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1 Summary  

1.1 Zusammenfassung 

Die epigenetische Information, codiert durch das Methylierungs-Muster der genomischen 

DNA, wird durch Methyl-Cytosin-Bindende Proteine (z.B. MeCP2) erkannt und in höhere 

Ebenen der Chromatinstruktur und spezielle Gen-Silencing Muster übersetzt. 

Mutationen innerhalb des MECP2-Gens sind die Hauptursache der neurologischen 

Erkrankung des “Rett Syndroms (RTT)“. Wir hatten gezeigt, dass der MeCP2-Spiegel 

während der Differenzierung ansteigt und ein erhöhtes Zusammenlagern 

perizentromerischen Heterochromatins in vivo zur Folge hat.  

Ziel dieser Studie war es nun, weitere Einblicke in Mechanismus und Regulation der 

MeCP2-induzierten Reorganisation von Heterochromatin zu gewinnen.  

Hierzu wurden anfänglich 21 RTT-induzierende Mutationen, die innerhalb der Methyl-

Cytosin-bindenden Domäne (MBD) von MeCP2 liegen, charakterisiert. Wir konnten 

zeigen, dass einige dieser Mutationen entweder die Fähigkeit von MeCP2 zur Chromatin-

Bindung oder die Chromatin-Clusterbildung beeinflussen. Interessanterweise korrelieren 

diese zwei Phänotypen mit der jeweils entsprechenden Aminosäuren-Position in der 

Kristallstruktur der MBD-Domäne von MeCP2 und definieren hiermit zwei verschiedene 

funktionale Strukturen innerhalb dieser Domäne. Mutationen die die Chromatin-

Clusterbildung von MeCP2 beeinträchtigen, sind distal der Methyl-Cytosin-bindenden 

Sites angesiedelt und könnten demnach Protein-Interaktionen, die bei der Aggregation 

von Heterochromatin beteiligt sind, beeinflussen. Aus diesem Grunde suchten wir weitere 

Bindungpartner von MeCP2 und identifizierten mittels eines proteomischen Screens das 

nukleäre Enzym PARP-1 (Poly(ADP-ribose)polymerase-1) als Bindungspartner von 

MeCP2. Wir konnten eine direkte Interaktion zwischen MeCP2 und PARP-1 sowie poly-

ADP-Ribosylierung von MeCP2 feststellen, die bevorzugt innerhalb der TRD 

(transcriptional repression domain) und dem Bereich zwischen MBD-Domäne und TRD 

erfolgt. Ferner beobachteten wir, dass diese post-translationale Modifikation der MeCP2-

induzierten Chromatin-Clusterbildung entgegenwirkt. Sowohl Deletionen modifizierter 

Domänen wie auch die chemische Inhibierung der poly-ADP-Ribosylierung erhöhen die 

Fähigkeit von MeCP2, Heterochromatin zu aggregieren. Auch zeigte sich hierbei, dass 

die chemische Inhibierung der poly-ADP-Ribosylierung das beeinträchtigte Chromatin-

Aggregations Potential einiger MeCP2 RTT Mutanten signifikant erhöht.  

Vor kurzem wurden Interaktionen zwischen MeCP2 und Nukleosomen als ein 

zusätzlicher Faktor vorgeschlagen, der zum MeCP2-induzierten Zusammenlagern 

perizentrischen Heterochromatins beiträgt. Hierbei könnte MeCP2 bei der Verlinkung von 
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Chromatin-Fasern entweder als Monomer oder mittels Interaktionen mit sich selbst 

beteiligt sein; doch wurde eine solche Oligomerisierung von MeCP2 aufgrund 

hydrodynamischer Analysen in Frage gestellt.  

Daher untersuchten wir potentielle direkte Interaktionen zwischen den MBD Proteinen 

und konnten sowohl Homo- und Hetero-Dimerisierung von MeCP2 und MBD2 aufzeigen. 

Bei der Interaktion von MeCP2 mit sich selbst und mit MBD2 sind zwei unabhängige 

Domänen beteiligt, von denen eine bei der Aggregation von Nukleosomen-Arrays in vitro 

eine zentrale Rolle spielt. Auch fanden wir, dass MeCP2 und MBD2 die einzigen MBD-

Proteine sind, die poly-ADP-ribosyliert werden. Die modifizierten Domänen dieser beiden 

Proteine erkennen ihrerseits nicht-kovalente poly-ADP-Ribose und sind an den Homo- 

und Hetero-Interaktionen von MeCP2 und MBD2 in vitro beteiligt.  

Somit können wir im Hinblick auf die MeCP2-induzierte Reorganisation von 

Heterochromatin folgende  neue Aspekte vorschlagen: 

1) Poly-ADP-Ribosylierung von MeCP2 ist ein regulierendes Element beim MeCP2-

vermittelten Zusammenlagern perizentrischen Heterochromatins  

und 

2) Direkte Interaktionen von MeCP2 mit sich selbst und anderen MBD-Proteinen stellen 

potentiell verstärkende Elemente bei der Etablierung höherer Ebenen der 

Chromatinstruktur dar. 
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1.2 Summary 

The epigenetic information encoded in the genomic DNA methylation pattern is read by 

methyl-cytosine binding proteins, e.g., MeCP2 and translated into chromatin structure 

and gene silencing states. Mutations within the MECP2 gene have been linked to Rett 

syndrome (RTT), a human neurological disorder. We have previously shown that 

expression of MeCP2 is upregulated during differentiation and causes large scale 

chromatin reorganization, in particular clustering of pericentric heterochromatin.  

The goal of this study was to gain further insight into the mechanism and regulation of 

MeCP2 mediated large-scale heterochromatin reorganization.  

I first addressed this question by characterizing 21 RTT-inducing missense mutations 

within MeCP2 methyl cytosine binding domain (MBD) and found that they primarily affect 

either MeCP2 binding or clustering of chromatin. Interestingly, the phenotypes correlate 

well with their amino acid positions in the crystal structure and define two distinct 

functional structures within MeCP2 MBD domain. Mutations impairing chromocenter 

clustering were located distally from the methylated cytosine binding sites likely affecting 

protein interactions involved in heterochromatin aggregation. Thus, I subsequently 

investigated novel MeCP2 binding partners and identified in a proteomic screen the 

nuclear enzyme poly(ADP-ribose)polymerase-1 (PARP-1). I could show that MeCP2 

directly interacts with PARP-1 and is poly(ADP-ribosyl)ated in vitro as well as in vivo at 

five major residues within a region in its transcriptional repression domain (TRD) and in 

the region between the MBD and the TRD (termed interdomain, ID). I further observed, 

that this modification counteracted MeCP2 capacity to establish higher order chromatin 

structures as deletion of the modified domains as well as chemical inhibition of poly(ADP-

ribosyl)ation increased MeCP2 induced heterochromatin clustering. Importantly, PARP 

inhibitors rescued the chromatin aggregation function of MeCP2 RTT syndrome mutants.  

As an additional factor contributing to MeCP2 induced heterochromatin aggregation, 

multiple interactions between MeCP2 and nucleosomes have previously been proposed 

with MeCP2 cross-linking heterochromatin fibers either as a monomer or through 

interactions with itself. However, oligomerization of MeCP2 has been challenged by 

hydrodynamic studies. I consequently examined interactions among MBD proteins. I 

found that MeCP2 and MBD2 homo- and hetero-dimerize. MeCP2 interaction to itself and 

MBD2 involved two independent domains, one reported to mediate aggregation of 

nucleosomal arrays in vitro. Additionally I found that MeCP2 and MBD2 are the only 

MBDs poly(ADP-ribosyl)ated. Their modified domains further recognize noncovalent 

poly(ADP-ribose) and are involved in MeCP2 and MBD2 homo- and hetero-interactions 

in vitro. 
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Based on these data one can propose both, MeCP2 poly(ADP-ribosyl)ation as regulating 

element in MeCP2 mediated heterochromatin aggregation as well as direct interactions 

of MeCP2 with itself and other MBD proteins as potentially reinforcing elements 

contributing to the establishment of higher order chromatin structures in vivo. 

These findings lay the ground for targeted manipulation of chromatin architecture and 

thus contribute to our general understanding of its role in development and disease. 
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2 Introduction 

2.1 DNA methylation  

DNA methylation is a major epigenetic modification in the genomes of higher eukaryotes. 

In vertebrates the covalent addition of a methyl group occurs almost exclusively on the 

C5 position of cytosines (5mC) within CpG dinucleotides. Approximately 60-90% of these 

dinucleotides are methylated (Bird, 1986), with the exception of CpG-enriched 

sequences, referred to as CpG islands. The latter occur mostly within or close to 

promoter regions and are generally unmethylated.  

The methylation mark is usually associated with a repressed chromatin state resulting in 

inhibition of gene expression (Bird and Wolffe, 1999). DNA methylation is important for 

normal development and is associated with transcriptional silencing in various processes 

such as X chromosome inactivation, imprinting and carcinogenesis (Bird, 2002).  

Methylation of DNA is a postreplicative modification that is catalyzed in vertebrates by the 

DNA methyltransferase enzymes (Dnmts) Dnmt1, Dnmt3A and Dnmt3B. Dnmt3A and 

Dnmt3B, also referred to as de novo methyltransferases, have been mainly described to 

introduce cytosine methylation at unmethylated CpG sites and are essential for the 

establishment of DNA methylation patterns during development (Kaneda et al., 2004; 

Okano et al., 1999). The maintenance DNA methyltransferase Dnmt1 works on 

hemimethylated DNA and copies pre-existing methylation patterns onto the daughter 

DNA strand generated during replication (Chuang et al., 1997; Leonhardt et al., 1992). 

Methylated CpGs (mCpGs) could mediate transcriptional silencing by altering the binding 

sequences of transcription factors and directly prevent transcriptional activation 

(Campanero et al., 2000; Iguchi-Ariga and Schaffner, 1989). Alternatively, they could be 

recognized by methyl-CpG binding proteins (MBPs). The latter could, on the one hand, 

sterically hinder transcription factor binding to gene regulatory sequences (Leonhardt and 

Cardoso, 2000). On the other hand, MBPs could recruit chromatin remodeling co-

repressor complexes to establish a repressive chromatin architecture (Fuks et al., 2003; 

Jones et al., 1998; Nan et al., 1998; Wade et al., 1999; Zhang et al., 1999). At least three 

different families of MBPs, methyl-CpG binding domain proteins (MBDs), Kaiso proteins 

and SRA domain containing proteins, recognize and translate the methylation mark and 

therefore constitute a link between DNA methylation and chromatin modification state.  
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2.2 Recognition of methylated DNA by methyl-CpG binding domain 
proteins 

The MBD protein family comprises five members MBD1, MBD2, MBD3, MBD4 and 

MeCP2 (Figure 1). They all share a conserved methyl-CpG binding domain (MBD), which 

mediates their binding to methylated DNA. In agreement with the silencing effect of DNA 

methylation MBD1, MBD2, and MeCP2 have been extensively described as 

transcriptional repressors (Wade, 2001). 

 

 
Figure 1. Schematic representation of the MBD protein family and sequence comparison of the MBD 
domain of murine MeCP2e2, MBD1a, MBD2a, MBD3 and MBD4  
The conserved methyl-CpG binding domain (MBD) enables the MBD familiy members to bind to methylated 
DNA with the exception of MBD3 due to two amino acid changes within its MBD. MeCP2, MBD1 and MBD2 
further contain a transcriptional repression domain (TRD). Depending on its isoform, MBD1 comprises 2 or 3 
cysteine-rich (CxxC) domains. The third CxxC motif mediates MBD1 binding to unmethylated DNA. The Gly-
Arg repeat of MBD2 and the Glu repeat of MBD3 are represented by (GR)11 and (E)12. MBD4 carries a 
glycosylase domain involved in the removal of a thymine or uracil from a mismatched CpG site. The numbers 
represent aa coordinates.  
According to the similarity of the alignment of their MBD sequence, the MBD family members can be 
subdivided into one group comprising MBD1, MBD2 and MBD3 and another subgroup consisting of MeCP2 
and MBD4 respectively. Aa identity of the MBD domain among i) all MBD proteins is 23%, ii) the subgroup 
comprising MBD1, 2 and 3 is 47% and iii) the subgroup of MeCP2 and MBD4 is 49%. 
Identical residues regarding all MBDs are marked in light grey. Additional identical residues within MeCP2 
and MBD4 are highlighted in dark grey.  

2.2.1 Methyl-CpG binding domain protein 1 (MBD1) 

MBD1 either contains two or three CxxC zinc finger motifs consisting of eight conserved 

cysteines (Fujita et al., 1999; Jorgensen et al., 2004). The region of the CxxC domains 

and the C-terminus of MBD1 are alternatively spliced in humans and mice. Four splicing 

isoforms have been described in humans (MBD1v1,2,3 and 4; Fujita et al., 1999) and 

three in mouse (MBD1a,b and d; Jorgensen et al., 2004) with the major difference being 
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the presence of a third CxxC-domain, the CxxC-3 domain. MBD1 is the only member of 

the MBD family with two DNA-binding domains that independently mediate MBD1 binding 

to methylated and unmethylated DNA in vivo and in vitro (Jorgensen et al., 2004).  

In wild type mouse cells, localization of MBD1 to condensed and mCpGs enriched 

pericentric heterochromatic regions (Hendrich and Bird, 1998; Nan et al., 1996) depends 

on the MBD domain and is unaffected by deletion of the CxxC-3 domain (Jorgensen et 

al., 2004). In methylation deficient cells, the CxxC-3 domain mediates localization of 

MBD1 to heterochromatic foci even in the absence of the MBD (Jorgensen et al., 2004). 

The two other zinc finger motifs of MBD1, CXXC-1 and CXXC-2, are by themselves 

unable to mediate DNA binding (Jorgensen et al., 2004). MBD1 was shown to repress 

transcription from both CpG-rich methylated and unmethylated promoters in reporter 

gene assays (Fujita et al., 1999; Jorgensen et al., 2004). A transcriptional repression 

domain (TRD) at the C-terminus of MBD1 has been identified and shown to actively 

repress transcription even at a distance (Ng et al., 2000). Repression of nonmethylated 

reporter genes depends on an intact CXXC-3 domain and is not influenced by the 

presence of a functional MBD (Jorgensen et al., 2004). Methylation dependent silencing 

by MBD1 in vivo depends on both its TRD and MBD and seems to be partially sensitive 

to the deacetylase inhibitor trichostatin A (TSA) (Ng et al., 2000). Nonetheless, MBD1 

has not been found directly associated with any histone deacetylase activity (Ng et al., 

2000). Several interaction partners of MBD1 have been recently identified and impact on 

MBD1 mediated methylation-based transcriptional repression. These include the histone 

H3 lysine 9 (H3K9) methyltransferase Suv39h1 (Fujita et al., 2003b) and SETDB1 (Sarraf 

and Stancheva, 2004) and the MBD1-containing chromatin-associated factor (MCAF), 

also named mAM (Fujita et al., 2003a). MCAF/mAM, a cofactor for the histone 

methyltransferase ESET/SETDB1 that facilitates the conversion of H3-K9 dimethyl to 

trimethyl (Wang et al., 2003), enhances MBD1 transcriptional repression in a histone 

deacetylation independent manner (Fujita et al., 2003a).  

MBD1 association to SETDB1 mediates transcriptional repression throughout the cell 

cycle (Sarraf and Stancheva, 2004). During DNA replication, a S-phase specific transient 

complex of MBD1/SETDB1 and the p150 subunit of the chromatin assembly factor CAF-

1 is formed. This complex is associated with the DNA replication machinery via PCNA 

(Sarraf and Stancheva, 2004). The CAF-1/MBD1/SETDB1 complex facilitates H3K9 

methylation of the H3/H4 dimers associated with CAF-1 during replication coupled 

chromatin assembly (Sarraf and Stancheva, 2004). This process enables the post-

replicative maintenance of the repressive H3K9 modification on methylated daughter 

DNA strands. Simultaneously, DNA methylation is restored by Dnmt1 (Chuang et al., 

1997; Leonhardt et al., 1992). Both MBD1 promoted transcriptional repression and 
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maintenance of H3K9 methylation are negatively regulated through the addition of the 

small ubiquitin-like modifier 1 (SUMO1), mediated by the E3 ligases Protein Inhibitors of 

activated STAT1 (PIAS1 and PIAS3) in human cells (Lyst et al., 2006). Conjugation of 

SUMO1 to MBD1 does not interfere with MBD1 binding to its endogenous sites but 

disturbs both MBD1 association to SETDB1 and MBD1 mediated transcriptional 

repression (Lyst et al., 2006). In addition, MBD1 has been described to be modified by 

SUMO2/3 (Uchimura et al., 2006). In contrast to the findings by Lyst et al, SUMO2/3 

conjugated MBD1 recruits MCAF/SETDB1, resulting in stabilization of heterochromatic 

regions (Uchimura et al., 2006). Whether conjugation of SUMO1 and SUMO2/3 exert 

differing effects on MBD1 recruited repressors requires further investigation. 

Although MBD1 minus mice do not have developmental defects and appear healthy, they 

show decreased hippocampal neurogenesis and impaired spatial learning. Furthermore, 

MBD1 minus neural stem cells exhibit increased genomic instability and elevated 

expression level of the endogenous virus intracisternal A particle (IAP) (Zhao et al., 2003; 

Table 1). 

 
Table 1: Phenotype of methyl-CpG binding protein null mouse models 

Mouse model Phenotype Reference 
MBD1 null no overt phenotypes 

minor neural defects (decreased hippocampal neurogenesis, impaired 

spatial learning) 

increased genomic instability 

Zhao et al., 2003 

MBD2 null normal development, viable, fertile 

maternal nurturing defect 

altered cytokine production during T-helper cell differentiation due to 

impaired gene regulation 

reduced intestinal tumorigenesis 

Hendrich et al., 2001 

 

Hutchins et al., 2002 

 

Sansom et al., 2003 

MBD3 null Early embryonic lethality Hendrich et al., 2001 

MBD4 null Viable, fertile, no overt phenotype 

3,3-fold increased C:G to T:A transitions at CpG sites 

increased colorectal tumor formation with C:G to T:A transitions in the 

APC gene (upon crossing MBD4 minus mice with mice bearing 

germline mutation in Apc gene) 

Millar et al, 2002.; Wong et al., 

2002 

 

2.2.2 Methyl-CpG binding domain protein 2 (MBD2) 

MBD2 and MBD3 are the only MBD family members with significant sequence similarity 

beyond the MBD domain (Hendrich and Bird, 1998; Figure 2). MBD3 lacks a NH2-

terminal extension of MBD2 and has, contrary to MBD2, at its extreme COOH-terminus 

an acidic Glu repeat (Hendrich and Bird, 1998). 

 



INTRODUCTION 

 11 

 
Figure 2. Sequence comparison of murine MBD2a and MBD3 
MBD2a and MBD3 are very similar with the only exceptions being the NH2-terminal region of MBD2a carrying 
a Gly-Arg repeat (labelled in dark grey) and the COOH-terminal region of MBD3 containing a Glu repeat 
(labelled in dark grey). Aa identity between MBD2a and MBD3: 43,6 %, identity excluding the MBD2a first 
147 aa: 66,1%. Residues of the methyl-CpG binding domain are boxed. Identical residues are marked in light 
grey. Numbers represent aa coordinates. 
 

