
  

 

 

 

 

Development and Characterization of Lifeact 

- a versatile marker for the visualization of F-actin - 

 

 

 

 

 

Dissertation zur Erlangung des 

Doktorgrades der Naturwissenschaften 

der Fakultät für Biologie 

der Ludwig-Maximilians-Universität München 

 

 

 

 

 

Julia Riedl 

aus  

Germering 
 

 

 

München 2010 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Eingereicht am: 02.09.2010 

Mitglieder der Prüfungskommission: 

Erstgutachter: Prof. Dr. Thomas Cremer 

Zweitgutachter: Prof. Dr. Charles David 

 

Tag des Promotionskolloqiums: 21.01.2011 



  

Erklärung 

 

Die Versuche zur vorgelegten Dissertation wurden in der Zeit von Februar 

2007 bis Februar 2010 in der Arbeitsgruppe zelluläre Dynamik und 

Musterbildung von Dr. Roland Wedlich-Söldner und in der Arbeitsgruppe 

Leukozyten-Migration von Dr. Michael Sixt am Max-Planck-Institut für 

Biochemie in Martinsried bei München durchgeführt. 

 

Hiermit erkläre ich, daß ich diese Arbeit selbstständig und nur unter 

Verwendung der angegebenen Quellen und Hilfsmittel angefertigt habe. 

 

München, den 02. September 2010 

 

______________________________ 

     Julia Riedl 

 

 

 

 

 

 

 

 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                      Für Thomas & meine Familie

 

 

 

 

 

 



  

 



Table of contents 

 

 - 6 - 

TABLE OF CONTENTS 

1 SUMMARY........................................................................................................... 9 

2 INTRODUCTION ........................................................................................... 11 

2.1 Actin and the cytoskeleton .................................................................................. 11 

2.2 Regulators of actin polymerization..................................................................... 13 

2.3 F-actin structures in mammalian cells ................................................................ 18 

2.4 F-actin is involved in many cellular processes and diseases............................ 20 

2.5 Visualization of F-actin in fixed and living samples......................................... 22 

2.6 Abp140 as actin probe in Saccharomyces cerevisiae ................................................ 24 

2.7 Transgenic mice .................................................................................................... 25 

2.8 Aim of the thesis ................................................................................................... 28 

3 RESULTS............................................................................................................ 29 

3.1 Identification of Lifeact in Saccharomyces cerevisiae .............................................. 29 

3.2 Biochemical properties of the Lifeact peptide.................................................. 31 

3.3 Expression of Lifeact in mammalian cells......................................................... 34 

3.4 Comparison of Lifeact with other F-actin markers.......................................... 37 

3.5 Cytoskeletal functions are not compromised by expression                             

 of Lifeact in mammalian cells.............................................................................. 39 

3.6 Labelling mammalian cells and tissues using FITC-Lifeact ............................ 43 

3.7 Generation of Lifeact-transgenic mice............................................................... 48 

3.8 Characterization of the transgenic founders ..................................................... 49 

3.9 Lifeact expression during mouse development ................................................ 60 

3.10 Lifeact expression and F-actin staining in single cells ..................................... 62 

3.11 Functionality of cells............................................................................................. 65 

3.12 Applications of the Lifeact-mice......................................................................... 67 

4 STATEMENT of contributions ...................................................................... 71 

5 DISCUSSION .................................................................................................... 72 

5.1 Development of a new actin marker - Lifeact .................................................. 72 

5.2 Generation and characterization of Lifeact-transgenic mice .......................... 80 



Table of contents 

 

 - 7 - 

5.3 Possible applications............................................................................................. 84 

6 MATERIAL and METHODS ......................................................................... 87 

6.1 Material ................................................................................................................... 87 

6.1.1. Chemicals and Reagents .............................................................................. 87 

6.1.2. Media.............................................................................................................. 89 

6.1.3. Solutions ........................................................................................................ 91 

6.1.4. Kits ................................................................................................................. 95 

6.1.5. Antibodies ..................................................................................................... 95 

6.1.6. Oligonucleotides........................................................................................... 96 

6.1.7. Plasmids ......................................................................................................... 96 

6.1.8. Organisms ..................................................................................................... 97 

6.2 Methods.................................................................................................................. 98 

6.2.1. Molecular biological methods..................................................................... 98 

6.2.1.1. Plasmid DNA purification.................................................................................98 

6.2.1.2. Polymerase chain reaction (PCR)......................................................................98 

6.2.1.3. DNA restriction digestion..................................................................................99 

6.2.1.4. Agarose gel electrophoresis .............................................................................100 

6.2.1.5. DNA purification from agarose gels ..............................................................101 

6.2.1.6. Determination of DNA concentration ..........................................................101 

6.2.1.7. DNA ligation......................................................................................................101 

6.2.1.8. DNA sequencing...............................................................................................101 

6.2.1.9. DNA isolation from mouse tail biopsies.......................................................102 

6.2.1.10. DNA preparation for pronuclear injection ...................................................102 

6.2.1.11. Peptide synthesis ...............................................................................................103 

6.2.2. Biochemical methods.................................................................................103 

6.2.2.1. Actin binding assay ...........................................................................................103 

6.2.2.2. Actin polymerization and depolymerisation assay .......................................104 

6.2.2.3. Far UV CD Spectroscopy ................................................................................104 

6.2.2.4. NMR sample preparation and Spectroscopy ................................................104 

6.2.3. Cell culture methods ..................................................................................105 

6.2.3.1. Cultivation of mammalian cells .......................................................................105 



Table of contents 

 

 - 8 - 

6.2.3.2. Freezing and thawing of cells ..........................................................................105 

6.2.3.3. Primary cells .......................................................................................................106 

6.2.3.4. Cell lines..............................................................................................................108 

6.2.3.5. Transfection of cells..........................................................................................109 

6.2.3.6. Stable cell lines ...................................................................................................109 

6.2.3.7. Scrape-loading of human neutrophils ............................................................110 

6.2.3.8. Immune-complex (IC) induced neutrophil activation.................................110 

6.2.3.9. Preparation of fertilized murine oocytes .......................................................110 

6.2.3.10. In vitro generation of E4.5 Embryos.............................................................111 

6.2.3.11. Polarization assay of rodent hippocampal neurons .....................................111 

6.2.3.12. Flow cytometry ..................................................................................................111 

6.2.3.13. Cell staining for flow cytometry......................................................................112 

6.2.3.14. Migration assays.................................................................................................112 

6.2.4. Mouse work.................................................................................................113 

6.2.4.1. Generation of transgenic mice ........................................................................113 

6.2.4.2. Preparation of embryos and organs................................................................113 

6.2.4.3. Cryosections of organs .....................................................................................114 

6.2.4.4. Preparation of cartilage sections .....................................................................114 

6.2.5. Microscopic methods.................................................................................114 

6.2.5.1. Epifluorescence microscopy............................................................................114 

6.2.5.2. Stereomicroscopy ..............................................................................................115 

6.2.5.3. Total internal reflection fluorescence microscopy .......................................115 

6.2.5.4. Confocal microscopy ........................................................................................116 

6.2.5.5. Spinning disc microscopy.................................................................................116 

6.2.5.6. Image processing and data analysis ................................................................116 

7 ABBREVIATIONS and INITIALISMS......................................................117 

8 REFERENCES................................................................................................120 

9 PUBLICATIONS and MEETINGS.............................................................133 

10 ACKNOWLEDGEMENTS..........................................................................134 

11 CURRICULUM VITAE.................................................................................136 



Summary 

 

  ‐ 9 ‐ 

 

1 SUMMARY 
 

Filamentous actin (F-actin) is an important part of the eukaryotic cytoskeleton and is 

crucial for fundamental processes including morphogenesis, cell division and cell 

migration. In the recent years live-cell imaging became more and more important to 

analyze those processes but previously established markers for F-actin have several 

drawbacks.  

In the first part of my PhD thesis, I characterized a newly discovered actin binding 

domain of the yeast actin-binding protein Abp140, comprising only 17 amino acids 

(aa), as potential actin marker (Lifeact). In biochemical assays, using a chemically 

synthesized peptide (FITC-Lifeact), no disturbing effects on polymerization or 

depolymerization of actin could be detected which was also in line with the low 

binding affinity to F-actin. Moreover, the binding affinities of Lifeact on G- and on F-

actin were not altered by various actin binding proteins and drugs. In different cell 

types - transiently or stably transfected -, all known actin structures were labelled as 

visualized by different microscopic techniques, e.g. epifluorescence, confocal or total 

internal reflection fluorescence microscopy. In addition the chemically synthesized 

FITC-Lifeact could be used to stain F-actin in fixed cells and tissues as well as in living 

cells thus enabling analysis of actin dynamics in non-transfectable cells. Demonstrating 

the suitability of Lifeact as non-intrusive actin marker, three sensitive read-outs for 

cytoskeletal impairments - neuronal polarization, retrograde actin flow and speed of 

chemotactic cells - were not affected by strong Lifeact-EGFP expression. 

Furthermore, Lifeact is the shortest actin marker so far described exhibiting no 

homologous sequences in higher eukaryotes. Summarized, for most applications 

Lifeact can be considered as the best actin marker available to date. 

The second part of my work dealt with the generation of Lifeact-EGFP and Lifeact-

mRFP transgenic mice as tools for analysis of actin dynamics in primary cells, tissues 

and whole animals. Hence, to obtain an ubiquitous expression of the marker a 

construct containing the chicken-β-actin promoter was used for microinjection which 

results in random integration into the genome. Investigation of the fluorescent signal 
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on organ level in the different mouse lines revealed variable expression patterns. 

Nonetheless, all mice were perfectly viable, phenotypically normal and fertile. 

Founders with the most ubiquitous expression of Lifeact were characterized in detail. 

Microscopic analysis revealed that all tested cell types showed a bright and specific 

labelling of their actin cytoskeleton. Moreover, strong expression of Lifeact could 

already be observed during early embryonic development. Finally, isolated primary 

cells from transgenic mice were tested for neuronal polarization and chemotactic 

migration and showed no significant differences to wildtype controls indicating that 

actin dynamics were not altered. Based on these observations, the generated transgenic 

mice can be used as universal tool for analyzing actin dynamics in various disciplines. 
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2 INTRODUCTION  

 

2.1 Actin and the cytoskeleton 
 

Actin is one of the most abundant proteins in eukaryotic organisms and is important 

for their survival. It is well established that actin is a central player in many different 

aspects of cell morphogenesis, cell division or cell migration (Pollard & Cooper 2009; 

Molecular Biology of the Cell, 2002). Recently it was described that actin homologues 

are also present in prokaryotes being important for morphogenesis and cell polarity 

(Jones et al. 2001, van den Ent et al. 2001).  

Actin is one of the three major components of the cytoskeleton together with 

microtubules and intermediate filaments. In eukaryotes the amino acid sequence of 

actin is highly conserved, however there are some variations on the level of gene 

number: single-celled organisms such as yeast contain only one actin encoding gene 

(Gallwitz & Sures 1980) whereas multi-cellular organisms have several functional 

genes (Gunning et al. 1983). Moreover, higher eukaryotes have three protein isoforms 

of actin: α-, β- and γ-actin. While α-actin is restricted to muscle cells, β- and γ-actin are 

present in all cell types. 

Actin is a 43 kiloDalton (kDa) protein comprising 375 amino acids (aa) and is found in 

a monomeric, globular state (G-actin, Figure 2.1) in the cell. The analysis of the x-ray-

diffraction of an actin crystal revealed that it consists of four subdomains (1-4; Kabsch 

et al. 1990). A cleft between subdomains 2 and 4 is the binding site for adenosine-tri-

phosphate (ATP) where it is hydrolyzed to adenosine-di-phosphate (ADP) (Figure 

2.1). The conformation of the actin structure is dependent on the nucleotide state.  

 

ATP-bound G-actin is able to polymerize into filaments (filamentous actin, F-actin). 

These are made of two protofilaments that form a right-handed helix with a diameter 

of 7-10 nanometers (nm). Intracellularly, there is a strong variation of filament length 

which depends on many cellular cofactors (discussed in section 2.2). 
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Figure 2.1 Structure of the actin monomer. Ribbon (left) and space-filling (right) models of 
the actin molecule (pdb:1ATN) bound to ATP. This structure was derived from an 
actin:DNaseI complex (Kabsch et al. 1990). 
 

Source Image: Pollard et al. 2009 

 

The mechanisms of F-actin polymerization have mostly been elucidated by in vitro 

experiments on purified actin (Carlier 1991, Pollard 1986). In general, polymerization 

of actin filaments has two phases. The first phase is a nucleation phase, in which actin 

dimers and trimers are formed. Dimerization and trimerization are thermodynamically 

unfavourable, making nucleation the rate-limiting step of polymerization (Sept & 

McCammon 2001; Figure 2.2. Hence, under physiological conditions cofactors (e.g. 

nucleation factors, see section 2.2) are required to support this process. Once four 

actin monomers interact, the polymer becomes stable and the second phase of 

polymerization, the elongation phase, is favoured (Figure 2.2, Wegner & Engel 1975). 

The rate of filament elongation is diffusion-limited, i.e. is directly proportional to the 

concentration of available monomers. 

As a result of the asymmetry of the actin structure, elongation is also asymmetric with 

one side polymerizing much faster (barbed end) than the opposite side (pointed end; 

Drenckhahn & Pollard 1986). This is due to the inherent polarity of filaments in 

which all actin monomers are incorporated in the same orientation (Gardet et al. 

2007). Hence, monomer addition at the barbed end requires only 0.1µM of ATP-G-

actin whereas growing on the pointed end is not established below 0.6µM of ATP-G-

actin (Pollard 1986). At an intermediate ATP-G-actin concentration, continuous 
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growth on the barbed-end is maintained while the pointed-end shrinks. In this 

process, called treadmilling, the filament length remains approximately constant. 

Balancing this simultaneous association and dissociation requires a higher monomer 

concentration at the pointed end than at the barbed end (Neuhaus et al. 1983).  

 

 

 

Figure 2.2 Spontaneous nucleation and elongation of actin. Actin dimers and trimers are 
unstable complexes and therefore they are very likely to collapse. When a polymer of four 
monomers is established it starts to grow rapidly at the barbed end (B) and slowly at the 
pointed end (P). 
 

Source Image: Pollard et al. 2009 

 

Once ATP-G-actin is incorporated into a filament, the ATP is slowly hydrolyzed to 

ADP. Treadmilling is powered by this hydrolysis and the resulting energy can be 

utilized to perform cellular processes. This motion generates force which can be used, 

for example in migrating cells at the leading edge to promote protrusions (Molecular 

Biology of the Cell 2008). However, the time-scale of assembly and disassembly in vivo 

is in order of magnitudes faster than in vitro where only actin is present and this 

enhancement is the task of many cellular cofactors (Dos Remedios et al. 2003). 

Additionally, all actin-related cellular processes are dependent on such cofactors, either 

to promote or to prevent them. Therefore, several important cofactors are introduced 

in section 2.2. 

 
2.2  Regulators of actin polymerization 

 
It is fundamental for cells to highly regulate actin polymerization to prevent 

uncontrolled generation of filaments. Therefore many regulatory proteins are involved 

in this process such as sequestering proteins, nucleation factors, capping, severing, 

crosslinking or motor proteins. 
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Sequestering proteins 

 

Sequestering proteins (e.g. profilin, thymosin β4) are able to bind to actin monomers 

and are important for maintaining a pool of monomers in solution. Profilin, for 

example, promotes actin polymerization by binding G-actin and bringing it to the 

barbed end of a filament. Moreover, profilin also catalyzes the exchange of ADP for 

ATP by altering the conformation of G-actin, opening its nucleotide binding site to 

the cytosol. Thus, profilin activity increases the local concentration of ATP-G-actin 

which can subsequently be used for incorporation into new filaments (Sagot et al. 

2002; Pantaloni & Carlier 1993).  

 

Nucleators 

 

Nucleation factors are crucial for overcoming the rate-limiting step, trimerisation 

(Figure 2.3a). There are three different classes known today: the actin-related protein 

(Arp) 2/3 complex (Mullins et al. 1998), formins (Pring et al. 2003) and Wiskott-

Aldrich syndrome protein (WASP) homology 2 (WH2) domain nucleators (e.g. spire, 

leiomodin or cordon-bleu (Kerkhoff 2006, Qualmann & Kessels 2009). The Arp2/3-

complex consists of seven subunits whereby the Arp 2 and 3 structurally resemble 

actin and bind to actin monomers. Consequently, they are thought to act similar to an 

actin-dimer and therefore serve as nucleation site. During polymerization the Arp2/3 

complex remains at the pointed end of a filament. Unique for this complex is the 

ability to bind to pre-existing actin filaments and nucleate new branched filaments and 

thereby enabling the building of dendritic networks (Figure 2.3b; Pollard 2007).  

Formins are single, multi-domain polypeptides and constitute a large and diverse 

protein family (Chalkia et al. 2008, Higgs & Peterson 2005). They act as homodimers 

mediated through their formin-homology 2 (FH2) domains which also serve as 

binding sites to actin (Pruyne et al. 2002). This homodimer is very likely to function by 

stabilizing spontaneously formed actin dimers or trimers (Figure 2.3c; Xu et al. 2004). 

Interestingly, formins remain at the barbed end through a proposed stair stepping 

mechanism (Otomo et al. 2005), and thereby enable further elongation while 

preventing the binding of capping proteins (see later in this section; Pring et al. 2003). 
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The rates of nucleation and elongation vary greatly between different formins (Goode 

& Eck 2007). 

Most recently discovered is a third group of actin nucleators that are also single 

polypeptides containing WH2-domains. These proteins contain multiple actin binding 

regions (WH2 motives) and are thought to recruit or align actin monomers. For 

example, in the case of spire, these monomers are aligned in a tetrameric 

polymerization ‘seed’ (Figure 2.3d; Qualmann & Kessels 2009). To date, little is 

known about the mechanisms utilized by these nucleation factors. Notably, filaments 

assembled by formins and also by WH2 nucleators are nonbranched (Pring et al. 2003, 

Qualmann & Kessels 2009). 

 

 

 

Figure 2.3 Different actin nucleation mechanisms. (a) Actin monomers alone nucleate 
very slowly but when four monomers interact filament growth is favored. (b-d) In all cases the 
nucleation step is catalyzed by cofactors. (b) Arp2/3 complex is thought to mimic an actin-
dimer or -trimer to serve as a template for polymerization for de novo and branched filaments. 
(c) Studies of the formins suggest that a dimer - built through binding of their FH2-domains – 
stabilizes an actin-dimer or-trimer and thereby facilitates the nucleation step. (d) As one of the 
WH2 nucleators, spire contains four WH2-domains which bind four actin monomers and 
functions as a scaffold for polymerization into unbranched filaments.  
 

Source Image: Goley & Welch 2006 
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Capping proteins 

 

Once a filament is formed and the ends are exposed to the cytosol, capping proteins 

(e.g. CapZ capping protein, tropomodulins) may bind there (Figure 2.4). They 

function either in stabilizing the actin filament or in promoting its disassembly. CapZ, 

for example, binds to the barbed end of an actin filament thereby preventing further 

elongation. Then, the filament shortens if the dissociation of actin monomers 

continues at the pointed end (Hart & Cooper 1999). In contrast, tropomodulins cap 

the pointed ends of filaments preventing dissociation of monomers and leading to 

further elongation. 

 

Severing proteins 

 

These proteins bind to the side of filaments and sever them into pieces (e.g. cofilin, 

gelsolin) contributing to filament shortening. For example, cofilin belongs to the actin-

depolymerizing factor (ADF) protein family and is essential for a rapid turnover of F-

actin (Lappalainen & Drubin 1997; Ghosh et al. 2004). Cofilin is also able to capture 

ADP-G-actin, thereby promoting its dissociation from the pointed end. The inhibition 

of the exchange from ADP to ATP by bound cofilin prevents then re-polymerization. 

On the one hand, these mechanisms serve to rapidly depolymerize filamentous actin; 

on the other hand, the resulting shorter filaments can be used to quickly reorganize 

the existing structure, e.g. parallel bundles into a dendritic network (Figure 2.4). 

 

Crosslinking proteins 

 

Crosslinking proteins (e.g. α-actinin, filamin) organize existing filaments into bundles 

or networks. Most of them function as dimers or need at least two actin-binding sites 

to connect actin filaments. For example, α-actinin organizes filaments into parallel 

bundles (Figure 2.4). In contrast, filamin functions as a dimer with an inherent 

flexibility of its structure thereby enabling the formation of loose networks of actin 

filaments (Figure 2.4; Esue et al. 2009). 
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Figure 2.4 Dynamics of actin filaments. Once a filament is formed several processes can 
occur: Capping proteins bind to and block barbed or pointed ends; cofilin depolymerizes and 
severs filaments; cross-linking proteins assemble networks and bundles of actin filaments.  
 

Source Image: Pollard et al. 2009 

 

 

Motor proteins 

 

Motor proteins are the driving force behind most active processes in cells. Certain 

motor proteins such as the myosin family use actin filaments as tracks to move. 

Myosins constitute a large superfamily of molecular motors and - besides an actin-

binding domain - they contain an ATPase to generate force to “walk” on actin 

filaments in the direction of the barbed end – except for myosin VI which moves 

towards the pointed end. Mediated through their tail domain, myosins are also able to 

interact with and to transport cellular cargos (Berg et al. 2001, Sellers 2000). 

 

 

In summary, the regulation of actin filaments is a highly complex system and involves 

a large number of regulatory proteins to establish a functional cytoskeleton. Versatile 

structures can be generated in cells with these filaments which are described in section 

2.3.  
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2.3 F-actin structures in mammalian cells 
 

In eukaryotic cells the helical actin filaments can be arranged in many different higher-

order cellular structures. These arrangements can be divided into three basic groups: 

Parallel bundles (filaments with the same orientation), antiparallel bundles (filaments 

with opposite orientation) and dendritic networks of filaments (Chhabra & Higgs 

2007).  

 

Cells utilize these different arrangements of actin filaments to perform distinct 

processes. These processes can generally be distinguished in two categories: either 

protrusions leading to expansion of the cell membrane or contractions leading to its 

shrinkage.  

For example, microvilli and filopodia are finger-like protrusions. The latter are often 

found in motile cells, like fibroblasts or neurons. They are generated by parallel 

bundling of many actin-filaments and are believed to function as directional sensors 

(Figure 2.5; Zheng et al. 1996). 

Non-muscle cells contain many stress fibers which consist of crosslinked, antiparallel 

actin filaments. Stress fibers obtain their contractility through interaction with the 

motor protein myosin II and are major mediators of cell contraction. However, in the 

last few years, it has become more and more clear, that there are different forms of 

stress fibers with distinct functions present in cells (Figure 2.5; Pellegrin & Mellor 

2007).  

A highly dendritic network of actin filaments is used in lamellipodia which are sheet-

like protrusions of the cell membrane. They are generated by cells during spreading or 

migration (Figure 2.5; Abercrombie et al. 1971, Bailly et al. 1998). Endosomes and 

phagocytic cups are also proposed to contain dendritic networks of actin. The latter 

structure serves to take up large, extra-cellular particles conducted by macrophages, 

for example (Figure 2.5; Aderem & Underhill 1999). Endosomes are required for 

internalization of small particles, such as receptors, located at the plasma membrane of 

eukaryotic cells. Then, these particles are either degraded in lysosomes or recycled 

back to the plasma membrane (Figure 2.5; Grant & Donaldson 2009; Hicke & Dunn 

2003).    
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Figure 2.5 Actin structures in a hypothetical cell. F-actin structures in a cross-section of a 
hypothetical motile metazoan cell: The cell is migrating upwards and is associated to a second 
cell on the right side. Actin-based structures which are also present in non-motile cells are e.g. 
nuclear actin, golgi-associated actin, endosomal-associated actin and phagocytic cup associated 
actin. Actin structures restricted to motile cells are e.g. the lamellipodium, lamellum, filopodia 
and ruffles.  
 

Source Image: Chhabra & Higgs 2007 

 

Most recently, it has become evident that F-actin is also present in the nucleus and 

contributes to processes such as RNA transcription or chromatin-remodelling. To 

date, the underlying mechanisms still remain to be elucidated. However, actin might 

have a distinct conformation to the cytoplasmic filamentous actin (Figure 2.5; 

Bettinger et al. 2004). 
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2.4 F-actin is involved in many cellular processes and diseases 
 

Being involved in many different cellular structures it is not surprising that F-actin 

plays a crucial role in fundamental cellular processes. For example, cell shape, division, 

polarization and migration are processes critically dependent on F-actin. It is obvious 

that the cell morphology is based on a versatile and stable cytoskeleton which is 

formed by filamentous actin - besides microtubule and intermediate filaments (Figure 

2.6a; Pollard & Cooper 2009). Moreover, the cytoskeleton enables cells to sense 

external forces and mechanical properties of the environment which influences the 

cells reactions. As an example, cell differentiation into various types is influenced by 

the stiffness of the substrate (Discher et al. 2009).  

 

Mitosis is important for successfully developing and maintaining an organism and is 

another process where F-actin is involved. This process has to be highly organized 

temporally and spatially. It is known that F-actin plays a role in spindle orientation, 

chromosome segregation and cytokinesis when contraction is required to split one cell 

into two (Hwang et al. 2003). The latter step is dependent on the formation of a 

contractile ring between the two daughter cells which is mainly composed of F-actin 

and associated proteins, such as myosin II (Figure 2.6b; Sanger et al. 1989).  
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Figure 2.6 F-actin is important for many cellular processes. (a) F-actin is a major 
component of a cellular cytoskeleton which helps to form different cell shapes not only in 
mammalian cells. Depicted are epithelial cells, red blood cells, muscle cells, a neuron and 
lymphocytes. (b) Mitosis is another process where F-actin (visualized in red) is involved. 
Especially during cytokinesis the cell depends on the contractile ring which is mainly formed 
by filamentous actin (chromosomes in blue). 
 

Source Image a: modified from www.nationalacademies.org/stemcells 

Image b: modified from Yang et al. 2004  

 

Cell polarization depends on specific spatial signals provided by the environment 

(such as gradients of chemoattractants) or cell history (such as bud scars in yeast). 

These signals have to be transmitted to various cellular objectives whereby the actin 

cytoskeleton is one of the major targets. As a response to signals, the rearrangement of 

actin leads to the establishment of a polarized morphogenesis (Wedlich-Soldner & Li 

2004). 

Polarization is also a prerequisite for cell migration which is an important biological 

process being involved in various processes like the development of organisms, 

immune system functions and diseases (Weiner et al. 2006, Lauffenburger & Horwitz 

1996). Some cells, such as leukocytes, move as fast as 40 µm per minute in vitro; 
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however, their speed is most likely slower in vivo. This migration depends on force 

generation and on its transmission to the extracellular substratum of the migrating cell. 

The current main model explaining these forces is based on the dynamics of the actin 

cytoskeleton but different hypotheses are proposed as well in this field (Mogilner & 

Oster 2003; Lammermann et al. 2008). Thus, the details of the complex mechanism of 

cell migration remain to be elucidated. 

