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Chapter 1 Summary 

1. Summary 

 
Cytomegaloviruses represent a part of the beta herpesviruses subfamily 

characterized by a restricted host range and a slow replication cycle. DNA 

replication, late viral transcription, and viral nucleocapsid maturation occur in the 

replication compartments (RCs) within the nuclei of infected cells. During infection, 

RCs expand from small replication sites to large domains, disrupting the nuclear 

interior by compressing and marginalizing host chromatin which represents a natural 

barrier for the export of virus nucleocapsids to the cytoplasm. Two conserved 

essential murine cytomegalovirus (MCMV) proteins, M50 and M53, play a critical role 

in capsid export from nucleus to the cytosol where the final events of the virus 

maturation take place. 

 To understand more about the function of the M53 protein, we have analyzed 

a comprehensive set of loss-of-function mutants derived from a random genetic 

screen to identify the dominant negative (DN) alleles of the M53 gene. Mutations with 

inhibitory effect have accumulated within two conserved regions of M53. 

Recombinant MCMVs were constructed for conditional expression of these inhibitory 

mutants in order to analyze the phenotype they induced. Conditional expression of 

single inhibitory M53 mutants down-regulated virus replication up to one million folds. 

Studies on this DN phenotype revealed a complete block of nuclear egress and, 

unexpectedly, also an inhibition of viral capsids maturation. 

This work proved that random mutagenesis followed by cis-complementation 

based genetic screens is a valuable strategy to identify viral DN mutants and 

provided the first evidence that DNA cleavage/packaging and capsid export are 

coupled during cytomegalovirus infection identifying a new function for egress protein 

M53. 
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Chapter 2 Introduction 

2. Introduction 

 

2.1 Herpesviridae: a general introduction 

Herpesviruses are large enveloped viruses with linear double stranded DNA 

genome. Based on their biological and genetic properties the family of 

Herpesviridae is divided into three subfamilies: alpha herpesvirinae, beta 

herpesvirinae, and gamma herpesvirinae (Pellet and Roizman, Fields of Virology – 

fifth edition 2006; McGeoch et. al., 2006; van Regenmortel et. al., 2004; Davison, 

2002).  

Cytomegaloviruses (CMVs) represent the beta herpesvirus subfamily. 

CMVs infect mammals, show colinear genome organization, similar gene content, 

and are characterized by a restricted host range. All CMVs studied so far show a 

slow replication cycle and establish lifelong latency in their native host. A typical 

consequence of beta herpesvirus infection in vivo and in cell culture is that 

infected cells are frequently enlarged (cytomegalia) and exhibit cytoplasmic and 

nuclear inclusions (so called owl’s eyes) (Rove et. al., 1956).  

The human cytomegalovirus (HCMV) is detected with a prevalence of 50-

90% in the human population. Both the primary and the latent CMV infections are 

mainly asymptomatic in normal individuals. However, CMV causes severe and 

fatal disease in immunocompromised patients and is responsible for the most 

common infection induced birth defects (Drew, 1988; Rubin, 1990). Murine 

cytomegalovirus (MCMV) infection serves as an animal model system for studies 

on CMV biology (Reddehase et. al., 2008). 

In the following chapter the characteristics of the herpesvirus particle and 

the main steps of the lytic infection cycle will be reviewed with a special attention 

to the data available for CMVs. For consistency, the MCMV nomenclature will be 
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Chapter 2 Introduction 

used to describe herpesvirus common gene or gene products even if the primary 

data were generated in another model system. To identify the homologues and to 

fit MCMV nomenclature to other herpesviruses the corresponding gene names 

used in the main model herpesviruses are listed in Table1. 

Gene product                      Homologues 
MCMV HSV-1  beta (HCMV) gamma (EBV)     Function 

M115 UL1 (gL)  Yes (UL115) Yes (BKRF2) Envelope 
No UL4  No No ? 
M104 UL6 (Portal)  Yes (UL104) Yes (BBRF1) DNA Packaging 
M103 UL7  Yes (UL103) Yes (BBRF2) Tegument 
M100 UL10 (gM)  Yes (UL100) Yes (BBRF3) Envelope 
M99 UL11  Yes (UL99) Yes (BBLF1) Tegument 
M97 UL13 (VPK)  Yes (UL97) Yes (BGLF4) Tegument 
M95 UL14  Yes (UL95) Yes (BGLF3) Tegument 
M89 UL15 (TER1)  Yes (UL89) Yes (BGRF1/BDRF1) DNA packaging 
M94 UL16  Yes (UL94) Yes (BGLF2) Tegument 
M93 UL17 (CTTP)  Yes (UL93) Yes (BGLF1) DNA packaging 
M46 UL18 (TRI2)  Yes (UL46) Yes (BORF1) Capsid 
M86 UL19 (MCP)  Yes (UL86) Yes (BCLF1?) Capsid 
No UL20  No No Envelope? 
M87 UL21  Yes (UL87) Yes (BCRF1) Tegument 
M75 UL22 (gH)  Yes (UL75) Yes (BXLF2) Envelope 
M76 UL24  Yes (UL76) Yes? Tegument 
M77 UL25 (PCP)  Yes (UL77) Yes (BVRF1) DNA packaging 
M80 UL26 (prePR)  Yes (UL80) Yes (BVRF2/ECRF3) Capsid 
M80.5 UL26.5 (pAP)  Yes (UL80.5) Yes (EC-RF3A) Capsid 
M55 UL27 (gB)  Yes (hUL55) Yes (BALF4) Envelope 
M56 UL28 (TER2)  Yes (UL56) Yes (BALF3) DNA packaging 
M53 UL31  Yes (UL53) Yes (BFLF2)  Nuclear egress 
M52 UL32 (CTNP)  Yes (UL52) Yes (BFLF1) DNA Packaging 
M51 UL33  Yes (UL51) Yes (Putative ORF) DNA Packaging 
M50 UL34  Yes (UL50) Yes (BFRF1) Nuclear egress 
M48.2 UL35 (SCP)  Yes (UL48/49) No Capsid 
M48 UL36 (VP1/2; LTP)  Yes (UL48) Yes (BPLF1) Tegument 
M47 UL37 (LTPbp)  Yes (UL47) Yes (BOLF1) Tegument 
M46 UL38 (TRI1)  Yes (UL46) Yes (BORF1) Capsid 
No UL41  No No Tegument 
No UL43  No Yes (BMRF2) Envelope? 
No UL44 (gC)  No No Envelope 
No UL45  No No Envelope 
No UL46 (VP11/12)  No No Tegument 
No UL47 (VP13/14)  No No Tegument 
No UL48 (VP16)  No No Tegument 
M49 UL49 (VP22)  Yes (UL49) Yes (BFRF2) Tegument 
M71 UL51  Yes (UL71) Yes (BSRF1) Tegument 
No UL53 (gK)  No No Envelope 
M69 UL54 (ICP27)  Yes (UL69) Yes (BMLF1/EB2) Tegument? 
No UL56  No No Tegument? 
No US2  No No Tegument 
No US3  No No Tegument 
No US4 (gG)  No No Envelope 
No US5 (gJ)  No No Envelope? 
No US6 (gD)  No No Envelope 
No US7 (gI)  No No Envelope 
No US8 (gE)  No No Envelope 
No US9  No No Envelope 
No US10  No No Tegument 
No US11  No No Tegument 

Table 1. Components of mature or maturing particles of herpesviruses and their putative function 
(from Mettenleiter, 2006/2004; McGeoch et. al., 1988; Chee et. al., 1990; Baer et. al., 1984). ?, 
indicates that the presence in virus particle/substructure is not unequivocally shown. 
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Chapter 2 Introduction 

2.1.1 The structure of herpesvirus particles 

The infectious herpesvirus particles share a common morphology with an 

icosahedral capsid (Grünewald and Cyrklaff, 2006; Grünewald et. al., 2003; Zhou 

et. al., 2000) surrounded by a tegument, which is a protein meshwork linking the 

capsid and envelope (Newcomb et. al., 2003; Gibson, 1996), which is a cell-

derived lipid bilayer embedded with virally encoded glycoproteins.  

 Herpesvirus capsids package linear double strand DNA genomes ranging 

from a low of 110 kbp - VZV (Gray et. al., 2001) to 241 kbp – HCMV (Davison et. 

al., 2003) with a coding capacity of up to 200 proteins. These include structural 

components, virus-specific enzymes and factors involved in virus replication and 

modulation of host defense (Kalejta, 2008; Tang et. al, 2006; Zhu et. al., 2005; 

Britt and Boppana, 2004; Dolan et. al., 2004; Varnum et. al, 2004; Davison et. al., 

2003; Dunn et. al., 2003; Murphy et. al., 2003; Yu et. al., 2003; Rawlinson et. al, 

1996; Roizman and Baines, 1991; Chee et. al., 1990). Herpesvirus capsids share 

well conserved icosahedral structures with 162 capsomers (150 hexamers and 12 

pentamers) and triplex (TRI) structures (MCMV M46) connecting adjacent 

capsomers at the inner level of the shell (Adamson et. al., 2006; Grünewald et. al., 

2003; Newcomb et. al., 2001/1996/1993; Trus et. al., 2001/1996/1995; Zhou et. 

al., 2000/1999/1998a and b/1995/1994; Booy et. al., 1996; Schrag et. al., 1989). 

The hexons, the capsomers having six neighbors, occupy the capsid edges and 

faces, while the pentons, the capsomers having five neighbors, are distributed at 

the vertices. All 150 hexons of MCMV are composed of both six dimers of the 

major (MCP – M86, 154 kDa) and small capsid protein (SCP - M48.2, 8.5 kDa). 

The majority of the pentons consist of pentamers of MCP, while one edge is 

formed by a cylindrical structure called the portal which is composed of 12-15 

copies of the portal protein (PORT – MCMV M104) (Cardone et. al., 2007; Deng 
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et. al., 2007; Newcomb et. al., 2005/2001). The portal has a channel believed to 

serve as a tunnel for the genomic DNA during both DNA packaging in the process 

of virus maturation and DNA release following virus entry (Lebedev et. al., 2007; 

Yang, Homa and Baines, 2007; Oliveira et. al., 2006; Streblow et. al., 2006; Wills 

et. al., 2006; Dittmer et. al., 2005; Gibson, 1996).   

The next layer of the herpesvirus particle is the tegument, which is 

progressively acquired, during maturation, in both nucleus and cytoplasm. Up to 

20 tegument proteins have been identified in virion preparations, including the 

large tegument protein (LTP) and the LTP binding protein (LTPbp) (MCMV M48 

and M47). Viral capsids, surrounded by tegument, bud into the Trans-Golgi 

network where they acquire a cell-derived lipid envelope containing many virally 

encoded glycoproteins (see Table 1), including gB (M55), gM (M100), gH (M75), 

gL (M115), gO (M74), gN (M73), gp48 (M4), gpTRL10 and the UL33 MCMV 

homolog (Heldwein and Krummenacher, 2008; Mettenleiter, 2006). In addition to 

viral proteins, a small number of cellular RNAs and proteins, including actin 

(Baldick and Shenk, 1996),  amino peptidase N (Giugni et. al., 1996), annexins 

(Pietropaolo and Compton, 1997; Wright et. al., 1995), ß2-microglobulin 

(Stannard, 1989; Grundy et. al., 1987 a/b; McKeating et. al., 1987), protein 

phosphatase I (Michelson et. al., 1996), histone 2A and cofilin have been shown to 

associate with the HCMV virion (Kattenhorn et. al., 2004; Varnum et. al., 2004; 

Gibson, 1996). Although infected cells contain these cellular components in a 

great abundance, it is still unclear whether they are only associated with virion 

preparations (Baldick and Shenk, 1996; Wrigth et. al., 1995) or play a specific role 

in CMV infection. 
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2.1.2 Lytic replication of herpesviruses  

2.1.2.1 Viral entry 

Attachment and entry of herpesviruses occur either in one step by immediate 

receptor-mediated fusion of the viral envelope with the cellular plasma membrane 

at the surface of the host cell or in two steps consisting of a receptor mediated 

attachment followed by endocytosis. In the latter case, fusion happens only when 

the virions have reached a specific endosomal compartment. Released capsids 

with a remaining layer of tegument proteins are then transported through the 

cytoplasm via microtubules to the nucleus and the viral genome is transferred into 

the cell nucleus through the nuclear pore complex (see Figure 1).  

Virus attachment involves multiple cell surface components interacting with 

glycoproteins of the viral envelope (Spear et. al., 2004; Spear and Longnecker, 

2003). After binding to specific cellular receptors the viral envelope fuses with the 

cellular membranes. This process is under the control of essential herpesvirus 

envelope proteins such as gB and the gH/gL complex. In addition to these three 

conserved glycoproteins (gB, gH and gL), some herpesviruses require additional 

receptor binding proteins, such as glycoprotein D for herpes simplex virus 1 

(Heldwein and Krummenacher, 2008; Ligas et. al., 1988; Johnson et. al., 1988), 

gp350/220 for Epstein-Barr virus entry (Spear and Longnecker, 2003), or either the 

gO (Huber and Compton, 1998) or the UL128-131 complex of HCMV (Adler et. al. 

2006). The HCMV gB (homolog of MCMV M55), gH (homolog of MCMV M75) and 

gL (homolog of MCMV M115) are type I viral transmembrane glycoproteins. The 

proteolytically processed glycoprotein gB promotes attachment to the cell surface 

by binding to heparan sulfate proteoglycans (Kielian et. al., 2006; Boyle and 

Compton, 1998; Compton et. al., 1993). 
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A 

B

C

D

 
Figure 1. Herpesviruses life cycle (after Coen and Schaffer, 2003): A. Attachment and entry. Viral 
glycoproteins, members of the particle outer layer, are responsible for the envelope fusion with the 
plasma membrane and nucleocapsid (hexagons) delivery into the cytoplasm. Capsids are 
transported along the microtubule to the nuclear pores. Viral DNA is released into the nucleosol 
and circularizes. B. Transcription. Immediate-early proteins transcription relies on viral and cellular 
trans-activators. These proteins play a role in further transcription control (upper translation sites). 
C. Replication. The control of cellular environmental is exercised by early proteins (middle 
translation sites). Their synthesis requires new viral DNA molecules. D.  Assembly, encapsidation 
and nuclear egress. Late proteins (lower translation sites) auto-assemble and generate capsids, 
which incorporate one unit length viral DNA genome. Nucleocapsid egress supposes a primary 
envelopment at the inner nuclear membrane and releases into the perinuclear space. After the 
fusion of the primary envelope with the outer nuclear membrane the new particles follow a complex 
maturation by re-envelopment. The mature virus particles reach exocytose vesicles and are 
released into the extracellular space. 
 
 

gB also interacts with integrins or epidermal growth factor receptor (EGFR) 

(Compton, 2004; Feire et. al., 2004; Wang et. al., 2003). In addition, the gH/gL 

complex can also bind to integrins thereby aggregating the gB and gH/gL 

complexes (Wang et. al., 2003). CMV entry involves additional envelope 

glycoproteins, such as gO (HCMV homolog of M74) which binds to the gH/gL 

complex, important for HCMV entry in fibroblasts (Huber and Compton, 1998, 

Jiang et. al., 2008; Kinzler and Compton, 2005; Theiler and Compton, 2001). 

Infection of endothelial and epithelial cells, however, needs another complex build 
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by UL128, UL130 and UL131A to promote entry via endocytosis (Ryckman et. al., 

2008; Adler et. al., 2006). After internalization herpesvirus particles exploit the 

cytosolic organelle transport system involving microtubules (Dohner et. al., 

2006/2005/2002; Radtke et. al., 2006; Wolfstein et. al., 2006). The transport of 

capsids along microtubule to the microtubule-organizing center (Welte et. al., 

2004; Ogawa-Goto et. al., 2003) depends on the dynein/dynactin motor complex 

(Dohner et. al., 2002; Sodeik et. al., 1997). When the capsids reach the nuclear 

pores, the capsid and tegument proteins facilitate the release of viral DNA into the 

nucleus (Ojala et. al., 2000; Sodeick et. al., 1997). 

 

2.1.2.2 Kinetics of viral gene expression 

During productive infection, there are three major phases of gene expression (see 

Figure 1). The products of so-called immediate-early (IE) genes are synthesized in 

the first few hours after the viral entry and depend mainly on host factors for their 

expression. These proteins together with some entering tegument proteins 

regulate the viral and cellular gene expression in order to optimize the cellular 

environment for the production of viral progeny and are required for the expression 

of early genes which lead to the second wave of viral transcription (White et. al., 

2007; White and Spector, 2005; Goldmacher, 2004; Castillo and Kowalik, 2002; 

Fortunato et. al., 2002/2000; Colberg-Poley, 1996; Stenberg, 1996). Early genes 

encode proteins which are involved in viral DNA replication and transactivate late 

genes (Spector, 1996/1990). Concurrent effects on cellular metabolism allow viral 

DNA synthesis. Finally, the expression of late genes (encoding mainly structural 

proteins) allows the assembly of new particles and release (Spector et. al., 1996). 
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2.1.2.3 Replication and gene expression 

HCMV DNA replication begins at 14 to 24 h post infection (hpi), and the release of 

progeny starts between 36 and 48 hpi, reaching maximum levels between 72 and 

96 hpi (Hertel and Mocarski, 2004). 

CMV infection deregulates important cell cycle regulators, such as cyclins 

(Advani et. al., 2000; McElroy et. al., 2000; Bresnahan et. al., 1998; Jault et. al. 

1995), cell cycle checkpoint proteins (p53 and pRb: Song et. al., 2005; Kalejta et. 

al., 2003; Jault et. al., 1995) and DNA replication effectors (Sanchez et. al., 2003; 

Pajovic et. al., 1997; Poma et. al., 1996). CMV appears to stimulate the generation 

of an intracellular environment similar to S phase (Biswas et. al., 2003; Wiebusch 

et. al., 2003; Advani et. al., 2000a/b; Sinclair et. al., 2000; Secchiero et. al., 1998), 

while eliminating competition with the cellular genome synthesis and avoiding the 

onset of apoptosis (Reeves et. al., 2007; Andoniou et. al., 2006 ). 

Lytic replication starts at specific sites on the viral genome, so-called origins 

of replication (oriLyt). Some viruses have one (HCMV), other two (VZV, EBV, 

KSHV) or three (HSV-1, HSV-2) origins. In many herpesviruses the oriLyt is found 

next to the single-strand DNA binding protein (SSB) ORF (open reading frame) 

and the initiation of DNA replication is controlled by the SSB in cis.  All 

herpesviruses encode a core set of six enzymes involved in DNA synthesis – the 

replication fork machinery – which only is active during productive (lytic) infection: 

ori binding protein (OBP, MCMV M84; Colletti et. al., 2007/2005; Xu et. al., 2004), 

single-strand binding protein (SSB, MCMV M57), a viral catalytic subunit of DNA 

polymerase (POL, MCMV M54), associated polymerase processivity subunit 

(PPS, MCMV M44), heterodimeric helicase-primase (HP) consisting of an ATP-

ase subunit (helicase, MCMV M105), a primase subunit (MCMV M70) and an 

accessory subunit (helicase associated factor, MCMV M102) (Iskenderian et. al., 
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1996; Pari and Anders, 1993). The rolling cycle of DNA replication results in the 

production of multi-genomic concatemers, which is the substrate for 

cleavage/packaging reaction filling the preformed capsids with unit length 

genomes (see 2.1.2.4., for a review see Roizman and Knipe, 2001). 

Alpha herpesviruses and non-CMV beta herpesviruses are controlling the 

DNA replication by interaction of the OBP complex with the SSB protein to unwind 

the dsDNA and set free the oriLyt sites for the replication machinery (Macao et. al., 

2004; Boehmer and Lehman, 1997; see Figure 2). The control of CMV and 

gamma herpesvirus replication depends on DNA-binding trans-activators (Xu et. 

al., 2004 a/b).  

 

 

 

 

 

 

 
 
 
 
 
 
 
 
Figure 2. Herpesviruses DNA replication (after Coen and Schaffer, 2003). The elongation phase of 
herpesviruses DNA replication occurs by a bidirectional replication fork mechanism. On the left side 
of the replication fork, the helicase–primase complex (HCMV UL 70, UL 102 and UL 105 - see the 
HSV-1 UL 5, UL 8 and UL 52 bubbles, respectively) unwinds the double-stranded DNA, fact 
indicated by a wavy arrow.  The primase subunit attaches on the lagging strand an RNA primer, 
represented as a wavy line starting at the 52 bubble. The lagging-strand primers, as well as the 
leading strand primer (depicted to the right and above), will be elongated into DNA (wavy lines 
along the strands) in the opposite directions by the catalytic subunit (HCMV UL 54) and the 
accessory protein (HCMV UL 44) of the DNA polymerase (see the HSV-1 DNA polymerase and 
accessory protein UL 42 bubbles). Single-stranded DNA fragments are protected by the single-
stranded DNA-binding protein (HCMV UL 57 - see the flat bubbles: HSV-1 ICP8). 
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2.1.2.4 Herpesvirus assembly and egress 

2.1.2.4.1 Nuclear events in herpesviruses morphogenesis 

a) Capsid formation. The translocation of the major capsid protein (M86 in MCMV) 

into the nucleus requires its interaction with the assembly protein precursor (pAP; 

M80.5 in MCMV), which provide the nuclear leader sequence (Nguyen et. al., 

2008; Plafker and Gibson, 1998; Wood et al., 1997). Capsid precursors 

(‘procapsids’) auto catalytically assembled by the interaction of M86 hexamers 

complexes with small capsid protein SCP (M48.2) and pentamers of M86 on a 

scaffold composed of the proteinase precursor (prePR; M80 in MCMV) and pAP 

(Singer et. al., 2005; Newcomb et. al., 2003; Walters et. al., 2003; Desai and 

Person, 1996; Liu and Roizman, 1991; Gibson and Roizman, 1974). During 

maturation the triplex complex (M46) is incorporated into the shell and the scaffold 

is cleaved by the viral protease (M80). These processes lead to structural changes 

through the shell which are required for the tight capsid formation (Rixon and 

McNab, 1999; Gibson, 1996; Gao et. al., 1994).  

Apart from minor differences in the scaffolding protein (HSV homolog of 

pAP; Trus et. al., 1996), the procapsid has the same protein composition as the 

mature capsid but is differing in many morphological aspects: (i) the procapsid is 

spherical whereas the mature capsid is icosahedral; (ii) the procapsid has holes 

between capsomers whereas the mature capsid is sealed; (iii) in cross section 

procapsid hexons are oval whereas those of the mature capsid are hexagonal 

(Newcomb et. al., 1996; Trus et. al., 1995); and (iv) by incubation at + 4°C 

procapsids are disassembled whereas mature capsids are unaffected. 

b) DNA cleavage and packaging. During DNA replication viral concatemeric 

structures are formed. Unit-length genomes are produced and packaged into the 

preformed capsids by a machinery resembling to that of bacteriophages (Wills et. 
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al., 2006) and involves at least seven gene products, namely the homologues of 

MCMV M51, M52, M56, M77, M89, M93, and M104. The current model of the 

herpesvirus DNA packaging is based on data mostly acquired by the study of 

alpha herpesviruses (Yang and Baines, 2008; Yang et. al., 2008; Yang, Homa and 

Baines, 2007; Wills et. al., 2006; Yang and Baines, 2006; Beard and Baines, 2004; 

Taus et. al., 1998). As the core of the cleavage/packaging reaction seems to be 

extremely conserved, a mechanistic analogy with DNA bacteriophage genome 

packaging has been assumed (Gibson et. al., 2008). Therefore, the terminology of 

the subunits follows that used for bacteriophages. The terminase is recognizing 

and binding to the genome terminal repeats. Interaction between the portal 

complex and terminase leads to cleavage of the first genome end and the DNA is 

concomitantly transported through the portal channel to the inside of the capsid. 

When the capsid is full the second genome end is recognized and cut. As a final 

step, the terminase dissociates from the portal which is then sealed by accessory 

proteins. The herpesvirus terminase (TER) comprises three conserved units (M89 

– TER1; M56 – TER2; M51 – TER3) and docks at the portal vertex. The TER2 

recognizes specific DNA sequences of concatemers and performs DNA cleavage, 

generating linear unit length genomes. TER1 contains a conserved P-loop ATP-

ase motif and provide the necessary energy for encapsidation (Wills et. al., 2006; 

Thurlow et. al., 2005). The M51 homologues (TER3) stabilize the terminase at the 

docking site and are involved in translocation of cleaved genomic DNA into the 

capsid’s interior (Beard and Baines, 2004).  

DNA encapsidation needs additional factors, such as capsid transport 

nuclear protein (CTNP - M52 homologue; Borst et. al., 2008); viral protein kinase 

VPK (M97 homologue; Azzeh et. al., 2006); the homologues of M77 (Wagenaar et. 
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al., 2001; de Wind et. al., 1992) and also M93 (Klupp et. al., 2005; Oshima et. al., 

1998; Nalwanga et. al., 1996), described as capsid maturation proteins.  

c) The nuclear egress. After the packaging reaction is completed, the DNA 

filled capsids move along the actin microfilaments (Forest, Barnard and Baines, 

2005) and contact the inner nuclear membrane (INM) (Buser et. al., 2007; 

Darlington and Moss, 1968; see Figure 3). Intranuclear movement of 

herpesviruses requires a capsid maturation signal for transport. This signal is 

believed to be generated by the interaction of M93 and M77 (Klupp et. al., 2006; 

Wills et. al., 2006; Taus et. al., 1998).  

