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Zusammenfassung 

Eine ganz wesentliche Rolle bei der Beschreibung der Vegetationsentwicklung sowie Was-

ser-, Stoff- und Energieflüssen auf allen räumlichen Skalen spielt die Kenntnis des Wasser-

gehaltes in den oberen Zentimetern der Landoberfläche. Die oberflächennahe Bodenfeuchte 

steuert maßgeblich die Aufteilung des Niederschlages in die Komponenten Oberflächenab-

fluss, Verdunstung und Infiltration und reguliert die mikrobakterielle Aktivität, sowie bio-

geo-chemische Umsetzungsprozesse. Die Verfügbarkeit von Wasser ist entscheidend für das 

Pflanzenwachstum, hat einen Einfluss auf die Artenzusammensetzung und bestimmt über 

Wechselwirkungen mit dem Strahlungs- und Energiehaushalt das (lokale) Klima. Zudem 

spielt die räumliche Verteilung der Bodenfeuchte und Ausbildung von Mustern und Struktu-

ren eine wichtige Rolle für die Entwicklung oberflächiger und unterirdischer Wasser- und 

Stofftransporte. Ziel dieser Arbeit war es oberflächennahe Bodenfeuchte aus räumlich ho-

chauflösenden (50 m) L-Band Radiometerdaten über landwirtschaftlich genutzten Flächen 

abzuleiten. 

Passive L-Band (~ 1.4 GHz) Mikrowellenfernerkundung mittels Radiometern hat sich als 

eine der meist versprechensten Fernerkundungsmethoden zur Ableitung von Oberflächenbo-

denfeuchte (ca. 0-10 cm) erwiesen. Die Operationalität dieser Fernerkundungsmethodik zum 

Bodenfeuchte-Monitoring ist jedoch noch nicht gegeben. Grund dafür ist im Wesentlichen 

die Signalüberlagerung unterschiedlicher system- und objektspezifischer Faktoren und deren 

limitierender Einfluss auf die Interpretierbarkeit der vom Radiometer registrierten Strah-

lungstemperatur hinsichtlich Bodenfeuchte. Bei der Verwendung von Mikrowellenradiome-

tern über vegetationsbedeckten Böden kommt es zu Signalüberlagerungen bis zu endgülti-

gem Verlust der Bodenfeuchteinformation am Signal, in Abhängigkeit von der „störenden“ 

Vegetationsschicht. Zur Erfassung räumlich verteilter Bodenfeuchte mittels L-Band Radio-

metern ist es demnach essentiell Informationen über die räumliche Verteilung von Vegetati-

onsparametern (z.B. Blattflächenindex – LAI, Pflanzenwassergehalt, Biomasse) bereitzustel-

len und in Modellrechnungen einzubeziehen. 

Im Zusammenhang mit dem aufgezeigten Hintergrund bzgl. des Vegetationseinflusses auf 

das Mikrowellensignal behandelt das vorliegende Promotionsvorhaben die gemeinsame 

Analyse von flugzeug-getragenen L-Band Mikrowellenradiometerdaten (50 m geometrische 

Auflösung) und abbildenden Spektrometerdaten (1.5 m geometrische Auflösung). Flugzeug-

getragene abbildende Spektrometerdaten verfügen über ein hohes Potential zur Vegetations-

analyse und enthalten aufgrund ihrer hohen räumlichen Auflösung (< 5 m) Informationen 

über die Subpixelheterogenität von Vegetationseigenschaften innerhalb räumlich geringer 

aufgelöster L-Band Daten. Die Ableitung der Bodenfeuchte im Rahmen dieser Arbeit erfolg-
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te auf Getreideflächen (Wintergerste, Winterroggen) während der Fruchtentwicklungsphase. 

Eine besondere Charakteristik des Datensatzes ist die sehr geringe Bodenfeuchte (< 15 Vol. 

%) am Tag der L-Band Datenakquise, welche im Rahmen einer Feldkampagne in-situ ge-

messen und als Referenz verwendet wurde. 

Die zentralen Zielsetzungen dieser Arbeit können demnach folgendermaßen zusammenge-

fasst werden: 

1. Besteht ein Zusammenhang zwischen sub-skaliger LAI Variabilität und der 

räumlich hochauflösenden „Strahlungstemperatur“ passiver Mikrowellenferner-

kundungsdaten des L-Bandes? 

2. Ermöglicht der Einsatz von spektralen Vegetationsindizes die Charakterisierung 

des Vegetationseinflusses und damit die Ableitung von Bodenfeuchte aus L-

Band Daten mittels „einfacher“ empirischer Modelle innerhalb eines Getreide-

bestandes? 

3. Wie beeinflusst die Temperaturinformation die Bodenfeuchteergebnisse bei der 

Verwendung des „land surface parameter retrieval model“ (LPRM)? 

4. Besteht ein Zusammenhang zwischen inner-schlagspezifischen Variationen der 

Vegetationsdecke und dem Rauhigkeitsparameter bei der Verwendung des „land 

surface parameter retrieval model“ (LPRM)? 

Die vorliegende Arbeit zeigt, dass auftretende Variabilitäten des LAI innerhalb eines Getrei-

debestandes das Mikrowellensignal nachweislich (0.23 < R² > 0.90) beeinflussen. Weiterhin 

können mittels einfacher empirischer Modelle unter Verwendung von hyperspektralen Vege-

tationsindizes sehr gute (RMSE = 0.82 Vol. %) Bodenfeuchteergebnisse erzielt werden. Der 

Vorteil dieser Datenkombination liegt in der sehr guten Charakterisierung der Heterogenität 

von Vegetationseigenschaften auch innerhalb eines Vegetationsbestandes. Die Ableitung 

von Bodenfeuchte mittels LPRM unter Verwendung eines „default“ Wertes zur Rauhig-

keitsparameterisierung erzielte keine zufriedenstellenden Ergebnisse. In Abhängigkeit von 

der verwendeten Temperaturinformation in LPRM wurden mittlere Unterschiede in den 

Bodenfeuchtergebnissen von bis zu 5.6 Vol. % nachgewiesen. Sehr gute Bodenfeuchtergeb-

nisse wurden dagegen erzielt bei der Verwendung räumlich variierender Werte für die Rau-

higkeit. Die räumlich variierenden Rauhigkeitswerte wurde durch eine Optimierung von 

LPRM mittels Monte-Carlo Simulation erzielt. Zwischen den optimierten Rauhigkeitswerten 

und NDVI (normalized difference vegetation index) Werten, berechnet aus den abbildenden 

Spektrometerdaten, wurde ein klarer Zusammenhang (R² = 0.57) gefunden. Die Ergebnisse 

der Arbeit zeigen insbesondere das hohe Potential der gemeinsamen Auswertung von passi-

ven L-Band Mikrowellendaten und Vegetationsindizes, berechnet aus abbildenden Spektro-
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meterdaten zur Ableitung räumlich verteilter Bodenfeuchte. Da der Einfluss von Vegetati-

onseigenschaften räumlich stark variieren kann, besteht eine räumliche Variabilität in der 

Genauigkeit der Bodenfeuchteberechnung.  

Die Integration von spektralen Vegetationsindizes zur Quantifizierung des Vegetationsein-

flusses an der L-Band Strahlungstemperatur verspricht operationelle Umsetzbarkeit. Die 

Kenntnisse über den Zusammenhang von Rauhigkeitsparameter und NDVI können verwen-

det werden um eine räumliche Optimierung der in physikalisch-basierten Modellen verwen-

deten Rauhigkeitswerte durchzuführen. In diesem Zusammenhang besteht die Anforderung 

an ein Monitoring des Verhaltens von Modellparameter (Rauhigkeit) zu Vegetationsparame-

ter oder Vegetationsindizes in Abhängigkeit von der Art der Vegetation, der Phänologie und 

der damit verbundenen zeitlichen Dynamik innerhalb von Vegetationszyklen. Der Ausbau 

Bestehender sowie die Neueinrichtung terrestrischer Sensornetzwerke (z.B. TERENO) zur 

Bodenfeuchte- und Temperaturmessung oder dem Vegetationsmonitoring, ermöglichen die 

Bereitstellung von zeitlich hoch aufgelösten Referenzdaten zur Validierung aktueller und 

zukünftiger Fernerkundungsdatenprodukte wie z.B. SMOS, SMAP oder EnMAP. 
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1. Introduction 

1.1 Importance of spatial distributed soil moisture information 

The soil moisture of the upper few centimetres plays an important role for many atmospheric 

and land surface processes related to meteorology, climatology and hydrology (Western et 

al. 2004). Global, continental and regional observations of soil moisture are particularly 

important for weather and climate forecasting (Huszar et al. 1999, Li et al. 2007). In meteor-

ology soil moisture determines the partitioning of net radiation into latent or sensible heat 

components. Spatio-temporal dynamics of soil moisture are connected to hydrological proc-

esses like evapotranspiration, infiltration and surface runoff (Hupet et al. 2002). Soil mois-

ture of the top few centimetres plays a key role in limiting evapotranspiration when the at-

mospheric demand is high (Ivanov et al. 2004). The response of natural catchments to pre-

cipitation depends on the spatial and temporal resolution of surface runoff generation which 

in turn is strongly related to the initial wetness condition (Vivoni et al. 2007). Spatio-

temporal characteristics of surface soil moisture patterns provide information about the posi-

tion of the water table (Troch et al. 1993). Soil moisture can vary significantly on diurnal 

basis, especially for short vegetation canopy. The widely applied Soil & Water Assessment 

Tool (SWAT) to predict the influence of land management practice on water, sediment and 

agricultural chemical yields in large complex watersheds requires soil moisture input data. 

Soil water models play an important role in terms of estimating water use, water allocation 

and water status at a specific spatial scale (Ranatunga et al. 2008). Their application is often 

hampered by the lack of specific soil moisture data for calibration to large areas or to assess 

temporal dynamics.  

Therefore, improved information about spatial distribution of soil moisture is important for 

various applications and at field scale it may benefit: 

- agricultural practice and irrigation management (Bastiaanssen et al. 2000, Jackson et 

al. 1987, Wigneron et al. 1998) 

- early yield forecasting (Doan Minh et al. 2003, Engman 1991) 

- early drought prediction and monitoring (Jackson et al. 1987a, Sridhar et al. 2008) 

- solute transport and erosion analyses and management because of their influence on 

water flux patterns (Castillo et al. 2003, Jackson et al. 1987b) 

- flood forecasting though improved modelling of surface runoff and infiltration 

(Bindlish et al. 2009, Crow et al. 2005) 
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1.2 Methods to retrieve soil moisture  

Various needs for soil moisture observations require different measurement techniques that 

can generally be distinguished in in-situ (point) measurements, soil-water models and re-

mote sensing techniques. 

The gravimetric technique, as a destructive field sampling, is the standard for the calibration 

of all other methods to determine soil moisture. The method consists of oven drying soil 

samples (105°C, ~48 h) until a constant weight. The amount of soil water content is usually 

expressed as volume percentage (Vol. %) by using a defined cylindrical tube. This method is 

technically simple but has a high effort on man power, field and laboratory equipment and is 

time consuming. Furthermore it is destructive and for temporal monitoring or large area soil 

moisture sampling circumstantial and extensive. For ground based soil moisture monitoring 

generally indirect measurement techniques are applied in which sensors are plunged in the 

soil or are permanently installed into the soil to record quasi continuous data. These methods 

make use of the impulse propagation of an electromagnetic pulse within the soil which is 

mainly dependent of the soil water conditions. 

The neutron scattering method as a nuclear technique estimates the soil moisture content by 

measuring the thermal or slow neutron density (Belcher 1950). Neutrons with high energy 

are emitted by a radioactive source into the soil and are slowed down by nuclei of atoms and 

become thermalized. The collision with hydrogen can slow fast neutrons much more effec-

tively than any other element present in the soil. Therefore, the density of the resultant cloud 

of slow neutrons is a function of the moisture content in the soil. The number of slow neu-

trons returning to the detector is counted per unit time and the soil moisture content is de-

termined using a known calibration curve of counts versus volumetric water content.  

Electromagnetic techniques, such as frequency domain reflectometry (FDR) and time do-

main reflectometry (TDR) depend upon the effect of soil moisture on the dielectrical proper-

ties of the soil. Dry soil has a dielectric constant near 5 whereas that of water is 80. Capacit-

ance or resistivity between electrodes in a soil is measured for soil moisture. Using TDR 

devices high frequency electromagnetic waves are transmitted and the dielectric permittivity 

is determined by measuring the time it takes for an electromagnetic wave to propagate along 

a transmission line that is surrounded by the soil. The information required is obtained from 

a reflection vs. frequency graph and transferred to soil moisture values using a calibration 

function. Tensiometer measures the capillary tension or the energy with which water is held 

(suction) by the soil. Breakdowns appear mainly during dry conditions and a regular mainte-

nance is required. 
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Soil water models play an important role in agricultural water management and vary much 

in their complexity (Ranatunga et al. 2008). Soil water models include soil water flow equa-

tions and are based upon the conservation of mass to determine soil moisture at any time. 

Such models can be used to estimate soil moisture at various depth and different spatial and 

temporal resolutions. TOPMODEL is a widely used rainfall-runoff model to predict soil 

moisture distribution within catchments (Beven et al. 1979). These models usually require 

extensive meteorological and site specific input parameterization. Data assimilation using 

remote sensing derived spatial distributed near surface soil moisture information can be ap-

plied in such models for calibration purpose and to provide soil moisture information at 

much greater depth (Houser et al. 1998, Walker et al. 2001). 

Remote sensing techniques to retrieve soil moisture are performed using portions of the visi-

ble (0.4 – 0.7 µm), near (0.7 – 1.4 µm), shortwave (1.4 – 3.0 µm), thermal infrared (8.0 – 15 

µm) and microwave (1 mm – 1 m) electromagnetic spectrum. Dependent on the specific 

sensors remote sensing offers the opportunity to estimate soil moisture and appearing spatial 

patterns at various spatial scales (field to global scale). 

Penetration depth with optical remote sensing is significantly lower compared to microwave 

sensors. Reflected solar energy within the visible spectrum responds to only the top few 

centimetres of the soil profile (Idso et al. 1975). Increasing soil moisture up to a specific 

level entails a decrease in reflectance values in the visible and short wave infrared. Surface 

covariates to account for during soil moisture analyses are soil texture, surface roughness, 

organic matter, crust and vegetation cover (Capehart et al. 1997). Using the visible region of 

the electromagnetic spectrum, the soil moisture retrieval is based on measurements of the 

surface albedo (Jackson et al. 1976). The normalized soil moisture index (NSMI) is pro-

posed to assess near surface soil moisture directly in the field using spectrometer measure-

ments of the shortwave infrared at 1800 nm and 2119 nm (Haubrock et al. 2008a). However, 

the found coefficient of determination was not outstanding with R² = 0.61. Nevertheless, the 

NSMI was applied and validated over a lignite mining area with a coefficient of determina-

tion of R² = 0.82 using airborne imaging spectrometer data to quantify multi-temporal sur-

face soil moisture (Haubrock et al. 2008b). The most constraining criterion for the use of 

optical remote sensing data are the limited applicability to non- or very low vegetated soils 

and the requirement of optimal solar illumination conditions, therefore limiting the observa-

tions to day time and to areas with no cloud cover. 

Soil moisture retrieval using thermal infrared (TIR) data are based on the effect of water on 

the thermal properties (heat capacity, thermal conductivity) of the soil. In turn, thermal 

properties effect the surface radiant temperature and the soil resistance to diurnal changes of 
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temperature caused by external (solar radiation, air temperature, relative humidity, cloudi-

ness) meteorological influences (Schmugge et al. 1980, Van de Griend et al. 1985). Good 

correlations were found between the diurnal range of soil temperature and soil moisture. 

Although, no unique relationship exist between temperature determined from TIR data and 

soil moisture for vegetation covered soils. Since for vegetated soils the surface temperature 

is an integrated value, including temperature effects of the vegetation layer and the soil the 

vegetation contribution has to be considered for soil moisture analyses. 

Remote sensing using microwave sensors measure the electromagnetic radiation in the mi-

crowave domain between 0.75 and 100 cm, corresponding to frequencies between 40 GHz 

and 0.3 GHz. This microwave region is subdivided into specific bands, which are generally 

referred to by a lettering system (see table 1). Microwave remote sensing signals over bare 

soil targets are very sensitive to soil water content as it is directly linked to the soils dielec-

tric constant which increases with increasing water content (Schmugge 1978, Ulaby 1986). 

For soil moisture retrieval studies the most important frequency bands are the L-, C- and X- 

band. 

 

Table 1-1. Microwave bands (Lillesand et al. 1994) 

Band Wavelength [cm] Frequency [GHz] 

Ka 0.75 – 1.10 40.0 – 26.5 

K 1.10 – 1.67 26.5 – 18.0 

Ku 1.67 – 2.40 18.0 – 12.50 

X 2.40 – 3.75 12.5 – 8.0 

C 3.75 – 7.50 8.0 – 4.0 

S 7.50 – 15.0 4.0 – 2.0 

L 15.0 – 30.0 2.0 – 1.0 

P 30.0 – 100.0 1.0 – 0.3 
 

The basic approaches in microwave remote sensing are distinguished into two categories: 

active and passive. Both, the radar backscattering coefficient and the brightness temperature 

measured by microwave radiometers depends on the incidence angle, frequency, wave-

length, polarization and dielectric properties of the soil. Furthermore the sensitivity of both 

data products to soil moisture is hampered by surface roughness and vegetation. 

Active sensors make use of a radar antenna, which transmits specific wave pulses and re-

ceives a return signal (reflectivity) whose intensity varies with the characteristics of the ob-

served target. The signals send and received by a radar are usually polarized horizontally or 

vertically. The relationship between radar backscatter and dielectric constant is highly non-
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linear. Using either, empirically and physically based soil moisture retrieval algorithms site 

specific successful results (R² > 0.9 between observed and modelled soil moisture) may be 

obtained for bare soils and vegetated soils at macro- scale (Bindlish et al. 2000, Srivastava et 

al. 2009). The model performance was generally found to be lower for vegetation covered 

soils as the backscattering coefficient of the soil is attenuated by the vegetation layer (Ulaby 

et al. 1982). Some studies found that the correlation between radar backscatter at C-band and 

soil moisture was poor at field scale and higher correlation where found at catchment scale 

where site specific effects seemed to average out (Alvarez-Mozos et al. 2005, Cognard et al. 

1995). The vegetation effect on C-band may be even as significant as it is applicable for 

vegetation biomass retrieval (Mattia et al. 2003, Wigneron et al. 1999). The advantage in 

using mapping radar techniques compared to microwave radiometers is the higher spatial 

resolution. Therefore radar data is also proposed to support soil moisture studies within dis-

aggregation procedures using passive L-band data (Narayan et al. 2006, Piles et al. 2009). 

The first experiment to estimate soil moisture from microwave radiometers was performed 

in the 1970s (Schmugge et al. 1974). L-band penetrates vegetation better than C-band and 

X-band. Consequently passive microwave remote sensing of soil moisture at L-band is 

found as the most promising technique for global soil moisture monitoring except over dense 

forests (Prigent et al. 2005, Wagner et al. 2007, Wigneron et al. 2003). The background of 

this technique is the effect of the dielectric properties of the soil on the natural microwave 

emission from the soil (Schmugge et al. 1980). The dielectric constant can be calculated as a 

function of soil moisture and other soil parameters such as soil texture, soil salinity and bulk 

density. The most widely used dielectric models within the low frequency range (1-20GHz) 

are the Dobson Model (Dobson et al. 1985) and the Wang-Schmugge Model (Wang et al. 

1980). 

