 2005]), the scheme developed in Iselin et al.| (2002) was then
applied to regional-scale tracer advection over the United States, using a wind field
as obtained from [NCEPHNCAR] reanalysis data. Their conclusion was that with the

solution-adaptive moving mesh, results with about the same accuracy as a uniform

mesh may be obtained using only a quarter of the mesh points of the uniform mesh.

It is mentioned at this point that the present thesis is concerned with the topic of
using MPDATA under moving meshes for the integration of an advective transport
equation (cast in time-dependent generalised coordinates) in conservation form. A
general issue that appears when solving a scalar advective transport equation in
conservation form is that the compatibility (or consistency) of the applied flux-form
advection numerical solver (here MPDATA) with the associated mass conserva-
tion law must be ensured, see e.g. Lin and Rood (1996)). For moving meshes, the
mass conservation law takes on a compressible (i.e. time-dependent) form although
the physical flow under consideration is assumed to be incompressible or anelas-
tic (i.e. the mass conservation law in a symbolic (physical) representation has a
time-independent form) (Prusa et al., (1996, [2001)). This difference between time-
dependent and time-independent generalised coordinates complicates the integration
of advective scalar conservation laws in the first case, as a residual term due to the

time-dependency of the mass conservation law may exists that is not accounted for
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in the standard algorithm for static coordinates. The subject is known in the area

of computational fluid dynamics under the term geometric conservation law (GCL)

(Thomas and Lombard, |1979).

The previous works of |Dietachmayer and Droegemeier| (1992); |Dietachmayer] (1992));
Fiedler and Trapp| (1993); Iselin et al. (2002)); Tselin et al.| (2005) have suggested that

solution-adaptive moving mesh methods are a useful and promising technique for the

simulation of atmospheric flows. The complexity of the specific flow problems treated
in these works is, however, relatively low compared to typical atmospheric flow mod-
elling applications. Atmospheric flows contain a rich spectrum of processes including
Rossby and internal gravity waves, various hydrodynamic instabilities (e.g. shear,

symmetric, baroclinic, etc. instabilities), clouds, and diabatic processes, among

others. It is currently not yet clear from the earlier studies of Dietachmayer and
Droegemeier| (1992)); Dietachmayer| (1992); Fiedler and Trapp (1993)); Iselin et al.
(2002)); Iselin et al| (2005) whether solution-adaptive moving mesh methods can

meet the demand of simulating correctly such processes. In addition, it has yet to
be shown whether the use of adaptive moving mesh methods is justified for these
flows in terms of the resulting efficacy gain in comparison to established modelling

approaches.

1.2 Modelling framework and thesis approach

The Eulerian and semi-Lagrangian flow solver [EULAG]| see (Prusa et al., 2008)

for a review, provides a proven multiscale modelling framework that accurately

and efficiently simulates (geophysical) flows across a wide range of scales and for
different scenarios. Among others, successful applications of [EULAG]| have been
documented for direct numerical simulation , large-eddy simulation (LES|)
and implicit large-eddy simulation of turbulence, e.g. Margolin et al.| (1999);
Smolarkiewicz and Prusa (2002); [Wedi and Smolarkiewicz| (2006)), cloud dynamics

including microphysical processes, e.g.|Grabowski and Smolarkiewicz| (2002); Craig

and Dornbrack (2008)), gravity wave dynamics, e.g. [Smolarkiewicz and Margolin|

(1997); Doyle et al.| (2010)), sub-synoptic and synoptic scale weather phenomena, and
global atmospheric flows, e.g. [Smolarkiewicz et al| (2001)). Furthermore,[EULAG|has
proven its capability in simulating urban (Smolarkiewicz et all [2007) and canopy
(Dornbrack et al., 2010) flows, flows past complex/moving boundaries
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Smolarkiewicz, 2006), and oceanic flows (Warn-Varnas et al., 2007)*.

EULAG is based on semi-implicit non-oscillatory forward-in-time (NFT) numerics
applied to solve the non-hydrostatic anelastic equations. Optionally, the advec-
tive transport is solved in either a flux-form Eulerian or an advective-form semi-
Lagrangian representation — hence, the name EULAG. Previous efforts by
(1977)); Smolarkiewicz and Clark| (1986)); |Smolarkiewicz and Margolin (1993)); Prusal
et al.| (1996); Smolarkiewicz and Margolin| (1997)); |[Smolarkiewicz and Prusa (2002));
Prusa and Smolarkiewicz| (2003); [Wedi and Smolarkiewicz (2004)); [Smolarkiewicz

and Prusa (2005) (see Prusa et al.| (2008) for a more comprehensive list of refer-

ences) were concerned with the design of the analytical and numerical framework of
the model.

In particular, the recent work by [Prusa and Smolarkiewicz (2003)) established a

generic framework for the implementation of a dynamic mesh adaptation capabil-
ity via deforming coordinates. The foundation of the dynamic mesh adaptation
capability is a time-dependent generalised coordinate transformation, implemented
rigourously throughout the governing anelastic equations. One aspect of the mod-
elling framework is the time-dependent vertical coordinate transformation that can
be used to simulate — in the spirit of the classical terrain-following coordinate of
\Gal-Chen and Somerville (1975) — deforming lower (Prusa et al., [1996]) and also
upper (Wedi and Smolarkiewicz, |2004) domain boundaries. Another aspect of the

modelling framework emphasised in [Prusa and Smolarkiewicz (2003)) is the use of

time-dependent horizontal coordinate transformations for moving mesh adaptation.

Prusa and Smolarkiewicz (2003) showed the potential of this aspect to improve the

model representation of geophysical flows. They implemented a moving ‘“nested”
mesh by means of the time-dependent horizontal coordinate transformation to track
a travelling stratospheric internal gravity wave packet with a uniform high resolu-
tion. The wave response of the internal gravity wave packet in the rotating stratified
fluid was forced by a prescribed oscillating deflection of the lower domain boundary
using the time-dependent vertical coordinate. The boundary deflection is thought
to represent an idealised deformation of the tropopause. The moving “nested” high-
resolution mesh tracking the wave packet was implemented via the numerical ad-
vection of a dense-mesh region with the prescribed velocity of the oscillating lower
boundary deflection. The results of the “nested” mesh simulations showed excel-

lent comparability with reference results obtained from uniform mesh simulations,

I'Note, derivatives of |EULAG| have also been applied to simulations of visco-elastic waves in the
human brain (Cotter et al 2002), and solar convection (Elliott and Smolarkiewiczl 2002). Fur-
thermore, current developments include extensions to |MHD| (magneto-hydrodynamics).




12 1.2 MODELLING FRAMEWORK AND THESIS APPROACH

while using only a fraction of the computational expense. Another application in
Prusa and Smolarkiewicz (2003) considered idealised global climate simulations of
the benchmark test of Held and Suarez (1994)). Prescribed (steady and unsteady)
analytical stretching functions were employed to increase the meridional resolution
either unimodal in the tropics or bimodal in the regions of the mid-latitude zonal
jets. Although there was no consistent improvement in the climate statistics such
as time-zonal averages, the adaptive mesh simulations outperformed uniform mesh
simulations in terms of the flow symmetry about the equator and global statistics
based upon the variation of the flow, e.g. the maximum value of the variation of

potential temperature about its time-zonal average.

Despite the success, the applications in [Prusa and Smolarkiewicz (2003) only ex-
ploited a relatively small capacity of the implemented time-dependent horizontal
coordinate transformations in EULAG. Two main assumptions were made so far.
First, only well-defined unimodal (i.e. single) or bimodal (i.e. double) targeted re-
gions were considered for the moving mesh adaptation. Second, the moving mesh
adaptation was prescribed in advance of the simulation. In particular, there was
no dynamic interaction between the prognostic solution fields of the anelastic solver

and the machinery that generates the adaptive moving mesh.

The promising results of |Prusa and Smolarkiewicz (2003) represent the starting point
for the present thesis. Here, the time-dependent generalised coordinate framework
of EULAG as presented in [Prusa and Smolarkiewicz| (2003)) is extended with a
solution-adaptive moving mesh capability. The resulting scheme dispenses with the
assumptions made so far. It enables to zoom with the mesh into multiple physical
flow features at the same time. In addition, the moving mesh can dynamically
interact with the simulated flow in EULAG. One main ingredient of the scheme
is a set of moving mesh equations (see the previous Section for the numerical
generation of a dynamic curvilinear mesh. A time-space dependent monitor function
in the moving mesh equations guides the mesh. With the approach, the monitor
function can be specified proportional to some error-indicating quantity derived
from prognostic solution fields in EULAG, e.g. velocity, temperature, water vapour
mixing ratio, or any other quantity available in the model. If an appropriate error-
indicating quantity can be determined for the flow considered, then the solution-
adaptive moving mesh scheme can continuously self-adapt the mesh to improve
the representation of the flow according to the error quantity’s distribution. A
simple heuristic example for such an error-indicating quantity may be to specify it

proportional to the gradient of temperature in order to detect (temperature) fronts.
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1.3 Overview of the thesis

The objective of the present thesis is to design, implement and assess a solution-
adaptive moving mesh solver for the modelling of atmospheric (geophysical) flows.
The solver, effectively incorporated into the computational framework of [EULAG] is
expected to enable a continuous spatiotemporal relocation of the mesh nodes during
the integration according to predefined dynamic mesh refinement criteria that can
depend on the prognostic solution fields.

Using the developed solver, the present thesis examines the question whether solution-
adaptive moving mesh methods can be a viable alternative to uniform mesh atmo-
spheric flow modelling approaches. In particular, the thesis investigates whether
solution-adaptive moving mesh methods are able to significantly improve the effi-

cacy of atmospheric flow simulations compared to uniform mesh computations.

Chapter [2] provides a review of the [EULAG| modelling framework. The emphasis
is on the formulation of the underlying sound-proof anelastic thermo-fluid equations
in the time-dependent generalised coordinates and the description of the numerical
solution procedure. Furthermore, a detailed explanation of the Eulerian flux-form

advection scheme [MPDATA| (which is employed in [EULAG] for the advective trans-

port of all prognostic variables) will be given.

Chapter (3| addresses the numerical integration of the anelastic equations in time-
dependent generalised coordinates. In particular, this part develops extensions to the
Eulerian flux-form advection scheme [MPDATAI which are essential for an effective
integration of the anelastic equations under (arbitrary, i.e. numerically-generated)
moving meshes. The developed extensions aim at the compatibility of the flux-form
IMPDATA] scalar advection transport with the associated anelastic mass continuity
equation in time-dependent generalised coordinates. Scalar advection experiments
are performed to investigate the subject. All numerical experiments in Chapter

are limited to prescribed oscillating meshes for simplicity.

Chapter [4] introduces the solution-adaptive moving mesh algorithm. The imple-
mented machinery that performs the numerical generation of the solution-adaptive
moving curvilinear mesh is described in detail. The main ingredient of the scheme

developed is a set of parabolic moving mesh partial differential equations (MMPDES)
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(Huang and Russell, [1999)), which are solved along with the anelastic equations in
EULAG. Monitor functions in the MMPDEs guide the mesh adaptation. Subjects
such as the specification of the monitor functions, balancing of various monitor func-
tion components, the choice of a relaxation time for the moving mesh adaptation,
adaptation of the mesh at the boundaries of the simulation domain, and the efficient
and robust numerical implementation of the MMPDE machinery, are dealt with. In
addition, the final Section [4.4] is concerned with the effective incorporation of the
MMPDE machinery into the computational framework of EULAG.

Chapter [5] is concerned with testing and validation of the more basic aspects of
the developments of Chapters [3] and [4] using canonical two-dimensional modelling
problems of relevance to atmospheric flows. A first test problem is the advection of
a passive scalar in a prescribed time-varying shear flow. A second test problem is
a dry rising warm thermal in a neutrally-stratified quiescent atmosphere. Both test
problems used are well documented in the literature and have the advantage that
they are relatively easily to perform and analyse. The final Section is devoted
specifically to the investigation of the compatibility issue thoroughly discussed in
the previous Chapter [3]

In Chapter [6] the developed solution-adaptive moving mesh solver is eventually
applied in the three-dimensional modelling framework of [EULAG] For the first
time, solution-adaptive moving mesh methods are used to simulate the life cycle
of a synoptic-scale baroclinic wave instability. The adaptive solver’s ability is in-
vestigated to capture the synoptic-scale baroclinic wave instability and coexisting

mesoscale processes like internal gravity waves.

Chapter [7| summarises and concludes the thesis. Remarks concerning the devel-
oped solution-adaptive moving mesh solver and an outlook for future research are

given.

Furthermore, a completely different topic is addressed in Appendix B. This part
presents results from a numerical model investigation about the significance of the
abbreviated representation of baroclinic vorticity production underlying the Boussi-
nesq equations for the simulation of aircraft wake vortices in a stably stratified

atmosphere.



Chapter 2

EULAG| modelling framework

This chapter introduces the modelling system for geophysical flows. The
model provides the framework for the implementation of the solution-adaptive mov-
ing mesh non-oscillatory forward-in-time flow solver that is developed and
applied in this thesis. The following presentation of focuses on aspects of
particular relevance to this implementation. This includes a description of the un-
derlying “sound-proof” anelastic equations followed by their analytical formulation
in time-dependent generalised coordinates, see Section 2.1 Tensor identities that
play an important role in the analytical and numerical formulation are also high-
lighted briefly. The numerical solution procedure is then described in Section [2.2]
Finally in Section [3.1] a detailed description of the advection solver [ MPDATA] which
is employed in [EULAG] is also given. In the subsequent Chapter [3| an extension
of the given scheme will be developed that is essential for its use with
solution-adaptive moving meshes.

The reader is referred to Prusa et al.| (2008), and references therein, for a more com-
prehensive explanation of [EULAG]s historical development and present capabilities,

including its performance on large-scale parallel computational architectures.

2.1 Analytical formulation

A straightforward explicit numerical discretisation of the fully compressible equa-
tions is prohibitively expensive in terms of the required computational effort — and
overall difficult to implement (Klein, 2011) — for typical atmospheric and oceanic
flow problems. The presence of fast acoustic modes in the solutions imposes a severe

time-step restriction on the integration algorithm. In order to achieve a more efficient

15
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solution, i.e. larger time steps, atmospheric flow solvers based on the compressible

equations may adopt special time discretisation approaches. These approaches typ-

ically use some form of time splitting (Klemp and Wilhelmson|, |1978; Klemp et al.,
2007) or implicit-differencing (Tanguay et al. [1990; Cullen) 1990) schemes.

An alternative approach underlying the present model formulation is to employ an-

alytically filtered subsets of the fully compressible equations, that do not contain
the fast unimportant acoustic modes yet retain the slower relevant modes of inter-

nal gravity waves and advection. For general stratified atmospheres, these so-called
“sound-proof” flow models comprise the anelastic systems of equations (Ogura and,

Phillips, [1962; [Dutton and Fichtl, [1969; Wilhelmson and Ogural, [1972; [Lipps and
Hemler| 1982; Lipps, 1990; Bannon, |1996), and the pseudo-incompressible system of

Durran (Durran, [1989, 2008).

Here, only the dry dynamical version of the EULAG] model is presented. A higher

complexity that arises from the inclusion of moist physics and explicit microphysi-

cal/chemical processes (Grabowski and Smolarkiewicz, 2002 Spichtinger and Gierens,
2009alb} [Sélch and Kércher], [2010) is disregarded. The focus is on essential aspects

regarding the formulation of the model equations in time-dependent generalised co-

ordinates.

Anelastic thermo-fluid equations

Starting point is the physical representation of the non-hydrostatic Lipps and Hemler

anelastic system (Lipps and Hemler, |1982; Lipps, 1990) , given in an extended

perturbational form (Smolarkiewicz and Margolin) 1997; Smolarkiewicz et al., 2001))

Dv o’
—=-Vr'—-g——f "+M+D+B 2.1
Dt \s ng XV +M+D+ (2.1a)
Do’
- _v. 2.1
D v-VO.+H+ B (2.1b)
V-(ppv)=0. (2.1¢)

The set of anelastic equations describes, respectively, the three components of
the momentum equation , the thermodynamic equation , and the anelas-
tic mass continuity equation . In , the operators V and V- symbolize
gradient and divergence, while D/Dt=0/0t+v -V is the Lagrangian derivative,

and v is the physical velocity vector. A vector representing gravitational accelera-
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tion g= (0,0, —g)? occurs in the buoyancy term of Eq. . The symbol f stands
for the vector of the Coriolis parameter that arises due to the global rotation of the
domain. The subscript b appearing with the density p and potential temperature
0 refers to the basic state, a horizontally-homogeneous prescribed hydrostatic ref-
erence state, characteristic of the anelastic approximation, see |Ogura and Phillips
(1962); |Clark and Farley| (1984); Bacmeister and Schoeberl| (1989). In addition to
the basic state, a more general ambient (also called environmental) state, that can
vary in the vertical as well as the horizontal direction, is denoted with the subscript
e, and defined to satisfy a balanced subset of the system ([2.1]). Please consult |Prusa
et al.| (2008) for a discussion of the ambient state and its benefits. All primed vari-
ables #', v/, and 7’ that appear in correspond to deviations from the ambient
state. Particularly, the symbol 7" in the linearised pressure gradient term of
denotes a density-normalised pressure perturbation (Smolarkiewicz and Margolin,
1997)).

