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Zusammenfassung

Zusammenfassung

Eine ganz wesentliche Rolle bei der Beschreibumgve@getationsentwicklung sowie Was-
ser-, Stoff- und Energieflissen auf allen rAumlicB&alen spielt die Kenntnis des Wasser-
gehaltes in den oberen Zentimetern der LandobédlaDie oberflichennahe Bodenfeuchte
steuert maRRgeblich die Aufteilung des Niedersclddagadie Komponenten Oberflachenab-
fluss, Verdunstung und Infiltration und regulieie anikrobakterielle Aktivitat, sowie bio-
geo-chemische Umsetzungsprozesse. Die VerfugbatheitWasser ist entscheidend fur das
Pflanzenwachstum, hat einen Einfluss auf die Ateammensetzung und bestimmt Gber
Wechselwirkungen mit dem Strahlungs- und Energishalti das (lokale) Klima. Zudem
spielt die raumliche Verteilung der Bodenfeuchtd dusbildung von Mustern und Struktu-
ren eine wichtige Rolle fur die Entwicklung obeciéger und unterirdischer Wasser- und
Stofftransporte. Ziel dieser Arbeit war es obetimnahe Bodenfeuchte aus rdumlich ho-
chauflésenden (50 m) L-Band Radiometerdaten Ubwiwatschaftlich genutzten Flachen

abzuleiten.

Passive L-Band (~ 1.4 GHz) Mikrowellenfernerkundungtels Radiometern hat sich als
eine der meist versprechensten Fernerkundungsneattmao Ableitung von Oberflachenbo-
denfeuchte (ca. 0-10 cm) erwiesen. Die Operatititalieser Fernerkundungsmethodik zum
Bodenfeuchte-Monitoring ist jedoch noch nicht gegebGrund dafir ist im Wesentlichen
die Signalliberlagerung unterschiedlicher systerd-abjektspezifischer Faktoren und deren
limitierender Einfluss auf die Interpretierbarkeiér vom Radiometer registrierten Strah-
lungstemperatur hinsichtlich Bodenfeuchte. Beiderwendung von Mikrowellenradiome-
tern Uber vegetationsbedeckten Béden kommt es gnalbiberlagerungen bis zu endgulti-
gem Verlust der Bodenfeuchteinformation am SigmaAbhangigkeit von der ,stérenden”
Vegetationsschicht. Zur Erfassung raumlich vedeiBodenfeuchte mittels L-Band Radio-
metern ist es demnach essentiell Informationen di@eraumliche Verteilung von Vegetati-
onsparametern (z.B. Blattflachenindex — LAI, Pfemwassergehalt, Biomasse) bereitzustel-

len und in Modellrechnungen einzubeziehen.

Im Zusammenhang mit dem aufgezeigten Hintergrurgl. lales Vegetationseinflusses auf
das Mikrowellensignal behandelt das vorliegenden@tmnsvorhaben die gemeinsame
Analyse von flugzeug-getragenen L-Band Mikroweléghometerdaten (50 m geometrische
Auflésung) und abbildenden Spektrometerdaten (1geometrische Auflosung). Flugzeug-
getragene abbildende Spektrometerdaten verfuganeilé&ohes Potential zur Vegetations-
analyse und enthalten aufgrund ihrer hohen réauetichuflosung (< 5 m) Informationen

Uber die Subpixelheterogenitdt von Vegetationsageaften innerhalb raumlich geringer

aufgeloster L-Band Daten. Die Ableitung der Bodenfdge im Rahmen dieser Arbeit erfolg-

VI
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te auf Getreideflachen (Wintergerste, Winterroggeahrend der Fruchtentwicklungsphase.
Eine besondere Charakteristik des Datensatzeteistetir geringe Bodenfeuchte (< 15 Vol.
%) am Tag der L-Band Datenakquise, welche im Raheieer Feldkampagne in-situ ge-

messen und als Referenz verwendet wurde.

Die zentralen Zielsetzungen dieser Arbeit konnemrdich folgendermalien zusammenge-

fasst werden:

1. Besteht ein Zusammenhang zwischen sub-skaliger (&idiabilitaét und der
raumlich hochauflésenden ,Strahlungstemperatursipas Mikrowellenferner-
kundungsdaten des L-Bandes?

2. Ermoglicht der Einsatz von spektralen Vegetatiodiges die Charakterisierung
des Vegetationseinflusses und damit die Ableitung Bodenfeuchte aus L-
Band Daten mittels ,einfacher* empirischer Modehaerhalb eines Getreide-
bestandes?

3. Wie beeinflusst die Temperaturinformation die Bddechteergebnisse bei der

Verwendung des ,land surface parameter retrievaletidLPRM)?

4, Besteht ein Zusammenhang zwischen inner-schladgod®n Variationen der
Vegetationsdecke und dem Rauhigkeitsparameterdoe/erwendung des ,land

surface parameter retrieval model" (LPRM)?

Die vorliegende Arbeit zeigt, dass auftretende aailitdten des LAl innerhalb eines Getrei-
debestandes das Mikrowellensignal nachweislici3(8.R2 > 0.90) beeinflussen. Weiterhin
kénnen mittels einfacher empirischer Modelle uiMerwendung von hyperspektralen Vege-
tationsindizes sehr gute (RMSE = 0.82 Vol. %) Bddaohteergebnisse erzielt werden. Der
Vorteil dieser Datenkombination liegt in der sebtesn Charakterisierung der Heterogenitét
von Vegetationseigenschaften auch innerhalb einegedationsbestandes. Die Ableitung
von Bodenfeuchte mittels LPRM unter Verwendung eingefault® Wertes zur Rauhig-
keitsparameterisierung erzielte keine zufriedelestden Ergebnisse. In Abhangigkeit von
der verwendeten Temperaturinformation in LPRM waurdeittlere Unterschiede in den
Bodenfeuchtergebnissen von bis zu 5.6 Vol. % nastggen. Sehr gute Bodenfeuchtergeb-
nisse wurden dagegen erzielt bei der Verwendungliélu variierender Werte fir die Rau-
higkeit. Die rdumlich variierenden Rauhigkeitswewearde durch eine Optimierung von
LPRM mittels Monte-Carlo Simulation erzielt. Zwisahden optimierten Rauhigkeitswerten
und NDVI (normalized difference vegetation indexgifén, berechnet aus den abbildenden
Spektrometerdaten, wurde ein klarer Zusammenhahg ((R57) gefunden. Die Ergebnisse
der Arbeit zeigen insbesondere das hohe Potemiajeimeinsamen Auswertung von passi-

ven L-Band Mikrowellendaten und Vegetationsindizesechnet aus abbildenden Spektro-
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meterdaten zur Ableitung raumlich verteilter Bodrrthte. Da der Einfluss von Vegetati-
onseigenschaften rdumlich stark variieren kanntebésine rdumliche Variabilitat in der

Genauigkeit der Bodenfeuchteberechnung.

Die Integration von spektralen Vegetationsindizes Quantifizierung des Vegetationsein-
flusses an der L-Band Strahlungstemperatur velspoperationelle Umsetzbarkeit. Die
Kenntnisse tUber den Zusammenhang von Rauhigkessieser und NDVI kénnen verwen-

det werden um eine raumliche Optimierung der insptalisch-basierten Modellen verwen-
deten Rauhigkeitswerte durchzufiihren. In diesena@msenhang besteht die Anforderung
an ein Monitoring des Verhaltens von Modellparam@®auhigkeit) zu Vegetationsparame-
ter oder Vegetationsindizes in Abhangigkeit von Algrder Vegetation, der Phanologie und
der damit verbundenen zeitlichen Dynamik innerhalh Vegetationszyklen. Der Ausbau
Bestehender sowie die Neueinrichtung terrestris8®rsornetzwerke (z.B. TERENO) zur
Bodenfeuchte- und Temperaturmessung oder dem \Magetiaonitoring, ermdglichen die

Bereitstellung von zeitlich hoch aufgelosten Refiedaten zur Validierung aktueller und
zukinftiger Fernerkundungsdatenprodukte wie z.BOSVISMAP oder EnMAP.




Chapter 1 - Introduction

1. I ntroduction

1.1  Importanceof spatial distributed soil moisture information

The soil moisture of the upper few centimetres play important role for many atmospheric
and land surface processes related to meteorotdigyatology and hydrology (Western et
al. 2004). Global, continental and regional obstowa of soil moisture are particularly
important for weather and climate forecasting (Hust al. 1999, Li et al. 2007). In meteor-
ology soil moisture determines the partitioningneft radiation into latent or sensible heat
components. Spatio-temporal dynamics of soil mogstwe connected to hydrological proc-
esses like evapotranspiration, infiltration andfae runoff (Hupet et al. 2002). Soil mois-
ture of the top few centimetres plays a key roldiriting evapotranspiration when the at-
mospheric demand is high (Ilvanov et al. 2004). fidsponse of natural catchments to pre-
cipitation depends on the spatial and temporalluéea of surface runoff generation which
in turn is strongly related to the initial wetnessndition (Vivoni et al. 2007). Spatio-
temporal characteristics of surface soil moistuatgons provide information about the posi-
tion of the water table (Troch et al. 1993). Sodisture can vary significantly on diurnal
basis, especially for short vegetation canopy. whikely applied Soil & Water Assessment
Tool (SWAT) to predict the influence of land manamgt practice on water, sediment and
agricultural chemical yields in large complex watexds requires soil moisture input data.
Soil water models play an important role in terrhgstimating water use, water allocation
and water status at a specific spatial scale (Ragatet al. 2008). Their application is often
hampered by the lack of specific soil moisture datecalibration to large areas or to assess

temporal dynamics.

Therefore, improved information about spatial disttion of soil moisture is important for

various applications and at field scale it may igne

- agricultural practice and irrigation managementst@anssen et al. 2000, Jackson et
al. 1987, Wigneron et al. 1998)

- early yield forecasting (Doan Minh et al. 2003, Ewag 1991)

- early drought prediction and monitoring (Jacksoale1987a, Sridhar et al. 2008)

- solute transport and erosion analyses and managémesause of their influence on
water flux patterns (Castillo et al. 2003, Jacksbal. 1987b)

- flood forecasting though improved modelling of swé runoff and infiltration
(Bindlish et al. 2009, Crow et al. 2005)




Chapter 1 - Introduction

1.2 Methodsto retrieve soil moisture

Various needs for soil moisture observations reqdifferent measurement techniques that
can generally be distinguished in in-situ (poingasurements, soil-water models and re-

mote sensing techniques.

The gravimetric technique, as a destructive fialahgling, is the standard for the calibration
of all other methods to determine soil moisturee Thethod consists of oven drying soill
samples (105°C, ~48 h) until a constant weight. dimeunt of soil water content is usually
expressed as volume percentage (Vol. %) by usaefined cylindrical tube. This method is
technically simple but has a high effort on man eoviield and laboratory equipment and is
time consuming. Furthermore it is destructive amdtémporal monitoring or large area soil
moisture sampling circumstantial and extensive. ground based soil moisture monitoring
generally indirect measurement techniques are egpjoh which sensors are plunged in the
soil or are permanently installed into the soitéoord quasi continuous data. These methods
make use of the impulse propagation of an electgmetdc pulse within the soil which is

mainly dependent of the soil water conditions.

The neutron scattering method as a nuclear tecaregtimates the soil moisture content by
measuring the thermal or slow neutron density (B=ic1950). Neutrons with high energy
are emitted by a radioactive source into the sull @e slowed down by nuclei of atoms and
become thermalized. The collision with hydrogen skmv fast neutrons much more effec-
tively than any other element present in the dierefore, the density of the resultant cloud
of slow neutrons is a function of the moisture eomtin the soil. The number of slow neu-
trons returning to the detector is counted per timieé and the soil moisture content is de-

termined using a known calibration curve of cowassus volumetric water content.

Electromagnetic techniques, such as frequency domiiectometry (FDR) and time do-
main reflectometry (TDR) depend upon the effectaf moisture on the dielectrical proper-
ties of the soil. Dry soil has a dielectric constagar 5 whereas that of water is 80. Capacit-
ance or resistivity between electrodes in a soiheasured for soil moisture. Using TDR
devices high frequency electromagnetic waves arestnitted and the dielectric permittivity
is determined by measuring the time it takes foelastromagnetic wave to propagate along
a transmission line that is surrounded by the 3&ie information required is obtained from
a reflection vs. frequency graph and transferredaib moisture values using a calibration
function. Tensiometer measures the capillary tenerothe energy with which water is held
(suction) by the soil. Breakdowns appear mainlyirdudry conditions and a regular mainte-

nance is required.
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Soil water models play an important role in agtierdl water management and vary much
in their complexity (Ranatunga et al. 2008). Saitevr models include soil water flow equa-
tions and are based upon the conservation of nsadstermine soil moisture at any time.
Such models can be used to estimate soil moistwarimus depth and different spatial and
temporal resolutions. TOPMODEL is a widely usedfai-runoff model to predict soil
moisture distribution within catchments (Beven kt1879). These models usually require
extensive meteorological and site specific inputapeeterization. Data assimilation using
remote sensing derived spatial distributed nedasearsoil moisture information can be ap-
plied in such models for calibration purpose andtovide soil moisture information at
much greater depth (Houser et al. 1998, Walkel. 2081).

Remote sensing techniques to retrieve soil moisiteeperformed using portions of the visi-
ble (0.4 — 0.74um), near (0.7 — 1.Am), shortwave (1.4 — 3)0m), thermal infrared (8.0 — 15

pm) and microwave (1 mm — 1 m) electromagnetic spatt Dependent on the specific
sensors remote sensing offers the opportunitytimate soil moisture and appearing spatial

patterns at various spatial scales (field to glsicale).

Penetration depth with optical remote sensinggeitantly lower compared to microwave
sensors. Reflected solar energy within the visggectrum responds to only the top few
centimetres of the soil profile (Idso et al. 197Bicreasing soil moisture up to a specific
level entails a decrease in reflectance valuekenvisible and short wave infrared. Surface
covariates to account for during soil moisture gseé are soil texture, surface roughness,
organic matter, crust and vegetation cover (Capedhal. 1997). Using the visible region of
the electromagnetic spectrum, the soil moisturgessd! is based on measurements of the
surface albedo (Jackson et al. 1976). The nornthlkizél moisture index (NSMI) is pro-
posed to assess near surface soil moisture directhe field using spectrometer measure-
ments of the shortwave infrared at 1800 nm and 2 gHaubrock et al. 2008a). However,
the found coefficient of determination was not tangling with R2 = 0.61. Nevertheless, the
NSMI was applied and validated over a lignite minarea with a coefficient of determina-
tion of R2 = 0.82 using airborne imaging spectr@neiata to quantify multi-temporal sur-
face soil moisture (Haubrock et al. 2008b). The tnoamstraining criterion for the use of
optical remote sensing data are the limited apipilitya to non- or very low vegetated soils
and the requirement of optimal solar illuminatiamditions, therefore limiting the observa-

tions to day time and to areas with no cloud cover.

Soil moisture retrieval using thermal infrared (TkRta are based on the effect of water on
the thermal properties (heat capacity, thermal ootindity) of the soil. In turn, thermal

properties effect the surface radiant temperataodetiae soil resistance to diurnal changes of
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temperature caused by external (solar radiationteaiperature, relative humidity, cloudi-
ness) meteorological influences (Schmugge et &0,1%an de Griend et al. 1985). Good
correlations were found between the diurnal ranfgeod temperature and soil moisture.
Although, no unique relationship exist between terajure determined from TIR data and
soil moisture for vegetation covered soils. Sinmeviegetated soils the surface temperature
Is an integrated value, including temperature ésfet the vegetation layer and the soil the

vegetation contribution has to be considered fdmsoisture analyses.

Remote sensing using microwave sensors measumdtisomagnetic radiation in the mi-
crowave domain between 0.75 and 100 cm, correspgrtdi frequencies between 40 GHz
and 0.3 GHz. This microwave region is subdividad specific bands, which are generally
referred to by a lettering system (see table 1kpréMiave remote sensing signals over bare
soil targets are very sensitive to soil water conges it is directly linked to the soils dielec-
tric constant which increases with increasing watertent (Schmugge 1978, Ulaby 1986).
For soil moisture retrieval studies the most imaottfrequency bands are the L-, C- and X-
band.

Table 1-1. Microwave bands (Lillesand et al. 1994)

Band Wavelength [cm] Frequency [GHZ]
Ka 0.75-1.10 40.0 - 26.5

K 1.10 - 1.67 26.5-18.0

Ku 1.67 -2.40 18.0 - 12.50

X 2.40-3.75 125-8.0

C 3.75-7.50 8.0-4.0

S 7.50-15.0 40-20

L 15.0-30.0 20-1.0

P 30.0 - 100.0 1.0-0.3

The basic approaches in microwave remote sensmgliatinguished into two categories:
active and passive. Both, the radar backscattemefficient and the brightness temperature
measured by microwave radiometers depends on ttideince angle, frequency, wave-
length, polarization and dielectric properties lié soil. Furthermore the sensitivity of both

data products to soil moisture is hampered by sarfaughness and vegetation.

Active sensors make use of a radar antenna, whacisinits specific wave pulses and re-
ceives a return signal (reflectivity) whose inténsiaries with the characteristics of the ob-
served target. The signals send and received byar are usually polarized horizontally or

vertically. The relationship between radar backscand dielectric constant is highly non-
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linear. Using either, empirically and physicallyskd soil moisture retrieval algorithms site
specific successful results (R2 > 0.9 between eoeskeand modelled soil moisture) may be
obtained for bare soils and vegetated soils at orawale (Bindlish et al. 2000, Srivastava et
al. 2009). The model performance was generally daienbe lower for vegetation covered
soils as the backscattering coefficient of the sodttenuated by the vegetation layer (Ulaby
et al. 1982). Some studies found that the cormelaietween radar backscatter at C-band and
soil moisture was poor at field scale and higheratation where found at catchment scale
where site specific effects seemed to averageAduailez-Mozos et al. 2005, Cognard et al.
1995). The vegetation effect on C-band may be esesignificant as it is applicable for
vegetation biomass retrieval (Mattia et al. 2003giWgron et al. 1999). The advantage in
using mapping radar techniques compared to micrewadiometers is the higher spatial
resolution. Therefore radar data is also proposeslipport soil moisture studies within dis-

aggregation procedures using passive L-band datmayfdn et al. 2006, Piles et al. 2009).

The first experiment to estimate soil moisture fromcrowave radiometers was performed
in the 1970s (Schmugge et al. 1974). L-band petestreegetation better than C-band and
X-band. Consequently passive microwave remote sgnsf soil moisture at L-band is
found as the most promising technique for globdlreoisture monitoring except over dense
forests (Prigent et al. 2005, Wagner et al. 200ignéfon et al. 2003). The background of
this technique is the effect of the dielectric prdjgs of the soil on the natural microwave
emission from the soil (Schmugge et al. 1980). dietectric constant can be calculated as a
function of soil moisture and other soil paramesarsh as soil texture, soil salinity and bulk
density. The most widely used dielectric modeldinithe low frequency range (1-20GHz)
are the Dobson Model (Dobson et al. 1985) and tlamgA5chmugge Model (Wang et al.
1980).