 

Figure 3. The envelopment-deenvelopment model of nuclear egress of herpesviruses. Nuclear 
egress complex (NEC) formation induces a cascade of events with Ca-dependent PKC 
recruitment, lamin phosphorylation and partial dismantle of the inner nuclear membrane (INM). 
Mature nucleocapsids (high density core) acquire a primary envelope and are translocated into the 
perinuclear space. Here, the primary envelope fuses with the outer nuclear membrane (ONM) 
releasing the capsid to cytoplasm. NPC, nuclear pore complex. 

 

To achieve intimate contact with the inner nuclear membrane (INM), the 

nuclear matrix has to be partially disassembled. This requires at least two viral 

proteins, MCMV M53 and M50 which are conserved in all Herpesviridae (Rupp et. 

al., 2007; Loetzerich et. al., 2006; Schnee et. al., 2006; Rupp et. al., 2005; 
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Simpson-Holley et. al., 2005/2004; Bubeck et. al., 2004; Reynolds, Liang and 

Baines, 2004; Fuchs et. al., 2002a; Muranyi et. al., 2002; Klupp et. al., 2000; Roller 

et. al., 2000; Chang et. al., 1997). 

M50, a member of the UL34 herpesvirus protein family, is a type II 

transmembrane protein found equally distributed in both nuclear leaflets and other 

membranous structures upon transfection (Muranyi et. al., 2002). MCMV M53, a 

member of the UL31 herpesvirus protein family, is translocated to the nucleus due 

to its nuclear leader sequence (9 aa NLS) within the N terminal variable region 

(Loetzerich et. al, 2006). All members of the UL31 family share 4 C-terminal 

conserved regions (CRs) but little is known about the viral functions associated 

with these domains. M53 CR1 (106-137) harbors the M50 binding site (Loetzerich 

et. al., 2006; Schnee et. al., 2006) and CR3 (168-233) could be involved in matrix 

retention (Lötzerich 2009, ms in preparation). 

The interaction of M53 and M50 upon co-transfection or infection leads the 

relocalization of both proteins to the INM. The colocalization of M50 and M53 at 

the INM results in nuclear egress complex (NEC) formation (Rupp et. al., 2007; 

Lötzerich et. al., 2006; Schnee et. al., 2006; Gonella et. al., 2005; Rupp et. al., 

2005; Bubeck et. al., 2004; Lake and Hutt-Fletcher, 2004; Liang et. al., 2004; 

Bjerke et. al., 2003; Fuchs et. al., 2002a; Mettenleiter, 2002; Reynolds et. al., 

2001; Klupp et. al., 2000; Shiba et. al., 2000). This interaction is a prerequisite for 

primary envelopment. In the absence of either protein (HSV-1: Roller et. al., 2000; 

Chang et. al., 1997; PrV: Fuchs et. al., 2002; MCMV: Rupp et. al., 2007; 

Loetzerich et. al., 2006; Bubeck et. al., 2004; Muranyi et. al., 2002) the nuclear 

egress is severely affected. 

It is believed that NEC interacts with several cellular and/or viral partners at 

the INM. The HSV-1 homolog of M53 is associated with the nuclear matrix upon 
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infection (Chang and Roizman, 1993) and binds to lamin A (Reynolds et. al., 

2004). In the case of CMV the NEC interacts with lamin B receptor (LBR) and p32 

(Lötzerich 2009, ms in preparation). 

The 20 to 80 nm deep orthogonal filamentous meshwork of the nuclear 

lamins is a barrier for capsid budding (Mou et. al., 2008). Herpesviruses have 

developed a strategy for its disorganization (Gonella et. al., 2005; Reynolds, Liang 

and Baines, 2004; Muranyi et. al., 2002) by recruiting the cellular protein kinase C 

(Ca2+ dependent PKC) at the INM, which phosphorylates the lamins (A/C and/or B) 

(Park and Baines, 2006; Muranyi et. al., 2002). This induces a local dissolution of 

the lamin A network (Mou et. al., 2008; Reynolds et. al., 2002), redistribution of 

lamin B receptor (LBR) or lamin associated protein 2β (LAP2β) (Muranyi et. al., 

2002; Reynolds et. al., 2002; Scott and O’Hare, 2001) and partial reorganization of 

chromatin (Simpson-Holley et. al., 2005; Muranyi et. al., 2002). These 

modifications allow the capsids access to the INM. The HSV1 homolog of M50 

induces a dissociation of the inner and outer nuclear membranes rather than 

alterations of the nuclear lamin, suggesting an additional mechanism. Deletion of 

M53 or M50 homologues resulted in the accumulation of capsids in the nucleus 

(Granato et. al., 2008; Rupp et. al., 2007; Reynolds et. al., 2002; Mettenleiter, 

2002; Klupp et. al., 2000; Roller et. al., 2000; Chang et. al., 1997) with a severe 

impairment of nuclear egress.  

Some tegument proteins – LTP and LTPbp - may also modulate the nuclear 

egress of pseudorabies virus (Luxton et. al., 2006). Besides the protein kinase C, 

no other cellular protein has been found to be involved in this morphogenesis step. 

In wild type virus infections the DNA-filled capsids are preferentially enveloped, 

possibly due to the M77 homologues maturation signaling (Klupp et. al., 2006; 

Stow, 2001).  
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By immuno-electron microscopy, it has been shown that the primary 

enveloped virions - found in the perinuclear cleft – are different from the mature 

virus particles regarding the morphology and protein content (Miranda-Saksena et. 

al., 2002; Granzow et. al., 2001). HSV homologues of M50 and M53 proteins 

(Liang et. al., 2004) were detected as present at the surface of perinuclear 

particles but absent from the mature virions. In contrast, major tegument proteins 

of the mature virions are absent or found only in small quantities in primary 

enveloped virions (Naldinho-Souto, Browne and Minson, 2006). Regarding the 

viral envelope glycoproteins, it is disputed whether they are a part of the virion in 

the perinuclear cleft (Miranda-Saksena et. al., 2002) because several of them 

have been detected at the inner nuclear membrane (Meyer and Radsak, 2000).  

Capsids gain access to the cytoplasm by fusion of their primary envelope 

with the outer nuclear membrane (ONM). Recently, it has been shown in the HSV1 

model that gB/gH complex is involved in perinuclear fusion of the primary 

enveloped particles (Farnsworth et. al., 2007). Its mechanism, however, is still 

unclear and the data cannot be confirmed by the very close related PRV system 

(Klupp et. al.  2007).   

 

2.1.2.4.2 Cytoplasmic maturation of herpesvirus particles 

After translocation to the cytoplasm, new protein–protein interactions allow the late 

tegumentation and secondary envelopment. The tegumentation is initiated at the 

capsid and Trans-Golgi network, resulting in two subassemblies that combine to 

produce a mature virion.  

 The herpesvirus capsid proximal tegument contains the conserved M48 – 

LTP (Kattenhorn et. al., 2005; Fuchs et. al., 2004) and M47 - LTPbp (Hyun et. al., 

1999), and presumably also the conserved M93/M77 complex (Wills et. al., 2006). 
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Proteins of the inner tegument remain associated with the incoming capsids until 

they dock at the nuclear pore (Granzow, Klupp and Mettenleiter, 2005; Luxton et. 

al., 2005), and are involved in the intracytoplasmic transport of the capsids during 

entry and exit (Luxton et. al., 2006; Wolfstein et. al., 2006). It has been suggested 

that the HSV1 homologue of M48 is directly anchored to the capsid (Zhou et. al., 

1999) at the pentonal sites, which are not covered by the small capsid protein. At 

the final envelopment site in the Trans-Golgi network, the viral glycoproteins are 

associated with a subset of tegument proteins (Turcotte, Letellier and Lippé, 

2005). At least two conserved proteins play important roles in this process: 

glycoprotein M (M100 - Krzyzaniak et. al., 2007; Shen et. al., 2007) involved in 

glycoproteins retention and M99 responsible to direct the tegument proteins to the 

envelopment site (Loomis, Courtney and Wills, 2003; Bowzard et. al., 2000).  

Taken together, there is evidence that after the nuclear egress the 

intracytoplasmic capsids are decorated by M48 and M47 homologues and 

transported to the sites of the secondary envelopment marked by the 

glycoproteins M and M99, which are responsible for targeting the major viral 

glycoprotein complexes (Leege et. al., 2009; Kopp et. al., 2004). Although it is not 

sure which protein(s) form(s) the bridge between the viral glycoprotein complexes 

and the tegumented capsids, the biochemical and morphological data are 

indicating that in several herpesviruses M49 or its homologues are necessary for 

this step of the secondary envelopment. However, it is clear that other factors also 

need to be involved at least in alpha herpesviruses, where M94 homologues are 

not essential for the virus growth (May et. al., 2005; Vittone et. al., 2005; Dorange 

et. al., 2002; Fuchs et. al., 2002).  

 The net result of the secondary envelopment, similar to the acquisition of a 

double membrane by wrapping of a cisterna around the capsid, is a mature 
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herpesviruses particle within a cellular vesicle. This structure is then transported to 

the plasma membrane and after fusion of the vesicle and plasma membrane the 

herpes virion is released. This process mimics the release of secreted proteins 

and exosomes from the cell. 

 

2.2 Dominant negative mutants of cellular and viral proteins 

Classical approaches to identify the function of an essential protein include 

deletion or temperature sensitive (ts) mutants. For the identification of individual 

properties of the multifunctional viral proteins these approaches have major 

limitations or are not easily applicable, e.g. deletion of essential herpesvirus 

proteins.  

Another option in genetics of diploid organisms is to design mutations of the 

gene of interest that abolishes only one feature and inhibits the function(s) of the 

wild type (wt) allele after the simultaneous expression. Loss-of-function mutations 

induce the production of a gene product with less (attenuated) or no function (null 

allele). The respective mutants, so called dominant negative mutants (DNs), are 

altered molecules that are acting antagonistically to the wt allele. Therefore, this 

approach tends to be more valuable for the proteins that become functional only 

as a member of a complex (Herkowitz, 1987). 

DN mutants of cellular genes have been proven to be very useful to dissect 

complex cellular pathways. Knowledge on protein structure and functions or 

sequence motifs aids the design of DN mutants. For the last decade they 

represented an additional opportunity to unveil new regulatory mechanisms 

(mitotic spindle assembly – Boleti et. al., 2000; apoptosis: cyclin dependent protein 

kinases – Meikrantz and Schlegel, 1996; DNA replication: IRF3 DN alternative 

splicing and carcinogenesis – Young et. al., 2003; lamin B and replication centers - 
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Ellis et. al., 1997), signaling pathways (ECs activation: c-jun induces AP-1 

transcription factor activation for ICAM-1 expression - Wang et. al., 2001), or even 

therapeutic approaches (cancer therapies: transforming growth factor type II 

receptor DN – suppression of mammary tumor formation – Gorska et. al., 2003; 

inhibitor- B  of NFkB transcription factor nuclear factor - Duffey et. al., 1999; anti 

viral therapies: cyclin T1 DN induce proteasome degradation of HIV1 TAT – 

Jadlowsky et. aI., 2008; ICP0 DN mutant of HSV1 inhibit HSV1 and HIV1 

replication - Weber et. al., 1992).  

Yet, the existing information on most viral proteins does not provide 

sufficient data to design DN mutants. A systematic screen for DN alleles needs to 

consider that all viruses, with exception of retroviruses, possess only one allele of 

its genes. However, single DNs of viral genes were detected for single genes 

(HIV1 protease DN – Miklossy et. al., 2008; EBV LMP1 DN – Adriaenssens et. al., 

2004; HSV1 ICP0 DN – Weber et. al., 1992). In some cases, fusion of wt allele 

with a tag (MCMV SCP-GFP- Rupp et. al., 2005) or another protein (HBV VP22-

core protein – Yi et. al., 2005; duck hepatitis B polymerase-core protein – von 

Weizsäcker et. al., 1999) resulted in an inhibitory-phenotype of the fusion protein.  
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2.3 Aims and concepts 

Functional mechanisms of the nuclear egress of herpesviruses are still poorly 

understood. The current knowledge is mainly based on studies using deletion or 

temperature sensitive (ts) mutants. Recently in our laboratory we described a new 

approach to screen for DN mutants of herpesvirus genes combining random 

mutagenesis and a specially designed genetic screen in the virus context. This 

has been exemplified by the genetic analysis of M50 (Rupp et. al., 2007) 

The primary aim of this study was to set up an inhibitory screen for the 

second MCMV NEC protein M53. A comprehensive transposon insertion library 

was available and a set of non-complementing mutants were identified (Loetzerich 

et. al., 2006). 

The major aim of this project was to characterize the MCMV M53/p38 

protein by a genetic analysis that allows definition of new functional domains 

responsible for specific steps of the MCMV intranuclear morphogenesis. Until now 

no structural knowledge of the NEC proteins is available. Therefore, large 

randomly generated libraries of M53 and M50 mutants were used to map essential 

sites of these viral proteins (see Figure. 4; M53 - Loetzerich et. al., 2006). To gain 

functional information the phenotype induced by the inhibitory mutants needs to be 

analyzed in the virus context. In order to do that, a viral conditional expression 

system is required. This system allows the expression of the inhibitory mutant on 

demand (Rupp et. al., 2007/2005). The second major target of this study was to 

analyze the phenotype of the inhibitory mutants of M53, in case they are identified.  

Completing this study should confirm the general applicability of the genetic 

screen based on random mutagenesis to identify DN mutants of gene products 

where structure or function is not well understood.  
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CR1 

CR2 

CR3 

CR4 

Figure 4. M53 mutants and their ability to rescue the ∆M53 MCMV null phenotype (after Loetzerich 
et. al., 2006). The sequence displayed is the amino acid sequence of M53/p38. Arrowheads 
indicate transposon insertion sites. Open arrowheads indicate insertions leading to a stop codon. 
Light gray arrowheads indicate in-frame insertion mutations that rescued the ∆M53 phenotype. 
Black arrowheads indicate in-frame insertion mutations that were not able to rescue the ∆M53 null 
phenotype. Underlined parts of the M53 amino acid sequence indicate the conserved regions (CR1 
to CR4). 
 

At the beginning of this study the following specific information was 

available for the MCMV NEC:  (i) there is a conserved subfamily specific 

interaction between M50 and M53 homologues at the INM (Schnee et. al., 2006; 

Fuchs et. al., 2002; Muranyi et. al., 2002; Neubauer et. al., 2002; Reynolds et. al., 

2002/2001; Klupp et. al., 2000; Roller et. al., 2000); (ii) lack of each protein is 

lethal for the productive infection  (M50 - Rupp et. al., 2007; Bubeck et. al., 2004; 

M53 - Loetzerich et. al., 2006); (iii) NEC formation is responsible for Ca2+-

dependent PKC recruitment to the nuclear envelope and induction of cellular 

lamina phosphorylation with destabilization of the nuclear matrix (Muranyi et. al., 

2002); (iv) nuclear egress of different herpesviruses is the result of viral proteins 

interactions with nuclear envelope components, especially the LBR complex 

(Loetzerich, PhD thesis LMU Munich 2007; Marschall et. al., 2005); (v) the M53 
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binding site of M50 is docked to its N terminal part - this is also most likely true for 

the other UL34 family members (Rupp et. al., 2007; Schnee et. al., 2006; Bubeck 

et. al., 2004); (vi) the M50 binding site of M53 is located at the conserved region 1 

- CR1 (Loetzerich et. al., 2006).  

Therefore, by studying the inhibitory phenotype of the M53 mutants we 

aimed to understand more about the process of MCMV nuclear egress.  
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3. Materials 

 

3.1 Devices 

- Bacterial shaker (ISF-1-W) Kühner, Swiss; 

- Centrifuges, Germany: Avanti J-20xp Beckman Coulter GmbH; L8-55M ultracentrifuge Beckman 

Coulter GmbH; Multifuge 3S-R Heraeus Instruments; Biofuge Stratos Heraeus Instruments; 5417 R 

Eppendorf; 

- Confocal microscope Axiovert 200M Zeiss, Germany; 

- Developing-machine Optimax TR MS Laborgeräte, Germany; 

- Fluorescence microscope (1x71) Olympus, Germany; 

- Gel drying system (model 583) Bio-Rad, Germany; 

- Gene Pulser Bio-Rad, Germany; 

- Incubators (B5050E, BB16CU) Heraeus Instruments, Germany; 

- Light-microscope Axiovert 25 Zeiss, Germany; 

- Mini-Protean 3 Cell Bio-Rad, Germany; 

- PCR systems: GeneAmp®PCR system 9700, Applied Biosystems, USA; T- Gradient, Biometra, 

Germany; 

- Photo documentation apparatus (Eagle Eye) Bio-Rad, Germany; 

- Roler mixer SRT Stuart, Staffordshire, UK;  

- Semi-dry-transfer cell (Trans-blot-SD) Bio-Rad, Germany; 

- Thermo shaker 5436 Eppendorf, Germany; 

- Vortex-mixer Bender/Hobein AG, Swiss; 

- Water bath F10 Julabo, Germany. 

 

3.2 Consumables 

- Cell culture dishes, Becton Dickinson, Germany; 

- Cell culture plates (6-, 12-, 24-, 48-, 96 well), Becton Dickinson, Germany; 

- Cell scratcher (25-, 39 cm), Costar, Germany; 
 23

 



Chapter 3 Materials 

- Cuvettes, Germany: 

- Condensor cuvettes (2 mm) Bio-Rad; 

- Unique cuvettes Brand; 

- Dishes (ø 9 cm for agar plates) Grainer, Germany; 

- Eppendorf reaction tubes (1.5 ml & 2 ml) Eppendorf, Germany; 

- Falcon reaction tubes (15 ml & 50 ml), Becton Dickinson, Germany; 

- Spin cup columns and tubes (Handee), Pierce, USA; 

- Ultracentrifugation tubes (25 x 89 mm), Beckman Coulter, Germany; 

- Whatman paper (Blotting paper), Macherey & Nagel, Germany. 

 

3.3 Kits and reagents 

- Amersham Biosciences (Germany): GFX Micro Plasmid Prep kit - purification from 1-1.5 ml of 

culture; GFX PCR DNA and Gel Band Purification kit - Purification of DNA from gel band;  

- Dianova (Germany): horseradish peroxidase (HRP) coupled donkey anti-rabbit (IgG, H+L fragments) 

antibodies; HRP coupled goat anti-mouse (IgG, H+L fragments) antibodies; HRP coupled goat anti-rat 

(IgG, H+L fragments) antibodies; Cy3 coupled goat anti-mouse (IgG Fab fragment) secondary 

antibodies;  

-  Fermentas (Germany): SphI (PaeI isoenzyme) endonuclease; 

-  GATC (Germany): pcDNA3.1-RP/1 primer; 

- Gibco (Germany) reagents: D-PBS (-Ca, -Mg); DMEM +4500 mg/L glucose + L-glutamine –pyruvate; 

fetal calf serum (FCS); 100x glutamine; 10x MEM; 100x MEM non-essential amino acids; newborn calf 

serum (NCS); penicillin/streptomycin (P/S 10000 U – 10000 µg/ml); RPMI 1640 + L-glutamine; sodium 

bicarbonate (7,5% w/v); trypsin-EDTA (0,25 % - 1 mM); 

- GE Healthcare (UK): Amersham ECL Plus Western Blotting Detection System; Amersham Hybond-

N, nylon membranes optimized for nucleic acid transfer; Amersham Hybond-P PVDF Membrane, 

optimized for protein transfer; Amersham Hyperfilm ECL, High Performance chemiluminescence film;  

-  Invitrogen (Germany): DH10B and PIR1 - Escherichia coli strains; Monomeric Cyanine Nucleic Acid 

stains, TO-PRO-3;  

-  Macherey Nagel (Germany): NucleoBond AX100 - Low copy and high copy plasmid purification 

(Midi AX100 columns);  
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-  Metabion (Germany): all used oligonucleotide for genetic manipulation and sequencing (see Tabel 

2: Primers sequences); 

 

Primer 
name Type 

Size 
(base
pair) 

Tm 
(oC) Sequence 

s309for cloning 31 77.6 5’ GCG CAT GCA TCC ATG TTT AGG AGC CCG GAG G 
3’ 

s309rev cloning 29 73.2 5’ GCG CCT CGA GTT AAA CAA GCA TCA GCA CG 3’ 
T309for cloning 30 72.1 5’ AAA AGG CGC GCC AAG CTT GGT ACC ATG TTT 3’ 
T309rev cloning 29 71.8 5’ GGG AAA AAG CC ACCT TCC TCT GCA GCA TT 3’ 
H262S 
for1 cloning 25 69.5 5’ GGG GGG TAC CAT GTT TAG GAG CCC G 3’ 

H262S 
rev1 cloning 29 68.1 5’ CCC CAT CGA TAC CGT CTC CTT CTC GAA AA 3’ 

H262Sfor2 cloning 26 71.1 5’ GGG GAT CGA TCC CGT CCC AGT GCA TC 3’ 
H262S 
rev2 cloning 27 68.0 5’ GGG GGC ATC AGG CGA AAT TGT AAA CGG 3’ 

D303for1 cloning 29 72.3 5’ GGG GAA AAC ACA CGT GCC TGG ACC TCT CC 3’ 
D303rev1 cloning 30 73.6 5’ GGG GAT GCA TCA GCT CGA CTC TAG CCG CAG 3’ 
D321rev1 cloning 30 72.2 5’ GGG GAT GCA TCA GAT CTC GAG CTC GTC CAC 3’ 
D327rev1 cloning 30 72.2 5’ GGG GAT GCA TCA CTC GTT CGT CTC GTT GGG 3’ 

BioHA1 oligo 
cloning 117 90.7 

5’ CAT GAG CGG CCT GAA CGA CAT CTT CGA GGC 
CCA GAA GAT CGA GTG GCA CGA GGG CAG CTA CCC 
CTA CGA CGT GCC CGA CTA CGC TAG CCC GGA GGG 
AGA GGA ACG GGA CGC CGC CGA 3’ 

BioHA2 oligo 
cloning 124 91.2 

5’ CAT GGT ACT CGC CGG ACT TGC TGT AGA AGC 
TCC GGG TCT TCT AGC TCA CCG TGC TCC CGT CGA 
TGG GGA TGC TGC ACG GGC TGA TGC GAT CGG 
GCC TCC CTC TCC TTG CCC TGC GGC GGC TGG C 3’ 

Sak1for cloning 30 75.0 5’ GGG GAC CGG TCG AGA AGA GGA GGA AGG AGG 
3’ 

Sak1rev cloning 30 70.9 5’ GGG GAC CGG TGC TCC TAA ACT TAT CGT CGT 3’ 
SakFlag 
for cloning  79.9 5’ 3’ 

BioHAfor cloning 115 89.7 

5’ GCT TGG TAC CAT GAG CGG CCT GAA CGA CAT 
CTT CGA GGC CCA GAA GAT CGA GTG GCA CGA GGG 
CAG CTA CCC CTA CGA CGT GCC CGA CTA CGC TAG 
CCC GGA GGG AGA GGA ACG G 3’ 

BioHArev cloning 20 65.5 5’ GCG GCT GGT TAG CGG CCA TC 3’ 
BioHA 
repfor cloning 55 80.6 5’ AGC TTG GTA CCA TGA GCG GCC TGA ACG ACA 

TCT TCG AGG CCC AGA AGA TCG AGT G 3’ 

SVTinsfor cloning 38 84.0 5’ GGG GGG GGC GCG CCA AGC TTG GTA CCA TGT 
TTA GGA GC 3’ 

CMVSak cloning 19 67.4 5’ GCC CAA CGA CCC CCG CCC A 3’ 
CMVfor seq 21 65.7 5’ CGC AAA TGG GCG GTA GGC GTG 3’ 
BGHrev seq 18 56 5’ TAG AAG GCA CAG TCG AGG 3’ 
M53for1 seq 19 61.0 5’ CAC ACG TGC CTG GAC CTC T 3’ 
M53rev1 seq 19 61.0 5’ AGA GGT CCA GGC ACG TGT G 3’ 
TnR seq 20 61.4 5’ CTC TCA TCA ACC GTG GCT CC 3’ 
TnR3 seq 21 59.8 5’ ACT CGC TAC CTT AGG ACC GTT 3’ 
TnL seq 20 55.3 5’ GAA TAT GGC TCA TAA CAC CC 3’ 
Pack1for probe 20 67.0 5’ TGC ATC GAC GGT CCC AGC CA 3’ 
Pack1rev probe 20 65.0 5’ CCG CGG TGG TCC CCA TTG TG 3’ 
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Table 2. Primers’ sequences. PCR and sequencing primers, used during this study, were produced by 
Metabion, Germany (for, forward primer; rev, reverse primer; rep, repaired sequence; seq, sequencing 
primer; probe, probe useful for Southern-blot technique).  
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- Micro Tech Lab (Austria): Confocal Matrix; 

- Miltenyi Biotec (Germany): FcR Blocking Reagent; 

- MoBiTec (Germany): Alexa 488 goat anti-rat (IgG, H+L fragments) antibodies; Alexa 555 goat anti-

mouse (IgG, H+L fragments) antibodies; Alexa 555 goat anti-rabbit (H+L fragments) antibodies; Alexa 

633 goat anti-rabbit (IgG, H+L fragments) antibodies; 

- New England Biolabs (Germany): Acc65I, AscI, BamHI, BsiWI, BspEI, BspMI, EarI, EcoRI, HindIII, 

HpaI, KpnI, NotI, NsiI, PmeI, PstI, PvuII, SacII, SpeI, XhoI, T4DNA ligase, T4DNA ligase buffer, 

specific enzymes buffers, 1 kbp and 100 bp ladders; 

- Novagen (USA): Benzonase Nuclease; 

- Pierce (England): Handee-Spin; 

- QIAGEN (Germany):  QIAquick Spin - QIAquick PCR Purification kit protocol; SuperFect 

Transfection Reagent - Protocol for Transient Transfection of Adherent Cells/protocol with specific 

modifications for primary cells; DNAeasy Blood & Tissue kit – protocol for cell culture;  

- Roche (Germany): Anti-HA High Affinity (3F10), rat monoclonal IgG; DIG Easy Hyb Granules; 

Expand High Fidelity PCR System; PCR DIG Probe Synthesis Kit; DIG Luminescent Detection kit; PIC 

(Proteinase inhibitor cocktail, 100x); 

- Sigma (Germany): acetic acid, 1:29 bis/acrylamide, agarose, ampicillin, APS, anti-actins rabbit 

antibodies; anti-Flag (M2) HRP-antibodies, Bacto-tryptone, Bacto-yeast, β-mercaptoethanol, 

bromphenolbleu, boric acid, BSA, carboxymethylcellulose, chloramphenicol, DTT, EDTANa2, ethanol, 

ethidium bromide, fish-gelatin, glycerol, glycine, HCl, hygromycin, isopropanol, L arabinose, methanol, 

milk pulver, sodium acetate, sodium chloride, sodium citrate, paraformaldehyde, phenol, phenol-red, 

potassium chloride, SDS, sucrose, TEMED, TRIS, TRIS-HCl, TRITON X-100, Tween 20, urea,  

zeocin. 

