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Abstract

Benchmark experiments nowadays are the method of choice to evaluate learn-
ing algorithms in most research fields with applications related to statistical
learning. Benchmark experiments are an empirical tool to analyze statistical
learning algorithms on one or more data sets: to compare a set of algorithms, to
find the best hyperparameters for an algorithm, or to make a sensitivity analy-
sis of an algorithm. In the main part, this dissertation focus on the comparison
of candidate algorithms and introduces a comprehensive toolbox for analyzing
such benchmark experiments. A systematic approach is introduced – from ex-
ploratory analyses with specialized visualizations (static and interactive) via
formal investigations and their interpretation as preference relations through
to a consensus order of the algorithms, based on one or more performance mea-
sures and data sets. The performance of learning algorithms is determined by
data set characteristics, this is common knowledge. Not exactly known is the
concrete relationship between characteristics and algorithms. A formal frame-
work on top of benchmark experiments is presented for investigation on this
relationship. Furthermore, benchmark experiments are commonly treated as
fixed-sample experiments, but their nature is sequential. First thoughts on a
sequential framework are presented and its advantages are discussed. Finally,
this main part of the dissertation is concluded with a discussion on future
research topics in the field of benchmark experiments.

The second part of the dissertation is concerned with archetypal analysis.
Archetypal analysis has the aim to represent observations in a data set as
convex combinations of a few extremal points. This is used as an analysis
approach for benchmark experiments – the identification and interpretation of
the extreme performances of candidate algorithms. In turn, benchmark ex-
periments are used to analyze the general framework for archetypal analyses
worked out in this second part of the dissertation. Using its generalizability,
the weighted and robust archetypal problems are introduced and solved; and
in the outlook a generalization towards prototypes is discussed.

The two freely available R packages – benchmark and archetypes – make the
introduced methods generally applicable.





Zusammenfassung

Benchmark Experimente können heutzutage als das Standardwerkzeug zur
Evaluierung von Lernalgorithmen bezeichnet werden; sie werden in nahezu
allen Forschungsbereichen mit Anwendungen im Statistischen Lernen ange-
wandt. Dieses empirische Werkzeug ermöglicht unterschiedlichste Unter-
suchungen von Lernalgorithmen auf einem oder mehreren Datensätzen: der
Vergleich einer Menge von Lernalgorithmen, das Finden der besten Hyper-
parameter für einen Algorithmus, oder eine Sensitivitätsanalyse eines Algo-
rithmus. Fokus des Hauptteils dieser Dissertation liegt auf dem Vergleich
mehreren Algorithmen, und es wird ein umfassender Werkzeugkasten zur Anal-
yse vorgestellt. Die Arbeit führt eine systematische Vorgehensweise ein – aus-
gehend von explorativen Untersuchungen mit spezialisierten Visualisierungen
(statisch und interaktiv), über formale Auswertungen und deren Interpretation
als Präferenzrelation, bis hin zu einer Konsensusordnung der Lernalgorith-
men basierend auf einem oder mehreren Performanzmassen und Datensätzen.
Die Performanz von Algorithmen wird von den Eigenschaften eines Daten-
satzes bestimmt, das ist weitgehend bekannt. Nicht genau bekannt ist jedoch
der konkrete Zusammenhang zwischen den Datensatzeigenschaften und den
Algorithmen. Aufbauend auf Benchmark Experimenten wird eine Methodik
zur Untersuchung solcher Zusammenhänge vorgestellt. Des Weiteren werden
Benchmark Experimente als Experimente mit fixierter Anzahl von Replikatio-
nen gesehen – Ihre Natur ist jedoch sequentiell. Es werden erste Gedanken zu
einer sequentiellen Ausführung vorgestellt und die möglichen Vorteile disku-
tiert. Abschluss des Hauptteils dieser Dissertation bildet eine Diskussion über
mögliche zukünftige Forschungsthemen im Bereich von Benchmark Experi-
menten.

Der zweite Teil der Dissertation beschäftigt sich mit der Archetypenanalyse.
Archetypenanalyse repräsentiert Beobachtungen eines Datensatzes als Kon-
vexkombinationen einiger weniger Extrempunkte. Dieses Konzept wird als eine
mögliche Analyse von Benchmark Experimenten vorgestellt – das Finden und
das Interpretieren extremen Performanzen der Lernalgorithmen. Im Gegenzug
werden Benchmark Experimente verwendet, um die flexible Methodik zu unter-



suchen, welche in diesem Teil der Dissertation herausgearbeitet wird. Die Flex-
ibilität erlaubt das einfache Erweitern des Archetypenproblems. Die konkreten
Erweiterungen und Lösungen von gewichteten und robusten Archetypen wer-
den präsentiert; und im Ausblick wird eine Verallgemeinerung in Richtung
Prototypen diskutiert.

Die beiden frei verfügbaren R Pakete – benchmark und archetypes – stellen die
vorgestellten Methoden dieser Dissertation allgemein zur Verfügung.
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This dissertation is concerned with benchmark experiments as a tool for ana-
lyzing statistical learning algorithms. In general, benchmarking is the process
of comparing individual objects which compete in a specific field of activity.
Such a comparison is based on numbers computed by performance measures.
The benchmark experiment can be then seen as the process where the perfor-
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Scope of this work

mances of the objects are assessed. Nowadays benchmarking and benchmark
experiments (the terms are often used interchangeably) are widely used in
many diverse areas. Popular areas are for example business management (see
Camp, 1993, as one of the first publications on benchmarking in this field) and
computer science (Jain, 1991, is the classical book on measuring and comparing
computer performances). In this dissertation, the objects are statistical learn-
ing algorithms, the fields of activity are learning tasks (represented by data sets
or data generating processes) and the process is an empirical experiment.

Statistical learning algorithms are algorithms which solve a defined learning
task, i.e., which learn structures of interest of a given data set. Learning tasks
can be roughly categorized as either supervised or unsupervised (Hastie et al.,
2009). In supervised learning, the goal is to predict a response based on an a
set of input variables; in unsupervised learning, the goal is to describe associa-
tions of input variables. Typical supervised learning tasks are classification and
regression; unsupervised learning tasks are for example cluster and archetypal
analysis. Statistics and machine learning provide a wide variety of algorithms
to solve such learning tasks, but in most cases it is not possible to describe
the general behavior of an algorithm for a given learning task analytically.
Benchmark experiments provide an empirical alternative. Their principal goal
is the assessment of an algorithm’s quality with respect to certain performance
measures under specific conditions. Hothorn et al. (2005) define a theoreti-
cal framework for benchmark experiments; this work uses their formalism and
framework as fundament and extends it to a comprehensive toolbox for bench-
mark experiments.

Basis of each learning task is a data set L = {z1, . . . , zN} with N observations
drawn from a (known or unknown) data generating process DGP , written as
L ∼ DGP . Candidate algorithm a is a potential problem solver; and a( · | L)
is the fitted model based on the data set L. The function p(a,L) assesses the
performance of interest of the fitted model a( · | L), that is the performance
of algorithm a based on data set L. Common performance measures are mis-
classification error in classification tasks or mean squared error in regression
tasks; but computation time or memory consumption can be of interest as
well. Furthermore, specifically designed performance measure can used to in-
vestigate individual characteristics of an algorithm (like estimated parameters
or number of iterations until convergence). Since L is randomly drawn from
DGP , p(a,L) is a random variable as well and its variability is induced by the
variability of the data generating process. In order to estimate the variability,
B independent and identically distributed data sets are drawn from DGP and
B performances p(a,Lb) are measured (b = 1, . . . , B). This general framework

xvi



allows to investigate different aspects of an algorithm. Depending on which set-
tings of the benchmark experiment are seen as the variables of change (i.e., the
independent variables) different problems are investigated. The fully specified
benchmark experiment can be written as

p(aθ1 ,L
b) with Lb ∼ DGPθ2 ,

with θ1 the hyperparameters (or tuning parameters) of algorithm a, and θ2

the parameters of the data generating process DGP . Possible problems are
then:

Hyperparameter tuning: Investigating a set of hyperparameters θ1 for an al-
gorithm a on a fixed data generating process DGP .

Sensitivity analysis: Investigating algorithm a when the structure of a data
generating process θ2 is changed.

Algorithm comparison: Comparing a set of candidate algorithms ak (k =
1, . . . , K) on (1) a single data generating process or (2) a set of data
generating processes.

This classification conforms to the taxonomy of statistical questions given by
Dietterich (1998, cf. Figure 1). For all problems, the inspection of more than
one performance measure pj(aθ1 ,L

b) (j = 1, . . . , J) allows multicriteria (or
multiobjective) investigations. Of course, several problems can be treated in
one structured benchmark experiment. Note that the problems of hyperpa-
rameter tuning and algorithm comparison are very similar. Both compare a
set of models – in the first case the models are fitted by one algorithm with
different hyperparameters, while in the second case the models are fitted by
a set of algorithms (with given hyperparameters). Furthermore, the individ-
ual fitting procedures can contain hyperparameter tuning to find the optimal
hyperparameters for the given data set in an algorithm comparison problem.
However, in all problem cases a huge amount of benchmark data is generated
which has to be analyzed in a statistically correct way.

In this dissertation we focus on the analysis of benchmark experiments used
for algorithm comparisons. However, most of the introduced methods are di-
rectly usable for hyperparameter tuning as well. Benchmark experiments for
sensitivity analyses are used to analyze an unsupervised learning algorithm,
archetypal analysis, which in turn is then used to analyze benchmark experi-
ments. Archetypal analysis (first addressed by Cutler and Breiman, 1994) has
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Scope of this work

the aim to represent observations in a multivariate data set as convex combina-
tions of a few, not necessarily observed, extremal points (archetypes). We use
this to identify the extreme performances of candidate algorithms. Also, the
analysis of the archetypal algorithm serves as an example for a performance
measure specifically designed to investigate the algorithm’s robustness.

In detail, this dissertation consists of two parts – Part I discusses benchmark
experiments with focus on algorithm comparison and Part II discusses archety-
pal analysis. The individual parts are organized as follows (the chart on page xv
illustrates the content).

In Part I, Chapter 1 defines the formal benchmark experiment framework and
introduces needed methodology like resampling methods. Chapter 2 focuses
on the analysis of single data set-based benchmark experiments. Note that the
correct term would be single data generating process-based benchmark exper-
iments. However, in most (real-world) benchmark experiments the data gen-
erating process DGP is unknown and a data set L determines all information
about it; therefore we use these two terms interchangeable if not explicitly spec-
ified to simplify readability. In this chapter we present a systematic approach
from exploratory analyses with specialized visualizations via formal investiga-
tions and their interpretation as preference relations through to a consensus
order of the candidate algorithms based on a set of performance measures.
To simplify exploratory analyses of a single data-set based benchmark exper-
iments, Chapter 3 introduces an interactive analysis approach. In Chapter 4
we extend the single data set-based approach to a joint analysis for a collection
of data sets, a so called problem domain. Specialized visualization methods
allow for easy exploration of the huge amount of benchmark data. We use
archetypal analysis (see Part II) to characterize the archetypal performances
of candidate algorithms within a problem domain. And, analogous to single
data sets, we introduce an approach to analyze a domain based on formal in-
ference procedures. This allows, among other things, to compute a statistically
correct order relation of the candidate algorithms for a problem domain. It is
well known (and empirically shown in the exemplar benchmark experiments)
that characteristics of data sets have an influence on the performance of algo-
rithms. In Chapter 5 we develop a formal framework to determine the influence
of data set characteristics on the performance of learning algorithms. Up to
here, we treated benchmark experiments as fixed-sample experiments (B, the
number of drawn data sets, is “somehow” defined). In Chapter 6 we show that
the nature of benchmark experiments is actually sequential. We provide first
thoughts on the advantages of taking this into account – namely, controlling
B – and discuss monitoring and decision-making aspects using sequential and
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adaptive designs. Part I of this work is concluded with Chapter 7 where we
summarize the main findings. We close with a discussion of future work in the
field of benchmark experiments.

In Part II, Chapter 8 introduces the concept of archetypal analysis; it defines
the concrete problem, lays out the theoretical foundations and shows the clas-
sical algorithm. The chapter defines a methodological (and computational)
framework which allows an easy generalization of the archetypal problem. In
Chapter 9 we take advantage of this framework and define a weighted and
a robust algorithm. Archetypal analysis approximates the convex hull of a
data set, therefore outliers have a great influence on the solution. We adapt
the original archetypes estimator to be a robust estimator and present the
corresponding fitting algorithm. To investigate the algorithm’s robustness we
define specialized performance measures and perform a benchmark experiment
for sensitivity analysis. This part of the dissertation is concluded with an out-
look on the generalization of archetypes in Chapter 10.

Finally, Appendix A provides the computational details of this dissertation.
Two R packages (R Development Core Team, 2010) make the introduced
methodology applicable. Section A.1 provides details on the benchmark pack-
age; Section A.2 provides details on the archetypes package. Information for
replicating the analyses of this dissertation are given in this chapter as well.

Parts of this dissertation are based on published manuscripts, manuscripts
which are currently under review, and freely available software packages:

Part I:

Chapter 2: Eugster and Leisch (2008). Bench plot and mixed effects
models: first steps toward a comprehensive benchmark
analysis toolbox. Compstat 2008—Proceedings in Compu-
tational Statistics, pages 299–306, 2008.
Eugster, Hothorn, and Leisch (2010a). Exploratory and
inferential analysis of benchmark experiments. Under re-
view, 2010.

Chapter 3: Eugster and Leisch (2010). Exploratory analysis of bench-
mark experiments – an interactive approach. Accepted for
publication in Computational Statistics, 2010.

Chapter 4: Eugster, Hothorn, and Leisch (2010b). Domain-based
benchmark experiments: exploratory and inferential anal-
ysis. Under review, 2010.
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Chapter 5: Eugster, Leisch, and Strobl (2010c). (Psycho-)analysis of
benchmark experiments – a formal framework for inves-
tigating the relationship between data sets and learning
algorithms. Under review, 2010.

Part II:

Chapter 8: Eugster and Leisch (2009). From Spider-Man to Hero –
archetypal analysis in R. Journal of Statistical Software,
30(8), pages 1–23, 2009.

Chapter 9: Eugster and Leisch (2011). Weighted and robust archety-
pal analysis. Computational Statistics and Data Analysis,
55(3), pages 1215–1225, 2011.

Appendix A:

Section A.1: Eugster (2011). benchmark: Benchmark Experiments Tool-
box. R package version 0.3-2. http://cran.r-project.

org/package=benchmark.
Section A.2: Eugster (2010). archetypes: Archetypal Analysis. R

package version 2.0-2. http://cran.r-project.org/

package=archetypes.
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Part I.

Benchmark experiments

1





Chapter 1.

Introduction

In statistical learning benchmark experiments are empirical investigations with
the aim of comparing and ranking algorithms with respect to certain perfor-
mance measures. New benchmark experiments are published on almost a daily
basis; it is the method of choice to evaluate new learning algorithms in most
research fields with applications related to learning algorithms. Selected exam-
ples of recently published empirical studies are: Caruana and Niculescu-Mizil
(2006), comparing ten supervised learning algorithms using eight performance
measures on eleven binary classification problems of different application do-
mains; Martens et al. (2007), comparing support vector machines with three
other algorithms as credit scoring models; and Huang et al. (2009), compar-
ing three classification algorithms on genetic data. All three studies have in
common that their comparisons and conclusions are based on simple summary
statistics of the estimated performances (point estimates like mean or median).
Even though these three publications are not randomly selected, they repre-
sent a prevalent way of analyzing benchmark experiments. Apparently, only
looking at the heavily compacted summary statistics ignores a lot of interesting
and primarily important information on the benchmark experiment.

The assessment of the performance of learning algorithms has been addressed
in many publications in the last four decades. The estimation of the general-
ization error using cross-validation started with the pioneering work of Stone
(1974). Hand (1986) and McLachlan (1987) are outlines of the developments in
the first few years. The article “Ten more years of error rate research” by Schi-
avo and Hand (2000) is an update of the two surveys and reviews the further
improvements in error rate research until the year 2000. Now, another decade
later it is common practice to use cross-validation or resampling techniques
to derive an estimator for the generalization error. However, surprisingly few
publications are available on how to evaluate benchmark experiments beyond
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Chapter 1. Introduction

the computation of point estimates. One early exception is Dietterich (1998)
who suggests 5× 2 cross-validation with a paired t-test to test two algorithms
for their significant difference. Newer exceptions are Demsar (2006) with an
extension by Garcia and Herrera (2008), who use common statistical tests
to compare classification algorithms over multiple data sets; and Hornik and
Meyer (2007) who derive consensus rankings of the learning algorithm based
on their performances. In consequence of the absence of evaluation methods,
the goal of this dissertation is to present a toolbox of methods which enables a
comprehensive and statistically correct analysis of benchmark experiments.

From our point of view the benchmarking process consists of three hierarchi-
cal levels: (1) In the Setup level the design and its elements of the benchmark
experiment are defined, i.e., data sets, candidate algorithms, performance mea-
sures and suitable resampling strategies are declared. (2) In the Execution level
the defined setup is executed. Here, computational aspects play a major role;
an important example is the parallel computation of the experiment on differ-
ent computers. (3) And in the Analysis level the computed raw performance
measures are analyzed using common and specialized statistical methods. This
dissertation is mainly concerned with the analysis level; in what the derivation
of a statistically correct order of the candidate algorithms is a major objec-
tive. But certainly, the design of a benchmark experiment and its analysis are
related – in fact, the chosen design determines the possible analyses methods.
A prominent example is that k-fold cross-validation violates the assumption of
independent observations (Nadeau and Bengio, 2003), therefore most common
statistical methods are not appropriate. We follow the design framework de-
fined by Hothorn et al. (2005) which allows to use standard statistical methods;
Section 1.1 introduces the framework detail. An essential point of benchmark
experiments and the generalization performance of learning algorithms is the
data basis available for the learning task. On this account, Section 1.2 defines
in detail the terms “data generating processes”, “data sets”, and “resampling”.
Section 1.3 concludes this introductory chapter with an outline of the remain-
ing chapters on the analysis of benchmark experiments.

1.1. Theoretical framework

Hothorn et al. (2005) introduce a theoretical framework for inference problems
in benchmark experiments based on well defined distributions of performance
measures. They show that standard statistical test procedures can be used to
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1.1. Theoretical framework

investigate hypothesis of interests. We already sketched parts of the formalism
in the section on the scope of this work (see page xvii). We now introduce the
framework in detail, which is stepwise extended in the remaining chapters.

The basic design elements of benchmark experiments are the candidate algo-
rithms, a data generating process, a performance measure of interest, and the
number of replications. In each replication, a learning sample is drawn from
the data generating process. The algorithms are fitted on the learning sample
and validated according to the specified performance measure (possibly using
a corresponding test sample).

Benchmark experiments are defined as follow (based on Hothorn et al., 2005):
Given is a data generating process DGP . We draw b = 1, . . . , B independent
and identically distributed learning samples of size n:

L1 = {z1
1 , . . . , z

1
n} ∼ DGP

...

LB = {zB1 , . . . , zBn } ∼ DGP

We assume that there are K > 1 candidate algorithms ak (k = 1, . . . , K)
available for the solution of the underlying learning task. For each algorithm
ak, ak( · | Lb) is the fitted model based on a learning sample Lb (b = 1, . . . , B).
This model conditions on the randomly drawn learning sample Lb from the
data generating process DGP . Therefore, the model itself has a distribution
Ak on the model space of ak which again depends on the data generating
process DGP :

ak( · | Lb) ∼ Ak(DGP ), k = 1, . . . , K

Strictly speaking, the fitted model also depends on the hyperparameters θ1 of
the algorithm (as formalized on page xvii). For algorithm comparison, how-
ever, it is reasonable to require that the fitting procedure incorporates both
hyperparameter tuning as well as the final model fitting itself. Furthermore,
note that we use ak( · | Lb) as a general abstraction of a fitted model. It
encapsulates all its functional details (like fitted parameters, design matrices,
or prediction functions). The concrete performance measure of interest deter-
mines which details of a fitted model are used.

The performance of the candidate algorithm ak when provided with the learn-
ing samples Lb is measured by a scalar function p(·):

pbk = p(ak,L
b) ∼ Pk(DGP )
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Chapter 1. Introduction

The pbk are samples drawn from the distribution Pk(DGP ) of the performance
measure of the algorithm ak on the data generating process DGP . The scalar
function p(·) is freely definable to represent the performance of interest as
a number. Common measures are the misclassification error in classification
tasks, the mean squared error in regression tasks, or the Rand index in clus-
tering tasks. Performances related to the computational process like running
time or memory consumption of the fitting or prediction procedures can be of
interest as well. Furthermore, the function p(·) can be totally specialized and
map individual characteristics of an algorithm to numbers. An example is the
performance measure we defined to measure and compare the robustness of
the archetypal analysis algorithms in Part II of this dissertation.

This work focus on the comparison and ranking of algorithms suitable for su-
pervised learning tasks, primarily classification and regression problems. (See
Dolnicar and Leisch, 2010, on how to deal with benchmarking for clustering
tasks using the same theoretical framework.) An essential aspect in super-
vised learning tasks is the estimation of the performance of an algorithm on
future observations – the so-called generalization performance. On this ac-
count we provide an in-depth discussion on the general structure of common
performance measures used in such learning tasks.

In supervised learning each observation z ∈ Lb is of the form z = (y, x) where y
denotes the response variable and x describes a vector of input variables (note
that for readability we omit the subscript i = 1, . . . , n for x, y, and z). The aim
of a supervised learning task is to construct a prediction function ŷ = ak(x | Lb)
which, based on the input variables x, provides us with information about the
unknown response y. The discrepancy between the true response y and the
predicted response ŷ for an arbitrary observation z ∈ Lb is measured by a
scalar loss function l(y, ŷ). The performance measure is then defined by some
functional µ of the loss function’s distribution over all observations of learning
sample Lb:

pbk = p(ak,L
b) = µ(l(y, ak(x | Lb))) ∼ Pk(DGP )

Typical loss functions for classification are the misclassification and the de-
viance (or cross-entropy). The misclassification error for directly predicted
class labels is

l(y, ŷ) = I(y 6= ŷ),
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with I(·) the indicator function. The deviance for predicted class probabilities
ŷg (g = 1, . . . , G different classes) is

l(y, ŷ) = −2× log-likelihood = −2
G∑
g=1

I(y = g) log ŷg.

The absolute error and the squared error are common loss functions for regres-
sion. Both measure the difference between the true and the predicted value;
in case of the squared error this difference incurs quadratic:

l(y, ŷ) = (y − ŷ)2

Reasonable choices for the functional µ are the expectation and the median
(in association with absolute loss).

Now, pbk are samples drawn from the theoretical performance distribution
Pk(DGP ) of algorithm ak on the data generating process DGP . In most cases
we are not able to determine the theoretical performance distribution analyti-
cally and we have to approximate it empirically. The learning performance is
an obvious first approximation:

p̂bk = p(ak,L
b) = µ̂L(l(y, ak(x | Lb))) ∼ P̂k(DGP )

µ̂L denotes the empirical functional of the loss function’s distribution over all
observations of the corresponding learning sample. P̂k denotes in this case the
algorithm’s learning distribution function of the performance measure evalu-
ated using Lb (b = 1, . . . , B). Unfortunately learning performance is not a good
estimate of the generalization error – as commonly known it would reward over-
fitting (see, for example, Hastie et al., 2009). An analytic way to approximate
the generalization performance is to estimate the optimism of the learning
performance and add it. The Akaike and Bayesian information criteria, and
the minimum description length approach are examples for such methods (see
Hastie et al., 2009, for a discussion on these “in-sample” generalization per-
formances). However, an analytic approximation is not always possible and
approaches based on independent test samples are the primary way of ap-
proximating the theoretical performance distribution of an algorithm (“extra-
sample” generalization performance in the sense of Hastie et al., 2009).

Suppose that independent test samples Tb with sufficient numbers of observa-
tions are drawn from the data generating process DGP . An estimation of the
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generalization performance of algorithm ak learned on learning sample Lb is
then

p̂bk = p̂(ak,L
b) = µT(l(y, ak(x | Lb))) ∼ P̂k(DGP ).

µT is the functional of the loss function’s distribution over all observations
of the corresponding test sample Tb. P̂k denotes the algorithm’s distribution
function of the performance measure evaluated using Tb. Dependent on the
data situation the approximation of Pk by P̂k is of different quality; the next
section covers common data situations and their consequences in benchmark
experiments.

1.2. Data generating process

In the theoretical discussion on the estimation of the generalization perfor-
mance, we assume that we know the data generating process DGP and can
draw sufficient observations. In practical situations, however, this knowledge
can be incomplete. Then, the present data situation determines the data gen-
erating process and, consequently, the empirical performance distributions P̂k
(k = 1, . . . , K). In this section we discuss what Hothorn et al. (2005) call a
simulation problem (the data generating process is known) and a real-world
problem (only one finite data set from the data generating process is avail-
able).

We consider a data generating process DGP to be some distribution function
where each drawn observation z is distributed according to it. The statistical
and machine learning literature then names three samples drawn from such a
DGP (e.g., Bishop, 1995; Hastie et al., 2009): a learning sample, a validation
sample, and a test sample. The learning sample is used to fit the algorithms;
the validation sample is used for hyperparameter tuning; and the test sample
is used for assessment of the generalization performances of the algorithms
with the final hyperparameters. It is difficult to give a general rule on how to
choose the number of observations in each of the three samples; Hastie et al.
(2009) state that a typical ratio is that validation and test samples are 50%
of the learning sample. In benchmark experiments for algorithm comparison
the validation sample is used in an implicit step of the fitting procedure –
and in fact is “just” another benchmark experiment for hyperparameter tuning
(cf. page xvii) – therefore, we do not consider it in more detail.
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If the data generating process is known, a new learning sample Lb and a new
test sample Tb are drawn in each replication b = 1, . . . , B. The resulting em-
pirical performance distribution P̂k approximates the theoretical performance
distribution Pk with arbitrary precision (by drawing samples with more and
more observations). For practical reasons, Tb can be also set to one fixed
test sample T, given that T is large enough so that resulting deviations are
insignificant small.

In most practical applications no precise knowledge about the data generating
process is available. Instead a data set L = {z1, . . . , zN} ∼ DGP of size N is
all the information we have. In this case we use resampling methods to mimic
the data generating process. In statistical literature, a variety of resampling
methods are available; we focus on the most common ones – bootstrapping
(non-parametric) and subsampling – and present strategies to draw learning
samples Lb and corresponding test samples Tb:

Bootstrapping: Efron (1979) introduces the bootstrap procedure. A learning
sample Lb is defined by drawing n = N observations with replacement
from the original data set L of size N . This means that Lb is drawn from
the empirical distribution function of L and, consequently, the observa-
tions are independent and identically distributed.

Subsampling: The subsampling procedure as a valid procedure is mainly
traced back to Politis and Romano (1994). A learning sample Lb is de-
fined by drawing n � N observations without replacement from the
original data set L. Lb are then themselves independent and identically
distributed samples of a smaller size from the true unknown distribution
of the original data set.

For both strategies the corresponding test samples Tb can be defined in terms
of the out-of-bag observations Tb = L \ Lb. Out-of-bag observations as test
samples lead to non-independent observations of the performance measures but
their correlation vanishes as N tends to infinity. Another strategy is to define
the test samples Tb as a newly drawn bootstrap sample in each replication.
Furthermore, note that k-fold cross-validation fits into this framework as well:
B is set to k, and the learning and test samples are defined in terms of the
k subsamples of the data set L. But because of the apparently independent
samples it is not used in this dissertation.

The different resampling methods have different impacts on the approximation
quality of the theoretical performance distribution Pk by the computed empir-
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ical performance distribution P̂k. Efron (1983) and Efron (1986) are two early
publications investigating different error rates systematically. Two of their
general findings are that “cross-validation gives a nearly unbiased estimate of
the true error, but often with unacceptable high variability” and “the bootstrap
gives an estimate of the true error rate with low variability, but with a possible
large downward bias”.

1.3. Overview

We now have defined the theoretical foundations of this dissertation. The
remaining chapters extend the framework to cover further aspects – leading to
a comprehensive benchmark experiments toolbox.

We start with single data set-based benchmark experiments. Simplest bench-
mark experiment is the comparison of K candidate algorithms on 1 data set ac-
cording to 1 performance measure using B replications. The execution of such
a setup results in 1×B×K×1 raw performance measures p̂bk, i.e., K empirical
performance distributions P̂k. In Chapter 2 we propose exploratory data anal-
ysis tools and formal inference procedures (parametric and non-parametric)
to compare these performance distributions and, among other things, to es-
tablish a preference relation. Furthermore, Chapter 2 extends the framework
to allow J performance measures pj(·), j = 1, . . . , J . This means we estimate
1×B×K×J raw performance measures p̂bkj, i.e., K×J empirical performance

distributions P̂kj. We then propose to establish a preference relation for each
performance measure and to aggregate the relations to one global preference
relation using consensus methods.

Visualization can help a lot to understand the data created in benchmark ex-
periments. Interactive visualizations can help gain further insights even more;
they enable to generate new questions and hypotheses from benchmark data
(e.g., from p̂bkj) unseen with their static equivalents. In Chapter 3 we extend
the exploratory data analysis tools presented in Chapter 2 with interactivity
and discuss the advantages.

