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Abstract
Dynamical processes occurring in geophysical flows are characterised by the nonlin-
ear interaction of various scales of motion. The accurate numerical representation
of such flows is limited by the available number of mesh points covering the domain
of interest. Numerical simulations applying uniformly distributed grid cells waste
mesh points in regions of large motion scales whereas coexisting small-scale pro-
cesses cannot be adequately resolved.
The current thesis offers the design, implementation, and application of an adaptive
moving mesh algorithm for dynamically variable spatial resolution to the numerical
simulation of nonlinear geophysical flows. For this purpose, the established geophys-
ical flow solver EULAG was modified and extended. The non-hydrostatic, anelastic
equations of EULAG are rigorously implemented in time-dependent generalised co-
ordinates. This setting enables moving mesh adaptation by solving the equations in
a straightforward approach developed in this thesis.
The methodological development of the new adaptive solver is divided into three
tasks: (i) The flux-form Eulerian advection scheme MPDATA employed in EULAG
was extended. For transport equations in conservative form, a mass conservation
law enters naturally and implies a unique compatibility condition for the solution
algorithm. Here, extensions of the Eulerian MPDATA integration were developed,
implemented and tested to provide full compatibility with the generalised anelastic
mass conservation law (GMCL) under adaptive moving meshes.
(ii) A machinery performing the numerical generation of an adaptive moving curvi-
linear mesh was designed and implemented in EULAG. For this purpose, an auxiliary
set of parabolic moving mesh partial differential equations (MMPDEs) was employed
to redistribute the existing mesh cells temporally. The solutions of the MMPDEs
provide the mesh coordinates and the adaptation properties of the generated mov-
ing mesh (e.g. local mesh density) are controlled by a monitor function that varies
horizontally and temporally. The form of the monitor function depends inter alia
on the flow state.
(iii) An efficient coding of the mesh adaptation machinery was successfully incor-
porated into the computational framework of EULAG. For this task, the approx-
imation of the advective contravariant mass flux in MPDATA was developed and
implemented in EULAG so to minimise errors of the incompatibility with the GMCL.
The developed adaptive moving mesh solver was thoroughly investigated by simulat-
ing a number of relevant atmospheric problems. The advection of a passive tracer in
a two-dimensional shear flow demonstrated the capability of the solver to automat-
ically adapt the local resolution to the evolving small-scale filamentary structures.
For this flow, the expected advantage of the mesh adaptation was achieved: the
computing time (and the error) was reduced significantly by a factor of 26 (by 20%)
compared to high-resolution uniform mesh computations. Another advantage of
adaptive simulations is the appearance of new physical phenomena. Here, insta-
bilities occurring at the interface of an idealised rising thermal with the ambient
air could be simulated in much greater detail. The representation of the associated
mixing processes is of direct relevance for simulating cumulus convection in realis-
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tic atmospheric flows. There, the process of fine-scale mixing, i.e. entrainment and
detrainment, between the cloudy and the ambient air could be better resolved by
mesh adaptation.
The first application of the developed adaptive mesh solver in the three-dimensional
parallelised modelling framework of EULAG to an idealised baroclinic wave life cy-
cle demonstrated the accurate representation of the synoptic-scale flow (improved
statistics) and the ability to resolve coexisting mesoscale processes. Focussing the
adaptation to the developing frontal zone indicated the excitation of internal gravity
waves which were nearly absent in simulations applying a uniform mesh with the
same number of mesh points. As before, significant savings in computing time (at
least a factor of 2) compared to equivalent results of a high-resolution uniform mesh
computation were achieved for the three-dimensional simulations.
A cumbersome side-effect of the successful and efficient numerical simulations was
the extremely time-consuming tuning of the adaptation parameters, especially of
the monitor function. So far, only a very limited number of monitor functions were
tested. Systematic research will yield improved specifications of the monitor function
for distinct atmospheric flows. In summary, the results obtained in this thesis show
the capability and potential of adaptive moving mesh methods to simulate multiscale
atmospheric flows with higher numerical accuracy and a broader coverage of motion
scales. However, the adaptive moving mesh method adds substantial user complexity
to the modelling system EULAG.
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Chapter 1

Introduction

The enormous range of scales of physical processes in geophysical flows together with
their nonlinear interactions poses a formidable challenge for numerical modelling.
Thanks to the steadily increasing computing power and advances in numerical mod-
elling systems, realistic simulations of transient three-dimensional atmospheric and
oceanic flows have become practical nowadays1. However, the current resources still
do not allow to resolve many important multiscale phenomena accurately. For many
problems of scientific and public interest, there is a demand to increase the resolu-
tion of current atmospheric and oceanic flow solvers by orders of magnitude.
For instance, consider tropical cyclone prediction: Here, the scales of the processes
involved range from the large-scale tropical environment with ∼ O(10 6 - 10 7) m, the
scale the tropical cyclone itself ∼ O(10 5 - 10 6) m, the scale of embedded phenomena
like the eyewall and rainbands ∼ O(10 3-10 4) m, while the boundary layer turbu-
lence responsible for heat and moisture fluxes from the ocean is ∼ O(10-10 2) m
and smaller. These flow scales span (at least) seven orders of magnitude. Clearly,
this resolution is far beyond that what can be achieved with the computing systems
available today. The range of scales of the processes in tropical cyclone flows is by
no means an exception. A similar complexity is encountered in many atmospheric
modelling applications. Figure 1.1 shows a snapshot taken from a combined obser-
vational and numerical study of a CAT2 event that occurred north to the Hawaiian
islands over the Pacific ocean (Kühnlein, 2006). For this case, the atmospheric

1For instance, this becomes evident in the success story of daily numerical weather prediction,
e.g. Kalnay et al. (1998).
2The term CAT especially refers to turbulence occurring several kilometers above the Earth’s
surface in an environment free of clouds and strong convective updrafts (Dutton and Panofsky,
1970). Among others, the prediction of the occurrence of CAT is important because of its hazard
to airplanes, which is due to locally strong wind shears.

1
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(a) (b)

Figure 1.1: (a) Vertical section as derived from dropsondes deployed along the flight track of the NOAA

Gulfstream-IV (G-IV) research aircraft through a frontal system in the region of a mid-latitude cyclone during the

North Pacific Experiment (NORPEX) 1998. Shown is potential temperature θ (K, orange-white shaded, ∆θ = 2 K)

and horizontal velocity vh (ms−1, black contour lines, ∆vh = 4 ms−1). (b) Horizontal section through the mid-

latitude cyclone at z = 4 km of potential temperature θ (K, black contour lines, ∆θ = 1 K) as obtained from an

attendant mesoscale numerical simulation. The short south-north-aligned violet line in about the centre of (b) over

the front indicates the region along the vertical section shown in (a) where the G-IV research aircraft encountered

moderate-to-severe CAT at the flight altitude of ≈ 12.5 km. The CAT encounter occurred in the region of the

dropsonde deployed at 2118 UTC. See Kühnlein (2006) for further discussion. Courtesy of (a): M. A. Shapiro,

NOAA.

flow comprises the excitation of internal gravity waves1 from an intensifying frontal
zone at mid-tropospheric levels. These internal gravity waves propagated upwards
into the lower stratosphere, where they played a decisive role in the generation of
strong localised bursts of CAT. Again, the processes involved range over a contin-
uous spectrum of scales from the large-scale, i.e. synoptic- to planetary-scale, flow
environment ∼ O(10 6 - 10 7) m, cross-frontal scale ∼ O(10 5) m, mesoscale internal
gravity waves ∼ O(10 4 - 10 5) m, embedded moist convection ∼ O(10 3) m, down to
microscales of the CAT ∼ O(10 - 10 2) m.
Because of the complexity of the problem, numerical modelling is the only method to
produce a nearly complete spatio-temporal prediction of nonlinear multiscale geo-
physical flows. In this thesis, an attempt to extend the capabilities of numerical
models will be undertaken that offers the means to better cope with the large scale

1Internal gravity waves (sometimes called buoyancy waves) refer to internal oscillations in a stably
stratified fluid where the force acting in the vertical direction is buoyancy due to Earth’s gravity.
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differences of the processes in geophysical flows.

Currently, the most common approach for the (horizontal) spatial discretisation in
numerical models of the atmosphere is to employ uniform meshes. They are based
on either a grid point/cell or spectral representation in the simulation domain. The
restriction to distribute the grid points uniformly can be resolved by using an adap-
tive mesh method that applies finer or coarser mesh sizes in distinctive regions of
interest. This means adaptive mesh methods provide variable spatial resolution over
the simulation domain within a single numerical solver. As a result, a locally im-
proved mesh resolution can be applied in limited regions without the requirement
to increase the mesh resolution throughout the entire simulation domain. In par-
ticular, if a nonlinear physical flow problem involves local small-scale processes, an
adaptive mesh focussing on (or zooming into) these regions represents a powerful
means for the numerical simulation. The technique can be employed to resolve in a
consistent manner local small-scale processes and the larger-scale flow at the same
time. Usually, only a fraction of the computational expense (i.e. CPU and memory
requirements) of a comparable simulation using a globally fine mesh will be required.

Adaptive meshes may be either static or dynamic. In the static case, a variable spa-
tial resolution is defined in advance of the simulation and is then kept constant over
the entire course of the integration. Thereby, the mesh adaptation regions must
be known a priori and the static adaptation is thus best suited for stationary or
quasi-stationary features, e.g. to better resolve flow interaction with topography or
the storm track regions in the mid-latitudes of the Earth’s atmosphere. In addition,
static mesh adaptation can also be used to achieve an improved resolution in certain
predefined geographical regions of interest, e.g. in the context of regional modelling.
In fact, static adaptive meshes are employed in geophysical flow modelling for some
time (Anthes, 1970), and have already been proven immensely beneficial for a va-
riety of applications, see e.g. Fox-Rabinovitz et al. (1997); Dörnbrack et al. (1998);
Sullivan et al. (1998); Dörnbrack et al. (2002); Lane et al. (2003); Kühnlein (2006);
Laprise (2008); Abiodun et al. (2008); Rotunno et al. (2009). Traditionally, either
mesh nesting (Clark and Farley, 1984) or mesh stretching (Anthes, 1970; Staniforth
and Mitchell, 1978) techniques have been used. Latest developments also consider
unstructured mesh techniques on the sphere, see e.g. Szmelter and Smolarkiewicz
(2010b).

Dynamic mesh adaptation is a time-dependent generalisation of the static mesh
adaptation approach. With a dynamic mesh, the spatial resolution or the discrete
mesh geometry is not only variable in space over the simulation domain but is also
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allowed to vary in time during the integration. The approach provides additional
flexibility for the mesh adaptation in that the resolution can be adjusted locally
in response to the evolution of the flow or to changing forcings. For instance, a
dynamically adaptive mesh method technically enables to continuously track mov-
ing and transient features of significance with a locally improved resolution. These
features may be tropical cyclones, fronts in a mid-latitude synoptic-scale flow envi-
ronment, or a density current in an Alpine valley, just to name a few. Because the
evolution of the features to be adapted is not known in advance, the dynamic mesh
adaptation must functionally depend, either directly or indirectly, on the prognostic
solution fields of the numerical flow solver. Therefore, the term solution-adaptive
mesh method is appropriate and is used throughout this text. As an aside, it is
obvious that flow solvers with a solution-adaptive (or dynamic) mesh capability are
also suitable to employ static mesh adaptation.

Solution-adaptive mesh methods are relatively new and unexplored in the area of
geophysical flow modelling. The first application in the context of atmospheric flows
was reported by Skamarock et al. (1989) about two decades ago. They investigated
solution-adaptive multiple component grids for numerical weather prediction ap-
plications. They combined a finite-difference solver for the hydrostatic primitive
equations with the adaptive mesh technique developed by Berger and Oliger (1984),
where fine (overlapping) component grids were placed automatically according to
Richardson-type estimates of the truncation error in the coarse grid solution. The
adaptive solver was successfully applied to test problems of barotropic cyclone ad-
vection and the baroclinic instability of an unstable jet flow.
In spite of a high level of research activity in recent years, see e.g. Jablonowski
(2004); Nikiforakis (2009) 1, as yet, solution-adaptive mesh methods have not found
widespread application. The great majority of efforts nowadays is still concerned
with basic research in the methods themselves rather than with the study of physical
problems or operational prediction using solution-adaptive mesh methods. A note-
worthy exception is the numerical weather prediction modelling system OMEGA
(Operational Multiscale Environment Model with Grid Adaptivity) (Bacon et al.,
2000). The model has been applied in an operational forecast mode to the disper-
sion modelling of chemical tracers and hurricane prediction (Gopalakrishnan et al.,
2002).
Major open research issues in solution-adaptive mesh methods are the definition
of mesh refinement criteria, i.e. dynamic criteria that reliably indicate in which re-

1See also the DFG priority program Metström “http://metstroem.mi.fu-berlin.de”.
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gions of the domain a finer or coarser mesh is required. The formulation of sub-grid
scale closure models that are applicable on (dynamically) adaptive meshes is a ma-
jor issue, too. Furthermore, it is unclear how different mesh adaptation strategies –
changing the number of mesh points, moving mesh points, and changing the order of
the numerical approximation – should best be combined for geophysical applications
(Weller et al., 2010).

1.1 Adaptive moving mesh methods

Most of the solution-adaptive mesh solvers being developed in the area of geophys-
ical flows are based on so-called h-refinement methods, where the basic strategy
is to insert or remove mesh points in order to adapt the resolution locally, see
e.g. Jablonowski (2004); Behrens (2006). Recent examples of adaptive geophysical
flow solvers based on h-refinement adaptive strategies are given by Hubbard and
Nikiforakis (2003); Jablonowski et al. (2006); Läuter et al. (2007); St-Cyr et al.
(2008); Weller (2009). These works investigated a variety of adaptive mesh tech-
niques for applications on the sphere using benchmark flows of pure scalar advection
and shallow-water equations with a view towards next-generation global weather and
climate models.

In contrast, r-refinement methods, which are also known as continuous dynamic grid
adaptation (CDGA) methods (e.g. Dietachmayer and Droegemeier, 1992) or moving
mesh methods (e.g. Budd et al., 2009), keep the total number of mesh points fixed
during the simulation but relocate the available mesh points to vary the resolution
over the domain. Hence, r-refinement methods aim to minimise the error of the
computations through an optimal distribution of the available mesh points. The idea
of r-refinement methods is different from h-refinement methods, where a maximum
of the error in the computations may be achieved through insertion of sufficient
additional mesh points.

The area of moving mesh methods is a large research field of applied mathematics.
The particular designs and implementations of moving mesh methods can differ
significantly1. A complete overview of the variety of the published techniques is
beyond the scope of this thesis. For an up-to-date overview and a discussion of
the most common approaches, the interested reader is referred to the review article

1As applies to the field of h-refinement methods.
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by Budd et al. (2009). In addition, a textbook solely devoted to the topic has
been issued just recently (Huang and Russell, 2011), acknowledging the growing
role of moving mesh methods play in modern computational modelling. Despite the
increasing interest in moving mesh methods in recent years (Weller et al., 2010), they
are in a relatively early stage of their development compared to the more matured h-
refinement methods (Budd et al., 2009; Huang and Russell, 2011). In the following,
aspects of moving mesh methods with particular relevance to the present thesis are
addressed.

Numerical flow solvers that adopt solution-adaptive moving mesh methods consists
of two main components. One component is the machinery used to move the mesh,
i.e. the mesh generation component. The other component is the physical model of
the governing flow equations and their discretisation on the moving mesh. A com-
mon principle for the mesh generation in moving mesh methods is to use generalised
coordinate mappings from a transformed space St where the computational problem
is solved (ideally chosen as a fixed regular computational mesh), into the physical
space Sp where the actual geophysical flow problem is posed; hence the coordinate
mappings St → Sp describe the adaptive (irregular) mesh in Sp. Typically, the po-
sitions1 of the mesh nodes in Sp are determined by solving (in computational space
St) an appropriate system of auxiliary partial differential equations. The latter are
often referred to as moving mesh equations. A so-called monitor function is incor-
porated in the moving mesh equations to guide the evolution of the adaptive mesh
in the physical domain. Typically, the monitor function is designed to give some
measure of the local error of the flow computations (defined for instance in terms of
numerical truncation error or based upon heuristic criteria of the simulated flow).
One approach for the integration of the governing geophysical flow equations on
moving meshes adopted here is to formulate and solve them in time-dependent gen-
eralised coordinates. However, note that many other approaches exist, see e.g. (Budd
et al., 2009; Huang and Russell, 2011).

An advantage of moving mesh methods is that they allow to maintain the basic
structure of a rectangular computational mesh during the simulation. There is no
need to deal with the insertion or deletion of mesh points, an issue that always com-
plicates the implementation of h-refinement methods, e.g. due to the requirement
of some form of nested data structure. The conserved rectangular data structure in
moving mesh methods also provides efficient numerical calculations and low memory

1Another possibility is to determine the mesh velocity instead of the mesh positions; e.g. Cao et al.
(2003).
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requirements. In addition, moving mesh methods are perfectly suited for parallel
computational architectures, because they add little or no communication overhead
compared to uniform mesh solvers. Favourable parallelisation characteristics are
essential in the area geophysical flow modelling, where the use of supercomputers
with hundreds to thousands of parallel processors has become reality nowadays,
e.g. Prusa et al. (2008); Taylor et al. (2008).
The characteristic of a conserved rectangular data structure makes moving mesh
methods the preferred technique to become part of existing established geophysical
flow modelling systems. The latter traditionally rely on fixed rectangular compu-
tational meshes. In particular, this aspect is followed in the present thesis where a
adaptive moving mesh scheme is introduced in the multiscale geophysical flow solver
EULAG (Prusa et al., 2008).
Another aspect of moving mesh methods worth mentioning is their quasi-Lagrangian
nature. In contrast to h-refinement methods, the mesh points can follow the flow,
i.e. moving features like vortices or fronts, without the need for costly topological
changes in the computational mesh geometry. In addition, if the discretisation of the
governing geophysical flow equations is performed in time-dependent generalised co-
ordinates, no interpolations of the prognostic variables are required under the mesh
movement. If the mesh moves downwind, significantly larger time steps of the ex-
plicit numerical flow solver may be possible due to a less restrictive CFL stability
condition. In contrast, a mesh movement against the wind requires to reduce the
time step accordingly for the stability of the integration.
A shortcoming of moving mesh methods is that they are generally less flexible than
h-refinement methods to adapt effectively to arbitrary flow features; see e.g. (Fiedler
and Trapp, 1993; Piggott et al., 2005) for discusssions. For an illustrating example,
imagine a frontal zone or a squall line stretching across the entire simulation domain
between the boundaries. Then, a moving mesh method adapting to this front is able
to improve the resolution across the elongated feature, though it cannot improve ef-
fectively the resolution along the feature. An improvement of the resolution along
the adaptation feature during the simulation could be achieved by the dynamic in-
sertion of additional mesh points, as possible in a h-refinement method.
As an aside, note that combinations of both methods in so-called rh-refinement
methods do also exist, e.g. Szmelter et al. (1992); Lang et al. (2003); Piggott et al.
(2005).

Solution-adaptive moving mesh methods have been used in number of physical dis-
ciplines, see Budd et al. (2009) for an overview. In atmospheric flow modelling,
solution-adaptive moving mesh methods were first applied by Dietachmayer and
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Droegemeier (1992). They employed the popular mesh generator of Brackbill and
Saltzman (1982) to simulate a number of idealised test problems of meteorologi-
cal significance. The test problems in Dietachmayer and Droegemeier (1992) in-
cluded a kinematic frontogenesis flow governed by a single scalar advection equa-
tion, and a two-dimensional dry rising warm thermal in a neutrally-stratified quies-
cent atmosphere governed by the incompressible Boussinesq equations in vorticity-
streamfunction formulation. The mesh adaptation was guided by means of simple
criteria based on the first- and second-order derivatives of either the transported
scalar (kinematic frontogenesis flow) or the potential temperature (rising thermal
flow). Although their moving mesh solver provided very accurate results, they added
that the solver was not competitive in terms of efficiency (i.e. execution time) against
uniform mesh computations for the modelling problems considered.
The adopted mesh generator of Brackbill and Saltzman (1982) in Dietachmayer and
Droegemeier (1992) formulated the mesh generation equations in a variational form
to produce satisfactory mesh concentration in desired regions while maintaining
relatively good orthogonality and smoothness. In a second publication (Dietach-
mayer, 1992), a (simplified) more efficient adaptive mesh generator was constructed
that was built solely on the concept of equidistributing an error-indicating weight-
ing function. The new mesh generator dispensed with the explicit requirements of
smoothness and (near-)orthogonality of the mesh as in the approach of Brackbill and
Saltzman (1982). Dietachmayer (1992) demonstrated the efficiency of the resulting
solution-adaptive moving mesh solver for the modelling of interacting multiple vor-
tices in a barotropic shallow water model in spherical coordinates. In particular,
the showed that their integration using a solution-adaptive moving mesh is three
times faster than a respective uniform mesh calculation in achieving a solution of a
specified accuracy. Dietachmayer (1992) also concluded from their results that near-
orthogonality of the mesh lines is not necessary for the successful implementation
of the solution-adaptive moving mesh method. Dietachmayer added that solution
accuracy in their solver is seriously degraded only if highly skewed mesh cells occur
in conjunction with with rapid variation of the model fields, and this possibility may
be avoided in many cases by smoothing the weight function that guides the mesh
adaptation.
Shortly thereafter, two-dimensional and fully three-dimensional solution-adaptive
moving mesh simulations of the dry rising thermal problem using the compressible
flow equations were presented in Fiedler and Trapp (1993). They implemented a
mesh generator similar to the one developed in Dietachmayer (1992). To achieve a
higher efficiency, Fiedler and Trapp applied the mesh generator on a coarser mesh
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than the mesh where the actual compressible flow equations were solved. The mesh
refinement criterion was specified proportional to the magnitude of the buoyancy,
in order obtain a higher resolution in the region of the rising thermal. They found
that the integration using the solution-adaptive moving mesh is three times faster
than a respective uniform mesh calculation, whereupon nearly equivalent results
were obtained.
A more recent development is the two-dimensional solution-adaptive moving mesh
scheme for scalar advection by Iselin et al. (2002). There development combines the
mesh generator of Brackbill and Saltzman (1982) with the multidimensional posi-
tive definite advection transport algorithm (MPDATA). They applied the flux-form
solver MPDATA to an advective transport equation (in time-dependent generalised
coordinates) in a non-conservative form. Detailed numerical tests were performed
to study the solution properties of MPDATA with uniform and solution-adaptive
moving meshes using the problem of the advection of a cone-shaped passive tracer
in a prescribed (solid-body) rotating velocity field. The mesh refinement was guided
by a sum of first and second derivatives of the transported tracer field. For the
problem considered, they found that the mesh adaptation scheme was far more effi-
cient than the scheme using uniform meshes with similar accuracy. In a companion
publication (Iselin et al., 2005), the scheme developed in Iselin et al. (2002) was then
applied to regional-scale tracer advection over the United States, using a wind field
as obtained from NCEP-NCAR reanalysis data. Their conclusion was that with the
solution-adaptive moving mesh, results with about the same accuracy as a uniform
mesh may be obtained using only a quarter of the mesh points of the uniform mesh.

It is mentioned at this point that the present thesis is concerned with the topic of
using MPDATA under moving meshes for the integration of an advective transport
equation (cast in time-dependent generalised coordinates) in conservation form. A
general issue that appears when solving a scalar advective transport equation in
conservation form is that the compatibility (or consistency) of the applied flux-form
advection numerical solver (here MPDATA) with the associated mass conserva-
tion law must be ensured, see e.g. Lin and Rood (1996). For moving meshes, the
mass conservation law takes on a compressible (i.e. time-dependent) form although
the physical flow under consideration is assumed to be incompressible or anelas-
tic (i.e. the mass conservation law in a symbolic (physical) representation has a
time-independent form) (Prusa et al., 1996, 2001). This difference between time-
dependent and time-independent generalised coordinates complicates the integration
of advective scalar conservation laws in the first case, as a residual term due to the
time-dependency of the mass conservation law may exists that is not accounted for
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in the standard algorithm for static coordinates. The subject is known in the area
of computational fluid dynamics under the term geometric conservation law (GCL)
(Thomas and Lombard, 1979).

The previous works of Dietachmayer and Droegemeier (1992); Dietachmayer (1992);
Fiedler and Trapp (1993); Iselin et al. (2002); Iselin et al. (2005) have suggested that
solution-adaptive moving mesh methods are a useful and promising technique for the
simulation of atmospheric flows. The complexity of the specific flow problems treated
in these works is, however, relatively low compared to typical atmospheric flow mod-
elling applications. Atmospheric flows contain a rich spectrum of processes including
Rossby and internal gravity waves, various hydrodynamic instabilities (e.g. shear,
symmetric, baroclinic, etc. instabilities), clouds, and diabatic processes, among
others. It is currently not yet clear from the earlier studies of Dietachmayer and
Droegemeier (1992); Dietachmayer (1992); Fiedler and Trapp (1993); Iselin et al.
(2002); Iselin et al. (2005) whether solution-adaptive moving mesh methods can
meet the demand of simulating correctly such processes. In addition, it has yet to
be shown whether the use of adaptive moving mesh methods is justified for these
flows in terms of the resulting efficacy gain in comparison to established modelling
approaches.

1.2 Modelling framework and thesis approach

The Eulerian and semi-Lagrangian flow solver EULAG, see (Prusa et al., 2008)
for a review, provides a proven multiscale modelling framework that accurately
and efficiently simulates (geophysical) flows across a wide range of scales and for
different scenarios. Among others, successful applications of EULAG have been
documented for direct numerical simulation (DNS), large-eddy simulation (LES)
and implicit large-eddy simulation (ILES) of turbulence, e.g. Margolin et al. (1999);
Smolarkiewicz and Prusa (2002); Wedi and Smolarkiewicz (2006), cloud dynamics
including microphysical processes, e.g. Grabowski and Smolarkiewicz (2002); Craig
and Dörnbrack (2008), gravity wave dynamics, e.g. Smolarkiewicz and Margolin
(1997); Doyle et al. (2010), sub-synoptic and synoptic scale weather phenomena, and
global atmospheric flows, e.g. Smolarkiewicz et al. (2001). Furthermore, EULAG has
proven its capability in simulating urban (Smolarkiewicz et al., 2007) and canopy
(Dörnbrack et al., 2010) flows, flows past complex/moving boundaries (Ortiz and
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Smolarkiewicz, 2006), and oceanic flows (Warn-Varnas et al., 2007)1.

EULAG is based on semi-implicit non-oscillatory forward-in-time (NFT) numerics
applied to solve the non-hydrostatic anelastic equations. Optionally, the advec-
tive transport is solved in either a flux-form Eulerian or an advective-form semi-
Lagrangian representation – hence, the name EULAG. Previous efforts by Clark
(1977); Smolarkiewicz and Clark (1986); Smolarkiewicz and Margolin (1993); Prusa
et al. (1996); Smolarkiewicz and Margolin (1997); Smolarkiewicz and Prusa (2002);
Prusa and Smolarkiewicz (2003); Wedi and Smolarkiewicz (2004); Smolarkiewicz
and Prusa (2005) (see Prusa et al. (2008) for a more comprehensive list of refer-
ences) were concerned with the design of the analytical and numerical framework of
the model.
In particular, the recent work by Prusa and Smolarkiewicz (2003) established a
generic framework for the implementation of a dynamic mesh adaptation capabil-
ity via deforming coordinates. The foundation of the dynamic mesh adaptation
capability is a time-dependent generalised coordinate transformation, implemented
rigourously throughout the governing anelastic equations. One aspect of the mod-
elling framework is the time-dependent vertical coordinate transformation that can
be used to simulate – in the spirit of the classical terrain-following coordinate of
Gal-Chen and Somerville (1975) – deforming lower (Prusa et al., 1996) and also
upper (Wedi and Smolarkiewicz, 2004) domain boundaries. Another aspect of the
modelling framework emphasised in Prusa and Smolarkiewicz (2003) is the use of
time-dependent horizontal coordinate transformations for moving mesh adaptation.
Prusa and Smolarkiewicz (2003) showed the potential of this aspect to improve the
model representation of geophysical flows. They implemented a moving “nested”
mesh by means of the time-dependent horizontal coordinate transformation to track
a travelling stratospheric internal gravity wave packet with a uniform high resolu-
tion. The wave response of the internal gravity wave packet in the rotating stratified
fluid was forced by a prescribed oscillating deflection of the lower domain boundary
using the time-dependent vertical coordinate. The boundary deflection is thought
to represent an idealised deformation of the tropopause. The moving “nested” high-
resolution mesh tracking the wave packet was implemented via the numerical ad-
vection of a dense-mesh region with the prescribed velocity of the oscillating lower
boundary deflection. The results of the “nested” mesh simulations showed excel-
lent comparability with reference results obtained from uniform mesh simulations,

1Note, derivatives of EULAG have also been applied to simulations of visco-elastic waves in the
human brain (Cotter et al., 2002), and solar convection (Elliott and Smolarkiewicz, 2002). Fur-
thermore, current developments include extensions to MHD (magneto-hydrodynamics).
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while using only a fraction of the computational expense. Another application in
Prusa and Smolarkiewicz (2003) considered idealised global climate simulations of
the benchmark test of Held and Suarez (1994). Prescribed (steady and unsteady)
analytical stretching functions were employed to increase the meridional resolution
either unimodal in the tropics or bimodal in the regions of the mid-latitude zonal
jets. Although there was no consistent improvement in the climate statistics such
as time-zonal averages, the adaptive mesh simulations outperformed uniform mesh
simulations in terms of the flow symmetry about the equator and global statistics
based upon the variation of the flow, e.g. the maximum value of the variation of
potential temperature about its time-zonal average.

Despite the success, the applications in Prusa and Smolarkiewicz (2003) only ex-
ploited a relatively small capacity of the implemented time-dependent horizontal
coordinate transformations in EULAG. Two main assumptions were made so far.
First, only well-defined unimodal (i.e. single) or bimodal (i.e. double) targeted re-
gions were considered for the moving mesh adaptation. Second, the moving mesh
adaptation was prescribed in advance of the simulation. In particular, there was
no dynamic interaction between the prognostic solution fields of the anelastic solver
and the machinery that generates the adaptive moving mesh.

The promising results of Prusa and Smolarkiewicz (2003) represent the starting point
for the present thesis. Here, the time-dependent generalised coordinate framework
of EULAG as presented in Prusa and Smolarkiewicz (2003) is extended with a
solution-adaptive moving mesh capability. The resulting scheme dispenses with the
assumptions made so far. It enables to zoom with the mesh into multiple physical
flow features at the same time. In addition, the moving mesh can dynamically
interact with the simulated flow in EULAG. One main ingredient of the scheme
is a set of moving mesh equations (see the previous Section 1.1) for the numerical
generation of a dynamic curvilinear mesh. A time-space dependent monitor function
in the moving mesh equations guides the mesh. With the approach, the monitor
function can be specified proportional to some error-indicating quantity derived
from prognostic solution fields in EULAG, e.g. velocity, temperature, water vapour
mixing ratio, or any other quantity available in the model. If an appropriate error-
indicating quantity can be determined for the flow considered, then the solution-
adaptive moving mesh scheme can continuously self-adapt the mesh to improve
the representation of the flow according to the error quantity’s distribution. A
simple heuristic example for such an error-indicating quantity may be to specify it
proportional to the gradient of temperature in order to detect (temperature) fronts.
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1.3 Overview of the thesis

The objective of the present thesis is to design, implement and assess a solution-
adaptive moving mesh solver for the modelling of atmospheric (geophysical) flows.
The solver, effectively incorporated into the computational framework of EULAG, is
expected to enable a continuous spatiotemporal relocation of the mesh nodes during
the integration according to predefined dynamic mesh refinement criteria that can
depend on the prognostic solution fields.
Using the developed solver, the present thesis examines the question whether solution-
adaptive moving mesh methods can be a viable alternative to uniform mesh atmo-
spheric flow modelling approaches. In particular, the thesis investigates whether
solution-adaptive moving mesh methods are able to significantly improve the effi-
cacy of atmospheric flow simulations compared to uniform mesh computations.

Chapter 2 provides a review of the EULAG modelling framework. The emphasis
is on the formulation of the underlying sound-proof anelastic thermo-fluid equations
in the time-dependent generalised coordinates and the description of the numerical
solution procedure. Furthermore, a detailed explanation of the Eulerian flux-form
advection scheme MPDATA (which is employed in EULAG for the advective trans-
port of all prognostic variables) will be given.

Chapter 3 addresses the numerical integration of the anelastic equations in time-
dependent generalised coordinates. In particular, this part develops extensions to the
Eulerian flux-form advection scheme MPDATA which are essential for an effective
integration of the anelastic equations under (arbitrary, i.e. numerically-generated)
moving meshes. The developed extensions aim at the compatibility of the flux-form
MPDATA scalar advection transport with the associated anelastic mass continuity
equation in time-dependent generalised coordinates. Scalar advection experiments
are performed to investigate the subject. All numerical experiments in Chapter 3
are limited to prescribed oscillating meshes for simplicity.

Chapter 4 introduces the solution-adaptive moving mesh algorithm. The imple-
mented machinery that performs the numerical generation of the solution-adaptive
moving curvilinear mesh is described in detail. The main ingredient of the scheme
developed is a set of parabolic moving mesh partial differential equations (MMPDEs)
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(Huang and Russell, 1999), which are solved along with the anelastic equations in
EULAG. Monitor functions in the MMPDEs guide the mesh adaptation. Subjects
such as the specification of the monitor functions, balancing of various monitor func-
tion components, the choice of a relaxation time for the moving mesh adaptation,
adaptation of the mesh at the boundaries of the simulation domain, and the efficient
and robust numerical implementation of the MMPDE machinery, are dealt with. In
addition, the final Section 4.4 is concerned with the effective incorporation of the
MMPDE machinery into the computational framework of EULAG.