 

Being involved in many cellular processes, it is not surprising that also many diseases 

can be linked to actin dysfunctions including Alzheimer disease (James R. Bamburg & 

Bloom 2009), autosomal dominant deafness (Zhu et al. 2003), dilated and 

hypertrophic cardiomyopathy (Olson et al. 1998 and 2000) as well as cancer (Suresh 

2007). 

 

2.5 Visualization of F-actin in fixed and living samples 
 

With the increasing importance of video-microscopy and cell-based screening, it has 

become more and more essential to visualize F-actin in living cells. Hence, actin 

dynamics can be easily quantified. Moreover, processes such as cell polarization or cell 

migration can only be thoroughly studied by live-cell imaging. For this purpose, 

researchers have either relied on the injection of fluorescently labelled actin or small 

amounts of phalloidin or on the use of genetically encoded fluorophore-coupled actin-

binding proteins. 

The first described and up to now commonly used probe for F-actin in fixed cells and 

tissues is phalloidin coupled to fluorophores (Faulstich et al. 1980). This phallotoxin, 

isolated from the mushroom death cap (Amanita phalloides), binds specifically to F-actin 

allowing reliable visualization of the actin cytoskeleton, while at the same time 

stabilizing actin filaments. However, actin in cells such as the plant pathogenic fungus 

Ustilago maydis or the parasites plasmodium or leishmania cannot be stained by phalloidin 

(Weinzierl et al. 2002; Schüler et al. 2005; Kapoor et al. 2008).  

The usage of phalloidin or fluorescently labelled actin in living samples is limited to 

injectable large cells, requires specialized equipment and relatively expensive probes. 

Moreover, working with phalloidin has several limitations. As a toxin, this protein 
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affects the cell by irreversibly stabilizing the actin filaments thereby leading to cell 

death. Therefore, it can only be used in small amounts through microinjection into the 

cytoplasm as shown by Schmit & Lambert (1990). However, it was reported that cells 

treated with phalloidin suffer from toxic side effects and show alterations in actin 

distribution and cell motility (Cooper 1987, Wehland et al. 1977). Furthermore, to date 

it is not possible to chemically synthesize phalloidin, which instead needs an elaborate 

isolation procedure from the mushroom itself. 

 

Commonly used in live cell analysis is actin itself, genetically coupled to fluorophores, 

like the green fluorescent protein (GFP; Flynn et al. 2009, Endlich et al. 2007). 

Although this probe displays good labelling of the cytoskeleton, it also has several 

drawbacks: all documented actin fusion proteins exhibit reduced functionality and can 

only be used in the presence of a large pool of non-labelled actin (Yamada et al. 2005). 

Furthermore, actin-GFP exhibits a relatively strong background staining because of 

labelled actin monomers so that the expression level has to be low. Moreover, it was 

shown to affect actin dynamics in vivo (Feng et al. 2005). 

 

Alternatively, several actin-binding-proteins or -domains have been used in the last 

years for visualization of the actin cytoskeleton including moesin in the fruit fly 

Drosophila melanogaster (Edwards et al. 1997), LimE in the slime mold Dictyostelium 

discoideum (Bretschneider et al. 2004), ABP120 in D. discoideum and mammalian cells 

(Pang et al. 1998; Lenart et al. 2005) as well as the recently described utrophin in the 

frog Xenopus laevis (Burkel et al. 2007). The actin cytoskeleton of the budding yeast 

Saccharomyces cerevisiae was successfully labelled using the actin-binding protein Abp140 

(Yang & Pon 2002). In plants, fusions to the actin binding domains of mouse talin or 

fimbrin have been used but each seems to stain only a subset of actin structures and 

can lead to artificial bundling of actin filaments if expressed at high levels (Holweg 

2007, Sheahan et al. 2004).  

In general, all these fusion proteins are still quite large and – while not causing strong 

defects – may subtly influence actin dynamics as they are competing with their 

endogenous counterparts or may modify actin filament stability. Moreover, the usage 
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of these probes has been restricted to a limited range of organisms and generally to 

cells which can be transfected or injected.  

 

2.6 Abp140 as actin probe in Saccharomyces cerevisiae 
 

The actin-binding protein 140 (Abp140) in the yeast Saccharomyces cerevisiae is a 71kDa 

protein consisting of 628 aa and was first identified in 1998 (Asakura et al. 1998). It is 

composed of two open reading frames (ORF; YOR239W and YOR240W) which are 

separated by a +1 translational frameshift and thus, only when a ribosomal error 

occurs, the full-length protein can be translated (Figure 2.7; Asakura et al. 1998). The 

C-terminal ORF shows sequence homologies to S-adenosyl-methionine dependent 

methyltransferases (Katz et al. 2003). In in vitro assays with the recombinant full-length 

protein a bundling activity was reported by Asakura et al.. The deletion of Abp140 has 

no severe phenotype except of a slight delay in polarization and decreased actin speed 

(Riedl 2007). To date, the cellular function of Abp140 remains to be elucidated.  

 

 

 

Figure 2.7 Schematic image of Abp140p in Saccharomyces cerevisiae. The first 17 aa 
compose the actin-binding domain (ABD) of Abp140 and belong to the ORF YOR239W 
whose function is still unknown. The C-terminal ORF YOR240W has a strong sequence 
homology to SAM-methyltransferases but such a function was yet not proven (Katz et al. 
2003). In between the two ORFs a +1 translational frameshift was discovered (Asakura et al. 
1998). 

 
 

Due to its localization to F-actin structures in yeast (cables and patches) as well as co-

localization with phalloidin (Figure 2.8), Abp140 was used as a marker for the 

visualization of actin cables (Fehrenbacher et al. 2004; Yang & Pon 2002). Moreover, 

it is the best live marker so far, because all other described GFP-fusions exclusively 
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label patches (Humphries et al. 2002). During my diploma thesis I demonstrated that 

the first 17 aa comprise the actin-binding domain. I subsequently used this peptide, 

named Lifeact, for imaging the actin cytoskeleton in yeast cells. To date, it is the 

shortest actin marker described (Riedl 2007). Interestingly, there is no homologous 

sequence to Lifeact found in higher eukaryotes. 

 

 

 

Figure 2.8 Colocalization of GFP-tagged Abp140p and Rhodamine-phalloidin. Yeast 
cells were transformed with a plasmid encoding for Abp140p fused to GFP (a), fixed and 
stained with Rhodamine-phalloidin (b) for F-actin structures. A perfect overlap can be 
observed. Scale bar: 1.5 µm  

Source Image: Yang & Pon, 2002 

 
 

2.7 Transgenic mice 
 

Transfection of cell lines or primary cells is a standard technique in cell biological 

research. However, there are several limitations to this approach as several cell types 

cannot be transfected, such as platelets, or are difficult to transfect such as neutrophils 

and naïve lymphocytes. In addition, questions of multi-cellular organization such as 

organogenesis or embryo development cannot be addressed in cell culture systems. 

Finally, many disease models and medical applications rely on the use of animals – 

mostly mouse models. To address those issues, particularly regarding the actin 

cytoskeleton, it is of great benefit to have access to transgenic mice expressing a 

marker for F-actin.  

To date, there are two standard approaches for generating genetically modified mice: 

either by homologous recombination or by random integration of the gene of interest. 
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The former is used for the generation of knock-out or knock-in mice where the 

accurate replacement of an existing gene is favoured. Thereby stably transfected 

embryonic stem cells are inserted into wildtype blastocysts. Then, the resulting 

chimeric mice have to be backcrossed to obtain ubiquitous expression or deletion of 

the gene of interest (Hooper et al. 1987). In that case, where the integration locus is 

not so important many researchers take advantage of the second approach. The 

engineered DNA is injected into fertilized oocytes which are implanted into 

pseudopregnant mice. Then, a portion of the offspring shows random integration of 

the DNA into the genome, the so-called transgenic mice (Page et al. 1995; Co et al. 

2000). This approach is less time-consuming compared to the first one but as the 

integration locus is not controlled, it may also lead to the destruction of important 

genes or integration into silenced sites. More recently, a third approach was shown to 

be suitable for the generation of genetically modified mice. This method uses bacterial 

artificial chromosomes (BAC) which also integrate randomly into the genome. BACs 

are capable of holding large DNA sequences (up to 200 kb) and thus, containing 

complete locus control regions instead of the promoter sequence alone (Armstrong et 

al. 2010; Johansson et al. 2010). This is particularly interesting for genes with unknown 

transcriptional control elements because a large part of the genome surrounding the 

gene of interest may be used in that vector probably containing the necessary 

components.  

 

A number of transgenic mice are available to study the actin cytoskeleton, all of which 

express actin itself coupled to GFP. The first GFP-actin transgenic mouse was 

generated with transgene expression from the chicken-β-actin promoter and shows 

fluorescent neurons (Fischer et al. 2000). Another transgenic mouse with expression 

only in keratinocytes was generated by coupling the GFP-actin sequence to the K14 

promoter (Figure 2.9; Vaezi et al. 2002). 
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Figure 2.9 Actin-GFP transgenic mice with keratinocyte-specific promoter. A) The 
construct used for generating GFP-actin mice contains the K14 promoter and the murine ß-
actin gene. B and B’) Newborn transgenic mouse and wildtype littermate imaged with a 
stereomicroscope showing expression of GFP-actin in the skin. C and D) Frozen skin 
sections of a transgenic and a wildtype mouse stained for laminin (red) and DNA (blue) and 
imaged with epifluorescence microscopy. GFP-actin expression can be observed in the skin 
of the transgenic mouse.  

Source: Vaezi et al. 2002 

 

 

In 2007 (Gurniak & Witke) a transgenic mouse was reported with almost ubiquitous 

expression of GFP-actin. These mice were generated by replacing one profilin 1 allele 

with the GFP-actin sequence. Due to this strategy the transgenic mice were 

heterozygous knockouts for profilin 1; however, this did not lead to obvious defects as 

reported previously (Witke et al. 2001). As a consequence, it is impossible to generate 

mice which are homozygous for GFP-actin because profilin 1 null mice are not viable 

anymore (Witke et al. 2001). Furthermore, because profilin 1 is expressed at very low 

levels in skeletal muscle, this tissue was being considered negative for GFP-actin. 

Moreover, this transgenic mouse model has several limitations including a low signal-

to-noise ratio due to the use of GFP-actin (discussed in section 2.5) and in general a 

low fluorescent signal of the marker (personal communications Dr. Michael Sixt, MPI 

Biochemistry and Dr. Frank Bradke, MPI Neurobiology). 
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2.8 Aim of the thesis 
 

An ideal marker for labelling the actin cytoskeleton should have the following 

properties: i) small, ii) cheap and easy to produce, iii) specific actin staining, vi) no 

interference with cellular processes. Established markers for living cells exhibit several 

limitations in use. Fluorescently labelled proteins such as phalloidin are mainly used in 

fixed samples because of difficult handling and exhibiting toxic effects. Genetically 

encoded fusion proteins such as actin itself or actin-binding proteins often show 

reduced functionality and can alter actin dynamics in vivo.  

 

Therefore, in the first part of my Ph.D. thesis, the aim was to characterize and validate 

Lifeact, the recently discovered actin-binding-domain in Abp140p of Saccharomyces 

cerevisae which consists of only 17 aa, as an actin marker for mammalian cells. I 

elucidated the in vitro and in vivo properties of Lifeact providing deep insights into the 

capabilities of Lifeact as novel, versatile marker for F-actin. 

Subject of the second part of my thesis was to provide also a tool for research areas 

where single-cell based assays encounter difficulties such as organogenesis or 

development. Referring to this, I generated transgenic mice ubiquitously expressing 

Lifeact-EGFP or Lifeact-mRFPruby. Furthermore, I characterized the expression of 

the marker on organismic and cellular level qualitatively and quantitatively.   
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3 RESULTS 

 

3.1 Identification of Lifeact in Saccharomyces cerevisiae 
 

During my diploma thesis, I showed that, the first 17 aa of the actin binding protein 

Abp140 (Lifeact; Figure 3.1a) in Saccharomyces cerevisiae are sufficient to bind to F-actin 

(Asakura et al. 1998; Riedl 2007). I subsequently used this small peptide throughout 

my study for labelling actin structures in yeast for live-cell analyses (Figure 3.1b, c). 

Being the shortest actin marker to date, I assumed that this peptide would be a good 

candidate to visualize actin also in other organisms. 

 

b c

a

b c

a

 

 

Figure 3.1 Abp140p and Lifeact bind to F-actin in yeast. Protein-Alignment of Abp140 
homologes (first N-terminal 17aa) in different fungi (a). Wildtype yeast cells were transformed 
with a vector containing either the full-length gene of Abp140 or the first N-terminal 17aa 
(Lifeact), both tagged to GFP. b) TIRFM image of Abp140GFP distribution in an 
unpolarized yeast cell. c) Distribution of Lifeact-GFP (N-terminal 17aa) in a yeast cell. Scale 
bars: 5µm. 

 

No homologous sequence to the N-terminal part (including Lifeact) of Abp140 was 

found in higher eukaryotes (fungi and higher kingdoms). Moreover, only in very 

closely related species of Saccharomyces cerevisiae, namely the family of 

Saccharomycetaceae, were homologous sequences found as depicted in Figure 3.2. In 
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this family, the sequence of the first 17 aa was highly conserved suggesting that it 

represents the actin-binding domain in these proteins (Figure 3.1a). 

Eucaryota

Opisthokonta

Dikarya

Amoebozoa

Fungi Metazoa

SaccharomycetaceaeSaccharomycetaceae

0.1 substitutions/site

 

Figure 3.2 From eukaryotes to yeasts. Partial phylogenetic tree from eukaryotes to fungi 
adapted from Fitzpatrick et al. (2006). This fungal supertree was generated using a 
concatenated alignment of 153 universally distributed fungal genes to identify the 
relationships. Bootstrap scores for all nodes are displayed. All members of the family 
Saccharomycetaceae (green box) showed similar sequences to Abp140 of S. cerevisiae. No 
similar proteins could be found in the rest of the kingdom of fungi (model organisms 
highlighted with orange boxes) and all other eukaryotes. 
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Despite being a member of the Saccharomycotina, the human pathogenic Candida albicans, 

did not show sequence similarity with Abp140. Hence, it was not surprising that, also 

more distantly related fungi such as the model organisms Neurospora crassa, 

Schizosaccharomyces pombe and Ustilago maydis did not show conservation of this protein 

(Figure 3.2). 

Based on these observations, I analyzed Lifeact regarding its ability and properties as 

an actin marker in mammalian cells. First of all, analyses of effects on actin kinetics by 

Lifeact were performed using biochemical approaches described in the following 

section. 

 

3.2 Biochemical properties of the Lifeact peptide 
 

For the in vitro characterization experiments, an in-house peptide synthesis service to 

chemically synthesize a version of Lifeact, either unmodified or N-terminally coupled 

to FITC (Fluorescein-5-isothiocyanat; F-Lifeact) was used.  

 

To determine the affinity of F-Lifeact to filamentous actin the dissociation 

constant (Kd) was measured by co-sedimentation in the absence (2.2±0.3 µM, Figure 

3.3a) and presence of 100nM phalloidin (2.0±0.4 µM). Because the binding affinity 

was not significantly altered, I suggested no competing effects on F-actin with F-

Lifeact and phalloidin. Then, F-Lifeact binding to G-actin was monitored by 

fluorescence enhancement of pyrene-labelled actin and a 30-fold higher Kd of 70±25 

nM (Figure 3.3b) was found. The affinities to G- and F-actin were confirmed using 

anisotropy (280±100 nM G- vs. 2.3±0.9 µM F-actin, Figure 3.3c) and fluorescence 

enhancement (40±10 nM G- vs. 1.3±0.5 µM F-actin, Figure 3.3d) of the FITC moiety 

on F-Lifeact. Addition of the G-actin sequestering factors profilin or Latrunculin A 

did not perturb F-Lifeact binding to G-actin (Kd of 40±10 nM for both, Figure 3.3b) 

indicating non-overlapping binding sites on actin. Next, the influence of F-Lifeact on 

polymerization and depolymerization of pyrene labelled actin was tested (Cooper et al. 

1983). Nucleation and elongation phases of actin polymerization were not affected by 

F-Lifeact concentrations up to 55 µM (Figure 3.3e). Likewise, depolymerization rates 
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were not different from controls using both low (1.1 µM) or high (55 µM) 

concentrations of F-Lifeact (Figure 3.3f).  
 

 
 

Figure 3.3 Actin binding and polymerization. (a) F-Lifeact binding to rabbit muscle F-
actin. The ratio of bound vs. total fluorescence of peptide co-sedimented with various 
concentrations of F-actin is shown. (b) F-Lifeact binding to G-actin. The increase in pyrene-
labelled G-actin fluorescence in the presence of varying amounts of F-Lifeact is shown. 
Fluorescence was normalized to maximum values. (c, d) Measurement of F-Lifeact binding to 
G-actin (filled black squares) and F-actin (open grey circles) by monitoring (c) changes in the 
anisotropy of the FITC moiety. Values were normalized to the maximum anisotropy 
observed. Solid lines: fits to the quadratic expansion of the binding polynomial (see methods) 
and (d) fluorescence enhancement of FITC. The fluorescence was normalized to the 
maximum observed. Solid lines: fits to the hyperbolic binding isotherm. (e) Actin 
polymerization assay. Polymerization of 20% pyrene-labelled actin was followed in the 
presence of indicated concentrations of F-Lifeact. (f) Actin depolymerization assay. 
Depolymerization of 100% pyrene-labelled F-actin was followed after dilution below 200 nM 
with the indicated concentrations of F-Lifeact.  
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To test for competition of F-Lifeact with actin side binding proteins, myosin II and α-

actinin were co-pelleted with F-actin at different F-Lifeact concentrations (0, 1, 10 and 

50 µM) and I found that both interactions remained unaffected (Figure 3.4a, b). To 

obtain an estimation of the structure of Lifeact circular dichroism (CD) spectroscopy 

and nuclear magnetic resonance (NMR) were employed. As a result, Lifeact formed a 

nascent helix in water that could be further stabilized by alcohol addition to a typical 

α-helix ranging from residues 2-10 (Figure 3.4c, d). These structural features were 

reminiscent of the G-actin binding peptide thymosin β4 (Czisch et al. 1993). 

 

 

 

Figure 3.4 Side binding of actin and Lifeact structure. (a, b) SDS PAGE of pellet (P) and 
supernatant (S) fractions of F-actin sedimented with myosin (a) and α-actinin (b) in the 
absence and presence of F-Lifeact. Arrowheads indicate positions of myosin light chains. (c) 
Circular Dichroism (CD) measurements on F-Lifeact upon titration with 0-50% 
trifluorethanol (TFE). Inset: CD on F-Lifeact (in PBS) and Lifeact (in 10% acetic acid, pH 3) 

without TFE. (d) Short and medium range NOE connectivities involving the NH and C
α
H 

protons. Blue bars represent measurements on F-Lifeact at pH 7.1, red bars represent 2D 
NOESY NMR spectra of Lifeact at pH 3.0 in the presence of 15% (v/v) HFP-d

2
. 

 



Results 

 

 - 34 - 

3.3 Expression of Lifeact in mammalian cells 
 

The results of sections 3.1 and 3.2, demonstrating that Lifeact is suitable for actin 

labelling in budding yeast and non-interfering with actin kinetics in vitro, indicated that 

Lifeact could also be an eligible live-cell marker for actin in other organisms. To test 

the utility of Lifeact in mammalian cells, two constructs were generated for transient 

and stable expression in cells. The plasmids pLifeact-EGFP and pLifeact-mRFPruby 

(Fischer et al. 2006) were based on the pEGFP-N1 backbone from Clontech 

(Clontech-Takara Bio Europe, France). Expression in this vector is driven by the 

cytomegalovirus (CMV) promoter sequence. 

As the first step, I transiently transfected the EGFP-containing construct into 

immortalized mouse embryonic fibroblasts (MEF). They were plated on glass-bottom 

dishes and imaged by total internal reflection fluorescence microscopy (TIRFM) which 

allowed high contrast visualization of the cortical actin cytoskeleton. I found specific 

labelling of F-actin structures in this cell type (Figure 3.5a). Stress fibers were 

prominent on the ventral, adhesive side of tightly adherent fibroblasts. A highly 

dynamic, lamellipodial network of filaments was observed at the cell periphery where 

also many motile filopodia appeared (Figure 3.5b).  

 

 
 

Figure 3.5 Lifeact stained F-actin structures in MEFs. a) Schematic image of a fibroblast 
showing F-actin structures present in this cell type, such as stress fibers, cortical actin and 
filopodia. b) Mouse embryonic fibroblasts were transiently transfected with Lifeact-EGFP 
and imaged with TIRFM. Scale bar: 5µm. 
 

Source Image a): Molecular Biology of the Cell 2002 
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In addition, the signal-to-noise ratio was high. However, the promoter used in our 

constructs provided variable expression levels and upon very high expression of 

Lifeact, I could observe aberrantly bundled actin and reduction of actin dynamics. 

I then analyzed Lifeact expression in a variety of cell types covering most of the 

primary body tissues – except for muscle tissue - including primary rat hippocampal 

neurons (nervous), Madin-Darby canine kidney (MDCK) cells (epithelial) and 

dendritic cells (hematopoietic) (Figure 3.6a-c). I again used TIRF microscopy to 

visualize the cortical actin with high contrast and temporal resolution to be able to 

observe even slight changes in actin dynamics or organization. 

 

 

 

Figure 3.6 Lifeact-EGFP expression in different cell types. Lifeact-EGFP was transiently 
expressed in primary rat hippocampal neurons (a), MDCK cells (b) and primary mouse 
dendritic cells (c) and imaged with TIRFM. All scale bars: 5µm. 
 

Analysis of the actin cytoskeleton of the above mentioned cell types revealed no 

differences to previously reported actin structures. Stably transfected MDCK cells 

showed stress fibres (Figure 3.6b) and circumferential actin belts at the cell periphery 

(Abe & Takeichi 2008; Martin et al. 2009).  

 

I used neurons isolated from rat hippocampi because these cells show very unique F-

actin structures and are sensitive to disturbing effects (Sarmiere & Bamburg 2004; 

Bentley & Toroian-Raymond 1986). Dynamic lamellipodial actin in growth cones 

(Figure 3.7a), an isotropic network of actin filaments on the cortex of the cell bodies 

(Figure 3.7b) and highly dynamic filopodia that frequently underwent kinking and 

torsion (Figure 3.7c) were typical structures observed (Pak et al. 2008). 
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Figure 3.7 Primary hippocampal neurons expressing Lifeact-EGFP. Primary neurons 
were prepared from rat hippocampi and transfected with Lifeact-EGFP and imaged with 
TIRFM. a) Actin distribution in growth cone of polarizing neuron. b) Cortical actin network 
of a hippocampal neuron. c) Time series of filopodial dynamics. Scale bars: 5 µm (a,c), 1µm 
(b); Time in seconds (c). 
 

In addition, I transiently transfected bone-marrow derived mouse dendritic cells and 

performed a 2D-under-agarose assay (Heit & Kubes 2003) and imaged cells migrating 

towards a gradient of CCL19 (Figure 3.8). These cells showed a highly dynamic 

lamellipodial actin at the cell periphery but no stable bundles in the cell body as 

described previously for migrating cells (Le Clainche & Carlier 2008; Renkawitz et al. 

2009).  

 

 
 

Figure 3.8 Lifeact stained F-actin in dendritic cells. Primary dendritic cells were 
transfected with Lifeact-EGFP. A 2D-under-agarose assay was performed with CCL19 
present. Time series of a migrating dendritic cell imaged with TIRFM. Scale bar: 5µm, Time in 
seconds. 
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To observe whether Lifeact could stain the dense and highly structured contractile 

ring established during mitosis to enable separation of the daughter cells, I performed 

long-term imaging of stably expressing MDCK cells. I found that, during cytokinesis, 

Lifeact-EGFP highlighted the contractile ring of these cells, as depicted in Figure 3.9, 

suggesting non-overlapping binding sites on actin of Lifeact and the cytokinesis-

involved proteins. 

 

0 2 4 6 8 10 12 14 16 18

 

 

Figure 3.9 Lifeact stained the contractile ring during cytokinesis. MDCK cells 
expressing Lifeact-EGFP were imaged in a climate-controlled epifluorescence microscope for 
more than 12 hours. Time-series of a cell undergoing cytokinesis is depicted. Scale bar: 5µm; 
Time in minutes. 
 

In conclusion, I found that Lifeact specifically stained all known F-actin structures in 

different mammalian cell types with no severe physiological effects and thus, showed 

its applicability as live-cell marker. However, to support this finding, it was necessary 

to compare Lifeact with previously established markers for labelling of the actin 

cytoskeleton in mammalian cells (Section 3.5). 

 

3.4 Comparison of Lifeact with other F-actin markers 
 

To compare Lifeact to established F-actin markers, I transfected MEFs with either 

Lifeact-EGFP, EGFP-actin (Ballestrem et al. 1998) or EGFP-Utrophin (Burkel et al. 

2007) expressed under the CMV promoter. Qualitative examination of transfected 

cells by widefield fluorescence microscopy revealed that, labelling of the actin 

cytoskeleton was comparable with all three probes (Figure 3.10).  
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Figure 3.10 Comparison of Lifeact-EGFP with EGFP-actin and utrophin-EGFP 

staining. MEFs were transfected with either Lifeact-EGFP (middle) or EGFP-actin (left) or 
utrophin-EGFP (right) and the actin cytoskeleton was visualized using epifluorescence 
microscopy. Scale bar: 5 µm 
 

To directly compare the F-actin labelling quality of Lifeact, I used either fixed MEFs, 

transiently expressing Lifeact-EGFP, and co-stained those cells with rhodamine-

phalloidin or living MDCK cells co-transfected with Lifeact-EGFP and mRFPruby-

actin (or Lifeact-mRFPruby and EGFP-actin). Microscopic analysis of cells positive 

for both markers revealed a perfect co-localization of Lifeact with either phalloidin or 

mRFPruby-actin, respectively (Figure 3.11a, b). In general, I found that Lifeact 

exhibited a lower background signal and therefore better signal-to-noise ratio 

compared to mRFPruby-actin or EGFP-actin. 

 

In conclusion, these results demonstrated that Lifeact specifically labels filamentous 

actin in mammalian cells in a comparable quality to the marker used in fixed samples, 

phalloidin. Notably, I could show that Lifeact labels F-actin in higher grade compared 

to established markers such as actin coupled to a fluorescent protein.  

 

However, to further test the suitability of Lifeact as a better alternative to established 

markers, I was prompted to analyze whether cells expressing Lifeact are affected in 

cytoskeletal dynamics. 
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Figure 3.11 Lifeact co-localized with phalloidin and mRFPruby-actin. a) MEFs were 
transfected with Lifeact-EGFP, fixed and co-stained with rhodamine-phalloidin and imaged 
by confocal microscopy. b) MDCK cells were co-transfected with Lifeact-EGFP and 
mRFPruby-actin and imaged by TIRFM. Scale bars: 5µm. 
 