Additional source terms not explicitly stated in the system are considered
through the following symbols: M denotes metric forces due to the curvilinearity of
the underlying physical system S, (see below), among others. The terms in D and
‘H symbolise viscous dissipation of momentum and diffusion of heat, respectively.
The terms in B and B may represent wave-absorbing devices in the vicinity of
the domain boundaries (Smolarkiewicz and Margolin, [1997)), and/or fictitious body

forces employed to model immersed boundaries (Smolarkiewicz et al., [2007)).

Coordinate transformations

Let S, denote the physical space where the actual problem is naturally posed. An
irregular, possibly time-dependent, subdomain D, CS, with an assumed tuple of
coordinates (t,x)=(t,z,y,2) in S, can be mapped into a regular computational
subdomain D; CS; in a transformed space S; with its own tuple of generalised

coordinates (¢,X) = (¢,T,7,2):
(t,X) = (t, F(t,x)): D, — D, . (2.2)

The general mapping ([2.2)) is understood here to be a diffeomorphism, i.e. F(t,x)
is a bijective map between manifolds D, and D; that is at least C*-continuously

differentiable.!. The requirement that the coordinate mapping is bijective means

L As an aside, it is noted that the numerical formulation of[EULAG]|even allows for discontinuities in
the coordinate mapping to mimic nested grids, see|Prusa and Smolarkiewicz (2003]) for an example.
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that there exists a one-to-one (invertible) relationship between the coordinates in
D, and the coordinates in D;, which ensures that the mesh cells are not folded, see

e.g. Liseikin| (1999)

In the present work, the physical coordinates x € S, are assumed to be exclusively
rectangular Cartesian. Note, however, that the general coordinate framework of
[EULAG] as presented in this chapter, allows the physical problem to be posed in
any stationary orthogonal system S,. Cartesian, spherical and polar cylindrical
physical coordinates are possible choices in the current implementation of the model
(Prusa and Smolarkiewicz, [2003; |[Prusa and Gutowski, 2006} Prusa et al., [2008).

Transformed model equations

Using a tensorial description, e.g. Synge and Schild| (1978)), the anelastic equations
(2.1) can be written with respect to S; as (Prusa et al., 2001; Smolarkiewicz and
Prusay, 2002 Prusa and Smolarkiewicz, 2003])

dv? ~. O’ "o . , , .
d_vf__ fa;k +ge_b5§—flvlk5jik+Mj+Dj+BJ (2.3a)
do’ £ 00,
dt v oz T (2.3b)
2(p* ")
W =0 y (23C)

where 7, j,k=1,2,3; and the Einstein summation convention applies, unless oth-
erwise stated. The Kronecker Delta ¢} in the momentum equation is 1 for
j=3, and 0 for j # 3. The Levi-Civita (permutation) symbol €, see e.g. |[Synge and
Schild| (1978)), occurs in the Coriolis term to represent the cross product. Note that
in , advection of the physical velocity is retained; therefore v’/ corresponds to

the j-th component with respect to the system S,.!

In the system (2.3)), a generalised density p*=p, G is conveniently introduced as

the product of the basic state density p, and the Jacobian of the transformation

G (defined below). For the sake of clarity, p* represents a positive-definite variable
that incorporates the effects of both, the physical volumetric variation due to back-

ground stratification contained in the time-independent prescribed physical density

!Note that the formulation in the physical velocity components (instead of the transformed depen-
dent variables) avoids numerical complications due to the occurrence of metric terms that involve
Christoffel symbols in the momentum equation; see the seminal works of |Vinokur| (1974); |Viviand
(1974); [Clark]| (1977]).
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pp, plus changes of the geometric volume through the Jacobian G of the underly-
ing coordinate transformation, that may be time-dependent. In contrast to elastic
(e.g. compressible, general shallow water) systems, the variable p* is explicitly known

in anelastic systems.
The operator d/dt is the total derivative given as

d 0 kO
dt 6t+v ok’ (24)

where 7" := dz" /dt is the contravariant velocity in the transformed system S;. The
velocity 7" occurring in the entropy (2.3b)) and continuity (2.3c) equations is the
so-called solenoidal velocity (Prusa et al., |2001) defined as
ko Ox"

T =T — 2.5

ot (25)

that reflects the advective velocity in an otherwise stationary curvilinear coordinate
system S;. While numerous formulae may be derived to express the distinct forms
of velocity (physical, contravariant, and solenoidal) in terms of the other, an espe-
cially convenient transformation that relates the physical and the solenoidal velocity
directly, is given as

vt = Gl (2.6)

The symbol éf = \/ﬁ 0z" /0x? appearing in and the pressure gradient term
of (2.34), denotes the renormalised elements of the Jacobian matrix (summation not
implied over j), while the coefficients g7/ are the diagonal elements of the conjugate
metric tensor of S,. The elements are ¢*/ =1 for Cartesian coordinates x € S, as
assumed in the present work. For the general case of non-Cartesian orthogonal

coordinates x, please refer to Prusa and Smolarkiewicz (2003)).

The utilised form of the mass continuity equation (2.3c|) is not the most general
tensor-invariant representation under the time-dependent mapping (2.2). The latter

reads .
19(p"v")

G 07"

0, (2.7)

where r=0,1,2,3, 1=7°, t=2°, and 7 =1, or similarly

* *—*k
L (ap_ + M) 0. (2.8)

G\ ot oz

However, under the given assumptions that (i) the coordinates x € S,, are stationary,
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and (ii) the density obeys the functional dependence p, = py(x), the form (2.8)) is
analytically-equivalent to , see Prusa et al.| (2001) for a discussion. This allows
to employ the form instead of in the governing system . As a result,
it simplifies the design of the numerical model (see Section , and improves the
efficacy of the solution procedure under time-variable mappings. Notwithstanding
the use of in the system , the general form of the mass continuity equation
has important implications for the design of the numerical solver under time-
dependent generalised coordinates, see Chapter [3]

Given by is the most general transformation of the coordinates in three dimen-
sions. The specific mapping that underlies the current implementation of [EULAG
is given as

F(t,x) = (Z(t,x,y),y(t,x,y),2(t, z,y,2)) . (2.9)

In (2.9), the vertical mapping zZ(z,y, z,t) incorporates a time-variable generalisation
(Wedi and Smolarkiewicz, 2004)! of the standard terrain-following coordinate by
(Gal-Chen and Somerville, [1975)), that takes on the form

z— zs(t,x,y)
H(taxay) - ZS(thCay) ’

2=C(C)  C=C((tay2) = Hy (2.10)
where z; and H describe the lower and upper boundary of the domain, respectively,
and Hj is a representative domain depth. The function ((t, x, y, z) realises a uniform
mesh between z; and H in the vertical, and the function C({) can conveniently be
used to apply a prescribed stretching, i.e.variable resolution, of the coordinate (
with height.

While the vertical mapping coded in [EULAG] is subject to (2.10), the horizontal
mappings admit the most general transformation according to the functional depen-

dence Z(z,y,t) and y(z,y,t). In effect, the model formulation enables an arbitrary
time-dependent adaptive deformation of the mesh in the horizontal plane, that is
independent of height. Although this purely horizontal structure prevents full gen-
erality of the mesh adaptation in three dimensions, it meets/follows the basic hydro-
static nature of atmospheric and oceanic flows, while simplifying metric terms and
respective coding design. Moreover, the computational overhead associated with
the solution-adaptive moving mesh apparatus employed in the present work (see

Chapter {4)), is kept small in a typical three-dimensional setting.

!This work was conducted by N.P.Wedi as part of his dissertation thesis at the Ludwig-
Maximilians-Universitat Miinchen (Wedi, [2004)).
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From the specifications of the mapping F(¢,x) in (2.9) and (2.10), the Jacobian of

the transformation G attains a separable form
G=GGyGyy . (2.11)

The symbol @g in (2.11)) denotes Jacobian of the transformation ([2.10)

a (dcag)l B (dC)l H(t,2,y) — 2(t 2, y)

o= 7o @ 7 , (2.12)

cf. [Wedi and Smolarkiewicz| (2004), while G, represents the Jacobian of the general

transformation of the horizontal coordinates defined as
= ooy  oTdy\
G, (ﬁ_y _ i_y) | (2.13)

The choice of a possibly non-Cartesian physical system S, is reflected in the Jacobian

G, whereupon we have G =1 for the assumed Cartesian coordinates x € S,,.

Tensor identities

Underlying the model formulation in the generalised coordinates are fundamental
tensor identities (Prusa and Gutowski, 2006|), where at least two deserve brief con-
sideration here. Among these is the Kronecker-delta identity (Synge and Schild,
1978; Prusa and Gutowski, 2006])

5 = oz" 0z

ST Oz 0z’

(2.14)

that states the reciprocity of the co- and contravariant base vectors describing the
generalised system S;. Here, the indices r, s,q=0,1,2,3 , whereupon = z° and t = 2°.
Given the computed metric coefficients 0x?/07° in the model computational space
S: (where ° =2°(Z")), the identity provides the relationships to determine
the inverse metric coefficients 07" /0x9, that are used in the transformed model

variables.

Another identity that arises naturally with the equations in conservation law form,
e.g. (2.18)), is the multi-component tensor geometric conservation law (GCL))

(2.15)

¢ o (Tory _, .
Gox'\Goxs)
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emphasised in Prusa et al. (2001); Prusa and Gutowski (2006). The
represents a compact differential statement about the conservation of space, under
the general mapping of the coordinates . For s=1,2,3 it relates the three-
dimensional spatial variation in S;, of the inverse metric coefficients and the Jacobian
determinants'. For s=0, it describes the conservation of volume (known to be

equivalent to the Jacobian) according to

0(C/C) 0/?(%’“): , (2.16)

o or\G o

i.e. it relates, in the transformed space S;, the divergence of the fluxes of volume in
space with the changes of volume in time. The importance of satisfying the [GCJ
on the level of discretisation with the solution of conservation law forms, was first
shown by Thomas and Lombard (1979). In Chapter [3 this subject is discussed with
regard to the nonlinear flux-form advection solver in the framework of

the present anelastic solver.

2.2 Numerical solution procedure

Each prognostic equation of the transformed anelastic system (2.3]) is given in a

Lagrangian representation
dy
dt

where 1) =1)(¢,X) denotes the transported mass-specific variable, and R¥ subsumes

RV, (2.17)

the appendant source terms. Alternatively, the same equations can be written in

the analytically-equivalent flux-form Eulerian conservation law

A(p* 1)
ot

+V- (p" v ) = p*RY; (2.18)

given V* = dX/df as the contravariant velocity vector, and V - the divergence oper-
ator with respect to the generalised coordinates X € S,;. Underlying the numerical
model formulation is that the anelastic equations can be optionally integrated
in either the flux-form Eulerian (2.18) or the Lagrangian (2.17) representation?.
A compact description of the unified Eulerian/semi-Lagrangian solution algorithm

on a regular computational mesh (£",%;), can be written as (Smolarkiewicz, (1991}

'From a geometrical point of view, the s=1,2,3 components of the simply state that the
surface enclosing a differential volume is closed.

2Hence, the name [EULAG
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Smolarkiewicz and Margolin, (1993} Smolarkiewicz and Margolin, {1997, [1998))

Yt = LE(¥) + 0.5t RY[PH (2.19)

whereupon £&; symbolically denotes a non-oscillatory! forward-in-time ad-
vection transport scheme, and 7;55 Y™ 4+ 056t RY". Note, that the n, n+1 su-
perscripts denote the time level, the subscript i denotes the spatial mesh vector
index, and SE=1"""—7" is the time step increment. In the Eulerian variant of
the model, L& integrates the homogeneous conservation law employing the
second-order-accurate fully multidimensional advection algorithm M (see
Section [2.3)). In the semi-Lagrangian option, £E remaps the transported fields,
which arrive at the grid points (fnﬂ,ii), back to the departure points of the flow
trajectories (£, ig(f"“, X;)), using tensor-product application of one-dimensional
advection schemes that are akin to MPDATA (Tremback et al.| [1987; [Smolarkiewicz
and Pudykiewicz, 1992). Advecting the auxiliary field J (instead of the variable
Y™ alone) in the Eulerian FT scheme, compensates for O(dt) truncation errors pro-
portional to the divergence of the advective flux of the source terms R¥, see |Smo-
larkiewicz| (1991); Smolarkiewicz and Margolin (1993)) for an explanation. Simulta-
neously, it makes the Eulerian integration congruent to the trapezoidal approxima-
tion of the trajectory integral in the semi-Lagrangian scheme (Smolarkiewicz and
Margolin, |1993} Smolarkiewicz and Margolin|, 1997)).

Restricting the anelastic set to inviscid adiabatic dynamics for simplicity,
ie. M, D, 'H, B, B all set to zero, the template algorithm represents a
system that is fully implicit with respect to the dependent variables v, 7’ and &',
while the explicit part in (2.19)) consists of the advection operator 12 =LE ({/;) For

the momentum equation ([2.3a)), the algorithm (2.19)) results in
vi = Vi — 0.56 (GV); 4 0.5 6 Fy(v, ) (2.20)

with

Fi(v,0) = —0% (@ — 058 ((GTv) 'We)>i — (£ x V), (2.21)

accounting for the implicit treatment of buoyancy via the entropy equation ([2.3b]).
Note that all superscripts indicating the n+ 1 time level have been dropped here,
since there is no ambiguity. The symbol G that appears in the utilised compact de-
scription, is identified with the renormalised Jacobi matrix éf, defined in Section.

!Non-oscillatory refers to the monotonicity of the solution, i.e. no spurious extrema are created by
the numerical solution scheme, see e.g. Durran (1999) for a discussion.
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Organising of (2.20)) into explicit and implicit parts gives
vi = Vi — 0.50 (GV); + 0.5 0 Fy(v) | (2.22)

where ¥ subsumes all known terms, and F denotes the implicit remainder of .
Provided that the underlying grid is co-located with respect to all prognostic vari-
ables!, algebraic inversion of leads to a unique expression for the vector vj.
Then, the relation leads to an expression for the solenoidal velocity of the form
v=GT [% —(I-05 5%?)’1(61?%”)} with the definitions v:= (I—058tF)" v
and 7" := 0.5t 7’. Finally, the solenoidal velocity v* is substituted into the anelastic

mass continuity equation ([2.3c) to obtain an elliptic equation for 7"

{29 (& [f-a-osab) @)} =0, e

i

a complete development of which is given in the Appendix A of [Prusa and Smo-
larkiewicz (2003). The applied normalisation by (0¢/p*) gives the residual errors
of the meaning of the divergence of a dimensionless velocity on the grid.
The latter compares directly to the magnitude of the Courant and Lipschitz num-
bers (cf.Smolarkiewicz and Pudykiewicz| (1992)), and facilitates the specification of
physically meaningful accuracy thresholds ||(62/p")V - (p*V*)|| < € (Smolarkiewicz
and Margolin, (1994; [Smolarkiewicz et al., |1997; [Prusa and Smolarkiewicz, [2003).
Multiplication by the factor (—1) assures the formal negative-definiteness of the el-
liptic operator (Smolarkiewicz and Margolin, [1994; Prusa and Smolarkiewicz, [2003)).
Note also, the scaling by (1/p*) acts as a preconditioner for deep atmospheres where
p*, respectively pp, can vary several orders of magnitude over the vertical depth of
the simulation domain.

Dirichlet boundary conditions along 0D, prescribed on the normal component of
the solenoidal velocity, i.e. v°-m, which are subject to the integrability condition
/. op, PV° -1 do =0, imply the correct Neumann boundary conditions for 7" (Prusa;
and Smolarkiewicz, 2003). A preconditioned generalised conjugate residual GCR/(k)?
algorithm (Eisenstat et al.l (1983 |Smolarkiewicz and Margolin) 1994} [Skamarock
et al., [1997; Smolarkiewicz et al. 2004)) is employed to solve the formulated elliptic
boundary value problem. The solution to is used to compute the updated

solenoidal velocity. From this, the updated physical and contravariant velocity com-

I Arakawa A- or B-grids are possible options in the present model, see [Smolarkiewicz and Margolin
(1997).

“The generalized conjugate residual scheme is a type of non-symmetric Krylov subspace solver
akin to the generalised minimum residual (GMRES) scheme (Saad) [1993]).
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ponents are obtained using the relations ([2.6)) and (2.5)), respectively.