Chapter 5 is concerned with testing and validation of the more basic aspects of
the developments of Chapters 3 and 4 using canonical two-dimensional modelling
problems of relevance to atmospheric flows. A first test problem is the advection of
a passive scalar in a prescribed time-varying shear flow. A second test problem is
a dry rising warm thermal in a neutrally-stratified quiescent atmosphere. Both test
problems used are well documented in the literature and have the advantage that
they are relatively easily to perform and analyse. The final Section 5.3 is devoted
specifically to the investigation of the compatibility issue thoroughly discussed in
the previous Chapter 3.

In Chapter 6, the developed solution-adaptive moving mesh solver is eventually
applied in the three-dimensional modelling framework of EULAG. For the first
time, solution-adaptive moving mesh methods are used to simulate the life cycle
of a synoptic-scale baroclinic wave instability. The adaptive solver’s ability is in-
vestigated to capture the synoptic-scale baroclinic wave instability and coexisting
mesoscale processes like internal gravity waves.

Chapter 7 summarises and concludes the thesis. Remarks concerning the devel-
oped solution-adaptive moving mesh solver and an outlook for future research are
given.

Furthermore, a completely different topic is addressed in Appendix B. This part
presents results from a numerical model investigation about the significance of the
abbreviated representation of baroclinic vorticity production underlying the Boussi-
nesq equations for the simulation of aircraft wake vortices in a stably stratified
atmosphere.



Chapter 2

EULAG modelling framework

This chapter introduces the EULAG modelling system for geophysical flows. The
model provides the framework for the implementation of the solution-adaptive mov-
ing mesh non-oscillatory forward-in-time (NFT) flow solver that is developed and
applied in this thesis. The following presentation of EULAG focuses on aspects of
particular relevance to this implementation. This includes a description of the un-
derlying “sound-proof” anelastic equations followed by their analytical formulation
in time-dependent generalised coordinates, see Section 2.1. Tensor identities that
play an important role in the analytical and numerical formulation are also high-
lighted briefly. The numerical solution procedure is then described in Section 2.2.
Finally in Section 3.1, a detailed description of the advection solver MPDATA, which
is employed in EULAG, is also given. In the subsequent Chapter 3, an extension
of the given MPDATA scheme will be developed that is essential for its use with
solution-adaptive moving meshes.
The reader is referred to Prusa et al. (2008), and references therein, for a more com-
prehensive explanation of EULAG’s historical development and present capabilities,
including its performance on large-scale parallel computational architectures.

2.1 Analytical formulation

A straightforward explicit numerical discretisation of the fully compressible equa-
tions is prohibitively expensive in terms of the required computational effort – and
overall difficult to implement (Klein, 2011) – for typical atmospheric and oceanic
flow problems. The presence of fast acoustic modes in the solutions imposes a severe
time-step restriction on the integration algorithm. In order to achieve a more efficient

15
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solution, i.e. larger time steps, atmospheric flow solvers based on the compressible
equations may adopt special time discretisation approaches. These approaches typ-
ically use some form of time splitting (Klemp and Wilhelmson, 1978; Klemp et al.,
2007) or implicit-differencing (Tanguay et al., 1990; Cullen, 1990) schemes.
An alternative approach underlying the present model formulation is to employ an-
alytically filtered subsets of the fully compressible equations, that do not contain
the fast unimportant acoustic modes yet retain the slower relevant modes of inter-
nal gravity waves and advection. For general stratified atmospheres, these so-called
“sound-proof” flow models comprise the anelastic systems of equations (Ogura and
Phillips, 1962; Dutton and Fichtl, 1969; Wilhelmson and Ogura, 1972; Lipps and
Hemler, 1982; Lipps, 1990; Bannon, 1996), and the pseudo-incompressible system of
Durran (Durran, 1989, 2008).

Here, only the dry dynamical version of the EULAG model is presented. A higher
complexity that arises from the inclusion of moist physics and explicit microphysi-
cal/chemical processes (Grabowski and Smolarkiewicz, 2002; Spichtinger and Gierens,
2009a,b; Sölch and Kärcher, 2010) is disregarded. The focus is on essential aspects
regarding the formulation of the model equations in time-dependent generalised co-
ordinates.

Anelastic thermo-fluid equations

Starting point is the physical representation of the non-hydrostatic Lipps and Hemler
anelastic system (Lipps and Hemler, 1982; Lipps, 1990) , given in an extended
perturbational form (Smolarkiewicz and Margolin, 1997; Smolarkiewicz et al., 2001)

Dv

Dt
= −∇π′ − g

θ′

θb
− f × v′ + M + D + B (2.1a)

Dθ′

Dt
= −v · ∇θe +H + B (2.1b)

∇ · (ρbv) = 0 . (2.1c)

The set of anelastic equations (2.1) describes, respectively, the three components of
the momentum equation (2.1a), the thermodynamic equation (2.1b), and the anelas-
tic mass continuity equation (2.1c). In (2.1), the operators ∇ and ∇ · symbolize
gradient and divergence, while D/Dt= ∂/∂t+ v · ∇ is the Lagrangian derivative,
and v is the physical velocity vector. A vector representing gravitational accelera-
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tion g = (0, 0,−g)T occurs in the buoyancy term of Eq. (2.1a). The symbol f stands
for the vector of the Coriolis parameter that arises due to the global rotation of the
domain. The subscript b appearing with the density ρ and potential temperature
θ refers to the basic state, a horizontally-homogeneous prescribed hydrostatic ref-
erence state, characteristic of the anelastic approximation, see Ogura and Phillips
(1962); Clark and Farley (1984); Bacmeister and Schoeberl (1989). In addition to
the basic state, a more general ambient (also called environmental) state, that can
vary in the vertical as well as the horizontal direction, is denoted with the subscript
e, and defined to satisfy a balanced subset of the system (2.1). Please consult Prusa
et al. (2008) for a discussion of the ambient state and its benefits. All primed vari-
ables θ′, v′, and π′ that appear in (2.1) correspond to deviations from the ambient
state. Particularly, the symbol π′ in the linearised pressure gradient term of (2.1a)
denotes a density-normalised pressure perturbation (Smolarkiewicz and Margolin,
1997).

Additional source terms not explicitly stated in the system (2.1) are considered
through the following symbols: M denotes metric forces due to the curvilinearity of
the underlying physical system Sp (see below), among others. The terms in D and
H symbolise viscous dissipation of momentum and diffusion of heat, respectively.
The terms in B and B may represent wave-absorbing devices in the vicinity of
the domain boundaries (Smolarkiewicz and Margolin, 1997), and/or fictitious body
forces employed to model immersed boundaries (Smolarkiewicz et al., 2007).

Coordinate transformations

Let Sp denote the physical space where the actual problem is naturally posed. An
irregular, possibly time-dependent, subdomain Dp⊆Sp with an assumed tuple of
coordinates (t,x)≡ (t, x, y, z) in Sp can be mapped into a regular computational
subdomain Dt⊆St in a transformed space St with its own tuple of generalised
coordinates (t,x) ≡ (t, x, y, z):

(t,x) ≡ (t,F(t,x)) : Dp → Dt . (2.2)

The general mapping (2.2) is understood here to be a diffeomorphism, i.e. F(t,x)

is a bijective map between manifolds Dp and Dt that is at least C2-continuously
differentiable.1. The requirement that the coordinate mapping is bijective means

1As an aside, it is noted that the numerical formulation of EULAG even allows for discontinuities in
the coordinate mapping to mimic nested grids, see Prusa and Smolarkiewicz (2003) for an example.
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that there exists a one-to-one (invertible) relationship between the coordinates in
Dp and the coordinates in Dt, which ensures that the mesh cells are not folded, see
e.g. Liseikin (1999)

In the present work, the physical coordinates x∈Sp are assumed to be exclusively
rectangular Cartesian. Note, however, that the general coordinate framework of
EULAG, as presented in this chapter, allows the physical problem to be posed in
any stationary orthogonal system Sp. Cartesian, spherical and polar cylindrical
physical coordinates are possible choices in the current implementation of the model
(Prusa and Smolarkiewicz, 2003; Prusa and Gutowski, 2006; Prusa et al., 2008).

Transformed model equations

Using a tensorial description, e.g. Synge and Schild (1978), the anelastic equations
(2.1) can be written with respect to St as (Prusa et al., 2001; Smolarkiewicz and
Prusa, 2002; Prusa and Smolarkiewicz, 2003)

dvj

dt
= −G̃k

j

∂π′

∂xk
+ g

θ′

θb
δj3 − f i v′kεjik +M j +Dj +Bj (2.3a)

dθ′

dt
= −vsk ∂θe

∂xk
+H + B (2.3b)

∂(ρ∗ vs
k
)

∂xk
= 0 , (2.3c)

where i, j, k= 1,2,3; and the Einstein summation convention applies, unless oth-
erwise stated. The Kronecker Delta δj3 in the momentum equation (2.3a) is 1 for
j= 3, and 0 for j 6= 3. The Levi-Civita (permutation) symbol εjik, see e.g. Synge and
Schild (1978), occurs in the Coriolis term to represent the cross product. Note that
in (2.3a), advection of the physical velocity is retained; therefore vj corresponds to
the j-th component with respect to the system Sp.1

In the system (2.3), a generalised density ρ∗≡ ρbG is conveniently introduced as
the product of the basic state density ρb and the Jacobian of the transformation
G (defined below). For the sake of clarity, ρ∗ represents a positive-definite variable
that incorporates the effects of both, the physical volumetric variation due to back-
ground stratification contained in the time-independent prescribed physical density

1Note that the formulation in the physical velocity components (instead of the transformed depen-
dent variables) avoids numerical complications due to the occurrence of metric terms that involve
Christoffel symbols in the momentum equation; see the seminal works of Vinokur (1974); Viviand
(1974); Clark (1977).
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ρb, plus changes of the geometric volume through the Jacobian G of the underly-
ing coordinate transformation, that may be time-dependent. In contrast to elastic
(e.g. compressible, general shallow water) systems, the variable ρ∗ is explicitly known
in anelastic systems.

The operator d/dt is the total derivative given as

d

dt
=

∂

∂t
+ v∗

k ∂

∂xk
, (2.4)

where v∗k := dxk/dt is the contravariant velocity in the transformed system St. The
velocity vsk occurring in the entropy (2.3b) and continuity (2.3c) equations is the
so-called solenoidal velocity (Prusa et al., 2001) defined as

vs
k

:= v∗
k − ∂xk

∂t
, (2.5)

that reflects the advective velocity in an otherwise stationary curvilinear coordinate
system St. While numerous formulae may be derived to express the distinct forms
of velocity (physical, contravariant, and solenoidal) in terms of the other, an espe-
cially convenient transformation that relates the physical and the solenoidal velocity
directly, is given as

vs
k

= G̃k
j v

j . (2.6)

The symbol G̃k
j :=

√
gjj ∂xk/∂xj appearing in (2.6) and the pressure gradient term

of (2.3a), denotes the renormalised elements of the Jacobian matrix (summation not
implied over j), while the coefficients gjj are the diagonal elements of the conjugate
metric tensor of Sp. The elements are gjj ≡ 1 for Cartesian coordinates x∈Sp, as
assumed in the present work. For the general case of non-Cartesian orthogonal
coordinates x, please refer to Prusa and Smolarkiewicz (2003).

The utilised form of the mass continuity equation (2.3c) is not the most general
tensor-invariant representation under the time-dependent mapping (2.2). The latter
reads

1

G

∂(ρ∗ v∗
r
)

∂xr
≡ 0 , (2.7)

where r= 0,1,2,3 , t≡x0, t≡x0, and v∗0 ≡ 1, or similarly

1

G

(
∂ρ∗

∂t
+
∂(ρ∗ v∗

k
)

∂xk

)
≡ 0 . (2.8)

However, under the given assumptions that (i) the coordinates x∈Sp are stationary,
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and (ii) the density obeys the functional dependence ρb = ρb(x), the form (2.8) is
analytically-equivalent to (2.3c), see Prusa et al. (2001) for a discussion. This allows
to employ the form (2.3c) instead of (2.8) in the governing system (2.3). As a result,
it simplifies the design of the numerical model (see Section 2.2), and improves the
efficacy of the solution procedure under time-variable mappings. Notwithstanding
the use of (2.3c) in the system (2.3), the general form of the mass continuity equation
(2.8) has important implications for the design of the numerical solver under time-
dependent generalised coordinates, see Chapter 3.

Given by (2.2) is the most general transformation of the coordinates in three dimen-
sions. The specific mapping that underlies the current implementation of EULAG
is given as

F(t,x) ≡ (x(t, x, y), y(t, x, y), z(t, x, y, z)) . (2.9)

In (2.9), the vertical mapping z(x, y, z, t) incorporates a time-variable generalisation
(Wedi and Smolarkiewicz, 2004)1 of the standard terrain-following coordinate by
(Gal-Chen and Somerville, 1975), that takes on the form

z = C(ζ) ζ = ζ(t, x, y, z) := H0
z − zs(t, x, y)

H(t, x, y)− zs(t, x, y)
, (2.10)

where zs and H describe the lower and upper boundary of the domain, respectively,
and H0 is a representative domain depth. The function ζ(t, x, y, z) realises a uniform
mesh between zs and H in the vertical, and the function C(ζ) can conveniently be
used to apply a prescribed stretching, i.e. variable resolution, of the coordinate ζ
with height.

While the vertical mapping coded in EULAG is subject to (2.10), the horizontal
mappings admit the most general transformation according to the functional depen-
dence x(x, y, t) and y(x, y, t). In effect, the model formulation enables an arbitrary
time-dependent adaptive deformation of the mesh in the horizontal plane, that is
independent of height. Although this purely horizontal structure prevents full gen-
erality of the mesh adaptation in three dimensions, it meets/follows the basic hydro-
static nature of atmospheric and oceanic flows, while simplifying metric terms and
respective coding design. Moreover, the computational overhead associated with
the solution-adaptive moving mesh apparatus employed in the present work (see
Chapter 4), is kept small in a typical three-dimensional setting.

1This work was conducted by N.P.Wedi as part of his dissertation thesis at the Ludwig-
Maximilians-Universität München (Wedi, 2004).
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From the specifications of the mapping F(t,x) in (2.9) and (2.10), the Jacobian of
the transformation G attains a separable form

G = GG
′
0Gxy . (2.11)

The symbol G′0 in (2.11) denotes Jacobian of the transformation (2.10)

G
′
0 =

(
dC
dζ

∂ζ

∂z

)−1

=

(
dC
dζ

)−1
H(t, x, y)− zs(t, x, y)

H0

, (2.12)

cf. Wedi and Smolarkiewicz (2004), while Gxy represents the Jacobian of the general
transformation of the horizontal coordinates defined as

Gxy =

(
∂x

∂x

∂y

∂y
− ∂x

∂y

∂y

∂x

)−1

. (2.13)

The choice of a possibly non-Cartesian physical system Sp is reflected in the Jacobian
G, whereupon we have G≡ 1 for the assumed Cartesian coordinates x ∈ Sp.

Tensor identities

Underlying the model formulation in the generalised coordinates are fundamental
tensor identities (Prusa and Gutowski, 2006), where at least two deserve brief con-
sideration here. Among these is the Kronecker-delta identity (Synge and Schild,
1978; Prusa and Gutowski, 2006)

δrs ≡
∂xr

∂xq
∂xq

∂xs
, (2.14)

that states the reciprocity of the co- and contravariant base vectors describing the
generalised system St. Here, the indices r, s, q= 0,1,2,3 , whereupon t≡x0 and t≡x0.
Given the computed metric coefficients ∂xq/∂xs in the model computational space
St (where xs =xs(xr)), the identity (2.14) provides the relationships to determine
the inverse metric coefficients ∂xr/∂xq, that are used in the transformed model
variables.

Another identity that arises naturally with the equations in conservation law form,
e.g. (2.18), is the multi-component tensor geometric conservation law (GCL)

G

G

∂

∂xr

(
G

G

∂xr

∂xs

)
≡ 0 ; (2.15)



22 2.2 Numerical solution procedure

emphasised in Prusa et al. (2001); Prusa and Gutowski (2006). The GCL (2.15)
represents a compact differential statement about the conservation of space, under
the general mapping of the coordinates (2.2). For s= 1,2,3 it relates the three-
dimensional spatial variation in St, of the inverse metric coefficients and the Jacobian
determinants1. For s= 0, it describes the conservation of volume (known to be
equivalent to the Jacobian) according to

∂(G/G)

∂t
+

∂

∂xk

(
G

G

∂xk

∂t

)
= 0 , (2.16)

i.e. it relates, in the transformed space St, the divergence of the fluxes of volume in
space with the changes of volume in time. The importance of satisfying the GCL
on the level of discretisation with the solution of conservation law forms, was first
shown by Thomas and Lombard (1979). In Chapter 3, this subject is discussed with
regard to the nonlinear flux-form advection solver MPDATA in the framework of
the present anelastic solver.

2.2 Numerical solution procedure

Each prognostic equation of the transformed anelastic system (2.3) is given in a
Lagrangian representation

dψ

dt
= Rψ , (2.17)

where ψ=ψ(t,x) denotes the transported mass-specific variable, and Rψ subsumes
the appendant source terms. Alternatively, the same equations can be written in
the analytically-equivalent flux-form Eulerian conservation law

∂(ρ∗ ψ)

∂t
+∇ · (ρ∗ v∗ ψ) = ρ∗Rψ ; (2.18)

given v∗≡ dx/dt as the contravariant velocity vector, and ∇ · the divergence oper-
ator with respect to the generalised coordinates x∈St. Underlying the numerical
model formulation is that the anelastic equations (2.3) can be optionally integrated
in either the flux-form Eulerian (2.18) or the Lagrangian (2.17) representation2.
A compact description of the unified Eulerian/semi-Lagrangian solution algorithm
on a regular computational mesh (t

n
,xi), can be written as (Smolarkiewicz, 1991;

1From a geometrical point of view, the s= 1,2,3 components of the GCL simply state that the
surface enclosing a differential volume is closed.
2Hence, the name EULAG.
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Smolarkiewicz and Margolin, 1993; Smolarkiewicz and Margolin, 1997, 1998)

ψn+1
i = LE i(ψ̃) + 0.5 δtRψ|n+1

i , (2.19)

whereupon LE i symbolically denotes a non-oscillatory1 forward-in-time (NFT) ad-
vection transport scheme, and ψ̃≡ψn + 0.5 δtRψn . Note, that the n, n+ 1 su-
perscripts denote the time level, the subscript i denotes the spatial mesh vector
index, and δt= t

n+1− tn is the time step increment. In the Eulerian variant of
the model, LE integrates the homogeneous conservation law (2.18) employing the
second-order-accurate fully multidimensional advection algorithm MPDATA (see
Section 2.3). In the semi-Lagrangian option, LE remaps the transported fields,
which arrive at the grid points (t

n+1
,xi), back to the departure points of the flow

trajectories (t
n
, x0(t

n+1
, xi)), using tensor-product application of one-dimensional

advection schemes that are akin to MPDATA (Tremback et al., 1987; Smolarkiewicz
and Pudykiewicz, 1992). Advecting the auxiliary field ψ̃ (instead of the variable
ψn alone) in the Eulerian FT scheme, compensates for O(δt) truncation errors pro-
portional to the divergence of the advective flux of the source terms Rψ, see Smo-
larkiewicz (1991); Smolarkiewicz and Margolin (1993) for an explanation. Simulta-
neously, it makes the Eulerian integration congruent to the trapezoidal approxima-
tion of the trajectory integral in the semi-Lagrangian scheme (Smolarkiewicz and
Margolin, 1993; Smolarkiewicz and Margolin, 1997).

Restricting the anelastic set (2.3) to inviscid adiabatic dynamics for simplicity,
i.e. M, D, H, B, B all set to zero, the template algorithm (2.19) represents a
system that is fully implicit with respect to the dependent variables v, π′ and θ′,
while the explicit part in (2.19) consists of the advection operator ψ̂ :=LE(ψ̃). For
the momentum equation (2.3a), the algorithm (2.19) results in

vi = v̂i − 0.5 δt (G̃∇π′)i + 0.5 δtFi(v, θ̂′) , (2.20)

with
Fi(v, θ̂′) ≡ −

g

θb

(
θ̂′ − 0.5 δt ((G̃Tv) ·∇θe)

)
i
− (f × v′)i (2.21)

accounting for the implicit treatment of buoyancy via the entropy equation (2.3b).
Note that all superscripts indicating the n+ 1 time level have been dropped here,
since there is no ambiguity. The symbol G̃ that appears in the utilised compact de-
scription, is identified with the renormalised Jacobi matrix G̃k

j , defined in Section 2.1.

1Non-oscillatory refers to the monotonicity of the solution, i.e. no spurious extrema are created by
the numerical solution scheme, see e.g. Durran (1999) for a discussion.
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Organising of (2.20) into explicit and implicit parts gives

vi = ̂̂vi − 0.5 δt (G̃∇π′)i + 0.5 δt F̃i(v) , (2.22)

where ̂̂v subsumes all known terms, and F̃ denotes the implicit remainder of (2.21).
Provided that the underlying grid is co-located with respect to all prognostic vari-
ables1, algebraic inversion of (2.22) leads to a unique expression for the vector vi.
Then, the relation (2.6) leads to an expression for the solenoidal velocity of the form
vs≡ G̃T

[˜̃v − (I− 0.5 δt F̃)−1(G̃∇π′′)
]
with the definitions ˜̃v := (I − 0.5 δt F̃)−1 ̂̂v

and π′′ := 0.5 δt π′. Finally, the solenoidal velocity vs is substituted into the anelastic
mass continuity equation (2.3c) to obtain an elliptic equation for π′′{

− δt
ρ∗
∇ ·

(
ρ∗ G̃T

[˜̃v − (I− 0.5 δt F̃)−1(G̃∇π′′)
])}

i

= 0 , (2.23)

a complete development of which is given in the Appendix A of Prusa and Smo-
larkiewicz (2003). The applied normalisation by (δt/ρ∗) gives the residual errors
of (2.23) the meaning of the divergence of a dimensionless velocity on the grid.
The latter compares directly to the magnitude of the Courant and Lipschitz num-
bers (cf. Smolarkiewicz and Pudykiewicz (1992)), and facilitates the specification of
physically meaningful accuracy thresholds ||(δt/ρ∗)∇ · (ρ∗vs)|| < ε (Smolarkiewicz
and Margolin, 1994; Smolarkiewicz et al., 1997; Prusa and Smolarkiewicz, 2003).
Multiplication by the factor (−1) assures the formal negative-definiteness of the el-
liptic operator (Smolarkiewicz and Margolin, 1994; Prusa and Smolarkiewicz, 2003).
Note also, the scaling by (1/ρ∗) acts as a preconditioner for deep atmospheres where
ρ∗, respectively ρb, can vary several orders of magnitude over the vertical depth of
the simulation domain.
Dirichlet boundary conditions along ∂Dt prescribed on the normal component of
the solenoidal velocity, i.e. vs ·n, which are subject to the integrability condition∫
∂Dt

ρ∗vs ·n dσ= 0, imply the correct Neumann boundary conditions for π′′ (Prusa
and Smolarkiewicz, 2003). A preconditioned generalised conjugate residual GCR(k)2

algorithm (Eisenstat et al., 1983; Smolarkiewicz and Margolin, 1994; Skamarock
et al., 1997; Smolarkiewicz et al., 2004) is employed to solve the formulated elliptic
boundary value problem. The solution to (2.23) is used to compute the updated
solenoidal velocity. From this, the updated physical and contravariant velocity com-

1Arakawa A- or B-grids are possible options in the present model, see Smolarkiewicz and Margolin
(1997).
2The generalized conjugate residual scheme is a type of non-symmetric Krylov subspace solver
akin to the generalised minimum residual (GMRES) scheme (Saad, 1993).
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ponents are obtained using the relations (2.6) and (2.5), respectively.

Note finally, that the additional source terms in the system (2.3) that represent
the boundary forcings B and B are otherwise all treated implicitly in the solution
scheme, see Smolarkiewicz and Margolin (1997); Prusa and Smolarkiewicz (2003);
Smolarkiewicz et al. (2007). Moreover, possible nonlinear terms occurring in (2.3),
e.g. metric terms arising with a spherical physical system Sp (Smolarkiewicz et al.,
2001) or nonlinear pressure gradient terms that occur with the solution of Dur-
ran’s pseudo-incompressible equations (as described in Smolarkiewicz and Dörn-
brack (2008)), may use outer iteration of the system generated by (2.19). When
incorporated, diabatic, viscous, and subgrid-scale forcings, are typically evaluated
explicitly with first-order accuracy (Smolarkiewicz and Margolin, 1998; Prusa and
Smolarkiewicz, 2003).

2.3 Advection solver MPDATA

The MPDATA scheme uses the upwind method in an iterative manner to achieve
second-order accurate solutions to advective conservation laws. Given a regular up-
wind solution, MPDATA applies corrective upwind steps to reduce the error of the
preceding solution. The basic idea is to employ error-compensative pseudo-velocities
in the corrective steps that are derived on the basis of a truncation error analysis.
Since this basic idea of MPDATA methods has been invented in the early 1980’s
by Piotr K. Smolarkiewicz (Smolarkiewicz, 1983), the technology has evolved into
a broad class of complete flow solvers for general inelastic- and elastic-type conser-
vation laws in curvilinear (Smolarkiewicz and Clark, 1986; Smolarkiewicz and Mar-
golin, 1993; Smolarkiewicz and Margolin, 1998; Smolarkiewicz, 2006), and also arbi-
trary unstructured (Smolarkiewicz and Szmelter, 2005; Szmelter and Smolarkiewicz,
2006; Szmelter and Smolarkiewicz, 2010b,a) mesh frameworks.

MPDATA belongs to the class of nonlinear high-resolution schemes, e.g. Drikakis
and Rider (2005), that offer solutions free of spurious oscillations, while maintaining
second-order accuracy away from discontinuities for arbitrary flows. The particular
nonlinear design of MPDATA (Rider, 2006) makes it a viable advection method
for implicit large-eddy simulation (ILES) of high-Reynolds number turbulent flows
(Margolin et al., 1999; Smolarkiewicz and Prusa, 2002; Smolarkiewicz and Prusa,
2002; Domaradzki et al., 2003; Domaradzki and Radhakrishnan, 2005; Rider, 2006;
Prusa et al., 2008; Piotrowski et al., 2009). Therein, the large-scale turbulent mo-
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tions are simulated explicitly, while the subgrid-scale modelling of turbulence is left
to the self-adaptive dissipative nature of the truncation error terms in the advection
scheme. This is in contrast to the typical LES approach where the effect of the
subgrid-scale dynamics on the resolved scales is implemented by an explicit sub-
grid scale model, see for instance Schmidt and Schumann (1989); Nieuwstadt et al.
(1991); Schumann (1996); Lesieur and Metais (1996). An option for ILES is of spe-
cial relevance to geophysical flow simulations with possible adaptive meshing, where
explicit modelling of subgrid-scale turbulence is difficult to implement effectively.
Furthermore, the non-oscillatory character of the solution scheme per se represents
an important ingredient of an accurate and robust mesh adaptation algorithm, es-
pecially when the mesh refinement is driven by the solution itself. In terms of the
latter, note finally that MPDATA’s special iterative error-reducing design can be
exploited to derive a posteriori refinement indicators for mesh adaptation (Szmelter
and Smolarkiewicz, 2006).

Derivation of the scheme

Here, the MPDATA solution scheme to a prototype advective conservation law in
time-dependent generalised coordinates, which is given as the homogeneous version
of the Eulerian transport equation (2.18)

∂(ρ∗ψ)

∂t
+∇ · (v∗ρ∗ψ) = 0 , (2.24)

is reviewed. Following the developments in Smolarkiewicz (1984); Smolarkiewicz
and Margolin (1993); Smolarkiewicz and Prusa (2002) (see also the review publi-
cations Smolarkiewicz and Margolin (1998); Smolarkiewicz (2006)), the generalised
advection conservation law (2.24) is discretised forward-in-time (FT) as

ρ∗n+1ψn+1− ρ∗nψn

δt
+∇ ·

(
v̂n+1/2ψn

)
= 0 , (2.25)

where the superscripts correspond to the temporal levels, and again δt= t
n+1− tn is

the time step increment. Under the continuous divergence operator, the density ρ∗

has been absorbed in an advective contravariant Jacobian-weighted mass flux vector
v̂ := ρ∗v∗. A truncation error analysis based on Taylor series expansions of all fields
around the time level tn, shows that (2.25) approximates, to second-order accuracy
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in time, the modified equation

∂(ρ∗ψ)

∂t
+∇ · (v̂ψ) = −∇ ·

[
δt
∗

2

1

ρ∗
v̂
(
v̂ · ∇ψ

)
+
δt
∗

2

1

ρ∗
v̂

(
∂ρ∗

∂t
+∇ · v̂

)
ψ

]
+O(δt

2
) ; (2.26)

given an O(δt
2
) estimate for v̂n+1/2 = (ρ∗v∗)n+1/2 in (2.25). See Smolarkiewicz and

Margolin (1993); Smolarkiewicz and Prusa (2002) for a thorough demonstration in
the context of the inhomogeneous generalised transport equation (2.18). In contrast
to the derivations in these earlier works Smolarkiewicz and Margolin (1993); Smo-
larkiewicz and Prusa (2002), a continuously varying time step δt= δt(t) is assumed
here. This leads to the modified equation (2.26) that is congruent with the one
derived under a constant time step δt, but with δt replaced by

δt
∗

:=
δt

1 + 0.5δt,t
, (2.27)

in which δt,t≡ ∂(δt)/∂t denotes the time derivative of the time step (Smolarkiewicz
et al., 2011). The solver’s stability depends on the maximum of the Courant num-
ber ∼ ||v∗δt/δx|| in the solution domain. The larger the variability of the maximum
Courant number Cmax over the simulation time, the more significant are poten-
tial efficiency gains from the application of a variable time stepping procedure. In
general, the observed maximum Courant numbers show a larger variability with
solution-adaptive moving meshes than with computations on a static uniform mesh.

In order to arrive at a second-order accurate FT scheme for the homogeneous ad-
vection equation (2.24), one has to compensate, to at least O(δt

2
) accuracy, for all

O(δt) terms on right-hand side (RHS) of (2.26). Within MPDATA, a first-order
accurate O(δt, δx) upwind solution is followed by a corrective upwind step that in-
corporates compensation of all truncation error terms ∼O(δt) on the RHS of (2.26),
plus truncation errors ∼O(δx) that stem from one-sided upwind spatial differenc-
ing disregarded in the spatially continuous equation (2.25), and thus in (2.26); see
Smolarkiewicz and Margolin (1998). This is accomplished by constructing error-
compensative advective pseudo-velocities which are used in the corrective upwind
steps (see Smolarkiewicz (1983) for an explanation of the basic methodology). The
second truncation error term on the right-hand side (RHS) of (2.26) contains the
generalized anelastic mass conservation law (GMCL) (3.2) which can be assumed to
vanish, see the discussion in Section 3.1. The resulting advection algorithm attains
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O(δt
2
, δx2) accuracy, for an arbitrary-variable velocity field v̂ and a (sufficiently

smooth) time-dependent curvilinear mesh.

Implementation of the scheme

Next, the implementation of the scheme is described. As discussed in Smolarkiewicz
and Prusa (2002), the solution update for a time-dependent ρ∗, can be written as
a solution update for the algorithm that assumes a time-independent ρ∗, multiplied
by the ratio (ρ∗n/ρ∗n+1). To see this, the semi-discretised equation (2.25) is recast
into

ψn+1 =
ρ∗n

ρ∗n+1

[
ψn − δt

ρ∗n
∇ ·

(
v̂n+1/2ψn

)]
, (2.28)

where the expression in square brackets is formally independent of ρ∗n+1. Therefore,
a second-order accurate MPDATA solution update for (2.24), under time-dependent
mappings, can be written as

ψn+1
i =

ρ∗ni
ρ∗n+1
i

Ai(ψ
n, v̂n+1/2, ρ∗n) =

ρ∗ni
ρ∗n+1
i

ψ
(IORD)
i , (2.29)

in which A denotes the MPDATA scheme for time-independent ρ∗; viz. the same al-
gorithm as used for time-independent, though curvilinear, coordinates. Specifically,
A iterates for k = 1, IORD the discrete flux-form

ψ
(k)
i = ψ

(k−1)
i − 1

ρ∗ni

N∑
I=1

{
F
(
ψ

(k−1)
i , ψ

(k−1)
i+eI

, V
I (k)
i+1/2 eI

)
− F

(
ψ

(k−1)
i−eI

, ψ
(k−1)
i , V

I (k)
i−1/2 eI

)}
,

(2.30)
with eI denoting the unit vector in the Ith of the N spatial dimensions, while integer
and half integer indices correspond to the cell centers and edges, respectively. The
superscript in parentheses denotes the number of inner MPDATA iterations, not the
time levels. The upwind flux functions F in (2.30) can be stated in a symbolic form
as

F (ψL, ψR, V ) ≡ 0.5 ( (V + |V |)ψL + (V − |V |)ψR ) . (2.31)

Then, the algorithm is initialised with the following quantities

ψ(0) ≡ ψn , V I (1) ≡ λ
I

(ρ∗v∗I)n+1/2 , λ
I ≡ δt

δxI
, (2.32)

where δxI are spatial mesh increments in the respective coordinate directions. As-
sumed here is the availability of a O(δt

2
) estimate for the generalised local Courant

number λI(ρ∗v∗I)n+1/2 at the intermediate time level tn+1/2 , see at the end of this
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section for possible approximations. The functional dependence of the corrective
pseudo-velocity for the IORD> 1 scheme can be written as

V I (k) = V I
(
V(k−1), ψ(k−1),∇ψ(k−1), ρ∗n

)
, (2.33)

which also indicates the nonlinear character of the scheme. The particular imple-
mentation of the pseudo-velocities (2.33) for the basic MPDATA is given as (Smo-
larkiewicz, 1984; Smolarkiewicz and Clark, 1986)

V
I (k)
i+1/2 eI

=

∣∣∣V I (k−1)
i+1/2 eI

∣∣∣−
(
V
I (k−1)
i+1/2 eI

)2

0.5
(
ρ∗ni+eI

+ ρ∗ni
)
 ψ

(k−1)
i+eI

− ψ(k−1)
i

ψ
(k−1)
i+eI

+ ψ
(k−1)
i

−
N∑

J=1;J 6=I

V I (k−1)
i+1/2 eI

V
J (k−1)
i+1/2 eI(

ρ∗ni+eI
+ ρ∗ni

)


×
ψ

(k−1)
i+eI+eJ

+ ψ
(k−1)
i+eJ

− ψ(k−1)
i+eI−eJ

− ψ(k−1)
i−eJ

ψ
(k−1)
i+eI+eJ

+ ψ
(k−1)
i+eJ

+ ψ
(k−1)
i+eI−eJ

+ ψ
(k−1)
i−eJ

(2.34)

and

V
J (k−1)
i+1/2 eI

:= 0.25
(
V
J (k−1)
i+ eI+1/2 eJ

+ V
J (k−1)
i+1/2 eJ

+ V
J (k−1)
i+ eI−1/2 eJ

+ V
J (k−1)
i−1/2 eJ

)
,

which consists of the aforementioned truncation error corrections for temporal (the
first truncation error term ∼ δt in the modified equation (2.26)) plus spatial dif-
ferencing of the upwind scheme (Smolarkiewicz, 1984). The derived scheme (2.29)-
(2.32) with (2.34) is fully second-order accurate and preserves the sign of the trans-
ported scalar field ψ. Note that in (2.34), the field ψ is assumed to be exclusively
either non-negative or non-positive. In Smolarkiewicz and Margolin (1998), exten-
sions for the applicability to scalar fields ψ of arbitrary sign are given. A variety of
extending options to the presented MPDATA scheme exist, most of which are ex-
pressed in different specifications of the pseudo-velocity (2.33). Extensions employed
in the present work include the “third-order accurate” scheme1 (Smolarkiewicz and
Margolin, 1998; Margolin and Smolarkiewicz, 1999), and the combination of MP-
DATA with the flux-corrected transport (FCT) technology (Zalesak, 1979; Smo-
larkiewicz and Grabowski, 1990) for applications that require a fully non-oscillatory
solution. Furthermore, there is the two-step infinite-gauge “linearised” version of

1Note that strictly speaking, the “third-order accurate” scheme (2.33) contains a dependence on
the second derivatives of ψ as well (Smolarkiewicz and Margolin, 1998).
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MPDATA (Smolarkiewicz and Clark, 1986; Smolarkiewicz and Margolin, 1998) that
is useful for the transport of fields ψ with variable signs, e.g.momentum components;
cf. Smolarkiewicz and Margolin (1998) Section 3.2.

