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ABSTRACT 

What we did recently influences our current behavior substantially. For example, 

responses are speeded if observers are to discriminate an item based on its color twice (e.g., 

color – color discrimination in trials n-1 and n, respectively) compared to when the task-

relevant dimension changes across trials (e.g., orientation – color discrimination). The 

dimension repetition effect (or DRE) was explained in two mutually exclusive ways: (i) 

selection-based approach assumes that DREs are a consequence of visual selection processes, 

while (ii) response-based approach claims these effects to originate from the later processes of 

response selection. Importantly, neither of the accounts can fully explain available findings on 

DREs: (i) selection-based approach cannot explain strong DREs observed when visual 

selection is very easy and fast, while (ii) response-based account cannot explain strong DREs 

in paradigms where the sequence of perceptual dimensions is response-irrelevant. 

In my work, I focused on developing a theoretical framework which should account for 

all the available data by assuming existence of different dimension-sensitive mechanisms that 

affect different processing stages (visual selection, perceptual analysis). Additionally, a novel 

paradigm was developed in which two tasks, for which DREs were previously reported, 

alternated randomly across trials. Across two consecutive trials, the task could either repeat or 

change. Independently of the task sequence, the task-relevant dimension could either change 

or repeat. Different experiments used different tasks, that could, on the Multiple-Weighting-

Systems (or MSW) hypothesis, engage either the same (e.g., both tasks engaged the visual 

selection mechanism) or different DRE mechanisms. Behavioral and electrophysiological data 

showed: (i) significant DREs across task changes when the two tasks engaged the same 

hypothesized mechanism, (ii) no DREs across task changes when the tasks engaged different 

systems. Overall, the data support the MWS hypothesis, in contrast to the single-mechanism 

accounts. 
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1 THE MULTIPLE-WEIGHTING-SYSTEMS HYPOTHESIS: GENERAL 

INTRODUCTION AND DISCUSSION 
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1.1 Problem 

Adaptive behavior is considered to be the main requirement for complex organisms (such 

as humans) to survive in a vast variety of different environments. Controlling what are the 

most appropriate responses in a particular environment is the function of the cognitive system. 

Conceptually, control of behavior necessitates several processing stages prior to overt actions: 

(i) selection of the task relevant item, (ii) perceptual analysis of the selected item, and (iii) 

selection of the appropriate response to the analyzed item. To illustrate, the task might be to 

turn on the light by using a switch (i.e., target) from a switch board. An initial processing step 

would be to select a potential target switch from several other switches. Following target 

selection, perceptual analysis processes should determine whether the selected item matches 

the target template or not. Finally, the outcome of the perceptual analysis stages is mapped to 

possible responses resulting in either turning on the light (if the right switch was identified) or 

selecting another switch. In summary, behavioral control could be thought of as a series of 

decisions taking place at different processing stages (selection, perceptual analysis, 

responding); each decision being controlled by the task rules (stimulus-response mapping) 

and properties of the current stimulation. 

While one might assume that task rules and current stimulation fully determine the 

decision chain from stimulus to behavior, experimental evidence suggests that other factors 

also play an important role. Recent experience, for example, has been demonstrated to 

profoundly affect processes of visual selection, perceptual analysis and response selection. 

Found and Müller (1996) presented stimulus displays containing many items (i.e., multi-item 

displays, see Figure 1.1). On some trials, all items were identical (i.e., target-absent displays), 

while in a portion of trials there was one item (i.e., singleton target) different from the others 

in some respect (e.g., color or orientation). The task was to detect presence/absence of the 

singleton target and respond by pressing corresponding response buttons. Across two 

consecutive trials (n-1 and n) in both of which the target was present, the dimension of 
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distinction between the target and distractors could either repeat (e.g., color – color) or change 

(e.g., orientation – color). Found and Müller reported faster reaction times (RTs) for 

dimension repetitions compared to reaction times for dimension changes. The dimension 

repetition effect (or DRE) was dimension- rather than feature-specific: comparable DREs 

were observed for both repetitions of the exact target feature (e.g., red – red) and feature 

changes (e.g., blue – red target) compared to dimensional changes (e.g., horizontal – red). The 

DREs demonstrate behavioral differences in processing the same stimulus (red) under same 

task rules (singleton detection) thus making a good case for the role of recent experience in 

behavioral control. 

 

Figure 1.1. Illustration of different possible stimulus displays. Multi-item displays (left) contain many 

items, with one of them (upper panel) being different from the rest in some respect (e.g., orientation 

singleton). Alternatively, all items could be identical, i.e., the singleton could be absent (lower panel). 

In the detection task, observers are to discern the presence or absence of the singleton target. The 

single-item displays (right) depict target-present and target-absent conditions, but only with a single 

item presented. Notice that the same task, target detection, can be done in both display types. 

Dominant theoretical accounts of DREs come in two versions, depending on what 

processing stage they postulate to be the origin of the intertrial effects. Müller and colleagues 

(e.g., Müller & Krummenacher, 2006) developed a selection-based account according to 

which perceptual dimensions influence processes of target selection. According to the 

Dimension Weighting Account (or DWA) of Müller and colleagues, the early processing 

stages prior to target selection are organized into independent dimension-specific channels 
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for, e.g., color, orientation, or motion. Importantly, the signals coming from these channels 

are weighted in a way that weight for the currently relevant dimension (e.g., color when color 

singleton is presented) increases, while the weights for irrelevant dimensions decrease. Due to 

increased weights the selection processes are speeded across consecutive trials of same 

dimension compared to trials when dimension changes – giving rise to DRBs. 

Alternative accounts assume that the processing stages other than target selection give 

rise to DREs. The Dimensional Action account (DA) of Cohen and colleagues (e.g., Cohen & 

Magen, 1999) assumes that response selection processes are affected by the dimensional 

sequence. According to DA, responses are generated from a dimension-specific response 

selection channel for, e.g., color, orientation, or motion targets. When the task-relevant 

dimension repeats across trials, the relevant response channel also repeats, speeding up 

response selection processes compared to trials in which dimension (and response channel) 

changes – giving rise to DREs. 

 Empirical findings provided mixed evidence in favor of one or the other account. 

Comparable DREs were observed in paradigms using multi-item displays (see Figure 1.1), 

with diverse stimulus-response (S-R) mappings: (i) singleton detection – target present/absent 

(Found & Müller, 1996), (ii) singleton feature discrimination – target blue/green of 

vertical/horizontal (Cohen & Magen, 1999), and (iii) singleton localization – target left/right 

(Rangelov, Müller, & Zehetleitner, 2010b). The commonality between these tasks is that the 

target has to be selected from a set of non-targets prior to responses – arguing that selection 

processes are the origin of DREs. Furthermore, independence of particular S-R mapping 

argues against response selection processes as the origin of DREs – supporting the selection-

based accounts. However, studies using single-item displays (Mortier, Theeuwes, & 

Starreveld, 2005), also demonstrated DREs. Intertrial effects in the single-item displays (see 

Figure 1.1) cannot be easily explained by selection-based mechanisms, as in these displays 
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there is no need to search for the target prior to responding – providing a support for 

response-based accounts. 

 To conclude, neither of the dominant accounts of DREs, selection- or response-based, 

can fully explain the available empirical findings. Consequently, I my doctoral work I focused 

on: (i) developing a new theoretical framework that could explain the available data in a 

comprehensive way; and (ii) constructing a novel paradigm to test predictions derived from 

the novel theoretical framework in both behavioral (RTs) and electrophysiological domain 

(EEG). 

1.2 The Multiple-Weighting-Systems hypothesis 

A shared property of selection- and response-based accounts is that they both assume a 

single mechanism, situated at either pre- or post-selective processing stages, giving rise to 

DREs. An alternative approach to the single mechanism accounts of DREs would be to 

assume multiple mechanisms, situated at different, pre- and post-selective, processing stages. 

These mechanisms would all, by virtue of being sensitive to task-relevant perceptual 

dimensions, produce DREs. According to the Multiple-Weighting-Systems (or MWS) 

hypothesis, one mechanism would influence dynamics of visual selection processes while 

another mechanism would modulate processes of perceptual analysis of the selected items. 

What weighting system operates in a particular experimental setting is determined by the 

properties of the used tasks. If the paradigm uses multi-item displays containing dimension-

specific target items (i.e., color or orientation singletons) the (visual) selection weighting 

system would be active. On the other hand, if the S-R mapping rules require retrieving 

featural identity of the target item prior to responding, the perceptual (analysis) weighting 

system would be active. Finally, a particular task can use both multi-item (search) displays 

and require feature identification, thus hypothetically engaging multiple weighting systems. 

An overview of the weighing systems active in tasks using different displays (multi- vs. 
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single-item displays) with different S-R mappings (detection, discrimination, and localization) 

is provided in Table 1.1. 

Table 1.1. An overview of the hypothetical selection (Sω) and perception (Pω) weighting systems 

engaged in paradigms using different display types: a) multi-, and b) single-item displays; and 

different S-R mappings: a) detection – target present/absent, b) discrimination – target is blue/green, 

horizontal/vertical, and c) localization – target left/right. Single-item localization is not discussed as 

this task produces extremely fast RTs and, presumably, very small DREs. 

 S-R mapping 

Display type Detection Discrimination Localization 

Multi-item Sω Sω + Pω Sω 

Single-item Pω Pω  

 

The crucial prediction of the MWS hypothesis is that DREs should arise across trials in 

which the same weighting system was active: trials n-1 and n must both engage either Sω or 

Pω systems. For paradigms using a single task this prediction is somewhat trivial, as the same 

task should always engage the same weighting systems. The critical test for the MWS 

hypothesis, however, is what happens when two different tasks are mixed across trials (e.g., 

multi-item detection and multi-item localization). In such a task-switching paradigm, the task 

can either repeat or change, and, independently of the task sequence, the task-relevant 

dimension can repeat or change. Thus, it is possible to asses DREs across both task repetitions 

and task changes. The MWS hypothesis predicts that DREs across task changes should persist 

only if the tasks in question share a common weighting system. If the two tasks involve 

different systems, no DREs are expected across task changes. 

1.3 Overview of behavioral findings 

In three behavioral studies using RTs as a dependent measure, two different tasks were 

mixed across trials. Different task combinations across studies helped differentiate between 

specific predictions derived from the single-mechanism accounts (of pre- or post-selective 
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variety) and the MWS hypothesis. Specifics of every study are discussed in Discussion 

sections of respective studies (Chapters 2, 3, and 4). 

As can be seen from Table 1.2, there were significant DREs for all tasks when the task 

repeated across trials. This argues that at least one dimension-sensitive mechanism was 

involved in all tasks. In contrast to task repetitions, DREs across trials of different tasks were 

significant across some task combinations, and non-significant across others. The pattern of 

DREs across trials of different task corresponded closely to the pattern of DREs expected on 

the MWS account: if the tasks in question shared a hypothesized weighting system (i.e., both 

Sω or both Pω), there were significant DREs across task changes, while if the tasks engaged 

different hypothesized weighting systems, no DREs were observed. 

Table 1.2. Behavioral findings from three studies by Rangelov et al. (Chapter 2, 3, and 4). In all 

studies two tasks (marked as Task 1 and 2) alternated across trials. The main findings were that across 

trials of the same task, there were always strong DREs. The DREs across different tasks depended on 

whether the two tasks shared the weighting mechanism or not. 

  Weighting system in DREs across task 

Task 1 Task 2 Task 1 Task 2 repetitions changes 

Rangelov et al. (2010a) 

Experiments 1 and 2     

Multi-item 

Detection 

Single-item 

Discrimination 
Sω Pω Yes No 

Experiment 3     

Multi-item 

Discrimination 

Single-item 

Discrimination 
Sω + Pω Pω Yes Yes 

Rangelov et al. (2010b) 

Experiment 1     

Multi-item  

Detection 

Multi-item 

Localization 
Sω Sω Yes Yes 

Experiment 2     

Multi-item 

Detection 

Single-item 

Detection 
Sω Pω Yes No 

Experiment 3     

Single-item 

Detection 

Single-item 

Discrimination 
Pω Pω Yes Yes 

Rangelov et al. (2010c) 

Experiment 1     

Multi-item 

Detection 

Multi-item 

Discrimination 
Sω Sω + Pω Yes Yes 

Experiment 2     

Single-item 

Detection 

Multi-item 

Discrimination 
Pω Sω + Pω Yes Yes 
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1.4 Electrophysiological correlates of Sω and Pω systems 

The behavioral findings pointed at dissociation between at least two mechanisms capable 

of producing DREs: visual selection (Sω) and perceptual analysis (Pω) related weighting 

systems. This evidence would be strongly supported if a similar dissociation were 

demonstrated in another domain: there should be distinct markers of weighting of selection 

and weighting of perceptual analysis processes in the electroencephalogram (EEG) data.  

An ongoing study used a task-switching paradigm identical to Experiment 1 of the 

Rangelov et al. (2010c) study (Chapter 4). The multi-item detection (target present/absent) 

and multi-item discrimination (target blue/green or left-/right-tilted) alternated randomly 

across trials. On the conceptual task analysis both detection and discrimination task, by virtue 

of using multi-item displays, engaged the selection weighting system (Sω). By contrast, only 

the discrimination task, by virtue of having to identify the target‟s feature prior to responding, 

engaged the perception weighting system (Pω). 

EEG was recorded during the experiment, and segmented offline into 800 ms segments 

locked to the stimulus onset; the segments were sorted according to the task (detection vs. 

discrimination), task sequence (repetition vs. change) and dimension sequence (repetition vs. 

change) resulting in 2x2x2 design. Analyses focused on two event-related EEG components: 

a) posterior contra-lateral negativity (PCN) and b) sustained posterior contralateral negativity 

(SPCN). Figure 1.2 illustrates the method of extracting these components. PCN is usually 

associated with processes of visual selection (e.g., Eimer, 1996), while SPCN is interpreted as 

a correlate of post-selective processing prior to response selection (e.g., Jolicoeur, Brisson, & 

Robitaille, 2008).  

Given that both detection and discrimination task involve selection weighting system (Sω) 

presumably associated with the PCN component, comparable dimension sequence effects 

(DREs) on the PCN parameters were expected for both tasks, independently of the task 

sequence. On the other hand, a dissociation between tasks was expected for parameters 
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computed in the SPCN time window, presumably associated with post-selective perceptual 

analysis, due to the fact that only discrimination task involved the perception weighting 

system (Pω). 

 

Figure 1.2. Illustration of the EEG recording and data analysis. A display containing a singleton was 

presented while recording EEG from 64 electrodes mounted to the observer‟s head by means of a tight 

elastic cap. The EEG was segmented offline into 800 ms segments (200 ms pre- and 600 ms post-

stimulus onset). Analysis focused on electrode pairs located at left (PO7) and right (PO8) side of 

posterior head region (indicated by dark markers on the electrode layout). Depending on the location 

of the singleton (left or right side of the screen) the electrodes were renamed as ipsilateral (e.g., PO8 

for right side singletons) and contralateral (PO7) to the target position, denoted as dashed and full 

lines, respectively. Notably, the ipsi- and contralateral signals differ in the time range 170-300 ms 

(PCN time window) and 350 – 500 ms (SPCN time window). 

For the PCN component, a point in time when the ipsi- and contralateral signals differed 

most (= peak PCN latency) – indicating when was attention allocated to the singleton item – 

was computed for different experimental conditions. For the SPCN component, mean 

amplitude difference between ipsi- and contralateral signals was computed (= SPCN area 

amplitude), indicating the magnitude of post-selective perceptual processing. Figure 1.3 
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depicts mean PCN latencies, while Figure 1.4 shows mean SPCN amplitude, separately for 

different tasks, task sequences and dimension sequences. 

Figure 1.3 shows that dimensional repetitions (dark bars) were associated with shorter 

PCN peak latencies relative to dimensional changes (bright bars). Most importantly, the same 

pattern was observed for both detection and discrimination task, independently of the task 

sequence. 

 

Figure 1.3. Peak PCN latencies (ms) as a function of task (detection, discrimination), task sequence 

(same task, different task), and dimension sequence (same dimension, different dimension). Vertical 

bars denote 95% confidence intervals (CI). 

 

Figure 1.4. Mean SPCN area amplitude (μV) as a function of task (detection, discrimination), task 

sequence (same task, different task), and dimension sequence (same dimension, different dimension). 

Vertical bars denote 95% confidence intervals (CI). 
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Analysis of the SPCN area amplitude (Figure 1.4) showed differences between detection 

and discrimination task. For the detection task, there was a significant SPCN component only 

when both task and dimension changed across trials, in contrast to other conditions where a 

non-significant SPCN component was observed (as can be inferred from the fact that CI 

entailed zero). By contrast, a substantial SPCN was observed for the discrimination task 

across all conditions. SPCN was, however, significant only for dimensional changes (light 

bars) irrespectively of task sequence. 

Taken together, the findings were in accordance with the MWS hypothesis: comparable 

effects were observed for both tasks in the time window related to visual selection processes 

(peak PCN latency), while  a dissociation between tasks was observed in the time window 

related to post-selective perceptual analysis (SPCN area amplitude). Finally, it was 

demonstrated that dimensional intertrial sequence can influence multiple electrophysiological 

markers – in accordance with postulating multiple sources of DREs. 

1.5 Conclusions 

In the focus of my work was developing the Multiple-Weighting-Systems hypothesis, a 

new theoretical framework that can parsimoniously account for the sequence effects (DREs) 

in a variety of simple cognitive tasks. A novel paradigm, using the task-switching approach, 

was developed to test predictions derived from the MWS; both behavioral (Chapters 2, 3, and 

4) and electrophysiological measures (an ongoing EEG study) were investigated. The main 

finding was that, provided that different tasks both engaged the same hypothesized weighting 

system (Sω or Pω), significant DREs were observed across task switches, thus providing an 

empirical support for the crucial prediction of the MWS hypothesis. In summary, the data 

strongly suggest the existence of multiple sequence-sensitive mechanisms which, together 

with properties of the current stimulation, determine dynamics of cognitive information 

processing and the ensuing behavior.  
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2 DIMENSION-SPECIFIC INTERTRIAL PRIMING EFFECTS ARE TASK-

SPECIFIC: EVIDENCE FOR MULTIPLE WEIGHTING SYSTEMS 

 



20 

 

2.1 Abstract 

Feature singleton search is faster when the target defining dimension repeats across 

consecutive trials than when it changes (Found & Müller, 1996). However, this dimension 

repetition benefit (DRB) has also been demonstrated for the tasks with no search component 

(Mortier, Theeuwes, & Starreveld, 2005). If DRBs in the search and non-search tasks have the 

same origin, significant DRBs across trials of different tasks should arise. Two different tasks 

varied either in a predictable manner (Experiment 1) or randomly (Experiment 2) across trials. 

In detection task, search displays containing either color or orientation singletons were used. 

Discrimination task required identification of either color or orientation of a single presented 

item (non-search display). In Experiment 3, participants performed only the discrimination 

task, while the search and non-search displays varied randomly. There were significant DRBs 

for both tasks when the task repeated but not when the task changed (Experiments 1 and 2). 

DRBs were significant both when the display type repeated and changed (Experiment 3). 

Overall, the findings can be well explained by assuming multiple, independent dimension-

weighting systems generating DRBs in different tasks. 

Keywords: intertrial priming, dimension weighting, visual search, feature discrimination, 

and task-switching. 
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2.2 Introduction 

Our senses provide us with abundant information about our environment. At the same 

time, our cognitive system is limited in its processing capacity (e.g., Broadbent, 1982; 

Pashler, 1984, 1994). Capacity limitations force the system to deal only with subsets of the 

sensory input at any given moment. How does the system select what information will be 

processed preferentially? What is selected is determined by properties of the current 

stimulation and the state of the cognitive system. However, prominent models of visual 

selection (e.g., Itti & Koch, 2000, 2001) describe the selection dynamics as being determined 

primarily by stimulus properties (i.e., by local feature contrast signals). In stimulus-driven 

accounts of visual selection, the role of previous experience had been largely ignored until a 

range of studies  revealed intertrial effects that point to an important role of previous 

experience in visual selection processes (e.g., Found & Müller, 1996; Maljkovic & 

Nakayama, 1994, 1996, 2000; Müller, Heller, & Ziegler, 1995; Treisman, 1988). While these 

effects have been firmly established, there is an ongoing debate about whether they have their 

locus on a stage before or after selection takes place. Implicit in this dichotomy is the 

assumption that previous experience modulates human performance via a single mechanism 

located at either a pre- or a post-selective processing stage. Alternatively, however, one could 

envisage the existence of several mechanisms that influence cognitive processes at different 

processing stages. The present study was designed, in the main, to contrast the assumptions of 

single versus multiple mechanisms via which previous experience may affect human 

performance in visual search and non-search tasks. 

2.2.1 Dynamics of visual selection processes 

Mechanisms of visual selection are often investigated using the feature singleton 

detection paradigm, where a target differs from homogeneous distractors in one or more 

visual features. Typically, response times (RTs) are fast and independent of set size (e.g., 
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Treisman, 1982). Several functional processing architectures have been proposed to explain 

the finding of efficient search for feature singletons (e.g., Itti & Koch, 2000, 2001; Koch & 

Ullman, 1985; Wolfe, 1994; Wolfe, Butcher, Lee, & Hyle, 2003; Wolfe, Cave, & Franzel, 

1989). According to these models, the visual scene is analyzed in terms of feature contrast 

across all locations in parallel. This parallel processing stage gives rise to a map of feature-

contrast signals that are proportional to the relative uniqueness of the stimuli at analyzed 

locations. The feature-contrast signals are first integrated into dimension-specific maps (e.g., 

for color, orientation, etc.) and then summed up into a (supra-dimensional) master map of 

saliencies. The locations producing the strongest signals on the master map are then selected 

by focal attention. In the singleton detection task, the location of the singleton target will 

always produce the strongest saliency signal, and therefore the target will be the first item to 

be selected, independently of the set size. 

In these models, the strength of the signals on the master map of saliencies depends only 

on the current visual stimulation – independent of previous experience. However, Found and 

Müller (1996) found search performance for a given singleton (e.g., color) on trial n to depend 

on the target dimension of the previous trial (n-1): singleton detection on the current trial (n) 

was faster when the previous trial (n-1) contained a singleton defined in same dimension (e.g., 

a color target followed by a color target), rather than one defined in a different dimension (an 

orientation followed by a color target). This effect was primarily dimension-specific, rather 

than feature-specific: significant priming was observed even across trials containing different 

targets (e.g., blue or green among yellow bars) provided the dimension of distinction repeated 

(i.e., when it was color). If stimulus properties were the sole determinant of the selection 

dynamics, the same stimulation should always generate the same saliency signal, which in 

turn should produce comparable singleton detection RTs (whatever the singleton on the 

previous trial). Thus, the dimension repetition benefit (DRB) demonstrates that factors other 

than feature contrast signals also affect visual search dynamics. 
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2.2.2 Dimension Weighting Account 

To account for the effects of dimensional repetition on singleton detection times, Müller 

and colleagues (Found & Müller, 1996; Müller et al., 1995; Müller & Krummenacher, 2006a; 

Müller & O'Grady, 2000) formulated the Dimension-Weighting Account (DWA), according 

to which signal summation from different dimensional modules to the level of master map of 

saliencies is modulated by dimension-specific weights. Increased dimensional weights (e.g., 

for color) increase the speed or efficiency with which the signals from that dimension (e.g., 

color dimension map) are transferred to the master map. The weights themselves are sensitive 

to the recent trial history: a color singleton presented on a given trial leads to an increase of 

the color weight, which in turn facilitates processing of color signals on the subsequent trial – 

giving rise to the DRB. 

Evidence in favor of a perceptual locus of dimensional weighting comes from 

investigations of the neural correlates of the DRB. Pollmann and colleagues (Pollmann, 

Weidner, Müller, & von Cramon, 2000; Pollmann, Weidner, Müller, Maertens, & von 

Cramon, 2006), in an event-related fMRI study, reported a significant BOLD signal increase 

in visual sensory areas (V4 and hMT+) contingent on the repetition of the target-defining 

dimension (color and, respectively, motion) across consecutive trials.  

Sensitivity of sensory visual areas to repetitions of the relevant dimensions argues in 

favour of a perceptual locus of dimensional weighting. That this perceptual locus is indeed 

pre-selective is supported by a study of Töllner, Gramann, Müller, Kiss, and Eimer (2008), 

who investigated ERP correlates of the DRB using a compound task (Bravo & Nakayama, 

1992; Duncan, 1985), where the target- and the response-defining features were dissociated: 

participants had to respond to the orientation of a grating within a form- or a color-defined 

target. Analysis of the N2pc component (an ERP marker that is commonly assumed to reflect 

processes of attentional allocation; e.g., Eimer, 1996) revealed significant effects of 

dimension repetitions (vs. changes) on both N2pc amplitudes and peak latencies. This adds 



24 

 

support to the notion that dimensional weighting modulates (pre-selective) signal coding 

processes that form the basis for the allocation of focal attention. 