MBD2 specifically binds methylated DNA in vitro and in vivo in murine cells (Hendrich 

and Bird, 1998; Ng et al., 1999) and was shown to be associated with the 

HDAC1/HDAC2 and Rb Ap46/RbAp48 containing Methyl-CpG Binding Protein 1 

(MeCP1) repressor complex in HeLa cells (Meehan et al., 1989; Ng et al., 1999). MeCP1, 

a large protein complex of 400-800 kD that binds irrespective of the DNA sequence to 12 

mCpGs, was the first mCpG binding activity identified (Meehan et al., 1989). MBD2a, 

fused to a GAL4 DNA binding domain, mediates transcriptional repression in reporter 

gene assays, with silencing of some promoters being dependent on deacetylation (Ng et 

al., 1999). In addition, MBD2a interacts in vitro with components of the nucleosome 

remodelling and histone deacetylase activity containing Mi-2/NuRD complex, without 

being an integral component of this complex (Zhang et al., 1999). As demonstrated by 

electrophoretic mobility shift assays MBD2a directs the NuRD complex, implicated in the 

repression of several genes (Ahringer, 2000), to methylated DNA (Zhang et al., 1999).  

Two in frame potential start codons have been found for MBD2. The upstream AUG 

results in MBD2a and the downstream AUG gives rise to MBD2b, lacking the first 140 

NH2-terminal amino acids (aa) of MBD2a (Hendrich and Bird, 1998). In vivo, MBD2a 

protein, but not MBD2b, has been detected (Ng et al., 1999). MBD2b binds to methylated 

DNA and mediates transcriptional repression (Boeke et al., 2000). In contrast to other 

MBDs, the TRD of MBD2b overlaps with its MBD and confers both transcriptional 

repression, as well as direct interaction to the transcriptional repressor Sin3A (Boeke et 

al., 2000). In addition, a DNA demethylase activity has been reported for MBD2b 

(Bhattacharya et al., 1999), but this feature is discussed controversially (Boeke et al., 

2000; Hendrich et al., 2001). 

Whereas MBD3 is indispensable for embryogenesis, MBD2 minus mice develop 

normally, are viable and fertile but exhibit a maternal nurturing defect, resulting in 
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reduced weight of the pups (Hendrich et al., 2001; Table 1). In mouse liver nuclear 

extracts, MeCP1 consists of two forms, with the major one containing MBD2 (Hendrich et 

al., 2001; Meehan et al., 1989). This form of MeCP1 is absent in MBD2 minus cells 

(Hendrich et al., 2001). In addition, MBD2 minus cells exhibit a defect in their repression 

of methylated reporter constructs that is rescued by reintroducing MBD2 but not MBD3 

(Hendrich et al., 2001).  

Further, MBD2 minus cells are strikingly affected in their cytokine production of, e.g., 

interleukin-4 (IL-4) during the differentiation of T-helper cells (Hutchins et al., 2002). 

During differentiation under normal conditions, expression of IL-4 requires induction by 

the activator GATA-3 strongly expressed in stimulated naïve helper T cells (Mullen et al., 

2001). In MBD2 minus mice however, MBD2 mediated silencing of the IL-4 gene is lost 

which renders GATA-3 dispensable for IL-4 induction and results in ectopic expression of 

IL-4 in unstimulated helper T cells (Hutchins et al., 2002).  

2.2.3 Methyl-CpG binding domain protein 3 (MBD3) 

The occurrence of two aa substitutions within the MBD of mammalian MBD3, but not of 

Xenopus MBD3, causes its inability to bind to methylated DNA in vitro and in vivo 

(Hendrich and Bird, 1998; Saito and Ishikawa, 2002; Wade et al., 1999).  

MBD3 is a core component of the NuRD repression complex (Zhang et al., 1999). This 

complex consists, together with MBD3, of seven subunits, including the histone 

deacetylase core HDAC1 and HDAC2, the histone binding proteins RbAp46/RbAp48, the 

SWI2/SNF2 helicase/ATPase domain containing Mi-2 (Tong et al., 1998; Xue et al., 

1998; Zhang et al., 1998) and the metastasis-associated protein MTA2 (Zhang et al., 

1999). MTA2 modulates the activity of the core HDAC1/2 complex (Zhang et al., 1999), 

with MBD3 being important for MTA2 association with this core unit (Zhang et al., 1999).  

Deletion of MBD3 leads to early embryonic lethality (Hendrich et al., 2001; Table 1). This 

drastic effect on murine development most probably reflects MBD3 indispensable role as 

an important core component of the NuRD complex. It additionally indicates that 

transcriptional repression, mediated through an active NuRD complex, is required for 

embryonic development. The much more milder phenotype of MBD2 minus mice gives 

rise to the assumption that MBD2 role to tether the NuRD repressor to methylated DNA 

can be accomplished by other mCpG binding proteins as well. 

2.2.4 Methyl-CpG binding domain protein 4 (MBD4) 

Methylated cytosines are a hotspot for mutations. The primary product of spontaneous 

hydrolytic deamination of 5mCs, occurring at a very high frequency in the genome, is 

thymine. The resulting 5mCpG:TpG mismatch requires for its correction a thymine DNA 
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glycosylase, an activity described for thymine DNA glycosylase (TDG) (Neddermann et 

al., 1996; Wiebauer and Jiricny, 1989), as well as MBD4 (Hendrich et al., 1999). 

MBD4, also named methyl-CpG binding endonuclease 1 (MED1) (Bellacosa et al., 1999) 

has been mostly characterized for its role in DNA damage repair (Hendrich et al., 1999; 

Millar et al., 2002; Wong et al., 2002). 

It contains a NH2-terminal MBD and a COOH-terminal catalytic domain that shares high 

homology to bacterial DNA damage specific endonucleases exhibiting glycosylase/lyase 

activity during base excision repair (BER) (Michaels et al., 1990). In a yeast two hybrid 

screen MBD4 was identified to interact with the human mismatch repair (MMR) protein 

MLH1, the homologue of MutL in E.coli (Bellacosa et al., 1999). 

MBD4 has been described as a mismatch specific T/U DNA glycosylase, capable of 

removing a thymine or uracil from a mismatched CpG site through glycosidic bond 

cleavage in vitro. The methylation status of the cytosine in the CpG:TpG or CpG:UpG 

mismatch however seems to be important in that process (Hendrich et al., 1999; 

Petronzelli et al., 2000).  

MBD4 binds to densely methylated DNA in vitro and is localized at strongly methylated 

heterochromatic foci in mouse nuclei in vivo (Hendrich and Bird, 1998). Its MBD 

preferentially binds to 5mCpG:TpG mismatches and weakly recognizes 5mCpG: 5mCpG 

or non-methylated CpG:TpG mismatches in vitro (Hendrich et al., 1999). In contrast, the 

C-terminal glycosylase domain binds to the abasic site that arises during the reaction 

(Hendrich et al., 1999). 

Mutations within polyadenine repeats within the MBD4 gene have been found in human 

colorectal carcinomas with microsatellite instability (MSI) and are in many cases the 

cause for the synthesis of MBD4 protein lacking its C-terminal catalytic domain (Bader et 

al., 2000; Riccio et al., 1999). MSI manifests itself as an accumulation of mutations at 

simple repetitive sequences throughout the genome and is the indicator of an impaired 

MMR system (Modrich and Lahue, 1996). MBD4 minus mice are viable, fertile and 

appear to be healthy without any major physical abnormalities (Millar et al., 2002; Wong 

et al., 2002; Table 1). They, though, exhibit a 3.3-fold higher number of C:G to T:A 

transitions at CpG sites in comparison to wild type mice (Millar et al., 2002). Crossing of 

MBD4 minus mice with mice having a germline mutation in the adenomatous polyposis 

coli (APC) gene results in increased colorectal tumor formation with CpG to TpG 

mutations in the APC gene (Millar et al., 2002). These in vivo studies clearly implicate an 

important role of MBD4 in the repair of 5mC deamination at mCpGs. The relatively mild 

phenotype however suggests, that other thymine glycosylases, TDG for instance, might 

contribute to reduce the mCpG-TpG mutation rate. 
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Besides its function as a tumor suppressor, MBD4 has been reported to repress 

transcription in a HDAC dependent manner in vitro and directly interacts with Sin3A and 

HDAC1 (Kondo et al., 2005). Whether the role of MBD4 in transcriptional repression is of 

physiological relevance still has to be shown. Intriguingly, in vivo studies in zebrafish 

embryos revealed an important role of MBD4 in active demethylation of 5mC (Rai et al., 

2008). A two-step coupled mechanism was proposed with the first step being 

deamination of 5mC by the 5mC deaminase Activated Induced Deaminase (AID) 

(Morgan et al., 2004), which generates a thymine leading to a G:T mismatch (Rai et al., 

2008). This is immediately followed by the removal of the thymine base through MBD4 

(Rai et al., 2008).  

2.2.5 MeCP2 

MeCP2, the prototype of the MBD protein family, was, shortly after characterization of 

MeCP1 (Meehan et al., 1992; Meehan et al., 1989), the second MBD protein analyzed 

and the first MBD protein to be cloned (Lewis et al., 1992; Figure 3).   

 
Figure 3. Alignment of the amino acid sequence of human, macaque, rat, mouse and xenopus MeCP2 
Methyl-CpG binding domain and transcriptional repression domain are boxed. Identical residues are 
highlighted in grey colour. Numbers represent aa. The maximal % identity among all MeCP2s excluding the 
gaps is 94%.  
 

A minimal NH2-terminal MBD of MeCP2 was identified that specifically binds to DNA with 

even just one symmetrically mCpG pair (Nan et al., 1993).  

Subsequently, a solution structure of the MBD of rat MeCP2 has been solved by nuclear 

magnetic resonance (NMR) spectroscopy and shown to form a wedge-shaped structure 

(Wakefield et al., 1999). One face of the wedge consists of a NH2-terminal four-stranded 

antiparallel β-sheet, while the other side is formed by a COOH-terminal three-turn α-helix 

(Wakefield et al., 1999). The predominantly positively charged β-sheet face and the thin 

end of the wedge-shaped domain constitute an interface with methylated DNA (Wakefield 
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et al., 1999). A conserved hydrophobic pocket including the side chains of Tyr123 and 

Ile125 on the positively charged β-sheet face was proposed to interact through van der 

Waals` contacts with the methyl group in the major groove of the DNA (Wakefield et al., 

1999). This proposal was questioned by a recent analysis of a high resolution X-ray 

crystal structure of the human MBD bound to DNA (Ho et al., 2008), revealing that the 

methyl groups bind to a hydrophilic surface including structurally conserved water 

molecules (Ho et al., 2008). The three residues Asp121, Arg111 and Arg133 perform 

direct contacts with DNA bases, whereas indirect DNA binding of Tyr123 is mediated via 

hydrogen bonds from its hydroxyl group to structured water molecules (Ho et al., 2008).  

In interphase mouse nuclei, MeCP2 is prominently localized at heterochromatic foci 

(Lewis et al., 1992). In metaphase chromosomes, MeCP2 presence at the euchromatic 

arms is rather weak in comparison to its strong localization at pericentromeric 

heterochromatin (Lewis et al., 1992), highly enriched in heavily methylated major satellite 

repeats (Jones, 1970; Pardue and Gall, 1970). The overlap of MeCP2 localization with 

that of 5mC gave rise to the assumption, that it might mediate the biological effects of 

DNA methylation on chromatin structure and transcription. Accordingly, MeCP2 has been 

further described to function as a transcriptional silencer through association with 

corepressor complexes. This association is mediated by its TRD, which was mapped to a 

region comprising aa 207 to aa 310 (Jones et al., 1998; Nan et al., 1997; Nan et al., 

1998). In vitro transcription assays demonstrated that MeCP2 specifically represses 

transcription from methylated but not from unmethylated reporters in a MBD dependent 

manner (Nan et al., 1997). A Co-Repressor Interacting Domain (CoRID) comprising aa 

163 to aa 278 binds to the transcriptional co-repressor mSin3A as well as to the histone 

deacetylases HDAC1 and HDAC2 (Jones et al., 1998; Nan et al., 1998). Furthermore, in 

vivo reporter gene assays in Xenopus and mouse cells demonstrated that MeCP2 

mediated transcriptional silencing is partially relieved by inhibition of histone deacetylase 

activities (Jones et al., 1998; Nan et al., 1998) and might therefore be accomplished to 

some extent through recruitment of HDACs containing complexes. This partial relief 

alludes to other repressive mechanisms reinforced by MeCP2 apart from deacetylation 

(2.3). Intriguingly, besides causing repressive chromatin architecture through promoting 

modifications of the histone tails, in vitro studies demonstrated that MeCP2 alone 

coordinates chromatin architecture (Georgel et al., 2003). In agreement with these 

findings, increased expression of MeCP2 in mouse cells induces clustering of pericentric 

heterochromatin in a dose dependent manner with the MBD being indispensable for 

MeCP2 aggregation ability (Brero et al., 2005).  

In comparison to the MBD and TRD, little is known about the COOH-terminus of MeCP2. 

Recently a WW domain binding region (WDR), encompassing aa 325 to aa 486 of 
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MeCP2 including a proline rich region, has been defined according to its ability to 

associate to the Group II WW domain of several splicing factors (Bedford et al., 1997; 

Buschdorf and Stratling, 2004).  

Human MeCP2 e2 has been described as an intrinsically disordered protein consisting of 

at least six distinct domains including the MBD, TRD and two COOH-terminal domains 

(CTD)-α (aa 310 – aa 354) and CTD-β (aa 355 – aa 486) (Adams et al., 2007). Circular 

dichroism (CD) spectroscopy of recombinant human MeCP2 full length protein revealed 

that its tertiary structure consists of about 5% α-helix and 35% β-strand/turn and is 

approximately 60% unstructured (Adams et al., 2007). The MBD contains 10% α-helix, 

51% β -strand/turn and 38% unstructured regions while 85% of the TRD (aa 198 – aa 

305) are unstructured (Adams et al., 2007). MeCP2 exhibits an unusual low 

sedimentation coefficient, resulting in a high frictional coefficient ratio, which together with 

the CD data give rise to the assumption, that MeCP2 tertiary structure is coil-like and 

similar to that of a partially denatured protein (Adams et al., 2007). Using the FoldIndex 

program (Prilusky et al., 2005) to predict the location of order and disorder within MeCP2, 

MeCP2 was shown to have short regions of order, spread between long stretches of 

internal disorder (Adams et al., 2007). Hydrodynamic analyses of MeCP2 using either 

analytical ultracentrifugation or sucrose gradient centrifugation experiments further 

described MeCP2 as a monomer (Adams et al., 2007; Klose and Bird, 2004). 

MeCP2 consists of four exons coding for two different isoforms due to alternative 

splicing. The two isoforms differ only in some aa at their extreme NH2-terminus 

(Kriaucionis and Bird, 2004). The different part of the NH2-terminus of human MeCP2 e1 

comprises 21 aa encoded by exon 1 and lacks the 9 aa encoded by exon 2, whereas the 

initiator Met for MeCP2 e2 is in exon 2 (Kriaucionis and Bird, 2004; Mnatzakanian et al., 

2004). On the mRNA level, MeCP2 e1 is more abundant in mouse tissues and human 

brain in comparison to the previously described MeCP2 e2 isoform (Kriaucionis and Bird, 

2004). Additionally, MeCP2 e1 protein is much more present in mouse brain extracts 

than MeCP2 e2 (Kriaucionis and Bird, 2004). That both isoforms show the same cellular 

localization in mouse cells (Kriaucionis and Bird, 2004; Kumar et al., 2008) and that 

neither the sequence of the MBD nor TRD are affected by alternative splicing indicate 

that the functions of these two isoforms might overlap to great extent. 
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Table 2: MeCP2 mouse models 

Mouse 
model 

MeCP2 mutation Phenotype (of male mice) Reference 

 
MeCP2 null 

Δ of ex 3 

Δ of ex 3 & 4 

Δ of ex 3 and part of ex 4 

after 5 weeks: tremor, motor dysfunction, breathing 

abnormalities, ataxia, hindlimb clasping, hypoactivity, 

reduced brain weight & neuronal cell size 

Age of death: 10 weeks 

Chen et al., 2001 

Guy et al., 2001 

Pelka et al., 2006 

Nestin-Cre transgene mediated 

CNS specific MeCP2 deletion 

same as MeCP2 null Chen et al., 2001 

Guy et al., 2001 

 

MeCP2 

conditional 
null 

CamK-Cre93 transgene mediated 

MeCP2 deletion in post-mitotic 

neurons 

after 3 months: gain of body weight, ataxia, reduced 

nocturnal activity, reduced brain weight & neuronal cell size 

Normal life spam 

Chen et al., 2001 

 

MeCP2 

truncation 

Truncation at aa 308 

 

 

After 6 weeks: tremor, motor dysfunction, stereotypic 

forepaw movements, hypoactivity, seizures, learning & 

memory deficits. Hyperactelyation of H3 in brain & spleen 

Age of death: 15 months 

Shahbazian et al., 

2002 

Point mutation resulting in R168X 

stop mutation  

 

By 7 weeks: breathing dysfunction, hindlimb clasping and 

atrophy, hypoactivity 

Decreased life span of ~12 weeks 

Lawson-Yuen et 

al., 2007 

Point mutation resulting in A140V 

missense mutation  

 

Cellular abnormalities in brain: increased cell packing 

density, abnormal dendritic branching of neurons 

Life span: > 14 months 

Jentarra et al, 

2010 

Point mutation resulting in S80A 

missense mutation 

Overweight, reduced locomotor activity similar to MeCP2 null 

mice 

Normal life span 

Tao et al., 2009 

 

 

MeCP2 
knock-in 

 

 

 

(PTM 

mutations) 
Point mutation resulting in S421A; 

S424A mutation 

Increased locomotor activity 

Normal life span 

Tao et al., 2009 

Silencing of endogenous mouse 

MeCP2 gene through insertion of a 

lox-Stop cassette into intron 2 

Crossing of MeCP2lox-Stop allele with 

TM–inducible Cre-ER transgene  

at 6 weeks: RTT symptoms comparable to MeCP2 null 

model of Guy et al., 2001 

Age of death: 11 weeks 

- daily TM injections at 4 weeks of age: either rapid death or 

complete rescue of phenotypes  

- weekly TM injections of RTT symptomatic mice: complete 

phenotype rescue  

Guy et al., 2007  

 

 

 

 

MeCP2 

conditional 

rescue 
MeCP2 transgene, controlled by 

CAGGS promotor, with MeCP2 e2 

cDNA downstream of Stop cassette 

flanked by LoxP 

Crossing of MeCP2 transgenic mice 

with MeCP2+/- mice to obtain 

MeCP2 null mice with CAGGS 

MeCP2 transgene 

Brain specific activation of MeCP2 

transgene through: Nestin-Cre; Tau-

Cre; CamK-Cre 93; CamK-Cre 159  

Compared to MeCP2 null mice (Chen et al., 2001), rescued 

mice exhibit:  

a) extended life span by: 

- 8 months with Nestin-Cre and Tau-Cre induced MeCP2 

activation  

- 4 weeks with CamKinaseII induced MeCP2 activation 

b) delayed motor dysfunction and lethargy  

c) normal body and brain weight and no decreased neuron 

size 

Giacometti et al., 

2007 

Transgenic expression of human 

MeCP2 under endogenous human 

promoter 

2-fold overexpression: enhanced motor & contextual 

learning, forepaw clasping at 10-12 weeks 

hypoactivity, aggressiveness, seizures, motor abnormalities, 

enhanced synaptic plasticity at 20 weeks 

Age of death: ~ 1 year 

Collins et al., 

2004 

 

 

 

MeCP2 

transgene 
MeCP2 expression under neuron-

specific promoter of Tau  

Fusion protein of 31 aa of Tau & 

MeCP2.  