In Chapter 4 we investigate domain-based benchmark experiments. A problem
domain in the sense of this dissertation is a collection of data sets Lm. A single
data set-based experiment is executed for each of the m = 1, . . . ,M data sets;
the result are M×B×K×J raw performance measures p̂mbkj, i.e., M×K×J

10



1.3. Overview

empirical performance distributions P̂mkj. Usually the analysis is done for each
data set separately. Chapter 4 extends this single data set-based approach to
a joint analysis for the complete collection of data sets. We present specialized
visualization methods for easy exploration of the huge amount of benchmark
data. Archetypal analysis is used to describe extreme performances within a
problem domain. And, we present a parametric method based on mixed-effects
models for a formal statistical analysis of the complete problem domain.

It is common knowledge that certain characteristics of data sets – such as
linear separability or observation size – determine the performance of learn-
ing algorithms. Chapter 5 proposes a formal framework for investigations on
this relationship within a problem domain. To realize the interaction between
data sets and algorithms, the data sets (in fact their learning samples Lbm)
are characterized using statistical and information-theoretic measures. The
characterizations are juxtaposed to pairwise preferences based on the raw per-
formance measures p̂mbkj (for J = 1). The framework then allows to determine
the performance ranking of the candidate algorithms on groups of data sets
with similar characteristics by means of recursive partitioning Bradley-Terry
models.

Chapter 6 provides first thoughts on sequential/adaptive benchmarking. In
the previous chapters we used formal inference procedures to compare the
candidate algorithms based on the M×B×K×J performance estimates p̂mbkj.
Now, the framework strictly defines each step of a benchmark experiment –
from its setup to its final preference relation of the candidate algorithms –
but says nothing about the number of replications B. So, in most benchmark
experiments B is a “freely chosen” number and the experiments are considered
as fixed-sample experiments. The nature of benchmark experiments, however,
is sequential and Chapter 6 elaborates the advantages taking this into account.
We use case studies of typical benchmark scenarios to discuss monitoring and
decision making aspects.

Each chapter concludes with a summary and an outlook for further improve-
ments concerning the chapter’s topic. The complete benchmark experiment
part of this dissertation is concluded in Chapter 7 with thoughts on new di-
rections for benchmarking research. As a short-time goal we want to sys-
tematically investigate the effect of different resampling methods on data set
characteristics and, consequently, algorithm performances. As a long-time goal
we contemplate a grammar of benchmarking embedded in the theory of exper-
imental designs.
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The R package benchmark implements most of the methods introduced in this
dissertation’s part. In Appendix A.1 we explain the design and the concept
of the package; and show how to reproduce most of the application examples
shown in the dissertation.
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Analysis of benchmark experiments

This chapter covers the analysis of single data set-based benchmark experi-
ments. It introduces a systematic four step approach to analyze the result
of an executed setup as described in Section 1 – with the major goal of a
statistically correct order of the candidate algorithms. The four steps are:

1. Visual analysis using (specialized) exploratory tools to formulate hy-
potheses of interests.

2. Formal investigation of these hypotheses using common statistical infer-
ence procedures.

3. Interpretation of the analysis results as preferences, i.e., mathematical
(order) relations.

4. Combination of various preferences (based on different performance mea-
sures) using consensus methods.

The chapter structure is based on the analysis of real benchmark experiments.
This means, we use one exemplar real-world benchmark experiment through-
out the chapter; the methods are introduced “from simple to complex”; and
for each method its result on the exemplar benchmark experiment is discussed
immediately – which often leads to the introduction of further analysis meth-
ods. This course of action allows to present new methodology for the analysis
of benchmark experiments packaged within an application-oriented guide for
practitioner.

We start the analysis of benchmark experiments in Section 2.1 with the “com-
mon analysis approach” used by a lot of publications (three exemplar refer-
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ences are named in Chapter 1). The problems of this superficial analysis are
discussed and do motivate our proposed systematic approach. Following the
principles of exploratory data analysis we start with exploratory tools to for-
mulate hypotheses of interest in Section 2.2. Drawbacks of basic plots are
discussed and a newly developed specialized benchmark experiment plot is in-
troduced. Section 2.3 introduces formal tests to inspect hypotheses of interest.
The design of benchmark experiments is a random block design, therefore com-
mon parametric and non-parametric tests can be applied. In this chapter we
propose the Friedman test and Wilcoxon-Nemenyi-McDonald-Thompson test
as non-parametric methods and model the experiment using the parametric
mixed-effects models. In this context, the problem of significance versus rel-
evance is discussed as well. In further consequence we interpret the analysis
results – point estimates or pairwise test results – as preferences, i.e., mathe-
matical (order) relations, which is discussed in Section 2.4. So far, all presented
methods cover one aspect of a benchmark experiment, i.e., they result in a sta-
tistically correct order concerning one performance measure of the candidate
algorithms. In practical situations one is often interested in different behaviors
of the candidate algorithms (multicriteria or multiobjective optimization) and
more than one performance measure are computed (for example prediction er-
ror and computation time). Therefore, suitable methods to combine different
preferences are needed; Section 2.5 discusses consensus decision-making meth-
ods which allow such combinations. The chapter is concluded with a summary
and an outlook for further developments in Section 2.6.

Example. An exemplar benchmark experiment demonstrates our methods
throughout the chapter. Note that the primary goal of this example is to
illustrate general interesting aspects of benchmark experiments; we are not
necessarily using up-to-date classifiers. Data set and candidate algorithms are
arbitrarily replaceable.

The learning problem is the binary classification problem mnk3 from the UCI
Machine Learning repository (Asuncion and Newman, 2007). It consists of
6 nominal attributes and 554 observations. The used candidate algorithms
are linear discriminant analysis (lda, purple ), k-nearest neighbor classifier
(knn, yellow ), classification trees (rpart, red ), support vector machines
(svm, blue ), neural networks (nnet, green ); see all, e.g., Venables and
Ripley (2002); Hastie et al. (2009). As representative of ensemble and bagging
methods, respectively, we use random forests (rf, orange ; Breiman, 2001).
Misclassification error is used as performance measure; the number of boot-
strap samples B is 250. The execution of this benchmark experiment results
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in 250 misclassification measures per candidate algorithm. These measures are
the estimated empirical misclassification distributions P̂k(mnk3) of each can-
didate algorithm on data set mnk3. They build the basis for the comparison
of the algorithms right up to the arrangement of an order relation. Details on
the concrete computation (software, algorithms, hyperparameter tuning) are
available in the Appendix A.

2.1. Common analysis

Common analyses of benchmark experiments consist of the comparison of
the empirical performance measure distributions based on some summary
statistics (point estimations): algorithm ak is better than algorithm ak′ iff
φ(P̂k) < φ(P̂k′). φ is a scalar functional and for example a measure of central
tendency, statistical dispersion, or shape. Depending on the functional, differ-
ent conclusions on the algorithms’ performances are possible, i.e., conclusions
concerning their behavior in best- (φ = Min), worst- (φ = Max) and average-
(φ = Mean or Median) case scenarios.

In some cases, confidence intervals are calculated to indicate the significance of
differences. Efron and Tibshirani (1993), for example, provide different meth-
ods for bootstrap confidence intervals; simplest estimates are the percentile
intervals [l, u] with l the B ∗ α and u the B ∗ (1− α) percentile.

Example (cont.). Table 2.1 shows the most established summary statistics
for performance estimates. Looking at the average-case scenario based on the
mean performance values (column Mean), the order of the candidate algo-
rithms is:

svm < rpart < rf < nnet < knn < lda

However, the corresponding confidence intervals of all algorithms intersect, i.e.,
their performance differences are not significant (Figure 2.1). This indicates
that no strict total order < or equivalence relation = can be defined. In
Section 2.4 we discuss how to express this circumstance.

Using the maximal performance values (column Max) one can apply the min-
imax rule for minimizing the maximum possible loss:

svm < lda = rpart < rf < nnet < knn
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φ = Mean SD Median Max
lda 0.0352 0.0094 0.0350 0.0561
knn 0.0344 0.0118 0.0340 0.0707

nnet 0.0293 0.0123 0.0273 0.0631
rf 0.0197 0.0117 0.0185 0.0567

rpart 0.0116 0.0080 0.0100 0.0561
svm 0.0110 0.0059 0.0100 0.0340

Table 2.1.: Performance estimations based on common summary statistics φ:
based on the B bootstrap samples, the mean, standard deviance (SD), median
and maximum (Max) values of the empirical misclassification distributions are
calculated.
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Figure 2.1.: Visualization of the bootstrap percentile intervals: the difference
in the performances of two algorithms is significant, if their intervals do not
intersect.

One can imagine (and we will also see later on; for example, in Figure 2.2c) that
outlier performances are quite likely. To make the minimax-order more robust
against outliers, only the mth-worst performance values are used; specifying m,
for example, according to the 95% quantiles of the performance distributions
(a more sophisticated approach is the calculation of confidence intervals using
bootstrapping). With m = 12, the mth-worst values are

lda knn nnet rf rpart svm

0.0495 0.0545 0.051 0.0432 0.0202 0.02

and the corresponding minimax-order is:

svm < rpart < rf < lda < nnet < knn
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2.2. Exploratory analysis

In many cases, analyses based on the heavily compacted numbers of Table 2.1
are the only source for an algorithms’ ranking. But in doing so, one loses a
lot of interesting and important information about the experiment. Therefore,
the first step of our proposed systematic approach is the usage of visualiza-
tions. Strip plots (with the algorithms on the x-axis and their performances
on the y-axis, represented with a dot for each benchmark replication) allow
the examination of the raw performances distributions. Box plots summarize
the performance distributions and allow the identification of outliers. His-
tograms and density estimates as estimations of the unobservable underlying
performance density function.

Example (cont.). Figures 2.2a, 2.2b and 2.2c show the strip, box and density
plot, respectively. Looking at the strip and density plots, it can be seen that
the distributions for svm and rpart are not only skewed, but also multimodal.
The algorithms often get stuck in local minima. The box plot supports the
assumption of skewed distributions as both medians are approximately equal
to the first quantiles. rf shows similar patterns to svm and rpart at the lower
end, but the median is near to the middle of the box. nnet seems to be slightly
skewed, all other algorithms seems to be unimodal.

The figures also allow a first impression of the overall order of the algorithms.
svm and rpart basically have the same performance, the small differences in
their mean performance are mostly caused by a few outliers. Their perfor-
mances define the lower misclassification range from 0 to 0.02. In this range,
all algorithms find local minima with similar performance values – they present
the same patterns. rf, nnet, knn and lda scatter over the complete range,
whereas knn and lda perform similar. nnet scatters most; it has outliers close
to the best global and also results near to the worst global performance. The
worst performance is defined by knn.

One massive problem of the strip plot is the overlapping of dots. For example,
the impression of the order between lda and knn: It seems that lda is better
than knn, but if we take a look at the summary statistics in Table 2.1, we
see that the mean and median performances of knn are slightly better. Ad-
ditionally, the standard strip plot claims the independence of the bootstrap
samples. Indeed we know that, for example, svm and rpart perform similar
over all benchmark replications, but we do not know their ranking per bench-
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Figure 2.2.: Basic plots; for better comparability are the algorithms sorted ac-
cording to their mean performance. (a) Strip plot: the performance of each
algorithm on each benchmark replication is shown as a dot. (b) Box plot:
the performance of each algorithm is aggregated by the five-number summary
with outliers identified. (c) Density plot: approximation of the empirical per-
formance distribution functions of each algorithm.
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2.2. Exploratory analysis

mark replication (i.e., which algorithm is on which rank and how often). One
possibility to avoid the first problem, is the usage of box and density plots.
As we can see in Figure 2.2b and 2.2c, the impression of the order is correct.
Another possibility is to jitter the dot plots, i.e., adding some random noise
to the data. But they do not solve the problem of the claimed independence.
The benchmark experiment plot (beplot) was developed to overcome these
limitations and to get a better understanding of benchmark experiments.

Benchmark experiment plot. Instead of random jittering, we use the ranks
of the algorithms on each learning sample to horizontally stretch out the
dots. For each benchmark replication, the algorithms are ordered according
to their performance value: rbk denotes the rank of p̂bk in the joint ranking
of p̂b1, . . . , p̂bK , ties are broken at random. We draw separate dot plots for
each rank. This can be seen as creating a podium with K places, and having
separate dot plots for each podium place. The following pseudo code outlines
the calculation of the benchmark experiment plot podium:

Input: p̂bk = matrix of performance values with K columns and B rows;

Output: wkbk = list of K podium places: each place is a matrix with K
columns and B rows;

for b = 1 . . . B do
for k = 1 . . . K do

rbk = rank of p̂bk in the joint ranking of p̂b1, . . . , p̂bK , ties are broken at
random;

wrbkbk = p̂bk;

Additionally, a bar plot is shown for each podium to overcome the overlapping
of the dots and to show the proportion of the algorithm in the specific podium
place.

The dots, i.e., the performance measures, in the displayed plots are not inde-
pendent from each other because all algorithms are evaluated on each learning
sample. This dependency can be displayed by extending the benchmark ex-
periment plot and connecting all dots corresponding to one learning sample
with a line, resulting in a modified version of a parallel coordinates plot.
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Chapter 2. Analysis of benchmark experiments
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Figure 2.3.: Benchmark experiment plot of the example: the x-axis is a podium
with 6 places. For each benchmark replication, the algorithms are sorted ac-
cording to their performance values and a dot is drawn on the corresponding
place. To visualize the count of an algorithm on a specific position, a bar plot
is shown for each of podium places.
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Figure 2.4.: Benchmark experiment plot: the beplot is extended to represent
the dependency of the dots of one bootstrap sample with a line between them.
We use transparency (alpha shading) to overcome the problem of overlapping
lines.
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Chapter 2. Analysis of benchmark experiments

Example (cont.). Figure 2.3 shows the benchmark experiment plot. It sup-
ports the assumption (given by Table 2.1 and Figure 2.2) that svm and rpart

perform similar, whereby rpart has some results on the lower places. More-
over, we see that rf is equally often on place 1, but has only a few second
and most third places. This is an aspect that is impossible to infer from the
marginal distributions of the performance measures alone (whether displayed
by dot plots, box plots, histograms, or density estimates). An example where
the impression of similar performances is not supported is given in the ex-
emplar benchmark experiment used in Eugster and Leisch (2008). nnet has
results in all places, but it is clearly the algorithm with most fourth places. knn
and lda perform similar in most cases; whereas knn has some performances in
the second place.

Figure 2.4 shows the benchmark experiment plot with connected dots. Here,
correlations between algorithm performances (parallel vs. crossing lines) are
uncovered. For example, svm, rpart and rf find the same local minima on
almost all learning samples. Another interesting fact between those algorithms
is that whenever rpart or svm perform best, another algorithm performs equal
(nearly nothing but parallel lines); whereas if rf performs best it is really the
best algorithm (a lot of crossing lines). Further interesting analyses would
explore the characteristics of these learning samples and see if there are any
noticeable characteristics which lead to this circumstance. Chapter 5 presents
a formal framework for investigating the relationship between data sets and
candidate algorithms. The analysis of such coherences is simplified with an
interactive version of the benchmark experiment plot with brushing techniques;
Chapter 3 presents a prototype implementation.

2.3. Statistical inference

The visual analysis of benchmark experiments gives first impressions of the
overall order of the algorithms (among other things). Now, to verify these
impressions and to derive a statistically correct order and ranking we need for-
mal tools – statistical inference and primarily the testing of hypothesis provides
them.

The design of a benchmark experiment is a random block design. This type of
experiment has two classification factors: the experimental one, for which we
want to determine systematic differences, and the blocking one, which repre-
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2.3. Statistical inference

sents a known source of variability. In terms of benchmark experiments, the
experimental factor is the set of algorithms and the blocking factor is a sample
from the learning samples of the data. The random block design is basically
modeled by

pbk = κ0 + κk + βb + εbk,

b = 1, . . . , B, k = 1, . . . (K − 1),

with the set of candidate algorithms modeled as κk, and the sampling modeled
as βb. κ0 is the intercept (the reference algorithm) and expresses a baseline
performance; the κk are then the individual differences from this basic perfor-
mance. We investigate the null hypothesis of no algorithm differences,

H0 : κ1 = · · · = κK−1 = 0,

HA : ∃k : κk 6= 0.

Below we discuss appropriate non-parametric and parametric procedures to
test this null hypothesis. The concrete choice for one of the procedures is
based on the properties of the distributions.

2.3.1. Non-parametric procedures

Non-parametric (or distribution-free) tests are procedures which make no or
few assumptions about the probability distributions of the data (in contrast to
parametric tests; a general introduction gives, e.g., Hollander and Wolfe, 1999).
In benchmark experiments, where we draw observations from the unknown real
performance distributions of the algorithms, assumptions often seem to be
violated; for example, the assumption of normality in case of svm and rpart

in Figure 2.2c. The Friedman test and the Wilcoxon-Nemenyi-McDonald-
Thompson test are presented to determine the null hypothesis of no algorithm
differences in exactly that case.

Friedman test. A global test of whether there are any differences between
the algorithms at all, can be performed using the Friedman test (e.g., Demsar,
2006; Hollander and Wolfe, 1999). This test takes the assumptions

∑B
b=1 βb =

0,
∑K−1

k=0 κk = 0, εbk are mutually independent, and each one comes from the
same continuous distribution.
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Chapter 2. Analysis of benchmark experiments

The Friedman procedure uses the ranks rbk already defined in the section on
the benchmark experiment plot, but ties are averaged. Set Rk =

∑B
b=1 rbk,

R·k = Rk

B
, R·· =

K+1
2

and compute the test statistic

S =
12B

K(K + 1)

K∑
k=1

(R·k −R··)2.

When H0 is true, the statistic S has an asymptotic (B tending to infinity) χ2

distribution based on K − 1 degrees of freedom. We reject H0, for a given
significance level α, if S ≥ χ2

K−1,α. The distribution of the test statistic under
the null hypothesis clearly depends on the (mostly) unknown distribution of
the data and thus is (mostly) unknown as well. Hence we use permutation
tests, where the unknown null distribution is replaced by the conditional null
distribution, i.e., the distribution of the test statistic given the observed data
(Hothorn et al., 2006).

Example (cont.). In case of our exemplar benchmark experiment the ex-
ploratory analysis indicates that there are differences between the algorithms.
Using this test, we can formally support that indication. The measures Rk

have been calculated as:

lda knn nnet rf rpart svm

R1 R2 R3 R4 R5 R6

1260 1233 1062.5 748 482 464.5

The test statistic S is 787.1201 and the p-value is < 2.2× 10−16 (numerically
zero). The test rejects the null hypothesis for all meaningful significance lev-
els. We proceed with a test looking at all pairwise comparisons to find the
algorithms which actually differ.

Wilcoxon-Nemenyi-McDonald-Thompson test. This test is based on the
Friedman’s within-blocks ranks and is designed to make decisions about indi-
vidual differences between pairs of treatments, i.e., algorithms (Hollander and
Wolfe, 1999). The assumptions are the same as for the Friedman test.

Given the Rk, the procedure calculates the K(K − 1)/2 differences Rk − Rk′ ,
k = 1, . . . (K − 1), k′ = k, . . . , K. At an experiment-wise error rate α, the
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2.3. Statistical inference

test then reaches its pairwise decisions – corresponding to each algorithm pair
(κk, κk′) – by the criterion

Decide

{
κk 6= κk′ if |Rk −Rk′v| ≥ rα,

κk = κk′ otherwise.

The constant rα is chosen to make the experiment-wise error rate equal to α.
As before, the test is used in a permutation procedure (Hothorn et al., 2006).

Example (cont.). The measures Rk −Rk′ haven been calculated as:

nnet svm rpart knn rf

R6 R5 R4 R3 R2

lda R1 −198 −796 −778 −27 −512
rf R2 −314 −284 −266 −485

knn R3 −170 −768 −751
rpart R4 −580 −18
svm R5 −598

The corresponding p-values are:

nnet svm rpart knn rf

R6 R5 R4 R3 R2

lda R1 0 0 0 0.9858 0
rf R2 0 0 0 0
knn R3 0 0 0

rpart R4 0 0.9981
svm R5 0

The null hypothesis of no difference is rejected for all pairs of candidate algo-
rithms, except (rpart, svm) and (lda, knn).
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Chapter 2. Analysis of benchmark experiments

2.3.2. Parametric procedures

Non-parametric tests give answers to the hypothesis of interest but the un-
derlying random block design is not really modeled, i.e., no estimates for the
parameters κk, βb and εbk are calculated. At the time of writing, we are not
aware of any non-parametric method available for estimating the parameters,
however, parametric procedures are. Looking again at svm and rpart in Fig-
ure 2.2c – their distributions can be seen as asymptotically normal distributed.
Furthermore, we are able to draw as many random samples B from the per-
formance distribution as required and therefore can rely on the asymptotic
normal and large sample theory, respectively. A major advantage compared
to the non-parametric methods is the calculation of simultaneous confidence
intervals which enables the controlling of the experiment-wise error (Hothorn
et al., 2008).

Mixed-effects model. An adequate parametric modeling of the random
block design is done using mixed-effects models (e.g., Pinheiro and Bates,
2000). κk is a fixed, βb a random effect; the assumptions are βb ∼ N(0, σ2

b )
and εbk ∼ N(0, σ2). Hence, we estimate only one parameter σ2

b for the effect of
the data set. A modeling, by contrast, with the effect of the data set as main
effect, would have lead to B parameters.

The most common method to fit linear mixed-effects models is to estimate the
“variance components” by the optimization of the restricted maximum likeli-
hood (REML) through EM iterations or through Newton-Raphson iterations
(see e.g. Pinheiro and Bates, 2000). The results are the estimated param-
eters: the variances of the random effects σ̂2 (for εbk) and σ̂2

b (for βb); the
performance of the baseline algorithm κ̂0 and the performance differences κ̂k
(k = 1, . . . , (K − 1)) between the baseline algorithm and the remaining algo-
rithms. In addition to model the design and to estimate the parameters, this
procedure allows to test the hypothesis of no algorithm differences as well. A
global test, whether there are any differences between the algorithms which
do not come from the sampling, is performed with ANOVA and the F -test.
Pairwise comparisons, i.e., which algorithms actually differ, are done using
Tukey contrasts. In addition to the test decisions (the adjusted p-values) this
approach allows the calculation of simultaneous confidence intervals to con-
trol the experiment-wise error (we refer to Hothorn et al., 2008, for a detailed
explanation).
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2.3. Statistical inference

Example (cont.). The estimates for the parameters have been calculated
as

σ̂b = 0.0037, σ̂ = 0.0094

and

lda ∆knn ∆nnet

κ̂0 κ̂1 κ̂2

0.03522 -0.00078 -0.0059

∆rf ∆rpart ∆svm

κ̂3 κ̂4 κ̂5

-0.01549 -0.02359 -0.02427

where ∆ denotes that the estimated value is the difference between the baseline
algorithm lda and the corresponding algorithm. Model diagnostic is available
in the source code for replicating the analysis (see Appendix A).

The global test rejects the null hypothesis that all algorithms have the same
performance with a p-value < 2.2×10−16. Figure 2.5 shows the 95% family-wise
confidence intervals calculated for the pairwise comparisons. The differences
between (lda, knn) and (rpart, svm) are not significant, the corresponding
confidence intervals intersect zero. Note that the result is equivalent to the non-
parametric Wilcoxon-Nemenyi-McDonald-Thompson test, and can be taken as
an indication for the validity of the assumptions made when applying the linear
mixed-effects model.

2.3.3. Significance versus relevance

Statistical significance does not imply a practically relevant discrepancy. As
commonly known, the degree of significance can be affected by drawing more
or fewer samples. A possibility to control this characteristic of benchmark
experiments is to define and to quantify “how large a significant difference
has to be to be relevant”. General test methods which consider relevance are
equivalence tests (e.g., Wellek, 2003). Here, the null hypothesis states that
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Figure 2.5.: Simultaneous 95% confidence intervals for multiple comparisons of
means using Tukey contrasts based on the mixed-effects model of the example
experiment.
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Figure 2.6.: Simultaneous 95% confidence intervals for multiple comparisons
extended with the area of equivalence gray-highlighted between [−0.01, 0.01].
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the groups differ more than a tolerably small amount. The two one-sided test
(TOST), the most basic form of equivalence tests, compares two groups:

H0 : ∆ < ∆1 ∨∆ > ∆2,

HA : ∆ ∈ [∆1,∆2]

∆ denotes the difference of the two groups, i.e., the algorithms, and [∆1,∆2]
denotes the area of equivalence (zone of non-relevance). The null hypothesis is
rejected if the (1−α) · 100% confidence interval for the difference between the
two groups is completely contained in the area of equivalence. Thus, if the null
hypothesis is rejected, the groups differ less than the tolerably small amount
|∆1 − ∆2|; one can state that the groups are similar, a possibly significant
difference is not relevant. Of course, the definition of the area of equivalence
contains the subjective view of the practitioner; normally, it is based on some
domain-specific knowledge.

Example (cont.). Let [−0.01, 0.01] be the area of equivalence. Figure 2.6
shows the 95% family-wise confidence intervals with this area gray-highlighted.
All confidence intervals which are completely inside the area are classified as
algorithms with non-relevant differences: (lda, knn), (nnet, lda), (nnet, knn)
and (rpart, svm).

2.4. Preference relations

A major goal of benchmark experiments is the determination of an order or
ranking of the candidate algorithms. We propose to interpret the analysis
results as the data set’s preferences as to the candidate algorithms. The no-
tion of preference has a central role in many disciplines of social sciences, like
economics or psychology. The general idea is to model choices between alterna-
tives using the formal framework of mathematical relations. In economics, for
example, the idea is to model preferences of consumers using such relations. In
this section we introduce the concepts and notions of preferences and relations
needed in case of benchmark experiments. General references are Davey and
Priestley (2002) on relations and Luce and Raiffa (1957) on preferences.

The framework of preferences defines two fundamental binary relations: (1) the
strict preference≺ which stands for“better”, and (2) the indifference preference
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Chapter 2. Analysis of benchmark experiments

∼ which stands for “equal in value to”. In case of benchmark experiments the
domain of both relations is the set of candidate algorithms {ak | k = 1, . . . , K}.
So, ak ≺ ak′ means that algorithm ak performs better than ak′ – the data
set prefers algorithm ak to ak′ . ak ∼ ak′ means that algorithm ak performs
equally to ak′ – the data set has no explicit choice between the two algorithms.
In benchmark experiments the following properties of the two relations are
fulfilled (k, k′ = 1, . . . , K):

∼: reflexive (ak ∼ ak) and symmetric (ak ∼ ak′ ⇒ ak′ ∼ ak).

≺: irreflexive (ak 6≺ ak) and asymmetric (ak ≺ ak′ ⇒ ak′ 6≺ ak).

Furthermore, completeness (ak ≺ ak′ ∨ ak ∼ ak′ ∨ ak′ ≺ ak) is met as well. The
set of binary preferences concerning benchmark experiments are presented as
chain of relations using the logical and operator ∧; for example ak ≺ ak′∧ak′ ∼
ak. As notational convention, chains of relations can be contracted; for example
ak ≺ ak′ ∼ ak abbreviates ak ≺ ak′ ∧ ak′ ∼ ak (requires transitivity, i.e.,
ak ≺ ak′ ∧ ak′ ≺ ak ⇒ ak ≺ ak).

Various methods presented in the previous sections provide results inter-
pretable as a data sets’ preference to the candidate algorithms. They are
roughly divided into pairwise comparisons based on point estimations (for ex-
ample Mean and Max in Section 2.1) or statistical tests (pairwise tests in
Section 2.3). However, all have in common that their pairwise comparisons
induce a mathematical relation R which we interpret as preference relation;
depending on the kind of relation, “better” or “equal in value to”, we set
(ak Rak′) ⇒ ak ≺ ak′ or (ak Rak′) ⇒ ak ∼ ak′ . The properties of the pref-
erence relation (in addition to the ones described above) are defined by the
properties of the relation R. In the following we discuss the different induced
preference relations, their properties and their interpretation.

2.4.1. Point estimation based preferences

Comparisons based on point estimations induce strict total order relations <
(because point estimations are elements of the set of real numbers). Such a
relation is transitive (ak < ak′ ∧ ak′ < ak ⇒ ak < ak), trichotomous (∀ak, ak′ :
ak < ak′ ∨ ak = ak′ ∨ ak′ < ak) and a strict weak order, where the associated
equivalence is the equality =. The induced preference relation (with < ⇒ ≺
and = ⇒ ∼) inherits this properties.
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2.4. Preference relations

Example (cont.). In the example of Section 2.1 we already induced order
relations and chains of order relations; now we can embed these relations into
the framework of preferences. For example, mnk3’s chain of preference for the
average-case (φ = Mean based) is

svm ≺ rpart ≺ rf ≺ nnet ≺ knn ≺ lda,

and the chain of preference for the worst-case scenario (φ = Max based) is

svm ≺ lda ∼ rpart ≺ rf ≺ nnet ≺ knn.

However, the interpretation of Figure 2.1 as a preference needs the definition
of a relation which takes statistical significance into account.

2.4.2. Statistical test based preferences

Decisions based on statistical tests provide two information: (1) whether there
is a significant (or relevant) difference between two algorithms (test statistic
or p-value) and if there is one, (2) which algorithm is better (direction of the
test statistic). Using this information we can define (k, k′ = 1, . . . , K):

ak = ak′ iff their difference is not significant (relevant). This relation is reflex-
ive and symmetric.

ak < ak′ iff ak is significantly (or relevantly) better than ak′ . This relation is
irreflexive and asymmetric.

Now, this enables to define the data set’s preferences based on statistical tests
analogous to preferences based on point estimates (i.e., <⇒≺ and =⇒∼).