2.2.3 Alternative explanation of dimension repetition benefit 

Instead of assuming that dimensional weights modulate saliency computation processes 

(as in the DWA), alternative accounts, suggested independently by different authors, assume 

that the DBRs originate from later, post-selective stages of processing (e.g., Cohen & Magen, 

1999; Cohen & Shoup, 1997, 2000; Feintuch & Cohen, 2002; Theeuwes, 1991, 1992, 2004). 

According to these authors, basic stimulus properties are the main determinants of the 

saliency computation processes and, consequently, the search dynamics, while the DRB 

effects arise at the post-selective stage of response selection.  

The assumption that dimension-specific intertrial effects originate from stages after the 

search took place, implies that significant DRBs should arise even in tasks that do not require 

searching for the target. Mortier, Theeuwes, and Starreveld (2005) tested this prediction in a 

study with two tasks that varied in their demands on target selection. In the singleton search 

task, participants had to discern the presence versus absence of a singleton target in displays 

with varying numbers of distractor items. Mortier et al. compared two blocked search 

conditions: (i) within-dimension search, where the singleton, when present, always differed 

from distractors in color; and (ii) cross-dimension search, where the singleton differed in 

color, shape, or size.  

The non-search task was designed as to eliminate the search component from the task by 

presenting only one item on every trial. On some trials, the presented stimulus was a small 

gray circle, identical to distractor items from the search task. This circle was also treated as a 

distractor in the non-search task and required one („target-absent‟) response. If the presented 

item was different from the distractor (in whatever visual attribute), another („target-present‟) 

response was required. Analogously to the search task, for the non-search task there were two 

blocked conditions: (i) a within-dimension condition, where the critical difference was always 
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in color; and (ii) a cross-dimension condition, where the difference could be in color, shape, 

or size. Thus, in brief, Mortier et al. (2005) compared performance between two tasks in 

which the selection process was either relatively difficult (search task) or the search 

component was minimized (non-search task).  

Participants responded faster to the target stimulus in the within-dimension than in the 

cross-dimension condition, in both tasks. In the cross-dimension condition of both tasks, 

responses were faster when the relevant dimension repeated across consecutive trials 

compared to when the dimension changed (i.e., significant DRBs were observed in both 

search and non-search tasks).  

In a further experiment (Experiment 5), Mortier et al. (2005) changed the response 

requirements in the non-search task: the presented stimulus contained a small line element 

and participants had to discriminate its orientation. As before, the size, shape, or color 

features of the stimulus could either repeat or change across consecutive trials, they were, 

however, irrelevant for the required response. In contrast to the previous experiments, there 

were no significant dimension repetition benefits under these task conditions
1
. Given that the 

change in response requirements appeared to abolish DRBs in the non-search task, Mortier et 

al. argued for a post-selective, response selection account of dimensional intertrial effects. 

2.2.4 Single versus multiple weighting systems 

The studies reviewed thus far show that processing speed in a variety of simple cognitive 

tasks is sensitive to the recent trial history. Dimension-specific intertrial effects were observed 

in both visual search tasks and tasks where no search was necessary. This striking similarity 

of behavioral data from both search and non-search tasks has been taken, by Mortier et al. 

(2005), to indicate that the dimension repetition benefits in both tasks originate from post-

selective processing stages. However, apart from this similarity, arguably, no direct empirical 

                                                 
1 As Mortier et al. (2005) did not report mean RTs per condition, it is hard to tell whether there was a trend 

towards a DRB; judging from their Figure 8, there appears to be a numerical benefit of some 5–6 ms. 
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support for this hypothesis has been put forward thus far. Instead of assuming a single post-

selective dimension weighting system involved in search and non-search tasks, one could also 

assume the existence of two weighting mechanisms situated at different processing stages. 

One mechanism would modulate pre-selective saliency signal computations, as elaborated in 

the DWA, and generate the DRBs in the search task. The other weighting mechanism would 

modulate post-selective processes and produce the DRBs in the non-search task. 

The idea of multiple sequence-sensitive mechanisms is not entirely new in the literature. 

For example, Huang and colleagues (Huang, Holcombe, & Pashler, 2004; Huang & Pashler, 

2005) argued for multiple sources of intertrial effects in Maljkovic and Nakayama‟s (1994, 

1996, 2000) „priming of pop-out (POP)‟ paradigm: one mechanism presumably engaging pre-

selective, perceptual processing stages, and the other modulating post-perceptual, response 

selection processes. Similarly, Kumada (2001) argued for existence of separate systems 

modulating performance in different tasks. In a variety of tasks, from singleton detection to a 

version of a non-search compound task, he compared two measures of dimensional 

facilitation: within-dimensional facilitation (WDF; Treisman, 1988; Müller et al., 1995), that 

is, faster mean RTs in trial blocks in which the relevant dimension is fixed, compared to 

blocks in which the dimension is variable; and dimension repetition benefits across 

consecutive trials (in the variable-dimension trial blocks). Kumada (2001) found that in tasks 

requiring only target detection (e.g., singleton detection), both WDF and DRBs were 

significant, whereas in tasks demanding post-selective processing (e.g., compound task), only 

the WDF was significant. This dissociation motivated Kumada to argue for separate 

mechanisms underlying WDF and DRBs, respectively. 

The notion of multiple-dimension-weighting systems is compatible with the DWA. In 

essence, the DWA assumes that at least part of the DRBs observed in the singleton detection 

(search) task stem from the weighting of dimension-specific feature contrast signals. This 

assumption does not a-priori exclude the possibility that there may be other, dimension-
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specific post-selective processes (see, e.g., Müller & Krumenacher, 2006a, who 

acknowledged this possibility, and Töllner et al., 2008, for an elaboration of a post-selective 

mechanism sensitive to both dimension and response sequences). The two weighting systems 

would have a similar dimension-specific dynamics, producing similar data patterns of 

dimension repetition benefits in both search and non-search tasks. In contrast, post-selective 

accounts of the DRBs have been very definite about the nature of the DRBs: they assume that, 

whatever the task (search or non-search), the observed DRBs all have common source, 

namely, the response selection stage (e.g., Mortier et al., 2005). 

2.2.5 Purpose of the present study 

In summary, significant DRBs are observed in both search and non-search tasks. This 

pattern of findings could be explained by either a single weighting system operating at a post-

selective processing stage, or by multiple weighting systems influencing different processes at 

pre- and, respectively, post-selective processing stages. These two accounts give rise to 

differential predictions when the two tasks, search and non-search, are made to alternate 

within a block of trials. In such a situation, the task to be performed can either repeat or 

change across consecutive trials. Both the single and the multiple weighting systems 

hypothesis predict significant dimension repetition benefits when the task repeats across 

consecutive trials. The critical question, however, is what would happen when the task 

changes across trials. If there were only one weighting system, it should operate in both tasks 

– consequently, DRBs should be evident even across consecutive trials with different tasks. 

By contrast, if the DRBs observed within different tasks were generated by separate 

weighting systems, no dimension repetition benefit would be expected across trials with 

different tasks. 

To test these differential predictions, two different tasks were mixed within the same 

block of trials: a search and a non-search task similar to those examined, in separate trial 

blocks, by Mortier et al. (2005). The non-search task differed in one crucial respect from that 
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used by Mortier et al., in that dimension repetitions were dissociated from response 

repetitions. If the DRBs were found to persist across response changes, this would argue 

against a strong response-selection-based interpretation of the DRBs in non-search tasks (i.e., 

the interpretation favored by Mortier et al., 2005). 

Experiment 1 examined whether the dimension repetition benefits would generalize 

across different tasks (A and B) with the task sequence fixed in an alternating-runs manner 

(...AABBAA...). Experiment 2 tested whether the pattern of effects observed in Experiment 1 

could be replicated even when the task sequence is made unpredictable. In both Experiments 

1 and 2, the stimulus display indicated the type of task to be performed, which led to a 

correlation between task and display sequences (i.e., when the display changed, the task 

changed as well). Given this, Experiment 3 assessed effects of display type change on DRBs, 

independently of task change effects.  

2.3 General Method 

All three experiments used a similar experimental setup and paradigm. Therefore, the 

shared methods are presented here, with differences between experiments noted in the method 

section of the respective experiment. 

Apparatus. The experiments were run on a Dell PC running under the Windows XP 

operating system. The stimuli were presented on a Fujitsu Siemens 21” CRT monitor, with a 

screen resolution of 1280 x 1024 pixels and a refresh rate of 85 Hz. The experimental 

software was custom written in C++. Participants performed the task in a dimly lit and 

acoustically isolated room, seated in front of the computer display. Head-to-monitor distance 

was 57 cm, controlled by means of a chin rest. Participants were to respond by pressing the 

left or the right button of a computer mouse, with their left or right index finger, respectively. 

Stimuli. Two types of stimulus display were used, similar to the display types used by 

Mortier et al. (2005): (i) search and (ii) non-search displays. The search display consisted of 

28 bars organized in three concentric circles (around a central fixation mark) with four, eight, 
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and sixteen elements, respectively. The individual bars were 0.4° of visual angle in width and 

1.7° in height. The whole stimulus display subtended an area of 14° x 14° of visual angle. A 

search display could either contain (in 60% of the trials) a singleton item (= target present) or 

not (= target absent). In target-absent displays, all bars were yellow (CIE xyY 0.438, 0.475, 

58.4) and tilted 45° counter-clockwise from the vertical (= left-tilted). When a target was 

present, it differed from distractors in either color (red, CIE xyY 0.486, 0.389, 50.2) or 

orientation (tilted 45° clockwise from the vertical = right tilted). A pilot experiment was 

performed to determine the color and orientation values of the singletons such that they 

yielded comparable singleton detection times.  

Non-search displays consisted of a single bar presented in the centre of the screen. There 

were four possible bars: vertical or horizontal yellow bars (orientation targets), and blue or 

green left-tilted bars (color targets). Note that for orientation targets, the irrelevant (color) 

feature was the same as the color of distractors in the search displays (yellow). Likewise, for 

color targets, the irrelevant (orientation) feature matched the orientation of distractors in the 

search displays (leftward tilt). A pilot experiment using heterochromatic flicker photometry 

was performed to determine individual blue-green isoluminance. The group mean 

isoluminance coordinates were then used as color values for blue (CIE xyY 0.235, 0.280, 

85.5) and green (CIE xyY 0.288, 0.486, 85.4), respectively. An illustration of both search and 

non-search stimulus displays is given in Figure 2.1. 

 

Figure 2.1. Illustration of the stimulus displays used in the present experiments. Original stimuli were 

plotted on a black background, and were of different colors. See text for more details. 
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Design. There were two tasks: (i) singleton detection (search task) and (ii) feature 

discrimination (non-search task). Search displays were used for the singleton detection task, 

and non-search displays for the feature discrimination task. This way, information about what 

task was to be performed was provided by the type of stimulus display. In the singleton 

detection (search) task, participants had to discern the presence/absence of a singleton target 

in the display and respond by pressing the corresponding mouse button as fast as possible. In 

the feature discrimination (non-search) task, participants had to discriminate either the color 

(blue vs. green) or the orientation feature (horizontal vs. vertical) of a presented target bar. 

Different features within a given dimension of discrimination were mapped to different 

responses (e.g., for color discrimination, right button for green, left button for blue target 

bars). Different stimulus-response mappings for either task were balanced across participants. 

The feature discrimination (non-search) task in the present experiments differed from the 

non-search task used by Mortier et al. (2005) in that the sequence of dimensions on 

consecutive trials (same vs. different) was dissociated from the sequence of responses. Thus, 

for example, participants may have had to discriminate color on both trial n-1 and trial n, but 

the required response could either repeat or change. This was done to permit the DRBs in the 

present feature discrimination task to be assessed independently of the response sequence. 

Nevertheless, as in the non-search task of Mortier et al., the targets were the only items in 

display and presented at a fixed (central) location which minimized the search component of 

the task performance.  

A given trial in the present experiments was defined by the task to be performed 

(detection vs. discrimination) and by the task-relevant dimension (color vs. orientation). In the 

singleton detection task, „relevant dimension‟ refers to the dimensional module from which 

the informative feature contrast signal originates; in the feature discrimination task, it refers to 

the dimension of feature discrimination. The task, dimension, and response could 

(independently) either repeat or change across a pair of consecutive trials. Combining the 
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experimental factors produced the following design: (i) task (detection vs. discrimination), (ii) 

dimension (color vs. orientation), (iii) task sequence across pairs of trials (same vs. different), 

(iv) dimension sequence (same vs. different), and (v) response sequence (same vs. different). 

Procedure. Given that participants had to memorize and simultaneously maintain the 

stimulus-response mappings for two tasks (detection and discrimination), and for two separate 

dimensions in the discrimination task (color and orientation discrimination), the experiments 

required a time-consuming learning stage. For this reason, each experiment was split into two 

sessions. The first session, of 600 trials (which took about 20 minutes to complete), was 

dedicated to practice. The second, experimental session consisted of 1800 trials (which took 

about one hour to complete). A large number of trials were necessary to assure enough 

observations for analyzing the various intertrial sequences. The two sessions were separated 

by a short break (of 5–10 minutes) for participants to get some rest and for the experimenter 

to check whether the stimulus-response mappings had been learnt.  

 

Figure 2.2. Illustration of trial sequence used in the present experiments. Participants performed the 

singleton detection task when presented with a search display, and the feature discrimination task 

when presented with a non-search display. See text for more details. 

An example of the trial sequence with timing details is provided in Figure 2.2. 

Participants were to respond on every trial. Stimuli were presented either until a response was 

made or for three seconds if meanwhile no response was given. Trials were separated by a 

variable inter-stimulus interval. Following a correct response, only a fixation point was visible 
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on the screen during this interval (200 to 700 ms). Erroneous responses were followed by an 

empty (black) screen of variable duration (1000 to 2000 ms).  

2.4 Experiment 1 

In Experiment 1, participants performed both the singleton detection and the feature 

discrimination task within the same blocks of trials. The aim was to examine whether similar 

dimension repetition benefits (DRBs) could be observed for both tasks. The critical analysis 

concerned whether or not the DRBs would persist across trials with different tasks. 

Significant DRBs across such trials would argue in favor of post-selective accounts of 

dimensional weighting. Conversely, the absence of intertrial effects across different tasks 

would be consistent with the hypothesis of multiple weighting systems. 

2.4.1 Method 

Participants. Eleven university students (3 female, mean age 25 years) with normal or 

corrected-to-normal vision took part in the experiment in return for monetary compensation (8 

€ per hour). All of them were naïve with respect to the purpose of the experiment, though they 

all had previous experience with psychophysical experiments and visual search tasks. 

Procedure. Participants performed the two tasks mixed within the same blocks of trials. 

The task sequence (same/different) was fixed, with two trials of one task (task A) followed by 

two trials of the other task (task B). This alternating-runs sequence (AABB) was used for two 

reasons. One was to make the paradigm (in particular, task changes) easier for participants. 

The other was to have an equal number of trials for each task sequence condition. All other 

methodological details were as described in the General Method section. 

2.4.2 Results 

The recorded response data were first filtered for errors and extreme reaction times 

(outside ±3SD of the RT distribution). About 1% of trials per participant were excluded due 

to extreme RTs. Participants made response errors in approximately 4% of all trials, on 
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average, with most participants‟ error rates varying between 3% and 5%. One participant 

made more than 5% errors and was excluded from subsequent analyses. Data inspection 

revealed no indications of speed-accuracy trade-offs. Due to the generally low error rates, no 

further analyses were performed on the error data. 

The remaining trials were then sorted into 16 experimental conditions: task (detection vs. 

discrimination) x dimension (color vs. orientation) x task sequence (same vs. different task 

across consecutive trials) x dimension sequence (same vs. different dimension across trials). 

On average, for each experimental condition there were around 52 trials (range 30 to 89 

trials). For the detection task, only target-present trials were analyzed. This resulted in only 

one response type for the detection task, so that the sequence of responses across consecutive 

trials was not taken into account in the analyses. 

A four-way repeated-measures analysis of variance (ANOVA) of the reaction times 

(RTs) was carried out with main terms for (i) task, (ii) dimension, (iii) task sequence, and (iv) 

dimension sequence. There were significant main effects of task (F(1,9) = 9.70, p < .01, ηp
2
 = 

.52), task sequence (F(1,9) = 62.18, p < .01, ηp
2
 = .87), and dimension sequence (F(1,9) = 

25.45, p < .01, ηp
2
 = .74). Participants were faster to detect than to discriminate a target item 

(476 vs. 509 ms), faster when the current task was the same rather than different from the 

preceding task (474 vs. 510 ms), and faster when the relevant dimension was repeated, rather 

than changed, across trials (482 vs. 503 ms). Furthermore, the task sequence x dimension 

sequence interaction (F(1,9) = 62.69, p < .01, ηp
2
 = .87) and the task x task sequence x 

dimension sequence interaction (F(1,9) = 10.14, p < .01, η
2

p = .53) were significant. Neither 

the main effect of dimension (color vs. orientation) nor its interactions with any other factor 

reached significance (all F < 4.94, p > .05). Thus, effects of dimension are not further 

discussed and the data presented here are collapsed across color and orientation targets. The 

distribution of mean RTs across different tasks, task sequences, and dimension sequences is 

presented in Figure 2.3. 
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Figure 2.3. Mean RTs (in ms) across different tasks (detection and discrimination), task sequences 

(same task in both trial n and trial n-1 – squares; different task – circles), and dimension sequences 

(same vs. different) in Experiment 1. Vertical bars denote standard errors of the means. 

Figure 2.3 shows that there was a difference in mean RTs between different dimension 

sequences (same vs. different dimension) in both tasks, when the task repeated across 

consecutive trials (squares). However, no such difference was evident when the task changed 

(circles). To examine exactly for which tasks and task sequences the dimension sequence 

produced significant effects (i.e., DRBs), a post-hoc analysis (two-sided Tukey HSD, critical 

alpha level .05) was performed for the task x task sequence x dimension sequence interaction. 

There were significant dimension sequence effects for both detection and discrimination 

tasks. Participants detected targets faster, by 32 ms, when the relevant dimensions was the 

same as on the previous trial compared to when it was different. Similarly, discrimination was 

faster, by 60 ms, when the dimension repeated than when it changed. However, the DRBs 

were significant only when the task stayed the same across consecutive trials; no significant 

DRBs were observed when the tasks changed (0 and -6 ms for detection and discrimination, 

respectively).   

In a second analysis, planned comparisons (two-sided t-tests, critical alpha level .05) 

were carried out for pairs of non-consecutive trials. Maljkovic and Nakayama (1994, 1996, 

2000) had shown significant priming of pop-out effects on the current trial (n) by stimulus 
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properties on trials up to five trials before (trial n-5). Thus, in general, intertrial priming 

effects can be tested between the current trial n and any previous trial n-i. For Experiment 1, 

the second analysis focused on the DRBs between non-consecutive trials n and n-3 (due to the 

…AABBAA… sequence of tasks, it was not possible to asses DRBs across same tasks 

between trials n and n-2). Mean RTs were compared for different dimension sequences (same 

vs. different) separately for different tasks (detection and discrimination) and different task 

sequences (same or different). The results of the planned comparisons are summarized in 

Table 2.1.  

Table 2.1. Mean RTs (in ms), standard errors of the means (MRT [SEM]), as well as magnitudes of the 

DRBs and corresponding Student‟s t-values for different dimension sequences (same vs. different) 

across non-consecutive pairs of trials in Experiments 1 and 2. These findings are presented separately 

for different tasks (detection and discrimination) and different task sequences (same vs. different). 

 Dimension sequence  

Task sequence Same Different DRB a T 

Experiment 1, df = 9 

Detection on trial n     

Same task on trial n-3 489 [25] 491 [23] 2 .49 ns 

Different task 473 [22] 469 [25] -4 .80 ns 

Discrimination on trial n     

Same task on trial n-3 520 [26] 530 [25] 10 3.22** 

Different task 493 [19] 488 [21] -5 1.37 ns 

Experiment 2, df = 10 

Detection on trial n     

Same task on trial n-2 475 [30] 490 [31] 15 3.57 ** 

Different task 496 [33] 500 [31] 4 1.41 ns 

Discrimination on trial n     

Same on trial n-2 524 [32] 542 [32] 18 4.78 ** 

Different task 541 [33] 539 [35] -2 .54 ns 

a DRB = MRT different dimension  – MRT same dimension  

** p < .01; * p < .05; ns not significant. 

As can be seen in Table 2.1, the analysis of DRBs across non-consecutive trials yielded 

no significant effects for the detection task. By contrast, for the discrimination task, there was 
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a significant DRB, provided that participants performed the same task (discrimination) on 

both trials n and n-3
2
. 

Thus, the above comparisons revealed significant DRBs across both consecutive and non-

consecutive trials of the same task, but not across trials of different tasks. One could object, 

though, that the (true) magnitude of DRBs across trials of different tasks was underestimated 

in these comparisons: such intertrial transitions involved a change in both task and 

(potentially) response, which may have been associated with costs that could have masked 

any benefits due to dimensional repetition. However, the finding that at least for the 

discrimination task, the DRBs persist across two task changes (from discrimination on trial n-

3 to detection on trials n-2 and n-1 back to discrimination on trial n) argues that task change 

costs were unlikely to have masked potential DRBs across consecutive trials of different tasks 

(involving only one task change). To examine the role of response change costs, an additional 

ANOVA was carried out with main terms for (i) task, (ii) dimension, (iii) dimension 

sequence, and (iv) response sequence, across consecutive trials of different tasks. If response 

change costs did mask potential DRBs across different tasks, then it should be possible to 

observe significant DRBs across different tasks when the response repeats (in which case 

there cannot be a response change cost). The ANOVA revealed only the main effect of task to 

be significant (F(1,9) = 8.36, p < .05, ηp
2
 = .48), with detection being performed faster than 

feature discrimination (496 vs. 527 ms). No other effects reached significance (all Fs < 3, p > 

.11). Most importantly, there was neither a main effect of response sequence (F(1,9) = .38, p = 

.55, ηp
2
 = .04), nor did it interact with task and dimension sequence (F(1,9) = .99, p = .35, ηp

2
 

= .01), arguing against response change costs being responsible for the absence of DRBs 

across consecutive trials of different tasks. 

                                                 
2 Analysis of DRBs across non-consecutive trials also showed that mean RTs were slower for trials with the 

same task than for trials with different tasks. This result is due to the fixed task sequence in Experiment 1: when 

n and n-3 were trials of the same task, the task on the immediately preceding trial (n-1) was always different 

from the task on the current trial (n). Thus, higher mean RTs reflect task change costs between trials n-1 and n. 
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2.4.3 Discussion 

The results of Experiment 1 showed that dimension repetition benefits are task-specific. 

When the task repeated across the pair of analyzed trials, significant dimension repetition 

benefits were observed for both detection and discrimination tasks. However, there were no 

significant DRBs when the task changed across the pair of analyzed trials. The absence of a 

dimension repetition benefit across trials with different tasks argues against the hypothesis of 

a single weighting system. On the other hand, this (non-) finding can easily be explained by 

assuming that separate weighting systems modulate intertrial effects in different tasks. 

Other explanations, besides invoking multiple weighting systems, could possibly also 

account for the task specificity of the DRBs. For example, one alternative explanation could 

be that when the task changes, the (complete) dimensional weight set that has evolved over 

the trial history is erased, or, respectively, the weights a reset to some default value. If this 

were the case, then there should be dimension repetition benefits only in cases in which the 

task repeats across a pair of consecutive trials. That is, accounts assuming the existence of 

(only) one weighting system would predict, by invoking the weight resetting hypothesis, 

significant DRBs only when the task remains the same on consecutive trials. In contrast, the 

results of Experiment 1 showed that there was a significant dimension repetition benefit for 

the discrimination task even between non-consecutive pairs of trials. This finding shows that 

the task-specific dimensional weight set can survive across several task switches – which 

seriously challenge the „weight-resetting‟ hypothesis. 

However, the significant DRBs for non-consecutive trials of the discrimination task do 

not permit the resetting hypothesis to be rejected completely, because this finding does not 

generalize to the detection task. The (seeming) dissociation between detection and 

discrimination tasks might have several reasons. For example, the DRBs across non-

consecutive trials of the discrimination task may be due to some specific strategy participants 

adopted for performing the discrimination task. In Experiment 1, the task change sequence 
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was predictable. To exploit this, participants may have invested additional effort to maintain 

the weight settings for the (more difficult) discrimination task, being aware that the same task 

would repeat after the next two trials. This strategy might not have been necessary for 

performing the detection task, which was much easier to solve than the discrimination task. 

Accordingly, the dissociation between the two tasks may reflect differential strategies 

participants used in the two tasks. 

The multiple-weighting-systems hypothesis could provide a different explanation. The 

DRBs deriving from the immediately preceding trial n-1 were smaller, in the first instance, for 

the detection task (≈ 30 ms) than for the discrimination task (≈ 60 ms). As the n-3 effects were 

smaller than the n-1 effects in the discrimination task, such a reduction would also be 

expected for the detection task (see, e.g., Maljkovic & Nakayama, 1994, who also found 

smaller repetition effects arising from trial n-3 compared to trial n-1). As a consequence, in 

the detection task, this benefit might have decreased to a statistically non-reliable value over 

the course of three trials.  

In summary, the results of Experiment 1 can be interpreted in at least two ways. One is 

that separate weighting systems modulated performance in search and non-search tasks. 