Advective velocity prediction

Finally, to complete the described algorithm, an O(δt
2
) estimate to the generalised

contravariant mass flux vector v̂n+1/2 = (ρ∗v∗)n+1/2 in (2.25) is required in order to
achieve second-order accuracy of the MPDATA integration. A simple and efficient
way is to employ linear extrapolation

(ρ∗v∗)n+1/2 = (1 + β) (ρ∗v∗)n − β (ρ∗v∗)n−1 , (2.35)

where β := 0.5 (t
n+1 − t

n
)/(t

n − t
n−1

) accounts for the variable time step (Smo-
larkiewicz and Szmelter, 2009). The linear predictor (2.35) preserves the solenoidal
character of ρ∗v∗, a property that is especially advantageous in the anelastic model
(Smolarkiewicz and Margolin, 1998). The approximation (2.35) is appropriate for
the majority of applications, and is used almost exclusively in the present work.
Nonlinear estimates for (ρ∗v∗)n+1/2 based on a first-order solution of the underlying
flow equations may also be used in lieu of (2.35), see Smolarkiewicz and Margolin
(1993); Smolarkiewicz and Margolin (1998) for a complete discussion of the method.



Chapter 3

MPDATA extension for
time-dependent coordinates

This chapter develops extensions to the flux-form Eulerian MPDATA integration of
the anelastic equations in EULAG under moving meshes.
During the course of the implementation of the solution-adaptive moving mesh solver
(see Chapter 4), significant errors in the MPDATA integration appeared that were
completely absent from previous moving mesh applications based on MPDATA
methods (Prusa and Smolarkiewicz, 2003; Wedi and Smolarkiewicz, 2004; Smo-
larkiewicz and Prusa, 2005; Wedi and Smolarkiewicz, 2005). It was found from
a detailed study that these errors can be attributed to numerical inconsistencies of
the MPDATA integration with the general form of the anelastic mass conservation
law (2.8) in time-dependent generalised coordinates. The observed error magni-
tudes strongly depend on the rate and irregularity of the underlying mesh deforma-
tions during the adaptation process. In this regard, solution-adaptive numerically-
generated meshes used in the present work typically suffer larger errors in the in-
tegration than analytically prescribed time-dependent meshes mostly employed in
the previous works by Prusa and Smolarkiewicz (2003); Wedi and Smolarkiewicz
(2004); Smolarkiewicz and Prusa (2005); Wedi and Smolarkiewicz (2005). In the
later Section 5.3, specific examples for the occurrence of large solution errors due
to the incompatibility of MPDATA will be given in the context of solution-adaptive
moving mesh experiments.

31
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3.1 Compatible scalar transport

A general issue that appears when solving a scalar advective transport equation in
conservation form is that the compatibility (often also referred to as consistency)
of the applied flux-form advection numerical solver with the associated mass con-
servation law must be ensured. Consistency means that for a spatially uniform
transported scalar field ψ, the discretised form of the advective scalar conservation
law degenerates to the discretised form of the associated mass conservation law,
e.g. Lin and Rood (1996).

In the following sections, the MPDATA scheme for the integration of the scalar
conservation law in time-dependent generalised coordinates (2.24), repeated here
for convenience

∂(ρ∗ψ)

∂t
+∇ · (v∗ρ∗ψ) = 0 , (3.1)

will be revised. It will be shown that the original scheme in Chapter 2 is not
fully compatible with the corresponding generalised anelastic mass conservation law
(GMCL)

∂ρ∗

∂t
+∇ · (ρ∗v∗) = 0 . (3.2)

The general subject of the compatibility (or consistency) of advective scalar trans-
port schemes with mass continuity was previously addressed in diverse contexts by
Demirdzic and Peric (1988); Lin and Rood (1996); Schär and Smolarkiewicz (1996);
Jöckel et al. (2001); Gross et al. (2002); Chou and Fringer (2009); Klein (2009).

In Section 2.3, a review of MPDATA scheme in time-dependent generalised coor-
dinates was given. In the remaining chapter, a detailed theoretical and numerical
analysis of the MPDATA scheme for the solution of the scalar conservation law (3.1)
is conducted. The analysis will reveal extensions to the scheme that enable full com-
patibility with the GMCL (3.2) under arbitrary moving meshes. These extensions
are essential for the use of MPDATA in the solution-adaptive moving mesh solver
developed in this thesis.

3.2 MPDATA compatibility

MPDATA is based on a rigorous truncation error analysis for the FT discretisa-
tion (2.25). In Section 2.3, the derivation of the scheme was given, and its imple-
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mentation was explained. Here, a systematic theoretical analysis of this scheme is
conducted. For the first time, the compatibility with the GMCL (3.2) is rigorously
taken into account.

Analysis of the scheme

The analysis of the MPDATA scheme is conducted for the advection of a uni-
form scalar field ψ̃ in time-dependent generalised coordinates. Consider first the
IORD= 1 variant of the MPDATA scheme, i.e. the first-order accurate upwind
scheme1. Insertion of the uniform field ψn≡ ψ̃ in the MPDATA scheme (2.29)-(2.32)
results in

ψn+1
i =

ψ̃

ρ∗n+1
i

{
ρ∗ni −

N∑
I=1

λ
I
(

(ρ∗v∗I)
n+1/2

i+1/2eI − (ρ∗v∗I)
n+1/2

i−1/2eI

)}
. (3.3)

This expression shows that the IORD= 1 variant of MPDATA preserves a uniform
transported field ψ if the following discrete implementation

ρ∗n+1
i = ρ∗ni −

N∑
I=1

λ
I
(

(ρ∗v∗I)
n+1/2

i+1/2eI − (ρ∗v∗I)
n+1/2

i−1/2eI

)
(3.4)

of the GMCL (3.2) is satisfied. Then, the terms in the curly brackets of (3.3) are
equal to ρ∗n+1

i , which gives the desired result ψn+1≡ ψ̃≡ψn.

The generalised density ρ∗ occurring in (3.4) at the various time levels is given
by the product of the Jacobian G and the basic-state density ρb, which are both
known diagnostic quantities in the anelastic system. In addition, the generalised
contravariant mass flux ρ∗v∗I in (3.4) at the intermediate time level tn+1/2 in (3.4) is
typically derived by using a predictor scheme as in (2.35). Therefore, all quantities
entering the discrete GMCL (3.4) in the algorithm are predetermined and computed
independently on the discrete mesh. It was found in the present study that the terms
on the left and right hand sides of (3.4) are not necessarily equal in general within the
framework of the anelastic solver EULAG. In fact, significant errors of the discrete
GMCL (3.4) can occur for certain applications. These errors of the discrete GMCL
(3.4) lead to errors in the MPDATA solution. Hence, special schemes have to be
designed to satisfy (3.4). This will be the topic of the subsequent Section 3.3.

1Strictly speaking, the classical upwind scheme assumes the flux ρ∗v∗ I at time level tn, and not
at tn+1/2.
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Next, the IORD= 2 variant of the MPDATA scheme is investigated. It is postulated
that the discrete GMCL (3.4) is exactly satisfied. The operator A now executes
(2.30) for two iterations. The first iteration is again the upwind scheme with the
advective velocity v∗, and this is followed by a corrective upwind step using the
pseudo-velocity (2.34) in (2.30). In the IORD= 2 scheme, the intermediate solution
after completion of the first iteration is

ψ
(1)
i =

ψ̃

ρ∗ni

{
ρ∗ni −

N∑
I=1

λ
I
(

(ρ∗v∗I)
n+1/2

i+1/2eI − (ρ∗v∗I)
n+1/2

i−1/2eI

)}
. (3.5)

As ρ∗ is time-dependent, a non-uniform intermediate solution ψ(1) which differs
locally by a factor of ρ∗n+1/ρ∗n from the uniform field ψ̃ is obtained. For the subse-
quent second MPDATA iteration, this intermediate value ψ(1) then generally yields
a non-zero pseudo-velocity field V(2) when it enters the formula (2.33). Altogether,
the complete algorithm (2.29)-(2.33) for IORD= 2, does not maintain the uniform
field ψ̃. This analysis reveals that the default MPDATA scheme, as stated in Sec-
tion 2.3, does not account for the transport compatibility with the GMCL (3.2).
Moreover, this incompatibility of the scheme also holds if the postulated validity
of the discrete GMCL (3.4) is abandoned. As discussed in the previous paragraph,
even the IORD= 1 variant of the scheme does not maintain the uniform scalar field
ψ̃ in that case.

Extension of the scheme

MPDATA offers a variety of options extending the basic algorithm as presented
in Section 2.3, see Smolarkiewicz (1984); Smolarkiewicz and Clark (1986); Smo-
larkiewicz and Margolin (1998). These options are generally expressed by different
forms of the error-compensating pseudo-velocities in the scheme. Fundamentally,
all pseudo-velocity formulae have in common that they can be derived on the ba-
sis of a rigorous truncation error analysis of the FT discretisation (2.25). None
of the derived pseudo-velocity expressions and resulting schemes, however, admit
an advective scalar transport that provides compatibility with the GMCL (3.4) in
time-dependent generalised coordinates.

In the following, an heuristic argumentation is used to modify MPDATA for com-
patibility with the GMCL (3.4). The approach modifies the existing pseudo-velocity
formulae in MPDATA to provide the preservation of a uniform scalar field ψ under
arbitrary time-dependent generalised coordinates. These modified pseudo-velocity
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formulae differ from the original ones derived from the formal truncation error anal-
ysis. However, as will be demonstrated by means of numerical tests, the MPDATA
scheme with the modified pseudo-velocities maintains the second-order accuracy of
the original scheme.

Assuming the validity of (3.4), the previous discussion revealed that the IORD= 1

variant of MPDATA maintains a uniform field ψ̃. A small modification of the func-
tional arguments used to calculate the pseudo-velocity (2.33), retains the property
for the IORD> 1 variants as well. The preservation of a uniform field ψ̃ with the
general MPDATA scheme is achieved by using pseudo-velocity expressions that are
isomorphic to the original ones, e.g. (2.34), but the value for the current iterate
ψ(k−1) redefined as

ψ̂
(k−1)
i := ψ

(k−1)
i

(
ρ∗ni
ρ∗n+1
i

)
, (3.6)

so that the modified pseudo-velocity function (2.33) becomes

V I (k) = V I
(
V(k−1), ψ̂(k−1),∇ψ̂(k−1), ρ∗n, ρ∗n+1

)
. (3.7)

This means the pseudo-velocity (3.7) is calculated with the full solution of the re-
spective lower-order iteration according to (2.29) instead of using the intermediate
solution ψ(k−1) from (2.30). Note, the modification applies only in the determination
of the pseudo-velocity, while the transported quantities in the flux scheme (2.30) re-
main unchanged. Now, applying the scheme (2.29)-(2.32) and (3.7) with an initially
uniform distribution ψn≡ ψ̃, yields a field

ψ̂
(1)
i =

ψ̃

ρ∗n+1
i

{
ρ∗ni −

N∑
I=1

λ
I
(

(ρ∗v∗I)
n+1/2

i+1/2eI − (ρ∗v∗I)
n+1/2

i−1/2eI

)}
(3.8)

that enters the pseudo-velocity (3.7). This field ψ̂(1) is equal to the uniform solution
of the complete IORD= 1 variant of MPDATA. Because the pseudo-velocity ex-
pressions always calculates differences of the input field, i.e. now ψ̂(1), this results in
a zero (i.e. with machine precision) corrective velocity V(2). As a consequence, there
is no further contribution to the flux divergence in (2.30), although the intermediate
solution ψ(1) that enters (2.30) may be non-uniform. This property of the scheme
continues to be valid for an arbitrary number of corrective iterations IORD − 1.
In summary, given the pseudo-velocity by the functional form (3.7) (instead of the
original form (2.33)) and the validity of the discrete GMCL (3.4), the MPDATA
scheme achieves exact preservation of a uniform advected field ψ, under arbitrary
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time-dependent generalised coordinates.

As a final remark, note that in the case of time-independent coordinates, the newly
proposed scheme (2.29)-(2.32) and (3.7) automatically reduces to the original algo-
rithm for static coordinates. Then, the generalised density ρ∗ is not a function of
time t, i.e. ρ∗n≡ ρ∗n+1≡ ρ∗, and consequently ψ̂(k−1)≡ψ(k−1) in (3.6), giving identi-
cal expressions for either (3.7) or (2.33), respectively. For the uniform initial field
ψ̃, (3.5) or (3.8) then results in

ψ̂
(1)
i ≡ ψ

(1)
i ≡

ψ̃

ρ∗i

{
ρ∗i −

N∑
I=1

λ
I
(

(ρ∗vs I)
n+1/2

i+1/2eI − (ρ∗vs I)
n+1/2

i−1/2eI

)}
. (3.9)

Due to the anelastic divergence condition (2.3c), (3.9) shows ψ̂(1)
i ≡ψ

(1)
i ≡ ψ̃. There-

fore, the original and the newly proposed schemes allow for a mass-compatible ad-
vective transport under time-independent coordinates.

Asymptotic accuracy of MPDATA applying the redefined pseudo-velocities

The above considerations resulted in a modified version of MPDATA through an
examination of the special case when the advected field ψ is uniform in space. Gen-
erally, the field ψ varies in space and in time, and it is necessary to examine whether
the proposed modifications of the pseudo-velocity expressions as given by (3.7) re-
tain the accuracy of the original form (2.33). Recall that the formal truncation error
analysis results in a corrective pseudo-velocity of the form (2.33). The modified form
(3.7) results solely from the requirement to integrate MPDATA consistently with
the discrete GMCL (3.4). Therefore, basic numerical experiments will examine the
asymptotic accuracy of the MPDATA solutions using the redefined pseudo-velocities
(3.7) (referred to as scheme R in the following) versus applying the original form of
the pseudo-velocities (2.33) (referred to as O).

For these numerical experiments, the one-dimensional advective conservation law
(2.24) under assumption of a uniform basic-state density ρb and flow velocity u

is solved with MPDATA in a domain 0 ≤ x ≤ 20, subject to periodic boundary
conditions, and in time 0 ≤ t ≤ T . Here, all variables are dimensionless. A moving
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mesh is analytically prescribed using the following mapping function1

X (X,Sf ) = 1/7 {X (15− 8S−1
f )−X3

(1− S−1
f )(80−X (120− 48X ))} , (3.10)

whereupon 0 ≤ X,X ≤ 1 are normalised physical and computational coordinates,
respectively. The symbol S−1

f represents a time-variable (inverse) mesh stretching
factor. It is specified as S−1

f (t) = 1.0− γ sin2(2πc t/T0), setting γ=0.75 and an os-
cillation period T0 = 10. Application of the mapping function (3.10) results in a
discrete mesh with periodically increased resolution around the centre of the do-
main at x= 10. The smallest grid increment attained is one fourth of the increment
size at uniform resolution in one cycle. Note, the above specification of the mesh
movement in this configuration is solely for the purpose of solver validation.

The basic experimental design of the accuracy test follows that in Smolarkiewicz
and Grabowski (1990). The constant-coefficient advection with the physical velocity
u(t, x) = 1.0 under a static uniform mesh of Smolarkiewicz and Grabowski (1990) is
extended here to a variable-coefficient advection with the contravariant velocity u∗

due to the oscillating mesh (3.10). Note, here the mesh velocity (∂x/∂t) is derived
analytically from (3.10). The initial condition for the transported scalar field ψ in
(2.24) is the Gaussian distribution

ψ(0, x) = ψ0 +
1

σ
√

2πc
exp

(
−r2

2σ2

)
, (3.11)

where r= (x−x0), and the parameters are set to σ=2, x0 =10, ψ0 = 0. An integral
measure of the error is obtained at the final simulation time T by means of

E(Cmax, δx) =
1

T

(
Nx∑
i=1

(ψE(T, xi)− ψ(T, xi))
2/Nx

)1/2

, (3.12)

where ψE(T, xi) and ψ(T, xi) are the analytical and numerical solution at position
xi. The spatial number of grid points is given by Nx. The described configuration
is then reapplied to evaluate the asymptotic convergence of the algorithmic formu-
lations O and R. For each of the formulations O and R, the error E(Cmax, δx) is
determined for a range of maximum Courant numbers 0.05 ≤ Cmax ≤ 0.95 with in-
crement ∆ = 0.05, and eight times successively refined spatial mesh increments δx

1The adopted analytical mapping functions in this work belong to an entire suite of, mostly single-
target, mesh adaptation functions that offer applicability for various geometrical configurations
and boundary conditions. They were developed by J.M.Prusa in the framework of Prusa and
Smolarkiewicz (2003); Prusa and Gutowski (2006).
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(a)

(b)

Figure 3.1: Examination of the asymptotic accuracy for the MPDATA solution un-
der a moving mesh. Two different versions of MPDATA are compared: (a) Original
form of the pseudo-velocities (2.33). (b) Redefined form of the pseudo-velocities with
the application of the density-correction factor defined by (3.6) and (3.7). Isolines of
log2(E) in a polar system of coordinates that maps the varying spatial resolutions δx and
Courant numbers Cmax upon the radius r and the polar angle φ, respectively. Also given
are rays of numerical values of log2(E) along the radius r at constant Courant numbers
Cmax ∈ (0.05, 0.20, 0.35, 0.50, 0.65, 0.80, 0.95).
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by a factor of 2, i. e. δx= (δx8/2
i) and (i= 1, 8), while δx8 = 0.4 is the largest grid

increment employed in the test. This specified configuration requires a total number
of 152 simulations for every single formulation O and R. The resulting error surfaces
are depicted in Figure 3.1. Displayed are isolines of log2(E) in a polar system of co-
ordinates, for which the radius and the polar angle are specified as r= log2(δx/δx8)

and φ= Cmax (πc/2), respectively.

Figure 3.1 demonstrates the obtained asymptotic accuracy of MPDATA using the
original O (a) and the redefined R (b) pseudo-velocities. Numerical values of log2(E)

along rays of constant polar angle φ asymptotically decrease in increments of ≈ -2 as
the resolution increases from r= 8 to r= 1. Recall that the size of the grid increment
δx is halved for every output of log2(E) along each ray, which proves E ∼ (δx2, δt

2
)

for δx, δt→ 0.

Stability of MPDATA with the redefined pseudo-velocities

The stability properties of MPDATA using the redefined pseudo-velocities (3.7) is
addressed briefly. Properly bounded generalised Courant numbers |V(1)| ≤ 1 for
the first upwind step ensure that the corrective pseudo-velocities remain bounded in
the original scheme, see Smolarkiewicz (1984); Smolarkiewicz and Margolin (1998).
Given the basic pseudo-velocity (2.34) in one dimension for simplicity (i.e. just the
first line in the formula (2.34)), the bracketed expression with |V 1 (1)| ≤ 1 in (2.34)
is restricted to the interval [−1, 1]. Then |V 1 (2)| ≤ 1 is assured if

A
(1)
i+1/2 =:

ψ
(1)
i+1 − ψ

(1)
i

ψ
(1)
i+1 + ψ

(1)
i

∈ [−1, 1] ; (3.13)

see Smolarkiewicz (1984) for a more detailed discussion. Accordingly, the stability
properties with the redefined pseudo-velocities (3.7) are maintained if

Â
(1)
i+1/2 =:

ψ̂
(1)
i+1 − ψ̂

(1)
i

ψ̂
(1)
i+1 + ψ̂

(1)
i

∈ [−1, 1] . (3.14)

Both conditions (3.13) and (3.14) are satisfied due to the positivity of the preceding
upwind iteration and of the generalised density ρ∗.
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3.3 Discrete generalised anelastic mass conservation

The previous Section 3.2 revealed in which way the MPDATA scheme can be mod-
ified to preserve (with machine precision) a uniform advected scalar field ψ under
moving meshes. It was discovered that preserving the uniform scalar field requires
the incorporation of the density correction factor (ρ∗n/ρ∗n+1) according to (3.6) in
the MPDATA pseudo-velocities (3.7). However, it was also explained that a second
factor is important to preserve the uniform scalar field – the validity of the dis-
crete GMCL (3.4). It was shown that even the IORD= 1 variant of the MPDATA
scheme for the transport of the uniform field ψ̃ as given in (3.3) only maintains the
uniformity of ψ̃ if the discrete GMCL (3.4) is satisfied.
Here, it is demonstrated that the validity of the discrete GMCL (3.4) is not ensured
in the anelastic solver EULAG of Chapter 2. In the sub-Sections 3.3.1 and 3.3.2,
two distinct methods are proposed to ensure validity of the discrete GMCL in the
framework of the anelastic solver EULAG. Numerical experiments that evaluate the
developments in this section and those of the previous Section 3.2 are presented in
the subsequent Section 3.4.

The particular analytical and numerical formulation of the anelastic solver explained
in Sections 2.1 and 2.2 implies explicit control over the residual error of the anelastic
divergence constraint (2.3c), or similarly in a vector notation

∇ · (ρ∗vs) = 0 . (3.15)

The control over (3.15) is implemented by means of the exact projection for the
solenoidal velocity vs underlying the elliptic boundary value problem (2.23). Given
(3.15) together with the relation between the contravariant, solenoidal and mesh
velocities (2.5), repeated here in the vector notation

v∗ = vs +
∂x

∂t
=: vs + vg , (3.16)

the GMCL (3.2) results in

∂ρ∗

∂t
+∇ · (ρ∗vg) = 0 . (3.17)

This equation describes the advection of the generalised density ρ∗ with the mesh
velocity vg in transformed space St. Equation (3.17) includes effects solely due to
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the time-dependent (i.e. moving) coordinates and is formally independent of the
physical flow. For a uniform basic-state density ρb, (3.17) is equivalent to the GCL
(2.16). Hence, (3.17) can be considered as a generalised GCL for the anelastic sys-
tem.
In summary, the anelastic solver of Section 2.2 implies control over the divergence
constraint (3.15). The issue in the anelastic solver of Section 2.2 is that under mov-
ing meshes no control over errors of (3.17) is implemented. The errors of (3.17)
result in errors of the GMCL (3.2).

In accordance with the discrete GMCL (3.4), the discrete representation of (3.17)
is given as

ρ∗n+1
i = ρ∗ni −

N∑
I=1

λ
I
(

(ρ∗vg I)
n+1/2

i+1/2eI − (ρ∗vg I)
n+1/2

i−1/2eI

)
. (3.18)

One may anticipate that the deviations or errors of the generalised GCL (3.18)
depend strongly on the method to calculate the fluxes (ρ∗vg)n+1/2 at the local cell
boundaries. In Section 4.4, the solution-adaptive moving mesh NFT flow solver is
presented. There, a procedure for the calculation of the generalised contravariant
fluxes (ρ∗v∗)n+1/2 in MPDATA is proposed that is particularly advantageous for
minimising the errors to (3.18). Unless otherwise noted, all simulations in this thesis
employ the proposed method to approximate the generalised contravariant mass flux
(ρ∗v∗)n+1/2 in MPDATA. See Section 4.4 for the presentation of the procedure, and
Sections 5.1 and 5.3 for associated test calculations.

The magnitude of the deviations from (3.18) and their impact on the error of the
advection scheme depends strongly on the specific application. Basically, it was
found in the numerical experiments performed for this thesis, that the deviations
from the discrete generalised GCL (3.18) increase with a stronger, faster and more
irregular deformation of the mesh. For general adaptive moving mesh applications,
it is therefore required to incorporate explicit control over the deviations of the GCL
(3.18) in order to avoid subsequent errors in the MPDATA solution. In the following
two subsections, two distinct methods are presented for this purpose.
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3.3.1 Diagnostic approach for the GMCL

In the discrete GMCL (3.4), the generalised densities ρ∗n and ρ∗n+1 are diagnostic
quantities that are predetermined from the knowledge of the mesh. Therefore, the
only degree of freedom in the GMCL (3.4) within the solution algorithm is given
by the contravariant fluxes (ρ∗v∗)n+1/2 at the local cell boundaries, which are cal-
culated to O(δt

2
) from either a linear or nonlinear predictor scheme, cf. (2.35) and

Section 4.4. Motivated by the basic solution procedure that underlies the anelas-
tic solver (see Section 2.2), a diagnostic approach based on a projection method
(Chorin, 1968) is developed to ensure compatibility of the MPDATA integration
with the GMCL. To the author’s knowledge, the idea presented in the following has
not been applied in this context before.

For compactness, the discussion is continued here by using the semi-discretised rep-
resentation as in (2.25). Then, the form of the GMCL (3.2) consistent with the FT
approximation of (2.25) becomes

(ρ∗n+1 − ρ∗n)

δt
+∇ · (ρ∗v∗)n+1/2 = 0 . (3.19)

The idea is now that for prescribed quantities ρ∗n and ρ∗n+1, i.e. a given FT deriva-
tive of the generalised density ρ∗, the generalised contravariant mass flux (ρ∗v∗)n+1/2

may be corrected to satisfy (3.19). Given a preliminary O(δt
2
) guess v̂ at time tn+1/2

for v̂ = ρ∗v∗, a potential φ is introduced according to{
v̂ = v̂ − ρ∗ G̃T G̃∇φ

}n+1/2

i
. (3.20)

Starting from v = v∗− G̃∇φ for the physical velocity v (where v∗ is a first guess for
v), (3.20) is found by insertion into the expression for the generalised contravariant
mass flux ρ∗v∗, see e.g. Smolarkiewicz and Margolin (1994) for a related discussion.
Ultimately, inserting (3.20) into (3.19) leads to an elliptic boundary value problem
for φ of the form{

− δt

ρ∗n+1/2

(
(ρ∗n+1 − ρ∗n)

δt
+∇ ·

(
v̂ − ρ∗ G̃T G̃∇φ

)n+1/2
)}

i

= 0 . (3.21)

Again, multiplication by the factor (−δt/ρ∗) has been applied in (3.21) for numerical
reasons, cf. the statements after the equation (2.23) in Section 2.2.
Unlike the elliptic problem (2.23) that arises in the solution of the anelastic system
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(2.3), the problem (3.21) must be solved at the intermediate time level tn+1/2 in
order to maintain the symmetry with regard to the FT derivative of ρ∗. By design
of the FT model all fields except the generalised contravariant mass flux ρ∗v∗ exist
at the full, i.e. non-staggered, time levels. This fact entails to derive the metric
coefficients contained in G̃, the generalised density ρ∗, plus all variables needed in
the specification of the boundary conditions for (3.21) at the intermediate time level
t
n+1/2 with second-order accuracy. Regarding the derivation of G̃ and ρ∗ at tn+1/2,
the reader is referred to the discussion in the last part of Section 4.4.

For compatibility of the advection algorithm, the formulated elliptic problem (3.21)
is solved subject to either periodic or Dirichlet boundary conditions for the gener-
alised contravariant mass flux ρ∗v∗ at the intermediate time level tn+1/2. Subsequent
experiments will apply a GCR iterative solver (Eisenstat et al., 1983; Smolarkiewicz
and Margolin, 1994) for (3.21). A physically meaningful stopping criterion for the
GCR iterative solver in the solution of (3.21) is formulated as

‖rgmcl‖∞ =

∥∥∥∥ δt

ρ∗n+1/2

(
(ρ∗n+1−ρ∗n)

δt
+∇ · (ρ∗v∗)n+1/2

)∥∥∥∥
∞
≤ ε ; (3.22)

please confer to the discussion after the equation (2.23) in Section 2.2 and the refer-
ences given there. Note that throughout this thesis the error of the discrete GMCL
(3.4) is quantified using (3.22).

3.3.2 Prognostic approach for the generalised GCL

Another approach that is adopted here aims to ensure compatibility with the discrete
GMCL (3.4) using a prognostic procedure for the generalised density ρ∗. Specifi-
cally, the procedure employs the discrete generalised GCL (3.18) as an auxiliary
prognostic equation to correct ρ∗n+1 on the left-hand side (LHS) of (3.18). Note,
the prognostic procedure actually leads to an over-specified mathematical problem
in the framework of the present solver formulation where ρ∗n+1 is a known quantity.
In contrast, the diagnostic approach proposed in the preceding subsection corrects
the generalised contravariant fluxes (ρ∗v∗)n+1/2 which are given from the approxi-
mate predictor scheme. Nonetheless, the idea of the prognostic approach is obvious,
as it directly satisfies (3.18) at every time step to machine precision by design. Be-
cause in the anelastic solver the divergence constraint (3.15) is controlled by the
projection underlying the elliptic pressure equation (2.23), the described prognostic
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procedure enforces the compatibility of MPDATA with the discrete GMCL (3.4).

If the basic-state density ρb in the anelastic system (2.3) is uniform, then (3.18) is
identical to the discrete version of the GCL (2.16) as given by

G
n+1

i = G
n

i −
N∑
I=1

λ
I
(

(Gvg I)
n+1/2

i+1/2eI − (Gvg I)
n+1/2

i−1/2eI

)
. (3.23)

The basic idea of applying the discrete GCL in a prognostic manner along with the
associated flux-form advection scheme to avoid errors introduced by a moving mesh
was first proposed in Thomas and Lombard (1979). Nowadays, the procedure is
fairly standard in computational fluid dynamics, see e.g. Drikakis and Rider (2005),
although the detailed implementation can vary significantly with the formulation of
the numerical solver. In the present work, the GCL (3.23) as discussed in Thomas
and Lombard (1979) has been generalised to (3.18) in order to account for the non-
uniform basic-state density ρb in the solution of the anelastic system (2.3).

Concerning the specific implementation of the prognostic approach, the contravari-
ant fluxes (ρ∗v∗)n+1/2 in the generalised GCL (3.18) are always given from either
the linear or nonlinear predictor schemes. Then, the obvious way applying the GCL
(3.18) is to initialise the generalised density ρ∗n on the RHS with its diagnostic value
at t0 and to integrate the equation for ρ∗ in time, as given for instance in Chou and
Fringer (2009). In fact, it has been found that this scheme is only applicable to sim-
ple moving meshes, e.g. the prescribed oscillating mesh applied in the experiments of
the subsequent Section 3.4. Note, Chou and Fringer (2009) have also applied a sim-
ple oscillating mesh only. For complicated solution-adaptive numerically-generated
moving meshes as considered in Chapter 5, it has been found that the scheme is not
applicable in this form. The reason is that the prognostically-computed generalised
density ρ∗ from the GCL (3.18) may locally depart strongly from its diagnostic
value after a certain integration time, and as a consequence, large errors are intro-
duced in the MPDATA solution (not shown). In addition, the prognostic numerical
scheme (3.18) does not assure the generalised density ρ∗ to remain positive definite,
which represents a severe issue for the stability of the overall MPDATA integration.
The only implementation of the prognostic approach that has been found to pro-
vide stable and accurate solutions for general moving meshes is to reinitialise the
generalised density ρ∗n on the RHS of the GCL (3.18) at every time step t

n with
its known diagnostic value. This specific implementation is applied throughout the
present thesis.
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3.4 Scalar advection experiments with a prescribed

moving mesh

Idealised two-dimensional scalar advection numerical experiments are performed
to analyse and compare the various MPDATA implementations presented in Sec-
tions 3.2 and 3.3. Here, a oscillating moving mesh is prescribed using analytical
functions for simplicity of the examination. Later in Section 5.3, the subject is fur-
ther investigated in the context of general solution-adaptive numerically-generated
moving meshes. Table 3.1 summarises the various schemes that are applied in the
numerical experiments.