The brightness temperatufg at L-band over a smooth bare soil measured byliameeter

is given by

T, =6, O, (1.1)
wheree, is the soil emissivity at a specific polarizatiprfhorizontal or vertical) ands the
soil temperature. The equation (1.1) is determiinech Plank’s blackbody law through the

Rayleigh-Jeans approximation for microwave freqiEn¢Schmugge 1985). Kirchhoff's

reciprocity theorem relates the emissivity to thiectivity rs by
e =1-r,. (1.2)

The value range of soil emissivity exhibits fronoamd 0.95 for dry soil (~ 5 Vol. %) to

around 0.6 for wet soil (~ 40 Vol. %). Furthermaine soil layer depth contributing to the
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soil emission depends on the soil moisture itsktkson et al. 1996, Schmugge 1983). If
the soil is very wet, the soil emission originatesinly from layers at the soil surface. Con-
versely, for dry soils the emission contributingl sayer at L-band is deeper (e.g. more than
1 m for dry sand). In other words, the soil moistuetrieval using passive L-band data is
typically dynamic in depth, as the soil goes fromishto dry, the depth to which the soil
moisture estimate corresponds increase, sinceetbih dver which the microwave emission
originates increases. The impact of surface roughoe the soil emissivity is probably the
most discussed parameter in soil moisture studiesband. In Wigneron et al. 2007 the
roughness parameter is defined “as an effectivanpater that accounts for (i) “geometric
roughness” effects, in relation with spatial vaaas in the soil surface height, and (ii) “di-
electric roughness” effects in relation with vanatof the dielectric constant at the soil sur-
face and within the soil which can be caused byunaformities in the soil characteristics”.
For rougher surfaces, the emissivity increasestla@densitivity to soil moisture decreases
(Newton et al. 1980, Wang 1983). This effect mayiriierpreted as an increasing in soil
surface area increases the emissivity. The rougheféact itself depends on the observation
configuration, in terms of polarization and inciderangle and the soil moisture conditions.
Above the soil, vegetation emits microwave radiatiwhilst it absorbs and scatters the ra-
diation coming from the soil (Jackson et al. 199é@n de Griend et al. 1985). Therefore, the
sensitivity of the passive L-band microwave sigrtalsoil moisture changes depending on
the characteristics of the soil coved vegetatiomdse detailed discussion about vegetation
specific influence on the L-band brightness temjpeeais provided in section 1.3 since it
represents a major topic of this study.

Furthermore, in preparation of satellite missiond t support studies related to hydrology
and climate numerous airborne L-band radiometepe@gns were performed during the last
two decades. The probably most important experisnant basis for important studies re-

lated to soil moisture retrieval are collectedahlé 1.2.
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Table 1-2. Overview of important L-band radiomatampaigns.
campaign spatial resolution reference
EI'IA‘:FI;EX’ 100 Schmugge 1992, Wang
! —Aem et al. 1990
MONSOON 90
PORTOS91, not defined (field scale, Wigneron et al. 1993,
PORTOS’93 several rows) Wigneron et al. 1995
Washita'92 coarse scale (200 m) Jackson et al. 1995
Southern Great Plains’97  coarse scale (800 m) dacisal. 1999
Southern Great Plains’99  coarse scale(> 100m) Ngdlal. 2002
EuroSTARRS 2001 multiple scales (< 100m)  Saleh. &0®4
SMEX'02 400 m Narayan et al. 2006
SMEX'03 not defined Ryu et al. 2007
SMEX'04 2 km, 3 km Jackson et al. 2005
NAFE’05 1km-625m Panciera et al. 2008
NAFE’06 1 km Merlin et al. 2008
SMAPVEX'08 1km, 2.1 km, 4.2 km Majurec et al. 2009

On November %' 2009 the European Space Agency’s SMOS (Soil Maisand Ocean
Salinity Mission) satellite was launched as a faatellite using L-band specific for global
soil moisture observations (Kerr et al. 2001). SM&@&s to provide global soil moisture
maps with an accuracy better than 4 Vol. % evedlgyds and a spatial resolution of ~ 40 km.
The NASA'’s Soil Moisture Active and Passive Missi@MAP) is planned to be launched
in 2013 (Entekhabi et al. 2010). SMAP combines hébaadar and L-band radiometer, al-
lowing simultaneous active and passive microwaveeplations of the same land surface
target. By combining the radar and radiometer measents in a joint retrieval algorithm,

fine resolution (10 km) soil moisture maps will fp@vided.

1.3  Vegetation influence on passive L-band data

The retrieval of soil moisture and biomass areftmelamental applications of passive mi-
crowave remote sensing. Estimations of soil moesfrom thermal microwave radiation are
significantly affected by the soil's vegetation eovFor L-band microwave emission, the
optical depthr, defined as a one-way canopy absorption faidoapplied to parameterize
the attenuation effect of the overlaying vegetatiiirdyashev et al. 1979). Under most
vegetation and soil conditions, the radiometrid smbisture sensitivity decreases approxi-
mately exponentially with increasing optical deptliDu et al. 2000). The scattering and
absorption effects of L-band within a canopy ardntyaaffected by vegetation dielectric

and geometrical characteristics.

Vegetation optical deptirat L-band is well correlated to the dielectric prdjies and the

vegetation water content (vwc) and increases witheiasing water content (Jackson et al.
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1982). Vegetation water consequently reduces tinestnission of the soil brightness tem-
perature. In several studies found in literature diptical depthris linearly related to the
vegetation water content (Jackson et al. 1991, iPanet al. 2009, Van de Griend et al.
2004). The effect of vegetation structure playsigmicant role on the optical depth of
standing vegetation (Saleh et al. 2006, Wigneroal.e2007). Microwave emissivity at L-
band is well correlated with soil moisture as tlegetation optical thickness is low for nar-
row vegetation layers and low biomass (Ferrazzoliale 2000, Jackson et al. 1991).
Whereby, the vertical polarization suffers moreatagion effects than the horizontal polari-
zation. However, if vegetation effects are con®dein soil moisture studies, the vertical
polarization is less sensitive to soil roughnegsatians and may be preferred for soil mois-
ture estimations from soils with unknown roughnebaracteristics. Emissivity at L-band
horizontal polarization over a whole wheat growingle showed an increase during the
crop growing and decrease during crop drying (eot et al. 2000). This phenomenon is
generally interpreted according to a very low sraty in the upper hemisphere of a wheat
crop as a result of the near-vertical orientatibthe stems and ears. Therefore, wheat be-
haves similarly to an absorbing layer. Furtherntbeeoptical deptir is strongly influenced
by the incidence angle of the observation. Thezootal polarized brightness temperature
suffers more attenuation through the vegetatidowaer incidence angles. Therefore, gener-

ally higher incidence angles (incidence angle > 208 applied for soil moisture retrieval.

Vegetation effects on observed brightness temperatan be approximated well by a radia-
tive transfer equation. The emission of vegetat@anopy at L-band is usually expressed by
the so called — w model which is a zero-order solution of the radeatransfer equation
proposed by Mo et al. 1982 and applied in numerstuslies (Brunfeldt et al. 1984,
Brunfeldt et al. 1986, Jackson et al. 1991, Mo let1882, Van de Griend et al. 1996,
Wigneron et al. 1995). The zero-order solution assithat the vegetation scattering phase
matrix can be neglected for L-band. This model Basethe optical deptlh and the single
scattering albedey which are used to account for the vegetatiomatigon properties and

the scattering effects within the vegetation canopy

Beside incidence angle and polarization, in regliegtion the vegetation influence varies
from pixel to pixel, with the spatial resolution thfe observation and with the phenological
stage. Therefore, achieved relationships betweemptical depthr and a specific vegeta-
tion parameter (e.g. LAl or vwc) are valid only farvery specific phenological stage and
site characteristics (e.g. soil type). For instamgedel parameters evaluated e.g. for winter
wheat during tillering are not consequently appitpr for applications at another
phenological stage because of the high variatiomegfetation water content and biomass

during the growing cycle. Furthermore, model partanseretrieved on a specific spatial
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scale (e.g. 200 m pixel resolution) using spedifiservation characteristics (polarization,
incidence angle) can not simply applied on dats lsating other observation characteristics.
For example using the soil moisture retrieval dtgan proposed by Jackson et al. (1999) for
800 m TB observations Uitdewilligen et al. (2003)dhto redefine the parameters for the
data with a pixel resolution of 200 m in cause derestimation. The higher resolution data

required more site specific calibration.

At coarse scale (e.g. SMOS with ~ 40 km spatiadlte®n) significant spatial heterogeneity
of soil moisture and vegetation cover appears (Bem@009). The effect of vegetation opti-
cal depthr heterogeneity (0 — 0.6) was found to be signifiegith 6.1 Vol. % for computed
soil moisture using simulated data for SMOS obdewmacharacteristics (Davenport et al.
2008). Therefore, the SMOS soil moisture retrielgbrithm account for the sub-pixel het-
erogeneity of land surface conditions by dividihg pixel into fractions determined using
high resolution land use maps. As the influencsuld-pixel heterogeneity varies with the
spatial footprint, scale dependent parameterizatioihvegetation conditions are required.
Therefore, a major research interest is the analgsd interpretation of vegetation effects on
a sub-pixel scale level for different spatial resioins to reduce the error in soil moisture
estimates.

In general studies dealing with the problem of |soudface heterogeneity on L-band soll
moisture products can be categorised in i) anallystudies, ii) simulation experiments and
iii) experimental data analyses. An overview abstuidies on sub-pixel heterogeneity is
presented in table 1-3. In due to the physicalneabéi microwave radiometry at L-band the
most analyses are performed on coarse scale @dteefiresents spatial resolutions > 100 m
within this thesis. The advantage of using anadytstudies or simulated data sets is the
great potential in analysing many different sigméluencing factors at the same time and
under controlled conditions (e.g. incidence antgepperature fields). Simulation experi-
ments apply more realistic connections of valugeane.g. for LAI, vwc, soil moisture, soil
temperature) between different land surface factangillary data is generally derived from
land surface process models. For example, the atronlexperiment performed by Loew
and Mauser (2008) showed strong scale dependémhsisiture retrieval errors on different

coarse scales.
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Table 1-3.

Overview of analytical studies, simatexperiments and experimental

studies according to sub-pixel influence of varisudgace parameters.

Analytical studies

factor spatial scale reference

solil moisture, soil tempera- not defined Njoku 1996

ture, vegetation

soil type Galantowicz et al. 2000

perturbation around mean

soil moisture val_ues, soil 800 m Bindlish et al. 2002

temperature, soil texture,

NDVI (as proxy for vwc)

soil moisture, soil surface

(rjoughnegs, vegetation .Optlcahot defined Davenport et al. 2008
epth, (single and multi-

angle data)

multi-angle data 30 km Van de Griend et al. 2003

land cover specific vwc 50km Burke et al. 2004

Simulation experiments

multi-angle, bi-polarised,
soil texture, land cover, vwc, 1km, 40 km
soil moisture

Loew et al. 2008

Experimental studies

vwec, soil texture, soil mois- see SGP’'97

Burke et al. 2003

ture (table 1.2)

soil hydraulic conductivity, see SGP’97 -

landuse, NDVI (table 1.2) Bindlish et al. 2002

soil moisture, vegetation ,

cover, soil temperature, soil see NAFE'05 Panciera 2009
(table 1.2)

texture, surface roughness

Nevertheless, in reality the quantities of surfpegameters and the intermixture of land
surface patches varies and consequently hampdratimsfer of parameter values, proposed
correlations and methods. Obviously there is a lafckoformation based on experimental
data to address the effect of vegetation on higitiapresolution brightness temperature

observations at L-band within a vegetation canogyipusly have been assumed homoge-

neous (e.g. agricultural fruits).

1.4  Research objectives and thesis organisation

Given the deficit mentioned above, the aim of thelg is the assessment of surface soil
moisture below a crop representing a vegetatioomathat previously had been assumed to
be homogeneous. Therefore the thesis deals witlarthlyses of experimental high spatial
resolution L-band radiometer data according ttsivegetation influence and ii) its sensitiv-

ity for soil moisture retrieval over crops duringycconditions. The key questions of the

study are as follow:

10
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1) Is there a unique relationship between LAI anghhspatial resolution L-band
brightness temperature at sub-pixel level?

2) Does the combined use of L-band data and hypetisp vegetation indices provide
reasonable estimates of surface soil moisture wimgjrical models?

3) How strongly does the temperature informatiofecfthe soil moisture estimates
using the land surface parameter retrieval modeR()?

4) Is there a relationship between within fieldiaaons of the vegetation canopy and
the roughness parameter used with the land sunfacameter retrieval model
(LPRM)?

Therefore, the study involves:

- collection of airborne L-band radiometer and imggspectrometer data

- collection of ground truth data

- assessment of the effect of inner-field heteroderseof a “pseudo”- homogeneous
vegetation layer on the microwave emission

- understanding the link between vegetation chariatits and spatial dynamic of L-
band brightness temperature observations

- testing empirical models for soil moisture estimatiusing spectral narrow band
vegetation indices to account for the spatiallyngfiag optical depth

- testing of the land surface parameter retrievalRIMp approach as a physically

based model to retrieve soil moisture below a campy

Chapter 2 provides information about the experiledata set and test site characteristics.
Campaign specific information about the charadiessand data handling for the airborne
passive microwave data and applied imaging spexipysdata is given. The field data sam-
pling of soil moisture and vegetation charactersstis described. A correlation analyses
between LAl and brightness temperature observatoscalculated emissivity for crops is
performed in Chapter 3. Within Chapter 4 a combieetpirical analyses of L-band radi-
ometer data and spectral vegetation indices fdasarsoil moisture retrieval is presented.
Chapter 5 evaluates the performance of the lanthcmparameter retrieval (LPRM) to
compute soil moisture for the test sites and oogusoil moisture conditions. Chapter 6
gives a general conclusion and recommendatiorutaré work. A summary about the com-

plete thesis is presented in Chapter 7.

The chapters of this thesis, apart from the intatidn (Chapter 1), the general conclusion
(Chapter 6) and summary (Chapter 7), have beemewréds stand alone manuscripts to be
submitted for peer reviewed scientific journalsneke, Chapter 3, 4 and 5 can be read sepa-
rately from the rest of the thesis. As a resulgrtaps occur mainly in the chapters “Intro-

duction” and “Data”.
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2. Test site and data set

The investigations carried out within this studgrevfocussed on crops, namely winter bar-
ley (~27 ha) and winter rye (~37 ha). The testssitee located in south-east Germany near
the city Leipzig (see figure 2-1). Land use in #nea is dominated by agricultural crop pro-
duction. The specific selection of the two testdsewas determined by factors such as ac-
cessibility and the fact that the sites are withicatchment which is well monitored in terms
of water and nutrient fluxes. The topography istlyesloping and the fields consist of
loamy sand with ~ 52 % sand and ~ 11 % clay.

The airborne remote sensing and field data coltewi¢hin this study belongs to very early
TERENO (Terrestial Environmental Observatories, @&wget al. 2006) activities within the
Harz/Central German Lowland observatory which isrdmated by the Helmholtz Centre
for Environmental Research — UFZ in Leipzig. WitfiERENO, these data are part of the
long term monitoring concept for hydrological prssestudies of the local and regional

scale.

Within this chapter, section 2.1 and section 2\& gnformation about the airborne remote
sensing data, main sensor characteristics andsgatific processing steps respectively us-
ing an L-band radiometer and an imaging spectramflete that each of the two remote
sensing data products is available for only onewlidly a time shift of 15 days between the
passive microwave and imaging spectrometer datzioBe2.3 provides information about
the field data collected during the whole growiggle from the specific test sites in the year
2008.

@

: 510120
12°430°E  12°440°E

[ winter rye
winter barley

A 0 100 200
[km]

Figure 2-1. Location of the two crop sites withier@any and the Harz/Central German
Lowland observatory of TERENO.
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21 AirborneL-band microwaveradiometer data

The passive microwave data was achieved with thariReetric L-Band Multi-beam Radi-
ometer (PLMR) developed by ProSensing (ProSensiagUSA) and owned by an Austra-
lian scientific consortium. For the flights in Gaany, the sensor was fitted to the Enviscope
Partenavia PA68 D-GERY. On May 26, 2008 (DOY 14M)rftest areas within the TERE-
NO Harz/Central German Lowland observatory weravfidsee figure 2-2) to collect pas-
sive microwave brightness temperature data. Th&goaond for the initialization of the
campaign was the evaluation of the PLMR sensolofog-term soil moisture monitoring in
TERENO. Consequently the L-band data is availablenty one day and for the adjacent
soil and vegetation conditions (see section 2-8pbse there was a temporal scope of de-

mand.

Klieken

1 k: ‘

" Schaefertal
E i

Harz/Central German
Lowland Oberservatory

T3 Y

" Bad Lauchstaedt
3

N
=3 R N
‘GroBbard'au

4 ’#“ _ -3 "
Y S 'y
N g:%g;

| . km

horizontal brightness temperature

<300 I > 170 K]

0 100 200
kM

Figure 2-2. Location of the four test sites flowiththe PLMR on May 26, 2008 as part
of the TERENO Harz/Central German Lowland obsemyatote that soil
moisture and vegetation analyses were performeg fml the data set
Grossbardau.)

All analyses within this study related to the mali issues (see section 1.4) are performed
using the Grossbardau data because of its sitacteaistics and the availability of appropri-
ate ground truth data. The PLMR observations fass&bardau were obtained between 9

and 10 am in the morning.
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PLMR is a dual-polarized L-band radiometer whickausix pushbroom patch array receiv-
ers with incidence angles of 7°, 21.5° and 38.8% (Bgure 2-3). Vertical and horizontal
brightness temperature is measured for each beaitigmousing a polarization switch. The
six beams were orientated across track to providenage. A reduced antenna beam width
and a specific flight plan, flying low and slow,semed a final pixel size of 50 m. All radi-
ometric and geometric pre- and post flight calilorawvere performed by Airborne Research

Australia (Adelaide/Australia).

PLMR (1.413 GHz, L-band)

Figure 2-3. PLMR viewing angles.

During the campaign warm (blackbody) and cold (shgint calibrations were performed
before and after each flight. Figure 2-4 presedmtsRLMR sensor during cold point calibra-
tion. Each target (blackbody or sky) was obsereedld minutes. Beam specific calibration
coefficients of the brightness temperature at lpatlarizations were retrieved by averaging
pre- and post-flight coefficients. The radiometcalibrated PLMR data were georectified
taking into consideration the geographical posiao inertial navigation information (roll,

pitch, yaw) recorded for each measurement. The bmtres were projected on a 90 m

digital elevation model of the study sites.
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Figure 2-4. PLMR during cold point calibration oriated to the sky. The picture was
made during another campaign in Narranda, Austializecember 2009.

Over homogeneous bare soil target, the measureds Tdfected by the viewing angles
(Ulaby 1986). The angular variations on observedzbatal and vertical brightness tem-
perature can be described by the Fresnel equaimhsliffer depending on the land surface
characteristics and conditions and have to be dereil during data analyses. Previous stud-
ies using similar instruments applied normalizatiprocedures to mixed land covers
(Jackson 2001, Jackson et al. 1999). This procedssemes that the deviation between
beam positions is due to the Fresnel effect andfthandividual beams the calibration er-
rors are constant for a range of soil moisture \agetation conditions. Using single flight
lines for this correction can lead to errors if taed surface heterogeneity is strong. There-
fore, mostly daily averages of viewing angle degend'B data were used to calculate cor-
rection terms for the individual beam positionsisThssumption should be not valid in the
TERENO study area and for the collected PLMR dsitece the test sites show high varia-
tions in their land surface characteristics thatlein different microwave response as can
be seen on the value range of the horizontal TB hafigure 2-2. Hence, for the data used
in this study, no campaign averages of the TB detiee used to calculate correction terms
for viewing angle normalization. Therefore, onlighit line sections were applied to calcu-
late correction terms. These were selected indalidlor each test site over an area with
known and homogeneous land surface conditionsh@&spplied procedure is part of a fur-
ther section, more detailed and site specific mftion is provided in chapter 4.3.1 and
4.4.1. Nevertheless, as the viewing angle influevisaally appears as a stripe effect, an
example of pre- and post correction is presentefijure 2-5. As can be seen, the results

differ depending on the polarization and the hariabTB image appears smoother.
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Figure 2-5. PLMR brightness temperature of horiabahd vertical polarization before

and after viewing angle normalization.