 

3.4 Buffers and solutions 

a. agarose gel running buffers:  

- TAE 50x (for 2 liters buffer: 484.6 g TRIS (2 M), 37.2 g EDTA Na2 (0.05 M), 41 g sodium acetate 

(0.25 M), pH at 7.3 with glacial acetic acid);  

- TBE 10x (for 1 liter buffer: 108 g TRIS, 55 g boric acid, 40 ml EDTA Na2 (0.5 M), pH 8.0); 
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b. cells buffers/solutions:  

- cells washing buffer: PBS (saline phosphate buffer: - CaCl2, -MgCl2);  

- cells detaching solution: 0.25% trypsin – 1 mM EDTA; 

c. viruses stock buffers:  

- VSB (Virus standard buffer): dissolve 6.055 g TRIS/HCl (0.05 M), 0.895 g KCl (0.012 M), 1.86 g 

EDTA-Na2 (0.005 M) in 800 ml  autoclaved water; adjust the pH to 7.8 with HCl; add water for a 1000 

ml final volume; autoclave;  

- VSB, supplemented with 15% sucrose: put in 500 ml flask 75 g sucrose, add 500 ml VSB, autoclave;  

d. Western-blot buffers:  

- total lysis buffer, TLB (62.5 mM Tris pH 6.8; 2% (v/v) SDS; 10% (v/v) glycerin; 6 M urea; 0.01% 

bromphenolbleu; 0.01% (w/v) phenol red; always add fresh β-mercaptoethanol for a 5% (v/v) end 

concentration);  

- high salt lysis buffer LYS-450 (450 mM NaCl; 20 mM Tris/HCl, pH 8.0; 1% Triton X 100); 

- low salt lysis buffer LYS-150 (150 mM NaCl; 20 mM Tris/HCl, pH 8.0; 1% Triton X 100); 

- 4x sample buffer (6% (v/v) SDS; 40% (v/v) glycerol; 0.5 M Tris pH 6.8; 4% (v/v) β-mercaptoethanol); 

- 10x SDS-PAGE electrophoresis buffer (Laemmli: 288 g glycine; 60.6 g Tris; 20 g SDS; add water to 

2 liters end volume, pH 8.3 without adjustment);  

- SDS-PAGE 4x stacking gel buffer (1.5 M Tris; 0.4% (v/v) SDS; adjust the pH at 6.8 with HCl); 

- SDS-PAGE 4x separation gel buffer (0.5 M Tris; 0.4% (v/v) SDS; adjust the pH at 8.8 with HCl); 

- blotting buffer (Tris 6 g; 28.8 g glycine; 400 ml methanol; add water to 2 liters end volume); 

- TBST (10 mM Tris HCl pH 8.0; 150 mM NaCl; 0.05% (v/v) Tween 20);  

- blocking buffer (5% (w/v) milk pulver in TBST buffer);  

e. Southern-blot buffers: 

- 0.25 M HCl (978.5 ml distilled water; 21.5 ml 36% HCl or 20.8 ml 37% HCl); 

- gel denaturation buffer (1.5 M NaCl; 0.5 M NaOH); 

- gel neutralization buffer (1 M Tris; 1.5 M NaCl; adjust the pH at 7.4 with HCl); 

- blotting buffer (20x SSC: 3 M NaCl; 0.3 M Na citrate); 

- membrane washing buffer 2% SSC (v/v) (for 1 liter buffer: 100 ml 20x SSC, 10 ml 10% SDS); 

- membrane washing buffer 0.5% SSC (v/v) (for 1 liter buffer: 25 ml 20x SSC, 10 ml 10% SDS); 

- 10x maleic acid buffer (1 M maleic acid; 1.5 M NaCl; adjust the pH at 7.5 with HCl). 

 
 27

 



Chapter 3 Materials 

3.5 Media 

- DMEM + 4500 mg/L glucose + L-glutamine -pyruvate: supplemented with 10% fetal calf serum (FCS) 

or new born calf serum (NCS) and 5 ml penicillin/streptomycin (P/S, 10000 U – 10000 µg/ml);  

- LB agar: in a flask for 500 ml add 7.5 g agar and mix with 500 ml LB medium. Autoclave! Cool down 

at room temperature (RT) and under 50oC could add the antibiotics. Use 20-25 ml agar for each plate;  

- LB medium: mix 950 ml ultra pure water, 10 g Bacto-tryptone, 5 g Bacto-yeast extract, 8-10 g NaCl; 

adjust the pH at 7 with 5 N NaOH and complete the volume at 1 liter with ultra pure water. Immediately 

autoclave; 

- LB-zeo-agar: in a flask for 500 ml add 7.5 g agar and mix with 500 ml LB-zeo medium. Autoclave! 

Cool down at room temperature (RT) and under 50oC could add the antibiotics. Zeocin is light and salt 

sensitive. Use 20-25 ml agar for each plate; 

-  LB-zeo medium: mix 950 ml ultra pure water, 10 g Bacto-tryptone, 5 g Bacto-yeast extract, 4-5 g 

NaCl; adjust the pH at 7 with 5 N NaOH and complete the volume at 1 liter with ultra pure water. 

Immediately autoclave;  

- Methylcellulose buffer: dissolve ON 3.75 g carboxymethylcellulose in 388 ml autoclaved water, 

autoclave the solution; add 25 ml FCS, 50 ml 10x MEM, 5 ml glutamine 100x, 2.5 ml 100x MEM non-

essential amino acids, 5 ml P/S (10000 U – 10000 µg/ml), 24.7 ml 7.5% sodium bicarbonate; if 

everything was done correctly the color of medium should turn from yellow to purple-red;  

- RPMI 1640 + L-glutamine:  supplemented with 10% FCS and 5 ml P/S (10000 U – 10000 µg/ml). 

 

3.6 Bacteria and cell lines 

In order to propagate the M53 ORFs carrier plasmids and the MCMV BACs two Escherichia coli 

strains were used:  PIR1 [F- ∆lac169 rpoS (Am) robA1 creC510 hsdR514 endA recA1 uidA (∆MluΙ):pir-

116] and DH10B cells [F- mcrA ∆(mrr-hsdRMS-mcrBC) Φ80lacZ∆M15 ∆lacX74 recA1 araD139 ∆(ara, 

leu)7697 galU galKλ- rpsL nupG] respectively, carrying or not the FLP recombinase expression 

plasmid, pCP20. The propagation was conditioned by the antibiotic resistance derived from the carried 

constructs (chloramphenicol of BACs, zeocin of carrier plasmid, and ampicillin of helper plasmid). For 

virus production a large variety of mammalian cells was used. BALB/c murine embryonic fibroblasts 

(MEFs; Serrano et. al., 1997), M2-10B4 (stroma-cell-line from bone marrow of BALB/c-mouse, ATCC 

CRL-1972), mouse lymphoid endothelial cells immortalized by simian virus 40 (SVEC 4-10 endothelial 
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cells; ATCC CRL-2181), and NIH 3T3 fibroblasts (contact inhibited fibroblasts of NIH Swiss-mouse, 

ATCC CRL-1658) were prepared and treated as described previously (Adler et. al., 2006; Menard et. 

al., 2003). M53 transcomplementing cell line (M53tTA - Ruzsics Z.) was propagated in Dulbecco 

modified Eagle medium supplemented with 5% neonatal calf serum and hygromycin. Mouse mammary 

epithelial C127 cells (ATCC CRL-1616) and 293 cells (adenovirus transformed human kidney-

carcinoma cells, ATCC CRL-1573) were maintained in Dulbecco modified Eagle medium 

supplemented with 10% fetal calf serum (Rupp et. al., 2007).  

 

3.7 DNA 

3.7.1 BACs  

- ∆M53FRT (Loetzerich, 2006): wt MCMV BAC with an integrated m16-m17 FRT site, chloramphenicol 

resistance and M53 deleted gene at endogenous position; 

- ∆M53FRT carrying different non-tagged or tagged M53 mutants at the m16-m17 FRT site: 

∆M53FRT-H262S (5,6); -s294 (2,3); -i303 (1,2); -i304 (1,3); -i324 (2,4); -i325 (3,5); -i326 (4,5); -s331 

(2,5); or tagged versions: ∆M53FRT-FlagM53 (2) and -Flag309 (2,4,5); 

- pSMfr3 16-17FRT (Bubeck et. al., 2004): wt MCMV BAC with an integrated m16-m17 FRT site, 

chloramphenicol resistance; construct used under the C3xFRT name during this study; 

- C3xFRT KA3 (Loetzerich et. al., 2006): attenuated mutant, 6 weeks reconstitution;  

- C3xFRT carrying different non-tagged M53 mutants at the m16-m17 FRT site: C3xFRT-i115 (2,3); -

i128 (4,6); -i131 (3,4); -i138 (1,5); -i146 (2,8); -i154 (4,5); -i161 (4,5); -i168 (3,4); -s168 (2,3); -i182 

(2,5); -s185 (5,9); -i191 (1,4); -i195 (4,9); -i198 (4,5); -i201 (1,2); -i207 (3,4); -i212 (1,2); -i217 (2,4); -

i220 (1,2); -i227 (5,10); -s233 (8,16); -i234 (3,5); -i236 (2,3); -i244 (1,2); -i251 (3,4); -i259 (1,5); -

H262S (5,7); -i264 (7,8); -i266 (1,2); -i272 (1,2); -i281 (1,3); -s290 (1,9); -i292 (1,2); -s294 (1,2); -s303 

(4,5); -i304 (8); -i307 (1,5); -s309 (2,3); -i313 (3,7); -i321 (1,2); -s321 (1,3); -i324 (2,3); -i325 (1,5); -

i326 (2,3); -s327 (3,6); -s331 (1,5); or tagged ones:  C3xFRT-BioHAM53 (2,5); -BioHA309 (1,3); -

FlagM53 (1,2); -Flags309 (2,3); -Flag∆Sak309 (8,10);  

- C3xFRT carrying different conditional expressed M53 mutants at the m16-m17 FRT site: -SVTM53 

(3,4,5); -SVTi207 (1,2); -SVTs309 (6,7,8,9); -SVTi313 (2,3); -SVTi321 (2,3); -SVTFlagM53 (1,2); -

SVTFlag309 (1,2); -SVTFlag∆Sak309 (8,10); -SVTs309i128 (2,8). 

 

 29
 



Chapter 3 Materials 

3.7.2 Plasmids 

- pCP20 (Cherepanov et. al., 1995): ampicillin resistant/temperature sensitive helper plasmid;  

- po6k-ie (Bubeck et. al., 2004): zeocin resistant entry vector carrying an FRT site; 

- pok-ie-wtM53 (Loetzerich et. al., 2006): zeocin resistance, FRT site;  

- rescue plasmids based on po6k-ie carrying M53 mutants, zeocin resistance and FRT site: i115, i128, 

i131, i138, i146, i154, i161, i/s168, i182, s185, i191, i195, i198, i201, i207, i212, i217, i220,  i227, 

s233, i234, i236, i244, i251, i259, i264, i266, i272, i281, s290, i292, s294, i303, i304, i307, s309, i324, 

i325, i326, s331 (Mark Lötzerich - mutants generated by Tn-7 random mutagenesis);  

- rescue plasmids based on po6k-ie carrying M53 mutants, zeocin resistance and FRT site: M53, i313, 

i321, s309i128 (mutants generated by cloning); 

- rescue plasmids based on po6k-ie carrying M53 mutants, zeocin resistance and FRT site: H262S (aa 

exchange, clone 5), s303 (10), s321 (4, 7), s327 (5) (mutants generated by PCR); 

- pL- wtM53, i313, i321 (Loetzerich et. al., 2006): ampicillin resistance, Litmus vector; 

- po6k-SVTe (Rupp et. al., 2005): po6k-ie carrying the SV40 simian virus promoter/enhancer, zeocin 

resistance FRT entry vector; 

- po6k-SVT-M53 clone 17(Rupp et. al., 2005): zeocin resistance, FRT site; 

- po6k-ie-SVT-s309/repl.2, -i313/1-5, -i321/6-2, -i207/1, -s309i128/2: zeocin resistance, FRT site; 

- TAP-tag M53 mutants based on po6k-ie, zeocin resistance and FRT site (generated by PCR): 

BioHAM53 (clone 10) and BioHA309 (clone 3); 

- Flag-tag M53 mutants based on po6k-ie, zeocin resistance and FRT site (generated by PCR): 

FlagM53 (Loetzerich M., PhD thesis), Flag309 (clone 3-10), Flag∆Sak309 (clone 2/15), SVTFlagM53 

(clones 1 old and 10 new), SVTFlag309 (clones 1/15 and 3/14), SVFlag∆Sak309 (clones 2 and 3); 

- po6k-ie-M50 (Bubeck et. al., 2004): zeocin resistance, FRT site; 

- po6k-ie-M50HA (Lemnitzer F., unpublished data): zeocin resistance, FRT site. 

 

3.8 Viruses  

a) derived from MEFs tranfection with the following BACs:  

- controls: C3xFRT; ∆M53FRT;  

- C3xFRT-i115 (2,3); -i128 (4,6); -i131 (3,4); -i138 (1,5); -i146 (2,8); -i154 (4,5); -i161 (4,5); -i168 (3,4); 

-s168 (2,3); -i182 (2,5); -s185 (5,9); -i191 (1,4); -i195 (4,9); -i198 (4,5); -i201 (1,2); -i207 (3,4); -i212 
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(1,2); -i217 (2,4); -i220 (1,2); -i227 (5,10); -s233 (8,16); -i234 (3,5); -i236 (2,3); -i244 (1,2); -i251 (3,4); -

i259 (1,5); -H262S (5,7); -i264 (7,8); -i266 (1,2); -i272 (1,2); -i281 (1,3); -s290 (1,9); -i292 (1,2); -s294 

(1,2); -s303 (4,5); -i304 (8); -i307 (1,5); -s309 (2,3); -i313 (3,7); -i321 (1,2); -s321 (1,3); -i324 (2,3); -

i325 (1,5); -i326 (2,3); -s327 (3,6); -s331 (1,5); -SVTM53 (3,4); -SVTi207 (1,2); -SVTs309 (6,7,8,9); -

SVTi313 (2,3); -SVTi321 (2,3); -SVTs309i128 (2); -BioHAM53 (2,5); - BioHA309 (1,3); -FlagM53 (1,2); 

-Flag309 (2,3); -SVTFlagM53 (1,2); -SVTFlag309 (1,2); -SVTFlag∆Sak309 (8,10);  

- ∆M53FRT-H262S (5, 6); 

b) derived from M2-10B4 or NIH3T3 cells infection:  

-  control: C3xFRT; ∆M53tTA MCMV (carry the promoter activator of M53 ORF in trans; Ruzsics Z.); 

- C3xFRT-SVTM53 (4); -SVTs309 (9); -SVTi313 (2); -SVTi321 (2); -SVTi207 (1, 2); -SVTFlagM53 (1, 

2); -SVTFlag309 (1, 2); -SVTFlag∆Sak309 (8, 10); -SVTs309i128 (2). 
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4. Methods 

 

4.1 PCRs  

All PCR products were generated by the TD72 touch-down protocol comprising 5 min. 95°C initial 

denaturation; 18 cycles of 30 sec. 95°C denaturation, touch-down from 62°C to 45°C for 2 min. 

annealing and 2 min. 72°C elongation; 17 cycles of 30 sec. 95°C denaturation, 2 min. 45°C annealing 

and 2 min. 72°C elongation; 7 min. 72°C final elongation - performed with Biometra or Applied 

Biosystems instruments. Specific primers (see Table 4) were designed by the Vector NTI 7.0 program 

(Invitrogen). All PCR was carried out by using High Fidelity Expand PCR System (Roche) in 100 µl 

end volume (see Table 3). The characteristics of the PCR products propagated in this study are listed 

in the Table 4. 

Components Stock  conc. Master mix conc. 
H2O -- variable 
PCR buffer 10x 10x 1x 
dNTPs mix 1.5 mM 2.0 µM 
Forward primer (for) 10 µM 0.4 µM 
Reverse primer (rev) 10 µM 0.4 µM 
Expand polymerase 50 U/ml 2.5 U/ml 
Template DNA variable 10 ng/ml 

Table 3. Master Mix composition. 

Primers PCR product (size) Template (size) forward reverse 
PCR s309 (961bp) po6k-ie-s309 (3452 bp) s309for s309rev 
PCR s309T (994bp) po6k-ie-s309 (3452 bp) T309for T309rev 
PCR H262S 1 (802bp) po6k-ie-s309 (3452 bp) H262Sfor1 H262Srev1 
PCR H262S 2 (724bp) po6k-ie-s309 (3452 bp) H262Sfor2 H262Srev2 
PCR 303 (464bp) po6k-ie-s309 (3452 bp) D303for1 D303rev1 
PCR 321 (518bp) po6k-ie-s309 (3452 bp) D303for1 D321rev1 
PCR 327 (536bp) po6k-ie-s309 (3452 bp) D303for1 D327rev1 
BioHA327(1085bp) po6k-ie-M53 (3473 bp) BioHAfor D327rev1 
BioHArepM53 (1046bp) po6k-ie-BioHA327(3578 bp) BioHArepfor D321rev1 
Flag∆Sak 1 (589bp) po6k-ie-Flag309 (3497 bp) CMVfor Sakrev 
Flag∆Sak 2 (870bp) po6k-ie-Flag309 (3497 bp) Sakfor D303rev1 
SVTFlag309 (955bp) po6k-ie-Flag309 (3497 bp) SakFlagfor D303rev1 
SVTFlag∆Sak309 
(933bp) 

po6k-ie-Flag∆Sak309 (3512 
bp) SakFlagfor D303rev1 

PCR i128 (940bp) po6k-ie-i128 (3496 bp) SVTinsfor D303rev1 
Pack1 (425bp) Wt MCMV BAC  Pack1for Pack1rev 

Table 4. PCR products and the respective primers. 
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4.2 Cloning steps  

- The po6k-SVT-s309pre ligation product (5250 bp) was obtained by ligation of the 4295 bp fragment - 

derived from the AscI/HpaI digested po6k-SVTe(4304 bp) vector - with the 955 bp fragment - derived 

from the AscI/PmeI digested PCR s309T (994 bp) PCR product. The construct was checked for 

correct alignment by enzymatic restriction [KpnI: po6k-SVTs309 (2293 bp, 1673 bp, 1284 bp) and 

po6k-SVTe vector control (2631 bp, 1673 bp)] and sequencing (M53for1, M53rev1 primers – for s309 

ORF insertion; SV40for and BGHrev primers – for the right sense orientation of the insertion into the 

vector). Note: because the po6k-SVT-s309 had one deletion in the N terminal part of the M53 protein 

a supplementary step was necessary: 

- The po6k-SVT-s309 (5250 bp) was obtained by ligation of 4399 bp fragment - derived from 

AscI/BsiWI digested po6k-SVT-s309pre (<5250 bp) vector - with the 851  bp fragment - derived from 

AscI/BsiWI digested po6k-SVT-M53 (5350 bp) plasmid. The construct was checked for correct 

alignment by enzymatic restriction [KpnI: po6k-SVTs309 (2293 bp, 1673 bp, 1284 bp) and by po6k-

SVTe vector control (2631 bp, 1673 bp)] and sequencing (M53for1, M53rev1 primers – for s309 ORF 

insertion; SV40for and BGHrev primers – for the right sense orientation of the insertion into the 

vector). 

- The po6k-SVT-i313 clones 1-5 (5399 bp): 

1. The pL-i313 intermediate ligation product (3793 bp) was obtained by ligation of the 2967 bp 

fragment - derived from the BamHI/BspEI digested pL-wtM53 (3778 bp) vector - with the 826 bp 

fragment - derived from the BamHI/BspEI digested po6k-ie-i313 (3488 bp) plasmid. The construct was 

checked for correct alignment by enzymatic restriction [PmeI/SnaBI: pL-i313 (2817 bp, 976 bp) and by 

pL-wtM53 vector control (only SnaBI restriction site: 3778 bp)] and by sequencing (M13FP and 

M13RP primers – for the right sense orientation of the insertion into the vector). 

2. The po6k-SVT-i313 final ligation product (5399 bp) was obtained by ligation of the 4295 bp 

fragment - derived from the AscI/HpaI digested po6k-SVTe (4304 bp) vector - with the 1089 bp 

fragment - derived from the AscI/StuI digested pL-i313 (3793 bp) plasmid. The construct was checked 

for correct alignment by sequencing (M53for1, M53rev1 primers – for i313 ORF insertion; SV40for and 

BGHrev primers – for the right sense orientation of the insertion into the vector). 

- The po6k-SVT-i321 clone 6-2 (5399 bp): 

1. The pL-i321 intermediate ligation product (3793 bp) was obtained by ligation of the 2967 bp 

fragment - derived from the BamHI/BspEI digested pL-wtM53 (3778 bp) vector - with the 826 bp 
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fragment - derived from the BamHI/BspEI digested po6k-ie-i321 (3473 bp) plasmid. The construct was 

checked for correct alignment by enzymatic restriction [PmeI/SnaBI: pL-i321 (2789 bp, 1004 bp) and 

pL-wtM53 vector control (only SnaBI restriction site: 3778 bp)] and by sequencing (M13FP and 

M13RP primers – for the right sense orientation of the insertion into the vector). 

2. The po6k-SVT-i321 final ligation product (5399 bp) was obtained by ligation of the 4295 bp 

fragment - derived from the AscI/HpaI digested po6k-SVTe (4304 bp) vector - with the 1089 bp 

fragment - derived from the AscI/StuI digested pL-i321 (3793 bp) plasmid. The construct was checked 

for correct alignment by sequencing (M53for1, M53rev1 primers – for i321 ORF insertion; and SV40for 

and BGHrev primers – for the right sense orientation of the insertion into the vector). 

- The po6k-ie-H262S, clone 5 (3909 bp) ) was obtained by ligation of 2383 bp fragment - derived from 

ApaI/KpnI digested po6k-ie-M53 (3473 bp) vector - with 785 bp fragment - derived from the ClaI/KpnI 

digested “PCR1 H262S 1” PCR product (802 bp) and 305 bp fragment – derived from the ApaI/ClaI 

digested “PCR2 H262S 2” PCR product (724 bp). The construct was check for correct alignment by 

enzymatic restriction [ClaI: po6k-ie-H262S (3909 bp) and po6k-ie-M53 vector control (uncut)] and 

sequencing (M53for1, M53rev1 – for M53 H262S ORF insertion; CMVfor and pcDNA3.1-RP/1 of 

GATC company – for the right sense of insertion into the vector). 

- The po6k-ie-s303, clone  10 ( 3308 bp) was obtained by ligation of 2927 bp fragment - derived from 

BspMI/NsiI digested po6k-ie-M53 (3473 bp) vector - with 381 bp fragment - derived from the 

BspMI/NsiI digested “PCR 303” PCR product (464 bp). The construct was check for correct alignment 

by sequencing (M53for1, M53rev1 – for s303 ORF insertion; CMVfor and pcDNA3.1-RP/1 of GATC 

Company – for the right sense of insertion into the vector). 

- The po6k-ie-s321, clones 4 and 7 (3362 bp) were obtained by ligation of 2927 bp fragment - derived 

from BspMI/NsiI digested po6k-ie-M53 (3473 bp) vector - with 435bp fragment - derived from the 

BspMI/NsiI digested “PCR 321” PCR product (518 bp). The construct was check for correct alignment 

by sequencing (M53for1, M53rev1 – for s321 ORF insertion; CMVfor and pcDNA3.1-RP/1 of GATC 

Company – for the right sense of insertion into the vector). 