WT mice homozygous for transgene: 

small size at weaning, don’t mate. After 9 months: motor 

dysfunction, ataxia, tremors 

Normal lifespan 

Luikenhuis et al., 

2004 

Abbreviations: Δ, deletion; ex, exon; CamK, Calmodulin-kinase II; CNS, central nervous system; aa, amino acid; 

TM, tamoxifen; Cre-ER, fusion of Cre recombinase and modified estrogen receptor  
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Rett Syndrome (RTT, MIM 312750) is a postnatal progressive neurodevelopmental 

disorder predominantly affecting females with an incidence of 1 in 10,000 to 15,000 

female births (Amir et al., 1999; Hagberg, 1985; Hagberg et al., 1983). The disorder is 

accompanied by a wide spectrum of phenotypes. Affected girls seem to develop normally 

until six to 18 months, at which time they enter a developmental arrest that is followed by 

strongly impaired motor skills, stereotypic hand movements, loss of speech, seizures, 

abnormal breathing, microcephaly, ataxia and other symptoms. Besides classic RTT, 

deviating forms have additionally been described displaying some features of the classic 

syndrome but exhibiting differences in severity and disease onset. Though RTT was 

initially reported by Andreas Rett in 1966, it took over 40 years until the discovery, that 

mutations within the MECP2 gene located in Xq28 cause classic RTT (Amir et al., 1999; 

Amir and Zoghbi, 2000). Most of these mutations occur de novo in the paternal germline. 

Due to X chromosome inactivation (XCI), a female bearing a mutation within the MeCP2 

gene is normally mosaic, with half of her cells expressing the wild-type MeCP2 allele and 

the other half expressing the mutant MeCP2 allele (Chahrour and Zoghbi, 2007). RTT 

mutations comprise frequently missense, nonsense and frameshift mutations, although 

deletions encompassing whole exons have also been described. Eight hot-spot missense 

and nonsense mutations account for 70% of all mutations, whereas deletions within the 

COOH-terminus constitute 10%. Although little is known about the COOH-terminus of 

MeCP2, the high frequency of RTT - causing mutations within this domain together with 

the finding that a mouse model with a truncating mutation of MeCP2 at aa 308 displays 

RTT similar phenotypes (Shahbazian et al., 2002; Table 2) underline the importance of 

this domain. MeCP2308/Y mice, expressing MeCP2 without the COOH-terminal part after 

the TRD exhibit normal behavior until six weeks of age. After that, they start to develop 

progressive neurological phenotypes that are milder in the case of heterozygous females 

(Shahbazian et al., 2002). Although truncated MeCP2 seems to be localized normally at 

pericentric heterochromatin, hyperacetylation of histone H3 in brain and spleen indicate 

altered chromatin architecture (Shahbazian et al., 2002).  

MeCP2 null mice were generated either lacking exon 3 (Chen et al., 2001) or both exons 

3 and 4 (Guy et al., 2001) as well as conditional mutant mice that are deficient of MeCP2 

exclusively in the brain (Chen et al., 2001; Guy et al., 2001; Table 2). These mice are 

viable and fertile but start to develop neurological symptoms such as nervousness and 

body trembling at five weeks of age leading to death at approximately ten weeks (Chen 

et al., 2001; Guy et al., 2001). Although null mice and conditional mutants do not exhibit 

severe abnormalities in the brain architecture, they show reduced brain size and brain 

weight together with smaller and more densely packed neuronal cell bodies and nuclei 

(Chen et al., 2001; Guy et al., 2001). The phenotypes in mice, especially smaller brain- 
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and neuronal cell size, are very similar to the condition of RTT patients. The identical 

phenotypes of a brain specific MeCP2 deletion and a MeCP2 null mouse suggest that the 

phenotype is mostly due to deficiency of MeCP2 in the brain rather than in peripheral 

tissues. Further, deletion of MeCP2 in postnatal neurons results in similar but less severe 

phenotypes at a later age of the mice, suggesting the importance of MeCP2 in mature 

neurons (Chen et al., 2001). Besides MeCP2 loss of function, also gain in MeCP2 

dosage are the cause for similar neurological phenotypes as observed on transgenic 

mice expressing MeCP2 at increased levels compared to the wild type (Collins et al., 

2004; Luikenhuis et al., 2004; Table 2). Interestingly, MeCP2 null mice crossed with 

MeCP2 transgenic mice are fertile, do not display RTT like behavior and are 

indistinguishable from wild type (wt) mice. These observations demonstrate that restoring 

normal MeCP2 protein level rescues the severe phenotype of both MeCP2 null animals 

and transgenic mice (Collins et al., 2004; Luikenhuis et al., 2004). 

2.3 Biological functions of MeCP2  

2.3.1 Binding of MeCP2 to DNA in vitro 

As already mentioned, MeCP2 has been initially described to specifically bind one 

symmetrically methylated CpG pair via its MBD (Lewis et al., 1992). MeCP2 further 

requires four or more adenine/ thymine (A/T) base pairs adjacent to the methylated CpG 

for strong binding in vitro (Klose et al., 2005). A/T runs have also been detected at 

MeCP2 target sequences in vivo (Klose et al., 2005). Strikingly, an AT hook domain, 

normally leading to binding of a protein to the minor groove of A/T rich DNA (Lewis et al., 

1992; Nan et al., 1993), resides within MeCP2 (aa 168 - aa 205) but seems to be 

dispensable for MeCP2 specificity for A/T runs (Klose et al., 2005). In contrast, selective 

binding to mCpGs followed by an A/T run relies on MeCP2 MBD (Klose et al., 2005).  

In addition, recombinant MeCP2 has been shown to be capable of binding both 

unmethylated and methylated DNA (Adams et al., 2007; Georgel et al., 2003; Ishibashi et 

al., 2008; Nikitina et al., 2007b) with a 3-fold higher preference for its methylated 

substrate (Fraga et al., 2003). MeCP2 MBD as well as TRD have been each described 

as independent binding domains for unmethylated DNA in vitro (Adams et al., 2007). 

Under low ionic strength, MeCP2 binds to long, linear unmethylated DNA (Georgel et al., 

2003), while in the presence of an unmethylated competitor, MeCP2 induced methylation 

specific binding is promoted (Ishibashi et al., 2008; Nikitina et al., 2007b). It is striking 

that under the same conditions, the RTT mutant R106W neither binds methylated nor 

unmethylated DNA (Nikitina et al., 2007b). In contrast, the COOH-terminal truncation 

mutants R294X and H370X behave similar to the wt protein, demonstrating that the 



INTRODUCTION 

 20 

missing COOH-terminal regions are not necessary for binding to DNA (Nikitina et al., 

2007b). Visualization of the MeCP2-DNA complexes of wt and truncation mutants by 

electron microscopy (EM) reveal that MeCP2 is able to cross-link both unmethylated as 

well as methylated DNA fibres into complex structures, including loops and juxtapositions 

of DNA (Georgel et al., 2003; Nikitina et al., 2007b).  

2.3.2 Binding of MeCP2 to chromatin in vitro 

Besides DNA, recombinant MeCP2 binds both unmethylated and methylated DNA 

packed into chromatin with slightly enhanced binding in the case of methylated poly-

nucleosomes (Nikitina et al., 2007b). Depending on the molar ratio between MeCP2 and 

nucleosome, MeCP2 induces the formation of distinct structural changes of 12-mer 

polynucleosome arrays under low salt as well as physiological ionic conditions (Georgel 

et al., 2003; Nikitina et al., 2007b). At molar ratios of < 1 MeCP2 per nucleosome, binding 

of MeCP2 within one extended 12-mer chromatin fibre results in local compaction of 

several nucleosomes. At a ratio around 1, the whole array gets transformed into a highly 

compacted, ellipsoidal structure that sediments as a 60S particle during analytical 

ultracentrifugation. At a ratio of > 1, binding of MeCP2 causes assembly of independent 

60S particles into oligomeric suprastructures, interpreted as a novel protein induced 

chromatin tertiary structure (Georgel et al., 2003). Compared to MeCP2, linker histones 

do not exhibit such a strong compaction ability, as they cause under the same low salt 

conditions more or less decondensed open zigzag confirmations of nucleosomes and 

linker DNA (Bednar et al., 1998). Of note, MeCP2 chromatin compacting domain is 

described to be distinct from the MBD in vitro, as the truncation mutant R168X lacking 

the domains behind the MBD is impaired in forming higher order chromatin structures 

(Georgel et al., 2003). Recombinant MeCP2 was illustrated to bind to methylated 

nucleosomes close to the linker DNA entry-exit site (Ishibashi et al., 2008; Nikitina et al., 

2007a) and the interaction between MeCP2 and chromatin results in the protection from 

micrococcal nuclease (Mnase) digestion of a 11bp linker DNA segment (Nikitina et al., 

2007a). Whereas MeCP2 protects one linker, H1 leads to a protection of around 20 bp of 

DNA covering two linker DNA segments in a symmetrical manner (Nikitina et al., 2007a).  

2.3.3 MeCP2 DNA binding and effect on chromatin architecture in vivo  

The observation that MeCP2 shows also affinity for unmethylated DNA in vitro (2.3.1 and 

2.3.2) raises the question which role methylation of DNA plays concerning MeCP2 DNA 

recognition in vivo. As already described, MeCP2 is predominantly localized at pericentric 

heterochromatic regions in mouse cells, that are highly enriched in strongly methylated 

major satellite repeats and tend to form clusters known as chromocenters (Hsu et al., 
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1971). MeCP2 localization to heterochromatin in vivo requires a functional MBD (Nan et 

al., 1996) and is impaired in mutant cells exhibiting nearly no level of genomic mCpGs 

(Jorgensen et al., 2004; Nan et al., 2007; Nan et al., 1996). High throughput DNA 

sequencing of total MeCP2 bound chromatin of mature mouse brain further 

demonstrated MeCP2 global distribution and its nearly precise tracking of mCpG density 

genome wide (Skene et al., 2010). Of note, MeCP2 significant enrichment across 

chromatin mirrowing mCpG density seems to result from its high abundance in mature 

mouse brain (16x106 molecules per neuronal nucleus), as MeCP2 binding profile in wt 

mouse liver with much lower level of MeCP2 (0.5x106 molecules per liver nucleus) 

resembles the one of MeCP2 null brain (Skene et al., 2010).  

During myogenic differentiation of mouse myoblasts a severe increase in chromatin 

clustering has been observed, resulting in decreased number of heterochromatic foci 

(Brero et al., 2005). In parallel, an increase in methylated CpGs as well as augmented 

expression of MeCP2 and MBD2 takes place, suggesting a direct role of these proteins in 

heterochromatin reorganization (Brero et al., 2005). In the absence of differentiation, 

overexpression of MeCP2 in mouse cells induces aggregation of pericentric 

heterochromatin in a dose dependent manner with the clustering ability mostly based on 

the MBD (Brero et al., 2005). Neither HDAC containing complexes recruited via MeCP2 

CoRID nor the H3K9 methylation pathway seem to be essential for MeCP2 mediated 

reorganization of heterochromatin (Brero et al., 2005). Of note, a MeCP2 mutant, lacking 

the NH2-terminus and the MBD, still accumulates at heterochromatin albeit at lower level 

in comparison to a construct including the MBD, indicating other modes of MeCP2 

heterochromatin association (Brero et al., 2005). MeCP2 impact on chromatin 

architecture in vivo is supported by the findings that isolated neurons from MeCP2 null 

mouse brain as well as nuclear extracts from the cortex of MeCP2308/Y RTT mutant mice 

display increased level of histone H3 acetylation (H3Ac) compared to the wt (Shahbazian 

et al., 2002; Skene et al., 2010). In neurons of mature wt mouse brain, the amount of 

MeCP2 has been estimated to be half of the one of nucleosomes (Skene et al., 2010). 

Whereas in most cell types H1 is present at one molecule per nucleosome, H1 

occupancy in wt neurons resembles the one of MeCP2 with one molecule every two 

nucleosomes (Allan et al., 1984; Woodcock et al., 2006). Intriguingly, an approximately 

two-fold upregulation of H1 is found in MeCP2 null neurons, indicating a potential 

competition for binding to methylated chromatin between MeCP2 and the linker histone in 

the wt state (Ishibashi et al., 2008; Skene et al., 2010). 
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2.3.4 Interacting partners of MeCP2  

MeCP2 binding to methylated DNA and chromatin suggests roles in transcriptional 

repression as well as modulation of chromatin architecture. In addition to binding 

methylated DNA and chromatin, four major classes of MeCP2 interacting partners 

involved in transcriptional regulation, RNA splicing, DNA methylation and post-

translational modifications (PTM) have been described (Figure 4). 

Besides the deacetylase activity containing Sin3A complex, MeCP2 has been found 

associated to the co-repressors c-Ski, N-CoR (Kokura et al., 2001) and CoREST (You et 

al., 2001; Lunyak et al., 2002), to a histone methyltransferase activity specific for H3K9 

(Fuks et al., 2003; Lunyak et al., 2002) and to the ATPase dependent chromatin 

remodelling proteins Brahma (Brm) and ATRX (Harikrishnan et al., 2005; Kernohan et al., 

2010; Nan et al., 2007). These interactions reinforce MeCP2 mediated transcription 

silencing. 

 

 
Figure 4. Summary of MeCP2 interacting partners 
MeCP2 interacting partners and their mapped interacting domains are illustrated. Boxes in light grey indicate 
direct protein-protein interactions, boxes in dark grey implicate physical associations. Phosphorylation of the 
sites Ser80, Ser421 and Ser424 has been indicated in the regulation of MeCP2 chromatin association. 
Numbers represent aa coordinates; MT stands for methyltransferase. 
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A recent study revealed the transcriptional activator CREB1 as a new interaction partner 

of MeCP2 (Chahrour et al., 2008). Sequential ChIP experiments demonstrated further 

that MeCP2 and CREB1 are simultaneously associated with a promoter of an activated 

target gene, whereas CREB1 was bound in the case of a repressed target (Chahrour et 

al., 2008). This contradictory link of MeCP2 to gene activation is supported by the finding 

that the majority of promoters occupied by MeCP2 (63%) are transcriptionally active and 

that most of the highly methylated promoters are not bound by MeCP2 (Yasui et al., 

2007).  

In addition, MeCP2 has been linked to RNA splicing. MeCP2 binds to the Group II 

domains of the splicing factors FBP11 (Bedford et al., 1997; Buschdorf and Stratling, 

2004) and HYPC (Buschdorf and Stratling, 2004). Y box binding protein 1 (YB-1), a 

component of messenger ribonucleoprotein particles (mRNPs), associates with MeCP2 

in a RNA depending manner (Young et al., 2005). MeCP2 has been further shown to be 

involved in alternative splicing of reporter minigenes (Young et al., 2005). Microarray 

analysis of cerebral cortex mRNA isolated from wt and RTT mutant mice MeCP2308/Y 

(Moretti et al., 2005; Shahbazian et al., 2002; 2.2.6) revealed abnormal alternative 

splicing patterns in the mutant mouse brain (Young et al., 2005). These findings together 

with the observation that MeCP2 forms complexes with mRNA as well as siRNA (Jeffery 

and Nakielny, 2004) underline its potential role in RNA splicing.  

MeCP2 was shown to form an association with Dnmt1 that excludes HDAC1 and does 

not seem to be repressive (Kimura and Shiota, 2003). On the contrary, MeCP2 binds 

hemimethylated DNA and constitutes together with Dnmt1 a complex with 

methyltransferase activity to hemimethylated DNA (Kimura and Shiota, 2003). These 

data suggest a role of MeCP2 in Dnmt1 mediated maintenance methylation. 

MeCP2 has been recently described to associate to cyclin-dependent kinase-like 5 

(CDKL5), a putative Ser/Thr kinase, capable to phosphorylate itself as well as MeCP2 in 

vitro (Mari et al., 2005). These findings together with the observation, that mutations 

within the CDKL5 gene have been associated with a RTT like phenotype (Mari et al., 

2005; Scala et al., 2005) suggest that CDKL5 and MeCP2 may be involved in the same 

molecular pathway. Of note, the capability of CDKL5 to modify MeCP2 e2 in vitro has 

been questioned (Lin et al., 2005).  

In addition, MeCP2 directly associates with homeodomain–interacting protein kinase 2 

(HIPK2), involved in regulation of cell growth and apoptosis (Calzado et al., 2007; 

Rinaldo et al., 2007). MeCP2 further gets specifically phosphorylated by HIPK2 at Ser80 

in vivo and in vitro (Bracaglia et al., 2009) and has been reported to promote HIPK2 

mediated apoptosis.  For this, a functional MBD as well as phosphorylation of Ser80 of 

MeCP2 seem to be necessary (Bracaglia et al., 2009). 
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2.3.5 Post-translational modifications of MeCP2 modulate its functions 

Recently post-translational modifications have been described for MeCP2 that seem to 

exert balancing effects in the modulation of its function and might embody a key 

mechanism by which MeCP2 regulates gene expression. 

Depolarization of cultured neurons (with KCl) results in reduced association of MeCP2 to 

the promoter of the Brain derived neutrophilic factor (Bdnf) with increased transcription of 

Bdnf as a consequence (Chen et al., 2003; Martinowich et al., 2003). Activity-dependent 

phosphorylation of Ser421 has been proposed as the driving force for MeCP2 

disassociation from the Bdnf promoter (Zhou et al., 2006), with the calcium/calmodulin-

dependent protein kinase IV (CaMK IV) being important to mediate Ser421 

phosphorylation in vivo (Tao et al., 2009). Phosphorylation of Ser421 was additionally 

shown to have impact on MeCP2 regulated neuronal spine maturation and dendritic 

growth (Zhou et al., 2006). In contrast to Ser421, Ser80 of MeCP2 has been observed to 

be phosphorylated in resting neurons and dephosphorylated upon neuronal activity (Tao 

et al., 2009). ChIP experiments revealed that phosphorylation of Ser80 is critical for 

maintaining MeCP2 association to chromatin (Tao et al., 2009). This opposing regulation 

of phosphorylation of Ser80 and Ser421 upon neuronal activity suggests that 

phosphorylation of Ser80 might be important for MeCP2 function in resting neurons, 

whereas phosphorylation of Ser241 seems to be indispensable for MeCP2 in depolarized 

neurons. Intriguingly, MeCP2S80A knock-in mice with a Ser to Ala mutation show 

decreased locomotor activity, similar to the locomotor activity of MeCP2 minus mice, 

whereas MeCP2S421A/S424A mice had increased locomotor activity relative to the wt (Tao et 

al., 2009).  