Favoring this interpretation is the evidence for significant DRBs across non-consecutive trials 

of the discrimination task. That there was no such effect for the detection task could then be 

explained by assuming that accumulated weight settings decayed over the course of two to 

three trials, so that potential DRBs across non-consecutive trials of the detection task could no 

longer be discerned statistically. On the other hand, one could also assume that there is only 

one weighting system, but that weight settings are reset to some initial (default) value with 

every task change. Along these lines, the finding of significant DRBs across non-consecutive 

trials of the discrimination task could be explained by assuming that, given a predictable task 

sequence, participants adopted a special (effortful) strategy to improve performance in the 

(more difficult) discrimination task. No such strategy was necessary for performing the easier 
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detection task. Experiment 2 was designed to assess the multiple-weighting-systems versus 

the weight-resetting account of the findings of Experiment 1.  

2.5 Experiment 2 

The weight-resetting and multiple-weighting-systems hypotheses make different 

predictions regarding random task change sequences: If the task varies in an unpredictable 

manner within a block of trials, adopting of a special (effortful) strategy for the discrimination 

task would yield little benefit for overall performance; in fact, arguably, active maintenance 

of the weight setting for one particular task across an unpredictable number of trials would 

interfere with performance on the intervening trials, harming overall performance. 

Accordingly, for such situations, the weight-resetting hypothesis would predict no (or at least 

reduced) DRBs across non-consecutive trials of the discrimination task. By contrast, the 

multiple weighting systems hypothesis assumes that the weight settings persist across task 

switches, regardless of the task sequence. Consequently, there would be a DRB across non-

consecutive trials even when the task sequence is unpredictable. 

An additional prediction deriving from the multiple weighting systems hypothesis is that 

the DRBs should increase with a decrease in the temporal distance between analyzed pairs of 

trials, that is: intertrial (DRB) effects should be the stronger between trials n and n-2 than 

between trials n and n-3. And for the (easier) detection task (in which the effects of the 

weighting are generally reduced), analysis of dimension-specific intertrial effects might reveal 

the DRBs to be significant between trials n and n-2 (which could not be assessed in 

Experiment 1). In contrast, the weight-resetting hypothesis would not predict such a pattern of 

effects, because the weights are assumed to be reset with every task change. 

The particular task sequence used in Experiment 1 did not allow direct testing of the 

different predictions regarding intertrial effects between trials n and n-2. Due to the 

alternating-runs sequence (AABB) of tasks in Experiment 1, there were no n and n-2 trials of 

the same task. For this reason, a random task change sequence was used in Experiment 2 – 
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which also rendered any strategy of actively maintaining the settings for the more effortful 

task less beneficial for overall performance. Thus, within a single paradigm, predictions 

regarding the role of strategy and intertrial distance in generating DBRs across non-

consecutive trials could be tested. 

2.5.1 Method 

Participants. Twelve university students (4 female, mean age 25 years) with normal or 

corrected-to-normal vision took part in Experiment 2 for monetary compensation. All of them 

were naïve with respect to the purpose of the experiment. All of them had previous experience 

with psychophysical experiments and visual search tasks. 

Procedure. Participants performed both the singleton detection and the feature 

discrimination task within the same block of trials, with the task sequence varying 

unpredictably across trials. All other parameters were as described in the General Method. 

2.5.2 Results 

Trials with extreme RTs (out of ±3SD range) and trials with response errors were first 

filtered out. About 2% of trials per participant were excluded due to the extreme RTs. 

Participants made about 4% errors, on average. One participant made more than 5% errors 

and was excluded from the subsequent analyses. Inspection of the error pattern revealed no 

evidence of speed-accuracy trade-offs. Due to the low error rates, these were not analyzed 

further. 

The remaining trials were then sorted according to the task (detection or discrimination), 

relevant dimension (color or orientation), task sequence across consecutive trials (same or 

different tasks on trials n and n-1), and dimension sequence (same or different). On average, 

there were about 51 trials per condition (ranging between 29 and 77 trials). A repeated-

measures ANOVA was performed with the main terms for (i) task, (ii) dimension, (iii) task 

sequence, and (iv) dimension sequence. This ANOVA revealed the main effects of task 
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(F(1,10) = 151.88, p < .01, ηp
2
 = .94), task sequence (F(1,10) = 59.34, p < .01, ηp

2
 = .86), and 

dimension sequence (F(1,10) = 40.57, p < .01, ηp
2
 = .80) to be significant. Participants were, 

on average, faster to detect targets (489 ms) than to discriminate them (537 ms), faster when 

the task repeated (491 ms) than when it changed (535 ms), and faster when the dimension 

repeated (500 ms) than when it changed (526 ms). The task x dimension sequence (F(1,10) = 

32.50, p < .01, ηp
2
 = .76), task sequence x dimension sequence (F(1,10) = 57.55, p < .01, ηp

2
 = 

.85), and task x task sequence x dimension sequence (F(1,10) = 16.92, p < .01, ηp
2
 = .63) 

interactions were also significant. No other main effects or interactions reached significance 

(all F < 3.22, all p > .10). The mean RTs for the different tasks, task sequences, and 

dimension sequences are shown in Figure 2.4. 

 

Figure 2.4. Mean RTs (in ms) across different tasks (detection and discrimination), task sequences 

(same task in both trial n and trial n-1 – squares; different task – circles), and dimension sequences 

(same vs. different) in Experiment 2. Vertical bars denote standard errors of the means. 

As depicted in Figure 2.4, when the task was the same across the trials (squares), 

participants were 30 ms faster to detect targets, and 67 ms faster to discriminate target 

features when the relevant dimension was the same on both trials n and n-1, compared to the 

when the dimension was different between these trials. No such effect was apparent when the 

tasks differed across trials (circles). To test for significance of the dimension sequence effects 

across different tasks and task sequences, post-hoc comparisons (Tukey HSD, with a two-
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sided alpha level of .05) were performed for the task x task sequence x dimension sequence 

interaction. Similar to Experiment 1, there was a significant effect of dimension sequence 

(i.e., significant DRBs) for both tasks, provided the task stayed the same; there were no 

significant DRBs when the task changed. 

To test whether dimension repetitions across non-consecutive trials generated significant 

DRBs, planned t-tests (with a two-sided alpha level of .05) were performed between different 

dimension sequences (same vs. different) for trial pairs n and n-2, separately for different 

tasks and task sequences. The results are summarized in Table 2.1. Planned comparisons 

revealed significant DRBs for both detection and discrimination tasks between non-

consecutive trials, provided the task stayed the same across these trials. No DRBs reached 

significance levels when the task on the current trial was different from that on trial n-2. 

Similar to Experiment 1, an ANOVA was performed with (i) task, (ii) dimension, (iii) 

dimension sequence, and (iv) response sequence as main terms, across consecutive trials of 

different tasks. The analysis revealed only a significant main effect of task (F(1,10) = 44.06, p 

< .01, ηp
2
 = .81), with the detection task permitting faster responses than the discrimination 

task (510 vs. 561 ms). No other main effects or interactions reached significance (all Fs < 

2.27, p > .16). Importantly, as in Experiment 1, there was neither a main effect of response 

sequence (F(1,10) = .55, p = .47, ηp
2
 = .05), nor an interaction of this factor with task and 

dimension sequence (F(1,10) = .15, p = .70, ηp
2
 = .01). These (non-) findings argue against 

response change costs masking potential DRBs across trials of different tasks.  

2.5.3 Discussion 

As in Experiment 1, the DRBs observed in Experiment 2 were also task-specific, that is, 

they were significant only across trials of the same task, but not trials of different tasks. 

Moreover, Experiment 2 demonstrated significant DRBs across non-consecutive trials for 

both detection and discrimination tasks. Taken together, results of Experiments 1 and 2 argue 
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strongly against the weight-resetting hypothesis, while being in accordance with predictions 

derived from the multiple-weighting-systems hypothesis. 

With regard to the question whether the finding of a DRB observed within one task 

automatically generalizes across tasks, the answer is negative. The results of Experiments 1 

and 2 are in close agreement with the findings of Mortier et al. (2005), in that they show 

significant DRBs for both search and non-search tasks, as long as the task repeats across the 

analyzed pair of trials. However, going beyond Mortier et al., the present findings 

demonstrate for the first time (to our knowledge) that the intertrial effects do not generalize 

across search and non-search tasks
3
. Thus, while a post-selective origin of dimension-specific 

intertrial effects may be true for one task, this is not necessarily the case for another task (if it 

were the case, there should have been intertrial effects across different tasks). In contrast, the 

multiple-weighting-systems hypothesis can account for this pattern of findings: performance 

in different tasks depends on different weighting systems. The feature contrast weighting 

system assumed by the DWA for singleton detection tasks would not contribute to the feature 

discrimination task, because there is no search component in this task. By contrast, post-

selective weighting mechanisms would play little role for performance in the singleton 

detection task, because this task can, in principle, be performed based on the master saliency 

map representation (see, e.g., Krummenacher, Müller, & Heller, 2002). Assuming that 

different tasks involve different weighting mechanisms, no dimension-specific intertrial 

effects would be expected to arise between trials of different tasks. 

In summary, Experiments 1 and 2 showed significant DRBs across consecutive and non-

consecutive trials of the same task, but not across trials of different tasks. On the multiple-

weighting-systems hypothesis, this might be interpreted as a consequence of different 

sequence-sensitive mechanisms operating in the different tasks. However, alternative 

                                                 
3 Olivers & Meeter (2006) demonstrated a similar lack of carry-over effects across two search tasks, 

specifically, singleton detection and compound-search tasks. 
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explanations remain possible. This is because the design used in Experiments 1 and 2 

confounded task sequence and display type sequence: search displays were presented for the 

detection task, and non-search displays for the feature discrimination task. Consequently, the 

DRBs may be stimulus-display-specific, rather than task-specific. Experiment 3 was designed 

to discriminate between these alternative explanations of the results of Experiments 1 and 2. 

2.6 Experiment 3 

In order to assess the role of stimulus changes separately from task changes, only the 

feature discrimination task, however with two possible display types was used in Experiment 

3. Displays containing multiple items (as in the singleton detection task in Experiments 1 and 

2), were mixed randomly with single-item displays (as in the discrimination task of the 

previous experiments). Irrespectively of the display (multiple vs. single item), the target was 

always presented in the centre of the screen. Participants were to perform only one, the 

feature discrimination task. Thus, Experiment 3 was similar to Experiments 1 and 2 in that it 

contained both multiple- and single-item displays, while, unlike Experiments 1 and 2, there 

was only one task to perform: the feature discrimination task. If the DRBs are task-specific, 

rather than stimulus-specific, then, by virtue of having only one task, the DRBs should persist 

even across stimulus display changes in Experiment 3. Alternatively, if the DRBs are 

stimulus-specific, no DRBs would be expected across different displays. 

Experiment 3 also permitted the properties of the presumed post-selective dimension 

weighting system (involved in the discrimination task) to be tested. From Experiments 1 and 

2, it was unclear whether the DRBs in the discrimination task originate from response 

selection processes, or processes that are response-independent and occur prior to the stage of 

response selection. If the selection of a particular response was facilitated, then significant 

DRBs should arise only contingent on a response repetition. However, if the intertrial effects 

originate from processes prior to response selection, then DRBs should occur even when the 

response changes across the pair of analyzed trials. 
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2.6.1 Method 

Participants. Eleven university students (4 female, mean age 25 years) with normal or 

corrected-to-normal vision took part in the experiment for monetary compensation. All of 

them were naïve with respect to the purpose of the experiment. All of them had previous 

experience with psychophysical experiments and visual search tasks. 

Stimuli. Two types of stimulus display were used: (i) search display and (ii) non-search 

display. The search displays closely resembled those in Experiments 1 and 2. It consisted of 

28 left-tilted yellow bars, arranged in three concentric circles of 4, 8, and 16 items, 

respectively. The non-search display was identical to the non-search display used in 

Experiments 1 and 2. However, in both search and non-search displays, the target item always 

appeared in the centre of the screen. It could be green or blue (left tilted), or horizontal or 

vertical (yellow) bar. The color and orientation values were the same as those used in the non-

search displays of Experiments 1 and 2. In the search display, the target item appeared 

surrounded by distractor items; in the non-search display, the target was the only item 

presented on the screen. 

Since the location of the target item was fixed throughout the sequence of display types, 

no search was strictly necessary to localize the targets even in „search‟-type, multi-item 

displays. However, to emphasise the parallels between the search displays presented in (the 

detection tasks of) Experiments 1 and 2, and „search‟-type displays used in (the feature 

discrimination task of) Experiment 3, this terminology was preserved, that is: multi-item 

displays are referred to as search displays and single-item displays as non-search displays. 

Procedure. Search and non-search types of display were varied randomly across trials, 

with the target item always presented in the centre of the screen. Whatever the display type, 

participants had to perform the feature discrimination task, that is: they had to indicate either 

the color (green vs. blue) or the orientation (vertical vs. horizontal) feature of the central 

target item.  All other parameters were as described in the General Method. 
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2.6.2 Results 

Trials with erroneous response and extreme response latencies were first filtered out. 

About 1% of trials per participant were excluded due to extreme RTs. Error rates were less 

than 4% on average. Due to a small number of errors, error rates were not analyzed further. 

Inspection of the error patterns revealed no indication of speed-accuracy trade-offs. 

The RT data were examined by a repeated-measures ANOVA with main terms for (i) 

display (search vs. non-search), (ii) relevant dimension (color vs. orientation), (iii) display 

sequence (same vs. different display relative to the n-1 trial), (iv) dimension sequence (same 

vs. different dimension relative to previous trial), and (v) response sequence (same or 

different response relative to previous trial). This ANOVA revealed the main effects of 

display (F(1,10) = 174.47, p < .01, ηp
2
 = .95), display sequence (F(1,10) = 50.34, p < .01, ηp

2
 

= .83), dimension sequence (F(1,10) = 37.64, p < .01, ηp
2
 = .79), and response sequence 

(F(1,10) = 18.56, p < .01, ηp
2
 = .65) to be significant. Participants were faster to discriminate 

features in the non-search display than in the search display (500 vs. 529 ms), and faster when 

the display repeated than when it changed across a pair of trials (510 vs. 519 ms). 

Additionally, participants were faster when the dimension to be discriminated repeated than 

when it changed (484 vs. 545 ms), and faster when the required response repeated than when 

it changed (501 vs. 527 ms). The dimension x response sequence interaction (F(1,10) = 6.35, 

p < .05, ηp
2
 = .39) also proved significant. Post-hoc analysis (Tukey HSD, two-sided alpha = 

.05) revealed a significant difference in RTs between color and orientation targets when the 

response changed across trials (535 and 519 ms for color and orientation targets, 

respectively), while there was no RT difference between color and orientation targets when 

the required response repeated across trials (502 and 500 ms for color and orientation targets). 

Additionally, the following interactions were significant: display sequence x dimension 

sequence (F(1,10) = 20.98, p < .0<, ηp
2
 = .68), display sequence x response sequence (F(1,10) 

= 10.13, p < .01, ηp
2
 = .50), dimension sequence x response sequence (F(1,10) = 35.43, p < 
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.01, ηp
2
 = .78), and display sequence x dimension sequence x response sequence (F(1,10) = 

20.16, p < .01, ηp
2
 = .67). No other main effects or interactions proved significant (all F < 

3.39, p > .10). The mean RTs for the different dimension sequences (same vs. different 

dimension across consecutive trials), across different display sequences and response 

sequences are illustrated in Figure 2.5.  

 

Figure 2.5. Mean RTs (in ms) across different display sequences (same vs. different display type 

across trials n and n-1), dimension sequences (same vs. different) and response sequences (same – 

squares; different – circles) in Experiment 3. Vertical bars denote standard errors of the means. 

As can be seen from Figure 2.5, participants were always faster to discriminate the target 

when the dimension repeated than when it changed across consecutive trials. To determine the 

significance of the DRBs across different display and response sequences, a post-hoc analysis 

(Tukey HSD, two-sided alpha = .05) was performed for the display sequence x dimension 

sequence x response sequence interaction. This analysis revealed the DRBs to be significant 

for all combinations of display sequence and response sequence. However, the magnitude of 

the DRBs was dependent on the experimental condition: when the display type repeated, the 

DRBs were 113 and 23 ms for sequences of the same and of different responses, respectively; 

when the displays differed across consecutive trials, the respective DRBs were 88 and 19 ms. 

In summary, DRBs, although considerably weaker, did persist across display and response 

changes. 
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2.6.3 Discussion 

The main goal of Experiment 3 was to examine the role of display changes in dimension-

specific intertrial effects, independently of task changes. The results showed significant DRBs 

for both search and non-search displays. Most importantly, a significant and very substantial 

DRB was observed across consecutive trials with different displays (≈ 50 ms). In contrast, no 

DRB was observed in Experiments 1 and 2 when both the display and, associated with it, the 

task changed across trials. On this background (of Experiments 1 and 2), the findings of 

Experiment 3 support the hypothesis that dimension-specific weights are task- rather than 

display-specific. 

Analysis of the modulation of the DRBs by the response sequence showed that intertrial 

effects survive response changes. However, DRBs were considerably larger when the 

required response repeated than when it changed (100 ms as compared to 20 ms). This 

discrepancy stems from the fact that when both the dimension of discrimination and the 

required response repeated across a pair of trials, participants actually performed the identical 

discrimination twice (e.g., green-green). In such cases, there were actually three separate 

aspects of the task that repeated: (i) the dimension of discrimination, (ii) the feature to be 

discriminated, and (iii) the required response. In contrast, in sequences of trials in which the 

required response changed (e.g., green-blue), only the dimension of discrimination could 

repeat across trials. Thus, intertrial effects were generated by three types of repetition in one 

case, as compared to only one type of repetition in the other case. Given this, it is not 

surprising that the intertrial effects were larger when multiple aspects of the task repeated 

across trials. Most importantly, the DRBs were still significant even when the particular 

feature and the required response changed. This finding suggests that the dimension-

weighting mechanism involved in performing the discrimination task operates at a stage prior 

to response selection. 



49 

 

2.7 General Discussion 

The focus of the present study was on alternative, to some extent mutually exclusive, 

explanations of dimension-specific intertrial effects in a number of tasks. In singleton search 

tasks, dimension-specific intertrial effects can be accounted for in at least two ways. 

According to the Dimension-Weighting Account (DWA), dimensional weights modulate 

search processes by preferentially boosting feature contrast signals from previously relevant 

dimensions. The alternative set of explanations assumes that dimensional weights modulate 

processing after selection took place (Cohen & Magen, 1999; Feintuch & Cohen, 2002; 

Mortier et al., 2005; Theeuwes, 2004). Interestingly, both approaches typically used one type 

of task in their paradigms. As the DWA assumes the efficiency of selection to be modulated 

by dimension-specific weights, the work carried out within the DWA framework typically 

used tasks that entailed a search component (see Müller & O‟Grady, 2000, for an exception). 

These tasks could require simple singleton detection (Found & Müller, 1996), singleton 

dimension and feature discrimination (Found & Müller, 1996; Müller, Krummenacher, & 

Heller, 2004), singleton conjunction search (Weidner & Müller, 2009; Weidner, Pollmann, 

Müller, & von Cramon, 2002), or singleton localization (Zehetleitner, Krummenacher, Geyer, 

& Müller, 2009). By contrast, post-selective approaches used tasks that demanded additional, 

post-selective processing and more complicated stimulus-to-response mappings. These tasks 

included compound search (Theeuwes, 1991, 1992), the flanker task (Cohen & Shoup, 1997), 

or the non-search task of Mortier et al. (2005).  

To account for the observed DRBs in a variety of tasks, both search and non-search, one 

may assume that there is only one dimensional weighting system that underlies DRBs in all 

tasks. The alternative is that there are several weighting mechanisms that affect different 

processes. Accordingly, depending on the processing required by a particular task, one or 

more weighting mechanisms might modulate task performance. If two tasks share a weighting 

mechanism (e.g., when both tasks entail feature contrast computation), then intertrial effects 
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should be observed even across different tasks. By contrast, if the tasks involve different 

weighting mechanisms (such as detection and discrimination in the present study), there 

should be no carry-over of effects from one to the other task. Three experiments reported here 

tested the predictions derived from the single- and multiple-weighting-systems conceptions. 

Experiments 1 and 2 tested whether DRBs would persist across trials of different tasks in 

which performance was presumed to be modulated by different weighting systems. The 

general finding was that significant DRBs persist across both consecutive and non-

consecutive trials of the same task, while there are no DRBs across trials of different tasks. 

Experiment 3 demonstrated that the DRB effects generalize across different types of display 

(search and non-search) as long as the task to be performed remains the same. Taken together, 

all three experiments show that DRBs are indeed task-, rather than stimulus-, specific and that 

they can survive several task switches.  

2.7.1 Properties of the multiple weighting systems 

Both the present study and that of Mortier et al. (2005) demonstrated significant DRBs 

across trials of tasks that either did or did not require search for the target item. Based on their 

results, Mortier et al. concluded that a search component is not necessary in the task for DRBs 

to arise. This appears to be at odds with Goolsby and Suzuki (2001), who found that precuing 

of the singleton‟s location in a „priming of pop-out‟ paradigm (e.g., Maljkovic & Nakayama, 

1994) abolished any intertrial effects. Goolsby and Suzuki‟s (non-) finding argues that 

intertrial effects reflect, at least to some extent, facilitated singleton search processes. On the 

other hand, the finding of reliable DRBs in the non-search task (originally by Mortier et al. 

and replicated in the present study) suggests that these effects originate from processes other 

than facilitation of search processes. These seemingly contradictory findings are most readily 

reconciled if one assumes multiple weighting systems that have a similar dynamics, but 

operate at different, pre- and post-selective, processing stages. This assumption is similar to 

Meeter and Olivers‟ (2006; Olivers & Meeter, 2006) „ambiguity resolution‟ account of cross-
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trial „priming‟ effects in visual search. On this account, the presence of both perceptual and 

response-related ambiguity can give rise to intertrial effects, which, by implication, would be 

originating from either at early (pre-selective) or late (post-selective) stages of the processing 

system
4
. However, the difference between this account and the multiple-weighting-systems 

hypothesis is that the latter attempts to offer a more precise description of which stages and 

processes are influenced by trial sequences. 

Concerning the nature of the multiple weighting systems, it is plausible to assume that the 

weighting system in the singleton search task modulated target selection processes. The 

dynamics of this pre-selective weighting system is described by the DWA (for a recent 

review, see Müller & Krummenacher, 2006b). The singleton detection task required the 

detection of a singleton target in a field of homogeneous distractor items (target-

present/absent decision). Solving this task is thought to involve the computation of feature 

contrast signals and their integration into an overall-saliency map, whose activity guides the 

deployment of focal attention. According to the DWA, the computation of overall-saliency is 

modulated by a pre-selective weighting system which tracks (weights) the search-critical 

dimension on a given trial and biases the system towards processing targets defined in the 

same, rather than a different, dimension on the next trial. Arguably, the target-present/absent 

decision to be made in the search task requires no or little post-selective processing – so that 

other (later) weighting mechanisms are presumably not contributing to performance in the 

search task (e.g., Müller et al., 2004; Töllner, Zehetleitner, Gramann, & Müller, 2010).  

The second weighting system underlies the intertrial effects in the discrimination task. As 

this task makes minimal demands on target selection, the second weighting system is likely to 

influence later, post-selective processes. Experiment 3 revealed the DRB effect to persist 

                                                 
4 More precisely, according to Olivers and Meeter (2006), their ambiguity resolution account states that: 

“intertrial priming becomes functional, and therefore measurable, only under circumstances of ambiguity. 

Ambiguity refers to the presence of uncertainty, conflict, or competition at any level between stimulus and 

response”, including “the relationship between stimulus and response” (pp. 3-4) 
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across different responses. This finding demonstrates that the DRBs are not response-specific, 

but rather related to the repetition of the task-relevant perceptual dimension.  

Consistent with a perceptual locus of the DRBs in the non-search task are the results of a 

study by Müller and O‟Grady (2000), in which observers were presented with two 

superimposed outline rectangles at a fixed location (no-search task), for a limited period of 

time. The boxes were defined by their form (line texture: dashed vs. dotted; size: small vs. 

large) and color attributes (hue: red vs. yellow; saturation: low vs. high). Overall, participants 

were more accurate when instructed to report dual attributes of one object, rather than of both 

objects (cf. Duncan, 1984). In addition to this object-based selection effect, there was also a 

dimension-based effect: participants were more accurate when instructed to report dual 

attributes from the same domain (e.g., both from color or both from form) than when they 

were to report attributes from different domains (e.g., one from color and one from form). The 

latter, dimension-based effect was evident even when participants were presented with one 

object only (Experiment 3). Note that this pattern of accuracy effects was obtained under 

conditions in which accuracy, rather than response speed, was emphasized. Given that effects 

on accuracy measures under time-limited stimulus presentation conditions (and non-limited 

response conditions) are assumed to reflect perceptual processing (e.g., Santee & Egeth, 

1982), Müller and O‟Grady‟s study suggests that DRBs observed in non-search tasks can also 

originate from post-selective perceptual processes. One possibility is a dimension-based 

limitation in transferring instruction-appropriate object properties into visual short-term 

memory, that is, a format available for explicit report (e.g., Bundesen, 1990). 