To obtain surface soil moisture estimates from ipassicrowave observations, knowledge
about the soil effective temperature is requirethasemission at L-band is a function of the
physical temperature of the emitting layer. It @ possible to measure soil temperature
below a vegetation canopy using satellite or ambaemote sensing techniques. However,
the acquisition of TIR observations together wik t-band passive microwave data pro-
vides composite information about vegetation anil srface temperature. Furthermore,
those data can provide excellent estimates ofghgas distribution of land surface tempera-
ture since the measurements are already spatiigrated. Therefore on all PLMR flights
also an InfraTec thermal imager was also operatqudvide land surface temperature data
Trr (see figure 2-6). The camera detects thermalriedraadiation of a spectral range be-
tween 7.5 — 144m and the emissivity was set to 0.98.

TIR land surface temperature

290 [K] 297

Figure 2-6. TIR land surface temperature imagdefiest area Grossbardau.
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The TIR data was used to calculate surface emigsitiL-band as it is given by equation
(1.1). Figure 2-7 presents a spatial image of ¢atled emissivity for the two polarizations.
As expected from theory the emissivity for the iaidt polarization is higher than for the
horizontal data normalized to the outer beam pmwsiti The effect can be explained by an

increasing of the optical depttfor the vertical polarization with increasing vieny angle.

vertical polarization horizontal polarization

emissivity I
0.99 0.5

Figure 2-7. Spatial images of calculated emissifrityn horizontal (right) and vertical
(left) PLMR brightness temperature (normalized &53) using TIR tem-
perature data.

2.2 Airborneimaging spectrometer data

Vegetation conditions play a crucial role in thériewal of soil moisture from passive L-

band microwave data. Since vegetation absorbssemd scatters microwave radiation, the
vegetation influence on observed brightness temyrerabservations varies spatially and
temporally with the vegetation conditions. Therefa “perfect” case would be a contempo-
rary acquisition of L-band data and an optical resvensing data product (multi or hyper-
spectral) of similar or even finer spatial resauntio provide real-time information about the

soil covered vegetation.

In the framework of this study AISA Eagle (Airboriteaging Spectro-Radiometer for Ap-
plication, SPECIM — Spectral Imaging Ltd. 2007, |&imd) airborne imaging spectrometer
data within the visible and near infrared rangehef solar spectrum from 400-970 nm was
collected. As the acquisition of hyperspectral daguires clear skies (no clouds), a flight
could only be performed at June 10, 2008 (DOY 1B2J.the campaign the AISA-EAGLE
sensor, together with a GPS/INS unit RT3100 (Oxfbedhnical Solutions LTD., UK) was
fitted to the Microlight aircraft (Trike, D-MUFZ)wned by the Helmholtz Centre for Envi-

ronmental Research UFZ in Leipzig, Germany (segr&@-8).
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Figure 2-8. Microlight aircraft (Trike, D-MUFZ) oveud by the Helmholtz Centre for
Environmental Research UFZ in Leipzig, Germany

AISA comes with the operating software RS Cubeetacampaign specific frame rate, expo-
sure time and binning and monitor the GPS and Hd&is as well as the image quality e.g.
in terms of saturation effect. Campaign specifittirsgs are presented in table 2-1. During
image acquisition the raw image file and headey, filark image data stored together with
the raw image file, the navigation file containi@®S/ INS data and a log file containing
information about the missing frames are recordetl siored. Radiometric calibration and
geo-rectification is performed using CaliGeo sofsvarovided from SPECIM which runs as
an ENVI/IDL plug-in. The data is proposed to acleiev Signal-to-Noise Ratio of 350:1 —
500:1 depending on the spectral settings.

Table 2-1. Applied AISA Eagle specifications

parameter campaign specific setting
spectral binning 2X

spectral bands 252

spectral sampling 2.3 nm

focal length 9 mm

FOV (field of view) 62.1°

spatial ground resolution 1.5m

image rate (fps — frames per second) 30

Atmospheric correction was performed using ENVI A3H which cooperate the MOD-
TRAN-4 radiation transfer code. The atmospheric ehodpplied was Mid-Latitude-
Summer. The water vapour factor was set to 1. Thergl visibility was greater than 40 km
during data acquisition and the no aerosol rethiees applied. In figure 2-9 a spatial subset
of the AISA data set over winter rye is presented.
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Figure 2-9. Colour infrared image of an AISA Eagleath collected over winter rye on
June 10, 2008.

2.3  Field data sampling

To provide information about inner-field vegetatiand surface soil moisture heterogeneity
as basic ground truth assumption for the remotsiisgriata analyses field campaigns were
performed during the airborne data acquisition ddYD147 (AISA flight) and DOY 162
(PLMR flight). Additionally, information about theemporal behaviour of vegetation char-
acteristics and surface soil moisture is providemnf field campaigns during the whole
growing cycle. Therefore, 43 sampling points ontlieter barley and 47 on the winter rye
site were used as ground truth points (see figet8)2and measured in a regular 14-days-
interval. The sampling point coordinates were ledaising a handheld GPS device (Leica
GS20 Professional Data Mapper, Leica Geosysten®).sampling profiles were placed 1.5
m parallel to the machine tracks and along the ¢em@dield. This procedure avoid damage
within the vegetation canopy and realizes the cotde of within row measurements since
the canopy very close to the machine track appgamerally more dense. The differences
can be due to slight differences in water suppdgdsdensity and agricultural machining or

the amount of incoming radiation.
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o sampling point
soil moisture
sampling pattern area [ha]
winter barley 30
winter rye 70
Germany

0 250 500 1.000 Meter
1 1 |

Figure 2-10.  Aerial photograph of the winter barémd winter rye test sites and ground
sampling pattern located in south-east Germany.shiedler patch indicates
the five single soil moisture measurements.

Field surface soil moisture data was measuredgat &ield campaigns during DOY 86 and
DOY 189 in 2008. The measurements were performied) dhetaProbe ML2x Probes (Del-
ta-T Devices, Ltd., Cambridge, UK). The probe léngt 6 cm provided average moisture
content of the upper soil layer that is represamdbr the signal contributing soil layer at
L-band (Schmugge 1983). The temporal soil moistiyramic for the growing cycle 2008
of the two test sites is presented in figure 2Arbund the peak of the biomass increasing
phase (see figure 2-13 (e) and (f)) at DOY 134 ad the soil moisture conditions were
very dry and the field mean soil moisture did nateed 15 Vol. %. During this time period
the soil surface appeared as a solid crust asut tdsa longer drought. Because surface soil
moisture appears highly variable during the dathatacquisition of the passive microwave
data (DOY 147) soil moisture was measuret #of the flight.
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Figure 2-11. Temporal behaviour of ground measstathce soil moisture of the top 6
cm for the winter barley (left) and winter rye (i) test site.

Each soil moisture value was achieved by averafjnegsingle measurements at each sam-
pling point location to represent soil moisture grd truth. The number of samplings is a
compromise between operational effort and the daatinimizing the error of the represen-

tative mean soil moisture value. For the soil mostsampling on DOY 147 (PLMR cam-
paign), the standard error of the me8&K4,) was calculated by

SEM,, =% (1.3)

wheres is the standard deviation of the soil moisture sne@ments and is the number of
the soil moisture samples. The aver&EW, is 0.63 Vol. % and the relationship of the

single SEM,,, values to the mean soil moisture value at eactplagnpoint for DOY 147 is
shown in figure 2-12.
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soil moisture sampling error
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Figure 2-12.  Scatter plot of the standard errothef mean vs. the mean soil moisture
value for the soil moisture field sampling on thiater barley and winter rye
site on DOY 147.

The monitoring of inner-field vegetation canopy id@eristics were performed on six field
campaigns for winter barley (DOY 105 — 175) andesefor winter rye (DOY 105 — 189).

The differences in the number of campaigns aretdusn early harvest of winter barley.
Parallel to airborne remote sensing campaigns (@% and 162) leaf area index (LAI) and
canopy height were measured at every sampling.geimtall other dates, only data of every

second sampling point was collected due to limitedsonal capacities.

LAl is a dimensionless value representing the ratitotal upper leaf surface of a vegetation
canopy divided by the land surface area on whiehvidgetation grows. LAl was measured
using a LI-COR, Inc. (Lincoln, Nebraska, USA) LAD@0 Plant Canopy Analyzer, which is
a handheld technigue and a quite rapid methoddtat &pplications. The measurement prin-
ciple relies on the strong dependency between gastopcture and gap fraction of the cano-
py. The gap fraction corresponds approximatelyhto transmittance of radiation of those
wavelengths were the scattering by foliage candgdented. As the measurements have to
be performed under diffuse light conditions theadsampling was generally conducted at
dawn or under clouded sky during the day. The mésgtechnique compares sky bright-
ness above the canopy with the below-canopy ligillwhile the sensor is viewing sky-
wards. Light levels are detected in five conicalgd, with the view zenith angle ranging
from O to 75°, to infer LAl (Welles et al. 1991)oexclude the effect of varying measure-
ment orientation the below and above measuremesnts garried out with the same azimuth
direction and the same observation height. At eachpling point location, three LAl meas-
urements got sampled where each single value é&varage of six observations. Its seasonal
trend for winter barley and winter rye can be sieefigure 2-13 (a) and (b). Canopy height
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was simply measured using a foot rule by averagingsingle measurements (see figure 2-
13 (c) and (d)).

Destructive biomass sampling was performed toawtriresh biomass and vegetation water
content (vwc) in a unit of kg per m2 using weighimgthod. Therefore, a defined frame of
one square meter extent and divided in four sulassguwas put on the sampling point loca-
tion and three plants were taken out of two sulasegi The plants were cut directly above
the ground. To retrieve the stand density per iindiagle plants were counted inside four
sub squares of the frame and calculated by aveydlgesingle counts. Because of field data
sampling in regular intervals on the test sitescomplete square meter samples of biomass
could be taken. The plant samples were packedastiplbags, transported to the laboratory
and weighed. After oven drying at 105° C until dan$ weight (~ 24 h) the plants were

weighed again to calculate vwc as defined as tfierehce between fresh and dry biomass.
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Figure 2-13.

rye for the growing season 2008.

Temporal behaviour of vegetation patans of winter barley and winter
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The vegetation monitoring also included the sangplaf proxy for vegetation canopy

“greenness”. The motivation for this was the anedyef optical remote sensing data prod-
ucts for fresh (green) biomass monitoring whiclmas part of this thesis. Nevertheless, the
temporal dynamic of the leaf chlorophyll contentswa@bserved using a handheld Chloro-
phyll-Meter SPAD-502 (Minolta) (see figure 2-14h& SPAD-502 measures the transmit-
tance of plant leaves in the red and near-infragettral regions. The ratio of these two
transmittances is proportional to the total ledbabphyll content. Ten single measurements
were averaged at each sampling point, whereby ititgdesmeasurements were collected

from the uppermost leaves of various plants.
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Figure 2-14.  Temporal behaviour of leaf chloroplyghtent represented by SPAD chlo-
rophyll meter measurements.

The airborne remote sensing and field data destibevide the basis for the analyses pre-
sented in the following chapters. Note that thealndb soil moisture campaign was per-
formed only once over the test site and the soistape conditions at the day of the experi-
ment were very dry (~ 9 Vol. %). There was no sttaiynd in literature analysing passive
L-band data for soil moisture retrieval under s@ottireme conditions and narrow value

range (standard deviation 2.8 Vol. %).
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Chapter 3 — Vegetation effect on PLMR observations

3. Vegetation influence on high spatial resolution airborne L-
band brightness temperature observations on homogeneous

land cover

Vegetation structural parameter such as leaf awdexi(LAI) are well known for exhibiting
significant control over passive microwave sigralg. during the retrieval of land surface
soil moisture conditions. Within this chapter, fli@ctional relationship between LAI as a
vegetation structural parameter and high spat&dlagion (50 m) airborne L-band bright-
ness temperature observations at two polarizationg) and two viewing angles (7°, 38.5°)
are investigated. L-band brightness temperatureasmdrne imaging spectrometer data as
well as local scale leaf area index (LAI) measunaimaevere obtained from two test sites, a
~27 ha winter barley and a ~38 ha winter rye fielchted in south-eastern Germany. Re-
gression analysis between narrow band spectraltatge indices and local scale LAl ob-
servations allowed field-wide mapping of LAl at & In resolution, thus providing informa-
tion about sub-pixel heterogeneity of plant streatwwonditions within the passive micro-
wave pixel. The results show an obvious dependehtiye microwave signal dependent on
i) the PLMR pixel average LAI, ii) sub-pixel variéity of LAI, and iii) the angle of nor-

malization within field scale.

3.1 | ntroduction

Low-frequency passive microwave radiometers (L-hamalve been found to be the most
promising remote sensing method for monitoring acefsoil moisture patterns due to the
direct link between microwave radiation and digiegbroperties, its deeper penetration into
vegetation and its negligible atmospheric attelmuma{ackson et al. 1999, Schmugge, T.
1983, Wagner et al. 2007).

L-band brightness temperature (TB) has a neargatimelationship to surface soil moisture,
given homogeneous vegetation and soil charactesidtiowever, in practice, the vegetation
influence changes spatially and has a major infleean final soil moisture products since it
reduces the sensitivity of the observed TB to smisture changes (Jackson et al. 1996, Van
de Griend et al. 1985). The vegetations opticatideparacterizes the physical connection
between vegetation cover (optical depth) and soiistare while depending on vegetation
dielectric properties and geometrical plant chaméstics. The so called-w model is a
widely used approach making use of the optical eptd the single scattering albedo to

characterise the absorption and scattering of dfilesgnal through the vegetation canopy
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(Mo et al. 1982). The optical depth for the micre@a@mission at L-band is very sensitive to
vegetation water content in due to its direct linkhe dielectric properties and can be ex-
pressed as a linear function of vegetation watetest for L-band applications (Jackson et
al. 1982, Wigneron et al. 1993). Therefore, itasidly recommended to provide information

about vegetation water content during L-band saiisture observations over vegetated

areas.

Since vegetation water content measurements amaatngal from an operational viewpoint
due to the requirements of destructive plant samgpdind laboratory analyses other vegeta-
tion parameters or proxy in terms of vegetationdesl are applied in soil moisture retrieval
studies using L-band data. Parameters used to reicémuthe optical depth are commonly
estimated empirically and are validated for specifiegetation type and occurring
phenological characteristics (Jackson et al. 198tkson 1993, Njoku 1996). The applica-
tion of vegetation indices retrieved from land acd models (leaf area index - LAI) or opti-
cal remote sensing data (spectral vegetation isjlishowed reasonable relationships to
optical depth and to account for the vegetatioluarfce on passive L-band microwave ob-
servations (Jackson et al. 2004, Jackson et a®, 2eh et al. 2006).

Experimental studies to investigating the effect@fetation on soil moisture retrieval were
performed with varying but generally coarse (> b@)Ospatial resolution (Burke et al. 2003,
Jackson et al. 1999, Ryu et al. 2007, Saleh @0&M4). Since the effective optical depth of a
mixed pixel is known to be scale dependent and rgélpedecreases with coarser spatial
resolution, information is therefore not generalignsferable between spatial scales. Ac-
cordingly, a lack of information exists for the &pation of high spatial resolution L-band
data (< 100 m) for small scale analyses with tlseimption of heterogeneity within a homo-

geneous land use target (e.g. agricultural crops).

Therefore, the investigation of this paper is agplon field scale and focused on LAI as it
represents a structural vegetation factor chaiattgrthe optical depth. The influence of
LAl on L-band brightness temperature observati@@sr x 50 m) at horizontal and vertical
polarization is thereby analysed on a sub-pixeéllewsing pixel average values for LAI.
Spatial high resolution (1.5 m x 1.5 m) data alAitwas achieved from regression models
using field measurements and spectral narrow bagdtation indices. The latter were cal-
culated from airborne imaging spectrometer datéect@d over the test sites. The achieved
grid maps of LAl produced were treated as grounthtrTo investigate the viewing angle
effect according to the mentioned issue of thishgtthe observed TB data was normalized
to 7° and 38.5° viewing angles. Regression analysthsLAl as independent variable were
finally performed for the two polarizations, a niarave polarization index and calculated

emissivity on uncorrected and viewing angle noreaaliTB data (dependent variables). The
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microwave data was achieved from flight campaigiith whe polarimetric L-band micro-
wave radiometer PLMR over a test site of TERENOri@sial Environmental Observato-

ries, www.tereno.net) (Bogena et al. 2006) in Gelyna

Section 3.2 gives an overview about data charatiesiand section 3.3 presents the results
analyzing the relationship between LAl and the hdb@rightness temperature data. This is

followed by a discussion and conclusion in sec8ch

3.2 Data
The data used for the presented study belongetdERENO/ PLMR soil moisture experi-

ment performed in May 262008 over the Harz/Central German Lowland obseryafor
the study presented here, only field and airbomte dchieved from two crop sites is used

(see figure 3-1).

2
[km]

‘ ! ; [ winter rye
winter barley

N
A 0 100 200
1 [km]
Figure 3-1. Location of the two crop sites withier@any.

3.2.1 L-band brightnesstemperature data

PLMR (frequency = 1.413 GHz) utilizes six pushbropatch array radiometer receivers

with observation angles af7°, £21.5°, andt38.5° (Panciera et al. 2008). Together with the
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TB observations, surface temperatur@g) information was collected by a thermal infrared
sensor flown together with the PLMR. The PLMR arg data were pre-processed by Air-
borne Research Australia (ARA) for aircraft movemend attitude. Pre-flight and post-
flight calibration data were used at that stagee PhMR data was provided with a ground

resolution of 50 m.

Since the microwave brightness temperature obsensmtre affected by the observation
angle (Ulaby 1986), a viewing angle normalizatiomsvperformed by correction term calcu-
lations (Jackson 2001, Jackson et al. 1995). Inrasinto Jackson et al. 1995 only a flight
line section was selected from the whole PLMR daato calculate the correction terms
since the completely flown area is very heterogesedherefore, the flight line section was
selected within a homogeneous land surface taoyetring all six beam positions.

To analyse the vegetation influence on the TB defgendent on different observation an-
gles the normalization procedure was applied to Iivam positions. Therefore the PLMR
TB data of the horizontal and vertical polarizatwas normalized to the 7° and to the 38.5°

viewing angle position:
TEHIN = TBJ- + (T_EHJ _TajREF) (3.1)

j = viewing angle (7° or 38.5°)

i = polarization (v - vertical or h - horizontal)

TB, and TBge are the averages of the flight line sections setefor the viewing angle

correction whereby the latter is the viewing artgken as reference.

Three processing stages; i) uncorrected TB, iigattected TB and iii) 38.5° corrected TB
of the PLMR horizontal and vertical polarizationredinally used to calculate a microwave
polarization difference index (MPDI) and microwasmissivity e at L-band.

The microwave polarization difference index (MPBIdefined as the normalised difference
between vertical and horizontal polarization angbrigposed to account for the vegetation
influence on the L-band signal. In this study itswealculated for all three processing stages
from PLMR data:

MPDI :M (3.2)

(TR, +TB,)

The index reefers to the processing stage. Surface temperBiy data was used to calcu-

late the emissivity for the two polarizations ahcee processing stages:
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3.2.2 Vegetation parameter information

To avoid influence dependent on vegetation typ¢henanalysed correlations and focus the
study as much as possible on leaf area index, aofpeneous land surface target was se-
lected using winter barley (~27 ha) and a winter (y38 ha). At the day of PLMR data ac-
quisition (May 26, 2008) the main phenological stad the two crop types was flowering
(main shoot). Whereby for winter barley the flovmgriwas more pronounced and fruit sets
were mostly visible. Average vegetation water confer winter barley and winter rye was
approximately 2-3 kg i respective to the apparent phenological stagecanfirmed by

random field samples.

