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CHAPTER 1 

GENERAL INTRODUCTION 

 

1 CHALLENGES IN THE FORMULATION OF PROTEIN DRUGS 

Advances in molecular genetics and recombinant protein (rDNA) technology lead to an 

increasing availability of protein-based biomolecules1. In contrast to conventional low 

molecular weight synthetic chemical drugs protein drugs provide a relatively high specifity 

and activity at low concentrations2. Therefore, today protein drugs represent a fast-growing 

class of therapeutic molecules1,3. Protein-based drugs offer a multitude of new therapeutic 

options, mainly for the treatment of severe and chronic diseases such as autoimmune or 

cancer diseases2. However, with the increasing number of “new biologic entities” passing 

through development and manufacturing and finally reaching patients, also unprecedented 

challenges for the design of stable, safe and convenient formulations are encountered4. 

The first obvious formulation challenge to be faced concerns the delivery of protein drugs. 

Oral delivery – which is generally the preferred and most widely applied route of drug 

administration – is not feasible with protein drugs. Two major obstacles would have to be 

evaded in order to render oral protein administration possible: the protein’s susceptibility to 

hydrolytic and enzymatic degradation in the gastrointestinal tract and the protein’s inability to 

pass the biological membranes for sufficient resorption due to its hydrophilic surface 

characteristics and large molecular weight4. Therefore, proteins have to be administered 

parenterally and with few exceptions (e.g. pulmonary or nasal delivery, parenteral depot 

systems) they are brought to patients via the i.v., i.m. or s.c.-route as aqueous solutions or 

suspensions.  

Maintaining formulation stability throughout the life cycle of a therapeutic protein (typical 

shelf-life is 24 months at 2-8°C) is a very demanding task considering the only marginal 

thermodynamic stability of a protein and the multitude of possible degradation pathways 

proteins can undergo5. Therefore maintaining protein stability is a second large formulation 

challenge. Generally protein stability is divided into chemical and physical stability. However, 

this distinction does not always apply, since these two major groups of protein degradation 

pathways are mutually dependent: for example the chemical reaction of reducing sugars with 

proteins (Maillard reaction) may also result in increased levels of aggregates6. Chemical 

degradation of a protein is understood as a change on the protein that involves the formation 

or loss of covalent bonds7. One of the most frequently encountered chemical instability 

reactions of proteins appears to be deamidation2,6-7. But also disulfide bond breakage and 

formation8, hydrolysis6,9-11, oxidation9-10, isomerisation11-13, glycation17, fragmentation18 and 

many more are often reported2,6,14. In contrast physical protein instability refers to unfolding 
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and misfolding of the protein as well as to – most importantly - aggregation6. Protein 

aggregation is considered most problematic in protein formulation as it can occur at almost 

any stage of production, processing, storage and shipping of the protein drug. It can severely 

influence the pharmacokinetics as well as the safety of the protein drug, because the 

phenomenon of protein aggregation is closely linked to another challenge in the formulation 

of protein drugs: unwanted immunogenicity15. 

The key to controlling the “classical” type of immune reactions, which are directed against 

neo-antigens, is the production of proteins that are identical or almost identical to the 

respective endogenous proteins4. This type of immune reaction is mainly determined by 

chemical nature of the protein and not by formulation parameters. However, for the second 

type of immune reactions encountered with recombinantly produced protein drugs, a break-

down of immune-tolerance, the formulation (and the occurrence of aggregates) and the route 

of administration of the drug are determining factors3,21-22. Considering the severe 

consequences of unwanted immunogenicity, such as loss of efficacy or formation of 

antibodies against endogenous proteins (as observed with the pure red cell aplasia incident 

of patients receiving a certain erythropoietin-formulation16) it becomes evident that 

understanding and controlling protein aggregation is the major challenge for the development 

of safe and efficient protein formulations.  

An important way of inhibiting protein aggregation in formulations is the addition of 

appropriate excipients to the formulations6,17-18. However, many of the commonly employed 

excipients suffer from certain short-comings. For instance, non-ionic surfactants well stabilize 

therapeutic proteins against surface-induced aggregation, as encountered during agitation of 

protein solutions, but lead to increased aggregation rates during quiescent long-term storage 

of the formulations19-20. Therefore there is a need for new excipients for the inhibition of 

protein aggregation, either as alternative to currently used excipients or to complement them. 

Cyclodextrins (CDs) are reported to be a promising class of excipients for the inhibition of 

protein aggregation4,21. However, to date they have not yet been used in approved parenteral 

products and little systematic investigations have been carried out elucidating their influence 

on aggregation of therapeutically relevant proteins. Therefore, the focus of the current work 

will be on the effects and mechanisms of cyclodextrins as inhibitors of therapeutic protein 

aggregation. 
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2 PROTEIN AGGREGATION IN BULK SOLUTION AND AT INTERFACES 

Due to its potentially serious consequences protein aggregation has drawn major attention in 

recent years and has even been identified as a major obstacle to overcome in the 

development of protein formulations, for instance in the case of highly concentrated 

monoclonal antibody solutions22. As already denoted above, protein aggregation can occur at 

almost any stage of manufacturing, processing, storage, shipment and administration to the 

patient. During each of these steps, aggregation is governed by different influencing factors 

and critical parameters. For understanding and controlling aggregation during any of these 

steps it is necessary to experimentally isolate the factors triggering aggregation and studying 

them separately. Therefore, in the present work protein aggregation is not classified by 

structural characteristics as done in earlier works23 such as type of bond, reversibility, size or 

conformation, but classified into the induction factors, that are causing protein aggregation. 

Since it is well-known that the aggregation behavior in bulk solution is fundamentally different 

from protein aggregation that involves adsorption to a bulk surface24 these two phenomena 

are investigated separately throughout this thesis. 

2.1 PROTEIN AGGREGATION IN BULK SOLUTION 

Since protein aggregation is a critical phenomenon for the safety and efficacy of protein 

drugs, extensive research work has been dedicated to elucidate the factors controlling 

protein aggregation5-6,15,17,23,25-27. Although different proteins and a variety of influencing 

factors were studied there is some common ground between most of the investigations. The 

most common idea of how protein aggregation in solution proceeds is that partially unfolded 

states (also referred to as molten globule state or “A” states if the protein is acid-denatured) 

with reduced (but still substantial) secondary structure and clearly reduced tertiary structure 

expose hydrophobic surfaces and subsequently aggregate25. In order to suppress 

aggregation in bulk solution, it is necessary to maximize two physical protein properties: 

conformational and colloidal stability. 

Increasing conformational stability means that the population of highly aggregation-prone 

partially unfolded intermediates has to be kept as low as possible. The relative degree of 

unfolding of the aggregation-prone intermediates is often very small (at most a few percent24) 

and spectroscopic techniques observing the overall, average conformation of a population of 

protein molecules might not be able to detect the subtle changes on the molecules. 

Nevertheless, aggregation in such solutions may rapidly proceed5. Oftentimes conditions that 

allow for a maximum conformational stability do not also provide the best conditions for 

maintaining the second parameter that should be maximized in order to reduce protein 

aggregation, colloidal stability. Therefore, often a compromise has to be struck in the 
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selection of the protein formulation. This compromise is still most conveniently achieved by 

empirical formulation studies. 

Conformational stability can be increased by selecting favorable solution conditions. An 

important factor leading to favorable solution conditions is an appropriate solution pH. Many 

proteins tend to slightly unfold on a tertiary structural level when acidic conditions are 

chosen, such as IgG-antibodies or rh-GH, two proteins that are examined in this thesis. For 

example, a rhu-mAb anti-CD 20 antibody was found to loose its tertiary structure below pH 

314. Generally, weakly acidic conditions (pH 5-6) seem to be optimal for the formulation of 

mAbs6. Also rh-GH partially unfolds at low pH-values. For example, rh-GH is reported to 

populate a partially unfolded “A-state” at pH 2.5 that, in the presence of NaCl, leads to rapid 

aggregation of the protein28. In contrast, rh-GCSF maintains its conformational stability as 

determined by urea unfolding even at a low pH of 3.5 29.  

Another important factor that compromises conformational stability of proteins and therefore 

accelerates aggregation in bulk solution is temperature. High temperatures perturb the native 

protein conformation to a degree that accelerates aggregation17. Often aggregation starts 

well below the temperature that is experimentally determined as the melting temperature of 

the protein (the temperature at which 50 % of protein molecules are unfolded during a 

thermal transition23), validating the assumption that aggregates are not formed from fully 

unfolded monomers but that a certain fraction of partially unfolded monomer is sufficient to 

promote aggregation29. The thermal stability of proteins strongly varies. Compared to other 

proteins antibodies seem to be less sensitive to high temperatures taking into account their 

melting temperatures of above 70°C30 whereas most other proteins already completely 

unfold below 70°C 2. Increased aggregation rates upon temperature increase are also the 

basis of accelerated stability studies at elevated temperature carried out for the prediction of 

aggregation rates during the shelf-life of a protein. However, the assumption of a simple 

Arrhenius behavior allowing for the extrapolation of the accelerated stability (e.g. at 50°C) 

data to shelf-life data (e.g. at 4°C) can be seriously misleading31 and was reported to 

potentially lead to the underestimation of the rate coefficient for monomer loss and hence to 

an overestimation of the shelf life of a therapeutic protein24,32. Nevertheless there is little 

alternative to that kind of studies since multi-year stability data at the target storage condition 

would not be available until late stages of clinical development at which any changes in the 

formulations would be very costly and difficult from a regulatory perspective. 

Conformational stability can also be influenced by ligand binding. This is reflected by the 

Wyman linkage function which states that preferential binding of ligands to the native state of 

a protein is expected to shift the folding equilibrium towards a larger population of native 

protein molecules. Consequently the protein’s propensity to aggregate will be reduced31,33-34. 

In contrast, preferential interaction with the unfolded or partially unfolded state of a protein 
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will result in a decrease of the thermal stability of the protein, e.g. as observed with the 

preservative benzyl alcohol when binding to interleukin 1 or rh-GCSF35-36. Ligand binding will 

be of special importance throughout this work since cyclodextrins are reported to 

preferentially bind to the unfolded state of proteins21, thereby potentially influencing 

conformational stability of the proteins under investigation. As discussed in further detail 

below, nonspecific stabilizing compounds like sucrose also influence conformational stability 

by being preferentially excluded from the protein surface. 

Partial unfolding of protein molecules to highly aggregation-prone intermediates, as 

expressed by the conformational stability, is often the determining step in the formation of 

aggregates. However, also tendency of small aggregate nuclei to grow to larger aggregates 

can be a rate-limiting step in protein aggregation, generally referred to as colloidal stability. A 

global measure taking into account all sorts of intermolecular interactions between the 

protein molecules (van der Waals, electrostatic, hard-sphere) is given by the second virial 

coefficient (B22). Positive B22-values indicate overall repulsive forces between the protein 

molecules in solution: protein-solvent interactions are favored over protein-protein 

interactions. In contrast negative B22-values indicate attractive forces between protein 

molecules when protein-protein interaction is favored over protein-solvent interaction25. Since 

the B22-value greatly depends on protein charge, alterations of the solution pH can have 

dramatic effects on the colloidal stability of a system. For rh-GCSF, one of the proteins that 

are investigated in this thesis, the role of colloidal stability is very well understood. At low pH 

(e.g. 3) the rh-GCSF molecules are positively charged and repulsive forces dominate. 

However, at neutral pH (between pH 5 and 7), aggregation rapidly proceeds, although 

conformational stability remains nearly unaltered, because the repulsive forces are no longer 

dominating. In addition to shifting the solution pH in a way that reduces repulsive forces 

between proteins, colloidal stability can also be lowered by the addition of salts leading to a 

shielding of repulsive forces25,29. 

2.2 AGGREGATION AT THE AIR-WATER INTERFACE 

In comparison to aggregation in bulk solution, the situation in the presence of large 

hydrophobic interfaces is fundamentally different, since new reaction pathways for protein 

aggregation are opened up. When partial unfolding of a protein is the rate limiting step for 

aggregation, the presence of an interface can massively increase aggregation rates. The 

reason for this phenomenon is that proteins are amphiphilic molecules and this property 

leads to their strong tendency to accumulate at interfaces. Most proteins exhibit a remarkable 

adsorption to hydrophobic surfaces, the air–water interface not only being among the most 

hydrophobic but also most frequently encountered interfaces, e.g. during mechanical 

agitation and mixing, spray-drying or filtration37. Layer thickness of the air-water interface is 

reported to be in the order of magnitude of about 2 nm which is about the same size as a 
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protein molecule5 or 3.1 nm with a secondary layer below of about 5-7 nm thickness38. Other 

interfaces that therapeutic proteins are typically exposed to during their lifecycle may include 

the glass–water (in vials) or ice–water–interface (during freezing and thawing) which are 

discussed in the following section. 

Generally protein adsorption to the air–water–interface can be divided into three steps39. 

First, diffusion of the protein–molecules into a subsurface has to take place. Proteins then 

have to overcome energy barriers (caused by surface pressure and an electrical bilayer) and 

adsorb to the surface. Finally proteins have to rearrange at the surface which involves partial 

unfolding of the adsorbed protein segments. By exposing parts of the hydrophobic protein 

core, contacts with the interface are maximized on both sides of the interface and the 

molecule regains conformational entropy39. A protein that is adsorbed to the air-water-

interface experiences forces that are dramatically different from the forces in the bulk 

solution: it has been estimated that the tension forces perpendicular to the interface are as 

high as 140 pN and therefore large enough to unfold a protein5. The altered protein structure 

along with high local concentrations at the interface often lead to aggregation processes17. In 

addition, in agitated solutions a new air-water interface is continuously created thereby 

producing an amount of unfolded proteins that is no longer negligible compared to the 

amount of protein in the bulk and substantial aggregation often results. As discussed above, 

it is well-known that protein aggregation may have serious implications for the safety and 

efficacy of protein drugs6,40. Hence for a new protein formulation surface–induced 

aggregation during processing and storage has to be circumvented. 

Agitation-induced aggregation has been reported17,41 for a variety of proteins42-47, and it is a 

serious concern for the formulation of mAbs27,48-52 and fusion proteins containing parts of 

immunoglobulins53. Aggregates formed by agitation have been determined to be very 

different in nature from aggregates of the same IgG-antibody formed during storage at 

elevated temperature50. Whereas insoluble heat-induced aggregates showed strong 

alterations of their secondary structure and did not redissolve into soluble aggregate 

components upon storage, insoluble aggregates formed by agitation-stress were 

demonstrated to maintain a very native-like conformation and to exist in equilibrium with 

other small aggregate types50. The degree of mAb-aggregation after agitation is influenced 

by a variety of parameters. The first parameter is the structure of the mAb itself since some 

IgG antibodies are reported to significantly aggregate within hours of agitation27,52 whereas 

others are reported to exhibit a remarkable resistance to aggregation at the air-water 

interface, after two weeks of agitation at 200rpm54 or even after two weeks of shaking in 

vials51. It has been suggested that for the successful development of monoclonal antibodies 

the surface activity of the potential drug candidate should be taken into account, since a 

positive correlation of susceptibility to shaking-induced aggregation and surface-activity was 
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reported55. However, it seems that also significantly surface-active mAbs can be very 

resistant to agitation-induced aggregation51. Furthermore the degree of IgG-aggregation 

during agitation-studies is strongly influenced by the filling volume and the existence of a 

head space in the shaken container vial27. In the absence of a head-space (exchange of the 

air-water-interface by a glass-water interface) the IgG-antibody remains stable whereas the 

existence of a head space causes significant aggregation. Finally also the concentration as 

well as the type of ions is found to have an influence on mAb-aggregation during agitation52. 

With increasing ionic strength agitation-induced aggregation is increased. The nature of the 

examined cations does not influence aggregation, however the selection of anions has a 

strong influence on shaking-induced aggregation52. 

Also for recombinant human growth hormone (rh-GH) extensive investigations were carried 

out regarding the behavior after mechanical stressing and exposure to the air–water–

interface. Rh-GH was found to aggregate after vortexing or when being shaken in glass 

vials43,47. In addition investigations were carried out that concluded that shear forces alone 

cannot be made responsible for rh-GH–aggregation after mechanical stressing but that the 

presence of an air–water–interface is a necessary prerequisite56. This behavior was 

demonstrated by investigations using a rotor–stator–device and a nitrogen–bubbling–

method57. Furthermore rh-GH tends to aggregate in the presence of other hydrophobic 

surfaces such as PTFE whereas the behavior under thermally denaturing conditions cannot 

be correlated to denaturation at hydrophobic surfaces58. Similar findings are reported for 

lysozyme and insulin inactivation in the presence of the hydrophobic surfaces PTFE and air 

whereas the presence of less hydrophobic glass material caused a smaller degree of 

inactivation46,59. 

Little studies are available on the behavior of the third model protein of this thesis, rh-GCSF, 

during agitation. In studies on PEG-GCSF it was found that there is an inverse relationship 

between concentration of the protein and susceptibility to agitation-induced aggregation53. 

Since a later work has found that the aggregation mechanism of PEG-GCSF is very similar 

to that of rh-GCSF it can be assumed that the findings for PEG-GCSF apply to rh-GCSF in a 

similar manner60. 

2.3 AGGREGATION DURING FREEZE-THAWING AND IN THE PRESENCE OF 

MICROPARTICLES/VARIOUS SURFACES 

As a third major induction factor for protein aggregation, freezing and thawing (F/T) 

processes are discussed. F/T processes occur at multiple stages during manufacturing, 

processing, storage and analytics of protein pharmaceuticals17. For instance, protein bulk 

solutions are routinely stored at -70°C as an intermediate step during commercial protein 

pharmaceuticals production, assuming increased long-term stability as compared to storage 

in the liquid state. For subsequent processing bulk solutions have to be thawed again. 
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Protein solutions may also be unintentionally frozen due to inappropriate handling of the final 

parenteral protein products and finally protein samples may also be frozen and thawed later 

for analytical purposes when analytics cannot be carried out immediately. All of the 

mentioned processes may also occur repeatedly, thereby exposing the proteins to significant 

stress that has to be overcome17.  

Numerous studies identifying factors influencing protein stability during freezing and thawing 

and characterizing resulting protein instability are available. Obviously, the factors controlling 

protein stability in solution - conformational and colloidal stability - also influence a protein’s 

susceptibility to freeze-thawing-induced degradation with pH and ionic strength being the key 

parameters29,61-62. In addition, some further factors specific for freeze-thawing-induced stress 

also influence the extent and the characteristics of protein instability. It was found that 

freezing by itself can perturb a protein’s native conformation: cold denaturation63. Freezing 

processes can also lead to freeze-concentration-processes with locally increased protein-

concentration that can result in elevated aggregation rates as already discussed above along 

with the section dealing with aggregation at the air-water interface. In addition, exposure to 

the ice-water-interface is reported to induce protein unfolding and subsequent aggregation 

processes, rendering freeze-thawing-stress a further surface-induced protein instability58. 

Since exposure to the ice-water-interface triggers protein instability, it has to be assumed, 

that protein-concentration is of importance, because a more favorable protein-surface-ratio 

can be achieved at high protein concentrations thereby decreasing the rate of aggregation. A 

lower fraction of protein exposed to the surface also explains why there are several reports 

on decreased protein aggregation despite increasing protein concentration62, which usually 

leads to accelerated aggregation rates in solution as experienced with highly concentrated 

antibody formulations22,64. However, it is reported that this rule does not necessarily always 

hold true for antibodies, because it is reported that the increase of the concentration of a 

chimeric antibody (L6) did not inhibit F/T-induced aggregation14,54. 

Exposure of the protein to the ice-water-interface also explains why the freeze-thawing-rates 

can have an influence on protein stability. One would expect that very fast freezing- and 

thawing-rates minimize damage of the proteins because that way the time of exposure to the 

harmful ice-water interface is as short as possible. However, several reports state that even 

very fast freezing and thawing, for instance achieved by immersion into liquid nitrogen, did 

not stabilize the proteins under investigation compared to slower freezing and thawing 

rates58. In contrast, too slow freezing rates may foster crystallization of solution components 

thereby leading to accelerated aggregation rates6,65. Finally, also the container material and 

geometry as well as its size can be critical for protein stability, since they also alter warming 

and cooling rates and the extent of exposure to the ice-water-interfaces as well as to the 

container-liquid interface62. Consequently the prediction of freeze-thawing-induced 
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aggregation of large bulk quantities from small-scale stress testing poses a major challenge 

and if availability of protein material allows it, freeze-thawing-induced damage of the protein 

should always be evaluated at scale23. Also, since during thawing of large bulk quantities of 

protein containers are usually shaken, thawing steps include mechanical stress of the 

protein. 

For the sake of completeness it should be mentioned that also further surfaces are capable 

of accelerating protein aggregation. For instance, silica microparticles can be shed from 

glass vials during the autoclaving procedure5 and such microparticles were shown to induce 

heterogeneous nucleation processes in recombinant human platelet-activating factor 

acetylhydrolase, which lead to significant aggregation26. Removing the exogenous particles 

by filtration suppressed aggregation processes. Another study did not observe increased 

mAb-aggregation in the presence of glass-microparticles but nevertheless suggested using a 

testing protocol to routinely examine the potential effects of micro- and nanoparticles that 

could be shed form wetted surfaces66. Further solid-liquid interfaces that therapeutic proteins 

can be exposed to during their lifecycle and that were demonstrated to potentially 

compromise protein stability include the Teflon™-water interface (aggregation of insulin)67, 

stainless steel particles shed from a filling piston pump causing mAb-aggregation at their 

interface with the mAb-solution68. Also leachates from tungsten as well as silicone oil syringe 

lubricant were already reported to cause protein precipitation69-70. 
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3 EXCIPIENTS FOR THE INHIBITION OF PROTEIN AGGREGATION AND THEIR LIMITATIONS 

Protein aggregation is arguably the biggest challenge in protein formulation. The present 

work investigates ways to influence protein aggregation by the addition of a novel group of 

excipients for this purpose, cyclodextrins. In order to be able to classify the effects of 

cyclodextrins, comparisons to formulations with other excipients, which are routinely 

employed in protein formulation and which could serve as a “benchmark”, are important. 

Therefore a brief overview on commonly applied excipients will be given here beforehand. 

The application of the excipients and their mechanisms of action as well as associated risks 

with special regard to aggregation will be discussed. 

In general, it should be distinguished between the stabilization of liquid formulations and the 

stabilization of freeze–dried formulations. Since freeze-dried formulations are not subject of 

this work, excipients and mechanisms that are specific for freeze-drying are beyond the 

scope of this overview. Generally, the creation of environmental conditions that favor the 

native state and reduce attractive forces between the protein molecules taking into account 

the above mentioned parameters such as pH, temperature, ionic strength and protein 

concentration should be the aim of appropriate excipient addition. 

3.1 SUGARS AND POLYOLS 

Sugars and polyols form a group of additives that is often referred to as “preferentially 

excluded cosolvents” or “cosolutes”. This designation originates back to the Wyman linkage 

function and other derived theories, such as that by Thimasheff34. Relatively high 

concentrations of sugars and polyols, but also some amino acids and certain salts, stabilize 

the native protein state by preferential exclusion. Sucrose is probably the most studied 

excipient of this group and serves as a good model to explain the mechanism of stabilization 

by which proteins can be protected by cosolutes. The interaction between sucrose and the 

protein is thermodynamically unfavored, because of strong repulsion between the protein 

backbone and sucrose. Thus the greater the surface area of the protein, the more sucrose 

will be excluded from the protein surface. As during unfolding surface area increases, the 

amount of “negative binding” between sucrose and the protein increases. Consequently, in 

the presence of high amounts of sucrose, the native protein state is favored. Sucrose drives 

proteins towards a compact native state18,25. Consequently the population of partially-

unfolded aggregation-prone molecules is decreased and aggregation becomes less likely. 

Besides sucrose, further excipients that are also studied in this thesis, such as trehalose, 

sorbitol and mannitol, can be counted to this group of excipients. 

A potential limitation of preferentially excluded excipients arises upon adsorption of proteins 

to surfaces, such as the air-water interface. Since preferentially excluded excipients such as 

sucrose increase the water-surface interfacial tension as well as the protein-water interfacial 
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tension and leave the protein-surface interfacial tension unaltered, it can be theoretically 

demonstrated that the free energy of unfolding of a protein molecule adsorbed to a surface is 

decreased in the presence of preferentially excluded excipients5,71. Therefore preferentially 

excluded excipients inherently lead to a decreased stability of proteins against aggregation 

induced by the presence of surfaces that possibly has to be overcome by the addition of 

further excipients. 

3.2 BUFFERS AND SALTS 

Selecting the appropriate pH range is fundamental for the successful formulation of 

therapeutic proteins, as already discussed above. However, it is not sufficient to only choose 

a buffer having an appropriate pKa at an appropriate concentration. Buffers with comparable 

pKas may very well have very different influences on protein stability due to their different 

ways of interaction with proteins18. In many cases stabilization of proteins through a 

preferential exclusion mechanism is possible. The Hofmeister series for anions ranks the 

effectiveness of stabilization by anions: citrate3-/citrate 2- > PO4
3- / HPO4

2- / SO4
2- > OAc-, F- > 

Cl- > Br- > I- > ClO4
-. Attention has to be paid to the concentration of salts of this category 

because in high concentrations they remarkably decrease protein solubility. In turn this can 

lead to significant salting-out effects18. 

As already discussed in the colloidal stability section, salts can have an effect on the strength 

of electrostatic interactions between protein molecules and within one protein molecule25. By 

shielding of charges electrostatic repulsions can be decreased leading to increased 

aggregation rates at higher salt concentrations.  

Additionally binding of salts to proteins may – in the case of multivalent ions – lead to cross-

linking of charged residues thereby stabilizing the protein native state whereas the interaction 

with the peptide backbone potentially destabilizes the protein native state72-73. An overview of 

typical salts and buffers used in protein formulation is given in Table 1.1. 
Table 1.1: Salts and buffers commonly used in protein formulation. Taken from 18. 

Excipient class Choices 

Buffers 
Histidin, Succinate, Acetate, Citrate, Phosphate, 

Tris, Carbonate 

Salts 
Sodium Chloride, Calcium Chloride, Magnesium 

Chloride 

3.3 SURFACTANTS 

Currently, non-ionic surfactants are the excipients most commonly used to inhibit surface–

induced protein aggregation17,19. For example, polysorbate 80 (Tween® 80), polysorbate 20 

(Tween® 20), Brij® 35 (polyoxyethylene alkyl ether), Pluronic® F 68 and Pluronic® F 88 

(polyoxyethylene polyoxypropylene block polymer) were demonstrated to stabilize rhGH 
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against aggregation during vortexing47,57. MAbs as well were demonstrated to be stabilized 

by polysorbate against mechanical stress27,48-49 and so were a number of additional 

proteins58. 

Different mechanisms of stabilization, which appear to depend on the protein being studied, 

are described. The most obvious mechanism is a competition for adsorption at the air-water-

interface, which likely occurs in all cases even if additional routes of polysorbate-induced 

protein stabilization are operative17. In the case of inhibition of aggregation of recombinant 

Human Factor XIII during agitation,74 a saturation of the protective effect of polysorbate 20 

was reached at a surfactant concentration near the critical micelle concentration – regardless 

of which protein concentration, i.e. which surfactant–protein ratio, was employed. In addition 

no evidence for direct binding to the native or the partially unfolded species could be 

obtained using spectroscopic methods74. 

However, in other cases direct binding between the native protein and the non-ionic 

surfactant could be observed and also clearly related to the mechanism of aggregation 

inhibition43,45. For example, polysorbate 20 and polysorbate 80 stabilize the fusion protein 

albutropin against agitation–induced aggregation. By spectroscopic and calorimetric means 

the two surfactants were shown to bind to this fusion protein in a defined and saturable ratio 

at concentrations below their respective CMCs. These ratios were also applicable for 

effective stabilization against aggregation at the air–water–interface. In addition it could be 

demonstrated that the presence of polysorbate increases the thermodynamic stability of 

albutropin, thereby reducing the propensity for denaturation and subsequent aggregation45. 

In another study, weak direct binding of polysorbate to hydrophobic patches on native rhGH 

was demonstrated suggesting the blocking of aggregation–prone sites on the protein 

surface43. Finally, non–ionic surfactants may also act as “molecular chaperones” assisting 

refolding of partially denatured protein. For example, by adding non-ionic surfactants to 

denatured carbonic anhydrase II (CAII), refolding of the enzyme could be assisted and 

aggregation was suppressed75. Similar findings were reported for rhGH where a non-ionic 

surfactant reduced the extent of aggregation during refolding of a molten globule 

intermediate42. Neither direct binding of polysorbate 20 to anti-L-selecting nor thermodynamic 

stabilization of the protein by polysorbate 20 could be identified as mechanism for fostering 

the recovery upon reconstitution of freeze-dried anti-L-selectin76. 

Unfortunately, nonionic surfactants and most notably the members of the frequently used 

polysorbate family are also associated with a number of disadvantages. The use of 

polysorbate in protein formulations raises major concerns due to autooxidation of the 

ethylene oxide subunits, which may be followed by the formation of peroxides that in turn can 

lead to oxidation of the protein19. The level of peroxides in formulations of recombinant 

human granulocyte colony-stimulating factor (rhGCSF) could be correlated to the extent of 
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protein oxidation77. Dual effects of polysorbate 80 on the stability of the model protein IL-2 

were reported by Wang et al.20: inhibition of shaking-induced aggregation on the one hand 

but also increased protein oxidation and aggregation during long-term storage in non-

agitated solution. These findings are in agreement with a study on pegylated granulocyte 

colony-stimulating factor (PEG-GCSF) in which polysorbate 20 suppressed protein 

aggregation induced by agitation, but during quiescent storage increasing polysorbate 

concentrations lead to increasing amounts of aggregates53. Increased levels of aggregation 

after long-term storage despite good stabilization against surface-induced damage were also 

reported in the case of recombinant hemoglobin78. In addition, the presence of surfactants in 

protein solutions may also decrease the protein’s native state stability, which can be 

explained by a preferential binding to the unfolded state79. Finally polysorbate 80 is also 

suspected to form mixed micelles with proteins that simulate a viral structure which has been 

suggested could possibly trigger immune reactions in patients40. 

Because of these shortcomings, there is a need for alternatives (either new kinds of 

surfactants or even a different class of excipients) to the traditional polyoxyethylene-based 

surfactants. A disadvantage of new surfactants is that they are not used in approved 

parenteral products. An effective strategy would be to choose excipients that are already 

used in approved parenteral products and that may serve the same role as surfactants to 

inhibit agitation-induced aggregation of therapeutic proteins. 

Since cyclodextrins are already used in high concentrations in marketed formulations of low 

molecular weight drugs they have demonstrated their toxicological suitability for parenteral 

administration80. In addition hints are available that they could be effective at inhibiting 

aggregation of therapeutic proteins21,28,81-82. Therefore one of the aims of this thesis was to 

test the hypothesis that CDs could be used as alternatives to nonionic surfactants to inhibit 

surface-induced aggregation of therapeutic proteins. 
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4 CYCLODEXTRINS 

4.1 GENERAL CHARACTERISTICS 

4.1.1 STRUCTURES OF NATIVE CYCLODEXTRINS, THEIR DERIVATIVES AND CD POLYMERS 

 

Cyclodextrins (CDs) comprise three major classes of industrially produced, cyclic 

oligosaccharides, α-, β- and γ-CDs21,83. The three native CDs are crystalline, homogeneous, 

nonhygroscopic substances which have a torus- or truncated cone-like shape. Since CDs are 

manufactured from starch they are built up by α-glucopyranose units. The enzyme forming 

CDs is glucosyltransferase, which splits starch chains and rearranges molecules83. 

The system of nomenclature of CDs is based on the number of glucose residues in their 

structure. α-cyclodextrin comprises six glucopyranose units, β-CD is a heptamer and γ-CD is 

constituted of eight glucose molecules83. CDs containing fewer than six glucose-units can 

sterically not be formed whereas of the higher homologues only a nine-membered ring has 

been characterized, but is not industrially produced and did not have any practical 

importance so far21,83-84. Figure 1.1 shows a schematic representation of the three major 

naturally occurring CDs. 

So–called branched CDs result when a section of the amylopectin molecule containing a 

branching point is incorporated into the cyclic structure thereby attaching one or two glucosyl 

or maltosyl side chains to the ring. In the 1950s these branched cyclodextrins have also been 

described as ε-CDs83. A number of papers indicate that the use of branched cyclodextrins is 

increasing again82,85. 

Crystal structures reveal that α-, β- and γ–CDs have a doughnut-like, annular structure with a 

wide and a narrow hydrophilic end86. The narrow end is defined by O(2)H and O(3)H 

secondary hydroxyl groups and the wide end is marked by O(6)H primary hydroxyl groups. 

The hydrophobic cavity consists of H(3), H(5) and H(6) hydrogens and O(4) ether oxygens. 

Glucose molecules are arranged rather rigidly in a 4C1 chair conformation86. Figure 1.2 gives 

an idea of β-CDs’ geometry and the localization of the hydroxyl groups that line the narrow 

and the wide end of the “doughnut – structure”. 
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Figure 1.1: Schematic representations of the three major native cyclodextrins: α-CD (a), β-CD (b), γ-CD (c) 
containing 6, 7 and 8 glucopyranose units, respectively. Taken from 21. 

Using neutron diffraction it could be demonstrated that the CD - structure is stabilized in the 

solid state by intramolecular hydrogen bonding between the secondary hydroxyl groups of 

neighbored glucose units86. Especially in β-CD, a complete secondary belt is formed by 

these hydrogen bonds. This in turn explains the remarkably low solubility of β-CD in water 

compared to α-CD (belt is incomplete) and γ – CD (more flexible, non-coplanar structure)86. 

The water solubility (w/w) of the three parent CDs at ambient conditions varies non linearly 

from approximately 13% to 2% to 26% for α-CD, β-CD and γ – CD, respectively21. 

Substitution of any of the intramolecular hydrogen bond forming hydroxyl groups results in a 

dramatic increase of aqueous solubility even if the substitutes are hydrophobic moieties such 

as methoxy and ethoxy functions because hydrogen bond formation of the unsubstituted 

hydroxyl groups  with surrounding water molecules will be possible87. 

The annular volumes and diameters increase remarkably from α-CD to γ–CD which can be 

seen in Table 1.2. Table 1.2 also summarizes other important characteristics of the three 

major native CDs.  
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Figure 1.2: Schematic representation of the geometry of β-CD. Taken from 21. 

Besides the enhanced possibility to form hydrogen bonds with water, another mechanism 

that increases the solubility of CDs by substitution is the prevention of their crystallization. By 

derivatization a statistically substituted material that is made up of many isomeric 

components is created and leads to the formation of an amorphous product21. Furthermore 

derivatization not only improves solubility but can also reduce the toxicological potential and 

hemolytic activity of many CDs, especially of ß-CD88. 
Table 1.2: Key characteristics of native CDs. Adapted from 86. 

CD α-CD β-CD γ-CD 

Number of glucopyranose units 6 7 8 

Molecular weight (anhydrous) 972.85 1134.99 1297.14 

Solubility per dm3 H2O at 298.2 K 14.5 1.85 23.2 

Annular diameter from the C (5) hydrogens [Å] 4.7 6.0 7.5 

Annular volume [Å3] 174 262 472 

 

On the surface of the CDs 18 (for α-CD), 21 (β-CD) or 24 (γ-CD) hydroxyl residues can be 

found and modified chemically. The highest reactivity was observed for the C6 – OH groups 

whereas the C3 – residue was found to be least reactive83. However the difference in 

reactivity is not large. Thus the preparation of selectively derivatized CDs is a rather complex 

task that is not accomplished on a routine industrial level. The complexity of a statistically 

substituted mixture of CD – derivatives can well be studied looking at the example of β-CD. 

As already mentioned there are 21 hydroxyl functional groups and thus 221 – 1 substitutions 

without even considering optically active centers are possible21. 

Because of its cavity diameter dimensions and its good inclusion properties (see below) β-

CD – derivatives have gained a lot of attention. The first derivates reported were the heptakis 

(2,6-di-O-methyl)-β-CDs and the group of dihydroxypropyl-derivatives which can be prepared 

by a reaction of epichlorhydrin with natural CDs in alkaline aqueous solution83. A third group 

that has been specified in terms of molecular weight distribution, is the group of 

hydroxyalkylated CDs, such as hydroxyethyl-, 2-hydroxypropyl and 3-hydroxypropyl –CDs83. 
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For 2-hydroxypropyl-β-CD (HPβCD) both a European Pharmacopoeial and a United States 

Pharmacopoeial monograph exists specifying a molar substitution between 0.4 and 1.589. It 

is also specified that not more than 1.5% unsubstituted β-CD should be present89. Another 

hydroxypropylated CD derivative, HPγCD, has also gained a certain but not as widespread 

importance as HPβCD21. 

 
Figure 1.3: Selection of CD-derivatives that are frequently used in pharmaceutics. Taken from 90. 

Another commonly applied derivatization is methylation. When increasing the degree of 

methylation, the solubility of β-CD increases until about 2/3 of all hydroxyl groups on the 

molecule are methylated83. Especially randomly methylated β-CD (RMβCD) has been closely 

examined for potential applications, as it provides good biocompatibility as well as useful 

complexing efficiencies21. Sulfobutylether derivates belong to the group of CDs that has most 

recently been applied in FDA-approved parenteral products, notably the 2–Sulphobutylether-

β-CD (SBEβCD) which is contained in several commercially available preparations21. Figure 

1.3 gives an overview on the structures of some of the pharmaceutically relevant chemical 

derivatives of β-CD. 
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4.1.2 MECHANISM OF COMPLEX FORMATION 

It has been described earlier that the central cavities of the CD-molecules are lined with 

skeletal carbons and etheral oxygens of the glucose residues, which render them lipophilic. It 

could be demonstrated that the polarity of the central cavity is comparable to the polarity of 

an aqueous ethanolic solution87. Therefore a hydrophobic micro-environment is created in 

the interior while the cavity exterior of cyclodextrins is hydrophilic due to the presence of 

hydroxyl functions. This amphiphilic property of CDs is responsible for the aqueous solubility 

of the CD-molecules on the one hand and for the ability to encapsulate hydrophobic moieties 

on the other hand. 

The incorporation of suitably sized drug molecules is the reason for most pharmaceutical 

applications of CDs86. During the drug-CD complexation process no covalent bonds are 

formed or broken. In an aqueous solution there is a constant equilibrium between molecules 

that are included in the hydrophobic interior of the host CD and free molecules21. During the 

inclusion process either the entire guest molecule may be included or as it is the case for 

proteins only a certain part of the guest molecule is incorporated into the hydrophobic cavity. 

The included molecules are normally oriented in the host in a position that allows for 

maximum contact between the hydrophobic part of the guest and the apolar CD cavity, 

thereby leaving as much as possible of the hydrophilic part of the guest molecule at the outer 

face of the complex86. That way maximum contact with both the solvent and the hydroxyl 

groups of the host-CD is ensured. 

A number of different thermodynamic effects occurring at the same time can explain the 

complex formation. In most cases a rather large negative ΔH and a ΔS that can be either 

positive or negative are observed upon complex formation87. “Classical” hydrophobic 

interactions, which are associated with a positive ΔH and also a large positive ΔS (i.e. an 

entropy driven reaction), can therefore be excluded as single driving force for complex 

formation. Evidence is available that van der Waals forces are also involved in the 

complexation process87. A term named “compensation” describes the fact that for many 

inclusion complexes between drugs and CDs a linear relationship between ΔH and ΔS is 

observed. This observation is often taken as a hint that the release of enthalpy-rich water 

from the CD – cavity is the major driving force of the complexation process91. In addition, 

other effects like a release of ring-strain seem to play a role as well87. 

4.1.3 TOXICOLOGICAL AND PHARMACOKINETIC SUMMARY 

Safety is a major concern when new excipients for pharmaceutical formulations are 

introduced. Therefore also CDs need to exhibit good biocompatibility in order to be 

pharmaceutically considered. In the case of CDs toxicity is strongly dependent on the route 

of administration88. Since in this thesis CDs are examined for their potential as excipients in 

protein formulations only parenteral toxicity is discussed in this paragraph. 
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An important aspect regarding safety of drug excipients is their level of cytotoxicity. Studies 

with CDs and isolated erythrocytes showed that CDs are capable of interacting with 

components of biomembranes92. The hemolytic activity was found to be in the order β-CD > 

α-CD > γ-CD reflecting the different solubilization rates of membrane components by each 

cyclodextrin92. The extraction of membrane cholesterol by CDs results in an increased 

membrane fluidity, which then induces membrane invagination and can consequently – using 

high doses of CDs – lead to lysis of the cell. Besides cholesterol, CDs can also extract 

phospholipids and for β – CD it was even shown that it can remove proteins from erythrocyte 

membranes88. The mechanism of interaction with membranes is different from the one that 

can be observed with surfactants because CDs do not incorporate into the lipid bilayer but 

form new lipid containing compartments outside the membrane85,88. 

For parenteral administration toxicity on the kidneys is the most critical constraint. For α – 

CDs and β – CDs nephrotoxicity is manifested through alterations in vacuolar organelles of 

the proximal tubule and further cellular changes that were irreversible and ultimately toxic to 

the cells88,93. For β-CD additional toxicity arises from its bad aqueous solubility which leads to 

microcrystalline precipitation in the kidney. Furthermore, the complexes formed by β-CD and 

cholesterol can accumulate in the kidney and produce renal tubule damage as well. The LD50 

values of α -, β - and γ – CDs for intravenous administration are approximately 1.0 g per kg, 

0.79 g per kg and more than 4.0 g per kg, respectively. Many of the described problems can 

be attenuated by functionalizing the parent CDs21. As described earlier, improving aqueous 

solubility can be achieved by almost any substitution on the native CD-molecules83. 

However, an increase in solubility does not necessarily also solve systemic toxicity problems. 

For example, the improved solubility of methylated CDs did not lead to reduced toxicity88. On 

the other hand, conversion of crystalline β-CDs into amorphous HPβCD by hydroxyalkylation 

yielded highly water soluble molecules with very low systemic toxicity94. Furthermore, also 

sulfoalkylethers of β-CDs are reported to be well tolerated 95. Sulfobutylether-β-cyclodextrin 

can be found in FDA-approved products as well as HPβCD80. Typical concentrations  

Intravenously administered CDs are rapidly eliminated from systemic circulation. CDs are 

mainly excreted via the kidneys in an unmetabolized form88. Furthermore no deep 

compartment storage occurs and the Vss is therefore comparable to the extra cellular fluid 

volume. In addition, it can be observed that the plasma clearance rates are in the same order 

of magnitude as for inulin which is known to be eliminated at the rate of glomerular filtration 

(about 110 – 130 ml/min in humans)88. 

 

4.2 PHARMACEUTICAL APPLICATIONS OF CYCLODEXTRINS 

In oral drug delivery the main mechanism of action of cyclodextrins is explained by an 

increase of drug bioavailability which can be achieved by an increase in the apparent rate 
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and extent of drug dissolution upon CD complexation, provided that dissociation of the drug 

is the limiting step of the overall resorption process21. This application may become 

increasingly important as retrospective studies have proved that more than 40 % of failures 

during drug development are due to poor biopharmaceutical properties21. The reasons for 

these bad biopharmaceutical properties are notably poor dissolution, as drugs are becoming 

increasingly lipophilic, and also poor permeability due to a tendency towards increasing 

molecular weights96-97. 

Other applications of CDs in oral drug delivery include a possible increase in drug stability or 

release time during gastrointestinal (GI) transit which can be accomplished through a 

modification of the drug release site and time profile90. Furthermore, a decrease in local 

tissue irritation can be achieved by the use of cyclodextrins which could be demonstrated 

e.g. for β – cyclodextrin in piroxicam-formulations90,98. Furthermore masking of poor taste has 

been reported to be possible with CDs. For example α-CD was able to mask fenbufen 

bitterness99. 

In parenteral drug delivery the main reason to apply CDs is their capability to solubilize 

drugs86. That way the administration of poorly water-soluble drugs for intravenous and 

intramuscular dosing can be made feasible. As explained earlier the main critical factor 

limiting the potential use of CDs as solubilizing agents is their systemic toxicity. In addition 

also the question whether a linear relationship between drug solubility and the concentration 

of added CDs exists can have an effect on the acceptability of CDs in parenteral 

formulations. This linear relationship is necessary for dilution steps because a non – linear 

relation will possibly result in precipitation of the drug upon dilution90. Marketed intravenous 

formulations containing CDs, include HPβCD for the formulation of the antifungal agent 

itraconazol (Sporanox®). Another formulation containing HPβCD was approved by the FDA 

for the formulation of Mitomycin C (MitoExtra®). Moreover, SBEβCD was approved in 

formulations of voriconazole for i.v. application (Vfend®) and in formulations of ziprazidone 

for i.m. application (Zeldox®)21. 

Besides the application of CDs with the purpose to improve drug solubility, decreasing the 

irritation level at the site of administration seems to be possible, too. Other applications of 

CDs in parenteral formulations comprise the improvement of stability of drugs in an aqueous 

environment90, such as for example in the commercial preparation of prostavasin together 

with α-CD. 

Apart from the mentioned pharmaceutical applications of CDs many other possibilities to 

exploit the unique physico-chemical properties of CDs are either under investigation or 

already accomplished and readily available on the market. These applications include the 

conversions of liquids into powders, the reduction of evaporation and thus for example the 
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stabilization of flavors21. Finally, hemolysis can potentially be inhibited and also admixture 

incompatibilities may be prevented by CDs21.  

4.3 CYCLODEXTRINS AS EXCIPIENTS FOR PROTEIN FORMULATION 

A number of drug-CD complexes have already been marketed for parenteral use. However, 

these products exclusively contain low-molecular-weight drugs21,100. In the following section 

results of studies examining the potential use of cyclodextrins in protein formulations are 

discussed. Mainly due to their ability to bind to solvent-exposed hydrophobic residues CDs 

have been found to suppress aggregation of several therapeutically relevant proteins101. In 

turn this can also lead to stabilization of the unfolded state102-103. 

CDs’ ability to suppress aggregation has also been exploited for the use in simple artificial 

chaperone systems based on the ability of CDs to interact with denatured/aggregated 

proteins in a way that allows for natural refolding. These artificial chaperone systems 

frequently comprise a combination of a detergent and a CD104-107. 

4.3.1  CYCLODEXTRIN-PROTEIN INTERACTIONS: EXAMPLES AND STRUCTURAL BACKGROUND 

Many studies have already been dedicated to elucidate the structural basis of the interaction 

between CDs and proteins from different perspectives. Almost all studies have identified 

aromatic amino acid residues as the main site of interaction with CDs. Notably β-CD-

derivatives whose cavity diameter allows a fit of Phe, Tyr, His and Trp into the hydrophobic 

moiety shows this kind of interaction28,101,108-112. However, according to Otzen et al., 

interaction should not generally be limited to aromatic amino acids28. Linear chains, for 

example of Ile, also allow a good fit into the α-CD cavity. However, binding affinities of 

aliphatic amino acids towards β-CDs are several fold lower than binding affinities of aromatic 

amino acids towards β-CDs28. 

A wide range of techniques to identify the precise sites of interaction has been applied. The 

interaction between human growth hormone (rh-GH) Phe- and Tyr-residues and H-3 and H-5 

on the interior of the hydrophobic cavity of β-CD has been proven on an atomic level using 

NMR28. In another study NMR spectroscopy was also chosen for the investigations because 

it is capable of providing atomic level information about complex supramolecular systems101. 

Circular dichroism in contrast was not sensitive enough to measure the rather weak 

interactions between rh-GH and β-CD. Aachmann et al. detected a multitude of interactions 

between aromatic residues in insulin and β-CD, but no interactions at all between aliphatic 

residues and β-CD101. Furthermore, the same study proved that for the interaction of two 

other proteins (CI2 and S6) with β-CD also aromatic residues were responsible (Phe, Tyr). In 

contrast, ubiquitin could not be complexed at all, which is probably due the fact that it has no 

solvent exposed aromatic amino acids – an important observation that has to be considered 

throughout this entire work, too101. 
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For studying the interaction of cyclodextrins with peptides containing aromatic amino acids 

Horsky and Pitha used competitive spectrophotometry109. In their study oligopeptides 

containing aromatic amino acids served as models for unfolded protein structures and it 

could be demonstrated that the affinity of interaction between CDs and the oligopeptides was 

at least as high as for the interaction of CDs and the isolated amino acids. An observed slight 

increase in affinity compared to studies with the amino acids themselves was explained by 

potential hydrogen bonding between the peptide backbone and secondary hydroxyls on the 

proteins. 

A further study110 applied steady-state and time-resolved fluorescence spectroscopy as well 

as fluorescence polarization to study the interaction of a Trp-residue in melittin with HPβCD. 