2.7.2 Relation to previous studies 

There are a number of parallels between the paradigms used in the present experiments 

and previous studies. For example, both Kumada (2001) and Mortier et al. (2005) used a non-

search variant of a compound task and failed to observe (significant) DRBs. By contrast, in 

Experiments 1 and 2 of Mortier et al. (2005), there were significant DRBs in a non-search 
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version of the detection task. Mortier et al. attributed the disparate findings between non-

search versions of compound and detection tasks to the differential response sets between the 

tasks; that is, they advocated a response-based account of DRBs. However, Experiment 3 of 

the present study showed that DRBs persisted even across different responses, which casts 

doubt on the response-based origin of DRBs in non-search paradigms. 

In contrast to the findings of Kumada (2001) and Mortier et al. (2005), a number of more 

recent studies have reported significant DRBs even for compound tasks (Olivers & Meeter, 

2006; Theeuwes, Reimann, & Mortier, 2006). Additionally, it is often reported that the effects 

of dimensional intertrial transition interact with the those of response transition: significant 

DRBs are observed only for response repetitions, but not for response changes, with the latter 

sometimes even being associated with a (tendency towards a) dimension repetition cost 

(Krummenacher , Müller, & Heller, 2002; Müller & Krummenacher, 2006a; Theeuwes et al., 

2006; Töllner et al., 2008; see also Olivers & Meeter, 2006, who report data showing a trend 

in this direction). Consequently, when DRBs are considered averaged across response 

(repetition/change) sequences, as was done by Kumada (2001) and Mortier et al. (2005), the 

main effect of dimension (repetition/change) sequence may not be significant. 

Arguably, the dimension sequence x response sequence interaction must be taken into 

account for achieving a full understanding of how DRBs are generated in visual search (and 

non-search) tasks. An insight into the mechanisms underlying this interaction has recently 

been provided by Töllner et al. (2008), who used a compound-search task in which observers 

had to respond, with the left or the right hand, to the orientation of a grating, vertical or 

horizontal, within a color- or shape-defined pop-out target. Analysis of event-related 

potentials revealed dimension-specific intertrial effects in both amplitude and latencies of 

N2pc component (commonly interpreted as indexing processes of attentional selection); in 

particular, the N2pc latency (reflecting the transition between pre-selective and post-selective 

processing) occurred significantly earlier when the target dimension repeated, rather than 
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when it changed, and this DRB was evident whether the response was repeated or changed. 

However, analysis of stimulus-locked LRP (lateralized readiness potential) latencies 

(providing an index of all perceptual coding and stimulus-response mapping processes prior 

to response execution) did show a dimension sequence x response sequence interaction 

closely matching the corresponding interaction in the RT data. Since the stimulus-locked LRP 

includes the time required for attentional selection, and this time (estimated by the N2pc 

latency) was influenced only by dimension sequence, not by response sequence, Töllner et al. 

concluded that the interaction must arise at a post-selective processing stage, such as 

stimulus-to-response mapping (or encoding of the response-relevant target feature). 

 Thus, the pattern of results reported by Töllner et al. (2008) provides evidence for 

existence of several sequence-sensitive mechanisms: one of which (indicated by effects in the 

N2pc parameters) influences attentional selection and is insensitive to response sequence, 

while the other (indicated by effects in the stimulus-locked LRP) influences post-selective 

processes of stimulus-response mapping (e.g., weighting of certain stimulus-response linkages 

along the lines envisaged by Kingstone, 1992). Given this, the implication for dimension-

specific intertrial effects in the RT domain is that these reflect the combined effects of several 

mechanisms, thereby lending further support to the multiple-weighting-systems hypothesis. 

The finding of the present Experiment 3 that DRBs persist even across response changes 

appears still at variance with the results of Kumada and Mortier et al. (despite the significant 

DRBs in compound tasks for response repetition trials). One explanation might be that in the 

non-search compound tasks of Kumada and Mortier et al., the dimensional identity of the 

target was irrelevant to the task. By contrast, in both the non-search detection task of Mortier 

et al. and the feature discrimination task in the present study, the identity of the target was 

task-relevant. Arguably, the task relevance may have led to an increase in the magnitude of 

DRBs, yielding significant DRBs even across trials with different responses (see, e.g., Müller 
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et al., 2004). Further studies are necessary to examine the role of task relevancy for the 

magnitude of DRBs in more detail. 

2.7.3 Alternative explanations 

By consistently revealing significant DRBs across trials of the same task, but not trials of 

different tasks, the present results provide strong evidence for the task specificity of 

dimension-specific intertrial effects. The fact that the DRBs were significant even across non-

consecutive trials of the same task, with several task switches in between, is inconsistent with 

the (alternative) assumption that (underlying) DRBs across trials of different tasks are simply 

masked by processing costs associated with task switching. Analogously, the absence of 

effects of response sequence (response changes vs. repetitions) across trials with different 

tasks is inconsistent with the idea that (underlying) DRBs are masked by processing costs 

associated with response changes. Furthermore, the DRBs as such do not appear to be 

response-specific: In the detection task, DRBs were observed across target-present trials, that 

is, across trials with the same response; and in the discrimination tasks, the DRBs persisted 

across response changes. Finally, examination of the role of display changes (in Experiment 

3) showed that these, too, cannot account for the absence of DRBs across trials of different 

tasks. 

One might argue, though, that the driving source of DRBs in the detection and 

discrimination tasks was not a dimensional repetition, but repetitions of stimulus-response 

associations. To illustrate, across two trials of the detection task, a repetition of dimension 

(e.g., color) was always associated with a complete trial repetition (e.g., red singleton – left 

button press on both trials n-1 and n). Consequently, it is conceivable that the complete 

repetitions of S-R mapping across trials, rather than dimension repetitions, were the source of 

the DRBs observed in the detection task. Similarly, dimensional repetitions in the 

discrimination task were associated with complete S-R repetitions in half of such trials (e.g., 

blue bar – left button on both trials n-1 and n). By contrast, across two trials of different tasks, 
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no complete S-R repetitions ever occurred. Thus, one could envisage one mechanism 

generating intertrial effects in both detection and discrimination task, which would originate 

from S-R repetitions. In the present study, such repetitions were possible only within a task, 

resulting in DRBs exclusively across trials of the same task. 

Although the SR-mapping account might explain the task-specificity of DRBs, the 

present findings argue against the assumptions of this hypothesis: Experiment 3 demonstrated 

that DRBs (≈ 20 ms) persisted across SR-mapping changes in the discrimination task (e.g., 

blue – left button, green – right button). This finding argues against SR-mapping repetitions 

being the sole generator of DRBs in the discrimination task. A similar analysis was not 

possible for the singleton detection task of the present study, due to the fact that there was 

only one feature per dimension. Consequently, SR-mapping repetitions cannot be excluded as 

a potential account of the DRBs for this task. 

However, a number of studies in the literature (e.g., Found & Müller, 1996; Weidner et 

al., 2002; Krummenacher, Grubert, & Müller, 2010) have already shown that DRBs are 

(almost) as large when the dimension repeats but the target‟s feature changes (e.g., red 

followed by blue singleton) as when both the dimension and the feature repeat (e.g., red in 

both trials). The evidence that DRBs persist across feature changes argues against SR-

repetitions being the critical source of DRBs in the detection task. 

In summary, the lack of SR-repetitions across trials of different tasks is not a likely cause 

for the absence of DRBs across trials with a task change. This is because SR-repetitions 

across trials of the same task (whether detection or discrimination) have been demonstrated 

not to be a crucial requirement for observing DRBs within a repeated task.  

A simple, coherent account of this pattern of findings can be achieved by assuming the 

existence of several sequence-sensitive mechanisms that influence separate processes. 

According to this multiple-weighting-systems hypothesis, which weighting system is engaged 

depends on the task demands. If two tasks share a particular process, DRBs are expected to 
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persist across trials of different tasks. Conversely, if the tasks involve different sequence-

sensitive mechanisms, no DRBs should be observed across trials of different tasks. On this 

logic, the results of the present study (i.e., the failure to find DRBs across trials of different 

tasks) would argue that different weighting systems were engaged in the search and the non-

search tasks. 

The core assumption of the multiple-weighting-systems hypothesis (as formulated above) 

is that a particular weighting system influences performance whenever a task to be solved 

requires the respective process, that is, the weighting systems are task-demand-specific. The 

two processes identified in the present study were focal-attentional selection and target 

identification: the singleton detection task required selection but no explicit identification, 

while the feature discrimination required identification but no selection (because there was no 

location uncertainty). Thus, depending on the task demands (selection or identification), 

different weighting systems would have influenced performance in the different tasks. 

An alternative account of the present findings might assume that there is only one 

weighting system, which is task-specific in the sense that it may be bound into only one task 

(performance-controlling) representation at a time, permitting a particular weight set to be 

dynamically established across trials of the same task; if the task changes, the weight set 

would be re-set and the weighting system would be bound into the representation for the new 

task. This could also account for the finding of DRBs across consecutive trials of the same 

task, but not across trials of different tasks. However, it would fail to explain why the weight 

set for a particular task survives across non-consecutive trials of the same task, that is, with 

performing a different task on the intervening trials. To accommodate this finding, the 

alternative account would have to assume that the weight set established across trials of a 

particular task is somehow stored, so that it can be retrieved when there is a change back to 

this task in the trial sequence. This would imply that multiple weight sets and their association 

with the respective tasks would have to be stored (and retrieved) independently, while each 
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dynamic weighting process is driven by one-and-the-same weighting system no matter the 

task to be performed. Consequently, this account resembles the multiple-weighting-systems 

hypothesis advocated here. However, in principle, on this account, there would have to be as 

many stored weight sets as there are tasks that give rise to DRBs. By contrast, the present 

hypothesis assumes multiple independent weighting systems associated with particular 

processes involved in task performance, based on the specific demands made by the task to be 

currently solved (such as selection or identification). This appears to be more appealing 

theoretically because the number of such demands and the respective processes is likely to be 

limited.  

Ultimately, however, whether DRBs are task-specific or task-demand-specific is an 

empirical question. Both alternatives make strong, mutually exclusive predictions. Task 

specificity would predict no DRBs across different tasks, no matter what tasks are involved. 

By contrast, task demand specificity would predict significant DRBs across tasks that share 

demands. Deciding between these alternatives requires experiments that are based on a 

thorough conceptual analysis of various tasks, in order to identify tasks that share demands 

and those making entirely different demands. Such a study was undertaken by Rangelov, 

Müller, and Zehetleitner (under review), who demonstrated DRBs across trials of different 

tasks that share demands. 

Furthermore, assuming a single weighting system with task-specific (stored) weight sets, 

the effects of the weighting would become manifest at one particular time during task 

performance; by contrast, on the multiple-weighting-systems hypothesis, weighting effects 

would become manifest either early or late during task performance, depending on the task 

demands. Consistent with the latter prediction, there is good behavioural and 

electrophysiological evidence to suggest that weighting effects occur early in simple singleton 

detection tasks (e.g., Goolsby & Suzuki, 2001; Huang & Pashler, 2005; Pollmann et al., 2000; 

Pollmann et al., 2006; Töllner et al., 2008; Weidner et al., 2002). For example, using a 
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compound-search task, Töllner et al. (2008) found a DRB in terms of the latency of the N2pc 

component, which is commonly associated with focal-attentional selection. By contrast, as 

convincingly argued by Mortier et al. (2005), weighting of selection processes cannot account 

for DRBs in the non-search task because, with the target location being fixed, this task does 

not involve selection. Consequently, in line with Mortier et al. (2005), the DRBs in this task 

would have to arise at a later stage of processing (attentional target analysis and/or response 

selection). That weighting processes operate also at post-selective processing stages, and 

independently of pre-selective weighting, has also been shown by Töllner et al. (2008).   

In summary, then, the multiple-weighting-systems hypothesis, which assumes that 

independent weighting systems are engaged in accordance to the specific task demands, 

appears theoretically more plausible and empirically better supported by the available data 

than the single-weighting-system hypothesis.  

2.7.4 Conclusions 

The present study showed that dimension-specific intertrial effects were task-(demand-) 

specific, which is at variance with the idea that the explanation of DRBs observed in a 

particular task generalizes directly to DRBs in (all) different tasks. Consequently, theories of 

sequence effects in the simple cognitive tasks would have to take into account the specific 

tasks or paradigms for which the respective explanations are being developed. 

The theoretical framework advocated here is that of the existence of multiple weighting 

systems that have similar (weighting) dynamics, but influence different cognitive processes. 

Accordingly, which weighting system is engaged in a particular paradigm is primarily 

determined by the task demands. A feasible (though arguably less plausible) alternative is that 

there is a single, but task-specific, weighting system. Further work is necessary to decide 

between these two possibilities. 
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3.1 Abstract 

Observers respond faster when the task-relevant perceptual dimension (e.g., color) 

repeats across consecutive trials relative to when it changes. Such dimension repetition 

benefits (DRBs) occur in different tasks, from singleton feature search to feature 

discrimination of a stimulus presented on its own. Here, we argue that the DRBs observed in 

different tasks originate from distinct mechanisms: pre-selective weighting of dimension-

specific feature contrast signals and, respectively, post-selective stimulus processing. The 

multiple-weighting-systems hypothesis predicts significant DRBs across trials of different 

tasks that share the same weighting mechanism, but not across tasks involving different 

mechanisms. Experiment 1, 2 and 3 examined DRBs across localization and detection tasks 

(both involving feature contrast computations); across detection and identification tasks 

(which presumably involved different weighting systems), and across identification and 

discrimination tasks (both involving stimulus identification).  As expected, significant DRBs 

were observed across different tasks in Experiments 1 and 3, but not in Experiment 2. These 

findings support the multiple-weighting-systems hypothesis. 

Keywords: multiple-weighting-systems, task-switching, dimensional-weighting, intertrial 

effects, singleton search, stimulus identification 
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3.2 Introduction 

The basic mechanisms underlying visual selection have long been a topic of scientific 

investigation. Variants of the visual-search paradigm have provided a fruitful approach for 

revealing the functional architecture of visual selection (e.g., Wolfe, 1994; Wolfe & 

Horowitz, 2004). In particular, feature singleton search has been a key paradigm for 

examining a number of controversial issues relating to mechanisms of visual selection. 

Essentially, in this paradigm, participants are presented with an array of items with one of 

them (the singleton), on some trials, being different than the rest in some respect (e.g., in 

color or orientation). In the simplest variant of the task, participants have to indicate 

presence/absence of a singleton item by pressing a corresponding response button. Typically, 

they are able to discern the singleton‟s presence very fast and with high accuracy, 

independently of the number of presented items, or set size (e.g., Treisman, 1982). 

Additionally, participants are faster to detect the singleton if the dimension in which it differs 

from the distractor items (e.g., color) repeats across trials (e.g., Found & Müller, 1996; 

Müller, Krummenacher, & Heller, 2004; Treisman, 1988). Müller and colleagues took this 

Dimension Repetition Benefit (DRB) to reflect facilitation of search processes prior to the 

focal-attentional selection of the singleton item (e.g., Müller & Krummenacher, 2006a). 

However, other authors observed similar DRBs even in a paradigm with a single item 

presented at a fixed location on the screen, that is, under conditions in which no search for the 

target was necessary (Mortier, Theeuwes, & Starreveld, 2005). They concluded that the DRBs 

in this non-search task must reflect facilitation of post-selective processes involved in 

response selection or stimulus-to-response mapping. Furthermore, given the qualitative 

similarity between the DRBs observed in the search and non-search tasks, Mortier et al. 

(2005) assumed that the intertrial effects in both types of task have one common origin, 

namely, the stage of response selection. Implicit to this reasoning is the assumption that there 

is only one sequence mechanism generating the DRBs in the different tasks.  
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In the present study, we are arguing for an alternative explanation of the DRB effects 

observed in the search and non-search tasks: Not one, but multiple mechanisms are 

responsible for these effects, which affect different processing stages: visual selection and 

target identification, respectively. The main focus of the present study was to examine 

whether DRBs in the two tasks have the same, single source or multiple sources. 

Rangelov, Müller, and Zehetleitner (2010) already demonstrated that DRBs do not 

generalize across trials of different tasks, providing evidence in favor of the multiple-

weighting-systems hypothesis. However, the tasks in question differed in both search 

demands (search vs. non-search) and stimulus-response mappings, making it impossible to 

separate effects due to changes in search demands across tasks from effects attributable to 

changes of response requirements. On this background, the present study was designed to 

assess the potential roles of search and response requirements independently.  

3.2.1 Search-based account of dimension repetition benefits 

Studies investigating sequence effects in singleton feature search tasks have repeatedly 

demonstrated that performance is sensitive to the recent trial history (Found & Müller, 1996; 

Krummenacher, Müller, & Heller, 2002, 2001; Lamy, Bar-Anan, Egeth, & Carmel, 2006; 

Maljkovic & Nakayama, 1994, 1996; Müller, Heller, & Ziegler, 1995; Olivers & Humphreys, 

2003). Observers respond to a singleton target faster when either its distinguishing feature 

(e.g., red target amongst green distractors) or the dimension in which it differs from the 

distractors (e.g., color, orientation, etc.) repeats across consecutive trials. Found and Müller 

(1996) demonstrated that the repetition benefit is (almost) as large when the target dimension 

repeats, but the specific target feature changes (e.g., red singleton followed by blue singleton 

on consecutive trials) as when the target feature repeats (red singleton on both trial n-1 and 

trial n). To explain this dimension-specificity of the intertrial effects, Müller and colleagues 

proposed a „Dimension-Weighting Account‟, or DWA (Müller & Krummenacher, 2006a, 

2006b). 
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The DWA assumes (similar to the existing models of visual selection, e.g., Itti & Koch, 

2000, 2001; Koch & Ullman, 1985) that a visual scene is analyzed in terms of feature 

contrasts across all locations in parallel. This parallel processing stage gives rise to a map of 

feature-contrast signals that are proportional to the relative uniqueness of the stimuli at 

analyzed locations. The feature-contrast signals are first integrated into dimension-specific 

maps (e.g., for color, orientation, etc.) and then summed up into a (supra-dimensional) master 

map of saliencies. Locations are then selected by focal attention in an order determined by the 

strength of the salience signals on the master map. Importantly, according to the DWA, the 

signal summation from dimension-specific maps to the master map of saliencies is weighted. 

On every trial, the weight for the dimension from which the informative signal came (e.g., 

color for a trial with a color singleton) increases, while the weights for other dimensions 

decrease. This weight set is persistent over time, so that an increased weight for, say, color 

dimension would facilitate color processing on the following trial. Thus, if the relevant 

dimension also happens to be color on the next trial, then singleton selection is speeded giving 

rise to the DRB (dimension repetition benefit). 

3.2.2 Response-based account of dimension repetition benefits 

Instead of attributing the origin of the DRBs to the weighting of dimension-specific 

feature-contrast signals (as in the DWA), alternative accounts assume that the DRBs originate 

from the response selection stages (Cohen & Magen, 1999; Cohen & Shoup, 1997, 2000; 

Feintuch & Cohen, 2002; Magen & Cohen, 2002, 2007; Mortier et al., 2005). One line of 

evidence favoring response-selection accounts of the DRB comes from paradigms in which 

the visual-search component of the task is minimized. For example, Cohen and Shoup (1997) 

demonstrated dimension-specific effects in a variant of the flanker task (e.g., Eriksen, 1995). 

In their paradigm, participants were to indicate either the color (red vs. green) or orientation 

(left- vs. right-tilted) of the centrally presented bar, with dimension of discrimination varying 

randomly across trials. Different features from the same dimension (e.g., red/green) were 
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mapped to different responses (e.g., left/right), with features of different dimensions being 

mapped to the same response (e.g., red and left-tilted to right response button).The task-

irrelevant feature was always response-neutral, that is, the stimulus was blue in case of 

orientation discrimination and, respectively, vertical in case of color discrimination. The 

target was flanked by either same-dimension flankers (e.g., red-vertical target between red- or 

green-vertical flankers) or by different-dimension flankers (e.g., red-vertical between left-

tilted blue flankers). Independently of the dimensional congruency, the flankers could be 

either response-congruent (i.e., both target and flankers were associated with the same 

response) or response-incongruent. Cohen and Shoup reported significant response 

congruency effects only for the same-dimension condition, but not the different-dimension 

condition.  

To account for these findings, they proposed a Dimensional-Action (DA) model (Cohen 

& Magen, 1999; Cohen & Shoup, 1997, 2000; Feintuch & Cohen, 2002). According to the 

DA, different perceptual dimensions (e.g., color and orientation) have their own response 

modules which are independent of each other (i.e., there is one module for color and another 

for orientation). Within this framework, the dimension-specific congruency effects observed 

by Cohen and Shoup (1997) are thus explained by the virtue of within-dimension response 

competition (e.g., competition, and mutual inhibition, between response units for „red‟ and 

„green‟) producing response congruency effects for the same-dimension flankers, whereas no 

such competition takes place between different dimensional response modules. 

An analogous line of reasoning was pursued by Mortier et al. (2005), who sought to 

address the question of the origin of the DRBs in the singleton search task more directly. 

Here, participants performed two tasks, fixed per block of trials. In the first, standard search 

task, one response was required for singleton-present displays (regardless of the singleton‟s 

featural or dimensional identity), another response for singleton-absent displays. In the other, 

so-called „non-search task‟, only one item was shown at a fixed location (Experiment 2 of 
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Mortier et al., 2005). This item could be identical to the distractor items presented in the 

singleton search task, and it required one – target-absent – response. Alternatively, the 

presented item could be one of the items used as targets in the singleton search task; such 

items required a different – target-present – response. Independently of the task, there were 

two conditions with respect to the dimensional uncertainty of the target items. In the within-

dimension condition, the target, when presented, always differed in color from distractors. In 

the cross-dimension condition, the target could differ in color, shape, or size from distractors, 

varying randomly across trials. Among other comparisons, the authors also examined for 

DRBs in the cross-dimension condition of both tasks – these were revealed to be significant in 

both search and the non-search task.  

Given that the non-search tasks (with a single item presented at a fixed location) do not 

involve a search component (cf. Goolsby & Suzuki, 2001), Mortier et al. (2005) argued 

against facilitation of the search process as the source for the DRBs in this task; instead, they 

attributed these DRBs to facilitation of later, stimulus analysis and response selection 

processes, along the lines suggested by Cohen and colleagues (e.g., Feintuch & Cohen, 2002). 

Applied to the non-search task of Mortier et al. (2005), the DA account would interpret DRBs 

as reflecting the time costs to switch between response modules in cases when the critical 

dimension changes across trials relative to when it repeats. As the pattern of DRBs was 

strikingly similar between the search and non-search tasks, Mortier et al. proposed, by 

analogy, that in search tasks, too, the DRBs arise (exclusively) from the post-selective stages 

where a focally attended stimulus is translated into the associated response. 

To examine whether the DRBs in the non-search task originated in response-related 

processes, Mortier et al. (2005; Experiment 5) looked for DRBs in a non-search compound 

task. Standard compound-search tasks, similar to the singleton search, always use displays 

composed of multiple items, with one item being the (to-be-detected) singleton target. 

However, unlike the singleton search task, observers are to respond to a (to-be-discriminated) 
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attribute of this target, which is different from that relevant for discerning its presence. To 

illustrate, observers might be required to detect a color-defined singleton (color = target-

defining attribute), but then discriminate and respond to the orientation of a small line (e.g., 

vertical vs. horizontal) within the target‟s outline shape (orientation = response-defining 

attribute). In the non-search compound task of Mortier et al. (2005), in which displays 

contained only one item presented at a fixed location, observers had also to respond to the 

orientation of an internal line within this „target‟ object. Variably across trials, the target was 

either color-, shape-, or size-defined, permitting Mortier et al. to examine whether there 

would be DRBs under these changed response conditions. However, in contrast to the 

significant DRBs obtained in the non-search detection task (Experiments 1 and 2), there were 

no DRBs in the non-search compound task (Experiment 5). Consequently, Mortier et al. 

(2005) attributed these differential results between the two types of non-search task to the 

differences in response requirements. Note though that, because a „target‟ item in the non-

search compound task (unlike the non-search detection task) was presented on every trial, 

there was no need to distinguish this item from a non-target standard. In fact, it was 

essentially an irrelevant stimulus that did not need to be processed at all. Given this, the 

failure to find DRBs under these task conditions is not surprising.  

In summary, the results of Mortier et al. (2005) convincingly demonstrate that search 

processes are not necessary for significant DRBs to arise. Furthermore, according to Mortier 

et al., the failure to find DRBs in the non-search compound task suggests that response 

relevance is necessary for DRBs to be observed. Finally, based on the parallels between 

standard search and non-search tasks, Mortier et al. argued for a common origin of DRBs in 

both types of tasks: response selection processes. 