Note finally, that the additional source terms in the system (2.3) that represent

the boundary forcings B and B are otherwise all treated implicitly in the solution

scheme, see Smolarkiewicz and Margolin (1997); |Prusa and Smolarkiewicz| (2003));

Smolarkiewicz et al| (2007). Moreover, possible nonlinear terms occurring in (2.3,

e.g. metric terms arising with a spherical physical system S,, (Smolarkiewicz et al.,
2001) or nonlinear pressure gradient terms that occur with the solution of Dur-

ran’s pseudo-incompressible equations (as described in [Smolarkiewicz and Dorn-|

(2008)), may use outer iteration of the system generated by (2.19). When

incorporated, diabatic, viscous, and subgrid-scale forcings, are typically evaluated

explicitly with first-order accuracy (Smolarkiewicz and Margolin) 1998 [Prusa and|
Smolarkiewicz, [2003)).

2.3 Advection solver MPDATA

The MPDATA scheme uses the upwind method in an iterative manner to achieve
second-order accurate solutions to advective conservation laws. Given a regular up-
wind solution, MPDATA applies corrective upwind steps to reduce the error of the
preceding solution. The basic idea is to employ error-compensative pseudo-velocities
in the corrective steps that are derived on the basis of a truncation error analysis.
Since this basic idea of MPDATA methods has been invented in the early 1980’s
by Piotr K. Smolarkiewicz (Smolarkiewicz, |1983), the technology has evolved into

a broad class of complete flow solvers for general inelastic- and elastic-type conser-

vation laws in curvilinear (Smolarkiewicz and Clark, 1986} |[Smolarkiewicz and Mar-|
golin|, [1993; Smolarkiewicz and Margolin| |1998; Smolarkiewicz, 2006, and also arbi-
trary unstructured (Smolarkiewicz and Szmelter} 2005; |Szmelter and Smolarkiewicz,
2006}, [Szmelter and Smolarkiewicz, 2010bjja)) mesh frameworks.

MPDATA belongs to the class of nonlinear high-resolution schemes, e.g.

and Rider] (2005)), that offer solutions free of spurious oscillations, while maintaining

second-order accuracy away from discontinuities for arbitrary flows. The particular
nonlinear design of MPDATA (Rider, makes it a viable advection method
for implicit large-eddy simulation of high-Reynolds number turbulent flows
(Margolin et al., |1999; Smolarkiewicz and Prusal 2002; |Smolarkiewicz and Prusa,
2002; [Domaradzki et al., 2003} [Domaradzki and Radhakrishnan|, [2005; Rider], 2000};
Prusa et al., [2008; Piotrowski et al., 2009). Therein, the large-scale turbulent mo-
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tions are simulated explicitly, while the subgrid-scale modelling of turbulence is left
to the self-adaptive dissipative nature of the truncation error terms in the advection
scheme. This is in contrast to the typical [LES| approach where the effect of the
subgrid-scale dynamics on the resolved scales is implemented by an explicit sub-
grid scale model, see for instance Schmidt and Schumann (1989)); Nieuwstadt et al.
(1991)); [Schumann| (1996)); Lesieur and Metais| (1996). An option for is of spe-
cial relevance to geophysical flow simulations with possible adaptive meshing, where
explicit modelling of subgrid-scale turbulence is difficult to implement effectively.
Furthermore, the non-oscillatory character of the solution scheme per se represents
an important ingredient of an accurate and robust mesh adaptation algorithm, es-
pecially when the mesh refinement is driven by the solution itself. In terms of the
latter, note finally that MPDATA’s special iterative error-reducing design can be
exploited to derive a posteriori refinement indicators for mesh adaptation (Szmelter
and Smolarkiewicz, 2006)).

Derivation of the scheme

Here, the MPDATA] solution scheme to a prototype advective conservation law in
time-dependent generalised coordinates, which is given as the homogeneous version
of the Eulerian transport equation ([2.18))

MY | =

V- (F) =0, (2.24)

is reviewed. Following the developments in [Smolarkiewicz (1984); [Smolarkiewicz
and Margolin (1993); Smolarkiewicz and Prusal (2002) (see also the review publi-
cations |[Smolarkiewicz and Margolin| (1998)); |[Smolarkiewicz (2006)), the generalised
advection conservation law is discretised forward-in-time as

*n+1l_/n+l__ *«n,/n .
where the superscripts correspond to the temporal levels, and again SE=7""—7"is

the time step increment. Under the continuous divergence operator, the density p*
has been absorbed in an advective contravariant Jacobian-weighted mass flux vector
V= p*Vv*. A truncation error analysis based on Taylor series expansions of all fields
around the time level £*, shows that approximates, to second-order accuracy
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in time, the modified equation

) N — A . T
5 +V. (Vy)=-V l—Q —p*v(v V)
&1 . [(0pF = . 22

given an O(67°) estimate for 9"+1/2 = (p*v*)"+1/2 in (2:25). See Smolarkiewicz and
Margolin| (1993)); Smolarkiewicz and Prusal (2002)) for a thorough demonstration in
the context of the inhomogeneous generalised transport equation . In contrast
to the derivations in these earlier works |[Smolarkiewicz and Margolin (1993)); Smo-
larkiewicz and Prusa (2002), a continuously varying time step 6t = d¢(f) is assumed
here. This leads to the modified equation that is congruent with the one
derived under a constant time step 0, but with 6t replaced by
SE - ot

S - 2.27
1+0.50t,; (2.27)

in which 6, = 9(0t) /0t denotes the time derivative of the time step (Smolarkiewicz
et al., [2011). The solver’s stability depends on the maximum of the Courant num-
ber ~ ||¥v*dt/6xX|| in the solution domain. The larger the variability of the maximum
Courant number C,,,, over the simulation time, the more significant are poten-
tial efficiency gains from the application of a variable time stepping procedure. In
general, the observed maximum Courant numbers show a larger variability with

solution-adaptive moving meshes than with computations on a static uniform mesh.

In order to arrive at a second-order accurate F'T scheme for the homogeneous ad-
vection equation , one has to compensate, to at least 0(552) accuracy, for all
O(6t) terms on right-hand side (RHS) of (2.26). Within MPDATA, a first-order
accurate O(dt, 6T) upwind solution is followed by a corrective upwind step that in-
corporates compensation of all truncation error terms ~ O(6¢) on the RHS of (2.26),
plus truncation errors ~ OQ(d7) that stem from one-sided upwind spatial differenc-
ing disregarded in the spatially continuous equation (|2.25)), and thus in ; see
Smolarkiewicz and Margolin (1998). This is accomplished by constructing error-
compensative advective pseudo-velocities which are used in the corrective upwind
steps (see Smolarkiewicz (1983) for an explanation of the basic methodology). The
second truncation error term on the right-hand side (RHS]) of (2.26]) contains the
generalized anelastic mass conservation law which can be assumed to

vanish, see the discussion in Section [3.1] The resulting advection algorithm attains
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(9(5%2,6#) accuracy, for an arbitrary-variable velocity field ¥ and a (sufficiently

smooth) time-dependent curvilinear mesh.

Implementation of the scheme

Next, the implementation of the scheme is described. As discussed in[Smolarkiewicz
and Prusal (2002), the solution update for a time-dependent p*, can be written as
a solution update for the algorithm that assumes a time-independent p*, multiplied
by the ratio (p*™/p**1). To see this, the semi-discretised equation ([2.25]) is recast

into

ot

77Zjn—i-l wn _. (Vn+1/2,¢n) ’ (228)

p*nJrl

where the expression in square brackets is formally independent of p*"*1. Therefore,
a second-order accurate MPDATA solution update for (2.24)), under time-dependent
mappings, can be written as
ntl _ 28 n Gntl/2 jsny _ pi" (IORD)
YT = A (", ¥V ) = U; : (2.29)

1 *n+1 *n—+1
Py i

in which A denotes the MPDATA scheme for time-independent p*; viz. the same al-
gorithm as used for time-independent, though curvilinear, coordinates. Specifically,
A iterates for k = 1, IORD the discrete flux-form

(k—1) k) (k=1)  (k=1) 1 (k
{ ( i 7¢1+e1 ) 1+1/291> (w —ey V 1/2e1>} )
(2.30)

with ey denoting the unit vector in the Ith of the N spatial dimensions, while integer

N

Y =

1 I=1

and half integer indices correspond to the cell centers and edges, respectively. The
superscript in parentheses denotes the number of inner MPDATA iterations, not the
time levels. The upwind flux functions F' in ([2.30]) can be stated in a symbolic form

F W yr, V) =05((V+ V)L + V=V ¢Yr) . (2.31)

Then, the algorithm is initialised with the following quantities

- ot
Lo hyrt/2 N o= (2.32)

0) =y v =X
Q/} 1/) ) ) 5T[7

where 6z are spatial mesh increments in the respective coordinate directions. As-
sumed here is the availability of a (’)(552) estimate for the generalised local Courant

number X' (po*1)"+1/2 at the intermediate time level " e , see at the end of this
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section for possible approximations. The functional dependence of the corrective

pseudo-velocity for the TORD > 1 scheme can be written as

which also indicates the nonlinear character of the scheme. The particular imple-

mentation of the pseudo-velocities ([2.33)) for the basic MPDATA is given as
larkiewicz, 1984} |Smolarkiewicz and Clark], 1986)

2
I(k—1)
(Vi+1/2e1> 1#1_];11 w(k Y
0.5 (pffe, +£i") | Wil 4yt

it+ey

Vi)

I (k1)
i+1/261 - V

i+1/2er|

N I(k=1) /7 (k=1)
- Z ‘/i+1/291‘/i+1/281
J=1:J£1 (pi*-ﬁez +pi")
(k—1) (k (k—1) (k—1)
¢1+91+ej + w1+6J 77Z}1+e[ ey ¢1 ey
(k—1) (k—1)
wl-{-e[-i-eJ + Q/}H-eJ + wl-ﬁ-e] ey + 1/}1 ey

(2.34)

and

Vitlize, =025 (Vi e, + Villize), + Vito e, +ViLI2L)) -
which consists of the aforementioned truncation error corrections for temporal (the
first truncation error term ~ dt in the modified equation ) plus spatial dif-
ferencing of the upwind scheme (Smolarkiewicz, [1984). The derived scheme (2.29)-
with is fully second-order accurate and preserves the sign of the trans-
ported scalar field . Note that in , the field v is assumed to be exclusively

either non-negative or non-positive. In Smolarkiewicz and Margolin (1998), exten-

sions for the applicability to scalar fields ¢ of arbitrary sign are given. A variety of
extending options to the presented MPDATA| scheme exist, most of which are ex-
pressed in different specifications of the pseudo-velocity ([2.33]). Extensions employed

in the present work include the “third-order accurate” scheme! (Smolarkiewicz and|
Margolin|, |1998; [Margolin and Smolarkiewicz, [1999), and the combination of
DATA| with the flux-corrected transport (FCT]) technology (Zalesakl 1979; |Smo-|

larkiewicz and Grabowski, [1990) for applications that require a fully non-oscillatory

solution. Furthermore, there is the two-step infinite-gauge “linearised” version of

!Note that strictly speaking, the “third-order accurate” scheme .2'33|’ contains a dependence on
the second derivatives of 1) as well (Smolarkiewicz and Margolin, [1998).
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IMPDATA] (Smolarkiewicz and Clark], [1986} [Smolarkiewicz and Margolin|, [1998) that
is useful for the transport of fields 1) with variable signs, e.g. momentum components;
cf. Smolarkiewicz and Margolin| (1998)) Section 3.2.

Advective velocity prediction

Finally, to complete the described algorithm, an (9((552) estimate to the generalised
contravariant mass flux vector ¥v"*/2 = (p*v*)"*1/2 in (2.25) is required in order to
achieve second-order accuracy of the MPDATA integration. A simple and efficient

way is to employ linear extrapolation

(v )12 = (L4 8) (p¥)" = B (¥, (2:35)

where 8:=0.5(F""" — ")/ — ") accounts for the variable time step (Smo-
larkiewicz and Szmelter, 2009). The linear predictor preserves the solenoidal
character of p*V*, a property that is especially advantageous in the anelastic model
(Smolarkiewicz and Margolin, 1998)). The approximation is appropriate for

the majority of applications, and is used almost exclusively in the present work.

Nonlinear estimates for (p*v*)"*1/2 based on a first-order solution of the underlying

flow equations may also be used in lieu of (2.35)), see [Smolarkiewicz and Margolin|

(1993); [Smolarkiewicz and Margolin (1998)) for a complete discussion of the method.




Chapter 3

MPDATA extension for

time-dependent coordinates

This chapter develops extensions to the flux-form Eulerian integration of
the anelastic equations in [EULAG| under moving meshes.

During the course of the implementation of the solution-adaptive moving mesh solver
(see Chapter [4)), significant errors in the integration appeared that were
completely absent from previous moving mesh applications based on MPDATA
methods (Prusa and Smolarkiewicz, 2003; Wedi and Smolarkiewicz, 2004; Smo-
larkiewicz and Prusa, 2005; Wedi and Smolarkiewicz, 2005). It was found from
a detailed study that these errors can be attributed to numerical inconsistencies of
the integration with the general form of the anelastic mass conservation
law in time-dependent generalised coordinates. The observed error magni-
tudes strongly depend on the rate and irregularity of the underlying mesh deforma-
tions during the adaptation process. In this regard, solution-adaptive numerically-
generated meshes used in the present work typically suffer larger errors in the in-
tegration than analytically prescribed time-dependent meshes mostly employed in
the previous works by [Prusa and Smolarkiewicz (2003); Wedi and Smolarkiewicz
(2004)); |[Smolarkiewicz and Prusal (2005); [Wedi and Smolarkiewicz (2005). In the
later Section [5.3] specific examples for the occurrence of large solution errors due
to the incompatibility of MPDATA will be given in the context of solution-adaptive

moving mesh experiments.

31
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3.1 Compatible scalar transport

A general issue that appears when solving a scalar advective transport equation in
conservation form is that the compatibility (often also referred to as consistency)
of the applied flux-form advection numerical solver with the associated mass con-
servation law must be ensured. Consistency means that for a spatially uniform
transported scalar field v, the discretised form of the advective scalar conservation

law degenerates to the discretised form of the associated mass conservation law,

e.g. |[Lin and Rood| (1996).

In the following sections, the [MPDATA| scheme for the integration of the scalar
conservation law in time-dependent generalised coordinates ([2.24)), repeated here

A(p*y)
ot
will be revised. It will be shown that the original scheme in Chapter [2] is not

for convenience

+V- (Fp ) =0, (3.1)

fully compatible with the corresponding generalised anelastic mass conservation law

(GMCL)
ap*

ot

+V- (p¥)=0. (3.2)

The general subject of the compatibility (or consistency) of advective scalar trans-
port schemes with mass continuity was previously addressed in diverse contexts by
Demirdzic and Peric| (1988); Lin and Rood| (1996); |Schar and Smolarkiewicz (1996));
Jockel et al.| (2001)); (Gross et al.| (2002); Chou and Fringer| (2009)); Klein| (2009)).

In Section 2.3 a review of [MPDATA| scheme in time-dependent generalised coor-
dinates was given. In the remaining chapter, a detailed theoretical and numerical
analysis of the scheme for the solution of the scalar conservation law
is conducted. The analysis will reveal extensions to the scheme that enable full com-
patibility with the under arbitrary moving meshes. These extensions
are essential for the use of MPDATA in the solution-adaptive moving mesh solver

developed in this thesis.

3.2 MPDATA compatibility

MPDATA is based on a rigorous truncation error analysis for the [FT] discretisa-
tion (2.25). In Section , the derivation of the scheme was given, and its imple-
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mentation was explained. Here, a systematic theoretical analysis of this scheme is
conducted. For the first time, the compatibility with the [GMCL] (3.2)) is rigorously

taken into account.

Analysis of the scheme

The analysis of the MPDATA scheme is conducted for the advection of a uni-
form scalar field @Z in time-dependent generalised coordinates. Consider first the
IORD =1 variant of the MPDATA scheme, i.e.the first-order accurate upwind

scheme!. Insertion of the uniform field ¢)" = w in the MPDATA|scheme ([2.29 -

results in

n+l __ *_*] n+1/2 x—k]\N+1/2
¢i+ - p*n+1 { Z)\ ( 1+1/2el_(pv )i—1/2e1>} : (33)

This expression shows that the ITORD = 1 variant of MPDATA| preserves a uniform

transported field ¢ if the following discrete implementation

* *n T+ n+1/2 s—x]\n+1/2
A =0} Z < " 1+1//2e1 — (P 1)1—1//2&) (3.4)

of the [GMCI] (3.2) is satisfied. Then, the terms in the curly brackets of (3.3) are
equal to p;"™! which gives the desired result ¢! = D=,

The generalised density p* occurring in at the various time levels is given
by the product of the Jacobian G and the basic-state density p,, which are both
known diagnostic quantities in the anelastic system. In addition, the generalised
contravariant mass flux p*v*! in at the intermediate time level 7"7/% in (3.4)) is
typically derived by using a predlctor scheme as in (2.35]). Therefore, all quantities
entering the discrete in the algorithm are predetermined and computed
independently on the discrete mesh. It was found in the present study that the terms
on the left and right hand sides of are not necessarily equal in general within the
framework of the anelastic solver EULAG. In fact, significant errors of the discrete
can occur for certain applications. These errors of the discrete
lead to errors in the solution. Hence, special schemes have to be
designed to satisfy . This will be the topic of the subsequent Section .