Example (cont.). In Figure 2.1 all confidence intervals intersect, i.e., their
performance differences are not significant. So, based on bootstrap percentile
intervals, mnk3’s chain of preference is:

svm ∼ rpart ∼ rf ∼ nnet ∼ knn ∼ lda
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Chapter 2. Analysis of benchmark experiments

If we are interested in an“equal in value to”preference relation, the result of, for
example, the Wilcoxon-Nemenyi-McDonald-Thompson test (for all meaningful
significance levels) induces a preference relation with the incidence matrix:

lda rf knn rpart svm nnet

lda 1 0 1 0 0 0
rf 0 1 0 0 0 0
knn 1 0 1 0 0 0
rpart 0 0 0 1 1 0
svm 0 0 0 1 1 0
nnet 0 0 0 0 0 1

In this concrete case the relation is transitive as well (as we can simply vali-
date). So, this is an equivalence relation and the preferences of the data set are
partitioned into several equivalence classes: (knn, lda), (nnet), (rf), (rpart,
svm).

Using all available information (p-value and direction), the pairwise compar-
isons based, for example, on mixed-effects models (Figure 2.5 where left or
right from the zero line indicates which algorithm is better) induces a relation
with the following incidence matrix:

lda rf knn rpart svm nnet

lda 0 0 0 0 0 0
rf 1 0 1 0 0 1
knn 0 0 0 0 0 0
rpart 1 1 1 0 0 1
svm 1 1 1 0 0 1
nnet 1 0 1 0 0 0

This specific relation is per definition irreflexive and asymmetric and, as we
can check, transitive and negatively transitive (ak 6< ak′ ∧ ak′ 6< ak′′ ⇒ ak 6<
ak′′). This is called a strict weak order and defines equivalence classes with an
order between these classes. Figure 2.7a shows its visualization using a Hasse
diagram. The diagram is read from bottom to top, algorithms at the same
height are elements of the same equivalence class. mnk3’s chain of preference
is:

rpart ∼ svm ≺ rf ≺ nnet ≺ knn ∼ lda
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knn lda

nnet

rf

rpart svm

(a)

knn lda nnet

rf

rpart svm

(b)

Figure 2.7.: Hasse diagrams representing the preferences given by the pairwise
comparisons based on the mixed-effects models, (a) with significant differences,
and (b) with relevant differences.

Involving the relevance of differences (Figure 2.6) leads to a strict weak order
as well; the Hasse diagram is shown in Figure 2.7b and the chain of preference
is:

rpart ∼ svm ≺ rf ≺ nnet ∼ knn ∼ lda

The difference between nnet and the already existing equivalence class
(lda, knn) is not relevant anymore, now they form one combined equivalence
class.

Transitivity. In the exemplar benchmark experiment the resulting preference
relations are transitive – this is not true for benchmark experiments in gen-
eral. One common scenario which violates transitivity is that of no significant
differences between algorithms ak and ak′ as well as ak′ and ak′′ but a signif-
icant difference between ak and ak′′ . Transitivity (or intransitivity) depends
on many factors, e.g., the number of bootstrap samples B and the shape of
the performance distributions (e.g., uni- or multimodal) – both factors are
transitivity-friendly in case of the exemplar benchmark experiment. Without
transitivity, the establishment of an order is not possible (and no representa-
tion as abbreviated chain of relations), however, further analyses are possible
just as well. So the next step is to look at preferences based on different behav-
iors (performance measures) of the candidate algorithms and combine them in
a suitable way.

33



Chapter 2. Analysis of benchmark experiments

Algorithm
C

om
pu

ta
tio

n 
tim

e 
in

 s
ec

on
ds

5

10

15

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●
●
●●

●

●●
●

●
●●●●●●●●●
●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●
●
●●●●●●
●●●●●
●●
●●●●●●●●

●

●●●●●
●
●●●
●●●●●●
●
●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●
●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●
●
●●●●●●●●●●●●
●●●●●●
●
●●●●●●●
●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●
●●●
●●
●

●
●●●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●
●●

●

●
●
●

●

●
●
●

●
●

●●

●

●

●
●●
●
●

●
●

●●

●●

●

●

●

●
●

●
●

●

●●●
●

●

●
●

●

●
●
●

●

●
●
●

●
●

●

●
●

●
●

●
●

●
●●
●

●

●

●

●

●
●

●
●

●
●●

●

●

●
●
●

●

●

●

●

●

●
●
●●
●

●

●●
●

●

●

●
●

●

●●

●●
●

●
●●

●
●

●

●●

●

●●●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●●●
●

●

●

●
●

●

●

●
●
●●

●●●

●
●
●
●

●

●●
●

●
●

●
●

●
●

●●

●

●

●●

●●

●

●

●
●
●
●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●●●●

●●

●

●
●
●

●
●
●●
●●●
●

●

●
●
●
●
●

●

●
●●
●
●

●
●

rpart lda rf knn nnet svm

Figure 2.8.: Computation time of the candidate algorithms in seconds. The
benchmark experiment replication on a workstation with a AMD Sempron
3400+ (2.00 gigahertz) processor and 1 gigabyte main memory.

2.5. Preference combination

In practical situations one can be interested in the evaluation of the candidate
algorithms with respect to more than one performance measure. This problem
is known as multicriteria or multiobjective optimization and literature provides
various approaches for solving such decision problems (see, e.g., Ehrgott, 2005).
Here, we propose the consensus decision-making to combine preferences based
on different performance measures.

In Chapter 1 the setup of a benchmark experiment is defined with one perfor-
mance measure. We extend the setup and assume that there are j = 1, . . . , J
performance measures computed by scalar functions pj(·):

pbkj = pj(ak,L
b) ∼ Pkj = Pkj(DGP )

In further consequence J empirical performance distributions P̂kj(DGP ) are
estimated, and an analysis analogous to sections 2.1, 2.2 and 2.3 is done for each
one. The result is an ensemble of J ′ preference relations R = {R1, . . . , RJ ′}.
J ′ relations because more than one relation can be established from one per-
formance measure; see, for example, the mean and the worst-case relations
based on the misclassification error. The individual preferences describe the
behavior of the candidate algorithms according to one criterion at a time, this
section discusses a method to combine the individual preferences to one global,
multicriteria optimized, preference relation.
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2.5. Preference combination

Example (cont.). Second performance measure of the exemplar benchmark
experiment is the computation time, defined as the sum of the algorithm’s fit
and predict time. Figure 2.8 shows a strip plot; the chain of preference based
on the mean performances (a point estimation based preference) is:

rpart ≺ lda ≺ rf ≺ knn ≺ nnet ≺ svm

In summary the analysis of the exemplar benchmark experiment leads to the
following ensemble R = {Rm, Rw, Rc} of interesting preference relations:

1. Based on the misclassification and the pairwise comparisons using a
mixed-effects model (computed in Section 2.3):
Rm = rpart ∼ svm ≺ rf ≺ nnet ≺ knn ∼ lda

2. Based on the misclassification and the minimax rule (computed in Sec-
tion 2.1):
Rw = svm ≺ lda ∼ rpart ≺ rf ≺ nnet ≺ knn

3. Based on the mean computation time (computed in Section 2.5):
Rc = rpart ≺ lda ≺ rf ≺ knn ≺ nnet ≺ svm

The interpretation of the ensemble is: Algorithm svm has one of the best mis-
classification rates, the best worst-case performance, but the worst computa-
tion time performance. On the other side, rpart has the best misclassification
rate too, is second on the worst-case performance, and has the best computa-
tion time. The obvious questions are now – what is the overall order of the
candidate algorithms and, especially in real applications, which algorithm to
choose for further applications? Consensus methods provide a formal approach
to answer such questions.

2.5.1. Consensus decision-making

The aggregation of different performance measures can be seen as the aggre-
gation of members’ opinions in a group discussing a specific topic. A formal
system of group decision-making which is appropriate for our needs is consen-
sus decision-making (see, e.g. Farquharson, 1969). Two widely accepted con-
sensus approaches are the Borda count and Condorcet methods. The Borda
count ranks the algorithms according to their total numbers of wins across
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all paired comparisons. Condorcet methods, on the other hand, only ranks
an algorithm in front of another algorithm if the individual wins exceeds the
number of losses. Both methods fail for criteria which are assumed to be
reasonable requirements of fair voting and decision-making methods (the cri-
teria are defined by Arrow’s impossibility theorem, see, Arrow, 1963; Nurmi,
1988). Consequently, the properties of the resulting relations are not clearly
defined and further (automatic) processing can be complicated. For this rea-
son we suggest the application of optimization consensus for which Hornik and
Meyer (2007) present an exact solver over a suitable (“user” chosen) class of
relations.

Optimization consensus. The basis is an ensemble of relations R =
{R1, . . . , RJ ′}. Now, this approach formalizes the natural idea of describing
consensus relations as the ones which optimally represent the ensemble of re-
lations R. It is defined as the minimization problem∑

R∈R

wR · d(Rcon, R)⇒ minRcon∈C,

where wR is a weighting factor, C a suitable (“user” chosen) class of possible
relations, and d a suitable distance measure.

Kemeny and Snell (1972) show that for order relations there is only one unique
distance measure d which satisfies axioms natural for preference relations (see
their publication for details). The symmetric difference distance d∆ is defined
as the cardinality of the symmetric difference of the relations, or equivalently,
the number of pairs of objects being in exactly one of the two relations (⊕
denotes the logical XOR operator):

d∆(R1, R2) = #{(ak, ak′) |
(ak, ak′) ∈ R1 ⊕ (ak, ak′) ∈ R2,

k, k′ = 1, . . . , K}

The definition of the class C of possible relations allows to control the properties
of the resulting consensus relation. For example, C = {class of partial orders}
results in a consensus relation which is reflexive, antisymmetric, and transitive;
C = {class of linear orders} results in a consensus relation which is complete
as well.
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2.6. Summary

Solving the minimization problem based on d∆ can be done by integer linear
programming. Hornik and Meyer (2007) reformulate the problem as a binary
program (for the relation incidences) and present an exact solver. The concrete
formulation and the solving of this NP complete problem is beyond the scope
of this chapter and we refer to the original publication for details.

Example (cont.). The interesting ensemble of relation is R = {Rm, Rw, Rc}.
The partial order consensus is then

Rcon = rpart ∼ svm ≺ lda ≺ rf ≺ nnet ≺ knn.

So, given the three relations based on different behaviors of the algorithms,
rpart and svm are equivalent; and we can go with both in real applications.

The weights wR in the definition of the minimization problem enable us to
express importance. If, for example, the worst-case scenario is important for a
real application we weight the relation Rw higher than the others; and compu-
tation time only plays a minor role, we weight the relation Rc lower than the
others: wRm = 1, wRw = 1.5, wRc = 0.2. The partial order consensus is then
computed as

Rcon = svm ≺ lda ∼ rpart ≺ rf ≺ nnet ≺ knn.

2.6. Summary

This chapter introduces a systematic four step approach to analyze single data
set-based benchmark experiments. The four steps are: (1) Visual analysis us-
ing basic plots and the specialized benchmark experiment plot (beplot) which
allows a “look inside” the benchmark experiment. (2) Inferential analysis using
formal procedures like non-parametric Friedman-based tests and parametric
mixed-effects models to investigate hypotheses of interests. The advantage of
the parametric approach is the calculation of simultaneous confidence intervals,
which enables a simple handling of the significance versus relevance problem.
(3) Interpretation of the computed pairwise results, on basis of statistical tests
or point estimates, as preference relations. (4) Combination of more than one
performance measure for a multiobjective treatment of the candidate algo-
rithms using the optimization consensus method.
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A natural way for future enhancements is the extension to benchmark experi-
ments based on specific domains of interest, i.e., sets of data sets. Exploratory
and inferential tools are needed to handle such experiments and infer knowledge
about the behavior of candidate algorithms for a domain of learning problems.
Chapter 4 discusses domain-based benchmark experiments.

Further future work contains investigations in all three (abstract) levels of
the benchmarking process: Setup, Execution and Analysis. For the Setup
level we want to develop a grammar of benchmarking which formalizes the
specification of benchmark experiments. In the Execution layer we want to
use sequential testing to reduce computation time (Chapter 6), if possible. In
the Analysis layer other modeling mechanisms like mixture and hierarchical
models may be interesting. Furthermore we want to examine the methodology
of benchmarking and see if different elements within the benchmark process
causes different results, e.g., is there a significant difference between results of
parametric tests against non-parametric tests.
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Interactive analysis of benchmark
experiments

Interactive data visualization has a long tradition within statistics and data
analysis. Since the 1960s visualization systems for exploratory data analysis
(EDA) with interactivity are developed; see, e.g., Cook and Swayne (2007) for
the history of statistical data visualization. Closely related to the visualization
of benchmark experiments is exploratory model analysis (EMA), which refers
to methods and procedures for exploring the space of models: Unwin et al.
(2003) introduce an interactive approach using parallel coordinates for different
types of useful plots; and Wickham (2007) extends this approach by describing
different levels of data, computed after fitting the models.

This chapter tries to build a bridge between the process of creating a set
of models (the benchmark experiment) and further analyses of models using
methods of EMA or further analyses of data sets using methods of EDA. In
Section 3.1 we introduce the benchmark experiment space by describing the
different components a benchmark experiment accumulates and how they are
linked together. To illustrate our ideas an example is introduced which is
used throughout this chapter. Section 3.2 recapitulates the static version of
the benchmark experiment plot (beplot introduced in Section 2.2) and then
describes the concept of interactive benchmark analysis using the beplot as
central point for the “navigation through” the benchmark experiment space.
We present the concept using a prototype implementation within one concrete
software environment, but of course the concept is realizable in any software
environment which provides extensible interactive graphics. Section 3.3 then
illustrates the usage of the interactivity by answering exemplary questions
which may arise during the analysis of benchmark experiments. The figures in
this example have been left as they appear on screen, i.e., there is no labeling
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of a plot as any such information can be obtained by directly querying the
graphic. It is always difficult to show the full power of interactive software on
paper, so all resources are provided as electronic supplements; see Appendix A
(note the remarks on the prototype implementation in Section 3.2). Section 3.4
concludes the chapter with an outlook for further developments.

3.1. Benchmark experiment space

A benchmark experiment consists of the following components (this partly
anticipates the following chapters): (1) k = 1, . . . , K candidate algorithms ak
we are interested in comparing on (2) m = 1, . . . ,M data sets Lm according to
(3) j = 1, . . . , J performance measures p(·); a (4) resampling strategy to draw
b = 1, . . . , B learning samples and corresponding test samples from each data
set. In this chapter, we use the bootstrap to obtain learning samples and the
out-of-bag observations as test samples.
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Figure 3.1.: The benchmark experiment components and their relations behind
a single performance value. Using the interactive visualization environment,
these components can be studied using methods of exploratory data and model
analysis (EDA and EMA).
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3.1. Benchmark experiment space

The execution of such a benchmark experiment leads toM×B learning samples
Lbm and test samples Tbm; M × B ×K models ak( · | Lbm); and M × B ×K ×
J performance estimates p̂mbkj. Therefore, the benchmark experiment space
we want to explore consists of the four dimensional benchmark experiment
result plus the related components. Figure 3.1 illustrates the relations for
one specific performance value p̂mbkj calculated in a benchmark experiment
with three algorithms, five learning and test samples, one data set and one
performance measure (K = 3, B = 5,M = 1, J = 1): a resampling strategy
draws a learning and a test sample from a data set; the algorithm creates a
model based on the learning sample, and the model’s performance according
to the performance measure is estimated on the test sample. The extension
of the benchmark experiment with more than one performance measure and
more than one data set leads to an extension of Figure 3.1 in the third and
fourth dimension respectively. Note that all these relations contribute to the
final value p̂mbkj and therefore are interesting in the analysis of the benchmark
experiment.

Interactive exploratory data analysis provides a simple but powerful way to
visualize parts of this high dimensional and complex benchmark experiment
space. Each component has one or more visual representations and interac-
tion concepts such as selection, linking and brushing are used to display the
relations between them. This chapter presents one way of visualizing some
of the components’ linking, but of course lots of other ways are possible. A
sophisticated gedankenexperiment is the benchmarking of different implemen-
tations of the same method with respect to the computation time of different
parts (code profiling): the algorithms are represented as source code linked to
the different performance measures which are represented as, for example, dot
plot; and an interactive action on the dot plot leads to the highlighting of the
corresponding source code part.

Exemplar benchmark experiment. The benchmark experiment we use for
illustration is a regression problem and constructed as follows: the data set
is cars (McNeil, 1977), where the speed of cars and the distances taken to
stop are provided for cars common in the 1920s. To make our demonstration
more interesting, we conducted a new experiment and recorded the speed and
stopping distance of a currently common car: 30 mph and 8 ft stopping dis-
tance; see Figure 3.2 for the full data set. The candidate algorithms used (with
corresponding R functions in parenthesis) are linear regression (lm), robust lin-
ear regression (rlm), cubic smoothing spline (smooth.spline, abbreviation is
spl) and local polynomial regression (loess); see all, e.g., Venables and Rip-
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Figure 3.2.: The cars data set (McNeil, 1977), which give the speed of cars
and the distances taken to stop recorded in the 1920s. The original data set is
extended with the data of a currently common car: 30 mph and 8 ft stopping
distance.

ley (2002). The performance measures of interest are the prediction mean
squared error and the computation time of the model fitting process. B = 100
bootstrap samples are drawn as learning samples with the corresponding out-
of-bootstrap samples as test samples.

3.2. Interactive environment

The base software for the prototype implementation we rely on is the R sta-
tistical environment (R Development Core Team, 2010) with the iPlots pack-
age (Urbanek and Wichtrey, 2008), which provides high interaction statistical
graphics directly accessible within R. This enables a mixture of command-
line driven and interactive analysis which is highly useful for the analysis of
benchmark experiments, as we will see later on. iPlots offers a wide variety
of plots which all support interactive concepts, such as querying and linked
highlighting. In this chapter we explain only the concepts we need, for a full
introduction we refer to Urbanek and Theus (2003). The icp package (Gouber-
man and Urbanek, 2008) extends iPlots and allows the creation of new, fully
interactive plots using only pure R code. This environment enables the rapid
implementation of the interactive benchmark experiment plot concept and pro-
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3.2. Interactive environment

vides enough basic plots to visualize and explore the benchmark experiment
space.

At the time of writing the prototype implementation, iPlots 2.0 together with
icp appeared to be the most promising environment to realize the concept.
With this in mind, we extended the icp package with new functionality (in
cooperation with the authors of icp). Unfortunately the development of iPlots
2.0 and icp has been frozen and iPlots is in the process of a complete rewrite
(see Urbanek, 2009); currently there is no stable version available. Hence at
the time of this writing we are only in the position to present the concept
rather than a final implementation of the interactive benchmark experiment
plot. By the time a stable and extensible iPlots 3.0 version is available, we will
port the prototype and release it in the benchmark package (Appendix A.1).
In the meantime, all software needed to reproduce the results in this chapter
are available on the homepage of the author of this dissertation.

3.2.1. Benchmark experiment plot

The benchmark experiment plot is a visualization of the benchmark experi-
ment result, more precisely of the 1× B ×K × 1 part of it. The plot tries to
visualize the behavior of the algorithms on the drawn learning and test sam-
ples according to one specific performance measure on one data set. Figure 3.3
shows a static version created for the exemplar benchmark experiment. The
x-axis is divided into K partitions, where K is the number of candidate algo-
rithms; we call this a “podium”. For each bootstrap sample, the algorithms are
ranked according to their performance values (with ties broken randomly) and
a dot is plotted in the partition corresponding to the algorithm’s rank (best
performance to the left, worst to the right). Thus a partition corresponds to a
rank and not to an algorithm. Within each partition, a further separation oc-
curs: the algorithms are ordered according to their mean performance so that
their results can be clearly seen. For example, notice that the dots for the rlm

algorithm occur in the leftmost position within each partition, and that there
is only a single rlm dot in the rightmost partition, which tells us that rlm had
the highest value of MSE for only one bootstrap sample. The bar plots under
each podium place show the number of values for each algorithm within each
podium place. This is a quick way to note again that rlm has many points in
the first two podium places and very few in the last two.
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Figure 3.3.: Static version of the benchmark experiment plot; the displayed
performance measure is the prediction mean squared error. The algorithms’
order in each podium place is (from left to right): rlm – blue, lm – green, spl
– cyan, loess – magenta. The colors and positions are fixed throughout the
chapter; note that the colors are selected to be compatible with the interactive
environment.

44



3.2. Interactive environment

To further enhance the plot, the dots for each bootstrap sample are connected
to indicate their dependency. The lines are colored black and we use trans-
parency (alpha shading) to overcome the problem of overdrawing lines. For
example, notice that a lot of lines between the leftmost and second leftmost
position are horizontal, which tells us that in these cases the corresponding
algorithms perform equally and they are randomly ordered.

3.2.2. Interactive benchmark experiment plot

The interactive version of the benchmark experiment plot only consists of the
upper part of the static version, as the bar plots are just another visualization of
the same data and can be shown in a separate bar plot linked with the beplot.
There are two graphic elements representing interesting content: (1) a dot
represents a model by performance measure; (2) a line represents a benchmark
replication. A mouse event on any dot or line fires an event which calls an R
function. The R function can be anything you choose; here we use them to
highlight graphic elements, to show numeric information, and to communicate
with other plots. This functionality of individual R functions reacting to an
event has been added by us and is not available in the official icp package.

Figure 3.4.: Possible interactions with the interactive bench plot. Mouse-click
(left window) on a line highlights the line and all other linked objects. Con-
trol -mouse-over a dot (right upper window clip) displays information about
the model; Control -mouse-over a line (right lower window clip) displays infor-
mation about the benchmark replication.

All in all, the user interface of the benchmark experiment plot prototype
strictly follows the user interface convention defined by iPlots 2.0, the interac-
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Chapter 3. Interactive analysis of benchmark experiments

tions are performed using the same keyboard shortcuts. The most important
interactions with their default behavior are:

Mouse-click: Highlight the object at the mouse position and all other linked
objects (see Figure 3.4, left window).

Control-mouse-over: Show a tooltip with information.

• The default information for a dot is the name and the performance
value of the algorithm (Figure 3.4, upper-right window clip).

• The default information for a line is the bootstrap identifier and the
order of the algorithms, as this is sometimes hard to determine with
all the lines (Figure 3.4, lower-right window clip).

Other functionalities are accessible using the context menu, e.g., hide the lines
or step forward and backward through different versions of randomly broken
ties.

The benchmark experiment plot, as already mentioned, is a visualization of
the 1 × B × K × 1 part of the benchmark experiment result. Interactivity
and the concept of linking now enables an easy way to view more than one
performance measure: open one beplot for each performance measure and
through the linking, highlighting one object highlights the same object in all
other benchmark experiment plots. In the next section we demonstrate this
amongst others by means of the exemplar benchmark experiment.

3.3. Interactive analysis

A common exploratory analysis of a benchmark experiment consists of the
usage of various basic and specialized plots, shown in Section 2.2. Among
others, the benchmark experiment plot of the prediction error (Figure 3.3) is
produced. This plot raises, for example, the questions “which one of the B =
100 learning samples was used to train the worst loess model?” (highlighted
in Figure 3.4) or“why is this single blue dot there at the fourth podium place?”.
These questions are not easily answerable with the static version, but with the
interactive version of the plot.
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3.3. Interactive analysis

Figure 3.5.: Visualizations of benchmark experiment space components for the
benchmark replication highlighted in Figure 3.4: frequency of the observations
in the learning sample and the corresponding test sample by means of a bar
chart and in combination with a scatter plot showing the data set and the
models.

First, we have to decide which additional visual representations of which bench-
mark experiment space components are useful for this specific analysis: (1) the
raw data are visualized using a scatter plot (for higher-dimensional problems
one can use a scatter plot matrix and parallel coordinates to show the raw
data, or use projection methods). For a specific benchmark replication, (2) the
learning sample and the test sample are visualized using a bar chart, with color
brushing linked to the data scatter plot, which shows the frequency of the ob-
servations in the learning sample (therefore, zero means that the observation
is in the test sample); and (3) the models are represented as lines within the
data scatter plot. The general color coding is the following: any aspect of a
model, e.g., the model’s performance in the benchmark experiment plot or the
representation of the model within the data, is represented with the color al-
ready used in the static benchmark experiment plot (rlm – blue , lm – green

, spl – cyan , loess – magenta ); highlighted objects are colored in red.
All other colors are explained when they appear.

Figure 3.5 shows details of the benchmark replication highlighted in Figure 3.4.
By means of the bar chart we see that the test sample consists of 17 obser-
vations (white bar); and the learning sample is formed by the 34 remaining
observations, whereas 19 observations are drawn once (light gray), 13 observa-
tions are drawn twice (middle gray) and 2 observations are drawn thrice (dark
gray). In combination with the scatter plot, the frequency per observation
and the effect on the models (weighting of the observations) is observable. For
example, notice that spl and loess end with a strong slope because the cor-
responding observations with high stopping distance are two and three times
available. An interesting aspect is, that the “modern car” observation is not
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Figure 3.6.: All benchmark replications highlighted where the “modern car”
observation is not used in the learning sample; they are all in the upper level
of the performance range.

used for learning (its color is white) and the performance of the models are
in the upper level of the performance range (as we can see in the benchmark
experiment plot). To check this coherence, Figure 3.6 shows the benchmark
experiment plot with all benchmark replications highlighted where the “mod-
ern car” observation is not in the learning sample – it looks as if the assumed
coherence applies.

Figure 3.7.: All benchmark replications highlighted where the“modern car”ob-
servation is not used in the learning sample and the smoothing spline algorithm
has a lower performance than all other algorithms in the first partition (left
window). Details for the replication with lowest performance of this selection
(right window).

The highlighting in Figure 3.6 uncovers that in benchmark replications where
the “modern car” observation is not in the learning sample, the smoothing
spline algorithm (cyan dots on the third position in the leftmost partition)
has the lowest prediction mean squared error. For further investigations on
this fact, we refine the highlighting and only select benchmark replications
where spl has a lower performance than all other models, see Figure 3.7 (left
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3.3. Interactive analysis

Figure 3.8.: The benchmark experiment plot with hidden lines and a tooltip
with information about the replication where the robust linear regression is in
the last partition (left window); and the details (right window).

window). Out of this selection, benchmark replication 62 is the one with the
lowest performance; Figure 3.7 (right window) shows its details. In this case
the scatter plot displays whether an observation is in any learning sample of
the selected benchmark replications (then it is selected, i.e. red colored) or not
(not selected, i.e. black colored). The rightmost observation in the learning
sample forces the spl model (cyan line) to end with a negative slope. And this
allows a good prediction of the “modern car” observation compared to all other
models: spl = 19.1, lm = 95.1, rlm = 98.2 and loess = 192.5. The obvious
assumption is that this rightmost observation is in either learning sample of
the highlighted benchmark replications – which turns out to be true.

Another aspect which attracts attention in Figure 3.5 is the single blue dot (a
rlm model) in the rightmost partition. The relatively low value indicates that
all models perform well on this benchmark replication, and probably rlm is on
the last place because of the randomly broken ties. For further investigations
we hide the lines and highlight the dots of this specific benchmark replica-
tion, see Figure 3.8 (left window). The highlighted dots give the impression
that they lie on a straight line, but a tooltip which shows the order and the
rounded mean squared error reveals that there are small differences between
the model’s performances. Figure 3.8 (right window) shows details and allows
an explanation: the “modern car” observation is in the learning sample and
has a high impact (leverage factor) on the smoothing spline (cyan line) and
local polynomial regression (magenta line) models.

The concept of linking enables an easy way to look into more than one per-
formance measure, and investigate their relations. This can be interesting
if a single performance measure does not effectively distinguish algorithms

49



Chapter 3. Interactive analysis of benchmark experiments

Figure 3.9.: Benchmark experiment plot of the second performance measure,
the computation time of the model fitting process; this plot is linked with the
benchmark experiment plot in Figure 3.4.

one from another; in that case, a second measure can be used to calculate a
global order (see Section 2.5 for theoretical details). In our exemplar bench-
mark experiment the computation time of the model fitting process is used
as second performance measure; Figure 3.9 shows the benchmark experiment
plot. This benchmark experiment plot is linked to the benchmark experiment
plot in Figure 3.5 (which shows the prediction mean squared error), therefore
the same benchmark replication is highlighted. In this specific replication,
lm (green, second position in each partition) and spl (cyan, first position)
consume equivalent computation time, loess (magenta, third position) con-
sumes nearly as much and rlm (blue, fourth position) consumes twice as much.
Generally, this plots shows that there is not much difference between lm and
loess, even though the loess algorithm fits some (simple) linear models dur-
ing the model fitting procedure. This indicates that the loess implementation
is highly optimized.

3.4. Summary

This chapter shows how to integrate interactivity into the process of the ex-
ploratory analysis of benchmark experiments with one data set. The interac-
tive version of the benchmark experiment plot allows a rapid exploration of the
benchmark experiment result, and of the related components with the concept
of linking. We propose that this software should be used as the first step in
a chain of exploratory data and model analysis procedures and methods. In
that sense, it is a bit like preprocessing the data to highlight the interesting
questions.
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3.4. Summary

The presented method is usable for benchmark experiments with one data set
or, in case of benchmark experiment with more than one data set, for the
individual analysis per data set; this means, analyzing each m × B × K × J
part of the benchmark experiment result with its related components individ-
ually (m = 1, . . . ,M). Linking benchmark experiments plots of two or more
different parts is only of limited use because the linked elements do not really
relate to each other (except the algorithm components). For example, notice
that a benchmark replication b on data set Lm has nothing to do with the
benchmark replication b on data set Lm′ . Chapter 4 introduces some special-
ized static visualizations for these kind of benchmark experiments; future steps
towards a comprehensive interactive benchmark analysis toolbox contains the
implementation of their interactive versions.
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Chapter 4.