3.2.3 Multiple dimension-weighting systems hypothesis 

However, exclusively assigning the origin of DRBs to response selection processes seems 

at variance with other findings in the literature. For example, examining event-related 
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potentials in a compound-search task, have recently demonstrated dimension-specific 

intertrial effects on the latency and amplitude of the N2pc component (Töllner, Gramann, 

Muller, Kiss, & Eimer, 2008; Töllner, Zehetleitner, Gramann, & Müller, 2010) – which is 

commonly interpreted as a marker of focal-attentional selection processes (e.g., Eimer, 1996) 

Consequently, the finding of significantly shorter N2pc latencies for repetitions versus 

changes of the target-defining dimension across trials makes a strong case for search-based 

accounts of DRBs, at least with respect to tasks that do involve a search component. 

Consistent with this, cueing of the position of an upcoming singleton has been shown to 

abolish feature repetition effects in the „priming of pop-out‟ paradigm (Goolsby & Suzuki, 

2001), again suggesting that the dynamics of attentional selection plays an important role in 

generating intertrial effects in search tasks. 

Thus, there is a puzzle: while there is evidence from search tasks that the dynamics of 

spatial attentional selection (i.e., search processes) is influenced by the dimensional intertrial 

sequence, evidence from non-search tasks indicate that search processes are not necessary for 

DRBs to arise. This data pattern cannot be fully accommodated by either an exclusive search-

based or an exclusive response-based account. To solve this puzzle, Rangelov, Zehetleitner, 

and Müller (2010) hypothesized the existence of two separate (dimension sequence-sensitive) 

mechanisms that generate DRBs in different tasks: one mechanism generating DRBs in search 

tasks, the other in non-search tasks
5
.  

To examine whether a single or multiple mechanisms generate DRBs in search and, 

respectively, non-search tasks, Rangelov et al. (2010) presented both types of task either 

regularly or randomly alternating across trials. The search task required detection of a 

singleton target, which was either color-defined (red [left-tilted] bar) or orientation-defined 

(right-tilted [yellow] bar), amongst a set of homogeneous distractor items (yellow, left-tilted); 

                                                 
5 Other theorists have similarly proposed that intertrial effects might arise at multiple processing stages (see, 

e.g., the „ambiguity resolution account of Olivers & Meeter (2006), and Meeter & Olivers (2006)). 
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observers had to make a simple target-present versus target-absent decision. By contrast, the 

non-search task (with a single display item presented at a fixed, central location) required 

feature discrimination; that is, the display item was either color-defined, a blue or green (left-

tilted) bar, or orientation-defined, a vertical or horizontal (yellow) bar, and observers had to 

respond to either the color (blue vs. green) or the orientation feature (horizontal vs. vertical) 

of the presented item. Thus, for the detection task, the „relevant dimension‟ refers to the 

dimension in which the target differs from the distractors; and for the discrimination task, it 

refers to the dimension whose features are to be discriminated. 

Across consecutive trials, the relevant dimension could either repeat or change; and, 

independently of the dimension sequence, the task could repeat or change. Rangelov et al. 

examined for DRBs across different task sequences (repetition vs. change) – the critical 

assumption being that, if the same mechanism were responsible for DRBs in both search and 

non-search tasks, the intertrial effects should persist even across task switches.  

However, while Rangelov et al. observed significant DRBs across same-task trials for 

both types of task, no DRBs were evident across trials of different tasks. Analyses of intertrial 

effects across non-consecutive trials of the same task (e.g., discrimination task on trials n-2 

and n) with a task switch in between (in the example, detection task on trial n-1) also revealed 

significant DRBs. This finding argues against the idea that RT costs associated with task 

switches masked potential DRBs across different tasks. If that were true, no DRBs across 

non-consecutive same-task trials with a different task in between should arise by virtue of 

having two task switches between the analyzed trials. In a final experiment, observers 

performed only the feature discrimination task, but with two possible display types: single-

item displays (identical to the displays used previously for the feature discrimination task), 

and multiple-item displays in which the target item (also always centrally presented) was 

surrounded by homogeneous distractor items (similar to the displays used for the detection 

task in the previous experiments). Across consecutive trials, the dimension of discrimination 
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and the display type could repeat or change independently. The results revealed significant 

DRBs for both types of display, and these effects were significant even across trials with a 

different display. The latter finding indicates that display type changes, which were associated 

with task changes (from search to non-search or vice versa) in the preceding experiments, 

cannot account for the absence of DRBs across trials with different tasks. 

In summary, the main finding of Rangelov et al. (2010) was that DRBs do not generalize 

across trials with different (search and, respectively, non-search) tasks. Furthermore, the lack 

of DRBs across trials with different tasks could not be attributed to either task change or 

display change costs. However, the multiple weighting-systems hypothesis can readily 

account for the absence of DRBs across different tasks by assuming the existence of separate 

and independent dimension-weighting mechanisms engaged in search and non-search tasks. 

3.2.4 Role of search demands and response requirements in generating DRBs 

Although Rangelov et al. (2010) demonstrated that DRBs do not generalize across trials 

of different (search and non-search) tasks, this does not provide direct evidence against the 

central assumption of Mortier at al. (2005) that the mechanisms engaged in detection tasks 

(search and non-search variety) are identical. In the study of Rangelov et al. (2010), the two 

tasks differed in terms of both search demands and response requirements. To illustrate, in the 

detection (search) task, one response was assigned to target-present, another to target-absent 

displays. In the discrimination (non-search) task, one response was assigned to one feature of 

the dimension of discrimination (e.g., blue), another response to the other feature of the same 

dimension (e.g., green). Thus, it could be that the differences in response requirements, rather 

than differences in weighting mechanisms, were the reason why no DRBs were observed 

when the tasks on consecutive trials were different. 

Given this, the present study was designed to independently assess the potential roles of 

(i) search demands and (ii) response requirements in generating DRBs across trials with 

different tasks. To this end, in Experiment 1, two search tasks with different response 
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requirements were presented intermixed across trials. In Experiment 2, one search and one 

non-search task with identical response requirements alternated randomly across trials. And in 

Experiment 3, two non-search tasks with different response requirements varied across trials. 

In Experiments 1 and 3, both tasks were of either the search or the non-search type. In the 

two search tasks of Experiment 1, observers, irrespectively of the response mappings, had to 

select the singleton from an array of homogenous distractors. Conversely, in Experiment 3, 

the two tasks were of the non-search type, minimizing the search and selection processes in 

both tasks. Henceforth, whether or not it is necessary to search for the target in order to 

perform a task will be referred to as the „search requirements‟ of this task. The particular 

stimulus-response mapping rules will be are referred to as the „response requirements‟ of the 

task. 

According to the multiple-weighting-systems hypothesis, if the two tasks within an 

experiment share search requirements (e.g., the two search tasks in Experiment 1, and, 

respectively, the two non-search tasks in Experiment 3), significant DRBs across these tasks 

should arise. By contrast, if the two tasks differ in search demands (as in Experiment 2), there 

should be no DRBs across trials of different tasks, even if the response requirements are 

identical across the different tasks. 

Alternatively, if the response requirements are the crucial factor in generating DRBs, the 

data pattern should be the opposite: DRBs should persist across tasks with the same response 

demands (Experiment 2), irrespectively of the search demands; and there should be no DRBs 

across tasks with different response requirements (Experiments 1 and 3), even if they share 

the search demands. 

3.3 General Method 

Participants. There were 12 participants (7 female, mean age 27 years) in Experiment 1, 

13 participants (7 female, mean age 25 years) in Experiment 2, and 13 participants (6 female, 

mean age 26 years) in Experiment 3. All participants had either normal or corrected-to-normal 
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vision; all of them had previous experience with psychophysical experiments, and were naive 

as to the purpose of the respective experiment. They received monetary compensation (8 €/h) 

in return for their participation in the experiments. 

Apparatus. The experiments were run on a Dell PC running under the Windows XP 

operating system. The stimuli were presented on a ViewSonic G90f-4 19” CRT monitor, with 

the screen resolution of 1024 x 768 pixels and a refresh rate of 85 Hz. The experimental 

software was custom-written in C++. Participants performed the task in a dimly lit and 

acoustically isolated room, seated in front of the computer display. Head-to-monitor distance 

was 53 cm, controlled by means of a chin rest. Participants were to respond by pressing the 

upper or lower button of a custom made response box, with their left or right index finger, 

respectively. 

Stimuli. Two different stimulus display types were used: (i) search displays – containing 

35 bars arranged in concentric circles of 1, 6, 12, and 16 elements, respectively; and (ii) non-

search displays – containing only one bar presented in the center of the monitor. Individual 

bars subtended approximately 2° x 0.5° of visual angle, while the whole search display (i.e., 

all 35 elements together) subtended approximately 19° x 19° of visual angle. The search 

displays could either contain a feature singleton (= target) or not. Target-absent search 

displays consisted only of distractor items which were identical gray bars (7.5cd/m
2
), tilted 

45° counter-clockwise from the vertical (i.e., left-tilted). When present, the target differed 

from distractors either in luminance or orientation, the other feature (e.g., orientation for 

luminance targets) being the same as the respective distractor feature. Depending on the 

magnitude of the feature contrast between the target and distractors, there were two possible 

targets per dimension of distinction: (i) high contrast targets – bright bar (62.5 cd/m
2
) for 

luminance, and right-tilted bar (45° clockwise from vertical) for orientation targets; (ii) low 

contrast targets – dim (22.5 cd/m
2
) or slightly tilted (35° counter-clockwise) bar for luminance 

and orientation, respectively. Low- and high-feature-contrast targets were introduced because 
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low-contrast targets, which are still found efficiently (in terms of the slope of the function 

relating search RT to the number of items in the search display), lead to longer decision times 

and the size of intertrial effects increases with increasing decision times (see Zehetleitner & 

Müller, 2010, for an elaboration of this argument). Thus, introducing targets of different 

contrast levels maximized chances of observing significant DRBs in the present study. In the 

non-search displays, the presented bar could be the same as a distractor bar in the search 

displays, the same as a target bar in the search displays, or a vertical bar of the same 

luminance as the distractor bar. An illustration of the stimuli is given in Figure 3.1. 

 

Figure 3.1. Illustrations of the display types used in the present study. Search displays represent from 

left to right: target absent, bright singleton, dim singleton, right-tilted, and slightly tilted singleton. 

Non-search displays depict, from left to right: target absent (distractor), bright target, dim target, 

vertical, right-tilted, and slightly tilted target. 

Tasks. There were four possible tasks: (i) singleton detection, (ii) singleton localization, 

(iii) stimulus identification, and (iv) feature discrimination. Search displays were used for 

detection and localization tasks; non-search displays for identification and discrimination 

tasks. A pilot experiment demonstrated that detection speed for all singletons used in the 
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search displays was independent of the set size (i.e., efficient search). In detection task, 

participants were to indicate presence/absence of a target (presented in 60% of detection task 

trials) by pressing the corresponding response buttons. In the localization task, displays 

always contained target, presented on either the left or the right side. The task was to indicate 

the hemifield in which the target was presented (left vs. right) by pressing corresponding 

response buttons. The identification task required participants to indicate whether the 

presented bar was the distractor (on 40% of identification task trials) or a target (bright, dim, 

right-tilted or slightly tilted bar). The distractor bar required one response, any other bar (i.e., 

targets) another response. Thus, the response set in the identification task was virtually 

identical to that in the detection task, with the difference of the display types used in the two 

tasks (i.e., search displays for detection, non-search displays for identification). Finally, in the 

discrimination task, participants were to indicate the luminance (bright vs. dim) or orientation 

(vertical vs. tilted) feature of the presented bar. Vertical, rather than slightly tilted, bar was 

used for orientation discrimination, because the feature discrimination task would have been 

too difficult otherwise. Different features within a dimension of discrimination (e.g., bright 

vs. dim bar for luminance discrimination) were mapped to different responses (e.g., upper vs. 

lower button). Additionally, by virtue of only two possible responses (upper vs. lower), 

features of different dimensions (e.g., bright and vertical bar) were mapped to the same 

response (e.g., both required an upper button press). Different possible stimulus-response 

mappings across different tasks are summarized in Table 3.1. Different mappings per task and 

between tasks were balanced across subjects. 

Procedure. Each of the experiments had 2100 trials in total, arranged in 30 blocks of 70 

trials each. The first three blocks (= 210 trials) were considered as practice/learning blocks 

and excluded from the subsequent analyses. A short break (5-10min) was introduced after 

participants completed the first half of the experiment. On average, it took participants about 

2h to complete all trials. 
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Table 3.1. Different S-R mapping versions for different tasks. The S-R mappings per task were 

balanced across subjects, e.g., in Experiment 1 half of the subjects did detection A, the other half 

detection B version. Different mappings per task were crossed with different mappings across tasks. 

For example, in Experiment 1 there were 4 possible combinations (2x2) of detection and localization 

S-R mappings (detection A/localization A, detection A/localization B, etc.),  that were balanced across 

subjects. 

Task S-R version Response 1 Response 2 

Detection A Left-tilted, medium gray 

(distractors) 

Left-tilted, bright gray 

Left-tilted, dim gray 

Right-tilted, medium gray 

Slightly tilted, medium gray 

 B Left-tilted, bright gray 

Left-tilted, dim gray 

Right-tilted, medium gray 

Slightly tilted, medium gray 

Left-tilted, medium gray 

(distractors) 

Localization A Left side of display 

irrespectively of the target type 

Right side of display 

irrespectively of the target type 

 B Right side of display 

irrespectively of the target type 

Left side of display 

irrespectively of the target type 

Identification A Left-tilted, medium gray 

(distractor) 

Left-tilted, bright gray 

Left-tilted, dim gray 

Right-tilted, medium gray 

Slightly tilted, medium gray 

 B Left-tilted, bright gray 

Left-tilted, dim gray 

Right-tilted, medium gray 

Slightly tilted, medium gray 

Left-tilted, medium gray 

(distractor) 

Discrimination A Left-tilted, bright 

Right-tilted, medium gray 

Left-tilted, dim 

Vertical, medium gray 

 B Left-tilted, bright 

Vertical, medium gray 

Left-tilted, dim 

Right-tilted, medium gray 

 C Left-tilted, dim 

Right-tilted, medium gray 

Left-tilted, bright 

Vertical, medium gray 

 D Left-tilted, dim 

Vertical, medium gray 

Left-tilted, bright 

Right-tilted, medium gray 

 

Participants were to respond on every trial. Both response speed and accuracy were 

stressed. Trials began with a word (presented for 1s) denoting the task on the upcoming trial 

(e.g. “detection” for detection task trials). The task cue was followed by the stimulus display, 
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presented on the screen until response or maximally for 3s. Correct responses were followed 

by a variable ISI (900-1100ms), during which only a fixation point was presented in the 

center of the screen. Erroneous responses were followed by an error feedback (the word 

“error”). An illustration of the trial sequence with the accompanying presentation times is 

given in Figure 3.2. 

 

Figure 3.2. Illustration of the trial sequence used in the present study. Each trial started with a task cue 

– a word denoting the task to be performed in the trials. After 1000 ms, the task cue was repalces with 

a stimulus display, which was presented until response, or maximally for 3 seconds. An empty screen 

followed the stimulus display for a variable interval (900 ms – 1100 ms), after which a new trial was 

initiated. 

Design. In Experiment 1, detection and localization (i.e., both search) task were mixed 

within blocks of trials; Experiment 2 mixed trials of detection (search) and identification 

(non-search) tasks, and Experiment 3 trials of identification and discrimination (both non-

search) task. The design was same for all three experiments. Every trial was characterized by 

(i) the task to be performed, (ii) the relevant perceptual dimension (luminance or orientation), 

and (iii) the contrast level of the target (low vs. high). The task, dimension, and the target‟s 

contrast levels were randomized across trials. From trial to trial, the task and the dimension 

could either repeat or change. This produced the following 2x2x2x2 design: (i) task on the 

current trial – e.g., detection vs. localization in Experiment 1, (ii) task sequence from the 

preceding to the current trial – repetition vs. change, (iii) dimension on the current trial – 

luminance vs. orientation, and (iv) dimension sequence – repetition vs. change. Depending on 

the experiment, the results were analyzed either separately for targets of different feature 
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contrast levels (in Experiment 1) or averaged across contrast levels (Experiments 2 and 3). 

This difference in the analyses is owing to the fact that the contrast level was defined with 

regard to the distractor items; and identification and discrimination tasks used in Experiments 

2 and 3 used single-item displays, effectively making the low/high-contrast distinction 

obsolete. 

3.4 Results 

3.4.1 Experiment 1 

The collected data were first filtered for error responses and trials following errors (7% of 

trials across conditions). Inspection of error pattern across conditions revealed no indications 

of speed-accuracy trade-offs. Two participants made error in more than 10% of trials and 

were therefore excluded from subsequent analyses. Remaining trials were then filtered for 

RTs faster than 150 and slower than 1000 ms (approximately 5% of trials across conditions). 

The remaining trials were then separated in two groups, based on the target type: (i) high 

contrast targets (e.g., bright or right-tilted bars), and (ii) low contrast targets. For each target 

type, the trials were sorted according to the following experimental conditions: (i) task 

(detection/localization), (ii) task sequence across consecutive trials (repetition/change), (iii) 

dimension (luminance/orientation), and (iv) dimension sequence (repetition/change). Mean 

RTs across trial repetitions per condition were computed individually per participant. Four-

way repeated-measures ANOVAs, with main terms for task, task sequence, dimension, and 

dimension sequence, were performed over mean RTs, separately for low- and high-contrast 

targets. 

Figure 3.3 depicts the mean RTs for the different tasks, task sequences, and dimension 

sequences for low contrast targets. As can be seen, observers were faster to localize (mean RT 

across different task and dimension sequences = 529 ms) than to detect the singleton (594 

ms). Furthermore, observers responded faster when the task repeated (543 ms) than when it 
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changed across trials (580 ms), irrespective of the task and the dimension sequence. Most 

importantly, observers were faster when the dimension repeated (550 ms) than when it 

changed (573 ms), irrespective of the task and the task sequence. 

 

Figure 3.3. Mean RTs (in ms) for detection and localization task used in Experiment 1. Dimension 

and tasks sequences (repetition vs. change) across consecutive trials are shown separately. Triangles 

denote task repetitions, while circles stand for task changes across trials. The vertical lines denote ±1 

SEM.  

This description was confirmed by a four-way ANOVA for the low-contrast targets, 

which revealed significant main effects of task (F(1,9) = 35.84, p < .01, ηp
2
 = .80), task 

sequence (F(1,9) = 46.47, p = .00, ηp
2
 = .84), dimension (F(1,9) = 7.36, p < .05, ηp

2
 = .45), 

and dimension sequence (F(1,9) = 76.61, p < .01, ηp
2
 = .89). The dimension effect (not 

illustrated in Figure 3.3) was due to RTs being faster for luminance than for orientation 

targets (550 vs. 573 ms). None of the interactions reached significance (all F < 1.23, p > .22). 

The ANOVA for high-contrast targets revealed significant main effects of task (F(1,9) = 

11.46, p < .01, ηp
2
 = .56), task sequence (F(1,9) = 25.70, p < .00, ηp

2
 = .74), and dimension 

(F(1,9) = 12.86, p < .01, ηp
2
 = .59). Participants were faster to localize than to detect the target 

(469 vs. 509 ms). Mean RTs were faster when the task repeated than when it changed (465 vs. 

513 ms). Finally, luminance targets were processed faster than orientation targets (482 vs. 

496ms).  There was also a significant task x task sequence interaction (F(1,9) = 11.55, p < .01, 



82 

 

ηp
2
 = .56). Post-hoc analysis (Tukey HSD) revealed that the task change costs (i.e., task 

change – task repetition) were more pronounced for target detection than for target 

localization (66 vs. 28 ms). No other main effects or interactions reached significance (all F < 

3.52, p > .05).  

Analysis of DRBs. The main goal of Experiment 1 was to test for DRBs (i.e., dimension 

sequence effects) across different tasks and task sequences (repetition/change). The ANOVA 

for high-contrast targets revealed neither the main effect of dimension sequence nor its 

interaction with task and task sequence to be significant. Although not significant, there was 

still a numerical difference (7 ms) between dimensional changes and repetitions. This result 

was not unexpected, given the generally expedited RTs to high-contrast singletons (whether 

in detection or localization tasks), which consequently limit the magnitude of potentially 

observable DRBs (see Zehetleitner & Müller, 2010, for a detailed argument). However, a 

larger and highly reliable dimension sequence effect was revealed for the low-contrast targets. 

To further examine whether DRBs across different experimental conditions were significant 

with low-contrast targets, one-tailed planned comparisons t-tests were performed between 

different dimension sequences for different tasks and task sequences.  

For the detection task, the planned comparisons revealed significant DRBs (i.e. 

dimension change - dimension repetition) both when the task repeated (DRB ≈ 33 ms, t(9) = 

2.65, pone-tailed < .01) and when the task changed (17 ms, t(9) = 2.73, pone-tailed < .01). The 

results were similar for the localization task: DRBs were significant for task repetitions (24 

ms, t(9) = 2.79, pone-tailed < .01), as well as task changes (22 ms, t(9) = 2.14, pone-tailed < .05). 

In summary, the results of Experiment 1 showed significant DRBs for trials of both 

detection and localization tasks. Moreover, the DRBs were significant whatever the task 

sequence (repetition/change), albeit reduced for task change sequences. As hypothesized from 

the multiple-weighting-systems perspective, the DRBs did persist across tasks that shared 
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search demands. Differences in response requirements across tasks, although important, do 

not seem to play the crucial role in generating DRBs across tasks. 

3.4.2 Experiment 2 

In Experiment 2, detection (search) and identification (non-search) tasks varied in an 

unpredictable manner across trials. Detection task trials used search displays, identification 

trials non-search displays. The response set for different tasks was identical: one response was 

required for the target-absent display, the other for target-present displays. To illustrate, 

observes produced one response (e.g., pressed upper button) when target was present 

regardless of the task (detection or identification), and another response (e.g. lower button) for 

target absent trials, again regardless of the task. 

The data from Experiment 2 were first filtered for erroneous responses and trials 

following errors (around 7% of trials). Inspection of the error pattern across experimental 

conditions produced no evidence of speed-accuracy trade-offs. One participant made an error 

in more than 10% of trials and was therefore excluded from the subsequent analyses. The 

remaining trials were then filtered for RTs out of 150 - 1000 ms range (about 2% of trials). 

After filtering, the remaining trials were sorted according to the following experimental 

conditions: (i) task (detection/identification), (ii) task sequence (repetition/change), (iii) 

dimension (luminance/orientation), and (iv) dimension sequence (repetition/change). Mean 

RTs across trials per experimental condition were computed separately per participant. A 

repeated-measures ANOVA was performed on the mean RTs with task, task sequence, 

dimension, and dimension sequence as main terms. Unlike Experiment 1, no differentiation 

between target types (high/low contrast) was made given that the DRBs were expected for 

both types of target. 

Figure 3.4 depicts the mean RTs for the different tasks, task sequences, and dimension 

sequences in Experiment 2. Observers were faster to detect (447 ms) than to identify the 

target (511 ms), irrespective of the task and dimension sequences. Similar to Experiment 1, 
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observers responded faster overall when the task repeated (468 ms) than when it changed (511 

ms), irrespective of the task and the dimension sequences. However, unlike Experiment 1, the 

dimension sequence effects (i.e., DRBs) appeared substantial only across task repetitions, for 

both the detection and the identification task, but not across task changes. 

 

Figure 3.4. Mean RTs (in ms) for detection and identification task used in Experiment 2. Dimension 

and tasks sequences (repetition vs. change) across consecutive trials are shown separately. Triangles 

denote task repetitions, while circles stand for task changes across trials. The vertical lines denote ±1 

SEM.  

These observations were confirmed by a four-way ANOVA that revealed the main effects 

of task (F(1,11) = 28.19, p < .01, ηp
2
 = .72), task sequence (F(1,11) = 41.06, p < .01, ηp

2
 = 

.79), dimension (F(1,11) = 19.72, p < .01, ηp
2
 = .64), and dimension sequence (F(1,11) = 

26.48, p < .01, ηp
2
 = .71) to be significant. Additionally, the task x dimension interaction 

(F(1,11) = 14.76, p < .01, ηp
2
 = .57) and the task sequence x dimension sequence interaction 

(F(1,11) = 16.86, p < .01, ηp
2
 = .60) were significant. No other interactions reached 

significance (all F < 4.57, p > .05).  

Post-hoc analysis (Tukey HSD) of the task x dimension interaction revealed a significant 

difference (p < .05) between RTs to targets defined in different dimensions in the 

identification task (480 ms for luminance vs. 543 ms for orientation targets), but not in the 

detection task (441 vs. 454 ms). Post-hoc analysis of the task sequence x dimension sequence 
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interaction revealed RTs to be faster for trials on which the dimension repeated rather than 

changed (454 vs. 483 ms), given that the task repeated; by contrast, when the task changed, 

there was no such difference between dimension repetitions and changes (487 vs. 494 ms).  

Analysis of DRBs. Planned comparisons showed significant DRBs for both the detection 

(DRB ≈ 18 ms, t(11) = 3.07, pone-tailed < .01) and the identification task (40 ms, t(11) = 5.23, 

pone-tailed < .01) when the task repeated across consecutive trials. When the task changed, the 

DRBs were significant neither for the detection task (DRB ≈ 6 ms, t(11) = 1.14, pone-tailed > 

.05) nor for identification task (9 ms, t(11) = 1.50, pone-tailed > .05). 

