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SUMMARY 

The organization of the genome in a eukaryotic cell is quite complex and dynamic.  

Chromatin is compacted at various levels inside the cell nucleus and these correlate 

with specific epigenetic modifications like DNA and histone modifications and the 

presence of proteins that recognize these modifications. All these processes can affect 

DNA accessibility and, consequently, the establishment and maintenance of tissue 

specific gene expression patterns. 

During cellular differentiation, lineage specific genes become transcriptionally activated 

and, concomitantly, the remaining of the genome is silenced and stably kept in a 

heterochromatic state. Two major families of factors recognize the typical 

heterochromatic modifications: the MBD family consisting of MBD1, MBD2, MBD3, 

MBD4 and MeCP2; and the HP1 family comprising HP1α, HP1β and HP1γ. 

I investigated initially whether there is potential cross talk between these two families of 

epigenetic factors (MeCP2 and HP1) and how they work in synergy and affect each 

other during differentiation. I found that, in contrast to MeCP2, the level of expression of 

the three HP1s remained constant during myogenic differentiation, though HP1γ 

relocalized to heterochromatin. The latter was correlated with the presence of MeCP2. 

In agreement with this, I could show that MeCP2 directly interacted via its N terminal 

domain with the chromoshadow domain of HP1.  

Our group has recently shown that MeCP2 level increased dramatically during 

differentiation, and that MeCP2, via its methyl-cytosine binding domain, induced 

heterochromatin clustering in vivo. Hence, I next tested the role of MeCP2 in large-scale 

heterochromatin organization by analyzing whether this MeCP2 function is disrupted in 

disease. In 1999, MECP2 gene was found to be mutated in a neurological disease 

called Rett syndrome. Little is known about how MeCP2 causes Rett syndrome. Most 

studies so far have focused on finding MeCP2 target genes. I have concentrated my 

efforts on testing whether MeCP2 Rett mutations have an effect on its ability to bind and 

reorganize chromatin. I found that several methyl-cytosine binding domain mutations 

significantly disrupted MeCP2’s ability either to bind or to cluster heterochromatin. 

These mutations segregated onto two distinct surfaces of the methyl-cytosine binding 

domain. These data assigns now novel functions to this domain, which is the most 

frequently mutated in Rett patients. 
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From this work, I conclude that MeCP2 plays an important function in regulating 

chromatin organization, and that disrupting this ability of MeCP2 may lead to disease
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ZUSAMMENFASSUNG 

Die Organisation des Genoms in einer eukaryotischen Zelle ist komplex und dynamisch. 

Chromatin wird auf mehreren Ebenen im Inneren des Zellkerns kondensiert, und diese 

Ebenen korrelieren mit den spezifischen epigenetischen Modifikationen wie DNA- und 

Histonmodifikationen sowie mit dem Vorhandenseins der Proteine, die diese 

Modifikationen erkennen. All diese Prozesse können die Verfügbarkeit der DNA und 

infolgedessen die Etablierung und Erhaltung gewebsspezifischer 

Genexpressionsmuster beeinflussen. 

Während der Zelldifferenzierung werden linienspezifische Gene durch Transkription 

aktiviert. Gleichzeitig wird das restliche Genom vorübergehend inaktiviert und stabil in 

einem heterochromatischen Stadium gehalten. Die Faktoren, die typische 

Heterochromatin-Modifikationen erkennen, werden in zwei Familien eingeteilt: Die 

MBD-Familie besteht aus MBD1, MBD2, MBD3, MBD4 und MeCP2; die HP1-Familie 

beinhaltet HP1α, HP1β und HP1γ. 

Anfänglich habe ich untersucht, ob es zwischen den zwei Familien epigenetischer 

Faktoren (MeCP2 und HP1) möglicherweise zu Interdependenzen kommt, wie sie 

zusammenwirken und sich während der Differenzierung gegenseitig beeinflussen. Wir 

fanden heraus, dass im Gegensatz zu MeCP2 die Expression der drei HP1s während 

der myogenen Differenzierung konstant blieb. Allerdings konnten wir eine Umverteilung 

von HP1γ zum Heterochromatin beobachten, die mit dem Vorhandensein von MeCP2 

korreliert. Damit übereinstimmend konnten wir zeigen, dass MeCP2 über seine 

terminale N-Domäne direkt mit der Chromoshadow-Domäne von HP1 interagiert. 

Unsere Arbeitsgruppe hat vor kurzem gezeigt, dass der MeCP2-Spiegel während der 

Differenzierung dramatisch ansteigt und MeCP2 über seine Methyl-Cytosin-bindende 

Domäne in vivo die Heterochromatin-Clusterbildung induziert. Demzufolge habe ich als 

nächstes die Rolle von MeCP2 in der übergeordneten Heterochromatin-Organisation 

untersucht und getestet, ob diese Funktion von MeCP2 bei einer Krankheit gestört ist. 

Seit 1999 ist bekannt, dass das MeCP2-Gen beim  Rett-Syndrom, einer neurologischen 

Erkrankung, mutiert ist. Es ist wenig darüber bekannt, wie MeCP2 das Rett-Syndrom 

auslöst. Die meisten Untersuchungen haben sich darauf konzentriert, MeCP2-Zielgene 

zu finden. Wir wollten herausfinden, ob Rett-MeCP2-Mutationen sich auf die Fähigkeit 

zur Bindung und Reorganisation von Chromatin auswirken. Es zeigte sich, dass 

mehrere Mutationen der Methyl-Cytosin-bindenden Domäne die Fähigkeit von MeCP2
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zur Bindung oder Clusterbildung von Heterochromatin stören. Diese Mutationen zeigten 

sich auf zwei genau umschriebenen Oberflächen der Methyl-Cytosin-bindenden 

Domäne. Die gewonnenen Daten weisen dieser Domäne, die bei Rett-Patienten am 

häufigsten mutiert, neue Funktionen zu. Wir schließen daraus, dass MeCP2 eine 

wichtige Rolle bei der Regulation der Chromatinorganisation spielt, und dass die 

Störung dieser Funktion von MeCP2 zu einer Erkrankung führen kann. 
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1. INTRODUCTION 

The expression and stability of the genome within the eukaryotic nucleus is controlled 

by chromatin organization. Misregulation of chromatin structure can lead to incorrect 

gene activation or improper gene silencing. In the past years, a lot of effort has 

concentrated in the identification of factors that contribute to the organization of 

chromatin within the cell nucleus. These studies have provided insight into many 

aspects of chromatin organization, but it is still unclear how epigenetic modifications 

determine chromatin higher-order organization. In this dissertation, I will describe my 

work addressing the question of how chromatin organization is controlled by epigenetic 

factors and how this organization plays a role during the process of cellular 

differentiation during development and disease etiology. More specifically, I have 

focused on the role of MeCP2, an epigenetic factor in chromatin organization. 

 

In the first section of this introductory chapter, I provide a brief summary of what is 

currently known about chromatin organization. In the second section I briefly describe 

what are the epigenetic modifications of chromatin. In the third section I introduce the 

molecules that read this epigenetic information. In section four, I describe the role 

MeCP2 plays during differentiation. Finally I give an overview of the involvement of 

MeCP2 in causing a neurological disease called Rett syndrome. 

 

1.1. Chromatin organization and assembly 

In the nucleus of eukaryotic cells, DNA is compacted, folded and organized within 

chromatin. The term “chromatin” (from the Greek word color), was first used to describe 

nuclear structures, which were observed by staining cells with aniline dyes (Flemming, 

1882). Chromatin was subdivided further into “heterochromatin” and “euchromatin”. The 

term heterochromatin was used to describe chromosome portions which remained in a 

mitotic, condensed state in the interphase nucleus as revealed by light microscopy of 

moss thallus cells stained with carmine acetic acid (Heitz, 1928).  

The fundamental basic structure of chromatin is called nucleosome (Figure 1). It 

consists of an octamer made from a double tetramer of the four core histones, H2A, 

H2B, H3 and H4. 146 bp long DNA is coiled around these core histones (reviewed in 

(Olins and Olins, 2003). Nucleosomes complexed with linker histone H1 are called 

chromatosome. Chromatosomes are connected by 20-60 bp of DNA and form the 11nm 
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fiber. This is known as “beads-on-a-string“ structure. (Olins and Olins, 1974) and is the 

1st higher order chromatin conformation. The “beads-on-a-string“ structure coils into a 

30nm diameter possibly helical structure, which is known as 30nm fiber or “solenoid 

structure“ (reviewed in (Horn and Peterson, 2002)) (Figure 1). Further higher order 

conformations such as “loop domain model” have also been proposed (discussed by 

(Cook, 2001)) (Figure 1). 
 

 

 

 

Figure 1. Schematic model of the levels of chromatin organization.  
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Chromatin organization is not only important for compaction of DNA into the nucleus, 

but is also important for controlling several genomic functions like DNA transcription, 

replication, repair and recombination. Modifications of chromatin proteins and DNA are 

referred to as epigenetic modifications. 