**I

IStrictly speaking, the classical upwind scheme assumes the flux p*7* ! at time level ", and not

at 70F1/2
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Next, the IORD = 2 variant of the MPDATA scheme is investigated. It is postulated
that the discrete GMCL is exactly satisfied. The operator A now executes
for two iterations. The first iteration is again the upwind scheme with the
advective velocity v*, and this is followed by a corrective upwind step using the
pseudo-velocity in . In the IORD = 2 scheme, the intermediate solution

after completion of the first iteration is

e N
w %N ~! k—x [\ T *—*x [\
ol = = SN (T = TR (35)

I=1

As p* is time-dependent, a non-uniform intermediate solution (") which differs
locally by a factor of p*"*1/p*" from the uniform field 1; is obtained. For the subse-
quent second iteration, this intermediate value 1" then generally yields
a non-zero pseudo-velocity field V(® when it enters the formula . Altogether,
the complete algorithm — for IORD =2, does not maintain the uniform
field @Z This analysis reveals that the default scheme, as stated in Sec-
tion , does not account for the transport compatibility with the .
Moreover, this incompatibility of the scheme also holds if the postulated validity
of the discrete is abandoned. As discussed in the previous paragraph,
even the IORD =1 variant of the scheme does not maintain the uniform scalar field

{bv in that case.

Extension of the scheme

MPDATA offers a variety of options extending the basic algorithm as presented
in Section 2.3 see [Smolarkiewicz| (1984); [Smolarkiewicz and Clark| (1986)); [Smo-
larkiewicz and Margolin (1998). These options are generally expressed by different
forms of the error-compensating pseudo-velocities in the scheme. Fundamentally,
all pseudo-velocity formulae have in common that they can be derived on the ba-
sis of a rigorous truncation error analysis of the FT discretisation . None
of the derived pseudo-velocity expressions and resulting schemes, however, admit
an advective scalar transport that provides compatibility with the GMCL in

time-dependent generalised coordinates.

In the following, an heuristic argumentation is used to modify MPDATA for com-
patibility with the GMCL (3.4). The approach modifies the existing pseudo-velocity
formulae in to provide the preservation of a uniform scalar field 1) under

arbitrary time-dependent generalised coordinates. These modified pseudo-velocity
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formulae differ from the original ones derived from the formal truncation error anal-
ysis. However, as will be demonstrated by means of numerical tests, the MPDATA]
scheme with the modified pseudo-velocities maintains the second-order accuracy of

the original scheme.

Assuming the validity of , the previous discussion revealed that the IORD =1
variant of MPDATA maintains a uniform field @Z A small modification of the func-
tional arguments used to calculate the pseudo-velocity , retains the property
for the ITORD > 1 variants as well. The preservation of a uniform field 1; with the
general MPDATA| scheme is achieved by using pseudo-velocity expressions that are
isomorphic to the original ones, e.g. , but the value for the current iterate
»p*=1 redefined as

~Nk—1 k—1 pi"
wl( ) = wl( ) (pfﬂn-‘rl) , (36)

1

so that the modified pseudo-velocity function ([2.33) becomes
vIk) — 1 (V(kfl)j{b\(kfl)jv{/;(kfl)’p*njp*nJrl) . (3.7)

This means the pseudo-velocity is calculated with the full solution of the re-
spective lower-order iteration according to instead of using the intermediate
solution ¥ *~1 from . Note, the modification applies only in the determination
of the pseudo-velocity, while the transported quantities in the flux scheme re-

main unchanged. Now, applying the scheme ([2.29))-(2.32) and (3.7]) with an initially
uniform distribution ¢ = QZ, yields a field

~ N

W= {p?" SR (Vi <,o*w*f>?_+f/211)} (35)

i I=1

that enters the pseudo-velocity . This field @(1) is equal to the uniform solution
of the complete IORD =1 variant of MPDATA. Because the pseudo-velocity ex-
pressions always calculates differences of the input field, i.e. now zﬂ(l), this results in
a zero (i.e. with machine precision) corrective velocity V(). As a consequence, there
is no further contribution to the flux divergence in , although the intermediate
solution (M) that enters may be non-uniform. This property of the scheme
continues to be valid for an arbitrary number of corrective iterations IORD — 1.
In summary, given the pseudo-velocity by the functional form (3.7)) (instead of the

original form (2.33))) and the validity of the discrete (GMCL]| (3.4]), the MPDATA

scheme achieves exact preservation of a uniform advected field v, under arbitrary
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time-dependent generalised coordinates.

As a final remark, note that in the case of time-independent coordinates, the newly
proposed scheme — and automatically reduces to the original algo-
rithm for static coordinates. Then, the generalised density p* is not a function of
time ¢, i.e. p™=p p*, and consequently ¢~V = *=1 in (3.6), giving identi-
cal expressions for either or , respectively. For the uniform initial field
{bv, or then results in

*n — kn+1l —

N
(1 1 ¢ % ~! s—s [\n+1/2 sx—s [\n+1/2
¢f ) = %01( ) = E {pi - E A <(P v I)i_:_l/gel - (p v I)i_-l-l//%I)} . (39)
i I=1

Due to the anelastic divergence condition (2.3c|), (3.9) shows 1Zi(1) = wi(l) =1). There-
fore, the original and the newly proposed schemes allow for a mass-compatible ad-

vective transport under time-independent coordinates.

Asymptotic accuracy of MPDATA applying the redefined pseudo-velocities

The above considerations resulted in a modified version of MPDATA] through an
examination of the special case when the advected field v is uniform in space. Gen-
erally, the field ¢ varies in space and in time, and it is necessary to examine whether
the proposed modifications of the pseudo-velocity expressions as given by re-
tain the accuracy of the original form . Recall that the formal truncation error
analysis results in a corrective pseudo-velocity of the form (2.33)). The modified form
results solely from the requirement to integrate consistently with
the discrete . Therefore, basic numerical experiments will examine the
asymptotic accuracy of the[MPDATA]solutions using the redefined pseudo-velocities
(3.7) (referred to as scheme R in the following) versus applying the original form of
the pseudo-velocities (referred to as O).

For these numerical experiments, the one-dimensional advective conservation law
(2.24) under assumption of a uniform basic-state density p, and flow velocity u
is solved with [MPDATA] in a domain 0 < z < 20, subject to periodic boundary

conditions, and in time 0 < ¢ < T'. Here, all variables are dimensionless. A moving
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mesh is analytically prescribed using the following mapping function!
X (X,Sp)=1/7{X (15-85;") - X (1- S;H(80—X (120 —48 X))}, (3.10)

whereupon 0 < X, X < 1 are normalised physical and computational coordinates,
respectively. The symbol S;l represents a time-variable (inverse) mesh stretching
factor. It is specified as S]?l(t) =1.0 — v sin®(27.t/Tp), setting v=0.75 and an os-
cillation period Ty =10. Application of the mapping function results in a
discrete mesh with periodically increased resolution around the centre of the do-
main at  =10. The smallest grid increment attained is one fourth of the increment
size at uniform resolution in one cycle. Note, the above specification of the mesh

movement in this configuration is solely for the purpose of solver validation.

The basic experimental design of the accuracy test follows that in Smolarkiewicz
and Grabowski (1990)). The constant-coefficient advection with the physical velocity
u(t,z) =1.0 under a static uniform mesh of Smolarkiewicz and Grabowski (1990)) is
extended here to a variable-coefficient advection with the contravariant velocity u*
due to the oscillating mesh (3.10). Note, here the mesh velocity (9x/9%) is derived
analytically from (3.10). The initial condition for the transported scalar field ¢ in
is the Gaussian distribution

2
¥(0,2) =1 + U;\/z_ﬁcexp (T;) , (3.11)

where 7 = (z — x¢), and the parameters are set to o =2, xg = 10, 19 =0. An integral

measure of the error is obtained at the final simulation time 7" by means of

Ny 1/2
E<Cmaaxa 5E) = % (Z(¢E(T7 xz) - 77Z}(Ta xz))2/N£B> ) (312)

where ¢, (T, x;) and (T, z;) are the analytical and numerical solution at position
x;. The spatial number of grid points is given by N,. The described configuration
is then reapplied to evaluate the asymptotic convergence of the algorithmic formu-
lations O and R. For each of the formulations O and R, the error F(Cuz,0T) is
determined for a range of maximum Courant numbers 0.05 < C,4, < 0.95 with in-

crement A =0.05, and eight times successively refined spatial mesh increments 6=

!The adopted analytical mapping functions in this work belong to an entire suite of, mostly single-
target, mesh adaptation functions that offer applicability for various geometrical configurations
and boundary conditions. They were developed by J.M.Prusa in the framework of |Prusa and
Smolarkiewicz| (2003)); |[Prusa and Gutowski| (2006]).
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1.0 20 30 40 50 60 7.0
r;op=0.
(a)

1.0 20 30 40 50 60 7.0
r;$=0.
(b)

Figure 3.1: Examination of the asymptotic accuracy for the solution un-
der a moving mesh. Two different versions of are compared: (a) Original
form of the pseudo-velocities . (b) Redefined form of the pseudo-velocities with
the application of the density-correction factor defined by and . Isolines of
log,(F) in a polar system of coordinates that maps the varying spatial resolutions 6 and
Courant numbers Cp,q; upon the radius 7 and the polar angle ¢, respectively. Also given
are rays of numerical values of logy(F) along the radius r at constant Courant numbers
Crmaz € (0.05,0.20,0.35,0.50, 0.65, 0.80, 0.95).
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by a factor of 2, i.e. 0T =(d7g/2') and (i=1,8), while §7g=0.4 is the largest grid
increment employed in the test. This specified configuration requires a total number
of 152 simulations for every single formulation O and R. The resulting error surfaces
are depicted in Figure Displayed are isolines of log,(F) in a polar system of co-
ordinates, for which the radius and the polar angle are specified as r =log,(0Z/JTs)

and ¢ = Cyaq (7./2), respectively.

Figure [3.1] demonstrates the obtained asymptotic accuracy of MPDATA] using the
original O (a) and the redefined R (b) pseudo-velocities. Numerical values of log,(FE)
along rays of constant polar angle ¢ asymptotically decrease in increments of ~ -2 as
the resolution increases from r =8 to r = 1. Recall that the size of the grid increment
87 is halved for every output of log,(E) along each ray, which proves E ~ (62, 6¢")
for 6z, 6t — 0.

Stability of MPDATA with the redefined pseudo-velocities

The stability properties of MPDATA using the redefined pseudo-velocities is
addressed briefly. Properly bounded generalised Courant numbers ]V(1)| < 1 for
the first upwind step ensure that the corrective pseudo-velocities remain bounded in
the original scheme, see Smolarkiewicz (1984)); [Smolarkiewicz and Margolin| (1998)).
Given the basic pseudo-velocity in one dimension for simplicity (i.e. just the
first line in the formula (2.34)), the bracketed expression with [V1®M| < 1 in (2.34)
is restricted to the interval [—1,1]. Then [V!®)| <1 is assured if

1 1
A0 ¢§+)1 —

= e [-1,1] ; (3.13)
i+1/2 ) J
/ wi(Jlr)l + 7?1;(1)

see |[Smolarkiewicz (1984) for a more detailed discussion. Accordingly, the stability
properties with the redefined pseudo-velocities (3.7)) are maintained if

SO
A= THL T e 1) (3.14)
i+1/2 1 1 )
P+ 9
Both conditions (3.13)) and (3.14)) are satisfied due to the positivity of the preceding

upwind iteration and of the generalised density p*.
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3.3 Discrete generalised anelastic mass conservation

The previous Section [3.2] revealed in which way the scheme can be mod-
ified to preserve (with machine precision) a uniform advected scalar field ¢ under
moving meshes. It was discovered that preserving the uniform scalar field requires
the incorporation of the density correction factor (p*™/p*" ™) according to in
the pseudo-velocities (3.7). However, it was also explained that a second
factor is important to preserve the uniform scalar field — the validity of the dis-
crete . It was shown that even the ITORD =1 variant of the MPDATA
scheme for the transport of the uniform field J as given in only maintains the
uniformity of @Z if the discrete is satisfied.

Here, it is demonstrated that the validity of the discrete is not ensured
in the anelastic solver EULAG of Chapter 2| In the sub-Sections [3.3.1] and [3.3.2]
two distinct methods are proposed to ensure validity of the discrete [GMCL] in the

framework of the anelastic solver EULAG. Numerical experiments that evaluate the

developments in this section and those of the previous Section [3.2] are presented in

the subsequent Section (3.4

The particular analytical and numerical formulation of the anelastic solver explained
in Sections [2.1 and [2.2]implies explicit control over the residual error of the anelastic

divergence constraint (2.3c), or similarly in a vector notation

V- (pv)=0. (3.15)

The control over is implemented by means of the exact projection for the
solenoidal velocity v* underlying the elliptic boundary value problem ([2.23). Given
together with the relation between the contravariant, solenoidal and mesh
velocities , repeated here in the vector notation

%
v*:v5+a—’;:: v+ (3.16)
the [GMCL (3.2 results in
o)/ —
a’% LV (V) = 0. (3.17)

This equation describes the advection of the generalised density p* with the mesh
velocity ¥ in transformed space S;. Equation (3.17) includes effects solely due to
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the time-dependent (i.e. moving) coordinates and is formally independent of the
physical flow. For a uniform basic-state density py, is equivalent to the m
(2.16)). Hence, can be considered as a generalised for the anelastic sys-
tem.

In summary, the anelastic solver of Section implies control over the divergence
constraint (3.15). The issue in the anelastic solver of Section is that under mov-
ing meshes no control over errors of is implemented. The errors of
result in errors of the GMCL (3.2).

In accordance with the discrete GMCL (3.4)), the discrete representation of ((3.17)

is given as
X 1
*n *n % *— n+1/2 *— n+1/2
P} +1 Pt — E A ((p Ugl)i-:_l//Zef —(p Ug[)ij_l//QeI> . (3.18)
I=1

One may anticipate that the deviations or errors of the generalised
depend strongly on the method to calculate the fluxes (p*v9)"*+1/2 at the local cell
boundaries. In Section the solution-adaptive moving mesh flow solver is
presented. There, a procedure for the calculation of the generalised contravariant
fluxes (p*v*)"*1/2 in is proposed that is particularly advantageous for
minimising the errors to ([3.18)). Unless otherwise noted, all simulations in this thesis
employ the proposed method to approximate the generalised contravariant mass flux
(p*v*)" /2 inMPDATA| See Section [4.4| for the presentation of the procedure, and

Sections B.1] and [5.3] for associated test calculations.

The magnitude of the deviations from and their impact on the error of the
advection scheme depends strongly on the specific application. Basically, it was
found in the numerical experiments performed for this thesis, that the deviations
from the discrete generalised increase with a stronger, faster and more
irregular deformation of the mesh. For general adaptive moving mesh applications,
it is therefore required to incorporate explicit control over the deviations of the [GCL]
(3.18]) in order to avoid subsequent errors in the solution. In the following

two subsections, two distinct methods are presented for this purpose.
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3.3.1 Diagnostic approach for the GMCL

In the discrete , the generalised densities p*® and p*™*! are diagnostic
quantities that are predetermined from the knowledge of the mesh. Therefore, the
only degree of freedom in the within the solution algorithm is given
by the contravariant fluxes (p*v*)"*!/2 at the local cell boundaries, which are cal-
culated to 0(552) from either a linear or nonlinear predictor scheme, cf. and
Section [4.4. Motivated by the basic solution procedure that underlies the anelas-
tic solver (see Section , a diagnostic approach based on a projection method
(Chorin} 1968) is developed to ensure compatibility of the integration
with the [GMCL] To the author’s knowledge, the idea presented in the following has

not been applied in this context before.