 

3.5 Cytoskeletal functions are not compromised by expression 

of Lifeact in mammalian cells 
 

The findings in the previous chapters demonstrated that Lifeact could indeed be used 

to visualize the actin cytoskeleton in mammalian cells. I now wanted to test, whether 

Lifeact expression leads to measurable changes in actin dynamics in transfected cells. 

To this end, I studied three parameters that are dependent on a functional actin 

cytoskeleton: cell polarization, retrograde actin flow in lamellipodia and directed cell 

migration.  

Neuronal polarization is essential for development and functionality of these cells. To 

determine and establish one axon out of all dendrites is strongly dependent on a 

dynamic actin cytoskeleton (Witte & Bradke 2008). To examine possible neuronal 

polarization defects, primary neurons were prepared from rat hippocampi, transfected 
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with either Lifeact-EGFP or EGFP-actin and cultured for three days before fixation 

and staining for Tau-1. This protein is only present in the mature axon and therefore 

was used as characteristical marker. These two samples as well as mock transfected 

control cells were subsequently analyzed for their polarization stage. Cells were 

categorized as either having no axon, one axon or more than one axon. I found that 

neuronal polarization was not significantly affected by the expression of Lifeact-EGFP 

(Fig. 3.12, 60.1±0.2 % cells formed one axon compared to 68.5±8.7 % of mock 

transfected cells) but a comparable expression of EGFP-actin led to a significant 

alteration in the polarization stages (52.3±4.4 %, ANOVA: F2,8 = 6.205, P < 0.0346; 

post-hoc Dunnett's test: P > 0.05 for Lifeact-EGFP, P < 0.05 for EGFP-actin). 

Hence, these results indicated that Lifeact expression does not affect neuronal 

polarization. In contrast, EGFP-actin expression led to impairments in performing 

this process. 

 

Lifeact-EGFP EGFP-actincontrol
 

 

Figure 3.12 Quantification of neuronal polarization. Primary rat hippocampal neurons 
were transfected with either Lifeact-EGFP or EGFP-actin and cultured for three days. Then, 
they were analyzed for the presence of axons in comparison to mock transfected cells. Data 
shown are averages ± SD from at least three experiments. 
 

I next measured the speed of retrograde actin flow in lamellipodia of MEFs. In 

lamellipodia actin forms a highly dynamic network of branched filaments (Chhabra & 

Higgs 2007). During treadmilling, these filaments move from the cell periphery in 

direction to the cell body and this movement is called retrograde flow. The speed of 
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this process is dependent on the actin kinetics in vivo and hence, slight changes can 

directly be observed by its measurement (Lin & Forscher 1995, Medeiros et al. 2006). 

To this end, I transfected MEFs with either Lifeact-EGFP or EGFP-actin and imaged 

the cells with TIRFM. As a control, I used untransfected cells which were imaged by 

differential interference contrast (DIC). Using this method, I monitored the retrograde 

membrane flow which corresponds to the retrograde actin flow in cells and thus, 

provided a tool for measuring the speed in non-manipulated cells. The analysis of the 

speed of retrograde flow in lamellipodia revealed that Lifeact-EGFP transfected 

fibroblasts were indistinguishable from non-transfected cells at 4 µm/min whereas the 

retrograde flow was reduced to about half in EGFP-actin expressing cells (Fig. 3.13; 

ANOVA: F2,134 = 53.39, P < 0.0001; post-hoc Dunnett's test: P > 0.05 for Lifeact-

EGFP, P < 0.05 for EGFP-actin). These results supported the previous finding that 

EGFP-actin disturbs actin kinetics and clearly demonstrated that Lifeact does not 

interfere with retrograde actin flow. 

 

****
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Figure 3.12 Quantification of the speed of lamellipodial retrograde actin flow. MEFs 
were transfected with either Lifeact-EGFP or EGFP-actin and imaged by TIRFM. Untreated 
control cells were imaged by DIC. The velocity of the retrograde flow was measured from 
kymograph traces. P > 0.05 (*) for Lifeact-GFP, P < 0.05 (***) for EGFP-actin. Data shown 
are averages +/- SD from at least three experiments. 
 

Finally, I examined the chemotactic speed of dendritic cells. These cells are mediators 

of the adaptive immune response while presenting antigens to lymphocytes. They 

recognize invaders in the periphery of an organism, e.g. the skin. After engulfing the 
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invaded particles, they migrate towards the draining lymph node, along a chemokine 

gradient (CCL19 or CCL21), where they activate lymphocytes (Montoya et al. 2002).  

First, bone marrow precursors were matured to dendritic cells and transfected with 

either Lifeact-EGFP or EGFP-actin. After sorting positive cells by FACS, they were 

embedded in a three-dimensional collagen-matrix (Lammermann et al. 2008). Video-

microscopy was performed to follow migration of these cells towards a chemokine 

(CCL19; Figure 3.13a). The speed of single cells was compared to non-transfected 

control cells. Lifeact-EGFP expression had no significant effect on the speed of 

chemotactic dendritic cell migration (paired t-test (two-tailed), P = 0.40, n = 3 

experiments, 837 tracked cells), while EGFP-actin expressing cells migrated slower 

than control cells (P = 0.04, n = 4 experiments, 689 tracked cells) (Figure 3.13b).  

 

CCL19 solutiona b

Collagen 

matrix

Dendritic 

cell

****

Lifeact-EGFP EGFP-actin
 

 

Figure 3.13 Comparison of chemotactic speed of dendritic cells. a) Schematic drawing of 
experimental setup: primary dendritic cells were embedded in a three-dimensional collagen gel 
and a solution of the chemokine CCL19 was applied to the top of the matrix. Migration was 
monitored by video-microscopy and migrating cells were tracked using Metamorph software 
(Molecular devices). b) The chemotactic speed of transiently transfected dendritic cells relative 
to untransfected cells is shown. P = 0.40 (*) for Lifeact-EGFP, P = 0.04 (***) for EGFP-
actin. Data are averages ± SD from at least three experiments. 
 

Taken together, expression of Lifeact in mammalian cells did not lead to significant 

changes in actin dynamics during neuronal polarization, lamellipodial retrograde actin 

flow and speed of chemotactic dendritic cells. However, EGFP-actin expression 

significantly altered actin dynamics in these processes. 
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3.6 Labelling mammalian cells and tissues using FITC-Lifeact 
 

The findings described above clearly demonstrated the utility of Lifeact, expressed as 

fusion protein, for staining of actin structures in living mammalian cells. Since the 

17aa long Lifeact peptide (F-Lifeact) was easy to produce synthetically (see section 

3.2), I addressed the question whether this peptide would also be usable as cellular 

actin marker.  

To analyze F-Lifeact in fixed cells and tissues, I used fixed MDCK cells, stained these 

with the F-Lifeact and directly compared it with the commonly used F-actin probe 

phalloidin coupled to the red dye Cy3. Using TIRF microscopy I observed nearly 

complete overlap of the two markers on actin structures of the dorsal (Fig. 3.14 a) and 

ventral surface.  
 

 

 

Figure 3.14 FITC-Lifeact stained actin in fixed samples. a) MDCK cells were fixed in 
and stained with F-Lifeact (green) and Cy3-phalloidin (red; overlay in yellow). TIRFM images 
of the dorsal site are depicted. b) Cryosections of mouse femur skeletal muscle were fixed and 
stained with F-Lifeact (green) and Cy3-phalloidin (red; overlay in yellow) and imaged with 
confocal microscopy. Scale bars: 5 µm. 
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Furthermore, I prepared cryosections of heart and femur skeletal muscle from mice 

and stained the fixed samples with F-Lifeact and Cy3-phalloidin. Examination of the 

samples with confocal microscopy again revealed extensive overlap of the actin probes 

in the expected banded pattern (Fig. 3.14 b, Molecular Biology of the Cell, 2002).  

These findings demonstrated that the F-Lifeact peptide can be used as a non-toxic 

alternative to phalloidin. This is particularly useful as the latter is a bicyclic 

heptapeptide, which is difficult to synthesize on large scale (Wieland et al. 1983). 

 

As the binding strength of F-Lifeact to filamentous actin was very low in vitro (see 

section 3.2 Figure 3.3a), I tested the staining persistence in wash-out experiments. I 

could not detect any decrease in staining even after repeated washing (not shown). 

Surprisingly, F-Lifeact rapidly exchanged on F-actin as observed by fluorescence 

recovery after photobleaching (FRAP; Fig. 3.15b) suggesting that the robust labelling 

with F-Lifeact was due to the cell membrane which was too dense to release the 

peptide. Also consistent with these results, Lifeact-EGFP, transiently transfected into 

MEFs, recovered rapidly as evaluated by FRAP analysis (Figure 3.15 a). 

 

 

 
Figure 3.15 FRAP of Lifeact in living and fixed fibroblasts. a) FRAP in MEF transfected 
with Lifeact-EGFP. Numbers in insets (magnification of the boxed area) indicate time relative 
to bleaching in seconds. b) FRAP of a 4%-paraformaldehyde-fixed MEF stained with F-
Lifeact. Numbers in insets (magnification of the boxed areas) indicate time relative to 
bleaching in seconds. 
 

Based on these encouraging findings, I suggested that F-Lifeact could also be used as 

an F-actin marker in living cells. To test this hypothesis, I used the “scrape-loading”-

technique which allows diffusion of a peptide into the cytoplasm through transient 
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membrane pores caused by mechanical removal of adherent cells from a surface 

(McNeil et al. 1984). Fibroblasts or MDCK cells were scrape-loaded with F-Lifeact 

present and replated on fibronectin-coated dishes to allow fast adhesion and 

subsequent imaging of the cells. To avoid artefacts due to membrane damage after 

scrape loading or excessive loading of cells with peptide I focused on weakly labelled 

cells. Microscopic analysis with TIRF revealed typical staining of F-actin in stress 

fibres and lamellipodia (Fig. 3.16a, b). I also performed long-term imaging (up to 12 

hours) to analyze the persistence of the staining and found that the fluorescence signal 

was maintained over a period of 4-6 hours. This short time could be due to the 

degradation of the peptide, to fluorochrome fading or both. 

 

 

 

Figure 3.16 FITC-Lifeact stained F-actin in living fibroblasts. MEFs were scrape-loaded 
with F-Lifeact present and replated on fibronectin-coated glass-bottom dishes. Using TIRFM 
spreading of the cells (a) and subsequent building of stress fibers (b) could be observed. Scale 
bars: 5µm, Time in seconds. 
 

Previously reported data showed that primary neutrophils could also be loaded with 

small peptides (McNeil et al. 1984). I therefore wanted to test whether F-Lifeact is 

suitable for labelling F-actin in these cells via “scrape-loading”.  

Neutrophils represent key players of the innate immune response and serve as model 

system for the study of cell polarization (Weiner 2002; Nathan 2006). The rapid 

polymerization of actin filaments is fundamental to neutrophil effector functions, e.g. 

extravasation, chemotaxis or phagocytosis. Since neutrophils are terminally 

differentiated and therefore non-transfectable, the current knowledge about neutrophil 

actin reorganization in response to chemotactic stimuli is mainly based on studies 

using HL-60 cells, a myeloid tumour cell line which can be differentiated into 
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neutrophil-like cells (Weiner et al. 1999). Furthermore, integrin dependent cytoskeletal 

reorganization in response to immune complexes (IC) has only been studied on fixed 

cells using fluorescent phalloidin reagents (Tang et al. 1997). With F-Lifeact it could be 

possible to examine this process in living cells. 

 

To this end, freshly isolated human primary neutrophils were plated on a cell culture 

dish in medium containing 0.5% bovine serum albumin (BSA) allowing only slight 

adherence to the surface. This was a critical step because once these cells get activated 

they irreversibly and strongly adhere to a surface and scraping them off leads to 

complete destruction. Hence, with this approach it was possible to scrape the cells off 

the surface without severely damaging them but yet sufficiently so that they take up 

the F-Lifeact peptide.  

 

Notably, for the first time I could follow the rapid dynamics of actin in these cells 

during spreading on ICs and during spontaneous migration. To validate the new probe 

I analyzed F-Lifeact-loaded neutrophils during spreading on ICs. Using TIRFM I 

observed two F-actin structures in the spreading cells. Peripheral areas spread out 

rapidly with a speed of 14.1±2.8 µm/min (n=10) while there were no signs of 

retrograde actin transport (Figure 3.17 a, c). In central areas stationary patches formed 

that rapidly extended into the periphery after cells stopped spreading (Figure 3.17b, d).  

 

In conclusion, these results demonstrated that F-Lifeact is suitable for labelling of 

filamentous actin in fixed samples alternatively to phalloidin with the advantages of 

being non-toxic and easy to produce. Moreover, the actin cytoskeleton of living cells 

which are hard to transfect or even non-transfectable like primary neutrophils could 

also be labelled using F-Lifeact. However, to prevent artefacts by damaging the cells 

using scrape-loading, it would be advantageous to find other methods for transferring 

F-Lifeact into cells in future studies. 
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Figure 3.17 FITC-Lifeact staining in living primary neutrophils. Primary neutrophils 
isolated from human blood were scrape-loaded with F-Lifeact, replated and cell spreading was 
visualized with TIRF microscopy. (a, b) Time series of neutrophil spreading on immune 
complexes. c) and d) kymographs of the indicated regions in (a) and (b), respectively. Scale 
bars, 5 µm; Time in seconds. 
 

In summary, in the first part of my work I characterized the newly discovered actin-

binding domain of the yeast Abp140, named Lifeact, as a marker for F-actin in 

mammalian cells. Lifeact showed low binding affinity to F-actin in vitro and did not 

interfere with actin kinetics as shown with biochemical approaches. Moreover, its 

binding did not compete with major actin-binding proteins. Furthermore, I 

demonstrated that primary cells and cell lines expressing Lifeact exhibited specific and 

bright labelling of their actin cytoskeleton. This could also be achieved by using 

chemically synthesized F-Lifeact in fixed samples as well as in cell lines and non-

transfectable cells. Most importantly, I showed that, in contrast to EGFP-actin, Lifeact 

expression did not affect actin dynamics and sensitive morphogenetic functions. I 

therefore suggest that Lifeact can be considered as an F-actin marker superior to 

established markers. 
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3.7 Generation of Lifeact-transgenic mice 
 

Although I could show in the previous sections that Lifeact is suitable as actin marker, 

there are limitations to its usage in single-cell analyses. When focusing on multi-

cellular processes such as organogenesis or embryogenesis, to date it is not possible to 

address these with cell-culture systems. Moreover, several research areas such as 

disease models or medical applications depend on the usage of animals, mainly mice. 

Therefore, I decided to generate transgenic mice either with Lifeact-EGFP or Lifeact-

mRFPruby to provide a unique tool ubiquitously expressing the marker and enabling 

research on tissue and organismic level. Furthermore, Lifeact mice would also be a 

source for pre-stained cells which can be isolated thereby avoiding artefacts produced 

by methods such as injection, transfection or scrape-loading. 

To obtain a broad expression pattern, I used a construct based on the pCAGGS 

vector and inserted either the Lifeact-EGFP or Lifeact-mRFPruby sequence (Figure 

3.18; Niwa et al. 1991). This vector contained the well characterized CMV immediate 

early enhancer, the chicken-β-actin promoter and a chimeric intron and was expected 

to be transcribed in most tissues on high level. The linearized construct was 

microinjected into fertilized oocytes (from C57BL6/N x FVB/N (F2) mice) which 

were immediately transferred into pseudopregnant mice. The offspring were then 

genotyped by PCR to identify transgene insertion into the genome. 

 

 

 

Figure 3.18 Construct generated for pronuclear injection. After linearization of the vector 
the indicated fragment containing Lifeact-EGFP or –mRFPruby was purified and used for 
injection. The sequence contains the chicken beta-actin promoter coupled to a CMV enhancer 
and intron (promoter, dark grey) upstream of the Lifeact-EGFP or -mRFPruby sequence 
(purple-green/red) as well as a Poly-A sequence (light grey). 
 

Nearly 40% of the Lifeact-EGFP and 30% of the Lifeact-mRFPruby mice had 

integrated the transgene. To investigate whether germline transmission of the 

transgenes has occurred, 25 (Lifeact-EGFP) and 28 (Lifeact-mRFPruby) putative 

founders were mated with wildtype (C57/Bl6) mice. The offspring was then either 
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directly tested for a fluorescent signal using a UV-handlamp (Lifeact-EGFP) or by 

microscopic analysis of a tail piece (Lifeact-mRFPruby). I obtained 8 positive founders 

(F0 Generation) for Lifeact-EGFP and 10 positive founders for Lifeact-mRFPruby. 

All of these mice were viable, phenotypically normal and fertile indicating that Lifeact 

insertion into the genome and expression does not severely intefere with normal 

development. 

I then started an in depth characterization of progeny of all positive founders to 

determine the pattern of actin staining in these mice.  

 

3.8 Characterization of the transgenic founders 
 

First, to characterize the founders of both markers in detail, I addressed the question 

whether different organs showed a fluorescent signal. Therefore, I prepared six organs 

of one positive pup of each founder, including brain, heart, spleen, kidney, liver and 

skeletal muscle from femur, and examined their fluorescence level under a stereo 

microscope. While most mice showed a fluorescent signal in several organs, only one 

founder of each strain showed transgene expression in all tested organs (#8-G and 

#2-R; see tables 3.1 and 3.2). Importantly, all organs were of normal size and shape in 

comparison to organs from wildtype mice. Examples of the best founders are depicted 

in Figure 3.19. 
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Tissue Lifeact-EGFP founder 

 1-G 2-G 3-G 4-G 5-G 6-G 7-G 8-G 

Brain 

Heart 

Spleen 

Kidney 

Liver 

Muscle 

x 

x 

x 

- 

- 

x 

- 

- 

- 

- 

- 

- 

- 

x 

x 

x 

- 

x 

x 

x 

x 

x 

- 

x 

x 

x 

x 

x 

- 

x 

x 

x 

x 

x 

- 

x 

x 

- 

x 

- 

- 

- 

x 

x 

x 

x 

x 

x 

 

Table 3.1 Lifeact-EGFP founders showed variable expression patterns. Indicated organs 
were prepared and imaged under a stereo microscope. x = positive for fluorescent signal, - = 
negative for fluorescent signal. Grey = best founder. 

 
 
 
 

Tissue Lifeact-mRFP founder 

 1-R 2-R 3-R 4-R 5-R 6-R 7-R 8-R 9-R 10-R 

Brain 

Heart 

Spleen 

Kidney 

Liver 

Muscle 

x 

x 

- 

- 

- 

x 

x 

x 

x 

x 

x 

x 

- 

x 

- 

- 

- 

x 

- 

- 

x 

x 

- 

x 

x 

- 

x 

x 

- 

x 

- 

x 

- 

x 

x 

x 

x 

- 

x 

- 

x 

- 

- 

x 

x 

x 

- 

- 

- 

x 

- 

x 

x 

x 

x 

- 

x 

x 

x 

- 

 
Table 3.2 Lifeact-mRFPruby founders showed variable expression patterns. Indicated 
organs were prepared and imaged under a stereo microscopy. x = positive for fluorescent 
signal, - = negative for fluorescent signal. Grey = best founder. 
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Figure 3.19 Lifeact-EGFP and -mRFPruby expression in organs. Heart, brain, skeletal 
muscle from femur, kidney, liver and spleen were isolated from transgenic mice and 
immediately imaged with a stereo microscope. The upper row of each panel shows the results 
from the Lifeact-EGFP founder #8-G, the bottom row shows the results from the Lifeact-
mRFPruby founder #2-R. 
 

Next, I aimed to elicit whether all cells of one cell type express the marker. To this 

end, I performed FACS analysis of blood cells of all Lifeact-EGFP founders. The 

analysis revealed that two transgenic founders (#1-G and 8-G) showed a fluorescent 

signal in approximately 70 % of their blood cells (Figure 3.20) whereas the residual 

founders did not show a fluorescent signal in these cells. Moreover, I could observe by 

flow cytometry that blood cells expressing Lifeact-EGFP showed an up to three times 

log shift in fluorescence signal compared to control cells (Figure 3.20). 
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Figure 3.20 FACS analysis of whole blood cells of Lifeact-EGFP transgenic mice. 

Blood drops were drained into heparin-containing tubes and an erythrocyte lysis step was 
performed. FACS analysis revealed two founders with strong fluorescent signal in ca. 70% of 
blood cells. Plot shows positive transgenic mouse (#8-G) and control littermate. 
 

Next, I wanted to evaluate the tissue expression patterns of Lifeact in more detail. 

Therefore, I prepared cryosections of 14 organs of one pup of each founder and 

imaged them with epifluorescence microscopy. As internal control for actin 

distribution, all sections were counterstained with fluorescently-labelled phalloidin. 

Microscopic analysis of the Lifeact-EGFP founders revealed a perfect colocalization 

of the two markers and still only one founder (#8-G) showed expression in all 

examined tissues (Figures 3.22 and 3.23). All other Lifeact-EGFP founders showed 

variable expression patterns but at least one organ was completely negative for the 

transgene (see table 3.3). The Lifeact-EGFP founder showing expression in all 

examined tissues (#8-G) was used for all further analyses. Table 3.3 depicts all 

examined tissues of all Lifeact-EGFP founders.  
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Tissue Lifeact-EGFP founder 

 1-G 2-G 3-G 4-G 5-G 6-G 7-G 8-G 

Brain 

Heart 

Spleen 

Kidney 

Liver 

Skeletal muscle 

Lymph node 

Genitals 

Small intestine 

Large intestine 

Stomach 

Lung 

Thyroid gland 

Thymus 

x 

x 

(x) 

- 

- 

x 

(x) 

x 

- 

(x) 

x 

- 

(x) 

(x) 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

(x) 

(x) 

(x) 

- 

(x) 

(x) 

(x) 

(x) 

(x) 

(x) 

(x) 

(x) 

(x) 

x 

x 

x 

(x) 

- 

x 

x 

x 

x 

x 

x 

(x) 

(x) 

(x) 

x 

(x) 

(x) 

x 

- 

x 

(x) 

x 

- 

- 

- 

(x) 

(x) 

- 

(x) 

x 

x 

x 

- 

x 

(x) 

(x) 

(x) 

(x) 

- 

(x) 

(x) 

- 

x 

- 

x 

- 

- 

- 

x 

- 

- 

- 

- 

x 

- 

- 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

 

Table 3.3 Examined organs of the Lifeact-EGFP founders. Cryosections of indicated 
organs were made and counterstained with phalloidin. x = positive for actin staining; (x) = 
partially positive staining; - = negative. Grey = best founder. 
 

I also performed the corresponding characterization of tissue sections with all Lifeact-

mRFPruby founders (#1-R – 10-R). In contrast to the Lifeact-EGFP mice, I observed 

bright patches that did not colocalize with phalloidin in seven (#4-R – 10-R) out of 

the ten founders (Figure 3.21). This was probably due to the inherently slow folding 

and high aggregation tendency of all currently available mRFP variants and is typically 

seen when overexpressing RFP-fusion proteins (Mizuno et al. 2001; Baird et al. 2000 

and our own unpublished observation).  

 



Results 

 

 - 54 - 

 

 

Figure 3.21 Lifeact-mRFPruby aggregates in transgenic mice. Fixed cryosection of 
thymus of Lifeact-mRFPruby mouse #5-R counterstained with Alexa488-phalloidin. Arrows 
indicate Lifeact-mRFPruby aggregates. Scale bar: 50µm. 
 

Importantly, three founders (#1-R – 3-R) showed no apparent aggregation and the 

fluorescent signal overlapped with phalloidin. One out of these three mice was 

positive in every tested tissue although some tissues, e.g. the liver, showed only partial 

staining (#2-R; Figures 3.24 and 3.25). The most widely expressing Lifeact-mRFPruby 

founder (#2-R) was used for all further analyses. Table 3.4 depicts all examined tissues 

of all Lifeact-mRFPruby founders. 
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Tissue Lifeact-mRFPruby founder 

 1-R 2-R 3-R 4-R   -   10-R 

Brain 

Heart 

Spleen 

Kidney 

Liver 

Skeletal muscle 

Lymph node 

Genitals 

Small intestine 

Large intestine 

Stomach 

Lung 

Thyroid gland 

Thymus 

(x) 

x 

- 

- 

- 

x 

- 

(x) 

(x) 

(x) 

(x) 

(x) 

(x) 

(x) 

x 

x 

x 

x 

(x) 

x 

(x) 

(x) 

x 

(x) 

x 

x 

(x) 

(x) 

- 

(x) 

- 

- 

- 

x 

(x) 

x 

(x) 

(x) 

(x) 

(x) 

(x) 

- 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.4 Examined organs of the Lifeact-mRFPruby founders. Cryosections of 
indicated organs were made and counterstained with phalloidin. x = positive for actin 
staining; (x) = partially positive staining; - = negative. Grey = best founder. Founders #4-R to 
10-R showed aggregates. 
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Figure 3.22 Cryosections showing colocalization with phalloidin. Fixed Cryosections of 
indicated tissues of Lifeact-EGFP mice were counterstained with Alexa 560-phalloidin and 
imaged with epifluorescence microscopy. Bright areas in brain section correspond to blood 
vessels which showed very high expression of Lifeact compared to other brain tissues. Scale 
bar: 50 µm. 
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Figure 3.23 Cryosections showing colocalization with phalloidin. Fixed cryosections of 
indicated tissues of Lifeact-EGFP mice were counterstained with Alexa 560-phalloidin and 
imaged with epifluorescence microscopy. Bright areas in spleen and thymus section 
correspond to blood vessels which showed very high expression of Lifeact compared to 
neighboring tissues. Scale bar: 50 µm. 
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Figure 3.24 Cryosections showing colocalization with phalloidin. Fixed cryosections of 
indicated tissues of Lifeact-mRFPruby mice were counterstained with Alexa 488-phalloidin 
and imaged with epifluorescence microscopy. Bright areas in brain section correspond to 
blood vessels which showed very high expression of Lifeact compared to other brain tissues. 
Scale bar: 50 µm. 
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Figure 3.25 Cryosections showing colocalization with phalloidin. Cryosections of 
indicated tissues of Lifeact-mRFPruby mice were fixed and counterstained with Alexa 488-
phalloidin and imaged with epifluorescence microscopy. Bright areas in spleen and thymus 
section correspond to blood vessels which showed very high expression of Lifeact compared 
to neighboring tissues. Scale bar: 50 µm. 
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As the available FACS device did not have a 561 nm Laser, which is necessary for 

excitation of mRFPruby, and appropriate filters for signal detection, I could not 

analyze blood cells of Lifeact-mRFPruby mice with this approach. I therefore directly 

examined isolated blood cells of the three founders #1-R, 2-R and 3-R by 

epifluorescence microscopy. This analysis revealed that only one founder (#2-R) had 

transgene-positive blood cells. 