To summarize, in Experiment 2, significant DRBs were observed exclusively across trials 

of the same task. This finding is especially striking because the response sets were virtually 

identical for the detection and identification tasks. Like in Experiment 1, the results of 

Experiment 2 are in accordance with the prediction derived from the multiple-weighting-

systems hypothesis. 

3.4.3 Experiment 3 

Identification and feature discrimination (both non-search) tasks varied randomly across 

trials of Experiment 3. Here, only non-search displays were used. Response sets differed 

across tasks. In the identification task, participants pressed one button for the distractor bar 

(i.e., target-absent display), another button for target bars (i.e., target-present display). In the 

discrimination task, participants were to determine either the luminance (bright vs. dim) or the 

orientation (vertical vs. right-tilted) feature of the presented bar, with different features being 

mapped to different responses (e.g., bright or vertical – upper button, dim or right-tilted – 

lower button). 

The collected data were first filtered for errors and trials following errors (approximately 

8% of trials). Inspection of error pattern across experimental conditions revealed no signs of 

speed-accuracy trade-offs. Two participants made errors in more than 10% of trials and were 
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excluded from the subsequent analyses. Outlier RTs were produced in approximately 5% of 

the correct-response trials. 

The remaining trials were sorted according to: (i) task (identification/discrimination), (ii) 

task sequence (repetition/change), (iii) dimension (luminance/orientation), and (iv) dimension 

sequence (repetition/change). A repeated-measures ANOVA was performed over the mean 

RTs with task, task sequence, dimension and dimension sequence as main terms.  

Figure 3.5 depicts the mean RTs for the different tasks, task sequences, and dimension 

sequences in Experiment 3. As can be seen, RTs were comparable in the identification and 

discrimination tasks. RTs were faster when the task repeated than when it changed (509 vs. 

532 ms). Most importantly, DRBs were substantial, irrespective of the task and the task 

sequence (dimension repetition vs. change: 502 vs. 539 ms). 

 

Figure 3.5. Mean RTs (in ms) for identification and discrimination task used in Experiment 3. 

Dimension and tasks sequences (repetition vs. change) across consecutive trials are shown separately. 

Triangles denote task repetitions, while circles stand for task changes across trials. The vertical lines 

denote ±1 SEM. 

These observations were confirmed by a four-way ANOVA which revealed significant 

main effects of task sequence (F(1,10) = 23.34, p < .01, ηp
2
 = .70), dimension (F(1,10) = 

10.84, p < .01, ηp
2
 = .52), and dimension sequence (F(1,10) = 56.54, p < .00, ηp

2
 = .85). The 

task sequence x dimension sequence interaction also reached significance levels (F(1,10) = 
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5.94, p < .05, ηp
2
 = .37). No other main effects or interactions proved significant (all F < 4.72, 

p > .05). Post-hoc (Tukey HSD) comparisons performed to examine the task sequence x 

dimension sequence interaction revealed that responses were significantly (p < .01) faster 

when the dimension repeated than when it changed (DRB ≈ 47 ms), provided the task 

repeated; when the task changed across trials, the DRB was smaller (27 ms), but still 

significant (p < .01).  

Analysis of DRBs. To examine for DRBs across different tasks and task sequences, 

planned comparison t-tests were performed on the dimension sequence effects. These 

analyses showed significant DRBs for both tasks, whatever the task sequence. When the task 

repeated, there was a 50 ms DRB for the identification task (t(10) = 4.65, pone-tailed < .01), and 

a 43 ms DRB for the discrimination task (t(10) = 7.16, pone-tailed < .01). The respective DRBs 

for task changes were 23 ms for the identification task (t(10) = 3.92, pone-tailed < .01) and 31 ms 

for the discrimination task (t(10) = 4.09, pone-tailed < .01). 

Overall, Experiment 3 demonstrated strong DRBs across trials of different tasks, despite 

disparate response sets in the two tasks. The pattern follows closely the predictions derived 

from the multiple-weighting-systems hypothesis, and is opposite to the prediction based on 

the idea that shared response requirements are the crucial factor in generating DRBs across 

different tasks. 

3.5 General Discussion 

The main goal of the present study was to evaluate the role of search and response 

requirements in generating DRBs, independently of each other. Experiments 1 and 3 

examined for DRBs across tasks with similar search, but different response requirements; and 

Experiment 2 investigated DRBs across tasks with different search, but otherwise identical 

response demands – while all other conditions (number of trials, stimulus values, etc.) were 

kept as constant as possible across experiments. The three experiments yielded a coherent 
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pattern of results: (i) there were DRBs for each task given the task (and, thus, both the search 

and response requirements) repeated across trials; (ii) there were DRBs across different tasks 

provided they shared search requirements, even when they did not share response 

requirements; and (iii) there were no DRBs across different tasks when they shared response 

requirements, but not search requirements. 

Descriptive statistics demonstrated an insignificant trend for DRBs in Experiment 2. One 

might argue that, provided the tests had a sufficient power, these trends might have turned 

significant. To examine this, the DRBs across task switches for all three experiments were 

standardized by means of Cohen‟s d (e.g., J. Cohen, 1988; 1992). The respective effect sizes 

across task switches for Task1-Task2 and Task2-Task1 sequences were .87 and .68, .35 and 

.43, 1.22 and 1.19 for Experiments 1, 2 and 3, respectively. The mean effect size across task 

switches for all experiments was .79. A post-hoc power analysis for alpha > .05, effects size 

of .79 and 12 participants (as in Experiment 2) resulted in power index (1-ß) > .80. This 

implies that, provided the DRB effects across task changes in Experiment 2 were of the mean 

magnitude, the performed tests had a sufficient power to detect it. The insignificant trends for 

DRBs observed in Experiment 2 contrasted to significant (and stronger) DRBs in Experiments 

1 and 3, observed under otherwise comparable conditions, support the idea that separate 

weighting mechanisms were engaged in the detection and identification task of Experiment 2. 

 In the following sections, this set of findings is discussed from the points of view of 

single-mechanism (search- and, respectively, response-based) accounts of DRBs and the 

multiple weighting-systems hypothesis. 

3.5.1 Single mechanism explanations 

Search-based origin of DRBs. Search-based accounts of DRBs, such the original 

Dimension Weighting Account (DWA; Müller et al., 1995), assumes that DRBs in search 

tasks originate from a modulation of feature contrast computation processes. These processes 

take place prior to (focal-attentional selection and) response selection, so that DRBs should 
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persist across tasks with different response requirements as long as they share the search 

processes. Additionally, since no search component is involved in non-search tasks (with a 

single, centrally presented stimulus), there should be no DRBs in such tasks driven by feature 

contrast computations (as convincingly argued by Mortier et al., 2005). In line with this, 

Experiment 1 revealed significant DRBs across different tasks that both involved a search 

component but had different response requirements (detection and localization, respectively). 

Also, in Experiment 2, no DRBs were observed across trials of detection (search) and 

identification (non-search) tasks, even though they had similar response requirements – 

consistent with the idea that the postulated search-based weighting mechanism was not 

operating in the identification task. 

One finding, however, which is difficult to accommodate within the DWA, is that there 

were significant DRBs in the non-search tasks (identification and discrimination, 

respectively). Given that single items presented in such tasks produce no unique dimension-

specific activity at a pre-selective coding stage (they differ from the background in multiple 

dimensions simultaneously), dimensional weights would not have been preferentially 

allocated to one dimension. Consequently, there should not have been any (or at most weak) 

DRBs across trials of different non-search tasks. However, the results of Experiments 2 and 3 

showed exactly the opposite: there were substantial DRBs for both transitions from 

identification to discrimination tasks and transitions from identification to discrimination 

tasks, as well as for identification and discrimination task repetitions.  

While this finding is difficult to account in terms of pre-selective dimension weighting, it 

should be noted that the DWA, as originally proposed by Müller et al. (1995), was not 

designed to address potential DRBs in the non-search tasks (these effects were not known at 

the time). Rather, DWA was developed to account for dimension-specific intertrial effects in 

search tasks, while being open to the possibility that intertrial effects might also be generated 

at later, post-selective processing stages (as has been explicitly acknowledged by 
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Krummenacher, Müller, & Heller, 2002; and Müller & Krummenacher, 2006a). In this sense, 

the multiple-weighting-systems hypothesis complements the DWA by addressing the issue of 

post-selective weighting. 

Response-based origin of DRBs. While search-based accounts such as the DWA leave 

the possibility that DRBs can also occur at processing stages following visual selection, the 

existing response-based accounts have been very „exclusive‟ about the origin of dimension-

specific intertrial effects: there is only one processing stage that is modulated by intertrial 

sequence, namely, response selection (e.g., Cohen & Shoup 1997, Cohen & Magen, 1999, 

Mortier et al., 2005). Significant DRBs within detection (search) (Mortier et al., 2005), 

identification (non-search) (Mortier et al., 2005), and discrimination tasks (Cohen & Magen, 

1999, Experiment 4) had already been reported and (based on the evidence available at the 

time) plausibly attributed to different mechanisms of response selection. Thus, the significant 

DRBs observed within the detection, identification, or discrimination tasks of the present 

study are as expected on the response-based perspective. 

However, the response-based explanation would have difficulties to account for the 

present finding of (i) significant DRBs across trials of repeated localization tasks and (ii) 

significant DRBs for across trials of localization and detection tasks (Experiment 1). As 

convincingly argued elsewhere (Chan & Hayward, 2009; Olivers & Meeter, 2006), 

localization can be thought of as a variant of compound search, as the stimulus attribute based 

on which the target is selected is different from that on which the response is based (Bravo & 

Nakayama, 1992; Duncan, 1985). Significant DRBs for target-defining (i.e., response-

irrelevant) attributes are very difficult to accommodate within response-based accounts. This 

finding strongly implies that intertrial effects are generated at some perceptual processing 

stage that operates before response selection takes place. 

Response-based accounts, such as the Dimensional Action model, do not specify any 

mechanism that could produce DRBs in compound tasks. In fact, proponents of such accounts 
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do not see a need for such a mechanism, based on various failures to observe significant 

DRBs in such tasks (Chan & Hayward, 2009; Kumada, 2001; Mortier et al., 2005; Olivers & 

Meeter, 2006). On the other hand, there are a number of studies that did report substantial and 

significant intertrial effects in compound tasks (Becker, 2008; Fecteau, 2007; Müller & 

Krummenacher, 2006b; Olivers & Humphreys, 2003; Olivers & Meeter, 2006; Theeuwes, 

Reimann, & Mortier, 2006; Töllner et al., 2008). Interestingly, some of these reports are from 

the very same group that failed to find such effects in other studies. 

A plausible explanation for intertrial effects in compound tasks may be offered by Meeter 

and Olivers‟ (2006; Olivers & Meeter, 2006) „Ambiguity Resolution Account‟, on which 

intertrial mechanisms become functional only when there is a certain level of ambiguity in the 

particular task. The concept of ambiguity is broadly defined: it can relate to the uncertainty 

about the target‟s presence, its identity, or response mappings. The implication of this for 

compound tasks is that intertrial effects in such paradigms would be detectable only when 

ambiguity is high. This could account for the finding, in the present Experiment 1, of 

significant DRBs across trials involving localization tasks. Contrary to previous investigations 

of DRBs in localization tasks (Chan & Hayward, 2009; Olivers & Meeter, 2006), in the 

present Experiment 1, there were two feature contrast levels (high and low) per dimension; 

significant DRBs were evident only with low contrast levels  – for which „ambiguity‟ would 

have been increased. Thus, the finding of DRBs involving a localization task is consistent 

with the ambiguity resolution hypothesis, though one would have to assume that low feature 

contrast in Experiment 1 increased perceptual, rather than response-related, ambiguity. Given 

this, the results of Experiment 1 would be difficult to explain within a strict response selection 

perspective (as advocated by, e.g., Mortier et al., 2005). 

Further at variance with such a strict response selection account are the results of the 

present Experiment 2, in which trials of detection (search) and identification (non-search) 

tasks varied randomly across trials, while involving the same stimulus-response mapping. 
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Recall that Mortier et al. (2005) attributed significant DRBs in the search and non-search 

tasks to a single, common cause: response selection processes. However, at variance with this 

common-cause assumption, no DRBs across detection and identification tasks were observed 

in Experiment 2. At the same time, there were significant DRBs across same-task trials for 

both detection and identification tasks, replicating the results of Mortier et al. (2005). 

One could argue that potential DRBs across detection and identification tasks may have 

been masked by task change and/or display change costs. However, Experiment 1 also 

entailed task changes, and yet significant DRBs were observed. As to display change costs 

being suppressors of potential DRBs across the two tasks (detection and identification), this 

remains a viable alternative that will be discussed in more details below. However, even if 

display changes were the cause for the failure to observe DRBs across detection and 

identification tasks, this would demand (presumably major) modifications to pure response-

based theories in order to take into account stimulus type (multiple- vs. single-item display) 

effects on response selection processes.  

To conclude, while response-based accounts could coherently explain a good portion of 

the present results, they fail to account for at least two findings. The first, significant DRBs in 

a localization task, relates to a broader controversy about whether or not there are intertrial 

effects in compound tasks, and would require response-based accounts to specify a plausible 

mechanism that could generate such effects. The second finding that would need explaining is 

the absence of DRBs across tasks with same response requirements when the displays are 

different; this would require pure response-based accounts to incorporate effects of stimulus 

type on stimulus-response mapping. 

3.5.2 The multiple-weighting-systems hypothesis  

We propose that the pattern of significant DRBs across different search tasks 

(Experiment 1), significant DRBs across different non-search tasks (Experiment 3), and no 

DRBs across a search and non-search task (Experiment 2) is best explained by assuming 
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existence of two dimension-sequence-sensitive mechanisms engaged in the search and non-

search tasks, respectively. 

The weighting system engaged in the search tasks would be as elaborated in the 

Dimension Weighting Account: weighting of dimension-specific feature contrast signals. In 

both detection and localization tasks (Experiment 1), the displays produced dimensionally 

specific feature contrast signals; thus, dynamic weighting of the respective target-defining 

dimensions would have allowed for significant DRBs both within and across the two types of 

task. This is not to rule out that there may be other mechanisms operating in detection or 

localization tasks that could produce dimension-specific intertrial effects. The multiple-

weighting-systems hypothesis asserts only that the portion of DRBs persisting across these 

two tasks comes from the weighting of attentional selection processes, as these processes 

were common to both tasks. 

The modulation of feature contrast signals is presumed to affect the speed of attentional 

selection. Given that no search was necessary to select the target in the identification task, 

there would be no carry-over of DRBs from the detection to the identification task 

(Experiment 2). On the other hand, single items (presented in the identification task) did not 

produce a dimension-specific feature contrast signal, so that there would be no carry-over 

effect from the identification to the detection task. Therefore, the multiple-weighting-systems 

hypothesis could account for results of both Experiment 2 as well as those of Experiment 1. 

The second weighting mechanism was presumably engaged in the non-search tasks of the 

present experiments. The fact that single items at a fixed location were used in non-search 

tasks would argue against attentional-selection processes being the origin of the DRBs across 

trials of such tasks; instead, it is more plausible to invoke the response selection dynamics to 

explain the DRBs under these conditions (in line with Mortier et al., 2005). Findings of DRBs 

within both identification and feature discrimination tasks have already been reported by the 

proponents of the Dimensional Action model (Mortier et al., 2005, Experiment 2; Cohen & 
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Magen, 1999, Experiment 4). Thus, the finding of DRBs within non-search tasks (whether 

identification or discrimination) is relatively easily accommodated by the DA model: the 

(hypothesized) dimensional response weights would persist across trials, giving rise to DRBs. 

However, the response-based accounts have little to say, at present, about DRBs across 

different types of non-search task.  

Despite the intuitive appeal of the response-based explanation, the existing literature 

provides arguments against it. For example, Müller and O‟Grady (2000) reported significant 

dimension-specific effects in a paradigm using non-search displays of briefly presented (and 

masked) stimuli, in some conditions of a single stimulus only. Observers were to report two 

attributes of the presented item, either two from the same perceptual domain (e.g., hue and 

saturation for the color domain) or two from different domains (e.g., color and form). 

Response times were unconstrained (there was no emphasis on response speed; in fact, 

observers had to await the onset of a response display with various alternatives from which 

they had to select the appropriate one), and accuracy of judgments was measured. 

Performance was significantly higher for the same-domain judgments than for cross-domain 

judgments. Effects observed under conditions of brief stimulus exposure durations and 

unlimited response times are usually assumed to reflect processes prior to response selection 

and execution (e.g., Huang & Pashler, 2005; Santee & Egeth, 1982). This argues that the 

dimensional effects reported by Müller and O‟Grady (2000) originated from stages prior to 

response selection. Furthermore, they used non-search displays (e.g., with a single item 

always presented at fixation), which argues against spatial-attentional allocation processes 

being the source of the observed effects. This leaves a perceptual processing stage after 

attentional selection as a likely source for the dimension-specific effects in the non-search 

paradigm of Müller and O‟Grady (2000); for instance, focal-attentional analysis of a selected 

object on a given trial may simply start with the same dimension that was processed last on 

the preceding trial (see also Krummenacher, Gruber, & Müller, 2010). 
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In summary, the present Experiment 3 demonstrated significant DRBs across trials of 

different non-search tasks. Given the considerable differences in response requirements 

between the identification and discrimination tasks, the response selection stage is not a likely 

source of the DRBs across these tasks. By contrast, the multiple-weighting-systems 

hypothesis would assume that the DRBs observed across task changes in Experiment 3 

originate from post-selective perceptual processing stages involved in item identity analysis 

(cf. Müller & O‟Grady, 2000; Krummenacher et al., 2010).  

3.5.3 The role of display changes 

In the present experiments, search requirements were completely correlated with display 

types. Multi-item displays necessarily involved search for the task-relevant item, while single-

item displays effectively eliminated this task requirement. Thus, instead of attributing the 

observed persistence of DRBs across different tasks to shared search demands (as in 

Experiments 1 and 3), one could equally assume that the cross-task DRBs were driven by 

display repetitions. This would explain why no DRBs were manifest in Experiment 2, where 

task changes also involved display changes.  

The multiple-weighting-systems hypothesis accounts for the absence of DRBs across 

display changes by assuming that observers used different response strategies in performing 

the detection and the identification task. In Experiment 2, multi-item (detection task) displays 

alternated with the single-item (identification task) displays, while observers always had to 

discern the presence/absence of a target. In order to determine whether a single-item display 

contained a target or a distractor, observers had to process the presented item up to the 

featural level. By contrast, with multiple-item displays, observers had an alternative strategy 

at their disposal: as the target, if present, would always produce a strongest saliency signal, 

observers could respond „target present‟ upon detecting any such signal (rather than having to 

identify the target‟s defining feature), akin to what Bacon and Egeth (1994) have referred to 

as „singleton search mode‟. 
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The singleton search mode operates overall faster than that involving target feature 

identification (see, e.g., Müller et al., 1995, Experiment 2), while permitting accurate 

performance under the conditions of Experiment 2. By contrast, with single-item displays, 

adopting a singleton search mode was not possible, because any single item, whether target or 

distractor, is kind of a singleton. Consistent with observers in Experiment 2 having adopted a 

singleton search mode with multi-item displays, but a target feature identification mode with 

single-item displays, RTs were 65 ms faster overall with multiple- compared to single-item 

displays (see also Krummenacher et al., 2010). If observers had used the same response 

strategy in both the detection and the identification task, no RT differences between tasks 

would have been expected (or, rather, one might have expected RTs to be slower in the 

detection task, given that this task involves an additional search stage). Thus, it is likely that 

the absence of DRBs across trials of different tasks was due to these differential response 

strategies (as well as differential selection demands), rather than to display differences per se.  

3.5.4 Conclusions 

The present study examined whether a single weighting mechanism, either search- or 

response-based, would suffice to explain the present pattern of dimension-specific carry-over 

effects across tasks, as well as the findings in the literature on dimension-specific intertrial 

effects. The main rationale was that, provided the same mechanism is engaged in two tasks, 

significant DRBs should arise across trials of different tasks. The main finding was that DRBs 

were manifest across trials of different search tasks, as well as across trials of different non-

search tasks, but there were no DRBs across search and non-search tasks. 

The persistence of DRBs across different tasks supports the idea that dimension-

weighting systems are specific to particular task requirements (selection vs. identification), 

rather than being specific to a task as a whole. One type of DRB across different tasks is seen 

when the selection (search) requirements are shared by successive tasks, but not when they 

are different. This implies that the DRBs seen across different types of search task must 
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originate in the (shared) selection component of the tasks, while there is a different 

dimension-sensitive mechanism generating DRBs in non-search tasks. 

Attempts to explain the observed data pattern by invoking a single weighting mechanism 

(whether search- or response based) face serious challenges. Search-based accounts specify 

no mechanism that could account for DRBs in non-search tasks. By contrast, response-based 

mechanisms would need major modification to account for dimension-specific intertrial 

effects in compound tasks, as well as the role of display changes, to be able to accommodate 

the present finding. 

Thus, arguably, the multiple-weighting-systems hypothesis offers a viable addition to 

search-based accounts, such as the DWA. A number of conflicting findings can be coherently 

explained by assuming existence of both a pre-selective, search-related mechanism and a 

post-selective mechanism that are sensitive to dimensional intertrial sequences. 
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4.1 Abstract 

Observers respond faster when the task-relevant perceptual dimension repeats across 

consecutive trials (e.g., color – color) relative to when it changes (orientation – color). This 

Dimension Repetition Effect (DRE) was observed in diverse paradigms, leading to two 

opposing explanations: visual selection-based versus response selection-based. Here, we 

argue for an integrative, multiple-sources account of DREs: behaviorally comparable DREs 

could originate from either pre-selective or post-selective processes dependent on the specific 

task used. If two tasks activate the same sequence-sensitive mechanism, significant DREs are 

expected across trials of different tasks. Experiment 1 randomly alternated between tasks that 

shared the pre-selective mechanism across trials, while Experiment 2 alternated between tasks 

sharing the post-selective mechanism. In line with the predictions of the Multiple-Weighting-

Systems (MWS) hypothesis, significant DREs were observed across task switches in both 

experiments. Overall, the reviewed evidence, complemented by the present novel findings, 

argues in favor of the MWS hypothesis providing a comprehensive and, at the same time, 

parsimonious explanatory framework for dimension-specific intertrial effects. 

Keywords: dimension repetition effect, task switching, multiple-weighting-systems, 

dimensional weighting 
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4.2 Introduction 

What we did recently has a substantial effect on our current performance. For example, 

we are likely to set a table faster when we put all plates down first relative to setting down 

plates and cutlery in a mixed order. Conceptually, one can think of three broadly defined 

processes that are potentially facilitated by such action sequencing: (i) visual selection (e.g., 

detecting plates amongst cups and bowls), (ii) perceptual analysis (e.g., deciding if the 

selected plate belongs to the appropriate set), and (iii) action execution (e.g., how to transfer 

the plate to the table). When setting the table, all three processes (selection, analysis, action) 

are involved, thus making it difficult to isolate the specific cognitive processes affected by the 

recent experience. Evaluating the role of different cognitive processes as a source of history 

effects on human performance is in the main focus of the present study. 

Investigation of how recent experience influences current performance usually employs 

simple tasks that engage, relatively selectively, processes of either visual selection or 

perceptual analysis. For example, presenting multiple-item displays introduces the necessity 

to search for the task-relevant item. By contrast, presenting a single item in a display 

effectively excludes search and visual-selection processes. Independently of the display type, 

associations between task-relevant stimuli and the required responses can vary. A particular 

combination of the stimulus material and required responses may result in a paradigm in 

which some processes (e.g., visual selection) are necessary, while other processes (e.g., 

perceptual analysis) are not crucial for performing the task. 

Several memory effects on current performance have been described in the literature. For 

example, observers are faster to select an odd-one-out item (i.e., target) from a set of items if 

the target‟s feature (in the target-defining dimension), as well as the distractor feature, repeats 

across consecutive trials (e.g., Maljkovic & Nakayama, 1994, 1996, 2000). Furthermore, 

observers are slower to select the target if it shares features with a previously irrelevant, to-be-

ignored item („negative priming‟; e.g., Tipper, 1985).  
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Of special interest for the present discussion is a particular type of intertrial effect, 

referred to as dimension repetition effect (DRE; Found & Müller, (1996)). Found and Müller 

presented multiple-item (i.e., search) displays containing, on different trials, either identically 

colored and oriented distractor items (i.e., target-absent trials), or containing one item (i.e., 

target) that differed from the distractors (target-present trials). Participants‟ task was to simply 

discern the presence of a singleton target (singleton detection task), that is, they indicated 

whether the target was present or absent by pressing the corresponding response button. 