Cryogenic measurements of the melittin fluorescence spectra showed Trp to be in a low 

water environment after addition of HPβCD. Therefore interaction between the lone Trp 

residue and HPβCD is very probable. Again association of the polypeptide with the CD 

showed a dissociation constant (Kd) that is rather low and that lies within the range of the 

association of HPβCD with the single amino acid. 

Finally another study111 combines a number of different methods for the examination of the 

interaction of HPβCD with [D-Trp6, Des-Gly10] LHRH. Using UV and fluorescence 

spectroscopy a change in polarity of the environment of the chromophores occurred. Circular 

dichroism and ITC further supported the view that aromatic amino acids of deslorelin were 

included in the hydrophobic cavity of HPβCD.  

In addition, a number of crystal structures of carbohydrate-binding proteins in complex with 

cyclodextrins can be obtained from the PDB database. For example the crystal structure of 

cyclodextrin glycosyl transferase with β- CD can be found there113. Most of the interactions 

between CDs and carbohydrate binding proteins also seem to take place between aromatic 

amino acids and the hydrophobic interior of the CDs101. 

4.3.2 STOICHIOMETRY AND AFFINITY OF INTERACTION; THERMODYNAMIC STUDIES 

In most studies no clear stoichiometry of the binding of CDs to proteins could be determined. 

In the cases of peptides containing only one aromatic amino acid residue, such as for 

melittin110, the site and stoichiometry of interaction is obvious. However, for rh-GH matters 

are already more complicated. Electrospray ionization mass spectrometry (ESI-MS) studies 

could show that rh-GH has at least two binding sites for the interaction with maltosyl-β-CD85. 

Further two-dimensional NOESY-spectra also indicate that rh-GH provides at least two 

different sites of interaction with β-CD in the native state28. For steric reasons probably only a 

fraction of potential interaction sites is populated by CDs at a given point of time. Naturally in 

the denatured state (for instance in the acid-denatured state as demonstrated for rh-GH28) an 

even larger number of amino-acids will be solvent accessible and therefore potentially be 

able to interact with cyclodextrins. A thermodynamic study of thermal unfolding of proteins 



  Chapter 1 

  23 

using DSC and assuming identical and independent binding sites on the unfolded state of the 

proteins came to the result that Lysozyme, RNAse and Ubiquitin should contain 12, 5.4 and 

3.7 binding sites, respectively102. These estimates are rather consistent with aromatic amino 

acid contents of the three proteins (Lysozyme 6 Trp, 3 Tyr and 3 Phe; RNAse 0 Trp, 6 Tyr, 3 

Phe and Ubiquitin 0 Trp, 1 Tyr, 2 Phe). 

For insulin Aachmann et al. have determined four sites of interaction on the monomeric form 

of insulin and one per subunit on the dimeric form of insulin101. In that study it was not 

possible to determine single dissociation constants for interaction sites. The data of 

Aachmann et al. is at least in part consistent with data from thermodynamic studies114 in 

which by using calorimetric dilution data it could be determined that insulin monomer 

contains at least two binding sites.  

Table 1.3 gives an overview on the binding affinities between different CD-derivatives and 

proteins as well as model peptides that have been determined in the different studies. The 

global dissociation constants are listed if not indicated otherwise. 

 
Table 1.3: Binding affinities of different CD-derivatives to therapeutic proteins. 

CD-derivative 
Protein / 
Peptide 

Kd [mol/L] 
Analytical method of 
determination 

Reference 

HP-βCD Rh-GH 4.6 * 10-3
 Fluorescence titration Otzen et al.28 

Methyl-β-CD Insulin at 55°C 2.1 * 10-3 ESI-MS and 1 H NMR 
Dotsikas and 

Loukas108 

HP-βCD Trp-Gly 2.0 * 10-2 
Competitive 

spectrophotometry 

Horsky and 

Pitha109 

β-CD Aspartame 6.7 * 10-3 Competitive 

spectrophotometry 

Horsky and 

Pitha109 

HP-βCD Melittin 5 * 10-2 Fluorescence (time – 

resolved and steady -state) 

Khajehpour et 

al.110 

HP-βCD 
[D-Trp6, Des-

Gly10] LHRH 
8 * 10-3 

Isothermal titration 

calorimetry 

Koushik et 

al.111 

Methyl-β-CD Insulin 
Kd1 =5 * 10-2 

Kd2=1.5*10-1 
Dilution microcalorimetry Lovatt et al.114 

G2-β-CyD 

(branched) 
Rh-GH 5.8 * 10-3 Fluorescence method 

Tavornvipas et 

al.82 

HPβCD Rh-GH 1.3 * 10-2 Fluorescence method 
Tavornvipas et 

al.82 
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Thermodynamic studies do not only yield information on binding affinities and the number of 

interaction sites, but also demonstrated reduction of the thermal stability of proteins in the 

majority of cases. For globular proteins this has first been demonstrated by Cooper et al102. 

They found that the binding of CD-derivatives to exposed side chains destabilized the native 

folded form of globular proteins (lysozyme, RNase A, ubiquitin, phosphoglycerate kinase)  as 

evidenced by a decrease of Tm observed in DSC – studies. This observation has been 

confirmed later on for example by Tavornvipas et al.81 who found that the addition of a variety 

of CD-derivatives to lysozyme formulations leads to a decrease in Tm. Interestingly in an 

earlier study Tavornvipas et al. reported an increase in Tm upon the addition of branched 

CDs to formulations of rhGH82. Surprisingly, their interpretation of these results was that the 

interactions of branched CDs with accessible hydrophobic side chains in the rhGH molecule 

lead to a less compact conformation of the protein. 

4.3.3 CYCLODEXTRINS AS INHIBITORS OF PROTEIN AGGREGATION 

As a number of the presented studies have shown, CDs can lead to a preferential 

stabilization of the unfolded state. On the other hand interaction with hydrophobic groups on 

protein oligomers can lead to dissociation of protein aggregates, notably when the interaction 

occurs at sites in the protein-protein interface. For example, this behavior was observed for 

the enhanced dissociation of bovine insulin dimers in the presence of different 

cyclodextrins103,114. Furthermore, not only the dissociation of existing aggregates by CDs has 

been reported but also the inhibition of protein aggregate formation a priori is demonstrated 

in a number of cases. Examples are available for insulin108, rh-GH28,82 and several other 

proteins115-116. Protein aggregation represents a major drawback in the development of stable 

and safe protein formulations and therefore the significant potential of CD-derivatives to 

suppress aggregation has attracted a lot of interest and a veritable number of studies 

examining the effect of different classes of CDs on protein aggregation can be found in 

literature. Table 1.4 gives an overview on studies and results. 

Interestingly, in the study of Tavornvipas et al.82 a correlation between the extent of reduction 

of aggregation and binding constants between CD-derivatives and rh-GH was found. In their 

study branched CDs turned out to be most efficient in the prevention of chemically and of 

thermally induced unfolding and these CD-derivatives also showed the highest stability 

constants of all CDs tested in the study. HPβCD, which proved useful only in the prevention  



 

 

Table 1.4: Effect of different CD-derivatives on aggregation of a number of therapeutic proteins. 

Protein CDs 
Molar ratio 
CD:protein 

Accelerated stability 
model 

Effect on inhibition of aggregation References 

Lysozyme 
12 different CD-

derivatives 
10-40 

Chemical denaturation 

with GdmHCl 

Branched β-CDs and DMβCD most 

effective 

Tavornvipas et 

al. 81 

bFGF 9 different CDs > 10000 
Chemical denaturation 

with GdmHCl 
DMβCD most effective 

Tavornvipas et 

al. 81 

Lysozyme 5 different CDs 666 
Thermal denaturation by 

DSC 

Branched β-CDs and DMβCD most 

effective 

Tavornvipas et 

al. 81 

bFGF 6 different CDs 830  
Thermal denaturation by 

DSC 

SBEβCDs most effective - because 

protein charged? 

Tavornvipas et 

al. 81 

bFGF 7 different CDs 850 Acid inactivation 
SBEβCDs most effective – because 

protein charged? 

Tavornvipas et 

al. 81 

Salmon calcitonin 
β-CD and 

derivatives 
5 

Thermal challenge at 

55°C 

Native CDs no effect, HPβCD and 

RMβCD increase stability 

Sigurjonsdottir 

et al. 116 

Bovine carbonic 

anhydrase 

16 derivatives of α-

, β- and γ-CDs 
1500 

Denaturation in 6M 

GdmHCl 
Acetyl-CDs most effective,  

Sharma, 

Sharma 115 

O-GH HPβCD 0 – 400 
pH = 7.4 (O-GH stable at 

pH =11) 
Clear solution obtained 

Brewster et al. 
117  

IL-2 HPβCD 0.0 - 250 Lyophilization 
Clear solutions beginning at 2-fold 

concentration obtained 

Brewster et al. 
117 

Bovine insulin HPβCD 400 Long – term stability Good prevention of precipitation 
Brewster et al. 
117 

MN12 (Mouse IgG2a 

Monoclonal Antibody) 
HPβCD 50 

Lyophilization and 

storage 

More effective than sucrose or dextran 

as lyoprotectant 

Ressing et al. 
118 



 

 

Protein CDs 
Molar ratio 
CD:protein 

Accelerated stability 
model 

Effect on inhibition of aggregation References 

Porcine Growth 

Hormone 
HPβCD 0 - 400 Thermal (63°C for 1h) Significant reduction of precipitation 

Charman et al. 
119 

Porcine Growth 

Hormone 
HPβCD 0 – 400 Guanidine dilution Ineffective 

Charman et al. 
119 

Porcine Growth 

Hormone 
HPβCD 0 – 400 

Interfacial denaturation 

(vortexing for 60s) 
Significant reduction of precipitation 

Charman et al. 
119 

Rh-GH 

β-CD, HPβCD and 

various branch-ed 

CDs 

233  

(50mM CD and 

4.73mg/ml protein) 

Chemical denaturation 

(4.5M GdmHCl) 

Branched CDs significantly inhibit 

aggregation, better than α-, γ- and 

HPβCDs 

Tavornvipas et 

al. 82 

Recombinant Rh-GH 

β-CD, HPβCD and 

various branch-ed 

CDs 

233  

(50mM CD and 

4.73mg/ml protein) 

Thermal denaturation 

(DSC) 

Branched CDs significantly inhibit 

aggregation, better than α-, γ- and HPβ-

CDs 

Tavornvipas et 

al. 82 

Rh-GH 

β-CD, HPβCD and 

various branch-ed 

CDs 

233  

(50mM CD and 

4.73mg/ml protein) 

Interfacial denaturation 

(vortexing) 

HPβCD superior to other CDs due to its 

surface activity 

Tavornvipas et 

al. 82 

Rh-GH 
α- , γ – CD, various 

β-CD derivatives 

Up to 70 mM of CDs 

used 
pH = 2.5; 1M NaCl 

HPβCD, Glucosyl-β-CD, SBEβCD many 

fold more effective than α- and γ-CD, 

sulfated CD and monoacetyl-CD not 

effective at all 

Otzen et al. 28 

Recombinant mink 

and porcine growth 

hormone 

α-, β- and γ-CDs, 

varying degrees of 

substitution 

Up to 150 mM of CDs, 

Up to 4.9 mg/ml of 

protein ( ratio up to 670) 

Renaturation after urea 

unfolding 

Increased renaturation yield, best 

results with HPβCD and MβCD; 

Increased onset of unfolding temp. 

Bajorunaite et 

al.120 

Mink growth hormone 
HPβCD, MβCD, 

Acetyl-β-CD, γ-CD 

0.2 mg/ml mGH, up to 

45 mM CD (ratio 4950) 
Incubation at 60°C for 5h HPβCD and MβCD most effective 

Bajorunaite et 

al.120 
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of interfacial aggregation of rh-GH, showed a weaker stability constant and was determined 

to be less effective in reducing aggregation in most cases. It was suggested that HPβCD acts 

in a manner similar to non-ionic surfactants by displacing the protein from the interface and 

thereby preventing surface-induced unfolding and subsequent aggregation. In contrast, for 

the stabilization against chemically and thermally induced aggregation by branched 

cyclodextrins, efficient binding was identified as a prerequisite for stabilization. 

Looking at the results of the studies presented in Table 1.4 it is difficult to identify general 

patterns that could lead to a more rational use of certain types of CDs in protein formulations. 

What might be useful for one therapeutic protein can be without any significant effect for 

another protein or even compromise protein stability. CD-derivatives inhibiting aggregation 

arising from a certain stress condition can be incapable of inhibiting aggregation under 

another stress condition. To solve this problem and in order to provide a rational for using 

CD-derivatives in protein formulation, Aachmann et al. suggest paying attention to highly 

solvent accessible exposed hydrophobic residues on the proteins, which could be an 

important but not compelling prerequisite for the interaction of proteins and CDs101.  

Another systematic approach could comprise a more detailed investigation of the effects of 

substitution of the CD-ring as the type of substitution seems to be of great influence on the 

capability to inhibit aggregation (Table 1.4). Further approaches towards a more rational 

application of cyclodextrin-derivatives in protein formulation should link the binding affinity 

between CDs and proteins to the effect on aggregation, as already reported once by 

Tavornvipas et al.82 Finally, since for HPβCD surface-activity was proposed as a reason for 

protein-stabilization it is suggested here that the composition of surface layers of mixed CD-

protein solutions should be studied. 

4.3.4 CYCLODEXTRINS AS FOLDING AIDES / ARTIFICIAL CHAPERONES 

It is reported that CDs can be used in vitro as folding assistants. An example is the 

application of CDs as protein folding aids for carbonic anhydrase B121. This involves a one-

step technique with the CD introduced in the solution of the denatured protein. The CD 

transiently interacts with the non-natively folded protein thereby supposedly shifting the 

equilibrium from intermolecular interaction between the peptide segments towards 

intramolecular association that favors natural refolding. This technique is often referred to as 

“dilution additive mode”107,122. 

In other studies CDs have even been found to behave as artificial chaperones. The 

endogenous GroE chaperone system served as a model for the development of an artificial 

chaperone system. Like the endogenous GroE chaperone system the artificial chaperone 

acts by a two step mechanism. In the first step binding of a detergent that captures the non-

native protein prevents aggregation but on the other hand also renaturation. In a second step 

the detergent is stripped away from the protein by the addition of a suitable stripping agent. 
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Figure 1.4: Artificial refolding of denatured proteins. Taken from 106. 

Cyclodextrins have proved to be useful as stripping agents in the cases of CAB122, citrate 

synthase106 and Lysozyme107. As these three proteins are structurally very different from 

each other a general applicability of the system can be assumed. Figure 1.4 gives an 

overview on the different ways of artificial refolding of non-native proteins. 
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5 SUMMARY OF INTRODUCTION 

Protein aggregation is one of the biggest challenges in protein formulation development, 

since it can severely influence safety and efficacy of protein drugs. Therefore it is essential to 

understand and also control the driving forces of protein aggregation. Besides carefully 

maintaining appropriate manufacturing, processing, shipping and storage conditions as well 

as selecting optimal solution conditions the use of excipients to inhibit aggregate formation is 

without alternative. However, all major groups of excipients that are commonly used in 

protein formulation suffer from certain short-comings. Sugars and polyols, which are 

preferentially excluded from the protein-surface, destabilize proteins after adsorption to 

interfaces. Therefore they are usually combined with non-ionic surfactants, which reduce the 

extent of surface-induced aggregation. Polysorbates are by far the most commonly employed 

non-ionic surfactants in protein formulation. However, due to residual as well as in-situ 

forming peroxides, addition of polysorbate might also lead to increased protein degradation 

rates. Furthermore, mixed polysorbate-protein micelles have been associated with severe 

immunogenic events in patients. Hence there is a need for new excipients that could either 

complement or even substitute common excipients such as non-ionic surfactants. 

Cyclodextrins comprise a family of cyclic oligosaccharides that exist in a great variety of 

chemical derivatives. Two cyclodextrins are currently administered to patients in approved 

parenteral products: hydroxypropyl-β-cyclodextrin and sulfobutylether-β-cyclodextrin. To date 

cyclodextrins are exclusively used for the formulation of small molecular entities, mainly in an 

attempt to increase aqueous solubility and hence bioavailability of poorly soluble drugs. 

However, there are promising reports in literature that indicate a potential use of cyclodextrin-

derivatives in protein formulation since they were found to inhibit protein-aggregation under a 

variety of accelerated stability conditions. Often the potency of cyclodextrins to suppress 

protein aggregation is ascribed to their ability to accommodate suitably sized, hydrophobic, 

solvent-exposed amino acid residues into their hydrophobic core. To date, little systematic 

and mechanistic investigations allowing for a rational application of cyclodextrins in protein 

formulation are available. Also, the number of relevant therapeutic proteins for which 

aggregation inhibition by cyclodextrins was demonstrated, is small. Most notably, no 

investigations for the currently most widespread class of therapeutic proteins, monoclonal 

antibodies, are available. 
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6 OBJECTIVES OF THE THESIS 

The overall aim of this thesis was to investigate the role of cyclodextrins in the inhibition of 

aggregation of therapeutic proteins. 

It was thus a first major objective to investigate the effects of various cyclodextrin-derivatives 

on the aggregation of structurally different model proteins under pharmaceutically relevant 

stress conditions. As a first model protein monoclonal antibodies as the currently most 

important class of protein pharmaceuticals were examined (Chapter 3). 

The studies on the effect of CDs on mAb-aggregation were complemented by comparison to 

two further model proteins, rh-GCSF and rh-GH. Thereby, it was planned to distinguish 

between general effects of cyclodextrins on protein aggregation and effects that depend on 

the structural properties of the protein being studied, in that way allowing for a more rational 

application of cyclodextrins in protein formulation. 

Since there is a need for alternatives to non-ionic surfactants in protein formulation it was a 

further objective to evaluate the potential of CD-derivatives to serve as a substitute to non-

ionic surfactants in protein formulation. Non-ionic surfactants are most problematic during 

quiescent long-term storage of proteins. Therefore it was investigated whether the use of 

cyclodextrins instead of non-ionic surfactants can circumvent increased aggregation rates 

after quiescent storage. 

The second major aim of this thesis was the detailed investigation of the underlying 

mechanisms that contribute to protein aggregation inhibition by cyclodextrins. 

The basis for the first set of investigations was the literature assumption that the shielding of 

hydrophobic interaction between proteins is the major reason for the inhibition of protein 

aggregation by CDs. Thus in Chapter 5 it was intended to assess binding between 

cyclodextrins and proteins in bulk solution and to correlate the results to the effects on 

protein aggregation. 

The experimental approach discussed in Chapter 6 was intended to identify or exclude the 

potential mechanisms by which CDs stabilize the investigated therapeutic proteins against 

aggregation at the air-water interface. More precisely, the hypothesis that cyclodextrins act 

like non-ionic surfactants at the air-water interface, i.e. by displacing proteins from the air-

water interface thereby protecting the protein from unfolding and subsequent aggregation, 

was to be tested. 
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CHAPTER 2 

MATERIALS AND METHODS 

 

1 MATERIALS 

1.1 PROTEINS 

1.1.1 MONOCLONAL ANTIBODY 

A monoclonal antibody (mAb) of the IgG4 class was kindly donated by Roche Diagnostics 

GmbH, Penzberg, Germany. 

The large majority of therapeutically used antibodies belongs to the IgG class1. IgG-

antibodies consist of two identical light and heavy chains and each light and heavy chain 

consists of a constant and a variable region. The variable domain on an antibody molecule 

contains the complementary determining regions which form an antigen binding pocket on 

the IgG molecule2. There are several subclasses of IgG-molecules (IgG1, IgG2, IgG3 and 

IgG4) depending on the number and location of interchain disulfide bonds and the length of 

the hinge region3. The antibody used in this thesis belongs to the IgG4 subtype which means 

that a number of potential instability reactions, that are not encountered in the same 

frequency with other IgG-subtypes such as disulfide scrambling in the hinge region and 

subsequent formation of half-antibodies, have to be expected3. The total molecular weight of 

this particular antibody is 146.3 kDa as determined by MALDI mass spectrometry. The major 

type of secondary structure in IgGs is β-sheet-structure and the content of β-sheet in the 

molecule is estimated to be about 70 %2. Compared to other therapeutic proteins an IgG’s 

thermal resistance is comparably high since the melting point is above 70°C2. 

The IgG bulk material provided for this work was formulated in a 20 mM histidin buffer at a 

pH of 5.8. Bulk concentration was 2.4 mg/ml. Protein solutions were filtered through 

Acrodisc® 0.2μm PVDF syringe filter units (Pall GmbH, Dreieich, Germany) prior to usage in 

formulations. The IgG bulk material consisted of 91.70 % monomer and 8.30 % soluble 

aggregates of which 5.77 % can presumably be attributed to dimers and the rest to higher 

order oligomers as determined by HP-SEC. The concentration of the bulk solution was 

determined by UV-spectroscopy (on an Agilent 8453 UV-VIS diode array spectrophotometer) 

using an extinction coefficient ε = 1.40 ml*mg-1*cm-1 at an absorption wavelength λ = 280 nm. 

If not stated otherwise the concentration of the mAb during all the accelerated stability 

assays and storage studies was 1.8 mg/ml. 

A second batch of the same IgG4 antibody was also formulated in a histidin 20 mM buffer at 

a pH of 5.8 but had a bulk concentration of 9.22 mg/ml and contained much lower levels of 

soluble aggregates (1.37 %). This batch was only used for the so-called “high-concentration” 
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experiments. Prior to usage in formulations the solution was concentrated by centrifugation 

at 6000 g in Vivaspin® 20 (Sartorius Stedim Biotech GmbH, Goettingen, Germany) tubes with 

a molecular weight cut-off of 10,000 g/mol at 4°C to a concentration of roughly 75 mg/ml. The 

concentrated solution was then adjusted to a concentration of 66.67 mg/ml, then serving as 

stock solution for the production of the highly concentrated formulations at 50 mg/ml. Again 

the mAb solution was filtered through Acrodisc® 0.2μm PVDF syringe filter units (Pall GmbH, 

Dreieich, Germany) prior to usage in formulations. 

For a freeze-thaw experiment discussed in Chapter 3 the mAb was dialyzed to a 10 mM 

potassium phosphate buffer with a pH of 7.4. Dialysis was carried out in Slide-a-Lyzer® 

(Thermo Fisher Scientific, Rockford, Il, USA) cassettes (size 12-30 mL) made of low-binding 

regenerated cellulose membranes, against a large excess of buffer (5 L). The procedure was 

repeated two more times with the last buffer exchange step carried out overnight. After 

removal of the mAb-solution from the cassettes the concentration was determined 

spectrophotometrically as described above and the solution was filtered through Acrodisc® 

0.2μm PVDF syringe filter units. 

In order to overcome problems due to a too low concentration of the mAb bulk material 

(c = 2.4mg/ml) for the IR-experiments carried out on the Bomem series instrument, the native 

mAb was concentrated to 17.5 mg/ml using Centricon® Tubes. 

The exact composition of the formulations and solutions containing the monoclonal antibody 

can be found in the respective data chapters (Chapter 3, 4, 5 and 6). 

1.1.2 RECOMBINANT HUMAN GRANULOCYTE COLONY STIMULATING FACTOR 

Recombinant human granulocyte-colony stimulating factor (rh-GCSF) was a gift from Wacker 

Biotech GmbH, Jena, Germany. Rh-GCSF is physiologically stimulating the maturation, 

proliferation and differentiation of stem cell progeny to form neutrophils4. Therefore it can be 

used to treat neutropenia. Structurally the protein belongs to the family of the four-helix 

bundle cytokines with four α-helices ranged in an up-up and down-down topology4-6. Rh-

GCSF contains two Trp-moieties, one at residue 58 and one at residue 118. Rh-GCSF is 

derived from E. coli and the protein is therefore not glycosilated. The molecular weight of this 

particular rh-GCSF batch was determined to be 18,816 g/mol by ESI-MS.  

The bulk drug substance as provided by Wacker Biotech GmbH contained rh-GCSF at a 

concentration of 4.04 mg/mL. It was formulated in a 10 mM sodium acetate buffer at pH 4. 

Also the bulk solution contained 0.004 % polysorbate 20. Prior to the usage of the bulk 

solution in any formulation containing rh-GCSF, the bulk solution was excessively dialyzed 

against 20 mM acetate buffer at pH 4 in order to remove any traces of polysorbate 20 which 

would otherwise interfere with the analysis of excipient effects in the formulation studies. 

Dialysis was carried out in Slide-a-Lyzer® cassettes (size 12-30 mL) according to the protocol 

described above for the monoclonal antibody. No traces of polysorbate 20 could be detected 
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by ESI-MS after dialysis to 20 mM ammonium acetate buffer confirming the successful and 

complete removal of polysorbate 20 from the bulk solution. Rh-GCSF concentration was 

determined spectrophotometrically using a UV extinction coefficient ε = 0.815 ml*mg-1*cm-1 (λ 

= 280 nm) on an Agilent 8453 UV-VIS diode array spectrophotometer. If not stated otherwise 

the concentration of rh-GCSF during the accelerated stability assays and storage studies 

was 1.5 mg/ml. 

 

1.1.3 RECOMBINANT HUMAN GROWTH HORMONE 

Recombinant human growth hormone (rh-GH) was provided by the group of Prof. Randolph 

at the University of Colorado Center for Pharmaceutical Biotechnology (Boulder, CO, USA). 

Rh-GH also belongs to the family of four-helix bundle proteins7. The single-domain protein 

consists of 191 residues and even in its native state it exposes an unusually high amount of 

aromatic amino acids making it prone to misfolding and aggregation reactions8. The 

molecular weight of rh-GH as determined by ESI-MS is 22,126.8 Da on average9. Rh-GH 

replacement therapies are frequently applied and rh-GH is also subject to abuse such as for 

athlete doping9-10. 

Cloning, sequence analysis and expression plasmid construction were completed at 

BaroFold Inc. (Boulder, CO, USA). After fermentation, purification and refolding rh-GH was 

lyophilized from a 20 mM Tris buffer at a pH 7.5 with 1% sucrose. After reconstitution in 

purified water rh-GH was dialyzed against a large excess (same protocol as for the mAb and 

rh-GCSF) of 1.13 mg/mL histidin buffer (pH 6.5) containing 19.3 mg/ml mannitol in order to 

match as closely as possible the buffer used by Fradkin et al.11 for potential later 

immunogenicity studies. For concentration determination by UV-spectroscopy (carried out on 

an Agilent 8453 UV-VIS diode array spectrophotometer) an extinction coefficient of ε = 

0.859 ml*mg-1*cm-1 at λ = 280 nm was used. If not stated otherwise the concentration of rh-

GH during the accelerated stability assays and storage studies was 1.0 mg/ml. 

 

1.1.4 RECOMBINANT INTERFERON α-2A 

Recombinant interferon α-2a (rh-IFN α-2a) was exclusively employed for mass-spectrometric 

investigations in this thesis. Rh-IFN α-2a was provided by Roche Diagnostics GmbH, 

Penzberg, Germany. The protein is not glycosilated and consists of 166 amino acids12. It has 

a molecular weight of 19,241 g/mol as determined by ESI-MS. The bulk formulation had a 

concentration of 1.5 mg/ml and contained 25 mM acetate buffer (pH 5.0) and 120 mM 

sodium chloride at pH 5. Prior to mass spectrometric analysis the protein was dialyzed into 

20 mM ammonium acetate buffer (pH 5.0) according to the procedure that was described for 

the other proteins above. 
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1.1.5 HEN EGG WHITE LYSOZYME  

Hen egg white Lysozyme (from here on referred to as “lysozyme”) was purchased from 

Sigma Aldrich (Steinheim, Germany) as powder. The molecular mass of this lysozyme batch 

is determined as 14.310 g/mol by ESI-MS. The protein was also exclusively used for mass 

spectrometric experiments. 

 

1.2 EXCIPIENTS, REAGENTS, CHEMICALS, PACKAGING MATERIALS 

1.2.1 FORMULATION EXCIPIENTS 

The following table gives an overview on all the excipients used in formulations throughout 

this work. 

Table 2.1: Excipients used in protein formulations throughout this work. 
Excipient Purity / Description Source 

6-O-Maltosyl-β-cyclodextrin > 97 % 
Cyclolab Ltd.  

(Budapest, Hungary) 

Dipotassium hydrogen 

phosphate 
p.a. 

VWR International GmbH 

(Darmstadt, Germany) 

Disodium hydrogen phosphate p.a. 
VWR International GmbH 

(Darmstadt, Germany) 

D-Mannitol Ph.Eur. 

Cerestar  

(Cargill Europe BVBA, Mechelen, 

Belgium) 

D-sorbitol  
Merck KGaA 

(Darmstadt, Germany) 

Glacial Acetic Acid (100 %) p.a. 
VWR International GmbH 

(Darmstadt, Germany) 

Hydrochloric Acid p.a. 
VWR International GmbH 

(Darmstadt, Germany) 

Hydroxypropyl-β-cyclodextrin Pharmaceutical Grade 
Wacker Chemie AG 

(Burghausen, Germany) 

Hydroxypropyl-γ-cyclodextrin Pharmaceutical Grade 
Wacker Chemie AG 

(Burghausen, Germany 

L-Histidin 
EMPROVE® exp Ph.Eur., 

USP 

Merck KGaA 

(Darmstadt, Germany) 

Maltoheptaose > 90 % 
Cyclolab Ltd.  

(Budapest, Hungary) 

Methyl-β-cyclodextrin Pharmaceutical Grade 
Wacker Chemie AG 

(Burghausen, Germany) 
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Excipient Purity / Description Source 

Polysorbate 20 Super Refined® 
Croda Inc. 

(Edison, NJ, USA) 

Polysorbate 80 Super Refined® 
Croda Inc. 

(Edison, NJ, USA) 

Potassium dihydrogen 

phosphate monohydrate 
p.a. 

VWR International GmbH 

(Darmstadt, Germany) 

Sodium dihydrogen phosphate 

monohydrate 
p.a. 

VWR International GmbH 

(Darmstadt, Germany) 

Sodium Hydroxide p.a. 
VWR International GmbH 

(Darmstadt, Germany) 

Sucrose > 99.5 % 
Sigma-Aldrich Laborchemikalien 

GmbH (Seelze, Germany) 

Sulfobutylether-β-cyclodextrin  
Captisol® D.S. (6.7) 

Pharmaceutical grade 

CyDex Inc.  

(Lenexa, KS, USA) 

Sulfobutylether-β-cyclodextrin 

 
D.S. (4.1) 

CyDex Inc.  

(Lenexa, KS, USA) 

Sulfobutylether-γ-cyclodextrin D.S. (4.3) 
CyDex Inc.  

(Lenexa, KS, USA) 

Sulfobutylether-γ-cyclodextrin D.S. (5.2) 
CyDex Inc.  

(Lenexa, KS, USA) 

Trehalose dihydrate High purity, low endotoxin 
Ferro Pfanstiehl Laboratories Inc. 

(Waukegan, IL, USA) 

α-Cyclodextrin Pharmaceutical Grade 
Wacker Chemie AG 

(Burghausen, Germany) 

β-Cyclodextrin Pharmaceutical Grade 
Wacker Chemie AG 

(Burghausen, Germany 

β-Cyclodextrin-sulphate 
~ 18 mol sulfate per mol 

cyclodextrin 

Sigma-Aldrich Laborchemikalien 

GmbH (Seelze, Germany) 

γ-Cyclodextrin Pharmaceutical Grade 
Wacker Chemie AG 

(Burghausen, Germany) 

 

1.2.2 FURTHER REAGENTS AND CHEMICALS 

In the following table all further chemicals and reagents are listed that have been used 

throughout this work and were not employed in formulations but mainly for analytical 

purposes only. 
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Table 2.2: Further chemicals and reagents used for analytical purposes. 

Chemical Purity / Description Source 

Ammonium acetate p.a. 
VWR International GmbH 

(Darmstadt, Germany) 

Ethanolamine > 99 % 
Sigma-Aldrich Laborchemikalien 

GmbH (Seelze, Germany) 

L-Tryptophan reagent grade (≥ 98 %) 
Sigma-Aldrich Laborchemikalien 

GmbH (Seelze, Germany) 

L-Tyrosine reagent grade (≥ 98 %) 
Sigma-Aldrich Laborchemikalien 

GmbH (Seelze, Germany) 

Maltopentaose > 95 % 
Sigma-Aldrich Handels GmbH 

(Vienna, Austria) 

N-Acetyl-L-tryptophanamide > 98 % 
Sigma-Aldrich Handels GmbH 

(Vienna, Austria) 

N-Acetyl-L-tyrosinamide > 98 % 
Sigma-Aldrich Handels GmbH 

(Vienna, Austria) 

N-ethyl-N9-

(dimethylaminopropyl) 

carbodiimide 

 
Sigma-Aldrich Laborchemikalien 

GmbH (Seelze, Germany) 

N-hydroxy-succinimide  
Sigma-Aldrich Laborchemikalien 

GmbH (Seelze, Germany) 

Potassium Chloride p.a. 
VWR International GmbH 

(Darmstadt, Germany) 

Sodium Chloride p.a. 
VWR International GmbH 

(Darmstadt, Germany) 

Urea Sigma Ultra 
Sigma-Aldrich Laborchemikalien 

GmbH (Seelze, Germany 
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2 METHODS 

2.1 PREPARATION OF FORMULATIONS 

All formulations were prepared from stock solutions containing the respective excipient in a 

higher concentration than in the formulation, protein bulk solutions and the formulation buffer 

itself. For instance trehalose dihydrate, sucrose, D-mannitol and D-sorbitol were prepared as 

1M stock solutions in histidin buffer for the mAb-experiments. Cyclodextrin-derivatives (CDs) 

and polysorbates were always dissolved in the respective formulation buffer to yield 100 mM 

stock solutions. The pH of the formulation buffers was adjusted either by using hydrochloric 

acid (Histidin buffer) or sodium hydroxide (Sodium acetate buffer). All protein formulations 

were filtered through Acrodisc® 0.2μm PVDF syringe filter units (Pall GmbH, Dreieich, 

Germany) before the beginning of the accelerated stability study. For all accelerated stability 

studies, samples were tested in triplicate, and triplicate samples were left unstressed 

(meaning quiescent at 20°C in the same primary packaging material as the stressed 

samples) as control samples. 

2.2 ACCELERATED STABILITY TESTING AND STORAGE 

2.2.1 AGITATION 

Agitation experiments of the mAb were carried out on a “Thermomixer” or on an “Orbit 300” 

shaking device. Polypropylene centrifugal tubes (1.5 ml) were placed vertically onto these 

devices which were then shaken at a speed of 1200 rpm or 800 rpm, respectively. Rh-GCSF 

and rh-GH were also agitated on a Thermomixer but at 1100 rpm and 1000 rpm, 

respectively. By agitation the air-water interface within in the tubes was greatly increased and 

constantly renewed with substantial entrainment of air bubbles into the solution. The 

temperature was 20°C throughout all agitation experiments. The tubes were initially filled with 

1ml of the respective formulation, leaving enough headspace for the formation of a large air-

water interface. At certain intervals (depending on the experiment) 100 μl aliquots of the 

samples were drawn, centrifuged at 12100 g to remove potential precipitates before 

subjecting the supernatants to further analysis for remaining monomer and soluble 

aggregates. In addition tubes were filled with 1.5 ml formulation (leaving no headspace) as a 

reference in order to evaluate the effect of the absence of an air-water interface.  

For the experiments at high mAb-concentration (50 mg/ml) 2R vials (Glass type I, Schott AG, 

Mainz, Germany) were used instead of polypropylene centrifugal tubes and the vials were 

fixed horizontally on a shaking device where they moved horizontally at 200 rpm. By filling 

the vials with 2 mL sufficient headspace for bubble entrainment and constant renewal of the 

air-water interface was left. After certain intervals aliquots of 100 µL were drawn from the 

vials which were then closed again with a stopper (FluroTec®-coating, West Pharmaceutical 
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Services, Eschweiler, Germany) and crimped again until the next time point of analysis. At 

the start and at the end of the experiment the centrifuged supernatant was also analyzed for 

alterations in the mAb’s secondary and tertiary structure by IR-spectroscopy and UV second 

derivative spectroscopy. 

 

2.2.2 STIRRING 

The stirring stress onto the mAb-formulations was exerted at a constant stirring rate of 200 

rpm by placing 6R vials vertically onto a multi-position magnetic stirring device (Variomag™ 

Magnetic Stirrer, Thermo Electron GmbH, Langenselbold, Germany). Washed and sterilized 

6 mm × 3 mm Teflon® coated stirrer bars (VWR International GmbH, Darmstadt, Germany) 

were put into the vials and the vials were filled with 3 mL mAb-solution each. Temperature 

was kept constant at 20°C and the samples were protected from direct light. Vials were 

analyzed at the intervals shown in Chapter 3 by removing aliquots of 100 µL from the vials, 

centrifuging the aliquots at 12,000 g and subjecting the supernatants to HP-SEC analysis for 

remaining monomer and soluble aggregates. As usual formulations were tested in triplicates 

and control samples without a Teflon® stirrer bar were analyzed as well to be sure that the 

observed effects are due to the stirring-stress. 

2.2.3 AGITATION WITH GLASS BEADS 

The agitation experiment described above for the highly concentrated mAb-formulations was 

also carried out at the lower mAb-concentration (1.8 mg/ml) in the presence of glass beads 

(size 0.25-0.50 mm Carl Roth GmbH + Co. KG, Karlsruhe, Germany). The addition of 1.4 g 

of glass beads to each vial (filled with no headspace at all, roughly 4 mL per vial) was carried 

out in order to create an extensive glass-water interface to which the mAb can potentially 

adsorb. The vials were agitated so that constant renewal of the interface was guaranteed 

and to create an accelerated stability model in which desorbed and potentially structurally 

altered and aggregated mAb can subsequently be detected in solution. 

2.2.4 FREEZE-THAW EXPERIMENTS 

Samples were freeze-thawed (referred to as “FT”) by filling 1.0 mL of the respective 

formulation aliquot into 1.5 mL polypropylenes tubes. The tubes were then immersed into 

liquid nitrogen for 5 min to ensure complete freezing of the samples. To thaw the samples, 

the tubes were kept in a Thermomixer™ (without agitation) for 15 min at 25°C. The freeze-

thaw cycles were repeated 15 times and after gentle homogenization aliquots of 100µL were 

drawn from the tubes after every five cycles and analyzed according to the procedure 

described for the agitation experiment above. The procedure was the same for all three 

model proteins studied in this thesis. 
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2.2.5 INCUBATION AT ELEVATED TEMPERATURE AND LONG-TERM STORAGE 

MONOCLONAL ANTIBODY 

For the evaluation of mAb stability at elevated temperature, 1 ml samples were incubated in 

polypropylene centrifugal tubes for 8 days at 60°C. Prior to analysis, all samples were first 

gently homogenized and then centrifuged at 12100 g. The supernatants were analyzed for 

monomer and soluble aggregates by size exclusion chromatography. 

For the mAb-long term incubation study the formulations were stored in cleaned and 

sterilized 2R-vials (Glass type I, Schott AG, Mainz, Germany) that were sealed with Teflon®-

coated rubber stoppers (FluroTec®-coating, West Pharmaceutical Services, Eschweiler, 

Germany) under a nitrogen atmosphere and subsequently crimped. Each vial was filled with 

2 mL of the respective formulation and all samples were prepared in triplicates. The samples 

were analyzed after 0 months, 3 months and 6 months of storage. Instead of removing 

aliquots for analysis separate vials were prepared for each time point of analysis in order to 

avoid extrinsic particle contamination. Storage was carried out at 4°C, 25°C and 40°C. 

For the evaluation of mAb temperature stability at higher concentrations (50 mg/ml) a storage 

study at 50°C was carried out. After certain intervals aliquots of 100 µL were drawn from the 

vials which were then again closed with a stopper (FluroTec®-coating, West Pharmaceutical 

Services, Eschweiler, Germany) and crimped again until the next time point of analysis. At 

the start and at the end of the experiment the centrifuged supernatant was also analyzed for 

alterations in the mAb’s secondary and tertiary structure by IR-spectroscopy and UV second 

derivative spectroscopy. 

RECOMBINANT GRANULOCYTE-COLONY STIMULATING FACTOR 

For the evaluation of rh-GCSF stability at elevated temperature, 1ml samples were incubated 

in polypropylene centrifugal tubes for 230 h at 50°C. After certain intervals 100 µL aliquots 

were removed from the incubated samples which were then centrifuged at 12000g. The 

supernatants were analyzed for monomer and soluble aggregates by size exclusion 

chromatography and at the beginning and at the end of the study for conformational changes 

by IR-spectroscopy and second-derivative UV-spectroscopy. 

RECOMBINANT HUMAN GROWTH HORMONE 

For the evaluation of rh-GH stability at elevated temperature, 1ml samples were incubated in 

polypropylene centrifugal tubes for one month at 50°C. After certain intervals 100 µL aliquots 

were removed from the incubated samples which were then centrifuged at 12000g. The 

supernatants were analyzed for monomer and soluble aggregates by size exclusion 

chromatography. In addition to that the uncentrifuged samples were analyzed for high 

molecular weight soluble and insoluble aggregates by asymmetric flow field flow 

fractionation. 
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2.3 ANALYTICAL METHODS 

2.4 PROTEIN AGGREGATION AND CONFORMATIONAL STABILITY 

2.4.1 SIZE-EXCLUSION CHROMATOGRAPHY 

MONOCLONAL ANTIBODY 

After removing insoluble aggregates by centrifuging, the supernatants were analyzed by size 

exclusion high performance liquid chromatography (SE-HPLC) on an Ultimate® 3000-system 

(Dionex Softron GmbH, Germering, Germany). 20 μl of the sample were injected onto a 

Tosoh TSK Gel 3000SWxl–column. Detection was carried out on a UV-Vis Variable 

Wavelength Detector at 280 nm. The mobile phase consisted of 250 mM potassium 

phosphate and 200 mM potassium chloride at pH 7, and a flow rate of 0.5 ml/min was used. 

Peak areas of monomer, dimer, soluble oligomers and fragments were integrated and 

monitored throughout the incubation experiments. For the initial studies at low mAb-

concentration the amount of remaining monomer was calculated in relation to the amount of 

soluble monomer of the respective formulation at T=0. The amount of remaining monomer 

and soluble aggregates in all the other experiments was obtained by dividing the respective 

peak areas of obtained from incubated samples by the total protein peak area of unincubated 

control samples in the same formulation buffer. The amount of insoluble aggregates can be 

calculated indirectly as the difference between the total amount of protein at T = 0 and the 

total amount of protein of an incubated sample after centrifugation and removal of insoluble 

protein aggregates. For the SE-HPLC analysis of the mAb-samples at 50 mg/ml the aliquots 

were diluted by a factor of 20 in order avoid a protein overload of the column. 

RECOMBINANT GRANULOCYTE-COLONY STIMULATING FACTOR 

The same equipment as for the mAb was used with the following differences: injection of 

40 µL onto the column and as running buffer 100 mM sodium phosphate at pH 7.0 was 

chosen. The amount of remaining monomer and soluble aggregates in all the experiments 

was obtained by dividing the respective peak areas of the incubated samples by the total 

protein peak area of an unincubated control samples in the same formulation buffer. 

RECOMBINANT HUMAN GROWTH HORMONE 

The procedure was identical as for rh-GCSF with the exception of the running buffer: 10 mM 

sodium phosphate with 50 mM sodium chloride at a pH of 7.2 was chosen. 

2.4.2 ASYMMETRIC FIELD-FLOW FRACTIONATION 

Aggregation of rh-GH was also monitored by asymmetrical field flow fractionation (AF4). The 

method was applied in order to provide complementary information to the results of the HP-

SEC analysis notably concerning the occurrence of high molecular weight soluble and 

insoluble aggregates in the submicron range that potentially cause immune reactions11, 13. 
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The amount of drug substance was unfortunately too limited in order to allow for further 

analytical techniques to characterize particle formation. 

The separation principles by AF4 are reviewed elsewhere14 and for the analysis here a Wyatt 

Eclipse 2 system (Wyatt Technology Europe GmbH, Dernbach, Germany) attached to an 

Agilent 1100 HPLC system (pump running in isocratic mode, autosampler, degasser, UV- 

and RI-detector, Agilent Technologies, Böblingen, Germany) was used. For the separation of 

the stressed rh-GH samples an 18 cm channel equipped with a 490 µm spacer and a 

regenerated cellulose membrane with a 5 kDa cut-off was employed. The running buffer 

exactly matched the one used for the HP-SEC experiments. However, the aliquots subjected 

to AF4 analysis were not centrifuged prior analysis in contrast to the samples for HP-SEC 

analysis. The channel flow was set to 0.6 ml/min and the injection flow was 0.4 ml/min. 5 μl 

of the rh-GH formulations were injected. The total focusing period was 2 min at a focus flow 

of 1.6 ml/min. For the separation, an initial cross-flow of 1.6 ml/min was applied for 10 min, 

before lowering it to 0.0 ml/min within 8 min using a linear gradient and subsequently eluting 

without cross-flow for another 5 minutes.  

2.4.3 TURBIDITY 

The turbidity of mAb formulations was determined using a NEPHLA turbidimeter (Dr. Lange, 

Düsseldorf, Germany). The turbidity was measured in formazine nephelometric units (FNU) 

by 90° light scattering at a wavelength of λ = 860 nm, a procedure that is described in the 

European Pharmacopoeia (method 2.2.1). 

The turbidity of the highly concentrated mAb-solutions was determined by measuring the UV-

absorption at 350 nm. 300 µL of each sample were filled into one well of the 96-well quartz 

plate and the absorption was measured in the Fluostar Omega (BMG Labtech, Offenburg, 

Germany) microplate absorbance reader. 

2.4.4 LIGHT OBSCURATION 

The size and the amount of particles in the range of 1 – 200 µm were determined by light 

obscuration on a SVSS-C40 apparatus (PAMAS GmbH, Rutesheim, Germany). The system 

was cleaned with purified water, which was essentially free of particles. Cleaning was 

performed until less than 100 particles greater than 1 µm could be detected in 1 mL of 

purified water. The cleanness was checked in regular intervals between the measuring of the 

samples and after each sample the system was rinsed with 5 mL of purified water. 

About 1.5 mL of formulation were removed from a vial and filled into a cleaned glass tube. 

The system was then flushed with 0.3 mL of sample liquid and subsequently 3 aliquots of 

0.3 mL of each sample were analyzed for particles. The average value of the 3 aliquots was 

calculated from each measurement and this mean amount of particles (for the sizes ≥ 1 µm, 

≥ 4.1 µm, ≥ 10 µm, ≥ 25 µm) was related to a sample volume of 1 mL. 
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2.4.5 SODIUM DODECYL SULPHATE POLYACRYLAMIDE GEL ELECTROPHORESIS (SDS-PAGE) 

In order to obtain further information on the nature of mAb-aggregates SDS-PAGE was 

carried out under non-reducing conditions. NuPAGE® pre-cast 7 % tris-acetate gels 1mm 

were put into an XCell II Mini cell system (Novex, San Diego, CA, USA) after the 10 wells 

were previously loaded with diluted mAb-samples. For sample preparation the mAb-samples 

were diluted to an approximate final concentration of 0.025 mg/mL in a pH 6.8 tris-buffer. In 

this buffer they were subsequently denatured at 95°C for 20 minutes. 20 µL of the sample 

preparation were loaded into each well. Separation was carried out at a voltage of 150 V and 

the running time was approximately 40 min. 

The gels were stained with the SilverXPress® Silver Staining Kit (Invitrogen, Karlsruhe, 

Germany). A standard (Mark 12 Unstained Standard, Invitrogen, Karlsruhe, Germany) was 

also loaded onto each gel in order to allow for a rough estimation of the molecular weight of 

the separated samples fractions.  

2.4.6 ISOELECTRIC FOCUSING 

In order to evaluate whether the isoelectric point of the mAb is altered in its different 

formulations after storage, isoelectric focussing was conducted. Isoelectric focusing of the 

IgG was performed by using a Multiphor II Electrophoresis system (GE Healthcare Europe 

GmbH, Freiburg, Germany) and reagents from Serva Electrophoresis GmbH (Heidelberg, 

Germany). Samples were loaded onto precast gels (Servalyt® Precotes® pH 6-9) and were 

run against standards with pIs ranging from 3.5 – 10.7 (IEF Markers 3-10, Serva 

Electrophoresis, Heidelberg, Germany). Gels were stained by using Serva Violet 17 Staining 

Kit (Serva Electrophoresis GmbH, Heidelberg, Germany). 

2.4.7 FOURIER-TRANSFORM INFRARED SPECTROSCOPY 

In order to study secondary structural changes within the precipitates of agitated samples, 

precipitates were collected as described above and analyzed by infrared (IR) spectroscopy. 