The brightness temperature TB at L-band over a smooth bare soil measured by a radiometer 

is given by 

sPB TeT ⋅= ,         (1.1) 

where ep is the soil emissivity at a specific polarization p (horizontal or vertical) and Ts the 

soil temperature. The equation (1.1) is determined from Plank’s blackbody law through the 

Rayleigh-Jeans approximation for microwave frequencies (Schmugge 1985). Kirchhoff’s 

reciprocity theorem relates the emissivity to the reflectivity rs by 

sP re −=1 .         (1.2) 

The value range of soil emissivity exhibits from around 0.95 for dry soil (~ 5 Vol. %) to 

around 0.6 for wet soil (~ 40 Vol. %). Furthermore the soil layer depth contributing to the 
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soil emission depends on the soil moisture itself (Jackson et al. 1996, Schmugge 1983). If 

the soil is very wet, the soil emission originates mainly from layers at the soil surface. Con-

versely, for dry soils the emission contributing soil layer at L-band is deeper (e.g. more than 

1 m for dry sand). In other words, the soil moisture retrieval using passive L-band data is 

typically dynamic in depth, as the soil goes from moist to dry, the depth to which the soil 

moisture estimate corresponds increase, since the depth over which the microwave emission 

originates increases. The impact of surface roughness on the soil emissivity is probably the 

most discussed parameter in soil moisture studies at L-band. In Wigneron et al. 2007 the 

roughness parameter is defined “as an effective parameter that accounts for (i) “geometric 

roughness” effects, in relation with spatial variations in the soil surface height, and (ii) “di-

electric roughness” effects in relation with variation of the dielectric constant at the soil sur-

face and within the soil which can be caused by non-uniformities in the soil characteristics”. 

For rougher surfaces, the emissivity increases and the sensitivity to soil moisture decreases 

(Newton et al. 1980, Wang 1983). This effect may be interpreted as an increasing in soil 

surface area increases the emissivity. The roughness effect itself depends on the observation 

configuration, in terms of polarization and incidence angle and the soil moisture conditions. 

Above the soil, vegetation emits microwave radiation, whilst it absorbs and scatters the ra-

diation coming from the soil (Jackson et al. 1996, Van de Griend et al. 1985). Therefore, the 

sensitivity of the passive L-band microwave signals to soil moisture changes depending on 

the characteristics of the soil coved vegetation. A more detailed discussion about vegetation 

specific influence on the L-band brightness temperature is provided in section 1.3 since it 

represents a major topic of this study. 

Furthermore, in preparation of satellite missions and to support studies related to hydrology 

and climate numerous airborne L-band radiometer campaigns were performed during the last 

two decades. The probably most important experiments and basis for important studies re-

lated to soil moisture retrieval are collected in table 1.2. 
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Table 1-2. Overview of important L-band radiometer campaigns. 
campaign spatial resolution reference 
HAPEX, 
FIFE, 
MONSOON ’90 

~ 100 m 
Schmugge 1992, Wang 
et al. 1990 

PORTOS’91, 
PORTOS’93 

not defined (field scale, 
several rows) 

Wigneron et al. 1993, 
Wigneron et al. 1995 

Washita’92 coarse scale (200 m) Jackson et al. 1995 
Southern Great Plains’97 coarse scale (800 m) Jackson et al. 1999 
Southern Great Plains’99 coarse scale(> 100m) Njoku et al. 2002 
EuroSTARRS 2001 multiple scales (< 100m) Saleh et al. 2004 
SMEX’02 400 m Narayan et al. 2006 
SMEX’03 not defined Ryu et al. 2007 
SMEX’04 2 km, 3 km Jackson et al. 2005 
NAFE’05 1 km – 62.5 m Panciera et al. 2008 
NAFE’06 1 km Merlin et al. 2008 
SMAPVEX’08 1 km, 2.1 km, 4.2 km Majurec et al. 2009 
 

On November 2nd 2009 the European Space Agency’s SMOS (Soil Moisture and Ocean 

Salinity Mission) satellite was launched as a first satellite using L-band specific for global 

soil moisture observations (Kerr et al. 2001). SMOS aims to provide global soil moisture 

maps with an accuracy better than 4 Vol. % every 3 days and a spatial resolution of ~ 40 km. 

The NASA’s Soil Moisture Active and Passive Mission (SMAP) is planned to be launched 

in 2013 (Entekhabi et al. 2010). SMAP combines L-band radar and L-band radiometer, al-

lowing simultaneous active and passive microwave observations of the same land surface 

target. By combining the radar and radiometer measurements in a joint retrieval algorithm, 

fine resolution (10 km) soil moisture maps will be provided.  

 

1.3 Vegetation influence on passive L-band data 

The retrieval of soil moisture and biomass are the fundamental applications of passive mi-

crowave remote sensing. Estimations of soil moisture from thermal microwave radiation are 

significantly affected by the soil’s vegetation cover. For L-band microwave emission, the 

optical depth τ, defined as a one-way canopy absorption factor, is applied to parameterize 

the attenuation effect of the overlaying vegetation (Kirdyashev et al. 1979). Under most 

vegetation and soil conditions, the radiometric soil moisture sensitivity decreases approxi-

mately exponentially with increasing optical depth τ (Du et al. 2000). The scattering and 

absorption effects of L-band within a canopy are mainly affected by vegetation dielectric 

and geometrical characteristics. 

Vegetation optical depth τ at L-band is well correlated to the dielectric properties and the 

vegetation water content (vwc) and increases with increasing water content (Jackson et al. 
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1982). Vegetation water consequently reduces the transmission of the soil brightness tem-

perature. In several studies found in literature the optical depth τ is linearly related to the 

vegetation water content (Jackson et al. 1991, Panciera et al. 2009, Van de Griend et al. 

2004). The effect of vegetation structure plays a significant role on the optical depth of 

standing vegetation (Saleh et al. 2006, Wigneron et al. 2007). Microwave emissivity at L-

band is well correlated with soil moisture as the vegetation optical thickness is low for nar-

row vegetation layers and low biomass (Ferrazzoli et al. 2000, Jackson et al. 1991). 

Whereby, the vertical polarization suffers more vegetation effects than the horizontal polari-

zation. However, if vegetation effects are considered in soil moisture studies, the vertical 

polarization is less sensitive to soil roughness variations and may be preferred for soil mois-

ture estimations from soils with unknown roughness characteristics. Emissivity at L-band 

horizontal polarization over a whole wheat growing cycle showed an increase during the 

crop growing and decrease during crop drying (Ferrazzoli et al. 2000). This phenomenon is 

generally interpreted according to a very low scattering in the upper hemisphere of a wheat 

crop as a result of the near-vertical orientation of the stems and ears. Therefore, wheat be-

haves similarly to an absorbing layer. Furthermore the optical depth τ  is strongly influenced 

by the incidence angle of the observation. The horizontal polarized brightness temperature 

suffers more attenuation through the vegetation at lower incidence angles. Therefore, gener-

ally higher incidence angles (incidence angle > 20°) are applied for soil moisture retrieval. 

Vegetation effects on observed brightness temperature can be approximated well by a radia-

tive transfer equation. The emission of vegetation canopy at L-band is usually expressed by 

the so called τ – ω model which is a zero-order solution of the radiative transfer equation 

proposed by Mo et al. 1982 and applied in numerous studies (Brunfeldt et al. 1984, 

Brunfeldt et al. 1986, Jackson et al. 1991, Mo et al. 1982, Van de Griend et al. 1996, 

Wigneron et al. 1995). The zero-order solution assumes that the vegetation scattering phase 

matrix can be neglected for L-band. This model based on the optical depth τ and the single 

scattering albedo ω, which are used to account for the vegetation attenuation properties and 

the scattering effects within the vegetation canopy. 

Beside incidence angle and polarization, in real application the vegetation influence varies 

from pixel to pixel, with the spatial resolution of the observation and with the phenological 

stage. Therefore, achieved relationships between the optical depth τ  and a specific vegeta-

tion parameter (e.g. LAI or vwc) are valid only for a very specific phenological stage and 

site characteristics (e.g. soil type). For instance, model parameters evaluated e.g. for winter 

wheat during tillering are not consequently appropriate for applications at another 

phenological stage because of the high variation of vegetation water content and biomass 

during the growing cycle. Furthermore, model parameters retrieved on a specific spatial 
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scale (e.g. 200 m pixel resolution) using specific observation characteristics (polarization, 

incidence angle) can not simply applied on data sets having other observation characteristics. 

For example using the soil moisture retrieval algorithm proposed by Jackson et al. (1999) for 

800 m TB observations Uitdewilligen et al. (2003) had to redefine the parameters for the 

data with a pixel resolution of 200 m in cause of underestimation. The higher resolution data 

required more site specific calibration. 

At coarse scale (e.g. SMOS with ~ 40 km spatial resolution) significant spatial heterogeneity 

of soil moisture and vegetation cover appears (Panciera 2009). The effect of vegetation opti-

cal depth τ heterogeneity (0 – 0.6) was found to be significant with 6.1 Vol. % for computed 

soil moisture using simulated data for SMOS observation characteristics (Davenport et al. 

2008). Therefore, the SMOS soil moisture retrieval algorithm account for the sub-pixel het-

erogeneity of land surface conditions by dividing the pixel into fractions determined using 

high resolution land use maps. As the influence of sub-pixel heterogeneity varies with the 

spatial footprint, scale dependent parameterizations of vegetation conditions are required. 

Therefore, a major research interest is the analyses and interpretation of vegetation effects on 

a sub-pixel scale level for different spatial resolutions to reduce the error in soil moisture 

estimates. 

In general studies dealing with the problem of land surface heterogeneity on L-band soil 

moisture products can be categorised in i) analytical studies, ii) simulation experiments and 

iii) experimental data analyses. An overview about studies on sub-pixel heterogeneity is 

presented in table 1-3. In due to the physical nature of microwave radiometry at L-band the 

most analyses are performed on coarse scale data that represents spatial resolutions > 100 m 

within this thesis. The advantage of using analytical studies or simulated data sets is the 

great potential in analysing many different signal influencing factors at the same time and 

under controlled conditions (e.g. incidence angle, temperature fields). Simulation experi-

ments apply more realistic connections of value ranges (e.g. for LAI, vwc, soil moisture, soil 

temperature) between different land surface factors. Ancillary data is generally derived from 

land surface process models. For example, the simulation experiment performed by Loew 

and Mauser (2008) showed strong scale dependent soil moisture retrieval errors on different 

coarse scales.  
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Table 1-3. Overview of analytical studies, simulation experiments and experimental 
studies according to sub-pixel influence of various surface parameters. 

Analytical studies 
factor spatial scale reference 
soil moisture, soil tempera-
ture, vegetation 

not defined Njoku 1996 

soil type  Galantowicz et al. 2000 
perturbation around mean 
soil moisture values, soil 
temperature, soil texture, 
NDVI (as proxy for vwc) 

800 m Bindlish et al. 2002 

soil moisture, soil surface 
roughness, vegetation optical 
depth, (single and multi-
angle data) 

not defined Davenport et al. 2008 

multi-angle data 30 km Van de Griend et al. 2003 
land cover specific vwc 50km Burke et al. 2004 
Simulation experiments 
multi-angle, bi-polarised, 
soil texture, land cover, vwc, 
soil moisture 

1km, 40 km Loew et al. 2008 

Experimental studies 
vwc, soil texture, soil mois-
ture 

see SGP’97  
(table 1.2) 

Burke et al. 2003 

soil hydraulic conductivity, 
landuse, NDVI 

see SGP’97  
(table 1.2) 

Bindlish et al. 2002 

soil moisture, vegetation 
cover, soil temperature, soil 
texture, surface roughness 

see NAFE’05 
(table 1.2) 

Panciera 2009 

 

Nevertheless, in reality the quantities of surface parameters and the intermixture of land 

surface patches varies and consequently hamper the transfer of parameter values, proposed 

correlations and methods. Obviously there is a lack of information based on experimental 

data to address the effect of vegetation on high spatial resolution brightness temperature 

observations at L-band within a vegetation canopy previously have been assumed homoge-

neous (e.g. agricultural fruits). 

 

1.4 Research objectives and thesis organisation 

Given the deficit mentioned above, the aim of the study is the assessment of surface soil 

moisture below a crop representing a vegetation canopy that previously had been assumed to 

be homogeneous. Therefore the thesis deals with the analyses of experimental high spatial 

resolution L-band radiometer data according to i) its vegetation influence and ii) its sensitiv-

ity for soil moisture retrieval over crops during dry conditions. The key questions of the 

study are as follow: 
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1) Is there a unique relationship between LAI and high spatial resolution L-band 

brightness temperature at sub-pixel level? 

2) Does the combined use of L-band data and hyperspectral vegetation indices provide 

reasonable estimates of surface soil moisture using empirical models? 

3) How strongly does the temperature information affect the soil moisture estimates 

using the land surface parameter retrieval model (LPRM)? 

4) Is there a relationship between within field variations of the vegetation canopy and 

the roughness parameter used with the land surface parameter retrieval model 

(LPRM)? 

Therefore, the study involves: 

- collection of airborne L-band radiometer and imaging spectrometer data  

- collection of ground truth data 

- assessment of the effect of inner-field heterogeneities of a “pseudo”- homogeneous 

vegetation layer on the microwave emission 

- understanding the link between vegetation characteristics and spatial dynamic of L-

band brightness temperature observations 

- testing empirical models for soil moisture estimation using spectral narrow band 

vegetation indices to account for the spatially changing optical depth 

- testing of the land surface parameter retrieval (LPRM) approach as a physically 

based model to retrieve soil moisture below a crop canopy 

Chapter 2 provides information about the experimental data set and test site characteristics. 

Campaign specific information about the characteristics and data handling for the airborne 

passive microwave data and applied imaging spectroscopy data is given. The field data sam-

pling of soil moisture and vegetation characteristics is described. A correlation analyses 

between LAI and brightness temperature observations and calculated emissivity for crops is 

performed in Chapter 3. Within Chapter 4 a combined empirical analyses of L-band radi-

ometer data and spectral vegetation indices for surface soil moisture retrieval is presented. 

Chapter 5 evaluates the performance of the land surface parameter retrieval (LPRM) to 

compute soil moisture for the test sites and occuring soil moisture conditions. Chapter 6 

gives a general conclusion and recommendation for future work. A summary about the com-

plete thesis is presented in Chapter 7. 

The chapters of this thesis, apart from the introduction (Chapter 1), the general conclusion 

(Chapter 6) and summary (Chapter 7), have been written as stand alone manuscripts to be 

submitted for peer reviewed scientific journals. Hence, Chapter 3, 4 and 5 can be read sepa-

rately from the rest of the thesis. As a result, overlaps occur mainly in the chapters “Intro-

duction” and “Data”. 
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2. Test site and data set 

The investigations carried out  within this study were focussed on crops, namely winter bar-

ley (~27 ha) and winter rye (~37 ha). The test sites are located in south-east Germany near 

the city Leipzig (see figure 2-1). Land use in the area is dominated by agricultural crop pro-

duction. The specific selection of the two test fields was determined by factors such as ac-

cessibility and the fact that the sites are within a catchment which is well monitored in terms 

of water and nutrient fluxes. The topography is gently sloping and the fields consist of 

loamy sand with ~ 52 % sand and ~ 11 % clay. 

The airborne remote sensing and field data collected within this study belongs to very early 

TERENO (Terrestial Environmental Observatories, Bogena et al. 2006) activities within the 

Harz/Central German Lowland observatory which is coordinated by the Helmholtz Centre 

for Environmental Research – UFZ in Leipzig. Within TERENO, these data are part of the 

long term monitoring concept for hydrological process studies of the local and regional 

scale. 

Within this chapter, section 2.1 and section 2.2 give information about the airborne remote 

sensing data, main sensor characteristics and data specific processing steps respectively us-

ing an L-band radiometer and an imaging spectrometer. Note that each of the two remote 

sensing data products is available for only one day with a time shift of 15 days between the 

passive microwave and imaging spectrometer data. Section 2.3 provides information about 

the field data collected during the whole growing cycle from the specific test sites in the year 

2008. 

 
Figure 2-1. Location of the two crop sites within Germany and the Harz/Central German 

Lowland observatory of TERENO. 
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2.1 Airborne L-band microwave radiometer data 

The passive microwave data was achieved with the Polarimetric L-Band Multi-beam Radi-

ometer (PLMR) developed by ProSensing (ProSensing Inc. USA) and owned by an Austra-

lian scientific consortium. For the flights in Germany, the sensor was fitted to the Enviscope 

Partenavia PA68 D-GERY. On May 26, 2008 (DOY 147) four test areas within the TERE-

NO Harz/Central German Lowland observatory were flown (see figure 2-2) to collect pas-

sive microwave brightness temperature data. The background for the initialization of the 

campaign was the evaluation of the PLMR sensor for long-term soil moisture monitoring in 

TERENO. Consequently the L-band data is available at only one day and for the adjacent 

soil and vegetation conditions (see section 2-3) because there was a temporal scope of de-

mand. 

 
 

Figure 2-2. Location of the four test sites flown with the PLMR on May 26, 2008 as part 
of the TERENO Harz/Central German Lowland observatory. (Note that soil 
moisture and vegetation analyses were performed only for the data set 
Grossbardau.) 

 

All analyses within this study related to the outlined issues (see section 1.4) are performed 

using the Grossbardau data because of its site characteristics and the availability of appropri-

ate ground truth data. The PLMR observations for Grossbardau were obtained between 9 

and 10 am in the morning. 
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PLMR is a dual-polarized L-band radiometer which uses six pushbroom patch array receiv-

ers with incidence angles of 7°, 21.5° and 38.5° (see figure 2-3). Vertical and horizontal 

brightness temperature is measured for each beam position using a polarization switch. The 

six beams were orientated across track to provide an image. A reduced antenna beam width 

and a specific flight plan, flying low and slow, ensured a final pixel size of 50 m. All radi-

ometric and geometric pre- and post flight calibration were performed by Airborne Research 

Australia (Adelaide/Australia). 

 
Figure 2-3. PLMR viewing angles. 
 

During the campaign warm (blackbody) and cold (sky) point calibrations were performed 

before and after each flight. Figure 2-4 presents the PLMR sensor during cold point calibra-

tion. Each target (blackbody or sky) was observed for 15 minutes. Beam specific calibration 

coefficients of the brightness temperature at both polarizations were retrieved by averaging 

pre- and post-flight coefficients. The radiometric calibrated PLMR data were georectified 

taking into consideration the geographical position and inertial navigation information (roll, 

pitch, yaw) recorded for each measurement. The beam centres were projected on a 90 m 

digital elevation model of the study sites. 
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Figure 2-4. PLMR during cold point calibration orientated to the sky. The picture was 

made during another campaign in Narranda, Australia in December 2009. 
 

Over homogeneous bare soil target, the measured TB is affected by the viewing angles 

(Ulaby 1986). The angular variations on observed horizontal and vertical brightness tem-

perature can be described by the Fresnel equations and differ depending on the land surface 

characteristics and conditions and have to be considered during data analyses. Previous stud-

ies using similar instruments applied normalization procedures to mixed land covers 

(Jackson 2001, Jackson et al. 1999). This procedure assumes that the deviation between 

beam positions is due to the Fresnel effect and that for individual beams the calibration er-

rors are constant for a range of soil moisture and vegetation conditions. Using single flight 

lines for this correction can lead to errors if the land surface heterogeneity is strong. There-

fore, mostly daily averages of viewing angle dependent TB data were used to calculate cor-

rection terms for the individual beam positions. This assumption should be not valid in the 

TERENO study area and for the collected PLMR data, since the test sites show high varia-

tions in their land surface characteristics that result in different microwave response as can 

be seen on the value range of the horizontal TB data in figure 2-2. Hence, for the data used 

in this study, no campaign averages of the TB data were used to calculate correction terms 

for viewing angle normalization. Therefore, only flight line sections were applied to calcu-

late correction terms. These were selected individual for each test site over an area with 

known and homogeneous land surface conditions. As the applied procedure is part of a fur-

ther section, more detailed and site specific information is provided in chapter 4.3.1 and 

4.4.1. Nevertheless, as the viewing angle influence visually appears as a stripe effect, an 

example of pre- and post correction is presented in figure 2-5. As can be seen, the results 

differ depending on the polarization and the horizontal TB image appears smoother. 
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Figure 2-5. PLMR brightness temperature of horizontal and vertical polarization before 

and after viewing angle normalization. 
 

To obtain surface soil moisture estimates from passive microwave observations, knowledge 

about the soil effective temperature is required as the emission at L-band is a function of the 

physical temperature of the emitting layer. It is not possible to measure soil temperature 

below a vegetation canopy using satellite or airborne remote sensing techniques. However, 

the acquisition of TIR observations together with the L-band passive microwave data pro-

vides composite information about vegetation and soil surface temperature. Furthermore, 

those data can provide excellent estimates of the spatial distribution of land surface tempera-

ture since the measurements are already spatially integrated. Therefore on all PLMR flights 

also an InfraTec thermal imager was also operated to provide land surface temperature data 

TTIR (see figure 2-6). The camera detects thermal infrared radiation of a spectral range be-

tween 7.5 – 14 µm and the emissivity was set to 0.98. 