For compactness, the discussion is continued here by using the semi-discretised rep-

resentation as in (2.25)). Then, the form of the [GMCL| (3.2)) consistent with the
approximation of ([2.25)) becomes

(p*nJrl _ p*n)

= +V- (pv) T2 =0 . (3.19)

The idea is now that for prescribed quantities p** and p**!, i.e. a given deriva-
tive of the generalised density p*, the generalised contravariant mass flux (p*v*)"+1/2
may be corrected to satisfy (3.19). Given a preliminary O(67°) guess v at time A

for v=p*V*, a potential ¢ is introduced according to

~ i~ yn+1/2
{v — V- GTGng}i . (3.20)
Starting from v=v, — G V¢ for the physical velocity v (where v, is a first guess for
v), is found by insertion into the expression for the generalised contravariant
mass flux p*v*, see e.g. [Smolarkiewicz and Margolin| (1994) for a related discussion.
Ultimately, inserting into leads to an elliptic boundary value problem
for ¢ of the form

5% *n+1l _ xn . R s — n+1/2
{—p*nH/Q <(p = LA (V—p GTGV¢> )}.:0. (3.21)

1

Again, multiplication by the factor (—dt/p*) has been applied in (3.21)) for numerical
reasons, cf. the statements after the equation (2.23)) in Section
Unlike the elliptic problem (2.23) that arises in the solution of the anelastic system
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, the problem (|3.21) must be solved at the intermediate time level 72
order to maintain the symmetry with regard to the [F'T] derivative of p*. By design
of the FT model all fields except the generalised contravariant mass flux p*v* exist
at the full, i.e. non-staggered, time levels. This fact entails to derive the metric
coefficients contained in é, the generalised density p*, plus all variables needed in
the specification of the boundary conditions for at the intermediate time level
7% with second-order accuracy. Regarding the derivation of G and p* at A 2,

the reader is referred to the discussion in the last part of Section [4.4]

For compatibility of the advection algorithm, the formulated elliptic problem ((3.21])
is solved subject to either periodic or Dirichlet boundary conditions for the gener-
alised contravariant mass flux p*v* at the intermediate time level e, Subsequent
experiments will apply a iterative solver (Eisenstat et al., 1983; Smolarkiewicz
and Margolin) (1994) for . A physically meaningful stopping criterion for the
iterative solver in the solution of is formulated as

5E (p*n+1_p*n) - k% \ N
prnt1/2 ( 5t + V- (pV") e

< €; (3.22)

rametll. = \ ‘
[ee]

please confer to the discussion after the equation (2.23)) in Section [2.2{ and the refer-
ences given there. Note that throughout this thesis the error of the discrete GMCI]

(3.4) is quantified using (3.22]).

3.3.2 Prognostic approach for the generalised |(GCL

Another approach that is adopted here aims to ensure compatibility with the discrete
using a prognostic procedure for the generalised density p*. Specifi-
cally, the procedure employs the discrete generalised as an auxiliary
prognostic equation to correct p*™*! on the left-hand side of . Note,
the prognostic procedure actually leads to an over-specified mathematical problem

*n+1 :

in the framework of the present solver formulation where p is a known quantity.

In contrast, the diagnostic approach proposed in the preceding subsection corrects

n+1/2 which are given from the approxi-

the generalised contravariant fluxes (p*v*)
mate predictor scheme. Nonetheless, the idea of the prognostic approach is obvious,
as it directly satisfies (3.18)) at every time step to machine precision by design. Be-
cause in the anelastic solver the divergence constraint is controlled by the

projection underlying the elliptic pressure equation ([2.23)), the described prognostic
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procedure enforces the compatibility of MPDATA| with the discrete GMCL (3.4)).

If the basic-state density p, in the anelastic system ({2.3)) is uniform, then (3.18)) is
identical to the discrete version of the (2.16) as given by

N

G =G N (@ — @) (3.23)

=1

The basic idea of applying the discrete [GCL]in a prognostic manner along with the
associated flux-form advection scheme to avoid errors introduced by a moving mesh
was first proposed in [Thomas and Lombard| (1979). Nowadays, the procedure is
fairly standard in computational fluid dynamics, see e.g. Drikakis and Rider] (2005)),
although the detailed implementation can vary significantly with the formulation of
the numerical solver. In the present work, the as discussed in [Thomas
and Lombard (1979) has been generalised to in order to account for the non-

uniform basic-state density p, in the solution of the anelastic system ([2.3)).

Concerning the specific implementation of the prognostic approach, the contravari-
ant fluxes (p*v*)"*'/2 in the generalised are always given from either
the linear or nonlinear predictor schemes. Then, the obvious way applying the [GCL]
(3.18) is to initialise the generalised density p*" on the with its diagnostic value
at 7 and to integrate the equation for p* in time, as given for instance in |(Chou and
Fringer (2009)). In fact, it has been found that this scheme is only applicable to sim-
ple moving meshes, e.g. the prescribed oscillating mesh applied in the experiments of
the subsequent Section 3.4 Note, [Chou and Fringer| (2009) have also applied a sim-
ple oscillating mesh only. For complicated solution-adaptive numerically-generated
moving meshes as considered in Chapter [5] it has been found that the scheme is not
applicable in this form. The reason is that the prognostically-computed generalised

density p* from the (3.18) may locally depart strongly from its diagnostic

value after a certain integration time, and as a consequence, large errors are intro-
duced in the solution (not shown). In addition, the prognostic numerical
scheme does not assure the generalised density p* to remain positive definite,
which represents a severe issue for the stability of the overall MPDATA]integration.
The only implementation of the prognostic approach that has been found to pro-
vide stable and accurate solutions for general moving meshes is to reinitialise the
generalised density p** on the of the at every time step ¢ with
its known diagnostic value. This specific implementation is applied throughout the

present thesis.
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3.4 Scalar advection experiments with a prescribed

moving mesh

Idealised two-dimensional scalar advection numerical experiments are performed
to analyse and compare the various MPDATA| implementations presented in Sec-
tions[3.2] and [3.3] Here, a oscillating moving mesh is prescribed using analytical
functions for simplicity of the examination. Later in Section the subject is fur-
ther investigated in the context of general solution-adaptive numerically-generated
moving meshes. Table summarises the various schemes that are applied in the

numerical experiments.

Density-correction in MPDATA  Treatment of GCL/GMCL
OS No standard
0] No prognostic
RS Yes standard
RP Yes prognostic
RD Yes diagnostic

Table 3.1: Summary of the various implementations compared in the numerical
experiments. The first column states whether the density-correction factor is applied
in the redefined pseudo-velocities of (denoted as R), or the original form
of the pseudo-velocities is used (denoted as O). The second column describes the
treatment of the errors associated with the discrete[GMCI} either the use of the quantities
p L o™ and (p*V*)"H/2 in the as obtained from the standard methods in the
solution algorithm (denoted as S), the diagnostic approach based on a projection method
(denoted as D), and the prognostic approach (denoted as P). See Sections and for
the explanation of the various schemes.

Experimental design

The prototype conservation law ([2.24]) under the assumption of a uniform basic-state
density py is solved in a two-dimensional domain 0 < x,y < 20, subject to periodic
boundary conditions in z and y, and for an integration time 0 < ¢ < T. Again, all

variables are assumed to be dimensionless.

In order to test the solution behaviour of various implementations under

a moving mesh, an oscillating mesh is prescribed here using the mapping function

2

X(XY.8)=(-FP[s'X+ 15X |+ (1-(1-7))X (3.2
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Figure 3.2: Illustration of the simple oscillating mesh defined by the mapping (3.24]) anal-
ogously for the z and y coordinates. The figure in (a) shows the mesh in the initial uniform,
i.e. undeformed, state, while (b) shows the mesh in the state of maximal deformation for
v=0.5.

analogously for the normalised X and Y coordinates. The inverse mesh stretch-
ing factor Sj?l is specified as S;l(t) =1.0 — v sin®(27.t/Tp), setting v =0.5 and an
oscillation period Ty =20. Figure shows an illustration of the resulting mesh.

In order to ensure the divergence constraint (3.15) to be satisfied with machine
precision in discrete space over the entire course of the simulation, the components
of the solenoidal velocity v° are evaluated in finite-difference space by means of a
streamfunction x according to
10
w = — 7= —— X (3.25)
p* 0y p* Oz
in all advection experiments that follow. For the present test, the streamfunction

is specified as x(¢,z,y) =x+vy, equivalent to a uniform south-westerly flow field
v=(1,1)T.

The mesh increments are chosen as 67 = 0y = 0.4, and the time step 6t is continuously

adapted to maintain a constant maximum Courant number of C,,,, =0.5.
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scheme(-€) Ly Lo |rgmell, ~ NIT [
0S 208 x 107* 6.19x 103 3.84 x 1076 - 2.46 x 1071
OP 208 x 1072  6.15 x 1073 - - —1.22 x 1079
RS 1.61 x 107 845 x107° 3.84 x 1076 . 1.14 x 1071°
RP 570 x 10716 577 x 10715 - - 0.0

RD-107¢ | 3.53x107% 821 x107% 1.00 x 10~° 1 —2.27 x 10715
RD-1072 | 4.66 x 107® 825 x107% 1.00 x 107? 13 —1.89 x 10716
RD-107"2 | 1.31 x 107" 3.45x 107" 1.00 x 1072 66 5.69 x 10716
RD-107% [ 3.95 x 107 1.73x 107 1.00 x 107 177 0.0

Table 3.2: Comparison of the various schemes given in Table for the advection of
a uniform scalar field ¥ under the oscillating mesh using the basic second-order accurate
[MPDATA] The number following the particular scheme RD in the first column indicates
the prescribed convergence threshold e of the [GCR]iterative solver for the elliptic equation
defined according . Second and third columns: L and Lo error norms defined
as deviations of the numerical ¥ (7, x) from the analytical solution ¢ at the final simulation
time T'=20.0. Fourth column: actual maximum value in the simulation of the error
I gmet |l o . Fifth column: average number of iterations NIT over the simulation
time 7T'. Sixth column: integral conservation measure (¢)/(¢—p) — 1 for the transported
scalar ¢ at T'=100.0.

Advective transport of a uniform scalar distribution

A first test inspects the compatibility of the various schemes of Table through
their ability to preserve a uniform scalar field ¥ under the oscillating mesh .
The initial scalar field in the solution of the conservation law is specified as
»(0,z,y) EJ =1.0. Table displays the associated simulation results obtained
using the basic second-order accurate MPDATA] i.e. one corrective upwind step,
without [FCT] enhancement.

The comparison in Table [3.2]show that the largest deviations from the uniform scalar
distribution are generated with OS and OP, indicated by the relatively largest L, and
Lo error norms. The scheme OS represents the original algorithmic implementation
of the integration as applied in previous works'. In the scheme OP, the
original form of the pseudo-velocities in MPDATA|is combined with the prognostic
correction for the generalised density p* to enforce validity of the [GMCI] The
results for OP fully support the theoretical analysis of Section [3.2] where it was
demonstrated that even with the validity of the discrete the original
form of the pseudo-velocities in [MPDATA] does not allow to exactly maintain a

uniform transported scalar field 1.

!As an aside, recall that the revised predictor scheme for the generalised contravariant mass flux
(p*¥*)"+1/2 developed in Section [4.4]is applied in all schemes of Table
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The scheme RS that applies the redefined pseudo-velocities in MPDATA] as devel-
oped in Section [3.2] provides L; and Ly, error norms that are more than one order

of magnitude lower than with the original scheme OS.

If the application of the redefined pseudo-velocities in [MPDATA] is combined with
the prognostic approach to enforce validity of the[GMCL]in RP, then the Ly and L,
error norms in Table indicate preservation of the uniform transported field v at

the order of machine precision ~ 107!, This result is also in complete agreement
with the formula (3.8) derived in the theoretical analysis of Section .

In the algorithmic implementation RD, the application of the redefined pseudo-
velocities in [MPDATA] is combined with the developed diagnostic approach for the
[GMCIL] The number following the descriptor RD in the first column of Table 3.2
indicates the prescribed convergence threshold e of the [GCR|(1) iterative solver ap-
plied to the elliptic equation (3.21)), as defined according . As can be seen,
the L; and L, error magnitudes with the algorithmic implementation RD decrease
persistently with a tighter convergence threshold e. In fact, preservation with ma-
chine precision of the uniform transported field ¢ can be achieved with NIT =177
GCR|(1) iterations, although such a high accuracy is generally not necessary (see
below in Table . The observed error behaviour with the scheme RD is again in
complete agreement with the formula and the general discussion provided in
Section 3.2l

Advective transport of a Gaussian scalar distribution

A second test inspects the various schemes of Table [3.1] for the advective transport
of a general scalar field v, given here as a Gaussian scalar distribution. For this
purpose, the preceding doubly-periodic experimental test setup with the prescribed
oscillating mesh is retained, but the scalar field ¢ is initialised by the function ([3.11])
with 72 = (z — 19)* + (y — yo)?, and the parameters set to 0 =2, ro =1y, = 10, 1o = 1.

Table [3.3] presents the results computed using the second-order accurate MPDATA|
with [FCT| enhancement. The values of the L, error norm in the second column
are about twice as large for OS when compared to all other schemes RS, RP, and
RD. A factor of the larger Ly error with the scheme OS is revealed by the values
for the quantity (min(¢) —1y), displayed in the third column of Table[3.3] The
results for the scheme OS show a noticeable negative deviation from zero, and this

deviation is significantly larger compared to all other schemes. A negative deviation
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scheme(-€) Ly min(¢)) — g 7gmell,, ~ NIT [

0S 462 x107* —3.70 x 1072  3.84 x 1076 - 0.0

RS 243 x107* —1.87x107* 3.84 x 1076 - —935x10°16

RP 242 x107*  4.00 x 1077 - - =277 x 1077
RD-107% | 242x107* —239x10°° 3.18x 1077 1 9.35 x 10716
RD-107 |242x107* 368 x 1077 1.00x107° 13 9.37 x 1071°
RD-107'%2 | 242 x107*  4.00 x 1077 1.00 x 1072 66 1.12 x 10715
RD-107" | 242 x 107*  4.00 x 1077 1.00 x 107" 177 —5.61 x 10716

Table 3.3: Advection of a Gaussian scalar distribution under the prescribed oscillating
mesh using the second-order accurate MPDATA] with [FCT| enhancement. The schemes
tested are OS, RS, RP (see Table and RD, where again the number following RD in-
dicates the prescribed convergence threshold of the elliptic solver in the solution of .
Second column: standard Lo error norm at the final simulation time 7'=100.0. Third
column: domain minimum value of the numerical solution i minus the basic-state value
Yo =1.0 at T=100.0. Fourth column: actual maximum value of the GMCL residual er-
ror |7gmelll, defined by which occurred in the simulation. Fifth column: average
number of GCR(1) iterations over the simulation time 7". Sixth column: integral conser-
vation measure (1) /(¢1—g) — 1 for the transported scalar ¢ at T'=100.0. Again, the mesh
parameters are v = 0.5 and Ty = 20.0.

scheme(-€) Lo min(v)) ||T9m0l||oo NIT fz/z
OS 3.71x 107*  420x107° 3.84x 1076 - —342x 1071
RS 3.70 x 107* 421 x107° 3.84 x 106 - —437x 1071
RP 3.70 x 107*  4.21 x 107° - —1.32x107°
RD-107% | 3.70 x 107*  4.21 x 10™® 3.18 x 1077 1 —272x107P
RD-1079 |3.70x107* 421 x107® 1.00x107° 13 —3.07x 107"
RD-1072 | 3.70 x 107* 421 x 107 1.00x 1072 66 —4.96 x 10°1°
RD-107" | 3.70 x 107*  4.21 x 107> 1.00 x 10~ 177 —3.42x 1071

Table 3.4: As in Table but the results here are for the advection of the Gaussian
scalar distribution with a zero background 1y =0 in (3.11]).

in the (min(¢) —1y) from zero is also present in the results for the schemes RS and
RD-107%, even though with smaller magnitudes. For all these schemes OS, RS, and
RD-107°, the negative deviation of (min(t)) —1) from zero indicates the failure of

the applied [FCT| methodology to provide the monotonicity of the solution.

In contrast, the scheme RP, and the schemes RD with a convergence threshold lower
equal than e = 1077, achieve full monotonicity of the solution. Simultaneously, these
schemes give the lowest Ly error values. However, it is observed that the particular
scheme RP based on the prognostic approach (Section suffers conservation
errors of the transported scalar ¢, as given last column of Table [3.3]

Table [3.4] presents results from the same experiment as performed for the results
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shown in Table 3.3}, but with a zero background value ¢y = 0 of the transported scalar
field v in . In contrast to the results of Table the values for the Ly error
norms given here exhibit no significant difference between the different schemes. This
is although the magnitudes of the residual errors ||7 g, are identical in Table
and [3.4] The reason for this behaviour is found by inspecting the minimum values
of the transported scalar variable 1, given in the third column of Table [3.4] Due to
the sign-preserving property of MPDATA] similar negative deviations from zero as
observed in Table for the quantity (min(¢)) —1), are not present here. Again,
the particular scheme RP based on the prognostic approach for the [GCIL] suffers
conservation errors, while all other schemes provide conservation of the transported

variable ¢ with machine precision.

Further discussion and conclusions

As a consequence of the previous results, it can be stated that the incompatibility
of the MPDATA] advective transport with the [GMCI] not only affects the prop-
erty of the algorithm to preserve a uniform field ¢ (Table but also the more
general property of the solution monotonicity (Table . Note, the failure of the
[FCT]|methodology to provide the solution monotonicity in[MPDATA]originates from
the loss of the monotonicity-preserving character of the underlying upwind scheme,
which is due to the incompatibility with the . This conclusion has
been verified on the basis further numerical experiments (not shown). In addition,
the presented results highlight the general aspect of the scalar transport
(Smolarkiewicz and Szmelter, 2005)) that the solution monotonicity requires compat-
ibility with mass continuity, i.e. here with the , while the sign-preserving
property of the scheme does not, cf. Tables and .