Analysis of domain-based
benchmark experiments

In the previous chapters we introduced methods to analyze single data set-
based benchmark experiments. Exploratory and inferential methods are used
to compare the distributions and to finally set up mathematical (order) rela-
tions between the algorithms. The foundations for such a systematic modus
operandi are defined in Chapter 1; there we review the theoretical framework
defined by Hothorn et al. (2005) for inference problems in benchmark experi-
ments. The framework allows to use standard statistical test procedures to test
for differences in the performances. The practical toolbox is provided in Chap-
ter 2; there we introduce various analysis methods and define a systematic four
step approach from exploratory analyses via formal investigations through to
the algorithms’ orders based on a set of performance measures.

Modern computer technologies like parallel, grid, and cloud computing (i.e.,
technologies subsumed by the term High-Performance Computing; see, for
example, Hager and Wellein, 2010) now enable researchers to compare sets
of candidate algorithms on sets of data sets within a reasonable amount of
time. Especially in the Machine Learning community, services like MLcomp
(Abernethy and Liang, 2010) and MLdata (Henschel et al., 2010), which provide
technical frameworks for computing performances of learning algorithms on a
wide range of data sets recently gained popularity. Of course there is no
algorithm which is able to outperform all others for all possible data sets, but
it still makes a lot of sense to order algorithms for specific problem domains.
The typical application scenarios for the latter being which algorithm to deploy
in a specific application, or comparing a newly developed algorithm with other
algorithms on a well-known domain.
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Chapter 4. Analysis of domain-based benchmark experiments

A problem domain in the sense of this dissertation is a collection of data
sets. For a benchmark experiment the complete domain or a sample from the
domain is available. Note that such a domain might even be indefinitely large,
e.g., the domain of all fMRI images of human brains. Naturally, domain-
based benchmark experiments produce a “large bunch of raw numbers” and
sophisticated analysis methods are needed; in fact, automatisms are required
as inspection by hand is not possible any more. This motivation is related
to Meta-Learning – predicting algorithm performances for unseen data sets
(see for example Pfahringer and Bensusan, 2000; Vilalta and Drissi, 2002).
However, we are interested in learning about the algorithms’ behaviors on the
given problem domain.

This chapter is organized as follows: In Section 4.1 we first extend the theoreti-
cal framework of benchmark experiments for more than one data set and review
how the (local) single data set-based benchmark experiments have been done.
Given the computation of local results for each data set of the domain, Sec-
tion 4.2 introduces visualization methods to present the results in their entirety.
In Section 4.3 we take the design of the domain-based benchmark experiments
into account and model it using mixed-effects models. This enables an anal-
ysis of the domain based on formal statistical inference. Section 4.4 presents
a different approach; in the original sense of benchmarking, we determine ex-
treme performances using archetypal analysis and use them as benchmarks to
compare with. In Section 4.5 we demonstrate the methods on two problem
domains: The UCI domain (Section 4.5.1) as a well-known domain; useful, for
example, when one is developing a new algorithm. The Grasshopper domain
(Section 4.5.2) as a black-box domain, where we simply want to find the best
learning algorithm for predicting whether a grasshopper species is present or
absent in a specific territory. Section 4.6 concludes the article with a summary
and future work. All computational details are provided in the Appendix A.

4.1. Design of experiments

The design elements of benchmark experiments are the candidate algorithms,
the data sets, the learning samples (and corresponding validation samples)
drawn with a resampling scheme from each data set, and the performance
measures of interest. In each replication the algorithms are fitted on a learning
sample and validated according to the specified performance measures (prob-
ably on corresponding validation samples).
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Now, in real-world applications we are often interested in the algorithms’ per-
formances (e.g., misclassification and computation time) within a domain of
problems (e.g., the domain of patients’ data in a clinic). A domain is specified
with a collection of data sets. In detail, for the candidate algorithm ak we are
interested in the j = 1, . . . , J performance distributions on the m = 1, . . . ,M
data sets which define the problem domain D = {L1, . . . ,LM}:

pmbkj = pj(ak,L
b
m) ∼ Pmkj = Pkj(Lm)

The pmbkj are samples drawn from the jth performance distribution Pkj(Lm)
of the algorithm ak on the data set Lm. Analogously as above the performance
is measured on a validation sample, i.e., p̂mbkj is computed and the empirical

performance distribution P̂kj(Lm) is estimated.

The execution of a benchmark experiment results in M × B × K × J raw
performance measures, i.e., M × K × J empirical performance distributions
P̂mkj. This allows to analyze a multitude of questions with a wide variety
of methods – for example: computing an order of the algorithms based on
some simple summary statistics from the empirical performance distributions;
or more sophisticated, testing hypotheses of interest by modeling the perfor-
mance measure distributions and using statistical inference. Additionally, each
question can be answered on different scopes, i.e., locally for each data set, or
globally for the domain. For the remainder of this chapter we assume that the
following systematic stepwise approach defined in Chapter 2 has been executed
for each given data set Lm:

1. Compare candidate algorithms: The candidate algorithms are pair-
wise compared based on their empirical performance distributions P̂mkj
by simple summary statistics or statistical tests (parametric or non-
parametric); this results in J ′ comparisons.

Example: The algorithms svm, rpart, and rf are compared; the pair-
wise comparisons according to their misclassification errors are {svm ≺
rf, rpart ≺ rf, svm ∼ rpart} (based on a statistical test), and according
to their computation times {rpart ≺ rf, rf ≺ svm, rpart ≺ svm} (based
on the mean statistics).

2. Compute performance relations: The J ′ comparisons are interpreted as
an ensemble of relations Rm = {R1, . . . , RJ}. Each Rj represents the re-
lation of the K algorithms with respect to a specific performance measure
and the data set’s preference as to the candidate algorithms.
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Example (cont.): The data set’s preferences are R1 = svm ∼ rpart ≺ rf

in case of the misclassification error and R2 = rpart ≺ rf ≺ svm in case
of the computation time.

3. Aggregate performance order relations: The ensemble Rm is aggregated
to, for example, a linear or partial order R̄m of the candidate algorithms.
As a suitable class of aggregation methods we use consensus rankings.
The individual relations Rj can be weighted to express the importance
of the corresponding performance measure.

Example (cont.): The linear order with the weights w1 = 1 and w2 = 0.2
(i.e., computation time is much less important than the misclassification
error) is then rpart ≺ svm ≺ rf.

These data of different aggregation levels are available for each data set Lm
of the problem domain D. The obvious extension of the local approach to
compute a domain-based order relation is the further aggregation of the data
sets’ algorithm orders (following Hornik and Meyer, 2007):

4. Aggregate local order relations: The domain specific algorithms’ order
relation R̄ is computed by aggregating the ensemble of consensus relations
R = {R̄1, . . . , R̄M} using consensus methods.

This approach allows the automatic computation of a statistically correct
domain-based order of the algorithms. But the “strong” aggregation to re-
lations does not allow statements on the problem domain to a greater extent.
In the following we introduce methods to visualize and to model the problem
domain based on the individual benchmark experiment results. On the one
hand these methods provide support for the global order R̄, on the other hand
they uncover structural interrelations of the problem domain D.

4.2. Visualizations of the domain

A benchmark experiment results in M × K × J estimated performance dis-
tributions P̂mkj. The simplest visualizations are basic plots which summarize
the distributions, like strip charts, box plots, and density plots, conditioned
by the domain’s data sets. So called Trellis plots (Becker et al., 1996) allow a
relative comparison of the algorithms within and across the set of data sets.
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Figure 4.1.: Trellis graphic with box plot panels. The plot shows the mis-
classification error of the UCI domain benchmark experiment described in
Section 4.5.1.
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Figure 4.1 shows a Trellis plot with box plots of six algorithms’ misclassification
errors (knn, lda, nnet, rf, rpart, and svm) on a problem domain defined
by 21 UCI data sets (Section 4.5.1 provides the experiment details). Using
this visualization we see that there are data sets in this domain which are
equally “hard” for all candidate algorithms, like ttnc, mnk3 or BrsC; while
the algorithms on other data sets perform much more heterogeneous, like on
prmnt and rngn. From an algorithm’s view, lda for example, has the highest
misclassification error of the problem domain on data sets Crcl and Sprl

(which are circular data). Moreover, whenever lda solves a problem well,
other algorithms perform equally.

Further basic visualizations allowing relative comparisons of the estimated per-
formance distributions P̂mkj based on descriptive statistics are stacked bar
plots, spine plots and mosaic plots. In all visualizations one axis contains the
data sets and the other the stacked performance measure (either raw or rela-
tive). Figure 4.2a exemplarily shows the stacked bar plot of the UCI domain’s
mean misclassification errors (the order of the data sets is explained below).
Notice, for example, that for the candidate algorithms the data set mnk3 is on
average much “less hard” to solve than livr. This plot is an indicator for a
learning problem’s complexity; if all candidate algorithms solve the problem
well, it is probably an easy one. (Figure 4.2b is explained further down.)

Now, in addition to the empirical performance distributions P̂mkj, the pairwise
comparisons, the resulting set of relations Rm, and the locally aggregated
orders R̄m are available. To incorporate these aggregated information into
the visualizations we use the distance measure already introduced and used in
Section 2.5. The symmetric difference distance d∆ is defined as the cardinality
of the relations’ symmetric difference, or equivalently, the number of pairs of
objects being in exactly one of the two relations R1, R1 (⊕ denotes the logical
XOR operator):

d∆(R1, R2) = #{(ak, ak′) |
(ak, ak′) ∈ R1 ⊕ (ak, ak′) ∈ R2,

k, k′ = 1, . . . , K}

Computing all pairwise distances for the relations Rm (m = 1, . . . ,M) results
in a symmetric M×M distance matrix D representing the distances of the do-
main D based on the candidate algorithms’ performances. An obvious way to
analyze D is to hierarchically cluster it. Because detecting truly similar data
sets within a domain is most interesting (in our point of view), we propose
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Figure 4.2.: Visualizations of the candidate algorithms’ misclassification errors
on the UCI domain: (a) stacked bar plot; (b) benchmark summary plot (legend
omitted).
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Figure 4.3.: Dendrogram showing the clustering of the UCI domain’s data sets
based on their candidate algorithms’ performance relations.

to use agglomerative hierarchical clustering with complete linkage (see, e.g.,
Hastie et al., 2009). Figure 4.3 shows the corresponding dendrogram for the
UCI domain’s relation R = {R1, . . . , R21} based on the algorithms’ misclassifi-
cation errors. Crcl and Sonr for example, are in one cluster – this means that
the candidate algorithms are in similar relations. Note that the raw perfor-
mance measures are not involved anymore. Therefore, it is hard to see these
similarities in basic visualizations like the stacked bar plot (Figure 4.2a), even
if the data sets are ordered according to the data sets’ linear order determined
by the hierarchical clustering.

Benchmark summary plot. The benchmark summary plot (bsplot) over-
comes these difficulties by adapting the stacked bar plot and incorporating a
set of relations R. Each bar uses the total width, and is evenly divided into
as many partitions as candidate algorithms. The partitions are assigned to
the candidate algorithms and their order is determined by the corresponding
(linear or partial) relation R̄m. A descriptive statistic of the corresponding
empirical performance distribution P̂mkj of interest is then plotted as bar from
the bottom up in each partition; the values are scaled in a way that the do-
main’s worst performance fills the partition. Color coding is used to simplify
interpretation – partition backgrounds with light, performance bars with dark
colors. Moreover, the relations R̄m are visualized using borders between par-
titions. So, if there is for example a significant difference in the performance
of two candidate algorithms, a (black) border is shown, otherwise no border is
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shown. The bars are sorted according to a linear order of the distance matrix
D; just like the one computed by the hierarchical clustering. The axis repre-
senting the data sets is equivalent to the stacked bar plot, the other axis is a
podium for the candidate algorithms. Obviously, this plot only works in case
of linear orders. Visually interpreted, the aggregated global consensus relation
R̄ is the aggregation of the light colors over the data set axis.

Figure 4.2b shows the UCI domain’s bsplot. In comparison with the stacked
bar plot (Figure 4.2a) the individual benchmark experiment results are now
more clearly visible. For example, svm (blue) has the most first places – 13
times (6 times exclusively), and is never worse than a third place. lda (purple)
is the algorithm with the highest misclassification (on data set Crcl) and
knn (yellow) is the algorithm with the most last places. Based on lda the
domain splits into two clusters, one where it performs well (i.e., a set of linearly
separable data sets) and one where not (the non-linearly separable data sets).
rf (orange) also performs well within this domain, while nnet (green) is in
most cases of medium performance.

Benchmark summary graph. In the UCI problem domain the resulting re-
lations are all transitive, this is not generally true for relations based on sta-
tistical tests (see Chapter 2), therefore the benchmark summary graph (bs-
graph) enables a general visualization. The domain D is represented by a
complete weighted graph KM with M vertices for the domain’s data sets and
M(M − 1)/2 edges. The edges’ weights are defined by the distance matrix D.
The graph’s layout follows a spring model and is computed using the Kamada-
Kawai algorithm (see, e.g., Gansner and North, 2000, for a description and
software implementation). The layouted graph is then visualized with addi-
tional information available from the individual benchmark experiments. Our
implementation shows the data sets’ winner algorithms by filling the nodes
with the corresponding colors; if there is no unique winner algorithm for a
data set the node is unfilled. The widths and colors of the edges correspond
to the distances, i.e., the shorter the distance the wider and darker the edge.
Our implementation allows showing only a subset of edges corresponding to a
subset of distances to make the visualization more clear.

Figure 4.4 shows the UCI domain’s bsgraph with edges visible which corre-
spond to tenth smallest distance. Here, for example, it is clearly visible that
subset A of the domain’s data sets has similar algorithm performances (al-
though only the winners are visualized). It is also visible that the domain
splits into two sub-domains: sub-domain B where the algorithm svm (blue)
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performs best, and sub-domain C where the algorithms rf (orange) and lda

(purple) perform best. In case of unfilled nodes the dominant sub-domain al-
gorithms are always winner as well together with other algorithms (compare
with Figure 4.2b).

The benchmark summary graph defines the basis for more complex visualiza-
tions. One future work is an interactive version along the lines of the gcEx-
plorer – an interactive exploration tool of neighbor gene clusters represented
as graphs (Scharl and Leisch, 2009, cf. Figure 1). This tool enables the access
to the nodes complex information using interactivity; the same idea can be
used for the benchmark summary graph. This then allows interactive analysis
of domain-based benchmark experiments analogous to the interactive analysis
of single data set-based benchmark experiments presented in Chapter 3. Fur-
thermore, looking at the introduced visualizations raises the question “why” do
some candidate algorithms perform similar on some data sets and not on others
– which data set characteristics affect the algorithms’ performances and lead to
such clusters as seen in Figure 4.4? We investigate this question in Chapter 5,
where we introduce a formal framework based on (recursively partitioning)
Bradley-Terry models (the most widely used method to study preferences in
psychology and related disciplines) for automatic detection of important data
set characteristics and their joint effects on the algorithms’ performances in
potentially complex interactions.

4.3. Models of the domain

The analysis methods introduced so far – the aggregation of local relations
to a domain-based order relation and the visualization methods – rely on lo-
cally (data set-based) computed results. In this section we take the design of
domain-based benchmark experiments into account and model the M ×K×J
estimated performance distributions P̂mkj for J = 1 accordingly. This enables
a domain’s analysis based on formal statistical inference.

A domain-based benchmark experiment with one performance measure of in-
terest is a type of experiment with two experimental factors (the candidate
algorithms and the domain’s data sets), their interactions, and blocking fac-
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tors at two levels (the blocking per data set and the replications within each
data set). It is written

pmbk = κk + βm + βmk + βmb + εmbk (4.1)

with m = 1, . . . ,M , b = 1, . . . , B, and k = 1, . . . , K. κk represents the algo-
rithms’ mean performances, βm the mean performances on the domain’s data
sets, βmk the interactions between data sets and algorithms, βmb the effect of
the subsampling within the data sets, and εmbk the systematic error.

Mixed-effects models. Linear mixed-effects models are the appropriate tool
to estimate the parameters described in Formula 4.1. Mixed-effects models
incorporate both fixed effects, which are parameters associated with an en-
tire population or with certain repeatable levels of experimental factors, and
random effects, which are associated with individual experimental or blocking
units drawn at random from a population (Pinheiro and Bates, 2000). The
candidate algorithms’ effect κk is modeled as fixed effect, the data sets’ effect
βm as random effect (as the data sets can be seen as randomly drawn from the
domain they define). Furthermore, βmk, βmb and εmbk are defined as random
effects as well. The random effects follow βm ∼ N(0, σ2

1), βmk ∼ N(0, σ2
2),

βmb ∼ N(0, σ2
3), and εmbk ∼ N(0, σ2). Analogous to single data set-based

benchmark experiments, we can rely on the asymptotic normal and large sam-
ple theory (see Chapter 2).

The most common method to fit linear mixed-effects models is to estimate the
“variance components” by the optimization of the restricted maximum likeli-
hood (REML) through EM iterations or through Newton-Raphson iterations
(see Pinheiro and Bates, 2000). The results are the estimated parameters: the
variances σ̂2

1, σ̂2
2, σ̂2

3, and σ̂2 of the random effects; and the K fixed effects.
The model allows the following interpretation – of course conditional on the
domain D – for an algorithm ak and a data set Lm: κ̂k is the algorithm’s mean
performance, β̂m is the data set’s mean complexity, and β̂mk is the algorithm’s
performance difference from its mean performance conditional on the data set
(coll., “how does the algorithm like the data set”).

The parametric approach of mixed-effects models allows statistical inference,
in particular hypothesis testing, as well. The most common null hypothe-
sis of interest is “no difference between algorithms”. A global test, whether
there are any differences between the algorithms which do not come from the
“randomly drawn data sets” or the sampling is the F-test. Pairwise compar-
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isons, i.e., which algorithms actually differ, can be done using Tukey contrasts.
The calculation of simultaneous confidence intervals enables controlling the
experiment-wise error rate (we refer to Hothorn et al., 2008, for a detailed
explanation).

Figure 4.5a shows simultaneous 95% confidence intervals for the algorithms’
misclassification error based on a linear mixed-effects model. Two algorithms
are significantly different if the corresponding confidence interval does not con-
tain the zero. The confidence intervals are large because of the very heteroge-
neous algorithm performances over the data sets (cf. Figure 4.2b; Section 4.5.1
describes the result in detail). Now, statistical significance does not imply a
practically relevant difference. As commonly known, the degree of significance
can be affected by drawing more or less samples. A possibility to control this
characteristic of benchmark experiments is to define and quantify how large
a significant difference has to be to be relevant. Let [∆1,∆2] be the area
of equivalence (zone of non-relevance). The null hypothesis is rejected if the
(1−α)∗100% confidence interval is completely contained in the area of equiv-
alence (equivalence tests are the general method which consider relevance; see,
for example, Wellek, 2003). Figure 4.5b shows the UCI domain’s pairwise
comparisons with [−0.10, 0.10] as the area of equivalence. For example, the
difference between rpart and rf is significant (the interval does not contain
the zero) but is not relevant (the area of equivalence completely contains the
interval); the difference between svm and lda is significant and relevant. Of
course, the definition of the area of equivalence contains the subjective view of
the practitioner – normally, it is based on domain-specific knowledge.

Finally, the pairwise comparisons of candidate algorithms’ significant or rele-
vant differences allow to establish a preference relation based on the perfor-
mance measure for the domain D. From now on, the analysis of domain-based
benchmark experiments proceeds analogously to the analysis of single data
set-based benchmark experiments. Chapter 2 introduce the concept of prefer-
ence relations based on statistical tests and their combination using consensus
methods. Now, the methodology introduced above makes it possible to model
the experiment for each performance measure; i.e., to fit J linear mixed-effects
models, to compute the significant or relevant pairwise comparisons, and to
establish a preference relation Rj for each performance measure (j = 1, . . . , J).
Consensus methods aggregate the J preference relations to single domain-based
order relation of the candidate algorithms. This can be seen as a multicriteria
or multiobjective optimization and allows, for example, to select the best can-
didate algorithm with respect to a set of performance measures for the given
domain D.
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4.4. Archetypes of the domain

In this section we present a different approach to analyze the performances
p̂mbkj of a set of candidate algorithms ak on a domain D. In general, comparing
objects often means comparing with a “best” or “worst” object, i.e., comparing
with an extreme object (the benchmark). In the simplest case of one per-
formance measure describing the objects, the benchmarks are the univariate
minimum or maximum values. However, often more than one performances
are measured for each object; and then there are no uniquely defined extremes.
On this account, one has to define multivariate extreme values – and one pos-
sible extreme values are archetypes. Heavlin (2006) and Porzio et al. (2008)
use archetypes to estimate benchmarks in different fields: Heavlin (2006) in
case of computer performances; Porzio et al. (2008) in case of a top 200 world
university ranking.

Archetypal analysis has the aim to find “pure types”, the archetypes, within
a set defined in a specific context. In statistics, archetypal analysis is first
introduced by Cutler and Breiman (1994). Part II of this dissertation gives a
detailed introduction into archetypal analysis; its theoretical foundations, the
detailed optimization problem, and the algorithm to solve it. In this section
we roughly describe the concept: For a given data set X, the goal of archetypal
analysis is to find a number of archetypes Z which are (1) convex combinations
of the data set’s observations, and (2) the observations are convex combinations
of these archetypes. These two constraints lead to the fact that the determined
archetypes are located on the convex hull of the data set; and therefore are good
candidates for extreme values (i.e., benchmarks). The optimization problem is
to find the two coefficient matrices α and β which minimize the residual sum
of squares

RSS = ‖X − αZ>‖2 with Z = X>β

subject to the convex combination constraints of the coefficient matrices α and
β. We refer to Section 8.1 (Formula 8.1 ff.) for a detailed explanation on the
problem’s components.

In case of the benchmark experiments in this dissertation we haveM×B×K×J
performance measures p̂mbkj. In order to investigate them with archetypal
analysis we compile a tabular data matrix X which contains the performance
measures apposite to the kind of archetypes we are interested in. Here, we focus
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on J = 1 performance measures and take the performances on the M data sets
as variables of interest for each of the B replications of the K algorithms:

M data sets

B samples from
algorithm a1


p̂1111 · · · p̂M111
...

. . .
...

p̂1B11 · · · p̂MB11

...
. . .

...

B samples from
algorithm aK


p̂11K1 · · · p̂M1K1
...

. . .
...

p̂1BK1 · · · p̂MBK1

Of course, the tabular data matrix can be compiled in many ways, and each
one enables a different interpretation. Examples for other useful compilations
are: only using the mean or median performances of the algorithms; or using
more than one performance measure (standardized) for each data set. Re-
gardless of how the tabular data matrix is compiled, the archetypes Z define
the extreme performances of the domain D conditional on this data matrix
(and consequently on the sets of algorithms, performance measures, and data
sets). Furthermore, the coefficient matrix α provides an interpretable assign-
ment of the observations (i.e., algorithms) to the archetypes (i.e., extreme
performances).

Figure 4.6 shows an archetypes solution in case of the UCI domain example.
The correct number of archetypes is determined by running the algorithm from
two to ten archetypes and using the “elbow criterion” on the RSS. Here, we
present the four archetypes solution (which is the number where the first elbow
occurs); note that the supplementary material (Appendix A) provides informa-
tion to see the corresponding scree plot and to investigate all other solutions.
Figure 4.6a presents a parallel coordinates plot of the data matrix X with
color coding of the lines to indicate the algorithms, and the four archetypes
A1 (red), A2 (green), A3 (blue), and A4 (cyan). Archetype A1 (red) is clearly
the “minimum”, it is low for all data sets. The remaining three archetypes
represent archetypal performances which are low and high on different data
sets. No archetype is available in this solution which is a clear “maximum”
(i.e., high on all data sets). Beside that, note that on data set ttnc all four
archetypes have similar values; on this data set all algorithms perform similar
(cf. Figure 4.2).
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Figure 4.6b shows a parallel coordinates plot of the coefficient matrix α. This
means that four axes represent the four archetypes on a range [0, 1], and each
line visualizes the archetypes’ contributions to the approximation of each in-
dividual performance (observation). Again, the lines are colored according to
the algorithms to show correlations between the archetypes and the algorithms.
Archetype A1 mostly contributes to the performances of the algorithms svm

(blue) and rf (orange). As archetype A1 is the “minimum” archetype, this
indicates that svm and rf tend to be the algorithms with low misclassification
errors within this domain. Archetype A2 mostly contributes to the algorithms
knn (yellow) and nnet (green). Archetypes A3 and A4 contribute to lda

(purple) and rpart (red) respectively. In this example, the pooling of two al-
gorithms by one archetype – svm and rf by A1, knn and nnet by A2 – indicates
their similar performance within this domain. This corresponds with the final
analysis of the UCI domain in Section 4.5.1 (see for example Figure 4.7b).

4.5. Benchmarking UCI and Grasshopper
domains

We present two domain-based benchmark experiments – one for each appli-
cation scenario we sketch in the introduction. The UCI domain serves as a
domain for the scenario when comparing a newly developed algorithm with
other well-known algorithms on a well-known domain. We already used the
UCI domain in the previous sections to illustrate the presented methods and we
now give more details on this benchmark experiment and complete the analy-
sis. The Grasshopper domain serves as domain where we want to find the best
candidate algorithm for predicting whether a grasshopper species is present
or absent in a specific territory. The algorithm is then used as a prediction
component in an enterprise application software system.

4.5.1. UCI domain

The UCI domain is defined by 21 data sets binary classification problems avail-
able from Asuncion and Newman (2007). We are interested in the behavior
of the six common learning algorithms linear discriminant analysis (lda, pur-
ple), k-nearest neighbor classifiers, (knn, yellow), classification trees (rpart,
red), support vector machines (svm, blue), neural networks (nnet, green), and
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random forests (rf, orange); see all, for example, Hastie et al. (2009). The
benchmark experiment is defined with B = 250 replications, bootstrapping
as resampling scheme to generate the learning samples Lb, and the out-of-bag
scheme for the corresponding validation samples Tb. Misclassification on the
validation samples is the performance measure of interest. A benchmark ex-
periment is executed and analyzed on each data set according to the local
systematic stepwise approach (Steps 1-3) given in the beginning of Section 4.1
(and defined in Chapter 2). The results are 21× 6× 1 estimated performance
distributions P̂ j

mk, the corresponding pairwise comparisons based on mixed-
effects models and test decisions for a given α = 0.05, and the resulting pref-
erence relations R = {R1, . . . , R21}. Note that we present selected results, the
complete results are available in the supplemental material (see Appendix A
on computational details).

The Trellis plot in Figure 4.1 shows the box plots of the estimated performance
distributions. Table 4.1 lists the resulting preference relations Rm; in this
benchmark experiment all relations are transitive, therefore the listed chains
of preferences can be built (ak ∼ ak′ indicates no significant difference, ak ≺ ak′
indicates a significantly better performance of ak). The domain-based linear
order relation R̄ computed by the consensus method (Step 4) is:

svm ≺ rf ≺ lda ≺ rpart ≺ nnet ≺ knn

This order coincides with the impression given by the bsplot’s light colors in
Figure 4.2b: svm (blue) has the most first places, rf (orange) the most second
and some first places, lda (purple) has some first places, rpart (red) and nnet

(green) share the middle places, and knn (yellow) has the most last places.

Computing the linear mixed-effects model leads to a model with the estimated
candidate algorithm effects:

lda κ̂1 knn κ̂2 nnet κ̂3 rf κ̂4 rpart κ̂5 svm κ̂6

0.2011 0.1948 0.1885 0.1144 0.1750 0.1100

lda has the worst, svm the best mean performance. Data set mnk3 has the
lowest and data set livr the highest estimated performance effect (i.e., com-
plexity) among the domain’s data sets:
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β̂m β̂mk
lda knn nnet rf rpart svm

mnk3: −0.0943 −0.0722 −0.0669 −0.0658 0.0009 −0.0696 −0.005
livr: 0.1693 −0.0326 0.0253 0.0152 0.0109 0.0175 0.0652

For data set mnk3, all algorithms except rf perform better than their mean
performance; for livr only lda. These estimated parameters conform with
the performance visualizations in figures 4.1 and 4.2.

Figure 4.5 shows the (a) significant and (b) relevant pairwise comparisons.
There is, for example, a significant difference between svm and rpart in favor
of svm and no significant difference between svm and rf. The interpretation
of the pairwise significant differences results in the incidence matrix shown in
Figure 4.7a. The corresponding relation is no linear or partial order relation
(as we can verify). However, plotting only the asymmetric part of its transi-
tive reduction as Hasse diagram enables a visualization and an interpretation
of the relation (Hornik and Meyer, 2010) – Figure 4.7b shows this Hasse di-
agram, nodes are ordered bottom-up. For the UCI domain and based on the
mixed-effects model analysis we can state that rf and svm are better than
knn, nnet, and rpart. In case of lda this analysis allows no conclusion. This
result corresponds with the global linear order relation R̄ computed by the ag-
gregation of the individual preference relations. And also with the archetypal
analysis of the domain done in Section 4.4.