Field LAI data was used to generate bi-variateasgjpn models using spectral narrow band
vegetation indices as independent variables fotiadpampirical modelling of LAIL There-
fore high spatial resolution (1.5 m) imaging spewcteter data from an AISA (airborne im-
aging spectro-radiometer for application) flightrgaaign and field data from the Juné"10
2008 were used. Spatial distributed field LAI datas provided from measurements using a
LI-COR, Inc. (Lincoln, Nebraska, USA) LAI-2000 Pla@anopy Analyzer. Finally, derived
bi-variate regression models were used to genésstenaps of 1.5 m resolution that serve
as spatial distributed ground truth for LAI wittbIm spatial resolution (see figure 3-2). For
winter barley, the Plant Senescence ReflectancexIRRERI (Merzlyak et al. 1999) and for
winter rye theModified Triangular Vegetation Index MTVI-2 (Haboauge et al. 2004)
showed best results (R2=0.58 and 0.67 respectif@lygstimating LAI. The time shift of 15
days between PLMR and AISA data acquisition isdhghly critically, however, the further
analyses presented in this study still provingrthpplicability.

30



Chapter 3 — Vegetation effect on PLMR observations

1.5m) ‘- o (Y LAI(1.5m)
T-22 Au U Bl 1.7 -2.2
28 B mm22-28
3.3 &l id 12.8-3.3
3.9 Fae e d®h mm 3.3-3.9
45 AT g EE39-45
winter barley
LAI (50m)
. 17-22
EN22-28
[128-33
NOO 250 500 [93.3-39
A ——————m] W 3.9-4.5
Figure 3-2. Visualization of sub-pixel heterogeyedf LAl for winter barley within

three examples of 50 m x 50 m PLMR pixel.

3.3 Zonestatisticsand regression analyses

110 pixels from the winter barley and 152 pixelsh#f winter rye field from the PLMR data
set were used for analysing the influence of LAl)tb-band brightness temperature TB at
horizontal and vertical polarization, ii) to emigsy at L-band at the two provided polariza-
tions and iii) to the microwave polarization raliti®DI. All analyses were performed for the
uncorrected data and the two processing stageélsdariewing angles. Between the two crop
types slight differences of the mean values ambsta deviation within each data set occur
(see table 3-1). The correlation between PLMR oladiEms and LAl were investigated
using bi-variate regression and compared by it$ficant of determination (R2) which are

given for the TB data in the result figures 3-5 &wrthe emissivity in table 3-2.
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Table 3-1. Value ranges, mean values and standasidtibn of analyzed PLMR data
and associated MPDI and emissivity for the winindy and winter rye site
(h — horizontal polarization, v — vertical polatiza, un — no viewing angle
normalization applied, 7° - normalized to 7° begawsition, 38.5° - normal-
ized to 38.5° beam position).

PLMR observa- winter barley winter rye
tion min max mean std min max mean std

TB h 38.5° [K] 237 256 244  3.62 240 268 252 7.1
TB v 38.5° [K] 257 274 268 3.39 260 280 273 43

TB h 7° [K] 242 262 250 3.83 244 271 256 6.69
TB v 7° [K] 254 268 263 3.01 255 275 268 4.65
TB h un [K] 238 261 248 47 241 272 254 7.13
TB v un [K] 254 271 264 3.76 255 277 269 5.02
MPDI 38.5° 0.03 0.06 0.05 0.01 0.02 0.05 0.04 0.01
MPDI 7° 0.01 0.04 0.03 0.01 0.01 0.04 0.02 0.01
MPDI un 0.02 0.06 0.03 0.01 0.01 0.05 0.03 0.01
e h 38.5° 0.8 0.87 0.83 0.01 0.81 0.91 0.86 0.02
ev38.5° 0.87 0.93 091 0.01 0.88 0.95 0.93 0.01
eh7° 0.83 0.89 0.85 0.01 0.83 0.92 0.87 0.02
ev7ye 0.87 0.92 09 0.01 0.87 0.94 0.91 0.02
e hun 0.81 0.9 0.85 0.02 0.83 0.94 0.87 0.02
evun 0.87 0.92 09 0.01 0.87 0.94 0.92 0.01

The applied method for correction term calculatiesults in a linear shift of the TB data for
the individual corrected beam position (viewing l@higAs shown in table 3-1, the absolute
values of the TB data changes much (up to 20 Keéent on the selected beam position as
normalization reference. However, as can be sedigune 3-3, the general spatial patterns
remain visible in all three processing stages. Kbeéess, the TB value change through

normalization has finally obvious influence on asald correlations as shown and discussed

PLMR h 7° PLMR h 38,57
correction correction
-']'B <272 [K] -']'B <268 [K]
M TB = 244 [K] M TB = 240 [K]

Figure 3-3. Visualization of spatial patterns farserved and normalized TB data on a
subset of the winter rye data.

in the following.

PLMR h
uncorrected

B 1B <272 (K]
i TB > 240 [K]

b

a Iml 501

Each 50 m x 50 m PLMR pixel includes approximatelyl1 LAI pixels (see figure 3-2) of
1.5 m x 1.5 m spatial resolution. Average valued standard deviation of LAI were calcu-
lated inside each 50 m PLMR pixel. To make theltesuore clear in terms of interpreta-
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tion, all PLMR observations (see table 3-1) weessified to values of whole-numbers. This
classification procedure results in changing numloér‘sampling points” between the dif-

ferent PLMR observation data sets because of diffas in the data range and values.

An obvious relationship between horizontal or \@itiTB and LAI within field scale exists
as it is shown in figure 3-4. TB decreases withiéasing LAI. As expected based on theory,
the correlation decreases slightly with increasirmyving angle for the horizontal polariza-
tion. From theory a higher correlation of the atipolarized data to LAl may be expected
because of higher attenuation introduced by vérsieans and leaves within a crop canopy.
For winter barley the correlation of the horizont# (see figure 3-4b)) is very strong (e.g.
R2 = 0.90 for 7° viewing angle) which can be intetpd as a very good estimation of the
optical depth by the LAl map achieved from AISA alaFor winter rye the correlation is
also obvious visible but is less linear at thoseetdf data “snap shot”. In return, the correla-
tion of the vertical TB (see figure 3{d)) and LAI for the winter barley data is very weak
(e.g. R2=0.30 for 7° viewing angle) comparedttoecs (e.g. R2 = 0.72 for 7° viewing angle
and winter rye), which is unexpected because franthér studies the vertical polarised data
is proposed to be more sensitive to vegetatiorctstral changes. Since with increasing
viewing angle the stems become more prominent secreéase the effect of vertical polariza-
tion. For winter rye, the correlation with the veal TB (see figure 3-4c)) data is general
stronger than for winter barley, which might belushced by differences in the canopy
height. The winter rye, canopy was approximatelyc@0higher than the winter barley can-
opy at the day of PLMR data acquisition. Howevegarding the correlation of pixel aver-
age standard deviation (see figure 3-5) and vértiBa for winter barley the variability of
LAI within field scale is obviously connected toetlpassive L-band observation. A high
coefficient of determination with R? = 0.81 for tihwenter rye data and vertical TB at 38.5°
viewing angle was found. Generally, the correlatdrihe LAI variability within a PLMR
pixel and represented by the pixel average stardkarition is slightly stronger at the outer
viewing angle (38.5°). The standard deviation cqosetly increases with increasing TB.
For the horizontal polarization the coefficientsdettermination are more weak and do not

exceed values of R2=0.5.
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Figure 3-4. Three processing stages (uncorrected;oifection, 38.5° correction) of

PLMR horizontal (a and b) and vertical (c and d) [diBtted against average

LAI on the sub-pixel level for winter rye (a andand winter barley (b and

d) data. Linear regression line and coefficiendetiermination R2 plotted for
each data pair.
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Figure 3-5. Three processing stages (uncorrected;oifection, 38.5° correction) of

PLMR vertical TB plotted against the standard diémmaof LAI for the sub-
pixel level for winter rye (a and c) and winter legr(b and d) data. Plotted
linear regression calculated without the zero valice the standard devia-
tion of LAl within sub-pixel level for the verticadolarization.

Compared to the single polarization PLMR observestiadhe coefficient of determination

between the MPDI and LAl is weak (see figure 3#gcause the MPDI is proposed to ac-

count for the vegetation influence on the L-bandrowave signal, stronger correlations

were expected (Owe et al. 2001). It is proposetiN2DI increases with vegetation growth,

as represented in this study by LAI a slight bias be seen as with increasing LAl the

MPDI increases. Comparing the winter rye and wib@nley data sets, very different char-
acteristics in the relationship of MPDI vs. LAl asbserved.
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Figure 3-6. Three processing stages of PLMR patar difference index (MPDI)
plotted against average LAl on the sub-pixel Ifeelwinter rye (left) and
winter barley (right) data.

Since the relationship between emissivity and Thhesar (see figure 3-7) the correlation of
emissivity to LAl is quite similar if using TB. TBnd emissivity decreasing with increasing
LAl as is shown in figure 3-8. Therefore, the desiag trend could be due to an increasing
attenuation effect by the vegetation biomass, psesented by LAIL The increasing LAl
may lead to higher scattering effects and thus lemassivity at locations with higher LAI.
A bias between TB h and vegetation canopy obvioesists where the emissivity decreases
with increasing LAl Higher LAl causes potentiallyore vegetation water content at the
appropriate phenological stage. Thus, LAl can lgamded as an applicable proxy for vege-

tation influence on microwave emission.
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Figure 3-7. Linear relationship between TB data amdssivity at horizontal polariza-
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winter rye site.
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Figure 3-8. Surface emissivity e of the horizomalarization at 38.5° viewing angle
plotted against LAI (winter rye data) whereby treoar scheme represent
the appropriate TB data.

The analysed linear relationships between emigsaid LAl are frequently weaker than
before the normalization of TB observation using pirovided surface temperature. That
effect could be interpreted as a decreasing vagetgifluence on the retrieved emissivity as
the used surface temperature data contains infammabout the soil layer contributing to

the microwave emission.
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Table 3-2. Coefficients of determination (R2) fiordlar regressions of LAl and emissiv-
ity (e) data at different viewing angles and honizd (h) and vertical (v) po-
larization.

winter barley winter rye

LAl vs. R2 R?

e h 38.5° 0.4 0.4
ev38.5° 0.28 0.5
eh7° 0.38 0.38
evre 0.1 0.58
e hun 0.33 0.33
evun 0.4 0.26

34 Discussion and Conclusion

To better understand the effect of LAl on observgghtness temperature at L-band, a sim-
ple analysis is performed analysing its relatiopsioi pixel average LAl and its standard
deviation. Weak to strong influence of LAl on theband observations were examined in
this study, which proves this structural vegetatianopy parameter as valuable estimator to
account for the optical depth for high spatial teSon passive L-band microwave data.
Even variations within a small value range (2 < I5A4) in a crop field were found to have
major influence (0.23 < R2 > 0.90) on the retrievigh resolution TB observations. How-
ever, the observations do not agree with findimgsfFerrazzoli et al. 2000 where the emis-
sivity increases in due to vegetation growth duragvhole growing cycle. Vegetation
growth might be represented by LAl in this study gives no direct information about the
vegetation dielectric properties as can be estihfiten vegetation water content data. The
found correlations confirm results of the studynfr&aleh et al. 2004 were a decrease in
vertical TB was found with increasing biomass wihchy lead to higher scattering effects.
However, their dry biomass data was achieved fregnassion analyses using the stand age
as independent variable and represent a diffeedl lin detail regarding the vegetation
influence compared to this study. In this study effect of decreasing brightness tempera-
ture and emissivity with increasing biomass asesgnted by LAl has been shown for the
horizontal and vertical polarization and differeimwing angles within a crop canopy. The
observations have demonstrated a high potentiatlifterences in the correlation between
L-band observations and LAl within a vegetationa@npreviously assumed homogeneous.
Since the top canopy is a geometrically complexcstire that is strongly influenced by rain

and wind, such variations may be explained in &itiio occurring phenological variations.

The derivation of several data sets in terms died#ht processing stages represented by
different viewing angles and calculated from thensadata source promise information
about the vegetation contribution to the detectéctowave emission and can be used to

account for the vegetation influence in soil maistalgorithms. Furthermore, high resolu-
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tion L-band experiments over crops at several plogical stages within TERENO are re-
quired to generalize the outcomes and support #ranmeterization of the optical depth

within physically based soil moisture retrieval@ithms.
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4. Soil moisture retrieval using airborne L-band brightness tem-

perature and imaging spectrometer data

The monitoring of spatially distributed soil moisgufields is an essential component for a
large range of hydrological, climate and agricuwtwapplications. Soil moisture information

is needed for modelling studies as direct boundanditions are used in the model calibra-
tion process or can be assimilated in order togedbe uncertainties of any model predic-
tion. While direct measurements are expensive anded to small spatial domains, the

inversion of airborne L-band radiometer data hasvshthe potential to provide spatial es-
timates of surface soil moisture up to the mesdes¢towever, when using airborne L-band
radiometer for soil moisture retrieval, a majoritettion is the attenuation of the microwave
signal by the vegetation, hampering the signalrnsiea and thereby making spatially dis-
tributed plant information necessary. In order ddrass vegetation influence, in this study
combined analyses of airborne L-band microwave dath imaging spectrometer data is
performed over crop sites in Germany. Intensivie ftampaigns coinciding with the sensor
overpass provided fundamental information on serfeail moisture and vegetation canopy
parameters. Results show strong improvements (B2)}-on all models adding spectral
vegetation indices to the independent variabldaefinal soil moisture retrieval. More im-

portantly, the results demonstrate that reasoredilenates of surface soil moisture on field
scale are possible using multi-variate regressionearal networks without in-situ meas-

urements.

4.1 Introduction

Soil moisture is one of the dominant controls fug partitioning of water and energy fluxes
at the land surface including the splitting of falhinto surface runoff, infiltration and
evapo-transpiration, as well as the redirectioinobming solar radiation into albedo, ther-
mal radiation, sensible and latent heat fluxesorimftion about spatial surface soil moisture
is therefore an important boundary condition farygaiss based hydrological, climate or eco-
logical models ranging from the field scale uptte global scale and its knowledge is essen-
tial in order to improve operational hydrologicélimate and weather predictions including
flood forecasting, drought monitoring or eco-cliolagical projections via calibration or
data assimilation techniques.

Soil moisture patterns are not stable over timeaySon et al. 1998) and require precise de-
tection and monitoring. Soil moisture accountindyesoes are applied for estimations at

catchment scale using climate data (Merz et al42@Dbbinson et al. 2008). For plant
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growth models and fertilization application on aghiural sites, spatial distributed soil

moisture on field scale is a main input for modallration (Bouma et al. 1999). In-situ soil

moisture measurements, using gravimetric sampteguéncy or time domain reflectance
measurements provide reasonable estimates, buaithgyoint measurements. It is very dif-
ficult to estimate extensive spatial soil moistdistribution based on point measurements
because of the high spatial variability at fielélsc The inversion of microwave radiometer
data has shown the potential to provide spatiainasés of surface soil moisture up to the

meso-scale.

The retrieval of surface soil moisture from L-baadiometers (frequency f=1-2 GHz, wave-
lengthA=30-15cm) from aircraft and satellite platformsaiwed a significant upturn during
the last 10 years (Blyth 1993, Kerr 2007, Wagneale2007). Particularly the European
Space Agency’s (ESA) Soil Moisture and Ocean Salimiission SMOS initialized a high
number of high resolution airborne L-band radiometenpaigns to analyse scale dependent
soil moisture sensitivities (Delwart et al. 200&nEiera et al. 2008). L-band brightness tem-
perature(TB) data offers a nearly linear relationship toface soil moisture, given uniform
vegetation and soil characteristics (Jackson et%4). Furthermore, TB from L-band radi-
ometers is less sensitive to parameterization dase roughness and vegetation canopy
characteristics compared to radar applications.cBleit seems to provide a monitoring

method for surface soil moisture on various spatiales.

The large amount of research on estimating soistae from L-band radiometers resulted
in a consensus on major factors that should bepocate in data analyses (Jackson et al.
1991, Schmugge et al. 2002, Wagner et al. 2007jortdmately, operational methods to
apply such data and products quickly to the end aisestill not available. The signal’s soll
moisture sensitivity changes spatially with soikgetation and terrain characteristics. In
order to estimate soil moisture regimes under &ta@n canopy it is essential to provide
spatial distributed information about vegetatiomreltteristics since it contributes an own
microwave emission to the signal. To apply airbdrAand radiometer data in more opera-
tional applications, it remains a major challengeptovide ancillary data to run complete
physically based models. Therefore, the largelyigoghy retrieved model parameters are
very site dependent and vary at low scale to aldagree (Wigneron et al. 2007). Hence, it
is necessary to make assumptions, chose a propgl migorithm and focus on reasonable

key factors dependent on the study site and subjeabe study.

The Helmholtz Association in Germany recently lehett an extensive investigation into the
long-term effects of climate change at the regitex| called TERENO (TERrestrial ENvi-
ronmental Observatories). TERENO consists of tharg-term observatories in Germany to

study how climate change affects both the localsgstems and the local economies
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(Bogena et al. 2006). In the context of TERENO, amggor interest is the detection and
monitoring of spatial distributed surface soil ntois. Hence, in May 26, 2008 a flight cam-
paign with the Polarimetric L-Band Multibeam Radigter (PLMR) was realized by
TERENO and Airborne Research Australia (ARA). Taiiborne campaign was designed to
investigate the utility of the PLMR sensor for THRE soil moisture monitoring at field

and regional scale.

The angular characteristics of multi-beam radiomsetérectly influence the observed TB
values. Theoretically, the angular variation carekplained by the Fresnel equation, which
describes a linear viewing angle effect on the TBrdiomogeneous land cover target. The
calculation of correcting terms for normalizatiana defined beam position should therefore
be applied over homogeneous land cover sites. &untire, the availability of proper spatial
information about vegetation canopy is rarely beamied from field campaigns since these
are time consuming and require special measuremfastructure. Therefore, the integra-
tion of information from optical remote sensingsfbie and near infrared spectrum) data

products promises reasonable proxies for vegetatiaditions and their spatial variability.

This study describes the data analyses from theENERPLMR campaign performed on
May 26, 2008 in the Harz/Central German Lowland édbatory of TERENO. The nadir
normalization of the TERENO PLMR data is described discussed. Furthermore, PLMR
soil moisture sensitivity was analysed in detaitrolarley and rye crops for one TERENO
test site. Information about in-situ soil moistared ancillary vegetation characteristics was
provided from ground truth campaigns. Additionatrow band spectral vegetation indices
(V1) from airborne imaging spectrometer data wemalgsed together with the passive mi-
crowave data. Multi-variate regression and neusdlvorks were applied with statistical
cross-validation to explore empirical models foit swisture retrieval from different sets of

independent variables.

4.2  Study sitesand data

The TERENO Harz/Central German Lowland observafeatures low mountain forests,
lowland riparian forests, extensive agriculturaaa, urban and industrial areas as well as
open pit mines. Within the area four different sjtdights were carried out on May 26, 2008
as shown in figure 4-1. Grossbhardau is an agri@llused site where studies are focussed
on agricultural issues. Schaefertal and Kliekenewerently equipped for long term moni-
toring of hydrological processes and nutrient feix®ad Lauchstaedt is a long term agricul-

tural fertilization test site.
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Ground data were sampled within the time periothefsensor’s overpass. For logistical and
application orientated reasons, the ground teanesatgd independently with different
ground sampling methods. In this study, the nomatitbn of PLMR TB data was performed
for all four monitoring sites. The analyses conagggrthe soil moisture retrieval were per-
formed only over the crop sites around Grossbak#amause of the availability of airborne
imaging spectrometer data. All data used in thiglystis provided from a TERENO pre-

study because the final instrumentation is noshied yet.

Harz/Central German
Lowland Oberservatory”

| -3km
agricultural area
I urban area
industrial area
Il water body

marsh
uncultivated grassland
meadow
I forest
0 100 200
I km
Figure 4-1. Location of the four soil moisture moning test sites and general land

cover information from CORINE 2000 data; 1) Klieke?) Schaefertal, 3)
Bad Lauchstaedt, 4) Grossbardau.