 

1.2. Epigenetic modifications of chromatin 

Epigenetics are a set of mechanisms and phenomenon that affect the phenotype of an 

organism or cell without changing the genotype. It refers to features such as chromatin 

and DNA modifications that are stable over multiple rounds of cell division but do not 

involve changes in the underlying DNA sequence of the organism (Wu and Morris, 

2001). Epigenetic modifications regulate gene expression which in turn is important for 

differentiation. Thus while most of these features are considered dynamic over the 

course of development in multicellular organisms, some epigenetic features show 

transgenerational inheritance and are passed from one generation to the next. 

 

 
 

Figure 2. Epigenetic modifications and higher order chromatin organization in the cell. 
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Epigenetic processes include genomic imprinting, gene silencing, X chromosome 

inactivation, position effect variegation, reprogramming, maternal effects, regulation of 

histone modifications and heterochromatin. The molecular basis of epigenetics  

involves modifications to DNA and chromatin proteins e.g. histones (Figure 2). 

 

1.2.1. Histone modifications  

Histones constitute the basic components of nucleosomes and as such are a prime 

candidate for epigenetic modification (reviewed in (Bhaumik et al., 2007). The N-

terminal “tails” are very rich in positively charged amino acids like lysine and arginine, 

which interact with the DNA backbone as well as with core regions of nucleosomes, and 

lead to chromatin compaction. The net charge of the histone tails is changed when 

these residues are covalently modified, leading to a change in their capacity to interact 

with DNA. Multiple modifications of histones like acetylation, methylation, 

phosphorylation, ubiquitination, sumoylation, poly(ADP-ribosyl)ation have been 

described. Here, I will briefly summarize acetylation and methylation. 

 
The acetylation and deacetylation of histones H3 and H4 is catalyzed by enzymes 

termed histone acetyl-transferases (HATs) or histone deacetylases (HDACs) 

respectively. Histone tails are normally positively charged due to amine groups present 

on their lysine and arginine amino acids. These positive charges help the histone tails to 

interact with and bind to the negatively charged phosphate groups on the DNA 

backbone. Acetylation, which occurs normally in a cell, neutralizes the positive charges 

on the histone by changing amines into amides and decreases the ability of the histones 

to bind to DNA. Histone deacetylases removes those acetyl groups, restoring positive 

charges to the histone tails and encouraging high-affinity binding between the histones 

and DNA backbone. Histone acetyl transferases (HAT) acetylate conserved lysine 

amino acids on histone proteins by transferring an acetyl group from acetyl CoA to 

lysine to form ε-N-acetyl lysine. Histone acetylation is generally linked to transcriptional 

activation and is associated with euchromatin. Initially, it was thought that acetylation of 

lysine neutralizes the positive charge normally present, thus reducing affinity between 

histone and (negatively charged) DNA which renders DNA more accessible to 

transcription factors. More recently, it has emerged that lysine acetylation and other 

posttranslational modifications of histones generate binding sites for specific protein-
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protein interaction domains, such as the acetyl-lysine binding bromodomain. In contrast, 

histone deacetylases (HDAC) remove acetyl groups from ε-N-acetyl lysine amino acids 

on histones, causing the DNA to wrap more tightly around the histones. This change 

interferes with gene transcription by blocking access by transcription factors. The overall 

result of histone deacetylation is a global (non specific) reduction in gene expression.  

 

Histone methylation (Figure 2) involves the addition of methyl groups to N-terminal 

lysines (Lachner et al., 2003)  and arginines (Stallcup, 2001) of histone H3 and H4. This 

modification does not have an affect on the charge of the modified histones (Strahl and 

Allis, 2000) and has been found to be associated with both transcriptional activation and 

silencing. Methylation at K4 and K36 of histone H3 as well as arginine is associated with 

transcriptional activity, whereas methylation at K9 and K27 of H3 and K20 of H4 are 

associated with silencing (Peters et al., 2003). Different enzymes are associated with 

methylation marks in eu- and heterochromatin. Histone methyl transferases (HMT), 

histone-lysine N-methyl transferases and histone-arginine N-methyl transferases, are 

enzymes which catalyze the transfer of one to three methyl groups from the cofactor S-

Adenosyl methionine to lysine and arginine residues of histone proteins. G9a is shown 

to be involved in di-methylation of H3K9 in euchromatin (Tachibana et al., 2001), while 

Suv39h1/2 is thought to be responsible for tri-methylation of H3K9 in heterochromatin 

(Peters et al., 2003).  

 
1.2.2. DNA modifications 
The direct modification of DNA, specifically DNA methylation, is another important 

aspect of epigenetics (Figure 2) that has been shown to influence gene expression, by 

changing chromatin structure.  This process is evolutionarily conserved and has been 

observed in many organisms from bacteria to mammals. Methyl groups are added on 

either cytosines or adenines, at the C5 or N6 position, resulting in the formation of either 

5-methyl cytosines (5mC) or N6-methyladenine (N6mA). Methylation in prokaryotes is 

associated with a protective mechanism that prevents the host DNA from restriction 

endonucleases, which are used to digest the foreign DNA (Srinivasan and Borek, 1964). 

Eukaryotic DNA is primarily methylated at cytosine residues. In humans, it is estimated 

that approximately one percent of the DNA bases are methylated at 5-methyl cytosines 

(Kriaucionis and Bird, 2003) 
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DNA methylation is essential for embryonic development, since mice lacking DNMTs do 

not survive (Li et al., 1992; Okano et al., 1999). DNA methylation is also important for X 

chromosome inactivation (XCI) in females. Furthermore, DNA methylation is important 

for direct transcriptional silencing and suppression of recombination. In humans, several 

DNMTs (DNA methyl transferases) have been found (reviewed in (Cheng and 

Blumenthal, 2008). Out of these DNA methyl transferases 1, 3a, and 3b (DNMT1, 

DNMT3a, DNMT3b) are associated with the process of DNA methylation. It is thought 

that DNMT3a and DNMT3b are the de novo methyl transferases that set up DNA 

methylation patterns early in development, while DNMT1 maintains these patterns, 

copying them to the daughter strands during DNA replication. In both cases, SAM (S-

adenosyl-L-methionine) serves as a methyl-group donor. DNMT3L is a protein that is 

homologous to DNMT3a and 3b but has no catalytic activity. Instead, it assists the de 

novo methyl transferases by increasing their ability to bind to DNA and stimulates their 

activity. Finally, DNMT2 has been identified as an "enigmatic" DNA methyl transferase 

homolog, containing all 10-sequence motifs common to all DNA methyl transferases; 

however, DNMT2 does not methylate DNA (Okano et al., 1998) but instead methylates 

cytosine 38 in the anticodon loop of tRNA (Goll et al., 2006; Rai et al., 2007). 

Resetting of methylation marks during mammalian embryonic development is necessary. 

Reprogramming refers to erasure and remodeling of epigenetic marks, such as DNA 

methylation, during mammalian development (Reik and Walter, 2001). While many 

genes are highly methylated in sperm DNA (Groudine and Conkin, 1985; Rai et al., 

2007)genes are often less methylated in oocytes (Monk et al., 1987; Sanford et al., 

1987). After fertilization the paternal and maternal genomes are once again 

demethylated and remethylated (except for differentially methylated regions associated 

with imprinted genes). This reprogramming is likely required for totipotency of the newly 

formed embryo and erasure of acquired epigenetic changes (Huppke et al., 2000; Kafri 

et al., 1992; Sanford et al., 1987). After implantation, the DNA of the extra embryonal 

membranes (yolk sac and placenta) becomes dramatically demethylated, while the DNA 

of the fetal tissues is subjected to a de novo methylation process (Monk et al., 1987; 

Razin and Szyf, 1984; Sanford et al., 1987). During the process of gametogenesis the 

primordial germ cells must have their original biparental DNA methylation patterns 

erased and re-established based on the sex of the transmitting parent (Chaillet et al., 

1991; Gomperts et al., 1994; Kafri et al., 1992). In vitro manipulation of pre-implantation 
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embryos has been shown to disrupt methylation patterns at imprinted loci (Mann et al., 

2003). 

 

1.3. Molecules that read epigenetic information 

Epigenetic information in the form of DNA and histone modifications needs to be 

interpreted into gene expression/repression programs. Methylated histone H3 and 

methylated cytosines are associated with gene silencing and are recognized by the 

members of heterochromatin protein 1 (HP1) family and the methyl CpG binding protein 

family (MBD), respectively. Both these families of chromatin associated factors have 

been connected with transcriptional repression. 