 

 
Figure 2-6. TIR land surface temperature image of the test area Grossbardau. 
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The TIR data was used to calculate surface emissivity at L-band as it is given by equation 

(1.1). Figure 2-7 presents a spatial image of calculated emissivity for the two polarizations. 

As expected from theory the emissivity for the vertical polarization is higher than for the 

horizontal data normalized to the outer beam positions. The effect can be explained by an 

increasing of the optical depth τ for the vertical polarization with increasing viewing angle. 

 

 
Figure 2-7. Spatial images of calculated emissivity from horizontal (right) and vertical 

(left) PLMR brightness temperature (normalized to 38.5°) using TIR tem-
perature data. 

 

2.2 Airborne imaging spectrometer data 

Vegetation conditions play a crucial role in the retrieval of soil moisture from passive L-

band microwave data. Since vegetation absorbs, emits and scatters microwave radiation, the 

vegetation influence on observed brightness temperature observations varies spatially and 

temporally with the vegetation conditions. Therefore, a “perfect” case would be a contempo-

rary acquisition of L-band data and an optical remote sensing data product (multi or hyper-

spectral) of similar or even finer spatial resolution to provide real-time information about the 

soil covered vegetation. 

In the framework of this study AISA Eagle (Airborne Imaging Spectro-Radiometer for Ap-

plication, SPECIM – Spectral Imaging Ltd. 2007, Finland) airborne imaging spectrometer 

data within the visible and near infrared range of the solar spectrum from 400-970 nm was 

collected. As the acquisition of hyperspectral data requires clear skies (no clouds), a flight 

could only be performed at June 10, 2008 (DOY 162). For the campaign the AISA-EAGLE 

sensor, together with a GPS/INS unit RT3100 (Oxford Technical Solutions LTD., UK) was 

fitted to the Microlight aircraft (Trike, D-MUFZ) owned by the Helmholtz Centre for Envi-

ronmental Research UFZ in Leipzig, Germany (see figure 2-8). 
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Figure 2-8. Microlight aircraft (Trike, D-MUFZ) owned by the Helmholtz Centre for 

Environmental Research UFZ in Leipzig, Germany 
 

AISA comes with the operating software RS Cube to set campaign specific frame rate, expo-

sure time and binning and monitor the GPS and INS status as well as the image quality e.g. 

in terms of saturation effect. Campaign specific settings are presented in table 2-1. During 

image acquisition the raw image file and header file, dark image data stored together with 

the raw image file, the navigation file containing GPS/ INS data and a log file containing 

information about the missing frames are recorded and stored. Radiometric calibration and 

geo-rectification is performed using CaliGeo software provided from SPECIM which runs as 

an ENVI/IDL plug-in. The data is proposed to achieve a Signal-to-Noise Ratio of 350:1 – 

500:1 depending on the spectral settings. 

 

Table 2-1. Applied AISA Eagle specifications 
parameter campaign specific setting 
spectral binning 2x 
spectral bands 252 
spectral sampling 2.3 nm 
focal length 9 mm 
FOV (field of view) 62.1° 
spatial ground resolution 1.5 m 
image rate (fps – frames per second) 30 
 

Atmospheric correction was performed using ENVI FLAASH which cooperate the MOD-

TRAN-4 radiation transfer code. The atmospheric model applied was Mid-Latitude-

Summer. The water vapour factor was set to 1. The ground visibility was greater than 40 km 

during data acquisition and the no aerosol retrieval was applied. In figure 2-9 a spatial subset 

of the AISA data set over winter rye is presented. 
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Figure 2-9. Colour infrared image of an AISA Eagle swath collected over winter rye on 
June 10, 2008.  

 

2.3 Field data sampling 

To provide information about inner-field vegetation and surface soil moisture heterogeneity 

as basic ground truth assumption for the remote sensing data analyses field campaigns were 

performed during the airborne data acquisition on DOY 147 (AISA flight) and DOY 162 

(PLMR flight). Additionally, information about the temporal behaviour of vegetation char-

acteristics and surface soil moisture is provided from field campaigns during the whole 

growing cycle. Therefore, 43 sampling points on the winter barley and 47 on the winter rye 

site were used as ground truth points (see figure 2-10) and measured in a regular 14-days-

interval. The sampling point coordinates were located using a handheld GPS device (Leica 

GS20 Professional Data Mapper, Leica Geosystems). The sampling profiles were placed 1.5 

m parallel to the machine tracks and along the complete field. This procedure avoid damage 

within the vegetation canopy and realizes the collection of within row measurements since 

the canopy very close to the machine track appears generally more dense. The differences 

can be due to slight differences in water supply, seed density and agricultural machining or 

the amount of incoming radiation. 
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Figure 2-10. Aerial photograph of the winter barley and winter rye test sites and ground 
sampling pattern located in south-east Germany. The smaller patch indicates 
the five single soil moisture measurements. 

 

Field surface soil moisture data was measured at eight field campaigns during DOY 86 and 

DOY 189 in 2008. The measurements were performed using ThetaProbe ML2x Probes (Del-

ta-T Devices, Ltd., Cambridge, UK). The probe length of 6 cm provided average moisture 

content of the upper soil layer that is representative for the signal contributing soil layer at 

L-band (Schmugge 1983). The temporal soil moisture dynamic for the growing cycle 2008 

of the two test sites is presented in figure 2-11. Around the peak of the biomass increasing 

phase (see figure 2-13 (e) and (f)) at DOY 134 and 147 the soil moisture conditions were 

very dry and the field mean soil moisture did not exceed 15 Vol. %. During this time period 

the soil surface appeared as a solid crust as a result of a longer drought. Because surface soil 

moisture appears highly variable during the day at the acquisition of the passive microwave 

data (DOY 147) soil moisture was measured + 1 h of the flight. 
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Figure 2-11. Temporal behaviour of ground measured surface soil moisture of the top 6 
cm for the winter barley (left) and winter rye (right) test site. 

 

Each soil moisture value was achieved by averaging five single measurements at each sam-

pling point location to represent soil moisture ground truth. The number of samplings is a 

compromise between operational effort and the fact of minimizing the error of the represen-

tative mean soil moisture value. For the soil moisture sampling on DOY 147 (PLMR cam-

paign), the standard error of the mean (SEMsm) was calculated by 

n

s
SEMsm =          (1.3) 

where s is the standard deviation of the soil moisture measurements and n is the number of 

the soil moisture samples. The average SEMsm is 0.63 Vol. % and the relationship of the 

single SEMsm values to the mean soil moisture value at each sampling point for DOY 147 is 

shown in figure 2-12. 
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Figure 2-12. Scatter plot of the standard error of the mean vs. the mean soil moisture 

value for the soil moisture field sampling on the winter barley and winter rye 
site on DOY 147. 

 

The monitoring of inner-field vegetation canopy characteristics were performed on six field 

campaigns for winter barley (DOY 105 – 175) and seven for winter rye (DOY 105 – 189). 

The differences in the number of campaigns are due to an early harvest of winter barley. 

Parallel to airborne remote sensing campaigns (DOY 147 and 162) leaf area index (LAI) and 

canopy height were measured at every sampling point. For all other dates, only data of every 

second sampling point was collected due to limited personal capacities. 

LAI is a dimensionless value representing the ratio of total upper leaf surface of a vegetation 

canopy divided by the land surface area on which the vegetation grows. LAI was measured 

using a LI-COR, Inc. (Lincoln, Nebraska, USA) LAI-2000 Plant Canopy Analyzer, which is 

a handheld technique and a quite rapid method for field applications. The measurement prin-

ciple relies on the strong dependency between canopy structure and gap fraction of the cano-

py. The gap fraction corresponds approximately to the transmittance of radiation of those 

wavelengths were the scattering by foliage can be neglected. As the measurements have to 

be performed under diffuse light conditions the data sampling was generally conducted at 

dawn or under clouded sky during the day. The measuring technique compares sky bright-

ness above the canopy with the below-canopy light level while the sensor is viewing sky-

wards. Light levels are detected in five conical rings, with the view zenith angle ranging 

from 0 to 75°, to infer LAI (Welles et al. 1991). To exclude the effect of varying measure-

ment orientation the below and above measurements were carried out with the same azimuth 

direction and the same observation height. At each sampling point location, three LAI meas-

urements got sampled where each single value is an average of six observations. Its seasonal 

trend for winter barley and winter rye can be seen in figure 2-13 (a) and (b). Canopy height 
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was simply measured using a foot rule by averaging ten single measurements (see figure 2-

13 (c) and (d)). 

Destructive biomass sampling was performed to retrieve fresh biomass and vegetation water 

content (vwc) in a unit of kg per m² using weighing method. Therefore, a defined frame of 

one square meter extent and divided in four sub-squares was put on the sampling point loca-

tion and three plants were taken out of two sub-squares. The plants were cut directly above 

the ground. To retrieve the stand density per m² all single plants were counted inside four 

sub squares of the frame and calculated by averaging the single counts. Because of field data 

sampling in regular intervals on the test sites, no complete square meter samples of biomass 

could be taken. The plant samples were packed in plastic bags, transported to the laboratory 

and weighed. After oven drying at 105° C until constant weight (~ 24 h) the plants were 

weighed again to calculate vwc as defined as the difference between fresh and dry biomass. 
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Figure 2-13. Temporal behaviour of vegetation parameters of winter barley and winter 
rye for the growing season 2008. 
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The vegetation monitoring also included the sampling of proxy for vegetation canopy 

“greenness”. The motivation for this was the analyses of optical remote sensing data prod-

ucts for fresh (green) biomass monitoring which is not part of this thesis. Nevertheless, the 

temporal dynamic of the leaf chlorophyll content was observed using a handheld Chloro-

phyll-Meter SPAD-502 (Minolta) (see figure 2-14). The SPAD-502 measures the transmit-

tance of plant leaves in the red and near-infrared spectral regions. The ratio of these two 

transmittances is proportional to the total leaf chlorophyll content. Ten single measurements 

were averaged at each sampling point, whereby the single measurements were collected 

from the uppermost leaves of various plants. 

 
Figure 2-14. Temporal behaviour of leaf chlorophyll content represented by SPAD chlo-

rophyll meter measurements. 
 

The airborne remote sensing and field data described provide the basis for the analyses pre-

sented in the following chapters. Note that the L-band soil moisture campaign was per-

formed only once over the test site and the soil moisture conditions at the day of the experi-

ment were very dry (~ 9 Vol. %). There was no study found in literature analysing passive 

L-band data for soil moisture retrieval under such extreme conditions and narrow value 

range (standard deviation 2.8 Vol. %). 
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3. Vegetation influence on high spatial resolution airborne L-

band brightness temperature observations on homogeneous 

land cover 

 

Vegetation structural parameter such as leaf area index (LAI) are well known for exhibiting 

significant control over passive microwave signals e.g. during the retrieval of land surface 

soil moisture conditions. Within this chapter, the functional relationship between LAI as a 

vegetation structural parameter and high spatial resolution (50 m) airborne L-band bright-

ness temperature observations at two polarizations (h, v) and two viewing angles (7°, 38.5°) 

are investigated. L-band brightness temperature and airborne imaging spectrometer data as 

well as local scale leaf area index (LAI) measurements were obtained from two test sites, a 

~27 ha winter barley and a ~38 ha winter rye field located in south-eastern Germany. Re-

gression analysis between narrow band spectral vegetation indices and local scale LAI ob-

servations allowed field-wide mapping of LAI at a 1.5 m resolution, thus providing informa-

tion about sub-pixel heterogeneity of plant structural conditions within the passive micro-

wave pixel. The results show an obvious dependency of the microwave signal dependent on 

i) the PLMR pixel average LAI, ii) sub-pixel variability of LAI, and iii) the angle of nor-

malization within field scale. 

 

3.1 Introduction 

Low-frequency passive microwave radiometers (L-band) have been found to be the most 

promising remote sensing method for monitoring surface soil moisture patterns due to the 

direct link between microwave radiation and dielectric properties, its deeper penetration into 

vegetation and its negligible atmospheric attenuation (Jackson et al. 1999, Schmugge, T. 

1983, Wagner et al. 2007). 

L-band brightness temperature (TB) has a nearly linear relationship to surface soil moisture, 

given homogeneous vegetation and soil characteristics. However, in practice, the vegetation 

influence changes spatially and has a major influence on final soil moisture products since it 

reduces the sensitivity of the observed TB to soil moisture changes (Jackson et al. 1996, Van 

de Griend et al. 1985). The vegetations optical depth characterizes the physical connection 

between vegetation cover (optical depth) and soil moisture while depending on vegetation 

dielectric properties and geometrical plant characteristics. The so called ‘τ-ω’ model is a 

widely used approach making use of the optical depth and the single scattering albedo to 

characterise the absorption and scattering of the soil signal through the vegetation canopy 
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(Mo et al. 1982). The optical depth for the microwave emission at L-band is very sensitive to 

vegetation water content in due to its direct link to the dielectric properties and can be ex-

pressed as a linear function of vegetation water content for L-band applications (Jackson et 

al. 1982, Wigneron et al. 1993). Therefore, it is validly recommended to provide information 

about vegetation water content during L-band soil moisture observations over vegetated 

areas. 

Since vegetation water content measurements are impractical from an operational viewpoint 

due to the requirements of destructive plant sampling and laboratory analyses other vegeta-

tion parameters or proxy in terms of vegetation indices are applied in soil moisture retrieval 

studies using L-band data. Parameters used to account for the optical depth are commonly 

estimated empirically and are validated for specific vegetation type and occurring 

phenological characteristics (Jackson et al. 1991, Jackson 1993, Njoku 1996). The applica-

tion of vegetation indices retrieved from land surface models (leaf area index - LAI) or opti-

cal remote sensing data (spectral vegetation indices) showed reasonable relationships to 

optical depth and to account for the vegetation influence on passive L-band microwave ob-

servations (Jackson et al. 2004, Jackson et al. 1999, Saleh et al. 2006). 

Experimental studies to investigating the effect of vegetation on soil moisture retrieval were 

performed with varying but generally coarse (> 100 m) spatial resolution (Burke et al. 2003, 

Jackson et al. 1999, Ryu et al. 2007, Saleh et al. 2004). Since the effective optical depth of a 

mixed pixel is known to be scale dependent and generally decreases with coarser spatial 

resolution, information is therefore not generally transferable between spatial scales. Ac-

cordingly, a lack of information exists for the application of high spatial resolution L-band 

data (< 100 m) for small scale analyses with the assumption of heterogeneity within a homo-

geneous land use target (e.g. agricultural crops). 

Therefore, the investigation of this paper is applied on field scale and focused on LAI as it 

represents a structural vegetation factor characterising the optical depth. The influence of 

LAI on L-band brightness temperature observations (50 m x 50 m) at horizontal and vertical 

polarization is thereby analysed on a sub-pixel level using pixel average values for LAI. 

Spatial high resolution (1.5 m x 1.5 m) data about LAI was achieved from regression models 

using field measurements and spectral narrow band vegetation indices. The latter were cal-

culated from airborne imaging spectrometer data collected over the test sites. The achieved 

grid maps of LAI produced were treated as ground truth. To investigate the viewing angle 

effect according to the mentioned issue of this study, the observed TB data was normalized 

to 7° and 38.5° viewing angles. Regression analyses with LAI as independent variable were 

finally performed for the two polarizations, a microwave polarization index and calculated 

emissivity on uncorrected and viewing angle normalized TB data (dependent variables). The 
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microwave data was achieved from flight campaigns with the polarimetric L-band micro-

wave radiometer PLMR over a test site of TERENO (Terrestial Environmental Observato-

ries, www.tereno.net) (Bogena et al. 2006) in Germany. 

Section 3.2 gives an overview about data characteristics and section 3.3 presents the results 

analyzing the relationship between LAI and the L-band brightness temperature data. This is 

followed by a discussion and conclusion in section 3.4. 

 

3.2 Data 

The data used for the presented study belongs to the TERENO/ PLMR soil moisture experi-

ment performed in May 26th 2008 over the Harz/Central German Lowland observatory. For 

the study presented here, only field and airborne data achieved from two crop sites is used 

(see figure 3-1).  

 

 
Figure 3-1. Location of the two crop sites within Germany. 
 

3.2.1 L-band brightness temperature data 

PLMR (frequency = 1.413 GHz) utilizes six pushbroom patch array radiometer receivers 

with observation angles of ±7°, ±21.5°, and ±38.5° (Panciera et al. 2008). Together with the 
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TB observations, surface temperature (TTIR) information was collected by a thermal infrared 

sensor flown together with the PLMR. The PLMR and TTIR data were pre-processed by Air-

borne Research Australia (ARA) for aircraft movement and attitude. Pre-flight and post-

flight calibration data were used at that stage. The PLMR data was provided with a ground 

resolution of 50 m. 

Since the microwave brightness temperature observations are affected by the observation 

angle (Ulaby 1986), a viewing angle normalization was performed by correction term calcu-

lations (Jackson 2001, Jackson et al. 1995). In contrast to Jackson et al. 1995 only a flight 

line section was selected from the whole PLMR data set to calculate the correction terms 

since the completely flown area is very heterogeneous. Therefore, the flight line section was 

selected within a homogeneous land surface target covering all six beam positions.  

To analyse the vegetation influence on the TB data dependent on different observation an-

gles the normalization procedure was applied to two beam positions. Therefore the PLMR 

TB data of the horizontal and vertical polarization was normalized to the 7° and to the 38.5° 

viewing angle position:  

)( ijREFijij
N
ij TBTBTBTB −+=        (3.1) 

j = viewing angle (7° or 38.5°) 

i = polarization (v - vertical or h - horizontal) 

 

ijTB  and ijREFTB  are the averages of the flight line sections selected for the viewing angle 

correction whereby the latter is the viewing angle taken as reference. 

Three processing stages; i) uncorrected TB, ii) 7° corrected TB and iii) 38.5° corrected TB 

of the PLMR horizontal and vertical polarization were finally used to calculate a microwave 

polarization difference index (MPDI) and microwave emissivity e at L-band.  

The microwave polarization difference index (MPDI) is defined as the normalised difference 

between vertical and horizontal polarization and is proposed to account for the vegetation 

influence on the L-band signal. In this study it was calculated for all three processing stages 

from PLMR data: 
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+
−
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The index j reefers to the processing stage. Surface temperature TTIR data was used to calcu-

late the emissivity for the two polarizations and three processing stages: 
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TIR

ij
ij T

TB
e =          (3.3) 

 

3.2.2 Vegetation parameter information 

To avoid influence dependent on vegetation type on the analysed correlations and focus the 

study as much as possible on leaf area index, a homogeneous land surface target was se-

lected using winter barley (~27 ha) and a winter rye (~38 ha). At the day of PLMR data ac-

quisition (May 26, 2008) the main phenological stage of the two crop types was flowering 

(main shoot). Whereby for winter barley the flowering was more pronounced and fruit sets 

were mostly visible. Average vegetation water content for winter barley and winter rye was 

approximately 2-3 kg m-2 respective to the apparent phenological stage and confirmed by 

random field samples. 

Field LAI data was used to generate bi-variate regression models using spectral narrow band 

vegetation indices as independent variables for spatial empirical modelling of LAI. There-

fore high spatial resolution (1.5 m) imaging spectrometer data from an AISA (airborne im-

aging spectro-radiometer for application) flight campaign and field data from the June 10th 

2008 were used. Spatial distributed field LAI data was provided from measurements using a 

LI-COR, Inc. (Lincoln, Nebraska, USA) LAI-2000 Plant Canopy Analyzer. Finally, derived 

bi-variate regression models were used to generate LAI maps of 1.5 m resolution that serve 

as spatial distributed ground truth for LAI with 1.5 m spatial resolution (see figure 3-2). For 

winter barley, the Plant Senescence Reflectance Index PSRI (Merzlyak et al. 1999) and for 

winter rye the Modified Triangular Vegetation Index MTVI-2 (Haboudane et al. 2004) 

showed best results (R²=0.58 and 0.67 respectively) for estimating LAI. The time shift of 15 

days between PLMR and AISA data acquisition is thoroughly critically, however, the further 

analyses presented in this study still proving their applicability. 
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Figure 3-2. Visualization of sub-pixel heterogeneity of LAI for winter barley within 

three examples of 50 m x 50 m PLMR pixel. 
 