- The po6k-ie-s327, clone  5 (3380 bp) was obtained by ligation of 2927 bp fragment - derived from 

BspMI/NsiI digested po6k-ie-M53 (3473 bp) vector - with 453 bp fragment - derived from the 

BspMI/NsiI digested “PCR 327” PCR product (536 bp). The construct was check for correct alignment 

by sequencing (M53for1, M53rev1 – for s327 ORF insertion; CMVfor and pcDNA3.1-RP/1 primers – 

for the right sense of insertion into the vector). 
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- The po6k-ie-Flag309, clone 3-10 (3526 bp) was obtained by ligation of 2951 bp fragment - derived 

from BspMI/NsiI digested po6k-ie-FlagM53 (3497 bp) vector - with the 575 bp fragment - derived from 

BspMI/NsiI digested po6k-ie-s309 (3502 bp) plasmid. The construct was check for correct alignment 

by enzymatic restriction [AccI: po6k-ie-Flag309 (1810 bp, 1716 bp), po6k-ie-FlagM53 vector control 

(1810 bp, 1687 bp); NcoI – po6k-ie-Flag309 (1728 bp, 1509 bp, and 289 bp) and po6k-ie-FlagM53 

vector control (1699 bp, 1509 bp, 289 bp)] and sequencing (M53for1, M53rev1 primers – for Flag309 

ORF insertion; CMVfor and BGHrev primers – for the right sense of insertion into the vector). 

- po6k-ie-Flag∆Sak309, clone 2/15 (3512 bp) was obtained by ligation of 2564 bp fragment - derived 

from NdeI/BspMI digested po6k-ie-Flag309 (3526 bp) vector - with the 453 bp fragment - derived from 

NdeI/AgeI digested Flag∆Sak 1 PCR product (589 bp) and the 495 bp fragment -  derived from 

AgeI/BspMI digested Flag∆Sak 2 PCR product (870 bp). The construct was check for correct 

alignment by enzymatic restriction [AgeI: po6k-ie-Flag∆Sak309 (3512 bp), po6k-ie-Flag309 vector 

control (uncut)] and sequencing (M53for1, M53rev1 primers – for Flag∆Sak309 ORF insertion; CMVfor 

and BGHrev primers – for the right sense of insertion into the vector). 

- The po6k-ie-SVTFlag309, clones 1/15 and 3/14 (5274 bp) were obtained by ligation of 4700 bp 

fragment - derived from AscI/BspMI digested po6k-ie-SVTs309 (5250 bp) vector - with the 574 bp 

fragment - derived from AscI/BspMI digested SVTFlag309 PCR product (955 bp). The construct was 

check for correct alignment by enzymatic restriction [AscI: po6k-ie-SVTFlag309 (5274 bp) and po6k-

ie-SVTs309 vector control (5250 bp)] and sequencing (M53for1, M53rev1 primers – for Flags309ORF 

insertion; SV40for and BGHrev primers – for the right sense of insertion into the vector). 

- The po6k-ie-SVTFlagM53, clones 1old and 10new (5414 bp) were obtained by ligation of 4459 bp 

fragment - derived from AscI/BspMI digested po6k-ie-SVTM53 (5384 bp) vector - with the 574 bp 

fragment - derived from AscI/BspMI digested SVTFlag309 PCR product (955 bp). The construct was 

check for correct alignment by enzymatic restriction [HindIII: po6-ie-SVTFlagM53 (2086 bp, 1633 bp, 

1047 bp, 634 bp, 14 bp) and po6k-ie-SVTM53 vector control (2086 bp, 1633 bp, 1031 bp, 634 bp)] 

and sequencing (M53for1, M53rev1 primers – for FlagM53 ORF insertion; SV40for and BGHrev 

primers – for the right sense of insertion into the vector). 

- The po6k-ie-SVTFlag∆Sak309, clones 2 and 3 (5250 bp) were obtained by ligation of 4700 bp 

fragment - derived from AscI/BspMI digested po6k-ie-SVTs309 (5250 bp) vector - with the 550 bp 

fragment - derived from AscI/BspMI digested SVTFlag∆Sak309 PCR product (933bp). The construct 

was check for correct alignment by enzymatic restriction [AgeI: po6k-ie-SVTFlag∆Sak309 (3994 bp, 
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1256bp); po6k-ie-SVTs309 (5250 bp))] and sequencing (M53for1, M53rev1 primers – for 

Flag∆Sak309 ORF insertion; SV40for and BGHrev primers – for the right sense of insertion into the 

vector). 

- The po6k-ie-BioHAM53, clone 10 (3458 bp): 

1. po6k-ie-BioHA327, clone 11(3578 bp) was obtained by ligation of 2970 bp fragment - derived from 

BspMI/KpnI digested po6k-ie-M53 (3473 bp) vector - with the 608 bp fragment - derived from 

BspMI/KpnI digested BioHA327 PCR product (1058 bp). The construct was check for correct 

alignment by sequencing (M53for1, M53rev1 primers – for BioHA327 ORF insertion; CMVfor and 

BGHrev primers – for the right sense of insertion into the vector). 

2. The po6k-ie-BioHAM53 was obtained by ligation of 2936 bp fragment - derived from Acc65I/BspMI 

digested po6k-ie-M53 (3473 bp) vector - with the 612 bp fragment - derived from Acc65I/BspMI 

digested BioHArepM53 PCR product (1046 bp). The construct was check for correct alignment by 

enzymatic restriction [Acc65I/BspMI: po6k-ie-BioHAM53 (2936 bp, 612 bp) and vector control po6k-ie-

M53 (2936 bp and 537 bp)] and sequencing (M53for1, M53rev1 primers – for BioHAM53 ORF 

insertion; CMVfor and BGHrev primers – for the right sense of insertion into the vector). 

- The po6k-ie-BioHA309, clone 3 (3421bp) was obtained by ligation of 2965bp fragment - derived 

from Acc65I/BspMI digested po6k-ie-s309 (3502bp) vector - with the 612 bp fragment - derived from 

Acc65I/BspMI digested BioHArepM53 PCR product (1046bp). The construct was check for correct 

alignment by enzymatic restriction [Acc65I/BspMI: po6k-ie-BioHA309 (2965 bp, 612 bp) and vector 

control po6k-ie-M53 (2936 bp and 537 bp)] and sequencing (M53for1, M53rev1 primers – for 

BioHA309 ORF insertion; CMVfor and BGHrev primers – for the right sense of insertion into the 

vector). 

- The po6k-ie-SVTi207, clone 1 (5399 bp) was obtained by ligation of 5083 bp fragment - derived from 

BspMI/BsiWI digested po6k-ie-SVTM53 (5384 bp) vector - with the 316 bp fragment - derived from 

BspMI/BsiWI digested po6k-ie-i207 (3496 bp) plasmid. The construct was check for correct alignment 

by enzymatic restriction [PmeI: po6k-ie-SVTi207 (2249 bp, 2013 bp, 653 bp, 484 bp) and vector 

control po6k-ie-SVTM53 (2249 bp, 2013 bp, 1122 bp)] and sequencing (M53for1, M53rev1 primers – 

for i207 ORF insertion; SV40for and BGHrev primers – for the right sense of insertion into the vector). 

- The po6k-ie-SVTs309i128, clones 2 (5265 bp) was obtained by ligation of 4700 bp fragment - 

derived from Acc65I/BspMI digested po6k-ie-SVTs309 repl.2 (5250 bp) vector - with the 565 bp 

fragment - derived from Acc65I/BspMI digested “PCR 128” PCR product (940 bp). The construct was 
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check for correct alignment by enzymatic restriction [PmeI: po6k-ie-SVTs309-i128 (2249 bp, 2013 bp, 

582 bp, 421 bp) and vector control po6k-ieSVTs309 (2249 bp, 2013 bp, 988 bp)] and sequencing 

(M53for1, M53rev1 primers – for s309i128 ORF insertion; SV40for and BGHrev primers – for the right 

sense of insertion into the vector). 

 

4.3 Propagation of electro-competent Escherichia coli cells 

- inoculate over night (ON) at 37oC or 30oC Escherichia coli strains (E. coli: DH10B or PIR1) which 

carry or not the pCP20 temperature sensitive ampicillin resistant plasmid (touch the glycerol stock with 

a sterile tip and resuspend the cells in 2 ml prewarmed LB buffer); 

- inoculate few microliters from the ON culture in approximately 200 ml prewarmed buffer and cultivate 

to a 0.3-0.5 O.D. 600;  

- keep on ice 10 min. to stop the multiplication of bacteria; 

- centrifuge the cells 10 min. at 6000-8000 rpm;  

- resuspend and wash cells in prechilled 10% sterile glycerol for 10 min. at 6000-8000 rpm; repeat this 

step 2-3x; 

- resuspend cells in the rest of glycerol or in 800-1000 µl 10% glycerol;  

- aliquot 60-100 µl cells in 0.5-1.5 ml Eppendorf tubes;  

- snap-freeze cells in liquid nitrogen; 

- store for long term at - 80oC (steps 5, 6 and 7 on ice). 

(Applications: PIR1, DH10B, -∆M53FRT/pCP20; -C3xFRT/pCP20.)  

 

4.4 Electro-transformation of Escherichia coli strains 

- thaw on ice for 10 min.  to achieve electro-competent cells (with or without the wt MCMV BAC, 

chloramphenicol resistant) in approximately 60-100 µl of the 50% glycerol stock solution; 

- pipette plasmid DNA over bacterial cells and keep on ice 30 min; 

- put samples at 42-43oC for 1-1.5 min.; 

- remove samples from the heating block and let them again on ice 2 min.; 

- add 1 ml LB medium; 

- shake the bacterial cells at 30oC or 37oC, 1400 rpm for 1 h (the temperature depends on the plasmid 

sensitivity); 
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- spin down the culture 1 min. at 6000 rpm; 

- remove the supernatant keeping the last 100 µl of LB; 

- resuspend the cells in the rest of LB and plate out few micro liters on LB-agar plates supplemented 

with the necessary antibiotics. 

(Applications: on DH10B ∆M53FRT/pCP20; C3xFRT/pCP20-/pKD46.) 

 

4.5 Flp recombination 

- thaw on ice electrocompetent cells which carry wt MCMV BAC (chloramphenicol resistant) and 

pCP20 plasmid (ampicillin resistant), approximately 60-100 µl of the 50% glycerol solution; 

- add 20 ng DNA for each rescue-plasmid (zeocin resistant) which carry the M53 mutant of interest for 

the flip-in at an ectopic position of the wt MCMV BAC; (first dilute each plasmid maxi prep to 10 ng/µl 

final concentration). 

- electroporate cells for 2500 KV (Gene Pulser, Bio Rad); 

- add 1 ml LB-Zeo medium to the cells with at least 4.5 Ω resistances and mix by pipetting; 

- mix samples by shaking (1400 rpm) at 30oC for 1 h; 

- plate 50 µl cells culture on chloramphenicol/zeocin (cam. 25 µg/ml - zeo.15 µg/ml) LB-agar plates 

and incubate ON at 43oC; 

- pick single colonies 24 h later and inoculate ON at 37oC in LB medium (cam. 25 µg/ml, zeo. 15 µg/ml 

final concentrations).  

Note: Modifications of the original protocol were necessary to reduce the incidence of double or 

multiple insertions in the ectopic position for the M53 mutants. The total amount of plasmid DNA is 

reduced from 80 to 20 ng.  Shaking is optional because the temperature of 30oC helps pCP20 to 

express more FLP recombinase, the enzyme which recognizes the FRT sites and facilitates the 

recombination of the marked fragments. The plated volume of the electroporated cells culture is 

diminished from 100 to 50 µl. 

(Application: flip-in of M53 mutants on the ∆M53FRT, C3xFRT, ∆1-16FRT BACs.) 
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4.6 Preparation of glycerol stocks for Escherichia coli cells 

- inoculate in LB medium ON at 37oC/30oC E. coli strains which carry different ts/antibiotics resistant 

plasmids; 

- mix in 1.5 ml Eppendorf tubes 400 µl 60% sterile glycerol with 600 µl ON culture - and store for long 

term at - 80oC. 

(Application: for all plasmids and BACs mentioned in the Materials chapter 3.7.) 

 

4.7  Low copy plasmids mini preps 

- inoculate ON Escherichia coli strains which carry BACs or low copy plasmids ( touch the glycerol 

stock with a sterile tip and resuspend the cells in 10 ml prewarmed LB buffer); 

- aliquot 8 ml culture in 15 ml Falcon tubes; 

- spin down cells 15 min. at  3500 rpm; 

- resuspend cells in 300 µl prechilled P1 buffer (Macherey Nagel) and transfer in 2 ml tubes; 

- add 300 µl P2 buffer prewarmed at RT, mix by inversion 6-8 times, and keep 5-10 min. at RT until 

the suspension becomes transparent which means that the lysis already started; 

- add 300 µl prechilled P3 buffer, mix by inversion 6-8 times, and keep 10-15 min. on ice until the 

proteins will precipitate; 

- centrifuge samples 10-12 min. at 14000 rpm, RT; transfer the supernatants in a new 2 ml tubes; 

- add 1 ml phenol, mix by inversion at least 80 times and centrifuge for 5 min. at 14000 rpm, RT; 

- transfer the upper part in a 2 ml Eppendorf tube, add 900 µl isopropanol and centrifuge 30 min. at 

14000 rpm, RT; 

- discard the supernatant carefully to do not lose the white pellet, add 500 µl 70% ethanol and 

centrifuge 30 min. at 14000 rpm, RT; 

- discard the supernatant, dry the pellet 5-10 min. at RT and resuspend in 100 µl sterile and double 

distilled water; 

- keep the BAC and the low copy mini preps at + 4oC. 

(Application: for all plasmids and BACs mentioned in the Materials chapter 3.7.) 
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4.8 Low copy plasmid maxi preps 

- inoculate ON E. coli strains which carry BACs or low copy plasmids (touch the glycerol stock with a 

sterile tip and resuspend cells in 200 ml prewarmed LB buffer); 

- keep on ice 10 min. to stop the multiplication of bacteria; 

- spin down the cells 10 min. at  6000-8000 rpm; 

- resuspend the cells in 8 ml prechilled S1 buffer (NucleoBond AX100/Macherey Nagel); 

- add 8 ml S2 buffer prewarmed at RT, mix by inversion 6-8 times, and keep for 5-10 min. at RT until 

the suspension will become transparent which means the lysis already started; 

- add 8 ml prechilled S3 buffer, mix by inversion 6-8 times, and keep 10-15 min. on ice until in the 

suspension will appear a white precipitate; 

- simultaneously preequilibrate the AX100 columns with 2.5 ml N2 buffer and prepare the systems for 

precipitate filtration; 

- filtrate the precipitate with Whatmann paper and add the liquid to the columns; 

- wash the columns with 12 ml N3 buffer (1 or 2 times);  

- discard the solution and add the 5 ml N5 buffer – prewarmed at  50oC - to the column (the filtrate will 

contain DNA, be carefully!) 

- measure the final volume, add to the 5 ml final filtrate 3.5 ml of isopropanol, when  a white precipitate 

appears at the liquid interface mix by inversion carefully; 

- centrifuge the samples 30 min. at 12000 rpm; discard carefully the supernatant in order not to loose 

the pellet; 

- wash the pellet with 2 ml 70% ethanol and centrifuge 10 min. at 12000 rpm; 

- dry the pellet 5-10 min. at RT and resuspend in 100 µl sterile and double distilled water; 

- keep the BAC maxi at + 4oC and the low copy maxi-preps at - 20oC. 

(Application: for all plasmids and BACs mentioned in the Materials chapter 3.7.) 

 

4.9 Screening for M53 single insertion mutants at the FRT site of wt MCMV BAC 

- thaw at RT the mini or maxi preps; 

- prepare 500 µg of each BAC DNA; 

- NotI or SpeI digestion in 50 µl finale volume for each BAC DNA, + 4 h at 37oC; 
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Note: use as positive control wt MCMV BAC without insertion in the ectopic position and as negative 

control wt MCMV BAC lacking gene M53 in the authentic position. 

- run ethidium bromide 0.8% agarose gels in fresh prepared TBE 1x at 60 V, 400 mA, for 19 h; 

- expose the gel to UV and take pictures; 

- chose clones carrying a single copy of M53 mutated ORF; 

- save glycerol stock for all single insertion clones. 

(Application: for all BACs mentioned in the Materials chapter 3.7.1.) 

 

4.10 Transfection of MEFs 

- thaw new MEFs (mouse embryonic fibroblasts – primary cells) in a water bath at 37oC for few 

minutes (1 Eppendorf tube for a 10 cm plate); 

- wash by pipetting cells of 1 Eppendorf tube into 25 ml DMEM 4500 mg glucose - supplemented with 

10% FCS (fetal calf serum, inactivated 10 min. at 45oC) and 5 ml P/S (penicillin/streptomycin 10000 U 

– 10000 µg/ml); 

- centrifuge cells 5 min. at 1200 rpm; 

- discard media, resuspend cells in 10 ml fresh medium and incubate at 37oC in a 10 cm plate; 

Note: MEFs need 2 days to reach 100% confluence. 

- split the MEF 1:3.5: 

1. remove the spent medium; 

2. wash with 10 ml PBS (saline phosphate buffer); 

3. remove the PBS and add 1 ml 0,25% trypsin – 1 mM EDTA; wait for cells detach; 

4. add 10 ml fresh medium (DMEM, 10% FCS, 5 ml P/S 10000 U – 10000 µg/ml), wash the 

dish surface at least 5 times; 

5. split cells from one 10 cm plate to seven 6 cm plates (1:3.5); 

6. incubate MEFs ON at 37oC;  

- use 1500 ng BAC DNA of each M53 mutant:  

1. dilute 1500 ng from each BAC DNA - carrying a mutant in ectopic position – in 150 µl 

simple DMEM and add 10 µl Superfect reagent; 

2. mix by tapping, let 10-15 min. to RT; 
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3. add 1 ml fresh medium (DMEM, 10% FCS, 5 ml P/S 10000 U – 10000 µg/ml) and mix by 

inversion; 

- transfection of MEFs: 

1. remove spent medium, wash with 5 ml PBS; 

2. remove PBS, add medium with BAC-Superfect; 

3. incubate at least 2.5 h at 37oC; 

4. remove the medium with BAC DNA, add 5 ml fresh medium (DMEM, 10% FCS, 5 ml P/S 

10000 U – 10000 µg/ml); 

5. incubate ON at 37oC; 

- split transfected MEFs 1:3.5: 

1. remove spent medium, wash with 5 ml PBS; 

2. remove the PBS, add 500 µl 0,25% trypsin – 1 mM EDTA; wait for cells detach; 

3. add 5 ml fresh medium (DMEM, 10% FCS, 5 ml P/S 10000 U – 10000 µg/ml), wash the 

surface of the plate at least 5 times; 

4. split cells from one 6 cm plate to one 10 cm plates (1:3.5); 

5. incubate MEFs at 37oC , wait until first plaques appear; 

- split 1:2 the transfected plates without plaques; 

- replace medium in negative plates after 10 days or when the medium changes pH; 

- wait for the total lysis in positive plates; 

- take the supernatant of positive plates; 

- store virus supernatants at – 80oC. 

(Application: for all BACs mentioned in the Material chapter 3.7.1.) 

 

4. 11 Infection of M2-10B4 cells  

- split the uninfected M2-10B4 cells 1:4: 

1. remove medium; 

2. wash with 20 ml PBS (saline phosphate buffer); 

3. remove PBS and add 2 ml 0,25% trypsin – 1 mM EDTA; wait for cells detach; 
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4. add 20 ml fresh medium (DMEM, 10% FCS, 5 ml P/S 10000 U – 10000 µg/ml, 5 ml Q/ 

glutamine 100x), wash the surface of the plate at least 5 times; 

5. split cells from one 14.5 cm plate into four 14.5 cm plates; 

6. incubate M2-10B4 cells ON at 37oC;  

(Note: M2-10B4cells need 2 days to reach 40-80% confluence.) 

- infection of M2-10B4 cells: 

1. add 2 ml of MEFs virus supernatant; 

2. incubate ON at 37oC; 

(Note: the virus will need 1-2 weeks to lyse the entire culture). 

- split the infected M2-10B4 cells 1:2: 

1. take the M2-10B4 supernatant, approximately 20 ml; 

2. wash with 20 ml PBS; 

3. remove PBS and add 2 ml 0,25% trypsin – 1 mM EDTA; wait for cells detach; 

4. add 20 ml fresh medium (DMEM, 10% FCS, 5 ml P/S 10000 U – 10000 µg/ml, 5 ml Q 100x), 

wash the surface of the plate at least 5 times; 

5. split cells from one 14.5 cm plate to two 14.5 cm plates; 

6. incubate M2-10B cells at 37oC , wait for lysis of the entire culture; 

- store virus containing supernatants for further procedures at – 80oC. 

(Application: for all viruses mentioned in the Materials chapter 3.8a.) 

 

4.12 Preparation of virus inoculums  

- split the uninfected M2-10B4 cells 1:6:  

1. remove medium, add 20 ml PBS; 

2. remove PBS, add 2 ml 0,25% trypsin – 1 mM EDTA; wait for cells detach; 

3. add 20 ml fresh medium (DMEM, 10% FCS, 5 ml P/S 10000 U – 10000 µg/ml, 5 ml Q 100x), 

wash plates at least 5 times; 

4. split cells from one 14.5 cm plate to six 14.5 cm plates; 
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5. incubate M2-10B4 cells 2-3 days at 37oC; 

- Infection of M2-10B4 cells: 

1. add 2 ml M2-10B4 virus supernatant to the medium; 

(Note: for each virus mutant infect three 14.5 cm plates) 

2. incubate M2-10B4 cells at 37oC , wait for the lysis of the entire culture; 

3. store virus containing supernatants for further procedures at – 80oC. 

(Application: for all virus mutants mentioned in the Materials chapter 3.8 b). 

 

4.13 Semi-quantitative conditional expression 

- split the M2-10B4 cells 1:4: 

1. remove medium; 

2. wash with 20 ml PBS; 

3. remove PBS and add 2 ml 0,25% trypsin – 1 mM EDTA; wait for cells detach; 

4. add 20 ml fresh medium (DMEM, 10%FCS, 5 ml P/S 10000 U – 10000 µg/ml, 5 ml Q 100x), 

wash plates at least 5 times; 

5. split cells 1:4; add 5 ml cells suspensions to a final volume of 25 ml medium (DMEM, 

10%FCS, 5 ml P/S 10000 U – 10000 µg/ml, 5 ml Q 100x  - 24 wells plates); 

- incubate M2-10B4 cells ON at 37oC; 

- then add the M2-10B4 virus;                                                   

- incubate the cells for 5 days at 37oC;  

- check plates for cytopathic effects (CPE). 

Note: The results are read as +/- reaction by plaques formation at different virus dilution. The CPE is 

expressed as percentages of monolayer lysis. 

(Application: for all mutants mentioned in the Materials chapter 3.8b.) 

 

4.14. Virus titration - on MEFs (inoculum and stock) 

- split cells 1:2 from 10 cm dish to two 48 wells plates ; 

- incubate plates for 1 day at 37oC; 
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- prepare dilutions: put 5 µl of viral sample into 500 µl of medium in the first row (10-2 dilution); 

- dilute serially 1:10 the samples on 48 wells plates (easier than using Eppendorf tubes) (50 µl -> 450 

µl), 5 times; 

- prepare MEFs: vacuum aspire supernatants from 48 well plates with MEF cells; 

- transfer 200 µl of diluted samples onto plates with cells (in quadruplicate); go from high to low 

dilution with one set of tips; 

- incubate 1 h at 37oC; 

- aspirate supernatant with virus (from high to low dilution); 

- add 300-500 µl of methylcellulose to each well with 10 ml plastic pipette; 

- incubate 4 days at 37oC; 

- read plates at suitable concentration (between 5-50 plaques per well); 

- calculate PFU/ml – plaques forming units/ml (formula: plaques x dilution x 5) 

(Application: for mutants mentioned in the Materials chapter 3.8 b). 

 

4.15 Viral growth kinetics  

MEFs should be seeded into 48 well microtiterplates the day before infection (d-1). Therefore, the cells 

of one 10 cm dish are trypsinized, diluted in 50 ml medium, and seeded in 2x48 well microtiterplates 

with 0.5 ml per well (do not forget: two more wells for cell count); 

- day of infection = do 

1. cell count: two wells are trypsinized, centrifuged (5000 rpm, RT, 5 min.) and resuspended in a 

small volume (about 80 µl - aspirate the medium of the trypsinization step until it is about 80 µl 

left); 

Cell number : wells(2) : number of squares counted x 10 x volume of left medium 

(For example 80µl) = n x 104 cells per well 

2. virus master mix (MMix)preparation for an moi of 0.1 (for example, n x 103 PFU/ml);  

- moi (multiplicity of infection), number of viral particles (PFU) per number of cells; 

- virus master mix, viral prep used for cells infection; 
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- calculate the viral prep dilution corresponding to the moi of 0.1 when use in total 1 ml of 10 

times concentrated MMix (10x MMix; for example n x 104 PFU/ml) for all 4 days of experiment, 

when each sample was analyzed in duplicate in two independent experiments; 

3. MEFs infection: aspirate the medium; add 100 µl the 10x MMix to each well/8 wells per virus; 

incubation 1h at 37oC; aspirate the MMix; add 0.6 ml fresh medium/well +/- 1 µg/ml doxycycline, 

dox (per day calculate two samples without dox (-dox) and two with dox (+dox)); about 200 µl of 

MMix are kept and stored at – 80oC as “do samples” for titration; 

- day 1: harvest “day1 samples” (4 samples for each virus: 2/-dox and 2/+dox); transfer the medium in 

an Eppendorf tube; centrifuge (5000 rpm, RT, 5 min.) and transfer the clear supernatant in a new 

Eppendorf tube; store at – 80oC for titration; 

- day 3: 

1. harvest “day3 samples” (4 samples for each virus: 2/-dox and 2/+dox) - see day 1; 

2. to the remaining samples of +dox experiments add for a second time 0.5 µl of 1 µg/ml 

doxycycline per well; 

- day 5: harvest “day5 samples” (4 samples for each virus: 2/-dox and 2/+dox): see day 1. 