Across consecutive target-present trials (trials n-1 and n), the dimension of distinction 

between the target and distractors could either repeat (e.g., color singletons on both trials) or 

change (e.g., color singleton following orientation singleton). Observers responded faster 

when the dimension repeated relative to when it changed. Importantly, this dimension 

repetition advantage was evident even if the exact feature of the target changed across 

consecutive trials (e.g., red singleton following blue singleton vs. red singleton following 

orientation-defined singleton). Thus, unlike other intertrial effects (e.g., priming of pop-out or 

negative priming), the DRE is observed even when the exact stimulus changes across trials 

(as long as it is defined in the same dimension), arguing that the DRE originates from 

mechanisms other that simple passive priming.  

In the following sections, we (i) describe the dominant accounts proposed to explain 

dimension repetition effects (DREs) and (ii) review the available evidence favoring one or 

another approach. Importantly, neither of the reviewed accounts, in their present formulation, 

can explain the whole body of available data in a straightforward, coherent manner. 

Consequently, the reviewed findings yield a puzzle as to the origin of DREs. We then (iii) 

present an integrative approach, which assumes multiple sources of the memory effects, and 

(iv) discuss existing, as well as (v) novel evidence in favor of the multiple-weighting-systems 

(MWS) hypothesis. 
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4.2.1 Single-mechanism accounts of DREs 

To account for the DREs observed in the singleton detection task, Müller and colleagues 

(e.g., Müller & Krummenacher, 2006; Müller, Krummenacher, & Heller, 2004; Muller, 

Reimann, & Krummenacher, 2003) proposed a Dimension-Weighting Account (DWA). 

Similar to dominant models of early visual processing (e.g., Itti & Koch, 2001, 2000; Wolfe, 

1994; Wolfe, Cave, & Franzel, 1989), the DWA assumes that visual information is sampled 

along several independent perceptual dimensions in parallel. This early processing stage gives 

rise to a representation of visual input in terms of local feature-contrast signals forming 

dimension-specific saliency maps. These signals are then integrated across dimensions into an 

overall-saliency, or master map of the visual field. Focal attention then selects locations, in a 

winner-take-all process, based on the comparative strengths of the saliency signals registered 

on the master map. Importantly, integration of the (feature contrast) signals from the various 

dimensions occurs in a weighted manner, that is: signals from one (or more) dimension(s) are 

assigned a greater weight than signals from other dimensions. These dimensional weights are, 

in turn, sensitive to trial sequence: if the target-defining signal on a given trial stems from a 

certain dimension, then the weight is increased for this dimension, while the weights for the 

other dimensions are decreased. Thus, if the critical dimension repeats across consecutive 

trials, the increased weight for this dimension results in an above-threshold overall-saliency 

signal being generated faster at the master map level, giving rise to the dimension repetition 

(benefit) effect.  

In contrast to taking DREs to reflect facilitation of visual selection processes (as in the 

DWA); alternative accounts assume these effects to be a consequence of (repeated) response 

selection processes. The Dimensional-Action (DA) model, proposed by Cohen and colleagues 

(Cohen & Magen, 1999; Cohen & Shoup, 1997, 2000; Feintuch & Cohen, 2002), assumes 

that responses in the singleton detection task are generated post-selectively by dimension-

specific response modules. Upon having selected the target item, a target-present response is 
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generated via the orientation response module if the target is orientation-defined targets or, 

respectively, via the color module if the target is color-defined. Importantly, the previously 

(on trial n-1) used response module remains in a state of heightened activation until the next 

trial (trial n). Consequently, if the target is, say, orientation-defined on both trials n-1 and n, 

the response on trial n is facilitated (because the same dimensional response module can be 

re-used) compared to when there is a need to switch response modules (e.g., if the target is 

orientation-defined on trial n-1 and color-defined on trial n). Restated, there is a DRE. 

One of two important distinctions between the two accounts (DWA and DA) lies in the 

role they ascribe to feature-contrast signals and, associated with this, the role of visual 

selection processes in generating DREs. For the DWA, DREs originate from differential 

processing of feature-contrast signals prior to focal-attentional selection of the task-relevant 

item. By contrast, the DA ascribes no functional role to the dynamics of feature-contrast and 

overall-saliency signal computations: the DREs are generated after the target item was 

selected.  

The second important difference between the accounts concerns the role of stimulus–

response mapping in generating DREs. The DWA assumes that at least a portion of DREs 

originate from stages prior to response selection, that is, a portion of the DREs is relatively 

independent of the particular response mapping used in an experimental paradigm. By 

contrast, the DA model assumes that DREs can arise only in paradigms in which perceptual 

dimensions are response-relevant. 

To test differential predictions derived from the DWA and DA account, Mortier, 

Theeuwes, and Starreveld (2005) examined the importance of visual selection processes for 

DREs in a paradigm that compared dimension-specific intertrial effects in two similar tasks. 

One task was the so-called search detection task, in which participants indicated the 

presence/absence of a singleton-feature („pop-out‟) target in multiple-item displays. In the 

other, non-search detection task, only one item was presented at a fixed location on the 
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screen. One item (identical to the distractor items in the search task) was defined a distractor 

and required a target-absent response. Any other item (sampled from the set of items used as 

targets in the search task) different from the distractor was considered a target, requiring a 

target-present response. Thus, the search- and non-search detection tasks differed only in the 

presence/absence of dimension-specific feature-contrast signals, while stimulus-response 

mapping was virtually identical across tasks. The authors reported significant DREs for both 

search and non-search detection tasks. 

To test the importance of response-relevancy in observing DREs, Mortier et al. (2005, 

Experiment 5) used a non-search compound task in which only one item, with a small line 

inside the item‟s outline shape, was presented (single-item, non-search display). The item 

could be either the distractor or a target item from the non-search detection task to be 

performed in previous experiments. As in the non-search detection task, the dimension of 

distinction between target and distractor could repeat/change across consecutive trials, thus 

potentially giving rise to DREs in the non-search compound task as well. However, unlike the 

non-search detection task, observers were to report the orientation of the inner line, thus 

making the dimension of distinction between target and distracters response-irrelevant. In 

contrast to the non-search detection tasks, testing for DREs in the non-search compound task 

revealed no significant intertrial effects. 

In summary, Mortier et al. (2005) took the finding of DREs in the non-search detection 

task to indicate that search processes are not necessary for DREs to arise. Furthermore, the 

comparison between non-search detection and non-search compound tasks was taken to 

suggest that DRBs in non-search tasks are critically dependent on the response-relevancy of 

perceptual dimensions. 

In contrast to the absence of DREs in the non-search compound task, a number of studies 

using compound-search tasks have shown that DREs can arise even when the target-defining 

perceptual dimensions are not response-relevant. In compound-search tasks (e.g., Bravo & 
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Nakayama, 1992; Duncan, 1985), participants select the task-relevant item based on one, 

target-defining feature, but make a response based on a different feature. For example, one 

may need to select a singleton based on its unique color (target-defining attribute), but then 

respond on the orientation (response-defining attribute) of the selected item. Results reported 

by independent groups (Becker, 2008; Fecteau, 2007; Olivers & Humphreys, 2003; Olivers & 

Meeter, 2006; Töllner, Gramann, Muller, Kiss, & Eimer, 2008) have repeatedly shown that 

performance in compound-search task is influenced by the sequence of target-defining (i.e., 

response-irrelevant) dimensions. On the other hand, there are a number of studies that failed 

to find such effects (Chan & Hayward, 2009; Kumada, 2001; Olivers & Meeter, 2006). 

However, there is a growing consensus that, under certain conditions
6
, it is possible to 

observe reliable DREs in compound-search tasks. 

The studies reviewed thus far yield a puzzle: DREs observed in search paradigms seem to 

be related, at least to some extent, to processes of visual selection, while the DREs observed 

in the non-search paradigms seem to rise at post-selective processing stages. Neither of the 

existing theoretical approaches, the (original) DWA or the DA model, can account fully for 

this data pattern. Despite the theoretical differences between the accounts, they also have an 

important assumption in common: they both propose a single mechanism that can give rise to 

DREs. However, the individual mechanisms envisaged by the DWA and DA model both fail 

to account for the complete set of findings on DREs. The weighting of feature contrast signals 

(as assumed in the DWA) cannot account for dimension sequence effects in non-search 

paradigms – given that no unique dimension-specific feature contrast signals are computable 

for single-item displays. Conversely, the weighting of response modules (as assumed in the 

DA account) cannot explain the existence of DREs in compound-search tasks, where DRBs 

are observed for response-irrelevant stimulus attributes. 

                                                 
6 Olivers and Meeter (Meeter & Olivers, 2006; Olivers & Meeter, 2006), in their Ambiguity Resolution 

account, dealt in detail with conflicting findings with regard to DREs in compound-search tasks. 
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4.3 An integrative approach: The Multiple-Weighting-Systems hypothesis 

An alternative to single-mechanism accounts of DRBs may be that there are multiple 

mechanisms sensitive to sequences of perceptual dimensions. These mechanisms would be 

situated at different, pre- and post-selective, processing stages. The idea that different 

mechanisms, operating at different stages, can produce similar behavioral effects is not 

entirely novel. For example, this idea is acknowledged in (Kristjánsson & Campana, 2010) 

recent review of a variety of intertrial effects (e.g., „priming of pop-out‟, DREs). A more 

elaborate rendering of this idea has been provided by (Meeter & Olivers, 2006; Olivers & 

Meeter, 2006) in their Ambiguity Resolution (AR) account. In essence, the AR account 

specifies the properties of a paradigm that are likely to lead to intertrial effects: these different 

properties are collectively referred to as the „ambiguity‟ of the paradigm. Ambiguity can 

originate from uncertainty about what the task-relevant stimuli are (i.e., processes of visual 

selection), what the responses to be made to the selected stimuli are (i.e., processes of 

response selection), or other, non-specified processes. Given this, the AR account explicitly 

allows for the possibility of processes at different stages to give rise to DREs. 

Despite the fact that the idea of multiple sources of DREs has a precedent in the 

literature, the approaches outlined above are not informative as to the question at issue in the 

present study, namely: is there a single mechanism that can account for DREs in all tasks? To 

illustrate, the AR would in principle be compatible with both a unitary mechanism that is 

activated by „ambiguity signals‟ generated at different, either pre- or post-selective, 

processing stages, and with having multiple mechanisms at different processing stages that, 

by virtue of having a similar dynamics, can all give rise to DREs. This means that 

acknowledging the possibility that DREs can arise from multiple processing stages does not 

tell whether a single or multiple mechanisms produce DREs. To conclude, existing accounts 

are not ultimately informative with regard to the question whether DREs in different tasks are 

a consequence of a single or of multiple mechanisms.  
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The Multiple-Weighting-Systems (MWS) hypothesis is designed to address this issue 

explicitly. The MWS assumes the existence of several independent mechanisms situated at 

different processing stages, which can all give rise to DREs. What weighting mechanism is 

active depends on specific paradigm properties. A paradigm is specified by (i) the stimuli it 

uses and (ii) the responses that are required; furthermore, the stimuli and responses are related 

by (iii) paradigm-specific S–R mappings. These paradigm specification criteria are illustrated 

in Figure 4.1.  

 

Figure 4.1. Mapping between paradigm properties and cognitive processes. A paradigm is defined by 

its stimuli, responses, and mapping between stimuli and responses (S–R mapping). There are three 

broad groups of cognitive processes: visual selection, perceptual analysis, and response selection. The 

stimulus material (single- vs. multiple-items displays) influences the visual selection processes (easy 

vs. difficult); S–R-mapping (simple vs. complex) influences perceptual analysis processes (shallow 

vs. deep); and required responses (univalent vs. multivalent) influence response selection processes 

(easy vs. difficult). Associated with the different processes (selection, analysis, responding) are 

different sequence-sensitive systems (Sω, Pω, and Rω, respectively). Different paradigm properties can 

influence the state of these systems (full connectors), or not (dashed connectors), with these changes 

subsequently influencing related cognitive processes. See text for more details. 

Different paradigms can be distinguished based on these three criteria. For example, 

search tasks use multiple-item displays, whereas non-search tasks employ single-item 

displays. Furthermore, singleton detection tasks involve a simple S–R mapping (i.e., target 
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present/absent response) irrespective of the target‟s identity; by contrast, compound-search 

tasks would involve a complex S–R-mapping which is dependent on the identity of the 

response-relevant target attribute. Finally, the required responses can be either univalent, that 

is, one stimulus (attribute) is mapped to one response, or multivalent, that is, several stimuli 

(or attributes) are mapped onto the same response. 

The paradigm properties directly influence which cognitive processes are necessary for 

performing a particular task. As mentioned earlier, these processes can be grouped into three 

broad categories, relating to (i) stimulus selection, (ii) perceptual analysis of the selected 

stimuli, and (iii) response selection processes. Based on the stimulus material, stimulus 

selection can be either easy, as in single-item displays, or relatively difficult, as in multi-items 

displays. The particular S–R mapping can either require shallow perceptual analysis, as in the 

singleton detection task, in which discerning the presence of a unique, odd-one-out stimulus 

suffices to produce a response; or it can require deep perceptual analysis, as when features of 

the selected stimulus have to be determined prior to responding. Finally, the response 

selection processes can be either easy, when the responses are univalent, or relatively 

difficult, when the responses are multivalent. 

The core assumption of the MWS hypothesis is that different cognitive processes  are 

associated with different weighting mechanisms, represented in Figure 4.1 as Sω, Pω, and Rω 

for the mechanisms associated with stimulus selection, perceptual analysis, and response 

selection, respectively. The three mechanisms are all sensitive to intertrial sequences, thus 

potentially giving rise to intertrial effects. Importantly, as suggested by the evidence reviewed 

below, these three mechanisms are independent of each other, and state changes in one of 

them do not affect the state of other systems.  

The (stimulus) selection weighting system (Sω) modulates the efficiency with which 

feature-contrast signals in the various perceptual dimensions influence overall-saliency 

coding. With single-item displays, feature-contrast signals are generated in multiple 
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dimensions (i.e., there are no signals generated uniquely in one dimension): a single yellow, 

vertical bar on a black background would differ from its surroundings in luminance, color, 

and orientation. Consequently, the Sω is not affected by dimension sequence in single-item 

displays (dashed connectors to Sω in Figure 4.1). By contrast, paradigms using the multiple-

item displays can modulate the state of the Sω (full-line to Sω in Figure 4.1). The Sω, in turn, 

influences performance in paradigms in which stimulus selection is difficult; the mechanism 

underlying this influence has been elaborated within the DWA (e.g., Müller & 

Krummenacher, 2006a, 2006b). 

The second weighting system (Pω) influences processes of perceptual analysis of the 

selected items. The Pω system is engaged in tasks that involve complex S–R mapping rules 

and thus require deep perceptual analysis of the selected stimulus prior to deciding upon a 

response. By contrast, tasks with simple S–R mappings and shallow perceptual analysis 

would be little influenced by the Pω system. 

With regard to the exact mechanism via which Pω modulates the dynamics of perceptual 

analysis, several alternatives are possible. One, argued for by Krummenacher, Grubert, and 

Müller (2010), would be that the processes of feature identification are speeded for the 

previously relevant dimension relative to the previously irrelevant stimulus dimension: 

identification of a repeated feature is expedited because analysis starts with the same, specific 

feature in the dimension that led to a successful response on the last trial. Alternatively, the Pω 

system may be based on task-set representations, with DREs observed in paradigms with 

complex S–R mappings reflecting task-set reconfiguration processes (e.g., Rogers & Monsell, 

1995). For example, the non-search detection task of Mortier et al. (2005) requires 

discrimination between a distractor and targets that can differ from the distractor in one of 

several possible ways (e.g., in color, shape, or size). Thus, detecting a color target could be 

thought of as a color discrimination task, whereas detecting a shape target would constitute a 

shape discrimination task. Consequently, changing the dimension of discrimination across 
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trials would introduce a task change as well, so that task change/repetition sequences are 

perfectly correlated with dimension change/repetition sequences. An important difference 

between task-change cost and identification facilitation mechanisms is that according to the 

former, DREs would arise as a function of active task-set reconfiguration processes, whereas 

according to the latter, the DREs occur due to biasing of the order of identifying different 

stimulus attributes. In summary, the DREs in paradigms with complex S–R mappings could 

either reflect facilitated feature identification or task-set reconfiguration processes (or both). 

The MWS hypothesis, as such, is agnostic as to the exact mechanism; it essentially states that 

the processes underlying the Pω system are separate from those underlying the Sω processes. 

The third hypothesized system is associated with the processes of response selection (Rω). 

The reason for postulating such a system derives from the work carried out within the 

framework of response-based accounts, such as the DA model of Cohen and colleagues. 

Additionally, findings from the dual-task and task-switching literature show that dual-task or 

task-switch costs increase if the two tasks involve the same response sets (i.e., multivalent 

mapping), relative to tasks using non-overlapping response sets (i.e., univalent mapping; (e.g., 

Gade & I. Koch, 2007; I. Koch, Gade, Schuch, & Philipp, 2010; Mayr, 2001). Furthermore, 

investigation of ERP markers of effector-specific response-sequence effects has shown these 

to be independent of the ERP markers of dimension-sequence effects in a paradigm that used 

a compound-search task, that is, dimension- and response-sequences were uncorrelated 

(Töllner et al., 2008). Finally, behavioral studies have demonstrated that across task-switch 

trials, response repetition produces inhibitory effects additive to facilitatory effects of 

stimulus repetition (Druey & Hübner, 2008).  

Taken together, the existing evidence warrants postulating a mechanism sensitive to 

response-selection processes, which is independent of the mechanisms modulating processes 

of perceptual analysis and stimulus selection.  
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Hitherto, the study of dimension-specific intertrial effects has focused mainly on the issue 

of whether DREs are the result of pre- or post-selective processes. Different post-selective 

processes (perceptual analysis, response selection) were considered summarily and contrasted 

with stimulus selection processes (e.g., Cohen & Magen, 1999; Krummenacher et al., 2010; 

Mortier et al., 2005). Mortier et al. (2005) accounted for DRBs in their non-search detection 

task by invoking response selection processes, while Krummenacher et al. (2010) explained 

analogous effects by assuming facilitation of feature identification processes. The MWS 

hypothesis makes a conceptual distinction between two potential post-selective mechanisms. 

Future research will show whether the two are reducible to a single post-selective mechanism, 

or they are dissociable, as suggested by the literature reviewed above. At present, the most 

pertinent tests of the MWS hypothesis would involve demonstrating that there exist at least 

two independent, pre- and, respectively, post-selective, weighting systems. 

4.3.1 Evidence for the MWS hypothesis 

If a particular task engages any of the postulated weighting systems, significant DREs are 

expected. That is, the behavioral signature of the mechanism(s) giving rise to DREs is 

identical for tasks involving different sequence-sensitive mechanisms. Consequently, DREs 

observed in single task paradigms (of the search or the non-search type) could be accounted 

for by assuming either single or multiple weighting mechanisms. However, examining for 

DREs across trials of different tasks would provide evidence in favor of, or against, the MWS 

hypothesis. If the tasks in question engage identical weighting systems, significant DRBs are 

expected across trials of different tasks. By contrast, if the weighting systems differ between 

tasks, no DRBs are expected to arise.  

Figure 4.2A illustrates the reasoning underlying the above predictions. DREs are 

observed across sequences of trials (n-1 and n). However, the path of influence from trial n-1 

to trial n is mediated by weighting systems. If the task on trial n-1 entails difficult visual 

selection, the Sω system will be affected (as illustrated with full line connectors between trial 
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n-1 and Sω). Biasing of weights assigned to different dimensions in Sω might give rise to 

DREs when the dimension repeats, as compared to when it changes, across trials n-1 and n. 

Importantly, DREs can arise across consecutive trials only if the task on trial n also engages 

Sω system (full line connectors between Sω and trial n). In other words, one can think of 

processes occurring during trial n-1 as the “source” of DREs, by virtue of being the cause of 

changes in a weighting system, while the processes during trial n are a sort of “sink” because 

the changes in the weighting system manifest on that trial. Finally, for DREs to arise there has 

to be an unbroken connection between the source trial, a weighting system, and the sink trial. 

 

Figure 4.2. “Source-sink” metaphor of DREs. Intertrial effects across two trials are mediated via 

changes in the state of a weighting system. On trial n-1 (or “source” trial for DREs), the system is 

biased toward a particular dimension. Observers are faster to respond on trial n (or “sink” of DREs) 

when the dimension repeats, relative to when the dimension changes across trials, due to the fact that 

the system was biased towards that particular dimension on the previous, “source” trial. Panels: (A) 

tasks on both “source” and “sink” trials engage Sω system; (B) tasks in different trials engage different 

systems; (C) and (D) one task engages more than one weighting system. See text for details. 

Paradigms using the same task across all trials would always have a connection between 

the source and sink trials via at least one weighting mechanism. By contrast, when two tasks 

are mixed across trials, the pattern of DRBs across different task sequences 
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(repetition/switches) would depend on whether or not the two tasks share the same weighting 

system(s). If different tasks influence a common weighting system, significant DREs are 

expected even across trials of the different tasks (Figure 4.2A, note the unbroken connection 

between the source and sink trials). On the other hand, if the tasks influence no common 

weighting systems, no DREs are expected across the different tasks. Figure 4.2B illustrates a 

case in which the two tasks engage different systems: the task in the source trial demands a 

difficult selection and shallow perceptual analysis, the task in the sink trial easy selection and 

deep analysis processes. The former task would influence the Sω system (full line connector 

between the source trial and Sω), but the latter, by requiring easy selection, would be 

insensitive to the weighting of selection (dashed connectors between Sω and the sink trial). 

Consequently, no DREs originating from selection processes would be expected. On the other 

hand, while the task on the sink trial could be potentially affected by weighting of perceptual 

analysis (Pω), the source task does not influence the Pω system, consequently preventing any 

DREs arising from this system. 

To test predictions derived from the MWS hypothesis, we recently performed two 

behavioral studies (Rangelov, Müller, & Zehetleitner, in press; under review). Both used a 

similar paradigm: mixing two tasks within trial blocks. Different tasks could engage either a 

common (assumed) weighting mechanism (e.g., both Sω) or different mechanisms (e.g., Sω vs. 

Pω). An overview of these studies, the tasks used, the mechanisms hypothesized to be 

involved, and the DREs observed across task repetition/changes is provided in Table 4.1 and 

Figure 4.3. 

Rangelov, Müller, and Zehetleitner (in press) mixed a search detection task, with multi-

item displays requiring a target-present/absent response, with a non-search feature 

discrimination task, either in a predictive (Experiment 1) or random task sequence 

(Experiment 2). In the non-search feature discrimination task, only one item was presented at 

a fixed location (making selection easy), and observers were to report either the color 
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(green/blue) or the orientation (vertical/horizontal) of this item by pressing the corresponding 

response button (left/right). On the conceptual task analysis, the search detection task 

(difficult selection, shallow analysis) engages the selection weighting system (Sω), while the 

non-search feature discrimination (easy selection, deep analysis) engages primarily the 

perceptual-analysis system (Pω). In Experiment 3, trials of non-search discrimination task (Sω) 

alternated with a search discrimination task (both Sω and Pω). The difference between these 

two tasks was in the display types they used (single and multiple-items for the non-search and 

search tasks, respectively), while the S–R mapping remained the same. 

Table 4.1. Overview of the experimental setup in the previous studies of Rangelov et al. (in press, 

under review). All studies used a task-switching paradigm in which two tasks (denoted as Task 1 and 

2) alternated unpredictably across trials. Different experiments used different tasks that could, 

according to the conceptual task analysis, either share a weighting mechanism, or not. Predictions, 

derived from the MWS hypothesis, about DREs across task repetitions and switches are also shown. 

  Weighting system in DREs across task 

Task 1 Task 2 Task 1 Task 2 Repetitions Changes 

Rangelov et al. (in press) 

Experiment 1 

Search 

Detection 

Non-search 

Discrimination 
Sω Pω Yes No 

Experiment 2 

Search 

Discrimination 

Non-search 

Discrimination 
Sω and Pω Pω Yes Yes 

Experiment 3 

Search 

Discrimination 

Non-search 

Discrimination 
Sω and Pω Pω Yes Yes 

Rangelov et al. (under review) 

Experiment 1 

Search 

Detection 

Search 

Localization 
Sω Sω Yes Yes 

Experiment 2 

Search 

Detection 

Non-search 

Detection 
Sω Pω Yes No 

Experiment 3 

Non-search 

Detection 

Non-search 

Discrimination 
Pω Pω Yes Yes 
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Figure 4.3. Mean DREs (ms) across: (A) task repetitions, and (B) task changes, in the studies of 

Rangelov et al. (in press, under review). Note the difference in scales between DREs for task 

changes/repetitions. Vertical lines denote 95% confidence intervals (CI); DREs for which zero lies 

outside the associated CI, are significant at p < .05. 

Examining for DREs across task repetition revealed significant effects in all three 

experiments (Figure 4.3A). By contrast, no DREs were observed across task switches in 

Experiments 1 and 2 (see Figure 4.3B). Finally, there were significant DREs observed across 

trials of search and non-search discrimination tasks in Experiment 3. 

The absence of DREs across the search detection and non-search discrimination tasks is 

well explained by assuming that independent weighting mechanisms give rise to DREs in the 

different tasks. However, alternative explanations are possible. For instance, one could 

hypothesize that weighting processes are specific for a given task. This means that whether or 

A 

B 
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not tasks share a weighting system, DREs would never be expected across different tasks. 