3.3 Zone statistics and regression analyses 

110 pixels from the winter barley and 152 pixels of the winter rye field from the PLMR data 

set were used for analysing the influence of LAI to i) L-band brightness temperature TB at 

horizontal and vertical polarization, ii) to emissivity at L-band at the two provided polariza-

tions and iii) to the microwave polarization ratio MPDI. All analyses were performed for the 

uncorrected data and the two processing stages for the viewing angles. Between the two crop 

types slight differences of the mean values and standard deviation within each data set occur 

(see table 3-1). The correlation between PLMR observations and LAI were investigated 

using bi-variate regression and compared by its coefficient of determination (R²) which are 

given for the TB data in the result figures 3-5 and for the emissivity in table 3-2. 
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Table 3-1. Value ranges, mean values and standard deviation of analyzed PLMR data 
and associated MPDI and emissivity for the winter barley and winter rye site 
(h – horizontal polarization, v – vertical polarization, un – no viewing angle 
normalization applied, 7° -  normalized to 7° beam position, 38.5° -  normal-
ized to 38.5° beam position). 

PLMR observa-
tion 

winter barley winter rye 
min max mean std min max mean std 

TB h 38.5° [K] 237 256 244 3.62 240 268 252 7.1 
TB v 38.5° [K] 257 274 268 3.39 260 280 273 4.3 
TB h 7° [K] 242 262 250 3.83 244 271 256 6.69 
TB v 7° [K] 254 268 263 3.01 255 275 268 4.65 
TB h un [K] 238 261 248 4.7 241 272 254 7.13 
TB v un [K] 254 271 264 3.76 255 277 269 5.02 
MPDI 38.5° 0.03 0.06 0.05 0.01 0.02 0.05 0.04 0.01 
MPDI 7° 0.01 0.04 0.03 0.01 0.01 0.04 0.02 0.01 
MPDI un 0.02 0.06 0.03 0.01 0.01 0.05 0.03 0.01 
e h 38.5° 0.8 0.87 0.83 0.01 0.81 0.91 0.86 0.02 
e v 38.5° 0.87 0.93 0.91 0.01 0.88 0.95 0.93 0.01 
e h 7° 0.83 0.89 0.85 0.01 0.83 0.92 0.87 0.02 
e v 7° 0.87 0.92 0.9 0.01 0.87 0.94 0.91 0.02 
e h un  0.81 0.9 0.85 0.02 0.83 0.94 0.87 0.02 
e v un  0.87 0.92 0.9 0.01 0.87 0.94 0.92 0.01 
 

The applied method for correction term calculation results in a linear shift of the TB data for 

the individual corrected beam position (viewing angle). As shown in table 3-1, the absolute 

values of the TB data changes much (up to 20 K) dependent on the selected beam position as 

normalization reference. However, as can be seen in figure 3-3, the general spatial patterns 

remain visible in all three processing stages. Nevertheless, the TB value change through 

normalization has finally obvious influence on analysed correlations as shown and discussed 

in the following. 

 
Figure 3-3. Visualization of spatial patterns for observed and normalized TB data on a 

subset of the winter rye data. 
 

Each 50 m x 50 m PLMR pixel includes approximately 1111 LAI pixels (see figure 3-2) of 

1.5 m x 1.5 m spatial resolution. Average values and standard deviation of LAI were calcu-

lated inside each 50 m PLMR pixel. To make the results more clear in terms of interpreta-
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tion, all PLMR observations (see table 3-1) were classified to values of whole-numbers. This 

classification procedure results in changing numbers of “sampling points” between the dif-

ferent PLMR observation data sets because of differences in the data range and values.  

An obvious relationship between horizontal or vertical TB and LAI within field scale exists 

as it is shown in figure 3-4. TB decreases with increasing LAI. As expected based on theory, 

the correlation decreases slightly with increasing viewing angle for the horizontal polariza-

tion. From theory a higher correlation of the vertical polarized data to LAI may be expected 

because of higher attenuation introduced by vertical stems and leaves within a crop canopy. 

For winter barley the correlation of the horizontal TB (see figure 3-4 (b)) is very strong (e.g. 

R² = 0.90 for 7° viewing angle) which can be interpreted as a very good estimation of the 

optical depth by the LAI map achieved from AISA data. For winter rye the correlation is 

also obvious visible but is less linear at those time of data “snap shot”. In return, the correla-

tion of the vertical TB (see figure 3-4 (d)) and LAI for the winter barley data is very weak 

(e.g. R² = 0.30 for 7° viewing angle) compared to others (e.g. R² = 0.72 for 7° viewing angle 

and winter rye), which is unexpected because from further studies the vertical polarised data 

is proposed to be more sensitive to vegetation structural changes. Since with increasing 

viewing angle the stems become more prominent and increase the effect of vertical polariza-

tion. For winter rye, the correlation with the vertical TB (see figure 3-4 (c)) data is general 

stronger than for winter barley, which might be influenced by differences in the canopy 

height. The winter rye, canopy was approximately 20 cm higher than the winter barley can-

opy at the day of PLMR data acquisition. However, regarding the correlation of pixel aver-

age standard deviation (see figure 3-5) and vertical TB, for winter barley the variability of 

LAI within field scale is obviously connected to the passive L-band observation. A high 

coefficient of determination with R² = 0.81 for the winter rye data and vertical TB at 38.5° 

viewing angle was found. Generally, the correlation of the LAI variability within a PLMR 

pixel and represented by the pixel average standard deviation is slightly stronger at the outer 

viewing angle (38.5°). The standard deviation consequently increases with increasing TB. 

For the horizontal polarization the coefficients of determination are more weak and do not 

exceed values of R² = 0.5. 
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Figure 3-4. Three processing stages (uncorrected, 7° correction, 38.5° correction) of 

PLMR horizontal (a and b) and vertical (c and d) TB plotted against average 
LAI on the sub-pixel level for winter rye (a and c) and winter barley (b and 
d) data. Linear regression line and coefficient of determination R² plotted for 
each data pair. 
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Figure 3-5. Three processing stages (uncorrected, 7° correction, 38.5° correction) of 

PLMR vertical TB plotted against the standard deviation of LAI for the sub-
pixel level for winter rye (a and c) and winter barley (b and d) data. Plotted 
linear regression calculated without the zero values for the standard devia-
tion of LAI within sub-pixel level for the vertical polarization. 

 
Compared to the single polarization PLMR observations, the coefficient of determination 

between the MPDI and LAI is weak (see figure 3-6). Because the MPDI is proposed to ac-

count for the vegetation influence on the L-band microwave signal, stronger correlations 

were expected (Owe et al. 2001). It is proposed that MPDI increases with vegetation growth, 

as represented in this study by LAI a slight bias can be seen as with increasing LAI the 

MPDI increases. Comparing the winter rye and winter barley data sets, very different char-

acteristics in the relationship of MPDI vs. LAI are observed. 
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Figure 3-6. Three processing stages of PLMR polarization difference index (MPDI) 

plotted against average LAI on the sub-pixel level for winter rye (left) and 
winter barley (right) data. 

 

Since the relationship between emissivity and TB is linear (see figure 3-7) the correlation of 

emissivity to LAI is quite similar if using TB. TB and emissivity decreasing with increasing 

LAI as is shown in figure 3-8. Therefore, the decreasing trend could be due to an increasing 

attenuation effect by the vegetation biomass, as represented by LAI. The increasing LAI 

may lead to higher scattering effects and thus lower emissivity at locations with higher LAI. 

A bias between TB h and vegetation canopy obviously exists where the emissivity decreases 

with increasing LAI. Higher LAI causes potentially more vegetation water content at the 

appropriate phenological stage. Thus, LAI can be regarded as an applicable proxy for vege-

tation influence on microwave emission. 
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Figure 3-7. Linear relationship between TB data and emissivity at horizontal polariza-

tion. Example plotted for ground truth locations at the winter barley and 
winter rye site. 

 

 
Figure 3-8. Surface emissivity e of the horizontal polarization at 38.5° viewing angle 

plotted against LAI (winter rye data) whereby the colour scheme represent 
the appropriate TB data. 

 

The analysed linear relationships between emissivity and LAI are frequently weaker than 

before the normalization of TB observation using the provided surface temperature. That 

effect could be interpreted as a decreasing vegetation influence on the retrieved emissivity as 

the used surface temperature data contains information about the soil layer contributing to 

the microwave emission. 
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Table 3-2. Coefficients of determination (R²) for linear regressions of LAI and emissiv-
ity (e) data at different viewing angles and horizontal (h) and vertical (v) po-
larization. 

  
LAI vs. 

winter barley winter rye 
R²  R²  

e h 38.5° 0.4 0.4 
e v 38.5° 0.28 0.5 
e h 7° 0.38 0.38 
e v 7° 0.1 0.58 
e h un  0.33 0.33 
e v un  0.4 0.26 

 

3.4 Discussion and Conclusion 

To better understand the effect of LAI on observed brightness temperature at L-band, a sim-

ple analysis is performed analysing its relationship to pixel average LAI and its standard 

deviation. Weak to strong influence of LAI on the L-band observations were examined in 

this study, which proves this structural vegetation canopy parameter as valuable estimator to 

account for the optical depth for high spatial resolution passive L-band microwave data. 

Even variations within a small value range (2 < LAI > 4) in a crop field were found to have 

major influence (0.23 < R² > 0.90) on the retrieved high resolution TB observations. How-

ever, the observations do not agree with findings from Ferrazzoli et al. 2000 where the emis-

sivity increases in due to vegetation growth during a whole growing cycle. Vegetation 

growth might be represented by LAI in this study but gives no direct information about the 

vegetation dielectric properties as can be estimated from vegetation water content data. The 

found correlations confirm results of the study from Saleh et al. 2004 were a decrease in 

vertical TB was found with increasing biomass which may lead to higher scattering effects. 

However, their dry biomass data was achieved from regression analyses using the stand age 

as independent variable and represent a different level in detail regarding the vegetation 

influence compared to this study. In this study the effect of decreasing brightness tempera-

ture and emissivity with increasing biomass as represented by LAI has been shown for the 

horizontal and vertical polarization and different viewing angles within a crop canopy. The 

observations have demonstrated a high potential for differences in the correlation between 

L-band observations and LAI within a vegetation canopy previously assumed homogeneous. 

Since the top canopy is a geometrically complex structure that is strongly influenced by rain 

and wind, such variations may be explained in addition to occurring phenological variations. 

The derivation of several data sets in terms of different processing stages represented by 

different viewing angles and calculated from the same data source promise information 

about the vegetation contribution to the detected microwave emission and can be used to 

account for the vegetation influence in soil moisture algorithms. Furthermore, high resolu-
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tion L-band experiments over crops at several phenological stages within TERENO are re-

quired to generalize the outcomes and support the parameterization of the optical depth 

within physically based soil moisture retrieval algorithms.  
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4. Soil moisture retrieval using airborne L-band brightness tem-

perature and imaging spectrometer data 

 

The monitoring of spatially distributed soil moisture fields is an essential component for a 

large range of hydrological, climate and agricultural applications. Soil moisture information 

is needed for modelling studies as direct boundary conditions are used in the model calibra-

tion process or can be assimilated in order to reduce the uncertainties of any model predic-

tion. While direct measurements are expensive and limited to small spatial domains, the 

inversion of airborne L-band radiometer data has shown the potential to provide spatial es-

timates of surface soil moisture up to the meso-scale. However, when using airborne L-band 

radiometer for soil moisture retrieval, a major limitation is the attenuation of the microwave 

signal by the vegetation, hampering the signal inversion and thereby making spatially dis-

tributed plant information necessary. In order to address vegetation influence, in this study 

combined analyses of airborne L-band microwave data and imaging spectrometer data is 

performed over crop sites in Germany. Intensive field campaigns coinciding with the sensor 

overpass provided fundamental information on surface soil moisture and vegetation canopy 

parameters. Results show strong improvements (R² ~ 0.2) on all models adding spectral 

vegetation indices to the independent variable set for final soil moisture retrieval. More im-

portantly, the results demonstrate that reasonable estimates of surface soil moisture on field 

scale are possible using multi-variate regression or neural networks without in-situ meas-

urements. 

 

4.1 Introduction 

Soil moisture is one of the dominant controls for the partitioning of water and energy fluxes 

at the land surface including the splitting of rainfall into surface runoff, infiltration and 

evapo-transpiration, as well as the redirection of incoming solar radiation into albedo, ther-

mal radiation, sensible and latent heat fluxes. Information about spatial surface soil moisture 

is therefore an important boundary condition for process based hydrological, climate or eco-

logical models ranging from the field scale up to the global scale and its knowledge is essen-

tial in order to improve operational hydrological, climate and weather predictions including 

flood forecasting, drought monitoring or eco-climatological projections via calibration or 

data assimilation techniques.  

Soil moisture patterns are not stable over time (Grayson et al. 1998) and require precise de-

tection and monitoring. Soil moisture accounting schemes are applied for estimations at 

catchment scale using climate data (Merz et al. 2004, Robinson et al. 2008). For plant 
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growth models and fertilization application on agricultural sites, spatial distributed soil 

moisture on field scale is a main input for model calibration (Bouma et al. 1999). In-situ soil 

moisture measurements, using gravimetric samples, frequency or time domain reflectance 

measurements provide reasonable estimates, but they are point measurements. It is very dif-

ficult to estimate extensive spatial soil moisture distribution based on point measurements 

because of the high spatial variability at field scale. The inversion of microwave radiometer 

data has shown the potential to provide spatial estimates of surface soil moisture up to the 

meso-scale. 

The retrieval of surface soil moisture from L-band radiometers (frequency f=1-2 GHz, wave-

length λ=30-15cm) from aircraft and satellite platforms received a significant upturn during 

the last 10 years (Blyth 1993, Kerr 2007, Wagner et al. 2007). Particularly the European 

Space Agency’s (ESA) Soil Moisture and Ocean Salinity mission SMOS initialized a high 

number of high resolution airborne L-band radiometer campaigns to analyse scale dependent 

soil moisture sensitivities (Delwart et al. 2008, Panciera et al. 2008). L-band brightness tem-

perature (TB) data offers a nearly linear relationship to surface soil moisture, given uniform 

vegetation and soil characteristics (Jackson et al. 1984). Furthermore, TB from L-band radi-

ometers is less sensitive to parameterization of surface roughness and vegetation canopy 

characteristics compared to radar applications. Hence, it seems to provide a monitoring 

method for surface soil moisture on various spatial scales. 

The large amount of research on estimating soil moisture from L-band radiometers resulted 

in a consensus on major factors that should be incorporate in data analyses (Jackson et al. 

1991, Schmugge et al. 2002, Wagner et al. 2007). Unfortunately, operational methods to 

apply such data and products quickly to the end user are still not available. The signal’s soil 

moisture sensitivity changes spatially with soil, vegetation and terrain characteristics. In 

order to estimate soil moisture regimes under a vegetation canopy it is essential to provide 

spatial distributed information about vegetation characteristics since it contributes an own 

microwave emission to the signal. To apply airborne L-band radiometer data in more opera-

tional applications, it remains a major challenge to provide ancillary data to run complete 

physically based models. Therefore, the largely empirically retrieved model parameters are 

very site dependent and vary at low scale to a large degree (Wigneron et al. 2007). Hence, it 

is necessary to make assumptions, chose a proper model algorithm and focus on reasonable 

key factors dependent on the study site and subject of the study. 

The Helmholtz Association in Germany recently launched an extensive investigation into the 

long-term effects of climate change at the regional level called TERENO (TERrestrial ENvi-

ronmental Observatories). TERENO consists of three long-term observatories in Germany to 

study how climate change affects both the local ecosystems and the local economies 
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(Bogena et al. 2006). In the context of TERENO, one major interest is the detection and 

monitoring of spatial distributed surface soil moisture. Hence, in May 26, 2008 a flight cam-

paign with the Polarimetric L-Band Multibeam Radiometer (PLMR) was realized by 

TERENO and Airborne Research Australia (ARA). This airborne campaign was designed to 

investigate the utility of the PLMR sensor for TERENO soil moisture monitoring at field 

and regional scale. 

The angular characteristics of multi-beam radiometers directly influence the observed TB 

values. Theoretically, the angular variation can be explained by the Fresnel equation, which 

describes a linear viewing angle effect on the TB over homogeneous land cover target. The 

calculation of correcting terms for normalization to a defined beam position should therefore 

be applied over homogeneous land cover sites. Furthermore, the availability of proper spatial 

information about vegetation canopy is rarely be obtained from field campaigns since these 

are time consuming and require special measurement infrastructure. Therefore, the integra-

tion of information from optical remote sensing (visible and near infrared spectrum) data 

products promises reasonable proxies for vegetation conditions and their spatial variability. 

This study describes the data analyses from the TERENO PLMR campaign performed on 

May 26, 2008 in the Harz/Central German Lowland Observatory of TERENO. The nadir 

normalization of the TERENO PLMR data is described and discussed. Furthermore, PLMR 

soil moisture sensitivity was analysed in detail over barley and rye crops for one TERENO 

test site. Information about in-situ soil moisture and ancillary vegetation characteristics was 

provided from ground truth campaigns. Additional narrow band spectral vegetation indices 

(VI) from airborne imaging spectrometer data were analysed together with the passive mi-

crowave data. Multi-variate regression and neural networks were applied with statistical 

cross-validation to explore empirical models for soil moisture retrieval from different sets of 

independent variables. 

 

4.2 Study sites and data 

The TERENO Harz/Central German Lowland observatory features low mountain forests, 

lowland riparian forests, extensive agricultural areas, urban and industrial areas as well as 

open pit mines. Within the area four different sites, flights were carried out on May 26, 2008 

as shown in figure 4-1. Grossbardau is an agricultural used site where studies are focussed 

on agricultural issues. Schaefertal and Klieken were recently equipped for long term moni-

toring of hydrological processes and nutrient fluxes. Bad Lauchstaedt is a long term agricul-

tural fertilization test site. 
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Ground data were sampled within the time period of the sensor’s overpass. For logistical and 

application orientated reasons, the ground teams operated independently with different 

ground sampling methods. In this study, the normalization of PLMR TB data was performed 

for all four monitoring sites. The analyses concerning the soil moisture retrieval were per-

formed only over the crop sites around Grossbardau because of the availability of airborne 

imaging spectrometer data. All data used in this study is provided from a TERENO pre-

study because the final instrumentation is not finished yet. 

 

 
Figure 4-1. Location of the four soil moisture monitoring test sites and general land 

cover information from CORINE 2000 data; 1) Klieken, 2) Schaefertal, 3) 
Bad Lauchstaedt, 4) Grossbardau. 

 

4.2.1 Field data 

In Grossbardau the field data sampling was focussed on a winter rye (70 ha) and winter bar-

ley (30 ha) field at known geo-referenced sampling points which were installed for whole 

seasonal vegetation monitoring in 2008. The sampling points were located between 2 m and 
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2.5 m from the machine tracks in order to achieve representation within field measurements. 

For winter rye there were 47 and for winter barley 43 ground truth points sampled. At the 

day of field data acquisition the main phenological stage was flowering (main shoot). It 

should be noted that for winter barley the flowering was more pronounced and fruit sets 

were mostly visible. 

Soil moisture measurements of the 0-6 cm layer were performed using mobile FDR (fre-

quency domain reflectrometry) probes. Each measurement represents an average of five 

single measurements. Coincident with FDR measurements soil temperature data of the first 6 

cm layer was collected using field thermometers. To rapidly determine field measurements 

of leaf area index (LAI) a LI-COR, Inc. (Lincoln, Nebraska, USA) LAI-2000 Plant Canopy 

Analyzer was applied. This compares above- and below-canopy light levels detected in five 

conical rings, with the view zenith angle ranging from 0 to 75°, to infer LAI (Welles et al. 

1991). At each sampling point location three LAI values got sampled where each single 

value is an average of six observations. Canopy height was simply measured by a foot rule. 