(Application: for multi step and one step growth curves of all viruses mentioned in the Materials 

chapter 3.8 b). 

 

4.16 Preparation of virus stocks 

- plate out M2-10B4 cells in 14.5 cm dishes at 60% confluence (20 plates or more); alternatively use 

MEFs (not older then passage 4); confluence can be as high as 90% after 24 h; 

- infect cells with ≅ 0.5 ml inoculums per plate (totally ≅ 10 ml supernatant); 

- incubate cells for 3-5 days at 37oC; 

Note: Complete monolayer with few to any infected cells should be split at a ratio of 1:2. 

- harvest cells and supernatants (SN) when cells detach; 

Note: All steps need to be done on ice.! 

- scrape undetached cells with a cell scraper (Policemen) and collect materials in sterile 250 or 500 ml 

bottles; 

- centrifuge cells and SN (6000 rpm, 15 min.); 

- collect SN and put on ice; 
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- dounce the cell pellet in 4 ml of medium 20 times, in a prechilled douncer; 

- centrifuge the resuspended pellet (12000 rpm, 10 min.) and collect the SN; 

- pool the SNs from the last two steps; 

Note: Skip this step if a pure virus stock is wanted (less cells debris). 

- centrifuge SN (13000 rpm, 3 h); now, the virus particles will be in the pellet; 

- throw away SN; keep the pellet with a little bit of medium on ice at + 4oC ON; 

- dounce the pellet in ≅ 3 ml medium, 20 times, in a prechilled douncer; 

- add 10 ml cold 15% sucrose-virus separation buffer (VSB) into a SWB28-rotor tube (autoclaved); 

- put virus on the top of sucrose-VSB cushion very carefully!!! 

- add cold VSB on the top of viruses and balance tubes; 

- ultracentrifuge at least 1 h at 20000 rpm, + 4oC; 

- discard the SN, the virus particles are in the pellet; 

- add 1-3 ml VSB; 

- incubate at + 4oC until the pellet starts to dissolve (can be left ON); 

- resuspend pellet thoroughly (1 ml blue sterile tips); 

- alternative: centrifuge 3 min. at 3000 rpm in an Eppendorf centrifuge to remove residual cells debris; 

- aliquot in 100 µl aliquots (few also in 50 µl); 

(Application: mutants mentioned in the Materials chapter 3.8b and Table 5).  

Table 5. Virus stock preps (by sucrose cushion method). 
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4.17 293 cells transfection 

- split cells 1:4: 

1. remove medium; 

2. wash with 10 ml PBS (saline phosphate buffer), with care, 

because 293 cells easily detach from the plate; 

MCMV viruses PFU/ml 
wt 1.1x108

M53R 5.5x107

s309R 5.5x108

i207R 1,35x107

i313R 2.2x107

i321R 1.87x108

FlagM53R 6x109

Flag309R 1,85x107

Flag∆Sak309R 3.9x108

s309i128R 1,25x108

3. remove PBS and add 1ml 0,25% trypsin – 1 mM EDTA/10cm dish (or 0.5 ml/6 cm dish); wait 

for cells detach; 

4. add 10 ml fresh medium (DMEM, 10%,FCS, 5 ml P/S 10000 U – 10000 µg/ml, 5 ml Q 100x), 

rinse plates at least 5 times; 

5. split cells from one 10 cm plate to eight 6 cm plates (1:4); 
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6. incubate 293 cells ON at 37oC;  

- use 5000 ng DNA in total per transfection (total DNA amount of all plasmids transfected on the same 

plate):  

1. dilute 5000 (single plasmid) or 2500 ng DNA (each plasmid for co-transfection) in 150 µl 

DMEM and add 30 µl Superfect reagent; 

2. mix by tapping, let 10-15 min. to RT; 

3. add 1 ml fresh medium (DMEM, 10% FCS, 5 ml P/S 10000 U – 10000 µg/ml, 5 ml Q 100x) 

and mix by inversion; 

- transfection of 293 cells: 

1. remove medium, wash with 5 ml PBS; 

2. remove PBS, add medium with plasmid-Superfect; 

3. incubate at least 2.5-3 h at 37oC; 

4. remove plasmid-Superfect, add 5ml fresh medium (DMEM, 10% FCS, 5 ml P/S 10000 U – 

10000 µg/ml, 5 ml Q 100x); 

5. incubate ON at 37oC; 

- scrape cells with a cell scraper (Policemen) and collect them in sterile 2 ml Eppendorf tube; 

- centrifuge cells (8000 rpm, 2 min.); 

- discard the SN and keep the pellet; 

- wash cells with 1 ml sterile PBS (8000 rpm, 10 min.); 

- store at – 80oC. 

(Application: protein expression studies – po6k-ie, po6k-ie-M50HA, -M53, -s309, -i128, -s309i128, -

FlagM53, -Flags309, -Flag∆Sak309) 

 

4.18 Infection of NIH3T3 cells 

- split the NIH3T3 cells 1:4: 

1. remove media; 

2. wash with 10 ml PBS (saline phosphate buffer); 

3. remove PBS and add 1 ml 0,25% trypsin – 1 mM EDTA; wait for cells detach; 
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4. add 10 ml fresh medium (DMEM, 10%NCS, 5 ml P/S 10000 U – 10000 µg/ml), rinse plate at 

least 5 times; 

5. split cells from one 10 cm plate to eight 6 cm plates; 

6. incubate NIH3T3 cells ON at 37oC;  

- Infection of NIH3T3 cells with virus stock at an MOI of 1: 

1. add the virus stock to the medium; 

2. incubate ON at 37oC; 

- collect cells 24 h post infection and store them at – 80oC. 

(Application: protein expression of M53 derivates - M53R, s309R, i313R, i321R, i207R, s309i128R, 

FlagM53R, Flag∆Sak309R.) 

 

4.19 SDS-PAGE  

Gels and buffers: 

- SDS-PAGE 4.5% stacking gel fraction (2.5 ml 1:29 bis/acrylamide 30%; 3.75 ml 4x stacking gel 

buffer pH 6.8; 9.75 ml distilled water; 100 µl 10% APS; 20 µl TEMED);  

- SDS-PAGE separation gel fraction (2.5 ml 4x separation gel buffer pH 8.8; 100 µl 10% APS; 3.3 µl 

TEMED; the 1:29 bis/acrylamide 30% and distilled water amounts are depending on gel 

concentration);  

- running buffer: (Laemmli: 288 g glycine; 60.6 g Tris; 20 g SDS; add water to 2 liters end volume, pH 

8.3 without adjustment);  

- 4x sample buffer (6% (v/v) SDS; 40% (v/v) glycerol; 0.5 M Tris pH 6.8; 4 % (v/v) β-mercaptoethanol); 

Conditions: RT, 160 V, ≈ 1 h ± 30 min. (depends on the protein size). 

(Application: protein separation after 293 cells transfection and NIH3T3 cells infection.) 

 

4.20 Western-blot analysis 

- membrane activation: 5 min. submersion in methanol, 5 min. submersion in water; 

- transfer the gel from casting glace to the membrane and blot the DNA for 30 min. at 18 V using 

blotting buffer (25 mM TRIS, 190 mM glycine, 20% methanol); 

- block at least 2 h (ON is recommended) at + 4oC; the unspecific binding for antibodies is blocked 

with 5% milk powder in TBST buffer (10 mM TRIS pH 8.0, 150 mM NaCl, 0.02% Tween 20);  
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- wash blot with water at least 2 times (removal of the milk solution); 

- wash blot with TBST 2 times; 

- incubate blot with primary antibodies (see Table 6) diluted in TBST for 2 h at + 4oC; 

Antibodies Anti-
actin 

Chroma 
101 Saj 1 Sak 1 M50 M2 Anti-HA 

Target actins IE2 MCP M53 M50 Flag-tag HA-tag 
Host  rabbit Mouse rat rat rabbit mouse rat 
Dilution 1:10000 1:4000 1:2000 1:2000 1:2000 1:4000 1:4000 
Table 6. Specificity of the WB primary antibodies. 

- wash blot with TBST 2 times; 

- wash blot 1 h 30 min. with TBST, changing the buffer every 10 min.; the nonspecifically bound 

antibodies should be removed; 

- incubate blot with secondary horseradish peroxidase coupled goat antibodies (see Table 7) diluted in 

TBST (1:7500) for 1 h at RT; 

Target actin IE2 MCP M53 M50 Flag-tag HA-tag 
Anti -
species 

Anti-
rabbit 

Anti-
mouse Anti-rat Anti-rat Anti-rabbit Anti-

mouse 
Anti-rat 

Table 7. Specificity of the WB secondary antibodies. 
 
- wash blot with TBST 2 times; 

- wash blot 1 h 30 min. with TBST, changing the buffer every 10 min.; the nonspecific bound 

secondary antibodies should be removed;  

- wash blot 2 times with water; 

- develop blot with Amersham ECL Plus Western Blotting Detection System (GE Healthcare); 

- the chemiluminescent signal is read out using Amersham Hyperfilm ECL ki and High Performance 

chemiluminescence film (GE Healthcare);  

- scan the film. 

(Application: gene products detection for M50HA (≅ 35 kDa), M53 (38 kDa), i128 (38 kDa), s309 (34-

35 kDa), s309i128 (≅ 34-35 kDa), FlagM53 (40 kDa), Flag309 (≅ 34-35 kDa), Flag∆Sak309 (32-33 

kDa), pp89 (IE2, 89 kDa), pp86 (MCP, 150 kDa) gene products.) 

 

4.21 HA-tag pulldown 

Note: this protocol was optimized to prepare protein complexes from LYS-450 supernatants of MCMV 

infected NIH3T3 cells or from M50HA-M53 transfected 293 cells; for others cells or sub cellular 

compartments then nucleus, one should optimized the salt concentration of the used lysis buffer. 
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- cell lysis (work on ice, takes around 1 h 30 min.): 

1. infect or transfect cells in 6 cm dishes (semi-confluent cells); 

2. remove the medium, collect the cells and proceed immediately for lysis or snap freeze; 

3. wash cells with 2 ml prechilled PBS; 

4. pellet the cells (6000 rpm, + 4oC, 3 min.), remove the supernatant and lyse cells with 600 µl 

of LYS-450 in presence of Benzonase (Novagen) on ice for 90 min. (keep 10% of the cells for 

protein expression analysis); 

5. remove cells debris by spinning the lysates at 14000 rpm (full speed) for 20 min.  at + 4oC; 

- binding of proteins to the HA affinity matrix (work at + 4oC and on ice!):  

1. transfer the supernatant to new Eppendorf tubes, add 120 µl HA High Affinity matrix (Roche) 

and incubate by rolling at + 4oC for 90 min.; 

2. wash the matrix 5 times with 1000 µl high salt concentration buffer (450 mM NaCl) and 3 

times with 1000 µl low salt concentration buffer (150 mM NaCl) by 3 min. centrifugation at 6000 

rpm for each step; 

3. resuspend the matrix in 120 µl 4x sample buffer and freeze at - 80oC; 

- protein complex analysis: load 50 µl HA matrix beads per well of a SDS-PAGE after denaturation at 

95oC for 10 min.

Note: Original HA-tag reference - Overview of tag protein fusions: from molecular and biochemical 

fundamentals to commercial systems; Terpe K.; Applied Microbiology Biotechnology; 2003 Jan; 

60(5):523-33.

(Application: protein complex detection after co-transfection of 293cells with po6k-ie-M50HA and 

po6k-ie-M53, -s309, -i128, -s309i128, -FlagM53, or -Flag∆Sak309.) 

 

4.22 Southern-blot analysis 

- split 100% confluent NIH3T3 cells 1:3.5;  

- after 3 h infect the cells at an MOI of  2; 

- harvest the cells after 48 hpi; 

- extract viral DNA using the cell culture protocol of the DNA Tissue & Blood kit (QIAGEN); 

- quantify the total viral DNA; 
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- SphI (Pae I, Fermentas) digestion of 3 µg viral DNA or 1 µg wild type MCMV BAC for 48 h at 37oC; 

- separate the DNA fragments in a 0.8% agarose gel at 70 V for 16 h; 

- transfer DNA fragments from the agarose gel to a positive charged nylon membrane (Amersham 

Hybond-N+, nylon membranes optimized for nucleic acid transfer): 

1. incubate the gel with 0.25 M HCl for 10 min., two times (DNA depurination!); 

2. wash the gel with distilled water; 

3. incubate the gel with denaturation buffer for 45 min. (improves the negatively charged DNA 

binding to the positively charged membrane and destroys any residual RNA!); 

4. wash the gel with distilled water; 

5. incubate the gel with neutralization buffer for 30 min.; 

6. repeat step 5 for 10 min.; 

7. transfer ON the DNA from gel to the nylon membrane by capillary action of the SSC 20x 

buffer through a paper tower (2 Whatmann paper sheets soaked in SSC 20x buffer which have 

the ends hanging into SSC 20x buffer tanks; gel; nylon membrane - avoid air bubbles!; 2 SSC 

20x soaked Whatmann paper sheets, on the gel size; 2 dry Whatmann paper sheets, on the gel 

size; many dry towel paper sheets - carefully arranged to maintain an equal pressure above the 

gel and membrane!; weight - equal distributed). 

- Dig labeled probe (PACK1) synthesis by PCR amplification (PCR DIG Probe Synthesis Kit, Roche); 

Note: The PACK1 probe is specific for a unique left terminal fragment of the MCMV genome.  

- cross-linking of the DNA to the nylon membrane by 0.125 Joule UV; 

Note: A picture of the dried gel is informative for the quality of the DNA transfer. 

- wash the membrane with 2x SSC 0.1% SDS buffer for 5 min., two times, at RT; 

- wash the membrane with 0.5x SSC 0.1% SDS buffer for 5 min., two times, at 45oC; 

Note: 45oC is the optimized hybridization temperature (Tm) of the Dig labeled PCR probe. 

Tm = 49.82 + 0.41(%G+C) – (600/l), l = length of hybrid in base pairs; Topt = Tm – 20oC to 25oC. 

- incubate the membrane with hybridization buffer (DIG Easy Hybridization Granules, Roche) for 2-3 h 

at 45oC; 

- denaturate the probe for 10 min. at 95oC; 

Note: Use about 50 ng probe/20 ml hybridization buffer. 

- incubate the membrane with PACK1/hybridization buffer ON at 45oC; 

Note: the PACK1/hybridization buffer can be re-used 3-4 times when stored at - 20oC. 
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- develop the blot with the DIG Luminescent Detection kit (Roche); 

Note: Keeping the membrane in CPSD chemiluminescent buffer at 37oC increases signal strength.  

- monitor the chemiluminescent signal using the Amersham Hyperfilm ECL, High Performance 

chemiluminescence film (GE Healthcare). 

(Applications: detection of concatemeric and unit length genomes at 48 h post infection of NIH3T3 

cells with wt MCMV, M53R, s309R, i313R, i321R, i207R, FlagM53R, Flag∆Sak309R, s309i128R  

viruses and 24 h post transfection of 293 cells with the wt MCMV BAC.) 

 

4.23 Confocal microscopy and indirect immunofluorescent staining 

- NIH3T3 cells infection:   

1. prepare 12 wells plates with sterile cover slips, one cover slip per well; 

2. split 100% confluent cells 1:3.5 on 7 plates of 12 wells; 

3. after 24 h in culture infect the cells at an MOI of 0.5 or 0.2; 

- cell staining: 

1. rinse cells with PBS; 

2. fix cells with 3% paraformaldehyde (PFA) in PBS for 15 min. at RT; 

Note: PFA is very toxic! 

3. rinse cells with PBS and quench them with NH4Cl solution for 10 min. at RT; 

4. rinse cells with PBS and treat them with 0.3% Triton X 100 in PBS for 10 min. at RT for 

permeabilization; 

5. rinse cells with PBS and block unspecific binding of antibodies: 

a. for primary antibody with 0.2% fish gelatin in PBS for 10 min. at RT; 

b. for secondary antibody with goat serum (1:100 in PBS) for 10 min. at RT; 

- incubation of primary antibodies (see Table 8) for 1 h at 37oC; 

Name Sak 1 αM50 M2 
Dilution/moi 0.2 1:300 1:300 1:500 
Dilution/moi 0.5 1:150 1:150 1:300 

Table 8. Dilution of the primary antibodies used for immunofluorescence analysis  

Note: Antibodies dilutions depend on the MOI and specific-reactivity. The ones used for NEC 

intranuclear localization were an M53 specific rat polyclonal antiserum (Sak 1), an M50 specific rabbit 

monoclonal antiserum (αM50) and a Flag specific mouse monoclonal antiserum (M2, Sigma).  
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- wash cells in a large volume of PBS for 10 min. at RT under moderate shaking conditions; 

- incubate secondary fluorochrome coupled antibodies (goat IgG) and iodide (TOPO-PRO-3) for 1 h at 

37oC (see Table 9); 

- rinse cells with distilled water and absolute ethanol; 

- dry the cover slips; 

- embedding (Histogel, Linaris) of the cells at + 4oC ON in the dark room; 

Note: Alexa flurochromes are light sensitive! 

- scan stained cells using the LSM510 program with an Axiovert confocal microscope from Zeiss; 

- keep slides up to 1 month at + 4oC or store at - 20oC in the dark room. 

Type of antibody H+L H+L H+L Fab
None 

- iodide - 
Anti-species rat rabbit mouse mouse - 

Target M53 M50 Flag-tag Flag-tag Genomic 
DNA 

Dilution/moi 0.2 1:300 1:300 1:500 1:300 1:1000 
Dilution/moi 0.5 1:300 1:300 1:800 1:500 1:1000 

Fluorochrom Alexa 488 Alexa 633 or 
Alexa 555 Alexa 555 Cy3 Cyanine 

Laser Ar 488 He-Ne 633 or 
543 He-Ne 543 Ar 514 He-Ne 633 

Excitation 495 632 or 553 553 550 642 
Emission 519 647 or 568 568 570 660 

Filter BP475-525 BP505-550 BP505-550 BP505-550 LP560 
Assigned color green red white white blue 

Table 9. Secondary antibodies and iodide used for immunofluorescence analysis. 
 

 (Applications: analysis of intracellular distribution of the cellular/viral DNA (TO-PRO-3, iodide) and 

viral proteins, such as M50, M53, FlagM53, Flag∆Sak309, s309i128 after 24 h or 48 h post infection of 

NIH3T3 cells.) 
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5. Results 

 

5.1 Genetic screen for inhibitory M53 mutants  

Nuclear egress of herpesvirus nucleocapsids is governed by a protein complex that 

is formed by members of the UL34 and UL31 families and called the nuclear egress 

complex (NEC). In MCMV, these are represented by the M50 and M53 proteins. Both 

are interacting at the inner nuclear membrane (INM) of infected cells and promote a 

partial disassembly of the lamin meshwork and reorganization of the nuclear 

envelope that leads to the primary envelopment of the nucleocapsids. The 

mechanism of the NEC action and the crosstalk between the viral and cellular 

components involved in the nuclear export of the capsid are not fully understood.  

In order to investigate the M53 and M50 gene products, we applied a genetic 

screen based cis-complementation of BAC based null mutants to functionally map 

the important sites and domains (Loetzerich et. al., 2006; Bubeck et. al., 2004). The 

genetic complementation procedure was stepwise executed in E. coli and is 

exemplified by the analysis depicted for M53 in Figure 5A. Deletion of the 

endogenous M53 copy induced a null-phenotype which could be rescued by ectopic 

expression of the wild type (wt) allele. This proved that M53 is essential for MCMV 

replication (Loetzerich et. al., 2006).  

Next, the whole ORF was subjected to a Tn7 random mutagenesis procedure 

generating 5 aa insertion mutants and stop codon formation. The mutants were 

introduced into the BAC lacking native M53 by FRT/Flp recombination (Bubeck et. 

al., 2004). Single copy insertion clones were selected by enzymatic restriction with 

NotI (see Figure 6) and viruses were reconstituted. The comprehensive mutational 

analysis of the M53 gene (Loetzerich et. al., 2006) identified a large number of non-
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viable mutants which have accumulated at the C terminal part of the protein, where 

no important functions have been mapped.  

In a second step, the non functional mutants, that may not compensate for the 

lack of the native M53 gene, have been reintroduced one by one into the wild type 

MCMV BAC to screen whether any of them had inhibitory features in the presence of 

the native M53 gene (see Figure 5B). We expected that the majority of the mutants 

will not interfere with viral progeny production. Yet, potential dominant negative 

mutants should inhibit the virus reconstitution.    
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Figure 5. Genetic analysis of the MCMV genes in the virus context. A. Cis-complementation assay 
(modified after Bubeck et. al., 2004). DNA of different MCMV BACs was extracted from the DH10B 
bacterial cells and used to transfect mouse embryonic fibroblasts (MEFs). Wild type M53 was deleted 
by ET cloning (homologous recombination catalyzed by RecE and RecT recombinases) from the 
endogenous position of an FRT-MCMV BAC (wt MCMV) generating a null-phenotype. Reintroduction 
of the wt M53 ORF into the M53 deletion BAC (∆MCMV) at the m16-m17 FRT ectopic position, via an 
FRT/Flp recombination system, rescued the virus reconstitution (∆MCMVres), visualized by plaque 
assay. Insertion of different M53 mutants, produced by 5 aa insertions into M53 ORF, was screened 
by virus reconstitution. B. Inhibitory mutants screen. All non-viable mutants were screened in a second 
complementation assay. This time the whole wt MCMV genome was used as recipient (wt MCMV). 
Wild type M53 allele expression from the m16-m17 FRT ectopic position of the BAC (MCMV M53R) 
had no effect on virus reconstitution. M53 mutants that inhibited virus reconstitution in the presence of 
the endogenous expressed M53 (MCMV M53mutR) represent the potential dominant negative 
mutants (DNs).  
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Figure 6. Selection of recombinant MCMV BACs carrying a single
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phenotype (see Table 10, column “Partial inhibitory”). In this case the reconstitution 

resulted in severely delayed plaque formation.  

Nr. Mutant Conserved region (CR) Viable Partial 
inhibitory 

Complete 
inhibitory 

1. i115 CR1 √   
2. i128 CR1 √   
3. i131 CR1 √   
4. i138 CR1 √   
5. i146 CR1 √   
6. i154 CR1 √   
7. i161 CR1 √   
8. i168 CR1 √   
9. s168 CR1 √   
10. i182 CR1-CR2 loop  √  
11. s185 CR1-CR2 loop √   
12. i191 CR2  √  
13. i195 CR2  √  
14. i198 CR2  √  
15. i201 CR2 √   
16. i207 CR2  √  
17. i212 CR2 √   
18. i217 CR2-CR3 loop  √  
19. i220 CR2-CR3 loop  √  
20. i227 CR3 √   
21. s233 CR3 √   
22. i234 CR3 √   
23. i236 CR3 √   
24. i244 CR3 √   
25. i251 CR3 √   
26. i259 CR3   √ 
27. H262S CR3 √   
28. i264 CR3 √   
29. i266 CR3 √   
30. i272 CR3   √ 
31. i281 CR3-CR4 loop  √  
32. s290 CR3 √   
33. i292 CR3   √ 
34. s294 CR3 √   
35. i302 CR4 √   
36. i303 CR4 √   
37. s303 CR4   √ 
38. i307 CR4   √ 
39. s309 CR4   √ 
40. i313 CR4   √ 
41. i321 CR4   √ 
42. s321 CR4   √ 
43. i324 CR4   √ 
44. i325 CR4   √ 
45. i326 CR4   √ 
46. s327 CR4   √ 
47. s331 CR4   √ 

 
Table 10. The M53 dominant negative mutants screen. Mutants were selected from the non-viable 
mutant pool of the cis-complementation screen (Loetzerich et. al., 2006). Four mutants were created 
by the site directed mutagenesis, via PCR (one point mutation – H262S and 3 truncated versions by 
insertion of a stop codon - s303, s321 and s327). After inhibitory screen, mutants were separated into 
three groups: viable, partial and complete inhibitory.  i, insertion of 5 aa at the indicated position 
(numbers); s, stop codon formation at the indicated position (numbers). 
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5.2 Conditional expression of the inhibitory M53 mutants  

Constitutive expression of inhibitory M53 alleles induced a complete block of virus 

reconstitution. To study the inhibitory phenotype in the context of virus replication 

conditional expression of the mutants was required.  Recently, Brigitte Rupp and 

collaborators established a system that allows the doxycycline (dox) regulated 

expression of genes from the cytomegalovirus genome, independent of the viral 

replication program (Rupp et. al., 2005). The principle of the conditional expression 

approach is depicted in Figure 7. In this system both the regulator and the regulated 

transcription unit are located in one cassette containing the mutant gene of interest 

(see Figure 7A). The cassette was inserted at a predefined intergenic region between 

the non-essential genes m16 and m17 of the MCMV genome, a position that reacted 

neutral to the in vitro and in vivo insertion by FRT/Flp recombination (see Figure 7B; 

Rupp et. al., 2007/2005).   
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Figure 7. A. Conditional expression cassette (after Rupp et. al., 2005). The gene of interest (M53 
ORF) is located downstream of  an HCMV immediately-early promoter containing 2 minimal 
tetracycline operator sequences (tetO2) inserted at a 10 bp distance of the TATA box and controlled by 
the SV40 early-enhancer (SV40). Access of the transcriptional machinery to the mutated ORF is 
controlled by the tetracycline repressor (TetR). Regulator expression is driven by HCMV immediately-
early promoter-enhancer (CMV). Adding of doxycycline (dox) to the system allows the transcription of 
the gene of interest, due to TetR arrest in a complex with dox. B. Flp recombination (after Rupp et. al., 
2005). The regulation cassette can be delivered to the wt MCMV BAC by an FRT/Flp recombination 
performed in DH10B cells when both constructs carry an FRT site (BAC, wt MCMV BAC; white box 
with gray triangle, FRT sites; black box, zeocin resistance cassette of conditional cassette plasmid 
carrier; gray box with a black line, conditional expression cassette carrying the gene of interest).  
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This conditional expression system was used to study the s309, i313, i321 and 

i207 inhibitory mutants’ phenotype. As a control it was constructed a dox-inducible 

expression cassette for the wt M53 gene. Individual constructs were integrated into 

the MCMV genome by site specific recombination at the FRT site between the m16-

m17 genes. The recombinant viruses (s309R, i313R, i321R, i207R and M53R) were 

reconstituted by transfection of mouse embryonic fibroblasts (MEFs) in the absence 

of dox and propagated in M2-10B4 cells.  