Density-correction in MPDATA Treatment of GCL/GMCL
OS No standard
OP No prognostic
RS Yes standard
RP Yes prognostic
RD Yes diagnostic

Table 3.1: Summary of the various MPDATA implementations compared in the numerical
experiments. The first column states whether the density-correction factor (3.6) is applied
in the redefined pseudo-velocities (3.7) of MPDATA (denoted as R), or the original form
of the pseudo-velocities (2.33) is used (denoted as O). The second column describes the
treatment of the errors associated with the discrete GMCL: either the use of the quantities
ρ∗n+1, ρ∗n and (ρ∗v∗)n+1/2 in the GMCL as obtained from the standard methods in the
solution algorithm (denoted as S), the diagnostic approach based on a projection method
(denoted as D), and the prognostic approach (denoted as P). See Sections 3.2 and 3.3 for
the explanation of the various schemes.

Experimental design

The prototype conservation law (2.24) under the assumption of a uniform basic-state
density ρb is solved in a two-dimensional domain 0 ≤ x, y ≤ 20, subject to periodic
boundary conditions in x and y, and for an integration time 0 ≤ t ≤ T . Again, all
variables are assumed to be dimensionless.

In order to test the solution behaviour of various MPDATA implementations under
a moving mesh, an oscillating mesh is prescribed here using the mapping function

X (X,Y , Sf ) = (1− Y 2
)2
[
S−1
f X + (1− S−1

f )X
5
]

+
(

1− (1− Y 2
)2
)
X (3.24)
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Figure 3.2: Illustration of the simple oscillating mesh defined by the mapping (3.24) anal-
ogously for the x and y coordinates. The figure in (a) shows the mesh in the initial uniform,
i.e. undeformed, state, while (b) shows the mesh in the state of maximal deformation for
γ= 0.5.

analogously for the normalised X and Y coordinates. The inverse mesh stretch-
ing factor S−1

f is specified as S−1
f (t) = 1.0− γ sin2(2πc t/T0), setting γ=0.5 and an

oscillation period T0 = 20. Figure 3.2 shows an illustration of the resulting mesh.

In order to ensure the divergence constraint (3.15) to be satisfied with machine
precision in discrete space over the entire course of the simulation, the components
of the solenoidal velocity vs are evaluated in finite-difference space by means of a
streamfunction χ according to

us =
1

ρ∗
∂χ

∂y
, vs = − 1

ρ∗
∂χ

∂x
, (3.25)

in all advection experiments that follow. For the present test, the streamfunction
is specified as χ(t, x, y) =x+ y, equivalent to a uniform south-westerly flow field
v≡ (1, 1)T .

The mesh increments are chosen as δx= δy= 0.4, and the time step δt is continuously
adapted to maintain a constant maximum Courant number of Cmax = 0.5.
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scheme(-ε) L1 L∞ ‖rgmcl‖∞ NIT
∫
ψ

OS 2.08× 10−4 6.19× 10−3 3.84× 10−6 - 2.46× 10−15

OP 2.08× 10−3 6.15× 10−3 - - −1.22× 10−9

RS 1.61× 10−5 8.45× 10−5 3.84× 10−6 - 1.14× 10−15

RP 5.70× 10−16 5.77× 10−15 - - 0.0
RD-10−6 3.53× 10−6 8.21× 10−6 1.00× 10−6 1 −2.27× 10−15

RD-10−9 4.66× 10−8 8.25× 10−8 1.00× 10−9 13 −1.89× 10−16

RD-10−12 1.31× 10−11 3.45× 10−11 1.00× 10−12 66 5.69× 10−16

RD-10−15 3.95× 10−15 1.73× 10−14 1.00× 10−15 177 0.0

Table 3.2: Comparison of the various schemes given in Table 3.1 for the advection of
a uniform scalar field ψ under the oscillating mesh using the basic second-order accurate
MPDATA. The number following the particular scheme RD in the first column indicates
the prescribed convergence threshold ε of the GCR iterative solver for the elliptic equation
(3.21) defined according (3.22). Second and third columns: L1 and L∞ error norms defined
as deviations of the numerical ψ(T,x) from the analytical solution ψ̃ at the final simulation
time T = 20.0. Fourth column: actual maximum value in the simulation of the GMCL error
‖rgmcl‖∞ (3.22). Fifth column: average number of GCR iterations NIT over the simulation
time T . Sixth column: integral conservation measure 〈ψ〉/〈ψt=0〉 − 1 for the transported
scalar ψ at T = 100.0.

Advective transport of a uniform scalar distribution

A first test inspects the compatibility of the various schemes of Table 3.1 through
their ability to preserve a uniform scalar field ψ under the oscillating mesh (3.24).
The initial scalar field in the solution of the conservation law (2.24) is specified as
ψ(0, x, y)≡ ψ̃≡ 1.0. Table 3.2 displays the associated simulation results obtained
using the basic second-order accurate MPDATA, i.e. one corrective upwind step,
without FCT enhancement.

The comparison in Table 3.2 show that the largest deviations from the uniform scalar
distribution are generated with OS and OP, indicated by the relatively largest L1 and
L∞ error norms. The scheme OS represents the original algorithmic implementation
of the MPDATA integration as applied in previous works1. In the scheme OP, the
original form of the pseudo-velocities in MPDATA is combined with the prognostic
correction for the generalised density ρ∗ to enforce validity of the GMCL. The
results for OP fully support the theoretical analysis of Section 3.2, where it was
demonstrated that even with the validity of the discrete GMCL (3.4) the original
form of the pseudo-velocities in MPDATA does not allow to exactly maintain a
uniform transported scalar field ψ.

1As an aside, recall that the revised predictor scheme for the generalised contravariant mass flux
(ρ∗v∗)n+1/2 developed in Section 4.4 is applied in all schemes of Table 3.1.
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The scheme RS that applies the redefined pseudo-velocities in MPDATA as devel-
oped in Section 3.2, provides L1 and L∞ error norms that are more than one order
of magnitude lower than with the original scheme OS.

If the application of the redefined pseudo-velocities in MPDATA is combined with
the prognostic approach to enforce validity of the GMCL in RP, then the L1 and L∞
error norms in Table 3.2 indicate preservation of the uniform transported field ψ at
the order of machine precision ∼ 10−15. This result is also in complete agreement
with the formula (3.8) derived in the theoretical analysis of Section 3.2.

In the algorithmic implementation RD, the application of the redefined pseudo-
velocities in MPDATA is combined with the developed diagnostic approach for the
GMCL. The number following the descriptor RD in the first column of Table 3.2
indicates the prescribed convergence threshold ε of the GCR(1) iterative solver ap-
plied to the elliptic equation (3.21), as defined according (3.22). As can be seen,
the L1 and L∞ error magnitudes with the algorithmic implementation RD decrease
persistently with a tighter convergence threshold ε. In fact, preservation with ma-
chine precision of the uniform transported field ψ can be achieved with NIT= 177
GCR(1) iterations, although such a high accuracy is generally not necessary (see
below in Table 3.3). The observed error behaviour with the scheme RD is again in
complete agreement with the formula (3.8) and the general discussion provided in
Section 3.2.

Advective transport of a Gaussian scalar distribution

A second test inspects the various schemes of Table 3.1 for the advective transport
of a general scalar field ψ, given here as a Gaussian scalar distribution. For this
purpose, the preceding doubly-periodic experimental test setup with the prescribed
oscillating mesh is retained, but the scalar field ψ is initialised by the function (3.11)
with r2 = (x− x0)2 + (y− y0)2, and the parameters set to σ=2, x0 = y0 = 10, ψ0 = 1.

Table 3.3 presents the results computed using the second-order accurate MPDATA
with FCT enhancement. The values of the L2 error norm in the second column
are about twice as large for OS when compared to all other schemes RS, RP, and
RD. A factor of the larger L2 error with the scheme OS is revealed by the values
for the quantity (min(ψ)−ψ0), displayed in the third column of Table 3.3. The
results for the scheme OS show a noticeable negative deviation from zero, and this
deviation is significantly larger compared to all other schemes. A negative deviation
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scheme(-ε) L2 min(ψ)−ψ0 ‖rgmcl‖∞ NIT
∫
ψ

OS 4.62× 10−4 −3.70× 10−2 3.84× 10−6 - 0.0
RS 2.43× 10−4 −1.87× 10−4 3.84× 10−6 - −9.35× 10−16

RP 2.42× 10−4 4.00× 10−7 - - −2.77× 10−7

RD-10−6 2.42× 10−4 −2.39× 10−5 3.18× 10−7 1 9.35× 10−16

RD-10−9 2.42× 10−4 3.68× 10−7 1.00× 10−9 13 9.37× 10−15

RD-10−12 2.42× 10−4 4.00× 10−7 1.00× 10−12 66 1.12× 10−15

RD-10−15 2.42× 10−4 4.00× 10−7 1.00× 10−15 177 −5.61× 10−16

Table 3.3: Advection of a Gaussian scalar distribution under the prescribed oscillating
mesh using the second-order accurate MPDATA with FCT enhancement. The schemes
tested are OS, RS, RP (see Table 3.1) and RD, where again the number following RD in-
dicates the prescribed convergence threshold of the elliptic solver in the solution of (3.21).
Second column: standard L2 error norm at the final simulation time T = 100.0. Third
column: domain minimum value of the numerical solution ψ minus the basic-state value
ψ0 = 1.0 at T = 100.0. Fourth column: actual maximum value of the GMCL residual er-
ror ‖rgmcl‖∞ defined by (3.22) which occurred in the simulation. Fifth column: average
number of GCR(1) iterations over the simulation time T . Sixth column: integral conser-
vation measure 〈ψ〉/〈ψt=0〉 − 1 for the transported scalar ψ at T = 100.0. Again, the mesh
parameters are γ= 0.5 and T0 = 20.0.

scheme(-ε) L2 min(ψ) ‖rgmcl‖∞ NIT
∫
ψ

OS 3.71× 10−4 4.20× 10−5 3.84× 10−6 - −3.42× 10−15

RS 3.70× 10−4 4.21× 10−5 3.84× 10−6 - −4.37× 10−15

RP 3.70× 10−4 4.21× 10−5 - - −1.32× 10−5

RD-10−6 3.70× 10−4 4.21× 10−5 3.18× 10−7 1 −2.72× 10−15

RD-10−9 3.70× 10−4 4.21× 10−5 1.00× 10−9 13 −3.07× 10−15

RD-10−12 3.70× 10−4 4.21× 10−5 1.00× 10−12 66 −4.96× 10−15

RD-10−15 3.70× 10−4 4.21× 10−5 1.00× 10−15 177 −3.42× 10−15

Table 3.4: As in Table 3.3, but the results here are for the advection of the Gaussian
scalar distribution with a zero background ψ0 = 0 in (3.11).

in the (min(ψ)−ψ0) from zero is also present in the results for the schemes RS and
RD-10−6, even though with smaller magnitudes. For all these schemes OS, RS, and
RD-10−6, the negative deviation of (min(ψ)−ψ0) from zero indicates the failure of
the applied FCT methodology to provide the monotonicity of the solution.

In contrast, the scheme RP, and the schemes RD with a convergence threshold lower
equal than ε= 10−9, achieve full monotonicity of the solution. Simultaneously, these
schemes give the lowest L2 error values. However, it is observed that the particular
scheme RP based on the prognostic approach (Section 3.3.2) suffers conservation
errors of the transported scalar ψ, as given last column of Table 3.3.

Table 3.4 presents results from the same experiment as performed for the results
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shown in Table 3.3, but with a zero background value ψ0 = 0 of the transported scalar
field ψ in (3.11). In contrast to the results of Table 3.3, the values for the L2 error
norms given here exhibit no significant difference between the different schemes. This
is although the magnitudes of the residual errors ‖rgmcl‖∞ are identical in Table 3.3
and 3.4. The reason for this behaviour is found by inspecting the minimum values
of the transported scalar variable ψ, given in the third column of Table 3.4. Due to
the sign-preserving property of MPDATA, similar negative deviations from zero as
observed in Table 3.3 for the quantity (min(ψ)−ψ0), are not present here. Again,
the particular scheme RP based on the prognostic approach for the GCL suffers
conservation errors, while all other schemes provide conservation of the transported
variable ψ with machine precision.

Further discussion and conclusions

As a consequence of the previous results, it can be stated that the incompatibility
of the MPDATA advective transport with the GMCL not only affects the prop-
erty of the algorithm to preserve a uniform field ψ (Table 3.2) but also the more
general property of the solution monotonicity (Table 3.3). Note, the failure of the
FCT methodology to provide the solution monotonicity in MPDATA originates from
the loss of the monotonicity-preserving character of the underlying upwind scheme,
which is due to the incompatibility with the GMCL (3.2). This conclusion has
been verified on the basis further numerical experiments (not shown). In addition,
the presented results highlight the general aspect of the MPDATA scalar transport
(Smolarkiewicz and Szmelter, 2005) that the solution monotonicity requires compat-
ibility with mass continuity, i.e. here with the GMCL (3.2), while the sign-preserving
property of the scheme does not, cf. Tables 3.3 and 3.4).

As demonstrated, the MPDATA implementations RP and RD, which have been
developed in this thesis, can be employed to ensure the required compatibility of
the MPDATA scalar transport with the GMCL (3.2). The prognostic approach
in the scheme RP and the diagnostic approach in the scheme RD with a conver-
gence threshold lower equal than ε= 10−9 provide accurate solutions free of spurious
(i.e. unphysical) extrema under the oscillating mesh.

However, an issue observed with the application of the implemented prognostic
approach (the scheme OP and RP) is that, although in flux-form, the MPDATA
integration is not exactly conservative anymore, cf. the last column in Tables 3.2,
3.3, and 3.4. Due to this shortcoming, the scheme RD is to choose over RP in the
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context of the general moving mesh solver.

Unfortunately, it was not possible within the time frame of the present thesis to
complete the development and testing of the diagnostic approach (Section 3.3.1) for
application in the general framework of the anelastic NFT solver EULAG. Open re-
search issues in the solution of (3.21) are the accurate formulation of Neumann
boundary conditions for general flows and arbitrary moving meshes, the imple-
mentation of the associated integrability condition, along with the development
of customised preconditioning of the applied GCR iterative solver. All this work is
currently ongoing and will be presented elsewhere in the near future. Note, in the
remaining thesis, the scheme RP based on the prognostic approach (Section 3.3.2) is
used as a temporary solution to provide the required compatibility of the MPDATA
integration in the context of the solution-adaptive moving mesh solver (Chapter 4).
The observed conservation issue with RP is insignificant for the conducted exami-
nation in this thesis.

In Section 5.3, the subject of the compatibility of MPDATA with the GMCL is fur-
ther investigated in the context of solution-adaptive numerically-generated moving
meshes. There, it will be demonstrated that the magnitudes of the errors intro-
duced by the incompatibility of the original MPDATA scheme with the GMCL are
typically substantially larger than under the simple prescribed oscillating meshes
considered above.
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Chapter 4

Solution-adaptive moving mesh
algorithm

The previous two chapters dealt with the integration of the anelastic equations (2.3)
in time-dependent generalised coordinates. Given this particular model formulation,
the discrete mesh can in principle be moved arbitrarily in physical space over the
course of the integration, while only being subject to the regularity assumptions of
the coordinate mappings (2.2) and (2.9). This capability of the model opens avenues
for spatio-temporal adaptation of the mesh to increase the numerical resolution in
certain sensitive regions in response to the simulated flow. In general, the use of such
a solution-adaptive moving mesh solver can be motivated by a variety of problem-
dependent conditions. Of course, the basic conception behind the approach is to
reduce the errors inherent to the discrete numerical approximation of the governing
continuous flow equations.

In this chapter, the implementation of the developed solution-adaptive moving mesh
NFT flow solver is presented. The discussion begins in Sections 4.1 and 4.2 with
the introduction of the basic mathematical apparatus underlying the present adap-
tive moving mesh solver. Practical aspects regarding the implementation and use
of the method are discussed afterwards in Section 4.3. The last part given in Sec-
tion 4.4 explains the implementation of the mesh adaptation component into the
computational framework of EULAG. Therein, an algorithmic sequence of the NFT
flow solver EULAG is proposed that is advantageous for applications with solution-
adaptive meshes. The suggested algorithmic structure allows to incorporate the
MPDATA-related developments from Chapter 3. Furthermore, it paves the way for
a particularly accurate evaluation of the advective contravariant velocities under
solution-adaptive moving meshes, which is also presented here.
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Figure 4.1: Representative mesh mapping from the computational domain Dt (a) into
the physical domain Dp (b).

4.1 Conceptual approach

The solution-adaptive mesh technique in this work is based on the particular class of
r-refinement (i.e. relocation- or redistribution- refinement) methods, which are also
named moving mesh methods. These methods continuously redistribute the mesh
points in space to obtain a finer resolution in sensitive regions of the evolving flow.
Inherent in the method is that the the number of mesh points and their connectiv-
ity do not change during the adaptation process. This is a basic requirement for
the applicability of the mesh adaptation technique in the EULAG flow solver (see
Chapter 2), which relies on a conserved (structured) data arrangement.

The objective of moving mesh methods is to construct a well-defined discrete mesh
Dhp on the physical domain Dp, that has the desired solution-adaptive properties.
To achieve this, the approach usually resorts to the classical concept of coordinate
mappings (cf. also Section 2.1): Given the fixed regular mesh geometry Dht on the
computational domainDt as a reference, the time-dependent irregular adaptive mesh
Dhp on the physical domain Dp is described by means of a coordinate mapping

(t,x) ≡ (t,M(t,x)) : Dt → Dp , (4.1)

so that the functionM(t,x) determines the mesh. This idea is exemplified in Fig-
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ure 4.1, where the mapping functionM(t,x) assumes the general two-dimensional
formM≡ (x(x, y), y(x, y)), at a particular time t. It is now obvious that the main
task of r-adaptive mesh generation is to find the appropriate mapping functionM
that specifies Dhp . The following sections discuss the mathematical apparatus to
manage this task.

4.2 Variational formulation

Modern methods of grid generation based on a mapping of coordinates (4.1) of-
ten rely on a variational approach. This method is attractive because it allows to
combine various constraints that may be imposed to generate the mesh. For exam-
ple, such constraints may concern mesh properties like smoothness, orthogonality,
alignment, and adaptivity with respect to certain refinement indicators, all of which
have a direct consequence on the efficacy of the employed numerical solution scheme
(e.g. the advection solver MPDATA). The principal task is to chose appropriately de-
fined functionals that incorporate the desired properties of the coordinate mappings
specifying the mesh. Then, optimisation leads to a “compromise” mesh that com-
bines the various properties involved. Typically, the corresponding Euler-Lagrange
equations that minimise the constructed functionals are solved to obtain the mesh
mapping. The books of Knupp and Steinberg (1994); Liseikin (1999) discuss the
topic in detail.

A functional that leads to a particularly robust system of mesh equations can be
formulated over the physical domain Dp as (Winslow, 1981; Dvinsky, 1991; Huang
and Russell, 1999; Huang, 2001b)

I[x] =
1

2

∫
Dp

N∑
k=1

(∇xk)T M−1∇xk dx , (4.2)

where k numbers the spatial dimensions N, and ( )T is the transpose. The symbolM
in (4.2) denotes the so-called monitor function, a N×N symmetric positive definite
matrix, that is assumed to depend on the physical coordinates x and on time t. It
is remarked that in the application of the mesh functional (4.2) a computational
space St with non-positive Riemann curvature tensor and a convex boundary of
the domain ∂Dt is assumed. These properties are important for the existence and
uniqueness of the generated mesh mappings (Dvinsky, 1991; Li et al., 2001). By
assuming a non-positive Riemann curvature tensor of St, the functional (4.2) is not
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directly applicable to mesh generation in spherical geometries. An approach for the
generation of moving meshes on the sphere which is based on perturbed harmonic
mappings is presented in Di et al. (2006). As an aside, variational mesh generation
is also used to construct quasi-uniform meshes on the spherical surface for global
atmospheric modelling (Rančić et al., 1996; Purser and Rančić, 1998).

In the functional (4.2), it is the matrix M that specifies the local metric, i.e. shape
and size, of the mesh geometry. In the solution-adaptive moving mesh solver, the
monitor function M is typically defined to be proportional to some error indicator
of the numerically-computed physical flow solution. See further below in Section 4.3
for a discussion and the detailed implementation in the present solver. From the
functional (4.2), the mesh is found by the solution of the corresponding Euler-
Lagrange equations, given as the stationary points

δI(xk)

δxk
= 0 k = 1,N (4.3)

in the function space xk 1.

4.3 Moving mesh partial differential equations

Atmospheric and oceanic flows exhibit a strongly transient and non-linear behaviour.
An effective solution-adaptive mesh method for these applications should manage to
follow the permanently evolving multiscale flow features in an efficient and robust
manner. For these demands, it is useful to incorporate explicit control over time
scale of the moving mesh adaptation in the solver. With this approach, the con-
tinuous mesh movement can be adjusted by the physical time scale representative
to the problem under consideration. The following approach proposed by Huang
et al. (1994); Huang and Russell (1999) has been found appropriate for this pur-
pose. Instead of applying the condition (4.3) to derive elliptic mesh PDEs from the
functional I(x), the modified gradient flow equations

P
∂xk

∂t
= −δI(xk)

δxk
k = 1,N (4.4)

are used to obtain so-called moving mesh partial differential equations (MMPDEs)
of parabolic type. Therein, a scaling function P plays the role of the diagonal

1 δ/δxk is meant to be a variational derivative, see e.g. Gelfand and Fomin (1963).
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preconditioner that improves the solution properties of the MMPDEs and the overall
solution-adaptive moving mesh flow solver. Among others, the function P allows to
explicitly specify the time scale of the mesh adaptation, which is extremely valuable
for the general efficiency and robustness of the method. The ensuing subsection
deals with the specification of the scaling function P . Here, the discussion continues
with the derivation of the MMPDEs as employed in the solution-adaptive moving
mesh NFT flow solver.

The gradient flow equations (4.4) with the functional (4.2) result in a particular set
of MMPDEs (Huang and Russell, 1999)

P
∂xk

∂t
= ∇ ·

(
M−1∇xk

)
, k = 1,N . (4.5)

In (4.5), all partial derivatives are taken with respect to the physical coordinates,
i.e. ∇≡ (∂/∂xj). For a practical application, the roles of the dependent and in-
dependent variables are interchanged in (4.5). This leads to the final form of the
MMPDEs (Huang, 2001a; Lang et al., 2003) employed in the numerical solver. In
two dimensions (N≡ 2), they are given as

P (x,M)
∂x

∂t
=
∑
i,j=1,2

Dij(x,M)
∂2x

∂xi∂xj
+
∑
i=1,2

Ci(x,M)
∂x

∂xi
(4.6)

with the coefficients

Dij(x,M) = ∇xi ·M−1∇xj , Ci(x,M) = −∇xi ·

(∑
k=1,2

∂M−1

∂xk
∇xk

)
.

The MMPDEs (4.6) are solved in the computational space St in conjunction with the
physical model equations (2.3). The solution of (4.6) provides positions of the mesh
x(t,x) in the physical space Sp, in line with general definition of the transformation
(4.1). The coefficients Dij and Ci of (4.6) depend on the monitor function M .
The specification of the monitor function M in turn couples the MMPDEs to the
physical solutions. The following subsections elaborate on the solution procedure
of the MMPDEs (4.6) including the specification of the monitor function M . The
algorithmic implementation in the context of the complete solution-adaptive mesh
NFT flow solver is finally described in Section 4.4.
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Scaling of the MMPDEs

For the solution of the MMPDEs (4.6) along with the actual physical problem (2.3),
it is beneficial to apply a scaling to them. For this purpose, following Huang (2001a)
the function P is specified here as

P (x,M) = Θ
√

(D11)2 + (D22)2 + (C1)2 + (C2)2 . (4.7)

The symbol Θ represents a mesh relaxation time (Θ> 0) which is employed as a
smoothing parameter of the mesh motion. The parameter Θ allows explicit control
over the time scale of the MMPDE solution towards the steady state with respect to
a given monitor functionM . Basically, the smaller (larger) the mesh relaxation time
Θ, the faster (slower) reacts the mesh. The idea behind the incorporated relaxation
time Θ in the MMPDEs is that the mesh needs not to be solved for a completely
steady (equidistributed) state with respect to M at every time step, but rather has
to evolve just as fast as to capture the essential features of the physical flow solution.

The appropriate value for the mesh relaxation time Θ is not straightforwardly iden-
tified for a given flow configuration, particularly for complex multidimensional ap-
plications considered with the present solver. It was found that the choice for Θ

is influenced not only by the problem physics, but also by the configuration of the
solution-adaptive moving mesh solver itself, e.g. the specification of the monitor
function M . Overall, the literature on MMPDE methods provides virtually no in-
formation on this issue. Generally, Θ must be chosen small enough to ensure that
the mesh can follow the temporal evolution of the flow or the mesh adaptation fea-
tures in appropriate manner. However simultaneously, if the value of Θ is chosen
too small for a particular setup, then unnecessary large stiffness is introduced in
the numerical solver which requires more computational effort for the integration.
Furthermore, it is also not clear at this time whether and how to apply a dynamical
change of Θ during the simulation; only recently in Soheili and Stockie (2008) this
has been applied for the first time to idealised one-dimensional problems. For the
conducted experiments in the present work, the mesh relaxation time Θ had yet to
be found on a trial-and-error basis for each flow problem and with Θ kept constant
over the course of the simulation. See the test applications in Chapters 5 and 6.

The second factor in (4.7) aims to improve the numerical solution properties of
the MMPDEs through spatial balancing of the RHS of (4.6) by the norm of its
diagonal coefficients. This results in a more uniform size ∼ O(1) of the coefficients
Dij and Ci in (4.6) over the solution domain, thereby leading to a numerically
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better-conditioned MMPDE (Huang, 2001a). Another important aspect is that the
applied normalisation makes the MMPDEs invariant with respect to the scalings
x → γ x and M → γ M , ∀ γ > 0 (Huang, 2001a). Given a computational domain
Dt of standard size, the MMPDEs consequently acquire more consistent solution
properties under different sizes of the physical domain Dp and/or monitor functions
M . By definition, all applications in this work use a unit square computational
domain Dt in (4.1).

Monitor function

The most decisive part in the application of the MMPDEs to specific physical prob-
lems is the appropriate choice of the monitor function M . The monitor function M
couples the MMPDEs to the physical flow equations, and its specification aims at
the construction of a mesh that is at all times well adapted to the evolving physical
flow solution. The design of monitor functions for the purpose of automatic mesh
refinement is an open research area, and this applies particularly to the area of geo-
physical flows. In general, the better one understands the physical processes of the
simulated problem, the easier is it to design an effective monitor function. As an
example, the evolution of tropical cyclones is known to depend critically on the pro-
cesses in the inner-core region, e.g. Wang (2002); Rotunno et al. (2009), especially
in the eyewall surrounding the centre of the vortex where substantial low-level radial
convergence occurs. Hence, it would be desirable to have a relatively high resolution,
i.e. a large mesh density, in this region of a simulated tropical cyclone and design
the monitor function accordingly. Other aspects in the construction of the adaptive
mesh may concern properties like smoothness and orthogonality, or the directional
alignment of the mesh with certain flow features. All these considerations may be
incorporated in the definition of the monitor function M , see e.g. Brackbill (1993);
Huang and Russell (1997); Cao et al. (1999) for discussions.

The functional form of M used in the present work is given as a diagonal matrix
Winslow (1981)

M =

[
q 0

0 q

]
, (4.8)

where q= q(t,x) is a strictly positive scalar weighting function. The particular
diagonal form of the monitor function (4.8) realises a non-directional, i.e. isotropic,
refinement of the mesh coordinates relative to the distribution of the scalar weighting
function q. As already mentioned above, the mesh adaptation could be extended
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to directional, i.e. anisotropic, alignment with particular solution features by using
a different form of the monitor function M , see e.g. Brackbill (1993); Huang and
Russell (1997); Cao et al. (1999).

With the use of (4.8), the local size of the mesh cells tends to be inversely propor-
tional to the relative size of the scalar weighting function q over the physical domain
Dp. Consider the one-dimensional version of the functional (4.2)

I[x] =
1

2

∫
Dp

1

q

(
∂x

∂x

)2

dx , (4.9)

with the corresponding Euler-Lagrange equation given as

∂

∂x

(
1

q

∂x

∂x

)
= 0 (4.10)

or equivalently
∂x

∂x
= qC ; (4.11)

where C is a constant. Because ∂x/∂x is a measure of a local mesh density in
the physical domain Dp, the relation (4.11) simply states that a higher numerical
resolution is associated with a locally large weighting function q. This is a form
of the so-called equidistribution principle after de Boor (1974). In more than one
dimension, no comparable theoretical statement to (4.11) is known for the functional
(4.2). However, the considered functional (4.2) with the monitor function (4.8) is
a direct multidimensional generalisation of (4.9). This suggests that a behaviour
of the mesh adaptation kind of similar to the one-dimensional case (4.11) can be
expected in higher dimensions. Indeed, this was studied by means of a variety of
idealised solution-adaptive moving mesh experiments in Cao et al. (2003). Therein,
it was demonstrated that the functional (4.2) with (4.8) provides a mesh roughly
satisfies the general equidistribution condition q Gxy≈C−1, wherein Gxy denotes the
Jacobian of the transformation (2.13).

Given a local mesh refinement indicator Φ(t,x)≥ 0, i.e. some measure for the local
error in the flow computation that indicates where a finer mesh is required, the basic
specification for q that is adopted here is

q(t,x) = 1 +
β

1− β
Φ

〈Φ〉
. (4.12)
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The symbol 〈 · 〉 in (4.12) defines the domain average according to

〈Φ〉 =
1

A

∫
Dp

Φ(t,x) dx , (4.13)

wherein A denotes the area of the two-dimensional plane of the domain Dp in which
the mesh adaptation is applied. The parameter 0 ≤ β < 1 in (4.12) allows user-
specified control over the strength of the adaptation (Huang, 2001a). For the choice
β= 0, the weighting function q is unity, and a uniform non-adapted mesh results.
The larger the parameter β, the stronger is the adaptation of the mesh with respect
to the refinement indicator Φ(t,x). The applied normalisation of Φ by the domain
average 〈Φ〉 (Beckett et al., 2002) conveniently makes the weighting function q a
dimensionless quantity. Furthermore, the normalisation provides a more uniform
distribution of the mesh points for the time-space-dependent error measure Φ, in
that a certain mesh point density (depending on the choice of β) is maintained in
less sensitive areas, i.e. where Φ→ 0.

The actual specification of the refinement indicator Φ is crucial for the success of
the solution-adaptive moving mesh flow solver. The choice of Φ may be motivated
by a variety of aspects that include physical criteria related to the flow problem un-
der consideration, numerical error estimates based on the applied discretisation of
the governing flow equations, or heuristically-derived error proxies (Behrens, 2006).
Within the present study, mesh adaptation is restricted to physical and heuristically-
derived mesh refinement indicators1. A heuristic error proxy could be the gradient
of a transported scalar variable in an advection problem that is supposed to be in-
dicative of large solution errors, see Section 5.1. Mesh refinement driven by physical
criteria may use vorticity to detect strong shear layers or the gradient of temperature
to detect fronts, see Sections 5.2 and 6.1 for example applications. The possibilities
for the specification are diverse and often depend strongly on the problem under
consideration. Solution-adaptive mesh algorithms may be based on pure numerical
error estimates, see Szmelter and Smolarkiewicz (2006) in the context of MPDATA
transport methods. See also Behrens (2006) and the given references therein for a
more general discussion. Moreover, using adjoint-based mesh refinement indicators,
e.g. Power et al. (2006); Dwight (2008); Mani and Mavriplis (2010), is a notewor-
thy approach particularly for complex nonlinear geophysical flow applications. In
geophysical flows, the local evolution of the dynamical fields may be influenced
strongly by processes occurring large distances away in the system Weller et al.

1Note that physical and heuristically-derived refinement criteria cannot always be strictly distin-
guished from each other.
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(2010). Adjoint-based techniques have the ability to provide the associated sensi-
tivity information for specific quantities of interest. The obtained spatial sensitivity
distribution can be used to design criteria for the mesh refinement. It is finally also
indicated that another aspect highly relevant to the solution-adaptive mesh simula-
tions of geophysical flows is the coupling of the mesh refinement to the sub-grid scale
processes and their parameterisations in the numerical model. Just as an example,
exploiting criteria based on sub-grid scale information from a convective parameter-
isation may prove beneficial to detect the initiation of moist convection in certain
regions. In general, the ideal mesh refinement indicator reliably detects important
and unimportant regions of the particular flow evolution throughout the simulation
and is also computationally inexpensive to derive.

Balancing of various monitor components

In complex dynamical applications, it may often be desirable or required to com-
bine different aspects for the refinement indicator Φ. For instance, one can imagine
to rely on numerical and physical error indicators at the same time. Another op-
tion could be to combine indicators based on thermodynamic fields, e.g. entropy or
moisture variables, with indicators that are derived from the flow field, e.g. vorticity
or divergence. Again, the actual possibilities are diverse. In the majority of the
cases, the values of the different refinement indicators will not be in the same range,
and proper balancing of the various components is necessary to achieve an effective
solution-dependent adaptation of the mesh.

Let Φl be the l-th refinement indicator and l= (1, L), where L is the number of the
various refinement aspects involved. A direct expansion of (4.12) for L> 1, is to
sum over the individual components qp as follows

q(t,x) =
L∑
l=1

q l(t,x) =
L∑
l=1

[
1 +

β

1− β
Φl

〈Φl〉

]
. (4.14)

The disadvantage of the implementation (4.14) is that one component Φl with a
large maximum value but a relatively small average 〈Φl〉, may dominate the other
components (van Dam, 2009). An additional normalisation of each component by its
maximum value in the domainDp, i.e. (q l/maxDp(q l)) in (4.14), leads to an improved
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and better balanced weighting function (van Dam, 2009)

q(t,x) =
L∑
l=1

q l(t,x) =
L∑
l=1

[
〈Φl〉+ γ Φl

〈Φl〉+ γmaxDp(Φl)

]
, γ :=

β

1− β
. (4.15)

Note that for L= 1, (4.15) is equivalent to (4.12), because the normalisation by
the domain maximum does not alter the MMPDEs due to the scaling invariance
property (M → γ M ∀ γ > 0).