As demonstrated, the MPDATA] implementations RP and RD, which have been
developed in this thesis, can be employed to ensure the required compatibility of
the scalar transport with the . The prognostic approach
in the scheme RP and the diagnostic approach in the scheme RD with a conver-
gence threshold lower equal than e =10~ provide accurate solutions free of spurious

(i.e. unphysical) extrema under the oscillating mesh.

However, an issue observed with the application of the implemented prognostic
approach (the scheme OP and RP) is that, although in flux-form, the
integration is not exactly conservative anymore, cf. the last column in Tables [3.2]
B.3, and [3.4 Due to this shortcoming, the scheme RD is to choose over RP in the
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context of the general moving mesh solver.

Unfortunately, it was not possible within the time frame of the present thesis to
complete the development and testing of the diagnostic approach (Section for
application in the general framework of the anelastic [NF'T|solver [EULAG] Open re-
search issues in the solution of are the accurate formulation of Neumann

boundary conditions for general flows and arbitrary moving meshes, the imple-

mentation of the associated integrability condition, along with the development
of customised preconditioning of the applied [GCR]iterative solver. All this work is
currently ongoing and will be presented elsewhere in the near future. Note, in the
remaining thesis, the scheme RP based on the prognostic approach (Section is
used as a temporary solution to provide the required compatibility of the MPDATA|
integration in the context of the solution-adaptive moving mesh solver (Chapter 4)).
The observed conservation issue with RP is insignificant for the conducted exami-

nation in this thesis.

In Section [5.3] the subject of the compatibility of MPDATA] with the [GMCIL]is fur-
ther investigated in the context of solution-adaptive numerically-generated moving

meshes. There, it will be demonstrated that the magnitudes of the errors intro-
duced by the incompatibility of the original MPDATA| scheme with the [GMCI] are
typically substantially larger than under the simple prescribed oscillating meshes

considered above.
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Chapter 4

Solution-adaptive moving mesh

algorithm

The previous two chapters dealt with the integration of the anelastic equations
in time-dependent generalised coordinates. Given this particular model formulation,
the discrete mesh can in principle be moved arbitrarily in physical space over the
course of the integration, while only being subject to the regularity assumptions of
the coordinate mappings and . This capability of the model opens avenues
for spatio-temporal adaptation of the mesh to increase the numerical resolution in
certain sensitive regions in response to the simulated flow. In general, the use of such
a solution-adaptive moving mesh solver can be motivated by a variety of problem-
dependent conditions. Of course, the basic conception behind the approach is to
reduce the errors inherent to the discrete numerical approximation of the governing

continuous flow equations.

In this chapter, the implementation of the developed solution-adaptive moving mesh
flow solver is presented. The discussion begins in Sections and with
the introduction of the basic mathematical apparatus underlying the present adap-
tive moving mesh solver. Practical aspects regarding the implementation and use
of the method are discussed afterwards in Section 4.3 The last part given in Sec-
tion explains the implementation of the mesh adaptation component into the
computational framework of EULAG] Therein, an algorithmic sequence of the NFT|
flow solver is proposed that is advantageous for applications with solution-
adaptive meshes. The suggested algorithmic structure allows to incorporate the
MPDATA-related developments from Chapter [3] Furthermore, it paves the way for
a particularly accurate evaluation of the advective contravariant velocities under

solution-adaptive moving meshes, which is also presented here.
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Figure 4.1: Representative mesh mapping from the computational domain D; (a) into
the physical domain D), (b).

4.1 Conceptual approach

The solution-adaptive mesh technique in this work is based on the particular class of
r-refinement (i.e.relocation- or redistribution- refinement) methods, which are also
named moving mesh methods. These methods continuously redistribute the mesh
points in space to obtain a finer resolution in sensitive regions of the evolving flow.
Inherent in the method is that the the number of mesh points and their connectiv-
ity do not change during the adaptation process. This is a basic requirement for
the applicability of the mesh adaptation technique in the EULAG flow solver (see

Chapter [2)), which relies on a conserved (structured) data arrangement.

The objective of moving mesh methods is to construct a well-defined discrete mesh
D;j on the physical domain D,, that has the desired solution-adaptive properties.
To achieve this, the approach usually resorts to the classical concept of coordinate
mappings (cf. also Section : Given the fixed regular mesh geometry D! on the
computational domain D; as a reference, the time-dependent irregular adaptive mesh

D;j on the physical domain D, is described by means of a coordinate mapping
(t,x) = (t, M(,X)): Dy — D, , (4.1)

so that the function M (t,X) determines the mesh. This idea is exemplified in Fig-



95

ure , where the mapping function M (#,X) assumes the general two-dimensional
form M= (z(Z,9),y(Z,7)), at a particular time ¢. It is now obvious that the main
task of r-adaptive mesh generation is to find the appropriate mapping function M
that specifies Dﬁ. The following sections discuss the mathematical apparatus to

manage this task.

4.2 Variational formulation

Modern methods of grid generation based on a mapping of coordinates of-
ten rely on a variational approach. This method is attractive because it allows to
combine various constraints that may be imposed to generate the mesh. For exam-
ple, such constraints may concern mesh properties like smoothness, orthogonality,
alignment, and adaptivity with respect to certain refinement indicators, all of which
have a direct consequence on the efficacy of the employed numerical solution scheme
(e.g. the advection solver MPDATA). The principal task is to chose appropriately de-
fined functionals that incorporate the desired properties of the coordinate mappings
specifying the mesh. Then, optimisation leads to a “compromise” mesh that com-
bines the various properties involved. Typically, the corresponding Fuler-Lagrange
equations that minimise the constructed functionals are solved to obtain the mesh
mapping. The books of Knupp and Steinberg| (1994)); |Liseikin (1999) discuss the

topic in detail.

A functional that leads to a particularly robust system of mesh equations can be
formulated over the physical domain D, as (Winslow, 1981} Dvinsky, |1991; Huang
and Russell, 1999; [Huang), 2001b))

I[i]:% /D > o(vEh) M vEtdx (4.2)

P k=1

where k numbers the spatial dimensions N, and ( )7 is the transpose. The symbol M
in denotes the so-called monitor function, a N x N symmetric positive definite
matrix, that is assumed to depend on the physical coordinates x and on time t. It
is remarked that in the application of the mesh functional a computational
space S; with non-positive Riemann curvature tensor and a convex boundary of
the domain 0D; is assumed. These properties are important for the existence and
uniqueness of the generated mesh mappings (Dvinsky, [1991; [Li et al.| |2001). By

assuming a non-positive Riemann curvature tensor of S;, the functional (4.2)) is not
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directly applicable to mesh generation in spherical geometries. An approach for the
generation of moving meshes on the sphere which is based on perturbed harmonic
mappings is presented in |Di et al.| (2006). As an aside, variational mesh generation
is also used to construct quasi-uniform meshes on the spherical surface for global

atmospheric modelling (Ranci¢ et al., [1996; |[Purser and Rancic¢, [1998)).

In the functional , it is the matrix M that specifies the local metric, i.e. shape
and size, of the mesh geometry. In the solution-adaptive moving mesh solver, the
monitor function M is typically defined to be proportional to some error indicator
of the numerically-computed physical flow solution. See further below in Section
for a discussion and the detailed implementation in the present solver. From the
functional (4.2)), the mesh is found by the solution of the corresponding Euler-

Lagrange equations, given as the stationary points
—— =0 k=1N (4.3)

in the function space z"* 1.

4.3 Moving mesh partial differential equations

Atmospheric and oceanic flows exhibit a strongly transient and non-linear behaviour.
An effective solution-adaptive mesh method for these applications should manage to
follow the permanently evolving multiscale flow features in an efficient and robust
manner. For these demands, it is useful to incorporate explicit control over time
scale of the moving mesh adaptation in the solver. With this approach, the con-
tinuous mesh movement can be adjusted by the physical time scale representative
to the problem under consideration. The following approach proposed by Huang
et al| (1994); Huang and Russell (1999) has been found appropriate for this pur-
pose. Instead of applying the condition to derive elliptic mesh PDEs from the
functional Z(X), the modified gradient flow equations
oT* 6Z(z%)

ot oz k=1, (44)

are used to obtain so-called moving mesh partial differential equations (MMPDEE)
of parabolic type. Therein, a scaling function P plays the role of the diagonal

15/67" is meant to be a variational derivative, see e.g. Gelfand and Fomin| (1963).
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preconditioner that improves the solution properties of the and the overall
solution-adaptive moving mesh flow solver. Among others, the function P allows to
explicitly specify the time scale of the mesh adaptation, which is extremely valuable
for the general efficiency and robustness of the method. The ensuing subsection
deals with the specification of the scaling function P. Here, the discussion continues
with the derivation of the MMPDEE as employed in the solution-adaptive moving
mesh [NET] flow solver.

The gradient flow equations (4.4)) with the functional (4.2]) result in a particular set
of MMPDEs (Huang and Russell, [1999)
a—k

Pa—];—V (M'vzF) | k=1,N. (4.5)
In (4.5)), all partial derivatives are taken with respect to the physical coordinates,
i.e. V=(9/0x7). For a practical application, the roles of the dependent and in-
dependent variables are interchanged in (4.5)). This leads to the final form of the
MMPDEs (Huang, 2001a; Lang et al., 2003) employed in the numerical solver. In

two dimensions (N =2), they are given as

P(xMaX 3" Dy(x, M) Ox —f-ZCXM)a (4.6)
= g oz 0T’ = oz '
with the coefficients
—i —Ixg= i OM "
Dij(x, M) = VT - M~'V# | Ci(x, M) = -Vz'- | Y —Vz*| .
k=12 0z

The MMPDESs are solved in the computational space S; in conjunction with the
physical model equations . The solution of provides positions of the mesh
x(t,X) in the physical space S, in line with general definition of the transformation
(4.1). The coefficients D;; and C; of depend on the monitor function M.
The specification of the monitor function M in turn couples the MMPDEE to the
physical solutions. The following subsections elaborate on the solution procedure
of the MMPDEs including the specification of the monitor function M. The
algorithmic implementation in the context of the complete solution-adaptive mesh
NFT flow solver is finally described in Section [4.4]
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Scaling of the MMPDEs

For the solution of the MMPDEs (|4.6)) along with the actual physical problem ([2.3)),
it is beneficial to apply a scaling to them. For this purpose, following [Huang (2001a)

the function P is specified here as

P(x, M) =0 /(D11)? + (D22)? + (C1)? + (Cs)? . (4.7)

The symbol © represents a mesh relaxation time (© >0) which is employed as a
smoothing parameter of the mesh motion. The parameter © allows explicit control
over the time scale of the solution towards the steady state with respect to
a given monitor function M. Basically, the smaller (larger) the mesh relaxation time
©, the faster (slower) reacts the mesh. The idea behind the incorporated relaxation
time © in the MMPDEE is that the mesh needs not to be solved for a completely
steady (equidistributed) state with respect to M at every time step, but rather has

to evolve just as fast as to capture the essential features of the physical flow solution.

The appropriate value for the mesh relaxation time © is not straightforwardly iden-
tified for a given flow configuration, particularly for complex multidimensional ap-
plications considered with the present solver. It was found that the choice for ©
is influenced not only by the problem physics, but also by the configuration of the
solution-adaptive moving mesh solver itself, e.g. the specification of the monitor
function M. Overall, the literature on methods provides virtually no in-
formation on this issue. Generally, © must be chosen small enough to ensure that
the mesh can follow the temporal evolution of the flow or the mesh adaptation fea-
tures in appropriate manner. However simultaneously, if the value of © is chosen
too small for a particular setup, then unnecessary large stiffness is introduced in
the numerical solver which requires more computational effort for the integration.
Furthermore, it is also not clear at this time whether and how to apply a dynamical
change of © during the simulation; only recently in Soheili and Stockie| (2008) this
has been applied for the first time to idealised one-dimensional problems. For the
conducted experiments in the present work, the mesh relaxation time © had yet to
be found on a trial-and-error basis for each flow problem and with © kept constant

over the course of the simulation. See the test applications in Chapters [f] and [6]

The second factor in (4.7) aims to improve the numerical solution properties of

the MMPDEES through spatial balancing of the of (4.6) by the norm of its

diagonal coefficients. This results in a more uniform size ~ O(1) of the coefficients

D;; and C; in (4.6) over the solution domain, thereby leading to a numerically
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better-conditioned (Huangj, 2001al). Another important aspect is that the
applied normalisation makes the MMPDEE invariant with respect to the scalings
x - yxand M — vy M, Vv > 0 (Huang, |2001a)). Given a computational domain
D; of standard size, the consequently acquire more consistent solution
properties under different sizes of the physical domain D, and/or monitor functions

M. By definition, all applications in this work use a unit square computational
domain D; in (4.1)).

Monitor function

The most decisive part in the application of the[MMPDEE to specific physical prob-
lems is the appropriate choice of the monitor function M. The monitor function M
couples the to the physical flow equations, and its specification aims at
the construction of a mesh that is at all times well adapted to the evolving physical
flow solution. The design of monitor functions for the purpose of automatic mesh
refinement is an open research area, and this applies particularly to the area of geo-
physical flows. In general, the better one understands the physical processes of the
simulated problem, the easier is it to design an effective monitor function. As an
example, the evolution of tropical cyclones is known to depend critically on the pro-
cesses in the inner-core region, e.g. Wang] (2002); [Rotunno et al. (2009)), especially
in the eyewall surrounding the centre of the vortex where substantial low-level radial
convergence occurs. Hence, it would be desirable to have a relatively high resolution,
i.e. a large mesh density, in this region of a simulated tropical cyclone and design
the monitor function accordingly. Other aspects in the construction of the adaptive
mesh may concern properties like smoothness and orthogonality, or the directional
alignment of the mesh with certain flow features. All these considerations may be
incorporated in the definition of the monitor function M, see e.g. Brackbill (1993);
Huang and Russell| (1997)); |Cao et al.| (1999) for discussions.

The functional form of M used in the present work is given as a diagonal matrix

Winslow| (1981))
0
M= [q ] , (4.8)
0 ¢

where g=q(t,x) is a strictly positive scalar weighting function. The particular
diagonal form of the monitor function (4.8) realises a non-directional, i.e. isotropic,
refinement of the mesh coordinates relative to the distribution of the scalar weighting

function q. As already mentioned above, the mesh adaptation could be extended
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to directional, i.e. anisotropic, alignment with particular solution features by using
a different form of the monitor function M, see e.g. Brackbill (1993); Huang and
Russell (1997)); |(Cao et al.| (1999).

With the use of (4.8), the local size of the mesh cells tends to be inversely propor-
tional to the relative size of the scalar weighting function ¢ over the physical domain
D,. Consider the one-dimensional version of the functional (4.2))

ﬂﬂ—%Abéegrdx, (4.9

with the corresponding Euler-Lagrange equation given as

0 (10z
221 =0 4.10
Ox (q ax) (4.10)
or equivalently
0T
= . 4.11

where C is a constant. Because 07/0x is a measure of a local mesh density in
the physical domain D,, the relation simply states that a higher numerical
resolution is associated with a locally large weighting function ¢. This is a form
of the so-called equidistribution principle after |de Boor| (1974). In more than one
dimension, no comparable theoretical statement to is known for the functional
(4.2). However, the considered functional with the monitor function (4.8)) is
a direct multidimensional generalisation of . This suggests that a behaviour
of the mesh adaptation kind of similar to the one-dimensional case can be
expected in higher dimensions. Indeed, this was studied by means of a variety of
idealised solution-adaptive moving mesh experiments in |Cao et al. (2003). Therein,
it was demonstrated that the functional with provides a mesh roughly
satisfies the general equidistribution condition q@wy ~ C~!, wherein @zy denotes the

Jacobian of the transformation (2.13)).

Given a local mesh refinement indicator ®(¢,x) >0, i.e. some measure for the local
error in the flow computation that indicates where a finer mesh is required, the basic
specification for ¢ that is adopted here is

)

q@xy—1+T§EZ7. (4.12)
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The symbol (-) in (4.12)) defines the domain average according to
1
(@) = — / o(t,x) dx , (4.13)
A Jp,

wherein A denotes the area of the two-dimensional plane of the domain D,, in which
the mesh adaptation is applied. The parameter 0 < § < 1 in allows user-
specified control over the strength of the adaptation (Huang, 2001a)). For the choice
(=0, the weighting function ¢ is unity, and a uniform non-adapted mesh results.
The larger the parameter 3, the stronger is the adaptation of the mesh with respect
to the refinement indicator ®(¢,x). The applied normalisation of ® by the domain
average (®) (Beckett et all 2002) conveniently makes the weighting function ¢ a
dimensionless quantity. Furthermore, the normalisation provides a more uniform
distribution of the mesh points for the time-space-dependent error measure @, in
that a certain mesh point density (depending on the choice of ) is maintained in

less sensitive areas, i.e. where ® — 0.