These IR spectra were then compared to those of the native mAb in solution. To overcome 

problems due to a too low concentration of the mAb bulk material (c = 2.4 mg/ml) the native 

mAb was concentrated to 17.5 mg/ml using Centricon® Tubes. For analysis of the 

precipitates’ secondary structure, precipitates of samples containing the mAb without CD 

were collected after a 24 h and a 1 week incubation period. 

IR measurements were performed on a Bomem MB series Fourier transform infrared 

spectrometer (ABB Bomem, Quebec, Canada). Approximately 20 μl of the aqueous 

precipitate samples were placed into a cell with CaF2–windows and a 7.5 µm spacer. Each 

spectrum was collected as a 256-scan interferogram with a 4 cm-1 resolution in single-beam 

mode. Spectra were recorded in presence of buffer only, buffer and CD as well as in the 

presence of all three; protein, CD and buffer. Protein spectra were obtained by subtraction 
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procedures and criteria that were established earlier15-16. The spectra were area-normalized 

and calculation of the second-derivative-spectra was performed using a seven-point 

Savitsky-Golay derivative function. 

All other IR-measurements (mAb-long term storage and high concentration studies, all IR 

measurements with rh-GCSF) described in this thesis were conducted on a Tensor 27 FTIR 

spectrometer (Bruker Optics, Ettlingen, Germany) using the calcium fluoride window flow 

through cell (Aquaspec 1110 M, Bruker Optics, Ettlingen, Germany) with a path length of 

6.5 µm and a nitrogen-cooled photovoltaic MCT (mercury-cadmium-telluride) detector. 

Approximately 50 µL of each sample were injected into the cell for each measurement 

thereby first rinsing the cell with a sufficient amount of sample liquid. The protein 

concentrations for the measurements can be obtained in the respective data chapters. The 

temperature was set to a constant 20°C and the average of 240-scans was used in order to 

record a spectrum. Spectra were obtained from 4000 cm-1 to 850 cm-1 with a resolution of 

4cm-1 and the exactly respective placebo solution was always recorded and subtracted from 

the protein spectrum. The background-subtracted spectrum was area-normalized and the 

second-derivative was calculated using a 17-point Savitzky-Golay derivative function. All 

spectra processing procedures were carried out using OPUS-software (Bruker Optics, 

Ettlingen, Germany). 

2.4.8 UV-SPECTROSCOPY (PROTEIN CONTENT AND 2ND DERIVATIVE AND ABSORBANCE 350) 

Protein concentrations were determined by UV absorbance measurement at 280 nm using 

the extinction coefficients that are indicated above in the description of the protein material. 

All UV-measurements were carried out on an Agilent 8453 UV-VIS spectrophotometer 

(Agilent Technologies Deutschland GmbH, Böblingen, Germany) equipped with a Peltier 

temperature controller (Agilent Technologies Deutschland GmbH, Böblingen, Germany). For 

studies on protein tertiary structure, spectra were collected from 190 to 500 nm with an 

integration time of 15 s in a 1 cm path length quartz cuvette. Sample concentration depended 

on the protein being studied and if necessary dilution was carried out in the respective 

sample buffer in order to remain in the linear range of the instrument (A ≤ 1.5). All spectra 

were recorded against the matching placebo formulation. 

Processing of the obtained spectra was carried out with the UV-VIS Chemstation software 

(Agilent Technologies Deutschland GmbH, Böblingen, Germany). Second derivative spectra 

were calculated using a nine point data filter and a third degree Savitzky-Golay polynomial as 

well as fitting to a cubic function. The obtained spectrum was interpolated with 99 data points 

per raw data point. Hence the resolution of the interpolated spectrum was 0.01 nm. Minima 

and maxima of the exported spectra were calculated using Excel® software. 
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2.4.9 FLUORESCENCE SPECTROSCOPY AND UNFOLDING 

The effect of CDs on thermal stability of the mAb was monitored using intrinsic steady-state 

fluorescence spectroscopy. A 0.24 mg/ml solution of the mAb in presence of 25 mM CD in a 

1cm Quartz cuvette was excited at 280nm and the shift of the emission wavelength 

maximum during heating was monitored. Scans were collected at 2.5°C increments as the 

solution was heated from 10 - 90°C with a 5 min equilibration time after each heating step. 

The measurements were performed on a PTI QuantaMaster (Photon Technology 

International, Inc., Birmingham, NJ) fluorescence spectrometer. Slits for both excitation and 

emission were set at 3 nm. 

Fluorescence spectroscopy was also used in order to study urea-unfolding of the mAb. An 

excitation wavelength of λ = 280 nm and an emission wavelength of 327 nm were used to 

follow the unfolding transition on a Varian Cary Eclipse fluorescence spectrometer (Varian 

Inc., Darmstadt, Germany). Excitation and emission slits were set to 5 nm. MAb-

concentration was 30 µg/mL and solutions with increasing urea-concentrations were 

produced from a 10 M urea-stock solution. 

2.4.10 MICROCALORIMETRY 

Thermal stability of the mAb in different formulations was also monitored by high sensitivity 

differential scanning calorimetry (μDSC) on a MicroCal differential scanning calorimeter 

(MicroCal Inc., MA, USA). The degassed samples and references were loaded into the cells 

with a Hamilton syringe and subsequently heated from 30-100°C with a scan rate of 60°C/h.  
Reversibility of unfolding was tested by performing two consecutive upscans (immediate 

cooling of the sample after the first upscan). 

The samples consisted of mAb (1.8 mg/ml) in His buffer and either HPβCD, MβCD or 

SBEβCD (all CD-derivatives in a concentration of 2.5 mM) or polysorbate 80 (0.04 % or 

0.004 %) or no excipient. The respective reference samples consisted of the buffer only, and 

the thermograms for the buffer background were subtracted from the mAb-thermograms 

using Origin 7.0 software. All thermograms were normalized to the concentration of the mAb. 

Origin 7.0 software was also employed for all data analysis and data deconvolution 

processes. The melting temperatures (midpoint of unfolding, Tm) of the transitions as well as 

the free energy of unfolding (ΔHunfolding) were determined. 

The thermal stability of rh-GCSF in selected formulations was also assessed by 

microcalorimetry using the identical protocol as for the mAb except that the rh-GCSF-

concentration was 0.5 mg/ml. 

52 



  Chapter 2 

2.5 BINDING BETWEEN CYCLODEXTRINS AND PROTEINS 

2.5.1 SURFACE PLASMON RESONANCE SPECTROSCOPY 

Measurements were performed on a Biacore X-instrument (GE Healthcare Europe GmbH, 

Freiburg, Germany). Immobilization of rh-GCSF was carried out on a CM-5 research chip 

following standard immobilization procedures described by Biacore Life Sciences. The 

surfaces of research grade CM5 chips were activated by a 6-min injection of a solution 

containing 0.2 M N-ethyl-N9-(dimethylaminopropyl) carbodiimide and 0.05 M N-hydroxy-

succinimide. After immobilization of the protein and deactivation of the reference cell with 

ethanolamine approximately 2000 RU remained on the chip (difference between the steady 

state response before and after immobilization of the protein). Therefore, taking into account 

the CDs’ molecular weights a theoretical maximal response of 229 RU for SBEβCD and 104 

RU for α CD can be calculated. 

As running buffer 20mM Acetate (pH = 4) was used. Cyclodextrins were dissolved in the 

exact same kind of buffer. In order to examine the effect on binding of pH in later 

measurements 20 mM Phosphate buffer (pH = 7) was applied to dissolve cyclodextrins. If not 

stated otherwise measurements were performed at a temperature of 25°C. 

The flow rate was set to 30 µL/min and 60 µL of cyclodextrin solution were injected in various 

concentrations. This means that the contact between immobilized protein and cyclodextrin 

solution lasted for 2 minutes. The response was monitored as difference of the responses of 

the cell containing the immobilized protein and the reference cell in order to avoid measuring 

a simple bulk effect. 

For the determination of the steady state - affinity between cyclodextrins and proteins 

cyclodextrin solutions of various concentrations showing a response in this experimental 

setup were injected consecutively. Using the software tool Biaevaluation® the average 

maximum response was calculated for every cyclodextrin solution injected. These maximum 

responses were then plotted against the concentration of each CD-solution. From the best fit 

the average steady state affinity could then be calculated. From ESI-MS experiment hints 

were available that binding occurs in a 1:1-stochiometry and therefore a simple 1:1 

(Langmuir)-binding model was assumed for the calculation of the steady-state affinity. 

For the mAb and rh-GH the immobilization procedure and materials as well as the monitoring 

of CD-binding were exactly the same, only the amount of protein attached to the chip varied, 

as indicated in the respective data chapter. 

2.5.2 FLUORESCENCE SPECTROSCOPY 

MAB 

Concentrated stock solutions of CD-derivatives were titrated into 2 ml of a 0.24 mg/ml 

solution of the mAb in His 20 mM buffer and changes in intrinsic steady-state fluorescence 
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spectra were monitored.  Each titration was carried out three times and after recording the 

spectra were corrected for dilution. The rest of the experimental conditions were identical to 

those described above for the assessment of changes in the apparent melting temperature 

by fluorescence spectroscopy. 

RH-GCSF 

Fluorescence titration was carried out at an excitation wavelength of 280 nm and at an 

emission wavelength of 337 nm on a Varian Cary Eclipse fluorescence spectrometer (Varian 

Inc., Darmstadt, Germany). Protein concentration was 1 µg/ml and the protein was buffered 

in 20 mM sodium phosphate buffer at pH = 4. SBEβCD was titrated to the solution to yield a 

final concentration of 8 mM. 

 

2.5.3 SURFACE ACOUSTIC WAVE SENSOR 

Surface acoustic wave sensors use piezoelectric materials to generate an acoustic wave. 

The amplitude and/or the velocity of the surface acoustic wave is strongly influenced by 

coupling to any medium contacting the surface. In contrast to SPR, SAW sensors are not 

sensitive to changes in the bulk refractive index thereby providing useful complementary 

information to the SPR results. 

The experiments were carried out on the commercially available S-sens® K5 (Biosensor 

GmbH, Bonn, Germany) instrument. The central measurement unit consists of a read-out 

system into which the gold-coated quartz sensor is placed and the detected signals of the 

five measurement cells are recorded independently in real-time. Changes in phase and 

amplitude of the surface acoustic wave (in this a case a Love-wave) are triggered by 

changes in the bound mass and viscosity, respectively. 

The gold-coated sensor chip was incubated overnight in a solution of mercaptoundecanoic 

acid thereby allowing for later coupling of proteins to carboxylic groups on the chip. After 

activation of the carboxylic groups with a mixture of EDC/NHS, rh-GCSF (dissolved in 

phosphate buffer) was immobilized to the surface of the chip. Unsaturated carboxylic 

functions were afterwards deactivated by Ethanolamine. 

In order to be able to discriminate between phase shifts due to changes in bound mass and 

shifts due to changes in viscosity, 80 µL of an aqueous solution of glycerol (5 % m/m) were 

injected. The subsequent change in the binding signal can be solely attributed to a change in 

viscosity and using this information the Biosens K12 software can later correct the phase 

shift of the protein immobilization for changes in viscosity. 

Increasing concentrations of cyclodextrins were injected onto the immobilized rh-GCSF and 

the binding signals were recorded. Using the Biosens K12 software and assuming a simple 

1:1 binding model a kinetic analysis of the binding events was carried out. The association 

54 



  Chapter 2 

constant ka and the dissociation constant kd were fitted to the binding curves and from the 

ratio of kd and ka the equilibrium binding constant was finally calculated. 

2.5.4 ELECTROSPRAY-IONIZATION MASS SPECTROMETRY 

All measurements were performed on a Bruker Daltonics Esquire 3000plus 3D-ion trap mass 

spectrometer (Bruker Daltonik GmbH, Bremen, Germany) fitted with an orthogonal 

electrospray (ESI) ion source under the following conditions: capillary voltage, 4.0 kV 

(positive ions) and -4 kV (negative ions; in the case of the Captisol®-sample) and curtain gas 

temperature 300°C. 

Pure protein samples (rh-IFNα-2a, rh-GCSF, rh-GH, Lysozyme) were initially analyzed by 

infusion of a 1 pmol/μl solution of methanol : water = 1 : 1 containing 0.1 % glacial acetic acid 

(Merck, Darmstadt, Germany) at a flow rate of 3 μl/min with a Cole-Parmer syringe pump 

(Core-Parmer, Vernon Hills, IL, USA). 

Pure cyclodextrins and derivatives thereof were analyzed by infusion of a 1 mg/ml solution of 

methanol : water = 1 : 1 at a flow rate of 3 μl/min. 

In order to detect complexes between the proteins and cyclodextrins and its derivatives a 

purely aqueous solution (without adding acetic acid) of a molar ratio of protein : carbohydrate 

= 1 : 10 was chosen according to S. Cao et al.17. Additionally, similar experiments were run 

after adding 10 mM ammonium acetate to these aqueous solutions (pH 4 for rh-GCSF and 

pH 5 for rh-GH). Furthermore by lowering in steps the molar amount of carbohydrate to a 

molar ratio of protein : carbohydrate to 1 : 1 and even to 10 : 1 the selectivity of the complex 

formation was tested. Control experiments were conducted using the linear carbohydrates 

maltoheptaose, maltopentaose, sucrose and trehalose in order to evaluate whether the 

existence of the CD-cavity is a necessary prerequisite for binding. Furthermore, in order to 

evaluate the influence of basicity control experiments with the amino acids L-tryptophan and 

L-tyrosine as well as their derivatives N-Acetyl-L-tryptophanamide and N-Acetyl-L-

tyrosinamide were conducted. Further information regarding molar ratios of the solution-

components as well as absolute concentrations can be taken from the respective figures in 

the data chapter. 

2.6 INTERFACIAL INVESTIGATIONS 

2.6.1 MAXIMUM BUBBLE PRESSURE MEASUREMENTS 

The dynamic surface tension of solutions of the mAb alone as well as of mixed solutions of 

the mAb with either polysorbate 80 or HPβCD at short adsorption times was measured using 

the maximum bubble pressure technique. The basic principle of this analytical technique is 

the determination of the maximum bubble pressure of a bubble that is growing at the end of 

thin steel capillary (inner diameter 0.25 mM) which is immersed into the solution under 
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investigation. The calculation of the surface tension using the maximum bubble pressure 

method is based on the Laplace equation: 

( )
2

rPP h ⋅−
=γ  

Here P is the maximum bubble pressure, Ph the hydrostatic pressure of the liquid and r the 

capillary radius. By determining the surface tension at different life times of the bubble, the 

dynamic surface tension is obtained. The advantage of the method over other methods for 

the determination of the dynamic surface tension is the possibility to measure already after a 

few milliseconds of surface age. The instrument used for the studies discussed in this thesis 

was the BPA-1P (Sinterface Technologies, Berlin, Germany). 

 

2.6.2 RING TENSIOMETER 

Surface tension measurements to evaluate the extent of mAb, CD and polysorbate 

adsorption to the air-water interface were initially carried out on a Krüss digital tensiometer K 

100 (Krüss GmbH, Hamburg, Germany) using a Wilhelmy plate made of roughened platinum 

which was heated in a Bunsen burner flame prior to each measurement. 3 mL of the 

respective freshly prepared solution were placed in a circular, thermostatted and thoroughly-

cleaned dish. Each measurement was performed for 240 s and the last 20 values determined 

within this period were averaged. These measurements were repeated at least five times and 

averaged to yield the reported surface tension value. 

2.6.3 DROP PROFILE ANALYSIS AND DILATIONAL SHEAR RHEOLOGY 

Drop profile analysis was employed for the detailed characterization of the dynamic surface 

tension and of rheological parameters of the surface layers of pure mAb and also of mixed 

mAb-HPβCD as well as of mAb-polysorbate 80 solutions. The instrument used for these 

investigations was a Profile Analysis Tensiometer (PAT 1, Sinterface Technologies, Berlin, 

Germany). 

As indicated in Figure 2.1 the basic principle of drop profile analysis is that the coordinates of 

the shape of a pendant drop of the studied solutions are recorded by a video camera and 

compared to its theoretical profile which can be calculated from the Gauss-Laplace equation 

thereby obtaining the dynamic surface tension as the only free variable in the experiment19. 

There is a balance of capillary and gravitational forces: whereas the surface tension acts to 

form a spherical drop, gravity acts oppositely giving the drop a prolonged shape. 
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Figure 2.1: Schematic representation of main components of the drop profile tensiometer PAT 1 
(Sinterface Technologies, Berlin, Germany) and drop profile analysis with video picture and profile 
coordinates. Taken from 18. 

The very same experiment can also be used to determine dilational rheological properties of 

the surface layers. For this purpose harmonic area oscillations of the drop at low frequency 

are performed by the dosing system. The corresponding response of the surface-tension is 

measured and the elastic as well as the viscous contributions can be determined separately. 

Low frequencies of the oscillations are important in order to maintain the Laplacian shape of 

the drop20. 

For the investigations at the air-water interface all mixed solutions were prepared at a 

constant mAb-concentration of 10-6 mol/L. After equilibrium surface tension is reached the 

harmonic area oscillations are exerted on the drop. The frequencies chosen for the 

experiment were: 0.01, 0.2, 0.28, 0.4 Hz. Subsequently, Fourier analysis is performed and 

the dilational viscosity and dilational elasticity are obtained. 

2.6.4 INTERFACIAL SHEAR RHEOLOGY 

Interfacial shear rheology experiments were performed in order to determine the shear 

rheological properties of the surface layers of pure mAb as well as mAb-HPβCD and mAb-

polysorbate 80 solutions. The instrument chosen for the investigations was a torsion 

pendulum rheometer (ISR-1, Sinterface Technologies, Berlin, Germany). The experimental 

set-up is described in detail elsewhere21. In short, the measuring body (a circular steel knife 

touching the surface of the solution to be characterized) attached to the pendulum is 

deflected by a certain (0.5-3°) short angle. After deflection the measuring body starts to 

oscillate and depending on the mechanical properties of the surface layer the oscillation is 

damped to a certain degree. From the shape of the damped oscillation curve finally the 

surface shear viscosity and the surface shear elasticity can be calculated. 
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Figure 2.2: Schematic representation of a torsion pendulum Interfacial Shear Rheometer. Taken from 21. 

The measuring solution which has been prepared prior to the experiment is placed in a PTFE 

dish of cylindrical shape. Immediately before beginning the experiment the surface of the 

measuring solution is cleaned by suction. As soon as mechanical equilibrium is reached the 

system automatically starts to record the experimental data. 

For the experiments a deflection angle of 1° was chosen and the pendulum was first 

deflected again after 7 min and then every 15 min until the end of the experiment. The 

duration of the experiment varied depending on the solution measured and the time until 

adsorption equilibrium was achieved. 
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CHAPTER 3 

CYCLODEXTRINS AS NOVEL EXCIPIENTS FOR ANTIBODY-STABILIZATION 

 

1 INTRODUCTION 

Mabs are exposed to various surfaces during their manufacturing process, storage, shipping 

and administration to the patient1. As described in more detail in Chapter 1 the air-water-

interface has to be considered the most frequently encountered interface. Also, since air is 

among the most hydrophobic surfaces it leads to strong adsorption of proteins. 

It is also described in Chapter 1 that the adsorption of mAbs to the air-water-interface and 

subsequent unfolding are often followed by significant aggregation. There are a number of 

studies indicating that polysorbates are capable of counteracting surface-induced 

aggregation of mAbs2-4. This property of polysorbates can be considered as the main 

rationale for these excipients to be included in the majority of mAb-formulations that are 

available on the market5-6.  

However, there are also many studies available that point out the limitations and 

disadvantages of polysorbates and non-ionic surfactants in general, most notably occurring 

during quiescent storage for longer periods of time7-10. Increased levels of oxidized 

degradation products and aggregates have been observed11 and in addition, the presence of 

polysorbates was related to the formation of protein-containing micelles that could possibly 

contribute to an increased immunogenicity of protein formulations12-13. Considering these 

disadvantages, there is a need for alternatives to non-ionic-surfactants in mAb-formulation. 

Taking into account results from literature (also discussed in detail in Chapter 1) that CD-

derivatives may be capable to inhibit agitation-induced aggregation of proteins, the objective 

of the following studies becomes apparent: it was intended to evaluate the potential of CD-

derivatives to serve as an alternative to non-ionic surfactants in mAb-formulation with a focus 

on aggregation at the air-water-interface. Also, the influences of cyclodextrins on mAb 

aggregation during other stress conditions, that are associated with the presence of 

interfaces, such as freeze-thaw stress or stirring with Teflon® bars, are discussed in this 

chapter. 

In addition to the investigation of the potential to stabilize against interface-induced 

aggregation possible instabilities of CD-containing mAb-formulations during quiescent 

storage at elevated temperatures for up to six months were also investigated since the use of 

non-ionic surfactants under these conditions is problematic. CDs should show improvements 

in this respect in order to fulfill the gap as a formulation alternative to non-ionic surfactants 

that is strongly needed. 
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Since CDs are reported to preferentially bind to the unfolded state of proteins thereby 

suppressing aggregation reactions, a decrease of the proteins’ thermal stability can be 

expected 14 Therefore, from a mechanistic point of view (hints for binding) and also to 

correlate these results with findings from the long-term quiescent storage study at elevated 

temperature, a thorough analysis of the CDs’ impact on mAb thermal stability is of 

importance and will be discussed in this chapter. The influence of CDs on the apparent 

melting temperatures of the mAb in presence of CDs was determined. 

Finally, since formulation viscosity is a critical issue for the development of highly 

concentrated mAb-formulations15 the influence of CD-addition on solution viscosity was 

investigated as well. 
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2 EFFECTS OF CYCLODEXTRIN-ADDITION ON SURFACE-INDUCED AGGREGATION 

The results of studies examining the potential of cyclodextrins to inhibit surface-induced 

aggregation of the model IgG are presented in the following section. The focus of these 

studies was on aggregation that is induced by the presence of an extensive air-water-

interface created by agitation but also other surfaces are investigated. All samples of the 

agitation-studies were agitated in centrifugal tubes that were placed vertically on a shaking-

device. The studies carried out at high protein concentration were conducted in vials that 

were placed horizontally on a shaking device at 200 rpm. Further interfaces that the CD-

mAb-formulations were exposed to include the ice-water-interface (during F/T-studies), the 

glass-water-interface (agitation in the presence of glass beads) and the Teflon®-water-

interface (during stirring studies in the presence of Teflon®-stirrer-bars). 

In addition to the comparisons to polysorbate 80 (which was selected as a very common 

representative of the class of non-ionic surfactants), CDs were also compared to other 

excipients that are commonly employed in protein formulation: the sugars and sugar alcohols 

sucrose, trehalose, mannitol and sorbitol. Comparisons to the linear sugar maltoheptaose 

were carried out in order to evaluate the relevance of the cavity of the CD-molecules in 

comparison to an equivalent linear sugar. 

2.1 CYCLODEXTRINS INHIBIT AGITATION-INDUCED AGGREGATION 

A variety of methods can be used to investigate the effect of protein exposure to the air-water 

interface: air bubbling methods16, vigorous vortexing for seconds or minutes17, agitating vials 

either horizontally or vertically with and without headspace or performing the agitation 

experiment on shaking devices like a temperature-controlled Thermomixer which was done 

in this case. The approach used in the current study was chosen because it led to significant 

loss of monomer of more than 50 % within 3-5 days in preliminary experiments (data not 

shown). 

In Figure 3.1 the results of an agitation study comprising mAb-formulations with four different 

CD-derivatives (HPβCD, MβCD, SBEβCD and HPγCD; each in three different 

concentrations) in comparison to a formulation without any CDs are shown. Loss of 

monomer was almost exclusively due to the formation of insoluble aggregates that were 

removed by centrifugation prior to analysis of the supernatants for SE-HPLC. It can be seen 

that after subjecting the samples to agitation for 72 h the formulation without CDs contains 

less than 10 % of the original amount of soluble monomer. In contrast all the formulations 

containing MβCD and the formulations containing HPβCD in a concentration higher than or 

equal to 2.5 mM were found to completely suppress agitation-induced aggregation. However, 

formulations containing HPγCD were less effectively protected and formulations containing 
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the ionic CD-derivative SBEβCD exhibited no significant stabilization compared to the 

formulation without CD.  
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Figure 3.1: IgG-aggregation after 72 h of agitation at 800 rpm. Remaining monomer as followed by size 
exclusion chromatography. Each value represents the mean of three samples ± standard deviation. 

Some samples in Figure 3.1 appear to have a monomer content that exceeds the theoretical 

maximum of 100 % which would be higher than in the sample before incubation. This 

phenomenon can be explained by the presence of about 8 % soluble aggregates in the bulk 

starting material. These aggregates partially or even completely dissolve into monomer 

throughout the course of the experiment.  

Reference samples with no headspace left in the centrifugal tube were subjected to the 

agitation experiment as well. These samples did not show any aggregation supporting the 

conclusion that aggregation in the presence of headspace is due to the presence of the 

extensive air-water-interface. Furthermore samples with regular headspace that were not 

agitated for the duration of the experiment also did not show any aggregation. 

To date this is the first published demonstration that HPβCD prevents aggregation of an IgG 

during agitation. Compared to studies that were conducted earlier and that investigated the 

potential of CDs for the stabilization of other proteins the concentrations found in the current 

study to be sufficient for complete aggregation-suppression were surprisingly low (≤2.5 mM 

which equals about 0.35 % (w/w). Furthermore considering the relatively high concentrations 
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of HPβCD employed in commercially available parenteral formulations of LMW-drugs, mAb 

formulations with 2.5 mM HPβCD should be safe from a toxicological point of view. For 

comparison, the FDA-approved parenteral formulation of itraconazole contains 40 % (w/v) of 

HPßCD which is more than a hundred-fold the amount necessary for complete aggregation 

inhibition in our experiments18-19. 

2.2 EVALUATION OF NOVEL SULFOBUTYETHER-ß- AND Y-CYCLODEXTRINS 

In section 2.1 it was described that employing SBEβCD in a mAb-formulation does not lead 

to a stabilization of the mAb against aggregation induced by the air-water-interface. At this 

point it is unclear why some of the CD-derivatives stabilize the mAb and SBEßCD does not. 

Since SBEβCD was the only ionic CD-derivative tested, the detrimental effects on protein 

stability could be related to its charge. If competition at the air-water-interface plays a role in 

inhibiting agitation-induced aggregation the comparably low surface activity (Chapter 6) of 

SBEβCD could also play a role. In order to further test these hypotheses, studies were 

conducted comprising further SBE-CD-derivatives: ß-CD with two different degrees of 

substitution and γ-CD with two different degrees of substitution (Table 3.1). Since surface 

activity of SBECD-derivatives changes with the degree of substitution a possible influence of 

surface activity would be observable (Table 3.1, surface activity data provided by CyDexTM). 

In addition all four derivatives are ionic so that if this property were the dominating reason for 

SBEßCD to not stabilize the mAb all four derivatives should influence mAb-aggregation at 

the air-water-interface in a comparable (negative) fashion. 

Table 3.1: Derivatives employed in the investigation of SBE-CD-effects on agitation-induced mAb-
aggregation. Data provided by CyDex Inc. (Lenexa, KS, USA). 

CD-derivative Degree of substitution Molecular weight [g/mol] Surface Tension 
[mN/m] 

Captisol 6.7 2194.6 71.0 

SBEßCD (4.1) 4.1 1783.6 72.0 

SBEγCD (4.3) 4.3 1977.2 64.5 

SBEγCD (5.2) 5.2 2119.5 68.5 

 

Figure 3.2 shows the amount of mAb-monomer and soluble aggregates after an agitation 

period of 24 h at 1150 rpm on the ThermomixerTM. The amount of monomer in the samples 

without any further excipients besides buffer decreases to less than 70 % whereas the 

amount of soluble aggregates only slightly increases from about 9 % to about 15 % which 

means that large amounts of insoluble aggregates were created (the amount of fragments 

remains constant throughout the experiment, data not shown). This finding is in agreement 
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with the visually detectable strong turbidity of the samples. The HPßCD-samples that were 

included into this study as a benchmark formulation exhibited a complete preservation of 

monomer after the 24h-agitation-period which confirms the results of the study discussed 

above. 

However, none of the SBE-CDs under investigation led to a clear stabilization of the mAb. 

Even more, the two formulations containing ß-CD-derivatives exhibited accelerated 

aggregation as compared to the reference formulation which is indicated by a loss of 

monomer to about 40-50 % of the original monomer content. The two γ-CD-derivatives 

performed slightly better with SBEγCD (4.3) yielding slightly more remaining monomer than 

the reference without excipients. This behavior could be due to their higher surface-activity 

compared to the SBEβCD-derivatives as summarized in Table 3.1. 

 

Figure 3.2: Aggregation after 24h of agitation in centrifugal tubes at 1150rpm – comparison of different 
SBE-CDs to formulations without any excipients besides buffer (reference) and a formulation containing 
HPßCD. Each value represents the mean of three samples ± standard deviation. 

Taking together these results with the results from Fig.1 it appears that Sulfobutylether-CD-

derivatives are generally inappropriate for mAb formulation – independent of their ring size or 

degree of substitution (and therefore also independent of their surface activity). Since other 

non-charged β- and γ-CD-derivatives showed good or even complete preservation of mAb-

stability under the same conditions it can assumed that charge plays a key role for an 
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explanation of the different behavior of these derivatives. An impact on colloidal stability 

protein stability due to the shielding of repulsive forces between the IgG-molecules would be 

a possible explanation20. The influence of SBE-CDs on conformational mAb-stability will be 

discussed later (section 4.4). 

2.3 COMPARISON TO POLYSORBATE 

As noted in the introduction there is a need for alternatives to the traditional polyoxyethylene-

based surfactants like polysorbate 80 which are often added to protein solutions in order to 

prevent aggregation due to interfacial stresses. In order to compare the behavior of HPβCD 

to polysorbate 80 an additional agitation experiment was conducted. It compared a 

formulation containing polysorbate 80 at a rather low concentration (0.004 % = 0.03 mM, 

molar ratio polysorbate 80 : mAb = 2.5 : 1) close to the CMC of polysorbate 80 (0.012 mM in 

water21) to a formulation containing polysorbate 80 in a high concentration far above the 

CMC (0.04 % = 0.3 mM, molar ratio 25 : 1) and to a formulation containing 2.5 mM HPβCD.  
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Figure 3.3: Aggregation after agitation for five days in centrifugal tubes at 800 rpm. Comparison between 
mAb-formulations containing 2.5 mM HPßCD to formulations containing polysorbate 80 at 0.004 % and 
0.04 % and a mAb-reference formulation with no excipients besides histidin 20 mM buffer at a pH of 5.8. 
Each value represents the mean of three samples ± standard deviation. 

Polysorbate 80 at 0.3 mM provided the same degree of protection from agitation-induced 

aggregation as HPβCD did at 2.5 mM (Figure 3.3). However, at the lower polysorbate 80 

concentration the formation of soluble aggregates was observed (Figure 3.4), and the 

HPßCD-formulation had a superior resistance to agitation-induced aggregation.  

Since the effects of HPβCD on agitation-induced aggregation described here, qualitatively 

resemble those of polysorbate 80 one can assume that CDs might prevent protein 

aggregation at the air-water interface in a similar fashion as nonionic surfactants. As outlined 



Cyclodextrins as novel excipients for antibody stabilization 

68 

in Chapter 1 different mechanisms of stabilization of proteins by non-ionic surfactants which 

appear to depend on the protein being studied must be considered.  

The most obvious mechanism is a competition for adsorption at the air-water-interface, which 

likely occurs in all cases even if additional routes of polysorbate-induced protein stabilization 

are operative22. If this behavior also occurs in the presence of cyclodextrins is discussed in 

Chapter 6 on the basis of dynamic surface tension studies in combination with dilational and 

shear rheology. 
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Figure 3.4: Formation of soluble aggregates after agitation for five days in centrifugal tubes. Comparison 
between mAb-formulations containing 2.5 mM HPßCD to formulations containing polysorbate 80 at a 
concentration of 0.004 % and 0.04 % and a mAb-reference formulation with no excipients besides buffer. 
Each value represents the mean of three samples ± standard deviation. 

However, in other cases direct binding between the native protein and the non-ionic 

surfactant in the bulk solution were observed and also clearly related to the mechanism of 

aggregation inhibition23-24. Whether binding in solution between HPßCD and the mAb plays a 

role in the observed stabilization will be discussed in Chapter 5. Surface Plasmon resonance 

studies and fluorescence titrations were carried out to analyze binding in solution. 

To gain insight into the potential route of aggregation during agitation, and hence mechanism 

for inhibition, IgG secondary structural changes in the formed precipitates were studied. In 

contrast to other spectroscopic methods IR spectroscopy is well suited to measure samples 

in almost any physical state25.  

Therefore it was decided to compare the secondary structure of the protein in precipitates 

with the native protein in solution by employing IR spectroscopy. Because no significant 

shifts within the characteristic IR bands are apparent when comparing the spectra (Figure 

3.5) it has to be assumed that protein molecules in the precipitates have a very native-like 
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secondary structure and that they presumably did not expose large hydrophobic regions by 

unfolding before aggregating. This observation suggests that the prevention of mAb-

aggregation at the air-water-interface by CDs does not involve the inhibition of structural 

alterations on a secondary structural level but it must be due to different mechanisms such 

as competition at the air-water-interface or prevention of partial unfolding on a tertiary 

structural level. 
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Figure 3.5: 2nd-derivative IR-spectra of IgG in precipitates formed after 24 h and 1 week of agitation in 
comparison to the spectrum for the native protein in solution 

Also these IR spectroscopic results are important from a patient safety viewpoint. This is 

because large aggregates containing an array of non-denatured protein molecules are 

thought potentially to be the most immunogenic types of aggregates in therapeutic protein 

products26. Therefore, it is particularly important to inhibit formation of such agitation-induced 

aggregates in mAb products. 

2.4 COMPARISON OF CYCLODEXTRIN-DERIVATIVES TO FURTHER EXCIPIENTS FOR 

PROTEIN FORMULATION 

In addition, the stabilization of the IgG by HPβCD and MβCD was compared to that afforded 

by sugars and sugar alcohols (sucrose, trehalose, mannitol and sorbitol) at concentrations 

typically used in protein formulations. These excipients are frequently employed in protein 

formulation and mainly increase protein stability via the preferential exclusion mechanism20 

as explained in detail in the general introduction (Chapter 1). The results of the agitation 

study comparing the sugar and sugar alcohol excipients to the two CDs are summarized in 

Figure 3.6.  
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As in the previous agitation study, the two formulations containing HPβCD and MβCD 

completely inhibited aggregation with remaining monomer values even exceeding the 

theoretical maximum of 100 % which is due to the partial dissolution of soluble aggregates 

present in the starting material. On the other hand the reference formulation without any CD 

or sugar excipients had a monomer content of about 40 % after 80h of agitation. Surprisingly, 

all the sugar- and sugar alcohol-containing formulations exhibited accelerated aggregation 

during agitation. After 80h of agitation the IgG monomer content decreased to less than 10 % 

in these samples. 

As a consequence it is concluded that CDs – although chemically classified as sugars – act 

completely differently from these low molecular weight sugars. In addition it can be stated 

that in contrast to the general opinion in protein formulation6 sugars may promote IgG 

aggregation during agitation. A detailed theoretical explanation for this behavior is given in 

Chapter 6 along with surface-tension data of these formulations. In brief, it can be expected 

that due to preferential exclusion of the low molecular weight sugars from the protein surface 

and due to an increase of surface tension of sugar-containing solutions, the mAb will become 

less stable upon adsorption at the air-water-interface in the presence of sugars27. 
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Figure 3.6: Comparison of the extent of IgG-aggregation after agitation at 1200 rpm on a Thermomixer® 
between CD-formulations and low molecular weight sugar-formulations. Each point represents the mean 
of three samples ± standard deviation. 

In addition to the comparison to LMW-sugars an experiment comparing the influence of 

HPßCD and MßCD on agitation-induced aggregation to the oligosaccharide maltoheptaose 

was carried out (Figure 3.7). Maltoheptaose is a linear sugar consisting of seven units of 1a, 

4e-linked oligomers of α-D-glucopyranoside, i.e. the same number and linkage of glucose-

molecules as in the cyclic β-CD-molecule, except that it does not possess a hydrophobic 
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cavity like cyclodextrins do28. It can be seen that the presence of 2.5 mM maltoheptaose 

does not offer the same degree of protection from aggregation as HPßCD and MßCD do. 

This behavior could be taken as a hint, that the existence of the CD-cavity is a necessary 

prerequisite for aggregation inhibition of the mAb and that the incorporation of exposed 

hydrophobic residues on the protein into the CD-cavity is important for aggregation inhibition. 

However, it also has to be taken into account that maltoheptaose is not the exact linear 

match of the two CD-derivatives tested here since it does not contain hydroxypropyl- or 

methyl-residues on its surface, which for instance leads to a different hydrogen bonding 

pattern. Interestingly, also Maltoheptaose slows down mAb-aggregation when compared to 

the reference without any further excipients besides buffer. This behavior was quite 

unexpected and its origin remains speculative. One possible explanation for this behavior 

could be the fact that also linear oligosaccharides are also amphiphilic molecules (like CDs 

are). As such they are for instance reported to substantially increase the critical micelle 

concentration (cmc) of surfactants in solution by direct interaction between the dextrin 

molecules and surfactants28. Therefore it is conceivable that stabilization of the IgG by 

maltoheptaose could occur through mechanisms that can also be assumed for non-ionic 

surfactants or cyclodextrins (competition at the air-water-interface, direct interaction of 

hydrophobic parts of the protein with hydrophobic parts on the maltoheptaose-molecule). It 

has to be concluded that maltoheptaose only to a limited degree serves as a suitable 

negative control for the existence of the CD-cavity since it possesses physico-chemical 

properties that strongly resemble those of the amphiphilic CDs. 
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Figure 3.7: Comparison of the extent of IgG-aggregation after agitation between CD-formulations and a 
maltoheptaose-formulation. Each point represents the mean of three samples ± standard deviation. 
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2.5 AGITATION AT HIGH PROTEIN CONCENTRATION 

The experiments discussed so far were all carried out at a mAb concentration of 1.8 mg/mL 

which represents a typical concentration for an intravenous mAb-formulation6. Recently 

however, mAb-formulations at higher concentrations have gained importance. The need for 

stable highly concentrated mAb-formulations is mainly due to the desire to administer mAbs 

via the subcutaneous-route (sc.) in order to improve patient convenience and to render home 

application of the drugs possible. With mAb-doses being in the mg/kg-range and a maximum 

applicable volume of sc.-injections of 1.5 mL it becomes apparent that such formulations 

need to be highly concentrated, typically in a range of 50 mg/mL up to 150 mg/mL or even 

more15,29.  

In addition to the usual challenges encountered in protein formulation that are discussed in 

Chapter 1 the formulation of highly concentrated mAb-formulations accounts for a number of 

unique challenges like increased, concentration-dependent aggregation rates during storage 

or reversible self-association15,30-31. In addition high solution viscosity (that often results from 

reversible self-association) and subsequent problems regarding “syringability” can be limiting 

factors as well30. Furthermore opalescence of highly concentrated protein formulations is 

also often reported which represents a challenge to the development and analytics of highly 

concentrated mAbs as well since it may be confused with turbid formulations containing high 

amounts of potentially dangerous particles32. 

However, little has been published so far about agitation-induced aggregation in highly 

concentrated protein formulations and the control of possible consequences. From an earlier 

publication on PEG-GCSF it can be expected that increasing the protein-concentration leads 

to a decreased rate of aggregation induced by the air-water interface since the ratio of 

interfacial-area to amount of protein was found to be critical for the susceptibility to agitation-

induced aggregation9. Another study investigated the influence of ions on agitated, highly-

concentrated mAb-formulations and also compared mAb-aggregation at 70 mg/mL to 

aggregation after quiescent storage at 45°C33. It was found that agitation resulted in turbid 

formulations and in contrast to the quiescently stored formulations no increase in the amount 

of soluble aggregates compared to the control was observed. Hence different kinds of 

aggregates are formed during agitation and quiescent storage of the highly concentrated 

mAb-formulations. In contrast a very recent study reports that increasing the mAb-

concentration leads to an increased percentage of soluble aggregates as determined by HP-

SEC34. However, the total loss of protein in terms of recovery (accounting for soluble as well 

as insoluble aggregates) was not published. 

Little studies at all were carried out investigating the influence of excipients on agitation-

induced aggregation of highly concentrated mAb-formulations (above 50 mg/mL). Mahler et 

al. found out that the addition of polysorbate 20 to highly concentrated mAb-formulations 
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(investigated range from 10 mg/mL to 150 mg/mL) had no effect on soluble aggregates and 

turbidity, but very low concentrations of polysorbate 20 (0.005 %) were sufficient to inhibit the 

appearance of visual particles34.  

When analyzing the excipients employed for the stabilization of high concentration protein-

formulations it becomes apparent that they very much resemble those used for the 

formulation of lower concentrations of mAbs6. The problems that can be expected are that 

sugars such as sucrose and trehalose add to the inherently high viscosity of the formulations. 

Also they do not necessarily protect against aggregation since also protein aggregates may 

be stabilized by sugars under the solution conditions in highly concentrated mAb-

formulations15. Non-ionic surfactants must be expected to exhibit the same problems as in 

low-concentration mAb-formulations: oxidation due to in-situ-forming peroxides and 

increased levels of aggregates during quiescent storage7-8. 

Since agitation of highly-concentrated protein formulations and its control by excipients has 

so far not been thoroughly studied and since HPßCD turned out to be a valuable excipient for 

the stabilization of the mAb at lower concentration, studies were carried out examining the 

effects of HPßCD on agitation-induced aggregation of the mAb at a concentration of 

50 mg/mL. Table 3.2 lists the formulations under investigation. In contrast to earlier studies 

agitation was carried out in 2R-vials (placed horizontally on a shaking device at 200 rpm) 

since agitation in centrifugal tubes did not lead to aggregation (data not shown). 
Table 3.2: Formulations examined at a mAb-concentration of 50 mg/mL. 

Formulation 
Cyclodextrin 
[mM / %] 

Polysorbate 80 
[mM / %] 

Sucrose  
[mM/%] 

Reference 0 0 0 

HPßCD 0.25 mM 0.25 / 0.035 0 0 

HPßCD 2.5 mM 2.5 / 0.35 0 0 

HPßCD 25 mM 25 / 3.5 0 0 

Polysorbate 0.004 % 0 0.03 / 0.004 0 

Polysorbate 0.04 % 0 0.3 / 0.04 0 

Sucrose 250 mM 0 0 250 / 8.55 

Sucrose 250 mM + PS low 0 0.03 / 0.004 250 / 8.55 

Sucrose 250 mM + PS high 0 0.3 / 0.04 250 / 8.55 

Sucrose 250 mM + HPßCD 2.5 / 0.35 0 250 / 8.55 

 

Figure 3.8 A shows results of the agitation study. It is obvious that all the solutions showed 

strongly increased turbidity levels after agitation for 240h (10 days). When kept quiescently 

after agitation a layer of white amorphous precipitate forms at the bottom of the vials and the 
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supernatant becomes clear again. Therefore clearly, the formation of insoluble aggregates 

took place. The addition of HPßCD as well as of polysorbate 80 both reduces the degree of 

insoluble aggregate formation. For HPßCD a minimum of 2.5 mM seems to be necessary to 

achieve the maximally possible stabilization (no further decrease of turbidity at higher 

HPβCD-concentration) which is in good agreement with the experiment performed at lower 

mAb-concentrations described in Chapter 2.1. Therefore it is not the HPßCD-mAb-ratio 

which is critical for stabilization against aggregation at the air-water-interface but the absolute 

HPßCD-concentration in solution and consequently the resulting absolute concentration at 

the interface. However, it has to be noted that in contrast to the experiments at a mAb-

concentration of 1.8 mg/mL a complete stabilization against aggregation at the air-water-

interface was not achievable keeping in mind the lower concentrated mAb-formulations 

remained perfectly clear upon agitation in the presence of HPßCD and polysorbate 80. 

Interestingly, the sucrose formulation shows the highest degree of turbidity after agitation 

which can be taken as a hint that aggregation was even increased in the presence of 

sucrose. Also, the amount of soluble aggregates is the highest in the sucrose formulation as 

shown by Figure 3.9 B. Accelerated mAb-aggregation after agitation in the presence of 

excipients that are preferentially excluded from the protein surface was also observed in 

section 2.4 of this Chapter for the lower concentrated mAb-formulations. Therefore regarding 

the effect of LMW-sugars on mAb-aggregation induced by agitation no qualitative difference 

is observed between the high and low mAb-concentrations. However, when adding 

polysorbate 80 or HPßCD to the sucrose-containing formulation the detrimental effect of 

sucrose on mAb-aggregation during agitation can be counteracted and the level of turbidity 

of the combined formulations is comparable to that of the HPßCD- and polysorbate 80-

formulations in the absence of sucrose. Therefore it will be of interest to evaluate the results 

from the incubation studies at 50°C in which a positive effect of sucrose as preferentially 

excluded excipient on temperature-induced-aggregation can be expected (as it was already 

observed for the lower concentrations in section 4.3). 

The relative degree of formation of insoluble aggregates in formulations at 50 mg/mL is much 

smaller than at the lower concentrations of 1.8 mg/mL. This becomes evident when 

analyzing the mAb-recovery rates after 240h of agitation as shown in Figure 3.8 B. Recovery 

never falls below 90 % of the original total protein content whereas in the first agitation 

experiment discussed in this Chapter (Figure 3.1) recovery rates of less than 10 % were 

observed after agitation. Figure 3.8 B also reveals that the formulation showing the highest 

turbidity (Sucrose 250 mM) also contains the largest amount of soluble aggregates. 

Therefore it can be speculated that the formation of soluble aggregates is a precursor for the 

formation larger insoluble aggregates and also in terms of soluble aggregates sucrose turns 

out to promote protein aggregation upon agitation. 
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Figure 3.8: UV-Absorbance at 350 nm in different 50 mg/mL mAb – formulations after 240 h of agitation 
(A) and aggregation in the same formulations after 240h of agitation as determined by HP-SEC (B). Each 
bar represents the mean of three samples ± standard deviation. 
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The aggregation results are in agreement with earlier studies on PEG-GCSF9 in which the 

relative extent of mAb-aggregation (soluble and insoluble aggregates taken together, readily 

identifiable as amount of remaining monomer in Figure 3.8 B and Figure 3.9 A) drastically 

decreases when agitating at 50 mg/mL. This becomes even more apparent when taking into 

consideration that under the conditions chosen for the agitation studies at 1.8 mg/mL (in 

centrifugal tubes, vertically) no aggregation at all could be observed for the high mAb-

concentration. Not until the change to harsher conditions (horizontal agitation in vials with a 

large headspace) aggregation could be observed at all. Therefore the hypothesis that the 

inverse relation of aggregation tendency and concentration can be attributed to the ratio of 

surface-area to amount of protein in solution9 seems to be confirmed by our studies. 

Concerning the effect of HPßCD on mAb-aggregation as determined by HP-SEC, Figure 3.9 

shows that no soluble aggregates are formed in formulations containing HPßCD at a 

concentration of 2.5 mM – no matter if sucrose is additionally present or not whereas in the 

reference formulation without excipients almost 4 % soluble aggregates are formed. Since 

formulations with HPßCD 2.5 mM in absence and presence of sucrose also showed the 

highest amount of remaining monomer in solution after agitation it can be indirectly 

concluded that for these two formulations also the amount of insoluble aggregates was the 

smallest. The formulation containing 25 mM HPßCD behaves very comparably, only the 

amount of remaining monomer is slightly lower. At 0.25 mM a higher amount of soluble 

aggregates can be observed throughout the agitation period but the amount of soluble 

aggregates is still lower than in the formulation without any further excipients besides buffer. 

Thus it can be reasoned that also at high mAb-concentration HPßCD provides stabilization 

against agitation-induced aggregation and the maximally possible degree of stabilization is 

achieved beginning at a concentration of 2.5 mM HPßCD. These findings are in agreement 

with the turbidity data discussed earlier. Again it can be concluded that rather the absolute 

concentration of HPßCD than the molar ratio between HPßCD and the mAb is crucial for 

mAb-stabilization since also at lower mAb-concentration HPßCD 2.5 mM afforded complete 

aggregation inhibition. 
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Figure 3.9: Loss of mAb-monomer in different formulations after 240h of agitation in glass vials (A) and 
resulting soluble aggregates (B). Each point represents the mean of three samples ± standard deviation. 