An application of the solution-adaptive moving mesh solver that uses a combination
of mesh refinement indicators based on the gradient of potential temperature and
vorticity of the flow field will be given in Section 5.2.

Smoothing of the monitor function

The computed monitor function M is often quite irregular. As a consequence,
using the computed monitor function M directly has a detrimental effect on the
solution properties on the MMPDEs as well as the overall solution-adaptive solver.
Therefore, some amount of smoothing is applied to the monitor function M , which
is common practice in moving mesh methods, e.g. Dorfi and Drury (1987); Huang
(2001a); Huang and Russell (2001); Lang et al. (2003). Here, a local averaging
procedure is adopted

M (k+1)(t,x0) =

∫
U(x0)

M (k)(t,x) dx∫
U(x0)

dx
∀x0∈Dp, (k = 1, K) , (4.16)

where U(x0)⊂Dt denotes the union of the direct neighbouring mesh points having
x0 (which is the image point to x0) as one of their vertices (Huang and Russell,
2001). Basically, a larger number of smoothing passes K facilitates the solution
of the MMPDEs, and the associated anelastic solver. Because the smoothing of
the monitor function M is effectively equivalent to a smoothing of the mesh itself, a
largerK simultaneously results in a weaker adaptation. Furthermore, the smoothing
of the monitor function M spreads out the regions of mesh refinement and provides
a more gradual change in the local size of the mesh cells. An optimal choice of K
obviously depends on the considered problem and the specification of the monitor
function M . Typical numbers in the context of the present solver are K ≈ 15.
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Boundary conditions

The solution of the MMPDEs (4.6) requires the specification of appropriate bound-
ary conditions. At non-periodic horizontal boundaries (e.g. open boundaries or rigid
walls) of the anelastic solver, Dirichlet-type conditions are specified for x. It was
found that keeping the mesh coordinates x fixed and uniform along the boundary
of the domain ∂Dp results in undesired deformations of the mesh for refinement in
the vicinity to ∂Dp. A consistent movement of the mesh coordinates on the domain
boundary ∂Dp with the mesh coordinates in the inner part of the domain could
successfully be achieved by the implementation of one-dimensional boundary MM-
PDEs as applied in Huang and Russell (1997); Huang (2001a). With this procedure,
one-dimensional MMPDEs for the distribution of the mesh points x on individual
segments Γp of the boundary ∂Dp (typically between fixed corner points), are solved
prior to (4.6). The one-dimensional analogue to (4.6) reads

p(s, µ)
∂s

∂t
= µ

∂2s

∂s2 +
∂µ

∂s

∂s

∂s
, (4.17)

where the arc-length coordinates s and s parameterise the physical Γp and the associ-
ated computational Γt boundary segments, respectively. The one-dimensional scalar-
valued monitor function µ in (4.17) is computed as the projection µ(t, s) = tTM t

of the matrix-valued monitor function M along the boundary ∂Dp, where t is the
local tangent vector to ∂Dp. The scaling parameter p(s, µ) in (4.17) is given as

p(s, µ) = Θ

√
µ2 + (∂µ/∂s)2 , (4.18)

in which the mesh relaxation time Θ usually adopts the same value as in the solution
of the associated two-dimensional equation (4.6).

Periodic boundaries are another choice in the anelastic solver, which are consistently
implemented in the solution scheme of the MMPDEs (4.6); see Figure 6.1 for an
illustration.

Moving mesh algorithm

Solution-adaptivity of the mesh within the physical flow solver presented in Chap-
ter 2 is accomplished through an algorithmic coupling with the MMPDEs. Here, the
adopted solution approach integrates the physical set of anelastic equations (2.3)
and the coupled MMPDEs (4.6) in a successive manner for each time step. This
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alternate solution procedure is in contrast to a simultaneous integration of the MM-
PDE and the underlying physical equations. In the latter approach, a single implicit
system for the overall solution-adaptive model is formulated and eventually solved
by specifically designed numerical methods, see Lang et al. (2003) for an imple-
mentation. The present development extends the established multiscale geophysical
flow solver EULAG with the solution-adaptive moving mesh capability, whereupon
the MMPDEs are treated in a single algorithmic entity that adheres to the main
physical solver. During the model integration, the mutual coupling between the var-
ious modules always exists through the monitor function M and the mesh positions
x. The numerical solution of the MMPDEs is described next, whereas the ensuing
section discusses the incorporation of the developed MMPDE algorithm into the
framework of the geophysical NFT flow solver EULAG.

Numerical solution of the MMPDEs

The principal requirements for the numerical solution procedure of the MMPDEs
(4.6) are robustness and efficiency. The formal accuracy of the mesh computation
is of minor concern because it is not a determining factor for the accuracy of the
physical solution that is computed on the mesh. This constitutes a virtue of the
alternate solution approach adopted here. First- and second-order implicit temporal
discretisations are chosen for the integration of the MMPDEs (4.6) and (4.17), as
they offer stable solutions, independent of the size of the scaling parameters P and
p, respectively. Specifying a spatial differential operator L in (4.6) as

L(x) ≡ P−1

( ∑
i,j=1,2

Dij(x,M)
∂2x

∂xi∂xj
+
∑
i=1,2

Ci(x,M)
∂x

∂xi

)
, (4.19)

the implemented temporal discretisation is given as

xn+1 − xn

δt
= aL(xn+1) + bL(xn) , (4.20)

which optionally allows for the backward Euler (a= 1, b= 0) or the trapezoidal
Crank-Nicolson (a= b= 0.5) scheme. In the practical implementation, the coeffi-
cients Dij and Ci in (4.19) are freezed at the time level n. Standard central differ-
ences are used to discretise all spatial partial derivatives. Given either Dirichlet or
periodic boundary conditions for x, the resulting algebraic problem is solved by the
generalised conjugate residual GCR scheme (Eisenstat et al., 1983; Smolarkiewicz
and Margolin, 1994; Smolarkiewicz et al., 2004). A convergence threshold for the
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iterative GCR algorithm can be based simply on some norm of the residual error
to (4.20). However, a more meaningful convergence criterion with regard to the un-
derlying mesh generation problem is obtained by considering the difference between
successive GCR iterations ν for the solutions φν and relate them to the characteristic
extensions L of the physical domain Dp. Specifically, it is proposed here to use

‖φν+1−φν ‖∞< ε L , φ = xi (4.21)

as a stopping criterion for the iterative GCR scheme in the MMPDE solution. The
criterion (4.21) is applied in combination with a criterion based on some norm of
the residual error1. A value of ε= 10−7 in (4.21) has been employed successfully
throughout all experiments of largely varying scales L (see the Sections 5 and 6)
performed in this work.

The described MMPDE solution procedure is fully embedded in the parallel coding
structure of the EULAG flow solver. Note finally, the discretisation given above
applied to the one-dimensional boundary MMPDEs (4.17) results in a tridiago-
nal system of algebraic equations, which is solved by the Thomas algorithm, see
e.g.Durran (1999).

4.4 Solution-adaptive moving mesh NFT solver

This section demonstrates the algorithmic implementation of the overall solution-
adaptive moving mesh NFT flow solver. It is explained in which way the MMPDE
machinery of Section 4.3, is incorporated into the solution procedure of the physi-
cal anelastic NFT flow solver of Chapters 2 and 3. The discussion focuses on the
Eulerian MPDATA scheme for advection in (2.19).

Implementation of the algorithm

A flowchart illustrating the algorithmic sequence of the basic parts that compose
the solver is shown in Figure 4.2. Given the current set of model solutions Ψn and
the mesh xn at the time level tn, the time loop begins with the execution of the
mesh adaptation module. This involves the evaluation of the monitor function Mn

(typically a function of the present solutions Ψn), and the subsequent integration

1Note, the combination of (4.21) with a criterion based on a residual error norm is required because
(4.21) can fail if the iterative solver stalls.
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• Mesh adaptation module

· Compute monitor matrix Mn using Ψn

· Advance boundary mesh xn
b →xn+1

b

using 1D MMPDEs (3.9)

· Advance mesh xn→xn+1 using 2D
MMPDEs (3.6)

• Compute metric coefficients from xn+1

• Predict advective flux (ρ∗v∗)n+1/2

• Advance all physical fields Ψn→Ψn+1

• Time step adaptation δtn→ δtn+1

Figure 4.2: Flowchart showing a full time-loop coding sequence of the basic parts that
compose the solution-adaptive moving mesh Eulerian NFT flow solver.

of the MMPDEs for the solution-adapted mesh points xn+1 at the time level tn+1

1. Having obtained the mesh xn+1, the corresponding metric variables that specify
the adapted mesh geometry, e.g. elements of the Jacobian matrix, are computed.
This step also includes an update of all known background and ambient fields in
the anelastic equations (2.3) to the new positions xn+1. At this stage of the model
algorithm, the required advective momentum vector v̂n+1/2 at the intermediate time
level tn+1/2 in the MPDATA solution (see Section 2.3) is determined. In adaptive
simulations, this part intertwines with the numerical procedure for the computa-
tion of the mesh velocity vg (3.16). In the next subsection, it is elaborated how
the procedure is best incorporated into the velocity predictor for v̂n+1/2. The al-
gorithm proceeds by advancing all physical model fields Ψn→Ψn+1 based on the
solution procedure described in Section 2.2. In order to improve the efficiency of the
model integration, the time step δt is adapted to an optimal size (according to the

1For relatively large time steps δt of the physical solver, e.g. with the semi-Lagrangian advection
scheme, sub-steps in the MMPDE integration may be required for an efficient solution.
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underlying stability criterion) by the end of each time loop.

The described algorithmic structure offers the flexibility to incorporate the MPDATA-
related developments as presented in Section 3.1. This essentially requires that the
mesh adaptation xn→xn+1 is performed prior to the execution of the advection
scheme, i.e. prior to the advancement of the model fields Ψn→Ψn+1 as shown in
Figure 4.2. Only with such a procedure, diagnostically derived generalised densities
ρ∗n and ρ∗n+1 are known within MPDATA as needed for the application of the gen-
eralised density correction factor (3.6). Note, in the default EULAG the mesh adap-
tation is performed after the execution of the advection scheme (not shown). This
shortcoming with the developments of Section 3.1 initiated a redesign of the model’s
coding structure in the context of the present work. Furthermore, another aspect of
this redesigned coding structure is that it allows for a more accurate computation
of the advective contravariant velocities v̂n+1/2 in MPDATA under time-dependent
generalised coordinates, which is explained in the last part of this section. Com-
pared to the default EULAG, the coding structure of Figure 4.2 requires at least
the storage of one additional three-dimensional field for the generalised density ρ∗.

It shall be finally remarked, that the time step adaptation has the potential to sig-
nificantly (∼ 10 - 20 percent, but strongly depending on the application) increase the
efficiency of the solution-adaptive moving mesh applications. Despite this benefit,
one should be aware that variable time stepping, at least in the author’s experi-
ence, introduces small additional errors absent in comparable constant time step
computations.

Advective velocity prediction in the solution-adaptive mesh solver

As explained in Section 2.3, MPDATA requires an O(δt
2
) approximation to the

advective generalised contravariant mass flux vector v̂n+1/2 = (ρ∗v∗)n+1/2 at the in-
termediate time level tn+1/2. Here, the procedure of predicting (ρ∗v∗)n+1/2 in the
solution-adaptive moving mesh solver is considered.

Under a time-dependent mesh geometry, the default procedure is to evaluate the
solenoidal vs (2.6) and the mesh velocity vg (see the subsequent paragraph) both at
the time level tn. Using the relation (2.5), the generalised contravariant mass flux
(ρ∗v∗)n is formulated according to

(ρ∗v∗)n = (ρ∗vs)n + (ρ∗vg)n . (4.22)
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Given (ρ∗v∗)n and (ρ∗v∗)n−1 from the previous time step, the linear predictor scheme

(ρ∗v∗)n+1/2 = (1 + β) (ρ∗v∗)n − β (ρ∗v∗)n−1 , (4.23)

cp. (2.35), is employed to obtain an O(δt
2
) approximation for (ρ∗v∗)n+1/2. Similarly,

nonlinear predictor schemes may be used instead of (4.23) to calculate (ρ∗v∗)n+1/2,
cf. Smolarkiewicz and Margolin (1993); Smolarkiewicz and Margolin (1998).

The MPDATA solution in a time-dependent mesh geometry requires to evaluate
the mesh velocity vg in (4.22). In the solution-adaptive moving mesh solver, the
positions x and the velocity of mesh, i.e. ∂x/∂t, are not known analytically during
the integration. Rather, they have to be determined numerically at each time step.
Within the algorithm displayed in Figure 4.2, the mesh adaptation module at the
beginning of the time loop generates the mesh positions xn+1. At this point, a cen-
tred1 second-order finite-difference around the time level tn can be used to compute
(∂x/∂t )n, namely (

∂x

∂t

)n
=

(xn+1 − xn−1)

2δt
, (4.24)

where a constant time step δt is assumed for simplicity of the exposition. The mesh
velocity (vg)n = (∂x/∂t )n ∈ St, and hence (ρ∗vg)n in (4.22), are subsequently de-
rived by means of the Kronecker-delta relations (2.14) and the mesh geometry xn.

Revised procedure for predicting advective velocities

A revised procedure for the approximation of (ρ∗v∗)n+1/2 in the framework of the
solution-adaptive moving mesh NFT flow solver (Figure 4.2) is proposed. The
method evaluates ρ∗vg straightforwardly at the intermediate time level tn+1/2, and
applies the predictor scheme only to the part with the solenoidal velocity vs. The
detailed procedure is as follows: After completion of the mesh adaptation module
in the algorithm of Figure 4.2, the mesh velocity (∂x/∂t) is evaluated as(

∂x

∂t

)n+1/2

=
xn+1 − xn

δt
. (4.25)

1With variable time stepping, the finite difference is not symmetric about tn, and appropriate
difference formulae have to be used to retain second-order accuracy, see e.g. Ferziger and Peric
(2001).



70 4.4 Solution-adaptive moving mesh NFT solver

Then, then (vg)n+1/2 and the generalised density ρ∗n+1/2 are obtained from the
Kronecker-delta relations (2.14) and the mesh geometry xn+1/2 approximated by 1

xn+1/2 = 0.5
(
xn+1 + xn

)
. (4.26)

This procedure yields an O(δt
2
) approximation for (ρ∗vg)n+1/2 at the intermediate

time level tn+1/2. As (ρ∗vg)n+1/2 is already known, only the flux with the solenoidal
velocity (ρ∗vs)n+1/2 is obtained from the application of the respective linear or non-
linear predictor schemes. With the former scheme, i.e. analogous to (4.23), it uses

(ρ∗vs)n+1/2 = (1 + β) (ρ∗vs)n − β (ρ∗vs)n−1 . (4.27)

After that, the contravariant fluxes (ρ∗v∗)n+1/2 are computed at tn+1/2 as

(ρ∗v∗)n+1/2 = (ρ∗vs)n+1/2 + (ρ∗vg)n+1/2 , (4.28)

which completes the procedure.

The explained scheme (4.25)-(4.28) for the computation of (ρ∗v∗)n+1/2 features a
number of advantages compared to (4.22)-(4.24). From a practical point of view,
the initialisation of (4.25)-(4.26) is straightforward. Moreover, the numerical eval-
uation of the mesh velocity (∂x/∂t ) under variable time steps uses the simple
derivative (4.25), in the spirit of FT schemes. Most importantly, the application
of the procedure (4.25)-(4.28) leads to a more accurate solution of the MPDATA
scheme under time-dependent generalised coordinates. An important aspect of the
procedure (4.25)-(4.28) thereby is that it achieves round-off error compliance with
the GCL (3.18) for a uniform background density ρb and time-dependent coordi-
nate transformations of the one-dimensional form F(t,x) = (x(t, x), y(t, y), z(t, z))

in (2.2). This property is due to the centred evaluation of the mesh velocity and
all metric terms with respect to t

n and t
n+1. The latter together with the com-

mutativity of the discrete numerical derivatives for the metric terms provides the
particular round-off error compliance with the GCL (3.18). Although this does not
hold for more general coordinate mappings and a non-uniform background den-
sity ρb, the procedure provides minimisation of the errors with respect to the GCL
(3.18) also for arbitrary time-dependent coordinate mappings. Note, the procedure
(4.22)-(4.24) has no similar property and normally shows significantly larger errors
in terms of the compliance with the GCL (3.18). The accuracy of the procedure

1Note that optionally ρ∗n+1/2 = 0.5 (ρ∗n+1 + ρ∗n) may be used, which simplifies the procedure
within the general anelastic solver.
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(4.25)-(4.28) against (4.22)-(4.24) will be investigated by means of solution-adaptive
moving mesh experiments in the subsequent Sections 5.1 and 5.3. It is anticipated
here, that these experiments will show the procedure (4.25)-(4.28) to be superior
over (4.22)-(4.24). Therefore, unless otherwise noted, all simulations in this work
employ the procedure (4.25)-(4.28) for the calculation of the generalised contravari-
ant mass flux (ρ∗v∗)n+1/2, with the mesh velocity vg evaluated straightforwardly at
t
n+1/2.
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Chapter 5

Two-dimensional solution-adaptive
moving mesh test simulations

The previous two Chapters 3 and 4 are concerned with the design and implemen-
tation of the solution-adaptive moving mesh NFT flow solver based on MPDATA
advective transport methods. As with any new modelling approach, basic validation
and testing of its consistence is crucial. This task is best performed initially in a
simple configuration for flow problems that are straightforward to analyse.
In the present chapter, two-dimensional prototype versions of the solution-adaptive
moving mesh solver are created and applied that resemble the numerical formula-
tion of the anelastic NFT flow solver EULAG. Two canonical flow test problems
are considered for the prototype solvers. The first model problem in Section 5.1
is the advection of a passive scalar in a prescribed time-varying shear flow. This
model problem provides an ideal first test because of the simplicity to handle only
a single linear hyperbolic physical conservation law and the availability of an exact
solution. Despite its simplicity, it is of relevance to dispersion modelling of chemi-
cal tracers in (large-scale) atmospheric and oceanic flows. A second model problem
considered in Section 5.2 is the nonlinear evolution of a dry rising warm thermal
in a neutrally-stratified quiescent atmosphere. Here, this non-hydrostatic flow is
modelled on the basis of the anelastic equations1. The anelastic equations are also
employed in EULAG. Although the nonlinear rising thermal flow does not have an
exact solution, it allows for a quick analysis of well-defined solution features like the
representation of the amplitude of the rising thermal and the temperature gradients

1Actually, the incompressible Boussinesq flow equations are applied here. These, however, repre-
sent a direct subset of the anelastic equations.
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along its edges. An accurate representation of these solution features in the sim-
ple configuration adopted here is of direct relevance for the numerical modelling of
cumulus convection in realistic atmospheric flows.

The present chapter is concerned with the question of whether the basic conceptual
formulation of the solution-adaptive moving mesh solver developed in Chapters 3
and 4 works in practice. This is confirmed by applying the adaptive solver to the
two-dimensional model problems given above. Both model problems feature strongly
varying lengths scales in the evolving flow, and the adaptive solver is assessed with
regard to its performance against the uniform mesh solver. For instance, it is in-
vestigated whether the adaptive mesh solver is able to achieve a significantly better
representation of the multiscale flow than the uniform mesh solver with the same
number of grid points. If the improvement in the solution quality is of significant
size, then this is an argument for the usefulness of the adaptive solver.
In addition, basic aspects of the adaptive solver are investigated in the present chap-
ter. Among others, one of these aspects is the adaptation of the mesh points at the
domain boundary. In the moving mesh solver, one-dimensional MMPDEs for the
mesh adaptation at the boundaries are combined with the two-dimensional MM-
PDEs for the mesh adaptation in the inner part of the domain. Here, it is demon-
strated that the boundary mesh adaptation occurs consistently with the adaptation
of the mesh points in the inner part of the domain.
Another aspect is whether the adaptive solver can cope with strong mesh adapta-
tions required to resolve fine structures in the flow. For example, the rising thermal
flow simulation in Section 5.2 demands strong adaptations at the sharp interface of
the thermal with the ambient air. The integration of the underlying anelastic equa-
tions involves the solution of the elliptic boundary value problem for the pressure
variable at each time step; see Equation (2.23) in Section 2.2. The variation of the
size of the coefficients in the elliptic pressure equation is related to the metric of the
underlying mesh. It is unclear in advance whether the convergence properties of the
iterative solver applied to solve the elliptic pressure equation are seriously degraded
as a result of strong adaptations of the mesh. Fortunately, it can be shown that this
is not the case.
Two different schemes for the approximation of the advective generalised contravari-
ant mass flux v̂n+1/2 = (ρ∗v∗)n+1/2 in MPDATA under a moving mesh are proposed
in the last part of Section 4.4. Here, the scalar advection problem in Section 5.1 is
used to assess the different schemes. The analysis can easily be performed due to
the existence of an exact solution for the considered scalar advection problem.
It is also noted that the formulation of the adaptive anelastic solver for the sim-
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ulation of the rising thermal in Section 5.2 will assume the two-dimensional mesh
adaptation in the vertical plane. This formulation differs from the current formu-
lation of EULAG, where the solution-adaptive mesh adaptation is restricted to the
horizontal plane. Here, it is demonstrated, in the simplified though sufficiently com-
plex configuration of the rising thermal, that such an extension could be of value for
the simulation small-scale flows in EULAG as well.
In Chapter 3, the issue of the compatibility of the MPDATA advection scheme with
the generalised anelastic mass conservation law (GMCL) is discussed. There, exten-
sions of MPDATA for its use under moving meshes were developed. However, the
associated numerical test and validation experiments in Section 3.4 were restricted
to prescribed oscillating moving meshes and the model problem of scalar advection
in a uniform velocity field. In the final Section 5.3 of the present chapter, the sub-
ject is further investigated in the context of solution-adaptive numerically-generated
moving meshes. Here, both the scalar advection problem and the rising thermal flow
problem are used for the examination.

The use of the simplified two-dimensional prototype solvers in the present chapter
allows for a straightforward code handling and fast execution times. This has been
of value during the elaborate development and testing phase of the solution-adaptive
moving mesh solver. As mentioned above, the prototype solvers resemble the ana-
lytical and numerical formulation of EULAG. Therefore, all aspects discussed in the
present chapter are of direct relevance to the application of the adaptive solver in
the full framework of the three-dimensional modelling system EULAG.
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5.1 Scalar advection

In this section, the problem of scalar advection in a predefined velocity field is
considered. This relatively straightforward configuration allows to validate the de-
veloped solution-adaptive moving mesh NFT solver by means of known analytical
solutions. The particular model setup follows that in Blossey and Durran (2008).
The setup describes an initially cosine-squared-shaped hill of the advected scalar
variable ψ that is elongated into a fine-scale filamentary structure by the acting of
a deformational flow field. The flow field reverses its magnitude in time to recover
the initial condition after one period T . The scalar advection configuration is of
relevance to tracer dispersion modelling of chemical constituents in large-scale at-
mospheric and oceanic flows, where a high local resolution is typically essential to
resolve filamentary structures that may develop; see e.g. Behrens et al. (2000) and
references therein.

Description of the model and experimental design

The scalar advection problem treated here is based on the single homogeneous con-
servation law (2.24), repeated here for completeness

∂(ρ∗ψ)

∂t
+∇ · (v∗ρ∗ψ) = 0 , (5.1)

assuming an incompressible fluid with a constant density ρb. All variables in the
present problem are dimensionless. The extensions of the model domain Dp are
-0.5 ≤ x, y ≤ 0.5. The model implements a fully general time-dependent transfor-
mation of the coordinatesDp→Dt in the horizontal plane according to the functional
relationship F = (x(t, x, y), y(t, x, y)) in (2.2).

A time-dependent shear flow that is periodic over the integration time T = 1.0, is
prescribed by means of the streamfunction (Blossey and Durran, 2008)

χ(t, x, y) =
4πc
T

{
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2
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, (5.2)
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where r=
√
x2 + y2. Given the specification (5.2), the solenoidal velocity vs in the

transformed space St is evaluated on the discrete mesh from (3.25). Note again,
instead of defining the velocity field v, this procedure ensures compliance with the
divergence constraint (3.15) throughout the integration period T . Again following
Blossey and Durran (2008), the initial scalar field ψ is described as

ψ(0, x, y) = 0.5 +


(

1 + cos (πcr̃)

2

)2

, r̃ ≤ 1

0 r̃ > 1,

(5.3)

where r̃= 5
√

(x+ 0.2)2 + y2. A zero gradient of the scalar variable ψ is supposed
at the model boundaries.

Fully general two-dimensional solution-dependent adaptation of the mesh by the
MMPDEs (4.6) is applied in the model plane of Dp, whereby the underlying map-
ping Dt→Dp in (4.1) exhibits the general form M= (x(t, x, y), y(t, x, y)). One-
dimensional MMPDEs (4.17) are solved for the distribution of the mesh points
along each the four boundary segments of Dp. The mesh relaxation time Θ in the
solution of the MMPDEs in (4.7) is set to Θ = 1.6× 10−2.
The monitor function of the form M (4.8) is based on a single mesh refinement
indicator Φ in (4.12) (or equivalently Φ1 for L= 1 in multi-component form (4.15)),
specified to be proportional to the gradient of the transported scalar variable ψ. In
particular, it is defined as

Φ(t,x) = ‖∇ψ‖ (5.4)

where ‖ · ‖ refers to the Euclidean vector norm. The use of (5.4) may be explained
by the heuristic argumentation that relatively large solution errors in the advection
scheme occur in regions where ψ shows its greatest variations (compare for instance
the first truncation error term on the RHS of the modified equation (2.26)); see
also Skamarock et al. (1989). The parameter β in (4.12), that controls the strength
of the mesh adaptation, is set to β= 0.7. The smoothing procedure (4.16) of the
computed monitor function uses a number of K = 15 passes.

All results in the present section are obtained using the developed MPDATA ex-
tension RP (see Table 3.1). In addition, the “third-order accurate” version of the
MPDATA scheme with FCT enhancement (Smolarkiewicz and Grabowski, 1990) is
applied. The simulations are performed using variable time stepping and a constant
maximum Courant number Cmax = 0.5. Regarding the “third-order accurate” version
of MPDATA, it is remarked that in the author’s experience this variant of MPDATA
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Figure 5.1: MPDATA integration of the scalar advection problem with a solution-
adaptive mesh; at the initial time (a), and at 0.25T (b). Indicated are contours of the
transported scalar variable ψ (shaded; warmer colours correspond to larger value of ψ),
overlaid by the solution-adaptive mesh (black solid lines).

especially minimises the truncation errors introduced by the coordinate transforma-
tions of the generalised coordinates, particularly for strongly deformed meshes. All
computations here are conducted in a single processor computing environment.

Results and discussion

Figure 5.1a shows the scalar field ψ superimposed by the adaptive moving mesh at
the initial time t= 0 of the model integration. As can been seen, the mesh at t= 0
is already finer resolved in the region of high values of ‖∇ψ‖. This is achieved by
reapplying the MMPDE integration procedure to the initial distribution of the scalar
ψ given by (5.3), until the desired degree of adaptation is attained (typically until
a steady state of the mesh movement). Figure 5.1(b) displays the situation after
0.25T . At this stage of the simulation, the circularly-symmetric zone of nonzero ψ
values from t= 0 is stretched into a thin elongated structure. Large local gradients of
ψ exist transverse to the elongation direction, and the solver automatically provides
a finer mesh there. This locally fine mesh is essential to resolve the large gradients
in the transported field ψ. In the rest of the domain, a much coarser resolution is
basically found, but highly anisotropic mesh cells exist in some parts as a result
from the strong adaptations.
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The continuous adaptation of the mesh runs stable over the entire course of the
simulation. The mesh points on the boundary of the domain are adapted uniformly
with the mesh points in the inner part of the domain. As can be identified in
Figure 5.1(b), the solver can handle the extreme deformations and stretching of the
mesh while simultaneously producing accurate results; see below in Figure 5.2. In
terms of the mesh deformations, the ratio of the smallest to the largest mesh cell
area at t= 0.25T is 1/64. Note, even smaller ratios of 1/130 with β= 0.85 have
been simulated for the present test. These however did not significantly reduce the
error but increased the wall clock time Tw of the simulation due to a smaller time
step necessary for Cmax = 0.5 under a locally finer spatial mesh.

Figure 5.2 investigates the efficacy of the solution-adaptive moving mesh solver for
the present scalar advection experiment. The final result at t=T of the solution-
adaptive moving mesh solver is compared to results obtained using a static non-
adaptive uniform mesh, i.e. using the same model but the mesh adaptation by the
MMPDE machinery deactivated. Due to the temporal periodicity of the prescribed
flow field, the exact solution at the final simulation time t=T is equal to the initial
distribution of the scalar, which means ψ(0, x, y)≡ψ(T, x, y).

The result from a static uniform mesh run with a total number of Nc = 502 mesh cells
(or a mesh increment size of δx= δy= 0.02) is shown in Figure 5.2(a). Using the
same number mesh cells, the solution-adaptive moving mesh solver in Figure 5.2(c)
provides substantial improvement compared to the simulation with the static uni-
form mesh in Figure 5.2(a). The L2 and L∞ error norms of the static mesh run
in Figure 5.2(a) are one order of magnitude larger than of the solution-adaptive
mesh run in Figure 5.2(c). The solution-adaptive moving mesh run very accurately
reproduces the amplitude and the shape of the cosine-squared hill in the solution
field of ψ. In addition, the results of another static uniform mesh run with a total
number of Nc = 2502 mesh cells is given in Figure 5.2(b). Although the number
of mesh cells Nc in this static uniform mesh run is increased by a factor of 25, it
shows, respectively, ∼ 1.4 and ∼ 1.7 times larger L2 and L∞ error norms than in the
solution-adaptive moving mesh simulation of Figure 5.2(c).

Despite the presence of very large gradients in the transported field ψ, all simula-
tions provide a numerical solution that is completely free of spurious oscillations.
For the solution-adaptive moving mesh simulation, this requires compatibility of the
MPDATA scheme with the GMCL (3.2). Here, this has been achieved by apply-
ing the MPDATA implementation RP as developed in Section 3.1. Note, with the
original implementation of MPDATA, i.e. the scheme OD of Section 3.1, spurious
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(a) Static: Nc = 502, Trw = 1
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(c) Adaptive:Nc = 502, Trw = 5
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Figure 5.2: Comparison of results from the MPDATA integration of the scalar advection
problem with a static uniform mesh (a,b), against the integration that uses solution-adaptive
meshing (c). Shown are contours of the numerical solution for the scalar field ψ at the final
integration time t=T (thin solid lines; contours from 0.55 to 1.45 at intervals of 0.1). The
exact analytical solution is overlaid (heavy solid lines; shown are only the contour values
of 0.55 and 1.25). Domain maximum and minimum values of the approximate numerical
solution for ψ, plus standard L2 and L∞ error norms, are given in the lower and upper right
parts of the figure, respectively. The symbol Nc refers to the number of discrete mesh cells,
and Trw is the relative wall clock time of the computations with respect to the low-resolution
standard static uniform mesh run that uses Nc = 502 in (a).

extrema of significant magnitude would result here. This will be demonstrated in
the discussion of Section 5.3; see the Figure 5.8 therein.

The relative computational effort of the three different simulations is given by the
variable Trw in Figure 5.2. For the two-dimensional pure advection problem consid-
ered here, the solution-adaptive moving mesh simulation in Figure 5.2(c) requires a
factor of 5 larger wall clock time Tw for the simulation than the static uniform mesh
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(a) ρ∗vg computed at tn
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(b) ρ∗vg computed at tn+1/2
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Figure 5.3: Comparison of results from solution-adaptive moving mesh simulations of
the scalar advection problem with two different procedures of approximating the generalised
contravariant mass flux (ρ∗v)∗n+1/2 in MPDATA (see Chapter 4.4): (a) Using the procedure
(4.22)-(4.24), i.e. with ρ∗vg evaluated at tn. (b) Using the procedure (4.25)-(4.28), i.e. with
ρ∗vg evaluated at tn+1/2. Otherwise as in Figure 5.2.

computation with the same number of mesh cells in Figure 5.2(a). The computa-
tional overhead of the solution-adaptive moving mesh run over the static uniform
mesh run in Figure 5.2(a) results from the processing of the MMPDE machinery,
plus the use of smaller time steps with Cmax = 0.5 due to the finer spatial resolu-
tion. However, the solution-adaptive moving mesh run in Figure 5.2(c) requires a
factor of 26 less wall clock time Tw than the fine resolution static uniform mesh run
in Figure 5.2(b). Altogether, this demonstrates the extremely high efficacy of the
solution-adaptive moving mesh solver for the present configuration.

Advective velocity prediction in the solution-adaptive mesh solver

In Section 4.4, the procedure for approximating the generalised contravariant mass
flux (ρ∗v∗)n+1/2 in the solution-adaptive mesh NFT flow solver was considered. Fig-
ure 5.3 compares the results for the two different schemes discussed, using the present
scalar advection problem. In Figure 5.3(a), the linear predictor scheme is applied
to the contravariant fluxes ρ∗v∗ with generalised mesh mass flux ρ∗vg evaluated at
the full time level tn. In contrast, the results in Figure 5.3(b) are obtained with the
linear predictor scheme applied only to the fluxes with the solenoidal velocity ρ∗vs,
while the mesh flux ρ∗vg is evaluated straightforwardly at the intermediate time
level tn+1/2; see Chapter 4.4 for the detailed implementation of the two different
procedures. Note that for proper comparability, both simulations in Figure 5.3(a)
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and Figure 5.3(b) have used the procedure of Figure 5.3(b) to start off the algorithm
for the first time step.