421 Fidddata

In Grossbardau the field data sampling was focuesea winter rye (70 ha) and winter bar-
ley (30 ha) field at known geo-referenced samppinints which were installed for whole

seasonal vegetation monitoring in 2008. The samgpdwints were located between 2 m and
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2.5 m from the machine tracks in order to achi@masentation within field measurements.
For winter rye there were 47 and for winter badi@yground truth points sampled. At the
day of field data acquisition the main phenologistge was flowering (main shoot). It
should be noted that for winter barley the flowgrimas more pronounced and fruit sets
were mostly visible.

Soil moisture measurements of the 0-6 cm layer wweréormed using mobile FDR (fre-
guency domain reflectrometry) probes. Each measememepresents an average of five
single measurements. Coincident with FDR measurensai temperature data of the first 6
cm layer was collected using field thermometersraudly determine field measurements
of leaf area index (LAI) a LI-COR, Inc. (Lincoln,elraska, USA) LAI-2000 Plant Canopy
Analyzer was applied. This compares above- andaselmopy light levels detected in five
conical rings, with the view zenith angle rangimgnii O to 75°, to infer LAI (Welles et al.
1991). At each sampling point location three LAlues got sampled where each single
value is an average of six observations. Canopyhh@vas simply measured by a foot rule.
A Chlorophyll-Meter SPAD-502 (Minolta) was used pgoovide rapid and reasonable esti-
mates of leaf chlorophyll characteristics (Markwetlal. 1995). The SPAD-502 measures
transmittance of plant leaves in the red and n&faaried spectral regions. The ratio of these
two transmittances is proportional to the totaf iddorophyll content. Table 4-1 provides a

summary about the measured value ranges.

Table 4-1. Soil moisture and vegetation paramdtaracteristics for the test fields
Grossbardau.

winter barley

standard
parameter average min max deviation
surface soil moisture [Vol. %] 7.8 2.1 12.9 2.7
LAI 4.3 2.7 5.2 0.5
canopy height [cm] 99.7 10.0 120.0 17.9
chlorophyll meter  value
(SPAD) 54.0 45.0 58.0 2.7
soil temperature [°C] 14.5 13.0 18.0 1.1
winter rye
surface soil moisture [Vol. %] 9.3 2.2 14.6 2.7
LAI 3.6 2.3 4.5 0.4
canopy height [cm] 120.0 90.0 1350 7.7
chlorophyll meter  value
(SPAD) 55.0 42.0 58.0 2.7
soil temperature [°C] 14.33 13.0 16.0 0.72

44



Chapter 4 — Soil moisture retrieval using empircaldels

4.2.2 L-band microwaveradiometer data

For the TERENO flight campaigns the PLMR (ProSegssensor was fitted to an Envis-
cope Partenavia PA68 D-GERY aircraft. Data acdaisiover the four test sites took place
between 9 am. and 2 pm. on May 26, 2008.

PLMR (frequency = 1.413 GHz) utilizes six pushbropatch array radiometer receivers
with incidence angles af7° (antenna 3 and 4321.5° (antenna 2 and 5), an88.5° (an-
tenna 1 and 6). Horizontal and vertical polariz&li§ measured using a polarization switch
(Panciera et al. 2008). Pre-flight and post-fliglafibration against a black body target
(warm point) and clear sky (cold point) was appliedthe data as described (Panciera et al.
2009). Georectification was performed taking inom&ideration the aircraft’'s position and
inertial navigation information (roll, pitch andwa by ARA. The beam centers were pro-
jected on a 90 m digital elevation model to caltaitthe effective footprint size and local
incidence angles depending on the specific tetopography. Therefore, local terrain slope,
aircraft attitude and beam geometry were taken éntwsideration. Using a reduced antenna
beam width, reduced flight speed and low altitudgr@und spatial resolution of 50 m was

achieved.

A microwave polarization difference index was cédéed using the verticall(B,) and hori-

zontal (TB,) polarization:

MPDI = (T8 -T8B)) (4.1)

(TB, +TB,)
The brightness temperature is related to the ewitigsi, the physical temperature of the
observed surface and to contributions from atmasplgince the atmospheric contribution
on L-band data can be neglected because of itssptiedc transmission, emissivity can be

calculated by:

TB,

=— 4.2
€ T (4.2)

T. is the physical temperature representing a s@ldace layer and measured in Kelvin. In

i
this analysis two emissivity “levels” using equatid were calculated using the horizontal
polarization (see figure 4-2). To retrieve the esivisy of the soile; the soil temperature data
Ts was used. The emissivity of the surfagethat represents a mixture of soil and vegetation
contributions, was calculated using surface temperameasurement$yr. The surface
temperature data was provided by an InfraTec thleimmeger that recorded simultaneously

with PLMR data acquisition thermal infrared tempera information (TIR). It may be as-
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sumed that the surface temperature informationigeavby T+ g contains a significant con-

tribution of the vegetation.
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Figure 4-2. Relationship of soil and surface emigsat ground truth location in Gross-
bardau, R2=0.97 for linear regression.

4.2.3 |maging spectrometer data

To provide further vegetation information for thestt sites around Grossbardau, hyperspec-
tral data from an AISA (airborne imaging spectrdiometer for application) flight cam-
paign on the 1D of June 2008 was used. The time shift of 16 dagpsilsl be regarded criti-
cally in regards to phenological development asdrifluence on the microwave emission.
However, the availability of the AISA data set poms a valuable information source for
the spatial vegetation canopy heterogeneity.

There were 252 spectral channels collected in igible and near infrared range of the solar
spectrum from 400-970 nm with a pixel ground regotuof 1.5 m x 1.5 m. Current calibra-
tion coefficients from spectral laboratory calilwatwere applied to "rescale” the raw DN to
radiance units using SPECIM CaliGeo 4.9.5 whichsrunder ENVI software (ITT Visual
Information Solution, Boulder, CO). Surface rrefletce was achieved by applying the at-
mospherically correction algorithm MODTRAN using ZFNFLAASH.

From the AISA reflectance data an initially set1®f spectral vegetation indices (VI) was
calculated and applied in empirical modelling. Aating to which, the calculated spectral

VI represented water, pigment and light use efficiespectral VI groups. The following

three narrow band spectral VI where finally usedhis work, whereR , represents the

centre wavelength of a narrow spectral band wism2a width:
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The Gitelson Green Index (Gl) was proposed to egérh Al and green leaf biomass and is
regarded in this study as a proxy of these pladtcamopy parameters (Gitelson et al. 2003):

Gl =P g (4.3)

50

The Modified Soil Adjusted Vegetation Index (MSAVI&as found as a good LAI estima-
tor in terms of sensitivity to changes in vegetatianopy cover and the influence of the soil
(Qi et al. 1994):

MSAVI2 = ; [Z(Rsoo +1) - \/(ZRsoo +1)? - 8(Re00 ~ Re70) (4.4)

The Modified Triangular Vegetation Index (MTVI1) waeveloped to improve LAI estima-

tions for dense vegetation (Haboudane et al. 2004)

MTVI1= 12[12( Reoo = RSSO) =25 Rs7o ~ &50)] (4.5)

4.3 Methods

4.3.1 Correction of incidence angle effect

Previous studies using similar sensor designs egbplormalization procedures for areas of
mixed land cover by calculating correction termsroflight lines (Jackson 2001, Jackson et

al. 1999, Jackson et al. 1995). Using this metttwel main assumption involves the fly-over

line, and the differences in the time averaged méan) of each beam position(incidence

angle) are due solely to the angular effect. Theepaof variation appearing between differ-
ent beam positions reflects the Fresnel effectdambnds on the land cover characteristics.
This procedure assumes that the longer the linett@dnore homogeneous the area is, the
more reliable the correction factors are. In thaligts mentioned above, daily averages were
used to calculate correction terms for individuehim positions. Using daily averages does
not seems appropriate for the TERENO study areaf@nthe collected PLMR data since
the test sites show high variations in their landace characteristics (see figure 4-1) which
result in different microwave response. As can &ensin figure 4-3, the TB data is more
scattered when comparing the outer (beam positiandl6) viewing angles within the com-
parison of the two inner (beam position 3 and 4)wimg angles. This mainly represents the
signal detection from different targets becausedhtr viewing angles have the highest
distance from each other and view more likely défe surface targets than the two close
nadir beam positions. Therefore, for the data usetthis study, single flight line sections

were used to calculate correction terms for a vigwangle normalization. The flight line
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sections were carefully selected over homogenegrisudtural use sites. Information about
land use was obtained from land use maps, farnmisparsonal site inspection during
ground truth campaigns. Additionally, a grid mapstdndard deviation by the original TB
values was generated for 500 m cells resolutiamalFy, flight lines were selected on homo-

geneous agricultural used sites of low standaribtlen of the TB data itself.

PLMR TB horizontal polarisation (Grossbardau) PLMR TB horizontal polarisation (Grossbardau)
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Figure 4-3. Relationship between observed TB ofitimermost (a) and outermost (b)

beam positions for the complete Grossbardau data se

The incidence angle normalization in this study wagormed to the two nadir beam posi-

tions antenna 3 and 471°). Hence, TB of antenna 1 and 2 are correcteshtenna 3 and TB
of antenna 5 and 6 are corrected to antenna 4e@im terms(CT,)for the four outer

PLMR antennas are calculated by:

u :2:3 (i = 123456) (4.6)
Ch=t~ 14 (4.7)
CT, =1~ 14, (4.8)
Cls =ty — Us (4.9)
Cle = 1y — s (4.10)

The correction terms are finally added to all dgk& ) for the appropriate beam position.

B, =TB +CT, (4.11)
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TB,, =TB, +CT, (4.12)
TB;y =ThB, (4.13)
B,y =TB, (4.14)
TB,, =TB +CT; (4.15)
TB,, =TB, +CT; (4.16)

4.3.2 Empirical analyses of PLMR data vs. ground soil moisture

Multi-variate least square regression models (eguialt7) of surface soil moisture meas-

urements as a function of different variable setsavapplied.
n

y:ﬁo+25l[xi+g (4.17)
i=1

Furthermore, a neural network was trained for mtet soil moisture using the same input
sets as for regression analyses. Therefore, afbeedrd neural network trained by a back-
propagation algorithm (multi-layer preceptor) wapléed. The activation function used is
the usual sigmoid function. Therefore, the valugges of the attributes are scaled to -1 and
+1. The inputs are fully connected to one hiddgmdavhich is in turn fully connected to
one output node. There were 500 training cyclesezhout.

All models were run with validation using bootstpapy (Efron et al. 1993) and compared
using the coefficient of determination R2 and roman square error (RMSE). For Boot-
strapping, ten random examples were picked ouhdi €ata set.

The number of analysed sampling points using onbyiigd truth information (LAI, canopy
height, SPAD), PLMR B, ,TB,,TB,+TB,,TB,-TB,, MPDI,) and calculated emissivity

(e, &) data is 43 for winter barley and 47 for winteerAnalyses were spectral VI from
AISA data are implemented as vegetation proxy aréopmed on a lower number of sam-
pling points (23 for winter barley, 17 for winteye) because of coverage gaps between the
AISA and PLMR data swaths.

4.4 Results

Section 4.4.1 presents the characteristics of ligktflines chosen for calibration and the
calculated correction terms for all four test sit@sSection 4.4.2, the model results for soill

moisture retrieval over the two crop sites from @ressbardau data set are presented.
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4.4.1 Incidenceangle corrected data set

The correction terms applied were chosen from catiitn sites with the lowest standard
deviation inside the single flight lines (see ta#t@). The corresponding number of beam
position varies, with 27 for Grossbardau, 17 foieKén, 26 for Schaefertal and 26 for Bad
Lauchstaedt. In the case of the land use heterdgeared spatial variability of agricultural
crops, the flight line sets are not longer.

The correction terms for the horizontal polarizatiare mostly positive, which means that
TB values of the two nadir beam positions are pm@dantly higher than the TB from the
outer antennas of the same beam line. On the cpnfoa the vertical polarization the TB
values of the two nadir beam positions are mosther which results in negative correction
terms. As expected from theory the correction teofrihie two outer antennas (1 and 6) are

frequently higher than for the inner antennas @ %n
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Table 4-2. Applied correction terms of antennaSl&and characteristics of flight lines

for incidence angle correction of the four test HRNO test sites, all values

are in [K].
Grossbardau, 27 beam positions
vertical horizontal
beam standard | correction standard | correction
position | average TH deviation | term average TB | deviation | term
1 281.48 1.41 -4.26 269.44 3.34 5.53
2 279.32 1.68 -2.10 274.07 2.27 0.90
3 277.22 3.32 - 274.97 3.84 -
4 279.87 2.66 - 274.05 3.31 -
5 277.98 1.38 1.89 273.28 1.91 0.78
6 282.66 1.37 -2.79 271.49 3.18 2.56
Klieken, 17 beam positions
beam standard | correction standard | correction
position | average TH deviation | term average TB | deviation | term
1 272.09 1.65 -13.10 241.13 1.73 16.38
2 264.99 2.26 -6.00 251.94 2.17 5.57
3 258.99 3.08 - 257.51 3.31 -
4 255.16 3.89 - 251.26 4.64 -
5 259.84 2.14 -4.67 249.09 3.98 2.17
6 273.65 1.50 -18.49 243.75 3.14 7.51
Schaefertal, 26 beam positions
beam standard | correction standard | correction
position | average TB deviation | term average TB | deviation | term
1 268.89 2.19 -2.52 240.72 2.92 22.55
2 267.91 1.14 -1.54 258.08 1.63 5.18
3 266.37 1.14 - 263.26 1.07 -
4 261.19 1.37 - 259.41 1.74 -
5 265.14 1.30 -3.94 255.75 1.62 3.66
6 270.08 1.43 -8.89 242.30 2.29 17.12
Bad Lauchstaedt, 26 beam positions
beam standard | correction standard | correction
position | average TB deviation | term average TB | deviation | term
1 277.34 1.89 -21.02 240.79 3.51 13.27
2 266.10 3.10 -9.79 251.37 5.08 2.69
3 256.32 4.05 - 254.06 5.55 -
4 24417 5.79 - 242.92 8.17 -
5 260.11 5.06 -15.94 245.14 8.48 -2.22
6 269.56 4.97 -25.39 236.21 11.94 6.71

By evaluating the correction terms for all flighmds a lack of symmetry about the nadir
beam position was found (see figure 4-4). The datsge of antenna three is frequently
higher than that of antenna 4. That effect might&esed by uncertainties in the warm and

cold point calibration or attributed to a receispecific problem.
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Figure 4-4. Averaged TB values of the PLMR horizbmiolarization for each beam
position within a different flight line of each TEHRIO test site.

4.4.2 Soil moisture prediction

Multi-variate regression models and neural netwevkse applied to analyse the sensitivity
of PLMR data and calculated microwave emissivity &) to model spatial distributed sur-
face soil moisture below a crop canopy. Thereffiedd soil moisture data from a winter rye
and winter barley field of the data set Grossbhandate tested together and crop type spe-
cific as dependent variable. The given soil mosston the day of data was generally low
and varies only within less Vol. %. Neverthelesscan be seen in figure 4-5, a bias between
TB, and ground measured soil moisture obviously exisisreTB increases with decreasing
soil moisture. The noise is assumed to represemtlynthe vegetation influence on the

PLMR signal. Therefore, various proxies to accdanthe vegetation influence are tested.
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Figure 4-5. Observed 0-6 cm soil moisture (y-apitted against brightness tempera-
ture at horizontal polarization(x-axis), a) 48 gnduruth points of the winter rye field, b) 43
ground truth points of the winter barley field.

Frequently, the best results were obtained on théewbarley site by multi-variate regres-
sion (see table 4-3). Model 2 achieves the bestigiren performance (R?=0.92) using a
Gitelson Greeness Index (Gl) and LAI as vegetapimxies anc. as independent variables.
Canopy height showed a consequently less influérare LAl on model performance and is
not applied in the final models. The best perforcgamvithout any ground information
(R2=0.91) as independent variable was achieved dyei3 using the sum diB, and TB,

and Gl from AISA data.

Table 4-3. Coefficient of determination jRand root mean square error (RMSE) of
multi- variate regression and neural network fotinegting surface soil
moisture by different sets of independent variabigigag ground truth data
and hyperspectral vegetation indices from winteldyaest site.

multi-variate regression

model independent variable set R?2 RMSE
model 1 LAI, Gl,e 0.91 0.85
model 2 LAI, Gl,e. 0.92 0.82
model 3 TB,+TH,, Gl 0.91 0.88
model 4 LAl & 0.69 1.46
model 5 LAl e 0.71 1.47
neural network

model 6 TB,, MSAVI2 0.81 1.29
model 7 SPAD, MTVIlg, 0.86 1.07

Generally, a strong improvement exists on all mea@elding a spectral VI to the independ-
ent variable set (figure 4-6). Usimg thane; improves the model results as well. However,

using only emissivity and LAl (model 4 and 5), quihoderate coefficients of determination
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are achieved but the RMSE remains much higher tian using additional spectral VI
information (model 1, 2, 3) as vegetation proxy.

The best results by neural network application veedgieved by completely different input
variables than for regression. The best resultreaehed using. and canopy chlorophyll
information represented by SPAD chlorophyll measumets and the chlorophyll related
spectral VI MTVI1 (model 7). Predictions withoutogmd information were best using only
TB, and MSAVI2from AISA data (model 6).

model 2 model 5

predicted soil moisture [Vol . %)
(o]

predicted soil moisture [Vol . %)
(o]

0 2 4 5 8 10 12 0 2 4 5 8 10 12
measured soil moisture [Vaol. %) measured soil moisture [Vaol. %)

Figure 4-6. Comparison between predicted and medsail moisture over winter bar-
ley for model 2 and model 5.

For winter rye, only very low model performance ®¥.5) was achieved on all sets of
tested variables. Hence, the single results aresmmivn anymore. Through performing the
analyses on the combined data set (winter rye antembarley) the model performance
remains weak (R2 < 0.5). The weak soil moisturgeeal results for the winter rye field can
very likely be explained by the differences in tregetation height between the two crop
types. The average canopy height of winter ryeGisiZ more than that of winter barley,
which clearly results in more biomass per grounidl even when the LAl is lower. Unfortu-
nately, no biomass weight data is available, wigalised in other studies to show the limita-
tions of L-band soil moisture retrieval below vex&in canopy (Jackson et al. 1991,
Schmugge et al. 2002).

45 Discussion

As can be seen in the result section 4.4.1, theection terms can vary much dependent on
the selected calibration field, flight line exteamrid consequently for the test sites. For high
spatial resolution L-band data it is therefore higecommended to choose calibration sites

carefully by up-to-date information about the vegien canopy.
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The empirical analysis has shown a strong field ffependent sensitivity of the PLMR data
and ancillary independent variables. L-band sargptih soil moisture depends mainly on
vegetation characteristics, as this study showa field scale level. Vegetation absorbs and
scatters microwave radiation from the soil and dbates an own emission to the signal
received. This reduces the retrieval opportunityany soil moisture model (Jackson et al.
1996, Van de Griend et al. 1985). Hence, for apfibe oriented data use it is generally not
clear how strong the signals soil moisture sensitchanges from pixel to pixel regarding
spatial variation of vegetation characteristicswidwer, the general spatial pattern of vegeta-
tion influence on the microwave signal seems waflected by the applied spectral VI re-
garding the model improvements using vegetationceslas vegetation proxy. Especially
the Gitelson Green Index (Gl), which is sensitivechlorophyll represented by LAI, shows
very good results and might be applied even withedditional information about LAl
(model 3). In microwave soil moisture studies Gghtialso be treated as a proxy for fresh
green leaf biomass which in turn is related tolfre®mass weight of crops.

More importantly, the results demonstrate thataeable estimates of surface soil moisture
on field scale are possible using multi-variater@sgion or neural networks even without in-

situ measurements (model 3 and 6).

4.6 Conclusion

Calculation of proper correction terms remainsitcait factor for viewing angle normaliza-
tion of multi-angular radiometers. The TERENO dsgareveals that attempts at operational
monitoring issue by analysing test site dependeatacteristics.