 

1.3.1. Heterochromatin Protein 1  
Heterochromatin protein 1, a major component of heterochromatin was first identified in 

Drosophila melanogaster (James and Elgin, 1986) where it acts as a dominant 

suppressor of position effect variegation (PEV). HP1 belongs to a highly conserved 

family of chromatin proteins, with homologues that are found from fission yeast (Swi6, 

Chp2 and Chp1) to humans (HP1α, HP1β and HP1γ) (Huisinga et al., 2006). The 

CBX (chromobox) class of genes encodes the HP1 family of protein. In humans, HP1α, 

HP1β and HP1γ are encoded by chromobox homolog (CBX5), 1(CBX1) and 3(CBX3) 

respectively.  

Three functional domains have been characterized in HP1. First, is the chromodomain 

(CD) at the N terminus. This domain is highly conserved and binds to di and tri-

methylated K9 at histone H3 (Aasland and Stewart, 1995). Second, is the 

chromoshadow domain (CSD) at the carboxy terminus. It is associated with homo 

and/or heterodimerization and interaction with other proteins. Third, is the variable linker 

or hinge region. It is present in between chromodomain and chromoshadow domain. It 

contains a nuclear localization signal (Figure 3). 
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Figure 3. Scheme and alignment of different isomers of human heterochromatin protein1. ‘*’ indicates 
positions which have a single fully conserved residue. ‘:’ indicates that either of the strong groups (STA, 
NEQK, NHQK, NDEQ, QHRK, MILV, MILF, HY, FYW) is conserved. ‘.’ Indicates either of the weak 
groups (CSA, ATV, SAG, STNK, STPA, SGND, SNDEQK, NDEQHK, NEQHRK, FVLIM, HFY) is 
conserved. These are all the positively scoring groups that occur in the Gonnet Pam250 matrix. The 
strong and weak groups are defined as strong score >0.5 and weak score =<0.5 respectively. 

 

Purified chromodomain is found as a monomer, whereas chromoshadow domain can 

form dimers in solution (Brasher et al., 2000). Localization studies of the protein have 

suggested that HP1 is not only localized to heterochromatin but also to euchromatin 

regions (Horsley et al., 1996; Minc et al., 1999). Studies in mammalian cells have 

shown that HP1α and HP1βare mainly distributed at pericentric heterochromatin 

domains whereas HP1γ is localized in discrete euchromatin sites (Minc et al., 1999).  

In addition to its binding to methylated K9 of histone H3, HP1 has been shown to 

interact with several other histone and non-histone proteins.  
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Figure 4. Summary of HP1 protein interactions. In parenthesis, is indicated the domain involved in 
interaction. CD (chromodomain), CSD (chromoshadow domain) and ND (not determined). 
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Table 1. Summary of HP1 protein interactions.  

Interacting partners Interaction 

domain 

Reference 

Kap-1/Tif1β (Kruppel box associated protein) CSD (Nielsen et al., 1999) 

CAF-1 p150 (chromatin assembly factor 1 p150 subunit) CSD (Murzina et al., 1999) 

TAFII130 (TATA-binding protein associated factor p130) CSD (Vassallo and Tanese, 2002) 

SP100 (nuclear auto antigen Speckled 100 kD) CSD (Seeler et al., 1998) 

Suv39H1  CSD (Melcher et al., 2000) 

Pc (polycomb) CSD (Yamamoto et al., 2004) 

ATRX (SWI2/SNF2 DNA helicase/ATPase) CSD (McDowell et al., 1999) 

Histone H4 CSD (Zhao et al., 2000) (Polioudaki et al., 

2001) 

PIM-1 (proviral integration site 1) CSD (Koike et al., 2000) 

Ki-67 (cell proliferation antigen of monoclonal antibody Ki-67) CSD (Scholzen et al., 2002) 

LBR (lamin B receptor) CSD (Ye et al., 1997) 

BRG1 (SWI/SNF related transcriptional activation) CSD (Nielsen et al., 2002) 

Ku70 (K 70 auto antigen) CSD, hinge (Song et al., 2001) 

MITR (myocyte enhancer factor 2 (MEF2)-interacting 

transcription repressor) 

hinge (Zhang et al., 2002) 

INCENP (inner centromere protein) hinge (Ainsztein et al., 1998) 

ORCI-6 (origin recognition complex 1-6) CD, CSD (Pak et al., 1997) 

Pc3 (cohesion subunit Pc3) CD (Nonaka et al., 2002) 

H3K9Me3 (trimethyl K9 histone H3) CD (Bannister et al., 2001) 

Histone H3 CD (Nielsen et al., 2001) (Polioudaki et 

al., 2001) 

LAP2β (lamin associated polypeptide 2 β) CD (Kourmouli et al., 2001) 

lamin B CD (Kourmouli et al., 2001) 

Hsk I/CDC7 (S. pombe homolog of CDC7/ cell division cycle 

7) 

ND (Bailis et al., 2003) 

RNA ND (Muchardt et al., 2002) 

Histone H1 ND (Nielsen et al., 2001) 

Rb (retinoblastoma) ND (Nielsen et al., 2001) 

Dnmt 3a, 3b (DNA methyl transferase 3a, 3b) ND (Bachman et al., 2001) 

 

The data above show that HP1 forms a web of protein interactions via multiple domains 

(Figure 4, Table 1).  
Furthermore, fluorescence photobleaching recovery experiments (FRAP) (Cheutin et al., 

2003) showed that HP1 binding to pericentric heterochromatin is not stable, but rather 
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highly dynamic. This allows for modifications to occur while maintaining a stable 

chromatin state. 

 

1.3.2. Methyl CpG binding proteins 
For quite sometime DNA methylation has been correlated with transcription repression. 

In the most direct way, methylation of cytosines (5mC) prevents the binding of basal 

transcriptional factors that require contact with cytosines in the major groove of the DNA 

double helix. A second indirect way methylation of cytosines can induce transcription 

repression is via methyl-CpG binding proteins. 

The methyl-CpG-binding protein family comprises MeCP2, MBD1, MBD2, MBD3 and 

MBD4, which share the conserved methyl-CpG-binding domain (Hendrich and Bird, 

1998) (Figure 5).   
 

MBD1 is the largest member of the family, around 50-70kDa and contains a sequence 

motif, the CXXC motif, shared with Dnmt1 (Cross et al., 1997). There are at least five 

splicing variants of the mRNA of human MBD1 (Fujita et al., 1999; Ng et al., 2000) and 

three variants in mice (Jorgensen et al., 2004). The major difference between them is 

the presence of either two or three CXXC cysteine rich regions. Unlike MeCP2, MBD1 

can repress transcription of methylated and unmethylated templates (Cross et al., 1997; 

Fujita et al., 1999). The solution structure of the MBD domain of MBD1 has been solved 

(Ohki et al., 1999). The structure of this domain is very similar to that of MeCP2. Though, 

in MeCP2, three solvent exposed hydrophobic residues have been predicted to directly 

contact the methyl groups in the major groove (Wakefield et al., 1999). In MBD1 

however, only one position out of these three contain a hydrophobic residue, the 

tyrosine 34. 

 

MBD2 is a 44-kDa protein with 414 amino acids. It binds to methylated DNA with its 

MBD domain, and it has also been shown to possess transcription repression activity. 

Out of these roughly amino acids 140-400 including the MBD are highly similar to MBD3 

(Hendrich and Bird, 1998). The N-terminal part of the protein consists largely of lysine 

and arginine repeats. MBD2b, lacking this amino terminal 140 amino acids has been 

reported to show a demethylase activity (Bhattacharya et al., 1999) although these 

results have not been confirmed. MBD2 interacts with the NuRD complex generating 
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the MeCP1 complex. This was the first methyl CpG binding activity, which was isolated 

in mammals (Meehan et al., 1989).  

 

 

 

Figure 5. Scheme of different members of methyl CpG binding family and alignment of their MBD. 
Symbols are as indicated in Figure 3. 

MBD3 is the smallest member of the family, around 30 kDa. It is the only member of the 

MBD family, which does not bind to methylated CpGs due to two amino acid 

substitutions within the MBD domain of MBD3 (Saito and Ishikawa, 2002). Some other 

vertebrates like Xenopus, Zebrafish have two MBD3 forms, one of which can bind to the 

methylated CpGs (Wade et al., 1999). The global demethylation event, characteristic of 

early mammalian development is absent in both Zebrafish (Macleod et al., 1999) and 
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Xenopus (Stancheva and Meehan, 2000). MBD3 is also a member of the NuRD co- 

repressor complex, which plays an important role in transcription silencing via histone 

deacetylation. MBD3 has been shown to be important during embryonic development 

(Hendrich et al., 2001).  

 

MBD4 is a 63-kDa protein that is not associated with histone deacetylase activity or 

transcription regulation. Its carboxyl terminal has homology to bacterial repair enzymes 

(Hendrich and Bird, 1998). MBD4 plays a major role in preventing the mutational risk, by 

transition of 5mC→T by deamination. The MBD domain of MBD4 binds to methylated 

CpG dinucleotides, but has preference for 5mC paired with TpG (Hendrich et al., 1999). 