4.5.2. Grasshopper domain

In this application example we are interested in finding the best algorithm
among the candidate algorithm as a prediction component of an enterprise
application software system. The domain is the domain of grasshopper species
in Bavaria (Germany), the task is to learn whether a species is present or
absent in a specific territory.

The data were extracted from three resources. The grasshopper species data
are available in the “Bavarian Grasshopper Atlas” (Schlumprecht and Waeber,
2003). In this atlas, Bavaria is partitioned into quadrants of about 40km2.
Presence or absence of each species it is registered for each quadrant. The
territory data consist of climate and land usage variables. The climate vari-
ables are available from the WorldClim project (Hijmans et al., 2005) in a 1km2
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resolution. These 19 bioclimate (metric) variables describe for example the
seasonal trends and extreme values for temperature and rainfall. The data
are primary collected between 1960 and 1990. The land usage variables are
available from the CORINE LandCover project CLC 2000 (Federal Environ-
ment Agency, 2004). Based on satellite images the territory is partitioned into
its land usage in a 100m2 resolution using FRAGSTAT 3.3 (McGarigal et al.,
2002). These 20 (metric and categorical) land usage variables describe the
percentage of, for example, forest, town and traffic (we binarized a variable if
not enough metric values are available). The climate and land usage variables
are averaged for each quadrant for which the grasshopper data are available.
Additionally, the Gauss-Krüger coordinates and the altitude are available for
each quadrant. We use the standardized altitude but omit the coordinates as
the candidate algorithms are not able to estimate spatial autocorrelation and
heterogeneity. Now, to define the domain, we understand each grasshopper
species as individual data set. The quadrants where a species is present are
positively classified; as negatively classified quadrants we draw random sam-
ples from the remaining ones. If enough remaining quadrants are available we
create a balanced classification problem, otherwise we use all remaining quad-
rants. We only use data sets with more than 300 positively classified quadrants
– so, the Grasshopper domain is finally defined by 33 data sets.

The candidate algorithms of interest are linear discriminant analysis (lda,
purple), k-nearest neighbor classifiers, (knn, yellow), classification trees (rpart,
red), support vector machines (svm, blue), naive Bayes classifier (nb, brown),
and random forests (rf, orange); see all, for example, Hastie et al. (2009). The
benchmark experiment is defined with B = 100 replications, bootstrapping
as resampling scheme to generate the learning samples Lb, and the out-of-
bag scheme for the corresponding validation samples Tb. Misclassification on
the validation samples is the performance measure of interest. Note that we
presents selected results, the complete results are available in the supplemental
material (see Appendix A on computational details).

Figure 4.8 shows the Trellis plot with box plots for the six algorithms’ mis-
classification errors. We see that for most data sets the relative order of
the candidate algorithms seems to be similar, but that the individual data
sets are differently “hard” to solve. The locally computed preference relations
R = {R1, . . . , R33} (using mixed-effects models; see Section 2.3) contains non-
transitive relations; therefore, a visualization using the benchmark summary
plot is not possible. Now, one possibility is to plot the asymmetric part of
the transitive reduction (like in Figure 4.7b) for each of the 33 relations in a
Trellis plot. However, such a plot is very hard to read and the benchmark
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summary graph provides a simpler visualization (albeit with less information).
Figure 4.9a shows the bsgraph with the six smallest distance levels visible.
The nodes show the color of the algorithm with the minimum median mis-
classification error. We see that for most data sets rf (orange) is the best
algorithm. The nodes’ cross-linking indicates that the relations do not differ
much in general. The algorithms follow the general order pattern even for data
sets where this plot indicates a big difference, for example the NEUS data set
(cf. Figure 4.8).

A consensus aggregation of R results in the following linear order:

rf ≺ lda ≺ svm ≺ rpart ≺ nb ≺ knn

This order confirms the exploratory analysis. To formally verify this order
we compute the domain-based linear mixed-effects model and the resulting
pairwise comparisons. Figure 4.9b shows the corresponding simultaneous 95%
confidence intervals and the resulting order is:

rf ≺ lda ≺ svm ≺ rpart ≺ nb ∼ knn

All three analyses, exploratory, consensus-, and mixed-effect model-based, lead
to the same conclusion: the random forest learning algorithm is the best algo-
rithm (according to the misclassification error) for the Grasshopper domain.

4.6. Summary

The great many of published benchmark experiments show that this method is
the primary choice to evaluate learning algorithms. Chapter 1 defines the theo-
retical framework for inference problems in benchmark experiments. Chapter 2
introduces the practical toolbox with a systematic four step approach from ex-
ploratory analysis via formal investigations through to a preference relation
of the algorithms. Now, the present chapter extends the framework theoret-
ically and practically from single data set-based benchmark experiments to
domain-based (set of data sets) benchmark experiments.

Given the computation of local – single data set-based – benchmark experi-
ment results for each data set of the problem domain, the chapter introduces
two specialized visualization methods. The benchmark summary plot (bsplot)
is an adaption of the stacked bar plot. It allows the visualization of statistics
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of the algorithms’ estimated performance distributions incorporated with the
data sets’ preference relations. This plot only works in case of linear or partial
order relations, while the benchmark summary graph (bsgraph) enables a gen-
eral visualization. The problem domain is represented by a complete weighted
graph with vertices for the domain’s data sets. The edges’ weights are defined
by the pairwise symmetric difference distances. The layouted graph is visual-
ized with additional information from the local benchmark experiments which
allows to find patterns within the problem domain.

An analysis of the domain based on formal statistical inference is enabled by
taking the experiment design – two experimental factors, their interactions,
and blocking factors at two levels – into account. We use linear mixed effects
models to estimate the parameters where the algorithms are defined as fixed
effects, all others as random effects. The estimated model allows the interpre-
tation – conditional on the domain – of the algorithms’ mean performances,
the data sets’ mean complexities and how suitable an algorithm for a data set
is. Furthermore, testing hypotheses of interest is possible as well. A global test
of the most common hypothesis of “no difference between the algorithms” can
be performed with an F-test, a pairwise comparison can be performed using
Tukey contrasts. The definition of an area of equivalence allows to incorporate
practical relevance instead of statistical significance. Finally, the pairwise com-
parisons establish a preference relation of the candidate algorithms based on
the domain-based benchmark experiment. Archetypal analysis provides a dif-
ferent view of benchmark experiments. Archetypal performances are computed
and used as data driven extreme values (i.e., benchmarks). The archetype co-
efficients of the individual performances then allow an interpretation of the
similarity according to the determined benchmark performances. The two ex-
emplar domain-based benchmark experiments show the proposed methods are
sound, i.e., that all computed results conform with each other.
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Figure 4.4.: Benchmark summary graph visualizing the relation of the UCI
domain’s data sets based on the distance matrix. The color of the nodes
indicate the unique winner algorithm; otherwise unfilled. The dashed circle
highlights a subset A with similar algorithm performances. The dashed line
indicates two sub-domains; B – where svm performs best, and C – where rf

and lda perform best.
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Figure 4.5.: The UCI domain’s simultaneous 95% confidence intervals for multi-
ple (a) significant and (b) relevant comparisons for a fitted linear mixed-effects
model on the algorithms’ misclassification errors.
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Figure 4.6.: The four misclassification error archetypes of the UCI domain:
parallel coordinates plots of (a) the data matrix X and the archetypes and
(b) the coefficient matrix α. In both plots the lines are colored according to
the candidate algorithms.
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RBrsC: rf ∼ svm ≺ knn ≺ lda ≺ nnet ≺ rpart

RCrds: rf ≺ lda ≺ rpart ∼ svm ≺ nnet ≺ knn

Rchss: svm ≺ nnet ∼ rf ∼ rpart ≺ knn ∼ lda

RCrcl: svm ≺ knn ≺ rf ≺ nnet ≺ rpart ≺ lda

Rcrdt: lda ∼ rf ≺ svm ≺ rpart ≺ nnet ≺ knn

RHrt1: lda ≺ rf ≺ svm ≺ rpart ≺ knn ≺ nnet

Rhptt: rf ≺ svm ≺ lda ∼ nnet ≺ knn ∼ rpart

RHV84: lda ≺ rf ≺ rpart ∼ svm ≺ nnet ≺ knn

RInsp: rf ∼ svm ≺ rpart ≺ nnet ≺ knn ∼ lda

Rlivr: rf ≺ lda ≺ rpart ∼ svm ≺ nnet ≺ knn

Rmnk3: rpart ∼ svm ≺ rf ≺ nnet ≺ knn ∼ lda

Rmusk: svm ≺ rf ≺ knn ≺ lda ≺ rpart ≺ nnet

RPmID: lda ≺ rf ≺ rpart ∼ svm ≺ knn ≺ nnet

Rprmt: rf ∼ svm ≺ nnet ≺ rpart ≺ knn ≺ lda

Rrngn: svm ≺ rf ≺ rpart ≺ nnet ≺ knn ∼ lda

RSonr: svm ≺ knn ∼ rf ≺ nnet ≺ lda ∼ rpart

RSprl: knn ∼ rf ∼ svm ≺ rpart ≺ nnet ≺ lda

Rthrn: svm ≺ rf ≺ lda ∼ nnet ≺ knn ≺ rpart

Rtctc: lda ∼ svm ≺ nnet ∼ rf ≺ rpart ≺ knn

Rttnc: knn ∼ nnet ∼ svm ≺ rf ≺ rpart ≺ lda

Rtwnr: lda ≺ svm ≺ knn ∼ rf ≺ nnet ≺ rpart

Table 4.1.: UCI domain’s chains of preference relations R = {R1, . . . , R21}.

knn lda nnet rf rpart svm

knn 0 0 0 0 0 0
lda 0 0 0 0 0 0
nnet 0 0 0 0 0 0
rf 1 0 1 0 0 0

rpart 0 0 0 0 0 0
svm 1 0 1 0 1 0

(a)

knn

lda

nnet

rf

rpart

svm

(b)

Figure 4.7.: Interpretation of the pairwise significant differences, Figure 4.5a, as
preference relation: (a) incidence matrix, (b) the corresponding Hasse diagram
(nodes are ordered bottom-up).
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Figure 4.8.: Trellis graphic with box plot of the candidate algorithms’ misclas-
sification error on the Grasshopper domain. Each data set is one grasshopper
species.
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Figure 4.9.: (a) The Grasshopper domain’s benchmark summary graph; the
color of the nodes indicate the algorithm with the minimum median misclas-
sification error. (b) The Grasshopper domain’s simultaneous 95% confidence
intervals for multiple significant comparisons for a fitted linear mixed-effects
model on the algorithms’ misclassification errors.
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Chapter 5.

(Psycho)-Analysis of benchmark
experiments

In machine and statistical learning, benchmark experiments are empirical in-
vestigations with the aim of comparing and ranking learning algorithms with
respect to certain performance measures. In particular, performance is in-
vestigated on a collection of data sets, e.g., from the UCI Machine Learning
Repository (Asuncion and Newman, 2007). It is well known that the charac-
teristics of the data sets have an influence on the performance of the algorithms
– almost every publication that proposes a new algorithm presents its perfor-
mance on data sets in relation to different characteristics (even though often
only the number of observations and attributes vary). Nonetheless, in most
publications differences of the data sets are noted but not used for further well-
founded analyses; perhaps the best known study is STATLOG by King et al.
(1995), newer ones are e.g. Lim et al. (2000) and Caruana et al. (2008). An ap-
proach incorporating both algorithms and data sets was suggested by Kalousis
et al. (2004), who investigate the relations between learning algorithms and
data sets by means of clustering the algorithms on one hand and the data sets
on the other hand based on the performance measures. These cluster results (a
large number of graphics) are then manually interpreted to find relations. The
present article is an enhancement of their approach and provides an automated
framework where each step of the relation finding process is based on sound
statistical methodology.

In psychology and related disciplines the pairwise comparative choice model
suggested by Bradley and Terry (1952) is the most widely used method to study
preferences of subjects (e.g. consumers or patients) on some objects (e.g. a set
of chocolate bars or different pain therapies). The preference scaling of a group
of subjects may not be homogeneous, but different groups of subjects with cer-
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tain characteristics may show different preference scalings. A newly developed
semi-parametric approach for recursive partitioning of Bradley-Terry models
(Strobl et al., 2010) takes this circumstance into account – it identifies groups
of subjects with homogeneous preference scalings in a data-driven and statis-
tically correct way. This approach is an extension of the classical algorithms
for classification and regression trees (CART) (Breiman et al., 1984; Quinlan,
1993) and results in a tree where the subjects are divided into groups accord-
ing to their characteristics, and in each terminal leaf a Bradley-Terry model
shows the preference scaling within this group, as described in detail in the
next section.

The use of Bradley-Terry models has also been suggested for deriving consen-
sus rankings from benchmark studies (Hornik and Meyer, 2007). However, in
order to utilize the information inherent in different characteristics of the data
sets, here we suggest to apply the advanced approach of recursive partitioning
of Bradley-Terry models in the analysis of benchmark studies. In this frame-
work, the data sets are the subjects and the algorithms are the objects. The
interpretation is equivalent to the interpretation of the preference relations
in Section 2.4: a data set expresses its preferences for an algorithm by the
performance of the algorithm. In other words, the algorithm that performs
best on a certain data set is considered to be most preferred by the data set.
Using statistical and information-theoretic measures to characterize the data
sets, the approach of recursive partitioning of Bradley-Terry models enables
us to determine the influence of data set characteristics on the performance
of the algorithms. It provides a framework to either investigate the influence
exploratory or test particular hypothesis of interest. This chapter defines all
parts of the framework and, as a first step, presents its prospects for the ex-
ploratory analysis.

The chapter introduces all related methods in detail: Section 5.1 reviews the
needed benchmark experiment notation. In Section 5.2 we define a sound and
flexible framework for data set characterization and introduce a common set
of data set characteristics. Finally, in Section 5.3 we outline the principle
of model-based recursive partitioning and its generalization to Bradley-Terry
models. A toy example is used to demonstrate each part of the framework.
Section 5.4 then applies the proposed method to a real-world example based on
classification problems from the well-known UCI Machine Learning Repository.
The chapter is concluded with a summary and an outlook in Section 5.5. All
computational details are provided in the Appendix A.
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5.1. Benchmark experiments

Basis of this framework are dombain-based benchmark experiments as defined
in Chapter 2 and Chapter 4. We estimate the empirical performance distri-
butions P̂k(Lm) of K candidate algorithms ak according to one performance
measure p(·) on a specific problem domain. This domain is specified by a
collection of data sets L1, . . . ,LM . A benchmark experiment is executed on
each data set Lm (m = 1, . . . ,M) and an order of the algorithms is calculated.
However, the performance rankings of the candidate algorithms will vary over
the different data sets in all realistic benchmark scenarios and one common as-
sumption is that the performance depends on particular characteristics of the
data sets. This chapter proposes an approach to answer the question which
data set characteristics make the algorithms perform differently on certain data
sets.

Exemplar benchmark experiment. For illustration purposes, an artificial toy
example is used. It consists of two 2-dimensional classification problems with
400 observations in each case: ds1 is linearly separable, ds2 is not linearly
separable; Figure 5.1a shows scatter plots of the data. The algorithms of
interest are support vector machines (svm), linear discriminant analysis (lda)
and quadratic discriminant analysis (qda) (see e.g. Hastie et al., 2009, and
Appendix A for computational details).

In case of the toy example (L1 = ds1, L2 = ds2, B = 100 with 2/3-
subsampling, i.e. n = 267, as resampling scheme and p being the misclas-
sification error), Figure 5.1b shows a box plot of the misclassification error:
As expected, a1 = svm and a2 = qda solve both problems very well; a3 = lda

solves the linearly separable problem very well, but has huge problems with
the non-linearly separable one. The goal is now to provide a method which
detects that lda has problems with data set ds2 because of the non-linearly
separable feature space.

5.2. Data set characterization

The question why certain algorithms perform better on particular data sets
than others requires a possibility to describe the data sets. One common ap-
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Figure 5.1.: (a) Exemplary classification problems and (b) performance mea-
sures of the candidate algorithms: (left) ds1 where the feature space is linearly
separable; (right) ds2 with non-linearly separable feature space.
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5.2. Data set characterization

proach is to extract statistical and informative measures from the data sets;
the STATLOG project by King et al. (1995) was the first one which defined
such a set of structural characteristics. Newer approaches, e.g., Kalousis and
Hilario (2000) and de Souto et al. (2008), extend this set of data set charac-
teristics and use them in terms of meta-learning – an approach to learn which
algorithm is best suited for an unknown learning problem (see, e.g. Vilalta and
Drissi, 2002).

Given some user-specified characteristics, data set characterization can be seen
as a two-step process: (1) map each data set into its individual characteriza-
tion space; (2) reduce the individual characterization spaces into one common
characterization space where all data sets are comparable, i.e., a metric can
be defined. More formal, let L be the space of all data sets and L ∈ L. The
function

map: L → R∗ with L 7→ x∗

computes one specific characteristic of a data set. R∗ indicates that the dimen-
sion of the vector x∗ can depend on the data set. For example, computing the
skewness of each continuous input variable results in a vector with dimension
equal to the number of continuous input variables of the given data set; on
the other hand, computing the number of observations results in one number
for every data set. The dimension of x∗ can even be zero if, for example, a
data set has no continuous input variables so that the characteristic is missing.
This first step does not guarantee that all data sets are comparable, therefore
another function red(·) is defined as

red: R∗ → Rd with x∗ 7→ xd

which reduces the dimension of characteristic vector x∗ to dimension d identical
for all data sets. Examples for such reduction functions are: the mean or a
quantile (for which d = 1) or a histogram representation (for which d is chosen
according to the number of bins) for characteristics like the skewness, that
provide a value for each continuous variable in the data set; or the identity
function (for which d = 1) for characteristics like the number of observations,
that provide exactly one value for each data set in the first place.
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Chapter 5. (Psycho)-Analysis of benchmark experiments

Characteristic Description ds1 ds2

obs.n number of observations 400 400
var.n number of variables 2 2

nvar.n number of nominal variables 0 0
nvar.entropy mean nominal variable entropy

nvar.bin number of binary variables 0 0
cvar.n number of continuous variables 2 2

cvar.mac mean multiple attribute correlation 0.06 0.06
cvar.skew mean skewness -0.08 -0.08
cvar.kurt mean kurtosis -1.20 -1.20

resp.cl number of response classes 2 2
resp.entropy mean response entropy 5.93 5.93

i2r.fcc first canonical correlation 0.86 0.04
i2r.frac1 variation from first linear discriminant 1.00 1.00

i2r.mi mean mutual information
i2r.envar equivalent number of variables

i2r.nsratio noise to signal ratio

Table 5.1.: Description of the characteristics used in this chapter and its real-
ization for the linearly separable (ds1) and non-linearly separable (ds2) clas-
sification problems.

A data set characterization then consists of a set of characteristics
{(map1, red1), . . . , (mapT , redT )}, and for a given data set L, its characteri-
zation is the vector c = (c1, . . . , cT ) with

ct = redt(mapt(L)), t = 1, . . . , T .

This framework allows a sound and flexible definition of data set characteriza-
tion (and a simple implementation in software). Common characteristics, like
those defined in King et al. (1995), Kalousis and Hilario (2000) and de Souto
et al. (2008) can be formulated in terms of this map/reduce framework. As
already noted, the STATLOG project defined the first characteristics which
are broadly established nowadays. To simplify matters we use most of their
characteristics together with some additional ones; Table 5.1 provides a list
of typical data set characteristics (for a detailed description we refer to the
original paper). With respect to our notation, mapt, t = 1, . . . , T , corresponds
to the different characteristics in Table 5.1 and redt was chosen to be the mean
for all characteristics. Columns ds1 and ds2 of Table 5.1 show the character-
ization of the two data sets in case of the toy example. As the data sets are
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Figure 5.2.: Relative variation of the characterizations of the 100 drawn samples
in case of ds1. The red line marks the characterization of the original data
set; NA means that this characteristic is not available on this data set.

constructed in way that they match in all characteristics except the linearly
separability, the first canonical correlation (i2r.fcc) is the only characteristic
that differs; the first canonical correlation ranges between [0, 1], whereas 1
means linearly separable and 0 not linearly separable.

Now, extending the benchmark experiment framework with the calculation of
data set characteristics allows us to determine the influence of data set charac-
teristics on the performance of algorithms: for each sample b drawn from the
original data set m, the benchmark experiment provides (1) the performance
of the candidate algorithms pmbk (k = 1, . . . , K), and (2) the characterization
of the sample cmb = (cmb1, . . . , cmbT ) with cmbt = redt(mapt(L

b
m)). Note that

some characteristics could vary between samples drawn from the same data
set, while others definitely stay constant. For example, the mean response
entropy (resp.entropy) could vary depending on how many observations are
drawn from each class, whereas the number of variables (var.n) always stays
constant. Figure 5.2 shows the relative variation of the characterization of the
100 drawn samples in case of ds1.

The result of such an experiment is a collection of tuples of the performance of
each algorithm on each learning sample and the characterizations of each sam-
ple. The corresponding data matrix is of the form of a tabular with B ·M rows
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(for B samples drawn from M original data sets) and K + T columns (for the
performances measures of K algorithms and the T data set characteristics):

K algorithms T characteristics

B samples from
data set L1


p111 · · · p11K
...

. . .
...

p1B1 · · · p1BK

c111 · · · c11T
...

. . .
...

c1B1 · · · c1BT

...
. . .

...
...

. . .
...

B samples from
data set LM


pM11 · · · pM1K
...

. . .
...

pMB1 · · · pMBK

cM11 · · · cM1T
...

. . .
...

cMB1 · · · cMBT

5.3. Preference scaling

The basic model for preference scaling, that is used here for comparing the
performance of different candidate algorithms on a variety of data sets, is the
Bradley-Terry model (Bradley and Terry, 1952). Here, we consider the formu-
lation by Critchlow and Fligner (1991), that allows ties so that each comparison
of the performance of two algorithms has three possible outcomes: (1) the first
algorithm wins, (2) the second algorithm wins, or (3) both algorithms perform
equally (i.e., a tie).

Here, we conduct paired comparisons of the performance measures for the K
algorithms: For K algorithms there are K·(K−1)

2
paired comparisons. Accord-

ingly, the left part of the data matrix illustrated above is now replaced by a
B ·M × K·(K−1)

2
table with an entry for each paired comparison (columns) on

each data set (rows):

K · (K − 1)/2 comparisons

B samples from
data set L1


R(p111, p112) · · · R(p11K−1, p11K)
...

. . .
...

R(p1B1, p1B2) · · · R(p1BK−1, p1BK)
...

. . .
...

B samples from
data set LM


R(pM11, pM12) · · · R(pM1K−1, pM1K)
...

. . .
...

R(pMB1, pMB2) · · · R(pMBK−1, pMBK)
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The entries of the table are the relations R(pmbk, pmbk′) describing one of the
outcomes (1), (2) or (3) of the comparison of algorithms k and k′ on sample b
drawn from data set m. Since this new data matrix still has one row for each
sample b drawn from data set m, it is compatible with the table of data set
characteristics from the above illustration. Thus, the complete data matrix
used for the following analysis consists of a B · M × K·(K−1)

2
table for the

paired comparisons and a B ·M ×T table for the data set characteristics, that
will be used to identify groups of data sets between which the performance
comparisons of the algorithms differ.

When we now consider the paired comparisons, according to the Bradley-Terry
model the three possible outcomes have the probabilities:

P (R(pmbk, pmbk′) = 1) =
πk

πk + πk′ + ν
√
πkπk′

,

P (R(pmbk, pmbk′) = 2) =
πk′

πk + πk′ + ν
√
πkπk′

,

P (R(pmbk, pmbk′) = 3) =
ν
√
πkπj′

πk + πk′ + ν
√
πkπk′

,

where πk ≥ 0, k = 1, . . . , K, are the parameters indicating the strength of each
algorithm, and ν ≥ 0 is a discrimination constant governing the probability
of ties. For parameter estimation via maximum likelihood, one restriction is
necessary: usually, either one parameter is fixed to zero or the sum of all
parameters constrained to 1, as in the following illustrations.

In order to assess whether there are groups of data sets with certain characteris-
tics, for which the performance rankings of the candidate algorithms – and thus
the parameters indicating the strength of each algorithm in the Bradley-Terry
model – differ systematically, the model-based partitioning approach of Strobl
et al. (2010) is used. The algorithm for model-based recursive partitioning is
an extension of the popular CART algorithm for classification and regression
trees (Breiman et al., 1984). However, while in the CART algorithm the aim is
to detect groups of observations with different values of a response variable by
means of recursively splitting the feature space, the aim in model-based recur-
sive partitioning is to detect groups of observations that vary in the parameters
of a certain model of interest. This model of interest could be, e.g., a linear
regression model, where the intercept and slope parameters vary between dif-
ferent groups, whereas in our case, the model of interest is the Bradley-Terry
model, that describes the performance of the candidate algorithms on differ-
ent groups of data sets. The idea behind this is that one joint Bradley-Terry
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Figure 5.3.: (a) Parameter instability in the strength of a candidate algorithm
(simplified illustration). (b) Partitioned paired comparison model.

model would be suited to describe the benchmark study only if the ranking
of the algorithms was equal for all data sets. If, however, different algorithms
perform best on groups of data sets with different characteristics, this can be
detected by the model-based recursive partitioning approach. The algorithm
for model-based recursive partitioning of Bradley-Terry models consists of the
following consecutive steps:

1. Fit a Bradley-Terry model for the paired comparisons of the algorithms
based on all data sets in the current node (starting with the root node
including all data sets).

2. Assess the stability of the Bradley-Terry model parameters with respect
to each characteristic of the data sets.

3. If there is significant instability in the model parameters, split the data
sets in two nodes along the characteristic with the strongest instability,
and use the cutpoint with the highest improvement of the model fit.

4. Repeat steps 1–3 recursively in the resulting nodes until there are no
more significant instabilities (or the number of data sets left in a node
falls below a given stopping value).

The statistical framework employed here for testing the significance of insta-
bilities in the model parameters is based on structural change tests adopted
from econometrics, that can be used to detect the instability in the parame-
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ters of the Bradley-Terry models due to certain characteristics of the data sets,
and is described in detail in Strobl et al. (2010) and Zeileis et al. (2008). The
rationale of the underlying tests is that the individual deviations from a joint
model are considered over the range of each potential splitting variable: As
illustrated in Figure 5.3a, the strength parameter for algorithm ak may show
a systematic change when considered over the range of the characteristic cj –
such as the first canonical correlation, that indicates linear separability – while
over the range of other characteristics the parameter may vary only randomly.
A sound statistical framework is available to detect such systematic parame-
ter instabilities and select the splitting variable or characteristic inducing the
strongest instability (Strobl et al., 2010; Zeileis et al., 2008).

When the model-based partitioning approach of Strobl et al. (2010) is em-
ployed to detect groups of data sets with certain characteristics for which the
performance-rankings of the candidate algorithms differ, the resulting parti-
tion can be displayed as a tree, as illustrated for the artificial toy example in
Figure 5.3b: From all available characteristics in Table 5.1, the first canonical
correlation i2r.fcc – that indicates whether the data set is linearly separable
– is correctly identified as the characteristic that induces a significant change
in the performance-ranking of the algorithms. For the 100 samples from data
set ds1, that is not linearly separable, the values of the characteristic i2r.fcc
are low and lda performs poorly (left node in Figure 5.3b), while for the 100
samples from data set ds2, that is linearly separable, the values of the charac-
teristic i2r.fcc are high and lda performs well (whereas svm performs slightly
worse when compared to the other algorithms, as displayed in the right node
in Figure 5.3b). Note that in this example the performance measure quantifies
errors, i.e., the smaller the better; and this is reflected in the tree nodes where
small values indicate good performances as well.

5.4. Application example

This section demonstrates the framework by means of the UCI domain al-
ready used in Chapter 4. Computational details of the application example
are described in Appendix A.

The application example consists of M = 13 data sets, that are all binary
classification problems but cover a wide area of data set characteristics. Fig-
ure 5.4 names all data sets and shows the relative variation of their character-
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Figure 5.4.: Relative characterization of the UCI machine learning repository
data sets.

istics (again the characteristics listed in Table 5.1 are used, i.e. T = 16). The
K = 6 algorithms of interest are linear discriminant analysis (lda), k-nearest
neighbor classifier (knn), classification trees (rpart), support vector machines
(svm), neural networks (nnet) and random forests (rf) (see, e.g. Hastie et al.,
2009). The performance measure p is the misclassification error and we draw
B = 100 samples using 2/3-subsampling without replacement. The results of
Strobl et al. (2007) and our preliminary experiments have shown that subsam-
pling – rather than bootstrap sampling – is the resampling method of choice
for this kind of benchmark experiments. The reason for this is that bootstrap
sampling with replacement can induce artifacts in measures of the associa-
tion between attributes, such as the entropy or the χ2-statistic (Strobl et al.,
2007).

On each data set the benchmark experiment is computed and the result is
a 1300 × 15 table with paired comparisons of the algorithms and the corre-
sponding 1300 × 16 table with data set characteristics. To fit the recursively
partitioned Bradley-Terry model, categorical and ordinal characteristics are
employed directly, while continuous characteristics are discretized based on
their quantiles. (This discretization discards the order information, but allows
to treat missing values as an extra category in a straightforward way – and
if the order is important the model will find it nevertheless). We require a
minimum of 200 observations per node; here the idea is to create nodes that
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contain in average the samples of at least two data set, so that the result-
ing partition is well interpretable. Based on this setup, Figure 5.5 shows the
resulting tree.