A semi-quantitative conditional expression assay was performed for each 

inoculum for selection of clones with a tight regulation. Constructs controlled by the 

SV40 early-enhancer allowed viral particles production after 5 days post infection 

(dpi) in the absence of dox (see Figure 8). Recombinant virus (R) expressing a 

second copy of the wt M53 allele (M53R) induced the formation of the plaque 

irrespective of the absence or presence of dox. Dox induction of s309 mutant 

expression resulted in the almost complete block of plaque formation irrespective of 

inoculums’ dilution (see Figure 8).  
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Figure 8. Semi-quantitative analysis of the s309 inhibitory mutant (s309R) effect on the production of 
viral progeny. M2-10B4 cells were infected for 5 days with 3 virus doses in either the absence (- dox) 
or presence (+ dox) of 1 µg/ml doxycycline (dox). The shading of gray represents the titration of viral 
inoculum: light – 1:1, medium - 1:10 and dark gray - 1:100. The virus expressing the wt M53 allele 
(M53R) represented the control. Cell supernatants were collected o and the cytopathic effects (CPE, 
expressed as percentages) were determined by titration on MEFs. The bar diagram shows the 
regulation of s309R virus growth in response to dox administration. Each mutant was analyzed in 
duplicate in at least two independent experiments.  
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The conditional effect of the s309R recombinant was compared with that of the 

CR4 insertion mutants (i313 and i321) and of CR2 (i207). The M53 CR4 and CR2 

mutants inhibited virus growth in the presence of dox similar to s309 (see Figure 9) 

but i207 had a weaker effect.  
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Figure 9. Semi-quantitative analysis of the M53 inhibitory mutants’ effect on the production of viral 
progeny. M2-10B4 cells were infected for 5 days with 3 virus doses in either the absence (- dox) or 
presence (+ dox) of 1 µg/ml doxycycline (dox). The shading of gray represents the titration of the viral 
inoculum: light – 1:1, medium - 1:10 and dark gray - 1:100. The virus expressing the wt M53 allele 
(M53R) represented the control. Cell supernatants were collected and the cytopathic effects (CPE, 
expressed as percentages) were determined by titration on MEFs. The bar diagram shows the 
regulation of virus growth in response to dox administration after infection with the indicated 
recombinant viruses (R). Each mutant was analyzed in duplicate in at least two independent 
experiments. 

 

Therefore, the growth kinetics of all recombinants were reevaluated under 

multi-step growth conditions by M2-10B4 cells infection at an MOI of 0.1 in the 

absence and presence of dox. Wt MCMV served as a positive control for infection 

and as negative control for general dox toxicity (see Figure 10A). Expression of a 

second copy of the wt M53 (see Figure 10B) had no effect on the virus replication. In 

contrast to the wt protein, s309 mutant blocked virus replication with a power of 6 to 7 

orders of magnitude (see Figure 10C). Also the i313R and i321R constructs showed 

a similar inhibitory effect (see Figures 10D and 10E). Notably, the CR2 i207 mutant 

inhibited plaque formation only by 2 orders of magnitude (see Figure 10F). 
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Figure 10. Effects of the M53 inhibitory mutants on the production of viral progeny. M2-10B4 cells 
were infected for 5 days at an MOI of 0.1 in either the absence (white bars) or in the presence (black 
bars) of 1 µg/ml dox. Wt MCMV was used as a positive control for infection and a negative control for 
general dox toxicity. Cell supernatants were collected on the indicated day’s post infection (dpi), and 
the released infectious units (PFU, plaque forming unit) were determined by titration on MEFs. The bar 
diagram shows the regulation of virus growth in response to dox administration 3 days and 5 days 
after infection with the indicated recombinant viruses (R).  The titer reduction is shown as the 
difference between the titer in the absence of dox and the titer in the presence of dox. Only titer 
reductions of >10-fold were considered significant. Each mutant was analyzed in duplicate in at least 
two independent experiments.  

 

5.3 The stability of the inhibitory effect in different cell types  

Previously, we had noticed that DN mutants of viral proteins are acting at a different 

degree in different cell types (Rupp et. al., 2007). In order to study the cell type 

specificity of the DN s309 we chose three different cell lines: SVEC4-10 mouse 

lymphoid endothelial cells, NIH3T3 contact inhibited murine fibroblasts and mouse 

mammary epithelial C127 cells. The cells were infected at an MOI of 0.1 in the 

absence and presence of dox with M53R and s309R and the virus production was 
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quantified. The M53R titer at day 5 post infection was about 104-105 PFU/ml 

irrespective of dox (see Figure 11 A, C and E). Thus, all three types of cells are less 

productive than M2-10B4 cells (106-107 PFU/ml, see Figure 10A). 
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Figure 11. s309R inhibitory phenotype in different cell types. SVEC, NIH3T3 and C127 cells were 
infected for 5 days at an MOI of 0.1 in either the absence (white bars) or in the presence (black bars) 
of 1 µg/ml dox. The virus expressing the wt M53 allele (M53R) represented the control for M53 
overexpression. Cell supernatants were collected and the released infectious units (PFU, particle per 
infectious unit) were determined by titration on MEFs. The bar diagram shows the regulation of virus 
growth in response to dox administration 3 days and 5 days after infection with the s309 recombinant 
virus (s309R). The titer reduction is shown as the difference between the titer in the absence of dox 
and the titer in the presence of dox. Only titer reductions of >10-fold were considered significant. Each 
mutant was analyzed in duplicate in at least two independent experiments. Dpi, day post infection. 
 

 The s309R recombinant revealed a similar pattern. Absence of dox allowed 

productive infection in the same range as M53R (104-105 PFU/ml). Yet, strong dox 

dependent inhibition of virus growth of the s309 mutant was comparable in all tested 

cell lines (see Figure 11 B, D and F).  
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5.4 The stability of the inhibitory phenotype at high virus load 

In order to estimate the power of inhibition we analyzed the viral growth after a single 

replication cycle. Therefore, two cell types (M2-10B4 and C127) were infected at an 

MOI of 1 in the absence and presence of dox. The quantification of viral infectious 

units in the supernatant was done up to 3 days post infection.  
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Figure 12. Stability of the s309 inhibitory phenotype. M2-10B4 and C127 cells were infected for 5 days 
at an MOI of 1 in either the absence (white bars) or the presence (black bars) of 1 µg/ml dox. The 
virus expressing the wt M53 allele (M53R) represented the negative control for M53 overexpression 
toxicity at high load. Cell supernatants were collected and the released infectious units (PFU, particle 
per infectious unit) were determined by titration on MEFs. The bar diagram shows the regulation of 
virus growth in response to dox administration 3 days and 5 days after infection with the s309 
recombinant virus (s309R).  The titer reduction is shown as the difference between the titer in the 
absence of dox and the titer in the presence of dox. Only titer reductions of >10-fold were considered 
significant. Each mutant was analyzed in duplicate in at least two independent experiments. Dpi, day 
post infection. 

 

M53R infection of M2-10B4 cells was highly productive, with a titer of 106 

PFU/ml irrespective of dox (see Figure 12A). In C127 endothelial cells the titer hardly 

reached 104 PFU/ml (see Figure 12C). Induction of s309 resulted in a reduction of 

viral growth by almost 6 orders of magnitude in M2-10B4 cells (see Figure 12B) and 

4 orders of magnitude in C127 (see Figure 12D) cells. Comparing these values with 

the growth data obtained by multi-step replication of the same viruses (see Figures 
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10 B/C and 11 E/F) we concluded that the DN s309 mutant blocked virus production 

in a cell type independent manner.  

 

5.5 Synthesis of the inhibitory protein  

The conditional expression of inhibitory mutants of M53 confirmed the qualitative 

results of the first inhibitory screen. It was of interest to connect the phenotype with 

the synthesis of the inhibitory protein. Therefore, the production of the wt and the 

inhibitory proteins was studied by Western-blot.  

First, we tested whether the deletion of CR4 affected the capacity of s309 

protein to bind to M50, its NEC partner (see Figure 13A). 293 cells were co-

transfected with plasmids expressing either the C terminal HA tagged M50 ORF 

(M50HA, lanes 2 to 5) or variants of M53, namely: wt protein (lane 3), s309 (lane 4) 

and i128 (lane 5) mutants. i128 lacks M50 binding capacity due to the insertion of 5 

aa (Loetzerich et. al., 2006) into the M53 binding site and served as control for the 

loss of binding. The empty carrier vector (po6k-ie, lane 1) represented the negative 

control for protein expression.  

At 24 h post transfection the cells were lysed by a high salt concentration 

buffer and an HA pulldown was performed. Proteins were separated on a 12% SDS-

PAGE and detected by Western Blot. Next, the protein expression was checked in 

the total lysates (see Figure 13A) and equal lysate load was tested by the level of 

cellular actin (42 kDa). The s309 protein shifted to 34-35 kDa due of the deletion of 

the C-terminus of the protein (24 aa). 

After HA pulldown similar amounts of M50HA could be detected, irrespective 

of the binding partners the wt M53 and s309. As expected, i128 mutant (38 kDa) 

lacking the binding site gave a weak signal. In conclusion, deletion of the CR4 

domain did not affect the M50 binding capacity of DN s309. 
 65
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Figure 13 A. The DN s309 binds to M50. 293 cells were transfected with the empty vector pori6-ie 
(po6kie; lane 1) or the HA-tagged M50 ORF (lane 2) and co-transfected with plasmids expressing HA-
tagged M50 (lanes 3 to 5) and the indicated M53 derivatives: wild type M53 (lane 3), s309 (lane 4), 
and i128 (lane 5). Transfected cells were lysed in total lysis buffer (TLB), and one-third of these 
lysates were loaded (upper two blots, indicated by TLB) and Western blotted with rabbit anti-M50 
antiserum (αM50), rat anti-M53 antiserum (αM53), and rabbit anti-actin antiserum (αACT), 
respectively. The remaining 70% of the lysates were processed by an HA pulldown. The eluates from 
the HA columns were split 1:9 and served for Western blot with rabbit anti-M50 antiserum and rat anti-
M53 antiserum, respectively (lower two blots, indicated by HA PD). The expected molecular mass of 
the M50 protein is 35 kDa; the wt M53 and the mutant i128 protein migrate at about 38 kDa and s309 
at about 34 to 35 kDa. B. Analysis of viral protein amounts upon induction of DN s309 overexpression. 
NIH 3T3 cells were mock treated (lane 1) or infected at an MOI of 0.5 with wt MCMV (lanes 2 and 3), 
with MCMV mutants expressing a second M53 wt allele (M53R; lanes 4 and 5), or DN s309 (s309R; 
lanes 6 and 7) in the absence (–; lanes 1, 2, 4, and 6) and in the presence (+; lanes 3, 5, and 7) of 1 
µg/ml dox. Protein expression was analyzed 24 h after infection by Western blotting with specific 
antibodies against pp89 (immediately-early protein, 89 kDa; αIE1), M86 (late protein, 150 kDa; αMCP 
– major capsid protein), M53 (38 kDa), and M50 (35 kDa) (NEC proteins). The dox-induced s309 (34-
35 kDa; lower black arrowhead) expression decreased the native M53 signal (upper black arrowhead) 
and also reduced levels of M50 (gray arrowhead).  

 

Second, we analyzed whether expression of DN s309 would affect the viral 

protein expression (see Figure 13B). Therefore, NIH3T3 cells were infected for 24 h 

at an MOI of 0.5 in the absence (lanes 2, 4 and 6) and in the presence of dox (lanes 

3, 5 and 7) with M53R (lanes 4 and 5) and s309R (lanes 6 and 7). Uninfected cells 

(lane 1) served as negative and wt MCMV infection (lanes 2 and 3) as positive 

control. The load was tested at the cellular actin level.  

The IE1 and MCP gene products served as markers for viral immediately-early 

and late gene expression. The presence of dox had no effect on these proteins for all 

three viruses: wt MCMV, M53R and s309R (see Figure 13B). Also the detection 
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levels of M53 and M50 proteins showed no difference in the absence or presence of 

dox in wt MCMV and M53R infected cells. In case of s309R a clear shift was noticed 

between M53 (38 kDa) and truncated mutant s309 (34-35 kDa).  

The DN protein was already slightly expressed in the absence of dox and DN 

induction by dox was associated with low levels of M53 and M50. Thus, the inhibitory 

effect of the s309 mutant on MCMV growth could already be explained by a 

destabilization of the wt NEC members.  

 

5.6 EM analysis of MCMV recombinant expressing the DN s309  

In order to visualize the dominant negative phenotype electron microscopy (EM) 

studies were performed in collaboration with Christopher Buser at the EM facility 

(Zentrale Einrichtung Elektronenmikroskopie) of the University of Ulm.  

Virus infection of NIH3T3 cells at an MOI of 3 was carried out in the absence 

and presence of dox.  After M53R infection mainly mature C capsids were observed 

in the nucleus and cytoplasm, irrespective of dox (see Figure 23 A).  

In contrast, dox induced s309 overexpression determined a nuclear 

accumulation of different capsid forms associated with a complete block of nuclear 

egress (see Figure 23 B to D). The block of nuclear egress was in concordance with 

the reduction of the NEC members, while the different capsid forms suggested an 

additional effect on nucleocapsid maturation.  
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5.7 Tagging of the M53 ORF  

5.7.1 Flag-tagged M53 constructs hold the inhibitory feature 

To further investigate the s309 effect, we wanted to label the DN protein in order to 

differentiate between the mutant and the wt gene product. Initially, a TAP-tagged 

s309 construct was checked for inhibitory feature on the virus context. This mutant 

had lost the DN effect (data not shown) and we looked for another tag which would 

preserve function. Therefore, the short Flag-tag (8 aa: Asp, Tyr, Lys, Asp, Asp, Asp, 

Asp, Lys; Terpe, 2003) was inserted at the N terminus of the s309 ORF (Flag309). 

To assess non-specific effects of the Flag-tag insertion, the wt M53 ORF was 

modified accordingly (FlagM53, see Figure 14). In order to discriminate between 

FlagM53 and Flag309 in the MCMV context the M53 antibody (Sak) binding motif of 

s309 ORF was deleted by PCR, resulting in Flag∆Sak309 (see Figure 14). 

 68

   

  ab       VR           CR1        CR2         CR3         CR4  
Flag 

Flag 

FlagM53 

Flag∆Sak309  
Figure 14. Schematic representation of the Flag-tagged M53 derivates. Depicted are the FlagM53 and 
Flag∆Sak309 ORFs’ domains. The N-terminal site (ab) recognized by the M53-specific serum (Sak), 
the variable region (VR), and the C-terminal four conserved regions (CR1 to CR4) are indicated. The 
N-terminal end of the s309 mutant was replaced by a Flag-tag (Flag circle). This construct 
(Flag∆Sak309) is not recognized by the anti-M53 serum. 
 

First, the Flag-tagged proteins expression was checked (see Figure 15A). 293 

cells were co-transfected with vector plasmids carrying either Flag-tagged proteins 

(FlagM53 – lane 3, Flag309 – lane 4 and Flag∆Sak309 – lane 5) or the C terminal HA 

tagged M50 (M50HA, lanes 2 to 5). The po6k-ie empty vector served as negative 

control (lane 1). The load was tested by the cellular actin level. As expected, anti-

M53 antibodies (Sak, αM53) allowed M53 detection (FlagM53 – 40 kDa, Flag309 – 

34-35 kDa), whereas Flag∆Sak309 (32-33 kDa) was identified by anti-Flag antibody 

(Figure 15A). Rabbit polyclonal anti-M50 antibodies (αM50) detected the NEC 
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partner. The Flag-tag had no effect on protein expression. An HA pulldown was 

performed and the eluted samples were probed for Flag-tagged proteins (see Figure 

15B). Deletion of M53 antibody epitope and Flag-tagging of DN s309 did not 

influence the M50 binding capacity of Flag∆Sak309 but the Flag-tag was affecting 

the anti-M53 antibody binding in case of Flag309 (compare Figure 13A lane 4 and 

Figure 15B lane 4). Next, MCMV BACs expressing the Flag-tagged ORFs were 

constructed and checked for virus reconstitution. FlagM53 and Flag∆Sak309 mutants 

induced comparable effects to the untagged proteins. FlagM53 MCMV BAC 

reconstituted after 5 days and lysed a complete MEFs monolayer in 2 weeks post 

transfection whereas Flag∆Sak309 MCMV BAC blocked virus reconstitution (data not 

shown). 
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Figure 15. The Flag∆Sak309 binds to M50. 293 cells were transfected with the empty vector pori6-ie 
(po6kie; lane 1) or the HA-tagged M50 ORF (lane 2) and co-transfected with plasmids expressing HA-
tagged M50 (lanes 3 to 5) and the indicated M53 derivatives: FlagM53 (lane 3), Flag309 (lane 4), and 
Flag∆Sak309 (lane 5). Transfected cells were lysed in total lysis buffer (TLB), and one-third of these 
lysates were loaded (left blots, indicated by TLB - A) and Western blotted with rabbit anti-M50 
antiserum (αM50), mouse anti-Flag antiserum (αFlag), rat anti-M53 antiserum (αM53), and rabbit anti-
actin antiserum (αACT), respectively. The remaining 70% of the lysates were processed by an HA 
pulldown (B). The eluates from the HA columns were split 1:9 and served for Western blot with rabbit 
anti-M50 antiserum, mouse anti-Flag antiserum (αFlag) and rat anti-M53 antiserum, respectively (rigth 
blots, indicated by HA PD). The expected molecular mass of the wt M50 protein is 35 kDa; the 
FlagM53, Flag309 and Flag∆Sak30proteins migrate at about 40 kDa, 34-35 kDa and 32-33 kDa, 
respectively. 
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5.7.2 Conditional expression of Flag-tagged constructs by MCMV recombinants 

The effects of Flag-tagged constructs were tested in the viral replication context. Both 

FlagM53 and Flag∆Sak309 ORFs were subcloned by PCR into the regulation 

cassette and flipped-into the MCMV BAC. BACs were used to transfect MEF cells 

and the respective viruses were propagated on M2-10B4 cells. Then, FlagM53R and 

Flag∆Sak309R recombinants were analyzed for the growth kinetics. Dox induction of 

FlagM53 protein had no effect on virus production and the infection resulted in a wt-

like pattern (see Figure 16A). In contrast, in the presence of dox, the Flag∆Sak309 

prevented the virus replication, similar to the s309 effect (see Figure 16B).  
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Figure 16. Flag-tag does not affect the inhibitory phenotype of s309. M2-10B4 cells were infected at 
an MOI of 0.1 in either the absence (white bars) or in the presence (black bars) of 1 µg/ml dox with 
FlagM53R and Flag∆Sak309R viruses. The virus expressing the FlagM53 allele (FlagM53R) 
represented the positive control for second M53 gene and as negative control for a Flag-tagging 
effect. Cell supernatants were collected and the released progeny determined by titration on MEFs. 
The bar diagram shows the regulation of virus growth in response to dox administration 3 days and 5 
days after infection with the Flag∆Sak309 recombinant virus (Flag∆Sak309R). The titer reduction is 
shown as a difference between the titer in the absence of dox and the titer in the presence of dox. 
Only titer reductions of >10-fold were considered significant. Each mutant was analyzed in duplicate in 
at least two independent experiments. Dpi, day post infection; PFU, particle per infectious unit.  
  

Next, it was tested whether the Flag-tagged ORFs were expressed with late 

kinetics (see Figure 17), as the native protein (Loetzerich et. al., 2006). Therefore, 

NIH3T3 cells were infected at an MOI of 0.5 in the presence of dox with FlagM53R 

(lanes 2, 3, 6 and 7) and Flag∆Sak309R recombinants (lanes 4, 5, 8 and 9) for 4 h 

(lanes 1 to 5) and 28 h (lanes 6 to 9). The uninfected cells represented the negative 

control (lane 1). The experiments were made in duplicates, one in the absence (--; 
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lanes 1, 2, 4, 6 and 8) and one in the presence (+; lanes 3, 5, 7 and 9) of 300 µg/ml 

phosphonoacetic acid (PAA), an inhibitor of DNA replication. Cells were harvested 

and lysed in high salt concentration (450 nm NaCl) lysis buffer. The load was tested 

by the cellular actin level. Because PAA is blocking late gene expression (see Figure 

17), pp89/89 kDa – IE1 gene product - was used as control for viral protein 

expression in context of NIH3T3 cells infection.  
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Figure 17. Flag tagging does not affect the late kinetics of DN s309. NIH 3T3 cells were infected in the 
presence of 1ug/ml dox at an MOI of 0.5 with the FlagM53R (lanes 2, 3, 6 and 7) and the 
Flag∆Sak309R (lanes 4, 5, 8 and 9) viruses in the absence (--; lanes 2, 4, 6 and 8) and in the 
presence (+; lanes 3, 5, 7 and 9) of 300 µg/ml PAA. Uninfected cells (mock - lane 1, --) were used as 
negative control. Protein expression was analyzed 4 h (lanes 1-5) and 28 h (lanes 6-9) after infection 
by Western blotting using antibodies against pp89 (immediate-early protein, 89 kDa; αIE1), M53 (38 
kDa; αM53), M50 (35 kD; αM50), Flag tag (αFlag) and actin (αACT). At 28 h post infection the native 
M53 (38 kDa) and M50 (35 kDa) proteins were detected in the absence of PAA, together with Flag-
M53 protein (40 kDa). Accumulation of Flag-tagged M53 (Flag-M53; 40 kDa) and s309 (Flag∆Sak309; 
32 to 33 kDa) in the absence of PAA was associated with a late kinetics. Expression of the 
Flag∆Sak309 is exempt from PAA control. 

 

FlagM53 and Flag∆Sak309 could not be detected after 4 hpi, neither in the 

absence nor in the presence of PAA. At 28 hpi, in the absence of PAA, anti-M53 

antibodies identified the shift between FlagM53 (40 kDa) and native M53 (38 kDa) 

and anti-Flag antibodies between FlagM53 and Flag∆Sak309 (32-33 kDa). At 28 hpi, 

in the presence of PAA, there were only weak signals for native M50 and M53. 

However, FlagM53R and Flag∆Sak309R, in particular, expressed by the SV40 
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regulation cassette followed mainly the late expression kinetics but were not blocked 

by PAA (see Figure 17).  

Next, the effect of Flag-tagged proteins on virus protein expression was tested 

(see Figure 18). Therefore, NIH3T3 cells were infected at an MOI of 0.5 with 

FlagM53R (lanes 1 and 2) and Flag∆Sak309R recombinants (lanes 3 and 4) for 24 h 

in the absence (lanes 1 and 3) and presence of dox (lanes 2 and 4).  
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Figure 18. Flag tagging does not affect the inhibitory features of DN s309. NIH 3T3 cells were infected 
at an MOI of 0.5 with the FlagM53R (lanes 1 and 2) and the Flag∆Sak309R (lanes 3 and 4) viruses in 
the absence (--; lanes 1 and 3) and in the presence (+; lanes 2 and 4) of 1 µg/ml dox. Uninfected cells 
(lane 5, +) and wt infection (lane 6, +) were used as negative and positive controls, respectively. 
Protein expression was analyzed 24 h after infection by Western blotting using antibodies against 
pp89 (immediate-early protein, 89 kDa; αIE1), M86 (late protein, 150 kDa; αMCP), M53 (38 kDa; 
αM53), M50 (35 kDa; αM50) (NEC proteins), Flag tag (αFlag) and actin (αACT). pp89 and M86 did not 
show significant difference after dox was added to the system. The native M53 protein (38 kDa) was 
detected in the absence of dox, together with Flag-M53 protein (40 kDa). Accumulation of Flag-tagged 
wt M53 (Flag-M53; 40 kDa) and s309 (Flag∆Sak309; 32 to 33 kDa) upon dox induction was 
associated with a reduction in the native M53 protein levels.  

