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Abstract

In regression models with a large number of potential model terms, the
selection of an appropriate subset of covariates and their interactions is an
important challenge for data analysis, as is the choice of the appropriate
representation of their impact on the quantities to be estimated such as
deciding between linear or smooth non-linear effects. The main part of this
work is dedicated to the development, implementation and validation of
an extension of stochastic search variable selection (SSVS) for structured
additive regression models aimed at finding and estimating appropriate and
parsimonious model representations. The approach described here is the
first implementation of fully Bayesian variable selection and model choice
for general responses from the exponential family in generalized additive
mixed models (GAMM) available in free and open source software. It is
based on a spike-and-slab prior on the regression coefficients with an inno-
vative multiplicative parameter expansion that induces desirable shrinkage
properties. This thesis points out a possible reason why previous attempts at
extending SSVS algorithms for the selection of parameter vectors have not
been entirely successful, discusses the regularization properties of the novel
prior structure, investigates sensitivity of observed results with regard to
the choice of hyperparameters and compares the performance on real and
simulated data in a variety of scenarios to that of established methods such
as boosting, conventional generalized additive mixed models and LASSO
estimation. Some case studies show the usefulness as well as the limitations
of the approach.

The second part of this work presents a method for locally adaptive func-
tion estimation for functions with spatially varying roughness properties.
An implementation of locally adaptive penalized spline smoothing using a
class of heavy-tailed shrinkage priors for the estimation of functional forms
with highly varying curvature or discontinuities is presented. These priors
utilize scale mixtures of normals with locally varying exponential-gamma
distributed variances for the differences of the P-spline coefficients. A fully
Bayesian hierarchical structure is derived with inference about the posterior
being based on Markov Chain Monte Carlo techniques. Three increasingly
flexible and automatic approaches are introduced to estimate the spatially
varying structure of the variances. Extensive simulation studies for Gaussian,
Poisson, and Binomial responses shows that the performance of this approach
on a number of benchmark functions is competitive to that of previous ap-
proaches. Results from two applications support the conclusions of the simu-
lation studies.



Zusammenfassung

In Regressionsmodellen mit einer großen Zahl von potentiellen Modellter-
men ist die Auswahl einer angemessenen Teilmenge an Kovariablen sowie
ihrer Interaktionen eine wichtige Herausforderung der angewandten Statis-
tik. Zusätzlich muss zwischen linearen und glatten funktionalen Formen
der Effekte unterschieden werden. Der Hauptteil dieser Arbeit befasst sich
mit der Entwicklung, Implementierung und Validierung einer Erweiterung
des Stochastic Search Variable Selection-Ansatzes (SSVS) um in strukturi-
erten additiven Regressionsmodellen geeignete parametersparsame Modelle
auszuwählen und zu schätzen. Die entwickelten Methoden sind der erste in
frei verfügbarer Software implementierte Ansatz der voll-Bayesianische Vari-
ablenselektion und Modellwahl für Zielvariablen aus Exponentialfamilien in
generalisierten additiven gemischten Modellen erlaubt. Er basiert auf einer
Spike-and-Slab Priori mit einer innovativen multiplikativen Parameterex-
pansion, die besonders günstige Regularisierungseigenschaften besitzt. Die
vorliegende Arbeit diskutiert mögliche Ursachen, warum bisherige Versuche
SSVS-Algorithmen auf die Auswahl von Parameterblöcken auszudehnen
wenig erfolgreich waren, leitet die Regularisierungseigenschaften der einge-
führten Prioristruktur her, untersucht die Sensitivität der erzielten Ergebnisse
im Bezug auf die Wahl von Hyperparametern und vergleicht die erzielten
Ergebnisse auf echten und simulierten Daten mit den Ergebnissen anderer
Methoden wie Boosting, LASSO oder konventionellen generalisierten addi-
tiven gemischten Modellen. Fallstudien zeigen das Anwendungspotenzial
und die Leistungsgrenzen des eingeführten Ansatzes.

Der zweite Teil der Arbeit befasst sich mit einer Methode zur lokal adap-
tiven Funktionsschätzung bei Funktionen, deren Rauheit sich über ihren
Wertebereich verändert. Die beschriebene Implementation benutzt Regu-
larisierungsprioris mit dicken Schwänzen zur Schätzung funktionaler For-
men mit stark variierender Krümmung oder Unstetigkeitsstellen. Diese Pri-
oris nutzen Skalenmischungen der Normalverteilung mit lokal variierenden
Exponential-Gamma verteilten Varianzen für die Differenzen der Splinekoef-
fizienten. Es werden drei zunehmend flexible und automatische Ansätze zur
Schätzung der lokal variierenden Struktur der Varianzen beschrieben. Breit
angelegte Simulationsstudien für Normal-, Poisson- und binomialverteilte
Zielvariablen zeigen, dass die Leistung des beschriebenen Ansatzes konkur-
renzfähig zu früheren, in der Literatur beschriebenen Ansätzen ist. Ergeb-
nisse in Anwendungen mit Normal- und Poissonverteilten Zielvariablen un-
termauern die Ergebnisse der Simulationsstudien.
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Introduction

We are drowning in
information, but we are
starved for knowledge.

John Naisbitt

One of the largest challenges of modern applied statistical modeling arises
from the confluence of the following two factors:

1. Methodological advances in applied statistics of the last decades and
ever more powerful computers make the estimation of increasingly flex-
ible and sophisticated models that include nonlinear, temporal, spatial
or tempo-spatial effects and dependency structures feasible and accessi-
ble for practitioners.

2. Modern methods of data acquisition provide researchers in many fields
of science with ever increasing amounts of data. These data sets often
have as many features as observations or even more features than ob-
servations.

Combined, these two trends lead to regression models that are heavily
overparameterized, both because of the large number of features them-
selves and because of the increase in parameters due to semiparametric
terms. This in turn calls for both reliable regularization of the resulting
inverse problems and principled and general methods of model choice
and model simplification in order to be able to make sense of the estimated
structures in appropriately complex, yet parsimonious model representations.

The first part of this dissertation describes the theoretical development and
validates the implementation of a first step towards such a method in a fully
Bayesian framework. We describe a novel generalization of stochastic search
variable selection in the context of structured additive regression leading to-
wards a class of Bayesian prior structures that offers good regularization prop-
erties and simultaneously accomplishes selection of model terms for com-
plex regression models with additive predictors. The approach we describe
is aimed not only at identifying relevant covariates and interactions and re-
moving those with negligible effects, it can additionally distinguish between
linear and nonlinear effects and interactions in order to fit models that are as
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parsimonious and easy to interpret as possible. Our method is implemented
for Gaussian, binomial and Poisson distributed responses in an open source
software package spikeSlabGAM for the R environment.

The theoretical motivation behind our approach and the properties of
the proposed prior structure are discussed in Chapter 2 of this first part.
Chapter 3 then describes the implementation of our ideas in the software
package spikeSlabGAM, followed by applications on real and simulated data
sets in Chapter 4. Our results indicate that this implementation can improve
upon previous approaches in terms of predictive performance and function
selection in structured additive models for both Gaussian and non-Gaussian
responses. Selection of very flexible terms associated with large coefficient
blocks such as random effects or Markov random fields, however, is strongly
biased towards inclusion for non-Gaussian responses.

While the first part aims at discovering adequate and flexible but parsi-
monious models, the second part of this dissertation focuses on discovering
and accounting for additional complexity: We describe a fully Bayesian
approach for locally adaptive estimation of univariate functions with locally
varying roughness, that is, functional forms with highly varying curvature
or discontinuities.
The main innovation of our approach is to estimate a locally varying smooth-
ing parameter in the shape of a step function, with the option to estimate the
locations and number of steps as well as their heights. Additionally, we use a
heavy tailed scale mixture of Gaussians with a sharp peak in zero instead of
the conventional Gaussian or Student priors for the spline coefficients. This is
crucial in order to achieve good performance for functions of both smoothly
and abruptly varying roughness.
Chapters 6 and 7 motivate the prior structures we use for the spatially
varying structure of the smoothing parameters and discuss their properties.
We consider three increasingly flexible and automatic approaches. Chapters 8
and 9 describe results for Gaussian, binomial and Poisson response on
artificial and real data sets, respectively.

From a methodological point of view, both parts of this dissertation share
a focus on flexible and robust regularization priors that are parameterized as
scale mixtures of Gaussians.
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This dissertation is based in part on the following publications and working
papers:

• F. Scheipl, L. Fahrmeir, T. Kneib (2011). Function Selection in Structured
Additive Regression Models based on Spike-and-Slab Priors. In prepara-
tion. (Chapter 2, Sections 4.2, 4.4)

• S.N. Wood, F. Scheipl?, and J.J. Faraway (2011). On intermediate Rank
Tensor Product Smoothing. Submitted. (?: minor contribution; Section
3.1.2)

• F. Scheipl (2011). spikeSlabGAM: Bayesian Variable Selection, Model
Choice and Regularization for Generalized Additive Mixed Models in
R. Submitted. (Chapter 3)

• F. Scheipl (2010). Normal-Mixture-of-inverse-Gamma Priors for
Bayesian Regularization and Model Selection in Generalized Additive
Models. Technical Report 84, Department of Statistics, LMU München.
(Chapter 4)

• F. Scheipl, T. Kneib (2009): Locally adaptive Bayesian P-splines with a
Normal-Exponential-Gamma Prior. Computational Statistics & Data Anal-
ysis, 53(10):3533-3552. (Chapter 9)

• F. Scheipl, T. Kneib (2008): Locally adaptive Bayesian P-Splines with a
Normal-Exponential-Gamma Prior. Technical Report 22, Department of
Statistics, LMU München. (Chapters 6-10)

The following software packages were created as part of this work:

• R-package spikeSlabGAM

• R-package negspline
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Part I.

Bayesian Variable Selection and Model
Choice for Structured Additive Regression
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1. Introduction

In data sets with many potential predictors, choosing an appropriate subset
of covariates and their interactions at the same time as determining whether
linear or more flexible functional forms are required to model the relation-
ship between covariates and response is a challenging and important task.
From a Bayesian perspective, it can be translated into a question of estimating
marginal posterior probabilities whether a variable should be in the model
and in what form (i.e. linear or smooth; as main effect and/or as effect modi-
fier).

The following Chapter 2 lays out the theoretical background for a new
method to select or deselect single coefficients as well as blocks of coefficients
associated with factor variables, interactions or basis expansions of smooth
functions. It is based on a spike-and-slab prior structure similar to Ishwaran
and Rao (2005). We use bimodal priors for the hyper-variances of the regres-
sion coefficients that result in a two component mixture of a narrow “spike”
around zero and a “slab” with wide support as the marginal prior for the co-
efficients. The mixture weights for the “spike” component can be interpreted
as posterior probabilities of exclusion of a coefficient or coefficient block from
the model. This is the basic idea that unites all the different flavors of stochas-
tic search variable selection (SSVS) (George and McCulloch, 1993).

The main contribution of the present work is the extension of the spike-
and-slab or SSVS approach for selection of single coefficients in Gaussian
models to the selection of potentially large blocks of coefficients for general
responses from an exponential family. We use an innovative sampling pro-
cedure based on a multiplicative parameter expansion (Gelman, Van Dyk,
Huang, and Boscardin, 2008) in order to improve the exceedingly slow mix-
ing of conventional samplers that make a direct extension of the spike-and-
slab approach for function selection (or, more generally, selection of coefficient
blocks) infeasible. We also show that this parameter expansion leads to a prior
with desirable regularization properties similar to Lq-penalization with q < 1.
The proposed approach is immediately applicable, since it is implemented in
publicly available software (R-package spikeSlabGAM (Scheipl, 2010d)) and
the presented results are reproducible. Our proposal improves on previous
approaches in that it fulfills all of the following criteria simultaneously:

i. it accommodates all types of regularized effects with a (conditionally)
Gaussian prior such as simple covariates (both metric and categori-
cal), penalized splines (uni- or multivariate), random effects or ridge-
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penalized factors/interaction effects,

ii. it scales reasonably well to intermediate datasets with thousands of ob-
servations and hundreds of covariates,

iii. it accommodates non-Gaussian responses from the exponential family,

iv. it is implemented in publicly available and user-friendly open source soft-
ware.

Fitting the practical importance of the topic, a vast literature on Bayesian
approaches for selection of single coefficients based on mixture priors for
the coefficients exists. In a recent review paper, O’Hara and Sillanpää (2009)
compare the spike-and-slab approach in Kuo and Mallick (1998), the Gibbs
variable selection approach (Carlin and Chib, 1995; Dellaportas, Forster, and
Ntzoufras, 2002), and stochastic search variable selection (SSVS) approaches
in George and McCulloch (1993), among other methods.

Bayesian function selection, similar to the frequentist COSSO (Lin and
Zhang, 2006), is usually based on decomposing an additive model into or-
thogonal functions in the spirit of a smoothing spline ANOVA (Wahba, Wang,
Gu, Klein, and Klein, 1995). Wood, Kohn, Shively, and Jiang (2002) and Yau,
Kohn, and Wood (2003) describe implementations using a data-based prior
that requires two MCMC runs, a pilot run to obtain a data-based prior for the
“slab” part and a second one to estimate parameters and select model com-
ponents. A more general approach based on double exponential regression
models that also allows for flexible modeling of the dispersion is described
by Cottet, Kohn, and Nott (2008). They use a reduced rank representation
of cubic smoothing splines (i.e a “pseudo-spline” (Hastie, 1996)) with a very
small number of basis functions to model the smooth terms in order to reduce
the complexity of the fitted models, and, presumably, to avoid the mixing
problems detailed in Section 2.2.2. Since the authors were unable to provide
their software for this work, it was not possible to compare their approach to
the one described in the following. Reich, Storlie, and Bondell (2009) also use
the smoothing spline ANOVA framework and perform variable and function
selection via SSVS for Gaussian responses, but their implementation is very
slow. To the best of our knowledge, none of the above-mentioned approaches
was implemented in publicly available software in a useable form at the time
of writing and none are able to select between smooth nonlinear and linear
effects.

The remainder of this part is structured as follows: Section 2.1 summarizes
structured additive regression models and introduces the notation. Section 2.2
describes the prior structure and the parameter expansion trick used to im-
prove mixing and discusses shrinkage properties of the marginal prior for the
regression coefficients. Subsequent chapters describe the implementation in
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more detail (Ch. 3) and summarize results from extensive simulation studies
and applications to real data sets (Ch. 4).

9





2. Normal-Mixture-of-Inverse-Gamma Priors for
Bayesian Regularization and Model Selection in
Structured Additive Regression Models

This chapter lays out the theoretical background for the methods imple-
mented in the R package spikeSlabGAM.

2.1. Structured additive regression

2.1.1. Model structure

Structured additive regression (Fahrmeir, Kneib, and Lang, 2004), a broad
model class that contains generalized additive mixed models, is among the
most widely used approaches in applied statistics due to its flexibility and
generality.

We give a short summary of structured additive regression: The distribution
of the responses y given a set of covariates z belongs to an exponential family,
i.e

p(y|z, φ) =
n

∏
i=1

c(yi, φ) exp
(

yiθi − b(θi)

φ

)
, (2.1)

with θ, φ, b(·) and c(·) determined by the type of distribution. The additive
predictor η determines the conditional expected value of the response via

E(y|z) = h(η) (2.2)

with a fixed response function h(·). In the class of models we consider in the
following, the additive predictor itself is given by

ηi = η0i +
P

∑
j=1

f j(zi), i = 1, . . . , n, (2.3)

where η0i includes offsets and/or a global intercept term, z represents the
complete covariate information and the regression functions f j are generic
representatives for different types of model terms. Important special cases of
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regression functions in structured additive regression models are

• Linear effects f (z) = x′β of single covariates or covariate blocks arising
for example from dummy coding for categorical covariates or polyno-
mial expansions.

• Smooth nonlinear effects f (z) = f (x) of continuous covariates x based
on penalized splines (Brezger and Lang, 2006). For function selection, it
may be useful to split the effect of covariate x into a component lying
in the nullspace of the associated penalty (i.e., a linear part f0(x) = xβ)
and a component for the deviation from linearity fpen(x) such that we
can not only include or exclude the complete effect of x but also linear
and nonlinear effects separately. We will show in Section 3.1.2 how such
a reparameterization can be achieved for all types of penalized effects
with partially improper priors.

• Penalized splines can also be employed in varying coefficient terms f (z) =
u f (x), z = (u, x) where the effect of interaction variable u varies with
respect to the effect modifier x, or in interaction surface estimation f (z) =
f (x1, x2), z = (x1, x2) based on penalized tensor product splines. Again
it may be useful to split such terms into linear and nonlinear marginal
effects and their respective interaction surfaces.

• Gaussian Markov random fields (Rue and Held, 2005) for spatial effects
f (z) = f (s) based on (discrete) geographical information s.

• Random effects f (z) = βg representing subject- or cluster-specific effects
for a grouping factor z = g.

• Surface smoothers f (z) = f (x) for vector valued covariates x based on
radial basis functions constructed for example in the context of repro-
ducing kernel Hilbert spaces (Wood, 2006).

Interactions between these basic function types can also be included in struc-
tured additive regression models. Flexible terms need to be regularized in
order to avoid overfitting and are associated with appropriate shrinkage pri-
ors. These shrinkage or regularization priors are usually Gaussian or can be
parameterized as scale mixtures of Gaussians (e.g. the Bayesian Lasso with a
Laplace prior on the coefficients is a Normal-Exponential scale mixture (Park
and Casella, 2008)), so that they are conditionally Gaussian given their vari-
ance parameters.

In our approach, model structure (2.3) defines a candidate set of model
terms that define a model of maximum complexity and we are interested in
finding simple special cases of (2.3) where some of the functions are identified
as having negligible impact on the response and therefore drop out of the
model.
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2.1.2. Model term structure

All of the term types given in the previous section can be represented
as f (z) = Bδ with a (possibly partially improper) Gaussian prior
δ ∼ NK

(
0, s2P−

)
with fixed (possibly rank-deficient) precision matrix P and

an associated design matrix B. The remainder of this section describes this
framework in detail for the important special case of penalized splines (P-
splines):

Smooth functions f (·) of continuous covariates are commonly modeled via
basis function expansions, i.e. f̃ (x) = ∑K

k=1 δkB̃k(x) where δ is a vector of co-
efficients associated with (nonlinear) basis functions Bk(·); k = 1, . . . , K. Many
different basis functions and associated regularization approaches exist. Knot-
free methods include e.g. thin plate splines (Wood, 2003) or smoothing splines
(Wood et al., 2002) and their reduced rank representations (Cottet et al., 2008)
based on the dominating eigenvalues and -vectors of the covariance of the
equivalent Gaussian process.

In the following, we use Bayesian P-splines as introduced by Lang and
Brezger (2004), similar to the approach chosen in Panagiotelis and Smith
(2008). In this approach, Bk(x), k = 1, . . . , K is a collection of B-spline basis
functions (Eilers and Marx, 1996) and the shrinkage prior on the associated
coefficient vector δ is a Gaussian random walk prior of order d:

∆dδ ∼ NK−d

(
0, τ2IK−d

)
,

where ∆d is the d-th difference operator matrix. Unless specified other-
wise we use cubic B-splines with a second order difference penalty. Note
that this formulation implies a partially improper prior for δ: p(δ|τ2,P ) ∝
exp

(
−0.5δ′Pδ/τ2), with rank-deficient P = ∆d′∆d that leaves linear func-

tions unpenalized.

2.2. The NMIG model with parameter expansion

The following section describes the prior structure of the conventional
Normal-mixture of Inverse Gamma (NMIG) model (Section 2.2.1) and shows
that this setup is not well suited for the simultaneous selection of coeffi-
cient groups (Section 2.2.2). Section 2.2.3 describes a parameter expansion
that changes the prior structure and enables simultaneous selection of coeffi-
cient groups. Ishwaran and Rao (2005) originally proposed an empirical Bayes
analogue of this prior for selection of single coefficients in the linear model for
Gaussian data. Note that this Section glosses over the fact that subvectors of
coefficients associated with the different model terms will be associated with
the complicated dependence structures given in 2.1.2 and instead assumes
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marginal independence of coefficients in a given subvector. Section 3.1.2 de-
scribes the steps used to achieve this simpler representation.

2.2.1. Model hierarchy

This section discusses the basic model hierarchy for structured additive re-
gression models with the NMIG prior. In most cases, the linear predictor η
will contain terms that are forced into the model (e.g. a global intercept term)
and are not associated with a variable selection prior. We write η = ηu +Xβ,
where

ηu = η0 +Xuβu (2.4)

represents the part of the linear predictor not associated with an NMIG prior,
consisting of an optional known offset vector η0 and the design matrix Xu
with associated coefficients βu for the covariates not under selection. In the
following, we focus on the part Xβ associated with NMIG priors.

The NMIG model:

j=1,...,p

i=1,...,n

βj ∼ N(0, γjτ
2
j Idj )

γj ∼wδ1(γj)

+ (1− w)δvo (γj)

v0 w ∼ Beta(aw, bw)

(aw, bw)

τ2
j ∼ Γ−1(aτ , bτ)

(aτ , bτ)

yi ∼ Expo. fam.(h(ηi))

Figure 2.1.: Directed acyclic graph of NMIG model. Ellipses are stochastic nodes,
rectangles are deterministic/logical nodes. Single arrows are stochastic edges, double
arrows are logical/deterministic edges. Subvectors βj are associated with different
components of the predictor, e.g. a spline basis or a group of dummy variables coding
the different levels of a factor. dj is the length of subvector βj. h() is a known response
function. δy(x) is zero for any value of x other than y and 1 at y.
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Figure 2.1 shows the hierarchy of the basic NMIG prior model. At the low-
est level of the hierarchy, the data yi, i = 1, . . . , n come from a distribution
in the exponential family such as the Gaussian, binomial or Poisson distribu-
tions. The canonical parameter of this distribution is connected to the linear
predictor via a known response function h(). The regression coefficients have
independent Gaussian priors with mean zero. Subvectors β j, j = 1, . . . , p are
associated with different components of the predictor, i.e. different covariates,
unpenalized and penalized parts of a reparameterized spline basis or a set of
indicator variables encoding the levels of a factor. The prior variance for β is
constant within subvectors and given by the product of an indicator variable
γj and the hypervariance τ2

j . The indicator variable γj takes the value 1 with
probability w or some (very) small value v0 with probability 1−w. The hyper-
variance τ2

j has an inverse gamma-prior with shape parameter aτ and scale
parameter bτ with bτ � aτ, so that the mode bτ/aτ is significantly greater
than 1. The implied prior for the effective hypervariance v2

j = γjτ
2
j is a bi-

modal mixture of inverse gamma distributions, with one component strongly
concentrated on very small values – the spike with γj = v0 and effective scale
parameter v0bτ – and a second more diffuse component with most mass on
larger values – the slab with γj = 1 and scale bτ. A coefficient associated with
a hypervariance that is primarily sampled from the spike-part of the prior will
be strongly shrunk towards zero if v0 is sufficiently small, so that the poste-
rior probability for γj = v0 can be interpreted as the probability of exclusion
of βj from the model. The Beta prior for the mixture weights w can be used
to incorporate the analyst’s prior knowledge about the sparsity of β or, more
practically, enforce sufficiently sparse solutions for overparameterized mod-
els. In the following, we write βj ∼ NMIG(v0, w, aτ, bτ) to denote this prior
hierarchy for the regression coefficients.

Expressions for the full conditionals resulting from this prior structure are
given in Section 3.2. This prior hierarchy is very well suited for selection of
model terms for non-Gaussian data because the selection (i.e. the sampling
of indicator variables γ) occurs on the level of the hypervariances for the co-
efficients. This means that the likelihood itself is not in the Markov blanket
of γ and consequently does not occur in the full conditionals for the indi-
cator variables. Since the full conditionals for γ are thus available in closed
form regardless of the likelihood, this results in comparatively easy and fast
model averaging for non-Gaussian models without the need to delve into the
intricacies of estimating marginal likelihoods.

2.2.2. Simultaneous selection of multiple coefficients

Previous approaches for Bayesian variable selection have primarily concen-
trated on selection of single coefficients (George and McCulloch, 1993; Kuo
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and Mallick, 1998; Dellaportas et al., 2002; Ishwaran and Rao, 2005) or used
very low dimensional bases for the representation of smooth effects. E.g. Cot-
tet et al. (2008) use a pseudo-spline representation of their cubic smoothing
spline bases with only 3 to 4 basis functions. In the following, we argue that
conventional blockwise Gibbs sampling is ill suited for updating the state of
the Markov chain when sampling from the posterior of an NMIG model even
for moderately large coefficient blocks. We show that mixing for γj will be
very slow for blocks of coefficients βj with dj � 1. We suppress the index j in
the following.

∑ β2
(1)/ ∑ β2

(0)

P
(γ

(1
)
=

1)

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

d = 1

2-4 2-2 20 22

d = 5

2-6 2-4 2-2 20 22

d = 20

2-6 2-4 2-2 20 22 24

γ
(0)

=
0.00025

γ
(0)

=
1

Figure 2.2.: P(γ) as a function of the relative change in ∑d β2 for varying d, γ(0):
Inclusion probability in iteration (1) as a function of the ratio between the sum of
squared coefficients in iteration (1) and (0). Lines in each panel correspond to τ2

(1)
equal to the median of its full conditional and the .1- and .9-quantiles. Upper row is
for γ(0) = 1, lower row for γ(0) = v0. Columns correspond to d = 1, 5, 20. Fat gray
grid lines denote inclusion probability = .5 and ratio of coefficient sum of squares
= 1

The following analysis will show that, even if the blockwise sampler is ini-
tially in an ideal state for switching between the spike and the slab parts of
the prior, i.e. a parameter constellation so that the full conditional probabil-
ity P(γ = 1|·) = .5, such a switch is very unlikely in subsequent iterations
for coefficient vectors with more than a few entries given the NMIG prior
hierarchy.

Assume that the sampler starts out in iteration (0) with a parameter con-
figuration of at, bt, v0, w, τ2

(0) and β(0) so that P(γ(0) = 1|·) = .5. We set w = .5.
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The parameters for which P(γ = 1|·) = .5 satisfy the following relations:

P(γ = 1|·)
P(γ = v0|·)

= vd/2
0 exp

(
(1− v0)

2v0

∑d β2

τ2

)
= 1,

so that P(γ = 1|·) > .5 if

∑d β2

dτ2 > − v0

1− v0
log(v0)

⇔
d

∑ β2 > − dv0

1− v0
log(v0)τ

2

⇔ τ2 > − (1− v0)∑d β2

dv0 log(v0)
.

Assuming a given value τ2
(0), set

d

∑ β2
(0) =

dv0

1− v0
log(v0)τ

2
(0).

Now γ(0) takes on both values v0 and 1 with equal probability, conditional on
all other parameters.

In the following iteration, τ2
(1) is drawn from its full conditional Γ−1(at +

d/2, bt +
∑d β2

(0)
2γ(0)

). Figure 2.2 shows P(γ(1) = 1|τ2
(1), ∑d β2

(1)) as a function of

∑d β2
(1)/ ∑d β2

(0) for various values of d. The 3 lines in each panel correspond

to P(γ(1) = 1|τ2
(1), ∑d β2

(1)) for values of τ2
(1) equal to the median of its full

conditional as well as the .1- and .9-quantiles. The upper row in the Figure
plots the function for γ(0) = 1, the lower row for γ(0) = v0.

So, if we start in this “equilibrium state” we begin iteration (0) with v0, w,
τ2
(0), and β(0) so that P(γ(0) = 1|·) = .5. We then determine P(γ(1) =

1|τ2
(1), ∑d β2

(1)) as a function of ∑d β2
(1)/ ∑d β2

(0) for

• various values of dim(βj) = d,

• γ(0) = 1 and γ(0) = v0,

• τ2
(1) at the .1, .5, .9-quantiles of its conditional distribution given
β(0), γ(0).

The leftmost column in Figure 2.2 shows that moving between γ = 1
and γ = v0 is easy for d = 1: For a large range of realistic values for
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∑d β2
(1)/ ∑d β2

(0), moving back to γ(1) = v0 from γ(0) = 1 (upper panel)
has reasonably large probability, just as moving from γ(0) = v0 to γ(1) = 1
(lower panel) is fairly likely for realistic values of ∑d β2

(1)/ ∑d β2
(0). For d = 5,

however, P(γ(1) = 1|·) already resembles a step function. For d = 20, if

∑d β2
(1)/ ∑d β2

(0) is not smaller than 0.48, the probability of moving from
γ(0) = 1 to γ(1) = v0 (upper panel) is practically zero for 90% of the values
drawn from p(τ2

(1)|·). However, draws of β that reduce ∑d β2 by more than a
factor of 0.48 while γ = 1 are unlikely to occur in real data. It is also extremely
unlikely to move back to γ(1) = 1 when γ(0) = v0, unless ∑d β2

(1)/ ∑d β2
(0) is

larger than 2.9. Since the full conditional for β is very concentrated if γ = v0,
such moves are highly improbable and correspondingly the sampler is un-
likely to move away from γ = v0. Numerical values for the graphs in Figure
2.2 were computed for aτ = 5, bτ = 50, v0 = 0.005 but similar problems arise
for all suitable hyperparameter configurations.

In summary, mixing of the indicator variables γ will be very slow for long
subvectors. In experiments, we observed posterior means of P(γ = 1) to be
either ≈ 0 or ≈ 1 across a wide variety of settings, even for very long chains,
largely depending on the starting values of the chains. The following section
describes a possible remedy.

2.2.3. Parameter expansion: the peNMIG model

The mixing problem analyzed in the previous section is similar to the mixing
problems encountered in other samplers for hypervariances of regression co-
efficients: a small variance for a batch of coefficients implies small coefficient
values and small coefficient values in turn imply a small variance so that a
blockwise sampling scheme is unlikely to exit a basin of attraction around the
origin. This problem has been previously described in Gelman et al. (2008),
where the issue is framed as one of strong dependence between a block of
coefficients and their associated hypervariance. A bimodal prior for the vari-
ance such as the NMIG prior where the Markov chain must additionally be
able to switch between the different components of the mixture prior associ-
ated with the two modes of course exacerbates these difficulties. A promising
strategy to reduce this dependence is the introduction of working parameters
that are only partially identifiable along the lines of parameter expansion or
marginal augmentation introduced for the EM-algorithm in Meng and van Dyk
(1997) and developed further for Bayesian inference for hierarchical models
in Gelman et al. (2008). While Gelman et al. (2008) focus on speeding up con-
vergence for conventional hierarchical models, we use parameter expansion
to enable simultaneous selection or deselection of coefficient subvectors and
improve the shrinkage properties of the resulting marginal prior.
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We add a non-identifiable multiplicative parameter expansion to the spike-
and-slab prior. We set

βj = αjξj; ξj ∈ Rdj

for a subvector βj with length dj and use a scalar parameter

αj ∼ NMIG(v0, w, aτ, bτ),

where NMIG denotes the prior hierarchy given in Figure 2.1. A similar prior
hierarchy has recently been suggested for the selection of variance compo-
nents in logistic models (Frühwirth-Schnatter and Wagner, 2010). Entries of
the vector ξj are a priori distributed as

ξ jk
i.i.d.∼ 1

2
N(1, 1) +

1
2

N(−1, 1), k = 1, . . . , dj,

and prior independence between αj and ξj is assumed to hold. We write

βj ∼ peNMIG(v0, w, aτ, bτ)

as shorthand for this prior structure.

The effective dimension of the coefficient vector associated with updating
γj and τ2

j is then equal to one in every penalization group, since the Markov
blankets of both γj and τj now only contain the scalar parameter αj instead of
the vector βj. This is crucial in order to avoid the mixing problems described
in the previous Section, because instead of

P(γ = 1|·)
P(γ = v0|·)

= vd/2
0 exp

(
(1− v0)

2v0

∑d
i β2

i
τ2

)

for the conventional NMIG prior, we now have

P(γ = 1|·)
P(γ = v0|·)

=
√

v0 exp
(
(1− v0)

2v0

α2

τ2

)
,

which is less susceptible to result in extreme values and behaves more like
the probabilities in the leftmost column of Figure 2.2.