Focusing first on the rightmost node (Node 11) in Figure 5.5, it becomes clear
that the performance-rankings of the 6 algorithms is conditional on the do-
main specified by the data sets: Node 11 consists of big (obs.n > 667) and
linearly well separable (i2r.fcc > 0.520) data sets. On these data sets, all al-
gorithms perform well except classification trees. This is plausible from the
method of operating of classification trees, where a linear separation can only
be roughly approximated by means of stepwise binary partitioning. Another
example where one algorithm is clearly inferior is displayed in Node 9, where
the data sets are hardly linearly separable (i2r.fcc ≤ 0.520) and the dimen-
sionality is low (var.n ≤ 2). In this case, linear discriminant analysis performs
poor for obvious reasons, while the remaining algorithms perform well. With
increasing dimensionality (var.n > 2, Node 10) it appears that support vec-
tor machines perform best, followed by random forests and neural networks;
k-nearest neighbor classifiers perform equal to classification trees and again
linear discriminant analysis comes last.

The data sets that are grouped in the remaining three nodes on the left hand
side of the tree (Nodes 4, 6 and 6) based on their smaller samples sizes (obs.n ≤
667) also show clear differences in the performance-rankings, but here the tree
provides no reasonable explanation: the only characteristic used for splitting
in this part of the tree is the number of observations obs.n. However, this
characteristic may only serve as a proxy for other differences between the data
sets, that are not yet covered by our list of characteristics.

This application example nicely illustrates the main challenge of the proposed
method: the selection of the “right” data set characteristics. However, the
benefit of the proposed method is that – at least from the set of characteristics
provided – the relevant ones are selected for splitting automatically. In further
consequence this allows to compute a huge set of characteristics, (e.g. join
all characteristics available in the three papers cited in the introduction); the
relevant ones are chosen automatically. Moreover, interactions between the
characteristics are detected such that it becomes clear, e.g., that the perfor-
mance of linear discriminant analysis depends both on the linear separability
and on the dimensionality of the data set, as illustrated in our application
example.
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Figure 5.5.: Partitioned paired comparison model for the thirteen UCI machine
learning repository data sets and the six candidate algorithms.
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5.5. Summary

This chapter proposes a formal framework to determine the influence of data
set characteristics on the performance of learning algorithms. The framework
is a combination of the three methods, benchmark experiments, data set char-
acterization and recursively partitioning Bradley-Terry models. Benchmark
experiments are used to generate performance information for algorithms and
relevant data set characteristics on various data sets. The recursively partition-
ing Bradley-Terry model then employs splits in characteristics which induce a
significant change in the performance-ranking of the algorithms. Advantages
of the resulting trees are that (1) they are easy to interpret by means of visual-
ization and (2) from a potentially large number of data set characteristics those
that correspond to a significant change in the performances of the algorithms
are automatically detected.

The approach can be used both for exploring the impact of characteristics of a
given sample of data sets, like the ones from UCI Machine Learning Repository
(Asuncion and Newman, 2007) used in our example, and for analyzing the
results of simulation experiments, where certain characteristics of data sets
are systematically varied and the aim is to test their effect on the performance
of candidate algorithms. In either case, it is important to note that – due
to the fact that the number of bootstrap- or subsamples drawn form given
data sets, and the number of samples drawn from a data generating process
in a simulation study is arbitrary – one can detect very small performance
differences with very high power when the number of learning samples B is
large (see also Hothorn et al., 2005).

Future work will also include investigations on the stopping criteria for the
recursive partitioning algorithm. For example, the number of minimum obser-
vations per node can be chosen greater than B as in our example, but it could
also be chosen smaller than B, which would result in more than one node for
a data set and could uncover different performance-rankings on sub-samples
from one data set with different characteristics.
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Chapter 6.

Sequential/adaptive benchmark
experiments

Benchmark experiments draw B independent and identically distributed learn-
ing samples from a data generating process to estimate the (empirical) perfor-
mance distribution of candidate algorithms. Formal inference procedures are
used to compare these performance distributions and to investigate hypotheses
of interests (cf. Chapter 1 and Chapter 2). In most benchmark experiments
B is a “freely chosen” number, often specified depending on the algorithms’
running time to setup experiments which finish in reasonable time. In this
chapter we provide first thoughts on how to control B and remove its “arbi-
trary” aftertaste.

General sequential designs enable, amongst other things, to control the sam-
ple size, i.e., B (see, for example, Vandemeulebroecke, 2008). A benchmark
experiment can be seen as a sequential experiment as each run, i.e., drawing
a learning sample and estimating the candidates’ performances is done one by
one. Currently, no benefit is taken from this sequential procedure: The exper-
iment is considered as a fixed-sample experiment with B observations and the
hypothesis of interest is tested using a test T at the end of all B runs. We
propose to take the sequential nature of benchmark experiments into account
and to execute a test T successively on the accumulating data. In a first step,
this enables to monitor the benchmark experiment – to observe p-value, test
statistic and power of the test during the execution of the benchmark experi-
ment. In a second step, this information can be used to make a decision – to
stop or to go on with the benchmark experiment.

This chapter reviews the sequential benchmark experiment framework in Sec-
tion 6.1. Section 6.2 discusses monitoring and its interpretation as indicator
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for the differences’ relevance. In Section 6.3 the challenges of using the se-
quential information for decision making are discussed, i.e., possibilities for
the analysis of accumulating data are presented. Recursive combination tests
by Brannath et al. (2002) are then introduced as one first procedure towards
a sound and flexible sequential benchmark experiment framework. Section 6.4
demonstrates the principle benefit in real-world applications using the UCI do-
main already used in the previous chapters. Section 6.5 concludes the chapter
with a summary and an outline for future work.

6.1. Sequential framework

Section 1.1 defines a benchmark experiment as follows: Given is a data gen-
erating process DGP and we draw b = 1, . . . , B independent and identically
distributed learning samples of size n:

Lb = {zb1, . . . , zbn} ∼ DGP

There are K > 1 candidate algorithms ak (k = 1, . . . , K) available to solve the
underlying learning problem. For each algorithm ak the function ak( · | Lb) is
the fitted model on the learning sample Lb. The performance of the algorithm
ak when provided with the learning sample Lb is measured by a scalar function
p(·):

pbk = p(ak,L
b) ∼ Pk(DGP )

The pbk are samples drawn from the distribution Pk(DGP ) of the performance
measure of the algorithm ak on the data generating processDGP . For practical
issues computing p(·) in different learning tasks we refer to Chapter 2 for
supervised learning problems and Dolnicar and Leisch (2010) for unsupervised
clustering problems.

Now, given the K different random samples {p1k, . . . , pBk} with B iid samples
drawn from the distributions Pk(DGP ) the null hypothesis of interest for most
problems is:

H0 : P1 = · · · = PK
In order to specify an appropriate test procedure T we need to define an
alternative to test against. The alternative depends on the optimality criterion
of interest, which we assess using a scalar functional φ: algorithm ak is better
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than an algorithm ak′ with respect to a performance measure p and a functional
φ iff φ(Pk) < φ(Pk′). The test procedure then is:

T

{
H0 : φ(P1) = · · · = φ(PK)

H1 : ∃k, k′ : φ(Pk) 6= φ(Pk′)

Benchmark experiments with this design are considered as fixed-sample ex-
periments, i.e., B is defined, the experiment is executed, and at the end the
hypothesis of interest is tested using the test T :

For b = 1, . . . , B:

1. Draw learning sample Lb.

2. Measure performance pbk of the k = 1, . . . , K candi-
date algorithms.

Execute test procedure T on the K performance estima-
tions {p1k, . . . , pBk} and make a decision for a given α.

In most benchmark experiments B is just a freely chosen number without
any statistical foundation; in fact the algorithms’ running time often is the
determining factor. However, the listing shows that the nature of benchmark
experiments is sequential. We can take this into account and change the frame-
work to execute test T in each replication (with a few initial replications as
burn-in replications):

Do

1. Draw learning sample Lb.

2. Measure performance pbk of the k = 1, . . . , K candi-
date algorithms.

3. Execute test procedure T on the K performance esti-
mations {p1k, . . . , pbk}.

While no decision for a given α (and b ≤ B).

Now, in a first step this enables to monitor the benchmark experiment: we can
observe the p-value on the accumulating data, and see, for example, how the
decision would be after b replications, and after how many replications it is fi-
nal. Anyhow, in this setup the experiment has B replications and the Bth test
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is the one used for the final decision. So, in a second step (group-)sequential
and adaptive test methodology can be used to draw decisions during the ex-
periment. Based on the particular method this enables to stop the experiment
early, to change the null hypothesis or even to take off one candidate algorithm
earlier.

6.2. Monitoring

Monitoring benchmark experiments means that in every replication the hy-
pothesis of interest is tested on the accumulating performance measures pbk
using the test procedure T . The test results, mainly the p-values, are observed
and interpreted. One interesting observation is the number of replications from
then on the p-value is continuously smaller than a given α; we define this as
the point of consecutively significance Π. If there is such a point available Π
ranges between 1 and B; otherwise, we define Π =∞ or more precise Π =∞B.
We propose to use the point of consecutively significance as a measure on how
big the difference between the algorithms is: the bigger Π the bigger is the
algorithms’ difference based on the performance measure p. If one beliefs in
the heuristic “relevant differences are often big differences” Π is an indicator
for relevance as well.

In order to present this monitoring aspect of sequential benchmarking we use
simple exemplar benchmark experiments which represent three typical bench-
mark situations. They follow this setup: DGP is the Pima Indians Diabetes
(PmID) data set L with bootstrapping as resampling scheme to draw B = 200
learning samples Lb. The candidate algorithms are the linear discriminant
analysis (lda), a support vector machine with the cost parameter C = 1.00
(svm1), a support vector machine with the cost parameter C = 1.01 (svm2)
and a random forest (rf). The performance p is the misclassification error
measured on validation samples defined as out-of-bag samples L \ Lb. The
individual three exemplar benchmark experiments compare two algorithms at
a time, i.e., test if algorithm a1 is better than algorithm a2. We use the
non-parametric (one-sided) Wilcoxon Signed Rank test (with three burn-in
replications) as test procedure T and define α = 0.05. This reflects the sit-
uation where an existing algorithm a1 solves the given problem and a newly
developed algorithm a2 comes up in literature and is now.

98



6.2. Monitoring

Algorithm

M
is

cl
as

si
fic

at
io

n

0.18
0.20
0.22
0.24
0.26
0.28
0.30
0.32

●

●

●●

●●●

●

●

●●

●●●

lda svm1

(a)

Replication

p−
va

lu
e

0.0

0.2

0.4

0.6

0.8

1.0

α = 0.05

Π = 13

0 50 100 150 200

(b)

Figure 6.1.: Scenario 1, different algorithm performances, lda versus svm1:
(a) Misclassification error; (b) Sequential p-value.
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Figure 6.2.: Scenario 2, similar algorithm performances, rf versus svm1:
(a) Misclassification error; (b) Sequential p-value.
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Figure 6.3.: Scenario 3, equal algorithm performances, svm1 versus svm2:
(a) Misclassification error; (b) Sequential p-value.
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Scenario 1 – Different algorithm performances. The first scenario illus-
trates a clear situation, i.e., one algorithm (lda) is clearly better than the other
(svm1). Figure 6.1a shows box plots of the misclassification errors (the sample
dependency is only shown for samples which are hard to solve for at least one
algorithm). After B = 200 replications the Friedman test procedure T rejects
the null hypothesis of no algorithms’ difference with a p-value of 1.1102 ·10−16,
i.e., lda ≺ svm1 (see Section 2.4 for the definition of the preference relation
≺). The sequentially calculated p-value in Figure 6.1b displays that the point
of consecutively significance Π is after 13 replications. So the performance dif-
ference between these two algorithms is big, only a few replications are needed
to have a significant one. Using this information a decision-making framework
could save a number of replications in this benchmark experiment.

Scenario 2 – Similar algorithm performances. The second scenario illus-
trates a not so clear situation, i.e., both algorithms (rf versus svm1) solve the
learning problem nearly equally (Figure 6.2a). However, after B = 200 repli-
cations the Friedman test rejects the null hypothesis with a p-value of 0.0032,
i.e., rf ≺ svm1. The sequential p-value plot in Figure 6.2b shows that there is
a “wild burn-in phase” at the beginning (0 to 70), a phase where the p-value
scatters around 0.05 (70 to 110), and then after 117 replications the p-value
is consecutively under α = 0.05. In comparison to Scenario 1 the difference
between the two algorithms is small, a larger number of replications is needed
to make it visible. This is the well known effect that one can make arbitrary
small differences significant when drawing enough samples. Here, Π indicates
that even the difference is significant it may be a small (not relevant) one.

A confirmation of monitoring its usefulness becomes explicit if supposed that
we defined B = 100 for this scenario. In the sequential p-value plot we see
that after 100 replications the p-value is below α, but a few replications before
(and after) it is above the line:

replication: 95 96 97 98 99 100
p-value: 0.0532 0.0758 0.0792 0.0721 0.0620 0.0483

The final test after 100 replications reports a significant difference, but Π =
100 warns the researcher about the marginal result. From a decision-making
framework additional replications are expected to confirm the decision.
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Scenario 3 – Equal algorithm performances. The third scenario illustrates
an undecidable situation, i.e, both algorithms (svm1 versus svm2) solve the
learning problem equally (Figure 6.3a). In the sequential p-value plot (Fig-
ure 6.3b) we see that the p-value increases continuously after a short burn-in
phase (0 to 40). The test can not reject the null hypothesis (regardless of
the concrete B), Π = ∞. In this scenario we expect from a decision-making
framework to detect the non-difference, “accept” the null hypothesis, and save
a number of replications.

6.3. Decision making

The typical benchmark scenarios in the previous section already hint at the
possibilities of a benchmark experiment framework with sequential decision
making: execute a benchmark experiment as long as needed, i.e., until H0 is
rejected or “accepted” (i.e., failed to reject).

Sequential analysis was pioneered by Wald (1945). Since then a lot of research
was done, mainly in the field of pharmaceutical statistics with focus on clinical
trials (for comprehensive reviews, see for example Wassmer, 2000; Hellmich
and Hommel, 2004; Vandemeulebroecke, 2008). The analysis of accumulating
data distinguish in three main threads (Vandemeulebroecke, 2008): strictly
(or purely) sequential, group sequential and adaptive (or flexible) designs. In
strictly sequential designs, observations are obtained one by one, and the ex-
periment can be stopped at any time. Group sequential designs sample groups
of observations, and the experiment can usually be stopped at any interim anal-
ysis, that is, after any of these groups. Any design that allows more flexibility,
e.g., to change hypothesis, group sample size, etc., is called adaptive design.
All these procedures deal with repeated significance testing (first addressed by
Armitage et al., 1969): Testing not once but multiple times on accumulating
data causes the inflation of the probability of the error of the first kind, i.e., the
probability of rejecting the global null hypothesis when in fact this hypothesis
is true; also known as alpha inflation.

For the sequential benchmark experiment framework we require that (1) deci-
sions can be made for any arbitrary hypothesis of interest (2) using any appro-
priate test procedure T . These requirements ensure that analyses which can be
done in the fixed-sample framework can be done in the sequential framework
as well. Considering this, adaptive designs based on p-value combination func-
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tions and corresponding decision boundaries meet the needed requirements.
The following section discusses a variant of p-value combination functions ap-
plicable for benchmark experiments.

6.3.1. Recursive combination tests

Recursive combination tests are defined by Brannath et al. (2002) as an adap-
tive test procedure based on the recursive application of two-stage combination
tests. In the following we introduce the recursive combination tests principle
using Fisher’s product test and review the theory as required. For the complete
theoretical validation of recursive combination tests we refer to the original
publication by Brannath et al. (2002).

A one-sided null hypothesis H0 is tested at level α in a two-stage combination
test as follows: In the planning phase of Stage 1, the decision boundaries α01

and α11 with 0 ≤ α11 ≤ α ≤ α01 ≤ 1, and a p-value combination function
C(·, ·) with its corresponding critical value c (dependent on α, α01, and α11)
are defined. The p-value p1 of Stage 1 is computed in the performing phase and
then analyzed in the interim phase of Stage 1, i.e., H0 is rejected if p1 ≤ α11,
H0 is accepted if p1 > α01 and Stage 2 is performed if α11 < p1 ≤ α01. In
the latter case the Stage 2 p-value p2 is computed on newly drawn learning
samples and H0 is rejected iff C(p1, p2) ≤ c, otherwise accepted. A prominent
choice for a two-stage combination test is Fisher’s product test,

C(p1, p2) = p1 · p2 with

c =
α− α11

lnα01 − lnα11

.

If stage-wise order of the sample space is assumed, a global p-value p can be
defined as a function q(p1, p2); in case of Fisher’s product test this function is
defined as

q(p1, p2) =


p1, p1 ≤ α11 or p1 > α01

α11 + p1 · p2 · (lnα01 − lnα11), p1 ∈ (α11, α01] and p1 · p2 ≤ α11

p1 · p2 + p1 · p2 · (lnα01 − ln p1 · p2), p1 ∈ (α11, α01] and p1 · p2 ≥ α11.

With this ordering, rejections at the first stage are considered to provide more
evidence against H0 than on the second stage, whereas acceptances at Stage 1
are assumed to support less evidence. A further design requirement is that
the p-values p1 and p2 are p-clud (Brannath et al., 2002), meaning that under
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H0 the distributions of p1 and p2 conditional on p1 are larger or equal to the
uniform distribution on [0, 1]. This is fulfilled if independent samples are drawn
at each stage and the test T is a level α test for any pre-chosen significance
level α.

The generalization to an undefined number of stages is obvious – perform
another two-stage combination test as second test, as third test, etc, until a
final decision is reached. This requires for each stage t the definition of a
conditional critical value ct and conditional decision boundaries αt, α0t and
α1t. For Fisher’s product test the conditional critical value ct is defined as

ct =
αt − α1t

lnα0t − lnα1t

,

with αt the conditional significance level computed by α∗t = ct−1

pt−1
(α1 = α).

The conditional decision boundaries α1t and α0t are determined according to
the constraint

α1t < α∗t ≤ α0t. (6.1)

This ensures that pt ≤ α1t implies p ≤ α and pt > α0t implies p > α. The
global p-value p is then computed by backward recursion, i.e.,

p = q(p1, q(p2, . . . , q(pt−1, pt))). (6.2)

In summary, the flowchart in Figure 6.4 represents the complete recursive
combination test procedure. As one advantage of adaptive tests is that all
information available after performing one stage may be used for the next
stage, the flowchart also shows the possible design adaptions in each planning
phase of a stage (e.g., changing the test procedure Tt or the number of learning
samples Bt).

Two-sided null hypotheses. The generalization to two-sided null hypotheses
is based on the fact that any two-sided null hypothesis H0 at level α can be
conducted with (two) one-sided adaptive test procedures at level α/2; Wassmer
(2000) and Hellmich and Hommel (2004) provide details. For the present, we
focus on the one-sided null hypotheses, however, this generalization is a major
part of our future research (see discussion in Section 6.5).
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Test H0 at level α

Plan Stage 1: B1, T1,
C1(·, ·), α1 = α, α11,
α01, c1, q1(·, ·)

Calculate pt

pt?Accept H0

Recject H0

Plan Stage t+ 1: Bt+1,
Tt+1, Ct+1(·, ·), αt =
α∗
t , α1(t+1), α0(t+1),
ct+1, q(t+1)(·, ·)

t = 1

pt > α0t

pt ≤ α1t

α1t < pt ≤ α0t

t = t+ 1

Figure 6.4.: Flowchart representing the recursive combination test procedure.
Allowing undecidable endings extends the decision block with another stop
case, for example the case when

∑
tBt is smaller than a predefined maximum

number of replications B.
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6.3.2. Recursive combination tests in benchmark
experiments

Applying recursive combination tests to benchmark experiments is (almost)
along the lines of the framework represented in Figure 6.4. In fact, the node
“Calculate pt” simply is the execution of a fixed-design benchmark experiment
with the components defined in its planning phase“Plan Stage pt−1”. However,
there are differences between clinical trials – where sequential analysis is usually
applied – and benchmark experiments that affect the application of sequential
analysis fundamentally:

1. In contrast to clinical trials, with benchmark experiments it is easy and
(comparatively) cheap to make additional replications until a final de-
cision is reached; i.e., to reject or accept H0. So, theoretically, in any
situation a decision can be made. (In practice, however, sometimes it
makes sense to stop after a large number of replications.)

2. Benchmark experiments are computer experiments often executed using
remote servers, clusters, or other High-Performance Computing technolo-
gies. Therefore, decisions that are to be made in the interim and planning
phases (e.g., to stop or to go on, to change the number of replications,
or to change some decisions boundaries) need to be automatized soundly.
(“Interactive” interim and planning phases would be an alternative op-
tion.)

3. Benchmark experiments usually compare more than two candidate algo-
rithms simultaneously (i.e., multiple comparisons problems) as to a set
of performance measures (i.e., multiobjective optimizations). In this case
the procedure has to perform replications until a decision is made for
each of the performance measures.

4. Benchmark experiments (often) use resampling schemes to randomly
draw learning samples and corresponding test samples from a fixed data
set (e.g., bootstrapping with out-of-bag observations). This leads to non-
independent p-values. Independent p-values is important for Fisher’s
product test. However, the p-values’ correlation vanishes with increas-
ing data set size, we can rely on the asymptotic.

Aim of this chapter is to investigate the principle feasibility of sequential bench-
mark experiments, therefore we focus on the following basic scenario: First, we

105



Chapter 6. Sequential/adaptive benchmark experiments

are interested on controlling the number of replications B and not on adapt-
ing the design. Therefore, the tests Tt and the combination tests Ct are the
same for all stages; and for simplicity we define equal numbers of learning
samples Bt for each stage. So, the only adaption in each planning phase is the
(automatic) determination of the decision boundaries α0t and α1t according
to Constraint (6.1). Second, we investigate one-sided null hypotheses of two
candidate algorithms according to one performance measure; Point 3 of the
enumeration above is the major part of our future research (along with the
generalization to two-sided null hypotheses; see discussion in Section 6.5).
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Figure 6.5.: Recursive combination test procedure applied on Scenario 2, sim-
ilar algorithm performances, rf versus svm1.

Scenario 2 (Section 6.2) of the exemplar benchmark experiments is used to
present and discuss recursive combination tests in benchmark experiments. For
this scenario, monitoring shows that Π = 117, i.e., after 117 replications the p-
value computed on the accumulating data is consecutively under α = 0.05 (cf.
Figure 6.2). Therefore, we expect the rejection of the null hypothesis before
all B = 200 replications are used. We split the scenario into four stages, i.e.,
Bt = B

4
= 50, and define α = α∗1 = 0.05, α11 = 0.01, α01 = 0.9. The rule for

the conditional decision boundaries is defined as α0t =
α∗t
1.2

and α1t = α1(t−1); in
each stage a small fraction of the conditional significance level is spent for the
rejection boundary, whereas the acceptance boundary is unchanged. Figure 6.5
visualizes the result; the concrete values of the individual stages are:

ct α∗t α1t p-value α0t

Stage 1: 0.0089 0.0500 0.0100 0.6509 0.9000
Stage 2: 0.0005 0.0137 0.0114 0.0037 0.9000
Stage 3: 0.0115 0.1404 0.1170 0.0290 0.9000
Stage 4: 0.0655 0.3952 0.3293 0.0545 0.9000
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The conditional significance level α∗t and therefore the lower decision boundary
α0t increases with each stage which restricts the “undecidable area” more and
more. The p-value of the first stage does not allow a decision but then every
p-value is lower than the rejection boundary. Therefore, H0 can be rejected
after the second stage and we save 100 replications. The recursively computed
global p-value is 0.0209 using Formula (6.2).

6.4. Application example

We use the UCI domain to investigate the benefit of sequential/adaptive bench-
marking in a real-world application (the domain is already introduced in Chap-
ter 4; we use all data sets except mnk3 due to numerical problems). In Sec-
tion 4.5.1 we set B = 250 for the UCI experiment; we now take a look at the
decisions of the recursive combination tests for the two leader algorithms of
each data set. In detail: Figure 4.2b and Table 4.1 show the results of the
fixed-sample experiments. For each data set m = 1, . . . , 20 we take the two
leader algorithms a(1) and a(2) such that a(1) has the smaller mean performance
than a(2) (ties are broken randomly). For each pair the null hypothesis of an
equal misclassification error is tested against a(1) has a smaller misclassifica-
tion error than a(2). The non-parametric (one-sided) Wilcoxon Signed Rank
test is used as test Tt, and Fisher’s Product test as combination test Ct. We
split each experiment into five stages, i.e., t = 1, . . . , 5, Bt = B

5
= 50, and

define α = α∗1 = 0.05, α11 = 0.01, α01 = 0.9. The rules for the conditional

decision boundaries are defined as α0t =
α∗t
1.2

and α1t = α1(t−1) −
‖α1(t−1)−α∗t ‖

10
; in

each stage a small fraction of the conditional significance level is spent for the
rejection boundary and the the acceptance boundary.

Figure 6.6 shows the results of the recursive combination tests for each data
set (the red dots are the stage p-values, the lower dashed lines are the rejection
boundaries, the upper dashed lines are the acceptance boundaries). For almost
all data sets with a significant difference between the two leader algorithms we
see that after two stages the test decisions are clear (Sonr, Crcl, musk, rngn,
chss, twnr, thrn, livr, Crds, HV84, PmID, Hrt1). Only the plot for hptt shows
a different image – all stage p-values are inside the two boundaries, and ac-
cording to the sequential test procedure no significant difference can be stated
after 250 replications. In case of the data sets with non-significantly different
leaders we see that at least one stage p-value is always above the acceptance
boundary (except for Sprl). But the decisions are not as clear as for the sig-
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Figure 6.6.: Recursive combination test procedure applied on the two leader
algorithms for each data set of the UCI domain (cf. Table 4.1). The red dots
are the p-values for each stage, the lower dashed line is the rejection boundary,
and the upper dashed line is the acceptance boundary.
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nificant differences. On the one hand this can imply that more replications are
needed for a clear decision, or on the other hand that the rule for computing
the acceptance decision boundaries is not optimal. As already noted in Sec-
tion 6.3.2, the automatization of the interim and planning phases is a crucial
point. Our current believe is, that this is a problem of the automatization,
and more research need to be done to have a sound automatization.

6.5. Summary

This chapter provides first thoughts on sequential/adaptive benchmarking. We
show that taking the sequential nature of a benchmark experiment into ac-
count, enables to monitor and to make decisions during the execution of the
experiment. We present an appropriate decision framework based on recursive
combination tests with Fisher’s product test. For the UCI application example
the framework allows early stopping in case of significant decisions, however,
in case of decisions towards non-significance the framework does not provide
clear statements.

One major question is if the flexibility of adaptive procedures, like the recursive
combination tests, is really needed for benchmark experiments. One can imag-
ine that in many experiments, nothing is changed in the planning and interim
phases – then less flexibility to the benefit of more efficiency would be appro-
priate. The most efficient approach is a strictly sequential approach, where a
test is executed after each replication. Another approach, little less flexible but
more efficient then the adaptive one, is the group sequential approach CRP
by Müller and Schäfer (2001). This approach also includes the possibility of
data-dependent modifications of the decision boundaries which probably leads
to a better automatism. See Schäfer et al. (2006) for a comparison with other
sequential/adaptive designs. So, one major part of future work contains in-
tensive evaluation of different frameworks. Another, more general, part is the
evaluation of the stability of such sequential/adaptive benchmarking frame-
works. Stability can be investigated by calculating “all” possible test decisions
under rearrangements of the individual replications (permutations). “Going
wild” this idea could also lead to a general approach for the benchmarking of
different sequential, group sequential, and adaptive test frameworks.
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Chapter 7.

Discussion

Benchmark experiments nowadays are the method of choice to evaluate (new)
learning algorithms in most research fields with applications related to sta-
tistical learning. Benchmark experiments are an empirical tool to analyze
statistical learning algorithms on one or more data sets – to compare a set of
algorithms, to find the best hyperparameters for an algorithm, or to make a
sensitivity analysis of an algorithm. In essence, the experiments draw observa-
tions from theoretically intractable performance distributions of the candidate
algorithms. Hothorn et al. (2005) define the theoretical framework, this dis-
sertation uses their formalism and framework as fundament and extends it to
a comprehensive toolbox for benchmark experiments.

This dissertation focus on the analysis of benchmark experiments used for
algorithm comparisons. We present a systematic approach from exploratory
analyses with specialized visualizations via formal investigations and their in-
terpretation as preference relations through to a consensus order of the can-
didate algorithms – based on a set of performance measures and one or more
data sets (Chapter 2 for single data sets, Chapter 4 for domains). Interac-
tive visualizations can contribute a lot to gain further insights into the data
created by benchmark experiments. Therefore, an interactive version of the ex-
ploratory tool presented in Chapter 2 is presented and discussed in Chapter 3.
It is common knowledge that certain characteristics of data sets determine the
performance of learning algorithms. A formal framework is presented to inves-
tigate such correlations based on recursive partitioning Bradley-Terry model
(Chapter 5). In each former chapter we treat the benchmark experiments as
fixed-sample experiments, but the nature of benchmark experiments is sequen-
tial. In Chapter 6 we provide first thoughts on a sequential framework, discuss
its advantages – namely, controlling the number of replications by monitoring
the experiments and decision-making during the experiments. Each chapter
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is concluded with a summary and an outlook for further improvements con-
cerning the chapter’s topic. Here, we want to discuss three major tasks of our
future work.
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Figure 7.1.: Box plot of the first canconical correlation characteristic of 100
samples drawn from the (a) Sonr and the (b) Sprl with bootstrapping and
subsampling. The red line is the characteristic computed on the complete data
sets.