The actual specification of the refinement indicator ® is crucial for the success of
the solution-adaptive moving mesh flow solver. The choice of ® may be motivated
by a variety of aspects that include physical criteria related to the flow problem un-
der consideration, numerical error estimates based on the applied discretisation of
the governing flow equations, or heuristically-derived error proxies (Behrens|, 2006)).
Within the present study, mesh adaptation is restricted to physical and heuristically-
derived mesh refinement indicators'. A heuristic error proxy could be the gradient
of a transported scalar variable in an advection problem that is supposed to be in-
dicative of large solution errors, see Section [5.1} Mesh refinement driven by physical
criteria may use vorticity to detect strong shear layers or the gradient of temperature
to detect fronts, see Sections [5.2] and for example applications. The possibilities
for the specification are diverse and often depend strongly on the problem under
consideration. Solution-adaptive mesh algorithms may be based on pure numerical
error estimates, see [Szmelter and Smolarkiewicz (2006) in the context of
transport methods. See also Behrens (2006) and the given references therein for a
more general discussion. Moreover, using adjoint-based mesh refinement indicators,
e.g. Power et al. (2006)); Dwight| (2008); Mani and Mavriplis (2010)), is a notewor-
thy approach particularly for complex nonlinear geophysical flow applications. In
geophysical flows, the local evolution of the dynamical fields may be influenced
strongly by processes occurring large distances away in the system |Weller et al.

Note that physical and heuristically-derived refinement criteria cannot always be strictly distin-
guished from each other.
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(2010). Adjoint-based techniques have the ability to provide the associated sensi-
tivity information for specific quantities of interest. The obtained spatial sensitivity
distribution can be used to design criteria for the mesh refinement. It is finally also
indicated that another aspect highly relevant to the solution-adaptive mesh simula-
tions of geophysical flows is the coupling of the mesh refinement to the sub-grid scale
processes and their parameterisations in the numerical model. Just as an example,
exploiting criteria based on sub-grid scale information from a convective parameter-
isation may prove beneficial to detect the initiation of moist convection in certain
regions. In general, the ideal mesh refinement indicator reliably detects important
and unimportant regions of the particular flow evolution throughout the simulation

and is also computationally inexpensive to derive.

Balancing of various monitor components

In complex dynamical applications, it may often be desirable or required to com-
bine different aspects for the refinement indicator ®. For instance, one can imagine
to rely on numerical and physical error indicators at the same time. Another op-
tion could be to combine indicators based on thermodynamic fields, e.g. entropy or
moisture variables, with indicators that are derived from the flow field, e.g. vorticity
or divergence. Again, the actual possibilities are diverse. In the majority of the
cases, the values of the different refinement indicators will not be in the same range,
and proper balancing of the various components is necessary to achieve an effective

solution-dependent adaptation of the mesh.

Let ®; be the [-th refinement indicator and = (1, L), where L is the number of the
various refinement aspects involved. A direct expansion of (4.12) for L>1, is to

sum over the individual components g, as follows

q(t,x):lz;ql(t,x) :; {1—1—%%] : (4.14)

The disadvantage of the implementation (4.14]) is that one component ®; with a
large maximum value but a relatively small average (®;), may dominate the other

components (van Dam) 2009)). An additional normalisation of each component by its
maximum value in the domain Dy, i.e. (¢;/maxp,(q;))in (4.14)), leads to an improved
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and better balanced weighting function (van Dam, [2009)

L L
(D)) + v P 6]
X) le ailt,x) Zz - [ (@) + ymaxp, (D)) ] LT - B (4.15)

Note that for L=1, (4.15) is equivalent to (4.12]), because the normalisation by
the domain maximum does not alter the MMPDEs due to the scaling invariance
property (M — ~vM ¥ ~ > 0).

An application of the solution-adaptive moving mesh solver that uses a combination
of mesh refinement indicators based on the gradient of potential temperature and
vorticity of the flow field will be given in Section [5.2]

Smoothing of the monitor function

The computed monitor function M is often quite irregular. As a consequence,
using the computed monitor function M directly has a detrimental effect on the
solution properties on the MMPDESs as well as the overall solution-adaptive solver.
Therefore, some amount of smoothing is applied to the monitor function M, which
is common practice in moving mesh methods, e.g. Dorfi and Drury (1987); Huang
(2001a)); Huang and Russell (2001); Lang et al| (2003). Here, a local averaging

procedure is adopted

fu( )(t,x) dx

f U(o) dx

where U(Xy) C D; denotes the union of the direct neighbouring mesh points having

M(k+1) (t, Xo)

Vxo€D,, (k=1,K), (4.16)

X (which is the image point to x¢) as one of their vertices (Huang and Russell,
2001). Basically, a larger number of smoothing passes K facilitates the solution
of the MMPDESs, and the associated anelastic solver. Because the smoothing of
the monitor function M is effectively equivalent to a smoothing of the mesh itself, a
larger K simultaneously results in a weaker adaptation. Furthermore, the smoothing
of the monitor function M spreads out the regions of mesh refinement and provides
a more gradual change in the local size of the mesh cells. An optimal choice of K
obviously depends on the considered problem and the specification of the monitor

function M. Typical numbers in the context of the present solver are K ~ 15.
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Boundary conditions

The solution of the MMPDESs requires the specification of appropriate bound-
ary conditions. At non-periodic horizontal boundaries (e.g. open boundaries or rigid
walls) of the anelastic solver, Dirichlet-type conditions are specified for x. It was
found that keeping the mesh coordinates x fixed and uniform along the boundary
of the domain 9D, results in undesired deformations of the mesh for refinement in
the vicinity to 9D,. A consistent movement of the mesh coordinates on the domain
boundary 9D, with the mesh coordinates in the inner part of the domain could
successfully be achieved by the implementation of one-dimensional boundary MM-
PDEs as applied in |[Huang and Russell| (1997)); [Huang (2001a). With this procedure,
one-dimensional MMPDEs for the distribution of the mesh points x on individual

segments I', of the boundary 0D, (typically between fixed corner points), are solved
prior to (4.6). The one-dimensional analogue to (4.6)) reads

0s 0%s  Ou Os
p(s,u)?:,u + (4.17)

i 1057 95 05
where the arc-length coordinates s and s parameterise the physical I', and the associ-
ated computational I'; boundary segments, respectively. The one-dimensional scalar-
valued monitor function p in (4.17) is computed as the projection u(t,s)=tT Mt
of the matrix-valued monitor function M along the boundary 0D, where t is the

local tangent vector to 9D,. The scaling parameter p(s, ) in (4.17)) is given as

pls, 1) = O/ 122 + (O1s/0%)° (418)

in which the mesh relaxation time © usually adopts the same value as in the solution

of the associated two-dimensional equation (4.6)).

Periodic boundaries are another choice in the anelastic solver, which are consistently
implemented in the solution scheme of the MMPDEs (4.6)); see Figure for an

illustration.

Moving mesh algorithm

Solution-adaptivity of the mesh within the physical flow solver presented in Chap-
ter[2]is accomplished through an algorithmic coupling with the MMPDEE. Here, the
adopted solution approach integrates the physical set of anelastic equations ([2.3)

and the coupled MMPDEs (4.6 in a successive manner for each time step. This
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alternate solution procedure is in contrast to a simultaneous integration of the
[PDE]and the underlying physical equations. In the latter approach, a single implicit
system for the overall solution-adaptive model is formulated and eventually solved
by specifically designed numerical methods, see [Lang et al| (2003) for an imple-
mentation. The present development extends the established multiscale geophysical
flow solver EULAG] with the solution-adaptive moving mesh capability, whereupon
the MMPDEE are treated in a single algorithmic entity that adheres to the main
physical solver. During the model integration, the mutual coupling between the var-
ious modules always exists through the monitor function M and the mesh positions
x. The numerical solution of the MMPDEE is described next, whereas the ensuing
section discusses the incorporation of the developed algorithm into the

framework of the geophysical [NFT] flow solver [ EULAG]

Numerical solution of the MMPDHs

The principal requirements for the numerical solution procedure of the MMPDEE
are robustness and efficiency. The formal accuracy of the mesh computation
is of minor concern because it is not a determining factor for the accuracy of the
physical solution that is computed on the mesh. This constitutes a virtue of the
alternate solution approach adopted here. First- and second-order implicit temporal
discretisations are chosen for the integration of the and , as
they offer stable solutions, independent of the size of the scaling parameters P and

p, respectively. Specifying a spatial differential operator £ in (4.6|) as

L(x)= P! ( > Di(x, M)% +) Cilx, M)%) : (4.19)

i,j=1,2 i=1,2
the implemented temporal discretisation is given as

Xn+1 —xn

5 - a L(x"T) +bL(x"), (4.20)

which optionally allows for the backward Euler (a=1, b=0) or the trapezoidal
Crank-Nicolson (a=0=0.5) scheme. In the practical implementation, the coeffi-
cients D;; and C; in are freezed at the time level n. Standard central differ-
ences are used to discretise all spatial partial derivatives. Given either Dirichlet or
periodic boundary conditions for x, the resulting algebraic problem is solved by the
generalised conjugate residual scheme (Eisenstat et all [1983; Smolarkiewicz
and Margolin|, [1994; Smolarkiewicz et al., [2004). A convergence threshold for the
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iterative [GCR] algorithm can be based simply on some norm of the residual error
to . However, a more meaningful convergence criterion with regard to the un-
derlying mesh generation problem is obtained by considering the difference between
successive[GCR]iterations v for the solutions ¢” and relate them to the characteristic

extensions L of the physical domain D,. Specifically, it is proposed here to use
l¢"=¢" [l < €L, ¢ = a' (4.21)

as a stopping criterion for the iterative [GCR] scheme in the MMPDE] solution. The
criterion is applied in combination with a criterion based on some norm of
the residual error!. A value of e=10"7 in has been employed successfully
throughout all experiments of largely varying scales L (see the Sections [5| and |§[)

performed in this work.

The described MMPDE] solution procedure is fully embedded in the parallel coding
structure of the [EULAG] flow solver. Note finally, the discretisation given above
applied to the one-dimensional boundary [MMPDEs ({.17) results in a tridiago-
nal system of algebraic equations, which is solved by the Thomas algorithm, see

e.g.[Durran| (1999).

4.4 Solution-adaptive moving mesh NFT| solver

This section demonstrates the algorithmic implementation of the overall solution-
adaptive moving mesh [NFT| flow solver. It is explained in which way the MMPDE]
machinery of Section [£.3] is incorporated into the solution procedure of the physi-
cal anelastic flow solver of Chapters[2] and [3, The discussion focuses on the

Eulerian MPDATA|scheme for advection in (2.19)).

Implementation of the algorithm

A flowchart illustrating the algorithmic sequence of the basic parts that compose
the solver is shown in Figure [£.2] Given the current set of model solutions ¥™ and
the mesh x” at the time level ", the time loop begins with the execution of the
mesh adaptation module. This involves the evaluation of the monitor function M"

(typically a function of the present solutions W"), and the subsequent integration

!Note, the combination of (4.21]) with a criterion based on a residual error norm is required because
(4.21)) can fail if the iterative solver stalls.
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e Mesh adaptation module

- Compute monitor matrix M" using ¥"

n n+1

- Advance boundary mesh x} — x;

using 1D MMPDEs (3.9)

- Advance mesh x" — x"*!

MMPDEs (3.6)

using 2D

e Compute metric coefficients from x"*!

e Predict advective flux (p*v*)"*+1/2

e Advance all physical fields ¥" — @n+!

n+1

e Time step adaptation 5" — %

Figure 4.2: Flowchart showing a full time-loop coding sequence of the basic parts that
compose the solution-adaptive moving mesh Eulerian NFT flow solver.

of the MMPDEs for the solution-adapted mesh points x"*! at the time level A
!, Having obtained the mesh x"*!, the corresponding metric variables that specify
the adapted mesh geometry, e.g. elements of the Jacobian matrix, are computed.
This step also includes an update of all known background and ambient fields in
the anelastic equations to the new positions x"*!. At this stage of the model

n+1/2 at the intermediate time

algorithm, the required advective momentum vector v
level £"7/% in the MPDATA solution (see Section ) is determined. In adaptive
simulations, this part intertwines with the numerical procedure for the computa-
tion of the mesh velocity vY . In the next subsection, it is elaborated how
the procedure is best incorporated into the velocity predictor for ¥**'/2. The al-
gorithm proceeds by advancing all physical model fields U” — U™+ based on the
solution procedure described in Section [2.2] In order to improve the efficiency of the

model integration, the time step ¢ is adapted to an optimal size (according to the

'For relatively large time steps 6¢ of the physical solver, e.g. with the semi-Lagrangian advection
scheme, sub-steps in the MMPDE integration may be required for an efficient solution.
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underlying stability criterion) by the end of each time loop.

The described algorithmic structure offers the flexibility to incorporate the MPDATA-
related developments as presented in Section This essentially requires that the

"1 is performed prior to the execution of the advection

mesh adaptation x" —x
scheme, i.e. prior to the advancement of the model fields U™ — ¥+ as shown in
Figure [4.2] Only with such a procedure, diagnostically derived generalised densities
p*™ and p*"*1 are known within MPDATA as needed for the application of the gen-
eralised density correction factor . Note, in the default EULAG the mesh adap-
tation is performed after the execution of the advection scheme (not shown). This
shortcoming with the developments of Section initiated a redesign of the model’s
coding structure in the context of the present work. Furthermore, another aspect of
this redesigned coding structure is that it allows for a more accurate computation
of the advective contravariant velocities ¥"*t1/2 in MPDATA under time-dependent
generalised coordinates, which is explained in the last part of this section. Com-
pared to the default EULAG, the coding structure of Figure requires at least

the storage of one additional three-dimensional field for the generalised density p*.

It shall be finally remarked, that the time step adaptation has the potential to sig-
nificantly (~ 10-20 percent, but strongly depending on the application) increase the
efficiency of the solution-adaptive moving mesh applications. Despite this benefit,
one should be aware that variable time stepping, at least in the author’s experi-
ence, introduces small additional errors absent in comparable constant time step

computations.

Advective velocity prediction in the solution-adaptive mesh solver

As explained in Section , MPDATA requires an (9(5%2) approximation to the
advective generalised contravariant mass flux vector ¥"71/2 = (p*v*)"*1/2 at the in-

n+1/2

termediate time level ¢ . Here, the procedure of predicting (p*v*)"*/2 in the

solution-adaptive moving mesh solver is considered.

Under a time-dependent mesh geometry, the default procedure is to evaluate the
solenoidal ¥* (2.6)) and the mesh velocity ¥9 (see the subsequent paragraph) both at
the time level £*. Using the relation (2.5)), the generalised contravariant mass flux

(p*v*)" is formulated according to

(P V)" = (pV°)" + (p"VI)" . (4.22)
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Given (p*v*)™ and (p*v*)"~! from the previous time step, the linear predictor scheme

(P )2 = (14 ) (V)" = B ()" (4.23)

cp. ([2.35)), is employed to obtain an O(éiz) approximation for (p*v*)"*1/2, Similarly,
nonlinear predictor schemes may be used instead of (#.23) to calculate (p*v*)"+/2,
cf. |[Smolarkiewicz and Margolin (1993); |Smolarkiewicz and Margolin| (1998).

The MPDATA solution in a time-dependent mesh geometry requires to evaluate
the mesh velocity v in . In the solution-adaptive moving mesh solver, the
positions x and the velocity of mesh, i.e. 9x/d¢, are not known analytically during
the integration. Rather, they have to be determined numerically at each time step.
Within the algorithm displayed in Figure the mesh adaptation module at the
beginning of the time loop generates the mesh positions x"*1. At this point, a cen-

tred! second-order finite-difference around the time level £ can be used to compute

(0x/0t )", namely

(8—’f>n _ X (4.24)
ot 20t

where a constant time step 0t is assumed for simplicity of the exposition. The mesh

velocity (v9)" = (0x/0t)" € S;, and hence (p*v?)" in ([£.22), are subsequently de-

rived by means of the Kronecker-delta relations and the mesh geometry x".