In our parameter expansion, the parameter αj parameterizes the “impor-
tance” of the j-th coefficient block, while ξj “distributes” αj across the entries
in βj. Setting the conditional expectation of ξ to either positive or negative
one shrinks the absolute value of ξ towards 1, the multiplicative identity, so
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that the interpretation of αj as the “importance” of the j-th coefficient block
can be maintained and yields a marginal prior for βj that is less concentrated
on small absolute values than ξ ∼ N(0, 1).

peNMIG: NMIG with parameter expansion

j=1,...,p l=1,...,q
q=∑

p
j=1 dj

i=1,...,n

αj ∼ N(0, γjτ
2
j )

γj ∼wδ1(γj)

+ (1− w)δvo (γj)

v0 w ∼ Beta(aw, bw)

(aw, bw)

τ2
j ∼ Γ−1(aτ , bτ)

(aτ , bτ)

β = blockdiag(ξ1, . . . , ξp)α

ξl ∼ N(ml , 1)

ml ∼ 1
2 δ1(ml)

+ 1
2 δ−1(ml)

yi ∼ Expo. fam.(g(ηi))

Figure 2.3.: Directed acyclic graph of NMIG model with parameter expansion. El-
lipses are stochastic nodes, rectangles are deterministic/logical nodes. Single arrows
are stochastic edges, double arrows are logical/deterministic edges.

Figure 2.3 shows the prior hierarchy for the model with parameter expan-
sion. In the following, this model will be denoted as peNMIG. The vector
ξ = (ξ′1, . . . , ξp)′ is decomposed into subvectors ξj associated with the differ-
ent penalization groups and their respective entries αj, j = 1, . . . , p in α.

2.2.4. Shrinkage properties

Marginal priors

This section investigates the regularization properties of the marginal prior
for the regression coefficients β implied by the hierarchical prior structures
given in Figs. 2.1 and 2.3. To distinguish between the conventional NMIG
prior and its parameter expanded version we write β if the parameter has an
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NMIG prior and βpe if it has the parameter expanded peNMIG prior. In the
following, we analyze the univariate marginal priors

p(β|aτ, bτ, aw, bw, v0) =

=
∫

p(β|γ, τ2)p(τ2|aτ, bτ)p(γ|w, v0)p(w|aw, bw)dτ2dγdw

for the conventional NMIG model and

p(βpe = αξ|aτ, bτ, aw, bw, v0)

=
∫

p(α|γ, τ2)p
(

βpe

α︸︷︷︸
=ξ

)
1
|α| p(τ

2|aτ, bτ)p(γ|aw, bw, v0)

p(w|aw, bw)dαdτ2dγdw

for the peNMIG prior.

These are the univariate marginal priors for a single regression coefficient
with and without parameter expansion with the intermediate quantities τ2, γ
and w integrated out. We analyze the marginal priors because it has been
shown that the shrinkage properties of the resulting posterior means are de-
pendent on their shape and less on that of the conditional priors (Fahrmeir,
Kneib, and Konrath, 2010; Kneib, Konrath, and Fahrmeir, 2010). We use
v2 = γτ2 ∼ Γ−1(aτ, γbτ) so that the marginal prior for β in the conventional
NMIG-model is a mixture of scaled t-distributions with 2aτ degrees of free-
dom and scale factors

√
v0bτ/aτ and

√
bτ/aτ with weights bw

aw+bw
and aw

aw+bw
,

respectively:

p(β|aτ, bτ, aw, bw, v0) =

=
aw

aw + bw

∫ ∞

0
p(β|v2)p(v2|aτ, bτ)dv2

+
bw

aw + bw

∫ ∞

0
p(β|v2)p(v2|aτ, v0bτ)dv2

=
aw

aw + bw

baτ
τ√

2πΓ(aτ)

∫ ∞

0
v−2(a+ 3

2 )e−
β2
2 +bτ

v2 dv2

+
bw

aw + bw

(v0bτ)aτ

√
2πΓ(aτ)

∫ ∞

0
v−2(a+ 3

2 )e−
β2
2 +v0bτ

v2 dv2

= K1

∫ ∞

0

(
v2

β2

2 + bτ

)−(a+ 3
2 )

e−
β2
2 +bτ

v2

(
β2

2
+ bτ

)−(aτ+
1
2 )

d
v2

β2

2 + bτ
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+ K2

∫ ∞

0

(
v2

β2

2 + v0bτ

)−(aτ+
3
2 )

e−
β2
2 +v0bτ

v2

(
β2

2
+ v0bτ

)−(aτ+
1
2 )

d
v2

β2

2 + v0bτ

=
aw

aw + bw

baτ
τ Γ(aτ +

1
2 )

√
2πΓ(aτ)

(
β2

2 + bτ

)aτ+
1
2
+

bw

aw + bw

(v0bτ)aτ Γ(aτ +
1
2 )

√
2πΓ(aτ)

(
β2

2 + v0bτ

)a+ 1
2

=
aw

aw + bw

Γ
(

2aτ+1
2

)
Γ
(

2aτ
2

)√
2aτπ bτ

aτ

(
1 +

β2

2aτ
bτ
aτ

)− 2aτ+1
2

+
bw

aw + bw

Γ
(

2aτ+1
2

)
Γ
(

2aτ
2

)√
2aτπ v0bτ

aτ

(
1 +

β2

2aτ
v0bτ
aτ

)− 2aτ+1
2

. (2.5)

The marginal prior for βpe in the peNMIG model has no closed form. The
density given in (2.5) is also the marginal prior p(α|aτ, bτ, aw, bw, v0) for α in
the peNMIG model so that a density transform yields

p(βpe = αξ|aτ, bτ, aw, bw, v0) =

=
∫

p(α|aτ, bτ, aw, bw, v0)p
(

βpe

α︸︷︷︸
=ξ

)
1
|α|dα

=
∫

p
(

βpe

ξ︸︷︷︸
=α

|aτ, bτ, aw, bw, v0

)
p (ξ)

1
|ξ|dξ. (2.6)
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Figure 2.4.: Marginal priors for β as given in (2.5) and (2.6) with (aτ, bτ) = (5, 50),
v0 = 0.005, aw = bw. Horseshoe prior in dashed grey. Vertical axis on log-scale.
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Figure 2.4 shows the two marginal priors for v0 = 0.005, (aτ, bτ) = (5, 50)
and aw = bw. Values for peNMIG were determined by numerical integration.
Note the characteristic shape of the spike-and-slab prior for the marginal prior
without parameter expansion: There is a – fairly rounded – “spike” around
zero which corresponds to the contribution of the t-distribution with scale
factor

√
v0bτ/aτ and a “slab” which corresponds to the contribution of the t-

distribution with scale factor
√

bτ/aτ. The prior for peNMIG has heavier tails
and an infinite spike at zero (see (2.7)). It looks similar to the original spike-
and-slab prior suggested by Mitchell and Beauchamp (1988), which used a
mixture of a point mass in 0 and a uniform distribution on a finite interval,
but sampling for our approach has the benefit of conjugate and proper priors.
The similarity to the horseshoe prior (Carvalho, Polson, and Scott, 2010) is
even more striking.

The following shows that the marginal prior p(βpe) diverges in 0. We use

p(βpe|aτ, bτ, aw, bw, v0) =
∫ +∞

−∞
pα

(
βpe

ξ

)
pξ(ξ)

1
|ξ|dξ,

so that

p(βpe|aτ, bτ, aw, bw, v0)|βpe=0 = pα(0)
∫ +∞

−∞
pξ(ξ)

1
|ξ|dξ.

It is enough to show that I =
∫ +∞
−∞ pξ(ξ)

1
|ξ|dξ diverges, since pα(0) is finite and

strictly positive. The prior pξ() is a mixture of normal densities with variance
1 and means ±1, so

I = K
∫ +∞

−∞

1
|ξ|

(
exp

(
− (ξ + 1)2

2

)
+ exp

(
− (ξ − 1)2

2

))
dξ

= K(I1 + I2 + I3 + I4)

with

I1 =
∫ 0

−∞
−1

ξ
exp

(
− (ξ + 1)2

2

)
dξ, I2 =

∫ +∞

0

1
ξ

exp
(
− (ξ + 1)2

2

)
dξ,

I3 =
∫ 0

−∞
−1

ξ
exp

(
− (ξ − 1)2

2

)
dξ, and I4 =

∫ +∞

0

1
ξ

exp
(
− (ξ − 1)2

2

)
dξ.
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Note that I1 = I4 and I2 = I3. Since all 4 integrals are positive, it is enough to
show that one of them diverges:

I4 =
∫ 1

0

1
ξ

exp
(
− (ξ − 1)2

2

)
︸ ︷︷ ︸
≥e−

1
2 for ξ∈[0,1]

dξ +
∫ +∞

1

1
ξ

exp
(
− (ξ − 1)2

2

)
dξ︸ ︷︷ ︸

=K̃≥0

≥ e−
1
2

∫ 1

0

1
ξ

dξ + K̃

= e−
1
2 [ln(ξ)]10 + K̃ = +∞. (2.7)
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Figure 2.5.: Score functions for marginal priors for beta as given in (2.5) and (2.6).
Note the different scales for the conventional NMIG and peNMIG.

For both NMIG and peNMIG, the tails of the marginal priors are heavy
enough so that they have redescending score functions (see Figure 2.5) which
ensures Bayesian robustness of the resulting estimators. While the shape of
peNMIG’s score function is similar to that of an Lq-prior with q → 0 and
is fairly robust towards different combinations of hyperparameters, the con-
ventional NMIG score function has a complicated shape determined by the
interaction of aτ, bτ and v0. Note that the score function of the marginal prior
under parameter expansion descends monotonously and much faster.

The marginal prior of the hypervariances for βpe = αξ is given by the
density of the product γτ2ξ2 since βpe|γ, τ2, ξ ∼ N(0, γτ2ξ2). This marginal

24



prior, which is the integral over the product of a mixture of scaled inverse
gamma distributions with a noncentral χ2

1 distribution

p(λ2 =γτ2ξ2) =

=
∫ ∞

0

(
aw

aw + bw
Γ−1

(
λ2

ξ2 |aτ, bτ

)
+

bw

aw + bw
Γ−1

(
λ2

ξ2 |aτ, v0bτ

))
1
ξ2 χ2

1(ξ
2|µ = 1)dξ2,

Γ−1(x|a, b) =
ab

Γ(a)
x−(a+1) exp

(
− b

x

)
,

χ2
1(x|µ = 1) =

1
2

exp
(
−x + 1

2

)
x−

1
4 I− 1

2

(√
x
)

,

(Iν(y) denotes the modified Bessel function of the first kind) is intractable,
so we are unable to verify whether conditions for Theorem 1 in Polson and
Scott (2010) apply. Simulation results indicate that the peNMIG prior has sim-
ilar robustness for large coefficient values and better sparsity recovery as the
horseshoe prior (see p. 61 f.), for which the theorem applies.

The peNMIG prior combines an infinite spike at zero with heavy tails. This
desirable combination is similar to other shrinkage priors such as the horse-
shoe prior and the normal-Jeffreys prior (Bae and Mallick, 2004) for which
both robustness for large values of β and very efficient estimation of sparse
coefficient vectors have been shown (Carvalho et al., 2010; Polson and Scott,
2010).

Constraint regions

The shapes of the 2-d constraint regions log p((β1, β2)
′) ≤ const implied by

the NMIG and peNMIG priors provide some further intuition about their
shrinkage properties. The contours of the NMIG prior, depicted on the left in
Figure 2.6, have different shapes depending on the distance from the origin.
Close to the origin (β < .3), they are circular and very closely spaced, im-
plying strong ridge-type shrinkage – coefficient values this small fall into the
“spike”-part of the prior and will be strongly shrunk towards zero. Moving
away from the origin (.3 < β < .8), the shape of the contours defining the
constraint region morphs into a rhombus shape with rounded corners that
is similar to that produced by a Cauchy prior. Still further from the origin
(1 < β < 2), the contours become convex and resemble those of the con-
tours of an Lq penalty function, i.e. a prior with p(β) ∝ exp(−|β|q), with
q < 1. Coefficient pairs in this region will be shrunk towards one of the axes,
depending on their posterior correlation and which of their maximum like-
lihood estimators is bigger. For even larger β, the shape of the contours is a
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Figure 2.6.: Contour plots of log p((β1, β2)′) for aτ = 5, bτ = 50, v0 = 0.005, aw =
bw for the standard NMIG model and the model with parameter expansion. Lower
panels are zooms into the region around the origin (indicated in the upper panels).
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mixture of a ridge-type circular shape around the bisecting angle with pointy
ends close to the axes. The concave shape of the contours in the areas far from
the axes implies proportional (i.e. ridge-type) shrinkage of very large coeffi-
cient pairs. This corresponds to the comparatively smaller tail robustness of
the conventional NMIG prior observed in simulations.

The shape of the constraint region implied by the peNMIG prior has the
convex shape of a Lq-penalty function with q < 1, which has the desirable
properties of simultaneous strong shrinkage of small coefficients and weak
shrinkage of large coefficients due to its closeness to the L0 penalty (see also
Figure 2.8).

Until now, the discussion has been limited to bivariate shrinkage proper-
ties applied to single coefficients from separate penalization groups. In the
following, we discuss shrinkage properties for coefficients from the same pe-
nalization group, i.e. two entries from the same subvector βj in the nota-
tion of Figures 2.1 and 2.3. The shape of the peNMIG prior for 2 coeffi-
cients from the same penalization group is quite different. Recall that two
coefficients (β1, β2) from the same penalization group share the same α,
e.g. in this case (β1, β2)

′ = α(ξ1, ξ2)
′. This results in a very different shape

of log p((β1, β2)
′) ≤ const shown in Figure 2.7 (values determined by numer-

ical integration). The prior in this case is

p(βpe = α(ξ1, ξ2)
′|aτ, bτ, aw, bw, v0) =

=
∫

p(α|aτ, bτ, aw, bw, v0)p
(
βpe

α

)
1
|α|dα

=
∫

p(α|aτ, bτ, aw, bw, v0)
1
|α| ·

· 1
4

(
N
(

β1

α
|µ = 1

)
+ N

(
β1

α
|µ = −1

))
·

·
(

N
(

β2

α
|µ = 1

)
+ N

(
β2

α
|µ = −1

))
dα,

where N(x|µ) denotes the normal density with variance 1 and mean µ. The
shape of the constraint region for grouped coefficients is that of a square with
rounded corners. Compared with the convex shape of the constraint region,
this shape induces less shrinkage toward the axes and more towards the origin
or along the bisecting angle.

Figure 2.8 illustrates the difference in shrinkage behavior between grouped
and ungrouped coefficients for a simple toy example. We simulated design
matrices X with n = 15 observations and 2 covariates so that (X′X)−1 =(

1 ρ
ρ 1

)
with ρ = −0.8, 0, 0.8. Coefficients β were either (1, 1)′ (two intermediate

effect sizes) or (0, 2)′ (one null, one large effect) and observations y were
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Figure 2.7.: Constraint region for β = (β1, β2)′ from the same penalization group.

generated with a signal-to-noise ratio of 2. We generated 100 datasets for
each combinations of ρ and β and compared OLS estimates to the posterior
means for a peNMIG model as returned by spikeSlabGAM.

The different shrinkage properties for grouped and ungrouped coefficients
are most apparent for uncorrelated coefficients (middle column): Shrinkage
in this case occurs in directions orthogonal to the contours of the prior, so
while the shape of the grouped prior causes shrinkage toward the origin in
the direction of the bisecting angle or parallel to the axes, the ungrouped
coefficients are shrunk more toward the nearest axis. Consequently, we expect
estimation error for sparse coefficient vectors with few large and many small
or zero entries (like β = (0, 2)′) to be smaller for ungrouped coefficients,
while the grouped prior should have a smaller bias for coefficient vectors
with many entries of similar (absolute) size (like β = (1, 1)′): While most of
the mass of the multivariate prior for ungrouped coefficients is concentrated
along the axes (i.e. on sparse coefficient vectors), the multivariate prior for
grouped coefficients is concentrated in a cube around the origin.
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Figure 2.8.: Shrinkage for grouped (top) and ungrouped coefficients (bottom). Ar-
rows connect OLS estimates with peNMIG posterior means on identical data sets.
Black crosses denote means of OLS estimators over all replications, red crosses means
of posterior means from peNMIG models fit with spikeSlabGAM. Top rows in each
graph are for β = (1, 1)′, bottom rows for β = (0, 2)′. Columns show results for
ρ = −0.8, 0, 0.8. ρ is the correlation of the OLS estimators.
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3. spikeSlabGAM: Implementing Bayesian
Variable Selection, Model Choice and
Regularization for Generalized Additive Mixed
Models in R

This chapter describes the implementation of the ideas developed in Chapter
2 available in the R package spikeSlabGAM. Section 3.1 discusses the types of
terms available in for model fitting with spikeSlabGAM and describes the steps
necessary to reparameterize general structured additive regression terms as
given in (2.3) so that they can be included in the prior structure of Figure
2.3. Section 3.2 provides a detailed description of the MCMC sampler used
in spikeSlabGAM. Section 3.3 concludes this chapter with a demonstration of
and code examples for spikeSlabGAM’s capabilities in terms of model fitting,
model checking and visualization.

3.1. Setting up the design

All of the terms implemented in spikeSlabGAM have the following struc-
ture, as described in Section 2.1.2: First, their contribution to the predictor
η (cf. (2.3)) is represented as a linear combination of basis functions, i.e.,
the term associated with a covariate or set of covariates z is represented as
f (z) = ∑K

k=1 δkBk(z) = Bδ, where δ is a vector of coefficients associated with
the basis functions Bk(·) (k = 1, . . . , K) evaluated in z. Second, δ has a (con-
ditionally) multivariate Gaussian prior, i.e., δ|v2 ∼ N(0, v2P−), with a fixed
scaled precision matrix P that is often positive semi-definite.

3.1.1. Available terms

Table 3.1 gives an overview of the model terms available in spikeSlabGAM and
how they fit into this framework.
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R-syntax Description B P

lin(x, degree) linear/polynomial
trend: basis func-
tions are orthogonal
polynomials of de-
gree 1 to degree

evaluated in x ; de-
faults to degree= 1

poly(x, degree) identity matrix

fct(x) factor: defaults to
sum-to-zero con-
trasts

depends on con-
trasts

identity matrix

rnd(x, C) random intercept:
defaults to i. i. d.; i.e.,
correlation C= I

indicator variables
for each level of x

C−1

sm(x) univariate penalized
spline: defaults to
cubic B-splines with
2nd order difference
penalty

B-spline basis
functions

∆d>∆d with ∆d

the dth diff. oper-
ator matrix

srf(xy) penalized surface
estimation on 2-D
coordinates xy :
defaults to tensor
product cubic B-
spline with first
order difference
penalties

(radial) basis func-
tions (thin plate /
tensor product B-
spline)

depends on ba-
sis function

mrf(x, N) first order intrinsic
Gauss-Markov ran-
dom field: factor x

defines the grouping
of observations, N

defines the neighbor-
hood structure of the
levels in x

indicator variables
for regions in x

precision matrix
of MRF defined
by (weighted)
adjacency matrix
N

Table 3.1.: Term types in spikeSlabGAM. The semiparametric terms (sm() , srf() ,
mrf() ) only parameterize the proper part of their respective regularization priors
(see Section 3.1.2). Unpenalized terms not associated with a peNMIG prior (i.e., the
columns in Xu in (2.4)) are specified with term type u() .
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3.1.2. Decomposition and reparameterization of regularized

terms

In Section (2.2), we glossed over the fact that every coefficient batch δ asso-
ciated with a specific term f (z) = Bδ will have some kind of prior depen-
dency structure determined by P , since δ ∼ N(0, s2P−). Moreover, if P is
only positive semi-definite, the prior is partially improper. For example, the
precision matrix for a B-spline with second order difference penalty implies
an improper flat prior on the linear and constant components of the estimated
function (Lang and Brezger, 2004), and the precision matrix for an intrinsic
Gauss-Markov random field (IGMRF) of first order puts an improper flat prior
on the mean level of the IGMRF (Rue and Held, 2005, ch. 3). These partially
improper priors for splines and IGMRFs are problematic for spikeSlabGAM’s
purpose for two reasons: In the first place, if e.g., coefficient vectors that pa-
rameterize linear functions are in the nullspace of the prior precision matrix,
the linear component of the function is estimated entirely unpenalized. This
means that it is unaffected by the variable selection property of the peNMIG
prior and thus always included in the model, but we want to be able to not
only remove the entire effect of a covariate (i.e., both its penalized and unpe-
nalized parts) from the model, but also to select or deselect its penalized and
unpenalized parts separately. The second issue is that, as the nullspaces of
these precision matrices usually also contain coefficient vectors that parame-
terize constant effects, terms in multivariate models are not identifiable, since
adding a constant to one term and subtracting it from another does not affect
the posterior.

Two strategies to resolve these issues are implemented in spikeSlabGAM.
Both involve two steps:

1. Splitting terms f (x) with partially improper priors into two parts –
f0(x) associated with the improper/unpenalized part of the prior and
fpen(x) associated with the proper/penalized part of the prior

2. Absorbing the fixed prior correlation structure of the coefficients im-
plied by P into a transformed design matrix Xpen associated with then
a priori independent coefficients βpen for the penalized part.

Constant functions contained in the unpenalized part of a term are subsumed
into a global intercept. This removes the identifiability issue. The remainder of
the unpenalized component enters the model in a separate term f0(x), e.g., P-
splines (term type sm() , see Table 3.1) leave polynomial functions of a certain
order unpenalized and these enter the model in a separate lin() -term.
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Orthogonal reduced rank decomposition

The first strategy, used by default, employs a reduced rank approximation of
the implied covariance of f (x) to construct a design Xpen for the penalized
part of the function, similar to the approaches used in Reich et al. (2009) and
Cottet et al. (2008):

Since

f (x) = Bδ ∼ N(0, v2BP−B>),

we can use the spectral decomposition BP−B> = UDU> with orthonormal
U and diagonal D with entries ≥ 0 to find an orthogonal basis representation
for Cov ( f (x)). For B with d columns and full column rank and P with rank
d − nP, where nP is the dimension of the nullspace of P , all eigenvalues of
Cov ( f (x)) except the first d− nP are zero. Now write

Cov ( f (x)) = [U+U0]
> [D+ 0

0 0

]
[U+U0],

where U+ is a matrix of eigenvectors associated with the positive eigenvalues
inD+, and U0 are the eigenvectors associated with the zero eigenvalues. With
Xpen = U+D

1/2
+ and βpen ∼ N(0, v2I), fpen(x) = Xpenβpen has a proper

Gaussian distribution that is proportional to that of the partially improper
prior of f (x) (Rue and Held, 2005, eq. (3.16)) and parameterizes only the pe-
nalized part of f (x), while the unpenalized part of the function is represented
by f0(x) = X0β0 with X0 = U0.

In practice, it is unnecessary and impractically slow to compute all eigen-
vectors and -values for a full spectral decomposition UDU>. Only the first
d− nP are needed for Xpen, and of those the first few typically represent most
of the variability in fpen(x). spikeSlabGAM makes use of a fast truncated bidi-
agonalization algorithm (Baglama and Reichel, 2006) implemented in irlba

(Lewis, 2009) to compute only the largest d − nP eigenvalues of Cov ( f (x))
and their associated eigenvectors. Only the first d̃ eigenvectors and -values
whose sum represents at least .995 of the sum of all eigenvalues are used to
construct the reduced rank orthogonal basis Xpen. For a cubic P-spline with
second order difference penalty and 20 basis functions (i.e., d = 20 columns
in B and nP = 2), Xpen will typically have only d̃=8 to 12 columns.

Mixed model decomposition

The second strategy reparameterizes via a decomposition of the coefficient
vector δ into an unpenalized part and a penalized part: δ = Xuβ0 +Xpβpen,
where Xu is a basis of the nP-dimensional nullspace of P and Xp is a basis
of its complement.

34



spikeSlabGAM uses a spectral decomposition of P with

P = [Λ+Λ0]
> [ Γ+ 0

0 0

]
[Λ+Λ0],

where Λ+ is the matrix of eigenvectors associated with the positive eigenval-
ues in Γ+, and Λ0 are the eigenvectors associated with the zero eigenvalues.
This decomposition yields Xu = Λ0 and Xp = L(L>L)−1 with L = Λ+Γ1/2

+ .
The model term can then be expressed as

Bδ = B(Xuβ0 +Xpβpen)

= X0β0 +Xpenβpen,

with X0 as the design matrix associated with the unpenalized part and Xpen
as the design matrix associated with the penalized part of the term.

The prior for the coefficients associated with the penalized part after repa-
rameterization is then βpen ∼ N(0, v2I), while β0 has a flat prior (cf. Kneib,
2006, ch. 5.1). For the purpose of term selection, this flat prior is subsequently
replaced by a conditionally Gaussian prior. As for the other decomposition,
spikeSlabGAM by default only uses the first d̃ eigenvectors and -values whose
sum represents at least .995 of the sum of all eigenvalues to constructXp. This
usually results in much less dimension reduction than the previous method,
e.g., for a cubic P-spline with second order difference penalty and 20 basis
functions, Xpen will typically have 14 to 16 columns.

3.1.3. Interactions

Design matrices for interaction effects are constructed from tensor products
(i.e., column-wise Kronecker products) of the bases for the respective main
effect terms or lower order interactions. A detailed discussion of construct-
ing tensor product splines in this way is given in Wood, Scheipl, and Far-
away (2011). A more rigorous derivation based on reproducing kernel Hilbert
spaces in the context of smoothing spline ANOVA is in Gu (2002, Ch. 2.4).

For example, the complete interaction between two numeric covariates x1
and x2 with smooth effects modeled as P-splines with second order difference
penalty consists of the interactions of their unpenalized parts (i.e., linear x1-
linear x2), two varying-coefficient terms (i.e., smooth x1× linear x2, linear x1×
smooth x2) and a 2-D nonlinear effect (i.e., smooth x1× smooth x2).

By default, spikeSlabGAM uses a reduced rank representation of these ten-
sor product bases derived from their partial singular value decomposition as
described above for the “orthogonal” decomposition in order to reduce the
posterior’s dimensionality and to speed up the sampling. As the marginal
dependency structures for the main effects have been absorbed into their
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design matrices, the precision matrix associated with the coefficients of the
interaction effect is the identity matrix, so the implied covariance of the in-
teraction effect is simply the crossproduct of the interaction design matrix.
Consequently, its low-rank approximation can be computed based on the sin-
gular value decomposition of the interaction design matrix instead of that of
the product between the design, the associated covariance of the interaction
coefficients and the transposed design in order to save some computational
effort.

3.1.4. “Centering” and scaling the effects

By default, spikeSlabGAM makes the estimated effects of all terms orthogonal
to the nullspace of their associated penalty and, for interaction terms, against
the corresponding main effects. This is similar to the method described in
Yau et al. (2003), where it was used to simplify expressions for the marginal
likelihoods of candidate models.

In spikeSlabGAM, every X is transformed via

X → X
(
I −Z(Z>Z)−1Z>

)
.

For simple terms (i.e., fct() , lin() , rnd() ), Z = 1 and the projection above
simply enforces a sum-to-zero constraint on the estimated effect. For semi-
parametric terms, Z is a basis of the nullspace of the implied prior on the
effect. For interactions between d main effects,

Z =
[
1X0,1 X0,2 . . .X0,d Xpen,1 Xpen,2 . . .Xpen,d

]
,

where X0,1, . . . ,Xpen,d are the design matrices for the involved main effects.
This centering improves separability between main effects and their inter-
actions by removing any overlap of their respective column spaces. All un-
certainty about the mean response level is shifted into the global intercept.
The projection uses the QR decomposition of Z for speed and stability. Note
that to ensure identifiability, it would suffice to center all design matrices
for functions from the nullspace, so in a sense we are imposing additional
constraints on the fit. Simulation results in Wood et al. (2011) indicate that
these additional constraints do not affect the performance of fits in conven-
tional GAMMs adversely in a relevant way. The simulation results discussed
on p. 83 f. indicate that this centering, in fact, improves estimation results for
spikeSlabGAM.

Since spikeSlabGAM uses the same prior for all model terms, we have to
make sure that similar coefficient sizes imply similar effect sizes, otherwise
term selection will be biased towards excluding terms for which relatively
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smaller coefficients translate into relatively larger contributions to the additive
predictor and including terms for which the opposite is true. To do this, we
scale the design matrices of all terms so that they have a Frobenius norm of
0.5.

3.1.5. Summary

In summary, spikeSlabGAM performs the following reparameterization from

η = η0 +
P

∑
j=1
Bjδj

with δj|s2
j ∼ N(0, s2

jP
−
j ) to

η = η0 +
p

∑
j=1
Xjβj

with βj|v2
j ∼ N(0, v2

j I) and p ≥ P:

1. Split up all main effects f j(z) = Bjδj into a penalized part
f j,pen(z) = Xj,penβj,pen and, if the associated precision Pj is rank defi-
cient, an unpenalized part f j,0(x) = Xj,0βj,0. (cf. Section 3.1.2)

2. Orthogonalize all design matrices Xj,pen created in the previous step
against the respective Xj,0 or the intercept column if Xj,0 does not exist
in the case of positive definite Pj.

3. Orthogonalize all design matrices Xj,0 created in the first step against
the intercept column. (cf. Section 3.1.4)

4. construct columnwise Kronecker products of the design matrices of the
involved main effects for all interaction effects (cf. Section 3.1.3)

5. Calculate reduced rank representations of the interaction designs based
on their truncated singular value decompositions.

6. Orthogonalize all design matrices for interaction effects created in the
previous step against the main effect design matrices used in their con-
struction. (cf. Section 3.1.3)

7. Scale all design matrices to have Frobenius norm 0.5.
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Note that the prior for βj is Gaussian conditional on the hypervariance
v2

j = γjτ
2
j ξ2

j . Also note that this reparameterization does not yield a one-
to-one correspondence to the original priors since we place proper priors on
functions in the nullspace of the original penalty. However, it has two distinct
advantages: First, the conditionally i.i.d. Gaussian prior somewhat reduces
the computational complexity of the MCMC sampler. More importantly, by
assigning separate and proper priors on both penalized and unpenalized
parts of all model terms, we can perform term selection on the penalized
and the unpenalized parts separately. The resulting models are potentially
more parsimonious and easier to interpret.

3.1.6. Computing predictions

While the reduced rank representation and orthogonalization of the model’s
main effects and interaction terms described above speed up the sampling
and seem to improve estimation as well as the precision of variable selection
(cf. p. 83 and results in Scheipl (2010b)), they come at a cost if the estimated
model is used to generate predictions for covariate values znew not present
in the original data: Since the basis functions in the reparameterized design
matrix X no longer have a closed form expression, it is not possible to simply
generate appropriate design matrices for new data as would be done for, e.g.,
conventional spline or tensor product spline bases.

At least for the main effect terms, this problem can be overcome by us-
ing spline interpolation to evaluate the basis functions of the reduced rank
representation at the new covariate locations znew. Interpolation in two or
more dimensions can be very unstable, however, so spikeSlabGAM uses a dif-
ferent and much more computationally intensive approach to generate pre-
dictions for reduced rank interaction effects: For any given reparameterized
interaction term f (z), coefficients β for the reparameterized basisX are back-
transformed into analogous coefficients δ for the original basis B. These can
then be used to generate predictions by multiplication with Bnew = B(znew),
the un-reparameterized design matrix for the new covariate values znew. Since
F̂ , the MCMC realizations from the posterior of f (z), can be written as
F̂ = X [β(1) β(2) . . .β(T)], and also, by construction, F̂ = B[δ(1) δ(2) . . . δ(T)],
where β(t) and δ(t) are the tth MCMC samples, we find [δ(1) . . . δ(T)] by solving
this system of equations. In spikeSlabGAM, this is done via the QR decomposi-
tion ofB. The posterior distribution of f (z) at znew can then be approximated
with F̂new = Bnew[δ(1) . . . δ(T)].
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3.2. MCMC

This section describes the MCMC sampler implemented in spikeSlabGAM that
was used for all the simulations and applications in Sections 4.1, 4.3 and 4.4.
Algorithm 1 on p. 43 gives a short summary of the blockwise Metropolis-
within-Gibbs sampler we use.