Using the revised procedure in Figure 5.3(b) yields, respectively, ∼ 3.6 and ∼ 2.2
times lower magnitudes of the L2 and L∞ error norms over the results in Fig-
ure 5.3(a). While the obtained maximum amplitude of the ψ field is about the same
with both procedures, the solution field of ψ in Figure 5.2(a) appears less symmetric
and shows larger dissipative errors than in Figure 5.2(b).

Although both schemes are formally of second-order accuracy, the comparison shown
in Figure 5.3 clearly indicates a superior solution quality for the revised procedure
adopted in (b) over that in (a). As explained in the last paragraph of Section 4.4, a
key aspect for the improved results with the revised procedure (b) is the favourable
discrete evaluation of the mesh velocity in regard to the compliance with the GCL
(3.18). For a further demonstration of this point, please refer to the discussion of
Section 5.3; particularly the comparison of Figure 5.9(c) and Figure 5.9(d) therein.
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5.2 Nonlinear evolution of a rising thermal

Here, the two-dimensional flow of the rising warm thermal in a neutrally-stratified
environment is considered.

Description of the model and experimental design

The two-dimensional domain Dp is assumed in the vertical x-z-plane, whereas the
physical dimensions of Dp are specified as 0 ≤ x, z ≤ L0 with L0 = 1200m. A special
setup of the solver is considered. In contrast to the formulation of the default
EULAG solver explained in Chapter 2.1, the solver here implements a fully general
time-dependent mapping of the coordinates Dp→Dt according to the functional
relationship F = (x(t, x, z), z(t, x, z)) in (2.2). Therefore, arbitrary two-dimensional
moving mesh adaptation can be applied in the vertical plane of the thermal flow,
which is presently not possible in the three-dimensional solver EULAG.

The governing transformed model equations in Eulerian flux-form for an assumed
inviscid adiabatic nonrotating fluid are written as

∂(ρ∗u)

∂t
+∇ · (v∗ρ∗u) = −ρ∗G̃1

1

∂π′

∂x
− ρ∗G̃3

1

∂π′

∂z
(5.5a)

∂(ρ∗w)

∂t
+∇ · (v∗ρ∗w) = −ρ∗G̃1

3

∂π′

∂x
− ρ∗G̃3

3

∂π′

∂z
+ ρ∗g

θ′

θb
(5.5b)

∂(ρ∗θ′)

∂t
+∇ · (v∗ρ∗θ′) = −ρ∗vs · ∇θe (5.5c)

∇ · (ρ∗ vs) = 0 . (5.5d)

For the small-scale rising thermal flow, the basic-state density is specified with a
uniform value of ρb = 1.0 kgm−3. The basic-state and ambient-state potential tem-
perature fields are set to θb = θe = 300K. Note, with these definitions the anelastic
equations (5.5) reduce to the classical Boussinesq set of flow equations (Spiegel and
Veronis, 1960); see also Klein (2009). The gravitational acceleration is given as
g= 9.80665m s−2. Boundary conditions at the top and bottom boundaries of the
model domain are assumed to be rigid free-slip walls for velocity, while a zero normal
flux is applied for θ′. Periodicity is specified for all variables at the lateral boundaries
of the domain.

Relative to the neutrally-stratified environment θe, an initial thermal anomaly for
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the prognostic variable θ′ is prescribed as

θ′(0, x, z) =

δθ
(

1 + cos (πcr̃)

2

)2

, r̃ ≤ 1

0 r̃ > 1

(5.6)

with

r̃ = 5

√(
x

L0

− 0.5

)2

+

(
z

L0

− 0.2

)2

and the amplitude δθ= 1K. The initial flow is at rest u=w= 0m s−1. Similar setups
as the one described here have been previously discussed by Carpenter et al. (1990);
Smolarkiewicz and Grabowski (1990); Robert (1993), and in the context of solution-
adaptive moving meshing by Dietachmayer and Droegemeier (1992); Fiedler and
Trapp (1993).

Fully general solution-dependent moving mesh adaptation by the MMPDEs (4.6) is
applied in the vertical plane of Dp, whereby the mesh mapping function (4.1) adopts
the formM= (x(t, x, z), z(t, x, z)). One-dimensional MMPDEs (4.17) are solved for
the distribution of the mesh points along the bottom and top boundary segments of
the domain Dp. The mesh relaxation time Θ in (4.7) is set to Θ = 60 s.

For the present examination, the mesh adaptation will be based on feature-dependent
physical considerations. The dynamics of the rising thermal flow are solely driven by
the spatial variation of buoyancy and its advection. In addition, the flow evolution
is characterised by localised shear layers and their instabilities. One may argue that
the quality of the flow solution obtained with the numerical solver depends critically
on the accurate representation of these effects. Therefore, particular mesh refine-
ment indicators Φl in (4.15) are specified proportional to the gradient of potential
temperature perturbation

Φ1(t, x, z) = ‖∇θ′‖ (5.7)

and the curl of the physical flow field

Φ2(t, x, z) = ‖∇×v‖ , (5.8)

i.e. vorticity, where again ‖ · ‖ in (5.7) and (5.8) refers to the Euclidean vector norm.
Note that although concise symbolic mathematical expressions for the differential
operators have been used in (5.7) and (5.8), it is noted that these expressions are
evaluated in component form with respect to the transformed coordinates x. The
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parameter β in (4.15), that controls the strength of the mesh adaptation, is set to
β= 0.75. The smoothing procedure of the monitor function M by (4.16) uses a
number of K = 25 passes.

As addressed above, the integration procedure of the equation set (5.5) follows that
given in Section 2.2. The preconditioned GCR(3) iterative solver is applied to solve
the resulting elliptic pressure equation with a convergence threshold specified as
‖ (δt/ρ∗)∇ · (ρ∗vs)‖∞<ε= 10−5. An implicit Richardson preconditioner (see Smo-
larkiewicz et al. (2004)) with an successive number of 7 iterations is used. As in
the scalar advection experiments presented in the previous section, all results in the
present section are obtained using the developed MPDATA extension RP (see Ta-
ble 3.1). Also, the “third-order accurate” variant of the MPDATA advection scheme
with FCT enhancement is applied. The integration procedure adopts variable time
stepping with a constant maximum Courant number Cmax = 0.5, while the first two
time steps use a constant size of δt= 0.5 s. In all simulations that follow, an evolution
of the rising thermal over 600 s of integration time is considered. The computations
here are conducted in a single processor computing environment.

Results and discussion

Figure 5.4 shows a time sequence of a rising thermal flow simulation using the devel-
oped solution-adaptive moving mesh NFT flow solver. Displayed is the solution field
of the potential temperature perturbation θ′ superimposed by the solution-adaptive
moving mesh. In the simulation shown, the domain consists of Nc = 942 number of
discrete mesh cells. Furthermore, the simulation uses a combination of the mesh
refinement indicators (5.7) and (5.8) in the multi-component scalar weighting func-
tion (4.15) with L= 2. As in the scalar advection problem of the previous section,
the MMPDE machinery has again been applied at the initial time t= 0 s to adapt
the mesh with respect to the specified monitor function M until a steady state is
attained. This is seen in Figure 5.4(a), where a strongly refined mesh is provided
in the region of the prescribed thermal anomaly. Because the initial flow is at rest
and therefore has zero vorticity, the mesh adaptation at this stage is only based
on the gradient of potential temperature via (5.7). This changes with the start of
the simulation. As the warm thermal begins to rise, thin layers of large vorticity
develop along its lateral and rear faces with the environment (not shown). In the
consecutive evolution of the flow, these thin vorticity sheets lead to instabilities and
a subsequent growth of fine-scale eddies, see for instance Figure 5.4(e) at the sim-
ulation time t= 500 s. Afterwards at t= 600 s in Figure 5.4(f), the thermal breaks



86 5.2 Nonlinear evolution of a rising thermal

(a) t= 0 s

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

xx

zz

(b) t= 200 s
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(c) t= 300 s
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(d) t= 400 s
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(e) t= 500 s
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(f) t= 600 s
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Figure 5.4: Mesh adaptation sequence from a rising thermal flow simulation shown in
the full domain. Indicated are contours of potential temperature perturbation θ′ (shaded;
warmer colours correspond to a higher temperature), overlaid by the solution-adaptive mesh
(solid lines; only every 2nd mesh line is drawn). Horizontal distance x and height z are given
in km.
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up into more irregular vortical motions.

Over the entire course of the simulation, the solution-adaptive moving mesh NFT
flow solver continuously provides an increased local numerical resolution in the rel-
evant region of the rising thermal and particularly along the unstable interface be-
tween the thermal and the ambient air. The gradients of the solution fields along
the edges of the rising thermal are locally very large; e.g. see Figure 5.4(c) and Fig-
ure 5.4(d); which, according to the mesh refinement indicators (5.7) and (5.8), leads
to a sharp structure of the monitor function M (not shown). As a consequence of
this sharp structure in the monitor functionM in that region, a comparatively large
number of K = 25 smoothing passes of M (instead of the typical numbers K ≈ 15)
is applied to obtain a more gradual, i.e. a smoother, change of the resolution.

Nevertheless, the overall changes in the local mesh size over the domain are quite
large; typical values of the ratio of the smallest to the largest mesh cell area is
1/30. Despite the presence of these strong mesh adaptations, the solution-adaptive
moving mesh NFT flow solver runs stable and efficiently. For the applied convergence
threshold ‖(δt/ρ∗)∇ · (ρ∗vs)‖∞<ε= 10−5 in the iterative solution of the underlying
elliptic pressure equation, an average number of 10 GCR iterations was required.
A comparable simulation with a static, i.e. non-adaptive, uniform mesh takes an
average number of 4 GCR iterations. This difference is quite acceptable considering
the spatial and temporal variability of the coefficients in the elliptic pressure equation
(cf. (2.23)) introduced by the solution-adaptive mesh geometry. It is added that
for a lower number of K ≈ 15 smoothing passes of the monitor function M , an
average number of 25 GCR iterations may be required in the iterative solution of
the elliptic pressure equation. Again, although large gradients are present in the
solution variables, no spurious oscillations are produced by the numerical solver.
Furthermore, the design of the flow configuration is perfectly symmetric about the
middle vertical axis of the domain, and this symmetry is maintained in all prognostic
solution variables with the order of 10−6. 1 It is added here, that the symmetry of
the prognostic variables is related to the convergence threshold ε (4.21) of the GCR
iterative solver applied in the solution of the MMPDEs (4.6). This means that the
symmetry depends on how accurately the positions of the solution-adaptive moving
mesh are determined. Note, the symmetry of the obtained prognostic variables in
the static uniform mesh simulations is at the order of machine precision.

Figure 5.5 compares, after an integration time of t= 350 s, the computed results for

1This is true whether the imposed periodic boundary conditions or non-periodic, i.e. rigid walls,
are assumed in the horizontal.
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(b) Static: Nc = 2242, Trw = 16
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(c) Static: Nc = 3942, Trw = 127
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(d) Adaptive:Nc = 942, Trw = 6
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Figure 5.5: Comparison of results from rising thermal flow simulations with a static uniform
(non-adaptive) mesh of various resolutions (a)-(c) against the integration that employed
solution-adaptive meshing (d), all at the simulation time t= 350 s. Shown are contours of
potential temperature perturbation θ′ (K, shaded). Domain maximum and minimum values
of θ′ are given in the lower right part of the figure. The symbol Nc refers to the number of
mesh cells, and Trw is the relative wall clock time with respect to the low-resolution static
uniform mesh run with Nc = 942 in (a). Horizontal distance x and height z are given in km.

the θ′ field from the solution-adaptive moving mesh run against non-adaptive static
uniform mesh runs of various resolutions. At this stage of the simulation, the rising
thermal is still in a laminar phase of its evolution. The initially circular thermal
has been stretched into a thin structure by the action of horizontal variations in
the buoyancy field, i.e. ∂ (g θ′/ϑ)/∂x. As noted in Klein (2009), due to the sym-
metry of the problem about the middle vertical axis the maximum of the potential
temperature perturbation θ′ should remain located at the vertical symmetry line.
Furthermore, the maximum of θ′ should not decrease from its initial value in the
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Figure 5.6: Profiles of potential temperature perturbation θ′ obtained from various rising
thermal flow simulations after t= 350 s of integration time: (a) along the vertical direction at
x= 720m, (b) along the horizontal direction at z= 600m; please refer to Figure 5.5 for the
relative position of the rising thermal. The various simulations shown differ in the underlying
mesh (S: static uniform, A: solution-adaptive), while number following the characters S and
A indicates the number of mesh cells Nc used.

present configuration. In Figure 5.5, the static uniform mesh runs in (a) and (b)
show two slight extrema of θ′ some finite distance away from the symmetry line,
while the higher-resolution static uniform mesh run in (c) and the solution-adaptive
moving mesh run in (d) maintain a maximum around the centre of the domain. The
maximum value of θ′ at the initialisation time t= 0 s is 1. The higher the resolution
of the static uniform mesh runs in Figure 5.5(a)-(c) the more accurate is the preser-
vation of the initial maximum value of θ′ and the lower is the overall dissipative
error of the solution (i.e. the less smeared does the θ′ solution field appear). The
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solution-adaptive moving mesh run with Nc = 942 = 8836 number of mesh cells in
Figure 5.5(d) achieves a preservation of the initial θ′ maximum that is similar to the
static uniform mesh run in Figure 5.5(c), while the latter uses a factor of ∼ 17 more
mesh cells and a factor of ∼ 21 more computing (wall clock) time Tw, respectively.
Moreover, the edges of the θ′ solution field appear sharper in the solution-adaptive
moving mesh run when compared to all static uniform mesh runs.

Figure 5.6 complements the presentation of the results of Figure 5.5 by showing
profiles of θ′ along vertical and horizontal sections through the rising thermal at the
same the integration time t= 350 s. The profiles in Figure 5.6 were derived using
bilinear interpolation of the θ′ solution field from the underlying mesh in each of the
runs given in Figure 5.5. In both sections of Figure 5.6(a) and Figure 5.6(b), the
profiles obtained from the solution-adaptive moving mesh run A8836 match closely
the profiles obtained from the highest-resolution static uniform mesh run S155236.
In contrast, the profiles obtained from the lower-resolution static uniform mesh run
S8836 and also the run S50176 show significantly larger deviations from the profiles
of S155236 than the solution-adaptive moving mesh run A8836. The results in
Figure 5.6 demonstrate explicitly the ability of the solution-adaptive moving mesh
solver to represent the steep gradients and sharp local maxima in the θ′ solution
field by using only a comparatively low total number of mesh cells.

At the later stage t= 600 s of the rising thermal simulation shown in Figure 5.7
the flow has become much more complex. A quantitative assessment of the so-
lution quality at this stage may use the analysis of relevant statistical quantities,
which is however not performed here. From a qualitative view, the morphology of
the obtained θ′ solution field in the solution-adaptive moving mesh run shown in
(d) basically resembles the θ′ solution field obtained with the high-resolution static
uniform mesh run in (c), but the θ′ field appears much more smeared in the solution-
adaptive moving mesh run in (d). The solution-adaptive moving mesh run is not
able to resolve the fine details present in the θ′ solution field as obtained with the
static uniform mesh run in (c). However, note that the onset of the interfacial shear-
ing instabilities and the transition from the laminar to the turbulent phase is not
captured at all in the low resolution static uniform mesh run shown in (a).
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(a) Static: Nc = 942, Trw = 1
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(b) Static: Nc = 2242, Trw = 16
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(c) Static: Nc = 3942, Trw = 127
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(d) Adaptive: Nc = 942, Trw = 6
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Figure 5.7: Comparison of results from rising thermal flow simulations with a static uniform
(non-adaptive) mesh of various resolutions (a)-(c) against the integration that employed
solution-adaptive meshing (d), all at the simulation time t= 600 s. Shown are contours of
potential temperature perturbation θ′ (K, shaded). Domain maximum and minimum values
of θ′ are given in the lower right part of the figure. The symbol Nc refers to the number of
mesh cells, and Trw is the relative wall clock time with respect to the low-resolution static
uniform mesh run with Nc = 942 in (a). Horizontal distance x and height z are given in km.

5.3 Compatibility of MPDATA with the GMCL

In Section 3.1, the MPDATA scheme has been analysed in terms of the compat-
ibility with the GMCL (3.2). There, the various implementations of MPDATA
are discussed on the basis of a theoretical analysis along with elementary numeri-
cal experiments using analytically prescribed oscillating moving meshes. Here, the
importance of the compatibility of the MPDATA advective scalar transport with



92 5.3 Compatibility of MPDATA with the GMCL

the GMCL is further investigated in the framework of the solution-adaptive moving
mesh solver. As in the preceding two sections, the scalar advection and the nonlinear
flow of the rising thermal will serve as model problems for the examination.

Scalar advection

Figure 5.8 compares the solution quality in terms of the various MPDATA algorith-
mic implementations (a) OS, (b) RS, and (c) RP (see Table 3.1), using the scalar
advection problem described in Section 5.1. Recall, the scheme RP has been applied
in all experiments of Section 5.1 as the default scheme.

The comparison in Figure 5.8 now shows that the MPDATA implementations OS
and RS yield considerably larger errors in the L2 and L∞ error norms than with
the implementation RP. The errors in the solution are largest with the original
MPDATA implementation OS. The reduction in the L2 error norm from the use of
the newly developed implementation RP instead of OS is about at a factor of ∼ 4 for
the present experiment. As in the experiments of Section 3.3, the redefined pseudo-
velocities in MPDATA applied in the scheme RS yields a significant improvement
over the original MPDATA scheme in the scheme OS. However, full compatibility
with GMCL is achieved only with the implementation RP that enforces validity
of the discrete GMCL (3.4) by adopting the prognostic approach for correction of
the generalised density ρ∗n+1 in the algorithm. The scheme RP yields L2 error
magnitudes that are reduced by a factor of ∼ 3 over RS.

In addition, the MPDATA implementations OS and RS suffer from a major loss
of the solution monotonicity. For instance, spurious minima (see the dashed con-
tour lines) exist using the scheme OS in Figure 5.8(a) which undershoot the an-
alytical minimum of the solution at about 5 percent of the main hill’s amplitude.
Even 15 percent undershoots are observed in slightly modified model configurations,
e.g. using only a different number of mesh cells Nc. Note, these significant errors
in the solution monotonicity occur despite the FCT enhancement is applied to the
MPDATA scheme. In contrast, the MPDATA implementation RP in Figure 5.8(c)
provides a solution that is completely free of spurious extrema.

Maximum values of the GMCL error ‖rgmcl‖∞ (3.22) are analysed. As discussed
in Section 3.1 (see the consecutive paragraph to the formula (3.4)) and Section 3.3,
the standard independent evaluation of the quantities that enter the discrete GMCL
(3.4) as applied in the schemes OS and RS does not ensure (3.4) itself to be satisfied.
Here, it is found that ‖rgmcl‖∞ ∼ 10−2 in the simulations with the schemes OS
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(c) scheme RP
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Figure 5.8: Comparison of results between the various MPDATA implementations (a) OS,
(b) RS, and (c) RP (see Table 3.1) for the solution-adaptive moving mesh simulation of the
scalar advection problem given in Chapter 5.1. As in Figure 5.2, but here contours for ψ
lower than the initial minimum value of 0.5 are added (dashed lines; contour values of 0.45
and 0.475).

and RS. This magnitude of ‖rgmcl‖∞∼ 10−2 is considerably larger than the typical
values obtained for ‖rgmcl‖∞ under the analytically prescribed oscillating meshes in
Table 3.3, which were at the order of 10−6. This explains the relatively larger errors
in the MPDATA solution for the present solution-adaptive moving mesh experiments
observed in Figure 5.8(a) and Figure 5.8(b).

Rising thermal flow

The discussion of the preceding subsection is continued here by using the rising
thermal flow configuration described in Section 5.2. Figure 5.9 compares the θ′ so-
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(a) scheme RP, ρ∗vg at tn+1/2
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(b) scheme RS, ρ∗vg at tn+1/2

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Max = 0.93839
Min  = 0.00000

x
z

(c) scheme OS, ρ∗vg at tn+1/2
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(d) scheme OS, ρ∗vg at tn
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Figure 5.9: Comparison of results between various MPDATA implementations for the
solution-adaptive moving mesh simulation of the rising thermal flow given in Chapter 5.2 at
the simulation time t= 500 s. Applied are the schemes RP (a), RS (b), and OS (c) with the
procedure (4.25)-(4.28) to approximate the generalised contravariant mass flux (ρ∗v∗)n+1/2

in MPDATA, i.e. with ρ∗vg evaluated at tn+1/2. The scheme OS in (d) adopts the proce-
dure (4.22)-(4.24) to obtain (ρ∗v∗)n+1/2, i.e. with ρ∗vg evaluated at tn. See Chapter 3.1
(Table 3.1) and Chapter 4.4 for the detailed specification of the various schemes. Otherwise
as in Figure ??.

lution fields obtained using various MPDATA algorithmic implementations in the
integration of the system (5.5). Given are results for the MPDATA implementation
(a) RP, (b) RS, and (c) OS. These simulations in (a), (b), and (c) apply the re-
vised procedure (4.25)-(4.28) to approximate the generalised contravariant mass flux
(ρ∗v∗)n+1/2 in MPDATA, i.e. with the mesh velocity ρ∗vg evaluated at tn+1/2. The
solution given in Figure 5.9(d) corresponds to the scheme OS of Figure 5.9(c), but
(ρ∗v∗)n+1/2 instead approximated by means of the procedure (4.22)-(4.24), i.e. with
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ρ∗vg evaluated at tn. Note also here, the scheme RP with the revised procedure
(4.25)-(4.28) to approximate (ρ∗v∗)n+1/2 has been applied as the default scheme in
the preceding simulations of Section 5.2.

In Figure 5.9, the θ′ solution fields obtained with the schemes RP in (a) and RS
(b) appear qualitatively very similar and show the expected evolution of the rising
thermal. In contrast, the result obtained with the scheme OS in (c) differs signif-
icantly from the results with the schemes RP and RS. In particular, the structure
of the rising thermal has started to break apart from the vertical symmetry axis
in its upper part, which does not represent an expected solution behaviour for the
present flow configuration. Furthermore, unphysically large θ′ values greater than
θ′= 1 occur with the scheme OS in the upper part of the rising thermal in (c). The
θ′ solution field in (d) evolves even more different from what is expected, with the
thermal completely torn apart from the middle vertical axis.

The computed maximum GMCL error (3.22) in the simulations with the schemes
RS and OS both yield ‖rgmcl‖∞= 2.03×10−3 . However, the quality of the obtained
solution is significantly lower with the original scheme OS in (c) than with redefined
scheme RS in (b). This again indicates the advantage of using MPDATA with the
redefined pseudo-velocities under moving meshes.

For the simulation in Figure 5.9(d), the computed maximum GMCL error (3.22)
amounts to ‖rgmcl‖∞= 7.60×10−1 . This value is considerably larger than the value
of ‖rgmcl‖∞= 2.42× 10−3 observed in the simulation of Figure 5.9(c). Recall, both
simulations in (c) and (d) use the identical scheme OS, but adopt the different
procedures to approximate the generalised contravariant mass flux (ρ∗v∗)n+1/2 in
MPDATA. Therefore, the results in (c) and (d) demonstrate the advantage of using
the revised procedure (4.25)-(4.28), i.e. evaluating ρ∗vg at tn+1/2, instead of using
the procedure (4.22)-(4.24), i.e. evaluating ρ∗vg at tn, to approximate (ρ∗v∗)n+1/2

in MPDATA under solution-adaptive moving meshes because the former procedure
yields considerably lower errors in terms of the discrete GMCL. Note, similar con-
clusions are drawn from the comparison presented in Figure 5.3.

Finally, the results obtained with the scheme RS in Figure 5.9(b) seem to be fairly
insensitive to the large errors ‖rgmcl‖∞= 2.42×10−3 . Key aspects for the robustness
of the solution in terms of these errors are the enforcement of the anelastic mass
continuity ‖(δt/ρ∗)∇ · (ρ∗vs)‖∞<ε for the velocity components vj, and the special
sign-preserving property of MPDATA in the transport of θ′ that is valid independent
of the compatibility of the scheme; see also Section 3.4.
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5.4 Summary

In Section 5.1, a solution-adaptive moving mesh NFT solver based on MPDATA
for the advection of a passive scalar in a prescribed shear flow was implemented
and applied. For the adopted experimental configuration from Blossey and Durran
(2008), validation of the results was possible by means of an available analytical
solution after each cycle of the time-periodic flow field. It was found that the ap-
plication of the solution-adaptive moving mesh solver clearly outperforms the solver
with a uniform mesh. For example, the solution-adaptive moving mesh solver with
Nc = 502 mesh cells provided more than 20% lower L2 and L∞ error norms than the
solver employing a uniform mesh with Nc = 2502 mesh cells (Figure 5.2). Thereby,
the uniform mesh run required a factor of 26 more wall clock (computing) time Tw

than the solution-adaptive moving mesh run. The use of the solution-adaptive mov-
ing mesh was essential to resolve the large local gradients in the transported scalar
ψ evolving in the time-dependent shear flow. The scalar advection configuration
was also employed to demonstrate the higher accuracy of the revised scheme for the
approximation of the advective contravariant mass flux (ρ∗v∗)n+1/2 in MPDATA as
proposed in Section 4.4 (Figure 5.3).

In Section 5.2, an anelastic NFT flow solver with a fully two-dimensional solution-
adaptive moving mesh capability in the vertical simulation plane was implemented
and applied to the idealised flow of the rising warm thermal. In contrast to the
scalar advection configuration of Section 5.1, no analytical solution is available for
this flow. A comparison of the solution-adaptive moving mesh solver with the solver
employing a uniform mesh was conducted for the laminar phase of the rising thermal.
In particular, it was found that the solution-adaptive moving mesh solver preserves
the maximum values of the potential temperature perturbation θ′ associated with the
thermal much better and retains the large gradients of θ′ at the interface between the
thermal and the ambient air. In these aspects of the solution, the solution-adaptive
moving mesh solver with Nc = 942 mesh cells provided results comparable to the
solver employing a uniform mesh with Nc = 3942 mesh cells (Figure 5.6). Another
noteworthy aspect is that, despite the relatively strong adaptations of the mesh that
were applied in the rising thermal flow simulations, the convergence properties of the
iterative GCR solver for the elliptic pressure equation in the anelastic system were
excellent. Although in the turbulent phase that appears later, the morphology of the
θ′ solution field obtained from the solution-adaptive moving mesh run with Nc = 942

basically resembled the one obtained from the solver employing a uniform mesh with
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Nc = 3942 mesh cells, the θ′ field appeared smeared in the solution-adaptive moving
mesh run (Figure 5.7).

In Section 5.3, the subject of the compatibility of the MPDATA scheme with the
GMCL (discussed before in Chapter 3) was investigated in the context of the solution-
adaptive moving mesh NFT solver, using the two experimental configurations of Sec-
tions 5.1 and 5.2. The conducted tests showed that the original formulation of the
Eulerian MPDATA integration suffered unacceptably large errors under numerically-
generated solution-adaptive moving meshes (Figure 5.8). The error magnitudes ob-
served were considerably larger than under the prescribed oscillating moving meshes
considered in the experiments of Section 3.4. The tests further demonstrated that
the extensions to the MPDATA integration developed in Chapter 3 and in Sec-
tion 4.4 are extremely useful to obtain accurate results under moving meshes.
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Chapter 6

Solution-adaptive moving mesh
simulations with EULAG

A characteristic example of atmospheric flows is that of synoptic-scale mid-latitude
weather systems (i.e. cyclones and anticyclones). The transient weather systems are
steered by the smooth large-scale flow of the planetary Rossby waves meandering
zonally around the globe. In addition, the weather systems are also coupled with
various smaller-scale processes. These include a variety of embedded phenomena
such as fronts, jets, internal gravity waves, (organised) moist convection, or mi-
croscale phenomena like clear-air turbulence (recall the discussion to Figure 1.1 in
the introductory chapter). The task of representing the inherent multiscale inter-
actions in numerical models requires extremely high resolution, and the associated
computational costs are huge. Adaptive (moving) meshes can provide a means to
significantly improve the representation of these flows without increasing the com-
putational cost.
Here, the solution-adaptive moving mesh solver is applied in EULAG to simulate
multiscale interactions in atmospheric flows in an idealised, but realistic, setting. In
Section 6.1, dry baroclinic wave life cycle experiments in a periodic zonal channel are
conducted that reflect the basic evolution of mid-latitude weather systems in the real
atmosphere. The applied model configuration describes the evolution of a baroclinic
instability of an initially balanced straight zonal jet flow that is excited by means of a
temperature perturbation. The term baroclinic instability refers to a hydrodynamic
wave instability that arises in rotating stratified fluids that are subject to a horizon-
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tal temperature gradient1. The baroclinic wave instability extracts its energy from
the available potential energy associated with the horizontal temperature gradient
of the mean jet flow, see e.g. Gill (1982); Holton (1992). Synoptic-scale mid-latitude
weather systems in the real atmosphere are a manifestation of the baroclinic in-
stability of the tropospheric jet streams. The associated north-south temperature
gradient is a result of the differential diabatic heating between the poles and the
equator.
Idealised dry baroclinic wave life cycles as the one simulated here exhibit many
remarkably realistic features. Previous works have used similar configurations to in-
vestigate physical aspects like the dynamics of fronts, e.g. Rotunno et al. (1994), the
formation of tropopause folds, e.g. Bush and Peltier (1994), the spontaneous gen-
eration and propagation of internal gravity waves, e.g. Zhang (2004); Plougonven
and Snyder (2005, 2007), the sharpness of the tropopause (Wirth and Szabo, 2007),
among others. Typically, uniform mesh solvers or solvers with prescribed grid nest-
ing in certain regions, e.g. Zhang (2004), were applied in the previous works. To
the author’s knowledge, adaptive moving mesh methods are applied in the present
thesis for the first time to simulate a synoptic-scale baroclinic wave life cycle.

The investigation in Section 6.1 is concerned with the question of whether the adap-
tive moving mesh solver is basically suitable to simulate accurately the complex
flow of the baroclinic wave life cycle. For the assessment, the results of the adaptive
solver are compared with reference results obtained from high-resolution uniform
mesh simulations. The simulated flow is studied in terms of the representation of
features like fronts and mesoscale internal gravity waves excited at the later stages
of the baroclinic wave evolution. In addition, integral (statistical) measures of ki-
netic energetics are used for the analysis. It is anticipated that in simulations using
a uniform mesh, mesoscale internal gravity waves with a horizontal wave length of
≈ 220 km are only represented at a horizontal mesh increment size ∆ ≈< 40 km.
Here, it is examined whether an adaptive moving mesh simulation with a lower base
resolution can adequately represent the mesoscale internal gravity waves. Moreover,
a principal question in the solution-adaptive moving mesh simulations is how to
specify mesh refinement criterion. The latter represents a completely open research
issue for the adaptive mesh simulation of atmospheric flows.

The essential aspects of the analytical and numerical formulation of EULAG are

1The term baroclinic indicates a fluid where temperature gradients exist on isobaric, i.e. constant
pressure, surfaces. Due to hydrostatic-geostrophic balance, a meridional temperature decrease in
the northern hemisphere is associated with an increase of eastward winds (jet flows) with height,
see e.g. Holton (1992).
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Figure 6.1: Solution-adaptive moving mesh simulation of an inviscid double-shear layer
(Kelvin-Helmholtz) instability in a fully periodic domain in x and y using the flow config-
uration from Bell et al. (1989). The refinement indicator Φ for the solution-adaptive mesh
is specified to be proportional to the vorticity ‖∇×v‖. Indicated are contours of vortic-
ity (shaded; warmer colours correspond to a larger values of vorticity), superimposed by the
solution-adaptive moving mesh (black solid lines) at two selected stages of the flow evolution.

reviewed in Chapter 2. Moreover, the present implementation of EULAG adopts a
number of extensions to the default EULAG model developed in the previous chap-
ters of this thesis. These encompass, inter alia, the extension of the Eulerian flux-
form advection scheme MPDATA to enable full compatibility with the GMCL under
arbitrary moving meshes (Section 3.1), along with the revised predictor scheme for
the generalised advective contravariant mass flux in MPDATA (Section 4.4). The
MMPDE machinery that performs the solution-adaptive moving mesh generation is
described extensively in Chapter 4. Finally, the algorithmic structure that underlies
the present implementation, which differs from the default EULAG, is outlined in
the flowchart of Figure 4.2.
The development and testing of the above algorithmic elements is conducted in the
previous Chapter 5. The incorporation of these elements into the three-dimensional
parallel modelling framework of EULAG also underwent numerous test experiments,
which are however not discussed here in detail. As only one particular example, Fig-
ure 6.1 illustrates the consistent implementation of periodic boundary conditions in
the solution-adaptive moving mesh scheme using the double-shear layer instability
test problem of Bell et al. (1989).
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6.1 Baroclinic wave life cycle experiments

In this section, the nonlinear evolution of a synoptic-scale baroclinically unstable
jet flow in a periodic channel on the f -plane1 is considered as a first application
for the solution-adaptive moving mesh solver in EULAG. Apart from assuming dry
and inviscid adiabatic dynamics in a rectangular channel geometry, the adopted flow
configuration will encompass a fully three-dimensional baroclinic wave life cycle over
several days of its evolution.

Description of the model and experimental design

The simulation physical domain Dp describes a straight channel geometry of length
0 ≤ x ≤ Lx with Lx = 10000 km that is periodic in the direction of x. The width
of the channel is Ly = 8000 km while −Ly/2 ≤ y ≤ Ly/2, and its depth is set to
H = 18 km with 0 ≤ z ≤ H. Rigid free-slip boundaries confine the channel in the
transverse direction y and in the vertical direction z. The transformation of the
horizontal coordinates x and y assumes the general form as given by (2.9), while the
identity transformation z≡ z is applied in the vertical (i.e. no vertical stretching of
the coordinate z).