Polysorbate 80 also offers some degree of protection against agitation-induced aggregation 

as compared to the reference formulation (Figure 3.8 and Figure 3.9). However, in the 

formulation containing the lower concentration of polysorbate 80 (0.004 %) more soluble 

aggregates than in the HPßCD-formulation are observed and in the higher concentration 

(0.04 %) a lower amount of remaining monomer (89.6 % in absence of sucrose and 89.9 % 

in presence of sucrose vs. 92.5 % for the HPßCD-formulation in absence and presence of 

sucrose) results. Therefore it can be stated that HPßCD offers a formulation alternative to 

polysorbate 80 for the inhibition of aggregation at the air-water-interface of highly 



Cyclodextrins as novel excipients for antibody stabilization 

78 

concentrated mAb-formulations since it affords at least the same or an even higher degree of 

aggregation protection as polysorbate 80 does in our studies.  

Again it was intended to gain insight into a possible route of aggregation and hence also 

mechanism of stabilization by spectroscopic analysis of agitated samples for conformational 

changes. Spectra of the stressed samples were compared to the respective native samples 

before the exertion of agitation. Since these IR experiments were accomplished using a 

transmission cell that requires clear solutions all samples were centrifuged prior to analysis 

and the remaining supernatant of the samples was injected for analysis. 
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Figure 3.10: Overlaid 2nd-derivative amide I spectra of mAb before and after 240 h of agitation in glass-
vials at a concentration of 50 mg/mL in absence (A) and presence of 2.5 mM HPßCD.  

Again, no shifts within the characteristic IR bands and not even intensity changes at 

1639 cm-1 are apparent and all spectra perfectly overlay when comparing the samples before 

and after agitation (Figure 3.10) It makes no difference whether HPßCD, which protected the 

mAb from aggregation, is present or not. It is thus concluded that aggregation of the protein 

molecules occurs from a very native-like secondary structure and proteins presumably did 

not expose large hydrophobic regions by unfolding before aggregating. This observation 

suggests that the partial prevention of mAb-aggregation at the air-water-interface by CDs 

does not involve the inhibition of structural alterations on a secondary structural level but it 

must be due to different mechanisms such as competition at the air-water-interface or 

prevention of partial unfolding on a tertiary structural level. Another explanation of these 

results could be that a very small population of partially unfolded molecules cannot be 

detected within the large collective of the average conformation of a population of mAb 

molecules27. 

In summary also at high protein concentration HPßCD was capable of reducing mAb-

aggregation at the air-water-interface. However, a complete inhibition of aggregation as 

observed with the 1.8 mg/mL–concentration was not achievable under the harsher conditions 
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chosen for these experiments although the relative extent of protein aggregation decreased 

compared to the earlier experiments. The aggregation-promoting effects of sucrose could be 

entirely counteracted by the addition of HPßCD to the mAb-formulations which means that 

also a combination of sucrose and HPßCD can be an option for the development of stable 

highly-concentrated mAb-formulations. The addition of HPßCD turned out to even slightly 

better stabilize the mAb against agitation-induced aggregation than polysorbate 80. As with 

the low protein concentration no conformational changes in the mAb could be identified by IR 

spectroscopy upon agitation and very native-like aggregates were formed. 

2.6 STIRRING STUDIES 

In order to evaluate whether CDs are capable of stabilizing the mAb against further stress 

conditions that occur during the pharmaceutical processing of the protein, stirring studies 

were carried out. Stirring studies on mAbs have already been carried out using Teflon stirrer 

bars in vials2-3. It was found that in comparison to agitation stress with exposure to the air-

water-interface stirring stress can be much more harmful to protein stability and that the 

formed aggregated species are quite different in terms of amount and size2. In addition it 

seems as if stirring stress can be counteracted by surfactants only to a much smaller extent 

than agitation for which complete inhibition of aggregation is possible by adding non-ionic 

surfactants2-3. Even concentrations as high as 0.05 % of polysorbate 20 are reported to be 

insufficient to completely inhibit particle formation and lower concentrations of polysorbate 20 

were reported to completely fail to stabilize the mAb against stirring-induced aggregation2. It 

was concluded that polysorbate 20 can inhibit the adsorption of the antibody to the air-water 

interface (since stabilization against agitation-induced aggregation could be achieved) but 

that it is incapable to protect against the additional stress conditions provoked by stirring 

such as cavitation, accelerated mass transport, local heating and shear. Furthermore in an 

earlier study it was speculated that polysorbate 80 which also failed to stabilize against 

stirring-induced stress and provoked the formation of large amounts of small aggregates 

stabilizes small aggregates and inhibits the growth to larger particles3. 

In literature it remains a subject of debate whether stirring stress and the resulting protein 

instabilities such as aggregation can actually be caused by shear alone or whether only the 

combined occurrence of shear and surfaces causes the detrimental effects on protein 

stability. Many of the reports stating that shear by itself could cause the protein damage lack 

clear evidence for this assumption, because it is difficult to completely remove the influence 

of solid-liquid interfaces when investigating the influence of shear35. In two recent studies it 

was demonstrated that the isolated exposure to high shear forces alone causes no or only 

very minor damage to the protein35-36. For instance cyctochrome-c did not measurably unfold 

even upon the exertion of shear rates of 200,000s-1. Bee et al. exposed a mAb to isolated 

shear stress in an order of magnitude that could well occur during commercial unit operations 
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and they did not observe antibody unfolding or aggregation35. Minor aggregation occurring 

during shearing in a stainless steel parallel-plate rheometer as well as in a stainless steel 

chamber was attributed to the synergistic effect of adsorption of the protein to stainless steel 

and shear35,37. These findings are consistent with studies conducted earlier on rhGH in which 

an insignificant effect of shear alone was observed but for which shear in the presence of an 

air-liquid interface caused the formation of noncovalent aggregates16,38. Finally a study 

investigated lysozyme inactivation and aggregation in stirred reactors in the presence of 

different surfaces39. It was found that the presence of PTFE or air was four times more 

detrimental to lysozyme stability than the presence of a glass-liquid interface. 

Summing up the findings in literature and transferring them to the experimental set-up 

chosen for the experiments discussed below with mAb-solution in vials being stirred by 

TeflonTM-coated stirrer bars this means that aggregation of the protein can be expected to 

result as a consequence of the combined occurrence of a hydrophobic surface and shear 

forces. Since non-ionic surfactants turned out to only insufficiently stabilize mAbs against the 

harsh conditions created during a stirring experiment and since CDs were demonstrated to 

stabilize the mAb against aggregation at the hydrophobic air-water-interface it is interesting 

and important to evaluate the effect of different CD-derivatives on aggregation induced by 

stirring.  

In Figure 3.11 the amount of remaining monomer in different formulations throughout the 

stirring experiment is depicted. The stirring stress leads to a steady loss of monomer and 

after 120h the reference formulation without any excipients besides buffer contains less than 

60 % of the original amount of monomer. It is obvious from Figure 3.11 that none of the 

formulations tested is suitable to completely stabilize the mAb against the stirring-induced 

degradation. Nevertheless some excipients lead to a partial protection of the mAb and others 

deteriorate protein stability. Polysorbate 80 at a concentration of 0.04 % leads to a remaining 

monomer content of roughly 70 % after the incubation period. However, due to the relatively 

large standard deviations the difference to the reference formulation cannot be regarded as 

statistically significant. The same conclusion holds true for the earlier time points of the 

experiment for which the monomer-values of the reference and of the polysorbate 80–

formulation lie even closer together. This result is qualitatively in agreement with literature 

sources that report that the complete inhibition of stirring-induced damage on the mAb could 

not be achieved even by the addition of comparably high amounts of non-ionic surfactant2-3. 

It can thus be concluded that either the stressing conditions chosen for this experiment were 

too harsh for any excipient to be able to counteract them or other principles than Teflon-

surface-induced aggregation govern the degradation of the mAb in this case and the 

stabilizing principles of polysorbate 80 / CDs during agitation such as competition at the 

interface are insufficient to protect the mAb. 
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Figure 3.11: Amount of remaining monomer in different mAb-formulations during 120 h of stirring in 2R 
vials. Each point represents the mean of three samples ± standard deviation. 
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Figure 3.12: Aggregation in different mAb-formulations after 120 h of stirring with Teflon stirrer bars in 
2R-vials. Each bar represents the mean of three samples ± standard deviation. 
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Figure 3.11 also demonstrates that the formulation containing 25 mM MßCD leads to a 

decreased loss of monomer compared to the reference formulation – in contrast to the other 

formulations containing CDs (HPßCD 25 mM and 2.5 mM and MßCD 2.5 mM). It can only be 

speculated at this point why only the high concentration of MßCD leads to a stabilization of 

the mAb against stirring induced damage – although only to a very limited degree. One 

explanation could be a higher surface activity of MßCD 25 mM compared to the HPßCD-

samples and the lower MßCD-concentration (Chapter 6). Also, an influence of solution 

viscosity has to be considered since both higher CD-concentrations better stabilize than the 

respective lower concentration of the CDs. This pattern is also observable for SBEßCD as 

can be seen in Figure 3.12 where SBEßCD 25 mM results in an amount of remaining 

monomer that is comparable to the reference formulation whereas SBEßCD 2.5 mM yields 

almost no remaining monomer. Solution viscosities of the formulations will be discussed in 

detail at the end of this chapter (section 2.5).  

All formulations became visibly turbid after stirring for 12h which can be taken as a hint for 

the formation of insoluble aggregates. Also the protein recovery-values as determined by SE-

HPLC were significantly below 80 % after 120h of stirring which indirectly proves the 

formation of large amounts of insoluble aggregates (Figure 3.12). As already observed in the 

agitation experiments at 1.8 mg/mL no soluble aggregates were formed throughout the 

agitation period and the approximately 8 % soluble aggregates that were present in the 

starting material vanished, this time presumably by reacting to higher order aggregates. 

Surprisingly, also significant amounts of fragments were formed in the stirring experiment in 

contrast to all the agitation studies discussed earlier in this chapter. For instance the 

reference formulation without further excipients than buffer exhibited 7.4 % of fragments (vs. 

a negligible amount < 0.1 % before the stirring experiment) after 120 h of stirring (Figure 

3.12). This is quite in contrast to earlier reports on stirring induced degradation of an IgG1 for 

which SE-HPLC-analysis did not reveal increased amounts of fragments2. However, it is 

known that IgG4–antibodies as employed in this study are prone to dissociation into half-

antibodies40 which could have played a role in our experiments. Interestingly, the different 

excipients have a strong influence on the formation of fragments. This becomes most 

apparent for the samples containing 2.5 mM SBEßCD because in this formulation the original 

monomer and soluble aggregates were almost quantitatively cleaved into fragments. 

Strongly increased amounts of fragments are also observed for the polysorbate 80 

formulation (0.04 %) with 19.8 % fragments after the stressing period and the MßCD-

formulation (2.5 mM) with 17.2 % fragments. On the other hand some formulations also lead 

to a reduced formation of fragments when compared to the reference formulation, such as 

the respective high concentrations (25 mM) of all three CD-derivatives employed which – 

again – could be related to the higher viscosity of these formulations (section 2.5).  
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In summary neither cyclodextrins nor polysorbate 80 were capable of completely inhibiting 

stirring-induced aggregation. The higher concentrations (25 mM) of the CDs lead to a 

decreased degradation of the mAb both in terms of aggregation and fragmentation. 

Furthermore it is confirmed that stirring-induced stress results in quite different protein 

instability patterns than agitation which could be a hint for additional factors such as 

cavitation or shear to play a role in inducing stirring-induced aggregation. Hence there is a 

need for further studies investigating causes and mechanisms of stirring-induced aggregation 

as well as its efficient prevention. 

2.7 AGITATION IN THE PRESENCE OF GLASS BEADS 

Glass surfaces are among the most widespread surfaces encountered in biopharmaceutical 

production and most notably also in storage of biopharmaceuticals41. Since protein 

molecules may adsorb to these glass surfaces or to microparticles shed from the glass 

surfaces42, partially unfold on these surfaces and then initiate aggregation processes, stable 

formulations have to be developed that reduce the extent of potential damage on proteins 

caused by such glass surface exposure. In order to evaluate whether HPßCD also influences 

adsorption and subsequent aggregation processes induced by glass surfaces an 

experimental set-up was chosen with the mAb-solution filled into vials without any headspace 

in the presence of 1.4 g of glass beads (size range 0.25 mm – 0.50 mm) in order to create a 

large glass-water-interface. To accelerate adsorption and desorption processes to and from 

this extensive glass surface, vials were agitated on a horizontal shaking device at 198 rpm. 

In order to make sure that aggregation in the presence of glass beads is not simply due to 

agitation vials filled with the mAb solution but without glass beads as control samples were 

agitated as well. 

Agitation in the presence of glass beads clearly resulted in an increased level of protein 

aggregation – this becomes most evident by the formation of insoluble aggregates as can be 

seen from Figure 3.13: the amount of monomer decreases, dimers and oligomers almost 

completely vanish and the amount of total soluble mAb-products also decreases. The 

reference formulation that was agitated in the absence of glass particles shows only very 

slightly changed amounts of degradation products compared to the sample composition 

before the agitation period (T0-values). Thus the presence of the glass beads remarkably 

accelerated the aggregation process. 

However, the addition of HPßCD did not completely inhibit aggregation under the conditions 

chosen. In fact, only the highest HPßCD-concentration (25 mM) led to a higher amount of 

remaining monomer in solution after the experiment. The two lower concentrations of 

HPßCD (0.25 mM and 2.5 mM) displayed even lower amounts of remaining monomer than 

the reference without HPßCD. 
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Figure 3.13: Mab-degradation after 24h of agitation in vials in the presence of glass beads to enlarge the 
water-glass interface. Each bar represents the mean of three samples ± standard deviation. 

It has to be noted that in contrast to the agitation experiments in which aggregation was likely 

induced by the presence of an extensive air-water-interface (chapter 2.1) significant amounts 

of fragments were formed. The aggregation pattern (no increase of soluble aggregates, large 

amounts of insoluble aggregates and a remarkable increase of fragments) reminds of the 

stirring experiment described above (chapter 2.6). For that experiment a synergistic effect of 

shear in combination with the TeflonTm-water-interface was postulated as the probable cause 

of protein instability. It is therefore speculated – due to the very similar aggregation behavior 

and the occurrence of shear forces also in this experiment caused by the movement of the 

glass beads in the solution upon agitation – that the protein instability in the presence of 

glass beads was not only due to adsorption and subsequent unfolding followed by 

aggregation but also to a synergistic detrimental effect of the large glass-water-interface in 

combination with shear forces. This assumption is further substantiated by the fact that again 

the highest HPßCD-concentration shows decreased protein instability in comparison to the 

other two HPßCD-formulations – a behavior that could be linked to the higher viscosity of the 

25 mM HPßCD-formulation and a slower movement of the glass beads associated with lower 

shear forces (section 2.5).However, the exact cause of protein instability remains unclear. In 
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conclusion it has to be stated HPßCD under these experimental conditions can decelerate 

mAb-aggregation only at the rather high concentration of 25 mM. 
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3 INHIBITION OF FREEZE-THAW-INDUCED AGGREGATION 

As described in the general Introduction (Chapter 1) freezing and thawing processes can 

occur at many different stages throughout the lifecycle of a therapeutic protein product. 

During storage of protein bulk solutions accidental freezing and subsequent thawing may 

occur. Assuming increased long-term stability compared to the liquid state, bulk drug 

substance is routinely stored in the frozen state. On these and numerous further occasions 

aggregation may result as a consequence of repeated F/T-cycles. Generally different factors 

contribute to protein aggregation as a result of F/T-cycles: low temperature itself (reduction of 

hydrophobic interaction in the protein core and exposure of formerly buried protein parts to 

solvent), formation of an ice-water-interface, high local solute concentration and potential pH-

shifts5. 

Comparably few studies on freeze-thawing of monoclonal antibodies – the therapeutically 

most important group of protein drugs – are available. Kueltzo et al examined the influence of 

solution factors such as pH, ionic strength and mAb-concentration as well as processing 

parameters like cooling and warming rates and final temperature after warming on the 

stability of a model IgG2-antibody43. In addition the effects of storage container material and 

type were also analyzed. It was found out that most of the factors investigated had some 

effect with aggregation at very low pH (3) being most pronounced probably due to acid-

induced denaturation. Furthermore a strong effect of the container material was observed 

and the commonly used TeflonTm- and FlexboyTm– containers turned out to have detrimental 

effects on protein stability. The study also suggests that for the stabilization at pH-values at 

which aggregation is mainly driven by adsorption and protein deformation at both the ice-

water and the container-interface inhibitors of surface-induced denaturation should be 

investigated. Another study on mAb-aggregation induced by freeze-thawing aimed at 

characterizing the physico-chemical-properties of the IgG-aggregates and comparing them to 

aggregates formed by heating the IgG1-model antibody44. It was found that aggregates 

formed after freeze-thawing were larger in size than those formed after heating and in 

contrast to the heating-induced aggregates they retained a very native-like structure as 

determined by applying an array of spectroscopic methods to characterize aggregate-

structure. Another study on mAb-aggregation found out that aggregation was minimal at pH 

5.5 and greater than 8.0 whereas aggregation was most pronounced at nearly neutral pH45. 

Finally a last study examining the stability of mAbs upon freeze-thawing states that the three 

monoclonal antibodies tested did not lose any reactivity as determined by an indirect 

immunofluorescence assay after subjecting the antibodies to 12 freeze / thaw - cycles46. 

However, to date no studies on the prevention of freeze-thawing-induced aggregation of 

mAbs by the addition of appropriate excipients are available. For other proteins such as IL-

1ra47 or recombinant human Factor XIII22 the prevention of freeze-thawing-induced 
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aggregation by the addition of non-ionic surfactants is reported. It can therefore be assumed 

that also mAbs are stabilized against freeze-thawing-induced aggregation by non-ionic 

surfactants. 

Summing up the published results on freeze-thawing-induced aggregation of pharmaceutical 

proteins it has to be concluded that freeze-thawing stress poses a major challenge for 

maintaining protein stability since freeze-thawing stress may occur at many stages during 

manufacturing and processing of therapeutic proteins and since it may cause significant 

damage to the protein thereby potentially risking patient safety. Hence there is a need for 

robust and stable formulations that can resist accidental as well as intentional freeze-

thawing-stress without compromising protein stability. Since no studies on mAbs are 

available examining the prevention of freeze-thawing-induced aggregation by the addition of 

suitable excipients, CDs that were shown to prevent surface-induced aggregation in the 

studies discussed earlier were tested for their potential to inhibit freeze-thawing-induced 

aggregation. Results are compared to formulations containing the non-ionic-surfactant 

polysorbate 80 that is added to many protein formulations in order to prevent different kinds 

of surface-induced aggregation. 

Figure 3.14 (A) shows the results of a freeze-thawing-study on a monoclonal antibody carried 

out in the bulk solution formulation buffer (His buffer 20 mM at pH 5.8) in the presence of 

either HPßCD 2.5 mM, MßCD 2.5 mM or polysorbate 80 0.04 % (equal to a concentration of 

0.3 mM). Clearly the mAb did not aggregate to a very large extent since the amount of 

remaining monomer stayed very close to 100 % throughout the experiment (97.22 % after 15 

FT-cycles) and the solutions remained visibly clear after the stressing experiment. 

Nevertheless a slight stabilization by the addition of MßCD 2.5 mM (100.66 % remaining 

monomer after the agitation period), HPßCD 2.5mM (99.11 %) and polysorbate 80 

(100.87 %) is observable. However, since these differences can hardly be accepted as 

significantly different, the mAb was dialyzed to a different formulation buffer that was known 

to afford slightly unfavorable solution conditions45: potassium phosphate buffer 20 mM at a 

pH of 7.4. The results of the freeze-thawing study carried out in this buffer are depicted in 

Figure 3.14 (B) and (C). As expected aggregation occurs to a much higher extent at pH 7.4 

in buffer alone than at pH 5.8 (85.29 % remaining monomer after 15 FT-cycles) in buffer 

alone. Again, the solutions remained clear and from Figure 3.14 (C) it becomes apparent that 

the loss of monomer is almost exclusively due to the formation of soluble aggregates 

(increase to an absolute level of soluble aggregates of more than 16 %) which is different 

from IgG1-aggregation observed by Hawe et al. that was mainly due to the formation of 

insoluble aggregates44. This difference once again points out that it is hard to define general 

aggregation patterns and rules for IgGs and that every IgG has to be studied and 

characterized individually. 
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Figure 3.14: Freeze thawing induced aggregation as followed by HP-SEC remaining monomer in different 
mAb-formulations after up to 15 freeze-thaw-cycles in His buffer pH 5.8 (A) and in potassium phosphate 
buffer pH 7.4 (B) and soluble aggregates in potassium phosphate buffer pH 7.4 (C). The symbols 
represent the mean of three samples ± standard deviation 
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All three formulations containing either a CD or polysorbate 80 suppressed the formation of 

the soluble mAb-aggregates and completely preserved the mAb-monomer during the freeze-

thawing-cycles. Thus to our knowledge for the first time it is demonstrated that low (and 

therefore nontoxic) concentrations of HPßCD can completely inhibit freeze-thawing-induced 

mAb-aggregation thereby rendering HPßCD a potentially valuable excipient for the 

formulation of therapeutic antibodies. Also MßCD was capable of inhibiting surface-induced 

aggregation. However its use in formulations of therapeutic proteins will be limited due to its 

parenteral toxicity48-49. The influence of both excipients on thermal stability of the mAb will be 

discussed later in section 4.4. Also the “benchmark”-formulation containing polysorbate 80 at 

the high concentration of 0.04 % completely preserved the IgG-monomer throughout the 

stressing-experiment.  

In section 2.1 and 2.3 of this chapter all three excipients were already demonstrated to 

completely suppress aggregation induced by the presence of an extensive air-water-

interface. Together with results of an additional freeze-thaw-study at a mAb-concentration of 

9.5 mg/mL in which no mAb-aggregation could be observed at all (presumably due to a 

larger protein to surface-ratio, data not shown) our results point towards a surface-induced 

aggregation mechanism at an extensive ice-water-interface. This conclusion is in agreement 

with the assumption by Kueltzo et al. that mAb-aggregation at pH-values that do not favor 

acid-induced denaturation of the mAb is triggered by the presence of the ice-water-

interface43. 
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4 INFLUENCE OF CYCLODEXTRINS ON PROTEIN STABILITY AT ELEVATED TEMPERATURES 

A potential corollary of the use of CDs as inhibitors of agitation-induced aggregation is that 

CDs are reported to lead to a decrease of the thermal stability of proteins, presumably due to 

preferential binding to exposed hydrophobic amino acids in the unfolded state, which is 

associated with a shift of the folding equilibrium towards the unfolded state. For globular 

proteins this was demonstrated by Cooper et al14. They found that the binding of CDs to 

exposed side chains destabilizes the native folded form of the protein resulting in a decrease 

of Tm, as observed in DSC studies. This observation was confirmed, for example, recently by 

Tavornvipas et al. who reported that the addition of various CDs to lysozyme formulations 

also led to a decrease in Tm
50. Thus when binding of CDs to therapeutic proteins occurs, a 

balance of stabilizing (in terms of aggregation-inhibition by shielding of hydrophobic 

interaction) and also destabilizing (in terms of a decreased temperature of unfolding and 

lower thermal resistance of the protein) effects has to be expected. Thus in order to clarify 

whether the beneficial effect of HPßCD on surface-induced aggregation is compromised by a 

reduced thermal stability, accelerated stability studies at high temperature (60°C) as well as 

a long-term study at lower temperatures (4°C, 25°C, 40°C) were carried out. 

As already discussed in detail in the introduction non-ionic-surfactants and notably the most 

commonly applied polysorbates are beneficial for the inhibition of surface-induced 

aggregation but can lead to accelerated aggregation after long-term storage7,9-10. In addition 

in-situ forming peroxides can be generated and are reported to lead to chemical alterations 

of the protein which in turn can also increase protein aggregation rates8. Therefore 

alternatives to non-ionic surfactants are required and our data from the surface-induced 

aggregation experiments suggest that HPßCD may serve as such. However, in order to be 

an alternative also the disadvantages of non-ionic surfactants during storage have to be 

overcome by HPßCD as well. Thus a comparison of the long-term-storage effects of HPßCD 

to the non-ionic-surfactant polysorbate 80 was included into the long-term-storage study as 

well. To complete the studies on the influence of CDs during thermal stressing of the mAb a 

storage experiment at 50°C at a higher mAb-concentration (50 mg/mL instead of 1.8 mg/mL) 

was carried out and thermal stability was also evaluated by performing calorimetric 

measurements. 

4.1 ACCELERATED STABILITY TESTING AT 60°C 

In a first study four formulations of different cyclodextrins-derivatives in three concentrations, 

respectively, were tested for their susceptibility to thermally-induced aggregation (Figure 

3.15). After an incubation period of 8 days at 60°C the amount of monomer in the samples 

without any CDs decreased to about 80 %, which was mainly due to the formation of soluble 

aggregates (Figure 3.15). In samples containing HPβCD the level of remaining monomer 
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was slightly higher than in the reference samples. However, samples incubated with MβCD 

or HPγCD had much greater loss of monomer and high levels of soluble aggregates. 

SBEβCD-containing samples contained insoluble as well as soluble aggregates. 
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Figure 3.15: Aggregation of IgG after incubation at 60°C for 8 days. The levels of monomer and soluble 
aggregates as determined by size exclusion chromatography are displayed. Each bar represents the 
mean of three samples ± standard deviation. 

When taken together the results from the agitation (section 2.1) and elevated temperatures 

experiments, it appears that HPβCD at concentrations of about 2.5 mM in mAb formulations 

would be effective at inhibiting agitation-induced aggregation while not promoting 

aggregation at elevated temperature. Because of this very valuable property HPßCD will be 

the CD-derivative in the focus of all following examinations on the role of CDs as excipients 

in protein formulation. At this point it remains unclear why some of the CD-derivatives leave 

mAb-stability at elevated temperature unaltered and others do not. Since SBEβCD was the 

only ionic CD-derivative tested here the detrimental effects on protein stability could be 

related to its charge which may lead to shielding of repulsive forces between the protein 

molecules thereby influencing colloidal protein stability. 

4.2 LONG-TERM STABILITY AT 4°C, 25°C AND 40°C 

In addition to the accelerated stability study at 60°C for 8 days a long-term storage study for 

six months was carried out. The goal of this investigation was to evaluate the influence of 
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HPßCD upon mAb-stability (physical as well as chemical) throughout an extended storage-

period reflecting a typical experimental set-up used in protein formulation studies. Storage 

was carried out at three different temperatures: 4°C, 25°C and 40°C and a broad set of 

analytical methods was applied to characterize mAb-stability. HP-SEC and SDS-PAGE were 

used to detect and characterize protein aggregates as well as fragments; IR-spectroscopy 

was used to monitor conformational changes; turbidity and light obscuration measurements 

were carried out in order to characterize particle formation and IEF was applied to monitor 

chemical alterations of the mAb. An HPßCD-formulation at 2.5 mM was compared to an 

MßCD-formulation which was also shown above to prevent agitation-induced aggregation but 

also to increase aggregation at 60°C. Furthermore HPßCD-formulations were compared to 

formulations containing standard excipients for protein-formulations such as sucrose and 

trehalose (both at 250 mM, which equals 8 % w/v, a typical concentration in protein 

formulations6) and polysorbate 80 in two different concentrations (the same two 

concentrations as for the earlier agitation studies, both above the cmc). The comparison to 

polysorbate 80 is of special interest since polysorbates are demonstrated to increase protein 

aggregation rates upon quiescent storage8 – in part due to in situ-forming peroxides and 

subsequent protein aggregation as described earlier. HPßCD was already demonstrated 

above to possess equal or even superior potential to inhibit surface-induced aggregation 

compared to polysorbate 80. However, if HPßCD is to be considered as an alternative to 

polysorbates in protein formulation it has to be made sure that it does not exert negative 

effects on the long-term stability of proteins. 

The results of the SE-HPLC-analysis of the samples after long-term storage are summarized 

in Figure 3.16. Obviously all formulations exhibit good overall stability as no aggregation 

occurs at 4°C throughout the incubation period. Also at 25°C no significant loss of monomer 

in any of the formulations can be observed. Even at the highest storage temperature (40°C) 

most of the analyzed formulations display no large loss of monomer. The slight loss of 

monomer in the mAb blank-formulation and in the two CD-formulations can be attributed to 

the formation of about 3 % fragments (data not shown). The sucrose and the trehalose-

formulation completely maintain their original monomer content. However, both formulations 

containing polysorbate 80 exhibit clearly decreased monomer-contents after the storage 

period with the formulation containing the higher concentration of polysorbate 80 (0.04 %) 

showing the most dramatic loss of monomer (roughly 50 % monomer compared to about 

92 % in the formulation at the beginning of the storage period). It has to be noted here that 

some of the formulations, notably the two sugar-containing-formulations and also the 

polysorbate 80 formulation (0.04 %) appeared remarkably yellow after the storage period. 

Also their chromatograms (not shown) contained a large extra peak (most pronounced for 

the sucrose formulation) that was clearly separated from the monomer-fraction but masked 
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the fragment-peaks. If the extra-peak were also considered a protein-fraction, the recovery of 

sucrose formulation would be at about 115 % which is obviously an artifact. Therefore the 

extra peak very likely arises from the buffer of these formulations in which some reaction 

takes place leading to products that absorb at both 215nm and 280nm. Coloration of His 

buffer after storage was also observed in an earlier study and linked to the presence of metal 

and chloride ions in solution51. 
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Figure 3.16: Amount of mAb-monomer after long-term storage at 4°C, 25°C and 40°C for six months as 
determined by HP-SEC. Each bar represents the mean of three samples ± standard deviation. 

These results clearly demonstrate that HPßCD at a concentration of 2.5 mM (which was 

sufficient for complete inhibition of agitation-induced aggregation) is not negatively affecting 

long-term stability of the mAb since it does not lead to increased levels of aggregates. In this 

experimental set-up it could not be determined if HPßCD would also be able to stabilize the 

mAb during long-term storage since aggregation in the reference formulation without any 

excipients besides buffer is also of negligible extent. Surprisingly also MßCD at a 

concentration of 2.5 mM leads to no increased aggregation levels which is in contrast to the 

results of the accelerated stability experiment at 60°C that were discussed above (Figure 

3.15) in which the presence of even lower concentrations of MßCD lead to a significant 

increase in the level of soluble aggregates. A possible interpretation of these results would 

be that different aggregation pathways play a role at 60°C (which is not far below from the 
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apparent melting temperature of the mAb of about 75°C, Section 4.4) than at the lower 

temperatures used for this incubation study52. 

Most importantly these results confirm that polysorbate 80 is problematic for mAb-stability 

during quiescent storage since – at least at the highest storage temperature of 40°C, which 

allowed for a clear discrimination – the monomer-content is clearly decreased indicating the 

extensive formation of aggregates and fragments. As discussed above due to the formation 

of an extra-peak in the chromatograms of the polysorbate 80 samples that is obstructing 

potentially formed fragments the exact amount of fragments after the storage period cannot 

be quantified. The potential reasons for the significant loss of monomer most notably in the 

mAb-formulation at 0.04 % will be discussed in more detail below together with the results of 

additional analytical experiments. However already at this point it can be stated that in 

agreement with earlier findings by other authors the stabilizing effect of polysorbate 80 at 

interfaces (that was only equal to the effect of HPßCD) in the high concentration of 

polysorbate is compromised by increased levels of aggregates after long-term storage. 

 

MAB
standard

MAB
stored

HPβCD
2.5mM

Tween
0.04%

Tween
0.004%

Sucrose
250mM

Trehalose
250mM

rep. of HPβCD
2.5mM

MW
standard

MW
standard

55,4kDa

66,3kDa

36,5kDa

31,0kDa

200,0kDa

116,3kDa

97,4kDa

MAB
standard

MAB
stored

HPβCD
2.5mM

Tween
0.04%

Tween
0.004%

Sucrose
250mM

Trehalose
250mM

rep. of HPβCD
2.5mM

MW
standard

MW
standard

55,4kDa

66,3kDa

36,5kDa

31,0kDa

200,0kDa

116,3kDa

97,4kDa

 
Figure 3.17: SDS-PAGE of mAb after 6 months of storage at 40°C. 

In order to further characterize aggregation in the stored samples complementary information 

was gathered by performing SDS-PAGE. Since no high molecular weight species with a 

molecular weight greater than 200kDa are visible on the gel (Figure 3.17) it can be 

concluded that all aggregates present after storage were of noncovalent nature and 

dissolved into their constituent polypeptide chains during the sample preparation procedure. 

However, this statement is not precisely true for the polysorbate 80–containing samples 

since they display band smearing thereby possibly masking the clear detection of high 

molecular weight bands. The SDS-PAGE results also confirm the results obtained by HP-

SEC in that the stored formulations containing HPßCD 2.5 mM, MßCD 2.5mM, 
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sucrose 250mM and trehalose 250mM are almost indistinguishable from the reference 

formulation containing no further excipients. 

Most interestingly however, a new band at a lower molecular weight than the intact IgG 

monomer occurs in the stored polysorbate 80-formulations. In order to interpret the bands a 

look at potential degradation products of IgG4-antibodies is helpful. There are a number of 

reports on IgG4s exhibiting strongly varying amounts of so-called “half-antibodies”, 

degradation products consisting of only one heavy and one light chain40,53-54. These half-

antibodies are only apparent in SDS-PAGE under non-reducing conditions or after other 

denaturing procedures because they associate via strong hydrophobic interactions. It has 

been demonstrated that these half-antibodies can be artificially produced by disulfide-bond 

scrambling during SDS-PAGE-sample preparation54. However in the present case, this half-

antibody-species is only formed in the presence of polysorbate 80 (the assignment of the 

band to the half-antibody can be clearly taken when comparing Figure 3.17 to the gels in the 

cited references) and cannot be found with all the other formulations rendering it unlikely that 

the band is a pure SDS-PAGE-artifact because sample preparation was the same for all 

formulations tested. Taylor et al. demonstrate that also the destruction of disulfide bonds and 

redox-systems can influence the formation of half-antibodies54. For instance, in their studies 

46 % of the investigated IgG4-antibody was trapped in the intrachain disulfide form after 

reoxidation. It can therefore be speculated that the presence of polysorbate 80 and the 

expectable formation of oxidizing species lead to the scrambling of disulfide bonds in this 

IgG4 resulting in increased levels of half-antibodies. 

IgG chemical stability was further characterized by applying IEF, a technique that is sensitive 

to chemical changes in proteins when the basic and acidic moieties are involved, for instance 

when deamidation occurs and charge or pI of a protein are altered55. Also, different 

glycoforms of a protein can be separated by IEF. It can be seen in Figure 3.18 that the mAb 

was chemically altered in all formulations analyzed in this long-term storage study as evident 

from the different separation patterns of the formulations in comparison to the reference mAb 

that was not subjected to storage at 40°C (lane 4). It appears that the pI of the IgG was 

shifted to lower values after the storage period. Since a multitude of possible degradation 

pathways56 could lead to such behavior it remains open which reaction caused this pI-shift on 

a molecular level. In order to solve this matter further techniques such as peptide mapping 

would be required. In contrast to all other formulations it has to be pointed out that the IgG 

that was stored in the presence of polysorbate does not only show a slight shift to a lower pI 

but exhibits massive band broadening (corresponding to a multitude of pI-shifts) in both 

directions suggesting strong chemical alterations of the mAb in presence of polysorbate. This 

strong chemical instability of the protein further corroborates the hypothesis that polysorbate-
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induced oxidation with subsequent aggregation caused mAb-instability observed in this 

formulation. 
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Figure 3.18: IEF-Gel of different mAb-formulations after storage for 6 months in comparison to an 
unincubated reference: polysorbate 80 0.004 % (1), sucrose 250 mM (2), trehalose 250 mM (3), mAb 
reference fresh (4), mAb reference after storage (5), HPßCD 2.5 mM (6), MßCD 2.5 mM (7) and polysorbate 
80 0.04 % (8). 

Formulation stability after storage was also analyzed for the formation of larger aggregates 

by carrying out turbidity-measurements and particle level measurements. The results of the 

turbidity measurements are summarized in Figure 3.19. Since the method is not specific for 

proteins but detects all factors potentially contributing to higher turbidity levels, stored buffer 

samples were analyzed as well and it is clearly shown that turbidity does not increase due to 

changes in the buffer systems. It can also be seen that all formulations remain at comparably 

low absolute turbidity levels (turbidity before storage in all mAb-formulations: 1.5±0.1 FNU, 

not shown in the chart, highest value after incubation period is 4.8 as can be seen in Figure) 

indicating that the formation of large aggregates only occurred to a minor extent. 

Most importantly, it is further confirmed that HPßCD does not trigger the formation of 

significant amounts of large particles that would be detectable by turbidimetry as the turbidity 

after storage of HPßCD-samples does not significantly differ from that of the reference 

samples without excipients. Increased turbidity values for the polysorbate 0.04 %-

formulations indicate the formation of insoluble aggregates. 
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Figure 3.19: Turbidity of seven different mAb-formulations (c=1.8 mg/mL) after 6 months of storage at 4°C, 
25°C and 40°C. Each bar represents the mean of three samples ± standard deviation. 

The turbidity results are further confirmed by particle measurements as displayed in Figure 

3.20, in which the particle levels specified by the pharmacopoeias (particles >25µm and 

>10µm) and also the amount of particles >1 µm are demonstrated. After storage at all three 

temperatures and no matter which particle size is selected it is confirmed that HPßCD does 

not increase aggregation in terms of formation of large aggregates that can be detected as 

particles. The only exception to this observation seems to be the amount of particles after 

storage at 25°C in the >25µm-class which is comparably high. However, when taking into 

account the particle amount results from the other particles size-ranges and storage 

temperatures this single high value must be attributed to an experimental inadequacy. When 

analyzing the amount of particles ≥1µm it can be even stated that the amount of particles is 

reduced by the presence of 2.5 mM HPβCD. Also polysorbate 80 reduced the amount of 

particles whereas sucrose and trehalose lead to an increase of the amount of particles 

>1µm. However, the absolute amounts of particles in this study were low (all values after 

storage are clearly below the specifications for sub visible particles of the European 

Pharmacopoeia) and the relative fluctuation of the values is large so that a clear trend in 

either direction cannot be made out. Furthermore it is interesting to note that the formulations 

with a clearly decreased mAb-stability at 40°C as determined by HP-SEC and SDS-PAGE as 
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well as IEF, the polysorbate 80-containing formulations, do not exhibit significantly increased 

particle levels. Hence, the observed mAb-instability in these formulations does not lead to the 

formation of very large aggregates (≥ 1µm) but smaller, sub visible aggregates that were not 

directly quantified in the current investigation must have been formed. 
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Figure 3.20: Cumulative particles before and after storage of different mAb-formulations with particles > 1 
µm (A), particles > 10µm (B) and particles > 25 µm (C). 

In order to assess potential changes in IgG secondary structure during long-term storage, IR 

spectroscopy was applied to compare the secondary structure of the IgG in the different 

formulations before storage and after storage at 40°C. Figure 3.21 displays the amide I 

region of the second-derivative transmission IR spectra that has often been described to be 

sensitive to secondary structural changes57-58. In the spectra of the native samples before 

incubation at 40°C the typical β-sheet-bands with the major band at 1639 cm-1 and the 

weaker band at ca. 1691 cm-1 can be found. All spectra recorded after the storage period of 6 
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months show only slight changes compared to the native spectra with the spectra of the 

sucrose-formulation being practically identical with the native spectrum and the polysorbate 

80-samples showing the relatively strongest alterations. Thus the IgG retained a rather 

native-like structure in all formulations. The small variations in the β-turn-band region can be 

attributed to minor concentration differences between the samples. In the spectrum of the 

polysorbate 80 samples the intensity of the major amide I band at 1639 cm-1 is significantly 

reduced and the intensity of the β-turn-band at 1666 cm-1 slightly increases indicating 

relatively more conformational change in these samples than in the other formulations which 

is in agreement with the above-discussed results identifying the addition of polysorbate 80 as 

detrimental to the storage stability of the IgG. However, even in the polysorbate 80-

formulations the degree of conformational disturbance is small, observable by the absence of 

a new band for intermolecular β-sheet and an even stronger reduction of the intensity of the 

main β-sheet at 1639 cm-1 that is usually found in denatured IgG spectra59. 
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Figure 3.21: Second-derivative IR-spectra of selected mAb-formulations after long-term storage for 6 
months at 40°C (n=2) comprising the reference formulation (A) and formulations containing HPßCD 
2.5 mM (B), Sucrose 250 mM (C) and polysorbate 0.04 % (D). 

In summary the storage study demonstrated that HPßCD is well suited for the use in mAb-

formulations because in addition to its beneficial effects in the prevention of surface-induced 

aggregation it does not exert negative effects on mAb-stability upon quiescent storage: no 
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formation of soluble aggregates as determined by HP-SEC and SDS-PAGE and no 

increased extent of particle formation as well as chemical degradation as determined by light 

blockage and IEF, respectively, were observed in comparison to the reference formulation. 

Polysorbate 80 formulations in contrast stored under the same conditions showed strongly 

reduced monomer contents, triggered the formation of a fragmented antibody species and 

showed stronger secondary conformational changes than the HPßCD formulations. Thus 

HPßCD offers a promising alternative to polysorbate 80 for stable mAb formulations and 

should be routinely included in mAb formulation studies including a wide range of structurally 

different mAbs. Thereby it will be possible to determine whether the observed effects hold 

generally true for all subtypes of mAbs. 
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4.3 HIGH PROTEIN CONCENTRATION: ACCELERATED STABILITY AT 50°C 

The agitation studies on highly concentrated mAb-formulations (50 mg/mL) discussed above 

(Section 2.5) were complemented by subjecting the same set of formulations (Table 3.2) to a 

storage study at 50°C for 16 days. 
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Figure 3.22: Aggregation of IgG (50 mg/mL in His buffer at pH 5.8) after incubation at 50°C for 16 days. 
The levels of monomer and soluble aggregates and the recovery (total AUC) as determined by HP-SEC 
are displayed. Each bar represents the mean of three samples ± standard deviation. 

In analogy to the studies at lower concentration it was intended to evaluate whether the 

beneficial effects of HPßCD on the stability of the highly concentrated mAb-formulations 

against agitation might be compromised by an increased aggregation-rate during storage at 

elevated temperature. Since the addition of HPßCD to formulations containing sucrose 

counteracted the aggregation-promoting effects of sucrose during agitation these combined 

formulations were tested again – this time evaluating if the expectable beneficial effect (due 

to preferential exclusion) of sucrose on thermal stability of the mAb can be maintained in the 

presence of HPßCD. As with most previous studies comparisons to polysorbate 80 

formulations were also carried out since polysorbates are currently included in most 



Cyclodextrins as novel excipients for antibody stabilization 

102 

commercial mAb-formulations – at high as well as at lower concentration6. In order to gain 

further inside into the mechanism of aggregation potential conformational changes of the 

mAb in all formulations were monitored by FTIR-spectroscopy as well as by second-

derivative UV spectroscopy before and after the incubation period. 

During the incubation period none of the samples became visibly turbid and also the total 

protein recovery after 16 days of incubation at 50°C stayed at approximately 100 % in all 

formulations (Figure 3.22). Thus no significant amounts of insoluble aggregates were formed. 

A slight loss of soluble protein could only be observed in the formulation containing 

polysorbate 80 at the rather high concentration of 0.04 % which could be due to the 

formation of a small amount of insoluble aggregates. 

However, in all formulations significant amounts of soluble aggregates were formed (Figure 

3.22 and Figure 3.23). Aggregates were in a size range from dimer to higher order oligomers 

with the larger soluble aggregate fraction increasing over time. As with agitation stress at 

50 mg/mL and as with incubation at 60°C (at the lower concentration of 1.8 mg/mL) no 

formulation completely suppressed the formation of soluble aggregates. Nevertheless all 

formulations containing an excipient besides buffer showed decreased levels of soluble 

aggregates after 384 h of incubation – even the formulations containing polysorbate 80. This 

result was somehow unexpected since up to this point HPßCD was only shown to not 

negatively affect mAb-stability during storage at elevated temperature but not to stabilize it 

against thermal stress. Also it appears unexpected that polysorbate 80 with no further 

excipients increases thermal stability of the mAb which is quite in contrast to the results of 

the long-term incubation at 40°C described above and other reports on increased 

aggregation rates during quiescent storage in the presence of polysorbate10. However this 

analysis is only correct when selecting the values after 384h of storage. At earlier time points 

(Figure 3.23) of the experiment some formulations like the polysorbate 0.04 %-formulation 

show slightly higher amounts of soluble aggregates than the reference formulation. Hence 

not every excipient stabilizes the mAb at every time point of the experiment. 

Clearly, the formulation containing sucrose and no further excipient leads to the thermally 

most stable formulation since the lowest amount of aggregates was determined for this 

formulation – at all time points of the experiment. This behavior can likely be attributed to the 

property of sucrose to stabilize proteins in solution via the preferential exclusion 

mechanism60. The addition of polysorbate 80 to the sucrose-formulation leads to increased 

levels of soluble aggregates in comparison to the formulation containing sucrose alone which 

is in agreement with the observation that polysorbate can increase the levels of aggregation 

upon quiescent storage7. In contrast, the combined use of HPßCD and sucrose inhibits 

aggregation during thermal stressing only to a slightly lesser degree than the use of sucrose 

alone and this combination of excipients turns out to be the overall second-most effective 
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one in the entire storage study. Thus HPßCD compromises the stabilizing effect of sucrose 

to a lesser degree than polysorbate 80 does. 
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Figure 3.23: Soluble aggregates (A) and remaining monomer (B) in 50 mg/mL IgG-formulations during 
storage at 50°C for 16 days. Symbols represent the mean of three samples ± standard deviation. 

In summary when combining the results of this short-term study with the results of the 

agitation study at 50 mg/mL it has to be concluded that the most stable protein formulation 

appears to be a combination of HPßCD and sucrose combining both advantages of the two 

excipients: the stabilization against aggregation at the air-water-interface by HPßCD and the 

increase of thermal stability in solution via preferential exclusion in the presence of sucrose. 

To gain insight into the potential route of aggregation during storage, and hence also 

mechanism for inhibition, secondary structural changes in the protein molecules were 

monitored by using IR-spectroscopy. Figure 3.24 shows the second-derivative IR-
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transmission spectra of the IgG in solution before and after subjecting it to the 50°C-

incubation for 384h (16 days). It can be seen that no significant shifts within the characteristic 

IR bands are apparent when comparing the spectra. Therefore it has to be assumed that the 

mAb-molecules maintain a very native-like secondary structure throughout the experiment 

and that they presumably did not expose large hydrophobic regions by unfolding before 

aggregating. These findings are in accordance with the results obtained earlier on the 

secondary structure of the mAb-precipitates created by agitation from the lower-concentrated 

mAb-formulations which were very native-like, too. In contrast to the IR-spectra obtained 

from the supernatant of the highly-concentrated agitated formulations the mAb-solution 

obtained after storage at 50°C contained very large amounts of soluble aggregates (>40 % 

for the reference formulation in Figure 3.24 (A)) but nevertheless the presence of these 

aggregates only leads to minor spectral changes. For comparison Figure 3.24 (B) shows the 

IR-spectra of the mAb-formulation in presence of sucrose (the formulation that was best 

stabilized and showed the lowest amount of aggregates after the incubation period) and it 

can be seen that the intensity of the Amide I-band at 1639 cm-1 decreases to a smaller extent 

than in the reference formulation without any excipients which could be taken as a hint that 

less structural alterations occurred in the presence of sucrose.  

In summary the mAb maintains a very native-like secondary structure during storage at 50°C 

and therefore structural changes on a secondary structural level do not explain the 

aggregation mechanism and hence also not the stabilization mechanism by sucrose and 

other excipients. 
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Figure 3.24: Area-normalized 2nd derivative IR transmission spectra of 50 mg/mL IgG-formulations before 
(solid line) and after storage at 50°C for 384 h (dashed line) with no excipients except for buffer (A) and in 
the presence of 250 mM sucrose (B). n=2 

Since the aggregation mechanism of the mAb under investigation could not be elucidated by 

IR-spectroscopy further investigations focusing on possible tertiary structural changes in the 
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mAb were carried out. A general picture of the tertiary-structural situation in a protein can be 

obtained by using second-derivate UV absorbance spectroscopy since the positions of the 

peaks in a 2DUV-spectrum are sensitive to changes in the polarity of microenvironment of 

the hydrophobic amino acids in a protein43,61-62.  