A Chlorophyll-Meter SPAD-502 (Minolta) was used to provide rapid and reasonable esti-

mates of leaf chlorophyll characteristics (Markwell et al. 1995). The SPAD-502 measures 

transmittance of plant leaves in the red and near-infrared spectral regions. The ratio of these 

two transmittances is proportional to the total leaf chlorophyll content. Table 4-1 provides a 

summary about the measured value ranges. 

Table 4-1. Soil moisture and vegetation parameter characteristics for the test fields 
Grossbardau. 

winter barley 

parameter average min max 
standard  
deviation 

surface soil moisture [Vol. %] 7.8 2.1 12.9 2.7 
LAI 4.3 2.7 5.2 0.5 
canopy height [cm] 99.7 10.0 120.0 17.9 
chlorophyll meter value 
(SPAD) 

54.0 45.0 58.0 2.7 

soil temperature [°C] 14.5 13.0 18.0 1.1 
winter rye 
surface soil moisture [Vol. %] 9.3 2.2 14.6 2.7 
LAI 3.6 2.3 4.5 0.4 
canopy height [cm] 120.0 90.0 135.0 7.7 
chlorophyll meter value 
(SPAD) 

55.0 42.0 58.0 2.7 

soil temperature [°C] 14.33 13.0 16.0 0.72 
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4.2.2 L-band microwave radiometer data 

For the TERENO flight campaigns the PLMR (ProSensing) sensor was fitted to an Envis-

cope Partenavia PA68 D-GERY aircraft. Data acquisition over the four test sites took place 

between 9 am. and 2 pm. on May 26, 2008.  

PLMR (frequency = 1.413 GHz) utilizes six pushbroom patch array radiometer receivers 

with incidence angles of ±7° (antenna 3 and 4), ±21.5° (antenna 2 and 5), and ±38.5° (an-

tenna 1 and 6). Horizontal and vertical polarized TB is measured using a polarization switch 

(Panciera et al. 2008). Pre-flight and post-flight calibration against a black body target 

(warm point) and clear sky (cold point) was applied on the data as described (Panciera et al. 

2009). Georectification was performed taking into consideration the aircraft’s position and 

inertial navigation information (roll, pitch and yaw) by ARA. The beam centers were pro-

jected on a 90 m digital elevation model to calculate the effective footprint size and local 

incidence angles depending on the specific terrain topography. Therefore, local terrain slope, 

aircraft attitude and beam geometry were taken into consideration. Using a reduced antenna 

beam width, reduced flight speed and low altitude a ground spatial resolution of 50 m was 

achieved.  

A microwave polarization difference index was calculated using the vertical ( vTB ) and hori-

zontal ( hTB ) polarization: 

)(
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hv

hv

TBTB

TBTB
MPDI

+
−=         (4.1) 

The brightness temperature is related to the emissivity ε , the physical temperature of the 

observed surface and to contributions from atmosphere. Since the atmospheric contribution 

on L-band data can be neglected because of its atmospheric transmission, emissivity can be 

calculated by: 

i

h
i T

TB
e =          (4.2) 

iT  is the physical temperature representing a soil or surface layer and measured in Kelvin. In 

this analysis two emissivity “levels” using equation 2 were calculated using the horizontal 

polarization (see figure 4-2). To retrieve the emissivity of the soil es the soil temperature data 

Ts was used. The emissivity of the surface ec, that represents a mixture of soil and vegetation 

contributions, was calculated using surface temperature measurements TTIR. The surface 

temperature data was provided by an InfraTec thermal imager that recorded simultaneously 

with PLMR data acquisition thermal infrared temperature information (TIR). It may be as-
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sumed that the surface temperature information provided by TTIR contains a significant con-

tribution of the vegetation. 

 
Figure 4-2. Relationship of soil and surface emissivity at ground truth location in Gross-

bardau, R²=0.97 for linear regression. 
 

4.2.3 Imaging spectrometer data 

To provide further vegetation information for the test sites around Grossbardau, hyperspec-

tral data from an AISA (airborne imaging spectro-radiometer for application) flight cam-

paign on the 10th of June 2008 was used. The time shift of 16 days should be regarded criti-

cally in regards to phenological development and its influence on the microwave emission. 

However, the availability of the AISA data set provides a valuable information source for 

the spatial vegetation canopy heterogeneity. 

There were 252 spectral channels collected in the visible and near infrared range of the solar 

spectrum from 400-970 nm with a pixel ground resolution of 1.5 m x 1.5 m. Current calibra-

tion coefficients from spectral laboratory calibration were applied to "rescale" the raw DN to 

radiance units using SPECIM CaliGeo 4.9.5 which runs under ENVI software (ITT Visual 

Information Solution, Boulder, CO). Surface rreflectance was achieved by applying the at-

mospherically correction algorithm MODTRAN using ENVI FLAASH. 

From the AISA reflectance data an initially set of 18 spectral vegetation indices (VI) was 

calculated and applied in empirical modelling. According to which, the calculated spectral 

VI represented water, pigment and light use efficiency spectral VI groups. The following 

three narrow band spectral VI where finally used in this work, where xxxR represents the 

centre wavelength of a narrow spectral band with 2.3 nm width:  
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The Gitelson Green Index (GI) was proposed to estimate LAI and green leaf biomass and is 

regarded in this study as a proxy of these plant and canopy parameters (Gitelson et al. 2003): 

1
550

800 −=
R

R
GI          (4.3) 

The Modified Soil Adjusted Vegetation Index (MSAVI2) was found as a good LAI estima-

tor in terms of sensitivity to changes in vegetation canopy cover and the influence of the soil 

(Qi et al. 1994): 
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The Modified Triangular Vegetation Index (MTVI1) was developed to improve LAI estima-

tions for dense vegetation (Haboudane et al. 2004): 

)](5.2)(2.1[2.11 550670550800 RRRRMTVI −−−=     (4.5) 

 

4.3 Methods 

4.3.1 Correction of incidence angle effect 

Previous studies using similar sensor designs applied normalization procedures for areas of 

mixed land cover by calculating correction terms over flight lines (Jackson 2001, Jackson et 

al. 1999, Jackson et al. 1995). Using this method, the main assumption involves the fly-over 

line, and the differences in the time averaged means )( iµ of each beam position i (incidence 

angle) are due solely to the angular effect. The pattern of variation appearing between differ-

ent beam positions reflects the Fresnel effect and depends on the land cover characteristics. 

This procedure assumes that the longer the line and the more homogeneous the area is, the 

more reliable the correction factors are. In the studies mentioned above, daily averages were 

used to calculate correction terms for individual beam positions. Using daily averages does 

not seems appropriate for the TERENO study area and for the collected PLMR data since 

the test sites show high variations in their land surface characteristics (see figure 4-1) which 

result in different microwave response. As can be seen in figure 4-3, the TB data is more 

scattered when comparing the outer (beam position 1 and 6) viewing angles within the com-

parison of the two inner (beam position 3 and 4) viewing angles. This mainly represents the 

signal detection from different targets because the outer viewing angles have the highest 

distance from each other and view more likely different surface targets than the two close 

nadir beam positions. Therefore, for the data used in this study, single flight line sections 

were used to calculate correction terms for a viewing angle normalization. The flight line 
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sections were carefully selected over homogeneous agricultural use sites. Information about 

land use was obtained from land use maps, farmers and personal site inspection during 

ground truth campaigns. Additionally, a grid map of standard deviation by the original TB 

values was generated for 500 m cells resolution. Finally, flight lines were selected on homo-

geneous agricultural used sites of low standard deviation of the TB data itself. 

 

 
Figure 4-3. Relationship between observed TB of the innermost (a) and outermost (b) 

beam positions for the complete Grossbardau data set. 
 

The incidence angle normalization in this study was performed to the two nadir beam posi-

tions antenna 3 and 4 (±7°). Hence, TB of antenna 1 and 2 are corrected to antenna 3 and TB 

of antenna 5 and 6 are corrected to antenna 4. Correction terms )( iCT for the four outer 

PLMR antennas are calculated by: 

m
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131 µµ −=CT          (4.7) 

232 µµ −=CT         (4.8) 

545 µµ −=CT          (4.9) 

646 µµ −=CT         (4.10) 

The correction terms are finally added to all data )( iTB for the appropriate beam position.  

111 CTTBTB N +=         (4.11) 
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222 CTTBTB N +=         (4.12) 

33 TBTB N =          (4.13) 

44 TBTB N =          (4.14) 

555 CTTBTB N +=         (4.15) 

666 CTTBTB N +=         (4.16) 

 

4.3.2 Empirical analyses of PLMR data vs. ground soil moisture 

Multi-variate least square regression models (equation 17) of surface soil moisture meas-

urements as a function of different variable sets were applied.  

εββ +⋅+= ∑
=

i

n

i
i XY

1
0         (4.17) 

Furthermore, a neural network was trained for predicting soil moisture using the same input 

sets as for regression analyses. Therefore, a feed-forward neural network trained by a back-

propagation algorithm (multi-layer preceptor) was applied. The activation function used is 

the usual sigmoid function. Therefore, the value ranges of the attributes are scaled to -1 and 

+1. The inputs are fully connected to one hidden layer which is in turn fully connected to 

one output node. There were 500 training cycles carried out. 

All models were run with validation using bootstrapping (Efron et al. 1993) and compared 

using the coefficient of determination R² and root mean square error (RMSE). For Boot-

strapping, ten random examples were picked out of each data set. 

The number of analysed sampling points using only ground truth information (LAI, canopy 

height, SPAD), PLMR ( hTB , vTB , hTB + vTB , hTB - vTB , MPDI,) and calculated emissivity 

(ec, es) data is 43 for winter barley and 47 for winter rye. Analyses were spectral VI from 

AISA data are implemented as vegetation proxy are performed on a lower number of sam-

pling points (23 for winter barley, 17 for winter rye) because of coverage gaps between the 

AISA and PLMR data swaths. 

 

4.4 Results 

Section 4.4.1 presents the characteristics of the flight lines chosen for calibration and the 

calculated correction terms for all four test sites. In Section 4.4.2, the model results for soil 

moisture retrieval over the two crop sites from the Grossbardau data set are presented. 
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4.4.1 Incidence angle corrected data set 

The correction terms applied were chosen from calibration sites with the lowest standard 

deviation inside the single flight lines (see table 4-2). The corresponding number of beam 

position varies, with 27 for Grossbardau, 17 for Klieken, 26 for Schaefertal and 26 for Bad 

Lauchstaedt. In the case of the land use heterogeneity and spatial variability of agricultural 

crops, the flight line sets are not longer. 

The correction terms for the horizontal polarization are mostly positive, which means that 

TB values of the two nadir beam positions are predominantly higher than the TB from the 

outer antennas of the same beam line. On the contrary, for the vertical polarization the TB 

values of the two nadir beam positions are mostly lower which results in negative correction 

terms. As expected from theory the correction terms of the two outer antennas (1 and 6) are 

frequently higher than for the inner antennas (2 and 5). 
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Table 4-2. Applied correction terms of antenna 1,2,5,6 and characteristics of flight lines 
for incidence angle correction of the four test TERENO test sites, all values 
are in [K]. 

 Grossbardau, 27 beam positions 
  vertical  horizontal  
beam 
position average TB 

standard  
deviation 

correction 
 term average TB 

standard 
deviation 

correction 
 term 

1 281.48 1.41 -4.26 269.44 3.34 5.53 
2 279.32 1.68 -2.10 274.07 2.27 0.90 
3 277.22 3.32  - 274.97 3.84 - 
4 279.87 2.66  - 274.05 3.31 - 
5 277.98 1.38 1.89 273.28 1.91 0.78 
6 282.66 1.37 -2.79 271.49 3.18 2.56 

 Klieken, 17 beam positions 
beam 
position average TB 

standard  
deviation 

correction 
 term average TB 

standard 
deviation 

correction 
 term 

1 272.09 1.65 -13.10 241.13 1.73 16.38 
2 264.99 2.26 -6.00 251.94 2.17 5.57 
3 258.99 3.08  - 257.51 3.31  - 
4 255.16 3.89  - 251.26 4.64  - 
5 259.84 2.14 -4.67 249.09 3.98 2.17 
6 273.65 1.50 -18.49 243.75 3.14 7.51 

 Schaefertal, 26 beam positions 
beam 
position average TB 

standard 
deviation 

correction 
 term average TB 

standard 
deviation 

correction 
 term 

1 268.89 2.19 -2.52 240.72 2.92 22.55 
2 267.91 1.14 -1.54 258.08 1.63 5.18 
3 266.37 1.14  - 263.26 1.07  - 
4 261.19 1.37  - 259.41 1.74  - 
5 265.14 1.30 -3.94 255.75 1.62 3.66 
6 270.08 1.43 -8.89 242.30 2.29 17.12 

 Bad Lauchstaedt, 26 beam positions 
beam 
position average TB 

standard 
deviation 

correction 
 term average TB 

standard 
deviation 

correction 
 term 

1 277.34 1.89 -21.02 240.79 3.51 13.27 
2 266.10 3.10 -9.79 251.37 5.08 2.69 
3 256.32 4.05  - 254.06 5.55  - 
4 244.17 5.79  - 242.92 8.17  - 
5 260.11 5.06 -15.94 245.14 8.48 -2.22 
6 269.56 4.97 -25.39 236.21 11.94 6.71 

 

By evaluating the correction terms for all flight lines a lack of symmetry about the nadir 

beam position was found (see figure 4-4). The data range of antenna three is frequently 

higher than that of antenna 4. That effect might be caused by uncertainties in the warm and 

cold point calibration or attributed to a receiver specific problem. 

 



Chapter 4 – Soil moisture retrieval using empirical models 
 

 

52 

 
Figure 4-4. Averaged TB values of the PLMR horizontal polarization for each beam 

position within a different flight line of each TERENO test site. 

4.4.2 Soil moisture prediction 

Multi-variate regression models and neural networks were applied to analyse the sensitivity 

of PLMR data and calculated microwave emissivity (ec, es) to model spatial distributed sur-

face soil moisture below a crop canopy. Therefore, field soil moisture data from a winter rye 

and winter barley field of the data set Grossbardau were tested together and crop type spe-

cific as dependent variable. The given soil moisture on the day of data was generally low 

and varies only within less Vol. %. Nevertheless, as can be seen in figure 4-5, a bias between 

TBh and ground measured soil moisture obviously exists where TB increases with decreasing 

soil moisture. The noise is assumed to represent mainly the vegetation influence on the 

PLMR signal. Therefore, various proxies to account for the vegetation influence are tested. 
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Figure 4-5. Observed 0-6 cm soil moisture (y-axis) plotted against brightness tempera-
ture at horizontal polarization(x-axis), a) 48 ground truth points of the winter rye field, b) 43 
ground truth points of the winter barley field. 
 

Frequently, the best results were obtained on the winter barley site by multi-variate regres-

sion (see table 4-3). Model 2 achieves the best prediction performance (R²=0.92) using a 

Gitelson Greeness Index (GI) and LAI as vegetation proxies and ec as independent variables. 

Canopy height showed a consequently less influence than LAI on model performance and is 

not applied in the final models. The best performance without any ground information 

(R²=0.91) as independent variable was achieved by model 3 using the sum of TBh and TBv  

and GI from AISA data. 

Table 4-3. Coefficient of determination (R2) and root mean square error (RMSE) of 
multi- variate regression and neural network for estimating surface soil 
moisture by different sets of independent variables using ground truth data 
and hyperspectral vegetation indices from winter barley test site. 

multi-variate regression 
model independent variable set R² RMSE 
model 1 LAI, GI, es 0.91 0.85 
model 2 LAI, GI, ec 0.92 0.82 

model 3 hTB + vTB , GI 0.91 0.88 
model 4 LAI, es 0.69 1.46 
model 5 LAI, ec 0.71 1.47 
neural network 

model 6 hTB , MSAVI2 0.81 1.29 
model 7 SPAD, MTVI1, ec 0.86 1.07 

 

Generally, a strong improvement exists on all models adding a spectral VI to the independ-

ent variable set (figure 4-6). Using ec than es improves the model results as well. However, 

using only emissivity and LAI (model 4 and 5), quite moderate coefficients of determination 
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are achieved but the RMSE remains much higher than when using additional spectral VI 

information (model 1, 2, 3) as vegetation proxy.  

The best results by neural network application were achieved by completely different input 

variables than for regression. The best result are reached using ec and canopy chlorophyll 

information represented by SPAD chlorophyll measurements and the chlorophyll related 

spectral VI MTVI1 (model 7). Predictions without ground information were best using only 

TBh and MSAVI2 from AISA data (model 6). 

 

 
Figure 4-6. Comparison between predicted and measured soil moisture over winter bar-
ley for model 2 and model 5. 
 

For winter rye, only very low model performance (R² < 0.5) was achieved on all sets of 

tested variables. Hence, the single results are not shown anymore. Through performing the 

analyses on the combined data set (winter rye and winter barley) the model performance 

remains weak (R² < 0.5). The weak soil moisture retrieval results for the winter rye field can 

very likely be explained by the differences in the vegetation height between the two crop 

types. The average canopy height of winter rye is 20 cm more than that of winter barley, 

which clearly results in more biomass per ground unit even when the LAI is lower. Unfortu-

nately, no biomass weight data is available, which is used in other studies to show the limita-

tions of L-band soil moisture retrieval below vegetation canopy (Jackson et al. 1991, 

Schmugge et al. 2002). 

4.5 Discussion 

As can be seen in the result section 4.4.1, the correction terms can vary much dependent on 

the selected calibration field, flight line extent and consequently for the test sites. For high 

spatial resolution L-band data it is therefore highly recommended to choose calibration sites 

carefully by up-to-date information about the vegetation canopy. 
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The empirical analysis has shown a strong field fruit dependent sensitivity of the PLMR data 

and ancillary independent variables. L-band sampling of soil moisture depends mainly on 

vegetation characteristics, as this study shows on a field scale level. Vegetation absorbs and 

scatters microwave radiation from the soil and contributes an own emission to the signal 

received. This reduces the retrieval opportunity of any soil moisture model (Jackson et al. 

1996, Van de Griend et al. 1985). Hence, for application oriented data use it is generally not 

clear how strong the signals soil moisture sensitivity changes from pixel to pixel regarding 

spatial variation of vegetation characteristics. However, the general spatial pattern of vegeta-

tion influence on the microwave signal seems well reflected by the applied spectral VI re-

garding the model improvements using vegetation indices as vegetation proxy. Especially 

the Gitelson Green Index (GI), which is sensitive to chlorophyll represented by LAI, shows 

very good results and might be applied even without additional information about LAI 

(model 3). In microwave soil moisture studies GI might also be treated as a proxy for fresh 

green leaf biomass which in turn is related to fresh biomass weight of crops.  

More importantly, the results demonstrate that reasonable estimates of surface soil moisture 

on field scale are possible using multi-variate regression or neural networks even without in-

situ measurements (model 3 and 6). 

4.6 Conclusion 

Calculation of proper correction terms remains a critical factor for viewing angle normaliza-

tion of multi-angular radiometers. The TERENO data set reveals that attempts at operational 

monitoring issue by analysing test site dependent characteristics.  

Many field experiments using ground radiometers were performed with the goal of defining 

the soil moisture signal dominating soil layer at L-band (Newton et al. 1982, Wang 1987). 

The highest contributing layer is about ¼ the wavelength, which means around 5 cm for the 

L-band which changes with vegetation attenuation spatially. The results of this study dem-

onstrate that reasonable estimates of surface soil moisture on field scale are possible using 

FDR soil moisture measurements from the upper 0-6 cm soil layer for training. Furthermore, 

combined analyses of narrow band vegetation indices from the red and near infrared and L-

band TB data or retrieved emissivity provides very good prediction results of soil moisture 

under a vegetation canopy for field scale monitoring. 

Hence, remote detection of surface soil moisture by the PLMR passive microwave sensors in 

combination with imaging spectrometer data has the advantage of providing spatial inte-

grated information even without in-situ vegetation data as required for monitoring issues. 