3.2.1. Full conditionals

The sampler exploits the fact that the full conditionals of (most of) the param-
eters are available in closed form:

w|· ∼ Beta

(
aw +

p

∑
j

δ1(γj), bw +
p

∑
j

δv0(γj)

)
,

τ2
j |· ∼ Γ−1

at + dj/2, bt +
∑

dj
i=1 β2

ji

2γj

 ,

P(γj = 1|·)
P(γj = v0|·)

= v
dj/2
0 exp

 (1− v0)

2v0

∑
dj
i=1 β2

ji

τ2
j

 .

Full conditionals for βj for Gaussian responses and the conventional NMIG
model (given in Figure 2.1) are given by

βj|· ∼ N(µj, Σj) with

Σj =

(
1
σ2

ε
X ′jXj +

1
γjτ

2
j
Idj

)−1

and µj =
1
σ2

ε
ΣjX

′
jy.

(3.1)

In the peNMIG model given in Figure 2.3, updates for α use the “collapsed”
design matrix Xα = X blockdiag(ξ1, . . . , ξp), while ξ is updated based on a
“rescaled” design matrixXξ = X diag(blockdiag(1d1, . . . ,1d p)α), where 1d is
a d× 1 vector of ones. For Gaussian responses, these are draws from their mul-
tivariate normal full conditionals as above. For non-Gaussian responses, we
use P-IWLS proposals (Lang and Brezger, 2004) with a Metropolis-Hastings
step. The following Section 3.2.2 provides more details on the methods used
to sample β.

Note that

P(γj = 1|·)
P(γj = v0|·)

> v
dj/2
0 for all values of βj, i.e that
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P(γj = 1|·) >
v

dj/2
0

1 + v
dj/2
0

≈ v
dj/2
0 for small v0.

3.2.2. Updating the coefficients

This section describes the implementation of the updates for the regression
coefficients in the peNMIG model. For both Gaussian and non-Gaussian re-
sponses, the proposed algorithm does blockwise updates of coefficient sub-
vectors, conditional on the remainder of the coefficient vector and the other
parameters in the Markov blanket (i.e. prior covariances, prior means and the
relevant likelihood terms). The default is a blocksize of 30 for both α and ξ
for Gaussian response and smaller blocksizes of 5 and 15 for α and ξ, respec-
tively, for non-Gaussian response. Blocksizes are smaller for non-Gaussian re-
sponse since the acceptance probability in the necessary Metropolis-Hastings-
step for non-Gaussian responses tends to decrease quickly with increasing
dimension of the proposal.

Since β = blockdiag(ξ1, . . . , ξp)α, we sample β by first updating α
based on a “collapsed” n × p design matrix Xα = X blockdiag(ξ1, . . . , ξp)
and then updating ξ based on a “rescaled” n × q design matrix Xξ =
X blockdiag(1d1, . . . ,1d p)α, where 1d is a d× 1 vector of ones. The j-th col-
umn of Xα contains the sum of the original design columns multiplied by
the entries in the subvector ξj associated with αj. Each column in Xξ contains
the respective column of the original design matrix multiplied by the asso-
ciated entry in α. The prior means ml ∈ {±1} for ξl ∼ N(ml, 1) are drawn
beforehand from their full conditionals via P(ml = 1|·) = 1

1+exp(−2ξl)
.

Update via QR-decomposition

The following paragraphs describe a general method to update a coefficient
vector δ associated with a conditional Gaussian prior. We use this procedure
to update β in the NMIG model and to update both α and ξ in the peNMIG
model.

Regression coefficients δ with prior δ ∼ N(µδ, Σδ) and associated design
matrix Xδ can be updated by running the regression of an augmented data
vector ỹ with covariance Σ̃ on an augmented design matrix X̃ with

ỹ =

(
y

µδ

)
; X̃ =

(
Xδ

I

)
and Σ̃ =

(
Cov(y) 0

0 Σδ

)
. (3.2)

If only a subvector δj is updated conditional on the remainder δ−j of the
vector δ, y is replaced by y −Xδ

−jδ−j and Σδ is replaced by Σδ
−j,−j.
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Following Gelman et al. (2008), we perform the updates for the regression

coefficients via the QR-decomposition Σ̃
−1/2

X̃ = QR. From this decomposi-

tion, we can solve the triangular system Rδ̂ = Q
(

Σ̃
−1/2

ỹ
)

for the mean of

the full conditional δ̂. As long as Σ̃
−1/2

is a diagonal matrix, as is the case for
all of the models and predictor terms we are considering (see Section 3.1.2),
or is known, the computationally demanding step is the computation of the
QR-decomposition.

We solve another triangular system Reδ = n, ni
i.i.d.∼ N(0, 1) in order to

generate a candidate value δc = δ̂ + eδ from (the approximation to) the full
conditional, so the proposal distribution q(δc, δ) is N(δ̂, (R′R)−1).

IWLS updates for non-Gaussian responses

We use a variant of the well-known IWLS proposal scheme (Gamerman, 1997)
to do blockwise updates for both α and ξ in the non-Gaussian case. We use
a penalized IWLS (P-IWLS) proposal scheme based on an approximation of
the current posterior mode described in detail in Brezger and Lang (2006)
(Sampling scheme 1, Section 3.1.1). This method is a Metropolis-Hastings type
update which uses a Gaussian (i.e. second order Taylor) approximation to the
full conditional around its approximate mode as its proposal distribution. The
approximating Gaussian is obtained by performing a single Fisher scoring
step per iteration.

For P-IWLS, y and Cov(y) in (3.2) are replaced by their IWLS equivalents
(Gamerman, 1997)

Cov(y)
IWLS≈ diag

(
b′′(θ)g′(µ)2

)
and y

IWLS≈ Xjδj + (y −µ)g′(µ), (3.3)

see (2.1) for notation.
We use the following modification of the IWLS-algorithm in order to de-

crease the computational complexity of the algorithm somewhat: By using
the mean of the proposal distribution of the previous iteration δ̂p instead of δ
in (3.3) and recalculating µ and θ based on δ̂p, the proposal distribution q()
becomes independent of the current state, which simplifies the calculation
of the acceptance probability and can increase acceptance rates (Brezger and
Lang, 2006).

Acceptance rates for the sampler strongly depend on the size of the update
blocks and on the magnitude of the rescaling performed in each iteration: For
large blocks or updates that require drastic rescaling (see paragraph below),
acceptance probabilities can occasionally become small, especially for binary
responses. To avoid getting stuck, we use a different type of proposal with
probability 0.15: Instead of drawing proposals from N(δ̂p, (R′R)−1), we use
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q(δc, δ) = N(δc, (R′R)−1), i.e. we use the current state as the mean of the
proposal. The working observations and IWLS weights that determine R are
calculated from the mode of the previous iteration as described above so that
the proposal ratio q(δ, δc)/q(δc, δ) is 1. This type of update tends to result in
smaller steps, but it can be useful in order to keep the chain moving. For most
datasets, mode switching is not necessary for good sampling performance,
and spikeSlabGAM provides the option to switch it off entirely.

Rescaling parameter blocks

After updating the entire α− and ξ−vectors, each subvector ξj is rescaled
so that |ξj| has mean 1, and the associated αj is rescaled accordingly so that
βj = αjξj is unchanged:

ξj →
dj

∑
dj
i |ξ ji|

ξj and αj →
∑

dj
i |ξ ji|
dj

αj.

This rescaling is advantageous since αj and ξj are not identifiable and thus
their sampling paths can wander off into extreme regions of the parameter
space without affecting the fit, e.g. αj becoming extremely large while entries
in ξj simultaneously become extremely small. By rescaling, we ensure that
the interpretation of αj as a scaling factor representing the importance of the
model term associated with it is valid and avoid numerical problems that can
occur for extreme parameter values. For non-Gaussian responses, the poste-
rior modes used in the IWLS-updates are shifted accordingly as well. Note,
however, that this shifting of the mode is only approximate. Consequentially,
this rescaling can occasionally lead to low (< .1) acceptance rates for the P-
IWLS proposals since the proposal density may not be well adapted to the
posterior anymore after a large rescaling.

Starting values

By default, starting values β(0) are drawn randomly in three steps: First, 5
Fisher scoring steps with fixed, large hypervariances are performed to reach
a viable region of the parameter space. Second, for each chain run in parallel,
Gaussian noise is added to this preliminary β(0), and third its constituting
p subvectors are scaled with variance parameters γjτ

2
j (j = 1, . . . , p) drawn

from their priors. This means that, for each of the parallel chains, some of
the p model terms are set close to zero initially, and the remainder is in the
vicinity of their respective ridge-penalized MLEs. Starting values for α(0) and
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ξ(0) are computed via

α
(0)
j =

∑
dj
i |β ji|

dj
and ξ

(0)
j =

βj

α
(0)
j

.

Simulation results and applications show that this strategy works well.

Algorithm 1 MCMC sampler for peNMIG

Initialize τ 2(0),γ(0), φ(0), w(0) and β(0) (via IWLS for non-Gaussian re-
sponse)
Compute α(0), ξ(0),X(0)

α

for iterations t = 1, . . . , T do
for blocks b = 1, . . . , bα do

update α(t)
b from its FCD (Gaussian case, see (3.1)) or via P-IWLS

set X(t)
ξ = X blockdiag(1d1 , . . . ,1dp)α

(t)

update m(t)
1 , ..., m(t)

q from their FCD: P(m(t)
l = 1|·) = 1

1+exp(−2ξ
(t)
l )

for blocks b = 1, . . . , bξ do

update ξ(t)b from its FCD (Gaussian case, see (3.1)) or via P-IWLS
for model terms j = 1, . . . , p do

rescale ξ(t)j and α
(t)
j

set X(t)
α = X blockdiag(ξ(t)1 , . . . , ξ(t)p )

update τ1
2(t), ..., τp

2(t) from their FCD:

τ
2(t)
j |· ∼ Γ−1

(
aτ + 1/2, bτ +

α
2(t)
j

2γ
(t)
j

)
update γ1

(t), ..., γp
(t) from their FCD:

P(γ(t)
j =1|·)

P(γ(t)
j =v0|·)

= v1/2
0 exp

(
(1−v0)

2v0

α
2(t)
j

τ
2(t)
j

)
update w(t) from its FCD:

w(t)|· ∼ Beta
(

aw + ∑
p
j δ1(γ

(t)
j ), bw + ∑

p
j δv0(γ

(t)
j )
)

if y is Gaussian then
update φ(t) from its FCD:

φ(t)|· ∼ Γ−1
(

aφ + n/2, bφ +
∑n

i (yi−η
(t)
i )2

2

)
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3.2.3. Estimating inclusion probabilities

Selection of coefficient blocks βj in the NMIG and peNMIG models is based
on the marginal posterior of γj. The posterior expectation of δ1(γj) is the pos-
terior inclusion probability pin,j, since pin,j = P(γj = 1) = E(δ1(γj)). Inclusion
probabilities pin,j are estimated with the Rao-Blackwellized estimator

p̂in,j = T−1
T

∑
t=0

p(t)in,j ,

with p(t)in,j = 1−



(
1 + v

dj/2
0 exp

(
(1−v0)

2v0

∑
dj
i=1(β

(t)
ji )2

(τ2
j )

(t)

))−1

for NMIG,(
1 + v1/2

0 exp

(
(1−v0)

2v0

(α
(t)
j )2

(τ2
j )

(t)

))−1

for peNMIG,

where θ(t) denotes the realized value of parameter θ in iteration t of an MCMC
chain with length T. This estimator uses the MCMC samples of P(γj = 1)

after burn-in, instead of p̂in,j = T−1 ∑T
t=0 δ1(γ

(t)
j ).

3.2.4. Algorithm variants

While the default prior for the inclusion indicators γj assumes mutual in-
dependence, i.e. that inclusion or exclusion of a model term is a priori in-
dependent of the inclusion or exclusion of all other model terms, we also
implemented a structure of the prior for γ that incorporates the hierarchical
structure of the model terms themselves. More precisely, the prior structure
forces inclusion of e.g. the linear term for a covariate if the corresponding
smooth term is included in the model, or the inclusion of main effects if an
interaction effect involving them is included in the model. Without changing
the sampler per se, this “top-down” approach is implemented as a simple
pass over the updated γ-vector in each iteration, making sure that all low-
order terms (i.e. main effects) have γ = 1 if high-order terms that involve
them (i.e. interactions) have γ = 1. Alternatively, a “bottom-up” variant en-
forcing more parsimonious models that excludes high-order terms (i.e. sets
them to γ = v0) unless all low-order terms associated with them are included
may be an option worth pursuing, but we have not done so yet.

An alternative to be implemented in future versions of the software is to
sample γ not via single-site updates, but blockwise with blocks determined
by the dependencies induced by the hierarchy (e.g. sample γs for main effects
and their interaction together) and then include a Metropolis-Hastings step to
reject proposals that violate the hierarchical constraints in a block. Previous
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work along these lines relied on an Ising prior for γ: Smith and Fahrmeir
(2007) use an Ising prior on γ in an fMRI application for spatial smoothing
of activation profiles across and Li and Zhang (2010) use it to incorporate
prior knowledge and preferences about the predictor structure in an SSVS
framework.

3.3. Using spikeSlabGAM

3.3.1. Model specification and post-processing

spikeSlabGAM uses the standard R formula syntax to specify models, with a
slight twist: Every term in the model has to belong to one of the term types
given in Table 3.1. If a model formula contains “raw” terms not wrapped in
one of these term type functions, the package will try to guess appropriate
term types: For example, the formula y ∼ x + f with a numeric x and a fac-
tor f is expanded into y ∼ lin(x) + sm(x) + fct(f) since the default is to
model any numeric covariate as a smooth effect with a lin() -term parame-
terizing functions from the nullspace of its penalty and an sm() -term param-
eterizing the penalized part. The model formula defines the candidate set of
model terms that comprise the model of maximal complexity under consid-
eration. Terms are selected or removed without hierarchical constraints, i.e.,
an interaction effect can be included in the model even if the associated main
effects or lower order interactions are not.

We generate some artificial data for a didactic example. We draw n = 200
observations from the following data generating process:

• covariates sm1, sm2, noise2, noise3 are i.i.d.∼ U[0, 1],

• covariates f, noise4 are factors with 3 and 4 levels,

• covariates lin1, lin2, lin3 are i.i.d.∼ N(0, 1),

• covariate noise1 is collinear with sm1 : noise1 = sm1+ e; ei
i.i.d.∼ N(0, 1),

• η = f (sm1) + f (sm2, f) + 0.1 · lin1 + 0.2 · lin2 + 0.3 · lin3 (see Fig-
ures 3.3 and 3.4 for the shapes of the nonlinear effects f (sm1) and
f (sm2, f)),

• the response vector y = η + sd(η)
snr ε is generated under signal-to-noise

ratio snr = 3 with i.i.d. t5-distributed errors εi (i = 1, . . . , n).

R> set.seed(1312424)
R> n <- 200
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R> snr <- 3
R> sm1 <- runif(n)
R> fsm1 <- dbeta(sm1, 7, 3)/2
R> sm2 <- runif(n, 0, 1)
R> f <- gl(3, n/3)
R> ff <- as.numeric(f)/2
R> fsm2f <- ff + ff * sm2 + ((f == 1) * -dbeta(sm2, 6, 4) +
+ (f == 2) * dbeta(sm2, 6, 9) + (f == 3) * dbeta(sm2,
+ 9, 6))/2
R> lin <- matrix(rnorm(n * 3), n, 3)
R> colnames(lin) <- paste("lin", 1:3, sep = "")
R> noise1 <- sm1 + rnorm(n)
R> noise2 <- runif(n)
R> noise3 <- runif(n)
R> noise4 <- sample(gl(4, n/4))
R> eta <- fsm1 + fsm2f + lin %*% c(0.1, 0.2, 0.3)
R> y <- eta + sd(eta)/snr * rt(n, df = 5)
R> d <- data.frame(y, sm1, sm2, f, lin, noise1, noise2,
+ noise3, noise4)

We fit an additive model with all covariates as main effects and first-order
interactions between the first 4 as potential model terms:
R> f1 <- y ~ (sm1 + sm2 + f + lin1)^2 + lin2 + lin3 + noise1 +
+ noise2 + noise3 + noise4

The function spikeSlabGAM sets up the design matrices, calls the sampler and
returns the results:
R> m <- spikeSlabGAM(formula = f1, data = d)

The following output shows the first part of the summary of the fitted model.
Note that the numeric covariates have been split into lin() - and sm() -terms
and that the factors have been correctly identified as fct() -terms. The joint
effect of the two numerical covariates sm1 and sm2 has been decomposed
into 8 components: the 4 marginal linear and smooth terms, their linear-
linear interaction, two “varying coefficient” terms (i.e., linear-smooth inter-
actions) and a smooth interaction surface. This decomposition can be help-
ful in constructing parsimonious models. If a decomposition into marginal
and joint effects is irrelevant or inappropriate, bivariate smooth terms can
alternatively be specified with a srf() -term. Mean posterior deviance is
1
T ∑>t −2l(y|η(t), φ(t)), the average of twice the negative log-likelihood of the
observations over the saved MCMC iterations, the null deviance is twice the
negative log-likelihood of an intercept model without covariates.
R> summary(m)

Spike-and-Slab STAR for Gaussian data
Model:
y ~ ((lin(sm1) + sm(sm1)) + (lin(sm2) + sm(sm2)) + fct(f) + (lin(lin1) +
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sm(lin1)))^2 + (lin(lin2) + sm(lin2)) + (lin(lin3) + sm(lin3)) +
(lin(noise1) + sm(noise1)) + (lin(noise2) + sm(noise2)) +
(lin(noise3) + sm(noise3)) + fct(noise4) - lin(sm1):sm(sm1) -
lin(sm2):sm(sm2) - lin(lin1):sm(lin1)

200 observations; 257 coefficients in 37 model terms.

Prior:
a[tau] b[tau] v[0] a[w] b[w] a[sigma^2]

5.0e+00 2.5e+01 2.5e-04 1.0e+00 1.0e+00 1.0e-04
b[sigma^2]

1.0e-04

MCMC:
Saved 1500 samples from 3 chain(s), each ran 2500 iterations after a

burn-in of 100 ; Thinning: 5

Null deviance: 704
Mean posterior deviance: 285

Marginal posterior inclusion probabilities and term importance:
P(gamma=1) pi dim

u NA NA 1
lin(sm1) 1.000 0.096 1 ***
sm(sm1) 1.000 0.066 8 ***
lin(sm2) 0.999 0.028 1 ***
sm(sm2) 0.976 0.016 8 ***
fct(f) 1.000 0.579 2 ***
lin(lin1) 0.087 -0.002 1
sm(lin1) 0.037 0.001 9
lin(lin2) 0.997 0.029 1 ***
sm(lin2) 0.063 0.001 9
lin(lin3) 1.000 0.042 1 ***
sm(lin3) 0.039 0.000 9
lin(noise1) 0.053 0.002 1
sm(noise1) 0.028 0.000 9
lin(noise2) 0.019 0.000 1
sm(noise2) 0.039 0.000 8
lin(noise3) 0.025 0.000 1
sm(noise3) 0.039 0.000 8
fct(noise4) 0.078 0.001 3
lin(sm1):lin(sm2) 0.021 0.000 1
lin(sm1):sm(sm2) 0.067 0.000 7
lin(sm1):fct(f) 0.117 -0.003 2
lin(sm1):lin(lin1) 0.023 0.000 1
lin(sm1):sm(lin1) 0.056 0.000 7
sm(sm1):lin(sm2) 0.039 0.000 7
sm(sm1):sm(sm2) 0.120 -0.001 27
sm(sm1):fct(f) 0.068 0.000 13
sm(sm1):lin(lin1) 0.042 0.000 7
sm(sm1):sm(lin1) 0.053 0.000 28
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lin(sm2):fct(f) 1.000 0.054 2 ***
lin(sm2):lin(lin1) 0.023 0.000 1
lin(sm2):sm(lin1) 0.054 0.000 8
sm(sm2):fct(f) 1.000 0.090 13 ***
sm(sm2):lin(lin1) 0.065 0.000 7
sm(sm2):sm(lin1) 0.195 0.000 28
fct(f):lin(lin1) 0.095 0.000 2
fct(f):sm(lin1) 0.137 0.001 14
*:P(gamma=1)>.25 **:P(gamma=1)>.5 ***:P(gamma=1)>.9

In most applications, the primary focus will be on the marginal posterior in-
clusion probabilities P(gamma = 1) . They are given along with a measure of
term importance pi and the size of the associated coefficient batch dim . Term
importance pi is defined as πj = η̄>j η̄−1/η̄T

−1η̄−1, where η̄j is the posterior
expectation of the linear predictor associated with the jth term, and η̄−1 is
the linear predictor minus the intercept. Since ∑

p
j πj = 1, the pi values pro-

vide a rough percentage decomposition of the (non-constant) linear predictor
(Gu, 1992). Note that they can assume negative values as well. The summary
shows that almost all true effects have a high posterior inclusion probabil-
ity (i.e., lin() for lin2, lin3 ; lin(),sm() for sm1, sm2 ; fct(f) ; and the
interaction terms between sm2 and f ). All the terms associated with noise
variables and the superfluous smooth terms for lin1, lin2, lin3 as well as
the superfluous interaction terms have a very low posterior inclusion proba-
bility. The small linear influence of lin1 has not been recovered.

Figure 3.1 shows an excerpt from the second part of the summary output,
which summarizes the posterior of the vector of inclusion indicators γ. The
table shows the different configurations of P(γj = 1) > .5, j = 1, . . . , p sorted
by relative frequency, i.e., the models visited by the sampler sorted by decreas-
ing posterior support. For this simulated data, the posterior is concentrated
strongly on the (almost) true model missing the small linear effect of lin1 .

3.3.2. Visualization

spikeSlabGAM offers automated visualizations for model terms and their inter-
actions, implemented with ggplot2 (Wickham, 2009). By default, the posterior
mean of the linear predictor associated with each covariate (or combination
of covariates if the model contains interactions) along with (pointwise) 80%
credible intervals is shown. Figure 3.2 shows the estimated effects for m1 .

Plots for specific terms can be requested with the label argument, Fig-
ures 3.3 and 3.4 show code snippets and their output for f (sm1) and f (sm2, f).
The fits are quite close to the truth despite the heavy-tailed errors and the
many noise terms included in the model. Full disclosure: The code used to
render Figures 3.3 and 3.4 is a little more intricate than the code snippets we

48



Posterior model probabilities (inclusion threshold = 0.5 ):

1 2 3 4 5 6 7 8
prob.: 0.306 0.063 0.035 0.027 0.026 0.024 0.021 0.017
lin(sm1) x x x x x x x x
sm(sm1) x x x x x x x x
lin(sm2) x x x x x x x x
sm(sm2) x x x x x x x x
fct(f) x x x x x x x x
lin(lin1) x
sm(lin1)
lin(lin2) x x x x x x x x
sm(lin2)
lin(lin3) x x x x x x x x
sm(lin3)
lin(noise1)
sm(noise1)
lin(noise2)
sm(noise2)
lin(noise3)
sm(noise3)
fct(noise4)
lin(sm1):lin(sm2)
lin(sm1):sm(sm2) x
lin(sm1):fct(f) x
lin(sm1):lin(lin1)
lin(sm1):sm(lin1)
sm(sm1):lin(sm2)
sm(sm1):sm(sm2) x
sm(sm1):fct(f)
sm(sm1):lin(lin1)
sm(sm1):sm(lin1)
lin(sm2):fct(f) x x x x x x x x
lin(sm2):lin(lin1)
lin(sm2):sm(lin1)
sm(sm2):fct(f) x x x x x x x x
sm(sm2):lin(lin1)
sm(sm2):sm(lin1) x
fct(f):lin(lin1) x
fct(f):sm(lin1) x
cumulative: 0.306 0.369 0.405 0.431 0.457 0.481 0.503 0.519

Figure 3.1.: Excerpt of the second part of the output returned by sum-

mary.spikeSlabGAM, which tabulates the configurations of P(γj = 1) > .5 with
highest posterior probability. In the example, the posterior is very concentrated in
the true model without lin1 , which has a posterior probability of 0.31. The correct
model that additionally includes lin1 (column 6) has a posterior probability of 0.02.
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R> plot(m)
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Figure 3.2.: Posterior means and pointwise 80% credible intervals for m1. Interaction
surfaces of two numerical covariates are displayed as color coded contour plots, with
regions in which the credible interval does not overlap zero marked in blue (η <
0) or red (η > 0). Each panel contains a marginal rug plot that shows where the
observations are located. Note that the default behavior of plot.spikeSlabGAM is
to cumulate all terms associated with a covariate or covariate combination. In this
example, the joint effects of the first 4 covariates sm1, sm2, f and lin1 and the
sums of the lin- and sm-terms associated with lin2, lin3, noise1, noise2 and
noise3 are displayed. All effects of the noise variables are ≈ 0, note the different
scales on the vertical axes. Vertical axes can be forced to the same range by setting
option commonEtaScale .
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show, but the additional code only affects details (font and margin sizes and
the arrangement of the panels).

R> plot(m, labels = c("lin(sm1)", "sm(sm1)"), cumulative = FALSE)
R> trueFsm1 <- data.frame(truth = fsm1 - mean(fsm1), sm1 = sm1)
R> plot(m, labels = "sm(sm1)", ggElems = list(geom_line(aes(x = sm1,
+ y = truth), data = trueFsm1, linetype = 2)))
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Figure 3.3.: Posterior means and pointwise 80% credible intervals for f (sm1) in m1.
Left and middle panel show the separate lin()- and sm()-terms returned by the first
call to plot , right panel shows their sum. True shape of f (sm1) added as a dashed
line with the ggElems option of plot.spikeSlabGAM.

3.3.3. Assessing convergence

spikeSlabGAM uses the convergence diagnostics implemented in R2WinBUGS

(Sturtz, Ligges, and Gelman, 2005). The function ssGAM2Bugs() converts the
posterior samples for a spikeSlabGAM -object into a bugs -object, for which
graphical and numerical convergence diagnostics are available via plot and
print . Note that not all cases of non-convergence should be considered prob-
lematic, e.g., if one of the chains samples from a different part of the model
space than the others, but has converged on that part of the parameter space.

3.3.4. Example: Diabetes in Pima women

We use the time-honored Pima Indian Diabetes dataset as an example for
real non-Gaussian data: This dataset from the UCI repository (Asuncion and
Newman, 2007) is provided in package mlbench (Leisch and Dimitriadou,
2010) as PimaIndiansDiabetes2 . We remove two columns with a large num-
ber of missing values and use the complete measurements of the remaining 7
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R> trueFsm2f <- data.frame(truth = fsm2f - mean(fsm2f),
+ sm2 = sm2, f = f)
R> plot(m, labels = "sm(sm2):fct(f)", ggElems =
+ list(geom_line(aes(x = sm2, y = truth, colour = f),
+ data = trueFsm2f, linetype = 2)))

sm2*f

sm2

η

-2

-1

0

1

2

0.2 0.4 0.6 0.8

f
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Figure 3.4.: Posterior means and pointwise 80% credible intervals for f (sm2, f) in m1.
True shape of f (sm2|f) added as dashed line for each level of f.
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covariates and the response (diabetes Yes/No) for 524 women to estimate the
model. We set aside 200 observations as a test set:
R> data("PimaIndiansDiabetes2", package = "mlbench")
R> pimaDiab <- na.omit(PimaIndiansDiabetes2[, -c(4, 5)])
R> pimaDiab <- within(pimaDiab, {
+ diabetes <- 1 * (diabetes == "pos")
+ })
R> set.seed(1109712439)
R> testInd <- sample(1:nrow(pimaDiab), 200)
R> pimaDiabTrain <- pimaDiab[-testInd, ]

Note that spikeSlabGAM() always expects a dataset without any missing val-
ues and responses between 0 and 1 for binomial models.

We increase the length of the burn-in phase for each chain from 100 to
500 iterations and run 4 parallel chains for an additive main effects model (if
multicore (Urbanek, 2010) or snow (Tierney, Rossini, Li, and Sevcikova, 2010)
are installed, the chains will be run in parallel):
R> mcmc <- list(nChains = 4, chainLength = 1000, burnin = 500,
+ thin = 5)
R> m0 <- spikeSlabGAM(diabetes ~ pregnant + glucose + pressure +
+ mass + pedigree + age, family = "binomial", data = pimaDiabTrain,
+ mcmc = mcmc)

We compute the posterior predictive means for the test set, and request a
summary of the fitted model:
R> pr0 <- predict(m0, newdata = pimaDiab[testInd, ])
R> print(summary(m0), printModels = FALSE)

Spike-and-Slab STAR for Binomial data

Model:
diabetes ~ (lin(pregnant) + sm(pregnant)) + (lin(glucose) + sm(glucose)) +

(lin(pressure) + sm(pressure)) + (lin(mass) + sm(mass)) +
(lin(pedigree) + sm(pedigree)) + (lin(age) + sm(age))

524 observations; 58 coefficients in 13 model terms.

Prior:
a[tau] b[tau] v[0] a[w] b[w]

5.0e+00 2.5e+01 2.5e-04 1.0e+00 1.0e+00

MCMC:
Saved 4000 samples from 4 chain(s), each ran 5000 iterations after a

burn-in of 500 ; Thinning: 5
P-IWLS acceptance rates: 0.9 for alpha; 0.64 for xi.

Null deviance: 676
Mean posterior deviance: 471

Marginal posterior inclusion probabilities and term importance:
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P(gamma=1) pi dim
u NA NA 1
lin(pregnant) 0.013 0.001 1
sm(pregnant) 0.023 0.000 8
lin(glucose) 1.000 0.482 1 ***
sm(glucose) 0.026 0.000 9
lin(pressure) 0.012 0.000 1
sm(pressure) 0.012 0.000 9
lin(mass) 1.000 0.239 1 ***
sm(mass) 0.933 0.065 9 ***
lin(pedigree) 0.013 0.000 1
sm(pedigree) 0.218 -0.002 8
lin(age) 0.486 0.033 1 *
sm(age) 1.000 0.182 8 ***
*:P(gamma=1)>.25 **:P(gamma=1)>.5 ***:P(gamma=1)>.9

spikeSlabGAM selects nonlinear effects for age and mass and a linear trend
in glucose (and with fairly weak support for a nonlinear effect of pedigree ).
mboost::gamboost ranks the variables very similarly, based on the relative
selection frequencies of the associated baselearners:
R> b <- gamboost(as.factor(diabetes) ~ pregnant + glucose +
+ pressure + mass + pedigree + age, family = Binomial(),
+ data = pimaDiabTrain)[300]
R> aic <- AIC(b, method = "classical")
R> prB <- predict(b[mstop(aic)], newdata = pimaDiab[testInd,
+ ])

R> summary(b[mstop(aic)])$selprob

bbs(mass, df = dfbase) bbs(glucose, df = dfbase)
0.290323 0.266129

bbs(age, df = dfbase) bbs(pedigree, df = dfbase)
0.209677 0.120968

bbs(pregnant, df = dfbase) bbs(pressure, df = dfbase)
0.072581 0.040323

Finally, we compare the deviance on the test set for the two fitted models:
R> dev <- function(y, p) {
+ -2 * sum(dbinom(x = y, size = 1, prob = p, log = T))
+ }
R> c(spikeSlabGAM = dev(pimaDiab[testInd, "diabetes"], pr0),
+ gamboost = dev(pimaDiab[testInd, "diabetes"], plogis(prB)))

spikeSlabGAM gamboost
181.01 194.79

So it seems like spikeSlabGAM ’s model averaged predictions are a little more
accurate than the predictions returned by gamboost in this case.

We can check the sensitivity of the results to the hyperparameters and refit
the model with a larger v0 to see if/how the results change:
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R> hyper1 <- list(gamma = c(v0 = 0.005))
R> m1 <- spikeSlabGAM(diabetes ~ pregnant + glucose + pressure +
+ mass + pedigree + age, family = "binomial", data = pimaDiabTrain,
+ mcmc = mcmc, hyperparameters = hyper1)
R> pr1 <- predict(m1, newdata = pimaDiab[testInd, ])

R> print(summary(m1), printModels = FALSE)

Spike-and-Slab STAR for Binomial data

Model:
diabetes ~ (lin(pregnant) + sm(pregnant)) + (lin(glucose) + sm(glucose)) +

(lin(pressure) + sm(pressure)) + (lin(mass) + sm(mass)) +
(lin(pedigree) + sm(pedigree)) + (lin(age) + sm(age))

524 observations; 58 coefficients in 13 model terms.