Effect of resampling methods. Figure 7.1 shows box plots of the first canon-
ical correlation characteristic (see Section 5.2) of 100 samples drawn from the
(a) Sonr and the (b) Sprl data sets with bootstrapping and subsampling. The
red line is the characteristic computed on the complete data sets. As we can
see on the Sonar data set, using resampling can heavily affect the learning
sample characteristics and therefore the result of the application where resam-
pling is used (which is well-known). The characterization framework defined
in Chapter 5 now provides an environment to systematically investigate such
effects.

Sequential/adaptive benchmarking. Sequential/adaptive benchmarking is
of great interest for our future work. Investigating different other sequential
frameworks with less flexibility but more efficiency is one major task. Also
important in our point of view is the systematical investigation of the stage p-
values. Even the p-values are asymptotically independent, in practice there is a
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(small) dependence and its impact on the test decisions should be investigated
systematically.

Grammar of benchmarking. A long-term goal is the development of a gram-
mar of benchmarking. By this we mean on the one hand a formal language
to specify and to describe arbitrary benchmark experiments and simulation
studies (implementation independent); and on the other hand a guide to de-
sign experiments in an appropriate manner. For example, the benchmark
experiments in this dissertation are described by natural language and by the
concrete R code available in the computational details. The first one is too
informal and allows a lot of misinterpretation; the second one is in a way too
formal – in terms of implementation details – and one readers who do not
know the R language and its tricks and treats have problems to understand
the experiment. The motivation for the design guide primarily are sensitivity
analyses. Currently the researcher is totally free to design the experiment – no
rules state how to design “the grid” (as simplification) of different experiment
settings through the experiment space. Now, the sequential/adaptive bench-
marking approach suggests the idea to embed benchmark experiments into the
theory of experimental design: the design elements of benchmark experiments
are the candidate algorithms (treatments), the data sets (experimental units),
the learning samples (and corresponding validation samples) drawn with a re-
sampling scheme from each data set (blocking factor within treatments), and
the performance measures of interest (observational units). Based on such a
formal design framework, meaningful automatic recommendations of experi-
ment designs could be possible. And our current opinion is that such a formal
language and design framework would lead to better experiments in scientific
fields dealing with benchmarking, simulation, and sensitivity analysis.
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Part II.

Archetypal analysis
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Chapter 8.

General framework

The Merriam-Webster Online Dictionary (2008) defines an archetype as “the
original pattern or model of which all things of the same type are representa-
tions or copies”. The aim of archetypal analysis is to find “pure types”, the
archetypes, within a set defined in a specific context. The concept of archetypes
is used in many different areas, the set can be defined in terms of literature,
philosophy, psychology and also statistics. Here, the concrete problem is to
find a few, not necessarily observed, points (archetypes) in a set of multi-
variate observations such that all the data can be well represented as convex
combinations of the archetypes. An illustrative example in literature is: the
Spider-Man personality belongs to the generic Hero archetype, and archetypal
analysis tries to find this coherence.

In statistics archetypal analysis was first introduced by Cutler and Breiman
(1994). In their paper they laid out the theoretical foundations, defined the
concrete problem as a nonlinear least squares problem and presented an alter-
nating minimizing algorithm to solve it. It has found applications in different
areas, e.g., in economics (Li et al., 2003; Porzio et al., 2008), astrophysics
(Chan et al., 2003) and pattern recognition (Bauckhage and Thurau, 2009).
In this part of the dissertation we introduce a general framework for archetypal
analysis. Chapter 8 defines a methodological (and computational) framework
which allows to generalize the archetypal problem: arbitrary loss functions,
arbitrary conditions on the coefficients, or arbitrary matrix norms can be de-
fined. A selection of these computational parts then determines the concrete
optimization problem to solve; such a selection is called a family (as commonly
called in the R community).

In Chapter 9 we take advantage of the framework and define two new problems
– the weighted and the robust archetypal problems – and provide the corre-
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sponding family elements. Data points which vary from the majority have
great influence on the solution; in fact one outlier can break down the solu-
tion. The original algorithm is adapted to be a robust M-estimator and an
iteratively reweighted least squares fitting algorithm is presented. As required
first step, the weighted archetypal problem is formulated and solved. The algo-
rithm is demonstrated using an artificial example, the Air-Pollution example
from Cutler and Breiman (1994), and a detailed benchmark experiment for
sensitivity analysis.

Finally, as long-term outlook of the generalization of archetypes we discuss in
Chapter 10 that the archetypal algorithm actually is similar to the least squares
formulation of centroid clustering algorithms; and one can think of a general
framework for the class of k-prototypes-like algorithms (k-means, k-median,
Fuzzy k-means, etc.; see, e.g., Steinly, 2006; Leisch, 2006).

The R package archetypes implements the general framework defined in this
dissertation’s part. In Appendix A.2 we explain the design and the concept of
the package; and show how to reproduce the application examples shown in
the dissertation.

In the remaining of this chapter we review the theoretical background of clas-
sical archetypes in Section 8.1. Section 8.2 presents the structure of the gen-
eral framework and family elements. And in Section 8.3 we present a real
world example – the archetypes of human skeletal diameter measurements –
to descriptively introduce archetypal analysis. Note that the mathematical
nomenclature in this part of the dissertation is independent of the previous
benchmark experiment part (due to compatibility with the publications); the
next section defines the notation.

8.1. Archetypal problem

Consider an n × m matrix X representing a multivariate data set with n
observations and m attributes. For given k the archetypal problem is to find
the matrix Z of k m-dimensional archetypes. More precisely, to find the two
n×k coefficient matrices α and β which minimize the residual sum of squares

RSS = ‖X − αZ>‖2 with Z = X>β (8.1)
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Figure 8.1.: (a) Artificial toy data set. (b) Approximation of the convex hull
(outer polygon) by three archetypes (inner triangle). (c) Approximation of the
data through the three archetypes and the corresponding α values.

subject to the constraints

k∑
j=1

αij = 1 with αij ≥ 0 and i = 1, . . . , n,

n∑
i=1

βij = 1 with βij ≥ 0 and j = 1, . . . , k.

The constraints imply that (1) the approximated data are convex combinations
of the archetypes, i.e., X = αZ>, and (2) the archetypes are convex combina-
tions of the data points, i.e., Z = X>β. ‖ · ‖2 denotes the Euclidean matrix
norm.

Cutler and Breiman (1994) present an alternating constrained least squares
algorithm to solve the problem: it alternates between finding the best α for
given archetypes Z and finding the best archetypes Z for given α; at each
step several convex least squares problems are solved, the overall RSS is re-
duced successively. The following Section 8.2 provides concrete details on the
algorithm.

Figure 8.1a shows an artificial two-dimensional toy data set. We use this simple
problem to introduce the methodology throughout this part of the dissertation;
the advantage of such a simple problem is that we can visualize the result.
Section 8.3 then shows a more realistic example. The toy data set consists of
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Chapter 8. General framework

two attributes x and y, and 250 observations. It is generated in a way such that
k = 3 archetypes are the optimal solution. Figure 8.1b shows the archetypes,
their approximation of the convex hull (the inner triangle) and the convex hull
of the data (outer polygon). Figure 8.1c shows the approximation of the data
through the archetypes and the corresponding α values; as we can see, all data
points outside the approximated convex hull are mapped on its boundary, all
data points inside are mapped exactly.

8.2. Archetype algorithm

The description of the classical archetypal analysis in Formula (8.1) defines the
basic principle of the estimation algorithm: it alternates between finding the
best α for given archetypes Z and finding the best archetypes Z for given α;
at each step several convex least squares problems are solved, the overall RSS
is reduced successively.

The steps of the general framework for archetypal analysis are the following:

Given the number of archetypes k:

1. Data preparation and initialization: scale data, add a dummy row (see
below) and initialize β in a way that the the constraints are fulfilled to
calculate the starting archetypes Z.

2. Loop until RSS reduction is sufficiently small or the number of maximum
iterations is reached:

2.1. Find best α for the given set of archetypes Z: solve n convex least
squares problems (i = 1, . . . , n)

min
αi

1

2
‖Xi − Zαi‖2 subject to αi ≥ 0 and

k∑
j=1

αij = 1.

2.2. Recalculate archetypes Z̃: solve system of linear equations X =
αZ̃>.
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8.2. Archetype algorithm

2.3. Find best β for the given set of archetypes Z̃: solve k convex least
squares problems (j = 1, . . . , k)

min
βj

1

2
‖Z̃j −Xβj‖2 subject to βj ≥ 0 and

n∑
i=1

βij = 1.

2.4. Recalculate archetypes Z: Z = Xβ.

2.5. Calculate residual sum of squares RSS.

3. Post-processing: remove dummy row and rescale archetypes.

The framework defines a family element for each computational entity; see Ap-
pendix A.2 for the relation between the theoretical steps and the computational
family elements in case of the archetypes package. The algorithm has to deal
with several numerical problems, i.e. systems of linear equations and convex
least squares problems. In the following we explain each step in detail.

Solving the convex least squares problems. In Step 2.1 and Step 2.3 several
convex least squares problems have to be solved. Cutler and Breiman (1994)
use a penalized version of the non-negative least squares algorithm by Lawson
and Hanson (1974) (as general reference see,e.g., Luenberger, 1984). In detail,
the problems to solve are of the form ‖u − Tw‖2 with u,w vectors and T
a matrix, all of appropriate dimensions, and the non-negativity and equality
constraints. The penalized version adds an extra element M to u and to each
observation of T ; then

‖u− Tw‖2 +M2‖1− w‖2

is minimized under non-negativity restrictions. For large M , the second term
dominates and forces the equality constraint to be approximately satisfied while
maintaining the non-negativity constraint. The hugeness of the value M varies
from problem to problem and thus can be seen as a hyperparameter of the
algorithm. Default value in the archetypes package is 200.
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Chapter 8. General framework

Solving the system of linear equations. In Step 2.2 the system of linear
equations

Z̃ = α−1X

has to be solved. A lot of methods exist, one approach is the Moore-Penrose
pseudoinverse which provides an approximated unique solution by a least
squares approach: given the pseudoinverse α+ of α,

Z̃ = α+X,

is solved. Another approach is the usage of QR decomposition: α = QR,
where Q is an orthogonal and R an upper triangular matrix, then

Z̃ = Q>XR−1,

is solved. Default approach in the archetypes package is the QR decomposition
using the solve() function.

Calculating the residual sum of squares. In Step 2.5 the RSS is calculated.
It uses the spectral norm (see, e.g., Golub and Loan, 1996). The spectral norm
of a matrix X is the largest singular value of X or the square root of the largest
eigenvalue of X∗X,

‖X‖2 =
√
λmax(X∗X),

where X∗ is the conjugate transpose of X.

Avoiding local minima. Cutler and Breiman (1994) show that the algorithm
converges in all cases, but not necessarily to a global minimum. Hence, the
algorithm should be started several times with different initial archetypes. It is
important that these are not too close together, this can cause slow convergence
or convergence to a local minimum.

Choosing the correct number of archetypes. As in many cases there is no
rule for the correct number of archetypes k. A simple method the determine
the value of k is to run the algorithm for different numbers of k and use the
“elbow criterion” on the RSS where a “flattening” of the curve indicates the
correct value of k.
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8.3. Illustrative example

Approximation of the convex hull. Through the definition of the problem,
archetypes lie on the boundary of the convex hull of the data. Let N be the
number of data points which define the boundary of the convex hull, then
Cutler and Breiman (1994) showed: if 1 < k < N , there are k archetypes on
the boundary which minimize RSS; if k = N , exactly the data points which
define the convex hull are the archetypes with RSS = 0; and if k = 1, the
sample mean minimizes the RSS. In practice, these theoretical results can not
always be achieved, as we show in the software presentation in Eugster and
Leisch (2009).

8.3. Illustrative example

In this section we apply archetypal analysis on an interesting real world ex-
ample: In Heinz et al. (2003) the authors took body girth measurements and
skeletal diameter measurements, as well as age, weight, height and gender on
247 men and 260 women in their twenties and early thirties, with a scattering
of older man and woman, and all physically active. We are only interested
in a subset skel2, the skeletal measurements and the height (all measured in
centimeters).

The skeletal measurements consist of nine diameter measurements: biacromial
(Biac), shoulder diameter; biiliac (Biil), pelvis diameter; bitrochanteric (Bitro)
hip diameter; chest depth between spine and sternum at nipple level, mid-
expiration (ChestDp); chest diameter at nipple level, mid-expiration (Chest-
Diam); elbow diameter, sum of two elbows (ElbowDiam); wrist diameter, sum
of two wrists (WristDiam); knee diameter, sum of two knees (KneeDiam); an-
kle diameter, sum of two ankles (AnkleDiam). See the original publication
for a full anatomical explanation of the skeletal measurements and the process
of measuring. We use basic elements of Human Modeling and Animation to
model the skeleton and create a schematic representation of an individual; Fig-
ure 8.2 shows a generic individual with explanations of the measurements. For
visualizing the full data set, parallel coordinates with axes arranged according
to the “natural order” are used (see Figure 8.3).
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Figure 8.2.: Generic skeleton with explanations of the measurements.
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Figure 8.3.: Parallel coordinates of the skel2 data set.
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Figure 8.4.: Scree plot of the residual sum of squares.

At first view no patterns in Figure 8.3 are visible and it is difficult to guess
a meaningful number of archetypes. Therefore, we calculate the archetypes
for k = 1, . . . , 15 with three repetitions each time; the corresponding curve of
the best model in each case is available in Figure 8.4. And according to the
“elbow criterion” k = 3 or maybe k = 7 is the best number of archetypes.
Corresponding to Occam’s razor we proceed with three archetypes; Table 8.1
shows the raw measurements and Figure 8.5 as a bar plot in relation to the
original data.

Archetype 2 (gray) represents individuals which are“huge”in all measurements;
on the other hand, Archetype 3 (lightgray) represents individuals which are
“small”. Archetype 1 (darkgray) represents individuals with average measures
except the bitrochanteric and biiliac – the meaning of this is best visible when
looking at the data with gender information (men are blue, women are green
colored, with alpha transparency) and the archetypes (red) (see Figure 8.7).
Here we see that Archetype 2 reflects the primary difference between men and
women in body structure – the comparatively wider hip and pelvis of women.
A verification of this interpretation can be done by looking at the coefficients
α and see how much each archetype contributes to the approximation of each
individual observation. For three archetypes, a ternary plot (see Figure 8.6) is
a usable graphical representation. Clearly, males cluster close to Archetype 2
and women mixes mainly the first and the third archetype. Therefore, males
are primarily approximated by Archetype 2, women by linear combination of
archetypes 1 and 3. For more than three archetypes parallel coordinates with
an axis for each archetype projecting the corresponding coefficients (in range
[0, 1]) can be used to investigate the coefficients α.
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Measurements Archetype 1 Archetype 2 Archetype 3
AnkleDiam 13.1850 15.9613 12.0225
KneeDiam 18.5906 21.0452 16.4354
WristDiam 9.7641 12.2378 9.2843

Bitro 34.4512 34.4547 27.2647
Biil 31.2224 29.3412 22.5222

ElbowDiam 12.2306 15.7404 11.2917
ChestDiam 26.1508 32.7796 24.3042

ChestDp 18.3922 22.9052 15.9521
Biac 36.3124 43.8883 34.5829

Height 167.0075 186.6854 157.8017

Table 8.1.: Raw measurements of the skeletal archetypes.
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Figure 8.6.: Ternary plot visualizing the coefficients α, colored according to
the gender.
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Finally, we visualize the three skeleton archetypes itself, Figure 8.8. The left
skeleton visualizes Archetype 2 with the wider hip and pelvis; the middle
skeleton visualizes Archetype 1 which is “huge”, the right skeleton visualizes
Archetype 3 which is “small” in all measurements. Assume that we want to
automatically fabricate blue worker overalls from given templates (e.g., paper
patterns). Combinations of archetypes 1 and 3 gives overalls in different sizes
which each have similar width at shoulder and waist. If we add Archetype 2,
we get overalls with a wider waist (compared to the shoulder).

127



Chapter 8. General framework

A
nk

le
D

ia
m

K
ne

eD
ia

m

W
ris

tD
ia

m

B
itr

o

B
iil

E
lb

ow
D

ia
m

C
he

st
D

ia
m

C
he

st
D

p

B
ia

c

H
ei

gh
t

 9.9

17.2

15.7

24.3

 8.1

13.3

24.7

38.0

18.7

34.7

 9.9

16.7

22.2

35.6

14.3

27.5

32.4

47.4

147

198

Figure 8.7.: Parallel coordinates with colors related to the gender and the three
archetypes.
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Figure 8.8.: Skeleton plot visualizing the three archetypes.
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Chapter 9.

Weighted and robust archetypes

Archetypal analysis approximates the convex hull of the data set – this suggests
itself that data points which “behave differently from the large majority of the
other points” (Morgenthaler, 2007) have a great influence on the solution. In
fact, the farther a data point is from the center of the data set the more
influence it has on the solution. Although archetypal analysis is about the
data set boundary, practice has shown that in many cases one primarily is
interested in the archetypes of the large majority than of the totality. For
example, Li et al. (2003) look at extreme consumers in segmenting markets –
it is obvious that the extreme consumers should not be total outliers but related
to the majority of the consumers. This chapter adapts the original archetypes
estimator to be a robust M-estimator (Huber and Ronchetti, 2009) and presents
an iteratively reweighted least squares (IRLS) fitting algorithm. This enables
a robust analysis in terms of Rousseeuw and Leroy (2003, defined for robust
regression): “A robust analysis first wants to fit an archetypal analysis to the
majority of the data and then to discover the outliers as those points which
possess large residuals from that robust solution.”

Robust archetypal analysis formulated in this way is based on weighting the
residuals and observations respectively. On this account, the chapter formu-
lates and solves the weighted archetypal problem in a first step. Weighted
archetypal analysis enables to represent additional information available from
the data set, like the importance of observations or the correlation between
observations.

The chapter is organized as follows. In Section 9.1, the breakdown point of
the original archetypes algorithm defined in Chapter 8 is discussed. In Sec-
tion 9.2 the weighted archetypal problem is solved. Based on that, Section 9.3
introduces the robust M-estimator, the corresponding iteratively reweighted
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3.

Figure 9.1.: Behavior of the archetypes (triangle) when one data point (cross)
moves away.

least squares problem and the fitting algorithm. Each step is illustrated using
the two-dimensional artificial toy example already presented in the previous
chapter (cf. Figure 8.1). In Section 9.4 the robust algorithm is applied on
the Air-Pollution data set (slightly modified to contain outliers) which is used
in the original archetypal analysis paper by Cutler and Breiman (1994). Sec-
tion 9.5 presents a structured simulation study to analyze the algorithm’s ro-
bustness and convergence with respect to data dimension, number of outliers
and distance of outliers to the majority of data. Finally, in Section 9.6 the
conclusions are given.

9.1. Breakdown point of classical archetypes

In this section we discuss the breakdown point of the original archetypes algo-
rithm introduced in Chapter 8. The breakdown point is the smallest amount
of contamination that may cause an estimator to take arbitrary large values.
We follow the sample version defined by Donoho and Huber (1983): Given
the data set X with n observations, and T , an estimator based on X, we let
ε∗n(T,X) denote the smallest fraction of contaminated observations needed to
break down the estimator T .

Here, we discuss the breakdown of the archetypes matrix Z, i.e., estimator
T = Z. For a given k archetypal analysis reaches the worst possible value,
ε∗n(Z,X) = 1/n for every X; which converges to 0 as n → ∞. To check this
fact, suppose that one data point of the toy data set moves away; Figure 9.1
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9.2. Weighted archetypes

illustrates this scenario. Note how one of the archetypes has gone on to “catch”
this outlier observation when the cross data point moves away from the ma-
jority of the data. In terms of the minimization problem this means that at
one point (related to the distance of the outlier) the RSS is more reduced if
the outlier is approximated well, then the remaining data points. Now, take
the outlier to infinity to break down the archetype solution with one single
outlier.

9.2. Weighted archetypes

In the original archetypal problem, Equation (8.1), each observation and there-
fore each residual contributes to the solution with equal weight. Remember
that X is an n×m matrix and let W be a corresponding n× n square matrix
of weights. The weighted archetypal problem is then the minimization of

RSS = ‖W (X − αZ>)‖2 with Z = X>β. (9.1)

Weighting the residuals is equivalent to weighting the data set:

W (X − αZ>) = W (X − α(X>β)>) = W (X − αβ>X) =

= WX −W (αβ>X) = WX − (Wα)(β>W−1)(WX) =

= X̃ − α̃β̃X̃ = X̃ − α̃Z̃>

Therefore the problem can be reformulated as minimizing

RSS = ‖X̃ − α̃Z̃‖2 with Z̃ = β̃X̃ and X̃ = WX. (9.2)

This reformulation allows the usage of the original algorithm with the addi-
tional pre-processing step to calculate X̃ and the additional post-processing
step to recalculate α and β for the data set X given the archetypes Z̃.

The weight matrix W can express different aspects. In case of W a diagonal
matrix the weights represents some kind of importance of the observations. The
weight values are rescaled to the range [0, 1] – values greater than one disperse
the data points, and therefore the data set boundary, which is not meaningful
in case of archetypal analysis. Furthermore, W can be an arbitrary square
matrix, for example, a matrix to decorrelate the observations.
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Figure 9.2.: Weighted archetypal analysis where gray data points weight 0.8
and black data points 1.

Figure 9.2 illustrates the weighted archetypal analysis of the toy data set for
k = 3. (a) Gray data points weight 0.8 and black data points 1). (b) As
expected, on the side of the lower weighted data points the corresponding
archetype is inside the data set boundary. (c) These data points are mapped
on the approximated convex hull boundary, their residuals contribute to the
overall weighted RSS.

9.3. Robust archetypes

A popular robust technique is using M-estimators instead of least squares esti-
mators. Let R = (X−αZ>) be the matrix of residuals. The standard archety-
pal analysis tries to minimize the Euclidean (matrix) norm of the residuals,
i.e., min ‖R‖2. Here, large residuals have large effects, which privileges outliers.
M-estimators try to reduce the effect of outliers by replacing the squared resid-
uals by another function ρ(·) less increasing than the square; this yields the
optimization problem min ρ(R). Such a problem can be reformulated as an it-
erated reweighted least squares one, i.e., in the tth iteration min ‖w(R(t−1))R‖2

is solved with w(·) a weight function depending on the residuals of the (t−1)th
iteration. (For general details on transforming the object function into the in-
fluence and weight functions we refer to, for example, Huber and Ronchetti,
2009.)
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9.3. Robust archetypes

There is a large set of suitable objective functions ρ(·) and corresponding
weight functions w(·) available – used, for example, in robust regression
(Rousseeuw and Leroy, 2003) and locally weighted regression and scatter plot
smoothing (Cleveland, 1979). Note that here the residual Ri of observation i
(i = 1, . . . , n) is of dimension m, therefore the one-dimensional distance calcu-
lations in the original functions are replaced by the corresponding norm func-
tions. For an example, the (generalized) Bisquare objective ρ(·) and weight
w(·) functions are defined as ρ(R) =

∑n
i=1 ρ̃(Ri) and w(R) = diag(w̃(Ri)),

i = 1, . . . , n with Ri the m dimensional residual of the ith observation and

ρ̃(Ri) =

{
c2

6
(1− (1− ‖Ri

c
‖2

1)3), for ‖Ri‖1 < c
c2

6
, for ‖Ri‖1 ≥ c

,

w̃(Ri) =

{
(1− ‖Ri

c
‖2

1)2, for ‖Ri‖1 < c

0, for ‖Ri‖1 ≥ c
.

The value c is a tuning parameter; practical application showed that c =
6s with s the median of the residuals unequal to zero works well (following
Cleveland, 1979). ‖ · ‖1 denotes the 1-norm; on the lines of the absolute value
in the original one-dimensional function definitions.

The iterative reweighted least squares algorithm at step t involves solving the
weighted archetypal minimization problem

R(t) = argmin
R
‖w(R(t−1)) R‖2 (9.3)

with R = (X − αZ>) and Z = X>β,

or according to equation (9.2),

R(t) = argmin
R
‖R‖2 (9.4)

with R = (X t − αZt>)

and Zt = X t>β, X t = w(R(t−1))X.

The original algorithm proposed by Cutler and Breiman (1994) is an iterative
alternating constrained least squares algorithm: it alternates between find-
ing the best α for given archetypes Z and finding the best archetypes Z for
given α. The algorithm has to deal with several numerical issues, e.g., each
step requires the solution of several convex least squares problems. Chap-
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Chapter 9. Weighted and robust archetypes

ter 8 describes the algorithm in detail. Here, we focus on the additional steps
needed to enable weighted and robust archetypal analysis (marked with * in
the following listing). Given the number of archetypes k and a weight matrix
W (weighted archetypes) and a weight function w(·) (robust archetypes) the
algorithm consists of the following steps:

*1. Data preparation: standardize and weight data, X0 = WX.

2. Initialization: define α and β in a way that the constraints are fulfilled
to calculate the starting archetypes Z.

3. Loop until RSS reduction is sufficiently small or the number of maximum
iterations is reached:

*3.1. Reweight data: X t = w(R(t−1))X.

3.... Calculate Z, i.e., α and β given the data X t.

3.6. Calculate residuals Rt and residual sum of squares RSS.

*4. Recalculate α and β for the given set of archetypes Z and X.

5. Post-processing: rescale archetypes.

Standardization. Step 1 standardizes the data set to mean 0 and standard
deviation 1. The mean is not robust and if outliers are in the data set available,
a normalization toward the median is more suitable. Scale and median normal-
ization (e.g., Quackenbush, 2002) is one simple approach we use: Transform
the m attributes such that their distributions or their medians are equivalent.

Initialization. Step 2 initializes the archetypes; a good initialization is im-
portant as a bad selection can cause slow convergence, convergence to a local
minimum or even a non-robust solution. A common approach is to randomly
draw the initial archetypes from the complete data set. This can lead to the se-
lection of an outlier as initial archetype. Approaches to select initial archetypes
from the majority of the data are, for example, to draw them from the subset
of data points which are inside some quantiles in each attribute or which are in
the neighborhood of the median. Note that these initialization methods do not
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9.3. Robust archetypes

ensure a good initialization (i.e., no outliers as initial archetypes) and several
starts with different initializations are recommended.

Recalculation. Step 3 (the loop of the algorithm) computes the coefficient
matrices α and β and the archetypes Z on the weighted data set X t. For the
final result the coefficient matrices have to be recalculated for the unweighted
data set X. Step 4 again (as in each iteration of the loop) solves n and k
convex least squares problems to find the best α and the best β given the set
of archetypes Z and now the unweighted data set X (for details on the convex
least squares problems see Chapter 8).

Computational complexity. The complexity of the algorithm is determined
by the complexity of the underlying non-negative convex least squares method
(n + k problems per iteration and for the robust algorithm additional n + k
problems in Step 4) and the number of iterations until its convergence. In
the concrete implementation we use the iterative NNLS algorithm defined by
Lawson and Hanson (1974). The authors prove the convergence of the algo-
rithm, but the number of iterations is dependent on the concrete problem.
This behavior propagates to the archetypal analysis algorithm for which Cut-
ler and Breiman (1994) also prove its convergence, but again the number of
iterations is not fixed. Currently, we are not able to determine the theoretical
computational complexity (i.e., Big O notation) for the algorithm. Therefore,
Eugster and Leisch (2009) provide a simulation study to show how the (origi-
nal) algorithm scales with numbers of observations, attributes and archetypes;
and Section 9.5 provides a simulation study to compare the convergence of the
original and robust algorithms. Note that the implementation is flexible and
allows to replace NNLS with other algorithms.

Figure 9.3a shows the robust archetypal analysis of the toy data set extended
with five outliers. (b) The dotted line indicates the solution of the original
k = 3 archetype algorithm; one archetype has gone on to “catch” the outliers.
The k = 3 Bisquare archetypes solution is similar to the solution on the data
set without outliers (Figure 8.1). (c) The gray scale of the data points indicate
their final weights. The outliers have weight 0 (therefore filled with white
color), their residuals do not contributed to the overall RSS (indicated with
the dotted lines).

Figure 9.4 illustrates individual algorithm iterations of the archetypal analysis
which leads to the solution presented in Figure 9.3. The algorithm converges
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(c)

Figure 9.3.: Robust archetypal analysis; the gray scale of the data points indi-
cate their final weights. Note that the outliers have weight 0 (unfilled).
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15.

Figure 9.4.: Individual iterations of the robust archetypal analysis which led
to the solution presented in Figure 9.3.

136



9.4. Application example

in fifteen iterations, the individual plots show the initial setup (randomly ini-
tialized archetypes), the first, fourteenth and final iteration. The gray scale of
the data points indicate their current weights. Note that in the initial setup
all data points have weight 1. Already in the first iteration the weights of the
outliers are very low (closely to 0) and decrease to 0 at the final iteration.

9.4. Application example

In this section we apply robust archetypal analysis on the Air-Pollution data set
used by Cutler and Breiman in the original archetypal analysis paper (where
they declare this problem as the “initial spark” for their study on archetypal
analysis). Using a data set which already has been extensively studied allows
us to compare the robust solutions with a well known solution.