Phosphorylation of MeCP2 was further shown to serve as a nuclear export signal for the 

intracellular localization of MeCP2 during neuronal cell differentiation (Miyake and Nagai, 

2007). While MeCP2 is transferred from the cytosol into the nucleus during neuronal 

maturation, its phosporylated form is exclusively present in the cytosolic fraction (Miyake 

and Nagai, 2007).   
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2.3.6 Poly(ADP-ribose)polymerase-1 

Poly(ADP-ribose)polymerase-1 (PARP-1) is the founder of the superfamily of PARP 

proteins encompassing up to 17 members. PARP-1 comprises three major domains, the 

NH2-terminal DNA binding domain (DBD), the automodification domain and the COOH-

terminal catalytic domain. The DBD has been proposed to mediate the stimulation of 

PARP catalytic activity in response to DNA breaks via two zinc fingers (Cys-Cys-His-Cys 

motifs) (Ikejima et al., 1990) and recruits PARP to DNA through two helix-turn-helix 

motifs (Buki and Kun, 1988; Sastry et al., 1989). The automodification domain contains 

the BRCA1 C-terminus (BRCT) domain, a protein-protein interacting motif constituting 

PARP-1 major protein interface with numerous nuclear partners and itself (Ame et al., 

2004). This domain also contains many of the acceptor residues of ADP-ribose chains 

involved in PARP-1 automodification (Duriez et al., 1997), which results from the 

stimulation of its catalytic activity upon binding to DNA strand breaks. The catalytic 

domain carries the ADP-ribose transferase activity catalyzing initiation, elongation and 

branching of ADP-ribose polymers (Simonin et al., 1993). It also contains those amino 

acids known as the ‘PARP signature’, which are the most conserved residues within the 

PARP family (de Murcia and Menissier de Murcia, 1994; Ruf et al., 1996) and form a β-α-

loop-β-α structure responsible for NAD+ binding (Ruf et al., 1998). PARP-1 uses NAD+ to 

catalyze the covalent attachment of ADP-ribose units to Glu and Asp of a target protein 

and in the case of automodification to itself. This post-translational modification, termed 

poly(ADP-ribosyl)ation, leads to an attached polymer consisting of a linear or 

multibranched polyanion, that can also be bound in a noncovalent manner by proteins 

bearing a poly(ADP-ribose) (PAR) binding motif (Pleschke et al., 2000). Nuclear proteins, 

mostly involved in establishing and mediating chromatin architecture such as histones, 

high mobility group proteins, topoisomerases and chromatin remodelling complexes are 

the predominant targets for the covalent addition of poly(ADP-ribose), with histone H1, 

H2A and H2B as the major poly(ADP-ribosyl)ated chromatin proteins (Rouleau et al., 

2004). The restoration of poly(ADP-ribosyl)ated proteins to their native unmodified state 

is mediated by the poly(ADP-ribose)glycohydrolase PARG (Alvarez-Gonzalez and 

Althaus, 1989).  

PARP-1 role in DNA damage recognition, signalling and regulation of the chromatin 

structure upon damage either through physical interaction or poly(ADP-ribosyl)ation of 

proteins has been extensively studied. Relaxation of chromatin at DNA breaks induced 

by poly(APD-ribosyl)ation of histone tails or their non-covalent binding to automodified 

PARP-1 has been proposed to facilitate the access of the repair machinery to lesions 

(Ogata et al., 1980a; Ogata et al., 1980b; Poirier et al., 1982). PARP-1 knockout models 
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as well as inhibition assays of PARP catalytic activity revealed its importance as a 

survival factor involved in the surveillance and maintenance of genome integrity (de 

Murcia et al., 1997; Masutani et al., 1999; Wang et al., 1997). Further, they indicated 

PARP-1 involvement in various inflammation processes (Shall and de Murcia, 2000). 

Recently, PARP1 has been implicated in the regulation of chromatin structure and gene 

expression under physiological conditions (Kraus and Lis, 2003; Quenet et al., 2009; 

Tulin et al., 2002). It has been described as a structural component of chromatin inducing 

the formation of NAD+ reversible compact chromatin structures, which are 

transcriptionally repressed but distinct from H1 higher condensation states in vivo (Kim et 

al., 2004; Wacker et al., 2007). Biochemical studies combined with atomic force 

microscopy identified both the DBD and the catalytic domain of PARP-1 as cooperating 

to promote chromatin compaction and transcriptional repression (Wacker et al., 2007).  
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3 Questions and aims of this work 

Based on recent findings of our group regarding MeCP2 role in heterochromatin 

organization in vivo, this work addresses the regulation of this process and its 

misregulation in disease.  

 

The following questions were raised: 
 

i) Is MeCP2 mediated heterochromatin clustering affected in Rett syndrome (Chapter 

5.1)? 
 

ii) Is MeCP2 induced heterochromatin remodeling regulated by post-translational 

modifications and do other methyl-CpG binding domain (MBD) family members get post-

translationally modified (Chapter 5.1 and 5.2)? 

   

iii) Are interactions of MeCP2 with other proteins as well as homo- and hetero-

associations among the MBD family involved in chromatin organization (Chapter 5.1, 5.2 

and Appendix)? 
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4 Methods and Materials 

4.1 Molecular biology methods 

4.1.1 Construction of expression plasmids  

All plasmids constructs generated for this study were made employing standard cloning 

procedures and transformation of Escherichia coli (E. coli) (Sambrook and Russel, 2001). 

Using the alkaline lysis method (Birnboim and Doly, 1979), plasmid DNA was isolated 

from transformed E.coli and verified by sequencing or restriction enzyme analysis.  

Mammalian expression constructs coding for GFP- or YFP-tagged rat MeCP2 full length 

(MeCP2G) and deletions (MeCP2Y.3) were previously described (Brero et al., 2005). The 

mammalian expression constructs MeCP2G.9 and MeCP2G.8 were generated from the 

above plasmids by PCR amplification using the primers listed in Table 3. Deletion 

constructs MeCP2G.11 - 15 designed with flanking XhoI and BamHI sites according to 

the sequence of MeCP2G were custom synthesized into pPCR Script (Sloning Bio 

Technology) and subcloned into the XhoI and BamHI sites of MeCP2G.6 (Agarwal et al., 

2007). 

MeCP2G.16 - 18 as well as point mutations within MeCP2G.11 and MeCP2G.14 were 

generated using site directed mutagenesis (Table 3) as described in detail before 

(Makarova et al., 2000; Wang and Malcolm, 1999). Expression vectors encoding GFP-

tagged fusions of human wt or mutant MeCP2 cDNA cloned into the pEGFP-C1 vector as 

well as the expression constructs encoding GFP-fused mouse MBD proteins were 

described before (Kudo et al., 2003; Hendrich and Bird, 1998).  

For expression in Sf9 insect cells the Bac-to-Bac Baculovirus Expression System 

(Invitrogen) was used and the above mentioned rat MeCP2 constructs were cloned into 

pFastBac1 either by direct restriction enzyme digestion and ligation subcloning or using 

first PCR amplification (Table 3). Sf9 expression constructs encoding mouse GFP-fused 

MBDs were generated from the above plasmids performing PCR amplification employing 

the primers listed in Table 3. To express PARP-1 with a NH2-terminal strep-tag, a 

sequence encoding the strep-tactin target peptide strep tag III was synthesized into 

pPCR-Script-Amp (Entelechon) flanked by BamHI and NotI sites and subcloned into 

pFastBac1 using the same sites. Human PARP-1 fl and deletion constructs were 

generated by PCR amplification using primers with NotI and XhoI sites (Table 3) and 

subcloned in frame with the strep-tag in the pFastBac1 vector. 
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Table 3: Oligonucleotides used for generation of MBD and PARP-1 constructs 

Plasmid Oligonucleotide sequence Expression in 
pFB-st-PARP-1 ss ataagaatgcggccgcagccatggcggagtcttcggataa 

as ccgctcgagttaccacagggaggtcttaaaattgaatt 
pFB-st-PARP-1-ABC ss ataagaatgcggccgcagccatggcggagtcttcggataa 

as ccgctcgagttaggagggcggaggcgtggccgccac 
pFB-st-PARP-1-D ss ataagaatgcggccgcagccatgacagcctcggctcctgctgctgtg 

as ccgctcgagttatttcattctcttttcagatttgtt 
pFB-st-PARP-1-EF ss ataagaatgcggccgcagccatgttaactcttaaaggaggagca 

as ccgctcgagttaccacagggaggtcttaaaattg 
pFB-eGFP ss ataagaatgcggccgcgccatggtgagcaagggcga 

as ctagtctagattacttgtacagctcgtccatgccga 
pFB-MeCP2G.9 ss cgcggatccgccatggggagcccttccaggagagaacag 

as ataagaatgcggccgctccgggtcttgcgcttcttgat 
pFB-MeCP2G.8 ss ggaagatctgccatggaaaccgtcagcattgaggtcaag 

as ataagaatgcggccgcttacttgtacagctcgtccatgcc 
pFB-mMBD1aG ss acgcgtcgacgccatggctgagtcctggcaggact  

as atagtttagcggccgcacaaaacttcttctttcaa 
pFB-mMBD2aG ss acgcgtcgacgccatgcgcgcgcacccggggggag 

as atagtttagcggccgcacgcctcatctccactgtc 
pFB-mMBD3G ss acgcgtcgacgccatggagcggaagaggtgggagt 

as atagtttagcggccgcacactcgctctggctccgg 
pFB-mMBD4G ss acgcgtcgacgccatggagagcccaaaccttgggg 

as atagtttagcggccgcaagatagacttaatttttc 
pFB-mMBD2aG.1 ss acgcgtcgacgccatgcgcgcgcacccgggggga 

as atagtttagcggccgcacctcttcccgctctccgt 
pFB-mMBD2aG.2 ss acgcgtcgacgccatggactgcccggccctcccc 

as atagtttagcggccgcacgcctcatctccatcgtc 

 
 
 
 
 
 
 
 
 
 
 

Sf9 cells 
 

pMeCP2G.9 ss ccgctcgaggccatggggagcccttccaggagagaaca 
as cgcggatccttccgggtcttgcgcttcttgatggggagcac 

pMeCP2G.8 ss ggaagatctgccatggaaaccgtcagcattgaggtcaag 
as ataagaatgcggccgcttacttgtacagctcgtccatgcc 

pMeCP2G.16 ss gattttgacttcactgtaactgggagagttcaagtgaaaagg 
as cttctccaggacccttttcacttgaactctcccagttacagt 

pMeCP2G.17 ss gagggaggtggggctaccacatctgcggtggcagctgctgct 
as tttggcctctgcagcagcagctgccaccgcagatgtggtagc 

pMeCP2G.11_E205A ss agaccaaaggcagcagcatcagcaggtaaggatccaccggtcgcc 
as ggcgaccggtggatccttacctgctgatgctgctgcctttggtct 

pMeCP2G.11_E169A ss atggggagcccttccaggagagctcagaaaccacctaagaagccc 
aa gggcttcttaggtggtttctgagctctcctggaagggctccccat 

pMeCP2G.11_K175A_
K177A_K180A 

ss ggagagaacagaaaccacctaaggcgcccgcatctcccgcagctccaggaactggc 
as gccagttcctggagctgcgggagatgcgggcgccttaggtggtttctgttctctcc 

pMeCP2G.11_K175A ss gagaacagaaaccacctaaggcgcccaaatctcccaaagctcc 
as ggagctttgggagatttgggcgccttaggtggtttctgttctc 

pMeCP2G.11_K177A ss ccacctaagaagcccgcatctcccaaagctccaggaactgg 
as ccagttcctggagctttgggagatgcgggcttcttaggtgg 

pMeCP2G.11_K180A ss cctaagaagcccaaatctcccgcagctccaggaactggc 
as gccagttcctggagctgcgggagatttgggcttcttagg 

pMeCP2G.11_K200A ss gcactgggagaccagcggcagcagcatcagaagg 
as ccttctgatgctgctgccgctggtctcccagtgc 

pMeCP2G.14_E258A_
D260A 

ss agaaagcgaaaagctgcagctgccccccaggccattcctaagaaa 
as tttcttaggaatggcctggggggcagctgcagcttttcgctttct 

pMeCP2G.14_D260A ss agaaagcgaaaagctgaagctgccccccaggccattcctaagaaa 
as tttcttaggaatggcctggggggcagcttcagcttttcgctttct 

pMeCP2G.14_E258A ss cctggcagaaagcgaaaagctgcagctgacccccaggccattcct 
as aggaatggcctgggggtcagctgcagcttttcgctttctgccagg 

pMeCP2G.14_K267A_
K271A 

ss cccaggccattcctaaggcacggggtagagcgcctgggagtgtgaaggatcc 
as ggatccttcacactcccaggcgctctaccccgtgccttaggaatggcctggg 

pMeCP2G.14_K254A ss gatcaaacgccctggcagagcgcgaaaagctgaagctg 
aa cagcttcagcttttcgcgctctgccagggcgtttgatc 

pMeCP2G.14_K267A ss ccaggccattcctaaggcacggggtagaaagcctgg 
as ccaggctttctaccccgtgccttaggaatggcctgg 

pMeCP2G.14_K271A ss tcctaagaaacggggtagagcgcctgggagtgtgaagg 
as ccttcacactcccaggcgctctaccccgtttcttagga 

 
 
 
 
 
 
 

 

 
 

mammalian cells 

The letters in bold highlight the amino acids substituted by site directed mutagenesis. 

4.2 Cell biology methods 

4.2.1 Cell culture and transfection 

Pmi28 diploid mouse myoblasts were cultured as described in (Kaufmann et al., 1999). 

Cells were grown to 70-80 % confluency on 16 mm glass cover slips in 6 well plates and 

transfected using TransFectin (BioRad). For transfection, 3 µg of plasmid DNA together 

with 3 µl transfectin were incubated in serum free medium for 20 min at RT and added to 
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the cells. After incubation at 37°C for four hours, the medium was changed and the 

culture was incubated at 37°C overnight. For PARP inhibition assays cells were treated 

with 10 mM 3AB (Alexis) and 400 µM NU1028 (Sigma) immediately after media change 

for 12-15 hours. Within this time, medium plus inhibitors were refreshed every three 

hours. Transfected cells were fixed with 3.7 % formaldehyde in 1 x PBS for 10 min. In the 

PARP inhibition experiment 10 mM 3AB and 400 µM NU1028 were also added to the 

solutions during the fixation. All washing steps after fixation were performed with 1xPBS 

plus 0.01 % Tween-20. Nuclear DNA was counterstained using TOPRO-3 (Invitrogen), 

Hoechst 33258 or DAPI (4’ -6’-diamidino-2-phenylindol) and samples were mounted in 

vectashield (Vector Laboratories) or moviol. 

HEK 293-EBNA cells (Invitrogen) were cultured and transfected as described (Agarwal et 

al., 2007).  

Mouse embryonic fibroblast (MEF) cells were cultured in Dulbecco’s modified Eagle’s 

medium (DMEM; 1 g/l glucose; GIBCO) supplemented with 10 % fetal bovine serum, 

transfected with TransFectin according to the manufacturer’s instructions and fixed with 

formaldehyde. 

The human foreskin fibroblast (Bj-hTERT) cell line (ATCC BJ-5ta) was derived by 

transfection of human foreskin fibroblasts with the pGRN145 hTERT expression plasmid 

and selection of stable immortalized cell clones (Bodnar et al., 1998). It is a diploid 

human cell line with a modal chromosome number of 46 that occurred in 90 % of the 

cells counted and karyotypically normal X and Y sex chromosomes. Human Bj-hTERT 

fibroblasts were cultured in DMEM medium containing 10 % FCS, glutamine and 

gentamicin. Cells were transfected using the Amaxa nucleofactor (Amaxa AG) or 

TransFectin (BioRad) following the manufacturer’s protocols.  

Sf9 insect cells were maintained in EX-CELL 420 Insect Serum Free (SAFC) medium 

supplemented with 10 % fetal bovine serum shaking at 100 rpm and 28°C. Transfection 

of Sf9 cells to produce recombinant baculovirus, was performed using Cellfectin 

(Invitrogen) according to the manufacturer’s instructions.  

4.2.2 ImmunoFISH 

For fluorescence in situ hybridization, the following DNA probes were used: repetitive 

specific human DNA probe pUC 1.77 (Cooke and Hindley, 1979) for chromosome 1, 

alphoid DNA probe pMR9A for the centromeric region 9q12 of chromosome 9 and 

alphoid DNA probe pHUR-195 for the centromeric region 16q11.2 of chromosome 16. 

These DNA probes were labeled by standard nick translation with Cy5-dUTP 

(Amersham). The labeled DNA was further purified by ethanol-precipitation and the pellet 

resuspended in hybridization solution (70 % formamide, 2 x SSC, 10 % dextran sulfate, 
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pH 7.0). The probes were denatured at 80 °C for 5 minutes.  

For immunoFISH cells were fixed with 4 % paraformaldehyde in PBS for 10 minutes and 

permeabilized with 0.25 % Triton X-100 in PBS for additional 10 minutes. Primary (rabbit 

polyclonal anti-MeCP2) and secondary (anti-rabbit IgG Alexa Fluor 568; Molecular 

probes) antibodies were diluted in PBS with 0.2 % fish skin gelatin and incubated 

sequentially for one hour each at room temperature. After immunostaining, the cells are 

post-fixed with 4 % paraformaldehyde for 60 minutes followed by post-permeabilization 

with 0.5 % Triton X-100 in PBS for 10 minutes, 0.1 M HCl for 10 minutes and 20 % 

glycerol for 4 minutes. Probes were added to the cells and sealed with rubber cement to 

decrease evaporation of the probe over night. They were then denatured simultaneously 

at 75°C for 5 minutes and hybridized over night at 37°C. Non-hybridized probe was 

washed off using 50 % formamide in SSC at 45°C three times followed by two washes 

with 2 x SSC. DNA was counterstained with DAPI and the cells were mounted using 

vectashield (Vector Laboratories).  

MeCP2 expressing cells were identified by the positive staining with the anti-MeCP2 

antibody and complete Z stacks of images (voxel size: 80 x 80 x 200 nm) of the DAPI 

(excited at 405 nm) and Cy5 (excited at 633 nm) signals for whole DNA and 

chromosomes 1, 9 and 16 pericentric heterochromatin regions, respectively, were 

acquired on a Leica SP5 laser scanning microscope using a 63 x/1.4NA oil objective. 

FISH signals were counted manually through these stacks.  

4.2.3 Microscopy, image analysis and statistical evaluation 

Chromocenter counting: Fixed cells were examined on a Zeiss Axiovert 200 

epifluorescence microscope. Image stacks (0.5 µm Z interval) were acquired with a 63 x 

Plan-Apochromatic NA 1.4 or 40 x Plan-Neofluar NA 1.3 oil immersion phase contrast 

objectives and a PCO Sensicam QE cooled CCD camera. Images were processed with 

Adobe Photoshop and ImageJ version 1.38x (http://rsb.info.nih.gov/ij). 3D rendering of 

image stacks was performed using AMIRA software.  

The acquired image stacks were analyzed using a semi-automated approach. For this we 

developed a custom application using the priithon platform. Image stacks were treated as 

three-dimensional volumes and segmented displaying an optical section view and a 

maximum intensity Z-projection. Nuclei and chromocenters were automatically identified 

by intensity based thresholding and implementation of the water algorithm (Harmon and 

Sedat, 2005). Identified nuclei and chromocenters were outlined and numbered and the 

performance of the algorithm was controlled by visual inspection using optical section 

views and maximum intensity Z - projections. Parameters were adjusted to account for 
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different sample brightness and chromocenter density. All intermediate images, 

parameters and counting results were automatically saved.  

Chromocenter binding: Confocal Z stacks (voxel size: 0.05 x 0.05 x 0.3 µm) of 10 cells 

expressing similar levels of the GFP fusion protein were collected on either Zeiss 

LSM510Meta or Leica SP5 confocal microscopes, using 63 x/1.4NA oil objective and 405 

nm DPSS (for Hoechst 33258, DAPI), 488 nm argon (for GFP) and 633 nm He - Ne 

(TOPRO-3) laser excitation. Care was taken in selecting the imaging conditions to avoid 

under and over exposed pixels, while keeping the imaging conditions constant. The 

heterochromatic foci were identified by staining with TOPRO-3, Hoechst 33258 or DAPI. 

Image analysis was done using ImageJ. The average mean intensity at the 

chromocenters versus the nucleoplasm was assessed by selecting four regions of equal 

size in the two compartments, calculating the mean fluorescent intensity in each 

compartment and then taking a ratio between both.  