Prior:
a[tau] b[tau] v[0] a[w] b[w]
5.000 25.000 0.005 1.000 1.000

MCMC:
Saved 4000 samples from 4 chain(s), each ran 5000 iterations after a

burn-in of 500 ; Thinning: 5
P-IWLS acceptance rates: 0.85 for alpha; 0.64 for xi.

Null deviance: 676
Mean posterior deviance: 459

Marginal posterior inclusion probabilities and term importance:
P(gamma=1) pi dim

u NA NA 1
lin(pregnant) 0.067 0.004 1
sm(pregnant) 0.079 -0.001 8
lin(glucose) 1.000 0.453 1 ***
sm(glucose) 0.082 0.000 9
lin(pressure) 0.101 -0.009 1
sm(pressure) 0.066 0.000 9
lin(mass) 1.000 0.238 1 ***
sm(mass) 0.959 0.064 9 ***
lin(pedigree) 0.148 0.009 1
sm(pedigree) 0.253 0.004 8 *
lin(age) 0.952 0.089 1 ***
sm(age) 0.993 0.150 8 ***
*:P(gamma=1)>.25 **:P(gamma=1)>.5 ***:P(gamma=1)>.9

R> (dev(pimaDiab[testInd, "diabetes"], pr1))

[1] 177.21

The selected terms are very similar, and the prediction is slightly more accu-
rate (predictive deviance for m0 was 181.01).
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4. Simulation Studies and Application Results for
spikeSlabGAM

4.1. Simulation studies

This section summarizes results from tests of spikeSlabGAM on simulated
data. Section 4.1.1 investigates the adaptive shrinkage properties of the pro-
posed prior structures. Section 4.1.2 shows that the proposed parameter ex-
pansion with multiplicative redundant parameters can improve sampling be-
havior for settings in which the posterior of the regression coefficients con-
tains strong correlations. Sections 4.1.3 and 4.1.4 investigate model selection
and estimation performance for models with random intercepts and smooth
functions, respectively. Section 4.1.5 describes results for additive models of
some complexity for both Gaussian and Poisson responses and compares the
performance of our approach to the performances of other recently suggested
algorithms.

We introduce some additional notation for the simulation of Gaussian data:
For a given data-generating process (DGP) that generates a random design
matrix X and a (fixed or random) vector of coefficients β, let η = Xβ denote
the “true” linear predictor. For responses with y = η + ε, the difficulty level
of estimating both β, and, consequently, η is determined mostly by the ratio
between the systematic variability that can be quantified as the observed vari-
ability of η, i.e. the “signal”, and the unsystematic variability introduced by
the Gaussian error terms ε, the “noise”. Let sdη =

√
∑n

i (ηi − η̄)2/n and define
the signal-to-noise ratio SNR = n sd2

η / ∑n
i ε2

i . For a given value of SNR and

realization of η, responses y are then generated via yi ∼ N
(

ηi, sd2
η / SNR

)
.

4.1.1. Adaptive shrinkage

We investigate the shrinkage properties of the proposed prior structures in a
simple setting. The following describes the data-generating process:

• n = 20, 50, 100 observations

• β = (.1, .2, .3, . . . , 1), p = 10

• signal-to-noise ratio SNR= 0.5, 2
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• covariates xj are independent, with xj ∼ U[−2, 2] and enter the model
scaled to have mean 0 and standard deviation .5.

• 100 replications per setting

We want to compare the shrinkage properties of the posterior means from
spikeSlabGAM with those of the horseshoe prior (HS) as implemented in R
package monomvn (Gramacy, 2010) and the LASSO estimator (L1) as imple-
mented in R package lasso2 (Lokhorst, Venables, Turlach, and Maechler,
2009). The horseshoe prior (a scale mixture of normals with a scaled half-
Cauchy mixing distribution, where the scale of the mixing distribution is itself
half-Cauchy distributed), has recently been shown to have excellent adaptive
shrinkage properties (Carvalho et al., 2010) and we use its behavior as a ref-
erence for good adaptive shrinkage properties, while the LASSO estimators
serve as a reference for a shrinkage estimator without adaptivity.

Figure 4.1 shows the median and the inter-quartile ranges of the posterior
means of the estimated coefficients over the 100 replications for each combina-
tion of the different numbers of observations n and the signal-to-noise ratios
SNR. We compare models with (peNMIG) and without (NMIG) the redun-
dant multiplicative parameter expansion with (aτ, bτ, v0) = (5, 25, 0.00025) or
(5, 50, 0.005).

Note that the frequentist LASSO (L1, in brown) performs about the same
amount of regularization in all of the settings – all six approaches overshrink
the larger coefficients for N = 20 and N = 50, SNR= 0.5; LASSO less so than
the Bayesian approaches. However, as more information from the data be-
comes available with increasing N and SNR, the Bayesian approaches (NMIG,
peNMIG, HS) perform less regularization, since the likelihood contribution
of the posterior increasingly dominates the prior contribution to the poste-
rior. This is visible especially for the bottom right panel with N = 100 and
SNR= 2.

Adaptive shrinkage in the sense of strong regularization of smaller coeffi-
cients (i.e. β ≤ 0.5) and simultaneously weak shrinkage for large coefficients
(i.e. β ≥ 0.8) is observable only for N = 50, 100. For N = 20, posterior means
for peNMIG with (aτ, bτ) = (5, 50) and v0 = 0.005 are closest to those re-
turned by the horseshoe-prior model. We observe no systematic differences
between the shrinkage properties of NMIG and peNMIG for v0 = .005. Esti-
mates and inclusion probabilities (see Figure 4.2) for the larger coefficients are
much smaller for the NMIG model. We also note that inclusion probabilities
for peNMIG seem to be somewhat less sensitive to the different hyperparame-
ters than for NMIG. Shrinkage of the smaller coefficients is more pronounced
for smaller v0 and τ2 (red and green symbols) without a corresponding in-
crease in estimation bias for the larger coefficients, at least for settings with
enough data (i.e. n = 50, SNR= 2 and n = 100). For settings with n = 50,
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Figure 4.1.: Estimated coefficients (median & inter-quartile range) for different
(pe)NMIG-prior settings, the horseshoe prior (HS) and the frequentist LASSO (L1).
Fat dark gray horizontal bars show values of the true coefficients.
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Figure 4.2.: Posterior means of P(γ = 1) (median & inter-quartile range) for different
NMIG-prior settings.
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SNR= 2 or n = 100, larger v0 and τ2 NMIG models without parameter ex-
pansion (in purple) perform much worse. This is due to lower inclusion prob-
abilities (see Figure 4.2). In general, we find that the spikeSlabGAM estimates
are similar to the HS estimates.

Across all settings, estimation times for spikeSlabGAM for both NMIG and
peNMIG were about one third to half of those for monomvn. In absolute terms,
running 3000 iterations of the chains took between 0.16 and 0.36 seconds for
spikeSlabGAM depending on n and whether parameter expansion was used,
while monomvn’s horseshoe implementation took between 0.58 and 0.64 sec-
onds on a modern desktop PC (Intel Core2 Quad Q9550 CPU with 2.83GHz).

Tail robustness and sparsity recovery

In order to compare the robustness of our approaches to large coefficient val-
ues relative to that of the horseshoe prior, we replicate the simulation study in
Section 3.1. of Polson and Scott (2010). We simulate 100 datasets with n = 60
observations and p = 40 covariates. The covariates are independent standard
normal variates. The true coefficient vector is 80% sparse, with the first 32
entries equal to zero (i.e. the “noise” component) and the remaining 8 drawn
from a t-distribution with 3 degrees of freedom (i.e. the “signal” component).
We simulate responses y with normal errors so that the signal-to-noise ratio
is 2. Results are shown for prior settings aτ = 5, bτ = 50, v0 = 0.00025, aw =
bw = 1 and the default settings for the horseshoe prior as implemented in
monomvn. Figure 4.3 shows the mean square estimation errors (MSE) for pos-

Prior

M
SE

(β̂
)

2-102-82-62-42-2

noise

HS peNMIG NMIG

2-4
2-220
22
24

signal

HS peNMIG NMIG

Figure 4.3.: Mean square estimation errors (MSE) for posterior means of β. Upper
panel shows MSE(β̂) for the coefficients that are zero, lower panel shows MSE(β̂)
for the coefficients drawn from t3. Dark grey lines connect values from the same
replicates.

terior means of β separately for the noise (upper panel) and signal (lower
panel) components of β. MSE for the noise part is consistently higher for the
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horseshoe estimates (average MSE-ratio is 2.8 compared to the spikeSlabGAM-
estimates for peNMIG and 5.0 for NMIG), while the MSE for the signal part
is slightly lower (average MSE-ratio: 0.94 for peNMIG and 0.83 for NMIG).
These results show satisfactory tail robustness for both approaches compara-
ble to that of the horseshoe prior and excellent sparsity recovery. As expected
(see Section 2.2.4, Figures 2.4, 2.6), robustness is stronger for peNMIG than
for NMIG. Sparsity recovery is very good for both of our approaches. We
observed qualitatively similar results for signal-to-noise ratios 5 and .5 (not
shown).

4.1.2. Sampling performance with parameter expansion

We investigate the approximate integrated autocorrelation times – defined as

IAT(x) =
1
2
+

T

∑
t=1

r̂(t),

r̂(t) are the estimated auto correlations for lag t (Jackman, 2009)– for the re-
gression coefficients and their estimation error in designs with strong correla-
tions in the posterior distribution of β. We generate random design matrices
X ∈ Rn×p so that Ψ = (X ′X)−1 is a matrix with 1 on the diagonal and a con-
stant ρ everywhere else, i.e. the correlations between all the OLS-estimators
are equal to ρ. Specifically, X = UΨ−1/2, where U is an orthonormal matrix
and Ψ−1/2 is the Cholesky root of Ψ−1. Responses y are then generated as

y ∼ Nn

(
η,

sd2
η

SNR
In

)
.

Regression coefficients β are set as an equidistant descending sequence of
length 10 from 2 to .5 interspersed with zeroes, i.e. β = (2, 0, . . . , 0.6̄, 0, 0.5, 0)′

so that p = 20.
We use the following settings for our simulations:

• correlation of βOLS: ρ = .9, .95

• signal-to-noise-ratio SNR = 1, 3

• no of observations: n = 50, 100

• 100 replications for each setting

Figure 4.4 shows ratios between average integrated autocorrelation times

for β̂ (top graph) and root mean square estimation error
√
‖β̂− β‖2

2 (mid-
dle graph) with and without parameter expansion for the different settings
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Ratios of IAT with and without parameter expansion
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Figure 4.4.: Ratios of average integrated autocorrelation times for β̂ (upper graph),

root mean square estimation error
√
‖β̂− β‖2 (middle graph) and time per “inde-

pendent” sample (bottom graph). Columns correspond to the settings of the data
generating process (correlation and SNR). Boxplots contain the ratio between peN-
MIG and NMIG results for each replicate. Boxplots are grouped into the four different
prior settings. Red boxplots correspond to results for n = 100 observations, blue for
n = 50. Vertical axes are on binary log scale; fat gray horizontal line corresponds to
a ratio of 1, i.e no change.
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for the posterior correlation, the signal-to-noise ratio and hyperparameters
(aτ, bτ) and v0. Panels from left to right show results for correlation 0.9 with
SNR 1 and SNR 3 followed by results for correlation 0.95 with SNR 1 and SNR
3. The simulation shows that the suggested parameter expansion improves
mixing and reduces estimation error for all DGP settings and hyperparame-
ter configurations, especially for higher SNR, smaller v0, and low number of
observations. Parameter expansion reduces estimated integrated autocorrela-
tion times for β by a median factor of .49 for n = 50 and .57 for n = 100

and estimation error
√
‖β̂− β‖2

2 by a median factor of .94 for n = 50 and
.95 for n = 100. Because of the larger complexity of the sampler for peNMIG
(see Section 3.2), the observed improvement in mixing is not large enough to
translate into consistent reductions in computing time for n = 100: The bot-
tom graph in Figure 4.4 shows that the time to generate a single “independent
sample” (defined as the total run time of the sampler divided by the effective
sample size, which is in turn the number of iterations of the chain divided by
2IAT (Jackman, 2009)) remains about the same in most settings, with median
ratios of estimated time per independent sample of .80 for n = 50 and .98 for
n = 100. Regression analyses of the simulation results with performance mea-
sures as dependent variables and second-degree interactions and main effects
for the data-generating process (n, SNR, correlation) and the hyperparame-
ters ((aτ, bτ), v0) also show that using peNMIG increases the odds of correctly
including a covariate in the model by a factor of 1.11, without a corresponding
decrease in specificity. Accuracy increases by a factor of 1.04. Table 4.1 gives
mean performance measures for the different settings and priors.

In summary, these results indicate that parameter expansion has the po-
tential to improve mixing for difficult data situations dramatically, although
this may not translate into relevant savings in computation time for larger
data sets with many parameters due to the higher computational burden of
sampling from the parameter expanded posterior. Parameter expansion also
reduces estimation error and improves complexity recovery. Note that we did
not investigate whether these advantages disappear if the sampler for the
conventional NMIG model is allowed to run long enough to achieve a similar
effective sample size as that of the parameter expanded model.

4.1.3. Random intercept models

This section summarizes simulation results on selecting and estimating ran-
dom intercept coefficients for Gaussian, Poisson and binomial response. The
basic data generating process for all types of response is

η = xβ +Zb
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Parameter

DGP Prior Expansion Sensitivity Specificity IAT
√

MSE(β̂) TPS [ms]

0.9:100:1

c(10, 30):0.00025 Yes 0.69 0.84 4.21 0.09 7.96
No 0.70 0.80 8.18 0.09 8.50

c(10, 30):0.005 Yes 0.68 0.86 1.79 0.09 3.36
No 0.65 0.85 2.97 0.09 2.83

c(5, 50):0.00025 Yes 0.60 0.93 4.36 0.10 8.22
No 0.55 0.94 8.44 0.10 8.74

c(5, 50):0.005 Yes 0.51 0.96 1.14 0.09 2.02
No 0.37 0.98 2.18 0.11 1.85

0.9:100:3

c(10, 30):0.00025 Yes 0.93 0.95 3.40 0.04 6.31
No 0.92 0.93 5.83 0.04 6.50

c(10, 30):0.005 Yes 0.91 0.96 0.93 0.04 1.78
No 0.89 0.97 1.53 0.04 1.58

c(5, 50):0.00025 Yes 0.91 0.98 1.90 0.04 3.49
No 0.89 0.97 4.74 0.04 5.50

c(5, 50):0.005 Yes 0.77 1.00 0.77 0.04 1.40
No 0.69 1.00 1.08 0.05 1.04

0.9:50:1

c(10, 30):0.00025 Yes 0.38 0.86 3.86 0.14 5.28
No 0.34 0.85 8.62 0.15 6.76

c(10, 30):0.005 Yes 0.38 0.87 1.68 0.14 2.29
No 0.29 0.88 3.76 0.15 2.90

c(5, 50):0.00025 Yes 0.19 0.97 4.40 0.16 6.04
No 0.17 0.97 8.10 0.16 6.29

c(5, 50):0.005 Yes 0.24 0.96 1.20 0.14 1.59
No 0.13 0.99 2.38 0.16 1.79

0.9:50:3

c(10, 30):0.00025 Yes 0.77 0.89 4.11 0.07 5.84
No 0.76 0.85 8.95 0.08 7.79

c(10, 30):0.005 Yes 0.76 0.91 1.63 0.07 2.06
No 0.72 0.90 3.20 0.08 2.74

c(5, 50):0.00025 Yes 0.68 0.96 4.41 0.08 6.30
No 0.59 0.97 9.08 0.09 7.67

c(5, 50):0.005 Yes 0.60 0.98 1.14 0.08 1.55
No 0.42 0.99 3.03 0.10 2.40

0.95:100:1

c(10, 30):0.00025 Yes 0.68 0.85 4.11 0.09 7.93
No 0.66 0.80 8.17 0.10 8.66

c(10, 30):0.005 Yes 0.67 0.86 1.63 0.09 2.96
No 0.64 0.83 2.99 0.10 3.03

c(5, 50):0.00025 Yes 0.60 0.95 3.25 0.09 6.15
No 0.56 0.94 7.34 0.10 7.73

c(5, 50):0.005 Yes 0.52 0.97 1.02 0.09 1.89
No 0.39 0.97 2.30 0.11 2.24

0.95:100:3

c(10, 30):0.00025 Yes 0.95 0.93 3.04 0.04 5.69
No 0.94 0.93 5.43 0.04 6.19

c(10, 30):0.005 Yes 0.92 0.96 1.13 0.04 2.17
No 0.90 0.96 1.66 0.04 1.87

c(5, 50):0.00025 Yes 0.93 0.97 2.30 0.04 4.39
No 0.91 0.98 4.11 0.04 4.40

c(5, 50):0.005 Yes 0.78 1.00 0.75 0.04 1.45
No 0.71 1.00 1.35 0.05 1.39

0.95:50:1

c(10, 30):0.00025 Yes 0.38 0.83 4.05 0.14 5.42
No 0.35 0.83 8.34 0.15 6.94

c(10, 30):0.005 Yes 0.37 0.84 1.67 0.14 2.24
No 0.32 0.86 3.86 0.15 3.13

c(5, 50):0.00025 Yes 0.18 0.96 4.63 0.16 6.23
No 0.14 0.97 8.57 0.16 6.82

c(5, 50):0.005 Yes 0.24 0.94 1.22 0.14 1.65
No 0.10 0.98 2.43 0.16 1.94

0.95:50:3

c(10, 30):0.00025 Yes 0.80 0.87 4.44 0.07 5.90
No 0.79 0.85 8.75 0.08 7.77

c(10, 30):0.005 Yes 0.79 0.90 1.91 0.07 2.55
No 0.75 0.88 3.26 0.08 2.67

c(5, 50):0.00025 Yes 0.69 0.95 5.03 0.08 7.50
No 0.59 0.96 9.93 0.09 8.57

c(5, 50):0.005 Yes 0.62 0.98 1.25 0.07 1.72
No 0.43 0.99 3.10 0.10 2.52

Table 4.1.: Means of sensitivity (ratio of included coefficients ≥ .5), specificity (ra-
tio of excluded coefficients = 0), integrated autocorrelation times, root mean square
error for estimated coefficients and estimated times per independent sample (in mil-
liseconds, on an AMD Opteron 270)
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with an incidence matrix Z for a grouping factor and

xi
i.i.d.∼ U

(
0,
√

12
)

, i = 1, . . . , n so that Var(x) = 1

β = 1

b̃g
i.i.d.∼ tν, g = 1, . . . , no. of groups;

b = σ
b̃−mean(b̃)

sd(b̃)

with all combinations of the following settings:

• g = 10 or 100 groups/subjects (i.e b ∈ R10 or R100) for linear mixed
models and g = 10, 20, 50, 100 groups for binomial and Poisson response

• with (on average) 5 or 20 observations for each group/subject for linear
mixed models and (on average) 5 observations per group for binomial
and Poisson response

• with degrees of freedom ν = 1 or 20 (i.e. Cauchy or approximately
Gaussian random effects)

We use scaled and centered random effects b so that the contribution of the
random effects to the variability of the linear predictor is constant across
replications for the same value of σ and for different values of ν. We com-
pare misclassification rates and root mean square estimation error (RMSE)√

MSE = ‖b̂ − b‖/g between various prior settings for our approach and
mixed models fitted with lme4 (Bates and Maechler, 2009) and tested with
(restricted) likelihood ratio tests.

Linear mixed model

For the linear mixed model, we use

• signal-to-noise-ratio SNR = 1, 5

• random effects scale factor σ = 0, 0.0625, 0.125, 0.25, 0.5, 0.75, 1

and balanced data, in addition to the settings described above. We generate
100 data sets for each combination of settings.

Inclusion or exclusion of the random intercept term in the LMM is based on
the p-value of an exact restricted likelihood ratio test (RLRT) for H0 : σ2 = 0
with nominal significance level α = .05 as implemented in RLRsim (Scheipl,
2010a; Scheipl, Greven, and Küchenhoff, 2008). We consider the random inter-
cept included in the spikeSlabGAM-models if the Rao-Blackwellized estimate
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Figure 4.5.: Mean type I / type II error rates with 95% bootstrap CIs and
√

MSE
for linear mixed models with a random intercept. Rows correspond to the different
combinations of SNR and degrees of freedom ν, top two rows are for SNR = 1.
Columns correspond to the different combinations of number of groups/subjects and
observations per group/subject, two rightmost columns are for 10 groups/subjects.
Left graph gives type I error for σ = 0, right graph gives type II error rates for σ > 0.
Graph on the lower right gives mean estimation error

√
MSE = ‖b̂− b‖/g. Solid

black lines line give error rates and RMSE for the LMM (based on the p-value of a
restricted LR-test with nominal α = .05). Vertical axis for type I error is on

√
-scale.

Error bars show 95% CIs for mean error rates.
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of the posterior mean of P(γb = 1) is greater than 0.5. Figure 4.5 shows error
rates (top left: false positive or type I error for σ = 0, top right: false negative
or type II error for σ > 0) and root mean square estimation errors for the ran-
dom intercept model for Gaussian responses. Type I and type II error rates
for the hyperparameter configurations considered here are mostly very close
to those of the RLRT with nominal significance level α = .05 (black lines) and
very robust against the different hyperparameter configurations, especially
for smaller sample sizes. As in the other simulations, a smaller v0 (red, green
symbols) yields less conservative models in most settings, because the thresh-
old an effect has to cross before the associated hypervariance is sampled from
the “slab” and not from the “spike” decreases. Counterintuitively, this effect
seems to be largest for large data sets where one would expect the prior’s
influence to be smaller.

Estimation error for the frequentist LMM is markedly larger than for peN-
MIG for larger sample sizes when σ > 0, about the same for smaller sample
sizes and remarkably stable across the different prior settings. Average es-
timation error for the frequentist LMM for σ = 0 is always lower because
random effects can be estimated as exactly zero if σ̂ = 0 for the LMM while
spikeSlabGAM only enforces strong shrinkage. Contrary to what we would
have expected, estimation error for σ = 0 is not much lower for v0 = 10−5

despite the fact that it imposes stronger shrinkage than v0 = 0.00025.

Mixed model with non-Gaussian response

For the generalized linear mixed models, binary responses y are generated
from

yi ∼ B
(

n = 1, p = (1 + exp (−ηi))
−1
)

and Poisson responses are generated from

yi ∼ Po (λ = exp (ηi))

with

• random effects scale factor σ = 0, 0.125, 0.25, 0.5, 0.75, 1

• balanced design or unbalanced with relative group sizes drawn from a
Dirichlet distribution with concentration parameter α = (5, . . . , 5)′

and the other settings as described at the beginning of this section. Results are
shown only for the unbalanced case with 5 observations per group. Increasing
the number of observations per group and/or using balanced groups did not
change the results in pilot runs (cf. results for the LMM in the preceding
section) and the corresponding settings were omitted.
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Inclusion or exclusion of the random intercept term in the GLMM is based
on the p-value of a likelihood ratio test for H0 : σ2 = 0 with significance
level α = 0.15. The reference distribution for this test was determined by
a parametric bootstrap for each dataset. We generate 100 data sets for each
combination of settings. Figures 4.6 and 4.7 show error rates (top left: false
positive or type I error for σ = 0, top right: false negative or type II error)
and root mean square estimation errors for the random intercept model for
Poisson and binomial responses, respectively.

For both binomial and Poisson response, type I error rates are large and
increase with the number of groups. Type II error rates for binomial response
remain essentially constant as the variance of the random effects increases
and mostly remain above 20% even for fairly large values of the variance
and regardless of the hyperparameter settings. For Poisson response, there is
strong sensitivity of error rates and estimation error towards v0, with 100%
type I error for g = 100 and 80% type I error for g = 50 for v0 = 10−5. Type II
error rates also decline much faster for v0 = 10−5 for g = 10, 20.

Estimation error for both Poisson and binomial response is mostly lower
than that of the lme4 fit, especially for larger random effect variances and
larger v0 and despite the better selection properties of smaller v0.

We obtained similar results for balanced data and data with more than 5
observations per group.

Closer examination of the estimated inclusion probabilities reveals that the
estimated inclusion probabilities for the settings with more than ten groups
are usually between 40% and 70%, with no change in their distribution as
the variance of the random intercept increases. The mixing of the indicator
variables γ in any given chain is very poor for these large coefficient blocks:
Chains that move from v0 to 1 usually move back to v0 immediately in the
following iteration: Since the IWLS proposal does not yield sufficiently large
steps to move the coefficient values to their more heavily shrunk value in one
iteration, the indicator usually changes back to 1 immediately. Moves from 1
to v0 occur rarely for more than 10 groups.

The simulation results for LMM and GLMM suggest that the model selec-
tion behavior for random effects is similar to that of the (restricted) likelihood
ratio test for a broad variety of settings in the Gaussian case, but breaks down
for non- Gaussian responses in the case of random effects with many lev-
els. Estimation of the random effects is much better than that produced by
the conventional ridge-type shrinkage of the frequentist mixed model with
Gaussian random effects for almost all settings we considered.
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Figure 4.6.: Mean type I / type II error rates and
√

MSE for mixed models with a
random intercept and Poisson response. Rows correspond to the different degrees
of freedom ν. Columns correspond to the different numbers of groups g. Left graph
gives type I error for σ = 0, right graph gives type II error rates for σ > 0. Graph

on the lower right gives mean estimation error
√

MSE =
√
‖b̂− b‖2. Solid black lines

line give error rates and RMSE for the GLMM (based on the p-value of a bootstrap
LR test with α = .15). Vertical axis for type I error is on

√
-scale. Error bars show

95% CIs for mean error rates.
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Figure 4.7.: Mean type I / type II error rates and
√

MSE for mixed models with a
random intercept and binary response. Rows correspond to the degrees of freedom
ν. Columns correspond to the different number of groups g. Left graph gives type I
error for σ = 0, right graph gives type II error rates for σ > 0. Graph on the lower

right gives mean estimation error
√

MSE =
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‖b̂− b‖2. Solid black lines line give

error rates and RMSE for the GLMM (based on the p-value of a bootstrap LR test
with α = .15). Vertical axis for type I error is on

√
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log2-scale. Error bars show 95% CIs for mean error rates.
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4.1.4. Univariate smoothing

We investigate the properties of the peNMIG prior in terms of function se-
lection for both randomly generated and fixed functions for Gaussian and
binary binomial responses.

We compare inclusion probabilities and misclassification rates for peNMIG
with various hyperparameter configurations to boosting with separate base
learners for the linear and smooth parts of the function with mboost and to ad-
ditive models (AM) in mixed model representation fitted with amer (Scheipl,
2010c). Inclusion or exclusion of a smooth term for the latter is based on the
p-value of an exact finite sample restricted likelihood ratio test (RLRT) for
H0 : σ2 = 0 with α = .05 as implemented in RLRsim (Scheipl, 2010a; Scheipl
et al., 2008) in the Gaussian case. A parametric bootstrap LRT is used for bino-
mial responses. Ten-fold cross validation on the training data is employed to
determine the optimal stopping iteration for mboost and a baselearner is in-
cluded in the model if it is selected in at least half of the cross-validation runs
up to the stopping iteration. Smooth terms are included in the spikeSlabGAM-
models if the Rao-Blackwellized posterior mean of P(γ = 1) is greater than
0.5 (cf. Section 3.2.3).

Randomly generated functions

We investigate the properties of our approach first on data from a very basic
data-generating process for a simple spline model:

• η = x+ Z(x)b; Z(x) is the penalized part of a B-spline basis for co-
variate x with a difference penalty of order 2.

• b ∼ σN(µ, Id), µ is drawn from {−1, 1}d.

We use the following settings for the simulation:

• number of observations: n = 50, 500

• signal-to-noise-ratio SNR = 0.5, 5

• dimension of spline basis: ds = 5, 20

• degree of nonlinearity: σ2 = 0, 0.125, 0.25, 0.375, 0.5

• 100 replications

For σ2 = 0, the function to be estimated is linear, so the correct model does not
include a smooth term. Results for this data generating process are shown in
Figure 4.9. Figure 4.8 shows 10 realizations of simulated functions x+Z(x)b
for the various settings.
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Fixed functions

We also investigate the properties of our approach with a data-generating
process (DGP) based on non-random functions:

• η = x+ σ f (x)

• f (x) =


(2x− 1.5)2/3 (quadratic)
(π sin(2πx))/11 (sinus)
(φ((x− 0.2)/0.12)− φ((x− 0.7)/0.055)) (bumpy)

φ(·) is the standard normal density.

We use the following settings for the simulation:

• number of observations: n = 50, 500 for Gaussian responses and n =
100, 1000 for binary responses.

• signal-to-noise-ratio SNR = 0.5, 5 for Gaussian responses

• for binary responses we scale the linear predictor so that the range of
P(y = 1|η) for each data set is restricted to [0 + r, 1− r] with r = 0.05
corresponding to a high SNR and r = 0.2 corresponding to a low SNR.

• degree of nonlinearity: s = 0, 0.25, 0.5, 0.75, 1 for Gaussian responses and
s = 0, 0.1, 0.25, 0.5, 0.75, 1, 1.5 for binary responses

• 100 replications

For σ = 0, the function to be estimated is a simple line, so the correct model
is one without a smooth term. Figure 4.8 shows the shape of the 3 functions
for varying d. We use 10 basis functions to estimate the effects.

Analysis for Gaussian response

Figures 4.9 and 4.10 show type I and type II error rates along with square root
of the mean square error ‖η− η̂‖2/n for the various priors, additive models fit
with amer (solid black lines) and tested with exactRLRT and component-wise
boosting fit with mboost (dashed black lines) for Gaussian responses. Selec-
tion via component-wise boosting is extremely anti-conservative, with type I
error rate between 60% and 95% and type II error rates below 20% across all
settings, and comparatively large prediction error especially for strong non-
linearity and/or larger samples and SNR.

Type II error rates for spikeSlabGAM are heavily influenced by the prior set-
tings, while type I error rates are very stable. Since smaller values of v0 imply
stronger regularization if the hypervariance is sampled from the “spike”, the
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Figure 4.9.: Mean type I / type II error rates and
√

MSE for randomly generated
functions.
Left graph gives type I error for σ2 = 0, right graph gives type II error rates for
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√
MSE. Solid black lines line gives error rates for the

GAM (based on the p-value of a restricted LR-test with α = .05), dashed black line
for mboost. Vertical axis for type I error is on

√
-scale. Error bars show 95% CIs for

mean error rates.
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Figure 4.10.: Mean type I / type II error rates and
√

MSE for fixed functions and
Gaussian response. Columns correspond to the three different functions in the upper
graphs. Left graph gives type I error for σ = 0, right graph gives type II error rates
for σ > 0. Top two rows for SNR = .5 with n = 50, 500, bottom rows for SNR = 5.
Graph on the lower right gives mean prediction
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show 95% CIs for mean error rates.
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odds of sampling from the “spike” are smaller and thus the smaller values of
v0 have more “power” and are quicker to include smooth terms in the model
(i.e. sample from the “slab”) – the smaller v0, the smaller is the threshold an
effect has to cross in order to be included in the model.

Compared to function selection based on the RLRT with nominal α = .05
– note that model selection via AIC corresponds to an RLRT with α = .05 in
this context (Greven, 2007, p. 104) – our approach is more conservative, i.e.,
has lower mean type I error rates across all of the considered settings and
priors.