Figure 3.25 (A) shows representative spectra of the mAb that were obtained before and after 

the incubation period. The spectra strongly resemble those obtained in an earlier study on an 

IgG2 antibody exhibiting five characteristic peaks at the almost identical wavelenghts43: 252-

Phe, 259-Phe, 276-Tyr, 284-Tyr/Trp and 292-Trp. It can be seen that for the reference 

formulation the spectrum is slightly changed after the incubation period. Changes in peak-

intensity are most pronounced in the 284-Tyr/Trp and 292-Trp-region. Since these peaks 

were also shown to be very sensitive indicators of changes in the microenvironment of the 

amino acids their shifts were analyzed in more detail (Table 3.3 and Table 3.4). Obviously 

the peak shifts were not very large with a maximum of 0.09 nm for the reference-formulation 

which is small compared to complete unfolding upon thermal denaturation resulting in a peak 

shift of 0.8nm for an IgG243. Nevertheless due to the very good reproducibility of the 

experiment the differences must be assigned to significant deviations from the native tertiary 

structure of the mAb.  
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Figure 3.25: Representative 2DUV-spectra: second derivative spectra of mAb (50 mg/mL) samples before 
and after incubation at 50°C for 384 h of the reference-formulation without excipients besides buffer (A) 
and the formulation containing 250 mM sucrose (B). 

All peak shifts occurred to shorter wavelengths which means that the polarity of the 

microenvironment increases and the protein changes to a less compact structure leading to 

subsequent aggregation43,61. This conclusion is further substantiated when comparing the 

mAb-spectrum of the sucrose-formulation before and after incubation at 50°C. Here almost 

no alterations in the spectrum after incubation are recognizable leading to the conclusion that 

the mAb maintains its native tertiary structure in the presence sucrose. This observation is in 
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agreement with the negligible wavelength-shifts of 0.03nm as listed in Table 3.3 and Table 

3.4. As described above the sucrose formulation also showed the lowest degree of 

aggregation throughout the incubation period which further proves that partial unfolding on a 

tertiary level of the mAb goes along with mAb-aggregation. Species with native secondary 

structure and slightly perturbed tertiary structures, which is typical of partially unfolded 

molecules, have also been found to lead to aggregation of other proteins, such as rh-

GCSF63. It also has to be noted here that HPßCD does not negatively influence mAb-

conformation during storage at 50°C. The peak-shifts observed for the HPßCD-formulations 

are somewhere in between the values obtained for the reference formulation and the 

sucrose-formulations indicating even a slight stabilization of the mAb. 

In summary it can be stated that also at a higher mAb-concentration (50 mg/mL as compared 

to 1.8 mg/mL for the earlier studies) HPßCD does not decrease the thermal stability of the 

mAb – neither in terms of a higher propensity to aggregation nor does it lead to a decreased 

conformational stability of the mAb. Hence the suppression of agitation-induced aggregation 

of HPßCD is not compromised by a reduced thermal stability. It could also be shown that 

mAb-aggregation during storage at 50°C likely proceeds via a partially unfolded species of 

the mAb. 
Table 3.3: Tertiary structural characterization of the IgG before and after storage at 50°C for 384 h by 
second-derivative UV-spectroscopy. Peak positions of the 292 nm-Trp-peak and the differences before 
and after storage are listed (n=2). 

Formulation 
Peak position T0  

[nm] 

Peak position T 384h 

[nm] 

Difference  
[nm] 

Reference 291.92±0.01 291.84±0.00 0.09 

HPßCD 0.25 mM 291.93±0.00 291.83±0.01 0.10 

HPßCD 2.5 mM 291.93±0.01 291.87±0.00 0.06 

HPßCD 25 mM 291.93±0.01 291.85±0.01 0.09 

Polysorbate 0.004 % 291.93±0.01 291.85±0.00 0.08 

Polysorbate 0.04 % 291.93±0.00 291.86±0.01 0.07 

Sucrose 250 mM 291.93±0.01 291.90±0.01 0.03 

Sucrose+PS low 291.93±0.01 291.86±0.01 0.07 

Sucrose+PS high 291.93±0.01 291.88±0.00 0.06 

Sucrose+HPßCD 2.5 mM 291.93±0.01 291.87±0.00 0.06 
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Table 3.4: Tertiary structural characterization of the IgG before and after storage at 50°C for 384h by 
second-derivative UV-spectroscopy. Peak positions of the 284 nm-Tyr/Trp-peak and the differences 
before and after storage are listed (n=2). 

Formulation 
Peak position T0  

[nm] 

Peak position T 384h 

[nm] 

Difference  
[nm] 

Reference 284.44±0.00 284.37±0.00 0.07 

HPßCD 0.25 mM 284.43±0.01 284.36±0.01 0.07 

HPßCD 2.5 mM 284.43±0.01 284.39±0.00 0.05 

HPßCD 25 mM 284.43±0.01 284.38±0.01 0.06 

Polysorbate 0.004 % 284.45±0.01 284.37±0.01 0.07 

Polysorbate 0.04 % 284.44±0.01 284.39±0.00 0.06 

Sucrose 250 mM 284.44±0.00 284.41±0.01 0.03 

Sucrose+PS low 284.44±0.01 284.38±0.01 0.06 

Sucrose+PS high 284.44±0.00 284.40±0.00 0.04 

Sucrose+HPßCD 2.5 mM 284.44±0.00 284.38±0.01 0.06 

 

When combining the results from the studies carried out at a mAb concentration of 50 mg/mL 

(agitation and storage at 50°C) it can be concluded that HPßCD leads to decreased 

aggregation rates during agitation presumably due to aggregation prevention at the interface 

while sucrose promoted aggregation during agitation. During storage at 50°C HPßCD leads 

to a slight stabilization of the mAb whereas sucrose significantly decreased the extent of 

aggregation. Interestingly when combining the two excipients the advantages of both could 

be preserved at a time leading to a formulation that is stable in the bulk and against 

interfacial stresses. It is therefore suggested to more extensively investigate this combination 

of excipients for a larger number of different antibodies and to also apply even broader 

analytical techniques notably concerning the characterization of particle formation. 

4.4 EFFECTS OF CDS ON THE APPARENT MELTING TEMPERATURE OF MAB 

It is reported that the reduction of agitation-induced aggregation by non-ionic surfactants 

might be due to an increase in the thermodynamic stability of a protein64. In order to 

investigate whether this behavior might also play a role for the stabilization of the IgG by 

CDs, the apparent melting temperature of the mAb was measured in presence and absence 

of CDs. 

First, fluorescence spectroscopy was employed to record melting curves. The resulting 

curves show a good overlay between two formulations containing 25 mM of either HPβCD or 

MβCD and the formulation containing IgG in buffer alone (Figure 3.26). Thus the apparent 

melting temperature as determined by this method (monitoring of tertiary structural 

transitions) remains unaffected even in the presence of high concentrations of HPßCD. 
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Figure 3.26: Shift of the IgG maximum emission wavelength during temperature ramping. Comparison 
between formulations containing HPβCD, MβCD and the IgG in presence of buffer only. Symbols 
represent the mean of three samples ± standard deviation. 

Microcalorimetric measurements further confirmed results from the fluorescence 

spectroscopy experiments (Table 3.5). The apparent melting temperature by 

microcalorimetry for the IgG in buffer alone is nearly identical to those for the protein in 

samples with CDs. Thus, it appears that CDs have no measurable effect on the 

thermodynamic stability of the IgG. Together with the findings shown in Figure 3.26 it can be 

concluded that a change in thermodynamic stability is not an explanation for the aggregation 

inhibition of the mAb in the presence of CDs. These results can be interpreted as an 

indication that no binding between CDs and the IgG occurs which is in contrast to some 

previous publications in which Tm is reported to decrease due to a preferential binding of CDs 

to the partially unfolded state of the protein and a subsequent shift of the folding 

equilibrium14. 

Table 3.5: Melting temperatures and enthalpies of unfolding of formulations containing CDs, polysorbate 
80, sugars and a reference formulation as determined by microcalorimetry. The mean ± standard 
deviation is listed (n=2). 
Formulation Apparent Tm [°C] ΔHunfolding [kcal/mol] 

His 20 mM no excipient 75.64 ± 0.12 834.16 

HPβCD 2.5 mM 75.73 ± 0.07 856.33 

MβCD 2.5 mM 75.69 ± 0.15 861.99 

Tween80 0.004 % 75.62 ± 0.16 880.54 

Tween80 0.04 % 75.64 ± 0.08 885.05 

Sucrose 250 mM 76.54 ± 0.10 916.51 

Trehalose 250 mM 76.86 ± 0.15 866.83 
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Interestingly, the apparent Tm is increased by about 1°C in the presence of the sugars and 

sugar alcohols that were used for the agitation studies discussed in the previous sections. 

However, this increase in thermodynamic stability does not correspond to increased stability 

against aggregation at the air-water interface. In contrast, agitation-induced aggregation is 

even more pronounced in the presence of these sugars and sugar alcohols (Figure 3.6). 

Thus thermodynamic stability of the IgG in the bulk solution probably plays a minor role for 

the explanation of the aggregation behavior at interfaces. 
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5 INFLUENCE OF CYCLODEXTRINS ON THE VISCOSITY OF MAB FORMULATIONS 

The determination of the solution viscosity of the 1.8 mg/mL formulations was carried out as 

an attempt to get insight into potential reasons of mAb-stabilization by CDs. There are 

literature reports that relate decreased rates of aggregation to an increase of solution 

viscosity restraining the motion of the protein backbone5. This phenomenon was observed 

with protein solutions after the addition of polymers. The results of our investigations are 

displayed in Table 3.6. It becomes obvious that at an HPβCD-concentration of 2.5 mM 

(sufficient for complete inhibition of IgG-aggregation in the agitation-experiments) viscosity is 

not significantly increased and thus it is unlikely that viscosity is a determining factor for IgG-

stabilization. In addition the LMW-sugar formulations (250 mM) as well as SBEβCD (25 mM) 

show a clear increase in viscosity by more than 20 %, but however the propensity of the IgG 

to aggregate at the air-water-interface is not reduced. Thus it is concluded that the observed 

stabilization of the IgG-formulation against agitation-induced aggregation is not related in any 

way to changes in solution viscosity.  

However, a correlation of the viscosity values to the results of the stirring studies (section 

2.6) and the agitation study in the presence of glass beads (section 2.7) can be assumed: in 

both experiments CDs at low concentrations of 2.5 mM were shown to have no inhibitory 

effect on aggregation, whereas at a higher concentration of 25 mM (for which an increased 

viscosity was observed) a slight reduction of aggregation was detected. This correlation can 

be taken as a hint that the increase in solution viscosity rather than a specific stabilization 

mechanism is responsible for decreased mAb-aggregation rates in those experimental set-

ups. 
Table 3.6: Viscosity of selected mAb-formulations (1.8 mg/mL) in the presence of different concentrations 
of HPßCD, SBEßCD and Sucrose. Each value represents the mean of three samples±standard deviation. 

Excipient Excipient concentration [mM] Viscosity [mPas] 

IgG in His 20 mM no excipient 0 1.010±0.0003 

HPβCD  0.25 1.0091±0.0013 

HPβCD 2.5 1.0226±0.0038 

HPβCD 25 1.1211±0.0013 

SBEβCD 0.25 1.0138±0.0081 

SBEβCD 2.5 1.0228±0.0063 

SBEβCD 25 1.2386±0.0054 

Sucrose 250 1.2920±0.0111 

 

Additional viscosity measurements were carried out on CD-mAb formulations at the high 

mAb-concentration of 50 mg/mL, since viscosity is known to be a critical factor for the 
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development of highly concentrated mAb-formulations15. Figure 3.27 clearly demonstrates 

that HPßCD at its aggregation-inhibiting concentration of 2.5 mM does not increase the 

inherently elevated viscosity of the mAb-formulation. In analogy to the results obtained for 

the measurements at the lower mAb-concentration of 1.8 mg/mL viscosity starts to be 

measurably increased beginning at a concentration of 25 mM cyclodextrin. Also sucrose at 

250 mM adds to the viscosity of the highly concentrated mAb-formulation. Surprisingly, the 

absolute amount of the viscosity increase by the addition of 250 mM sucrose is higher when 

added to the 50 mg/mL mAb-formulation (0.46 mPa*s) than when added to the 1.8 mg/mL 

mAb-formulation (0.28 mPa*s) which further confirms the difficulty of adding sucrose to mAb-

formulations with an already inherently high viscosity. Most importantly, it has to be noted 

that the most stable formulation, the combination of HPßCD 2.5 mM and sucrose 250 mM, 

does not exhibit an increased viscosity compared to the mAb-formulation containing sucrose 

only. The absence of an increase in viscosity further confirms the potential of 

HPßCD 2.5 mM and its combination with sucrose as promising formulation for highly-

concentrated mAb-formulations. 
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Figure 3.27: Viscosity of mAb-formulations (50 mg/mL) in presence of different excipients as determined 
by . Each bar represents the mean value of 20 repeated measurements ± standard deviation. 
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6 SUMMARY AND CONCLUSIONS 

In this chapter the results of studies investigating the use of CD-derivatives in the formulation 

of monoclonal antibodies were discussed. First a variety of different cyclodextrin-derivatives 

was evaluated regarding their potential to stabilize an IgG-antibody against different 

stressing conditions. The most promising CD-derivative of these investigations - HPßCD - 

was evaluated in more detail as a formulation alternative to polysorbate 80. 

To our knowledge for the first time, it was demonstrated that HPβCD is well suited to inhibit 

aggregation of an IgG monoclonal antibody at the air-water interface. In contrast to other CD-

derivatives investigated in our studies, the addition of HPβCD did not negatively affect IgG-

stability during storage at elevated temperature (60°C) in the absence of agitation, which 

renders HPßCD the most promising of the CD-derivatives tested in our studies. Remarkably 

low (≥ 2.5 mM corresponding to 0.35 % (m/m)) and thus presumably nontoxic concentrations 

of HPβCD were satisfactory for complete inhibition of IgG-aggregation at the air-water-

interface.  

Agitation studies also demonstrated that low molecular weight sugars and sugar alcohols 

that are known to be preferentially excluded from the protein surface (sucrose, trehalose, 

mannitol and sorbitol) even promoted aggregation and thus show a completely different 

behavior than the oligosaccharide HPβCD. Therefore it can be concluded that HPβCD exerts 

its stabilizing mechanisms against aggregation at the air-water interface by different means 

than low molecular weight sugars that are commonly used in protein formulation. 

In a rather high concentration of 0.04 % (clearly above the CMC) polysorbate 80 provided the 

same, complete degree of stabilization against agitation-induced aggregation as HPßCD at 

2.5 mM (i.e. 0.35 %). However, when employed in a lower concentration of 0.004 % 

polysorbate 80 (that is still in a typical concentration range employed in mAb-formulations) 

the formation of soluble aggregates was observed. 

HPβCD at the comparably low concentration of 2.5 mM also stabilizes the IgG against 

aggregation induced by freeze-thawing stress. It is therefore demonstrated that stabilization 

against aggregation is not limited to the air-water-interface, but that it is also achievable at 

other surfaces such as the ice-water-interface. 

It was also found out that sulfobutylether-CD-derivatives are generally not suitable for mAb-

formulation - independent of their ring size or degree of substitution. Since all other non-

charged β- and γ-CD-derivatives turned out to at least partially stabilize the mAb against 

surface-induced aggregation, it is assumed that the negative charge of the SBE-CDs plays 

an important role for the explanation of the inability of these ionic derivatives to preserve 

mAb-stability. 

A long term storage study for six months conducted at 4°C, 25°C and 40°C confirmed that 

HPßCD is well suited for the use in mAb-formulations because in addition to its beneficial 
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effects for the prevention of surface-induced aggregation it does not exert negative effects on 

mAb-stability upon quiescent long-term storage. Polysorbate 80 formulations that were 

stored under the same conditions as the HPβCD-containing formulation showed strongly 

reduced monomer contents, triggered the formation of a fragmented antibody species and 

showed stronger secondary conformational changes than the HPßCD formulations. Thus, 

since HPβCD is not associated with the known disadvantages of polysorbates (formation of 

micelles, generation of peroxides during storage and subsequent protein aggregation as 

confirmed by these studies) they pose a valuable alternative to polysorbates in mAb-

formulation. 

At high protein-concentration (50 mg/mL) HPβCD was also capable of reducing mAb-

aggregation at the air-water interface. However, a complete suppression of mAb-

aggregation, as observed at the lower concentration (1.8 mg/ml), was not achievable at high 

mAb-concentration. However, the stress conditions chosen for agitation at high mAb-

concentration were harsher than those at low mAb concentration. A combination of HPβCD 

and sucrose turned out to better stabilize the mAb against agitation-induced aggregation 

than a combination of the mAb and polysorbate 80. In combination with an additional 

incubation study of the highly-concentrated mAb-formulations at 50°C it could be shown that 

sucrose was able to preserve its stabilizing effect during storage at elevated temperature 

also in the presence of HPβCD whereas HPßCD was able to completely counteract the 

aggregation-promoting effect of sucrose during agitation. 

Spectroscopic investigations (IR-spectroscopy) after agitation-induced aggregation revealed 

only very minor structural changes in the aggregated mAb-samples, which suggests that 

aggregation does not proceed via substantially unfolded mAb-species. In turn this 

presumably also means that the mechanism of aggregation-inhibition does not proceed via 

direct binding of the CD to the partially unfolded mAb and subsequent blocking of 

hydrophobic interaction between the mAb-molecules. Since also the thermal stability of the 

mAb as determined by microcalorimetric measurements and fluorescence spectroscopy 

ramps was unaltered in the presence of HPβCD, no evidence for direct binding between 

HPβCD and the mAb in the bulk solution could be gathered by the results presented in this 

chapter. 

In conclusion it is suggested that CDs should be routinely included in formulation studies 

during the development of liquid IgG-formulations in order to evaluate whether the observed 

tendencies apply to wider number of different antibody-subtypes. In addition the influence on 

potential chemical degradation of the mAb-molecules should be characterized in more 

analytical detail. 
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CHAPTER 4 

CYCLODEXTRINS AS EXCIPIENTS FOR THE STABILIZATION OF RECOMBINANT 

HUMAN GRANULOCYTE COLONY STIMULATING FACTOR (RH-GCSF) AND 

RECOMBINANT HUMAN GROWTH HORMONE (RH-GH) 

 

1 INTRODUCTION 

In Chapter 3 it was demonstrated that CDs, notably HPβCD, have numerous beneficial 

effects on IgG-stability that render them potentially useful excipients for protein formulation. 

In brief, HPβCD was shown to stabilize a mAb against surface-induced aggregation, e.g. 

during agitation or freeze-thaw stress. Also, in contrast to the commonly employed 

polysorbates, HPβCD does not decrease thermal stability of the IgG nor does it lead to 

accelerated aggregation rates during quiescent storage of the protein at elevated 

temperature. 

In this chapter the role of CDs, notably of HPβCD, for the prevention of protein aggregation is 

investigated using two further model proteins that are structurally very different from the mAb 

that was used for the previous investigations. The first model protein is recombinant 

granulocyte colony stimulation factor (rh-GCSF), a cytokine with a four-helix bundle structure 

and a molecular weight of 18.8 kDa that is prone to aggregation, notably at pH-values 

significantly above pH 41. Since rh-GCSF contains five aromatic amino acids (two Trp and 

three Tyr) and partial unfolding of the protein was shown to occur prior to aggregation2 it 

seems reasonable to test CDs as stabilizing agents for rh-GCSF under the assumption that 

CDs are capable of incorporating exposed aromatic amino acid residues on the partially 

unfolded protein into the hydrophobic cavity thereby preventing rh-GCSF aggregation. 

Recombinant human growth hormone (rh-GH) was included into the studies as a further 

model protein since its interaction with different CD-derivatives had already been proven. 

Also, its property to be stabilized against aggregation by CDs had already been indicated3-5: 

the studies on Rh-GH can therefore be regarded as a set of “positive control” experiments. 

By comparing the experimental results obtained with rh-GH to the results of the studies with 

the two other model proteins it was expected to achieve general conclusions on the 

mechanism of protein stabilization by CDs. A further aspect of the studies on rh-GH is to 

confirm literature observations for pharmaceutically relevant stress conditions, as the 

majority of the aggregation experiments on rh-GH described in literature so far were carried 

out under pharmaceutically not relevant stress conditions, e.g. at pH 2.5 in presence of high 

amounts of salt4. 
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In order to keep the results clearly laid-out and comparable, the two additional model-

proteins discussed in this chapter were subjected to the same set of stressing conditions as 

the mAb. Agitation experiments in centrifugal tubes were conducted to evaluate the effect of 

the CDs on aggregation induced by the presence of an air-water-interface. Freeze-thaw 

studies were carried out to evaluate the stabilization potential at the air-water interface and 

against further stress factors occurring during repeated cycles of freezing and thawing (for 

details the reader is referred to the introduction). Finally the formulations were stored at 

elevated temperature (50°C) in order to check whether potential inhibitory effects on surface-

induced aggregation by CDs are counterbalanced by accelerated aggregation during 

quiescent storage at elevated temperature and reduced thermal stability or whether, in 

contrast, stabilization against aggregation at elevated temperature can be observed. 

2 RECOMBINANT GRANULOCYTE-COLONY-STIMULATING FACTOR (RH-GCSF) 

Few studies have been performed so far investigating the behavior of rh-GCSF when 

subjected to agitation and an extensive air-water interface. In studies on PEG-GCSF it was 

found that there is an inverse relationship between concentration of the protein and 

susceptibility to agitation-induced aggregation6. In addition, it was determined that the 

addition of polysorbate 20 ameliorated the agitation-induced degradation of the protein but 

abrogated the aggregation that occurred during quiescent storage at 29°C pointing into a 

similar direction as the observations obtained with the IgG in Chapter 3. Since a later work 

has found that the aggregation mechanism of PEG-GCSF is very similar to that of rh-GCSF it 

can be assumed that the findings for PEG-GCSF apply to rh-GCSF in a similar manner7, 

thereby again pointing out the limitations of polysorbates and the need for an alternative to 

this group of stabilizers against surface-induced aggregation. To the best of our knowledge 

no studies are described in literature regarding the effect of FT-cycles on rh-GCSF 

aggregation. 

2.1 AGITATION-INDUCED AGGREGATION 

Proteins are exposed to the air-water interface in a multitude of situations during their 

lifecycle, for instance during mixing or shipping. As explained in detail in the general 

introduction, the adsorption of proteins to the air-water interface and the subsequent 

unfolding open up new reaction pathways, as compared to the bulk solution, that accelerate 

aggregation processes. Therefore it is important to understand and control aggregation at the 

air-water interface. Experimentally aggregation of a therapeutic protein at the air-water 

interface can be mimicked by agitation studies. 

In the following agitation studies rh-GCSF was investigated at a concentration of 1.5 mg/ml – 

a concentration that had previously been used many times in other studies mainly evaluating 

the aggregation behavior of rh-GCSF under physiological conditions2,8. Three different CD-
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derivatives were included into the studies: HPβCD and SBEβCD as the two derivatives that 

are currently used in approved parenteral products9 and MβCD as a derivative that, besides 

HPβCD, proved to be efficient for the inhibition of surface-induced aggregation of the IgG as 

discussed in Chapter 3. The formulations were compared to two formulations containing 

polysorbate 80 (in a higher and a lower concentration, both above the CMC of 

polysorbate 8010-11) as a typical non-ionic surfactant that is frequently employed in protein 

formulations for the inhibition of agitation-induced aggregation. From Figure 4.1 it can be 

seen that agitation at 1100 rpm in vertically oriented centrifugal tubes on a ThermomixerTM 

decreases the amount of monomer in the reference formulation without any excipients 

besides buffer to about 86 %. As apparent from the results of a second agitation study on rh-

GCSF (Figure 4.2) this loss of monomer is mainly due to the formation of high molecular 

weight aggregates, since soluble aggregates as determined by HP-SEC make up only 3.4 % 

of the original amount of protein before the agitation period. 
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Figure 4.1: Aggregation in different rh-GCSF-formulations throughout an agitation-period of 66 h at 
1100 rpm as determined by HP-SEC. All formulations had a pH of 4 and rh-GCSF was present at 
1.5 mg/ml. Each value represents the average of three samples ± standard deviation. 

Clearly the presence of polysorbate 80 completely suppressed the formation of aggregates 

throughout the agitation period. Even the low concentration of polysorbate 80 employed in 

this study (0.003 %, still above the CMC of polysorbate 80 at 0.0012 %11) was sufficient for a 

complete protection against agitation-induced aggregation. HPβCD at both concentrations as 

well as MβCD at a concentration of 2.5 mM also stabilized rh-GCSF against aggregation at 

the air-water-interface, however to a slightly smaller degree than polysorbate 80 with 

approximately 95 % of remaining monomer at the end of the agitation period. As with the 

studies on the mAb, this is the first published demonstration that HPβCD and MβCD stabilize 
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rh-GCSF against aggregation. Again, it is remarkable, that comparably low concentrations of 

the CDs (2.5 mM which equals about 0.4% w/w) are sufficient to reach the maximally 

stabilizing potential. In contrast, the ionic CD-derivative included in the study, SBEβCD, failed 

to stabilize rh-GCSF against aggregation at the air-water interface and even deteriorated the 

situation compared to the reference without excipients: after 66 h of agitating in the presence 

of 2.5 mM as well as 25 mM SBEβCD all rh-GCSF monomer is converted into aggregates. 

This increased susceptibility to agitation-induced aggregation in the presence of SBEβCD 

was also observed for the mAb. 
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Figure 4.2: Comparison of the level of rh-GCSF-aggregation after 72 h of agitation at 1100 rpm in 
formulations containing HPβCD to formulations containing sucrose, trehalose and a combination of 
sucrose 250 mM and HPβCD 2.5 mM. Rh-GCSF concentration was 1.5 mg/ml and the formulations were 
buffered in acetate at pH 4. Each bar represents the mean of three samples ± standard deviation. 

 

In a second agitation study, the stabilizing potential of CDs was compared to the effects of 

low molecular weight sugars representing state of the art excipients for protein formulation12. 

As shown in Figure 4.2, in contrast to HPβCD and MβCD for nearly complete stabilization 

against agitation-induced aggregation was observed, the presence of 250 mM sucrose or 

trehalose has no beneficial effect on rh-GCSF stability. The presence of these low-molecular 

weight sugars even accelerates aggregation at the air-water interface compared to the 

reference formulation containing no excipients besides buffer mainly by the formation of 

soluble aggregates. This result is quite in contrast to earlier works observing a clear 
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thermodynamic stabilization and consequently a reduction of aggregation of rh-GCSF in the 

presence of sucrose2,8. In these studies the role of sucrose was analyzed and it was found 

out that sucrose reduces the population of structurally expanded rh-GCSF molecules by 

preferential exclusion thereby slowing the aggregation reaction. Obviously the postulated 

mechanism of stabilization that governs rh-GCSF stability in solution, does not apply to the 

protein’s susceptibility towards surface-induced aggregation. Possibly the presence of an 

extensive air-water-interface gives way to further aggregation pathways13. It can be argued 

on a theoretical basis that the presence of preferentially excluded excipients, such as 

sucrose decreases the free energy of unfolding of a protein adsorbed to the air-water-

interface. This might explain the negative effects on protein stability observed for sucrose 

and trehalose.13. This assumption is substantiated by the fact that also the mAb – although in 

terms of size and structure very different form rh-GCSF – showed increased aggregation 

rates during agitation in the presence of preferentially excluded excipients. From the 

comparison of the effect of CDs and LMW-sugars it can be concluded that CDs although 

chemically also classified as sugars act completely different from the disaccharides 

employed for this study. In contrast to the IgG, the acceleration of aggregation in the 

presence of sucrose could only be partially counteracted by the addition of HPβCD to the 

sucrose formulation, as demonstrated in Figure 4.2. 

2.2 FREEZE-THAW STUDIES 

Freeze-thawing stress poses a major challenge to maintaining protein stability since freeze-

thawing stress may occur at multiple stages, intentionally and also unintentionally, during 

manufacturing, processing and storing of therapeutic proteins and since it may cause 

significant damage to the protein thereby potentially risking patient safety. So far no studies 

are available examining the prevention of freeze-thawing-induced aggregation of rh-GCSF by 

the addition of suitable excipients. From studies on other proteins it is known that 

polysorbates are useful excipients for minimizing the level of protein aggregation during 

acute freeze-thaw studies, such as published for recombinant hemoglobin14. However, the 

very same study also denotes that during quiescent long-term storage of recombinant 

hemoglobin the addition of polysorbate 80 induced aggregation. Thus, once again, the need 

for excipients stabilizing against surface-induced aggregation, e.g. during freeze-thaw-

studies, while not hampering long-term storage stability, is apparent. 
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Figure 4.3: Remaining monomer and soluble aggregates in different rh-GCSF formulations after 15 F/T-
cycles as determined by HP-SEC. Each bar represents the mean of three samples ± standard deviation. 

The potential of HPβCD, MβCD and SBEβCD for the inhibition of freeze-thaw induced 

aggregation of rh–GCSF is demonstrated in Figure 4.3. After the 15 F/T-cycles the amount of 

remaining rh-GCSF monomer in the reference formulation without stabilizing excipients 

decreased to approximately 40 % of the original content and a significant amount of soluble 

aggregates was formed (22 %). In contrast the presence of HPβCD and MβCD F/T-induced 

aggregation was strongly reduced: the lower concentration of HPβCD (2.5 mM) was able to 

preserve 77 % of the original amount of monomer whereas the higher HPβCD-concentration 

led to a preservation of 85 % of the original amount of protein. In contrast to observations on 

the mAb, in this experiment an HPβCD concentration of 2.5 mM was not yet sufficient for 

achieving the maximally stabilizing potential of HPβCD since the higher concentration better 

protected rh-GCSF from aggregation. MβCD prevented rh-GCSF from surface-induced 

aggregation already at a lower concentration than HPβCD. In contrast SBEβCD (CaptisolTM) 

at its lower concentration even accelerated rh-GCSF-aggregation throughout the experiment 

very much in line with the results obtained for the mAb. After 15 F/T-cycles no remaining 

monomer, not even soluble aggregates, could be determined any more by HP-SEC. 

However, the higher concentration of SBEβCD (25 mM) led to a slight stabilization of the 

protein, as compared to the reference formulation, with 54 % remaining monomer after the 

F/T-cycles. As expected also polysorbate 80 suppressed rh-GCSF aggregation. The extent 

of the stabilization was comparable to that achieved by HPβCD and MβCD. It has to be 
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noted that all stabilizing excipients almost completely inhibited the formation of soluble 

aggregates. In addition, as evident from Figure 4.4 the addition of HPβCD, MβCD or 

polysorbate 80 led to a complete aggregation-suppression for up to 10 F/T-cycles and only 

after more than 10 cycles aggregation could be observed in these formulations. Since 15 

F/T-cycles represent rather harsh stressing conditions that are unlikely to occur to that extent 

during the processing and storage of biopharmaceuticals, it can be assumed that by the 

addition of CDs complete stabilization against F/T-induced aggregation is afforded. Except 

for the results on the formulation containing 25 mM SBEβCD all these results are 

qualitatively in agreement with results obtained for F/T-studies on the mAb at pH 7.4, 

confirming the general effectiveness of CDs for the stabilization against surface-induced 

aggregation of structurally different proteins. 
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Figure 4.4: Loss of rh-GCSF monomer in different formulations throughout 15 F/T-cycles as determined 
by HP-SEC. Each value represents the mean of three samples ± standard deviation. 

In summary it is demonstrated here that HPβCD and MβCD are very useful excipients for the 

stabilization of rh-GCSF since they are capable of inhibiting agitation- as well as F/T-induced 

aggregation. As with the earlier studies on the mAb an incubation at elevated temperature 

study was conducted in order to check whether the beneficial effects against surface-induced 

aggregation are counterbalanced by a decreased storage-stability that is widely described in 

literature for polysorbates14-15 and which could also be expected when assuming that CDs 

indeed preferentially bind to the partially unfolded state of rh-GCSF, thereby reducing the 

thermal stability of the protein in solution. 
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2.3 INCUBATION AT 50°C 

Generally, the factors controlling rh-GCSF stability in solution are well understood and 

extensively published1-2,16. In brief, rh-GCSF aggregates rapidly at neutral pH in the liquid 

state, but can be stored without any signs of aggregation for up to two years at 2-8°C at 

acidic pH (e.g. pH 3.5). Interestingly the protein’s free energy of unfolding and its 

conformation do not significantly differ at the two solution conditions. The reason for the 

different susceptibility to aggregation can be found in the colloidal stability of rh-GCSF: at low 

pH repulsive forces dominate protein interaction whereas at neutral pH intermolecular 

attraction forces of rh-GCSF molecules foster aggregation. Since the first step of aggregation 

of rh-GCSF involves a structurally expanded species, sucrose as a preferentially excluded 

thermodynamic stabilizer is capable of inhibiting rh-GCSF aggregation1. Little data has been 

published so far on the aggregation behavior of rh-GCSF at elevated temperature. The 

above cited studies were carried out under “physiological conditions” (37°C in the presence 

of salt). For PEG-GCSF studies at 45°C are available in which a direct concentration-

dependence of aggregation was determined6. The following study was carried out at pH 4 

corresponding to the pH of the formulation of most commercial rh-GCSF formulations. 

Incubation was performed at 50°C. At pH 4.0 colloidal stability is high and the rate-limiting 

step in the aggregation process is initial dimer formation prior to the formation of higher order 

aggregates.1 

2.3.1 AGGREGATION 

In Figure 4.5 A and B the levels of monomeric rh-GCSF remaining in solution throughout an 

incubation study at 50°C for 230h are shown. In part A of the figure the reference formulation 

containing rh-GCSF in acetate buffer is compared to formulations containing three different 

CD-derivatives in two concentrations, respectively. Rh-GCSF stored without stabilizing 

excipients showed a continuous decrease of remaining monomer content, reaching 60 % 

after 230 h of incubation. It becomes apparent that SBEβCD at both concentrations led to a 

very rapid loss of monomeric protein: within one day of incubation all monomeric protein was 

lost. No soluble aggregates could be determined in the SBEβCD-formulations (data not 

shown) implying that only insoluble aggregates were performed. Also MβCD at the 25 mM 

concentration accelerated aggregation compared to the reference. However, rh-GCSF 

aggregation was not as drastic as in the SBEβCD formulations. The monomer content 

decreased almost linearly over time reaching about 15 % after 230 h of incubation. The two 

HPβCD-formulations and the lower concentrated MβCD-formulation showed almost no 

difference to the reference-formulation. However, at the end of the incubation period a slight 

stabilization could be observed, but the observed difference was small and should therefore 

not be over interpreted. Thus in conclusion HPβCD had no effect on the aggregation 

behavior of rh-GCSF at elevated temperature whereas MβCD (in its high concentration) 
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accelerated aggregation, confirming conclusion from the investigations on the IgG. Taking 

into consideration the results of the agitation study and the F/T-study, HPβCD is again 

identified as the most promising CD-derivative tested, since it inhibits interfacial aggregation 

while not accelerating aggregation during storage at elevated temperature. 
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Figure 4.5: Loss of rh-GCSF-monomer throughout an incubation period of 230 h at 50°C as determined by 
HP-SEC. Rh-GCSF was formulated at 1.5 mg/ml at a pH of 4.0. Each value represents the mean of three 
values ± standard deviation. In part (A) the comparison of the reference formulation to CD-formulations is 
depicted, and in part (B) the comparison of the reference formulation to polysorbate 80 and sucrose is 
shown. 
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Figure 4.5 B depicts a comparison of the reference formulation without stabilizers to rh-

GCSF formulations containing either polysorbate 80 at two concentrations, sucrose or 

HPβCD. The sucrose formulation did not exhibit any aggregation throughout the storage 

period whereas the two formulations containing polysorbate 80 demonstrated significantly 

increased aggregation rates with only slightly more than 20 % remaining monomer after 

storage. Interestingly, polysorbate 80 concentration had almost no influence on the extent of 

aggregation. Again, the observations and conclusions from the investigation of the IgG were 

qualitatively confirmed. The positive effects of polysorbate 80 against surface-induced 

aggregation are counterbalanced by increased aggregation rates during quiescent storage 

whereas sucrose as a preferentially excluded excipient increases rh-GCSF stability during 

storage but leads to increased amounts of aggregates during agitation. HPβCD has no effect 

on aggregation after storage at 50°C and therefore its stabilizing effect against surface-

induced aggregation is not counterbalanced by reduced storage stability. 

2.3.2 CONFORMATIONAL STABILITY AND MICROCALORIMETRIC DATA 

Since all tested formulations were of low pH and low ionic strength (besides those containing 

ionic SBEβCD) colloidal stability is expected to be high. Thus, differences in conformational 

stability should be governing the different aggregation propensity of rh-GCSF in the various 

formulations observed during storage at 50°C. In order to verify this hypothesis the 

conformational stability of rh-GCSF in solution after the 230 h incubation period was 

assessed using FTIR. In addition, the thermodynamic stability of selected formulations was 

determined by microcalorimetry prior to storage, in order to elucidate whether CDs, as 

suggested by literature, lead to a shift of the folding equilibrium towards more unfolded forms 

due to the CDs’ preferential binding to unfolded states of the protein under investigation. 

In Figure 4.6 the FTIR second derivative spectra of rh-GCSF prior to and after 230 h storage 

at 50°C of four selected formulations are compared. Since the IR-transmission cell used for 

the recording of these spectra requires particle-free solutions all formulations were 

centrifuged after storage and only the remaining supernatant was analyzed. Most of the 

stored solutions showed only minor amounts of soluble aggregates after storage (< 3 %) 

except for the polysorbate 80 0.03 %-samples (16.3 %) and the MβCD 25 mM-samples 

(11.4 %) which means that the IR-spectra only partially reflect perturbed secondary structure 

in aggregates but for the most part actually represent the more or less structurally perturbed 

rh-GCSF monomer after storage. 
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Figure 4.6: Area normalized second-derivative IR-transmission spectra of selected rh-GCSF formulations 
after storage for 230 h at 50°C (n=2) comprising the reference formulation (A) and formulations containing 
HPßCD 2.5 mM (B), polysorbate 80 0.03 % (C) and sucrose 250 mM (D). 

In Figure 4.6 A, B and C it can be seen that after storage the formation of a new band at 

1620 cm-1 occurred which is attributed to intermolecular β-sheet-formation2,8,17. 

Concomitantly, the α-helical band at 1656 cm-1 decreased in its intensity indicating the loss of 

native secondary structure. The reference formulation (A) showed a very comparable degree 

of secondary structural disruption as the HPβCD 2.5 mM formulation (B) coinciding with the 

observation of comparable aggregate levels in these formulations. In contrast, the 

polysorbate 80-formulation exhibited a distinctly stronger β-sheet. The formation of the β-

sheet band was not observed for the sucrose formulation as evidenced by Figure 4.6 D. 

Figure 4.6 is complemented by Table 4.1 in which the change in the ratio of the second 

derivative peak intensities at 1620 cm-1 and at 1656 cm-1 is listed for all the formulations 

tested in this investigation. The ratios confirmed the visually observed trends from the 

spectra: the strongest changes in secondary structure occurred in the polysorbate 80-

formulation and in the MβCD 25 mM formulation (spectra not shown) whereas HPβCD 

showed a loss of secondary structure that is even slightly smaller than that of the reference. 
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The disaccharides sucrose and trehalose completely preserved the native secondary 

structure. 
Table 4.1: Change in ratio of IR second derivative peak intensities at 1620 cm-1/1656 cm-1 before and after 
storage at 50°C in various rh-GCSF formulations. All values are obtained from the average spectra of two 
independent samples. 

Formulation 
1620 cm-1/1656 cm-1-ratio 
before incubation 

1620 cm-1/1656 cm-1-ratio after  
incubation 

Reference -0.06 0.30 

HPβCD 2.5 mM -0.06 0.17 

HPβCD 25 mM -0.05 0.29 

MβCD 2.5mM -0.07 0.30 

MβCD 25 mM -0.04 1.03 

SBEβCD 2.5 mM -0.10 n/a 

SBEβCD 25 mM -0.04 n/a 

Polysorbate 80 0.003 % -0.04 0.39 

Polysorbate 80 0.03 % -0.05 0.65 

Sucrose 0.5 M -0.05 -0.03 

Trehalose 0.5 M -0.09 0.00 

 

In conclusion it can be stated that the addition of HPβCD had no significant effect on the 

secondary structure of rh-GCSF which is again in agreement with the results obtained for the 

mAb. As also widely described in literature, the addition of preferentially excluded excipients 

to solutions of rh-GCSF, such as sucrose and trehalose, favored a more compact 

conformation of the protein which led to a very minor loss of secondary structure and no 

aggregation as determined by HP-SEC. On the other hand, surface-active polysorbate 80 

caused a major loss of secondary structure which is in agreement with accelerated 

aggregation as determined by HP-SEC. In earlier works on rh-GCSF aggregation under 

physiological conditions it was speculated that the transition to β-sheet is a result of 

aggregate formation and not due to the monomeric protein assuming a β-sheet “template” 

conformation prior to aggregation2. Our results on rh-GCSF aggregation at 50°C point into a 

different direction when keeping in mind that only the supernatant with very little amounts of 

soluble aggregates (e.g. in the reference formulation) also showed a prominent β-sheet band 

at 1620 cm-1. Thus it seems likely that a secondary structural transition of the monomeric 

protein occurs prior to aggregation. 

In addition to IR-experiments for the detection of secondary structural changes, second-

derivative UV absorbance spectroscopy was applied for the detection of tertiary 
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conformational changes. The method exploits changes in the polarity of microenvironments 

of the aromatic amino acids Tyr and Trp of which rh-GCSF contains three and two per 

molecule, respectively2. Therefore both, conformational changes exposing the amino acids to 

the solvent to varying degrees and the polarity of the solvent itself potentially influence the 

protein spectra2,18. Since for example the addition of 0.9 % benzyl alcohol resulted in a 

change in peak positions of the model compounds N-acetyl-tyrosinamide and N-acetyl-

tryptophanamide, it has to be assumed that the addition of much higher quantities of sugars 

and cyclodextrins in our studies must also result in changes of the solvent polarity8. 

Therefore a direct comparison of the different formulations and an evaluation of the effect of 

the added excipients on the tertiary structure of rh-GCSF only, was not possible, because the 

signal would always be also influenced by the excipients’ influence on solvent polarity. 

However, a comparison of the tertiary structure of rh-GCSF before and after incubation at 

50°C and hence monitoring the effect of storage on each formulation was possible after 

subtraction of the appropriate background spectra. 
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Figure 4.7: Representative UV-spectra: second derivative spectra of rh-GCSF samples before and after 
incubation at 50°C for 230 h of the reference-formulation without excipients besides buffer (A) and the 
formulation containing 250 mM sucrose (B). 

The second-derivative UV-spectra of two representative formulations are shown in Figure 

4.7. A red shift of the Trp-band relative to the spectrum before storage could be observed in 

both formulations indicating that tryptophan in the stored protein solution was in a more 

hydrophobic environment than before storage19. This result was somehow surprising, since 

one would anticipate higher solvent exposure due to partial unfolding upon thermal stress. A 

look at Table 4.2 and into literature offers an explanation for this behavior. Krishnan et al. 

recorded the spectra of isolated dimer-fractions (containing 0.12 mg/ml dimer) of rh-GCSF 

after separation by HP-SEC and also found a clear red-shift of the Trp-band and the Tyr-

band2. This means that in the dimers Trp and Tyr are less solvent-exposed than in the rh-

GCSF monomer. In the present study a similar trend was observed: Trp was most strongly 
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red-shifted in those formulations containing the highest amount of dimer (MβCD 25 mM, 

polysorbate 80 % and SBEβCD 2.5 mM) which could interpreted in a way that the red shift 

recorded after storage reflected dimer formation and rather not unfolding on a tertiary 

structural level prior to the formation of insoluble aggregates.  

Most importantly it has to be concluded that the presence of HPβCD in both concentrations 

does not affect tertiary structure more strongly than the reference formulation. Therefore, no 

shift towards a more unfolded conformation of rh-GCSF could be observed in the presence 

of HPβCD which can also be taken as a further hint that no interaction between rh-GCSF and 

HPβCD takes place in solution. 

Table 4.2: Tertiary structural characterization of rh-GCSF before and after storage at 50°C for 230 h by 
second-derivative UV-spectroscopy. Peak positions of the 290 nm-Trp-peak and the differences before 
and after storage are listed (n=2). 

Formulation 
Trp-position before 
incubation [nm] 

Trp-position after 
incubation [nm] 

Difference [nm] 

Reference 290.21 290.94 0.73 

HPβCD 2.5 mM 290.44 291.10 0.66 

HPβCD 25 mM 290.44 290.90 0.46 

MβCD 2.5 mM 290.42 290.94 0.52 

MβCD 25 mM 290.30 291.56 1.26 

SBEβCD 2.5 mM 291.56 293.00 1.44 

PS 80 0.003 % 290.47 291.46 0.99 

PS 80 0.03 % 290.14 291.15 1.01 

Sucrose 0.5 M 290.32 290.50 0.18 

Trehalose 0.5 M 290.34 291.05 0.71 

 

Since it is reported that the reduction of agitation-induced aggregation by non-ionic 

surfactants can be due to an increase in the thermodynamic stability of a protein20 and to find 

out whether this behavior might contribute to the stabilization of rh-GCSF by CDs or whether 

thermodynamic stability is rather unaffected or even decreased by the addition of CDs 

(potential shift of the folding equilibrium towards a more unfolded form due to preferential 

binding to the unfolded state21), the apparent melting temperature of selected rh-GCSF 

formulations was measured in presence and absence of CDs (Table 4.3).  

The apparent melting temperature of rh-GCSF as determined by microcalorimetry in buffer 

alone was nearly identical to that for the protein in the presence of HPβCD. Thus HPβCD has 

no measurable effect on the thermodynamic stability of rh-GCSF. This finding leads to two 

consequences: it can be concluded that a change in thermodynamic stability is not an 
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explanation for the inhibition of surface-induced aggregation of rh-GCSF in the presence of 

HPβCD. Secondly, this result can also be interpreted as an indication that no binding 

between CDs and rh-GCSF occurs because a preferential binding of CDs to the partially 

unfolded state of the protein would have resulted in a subsequent shift of the folding 

equilibrium associated with a decrease in Tm
21. 

Interestingly, the apparent Tm was decreased by about 2°C in the presence of MβCD which 

also stabilized against aggregation at the air-water interface but which at higher 

concentrations negatively affected storage stability at 50°C. This behavior could be due to 

two reasons: either direct binding in solution occurs between MβCD and rh-GCSF thereby 

shifting the folding equilibrium of rh-GCSF, or this CD-derivate is more surface-active than 

HPβCD leading to the inherent thermodynamically destabilizing effects of surface-active 

excipients on proteins in the bulk solution in the same way as discussed in the introduction 

for polysorbates13,22. 

From Table 4.3 it can also be seen that SBEβCD led to a very pronounced decrease of 

apparent Tm by more than 10°C. This finding was very much in agreement with the results of 

the stress studies in which SBEβCD proved to be detrimental to rh-GCSF stability during 

both, agitation and quiescent storage. Apparently the strong decrease of conformational 

stability of rh-GCSF explains the undesired effects of SBEβCD. In addition, an effect on 

colloidal stability, due to the shielding of the repulsive forces between the rh-GCSF-

molecules at pH 4 by the ionic excipient might play a role. 

It has to be noted here that thermal unfolding of all samples was irreversible due to the 

formation of aggregates during heating – therefore the term “apparent Tm” was used. 
Table 4.3: Apparent melting temperatures of different rh-GCSF-CD formulations as determined by 
microcalorimetry. Rh-GCSF was formulated at 0.5 mg/ml and pH 4 and experiments were carried out 
once. A high degree of reproducibility of the results (SD < 0.1°C) was demonstrated in a separate 
experiment (data not shown). 

Formulation 
Apparent Tm 

[°C] 

Reference 64.89 

HPβCD 10 mM 64.83 

MβCD 10 mM 62.68 

SBEβCD 10 mM 53.85 

 

In summary, when using polysorbate 80 and sugars a compromise has to be struck in the 

formulation of rh-GCSF: stabilization at the interface by polysorbate 80 is very well possible 

as evidenced by complete stabilization against agitation-induced aggregation and good 

stabilization against F/T-induced stress. However, the use of the strongly surface-active 
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polysorbate is accompanied by increased aggregation of rh-GCSF during quiescent storage 

in solution. This is very likely an inherent problem of surface-active excipients as discussed 

in the introduction and also in Chapter 6. The opposite phenomenon can be observed when 

using sugars for rh-GCSF formulation: increased aggregation after agitation and complete 

stabilization in the bulk as evidenced by the data presented in this chapter.  

Our results demonstrate that a possible solution to this predicament could be provided by the 

usage of HPβCD. The excipient leads to a clear stabilization against surface-induced 

aggregation (comparable to that of polysorbate 80) while leaving storage stability in solution 

and thermodynamic stability of rh-GCSF unaltered.  