In the case of chromocenter counting assays, cumulative frequencies of chromocenter 

numbers were tested for statistical significance utilizing the Kolmogoroff-Smirnoff test 

(applied in Figure 6 and 12).  

For chromocenter binding assays, statistical significance was checked through t-test 

(applied in Figure 5C).  

For counting of FISH chromosome signals, the t-test was performed for statistical 

analysis (applied in Figure 7).  

4.3 Biochemical methods 

4.3.1 In vivo protein interaction assays 

HEK 293-EBNA or MEF cells, transfected with expression plasmids as indicated, were 

pelleted after washing with 1 x PBS and lysis was performed for 10 min on ice. For 

interaction studies (Figure 9A) 300 µl buffer A (20 mM Tris-HCl, pH 7.5; 150 mM NaCl; 

0.5 mM EDTA; 2 mM PMSF; 0.5 % NP40) was used. For disruption of protein-DNA 

associations to obtain high amount of protein (Figure 10A, D and E; Figure 11; Figure 14) 

buffer B (25 mM Tris-HCl, pH 8.0; 1 M NaCl; 50 mM glucose; 10 mM EDTA; 0.2 % 

Tween-20; 0.2 % NP40) was used. All buffers were supplemented with protease 

inhibitors (Complete Mini; Roche).  

Mouse brain tissue (6 grams; Figure 10B) was first fractionated to obtain pure nuclei as 

described in detail before (Prusov and Zatsepina, 2002). The isolated nuclei were 

incubated in buffer B for 15 min on ice. 500 µl of the extract were diluted 1:4 with buffer C 

(25 mM Tris-HCl, pH 8.0; 50 mM glucose; 10 mM EDTA; 0.2 % Tween-20; 0.2 % NP40), 

to obtain a NaCl concentration of 250 mM. After centrifugation (20,000 x g, 15 min, 4 °C) 
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rabbit polyclonal anti-MeCP2 antibody (40 µg) or chromatographically purified rabbit IgG 

(40 µg; Organon Teknika) were added to the supernatant and incubated for 1.5 hours 

rotating at 4 °C. To pull down the immunocomplexes, 50 µl protein A agarose beads 

(Fast Flow; Upstate), equilibrated with the corresponding buffer, were added and 

incubated for one hour.  

For immunoprecipitation using the GFP binder (ChromoTek; Rothbauer et al., 2008), 50 

µl protein A agarose beads were incubated with 100 µg GFP binder for one hour, then 

added to the extract and again incubated for one hour at 4 °C rotating. After a short spin, 

the supernatant was removed and the beads were washed three times with 500 µl of the 

same buffer used during cell lysis. The beads were resuspended in 1x SDS-containing 

sample buffer, boiled for 10 min at 95 °C and analyzed by SDS-PAGE electrophoresis 

followed by Western blotting.  

4.3.2 In vitro protein interaction assays 

Sf9 insect cells were infected with the recombinant baculovirus (P3 stock) and incubated 

at 28 °C with shaking for 5 days. The cells were pelleted by centrifugation (200 x g, 5 

min, 4 °C) and resuspended in either buffer B (25 mM Tris-HCl, pH 8.0; 1 M NaCl; 50 

mM glucose; 10 mM EDTA; 0.2 % Tween-20; 0.2 % NP40) or buffer D (PBS containing 

300 mM NaCl and 0.05 % NP40). All buffers were supplemented with protease inhibitors 

(Complete Mini; Roche). After incubation on ice for 10 min, cells were disrupted with a 

high-pressure homogenizer (EmulsiFlex-C5, Avestin) followed by centrifugation at 14,000 

x g for 30 min.  

Strep-tagged recombinant proteins were purified by incubating the supernatant with 500 

µl of Strep-Tactin Sepharose (IBA) beads for three hours at 4°C on a rotary shaker. To 

elute strep-tagged proteins, the beads were incubated with D-Desthiobiotin (0.5 mg/ml; 

IBA), dissolved in 1x PBS, for 30 min at 4°C. After centrifugation (200 x g, 2 min), beads 

were separated from the eluate containing the purified proteins. 

GFP fusion proteins were immobilized using the GFP-Trap (ChromoTek) as described 

(Rothbauer et al., 2008).  

Purified untagged human MeCP2 (pTYB1) was produced and purified as described 

(Georgel et al., 2003).  

For in vitro binding assays, immobilized recombinant GFP- or strep-tagged proteins as 

indicated were incubated for one hour at 4 °C on a rotary shaker with equal amounts of 

purified proteins or protein extracts in 500 µl buffer D (Figure 9B, C and D) or PBS 

(Figure 20A) or PBS either supplemented with 50 mM NaCl or 100 mM NaCl (Figure 

20B). After a short spin, the beads were washed three times with the same buffer used 
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for the incubation step before and dissolved in 50 µl 1x SDS-containing sample buffer 

and boiled for 10 min at 95 °C.  

4.3.3 Western blot analysis 

Western blot analysis was performed as described (Mortusewicz et al., 2006), using 

PVDF membrane (BioRad) or nitrocellulose membrane (GE Healthcare). Immunoreactive 

bands were visualized either by ECL plus or ECL advanced Western Blot Detection Kit 

(Amersham). The following primary antibodies were used for Western blot analysis: 

rabbit polyclonal anti-MeCP2 (Upstate), mouse monoclonal anti-GFP (Roche), mouse 

monoclonal anti-PARP-1 (F-2, Santa Cruz), mouse monoclonal anti-PAR (Trevigen). 

Secondary antibodies used were: horseradish peroxidase conjugated anti-mouse IgG 

(Amersham), horseradish peroxidase conjugated anti-rabbit IgG (Sigma). In the case of 

strep-tagged proteins, the membrane was incubated with horseradish peroxidase 

conjugated StrepTactin (BioRad) for 1.5 hours at room temperature (RT).  

 

4.3.4 In vitro poly(ADP-ribosyl)ation assay 

In vitro poly(ADP-ribosyl)ation analysis of recombinant GFP or MeCP2G immobilized 

onto GFP-Trap beads (ChromoTek), were performed as described in (Schreiber et al., 

2002) with following modifications: purified st-PARP-1 (50 ng) from Sf9 cells, 20 µM cold 

NAD+ in addition to [α-32P]NAD+ and 100 ng DNAse I activated DNA (Alexis) were used. 

After the reaction, the proteins were washed three times with buffer B to disrupt binding 

to st-PARP-1.  

 

4.3.5 In vitro poly(ADP-ribose) binding analysis 

For autoactivation of hPARP-1, 50 µL reaction buffer 10 x (500 mM Tris-HCl pH8, 1 M 

NaCl, 40 mM MgCL2, 2 mM DTT, 2 mM NAD+, 20 µg/mL DNAse I activated calf thymus 

DNA, 500bµg/mL BSA, 25 µCi 32P- NAD+) were incubated with 25 µg purified hPARP-1 in 

a final volume of 500 µL. The reaction was incubated for 30 min at 25 °C. Degradation of 

the DNA was achieved through addition of 1 µg DNAseI and 2 mM CaCl2 and incubation 

at 37°C for 1 h. Next, a treatment with proteinase K was performed at 37 °C overnight in 

order to degrade the proteins (0,1 % (v/v) SDS, 50 µg proteinase K). Finally, the last aa 

linked to the poly(ADP-ribose) was removed by incubation with 0,1 M NaOH and 20 mM 

EDTA at 37 °C for 1 h. Neutralization was achieved through addition of 0,1 M HCl. The 

purification of the free poly(ADP-ribose) was processed by phenol/chloroform extraction 



METHODS AND MATERIALS  

 35 

followed by ethanol precipitation. After 2 washes with 80% EtOH, the pellet was 

solubilized in 200µL of distilled water and stored at -20 °C. 

To renature the proteins that were separated by SDS-PAGE and blotted on nitrocellulose 

(GE Healthcare), the membrane was treated with 1 x PBS three times for 30 min. 

Afterwards, the membrane was incubated with the radioactive polymer diluted in 10 ml 1 

x PBS for 1 h at 25 °C on a rotating wheel. Afterwards, the membrane was washed three 

times with 1 x PBS for 15 min on the wheel and exposed overnight at -80 °C (32p 

autoradiography film; Amersham).  
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5 Results 

5.1 MeCP2 RTT mutations affect chromatin organization and inhibition of 
MeCP2 poly(ADP-ribosyl)ation rescues this defect 

5.1.1 RTT mutations affect MeCP2 binding and clustering of pericentric 

heterochromatin 

We have recently shown that the MBD of MeCP2 has the ability to reorganize and cluster 

pericentric heterochromatin. As most RTT missense mutations affect this domain (Figure 

5A), we set out to investigate whether they are impaired in binding or clustering of 

heterochromatin. 

We selected Pmi28 mouse myoblasts as our cellular assay system since this cell line 

was used before to characterize the dose-dependent effect of wt MeCP2 on the spatial 

organization of chromocenters and it expresses a very low to undetectable level of 

endogenous wt MeCP2 (Brero et al., 2005). Moreover, it showed a stable and nearly 

normal karyotype (39, X0; data not shown), which minimized variations of chromocenter 

number caused by variable numerical chromosome aberrations. 

We used mammalian expression constructs containing the mutant human MECP2 e2 

isoform cDNAs fused at the COOH-terminus of the enhanced GFP coding sequence 

(Kudo et al., 2003). All 21 missense mutations within the MBD are highlighted in pink in 

Figure 5A and the corresponding amino acid exchanges are indicated above the 

sequence alignment. Intranuclear localization of the fusion proteins and the induction of 

chromocenter clustering in transfected cells were assessed by fluorescence microscopy 

using the AT-selective DNA dyes Hoechst 33258, DAPI or TOPRO-3 to independently 

visualize pericentric heterochromatin. 

We first tested these MeCP2 RTT mutants for their accumulation at chromocenters by 

taking a ratio of average mean intensity of protein bound at chromocenters versus 

nucleoplasm. The results indicate that all the mutant proteins showed an enrichment at 

chromocenters (ratio greater than 1), but to very different extents (Figure 5C). R111G 

mutant protein accumulated to the lowest extent in pericentric heterochromatin and it 

mislocalized instead to the nucleoli (Figure 5B). This is in agreement with the recent 

finding that R111G exhibits complete loss of MeCP2 function and no longer represses 

Sp1-mediated transcriptional activation of methylated and unmethylated promoters (Kudo 

et al., 2003). Except for P101H, R133H, E137G and A140V, all other MeCP2 mutants 

analyzed accumulated at chromocenters less than the wt, with more than half of them 

significantly affected in their accumulation ability (Figure 5C).  
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Figure 5. Mutant MeCP2 proteins accumulate at chromocenters in vivo to very different extent 
(A) Top left panel shows the mutation spectrum in RTT patients (based on IRSA 
http://mecp2.chw.edu.au/cgi-bin/mecp2/search/printGraph.cgi), with missense mutations shown in black and 
others in light grey color. Location of individual mutations is indicated in a schematic representation of the 
MeCP2 protein (numbers represent aa coordinates). MBD stands for methyl-CpG binding domain, TRD for 
transcription repression domain and NLS for nuclear localization signal. Top right panel shows the X-ray 
structure of the MBD of MeCP2 (displayed in yellow) interacting with its target 5mC within the DNA double 
helix (shown in white) (PDB accession code 3C2I) (Ho et al., 2008). Structural data were displayed and 
annotated using PyMOL software (http://pymol.sourceforge.net/). The residues that directly interact with the 
two 5mC are shown in cyan and the RTT mutations included in our study in pink. Bottom panel: the analyzed 
RTT mutations are listed (in pink) above the corresponding wt aa within the sequence of MeCP2 MBD. (B) 
Representative maximum intensity projections generated from image stacks of mouse myoblasts expressing 
wt GFP-fused MeCP2 and mutants thereof. DNA was counterstained with DAPI. PC: phase contrast. Scale 
bar: 5 µm. (C) The plot shows the fold accumulation at chromocenters of the 21 RTT mutants, wt MeCP2 and 
GFP in mouse myoblasts. Asterisks represent statistically significant difference in regard to the wt: * for 
P<0.05; ** for P<0.001. All mutants accumulated significantly different (p≤ 0.05) with respect to GFP alone 
(not shown). The experiment was repeated at least two times with 10 cells per mutant evaluated each time. 
 

Since several mutants associated less efficiently with heterochromatin, we further 

addressed whether they would be impaired in their ability to cluster heterochromatin in 

vivo. To assess the degree of heterochromatin clustering in a quantitative manner, we 

scored the number of chromocenters in cells expressing either GFP-tagged wt or mutant 

MeCP2. In Figure 6 the clustering potential of the proteins is displayed as cumulative 
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frequency curves, which represent the percentage of nuclei with up to a certain number 

of chromocenters. Cells expressing the RTT mutants P101H, P101R and P152R showed 

a highly significant increase in chromocenter numbers compared to wt MeCP2 

expressing cells (Figure 6). The most dramatic effect had the R111G amino acid 

exchange, which completely abolished chromocenter clustering (Figure 6C and Figure 

6B). Additionally, 10 more mutants exhibited significantly decreased clustering abilities in 

comparison to wt MeCP2 (Figure 6B). In contrast, the other mutants behaved similarly to 

the wt. Among them is the A104V exchange that has been reported in association with 

very mild clinical symptoms (Orrico et al., 2000). Altogether, two thirds of the RTT 

MeCP2 missense MBD mutants were significantly affected in clustering potential 

compared to wt MeCP2.  
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Figure 6. RTT mutant proteins are affected in their ability to cluster chromocenters 
Pmi28 mouse myoblasts transfected with an expression vector coding for GFP or GFP-fused MeCP2 
construct as indicated. Z-stacks of images were recorded of nuclei with similar expression levels of the GFP-
tagged protein and constant image acquisition parameters. 
(A) The plot shows the percentage of cumulative frequencies of chromocenter numbers in cells expressing 
GFP-tagged wt MeCP2 in comparison to untransfected and GFP expressing cells. (B) Cumulative 
frequencies of chromocenter numbers in cells expressing each of the 21 GFP-tagged MeCP2 mutants. (C) 
depicts RTT mutants with extreme phenotypes together with the controls (wt MeCP2, GFP and untransfected 
cells). The table lists the median number of chromocenters for each mutant and depicts the p value with 
asterisks representing statistically significant difference in regard to the wt: * for P<0.05; ** for P<0.001. The 
experiment was repeated two times with at least 25 cells evaluated per mutant each time. 
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We further tested whether the clustering ability of selected mutants was also conserved 

in human cells. We performed immunostaining in combination with fluorescence in situ 

hybridization using three DNA probes simultaneously to detect the major pericentric 

heterochromatin regions present in chromosomes 1, 9 and 16 (Figure 7) of human cells 

either expressing wt or mutant MeCP2. The outcome of this analysis is shown in Figure 7 

and essentially confirms the results obtained in mouse cells. 

 

 
Figure 7. MeCP2 induces heterochromatin clustering in human diploid cells 
Top panel: ideogram of G-banded human chromosomes 
(www.pathology.washington.edu/galleries/cytogallery/main.php?file=human%20karyotypes). Chromosomes 
1, 9 and 16 were selected for our analysis as they contain the largest pericentric heterochromatin regions 
(marked in red). Bottom panel: Cells were transfected with constructs coding for GFP-tagged wt and mutant 
human MeCP2 and clustering of these heterochromatic regions was analyzed by simultaneous hybridization 
with three DNA probes from the pericentric heterochromatin DNA of the indicated three chromosomes. Cells 
expressing the GFP-tagged MeCP2 proteins were identified by immunostaining with anti-MeCP2 antibody 
and DNA was counterstained with DAPI. Confocal Z stacks of images from the GFP-MeCP2 signal, overall 
DNA signal and DNA FISH probes were then acquired. The three dimensional rendering of one such cell is 
shown where the contour of the nucleus is depicted by the white grid and the FISH signals of the three 
pericentric heterochromatin regions in red. The cumulative frequency of the FISH signals counted is shown 
by the graph. The table lists the average number of chromosome signals and presents the p value through 
asterisks representing statistically significant difference in regard to the wild type: * for P<0.05. Experiments 
were repeated twice with 30 cells evaluated each time per construct.  

5.1.2 Heterochromatin binding and clustering properties map to distinct 
structures of MeCP2 MBD 

Next, we tested whether the chromocenter clustering ability of the RTT mutants generally 

correlated with their degree of accumulation at these regions. We plotted the median of 

chromocenter number versus the average accumulation at chromocenters (Figure 8A). 
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Mutants falling onto an interpolated line connecting the negative GFP alone control and 

the positive wt MeCP2 control show an inverse correlation between binding to 

chromocenters and corresponding numbers of chromocenters, i.e. lower accumulation at 

chromocenters is accompanied by less clustering. Interestingly, the majority of mutants 

deviated from this inverse correlation. Some of the mutants were deficient in 

heterochromatin binding but only mildly affected in clustering of chromocenters (bad 

binders) and grouped below the line (Figure 8A, green). The majority of mutants were not 

deficient in binding to heterochromatin but disproportionately affected in chromocenter 

clustering (bad clusterers) and grouped above the line (Figure 8A, red). Interestingly, 

when we applied the same color code to label the corresponding residues within the 3D 

structure of MeCP2 MBD (Ho et al., 2008), the two subclasses surprisingly segregated 

into two different regions of this domain (Figure 8B). The latter indicated that, in addition 

to the residues known to make contact with the 5mCs (Figure 5A and 8B, blue), this 

domain could now be further functionally divided into a subdomain primarily affecting 

heterochromatin association (in green) and a second subdomain involved in clustering 

chromatin (in red). The most drastic examples for clustering deficient mutants involved aa 

located distally from the 5mC interacting pocket (Figure 8B). This MBD subdomain could 

be primarily involved in connecting chromatin fibers either through direct interaction with 

DNA or, more likely, with other chromatin proteins.  
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Figure 8. Correlation analysis of chromocenter clustering and accumulation at chromatin 
(A) Accumulation at chromocenters (Figure 5) and median of chromocenter number (Figure 6) were plotted 
on the X and Y-axis, respectively. The scatter plot neither indicates an overall direct nor an inverse 
correlation. The line connecting the GFP alone and GFP-MeCP2 delineates the inverse relationship between 
accumulation at chromocenters and chromocenter number (clustering). Mutants grouping above the line are 
color coded in red and the ones grouping below the line are in green. Mutants in residues directly interacting 
with 5mC are shown in blue (Figure 5A). (B) Structure of the MBD (in yellow) of MeCP2 in complex with DNA 
(in white) is displayed as in Figure 5A, the residues are color coded as in (A).  
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5.1.3 MeCP2 directly interacts with the nuclear enzyme PARP-1 

To further elucidate the mechanism and regulation of MeCP2 induced chromocenter 

clustering, we performed a proteomic screen for interaction partners of MeCP2. Lysates 

of HEK293-EBNA cells transfected with plasmids coding for GFP- and RFP-tagged 

MeCP2 were subjected to immunoprecipitation with either anti-GFP or anti-RFP 

antibodies (data not shown). Mass spectrometry analysis of proteins bound to MeCP2 

revealed PARP-1 as the most abundant binder enriched by GFP- as well as RFP-fused 

MeCP2, but not by GFP or RFP alone. PARP-1 is a nuclear enzyme activated by DNA 

breaks or particular DNA structures and involved in the regulation of chromatin structure 

and function during DNA repair and transcription (Hassa et al., 2006; Schreiber et al., 

2006). Immunoprecipitation assays followed by Western blot analysis for co-precipitated 

endogenous PARP-1 confirmed this interaction (Figure 9A). Furthermore, direct binding 

between purified strep-PARP-1 (st-PARP-1) and MeCP2-GFP was observed by pull 

down assays with recombinant proteins produced in Sf9 insect cells (Figure 9B). To 

ensure that the interaction is not bridged by DNA, ethidium bromide (EtBr) was added 

throughout the experiment (Dantzer et al., 2004) and extraction of all GFP-tagged 

proteins was performed at 1 M NaCl to disrupt potential protein-DNA association. To map 

the domains involved in the interaction, a series of fluorescently-tagged deletion 

constructs comprising the major domains of MeCP2 were incubated with st-PARP-1 and 

vice versa PARP-1 deletions were incubated with MeCP2. The outcome of these pull-

down assays indicated that the MBD as well as the domain spanning the region between 

the MBD and the TRD (termed interdomain, ID) and TRD interacted with the DNA-

binding as well as the BRCT-motif bearing automodification domain of PARP-1 (Figure 

9C and Figure 9 D). 
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Figure 9. MeCP2 interacts via ID/TRD and MBD domain with the DNA binding and autoactivation 
domain of PARP-1 
(A) GFP or MeCP2-GFP (MeCP2G) proteins were expressed in HEK293-EBNA cells. Cell extracts were 
analyzed by immunoprecipitation using immobilized GFP binder followed by Western blotting for co-
precipitated endogenous PARP-1 with anti-PARP-1 antibody. The blot was reprobed with anti-GFP 
antibodies to control for precipitated GFP. (B) For pull-down analysis, GFP or MeCP2G proteins were 
immobilized on GFP-Trap beads, incubated for 1 hour with purified strep-PARP-1 (st-PARP-1) at 425 mM 
NaCl and either treated or not treated with ethidium bromide (EtBr; 10 µg/ml). After SDS-PAGE, proteins 
were stained with Coomassie Brilliant Blue (CBB). (C) Left panel: schematic representation of fluorescently-
tagged MeCP2 deletions and st-PARP-1. Fusion with GFP and YFP and aa coordinates are indicated. Right 
panel: pull-down experiment with immobilized GFP-tagged MeCP2 deletions and st-PARP-1 at 425 mM 
NaCl, analyzed by Western blot with strep-HRP (st-HRP) conjugate. (D) Left panel: schematic representation 
of MeCP2 and strep-fused deletion constructs of PARP-1. Right panel: interaction of immobilized strep-fused 
PARP-1 truncations and purified untagged MeCP2 was assessed by pull-down assay and Western blot with 
anti MeCP2 antibody. Input cell extract (I) and bound fraction (B). PARP-1 binding results are summarized by 
+ or -. 