The C-terminal glycosylase moiety present in MBD4 specifically removes Ts from G-T 

mismatches (Hendrich and Tweedie, 2003). It has been shown that MBD4-/- cells show 

a 3.3 fold increased C→T transition, compared to wild type (Millar et al., 2002; Wong et 

al., 2002).  

 

MeCP2 is the founding member of the MBD (methyl CpG protein binding) family (Lewis 

et al., 1992). MeCP2 is quite conserved among different family members (Figure 7). 
The crystal structure of MeCP2-MBD in complex with DNA (Ho et al., 2008) has been 

shown to be similar to the unliganded structure (Wakefield et al., 1999). The MBD has a 

wedge shaped structure, with one face of the wedge composed of a beta sheet and the 

other face consisting of the alpha helix and hairpin loop. Two main functional domains 

have been defined for MeCP2. The MBD domain, which is capable of binding to one or 

more symmetrically methylated CpGs (Nan et al., 1993). Recently, it has been shown 

that high affinity binding of MeCP2 to DNA requires AT rich sequences adjacent to CpG 

sites on DNA (Klose et al., 2005). The second well-characterized domain of MeCP2 is 

the transcriptional repression domain or TRD (Nan et al., 1997), which is required for 

large distance (2kb mRNA) transcriptional repression in vitro and in vivo. MeCP2 after 

binding specifically to methylated DNA recruits Sin3A and HDAC, which further 

deacetylates the tails of H3 and H4 histones. This deacetylation leads to compaction of 

chromatin and thus the chromatin becomes inaccessible to transcription factors. 

Silencing can be relieved by inhibition of histone deacetylases (Jones et al., 1998). 

MeCP2 interacts with several other proteins as summarized in (Figure 6). 
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Figure 6. Interaction of MeCP2 with other proteins. 
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MeCP2 is known to lower transcriptional noise, rather than acting as a global repressor. 

Further, recently it has been shown that the C-terminal domain of MeCP2 can also 

interact with unmethylated DNA (Nikitina et al., 2007a).  

 

MECP2 is expressed in different tissues as shown by Northern blot analysis (Coy et al., 

1999; D'Esposito et al., 1996; Reichwald et al., 2000; Shahbazian et al., 2002). The 

gene consists of 4 exons (Reichwald et al., 2000). In vivo MeCP2 exists in two 

alternatively spliced isoforms. MeCP2A/MeCP2e2 (Nan et al., 1993) and 

MeCP2B/MeCP2e1 (Mnatzakanian et al., 2004). MeCP2B/MeCP2e1 utilizes exon 1 of 

MeCP2, skips exon2, and uses full-length exons 3 and 4 and is the longer form of 

MeCP2. The larger transcript, which is found mostly in the brain (Kriaucionis and Bird, 

2003) is 10kb long, is composed of 1.5kb coding region and 8.5kb untranslated 3’ UTR 

region (Coy et al., 1999; Reichwald et al., 2000). MeCP2A/MeCP2e2 utilizes exon 2,3 

and 4 of MeCP2 gene. This shorter and more predominant form migrates as a 1.9 kb 

band. This form is mostly expressed in heart, kidney and skeletal muscle. 

To understand the function of MeCP2 in development, it is important to know in detail its 

changes during differentiation. 
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Figure 7. Alignment of MeCP2 from different species. Symbols are as indicated in figure 3.  
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1.4. Cellular differentiation and MeCP2 

In developmental biology the term differentiation is used to describe the diversification 

of pathways, wherein a less specified cell becomes a more specialized cell type. A cell 

that is able to differentiate into many cell types is known as pluripotent, while the cell 

that is able to differentiate into all cell types is called totipotent. Differentiation occurs 

numerous times during the development of a multicellular organism as the organism 

develops from a single zygote to a complex system of tissues and cell types. 

Differentiation is a common process in adults as well: adult stem cells divide and create 

fully differentiated daughter cells during tissue repair and during normal cell turnover. 

When a cell differentiates its size, shape, polarity, metabolic activity, and 

responsiveness to signals may change dramatically. These changes are largely due to 

highly controlled modifications in gene expression. With few exceptions, cellular 

differentiation does not involve a change in the DNA sequence itself. Thus, different 

cells can have very different physical characteristics despite having the same genome. 

Differentiation is driven by the activity of nuclear proteins that regulate transcription. 

During differentiation, proliferating cells eventually get committed, migrate, withdraw 

from cell cycle, and form neurons, myofibrils etc.  

Further it has been show that MeCP2 is involved in the differentiation of neuronal cells, 

in particular in the development and maintenance of dendritic spines, rather than in cell 

fate decision (Armstrong et al., 1995; Armstrong et al., 1998; Kishi and Macklis, 2004). 

Our studies in muscle differentiation, also point in a similar direction. Wherein, the level 

of expression of MeCP2 increases dramatically from myoblasts to myotubes (Brero et 

al., 2005). Though neurogenesis has been intensively studied in vivo, a reproducible in 

vitro differentiation system is still lacking. Moreover most of the existing cell lines are 

tumor derived. Therefore, we chose to use a well-established in vitro myogenic 

differentiation system to perform our studies.   

 

1.5. Rett syndrome and MeCP2 

Rett syndrome (RTT, OMIM: 321750) is a neurological disorder, first reported by Dr. 

Andreas Rett in 1966. It is the second most common mental retardation disease in 

females after Down’s syndrome with an incidence of one in every 10,000 to 15,000 
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females born. The females develop normally until 6 to 8 months of age and then show a 

progressive stop in development accompanied by regression of acquired skills. 

 

1.5.1. Clinical features of Rett syndrome patients 
Clinical features include deceleration of head growth, loss of purposeful hand 

movement, ataxia, acoustic features, seizures, stereotypic hand movements “hand 

wriggling” and respiratory dysfunction. 80% of RTT cases have been reported to be 

sporadic (Amir et al., 1999; Bienvenu et al., 2000; Buyse et al., 2000; Cheadle et al., 

2000; Huppke et al., 2000; Xiang et al., 2000). It is further characterized by loss of 

acquired motor and language skills, autistic features and stereotypical hand movements. 

 

1.5.2. Genetics behind Rett syndrome 
Familial occurrences suggested that RTT is an X-linked dominant disorder (Figure 8), 

with possible male lethality. Genetic mapping of such familial cases have identified 

chromosome X position q28 (Xq28) (Ellison et al., 1992; Sirianni et al., 1998). The 

mutation was mapped on the gene MECP2 (Amir et al., 1999). Due to X chromosome 

inactivation (XCI), each cell of the female body expresses only one of the X 

chromosome alleles. XCI is a random process. The severity of the disease in females 

depends on which cells the X chromosome having the wild-type gene was inactivated.  
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Figure 8. Localization of MECP2 gene, functional domains of the corresponding gene product and 
structure of the MBD domain. 

 

The majority of Rett mutations found on MECP2 are due to direct C→T conversions in 

CpG dinucleotides (Dragich et al., 2000). Sperm DNA is more highly methylated than 

same sequences in oocytes, because of the need for greater compaction. Also, 

methylated cytosines become converted to uracil, which is not easily identified by the 

repair machinery. Due to these reasons sperm DNA is liable to more mutations in a 

highly CG-rich gene such as MeCP2 (Thomas, 1996), and therefore females are more 

susceptible to RTT than males, as they get one of their X chromosomes from the 

paternal side. 

 
1.5.3. Genotype-phenotype correlations 
The studies done on genotype-phenotype correlations have yielded inconsistent results. 

Some groups showed that truncation mutations led to more severe symptoms as 

compared to missense mutations (Cheadle et al., 2000; Monros et al., 2001), however 
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others groups could not find such a correlation (Amir et al., 1999; Bienvenu et al., 2000; 

Huppke et al., 2000). This could be explained by the fact that in females there is random 

X chromosome inactivation, and the severity of the symptoms depends upon the 

number and types of cells having the mutated form of MeCP2 in the active X 

chromosome. Since in males, there is no XCI, the genotype-phenotype correlation could 

be clearer. Unfortunately, much less cases of RTT males have been reported. 

 

1.5.4. Mouse models for Rett syndrome 
The brain size of RTT patients and MeCP2 null mice is smaller than normal individuals 

(Armstrong, 1997; Chen et al., 2001). In the MeCP2 null mice, the hippocampus CA2 

neurons are quite smaller than the wild type. Also, the nuclei of the neurons throughout 

the CNS were noticeably smaller (Chen et al., 2001). In addition, in heterozygous 

female RTT brains, neurons in layer III and V of the frontal, motor and inferior temporal 

cortex were smaller, with shorter apical and basilar dendritic branches (Armstrong et al., 

1995; Armstrong et al., 1998). 