Many field experiments using ground radiometersenmrformed with the goal of defining
the soil moisture signal dominating soil layer aband (Newton et al. 1982, Wang 1987)
The highest contributing layer is about % the wangth, which means around 5 cm for the
L-band which changes with vegetation attenuatiaatially. The results of this study dem-
onstrate that reasonable estimates of surfacergnditure on field scale are possible using
FDR soil moisture measurements from the upper x&ail layer for training. Furthermore,
combined analyses of narrow band vegetation indioes the red and near infrared and L-
band TB data or retrieved emissivity provides vgopd prediction results of soil moisture
under a vegetation canopy for field scale monitprin

Hence, remote detection of surface soil moisturéhbyPLMR passive microwave sensors in
combination with imaging spectrometer data hasatheantage of providing spatial inte-
grated information even without in-situ vegetatidaia as required for monitoring issues.
With the launch of the German hyperspectral se&aeinMAP (Environmental Mapping and

Analyses Program) in 2013, valuable spatial disted vegetation information will be
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available to support soil moisture retrieval algoris using airborne and satellite L-band

microwave data up to the catchment scale.
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5. Soil moisture retrieval using the land surface parameter re-

trieval model (LPRM) over crops

The aim of this chapter is to retrieve soil moistaver crops from passive L-band micro-
wave data at very dry conditions (< 15 Vol. %) gsthe land surface parameter retrieval
model (LPRM). All analyses are based on experimenthorne L-band brightness tempera-
ture observations, remote sensing thermal infregetgberature, and measured field soil tem-
perature and soil moisture. The study is performest a winter barley and winter rye site in
Germany under very dry conditions. As the tempeeatind the roughness parameterization
play a crucial role in soil moisture retrieval frgmassive microwave observations using a
radiative transfer equation a two-step optimizapoocedure was performed for choosing an
optimal parameterization to minimize the uncertaiot final soil moisture estimates. Fur-
thermore, the relationship between the roughnessder and NDVI (normalized differ-
ence vegetation index) data was analysed usingimgegpectrometer data. Site specific
roughness parameterizations did not show reasorsilanoisture results using LPRM.
Nevertheless, very good soil moisture results vastd@eved by applying a spatial varying
roughness parameter achieved from a “pixel’-bagstnization. A clear relationship be-
tween NDVI data and the spatial varying roughnessupeter was found (R2 = 0.57). The
results presented in this chapter show that a apaéirying roughness parameter can
strongly improve soil moisture results using LPRi® below a vegetation canopy previ-

ously have been assumed homogeneous (e.g. wintey bad winter rye).

51 I ntroduction

Soil moisture is a key variable for many hydrol@jiapplications and plays a crucial role in
agricultural practice at field scale level. Pasdiveand microwave observations from air-
borne sensors may provide soil moisture estimatts avhigh spatial resolution (< 100 m

for that kind of data product) useful for agricuétliapplications (Jackson et al. 1987a,
Wigneron et al. 1998). Theoretical models like afige transfer models are important to
support the understanding of the interaction betwtbe electromagnetic waves and various
surface targets (e.g. soil, vegetation) and maggmied to retrieve soil moisture from L-

band brightness temperature observations.

The land surface parameter retrieval model (LPRM3 developed by Owe et al. 2001 and
uses a radiative transfer model to solve for serfeml moisture and optical depth simulta-

neously with a nonlinear iterative optimization @edure. It is specially designed and pro-
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posed for surface soil moisture retrieval from Bitdedata because it does not require any
field observations of soil moisture or canopy chtgdstics. LPRM requires dual-polarized
brightness temperature data, namely horizontal \artical polarization and temperature
information from the emitting surface. Several #scave demonstrated that LPRM is one
of the most promising approaches to retrieve sailsture from passive microwave radi-
ometer data (de Jeu et al. 2003, de Jeu et al, R0&8sters et al. 2005, Owe et al. 2001). In
de Jeu et al. (2009) LPRM was successfully apdledhe first time on airborne L-band
observations using National Airborne Field Expemt2005 (NAFE'05).

The thermally emitted radiation from the land scefés controlled by two major factors: 1)
the surface temperature and 2) the surface entissiiie emissivity is the efficiency of the
surface for transmitting the radiant energy gemerah the soil into the atmosphere. The
soil's emissivity depends on its physical propertfe.g. soil moisture), surface roughness
and varies with the wavelength. In due to a lacklata in most retrieval studies, it is as-
sumed that effective soil temperature is in equiim with the vegetation temperature. For
early morning or even night observations of L-bdmiijhtness temperature and thermal
infrared temperature, that assumption can be vAlxghlying LPRM on the NAFE'05 data
set de Jeu et al. (2009) considered the canopyeietye equal to the effective temperature
and satisfactory soil moisture results could beieagd by performing an optimization on
the roughness parametgrdepending on the incidence angle of the brighttesperature

observations and soil moisture.

Increasing surface roughness increases the appamgasivity due to an increase of the
emitting surface area (Schmugge 1985). Therefbeeempirical roughness parameteis a
key parameter to account for the rough soil emigsiwhich is a major part of the soil
moisture retrieval using LPRM (Wang et al. 1981)eTroughness parameterization is pro-
posed to account for i) a geometric roughness tefifiet is related to the spatial variation of
the soil surface height and, ii) a dielectric rongés effect that can be caused by spatial va-
riability of the combined effect of soil moisturedasoil characteristics (Mo et al. 1987,
Wigneron et al. 2001). For bare soil the roughmpesameter was found to be dependent on
the standard deviation and the correlation lenfthesoil surface height profile and the soil
moisture (Wigneron et al. 2001). The dependendhefoughness parameter on soil mois-
ture was explained by the spatial variation of $b# dielectric constant, which is stronger

during dry conditions and can be explained by &ecebf volume scattering.

Many roughness studies have been performed atdhsgale using ground based radiome-
ters over bare soil or including only a few plantedis. The ratio between radiometer foot-
print to the roughness height is orders of magesugreater at the landscape scale using

airborne or satellite data than at the plot schlés assumed that the roughness effect is
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smaller at the airborne and satellite scale thamcfwer based radiometer footprints (Owe et

al. 2001, Van de Griend et al. 1994). However, rtheghness parameter not only changes
with the observation characteristics but also wlith type of the vegetation covering the soil

surface and various empirically determined roughmesameter values were proposed de-
pending on the vegetation (Panciera et al. 200@hS# al. 2007, Wigneron et al. 2007).

The objective of this study is to retrieve soil stare using the land surface parameter re-
trieval model (LPRM) for very dry conditions (< Mol. %) at the field scale. Therefore,
airborne L-band brightness temperature observati@msote sensing thermal infrared tem-
perature, measured field soil temperature andtinraeasured soil moisture from a winter
barley and winter rye site in Germany are appli&dwo-step optimization using Monte-
Carlo simulation to find one scene-based roughpasameter value using LPRM was per-
formed. Furthermore a pixel-based (ground samplaogition specific) optimization was
applied to analyse the spatial dynamic of the roegh parameter values regarding spatially
changing vegetation conditions. Additionally, atlayses were applied using different tem-
perature input data to analyse the effect of thepaature on the LPRM soil moisture re-

sults and a potential temperature uncertainty wasidered within the optimization.

52 Dataset

5.2.1 L-band brightnesstemperature data

The used data is part of the TERENO (Terrestialienmental Observatories) (Bogena et
al. 2006) soil moisture experiment within the H&mtral German Lowland observatory. In
May 26, 2008 airborne high spatial resolution (50LU¥band brightness temperature data
(TB) was collected with the Polarimetric L-Band Muliiime Radiometer (PLMR) over sev-
eral sites within the observatory. The analysesemed in this study are performed on a
winter barley (~27 ha) and winter rye (~37 ha) kiated in south-east Germany (51° 13’
N, 12° 40’ E). The topography of the site is geithel the soil properties do not vary much
within the analysed sites.

Horizontal (TB,) and vertical TB,) polarized brightness temperature was measureik at
PLMR antennas with incidence angles @f+21.5° and 88.5°.TB, andTB, were normal-
ized to the outer beam positions36t5°) to avoid viewing angle dependent effectgtan

soil moisture retrieval results.

5.2.2 Fidd soil moisturedata

During the period of PLMR data sampling soil moistwas measured by mobile capacit-

ance sensors (ML2 Theta probes) for the upper 8aayer. On the winter barley site at
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43 and on the winter barley at 47 ground truth tioca field soil moisture data were col-
lected. As can be seen in figure 5-1 the adjaa@htwisture conditions were very dry (< 15
Vol. %) during the time of data acquisition. Aveeagpil moisture values of 7.8 Vol. % on
the winter barley field and 9.3 Vol. % on the wintge field were observed at the day of
observation.

winter barley winter rye

count
count

2 4 6 8 10 12 14 16 6 8 10 12 14 16
soil moisture [Vol. %] soil moisture [Vol. %]

Figure 5-1. Histogram of the measured soil moisturéhe winter barley (left) and win-
ter rye (right) test sites during PLMR data acdiasi

5.2.3 Ancillary vegetation data

For all soil moisture ground sampling points LA¢df area index) and canopy height data
was collected to provide information about the getiival vegetation canopy characteris-
tics. LAl was measured using a LI-COR, Inc. (LinrcoNebraska, USA) LAI-2000 Plant
Canopy Analyzer, which is a handheld technigue amapid method for field applications.
Canopy height was simply measured using a foot fitle value ranges and standard devia-
tion of LAl and canopy height for the winter barlayd winter rye site are given in table 5-1.
At the day of field and airborne data acquisititme main phenological stage for the two
crop types was flowering (main shoot). It shouldnio¢ed that for winter barley the flower-
ing was more pronounced and fruit sets were mastiple. With respect to the phenologi-
cal stage and confirmed by random field samplesvdgetation water content (vwc) for

winter barley and winter rye can assumed to vatween 2 and 3 kg ¥
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Table 5-1. Characteristics of LAl and canopy heighthe winter barley and winter
rye data.
standard devia-
vegetation parameter average min max tion
LAI 4.3 2.7 5.2 0.5
canopy height [cm] 99.7 10.0 120.0 17.9
winter rye
LAI 3.6 2.3 4.5 0.4
canopy height [cm] 120.0 90.0 135.0 7.7

A normalized difference vegetation index (NDVI) (iBe et al. 1974) was calculated from
an AISA Eagle (Airborne Imaging Spectro-RadiométerApplication, SPECIM — Spectral
Imaging Ltd. 2007, Finland) imaging spectrometdadszet, by

NDVI = (Rooo — Rezo) (5.1)
(Reoo *+ Revo)

where R represents the centre wavelength of a narrow spdeand with 2.3 nm band

width. Because of coverage gaps between the AISPAMR observation swaths NDVI is
available only at 40 ground truth locations (23 Wanter barley, 17 for winter rye) for the

two crop sites.

5.24 Temperaturedata

Soil temperature was measured next to the soil tov@ismeasurement locations. Simple
field thermometers were used to provide integréetperature information about the upper
6 cm soil layer.

Thermal infrared temperaturé+«{g) obtained simultaneously during the PLMR data &igu
tion yielding a composite of canopy and soil suefsamperature. The thermal infrared radia-
tion of a spectral range between 7.5 sutdlwas collected whereby the emissivity was set to

0.98 during data acquisition.

The effective soil temperature is the temperatunatrdbuting to the soil microwave emis-
sion and can be determined using measured profilesil temperature by (Choudhury et al.
1982). Temperature of the moisture profile is int@ot as the range of the soil effective

temperature increase as the soil moisture decreases

Teff = Tdepth + surf _Tdepth)C (52)
where

Taepth deep soil temperature (approximately 50-100cm)

Tsurt surface temperature (0-5 cm)
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C empirical parameter depending on frequency aildristure.
C is given by
C = (w, /w, P (5.3)

where w; is the surface soil moisture at the top 0-2cm aged w, and b,, are semi-
empirical parameters depending on soil characiesige.g. texture, structure, density). As
the empirical retrieval of C was impossible witlins operational experiment a default val-
ue of C for L-band equal to 0.246 was used (Wignexioal. 2008).

In an operational context it is not possible tovte soil temperature profile measurements.
Therefore, in this study equation (5.2) was appéissuming thal, is equal to the thermal

infrared temperatur@nr andTqepm represents the soil temperatiief the upper 6 cm.
Therefore, three different temperature input data are applied in this study:

- Ground measured soil temperaturg:

- Spatially integrated thermal infrared temperatiirg

- Calculated soil effective temperature using thenidation proposed by Choudhury et
al (1982):Tes

The temperature dependent average values and stadelaations are given in table 5-2. As
can be seen the standard deviatioifg@é higher than off andTrr. T1r iS generally war-

mer thanTs andTes

Table 5-2. Number of sampling points, mean valuwg standard deviation of tempera-
ture data for the winter rye and winter barley.site
winter barley winter rye all

sample size 43 47 90

statistic mean std mean std mean std

T. [K] 287.64 1.08 287.49 0.73  287.56 0.91

Tr [K] 293.37 0.62 293.48 0.35 293.43 0.50

Tert [K] 289.05 0.90 288.96 0.57 289.01 0.74

Figure 5-2 shows the relationship of measuredmsoikture andrr where a slight decrease
of the soil moisture values with increasiigg was found. That bias may be explained by
the phenomena of an increase of evapotranspinafitbnincreasing biomass that in turn may
be found at moisture locations within the field aadises an increase of temperature. As can
be seen in figure 5-3 that assumption might bedviali the measured soil moistuiig;z and

LAI regarded as a proxy for biomass (higher LAlued indicating more biomass).
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53 LPRM: Land Surface Parameter Retrieval Modd

LPRM was used for this study to retrieve soil maigton the two crop sites (winter barley
and winter rye) by applying the high spatial refiolu PLMR data, the different provided

temperature data and in-situ soil moisture infoiomats described in the previous chapter.
LPRM was originally developed and tested with micawe brightness temperature from the

6.6 GHz (C-band) scanning multichannel radiome&IR). In de Jeu (2008) soil mois-

63



Chapter 5 — Soil moisture retrieval using LPRM

ture accuracy of 6 Vol. % was obtained using C-bdath. In de Jeu et al. (2009) a soil
moisture retrieval accuracy of ~ 5.5 Vol. % wasieebd using L-band data. The ground
observed soil moisture varied between almost zer60t Vol. %. A special question that
needs to address within this study is how good LR#kmate the experiment specific very
dry soil moisture conditions (< 15 Vol. %). No syud scientific literature was found where

experimental data was analysed to distinguishmsoisture of such a small range.

An advantage using LPRM is in the low requirememttioe supply of ancillary data that
makes it interesting for operational soil moisttg&ieval. There is no parameterization for
vegetation characteristics necessary. The approses a theoretical relationship between
brightness temperatufiéB, the microwave polarization difference index (MPBhd the soil
dielectric constant to compute soil moistuser)( and optical depthzj. LPRM combines
different modules that are summarized in tabletég@ther with the required input parame-
ters and the several model outputs. A detailedrgtgm including the equations used in
LPRM is given in Appendix A. The deviation of thptiwal depth module is provided with
Appendix B. The description of the dielectric migimodel is given in Appendix C. The

notation of LPRM model parameters and default patarization is provided in table 5-4.

Table 5-3. Summary of applied LPRM modules andpatarization
module input parameter output parameter reference
dielectric mix- effective temperature, frequen- dielectric constant  Wang et al. 1980
ing ¢y, sand content, clay content,
model bulk density or wilting point,
soil moisture
reflectivity incidence angle, dielectric con- smooth surface
model — Fres- stant reflectivity
nel Law
roughness smooth surface reflectivity, rough surface ref- Choudhury et al.
model roughness parameter, lectivity 1979, Wang et al.
incidence angle 1981
vegetation polarization ratio, incidence vegetation optical Meesters et al.
optical depth  angle, rough surface emissivity depth 2005
model
radiative trans- effective temperature, canopy brightness tempera-Mo et al. 1982
fer model temperature, rough surface ture

emissivity of horizontal polari-
zation, optical depth
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Table 5-4. LPRM global model parameters and defalites.

Observation characteristics: parameter  value refee
Incidence angle u 38.5° campaign specific
Frequency f 1.413 campaign specific
Soil parameters:

roughness parameter h 0.1 Wigneron et al. (2007)
soil porosity p 0.465 site specific

wilting point WP 0 site specific

sand content s 0.52 site specific

clay content C 0.11 site specific

model parameters:

polarization mixing fraction  Q 0 de Jeu et al. (2009)
vegetation single scattering 0 de Jeu et al. (2009)
albedo

zenith atmospheric opacity  opt_atm 0 de Jeu et al. (2009)

54  LPRM optimization procedure

Within the optimization procedure described in fokowing to aspects are considered, i)
the roughness parametgrand, ii) a shift of the temperature, which dirgétifluences the
microwave thermal emission.

Trr measured from thermal infrared represents an riated temperature information con-
taining contributions from the soil and vegetatlagers. Assuming the temperature within
the vegetation layer in equilibrium with the topl $emperature is a common assumption in
soil moisture retrieval studies using passive nuiernge data due to a lack of appropriate
vegetation temperature and soil profile data (Raacet al. 2009, Van de Griend et al.
2003). Nevertheless, such an assumption repregengn uncertainty since the temperature
is a major factor controlling emissivity at L-baadd finally the soil moisture retrieval using
physically based models. As presented in sectidnrl bthe temperature data may vary sig-
nificantly (~ 5 K difference betweeh, andTrr) dependent on the source of data. Further-
more, Trr data yields an operational uncertainty relatethéopre-defined emissivity setting
at the camera. Even within a given crop canopyethessivity at thermal infrared may vary
much (0.98 — 0.95) depending on the vegetationvaitéus and changes of the canopy ar-
chitecture (Olioso et al. 2007). Olioso et al. (2Dfbund that emissivity at thermal infrared
over senescent crops (dry) can be significantlyelowhan emissivity over well-watered
green vegetation. A change of emissivity over craips 0.03 may lead (regarding the rela-
tionship temperature = brightness temperature/éritigsto differences of ~ 10 K on the

collected thermal infrared temperatUrgs.

Several studies in literature have shown that thuighliness parametby varies from site to
site and that the roughness has a crucial effeth®@soil moisture results within physically
based models (Escorihuela et al. 2007, Wigneraai. 2001). In de Jeu et al. (2009), con-
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vergence of LPRM retrievetB, and observed B, could only be achieved applying a dy-
namic roughness parameter depending on incidengle amd soil moisture. As no mea-
surements of the soil surface roughness are alaikeithin this study an optimization &f

was performed to improve LPRM soil moisture retalenesults.

For applying the optimization described in the daoling two notifications are here intro-
duced i) “scene-based” denotes the applicatioh@bptimization to find one optimh] and
temperature shiff,; for all ground truth and PLMR data pairs (43 fanter barley, 47 for
winter rye) together, and ii) to find “pixel-basedptimal h, and temperature shift values.
For the latter, the 40 ground truth and PLMR dataspare used where also NDVI data is
available. In order to analyse the relationshipvieen the spatially varyinig values and the

NDVI data, here the NDVI is used as a proxy for phesence of green vegetation.

In table 5-4 the value ranges of the temperatufe B andh, applied during the optimiza-

tion are specified. For all other model parametieesdefault values as represented in table 5-

3 are used.
Table 5-5. Value range for the roughness paranhgterd the temperature shifr
applied within the optimization procedure
Parameter LPRM
temperature shift Teni -5-5K
roughness parameter h, 0-1.2

54.1 Scene-based optimization

The aim of the scene-based optimization was teeketrsoil moisture with LPRM assuming
a uniform parameterization crop type wise (wintarléy and winter rye separately) and for
the two crop types combined. Therefore, the analyseng the scene-based optimization for
h, andTg, Wwere performed using all 90 ground truth locatitorssoil moisture. Additional-
ly, the winter barley (43 sampling points) and wiater rye (47 sampling points) data were
analysed separately within the optimization procedénalyzing the performance, differ-
ences could possibly be caused by crop type speminditions (e.g. LAI, canopy height,
phenological stage). Three variant data sets (winéeley, winter rye, winter barley and
winter rye combined) were applied each using LPRith W, T1r, Terr to analyse the effect
of the different temperature data source on théegsell values foh, and Tgnr. Therefore,

the optimization procedure was performed on nipetinlata sets.