This alternative explanation challenges the initial (underlying) rationale that it should be 

possible to observe DREs across two different tasks provided the intertrial effects in both 

tasks are generated by the same weighting system. To investigate this, Rangelov et al. (under 

review) mixed the following tasks within trial blocks: (i) search detection (target 

present/absent, multi-item displays) and singleton localization (target left/right, multi-item 

displays); (ii) search detection (target present/absent, multi-item displays) and non-search 

detection (target present/absent, single-item displays); and (iii) non-search detection and non-

search discrimination task (reporting the exact target‟s feature, either color or orientation in 

single-item displays) in three experiments, respectively. The search detection and localization 

tasks (Experiment 1) both involved relatively difficult selection processes, that is, weighting 

of selection (Sω) was assumed to operate in both tasks. By contrast, different weighting 

systems were presumed to operate in the search detection (difficult selection, shallow analysis 

– Sω system) and the non-search detection task (easy selection, deep analysis – Pω system) 

used in Experiment 2. Finally, weighting of perceptual analysis (Pω) was assumed to operate 

in both non-search detection and discrimination tasks (Experiment 3). Data analysis revealed 

significant DREs across same-task trials for all tasks, demonstrating that a dimensional-

weighting mechanism operated in all tasks (Figure 4.3A). Analysis of DREs across tasks 

showed significant DREs in Experiment 1, that is, across search detection and localization 

tasks (both involving the the Sω mechanism), as well as in Experiment 3, that is, across non-

search detection and non-search discrimination tasks (both involving the Pω mechanism). 

However, there were no DREs in Experiment 2 across search detection (Sω) and non-search 

detection (Pω) tasks (Figure 4.3B). In summary, the results of Rangelov et al. (under review) 

demonstrate that it is possible to observe DREs across trials of different tasks, and that the 

pattern of effects follows closely the predictions (see Table 4.1) derived from the MWS 

hypothesis. 
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Taken together, the results of Rangelov et al. (in press, under review) seriously challenge 

single-mechanism explanations of DRBs, while favoring the MWS hypothesis and the 

reasoning behind it (as illustrated in Figures 4.1 and 4.2). 

4.3.2 Problem of the present study 

The findings outlined above (Rangelov et al., in press, under review) demonstrate a 

behavioral dissociation between two dimension-sensitive mechanisms. The evidence available 

to date indicates that spatial tasks (i.e., search detection and localization) involve one 

mechanism, whereas non-spatial tasks (non-search detection and non-search discrimination) 

involve a different mechanism. This raises the question about the relationship between the 

two systems, specifically: what would the pattern of DREs be for a task that involves both 

difficult stimulus selection and deep perceptual analysis, thus presumably engaging both the 

Sω and Pω weighting mechanisms? 

From the MWS perspective, if a task influences several weighting mechanisms (i.e., both 

Sω and Pω), then the DREs observed in such a task would have multiple origins. 

Consequently, one would expect the DREs in such tasks to be stronger than DREs observed in 

tasks that primarily engage only one weighting system: (DRESω + DREPω) > (DRESω XOR 

DREPω). Furthermore, if such a task alternates across trials with a task engaging only one 

system, there should be significant DREs across task changes regardless of the specific 

weighting system (Sω or Pω) influenced by the latter task. This derives from the fact 

(illustrated in Figures 2C and 2D) that there would always be at least one continuous 

connection between source and sink trials, which, as set out earlier, is a precondition for 

DREs to arise. 

To test these new hypotheses, a search feature discrimination task was used. This task 

involved multi-item displays containing a feature singleton on every trial (defined in either 

the color or the orientation dimension), with observers having to report the exact singleton 

feature (left- vs. right-tilted, or blue vs. green). Conceptual analysis of this search 
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discrimination task reveals that it entails both difficult selection (involving Sω) and deep 

perceptual analysis (involving Pω). This search discrimination task was mixed with either a 

search detection task (difficult selection, shallow analysis – Sω) or a non-search detection task 

(easy selection, deep analysis – Pω) in Experiments 1 and 2, respectively. Data analysis 

focused on testing DREs across different tasks and different task sequences 

(repetition/change). 

4.4 General Method 

The two experiments used similar stimulus material and the same general procedure. For 

this reason, the methods for both experiments are presented together. 

Participants. One group of 10 participants (5 female, mean age 25 years) and another 

group, also of 10 participants (4 female, mean age 26 years), took part in Experiments 1 and 

2, respectively, for either monetary compensation (8 €/h) or course credit. All participants 

reported normal or corrected-to-normal vision as well as previous experience with 

psychophysical studies. They were all naïve with respect to the purpose of experiments. 

Apparatus. The experiments were controlled by a Dell PC running under the Windows 

XP operating system. The stimuli were presented on a Fujitsu Siemens 21” CRT monitor, 

with a screen resolution of 1280 x 1024 pixels and a refresh rate of 85 Hz. The experimental 

software was custom written in C++. Participants performed the task in a dimly lit and 

acoustically isolated room, seated in front of the monitor. Head-to-monitor distance was 57 

cm, controlled by means of a chin rest. Participants responded by pressing the left or the right 

button of a computer mouse, with their left or right index finger, respectively. 

Stimuli. There were two different displays types (illustrated on Figure 4.4): (i) single-

item displays, with only one bar presented in the screen center, and (ii) multiple-items 

displays, with 35 bars arranged in four (virtual) concentric circles made up of 1, 6, 12, and 16 

bars, respectively. Stimuli were presented on a homogeneous, medium gray background (CIE 

xyY .283, .311, 31, respectively). Individual bars subtended approximately 0.6°x2.2° of visual 
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angle, with multiple-items displays subtending approximately 21°x21° of visual angle. There 

were five possible bars: (i) yellow (CIE xyY .378, .518, 83), vertical – considered a distractor 

bar, (ii) yellow, tilted 45 clockwise from the vertical (right-tilted), (iii) yellow, tilted 45 

counter-clockwise from the vertical (left-tilted), (iv) blue (.225, .283, 83), vertical, and (v) 

green (.279, .505, 83), vertical. Left- and right-tilted bars (differing from the distractor in 

orientation) were considered orientation targets, while blue and green bars (differing from the 

distractor in color) were considered color targets. 

 

Figure 4.4. Illustration of stimulus displays used in the present study. See text for more details. 

Tasks. There were three possible tasks: (i) search detection, (ii) non-search detection, and 

(iii) search discrimination. In both search- and non-search detection tasks, participants had to 

discern whether the presented stimulus display contained a target (in 60% of trials) or not 

(target present vs. absent) and press a corresponding response button (left/right). Thus, 

search- and non-search detection tasks were identical in terms of response mappings. The 

tasks, however, differed in the displays types: the non-search detection task used single-item 

displays, and the search detection task multiple-items displays. The search discrimination task 

also used multiple-items displays, however, with a target present on all trials. Instead of 

responding target-present/absent, participants had to report the exact feature of the target (left- 

vs. right-tilted, blue vs. green) by pressing the corresponding response button (left/right). 

Different features within a dimension of discrimination (e.g., blue vs. green for color) were 

mapped to different responses, while different features across dimensions (e.g., blue and left-

tilted) were mapped to the same response. The task to be performed on a given trial was pre-
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cued by a task-specific cue word: (i) “detection” for search detection, (ii) “identification” for 

non-search detection, and (iii) “discrimination” for search discrimination task.  

In a previous study (Experiment 2, Rangelov et al., under review; see Table 4.1), the non-

search and search detection tasks alternated across trials. In order to differentiate between the 

tasks, it was necessary to introduce different cue words (“detection” for search detection and 

“identification” for non-search detection). These cue words could have influenced participants 

to perform the tasks in different ways. Note, though, that Krummenacher et al. (2010) did not 

label the search detection and non-search detection tasks in any way (i.e., there was no need 

for cue words as the tasks were blocked) and yet they found systematic differences in how the 

two tasks were performed. In the present study, the same tasks (search and non-search 

detection) were mixed with a third task (the search discrimination) in separate experiments. 

To maintain comparability between Experiment 2 of Rangelov et al. (under review) and the 

present study, especially with regard to any specific strategies induced by the different cue 

words, the same task labels, “detection” and “identification”, were used in the present 

experiments as well. 

Procedure. Every trial started with a task cue presented for 1000 ms. The cue was 

followed by a stimulus display which was presented until the participant responded. In case of 

an incorrect response, the word “error” was presented for 1000 ms. Between trials, a blank 

screen was shown for a variable ISI (950–1050 ms). The trial sequence, along with the 

respective timings, is illustrated in Figure 4.5. There were 35 blocks of 60 trials, resulting in 

2100 trials in total. The first three blocks were considered a practice session and not included 

in the analyses. Participants took approximately two hours to complete all trials. 

Participants were to respond on every trial. Different tasks involved different S–R 

mappings: (i) target present/absent for the detection tasks (whether of the search or the non-

search variety), and (ii) color or orientation discrimination for the discrimination task. There 

were two possible S–R-mappings for detection tasks (present/absent: left/right or 
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present/absent: right/left), and four mappings for the discrimination task: 2 mappings per 

dimension (e.g., blue/green: left/right or blue/green: right/left) x 2 dimensions (color and 

orientation). Two mappings in detection x four mappings in discrimination tasks resulted in 

eight possible combinations of S–R assignments, which were counter-balanced across 

participants. 

 

Figure 4.5. Stimulus sequence and associated presentation times during trials of the present 

experiments. 

Design and data analyses. Every trial was characterized by the task to be performed and 

by the task-relevant dimension. Tasks and dimensions were randomized across trials. Thus, 

across consecutive trials, the task and dimension could either repeat or change. This resulted 

in a 2 (search detection vs. search discrimination task in Experiment; non-search detection vs. 

search discrimination in Experiment 2) x 2 (task repetition vs. change) x 2 (color vs. 

orientation dimension) x 2 (dimension repetition vs. change) design. The mean RTs were 

examined by a repeated-measures analysis of variance (ANOVA) with main terms for task, 

task sequence, dimension, and dimension sequence. 

4.5 Results 

4.5.1 Experiment 1 

Trials of search detection and search discrimination tasks were mixed in Experiment 1. 

Both tasks used multiple-items displays, albeit with different response mappings. Participants 
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made response errors in approximately 6% of total number of completed trials. Inspection of 

the error pattern did not reveal any indications of speed-accuracy trade-offs, and errors were 

not further analyzed. Trials with a correct response were filtered for extreme RTs (below 200 

ms and above 1000 ms), resulting in the elimination of 2% of the correct-response trials. The 

remaining trials were sorted according to task, task sequence, dimension, and dimension 

sequence into 16 conditions, with, on average, 53 trials (inter-quartile range 36–72 trials) per 

condition per participant. 

Inspection of the mean RTs revealed that the detection task was performed overall faster 

than the discrimination task (473 vs. 538 ms); furthermore, RTs were faster for task 

repetitions compared to changes (488 vs. 523 ms), and faster for dimension repetitions 

compared to changes (DRE: 488 vs. 523 ms). These observations were confirmed by a four-

way repeated-measures ANOVA, which yielded significant main effects of (i) task (F(1,9) = 

14.52, p < .01, ηp
2
 = .61), (ii) task sequence (F(1,9) = 38.58, p < .01, ηp

2
 = .81), and (iii) 

dimension sequence (F(1,9) = 23.43, p < .05, ηp
2
 = .72).  

Analysis of DREs. Inspection of DREs revealed this intertrial effect to be more marked 

for the discrimination than for the detection task (see Figure 4.6), which was confirmed by a 

significant task x dimension sequence interaction (F(1,9) = 8.38, p < .05, ηp
2
 = .48). Planned 

t-tests revealed the DREs to be significant both in the discrimination task (t(9) = 4.38, pone-tailed 

< .05) and, albeit smaller, in the detection task (t(9) = 3.43, pone-tailed < .05). The DREs were 

larger across task repetitions than across task changes (see Figure 4.7), as confirmed by a 

significant task sequence x dimension sequence interaction (F(1,9) = 15.94, p < .01, ηp
2
 = 

.64), but significant in both cases (across task repetitions: t(9) = 5.48, pone-tailed < .05; across 

task changes: t(9) = 2.48, pone-tailed < .05). 
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Figure 4.6. Mean DREs (ms) across different tasks in Experiment 1 (search detection and search 

discrimination) and Experiment 2 (non-search detection and search discrimination). Vertical lines 

denote 95% confidence intervals (CI). 

 

Figure 4.7. Mean DREs (ms) across different task sequences (repetition/change) in Experiments 1 and 

2. Vertical lines denote 95% confidence intervals (CI). 

Other effects. The ANOVA also revealed the task x dimension sequence interaction 

(F(1,9) = 8.38, p < .05, ηp
2
 = .48) and the dimension x dimension sequence interaction (F(1,9) 

= 5.29, p < .05, ηp
2
 = .37) to be significant. Furthermore, the task x dimension x dimension 

sequence interaction was marginally significant (F(1,9) = 3.68, p = .09, ηp
2
 = .29). Post-hoc 

analyses revealed that these interactions were due to more marked DREs for color (62 ms) 

than for orientation (32 ms) in the discrimination task, which contrasts with comparable DREs 

for the two dimensions in the detection task (25 and 19 ms, respectively). Finally, the task x 
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task sequence interaction was significant (F(1,9) = 5.37, p < .05, ηp
2
 = .37): it was more 

difficult to switch from the discrimination to detection task (46 ms) than vice versa (24 ms). 

No other main effects or interactions proved significant (all F < 2.32, p > .16). Importantly, 

the task x task sequence x dimension sequence interaction was nowhere near significance 

levels (F(1,9) = 0.03, p = .87), indicating that task sequence x dimension sequence interaction 

was not task-specific. 

4.5.2 Experiment 2 

Trials of the non-search detection and the search discrimination task were mixed in 

Experiment 2. As in Experiment 1, the S–R mappings differed between tasks; and unlike 

Experiment 1, the stimulus displays also differed across tasks: (i) single-item displays were 

used for the non-search detection task, and (ii) multiple-items displays for the search 

discrimination task. Participants made an error response in approximately 5% of all trials. 

Extreme RTs were produced in approximately 2% of correct response trials. The remaining 

trials were sorted according to task, task sequence, dimension, and dimension sequence, 

yielding approximately 56 trials (interquartile range 37–72 trials) per condition per 

participant. 

Inspection of mean RTs revealed that non-search detection was performed faster than 

search discrimination (496 vs. 568 ms); task repetitions were faster than task changes (510 vs. 

554 ms); and that dimension repetitions were faster than dimension changes (DRE: 512 vs. 

552 ms). These effects were confirmed by a four-way repeated-measures ANOVA, which 

revealed the main effects of task (F(1,9) = 11.66, p < .01, ηp
2
 = .56), task sequence (F(1,9) = 

29.39, p < .01, ηp
2
 = .76), and dimension sequence (F(1,9) = 87.50, p < .01, ηp

2
 = .91) to be 

significant.  

Analysis of DREs. DREs were slightly (5 ms) larger for the discrimination task than for 

the non-search discrimination task (see Figure 4.6), but this difference was not reliable (non-

significant task x dimension sequence interaction: F < 1, p > .05). Furthermore, as depicted in 
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Figure 4.7, DREs were stronger across task repetitions than across task changes (significant 

task sequence x dimension sequence interaction: F(1,9) = 48.96, p < .01, ηp
2
 = .84), but 

significant in both cases (task repetitions: t(9) = 8.77, pone-tailed < .05; task changes: t(9) = 3.57, 

pone-tailed < .05). No other main effects or interactions proved significant (all F < 3.25, p > .10). 

4.5.3 Between-experiments analyses 

Within-experiments analyses had revealed the task x dimension sequence interaction to 

be significant in Experiment 1, but not in Experiment 2. According to the MWS hypothesis, 

the DREs should have been larger in the search discrimination task than in the other two tasks 

(search detection, non-search detection), because in the search discrimination task the DREs 

would originate from multiple weighting systems, whereas those in the other tasks would 

have one source only. Thus, a significant task x dimension sequence interaction was expected 

in both experiments. 

Inspection of the DREs in the search discrimination task showed them to be of 

comparable magnitude in both experiments (44 and 42 ms in Experiments 1 and 2, 

respectively; see Figure 4.6); this was substantiated by an independent sample t-test 

comparison of the mean DREs between the two experiments (t < 1, p > .05). By contrast, for 

the search detection task (Experiment 1), the DREs were 15 ms smaller than those for the 

non-search detection task (Experiment 2, see Figure 4.6); this difference was significant (t(14) 

= -1.91, pone-tailed < .05). 

Taken together, the comparisons across experiments suggest that the non-significant task 

x dimension sequence interaction in Experiment 2 was due to strong DREs in the non-search 

detection task, rather than due to changes in DRE magnitude for the search discrimination 

task between experiments. 
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4.6 General Discussion 

In the present study, the search discrimination task (difficult search, deep analysis – Sω 

and Pω) alternated randomly across trials, intermixed with either the search detection task 

(difficult search, shallow analysis – Sω) or the non-search detection task (easy search, deep 

analysis – Pω) in Experiments 1 and 2, respectively. According to the MWS hypothesis, the 

DREs in the search discrimination task should have been larger (by virtue of having two 

weighting systems as sources) than those in either the search or non-search detection task (one 

source). Furthermore, the MWS hypothesis predicted significant DREs across task changes in 

both experiments because the tasks used in either experiment always shared at least one 

weighting system. 

In accordance with the MWS, the results of both Experiments 1 and 2 showed significant 

DREs across both task repetitions and task changes. Furthermore, the DREs for the search 

discrimination task were stronger than the DREs for the search detection task (Experiment 1). 

Finally, there were no significant differences in DRE magnitude between the search 

discrimination and the non-search detection task (Experiment 2). Between-experiments 

analyses showed that DREs for the discrimination task were comparable across experiments, 

while the DREs for the search detection were weaker than those for the non-search detection 

task. 

4.6.1 Single-mechanism explanations 

The present findings can be considered from either the Dimension-Weighting (e.g., 

Müller & Krummenacher, 2006a, 2006b) or the Dimensional-Action (e.g., Cohen & Magen, 

1999; Cohen & Shoup, 1997) perspective.  

The DA account would argue that the same mechanism caused DREs to arise in all tasks: 

weighting of response selection modules. Consequently, the DA account would predict 

significant DREs across task repetitions for all tasks used in this study. With regard to the 
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DREs observed across task switches in the present study, one could argue that if the same 

response-based mechanism was engaged in all tasks, significant DREs should have arisen 

across all (combinations of) tasks, which is in line with the present findings. However, if an 

identical weighting system had been operating in both the search and non-search detection 

tasks, then one would have expected DREs of comparable magnitude. However, this was not 

the case – thus challenging the DA model. To account for the significantly increased DREs in 

the non-search detection task relative to the search detection task (different display types, with 

identical SR-mappings between tasks), the DA account would have to assume either that the 

change in stimulus type (across the two tasks) changed the dynamics of the weighting process 

or that different sources of DREs are operating in different tasks. The former assumption 

would effectively turn the DA account into a hybrid model sensitive to both stimulus- and 

response-related process; the latter would effectively be a variant of the MWS hypothesis. 

On the other hand, early work within the DWA framework specified only one mechanism 

giving rise to DREs: weighting of dimension-specific feature-contrast signals at pre-selective 

processing stages. This mechanism would give rise to DREs in tasks demanding visual 

selection of the task-relevant item from a set of distractors. Accordingly, the DREs observed 

across tasks involving difficult selection (i.e., search tasks) are in accordance with the DWA. 

However, this single (pre-selective) mechanism cannot provide a straightforward account for 

the strong DREs observed in non-search tasks, in which the stimulus displays do not give rise 

to dimension-specific feature contrast signals. Note, however, that the proponents of the 

DWA quite explicitly acknowledged the possibility that other, post-selective processing 

stages may also be influenced by the sequence of dimensions across trials (Müller & 

Krummenacher, 2006a). In this sense, the MWS hypothesis may be regarded as an extension 

of the DWA to account for the DREs observed in the non-search paradigm. 
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4.6.2 Multiple-Weighting-Systems explanation 

In contrast to single-mechanism models, the MWS hypothesis can account for the present 

findings in a straightforward manner. There were significant DREs across task repetitions for 

all tasks because at least one dimension-sensitive mechanism was engaged in every task. 

There were significant DREs across task switches for both Experiments 1 and 2 because 

across any two tasks, there was always at least one shared weighting system. In fact, the 

present results closely follow the predictions derived from the MWS hypothesis, as illustrated 

in Figures 4.1 and 4.2. 

One prediction of the MWS was, however, not confirmed by the data, namely: DREs in 

the search discrimination task were expected to be larger than in the non-search 

discrimination task. While there was a numerical tendency in the expected direction (5 ms), 

this difference was not significant. On the other hand, the DREs for the search discrimination 

task were comparable across experiments and, in line with MWS predictions, stronger than 

the DREs in the search detection task (Experiment 1). This pattern indicates that the large 

DREs in the non-search detection task (relative to the smaller DREs in the search detection 

task) were responsible for non-significant task x dimension sequence interaction in 

Experiment 2. 

While large DREs in the non-search detection task were not explicitly predicted, they are 

not entirely surprising. Mortier et al. (2005, Experiment 1) also reported larger DREs in their 

non-search detection than in their search detection tasks (50 vs. 20 ms) – which is in 

accordance with the DRE magnitudes observed in the present study. Furthermore, the 

differential DRE magnitude between the search- and non-search detection tasks is compatible 

with the MWS hypothesis. If the DREs were indeed generated by different weighting systems 

(Sω or Pω) in the search- and non-search detection tasks, then differences between the tasks 

can be readily explained by assuming that Sω and Pω systems can give rise to DREs of 

different magnitude (in fact, there is no reason to assume that all systems give rise to effects 
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of the same magnitude). By contrast, as discussed above, a single-mechanism account would 

encounter a difficulty in explaining the present finding without assuming a complex 

interaction between stimulus- and response-related processes. 

4.6.3 Theoretical implications 

Several properties of the MWS hypothesis argue in favor of it representing a viable 

alternative to the single-mechanism accounts of DREs. First, it provides an extension to older 

theoretical notions (in particular, the DWA), accounting for post-selective sources of DREs. 

Second, the conceptual analysis of how paradigm properties are mapped to diverse cognitive 

processes (see Figure 4.1), as well as which tasks are affected by which weighting 

mechanisms, generates a number of testable predictions. Third, and most importantly, the 

empirical evidence is consistently in line with these predictions (see Figure 4.3 and Table 

4.1). 

As for the further empirical and theoretical developments of the MWS hypothesis, there 

are two main directions. First, it would be important to demonstrate a dissociation between 

the different weighting systems in a data domain other than (behavioral) RTs. In particular, 

electrophysiological or fMRI (functional magnetic resonance imaging) studies should be 

carried out to examine whether it is possible to identify temporal or spatial „brain‟ markers of 

neural activity selectively sensitive to one or the other weighting system. Previous work 

(Pollmann, Weidner, Müller, & von Cramon, 2000; Weidner, Pollmann, Müller, & von 

Cramon, 2002) suggests that singleton feature search tasks and singleton conjunction search 

tasks have distinct neural correlates of DREs, the former located in lateral pre-frontal cortex 

(lPFC), the latter in fronto-median brain areas (pregenual ACC). On a conceptual task 

analysis, the MWS hypothesis would assume that the two tasks activate different weighting 

systems: singleton feature search would involve Sω and singleton conjunction search Pω. 

Consequently, one might hypothesize that the Sω system is related to lPFC brain areas and the 
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Pω system to ACC areas. Further research should examine whether comparable brain areas are 

activated across task switches for which behavioral evidence demonstrates significant DREs.  

Second, the nature of the post-selective weighting systems demands elaboration. One 

issue relates to the possibility of dissociating weighting of perceptual analysis from response 

weighting. As already discussed, the empirically established post-selective DREs have been 

interpreted as being either perceptual (Krummenacher et al., 2010) or response-based (Mortier 

et al., 2005) in origin. However, it could also be the case that post-selective DREs originate 

from both perceptual and response-based sources. To examine these issues, paradigms would 

need to be devised that permit these two factors to be pitted against each other, so that their 

(independent) contributions to generating DREs can be evaluated. This work would provide 

an extension to the MWS perspective, which thus far has focused on demonstrating a 

dissociation between selection-related and post-selective sources (discussed summarily) of 

DREs. 

4.6.4 Conclusions 

Review of findings on DREs in different psychophysical paradigms suggested that the 

single-mechanism accounts proposed in the literature cannot fully explain all the available 

data. To fill this explanatory gap, a multiple-weighting-systems (MWS) hypothesis was 

developed. On this hypothesis, there exist several independent mechanisms that can all 

produce DREs, by virtue of being sensitive to (sequences in) perceptual dimensions. Previous 

findings, based on a task-switch approach, demonstrated a behavioral dissociation between 

sources of DRBs in search and non-search paradigms. In the present study, using a similar 

approach, we demonstrated that a single task can engage multiple weighting mechanisms at 

the same time. Although separable, these weighting systems are all situated along the same 

processing path, leading from stimulus selection through perceptual analysis to response 

selection and response execution. 
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