There has been substantial effort in the development of mouse models for Rett 

syndrome. These models have focused on firstly mimicking the clinical phenotypes 

seen in Rett patients. More recently, efforts have been made to rescue MeCP2 gene 

expression and restoration of MeCP2 function. The latter have the major drawback that 

induction of wild type MeCP2 in the context of a null genotype would rather not reflect 

the disease problem where a mutated gene product is present throughout. The different 

mouse genetic models and ensuing studies are summarized in Table 2. 
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Table 2. Studies of Rett syndrome using mouse models.  

Mouse model Short summary of the mouse model  Reference 

Null  
MeCP2 lacking male ES cells could not support development. 

 (embryonic lethality). 
(Tate et al., 1996) 

Null 

MeCP2 null mice were produced using Cre-LoxP recombination 

system to delete exon 3 of MeCP2 gene; mimics Rett syndrome; 

MeCP2 plays a role in mature neurons and its role is not 

restricted to immature neurons 

(Chen et al., 

2001) 

Null 

MeCP2 null mice were produced by Cre-LoxP recombination 

system to delete exon 3 and 4 of MeCP2 in ES cells; mimics 

Rett syndrome; MeCP2 is required for a stable brain function, 

rather than in brain development. 

(Guy et al., 2001) 

Truncated  

Mouse with a stop codon after codon 308, they called the 

mutated allele as MeCP2308; MeCP2 was localized to 

heterochromatin domain in vivo, but histone H3 was 

hyperacetylated. 

(Shahbazian and 

Zoghbi, 2002) 

Truncated 

MeCP2 308/X; X-chromosome inactivation (XCI) patterns were 

unbalanced in more than 60% of the animals, favoring 

expression of the wild type allele. 

(Young and 

Zoghbi, 2004) 

Null  

MeCP2 null mouse model produced by Cre-LoxP recombination 

system to delete exon 3 of MeCP2; looked on the olfactory 

system and found that posttranslational protein modifications 

play an important role and concluded that not only transcription 

should be considered but also the brain region and the age of 

the mouse and the posttranslational modifications should be 

considered. 

(Matarazzo and 

Ronnett, 2004) 

Heterozygous  

MeCP2 +/- female mice; showed that MeCP2 mutant neurons 

affect the development of nearby neurons and environment 

affects the level of MeCP2 expression in wild type cells. 

(Braunschweig et 

al., 2004) 

Transgenic 

Mouse model that transgenically expressed MeCP2, under 

control of an endogenous human promoter, by using a large 

insert of genomic clone from PAC, which contained a MeCP2 

locus. Even mild overexpression of protein can lead to 

symptoms like Rett syndrome. Thus the authors could show that 

MeCP2 levels are tightly regulated. 

(Collins et al., 

2004) 

Truncated 

MeCP2 308/Y; studied social behavior in mice and found that 

MeCP2 might regulate expression/ function of genes involved in 

social behavior. 

(Moretti et al., 

2005) 
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Truncated 

Male mouse with truncated MeCP2; displayed increased 

anxiety-like behavior and an abnormal stress response, similar 

to patients with RTT. The changes were associated with 

increased serum corticosterone levels. The results show that 

MeCP2 regulates Crh expression. 

(McGill et al., 

2006) 

Conditional 

tissue 

specific 
rescue 

MeCP2 gene is silenced by insertion of a lox-stop cassette in 

intron 2, which could be conditionally activated by Tamoxifen; 

mouse showed restoration of neuronal function by late 

expression of MeCP2 suggesting that Rett syndrome symptoms 

can be reversed. 

(Guy et al., 2007) 

Transgenic 

Mouse model that transgenically expressed MeCP2, HA-MeCP2 

transgene is downstream of an inducible promoter in the 

transgenic mice. The transgenic mice were further crossed with 

Mecp2-/+ females. Authors show that Rett-like behavior could be 

improved in Mecp2-/+ females by targeted gene re-introduction. 

(Jugloff et al., 

2008) 
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2. AIMS OF THE WORK 

Recently, our group and others have shown that large-scale heterochromatin 

organization takes place during terminal differentiation. In this work, I focused on two 

major non-histone markers of heterochromatin, MeCP2 and HP1 and their role during 

this process.  

 

Using an in vitro myogenic differentiation system, as the model system for the study, I 

investigated their expression levels, their interaction and their localization during 

differentiation. Furthermore, I tested whether HP1 plays a role in chromatin organization 

during cellular differentiation. Based on the outcome that MBD family members and not 

HP1 family members are involved in large-scale chromatin organization, I tested 

whether these pathways are redundant or synergistic. 

 

Furthermore, I have investigated the relevance of MeCP2 in vivo by testing the affect of 

a large series of MeCP2 mutations found in Rett syndrome. I have analyzed whether or 

not these MeCP2 mutations affect its capacity to bind to chromatin, the dynamics of its 

binding and its ability to cluster chromatin in vivo.
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3.1. MeCP2 interacts with HP1 and modulates its 
heterochromatin association during myogenic 

differentiation 
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ABSTRACT

There is increasing evidence of crosstalk between
epigenetic modifications such as histone and
DNA methylation, recognized by HP1 and methyl
CpG-binding proteins, respectively. We have
previously shown that the level of methyl CpG-
binding proteins increased dramatically during
myogenesis leading to large-scale heterochromatin
reorganization. In this work, we show that the level
of HP1 isoforms did not change significantly
throughout myogenic differentiation but their loca-
lization did. In particular, HP1c relocalization to
heterochromatin correlated with MeCP2 presence.
Using co-immunoprecipitation assays, we found
that these heterochromatic factors interact in vivo
via the chromo shadow domain of HP1 and the first
55 amino acids of MeCP2. We propose that this
dynamic interaction of HP1 and MeCP2 increases
their concentration at heterochromatin linking
two major gene silencing pathways to stabilize
transcriptional repression during differentiation.

INTRODUCTION

Post-translational modifications of chromatin such as
histone and DNA methylation are recognized by epige-
netic regulators HP1 (heterochromatin protein 1) and
MeCP2 (methyl CpG-binding protein 2) respectively and
play an important role in transcriptional regulation. These
non-histone chromatin factors read the epigenetic marks
and translate them into inactive chromatin states.
MeCP2 is a member of a family of proteins, which

share a conserved methyl cytosine-binding domain (MBD)
that recognizes methylated CpG dinucleotides (1).

Moreover, MeCP2 contains a nuclear localization signal
[NLS; (2)] and a transcriptional repression domain
(TRD), which binds a corepressor complex containing
mSin3a and histone deacetylases [HDACs; (3)].

HP1 proteins are conserved from yeast to humans (4)
and recognize histone H3 trimethylated at the lysine
9 position [H3K9Me3; (5,6)]. In mammals, three isoforms
viz a, b, g have been identified (7,8). Functionally, three
domains have been defined in HP1(s). The chromodomain
[CD; (9)]and the chromo shadow domain [CSD; (10)] are
highly conserved and are linked by the poorly conserved
hinge domain. The CD has been shown to be important
for binding methylated histones, while the CSD is
known to interact with several proteins (11) as well as
mediate homo (12) and heterodimerization of HP1
isoforms (13). The hinge domain interacts with DNA
(14) and RNA (15).

In mouse cells, both HP1 and MeCP2 accumulate
at pericentric regions of chromosomes organized into
chromocenters, which play an important role in epigenetic
gene regulation possibly by creating silencing compart-
ments within the nucleus. Recently, we have shown that
the level of MeCP2 as well as of MBD proteins starkly
increased during myogenic differentiation concomitant
with large-scale chromatin reorganization (16). To inves-
tigate a potential crosstalk between both epigenetic
regulators, we analyzed the amount and localization of
HP1 with respect to MBD proteins during cellular
differentiation. We found that although the level of HP1
proteins does not change dramatically, there is spatial
relocalization of HP1 (especially HP1g) during myogenesis
from a more diffused distribution to a focal enrichment at
pericentric heterochromatin. Furthermore, this redistribu-
tion to heterochromatin correlates with MeCP2 and
MBD1 protein presence. We also demonstrate that HP1
and MeCP2 interact physically with each other,
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strengthening the argument that they cooperate in the
formation of repressive subnuclear compartments
involved in epigenetic gene silencing.

MATERIALS AND METHODS

Expression plasmids

The following HP1 plasmids were used: GFP-tagged
full-length human HP1a/HP1b/HP1g (17); YFP-tagged
deletion mutants of human HP1a/HP1b/HP1g and
full-length human HP1a/HP1b tagged with DsRed2 (18).
To construct a DsRed2 fusion of HP1g, the BamHI–
HindIII fragment of GFP-HP1g containing HP1g was
subcloned into BglII–HindIII site of pDsRed2-C1
(Clontech). MeCP2 constructs used were GFP/YFP/
mRFP1-tagged full-length and deletion mutants of rat
MeCP2 (16). MeCP2Y.6 and MeCP2G.7 were constructed
by subcloning XhoI–HindIII and XhoI–PstI fragments
of MeCP2 from MeCP2Y into pEYFP-N1and
pEGFP-N1 (Clontech) cut with the same restriction
enzymes, respectively. pEGFP-N1 (Clontech) was used
as a control.