The data consist of measurements of data relevant to air pollution in Los Ange-
les Basin in 1979. There are 330 cases consisting of daily measurements on the
attributes ozone (OZONE), 500 millibar height (500MH), wind speed (WDSP),
humidity (HMDTY), surface temperature (STMP), inversion base height (IN-
VHT), pressure gradient (PRGRT), inversion base temperature (INVTMP),
and visibility (VZBLTY). These data were standardized to have mean 0 and
variance 1. Cutler and Breiman (1994) focus on three archetypes; left part of
Table 9.1 lists the percentile value of each variable in an archetype as com-
pared to the data (Figure 4 in Cutler and Breiman, 1994). The percentile value
indicates in which percentile of the data set an archetype in a specific variable
is. For example, the OZONE value in archetype 1 is 91, i.e., the archetype 1
OZONE value is in the 91th percentile of the 330 OZONE cases in the data.
Cutler and Breiman interpret the archetypes as follows: “Archetype 1 is high
in OZONE, 500MH, HMDTY, STMP, and INVTMP and low in INVHT and
VZBLTY. This indicates a typical hot summer day. The nature of the other
two archetypes is less clear; Archetype 3 seems to represent cooler days toward
winter.”

We contaminate the data set with a group of 5 outliers. The attributes of the
outliers are calculated by x∗MAX+IQR with MAX the maximum and IQR the
interquartile range of the attribute and x randomly drawn from [1.5, 2]. Three
archetypes are computed with the original and the robust algorithm (right part
of Table 9.1). Figure 9.5 shows the panorama plot, a simple diagnostic tool to
inspect arbitrary high-dimensional archetypes solutions. For each archetype
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Chapter 9. Weighted and robust archetypes

Data set Air-Pollution Air-Pollution+Outliers
Algorithm Original Robust Original Robust
Archetypes A1 A2 A3 A1 A2 A3 A1 A2 A3 A1 A2 A3

OZONE 91 12 3 91 12 12 76 100 3 89 12 12
500MH 96 45 5 92 45 6 64 100 6 91 64 7
WDSP 43 8 91 43 8 91 27 100 63 43 8 89
HMDTY 78 11 74 78 12 81 50 100 19 77 11 63
STMP 95 15 6 95 16 11 73 100 5 91 21 11
INVHT 7 67 100 11 66 71 1 100 99 10 63 70
PRGRT 55 2 95 57 5 93 38 100 36 56 2 91
INVTMP 95 30 3 93 30 5 79 100 5 92 40 5
VZBLTY 15 88 77 15 88 77 9 100 87 15 76 76

Table 9.1.: Percentile profiles of the archetypes computed by the original algo-
rithm and the robust algorithm on the original data set and the outlier data
set.
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Figure 9.5.: Panorama plots: The distance between each archetype and each
data point in case of the (a) original algorithm and (b) robust algorithm.
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Figure 9.6.: The residual length and weight of each individual data point. (a) In
case of the robust algorithm the majority of the data have low residuals and
high weights. The outliers have high residuals and low weights. (b) In case of
the original algorithm all data points have low residuals (and weights 1).
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Chapter 9. Weighted and robust archetypes

(individual panels) the Euclidean distance (y-axis) between the archetype and
each data point is shown in ascending order (x-axis); other archetypes are
shown as cross symbols. The underlying idea is to look at the data from the
viewpoint of an archetype (“to watch its panorama”). This uncovers archetypes
having only a few near data points – which then can be considered as candidates
for outliers. In case of the original algorithm, Figure 9.5a, the second archetype
is the archetype gone on to “catch” the outliers – it is the archetype near
to the outliers. In contrast, the robust algorithm, Figure 9.5b, focuses on
the majority of the data points – no archetype is in the neighborhood of the
outlying observations.

In the sense of the adapted citation of Rousseeuw and Leroy (2003) on robust
analysis in the introduction, Figure 9.6a (top panel) shows for each individual
data point its residual length. The majority of the data has low residuals (note
that variations from zero can occur due to numerical issues), whereas the five
outliers stand out with high residuals. The calculated weights of the data
points, Figure 9.6a (bottom panel), fit accordingly: the majority of the data
has high weights, the outliers low weights. By comparison, all data points have
low residuals (and weights 1) in case of the original algorithm, Figure 9.6b.

Finally, taking a look at the concrete robust archetypes values, right part of
Table 9.1, shows that they are very similar to the archetypes calculated on the
original data set (without the outliers).

9.5. Simulation study

So far, two exemplar data sets were used to present robust archetypal analysis
and to demonstrate its proper functioning. This section now analyzes the al-
gorithm’s robustness and convergence with respect to data dimension, number
of outliers and distance of outliers to the majority of data in a structured way.
The simulation setup follows Hothorn et al. (2005, cf. the simulation problem),
the analysis follows the framework defined in Part I of this dissertation. The
two crucial points of this simulation study are (1) to define a basis setup which
enables the measurement of robustness without the effects of other algorithm
characteristics like structural stability or convergence, and (2) to define a per-
formance measure which reflects robustness in numbers – as the residual sum
of squares (RSS) is not meaningful for this case. Note that this section presents
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Figure 9.7.: Schematic representation of the simulation setup: (a) Basis is an
m-simplex as true data generating process, enclosed by an m-sphere as mean
for the outlier generating process. (b) An exemplar data set with m = 2,
n = 100, nout = 5, λr = 2, σ = 0.05.

selected results of the simulation study, the complete results are available in
the supplemental material (see the Appendix A on computational details).

We define an uniformly distributed regular m-simplex (an m-dimensional poly-
tope of m + 1 vertices and equally long edges; note that the common name
n-simplex conflicts with our notation) as true data generating process. The
outlier generating process is defined as the multivariate normal distribution
with the covariance matrix Σ = σIm and the mean µ on an uniformly dis-
tributed m-sphere (the generalization of the surface of an ordinary sphere to
dimension m) of radius r + λr · r, with r the distance between the center
and an m-simplex vertex and λr an expansion factor. n observations and nout
outliers are drawn from the data and outlier generating process, respectively.
Figure 9.7a illustrates the setup, Figure 9.7b shows an exemplar data set with
m = 2, n = 100, nout = 5, λr = 2, σ = 0.05. We define the performance mea-
sure as the total Euclidean distance between the computed archetypes and
the nearest true archetype in each case (∆1), and the total Euclidean distance
between the true archetypes and the nearest computed archetypes in each case
(∆2). Note that this definition must not yield in an one-to-one assignment;
Figure 9.8 illustrates a potential case. Then, a good solution has small and
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Figure 9.8.: The performance measure is the total distance between the com-
puted archetypes and the nearest true archetypes (∆1) and the total distance
between the true archetypes and the nearest computed archetypes (∆2).

nearly similar ∆1 and ∆2 (necessary condition). A perfect solution is an one-
to-one assignment with ∆1 and ∆2 of value zero.

The first simulation investigates the original and robust algorithm when the
correct number of archetypes k (i.e., k = m+ 1) is known: A data set is gener-
ated for each combination of m = 2, 3, 10, 15 attributes, n = 2000 observations,
nout = 5, 20, 100 outliers, λr = 2, 3, 5, 15 radius expansion factors, σ = 0.05 co-
variance and 100 replications in each case. Each configuration is fitted with
randomly chosen initial archetypes, stop criteria are 100 iterations or an im-
provement less than the square root of the machine epsilon (

√
(2.22 · 10−16)).

For each of the m × n× nout × λr × Σ × (1, . . . , 100) original and robust
fits the two distance measures, the number of iterations, the computation time
and the RSS are reported (all in all 48000 measured values). The constant
number of observations n allows the discussion of the algorithms in view of the
curse of dimensionality.

Figure 9.9 shows the distances ∆1 (y-axis, scale from 0 to 30) versus ∆2 (x-
axis, scale from 0 to 5) for each fit of the original and the robust algorithm in
case of the configuration m = 10, nout = 100, λr = 2, 3, 5, 15. In case of the
original algorithm, ∆1 increases with increasing outlier distance λr; one com-
puted archetype always goes for the outlier group. One the other side, ∆2 stays
small, so the remaining computed archetypes fit well to the true archetypes.
In case of the robust algorithm, both distances remain small with increasing
outlier distance; the robust algorithm stays robust and finds good solutions for
the majority of the data (with a few exceptions). Noticeable is that the robust
algorithm’s distances are more variable and that ∆2 is slightly higher. The first
fact indicates less stable solutions (part of our ongoing research, see discussion
in Section 9.6). The second fact is, amongst other things, explored in the fol-
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Figure 9.9.: Distances ∆1 versus ∆2 for sample fits of both algorithms in case
of the configuration m = 10, nout = 100, λr = 2, 3, 5, 15.

lowing paragraph. The described patterns appear for all other configurations
as well.

Figure 9.10 shows the distances for each dimension m = 2, 3, 10, 15 and
nout = 100, λr = 15. ∆1 also remains small over the number of dimensions for
the robust algorithm and increases for the original algorithm (as expected).
Interesting is the fact that ∆2 increases over the number of dimensions for the
robust algorithm. This indicates that the computed solution is smaller than
the true m-simplex; observations near to the m-simplex boundary are weighted
down even though they are from the true data generating process. This is an
effect of the curse of dimensionality, in higher dimensions the robust algorithm
finds the majority of the data’s true shape but not in the exact size.

As already stated, the archetypal analysis algorithm is computer-intensive and
a fast convergence is desired. Figure 9.11 compares the median number of
iterations between the original (dashed line) and the robust (solid line) algo-
rithm for each configuration. Ignoring m = 2, the robust algorithm needs less
or nearly equal number of iterations in most of the cases. In the case m = 2
both algorithms generally converge much slower, and the robust algorithm
needs twice as much iterations than the original algorithm. One supposable
reason could be the large number of observations (n = 2000) in relation to
the space of the m-simplex with side length 1 and the consequential closeness
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Figure 9.10.: Distances for each dimension m = 2, 3, 10, 15 and nout = 100,
λr = 15. Note that the y-axis scale is different per distance.
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Figure 9.12.: Median distances ∆1 and ∆2 and median weighted RSS for the ro-
bust algorithm in case of the configuration m = 10, nout = 100, λr = 2, 3, 5, 15,
k = 9, . . . , 13.

of the observations; but detailed simulations need to be done to analyze this
phenomenon.

The second simulation investigates the robustness of the algorithm when the
number of correct archetypes k (i.e., k = m + 1) is unknown: The simulation
setup is equivalent to the first one, but an additional fit is computed for each
k = m− 1,m,m+ 1,m+ 2,m+ 3. Figure 9.12 (top panel) shows the median
distances ∆1 and ∆2 of the 100 replications for the robust algorithm and
m = 10, nout = 100, λr = 15 and k = 9, . . . , 13. The distances are inside a
reasonable range, the algorithm is robust in case of wrong k. ∆1 increases and
∆2 decreases with increasing number of archetypes; the true solution is near
to their intersection point. This reflects the different assignment scenarios:
(1) less computed archetypes than true archetypes – one-to-one assignment
with remaining true archetypes for ∆1 and one-to-many assignment for ∆2;
(2) as many computed archetypes as true archetypes – one-to-one assignment;
(3) more computed archetypes than true archetypes – one-to-many assignment
for ∆1 and one-to-one assignment with remaining computed archetypes for
∆2. Obviously, this performance measure is only usable in simulation studies
where the data generating process and the true archetypes are known. In
real world applications the weighted RSS is a possible performance measure;
Figure 9.12 (bottom panel) shows the median weighted RSS. However, as this
scree plot indicates, this performance measure often allows no well-defined
decision. This is a problem of great complexity – algorithm characteristics, like
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the structural stability or the convergence, play a major role. Currently we
have no sound solution and this is part of our ongoing research (see discussion
in Section 9.6).

9.6. Summary

This chapter adapts the archetypal analysis estimator by Cutler and Breiman
(1994) to allow weighted and robust archetypal analysis. Weighted archetypes
enables to represent additional information like importance of and correlation
between observations. Robust archetypes focus on the majority of the data
set; data points which behave differently from the large majority achieve less
weight in the fitting process. The proposed estimator is an M-estimator whose
minimization problem is solved by an iteratively reweighted least squares fitting
algorithm. The artificial toy example and the real world application example
shows that in presence of outliers the robust algorithm gives reliable archetypes
which are greatly similar to the archetypes calculated on the same data set
without outliers. The simulation study (benchmark experiment for sensitivity
analysis) analyzes the algorithm with respect to data dimension, number of
outliers, distance of outliers to the majority of data and number of archetypes
in a structured way. The study shows that the algorithm is highly robust and
often converges faster than the original algorithm.
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Outlook

Prototype-based methods are widely used approaches in classification and clus-
tering. Prototype methods represent the data set by a set of points; where the
prototypes are defined by optimization of some fixed criteria (Hastie et al.,
2009). Now, prototypes can be seen as a general concept and archetypes as
one possible instance of prototypes. In fact, the archetypal analysis formulation
(cf. Section 8.1) is similar to the least squares formulation of centroid clustering
algorithms (cf. Steinly, 2006). As final outlook we present theoretical thoughts
on the extension of our general framework for the class of k-prototypes-like
algorithms (k-means, k-median, Fuzzy k-means, etc.; see, e.g., Steinly, 2006;
Leisch, 2006).

The prototypes problem. Given is an n×m matrix X representing a mul-
tivariate data set with n observations and m attributes. For a given k, the
matrix Z of k m-dimensional prototypes is calculated according to:

w‖X − αZT‖ → min

with
k∑
j=1

αij = 1 and fλ(αij) > 0

Z = XTβ

with
n∑
i=1

βij = 1 and gλ(βij) > 0

whereas i = 1, . . . , n, j = 1, . . . , k; α, the coefficients of the prototypes, is an
n× k matrix; β, the coefficients of the observations, is an n× k matrix; w, the
weighting vector, is an n vector; ‖ · ‖ is an appropriate matrix norm; f and g
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are evaluation functions of the coefficients for a specific constraint controlled
by the parameter λ.

The evaluation functions fλ and gλ define the nature of the constraints and
therefore the nature of the problem and the resulting prototypes:

Archetypal analysis problem: Imagine a λ1 so that

fλ1(αij) =

{
1, 0 ≤ αij ≤ 1

0, otherwise
and gλ1(βij) =

{
1, 0 ≤ βij ≤ 1

0, otherwise

The functions allow values arbitrary values between [0, 1] (see Figure 10.1,
top row); this describes the constraints αij ≥ 0 and βij ≥ 0. With ‖ · ‖
the spectral norm, the obtained problem is equivalent to the archetypal
analysis problem defined in Section 8.1; the prototypes are the archetypes.

k-centroids cluster problem: Imagine a λ2 so that

fλ2(αij) =

{
1, αij = 0 or αij = 1

0, otherwise
and gλ2(βij) =

{
1, βij = 1

nj

0, otherwise

The functions allow pointwise values (see Figure 10.1, bottom row); this
describes the constraints αij ∈ {0, 1} and

βij =

{
1
nj
, observation i is element of cluster j

0, otherwise

with nj is the size of cluster j. The obtained problem is equivalent to the
k-centroids cluster problem; the prototypes are the canonical centroids.
Based on the norm ‖ · ‖ different canonical centroids are obtained, see
Leisch (2006) for details.

This formulation reveals the relation of the two problems as instances of a
more general problem class. Future work contains the analysis of this relation-
ship. One interesting question is, if the two problems and their solutions are
transferable into each other (i.e., for a known k-centroids clustering of a data
set, the corresponding k archetypes can be estimated; and vice versa). Fur-
thermore, the above problem formulation allows a mixture of the two problems
by defining appropriate evaluation functions. As the two prototype solutions
can be seen as the two extreme solutions for k prototypes – the maximum and
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the mean prototypes – an appropriate mixture of the problems could lead to
quantile prototypes.

Structural stability. Seeing the archetypal problem as an instance of the
more general prototypal problem allows to use similar methods to evaluate the
algorithm. Structural stability, especially in the case of unknown and wrong
number of archetypes, is an important characteristic. Therefore, a major goal
of our future work is the development of a framework along the lines of the
framework for “structure and reproducibility of cluster solutions” by Dolnicar
and Leisch (2010). This includes, among other things, the definition of a
criterion for stability of archetypal solutions.
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Figure 10.1.: Evaluation functions for the archetypal analysis problem (top
row) and the k-centroids cluster problem (bottom row).
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Appendix A.

Computational details

This appendix provides detailed information on the computational parts of
the dissertation. All computations and graphics have been done using R (R
Development Core Team, 2010) and add-on packages. R itself and all packages
used are freely available under the terms of the General Public License from
the Comprehensive R Archive Network at http://CRAN.R-project.org.

Section A.1 provides information on the package and the reproducibility for
Part I – benchmark experiments – of this dissertation. Section A.2 provides
information on the package and the reproducibility for Part II – archetypal
analysis – of this dissertation. In both cases are demos and vignettes available
to reproduce examples, applications, and simulations of the dissertation.The
packages are documented using Roxygen (Danenberg and Eugster, 2010). Rox-
ygen is a documentation system for R; allowing, among other things, in-source
specification of Rd files, collation, and namespace directives. This reduces the
error-proneness and therefore increases the quality of the documentation.

A.1. Benchmark experiments

A.1.1. Package benchmark

The Benchmark Experiments Toolbox (R package benchmark version 0.3-2, Eu-
gster, 2011) provides a toolbox for setup, execution, and analysis of benchmark
experiments. Main focus is the analysis of data accumulating during the exe-
cution – and one major objective is the statistical correct computation of an
order of the candidate algorithms. The benchmark package uses functionality of
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other packages: coin (Hothorn et al., 2006) for permutation tests; lme4 (Bates
and Maechler, 2010) for mixed effects models; multcomp (Hothorn et al., 2008)
for the calculation of simultaneous confidence intervals; relations (Hornik and
Meyer, 2010) to handle relations and consensus rankings; psychotree (Strobl
et al., 2010) for recursively partitioning Bradley-Terry models; and ggplot2
(Wickham, 2009) to produce graphics.

The idea of the package is to provide an extensible warehouse data structure
(warehouse) to collect all interesting results arising during the execution of
benchmark experiments. Currently implemented are data structures to col-
lect algorithm performances (AlgorithmPerformanceArray), data set char-
acterizations (DatasetCharacterizationArray), and sequential test results
(TestResultArray). The backend data structure of the warehouse is a collec-
tion of arrays, but this is exchangeable; for example with an RSQLite data
base (James, 2010, not implemented in this benchmark version).

The function benchmark() executes a benchmark experiment and fits as ref-
erence implementation of how to fill up such a warehouse. Different imple-
mentations of the generic as.warehouse() function coerce benchmark results
from other data structures into a warehouse object (for example, from the
data structure used by the mlr package, Bischl et al., 2010).

Different accessor functions then process the raw data (e.g., clean and join dif-
ferent arrays) and return data.frame objects for the analysis. Implemented
accessor functions are viewAlgorithmPerformance(), viewDatasetCharac-
terization(), and viewTestResult(). Each accessor function returns a
data.frame with an additional class attribute set. The analysis methods
introduced in this dissertation are implemented for these data.frames. For
example, the methods introduced in Chapter 2 and Chapter 4 are based on
the result from the viewAlgorithmPerformance() accessor which uses the
data available in the AlgorithmPerformanceArray. And the methods intro-
duce in Chapter 5 are based on the result from the viewDatacharAlgperf()

accessor which returns a data.frame from AlgorithmPerformanceArray and
DatasetCharacterizationArray.

Figure A.1 shows a schematic representation of the package concept (dashed
lines are not implemented in version 0.3-2). The following sketches an exemplar
session from the UCI benchmark experiment (Chapter 2; note that this just
illustrates the principal usage):
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warehouse

benchmark()

as.warehouse()

array

RSQLite

Data backend

viewAlgorithmPerformance() Chapter 2
Chapter 4

viewDatasetCharacterization()
Chapter 5

viewDatacharAlgperf()
Chapter 5

viewTestResult()
Chapter 6

(a)

warehouse

AlgorithmPerformanceArray: array
DatasetCharacgterizationArray: array
TestResultArray: array

viewAlgorithmPerformance():
c("AlgorithmPerformance", "data.frame")

viewDatasetCharacterization():
c("DatasetCharacterization", "data.frame")

viewDatacharAlgperf():
c("DatacharAlgperf", "data.frame")

viewTestResult():
c("TestResults", "data.frame")

(b)

Figure A.1.: Schematic representation of the benchmark package concept.
(a) The general concept. (b) Details of the current warehouse implementation;
see package documentation for the description of the resulting data.frames.
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R> library("benchmark")

R> ### Data set:

R> # Load and process mnk3 data using as.dataset()

R> ### Setup and execution:

R> w <- benchmark(mnk3,

+ sampling = bs.sampling(250),

+ algorithms = c(lda, knn, nnet, rf, rpart, svm),

+ performances = c(miscl, fittime, predicttime))

R> ### Analysis:

R> apm <- w$viewAlgorithmPerformance(performances =

"Misclassification")

R> ## Exploratory:

R> boxplot(apm) # Figure 2.2b

R> beplot0(apm) # Figure 2.3

R> beplot0(apm, lines.show = TRUE) # Figure 2.4

R> ## Inferential:

R> p2 <- paircomp(apm, # Lmer model used in 2.3.2

+ family = LmerTestPaircomp,

+ type = "<",

+ significance = 0.05,

+ relevance = 0.01)

The package documentation provides detailed information for each function.
However, this package is ongoing research and not all methods are already
released in the CRAN version of the benchmark package. Especially because
of the grammar of benchmark and the design of experiment ideas (Chapter 7)
the package is in a structural redesign phase at the time of writing.

A.1.2. Reproducibility

UCI domain. The benchmark experiment of the UCI domain is used through-
out the dissertation. For the candidate algorithms the following functions and
packages have been used: Functions lda() and qda() from package MASS
for linear and quadratic discriminant analysis. Function knn() from package
class for the k-nearest neighbor classifier. The hyperparameter k (the num-
ber of neighbors) has been determined between 1 and

√
n, n the number of
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observations, using 10-fold cross-validation (using the function tune.knn()

from package e1071, Dimitriadou et al., 2010). Function nnet() from package
nnet for fitting neural networks. The number of hidden units has been de-
termined between 1 and log(n) using 10-fold cross-validation (using function
tune.nnet() from package e1071), each fit has been repeated 5 times. All four
algorithms lda(), qda(), knn(), and nnet() are described by Venables and
Ripley (2002). Function rpart() from package rpart (Therneau and Atkinson,
2010) for fitting classification trees. The 1-SE rule has been used to prune
the trees. Functions naiveBayes() and svm() from package e1071 for fitting
naive Bayes models and C-classification support vector machines. The two
C-classification support vector machines hyperparameters γ (the cost of con-
straints violation) and C (the kernel parameter) have been determined using a
grid search over the two-dimensional parameter space (γ, C) with γ from 2−5

to 212 and C from 2−10 to 25 (using function tune.svm() from package e1071).
And function randomForest() from package randomForest (Liaw and Wiener,
2002) for fitting random forests.

The data sets are from the UCI Machine Learning Repository (Asuncion and
Newman, 2007) and preprocessed by Meyer et al. (2003). The data sets basic
characteristics are (* indicates artificial data sets):

Problem Abbr. #Attributes #Samples Class distribution
nom con comp incomp (%)

promotergene prmt 57 106 50.00/50.00
hepatitis hptt 13 6 80 75 20.65/79.35
Sonar Sonr 60 208 53.37/46.63
Heart1 Hrt1 8 5 296 7 54.46/45.54
liver livr 6 345 42.03/57.97
Ionosphere Insp 1 32 351 35.90/64.10
HouseVotes84 HV84 16 232 203 61.38/38.62
musk musk 166 476 56.51/43.49
monks3 mnk3 6 554 48.01/51.99
Cards Crds 9 6 653 37 44.49/55.51
BreastCancer BrsC 9 683 16 65.52/34.48
PimaIndiansDiabetes PmID 8 768 65.10/34.90
tictactoe tctc 9 958 34.66/65.34
credit crdt 24 1000 70.00/30.00
Circle (*) Crcl 2 1200 50.67/49.33
ringnorm (*) rngn 20 1200 50.00/50.00
Spirals (*) Sprl 2 1200 50.00/50.00
threenorm (*) thrn 20 1200 50.00/50.00
twonorm (*) twnr 20 1200 50.00/50.00
titanic ttnc 3 2201 67.70/32.30
chess chss 36 3196 47.78/52.22
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Appendix A. Computational details

The raw performances of the executed benchmark experiment are available in
the package (data("uci621raw")). Source codes for replicating the analyses
of the benchmark experiment are available as package demos. For example,
Chapter 2 is reproduced via

R> demo("benchplot", package = "benchmark")

Chapter 4 via the demo lsbenchplot-cs621; and the archetypal analysis of
the UCI domain via the demo lsbenchplot-cs621-atypes.

A.2. Archetypal analysis

A.2.1. Package archetypes

The R package archetypes (version 2.0-2, Eugster, 2010) provides a framework
for archetypal analysis supporting arbitrary problem solving mechanisms for
the different conceptual parts of the algorithm. The archetypes package uses
functionality of the package nnls (Mullen and van Stokkum, 2010) to solve
non-negative least squares problems.

The main function archetypes() implements the algorithm framework with
the steps defined in Section 9.3 (based on Section 8.2):

function (data, k, weights = NULL, maxIterations = 100,

minImprovement = sqrt(.Machine$double.eps),

maxKappa = 1000, verbose = FALSE, saveHistory = TRUE,

family = archetypesFamily("original"), ...)

The most important argument of this function is the family argument spec-
ifying the problem to solve, i.e., the classical, weighted, or robust archetypal
problem. The structure of a family object is:

List of 14

$ normfn :function (m, ...) # Step 3.6

$ scalefn :function (x, ...) # 1

$ rescalefn :function (x, zs, ...) # 4 and 5

$ dummyfn :function (x, ...) # 2

$ undummyfn :function (x, zs, ...) # 5

$ initfn :function (x, p, ...) # 2
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$ alphasfn :function (coefs, C, d, ...) # 3.2

$ betasfn :function (coefs, C, d, ...) # 3.4

$ zalphasfn :function (alphas, x, ...) # 3.3

$ globweightfn:function (x, weights) # 1

$ weightfn :function (x, weights) # 3.1

$ reweightsfn :function (x, weights) # 3.1

$ class : NULL

$ which : chr ""

The package provides three archetypesFamily("...") definitions: origi-

nal for the classical archetypes, weighted for the weighted archetypes, and
robust for the robust archetypes. However, own families can be simply de-
fined by replacing the desired functions with user-defined ones (see the package
documentation for a description of the corresponding arguments).

As exemplar session sketches the following code the computation of the classical
archetypes for the toy example used throughout the dissertation’s part:

R> library("archetypes")

R> ### Data set:

R> data("toy", package = "archetypes")

R> ### Classical archetypes:

R> a <- archetypes(toy, 3)

R> ### Visualizations:

R> xyplot(a, toy, chull = chull(toy)) # Figure 8.1b

R> xyplot(a, toy, adata.show = TRUE) # Figure 8.1c

The package documentation provides detailed information for each function.

A.2.2. Reproducibility

Skeletal archetypes. The source code of the illustrative example in Section 8.3 is
available in the package vignette “From Spider-Man to Hero – Archetypal Analysis
in R”:

R> v <- vignette("archetypes", package = "archetypes")

R> v # View PDF file

R> edit(v) # View source code
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Weighted and robust archetypes. The source codes of the artificial two-
dimensional toy example (used throughout this dissertation’s part), the Air-Pollution
example (Section 9.4), and the robustness simulation (Section 9.5) are available as
package demos. The demos are executed via:

R> demo("robust-***", package = "archetypes")

The source code file for a demo is accessible via:

R> edit(file = system.file("demo", "robust-***.R",

+ package = "archetypes"))

Replace *** with toy, ozone, and simulation respectively.
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Mathematical nomenclature

In trying to find a notation which is internally consistent, we have defined a few
general bounded variables with corresponding index variables. Note that in some
cases we have to use the same symbol with different meanings in the benchmark
experiment part and the archetypal analysis part.

General symbols used in Part I:

b = 1, . . . , B Number of replications.
k = 1, . . . ,K Number of candidate algorithms.
j = 1, . . . , J Number of performance measures.
m = 1, . . . ,M Number of data sets.
t = 1, . . . , T Number of data set characteristics.

DGP Data generating process; either a known data generating
process (represented by a function) or an unknown data
generating process (represented by a finite data set L with
some resampling scheme).

L = {z1, . . . , zN} Data set with N observations.
zi = (yi, xi) Observation with xi a vector of input variables and yi the

response variable; i = 1, . . . , N .
D = {Lm} Domain of M data sets.

Lb Learning samples with n ≤ N observations drawn from the
data generating process DGP .

Tb Validation samples with the number of observations depen-
dent on the corresponding learning sample Lb.

a, ak Candidate algorithms.

p(·), pj(·) Performance measures.
pmbkj ∼ Pmbkj Theoretical performance pj of algorithm ak on learning

sample Lb
m of data set Lm drawn from the performance

distribution Pmbkj .
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Mathematical nomenclature

General symbols used in Part II:

X Data matrix of dimension n×m.
i = 1, . . . , n Number of observations.
j = 1, . . . ,m Number of attributes.

k Number of archetypes.

Z Archetypes matrix of dimension k ×m.
αij Archetypes coefficient matrix of dimension n× k.
βij Observations coefficient matrix of dimension n× k.

RSS Residual sum of squares.
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