5.1.4 MeCP2 is poly(ADP-ribosyl)ated in vivo 

Prompted by the observed interaction with PARP-1, we tested whether MeCP2 was 

poly(ADP-ribosyl)ated. Immunoprecipitation assays of extracts from mouse brain tissue 
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with either anti-MeCP2 antibody or control rabbit IgG followed by immunoblot analysis 

with anti-poly(ADP-ribose) antibody showed specific poly(ADP-ribosyl)ation of 

endogenous MeCP2 (Figure 10B). In addition, we observed poly(ADP-ribosyl)ation of 

ectopically expressed MeCP2G (Figure 10A) as well as in vitro poly(ADP-ribosyl)ation of 

recombinant MeCP2G in the presence of st-PARP-1 and [α-32P]NAD+ (Figure 10C). 

Subsequent mapping identified the ID and TRD to be strongly poly(ADP-ribosyl)ated in 

vivo (Figure 10D) whereas the NH2-terminus plus MBD as well as the COOH-terminus 

showed almost no modification. We could further narrow down the modified domain to 

the ID (aa 163 - aa 206; poly(ADP-ribosyl)ated domain 1) and to less extent to aa 244 to 

aa 275 (poly(ADP-ribosyl)ated domain 2) (Figure 10D). We subsequently tested deletion 

constructs lacking the poly(ADP-ribosyl)ated regions (Figure 10E). While deletion of 

poly(ADP-ribosyl)ated domain 2 (MeCP2G.17; deletion of aa 244 - aa 275) resulted in 

slightly less poly(ADP-ribosyl)ation than the full length, the construct lacking the 

poly(ADP-ribosyl)ated domain 1 (MeCP2G.16; deletion of aa 163 - aa 206) showed a 

strong decrease and the double deletion (MeCP2G.18) had an even stronger effect 

(Figure 10E).  
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Figure 10. MeCP2 gets poly(ADP-ribosyl)ated in vitro as well as in vivo in brain 
(A, D and E) GFP, MeCP2G and GFP-fused MeCP2 mutants were expressed in HEK293-EBNA cells (A and 
D) or mouse embryonic fibroblast (MEF) cells (E). After immunoprecipitation with the GFP-Trap, poly(ADP-
ribosyl)ation of the precipitated proteins was checked by Western blot analysis with anti-poly(ADP-ribose) 
(anti-PAR) followed by anti-GFP antibodies. (D and E) Left panel: schematic representation of GFP or YFP-
tagged MeCP2 constructs with the corresponding aa coordinates. (B) Immunoprecipitations from wt mouse 
brain extracts were performed with the antibodies indicated and analyzed for poly(ADP-ribosyl)ation of 
endogenous MeCP2 by Western blotting with anti-PAR followed by anti-MeCP2 antibodies. The asterisks 
points out the expected lane position of endogenous MeCP2. (C) Recombinant immobilized GFP and 
MeCP2G proteins were incubated with [α-32P]NAD+, DNase I-treated calf thymus DNA with or without 
purified st-hPARP-1. After SDS-PAGE, poly(ADP-ribosyl)ation was detected by autoradiography (right 
panel). Precipitated proteins were stained with CBB (left panel).  
Poly(ADP-ribosyl)ation (PARation) results are summarized by +, - or +/-. 
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Poly(ADP-ribosyl)ation mostly takes place on Glu and Asp residues. To identify the 

poly(ADP-ribosyl)ated sites of MeCP2, single or double mutations were generated using 

site directed mutagenesis and resulting mutants were analyzed for poly(ADP-

ribosyl)ation. None of the mutations with changes from Glu or Asp to Ala were able to 

abolish poly(ADP-ribosyl)ation (Figure 11), indicating that Lys which are very abundant in 

these regions and were previously identified as poly(ADP-ribosyl)ation sites (Altmeyer et 

al., 2009; Cervantes-Laurean et al., 1996), are modified in MeCP2. We therefore mapped 

for poly(ADP-ribosyl)atable Lys and identified two (K175 and K177) within poly(ADP-

ribosyl)ated domain 1 and three (K254, K267, K271) within poly(ADP-ribosyl)ated 

domain 2. 
 

 
Figure 11. Identification of MeCP2 poly(ADP-ribosyl)ation sites 
Left panel: sequence comparison of aa 163 to aa 206 (poly(ADP-ribosyl)ated domain 1) and aa 244 to aa 
275 (poly(ADP-ribosyl)ated domain 2) of rat, human, dog and mouse MeCP2. The mutated poly(ADP-
ribosyl)atable sites are marked in blue and in green and by the aa number. Poly(ADP-ribosyl)atable sites, 
that were not mutated are in green and not marked by the aa number. Right panel: MeCP2G.11 and 
MeCP2G.14 carrying the indicated mutations were expressed in HEK293-EBNA cells. After 
immunoprecipitation with the GFP-Trap, poly(ADP-ribosyl)ation of the precipitated proteins was checked by 
Western blot analysis with anti-PAR. Immobilized proteins were stained with CBB. 

5.1.5 Poly(ADP-ribosyl)ation of MeCP2 reduces clustering of pericentric 
heterochromatin 

To address the functional consequences of poly(ADP-ribosyl)ation on MeCP2 ability to 

bind and aggregate heterochromatin (Brero et al., 2005) we first compared the median 

numbers of heterochromatic centers in mouse cells expressing either MeCP2G or one of 

the deletion constructs lacking the poly(ADP-ribosyl)ated regions (Figure 12A).  
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Figure 12. Poly(ADP-ribosyl)ation counteracts clustering of pericentric heterochromatin 
Pmi28 mouse myoblasts were transfected with an expression vector coding for GFP or GFP-fused MeCP2 
constructs. Using constant image acquisition parameters, Z-stacks of images were recorded of nuclei with 
similar expression levels of the GFP-tagged protein. Graphs show mean numbers of chromocenters of cells 
expressing the indicated proteins. Error bars represent 95 % Confidence Interval (C.I.). Experiments were 
repeated two times with at least 30 cells per construct each time. Asterisks represent statistically significant 
difference: * for P<0.05; ** for P<0.001. (A) Cells expressing MeCP2G or GFP-fused MeCP2 deletions 
lacking the poly(ADP-ribosyl)ated domains (compare also with Figure 10E). (B, C and D) Cells were 
transfected with vectors as indicated and treated with PARP inhibitors NU1025 (400 µM), 3AB (10 mM) or 
DMSO control for about 15 hours. (D) Right panels: maximum intensity projections generated from image 
stacks of cells expressing hMeCP2G P101H either treated with DMSO (control) or 3AB. Shown are overview 
images and representative magnified nuclei. Scale bar: 5 µm.  
 

As shown before, MeCP2G but not GFP alone induced clustering of chromocenters 

(Brero et al., 2005) (Figure 6A and 12B). While deletion of poly(ADP-ribosyl)ated domain 

2 (MeCP2G.17) showed no significant change in chromocenter numbers compared to 

MeCP2G, the amount of chromocenters in cells expressing the poly(ADP-ribosyl)ated 

domain 1 deletion (MeCP2G.16) or the double deletion (MeCP2G.18) was significantly 

reduced (Figure 12A). We could exclude major conformational changes caused by these 

deletions since the mutant proteins localized at chromocenters as the wt protein (Figure 

13). To ensure that the increase of chromocenter clustering was based on reduced 

poly(ADP-ribosyl)ation levels and was not simply due to deletion of aa within MeCP2, we 

treated cells with the PARP inhibitors NU1025 or 3-amino-benzamide (3AB). As the 

chromocenter numbers of GFP expressing cells treated with NU1025 or 3AB were 

comparable to DMSO treated cells we concluded that the inhibitors themselves did not 

have a significant effect on chromocenter aggregation (Figure 12B). In stark contrast, 

MeCP2G expressing cells incubated with 3AB exhibited significantly increased clustering 

of pericentric heterochromatin relative to the DMSO control (Figure 12C), whereas 
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MeCP2G expressing cells treated with NU1025 had decreased numbers of 

chromocenters but not to a significant degree.  

 

 
Figure 13. Overview of the subcellular localization of MeCP2 deletions 
Pmi cells were transfected with plasmids coding for GFP fusions with the domains of MeCP2 as indicated on 
the left side. After fixation, DNA was counterstained with DAPI to highlight chromocenters (CC). PC: phase 
contrast. Scale bar: 5 µm. 
 

Furthermore, enhanced aggregation of chromocenters was also measured in MeCP2G 

expressing PARP-1-/- mouse embryonic fibroblast cells (Figure 14B), which exhibited 

reduced poly(ADP-ribosyl)ation levels of MeCP2G in comparison to wt cells (Figure 14A). 

 

 
Figure 14. MeCP2 poly(ADP-ribosyl)ation decreases in PARP-1-/- cells and its chromocenter 
clustering ability increases 
(A) MeCP2 exhibits decreased poly(ADP-ribosyl)ation in PARP-1-/- mouse embryonic fibroblast (MEF) cells 
compared to wt cells. GFP-fused MeCP2 was expressed in WT as well as in PARP-1-/- MEF cells. After 
immunoprecipitation using the GFP-Trap, poly(ADP-ribosyl)ation of precipitated proteins was checked via 
Western blotting with anti-PAR followed by anti-GFP antibodies. (B) PARP-1-/- MEF cells exhibit enhanced 
MeCP2 induced chromocenter aggregation in comparison to WT cells. WT or PARP-1-/- MEF cells were 
transfected with an expression vector coding for GFP or MeCP2G. Z-stacks of images were recorded from 
nuclei with similar high expression levels of the protein using constant image acquisition parameters. 
Experiments were repeated two times with at least 30 cells per construct each time and are shown 
normalized to the control GFP expressing cells. 
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5.1.6 Decrease of poly(ADP-ribosyl)ation rescues chromocenter clustering of 
RTT mutant MeCP2 

As decreased levels of poly(ADP-ribosyl)ation lead to increased clustering ability of 

MeCP2 (Figure 12A and Figure 12C) and as some RTT mutants were significantly 

affected in heterochromatin aggregation (Figure 6 and Figure 8), we tested whether 

modulation of poly(ADP-ribosyl)ation can rescue these mutants.  

We selected RTT mutant P101H that showed highly impaired chromatin clustering 

(Figure 6 and Figure 8) and treated cells expressing this mutant or wt MeCP2 with the 

PARP inhibitors 3AB and NU1025. Remarkably, the impaired clustering ability of the 

mutant hMeCP2 P101H was rescued by treatment with either of the PARP inhibitors to a 

level comparable to wt hMeCP2G (Figure 12D and Figure 15).  

 

 
Figure 15. Summary of factors influencing MeCP2 mediated heterochromatin clustering 
(A) Schematic representation of MeCP2, its poly(ADP-ribosyl)ated regions (illustrated by the blue branches) 
and the interacting domains between MeCP2 and PARP-1 (marked in grey). Numbers represent aa 
coordinates. (B) Higher level of MeCP2 and/or inhibition of MeCP2 poly(ADP-ribosyl)ation by, e.g., 3AB 
causes increased clustering (hyperclustering). MeCP2 mutation such as the P101H mutation found in RTT 
syndrome patients decreases chromocenter clustering. The defect however can be rescued by inhibition of 
poly(ADP-ribosyl)ation that compensates the clustering deficiency of mutant MeCP2 P101H protein. 
 
 

In summary, we found that MeCP2 interacts with PARP-1 and is poly(ADP-ribosyl)ated in 

vivo and in vitro. This posttranslational modification negatively regulated the formation of 

higher-order heterochromatin structures and its inhibition counteracted the effect of RTT 

mutations. 
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5.2 Direct interactions of MeCP2 and MBD2 involve poly(ADP-ribosyl)ated 
domains, that also recognize poly(ADP-ribose)  

5.2.1 MeCP2 and MBD2 – but not MBD1, MBD3 and MBD4 - get poly(ADP-

ribosyl)ated in vivo 

Prompted by the finding that MeCP2 gets poly(ADP-ribosyl)ated (5.1), we tested whether 

other members of the MBD protein family are also modified. We performed 

immunoprecipitation assays using immobilized GFP binder of extracts from cells over-

expressing GFP or GFP-fused full length (fl) MBDs followed by Western blot analysis 

with anti-poly(ADP-ribose) antibody. The results showed that MBD2 is also poly(ADP-

ribosyl)ated in vivo whereas MBD1a, MBD3 and MBD4 did not exhibit detectable 

poly(ADP-ribose) signal (Figure 16).  

 

 
Figure 16. MeCP2 and MBD2 get poly(ADP-ribosyl)ated in vivo 
GFP-labelled fl methyl-CpG binding (MBD) proteins as indicated were expressed in Sf9 cells. For 
immunoprecipitation of the proteins, cell extracts were subjected to immobilized GFP binder. To examine 
poly(ADP-ribosyl)ation of the precipitated proteins, Western blot (WB) analysis was performed with anti-
poly(ADP-ribose) (anti PAR). To examine equal loading, the precipitated proteins were in parallel separated 
by SDS-PAGE and stained with Coomassie Brilliant Blue (CBB). Right panel: schematic representation of the 
GFP-fused protein constructs with the corresponding aa coordinates.  
 

Concerning MeCP2, we narrowed down this modification to a region comprising the 

interdomain (ID, aa 163 – aa 206) and the TRD (aa 207 - aa 309). Subsequent mapping 

of MBD2a poly(ADP-ribosyl)ated domains identified the NH2-terminus (NTD) 

(MBD2aG.1) as modified whereas the domain MBD2aG.2, highly identical to MBD3, did 

not show any modification (Figure 17).  
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Figure 17. Mapping of MBD2a poly(ADP-ribosyl)ated domain  
(A) GFP-tagged fl and mutant MBD2a constructs were expressed in Sf9 cells. After extraction of the cells, 
immunoprecipitation assays using immobilized GFP binder were performed. Poly(ADP-ribosyl)ation of the 
proteins was examined through Western blot (WB) analysis with anti poly(ADP-ribose). As loading control, 
the immobilized proteins were in parallel separated by SDS-PAGE and stained with Coomassie Brilliant Blue 
(CBB). Right panel: schematic representation of the GFP-fused proteins with the corresponding aa 
coordinates. (B) Sequence comparison of murine MBD2a and MBD3. The NH2-terminus of MBD2a not 
exhibiting sequence similarity with MBD3 is highlighted in dark grey. The MBD domain is boxed. Identical 
residues are highlighted in light grey.  
 

We then tested whether MeCP2 and MBD2 directly interact with PARP-1. We performed 

in vitro pull-down experiments with purified st-PARP-1 and immobilized GFP-tagged fl 

and mutant MeCP2 and MBD2. We observed PARP-1 binding of both MBD proteins but 

not of GFP alone (Figure 18). MeCP2 MBD and the region comprising ID and TRD 

strongly interacted with PARP-1, whereas MeCP2 NTD and COOH-terminus (CTD) did 

not show any binding (5.1). PARP-1 association to MeCP2 MBD most probably explains 

PARP-1 binding to the unmodified MBD1, MBD3 and MBD4 (data not shown), as they 

share a highly conserved MBD domain.  

MBD2aG.2, which is not poly(ADP-ribosyl)ated, weakly bound to stPARP-1, whereas the 

modified MBD2aG.1 construct strongly associated to PARP-1 (Figure 18). 
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Figure 18. Interaction of MeCP2 and MBD2 with PARP-1 
(A and B) Immobilized GFP-fused fl MeCP2 and MBD2 fl and mutant constructs were incubated with purified 
st-PARP-1 at 200 mM NaCl. After the pull-down experiment, the proteins were separated by SDS-PAGE and 
(A) stained with CBB or (B) analyzed by Western Blot using st-HRP conjugate.  
Left panel: schematic representation of GFP-fused protein constructs with the corresponding aa coordinates. 
 

5.2.2 MeCP2 and MBD2 poly(ADP-ribosyl)ated domains also recognize poly(ADP-
ribose) in a noncovalent manner  

We further set out to examine whether MeCP2 and MBD2 directly recognize poly(ADP-

ribose) (PAR). Equal amounts of purified immobilized GFP and GFP-fused MBD fl 

proteins were separated by SDS PAGE, blotted onto nitrocellulose and incubated with 

radioactive labeled PAR. Whereas no radioactive signal was detectable in the case of 

GFP, MeCP2 and MBD2a showed direct PAR binding (Figure 19).  