Cell culture and transfection

Pmi28 mouse myoblast cells (MB) were cultured as
described in (19), transfected using Transfectin (Biorad)
and differentiated as described before (16). Differentiated
cultures include syncitial myotubes (MT) and unfused
myocytes (MC).

HEK293-EBNA human cells (Invitrogen) were main-
tained in Dulbecco’s modified Eagle’s medium (DMEM)
supplemented with 10% fetal bovine serum at 378C with
5% CO2. 4� 105 HEK293-EBNA cells plated onto
100mm diameter culture dishes were transfected using
PEI (poly-ethyleneimine 25 kDa from Polysciences
1mg/ml in ddH2O, neutralized with HCl). For transfec-
tion 500 ml of DMEM without serum, 12 mg of DNA and
50 ml of PEI were mixed well, incubated for 10min at
room temperature, vortexed and added to the cells
dropwise. The culture was incubated at 378C overnight,
next day cells were washed in PBS, pelleted and used
for co-immunoprecipitation assays.

Immunofluorescence analysis and microscopy

Proliferating and differentiated Pmi28 cultures were
fixed in 3.7% formaldehyde/PBS and permeabilized with
0.5% TritonX-100/1XPBS and immunostained as
described in (20). Primary antibodies used were: mouse
monoclonal anti-HP1 isoform-specific antibodies
(Chemicon), rabbit polyclonal anti-MeCP2 (Upstate)
and anti-MBD1 (Santa Cruz) antibodies. Secondary
antibodies used were: anti-mouse IgG-Cy5, anti-rabbit
IgG-FITC (Jackson Immuno Research). Samples were
counterstained with DAPI and examined on a Zeiss
Axiovert 200 using 40� and 63� objectives. Images were
acquired with a PCO Sensicam QE cooled CCD camera
using Zeiss Axiovision V.3 software and processed with
Adobe Photoshop. To quantify the correlation between
HP1g localization at chromocenters and presence of
MeCP2 or MBD1, we analyzed 375 MB cells; 71 cells
with positive staining for MeCP2; 99 cells with positive
staining for MBD1; 125 cells transfected with MeCP2-
GFP and 345 MT nuclei from two independent experi-
ments done in triplicate. The mean and SDs were plotted
using Microsoft Excel software (Figure 2).

Immunoprecipitation and western blot analysis

Differentiated and non-differentiated Pmi28 cells were
grown on p100 culture dishes, boiled in Laemmli sample
buffer and analyzed on western blots (Figure 1).
Immunoprecipitations (Figures 3 and 4) were done as
described before (21). The following primary antibodies
were used: rabbit polyclonal anti-lamin B [kind gift of
R.Bastos; (22)], rabbit polyclonal anti-H3K9Me3
(Upstate), rabbit polyclonal anti-MeCP2 (Upstate), chro-
matographically purified rabbit IgG (Organon Teknika),
mouse monoclonal anti-HP1a/HP1b/HP1g (Chemicon),
rabbit polyclonal anti-histone H3 (Upstate), mouse
monoclonal anti-GFP (Roche), GFP binder (23), anti-
mRFP1 rabbit polyclonal antiserum. Secondary anti-
bodies used were: anti-mouse IgG HRP (Amersham)
and anti-rabbit IgG HRP (Sigma). Immunoreactive
signals were visualized using an ECL plus Detection kit
(Amersham) and recorded using a luminescence imager
(Luminescent Image Analyzer LAS-1000, Fuji). To
compare the amounts of the different proteins in
proliferating and differentiated myogenic cultures,
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Figure 1. Level of HP1 proteins during differentiation. (A) Schematic representation of myogenesis. (B) Western blot analysis of the level of HP1
isoforms and of HP1-binding site on chromatin (H3K9Me3) in MB versus MC/MT. Lamin B and histone H3 are taken as controls for equal nuclear
protein amounts and for total histone H3, respectively. (C) Quantitative analysis of western blots. Error bars indicate SDs.
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quantification of the recorded signals was done with the
Image Gauge Ver.3.0 software (Fuji). Equal sized
boxes were made around the recorded signals and for
calculating the background. Integrated pixel intensity was
measured for each band and the respective back-
ground signal was subtracted. Signals were normalized
to the loading control (lamin B or histone H3) and the fold
difference between the normalized signals in differen-
tiated versus proliferating cultures was calculated. The
mean and SDs were calculated from three independent
experiments and plotted using Microsoft Excel software
(Figure 1).

RESULTS AND DISCUSSION

Level of HP1 isoforms remains mostly constant
during myogenesis

During cellular differentiation progressive inactivation
of the genome occurs in parallel with the activation of
tissue-specific gene expression patterns (24). We have
shown that the level of methyl CpG-binding protein

Figure 2. Pericentric heterochromatin association of HP1g increases
during differentiation and correlates with the presence of MeCP2 and
MBD1 proteins. (A) Cells were stained with HP1g and MeCP2-specific
antibodies and DNA counterstained with DAPI, highlighting the
chromocenters. In the upper panels, overview images and below them
representative magnified MB cells are shown, of which only the MeCP2
positive cell has HP1g accumulated at chromocenters. The lower panels
show an overview of a differentiated culture, with most nuclei having
HP1g at chromocenters. Scale bar: 20 mm. (B) Percentage of cells with
HP1g at pericentric heterochromatin and correlation with MeCP2 and
MBD1 proteins. Error bars indicate SD.
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Figure 3. MeCP2 interacts with HP1 in vivo. (A) Schematic representa-
tion of the fusion proteins. Numbers represent amino acid coordinates.
(B and C) HEK293-EBNA cells were transfected with the plasmids
indicated and extracts prepared the next day. Immunoprecipitations
were done using either anti-GFP (B) or anti-mRFP (C) antibody. (D)
Extracts from MB and MT were subjected to immunoprecipitation
using the antibodies, as indicated. Input (I) and bound (B) fractions
were loaded in the percentages mentioned and analyzed by western
blotting using anti-HP1g (B, D) or anti-GFP (C).
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dramatically increased during muscle differentiation and
induced large-scale aggregation of pericentric heterochro-
matin (16). A second major pathway associated with
transcriptional silencing is mediated by HP1 binding of
histone H3K9Me3. We therefore investigated whether the
level of the different HP1 isoforms varied during cellular
differentiation using a well-established in vitro culture
system for myogenesis (Figure 1A). Pmi28 mouse myo-
blasts (MB) were induced to differentiate by incubation in
horse-serum-containing medium. After three to four days,
cells fused to form post-mitotic multinucleated myotubes
(MT). These cultures still contained mononucleated
not fully differentiated cells termed myocytes (MC).
We quantified the level of HP1 in proliferating versus
differentiated cell extracts by western blot analysis and
normalized it to lamin B level as a loading control
for nuclear proteins. The level of HP1a, b, g remained
almost constant during differentiation (Figure 1B and C).
However, the fraction of histone H3 that was
trimethylated at lysine 9 position (H3K9Me3) increased
about 3-fold in differentiated cells.

Association of HP1c with heterochromatin increases
during differentiation and correlates with methyl
CpG-binding protein presence

Previous studies have reported a cell cycle stage and
isoform-specific localization of HP1 (18). To address
this possibility, we examined the in situ localization of the
HP1 isoforms as well as H3K9Me3 by immunofluores-
cence staining during myogenic differentiation. Pericentric
heterochromatin organized in chromocenters was
highlighted by counterstaining with the DNA dye
40,6-diamidino-2-phenylindole (DAPI). We found that
the level of association of HP1 with pericentric hetero-
chromatin differed between isoforms and changed during
differentiation. While HP1a protein could be found
accumulated at pericentric heterochromatin in most of
the MBs (89%; Supplementary Figure 1), HP1b did not
show such an accumulation (data not shown) and HP1g
showed only a weak heterochromatin accumulation in
about half of the MBs (61%; Figure 2). This weak
accumulation was not due to the absence of H3K9Me3,
since chromocenters of all MBs stained clearly positive for
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Figure 4. MeCP2 interacts via its N-terminal domain with the CSD domain of HP1. Schematic representation of the fusion proteins. Numbers
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this histone modification (Supplementary Figure 2) and is
consistent with earlier reports showing HP1g mostly
excluded from constitutive heterochromatin (25). We can
also rule out epitope masking (26), as in the same
population of MBs, there were cells where HP1g staining
was detected at chromocenters (Figure 2A magnified
nucleus). The fraction of MT nuclei with HP1a and g
accumulated at heterochromatin increased to 100 and
90%, respectively (Supplementary Figure 1 and Figure 2).
In contrast, upon differentiation there was no major
change in the distribution of HP1b (data not shown) even
though there was an increase in the level of its binding site
H3K9Me3 (Figure 1). We reasoned therefore, that this
increase in heterochromatin association could depend on
differentiation-specific factors other than the histone
methylation mark per se. Since MeCP2 and other MBDs
are present in a few MB only but increase during
differentiation and label almost all chromocenters in MT
(16), we tested whether the change in heterochromatin
association of HP1g was correlated to MBD protein.
Indeed we found a clear correlation of HP1 heterochro-
matin association in MB and the presence of either
MeCP2 or MBD1. Almost all MeCP2 or MBD1 positive
MB contained HP1a (100%) and HP1g (95%) at
chromocenters (Figure 2 and Supplementary Figure 1).
Furthermore, 96 and 94% of MB cells ectopically
expressing MeCP2-GFP fusion had HP1g and HP1a
accumulation at pericentric heterochromatin (Figure 2B
and Supplementary Figure 1B). Altogether, these data
showed that the chromocenter association of HP1 with
particular emphasis for HP1g clearly increased upon
myogenic differentiation and was positively correlated
with the presence of MeCP2 and MBD1.