 

FlagM53 and Flag∆Sak309 expression did not affect immediately-early 

pp89/89kDa (IE1 gene product) or late pp86/150 kDa (major capsid protein - MCP; 

M86 gene product) protein expression. M53 specific rat antiserum revealed both 

Flag-tagged and native M53 variants after FlagM53R infection, fact indicative for 

leakiness of the regulation cassette. In the case of Flag∆Sak309R only native M53 

could be detected in the absence of dox. Dox strongly induced Flag - M53 variants 

associated with a loss of native M53 in FlagM53R or Flag∆Sak309R infected cells. 

 72
 



Chapter 5 Results 

As expected, Flag∆Sak309 could not be detected by anti-M53 antiserum. M50 rabbit 

polyclonal antibodies revealed a strong M50 signal in the presence of FlagM53 and a 

certain signal reduction in the presence of Flag∆Sak309. Mouse anti-Flag 

monoclonal antibodies revealed the leakiness of the SV40 cassette mainly for the 

FlagM53 mutant and confirmed the shift between FlagM53 (40 kDa) and 

Flag∆Sak309 (32-33 kDa) proteins.  Altogether, Flag∆Sak309 mutant proved to be a 

good candidate for further analysis of the dominant negative phenotype.  

 

5.8 Subcellular localization of NEC members 

Because Flag-tagging of M53 and s309 ORFs did not affect the expression and 

biological properties of the proteins, the recombinants could be used to analyze the 

subcellular distribution of the NEC members. 

 The effects of conditional expression of wt M53 and DN s309 on nuclear 

egress of viral capsids were analyzed by confocal microscopy. NIH3T3 cells were 

infected with MCMV recombinants in the absence and in the presence of dox for 24 

or 48 h. The cells were fixed with paraformaldehyde and stained for M53, M50 and 

Flag-tagged proteins.  

First, the effects of dox on wt NEC members’ intranuclear distribution were 

tested at 24 hours post infection (hpi) with wt MCMV. As shown in Figure 19 (A to H), 

M53 and M50 proteins colocalize at the nuclear rim independent of the absence or 

presence of dox. 

 Although the virus growth kinetics indicated no interference of FlagM53 

expression with MCMV replication, the fate of the tagged copy of the wt protein could 

still be different at the subcellular level (see Fig 20 A to H). 
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Figure 19. Subcellular distribution of the wt NEC proteins upon infection. NIH 3T3 cells were infected 
at an MOI of 0.2 with wt MCMV in the absence (A to D) and the presence (E to H) of 1 µg/ml dox. 
Analysis of wt MCMV infection in the presence of dox (E to H) was used as a control for dox effect on 
the wt NEC members’ distribution. Twenty-four hours after infection, the localization of the M53, M50 
and possible Flag cross-reactive proteins was analyzed by confocal immunofluorescence microscopy 
using specific primary antibodies, followed by Alexa fluorochrome-coupled secondary antibodies 
(Alexa 488, M53; Alexa 555, Flag tag; Alexa 633, M50). The scale bars indicate 5 µm.  

 

Therefore, the cells were infected with the FlagM53R recombinant. In the 

absence of dox, a nuclear rim colocalization of the wt NEC members (see Figure 20 

A to D) and a weak signal of the Flag-tagged M53 at the concave side of the nucleus 

could be noticed. The presence of dox induced a FlagM53 intranuclear signal with 

two locations: a strong nucleosolic accumulation and a nuclear rim staining. 

Expression of FlagM53 did not affect the interaction of the native M53 and M50 at 

nuclear rim (see Figure 20 E to H). These data confirm that a strong expression of 

M53 is not yet inhibitory for the virus replication.  

Flag∆Sak309R infection in the absence of dox resulted in a wt-like pattern 

associated with a weak nucleosolic detection of mutant protein (see Figure 20 I to L). 

Induction of Flag∆Sak309 expression had strong effects on the wt NEC members. 

The native M53 protein relocalized to a nucleosolic fraction. M50 was reduced and 

redistributed along the nuclear rim to dotty aggregates. Flag∆Sak309 mutant protein 

accumulated in the nucleosol but also colocalized with M50 aggregations (see Figure 

20 M to P).  
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Figure 20. Subcellular distribution of the wt NEC proteins upon expression of DN s309 at 24 h after 
infection. NIH 3T3 cells were infected at an MOI of 0.2 with FlagM53R (A to H) and Flag∆Sak309R (I 
to P) in the absence (A to D and I to L) and in the presence (E to H and M to P) of 1 µg/ml dox. 
Twenty-four hours after infection, the localization of the M53, M50, FlagM53 and Flag∆Sak309 
proteins was analyzed by confocal immunofluorescence microscopy using specific primary antibodies, 
followed by Alexa fluorochrome-coupled secondary antibodies (Alexa 488, M53; Alexa 555, Flag tag; 
Alexa 633, M50). The scale bars indicate 5 µm.  

 

The analysis of the s309 nuclear egress block phenotype at 48 hpi confirmed 

the characteristics described above (see Figure 21 A - L). Here, even stronger effects 

were noticed. Dox induction of s309 resulted in a complete nucleosolic distribution of 

M53 and bulky aggregates of M50 colocalized with s309 along the nuclear rim (see 

Figure 21 M - P). 
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Figure 21. Subcellular distribution of the wt NEC proteins upon expression of DN s309 at 48 h after 
infection. NIH 3T3 cells were infected at an MOI of 0.2 with FlagM53R (A to H) and Flag∆Sak309R (I 
to P) in the absence (A to D and I to L) and in the presence (E to H and M to P) of 1 µg/ml dox. Forty-
eight hours after infection, the localization of the M53, M50, FlagM53 and Flag∆Sak309 proteins was 
analyzed by confocal immunofluorescence microscopy using specific primary antibodies, followed by 
Alexa fluorochrome-coupled secondary antibodies (Alexa 488, M53; Alexa 555, Flag tag; Alexa 633, 
M50). The scale bars indicate 5 µm. 
 

The s309 effect was not only a phenotype of selected cells but the general cell 

phenotype (see Figure 22), considering that the infection was carried out at an MOI 

of 0.2 and the expected values (20 infected cells out of 100) reflect the findings.  
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Figure 22. Generality of the DN phenotype. NIH 3T3 cells were infected at an MOI of 0.2 with 
FlagM53R (F to O) and Flag∆Sak309R (P to Z) in the absence (F to J and P to T) and in the presence 
(K to O and U to Z) of 1 µg/ml dox. Analysis of wt MCMV infection (A to E, in the presence of dox) was 
used as a control. Twenty-four hours after infection, the localization of the M53, M50, FlagM53 and 
Flag∆Sak309 proteins was analyzed by confocal immunofluorescence microscopy using specific 
primary antibodies, followed by Alexa fluorochrome-coupled secondary antibodies (Alexa 488, M53; 
Alexa 555, Flag tag; Alexa 633, M50). The scale bars indicate 20 µm.  

 

5.9 Analysis of the DN s309 phenotype 

Electron microscopy studies revealed that s309 induced a block of capsid export, 

because no capsids could be seen in the cytoplasm (see Figure 23 B) and in addition 

there was a defect in nuclear capsid maturation (see Figure 23 C and D). The 

intranuclear population was mainly represented by capsids with unusual morphology. 

About 50% of capsids had regular icosahedral morphology but lacked density inside 
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their shell and were dissimilar to the regular ring structure which is characteristic of 

B-capsids. In addition, there were only few mature C-capsids with the characteristic 

high density core. A core without density is typical for A-capsids lacking DNA. A high 

number of intranuclear capsids showed this phenotype. 

 

Figure 23. DN s309 prevents viral-capsid egress from the cell nucleus and induces accumulation of 
aberrant capsids in the nucleus. NIH 3T3 cells were infected for 72 h at an MOI of 3 with viruses that 
conditionally expressed s309 in the absence (A) or in the presence (B, C, and D) of 1 µg/ml 
doxycycline. The cells were fixed by high-pressure freezing, freeze-substituted, embedded in plastic, 
and analyzed by electron microscopy. The black arrowheads point at mature C-type viral capsids, and 
the white arrowheads point at capsids with unusual morphology. The gray arrowheads point at 
intranuclear membrane accumulation. (D) Electronic zoom of panel C; the upper left capsid is 
indicated by a thin arrow to aid orientation. The scale bars indicate 1 µm.  

 

To test whether s309 induces a capsid maturation defect by interfering with 

the DNA cleavage/packaging machinery we analyzed the cleavage of viral genomes 

by a Southern-blot assay (see Figure 24). 
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Figure 24. Schematic representation of the Southern blot assay for analysis of genome 
cleavage/packaging during MCMV infection. The terminal regions of MCMV genomes are depicted as 
they formed concatemers after replication (top) or as the genome ends were released as a 
consequence of a cleavage/packaging reaction (bottom). In the concatemers, the genomes are 
connected via the short terminal repeats (TR) of the MCMV. The hybridization probe used in this study 
(black bar) overlapped with both the left terminal and the next right subterminal fragments of the SphI-
digested MCMV genome. The subterminal fragment (3 kbp) was detected in all genomic forms. 
Therefore, it served as a measure for the genome load. In the concatemeric form, the left terminal 
fragment is connected to the right terminal fragment. Thus, the same probe recognizes the 
concatemeric genome ends as a 2 kbp fragment. In the unit length genomes, the left terminal 
fragment is separated and recognized by the same probe as an 1 kbp fragment.  
 
 
 Mock    wt    ∆M53  wt   ∆M53     M53R        s309R       i3131R        i321R        i2017R     BAC 
   --         --        --      --       --       --      +       --       +       --      +        --      +        --       +        --      dox 
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Figure 25. Southern blot analysis of a genome cleavage/packaging reaction upon induction of DN M53 
mutants. NIH 3T3 cells were mock infected (lane 1) or infected with wt MCMV (lane 2, wt), ∆M53tTA-
MCMV (lane 3, ∆M53), M53R (lanes 6 and 7), s309R (lanes 8 and 9), i313R (lanes 10 and 11), i321R 
(lanes 12 and 13) and i207R (lanes 14 and 15) at an MOI of 2 both in the absence (--; lanes 1, 2, 3, 6, 
8, 10, 12 and 14) and in the presence (+; lanes 7, 9, 11, 13 and 15) of doxycycline (dox). M53 
transcomplementing cells (M53tTA) were infected with the wt MCMV (lane 4, wt) and ∆M53tTA MCMV 
(lane 5) at an MOI of 2. Purified wt MCMV BAC DNA (lane 16, BAC) was used as a hybridization 
control. Forty-eight hours after infection, the nuclear DNA was extracted and digested with SphI. Then, 
the DNA fragments were separated by agarose gel electrophoresis and analyzed by Southern blotting 
using a digoxigenin-tagged probe, depicted in fig. 24. The detected fragments are indicated on the 
right side of the blot according to the labeling specified for fig. 24 (3 kbp – genome load; 2 kbp – 
concatemers; 1 kbp – unit length genome).  
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In herpesviruses, the unit length genomes are released from concatameric 

replication intermediates and transferred into pro-capsids during nucleocapsid 

maturation process. To test the effect of DN M53 mutants on this process, NIH3T3 

cells were infected with wt MCMV and inhibitory mutants in the absence and 

presence of dox. After 48 h post infection the total DNA was extracted from the 

infected cells, cut with SphI endonuclease and probed for the MCMV genomic forms 

(see Figure 25). SphI cleavage of the linear genome generated an approximately 1 

kbp terminal fragment representing the nucleotide positions (nt) 1-1298 according to 

the reference sequence (GenBank NC_004065) and a 3 kbp subterminal fragment 

(1299-4521 nt). A probe hybridizing with both fragments can detect the extent of DNA 

cleavage (see Figure 24) because in the concatemeric form of viral genomes the 

1298 bp fragment  is fused to another 894 bp terminal fragment (229385-230238 nt) 

and detected as a 2 kbp fragment. During genome packaging the intensity of the 

concatemers fragment (2 kbp) decreases and the intensity of the unit length genome 

fragment (1 kbp) increases while the 3 kbp fragment remains constant and can 

therefore serve as a measure for the genome load. 

The circular wt MCMV BAC mimics the concatemeric viral DNA form and 

shows only the 2 kbp and the 3 kbp fragments (lane 16) whereas the genomic DNA 

derived from the wt MCMV infected cells contains also the 1kb end fragment (lanes 2 

and 4). The wt pattern was noticed by using wt MCMV (lane 2) and M53R in the 

absence or presence of dox (lanes 6 and 7). s309R (lane 9), i313R (lane 11) and 

i321R (lane 13) infection revealed an accumulation of the 2 kbp fragment in the 

presence of dox and a reduction of the 1 kbp fragment derived from the unit length 

genomes compared to the absence of dox (lanes 8, 10 and 12, respectively). 

Notably, the infection with i207R resulted in an almost wt-like pattern (lanes 14 and 
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15). These data show that DNs generated by 5 aa insertion into domain CR4, but not 

into CR2, are associated with a DNA cleavage/packaging defect.  

The ∆M53tTA MCMV mutant which lacks the M53 ORF and has to be 

replicated in a complementing cell line (lanes 3 and 5) showed no effect on 

cleavage/packaging process. The 1 kbp fragment of this mutant was detected with 

similar signal strength as during wt MCMV infection of the same types of cells (lanes 

2 and 4). Because the null phenotype induced by M53 deletion (Loetzerich et. al., 

2006) did not predict a cleavage/packaging defect we speculated that CR4 mutants 

inhibit indirectly the capsid maturation by a block or arrest of the dynamics of the 

cleavage/packaging process.  

 

5.10 s309R effects on cleavage/packaging are independent of NEC formation 

The s309 effect on DNA cleavage/packaging suggested that the M53 protein has 

multiple functions. In the next step, it was checked whether the DN effect on 

cleavage/packaging is associated with NEC formation.  

Therefore, a mutant which might maintain the inhibitory feature of s309 but 

lacks the ability to bind M50 was constructed. Loetzerich et. al. (2006) published that 

5 aa insertion at position 128 of M53 ORF destroys the capacity to bind to M50. The 

i128 insertion mutant was sub-cloned into the s309ORF (s309i128, see Figure 26 A) 

and the recombinant s309i128R BAC (MCMV BAC carrying the SV40 regulation 

cassette of the s309i128 mutant at the m16-m17 FRT ectopic position) was 

generated. Because the s309i128 mutant kept the inhibitory feature of the parental 

s309, the recombinant virus was analyzed under conditional expression conditions 

(see Figure 26 B).  

Dox mediated expression of s309i128 protein down regulated the virus growth 

more than one thousand fold. This partial down-regulation allows at least 2 possible 
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explanations: i) loss of the additional effect on the NEC and ii) expression or folding 

problems of the s309i128 mutant.  
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Figure 26. A. Schematic representation of the s309i128. Depicted are the domains of M53 mutants 
ORFs. The N-terminal site (ab) recognized by the M53-specific serum (Sak), the variable region (VR), 
the C-terminal four conserved regions (CR1 to CR4) and 5 aa insertion at position 128 (black 
arrowhead) are indicated. The s309i128 mutant expression was controlled by an SV40 enhancer 
driven HCMV promoter (SVT circle). B. Effects of the s309i128 inhibitory mutants on the production of 
viral progeny. M2-10B4 cells were infected for 5 days at an MOI of 0.1 in either the absence (white 
bars) or the presence (black bars) of 1 µg/ml dox. Cell supernatants were collected and the released 
infectious units (PFU, particle per infectious unit) were determined by titration on MEFs. The bar 
diagram shows the regulation of virus growth in response to dox administration 3 days and 5 days 
after infection with the s309i128 recombinant virus (s309i128R). The titer reduction is shown as a 
difference between the titer in the absence of dox and the titer in the presence of dox. Only titer 
reductions of >10-fold were considered significant. Each mutant was analyzed in duplicate in at least 
two independent experiments. Dpi, day post infection. C. The DN s309i128 lacks the M50 binding 
capacity. 293 cells were transfected with the empty vector pori6-ie (po6k; lane 1) and co-transfected 
with plasmids expressing HA-tagged M50 (lanes 2 to 5) and the indicated M53 derivatives: wild type 
M53 (lane 2), s309 (lane 3), i128 (lane 4) and s309i128 (lane 5). Transfected cells were lysed in total 
lysis buffer (TLB), and one-third of these lysates were loaded (upper three blots, indicated by TLB) 
and Western blotted with rabbit anti-M50 antiserum (αM50), rat anti-M53 antiserum (αM53), and rabbit 
anti-actin antiserum (αACT), respectively. The remaining 70% of the lysates were processed by an HA 
pulldown. The eluates from the HA columns were split 1:9 and served for Western blot with rabbit anti-
M50 antiserum and rat anti-M53 antiserum, respectively (lower two blots, indicated by HA PD). The 
expected molecular mass of the M50 protein is 35 kDa; the wt M53 and the mutant i128 protein 
migrate at about 38 kDa and s309 together with s309i128 at about 34 to 35 kDa. 

 

Next, protein expression and M50 binding properties of this mutant were 

tested (see Figure 26 C) in 293 cells co-transfected with plasmids carrying either 

M50HA ORF (lanes 2 - 5) or one of the next M53 ORFs: wt (lane 2), s309 (lane 3), 
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i128 (lane 4) and s309i128 (lane 5). The empty po6k-ie vector carrier served as 

negative control (lane 1). After 24 h post-transfection cells were lysed and an HA 

pulldown was performed using the same procedure as described in chapter 5.5. 

Protein expression in total lysates (see Figure 26 C) and total protein load were 

tested by the cellular actin level. The constructs were properly expressed and 

s309i128 as well as s309 shifted to 34-35 kDa.  After HA pulldown, the M50 bound 

M53 and s309 proteins were detected whereas i128 and s309i128 were not co-

precipitated. Thus, the 5 aa insertion at position 128 of the s309 ORF resulted in the 

expected loss of M50 binding capacity.  

Further, we checked the intracellular distribution of the s309i128 protein. 

Therefore, NIH3T3 cells were infected at an MOI of 0.5 with s309i128R. Infection in 

the absence of dox resulted in a wt-like pattern distribution of M50 and M53 at the 

nuclear rim (see Figure 27 A to C). With respect to the leakiness of SV40 cassette, 

the detection levels of s309i128 protein expression were found to be lower than in 

case of s309 (see Figure 21). In the presence of dox, s309i128 could be detected by 

a strong accumulation inside of nucleus while the native M53 kept the nuclear rim 

localization. The fraction of relocalized native M53 – if any - could not be 

distinguished from the s309i128 signal due to detection by the anti-M53 antibody. 

The redistribution effects on M50 were weak or absent (see Figure 27 D to F). 

Nevertheless, s309i128 which lacks domain CR4 still blocks the virus growth, proving 

this effect as independent from NEC formation. The s309i128 effect was not an 

isolate pattern of few cells but the general phenotype as may be noticed in the Figure 

27 (G to N). Therefore, the cells were counted after DNA staining with iodide (Topo-

PRO-3, Invitrogen) and the dominant negative phenotype of s309i128R was 

evaluated for M53 and M50 redistribution. Considering that the infection was carried 

out at an MOI of 0.2 for 24 h and comparing the observed data with the expected 
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values (20 infected cells out of 100) s309i128 infection follows the wt-like pattern in 

the absence of dox (see Figure 28 G to J). Dox expression of s309i128 expression 

reliable reproduced the inhibitory phenotype (see Figure 27 K to N).  
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Figure 27. Subcellular distribution of the wt NEC proteins upon expression of DN s309i128. NIH 3T3 
cells were infected at an MOI of 0.5 (A to F) and 0.2 (G to N) with s309i128R (A to N) in the absence 
(A to C and G to J) and in the presence (D to F and K to N) of 1 µg/ml dox. Twenty-four hours after 
infection, the localization of the M53, M50 and s309i128 proteins was analyzed by confocal 
immunofluorescence microscopy using specific primary antibodies, followed by Alexa fluorochrome-
coupled secondary antibodies (Alexa 488, M53; Alexa 633, M50). The scale bars indicate 5 µm (A to 
F) or 20 µm (G to N).  
 

Next, it was tested whether DN effect of s309i128 was also reflected at the 

DNA cleavage/packaging level (see Figure 28). NIH3T3 cells were infected at an 

MOI of 2 with recombinants overexpressing the FlagM53 (lanes 4 and 5), 

Flag∆Sak309 (lanes 6 and 7) and s309i128 (lanes 8 and 9) in the absence (lanes 3, 

4, 6 and 8) and in the presence (lanes 1, 2, 5, 7 and 9) of dox. Uninfected cells (lane 

1) and the wt MCMV BAC transfection (lane 3) served as negative control for DNA 

cleavage/packaging. The wt infection served as positive control (lane 2). After 48 h 
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post infection, the total DNA was extracted from the infected cells, cut with SphI 

endonuclease and probed for the MCMV genomic forms (see Figure 28). Comparing 

the effect of Flag-tagged viruses (see Figure 28) to the initial recombinants (see 

Figure 25) it can be concluded that Flag-tag did not affect the s309 inhibitory capacity 

at the DNA cleavage/packaging level. When we compare the effect of s309i128 

mutant with the DN Flag∆Sak309 it was noticed that upon dox induction both 

mutants inhibited the cleavage reaction, indicating that this effect of M53 is 

independent of NEC formation.  
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Figure 28. Southern blot analysis of a genome cleavage/packaging reaction upon induction of DN 
s309i128 mutant. NIH 3T3 cells were mock infected (lane 1) or infected with wt MCMV (lane 2, wt), 
FlagM53R (lanes 4 and 5), Flag∆Sak309R (lanes 6 and 7) and s309i128R (lanes 8 and 9) at an MOI 
of 2 both in the absence (--; lanes 4, 6 and 8) and in the presence (+; lanes 1, 2, 5, 7 and 9) of 
doxycycline (dox). Purified wt MCMV BAC DNA (lane 3, BAC) was used as a hybridization control. 
Forty-eight hours after infection, the nuclear DNA was extracted and digested with SphI. Then, the 
DNA fragments were separated by agarose gel electrophoresis and analyzed by Southern blotting 
using a digoxigenin-tagged probe, depicted in fig. 24. The detected fragments are indicated on the 
right side of the blot according to the labeling specified for fig. 24 (3 kbp – genome load; 2 kbp – 
concatemers; 1 kbp – unit length genome).  
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6. Discussion 

 

6.1 The MCMV M53 C-terminal region harbors at least two functional domains 

The events leading to and regulating the nuclear egress of herpesviruses are not well 

understood. This process requires a complex interaction between the viral and 

cellular proteins. The herpesvirus nucleocapsids must acquire access to the 

cytoplasm in order to complete the maturation process. The nuclear envelope blocks 

this passage because the capsids are too big to pass intact the nuclear pores (for a 

review see Mettenleiter, 2002/2004/2006).    

The work of many groups led to the conclusion that two viral proteins, which 

belong to the conserved UL31 and UL34 families, represent the major players of the 

nuclear egress of herpesvirus capsids. The UL34 family members (M50 in MCMV) 

are type II transmembrane proteins expressed with early-late kinetics. They are 

inserted in the endoplasmic reticulum (ER) and found distributed in both nuclear 

membranes (Yamauchi et. al., 2001). After interacting with UL31 family members 

(M53 in MCMV) the UL34 protein is relocated from the ER to the inner nuclear 

membrane (INM) (Liang and Baines, 2005; Yamauchi et. al., 2001) and perhaps 

induces a dissociation of the inner and the outer nuclear leaflets (Ye et. al., 2000). 

M53, similar to other members of UL31 family, is a nucleosolic phosphoprotein 

(Lötzerich, unpublished data; Chang and Roizman, 1993) translocated to the nucleus 

by its nuclear localization signal (NLS) (Lötzerich et. al., 2006; Zhu et. al., 1999; 

Chang and Roizman, 1993). There is a strict interdependence between these two 

gene products with regard to the localization and stability because in the absence of 

the UL34 protein the mRNA of the UL31 accumulates and the mature protein is 

degraded by the proteosomes (Ye and Roizman, 2000). A destabilization of UL34 in 

the absence of its partner has also been reported (Gonella et. al., 2005; Rupp et. al., 
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2005; Bubeck et. al., 2004; Ye and Roizman, 2000). These two proteins interact 

directly at the INM, as shown for viruses from all three herpesvirus subfamilies 

(Santarelli et. al., 2008; Klupp et. al., 2007; Loetzerich et. al., 2006; Schnee et. al., 

2006; Bubeck et. al., 2004, Lake and Hutt-Fletcher, 2004; Fuchs et. al., 2002; 

Muranyi et. al., 2002; Reynolds et. al., 2001). This interaction promotes the nuclear 

expansion and the chromatin reorganization (Simpson-Holley et. al., 2005/2004) as 

well lamina rearrangements (Park and Baines, 2006; Gonella et. al., 2005; Simpson-

Holley et. al., 2005/2004; Lake and Hutt-Fletcher, 2004; Reynolds et. al., 2004; Dal 

Monte et. al., 2002; Muranyi et. al., 2002; Scott and O’Hare, 2001), a prerequisite for 

nucleocapsid budding and nuclear egress.  