 

In summary, the generated transgenic mice showed variable expression patterns of 

Lifeact. Positive tissues of all Lifeact-EGFP mice exhibited a bright fluorescent signal 

as well as perfect co-localization with phalloidin. Three Lifeact-mRFPruby founders 

exhibited similar expression patterns while the other founders did not show co-

localization with phalloidin.  One founder of each mouse strain expressed Lifeact in all 

examined tissues (#8-G and #2-R). These lines were used for all further analyses. 

 
 

3.9 Lifeact expression during mouse development 
 

The previous data showed that Lifeact was nearly ubiquitously expressed in adult mice 

of the founders chosen for further study. Next, I wanted to find out if these mice are 

also suitable for developmental research questions and investigated the pattern of 

transgene expression during embryonic development. First, I tested at what time point 

in embryogenesis Lifeact was expressed. To this end, superovulated, transgenic 

females were mated with transgenic males and isolated fertilized oocytes were cultured 

until embryonic day 4.5 (E4.5). Analysis at different stages revealed that very weak 

actin staining was visible in the fertilized oocytes (E0.5; Figure 3.26a). This result was 

in line with previously reported data where the authors did not observe transgene 

expression in oocytes using the same promoter (Niwa et al. 1991). However, the 

fluorescent signal increased after the first division (E1.5; Figure 3.26b). After 48 hours 

and at E4.5 (Figure 3.26c) a very bright signal could be detected by epifluorescence 

microscopy in most cells. In all analyzed embryos (n=15) I observed a mosaic 

expression pattern of Lifeact with weak and strong fluorescent signals (Figure 3.26c). 
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Figure 3.26 Lifeact-EGFP expression in early embryonic stages. Fertilized oocytes were 
isolated from transgenic females mated to transgenic males and cultured till E4.5. a) At E0.5 
and E1.5 cells were imaged by spinning disk microscopy. b) At E4.5 embryos were imaged by 
epifluorescence microscopy. Scale bars: 20µm. 
 

In order to analyze later stages in development, embryos were prepared from pregnant 

mice at E10.5 and E15.5. Expression of Lifeact was ubiquitous and strong although I 

did not verify the expression pattern on cellular level (Figure 3.27).  
 

 
 

Figure 3.27 Lifeact expression in late embryonic stages. Embryos were prepared from 
pregnant wildtype females, mated to transgenic males, at E10.5 and E15.5 and imaged with a 
stereo microscope. Embryos of best Lifeact-EGFP (#8-G; upper panel) and Lifeact-
mRFPruby (#2-R; bottom panel) founders are shown. 
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In summary, Lifeact expression from the chicken-β-actin promoter proved to be 

sufficient to observe and analyze actin structures in early mouse development. Studies 

of actin in oocytes or during oocytes fertilization appear to be limited due to the weak 

signal. Hence, the use of other promoters which lead to higher transgene expression in 

this stage would be required to overcome this problem.  

 

3.10 Lifeact expression and F-actin staining in single cells 
 

Thus far, the results demonstrated that the generated transgenic mice exhibit nearly 

ubiquitous Lifeact expression and specific actin staining. Next, I addressed the 

question whether the actin staining of individual primary cells is sufficiently strong for 

investigation of actin dynamics by live-cell microscopy. Therefore, I isolated different 

cell types including skin fibroblasts, hippocampal neurons and T-lymphocytes and 

imaged them with TIRFM at high time resolution. Strong and specific F-actin staining 

(Figure 3.28) could be observed in all tested cell types as previously described for 

cultured cells (Riedl et al. 2008). Skin fibroblasts showed brightly stained stress fibers 

(Figure 3.28a; Pellegrin & Mellor 2007) and prominent retrograde flow in lamellipodia. 

Also hippocampal neurons showed typical staining of the cortical actin network and 

highly dynamic actin in growth cones (Figure 3.28b and 3.29b; Pak et al. 2008).  

 

 

 
Figure 3.28 Lifeact-EGFP expression in isolated primary cells. Cells were isolated from 
transgenic mice and imaged by TIRFM. Skin fibroblast (a), hippocampal neuron (b) and 
migrating T-lymphocyte (c). Scale bars: 5µm. 
 



Results 

 

 - 63 - 

Activated T-lymphocytes showed a highly dynamic actin network during migration 

with stable, brightly stained patches on the cell body which might represent endocytic 

structures (Figure 3.28c and 3.29a; Stanley et al. 2007). 

 

 

 

Figure 3.29 Actin dynamics in activated, transgenic T-lymphocytes. a) T-lymphocytes 
were isolated from spleen and matured in vitro using ConA and IL-2. During their activated 
state, they were subjected to a 2D-under-agarose assay (Heit & Kubes 2003) and migrating 
cells were imaged by TIRFM. b) Isolated hippocampal neurons were imaged by TIRFM. Time 
series of a growth cone. Time: minutes. Scale bars: 5µm. 
 

Finally, I analyzed F-actin staining in isolated, non-transfectable platelets. FACS 

analysis revealed that nearly 100% of platelets showed a strong fluorescent signal 

(Figure 3.30a). To visualize the actin cytoskeleton, freshly isolated platelets were plated 

on fibrinogen-coated dishes and activated with mouse thrombin. Investigation by 

TIRFM revealed that platelets exhibited bright circumferential actin belts and regular 

arrays of stress fibers (Figure 3.30b; Vidal et al. 2002). 
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Figure 3.30 F-actin staining in isolated platelets. a) Blood drained from transgenic mouse 
was stained with GPIα-antibody to identify platelets and analyzed in FACS. Depicted is a 
positive transgenic mouse and control littermate. b) Intracardially isolated platelets were 
imaged by TIRFM. Scale bar: 5µm. 

 
 
Furthermore, I addressed the question whether all populations or only specific 

lineages of blood cells were positive for Lifeact expression. To this end, I examined 

different blood cell types of Lifeact-EGFP mice by FACS analysis using specific 

lineage markers to distinguish B-lymphocytes, CD3/CD4+ and CD3/CD8+T-

lymphocytes and myeloid cells. I could observe a strong fluorescent signal in 75 - 95% 

of each cell type (Figure 3.31).  

 

As transgene expression could not be observed in anucleated erythrocytes before, I 

performed FACS analysis on reticulocytes which are erythrocyte precursors. During 

maturation, erythrocytes pass through an enucleation process leading to loss of many 

proteins – caused by degradation – afterwards. Hence, erythrocyte precursors might 

have expressed Lifeact. However, no fluorescent signal could be detected in TER119-

positive cells – representing reticulocytes - indicating that the transgene was not 

expressed in this lineage (Figure 3.31). Moreover, Okabe et al. reported that 

erythrocytes from their “green mice” - also generated with chicken-β-actin promoter – 

did not show a fluorescent signal (1997). 
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Figure 3.31 FACS analysis of EGFP-fluorescence in different blood lineages. Isolated 
splenocytes were stained for TCRβ-CD8, TCRβ-CD4, B220, CD11b and TER119 and FACS 
analysis was performed. As a control C57/Bl6 mice were used (control splenocytes: grey-
shaded; Lifeact-EGFP splenocytes: black unshaded). 
 

 

In conclusion, I could observe strong expression in all examined hematopoietic cells, 

except for erythrocytes and their precursors. These findings demonstrated that the 

generated transgenic mice can be a valuable source for pre-stained primary cells. This 

is particularly interesting for research on cells which cannot be transfected such as 

platelets. 

 

3.11 Functionality of cells  

 

The data shown so far demonstrated that the generated transgenic mice are suitable 

for examining F-actin dynamics in most cell types. To verify whether Lifeact 

expression affected physiological behaviors of cells, I studied two sensitive read-outs 

for cytoskeletal dynamics: chemotactic migration of dendritic cells and polarization of 
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hippocampal neurons. First, I measured the speed of chemotactic dendritic cells in a 

3D-collagen-assay which resulted in no significant difference between transgenic and 

wildtype cells (paired t-test (two-tailed; Lifeact-EGFP, P = 0.29, n = 3 experiments, 

517 tracked cells; Lifeact-mRFPruby, P = 0.83, n = 3 experiments, 796 tracked cells) 

(Figure 3.32). 

 

 

Figure 3.32 Migration speed quantification of transgenic dendritic cells. Transgenic and 
wildtype dendritic cells were subjected to a 3D-collagen-assay. Migration speed of indicated 
mouse lines is shown relative to control cells. Error bar: +/-SD. Data from at least three 
independent experiments. 
 

Second, polarization of primary hippocampal neurons was characterized. After 

isolation, cells were cultured for three days and then evaluated for polarization stage. 

Fixed cells were stained and Tau-1-positive cells were counted. Analysis revealed that 

Lifeact expression did not alter this process significantly in comparison to wildtype 

cells (Lifeact-EGFP P > 0.05; Lifeact-mRFPruby P > 0.05; Figure 3.33a).  

 

In addition, spine formation was examined in transgenic and wildtype cells after 21 

days in culture. Dendritic spines are small membranous protrusions that typically 

receive input from a single synapse. Formation of dendritic spines is dependent on a 

dynamic actin cytoskeleton. In transgenic cells dendritic spines formed which were 

indistinguishable from those in wildtype cells in number and morphology (Figure 

3.33b). 
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Figure 3.33 Characterization of transgenic hippocampal neurons. a) Cells were isolated 
from mouse hippocampi of transgenic and control mice and maintained in culture for three 
days before quantification of neuronal polarization. (red: stage 1 (no neurites), light grey: stage 
2 (neurites), dark grey: stage 3 (axon and neurites)). (b) Dendritic spines in Lifeact-EGFP 
expressing hippocampal neurons after 21 days in culture, imaged by epifluorescnece 
microscopy. Scale bar: 5 µm. 

 

In conclusion, expression of Lifeact-EGFP or Lifeact-mRFPruby did not affect 

sensitive cellular processes such as neuronal polarization or chemotactic migration of 

dendritic cells. 

 

3.12 Applications of the Lifeact-mice 

 

The investigations on transgenic Lifeact mice clearly demonstrated that they exhibit 

bright and specific labelling of the actin cytoskeleton in nearly all tissues from early 

development on. Moreover, I could show that there are no impairments in processes 

depending on actin such as chemotactic migration of dendritic cells or neuronal 

polarization. I therefore aimed to demonstrate that these mice can be used to study 

processes that have been difficult to approach in the past.  

 

As shown before (see section 3.10), platelets from Lifeact-EGFP mice did express the 

marker. Platelets are enucleated cell fragments, originating from megakaryocytes, and 

are important for blood clotting after injuries. Most of the previous studies on their 

actin cytoskeleton were done on fixed cells using phalloidin as a marker. I now was 
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able to analyze their spreading live. When isolated platelets were seeded on fibrinogen-

coated coversplips, I could observe fast adhesion to the surface with a highly dynamic 

actin cytoskeleton and constantly reorganizing shape until the cells adopted a round 

and flat morphology. In addition, stress fibers could be observed in these cells after 

spreading like previously reported (Figure 3.34; Vidal et al. 2002).  

 

 

Figure 3.34 Transgenic Lifeact-EGFP platelet during spreading. Platelets were isolated 
intracardially and placed on top of fibrinogen-coated glass-bottom dishes. Just before imaging 
by TIRFM, thrombin was added for activation. Scale bar: 2µm; Time in seconds. 
 

 

In a second line of experiments, I found that bone tissue from Lifeact-mice was also 

expressing the marker by investigation of fixed cartilage sections from tibia of 

transgenic embryos. A strong and equally stained tissue with normal morphology 

could be observed (Figure 3.35; McGlashan et al. 2006). As it is a major goal in 

biological research to analyze processes within their physiological environment, the 

Lifeact-expressing bone tissue is predestined for live-cell studies: on the one hand, 

bone tissue of embryos is translucent and only few cells are embedded in an acellular 

matrix, compared to other tissues, making it easily accessible for microscopic imaging. 

On the other hand, the cells are maintained within their natural surroundings 

representing optimal conditions for analyzing various processes. 

 

One particularly interesting process in bone development is column formation of 

chondrocytes which is important for longitudinal bone growth (Woods et al. 2007). 

To date, there is not much known about this process in vivo. Most of the hypotheses 
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were established from investigations of fixed samples as it is not possible to transfect 

cells within the tissue (McGlashan et al. 2006; Raducanu et al. 2009). 

 

 

 

Figure 3.35 Cartilage of Lifeact-EGFP mouse showing a bright F-actin staining. Finger 
bone was prepared of E15.5 embryo and sliced into 100 µm sections. Afterwards these were 
fixed and imaged with confocal microscopy. Scale bar: 50µm 
 

 

Due to the facts that bones are translucent during early development and that explants 

continue to grow in culture, I attempted to visualize chondrocyte column formation 

by fluorescence microscopy. To this end, cartilage sections of the tibia were prepared 

from embryos and glued onto a glass-bottom dish allowing live-cell imaging up to 48 

hours. Hence, I could follow cells moving and undergoing cell division. Strong 

expression of Lifeact in chondrocytes showed their actin organization and dynamics 

during these processes. I could observe cells changing shape and twisting presumably 

with the aid of the highly motile actin cytoskeleton (Figure 3.36).  

However, applying low magnification for visualizing a larger image section led to loss 

in resolution. Therefore, to dissect the molecular details of these processes, 
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particularly concerning the actin cytoskeleton, it would be necessary to use higher 

magnification.   

 

 

 

 

Figure 3.36 Live imaging of bone explant from Lifeact-EGFP transgenic mouse. 
Finger bones were prepared from E16.5 embryo and sections were glued onto a glass-bottom 
dish. Live imaging with spinning disk microscopy could be achieved up to 48 hours. Time: in 
hours. Scale bar: 20 µm. 
 

 

To summarize the second part of my work, I generated Lifeact-EGFP and Lifeact-

mRFPruby transgenic mice which showed almost ubiquitous expression of the marker 

enabling analysis on actin dynamics on tissue and organismic level. Lifeact expression 

was clearly observable in the early development of these mice. I also found a specific 

and strong labelling of actin in isolated cells making them suitable for single-cell 

analyses. Moreover, expression of the marker did not interfere with cellular processes 

such as migration of dendritic cells and neuronal polarization. Finally, I could show 

that processes which were difficult to approach in the past either on single-cell level, 

in the case of platelet spreading, or on tissue level, in the case of bone growth, are 

feasible with Lifeact transgenic mice. Thus, these mice could be a versatile tool for 

research in various disciplines.                           
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4 STATEMENT of  contributions 

 

To give a complete picture of all results during my thesis, I also mentioned some 

experiments where other persons collaborated. In the following table, all 

contributions are listed. 

Experiment Person 

Biochemical assays Dr. Alvaro Crevenna 

Human neutrophil preparation Dr. Kai Kessenbrock 

Oocyte injection Dr. Michael Bösl 

Fertilized oocyte preparation Dr. Minh-Weissenhorn 

Neuronal polarization assay 

Spine development assay 

Dorothee Neukirchen 

Dr. Kevin Flynn 

Murine bone preparation Dr. Aurelia Raducanu 

Dr. Attila Aszodi 

Murine platelet preparation  Florian Gärtner 
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5 DISCUSSION 

 

5.1  Development of a new actin marker - Lifeact 

 

Filamentous actin is involved in many fundamental processes in eukaryotic cells, 

including cell morphogenesis, cell division or cell migration (Pollard & Cooper 2009; 

Sanger 1975; Lammermann et al. 2008). In contrast to the opinion of past decades, it 

has also become clear in the last years that there are actin orthologues present in 

prokaryotes (Jones et al. 2001; van den Ent et al. 2001). Moreover, several diseases can 

be linked to impairments of cytoskeletal functions including Alzheimers disease 

(James R. Bamburg & Bloom 2009), autosomal dominant deafness (Zhu et al. 2003) 

and cancer (Suresh 2007). 

With the central position of actin in cellular organization, it is very important to 

understand the basic principles of each molecular step starting at the lowest level of 

building filaments and ending at complex processes like migration or cell division. To 

this end, much attention has been paid on staining and imaging the actin cytoskeleton 

either in fixed or in living cells and thus, on developing labelling methods. The actin 

binding protein phalloidin, a mushroom phallotoxin, was the first described marker 

for F-actin in fixed and living samples (Faulstich et al. 1973). Although phalloidin 

produces a highly specific and reliable staining of the actin cytoskeleton, there are 

several limitations in use with living cells: because of its actin stabilizing properties 

phalloidin can only be used in small amounts via injection (Schmit & Lambert 1990). 

Moreover, it was reported that cells injected with phalloidin often suffer from toxic 

effects and frequently die as well as alterations in actin distribution and cell motility 

were observed (Cooper 1987; Wehland et al. 1977). Furthermore, it is until today 

difficult to chemically synthesize phalloidin (Wieland et al. 1983) and also needs an 

elaborate isolation procedure from the mushroom itself. 

 

Another established marker is actin itself either as fluorescent protein-tagged version 

transfected into cells or as fluorophore-coupled (e.g. rhodamine) protein injected into 

cells (Flynn et al. 2009; Waterman-Storer et al. 1998). Both approaches have many 

disadvantages: the latter needs an elaborate as well as relatively expensive production 
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of the label-conjugated actin and quantitative analysis is complicated because of the 

difficult control of the fluorescent actin concentration. Actin tagged to a fluorescent 

protein, such as GFP, is in fact easy and cheap to produce and also transfection into 

cells is feasible. However, cells expressing those actin versions exhibit several 

impairments: all described fluorophore-coupled actin versions exhibit reduced 

functionality and it was also demonstrated by others and also in this study that cells 

expressing those versions show altered actin dynamics (Feng et al. 2005; Riedl et al. 

2008). Apart from actin itself as a marker, in the last years researchers often used 

actin-binding proteins or their binding domains to label the actin cytoskeleton in 

different organisms (Edwards et al. 1997; Lenart et al. 2005; Burkel et al. 2007). 

However, several problems also arose using this approach, since these probes often 

stain only subsets of actin structures and upon higher expression exhibit actin 

bundling (Sheahan et al. 2004; Holweg 2007).  

Moreover, one has to keep in mind that all of the above mentioned markers for live-

cell analysis are quite large and may counteract with their endogenous homologs. 

 

These observations clearly demonstrate that there is a need for a better marker for the 

actin cytoskeleton which ideally should have the following properties: i) small size, ii) 

easy and cheap to produce, iii) specific labelling of actin in (all) cells and organisms, 

iiii) no interference with cellular functions. 

In the present work I could show, that the first 17 N-terminal aa (Lifeact) of the yeast 

actin-binding protein Abp140, comprising its actin-binding domain, exhibit a perfect 

labelling of actin structures in comparison to the full-length protein, which was already 

used as actin marker in budding yeast. The Lifeact sequence is the shortest actin-

binding domain described to date and thus, the smallest actin marker used in cells. 

For example, the actin-binding domain of ABP120 (actin-binding protein) from 

Dictyostelium discoideum consists of 65 aa (Pang et al. 1998). In addition, WH2 domains – 

being highly conserved actin binding motifs - found in a variety of proteins regulating 

the actin cytoskeleton lie in a range between 18 and 35 aa (Paunola et al. 2002; 

Edwards 2004). The crosslinker protein moesin (from D. melanogaster) was shown to be 

34 aa long (Edwards et al. 1997).  



Discussion 

 

 - 74 - 

These examples already show significant difference to the actin-binding domain of 

Abp140 in length. Moreover, the binding site and manner of Lifeact might not be 

similar to that of most actin-binding domains. These known domains including WH2-

domains often form short α-helical structures able to bind between the subdomains 1 

and 3 of an actin monomer (Chereau et al. 2005). Although the data in this thesis 

showed, that Lifeact also forms an α-helical structure ranging from residue 2 to 10, 

there was no binding competition with profilin suggesting that the binding site on 

actin lies between subdomains 2 and 4. These results were reminiscent of data on the 

small G-actin binding peptide thymosin β4 which also binds between subdomains 2 

and 4 (Czisch et al. 1993). 

Furthermore, this actin binding domain does not show any sequence homology to 

known proteins. It is therefore less likely that Lifeact interferes with other actin 

regulators also encouraging its use as actin marker in higher eukaryotes. 

 

The next part will address the second criteria for an ideal marker of being cheap and 

easy to produce. Being as short as the Lifeact peptide (17 aa) opens up the possibility 

to profitably chemically synthesize the peptide sequence in a standard peptide 

synthesizer. Afterwards the peptide can be used either without or with modification. 

To perform biochemical assays, for example, researchers might use Lifeact non-tagged 

to avoid interferences of the conjugate. On the other hand, if Lifeact is coupled to a 

fluorescent dye or gold molecules it can be used in various assays such as 

immunofluorescence or cryo-electron-microscopy. This feature makes Lifeact 

competitive to phalloidin – the commonly used actin probe in fixed samples - which is 

difficult to synthesize (Wieland et al. 1983) and is mostly purified from its original 

source, the mushroom Amanita phalloides in an elaborate and expensive way. 

Moreover, Lifeact did not show any toxicity to cells in this study which also is 

advantageous to phalloidin which, as a phallotoxin, stabilizes actin filaments and leads 

to death upon high exposure. Thus, the examined cells and the user of Lifeact are 

more secure by avoiding negative effects on both.  

Upon being non-toxic, Lifeact peptide could also be used in living cells. Particularly, 

when cells are hard to transfect (e.g. oocytes) or non-transfectable (e.g. primary 

neutrophils) using Lifeact yet allows investigation of their actin cytoskeleton by 
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different methods including injection or scrape-loading of the peptide (McNeil et al. 

1984; Li et al. 2008). However, injection requires special equipment and experience, 

for obtaining few stained cells. And also scrape-loading by treating the cells relatively 

rough, may have adverse effects on the processes studied. Thus, there is still potential 

to improve this protocol with other insertion methods, for example proteofection 

(Mammoto et al. 2004; Wang et al. 2009).  

This second criterion is not only true for Lifeact as chemically synthezised peptide but 

also for a genetically encoded version coupled to a fluorescent protein which can be 

expressed in cells. The Lifeact sequence can easily be inserted into different vectors by 

using complementary primers forming double-stranded oligos which can be used in 

ligation reactions. Moreover, by using those chemically synthesized primers, 

improvements such as codon-usage optimization, can easily be achieved. 

 

Although the first two criteria for a good actin marker are fulfilled by Lifeact, one of 

the most important characteristics would be specific labelling of actin. As a basis for 

this investigation, the chemically synthesized peptide was used in biochemical assays. 

These analyses revealed that Lifeact binds to G-actin with rather high affinity (Kd ~ 

70nM) compared to its affinity to F-actin (Kd ~ 2.2 µM). However, with the 

microscopic data of fixed and living cells I clearly showed a high signal-to-noise ratio 

for F-actin staining. There might be several reasons for this opposing result: On the 

one hand, to perform biochemical assays with either monomeric or filamentous actin, 

the state of actin has to be controlled with special buffer conditions. Thus, G-actin is 

handled with low salt concentration (0.1 mM CaCl2) to prevent polymerization 

whereas F-actin is handled with high salt concentration (5 M KCl) to maintain this 

state. Obviously, these conditions are very different and it is not clear how they affect 

the binding constants of Lifeact to F-actin. Nonetheless, examining the FRAP data of 

Lifeact, either as peptide in fixed cells or as EGFP-fusion protein in living cells, it is 

clear that the binding affinity of Lifeact to F-actin is rather low. In comparison to 

EGFP-actin, the recovery was more than 50-fold faster for Lifeact demonstrating a 

high on-off ratio on F-actin confirming the biochemical results. 

On the other hand, it is also important to include the physiological aspect, because the 

concentration of F-actin in vivo is about 3.2-fold higher than G-actin – 500µM and 
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150µM (in lamellipodia of fibroblasts), respectively (Koestler et al. 2009). So, if each 

actin molecule binds to Lifeact, the concentration of Lifeact is also 3.2-fold higher on 

F-actin than on G-actin. Admittedly, the latter factor alone might not be enough to 

explain the high signal-to-noise ratio seen in Lifeact-expressing cells. Based on the 

observation that Lifeact could bind to actin monomers in a similar way as Thymosin-

β4 (Czisch et al. 1993), in a cellular environment the latter might also compete with 

Lifeact for binding to G-actin. This competition would strongly reduce the amount of 

G-actin to which Lifeact could bind. Hence, to test this hypothesis it would be 

necessary to analyze the binding of Lifeact to G-actin in the presence of Thymosin-β4. 

Furthermore, there might also be other G-actin binding proteins or cellular factors 

which could affect the binding of Lifeact which were not taken into account yet.  

 

The next step was to investigate the labelling quality of Lifeact as actin marker in cells 

and tissues, in particular, compared to established markers. Notably, almost perfect 

co-localization with either phalloidin – in fixed samples – or fluorophore-tagged actin 

– in living cells – could be observed. Moreover, we found very low background signals 

(meaning cytosolic fluorescence) in these samples leading to a high signal-to-noise 

ratio and bright visualization of F-actin. Although the data showed, in the biochemical 

assays, that Lifeact has a 30-fold higher affinity to G-actin than to F-actin, the 

microscopic data demonstrated that this marker exhibits a very specific labelling of 

filamentous actin in cells. As one more striking result from these experiments, I could 

not observe any known actin structure in the examined cells which was not stained by 

Lifeact. For example, strongly bundled filaments such as in stress fibres were equally 

well labelled as the fine, rapidly reorganizing branched network in lamellipodia of 

migrating dendritic cells. Another remarkable finding was that transfected primary 

neurons showed a perfectly labelled actin cytoskeleton with normal morphology as 

these cells are very sensitive to disturbances. 

 

In conclusion, the in vitro results concerning the binding affinities of Lifeact to G- and 

F-actin do not doubtlessly show the specificity of Lifeact for F-actin; however, the 

microscopic data convincingly demonstrated Lifeact’s high labelling quality of F-actin 

in various approaches.  
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In the next paragraph, regarding the last, but most important criterion of a good actin 

marker – no interference with cellular functions - I focused on the effects of Lifeact 

expression in cells also relating to other established markers. 

The results of the biochemical assays showed that Lifeact does not disturb actin 

polymerization or depolymerization kinetics. Moreover, no change in binding affinities 

to G- or F-actin could be seen either with sequestering or with side-binding proteins 

present. These data suggested that Lifeact’s binding site on G- and F-actin is distinct 

from those of other binding partners. Furthermore, these results were promising with 

regard to Lifeact’s effects in living cells on actin dynamics. 

Accordingly, I obtained very positive results in various transfection experiments with 

primary cells and cell lines with the Lifeact vectors including very sensitive samples 

such as dendritic cells and neurons. I also generated several stable cell lines expressing 

the marker on high level with no apparent change in their cellular characteristics.  