Correspondingly, type II error rates are mostly higher than those for the
RLRT, especially for (aτ, bτ) = (5, 50) and/or v0 = 0.005. Nevertheless, the
prior with (aτ, bτ) = (10, 30) and v0 = 0.00025 dominates the RLRT in terms
of misclassification for some settings with low SNR and small samples and
achieves very similar type II error rates to that of the RLRT across all settings.
In general, type II error rates decrease about as fast as those of the RLRT,
but on a higher absolute level. This reflects the fact that the model selection
implemented in spikeSlabGAM is designed to select “relevant” terms and not
“significant” terms. The threshold of relevance depends on (aτ, bτ) and v0. In
that sense, the generally very high exclusion rates for the randomly gener-
ated functions with ds = 5 may be sensible behavior if the goal is to build a
parsimonious model.

The graphs for the
√

MSE on the lower right of Figures 4.9 and 4.10 show
that even much larger type II error rates do not translate into larger estimation
errors. For both randomly generated and fixed functions, the model averaging
implicit in our procedure recovers the true predictor as good as the frequentist
AM in this context and seems to perform much better than component-wise
boosting, especially as nonlinearity increases. Across all settings, estimation
errors are much more robust against the different prior settings than model
selection.

Analysis for binary response

Figure 4.11 shows type I and type II error rates along with square root of
the mean square error ‖η − η̂‖2/n for binary responses. Results for additive
models fit with amer and tested with a parametric bootstrap LRT are shown as
solid black lines and component-wise boosting results with mboost are shown
as dashed black lines. As for Gaussian responses, selection via component-
wise boosting is extremely anti-conservative, with type I error rate above 90%
for all settings and type II error rates below 20% across all settings, and com-
paratively large prediction error especially for larger samples and higher SNR
(i.e., r = 0.05).

Type II error rates for spikeSlabGAM for binary response are influenced less
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Figure 4.11.: Mean type I / type II error rates and
√

MSE for fixed functions and
binary binomial response. Columns correspond to the three different functions in
the upper graphs. Left graph gives type I error for σ = 0, right graph gives type II
error rates for σ > 0. Top two rows for r = .05 (high “SNR”) with n = 100, 1000,
bottom rows for r = 2 (low “SNR”). Graph on the lower right gives mean prediction√

MSE. Solid black lines line gives error rates for the GAM (based on the p-value of
a parametric bootstrap LR-test with α = .05), dashed black line for mboost. Vertical
axis for type I error is on
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-scale. Error bars show 95% CIs for mean error rates.
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strongly by the prior settings than for Gaussian response. Type I error rates
are very stable and remain below 5%. Unlike for Gaussian responses, we do
not observe a consistent pattern that would indicate larger “power” for prior
configurations with smaller v0. Compared to function selection based on a
bootstrap LRT with nominal α = .05, our approach is less conservative, i.e.,
has higher mean type I error rates and (much) lower type II error rates across
most of the considered settings and priors. Note that even in the setting in
the bottom right corner (“bumpy function” with 1000 observations and small
range) where spikeSlabGAM achieves mostly lower type I error rates the type
II error rates are much lower than that of the LRT.

The graphs for
√

MSE on the lower right of Figure 4.11 show that even
much lower type II error rates do not translate into consistently lower esti-
mation errors. Nevertheless, the model averaging implicit in our procedure
recovers the true predictor consistently better than boosting in this context,
about as good as the frequentist AM for weaker nonlinearity and much better
than the frequentist AM for strong nonlinearity.

4.1.5. Generalized additive models

In the following Sections 4.1.5 and 4.1.5, we compare the performance of
peNMIG in (generalized) additive models to that of component-wise boosting
(Hothorn, Bühlmann, Kneib, Schmid, and Hofner, 2010) in terms of predic-
tive MSE and complexity recovery. As a reference, we also fit a conventional
GAM (as implemented in mgcv (Wood, 2008)) based on the “true” formula
(i.e. a model without any of the “noise” terms), which we subsequently call
the “oracle”-model. For Gaussian responses only, we also compare our results
to those from ACOSSO (Storlie, Bondell, Reich, and Zhang, 2011). ACOSSO
is not able to fit non-Gaussian responses.

We supply separate base learners for the linear and smooth parts of co-
variate influence for the component-wise boosting in order to compare com-
plexity recovery between boosting and our approach. We use 10-fold cross
validation on the training data to determine the optimal stopping iteration
for mboost and count a baselearner as included in the model if it is selected
in at least half of the cross-validation runs up to the stopping iteration. BIC
is used to determine the tuning parameter for ACOSSO. We were unable to
compare our approach to Reich et al. (2009), which is implemented for Gaus-
sian responses, since the available R implementation is impractically slow.

For both Gaussian responses (Section 4.1.5) and Poisson responses (Section
4.1.5), the data generating process has the following structure:

• We define 4 functions

– f1(x) = x,
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– f2(x) = x + (2x−2)2

5.5 ,

– f3(x) = −x + π sin(πx),

– f4(x) = 0.5x + 15φ(2(x − .2))− φ(x + 0.4), where φ() is the stan-
dard normal density function,

which enter into the linear predictor. Note that all of them have (at least)
a linear component.

• We define 2 scenarios:

– a “low sparsity” scenario: Generate 16 covariates, 12 of which have
non-zero influence. The true linear predictor is

η = f1(x1) + f2(x2) + f3(x3) + f4(x4)+

+ 1.5( f1(x5) + f2(x6) + f3(x7) + f4(x8))+

+ 2( f1(x9) + f2(x10) + f3(x11) + f4(x12)).

– a “high sparsity” scenario: Generate 20 covariates, only 4 of which
have non-zero influence and η = f1(x1) + f2(x2) + f3(x3) + f4(x4).

• The covariates are either

– i.i.d.∼ U[−2, 2] or

– from an AR(1) process with correlation ρ = 0.7.

• We simulate 50 replications for each combination of the various settings.

We compare 9 different prior specifications:

• (aτ, bτ) = (5, 25), (10, 30), (5, 50)

• v0 = 0.00025, 0.005, 0.01

Predictive MSE is evaluated on test data sets with 5000 observations. Com-
plexity recovery, i.e. how well the different approaches select covariates with
true influence on the response and remove covariates without true influence
on the response is measured in terms of accuracy, defined as the number of
correctly classified model terms (true positives and true negatives) divided
by the total number of terms in the model. For example, the full model in the
“low sparsity” scenario has 32 potential terms under selection (linear terms
and basis expansions/smooth terms for each of the 16 covariates), only 21
of which are truly non-zero (the linear terms for the first 12 covariates plus
the 9 basis expansions of the covariates not associated with the linear func-
tion f1()). Accuracy in this scenario would then be determined as the sum of
the correctly included model terms plus the correctly excluded model terms,
divided by 32.
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Figure 4.12.: Prediction MSE divided by oracle MSE for Gaussian response. White
boxplots show results for the different prior settings, blue and red symbols show
results for mboost and ACOSSO, respectively: Shaded region gives IQR, line repre-
sents median. Dark grey lines connect results for the same replication. Columns from
left to right: 200 obs. with SNR=5, 20; 1000 obs. with SNR=5, 20. Rows from top to
bottom: uncorrelated obs. with sparse and unsparse predictor, correlated obs. with
sparse and unsparse predictor. Vertical axis is on binary log scale.

In addition to the basic structure of the data generating process described
at the beginning of this section, the data generating process for the Gaussian
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Figure 4.13.: Complexity recovery for Gaussian response: proportion of correctly in-
cluded and excluded model terms. White boxplots show results for the different prior
settings, blue and red symbols show results for mboost and ACOSSO, respectively:
Shaded region gives IQR, line represents median. Dark grey lines connect results
for the same replication. Columns from left to right: 200 obs. with SNR=5, 20; 1000
obs. with SNR=5, 20. Rows from top to bottom: uncorrelated obs. with sparse and
unsparse predictor, correlated obs. with sparse and unsparse predictor.
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responses has the following properties:

• signal-to-noise-ratio SNR = 5, 20

• number of observations: n = 200, 1000

Figure 4.12 shows the mean squared prediction error divided by the one
achieved by the “oracle”-model, a conventional GAM without any of the noise
variables. Predictive performance is very robust against the different prior set-
tings especially for the settings with low sparsity. Different prior settings also
behave similarly within replications, as shown by the mostly parallel grey
lines. Predictions are more precise than those of both boosting and ACOSSO,
and this improvement in performance relative to the “true” model is espe-
cially marked for n = 1000 (two rightmost columns). With the exception of the
first scenario, the median relative prediction MSE is < 2 everywhere, while
both boosting and ACOSSO have a median relative prediction MSE above 4
in most scenarios that goes up to above 32 and 64 for ACOSSO and boosting,
respectively, in the “large sample, correlated covariates” cases. In the “large
sample, low sparsity” scenarios (two leftmost columns in rows two and four),
the performance of our approach comes very close that of the oracle model –
the relative prediction MSEs are close to one.

Figure 4.13 shows the proportion of correctly included and excluded terms
(linear terms and basis expansions) in the estimated model. Except for v0 =
0.00025, accuracy is consistently lower than for ACOSSO. However, a direct
comparison with ACOSSO is not entirely appropriate because ACOSSO does
not differentiate between smooth and linear terms, while mboost and our ap-
proach do. Therefore ACOSSO solves a less difficult problem. Estimated in-
clusion probabilities are very sensitive to v0 and comparatively robust against
(aτ, bτ). Across all settings, v0 = 0.00025 delivers the most precise complexity
recovery, with sensitivities consistently above 0.7. The accuracy of peNMIG is
better than mboost for the sparse settings (1st and 3rd rows) because the speci-
ficity of our approach is > .97 across settings, regardless of the prior (!), while
mboost mostly achieves only very low specificity, but fairly high sensitivity.

Effect of centering the design

All the results in Sections 4.1 and 4.2 are based on design matrices for the
penalized parts of smooth effects that are orthogonalized against the designs
functions in their nullspace, as described on page 36. Figure 4.14 shows the
ratios of the mean square prediction error for settings of the simulation study
in Section 4.1.5 if this orthogonalization is omitted: With the sole exception of
the sparse setting with correlated covariates for 1000 observations and SNR =
5, the median ratio is > 1, i.e. using the orthogonalized designs yields lower
prediction errors in more than half of the replications across almost all of
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Figure 4.14.: Ratios of prediction MSE between uncentered and centered designs,
i.e. MSE without orthogonalization divided by MSE with orthogonalization. White
boxplots show results for the different prior settings. Red horizontal line marks a
ratio one. Columns from left to right: 500 obs., 2000 obs. Rows from top to bottom:
uncorrelated obs. with sparse and unsparse predictor, correlated obs. with sparse and
unsparse predictor.
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the settings and priors, and fairly large median gains in prediction accuracy
occur for settings with larger sample sizes and low sparsity (median MSE
ratios between 1.36 and 1.97 in the two leftmost columns for the second and
fourth rows).

Poisson response

In addition to the basic structure of the data generating process described
at the beginning of this section, the data generating process for the Poisson
responses has the following properties:

• number of observations: n = 500, 2000

• responses are generated with overdispersion:
yi ∼ Po (si exp(ηi)) ; si ∼ U[0.66, 1.5]

We did not use v0 = 0.01 for this experiment because of its inferior perfor-
mance in terms of complexity recovery in the Gaussian case.

Figure 4.15 shows the mean squared prediction error (on the scale of the lin-
ear predictor) divided by the one achieved by the “oracle”-GAM that includes
only the relevant covariates and no noise terms. Predictive performance is
very robust against the different prior settings. Different prior settings also
behave similarly within replications, as shown by the mostly parallel grey
lines. Predictions are more precise than those of mboost, especially for smaller
data sets (left column) and correlated responses (two bottom rows). For the
“low sparsity, correlated covariates” setting (bottom row), the performance of
our approach comes fairly close to that of the “oracle”-GAM, with relative
prediction errors mostly between 1 and 1.5, and occasionally even improving
on the oracle model for n = 500.

Figure 4.16 shows the proportion of correctly included and excluded terms
(linear terms and basis expansions) in the estimated models. Estimated inclu-
sion probabilities are sensitive to v0 and comparatively robust against (aτ, bτ).
The smaller value for v0 tends to perform better in the unsparse settings (sec-
ond and fourth rows) since it forces more terms into the model (resulting in
higher sensitivity and lower specificity) and vice versa for the sparse setting
and the larger v0. Complexity recovery is (much) better across the different
settings and priors for our approach than for boosting. The constant accuracy
for mboost in the low sparsity scenario with uncorrelated responses (second
row) is due to its very low specificity: It includes practically all model terms
all the time.

The simulations for generalized additive models show that the proposed
peNMIG-Model is very competitive in terms of estimation accuracy and con-
firms that estimation results are robust against different hyperparameter con-
figurations even in fairly complex models. Model selection is more sensi-
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Figure 4.15.: Prediction MSE divided by oracle MSE (on the scale of the linear predic-
tor). White boxplots show results for the different prior settings. Blue symbols show
results for mboost: shaded region gives IQR, line represents median. Dark grey lines
connect results for the same replication. Columns from left to right: 500 obs., 2000
obs. Rows from top to bottom: uncorrelated obs. with sparse and unsparse predic-
tor, correlated obs. with sparse and unsparse predictor. Vertical axis is on binary log
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Figure 4.16.: Complexity recovery for Poisson response: proportion of correctly in-
cluded and excluded model terms. White boxplots show results for the different
prior settings. Blue symbols show results for mboost: shaded region gives IQR, line
represents median. Dark grey lines connect results for the same replication. Columns
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tive towards hyperparameter configurations, especially v0. For smaller v0,
spikeSlabGAM seems to be able to distinguish between important and irrel-
evant terms fairly reliably.

We are not aware of any other SSVS implementations for function selection
in additive models with non-Gaussian responses available for benchmarking,
but the performance of peNMIG as implemented in spikeSlabGAM seems to
be very competitive to that of component-wise boosting as implemented in
mboost. Results for an earlier, more rudimentary implementation of the peN-
MIG model on identical data generating processes are published in (Scheipl,
2010b).
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4.2. Binary classification: UCI data benchmarks

We fit additive models with a logit link to a collection of 21 data sets for
binary classification from the UCI Machine Learning Repository (Asuncion
and Newman, 2007), as previously analyzed in Eugster, Hothorn, and Leisch
(2008) and Meyer, Leisch, and Hornik (2003). Figure 4.17 gives an overview

UCI binary classification data: N vs p
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Figure 4.17.: Characteristics of UCI data sets: number of observations versus number
of features.
“Balance” is the ratio between the number of observations in the larger class and the
number of observations in the smaller class, i.e. it is 1 if the data set is balanced.
promotergene is the only dataset we consider that has more parameters than obser-
vations before accounting for spline basis expansions.

of the datasets we use and their characteristics. The vertical axis gives the
number of covariates and different factor levels, the horizontal axis gives the
number of (complete) observations. Most of the datasets contain a mixture
of continuous and factor variables. We do not consider any interactions, only
linear and smooth main effects. We evaluate prediction performance based
on the deviance values for a 20-fold cross validation on each dataset. Pre-
dictive deviance D̄ is defined as twice the average negative log likelihood
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D̄ = −2/nP ∑nP
i=1 L(yP,i, η̂P,i) in the test sample where yP and η̂P are the out-

of-sample responses and estimated linear predictors for the test sample. The
size of the test sample is nP. AUC is defined as the area under the receiver-
operator-characteristic (ROC) curve and can be expressed as

AUC(y,η) =
(
|{j : yj = 0}||{i : yi = 1}|

)−1 ∑
{j:yj=0}

∑
{i:yi=1}

I(ηi − ηj > 0),

i.e. the proportion of pairs of cases (y = 1) and non-cases (y = 0) for which
the predictor η is larger for the case than for the non-case.

As for the experiments with simulated data, we use component-wise boost-
ing with separate base learners for the linear and smooth parts of covariate
influence and compare prediction performance of the boosting models to our
approach. We additionally compare the precision of the estimated probabil-
ities to those for a simpler version of mboost with no separation into linear
and smooth baselearners. Results for mboost are based on a stopping iteration
determined via the empirical risk on 10 cross-validation folds of each training
data set.

Besides the accuracy of the predictions, we are interested in the parsimony
of the estimated models. To measure this, we can count the number of model
terms (baselearners for boosting) included in the model. As usual, we count
a model term as “included” if its marginal posterior inclusion probability
is greater than 0.5. For boosting, the relevant quantities are the selection fre-
quencies of the baselearners. We count a baselearner as included in the model
if it was selected earlier than iteration mstop in more than half of bootstrap
samples used to determine the stopping iteration mstop. Since this definition
of term inclusion for mboost is somewhat arbitrary, we also compare the pro-
portion of unequivocally excluded model terms: A baselearner is considered
to be unequivocally excluded if it was not selected at all up to the stopping
iteration. For spikeSlabGAM, we consider a term to be unequivocally excluded
if its marginal posterior inclusion probability is smaller than 0.05.

Results are based on ten parallel MCMC chains with a burn-in of 1000
iterations and a sampling phase of 4000 iterations of which we save every
fifth.

The data are preprocessed fairly brutally in an automated fashion in or-
der to preempt possible numerical problems: All covariates with less than 6
unique values are coded as factor variables. All numeric covariates are scaled
to the unit interval [0, 1] first, followed by taking the logarithm of the covari-
ate values (plus an offset of 0.1) if skewness is greater than 2 or taking the
logarithm of 1.1 minus the covariate value if skewness is below -2. All nu-
meric covariates (transformed or not) are then standardized to have mean 0
and standard deviation 1. All incomplete observations are removed.

We evaluate our approach for two model building scenarios: For the first
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one, we perform an automated preselection procedure to generate model for-
mulas based on the following heuristic, which roughly follows the ideas in
Harrell (2001):

1. Determine the “available degrees of freedom” for the smooth terms by
dividing the number of observations in the smaller one of the two classes
by 3 and subtracting the sum of the number of levels of all factor vari-
ables in the data.

2. • if the available degrees of freedom are larger than 4 times the num-
ber of numeric covariates, assign a spline expansion with 10 basis
functions to each numerical covariate. You’re done.

• if not go to next step

3. • split all numerical covariates by quintile

• perform χ2-tests of association of the resulting 5-level factors with
the response

• sort numerical covariates by decreasing strength of association (as
measured by the p-value of the χ2-test)

4. starting with the covariate with the strongest marginal association with
the response, assign spline expansions with 5 basis functions to the nu-
merical covariates and subtract 5 “available degrees of freedom” until
no more degrees of freedom are left

5. if any numerical covariates remain after all available degrees of freedom
are spent, they enter the model as simple linear terms.

This approach results in model specifications that are below the maximum
complexity for datasets credit, Cards, Heart1, Ionosphere, hepatitis,

Sonar and musk. Models for these datasets include only linear terms for some
of the covariates.

In the second approach, we assign a spline expansion with 5 basis functions
to all numerical covariates regardless of the number of predictors and obser-
vations, leading to a more difficult estimation and selection problem in data
sets with large p and small n. Results for this second approach are discussed
in Section 4.2.2.

4.2.1. Models with preselection of smooth terms

We show results for combinations of (aτ, bτ) = (10, 50) or (5, 25) and v0 =
0.005 or 0.00025. We use a uniform prior w ∼ Beta(1, 1).

Figure 4.18 shows the achieved predictive performance for the first model
building strategy for the 21 datasets. Outliers with large deviances for the
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Figure 4.18.: UCI data with preselection: Predictive deviances for 20-fold CV. Boxplots
show results for the different prior settings. Blue and red symbols show results for
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Deviance and Sparsity Difference
(datasets sorted by increasing p/N)
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Deviance and Exclusion Ratio Difference
(datasets sorted by increasing p/N)
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Figure 4.20.: UCI data with preselection: Difference in proportion of excluded model
terms versus differences in predictive deviances. Positive values denote smaller de-
viances/ more excluded terms for our approach compared to mboost. Results for
Spirals, titanic and tictactoe not shown because there were no differences in
sparsity.
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chess, monks3 and hepatitis data sets are due to the sampler getting stuck
for some of the parallel chains in specific folds. By rerunning the analysis with
different starting values or random seeds or by removing the samples of the
offending chains from the posterior estimates, these could have presumably
been avoided. We include them unchanged to provide a more realistic picture
of the reliability of our approach. Practitioners should always check traceplots
and convergence diagnostics for MCMC-based methods.

Note that the performance of our approach is more variable than that of
mboost, but has lower median predictive deviances in all of the datasets for
all four prior specifications. Predictive performance is very robust against dif-
ferent hyperparameter settings, even for large p/N where the influence of the
hyperparameters on the posterior is stronger. Table 4.2 gives the median de-
viances and AUCs (area under the ROC-curve) for the different datasets and
priors.

To investigate the parsimony of the fitted models, i.e., whether equivalent or
better prediction can be achieved by simpler models, we plot the differences
in predictive deviances versus the difference in the proportion of potential
model terms included in the models for each cross-validation fold in Figure
4.19. Results for datasets Spirals, titanic and tictactoe are omitted be-
cause there were no differences in sparsity. Positive values on the vertical axis
indicate smaller deviance for our approach, and positive values on the hori-
zontal axis indicate a sparser fit for our approach. Figure 4.19 shows that our
approach achieves its relatively more precise predictions with fewer retained
terms on the large majority of the benchmarked data sets. The only excep-
tions are datasets chess, where the increased precision is achieved at the cost
of less sparse models, and, to a much lesser extent twonorm and threenorm.
There does not seem to be a correlation between model size and accuracy of
the predictions and neither absolute performance nor performance relative to
boosting seem to be tied to any of the easily observable characteristics of the
data sets (i.e. p, N, p/N or balancedness of the response).

Figure 4.20 uses the difference in proportion of unequivocally excluded
model terms as the metric for the sparsity of the estimated models. As before,
the sparsity of the estimated models does not seem to affect the precision of
the predictions as measured by the predictive deviance. For most of the less
heavily parameterized datasets, we see the expected pattern of fewer dese-
lected terms for smaller v0 (in blue and green), but this pattern is reversed for
two of the three most heavily parameterized datasets (Sonar, promotergene).
For this metric of model parsimony, the comparison with mboost is slightly
less favorable – in four of the 21 datasets, it consistently removes more terms
from the model than our approach. spikeSlabGAM fits better models with
fewer terms for the heavily overparameterized promotergene and hepatitis

data sets.
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In summary, no clear picture emerges for the differences between the four
prior specifications: As expected, a smaller v0 (green and blue) tends to yield
models with more included terms, cf. datasets chess, twonorm, Ionosphere,

musk, but there are counterexamples as well, e.g. threenorm, and for most
datasets there does not seem to be a pattern at all. Both predictive deviance
and sparsity results are much more sensitive towards v0 than towards (aτ, bτ).

Table 4.3 gives the average run times for mboost. Computation times were
recorded on a server with ten AMD Opteron 6174 processors with 2.2 GHz,
i.e., both the ten chains for spikeSlabGAM and the ten cross-validation folds to
determine the stopping iteration for the mboost-fits were run in parallel. Note
that spikeSlabGAM is actually faster for many of the smaller problems, but its
computation time increases much faster than that for mboost as the number
of terms and observations increases due to the additional steps needed for
the parameter expansion.

4.2.2. Models without preselected smooth terms

We use the second model-building strategy and repeat the analysis with-
out restricting the number of smooth terms for data sets credit, Cards,

Heart1, Ionosphere, hepatitis, Sonar and musk in order to evaluate the
performance on more high dimensional and overparameterized problems.
For all other data sets, the model without preselection would have been the
same as the one with preselection. We use slightly different priors for this
model building strategy to investigate the possibility of enforcing sparsity via
the specification of an informative prior on w in high-dimensional models
with n / q such as the ones considered here. We also use NMIG instead
of peNMIG, that is, we omit the parameter expansion for model terms with
d = 1 (i.e. linear terms and binary factors) to reduce the posterior’s dimen-
sionality. Reported results are for combinations of v0 = 0.005, 0.00025 and
(aw, bw) = (1, 1), (20, 40) with (aτ, bτ) = (5, 25).

Figures 4.21 and 4.22 show deviance values for the test data and differ-
ences in deviances and sparsity between our approach and componentwise
boosting with mboost. Figures 4.23 shows the differences in the proportion
of unequivocally excluded terms versus differences in deviance. Compared
to the results for the models with preselection, prediction performance for
our approach as measured by the median predictive deviance improves in
five of the seven datasets (the exceptions are credit and Ionosphere) when
smooth terms of all numeric covariates are allowed to enter the model. This
indicates that the procedure avoids overfitting even for heavily overparam-
eterized models. The gains are usually fairly small. Figures 4.22 and 4.23
reinforce the conclusion from the previous section: our approach achieves its
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Figure 4.21.: UCI data results without preselection: Predictive deviances for 20-fold
crossvalidation. Boxplots show results for the different prior settings. Blue and red
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learners: Shaded regions give IQR, line represents median. Dark grey lines connect
results for the same fold. Horizontal black line gives average predictive deviance for
the null model.
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Deviance and Sparsity Differences
(datasets sorted by increasing p/N)
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Figure 4.22.: UCI data results without preselection: Difference in proportion of in-
cluded model terms versus difference in predictive deviance. Points in topright
quadrant denote folds and prior settings in which our approach achieved smaller
deviances with fewer included model terms. Points in lower 2 quadrants denote
folds/priors in which our approach resulted in larger deviances than the correspond-
ing mboost-fits.
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Deviance and Exclusion Differences
(datasets sorted by increasing p/N)
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Figure 4.23.: UCI data results without preselection: Difference in proportion of un-
equivocally excluded model terms versus difference in predictive deviance. Points
in topright quadrant denote folds and prior settings in which our approach
achieved smaller deviances with sparser models. Points in lower 2 quadrants denote
folds/priors in which our approach resulted in larger deviances than the correspond-
ing mboost-fits.
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relatively more precise predictions with smaller models on the large majority
of the benchmarked data sets and cross validation folds. Table 4.4 gives the
median deviances and AUCs (area under the ROC-curve) for the different
datasets and priors.

Using an informative prior for w to enforce model sparsity has no appre-
ciable effect and does not influence prediction quality in either direction.

More generally, the performance of peNMIG on the binary classification
datasets we used is very competitive to componentwise boosting and neither
relative nor absolute performance suffer in very high-dimensional problems
with many smooth terms (cf. results for musk with n = 476 and 332 po-
tential model terms, of which 166 are smooth terms). Results for an earlier,
more rudimentary implementation of the peNMIG model on identical data
are published in (Scheipl, 2010b).
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Dataset (aτ , bτ ) v0 median(D̄) median(AUC)
mboost, simple mboost spikeSlabGAM mboost, simple mboost spikeSlabGAM

Circle (5, 25) 0.00025 0.26 0.41 0.04 1.00 1.00 1.00
(5, 25) 0.005 0.04 1.00
(5, 50) 0.00025 0.04 1.00
(5, 50) 0.005 0.04 1.00

Spirals (5, 25) 0.00025 0.69 0.98 0.45 0.96 0.94 0.97
(5, 25) 0.005 0.43 0.97
(5, 50) 0.00025 0.45 0.97
(5, 50) 0.005 0.46 0.97

titanic (5, 25) 0.00025 1.09 1.09 1.01 0.68 0.68 0.67
(5, 25) 0.005 1.03 0.66
(5, 50) 0.00025 1.04 0.68
(5, 50) 0.005 1.04 0.68

PimaDiab (5, 25) 0.00025 1.05 1.04 0.99 0.85 0.84 0.84
(5, 25) 0.005 0.96 0.85
(5, 50) 0.00025 0.98 0.84
(5, 50) 0.005 0.96 0.85

chess (5, 25) 0.00025 0.60 0.60 0.17 0.99 0.99 1.00
(5, 25) 0.005 0.16 1.00
(5, 50) 0.00025 0.16 1.00
(5, 50) 0.005 0.17 1.00

liver (5, 25) 0.00025 1.19 1.18 1.17 0.81 0.79 0.74
(5, 25) 0.005 1.12 0.79
(5, 50) 0.00025 1.17 0.75
(5, 50) 0.005 1.12 0.78

monks3 (5, 25) 0.00025 0.42 0.42 0.12 1.00 1.00 1.00
(5, 25) 0.005 0.10 1.00
(5, 50) 0.00025 0.11 1.00
(5, 50) 0.005 0.10 1.00

ringnorm (5, 25) 0.00025 0.30 0.89 0.08 1.00 0.98 1.00
(5, 25) 0.005 0.08 1.00
(5, 50) 0.00025 0.08 1.00
(5, 50) 0.005 0.09 1.00

threenorm (5, 25) 0.00025 0.83 0.86 0.69 0.93 0.93 0.93
(5, 25) 0.005 0.68 0.93
(5, 50) 0.00025 0.68 0.94
(5, 50) 0.005 0.67 0.94

tictactoe (5, 25) 0.00025 1.03 1.03 0.11 0.90 0.90 1.00
(5, 25) 0.005 0.11 1.00
(5, 50) 0.00025 0.11 1.00
(5, 50) 0.005 0.11 1.00

twonorm (5, 25) 0.00025 0.26 0.33 0.10 1.00 1.00 1.00
(5, 25) 0.005 0.09 1.00
(5, 50) 0.00025 0.09 1.00
(5, 50) 0.005 0.09 1.00

credit (5, 25) 0.00025 1.09 1.08 1.01 0.79 0.79 0.79
(5, 25) 0.005 1.00 0.79
(5, 50) 0.00025 1.01 0.78
(5, 50) 0.005 1.00 0.79

Cards (5, 25) 0.00025 0.76 0.75 0.62 0.94 0.94 0.94
(5, 25) 0.005 0.60 0.94
(5, 50) 0.00025 0.63 0.94
(5, 50) 0.005 0.60 0.94

Heart1 (5, 25) 0.00025 0.93 0.88 0.81 0.93 0.94 0.90
(5, 25) 0.005 0.73 0.93
(5, 50) 0.00025 0.77 0.88
(5, 50) 0.005 0.72 0.92

HouseVotes84 (5, 25) 0.00025 0.29 0.29 0.06 1.00 1.00 1.00
(5, 25) 0.005 0.05 1.00
(5, 50) 0.00025 0.04 1.00
(5, 50) 0.005 0.05 1.00

Ionosphere (5, 25) 0.00025 0.67 0.65 0.44 0.98 0.97 0.98
(5, 25) 0.005 0.47 0.98
(5, 50) 0.00025 0.46 0.98
(5, 50) 0.005 0.54 0.97

BreastCancer (5, 25) 0.00025 0.37 0.37 0.14 1.00 1.00 1.00
(5, 25) 0.005 0.15 1.00
(5, 50) 0.00025 0.13 1.00
(5, 50) 0.005 0.15 1.00

hepatitis (5, 25) 0.00025 0.76 0.75 0.53 1.00 1.00 1.00
(5, 25) 0.005 0.50 1.00
(5, 50) 0.00025 0.48 1.00
(5, 50) 0.005 0.54 1.00

Sonar (5, 25) 0.00025 1.00 0.98 0.94 0.89 0.92 0.88
(5, 25) 0.005 0.82 0.90
(5, 50) 0.00025 0.95 0.88
(5, 50) 0.005 0.83 0.93

musk (5, 25) 0.00025 0.87 0.84 0.72 0.92 0.94 0.92
(5, 25) 0.005 0.65 0.94
(5, 50) 0.00025 0.69 0.91
(5, 50) 0.005 0.63 0.94

promotergene (5, 25) 0.00025 0.57 0.59 0.38 1.00 1.00 1.00
(5, 25) 0.005 0.19 1.00
(5, 50) 0.00025 0.26 1.00
(5, 50) 0.005 0.17 1.00

Table 4.2.: Median deviances and AUCs for test samples of UCI data (models with
preselection).
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Dataset n no. of terms mean run time [sec]
spikeSlabGAM mboost

Circle 1200 4 11.72 19.15
Spirals 1200 4 12.26 17.44
titanic 2201 3 17.06 11.28
PimaDiab 768 16 33.02 51.98
chess 3196 36 198.67 69.62
liver 345 12 12.23 13.00
monks3 554 6 5.64 8.15
ringnorm 1200 40 245.75 137.76
threenorm 1200 40 250.25 131.99
tictactoe 958 9 17.06 12.01
twonorm 1200 40 239.53 132.07
credit 1000 27 62.35 44.36
Cards 653 21 38.51 44.92
Heart1 296 18 12.92 17.44
HouseVotes84 232 16 5.58 13.99
Ionosphere 351 42 26.86 33.75
BreastCancer 683 9 52.89 12.24
hepatitis 80 19 2.85 14.69
Sonar 208 67 28.00 49.02
musk 476 180 295.99 166.66
promotergene 106 57 23.91 42.41

Table 4.3.: Average run times in seconds for spikeSlabGAM and mboost

Dataset (aw , bw) v0 median(D̄) median(AUC)
mboost, simple mboost spikeSlabGAM mboost, simple mboost spikeSlabGAM

credit (1, 1) 0.005 1.10 1.09 1.03 0.78 0.79 0.78
(1, 1) 0.00025 1.01 0.77
(20, 40) 0.005 1.02 0.79
(20, 40) 0.00025 1.01 0.78

Cards (1, 1) 0.005 0.78 0.76 0.58 0.93 0.94 0.94
(1, 1) 0.00025 0.59 0.95
(20, 40) 0.005 0.58 0.94
(20, 40) 0.00025 0.60 0.94

Heart1 (1, 1) 0.005 0.93 0.82 0.76 0.92 0.94 0.91
(1, 1) 0.00025 0.66 0.92
(20, 40) 0.005 0.76 0.92
(20, 40) 0.00025 0.71 0.91

Ionosphere (1, 1) 0.005 0.62 0.63 0.50 0.99 0.98 0.98
(1, 1) 0.00025 0.49 0.99
(20, 40) 0.005 0.44 0.97
(20, 40) 0.00025 0.43 0.99

hepatitis (1, 1) 0.005 0.86 0.68 0.48 1.00 1.00 1.00
(1, 1) 0.00025 0.38 1.00
(20, 40) 0.005 0.45 1.00
(20, 40) 0.00025 0.43 1.00

Sonar (1, 1) 0.005 0.81 0.81 0.68 0.96 0.95 0.96
(1, 1) 0.00025 0.73 0.92
(20, 40) 0.005 0.62 0.96
(20, 40) 0.00025 0.79 0.92

musk (1, 1) 0.005 0.63 0.76 0.60 0.98 0.96 0.95
(1, 1) 0.00025 0.60 0.96
(20, 40) 0.005 0.62 0.94
(20, 40) 0.00025 0.63 0.96

Table 4.4.: Median deviances and AUCs in test samples for UCI data. (Models with-
out preselection)
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Dataset n no. of terms mean run time [sec]
spikeSlabGAM mboost

credit 1000 27 55.51 58.93
Cards 653 21 34.18 60.75
Heart1 296 18 10.04 20.53
Ionosphere 351 65 57.86 73.00
hepatitis 80 25 3.59 24.22
Sonar 208 120 83.80 127.85
musk 476 332 1490.15 426.45

Table 4.5.: Average run times in seconds for spikeSlabGAM and mboost for UCI data
(models without preselection)
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4.3. Case study: hymenoptera venom allergy

4.3.1. Data

We reanalyze data on bee and wasp venom allergy from a large observa-
tional multicenter study previously analyzed in Ruëff et al. (2009). The data
consists of 962 patients from 14 European study centers with established bee
or wasp venom allergy who suffered an allergic reaction after being stung.
The binary outcome of interest is whether patients suffered a severe, life-
threatening reaction, defined as anaphylactic shock, loss of consciousness, or
cardiopulmonary arrest. A severe reaction was observed for 206 of the 962
patients (21.4%). Data were collected on the concentration of tryptase, a po-
tential biomarker, patients’ sex and age, whether the culprit insect was a bee
or wasp, on the intake of three types of cardiovascular medication (β-blockers,
ACE inhibitors and anti-hypertensive drugs), whether the patient had had at
least one minor systemic reaction to a sting prior to the index sting and the
CAP-class (a measure of antibody load) of the patient with regard to the
venom of the culprit insect, with levels 0, 1, 2, 4, 5+.