For the simplicity of the present examination, an inviscid adiabatic fluid is consid-
ered, thus adopting only the most basic configuration of EULAG. The specific form
of the governing anelastic equations with respect to the transformed space St are
given as

∂(ρ∗u)

∂t
+∇ · (v∗ρ∗u) = −ρ∗G̃1

1

∂π′

∂x
− ρ∗G̃2

1

∂π′

∂y
+ ρ∗f (v − ve) (6.1a)

∂(ρ∗v)

∂t
+∇ · (v∗ρ∗v) = −ρ∗G̃1

2

∂π′

∂x
− ρ∗G̃2

2

∂π′

∂y
− ρ∗f (u− ue) (6.1b)

∂(ρ∗w)

∂t
+∇ · (v∗ρ∗w) = −ρ∗∂π

′

∂z
+ ρ∗g

θ′

θb
− ρ∗αw (6.1c)

∂(ρ∗θ′)

∂t
+∇ · (v∗ρ∗θ′) = −ρ∗vs · ∇θe − ρ∗α θ′ (6.1d)

∇ · (ρ∗ vs) = 0 . (6.1e)

Terms in (6.1) that do not explicitly appear in the system (2.3) are Rayleigh-type

1An f -plane refers to a tangential plane to the Earth’s surface on which a constant Coriolis
parameter f is assumed.
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forces proportional to a relaxation parameter α. These terms in (6.1c) and (6.1d)
are used to simulate a gravity wave-absorbing layer near the upper boundary of the
model domain. The relaxation parameter α describes an inverse time scale that
is specified here to increase linearly from a value of zero at 2 km below the top
boundary to 600−1 s−1 at the boundary.

The horizontally-homogeneous hydrostatic basic-state profiles of the density ρb and
potential temperature θb in the system (6.1) are computed using a constant stability
parameter S=N2/g= 1.2× 10−5m−1, where N is the Brunt-Väisälä frequency. The
base values for the basic-state profiles at z= 0m are set to ρb(0) = 1.189 kgm−3 and
θb(0) = 285K. Moreover, an ideal gas with constant specific heat capacities cp = 1004
J kg−1 K−1 and cv = 717 J kg−1 K−1 is assumed. The gravitational acceleration is
specified as g= 9.80665m s−2. Note furthermore, the Coriolis parameter for the
f -plane occurring in (6.1a) and (6.1b) is set to f = 10−4 s−1.

The ambient state variables θe and ve in the system (6.1) describe an undisturbed
baroclinically unstable jet flow in geostrophic balance, with the direction of the jet
flow along the periodic channel in x. For the specification of the ambient state,
an x-invariant potential temperature field θe(y, z) is first prescribed adopting the
analytical expressions given in Bush and Peltier (1994). The detailed specification
is given in Appendix A. The computed distribution of θe(y, z) is depicted as the
black contour lines in Figure 6.2. The main feature is the strong baroclinic zone in
the y-centre of the channel at tropospheric heights. Note also the increase of static
stability from the troposphere into the stratosphere.

Figure 6.2: Vertical y-z cross section of the undisturbed baroclinically unstable ambient
state for potential temperature θe (K, black solid contour lines, ∆θe = 10K) and velocity ue
(m s−1, red solid contour lines positive, red dashed contour lines negative, ∆ue = 10m s−1,
zero contour line not shown) in geostrophic balance. Distance transverse to the channel y
and the channel height z.
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Given the prescribed thermal field θe(y, z), the inertial flow field ve = (ue, 0, 0) is
obtained from the thermal (geostrophic) wind relation

∂ue
∂z

= − g

θb f

(
G̃1

2

∂θe
∂x

+ G̃2
2

∂θe
∂y

)
, (6.2)

which has been derived consistently from the equations (6.1b) and (6.1c) in the
anelastic set (6.1). The flow field ue at z= 0 is defined to be zero. Then, numerical
integration of (6.2) in the vertical direction yields ue(y, z), as shown by the red
contour lines in Figure 6.2. The resulting maximum velocity in the core of the
computed jet flow is ≈ 63m s−1 at a height of z≈ 9 km.

At the initial time t= 0 h of the model simulation, the undisturbed baroclinically
unstable ambient state of Figure 6.2 is perturbed by means of a thermal anomaly
in the tropopause region z≈ 9 km around the horizontal centre of the domain Dp.
Specifically, the thermal anomaly is prescribed for the prognostic variable θ′ as

θ′(0, x, y, z) =

δθ cos2
(πc

2
r̃
)
, r̃ ≤ 1

0 r̃ > 1
(6.3)

with

r̃ =

√(
x− 5000 km

500 km

)2

+
( y

500 km

)2

+

(
z − 9 km

2 km

)2

,

and the amplitude set to δθ= 3K. The initial flow field v is set equal to the ambient
flow field ve.

The developed MMPDE machinery as presented in Chapter 4 is applied to achieve
solution-dependent adaptation of the mesh in the horizontal plane of the domain Dp,
whereupon the mesh mapping function (4.1) is of the formM= (x(t, x, y), y(t, x, y)).
This mesh mapping functionM onto the domain Dp is found by the solution of the
two-dimensional MMPDEs (4.6) along with one-dimensional MMPDEs (4.17) for
the southern and northern boundary segments of Dp at y= -Ly/2 and y=Ly/2.
Periodicity of the mesh geometry is applied in the direction x along the channel.
The mesh relaxation time Θ in (4.7) is set to Θ = 2.0× 105 s (about 55 hours). The
smoothing procedure of the monitor function M by means of (4.16) uses a typical
number of K = 15 passes. The specification of the monitor function M in the form
(4.8) with the associated weighting function q according to (4.15) will be given in
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the next subsection.

Given the integration procedure described in Section 2.2, the system (6.1) is treated
fully implicit with respect to all prognostic quantities v and θ′, plus the pressure
variable π′. The preconditioned GCR(3) algorithm is applied for the solution of
the elliptic pressure equation (2.23) with the convergence threshold specified as
‖ (δt/ρ∗)∇ · (ρ∗vs) ‖∞<ε= 10−5. Here, an implicit Richardson preconditioner as
presented in Smolarkiewicz et al. (2004) with a successive number of 7 iterations
is used. The advection module of (2.19) adopts the second-order accurate Eulerian
MPDATA advection scheme with FCT enhancement. In addition, the MPDATA
scheme uses its extension developed in Section 3.1. Specifically, the implementation
RS as given in Table 3.1 is employed. Note, for the present configuration the under-
lying solution-adaptive moving mesh deformations will be relatively low compared
to the tests discussed in Sections 5.1 and 5.2. It is anticipated that maximum resid-
ual errors (3.22) of the GMCL (3.2) by using the scheme RS in combination with
the procedure (4.25)-(4.28) to approximate the generalised contravariant (advective)
mass flux will be ‖rgmcl‖∞∼ 10−4. Therefore, an application of either the prognostic
approach or the diagnostic approach of Section 3.3 to control the residual errors of
the GMCL (3.2) (respectively the generalised GCL (3.17)) was not performed here.

An evolution of the baroclinic wave instability over an integration period of T = 288 h
(12 days) is considered in the following. All simulations are conducted in a parallel
processing computational environment using the IBM p575 “Power6” cluster of the
German climate computing centre DKRZ.

Results of the numerical simulations

To begin the presentation of the simulation results, Figure 6.3 shows the computed
evolution of the baroclinic wave using the solution-adaptive moving mesh NFT flow
solver. As the mesh adaptation is independent of height, one important question
raised with the application of the solver concerns the specification of the spatially
two-dimensional monitor function M(t, x, y) in the three-dimensional physical set-
ting of the baroclinic flow evolution. A mesh refinement indicator Φ in the weighting
function (4.15) that has been found to work quite satisfactory for the present flow
configuration is specified as the vertical average of the Euclidean norm of the hori-
zontal potential temperature gradient given as

Φ(t, x, y) =
1

H

∫ H

0

‖∇h θ(t, x, y, z)‖ dz . (6.4)
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Basically, the use of (6.4) aims at an increased numerical resolution in regions of
baroclinic zones, i.e. the thermal frontal zones characteristic of the baroclinic flow.
The regions of these frontal zones can be expected to possess the major small-scale
variability occurring in the large-scale environment of the baroclinic wave evolution,
and therefore may benefit from an increased local resolution. The average over
the depth H of the domain Dp in (6.4) tries to account for the vertical variation
of ‖∇h θ(t, x, y, z)‖ with height and to combine the information in the horizontal
monitor functionM(t, x, y). Other specifications than (6.4) for the monitor function
M(t, x, y) will be investigated shortly by the end of the present section. Until then,
all presented solution-adaptive moving mesh simulations use (6.4) in the weighting
function (4.15). The parameter β in (4.15), which controls the strength of the mesh
adaptation, is set to β= 0.4.

The initial x-invariant field of the potential temperature field θ at z= 2 km is dis-
played in Figure 6.3(a). The MMPDE machinery has been applied at the initial
distribution to obtain a higher numerical resolution along the east-west aligned
baroclinic zone. Hence, the simulation at t= 0 h starts already from an optimised
mesh with respect to the specified monitor function M . After the start of the sim-
ulation at t= 0 h, it takes about 6 days of model integration until a disturbance of
noticeable amplitude develops, as seen by the model output given in Figure 6.3(b)
at t= 144 h. Then, the amplitude of the baroclinic wave proceeds to increase at an
exponential rate in Figure 6.3(c) and Figure 6.3(d), until the growth of the wave
saturates after around 10 days of integration time in Figure 6.3(e).

Over the entire course of the simulation from t= 0 h until the final integration time
t= 288 h, the solution-adaptive moving mesh NFT flow solver automatically adapts
the local resolution with the evolution of the baroclinic wave. Initially, the mesh
points are focused in the y-direction along the narrow range of the x-invariant baro-
clinic zone. As the growth of the baroclinic wave advances, the range of increased
resolution widens in the direction of y. Note, for the present configuration the mesh
adaptation primarily occurs in the y-direction transverse to the periodic channel.
This factor is also reflected in the choice of underlying grid parameters as given
in Table 6.1. The solution-adaptive moving mesh run A21340 used a significantly
lower number mesh points in the direction of y than in x. The ratio of Nx to Ny in
the solution-adaptive moving mesh simulations have been selected to roughly give
isotropic local mesh cells for the relevant region of the baroclinic zone. However, the
mesh adaptation also takes place in direction along the channel in x, particularly
at the later states of the baroclinic flow development. For example, this can be
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(b) t= 144 h
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Figure 6.3: Mesh adaptation sequence from the solution-adaptive moving mesh simulation
A21340 (see Table 6.1) of the baroclinically unstable jet flow. Depicted are contours of
potential temperature θ (K, shaded) in a horizontal cross section at height z= 2 km, overlaid
by the solution-adaptive moving mesh (solid lines; only every 2nd mesh line is drawn) at the
selected output times (a) 0 h, (b) 144 h, (c) 192 h, (d) 216 h, (e) 240 h, (f) 264 h.
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(c) t= 192 h
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(d) t= 216 h
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Figure 6.3: (continued)
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(e) t= 240 h
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(f) t= 264 h
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Figure 6.3: (continued)
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seen at t= 240 h in Figure 6.3(e), where the region of the major cyclone with the
pronounced cold pool to the south-west (and the associated cold front ahead) fea-
tures a higher local resolution than the region directly downstream. Commonly it is
observed that a higher resolution exists in the region of and behind the propagating
cold front than in the region of the warm sector ahead in Figure 6.3(c)-Figure 6.3(f).
The deformation of the mesh geometry along the western and eastern boundaries of
the domain; see e.g. Figure 6.3(d); results from the throughout implementation of
the assumed periodicity conditions in the MMPDE algorithm. Overall, the skewness
of the mesh cells in the present configuration is relatively low.

In the following, the results from the solution-adaptive moving mesh simulation are
compared with the results from corresponding static uniform mesh runs. The static
uniform mesh runs adopt the identical model as with the solution-adaptive moving
mesh run, though the MMPDEmachinery being deactivated. The first conducted set
of simulations is summarised in Table 6.1. Given are the respective grid parameters
along with details of the computational setup. Each of the runs S23213, S54967,
and A21340 use a different number of horizontal mesh points Nx and Ny. Note, the
total number of horizontal mesh cells used by each run is expressed by the numerical
data following the characters S or A in the respective run names. The definition of
the parallel processor parameters accounts for the different choices of the horizontal
mesh point configurations, i.e. using about the same number of parallel subdomains
in x and y. Furthermore, the total number of processors is about the same for all
simulations in Table 6.1.

Figure 6.4 compares the potential temperature field θ at z= 2 km obtained from the
solution-adaptive moving mesh run A21340 in (c) with field obtained from the cor-
responding static uniform mesh simulations S23213 in (a) and S54967 in (b), after
t= 240 h of integration time. First of all, the comparison shows that the large-scale
structure of the depicted θ field appears very similar for the three different simu-
lations. Differences between the lower-resolution static uniform mesh run S23213
in Figure 6.4(a) and the higher-resolution static uniform mesh run S54967 in Fig-
ure 6.4(b) can be discerned in the region of the two main cyclones, which show a
more pronounced (low-level) warm core structure in S54967 than in S23213. Smaller
differences appear in the alignment of the cold front located at around x≈ 4300 km,
and the minimum value of θ in the cold pool to the west behind the front. The θ
field obtained with the solution-adaptive moving mesh run A21340 in Figure 6.4(c)
attains very close agreement with the higher-resolution static uniform mesh run
S54967 in Figure 6.4(b) even in the aforementioned more detailed solution features.
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(a) Static mesh run: S23213
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(b) Static mesh run: S54967
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(c) Adaptive mesh run: A21340
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Figure 6.4: Horizontal cross section of the computed potential temperature field θ (K,
shaded) at the height z= 2 km after t= 240 h of simulation time. Comparison of the different
mesh configurations (a) S23213, (b) S54967, and (c) A21340 (see Table 6.1 and the main
text for a description).
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Run Nx×Ny×Nz NPE (NPX×NPY) δx× δy δt Tw

S23213 168×140×91 120 (12×10) ≈ 60 km×60 km 240 s 1077 s
S54967 264×210×91 120 (12×10) ≈ 38 km×38 km 180 s 3340 s
A21340 221× 98×91 119 (17× 7) ≈ 45 km×82 km 180 s 1670 s

Table 6.1: Mesh configurations of the conducted simulation runs along with details of the
computational setup. First column: assigned name of each run conducted. The symbol
S in the run name indicates the use of a static uniform mesh, while A denotes the use
of a solution-adaptive moving mesh. The numerical data following the characters S or A
indicates the number of horizontal mesh cells used in each run, i.e. (Nx − 1) × (Ny − 1).
Second column: number of mesh points in each coordinate direction Nx×Ny×Nz. Third
column: total number of processors NPE together with the applied arrangement of the
horizontal domain decomposition (NPX×NPY). Fourth column: spatial computational
grid increment sizes δx× δy in the horizontal. Fifth column: constant time step δt of each
run. Sixth column: total wall clock time Tw required for each simulation on an IBM p575
“Power6” cluster. The vertical grid increment size is δz= 200m in all runs. The constant
time step in the integration has been selected for each run to give a maximum Courant
number of Cmax≈ 0.6.

Representation of mesoscale internal gravity waves

Internal gravity waves are omnipresent in stably-stratified atmospheric flows. These
waves can redistribute significant amounts of momentum and energy throughout
the atmosphere and are relevant for a wide range of processes, e.g. Dörnbrack et al.
(2002); Fritts and Alexander (2003); Lane et al. (2003); Kühnlein (2006). Internal
gravity waves originate from many different sources. The most prominent are the
flow over topography and moist convection. Evolving large-scale baroclinic flows
are known to be important sources of internal gravity waves, too. Previous studies
treating the subject of internal gravity wave generation in large-scale baroclinic flows
often relate the generation of internal gravity waves to imbalances in the flow field
associated with fronts and jet streaks, e.g. Zhang (2004); Kühnlein (2006); Zülicke
and Peters (2006). Here, the representation of a particular mesoscale internal gravity
wave packet in the solution-adaptive moving mesh simulation of the baroclinic flow
evolution is addressed. Note, internal gravity wave generation and propagation in
complex three-dimensional baroclinic flows is an area of active research, and it is
not commented here on the detailed mechanisms of the wave formation.

Figures 6.5 - 6.6 display the predicted vertical velocity field w at the height z= 12 km
for the simulation times t= 240 h and 246 h. The data in the Figures 6.5 - 6.6 is
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shown in a fragment of the full simulation domain that defines the stratospheric re-
gion above the major cyclonic development in the troposphere below, cf. Figure 6.4.
The most conspicuous feature in both figures is a mesocale internal gravity wave
packet that appears through the alternating pattern of positive and negative val-
ues of the vertical velocity w and with the phase lines oriented roughly from the
north-west to the south-east. At t= 240 h in Figure 6.5, the wave packet is located
at about the centre of the horizontal cross section, and has drifted slightly towards
the east at the later time t= 246 h in Figure 6.6.

A comparison between the static uniform mesh configurations in (a) and (b) of
Figures 6.5 - 6.6 shows that the signal of the internal gravity wave packet is much
weaker in the low-resolution run S23213 than in the higher-resolution run S54967.
Also, the horizontal wavelength of the internal gravity wave packet in S23213 is
significantly larger than in S54967. Table 6.2 summarises the respective quantitative
estimates of the wave packet’s characteristics for each run. It is worth to mention
that given the values of the horizontal wavelengths λh in Table 6.2 and the applied
horizontal resolutions for each run (see Table 6.1), the internal gravity waves exist
near the cut-off wavelength of the associated numerical grid and are at least partially
not adequately resolved. Assuming a representative wavelength λh of 240 km, it is
covered only by about 4 (6) grid points in the run S23213 (S54967). The varying
characteristics of the internal gravity wave packet under different resolutions in the
described manner are typical and have been observed similarly in other studies,
see e.g. Zhang (2004); Zülicke and Peters (2006); Plougonven and Snyder (2007).
The vertical wavelength λz of the internal gravity wave packet has been estimated
from vertical cross sections (not shown). A value of λz≈ 3.5 km is found for both
runs S23213 and S54967 at the output times t= 240 h and t= 246 h. In light of the
vertical resolution of δz= 200m used in the simulations of Table 6.1, this vertical
wavelength can be regarded as well resolved. A vertical wavelength of λz≈ 3.5 km is
also observed for the internal gravity wave packet in the solution-adaptive moving
mesh run A21340 to be addressed next.

The results in Figures 6.5(c) and 6.6(c) indicate that the mesoscale internal gravity
wave packet is well represented in the solution-adaptive moving mesh run A21340.
The characteristics of the wave packet in A21340 closely match the characteristics
obtained in the higher-resolution static uniform mesh run S54967, as exposed in
Table 6.2. Only the amplitude in terms of |w|max at t= 246 h shows a value that
is ≈ 25% larger in A21340 than in S54967. This larger amplitude of the internal
gravity wave packet in A21340 can be interpreted as a sign for a better resolution



114 6.1 Baroclinic wave life cycle experiments

(a) Static mesh run: S23213

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
x (1000 km)

-0.5

0.0

0.5

1.0

1.5

2.0

y
 (

10
00

 k
m

)

-0.15

-0.12

-0.09

-0.06

-0.02

0.02

0.06

0.09

0.12

0.15

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
x (1000 km)

-0.5

0.0

0.5

1.0

1.5

2.0

y
 (

10
00

 k
m

)

(b) Static mesh run: S54967
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(c) Adaptive mesh run: A21340
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Figure 6.5: Horizontal cross section of the computed vertical velocity field w (m s−1,
shaded) at the height z= 12 km after t= 240 h of simulation time, shown in a fraction
of the full domain. Comparison of the different mesh configurations (a) S23213, (b) S54967,
and (c) A21340 (see Table 6.1 and the main text for a description).
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(a) Static mesh run: S23213
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(b) Static mesh run: S54967
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(c) Adaptive mesh run: A21340
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Figure 6.6: Horizontal cross section of the computed vertical velocity field w (m s−1,
shaded) at the height z= 12 km after t= 246 h of simulation time, shown in a fraction
of the full domain. Comparison of the different mesh configurations (a) S23213, (b) S54967,
and (c) A21340 (see Table 6.1 and the main text for a description).
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Run |w|max(t= 240 h) λh(t= 240 h) |w|max(t= 246 h) λh(t= 246 h)

S23213 ≈ 0.06m s−1 ≈ 350 km ≈ 0.08m s−1 ≈ 300 km
S54967 ≈ 0.15m s−1 ≈ 230 km ≈ 0.12m s−1 ≈ 230 km
A21340 ≈ 0.16m s−1 ≈ 230 km ≈ 0.16m s−1 ≈ 220 km

Table 6.2: Estimated values of the maximum vertical velocity magnitude |w|max (second
and fourth column) and the horizontal wavelength λh (third and fifth column) associated
with the discussed mesoscale internal gravity wave packet of Figures 6.5 - 6.6. The results
given are for the runs in Table 6.1 at the output times t= 240 h and t= 246 h.

of the feature, given the discussion of the previous paragraph.

Analysis of the kinetic energetics

The evaluation of the solution-adaptive moving mesh NFT flow solver is continued
by conducting an analysis of the statistical quantities of kinetic energetics derived
from the predicted velocity fields. A first quantity considered is the total kinetic
energy defined as

KE =
1

2
ρb
(
u 2 + v2 + w2

)
, (6.5)

where again u, v, w are the physical velocity components and ρb is the horizontally-
homogeneous prescribed basic-state density in the anelastic system (6.1). The initial
baroclinic jet flow in the present configuration is invariant in the x-direction (in the
zonal direction) and v=w= 0. Therefore, it is convenient to decompose u into a
zonally averaged part 〈u〉x and the respective deviation u′′ according to

u = 〈u〉x + u′′ , (6.6)

where

〈u〉x =
1

Lx

∫ Lx

0

u dx . (6.7)

A zonal kinetic energy (ZKE) is then defined as

ZKE =
1

2
ρb〈u〉2x , (6.8)

while an associated eddy kinetic energy (EKE), i.e. the kinetic energy in terms of
the departures from the zonally averaged flow 〈u〉x, is defined as

EKE =
1

2
ρb
(
u′′ 2 + v2 + w2

)
. (6.9)
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Finally, volume-averaged measures of KE, ZKE, and EKE according to

〈ψ〉xyz =
1

Lx

∫ Lx

0

1

Ly

∫ Ly

0

1

H

∫ H

0

ψ dx dy dz (6.10)

are discussed. It is added that the analysis of the solution-adaptive moving mesh
runs is more involved than the analysis of the uniform mesh simulations, because
the data in the former resides on the deformed adaptive mesh geometry. Here,
the obtained prognostic variables u, v and w on the deformed solution-adaptive
moving mesh are linearly interpolated to a regular uniform mesh in the horizontal
at all vertical model levels. Thereby, the uniform mesh is chosen twice as fine
as the smallest physical mesh increment of the solution-adaptive mesh in order to
maintain the formal second-order accuracy of the computations. The interpolation
is also implemented to account for the mesh deformations along the periodic domain
boundaries in the x-direction, as seen for instance in Figure 6.3(d). The latter is
achieved through a folding of the overlap to the opposite side of the domain.

For an analysis of the kinetic energetics under various mesh configurations, a sec-
ond set of simulations is considered. The respective simulations are summarised in
Table 6.3. The applied mesh increment sizes δx and δy are reduced by a factor of
2 between the static uniform mesh runs S3795, S15429, and S62217. The lowest-
resolution static uniform run S3795 of Table 6.3 uses horizontal mesh increment
sizes δx×δy of ≈ 145 km×145 km compared to ≈ 60 km×60 km for lowest-resolution
run S23213 in the previous set of simulations given in Table 6.1. Hence, the vertical
resolution δz and the number of processors NPE is lowered in the runs of Table 6.3
compared to the runs in Table 6.1. The MMPDE machinery in the solution-adaptive
moving mesh runs A3690 and A6254 of Table 6.3 use the same setting as in the pre-
vious run A21340 of Table 6.1.

Figure 6.7 shows the temporal evolution of 〈KE〉xyz, 〈ZKE〉xyz, and 〈EKE〉xyz for the
various runs of Table 6.3. The basic behaviour common to all simulations describes
the increase of the total kinetic energy 〈KE〉xyz in Figure 6.7(a) due to the conver-
sion of the ambient state’s potential energy in the baroclinic instability process. The
large amplitude growth of the baroclinic wave that sets in after 6-7 days of model
integration is associated with the increase of the eddy kinetic energy 〈EKE〉xyz dis-
played in Figure 6.7(c). The growth of the 〈EKE〉xyz extracts the potential energy
from the baroclinic ambient state, but also (to a lesser extent) from the reservoir of
the zonal kinetic energy 〈ZKE〉xyz, as seen in Figure 6.7(b) during the time of the
initial large-amplitude growth of the instability.
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(b) 〈ZKE〉xyz
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(c) 〈EKE〉xyz
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Figure 6.7: Time series analysis of the integral kinetic energetics derived from the results
of the baroclinic jet flow instability simulations with the different mesh configurations given
in Table 6.3. Drawn are deviations from the initial value at t= 0 of (a) total kinetic energy
〈KE〉xyz, (b) zonal kinetic energy 〈ZKE〉xyz, and (c) eddy kinetic energy 〈EKE〉xyz in the
range of day 6 to 12 of the simulations; see the main text for the definitions of the depicted
quantities.
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Run Nx×Ny×Nz NPE (NPX×NPY) δx× δy δt Tw

S3795 70× 56×61 20 (5×4) ≈ 145 km×145 km 480 s 186 s
S15429 140×112×61 20 (5×4) ≈ 72 km× 72 km 240 s 1480 s
S62217 280×224×61 20 (5×4) ≈ 36 km× 36 km 120 s 13000 s
A3690 91× 42×61 21 (7×3) ≈ 111 km×195 km 360 s 250 s
A6254 119× 54×61 21 (7×3) ≈ 85 km×151 km 240 s 575 s

Table 6.3: Mesh configurations and details of the computational setup of the simulation
runs considered for the kinetic energetics analysis. The vertical grid increment size is
δz= 300m in all runs. The constant time step in the integration is selected for each run
in Table 6.3 to give a maximum Courant number of Cmax≈ 0.5. All other parameters used
are as described in Table 6.1.

The more detailed temporal evolution of the kinetic energy measures in Figure 6.7
exhibits significant differences between the various simulations conducted. The
static uniform mesh runs S3795, S15429, and S62217 generally predict an earlier
onset and a larger growth rate of the instability with an increasing resolution. This
can be discerned by inspection of the 〈EKE〉xyz measure in Figure 6.7(c). The
lowest-resolution run S3795 shows an onset time of the major growth of 〈EKE〉xyz
that is about 1 day delayed in comparison to the highest-resolution run S62217.
Also, the slope of the 〈EKE〉xyz line during the period of the major growth is lower
in S3795 than in S62217, indicative for the different growth rate. Regarding the to-
tal kinetic energy in Figure 6.7(a), larger magnitudes of 〈KE〉xyz are obtained with
the higher-resolution runs throughout the integration period from the onset of the
finite baroclinic wave growth. After 12 days of model integration, the difference of
〈KE〉xyz between S3795 and S62217 is about 15 Jm−3. A similar difference in mag-
nitude between S3795 and S62217 is also observed for 〈ZKE〉xyz in Figure 6.7(b)
after the 12 days of model integration. Finally, it is remarked that the differences
between S3795 and S15429 are significantly larger than between S15429 and S62217,
suggesting convergence of the measures 〈KE〉xyz, 〈ZKE〉xyz, and 〈EKE〉xyz.

The solution-adaptive moving mesh run A3690 uses about the same number of
mesh cells than the static uniform mesh run S3795. Nevertheless, the onset of the
major growth of the instability in terms of 〈KE〉xyz and 〈EKE〉xyz occurs more than
0.5 days earlier in the run A3690 than in S3795, showing a better correlation for
A3690 with the higher-resolution static uniform runs S15429 and S62217. Then, the
temporal evolution of 〈KE〉xyz, 〈ZKE〉xyz, and 〈EKE〉xyz obtained from the solution-
adaptive moving mesh run A3690 also proceeds closer to the higher-resolution static
uniform mesh run S15429 than to S3795. However, the kinetic energy measures
in A3690 diverge relatively strong from S15429 after 11 days of integration time,
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especially for 〈ZKE〉xyz in Figure 6.7(b). A likely cause for the particular differences
at the later stages of the integration is an insufficient number of the mesh points
Ny in the y-direction in order to capture completely the dynamics of the growing,
i.e. merdionally-extending, baroclinic wave. A similar behaviour is not observed in
the higher-resolution solution-adaptive moving mesh run A6254. The measures of
〈KE〉xyz, 〈ZKE〉xyz, and 〈EKE〉xyz in A6254 show close agreement with the static
uniform mesh run S15429 over the entire integration period.

Figure 6.8 finally presents a comparison of different mesh refinement indicators Φ in
the solution-adaptive moving mesh simulations with regard to the kinetic energetics.
Considered for Φ are the vertical average of the vorticity given as

Φ(t, x, y) =
1

H

∫ H

0

‖∇ × v(t, x, y, z)‖ dz , (6.11)

and the horizontal gradient of potential temperature θ

Φ(t, x, y) = ‖∇h θ(t, x, y, z0)‖ (6.12)

taken at the single height level z0 = 600m in lower troposphere. The refinement
indicators (6.11) and (6.12) are compared to the refinement indicator based on the
vertical average of the potential temperature gradient (6.4), that was employed in
all previous experiments of this section.

The results for 〈KE〉xyz, 〈ZKE〉xyz, and 〈EKE〉xyz for the various mesh indicators
Φ in Figure 6.8 are practically identical during the early stages of the baroclinic
wave growth until about day 9 of the simulations. Thereafter, differences between
the various measures 〈KE〉xyz, 〈ZKE〉xyz, and 〈EKE〉xyz become apparent. With the
static uniform mesh run S15429 taken as the reference, the refinement indicator Φ

based on the vertical average of the potential temperature gradient (6.4) (indicated
by the red solid line in Figure 6.8) provides the best results. The indicator Φ based
on the vertical average of the vorticity (6.11), indicated by the blue solid line, shows
differences in the measures of 〈ZKE〉xyz and 〈EKE〉xyz against the static uniform
mesh run S15429 after day 11. The relatively largest discrepancies are observed with
the use of the mesh refinement indicator (6.12) based on the potential temperature
gradient at z= 600m, displayed by the green solid line in Figure 6.8. For illustration,
Figure 6.9 displays the solution-adaptive moving mesh with the refinement indicator
(6.12) as applied in the run A6254c of Figure 6.8. Although the mesh aligns nicely
with the low-level frontal zone in this run, it draws to many mesh points away from
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(b) 〈ZKE〉xyz
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(c) 〈EKE〉xyz
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Figure 6.8: Time series analysis of the integral kinetic energetics of the baroclinic jet
flow with different specifications of the mesh refinement indicator Φ in the solution-adaptive
moving mesh NFT flow solver. The run A6254 corresponds exactly to the run A6254 of
Table 6.3 and Figure 6.7, i.e. using the mesh refinement indicator (6.4). The runs A6254b
and A6254c use the mesh refinement indicators (6.11) and (6.12), respectively. The static
uniform mesh runs S3795, S15429, and S62217 are given for reference.
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Figure 6.9: Snapshot after 240 h of simulation time from the solution-adaptive moving mesh
simulation A6254c (see Table 6.3 and Figure 6.8) with the refinement indicator Φ defined
by (6.12). Depicted are contours of potential temperature θ (K, shaded) on a horizontal
cross section at height z= 600m, overlaid by the solution-adaptive moving mesh (solid lines;
every mesh line is drawn).

the main baroclinic zone and the associated jet flow at higher altitudes.

Discussion

Solution-adaptive moving mesh methods have been applied for the simulation of a
synoptic-scale baroclinic wave instability. The results of the numerical experiments
demonstrate the capability of the solution-adaptive moving mesh NFT flow solver to
reproduce the basic flow evolution of the baroclinic wave life cycle as obtained from
high-resolution reference runs with a uniform mesh. The solver runs stable, while
producing accurate and reliable results. In addition, the solution-adaptive moving
mesh solver can be used to improve the representation of certain flow characteristics
compared to static uniform mesh integrations of similar computational effort. This
applies to aspects of the large-scale flow development as well as to localised flow
features, e.g. the generation and propagation of mesoscale internal gravity waves.

For the global measures of the kinetic energetics given in Figure 6.7, it is found that
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the solution-adaptive moving mesh run A6254 evolves similarly as the static uniform
mesh run S15429, whereby the latter uses a factor of ∼ 2.4 more mesh cells. In terms
of the particular marginally-resolved internal gravity wave packet embedded in the
evolving large-scale flow, the use of the solution-adaptive moving mesh methodology
in the run A23213 significantly improved its representation compared to the static
uniform mesh run S21340 with about the same total number of mesh cells. The
characteristics of the internal gravity wave packet in A23213 are found to be similar
to the wave packet’s characteristics in the static uniform mesh run S54967 of a
factor of ∼ 2.3 times larger total number of mesh cells; cf. Figures 6.5 and 6.6 and
Table 6.2.

As typical for nonlinear geophysical flows, an analytical solution is not available for
the present flow problem. Converged solutions could be obtained by introducing
artificially large viscosity via diffusion terms in the governing equation set (Straka
et al., 1993; Polvani et al., 2004). However, this strategy of using artificially large
viscosity for converged solutions is not followed here because it is seen as a more
stringent (first) test of the solution-adaptive moving mesh solver to work under in-
viscid conditions1. It is that large viscosity might damp possible spurious numerical
effects of the solver one wants to detect and, above all, excessive viscosity hampers
the examination of marginally-resolved physical phenomena like the mesoscale inter-
nal gravity waves discussed above. Regarding possible spurious numerical features,
it is added here that a careful examination in terms of the vertical velocity w, hori-
zontal divergence ∇h ·vh, and θ′ fields at various model levels gave no indication for
the existence of any spurious waves of significant amplitude in the solution-adaptive
moving mesh simulations. From the preceding paragraph, it is clear that a statement
about the value of the solution-adaptive moving mesh flow solver in terms of error
norms versus computational effort, e.g. in relation to static uniform mesh runs, is
not considered here.