 

To quantitatively measure whether the expression of Lifeact leads to impairments in 

cellular functions we analyzed three different processes which are sensitive read-outs 

for cytoskeletal defects: i) quantification of neuronal polarization, ii) retrograde actin 

flow in lamellipodia of fibroblasts, iii) speed of chemotactic dendritic cells in a 3D 

environment. All of these processes are critically dependent on a fully functional 

cytoskeleton (Witte & Bradke 2008, Renkawitz et al. 2009). Neurons, for example, 

have to polarize in order to determine the right and only one axon. Especially, the 

process of breaking the initial symmetry and growth of one neurite – becoming the 

axon – is based on a rapidly reorganizing actin cytoskeleton (Flynn et al. 2009). The 

retrograde actin flow in lamellipodia of fibroblasts reflects the most basic function of 

actin, namely polymerization, and its analysis is able to show slight impairments during 

this process. Finally, the speed of chemotactic dendritic cells represents the same 

function of actin but in a complex environment. During this process, not only actin 

polymerization itself but the interplay between signal transduction from and to the 

cytoskeleton to achieve coordination and directionality is critical for fast and efficient 

reactions when encountering pathogens (Sabatté et al. 2007). 
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It was already known that EGFP-actin as well as other fluorophore-tagged versions 

does not exhibit normal functionality (Yamada et al. 2005). In particular, these fusion 

proteins are not able to form polymers as efficiently as wildtype proteins and integrate 

at only about 1 to 10 subunits in a wildtype actin polymer.  

In line with these findings, it was not surprising that EGFP-actin expressing cells 

showed significantly altered results compared to wildtype cells in all analyzed 

processes. In contrast, expression of Lifeact-EGFP did not lead to significant changes. 

Moreover, generation of transgenic mice using random integration into the genome 

leading to almost ubiquitous expression of Lifeact in phenotypically healthy animals 

demonstrated also great evidence that this actin marker is not interfering with 

substantial cellular functions.  

To conclude, the importance of live-cell imaging of the actin cytoskeleton forced 

researchers to use fluorescently labeled makers such as EGFP-actin at the same time 

accepting the disadvantage of changing cytoskeletal dynamics. Now, using Lifeact, it is 

possible to visualize the actin cytoskeleton not only with a better signal-to-noise ratio 

but, more importantly, with the knowledge of getting a more authentic report of 

cellular processes. 

 

Based on these data, my further goal was to use Lifeact in applications where live 

visualization of the actin cytoskeleton was not possible before. Hence, with respect to 

this issue isolated primary, human neutrophils were examined. 

Neutrophils represent one of the first lines of defense in the human body and are 

fighting against invaders by engulfment or by secretion of anti-microbial proteases 

(Segal 2005). These cells can also contribute to chronic inflammation in a variety of 

human diseases such as autoimmune disorders or hypersensitivity reactions. The 

underlying pathogenic mechanism is mostly the formation of antigen-antibody 

complexes, or so called immune complexes (ICs), which trigger an inflammatory 

response by inducing the infiltration of neutrophils (Jancar & Crespo 2005). The rapid 

polymerization of actin filaments is required at several steps during this process 

including extravasation, chemotaxis and phagocytosis.  

In the past, it remained difficult to study these processes in living cells because 

neutrophils are terminally differentiated and therefore non-transfectable. In addition, 
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non-activated cells have a short lifespan of only 24 hours, which decreases after 

isolation. Therefore, researches used either fixed samples immuno-stained for actin or 

the myeloid cancer cell-line HL-60 which can be differentiated into neutrophil-like 

cells  (Huang et al. 2008; Rossy et al. 2009; Weiner et al. 1999). The latter is 

transfectable and can be used for live-cell microscopy; however, these cells are not 

fully comparable to primary cells upon passing through several genetic changes for 

reaching an immortalized state (Collins et al. 1977). 

Hence, to achieve labelling of the actin cytoskeleton in living human neutrophils, they 

were scrape-loaded to transfer the FITC-Lifeact peptide into these cells (McNeil et al. 

1984). Remarkably, this approach allowed me to image and analyze actin dynamics in 

living primary neutrophils for the first time. Moreover, the process of IC-mediated 

spreading could be followed, in which the cytoskeletal reorganization plays a major 

role (Tang et al. 1997).  

Thus, also due to its small size, the chemically synthesized Lifeact peptide could be 

used to label living cells independently of genetic approaches and allowed 

investigation of actin dynamics where it was not possible before. However, the used 

method “scrape-loading”, although being fast and efficient, implicates a rough 

treatment of the cells leading to small lesions in the cell membrane. This treatment 

could potentially lead to cellular alterations. For that reason, it would be necessary to 

test other methods for transferring the Lifeact peptide into cells such as proteofection 

and electroporation which were already used successfully for other peptides 

(Mammoto et al. 2004; Todorova 2009). 

Other approaches for fluorescently labelling living neutrophils (or other non-

transfectable cells) may also be considered such as nucleofection or viral transduction. 

Johnson et al. (2006) showed that nucleofection of plasmids, whereby the DNA is 

directly delivered into a cells nucleus, led to protein expression after 2 hours; however, 

with very low efficiency (about 1 %) limiting this method to single-cell based 

experiments. In another approach, transduction of lentiviral-based vectors resulted in 

higher efficiency of protein expression (Dick et al. 2009). However, this method 

requires laborious cloning into specific vectors as well as time-consuming and 

potentially hazardous procedures for viral infections. 
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Taken together, it could be conclusively shown that Lifeact - in its chemically 

synthesized form - can be used for various applications either in biochemical assays or 

as non-toxic alternative to phalloidin for immunostainings of fixed cells and tissues. 

Moreover, because of its small size and non-toxicity, this peptide could even be used 

for labelling the actin cytoskeleton in living cells.    

 

5.2  Generation and characterization of Lifeact-transgenic mice 

 

Although I could demonstrate that Lifeact can be used in versatile applications either 

as genetically encoded version or as chemically synthesized peptide, there are still 

several limitations to its use. On the one hand, for microscopic analyses of single cells 

researchers are dependent on cells which can be manipulated either genetically by 

means of transfection or transduction or mechanically including scrape-loading and 

injection. Although common cell lines such as NIH/3T3 or MDCK are transfectable, 

this method is not successful for most primary cells, e.g. cytotoxic T-Lymphocytes or 

primary bone marrow macrophages (Martin et al. 2007; Wang et al. 2006), and 

researchers require more elaborate techniques such as viral transduction. As discussed 

before, this method needs laborious cloning of special vectors and the transduction 

procedure is time-consuming and potentially hazardous. Also, mechanical 

manipulation methods have several drawbacks: as mentioned before, scrape-loading is 

a rather rough treatment of the cells potentially leading to alterations in cellular 

behavior. Advantageous for injection is, that this method can be used for delivering 

either DNA or mRNA or protein into cells (Lenart et al. 2005; Linney et al. 1999; 

Sheng et al. 2005); however, it depends on specialized and expensive equipment, good 

expertise and large cells, e.g. oocytes (Lenart et al. 2005).   

Furthermore, several questions cannot be addressed using single-cell based assays, for 

example, when focusing on whole tissues or embryonic development. These 

approaches also take into account the physiological 3D-environment which is often 

crucial for cellular behavior (Lammermann et al. 2008). Moreover, many disease 

models can only be studied on organismic level. The most common way to investigate 

those issues is by using transgenic animals (Frock 2006; Hallahan et al. 2004).  



Discussion 

 

 - 81 - 

As research focuses on understanding the molecular and general mechanisms in health 

and disease state in humans, it is important to use model organisms which are closely 

related, such as the mouse. Hence, I pursued this strategy in the generation of 

transgenic mice using the two Lifeact versions described before, coupled to either 

EGFP or mRFPruby.  

 

There are two well-established ways of generating genetically modified mice: either by 

blastocyst injection of embryonic stem cells (= chimeric mice) or by pronuclear 

injection of DNA (= transgenic mice). Generation of chimeric mice requires 

embryonic stem cells stably expressing the protein of interest. Mainly, site-directed 

targeting of a specific locus is used for the integration of the DNA into their genome, 

e.g. the ROSA26 locus (Mao et al. 2001). The insertion site and copy number is then 

verified by southern blot analysis and sequencing. Positive cell clones are implanted 

into wildtype blastocysts which grow to adults harboring two distinct cell populations. 

Finally, these mice are analyzed whether their germline cells express the protein of 

interest to obtain mice with stable and ubiquitous expression. Hence, this is a time-

consuming and laborious method but reliable on the level of insertion site and copy 

number which is particularly important for the generation of knock-out mice. 

The other approach - which was used in this study - utilizes microinjection of the 

foreign DNA directly into the pronuclei of fertilized oocytes. Afterwards these 

oocytes are implanted into pseudo-pregnant mice giving birth to potential transgenic 

mice. This method leads to random integration of the foreign DNA into the genome 

thereby eventually damaging other genomic sites as well as inserting in a highly 

variable gene copy number (Ittner & Gotz 2007). Thus, each pup represents a putative 

founder which has to be treated as an independent subline and analyzed carefully to 

choose the one with the best expression pattern and a healthy phenotype. In contrast 

to conditional knock-in strategies – whereby gene expression can be switched on in 

defined conditions, e.g. age-dependently or cell lineage-specificly (Jonkers & Berns 

2002) - , I used the chicken-β-actin promoter which led to ubiquitous expression of 

the transgene as reported by Niwa et al. (1991). Using this strategy I obtained putative 

founders that were viable, fertile and phenotypically normal in comparison to wildtype 
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mice suggesting that neither insertion site of the transgene was affecting important 

cellular processes.  

Pups of each putative founder showed a high variability in transgene expression. 

Hence, this result indicates that the transgene inserted into a different locus in each 

case with a different expression profile which was expected upon the used method 

leading to random integration into the genome and variations in copy number. 

 

With counterstaining of fixed cryosections with phalloidin and TIRF microscopy of 

isolated, living cells, all putative founders were analyzed whether the fluorescent signal 

corresponds to F-actin. These analyses revealed a specific and bright staining of the 

actin cytoskeleton in all positive organs and isolated cell types of Lifeact-EGFP mice.  

However, seven out of the ten Lifeact-mRFPruby mice did not show a specific F-actin 

staining but rather aggregates of the fusion protein.  These complexes also exhibited a 

bright fluorescent signal and therefore appeared as false-positive. An oligomerisation 

tendency was reported for other RFP versions indicating a similar problem for Lifeact-

mRFPruby (Day & Davidson 2009). The three residual founders showed even 

labelling of their actin cytoskeleton and could be used for further analyses. Due to the 

fact that a high amount of various RFP versions leads to more aggregation (Mizuno et 

al. 2001), this study also shows that the locus of integration as well as the copy number 

influences the functionality of the transgene. As the surrounding of the integration 

locus has strong impact on expression levels (Madan Babu et al. 2008) this difficulty 

could be overcome either with site-specific integration of the transgene or with a 

weaker promoter than the CAG, e.g. the PGK or SV40 promoter (Qin et al. 2010).  

 

To evaluate whether all cells of one type are positive, I performed flow cytometric 

analysis of different blood cell populations which revealed that about 80 to 90% of 

each cell type showed a fluorescent signal. Moreover, the flow cytometric analyses 

revealed that the fluorescent signal was at least two to three log shifts brighter than in 

control cells.  

These results were striking because the only available transgenic mouse with almost 

ubiquitous - except skeletal muscle tissue - EGFP-actin expression (Gurniak & Witke 
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2007) does not exhibit an as bright fluorescent signal in isolated dendritic cells and 

neurons (personal communication: Dr. Michael Sixt and Dr. Frank Bradke).  

 

Since erythrocytes appeared to be negative in microscopic analysis, I wondered if their 

precursors did express the transgene. Erythrocytes loose most of the cellular 

organelles including the nucleus during maturation and have a life-span for about 55 

days in mice. Due to these facts, many proteins are degraded shortly after maturation 

and cannot be detected in the majority of mature erythrocytes although they could 

have been expressed in earlier stages (Molecular biology of the cell, Alberts 2002). 

However, using the TER119-antibody which binds to early precursors such as the 

pro-erythroblast (Kina et al. 2000), no fluorescent signal was detected by flow 

cytometric analyses suggesting that the transgene is not expressed in this lineage. 

Ikawa et al. used the same promoter for the generation of “green mice” and also 

reported negative red blood cells indicating that this promoter is only weakly active or 

inactive in these cells (Ikawa et al. 1998).  

 

By investigation of different embryonic stages after fertilization during embryo 

development, I found almost no fluorescent signal in fertilized oocytes (time point 

E0.5). This can arise from two reasons: either the transgene is not expressed at this 

stage or the protein level is much too low for imaging. However, from time point E1.5 

up to E15.5 I could observe a fluorescent signal which was bright enough for 

visualization with standard widefield optics. Moreover, no morphological defects 

could be observed in all examined embryos. Based on these observations, I concluded 

that expression of Lifeact-EGFP or Lifeact-mRFPruby in higher levels does not 

interfere with mouse development making these mice a valuable tool in developmental 

research. However, they might not be suitable when focusing on oocytes, fertilized or 

unfertilized. This drawback could be overcome by using a different promoter with 

sufficiently strong expression in this stage such as the ICAM-1 promoter (Lu et al. 

2002). 
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5.3  Possible applications 

 

All data shown before convincingly demonstrated that these transgenic mice represent 

a novel, versatile tool for studying F-actin dynamics in many fields. However, I also 

wanted to prove its applicability with two specific examples: i) imaging actin dynamics 

during platelet spreading and ii) visualization of chondrocyte growth in a bone explant. 

 

Blood platelets are crucial for wound repair in the body. Once an injury occurs these 

cells aggregate to form a thrombus to close the wound and stop bleeding (Figure 5.1a, 

b). In addition they secrete different factors to promote wound closure. They are 

produced by budding off from megakaryocytes as small, differently shaped cell 

fragments without nucleus. Therefore, platelets can not be transfected and most of the 

studies on their actin cytoskeleton were done on fixed cells (Vidal et al. 2002). 

Different actin structures (lamellipodia, filopodia and stress fibers) are fundamentally 

involved in supporting thrombus formation and stability (Hartwig et al. 1999; 

Calaminus et al. 2007). I could demonstrate that platelets isolated from Lifeact-EGFP 

mice exhibit a bright fluorescent signal in both flow cytometric and microscopic 

analyses. Time-lapse imaging with TIRFM revealed a highly dynamic actin 

cytoskeleton during spreading. However, these preliminary experiments do not allow 

conclusions on the importance and function of the actin cytoskeleton during this 

process. Still, they might be a good starting point for further investigation of spreading 

in vitro and in vivo. Moreover, their origins in vivo, the megakaryocytes, were also shown 

to express the transgene by collaborators (Steffen Massberg, TU München). These 

data encourages research on platelets and megakaryocytes, e.g. the budding process of 

platelets.  

 



Discussion 

 

 - 85 - 

 

Figure 5.1 Blood clot formation. a) Blood clotting normally is triggered by damage to a blood 
vessel. Platelets then immediately begin to adhere to the damaged part of the vessel and release 
chemicals to attract more platelets. A platelet plug is formed, and the external bleeding stops. 
Next, clotting factors cause strands of blood-borne material, called fibrin, to stick together and 
seal the inside of the wound. Eventually, the damaged blood vessel heals, and the blood clot 
dissolves after a few days. b) A whole blood clot is made up of a branched network of fibrin fibers 
(blue), platelet aggregates (purple), and red blood cells. 

Source Image       a):   New York Times, 01.08.2007 

b):  Nature Cover, 413 (6855) 

 
 

The formation of endochondral bones requires cartilage as a template which contains 

the so-called chondrocytes. Some of these cells differentiate into proliferative and then 

hypertrophic cells and are located in the growth plate (Figure 5.2). The proliferative 

chondrocytes undergo strictly regulated, unidirectional proliferation resulting in highly 

organized columnar structures. This whole process is responsible for the longitudinal 

growth of long bones (van der Eerden et al. 2003) and occurs in mice at 15.5 to 17.5 

days post-coitum. It has become evident that, especially during chondrocyte 

differentiation, the actin cytoskeleton plays a major role (Woods et al. 2007). However, 

conclusions on this process were made from studies performed on fixed tissues and it 

is still not clear how these columnar structures are established in such a highly 

organized manner.  
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Figure 5.2 Column formation of chondrocytes during bone growth. Endochondral 
ossification requires the formation of a transient cartilage template. Chondrocytes in the most 
central region of the template differentiate to the terminal stage of the hypertrophic chondrocyte. 
Chondrocytes located between the resting/reserve zone and the hypertrophic zone proliferate in 
an unidirectional manner, resulting in characteristic columns. The regions on either side of the 
bone tissue are termed the growth plates and responsible for longitudinal growth.  

 
Source Image: Woods et al., 2007 

 
 
Through combination of the two facts that bone explants of transgenic mice exhibited 

a bright actin staining and the possibility of maintaining those explants in culture, 

video-microscopy of living, growing bones could be achieved. Moreover, for the first 

time it was possible to follow dividing and moving cells in the growth plate. Although 

the time–frame was too short to observe the whole process of column establishment, 

this approach was very promising for gaining deeper insights.  

Particularly, if chondrocytes divide randomly orientated with subsequent migration to 

maintain the structural order or if the division orientation is predefined could be 

figured out by using this live-imaging technique. However, to investigate the role of 

the actin cytoskeleton and the mechanisms behind in more detail, it will be necessary 

to use higher magnification. 

 

In conclusion, by imaging non-transfectable platelets and chondrocytes, I could 

demonstrate that the generated transgenic mice can be a powerful tool for previously 

restricted research on actin dynamics in living organisms or explants. 
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6 MATERIAL and METHODS 

 

6.1 Material 

 

6.1.1. Chemicals and Reagents 

 

Component Origin 

Acetic acid 100%  Merck 

Agarose Invitrogen 

Ampicillin  Carl Roth 

ARTISS fibrin sealant Baxter Healthcare 

BSA PAA Laboratories 

CCL19 R&D Systems 

CloNat  Werner BioAgents 

Concanavalin A Carl Roth 

D(-)-Sorbitol reinst  Merck 

D(+)-Glucose  VWR 

Desoxynucleotide Solution Mix  New England BioLabs 

Dextran T500 Pharmacia Biotech 

Difco Bacto Agar  Becton, Dickinson and Company 

Difco Bacto Pepton  Becton, Dickinson and Company 

Difco Trypton  Becton, Dickinson and Company 

Difco Yeast Extract  Becton, Dickinson and Company 

Dimethylsulfoxid  Sigma-Aldrich 

DMEM Invitrogen 

EDTA Merck 

Ethanol puriss.  Sigma-Aldrich 

Ethidiumbromide-solution (1%)  Carl Roth 

Fetal calf serum Invitrogen 

Fibrinogen Sigma-Aldrich 

Fibronectin Calbiochem 
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Formaldehyd  Merck 

GeneRuler™ DNA ladder Mix (100bp-10kb)  Fermentas 

Geneticin (G418) PAA Laboratories 

Glycerol Merck 

Glycine Riedel-de Haen 

Hanks’ balanced salts Sigma-Aldrich 

hCG Intervet 

Heparin Sigma-Aldrich  

Interleukin-2 Peprotech  

Isopropanol  Merck 

KCl Merck 

KH2PO4 Merck 

L-Glutamine PAA Laboratories 

Ligation buffer  New England BioLabs 

Lipopolysaccharide (E.coli LPS 0127:B6) Sigma-Aldrich 

MEM EAA Invitrogen 

MEM NEAA Invitrogen 

Methanol Fisher-Scientific 

Methionine  VWR 

Muscle actin Cytoskeleton 

Na2CO2 Merck 

Na2HPO4 x 2xH20  Merck 

NaCL Merck 

Non-muscle actin Cytoskeleton 

Ovalbumin, grade-V Sigma-Aldrich 

Pancoll PAN Biotech 

Penicillin/Streptomycin PAA Laboratories 

Pfu DNA Polymerase  Fermentas 

Phalloidin-Alexa488 Invitrogen 

Phalloidin-Alexa560 Invitrogen 

Phenol Red Solution Sigma-Aldrich 

PMSG Intervet 



Material and Methods 

 

  ‐ 89 ‐ 

Poly (I) Poly (C) Amersham Biosciences 

PolyL-Lysin Calbiochem 

Protease inhibitor tablet Roche 

Proteinase K Sigma-Aldrich 

PureCol INAMED  

Pyrene-actin Cytoskeleton 

Restriction enzymes  New England Biolabs 

RPMI 1640 Invitrogen 

SDS Carl Roth 

Sheared Salmon Sperm DNA (ssDNA)  Eppendorf 

Sodium deoxycholate monohydrate Sigma-Aldrich 

T4-DNA-Ligase  New England BioLabs 

Taq DNA Polymerase  New England BioLabs 

Thrombin Sigma-Aldrich 

Tris Base  Sigma-Aldrich 

Triton-X-100 Serva 

Trypsin (100x) PAA Laboratories 

Tumor-necrosis-factor α (TNFα) Biosource 

UltraPure agarose  Invitrogen 

Water bidest.  Millipore Water System 

Yeast Nitrogen Base w/o Aminoacetat  Becton, Dickinson and Company 

α-actinin  Cytoskeleton 

β-Mercaptoethanol Sigma-Aldrich 
 

6.1.2. Media 
 

Medium Ingredients 

YT-Media 

 

 

 

 

  

0.8% (w/v) Bacto-Trypton 

0.5% (w/v) Bacto-Yeast-Extract 

0.5% (w/v) NaCl 

in ddH2O 

with Ampicillin: final conc. 100μg/ml 
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YT-Plates 

 

  

 

YPD-Media 

 

 

 

 

  

 

SC-Media (Minimal media) 

 

 

 

 

  

SC-Plates  

 

 

 

 

R10 medium 

 

  

 

 

R20 medium  

 

 

 

 

 

YT-Media 

1.5.% (w/v) Agar 

with Ampicillin: final conc. 100μg/ml 

 

2% (w/v) Bacto-Peptone 

1 % (w/v) Bacto-Yeast Extract 

2% (v/v) Glucose 

in ddH2O 

with CloNat: final conc. 300 μg/mL 

with Geneticin: final conc. 100 μg/mL 

 

6.7% (w/v) Bacto-Yeast Nitrogene Base 

w/o respective aminoacids 

in ddH2O 

with CloNat: final conc. 300 μg/mL 

with Geneticin: final conc. 100 μg/mL 

 

SC-Media 

2 % Agar (w/v) 

with CloNat: final conc. 300 μg/mL 

with Geneticin: final conc. 100 μg/mL 

 

RPMI 1640 

10% FCS  

5% Penecillin/Streptomycin  

5% L-Glutamine  

 

RPMI 1640  

20% FCS  

5% Penecillin/Streptomycin  

5% L-Glutamine  
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D10 medium 

 

 

 

Freezing medium  

 

 

KSOM embryo culture medium 

DMEM 

10% FCS 

5% Penicillin/Streptomycin 

 

90% FCS  

10% DMSO 

  

95 mM NaCl 

2.5 mM KCl 

0.35 mM KH2PO4 

0.2 mM MgSO4x7H2O 

10 mM Na-Lactat (60% syrup) 

0.2 mM Glucose 

25 mM NaHCO3 

1.71 mM CaCl2x2H2O 

1 mM Glutamine (GlutamaxI) 

0.01 mM EDTA 

1 mg/ml BSA 

0.5 x NEAA 

0.5 x EAA 

5% Penicillin/Streptomycin 

ad 100ml ddH2O 

 

 

6.1.3. Solutions 

 

Solution Ingredients 

1 M Phosphate buffer 

 

 

1 M Tris-HCl pH 8.0 (25°C) 

 

  

1 M NaH2PO4 x H2O 

1 M Na2HPO4 x 2H2O 

 

1 M Tris in ddH2O 

pH adjusted with HCl 

 



Material and Methods 

 

  ‐ 92 ‐ 

PBS, 1x 

 

 

Lysis buffer 

 

 

 

 

 

DNA sample buffer (6x)  

 

 

TBE (10x)  

 

 

 

TAE (50x) 

 

 

 

SORB 

 

 

 

  

PEG-Mix  

 

 

 

 

TE (10x)  

 

 

10 mM Phosphate buffer pH 7.4 

150 mM NaCl 

 

100 mM Tris/HCl pH 8.5 

5 mM EDTA 

200 mM NaCl 

0.2% SDS 

add 100 µg/ml Proteinase K fresh 

 

40% (v/v) Sucrose 

0.25% (w/v) Bromphenol blue 

 

89 mM Tris Base 

89 mM Boric Acid 

0.2 mM Na2EDTA 

 

2 M Tris 

2 M Acetic acid 

50 mM EDTA pH 8.0 

 

100 mM LiOAc 

10 mM Tris/HCl, pH 8.0 

1 mM EDTA/NaOH pH 8.0 

1 M Sorbitol 

 

100 mM LiOAc 

10 mM Tris/HCl, pH 8.0 

10 mM EDTA/NaOH pH 8.0 

40% (v/v) PEG 3350 

 

10 mM EDTA 

100 mM Tris pH 7.5 

RNase (300 μg/μL) 
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Geneticin stock solution 

  

CloNat stock solution 

  

Ampicillin stock solution 

  

ConA solution 

 

 

 

 

RF1 

 

 

 

 

 

  

RF2 

 

 

 

 

 

Low salt buffer 

 

 

 

 

High salt buffer 

 

 

 

200 mg/mL in ddH2O 

 

200 mg/mL in ddH2O 

 

10 mg/mL in ddH2O 

 

0.5 mg/mL Concanavalin A 

10 mM CaCl2 

0.02 % (v/v) NaN3 

in 10 mM Phosphate buffer pH 6.0 

 

100 mM RbCl2 

50 mM MnCl2 x 4 H2O 

30 mM Potassium acetat 

10 mM CaCl2 x 2 H2O 

15 % (v/v) Glycerol 

pH adjusted to 5.8 

 

10 mM MOPS 

10 mM RbCl2 

75 mM CaCl2 x 2 H2O 

15 % (v/v) Glycerol 

pH adjusted to 5.8 

 

0.2 M NaCl 

20 mM Tris/HCl 

1 mM EDTA 

pH adjusted to 7.4  

 

1 M NaCl 

20 mM Tris/HCl 

1 mM EDTA 

pH adjusted to 7.4 
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G-buffer 

 

 

 

 

10x KMEI buffer 

 

 

 

 

10x ME buffer 

 

 

Injection buffer 

 

 

 

 

FACS buffer 

 

 

ACK buffer 

 

 

 

 

Tyrode buffer 

 

 

 

 

 

 

2 mM Tris HCl pH 8.0 

0.2 mM ATP 

0.1 mM CaCl2 

0.5 mM DTT 

 

50 M KCl 

1 mM MgCl2 

1 mM EGTA 

10 mM Imidazole HCl, pH 7.0 

 

 50 µM MgCl2 

0.2 mM EGTA 

 

10 mM Tris/HCl 

0.2 mM EDTA 

in Aqua ad injectabila 

pH adjusted to 7.5 

 

1xPBS 

0.5% BSA 

 