The UL31 family members show some conserved structural features: i) they 

carry an NLS in their N-terminal variable region (Loetzerich et. al., 2006; Zhu et. al., 

1999; Chang and Roizman, 1993) and ii) the binding site of the respective UL34 

family member is located at the first conserved region (CR) (Loetzerich et. al., 2006; 

Schnee et. al., 2006). Data using trans-complementing cell lines, cis-

complementation assays, as well in vivo binding studies (protein complementing 

assay - PCA) have shown that the functional cross complementation is possible 

between the family members but only within the same herpesvirus subfamily 

(Santarelli et. al., 2008; Schnee et. al., 2006).  

Because the functional analysis of proteins involved in viral morphogenesis 

requires the context of virus replication, we decided to isolate and study the dominant 

negative mutants (DNs) of M53, which should provide conditional loss of function 

phenotypes for better understanding of nuclear egress of MCMV.  

 Recently, our group has published a comprehensive insertion mutagenesis 

library of M53 (Loetzerich et. al., 2006), which provided a map of susceptible sites for 

loss of protein functions. The respective M53 map indicated functional domains 
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harboring in the C terminal conserved regions (CR). Here, we tested this pool of non-

viable mutants (Lötzerich et. al., 2006) for their inhibitory potential. Therefore, all of 

them were tested for interference with virus reconstitution after tranfection in the 

context of a complete wt MCMV genome. Now, the majority of mutants should not 

affect the viral progeny production except for those with inhibitory features. This 

allowed us to distinguish between nonfunctional mutants with expression or folding 

problems and potential dominant negative mutant candidates.  

 

 

Figure 29. Screening for inhibitory mutants of the MCMV M53 gene. The amino acid sequence 
encoded by the M53 gene of MCMV is displayed, including the four conserved regions (CR1 to CR4; 
underlined), and the positions of the different mutations are indicated. Transposon insertions 
(arrowheads) resulting in introduction of 5 aa (depicted above the sequence) or stop codons (depicted 
below the sequence) are indicated along the ORF. Mutants preventing virus reconstitution after 
insertion into the wt MCMV BAC are labeled by black symbols, and mutants which did not interfere 
with virus reconstitution are depicted by white symbols. The intermediate phenotype is indicated by 
gray symbols.  
 

 

Strikingly, the inhibitory mutants were accumulated only in the second and the 

fourth conserved region (CR2 and CR4; see Table 10 and Figure 29). The plaque 

phenotypes of the proteins mutated in these two conserved regions were different. 
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The CR2 mutants have shown a severely delayed reconstitution (between 4 and 6 

weeks) associated with mini-plaque formation and lack of spread. This indicated that 

the release of infectious particles after the virus reconstitution takes place with 

extremely low efficiency, similar to the pattern observed after deletion of the alpha 

herpesvirus homologues of M53 (Klopfleisch et. al., 2006; Fuchs et. al., 2002). In 

contrast, if CR4 null-mutants were inserted into the wt MCMV-BAC no recombinant 

viruses could be reconstituted. Already these differences suggested that the M53 

protein has at least 2 different C terminal functions. CR2 could is contributing to the 

primary envelopment of nucleocapsids at the INM, a function described for the entire 

UL31 family. However the second domain - CR4 - essential for other M53 function(s) 

might vary from that of other subfamilies. This would explain why the null phenotypes 

observed by deletion of UL31 members from beta herpesviruses are lethal, whereas 

the deletion of the homologues of alpha herpesviruses is not. The existence of a 

functional domain at the very C-terminus of M53 is also supported by the distribution 

of the inhibitory mutants: all mutants of this region including the C-terminal ones 

seemed to be strongly inhibitory but there is no inhibition observed by mutation of the 

N terminal spacer of CR4. 

Taking into account that the overexpression of a viral protein might be toxic, 

as it is described for MCMV M50 (Muranyi et. al., 2002), it was necessary to study 

the inhibitory phenotype under the conditions which do not affect the viral gene 

expression in general. Therefore the specificity of the inhibitory mutants was tested 

by a tet-based conditional expression system, which is functional in the MCMV 

context (Rupp et. al., 2007/2005). Moreover, conditional expression of genes is 

superior to the use of loss-of-function mutants in order to study essential functions. 

The advantages are represented by the possibility to study the “off” and “on” 

situations with the same virus stock preparation, providing a controlled intracellular 
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environment, and there is no need to construct revertants to prove that the induced 

phenotype is strictly related to the gene of interest. Based on the expression kinetics 

(Loetzerich et. al., 2006) M53 is a true late gene, a condition when the number of 

viral genomes and transcripts is very high. Thus, the system requires a large mutant 

protein amount but also a strict regulation of the cassette because the control of DN 

protein expression has to be tight enough. We had to consider that a basal 

expression but not in a lethal amount of the DN would be selected for the mutated 

escape genomes with a non functional DN, as already observed (Rupp et. al., 2007). 

On the other hand abundant expression was necessary to observe inhibitory 

features. Altogether, the regulation of the M53 gene at the ectopic position of wt 

MCMV BAC should affect virus replication at a defined step, but should not affect the 

viral gene expression cascade in general. 

Therefore, we have chosen a combination of a SV40 early-enhancer and 

HCMV immediately-early promoter, allowing the abundant expression of the gene of 

interest, inserted into the tet conditional cassette but tightly regulated in the presence 

of doxycycline (dox).  

Confirmation of 4 mutants as dominant negatives (s309 stop mutant; i207, 

i313 and i321 insertion mutants) gave us tools suitable to define the functions 

associated with CR4 of M53 protein.  

 

6.2 M53 CR4 functional domain and MCMV nucleocapsids egress defect 

Alpha and gamma herpesviruses express the M53 homologues during the late phase 

of productive infection with a size range from 28 to 34 kDa (28 kDa/EBV – Lake and 

Hutt-Fletcher et. al., 2004; 29 kDa/PrV – Fuchs et. al., 2002; 33 kDa/KSHV size - 

Santarelli et. al., 2008; 34 kDa/HSV1 – Reynolds et. al., 2001). In some alpha 

herpesviruses the M53 homologue is expressed by early-late kinetics (ILTV, 
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northern-blot analysis, Helferich et. al., 2007). MCMV M53 (Loetzerich et. al., 2006) 

and its HCMV homologue pUL53 (Dal Monte et. al., 2002) are true late proteins with 

a size range from 38 kDa/MCMV to 42 kDa/HCMV. 

At that moment, it was at interest to know if the deletion of CR4 affects MCMV 

M53 expression. HA pull-down experiments of DN s309 mutant after co-transfection 

with HA tagged M50 indicated no effect of CR4 defects on M50 binding. The non 

tagged protein could be detected at 34-35 kDa and at 32-33 kDa for the M53 

antibody epitope deleted version of Flag309. Infection in the presence or the absence 

of the phosphonoacetic acid, a replication inhibitor, revealed a true late expression of 

the wt allele and an early-late one of the Flag-tagged mutant under the control of the 

SV40 early-enhancer driven expression cassette. Expression of the M53 mutants in 

the non-induced state was limited, offering us a good opportunity to study a tight 

phenotype control. One condition of dominant negative principles is to control the 

mutant expression without affecting the viral transcriptional program as a 

consequence of toxicity generally. We chose the immediately-early 1 gene product 

pp89 (89 kDa) and major capsid protein (150 kDa) as markers of the immediate-early 

and late gene expression programs, respectively. Dox induced expression of DN 

s309 did not affect the viral transcriptional program but selectively destabilized the 

M53 and lowered the degree of NEC partner M50. These data fit to the known 

expression interdependence of the two proteins (Gonella et. al., 2005; Bubeck et. al., 

2004; Ye and Roizman, 2000). Nevertheless, the cassette was not very tightly 

regulated as there was already a basal s309 expression in the absence of Dox, 

which already affected the wt M53 distribution.   

The recombinants carrying the FlagM53 and a M53 antibody epitope deleted 

version of the Flag309 (Flag∆Sak309), allowed differentiation between the parental 

and the Flag-tagged protein. Dox induced Flag∆Sak309 strongly inhibited the wt 
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allele. These results indicated that this mutant was suitable for further analysis of the 

inhibitory phenotype of CR4 mutants. Colocalization studies detected - during basal 

expression of the Flag∆Sak309 - a wt distribution pattern with M53 and M50 

colocalization at the nuclear rim, which is reflecting the results of the co-transfection 

experiments (Klupp et. al., 2007; Loetzerich et. al., 2006; Gonella et. al., 2005; Lake 

and Hutt-Fletcher, 2004; Reynolds et. al., 2004/2001; Yamauchi et. al., 2001). M53 

showed a tiny dotty staining along the nuclear membrane and inside of the nucleus, a 

pattern seen in different herpesviruses: KSHV (Santarelli et. al., 2008), PrV (Klupp et. 

al., 2007; MCMV (Loetzerich et. al., 2006), HCMV (Dal Monte et. al., 2002), HSV2 

(Zhu et. al., 1999), and HSV1 (Chang and Roizman, 1993). Reynolds and the 

collaborators suggested that the HSV1 M53 homologue binding to the lamins A/C 

induces a discontinuous punctuate artificial staining due to epitope masking. This 

suggestion sustains the immunoelectron microscopy data of the HCMV pUL53 which 

induces INM pseudoinclusions (Dal Monte et. al., 2002). The basal expression of 

s309 was either not enough to affect the wt NEC members nuclear localization or we 

could not detect the difference due to the limitations of the system. 

In contrast, dox induction of the Flag∆Sak309 mutant completely changed the 

protein distribution by relocalization of the wt M53 molecules bulk into the nucleosol 

and M50 redistribution into aggregates along the nuclear rim. Flag∆Sak309 protein 

colocalized with M50 in punctuates accumulations and filled the nuclear space with 

aggregates which accumulated over time. The DN M53 pattern recalls the alpha 

herpesviruses US3 kinase deletion phenotype with aberrant punctuate localization of 

wt NEC members (Park and Baines, 2006; Reynolds et. al., 2002/2001) and 

transfection of the HSV2 M53 homologue leading to nuclear aggregates which grow 

and finally fuse (Zhu et. al., 1999). These data suggest that M53 accumulates over 
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the time in the nucleosol if it cannot bind to M50. The excess of the CR4 deletion 

mutant protein, once M50 binding is saturated, has the same fate.  

 

6.3 M53 CR4 mutants induce defects in capsid maturation 

The experiments so far revealed a block in virus replication cycle at the intranuclear 

stage. We wished to see morphological correlates of the dominant negative 

phenotype by electron-microscopy (EM) studies, performed by a group of 

collaborators from the University of Ulm. After 72 h infection with viral recombinant 

overexpressing the DN s309 showed in the presence of dox a switch of majority of 

the nucleocapsids from the high density core type (M53R, wt-like infection) to the 

aberrant forms (s309R), with a weak presence of the mature capsids. The s309R 

nucleocapsids had accumulated in the nucleosol and were not able to initiate the 

primary envelopment at the nuclear rim (see Figure 24). Presence of s309 also 

induces nuclear membranes infoldings (see Figure 24), as noticed for the MCMV DN 

M50 phenotype (Rupp et. al., 2007), which are similar to the effect of M50 

overexpression (Ye et. al., 2000). This similarity could be explained by s309 capacity 

to displace M53 from the correct interaction with wt M50. This M53 is redistributed 

into the nucleosol. 

The DN M53 phenotype is reminiscent to the EM pattern of M53 homologues 

deletion which resulted in accumulation of immature capsids in the nuclear space 

(Granato et. al., 2008; Klupp et. al., 2001/2000; Chang et. al., 1997) and blocking of 

the nuclear egress (Fuchs et. al., 2002). The association between M53 deletion and 

nucleocapsid maturation defect was either associated with deficient DNA 

encapsidation (Chang et. al., 1997) or not (Granato et. al., 2008).  

In order to elucidate the nucleocapsid maturation defect of MCMV M53 

inhibitory mutants we designed a Southern-blot assay able to distinguish between the 
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viral DNA genomic forms, concatemers and unit length genomes. As control we used 

M53 trans-complementing cell lines which rescue the deletion mutant. The 

phenotype of the gene deletion mutant showed no effect on cleavage of 

concatemeric genomes to the unit length genomes. Reduction of the numbers of unit 

length genomes fit to the alpha herpesvirus HSV1 UL31 phenotype (Chang et. al., 

1997) and the lack of effect on DNA cleavage fit to the gamma herpesvirus EBV 

BFLF2 pattern (Granato et. al., 2008). The data suggest a possible divergent 

functional evolution, perhaps a root for the alpha and gamma M53 homologues due 

to the combination of both features. 

Dox induction of CR2 i207 mutants did not affect the viral DNA processing. In 

contrast to that, the expression of all CR4 mutants inhibited viral DNA cleavage and 

showed concatemers accumulation at the expense of the unit length genomes.  

These results are in accord with the other data (growth curves and IF analysis) and 

southern-blot assay suggest an association of CR4, but not of CR2, with the 

cleavage/packaging process.   

The formation of mature capsids containing the linear double-stranded DNA 

genome is a complex process involving a preassembled protein shell (procapsid), 

concatemeric viral DNA, and at least seven other viral proteins believed to play a role 

in cleavage and packaging of the genome (Mettenleiter 2006/2004/2002; Homa and 

Brown, 1997).  

The HCMV terminase responsible for cleavage of concatemeric DNA was 

shown to consist of two essential proteins, pUL56 and pUL89 (Thoma et. al., 2006; 

Scheffczik et. al., 2002). UL56 connects the viral capsids to the packaging signal of 

the DNA genome and has an ATP-ase activity. UL89 directly interacts with UL56 and 

is required for DNA cleavage (Hwang and Bogner, 2002; Scheffczik et. al., 2002; 

Salmon et. al., 1999/1998; Bogner et. al., 1998/1993). The portal (pUL104) is 
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involved in viral genome translocation into the capsid (Dittmer et. al., 2005). 

Successful packaging of viral DNA results in sealed DNA-filled C capsids, whereas 

the A capsids, containing neither DNA nor the inner layer of the capsid shell, are the 

results of an abortive DNA packaging.  

Another four additional viral factors play a role in cleavage/packaging of the 

virus genome and subsequent steps of maturation, such as nuclear egress of the 

DNA-filled capsids. These are the HCMV proteins UL51, UL52, UL77 and UL93, 

which are homologous to the herpes simplex virus type 1 (HSV-1) proteins UL33, 

UL32, UL25 and UL17, respectively. The knowledge about these proteins is limited. 

HSV-1 UL33, which stabilizes the terminase and its anchorage to the capsid (Beard, 

Taus and Baines, 2002) is involved in viral DNA translocation into the capsid (Yang, 

Homa and Baines, 2007; Beard and Baines, 2004). The absence of UL17 blocks the 

DNA concatemers cleavage and then the DNA is not packaged (Thurlow et. al., 

2005). Deletion of UL25 is less prohibitive (Stow, 2001). However, packaging takes 

place but this DNA does not seams to be stably encapsidated, having as result only 

few C-capsids present in the nuclei of the infected cells (McNab et. al., 1998). 

Opposite to that, the UL25-null mutant of PrV shows C-capsid formation but these 

capsids do not undergo nuclear export (Klupp et. al., 2006). UL25 forms a complex 

with UL17 which stabilizes the capsid during and after the DNA packaging process 

(Trus et. al., 2007; Newcomb, Homa and Brown, 2006; Thurlow et. al., 2006). Failure 

of DNA cleavage and the absence of mature C capsids after infection with an UL52 

deletion HCMV recombinant suggested that also UL52 plays a role in encapsidation 

and/or DNA cleavage. The colocalization of UL52 with ICP8, a replication 

compartment marker, at the nuclear periphery suggested a role in capsid transport to 

replication compartments (Borst et. al., 2008). More, disturbing one of the complexes 

involved in capsid stabilization or transport result in formation of DNA-lacking capsids 
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composed of two concentric shells, which are believed to be default products of 

defective maturation, described as B-type capsids (Newcomb et. al., 1996). 

The DN phenotype induced by CR4 mutants of the MCMV M53 protein 

resembles to the above described patterns. In A-type capsids, the lack of the 

scaffolding ring indicates a failure of capsid sealing after packaging the unit length 

genome. Abundant presence of B-type capsids is suggestive for a problem of 

encapsidation. The presence of the inner layer of the capsid shell, in absence of 

DNA, may indicate a failure of the packaging machinery or instability of the capsid. 

When we correlate the morphological features with the southern-blot results we can 

perhaps interpret the CR4 of MCMV M53 as a provider of a sealing/maturation signal 

for nucleocapsid transport from the replication compartments to the primary 

envelopment sites.  

It should be recalled that the s309 mutant is expressed with an early-late 

kinetics under the control of the SV40 early-enhancer, which provides a situation 

where the mutant has a chance to meet other potential interaction partners even prior 

to the NEC formation. Certainly, one has to take in account that CMV has a long 

replication cycle and the definition of the early-late phase is mainly a quantitative 

term. Altogether, M53 protein deletion and DN s309 expression show different 

phenotypes because the deletion of wt allele allows formation of a functional nuclear 

egress up-stream complex missing a component, whereas the latter binds molecules 

of a subsequent maturation step but blocks the flow by lack of an essential domain.  
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6.4 The effect of the DN CR4 mutation on nucleocapsid maturation is 

independent of NEC formation 

As discussed above, there is a number of proteins which are apparently involved in 

nucleocapsid stabilization, sealing or/and maturating. UL17 has an influence on the 

capsid angular shape and signals maturation upon complex formation with UL25 

(HSV1; Trus et. al., 2007; Bowman et. al., 2006; Newcomb, Homa and Brown, 2006). 

Yet, UL25 is also essential for the nuclear egress (PRV; Klupp et. al., 2006). There is 

the possibility that the UL25 function is divergent for different viruses (Kuhn et. al., 

2008). pUL52 has an effect on the HCMV genome encapsidation without being a 

component of the cleavage/packaging machinery (Borst et. al., 2008), which supports 

the observation of HSV1 UL32 homologue being involved in capsid transport to the 

replication compartments (Lamberti and Weller, 1998).  

The DN M53 CR4 mutant combines features of proteins involved in 

sealing/maturation and nuclear egress. An interesting aspect of this phenotype is that 

a single mutation causes a defect in two intranuclear morphogenesis steps. In order 

to dissect the connection between these two steps, a double knock-out recombinant 

was created - s309i128R. In 2006 our group published the nucleosolic accumulation 

of the i128 mutant after co-transfection with M50. The new M53 mutant lacks the 

CR4 and also the M50 binding site due to a 5 aa insertion at position 128.  

Conditional expression of this mutant showed down-regulation of virus growth 

by more than 1000 fold but clearly less than DN s309. Given the protein stabilizing 

effect on the M53-M50 interaction, stability problems of the mutant protein could 

occur in absence of M50 binding capacity. The HA pulldown experiment performed 

after co-transfecting the s309i128 with a HA tagged M50 construct revealed a 34-35 

kDa protein, which did not bind to M50 as expected. 
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Immunofluorescence studies of the s309i128R identified an intranuclear 

localization pattern of the NEC members different from the DN s309 with no effect on 

the M50 nuclear rim staining but with wt M53 allele redistribution into aggregates 

along the nuclear rim and/or into the nucleosol. Despite these differences between 

the s308i128R and Flag∆Sak309R, in respect of viral genomic forms detection there 

were no differences in concatemers accumulation and reduction of detected unit 

length genomes.  

Thus the DN approach assigns new functional domains which act 

independently in a temporal cascade.  

 

6.5 The MCMV M53 screen and further screens  

This work provided evidence that our approach based on random mutant screens to 

identify viral DN mutants is successful and reproducible. The number of the identified 

DN alleles and the quality of the two screens we performed were superior to our 

previous studies (Rupp et. al. 2007 and present study). One possibility remains that 

our high hit rate for DNs presented in this study was a chance finding and is due to 

specific properties of the tested genes. Therefore the approach needs to be tested by 

the analysis of several essential herpesvirus genes, to illustrate the general 

applicability for all herpesvirus genes and herpesviruses of the three subfamilies, and 

perhaps also for other virus families, too.  

During this work the methodology of the inhibitory screen was optimized and 

the time required for the complete screen could be reduced to about half of the 

previous screen. This improvement makes it feasible to test a collection of MCMV 

genes in the future. We believe that the quality difference between the two screens is 

mainly dependent on the quality of the gene mutant library (Loetzerich et. al. 2006; 

Bubeck et. al. 2004). 
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Our demonstrator model, the murine cytomegalovirus is a beta herpesvirus. 

We could already translate some findings to the human cytomegalovirus (Rupp et. 

al., 2007), also a member of the beta herpesvirus subfamily - an important human 

pathogen. For the herpesvirus field in general is of limited value as the two genomes 

are almost collinear in the essential genes. It would be of interest to translate the 

approach, to test alpha and the gamma herpesvirus genes.  
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7. Conclusions 

 

Completing a genetic screen for inhibitory mutants of the MCMV nuclear egress 

protein M53 two new functional domains were identified. One, comprising the 

conserved region 2 (CR2) plays a role in the nuclear egress and together with the 

CR1 is involved in NEC formation (Loetzerich et. al., 2006). Surprisingly, we 

discovered a second, separate functional domain, formed by CR4. Conditional 

expression of inhibitory CR4 mutants combined with phenotypic analysis at ultra 

structural and molecular level provided the first evidence that M53, besides its 

established role in the nuclear exports of the capsids, is also involved in the DNA 

cleavage/packaging and/or capsid sealing after packaging. 

This data demonstrate that our random approach allows the identification of 

viral DN mutants of an essential herpesvirus gene without any knowledge on its 

protein structure. Thereby, the essential functions of a multifunctional herpesvirus 

protein were successfully dissected by DN mutants, providing new fundamental data 

on essential steps of the herpesvirus morphogenesis. 
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8. Outlook 

 

Flag-tag proved to be a powerful tool in distinguishing between the wt and DN 

phenotypes. As consequence we were able to define the nuclear egress block 

mechanism by competition of the wt allele and DN gene product for NEC formation. 

Abolishing the M50 binding capacity of the DN s309 mutant by 5 aa insertion at the 

position 128 we could explain the accumulation of immature capsids in the nucleus 

by the DN effect on cleavage/packaging and/or sealing of the capsid. This indicates 

that MCMV M53 is part of a complex which connects the nucleocapsid maturation 

with the nuclear egress. 

Then it was of interest to analyze this bridging complex and therefore we 

designed another TAP-tag. The tandem affinity purification (TAP) technique has been 

used to identify – under nondenaturing conditions – the protein complexes in yeast, 

but difficult to apply in mammalian cells. Replacing the two IgG binding units of 

Staphylococcus aureus protein A (ProtA) from the CBP-TEV-ProtA (calmodulin 

binding protein, CBP; TEV, tobacco etch virus cleavage site recognized by the 

specific TEV protease; see Rigaut et. al., 1999) with a minimal biotinylation-tag, the 

resulting Bio-TEV-ProtA allowed sufficient recovery of proteins from the mouse 

fibroblast monolayer in order to identify the complex members by mass spectrometry 

(Drakas, Prisco and Baserga, 2005).  

Next, the biotinylation-tag (MSGLNDIFEAQKIEWHE; Drakas, Prisco and 

Baserga, 2005) was combined with an HA-tag and the necessary biotin holoenzyme 

synthetase (BirA) sequence (BirA_EC-K12 strain, BirA - 966bp; see Schatz, 1993) 

remained to be inserted into the MCMV BACs. The BirA gene catalyzes the covalent 

addition of biotin to the ε amino group of the lysine side (see the K aa from the 

biotinylation-tag sequence). The minimal biotinylation substrate identified by a 
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peptide library screening (13 aa; see Schatz, 1993) is much smaller than the 75 

amino acid required sequence of the natural substrate but it can function at either 

end of a fusion protein. A new Bio-HA tag (20 aa) was inserted at the N-terminus of 

our proteins, wt M53 and DN s309, in order to have the advantage of the high biotin 

binding affinity to the monomeric avidin resin. First the Bio-HA tap-tagged constructs 

were inserted at m16-m17 FRT ectopic position of the wt MCMV BAC and checked 

for reconstitution. Both recombinant proteins, BioHAM53 and BioHA309, kept the 

features of the paternal constructs (wt M53 and s309). The recombinant virus 

expressing the TAP-tagged wt allele (BioHAM53R) reconstituted after 5 dpi and lysed 

the complete MEFs monolayer after 2 weeks. BioHA309R virus was grown defective 

during the whole 6 weeks experiment.  

The use of the new TAP-tagged recombinants described here shall provide 

the basis of a comparative analysis of the wt and DN protein complexes and 

identifies the components missing due to the M53 CR4 deletion.  

The dominant negative mutant of M53 showed an unparalleled strength of 

inhibition. We believe that they will inhibit MCMV replication even if they are 

expressed in trans. This provides a basis to investigate the genetic immunization 

against herpesviruses, using the well established MCMV model. 
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MOI   multiplicity of infection 
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