These results also allow some speculations on the mechanism of rh-GCSF stabilization by 

HPβCD. The fact that HPβCD did not lead to a destabilization in the bulk and that also Tm 

was left unaltered by the addition of HPβCD render direct binding in the bulk solution 

unlikely. Furthermore it can be speculated that HPβCD is not strongly surface-active, since 

high concentrations of the surface active MβCD and also of the surface-active polysorbate 80 

do lead to a destabilization in the bulk. It appears that additional mechanisms of stabilization 

of rh-GCSF by HPβCD against surface-induced aggregation could play a role. These 

mechanistic questions will be addressed in detail in the following chapters. 

2.4 EFFECT OF HPΒCD ON RH-GCSF AGGREGATION UNDER PHYSIOLOGICAL 

CONDITIONS 

To complement the typical stress conditions chosen for accelerated stability testing, harsh 

agitation conditions, extensive freeze-thaw cycles and storage at elevated temperature, a 

study investigating the influence of HPβCD on rh-GCSF-aggregation under physiological 

conditions was conducted. The study was based on a number of reports in literature that rh-

GCSF readily aggregates under physiological conditions (pH 7, 10 mM phosphate buffer and 

150 mM NaCl, 37°C) within a couple of days1-2. 

It was also reported that under these conditions rh-GCSF exists in equilibrium with a partially 

unfolded conformation with increased solvent-exposure of Trp 58 that has an increased 

propensity to aggregate23. We therefore assumed that by the addition of HPβCD, the 

incorporation of the solvent-exposed Trp into the CD-cavity at pH 7 could be expected. 

Thereby shielding of hydrophobic protein interaction and a reduction of the degree of 

aggregation compared to the reference formulation without HPβCD was anticipated. In order 

to allow for a clear evaluation of the potential benefit of HPβCD-addition, a sucrose-

containing formulation was included as a “benchmark formulation” into the studies. 
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Figure 4.8: Rh-GCSF aggregation under physiological conditions (10 mM sodium phosphate and 150 mM 
sodium chloride at pH 7.0 and 37°C) in formulations containing different ratios of rh-GCSF : HPβCD as 
determined by HP-SEC. A reference formulation consisting of rh-GCSF in physiological buffer only and a 
formulation containing 0.5 M sucrose are also included. Each value is the mean of three samples ± 
standard deviation. 

In Figure 4.8 the loss of monomer over an incubation period of 5 days is shown. It can be 

seen that in the reference formulation about 25 % of monomer were lost within the incubation 

period. From reduced recoveries in SE-HPLC the conclusion can be drawn that most of the 

aggregates formed are of insoluble nature (data not shown). Obviously the addition of 

HPβCD to the rh-GCSF formulations did not significantly alter the extent of aggregation. In 

contrast, the formulation containing sucrose was clearly stabilized in good agreement with 

literature2. Hence the anticipated stabilization of rh-GCSF by the addition of HPβCD due to 

the shielding of hydrophobic protein interaction did not occur. Different explanations could 

explain this behavior. The degree of rh-GCSF partial unfolding could have been too subtle for 

the Trp58-residue to be sterically accessible by HPβCD and thus no incorporation into the 

CD-cavity was possible. Another explanation would be that other mechanisms besides partial 

exposure of this amino acid govern rh-GCSF aggregation under physiological conditions and 

therefore CDs are generally not suitable to prevent rh-GCSF-aggregation under physiological 

conditions. 
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3 EXPERIMENTS WITH RECOMBINANT HUMAN GROWTH HORMONE (RH-GH) 

Having demonstrated in the previous sections that CDs, notably HPβCD, can serve as 

valuable excipients for the stabilization of rh-GCSF and a mAb, rh-GH was investigated as a 

third model protein. Although some studies on this matter have already been published4,24 

the reasons to investigate the aggregation-behavior of rh-GH in the presence of CDs within 

this project were several-fold.  

First of all the conditions under which the effect of CDs on rh-GH-aggregation was 

investigated so far are unlikely to occur during situations typically encountered during 

manufacturing, processing and storage of the protein. For example Otzen et al. chose acidic 

conditions (pH 2.5) in the presence of 1M NaCl in order to provide a “convenient assay” for 

aggregation, exploiting the fact rh-GH populates a partially folded A-state at low pH with 

native-like secondary structure but loss of tertiary structure leading to a high propensity of rh-

GH to aggregate in the presence of NaCl4. In another study on the suppression of rh-GH 

aggregation a molten globule intermediate of rh-GH was artificially created by the presence 

of 4.5M GdmHCl5. Upon dilution and subsequent refolding significant aggregation occurred 

and the effect of various CD-derivatives on rh-GH aggregation was evaluated24. In addition 

the study also investigated the influence of CDs on vortexing-induced aggregation of rh-GH: 

by vigorously vortexing rh-GH for only 60s insoluble aggregates were created. Finally, also 

the effect of CDs on chemical degradation of rh-GH was investigated by subjecting the 

protein to a 3 % hydrogen peroxide treatment and incubating it at 37°C. All the cited 

conditions are somehow stressful to the protein but do not necessarily reflect conditions that 

occur during industrial processing. We therefore conducted agitation studies for the duration 

of two days mimicking exposure to the air-water-interface as experienced during mixing and 

shipping processes and also performed freeze-thaw studies simulating either intentional 

freezing of bulk drug substance or accidental freezing of the drug, e.g. occurring during 

refrigerated storage. 

A second reason to study the aggregation behavior of rh-GH in the presence of CDs was to 

provide a basis for later follow-up studies that will evaluate whether CDs might be suitable to 

suppress aggregation-related immunogenicity of rh-GH. Since in an earlier study on rh-GH it 

was determined that aggregates in commercial formulations of rh-GH were immunogenic in 

naïve adult and neonatally primed mice, as were aggregates provoked in these formulations 

by exerting freeze-thawing and agitation stress, it is of particular interest to evaluate if CDs 

are capable of reducing the amount of aggregates under similar conditions25. Large insoluble 

aggregates as well as smaller soluble oligomers, together very likely acting as adjuvants as 

well as antigens caused the strongest immune response in the cited study. Therefore a 

special focus of our studies was laid on these types of aggregates by including asymmetrical 

field flow fractionation (AF4) as a analytical method into the investigations that is capable of 
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detecting all these types of aggregates in a single run25-26. In the study performed by Fradkin 

et al. high hydrostatic pressure was used as a means to reduce the aggregate burden in the 

stressed rh-GH samples which also lead to a reduction of immunogenicity25. However, the 

reduction of aggregation was accompanied by a remarkable increase in the amount of 

deamidated rh-GH. The addition of CDs in contrast could provide a way to inhibit the 

formation of aggregates (and therefore immune responses) a priori and at the same time not 

compromising rh-GH chemical stability. 

A third reason to study rh-GH was the fact that in contrast to the mAb and to rh-GCSF a 

number of studies were already available describing the interaction of rh-GH with various 

CD-derivatives4,24. It is known that even in the native state rh-GH exposes a large number of 

aromatic amino acids thereby offering access to β-CD derivatives for the inclusion of the 

aromatic residues into the hydrophobic CD-cavity4. NMR data have confirmed aromatic 

amino acids as predominant binding sites for β-CD4. Therefore, by comparing the 

aggregation behavior of rh-GH in the presence of CDs, as a protein that is known to bind to 

CDs in solution, to the aggregation behavior of the two other model-proteins, it was expected 

to achieve conclusions on the mechanism of stabilization also of the other two model 

proteins and to allow for some general conclusions on the mechanism of stabilization. 

Finally – since that is one of the overall goals of this thesis – the effects of HPβCD and 

SBEβCD are directly compared to those of polysorbate 80 which is an excipient that was 

several times already proven to be effective to prevent surface-induced aggregation of rh-

GH11,14-15,27-28. However, to date no direct comparisons between the effect of polysorbate 80 

and CDs are available in literature29-30. 

3.1 AGITATION STUDY 

Initially an agitation study in centrifugal tubes vertically placed on a Thermomixer™ was 

carried out for 48 h. The reference formulation consisted of a Histidin buffer and Mannitol. 

The reason for choosing this formulation was that this very formulation was also used for the 

immunogenicity studies published by Fradkin et al.25 and since it was intended to study the 

influence of HPβCD on the formation of potentially immunogenic aggregates as many 

parameters as possible were kept identical to the published investigations. It can be seen 

from Figure 4.9 that after an agitation period of 48 h the monomer content of the control 

sample (without excipients that stabilize against surface-induced aggregation) decreased to 

about 50 % and distinct amounts of aggregated species were formed. From Figure 4.10 it is 

conceivable that these aggregates were of insoluble nature as they are not detected as 

peaks quantifiable by HP-SEC. 
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Figure 4.9: Remaining monomer of rh-GH during agitation in centrifugal tubes for a period of 48 h as 
followed by HP-SEC. All values are the mean of three samples ± standard deviation. 

These findings were confirmed by a comparison of fractograms obtained by AF4-analysis 

(Figure 4.11) in which it can be seen that the reference sample obtained after 24h of 

agitation showed a clearly reduced monomer content and significant amounts of aggregated 

species were formed eluting after the monomer peak. In addition the void peak showed a 

clearly increased intensity indicating increased amounts of aggregate species larger than 

~1µm26,31 or larger than 600-700 nm (according to personal communication with Wyatt 

Technology Europe GmbH) eluting in the so-called steric hyperlayer mode. These aggregate 

species were reported to potentially trigger immune reactions by Fradkin et al.25. Clearly 

HPβCD stabilizes rh-GH against aggregation at the air-water-interface since after the 

agitation-period more than 90 % of the original monomer content can be detected in solution 

(Figure 4.9). No significant difference with regard to the stabilizing effect can be observed 

between the 10 mM and the 50 mM concentration of HPβCD. Also these HP-SEC results 

were confirmed by an AF4-analysis (Figure 4.11) after 24h of agitation. Clearly, the 

formulation containing HPβCD in its 50 mM-concentration very much resembled in its 

composition the native sample before the start of the experiment. Also the amount of 

insoluble aggregates as detected by the steric hyperlayer mode (in the size range that is 

relevant for immunological considerations32) was not increased underlining the potential of 

HPβCD to prevent immunogenicity of rh-GH formulations per se. Interestingly, in its 10 mM 

concentration also SBEβCD stabilized rh-GH against agitation-induced aggregation in 

contrast to observations made from studies with the mAb and rh-GCSF. The extent of 

aggregation-suppression was smaller than that observed by the addition of HPβCD but it was 

still significant leaving about 68 % of monomer in solution after the 24 h incubation period. In 

contrast, the high concentration of SBEβCD (50 mM) accelerated aggregation leaving only 
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about 9 % remaining monomer in solution after 48h. Therefore SBEβCD both stabilizes and 

destabilizes rh-GH in a concentration-dependent manner. Polysorbate 80 showed an 

ambiguous behavior. Within the first 24h of agitation it exhibited a clear reduction of 

aggregation when compared to the reference sample. However, after 48h the extent of 

aggregation dramatically increased and the formulation turned then out to be less stable 

against aggregation at the air-water interface than the reference formulation. Thus depending 

on the length of the experiment, polysorbate 80 accelerates or decelerates aggregation of rh-

GH. From Figure 4.10 it can be seen that in contrast to all other formulations the presence of 

polysorbate 80 led to massively increasing amounts of soluble aggregates over time. 
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Figure 4.10: Formation of soluble aggregates of rh-GH throughout an agitation period of 48 h as followed 
by HP-SEC. All values are the mean of three samples ± standard deviation. 

The observation that HPβCD better stabilized rh-GH against agitation-induced aggregation 

than other CD-derivatives is in accordance with an earlier study that investigated the effect of 

different CD-derivatives on rh-GH aggregation after vigorous vortexing for 60s24. Also the 

amount of HPβCD necessary to achieve the maximally stabilizing effect (10 mM) agrees with 

our results. The authors of the earlier work on the suppression of rh-GH-aggregation 

speculate that the effectiveness of HPβCD to prevent interfacial aggregation is due to its 

surface-activity and that HPβCD acts in a manner similar to that of surfactants24. In support 

of their theory, a linear correlation of the surface-tension of differently substituted HPβCD-

species and the amount of aggregates is shown. However, the surface tension values 

presented for HPβCD (about 52 mN/m for the highest degree of substitution) are much 

higher than those published for polysorbate 80 (about 40 mN/m)10. Therefore polysorbate 80 

has to be considered a lot more surface-active than HPβCD and nevertheless in the present 

study less effective rh-GH stabilization against aggregation at the air-water interface than by 
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HPβCD was observed. Based on our results we therefore rather suggest that the pure 

presence of HPβCD at the interface along with its capability to form inclusion complexes with 

exposed hydrophobic residues on the rh-GH-molecule4 explain the stabilization of rh-GH – 

and not competitive displacement from the interface. A certain surface-activity of HPβCD 

presumably helps to “scavenge” partially unfolded rh-GH molecules directly at the surface 

and therefore renders HPβCD more efficient than other CD-derivatives in the prevention of 

agitation-induced aggregation. However, surface-activity alone and a resulting decrease of 

the concentration of rh-GH at the interface due to competition at the interface can not explain 

the observed stabilization. 
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Figure 4.11: Representative AF4-fractograms of different rh-GH formulations after 24h of agitation by 
asymmetric field-flow fractionation. 

This assumption is supported by the fact that also for SBEβCD stabilization against agitation-

induced aggregation was observed– at least at its lower concentration (10 mM). This finding 

is quite in contrast to the studies on the mAb and rh-GCSF in which SBEβCD always led to 

increased aggregation rates (except for a single formulation during F/T-stress of rh-GCSF 

with 25 mM SBEβCD). Since SBEβCD (Captisol™) possesses practically no surface-activity 

(see Table 3.1 of Chapter 3) rh-GH is most probably stabilized by direct interaction with 

SBEβCD resulting in shielding of exposed hydrophobic amino acids on the protein rather 

than competition at the air-water interface. At high SBEβCD-concentration apparently other 

effects govern aggregation besides the incorporation of hydrophobic amino acids in the 

hydrophobic cavity, leading to increased aggregation rates. 
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The inhibition of agitation-induced aggregation of rh-GH by polysorbate 80 was discussed 

many times in literature30,33. Looking at only the two first time points of the experiment (after 

12 h and 24 h agitation, respectively) rh-GH aggregation was reduced by the addition of 

polysorbate 80 being in good accordance with literature findings. However, after 48h an 

increase in the rate of aggregation was observed, suggesting that rh-GH aggregation at the 

air-water interface in the presence of polysorbate 80 could be characterized by a “lag-phase” 

with little aggregation at first followed by massive aggregation afterwards. The polysorbate 

80 concentration chosen for the experiment reflects a typical polysorbate 80 concentration in 

protein formulations (i.e. clearly above the CMC, nearly identical to the high concentration 

chosen in the mAb and rh-GCSF-experiments at which polysorbate 80 proved to be efficient 

for aggregation inhibition). However, Katakam et al. report that complete suppression of rh-

GH-aggregation by polysorbate 80 was achieved at a concentration of 0.1 %33. Therefore 

concentration seems to be a critical factor in the stabilization of rh-GH by polysorbate 80 and 

the unexpected results in our experiment could be due to a sub-optimal concentration for the 

stabilization against agitation-induced aggregation. Nevertheless, in conclusion, since 

HPβCD showed a more efficient reduction of aggregation in both concentrations investigated 

here the comparison between the two excipients, polysorbate 80 and HPβCD, points towards 

superiority of HPβCD for the stabilization of rh-GH under stress conditions that rh-GH might 

very well be subjected to during manufacturing and shipping of the formulations. 

3.2 FREEZE-THAW STUDY 

In a further attempt to evaluate whether CD-derivatives are suitable to stabilize rh-GH under 

pharmaceutically relevant stress conditions, freeze-thaw studies were carried out. After 15 

cycles of freezing the samples to -80°C by immersing them into liquid nitrogen and thawing 

them at room temperature the amount of monomer in solution as determined by HP-SEC is 

decreased to 63 % of the content prior to the freeze thaw stress in the reference formulation 

(Figure 4.12). From Figure 4.13 it can be seen that aggregation is almost exclusively due to 

the formation of insoluble aggregates that cannot be detected by HP-SEC as no soluble 

aggregates could be detected. In contrast to the agitation-experiments none of the samples 

showed high levels of soluble aggregates (below 2 % in all samples at all time points). A 

complete stabilization against freeze-thaw induced rh-GH aggregation could be observed in 

the formulations containing HPβCD (Figure 4.12). Interestingly, almost complete aggregation 

suppression was also achieved by the addition of SBEβCD to the rh-GH formulations with 

93 % and 97 % remaining monomer for the 10 mM and the 50 mM-concentration of 

SBEβCD, respectively. Polysorbate 80 also stabilized rh-GH against F/T-induced 

aggregation. However, the degree of aggregation suppression was significantly smaller than 

that achieved by the two CD-derivatives. 
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Figure 4.12: Loss of rh-GH-monomer during 15 F/T-cycles as followed by HP-SEC. All values are the mean 
of three samples ± standard deviation. 

For the first time it is demonstrated here that CD-derivatives are capable of stabilizing rh-GH 

against aggregation induced by repeated freeze-thawing cycles. Since F/T-induced 

aggregation is caused by the presence of an interface (ice-water interface) this is a further 

demonstration that HPβCD and SBEβCD are capable of inhibiting surface-induced rh-GH 

aggregation. However, the result of this study is very much in contrast to the results of the 

F/T-studies carried out with a mAb and rh-GCSF. In those studies SBEβCD accelerated 

protein aggregation whereas in this case both concentrations of SBEβCD investigated lead 

to a clear almost complete stabilization of rh-GH against F/T-induced aggregation. Very likely 

this difference can be explained by the fact, that SBEβCD (which is not surface-active, as 

mentioned above and which therefore cannot stabilize via competition at the interface) is 

capable of binding to rh-GH4, thereby masking potential hydrophobic interaction between the 

rh-GH molecules. The more surface-active HPβCD is capable of reaching the surface in 

higher concentrations thereby more efficiently interacting with the surface-unfolded rh-GH at 

the location of their origin. This property translates into an even more effective suppression 

of rh-GH aggregation by HPβCD.  

Another important difference to the earlier experiments on rh-GCSF and the IgG lies in the 

observation that the CD-derivatives tested here more effectively stabilized the protein under 

investigation against surface-induced aggregation than polysorbate 80 at a reasonably high 

concentration (more than 10-fold above the CMC, efficient at this concentration to inhibit F/T-

induced aggregation of rh-GCSF and the mAb). 
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Figure 4.13: Formation of soluble aggregates of rh-GH during 15 F/T-cycles as followed by HP-SEC. All 
values are the mean of three samples ± standard deviation. 

Since rh-GH-aggregates formed by F/T-stress were reported to trigger immune reactions in 

mice25 it has to be concluded again, that the addition of HPβCD to the formulations is a 

promising way to prevent unwanted immunogenicity of rh-GH formulations. In contrast to 

reducing the aggregate-burden after the stress has occurred, as done by the application of 

high hydrostatic pressure25, HPβCD provides a low-aggregate formulation at all stages of the 

processing and storage of rh-GH solutions. We therefore suggest the effect of HPβCD on rh-

GH immunogenicity to be tested in appropriate animal models. 

3.3 INCUBATION AT 50°C 

In order to provide a complete set of data on the influence of CDs on rh-GH under stress 

conditions also a short-term incubation study at 50°C was carried out. The same formulations 

as for the agitation and F/T-studies were investigated for aggregation throughout a period of 

one month. As already observed with some of the mAb-formulations described in the 

previous chapter, the samples appeared yellow after the storage period. In addition their 

chromatograms (not shown) contained a large extra peak (most pronounced for the 

polysorbate-formulation) that - in contrast to mAb-experiments – did overlay with the 

monomer-peak and masked the fragment-peaks. If the extra-peak were also considered a 

protein-fraction the recovery of polysorbate formulation would be at about 150 %, which is 

clearly an artifact result. Therefore it is concluded that the extra peak arises from the buffer of 

these formulations, in which a reaction takes place that leads to products adsorbing at both 

215nm at 280nm. Coloration of His buffer after storage was also observed in an earlier study 

and linked to the presence of metal and chloride ions in solution34. Since it was impossible to 
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analyze samples in which this phenomenon occurred, the evaluation of the experiment ends 

after 72h. The results are demonstrated in Figure 4.14. 
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Figure 4.14: Remaining monomer after storage of rh-GH at 50°C for 72h as determined by HP-SEC. Each 
bar represents the mean value of three samples ± standard deviation. 

After this short period of time only a small fraction of the original rh-GH was aggregated in 

the reference formulation since the monomer-content as determined by HP-SEC is still about 

95.7 %. All formulations containing CD-derivatives (either HPβCD or SBEβCD in a 10 mM or 

a 50 mM-concentration, respectively) exhibited a slightly smaller or even no loss of monomer 

with the higher concentration inhibiting aggregation more effectively than the lower 

concentration and SBEβCD protecting rh-GH to a higher degree than HPβCD, respectively. 

The only formulation showing a higher loss of monomer is the polysorbate 80 formulation 

with only about 80 % remaining monomer after 72 h. 

Again, it has to be concluded, that in contrast to the studies with the mAb and rh-GCSF, for 

rh-GH stabilization is observed by SBEβCD. Since this stabilization of rh-GH by SBEβCD is 

observed for all three different stress conditions it can be assumed that there is a common 

underlying principle governing stabilization. Due to the very different stressing conditions and 

the fact that interaction has already been reported in literature4-5, it is likely that the 

interaction between exposed hydrophobic amino acid residues on the rh-GH molecule and 

the hydrophobic CD-cavity is that general stabilizing principle.  

The results obtained with regard to the comparison between HPβCD and polysorbate 80 are 

in agreement with the results obtained for the mAb and rh-GCSF: during quiescent storage 

polysorbate 80 leads to increased levels of aggregates – a problem that is never observed 

with HPβCD, rendering it a promising excipient in protein formulation. Even more, in this 
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case not only was there no negative effect of HPβCD on rh-GH stability during quiescent 

storage, as observed with the IgG and rh-GCSF, but even a stabilizing effect is observed. 

4 SUMMARY AND CONCLUSIONS 

The results of accelerated stability studies with two further, structurally different, model 

proteins, recombinant granulocyte colony stimulating factor and recombinant human growth 

hormone, are discussed in this chapter. A set of three different stressing conditions 

(agitation, repeated freeze-thawing and quiescent storage at 50°C) was exerted on the 

model proteins and the influence of different CD-derivatives as well as further excipients that 

are commonly used in protein formulation, i.e. disaccharides and polysorbate 80, on protein 

aggregation was analyzed. 

The results obtained with rh-GCSF qualitatively very well agreed with the results obtained for 

the IgG, the first model protein discussed in the previous Chapter 3. The CD-derivate 

showing the highest degree of protein stabilization was again HPβCD, which at relatively low 

(2.5 mM) and therefore non-toxic concentrations well inhibited interfacial aggregation that 

was provoked by either agitation (exposure to the air-water interface) or F/T stress exposing 

the protein to the ice-water interface. At the same time HPβCD did not compromise the 

quiescent storage stability of rh-GCSF at elevated temperature, thereby rendering it superior 

to MβCD which also showed good stabilization during agitation but led to increased 

aggregation rates during storage at elevated temperature. The only ionic CD-derivative 

tested, SBEβCD, again turned out to be detrimental to rh-GCSF stability during both, 

agitation and quiescent storage at 50°C further confirming trends observed from the studies 

on the IgG. Rh-GCSF formulations containing polysorbate 80 were also well protected 

against interfacial aggregation, but also showed dramatically increased aggregation rates 

during quiescent storage in accordance with the results obtained for the IgG. Therefore, 

although structurally a very different protein, rh-GCSF qualitatively confirms the trends 

observed for the mAb and further underlines that HPβCD is a very promising excipient for 

protein formulation that is capable to overcome shortcomings that polysorbate 80 suffers 

from. 

The third model protein investigated in this thesis, rh-GH, was known to expose hydrophobic 

amino acid residues even in its native state and binding between cyclodextrins and rh-GH 

had been described in literature4-5. This structural particularity of rh-GH also translated into a 

different aggregation profile when compared to the two other model proteins. With few 

exceptions rh-GH was stabilized against aggregation by all CD-derivatives against all 

stressing conditions. This behavior renders binding between the CDs and rh-GH as common 

stabilizing principle under the very different stressing condition very likely. Conversely these 

findings also render binding between the two other model proteins and the stabilizing CD-

 145



Cyclodextrins as excipients for rh-GCSF and rh-GH stabilization 

derivatives unlikely, since the stabilizing effect strongly depended on the stress conditions 

being applied. 
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CHAPTER 5 

INTERACTION BETWEEN CYCLODEXTRINS AND PROTEINS IN BULK SOLUTION 

 

1 INTRODUCTION 

In their ability to inhibit protein aggregation at interfaces, as discussed in detail in Chapters 3 

and 4 of this thesis, cyclodextrins resemble non-ionic surfactants. Because CDs, like non-

ionic surfactants, are known to interact with hydrophobic parts of proteins and because some 

CD-derivatives are also known to be surface-active like non-ionic surfactants, the hypothesis 

that CDs function in manners analogous to non-ionic surfactants in protein formulations 

served as starting point for the mechanistic investigations in this and the following chapter. 

The experimental approach discussed in Chapters 5 and 6 is intended to identify or exclude 

the potential mechanisms by which CDs stabilize the investigated therapeutic proteins 

against aggregation at the air-water-interface. In the present chapter the role of cyclodextrin-

protein interaction for aggregation inhibition will be studied, while the next Chapter 6 will be 

dedicated to the investigation of the behavior of cyclodextrins at the air-water interface. 

In most research articles the suppression of protein aggregation by cyclodextrins is attributed 

to the CDs’ capability to incorporate suitably sized, exposed, hydrophobic amino acid 

residues of proteins into the hydrophobic CD-cavity, thereby blocking the potential 

hydrophobic protein-protein interface1-5. However, the unambiguous detection of binding 

between cyclodextrins and proteins is analytically challenging, since it is a rather weak 

interaction, which is characterized by binding affinities only in the mM-range6-9. So far CD-

protein binding has been directly proven for only very few therapeutic proteins, i.e. insulin6,10 

and rh-GH4,11, which is also a third model protein investigated in this thesis. In these studies, 

a clear and plausible relation between binding of cyclodextrins to proteins and aggregation 

inhibition of therapeutic proteins by the same cyclodextrin derivatives could be demonstrated. 

In addition to the few interaction studies with therapeutic proteins, interaction of cyclodextrins 

with model peptides, which are easier to study due to their reduced complexity, thereby 

serving as model for larger proteins, was demonstrated7,12,13. Studies on model peptides 

included the di-peptide Trp-Gly12, Aspartame12, Melittin13 and [D-Trp6, Des-Gly10] LHRH7. 

A limited number of studies was dedicated to the investigation of the structural basis of the 

interaction between proteins and cyclodextrins. A comprehensive overview of the studies is 

given in Chapter 1 (Table 1.3) of this thesis. It seems that notably aromatic amino acids 

residues, such as those found in Phe, Tyr, His and Trp allow a fit into the hydrophobic moiety 

of β-CD and its derivatives11. Generally, as suggested by Aachmann et al.14, the accessibility 

of solvent exposed hydrophobic amino acids by cyclodextrins influences the propensity for 

complexation with CDs and thus potential shielding of hydrophobic protein-protein 
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interaction. However, interaction is not limited to aromatic amino acids residues. Also linear 

chains, as for example in Ile, were found to interact with the tighter α-cyclodextrin cavity, 

however with a weaker affinity. 

The range of analytical techniques capable of monitoring of protein-cyclodextrin interactions 

comprises direct fluorescence titration11 (intrinsic steady-state fluorescence) as well as 

fluorescence lifetime measurements11,13, NMR-measurements10,14,15, isothermal titration 

calorimetry7, dilution microcalorimetry8, electrospray-ionization mass spectrometry10 and 

competitive spectrophotometry12. However, most of the applied analytical techniques suffer 

from certain short-comings. For example, fluorescence spectroscopy can only be carried out 

in very dilute solutions in order to avoid inner filtering effects16. However, by dilution the 

situation as present in protein formulations (with regard to surface charges, conformational 

and colloidal stability etc.) is altered. Regarding NMR-data, interpretation can be ambivalent 

at times and the technique is not suitable for testing a large number of combinations of 

cyclodextrin-derivatives and proteins14. Isothermal titration calorimetry (ITC) has the 

disadvantage that in order to detect weak interactions, such as those between cyclodextrins 

and proteins, very high concentrations of the protein are necessary, again altering the 

system as compared to the typical protein formulation17. Exploratory first ITC-experiments 

carried out with rh-GCSF showed that even at a protein concentration of 4.04 mg/ml 

(concentration of the bulk solution which is by far higher than that of the formulated drug 

product) no interaction with SBEβCD or HPβCD could be detected (data not shown). 

In search of a sensitive technique, that requires only moderate amounts of protein and that 

allows the investigation of a significant number of binding partner combinations in a 

reasonable amount of time, it was decided to evaluate surface plasmon resonance 

spectroscopy (SPR) as a tool for monitoring the interaction between the three therapeutic 

model proteins investigated in this thesis and various cyclodextrin-derivatives. Detection by 

surface-plasmon resonance spectroscopy is based on changes in optical properties of a 

surface layer upon binding of macromolecules18-20. One of the binding partners is 

immobilized at the surface and the respective binding partner is flowing over the surface. The 

amounts of substance needed are small, for both the immobilized component as well as for 

the complementary binding partner. The SPR signal allows to follow binding reaction in real-

time. Although SPR is primarily employed for the monitoring of highly specific biological 

binding processes, such as antibody-antigen-interactions21, it has also been previously used 

for the description of rather weak and transient carbohydrate-protein binding reactions with 

affinities in the milimolar range19,22,23. Even the binding of cyclodextrins to a protein has 

already been followed by SPR24. However, the bacterial transporter protein under 

investigation was a protein that specifically binds to cyclodextrins thereby allowing bacillus 

subtilis to utilize cyclodextrins as a carbon source, which represents quite a different situation 
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than the potential, rather unspecific interaction between therapeutic proteins and 

cyclodextrin-derivatives as formulation excipients. 

Basically, two different experimental set-ups can be chosen for the investigation of 

cyclodextrin-protein interaction: the immobilization of the cyclodextrin or the immobilization of 

the protein. For two reasons it was decided to immobilize the protein. First, the 

immobilization of a protein is a more straightforward approach than the immobilization of the 

carbohydrate since the immobilization of a sugar to a dextran surface usually requires the 

derivatization of the carbohydrate molecule20,25 whereas the immobilization of a protein via its 

lysine residues does not require derivatization26. Second, since three model proteins (IgG, 

rh-GCSF and rh-GH) were to be tested as potential protein binding partners, but up to ten 

different CD-derivatives were available for testing, it is obviously more convenient and 

associated with fewer expenses to immobilize the three proteins. The proteins were 

immobilized on a carboxymethylated (CM5®) chip to form a flexible hydrogel providing an 

environment suitable to study the binding process in conditions very close to those found 

unbound in solution18. 

The aim of the investigations was to first evaluate SPR as an analytical tool to monitor the 

weak and transient cyclodextrin-protein interactions. This evaluation was carried out using 

rh-GCSF as a model protein. A number of control experiments were performed: comparisons 

to other methods that are known to be capable to monitor weak interaction such as 

fluorescence spectroscopy or surface acoustic wave sensors were carried out. Also, the 

comparison of cyclodextrin binding to that of linear sugars without cavity in order to evaluate 

the necessity of the hydrophobic CD-cavity for binding was included into the experiments. 

Moreover, it was intended to determine the affinity of potential interactions, the concentration 

range in which cyclodextrins interact with the model protein and also to evaluate whether 

solution conditions, such as pH, influence the binding properties. In a second step, the SPR-

experiments were extended to the other two model proteins, IgG and rh-GCSF, in order to 

correlate the binding pattern with the stability profiles that were obtained by accelerated 

stability testing, as discussed in Chapters 3 and 4.  

Mass spectrometry was also included into the studies as a further analytical tool, notably due 

to its potential to provide useful information about the stoichiometry of the cyclodextrin-

protein binding reaction6,27-29. In general, mass spectrometry is a valuable tool for the 

detection of noncovalent bio molecular complexes30,31. Notably electrospray ionization mass-

spectrometry (ESI-MS) with its unique capability to also preserve weaker non covalent bonds 

upon transferring the complexes from the solution phase into the gas phase was shown to be 

useful for the characterization of non covalent protein complexes31. Therefore ESI-MS was 

included into the investigations of CD-protein interaction as a further analytical tool in order to 

identify combinations in which cyclodextrins and therapeutic proteins may form complexes. 
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However, care should be taken when trying to correlate the MS gas-phase results to the 

binding-situation in solution. There are reports that show that correlation is not necessarily 

given30. Therefore the investigations by ESI-MS will focus on the potential of ESI-MS as 

method to detect the non-covalent cyclodextrin-protein complexes. The results of the mass 

spectrometric investigations are discussed in the last section of this chapter. 

2 SURFACE PLASMON RESONANCE SPECTROSCOPY FOR MONITORING CD-PROTEIN 
INTERACTION – EVALUATION OF METHODOLOGY USING RH-GCSF AS MODEL 
PROTEIN 

For the monitoring of binding between cyclodextrins and proteins surface plasmon resonance 

spectroscopy (SPR) was used as a new technique for this purpose. The initial investigations 

were carried out using rh-GCSF as a model protein. The aims of the following investigations 

were two-fold: first the general evaluation of SPR as a new analytical technique that is 

suitable to monitor weak carbohydrate-protein interactions and secondly to describe the 

binding between various cyclodextrin-derivatives and all three model proteins in order to be 

able to correlate these results to the accelerated stability studies. 
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Figure 5.1: Representative SPR-sensorgram depicting the interaction between increasing amounts of 
HPβCD (1 mM to 25 mM) to immobilized rh-GCSF. HPβCD was injected for 120 s at a flow rate of 
30 µL/min. The interaction between 10 mM SBEβCD to immobilized rh-GCSF under the same experimental 
conditions is included as comparison. The experiment was conducted at pH 4 in a 10 mM sodium acetate 
buffer. 
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An SPR setup was chosen that allowed for convenient monitoring of the binding of a 

significant number of CD-derivatives to rh-GCSF in real-time. Rh-GCSF was immobilized to 

the derivatized dextran surface layer of a CM 5® chip via amine linkage of the lysine residues 

of the protein. Solutions of cyclodextrin derivatives were subsequently flushed over the 

immobilized protein. In order to create identical conditions in the reference cell and in the 

measuring cell (expect for the presence of the immobilized protein), the reference cell was 

also activated using EDC/NHS (as described in detail in Chapter 2) and then deactivated 

using Ethanolamine (instead of protein as in the measuring cell). After immobilization of the 

protein in the measuring cell and deactivation of the reference cell approximately 2000 

response units (RU) remained on the chip and were the “baseline” for the following 

experiments. Therefore, taking into account the molecular weights of rh-GCSF and HPβCD, 

a theoretical maximal response of 149 RU can be calculated for the potential binding of 

HPβCD to the immobilized rh-GCSF, when assuming a 1:1 binding stoichiometry between 

cyclodextrin and protein. 

The first obvious observation of the measurements was that cyclodextrin solutions lead to a 

rather large bulk signal (not shown). This signal change occurred in both cells and it is due to 

changes in the refractive index of the solution flowing over the surface of the chip. It does 

reflect any form of binding32. The bulk signals were in an order of magnitude of 2000 RU for a 

10 mM HPβCD solution. This means that a potentially specific binding response would 

always be the difference of two large signals in the measuring and the reference cell (with 

the slightly higher response recorded in the measuring cell and the difference between the 

signal in the measuring cell and the signal in the reference cell being the actual binding 

signal) thereby necessarily leading to some imprecision of the results. 

For some cyclodextrins, such as methyl-β-cyclodextrin, γ-cyclodextrin and hydroxypropyl-y-

cyclodextrin, no response after referencing could be observed (sensorgrams not shown) 

indicating that no binding of these CD-derivatives to rh-GCSF took place. For other 

cyclodextrin-derivatives, such as SBEβCD, α-CD and also HPβCD (Figure 5.1), a 

reproducible response of strongly varying extent could be observed. The by far strongest 

binding signal was observed for the only ionic derivative included into the examinations, 

SBEβCD. Figure 5.1 compares the binding signals that were obtained by 10 mM SBEβCD 

and increasing concentrations of HPβCD (1 mM to 25 mM). The binding signal of HPβCD 

increases with higher concentrations of HPβCD and reaches a maximum at 17.5 mM. 

Interestingly, at 25 mM a decreased binding signal is observed. It was tried to calculate a 

steady-state binding affinity from the signals obtained for HPβCD (not shown). However, due 

to the relatively small concentration range of the interaction and the unclear steady-state 

response signal (the signal never reaches a clear steady state at higher concentrations, see 
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Figure 5.1) the quality of the fits remained poor and the description of binding for such weak 

interactions had to remain on a qualitative level. 
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Figure 5.2: Overlaid sensorgrams depicting the interaction between increasing amounts of SBEβCD 
(1.75 mM to 25 mM) and immobilized rh-GCSF. SBEβCD was injected for 120 s at a flow rate of 30 µL/min. 
The experiment was conducted at pH 4 in 10 mM sodium acetate buffer. 

For SBEβCD a significantly stronger binding signal than for HPβCD was observed: a 

response of about 80 RU at a concentration of 10 mM was observed for SBEβCD compared 

to a response of about 10 RU for HPβCD at the same concentration. In part, the stronger 

signal can be explained by the higher molecular weight of SBEβCD as compared to HPβCD 

(2163 g/mol compared to 1400 g/mol accounting for a signal increase by a factor of 1.54), 

but the stronger binding signal also clearly expresses a higher degree of interaction between 

SBEβCD and rh-GCSF than for HPβCD and rh-GCSF. In Figure 5.2 it can be seen that a 

signal with clearly observable steady-state response values is obtained over a much wider 

concentration range than for HPβCD (1.75 mM to 25 mM without a decay of the signal at 

very high concentrations as observed for HPβCD). Furthermore the reproducibility of the 

signal was better and a clear steady state-response could be determined at all investigated 

concentrations. 
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From the overlaid sensorgrams in Figure 5.2 the average steady state plateau response 

levels (Req) were read off as a measure of the concentration of the complex at equilibrium 

state, which is a necessary value for the equilibrium analysis of binding and the subsequent 

calculation of the binding affinity. Further parameters for the determination of equilibrium 

binding constants are the concentrations of the free interactants at equilibrium19. In this case 

the concentration of the free analyte (CD-derivative) is approximately equal to the 

concentration of the CD-solution being injected onto the immobilized protein. The 

concentration of the free ligand (rh-GCSF) can be calculated from the concentration of the 

complex and the total surface binding capacity. Equilibrium analysis was hence carried out in 

an analogous manner to standard Scatchard plots33. Req values were plotted against the 

concentrations of the SBEβCD-solutions (Figure 5.3). The resulting Req vs. concentration 

curve was fitted assuming a simple 1:1-Langmuir-binding model. The curve with the relatively 

lowest χ2 has been applied for the calculation of the steady-state binding affinity (Figure 5.3). 

A value of Kd = 9.28*10-3 mol/L was obtained in good agreement with other literature values 

calculated for the binding between cyclodextrins and proteins (refer to Table 1.3 in Chapter 

1). 
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Figure 5.3: Analysis of the response signals of the SPR-sensorgrams presented in Figure 5.2 and 
determination of the binding affinity of SBEβCD to rh-GCSF assuming a simple one site saturation 
binding model. A binding constant of Kd = 9.28*10-3 mol/L was obtained.  

In order to ensure comparability of the different sensorgrams and in order to exclude that 

changes on the chip lead to aberrations in the results SBEβCD at a concentration of 10 mM 

was included into all further experiments with rh-GSCF as a positive control and as a 

standard. 
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2.1 EXCLUSION OF UNSPECIFIC INTERACTION 

The binding of cyclodextrin derivatives to rh-GCSF was compared to the binding of 

maltoheptaose to rh-GCSF. Maltoheptaose is a linear sugar consisting of seven units of 1a, 

4e-linked oligomers of α-D-glucopyranoside, i.e. it contains the same number and linkage of 

glucose-molecules as the cyclic β-CD-molecule, except that Maltoheptaose does not 

possess a hydrophobic cavity like cyclodextrins34. Therefore the investigation of 

maltoheptaose binding was supposed to serve as a way to determine the relevance of the 

CD-cavity for interaction with rh-GCSF and to differentiate between specific interaction and 

unspecific interaction the CD-derivatives and rh-GCSF that is not due to the incorporation of 

suitably sized residues on the protein into the hydrophobic protein cavity. In Figure 5.4 it can 

be seen that the addition of 2.5 mM maltoheptaose to the immobilized rh-GCSF did not yield 

a measurable signal after referencing. Therefore no binding of maltoheptaose to rh-GCSF 

occurred. It is hence likely that the observed binding of SBEβCD, HPβCD and α-CD to rh-

GCSF is indeed due to the presence of the CD-cavity and not the results of unspecific 

carbohydrate-protein interaction. 
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Figure 5.4: SPR-sensorgram depicting the interaction of 2.5 mM maltoheptaose with immobilized rh-
GCSF. 10 mM SBEβCD was included into the measurements as internal standard in order to provide 
comparability to results obtained at different time points. Maltoheptaose and SBEβCD were injected for 
120 s at a flow rate of 30 µL/min. The experiment was conducted at pH 4 in 10 mM sodium acetate buffer. 

2.2 INFLUENCE OF IONIC INTERACTION 

As previously described, SBEβCD showed the strongest binding to rh-GCSF. Interestingly, 

SBEβCD is the only ionic CD-derivative that was included into the binding studies. Therefore 
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it is conceivable, that the interaction between SBEβCD and rh-GCSF might be of purely ionic 

character, not involving any hydrophobic interaction due to the incorporation of protein 

residues into the CD-cavity. This explanation for binding is substantiated when considering 

the distribution of charges in the binding experiment. Interaction between SBEβCD and rh-

GCSF was observed at pH 4 (Figure 5.2) which means that rh-GCSF, having a pI of 6.1, had 

a net positive charge35 and SBEβCD, because of the very low pKa of the sulfonic acid 

groups, carries multiple negative charges at all physiologically tolerable pH-values. Therefore 

rh-GCSF and SBEβCD exhibit opposite net charges at pH 4 and ionic attraction could indeed 

account for the interaction at pH 4. Consequently, in order to evaluate whether ionic 

attraction is solely responsible for the interaction between SBEβCD and rh-GCSF, a control 

experiment was performed at pH 7. At this pH the pI of rh-GCSF is exceeded and the protein 

then carries a net negative charge while SBEβCD remains strongly negatively charged. 

Thus, at pH 7 repulsive ionic forces between SBEβCD and rh-GCSF occur. In Figure 5.5 it 

can be seen that nevertheless binding between SBEβCD and rh-GCSF could be observed 

indicating that SBEβCD-rh-GCSF interaction was not exclusively due to ionic interaction and 

the incorporation of hydrophobic protein residues into the CD-cavity likely took place.  
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Figure 5.5: SPR-sensorgram showing the interaction of 10 mM SBEβCD and 10 mM HPβCD with 
immobilized rh-GCSF. HPβCD and SBEβCD were injected for 120 s at a flow rate of 30 µL/min. The 
experiment was conducted at pH 7 in a 10 mM sodium phosphate buffer in order to evaluate the effect of 
the charge of the binding partners on interaction. 

However, the equilibrium plateau response observed when measuring the binding signal of a 

10 mM SBEβCD solution to immobilized rh-GCSF is significantly smaller at pH 7 

(approximately 20 RU) than that observed at pH 4 (see Figure 5.2, approximately 80 RU), 

indicating a smaller extent of interaction at neutral pH. A possible explanation for the pH 
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dependency of the binding process is that at opposite net charges ionic attraction leads to an 

accumulation of SBEβCD molecules in the vicinity of rh-GCSF and subsequent incorporation 

of protein residues into the CD-cavity is thereby statistically facilitated. Interestingly, as also 

observable from Figure 5.5, the binding of HPβCD to rh-GCSF is no longer observable at 

pH 7, although HPβCD is a neutral molecule and charge effects do not explain this change in 

the binding behavior. It is therefore speculated, that the protein undergoes structural changes 

at pH 7, which hinder the solvent accessibility of protein residues, which are available for 

inclusion into the CD-cavity at pH 4. 

 

2.3 CONFIRMATION OF SPR RESULTS BY FLUORESCENCE SPECTROSCOPY 

In order to further corroborate the results obtained by SPR, a direct titration of rh-GCSF with 

SBEβCD followed by intrinsic steady state fluorescence spectroscopy was carried out. The 

basis of this direct fluorescence spectroscopy titration is that almost all studies on the matter 

of protein-CD-interaction have identified aromatic amino acid residues as the main site of 

interaction with CDs, notably with derivatives of β-CD, whose cavity diameter allows a good 

fit of Phe, Tyr, His and Trp into the hydrophobic cavity7,10-12,14,36. Therefore changes in the 

microenvironment of hydrophobic amino acids on the protein occur which can be monitored 

by intrinsic steady state fluorescence spectroscopy. From titration curves, that are generated 

by plotting fluorescence parameters versus amount of compound added, binding affinities 

can be calculated9,11. Figure 5.6 shows the change in fluorescence intensity at the maximum 

emission wavelength of rh-GCSF upon the addition of SBEβCD. 

The addition of SBEβCD leads to an increase in intrinsic steady-state fluorescence that 

reaches saturation after the addition of about 4 mM SBEβCD to the rh-GCSF solution (Figure 

5.6). In order to avoid inner filter effects, the experiment was carried out in a very dilute 

solution containing only 1 μg/mL of rh-GCSF. The obtained data can be fitted to a simple 

one-site saturation binding model yielding an apparent dissociation constant of 3.65*10-

4 mol/L. The value roughly lies in the same order of magnitude as the value obtained by SPR 

for the same system (9.28*10-3mM), thereby confirming the weak, but reproducible 

interaction between SBEβCD and rh-GCSF. HPβCD in contrast did not lead to a measurable 

increase of intrinsic rh-GCSF fluorescence (data not shown), confirming the significantly 

weaker interaction of HPβCD and rh-GCSF that was already observed by SPR. 
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Figure 5.6: Titration of 1 µg/mL rh-GCSF with SBEβCD in 20 mM sodium phosphate buffer at pH 4 
followed by intrinsic steady state fluorescence spectroscopy (excitation wavelength of 280 nm, emission 
wavelength of 337 nm). The data are fitted to a binding curve assuming a simple one site saturation 
binding model to yield an apparent dissociation constant of 3.65*10-4 mol/L. 

2.4 CONFIRMATION OF SPR-RESULTS USING SURFACE ACOUSTIC WAVE 
SENSORS 

As discussed earlier, one of the major obstacles for the evaluation of the interaction of 

cyclodextrin-derivatives and immobilized protein by SPR are the strong changes in the 

refractive index of the CD-bulk solution as compared to the respective buffer solution without 

CD. These “bulk effects” add to the change of the signal that is brought into proportion to the 

bound mass of the analyte (in this case the cyclodextrin derivatives in relatively high 

concentrations) as the actual binding signal32. In order to further confirm the results obtained 

by SPR, surface acoustic wave sensors, as a biosensor technique that is not sensitive to 

changes in the refractive index, were applied to monitor the interaction between rh-GCSF 

and SBEβCD. 

As described in more detail in Chapter 2, surface acoustic wave sensors use piezoelectric 

materials to generate an acoustic wave. The amplitude and/or the velocity of the surface 

acoustic wave is strongly influenced by coupling to any medium contacting the surface32. In 

contrast to SPR, SAW sensors are sensitive to changes in mass, density, viscosity and 

acoustic coupling phenomena, but not to changes in the bulk refractive index, thereby 

providing useful complementary information to the SPR results. The instrument used for the 

experiments belongs to the class of Love-wave sensors, which are currently among the most 

sensitive acoustic sensors. The measurements were carried out on the commercially 
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available S-sens® K5 sensor, which uses five sensor elements on one sensor chip. The 

recorded phase shifts can be related to the bound mass of the analyte after discrimination 

from viscoelastic effects37 as described in chapter 2. 
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Figure 5.7: Time dependent phase signal as measured for the binding of increasing concentrations of 
SBEβCD to rh-GCSF which was immobilized to a S-sens K5 biosensor quartz chip surface. Kinetic 
evaluation of the association and dissociation process (fitted curves are represented by the straight 
lines) resulted in a Kd = 8.59*10-4 mol/L. 