The scene based optimization was performed as -&t@pooptimization with a Monte-Carlo
simulation. In the first step, the optimal soil toire valuesm, is determined where a mini-
mum RMSE between LPRM computé®, and the measurebB, is achieved. To find the

optimal soil moisture valusm, the Monte-Carlo simulation on all soil moistur@gnd truth
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points is applied. The simulation was set up witmdormly distributed number of samples
of 1000 elements across the specified value rafuyess,x andh, given in table 5-4. The
soil moisture values used within LPRM during thewfard modeling were constrained by
the measured soil moisture. Within the second apétion step, the roughness valyeand
the temperature shifig, that minimizes the RMSE between measured and LirRNeved

soil moisture was determined.

5.4.2 Pixel-based optimization

As the dependence of the roughness parameter bmaisiture was found to be related to
spatial variations of the soil dielectric constaiith an influence stronger during dry condi-
tions the roughness paramelgrwas assumed to be highly spatial variable becatiske
very dry soil moisture conditions (< 15 Vol. %) thg the PLMR data acquisition. Further-
more, h; was found to change with the type of vegetatiovecwr litter over the soil. For
instance, in Saleh et al. (2007ha= 0.5 over grassland and in Wigneron et al. (2G0T)
varying between 0.1 and 0.7 for different cropsevapplied. Consequently, it is assumed
within this study thah, is spatially variable depending on the vegetatonditions that
have previously been assumed homogeneous withippaste. Considering a spatially vary-
ing h, may lead to improved LRPM soil moisture retriezalit also compensates for vegeta-
tion influence on the observed brightness tempezafio address the assumptions of a spa-
tially variableh, a pixel-based optimization féx and a temperature shifg,y is performed

to investigate its effect on the LPRM soil moistuetrieval results. Torward that purpose,
the optimization procedure fdr, described in section 5.4.1 is performed at eanblesi
ground truth point and corresponding brightnesspaature B, TB) and temperature
data Ts, Trir, Ter). LPRM is than applied using individubl values for each ground truth
point to compute soil moisture. To directly invgstie the relationship between the achieved
h, and vegetation conditions the results of the lagimization are explicitly analysed at
the set of the 40 ground truth points were alsa@atulated from the AISA imaging spec-

trometer data were available.

55 Soil moistureresults

The next three sections present the soil moistaselts using LPRM with the default

parameterization and the scene-based and pixetthsténization. Section 5.5.1 gives re-
trieval results using LPRM default values. SecBdh2 presents LPRM soil moisture results
achieved from a scene based optimizatioh, @nd the temperature shif,x. Section 5.5.3

presents the results for the pixel based optintmatif h, and the temperature. The perfor-
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mance of LPRM was analysed using the RMSE and dkéficient of determination R2 us-

ing a linear regression between LPRM retrievedgmodnd measured soil moisture.

5.5.1 Soil moistureretrieval with LPRM default parameters

LPRM was first applied using the default parametgion as given in table 5-3 and without
a priori information of soil moisture within theviersion process of LPRM. The soil mois-
ture input was set to a standard range from 5 ¥al0%. Figure 5-4 presents the default
LPRM soil moisture results using, Trir and plotted against the in-situ soil moisturedtbr
90 ground truth locations (winter barley and wimtgr combined). Clearly, the soil moisture
results usinditr are generally higher than Tt is applied with a mean shift of 5.6 Vol. %
compared tdls. The coefficient of determination of the two ackeid soil moisture results
(usingTs andTyR) is R2 = 0.91 and the RMSE = 1.19 Vol. %. Usiig mean soil moisture
difference of 4.3 Vol. % were found compared td swisture results using.

However, the retrieved soil moisture values areeex¢ly outside of the measured range
exhibited at the day of observation. The LPRM smlisture results over the crops and dur-
ing the dry conditions are generally overestimatéehnce, it is essential to have any infor-
mation about the real soil moisture conditions ase them within the forward modeling of
TB..

LPRM default LPRM default
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Figure 5-4. Comparison of LPRM retrieved (defaudrgmeterization) soil moisture

usingTs, Trir, Ter @nd plotted against the measured in-situ soil taasfor
all 90 ground truth locations for winter barley amighter rye.

55.2 LPRM soil moistureresultsfor scene-based optimization

Within the scene-based optimization procedure, shié moisture range for the forward

modeling ofTB, was constrained by the soil porosity.
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The motivation for the application of the scenedshsptimization procedure was to find
one optimalh, parameter that minimizes the RMSE between obseamed_PRM retrieved
soil moisture. Furthermore, the variationhpflepending on the applied temperature d&a (
Trire Ter) is discussed. In table 5-5 the performed LPRMsHar the different temperature
input data and ground truth data used are spec#ied¢an be seen, the found optimal values
for h, vary much (0.16 — 1.05) dependent on the usedngrowth data set and the applied
temperature source. The RMSE values achieved bypaong the LPRM retrieved soll
moisture and measured soil moisture are quite airfor all nine applied input data sets.
Table 5-6. Determineld and temperature shift,; achieved within the scene-based

optimization procedure using MC simulated data.aD&fsettings of Q =
0.2,w=0,P =0.465, S =0.52 and C = 0.11 are applied.

runs  winter winter source of h, Tenitt R2 RMSE
rye barley temperature [Vol.
%]
setl X Trr 0.61 -3.99 0.32 1.15
set2 X T, 0.79 -0.03 0.23 1.23
set3 X Test 1.05 -2.10 0.25 1.23
setd X Trr 0.16 2.12 0.02 1.69
setb X Te 0.27 3.21 0.03 1.22
set6 X Test 0.50 4.89 0.04 1.48
set7 X X TR 0.87 3.17 0.04 1.51
set8 X X T, 0.56 1.96 0.02 1.37
set9 X X Test 0.96 3.15 0.03 1.50

Figure 5-5 presents the relationship between thedmptimalh, and the appropriate scene-
based temperature shiff; on the input temperature. It was found thaslightly decreases

with a positive temperature shift or in other woifdkie exhibiting temperature is warm.
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0.8+ n

0.7
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0.1, 2 0 2 4
temperature shift [K]

Figure 5-5. Scatter plot of optimized scene-basemhd temperature shift from all
nine LPRM runs.
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The RMSE between LPRM retrieved and measured suigtnre are generally low but the
results are not well distributed around the 1:# lifrregarding the combined results for win-
ter barley and winter rye (see figure 5-6). Thatrba caused by an inappropriate global
parameterization df, by regarding the natural occurring differenceshaf two crop types.
A main hampering factor for the retrieval of betsgil moisture results may be caused by
the canopy height of the winter rye, which was agpnately 20 cm higher than the winter
barley canopy. Therefore, the scattering proceasédsattenuation of the soils microwave
emission at L-band is more affected within the wetinye canopy. Vertical structure of the
stems has a dominating effect on the scatterindinvithe crop canopy (Ulaby 1995,
Wigneron et al. 2004). Even small differences igetation parameter characteristics (e.qg.
vegetation water content, LAI, canopy height) witlai crop site may result in significant

limitations of soil moisture sensitivity on obsedverightness temperature.

set 7 - winter barley & winter rye
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Figure 5-6. Comparison of predicted and measuréldnsoisture achieved from the
scene-based parameter optimization uding for winter barley and winter
rye data (set 7, blue squares — winter barleysgedres — winter rye).

As no convergence between LPRM retrieved soil maogsaind measured soil moisture could
be achieved using the ground truth data from tredsp sites together a scene-based opti-
mization was performed individually for each sitgnter barley and winter rye separately).
As can be seen in figure 5-7 (a) for the winteldyadata the LPRM retrieved soil moisture
results scatter reasonably well around the 1:1ttnhe measured soil moisture. Regarding
the narrow range of soil moisture the sensitivity. BRM is still good enough to link small
changes of observed brightness temperafliBg, (TB, MPDI) and Tr information to soil
moisture changes. Although, the soil moisture vamabelow the winter rye canopy could

not be approximated satisfactorily using the sdeamed parameterization lgf
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a) set 1 - winter barley b) set 4 - winter rye

(1 :1 line)
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L |
| ]
n
n
| |
L]
| ]
n
soil moisture LPRM [Vol. %]

0 5 10 15 0 5 10 15
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Figure 5-7. Comparison of LPRM retrieved and meagwoil moisture achieved from

the scene-based parameter optimization usiggfor winter barley (a) and
winter rye (b).

The LPRM retrieved soil moisture values are stiéiestimated compared to the measured
soil moisture. As a result, a scene-based optimizatf h, is not sufficient to determine

reliable soil moisture estimates below a crop cgrgither using the data of the two crop
sites together or separately.

Within figure 5-8, the relationship between thegboess parameter valugsachieved from
the Monte-Carlo simulated data and the RMSE fronRMPretrieved and measured soill
moisture is shown. It can be seen that there tsoag equifinality regarding the roughness
parameteh, and resulting in similar RMSE. The parameter resposurface, as represented
by the data points with a small RMSE, is compled without any clear peaks, which im-
plies that the model is ambiguous in terms of &sameterization foh,. As a result, no op-
timal roughness valug can clearly be determined.
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Figure 5-8.

Scatter plot of the RMSE between mesband LPRM retrieved soil mois-
ture using LPRM and tested roughness parametessiltRe@chieved on the

winter barley and winter rye ground truth pointsdaior a MC set of

1000/100.

Furthermore, the problem of equifinality is demoat&d in figure 5-9 on the relationship of
the simulated data fdy, and the temperature shiit,z There is clearly no relationship be-
tweenh, and the temperature shif,z, but as can be seen by the colour schema equifinali
appears for the RMSE between measured and LPRNéwedr soil moisture. The same
“goodness of fit” represented by the RMSE can bieéeaed from completely different com-

binations ofh, and a temperature shift, It was found that the RMSE slightly increases

for h, values close to 0 and 1.2 and corresponding teatyrer shiftsTq, with absolute val-

ues close to the defined maximum of 5 K.
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RMSE between measured and predicted soil moisture [Vol. %]
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Figure 5-9. Scatter plot of roughness paramiet@nd temperature shifix for set 7.

The colour schema represents the RMSE between neelaand LPRM re-
trieved soil moisture.

5.5.3 LPRM soil moistureresultsfor pixel-based optimization

With the application of a pixel-based optimization h, and the temperature shifgx the

coefficient of determination R2 and the RMSE betwegeasured and LPRM retrieved soll
moisture were strongly improved as can be seerabtet5-6. The results are comparable
with results achieved in de Jeu (2009) were caefits of determination were found up to
R2 = 0.98 (using linear regression) between LPRMewed and ground measured soil mois-
ture. They applied a dynamic roughness parametienizh (roughness values varying be-
tween 0.2 and 0.45) but in contrary to this studyds optimized for soil moisture and the

incidence angle.

Table 5-7. Coefficient of determination R2 and RM&#ween measured and LPRM
retrieved soil moisture using pixel-based optimaatDefault settings of Q
=0.2,w=0,P =0.465, S=0.52 and C = 0.11 are applied.

number of standard
sampling source of  deviation RMSE
points temperature of h R2 [Vol. %]

setl-l 40 TR 0.34 0.99 0.11

set2-| 40 T. 0.30 0.98 0.38

set3-| 40 Tet 0.31 0.99 0.28

set4-| 90 TrR 0.31 0.99 0.09
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The effect of the temperature dafg, (Trir, Ter) applied seems to be negligible in terms of
the RMSE by applying the pixel-based optimizationt. Figure 5-10 represents the model
performance at the 40 ground sampling points uSingwere a coefficients of determina-
tion was found with Rz = 0.99 (using linear regresys The differences between LPRM
retrieved and measured soil moisture does not exae@bsolute value of 2.5 Vol. % (using
Ts within LPRM). An average deviation between the swooisture results of 0.24 Vol. %
was found usingltr.and for Te¢ with 1.65 Vol. %. The found optimal values for vary

much, with a standard deviation of ~ 0.30 (seeet®db) at the different ground truth loca-
tions.

set 1-1

R?=0.99
RMSE = 0.11 [Vol. %]

soil moisture LPRM [Vol. %]

0 5 10 15
measured soil moisture [Vol. %]

Figure 5-10. Comparison of LPRM retrieved and messisoil moisture achieved using
Trr Within the pixel-based optimization bf for winter barley and winter
rye data at the AISA ground truth locations.

As can be seen in figure 5-11 there is an obviouseation between the roughness parame-
ter h, and the measured soil moisture whigrincreases with increasing soil moisture. The
dependence df, on soil moisture can be explained by the so-callietectric roughness,
which is assumed to be related to dielectric vimat within the soil (Saleh et al. 2007,
Wigneron et al. 2001). Furthermore, a rough clirsgeof NDVI values depending dm and

soil moisture is found. Higher NDVI values appettazations with higheh, values and
higher soil moisture. The results indicate thatihieghness paramethr also compensates

effect of the vegetation on the observed brighttesgperature data.
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Figure 5-11.  Relationship between roughness pamre(set 1-I), measured soil mois-
ture and NDVI for all AISA ground truth locations.

The dependency di, on the presence of developed green vegetatiorore ilearly pre-
sented in figure 5-12. At the winter barley and tefrrye ground truth locations spatially-
explicit comparisons between calculated spectrabmaband NDVI anch, show clearly an
increasingh, with increasing NDVI. Based on theoty,actually regarded to account for soil
roughness, though it is below a crop canopy altectfd by the vegetation. Obviously, the
roughness parameter also includes a roughnesd effatrolled by the vegetation and as
vegetation characteristics are spatially varialdso &, is spatially variable. Therefore,
roughness parameterizations derived from baressadlies can not simply be transfered to
vegetated soils and roughness parameter values fegatated areas are temporally dy-
namic depending on plant phenology. Note, thaffitidings within this study are valid for
very specific soil moisture and phenological coiodis. However, the appearing phenome-
non represents the problem of de-coupling sindlecef influencing the microwave emis-
sion and hampering the clear identification of rateharacteristics controlling model pa-
rameters such ds. Microwave scattering effects of the soil surface not clearly to de-

couple from overlaying scattering effects withie tregetation canopy.
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Figure 5-12.

Scatter plot of roughness paramigtand NDVI. The coefficient of deter-
mination R2 was derived from a linear regression.

Discussion and Conclusion

This study demonstrated the use of LPRM for soiistooe retrieval from spatial high reso-

lution passive L-band microwave observations belew crop type canopies (winter barley

and winter rye) and measured very dry soil moisaaeditions (< 15 Vol. %) at the time of

observation. The following aspects were considevighin this study:

Using LPRM with the default parameterization bufedent temperature datdy( T,
Ter) to quantify the differences in the LPRM retrievaal moisture caused by the tem-

perature input.

A scene-based optimization using Monte-Carlo sithutawas performed to find one
crop type dependent uniform roughness parametaetiaby considering a temperature
shift Tgn ON the applied input temperature data and imptd®®M soil moisture re-

sults.

A pixel-based optimization using Monte-Carlo sintida to find input data pair (meas-
ured soil moisture, brightness temperature, tenipexpspecific optimal roughness pa-

rameter valuek; to improve LPRM soil moisture results.

To investigate the relationship between the rougbparametdn and spatially varying

vegetation conditions represented by NDVI data.

As the temperature is a main controlling factortlb@ microwave emission at L-band, the

analyses are applied using different temperatyvatidata, namely the soil temperatiite

76



Chapter 5 — Soil moisture retrieval using LPRM

thermal infrared temperatuiigr and the calculated soil effective temperaflise Regard-

ing the aspects outlined above the results are suinead as follows:

- Using LPRM with the default parameterizationhpthe results were generally overesti-
mated and not within the measured soil moisturgeaduring the PLMR observation.
Therefore, to optimize the retrieval @B, using LPRM it is essential to have pre-
information about the real exhibiting soil moistwenditions. Furthermore, using s
the soil moisture results are generally higher tifiai or T is applied. This phenome-
non can probably be related to the fact that contains a major contribution of the ve-
getation and of the vegetation water, which catnsgiser soil moisture retrieval results
using LPRM. The application ofe; did not show any significant difference to the
LPRM soil moisture results usinigr or Ts. Note, thafT, is evaluated over bare soil or
using simulated data (Wigneron et al. 2008). Funtoee, the calculation differs be-
tween studies in terms of the used soil moistuddilpr (sampling depth) data. Differ-
ences in the observation time of PLMR data and mpfaoil moisture can be neglected
in this study since the observations took placéiwia two hour time window in the late
morning.

- No uniform parameterization & performing the scene-based optimization was found
for the two crop sites to reasonably estimate ¢ilensoisture conditions using LPRM by
considering the measured soil moisture range. $tfeand that the roughness parameter
h, change with the type of temperature data Trir, Ter) Used and with the crop input
data type (winter barley or winter rye). Applyifgetscene-based optimization for winter
barley and winter rye separately the performande/den measured soil moisture and
LPRM retrieved soil moisture increases for wintarl®y. The best soil moisture esti-
mates (but still not satisfactory with R? = 0.3@) the winter barley were achieved using
Trr andh; = 0.61. LPRM retrieved soil moisture for winteerstill did not match satis-
factorily the measured values. The reason for #tegerformance may lay in the differ-
ences of the two crop type vegetation canopiethdrsame phenological stage (flower-
ing, main shoot) both actually have an averagesidiffce of the canopy height with 20
cm. That difference seems a likely reason why ritorm h, value can provide reasona-
ble soil moisture results using LPRM.

- Performing the pixel-based optimization it is destoated that considerirtg as spatial-
ly variable the soil moisture retrieval using LPR&h be improved significantly. It was
demonstrated that the roughness parameter alcen change much even within a ve-
getation canopy previously have been regarded henemys. As the soil surface cha-

racteristics can be assumed homogeneous overdldebecause the day of the experi-
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ment during the vegetation period was late andthlesurface is stable below the cano-
py.

- Furthermore, it was shown that the roughness pdesraaluesh, are clearly related to
the vegetation conditions represented using the NDNerefore, the roughness parame-
ter physically necessary to account for the roughsurface emissivity is over vege-
tated soils influenced by the vegetation conditions

- The study demonstrated the problem of equifinalityterms of the definition of the
roughness paramethy. Equifinality in the sense that equal good res{dtg. a specific
RMSE) may be achieved by a great number of paranmabee combinations (e.f, and
Tsni)- AS @ result, there is no clear single optimumapeeter set. An optimum is defined
depending on observed experimental conditions aailadle data. Therefore, for physi-
cally based models also an empirically effort exist optimize the parameter value for

the experiment specific conditions.

The results of this study show that good soil mwéstresults can be achieved using LPRM
by applying spatially dynamic roughness parameaéres. Since the roughness paramigter

changes from pixel to pixel, a scene-based roughpasameterization yields a deficit of
accuracy of LPRM soil moisture retrieval results.

Therefore, a number of tests still have to be nawdyzing high spatial resolution experi-
mental data to retrieve soil moisture and consggetially changing roughness conditions.
Especially for agricultural applications wheresita major issue to monitor the spatial distri-
bution of soil moisture on a small scale (field|yoseveral hectares) it is important to con-
sider the spatial variation of model parameters lik and its relation to the soil covered

vegetation.
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6. General Conclusions

In this thesis airborne passive L-band microwavseolations (PLMR) were applied to re-

trieve soil moisture underneath a crop canopy. #aitklly, high spatial resolution (1.5 m)

airborne imaging spectrometer (AISA) data was useghalyse the vegetation influence on
the high spatial resolution (50 m) brightness tarapee data. Field measurements of soil
moisture and vegetation canopy parameters (e.g) wire used as ground truth. A crop
vegetation canopy which is in many studies beenmasd homogeneous was considered
heterogeneous within this study. All analyses adopmed on data gathered on a winter

barley and winter rye site during one day of obaton.