150 mM NH4Cl 

1 mM KHCO3 

0.1 mM EDTA  

pH adjusted to 7.3 

 

10 mM HEPES 

1.4 M NaCl 

26 mM KCl 

121 mM NaHCO3 

0.1% BSA 

0.1% glucose 

pH adjusted to 6.5 or 7.4 
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PHEM fixation buffer 300mM PIPES 

125mM HEPES 

50mM EGTA 

10mM MgCl2 

pH adjusted to 6.9 

 

6.1.4. Kits 

 

Name Origin 

QIAprep Spin Miniprep Kit 

Endofree Plasmid Maxiprep Kit  

QIAquick Gel Extraction Kit  

TOPO TA Cloning Kit 

Mouse T Cell nucleofector Kit 

Qiagen, Hilden 

Qiagen, Hilden 

Qiagen, Hilden 

Invitrogen 

Lonza Verviers 

 

6.1.5. Antibodies 

 

Antibody Species Dilution Origin 

TCRβ-APC  

TER119-PE 

CD4-PE 

CD8-PE 

CD11b-PE 

B220-PE 

GPIα-PE 

Tau-1 (clone PC1C6) 

Alexa-350 (goat) 

Ovalbumin (IgG) 

mouse 

mouse 

mouse 

mouse 

mouse 

mouse 

mouse 

mouse / rat 

mouse 

rabbit 

1:300 

1:200 

1:200 

1:200 

1:200 

1:200 

1:25 

1:5000 

1:250 

1:1000 

eBioscience 

Pharmingen  

Pharmingen 

Pharmingen 

Pharmingen 

Pharmingen  

Pharmingen 

Chemicon  

Molecular Probes 

Sigma-Aldrich 
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6.1.6. Oligonucleotides 

 

Primer Alias Sequence 

Lifeact-fwd-XhoI RWS648 gatcctcgaggccaccatgggtgtcgcagatttgatcaag 

Lifeact-rev-XhoI RWS649 ctcgagtttgtgatgctattgctttatttgtaacc 

5'-utrophin-mus-XhoI RWS705 ctcgagttatggccaagtatggggacc 

3'-utrophin-mus-BHI RWS707 ggatccttaatctatcgtgacttgctgagg 

5'-mars-ki-mouse RWS801 gctccgaggatgtcatcaaagag 

3'-mars-ki-mouse RWS802 catgaatcttcccacttgaagc 

5'-mouse-GFP-knockin RWS748 gcacgacttcttcaagtccgccatgcc 

3'-mouse-GFP-knockin RWS749 gcggatcttgaagttcaccttgatgcc 

 

6.1.7. Plasmids 

 

Alias Origin Insert Selectionmarker 

RWC510 

RWC514 

RWC547 

RWC551 

RWC553 

RWC572 

RWC576 

RWC577 

RWC553 

RWC578 

RWC590 

pEGFP-N1  

pEGFP-N1  

pCAGGS 

TOPO  

pCAGGS  

pCS2 (Xenopus)  

TOPO 

pEGFP-C1 

pCAGGS  

pCAGGS 

pEGFP-N1 

Abp140-17aa-mRFPruby  

Actin-EGFP 

no Insert 

Lifeact-mRFPruby 

Abp17aa-EGFP  

UtroABD-GFP  

Utro-ABD  

UtroABD-EGFP  

Lifeact-EGFP  

Lifeact-mRFPruby 

Abp140-17aa-EGFP 

Kanamycin 

Kanamycin 

Ampicillin 

Ampicillin 

Ampicillin 

Ampicillin  

Ampicillin  

Kanamycin  

Ampicillin  

Ampicillin 

Kanamycin 
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6.1.8. Organisms 

 

  5.1.8.1 Escherichia coli 

 

For all cloning experiments the strain DH5α was used. This is a derivative of the strain 

K12, which contains the following genetic markers: F’, endA1, hsdR, hsdM, sup44, thi-1, 

gyrA1, gyrA96, relA1, recA1, lacZ.M15. 
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6.2 Methods 
 

6.2.1. Molecular biological methods 

 

6.2.1.1. Plasmid DNA purification 

 

DNA from E. coli was purified using the Qiagen mini and maxiprep systems to 

prepare up to 20/500 µg of plasmid DNA from 2/100 ml bacterial overnight cultures 

in YT-medium containing the appropriate selective antibiotic. The desired plasmids 

were isolated using the appropriate Qiagen kits, mentioned above, according to the 

provided protocols. The resulting plasmid DNA was then used for sequence 

verification or for further cloning procedures after transformation into the E. coli host 

strain DH5α (Birnboim 1983; Bimboim & Doly 1979). 

 

6.2.1.2. Polymerase chain reaction (PCR) 

 

The PCR was performed using a thermocycler (“PXE 0.2”; Thermo Electron Corp.) 

to amplify target sequences (100-1000bp) of a longer DNA molecule. A typical 

amplification reaction includes the sample of template DNA, two oligonucleotide 

primers, deoxynucleotide triphosphates (dNTPs), reaction buffer, magnesium and a 

thermostable DNA polymerase, either the Taq-Polymerase or the Pfu-polymerase. 

The Taq-polymerase was used to amplify DNA, which was not used afterwards (e.g. 

for genotyping) whereas the Pfu-polymerase-amplified sequence was used for further 

steps (e.g. cloning into a expression vector). All PCR reactions were started with a pre-

incubation step termed “Hot Start”, which denatures the template DNA at 95-100°C 

so that the primers can anneal after cooling. The second step, otherwise referred to as 

“annealing”, allows the oligonucleotide primers to anneal to the denatured template by 

lowering the temperature to 50-65°C depending on the annealing temperature of the 

primers. The reaction proceeds with the extension, or elongation of the primers at 

72°C, the optimal temperature for Taq- and Pfu-polymerases. The duration of the 

extension steps are calculated according to the length of the target region and the 
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processivity of the polymerase (1min/1000bp for Taq; 1min/600bp for Pfu). Usually, 

the elongation time of the final cycle is longer (up to 10 minutes) to ensure that all 

product molecules are fully extended. Steps 1-3 constitute one cycle of the PCR. The 

whole PCR reaction is usually carried out in 25-30 cycles. Higher cycle numbers may 

result in an increase of unwanted artifacts, while no increase in the desired product is 

achieved. 

 

Typical amplification reaction: 50 ng Template DNA 

     5 µl 10x Pfu- or Taq-buffer 

     1 µl 10 mM dNTP-Mix 

     0.5 µl forward primer(c=10 pmol/µl) 

     0.5 µl reverse primer(c=10 pmol/µl)  

     2.5 U DNA polymerase 

     ad 50 µl with ddH2O 

 

6.2.1.3. DNA restriction digestion 

 

Restriction digestion of plasmid DNA was performed following a standardized 

protocol for the use of one or more endonucleases. The definition of 1 Unit (U) of 

restriction enzyme activity is the amount needed to completely digest one microgram 

of substrate DNA (often Lambda DNA) in one hour at the optimal temperature 

(usually 37°C). Additionally, each reaction is carried out with a buffer that ensures 

100% activity of the respective endonuclease. As a rule of thumb, the total volume of 

restriction enzyme in the digest should not exceed 10% of the total digest volume, 

which also ensures that the glycerol concentration in the reaction mixture remains 

below 5%. Once all the components, DNA, H2O and buffer, have been added to the 

reaction mix, the endonulease is applied, so it enters optimal reaction conditions. 

Under non-standard conditions, restriction endonucleases are capable of cleaving 

sequences, which are similar but not identical to their defined recognition sequence. 

This process is termed “star” activity, and is completely controllable in the vast 

majority of cases when the enzymes are used under the recommended conditions. 

Cleaving plasmid DNA with two restriction endonucleases simultaneously (double 
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digestion) is achieved by selecting a buffer that provides reaction conditions that are 

amenable to both restriction endonucleases. Choosing the optimal buffer for both 

enzymes should be done carefully under the guidelines supplied by the manufacturer 

(New England Biolabs). Alternatively, if no single buffer is available to satisfy the 

buffer requirements of both enzymes, the reactions should be done sequentially; the 

salt conditions adjusted in between digestions using a small volume of a concentrated 

salt solution to approximate the reaction conditions of the second restriction 

endonuclease. Reactions were stopped by thermal inactivation or by the addition of 

loading-buffer in preparation for gel electrophoresis. 

 

6.2.1.4. Agarose gel electrophoresis 

 

Agarose gel electrophoresis enables the user to monitor restriction digestion or PCR 

procedures, but also to size fractionate DNA molecules in order to purify these from 

the gel. Prior to gel casting, dried agarose is dissolved in buffer by heating and is then 

poured into a self assembled mold, into which a comb is fitted while the mixture is 

still wet. The percentage of agarose in the gel varies. In this work, 1% agarose was 

used, 1,5% agarose gels being necessary for the accurate size fractionation of DNA 

molecules smaller than 100 bp. Ethidium bromide (EtBr) (end concentration: 1 

µg/ml) was included in the gel matrix to enable fluorescent visualization of the DNA 

fragments under UV light. The gels were then submerged in electrophoresis buffer 

(1xTBE) in a horizontal electrophoresis apparatus. After the samples were mixed with 

gel loading dye and loaded into the sample wells, the electrophoresis was initiated by 

applying 100 mV for 30-45 minutes at RT. Size markers are co-electrophoresed with 

DNA samples for fragment size determination. After electrophoresis, the gel was 

placed on a UV light box and the fluorescent ethidium bromide-stained DNA pictured 

using the imaging system GeneFlash from Syngene. 
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6.2.1.5. DNA purification from agarose gels 

 

After electrophoresis, DNA fragments were visualized on a UV light box before being 

removed from the gels by the use of scalpels. Once captured, the DNA was eluted 

from the jellified agarose following the instructions of the “QIAquick Gel Extraction 

Kits” from Qiagen. 

 

6.2.1.6. Determination of DNA concentration 

 

DNA concentration and purity was determined by using the Peqlab 

spectrophotometer “NanoDrop™ ND-1000”. The concentration was determined by 

measuring the absorbance at 260 nm and purity was measured by calculating the ratio 

of absorbance at 260 versus 280 nm. 

 

6.2.1.7. DNA ligation 

 

Purified and restriction enzyme-treated DNA fragments (PCR product) were cloned 

into the desired plasmid vectors, which also have been treated with the respective 

endonucleases producing compatible overhangs. After the vector and insert DNA 

have been prepared and their concentration determined via agarose gel electrophoresis 

a 1 to 3 molar ratio of vector and insert was used for the reaction. All ligations were 

performed with ATP-dependent T4 DNA ligase and the provided buffer (New 

England Biolabs) either 1 hour at RT or overnight at 16°C. Following the reaction, the 

ligated DNA was transformed into an appropriate host strain, here the E. coli strain 

DH5α. 
 

6.2.1.8. DNA sequencing 

 

The sequencing of plasmids was performed by the Microchemistry CoreFacility of the 

MPI of Biochemistry (Martinsried, Germany) using fluorescently labelled nucleotides 

as described by Sanger and colleagues (Sanger et al. 1977). 
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6.2.1.9. DNA isolation from mouse tail biopsies 

 

After placing 0.5 cm of the mouse tail into a microcentrifuge tube, 500µl of Lysis 

buffer were added and incubated at 55°C overnight with gentle shaking. When no 

more tissue is left, the samples were centrifuged for 10 minutes (13.300 rpm, RT) to 

pellet residual hairs. Then, the supernatant was transferred into a fresh tube containing 

400µl isopropanol. After inverting several times, the samples were centrifuged for 5 

minutes (13.000 rpm, RT) and the supernatant was carefully aspirated. 300 µl of 70% 

ethanol was added to each sample and after centrifugation (5 minutes, 13.300 rpm, 

RT) the supernatant was discarded. The pellet was air-dried for ca. 10 minutes and 

dissolved in 300µl ddH2O overnight at 55°C with gentle shaking. 2 µl of each sample 

was used for PCR analysis.   

 

6.2.1.10. DNA preparation for pronuclear injection 

 

As original vector, the pCAGGS plasmid was used and the transgene (either Lifeact-

EGFP or Lifeact-mRFPruby) was inserted through XhoI restriction sites. After proven 

to have the correct sequence, the plasmids were purified with the Endofree Maxiprep 

Kit (Qiagen) to obtain a high amount and clean DNA. After digestion of 25µg DNA 

with AccI and HindIII (Lifeact-EGFP) or AccI and PstI (Lifeact-mRFPruby) the DNA 

fragments were separated in an 0,8 % agarose gel (made with 1x TAE buffer). To 

minimize ethidium bromide contamination of the sample only 10 µg were added to 

the gel.  

After separation, the fragment was cut out with a scalpel and transferred into a dialysis 

bag, filled with running buffer. The dialysis bag was fixed in the running chamber 

across the electric field and electrophoresis was continued for one hour at 80 Volt. To 

force the DNA back from the dialysis wall into the solution the polarity was changed 

for 30 seconds several times. 

Next, the DNA-containing solution was transferred into a 15 ml Faclon tube and 

purified using Elutip-D minicolumns (Schleicher&Schüll). After equilibration of the 

column with 5 ml low salt (LS)-buffer, a 1:2 mixture of the DNA-solution and LS-

buffer was added. After washing the column two times with 5 ml LS-buffer, the DNA 



Material and Methods 

 

 - 103 - 

was eluted with 400µl high salt-buffer. Ethanol-precipitated DNA was pelleted by 

centrifugation and and washed three times using ice-cold 70% Ethanol. After drying 

the DNA carefully on a 50°C heating block, it was resuspended in 30 µl injection 

buffer and used at a concentration of 100ng/µl. 

 

6.2.1.11. Peptide synthesis 

 

Lifeact peptide was synthesized in the Microchemistry Core Facility of the MPI of 

Biochemistry. In brief, peptides were prepared using solid-phase peptide synthesis on 

a Applied Biosystems 433 A automated peptide synthesizer equipped with 

deprotection monitoring for synthesis control. Preparative RP-HPLC was performed 

to purify the peptide to >90%. 

 

6.2.2. Biochemical methods 

 

6.2.2.1. Actin binding assay 

 
Polymerization of actin was induced by addition of 0.1xvolume 10x KMEI buffer and 

incubation for > 1h at room temperature (RT). 44 µM of F- Lifeact was incubated 

30min with F-actin and then spun 30min at 350,000xg at room temperature. The 

supernatant was removed and the pellet resuspended in 100 µl of 1x KMEI buffer. 

The amount of peptide was measured in a Cary Eclipse Fluorescence 

Spectrophotometer with excitation / emission set for FITC at 495 nm / 520 nm. The 

bound/total ratio was calculated as the signal from the pellet divided by the total 

signal. The Kd was obtained by fitting to a hyperbolic curve. 

Binding to G-actin was determined from a spectral scan of pyrene actin in the 

presence of varying amounts of F-Lifeact. Averages of 5 emission scans between 370 

nm and 500 nm were used with excitation set to 365 nm. The bound/total ratio was 

calculated from the absolute emission difference at 385 nm between a given Lifeact 

concentration and the control divided by the maximum difference observed. The Kd 

was obtained by fitting to a hyperbolic curve. 
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6.2.2.2. Actin polymerization and depolymerisation assay 

 
For polymerization assays, 20% pyrene-labelled actin was centrifuged at 350,000 x g 

for 30 min at 24C° to remove any nucleation seeds. Ca to Mg exchange was done 

adding 0.1xvolumes of 10x ME buffer for 2min. Polymerization was promoted by 

addition of 0.1xvolumes 10x KMEI buffer. The final volume was 100 µl. Pyrene 

fluorescence was monitored with the Cary Eclipse Spectrophotometer with excitation 

at 365nm and emission at 407 nm. To test the effect of F-Lifeact on polymerization 

different amount of F-Lifeact were added to the pyrene-actin after centrifugation and 

incubated for 5min. Depolymerization was measured by monitoring pyrene 

fluorescence after diluting 100% pyrene-labelled F-actin in 1x KMEI buffer to < 0.2 

µM. To test its effect on depolymerization the indicated concentrations of F-Lifeact 

were pre-incubated with F-actin for 5 min before dilution. 

 

6.2.2.3. Far UV CD Spectroscopy 

 
A Spectroscopolarimeter Jasco J-715 was used with the following settings: Nitrogen 

(N2) flow at 9 L/min, Scan speed at 50nm/min, Bandwidth and Data pitch 1nm, 

Continuous scanning mode and 1mm cuvette path length. Wavelengths were scanned 

from 260 to 190 nm. 20 scans were averaged and corrected for buffer signal. CD 

Buffer was PBS 10x diluted with ddH2O at pH 7.1. The mean residue ellipticity at 

wavelength λ is given by, [ ] ( )100 d m λλ
θ θ= ⋅ ⋅ ,  where θλ is the observed ellipticity 

(degrees) at wavelength λ, d is the path length (in cm) and m the molar concentration 

(4.4 µM). The units are deg cm2 dmol-1. 

 

6.2.2.4. NMR sample preparation and Spectroscopy 

 
For NMR F-Lifeact was dissolved in PBS pH 7.1. Unlabelled Lifeact was dissolved in 

PBS at pH 3. In order to stabilize secondary structure of the peptide, 15% (v/v) of 

1,1,1,3,3,3-hexafluoro-2-propanol-d2 (HFP-d2) was added to the sample of the 
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unlabeled peptide. 10% of D2O (v/v) was added to all samples. NMR measurements 

were carried out at 600 MHz on a Bruker DRX-600 spectrometer equipped with a 

cryoprobe at 300K. 2D nuclear Overhauser effect (NOESY) spectra were carried out 

with mixing time of 100 ms, and total correlated spectroscopy (TOCSY) spectra were 

recorded with DIPSI2 mixing sequence of 35 ms and 80 ms duration (for the 

unlabeled peptide solution in alcohol and labelled peptide dissolved in PBS, 

respectively). Water suppression was carried out using the WATERGATE sequence. 

Sequence specific resonance assignments were carried out as in (Czisch et al. 1993). 

Amino acids spin systems were identified by analysis of TOCSY spectra. NOESY 

spectra were used to observe contacts <5 Å (Wüthrich 1987). 

 

6.2.3. Cell culture methods 

 

6.2.3.1. Cultivation of mammalian cells 

 

Cell culture was carried out in a sterile bench (HERAsafe®, Thermo scientific) 

applying sterile working techniques. If nothing else is indicated, cells were cultivated at 

37°C, 5% CO2 and 95 % humidity (Heraeus® BBD 6220 incubator, Thermo 

scientific), and centrifugation was carried out at 1200 rpm (Heraeus® multifuge S1, 

Thermo scientific) for 5 minutes. 

 

6.2.3.2. Freezing and thawing of cells 

 

Cells were centrifuged and medium was completely aspirated. They were then 

resuspended in ice-cold freezing medium, transferred to Cryo-tubes (Greiner bio-one 

GmbH, Germany) and immediately placed on ice. All cells were stored at -80°C for 

short-term (up to 6 months) and in liquid nitrogen for long-term maintenance. 

 

Thawing of cells was achieved in a 37°C waterbath and they were then immediately 

poured into 10 ml medium. After centrifugation the cells were resuspended in medium 

and plated into culture flasks. 
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6.2.3.3. Primary cells 

 

Murine dendritic cells 

 

Dendritic cells are a heterogeneous population of bone-marrow-derived immune cells 

with complex progenitor development in vivo. Nevertheless, dendritic cells can be 

generated from flushed bone marrow suspension and subsequently differentiated in 

vitro with GM-CSF as described (Lutz et al., 1998). Shortly, bones are flushed with R10 

medium and the resulting bone marrow solution is washed with R10 medium. 2.5x106 

cells are then taken into culture into a 10cm cell culture dish containing 10ml of 

R10/10% GM-CSF. At day 3, 10ml of R10/20% GM-CSF were added and at day 6, 9 

and 12 10ml of the supernatant was replaced by 10ml R10/20% GM-CSF. To finally 

mature the dendritic cells by mimicking a bacterial infection, 200ng/ml 

lipopolysaccharide (LPS) was added over night at day 8-12 of culture. 

 

Murine skin fibroblasts 

 

Cell culture dishes (Falcon) were coated overnight with 1%-gelatine-solution (in 

1xPBS) at RT which was aspirated shortly before use. A piece of skin was placed on 

the dish in Dulbecco´s modified Eagle´s medium (DMEM) supplemented with 10% 

fetal calf serum (FCS) and 5% Penicillin/Streptomycin. After 7 -14 days fibroblasts 

migrated out of the tissue and could be cultured for about 4 weeks. For TIRFM they 

were transferred onto glass-bottom dishes (MatTek Corporation, USA).  

 

Murine T-lymphocytes 

 

The spleen was dissected and squeezed through a cell strainer to obtain a single cell 

suspension. The cells were maintained in RPMI1640 supplemented with 10% FCS, 

5% L-Glutamine and 5% Penicillin/Streptomycin and activated with 2-4 µg/ml 

ConcanavalinA (ConA) on day 0 – 3. Afterwards the ConA was replaced with 100 

U/ml Iinterleukin-2 (IL-2) though the cells could be maintained in culture about 2-3 

weeks.  
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Murine platelets 

 

Mice were anesthetized by inhalation of isoflurane, and 850 µL whole blood was 

collected by cardiac puncture into syringes containing 150 µL citrate buffer. Thereafter, 

1 mL Tyrode buffer (pH 6.5) was added, and the sample was centrifuged for 20 min at 

80 g. The platelet-rich plasma was pelleted at 1277 g for 10 min. Cells were then 

resuspended in Tyrode buffer (pH 7.4) and adjusted to a final concentration of 1.5 x 

105 platelets in 250 µL. For TIRFM imaging, glass-bottom dishes (MatTek) were 

coated with 200 µg/ml fibrinogen overnight at 4°C and blocked with 1% BSA for 1h 

at RT. After placing the cells on the dish they were treated with mouse thrombin (0.1 

U/mL) to initiate activation and immediately imaged at 37°C. 

 

Rodent hippocampal neurons 

 

Primary hippocampal neurons were cultured as described previously (de Hoop et al. 

1998). In brief, hippocampi of postnatal day 0 mice or rat were dissected, trypsinized 

(0.05 % Trypsin-EDTA) and washed in HBSS containing 7 mM HEPES, pH 7.25. 

Cells were then dissociated with glass Pasteur pipettes and 1-1.3 x 105 cells were 

placed on poly-lysine-coated glass coverslips in 6 cm-Petri dishes containing MEM 

and 10 % heat-inactivated horse serum. The cells were then kept in 5 % CO2 at 

36.5°C. After 6-12 h, the coverslips were transferred to a 6 cm dish containing 

astrocytes in MEM and N2 supplements. 

  

Human neutrophils 

 

Human peripheral blood neutrophils were isolated by density centrifugation using a 

Pancoll gradient. Briefly, 10 ml blood containing EDTA was diluted in 10 ml PBS and 

layered on 10 ml Pancoll. After 30 min centrifugation at 500 g neutrophil were 

separated from the erythrocyte rich pellet by dextran sedimentation. Residual 

erythrocytes were eliminated by hypertonic lysis and after washing in PBS, neutrophils 

were resuspended in RPMI containing 0.5% low endotoxin bovine serum albumin. 
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Neutrophil purity was routinely ~95% as assessed by forward and side scatter with 

flow cytometry as well as by morphological analysis. 

 

Mouse whole blood cells 

 

Few blood drops were drained from mouse tail vene into a 1.5ml tube containing ca. 

20µl 100U/ml Heparin (dissolved in 1xTBS) solution and stored in the fridge for up 

to six hours before use. Then, the sample was diluted with 500µl 1xPBS and pelleted 

with 1200 rpm for 5 minutes. Afterwards, 450µl ACK-lysis buffer was added for 5 

minutes at RT and deactivated with 1000µl 1xPBS. After centrifugation (1200 rpm, 5 

minutes) the pellet was resuspended in 200µl FACS buffer and stored on ice in the 

dark until use. 

 

6.2.3.4. Cell lines 

 

Madin-darby canine kidney cells (MDCK) 

 

MDCK cells were a kind gift from Dr. Stefan Busche, AG Dr. Guido Posern. They 

were maintained in D10 following standard procedures. 

 

 

Mouse embryonic fibroblasts (MEF)  

 

MEFs were a kind gift from Dr. Michael Leiss, Department Prof. Dr. Reinhard 

Fässler. They were maintained in D10 following standard procedures. 
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6.2.3.5. Transfection of cells 

 

Dendritic cells 

 

Cells between days 8-12 of culture were transfected with plasmids coding for 

fluorescent fusion proteins using the Amaxa Nucleofector Primary Mouse T-cell Kit 

and the Amaxa Nucleoporator (Amaxa, Cologne, Germany), following the 

manufacturer’s instructions. Generally, 5x106 dendritic cells were centrifuged at 90g 

for 5min and resuspended in 100µl Nucleofector solution. After addition of 4µg of 

plasmid-DNA, the sample was transferred to the provided Amaxa cuvette and 

nucleoporated using the program X-001. The sample was then transferred to 3 ml pre-

equilibrated (5% CO2, 37°C) R10/10% GM-CSF in a 6-well plate and over-night LPS 

stimulation was carried out by addition of LPS at least 2 hours after transfection. 

 

MDCK and MEF 

 

One day before transfection cells were transferred onto glass-bottom dishes (MatTek 

Corporation, USA) so that they will not be confluent the next day. To transfect the 

cells, Lipofectamine™2000 (Invitrogen) was used according to the manufacturer’s 

instructions. Briefly, medium was replaced with 2 ml serum-free Opti-MEM 

(Invitrogen) shortly before transfection. Both, 4µg of plasmid DNA and 10µl 

Lipofecatmine™2000 were mixed with 500µl Opti-MEM and incubated for 5 minutes 

at RT. Thereafter, the diluted DNA and Lipofectamine™2000 were combined and 

gently mixed. After ca. 25 minutes the mixture was added to the cells which were then 

incubated at 37°C for 18-48 hours prior to microscopic analysis. 

 

6.2.3.6. Stable cell lines 

 

To obtain cell lines which stably express a transgene, the medium was exchanged 24 

hours after transfection and 500 µg/ml G418 was added to the new medium. After ca. 
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14 days, stable subclones were isolated and further cultured in the appropriate medium 

containing G418. 

 

6.2.3.7. Scrape-loading of human neutrophils 

 

After purification of neutrophils from whole blood they were resuspended in 

RPMI/0.5%BSA and plated on a 6-well dish. Next, an incubation step with 10-15 

minutes at 37°C was necessary that the cells got into a “migrating” state. It is 

important that the cells did not adhere too strong on the dish to avoid irreversible 

damaging of these. The media was carefully aspirated and 200µl of 250µg/ml Peptide 

in 1xPBS was added. After scraping the cells of the dish they were centrifuged and 

resuspended in serum-free media. For TIRFM, the cells were plated onto glass-bottom 

dishes (MatTek). 