Nevertheless, the respective wall clock times Tw for all model runs are given in
the Tables 6.1 and 6.3. Referring to the discussion of the penultimate paragraph,
reductions of Tw through the use of the solution-adaptive moving mesh methodology
in the runs A6254 and A23213 over the static uniform mesh runs S15429 and S54967
are at a factor of ∼ 2.57 and ∼ 1.55, respectively. Here, it might be of interest to
remark that the pure computational benefit from the use of the solution-adaptive
mesh technique can be expected to increase with a larger complexity of the modelling
system, i.e. with the possible inclusion of additional equations for moist and chemical

1It is added that the numerical solution scheme itself features implicit diffusion.
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processes plus various sub-grid scale parameterisations. In the present experiments,
only the basic dynamical core of EULAG was employed.
The relative portion of Tw that is required for the execution of the mesh adaptation
modules in the solution-adaptive moving mesh runs is also given for completeness.
In the runs A6254 and A23213, the processing of the MMPDE machinery requires
∼ 5.4% and ∼ 6.7% of the total wall clock time Tw, respectively. The percentage
that is taken by the entire process of the dynamic mesh adaptation, i.e. processing of
the MMPDE machinery plus the evaluation of the metric quantities and the ambient
fields, amounts to ∼ 16.3% and ∼ 14.4% of the total wall clock time Tw for the runs
A6254 and A23213, respectively.

Despite the restriction of the mesh adaptation to be independent of height, the
solution-adaptive moving mesh NFT solver provided significantly improved results
within the conducted analysis compared to static uniform mesh computations of
similar computational effort. Of the mesh refinement indicators Φ that were tested,
the vertically-averaged potential temperature gradient (6.4) provided the best solu-
tion quality for this setting in general. A refinement of the mesh along the sharp
frontal zones in the lower troposphere (as shown in Figure 6.9) could not be applied
without affecting global measures of the flow; see Figure 6.8. Perhaps, to better
resolve the sharp frontal zones in the lower troposphere within the framework of
the present solver, variants of the mesh refinement indicator (6.4) might be conceiv-
able that assign height-dependent weights in the vertical averaging for a relatively
stronger adaptation at lower altitudes, which has yet to be tested.

As discussed before in the previous subsection, the solution-adaptive moving mesh
runs A21340 and A6254 were set up for the adapted mesh cells to be roughly isotropic
in the dynamically important region of the baroclinic zone, as shown in Figure 6.3.
In order to achieve this, a relatively larger number of grid points had to be applied in
the direction along the baroclinic zone than in the transverse direction; see the grid
parameters Nx and Ny in Tables 6.1 and 6.3. It can be discerned from Figure 6.3 that
this specification of the solver inevitably leads to an unnecessary fine spacing of the
mesh in the along-channel direction to the north and south away from the region of
the baroclinic zone. However, the large number of grid points Nx cannot be avoided
without losing the fine resolution in the region of baroclinic zone. This shortcoming
of the adopted r-refinement technique in combination with the underlying structured
grid arrangement is well known and unavoidable with the present solver. In contrast,
an h-refinement method, see e.g. Behrens (2006), is more flexible concerning this
matter. The h-refinement method would allow to reduce the number grid points Nx
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(b) 〈ZKE〉xyz
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(c) 〈EKE〉xyz
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Figure 6.10: Time series analysis of the integral kinetic energetics of the baroclinic jet
flow simulations with different mesh configurations. The various runs A06254 are identical
to the run A6254 of Table 6.3 but start the integration from a uniform mesh at the initial
time t= 0 h. The individual runs A06254a, A06254b, and A06254c differ in the size of the
mesh relaxation time Θ in the MMPDE machinery: Θ = 2.0× 105 s, Θ = 4.0× 105 s, and
Θ = 1.0× 106 s, respectively. The static uniform mesh runs S3795, S15429, and S62217 are
given for reference.
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away from the region of the baroclinic zone, while keeping Nx large in the region
of the baroclinic zone. Nevertheless, the present solver based on the moving mesh
method achieved a significant reduction in computational cost compared to the static
uniform mesh simulations.

It is explained here that the applied mesh adaptation can drastically alter the flow
evolution in some situations if not applied carefully. As mentioned before, all pre-
vious simulations have been started with an optimised, i.e. adapted, mesh with
respect to the monitor function M at the initial time t= 0 h of the integration; see
e.g. Figure 6.3(a). Figure 6.10 shows results of computed kinetic energetics for a set
of solution-adaptive moving mesh simulations A06254 which differ from the previous
run A6254 of Figure 6.7 in that they were started from a uniform, i.e. non-adapted,
mesh. Hence, with the start of the simulation in the runs A06254, the mesh points
immediately begin to move from their positions of the uniform mesh towards the
region of the baroclinic zone, as specified by the mesh refinement indicator (6.4) in
the monitor functionM . The results in Figure 6.10 now indicate that the large-scale
evolution of the baroclinic instability flow in terms of the kinetic energy measures
〈KE〉xyz, 〈ZKE〉xyz, and 〈EKE〉xyz is considerably altered compared to the run A6254
in Figure 6.7. While the results of the run A6254 in Figure 6.7 very closely followed
the static uniform mesh run S15429, the major baroclinic wave growth in the runs
A06254 of Figure 6.10 is generally excited much earlier (about 1 day for the run
A06254a) and the evolution of the measures 〈KE〉xyz, 〈ZKE〉xyz, and 〈EKE〉xyz oc-
curs differently.
Different mesh relaxation times Θ have been applied in the individual runs A06254a,
A06254b, and A06254c in Figure 6.10. The mesh adaptation is fastest in the run
A06254a, and this run also shows the largest discrepancies with A6254, respectively
S15429. Therefore, the relatively strong mesh adaptation that initially occurs in
the runs A06254 disturbs the unstable jet flow, which leads to a different evolution
of the baroclinic instability. The faster the moving mesh adaptation the stronger
is the perturbation and excitement of the unstable jet flow. In summary, the re-
sults demonstrate that one must be careful on how the mesh adaptation is applied,
particularly when the flow involves the development of instabilities.



Chapter 7

Summary and conclusions

The present thesis designed, implemented and applied an adaptive mesh algorithm
for dynamically variable spatial resolution to the numerical simulation of nonlinear
multiscale atmospheric (geophysical) flows. The starting point of the development
was the proven geophysical flow solver EULAG. In the recent work by Prusa and
Smolarkiewicz (2003), the generic analytical and numerical framework of EULAG
for the integration of the non-hydrostatic anelastic equations in time-dependent gen-
eralised coordinates was established. Here, this framework of EULAG was modified
and extended to enable the application of flow-dependent variable resolution by
means of moving curvilinear meshes.

Methodological development

The methodological development of the new solution-adaptive moving mesh anelas-
tic solver in this thesis can be summarised into three tasks:

(i) In Chapter 3, the integration of the anelastic equations in Eulerian conservation
form with the NFT advection scheme MPDATA was modified and extended. It was
found that the original MPDATA scheme as presented in Smolarkiewicz and Prusa
(2002); Smolarkiewicz (2006) is not fully compatible with the generalised anelastic
mass conservation law (GMCL) under moving meshes. Violating the numerically
implemented compatibility constraint results in significant solution errors under cer-
tain moving mesh and flow configurations. As a result, revised formulations of the
MPDATA scheme were developed and implemented that provide compatibility with
the GMCL under arbitrary moving meshes and flows.
The developed extensions concern two aspects of the MPDATA integration. The
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first aspect is the implementation of the error-compensative pseudo-velocities in
MPDATA. Therein, a density-correction factor was implemented to permit exact
(i.e. with machine precision) preservation of a uniform transported scalar field under
a moving mesh (Section 3.2). The original MPDATA scheme does not maintain a
uniform scalar field under a moving mesh without the proposed implementation of
the density-correction factor. Not maintaining the uniform scalar field violates the
MPDATA compatibility with the GMCL. Numerical experiments confirmed that
the proposed modified MPDATA scheme preserves the asymptotic second-order ac-
curacy of the original MPDATA.
The second aspect is the implementation of the GMCL in EULAG (Section 3.3).
One important finding in the present thesis is the violation of the GMCL in the
present implementation of EULAG for moving meshes. In order to satisfy the
discrete GMCL in the integration of the anelastic equations for arbitrary moving
meshes, a diagnostic and a prognostic approach were developed and presented. The
basic idea of the prognostic approach for the geometric conservation law (GCL) was
originally proposed in Thomas and Lombard (1979). Here, the approach was ad-
justed to the anelastic solver based on MPDATA.
However, some issues were discovered with the prognostic approach (see Section 3.3.2
and the last subsection in Section 3.4). Among others, the implemented prognos-
tic approach introduced conservation errors in the flux-form MPDATA solution.
Therefore, a new diagnostic approach for the implementation of the GMCL in the
MPDATA integration was proposed that conserves the transported quantity with
machine precision (as in the original MPDATA scheme). Using a projection method
(in the spirit of the anelastic solver), the diagnostic approach corrects the advec-
tive contravariant mass flux (ρ∗v∗)n+1/2 that enters MPDATA from the approximate
predictor scheme rather than correcting the diagnostic generalised density ρ∗n+1 as
in the prognostic approach (see Section 3.3.1).
A detailed numerical comparison study of the developed extensions versus the origi-
nal form of the MPDATA scheme was conducted using simple scalar advection exper-
iments under a prescribed oscillating mesh in Section 3.4. As mentioned above, the
incompatibility of MPDATA with the GMCL in the original formulation generates
spurious (i.e. unphysical) extrema in the solution variables. In contrast, spurious
extrema were not observed with the herein developed extensions of the MPDATA
scheme providing the compatibility with the GMCL (e.g. see Table 3.3). Qualita-
tively equivalent results were obtained for numerically-generated solution-adaptive
moving meshes considered in the experiments of Section 5.3. However, the error mag-
nitudes were considerably larger than for the prescribed oscillating moving meshes



129

in Section 3.4.

(ii) In Section 4.3, a machinery performing the numerical generation of a solution-
adaptive moving curvilinear mesh was designed and implemented. The main ingre-
dient of the machinery is a set of parabolic moving mesh partial differential equations
(MMPDEs). The derivation of MMPDEs follows from a standard variational ap-
proach. The properties of the generated curvilinear mesh (e.g. local adaptivity)
enter the MMPDEs through a monitor function M . Explicit control over the time
scale of the moving mesh adaptation is incorporated in the MMPDEs by means of
a mesh relaxation time Θ. Practical aspects of the scheme and the implementation
were explained in detail in Section 4.3. Furthermore, an efficient and robust nu-
merical solution scheme for the MMPDEs was implemented. First- or second-order
implicit temporal discretisations to the MMPDEs were applied, and the resulting
elliptic mathematical problem was solved using a generalised conjugate residual
(GCR) iterative method. The mesh points at the boundaries of the computational
domain may optionally be periodic over the boundaries or governed by the solutions
of one-dimensional MMPDEs. The MMPDE machinery for the two-dimensional
solution-adaptive moving mesh generation was fully embedded into the parallel cod-
ing framework of the three-dimensional solver EULAG.

(iii) In Section 4.4, an efficient computational framework for the overall solution-
adaptive moving mesh anelastic NFT flow solver was created. This new framework
consists of the anelastic solver based on MPDATA (see penultimate item (i) ) and
the MMPDE machinery (see the previous item (ii) ). The elaborate development
and testing of the new framework was conducted using specifically constructed two-
dimensional prototype programs applied in a single processor (workstation) com-
puting environment. These prototype programs mimic the numerical formulation of
EULAG.
For the effective incorporation of the mesh movement in EULAG, a revised scheme
for the approximation of the advective contravariant mass flux (ρ∗v∗)n+1/2 in MP-
DATA was developed. The crux of the revised scheme is that the mesh velocity vg

in the advective contravariant velocity v∗= vs + vg is evaluated straightforwardly at
the intermediate time level tn+1/2 by means of a centred difference. The solenoidal
velocity vs is extrapolated to t

n+1/2 using either a linear or nonlinear predictor
scheme. This procedure is advantageous for minimising errors associated with the
implementation of the discrete GCL in the solver, among others (see the remarks in
the last paragraph of Section 4.4).
The incorporation of the revised predictor scheme for (ρ∗v∗)n+1/2, as well as the
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developed MPDATA extension of Section 3.1, in the NFT solver required a redesign
of the algorithmic structure of the default EULAG. The redesigned algorithmic
structure of the present adaptive solver is illustrated in Figure 4.2. The use of a
variable time step size δt for efficiency reasons, an option presently not exploited in
the default EULAG, was also incorporated in the development.

Results of the applications

The developed solution-adaptive moving mesh solver was thoroughly investigated
by simulating a number of relevant atmospheric flow problems.
In Section 5.1, the advection of a passive tracer in a prescribed two-dimensional
shear flow was considered. Straightforward validation of the computed results was
possible by means of a known exact solution. The results demonstrated the capabil-
ity of the solver to automatically adapt the local resolution to the evolving fine-scale
filamentary structures of the tracer field. It was found that the moving mesh solver
adapting locally to the gradient of the tracer field clearly outperforms the solver
with a uniform mesh. As an example, the adaptive solver with Nc = 502 mesh cells
provided more than 20% lower L2 and L∞ error norms than the solver employing a
uniform mesh with Nc = 2502 mesh cells (Figure 5.2). Thereby, the high-resolution
uniform mesh simulation required a factor of 26 larger computing time than the
simulation with the adaptive solver.
In Section 5.2, an idealised two-dimensional flow of a rising warm thermal was con-
sidered. In contrast to the scalar advection problem of Section 5.1, no exact solution
is available for this flow. Specifying the mesh adaptation proportional to tempera-
ture gradient and vorticity provides a locally high resolution at the interface of the
thermal with the ambient air, throughout the entire course of the simulation. As a
main result, the adaptive solver preserves very accurately the temperature amplitude
of the rising thermal and the large gradients along the interface. Considering these
properties of the flow, the adaptive solver with Nc = 942 = 8836 mesh cells provided
results comparable to the solver employing a uniform mesh with Nc = 3942 = 155236
mesh cells (Figure 5.6) during the laminar phase of the rising thermal. Another
advantage of the adaptive mesh simulations is the appearance of new physical phe-
nomena. In particular, instabilities occurring at the interface of rising thermal with
the ambient air could be simulated in much greater detail when compared to the
uniform mesh simulation with the same number of mesh points. The representa-
tion of the associated mixing processes is of direct relevance for simulating cumulus
convection in realistic atmospheric flows. There, the process of fine-scale mixing,
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i.e. entrainment and detrainment, between the cloudy and the ambient air could be
much better resolved using mesh adaptation.
In Section 6.1, the developed adaptive mesh solver was eventually applied in the
three-dimensional parallelised modelling framework of EULAG. For the first time,
adaptive moving mesh methods were employed to simulate a synoptic-scale baro-
clinic wave life cycle. The difficulty in simulating this type of flow are stratifica-
tion/rotation effects and the nonlinear processes generating a broad motion spec-
trum. The adaptive solver provided an accurate representation of the synoptic-scale
flow and coexisting mesoscale processes, while running stably and without gener-
ating any spurious wave effects. The adaptive solver significantly improved the
global statistics of kinetic energetics compared to the uniform mesh simulations.
Furthermore, focussing the adaptation to the developing frontal zone according to
the vertically-integrated gradient of potential temperature revealed the excitation
of internal gravity waves at the later stages of the baroclinic wave evolution. These
waves were only poorly represented in simulations applying a uniform mesh with
about the same number of mesh points. For the present three-dimensional configu-
ration, the adaptive solver reduced the computing time by a factor of ∼ 2 compared
to (at least) equivalent results of high-resolution reference uniform mesh simulations.

Remarks

The results obtained in this thesis demonstrate the capability and potential of adap-
tive moving mesh methods to simulate multiscale atmospheric flows with higher fi-
delity and a much broader coverage of motion scales.
A cumbersome side-effect of the successful and efficient numerical simulations was
the extremely time-consuming tuning of the adaptation parameters in the MMPDE
machinery. This concerns especially the monitor function and also the mesh relax-
ation time. In the current state of development, potential users must be aware that
finding the optimal choice and combination of these quantities and setting up the
solution-adaptive moving mesh solver for a certain flow configuration may require a
significant tuning and testing effort. This process clearly exceeds the effort associ-
ated with setting up EULAG based on a static mesh. For effective applications of
the methodology, an experienced user familiar with the behaviour of adaptive mesh
solver is advantageous.
The most crucial part of the moving mesh method is the monitor function. The spa-
tiotemporal distribution of the monitor function directly determines the structure
of the mesh. Its specification should detect dynamically relevant regions of the flow
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but also ensure a good quality mesh. From the experience gained in this work, one
should avoid designing monitor functions on the basis of quantities which are highly
irregular, e.g. horizontal velocity divergence or vertical velocity in the synoptic-
scale baroclinic wave instability. Such quantities can be used only with considerable
smoothing of the monitor function. Otherwise, a highly irregular monitor function
requires the iterative GCR solver for the MMPDEs more computational effort to
converge. In addition, the resulting poor quality mesh (possibly non-smooth and/or
highly-skewed) directly affects the efficacy of the anelastic solver in EULAG.
Atmospheric (geophysical) flow solvers are typically formulated with a horizontal
mesh adaptation capability that has no variation with height, see e.g. Bacon et al.
(2000). One main reason for this is the dominant balance of hydrostaticity in verti-
cal, which must be correctly represented in the numerical solver1. The clue within
this framework will be to design appropriate two-dimensional monitor functions that
account for the vertical variation of the simulated flows. In this regard, Section 6.1
already provided first ideas by using vertically-averaged quantities of the mesh re-
finement criteria.
The focus of the present work was on dynamic mesh adaptation. However, it is added
that the MMPDE machinery may also be employed in EULAG to perform static
mesh adaptation. For instance, the MMPDE machinery may be used to generate
an adaptive curvilinear mesh that offers a finer resolution in mountainous regions or
along coast lines. This could be achieved by specifying the monitor function M in
the MMPDE machinery proportional to the underlying topographic height and its
gradient. The finer resolution in the region of topographic features may be key for
an improved representation of the flow phenomena such as orographically-generated
internal gravity waves, rotors, land-sea circulations. Another aspect in terms of
static mesh adaptation is to use the MMPDE machinery in a classical manner to
accommodate domains with irregular horizontal boundaries. So far, such a device
for static mesh adaptation is not available in EULAG.

Outlook

The developed solution-adaptive moving mesh solver offers a consistent framework
for the simulation of multiscale geophysical flow problems. From a purely tech-
nical perspective, the solver allows for direct applicability over the full range of

1A vertical tilt of the mesh columns with height also complicates the representation of rain pro-
cesses.
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Rossby, Froude, and Reynolds number regimes accessible to the proven flow solver
EULAG1, see also the introductory Section 1.1. Basically, the moving mesh method-
ology may be beneficial to flow problems that involve locally strongly varying length
scales, a situation practically always encountered in geophysical flows thanks to their
nonlinear nature. In all possible applications, the appropriate specification of the
parameters that enter the MMPDE machinery (the monitor function M and the
mesh relaxation time Θ in particular) will be crucial for the success of the solution-
adaptive moving mesh method. Therefore, the important subsequent step for the
advancement of the technique will be to conduct systematic research in the appro-
priate adjustment of the MMPDE machinery for a range of applications.

Obvious areas of application are atmospheric flows where the external forcing deter-
mines the need of higher local resolution. One example are lee effects of the flow over
topography with their different dynamic regimes depending on the Froude number.
Also horizontally propagating vortices (from dust devils to polar lows and hurri-
canes) could profit from the high spatial resolution in their centres. Furthermore,
all the nonlinear instability processes occuring in the atmosphere and producing
smaller motion scales are a prolific area of application. An important example is
the numerical simulation of microphysical processes in the upper atmosphere. The
latent heat release of ice nucleation produces small-scale convective motions which
require a high spatial resolution. To explore the sensitivity of these instabilities
to the spatial resolution while maintaining the mesoscale simulation domain the
dynamic mesh adaption might be a beneficial tool.

However, and as often mentioned in this thesis, the effort to apply the full mesh
adaptation machinery to a specific problem must be competitive to the use of uni-
form resolution with huge number of grid points on massively parallel computers. At
least, both approaches have to struggle with the same problem: to develop appro-
priate post-processing tools to deal with the data. On the other hand, the present
thesis provides a manageable tool to zoom numerically into regions to search for
possible coexisting smaller-scale phenomena not resolved on a coarse mesh.

Currently, the atmospheric and ocean modelling community is vigourously pursuing
adaptive mesh methods in order to cope with the demand of much higher resolutions,
see e.g. Nikiforakis (2009). To date, applications are largely confined to idealised
applications dealing with either synoptic flows in the lowest order long-wave approx-

1As noted in Section 4.2, a restriction at the moment is that the MMPDE machinery is not
implemented for applications in non-Cartesian, in particular spherical and cylindrical, physical
systems Sp, albeit the MMPDE machinery can be extended for this purpose.
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imation governed by the shallow water equations, or small-scale buoyant phenomena
in neutrally-stratified quiescent atmospheres simulated with derivatives of the incom-
pressible Euler equations (Smolarkiewicz and Szmelter, 2011). Apart from these two
diverse classes of motion, there is an abundance of relevant multiscale phenomena
scarcely addressed with solution-adaptive mesh methods. The algorithm developed
in this thesis is a viable tool to investigate what role moving mesh methods can play
in the large selection of adaptive techniques considered for the numerical modelling
of weather and climate.
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A Definition of the baroclinic thermal field

Here, the specification of the ambient potential temperature field θe as used in the
baroclinic instability experiment of Section 6.1 is provided. Adopting the analytical
expressions given in Bush and Peltier (1994), the height of the tropopause HT (y) is
defined as

HT (y) = HT,0 −
(
g∆θ

2 θ0

)(
1

N2
s −N2
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)
tanh

[
1

δθ
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Then, the potential temperature field θ for tropospheric heights is given as
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while for stratospheric heights it reads

θs(y, z) = θ0 +
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)
, z > HT (y) .

The symbol ξ is a function given as ξ(y, z) = sin [πc (24− z)/2 (24−H(y))] in-
troduced to smooth the meridional derivative of the potential temperature field θ

at a height of 24 km. The parameters in preceding equations are defined as fol-
lows. The tropospheric and stratospheric values of the Brunt-Väisälä frequency
are Nt = 10−2 s−1 and Ns =

√
6Nt, respectively. The parameter wj controls the

width of the baroclinic zone and is set to wj = 1, and y0 = 0 km. The inverse merid-
ional slope of the tropospheric potential temperature field is κ= 70. The parameter
∆θ= 30K is a typical meridional variation of potential temperature over the length
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scale δθ = 525 km. Base values of the tropopause height and the potential temper-
ature are set to HT,0 = 8 km and θ0 = 273K, respectively. The resulting potential
temperature field is shown in Figure 6.2.
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B On the significance of baroclinic vorticity produc-

tion in the evolution of wake vortices

The Boussinesq system of flow equations (Spiegel and Veronis, 1960) is often ap-
plied for small-scale modelling studies of aircraft wake vortex evolution in stratified
atmospheric flows, e.g. Lewellen and Lewellen (1996); Gerz and Holzäpfel (1999).
In the Boussinesq system, the pressure gradient term in the momentum equation
is linearised and, as a consequence, the solution only provides abbreviated produc-
tion of baroclinic vorticity. Stated more precisely, the Boussinesq system includes
baroclinic vorticity production (BVP) associated with horizontal variations in the
thermal field but neglects completely the BVP associated with vertical variations in
the thermal field.

Here, a numerical model investigation examines the significance of the abbreviated
BVP underlying the Boussinesq system for a descending vortex pair in a stably
stratified atmosphere. For this purpose, the solutions obtained from the Boussinesq
system are compared to solutions obtained from the incompressible Euler system.
The incompressible Euler system is structurally related to the Boussinesq system
but uses the general, i.e. unapproximated, form of the momentum equation, and
therefore represents the full BVP.

Model formulation

Assuming an inviscid adiabatic non-rotating fluid, the unified model system of equa-
tions is given as

Dv

Dt
= − η∇π′ − g

θ′

ϑ
(B.1a)

Dθ′

Dt
= −wdθe

dz
(B.1b)

∇ ·v = 0 . (B.1c)

For the choice (η , ϑ)≡ (θ0, θ0) in (B.1a), the system (B.1) describes the Boussinesq
equations, whereas for the choice (η , ϑ)≡ (θ, θe), the system (B.1) is equivalent to
the incompressible Euler equations. The symbol θ0 in the Boussinesq equations refers
to a constant reference value of potential temperature. The symbol θe(z) occurring
in both systems describes a horizontally-homogenous ambient profile of potential
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temperature in hydrostatic balance with a normalised pressure profile πe(z). The
quantities π′ and θ′ in (B.1) represent deviations from the profiles πe(z) and θe(z)

in the respective system.

The unified system (B.1) of the Boussinesq and the incompressible Euler equations is
solved in a consistent manner adopting the numerical solution procedure described
in Section 2.2. The nonlinear pressure gradient term of the momentum equation
(B.1a) in the integration of the incompressible Euler system, i.e. with (η , ϑ)≡ (θ, θe)

in (B.1a), is handled by applying outer iteration of the scheme (2.19), see Smo-
larkiewicz and Dörnbrack (2008) for a discussion of the implementation. In all
simulations conducted here, the Eulerian MPDATA solver is employed in the ad-
vection module of the scheme (2.19). Note, in the application of MPDATA for the
simulation of the wake vortex flow, a (non-default) nonlinear predictor scheme for
the advective velocity is employed instead of a linear predictor scheme of the form
(2.35). Assuming static Cartesian coordinates for simplicity, the adopted nonlinear
procedure is based on an advective O(δt2) integral for the physical velocity v of the
form

vn+1 = A[vn + δtRn,vn] , (B.2)

whereA symbolically denotes an upwind scheme for the quantity vn+δtRn while Rn

being the corresponding momentum forcing. Then, a projection scheme is required
at tn+1 to control compliance with the divergence constraint (B.1c). The advective
velocity at the intermediate time level tn+1/2 as required in the MPDATA is then
obtained simply by vn+1/2 = 0.5 (vn + vn+1), which completes the procedure.

Experimental design

The numerical simulations consider a two-dimensional domain with 0 ≤ y≤Ly and
0 ≤ z≤H, where Ly = 255m and H = 500m, respectively. Boundary conditions at
the top and bottom boundaries of the model domain are assumed to be rigid free-slip
walls for velocity, while a zero normal flux is applied for θ′. Periodicity is applied
for all variables at the lateral boundaries of the domain.

A counter-rotating pair of wake vortices is initialised as a superposition of two Lamb-
Oseen vortices. The profile of the tangential velocity of each vortex is given by

vt(r) =
Γ0

2πc r

{
1− exp

(
−r2

r2
0

)}
, r0 =

rc
1.12089

, (B.3)

with the core radius specified as rc = 3m, and Archimedes’ trigonometric constant
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πc = 3.14159265. A root-circulation of Γ0 = 458.0m2 s−1 is applied along with a
vortex spacing of b0 = 47.3m. The initial vertical position of the vortex pair is
z= 0.75H. Varying stratification strengths are prescribed upon the ambient profiles
of potential temperature θe(z) (see further below).

The presentation of the results is based on quantities that are non-dimensionalised
with the given vortex parameters. A time scale is specified as

tref =
2πc b

2
0

Γ0

, (B.4)

cf. e.g. Holzäpfel and Gerz (1999). This defines the normalised time t∗= t/tref and
Brunt-Väisäla frequency N∗=N tref , with N = (g d(ln θe)/dz)1/2.

Among others, the subsequent analysis uses the half-plane total circulation given as

Γhp =

∫∫
y≥Ly/2

ζx dydz , (B.5)

where ζx is the component of vorticity in the x-direction.

Finally, in the numerical simulation a uniform mesh spacing of 0.5m is applied in
both the horizontal direction of y and the vertical direction of z. All simulations are
run until the normalised time t∗= 5.

Results and discussion

Figure B.1 on page 141 compares the results for basic vortex characteristics in (a)-
(c) as obtained with either the Boussinesq or the incompressible Euler equations
for varying ambient stratifications N∗. As can be seen, for representative values of
N∗ encountered under tropospheric (N∗= 0.35) and stratospheric (N∗= 0.6) condi-
tions, the simulation results in Figure B.1(a)-(c) are barely distinguishable. Under
a stronger ambient stratification (N∗= 1.0), the results obtained with the Boussi-
nesq and incompressible Euler equations show close agreement until an integration
time of about t∗= 3, but develop some differences for t∗> 3. It is argued that these
observed differences for t∗> 3 might not be of significance in three-dimensional flows
with typical background turbulence, where the strength and coherence of the vortices
is expected to decrease persistently and at a larger rate than in the two dimensional
simulations considered here, cf. Holzäpfel et al. (2001).

In summary, the results suggest that the abbreviated representation of BVP in the
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Boussinesq system has no significant influence on the characteristics of the descend-
ing vortex pair in relevant stratification regimes. The results obtained here corrob-
orate the examination conducted by Hennemann (2010) (Section 2.5.5 therein).
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Figure B.1: Comparison of the results for either the Boussinesq (B) or the incompressible
Euler (E) equations under varying ambient stratifications N∗= 0.35, 0.6, 1.0; see the legend
in middle panel (b) for the assignment. Time series analysis of (a) the vortex spacing b
normalised by the initial spacing b0, (b) the vertical descend distance z normalised by b0,
and (c) the half-plane total circulation Γhp (B.5) normalised by its initial value Γ0.



142



Acronyms

AMR adaptive mesh refinement

ALE arbitrary Lagrangian-Eulerian

BVP baroclinic vorticity production

CAT clear-air turbulence

CDGA continuous dynamic grid adaptation

CFL Courant-Friedrich-Lewy

COSMO Consortium for Small-Scale Modelling

CPU central processing unit

DFG Deutsche Forschungsgemeinschaft

DKRZ Deutsches Klimarechenzentrum

DLR Deutsches Zentrum für Luft- und Raumfahrt

DNS direct numerical simulation

ECMWF European Centre for Medium-Range Weather Forecasts

EKE eddy kinetic energy

EULAG Eulerian and semi-Lagrangian flow solver

FCT flux-corrected transport

FT forward-in-time

GCL geometric conservation law

GCM general circulation model
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GCR generalized conjugate residual

GMCL generalized anelastic mass conservation law

G-IV Gulfstream-IV

ILES implicit large-eddy simulation

LES large-eddy simulation

LHS left-hand side

MHD magneto-hydrodynamics

MMPDE moving mesh partial differential equation

MPDATA multidimensional positive definite advection transport algorithm

NCAR National Center of Atmospheric Research

NCEP National Center of Environmental Prediction

NFT non-oscillatory forward-in-time

NOAA National Oceanic and Atmospheric Administration

NORPEX North Pacific Experiment

NWP numerical weather prediction

OP Particular MPDATA implementation, see Table 3.1

OS Particular MPDATA implementation, see Table 3.1

RHS right-hand side

RD Particular MPDATA implementation, see Table 3.1

RP Particular MPDATA implementation, see Table 3.1

RS Particular MPDATA implementation, see Table 3.1

ZKE zonal kinetic energy

KE total kinetic energy



Nomenclature

α relaxation parameter associated with wave-absorbing sponge layers,
page 93 [s−1]

δt time step increment, page 19 [s]

v̂ advective contravariant Jacobian-weighted mass flux vector, page 22

Cmax maximum Courant number, page 23

Dp physical domain, page 13

Dt transformed domain, page 13

v∗ contravariant velocity vector in St, page 18

vg mesh velocity vector in St, page 37

vs solenoidal velocity vector in St, page 37

f Coriolis vector, page 12 [s−1]

g gravitational acceleration vector, page 12 [m s−2]

Sp physical space, page 13

St transformed space, page 13

v physical velocity vector, page 12 [m s−1]

∇ gradient operator, page 13 [m−1]

∇ gradient operator with respect to system St, page 18

G Jacobian of the transformed system St, page 17

Gxy Jacobian of the horizontal transformation, page 17

t, x, y, z generalised coordinates, page 13

v∗
k contravariant velocity components, page 15

vs
k solenoidal velocity components, page 15
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Φ mesh refinement indicator function, page 57

π′ normalised pressure perturbation, page 13

πc Archimedes’ trigonometric constant πc = 3.14159265, page 33

ψ mass-specific variable, page 18

ρ fluid density, page 13 [kgm−3]

ρ∗ generalised density, page 14

ρb basic-state fluid density, page 13 [kgm−3]

Θ mesh relaxation time, page 54

θ potential temperature, page 13 [K]

θ0 constant reference value of potential temperature, page 132 [K]

θb basic-state potential temperature, page 13 [K]

θe ambient-state potential temperature, page 13 [K]

G̃ renormalised Jacobi matrix, page 20

G̃T transpose of the renormalised Jacobi matrix, page 20

G̃k
j renormalised elements of the Jacobian matrix, page 15

cp specific heat capacity at constant pressure, page 94 [J kg−1 K−1]

cv specific heat capacity at constant volume, page 94 [J kg−1 K−1]

D/Dt Lagrangian derivative, page 13 [s−1]

f Coriolis parameter, page 14 [s−1]

G Jacobian of the physical system Sp, page 17

H upper boundary height of domain, page 16 [m]

M monitor function, page 51

N Brunt-Väisälä frequency, page 94 [s−1]

P scaling function in the MMPDE, page 53

q scalar weighting function, page 56

Rψ source terms of the mass-specific variable ψ, page 18

S Stability parameter, page 94 [m−1]

t, x, y, z physical coordinates, page 13

vj, u, v, w physical velocity components, page 14 [ms−1]

zs lower boundary height of domain, page 16 [m]
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