With the launch of the German hyperspectral satellite EnMAP (Environmental Mapping and 

Analyses Program) in 2013, valuable spatial distributed vegetation information will be 
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available to support soil moisture retrieval algorithms using airborne and satellite L-band 

microwave data up to the catchment scale. 
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5. Soil moisture retrieval using the land surface parameter re-

trieval model (LPRM) over crops 

 

The aim of this chapter is to retrieve soil moisture over crops from passive L-band micro-

wave data at very dry conditions (< 15 Vol. %) using the land surface parameter retrieval 

model (LPRM). All analyses are based on experimental airborne L-band brightness tempera-

ture observations, remote sensing thermal infrared temperature, and measured field soil tem-

perature and soil moisture. The study is performed over a winter barley and winter rye site in 

Germany under very dry conditions. As the temperature and the roughness parameterization 

play a crucial role in soil moisture retrieval from passive microwave observations using a 

radiative transfer equation a two-step optimization procedure was performed for choosing an 

optimal parameterization to minimize the uncertainty of final soil moisture estimates. Fur-

thermore, the relationship between the roughness parameter and NDVI (normalized differ-

ence vegetation index) data was analysed using imaging spectrometer data. Site specific 

roughness parameterizations did not show reasonable soil moisture results using LPRM. 

Nevertheless, very good soil moisture results were achieved by applying a spatial varying 

roughness parameter achieved from a “pixel”-based optimization. A clear relationship be-

tween NDVI data and the spatial varying roughness parameter was found (R² = 0.57). The 

results presented in this chapter show that a spatial varying roughness parameter can 

strongly improve soil moisture results using LPRM even below a vegetation canopy previ-

ously have been assumed homogeneous (e.g. winter barley and winter rye). 

 

5.1 Introduction 

Soil moisture is a key variable for many hydrological applications and plays a crucial role in 

agricultural practice at field scale level. Passive L-band microwave observations from air-

borne sensors may provide soil moisture estimates with a high spatial resolution (< 100 m 

for that kind of data product) useful for agricultural applications (Jackson et al. 1987a, 

Wigneron et al. 1998). Theoretical models like radiative transfer models are important to 

support the understanding of the interaction between the electromagnetic waves and various 

surface targets (e.g. soil, vegetation) and may be applied to retrieve soil moisture from L-

band brightness temperature observations. 

The land surface parameter retrieval model (LPRM) was developed by Owe et al. 2001 and 

uses a radiative transfer model to solve for surface soil moisture and optical depth simulta-

neously with a nonlinear iterative optimization procedure. It is specially designed and pro-
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posed for surface soil moisture retrieval from satellite data because it does not require any 

field observations of soil moisture or canopy characteristics. LPRM requires dual-polarized 

brightness temperature data, namely horizontal and vertical polarization and temperature 

information from the emitting surface. Several studies have demonstrated that LPRM is one 

of the most promising approaches to retrieve soil moisture from passive microwave radi-

ometer data (de Jeu et al. 2003, de Jeu et al. 2008, Meesters et al. 2005, Owe et al. 2001). In 

de Jeu et al. (2009) LPRM was successfully applied for the first time on airborne L-band 

observations using National Airborne Field Experiment 2005 (NAFE’05). 

The thermally emitted radiation from the land surface is controlled by two major factors: 1) 

the surface temperature and 2) the surface emissivity. The emissivity is the efficiency of the 

surface for transmitting the radiant energy generated in the soil into the atmosphere. The 

soil’s emissivity depends on its physical properties (e.g. soil moisture), surface roughness 

and varies with the wavelength. In due to a lack of data in most retrieval studies, it is as-

sumed that effective soil temperature is in equilibrium with the vegetation temperature. For 

early morning or even night observations of L-band brightness temperature and thermal 

infrared temperature, that assumption can be valid. Applying LPRM on the NAFE’05 data 

set de Jeu et al. (2009) considered the canopy temperature equal to the effective temperature 

and satisfactory soil moisture results could be achieved by performing an optimization on 

the roughness parameter hr depending on the incidence angle of the brightness temperature 

observations and soil moisture.  

Increasing surface roughness increases the apparent emissivity due to an increase of the 

emitting surface area (Schmugge 1985). Therefore, the empirical roughness parameter hr is a 

key parameter to account for the rough soil emissivity, which is a major part of the soil 

moisture retrieval using LPRM (Wang et al. 1981). The roughness parameterization is pro-

posed to account for i) a geometric roughness effect that is related to the spatial variation of 

the soil surface height and, ii) a dielectric roughness effect that can be caused by spatial va-

riability of the combined effect of soil moisture and soil characteristics (Mo et al. 1987, 

Wigneron et al. 2001). For bare soil the roughness parameter was found to be dependent on 

the standard deviation and the correlation length of the soil surface height profile and the soil 

moisture (Wigneron et al. 2001). The dependence of the roughness parameter on soil mois-

ture was explained by the spatial variation of the soil dielectric constant, which is stronger 

during dry conditions and can be explained by an effect of volume scattering. 

Many roughness studies have been performed at the plot scale using ground based radiome-

ters over bare soil or including only a few planted rows. The ratio between radiometer foot-

print to the roughness height is orders of magnitudes greater at the landscape scale using 

airborne or satellite data than at the plot scale. It is assumed that the roughness effect is 
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smaller at the airborne and satellite scale than for tower based radiometer footprints (Owe et 

al. 2001, Van de Griend et al. 1994). However, the roughness parameter not only changes 

with the observation characteristics but also with the type of the vegetation covering the soil 

surface and various empirically determined roughness parameter values were proposed de-

pending on the vegetation (Panciera et al. 2009, Saleh et al. 2007, Wigneron et al. 2007). 

The objective of this study is to retrieve soil moisture using the land surface parameter re-

trieval model (LPRM) for very dry conditions (< 15 Vol. %) at the field scale. Therefore, 

airborne L-band brightness temperature observations, remote sensing thermal infrared tem-

perature, measured field soil temperature and in-situ measured soil moisture from a winter 

barley and winter rye site in Germany are applied. A two-step optimization using Monte-

Carlo simulation to find one scene-based roughness parameter value using LPRM was per-

formed. Furthermore a pixel-based (ground sampling location specific) optimization was 

applied to analyse the spatial dynamic of the roughness parameter values regarding spatially 

changing vegetation conditions. Additionally, all analyses were applied using different tem-

perature input data to analyse the effect of the temperature on the LPRM soil moisture re-

sults and a potential temperature uncertainty was considered within the optimization. 

 

5.2 Dataset 

5.2.1 L-band brightness temperature data 

The used data is part of the TERENO (Terrestial Environmental Observatories) (Bogena et 

al. 2006) soil moisture experiment within the Harz/Central German Lowland observatory. In 

May 26, 2008 airborne high spatial resolution (50 m) L-band brightness temperature data 

(TB) was collected with the Polarimetric L-Band Multibeam Radiometer (PLMR) over sev-

eral sites within the observatory. The analyses presented in this study are performed on a 

winter barley (~27 ha) and winter rye (~37 ha) site located in south-east Germany (51° 13’ 

N, 12° 40’ E). The topography of the site is gentle and the soil properties do not vary much 

within the analysed sites.  

Horizontal (TBh) and vertical (TBv) polarized brightness temperature was measured at six 

PLMR antennas with incidence angles of +7°, +21.5° and +38.5°. TBh and TBv were normal-

ized to the outer beam positions (+38.5°) to avoid viewing angle dependent effects on the 

soil moisture retrieval results. 

5.2.2 Field soil moisture data 

During the period of PLMR data sampling soil moisture was measured by mobile capacit-

ance sensors (ML2 Theta probes) for the upper 6 cm soil layer. On the winter barley site at 
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43 and on the winter barley at 47 ground truth locations field soil moisture data were col-

lected. As can be seen in figure 5-1 the adjacent soil moisture conditions were very dry (< 15 

Vol. %) during the time of data acquisition. Average soil moisture values of 7.8 Vol. % on 

the winter barley field and 9.3 Vol. % on the winter rye field were observed at the day of 

observation. 

 
Figure 5-1. Histogram of the measured soil moisture on the winter barley (left) and win-

ter rye (right) test sites during PLMR data acquisition. 
 

5.2.3 Ancillary vegetation data 

For all soil moisture ground sampling points LAI (leaf area index) and canopy height data 

was collected to provide information about the geometrical vegetation canopy characteris-

tics. LAI was measured using a LI-COR, Inc. (Lincoln, Nebraska, USA) LAI-2000 Plant 

Canopy Analyzer, which is a handheld technique and a rapid method for field applications. 

Canopy height was simply measured using a foot rule. The value ranges and standard devia-

tion of LAI and canopy height for the winter barley and winter rye site are given in table 5-1. 

At the day of field and airborne data acquisition, the main phenological stage for the two 

crop types was flowering (main shoot). It should be noted that for winter barley the flower-

ing was more pronounced and fruit sets were mostly visible. With respect to the phenologi-

cal stage and confirmed by random field samples the vegetation water content (vwc) for 

winter barley and winter rye can assumed to vary between 2 and 3 kg m-2. 
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Table 5-1. Characteristics of LAI and canopy height for the winter barley and winter 
rye data. 

vegetation parameter average min max 
standard devia-
tion 

LAI 4.3 2.7 5.2 0.5 
canopy height [cm] 99.7 10.0 120.0 17.9 
winter rye 
LAI 3.6 2.3 4.5 0.4 
canopy height [cm] 120.0 90.0 135.0 7.7 
 

A normalized difference vegetation index (NDVI) (Rouse et al. 1974) was calculated from 

an AISA Eagle (Airborne Imaging Spectro-Radiometer for Application, SPECIM – Spectral 

Imaging Ltd. 2007, Finland) imaging spectrometer data set, by 

)(
)(

670800

670800

RR

RR
NDVI

+
−=         (5.1) 

where xxxR represents the centre wavelength of a narrow spectral band with 2.3 nm band 

width. Because of coverage gaps between the AISA and PLMR observation swaths NDVI is 

available only at 40 ground truth locations (23 for winter barley, 17 for winter rye) for the 

two crop sites. 

 

5.2.4 Temperature data 

Soil temperature was measured next to the soil moisture measurement locations. Simple 

field thermometers were used to provide integrated temperature information about the upper 

6 cm soil layer. 

Thermal infrared temperature (TTIR) obtained simultaneously during the PLMR data acquisi-

tion yielding a composite of canopy and soil surface temperature. The thermal infrared radia-

tion of a spectral range between 7.5 – 14 µm was collected whereby the emissivity was set to 

0.98 during data acquisition.  

The effective soil temperature is the temperature contributing to the soil microwave emis-

sion and can be determined using measured profiles of soil temperature by (Choudhury et al. 

1982). Temperature of the moisture profile is important as the range of the soil effective 

temperature increase as the soil moisture decreases. 

CTTTT depthsurfdeptheff )( −+=        (5.2) 

where 

Tdepth  deep soil temperature (approximately 50-100cm) 

Tsurf  surface temperature (0-5 cm) 
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C  empirical parameter depending on frequency and soil moisture.  

C is given by 

( ) 0

0/ wb
s wwC =         (5.3) 

where ws is the surface soil moisture at the top 0-2cm layer and w0 and bwo are semi-

empirical parameters depending on soil characteristics (e.g. texture, structure, density). As 

the empirical retrieval of C was impossible within this operational experiment a default val-

ue of C for L-band equal to 0.246 was used (Wigneron et al. 2008).  

In an operational context it is not possible to provide soil temperature profile measurements. 

Therefore, in this study equation (5.2) was applied assuming that Tsurf is equal to the thermal 

infrared temperature TTIR and Tdepth represents the soil temperature Ts of the upper 6 cm.  

Therefore, three different temperature input data sets are applied in this study: 

- Ground measured soil temperature: Ts 

- Spatially integrated thermal infrared temperature: TTIR 

- Calculated soil effective temperature using the formulation proposed by Choudhury et 

al (1982): Teff 

The temperature dependent average values and standard deviations are given in table 5-2. As 

can be seen the standard deviation of Ts is higher than of Teff and TTIR. TTIR is generally war-

mer than Ts and Teff. 

Table 5-2. Number of sampling points, mean value and standard deviation of tempera-
ture data for the winter rye and winter barley site. 

 winter barley winter rye all 
sample size 43 47 90 
statistic mean std mean  std mean  std 
Ts [K] 287.64 1.08 287.49 0.73 287.56 0.91 
TTIR [K] 293.37 0.62 293.48 0.35 293.43 0.50 
Teff [K] 289.05 0.90 288.96 0.57 289.01 0.74 
 

Figure 5-2 shows the relationship of measured soil moisture and TTIR where a slight decrease 

of the soil moisture values with increasing TTIR was found. That bias may be explained by 

the phenomena of an increase of evapotranspiration with increasing biomass that in turn may 

be found at moisture locations within the field and causes an increase of temperature. As can 

be seen in figure 5-3 that assumption might be valid for the measured soil moisture, TTIR and 

LAI regarded as a proxy for biomass (higher LAI values indicating more biomass). 
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Figure 5-2. Observed thermal infrared temperature (TTIR) and soil moisture of winter 

barley and winter rye data. 
 

 
Figure 5-3. Relationship of observed thermal infrared temperature (TTIR), measured soil 

moisture and LAI of the winter barley and winter rye data. 
 

5.3 LPRM: Land Surface Parameter Retrieval Model 

LPRM was used for this study to retrieve soil moisture on the two crop sites (winter barley 

and winter rye) by applying the high spatial resolution PLMR data, the different provided 

temperature data and in-situ soil moisture information as described in the previous chapter. 

LPRM was originally developed and tested with microwave brightness temperature from the 

6.6 GHz (C-band) scanning multichannel radiometer (SMMR). In de Jeu (2008) soil mois-
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ture accuracy of 6 Vol. % was obtained using C-band data. In de Jeu et al. (2009) a soil 

moisture retrieval accuracy of ~ 5.5 Vol. % was achieved using L-band data. The ground 

observed soil moisture varied between almost zero to 60 Vol. %. A special question that 

needs to address within this study is how good LPRM estimate the experiment specific very 

dry soil moisture conditions (< 15 Vol. %). No study in scientific literature was found where 

experimental data was analysed to distinguish soil moisture of such a small range. 

An advantage using LPRM is in the low requirement on the supply of ancillary data that 

makes it interesting for operational soil moisture retrieval. There is no parameterization for 

vegetation characteristics necessary. The approach uses a theoretical relationship between 

brightness temperature TB, the microwave polarization difference index (MPDI) and the soil 

dielectric constant to compute soil moisture (sm) and optical depth (τ). LPRM combines 

different modules that are summarized in table 5-3 together with the required input parame-

ters and the several model outputs. A detailed description including the equations used in 

LPRM is given in Appendix A. The deviation of the optical depth module is provided with 

Appendix B. The description of the dielectric mixing model is given in Appendix C. The 

notation of LPRM model parameters and default parameterization is provided in table 5-4. 

 

Table 5-3. Summary of applied LPRM modules and parameterization 
module input parameter output parameter reference 

dielectric mix-
ing  
model 
 

effective temperature, frequen-
cy, sand content, clay content, 
bulk density or wilting point, 
soil moisture 
 

dielectric constant Wang et al. 1980 

reflectivity 
model – Fres-
nel Law 

incidence angle, dielectric con-
stant 

smooth surface 
reflectivity 

 

roughness 
model 

smooth surface reflectivity, 
roughness parameter, 
incidence angle  

rough surface ref-
lectivity 

Choudhury et al. 
1979, Wang et al. 
1981 

vegetation 
optical depth 
model 

polarization ratio, incidence 
angle, rough surface emissivity 

vegetation optical 
depth 

Meesters et al. 
2005 

radiative trans-
fer model 

effective temperature, canopy 
temperature, rough surface 
emissivity of horizontal polari-
zation, optical depth 

brightness tempera-
ture 

Mo et al. 1982 
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Table 5-4. LPRM global model parameters and default values. 
Observation characteristics: parameter value reference 
Incidence angle  u 38.5° campaign specific 
Frequency f 1.413 campaign specific 
Soil parameters:    
roughness parameter hr 0.1 Wigneron et al. (2007) 
soil porosity p 0.465 site specific 
wilting point WP 0 site specific 
sand content s 0.52 site specific 
clay content c 0.11 site specific 
model parameters:    
polarization mixing fraction Q 0 de Jeu et al. (2009) 
vegetation single scattering 
albedo ω 0 

de Jeu et al. (2009) 

zenith atmospheric opacity opt_atm 0 de Jeu et al. (2009) 
 

5.4 LPRM optimization procedure 

Within the optimization procedure described in the following to aspects are considered, i) 

the roughness parameter hr and, ii) a shift of the temperature, which directly influences the 

microwave thermal emission. 

TTIR measured from thermal infrared represents an integrated temperature information con-

taining contributions from the soil and vegetation layers. Assuming the temperature within 

the vegetation layer in equilibrium with the top soil temperature is a common assumption in 

soil moisture retrieval studies using passive microwave data due to a lack of appropriate 

vegetation temperature and soil profile data (Panciera et al. 2009, Van de Griend et al. 

2003). Nevertheless, such an assumption represents a main uncertainty since the temperature 

is a major factor controlling emissivity at L-band and finally the soil moisture retrieval using 

physically based models. As presented in section 5.2.4, the temperature data may vary sig-

nificantly (~ 5 K difference between Ts and TTIR) dependent on the source of data. Further-

more, TTIR data yields an operational uncertainty related to the pre-defined emissivity setting 

at the camera. Even within a given crop canopy, the emissivity at thermal infrared may vary 

much (0.98 – 0.95) depending on the vegetation water status and changes of the canopy ar-

chitecture (Olioso et al. 2007). Olioso et al. (2007) found that emissivity at thermal infrared 

over senescent crops (dry) can be significantly lower than emissivity over well-watered 

green vegetation. A change of emissivity over crops of ~ 0.03 may lead (regarding the rela-

tionship temperature = brightness temperature/emissivity) to differences of ~ 10 K on the 

collected thermal infrared temperature TTIR. 

Several studies in literature have shown that the roughness parameter hr varies from site to 

site and that the roughness has a crucial effect on the soil moisture results within physically 

based models (Escorihuela et al. 2007, Wigneron et al. 2001). In de Jeu et al. (2009), con-
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vergence of LPRM retrieved TBh and observed TBh could only be achieved applying a dy-

namic roughness parameter depending on incidence angle and soil moisture. As no mea-

surements of the soil surface roughness are available within this study an optimization of hr 

was performed to improve LPRM soil moisture retrieval results. 

For applying the optimization described in the following two notifications are here intro-

duced i) “scene-based” denotes the application of the optimization to find one optimal hr and 

temperature shift Tshift for all ground truth and PLMR data pairs (43 for winter barley, 47 for 

winter rye) together, and ii) to find “pixel-based” optimal hr and temperature shift values. 

For the latter, the 40 ground truth and PLMR data pairs are used where also NDVI data is 

available. In order to analyse the relationship between the spatially varying hr values and the 

NDVI data, here the NDVI is used as a proxy for the presence of green vegetation. 

In table 5-4 the value ranges of the temperature shift Tshift and hr applied during the optimiza-

tion are specified. For all other model parameters the default values as represented in table 5-

3 are used. 

Table 5-5. Value range for the roughness parameter hr and the temperature shift Tshift 
applied within the optimization procedure 
Parameter  LPRM 
temperature shift Tshift -5 - 5 K 
roughness parameter hr 0 – 1.2 

 

5.4.1 Scene-based optimization 

The aim of the scene-based optimization was to retrieve soil moisture with LPRM assuming 

a uniform parameterization crop type wise (winter barley and winter rye separately) and for 

the two crop types combined. Therefore, the analyses using the scene-based optimization for 

hr and Tshift were performed using all 90 ground truth locations for soil moisture. Additional-

ly, the winter barley (43 sampling points) and the winter rye (47 sampling points) data were 

analysed separately within the optimization procedure. Analyzing the performance, differ-

ences could possibly be caused by crop type specific conditions (e.g. LAI, canopy height, 

phenological stage). Three variant data sets (winter barley, winter rye, winter barley and 

winter rye combined) were applied each using LPRM with Ts, TTIR, Teff to analyse the effect 

of the different temperature data source on the achieved values for hr and Tshift. Therefore, 

the optimization procedure was performed on nine input data sets.  