We subsequently determined which domains are involved in PAR recognition. Incubation 

of MeCP2 and MBD2 mutant constructs, blotted onto nitrocellulose, with radioactive PAR 

identified the region spanning MeCP2 ID and TRD as directly binding to PAR, whereas 

MBD, NTD and CTD did not give any signal (Figure 19A). We could further narrow down 

MeCP2 PAR recognizing domains to the ID (aa 163 – aa 206; poly(ADP-ribosyl)ated 

domain 1) and to less extent to aa 244 to aa 275 (poly(ADP-ribosyl)ated domain 2) 

(Figure 19A), both regions already identified to contain MeCP2 covalently poly(APD-

ribosyl)ated sites (5.1). Examining MBD2 mutant constructs, we could see that the 

covalently modified MBD2aG.1 strongly recognized PAR, whereas with MBD2aG.2 no 

radioactive signal was detectable (Figure 19B).  
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Figure 19. MeCP2 and MBD2 recognize noncovalent poly(ADP-ribose) 
GFP and fluorescently labeled fl and mutant MeCP2 and MBD2 were expressed in Sf9 cells. After 
immunoprecipitation using immobilized GFP binder, the immobilized proteins were separated by SDS-PAGE, 
blotted onto nitrocellulose and incubated with [α-32P] poly(ADP-ribose) (PAR) to check for non-covalent 
binding to PAR. As a loading control, the precipitated proteins were in addition separated by SDS-PAGE and 
CBB stained. Right panel: schematic representation of GFP- or YFP-fused protein constructs with the 
corresponding aa coordinates.  

5.2.3 Direct homo- and hetero-interactions between MeCP2 and MBD2 are 

partially mediated through their poly(ADP-ribosyl)ated and poly(ADP-ribose) 
recognizing domains 

We have recently demonstrated, that the expression level of both MeCP2 and MBD2 

increase during myogenic differentiation along with increased clustering of 

heterochromatin (Brero et al., 2005). We further showed that increased ectopic 

expression of MeCP2 and MBD2 in mouse cells induces aggregation of pericentric 

heterochromatin in a dose dependent manner (Brero et al., 2005).  

As one additional factor contributing to the heterochromatin clustering of MeCP2 and 

MBD2 in vivo, we have recently proposed oligomerization of these chromatin bound 

proteins (Brero et al., 2005), although hydrodynamic studies demonstrated recombinant 

MeCP2 as a monomer (Adams et al., 2007; Klose and Bird, 2004). Subsequently, we 

investigated potential direct interactions of MeCP2 and MBD2. We performed in vitro pull 

down experiments using recombinant fl MBDs extracted from Sf9 cells in 1M NaCl 



RESULTS  

 55 

containing lysis buffer to disrupt potential protein-DNA associations. Whereas GFP alone 

did not bind to immobilized strep-labelled MeCP2 (stMeCP2) and MBD2a (stMBD2a), 

GFP-fused fl MeCP2 exhibited strong association to both stMeCP2 and stMBD2 (Figure 

20A). Also GFP-tagged fl MBD2a clearly bound to itself as well as to stMeCP2 (Figure 

20B). In agreement with these in vitro data, we additionally observed physical 

interactions between fluorescently-labelled MeCP2 and MBD2a performing 

immunoprecipitation experiments of mammalian cell extracts (data not shown).  

Further mapping of MeCP2 domains responsible for MeCP2 homo-association and 

interaction to MBD2 revealed the region spanning MeCP2 ID and TRD as well as MeCP2 

CTD to directly interact with stMeCP2 and stMBD2. The CTD exhibited a slightly weaker 

association when compared to that of ID and TRD (Figure 20A). Subsequent mapping of 

MBD2a oligomerizing domains showed, that both NTD as well as CTD of MBD2a 

interacted to MeCP2 and MBD2 (Figure 20B).  

 

 
Figure 20. Mapping of domains responsible for MeCP2 and MBD2 homo- and hetero-interactions 
Pull-down experiments with immobilized strep-fused fl MeCP2 or MBD2 and fluorescently-labeled MeCP2 or 
MBD2 constructs as indicated. (A) The interactions were performed in PBS buffer. Interacting GFP-tagged 
proteins were assessed by Western blot with anti-GFP, followed by st-HRP conjugate. (B) Pull-down 
experiments using immobilized strep MeCP2 were done in PBS supplemented with 100 mM NaCl, the 
assays with strep MBD2 were incubated in PBS plus 50 mM NaCl. The interacting proteins were analyzed by 
Western blot with anti GFP and CBB for the strep-fused proteins respectively. Input cell extract (I) and bound 
fraction (B). 
 

Summarizing we can say that MeCP2 and MBD2 homo- and hetero-interact. MeCP2 

binding to itself and MBD2 involves two independent domains, one recently reported to 
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induce clustering of nucleosomal arrays in vitro (Georgel et al., 2003; Ghosh et al., 2010; 

Nikitina et al., 2007b). In addition I found that MeCP2 and MBD2 are the only MBD 

proteins poly(ADP-ribosyl)ated. Their modified domains further recognize noncovalent 

PAR and are involved in MeCP2 and MBD2 direct homo- and hetero-binding.  
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6 Discussion 

The main objective of this study was to elucidate the mechanism underlying MeCP2 

mediated large-scale heterochromatin reorganization and its regulation. The MBD and 

the heterochromatin protein 1 (HP1) families – recognizing either methylation of DNA or 

of histones - constitute the two major protein classes that are enriched at pericentric 

heterochromatin. We addressed both the interaction between MeCP2 and HP1 as well as 

homo- and heterodimerization of MeCP2 and other MBD members to determine whether 

these associations contribute to the higher order organization of chromatin in vivo. We 

could show the interaction between MeCP2 and HP1 and found an interdependency 

between HP1 localization to heterochromatin and the presence of MeCP2 (Agarwal et al., 

2007; Appendix). In addition, we identified self-association of MeCP2 in vivo and in vitro 

and analyzed MeCP2 interactions with other MBD family members (5.2).  

We aimed to find further proteins associated with MeCP2, performing an unbiased 

proteome-wide screen and found the nuclear enzyme PARP-1 as a direct binding 

partner, capable of poly(ADP-ribosyl)ating MeCP2 in vitro (5.1). Examining poly(ADP-

ribosyl)ation of endogenous MeCP2, we were able to show that this post-translational 

modification exerts a regulative effect on MeCP2 mediated large-scale chromatin 

reorganization in vivo. We observed that the deletion of MeCP2 poly(ADP-ribosyl)ated 

regions, or chemical inhibition of PARP activity, increases MeCP2-mediated 

heterochromatin clustering. Whilst analyzing RTT-inducing missense mutations within 

MeCP2 MBD, we identified several mutations that exert a strong effect on the capability 

of MeCP2 to aggregate heterochromatin. Notably, we could demonstrate that inhibition of 

poly(ADP-ribosyl)ation rescues the chromatin clustering ability of a MeCP2 RTT mutant 

strongly impaired to reorganize chromatin (5.1). Prompted by the novel modification of 

MeCP2 and its effect on large-scale reorganization of heterochromatin, we also 

examined poly(ADP-ribosyl)ation of other MBDs and found a correlation between 

oligomerization of the MBD family members, their poly(ADP-ribosyl)ation and poly(ADP-

ribose) recognition (5.2).  

 

6.1 Regulation of MeCP2 induced heterochromatin remodeling 

MeCP2 was originally described as a transcriptional regulator imposing local repressive 

chromatin structures through recruitment of histone-modifying enzymatic activities (Fuks 

et al., 2003; Harikrishnan et al., 2005; Jones et al., 1998; Kokura et al., 2001; Lunyak et 

al., 2002; Nan et al., 1997; Nan et al., 2007; Nan et al., 1998). Recent reports further 

implicate the intrinsic capability of MeCP2 to organize global heterochromatin 
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architecture (Brero et al., 2005; Georgel et al., 2003; Skene et al., 2010). Our lab has 

shown that MeCP2 induces large-scale chromatin reorganization in vivo - in particular 

clustering of pericentric heterochromatin - in a dose-dependent manner (Brero et al., 

2005). The MBD is necessary and sufficient for MeCP2 chromatin aggregation ability, 

and a MeCP2 deletion construct lacking the NH2-terminal region and the MBD is not able 

to induce clustering of chromatin in vivo (Brero et al., 2005).  

In agreement with these findings, in vitro assays demonstrate that MeCP2 can 

independently compact polynucleosomes into highly condensed suprastructures 

(Georgel et al., 2003; Nikitina et al., 2007b). Nucleosome interaction studies using human 

MeCP2 - either truncated at aa 294 or aa 370, as well as Xenopus MeCP2 truncated at 

aa 404 - indicate that mostly residues in the COOH-terminal regions of MeCP2 are 

involved in chromatin binding (Chandler et al., 1999; Nikitina et al., 2007b). Further, the 

TRD alone (aa 203 – aa 305) of Xenopus MeCP2 has been shown to be incapable of 

associating with mononucleosomes (Chandler et al., 1999).  

Multiple interactions of MeCP2 with DNA and chromatin have been proposed to induce 

compaction of polynucleosomal arrays in vitro. One such interactions involves binding of 

MeCP2 MBD to the linker DNA entry-exit site. Whereas DNA methylation is required for 

this step, MeCP2 CTD is dispensable (Ishibashi et al., 2008; Nikitina et al., 2007a). 

Another mode of interaction of MeCP2 with DNA brings the linker DNA at the 

nucleosome entry-exit site in close proximity and results in a “stem conformation”, 

inducing array compaction without nucleosome clustering (Nikitina et al., 2007b). For this 

step, the MBD is indispensable, whereas DNA methylation and COOH-terminal residues 

are not required as demonstrated on the RTT mutant R294X (Nikitina et al., 2007b). The 

predominant interaction results in a high degree of nucleosome clustering and takes 

place between MeCP2 CTD and the nucleosomes and leads to a “loop conformation”. 

(Georgel et al., 2003; Ghosh et al., 2010; Nikitina et al., 2007b; Figure 21). Importantly, 

maximal compaction of nucleosomal arrays involving secondary and tertiary chromatin 

structures does not take place in the absence of the region COOH-terminal from the 

MBD (Georgel et al., 2003; 2.3.2).  

As a potential mechanism underlying MeCP2 coordination of global chromatin 

architecture, a sandwich-like formation of MeCP2 with nucleosomes and / or DNA has 

been proposed, most probably requiring at least two chromatin or DNA binding sites 

within MeCP2 (Georgel et al., 2003; Nikitina et al., 2007b). In this regard, it is noteworthy 

that MBD and TRD have each been described as independent binding domains for 

unmethylated DNA in vitro (Adams et al., 2007; Figure 21 orange arrows). 

Oligomerization of MeCP2, resulting in nucleosome-MeCP2-MeCP2-nucleosome or 

DNA-MeCP2-MeCP2-DNA complexes, has also been proposed (Brero et al., 2005). The 
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fact that MeCP2 induces different levels of chromatin structure in vitro depending on the 

ratio of MeCP2 to nucleosomes, together with the in vivo findings that increasing doses 

of MeCP2 result in increased heterochromatin aggregation strengthen this hypothesis 

(Brero et al., 2005; Georgel et al., 2003 and 2.3). However, hydrodynamic studies 

describing recombinant MeCP2 as a monomer have challenged oligomerization of 

MeCP2 (Adams et al., 2007; Klose and Bird, 2004).  

 

 
Figure 21: Combinatorial interactions of MeCP2 with DNA and chromatin leading to chromatin 
compaction 
Left side: Nucleosome-MeCP2-nucleosome as well as DNA-MeCP2-DNA interactions as underlying cause 
for MeCP2 induced chromatin clustering. Right side: Oligomerization of MeCP2 (indicated by the green 
arrows) involved in MeCP2 mediated cross-linking of nucleosomes.  
Interactions between MeCP2 methyl-CpG binding domain (MBD) and methylated DNA (illustrated by the 
lollipop) are indicated by a red arrow (Lewis et al., 1992). Orange arrows implicate unspecific DNA binding of 
MeCP2 interdomain and transcriptional repression domain (TRD) (Adams et al., 2007; Ghosh et al., 2010). 
The blue arrows stand for associations to nucleosomes mediated through MeCP2 COOH-terminal domain 
(Georgel et al., 2003; Ghosh et al., 2010; Nikitina et al., 2007b).  
 

6.1.1 Poly(ADP-ribosyl)ation, poly(ADP-ribose) recognition and interactions 
among MBDs  

In this study, we were able to demonstrate that MeCP2 indeed has the capability to form 

direct homo-associations via two domains independently, one comprising the ID and 

TRD (aa 164 to aa 310) and the other spanning the residues COOH-terminal from the 

TRD (5.2). Whereas both domains exhibit strong binding to fl MeCP2, ID plus TRD 

exhibits a slightly stronger association when compared to that of the CTD. To ensure that 

the interaction is direct and not bridged by DNA, extraction of all proteins was performed 

at 1 M NaCl to disrupt potential protein-DNA association. Besides confirming MeCP2 

dimerization in vivo using RFP- and GFP-fused fl constructs, we also show that the MBD 

independently, as well as the residues COOH-terminal from the MBD can associate with 

fl MeCP2 under physiological conditions (data not shown). The binding between MBD 
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and fl MeCP2 in vivo is most probably bridged by DNA as demonstrated by its gradual 

loss when proteins are extracted in increasing salt concentrations in vitro.  

Our data favour a mechanism for the MeCP2-induced interconnection of nucleosomes 

involving MeCP2 homo-associations, mostly through the ID plus TRD (aa 164 - aa 310) 

and to a lesser extent via the CTD. The latter establishes in addition parallel contacts to 

nucleosomes (Georgel et al., 2003; Ghosh et al., 2010; Nikitina et al., 2007b; Figure 21). 

Furthermore, hetero-association of MeCP2 with other chromatin-bound MBD proteins 

could cause and stabilize MeCP2-mediated heterochromatin aggregation as can be seen 

from the association between MeCP2 and MBD2 in vitro. We show both, MeCP2 direct 

binding to MBD2 and vice versa, as well as the independent interaction of the ID plus 

TRD and the CTD of MeCP2 with fl MBD2. We also observed strong direct binding of 

MBD2 with itself.  

Furthermore, multiple homo- and hetero-interactions among the whole MBD protein 

family members, excluding MBD3, were identified in vitro (data not shown, Valentina 

Casa). This further suggests that a multitude of homo- and hetero-associations between 

the MBD proteins could coordinate heterochromatin reorganization in vivo.  

Our hypothesis is supported by the fact that, except for MBD3, all MBD proteins are 

localized at pericentric heterochromatin and are capable of inducing dose-dependent 

chromatin aggregation. Functional redundancy between the MBD proteins has been 

suggested based on the finding that clustering of pericentric heterochromatin is 

maintained in MeCP2-deficient mice (Brero et al, 2005). Moreover, our findings could 

suggest overlapping functions as a result of cross-interactions which in all probability 

mediate and stabilize chromatin aggregation.  

Besides homo- and hetero-dimerization among MBD proteins, additional binding sites 

between MeCP2 and MBD2 are brought about by their mutual recognition of PAR (Figure 

22). Whether and to which extent poly(ADP-ribosyl)ation and PAR binding affects homo- 

and hetero-interactions of MeCP2 and MBD2 per se, needs further investigation. 
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Figure 22. Homo- and hetero-interactions of MeCP2 and MBD2 involve poly(ADP-ribosyl)ated and 
poly(ADP-ribose) recognizing domains 
Covalent poly(ADP-ribosyl)ation is indicated by blue branches. Noncovalent binding to poly(ADP-ribose) is 
illustrated by a blue box. Direct protein-protein-interactions are indicated in dark grey. MBD stands for 
methyl-CPG binding domain, TRD for transcriptional repression domain.   

6.1.2 Interaction of MeCP2 with HP1 and heterochromatin association 

Whereas MBDs are able to induce rearrangement of heterochromatin in vivo (Brero et 

al., 2005), we observed that HP1 proteins are not (Agarwal et al., 2007; Appendix). HP1α 

is mainly localized at pericentric heterochromatin and HP1γ only exhibits weak 

heterochromatin binding in myoblasts, which express a very low level of MBDs. In 

differentiated myotubes, however, accelerated heterochromatin accumulation of the two 

HP1 isoforms takes place correlated with increased level of MeCP2 and other MBDs 

(Agarwal et al., 2007). This, together with the observed interaction between MeCP2 and 

HP1s (Agarwal et al., 2007), suggests a potential cross-talk between both factors with 

their transcription silencing pathways probably contributing to the propagation and 

maintenance of higher order chromatin structures. Our assumption is further supported 

by the association of MeCP2 with the histone H3 methyltransferase SUV39H1 (Lunyak et 

al., 2002) along with the finding that tri-methylation of histone H3 at lysine 9 generates 

binding sites for HP1 (Bannister et al., 2001; Lachner et al., 2001). In the light of MeCP2 

poly(ADP-ribosyl)ation and poly(ADP-ribose) recognition, it is noteworthy that poly(ADP-

ribosyl)ation and poly(ADP-ribose) binding has recently been described specifically for 

HP1α and proposed to regulate HP1α protein associations at pericentric heterochromatin 

(Quenet et al., 2008).  

 

6.1.3 Poly(ADP-ribosyl)ation of MeCP2 has a regulatory effect on MeCP2 
mediated large-scale heterochromatin reorganization 

In addition to oligomerization of MBDs as an additional layer mediating and stabilizing 

higher order heterochromatin reorganization, we further propose poly(ADP-ribosyl)ation 

of MeCP2 as a regulatory element in that process. Post-translational modifications of 
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MeCP2, such as phosphorylation, have recently been described to exert balancing 

effects in the modulation of MeCP2 chromatin association (Chen et al., 2003; Tao et al., 

2009). Here we could show that poly(ADP-ribosyl)ation of MeCP2, residing within the ID 

(K175 and K177) and TRD (K254, K267 and K271) exerts a negative effect on MeCP2 

mediated chromatin clustering in vivo. Both, deletion of the poly(ADP-ribosyl)ated 

domains and chemical inhibition of the PARP activity leads to stronger aggregation of 

pericentric heterochromatin (5.1 and Figure 23). Importantly, decreasing the poly(ADP-

ribosyl)ation level of an aggregation-deficient RTT mutant bearing a missense mutation 

within its MBD, rescues its chromatin aggregation function to a level comparable with wt 

MeCP2. Our data argue for a complex interplay between MeCP2 MBD as well as 

poly(ADP-ribosyl)ation within ID and TRD resulting in MeCP2-mediated higher order 

chromatin organization.  

 

 
Figure 23: Poly(ADP-ribosyl)ation of MeCP2 counteracts its dose-dependent  chromatin clustering 
 

Although the MBD has been demonstrated to be necessary and sufficient for 

heterochromatin aggregation in vivo, it has previously been shown that an NH2-terminal 

deletion lacking the MBD still exhibits preferred binding to pericentric heterochromatin but 

does not mediate chromatin clustering (Brero et al., 2005). Fluorescence recovery after 

photobleaching (FRAP) studies demonstrate that in addition to the MBD, the ID and TRD 

strengthen MeCP2 chromatin binding in vivo (Kumar et al., 2008; Marchi et al., 2007). 

Whereas the MBD is sufficient to induce compaction of polynucleosomes through 

interactions with DNA in vitro, the region COOH-terminal from the MBD establishes 

associations with chromatin. The latter is in addition indispensable for maximal 

nucleosomal array compaction involving secondary and tertiary chromatin structures 

(Georgel et al., 2003; Nikitina et al., 2007b; 2.3.2). Furthermore, the region spanning ID 

and TRD has been shown to be responsible for the recruitment of enzymes involved in 

chromatin condensation (Jones et al., 1998; Kokura et al., 2001; Nan et al., 1998). 

Altogether, these reports clearly suggest the MBD in mediating large-scale chromatin 

reorganization in vivo and underscore our hypothesis that modifications within ID and 

TRD regulate this process.  
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We propose that varying degrees of poly(ADP-ribosyl)ation within MeCP2 could establish 

(different) anionic phosphate-containing islands, gradually offsetting the positive charge 

of the predominantly cationic MeCP2 protein. This could modulate MeCP2 affinity to 

negatively charged DNA, RNA or chromatin as well as to chromatin-modifying proteins 

such as the deacetylases containing mSIN3A complex (Jeffery and Nakielny, 2004; 

Jones et al., 1998; Lewis et al., 1992; Nan et al., 1998; Nikitina et al., 2007b).  