This study is unique in that the soil moisture dtads, which had to be estimated, exhib-
ited in a very small and dry soil moisture rangelb&Vol. %) at the day of the L-band pas-
sive microwave observations. Two methods, namelgigeal multi-variate regression and
the land surface parameter retrieval model (LPRMjenapplied to retrieve soil moisture
from the L-band brightness temperature data. Aiapégature and basis for the analyses of
the vegetation effect on the microwave data wasatlalability of spectral narrow band
vegetation indices calculated from airborne imagspgctrometer data collected over the
crop sites. That data allowed unique analyseseofdlationship between passive microwave
data, spatially varying vegetation canopy condgi¢hAl, NDVI) and the roughness pa-

rameter used within LPRM at field scale.
The preceding chapters have shown:

- An obvious relationship of the microwave signal elegent on i) the PLMR pixel
average LA, ii) sub-pixel variability of LAI, aniii) the viewing angle of the bright-
ness temperature observations were found withieggtation canopy that are usually
assumed being homogeneous (see chapter 3). Thiegéndre important for support-
ing the understanding of the effect of vegetationhigh spatial resolution L-band
data, which has to be considered for soil moisast@mations below crop canopies.
Furthermore, the findings are also very usefultfar application of passive L-band
microwave data to retrieve vegetation biomass data.

- The combined empirical analyses of spectral narbamd vegetation indices and
brightness temperature data at L-band providemplsiand fast approach to estimate
soil moisture below crops as it is interesting dperational agricultural applications
(see chapter 4). Soil moisture estimates with acuracy equal to 0.82 Vol. %
(RMSE) were obtained. The availability of imaginmestrometer data provides a very

valuable source of information about vegetationditbtons. Compared to ground point
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measurements (e.g. of LAI) it is already a spatisitegrated data product and can di-
rectly be included within the data analyses.

- In chapter 5 it was found that using a default perrization for the roughneds &
0.1) no reasonable soil moisture results coulddbgesed using LPRM. Furthermore,
results based on a scene-based parameterizatidhefeaoughness parameter did not
provide satisfactory results on the two crop types.

- Very good results for soil moisture were achievgdpplying a pixel-based optimiza-
tion using Monte-Carlo simulation for the roughnpasameter at the ground truth lo-
cations on a winter barley and winter rye site.danregression between LPRM re-
trieved and measured soil moisture showed conveegap to R2 = 0.99 (see chapter
5). The good results are in cause of an optiminatibthe roughness parameter for
each single ground truth location, which resultedspatially varying roughness pa-
rameter values.

- A clear relationship between NDVI data and locatimmjzed roughness parameter
values (R? = 0.57) were found. This indicates aviais dependency of the roughness
from the vegetation conditions covering the sorfate. This can be interpreted as the
roughness parameter has to consider a vegetaboigliness” influence if vegetation

is present on the soil surface (see chapter 5).

Beside the critical vegetation canopy charactess{flowering, main shoot) only a small
range of soil moisture conditions was measuredndutie day of the experiment. No study
was found in the literature where a radiative transhodel was applied to similar site condi-
tions and experimental passive L-band microwava.datom the point of view of agricul-
tural irrigation management such dry conditionsargpecial interest to ensure and improve
agricultural yield. Therefore, a strong motivatiexists to provide applicability of LPRM for
different soil moisture conditions and at field lschke it was performed within this study

for a very dry soil.

However, by comparing soil moisture results fromm@PLMR pixels with ground meas-

ured point soil moisture differences obviously hawveccur. The footprint integrated and to
square pixels resampled PLMR observation represasampletely different measurement
compared to the point ground measurement takerfasence. Nevertheless, the field soil
moisture data measured by mobile capacitance se(lgt2 Theta probes) seem an appro-
priate ground truth to account for the spatiallyyitag soil moisture for operational applica-
tions.

No study in literature was found where the roughrEsameter, which is a controlling pa-
rameter to account for the surface emissivity edagh soil, was discussed in terms of its

correlation to NDVI data for vegetated soils. Tlod surface and crop canopy conditions of
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the two test sites (winter barley and winter ryig) bt correspond to extreme conditions in
terms of within field heterogeneities (e.g. of syibe, LAI). Therefore, the roughness pa-
rameter values are highly spatial variable evenafeegetation canopy which is generally
assumed to be homogeneous. This indicates thatvegetated soils and under similar ex-
periment conditions (e.g. spatial resolution ofadsampling) the roughness parameter may
also be related to vegetation conditions (e.g.esgmted by NDVI data) to improve soll

moisture retrievals using radiative transfer models

The previous section demonstrated that physicalaagfions to account for a model pa-
rameter within a physically based mathematical fionc(e.g. rough soil emissivity) are
uncertain in their expression and unclear in thagy of parameterization. The dependence
of single model parameters (e.g. roughness) oraceir€haracteristics is not clear and ex-
periment specific assumptions are applied. The mmighness parameter as it controls
mainly the rough surface emissivity is not achidealb an operational manner and is in
many studies simply transferred between test dBesause the results, as demonstrated in
chapter 5, show the roughness parameterizatiomgdyranfluences the performance of
LPRM and not only vegetation canopy type but esdgcalso the specific phenological
stage should be considered by evaluating roughpessneterizations for application pur-
poses. Comprehensive value tables are missindgpéoroughness parameterization at a vari-
ety of vegetation species and a wide range of gbgioal conditions that highly change

during the growing cycle.

Key criterions for the decision of an appropriatedel type either empirically or physically
are the availability and the effort in providingpirt data for calibration. Empirical ap-
proaches require a large amount of data to acdounihe variability of the dependent vari-
able. Physically based models mostly require ec8eleof physical parameters that can not
easily be measured during any ground truth camp&lgwever the main limiting factor of
both approaches is the site dependency (soil tgmetation type) of the model parameters.
Using physically based models such as radiativestest equations truly quantitative esti-
mates of soil moisture can be retrieved. Empirioadels are of interest where no correct
parameterization of a physically based model caprbeided or where the inversion of such
models failed. This thesis shows the high potertil simple application of the combined
analyses using high spatial resolution L-band mraéier observations together with imaging
spectrometer data for soil moisture estimation elNthite analyses were performed using very
specific remote sensing data (e.g. spatial resslutviewing angle) and over specific site
conditions represented by the phenological stagheotrops and the very dry soil moisture
(< 15 Vol. %) conditions.
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As the top canopy is a geometrically complex stmecthat is strongly influenced by rain
and wind and phenological and physiological diffees occur spatially variable especially
the upcoming EnMAP (Environmental Mapping and Asaly Program) satellite mission
(scheduled launch 2013) promises detailed infoonmasibout vegetation conditions, which
can be applied for soil moisture retrieval usingdnd brightness temperature. Furthermore,
recent and new terrestrial monitoring networks.(8lgRENO in Germany) provide useful
reference data to establish operational soil mastatrieval using new and upcoming re-
mote sensing data product e.g. SMOS or SMAP. Hpgttigl resolution airborne data is an
appropriate method to analyse sub-pixel heterogesdor disaggregation purpose of coarse
scale soil moisture data. Beside the requirememjiapal soil moisture maps provided from
satellite missions local airborne campaigns hawgeat potential to support hydrological
catchment management and support agricultural nesneigt. However, to improve exsist-
ing model approachs or develop new methods it gomant for future work to provide vali-

datation for a wide range of land cover conditiand a wide range of phenological stages.
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1. Summary

Soil moisture is a key variable at the global watgsle. The water content of the soil's few
upper centimeters controls the partitioning of wated energy fluxes on the land surface
including the splitting of rainfall into surfacermoff, infiltration and evapo-transpiration, as
well as the redirection of incoming solar radiatioto albedo, thermal radiation, sensible
and latent heat fluxes. Information about spatisfase soil moisture is therefore an impor-
tant boundary condition for process based hydroligiclimate or ecological models rang-
ing from the field scale up to the global scale @adknowledge is essential in order to im-
prove operational hydrological, climate and weathredictions including flood forecasting,

drought monitoring or eco-climatological projectioomia calibration or data assimilation

techniques. The aim of this thesis is to retrievit moisture over agriculturally used sites

using high spatial resolution airborne L-band ratiter data (50 m).

Low-frequency passive microwave remote sensinglaand (~ 1.4 GHz) has been found to
be the most promising remote sensing method fémsaisture monitoring due to the direct
link between microwave radiation and dielectricgadies, its deeper penetration into vege-
tation, its all-weather capabilities and its neiplig atmospheric attenuation. The large
amount of research on estimating soil moisture fteband radiometers resulted in a con-
sensus regarding the major factors that shoulddmporate in data analyses. The soil mois-
ture sensitivity of L-band brightness temperaturanges spatially with soil, vegetation and
terrain characteristics. The contribution of sogdigture on observed brightness temperature
at L-band is highly spatial variable as it is sggiyninfluenced from the vegetation cover of
the soil. Attenuation and scattering processesinvahvegetation canopy are strongly influ-
enced by specific geometrical (e.g. leaf area indeAl, canopy height) and biophysical
(e.g. vegetation water content) vegetation cand@racteristics. In order to estimate soll
moisture below a vegetation canopy it is esseftigrovide spatial distributed information

about vegetation characteristics.

To account for the spatial distribution of vegetaticharacteristics within this study, high
spatial resolution airborne imaging spectrometeéa a5 m) are analysed together with L-
band brightness temperature data. Spectral vegetatidices computed from spectrometer
data provide a high potential to account for sfigtizarying vegetation canopy characteris-
tics. The analyses from this thesis are performeast orops (winter barley, winter rye) by
using in-situ field measurements as ground truthvémgetation condition and soil moisture.
This study is unique in that the soil moisture atiads, which had to be estimated, exhib-
ited in a very small and dry soil moisture rangelbVol. %) at the day of the L-band pas-

sive microwave observations.
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The key questions of the study are summerizedlsvio

1. Is there a unique relationship between LAl and hégltial resolution L-band

brightness temperature at sub-pixel level?

2. Does the combined use of L-band data and hyperspeggetation indices pro-

vide reasonable estimates of surface soil moistsirgg empirical models?

3.  How strongly does the temperature information affee soil moisture estimates

using the land surface parameter retrieval modeR()?

4. Is there a relationship between within field vaaas of the vegetation canopy and
the roughness parameter used with the land sugaca@meter retrieval model
(LPRM)?

The results show an obvious (0.23 < R? > 0.90})icglahip between the microwave bright-
ness temperature data and LAl variations withiregetation canopy that is usually assumed
being homogeneous (e.g. crops). Furthermore, thiiced empirical analyses of spectral
narrow band vegetation indices and brightness testhyre data at L-band provides a simple
and fast approach to estimate soil moisture belopsc(RMSE = 0.82 Vol. %). The applied
imaging spectrometer data and calculated spectgédtation indices represented the spa-
tially changing vegetation canopy characteristieg).(LAlI or vegetation greenness) very
well. Using LPRM with a default parameterizatiom the roughnessh( = 0.1), no reason-
able soil moisture results could be achieved. ®oikture results using LPRM and different
temperature input data showed average differenc&s6ovol. %. Very good results (R2 =
0.99) for soil moisture were achieved by applyipgt&lly varying values for the roughness
parameter, which were achieved from an optimizatibbhPRM using Monte-Carlo simula-
tion at the ground truth locations on the winterldaand winter rye site. An obvious rela-
tionship between NDVI data and the spatial varyimgghness parameter values (R2 = 0.57)
were found. This indicates a dependency of the hroegs from the vegetation conditions

covering the soil surface.

Using the airborne remote sensing and field dallieated in the course of this research, in
this study it is demonstrated that either the elzgdimodels and the LPRM model provides
good estimates for the occuring very dry soil memstconditions (< 15 Vol. %) at the day of
the L-band data acqusition. Considering the ratatip of the roughness parameter and
NDVI, a spatial varying parameterization of the gboess within radiative transfer models
may be realized to finally improve soil moisturdirsites below a vegetation canopy. The
analyses within this were performed using very Hjgek-band brightness temperature data
(e.g. spatial resolution, viewing angle) achieveexeriment specific site conditions repre-

sented by the phenological stage of the crops hedvéry dry soil moisture conditions.
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Therefore, it is generally important for future wdo provide validatation for a wide range
of land cover conditions and a wide range of phegiohl stages. Recent and new terrestrial
monitoring networks (e.g. TERENO in Germany) previgseful reference data to establish
operational soil moisture retrieval using new apdaming remote sensing data product e.g.
SMOS or SMAP.
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Appendix A

Appendix A
LPRM - Land Surface Parameter Retrieval M odé

The radiative brightness temperature is expressedradiative transfer equation and based
on two main parameters, the optical deptind the single scattering albeddKirdyashev
et al. 1979, Mo et al. 1982)

TB, =Te, ,f, + - @)T.A-T,) + (=€ )= @) T.A-T,), A1)

whereTs andT. are the soil and vegetation temperatueeand/ are respectively the rough
surface emissivity and the transmissivity of thgetation layer. The indexrefers to the
polarization state. The single scattering albegiccounts for the scattering of the soil mi-
crowave emission within the vegetation.

The first term of equation (A.1) describes the amis from the soil as attenuated by the
overlaying vegetation. The second term describesethission from the vegetation. The
third term accounts for the downward radiation fribra vegetation, reflected upward by the

soil and is again attenuated by the vegetationmarfeor illustration see figure A-1.

1 radiation from the scil and attenuated by the vegetation

2 radiation from the vegetation

3 downward radiation from the vegetation, reflected upward by
the soil and again attenuated by the vegetation

vegetation layer

Figure A-1. Contribution of soil and vegetationofoserved passive microwave signal.

In LPRM, the vegetation attenuation factor or traissivity /~ is assumed to be equal for
vertical and horizontal polarization.is defined in terms of the optical deptland is given

by
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[ =exp(—) (A.2)

cosu
whereu is the incidence angle.

Within this study LPRM is applied with the vegetatioptical depth module proposed by
Meesters et al. (2005). The final equation to compis given by

r =cosuln(ad ++/(ad)®* +a+1) . (A.3)

For detailed description of the derivation of equa(A.3) see Appendix B.

In general the soil brightness temperatliBis a function of soil emissivitg and the soil

temperaturds and is simplified given by
B, =¢e, ;. (A.4)

The emissivitye, is generally calculated as one minus soil reflégtir, (g, =1+4p). Within
LPRM the reflectivityr, is related to the surface soil moisture conterdubh the dielectric
mixing model proposed by Wang and Schmugge (198%).dielectric model is an essential
part of the forward modeling procedure as it redithe connection to the soil water content.
A detailed derivation and description of the Wargn8Bugge Model is provided in Appen-
dix C.

The reflectivityr, is calculated from the Fresnel equations thatnesfthe behavior of elec-

tromagnetic waves at a smooth dielectric boundgry b

2
cosu—\/g—sin2u|

cosu+x/£—sin2u‘

2
£cosu —\/g—sin2u|

£cosu+x/£—sin2u‘

(A.5)

(A.6)

wherec¢is the absolute value of the complex dielectricstant of the soil.

The rough surface emissivigy, is described by a semi-empirical approach to auictar
soil roughness effects on the microwave emissioarVet al. 1981). Rough surfaces are
characterized by higher emissivity and the diffeemnbetween horizontal and vertical pola-
rizations are reduced. The rough surface emissg/jtyis developed as a function of the

smooth surface reflectivity; ;and the paramete€, h andu
& n =1 ((Q, , + 1-Q) [, ,,) [exp(-h cos u)) (A.7)

forQ=0
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€= 1- (ms,pZ [expth cos u) (A.8)

where Q is the polarization mixing fraction that can beswsed to be zero at L-band
(Wigneron et al. 2001y is a dimensionless empirical roughness parameéter.indexpl

andp2 refer to the polarization states (horizontal atical).
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Appendix B
Vegetation optical depth model

The analytical derivation of the vegetation optidapth from the microwave polarization
difference index (MPDI) was proposed by Meesteia.g2005).

Within the radiative transfer equations, given by

TBn = Tser,hrh +@1- %)Tc @- rh) +(1- er,h)(l_ %)Tc @- rh)rh (B.1)

TB =Te J, +A-w)T.A-T)+(@1-¢g )A-a)T.A-T)r, (B.2)

with the assumption Ts = Tc = T the vegetation pgrteansmissivity is defined as

= exp@) . (B.3)
cosu

The microwave polarization difference index (MPBIdefined as

MPDI =1 1By (B.4)
TB, +TB,
A new expression for B.3 is derived by substitutihg and B.2 in B.4 and can be rewritten
as follows
+ + - -
1 _g+e  A+r)i-rli-«) 1 ©5)

MPDI e-e o +(1-w)? e -e

Equation B.5 can be formulated as

2a—M (B.6)

2dr +1°2

with
1/ (ku)-e,(ku)

ku)== -e(ku)-e (ku B.7
k)= 3| S8 e (k)6 (u) )
and
g=t & (B.8)

2(1- w)

Substituting B.7 and B.8 in B.6 yields a quadratication i, where
(1+a)r?+2adr -1=0. (B.9)
Dividing B.9 byl'2 and then solving for [/a general solution is given by
%:adt (adf +a+1 (B.10)

where by definition thaO < I" <1only the form
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%:ad+ (ad)} +a+1 (B.11)

of equation B.10 yields positive result.

Combining equation B.11 with equation B.3 a forniola for the optical depth is given by

r =cosuln(ad ++/(ad)® + a+1) (B.12)

Equation B.12 can now be used in a forward modeljpgroach using equation B.1.
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Appendix C
Wang-Schmugge M odel: semi-empirical dielectric mixing model

The dielectric constamtof a soil-water mixture is described as

e=0k, +(P-0)&, +(1-P)Z, 6<8, (C.1)
where

6 volumetric water content of the soil fm™]

P porosity of the dry soill

€ dielectric constant of the initially absorbed water

€ dielectric constant of the air

& dielectric constant of the rock.

Furthermores; is defined as

€x=a+(€w-a)DgEV (C2)
t

and

e=g & +(0-6)x,+(P-0), +1-P), (C.3)

6=6,

with

£.=6+(6,-&) (C.4)

where

& dielectric constant of ice

&, dielectric constant of water

y empirical parameter

6, the transition moisture [fim?).

6, is defined as the moisture content at which tee fwvater phase begins to dominate the
soil system and can be described as

6 = 049[WP+ 0165 (C.5)

WP is the wilting point of the soil which can bdatdated by

WP =0.06774-0.00064[S+ 0.00478C (C.6)

where S and C are respectively the sand and clatgnts in percent of dry weight of a soil.

y can be determined by
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y =-057[WP+ 0481 (C.7)
The complex dielectric constants for ice, solickraad air are

g =32+ 01

& =55+02

&, =1+0i.

The dielectric constant for watey, is given by the Debye Equation

Ew €&

E = + L C.8
YT 1+ (20, OF )i (©8)

where

& IS the high frequency limit of the dielectric ctarst of pure water (~ 4.9k, is the

static dielectric constant of pure watgy, is the relaxation time of pure water in second$ an

f is the electromagnetic frequency in Hz. Equaii@GrB) can be rewritten in a real and im-

aginary part. The real part is defined by Ulabgle{1986), as

£ =g +—tw b (C.9)

"= e 1+ (2070, CF )

and the imaginary part as
_20nlt, [ fi(e, - &)

E, = 1+ (2 T, O )2 (C.10)
The static dielectric constant of pure water isegias
£,0 = 88045- 0.4147({T - 27315)+ 62950107 [{T —27315)" + 11
107500°° T - 27315)°
whereT is the effective temperature of the emitting laiyeiKelvin.
The relaxation time of pure water is
27, =1.1109010"° - 3824010™* [ﬂT - 273.15) +
(C.12)

6938[10™ [T — 27315)° - 5096010™° [{T - 27315)°
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