4.3.2. Analysis

An analysis of this data has to take into account possible study center effects,
possible non-linear effects of both age and the (logarithm of) blood serum
tryptase concentrations and the possibility of differing effect structures for bee
and wasp stings. Our aim is twofold again: We want to (1) estimate a model
that allows assessment of the influence of each covariate on the susceptibility
for a severe reaction, accounting for possibly nonlinear effects and interaction
effects and (2) use this setting to evaluate the stability of the selection and
estimation of increasingly complex models on real data as well as investigate
the consequences of less-than-optimal sampler convergence we observed.

Full data analysis

We fit a peNMIG model with all main effects and all second order interac-
tions except those with study center, with smooth functions for both age and
tryptase and a random intercept for the study center. In total, this model
has 267 coefficients in 66 model terms: 13 main effects including the global
intercept, separate linear and non-linear terms for age and tryptase and a
random intercept for study center, 21 interactions between the seven factor
variables, 28 terms for the linear and smooth interactions for age and tryptase
with each of the seven factors, and four terms for the interaction effect of
age and tryptase (one linear-linear interaction, two varying coefficient terms,
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one smooth interaction surface) Results are based on samples from 20 chains
with 40000 iterations each after 1000 burn-in, with every 20th saved. Running
a single chain of this length on a modern desktop computer (i.e., Intel Q9550
2.83GHz) takes about 45 minutes, so that the entire fit takes about 4 hours on
a quad-core CPU.
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Figure 4.24.: Posterior means of effects with (pointwise) 80% credible intervals. Only
effects for terms with marginal inclusion probability > .1 are shown. Left graph
shows the joint effect of CAP class, tryptase and culprit insect. Right graph shows
the relative effects of previous stings (compared to none before the index sting),
female gender (compared to male) and a 10 year increase of age.

Figure 4.24 shows the estimated effects of the terms with P(γ = 1) > .1 that
are listed in Table 4.6. Since the inclusion probabilities indicate interlocking
interactions of CAP class, tryptase and culprit insect, the panels in the left
graph in the figure show the joint effects of these 3 variables. Each panel
shows the effect estimate of tryptase plasma concentration for bee patients
(red) and wasp patients (blue) for the given CAP class. The rug plot at the
bottom indicates the locations of the data. The large uncertainty precludes
a detailed interpretation of this 3-way interaction, but in general, the risk is
higher for wasp patients: the main effect of culprit insect yields an odds ratio
of 1.16 (80%CI: 1-2.43) and the risk increase for wasp patients seems to be
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Term P(γ = 1)
culprit insect 0.16
stings 1.00
sex 0.70
age, linear 1.00
tryptase, log-linear 1.00
study center 0.71
insect:tryptase, smooth 0.46
cap:tryptase, log-linear 0.14

Table 4.6.: Posterior means of marginal inclusion probabilities P(γ = 1) (only given
for terms with P(γ = 1) > .1).

smaller for lower and larger for higher tryptase concentrations. The effect of
the CAP class is negligible.

The graph on the right in Figure 4.24 shows the relative effects of previous
stings (compared to none before the index sting), female gender (compared
to male) and an increase in the patient’s age by 10 years. Estimated random
effects for the study centers are not shown, the associated posterior mean
odds ratios range between 0.44 and 2.13.

Lack of convergence for γ

For this fairly complicated model, we experience some difficulties with the
convergence of the MCMC sampler: We observe poor mixing for some of the
entries in γ, with chains getting stuck in basins of attraction around posterior
modes for long periods of time. This leads to posterior inclusion probabil-
ities for single chains often ending up either close to zero or close to one
for some of the terms. Running a large number of parallel chains from ran-
dom starting configurations seems to remedy this problem. To investigate
this issue, we perform a large MCMC experiment with 800 chains, each with
10000 iterations after 100 burn-in, for the model described above. Figure 4.25
shows the average inclusion probabilities for the 16 terms with the highest
between-chain variability of P(γ = 1) for 20 fits with 40 chains each. Grey
lines connect posterior means based on an increasing number of chains for
each fit. The black horizontal line shows the mean over all 800 chains, which
we presume to be a good estimate of the “true” marginal posterior inclusion
probability. Convergence of the posterior means is slow for these terms, but
discrimination between important, intermediate and negligible effects seems
to be reliable based on as few as 10 to 20 chains. While we would not be com-
fortable in claiming that 10 or 20 parallel chains are enough to completely
explore this very high-dimensional model space and yield a reliable estimate
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Figure 4.25.: Average inclusion probabilities for those terms with convergence issues
for 20 fits with 40 chains each. Grey lines connect posterior means over an increasing
number of chains for each fit. Black horizontal line shows the mean over all 800
chains.

of posterior model probabilities, i.e., the joint distribution of γ, the marginal
inclusion probabilities P(γj = 1), j = 1, . . . , p of the various terms seem to be
estimated well enough to distinguish between important, intermediate and
negligible effects, which is usually all that is required in practice.

Predictive performance comparison

We subsample the data 20 times to construct independent training data sets
with 866 subjects each and test data sets with the remaining 96 patients to
evaluate the precision of the resulting predictions and compare predictive per-
formance to that of equivalent component-wise boosting models fitted with
mboost and an unregularized GAMM-fit with all main effects estimated with
gamm4 (Wood, 2010b). Results for our approach are based on 8 parallel chains
each running for 10000 iterations after 500 iterations of burn-in, with every
10th iteration saved. Component-wise boosting results are based on a stopping
parameter determined by a 25-fold bootstrap of the training data, with a max-
imal iteration number of 500. We compare 3 model specification of increasing
complexity: a simple model with main effects only, a model with main effects
and all interactions between culprit insect and the other covariates, and the
complex model with all main effects and second order interactions presented
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in the previous section. We were unable to fit the latter model with mboost,
and the model including the insect interactions could not be fitted by mboost

for 4 of the training data sets. We report results for the 16 sets remaining.
Figure 4.26 shows the area under the ROC curve (AUC) achieved by the dif-

Hymenoptera Venom Allergy: AUC on test sets
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Figure 4.26.: Area under the ROC curve for 20 test sets from the hymenoptera venom
allergy data set, higher is better. Grey lines connect results from identical folds.

ferent model specifications. For this data set, the models with higher maximal
complexity show slight decreases in predictive accuracy, but still perform bet-
ter than an unregularized generalized additive mixed model (GAMM) on the
far right.

Despite the fairly low number of parallel chains and comparatively short
chain lengths, the stability of the marginal term inclusion probabilities across
subsamples is fairly good, indicating that the term selection is robust to small
changes in the data and that even as few as 8 chains may be enough to reach
fairly reliable rough estimates of term importance in this difficult setting. All
model specifications identified the same subset of important main effects (i.e.,
number of previous stings before the index sting, sex, linear effects of age and
the log of tryptase and the random effect for study center). Figure 4.27 shows
the posterior means of inclusion probabilities P(γ = 1) across 16 subsampled
training data sets for each of the 3 model specifications (from left to right: no
interactions, all culprit insect two-way interactions, all two-way interactions).
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Figure 4.27.: Posterior means of inclusion probabilities P(γ = 1) across 16 subsam-
pled training data sets for the 3 model specifications.
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4.4. Case study: Survival of surgery patients with
severe sepsis

4.4.1. Data

We use data on the survival of 462 patients with severe sepsis collected in the
intensive care unit of the Department of Surgery, Campus Großhadern, LMU
Munich, Germany between March 1, 1993, and February 28, 2005. Hofner,
Kneib, Hartl, and Küchenhoff (2010) have previously analyzed this data set.
The follow-up period was 90 days after the beginning of intensive care, with
one drop-out after 66 days and 179 patients surviving the observation period.

4.4.2. Model

We use a piecewise exponential model (PEM) (Laird and Olivier, 1981) to
model the hazard rate λ(t,x) of the underlying disease process, i.e. for fixed
time intervals defined by cutpoints κ = (κ0 = 0, κ1, . . . , κI = tmax), where
tmax is the maximal follow-up time, the hazard rate for subject i at time
t, κj−1 < t ≤ κj in the jth interval is given by λ(t,vi) = λj exp(ηi), where
λj is the baseline hazard rate in the respective interval and ηi is the predic-
tor for subject i. The interval borders κ = (0, 5, 15, 25, . . . , 85, 90) were chosen
based on the shape of a nonparametric estimate of the marginal hazard rate
from R package muhaz (Gentleman, 2010). The likelihood for this model is
equivalent to that of a Poisson model with (1) one observation for each in-
terval for each subject, yielding 2826 pseudo-observations in total, (2) offsets
oij = max(0, min(κj − κj−1, ti − κj−1)), where ti is the observed time under
risk for subject i and (3) responses yij equal to the event indicators δij, with
δij = 0 if subject i survived interval j and δij = 1 if not (Friedman, 1982).

4.4.3. Analysis

Our aim is twofold: We want to (1) estimate a model that allows assessment
of the influence of each covariate on the prognosis of patients, accounting
for possibly time-varying and/or nonlinear effects and (2) use this setting to
evaluate the stability of the selection and estimation of increasingly complex
models on real data.

Full data results

We perform term selection for a maximal model which includes the (linear
and non-linear) effects of all 20 covariates as well as their time-varying ef-
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Hazard estimates and selected time-varying effects
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Figure 4.28.: Posterior means of effects with (pointwise) 80% credible intervals.
Top: Baseline hazard rate and baseline hazard rate plus the time-varying and time-
constant effects for direct postoperative admission, presence of a fungal infection,
palliative operation and beginning of treatment after 2002. Bottom: smooth effect of
haemoglobin concentration and linear effects of age (10 year increase) and Apache II
score, a measure for disease severity (increase of score by 1 standard deviation).
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Term P(γ = 1)
MRF(Interval) 1.00
palliative operation 0.19
treatment period 0.71
Age, linear 0.99
Apache II score, linear 1.00
Haemoglobin concentration, smooth 0.38
MRF(Interval):direct postoperative admission 0.28
MRF(Interval):fungal infection 1.00
MRF(Interval):palliative operation 0.38
MRF(Interval):treatment period 0.13

Table 4.7.: Posterior means of marginal inclusion probabilities P(γ = 1) (only given
for terms with P(γ = 1) > .1).

fects, i.e. 48 potential model terms with 262 coefficients in total. Hyperpa-
rameters were set to the default values determined in the simulation studies,
i.e. aτ = 5, bτ = 25, v0 = 0.00025 and aw = bw = 1. Estimates are based on 8
parallel chains running for 20000 iterations each after a burn-in of 500 itera-
tions, with every 10th iteration saved. We use a first order random walk prior
on the interval-specific log baseline hazard rates log(λj) in order to regularize
the baseline hazard’s roughness, i.e. we use an intrinsic GMRF prior for the
piecewise constant log baseline hazard.

The estimated marginal inclusion probabilities indicate a fairly sparse model,
with posterior marginal inclusion probabilities greater than 0.10 for only 10
terms, as shown in Table 4.7. The estimated effects for this subset of terms
are visualized in Figure 4.28. To verify the suitability of the model, we per-
form a posterior predictive check and generate 100 replicates of survival times
from the posterior predictive. Figure 4.29 indicates that the fit is satisfactory,
although there seems to be a tendency to overestimate survival rates until
about day 70.

Predictive performance comparison

We subsample the data 20 times to construct independent training data sets
with 415 patients each and test data sets with the remaining 47 patients to
evaluate the precision of the resulting predictions and compare predictive per-
formance to that of equivalent component-wise boosting models fitted with
mboost. Results for our approach are based on 8 parallel chains each run-
ning for 5000 iterations after 500 iterations of burn-in, with every 5th iteration
saved. Component-wise boosting results are based on a stopping parameter
determined by a 25-fold bootstrap of the training data, with a maximal itera-
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Figure 4.29.: Kaplan-Meier estimate of the survival curve for observed data in red.
Grey overlays are survival curves for 100 replicates of survival time vectors generated
from the posterior predictive distribution.

tion number of 1500.

The previous analysis by Hofner et al. (2010) has used expert knowledge to
define a set of six covariates forced into the model (indicators for presence of
malignant primary disease, palliative operation and beginning of treatment
after 2002, as well as sex, age and Apache II score). We compare results for
four model specifications of increasing complexity that suggest themselves:
a model with only the main effects of the pre-selected covariate set, a model
with main effects and time-varying effects for the pre-selected covariate set, a
model with main effects for all 20 covariates and the model with main effects
and time-varying effects for all 20 covariates which was applied to the whole
data set (see above). As in the previous section, main effects for numerical
covariates such as age were split into linear and non-linear parts. Figure 4.30
shows the predictive deviances achieved by the different model specifications.
Predictive deviance is defined as −2 ∑Nt

i ∑
J(i)
j δij(log(λ̂j)+ η̂ij)− oijλ̂j exp(η̂ij),

where i = 1, . . . , Nt indicates the subjects in the test set and j = 1, . . . , J(i) in-
dicates the intervals in which individual i was under risk, λ̂j and η̂ij are the
respective posterior predictive means. For this data set, models with higher
maximal complexity seem to offer no relevant improvement in terms of pre-
diction accuracy compared to the simplest model based only on the pre-
selected covariate set without time-varying effects. Most of the models yield
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Sepsis Survival: Deviance on test sets
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Figure 4.30.: Predictive deviances for 20 subsampling test sets for the sepsis survival
data (lower is better). Grey lines connect results from identical folds.

essentially equivalent predictions. However, it is reassuring to see that the pre-
dictive performance of our approach is not degraded at all by the specification
of vastly over-complex models in a setting where the underlying structure
seems to be fairly simple. In contrast, prediction accuracy for component-wise
boosting decreases markedly for the models including time-varying effects in
this setting.

The stability of the marginal term inclusion probabilities across subsamples
is fairly good, indicating that the term selection is robust to small changes in
the data. All model specifications identified essentially the same subset of
important effects from the set of pre-selected covariates (i.e., indicators for
palliative operation and beginning of treatment after 2002 and linear effects
of age and Apache II score), and also the same time-varying effects (i.e., time
varying effects for palliative operation and beginning of treatment after 2002).
Figure 4.31 shows the posterior means of inclusion probabilities P(γ = 1)
across 20 subsampled training data sets for each of the 4 model specifications
(from left to right: pre-selected covariates only, all covariates, pre-selected co-
variates with time-varying effects, all covariates with time-varying effects).
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Figure 4.31.: Posterior means of inclusion probabilities P(γ = 1) across 20 subsam-
pled training data sets for the 4 model specifications.
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5. Discussion

5.1. Results

Part I was focussed on the shrinkage and model selection properties of the
peNMIG prior structure in structured additive regression models. By intro-
ducing a non-identifiable multiplicative parameter expansion combined with
a spike-and-slab prior on the level of a common scaling factor, we are able
to select or deselect coefficient batches (i.e., coefficients for a spline basis or
random intercepts associated with a grouping factor) simultaneously in order
to guide model choice for generalized additive mixed models.

Extensive simulation studies and application examples showed that the per-
formance of the proposed approach is at least competitive and frequently
superior to recently proposed adaptive shrinkage priors and frequentist ap-
proaches that address estimation and selection of model terms simultane-
ously such as component-wise boosting or adaptive COSSO, cf. Sections 4.1.5,
4.2. Our approach also additionally yields estimates of the (marginal) inclu-
sion probabilities for each term.

Estimation performance was very robust against different hyperparameter
configurations in all the settings we considered. Variable selection and model
choice were more sensitive to varying hyperparameters, but we are confident
that the collected simulations and application examples provide a solid foun-
dation for the choice of appropriate values for applied problems. For exam-
ple, results for the selection and estimation of random intercepts and smooth
univariate functions indicate prior settings that yield desirable long-run op-
erating characteristics similar to those of the RLRT (cf. Sections 4.1.3, 4.1.4)
for Gaussian responses. Our simulation studies also revealed that selection of
model terms with large coefficient vectors, such as random effects, remains
an unsolved problem for non-Gaussian response – our results indicate that
selection is extremely liberal in this context, especially so for binary response
(cf. Figures 4.6, 4.7).

Our approach is implemented in the R-package spikeSlabGAM. The conju-
gacy structure of the proposed prior hierarchy allows for fast and very stable
fully Bayesian inference based on MCMC sampling. The implementation is
able to make use of increasingly common multi-core processors for parallel
sampling of multiple chains, which aid in judging convergence and explor-
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ing the viable parameter space more quickly when starting from dispersed
starting values.

In its current state, spikeSlabGAM allows fitting geoadditive mixed mod-
els for Gaussian, Binomial and Poisson responses, with predictors that can
contain any number and combination of uni- or multivariate smooth terms,
GMRFs, random intercepts, factors and simple linear terms. spikeSlabGAM
also implements a fairly general framework to construct and estimate inter-
action effects of penalized and/or unpenalized terms via tensor products of
the null and range spaces of the respective main effects and lower order in-
teractions for even more flexible model specification. The package uses the
established R formula syntax, which allows complex models to be specified
in a very concise fashion. We hope that the familiar syntax, combined with
powerful and user-friendly visualizations of the fitted models, results in a low
barrier to entry for application of this new tool in practice.

5.2. Outlook

We see many worthwhile avenues of further research to pursue on the basis
of what is missing from the present work.

1. The present work lacks a systematic investigation of the selection and
estimation of interaction effects, an important topic in practice especially
for large hierarchical models with many potential level-specific effects.
Presumably, estimation of inclusion probabilities for these types of ef-
fects with large coefficient vectors will suffer from similar defects as
it does for random effects for generalized responses. We feel that this
is where the most important challenge for the success of the proposed
method lies. Further research into more suitable MCMC methods for
better mixing in these scenarios is called for.

2. There is a large literature on Bayesian model averaging (BMA) (Hoet-
ing, Madigan, Raftery, and Volinsky, 1999) for linear and generalized
linear models, with very few applications to (and no general implemen-
tations for) semiparametric models such as the ones considered here.
Since there are some fairly general optimality results for the long-run
performance of BMA (Raftery and Zheng, 2003) and a fairly comprehen-
sive implementation for GLMs exists (R-package BMA, Raftery, Hoeting,
Volinsky, Painter, and Yeung (2011)), it would be interesting to compare
the performance of BMA with our approach for the subclass of models
for which BMA is implemented.
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3. As far as the implementation is concerned, we see a lot of potential for
generalizing the approach to an even broader class of potential model
terms as well as response distributions:
The case study for the sepsis survival data in Section 4.4 shows that
an extension for piecewise exponential time-to-event models via data
augmentation is easily done within the constraints of the existing im-
plementation. In a similar fashion, data augmentation along the lines
of Begg and Gray (1984) could be used to fit polychotomous responses
with spikeSlabGAM. An extension of the methodology for accelerated
failure time models may also be considered a “low-hanging fruit”: Since
some error distributions for the logarithm of the times-to-event like the
logistic distribution can be parameterized as scale mixtures of normals
and censored observations can be imputed in an additional imputation
step, so that the rest of the algorithm could remain unchanged. Simi-
lar extensions are conceivable for other error distributions such as pe-
nalized Gaussian mixtures as in Komárek, Lesaffre, and Hilton (2005)
or any other error distributions that can be framed as Gaussian (scale)
mixtures.

4. On the predictor side, the package would benefit from added capabil-
ities for “always included” semiparametric terms as well as allowing
interaction effects to be fit in the absence of the corresponding main ef-
fects. In a similar vein, adding the option to sample inclusion indicators
under hierarchical constraints, i.e., never including an interaction if the
associated main effects are excluded from the model could help in find-
ing parsimonious models that are easy to interpret. A more challeng-
ing extension could tackle the issue of covariance selection, i.e., model
choice for the covariance structures of correlated random effects. It may
be possible to incorporate recent approaches (Cai and Dunson, 2006;
Frühwirth-Schnatter and Tüchler, 2008) for covariance selection based
on a Cholesky decomposition of the random effect covariance or corre-
lation matrix into our framework.

5. Uncovering and dealing with concurvity is especially pertinent for the
high-dimensional additive models that we consider to be the main area
of application for our approach. While the orthogonalization of inter-
action effects with regard to their parent main effects (cf. Section 3.1.4)
may alleviate some concurvity problems, established approaches for the
diagnosis of concurvity (cf. Gu, 2002, Ch. 3.6) are presently missing in
spikeSlabGAM and possible remedies such as using only partial effects
of nuisance variables (i.e., effects that are projected into the complement
of the column space of the variables of interest along the lines of Hodges
and Reich (2010) and Hughes and Haran (2011)) need to be investigated
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and implemented in order to further improve the stability and inter-
pretability of results.

Overall, we are confident that the methodological developments described
in this work and implemented in spikeSlabGAM provide a suitable stepping
stone for further refinement and generalization. Much work remains to be
done before a truly general and computationally feasible framework for reli-
able term selection in structured additive regression is in place.
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Part II.

Bayesian Model Choice for Locally
Adaptive Splines
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6. Locally Adaptive Bayesian P-Splines with a
Normal-Exponential-Gamma Prior

In many regression applications, the assumption of a linear dependence of
the response on predictor variables is inappropriate. One appealing solution
to the problem of modeling smooth functions of an unknown shape, that is,
fitting models of the form

y = f (x) + ε; ε ∼ Nn(0, σ2
ε I),

where f (·) is a smooth function of a covariate x, is P-spline smoothing
(Eilers and Marx, 1996). The idea behind this approach is conceptually simple:
The unknown function is approximated by a piecewise polynomial function
subject to some differentiability constraints at the interval boundaries. The re-
sulting function can be represented as a linear combination of B-spline basis
functions, i.e. basis functions with local support. The number of basis func-
tions must be large enough to allow for sufficient flexibility in the shape of the
estimated function. However, due to the high dimension of the basis, an un-
regularized fit would result in a very variable estimate. In order to avoid this
overfitting problem, the basis coefficients are penalized to enforce smoothness
of the resulting fit. Let X denote the matrix of the J basis functions, evalu-
ated at x. The objective function for the P-spline fit is then the penalized least
squares criterion

1
σ2

ε
‖y −Xβ‖2 +

1
τ2‖∆

(d)β‖2 → min
β

,

where ∆(d) of dimension (J − d)× J is the dth-degree difference operator ma-
trix and τ2 is the smoothing parameter controlling the amount of penaliza-
tion. In effect, this form of penalization penalizes deviations of the fitted curve
from a (d− 1)-degree polynomial (Eilers and Marx, 1996) since the dth order
derivative of B-splines essentially depends on dth order differences. From a
Bayesian perspective, dth order differences correspond to a Gaussian random
walk prior of order d for the vector β (Lang and Brezger, 2004).

For functions with locally varying complexity (e.g. oscillations with vary-
ing frequency and/or amplitude, or functions with discontinuities), a global
penalty with constant smoothing parameter over the range of x is inappro-
priate, as it would lead to overfitting in the smooth parts of the function and
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underfitting in the more wiggly or discontinuous parts of the function. This
problem can be tackled by introducing a penalty that varies spatially in order
to reflect the spatial heterogeneity of the function. Previous suggestions for
locally adaptive smoothing include Bayesian and frequentist approaches that
allow for (smoothly varying) spatial heterogeneity by fitting a smooth penalty
function τ(x) represented as a second P-spline (Ruppert and Carroll, 2000;
Baladandayuthapani, Mallick, and Carroll, 2005; Krivobokova, Crainiceanu,
and Kauermann, 2008), or reweighting the individual penalty terms so that(

∆(d)β
)

i
∼ N (0, τ2

δi
), with δi ∼ Γ( ν

2 , ν
2 ) leading to a marginally t-distributed

random walk prior (e.g. Lang and Brezger, 2004), as well as knot-selection
based approaches (Denison, Mallick, and Smith, 1998; Biller, 2000; Dimatteo,
Genovese, and Kass, 2001). Jullion and Lambert (2007) investigate robust spec-
ifications of the Bayesian P-spline prior based on hyperpriors on the rough-
ness penalty, discrete mixture priors for the smoothing variance, and adaptive
priors with locally varying smoothing parameter. Crainiceanu, Ruppert, Car-
roll, Joshi, and Goodner (2007) extend the approach developed by Ruppert
and Carroll (2000) to multivariate additive models with heteroscedastic er-
rors.

The main idea of our fully Bayesian approach is to replace the homoscedas-
tic Gaussian random walk prior for ∆(d)β with a heteroscedastic heavy-tailed
random walk prior. Unlike Lang and Brezger (2004), we assume piecewise
constant variances, and, unlike the solutions based on the original idea by
Ruppert and Carroll (2000), we make no smoothness assumptions about the
shape of the resulting variance function. The prior we use is a scale mixture
of normals introduced by Griffin and Brown (2007) where the variance of the
normal follows an exponential distribution with a gamma-distributed rate
resulting in a Normal-Exponential-Gamma (NEG) prior for the differences of
P-spline coefficients. This mixture distribution is strongly peaked in the origin
and has heavy tails leading to advantageous adaptivity properties.

We propose a hierarchy of estimation schemes based on Markov chain
Monte Carlo simulation (MCMC) techniques that introduce increasing flex-
ibility in estimating the variance step function. Starting with fixed number
and locations of the changepoints, we then introduce a more flexible alter-
native in which the locations of the changepoints are estimated as well. In a
final step, the number of steps is included as a further unknown parameter,
leading to a reversible jump MCMC algorithm. All the NEG-based algorithms
are implemented in R (R Development Core Team, 2010), the code is available
from the first author’s website (http://www.statistik.lmu.de/~scheipl/).

Results from an extensive simulation study show that the NEG-based ap-
proaches can deal equally well with both smoothly varying local complexity
and functions with discontinuities and usually converge quite fast due to the
excellent mixing properties of the proposed samplers. The reversible jump al-
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gorithm is almost fully automatic in the sense that results are robust against
changes in the two hyperparameters supplied by the user. The applicability of
the proposed approach is demonstrated in two applications: the estimation of
fractionation curves in quality control of cDNA microarray experiments and
the estimation of neuronal firing rates.

The rest of this part is structured as follows: Chapter 7 describes the hier-
archy of our model and discusses the three implementations of our approach
as well as an extension to non-Gaussian responses. Results of a fairly exten-
sive simulation study are summarized in Chapter 8, followed by exemplary
applications to real data in Chapter 9.

125





7. Models and algorithms

Conventional Bayesian P-spline smoothing (Lang and Brezger, 2004; Jullion
and Lambert, 2007) is based on a homoscedastic Gaussian prior for the dth

differences ∆(d)β of the J P-spline coefficients β: ∆(d)β ∼ N(0, τ2IJ−d). This
corresponds to a ridge-type regularization of the fitted function, leading to a
proportional shrinkage of the unregularized random walk. An improved prior
distribution, however, should be designed to allow for high penalization in
areas with low variability and, vice versa, low penalization in areas with high
curvature or discontinuities. Translated to the form of the prior distribution
this means that a prior with a peak at zero on the one hand but heavy tails
on the other hand should be considered. Such types of priors have received
considerable attention in recent years in applications on variable selection
and regularization in high-dimensional regression models (e. g. Griffin and
Brown, 2005; Park and Casella, 2008). One particularly promising candidate
is the Normal-Exponential-Gamma (NEG) prior by Griffin and Brown (2007)
that combines the desired properties with computational convenience in a
hierarchical Bayesian updating scheme.

In this framework, the prior pτ(τ2|z) for τ2 is assumed to follow an expo-
nential distribution with rate z. This rate, in turn, is assigned a Γ(az, bz)-prior,
where Γ(a, b) denotes a gamma distribution with expectation a/b and vari-
ance a/b2. The resulting scale mixture NEG-prior for ∆(d)β has the desired
properties: Its mass is concentrated around zero, with a finite spike in the
origin, leading to the desired regularization properties, and yet has heavy
tails which allow for the possibility of large jumps in the random walk and
therefore sudden jumps or curvature changes of the fitted function. Following
Griffin and Brown (2007), we set az = 0.5, since a sufficiently flexible family
of distributions is obtained by letting bz vary all by itself. The prior for bz is a
discrete uniform distribution on a log10-regular grid with 550 values between
10−3 and 105.