It is striking that all poly(ADP-ribosyl)ated sites of MeCP2 (K175; K177; K254; K267; 

K271) reside within highly disordered regions of the protein, namely aa 160 to aa 200 

and aa 247 to aa 272 (Adams et al., 2007). Many intrinsically disordered protein domains 

acquire a well-defined conformation upon interaction with their target such as RNA, DNA 

or proteins, and in the case of different associating partners, might adopt varying 

structures resulting in numerous binding domains (Hansen et al., 2006). Both poly(ADP-

ribosyl)ation sites bearing disordered regions of MeCP2 have been demonstrated to be 

involved in multiple interactions with different proteins including MeCP2 itself and MBD2, 

as reported in this study (Figure 4 and 5.2). They also constitute autonomous binding 

domains to unmethylated DNA (aa 164 – aa 210; aa 245 – aa 270) (Ghosh et al., 2010). 

Interestingly, ID and TRD have recently been described as establishing a significant 

increase in their secondary structure content upon binding to DNA (Ghosh et al., 2010). 

Furthermore, it has been demonstrated (using fluorescence anisotrophy and CD) that 

both ID and TRD are enabled to bind to MBD in solution and that these trans-interactions 

induce changes in secondary structure (Ghosh et al., 2010). Post-translational 

modifications within the disordered NH2-terminal domain of core histones have been 

proposed to facilitate the formation of secondary structures coupled with target binding as 

in the case of HP1 and H3K9 methylation (Hansen et al., 2006). It is tempting to 

speculate that the level of poly(ADP-ribosyl)ation within the unstructured regions of 

MeCP2 might regulate the ability of these domains to undergo binding-induced structural 

changes in vivo and further stabilize certain MeCP2 conformations.  

The fact that a decreased poly(ADP-ribosyl)ation level within the highly disordered ID and 

TRD compensates the heterochromatin clustering defect of the P101H MBD RTT mutant, 

reveals a complex interplay between MeCP2 domains, their regulation by poly(ADP-

ribosyl)ation and the functional consequences for MeCP2-mediated higher order 

chromatin organization. We propose that residues within the MBD domain of MeCP2 as 

well as poly(ADP-ribosyl)ation within ID and TRD, work in concert to mediate and 

regulate MeCP2 function in modulating global chromatin architecture.  

It has recently been proposed that MeCP2 is organized into a NH2-terminal moiety 

consisting of the MBD and its flanking regions (aa 1 – aa 75; ID: aa 164 – aa 210) that 

exert modulating and stabilizing effects on MBD DNA binding in vitro (Ghosh et al., 
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2010). The second unit is shown to be formed by TRD and the CTD that can 

independently induce chromatin compaction and intra-associations of nucleosomal 

arrays (Ghosh et al., 2010). As a higher ratio of TRD-CTD is required to induce chromatin 

clustering comparable with fl MeCP2 in vitro, synergy between both units has been 

suggested to underlay full MeCP2 function regarding DNA binding and chromatin 

clustering (Ghosh et al., 2010). Based on our findings, we can add both homo-

interactions of MeCP2 involving ID, TRD and CTD as potential additional factors for 

MeCP2-induced chromatin compaction (Figure 21 and 22), as well as poly(ADP-

ribosyl)ation within ID and TRD, regulating and affecting MeCP2 large-scale 

heterochromatin reorganization (Figure 23).  

 

6.2 MeCP2 poly(ADP-ribosyl)ation as a therapeutic target 

Prompted by the finding that RTT patients show abnormal neuronal morphology but no 

neuronal death (Armstrong et al., 1995), it was assumed that re-expression of MeCP2 in 

deficient neurons could restore their functionality. Indeed, it could be demonstrated that 

activation of MeCP2 expression in MeCP2 hemizygous and heterozygous mice exhibiting 

advanced RTT-like symptoms results in a clear reversal of nearly all phenotypes 

(Giacometti et al., 2007; Guy et al., 2007; Table 2).  

Based on earlier observations indicating a role of MeCP2 as gene-specific transcriptional 

repressor, it has been hypothesized that in the absence of functional MeCP2, silencing of 

its target genes may be impaired with neuronal dysfunction as a consequence. The 

expression of Bdnf in cultured neurons has been found to be repressed by MeCP2 in the 

resting neuronal state. Upon neuronal activity however, MeCP2 dissociates from the 

promoter allowing expression of Bdnf (Chen et al., 2003; Martinowich et al., 2003; Tao et 

al., 2009). In apparent contradiction, the level of Bdnf in MeCP2 mutant mouse brain is 

surprisingly decreased (Chang et al., 2006). In fact, increasing Bdnf expression in a 

MeCP2-mutant brain with a conditional Bdnf transgene was found to result in a partial 

rescue of phenotype, suggesting therapeutic opportunities via regulation of the Bdnf level 

(Chang et al., 2006; Ricceri et al., 2008).  

MeCP2 recent localization at 5mC throughout the genome as well as an accelerated H3 

acetylation level and upregulation of H1 in MeCP2 null neurons, strongly argue for a 

global function of MeCP2 in regulating chromatin structure (Skene et al., 2010). Besides 

mechanistic relevance (6.1.3), our data suggest novel pharmacological approaches 

regarding RTT syndrome through restoration of MeCP2 global role as architectural 

protein.  
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We identified several RTT-inducing MBD missense mutations affecting MeCP2 large-

scale heterochromatin reorganization. We observed that MeCP2 MBD is separated into 

two subdomains, one responsible for heterochromatin binding, the other involved in 

chromatin aggregation. Residues that mostly affect chromatin clustering are located 

distally from the 5mC interacting pocket suggesting that their role in connecting 

chromatin fibres is probably through interactions with other proteins. Using PARP 

inhibitors, we could show that reducing the poly(ADP-ribosyl)ation level within two 

disordered regions of MeCP2 (ID and TRD) rescues the phenotype of a MBD RTT 

mutant severely impaired in heterochromatin aggregation. It has been demonstrated that 

some RTT-inducing mutations within the MBD alter its secondary structure and influence 

the interdomain associations between MBD and other domains (Ghosh et al., 2008). Our 

results give rise to the possibility that “strengthening” the stability of the structure within 

non RTT-affected regions through modulation of their poly(ADP-ribosyl)ation using 

pharmacological inhibition could improve or even restore the function of a RTT-mutated 

domain. The recent finding, that crosstalk and additive functions between MeCP2-defined 

regions and disordered residue stretches are important for MeCP2 stability and folding, 

support our hypothesis (Ghosh et al., 2010). Our observation that endogenous MeCP2 

from mouse brain tissue exhibits poly(ADP-ribosyl)ation makes this modification a 

potentially important therapeutic target. It is thus noteworthy that PARP inhibitors have 

already been shown to exert a protective effect on other neurological disorders (Chiarugi 

and Moskowitz, 2003; Kauppinen and Swanson, 2007). They have further entered clinical 

trials as chemotherapy sensitizing agents as well as agents for the treatment of acute 

cardiac ischemia (http://www.clinicaltrial.gov/).  

The poly(ADP-ribosyl)ated residues K175 and K177 within MeCP2 ID have been 

reported to be altered in RTT syndrome patients to nonsense mutations leading to 

truncated MeCP2 shortly after its MBD. K177 has also been listed as a frameshift 

mutation (http://mecp2.chw.edu.au/mecp2/). In addition, the modified residues within the 

TRD K254, K267 and K271 have been observed in RTT patients either as nonsense 

(K254 and K267) or frameshift (K271) mutations (http://mecp2.chw.edu.au/mecp2/).  

Most nonsense and frameshift mutations described in RTT syndrome truncate MeCP2 

after the MBD. In particular, nonsense mutations R168X and R255X are amongst the 

most frequent RTT mutations (http://mecp2.chw.edu.au/mecp2/) and create a short 

protein without MeCP2 poly(ADP-ribosyl)ated sites. RTT-similar phenotypes and the 

reduced lifespan of male MeCP2R168X mice with a truncating mutation of MeCP2 at aa 

168 (Lawson-Yuen et al., 2007) clearly underline the importance of the COOH-terminal 

residues from aa 168 on for proper functioning of MeCP2 (Table 2). That MeCP2 

poly(ADP-ribosyl)ated sites have been shown mutated in RTT, strongly suggests that 
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aberrant MeCP2 poly(ADP-ribosyl)ation could also contribute to protein dysfunction in 

RTT syndrome as it has been recently proposed for phosphorylation of MeCP2 (Tao et 

al., 2009; Zhou et al., 2006). Although we have observed that poly(ADP-ribosyl)ation 

within MeCP2 ID and TRD counteract MeCP2 clustering of heterochromatin, it is likely 

that the lack of MeCP2 poly(ADP-ribosyl)atable sites per se, resulting in abolished 

modulation of MeCP2 chromatin reorganization through poly(ADP-ribosyl)ation, could 

impact on the proper performance of MeCP2 in neurons. Whether, and to which extent 

MeCP2 knock-in mice with lysine to alanine mutations of MeCP2 poly(ADP-ribosyl)ated 

sites would display RTT phenotypes, is a tempting question to address the impact of 

MeCP2 poly(ADP-ribosyl)ation on the pathogenesis of RTT disease. 

 

6.3 Outlook 

i) The generation of a poly(ADP-ribosyl)ation-deficient MeCP2 fl construct, bearing point 

mutations of the five major poly(ADP-ribosyl)ated residues examined in this study, will be 

a feasible and useful tool to analyze the exact effect of poly(ADP-ribosyl)ation on MeCP2 

function.  

In that regard, future studies should address MeCP2 chromatin remodelling and binding 

in vivo as well as in vitro. The fl mutant should allow to distinguish whether the increased 

global heterochromatin clustering upon PARP inhibition in vivo exclusively depends on a 

decreased poly(ADP-ribosyl)ation level within MeCP2 or if it may also be the result of a 

reduced poly(ADP-ribosyl)ation level, per se, or within PARP (Kim et al., 2004; Wacker et 

al., 2007).  

Regarding in vitro studies, compaction of polynucleosomes as well as DNA- and 5mC 

binding should be dissected employing the poly(ADP-ribosyl)ation-deficient MeCP2 fl 

construct.  

FRAP experiments comparing modified and unmodified MeCP2 to reveal the effect of 

poly(ADP-ribosyl)ation on MeCP2 chromatin binding kinetics in vivo as well as extraction 

experiments to check whether modified MeCP2 is mostly chromatin-bound or soluble, will 

complement the study. In line with the finding that MeCP2 tracks 5mC throughout the 

genome (Skene et al., 2010), chromatin immunoprecipitation (ChIP) experiments in 

combination with bisulfite sequencing should determine the binding pattern of poly(ADP-

ribosyl)ation-deficient fl MeCP2 relative to the wt. ChIP analysis to obtain the histone 

modification pattern of cells, either expressing wt or poly(ADP-ribosyl)ation-impaired 

MeCP2, will further reveal the effect of MeCP2 modification on chromatin architecture.  

ii) High resolution nanoscopy (Schermelleh et al., 2008) should allow a structural 

comparison of pericentric heterochromatin, bound by wt or poly(ADP-ribosyl)ation-
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deficient fl MeCP2.  In that regard, also clustering-deficient RTT mutants before and after 

PARP inhibition should get analyzed.  

The crystal structure as well as CD of a DNA-bound domain, comprising wt or RTT 

mutant MBD and modified or unmodified ID and TRD, should disclose how poly(ADP-

ribosyl)ation affects DNA binding. In addition, structure composition and the degree of 

disordered residues within these domains could get examined. 

iii) Gene expression profiles of MeCP2 mutant cells rescued with wt or poly(ADP-

ribosyl)ation-deficient MeCP2 and / or in vivo reporter gene assays would reveal to which 

extent poly(ADP-ribosyl)ation of MeCP2 impacts on transcriptional regulation. The effect 

of poly(ADP-ribosyl)ation on MeCP2-mediated regulation of already identified candidate 

genes (Chen et al., 2003; Martinowich et al., 2003; McGill et al., 2006; Nuber et al., 2005) 

should also be examined. It would be interesting to evaluate whether besides 

phosphorylation, poly(ADP-ribosyl)ation influences MeCP2 activity-dependent 

transcriptional regulation (Chen et al., 2003; Martinowich et al., 2003; Tao et al., 2009).  

iv) Apart from MeCP2 poly(ADP-ribosyl)ation identified in this study, phosphorylation of 

MeCP2 has also been described. It would therefore be logical to check for 

interconnections between these different modifications and analyze whether they occur 

simultaneously, sequentially or whether they are mutually exclusive. Does 

phosphorylation also impact on MeCP2 large-scale heterochromatin reorganization or 

does this modification exclusively regulate MeCP2 chromatin binding at specific limited 

regions? Repeating the battery of assays described above with regard to MeCP2 i) 

chromatin binding and remodeling, ii) secondary structure as well as iii) transcriptional 

regulation using either phosphorylation- or poly(ADP-ribosyl)ation-deficient MeCP2 

constructs – or both at the same time - would answer how and to which extent these 

modifications modulate MeCP2 function.  

v) In line with the finding that reduced poly(ADP-ribosyl)ation level restores the capacity 

of the  RTT mutant P101H to reorganize heterochromatin, the effect of PARP inhibition 

on other clustering-impaired mutants such as P152R or P101R should also be analyzed. 

Can modulation of poly(ADP-ribosyl)ation further rescue the binding deficit of the strongly 

affected mutants R111G and / or R133L, carrying RTT-inducing mutations of aa that 

directly interact with DNA (Ho et al., 2008; 5.1)? This would further answer whether 

poly(ADP-ribosyl)ation exclusively impacts on RTT-mediating mutations located on the 

MBD subdomain responsible for chromatin clustering or whether both subregions can be 

modulated (5.1). Furthermore, it would be interesting to address how RTT mutations 

affect MeCP2 ability to be modified. A detailed analysis of the poly(ADP-ribosyl)ation and 

/ or phosphorylation levels of the RTT mutants examined in this study would further 
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reveal if and how those levels correlate with the degree of functional derogation of these 

mutants.  

vi) The fact that MeCP2 poly(ADP-ribosyl)ated residues reside within the CoRID of 

MeCP2 (2.2.5 and 5.1) together with the finding that MeCP2 does not interact with Sin3A 

and other proteins in a stable manner (Klose and Bird, 2004) underline the possibility that 

these interactions may be regulated through MeCP2 modifications. In that regard, 

numerous MeCP2 protein interactions mediated through the poly(ADP-ribosyl)ation sites 

bearing ID and TRD (Fig. 4 and 2.3.4) should get examined using wt or poly(ADP-

ribosyl)ation-deficient fl MeCP2. Also MeCP2 binding to itself and MBD2 (5.2) should be 

included in these analyses.  

In addition, the question arises whether specific level of MeCP2 covalently bound 

poly(ADP-ribose) chains or whether non-covalently MeCP2 associated poly(ADP-ribose) 

regulates its homodimerization and hetero-association with other MBDs. Incubation of, 

e.g., two different tagged poly(ADP-ribosyl)ation-deficient fl MeCP2 constructs with 

increasing amounts of poly(ADP-ribose) could decipher whether poly(ADP-ribose) itself 

cross-links MeCP2 to form (stable) associations.  

vii) In order to determine the magnitude of homo- and hetero-complexes between MeCP2 

and MBD2, gel filtration analysis of cell extracts could be performed. PARP inhibition of 

the cells, followed by extraction and gel-filtration could further reveal the effect of 

poly(ADP-ribose) on the association between the MBD proteins. 

viii) Based on the finding that the hinge domain of HP1α gets poly(ADP-ribosyl)ated and 

also recognizes poly(ADP-ribose) (Quenet et al., 2008), it would be interesting to analyze 

the interaction between MeCP2 and HP1α with regard to a potential regulation either 

through covalent modification or non-covalent poly(ADP-ribose) binding. Chemical 

inhibition of PARP activity could further be used to estimate the impact of MeCP2 

poly(ADP-ribosyl)ation on HP1α and HP1γ-increased heterochromatin association upon 

myogenic differentiation (Agarwal et al., 2007; Appendix). 
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7.2 Abbreviations 

A  
A/T Adenine/Thymine 
3AB 3-amino-benzamide 
AID Activated Induced Deaminase  
APC  Adenomatous polyposis coli  
  
B  
Bdnf Brain derived neutrophilic factor  
BER  Base excision repair  
BRCT  BRCA1 C-terminus  
  
C  
CaMK   Calcium/calmodulin-dependent protein kinase  
CBB Coomassie Brilliant Blue 
CD  Circular dichroism  
CDKL5 Cyclin-dependent kinase-like 5 
cDNA  Complementary DNA  
ChIP   Chromatin immunoprecipitation  
CoRID  Co-Repressor Interacting Domain 
CTD  COOH-terminal domain  
  
D  
DAPI 4’ -6’-Diamidino-2-Phenylindol  
DBD DNA binding domain  
DMEM Dulbecco’s modified Eagle’s medium  
DMSO Dimethyl sulfoxide 
DNA Deoxyribonucleic acid  
Dnmt  DNA methyltransferase  
  
E   
E.coli   Escherichia coli 
EtBr Ethidium bromide 
  
F  
FISH Fluorescent in situ hybridization 
FL Full Length  
FRAP  Fluorescence recovery after photobleaching 
  
G  
GFP  Green fluorescent protein  
  
H  
H3K9 Histone H3 lysine 9 
HDAC  Histone deacetylase 
HEK CBB Human Embryonic Kidney 
HIPK2   Homeodomain–interacting protein kinase 2  
HP1   Heterochromatin protein 1 
  
I  
IAP Intracisternal A particle  
ID  Interdomain 
IgG Immunoglobulin G 
IL-4   Interleukin-4 
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M   
5mC 5-methylcytosine 
MBD Methyl-CpG binding domain 
MBDs Methyl-CpG binding domain proteins 
MBP Methyl-CpG binding proteins 
MCAF MBD1-containing chromatin-associated factor 
mCpGs Methylated CpGs 
MeCP1 Methyl-CpG Binding Protein 1 
MED1 Methyl-CpG binding endonuclease 1 
MEF Mouse embryonic fibroblast 
MMR Mismatch repair 
Mnase Micrococcal nuclease 
mRNP Messenger ribonucleoprotein particle 
MSI Microsatellite instability 
MT Methyltransferase 
  
N  
NAD+ Nicotinamide adenine dinucleotide 
NMR Nuclear magnetic resonance 
NP40 Nonidet P-40 (octyl phenoxylpolyethoxylethanol) 
NTD NH2 – terminus 
  
P  
PAGE Polyacrylamide gel electrophoresis 
PAR Poly(ADP-ribose) 
PARG Poly(ADP-ribose)glycohydrolase 
PARP-1 Poly(ADP-ribose)polymerase-1 
PBS Phosphate buffered saline 
PIAS Protein Inhibitors of activated STAT 
PTM Post translational modification 
  
R  
RNA Ribonucleic acid 
RT Room temperature 
RTT Rett Syndrome 
  
S  
siRNA Small interfering RNA 
st Strep 
  
T  
TDG Thymine DNA glycosylase 
TRD Transcriptional repression domain 
TSA Trichostatin A 
Tween-20 Polyoxyethylene (20) sorbitan monolaurate 
  
W  
WDR WW domain binding region 
WT Wild type 
  
X  
XCI X chromosome inactivation 
  
Y  
YB-1 Y box binding protein 1 
YFP Yellow Fluorescent Protein 
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