The scene based optimization was performed as a two-step optimization with a Monte-Carlo 

simulation. In the first step, the optimal soil moisture value smo is determined where a mini-

mum RMSE between LPRM computed TBh and the measured TBh is achieved. To find the 

optimal soil moisture value smo the Monte-Carlo simulation on all soil moisture ground truth 
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points is applied. The simulation was set up with a uniformly distributed number of samples 

of 1000 elements across the specified value ranges for Tshift and hr given in table 5-4. The 

soil moisture values used within LPRM during the forward modeling were constrained by 

the measured soil moisture. Within the second optimization step, the roughness value hr and 

the temperature shift Tshift that minimizes the RMSE between measured and LPRM retrieved 

soil moisture was determined. 

 

5.4.2 Pixel-based optimization 

As the dependence of the roughness parameter on soil moisture was found to be related to 

spatial variations of the soil dielectric constant with an influence stronger during dry condi-

tions the roughness parameter hr was assumed to be highly spatial variable because of the 

very dry soil moisture conditions (< 15 Vol. %) during the PLMR data acquisition. Further-

more, hr was found to change with the type of vegetation cover or litter over the soil. For 

instance, in Saleh et al. (2007) a hr = 0.5 over grassland and in Wigneron et al. (2007) a hr 

varying between 0.1 and 0.7 for different crops were applied. Consequently, it is assumed 

within this study that hr is spatially variable depending on the vegetation conditions that 

have previously been assumed homogeneous within a crop site. Considering a spatially vary-

ing hr may lead to improved LRPM soil moisture retrieval as it also compensates for vegeta-

tion influence on the observed brightness temperature. To address the assumptions of a spa-

tially variable hr a pixel-based optimization for hr and a temperature shift Tshift is performed 

to investigate its effect on the LPRM soil moisture retrieval results. Torward that purpose, 

the optimization procedure for hr described in section 5.4.1 is performed at each single 

ground truth point and corresponding brightness temperature (TBh, TBv) and temperature 

data (Ts, TTIR, Teff). LPRM is than applied using individual hr values for each ground truth 

point to compute soil moisture. To directly investigate the relationship between the achieved 

hr and vegetation conditions the results of the local optimization are explicitly analysed at 

the set of the 40 ground truth points were also VI calculated from the AISA imaging spec-

trometer data were available. 

5.5 Soil moisture results 

The next three sections present the soil moisture results using LPRM with the default 

parameterization and the scene-based and pixel-based optimization. Section 5.5.1 gives re-

trieval results using LPRM default values. Section 5.5.2 presents LPRM soil moisture results 

achieved from a scene based optimization of hr and the temperature shift Tshift. Section 5.5.3 

presents the results for the pixel based optimization of hr and the temperature. The perfor-
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mance of LPRM was analysed using the RMSE and the coefficient of determination R² us-

ing a linear regression between LPRM retrieved and ground measured soil moisture. 

 

5.5.1 Soil moisture retrieval with LPRM default parameters 

LPRM was first applied using the default parameterization as given in table 5-3 and without 

a priori information of soil moisture within the inversion process of LPRM. The soil mois-

ture input was set to a standard range from 5 – 70 Vol. %. Figure 5-4 presents the default 

LPRM soil moisture results using Ts, TTIR and plotted against the in-situ soil moisture for all 

90 ground truth locations (winter barley and winter rye combined). Clearly, the soil moisture 

results using TTIR are generally higher than if Ts is applied with a mean shift of 5.6 Vol. % 

compared to Ts. The coefficient of determination of the two achieved soil moisture results 

(using Ts and TTIR) is R² = 0.91 and the RMSE = 1.19 Vol. %. Using Teff mean soil moisture 

difference of 4.3 Vol. % were found compared to soil moisture results using Ts. 

However, the retrieved soil moisture values are extremely outside of the measured range 

exhibited at the day of observation. The LPRM soil moisture results over the crops and dur-

ing the dry conditions are generally overestimated. Hence, it is essential to have any infor-

mation about the real soil moisture conditions and use them within the forward modeling of 

TBh.  

 
Figure 5-4. Comparison of LPRM retrieved (default parameterization) soil moisture 

using Ts, TTIR, Teff and plotted against the measured in-situ soil moisture for 
all 90 ground truth locations for winter barley and winter rye.  

 

5.5.2 LPRM soil moisture results for scene-based optimization 

Within the scene-based optimization procedure, the soil moisture range for the forward 

modeling of TBh was constrained by the soil porosity. 
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The motivation for the application of the scene-based optimization procedure was to find 

one optimal hr parameter that minimizes the RMSE between observed and LPRM retrieved 

soil moisture. Furthermore, the variation of hr depending on the applied temperature data (Ts, 

TTIR, Teff) is discussed. In table 5-5 the performed LPRM runs for the different temperature 

input data and ground truth data used are specified. As can be seen, the found optimal values 

for hr vary much (0.16 – 1.05) dependent on the used ground truth data set and the applied 

temperature source. The RMSE values achieved by comparing the LPRM retrieved soil 

moisture and measured soil moisture are quite similar for all nine applied input data sets. 

Table 5-6. Determined hr and temperature shift Tshift achieved within the scene-based 
optimization procedure using MC simulated data. Default settings of Q = 
0.2, ω = 0, P = 0.465, S = 0.52 and C = 0.11 are applied. 

runs winter 
rye 

winter 
barley 

source of 
temperature 

hr Tshift R² RMSE 
[Vol. 
%] 

set1  x TTIR 0.61 -3.99 0.32 1.15 
set2  x Ts 0.79 -0.03 0.23 1.23 
set3  x Teff 1.05 -2.10 0.25 1.23 
set4 x  TTIR 0.16 2.12 0.02 1.69 
set5 x  Ts 0.27 3.21 0.03 1.22 
set6 x  Teff 0.50 4.89 0.04 1.48 
set7 x x TTIR 0.87 3.17 0.04 1.51 
set8 x x Ts 0.56 1.96 0.02 1.37 
set9 x x Teff 0.96 3.15 0.03 1.50 
 

Figure 5-5 presents the relationship between the found optimal hr and the appropriate scene-

based temperature shift Tshift on the input temperature. It was found that hr slightly decreases 

with a positive temperature shift or in other words if the exhibiting temperature is warm. 

 

 
Figure 5-5. Scatter plot of optimized scene-based hr and temperature shift Tshift from all 

nine LPRM runs. 
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The RMSE between LPRM retrieved and measured soil moisture are generally low but the 

results are not well distributed around the 1:1 line if regarding the combined results for win-

ter barley and winter rye (see figure 5-6). That may be caused by an inappropriate global 

parameterization of hr by regarding the natural occurring differences of the two crop types. 

A main hampering factor for the retrieval of better soil moisture results may be caused by 

the canopy height of the winter rye, which was approximately 20 cm higher than the winter 

barley canopy. Therefore, the scattering processes and attenuation of the soils microwave 

emission at L-band is more affected within the winter rye canopy. Vertical structure of the 

stems has a dominating effect on the scattering within the crop canopy (Ulaby 1995, 

Wigneron et al. 2004). Even small differences in vegetation parameter characteristics (e.g. 

vegetation water content, LAI, canopy height) within a crop site may result in significant 

limitations of soil moisture sensitivity on observed brightness temperature.  

 
Figure 5-6. Comparison of predicted and measured soil moisture achieved from the 

scene-based parameter optimization using TTIR for winter barley and winter 
rye data (set 7, blue squares – winter barley, red squares – winter rye). 

 

As no convergence between LPRM retrieved soil moisture and measured soil moisture could 

be achieved using the ground truth data from the two crop sites together a scene-based opti-

mization was performed individually for each site (winter barley and winter rye separately). 

As can be seen in figure 5-7 (a) for the winter barley data the LPRM retrieved soil moisture 

results scatter reasonably well around the 1:1 line to the measured soil moisture. Regarding 

the narrow range of soil moisture the sensitivity of LPRM is still good enough to link small 

changes of observed brightness temperature (TBh, TBv, MPDI) and TTIR information to soil 

moisture changes. Although, the soil moisture variation below the winter rye canopy could 

not be approximated satisfactorily using the scene-based parameterization of hr. 
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Figure 5-7. Comparison of LPRM retrieved and measured soil moisture achieved from 

the scene-based parameter optimization using TTIR for winter barley (a) and 
winter rye (b). 

 

The LPRM retrieved soil moisture values are still overestimated compared to the measured 

soil moisture. As a result, a scene-based optimization of hr is not sufficient to determine 

reliable soil moisture estimates below a crop canopy either using the data of the two crop 

sites together or separately. 

Within figure 5-8, the relationship between the roughness parameter values hr achieved from 

the Monte-Carlo simulated data and the RMSE from LPRM retrieved and measured soil 

moisture is shown. It can be seen that there is a strong equifinality regarding the roughness 

parameter hr and resulting in similar RMSE. The parameter response surface, as represented 

by the data points with a small RMSE, is complex and without any clear peaks, which im-

plies that the model is ambiguous in terms of its parameterization for hr. As a result, no op-

timal roughness value hr can clearly be determined. 
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Figure 5-8. Scatter plot of the RMSE between measured and LPRM retrieved soil mois-

ture using LPRM and tested roughness parameters. Results achieved on the 
winter barley and winter rye ground truth points and for a MC set of 
1000/100. 

 

Furthermore, the problem of equifinality is demonstrated in figure 5-9 on the relationship of 

the simulated data for hr and the temperature shift Tshift. There is clearly no relationship be-

tween hr and the temperature shift Tshift, but as can be seen by the colour schema equifinality 

appears for the RMSE between measured and LPRM retrieved soil moisture. The same 

“goodness of fit” represented by the RMSE can be achieved from completely different com-

binations of hr and a temperature shift Tshift. It was found that the RMSE slightly increases 

for hr values close to 0 and 1.2 and corresponding temperature shifts Tshift with absolute val-

ues close to the defined maximum of 5 K. 
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Figure 5-9. Scatter plot of roughness parameter hr and temperature shifts Tshift for set 7. 

The colour schema represents the RMSE between measured and LPRM re-
trieved soil moisture. 

 

5.5.3 LPRM soil moisture results for pixel-based optimization 

With the application of a pixel-based optimization for hr and the temperature shift Tshift the 

coefficient of determination R² and the RMSE between measured and LPRM retrieved soil 

moisture were strongly improved as can be seen in table 5-6. The results are comparable 

with results achieved in de Jeu (2009) were coefficients of determination were found up to 

R² = 0.98 (using linear regression) between LPRM retrieved and ground measured soil mois-

ture. They applied a dynamic roughness parameterization hr (roughness values varying be-

tween 0.2 and 0.45) but in contrary to this study it was optimized for soil moisture and the 

incidence angle.  

 

Table 5-7. Coefficient of determination R² and RMSE between measured and LPRM 
retrieved soil moisture using pixel-based optimization. Default settings of Q 
= 0.2, ω = 0, P = 0.465, S = 0.52 and C = 0.11 are applied. 

 

number of 
sampling 
points 

source of 
temperature 

standard 
deviation 
of hr R² 

RMSE 
[Vol. %] 

set1-l 40 TTIR 0.34 0.99 0.11 
set2-l 40 Ts 0.30 0.98 0.38 
set3-l 40 Teff 0.31 0.99 0.28 
set4-l 90 TTIR 0.31 0.99 0.09 
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The effect of the temperature data (Ts, TTIR, Teff) applied seems to be negligible in terms of 

the RMSE by applying the pixel-based optimization for hr. Figure 5-10 represents the model 

performance at the 40 ground sampling points using TTIR were a coefficients of determina-

tion was found with R² = 0.99 (using linear regression). The differences between LPRM 

retrieved and measured soil moisture does not exceed an absolute value of 2.5 Vol. % (using 

Ts within LPRM). An average deviation between the soil moisture results of 0.24 Vol. % 

was found using TTIR.and for Teff with 1.65 Vol. %. The found optimal values for hr vary 

much, with a standard deviation of ~ 0.30 (see table 5-6) at the different ground truth loca-

tions. 

 

 
Figure 5-10. Comparison of LPRM retrieved and measured soil moisture achieved using 

TTIR within the pixel-based optimization of hr for winter barley and winter 
rye data at the AISA ground truth locations. 

 

As can be seen in figure 5-11 there is an obvious correlation between the roughness parame-

ter hr and the measured soil moisture where hr increases with increasing soil moisture. The 

dependence of hr on soil moisture can be explained by the so-called dielectric roughness, 

which is assumed to be related to dielectric variations within the soil (Saleh et al. 2007, 

Wigneron et al. 2001). Furthermore, a rough clustering of NDVI values depending on hr and 

soil moisture is found. Higher NDVI values appear at locations with higher hr values and 

higher soil moisture. The results indicate that the roughness parameter hr also compensates 

effect of the vegetation on the observed brightness temperature data. 
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Figure 5-11. Relationship between roughness parameter hr (set 1-l), measured soil mois-

ture and NDVI for all AISA ground truth locations. 
 

The dependency of hr on the presence of developed green vegetation is more clearly pre-

sented in figure 5-12. At the winter barley and winter rye ground truth locations spatially-

explicit comparisons between calculated spectral narrow band NDVI and hr show clearly an 

increasing hr with increasing NDVI. Based on theory, hr actually regarded to account for soil 

roughness, though it is below a crop canopy also affected by the vegetation. Obviously, the 

roughness parameter also includes a roughness effect controlled by the vegetation and as 

vegetation characteristics are spatially variable also hr is spatially variable. Therefore, 

roughness parameterizations derived from bare soil studies can not simply be transfered to 

vegetated soils and roughness parameter values from vegetated areas are temporally dy-

namic depending on plant phenology. Note, that the findings within this study are valid for 

very specific soil moisture and phenological conditions. However, the appearing phenome-

non represents the problem of de-coupling single effects influencing the microwave emis-

sion and hampering the clear identification of natural characteristics controlling model pa-

rameters such as hr. Microwave scattering effects of the soil surface are not clearly to de-

couple from overlaying scattering effects within the vegetation canopy.  
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Figure 5-12. Scatter plot of roughness parameter hr and NDVI. The coefficient of deter-

mination R² was derived from a linear regression. 
 

5.6 Discussion and Conclusion 

This study demonstrated the use of LPRM for soil moisture retrieval from spatial high reso-

lution passive L-band microwave observations below two crop type canopies (winter barley 

and winter rye) and measured very dry soil moisture conditions (< 15 Vol. %) at the time of 

observation. The following aspects were considered within this study: 

- Using LPRM with the default parameterization but different temperature data (Ts, TTIR, 

Teff) to quantify the differences in the LPRM retrieved soil moisture caused by the tem-

perature input. 

- A scene-based optimization using Monte-Carlo simulation was performed to find one 

crop type dependent uniform roughness parameter value hr by considering a temperature 

shift Tshift on the applied input temperature data and improve LPRM soil moisture re-

sults. 

- A pixel-based optimization using Monte-Carlo simulation to find input data pair (meas-

ured soil moisture, brightness temperature, temperature) specific optimal roughness pa-

rameter values hr to improve LPRM soil moisture results. 

- To investigate the relationship between the roughness parameter hr and spatially varying 

vegetation conditions represented by NDVI data. 

As the temperature is a main controlling factor on the microwave emission at L-band, the 

analyses are applied using different temperature input data, namely the soil temperature Ts, 
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thermal infrared temperature TTIR and the calculated soil effective temperature Teff. Regard-

ing the aspects outlined above the results are summarized as follows: 

- Using LPRM with the default parameterization of hr the results were generally overesti-

mated and not within the measured soil moisture range during the PLMR observation. 

Therefore, to optimize the retrieval of TBh using LPRM it is essential to have pre-

information about the real exhibiting soil moisture conditions. Furthermore, using TTIR 

the soil moisture results are generally higher than if Ts or Teff is applied. This phenome-

non can probably be related to the fact that TTIR contains a major contribution of the ve-

getation and of the vegetation water, which causes higher soil moisture retrieval results 

using LPRM. The application of Teff did not show any significant difference to the 

LPRM soil moisture results using TTIR or Ts. Note, that Teff is evaluated over bare soil or 

using simulated data (Wigneron et al. 2008). Furthermore, the calculation differs be-

tween studies in terms of the used soil moisture profile (sampling depth) data. Differ-

ences in the observation time of PLMR data and ground soil moisture can be neglected 

in this study since the observations took place within a two hour time window in the late 

morning. 

- No uniform parameterization of hr performing the scene-based optimization was found 

for the two crop sites to reasonably estimate the soil moisture conditions using LPRM by 

considering the measured soil moisture range. It was found that the roughness parameter 

hr change with the type of temperature data (Ts, TTIR, Teff) used and with the crop input 

data type (winter barley or winter rye). Applying the scene-based optimization for winter 

barley and winter rye separately the performance between measured soil moisture and 

LPRM retrieved soil moisture increases for winter barley. The best soil moisture esti-

mates (but still not satisfactory with R² = 0.32) for the winter barley were achieved using 

TTIR and hr = 0.61. LPRM retrieved soil moisture for winter rye still did not match satis-

factorily the measured values. The reason for the bad performance may lay in the differ-

ences of the two crop type vegetation canopies. In the same phenological stage (flower-

ing, main shoot) both actually have an average difference of the canopy height with 20 

cm. That difference seems a likely reason why no uniform hr value can provide reasona-

ble soil moisture results using LPRM. 

- Performing the pixel-based optimization it is demonstrated that considering hr as spatial-

ly variable the soil moisture retrieval using LPRM can be improved significantly. It was 

demonstrated that the roughness parameter value hr can change much even within a ve-

getation canopy previously have been regarded homogeneous. As the soil surface cha-

racteristics can be assumed homogeneous over the field because the day of the experi-
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ment during the vegetation period was late and the soil surface is stable below the cano-

py. 

- Furthermore, it was shown that the roughness parameter values hr are clearly related to 

the vegetation conditions represented using the NDVI. Therefore, the roughness parame-

ter physically necessary to account for the rough soil surface emissivity is over vege-

tated soils influenced by the vegetation conditions. 

- The study demonstrated the problem of equifinality in terms of the definition of the 

roughness parameter hr. Equifinality in the sense that equal good results (e.g. a specific 

RMSE) may be achieved by a great number of parameter value combinations (e.g. hr and 

Tshift). As a result, there is no clear single optimum parameter set. An optimum is defined 

depending on observed experimental conditions and available data. Therefore, for physi-

cally based models also an empirically effort exists to optimize the parameter value for 

the experiment specific conditions.  

The results of this study show that good soil moisture results can be achieved using LPRM 

by applying spatially dynamic roughness parameter values. Since the roughness parameter hr 

changes from pixel to pixel, a scene-based roughness parameterization yields a deficit of 

accuracy of LPRM soil moisture retrieval results. 

Therefore, a number of tests still have to be made analyzing high spatial resolution experi-

mental data to retrieve soil moisture and consider spatially changing roughness conditions. 

Especially for agricultural applications where it is a major issue to monitor the spatial distri-

bution of soil moisture on a small scale (field, only several hectares) it is important to con-

sider the spatial variation of model parameters like hr. and its relation to the soil covered 

vegetation. 
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6. General Conclusions 

In this thesis airborne passive L-band microwave observations (PLMR) were applied to re-

trieve soil moisture underneath a crop canopy. Additionally, high spatial resolution (1.5 m) 

airborne imaging spectrometer (AISA) data was used to analyse the vegetation influence on 

the high spatial resolution (50 m) brightness temperature data. Field measurements of soil 

moisture and vegetation canopy parameters (e.g. LAI) were used as ground truth. A crop 

vegetation canopy which is in many studies been assumed homogeneous was considered 

heterogeneous within this study. All analyses are performed on data gathered on a winter 

barley and winter rye site during one day of observation. 

This study is unique in that the soil moisture conditions, which had to be estimated, exhib-

ited in a very small and dry soil moisture range (< 15 Vol. %) at the day of the L-band pas-

sive microwave observations. Two methods, namely empirical multi-variate regression and 

the land surface parameter retrieval model (LPRM) were applied to retrieve soil moisture 

from the L-band brightness temperature data. A special feature and basis for the analyses of 

the vegetation effect on the microwave data was the availability of spectral narrow band 

vegetation indices calculated from airborne imaging spectrometer data collected over the 

crop sites. That data allowed unique analyses of the relationship between passive microwave 

data, spatially varying vegetation canopy conditions (LAI, NDVI) and the roughness pa-

rameter used within LPRM at field scale. 