Revised procedure for predicting advective velocities

A revised procedure for the approximation of (p*v*)"*/2 in the framework of the
solution-adaptive moving mesh flow solver (Figure is proposed. The
method evaluates p*VvY straightforwardly at the intermediate time level A 2, and
applies the predictor scheme only to the part with the solenoidal velocity v°. The
detailed procedure is as follows: After completion of the mesh adaptation module

in the algorithm of Figure the mesh velocity (0x/dt) is evaluated as

8x n+1/2 Xn+1 —x"
— = —. 4.25
(6t> o (4.25)

1With variable time stepping, the finite difference is not symmetric about ¢, and appropriate
difference formulae have to be used to retain second-order accuracy, see e.g. |Ferziger and Peric
(2001).
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Then, then (¥9)"*Y/2 and the generalised density p*"*'/2 are obtained from the

Kronecker-delta relations (2.14) and the mesh geometry x"+'/2 approximated by !
x"2 =05 (x" +x7) . (4.26)

n+1/2 4t the intermediate

This procedure yields an (’)(652) approximation for (p*v9)
time level 772 As (p*v9)"+1/2 is already known, only the flux with the solenoidal
velocity (p*v*)"1/2 is obtained from the application of the respective linear or non-

linear predictor schemes. With the former scheme, i.e. analogous to (4.23)), it uses

(P V)" = (14 B) (p"V°)" = B (p"v*)" " . (4.27)
After that, the contravariant fluxes (p*v*)"*1/2 are computed at 72 as
(p*v*)n—i-l/Q _ <p*vs)n+1/2 + (p*vg>n+1/2 ’ (428)

which completes the procedure.

The explained scheme (4.25))-(4.28) for the computation of (p*v*)" /2 features a
number of advantages compared to —. From a practical point of view,
the initialisation of — is straightforward. Moreover, the numerical eval-
uation of the mesh velocity (0x/0t) under variable time steps uses the simple
derivative (4.25[), in the spirit of schemes. Most importantly, the application
of the procedure — leads to a more accurate solution of the

scheme under time-dependent generalised coordinates. An important aspect of the
procedure - thereby is that it achieves round-off error compliance with
the for a uniform background density p, and time-dependent coordi-
nate transformations of the one-dimensional form F(t,x)=(Z(t,z),y(t,y),z(t, 2))
in (2.2). This property is due to the centred evaluation of the mesh velocity and
all metric terms with respect to ¢ and 7' The latter together with the com-
mutativity of the discrete numerical derivatives for the metric terms provides the
particular round-off error compliance with the . Although this does not
hold for more general coordinate mappings and a non-uniform background den-
sity ps, the procedure provides minimisation of the errors with respect to the [GCL
also for arbitrary time-dependent coordinate mappings. Note, the procedure
— has no similar property and normally shows significantly larger errors
in terms of the compliance with the . The accuracy of the procedure

'Note that optionally p*"t1/2=0.5(p***t! 4+ p**) may be used, which simplifies the procedure
within the general anelastic solver.
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- against - will be investigated by means of solution-adaptive
moving mesh experiments in the subsequent Sections 5.1 and [5.3] It is anticipated
here, that these experiments will show the procedure — to be superior
over —. Therefore, unless otherwise noted, all simulations in this work
employ the procedure — for the calculation of the generalised contravari-
ant mass flux (p*v*)" /2 with the mesh velocity V¥ evaluated straightforwardly at

zn+1/2'
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Chapter 5

Two-dimensional solution-adaptive

moving mesh test simulations

The previous two Chapters |3| and [4] are concerned with the design and implemen-
tation of the solution-adaptive moving mesh [NFT] flow solver based on [MPDATA|
advective transport methods. As with any new modelling approach, basic validation
and testing of its consistence is crucial. This task is best performed initially in a
simple configuration for flow problems that are straightforward to analyse.

In the present chapter, two-dimensional prototype versions of the solution-adaptive
moving mesh solver are created and applied that resemble the numerical formula-
tion of the anelastic NF'T flow solver EULAG. Two canonical flow test problems
are considered for the prototype solvers. The first model problem in Section
is the advection of a passive scalar in a prescribed time-varying shear flow. This
model problem provides an ideal first test because of the simplicity to handle only
a single linear hyperbolic physical conservation law and the availability of an exact
solution. Despite its simplicity, it is of relevance to dispersion modelling of chemi-
cal tracers in (large-scale) atmospheric and oceanic flows. A second model problem
considered in Section is the nonlinear evolution of a dry rising warm thermal
in a neutrally-stratified quiescent atmosphere. Here, this non-hydrostatic flow is
modelled on the basis of the anelastic equations!. The anelastic equations are also
employed in EULAG. Although the nonlinear rising thermal flow does not have an
exact solution, it allows for a quick analysis of well-defined solution features like the

representation of the amplitude of the rising thermal and the temperature gradients

! Actually, the incompressible Boussinesq flow equations are applied here. These, however, repre-
sent a direct subset of the anelastic equations.
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along its edges. An accurate representation of these solution features in the sim-
ple configuration adopted here is of direct relevance for the numerical modelling of

cumulus convection in realistic atmospheric flows.

The present chapter is concerned with the question of whether the basic conceptual
formulation of the solution-adaptive moving mesh solver developed in Chapters
and [ works in practice. This is confirmed by applying the adaptive solver to the
two-dimensional model problems given above. Both model problems feature strongly
varying lengths scales in the evolving flow, and the adaptive solver is assessed with
regard to its performance against the uniform mesh solver. For instance, it is in-
vestigated whether the adaptive mesh solver is able to achieve a significantly better
representation of the multiscale flow than the uniform mesh solver with the same
number of grid points. If the improvement in the solution quality is of significant
size, then this is an argument for the usefulness of the adaptive solver.

In addition, basic aspects of the adaptive solver are investigated in the present chap-
ter. Among others, one of these aspects is the adaptation of the mesh points at the
domain boundary. In the moving mesh solver, one-dimensional MMPDE} for the
mesh adaptation at the boundaries are combined with the two-dimensional [MM
[PDEE for the mesh adaptation in the inner part of the domain. Here, it is demon-
strated that the boundary mesh adaptation occurs consistently with the adaptation
of the mesh points in the inner part of the domain.

Another aspect is whether the adaptive solver can cope with strong mesh adapta-
tions required to resolve fine structures in the flow. For example, the rising thermal
flow simulation in Section demands strong adaptations at the sharp interface of
the thermal with the ambient air. The integration of the underlying anelastic equa-
tions involves the solution of the elliptic boundary value problem for the pressure
variable at each time step; see Equation in Section . The variation of the
size of the coefficients in the elliptic pressure equation is related to the metric of the
underlying mesh. It is unclear in advance whether the convergence properties of the
iterative solver applied to solve the elliptic pressure equation are seriously degraded
as a result of strong adaptations of the mesh. Fortunately, it can be shown that this
is not the case.

Two different schemes for the approximation of the advective generalised contravari-
ant mass flux ¥"*/2 = (p*v*)"*1/2 in MPDATA under a moving mesh are proposed
in the last part of Section [£.4] Here, the scalar advection problem in Section [5.1]is
used to assess the different schemes. The analysis can easily be performed due to
the existence of an exact solution for the considered scalar advection problem.

It is also noted that the formulation of the adaptive anelastic solver for the sim-
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ulation of the rising thermal in Section will assume the two-dimensional mesh
adaptation in the vertical plane. This formulation differs from the current formu-
lation of EULAG, where the solution-adaptive mesh adaptation is restricted to the
horizontal plane. Here, it is demonstrated, in the simplified though sufficiently com-
plex configuration of the rising thermal, that such an extension could be of value for
the simulation small-scale flows in EULAG as well.

In Chapter [3] the issue of the compatibility of the MPDATA advection scheme with
the generalised anelastic mass conservation law (GMCL) is discussed. There, exten-
sions of MPDATA for its use under moving meshes were developed. However, the
associated numerical test and validation experiments in Section were restricted
to prescribed oscillating moving meshes and the model problem of scalar advection
in a uniform velocity field. In the final Section of the present chapter, the sub-
ject is further investigated in the context of solution-adaptive numerically-generated
moving meshes. Here, both the scalar advection problem and the rising thermal flow

problem are used for the examination.

The use of the simplified two-dimensional prototype solvers in the present chapter
allows for a straightforward code handling and fast execution times. This has been
of value during the elaborate development and testing phase of the solution-adaptive
moving mesh solver. As mentioned above, the prototype solvers resemble the ana-
lytical and numerical formulation of EULAG. Therefore, all aspects discussed in the
present chapter are of direct relevance to the application of the adaptive solver in

the full framework of the three-dimensional modelling system EULAG.
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5.1 Scalar advection

In this section, the problem of scalar advection in a predefined velocity field is
considered. This relatively straightforward configuration allows to validate the de-
veloped solution-adaptive moving mesh [NFT] solver by means of known analytical
solutions. The particular model setup follows that in Blossey and Durran| (2008).
The setup describes an initially cosine-squared-shaped hill of the advected scalar
variable 1 that is elongated into a fine-scale filamentary structure by the acting of
a deformational flow field. The flow field reverses its magnitude in time to recover
the initial condition after one period 7. The scalar advection configuration is of
relevance to tracer dispersion modelling of chemical constituents in large-scale at-
mospheric and oceanic flows, where a high local resolution is typically essential to
resolve filamentary structures that may develop; see e.g. |[Behrens et al.| (2000 and

references therein.

Description of the model and experimental design

The scalar advection problem treated here is based on the single homogeneous con-
servation law (2.24]), repeated here for completeness
MY | =

V() =0, (5.1)

assuming an incompressible fluid with a constant density p,. All variables in the
present problem are dimensionless. The extensions of the model domain D, are
-0.5 < z,y < 0.5. The model implements a fully general time-dependent transfor-
mation of the coordinates D, — D, in the horizontal plane according to the functional
relationship F = (Z(t, z,y),y(t,z,y)) in (2.2).

A time-dependent shear flow that is periodic over the integration time T'=1.0, is

prescribed by means of the streamfunction (Blossey and Durran, 2008)

A, (12 2m.t 2 1
x(t,x,y) = ; {%—FCOS( ; ) [%+%log(1—16r2+2567“4)

1
5 log(1 + 167?)
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where r = \/m . Given the specification , the solenoidal velocity v* in the
transformed space S; is evaluated on the discrete mesh from . Note again,
instead of defining the velocity field v, this procedure ensures compliance with the
divergence constraint throughout the integration period 7. Again following
Blossey and Durran| (2008), the initial scalar field v is described as

(1 —i—cos(mf))2 o
»(0,z,y) =05+ 2 T

0 r>1,

(5.3)

where 7=5 \/ (x 4+ 0.2)2 +y%. A zero gradient of the scalar variable v is supposed

at the model boundaries.

Fully general two-dimensional solution-dependent adaptation of the mesh by the
MMPDESs is applied in the model plane of D,, whereby the underlying map-
ping D; — D, in exhibits the general form M= (z(t,7,7),y(t,7,7y)). One-
dimensional MMPDEs (4.17) are solved for the distribution of the mesh points
along each the four boundary segments of D,. The mesh relaxation time © in the
solution of the in is set to © =1.6 x 1072,

The monitor function of the form M is based on a single mesh refinement
indicator ® in (4.12]) (or equivalently ®; for L =1 in multi-component form ),
specified to be proportional to the gradient of the transported scalar variable 1. In
particular, it is defined as

o(t,x) = |V (5.4)

where || - || refers to the Euclidean vector norm. The use of may be explained
by the heuristic argumentation that relatively large solution errors in the advection
scheme occur in regions where 1) shows its greatest variations (compare for instance
the first truncation error term on the of the modified equation ); see
also [Skamarock et al.| (1989)). The parameter 3 in , that controls the strength
of the mesh adaptation, is set to =0.7. The smoothing procedure of the

computed monitor function uses a number of K =15 passes.

All results in the present section are obtained using the developed ex-
tension RP (see Table[3.1). In addition, the “third-order accurate” version of the
MPDATA scheme with enhancement (Smolarkiewicz and Grabowski, 1990) is
applied. The simulations are performed using variable time stepping and a constant

maximum Courant number C,,., = 0.5. Regarding the “third-order accurate” version
of MPDATA] it is remarked that in the author’s experience this variant of MPDATA
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Figure 5.1: MPDATA integration of the scalar advection problem with a solution-
adaptive mesh; at the initial time (a), and at 0.257 (b). Indicated are contours of the
transported scalar variable ¢ (shaded; warmer colours correspond to larger value of 1),
overlaid by the solution-adaptive mesh (black solid lines).

especially minimises the truncation errors introduced by the coordinate transforma-
tions of the generalised coordinates, particularly for strongly deformed meshes. All

computations here are conducted in a single processor computing environment.

Results and discussion

Figure shows the scalar field 1 superimposed by the adaptive moving mesh at
the initial time ¢t =0 of the model integration. As can been seen, the mesh at t=0
is already finer resolved in the region of high values of ||V|. This is achieved by
reapplying the MMPDE integration procedure to the initial distribution of the scalar
Y given by , until the desired degree of adaptation is attained (typically until
a steady state of the mesh movement). Figure[5.1(b) displays the situation after
0.25T. At this stage of the simulation, the circularly-symmetric zone of nonzero
values from ¢ = 0 is stretched into a thin elongated structure. Large local gradients of
Y exist transverse to the elongation direction, and the solver automatically provides
a finer mesh there. This locally fine mesh is essential to resolve the large gradients
in the transported field . In the rest of the domain, a much coarser resolution is
basically found, but highly anisotropic mesh cells exist in some parts as a result

from the strong adaptations.
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The continuous adaptation of the mesh runs stable over the entire course of the
simulation. The mesh points on the boundary of the domain are adapted uniformly
with the mesh points in the inner part of the domain. As can be identified in
Figure (b), the solver can handle the extreme deformations and stretching of the
mesh while simultaneously producing accurate results; see below in Figure[5.2] In
terms of the mesh deformations, the ratio of the smallest to the largest mesh cell
area at t=0.257" is 1/64. Note, even smaller ratios of 1/130 with 5=0.85 have
been simulated for the present test. These however did not significantly reduce the
error but increased the wall clock time T, of the simulation due to a smaller time

step necessary for C,,., = 0.5 under a locally finer spatial mesh.

Figure [5.2] investigates the efficacy of the solution-adaptive moving mesh solver for
the present scalar advection experiment. The final result at ¢t =T of the solution-
adaptive moving mesh solver is compared to results obtained using a static non-
adaptive uniform mesh, i.e. using the same model but the mesh adaptation by the
machinery deactivated. Due to the temporal periodicity of the prescribed
flow field, the exact solution at the final simulation time ¢t =T is equal to the initial
distribution of the scalar, which means ¥(0,z,y) =(T, z,y).

The result from a static uniform mesh run with a total number of N. = 502 mesh cells
(or a mesh increment size of 67 =06y =0.02) is shown in Figure [5.2(a). Using the
same number mesh cells, the solution-adaptive moving mesh solver in Figure (c)
provides substantial improvement compared to the simulation with the static uni-
form mesh in Figure [5.2(a). The Ly and L., error norms of the static mesh run
in Figure (a) are one order of magnitude larger than of the solution-adaptive
mesh run in Figure (c) The solution-adaptive moving mesh run very accurately
reproduces the amplitude and the shape of the cosine-squared hill in the solution
field of ¢. In addition, the results of another static uniform mesh run with a total
number of N.=250? mesh cells is given in Figure (b) Although the number
of mesh cells N. in this static uniform mesh run is increased by a factor of 25, it
shows, respectively, ~ 1.4 and ~ 1.7 times larger L, and L, error norms than in the

solution-adaptive moving mesh simulation of Figure (C)

Despite the presence of very large gradients in the transported field v, all simula-
tions provide a numerical solution that is completely free of spurious oscillations.
For the solution-adaptive moving mesh simulation, this requires compatibility of the

MPDATA| scheme with the (GMCLJ (3.2)). Here, this has been achieved by apply-
ing the MPDATA| implementation RP as developed in Section [3.1] Note, with the

original implementation of MPDATA] i.e. the scheme OD of Section [3.1] spurious
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(a) Static: N, =502, Ty =1 (b) Static: N.=250%, Ty, =131

ol e b b b Ly ol b b e Ly
0.4 L,=0.0593 | 04 L,=0.0071 |
] L,=006211 | ] L, =0.0946 |
0.2 - 0.2- -
- 00 - - 00- -
0.2 - 0.2 -
1 Max = 1.0020 | ] Max = 1.4256 |
0.4 Min = 0.5000 0.4 Min = 0.5000[

L L L BN R B L L L

-04 -02 0.0 0.2 0.4 -04 -02 0.0 0.2 0.4

X M

(c) Adaptive: N, =502, Ty =5

0.4 L,=0.0054 |

] L,=0.0652 [

0.2 -

- 0.0 L
0.2 -

] Max = 1.4642 |

044 Min = 0.5000

L I B T T
-04 -02 00 02 04
T

Figure 5.2: Comparison of results from the MPDATA integration of the scalar advection
problem with a static uniform mesh (a,b), against the integration that uses solution-adaptive
meshing (c). Shown are contours of the numerical solution for the scalar field ¢ at the final
integration time ¢ =T (thin solid lines; contours from 0.55 to 1.45 at intervals of 0.1). The
exact analytical solution is overlaid (heavy solid lines; shown are only the contour values
of 0.55 and 1.25). Domain maximum and minimum values of the approximate numerical
solution for %, plus standard L9 and L, error norms, are given in the lower and upper right
parts of the figure, respectively. The symbol N, refers to the number of discrete