Still, assuming a homogeneous random walk with a single variance pa-
rameter for the differences of coefficients is obviously problematic for func-
tions with locally varying complexity. To further increase adaptivity, we re-
place the conventional homoscedastic prior for the dth differences ∆(d)β of
the J P-spline coefficients β with a heteroscedastic prior. Specifically, we re-
place the sequence of identical variances for the random walk increments in
∆(d)β with a piecewise constant variance list consisting of B different val-
ues, i.e. τ2

b , b = 1, . . . , B. To characterize the piecewise constant variance
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step function, we can either consider the changepoints of the step function
(in terms of the indices of the elements of ∆(d)β) or the lengths of the con-
stant pieces. Let s = (s1, . . . , sB−1) denote the vector of indices of interior
changepoints and set s0 = 1 and sB = J − d. From the changepoints we can
derive the lengths of the intervals by applying the first order difference op-
erator to the vector (1, s, J − d)′, i.e. l = (l1, . . . , lB) = ∆(1)(1, s, J − d)′ and
vice versa sb = l1 + . . . + lb. The variance for the Gaussian random walk on
∆(d)β at indices i ∈ {sb−1, . . . , sb − 1} is then given by τ2

b . By designating a
random walk prior with piecewise constant variances, we reduce the num-
bers of parameters to be sampled. Furthermore, this allows us to take into
account local information about the variability of the function to be fitted and
thereby increases robustness of the fitted function to outliers compared to
using individual variances τ2

j , j = 1, . . . , J for the random walk increments.
Figure 7.1 gives the directed acyclic graph (DAG) for the basic hierarchy of

the proposed model specification for Gaussian responses. The corresponding

NEG prior structure

b=1,...,B

bz ∈ G = {10−3, . . . , 105}
p(bz) = 1/|G|; |G| = 552

zb ∼ Γ(az = 0.5, bz)

τ2
b ∼ Exp(zb)

∆(d)β ∼ NJ−d(0,T (τ 2, l))

T (τ 2, l) = blockdiag
(

τ2
1 Il1 , . . . , τ2

BIlB

)

y ∼ Nn(Xβ, σ2
ε )

Figure 7.1.: Directed acyclic graph of the NEG prior structure.

posterior p(y, σ2
ε ,β, τ 2, z, bz|x) is given by

p(y, σ2
ε ,β, τ 2, z, bz|x) =

py(y|Xβ, σ2
ε )pβ(∆

(d)β|τ 2)pτ2(τ 2|z)pz(z|az, bz)pbz(bz).

The rate bz is sampled with a Metropolis-Hastings-Step. The remaining pa-
rameters z, τ 2,β and σ2

ε are updated from their full conditionals via Gibbs-
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Sampling. We use a weakly informative inverse gamma prior, IG(10−5, 10−5),
for the error variance σ2

ε . Note that it may be useful in applications to stan-
dardize the response vector to zero mean and unit variance to meet the re-
quirements of the default prior choices.

For non-Gaussian responses from a univariate exponential family, we model
the conditional expectation of the response as µ = E(y|·) = h(Xβ) for a
given response function h(·). This implies that, conditional on the parame-
ters, y is distributed with the density of an exponential family

f (y|·) ∼ exp
(

y θ(µ)− b(θ(µ))
φ

+ c(y, φ)

)
,

where θ(·) and b(·) are determined by the choice of link function and distribu-
tion of y. Compared to the implementation for normal responses, only the last
step of the hierarchy, the sampling of the spline coefficients β, has to be ad-
justed and the error variance σ2

ε is removed from the model. We use a variant
of the well-known IWLS proposal scheme (Gamerman, 1997), the penalized
IWLS proposal scheme based on an approximation of the current posterior
mode described in detail in Brezger and Lang (2006, Sampling scheme 1, sec-
tion 3.1.1), to update β in a single block. This method is a Metropolis-Hastings
type update which uses a Gaussian approximation to the full conditional of
β as its proposal distribution. The approximating Gaussian is obtained by
performing a single Fisher scoring step per iteration. Section 7.4 contains a
detailed description of the algorithm.

Griffin and Brown (2007) show that the maximum a posteriori (MAP) esti-
mate for the regression coefficients β based on the NEG hierarchy fulfills the
so-called oracle property in linear models since the derivative of the scale-
mixture prior tends to zero for increasing |β|. Despite this appealing theoret-
ical property of the MAP estimate, we use a full MCMC approach instead of,
say, an EM-type algorithm, due to the importance of reliable variability mea-
sures for function estimation and because an implementation based on a full
MCMC approach will facilitate inclusion into the general structured additive
regression context e.g. as part of a Bayesian backfitting algorithm for (G)AMs.
It is also reasonable to assume that posterior means based on a prior with the
oracle property also benefit from this fact and our simulation results (Section
8) confirm this intuition: Using this hierarchy, we obtain a strong shrinkage
of ∆(d)β where differences are small, increasing the smoothness of the fitted
curve, while simultaneously allowing faithful modeling of jumps or sudden
curvature changes.

In the following we describe and compare three approaches with increasing
flexibility for the variance function given by τ 2: The first approach uses a
piecewise constant variance function with fixed number and positioning of
changepoints as described in this section. In the second approach, we sample
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the locations of the changepoints while leaving their number fixed. In the
third approach we use reversible jump MCMC methodology to sample the
number of changepoints B as well.

7.1. Blockwise NEG P-spline

In this formulation, the number of blocks B as well as the positions and
lengths of the blocks in the variance function are fixed. Simulation results
were obtained using blocks of (approximately) equal length, but domain-
specific prior knowledge about the likely locations of changes in variability or
discontinuities can easily be incorporated into the model by specifying more
appropriate locations for the changepoints. The resulting posterior variance
function is piecewise constant. We investigate the robustness with respect to
the number of blocks in section 8.7.2. The hierarchy for this model is given in
Figure 7.1. In the following, this algorithm will be referred to as NEG.

7.2. Flexible blockwise NEG P-spline

In this model, we let B remain fixed and sample the locations of the steps
s1, . . . , sB−1 at which the variance of ∆(d)β changes. The prior for the vector of
interior changepoints s = (s1, . . . , sB−1) is assumed to be the distribution of
the order statistic of a discrete uniform distribution on {2, . . . , J − d− 1}. The
rest of the hierarchy and the samplers for bz, z, τ 2 and σ2

ε remain unchanged.
Figure 7.2 shows the DAG for this prior structure.

7.2.1. Updating the changepoints

We use the following Metropolis-Hastings step to update the vector of change-
points s:

• Define the tuning parameter ms, which is the maximal number of in-
dices that the new proposal can move the selected changepoint. In our
implementation, ms defaults to d(J − d)/Be, the length of the random
walk divided by the number of blocks and rounded to the next highest
integer.

• Draw b? uniformly from the set of indices of movable changepoints

Bs = {1, . . . , B− 1} \ {b : lb = 1 and lb+1 = 1}.

Indices b where lb = 1 and lb+1 = 1 are not eligible, because both
neighboring intervals only span a single index so that the changepoint

130



FlexNEG prior structure

b=1,...,B

i=1,...,B−1

bz ∈ G = {10−3, . . . , 105}
p(bz) = 1/|G|; |G| = 552

zb ∼ Γ(az = 0.5, bz)

τ2
b ∼ Exp(zb)

∆(d)β ∼ NJ−d(0,T (τ 2, l))

T (τ 2, l) = blockdiag
(

τ2
1 Il1 , . . . , τ2

BIlB

)

l = ∆(1)(1,s, J − d)′

si ∈ {2, . . . , J − d− 1}

si ∼
(B− 1)!
J − d− 2

Figure 7.2.: Directed acyclic graph of the FlexNEG prior structure. Ellipses are
stochastic nodes. Single arrows are stochastic edges, double arrows are deterministic
edges.

in the middle cannot move. Let Bm = |Bs| denote the number of movable
changepoints.

• Determine the minimal index i− = max(sb?−1 + 1, sb? − ms) and max-
imal index i+ = min(sb?+1 − 1, sb? + ms) and draw the proposal s?b? to
replace sb? uniformly from {i−, . . . , i+}.

• Update s?, l?, i?−, i?+ and T (τ 2, l?) accordingly. The prior covariance
T (τ 2, l?) of ∆(d)β is given by blockdiag

(
τ2

1Il1 , . . . , τ2
BIlB

)
.

• Accept the new vector of change points s? with probability α(s?):

log α(s?) = log ((i+ − i−) Bm)− log ((i?+ − i?−) B?
m) (7.1)

+0.5
(

diag(T (τ 2, l?))− diag(T (τ 2, l))
diag(T (τ 2, l?)) · diag(T (τ 2, l))

)′
(∆(d)β)2

+0.5(l− l?)′ log(τ 2),

where the expression in the first line is the proposal ratio for s?, and the
second and third line come from the prior ratio for the random walk. A
detailed derivation of α(s?) is given below.

This model gives substantially more flexibility with regard to the estimated
variance function by averaging over the step functions drawn in each iteration.
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In effect, we use Bayesian model averaging to arrive at posterior estimates for
f (x) and diag(T (τ 2, l)). In the following, this algorithm will be referred to as
FlexNEG.

7.2.2. Acceptance probability for a proposed vector of

changepoints

The following is a more detailed derivation of the acceptance probability
α(s?) for a proposed vector of changepoints s? given in (7.1). Only the pro-
posal ratio for s? and the prior ratio for ∆(d)β determine α(s?) as the prior for
the vector of changepoints s has the same value for all possible configurations
and the node for ∆(d)β is the only daughter node of s in the hierarchy of the
model.
The proposal ratio for s? is the probability of proposing to move from s? to
s, which is 1

B?
m

1
i?+−i?−

, the discrete uniform probability of selecting anyone of
the movable changepoints multiplied with the discrete uniform probability of
selecting any of the indices it is allowed to move to, divided by the probability
of proposing to move from s to s?, which is 1

Bm
1

i+−i− .
We introduce some additional notation for the derivation of the prior ratio

p∆β

(
∆(d)β|T (τ 2, l?)

)
p∆β

(
∆(d)β|T (τ 2, l)

) .

Let Tii =
(
T (τ 2, l)

)
ii denote the ith diagonal element of the covariance matrix

T (τ 2, l) of ∆(d)β and let T?
ii =

(
T ?(τ 2, l?)

)
ii denote the ith diagonal element

of the proposed covariance matrix implied by the proposed change in the
variance function. Note that the diagonal of T will usually remain unchanged
in most elements, at most, max(sb? − i−, i+ − sb?) elements will change.
We repeatedly make use of the fact that T is a diagonal matrix – recall that
T (τ 2, l) = blockdiag

(
τ2

1Il1 , . . . , τ2
BIlB

)
. It then follows that

log

 p∆β

(
∆(d)β|T (τ 2, l?)

)
p∆β

(
∆(d)β|T (τ 2, l)

)
 = log



|T ?|−1/2 exp

−1
2

J−d

∑
i=1

(
∆(d)β

)2

i
T?

ii


|T |−1/2 exp

−1
2

J−d

∑
i=1

(
∆(d)β

)2

i
Tii
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= log


(

∏J−d
i=1 T?

ii

)−1/2

(
∏J−d

i=1 T?
ii

)−1/2 exp

(
1
2

J−d

∑
i=1

T?
ii − Tii

T?
ii Tii

(
∆(d)β

)2

i

)
=

1
2

J−d

∑
i=1

(log Tii − log T?
ii ) +

1
2

J−d

∑
i=1

T?
ii − Tii

T?
ii Tii

(
∆(d)β

)2

i

=0.5(l− l?)′ log(τ 2) + 0.5
(

diag(T (τ 2, l?))− diag(T (τ 2, l))
diag(T (τ 2, l?)) · diag(T (τ 2, l))

)′
(∆(d)β)2.

7.3. Flexible blockwise NEG P-spline with variable
number of blocks

As the most flexible alternative, we also implemented a reversible jump-type
algorithm (Green, 1995) to determine the number of changepoints B automat-
ically in a data-driven way. Following Green (1995), we assigned a Poisson
distribution truncated on {1, . . . , smax} with rate smean as prior pB(B) to the
number of blocks B. The rest of the hierarchy remains unchanged. Figure 7.3
shows the DAG for this prior structure. The reversible jump algorithm has

RJNEG prior structure

b=1,...,B

i=1,...,B−1

bz ∈ G = {10−3, . . . , 105}
p(bz) = 1/|G|; |G| = 552

zb ∼ Γ(az = 0.5, bz)

τ2
b ∼ Exp(zb)

∆(d)β ∼ NJ−d(0,T (τ 2, l))

T (τ 2, l) = blockdiag
(

τ2
1 Il1 , . . . , τ2

BIlB

)

l = ∆(1)(1,s, J − d)′

si ∈ {2, . . . , J − d− 1}

si ∼
(B− 1)!
J − d− 2

B ∼ Potrunc(λ = smean, max = smax)

Figure 7.3.: Directed acyclic graph of the RJNEG prior structure. Ellipses are stochas-
tic nodes. Single arrows are stochastic edges, double arrows are deterministic edges.

three move types: birth (adding a changepoint), death (removing a change-
point), and position change. The latter is identical to the update procedure for
s described in the previous section. Let pb(B) and pd(B) denote the probabil-
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ity for a birth and death step, respectively, given the number of blocks B. To
satisfy detailed balance, we set pb(B) = c min (1, pB(B + 1)/pB(B)); pd(B) =
c min (1, pB(B− 1)/pB(B)), where c is chosen so that pb(B) + pd(B) < 0.8 ∀ B
(Green, 1995). The birth and death moves to increase or decrease B are as fol-
lows:

7.3.1. Birth move

A birth move increases the number of blocks by one: B → (B + 1). It is per-
formed in the following steps:

• Draw the proposed new changepoint s? uniformly from
{2, . . . , J − d− 1} \ {s}.

• Determine the affected block b? : sb?−1 < s? < sb? and the (expanded)
proposal vectors s? and l?.

• Draw proposals
(
z?b? , z?b?+1

) i.i.d.∼ Γ(az + 1, bz + τ2
b?) from the full condi-

tional based on τ 2 from the previous iteration.

• Draw proposals τ2?
b? , τ2?

b?+1 from their full conditionals (see Section 7.5.1)
based on the updated vector z?.

• Accept B? = B + 1, s?, z? and τ 2? with probability αb = AbPb, where
Ab is the prior ratio and Pb is the proposal ratio for the attempted birth
move.

The acceptance probability has this simple form because the likelihood ratio
for dimension changing moves is 1. In our context, the changed parameters
do not occur in the likelihood but only in a higher stage of the hierarchy.
The Jacobian is 1 as well since the mapping function between the parameter
spaces is the identity. The prior ratio is given by

Ab =
pB(B?|smean, smax)

pB(B|smean, smax)
· ps(s?|B?)

ps(s|B)
·

pz
(
(z?b? , z?b?+1)|bz

)
pz(zb? |bz)

·

·
pτ

(
(τ2?

b? , τ2?
b?+1)|z?

)
pτ(τ2

b? |z)
·

p∆β

(
∆(d)β|T (τ 2, l?)

)
p∆β

(
∆(d)β|T (τ 2, l)

) ,

and the proposal ratio for the birth step is

Pb =
pd(B?)

pb(B)
· |{2, . . . , J − d− 1} \ {s}|

B
·

p
(
zb? |az, bz, τ2

b?
)

p
(
(z?b? , z?b?+1)|az, bz, τ2

b?

) ·
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·
p
(
τ2

b? |s, l, z̃b? = 0.5(z?b? + z?b?+1),β
)

p
(
(τ2?

b? , τ2?
b?+1)|s?, l?, z?,β

) .

Section 7.3.3 contains more detailed expressions.

7.3.2. Death move

A death move decreases the number of blocks by one: B → B− 1. It is per-
formed in the following steps:

• Draw index b? of the changepoint that is to be deleted uniformly from
{1, . . . , B− 1} and determine the reduced proposal vectors s?, l?.

• Draw the new proposal τ2?
b? to replace (τ2

b? , τ2
b?+1) from

p(τ2?
b? |s?, z̃b? = 0.5(zb? + zb?+1))

• Draw the new proposal z?b? to replace (zb? , zb?+1) from p(z?b? |az, bz, τ 2?)

• Accept B? = B− 1, s?, z? and τ 2? with probability αd = AdPd: where
Ad, the prior ratio, and Pd, the proposal ratio, are simply A−1

b and P−1
b

with indices appropriately changed.

Section 7.3.3 contains more detailed expressions.
In the following, the algorithm with a variable number of changepoints will

be referred to as RJNEG.
The required dimension matching (Green, 1995) is fulfilled since the di-

mension changes (in the notation for the birth step) proceed from parameter
vector

(
z, τ 2, z?b? , z?b?+1, τ2?

b? , τ2?
b?+1

)
with dimension 2B + 4 to parameter vector(

z?, τ 2?, zb? , τ2
b?
)

with dimension 2(B + 1) + 2 and vice versa for the death
step. Our sampler alternates between the dimension-changing transition ker-
nel implied by the update procedure above and the fixed-dimension kernel
described in section 7.2. While this usually increases the necessary burn-in
period, it also stabilizes the estimation of the variance function in more com-
plex settings.
In our simulations, acceptance probabilities for the dimension changing moves
were in the range of 0.3 to 0.6 and usually around 0.4.
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7.3.3. Acceptance probabilities for birth and death moves

The prior ratio for the birth step is

Ab =
pB(B?|smean, smax)

pB(B|smean, smax)

ps(s?|B?)

ps(s|B)
pz
(
(z?b? , z?b?+1)|bz

)
pz(zb? |bz)

pτ

(
(τ2?

b? , τ2?
b?+1)|z

?
)

pτ(τ2
b? |z)

p∆β

(
∆(d)β|T (τ 2, l?)

)
p∆β

(
∆(d)β|T (τ 2, l)

)
=

smean

B?

B
(J − d− 2)

baz
z

Γ(az)

( z?b?z?b?+1
zb?

)az exp (−(bz + τ2?
b? )z

?
b? − (bz + τ2?

b?+1)z
?
b?+1))

exp (−(bz + τ2
b?)zb?)√

τ2?
b?
−l?b?

√
τ2?

b?+1

−l?b?+1 exp
(
− 1

2 ∑B?

b=1 ∑
s?b+1−1
k=s?b

(∆(d)β)2
kτ−2?

b

)
√

τ2
b?
−lb?

exp
(
− 1

2 ∑B
b=1 ∑

sb+1−1
k=sb

(∆(d)β)2
kτ−2

b

)
and the proposal ratio for the birth step is

Pb =
pd(B?)

pb(B)
|{2, . . . , J − d− 1} \ {s}|

B
p
(
zb? |az, bz, τ2

b?
)

p
(
(z?b? , z?b?+1)|az, bz, τ2

b?

)
p
(
τ2

b? |s, l, z̃b? = 0.5(z?b? + z?b?+1),β
)

p
(
(τ2?

b? , τ2?
b?+1)|s?, l?, z?,β

)
=

pd(B?)

pb(B)
J − d− B− 1

B
Γ(az + 1)(

bz + τ2
b?
)az+1

zaz
b?

z?az
b? z?az

b?+1

exp
(
−(bz + τ2

b?)zb?
)

exp
(
−(bz + τ2

b?)(z
?
b? + z?b?+1)

)
(
z?b? + z?b?+1

)1/2−lb?/4
(

∑
s?b?+1−1
k=s?b?

(∆(d)β)2
k

)1/2−l?b?/4 (
∑

s?b?+2−1
k=s?b?+1

(∆(d)β)2
k

)1/2−l?b?+1/4

2
(
2z?b?

)1/2−l?b?/4
(

2z?b?+1

)1/2−l?b?+1/4 (
∑

sb?+1−1
k=sb?

(∆(d)β)2
k

)1/2−lb?/4

K1−l?b?/2

(√
2 ∑

s?b?+1−1
k=s?b?

(∆(d)β)2
kz?b?

)
K1−l?b?+1/2

(√
2 ∑

s?b?+2−1
k=s?b?+1

(∆(d)β)2
kz?b?+1

)
K1−lb?/2

(√
∑

sb?+1−1
k=sb?

(∆(d)β)2
k(z

?
b? + z?b?+1)

)
√

τ2
b?
−lb?

√
τ2?

b?
−lb?√

τ2?
b?+1

−lb?+1

exp
(
− 1

2

(
∑

sb?+1−1
k=sb?

(∆(d)β)2
kτ−2

b? + (z?b? + z?b?+1)τ
2
b?

))
exp

(
− 1

2

(
∑

s?b?+1−1
k=s?b?

(∆(d)β)2
kτ−2?

b? + ∑
s?b?+2−1
k=s?b?+1

(∆(d)β)2
kτ−2?

b?+1 + 2(z?b?τ2?
b? + z?b?+1τ2?

b?+1)

)) .
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This yields acceptance probability

αb =
pd(B?)

pb(B)
smean

B?

(J − d− B− 1)
(J − d− 2)

az(
bz + τ2

b?
)az+1

exp
(
− 1

2 ∑B?

b=1 ∑
s?b+1−1
k=s?b

(∆(d)β)2
kτ−2?

b

)
exp

(
− 1

2 ∑B
b=1 ∑

sb+1−1
k=sb

(∆(d)β)2
kτ−2

b

)
(
z?b? + z?b?+1

)1/2−lb?/4
(

∑
s?b?+1−1
k=s?b?

(∆(d)β)2
k

)1/2−l?b?/4 (
∑

s?b?+2−1
k=s?b?+1

(∆(d)β)2
k

)1/2−l?b?+1/4

2
(
2z?b?

)1/2−l?b?/4
(

2z?b?+1

)1/2−l?b?+1/4 (
∑

sb?+1−1
k=sb?

(∆(d)β)2
k

)1/2−lb?/4

K1−l?b?/2

(√
2 ∑

s?b?+1−1
k=s?b?

(∆(d)β)2
kz?b?

)
K1−l?b?+1/2

(√
2 ∑

s?b?+2−1
k=s?b?+1

(∆(d)β)2
kz?b?+1

)
K1−lb?/2

(√
∑

sb?+1−1
k=sb?

(∆(d)β)2
k(z

?
b? + z?b?+1)

)
exp

(
− 1

2

(
∑

sb?+1−1
k=sb?

(∆(d)β)2
kτ−2

b? + (z?b? + z?b?+1)τ
2
b?

))
exp

(
− 1

2

(
∑

s?b?+1−1
k=s?b?

(∆(d)β)2
kτ−2?

b? + ∑
s?b?+2−1
k=s?b?+1

(∆(d)β)2
kτ−2?

b?+1 + 2(z?b?τ2?
b? + z?b?+1τ2?

b?+1)

)) .

7.4. Extension to non-Gaussian responses

We also adapted this procedure for binary Binomial responses (logit link)
and Poisson responses (log link), replacing the Gibbs-type update of β with
a penalized IWLS update (Gamerman, 1997; Brezger and Lang, 2006).

The principal idea of this method is to use Fisher scoring or IWLS for the
estimation of regression coefficients in generalized linear models within a
Metropolis-Hastings step. In essence, the full conditional of β is approximated
by a multivariate Gaussian distribution, whose parameters are obtained by
a single Fisher scoring step for each sweep of the sampling algorithm. The
following is adapted from Brezger and Lang (2006).

Standard P-IWLS then proposes a multivariate Gaussian candidate vector
β? ∼ NJ(m,P−1) based on the current value β with precision matrix P and
mean m, where

P = X′W (β)X + T−1(τ 2, l),

m = P−1X′W (β) (ỹ(β)−Xβ) .

The matrix of IWLS weights W (β) = diag(w1(β), . . . , wn(β)) and the vector
of working observations ỹ(β) for canonical link functions are given as

wi(β) = b′′(θi),

ỹi(β) = x′iβ+ g′(µi)(yi − µi).
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Following Brezger and Lang (2006) (Sampling scheme 1, section 3.1.1) we use
the posterior mode approximationm used in the previous iteration of the sam-
pler (regardless of acceptance of the previous proposal) instead of β to com-
pute the weights and working observations. This is advantageous, because
the proposal densities q(β → β?) and q(β? → β) then become independent
of the current state of the chain (q(β → β?) = q(β?); q(β? → β)) = q(β)), so
that we don’t need to re-compute P ? and m? for q(β? → β) to determine the
acceptance probability of β?. This also increases the acceptance rates for the
high-dimensional proposals we use.

7.5. MCMC sampler

7.5.1. Posterior and full conditionals

For the hierarchy given for the reversible jump model, the full posterior with
given hyperparameters smean, smax, az, bz, aσ and bσ can be written as

p(B, s, l, z, τ 2,β, σ2
ε , y) =(

1−
smax

∑
i=1

si
mean
i!

e−smean

)−1
sB

mean
B!

e−smean · (B− 1)!
(J − d− 2)B−1 ·

bBaz
z

Γ(az)B

B

∏
b=1

zaz−1
b exp (−bzzb) ·

B

∏
b=1

zb exp
(
−zbτ2

b

)
·

∏B
b=1

√
τ2

b

−lb

(2π)(J−d)/2
exp

(
−1

2
β′∆(d)′T (τ 2, l)−1∆(d)β

)
·

baσ
σ

Γ(aσ)
σ

2(−aσ−1)
ε exp

(
−bσ

σ2
ε

)
1

(2πσ2
ε )

n/2 exp
(
−‖y −Xβ‖

2

2σ2
ε

)
.

Accordingly, the full conditionals are:

p(zb|az, bz, τ2
b ) ∝ zaz

b exp
(
−(bz + τ2

b )zb

)
⇒ zb|· ∼ Γ(az + 1, bz + τ2

b )

p(τb|s, l,β, zb) ∝
√

τ2
b

−lb
exp

(
− 1

2τ2
b

sb+1−1

∑
k=sb

(∆(d)β)2
k − zbτ2

b

)
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= (τ2
b )
−lb/2 exp

(
−1

2

(
sb+1−1

∑
k=sb

(∆(d)β)2
k(τ

2
b )
−1 + 2zbτ2

b

))

⇒ τ2
b |· ∼ GIG

(
χ =

sb+1−1

∑
k=sb

(∆(d)β)2
k; ψ = 2zb; λ = 1− lb

2

)

GIG(χ, ψ, λ) denotes the generalized inverse Gaussian distribution with den-
sity

f (x) =
(ψ/χ)λ/2

2Kλ(
√

ψχ)
xλ−1 exp

(
−1

2

(
χx−1 + ψx

))
for x > 0, where Kλ(·) is the modified Bessel function of the third kind of
(fractional) order λ (Jørgensen, 1982). We use our own C-code implementing
the algorithm given by Dagpunar (1989) to sample from this distribution.

p(β|τ 2, l, σ2
ε ) ∝ exp

(
−‖y −Xβ‖

2

2σ2
ε

− β
′∆(d)′T (τ 2, l)−1∆(d)β

2

)
⇒ β|· ∼ NJ

(
µ = σ−2

ε V X′y; Σ = V
)

;

V =
(

σ−2
ε X ′X + ∆(d)′T (τ 2, l)−1∆(d)

)−1

p(σ2
ε |aσ, bσ,β) ∝ σ

2(−aσ−n/2−1)
ε exp

(
−‖y −Xβ‖

2 + 2bσ

2σ2
ε

)
⇒ σ2

ε |· ∼ IG(aσ + n/2, bσ + ‖y −Xβ‖2/2)

7.5.2. Performance

MCMC sampling for high-dimensional hierarchical models such as the ones
we consider can run into a number of difficulties such as failure to visit all
the relevant modes in cases of multimodality, non-convergence, slow mix-
ing and strong sensitivity to starting values. To address these concerns, we
investigated the behavior of the proposed samplers for multiple runs initial-
ized with highly overdispersed starting values for bz and τ 2 generated from
their respective diffuse priors. Sensitivity to hyperparameters is discussed in
section 8.7.2.

We evaluated convergence of the runs by convergence in β (and σ2
ε , for

Gaussian responses), as the parameters (z, τ 2) change in meaning due to the
changing shape of s for FlexNEG and RJ.NEG. We found that all the samplers
for Gaussian responses converge quickly (<1000 iterations) even if initialized
in highly improbable regions of the posterior and mix very well. Some quali-
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fications apply for the basic NEG model: it is more sensitive to starting values
due to its less flexible parametrization and occasionally gets stuck in local
modes with too much or too little regularization of the spline coefficients in
some regions if unfortunate starting values are chosen, especially if the initial
value of bz is extreme. This is not the case for FlexNEG and RJ.NEG, which
are able to move away from inferior basins of attraction quickly due to the
more flexible shape of the variance function.

Generally speaking, the quick convergence and excellent mixing is due to
the availability of blockwise Gibbs sampling steps in the relevant levels of
the hierarchy, which obviate the manual tuning of proposal densities entirely.
We achieved stable results for the NEG for starting values of τ2 = 100 and
0.1 < bz < 10, which is the configuration we used in the simulation study.

The performance of the P-IWLS sampler for β for non-Gaussian responses
is highly dependent on the starting values: If unsuitable starting values are
provided, the sampler will get stuck in the initial configuration and fail to
update, because the local approximation of the posterior used for the pro-
posal density is unsuitable. In our implementation, suitable starting values
for β to initialize the chain are found by performing a number of Fisher scor-
ing steps for fixed values of τ 2 starting from the unregularized estimate of
β. Chains initialized in this way converge quickly regardless of the starting
values for bz and τ 2, with satisfactory acceptance rates and good mixing due
to the automatic adaptation of the proposal density to the mode and curva-
ture of the full conditional. In our simulation study, acceptance rates for the
IWLS proposals are between 26% and 88% and usually around 60% for Pois-
son responses. Acceptance rates for binary Binomial responses are between
13% and 42%, and usually around 25%. Acceptance rates tend to decrease
with increasing J since we update all elements of β simultaneously, which is
necessary to achieve good mixing. Note that our implementation is therefore
not well suited for very heavily parameterized models using more than 100
basis functions. This will rarely be an issue in practical applications, however.

We did encounter some numerical problems in the fitting of very challeng-
ing functional forms: On the one hand, the sampling of variates from the
generalized inverse Gaussian distribution (the full conditional density of τ 2)
can occasionally fail for extreme combinations of parameter values. In this
case, we simply keep the previous iterates of the respective elements of τ 2.
If, in the case of RJ.NEG, this is not possible because the dimension of the
τ 2-proposal to be drawn is different from the dimension of the current τ 2,
we calculate the expected values of the full conditional distributions for the
problematic elements of τ 2 and use those as the updated values. The software
gives out a warning if sampling from the generalized inverse Gaussian fails.
In our experience, this ad-hoc fix works well in practice and the resulting
samples are indistinguishable from regularly obtained samples, because, if at
all, only ever a small fraction of elements in τ 2 fails to update in the regular
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fashion so that the convergence of the chain is not affected.
A second type of problem – which we were unable to fix – occurs (rarely) in
the sampling of β:
As the expressions above show, generating a new β-proposal requires the
inversion of the J × J matrix

(
σ−2

ε X ′X + ∆(d)′T (τ 2, l)−1∆(d)
)

. Occasionally,
despite its construction ensuring positive definiteness, this matrix will be nu-
merically not positive definite (or not even semi-definite). In this case the
Cholesky-root based matrix inversion we employ fails and we switch to an
inversion based on the singular value decomposition (SVD). When the under-
lying BLAS routine for SVD fails as well, the program crashes. This caused
the 12 aborted fits for RJ.NEG for m3(x) in Section 8.3. Using the numeri-
cally more stable QR- or LU-decompositions for matrix inversion is unfortu-
nately not effective in this case since we also require the matrix root V 1/2 to
generate the multivariate normal proposal vector βprop = µ+ V 1/2η, where
η ∼ N (0, 1) . This matrix root can be obtained, however, from the Cholesky
or the SVD of V −1.

7.5.3. Alternative proposals for the birth and death moves

We also experimented with a more complex proposal scheme for the birth
and death moves. Specifically, for the birth step we select the interval
b? ∈ {1, . . . , B− 1} \ {b : lb = 1} with probability

p(b) ∝ l2
b

Var
(
(∆(d)β)sb−1,...,sb−1

)
∑sb−1

k=sb−1
|(∆(d)β)k|

,

placing a higher proposal density on selecting long intervals with a large
variation coefficient of the increments of the random walk. This increases the
chance of splitting intervals in which both the proportion of small changes in
β and the variability in the entries of (∆(d)β) are large. Intervals with those
properties are not homogeneous and can potentially benefit from at least
one additional changepoint separating the small changes, which may war-
rant stronger regularization, from the larger ones responsible for the larger
variation which potentially reflect jumps or curvature changes in the function
to be fitted. The location of the new changepoint s?b? is then drawn uniformly
from
{sb? + 1, . . . , sb?+1 − 1}.
In the death step, we select the changepoint sb? ; b? ∈ {1, . . . , B − 1} to be
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removed with probability

p(b) ∝
1

lb + lb+1

∣∣∣∣∣∣∑
sb−1
k=sb−1

(∆(d)β)k

lb
−

∑
sb+1−1
k=sb

(∆(d)β)k

lb+1

∣∣∣∣∣∣ .