MeCP2 interacts via its N-terminal domain with
the chromo shadow domain of HP1

Since the accumulation of HP1 at chromocenters corre-
lated with the presence of MBD proteins at these sites, we
tested whether they could physically interact. HEK293-
EBNA cells, which express HP1 proteins, were transfected
with plasmids coding for GFP, GFP-tagged MeCP2 or
GFP-tagged HP1 (Figure 3A). Twelve hours later, cells
were lysed and immunoprecipitations performed with an
anti-GFP-specific antibody fragment [GFP binder; (23)].
Input and bound fractions were analyzed on western blots
for precipitated GFP-tagged protein (data not shown) and
for co-precipitated endogenous HP1g protein. HP1g did
not bind to GFP alone but was co-precipitated with
MeCP2-GFP (Figure 3B) and the same was true for HP1a
and b (data not shown). Since HP1a, b and g have been
shown to form homodimers (12,13) as well as hetero-
dimers [HP1a-g; (12)], [HP1a-b; (27)], we reproduced this
data as a positive control for our co-immunoprecipitation
conditions. Moreover, the fraction of HP1g bound to
HP1a was comparable with the amount bound to MeCP2
(Figure 3B). Using a mRFP-tagged MeCP2, we
co-immunoprecipitated GFP-tagged HP1a, b and g
(Figure 3C). MeCP2-GFP proteins could likewise immu-
noprecipitate DsRed2-tagged HP1s (Figure 4 and data not
shown) showing that the interaction of HP1 with MeCP2

was independent of the tags. Further, we tested whether
endogenous HP1 and MeCP2 could interact. We per-
formed immunoprecipitations using anti-MeCP2 antibody
on Pmi28 MBs (expressing low level of MeCP2) and MTs
(expressing higher level of MeCP2) (16). Indeed, the rabbit
anti-MeCP2 antibody but not the control rabbit IgG
could co-precipitate HP1g from MT extracts. Finally, to
test whether MeCP2 could directly interact with HP1, we
used GST pull down assays. Recombinant MeCP2
purified from bacteria was incubated with glutathione
agarose coupled GST or GST-HP1g (Supplementary
Figure 3). While no MeCP2 protein was detected in the
GST-bound fraction, GST-HP1g was able to specifically
pull down MeCP2. In summary, these results showed that
MeCP2 and HP1 interact in vivo and at a level comparable
to the dimerization of HP1 proteins.

The N terminus of HP1 contains the H3K9Me3-binding
site (5) while the C terminus mediates dimerization of HP1
as well as interaction with other proteins (11,28). To test
which domain would be involved in the interaction with
MeCP2, we co-transfected HEK293-EBNA cells with
plasmids coding for MeCP2-mRFP and with different
YFP-tagged deletion constructs of HP1 isoforms coding
either for the CD or the CSD. Co-immunoprecipitation
assays demonstrated that the CSD of HP1s was necessary
and sufficient for binding to MeCP2 in vivo (Figure 4 and
data not shown). The CSD of HP1 has previously been
shown to be important for the interaction of HP1 with
other nuclear proteins (11). We then investigated which
domain of MeCP2 binds to HP1 by using a series of
fluorescently tagged deletion constructs of MeCP2. The
results indicate that amino acids 1–55 of MeCP2 are
primarily involved in binding HP1 (Figure 4), though
weaker binding could be detected with other regions of
MeCP2 as well (Supplementary Figure 4). We conclude
that MeCP2 and HP1 interact via the CSD of HP1 and the
N-terminal domain of MeCP2.

The domains of MeCP2 that have been better function-
ally characterized are the MBD, the transcriptional
repressor domain (TRD) and the overlapping Sin3a
co-repressor domain (coRID), all of which are in the
central part of MeCP2 (29). Our data now implicate the
N-terminal region before the MBD in binding to HP1,
suggesting a direct physical link between the factors
translating DNA and histone methylation. On the one
hand, MeCP2 recognizes methyl CpGs and interacts with
DNA methyltransferase 1 (30). On the other hand, HP1
binds to H3K9Me3 and associates with the histone H3K9
methyltransferase [Suv39h1; (31)]. Our data showing that
HP1 and MeCP2 interact with each other interconnects
these two major epigenetic pathways. Most recently, HP1
was also reported to interact with Dnmt1 (32). It is
noteworthy that another MBD protein, MBD1 has been
reported to interact with HP1a via the MBD (33). Since
other MBDs (Figure 2 and Supplementary Figure 1) were
also able to enhance the accumulation of HP1 at hetero-
chromatin, any single MBD knockout would not be
expected to disrupt it. In line with this, we have previously
shown that other MBDs have overlapping functions and
knockout of MeCP2 alone did not affect heterochromatin
reorganization during myogenic differentiation (16).
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Significantly, we found that the heterochromatin associa-
tion of HP1g increased during differentiation and that this
was correlated with either MeCP2 or MBD1 presence. The
differentiation-specific increase of the MBD proteins could
enhance HP1g binding to constitutive heterochromatin,
which would then recruit histone H3K9 methyltrans-
ferases leading to higher levels of H3K9 methylation. In
Suv39h1/2 double knockout cells where H3K9 methyla-
tion at chromocenters is abrogated, MeCP2 still induced
clustering (16), indicating that its interaction with HP1 is
not required for its function in large-scale chromatin
organization. We further propose that the multiple
interactions of these factors with chromatin and with
each other generate subnuclear silencing compartments,
which stabilize the differentiated phenotype by reducing
transcriptional noise. Individually these interactions are
transient but their cumulative effect at heterochromatin
increases the local concentration of repressing factors and
thereby the efficiency of gene silencing.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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SUPPLEMENTARY INFORMATION 

Figure S1 

Pericentric heterochromatin association of HP1  increases during differentiation and 

correlates with the presence of MBD proteins. (A) Cells were stained with HP1  and 

MeCP2 specific antibodies and DNA counterstained with DAPI, highlighting the 

chromocenters. The upper panel shows representative MB cells and the lower panel an 

overview of a differentiated culture. Scale bar: 20 m. (B) Percentage of cells with HP1  

at pericentric heterochromatin and correlation with MBD protein presence. 

HP1  protein could be found accumulated in chromocenters of 89% of MB (N= 131 

cells). In contrast, the fraction of MT nuclei with HP1  accumulated at heterochromatin 

increased to 100% (N= 100 cells). Indeed we found a correlation of HP1 heterochromatin 

association in MB and the presence of either MeCP2 or MBD1 with all MeCP2 or MBD1 

positive MB (N=42 and 28 cells, respectively) containing HP1  (100%) at 

chromocenters. Furthermore, 94% of MB cells ectopically expressing MeCP2-GFP 

fusion (N= 35 cells) had HP1  accumulation at pericentric heterochromatin. Altogether, 

these data showed that the chromocenter association of HP1  clearly increased upon 

myogenic differentiation and was positively correlated with the presence of MeCP2 and 

MBD1. 

 



Figure S2 

H3K9Me3 is present at chromocenters in MB and shows slight increase during 

differentiation. Cells were stained with H3K9Me3 specific antibody and DNA 

counterstained with DAPI. Scale bar: 20 m. 

 

Figure S3  

MeCP2 physically interacts with HP1 . Schematic representation of the constructs used 

in the experiment. GST and GST-HP1  were immobilized and incubated with purified 

MeCP2 (see supplemental method). Input (1%) and bound (15%) MeCP2 is shown. 

Whereas GST alone did not pull down MeCP2, an equivalent amount of GST-HP1  was 

able to specifically pull down MeCP2. 