The preceding chapters have shown: 

- An obvious relationship of the microwave signal dependent on i) the PLMR pixel 

average LAI, ii) sub-pixel variability of LAI, and iii) the viewing angle of the bright-

ness temperature observations were found within a vegetation canopy that are usually 

assumed being homogeneous (see chapter 3). The findings are important for support-

ing the understanding of the effect of vegetation on high spatial resolution L-band 

data, which has to be considered for soil moisture estimations below crop canopies. 

Furthermore, the findings are also very useful for the application of passive L-band 

microwave data to retrieve vegetation biomass data. 

- The combined empirical analyses of spectral narrow band vegetation indices and 

brightness temperature data at L-band provides a simple and fast approach to estimate 

soil moisture below crops as it is interesting for operational agricultural applications 

(see chapter 4). Soil moisture estimates with an accuracy equal to 0.82 Vol. % 

(RMSE) were obtained. The availability of imaging spectrometer data provides a very 

valuable source of information about vegetation conditions. Compared to ground point 
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measurements (e.g. of LAI) it is already a spatially integrated data product and can di-

rectly be included within the data analyses. 

- In chapter 5 it was found that using a default parameterization for the roughness (hr = 

0.1) no reasonable soil moisture results could be achieved using LPRM. Furthermore, 

results based on a scene-based parameterization for the roughness parameter did not 

provide satisfactory results on the two crop types.  

- Very good results for soil moisture were achieved by applying a pixel-based optimiza-

tion using Monte-Carlo simulation for the roughness parameter at the ground truth lo-

cations on a winter barley and winter rye site. Linear regression between LPRM re-

trieved and measured soil moisture showed convergence up to R² = 0.99 (see chapter 

5). The good results are in cause of an optimization of the roughness parameter for 

each single ground truth location, which resulted in spatially varying roughness pa-

rameter values. 

- A clear relationship between NDVI data and local optimized roughness parameter 

values (R² = 0.57) were found. This indicates an obvious dependency of the roughness 

from the vegetation conditions covering the soil surface. This can be interpreted as the 

roughness parameter has to consider a vegetation “roughness” influence if vegetation 

is present on the soil surface (see chapter 5). 

Beside the critical vegetation canopy characteristics (flowering, main shoot) only a small 

range of soil moisture conditions was measured during the day of the experiment. No study 

was found in the literature where a radiative transfer model was applied to similar site condi-

tions and experimental passive L-band microwave data. From the point of view of agricul-

tural irrigation management such dry conditions are of special interest to ensure and improve 

agricultural yield. Therefore, a strong motivation exists to provide applicability of LPRM for 

different soil moisture conditions and at field scale like it was performed within this study 

for a very dry soil. 

However, by comparing soil moisture results from 50 m PLMR pixels with ground meas-

ured point soil moisture differences obviously have to occur. The footprint integrated and to 

square pixels resampled PLMR observation represent a completely different measurement 

compared to the point ground measurement taken as reference. Nevertheless, the field soil 

moisture data measured by mobile capacitance sensors (ML2 Theta probes) seem an appro-

priate ground truth to account for the spatially varying soil moisture for operational applica-

tions. 

No study in literature was found where the roughness parameter, which is a controlling pa-

rameter to account for the surface emissivity of a rough soil, was discussed in terms of its 

correlation to NDVI data for vegetated soils. The soil surface and crop canopy conditions of 
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the two test sites (winter barley and winter rye) did not correspond to extreme conditions in 

terms of within field heterogeneities (e.g. of soil type, LAI). Therefore, the roughness pa-

rameter values are highly spatial variable even for a vegetation canopy which is generally 

assumed to be homogeneous. This indicates that over vegetated soils and under similar ex-

periment conditions (e.g. spatial resolution of data sampling) the roughness parameter may 

also be related to vegetation conditions (e.g. represented by NDVI data) to improve soil 

moisture retrievals using radiative transfer models. 

The previous section demonstrated that physical explanations to account for a model pa-

rameter within a physically based mathematical function (e.g. rough soil emissivity) are 

uncertain in their expression and unclear in their way of parameterization. The dependence 

of single model parameters (e.g. roughness) on surface characteristics is not clear and ex-

periment specific assumptions are applied. The soil roughness parameter as it controls 

mainly the rough surface emissivity is not achievable in an operational manner and is in 

many studies simply transferred between test sites. Because the results, as demonstrated in 

chapter 5, show the roughness parameterization strongly influences the performance of 

LPRM and not only vegetation canopy type but especially also the specific phenological 

stage should be considered by evaluating roughness parameterizations for application pur-

poses. Comprehensive value tables are missing for the roughness parameterization at a vari-

ety of vegetation species and a wide range of phenological conditions that highly change 

during the growing cycle. 

Key criterions for the decision of an appropriate model type either empirically or physically 

are the availability and the effort in providing input data for calibration. Empirical ap-

proaches require a large amount of data to account for the variability of the dependent vari-

able. Physically based models mostly require a selection of physical parameters that can not 

easily be measured during any ground truth campaign. However the main limiting factor of 

both approaches is the site dependency (soil type, vegetation type) of the model parameters. 

Using physically based models such as radiative transfer equations truly quantitative esti-

mates of soil moisture can be retrieved. Empirical models are of interest where no correct 

parameterization of a physically based model can be provided or where the inversion of such 

models failed. This thesis shows the high potential and simple application of the combined 

analyses using high spatial resolution L-band radiometer observations together with imaging 

spectrometer data for soil moisture estimation. Note, the analyses were performed using very 

specific remote sensing data (e.g. spatial resolution, viewing angle) and over specific site 

conditions represented by the phenological stage of the crops and the very dry soil moisture 

(< 15 Vol. %) conditions.  
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As the top canopy is a geometrically complex structure that is strongly influenced by rain 

and wind and phenological and physiological differences occur spatially variable especially 

the upcoming EnMAP (Environmental Mapping and Analyses Program) satellite mission 

(scheduled launch 2013) promises detailed information about vegetation conditions, which 

can be applied for soil moisture retrieval using L-band brightness temperature. Furthermore, 

recent and new terrestrial monitoring networks (e.g. TERENO in Germany) provide useful 

reference data to establish operational soil moisture retrieval using new and upcoming re-

mote sensing data product e.g. SMOS or SMAP. High spatial resolution airborne data is an 

appropriate method to analyse sub-pixel heterogeneities for disaggregation purpose of coarse 

scale soil moisture data. Beside the requirement on global soil moisture maps provided from 

satellite missions local airborne campaigns have a great potential to support hydrological 

catchment management and support agricultural management. However, to improve exsist-

ing model approachs or develop new methods it is important for future work to provide vali-

datation for a wide range of land cover conditions and a wide range of phenological stages. 
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7. Summary 

Soil moisture is a key variable at the global water cycle. The water content of the soil’s few 

upper centimeters controls the partitioning of water and energy fluxes on the land surface 

including the splitting of rainfall into surface runoff, infiltration and evapo-transpiration, as 

well as the redirection of incoming solar radiation into albedo, thermal radiation, sensible 

and latent heat fluxes. Information about spatial surface soil moisture is therefore an impor-

tant boundary condition for process based hydrological, climate or ecological models rang-

ing from the field scale up to the global scale and its knowledge is essential in order to im-

prove operational hydrological, climate and weather predictions including flood forecasting, 

drought monitoring or eco-climatological projections via calibration or data assimilation 

techniques. The aim of this thesis is to retrieve soil moisture over agriculturally used sites 

using high spatial resolution airborne L-band radiometer data (50 m). 

Low-frequency passive microwave remote sensing at L-band (~ 1.4 GHz) has been found to 

be the most promising remote sensing method for soil moisture monitoring due to the direct 

link between microwave radiation and dielectric properties, its deeper penetration into vege-

tation, its all-weather capabilities and its negligible atmospheric attenuation. The large 

amount of research on estimating soil moisture from L-band radiometers resulted in a con-

sensus regarding the major factors that should be incorporate in data analyses. The soil mois-

ture sensitivity of L-band brightness temperature changes spatially with soil, vegetation and 

terrain characteristics. The contribution of soil moisture on observed brightness temperature 

at L-band is highly spatial variable as it is strongly influenced from the vegetation cover of 

the soil. Attenuation and scattering processes within a vegetation canopy are strongly influ-

enced by specific geometrical (e.g. leaf area index - LAI, canopy height) and biophysical 

(e.g. vegetation water content) vegetation canopy characteristics. In order to estimate soil 

moisture below a vegetation canopy it is essential to provide spatial distributed information 

about vegetation characteristics.  

To account for the spatial distribution of vegetation characteristics within this study, high 

spatial resolution airborne imaging spectrometer data (1.5 m) are analysed together with L-

band brightness temperature data. Spectral vegetation indices computed from spectrometer 

data provide a high potential to account for spatially varying vegetation canopy characteris-

tics. The analyses from this thesis are performed over crops (winter barley, winter rye) by 

using in-situ field measurements as ground truth for vegetation condition and soil moisture. 

This study is unique in that the soil moisture conditions, which had to be estimated, exhib-

ited in a very small and dry soil moisture range (< 15 Vol. %) at the day of the L-band pas-

sive microwave observations. 
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The key questions of the study are summerized as follow: 

1. Is there a unique relationship between LAI and high spatial resolution L-band 

brightness temperature at sub-pixel level? 

2. Does the combined use of L-band data and hyperspectral vegetation indices pro-

vide reasonable estimates of surface soil moisture using empirical models? 

3. How strongly does the temperature information affect the soil moisture estimates 

using the land surface parameter retrieval model (LPRM)? 

4. Is there a relationship between within field variations of the vegetation canopy and 

the roughness parameter used with the land surface parameter retrieval model 

(LPRM)? 

The results show an obvious (0.23 < R² > 0.90) relationship between the microwave bright-

ness temperature data and LAI variations within a vegetation canopy that is usually assumed 

being homogeneous (e.g. crops). Furthermore, the combined empirical analyses of spectral 

narrow band vegetation indices and brightness temperature data at L-band provides a simple 

and fast approach to estimate soil moisture below crops (RMSE = 0.82 Vol. %). The applied 

imaging spectrometer data and calculated spectral vegetation indices represented the spa-

tially changing vegetation canopy characteristics (e.g. LAI or vegetation greenness) very 

well. Using LPRM with a default parameterization for the roughness (hr = 0.1), no reason-

able soil moisture results could be achieved. Soil moisture results using LPRM and different 

temperature input data showed average differences of 5.6 Vol. %. Very good results (R² = 

0.99) for soil moisture were achieved by applying spatially varying values for the roughness 

parameter, which were achieved from an optimization of LPRM using Monte-Carlo simula-

tion at the ground truth locations on the winter barley and winter rye site. An obvious rela-

tionship between NDVI data and the spatial varying roughness parameter values (R² = 0.57) 

were found. This indicates a dependency of the roughness from the vegetation conditions 

covering the soil surface.  

Using the airborne remote sensing and field data collected in the course of this research, in 

this study it is demonstrated that either the empirical models and the LPRM model provides 

good estimates for the occuring very dry soil moisture conditions (< 15 Vol. %) at the day of 

the L-band data acqusition. Considering the relationship of the roughness parameter and 

NDVI, a spatial varying parameterization of the roughness within radiative transfer models 

may be realized to finally improve soil moisture estimates below a vegetation canopy. The 

analyses within this were performed using very specific L-band brightness temperature data 

(e.g. spatial resolution, viewing angle) achieved at experiment specific site conditions repre-

sented by the phenological stage of the crops and the very dry soil moisture conditions. 
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Therefore, it is generally important for future work to provide validatation for a wide range 

of land cover conditions and a wide range of phenological stages. Recent and new terrestrial 

monitoring networks (e.g. TERENO in Germany) provide useful reference data to establish 

operational soil moisture retrieval using new and upcoming remote sensing data product e.g. 

SMOS or SMAP. 
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Appendix A 

LPRM - Land Surface Parameter Retrieval Model 
 

The radiative brightness temperature is expressed as a radiative transfer equation and based 

on two main parameters, the optical depth τ and the single scattering albedo ω (Kirdyashev 

et al. 1979, Mo et al. 1982) 

ppcpprpcppprsp TeTeTTB ΓΓ−−−+Γ−−+Γ= )1()1)(1()1()1( ,, ωω   (A.1) 

where Ts and Tc are the soil and vegetation temperatures, er and Γ are respectively the rough 

surface emissivity and the transmissivity of the vegetation layer. The index p refers to the 

polarization state. The single scattering albedo ω accounts for the scattering of the soil mi-

crowave emission within the vegetation.  

The first term of equation (A.1) describes the emission from the soil as attenuated by the 

overlaying vegetation. The second term describes the emission from the vegetation. The 

third term accounts for the downward radiation from the vegetation, reflected upward by the 

soil and is again attenuated by the vegetation canopy. For illustration see figure A-1. 

 
Figure A-1. Contribution of soil and vegetation to observed passive microwave signal. 
 

In LPRM, the vegetation attenuation factor or transmissivity Γ is assumed to be equal for 

vertical and horizontal polarization. Γ is defined in terms of the optical depth τ and is given 

by 



Appendix A 
 

 

96 

)
cos

exp(
u

τ−=Γ         (A.2) 

where u is the incidence angle. 

Within this study LPRM is applied with the vegetation optical depth module proposed by 

Meesters et al. (2005). The final equation to compute τ is given by 

)1)(ln(cos 2 +++= aadaduτ .      (A.3) 

For detailed description of the derivation of equation (A.3) see Appendix B. 

In general the soil brightness temperature TB is a function of soil emissivity e and the soil 

temperature Ts and is simplified given by 

spp TeTB ⋅= .         (A.4) 

The emissivity ep is generally calculated as one minus soil reflectivity rp (ep =1-rp). Within 

LPRM the reflectivity rp is related to the surface soil moisture content through the dielectric 

mixing model proposed by Wang and Schmugge (1980). The dielectric model is an essential 

part of the forward modeling procedure as it realizes the connection to the soil water content. 

A detailed derivation and description of the Wang-Schmugge Model is provided in Appen-

dix C.  

The reflectivity rp is calculated from the Fresnel equations that defines the behavior of elec-

tromagnetic waves at a smooth dielectric boundary by 

2

2

2
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uu
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rh

−+
−−=
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       (A.5) 
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2
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uu
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rv

−+
−−=

εε
εε

       (A.6) 

where ε is the absolute value of the complex dielectric constant of the soil. 

The rough surface emissivity er,p is described by a semi-empirical approach to account for 

soil roughness effects on the microwave emission (Wang et al. 1981). Rough surfaces are 

characterized by higher emissivity and the differences between horizontal and vertical pola-

rizations are reduced. The rough surface emissivity er,p  is developed as a function of the 

smooth surface reflectivity rs,p and the parameters Q, hr and u 

))cosexp())1(((1 2
2,1,1, uhrQrQe rpspspr −⋅⋅−+⋅−=     (A.7) 

for Q = 0 
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)cosexp((1 2
2,1, uhre rpspr −⋅⋅−=       (A.8) 

where Q is the polarization mixing fraction that can be assumed to be zero at L-band 

(Wigneron et al. 2001). hr is a dimensionless empirical roughness parameter. The index p1 

and p2 refer to the polarization states (horizontal or vertical).  
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Appendix B 

Vegetation optical depth model 

 

The analytical derivation of the vegetation optical depth from the microwave polarization 

difference index (MPDI) was proposed by Meesters et al. (2005). 

Within the radiative transfer equations, given by 

hhchhrhchhhrsh TeTeTTB ΓΓ−−−+Γ−−+Γ= )1()1)(1()1()1( ,, ωω   (B.1) 

vvcvvrvcvvvrsv TeTeTTB ΓΓ−−−+Γ−−+Γ= )1()1)(1()1()1( ,, ωω   (B.2) 

with the assumption Ts = Tc = T the vegetation canopy transmissivity is defined as 

)
cos

exp(
u

τ−=Γ .        (B.3) 

The microwave polarization difference index (MPDI) is defined as 

hv

hv

TBTB

TBTB
MPDI

+
−= .        (B.4) 

A new expression for B.3 is derived by substituting B.1 and B.2 in B.4 and can be rewritten 

as follows 

( )( )( )
( ) hvhv

hv

eeee

ee

MPDI −Γ−+Γ
−Γ−Γ++

−
+= 1

1
11121

2ωω
ω

.    (B.5) 

Equation B.5 can be formulated as 

( )
2

2

2
12

2
Γ+Γ

Γ−=
d

a         (B.6) 

with 

( ) ( ) ( ) ( ) ( )




 −−−= ukeuke
MPDI

ukeuke
uka hv

hv ,,
,,

2
1

,     (B.7) 

and 

( )ω
ω
−

=
12

1
d .         (B.8) 

Substituting B.7 and B.8 in B.6 yields a quadratic equation in Γ, where 

( ) 0121 2 =−Γ+Γ+ ada .       (B.9) 

Dividing B.9 by Γ² and then solving for 1/Γ a general solution is given by 

( ) 1
1 2 ++±=
Γ

aadad        (B.10) 

where by definition that 10 ≤Γ≤ only the form 
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( ) 1
1 2 +++=
Γ

aadad        (B.11) 

of equation B.10 yields positive result. 

Combining equation B.11 with equation B.3 a formulation for the optical depth is given by 

)1)(ln(cos 2 +++= aadaduτ       (B.12) 

Equation B.12 can now be used in a forward modeling approach using equation B.1. 
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Appendix C 

Wang-Schmugge Model: semi-empirical dielectric mixing model 

 

The dielectric constant ε of a soil-water mixture is described as 

 

( ) ( ) rax PP εεθεθε ⋅−+⋅−+⋅= 1   tθθ ≤     (C.1) 

where  

θ  volumetric water content of the soil [m3 m-3] 

P porosity of the dry soil 

εx dielectric constant of the initially absorbed water 

εa dielectric constant of the air 

εr dielectric constant of the rock.  

Furthermore εx is defined as 

( ) γ
θ
θεεεε ⋅⋅−+=

t
iwix        (C.2) 

and 

( ) ( ) ( ) rawtxt PP εεθεθθεθε ⋅−+⋅−+⋅−+⋅= 1     (C.3) 

tθθ ≥  

with 

( ) γεεεε ⋅−+= iwix         (C.4) 

where 

iε  dielectric constant of ice 

wε  dielectric constant of water 

γ  empirical parameter  

tθ  the transition moisture [m3 m-3].  

tθ  is defined as the moisture content at which the free water phase begins to dominate the 

soil system and can be described as  

165.049.0 +⋅= WPtθ        (C.5) 

WP is the wilting point of the soil which can be calculated by 

CSWP ⋅+⋅−= 00478.000064.006774.0      (C.6) 

where S and C are respectively the sand and clay contents in percent of dry weight of a soil. 

γ  can be determined by 



Appendix C 
 

 

101 

481.057.0 +⋅−= WPγ        (C.7) 

The complex dielectric constants for ice, solid rock and air are 

ii 1.02.3 +=ε  

ir 2.05.5 +=ε  

ia 01+=ε . 

The dielectric constant for water wε  is given by the Debye Equation 

( )iftw

ww
ww ⋅⋅⋅+

−+= ∞
∞ π

εεεε
21

0        (C.8) 

where 

∞wε  is the high frequency limit of the dielectric constant of pure water (~ 4.9), 0wε  is the 

static dielectric constant of pure water, wt  is the relaxation time of pure water in seconds and 

f is the electromagnetic frequency in Hz. Equation (C.8) can be rewritten in a real and im-

aginary part. The real part is defined by Ulaby et al. (1986), as 

( )2
0'

21 ftw

ww
ww ⋅⋅⋅+

−+= ∞
∞ π

εεεε        (C.9) 

and the imaginary part as 

( )
( )2

''

21
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ft

ft

w

wwow
w ⋅⋅⋅+

−⋅⋅⋅⋅= ∞

π
εεπε        (C.10) 

The static dielectric constant of pure water is given as 

( ) ( )
( )35

24
0

15.27310075.1

15.27310295.615.2734147.0045.88

−⋅⋅

+−⋅⋅+−⋅−=
−

−

T

TTwε
  (C.11) 

where T is the effective temperature of the emitting layer in Kelvin. 

The relaxation time of pure water is 

( )
( ) ( )316214

1210

15.27310096.515.27310938.6

15.27310824.3101109.12
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