 

6.2.3.8. Immune-complex (IC) induced neutrophil 

activation 

 

To form ICs in vitro, glass slides were coated with 5 mg/ml ovalbumin in 1xPBS 

overnight at 4°C followed by washing and incubation in rabbit anti-ovalbumin serum 

at 50 µg/ml specific IgG for 2 hrs at room temperature. FITC-Lifeact loaded 

neutrophils were subjected to ICs in the presence of 10 ng/ml tumour necrosis factor 

α (TNFα) to study actin reorganization in response to ICs. 

 

6.2.3.9. Preparation of fertilized murine oocytes 

 

For superovulation, Lifeact-positive female mice were injected intraperitoneally with 5 

IU/ml pregnant mare serum gonadotropin (PMSG) and 47 hours later with 5 IU/ml 

human chorionic gonadotropin (hCG). Four hours after the last injection, the mice 

were mated with male wildtype mice overnight. The fertilized oocytes were prepared 

by flushing the oviducts after sacrificing the animals and cultured in KSOM-medium. 

For microscopic analysis they were transferred onto glass-bottom dishes (MatTek). 
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6.2.3.10. In vitro generation of E4.5 Embryos 

 

Isolated fertilized oocytes were incubated in KSOM medium at 37°C for 4.5 days. For 

microscopic analysis they were transferred onto glass-bottom dishes (MatTek). 

 

6.2.3.11. Polarization assay of rodent hippocampal neurons 

 

At 3 days after plating, neuronal cultures were fixed with 4% paraformaldehyde, 4% 

sucrose in PHEM fixation buffer for 20 min, and extracted with 0.1% Triton X-100 in 

PBS for 5 min. After blocking (2% FBS and 0.2% fish gelatin in PBS), the coverslips 

were incubated with primary antibody (in 0.2% FBS, 0.02% fish gelatin in PBS). For 

the identification of axons, a monoclonal anti-Tau-1 primary antibody (clone PC1C6) 

and an Alexa 350 goat anti-mouse secondary antibody were used. Images were 

acquired on an Axiovert 135/135 TV inverted microscopes (Carl Zeiss), equipped 

with standard filters for Green, Red, and UV fluorescence (Zeiss and AHF 

Analysentechnik), using a High performance CCD Camera 4912 (COHU) and Scion 

Image 4.0.2 software. 

6.2.3.12. Flow cytometry 

 

Fluorescence activated cell sorting (FACS) was either carried out to analyze blood cell 

populations for fluorescence-positive cells using a FACS-Calibur (Becton Dickison), 

or carried out for sorting of fluorescence-positive cells using a FACS-Aria (Becton-

Dickinson). 

For the former, total splenocytes were obtained by mincing spleens from transgenic 

and control mice. Myeloid cells were identified as CD11b+, B lymphocytes as B220+, 

helper T lymphocytes as TCRβ+, CD4+ and cytotoxic T lymphocytes as TCRβ+, 

CD8+. Employed antibodies were against the mouse antigens: GPIα-PE, B220 PE, 

CD11b PE, CD4 PE, CD8 PE, TER119 PE, TCRβ-APC (see chapter ???).  

To separate fluorescence-positive cells, they were collected, centrifuged and 

resuspended in FACS buffer. During sorting the positive cells were collected in a 
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collection tube and afterwards resuspended in fresh medium and replated on cell 

culture dishes. Flow cytometric analysis was performed with a FACScalibur and 

CellQuest Pro Software (BD Biosciences). 

 

6.2.3.13. Cell staining for flow cytometry 

 

Single-cell suspension was centrifuged and washed one time in 1xPBS. 0.2-1x106 cells 

were resuspended in 50µl FACS-buffer containing the fluorophore-labeled antibody 

and incubated for 20-30 minutes in the dark. Next, 150µl FACS buffer was added to 

the cells and after centrifugation, they were resuspended in 200µl FACS buffer. The 

samples were stored on ice in the dark till use (max. two hours). 

 

6.2.3.14. Migration assays 

 

Under-agarose migration assay 

 

Cell migration was analyzed in an under-agarose assay. 2.5% UltraPure agarose was 

dissolved in distilled water, heated and mixed with 55°C pre-warmed RPMI/20% FCS 

and 2x Hank’s buffered salt solution at a 1:2:1 ratio, resulting in an agarose 

concentration of 6.25 mg/ml. 1.5 ml of warm agarose-medium mixture was cast in 

glass-bottom dishes (MatTek) and allowed to polymerize at room temperature. After 

30 min of equilibration at 37 °C, 5 % CO2, 1 µl of cell suspension (~ 5x105 cells) was 

injected beneath agarose and dish bottom with a fine pipette tip and time-lapse video 

microscopy recording was started immediately. 

 

3D-Collagen migration assay 

 

PureCol in 1x Minimum Essential Medium Eagle (MEM) and 0.4% sodium 

bicarbonate was mixed with cells in RPMI, 10% FCS at a 2:1 ratio, resulting in gels 

with a collagen concentration of 1.6 mg/ml. Final cell concentrations in the assay were 

1 x 106 cells/ml gel. Collagen-cell mixtures were cast in custom-made migration 
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chambers with a thickness of 0.5–1 mm. After 30 min assembly of the collagen fibers 

at 37 °C, the gels were overlaid with 50 µl of the recombinant chemokine CCL19 (0.6 

µg/ml) diluted in RPMI, 10% FCS. 

 

6.2.4. Mouse work 

 

6.2.4.1. Generation of transgenic mice 

 

To obtain transgenic mice we generated two constructs, originating from pCAG-

vector (Okabe et al. 1997), with a cytomegalovirus enhancer, chicken-β-actin 

promoter, a chimeric intron followed either by the Lifeact-EGFP or the Lifeact-

mRFPruby1 sequence and a poly(A)-tail. Constructs were digested with AccI and 

HindIII (EGFP) and AccI-PstI (mRFPruby), the linearized DNA was injected into 

fertilized oocytes (C57BL6/N x FVB/N (F2)) and transferred into pseudo-pregnant 

females. The insertion of either transgene into the genome was tested in >100 pups of 

each strain by PCR (primers Lifeact-EGFP: fwd: gcacgacttcttcaagtccgccatgcc, rev: 

gcggatcttgaagttcaccttgatgcc; Lifeact-mRFPruby: fwd: gctccgaggatgtcatcaaagag, rev: 

catgaatcttcccacttgaagc). Transgene-positive putative founder mice were mated with a 

129SV/C57BL/6 mouse to test germline transmission of Lifeact. Offspring was 

analyzed directly with a standard UV-hand lamp (for Lifeact-EGFP-mice). 

Alternatively, for Lifeact-mRFPruby mice, a piece of tail was analyzed under a stereo 

microscope (Leica). The two best founders of each strain were used for all 

experiments in this study. All positive founders were mated with 129SV/C57BL/6 

mice. All control animals were of mixed 129SV/C57BL/6 genetic background. The 

mice were bred according to local regulations at the Max Planck Institute of 

Biochemistry. 

 

6.2.4.2. Preparation of embryos and organs 

 

After CO2 suffocation of mice organs were removed, placed in cold phosphate 

buffered saline (PBS, pH 7.4) and immediately imaged with a stereo microscope (Leica 
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MZ16 FA, Leica Microsystems). E10.5 and E15.5 embryos were prepared and imaged 

in the same way. Fertilized oocytes were isolated from pregnant mice and kept in 

culture till E4.5. Epifluorescence images were collected on a Zeiss Axiovert 200M 

stand equipped with a climate control chamber from EMBL. 

 

6.2.4.3. Cryosections of organs 

 

After CO2 suffocation of mice organs were dissected and immediately frozen in 

TissueTek on dry ice. Cryo-sections (8 – 10 µm) were cut and used for histochemistry 

as described before. Phalloidin-Alexa 488 and -Alexa 560 were used to counter stain 

for F-actin. Images were taken on a Zeiss Axio Imager controlled by Axiovision 

software (Release 4.6.3). 

 

6.2.4.4. Preparation of cartilage sections 

 

Tibia isolated from newborn Lifeact mouse was placed into PBS and cleaned from the 

surrounding muscle by fine forceps. The proximal cartilage was separated from the 

bony shaft using a razor blade and serial longitudinal sections of the growth plate 

cartilage were cut on a vibratome (Microm, HM 650) at 100 µm. Tissue slices were 

glued onto plasma treated 35mm glass bottom culture dishes (MatTek) by the ARTISS 

fibrin sealant and overlaid with 3 ml Opti-MEM/10%FCS/10mM Hepes, pH 7.4. The 

samples were cultured in a custom-made climate chamber at 37°C and 5% CO2 for 

12-24 hours during microscopy. 

 

6.2.5. Microscopic methods 

 

6.2.5.1. Epifluorescence microscopy 
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Images of yeast cells were acquired on a Zeiss AxioImager A1 microscope equipped 

with an Olympus 100x/NA oil immersion objective and controlled by Metamorph 

Software (Molecular Devices). 

Images of stained cryosections were aquired on a Zeiss AxioImager Z1 equipped with 

an EC Plan-Neofluar 40x/NA0.75 air objective and controlled by AxioVision 

software (Zeiss, Release 4.6.3). 

Movies of living cells were collected on a Zeiss AxioVert 200M stand equipped with a 

CCD camera (Princeton Instruments) embedded in a climate control chamber from 

EMBL (5% CO2, 37°C, humidified) and controlled by Metamorph software 

(Molecular Devices). 

Movies of 3D-collagen chemotaxis assays were recorded using Axiovert 40 (Zeiss) 

cell-culture microscopes, equipped with custom-built climate chambers (5% CO2, 

37°C, humidified) and PAL cameras (Prosilica, Burnaby, BC) triggered by custom-

made software (SVS Vistek, Seefeld, Germany). The objective used was an A-Plan 

10x/0.25 Ph1 (Zeiss) or 20x/0.25 Ph1 (Zeiss). Speed of dendritic cells was manually 

measured over 2 to 3 hours with Metamorph Software (Molecular Devices). 

 

6.2.5.2. Stereomicroscopy 

 

Images of whole organs and embryos as well as genotyping of the transgenic mice 

(analyzing a tail piece) were performed using a LEICA (Wetzlar, Germany) MZ 16 FA 

stereomicroscope equipped with a PlanApo 1.0x objective and controlled by 

Metamorph software (Molecular Devices). 

 

6.2.5.3. Total internal reflection fluorescence microscopy 

 

Migrating T-cells under agarose and platelet spreading was visualized with an inverted 

Zeiss Axiovert 200M microscope equipped with a total internal reflection setup, 

Coolsnap HQ2 camera (Photometrics) and a Plan-FLUAR 100x/1.45 oil objective 

(Zeiss). 
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TIRF images of yeast cells, neurons, MEFs, MDCK and skin fibroblasts were 

captured on an iMIC-stand from TILL Photonics with a 1.45 NA 100x objective from 

Olympus. Images were collected with an iXon897 EMCCD camera (Andor). The 

setup was controlled by the Live Acquisition software package (TILL Photonics). 

6.2.5.4. Confocal microscopy 

 

Images of stained cryosections were acquired with a LEICA (Wetzlar, Germany) TCS 

SP2 AOBS confocal laser scanning microscope equipped with a LEICA HCX PL 

APO 63x/NA1.4 oil immersion objective and controlled by Metamorph software 

(Molecular Devices). 

 

6.2.5.5. Spinning disc microscopy 

 

Images of cartilage explants were acquired with a CSU10 spinning disc microscope 

(Visitron Systems) equipped with a Plan-Apochromat 40x objective and a CoolSnap 

HQ2 CCD camera and controlled by Metamorph software (Molecular Devices). 

 

6.2.5.6. Image processing and data analysis 

  

All image processing steps were performed with Metamorph software (Molecular 

Devices). Data analysis was performed using Metamorph software, MS Excel and 

GraphPad Prism®. 
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7 ABBREVIATIONS and INITIALISMS 

 

µM Micromolar 

µm Micrometer 

2D Two dimensional 

3D Three dimensional 

aa Amino acid 

ABD Actin-binding domain 

Abp Actin-binding protein 

ADF Actin-depolymerizing factor 

ADP Adenosine-di-phosphate 

Arp Actin-related protein 

ATP Adenosine-tri-phosphate 

BSA Bovine serum albumin 

CAG Chicken-β-actin 

CCL C-C motif chemokine ligand 

CD Circular dichroism 

CD Cluster of differentiation 

CMV Cytomegalovirus 

ConA Concanavalin A 

Cy3 Cyanine dye 3 

DC Dendritic cell 

DIC Differential interference contrast 

DNA Desoxyribonucleic acid 

E Embryonic day 

EDTA Ethylen-diamine-tetra-acetate 

e.g. For example 

EGFP Enhanced green fluorescent protein 

EtBr Ethidiumbromide 

FACS Fluorescence activated cell sorting 

F-actin Filamentous actin 
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FH Formin homology 

FITC Fluorescein-5-isothiocyanat 

F-Lifeact FITC-Lifeact 

FRAP Fluorescence recovery after photoblaeching 

G-actin Globular actin 

GFP Green fluorescent protein 

GPI α Glycosylphosphatidylinositol α 

hCG Human chorionic gonadotropin 

i.e. For example 

IC Immune complex 

Ig Immunglobulin 

IL Interleukin 

Kd Dissociation constant 

kDa Kilo Dalton 

LPS Lipopolysaccharide 

M Molar 

MDCK Madin-darby canine kidney 

MEF Mouse embryonic fibroblast 

mRFP Monomeric red fluorescent protein 

nM nanomolar 

nm Nanometer 

NMR Nuclear magnetic resonance 

OD Optical density 

ORF Open reading frame 

PCR Polymerase chain reaction 

PMSG Pregnant mare serum gonadotropin 

RNA Ribonucleic acid 

rpm Rounds per minute 

RT Room temperature 

SAM S-adenosyl-methionine 

s Second 

SD Standard deviation 
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SDS-PAGE Sodium dodecylsulfate polyacrylamid gel electrophoresis 

TCR T-cell receptor 

TIRFM Total internal reflection fluorescence microscopy 

T-lymphocyte Thymus-derived lymphocyte 

TNFα Tumor necrosis factor α 

U Unit 

UV Ultraviolett 

vs. Versus 

WASP Wiskott-Aldrich syndrome protein 

WH WASP homology 

wt Wildtype 

 



References 

 

 - 120 - 

8 REFERENCES 

 

Abe, K. & Takeichi, M., 2008. EPLIN mediates linkage of the cadherin–catenin 
complex to F-actin and stabilizes the circumferential actin belt. Proceedings of the 

National Academy of Sciences, 105(1), 13 -19. 

Abercrombie, M., Heaysman, J.E.M. & Pegrum, S.M., 1971. The locomotion of 
fibroblasts in culture : IV. Electron microscopy of the leading lamella. 
Experimental Cell Research, 67(2), 359-367. 

Aderem, A. & Underhill, D.M., 1999. Mechanims of phagocytosis in macrophages. 
Annual Review of Immunology, 17(1), 593-623. 

Alberts, B., 2002. Molecular biology of the cell 4. Aufl., New York: Garland Science. 

Alberts, B., 2008. Molecular biology of the cell 5. Aufl., New York: Garland Science. 

Armstrong, J.J. et al., 2010. Characterization of bacterial artificial chromosome 
transgenic mice expressing mCherry fluorescent protein substituted for the 
murine smooth muscle α-actin gene. genesis, 48(7), 457-463. 

Asakura, T. et al., 1998. Isolation and characterization of a novel actin filament-
binding protein from Saccharomyces cerevisiae. oncogene, 16(1), 121-30.  

Bailly, M. et al., 1998. Regulation of Protrusion Shape and Adhesion to the Substratum 
during Chemotactic Responses of Mammalian Carcinoma Cells. Experimental 

Cell Research, 241(2), 285-299. 

Baird, G.S., Zacharias, D.A. & Tsien, R.Y., 2000. Biochemistry, mutagenesis, and 
oligomerization of DsRed, a red fluorescent protein from coral. Proceedings of the 

National Academy of Sciences of the United States of America, 97(22), 11984 -11989. 

Ballestrem, C., Wehrle-Haller, B. & Imhof, B., 1998. Actin dynamics in living 
mammalian cells. J Cell Sci, 111(12), 1649-1658. 

Bamburg, J.R. & Bloom, G.S., 2009. Cytoskeletal pathologies of Alzheimer disease. 
Cell Motility and the Cytoskeleton, 66(8), 635-649. 

Bentley, D. & Toroian-Raymond, A., 1986. Disoriented pathfinding by pioneer 
neurone growth cones deprived of filopodia by cytochalasin treatment. Nature, 
323(6090), 712-715. 

Berg, J.S., Powell, B.C. & Cheney, R.E., 2001. A Millennial Myosin Census. Molecular 

Biology of the Cell, 12(4), 780-794. 



References 

 

 - 121 - 

Bettinger, B.T., Gilbert, D.M. & Amberg, D.C., 2004. Actin up in the nucleus. Nat Rev 

Mol Cell Biol, 5(5), 410-415. 

Bimboim, H. & Doly, J., 1979. A rapid alkaline extraction procedure for screening 
recombinant plasmid DNA. Nucleic Acids Research, 7(6), 1513-1523. 

Birnboim, H.C., 1983. A rapid alkaline extraction method for the isolation of plasmid 
DNA. In Recombinant DNA Part B.  Academic Press, 243-255.  

Bretschneider, T. u. a., 2004. Dynamic Actin Patterns and Arp2/3 Assembly at the 
Substrate-Attached Surface of Motile Cells. Current Biology, 14(1), 1-10. 

Burkel, B.M., Dassow, G.V. & Bement, W.M., 2007. Versatile fluorescent probes for 
actin filaments based on the actin-binding domain of utrophin. Cell Motility and 

the Cytoskeleton, 64(11), 822-832. 

Calaminus, S.D.J. et al., 2007. A major role for Scar/WAVE-1 downstream of GPVI 
in platelets. Journal of Thrombosis and Haemostasis, 5(3), 535-541. 

Carlier, M.F., 1991. Actin: protein structure and filament dynamics. Journal of Biological 

Chemistry, 266(1), 1-4. 

Chalkia, D. et al., 2008. Origins and Evolution of the Formin Multigene Family That 
Is Involved in the Formation of Actin Filaments. Molecular Biology and Evolution, 
25(12), 2717-2733. 

Chereau, D. et al., 2005. Actin-bound structures of Wiskott–Aldrich syndrome protein 
(WASP)-homology domain 2 and the implications for filament assembly. 
Proceedings of the National Academy of Sciences of the United States of America, 102(46), 
16644-16649. 

Chhabra, E.S. & Higgs, H.N., 2007. The many faces of actin: matching assembly 
factors with cellular structures. Nat Cell Biol, 9(10), 1110-1121. 

Co, D. et al., 2000. Generation of Transgenic Mice and Germline Transmission of a 
Mammalian Artificial Chromosome Introduced into Embryos by Pronuclear 
Microinjection. Chromosome Research, 8(3), 183-191. 

Collins, S.J., Gallo, R.C. & Gallagher, R.E., 1977. Continuous growth and 
differentiation of human myeloid leukaemic cells in suspension culture. Nature, 
270(5635), 347-349. 

Cooper, J., 1987. Effects of cytochalasin and phalloidin on actin. The Journal of Cell 

Biology, 105(4), 1473-1478. 

 



References 

 

 - 122 - 

Cooper, J.A., Walker, S.B. & Pollard, T.D., 1983. Pyrene actin: documentation of the 
validity of a sensitive assay for actin polymerization. Journal of Muscle Research 

and Cell Motility, 4(2), 253-262. 

Czisch, M. et al., 1993. Conformation of thymosin beta-4 in water determined by 
NMR spectroscopy. European Journal of Biochemistry, 218(2), 335-344. 

Day, R.N. & Davidson, M.W., 2009. The fluorescent protein palette: tools for cellular 
imaging. Chemical Society Reviews, 38(10), 2887-2921. 

Dick, E.P. et al., 2009. Pathways regulating lipopolysaccharide-induced neutrophil 
survival revealed by lentiviral transduction of primary human neutrophils. 
Immunology, 127(2), 249-255. 

Discher, D.E., Mooney, D.J. & Zandstra, P.W., 2009. Growth Factors, Matrices, and 
Forces Combine and Control Stem Cells. Science, 324(5935), 1673-1677. 

Dos Remedios, C.G. et al., 2003. Actin Binding Proteins: Regulation of Cytoskeletal 
Microfilaments. Physiological Reviews, 83(2), 433-473. 

Drenckhahn, D. & Pollard, T.D., 1986. Elongation of actin filaments is a diffusion-
limited reaction at the barbed end and is accelerated by inert macromolecules. 
Journal of Biological Chemistry, 261(27), 12754-12758. 

Edwards, J., 2004. Are [beta]-thymosins WH2 domains? FEBS Letters, 573(1-3), 231-
232. 

Edwards, K.A. et al., 1997. GFP-Moesin Illuminates Actin Cytoskeleton Dynamics in 
Living Tissue and Demonstrates Cell Shape Changes during Morphogenesis 
inDrosophila. Developmental Biology, 191(1), 103-117. 

van der Eerden, B.C.J., Karperien, M. & Wit, J.M., 2003. Systemic and Local 
Regulation of the Growth Plate. Endocrine Reviews, 24(6), 782-801. 

Endlich, N. et al., 2007. Movement of stress fibers away from focal adhesions 
identifies focal adhesions as sites of stress fiber assembly in stationary cells. Cell 

Motility and the Cytoskeleton, 64(12), 966-976. 

van den Ent, F., Amos, L.A. & Lowe, J., 2001. Prokaryotic origin of the actin 
cytoskeleton. Nature, 413(6851), 39-44. 

Esue, O., Tseng, Y. & Wirtz, D., 2009. α-Actinin and Filamin Cooperatively Enhance 
the Stiffness of Actin Filament Networks J. Z. Rappoport, hrsg. PLoS ONE, 
4(2), e4411. 

 



References 

 

 - 123 - 

Faulstich, H. et al., 1980. Virotoxins: actin-binding cyclic peptides of Amanita virosa 
mushrooms. Biochemistry, 19(14), 3334-3343. 

Faulstich, H., Georgopoulos, D. & Bloching, M., 1973. Quantitative chromatographic 
analysis of toxins in single mushrooms of amanita phalloides. Journal of 

Chromatography A, 79, 257-265. 

Fehrenbacher, K.L. et al., 2004. Live Cell Imaging of Mitochondrial Movement along 
Actin Cables in Budding Yeast. Current Biology, 14(22), 1996-2004. 

Feng, Z. et al., 2005. The influence of GFP-actin expression on the adhesion dynamics 
of HepG2 cells on a model extracellular matrix. Biomaterials, 26(26), 5348-5358. 

Fischer, M. et al., 2000. Glutamate receptors regulate actin-based plasticity in dendritic 
spines. Nat Neurosci, 3(9), 887-894. 

Fischer, M. et al., 2006. Visualizing cytoskeleton dynamics in mammalian cells using a 
humanized variant of monomeric red fluorescent protein. FEBS Letters, 
580(10), 2495-2502. 

Fitzpatrick, D. et al., 2006. A fungal phylogeny based on 42 complete genomes 
derived from supertree and combined gene analysis. BMC Evolutionary Biology, 
6(1), 99. 

Flynn, K.C. et al., 2009. Growth cone-like waves transport actin and promote 
axonogenesis and neurite branching. Developmental Neurobiology, 69(12), 761-779. 

Frock, R.L., 2006. Lamin A/C and emerin are critical for skeletal muscle satellite cell 
differentiation. Genes & Development, 20(4), 486-500. 

Gallwitz, D. & Sures, I., 1980. Structure of a split yeast gene: complete nucleotide 
sequence of the actin gene in Saccharomyces cerevisiae. Proceedings of the 

National Academy of Sciences of the United States of America, 77(5), 2546-2550. 

Gardet, A. et al., 2007. Role for Actin in the Polarized Release of Rotavirus. The Journal 

of Virology, 81(9), 4892-4894. 

Ghosh, M. et al., 2004. Cofilin Promotes Actin Polymerization and Defines the 
Direction of Cell Motility. Science, 304(5671), 743-746. 

Goley, E.D. & Welch, M.D., 2006. The ARP2/3 complex: an actin nucleator comes of 
age. Nature Reviews Molecular Cell Biology, 7(10), 713-726. 

Goode, B.L. & Eck, M.J., 2007. Mechanism and Function of Formins in the Control 
of Actin Assembly. Annual Review of Biochemistry, 76(1), 593-627. 

 



References 

 

 - 124 - 

Grant, B.D. & Donaldson, J.G., 2009. Pathways and mechanisms of endocytic 
recycling. Nat Rev Mol Cell Biol, 10(9), 597-608. 

Gunning, P. et al., 1983. Isolation and characterization of full-length cDNA clones for 
human alpha-, beta-, and gamma-actin mRNAs: skeletal but not cytoplasmic 
actins have an amino-terminal cysteine that is subsequently removed. Molecular 

and Cellular Biology, 3(5), 787-795. 

Gurniak, C.B. & Witke, W., 2007. HuGE, a novel GFP-actin-expressing mouse line 
for studying cytoskeletal dynamics. European Journal of Cell Biology, 86(1), 3-12. 

Hallahan, A.R. et al., 2004. The SmoA1 Mouse Model Reveals That Notch Signaling Is 
Critical for the Growth and Survival of Sonic Hedgehog-Induced 
Medulloblastomas. Cancer Research, 64(21), 7794-7800. 

Hart, M.C. & Cooper, J.A., 1999. Vertebrate Isoforms of Actin Capping Protein 
{beta} Have Distinct Functions in Vivo. The Journal of Cell Biology, 147(6), 1287-
1298. 

Hartwig, J.H. et al., 1999. The elegant platelet: signals controlling actin assembly. 
Thrombosis and Haemostasis, 82(2), 392-398. 

Heit, B. & Kubes, P., 2003. Measuring Chemotaxis and Chemokinesis: The Under-
Agarose Cell Migration Assay. Science Signaling, 2003(170), pl5. 

Hicke, L. & Dunn, R., 2003. Regulation of membrane protein transport by ubiquitin 
and ubiquitin-binding proteins. Annual Review of Cell and Developmental Biology, 
19(1), 141-172. 

Higgs, H.N. & Peterson, K.J., 2005. Phylogenetic Analysis of the Formin Homology 2 
Domain. Molecular Biology of the Cell, 16(1), 1-13. 

Hitoshi, N., Ken-ichi, Y. & Jun-ichi, M., 1991. Efficient selection for high-expression 
transfectants with a novel eukaryotic vector. Gene, 108(2), 193-199. 

Holweg, C.L., 2007. Living markers for actin block myosin-dependent motility of 
plant organelles and auxin. Cell Motility and the Cytoskeleton, 64(2), 69-81. 

de Hoop, M., Meyn, L. & Dotti, C., 1998. Culturing hippocampal neurons and 
astrocytes from fetal rodent brain. In Cell biology: A Laboratory Handbook. 