As shown in Figure 5.7, the time dependent phase signal was measured at different 

concentrations of SBEβCD and analysis of the association and dissociation kinetics was 

applied in order to determine the equilibrium binding constant. Figure 5.7 depicts the binding 

signals that were obtained after injection of four different concentrations of SBEβCD to rh-

GCSF which was immobilized onto the surface of the quartz chip. A clear binding signal was 

observed even at SBEβCD-concentrations as low as 10-5 mol/L, thereby confirming the 

binding of SBEβCD to rh-GCSF even at rather low concentrations. When assuming a 1:1 

Langmuir binding (in analogy to the analysis of the SPR data and the fluorescence titration 

data) a binding constant of Kd = 8.59*10-4 mol/L is obtained. The value is between that 

determined by direct fluorescence titration (3.65*10-4 mol/L) and that determined by SPR 

(9.28*10-3 mol/L), yielding an overall satisfactory degree of agreement between the different 

methods of determination. One reason for a higher binding affinity as determined by SAW as 

compared to SPR could be the fact that in SPR no referencing to cells without immobilized 

protein was carried out and that, therefore, unspecific binding events could have added to 

the binding signal resulting in an overestimation of the binding affinity. 
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In addition to the quantitative evaluation of SBEβCD-binding to rh-GCSF by using the SAW-

sensor, potential binding of HPβCD to rh-GCSF was also examined by SAW. It was found 

that no clear binding signal could be recorded after the injection of HPβCD to immobilized rh-

GCSF (data not shown). This result is again in good agreement with SPR data (little binding, 

as previously discussed no quantification possible) and the fluorescence titration data (no 

interaction recorded at all).  

2.5 SUMMARY OF EVALUATION OF SPR AS A METHOD FOR THE DESCRIPTION OF 

CD-PROTEIN BINDING 

In summary, SPR was shown to be a suitable method to monitor the interaction between CD-

derivatives and rh-GCSF. Using SPR it was possible to differentiate between CD-derivatives 

that showed binding to rh-GCSF (notably SBEβCD, weak binding also observed for α-CD 

and HPβCD) and others that did not exhibit any signs of binding to rh-GCSF (MβCD, 

HPγCD). A number of control experiments were performed in order to make sure that the 

obtained results actually describe the characteristic CD-protein interaction and that the 

results are not due to experimental artifacts. By shifting the pH during the binding experiment 

it was shown, that ionic interaction facilitates SBEβCD binding to rh-GCSF but that it is not 

the only driving force of the interaction. Since the linear sugar maltoheptaose, containing the 

same number and linkage of glucose molecules as β-CD-derivatives, lacks any signs of 

binding, it can be assumed that the presence of the hydrophobic CD-cavity is a necessary 

prerequisite for the interaction between β-CD-derivatives and rh-GCSF. 

Unfortunately, quantification of the binding affinity was only possible if a strong and 

reproducible steady-state plateau response was achieved. For the weakly interacting CD-

derivatives HPβCD and α-CD no such quantification of the binding affinity was possible. For 

the binding of SBEβCD to rh-GCSF a binding affinity was calculated by applying an analysis 

of the steady state binding response. The obtained value for the binding affinity was in 

reasonable agreement with literature values (Table 1.3 in Chapter 1) and also with two 

further methods for the determination of binding affinity, direct fluorescence based titration 

and the use of a surface acoustic wave sensor. 

The information gathered on the solution binding between rh-GCSF and the different CD-

derivatives in relation to accelerated stability studies will be discussed in the following section 

along with the results obtained for the binding between the two further model proteins and 

various CD-derivatives. 

2.6 CD-INTERACTION WITH MAB, RH-GCSF AND RH-GH AS STUDIED BY SPR 
AND CORRELATION TO ACCELERATED STABILITY STUDIES 

Based on the evaluation of SPR as a method to monitor the weak interaction of CD-

derivatives and proteins using rh-GCSF as a model protein, binding between various CD-
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derivatives and the two further model proteins, IgG and rh-GH, was also analyzed. Thereby it 

was intended to provide a data set that allows for a systematic correlation of the results from 

the accelerated stability studies to the results of the interaction analysis. The discussion of 

the binding properties of the IgG and rh-GH to CDs is confined to the two CD-derivatives that 

were also included in nearly all accelerated stability studies, HPβCD and SBEβCD. Table 5.1 

gives a summary of the results on the investigation of interaction between HPβCD and 

SBEβCD to all three model proteins. 

Table 5.1: Summary of the SPR-investigations on the interaction of HPβCD and SBEβCD with three 
different model proteins. 

“Strong interaction” means that interaction was quantifiable by SPR, “significant interaction” means that 
a reproducible, concentration-dependent response was obtained by SPR and “weak interaction” means 
that the response signal was barely detectable and concentration-dependency was poor. 
 IgG Rh-GCSF Rh-GH 

HPβCD No interaction 
Weak interaction 

No quantification 
Significant interaction 

SBEβCD 
Strong interaction 

Kd=1.47*103 mol/L 

Strong interaction 

Kd=9.28*10-3 mol/L 
Significant interaction 

 

For the IgG comparably high immobilization efficiency was achieved with almost 10,000 RU 

remaining on the CM 5® -chip, thereby providing a high sensitivity for the monitoring of 

binding reactions. As with rh-GCSF, after the injection of different concentrations of HPβCD 

onto the immobilized IgG only a weak response could be observed. At lower concentrations 

of HPβCD (< 2.5 mM) no binding response at all was recorded (Figure 5.8). If observed, the 

weak binding response of HPβCD was poorly reproducible: repeated injections yielded 

differently low or no responses. Therefore it has to be assumed that HPβCD does not bind to 

the IgG in solution to a noteworthy extent. As with the binding of SBEβCD to rh-GCSF direct 

fluorescence based titration of the IgG with HPβCD was carried out as a confirmation of the 

SPR results. The results of the titration of the IgG with increasing HPβCD-concentrations are 

shown in Figure 5.9. 
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Figure 5.8: Representative sensorgram showing the SPR signal after injection of different HPβCD 
concentrations to an immobilized IgG. The experiments were carried out in 20 mM His buffer pH 5.8 and 
injection was carried out for 80 s at a flow rate of 20 μL/min. 

When the spectra were corrected for dilution after the titration procedure, they almost 

perfectly overlaid. Neither shifts in the maximum emission wavelength nor significant 

changes in fluorescence emission intensity could be observed. Thus binding of HPβCD to 

the IgG could not be detected by this method further confirming the results obtained by SPR. 

 

 
Figure 5.9: Titration of a 100 mM HPβCD stock-solution into a 0.24 mg/ml solution of the IgG in His buffer 
at pH 5.8 and monitoring of intrinsic steady-state fluorescence (excitation wavelength of 280 nm). All 
spectra were corrected for dilution. 

In contrast to HPβCD, SBEβCD exhibited remarkable and well reproducible binding to the 

immobilized protein (Figure 5.10). As described for the binding of SBEβCD to rh-GCSF, the 
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steady state binding responses could be used for the determination of the binding affinity of 

SBEβCD to the IgG and an equilibrium binding constant of Kd = 1.47*103 mol/L assuming 1:1 

binding-stoichiometry was obtained. The obtained value is in fair agreement with the value 

obtained for the binding of SBEβCD to rh-GCSF (9.28*10-3 mol/L). Also the IgG and 

SBEβCD were oppositely charged at the pH of the binding experiment, thereby presumably 

facilitating the binding reaction. In summary, although in terms of size and structure a very 

different protein, the IgG qualitatively and quantitatively exhibits the same binding behavior to 

HPβCD and SBEβCD as rh-GCSF: significant and quantifiable binding over a wide 

concentration range to the ionic SBEβCD and no or only minor binding to HPβCD. 
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Figure 5.10: Sensorgram depicting the concentration-dependent interaction of SBEβCD with immobilized 
IgG. The experiments were carried out in 20 mM His buffer pH 5.8 at a flow rate of 20 μL/min. Equilibrium 
response analysis yielded a binding affinity of Kd=1.47*103 mol/L assuming 1:1 binding-stoichiometry. 

In Chapters 3 and 4 of this thesis it was discussed that HPβCD was very efficient in inhibiting 

interfacial aggregation of both the IgG and of rh-GCSF (Table 5.2 summarizes important 

findings from the accelerated stability studies). During stress testing the findings obtained 

with rh-GCSF qualitatively very well agreed with the results obtained for the IgG. In 

formulations of both proteins, HPβCD well inhibited interfacial aggregation that was provoked 

by either agitation with exposure to the air-water interface or by F/T stress exposing the 

protein to the ice-water interface. At the same time HPβCD did not compromise the 

quiescent storage stability of rh-GCSF at elevated temperature. In contrast, the ionic CD-
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derivative SBEβCD turned out to be detrimental to both the IgG and rh-GCSF stability in all 

three stress conditions. Therefore, although structurally very different proteins, rh-GCSF and 

the IgG qualitatively show very similar trends during accelerated stability testing in 

formulations containing HPβCD and SBEβCD. 
Table 5.2: Summary of the effects of HPβCD and SBEβCD on aggregation of the three model proteins 
under accelerated stability conditions as discussed in Chapters 3 and 4. 

+++ means complete stabilization, ++ means clear stabilization, + means weak stabilization, 0 means no 
effect and – means accelerated aggregation 

Model protein Stress condition Effect of HPβCD Effect of SBEβCD 

 Agitation +++ - 

IgG Freeze-thawing cycles +++ n/a 

 Elevated temperature 0 - 

 Agitation +++ - 

Rh-GCSF Freeze-thawing cycles ++ 
Concentration dependent 

+ / -  

 Elevated temperature 0 - 

 Agitation +++ + 

Rh-GH Freeze-thawing cycles +++ ++ 

 Elevated temperature ++ +++ 

 

However, no correlation can be established between binding of the two CD-derivatives to the 

IgG and rh-GCSF and the inhibition of aggregation. HPβCD, which was efficient in the 

inhibition of aggregation under a variety of conditions, was found not to bind to the IgG and to 

bind only very weakly to rh-GCSF. Therefore, it appears that other principles than direct 

binding in bulk solution govern the stabilization of rh-GH and the IgG by HPβCD. Since 

HPβCD was notably effective against interfacially-induced aggregation, it can be speculated 

that HPβCD exerts effects at interfaces comparable to those of non-ionic surfactants: 

competitive displacement of proteins from the interface and thereby the prevention of protein 

unfolding. Another possibility could be that the IgG and rh-GCSF exhibit a different 

conformation at the interface than in bulk solution with better accessibility of hydrophobic 

amino acid residues by CDs at the interface than in bulk solution. This would mean that 
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direct binding in the bulk solution as determined by SPR and fluorescence spectroscopy, in 

which the proteins maintain a rather native structure with little exposure of hydrophobic 

amino acids, does not correctly reflect potential binding at the interfaces, in which the tertiary 

structure of proteins is often significantly altered. Therefore, in order to understand whether 

binding between HPβCD and the two model proteins at the interface explains aggregation 

inhibition, it would be desirable to study in more detail the effects of HPβCD at interfaces. 

In contrast to HPβCD, SBEβCD did exhibit significant binding to the IgG as well as to rh-

GCSF. However, that leads to increased aggregation rates under almost all stress 

conditions.  

This “inverse correlation” of binding and stabilizing behavior was unexpected, since binding 

of CDs to hydrophobic protein amino acids is generally regarded as prerequisite for the 

aggregation inhibition14. Instead of a correlation to the stabilization of the model proteins, a 

correlation to destabilization was observed. A number of reasons could explain this 

unexpected relation. An effect of SBEβCD as ionic excipient on colloidal protein stability, due 

to the shielding of the repulsive forces between the protein molecules, might play a role. 

Furthermore, in Chapter 4 it was discussed that SBEβCD led to a very pronounced decrease 

of apparent Tm of rh-GCSF by more than 10°C. Apparently, the strong decrease of 

conformational stability of rh-GCSF could contribute to the undesired effects of SBEβCD. 

The observation of a strong decrease in Tm by the addition of a β-CD derivative is in 

agreement with studies by Cooper et al.38 who found out, that protein thermodynamic stability 

can be strongly reduced by the addition of CDs due to preferential binding to the unfolded 

state, which consequently results in a shift of the folding equilibrium towards the more 

unfolded state. A different explanation of the detrimental effects of SBEβCD on rh-GCSF and 

IgG stability despite significant binding over a wide concentration range could be that 

SBEβCD-binding to rh-GCSF and the IgG does not involve the shielding of solvent-exposed 

hydrophobic protein residues. Therefore, aggregation could proceed via hydrophobic 

interaction despite the binding of SBEβCD. However, this explanation is in contrast to the 

results of the experiments discussed in the previous section, that lead to the conclusion that 

ionic interaction alone does not account for binding between the proteins and SBEβCD and 

that the linear sugar maltoheptaose did not exhibit any binding at all. 

For rh-GH a very different relation between binding and stabilization during accelerated 

stability testing compared to the other two model proteins was observed. Literature results 

that reported the binding of HPβCD and SBEβCD to the partially unfolded state of rh-GH, 

such as observed at pH 2.511 or after partial chemical denaturation9, could be confirmed by 

our experiments. Figure 5.11 shows the binding of HPβCD to immobilized rh-GH at a pH of 

2.5 as an example. 
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Figure 5.11: Representative sensorgram depicting the interaction of two concentrations of HPβCD with 
immobilized rh-GH at pH 2.5 in glycine buffer. The experiment was carried out at a flow rate of 10 µL/min 
for 120 s. 

A clear binding response can be observed. However, despite clearly observable binding, a 

reliable quantification of the binding affinity could not be carried out, which might have been 

due to the comparably poor immobilization efficiency of rh-GH (only about 800 R.U remained 

on the chip). In addition, clear binding was also observed after the injection of SBEβCD to 

immobilized rh-GH.  

However, in contrast to the results obtained with rh-GCSF and the mAb, both CD-derivatives 

well stabilized rh-GH against all tested stress conditions (see Table 5.2). Therefore, in the 

case of rh-GH it seems as if binding of the CD-derivatives to rh-GH actually also translates 

into aggregation inhibition. As discussed in previous chapters, this correlation could be due 

to rh-GH exhibiting unique structural properties with a high percentage of solvent-accessible 

aromatic amino acids that make binding sites for CD-derivatives unusually accessible. 

Hence, it appears that in the case of proteins which expose a significant amount of surface 

hydrophobicity and that contain a high percentage of aromatic amino acids binding of 

cyclodextrins actually also leads to aggregation inhibition. However, since most therapeutic 

proteins, such as mAbs, expose only little or no measurable surface hydrophobicity prior to 

aggregating, binding to CD-derivatives in solution is unlikely and therefore inhibition of 

aggregation due to the shielding of hydrophobic amino acids does not occur. Stabilization 

against aggregation that is triggered by the presence of interfaces seems to be a completely 

different situation and could be either due to the protein-displacement from the interface by 

CD-derivatives (as observed with non-ionic surfactants) or to binding at the interface when 
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the previously (in the bulk solution) buried hydrophobic amino acids of the protein core are 

exposed at the interface. Therefore the composition of the surface layers of mixed protein-

CD solutions needs to be studied in order to understand the role of cyclodextrins at 

interfaces, which protein formulations can be exposed to. A detailed investigation of the 

behavior of CDs at the air-water interface and possible interactions of CDs and proteins at 

the interface will be discussed in the following chapter. 
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3 MASS SPECTROMETRY FOR THE DETECTION OF CYCLODEXTRIN-PROTEIN COMPLEXES 

Mass spectrometry was applied to further evaluate the stoichiometry of binding between 

cyclodextrins and proteins. In order to simplify the analysis of the acquired binding data, a 

1:1 binding-stoichiometry of protein-CD interaction was assumed in the previously described 

SPR and fluorescence spectroscopy studies as well as in studies performed by other 

authors9,11. However, there are several literature reports stating that also the formation of 

higher order complexes (two or more cyclodextrin molecules binding to one guest molecule) 

may occur14,39. The techniques employed so far in this thesis are limited with regard to the 

determination of the stoichiometry of protein-cyclodextrin binding. However, a further 

characterization of the stoichiometry of CD-protein interaction is highly important in order to 

obtain a complete picture of CD-protein interaction. Therefore electrospray-ionization mass 

spectrometry (ESI-MS) was chosen as an analytical method because of its widely published 

potential to preserve weak non-covalent bonds upon transferring them into the gas phase40-

46. In addition to the determination of the binding stoichiometry it was intended to evaluate to 

which extent ESI-MS could generally serve as a reliable tool to rapidly detect binding of a 

greater number of combinations of cyclodextrins and proteins. 

There are many publications reporting the reliable detection of host-guest complexes 

composed of cyclodextrins and amino acids, peptides and even proteins as binding partners 

using ESI-MS 6,27,47-50. In these studies the detection of signals that correspond to the exact 

mass to charge ratio of the potential complexes was used as proof for the existence of the 

respective solution-phase complexes. As discussed in the introduction of this chapter, the 

incorporation of suitably sized residues into the cavity of cyclodextrins involves mainly 

hydrophobic interactions. Due to the “softness” of the electrospray ionization procedure it is 

believed that these complexes, based on hydrophobic interaction, also persist in the gas 

phase31,45. Thereby ESI-MS is regarded as a powerful tool for rapid and material-saving 

analysis of non-covalent CD-guest complexes. 

However, the question to which extent non-covalent complexes detected in the gas-phase 

actually represent the binding properties in solution is extensively discussed in literature. For 

cyclodextrin-guest complexes this question was first raised in the mid-nineties by Cunniff and 

Vouros51. In their studies the detection of “false-positive” complexes was reported, i.e. 

complexes that were detected in the gas-phase but that were very unlikely to exist in 

solution. It was suggested that the β-CD-amino acid complexes detected by ESI-MS may not 

be inclusion complexes, but rather electrostatic adducts. It was assumed that electrostatic 

adducts with cyclodextrins occur whenever the potential binding partner carries an amine 

function which becomes positively charged in the gas phase. The positively charged amine 

residues are likely to interact with the electronegative oxygen atoms of the β-CD molecules in 

a manner comparable to unspecific complex formation with residual instrumental ammonium 
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contamination51. To corroborate their conclusion, Cunniff and Vouros compared the binding 

of β-CD to amino acids without aromatic residues (that do not fit into the β-CD cavity in 

solution and therefore do not form solution complexes) and found that every amino acid – 

regardless of its residues - yielded gas-phase adducts. Conversely, β-CD complexes with 

aromatic non-polar substances could not be detected, thereby resulting in false negatives. 

Further detailed studies were conducted in order to elucidate the question whether the 

detected complexes are due to hydrophobic solution-phase interaction or only due to ion-

dipole interaction after removal of the liquid phase and transfer into the gas-phase. Many of 

these studies used dissociation methods, which means that the complexes of interest were 

first isolated in the gas phase and then subsequently analyzed by dissociation procedures. 

Examples include collision-induced dissociation50,52,53, heated capillary dissociation47 and 

blackbody induced radiation dissociation (BIRD)48. However, the results remained ambivalent 

with studies stating that the gas-phase complexes are the product of electrostatic gas-phase 

artifacts only and others concluding that also hydrophobic solution-phase interaction 

contributes to the formation of the complexes6,54,55. 

Most of the cited studies on the issue of CD-guest-interaction involve low molecular weight 

guest molecules such as amino acids or small peptides. However, there is also one report on 

the interaction between CDs and a protein as detected by ESI-MS27. Cao et al. applied ion 

trap electrospray ionization mass spectrometry to investigate complex formation between β-

cyclodextrin and hen egg white lysozyme. Guest exchanging experiments were performed in 

order to confirm that the detected complexes are not due to non-specific adducts. Since the 

experiments by Cao et al. were performed on the same kind of instrument as the studies 

discussed in the following sections (ion trap mass spectrometer), the published MS-parameters 

were used as a starting point for the described investigations. As pharmaceutically relevant 

model proteins IFNα2a and rh-GCSF were investigated. IFNα2a was not included into the 

studies discussed in the previous chapters of this thesis. However, the question whether it 

interacts with HPβCD and thereby leads to a stabilization of the protein was raised in earlier 

works56 and is therefore of comparable mechanistic interest as the question whether CDs 

interact with the model proteins investigated in this thesis (rh-GCSF, IgG, rhGH). 

In summary, it can be stated that there oftentimes is an electrostatic contribution when 

complexes are detected by ESI-MS. However, there are a number of thorough and detailed 

studies that point towards the possibility that hydrophobic solution-phase derived interaction 

also contributes to complexes that are detected by ESI-MS. Care has to be taken when 

interpreting the results of CD-complexation studies carried out by ESI-MS and therefore 

appropriate control experiments have to be conducted. In order to get an understanding of 

the influence of unspecific, false-positive complex formation, a number of control 

experiments were included into the studies performed, such as a systematic variation of the 
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molar ratios of the potential binding partners. In addition, detailed comparisons of the CD-

binding behavior to the binding behavior of linear sugars were conducted as well as binding 

experiments with model amino acids and model non-basic amino acid derivatives. 

3.1 ANALYSIS OF PURE CYCLODEXTRIN DERIVATIVES 
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Figure 5.12: ESI-MS full scan spectra of native β-CD (A), Methyl-β-CD (B) and HPβCD (C). The bold 
numbers above the mass/charge ratios indicate the degree of substitution of the respective species. The 
spectra were recorded in positive ion mode from a 50:50 mixture of methanol and water containing 0.1 % 
glacial acetic acid. 
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Before analyzing potential complexes of proteins and cyclodextrins the isolated components 

were studied first. This proceeding is of importance notably for the substituted cyclodextrins. 

Depending on the manufacturer, the degree of substitution of CD-derivatives greatly varies 

and in order to later be able to identify complexes between CDs and guest molecules by their 

precise mass to charge ratio, it is necessary to first exactly determine the mass distribution of 

the cyclodextrin-derivatives alone. Pure CD-samples were best measured in positive ion 

mode (Figure 5.12). The mass determined for the native β-cyclodextrin species was in 

excellent accordance to values reported in literature (Figure 5.12 A) 54. As visible form the 

broad distributions depicted in part B and C of the figure, CD-derivatives are chemically very 

heterogeneous products. The bold numbers above the respective mass/charge ratios 

indicate the degree of substitution of MβCD and HPβCD. It can be seen that highest relative 

abundance was obtained for the 13-fold substituted MβCD and for the 5-fold substituted 

HPβCD. The knowledge of this manufacturer-specific mass distribution pattern is crucial for 

identifying CD-guest complexes by their precise mass to charge ratio in the following 

experiments. The smaller peaks next to the main peaks representing the mass of the 

respective CD-derivative that are visible in Figure 5.12 correspond to the M+Na+ ions. In the 

spectrum of MβCD (Figure 5.12 B) also the [M+CH3COONa+Na]+ ions of several MβCD-

derivatives could be identified. 

3.2 CYCLODEXTRIN COMPLEXES WITH RH-GCSF AND RH-IFN-Α2A 

Having characterized the molecular mass distribution of the complex commercial CD-

derivative products, potential interaction with model proteins was investigated. According to 

the procedure described by Cao et al.57 measurements were carried out from an unbuffered 

aqueous solution of the proteins. In Figure 5.13 A the full scan spectrum of rh-IFNα2a is 

depicted. The highest relative abundance is observed for the 9-fold positively charged peak 

and the molar mass that can be derived from this spectrum (19254 g/mol) is in good 

accordance with literature values58. When using a 50/50-mixture of water and methanol the 

average charge state of IFNα2a is increased to higher values (+12-peak is dominating 

instead of +9-peak, spectrum not shown), indicating unfolding of the protein in the solvent44. 

As unfolding would distort measurement results, it was decided to perform all following 

experiments from aqueous solutions instead of from mixtures with Methanol. 

When a ten-fold molar excess of the parent β-CD molecule is added to the solution of rh-

IFNα2a, extra signals can be observed in the spectrum (Figure 5.13 B, signals are marked 

with a single dot). The mass difference between the extra peaks and the rh-IFNα2a peaks is 

exactly equal to the mass of a single β-CD molecule. 
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Figure 5.13: Full scan ESI-MS spectra of pure IFNα2a (A), an IFNα2a-mixture with native β-CD (B) and an 
IFNα2a mixture with HPβCD (C). Signals corresponding to 1:1 complexes are marked with a single dot 
above the respective peak, and 1:2-complex are marked with a double dot above the respective peak. 
The cyclodextrin molar excess was 10:1 and the experiments were performed from pure water. 

In addition, weaker signals were observed whose mass difference to the signal of IFNα2a 

exactly corresponded to the mass of two β-CD molecules. Therefore 1:1 complexes and 1:2 

complexes between rh-IFNα2a and native β-CD were detected when analyzing mixed 
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solutions of the two potential binding partners. Due to the significantly higher relative 

abundance of the 1:1 complex-signals as compared to the 1:2 complex-signals, it was 

assumed that a 1:1 binding stoichiometry between the native β-CD and IFNα2a is 

dominating. 

 When analyzing the spectra of mixed rh-IFNα2a-HPβCD solutions (Figure 5.13 C), extra 

peaks could be observed as well as compared to the pure rh-IFNα2a spectrum . As 

previously discussed, HPβCD is a chemically heterogeneous product and therefore not only 

isolated extra peaks, but a distribution of extra peaks is observed in the ESI-MS spectrum in 

the presence of HPβCD. Again, the mass difference to these extra-peaks can be clearly 

attributed to the added CD-derivative. A 1:1 binding stoichiometry was again  dominating, but 

also peaks consisting of two HPβCD-molecules per rh-IFHα2a molecule were detected with a 

very weak intensity. Altogether the relative abundance of the complex signals was  lower for 

the HPβCD-complexes than for the native β-CD complexes. However, this observation could 

not be related to a lower tendency of HPβCD to form complexes with rh-IFNα2a than the 

parent CD-molecule, but had to be attributed to the statistical fact that at the same molar 

amount of complexes in solution, the HPβCD-rh-IFNα2a complex signals were divided into a 

multitude of peaks corresponding to the different HPβCD-subspecies, whereas for the β-CD 

complexes only one distinct and therefore more intense peak resulted.  

Effect of molar ratio and absolute concentration  
In order to reduce the extent of unspecific “statistical” complex formation (due to the 

coincidental presence of a CD-molecule and an IFNα2a-molecule in the same droplet before 

solvent evaporation) and an accidental subsequent shift of the complexation equilibrium 

towards association, dilution series were carried out as suggested by literature34,59,60. The 

absolute concentration of the potential binding partners was lowered to half of the original 

concentration of 1 µg/mL and also the molar ratio between the binding partners was step 

wisely reduced until no more complexes could be detected. The reduction of the 

concentration of both binding partners did not effect complex formation (spectra not shown), 

but subsequent reduction of the molar excess of the “host” – binding partner (the CDs in this 

case) was efficient in discriminating between the different combinations of binding partners 

tested. Table 5.3 gives an overview on most of the tested combinations of binding partners 

including the control experiments that will be discussed in the following sections. In brackets, 

the minimum relative molar amount of the guest molecule compared to the host molecule is 

indicated at which a complex signal was still detectable. The absolute concentration of the 

guest molecule was kept constant at 1 µg/mL and the concentration of the host molecule was 

varied accordingly. It can be seen that when native β-CD is employed even at ten-fold 

excess compared to the concentration of IFNα2a, complexes were still detectable.  



 

 

 

 

Table 5.3: Overview on the evaluation of complex formation between different cyclodextrins and potential guest molecules as well as on control experiments to 
elucidate the extent of unspecific gas-phase complex formation. 

 + stands for weak but clearly detectable complexes (3 < signal to noise ratio <10); ++ stands for a signal to noise ratio > 10; +++ stands for a very strong complex 
signal with a relative abundance that exceeds that of the single components.  

In brackets the minimum relative molar amount of the guest molecule compared to the host molecule is indicated at which a complex signal was still detectable. The 
absolute concentration of the guest molecule was kept constant at 1 µg/mL and the concentration of the host molecule was varied accordingly. 

 

 “Host“ 

“Guest” HPβCD β-CD α-CD γ-CD Maltoheptaose Maltopentaose Sucrose Trehalose 

IFNα2a 
+ 

(2:1)  

+ 
(10:1) 

+ 
(1:1) 

+ 
(1:1) 

+ 
(1:1) 

+ 
(1:1) 

+ 
(1:10) 

+ 
(1:10)  

Lysozyme 
+ 

(1:1) 

+ 
(1:1) 

+ 
(1:10) 

+ 
(1:1) 

+ 
(1:1) 

+ 
(1:1) 

+ 
(1:1) 

+ 
(1:1) 

N-Acetyltryptophanamide ++ 
+++ 

(10:1) 

+ 
(10:1) 

+++ 
(10:1) 

0  + 0 0 

Tryptophan +++ 
+++ 

(10:1) 

+++ 
(10:1) 

+++ 
(10:1) 

+++ +++ ++ ++ 
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For HPβCD complex formation was still detectable when measured at half the concentration 

of IFNα2a (molar ratio IFNα2a:HPβCD 2:1). However, all the complexes observed after 

reducing the molar excess of the CD-component to less than 10-fold were 1:1 complexes. 

Summing up these dilution experiments it can be concluded that the observed 1:1 complexes 

were specific (reflecting complexes from the solution phase), but that the 1:2 complexes of 

IFNα2a with the CDs were nonspecific since they quickly vanished after dilution. 

Comparison of CD-derivatives 
Comparing complexes detected for the various CD-derivatives tested, it can be seen from 

Table 5.3 that also α-CD and γ-CD - IFNα2a complexes were detected by ESI-MS. However, 

when using a lower molar concentration of these two CDs than the IFNα2a-concentration, 

complexes were no longer detectable, indicating that the formed complexes were not 

specific. HPβCD-complexes in contrast, were well detectable until, pointing towards a higher 

specificity. 

Effect of solvent on complex detection 
As pure water is an unusual solvent when dealing with protein formulation experiments, the 

binding experiments between IFNα2a and the different CDs were repeated from buffered 

solution in order to evaluate the effect of pure water. Experiments from an ammonium 

acetate buffered solution were well comparable those obtained from pure water (spectra not 

shown). 

Rh-GCSF 
Comparable binding experiments as with IFNα2a were also performed with rh-GCSF and the 

four CDs listed in Table 5.3. In order to keep the results and the amount of spectra clearly 

laid out, it is refrained from showing them here. In summary, rh-GCSF exhibited the identical 

binding behavior to HPβCD, β-CD, α-CD and γ-CD as IFNα2a: 1:1 binding stoichiometry 

dominated and 2:1 binding stoichiometry was only observed when a high molar excess of the 

CD-component was used. 

3.3 CONTROL EXPERIMENTS USING LINEAR SUGARS 

In order to further investigate the potential contribution of nonspecific binding to the signal of 

the cyclodextrin-protein peaks, comparisons to linear sugars were carried out. The linear 

sugars included maltoheptaose and maltopentaose as well as the disaccharides sucrose and 

trehalose. 

Maltoheptaose was already employed as a negative control for the surface-plasmon 

resonance spectroscopy investigations discussed in the previous sections. The molecule is 

the linear analog of β-CD. Literature reports state that the equilibrium dissociation constants 

of maltoheptaose, e.g. for binding to fluorescent probes61 or phenyl acetates62, are 

significantly (2-3 orders of magnitude) smaller than those of its cyclic counterpart63. Although 

the linear sugar molecule possesses a turn of a dextrin helix and therefore exhibits some 
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micropolarity, it cannot form inclusion complexes in solution and the very weak interaction 

between maltoheptaose and guest molecules in solution is attributed to hydrogen bonds 

between the OH groups of the sugar and the guest molecule34. Maltopentaose is a shorter 

analog of maltoheptaose and should therefore possess similar properties.  
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Figure 5.14: Full scan ESI-MS spectra of mixtures of IFNα2a and Maltoheptaose (A) and IFNα2a and 
sucrose (B). The solution in A was an unbuffered solution, B was sprayed from an ammonium acetate 
solution at pH 5. Carbohydrate molar excess was 10:1 in both experiments. 

Figure 5.14 depicts ESI MS spectra of rh-IFNα2a with linear saccharides. In contrast to 

theoretical argumentation, from Figure 5.14 A it can be seen, that complexes between rh-

IFNα2a and maltoheptaose could also be detected, despite its significantly weaker 

complexation potential as compared to β-CD. Thus, since maltoheptaose as the linear 

analog of β-CD without the hydrophobic cavity for the inclusion of guest compounds, shows 

complex signals in the presence of IFNα2a, it can be concluded that nonspecific binding 

contributes to complex formation between IFNα2a and cyclodextrins. However, in contrast to 

complex formation with β-CD and HPβCD, no complex signals were observed at sugar 

concentrations below the (molar) concentration of IFNα2a (Table 5.3) which means that, also 

in this case, the less specific binding is reflected by vanishing complex signals upon dilution, 
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whereas specific binding is preserved at low concentrations . For maltopentaose the identical 

behavior as for maltoheptaose was observed (Table 5.3). 

As previously discussed, the disaccharides sucrose and trehalose belong to the group of 

preferentially excluded excipients. Therefore no interaction between rh-IFNα2a and the two 

disaccharides in solution takes place: repulsive forces between the protein backbone and the 

sugars dominate64. Nevertheless, as observable from Figure 5.14 B, showing a 

representative scan of IFN2a and sucrose, complex peaks between sucrose and rh-IFNα2a 

appear when sucrose is applied in a ten-fold molar excess. However, the intensity of the 

complex peaks is very weak, almost at the limit of detection. Upon reduction of the sugar 

concentration no more peaks can be observed (Table 5.3).  

Summarizing, it was shown that at sufficiently high concentrations of the potential binding 

partner of the protein, complexes are formed due to unspecific interaction. However, it was 

also confirmed that a change in the concentration ratios of the two binding partners provides 

a good means to discriminate unspecific complex formation from more specific adducts. 

3.4 CONTROL EXPERIMENTS USING AMINO ACIDS 

In order to gain further understanding of the extent of unspecific contributions to the 

formation of complexes in the gas phase, further control experiments were performed. The 

focus of these experiments was on an estimation of the importance of basicity of the involved 

compounds. 

A BA B

 
Figure 5.15: Chemical structures of the amino acid L-tryptophan (A) and its derivative N-
acetyltryptophanamide that lacks the basic primary amino group. 

Binding experiments with CDs and amino acids and monitoring by ESI-MS in order to 

elucidate the extent of unspecific binding were conducted earlier by Cunniff and Vouros51. 

Their studies were carried out with amino acids, which carry free amine functions and either 

aromatic or non-aromatic residues and both types of amino acids were found to form 

complexes with β-CD and its derivatives51. In search of model compounds that allow an 

investigation of the importance of basicity that even more resembled the actual situation in a 

protein, the amino acid L-tryptophan and its derivative N-acetyl-tryptophanamide were 

investigated (Figure 5.15). Since both compounds carry aromatic residues they should be 

expected to form inclusion complexes with β-CD and its derivatives in solution. However, 
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since L-Tryptophan also exhibits a free amine function, it is likely to additionally form 

electrostatic adducts with β-CDs. This complexing behavior is confirmed by Figure 5.16. 

Whereas L-Tryptophan forms intense complex peaks with all degrees of hydroxypropylated 

β-CD (Figure 5.16 A), complex peaks between the non-basic N-Acetyltryptophanamide and 

HPβCD can only be detected for the 5-fold substituted HPβCD molecule. Nevertheless, the 

signal is clearly detectable and its presence has to be attributed to specific hydrophobic 

interaction in solution.  
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Figure 5.16: Full scan ESI-MS spectra of mixtures in a 1:10 molar ratio of HPβCD and the amino acid 
tryptophan (A) and of HPβCD and the amino acid derivative N-acetyltryptophanamide (B). The bold black 
labels represent HPβCD in varying degrees of substitution and the respective ammonium adducts. The 
bold red labels are attributed to complexes of HPβCD with either tryptophan (A) or N-
acetyltryptophanamide (B). 

The importance of basicity on the detected complexes is further highlighted by control 

experiments performed with maltoheptaose, which as a linear sugar likely does not form 

inclusion complexes in solution with the aromatic residues of the model compounds: For N-

Acetyltryptophanamide no clear complex signal was obtained that could be attributed to 

maltoheptaose-N-Acetyltryptophanamide complexes (Figure 5.17 B). On the other hand, 

strong complex signals were obtained for the mixed solution of L-Tryptophan and 
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maltoheptaose (Figure 5.17 B). In turn, these complex peaks have to be regarded as purely 

unspecific. 

In summary, the experiment demonstrates that basicity strongly contributes to unspecific 

binding, but that hydrophobic interaction can nevertheless be “hidden” behind the unspecific 

complex signals. The necessity for adequate control experiments is clearly highlighted. 
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Figure 5.17: Full scan ESI-MS spectra of mixtures in a 1:10 molar ratio of maltoheptaose (MH7) and the 
amino acid tryptophan (A) and of maltoheptaose and the amino acid derivative N-acetyltryptophanamide 
(B). The bold black labels represent the ammonium adduct of maltoheptaose and its degradation product 
with one glucose residue less. The bold red labels are attributed to complexes of HPβCD with either 
tryptophan (A) or N-acetyltryptophanamide (B). 
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3.5 BINDING TO LYSOZYME 

Finally, mixed solutions of cyclodextrins and a protein with documented affinity for 

cyclodextrins , lysozyme, was investigated38,65,66. By monitoring the binding behavior of a 

protein with a known affinity for CDs by ESI-MS, it was intended to draw parallels to the 

binding behavior of rh-GCSF and rh-IFNα2a to CDs as observed in the spectra that were 

previously discussed. Thereby, it was intended to further evaluate to which degree rh-IFNα2a 

and rh-GCSF bind to CDs in solution. As exemplarily demonstrated in Figure 5.18, 1:1-

complexes between lysozyme and HPβCD could be clearly identified. When comparing the 

binding behavior (including the minimum molar ratios of the binding partners to form 

complexes with lysozyme) of lysozyme to that of IFNα2a, a very similar pattern was 

observed. Therefore, when taking into account that lysozyme was already demonstrated to 

bind to cyclodextrin-derivatives in solution, it can be assumed that also IFNα2a binds to CD-

derivatives in solution to a very similar degree as lysozyme. 
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Figure 5.18: Full scan spectrum of a mixture of lysozyme and HPβCD in a 10:1 molar ratio. The bold labels 
indicate the respectively charged pure lysozyme peaks and the dots are attributed to the respective 
complexes of lysozyme and HPβCD. 

3.6 SUMMARY AND CONCLUSIONS 

The ESI-MS experiments discussed in this chapter showed that a 1:1 binding stoichiometry 

dominates binding between CD-derivatives and proteins. Higher order complexes were also 

observed in a few cases. However, their existence was very likely attributed to the high molar 

excess of the CD-derivatives in these cases and resulting gas phase artifacts. 

Unspecific binding between CD-derivatives and the proteins under investigation certainly 

also contributed to the complex signals as evidenced e.g. by the binding of non-cyclic 

oligosaccharides. However, by systematic variation of the molar ratios of the binding partners 
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it seems possible to distinguish between purely unspecific and specific interaction that also 

takes place in solution. Control experiments performed with low molecular weight model 

compounds pointed out, that basicity of the binding partners played an important role in the 

formation of unspecific gas-phase artifacts. 

Summarizing, ion trap ESI-MS was shown to be a valuable method for the determination of 

the stoichiometry of CD-protein interaction. However, when trying to unambiguously clarify 

whether CD-protein interaction in solution takes place (and to which extent), other methods 

such as surface-plasmon resonance spectroscopy are preferred. 
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CHAPTER 6 

MECHANISTIC STUDIES ON THE INTERFACIAL BEHAVIOR OF CYCLODEXTRINS 

 

1 INTRODUCTION 

In Chapters 3 and 4 of this thesis it was demonstrated that cyclodextrins are promising 

excipients for the prevention of protein aggregation at surfaces, as provoked for example by 

agitation of the protein solutions leading to exposure of the protein to the air-water interface. 

In contrast to the other CD-derivatives tested, HPβCD did also not negatively influence the 

stability during quiescent storage at elevated temperature of the investigated proteins, a 

phenomenon frequently observed with other excipients that stabilize proteins at interfaces, 

such as non-ionic surfactants. In addition, HPβCD possesses a favorable toxicological profile 

as excipient for parenteral administration considering that very low concentrations of HPβCD 

were sufficient for complete stabilization against aggregation (2.5 mM) and that doses as 

high as 6 – 8 g of HPβCD are administered to patients in approved parenteral products1. 

Therefore HPβCD was identified as the most promising CD-derivative for use in protein 

formulations. 

The stabilizing effects of HPβCD with regard to surface-induced aggregation discussed in 

Chapters 3 and 4 qualitatively resemble those observed for polysorbate 80. CDs, like non-

ionic surfactants, are known to potentially bind to hydrophobic parts of proteins and most 

often the potency of CD-derivatives to suppress protein aggregation is ascribed to their ability 

to incorporate hydrophobic protein residues in their interior cavity1-2. Some CD-derivatives 

are also reported to be surface-active like polysorbates. Thus, as already discussed at the 

beginning of Chapter 5, the overall hypothesis for the mechanistic investigations in Chapters 

5 and 6 of this thesis was that HPβCD functions in manners analogous to non-ionic 

surfactants in mAb-formulations. Therefore the mechanistic approach of the experiments 

discussed in these two chapters is intended to identify or exclude the potential mechanisms 

by which CDs stabilize the IgG against aggregation at the air-water-interface. 

For the model proteins IgG and rh-GCSF binding to cyclodextrin-derivatives in bulk solution 

could be excluded by the results discussed in the previous Chapter 5. It was shown that 

those cyclodextrins that well inhibited surface-induced aggregation of the two model proteins, 

showed no or only very minor binding to the proteins. Even more, SBEβCD, the derivative 

that in most experiments completely failed to inhibit protein aggregation at the air-water 

interface or even accelerated aggregation, was shown to bind to rh-GCSF as well as the IgG 

in solution over a wide concentration range. Obviously no correlation between binding in the 

bulk solution and stabilization could be established. Therefore the first part of the hypothesis 
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to be tested, CDs potentially stabilizing proteins by binding to exposed hydrophobic parts on 

the protein surface in the bulk solution, can be regarded as experimentally disproved.  

Hence the experiments in the present chapter focus on the second part of the hypothesis, 

cyclodextrins acting at the surface like non-ionic surfactants, i.e. by displacing the protein 

due to competition at the air-water interface.  

For polysorbate-protein mixtures, many studies are available linking protein stabilization 

against surface-induced aggregation to the mechanism of competition at the air-water 

interface3-9. In addition, detailed mechanistic studies are available on mixed polysorbate 80 – 

protein model systems that allow a thorough understanding of the adsorption processes at 

the air-water interface since the studies were carried out with a variety of different techniques 

that are capable to monitor adsorption processes at the air-water interface9-11. For example, 

adsorption of polysorbate 80 in the presence of the large protein recombinant Factor VIII 

(280 kDa) was studied using a Wilhelmy Plate tensiometer9. It was found that the steady 

state interfacial behavior was entirely governed by surfactant adsorption, when the mixture 

contained more than 18 ppm polysorbate 80. Although the equilibrium surface tension of the 

polysorbate-protein mixture had nearly identical equilibrium values as the pure 

polysorbate 80 solution, the rate of adsorption to the interface was significantly faster in the 

mixture. Furthermore, it could be shown that also solution binding of polysorbate 80 to 

recombinant Factor VIII influences the adsorption behavior of the mixture. Another study 

investigated the rheological, structural and mechanical properties of mixed adsorption layers 

comprised of bovine serum albumin (BSA) and polysorbate 80 at the air/water interface10. 

Not only tensiometry was applied but also shear rheometry and ellipsometry, assessing e.g. 

the adsorption layer thickness, were used for these investigations. The study confirmed 

competitive adsorption between BSA and polysorbate 80 with almost complete displacement 

of the protein at high polysorbate 80 concentrations. However, it was demonstrated that 

some BSA-molecules remained in the subsurface layer, slightly influencing the absolute 

values of the surface tension as well as average adsorption rates as determined by 

ellipsometry. 

However, no such studies are available neither for monoclonal antibodies nor for rh-GCSF or 

rh-GH. Polysorbate 80 was frequently reported to stabilize monoclonal antibodies12-13 and 

stabilization by competition at the air-water interface was implicitly assumed, however never 

directly demonstrated. Other studies investigated binding between different subtypes of 

mAbs and polysorbate 80 in the bulk solution as a possible explanation for aggregation 

inhibition14-15. However, no binding was observed and therefore it was concluded that other 

mechanisms hold responsible for aggregation inhibition of monoclonal antibodies by 

polysorbate 80. One study16, that actually did investigate mixed polysorbate 80-IgG solutions, 

even concluded that polysorbate 80 only formed mixed surface layers with the IgG but does 
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not completely displace it from the surface, quite in contrast to another non-ionic surfactant 

investigated in that same study, Cremophor EL®. However, the results of the investigation 

may be challenged, since, for example, the surface tension of pure water for injection was 

determined as 53.2 mN/m, which might point towards some experimental inadequatenesses 

of the study. 

Hence, before testing the hypothesis that HPβCD stabilizes proteins against interfacial 

aggregation in manners comparable to non-ionic surfactants, it first had to be demonstrated 

that non-ionic surfactants (polysorbate 80 throughout the investigations of this thesis) did 

actually stabilize the investigated proteins by competition at the air-water interface.  

For cyclodextrins a lot less hints are available in literature that competition at the air-water 

interface with proteins could take place. First of all, a number of studies indicate that 

cyclodextrins, and most notably also HPβCD, which our investigations are focused on, are 

actually surface-active, which is a necessary prerequisite for competition at the interface17-21. 

Surface activity of MβCD and HPβCD was reported to strongly depend on the degree of 

substitution18,20-21. For instance for HPβCD values between 69 mN/m and 52 mN/m are 

reported for degrees of substitution ranging from 2.5 to 11.3, respectively. Since HPβCD 

(Cavasol®) used for our experiments has an average degree of substitution of about 5-6 

(refer to the ESI-MS results in the previous Chapter 5) surface activity can be assumed as 

well. In addition to cyclodextrins being reported as surface active there are also two studies 

that relate the inhibition of surface-induced aggregation by HPβCD to the surface-activity of 

the excipient17,20. The effectiveness of HPβCD in reducing interfacially induced precipitation 

of porcine growth hormone was ascribed to the surface activity of HPβCD and it was 

speculated that the mechanism was analogous to that proposed for the stabilization by 

polysorbate 2017. In another study the proposed relationship between the interfacial 

stabilization of rh-GH by HPβCD and surface activity of HPβCD was substantiated by 

correlating increasing degrees of substitution of HPβCD (that translate into increasing 

surface activity) to reduced amounts of aggregates in vortexed rh-GH formulations. However, 

apart from these rather speculative explanations, no sound studies are available that 

examine in detail the composition of surface layers of mixed cyclodextrin-protein 

formulations. 

It was decided to concentrate the detailed mechanistic investigations on two model systems. 

The monoclonal antibody, representing the currently most widespread class of therapeutic 

molecules, was chosen as a model-protein. HPβCD, which was identified as the most 

promising CD-derivative for IgG-stabilization and polysorbate 80, representing a standard 

non-ionic surfactant were investigated as stabilizers, allowing the comparison to studies 

discussed in the earlier chapters of this thesis. 
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In order to obtain a comprehensive picture of the situation at the air-water interface, 

adsorption and surface rheological parameters were characterized by tensiometry (using a 

Wilhelmy plate, drop profile analysis and maximum bubble pressure method) as well as 

dilational and shear rheometry. 

In brief, the main objectives to be addressed in this chapter were to 

- characterize the adsorption kinetics of polysorbate 80, HPβCD and the IgG as well as 

their respective mixtures over a wide range of concentrations at short time scales as 

well as during equilibrium adsorption in order to elucidate the surface layer 

composition of the formulations. 

- describe the surface rheological properties of polysorbate 80, HPβCD and the IgG as 

well as their respective mixtures to supplement the information obtained by 

tensiometry. 

- confirm the assumption that polysorbate 80 competitively displaces the IgG at 

sufficiently high concentrations 

- compare the adsorption behavior of polysorbate 80 in the presence of the IgG to that 

of HPβCD in the presence of the IgG and draw mechanistic conclusions on the 

stabilization behavior of mAb-formulations by HPβCD and understand why HPβCD 

can even be superior to polysorbate 80 for the inhibition of aggregation of the IgG at 

the air-water interface. 
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2 EXPLORATORY EXPERIMENTS USING A WILHELMY PLATE INSTRUMENT 

Initial surface tension measurements were carried out using a simple Wilhelmy plate 

instrument, in order to obtain basic information about the behavior of CDs at the air-water 

interface in absence and presence of a mAb. In addition, first comparisons to polysorbate 80 

were carried out. As described in the materials and methods section of this thesis the 

surface-tension recordings were conducted for only 240s which is by far shorter than the time 

that is necessary for establishing an equilibrium condition of the mAb at the interface (> 12h, 

data not shown). However, since it was intended to relate the observed surface-tension to 

the results of agitation studies, in which constant renewal of the interface takes place, it 

seemed reasonable to choose short measurement times that better reflect the situation of the 

agitation-experiment than equilibrium data. The 240 s interval was chosen because it 

provided the shortest period of time in which it was possible to achieve acceptably 

reproducible results on the instrument. 
Table 6.1: Surface tension of different mAb-formulations as determined by the Wilhelmy-Plate-method 
after 240 s of measurement time. 