This increases the chance of removing a changepoint sb with short adjacent
intervals and small difference between the neighboring local means of ∆(d)β.
The fitted functions based on these proposals and a uniform prior for the
number of knots B were practically identical to fitted functions for the simpler
algorithm with a truncated Poisson prior for B. We did not observe any im-
provement in the sense of a more parsimonious representation of the variance
function of the random walk and acceptance probabilities for the dimension
changing moves were unreasonably low (0.1− 0.2) in most cases.
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8. Simulation results

This chapter presents the results of a simulation study we conducted to eval-
uate the performance of our methods. We compared the performance of our
approach to the performance of the spatially adaptive Bayesian P-Splines sug-
gested by Baladandayuthapani et al. (2005) and the frequentist equivalent of
their model described in Krivobokova et al. (2008) and implemented in the
R (R Development Core Team, 2010) package AdaptFit (Krivobokova, 2007).
In the following, these approaches will be referred to as BMC and Adapt-
Fit, respectively. For both algorithms we used the published hyperparame-
ter settings, number of knots etc. Both BMC and AdaptFit are based on a
representation of the logarithm of the variance function log(τ2(x)) as a sec-
ond P-spline. We additionally compare our approaches to Bayesian adaptive
regression splines (Dimatteo et al., 2001) (R implementation by Wallstrom
(2006)), which is a fully Bayesian method that employs a reversible jump type
algorithm to sample from an approximate marginal posterior distribution of
the possible sets of knots, followed by sampling from the full conditional of
the spline coefficients. We use these methods for benchmarking since their
performances are reportedly superior – or at least equivalent – to those of the
competing wavelet approach of Donoho and Johnstone (1994), to the knot-
selection based approach by Denison et al. (1998) and the approach based
on a heteroscedastic heavy-tailed random walk priors for ∆(d)β by Lang and
Brezger (2004). We also compared the performance of our approach to the
performance of the latter. Average MSEs were consistently larger by an order
of magnitude for the latter and we omit a detailed analysis for these results
in the following. In order to quantify the relative merits of the adaptive ap-
proaches, we also calculated the average MSE (AMSE) for non-adaptive fits
with spm (R-package SemiPar, Wand, Coull, French, Ganguli, Kammann, Stau-
denmayer, and Zanobetti (2005)), which estimates the smoothing parameter of
a (generalized) additive model via REML. This is the empirical Bayes equiv-
alent of a fully Bayesian P-spline. Computation times for the fully Bayesian
methods were obtained on a Pentium P4 (2.8 GHz, 1 GB RAM) for hyperprior
settings resulting in models with similar model complexity.

We consider four widely used benchmarking functions that, together, repre-
sent a cross section of challenging functional forms encountered in real-world
data. We generated 100 datasets for every function and obtained the fits of
the considered methods. Pointwise coverage values (calculated for a nominal
level of 90%) should therefore be treated with caution, since the number of
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simulation replications is not really large enough for reliable estimation. The
specifications of hyperparameters and in particular the number of basis func-
tions employed for each of the functions were chosen in concordance with
specifications considered in the cited previous simulation studies (e.g. Bal-
adandayuthapani et al., 2005; Krivobokova et al., 2008). Section 8.7.2 contains
a discussion on the use of DIC to determine suitable values for hyperparam-
eters B and smean, smax which were used in the simulation study.

Graphical panels showing boxplots of log10(
√

MSE) as well as average
pointwise bias and pointwise coverage (nominal level: 0.9) for the Gaussian
responses can be found in Figs. 8.1 to 8.3. The discrepancies between our re-
sults for BMC in section 8.1 and published results are due to a minor glitch
in the simulation code used in that work (Baladandayuthapani, 2008).
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Figure 8.1.: Boxplots of log10(
√

MSE) for the four benchmark functions. (100 data
sets)
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Figure 8.2.: Pointwise coverage (nominal level 90% denoted by grey line) for the four
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Figure 8.3.: Pointwise observed average bias for the four benchmark functions. (clock-
wise from topleft: FM1, FM2, Heavisine, Blocks; 100 data sets)

146



8.1. Oscillating function: FM1

As an example for a function with smoothly varying curvature, we used the
doppler-like function

m1(x) =
√

x(1− x) sin
18π

8x + 1

with n = 400 observations and σ2
ε = 0.04 (SNR ≈ 2.1) in accordance with

the set-up in Baladandayuthapani et al. (2005) and Krivobokova et al. (2008).
Results are based on cubic P-splines (J = 90; d = 2) with B = 5 for NEG,
B = 10 for FlexNEG and smean = 5, smax = 40 for RJNEG. The mean posterior
median of B over the 100 simulations for RJNEG is 5.
Although differences in MSE between the two top competitors FlexNEG (aver-
age MSE (AMSE): 0.0034) and AdaptFit (AMSE: 0.0035) are negligible (Fig. 8.1),
FlexNEG has a better coverage (Fig. 8.2) and less bias (Fig. 8.3) in the diffi-
cult region of the third to sixth oscillations from the left. We were unable to
reproduce the results in Baladandayuthapani et al. (2005) which report an
AMSE of 0.00028. This is due to a mistake in their simulation design (Bal-
adandayuthapani, 2008), our results give an AMSE of 0.0044 for BMC and an
AMSE of 0.00542 for BARS. NEG achieves an AMSE of 0.00385 and RJ.NEG
0.00420. AMSE for nonadaptive fits with spm is 0.00659. Average coverage for
FlexNEG is slightly conservative (.930), the average coverages of the other
methods except BARS are between .895 and .905, while BARS is markedly
anti-conservative (0.762). It takes about 60 sec. to generate 5000 iterations of
the chain for NEG, 100 sec. for Flex and RJ.NEG, and about 190 sec. for BARS
and BMC.
It should be noted that, in the case of FlexNEG, convergence of bz for this
function can be fairly slow if the chain is started with smallish (< 10) values
of bz. For most datasets, there seem to be multiple modes corresponding to
different values of bz and the chain has to be long enough (> 30000 iterations,
in one case) to include visits to all of them. Differences between the function
estimates from the basins of attraction of the various modes are negligible,
however.

8.2. Constant to oscillating function: FM2

An even greater smooth variation in curvature properties is evident in the
function

m2(x) = e−400(x−0.6)2
+

5
3

e−500(x−0.75)2
+2 e−500(x−0.9)2

.
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We use datasets with n = 1000 observations and σ2
ε = 0.25 (SNR ≈ 1.2) gen-

erated in accordance with the set-up in Baladandayuthapani et al. (2005) and
Krivobokova et al. (2008). Results are based on cubic P-splines (J = 40; d = 2)
with B = 2 for NEG, B = 16 for FlexNEG and smean = 2, smax = 10 for RJNEG.
Mean posterior median B for RJNEG is 3.
The NEG-based methods show slightly stronger regularization and, there-
fore, smaller average bias for the region x < 0.4 where the function is constant
(Fig. 8.3). We assume this is due to the larger shrinkage of the strongly peaked
NEG-prior. AMSEs for RJNEG and AdaptFit are about the same (0.0049)
and slightly larger than those for BARS (0.0046), FlexNEG (0.0045) and NEG
0.0043 (Fig. 8.1). AMSE for nonadaptive fits with spm is 0.0066. Average cov-
erage for FlexNEG (.94), RJNEG(.93) and NEG (.91) is conservative and anti-
conservative for BARS .86 (Fig. 8.2). The smaller MSE of the least flexible
method – NEG – in this setting can be explained by the shape of the target
function: One changepoint located exactly in the middle of the range of the
data is obviously close to the optimal choice and the additional flexibility al-
lowed for by the competing methods seems to introduce some detrimental
“noise” into the other fits. It takes about 31 sec. for NEG, 67 sec. for Flex and
RJ.NEG, about 90 sec. for BMC and about 420 sec. for BARS to generate 5000
iterations of the chain.

8.3. Step function: Blocks

As an example for a very un-smooth function with many discontinuities, we
consider the blocks function as specified in Donoho and Johnstone (1994) with
n = 2048 observations and σ2

ε = 1 (SNR ≈ 3.7). The blocks function is given
as

m3(x) =
11

∑
i=1
hi (1 + sign(x− ti)) ,

h = (4,−5, 3,−4, 5,−4.2, 2.1, 4.3,−3.1, 2.1,−4.2)′,

t = (.1, .13, .15, .23, .25, .40, .44, .65, .76, .78, .81)′.

Results are based on cubic P-splines (J = 300; d = 1) with B = 150 for NEG,
B = 45 for FlexNEG and smean = 50, smax = 100 for RJNEG. Mean posterior
median B for RJNEG is 43.
As might be expected, both AdaptFit and BMC, which attempt to model a

smooth variance function do not perform as well in this situation as the NEG
models which use a more flexible piecewise constant representation of the
variance function. This can also be seen from the bias plot (Fig. 8.3): Although
bias is similarly large at the edges of the respective plateaus for all methods
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Figure 8.4.: Mean estimates for the blocks function for the discontinuity at x = 0.65

– which is due to the inappropriate assumption of a continuous f (x) com-
mon to all the models we consider – the NEG-based fits have smaller bias
for the plateau regions, because their underlying variance functions return
more quickly to much smaller values implying strong regularization and less
wiggliness of the fitted function. This can also be seen from the coverage
plot (Fig. 8.2): At the discontinuities, FlexNEG’s coverage returns above the
nominal level more quickly. Fig. 8.4 shows the mean over the 100 estimated
functions at the discontinuity at x = 0.65 for the various methods. Both BMC
and AdaptFit and especially BARS result in a flatter curve that therefore does
not reproduce the infinite slope at the jump very well. The basic NEG model
shows a steeper slope at the step but overcompensates by adding undesirable
variability in the areas where the function should be constant. FlexNEG and
RJNEG provide a compromise where we observe a steep slope in combination
with very flat curves in the constant part of the function.
AMSE for NEG, FlexNEG and RJNEG is similar (0.0938, 0.0945, and 0.0970,
respectively). AMSE for AdaptFit is 0.130 and 0.139 for BMC (Fig. 8.1). AMSE
for the non-adaptive fits is 0.1786. Note that BARS (AMSE: 0.2336) does not
return a fit for 38 of the 100 datasets. Its comparatively large AMSE is prob-
ably partly caused by a hyperparameter setting which limits the number of
knots to a maximum of 60, which constrains the possible flexibility of the
fitted function considerably. Increasing this parameter, however, leads to an
even larger number of abortive function calls. RJ.NEG did not return a fit
for 12 of the 100 datasets due to numerical difficulties. Average coverage for
BARS is severely anti-conservative (.71), slightly anti-conservative for Adapt-
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Fit (.87) and conservative (.92− .94) for the NEG-based methods (Fig. 8.2). It
takes about 630 sec. for NEG, 810 sec. for FlexNEG, 830 sec. for RJ.NEG, about
1600 sec. for BMC and about 1200 sec. for BARS to generate 5000 iterations
of the chain. A call to AdaptFit, which usually converges in less than 20 sec.
for the other settings, typically takes about 420 sec. for this setting due to the
complexity of the variance function that has to be estimated.

8.4. Smooth function with discontinuities:
Heavisine

A second function with discontinuities but non-constant function values be-
tween the jumps is given by the heavisine function as specified in
Donoho and Johnstone (1994) with n = 2048 observations and σ2

ε = 1 (SNR
≈ 8.8). The heavisine function is given as

m4(x) = 4 sin(4πx)− sign(x− 0.3)− sign(0.72− x).

Results are based on cubic P-splines (J = 100; d = 2) with B = 10 for NEG,
B = 30 for FlexNEG and smean = 60, smax = 95 for RJNEG. Mean posterior
median B for RJNEG is 42. As for the blocks function, the NEG models are
better able to deal with the discontinuities in this function because of the
heavy tails of NEG prior and the ability of the piecewise constant variance
function to model short spikes in variability. While the maximal bias val-
ues at the discontinuities themselves are practically identical for all methods,
FlexNEG and RJNEG have smaller bias (Fig. 8.3) and better coverage (Fig.
8.2) in the proximity of the discontinuities. Fig. 8.5 shows the square root
of estimated variance functions for an exemplary dataset. FlexNEG, RJNEG
and, to a lesser extent due to its less flexible parametrization, NEG all show
pronounced spikes in variance around the two discontinuities of the function,
while the variance function estimated by AdaptFit does not capture the true
structure of the variability.
AMSEs for RJNEG (0.0261) and FlexNEG (0.0269) are similar, followed by
BARS (0.0302), NEG (0.0328), and BMC (0.0330). AdaptFit (0.369) is outper-
formed by the non-adaptive spm (0.0366) in this case. Note the large variability
in the MSEs for BARS, which achieves both the best and the worst fits depend-
ing on the dataset (Fig. 8.1). Average coverage for both FlexNEG and RJ.NEG
is .90, .88 for NEG, .87 for AdaptFit and severely anti-conservative (0.75) for
BARS (Fig. 8.2). Generating 5000 iterations of the chain takes about 95 sec. for
NEG, 145 sec. for FlexNEG and RJ.NEG, about 185 sec. for BMC and about
1000 sec. for BARS.
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Exemplary Variance Function Estimates for Heavisine
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Figure 8.5.: Square root of exemplary estimated variance functions for the heavisine
function. Note the much larger scale for AdaptFit given on the right side of the plot.
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8.5. Simulations for non-Gaussian responses

We evaluate the performance of FlexNEG for both binary Binomial and Pois-
son responses with logit and log link functions, respectively. We use

log10

(√
MSE

)
= log10

(√
1
n ∑( f̂ (x)− f (x))2

)
on the scale of the linear pre-

dictor as performance measure to evaluate the quality of the achieved fits.
For the first setting, we generate 100 Poisson data sets (n = 1000) with

means exp(m2(x)), where m2(·) is the same as in section 8.2 and compare
the performance of FlexNEG to both AdaptFit and BARS. We use cubic P-
splines with a first order difference penalty on J = 40 basis functions with
B = 10. Chains are run for 8000 iterations after a burn-in of 2000 iterations.
AdaptFit is also run with 40 basis functions, but only 5 basis functions for
the variance function since the use of 10 basis functions would have caused
non-convergence for a large majority of the simulated datasets. We use the
default parameters for BARS. The upper panel of Fig. 8.6 displays exemplary
fits and data. The distribution of observed log10(

√
MSE) on the scale of the

linear predictor for this setting is displayed in the left panel of Fig. 8.7. Dif-
ferences in log10(

√
MSE) are fairly small, average log10(

√
MSE) based on the

available cases is -1.025 for FlexNEG, -0.959 for AdaptFit and -0.988 or BARS.
Note, however, that BARS does not return a fit for 40 of the 100 datasets and
that AdaptFit does not converge for 14 datasets, while FlexNEG works for
all 100 datasets. Average log10(

√
MSE) for the non-adaptive fits is -0.907 in

this setting. Especially for FlexNEG, local adaptivity produces an improved
fit for the first part of the function by removing the spurious oscillations of the
non-adaptive fit. Average coverage for both FlexNEG and BARS is reasonably
close to the nominal level of 0.9 (FlexNEG: 0.94, BARS: 0.87) and markedly
anti-conservative for AdaptFit (0.79). Running a chain with 5000 iterations
takes about 320 sec. with BARS and 140 sec. with FlexNEG. A call to Adapt-
Fit that converges usually takes about 30 sec. , while non-convergent calls can
take up to 90 sec.

We also generated 100 Poisson data sets (n = 1200) with means exp(m3(x))
for 0 < x < .5, where the blocks function m3(·) is the same as in section
8.3 and compare the performance of FlexNEG to BARS. A comparison with
AdaptFit is not possible in this case because AdaptFit fails to converge 9 out
of 10 times for this setting. Results for FlexNEG are based on cubic P-splines
with a first order difference penalty on J = 90 basis functions with B = 20.
Chains are run for 10000 iterations after a burn-in of 2000 iterations. The
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Figure 8.6.: Exemplary fits for non-Gaussian responses. Data are indicated by grey
dots.
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√

MSE) (on the scale of the linear predictor) for non-
Gaussian responses. (100 data sets, boxplots display all available MSEs)

middle panel of Fig. 8.6 displays exemplary fits, the middle panel of Fig. 8.7
shows observed log10(

√
MSE) on the scale of the linear predictor. Average

log10(
√

MSE) for BARS is -0.314 and -0.179 for FlexNEG. However, BARS
does not return a fit for 24 of the 100 datasets while FlexNEG only fails to
fit 7. These 7 failures are all caused by numerical problems in the automatic
method to find suitable starting values for β. The locally adaptive methods are
better at reproducing the small plateaus and valleys between x = .1 and x = .3
than the non-adaptive method (spm) which achieved an average log10(

√
MSE)

of 0.269. Average coverage is markedly anti-conservative for both FlexNEG
(0.79) and BARS (0.81) in this setting. Running a chain with 5000 iterations
takes about 620 sec. with BARS and 300 sec. with FlexNEG.

Finally, we also generated 100 data sets (n = 2000) of binary Binomial re-

sponses with µ(x) =
(

logit−1(x + m2(x))
)3

, where m2(·) is the same as in
section 8.2. We chose this shape for µ(x) in order to increase the signal in
the data in this difficult setting compared to µ(x) = logit−1(m2(x)), where
µ(x) mostly varies between .5 and .7. We only compared the performance
of FlexNEG to that of AdaptFit since there is no implementation of BARS
for Binomial responses. Results for FlexNEG are based on cubic P-splines
with a first order difference penalty on J = 40 basis functions with B = 10.
AdaptFit is also run with 40 basis functions, but only 8 basis functions for
the variance function since the use of 10 basis functions would have caused
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non-convergence for an even larger portion of the simulated datasets. The
lower panel of Fig. 8.6 displays exemplary fits and data. The distribution of
observed log10(

√
MSE) on the scale of the linear predictor is depicted in the

lower panel of Fig. 8.7. The difference in average log10(
√

MSE) (FlexNEG:
-0.592, AdaptFit: -0.611) is fairly small for the available cases. Note, however,
that AdaptFit failed to fit 49 of the 100 datasets while FlexNEG only failed in 3
cases. These 3 problematic cases were all caused by a failure of the automatic
method to find suitable starting values for β. Also note the large benefit as-
sociated with using local adaptivity. Average log10(

√
MSE) for non-adaptive

fits with spm is -0.442 in this setting. Average coverage for a nominal level
of 0.9 is anti-conservative for FlexNEG (0.80) and even more so for Adapt-
Fit (0.69). Running a chain with 5000 iterations takes about 240 sec. with
FlexNEG. A call to AdaptFit that converges usually takes about 80 sec. , while
non-convergent calls can take up to 200 sec.

8.6. Quantitative analysis of simulation
performances

Following the suggestions in Hothorn, Leisch, Zeileis, and Hornik (2005), we
quantify the observed differences in log10(

√
MSE) for Gaussian response via

a linear mixed effects model (R-package lme4 (Bates and Maechler, 2009)). We
include random effects for the simulated samples to account for their varying
“difficulty” as well as random effects for the interaction between benchmark
functions and algorithms. Fig. 8.8 shows estimated (partial) Tukey contrasts
for the main effects of the algorithms with 95% confidence intervals corrected
for multiple comparisons (single-step correction as implemented in R-package
multcomp (Hothorn, Bretz, Westfall, and Heiberger, 2008)). Differences in per-
formance between the 3 NEG-based approaches are not significant, with some
evidence for a slight advantage for FlexNEG. FlexNEG performs significantly
better than AdaptFit. AdaptFit, BARS and BMC are outperformed by all our
methods, BMC significantly so. The very large intervals for the comparisons
with BARS are due to the reduced sample sizes for BARS caused by its fre-
quent crashing and by its comparatively large variability in MSE, especially
in settings FM2 and Heavisine. Note that the estimated differences are quite
relevant: an average difference in log10(

√
MSE) of −0.05 corresponds to a

decrease in AMSE by about 20%.
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Figure 8.8.: 95% family-wise confidence intervals and point estimates for differences
in log10(

√
MSE) between algorithms

8.7. Robustness

8.7.1. Signal-to-noise ratio

We investigated the change in MSE for various signal-to-noise ratios (SNR)
for the four benchmark functions (see sections 8.1 to 8.4) for FlexNEG and
compared it with the results of AdaptFit. Figure 8.9 shows that the change
in MSE is about the same for both methods, with slight differences that do
not yield a conclusive picture for small and medium SNR. With the possible
exception of the Blocks function, FlexNEG seems to improve more strongly
than AdaptFit for large SNR.

8.7.2. Number of changepoints

We investigated the change in MSE for varying specifications of B or
(smean, smax). Other parameters correspond to the settings given in sections
8.1 to 8.4. Figure 8.10 shows that RJNEG’s performance is mostly stable as
long as the number of admitted changepoints is large enough, while FlexNEG
and NEG can lose a little performance for both too small and too large B.
Note, however, that the performances of both NEG and FlexNEG still com-
pare favorably to those of the non-NEG methods we considered even for
sub-optimal, but reasonable values of B and that the increase in MSE is
relatively small in most cases. In order to see whether the best number of
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the (rounded) mean of posterior means of B for RJ.NEG. DIC is the (rounded) mean
DIC over the 50 datasets.

158



changepoints in real-world applications could be determined by the deviance
information criterion (DIC) (Spiegelhalter, Best, Carlin, and van der Linde,
2002) we computed DICs for the simulation runs. Model selection based on
DIC works well for all three methods and simulated datasets: As Fig. 8.10
indicates, the AMSE-optimal setting corresponds to the one with the lowest
average DIC whenever there is relevant sensitivity of the fits to the num-
ber of changepoints. DIC-based model selection works best for NEG, while
more or less complex models than the MSE-optimal models (albeit with very
similar MSEs) are selected some of the time for FlexNEG and RJ.NEG. The
relative increase in MSE for the models with sub-optimally DIC-selected hy-
perparameters compared to the MSE-optimal model on the same dataset was
typically between 2% and 10% (+0.0045 to +0.023 on log10(

√
MSE) scale).

We conclude that, while DIC may not always succeed at identifying the most
parsimonious model among the models with similar MSEs, it seems to select
useful and sensible hyperparameter values fairly reliably in the settings we
considered.
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9. Applications

9.1. Fractionation curves

We apply our method to exemplary data from “Specificity Assessment From
Fractionation Experiments” (SAFE) (Drobyshev, Machka, Horsch, Seltmann,
Liebscher, de Angelis, Beckers, and Journals, 2003) which are used for quality
control of cDNA microarray experiments. Specifically, SAFE is used to inves-
tigate the degree of undesirable cross-hybridization of specific probe strands,
e.g. how often cDNA sections pair with cDNA probes on the chip which have
a similar, but not exactly equal, base sequence. For SAFE, microarray chips
are repeatedly treated with formamide solutions of increasing concentration
and intensities are recorded after each washing. The series of resulting inten-
sities for each probe on the chip is called a fractionation curve. As the cohe-
sion between cross-hybridizing cDNA strands is weaker than between perfect
matches, they are washed away at lower concentrations. If cross-hybridization
occurs, there usually is a critical concentration in the lower range where a cer-
tain kind of cDNA sequence cross-hybridizing the probe sequence is abruptly
washed away and a drop in signal intensity occurs.

9.1.1. Results

Fits are based on P-splines of degree 0 with J = 20 basis functions and first or-
der difference penalty for both the NEG-based methods and the non-adaptive
fit with mgcv::gam (Wood, 2010a) we used for comparison. Note that the re-
sponse vector was standardized to have zero mean and unit variance to allow
fitting with the standard choices for the hyperprior parameters.

The left panel of Fig. 9.1 shows an example of a spot binding only the cor-
rect complementary cDNA. The location of the sharp decrease at about 65%
indicates that the binding energy between complementary strands was no
longer sufficient for cohesion at this concentration. The right panel shows an
example of a spot with cross-hybridization, where cross-hybridizing strands
are washed away at a concentration of about 15%. We use the deviance infor-
mation criterion (DIC) to choose B from 3, 5, and 10 and (smax, smean) from
(19, 10), (10, 5), and (5, 3) for NEG, FlexNEG and RJNEG, respectively. We
validated the use of DIC for model selection in this setting on simulated data
of similar structure and noise level, as described in Section 9.1.2. Generating
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5000 iterations of the chain takes about 17 sec. for NEG., 50 sec. for FlexNEG
and 57 sec. for RJ.NEG.

Fig.9.1 shows that, even without the explicit monotonicity constraints ap-
propriate for this data, both FlexNEG and RJNEG reproduce the piecewise
constant and decreasing structure that is expected fairly well. Note also that
despite ignoring the expected structure of a step function, the results also
give an indication of the number and the location of jumps in the estimated
function when looking at the estimated variance function for FlexNEG and
RJNEG. While the left panel clearly shows a single jump, there are two dis-
tinct jump points in the right panel. As a consequence, our approach would
also support inference about the location of the jump points that could be
extracted from the MCMC samples making it a valuable alternative to step-
function based approaches where this is typically difficult.

While the peaks in the variance function for both FlexNEG and RJNEG
correspond exactly to the observable changepoints in the data, the variance
function of NEG shows a somewhat surprising behavior (at least in the left
panel) due to the very low number of blocks in the DIC-optimal model. How-
ever, this can be explained when comparing the corresponding fit to the non-
adaptive one. For example, in the first interval containing the first third of the
data, both the non-adaptive fit and the NEG fit are very wiggly, correspond-
ing to a large value of the variance function. This seems to be caused by an
attempt to fit local outliers due to the low signal in this area. A similar behav-
ior is observed for the third interval, whereas the second interval, containing
the jump, is assigned a small variance to obtain a smooth fit due to the high
signal induced by the jump. In general, the non-adaptive fit exhibits exces-
sive wiggliness for low concentrations in the left panel and for intermediate
concentrations in the right panel which shows the improvement that can be
gained by an adaptive fit in this context.

9.1.2. Validating DIC as model selection criterion

We ran an additional simulation study on datasets similar in structure and
noise level to the fractionation curve data to validate the use of DIC for model
selection in the application. Specifically, we generated 50 datasets with n = 30
for a regularly spaced grid on 0.3 < x < 0.5 with y = m3(x) + ε; εi ∼
N (0, 0.2). Two exemplary datasets are plotted in Fig. 9.2. For all 50 datasets
we fit NEG and FlexNEG with B = 3, 5, 10 and RJNEG with (smax, smean)
from (19, 10), (10, 5), and (5, 3) as for the fractionation curve data and cal-
culated DIC. Model selection based on DIC works very well for RJ.NEG and
FlexNEG, selecting the MSE-optimal model 49 times and 50 times out of 50,
respectively. Since results for NEG did not improve noticeably between B = 3
and B = 5, model selection based on DIC selected the MSE-optimal model
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only 17 times out of 50 and selected the most parsimonious model – which
had the second best MSE – for 28 of the 33 remaining cases. This behavior
makes sense from a modeling point of view, as the relative increase in MSE
for the models with sub-optimally DIC-selected hyperparameters compared
to the MSE-optimal model was typically only between 5% and 16% (+0.011
to +0.032 on log10(

√
MSE) scale).

9.2. Neuron spike train data

We consider the performances of BARS, FlexNEG and non-adaptive fits done
with mgcv::gam for three peri-stimulus time histograms of neuronal spik-
ing events across time displayed in figure 9.4. The data are taken from the
e060817mix dataset available in the R-package STAR (Pouzat, 2008). Neuronal
spiking events are assumed to follow a Poisson process, so that the num-
bers of events in subsequent small time intervals form a sequence of Poisson-
distributed counts. In the experiment we consider here, the activity of 3 neu-
rons in the antennal lobe of cockroaches during spontaneous activity and
during an odor impulse occurring between 6.01s and 6.51s were recorded
for 20 replications of 15 seconds each and aggregated into 50 bins of 0.3s.
Neurophysiological prior knowledge implies that the rate of the underlying
Poisson process may vary fairly little most of the time, but possibly rapidly in
the short interval of the experimental stimulus, which suggests the use of lo-
cally adaptive methods for estimation of the intensity function. Fits are based
on cubic P-splines with J = 40 basis functions and second order difference
penalty for both FlexNEG and the non-adaptive fit with mgcv::gam we used
for comparison. We again employ the deviance information criterion (DIC) to
choose B from 3, 5, and 10 for FlexNEG. Differences between the FlexNEG
fits and their DICs were small, and the smallest DIC was obtained for B = 10
for all three datasets.

Fig. 9.4 shows that adaptive as well as non-adaptive methods fit the ex-
pected large spikes or drops between 6.01s and 6.51s well for all 3 neurons.
The fits for the data set in the left panel are very similar: BARS estimates the
smoothest function on both sides of the spike, while the FlexNEG fit is a little
more wiggly. FlexNEG as well as BARS avoid the likely spurious small oscil-
lations of the non-adaptive fit.
The data in the middle panel seems to be much more volatile, and the dif-
ferences between the three method are more pronounced. Note that BARS
reproduces all of the oscillations before the spike – the fit is very similar to
the overly ragged non-adaptive fit – and none of them after the spike, while
FlexNEG arguably shows more reasonable estimates of both the slower oscil-
lations on the left and the faster oscillations on the right of the spike.
For the data on the left, FlexNEG may undersmooth before the drop and
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Figure 9.4.: Three neuron spike train data sets (peri-stimulus time histograms) and
fitted functions.

seems to offer a compromise between the extremely wiggly fit estimated
by the non-adaptive method and the possibly oversmoothed fit produced by
BARS.

All three data sets show the benefits that can be obtained by locally adaptive
smoothing. Even for this kind of application which seems to have motivated
the development of BARS (Wallstrom, 2006), FlexNEG offers reasonable and
competitive fits that avoid the excessive wiggliness of the non-adaptive func-
tion estimates and still reproduce both large spikes and drops and smaller
features well.
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10. Conclusions

In this part, we showed how the normal-exponential-gamma prior hierar-
chy, combined with a flexible piecewise constant representation of the local
smoothing parameter, can be used for locally adaptive smoothing linear and
generalized linear models. We see the main strengths of this approach in

1. its ability to deal with both discontinuous changes in the complexity
of the fitted function and smoothly varying local complexity. We found
the adaptive NEG prior P-splines to be a good competitor to previous
approaches for smoothly varying variability and improved performance
for functions with discontinuities.

2. its fast convergence and, for FlexNEG and RJ.NEG, wide insensitivity
to starting values due to the satisfactory mixing provided by the block-
wise Gibbs samplers. Even for the very heavily parameterized Blocks
function (> 400 parameters) a burn-in period of about 5000 iterations
is sufficient, while, for example, a burn-in period of at least 50000 it-
erations is recommended (personal comm. V. Baladandayuthapani) for
the MH-based sampler by Baladandayuthapani et al. (2005). As a com-
parison of the computation times shows, the implementations of the
NEG-based methods are also very competitive in terms of speed to the
other fully Bayesian methods we considered.

3. its automatic applicability, since results for FlexNEG and RJNEG are
fairly robust against the user-specified hyperparameters which limit the
maximal complexity of the implied variance function for the random
walk increments of the spline coefficients.

Although we generally found robustness of FlexNEG and RJNEG with re-
spect to hyperparameter settings, selecting a DIC-optimal number of change-
points often allowed to find competitive solutions even with the basic NEG
prior with fixed number and location of changepoints. Still, FlexNEG and
RJNEG have the advantage that no multiple runs are required to find the
optimal number of changepoints and that they are rather insensitive to start-
ing values. They also allow to carry forward the uncertainty introduced by
estimating the number and location of the changepoints.

Further work could embed our approach in a Bayesian backfitting algo-
rithm to enable locally adaptive function estimation in the more general frame-
work of structured additive regression models where only some effects re-
quire local adaptivity. A further direction of future investigations could be
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the consideration of bivariate smoothing with adaptive penalized splines as
considered for example in Krivobokova et al. (2008) and an extension for het-
eroscedastic errors as in Crainiceanu et al. (2007). The modularity of MCMC
will be of particular value when considering such extensions.
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