Hooper, M. et al., 1987. HPRT-deficient (Lesch–Nyhan) mouse embryos derived from 
germline colonization by cultured cells. Nature, 326(6110), 292-295. 

Huang, Y. et al., 2008. Mammalian Septins Are Required for Phagosome Formation. 
Mol. Biol. Cell, 19(4), 1717-1726. 



References 

 

 - 125 - 

 

Humphries, C.L. et al., 2002. Direct regulation of Arp2/3 complex activity and 
function by the actin binding protein coronin. The Journal of Cell Biology, 159(6), 
993-1004. 

Hwang, E. et al., 2003. Spindle orientation in Saccharomyces cerevisiae depends on 
the transport of microtubule ends along polarized actin cables. The Journal of 

Cell Biology, 161(3), 483-488. 

Ikawa, M. et al., 1998. `Green mice' and their potential usage in biological research. 
FEBS Letters, 430(1-2), 83-87. 

Ittner, L.M. & Gotz, J., 2007. Pronuclear injection for the production of transgenic 
mice. Nat. Protocols, 2(5), 1206-1215. 

Jancar, S. & Crespo, M.S., 2005. Immune complex-mediated tissue injury: a multistep 
paradigm. Trends in Immunology, 26(1), 48-55. 

Johansson, T. et al., 2010. Building a zoo of mice for genetic analyses: A 
comprehensive protocol for the rapid generation of BAC transgenic mice. 
genesis, 48(4), 264-80. 

Johnson, J. et al., 2006. Gene transfer and expression in human neutrophils. The phox 
homology domain of p47phox translocates to the plasma membrane but not to 
the membrane of mature phagosomes. BMC Immunology, 7(1), 28. 

Jones, L.J., Carballido-Lopez, R. & Errington, J., 2001. Control of Cell Shape in 
Bacteria: Helical, Actin-like Filaments in Bacillus subtilis. Cell, 104(6), 913-922. 

Jonkers, J. & Berns, A., 2002. Conditional mouse models of sporadic cancer. Nat Rev 

Cancer, 2(4), 251-265. 

Kabsch, W. et al., 1990. Atomic structure of the actin: DNase I complex. Nature, 
347(6288), 37-44. 

Kapoor, P. et al., 2008. An Unconventional Form of Actin in Protozoan 
Hemoflagellate, Leishmania. Journal of Biological Chemistry, 283(33), 22760-22773. 

Katz, J.E., Dlakic, M. & Clarke, S., 2003. Automated Identification of Putative 
Methyltransferases from Genomic Open Reading Frames. Molecular Cellular 

Proteomics, 2(8), 525-540. 

Kerkhoff, E., 2006. Cellular functions of the Spir actin-nucleation factors. Trends in 

Cell Biology, 16(9), 477-483. 

 



References 

 

 - 126 - 

Kina, T. et al., 2000. The monoclonal antibody TER-119 recognizes a molecule 
associated with glycophorin A and specifically marks the late stages of murine 
erythroid lineage. British Journal of Haematology, 109(2), 280-287. 

Koestler, S.A. et al., 2009. F- and G-Actin Concentrations in Lamellipodia of Moving 
Cells N. Hotchin, hrsg. PLoS ONE, 4(3), e4810. 

Lammermann, T. et al., 2008. Rapid leukocyte migration by integrin-independent 
flowing and squeezing. Nature, 453(7191), 51-55. 

Lappalainen, P. & Drubin, D.G., 1997. erratum: Cofilin promotes rapid actin filament 
turnover in vivo. Nature, 389(6647), 211. 

Lauffenburger, D.A. & Horwitz, A.F., 1996. Cell Migration: A Physically Integrated 
Molecular Process. Cell, 84(3), 359-369. 

Le Clainche, C. & Carlier, M., 2008. Regulation of Actin Assembly Associated With 
Protrusion and Adhesion in Cell Migration. Physiological Reviews, 88(2), 489-513. 

Lenart, P. et al., 2005. A contractile nuclear actin network drives chromosome 
congression in oocytes. Nature, 436(7052), 812-818. 

Li, H. et al., 2008. Actin-driven chromosomal motility leads to symmetry breaking in 
mammalian meiotic oocytes. Nat Cell Biol, 10(11), 1301-1308. 

Lin, C. & Forscher, P., 1995. Growth cone advance is inversely proportional to 
retrograde F-actin flow. Neuron, 14(4), 763-771. 

Linney, E. et al., 1999. Transgene Expression in Zebrafish: A Comparison of 
Retroviral-Vector and DNA-Injection Approaches. Developmental Biology, 
213(1), 207-216. 

Lu, D.P. et al., 2002. Regulation of cellular adhesion molecule expression in murine 
oocytes, peri-implantation and post-implantation embryos. Cell Res, 12(5-6), 
373-383. 

Madan Babu, M. et al., 2008. Eukaryotic gene regulation in three dimensions and its 
impact on genome evolution. Current Opinion in Genetics & Development, 18(6), 
571-582. 

Mammoto, A. et al., 2004. Role of RhoA, mDia, and ROCK in Cell Shape-dependent 
Control of the Skp2-p27kip1 Pathway and the G1/S Transition. Journal of 

Biological Chemistry, 279(25), 26323 -26330. 

Mao, X. et al., 2001. Activation of EGFP expression by Cre-mediated excision in a 
new ROSA26 reporter mouse strain. Blood, 97(1), 324-326. 



References 

 

 - 127 - 

Martin, A.C., Kaschube, M. & Wieschaus, E.F., 2009. Pulsed contractions of an actin-
myosin network drive apical constriction. Nature, 457(7228), 495-499. 

Martin, R.M. et al., 2007. Nucleolar marker for living cells. Histochemistry and Cell 

Biology, 127(3), 243-251. 

McGlashan, S.R., Jensen, C.G. & Poole, C.A., 2006. Localization of Extracellular 
Matrix Receptors on the Chondrocyte Primary Cilium. J. Histochem. Cytochem., 
54(9), 1005-1014. 

McNeil, P. et al., 1984. A method for incorporating macromolecules into adherent 
cells. The Journal of Cell Biology, 98(4), 1556-1564. 

Medeiros, N.A., Burnette, D.T. & Forscher, P., 2006. Myosin II functions in actin-
bundle turnover in neuronal growth cones. Nat Cell Biol, 8(3), 216-226. 

Mizuno, H. et al., 2001. Red Fluorescent Protein from Discosoma as a Fusion Tag and 
a Partner for Fluorescence Resonance Energy Transfer†. Biochemistry, 40(8), 
2502-2510. 

Mogilner, A. & Oster, G., 2003. Polymer Motors: Pushing out the Front and Pulling 
up the Back. Current Biology, 13(18), R721-R733. 

Montoya, M.C. et al., 2002. Cell adhesion and polarity during immune interactions. 
Immunological Reviews, 186(1), 68-82. 

Mullins, R.D., Heuser, J.A. & Pollard, T.D., 1998. The interaction of Arp2/3 complex 
with actin: Nucleation, high affinity pointed end capping, and formation of 
branching networks of filaments. Proceedings of the National Academy of Sciences of 

the United States of America, 95(11), 6181-6186. 

Nathan, C., 2006. Neutrophils and immunity: challenges and opportunities. Nat Rev 

Immunol, 6(3), 173-182. 

Neuhaus, J. et al., 1983. Treadmilling of actin. Journal of Muscle Research and Cell Motility, 
4(5), 507-527. 

Okabe, M. et al., 1997. `Green mice' as a source of ubiquitous green cells. FEBS 

Letters, 407(3), 313-319. 

Olson, T.M. et al., 2000. Inherited and de novo Mutations in the Cardiac Actin Gene 
Cause Hypertrophic Cardiomyopathy. Journal of Molecular and Cellular Cardiology, 
32(9), 1687-1694. 

Olson, T.M. et al., 1998. Actin Mutations in Dilated Cardiomyopathy, a Heritable 
Form of Heart Failure. Science, 280(5364), 750-752. 



References 

 

 - 128 - 

Otomo, T. et al., 2005. Structural basis of actin filament nucleation and processive 
capping by a formin homology 2 domain. Nature, 433(7025), 488-494. 

Page, R.L. et al., 1995. Transgene detection during early murine embryonic 
development after pronuclear microinjection. Transgenic Research, 4(1), 12-17. 

Pak, C.W., Flynn, K.C. & Bamburg, J.R., 2008. Actin-binding proteins take the reins in 
growth cones. Nat Rev Neurosci, 9(2), 136-147. 

Pang, K.M., Lee, E. & Knecht, D.A., 1998. Use of a fusion protein between GFP and 
an actin-binding domain to visualize transient filamentous-actin structures. 
Current Biology, 8(7), 405-408. 

Pantaloni, D. & Carlier, M., 1993. How profilin promotes actin filament assembly in 
the presence of thymosin [beta]4. Cell, 75(5), 1007-1014. 

Paunola, E., Mattila, P.K. & Lappalainen, P., 2002. WH2 domain: a small, versatile 
adapter for actin monomers. FEBS Letters, 513(1), 92-97. 

Pellegrin, S. & Mellor, H., 2007. Actin stress fibres. Journal of Cell Science, 120(20), 3491-
3499. 

Pollard, T., 1986. Rate constants for the reactions of ATP- and ADP-actin with the 
ends of actin filaments. The Journal of Cell Biology, 103(6), 2747-2754. 

Pollard, T.D., 2007. Regulation of Actin Filament Assembly by Arp2/3 Complex and 
Formins. Annual Review of Biophysics and Biomolecular Structure, 36(1), 451-477. 

Pollard, T.D. & Cooper, J.A., 2009. Actin, a Central Player in Cell Shape and 
Movement. Science, 326(5957), 1208-1212. 

Pring, M. et al., 2003. Mechanism of Formin-Induced Nucleation of Actin Filaments. 
Biochemistry, 42(2), 486-496. 

Pruyne, D. et al., 2002. Role of Formins in Actin Assembly: Nucleation and Barbed-
End Association. Science, 297(5581), 612-615. 

Qin, J.Y. et al., 2010. Systematic Comparison of Constitutive Promoters and the 
Doxycycline-Inducible Promoter I. A. Hansen, hrsg. PLoS ONE, 5(5), e10611. 

Qualmann, B. & Kessels, M.M., 2009. New players in actin polymerization - WH2-
domain-containing actin nucleators. Trends in Cell Biology, 19(6), 276-285. 

Raducanu, A. et al., 2009. β1 Integrin Deficiency Results in Multiple Abnormalities of 
the Knee Joint. Journal of Biological Chemistry, 284(35), 23780 -23792. 

 



References 

 

 - 129 - 

Renkawitz, J. et al., 2009. Adaptive force transmission in amoeboid cell migration. Nat 

Cell Biol, 11(12), 1438-1443. 

Riedl, J., 2007. Funktionale Charakterisierung des actin-bindenden Proteins Abp140 in 

Saccharomyces cerevisiae. Diplomarbeit., Fakultät für Biologie, Ludwig-
Maximilians-Universität München. 

Riedl, J. et al., 2008. Lifeact: a versatile marker to visualize F-actin. Nat Meth, 5(7), 605-
607. 

Rossy, J. et al., 2009. Flotillins Interact with PSGL-1 in Neutrophils and, upon 
Stimulation, Rapidly Organize into Membrane Domains Subsequently 
Accumulating in the Uropod M. Rojas, hrsg. PLoS ONE, 4(4), e5403. 

Sabatté, J. et al., 2007. Interplay of pathogens, cytokines and other stress signals in the 
regulation of dendritic cell function. Cytokine & Growth Factor Reviews, 18(1-2), 
5-17. 

Sagot, I. et al., 2002. An actin nucleation mechanism mediated by Bni1 and Profilin. 
Nat Cell Biol, 4(8), 626-631. 

Sanger, F., Nicklen, S. & Coulson, A.R., 1977. DNA sequencing with chain-
terminating inhibitors. Proceedings of the National Academy of Sciences of the United 

States of America, 74(12), 5463-5467. 

Sanger, J.W., 1975. Changing patterns of actin localization during cell division. 
Proceedings of the National Academy of Sciences of the United States of America, 72(5), 
1913-1916. 

Sanger, J.M. et al., 1989. Analysis of cell division using fluorescently labeled actin and 
myosin in living PtK2 cells. Cell Motility and the Cytoskeleton, 14(2), 201-219. 

Sarmiere, P.D. & Bamburg, J.R., 2004. Regulation of the neuronal actin cytoskeleton 
by ADF/cofilin. Journal of Neurobiology, 58(1), 103-117. 

Schüler, H., Mueller, A. & Matuschewski, K., 2005. Unusual properties of 
Plasmodium falciparum actin: new insights into microfilament dynamics of 
apicomplexan parasites. FEBS Letters, 579(3), 655-660. 

Schmit, A.C. & Lambert, A.M., 1990. Microinjected Fluorescent Phalloidin in Vivo 
Reveals the F-Actin Dynamics and Assembly in Higher Plant Mitotic Cells. 
THE PLANT CELL, 2(2), 129-138. 

Segal, A.W., 2005. How neutrophils kill microbes. Annual Review of Immunology, 23(1), 
197-223. 

 



References 

 

 - 130 - 

Sellers, J.R., 2000. Myosins: a diverse superfamily. Biochimica et Biophysica Acta (BBA) - 

Molecular Cell Research, 1496(1), 3-22. 

Sept, D. & McCammon, J.A., 2001. Thermodynamics and Kinetics of Actin Filament 
Nucleation. , 81(2), 667-674. 

Sheahan, M.B. et al., 2004. A Green Fluorescent Protein Fusion to Actin-Binding 
Domain 2 of Arabidopsis Fimbrin Highlights New Features of a Dynamic 
Actin Cytoskeleton in Live Plant Cells. Plant Physiology, 136(4), 3968-3978. 

Sheng, Y., Montplaisir, V. & Liu, X.J., 2005. Co-operation of Gsalpha and 
Gbetagamma in maintaining G2 arrest in xenopus oocytes. Journal of Cellular 

Physiology, 202(1), 32-40. 

Stanley, P. et al., 2007. Intermediate-affinity LFA-1 binds α-actinin-1 to control 
migration at the leading edge of the T cell. The EMBO Journal, 27(1), 62-75. 

Suresh, S., 2007. Biomechanics and biophysics of cancer cells. Acta Biomaterialia, 3(4), 
413-438. 

Tang, T. et al., 1997. A Role for Mac-1 (CDIIb/CD18) in Immune Complex-
stimulated Neutrophil Function In Vivo: Mac-1 Deficiency Abrogates 
Sustained Fc{gamma} Receptor-dependent Neutrophil Adhesion and 
Complement-dependent Proteinuria in Acute Glomerulonephritis. The Journal 

of Experimental Medicine, 186(11), 1853-1863. 

Todorova, R., 2009. Estimation of methods of protein delivery into mammalian cells 
— A comparative study by electroporation and Bioporter assay. Applied 

Biochemistry and Microbiology, 45(4), 444-448. 

Vaezi, A. et al., 2002. Actin Cable Dynamics and Rho/Rock Orchestrate a Polarized 
Cytoskeletal Architecture in the Early Steps of Assembling a Stratified 
Epithelium. Developmental Cell, 3(3), 367-381. 

Vidal, C. et al., 2002. Cdc42/Rac1-dependent activation of the p21-activated kinase 
(PAK) regulates human platelet lamellipodia spreading: implication of the 
cortical-actin binding protein cortactin. Blood, 100(13), 4462-4469. 

Wang, M.H., Frishman, L.J. & Otteson, D.C., 2009. Intracellular delivery of proteins 
into mouse Müller glia cells in vitro and in vivo using Pep-1 transfection 
reagent. Journal of Neuroscience Methods, 177(2), 403-419. 

Wang, S. et al., 2006. Development and validation of vectors containing multiple 
siRNA expression cassettes for maximizing the efficiency of gene silencing. 
BMC Biotechnology, 6(1), 50. 



References 

 

 - 131 - 

Waterman-Storer, C.M. et al., 1998. Fluorescent speckle microscopy, a method to 
visualize the dynamics of protein assemblies in living cells. Current Biology, 
8(22), 1227-1230, S1. 

Wedlich-Soldner, R. & Li, R., 2004. Closing the loops: new insights into the role and 
regulation of actin during cell polarization. Experimental Cell Research, 301(1), 8-
15. 

Wegner, A. & Engel, J., 1975. Kinetics of the cooperative association of actin to actin 
filament. Biophysical Chemistry, 3(3), 215-225. 

Wehland, J., Osborn, M. & Weber, K., 1977. Phalloidin-induced actin polymerization 
in the cytoplasm of cultured cells interferes with cell locomotion and growth. 
Proceedings of the National Academy of Sciences of the United States of America, 74(12), 
5613-5617. 

Weiner, O.D., 2002. Regulation of cell polarity during eukaryotic chemotaxis: the 
chemotactic compass. Current Opinion in Cell Biology, 14(2), 196-202. 

Weiner, O.D. et al., 2006. Hem-1 Complexes Are Essential for Rac Activation, Actin 
Polymerization, and Myosin Regulation during Neutrophil Chemotaxis. PLoS 

Biology, 4(2), e38. 

Weiner, O.D. et al., 1999. Spatial control of actin polymerization during neutrophil 
chemotaxis. Nat Cell Biol, 1(2), 75-81. 

Weinzierl, G. et al., 2002. Regulation of cell separation in the dimorphic fungus 
Ustilago maydis. Molecular Microbiology, 45(1), 219-231. 

Wieland, T., Miura, T. & Seeliger, A., 1983. Analogs of Phalloidin - D-ABU2-LYS7-
Phalloin, an  F-Actin binding analog, its rhodamine conjugate (RLP) a novel 
fluorescent F-Actin-Probe, and D-ALA2-LEU7-Phalloin, an inert peptide. , 
21(1), 3-10. 

Witke, W. et al., 2001. Profilin I is essential for cell survival and cell division in early 
mouse development. Proceedings of the National Academy of Sciences of the United 

States of America, 98(7), 3832-3836. 

Witte, H. & Bradke, F., 2008. The role of the cytoskeleton during neuronal 
polarization. Current Opinion in Neurobiology, 18(5), 479-487. 

Woods, A., Wang, G. & Beier, F., 2007. Regulation of chondrocyte differentiation by 
the actin cytoskeleton and adhesive interactions. Journal of Cellular Physiology, 
213(1), 1-8. 

 



References 

 

 - 132 - 

Wüthrich, K., 1986. NMR of proteins and nucleic acids, Wiley, New York. 

Xu, Y. et al., 2004. Crystal Structures of a Formin Homology-2 Domain Reveal a 
Tethered Dimer Architecture. Cell, 116(5), 711-723. 

Yamada, S. et al., 2005. Deconstructing the Cadherin-Catenin-Actin Complex. Cell, 
123(5), 889-901. 

Yang, H. & Pon, L.A., 2002. Actin cable dynamics in budding yeast. Proceedings of the 

National Academy of Sciences of the United States of America, 99(2), 751-756. 

Yang, X. et al., 2004. LATS1 tumour suppressor affects cytokinesis by inhibiting 
LIMK1. Nat Cell Biol, 6(7), 609-617. 

Zheng, J., Wan, J. & Poo, M., 1996. Essential role of filopodia in chemotropic turning 
of nerve growth cone induced by a glutamate gradient. Journal of Neuroscience, 
16(3), 1140-1149. 

Zhu, M. et al., 2003. Mutations in the [gamma]-Actin Gene (ACTG1) Are Associated 
with Dominant Progressive Deafness (DFNA20/26). The American Journal of 

Human Genetics, 73(5), 1082-1091. 



Publications and Meetings 

 

  ‐ 133 ‐ 

9 PUBLICATIONS and MEETINGS 
 

9.1 Presentations at international conferences 

 

 Riedl J, Kessenbrock K, Yu JH, Crevenna AH, Neukirchen D, Bista M, 
Bradke F, Jenne D, Holak T, Werb Z, Sixt M, Wedlich-Söldner R. Lifeact 
– a novel, versatile marker for the visualization of F-actin. 47th Annual 
Meeting of the American Society of Cell Biology, Washington D.C., 
USA (2007). (Poster presentation) 

 

9.2 Publications in peer-reviewed journals 

 

 Riedl J*, Crevenna AH*, Kessenbrock K, Yu JH, Neukirchen D, Bista M, 
Bradke F, Jenne DE, Holak TA, Werb Z, Sixt M & Wedlich-Söldner R. 
Lifeact – a versatile marker for the visualization of F-actin. Nature 
Methods 5 (7), 605-607 (2008). * equal contribution 
 

 Riedl J, Flynn KC, Raducanu A, Gärtner F, Beck G, Bösl M, Bradke F, 
Massberg S, Aszodi A, Sixt M & Wedlich-Söldner R. Lifeact-mice for 
studying F-actin dynamics. Nature Methods 7 (3), 168-169 (2010). 
 
 
 

9.3 Patent applications 
 
 

 WO2009068295 
 
Peptide for determining actin structures in living cells 
 



Acknowledgements 

 

 - 134 - 

10 ACKNOWLEDGEMENTS 

 

Many people contributed to my work in different ways and I would like to say “thank 

you” to all of you.  

First of all, I would like to thank my supervisors Dr. Roland Wedlich-Söldner and Dr. 

Michael Sixt for giving me the opportunity to work on this highly interesting research 

project and for their continuous guidance and support during my thesis. 

I am thankful to Prof. Dr. Thomas Cremer for his interest in my research project and 

for being my principal supervisor at the biological faculty of the Ludwig Maximilian 

University in Munich. I also would like to thank Prof. Charles David for being my 

second supervisor. 

I am very thankful to the people who carefully reviewed my work: Dr. Michele Weber, 

Dr. Alvaro Crevenna, Nikola Müller and Tina Freisinger.  

I am also thankful to the animal caretakers for help in mouse breeding, in particular 

Julia Handwerker and Jens Päßler.  

Special thanks also to Karin Hirsch and Gisela Beck for tremendous help in the lab.  

I want to thank all people of different labs who helped me not only in scientific 

matters: Dr. Michael Bösl, Dr. Min-Weissenhorn, Marsilius Mues, Christoph Vahl, Dr. 

Aurelia Raducanu, Florian Gärtner, Dr. Kevin Flynn, Dorothee Neukirchen, Dr. 

Holger Pflicke, Dr. Tim Lämmermann, Kathrin Schumann, Dr. Kai Kessenbrock and 

Dr. Michele Weber. 

Furthermore, I am thankful to Dr. Roman Zantl and Dr. Valentin Kahl for the warm 

welcome at ibidi and their patience and support during the last, “short” time finishing 

my thesis. 

I have benefited greatly from the pleasant working environment and I thank each 

member of the Wedlich-Söldner group. Especially, I would like to thank Felix, Nikola, 

Tina and Gisela for discussing scientific and non-scientific issues, for continuous help 

and a lot of fun.  



Acknowledgements 

 

 - 135 - 

Michele, thank you so much for your support and sympathetic ears, especially during 

the last months of my thesis.  

Ganz besonders möchte ich meiner Familie, vor allem meinen Eltern, danken. Nur 

durch Eure uneingeschränkte Unterstützung und Motivation in jeglicher Form und zu 

jeder Zeit, war es möglich, bis hierher zu kommen. Es ist wundervoll ein Zuhause zu 

haben, in dem man immer willkommen ist! Vielen Dank für alles. 

Am meisten möchte ich mich bei meinem Mann, Thomas, bedanken. Die vielen 

Abendessen, aufmunternden Worte und Dein Glaube an mich haben sehr dazu 

beigetragen, dass ich mit dieser Arbeit fertig geworden bin. Ohne Dich hätte ich das 

nicht geschafft! Danke. 

 



Curriculum vitae 
____________________________________________________________________________ 

 - 136 - 

11 CURRICULUM VITAE 

PERSONAL INFORMATION 

Name 

Nationality 

Date and place of birth 

Marital status 

 

Julia Riedl 

German 

13.05.1982 in Gräfelfing, Germany 

Married, no children 

 

EDUCATION 

 

02/2007 – 02/2010 

 

 

 

04/2006 – 01/2007 

 

 

 

 

 

10/2001 – 01/2007 

 

 

 

 

 

09/1992 – 07/2001 

 

 

 

09/1988 – 07/1992 

 

Max-Planck Institute of Biochemistry, Martinsried, Germany 

Research Group Cellular dynamics and Cell patterning 

Ph.D. thesis with Dr. Roland Wedlich-Söldner and Dr. Michael Sixt 

 

Max-Planck Institute of Biochemistry, Martinsried, Germany 

Research Group Cellular dynamics and Cell patterning 

Diploma thesis with Dr. Roland Wedlich-Söldner 

“Funktionale Charakterisierung des actin-bindenden Proteins 

Abp140 in Saccharomyces cerevisiae” 

 

Ludwig-Maximilians-University, München, Germany 

Studies in biology 

Majors: Anthropology and Human Genetics 

Minors: Genetics, Immunology 

Diplom-Biologin (Master of Science), final grade: very good (1.3) 

 

Carl-Spitzweg-Gymnasium, Germering, Germany 

Allgemeine Hochschulreife (university entrance qualification) 

Final grade: good (2.0) 

 

Kleinfeldschule, Germering, Germany 

Primary school 

 


	Riedl_Julia
	Sammelmappe9.pdf
	Sammelmappe8.pdf
	Sammelmappe7.pdf
	Sammelmappe5.pdf
	Title pages_1.pdf
	table.pdf
	Sammelmappe1.pdf
	final-10_summary.pdf
	Sammelmappe1.pdf
	final-10_summary.pdf
	Sammelmappe1.pdf
	Title pages_1.pdf
	Sammelmappe1.pdf
	table.pdf
	final-10neu2.pdf





	Sammelmappe6.pdf
	final-10_MM.pdf
	Sammelmappe5_2.pdf
	Title pages_1.pdf
	table.pdf
	Sammelmappe1.pdf
	final-10_summary.pdf
	Sammelmappe1.pdf
	final-10_summary.pdf
	Sammelmappe1.pdf
	Title pages_1.pdf
	Sammelmappe1.pdf
	table.pdf
	final-10neu2.pdf







	final-10-pub.pdf

	Sammelmappe7.pdf
	Sammelmappe5.pdf
	Title pages_1.pdf
	table.pdf
	Sammelmappe1.pdf
	final-10_summary.pdf
	Sammelmappe1.pdf
	final-10_summary.pdf
	Sammelmappe1.pdf
	Title pages_1.pdf
	Sammelmappe1.pdf
	table.pdf
	final-10neu2.pdf





	Sammelmappe6.pdf
	final-10_MM.pdf
	Sammelmappe5_2.pdf
	Title pages_1.pdf
	table.pdf
	Sammelmappe1.pdf
	final-10_summary.pdf
	Sammelmappe1.pdf
	final-10_summary.pdf
	Sammelmappe1.pdf
	Title pages_1.pdf
	Sammelmappe1.pdf
	table.pdf
	final-10neu2.pdf








	Dissertation_JR.pdf
	Title pages_1
	final-12.pdf


	CV_ohne Adresse.pdf