Formulation σ [mN/m] buffer σ [mN/m] with mAb 

His 20mM no excipient 73.00 ± 0.51 61.53 ± 0.19 

HPβCD 0.25mM 66.51 ± 0.46 62.25 ± 0.42 

HPβCD 2.5mM 61.74 ± 0.29 59.15 ± 0.72 

HPβCD 25mM 59.32 ± 0.34 57.70 ± 0.72 

Polysorbate 80 0.04% 37.42 ± 0.44 38.76 ± 0.14 

Polysorbate 80 0.004% 43.96 ± 0.86 43.35 ± 0.18 

 

Table 6.1 summarizes surface tension values of different formulations with and without mAb. 

HPβCD lowers the surface tension indicating an accumulation at the interface (Table 6.1). 

From the results it can be roughly concluded that saturation of the interface with HPβCD is 

reached at a concentration of about 2.5 mM as the decrease of the surface-tension with 

increasing HPβCD-concentrations starts to level out. This concentration coincides with the 

minimum concentration needed for complete protection of the mAb against agitation-induced 

aggregation, as described in detail in Chapter 3. 

As expected, the surface tension measurements clearly show that the mAb accumulates at 

the air-water interface (reflected by a decrease of the surface tension by 11.47 mN/m). Since 

both, HPβCD and the IgG, concentrate at the air-water-interface, competition between the 

two molecules at the interface can potentially occur. However, it is yet unclear whether 

HPβCD can actually displace the mAb from the interface. This uncertainty is further 

substantiated by the fact that the surface tension of the solutions containing both the IgG and 

HPβCD (at ≥ 2.5 mM, i.e. after saturation of the interface) is only slightly lower (≤ 3.83 mN/m) 
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than the surface tension of the solutions containing either one of the single components. If 

both components concentrated at the interface to the same extent as in absence of the 

respective other component the decrease of the surface tension would be more pronounced. 

However, from this data it cannot be determined which component actually dominates the 

surface layer. Further experimental techniques will be necessary to clarify this question. 

For polysorbate 80-IgG solutions the situation is less unambiguous since the surface-tension 

of the mixture matches almost exactly that of the pure polysorbate 80 solution which can be 

taken as a hint that at both polysorbate 80 concentrations investigated the surfactant 

dominates the surfaces of the mixture. Interestingly, polysorbate 80 even at the lowest 

concentration tested caused a more pronounced decrease of surface tension than HPβCD 

did even in its highest concentration. However, as discussed in Chapter 3, this lower 

concentration of polysorbate 80 was not sufficient to completely stabilize the IgG against 

aggregation-induced agitation. Thus the extent of surface tension decrease alone cannot be 

used as an explanation of the stability of a formulation against aggregation at the air-water-

interface. Also, the surface tension increment alone might not directly correlate with inhibition 

of protein adsorption to the air-water interface, especially when taking into account the time-

scale (very short) at which the air-water-interface is renewed during agitation. Presumably, 

mass-transfer limitations due to the relatively low polysorbate 80 concentration compared to 

that of HPβCD could result in slower equilibration kinetics of polysorbate 80 vs. HPβCD at 

newly formed air-water interfaces. In order to clarify this question, further investigations of the 

adsorption behavior on a shorter time scale than in this experimental set-up are needed, 

reflecting time scales encountered during agitation. 

In brief, the following conclusions can be drawn from the surface-tension measurements 

using the Wilhelmy-plate technique: 

- HPβCD accumulates at the air-water interface, but it is clearly less surface-active 

than polysorbate 80. 

- The data does not clarify whether HPβCD actually competes with the IgG for 

adsorption at the interface and which component dominates the interface of an IgG-

HPβCD mixture. 

- The surface tension increment alone does not seem to explain the capability of an 

excipient to inhibit aggregation at the air-water interface. 

- The surface tension after very short adsorption times is difficult to be recorded by this 

technique. 

- Further experimental techniques are required to characterize the behavior of HPβCD 

at the air-water interface in absence and presence of the IgG. 

194 



  Chapter 6 

3 MAXIMUM BUBBLE PRESSURE EXPERIMENTS AT SHORT ADSORPTION TIME SCALES 

In the discussion of aggregation at the air-water interface, it is usually assumed that by 

agitation a constant “renewal” of the air-water interface takes place12,22-24, although this 

assumption has never been directly validated. In this context renewal refers to a mechanical 

destruction of the surface and not only to expansion and compression of the surface layer. 

Therefore, when trying to understand the effects of polysorbate 80 and HPβCD on agitation-

induced mAb aggregation, it is an obvious step to select an analytical technique that allows 

monitoring the surface-tension of the formulations in their actual concentrations as employed 

in the agitation experiments (which was provided by the Wilhelmy plate experiments) as soon 

as possible after the formation of the surface (which was not possible using the Wilhelmy 

plate method). Also, since mass-transfer limitations of polysorbate 80 and resulting slower 

equilibration kinetics were discussed as a possible reason for polysorbate 80 (0.004 %) to 

stabilize the mAb less effectively than HPβCD (although the drop in surface tension after 

240 s is a lot more pronounced in the polysorbate 80 solution than for the HPβCD solution) 

analyzing surface tension on a short time scale appears to be a promising approach to 

explain the good stabilizing properties of HPβCD. 
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Figure 6.1: Dynamic surface tension of solutions of polysorbate 80, HPβCD and the IgG as well as their 
respective mixtures (in the identical concentrations as in the agitation experiments described in 
Chapter 3) as determined by the maximum bubble pressure technique. 

The maximum bubble pressure method (MBPM) is frequently employed for the study of 

surface tensions over a wide surface lifetime range from milliseconds to several seconds25-30. 
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Therefore the MBPM provides a valuable tool to monitor the adsorption of polysorbate 80 

and HPβCD to newly formed surfaces in the presence and absence of the mAb. Figure 6.1 

shows the dynamic surface tension of HPβCD, polysorbate 80 and the IgG in histidin buffer 

in the concentrations that were also used in the agitation study in Chapter 3. It can be seen 

that polysorbate 80 in the absence of the IgG lowers the surface tension much faster and to 

a higher degree than HPβCD. Even at the first value that was recorded (33 ms) the surface 

tension of the polysorbate 80 solution is already substantially decreased compared to the 

surface tension of the pure His buffer (between 72.6 mN/m and 73.4 mN/m depending on the 

experiment, data not shown). This is an indication that the de novo surface is very rapidly 

occupied by polysorbate 80 when employed at this concentration (3*10-5 mol/L = 0.004 %)). 

In contrast, HPβCD only leads to a very slight decrease of surface tension during the 

experiment. However, the surface tension values also start at values slightly below that of the 

pure His buffer and also slightly below the value recorded for the IgG in absence of any 

excipients, but the differences are so small, that they can not be regarded as significant 

considering the experimental error. 

Interestingly, in the presence of the IgG the adsorption of polysorbate 80 exhibits a lag phase 

of about 1 s before a measurable decay of the surface tension can be observed. Thus it can 

be concluded that polysorbate 80 diffusion to the surface is slowed down in the presence of 

the IgG. This lag phase can be interpreted as a hint for a decrease of the effective 

concentration of free polysorbate 80 that is available for adsorption to the interface. The 

observation of a lag phase could be interpreted in a way that initial binding to the IgG occurs 

and only after dissociation from the loose complex polysorbate 80 can reach the surface. 

This behavior is further confirmed when monitoring the adsorption process at the same IgG-

concentration but at lower polysorbate 80 concentrations (Figure 6.2). In the presence of the 

IgG the lag time for surface adsorption of polysorbate 80 was even extended and once 

adsorption had started the rate became slower with decreasing polysorbate 80 

concentrations. The respective solutions without IgG did not exhibit this behavior and 

adsorption had already started with first recorded surface tension values. 
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Figure 6.2: Dynamic surface tension of solutions of pure polysorbate 80 and IgG-polysorbate 80 mixtures 
as determined by the maximum bubble pressure technique. 

In summary, also in the presence of the IgG, polysorbate 80 coverage of the surface occurs 

faster and to a greater extent than HPβCD coverage in the presence of the IgG. Therefore 

explanations such as limitations in mass transfer of polysorbate due to its low concentration 

that were supposed to account for the relatively good stabilization behavior of HPβCD 

(although its surface tension decrease is significantly smaller than of polysorbate 80) do not 

apply. Perhaps the postulated constant renewal of the interface does not take place and 

molecules that are once adsorbed remain at the surface for a longer time than expected and 

agitation processes mainly cause deformation of the surface but not necessarily a complete 

destruction. From this data only few hints at all are obtained on the stabilization mechanism 

of HPβCD, notably no hints on the original question whether a displacement mechanism of 

the IgG applies or not. Therefore different experimental approaches have to be chosen in 

order to reveal the surface adsorption behavior of the IgG-formulations in presence of 

HPβCD and polysorbate 80. 

In summary, the following main conclusions can be drawn from the experiments using the 

maximum bubble pressure method: 

- Polysorbate 80 (even in the lower concentration tested) adsorbs faster to the air-

water interface than HPβCD. 
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- Therefore it can be assumed that HPβCD does not cover newly formed air-water 

interfaces (as encountered during agitation processes) faster than polysorbate 80. 

- Other principles than fast surface coverage explain the good stabilizing properties of 

HPβCD during agitation. 

4 SURFACE TENSIOMETRY BY DROP PROFILE ANALYSIS 

The experiments carried out using Wilhelmy plate tensiometry and the maximum bubble 

pressure method allowed only some insight into the behavior of HPβCD at the air-water 

interface. It could be shown by Wilhelmy plate tensiometry that HPβCD does possess some 

surface activity. However, it still remained unclear whether HPβCD leads to a competitive 

displacement of the mAb from the interface in a manner comparable to polysorbate 80 or 

whether different mechanisms account for the stabilization of the IgG. Hints for the assumed 

competition of polysorbate 80 and the mAb at the air-water interface were obtained, but the 

study still lacked details such as the minimum concentration needed for displacement to take 

place. In order to clarify these questions, a wider experimental approach was chosen. The 

basic idea was to investigate in more diluted solutions than in the actual formulations in order 

to create conditions under which the adsorption processes and possible competition 

mechanisms occur at a slower time scale which can actually be studied in detail by the 

available methods. By making the adsorption behavior visible at lower concentrations it was 

intended to gain detailed mechanistic information on the adsorption behavior that then allows 

to draw conclusions about the actual formulations by extrapolating to higher concentrations 

and hence faster adsorption rates to the interface. 

Before studying the mixtures of HPβCD, polysorbate 80 and the IgG every single component 

was investigated in absence of other components besides histidin buffer at pH 5.8 that was 

also employed in the formulation studies. Subsequently, the respective mixtures were 

investigated and the adsorption profiles of the mixtures were then compared to those of the 

isolated components. Surface tensions and, as discussed in the following section, also 

surface rheological parameters were investigated using drop profile tensiometry. Compared 

to ring tensiometry it has the advantage that no further interface (e.g. the platinum-water 

interface in the Wilhelmy-plate instruments) is introduced into the investigated system: it is a 

contactless method and results in a higher accuracy compared to contact methods, such as 

ring or plate tensiometry31. 
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Figure 6.3: Dynamic surface tension of increasing concentrations of HPβCD (A) and of polysorbate 80 (B) 
as determined by drop profile analysis on a PAT 1 – instrument. 

In Figure 6.3 A the adsorption kinetics of increasing concentrations of HPβCD in histidin 

buffered solution are shown. Again, it is confirmed that the molecule possesses some 

(comparably weak) surface activity as can seen from the drop in surface tension with 

increasing HPβCD-concentrations. Equilibration at the air-water interface is rather slow with 

equilibrium condition never attained earlier than 20,000 s (roughly five and a half hours). At 

the lower concentrations of HPβCD (≤ 1.75 mM) the equilibrium surface-tension never falls 

below 60 mN/m and it seems as if the isotherm reaches a plateau at about 1.75 mM. 

However, at an HPβCD concentration of 2.5 mM a sharp drop of surface tension can be 

noticed compared to the lower concentrations and equilibrium surface tension reaches 

values of approximately 52 mN/m. At higher concentrations of HPβCD than 2.5 mM the 

surface tension remains at comparably low values and in some repetitions of the experiment 

at 2.5 mM the drop in surface tension occurred at a later time point ( > 10000 s) of the 

experiment than in the demonstrated case (data not shown). All equilibrium surface tensions 

that were observed in this experiment lay in the same range as the values that were 

determined earlier by different methods, as published in literature18-21. It is unclear why this 

sharp drop in surface tension occurs at values of about 2.5 mM HPβCD. One explanation 

could be the tendency of cyclodextrins to self-associate in solution at higher concentrations32-

33. A tendency towards association in solution was reported for concentrations beyond 0.5 % 

(which is equal to about 3.5 mM HPβCD)32. Therefore the investigated concentration of 

2.5 mM is at the threshold for the formation of self-associates. Considering that these 

associates are reported to collapse easily under the effect of shaking, temperature or 

sonication, it becomes clear why the surface tension drop occurred at varying time points of 

the experiment and in one case was even reversed during the experiment (data not shown). 
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The adsorption profile of polysorbate 80 that is shown in Figure 6.3 B is characterized by 

almost no surface activity of polysorbate 80 at the lowest concentration investigated  

(1*10-7 mol/L) and an already fast adsorption and a clearly decreased equilibrium surface 

tension of 47.95 mN/m at twice that lowest concentration, indicating significant surface 

activity. The lowest equilibrium surface tension is achieved at 1*10-5 mol/L. At concentrations 

above 1*10-5 mol/L the surface tension increases again. Therefore at 1*10-5 mol/L a kink 

point in the surface tension isotherm (Figure 6.5 A, the dark brown curve which includes 

additional concentrations that were left out in Figure 6.3 for the sake of clarity) can be 

observed that indicates that the CMC is reached at that point. Due to the chemically 

heterogeneous nature of polysorbate 80 and the different kinds of buffers employed for the 

investigations reported in literature, the CMC-values for polysorbate 80 that are reported in 

literature vary significantly but the 1*10-5 mol/L determined for the present system are in the 

(lower) range of reported values5,10,34-35. 
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Figure 6.4: Dynamic surface tension of increasing concentrations of the IgG as followed by drop profile 
tensiometry. 

In Figure 6.4 the dynamic surface tension of the IgG at different concentrations is shown. It 

can be seen that at the lowest investigated concentration (1*10-8 mol/L) a long induction 

period precedes measurable adsorption to the air-water interface. The long induction period 

observed for the IgG (approximately 80,000 s which corresponds to 22 h), as compared to 

the induction period of other proteins such as lysozyme as determined by the same method 

at comparable concentrations (about 10,000 s according to 36) can be explained by the large 

size of the IgG-molecule (146 kDa as determined by MALDI mass spectrometry in contrast to 

14.3 kDa for Lysozyme as determined by ESI-MS, see Chapter 5). Because of the large 

molecular weight of the IgG its diffusion coefficient is small and diffusion to the subsurface 

from which adsorption to the air-water-interface takes place occurs only slowly37. The 

induction period also depends on the structural stability of the investigated molecule. In order 
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to produce measurable surface pressure after the adsorption, the protein also has to partially 

unfold at the interface. More flexible, non-globular proteins such as β-casein partially unfold 

faster and therefore show shorter induction periods36,38. However, the observed adsorption 

profile shows differences to the published adsorption profile of another IgG37. Whereas for 

the IgG investigated in our studies equilibrium surface tension reaches a steady value of 

about 53 mN/m beginning at concentrations of 1*10-7 mol/L, the published results reveal a 

saturation of the interface at concentrations as high as 2*10-5 mol/L also at about 53 mN/m. 

Lower concentrations of the published IgG achieve only higher equilibrium surface tensions 

and therefore smaller degrees of adsorption to the air-water interface, probably due to a 

lower hydrophobicity of that IgG. Such differences also point out, that the rather small 

differences in IgG-structure can lead to strong variations in the surface activity of IgGs, which 

is reflected in the very variable propensity of IgGs to aggregate due to exposure to the air-

water interface12-13,23. 
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Figure 6.5: Surface tension isotherms of pure polysorbate 80 solutions and IgG-polysorbate 80 mixtures 
(A) as well as surface tension isotherms of pure HPβCD-solutions and IgG-HPβCD mixtures (B) as 
determined by drop profile tensiometry. The solid straight line indicates the surface tension of a  
1*10-6 mol/L IgG-solution. 

For the analysis of the mixed solutions of the IgG with polysorbate 80 or HPβCD, a constant 

mAb-concentration of 1*10-6 mol/L was chosen. The concentration is a compromise between 

a reasonable time to achieve equilibrium conditions (80,000 s) and not too fast initial 

adsorption that would obscure mechanistic observations by quickly cramming the interface 

with several adsorption layers of protein. The steady-state equilibrium surface tension of the 

IgG in absence of any excipients besides histidin buffer at pH 5.8 is indicated by a straight 

horizontal line in Figure 6.5 for comparison to the surface tension of the IgG-polysorbate 80 

as well as the IgG-HPβCD mixtures. For the sake of comparison the surface tension 
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isotherms of the pure polysorbate 80-solution and the pure HPβCD-solution are also included 

into Figure 6.5. 

As observable from Figure 6.5 A, at low concentrations of the surfactant the surface tension 

of the polysorbate 80-IgG mixture is lower than that of the pure surfactant solution. However, 

the values of the mixture more or less match the value of the pure IgG solution (about 

53 mN/m). Increasing polysorbate 80 concentrations do not lower the surface tension of the 

mixture in the concentration range from 1*10-7 mol/L to 1*10-6 mol/L. These findings indicate 

the dominating contribution of the IgG to the composition of the adsorption layer of the 

mixture in this concentration range. 

However, when the polysorbate 80 concentration is further increased to 1*10-5 mol/L the 

surface tension of the mixed solution of the IgG and polysorbate 80 drops to a value that is 

very close to that of the pure polysorbate 80 solution and significantly below that of the pure 

IgG solution, which strongly suggests that beginning from 1*10-5 mol/L polysorbate 80, the 

surface layer is predominantly composed of polysorbate 80. The concentration at which 

polysorbate 80 alone determines the surface tension of the mixture coincides with the CMC 

of the pure polysorbate 80 solution as discussed already above. Therefore, further evidence, 

in addition to the data from the Wilhelmy plate measurements, for the competitive 

displacement of the mAb from the air-water interface at sufficiently high concentrations of 

polysorbate 80, is obtained. 

For the mixed IgG-HPβCD solution a very different surface-tension isotherm than for the IgG-

polysorbate 80 system is obtained, as shown in Figure 6.5 B. No matter how high the 

HPβCD-concentration is increased, the surface tension of the mixture does not significantly 

change. Moreover, the surface tension of the IgG-HPβCD solutions is higher than the 

surface-tension of the pure IgG, even at the lowest HPβCD-concentrations. Therefore, 

competitive displacement from the interface of the mAb by HPβCD, as observed with 

polysorbate 80, seems unlikely, since in that case the surface tension should have more 

closely approached the values of the pure HPβCD solution. It is also unlikely that both 

components have adsorbed to the interface at the same time, because if both components 

had concentrated at the interface to the same extent as in absence of the respective other 

component, the surface tension of the mixture should be lower than that of any of the single 

components. When keeping in mind that HPβCD could possibly interact with the IgG – not in 

the native IgG state, as shown in Chapter 5, but potentially in its partially unfolded 

conformation as occurring at the air-water-interface – the hydrophobicity of the IgG and 

therefore its tendency to adsorb to the air-water interface could be reduced by the presence 

of HPβCD. This reduced surface activity due to a loss of hydrophobicity could be reflected by 

the observed lower equilibrium surface-tensions. In addition, it is interesting that even the 

lowest investigated HPβCD-concentration leads to an increase of the equilibrium surface 
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tension of the mixture. In order to get deeper insight into these adsorption processes further 

experimental approaches are necessary. Surface rheology studies, carried out either by 

surface dilational rheology or by interfacial shear rheology will notably help to determine 

which component of the mixture is dominating the interface at which bulk solution 

composition. The techniques will possibly also help to determine if interface-specific 

complexes between the IgG and HPβCD since surface rheological studies are capable of 

detecting complexes in the surface layer, even if their amounts are small39. 

The main findings from the surface tensiometry measurements using drop profile analysis 

are summarized: 

- Drop profile analysis tensiometry of dilute solutions at equilibrium adsorption times 

allowed good insight into the adsorption behavior of the IgG to the air-water interface 

in presence and absence of polysorbate 80 and HPβCD. 

- Equilibrium surface tension measurements indicated that at high polysorbate 80 

concentrations (roughly starting at the CMC) the air-water interface of mixtures of the 

IgG and polysorbate 80 is dominated by the non-ionic surfactant. 

- In the presence of HPβCD the equilibrium surface tension of the IgG-cyclodextrin 

mixtures slightly increases as compared to the pure IgG, but it remains unclear which 

component dominates the interface of the mixture. 

5 SURFACE DILATIONAL RHEOLOGY 

The drop profile analysis method is a useful and accurate analytical tool to determine 

interfacial tensions as demonstrated in the previous section. Further instrumental progress in 

drop profile analysis technology lead to the possibility to perform harmonic area oscillations. 

Harmonic area oscillations at low frequency as a tool to perform surface dilational rheology 

studies were applied for the following investigations with the aim to assess the composition 

of the interfacial layer at the air-water interface. In addition to these studies, complementary 

experiments by interfacial shear rheology using a torsion pendulum rheometer are discussed 

in the next section. 

For the surface dilational experiments seven oscillation frequencies were analyzed: 

0.005 Hz, 0.01 Hz, 0.02 Hz, 0.04 Hz, 0.08 Hz, 0.1 Hz and 0.14 Hz. For the sake of clarity 

only four of these frequencies are shown in Figure 6.6 and in the following two Figures only 

one single oscillation frequency is displayed which, however, does not affect the conclusions 

that will be drawn from these Figures. Figure 6.6 shows the viscoelastic properties of the 

pure IgG solution as determined by surface dilational rheology. With increasing oscillation 

frequencies the observed viscosity and elasticity values decrease following the usual profile 

of proteins during such experiments40. As expectable, surface elasticity values are rather 

high as compared to the more flexible random coil protein β-casein described in 

literature39,41. The local minimum in the elasticity curve shown in Figure 6.6 A and B can likely 
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be attributed to conformational changes of the protein at the interface and not to differences 

in the adsorbed amount of protein at 1*10-7 mol/L41. 
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Figure 6.6: IgG viscosity vs. concentration (A) and IgG elasticity vs. concentration (B) at different 
oscillation frequencies at an IgG concentration of 1*10-6 mol/L in His buffer at pH 5.8, as determined by 
surface dilational rheology performed on a PAT 1 instrument. 

The dilational viscosity values of the mixed IgG-polysorbate and IgG-HPβCD systems are 

presented in Figure 6.7. In order to keep the figure clear only the values obtained at an 

oscillation frequency of 0.005 s-1 are displayed. Further investigated frequencies showed the 

same trend. For comparison, the figure includes the viscosity value of the pure IgG solution, 

as discussed in Figure 6.6, at an oscillation frequency of 0.005 s-1 as a straight horizontal 

line. In Figure 6.7 A it can be seen that the viscosity profile of the pure polysorbate 80 

solution has a distinct maximum at 1*10-5 mol/L, coinciding with the CMC of the surfactant. At 

all other investigated concentrations the viscosity values are significantly lower in a range of 

roughly 50-100 s*mN*m-1. At low concentrations of polysorbate 80 the surface viscosity 

values of the IgG-polysorbate mixture are close to those that are observed for the pure 

protein depicted in Figure 6.6 (and the straight line in Figure 6.7). An increase of the 

polysorbate concentration from 1*10-7 mol/L to 5*10-7 mol/L does not alter the viscosity of the 

mixture, indicating that at these polysorbate concentrations the surface layers of the mixture 

are dominated by the pure IgG. A gradual decrease of the surface viscosity is observed 

beginning at a polysorbate 80 concentration of 1*10-6 mol/L and at a concentration of 1*10-

6mol/L the surface layer exhibits viscosity values that are close to the values observed for the 

pure polysorbate solution, far below the values that can be expected for surface layers 

containing the IgG. Thus, in agreement with the results presented above, it is confirmed that 

polysorbate 80 displaces the IgG from the surface. Interestingly, a change of the surface 

layer properties towards the surfactant is already detected at a surfactant concentration of 
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1*10-6 mol/L. This concentration lies in an order of magnitude lower than that determined by 

the equilibrium surface tension measurements that are displayed in Figure 6.5, indicating a 

higher sensitivity of the dilational rheology experiments. 
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Figure 6.7: Dilational viscosity values of pure and mixed IgG and polysorbate solutions (A) and of pure 
and mixed IgG and HPβCD solutions (B), measured at an oscillation frequency of 0.005 s-1. The straight 
line indicates the surface viscosity value of a pure IgG solution at the same oscillation frequency. 

The solutions containing HPβCD show a completely different behavior (Figure 6.7 B). The 

viscosity values of the pure HPβCD solution are very low, never exceeding 50 s*mN*m-1. In 

contrast, all viscosity values of the HPβCD-IgG mixture are very close to those observed for 

the pure IgG-solution. Therefore at none of the tested HPβCD concentrations, the rheological 

properties of the surface layer are significantly different from those of the pure IgG solution. 

Thus, the IgG is not displaced from the air-water interface even at the highest HPβCD-

concentrations tested (2.5 mM which was effective at completely inhibiting mAb-aggregation 

during the agitation studies as discussed in Chapter 3 at even higher mAb-concentration 

than for these studies). 
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Figure 6.8: Dilational elasticity values of pure and mixed IgG and polysorbate solutions (A) and of pure 
and mixed IgG and HPβCD solutions (B), measured at an oscillation frequency of 0.005 s-1. The straight 
line indicates the surface viscosity value of a pure IgG solution at the same oscillation frequency. 

The dilational elasticity values that were simultaneously determined (Figure 6.8) can be 

understood in the same way. In Figure 6.8 A the surface elasticity values of the 

polysorbate 80-IgG mixture begin to already decrease at a polysorbate concentration of  

5*10-7 mol/L, indicating that already at these low surfactant concentrations displacement of 

the IgG from the air-water-interface is beginning. It is conceivable that at these surfactant 

concentrations gaps that are temporarily available during the oscillation process (and the 

rapid expansion of the drop surface) are filled by small amounts of polysorbate 80 molecules 

in accordance with the orogenic displacement model38. In contrast to the conclusions drawn 

from the viscosity values discussed in the previous section, complete displacement of the 

mAb from the air-water interface at a polysorbate concentration of 1*10-5 mol/L seems not yet 

to be achieved, but residual amounts of the IgG can still be found in the air-water interface. 

The trends observed from the dilational viscosity measurements for mixed HPβCD-IgG 

solutions are confirmed by the analysis of the dilational elasticity results (Figure 6.8 B). No 

alterations of the rheological properties of the surface layers can be observed at any of the 

HPβCD-concentrations in the mixture. Again, the elasticity values correspond very closely to 

the values of the pure IgG at every HPβCD-concentration. Therefore, once again it is 

confirmed that HPβCD does not reduce the amount of IgG that is adsorbed to the interface. 

No competitive displacement at the air-water interface can be observed. 

It can be summarized that the dilational rheology experiments confirm the displacement of 

the IgG by the non-ionic surfactant polysorbate 80. In contrast, the mixed solutions of the IgG 

and HPβCD do not reveal any hints for such a displacement since the rheological surface 

characteristics at all HPβCD-concentrations are dominated by the IgG. However, when 

combining the finding of the reduced surface activity of the IgG in presence of HPβCD, as 
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observed by drop profile analysis and discussed in the previous section, and the fact that the 

IgG stays at the interface, as determined by the dilational rheology studies, it can be 

speculated that HPβCD interacts with the IgG at the surface in a way that does not lead to a 

displacement of the IgG from the surface but that reduces the hydrophobicity of the protein 

due to complexation and the shielding of hydrophobic protein residues. 

The key conclusions of the dilational surface rheology experiments are: 

- Dilational surface rheology was demonstrated to be a useful tool to assess the 

composition of the interfacial layer at the air-water interface. 

- It was demonstrated that at high polysorbate 80-concentrations (slightly below the 

CMC) the IgG is displaced from the air-water interface by the non-ionic surfactant. 

- In contrast, it was proven that the IgG remains at the air-water interface in the 

presence of even high concentrations of HPβCD. 

- Taking into account the increase of the equilibrium surface tension as observed by 

drop profile tensiometry of the IgG in the presence of HPβCD, a loss of 

hydrophobicity (as the major driving force for adsorption to the air-water interface) of 

the IgG in the presence of HPβCD can be concluded. In turn it can be speculated that 

HPβCD interacts with the IgG at the surface (and only there) in a way that reduces 

the hydrophobicity of the protein due to complexation and the shielding of 

hydrophobic protein residues. 

6 INTERFACIAL SHEAR RHEOLOGY 

For a further confirmation of the observed trends surface shear rheological studies were 

conducted. Surface shear rheology is a sensitive technique to monitor structural changes 

occurring in the adsorption layer and therefore helps to understand the contributions of each 

bulk solution compound to the properties of the surface layer42-43. It is reported that globular 

proteins rapidly form dense network structures at the air-water interface and that even small 

amounts of non-ionic surfactants are effective at destroying these network structures, 

thereby rendering surface shear rheology a very sensitive technology to study mixtures of 

non-ionic surfactants and globular proteins44-45. The measurements were carried out using a 

torsion pendulum rheometer that is described in more detail in Chapter 2. 
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Figure 6.9: Dependence of the surface shear viscosity ηs (A) and elasticity G (B) on the adsorption time of 
the pure IgG solution, IgG-polysorbate 80mixtures and IgG-HPβCD mixtures at a constant IgG 
concentration of 1*10-6 mol/L as measured by interfacial shear rheology. 

The surface shear viscosity ηs and the surface shear elasticity G of the pure IgG as well as of 

its respective mixtures with polysorbate 80 and HPβCD in dependence of the adsorption time 

are shown in Figure 6.9. In can be seen that after approximately 300 min adsorption time a 

very dense network structure is formed by the IgG, as the maximum elasticity and viscosity 

values that can be recorded by the torsion pendulum rheometer are reached, indicating very 

strong damping of the oscillation at this point and the pendulum gets “stuck” in the surface 

layer. A further increase of the surface viscosity and elasticity can not be followed by this 

technique. As observable from Figure 6.4 the IgG has not even reached its equilibrium 

adsorption value after this time. Upon the addition of 1*10-7  mol/L polysorbate 80 the 

network structure is strongly damaged as visible by very low surface viscosity value and no 

detectable surface elasticity. A further increase of the polysorbate 80 concentration leads to 

a complete loss of detectable surface structure and the surface is then entirely dominated by 

polysorbate 80. Observations are in good agreement with literature, similar behavior was 

described e.g. for a BSA/polysorbate 80 mixture10 or mixed β-casein/C12DMPO surface 

layers39. In contrast to the dilational rheology results discussed in the previous section, even 

lower concentrations of polysorbate 80 concentrations were found to be sufficient for a 

complete displacement of the IgG from the air-water interface, underlining the high sensitivity 

of surface shear rheology. 

The following conclusions can be drawn from the interfacial shear rheology experiments: 

- In contrast to polysorbate 80 HPβCD does not inhibit the formation of an IgG surface 

network structure, since the increase of viscosity in dependence of the adsorption 
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time is almost identical to that of the pure IgG and the increase of the surface shear 

elasticity is even slightly accelerated in the presence of HPβCD. 

- Considering that interfacial shear rheology is a very sensitive technique that is 

capable of detecting even small amounts of low molecular weight compounds that 

adsorb to the surface in competition to globular proteins, it is further confirmed that 

HPβCD does not compete with the IgG for the occupation of the air-water interface, 

even at a high molar excess in the bulk solution. 

7 SUMMARY AND CONCLUSIONS 

An investigation of the interfacial adsorption behavior and the rheological surface 

characteristics of the IgG in absence and presence of both HPβCD and polysorbate 80 

demonstrated that – in contrast to the postulated assumption – HPβCD does not stabilize the 

IgG against aggregation at the air-water interface in a manner comparable to non-ionic 

surfactants. 

Initial surface tension measurements demonstrated that HPβCD indeed possesses some 

surface activity. However, compared to the non-ionic surfactant polysorbate 80 it is only 

weakly surface-active. Thereby, a competition for occupation of the interface might be 

possible, but from the results obtained by the Wilhelmy plate method a clear conclusion 

regarding the composition of the surface layer of mixed IgG-HPβCD solutions could not be 

drawn. Therefore further, more detailed experiments were conducted. 

In order to clarify whether a particularly fast occupation of the air-water interface immediately 

after its formation by HPβCD (despite its moderate surface activity) could explain the 

stabilization of the IgG by the CD, maximum bubble pressure measurements were carried 

out. However, it was found that polysorbate 80 at low concentrations that was less effective 

regarding the inhibition of agitation-induced aggregation than the tested HPβCD-

concentration, adsorb to the air-water interface much faster than HPβCD, excluding fast 

adsorption to de novo interfaces as an explanation for the aggregation inhibition by HPβCD. 

The adsorption characteristics of the IgG, HPβCD and polysorbate 80 were studied in detail 

by drop profile analysis technology. First the individual components of the solutions were 

investigated and subsequently the respective mixtures. The equilibrium surface-tension 

values clearly demonstrated that after exceeding the CMC of polysorbate 80 the non-ionic 

surfactant dominates the surface of the mixture. Displacement of an IgG from the surface at 

high polysorbate 80 concentrations was demonstrated for the first time in literature. However, 

for HPβCD such behavior could not be proven. The equilibrium surface tensions of all the 

investigated mixtures (at different HPβCD concentrations) had roughly the same value, which 

was slightly higher than that of the pure IgG. 

Surface shear and dilational rheology experiments further confirmed that polysorbate 80 

displaced the IgG from the surface. Due to the higher sensitivity of the rheological studies it 

 209



Interfacial behavior of cyclodextrins 

was found that also polysorbate concentrations distinctly below the CMC could be sufficient 

for displacement of the IgG from the air-water interface. The rheological studies also clearly 

demonstrated that the IgG remained at the surface to full extent no matter how high HPβCD 

concentrations were present in the bulk solution. Therefore HPβCD does not competitively 

displace the IgG from the air-water interface and it is not acting like a weak non-ionic 

surfactant – an assumption that was expressed in literature and served as hypothesis to be 

tested for our experiments. However, it can be speculated, that due to its moderate surface 

activity HPβCD does reach the surface layers and interacts there (and only there, since no 

interaction between HPβCD and the native IgG in solution could be observed in Chapter 5) 

with the partially unfolded IgG. This interaction could lead to a lower hydrophobicity of the 

IgG, which was confirmed by the increased equilibrium surface tension values in our 

experiments.  

The overall effects of excipients on protein aggregation during agitation can be related to a 

theory for how these compounds influence protein interactions with and their stability at the 

air-water interface. Because sugars like sucrose are excluded from the protein-water 

interface they can be expected to increase the surface-tension σpw at the protein-water 

interface46-48. The surface-tension at the air-water-interface (σaw) also increases with 

increasing concentrations of the low-molecular-weight sugars and sugar-alcohols. In 

contrast, the interfacial tension at the air-protein interface (σap) is expected to be independent 

of the concentration of excipients in the bulk liquid49. As described in more detail by Mahler et 

al.49 when taking into account the relation between the contact angle, the adhesion energy of 

the protein per unit area of the protein-air interface and the free energy of protein unfolding 

on the air-water interface (ΔGN→U) it can be concluded that the ΔGN→U will decrease with 

increasing sucrose concentrations. As a consequence the protein, although more stable in 

the bulk due to preferential exclusion, will become less stable upon adsorption to the air-

water interface. On the other hand this relation means that the excipients that lower the 

surface tension at both the air-water interface and the protein-water interface (decreasing 

both σaw and σpw and thereby increasing the contact angle) result in less spreading and a 

more stable protein at the surface49. However non-ionic surfactants and cyclodextrins, such 

as MβCD (but not HPβCD) in this case, may at the same time accelerate aggregation rates 

in the bulk.  

In general a compromise has to be made in protein formulation: excluded excipients such as 

sucrose, trehalose, sorbitol and mannitol, which were employed for this work, are expected 

to stabilize the protein in the bulk, but clearly destabilize it at interfaces, whereas surfactants 

such as polysorbate 80 and some cyclodextrins may destabilize the protein in the bulk. For 

HPβCD stabilization at the interface could be achieved but thermodynamic stability in the 
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bulk was not affected. This property makes HPβCD a very promising excipient for protein 

formulation. 
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CHAPTER 7 

FINAL SUMMARY AND CONCLUSIONS 

 

The general aim of this thesis was to investigate the role of cyclodextrins in the inhibition of 

therapeutic protein aggregation. The objective of the work originated in early studies that 

pointed towards cyclodextrins being capable of inhibiting protein aggregation under various 

stress conditions1-5. However, only few systematic studies on therapeutically relevant 

proteins have been described in literature so far. Understanding the underlying mechanisms 

by which cyclodextrins stabilize proteins against aggregation, thereby allowing for a more 

rational application of cyclodextrins in protein formulation, was additional motivation for the 

research work of this thesis. Finally, the need for alternatives to non-ionic surfactants as 

excipients in protein formulation accounted for studies in this thesis. 

The work is presented in two major parts: First, the stabilizing effect of different cyclodextrins 

on the aggregation propensity of three structurally different, pharmaceutically relevant model 

proteins (an IgG, rh-GCSF and rh-GH) was investigated using different stress conditions. In 

the second part of the thesis, a detailed investigation of the underlying mechanisms of action 

that contribute to the inhibition of protein aggregation by cyclodextrins is presented. 

In Chapter 1 a general introduction into the control of protein aggregation in liquid protein 

formulations is given. A focus of the discussion is put on state of the art excipients that can 

be used for protein stabilization and the limitations of these excipients. Whereas sugars and 

sugar alcohols are valuable excipients to increase protein stability in the bulk solution, they 

may lead to an increased susceptibility to surface-induced protein aggregation6-7. In contrast, 

non-ionic surfactants like polysorbate 80 are very efficient in inhibiting surface-induced 

aggregation, but lead to increased aggregation rates during quiescent long-term storage of 

protein formulations, in part due to residual as well as in-situ forming peroxides8-12. 

Reviewing literature, the potential of cyclodextrins as stabilizers against surface-induced 

aggregation becomes apparent2,5. Often the potency of cyclodextrins to suppress protein 

aggregation is ascribed to their ability to accommodate suitably sized, hydrophobic, solvent-

exposed amino acid residues into the hydrophobic core of the cyclodextrins3,13-17. 

The materials and methods applied throughout this thesis are described in Chapter 2.  

In Chapter 3 the effects of different cyclodextrin-derivatives on the aggregation behavior of 

an IgG monoclonal antibody under various stress conditions, such as agitation, freeze-thaw 

and thermal stress, were described and HPβCD was evaluated as potential alternative to 

non-ionic surfactants as a stabilizer against interfacial stress in protein formulations. 

It was demonstrated that HPβCD is well suited to inhibit aggregation of the IgG at the air-

water interface. In contrast to other cyclodextrin-derivatives, HPβCD did not negatively affect 
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IgG stability during quiescent incubation at elevated temperature (60°C). Therefore, HPβCD 

was rendered the most promising CD-derivative for IgG stabilization and the further 

investigations on the effect of cyclodextrins on IgG-stability were focused on the HPβCD-IgG 

system. Most importantly, remarkably low, and therefore presumably non-toxic, 

concentrations of HPβCD (≥2.5 mM) were found to be sufficient for complete inhibition of 

agitation-induced IgG-aggregation. The same low concentration of HPβCD was also shown 

to be sufficient for the complete inhibition of IgG-aggregation induced by repeated freeze-

thaw cycles. Therefore it was concluded that HPβCD is generally suitable to inhibit 

aggregation of the IgG triggered by the presence of interfaces. 

In order to benchmark the potential of HPβCD as protein stabilizer, HPβCD was compared to 

state of the art protein stabilizers. Compared to polysorbate 80, HPβCD was found to provide 

comparable and even superior stabilizing properties as non-ionic surfactants for the 

prevention of surface-induced IgG aggregation. Comparing HPβCD to low molecular weight 

sugars and sugar alcohols as commonly applied protein stabilizers, such as sucrose, 

trehalose, sorbitol and mannitol, the sugars even promoted agitation-induced IgG-

aggregation. Although chemically also classified as sugar, the cyclic oligosaccharide HPβCD 

thus showed a completely different effect on IgG-aggregation than the low-molecular sugars. 

Hence, the preferential exclusion mechanism which describes the stabilizing effect of low-

molecular weight sugars on proteins, does not explain protein stabilization by HPβCD. 

In order to further evaluate HPβCD as a formulation alternative to polysorbate 80, a long 

term storage stability study was conducted for six months at 4°C, 25°C and 40°C. It was 

demonstrated that HPβCD did not exert negative effects on IgG-stability upon quiescent 

storage. In contrast, formulations containing polysorbate 80 exhibited a distinctly decreased 

IgG stability. Summarizing, the application of HPβCD offers the potential to stabilize protein 

pharmaceuticals against interfacial stress without a destabilization upon quiescent storage, 

as it is encountered using non-ionic surfactants. The observed trends were further confirmed 

at higher antibody concentrations (50 mg/mL), representing therapeutically relevant mAb 

concentrations. A reduction of agitation-induced aggregation by HPβCD (and polysorbate 80) 

was also observed at high IgG-concentration; however, a complete inhibition of agitation-

induced aggregation could not be achieved. A formulation containing both, HPβCD and 

sucrose, was demonstrated to preserve the advantages of both excipients and thus offer 

optimum stabilization both during agitation and during quiescent storage. The studies on the 

IgG showed that the only ionic CD-derivates included into the studies, sulfobutylether-CD-

derivatives, are generally not suitable for mAb-formulation. No matter which degree of 

substitution and which ring size (either β-CD- or γ-CD-derivatives) was tested, IgG-

aggregation rates were increased in presence of the sulfobutylether-CD-derivatives. 

Observations were further confirmed by the second model protein investigated, rh-GCSF. 
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Conclusions are discussed in Chapter 4, in which the effects of cyclodextrins on the stability 

of two further model proteins, rh-GCSF and rh-GH are discussed. In the studies on rh-GCSF 

it was shown that, as with the IgG, SBEβCD turned out to be detrimental to protein stability 

during agitation, repeated freeze-thaw cycles and quiescent storage studies. 

Furthermore in Chapter 4 it was discussed that the effect of cyclodextrins on aggregation of 

rh-GCSF, although the protein is structurally very different from the IgG, are generally in 

good qualitative agreement with the effects on the IgG. HPβCD was again demonstrated to 

well inhibit agitation and freeze-thaw induced aggregation at concentrations ≥2.5 mM. Also, 

HPβCD did not negatively influence rh-GCSF stability during quiescent storage at 50°C 

whereas formulations containing polysorbate 80 exhibited dramatically increased amounts of 

aggregates after storage. Therefore, the results obtained with rh-GSCF confirm, that HPβCD 

could serve as a valuable alternative to non-ionic surfactants in protein formulation. 

The third model protein investigated in this thesis, rh-GH, showed a different aggregation 

profile in the presence of cyclodextrins. With only few exceptions, rh-GH was stabilized 

against aggregation by all CD-derivatives under all stressing conditions. In addition to 

HPβCD, also the ionic SBEβCD reduced aggregation of rh-GH. This difference of rh-GH as 

compared to the other two model proteins was attributed to a structural particularity of rh-GH. 

The protein contains an unusually high percentage of aromatic amino acids of which some 

are exposed even in the protein’s native state and binding between rh-GH and different CD-

derivatives had been described in literature3. Therefore binding between the CD-derivatives 

and rh-GH was assumed as common stabilizing principle under all stressing conditions 

whereas the effects of the CDs on the stabilization of rh-GCSF and the IgG appeared to 

depend more on the applied stressing condition. 

Altogether the stability studies on the three model proteins point out that so far in protein 

formulation a compromise had to be struck: excluded excipients like sucrose and trehalose 

stabilize proteins in the bulk solution, but clearly destabilize them at interfaces whereas 

surfactants such as polysorbate 80 and some cyclodextrins may destabilize proteins in the 

bulk. With HPβCD, it has been demonstrated in this work that the inhibition of interfacial 

aggregation is feasible without a reduction of protein stability in bulk solution. This property 

renders HPβCD a very promising excipient for protein formulations. 

To elucidate the mechanism of stabilization, binding between CD-derivatives and the three 

model proteins in bulk solution was investigated as discussed in Chapter 5. In search of a 

sensitive analytical technique to monitor the weak and transient cyclodextrin-protein 

interactions, surface-plasmon resonance spectroscopy was evaluated using rh-GCSF as a 

model protein. Control experiments were carried out in order to exclude that unspecific 

binding signals between the immobilized proteins and cyclodextrins are recorded by the 

method. Comparisons of the binding of cyclodextrins to rh-GCSF to the binding of linear 
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sugars such as maltoheptaose, serving as negative control, demonstrated that the presence 

of the hydrophobic CD-cavity is a necessary prerequisite for the observation of interactions 

between β-cyclodextrins and rh-GCSF. By performing the binding experiments at varying pH 

levels, simple ionic attraction between charged cyclodextrins and the immobilized protein 

was excluded as exclusive driving force for binding. Observations were confirmed by 

applying two further orthogonal experimental methods, intrinsic fluorescence based titration 

and surface acoustic wave sensors.  

Binding experiments were carried out with different cyclodextrin-derivatives and all three 

model proteins. For rh-GH correlation between binding in bulk solution and stabilization 

against interfacial aggregation was observed, confirming literature trends. However, for the 

other two model proteins, the IgG and rh-GCSF, no correlation between binding and the 

inhibition of aggregation could be established. HPβCD, which was efficient in the inhibition of 

protein aggregation, was found not to bind to the IgG and to bind only very weakly to rh-

GCSF. In contrast SBEβCD, which was detrimental for the stability of rh-GCSF and the IgG, 

showed clear binding to both model proteins. Therefore, other principles than direct binding 

in bulk solution (where the proteins maintain a rather native conformation with little exposure 

of hydrophobic amino acid residues) govern the stabilization of the IgG and rh-GCSF by 

HPβCD. Since stabilization of the two model proteins mainly occurred against surface-

induced aggregation, the behavior of HPβCD at the air-water interface was studied in more 

detail in Chapter 6. The binding studies using surface-plasmon resonance spectroscopy 

were complemented by ESI-MS data on the stoichiometry of interaction. It was demonstrated 

that a 1:1-binding stoichiometry dominates binding between β-cyclodextrins-derivatives, such 

as HPβCD, and proteins. It was shown that in order to derive sound conclusions from 

cyclodextrin binding experiments by ESI-MS appropriate control experiments have to be 

carried out. 

In Chapter 6 mechanisms of protein stabilization against surface-induced aggregation were 

further investigated. Detailed studies on the interfacial adsorption behavior at different time 

scales as well as investigations on the rheological surface characteristics of the IgG, both in 

absence and presence of HPβCD and polysorbate 80, were discussed. The aim of the 

investigations was to evaluate to which extent HPβCD stabilizes the IgG in the same manner 

as non-ionic surfactants, namely by competitive displacement of the protein from the air-

water interface thereby inhibiting unfolding and subsequent aggregation of the protein after 

adsorption to the interface. Surface tension measurements demonstrated that HPβCD 

possesses only weak surface-activity as compared to polysorbate 80. Also, it was shown that 

HPβCD does not adsorb faster to the interface than polysorbate 80 which could have been of 

importance during agitation processes. Using the drop profile analysis technology it was 

shown that after exceeding the CMC of polysorbate 80 the surface of mixed IgG-



  Chapter 7 

219 

polysorbate 80 solutions was dominated by polysorbate 80, indicating displacement of the 

IgG by polysorbate 80. In contrast, in the presence of HPβCD no hints for displacement of 

the protein from the interface could be obtained. However, a moderate increase of the 

equilibrium surface tension of the IgG in presence of HPβCD points towards a lower 

hydrophobicity of the IgG in the presence of HPβCD. This observation points towards the 

occurrence of binding between HPβCD and the IgG only at the interface, where the 

conformation of the protein is expected to be different from that in bulk solution, but not in the 

bulk solution. Surface shear and dilational rheology experiments further confirmed that 

polysorbate 80 displaces the IgG from the interface whereas the IgG remains at the interface 

even in the presence of high concentrations of HPβCD. 

Further mechanistic investigations on the role HPβCD in the prevention of surface-induced 

IgG aggregation should directly address interaction between the cyclodextrin and the protein 

in the interfacial layer at the air-water interface in order to verify the hypothesis derived from 

this work. 
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