 

Figure S4 

MeCP2 interacts preferentially via its N-terminal domain with the CSD domain of HP1. 

Schematic representation of the fusion proteins. Numbers represent amino acid 

coordinates. HEK293-EBNA cells were transfected with the plasmids indicated. 

Immunoprecipitations were done using anti-GFP antibody. Input (I) and bound (B) 

fractions were loaded in the percentages mentioned and analyzed by western blotting 

using anti- HP1  antibody. The ectopically expressed R-HP1 gamma binds to low and 

high affinity sites creating a competitive situation that reveals the preferential binding of 

the endogenous HP1 gamma protein to the N-terminus of MeCP2. 

 



Supplemental Method 

GST pull down assay 

BL21 competent cells were transformed with Glutathione S Transferase (GST) 

expressing plasmid pGex2T1 (Pharmacia) and pGST-HP1  (1). Single colonies from 

each were inoculated in 4ml of LB-Amp separately and incubated with overnight shaking 

at 37
o
C. 2ml of this culture was used to inoculate 200ml of LB-Amp media and further 

incubated till O.D600 reached to 0.6. 200μl of 1M IPTG (1mM final concentration) was 

added to each flask. After 3 hours of incubation, the culture was pelleted at 4000 rpm for 

30 min 4
o
C. All the further steps were done at 4

o
C unless otherwise stated. Cells were 

lysed using a high pressure homogenizer (EmulsiFlex-C5, Avestin) and extracts loaded 

on pre-equilibrated Glutathione Superflow Resin (Clontech) for 2 hours with shaking. 

Bound GST and GST-HP1  were checked on a gradient NuPAGE 4-12% Bis-Tris gel 

using MOPS SDS running buffer, and stained with Simply Blue Safe Stain (Invitrogen) 

along with purified MeCP2. MeCP2 (pTYB1) was produced and purified as described 

(2). Equal amounts of GST and GST-HP1  were then incubated with purified MeCP2 

overnight. Bound and flow through fractions were boiled in Laemmli sample buffer and 

analyzed on a gradient gel.  

1. Nielsen, A.L., Oulad-Abdelghani, M., Ortiz, J.A., Remboutsika, E., Chambon, P. 

and Losson, R. (2001) Heterochromatin formation in mammalian cells: 

interaction between histones and HP1 proteins. Mol Cell, 7, 729-739. 

2. Georgel, P.T., Horowitz-Scherer, R.A., Adkins, N., Woodcock, C.L., Wade, P.A. 

and Hansen, J.C. (2003) Chromatin compaction by human MeCP2. Assembly of 



novel secondary chromatin structures in the absence of DNA methylation. J Biol 

Chem, 278, 32181-32188. 
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Rett syndrome is a neurological, X chromosomal-linked disorder associated 
with mutations in the MECP2 gene. We have recently found that MeCP2 

induces large-scale heterochromatin remodeling. Therefore, we tested whether 
MeCP2 Rett mutations were affected in their ability to bind and induce 
aggregation of heterochromatin. We found that all 21 MeCP2 mutants analyzed 
accumulated at heterochromatin with the exception of R111G and surprisingly 

only a third of them were significantly affected. Furthermore, one third of all 
mutants showed also a significantly decreased ability to cluster 
heterochromatin. Yet both MeCP2 binding to and clustering of chromatin were 
not directly correlated but these two properties further allowed the separation 

of the mutants into two groups. Importantly, the mutations belonging to each 
group (binding or clustering impaired) segregated into two distinct surfaces of 
the MBD of MeCP2, thus ascribing novel chromatin functions of the MeCP2 
MBD affected in Rett syndrome. 

 
Rett syndrome (RTT, MIM 312750) is a postnatal neurological disorder, with an 

incidence of ~ 1/10,000 female births. The females develop normally until 6-18 

months of age, but after that, the growth is drastically slowed down, followed by the 

development of stereotypical hand movements, autistic behaviour, loss of speech 

and motoric skills, respiratory disorders, etc. Mutations in the chromosome Xq28 

region corresponding to the MECP2 gene have been shown to be linked to the 

disease 1. MeCP2 recognizes methylated cytosines via a highly conserved methyl 

cytosine-binding domain (MBD) and is concentrated in the densely methylated 

pericentric heterochromatin 2. Its ability to recruit transcription repression complexes 

and histone deacetylases via a region overlapping with its transcriptional repression 

domain (TRD) has been proposed to link both mechanisms of gene regulation by 
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stabilizing the heterochromatin state 3 . The mechanism(s) by which mutant MeCP2 

causes Rett syndrome is though thus far unknown. 

Several types of MECP2 gene mutations including deletions and also duplications 

have been found in Rett patients 4 5. A summary of MECP2 mutations along with their 

frequency is shown in Figure 1A (http://mecp2.chw.edu.au/cgi-

bin/mecp2/search/printGraph.cgi#MS). The most common are missense mutations 

(black lines in frequency plot), which cluster within the MBD. The structure 6 7 and 

conservation of this domain (in yellow) are depicted in Figure 1B and C, where the 

regions highlighted in blue recognize the methyl cytosines (displayed in white) and 

the residues making direct contacts with the cytosines are boxed in blue (Figure 1C). 

We have recently shown that the MBD of MeCP2 has the ability to reorganize and 

cluster pericentric heterochromatin 8 . Given that most Rett missense mutations 

affect this domain, we set out to investigate whether they were impaired on binding to 

and/or cluster heterochromatin. 

We selected Pmi28 mouse myoblasts as our cellular assay system. This cell line was 

used before to characterize the dose-dependent effect of wild type MeCP2 on the 

spatial organization of chromocenters and it expresses very low to undetectable level 

of endogenous wild type MeCP2 8. Moreover, it showed a stable and nearly normal 

karyotype (39, X0) (data not shown), resulting in moderate number of chromocenters 

compared to polyploid cell lines. Also, the stability of the karyotype minimized 

irreproducible variations of chromocenter number caused by variable numerical 

chromosome aberrations. 

We used mammalian expression constructs containing the mutant human MECP2e2 

isoform cDNAs fused at the C-terminus of the enhanced GFP coding sequence 9. All 

21 missense mutations within the MBD are highlighted in pink in Figure 1C and the 
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mutated forms of the wild type residues indicated below the sequence alignment. 

Intranuclear localization of the fusion proteins and the induction of chromocenter 

clustering in transfected cells were assessed by epifluorescence microscopy using 

the AT-selective DNA dyes Hoechst 33258, DAPI or TOPRO-3 to independently 

visualize pericentric heterochromatin. 

We first tested these MeCP2 Rett mutants for their protein accumulation at the 

chromocenters by taking a ratio of average mean intensity of protein bound at 

chromocenters versus nucleoplasm. The results indicate that all the mutant proteins 

showed an enrichment at chromocenters (ratio was greater than 1), but to very 

different extents (Figure 2). R111G mutant protein accumulated to the lowest extent. 

This mutant has been shown before to exhibit complete loss of function of MeCP2, 

and no longer repress Sp1-mediated transcriptional activation of methylated and 

unmethylated promoters 9. We found that it mislocalizes to the nucleoli instead of 

pericentric heterochromatin (Figure 2 and Figure S1). Except for P101H, R133H, 

E137G, A140V, all the other analyzed mutant proteins accumulated at 

chromocenters less than the wild type, with more than half significantly affected in 

their accumulation ability as compared to wild type (p value shown in the table, 

Figure 2). 

Since several mutants associated less efficiently with heterochromatin, we then 

tested whether they would be impaired in their ability to cluster heterochromatin in 

vivo. To assess the degree of heterochromatin clustering in a quantitative manner, 

we scored the number of chromocenters in cells expressing the wild type and mutant 

proteins (Figure 3). A statistical analysis was performed utilizing a Kolmogoroff-

Smirnoff test comparing cumulative frequencies of chromocenter numbers. The 

potential of the proteins to induce clustering is reflected by the slope of the 
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cumulative frequency curve, which represents the percentage of nuclei with a certain 

number of chromocenters or less. A steeper curve consequently means a higher 

percentage of nuclei with a lower number of chromocenters. The Kolmogoroff-

Smirnoff test revealed a significantly larger amount of chromocenters in cells 

expressing P101H mutant protein compared to wild type MeCP2 expressing cells. 

This was also the case for the R111G mutant, which though did not at all 

accumulated at heterochromatin. The A140V mutant on the other extreme behaved 

similarly to wild type MeCP2. This mutation has not only been reported in association 

with very mild clinical symptoms 10. Altogether, a third of the mutant proteins were 

significantly affected and showed an intermediate clustering potential as compared to 

wild type. We further tested this effect in human cells expressing wild type or mutant 

MeCP2 by immunostaining in combination with fluorescence in situ hybridization 

using three DNA probes simultaneously to detect the major pericentric 

heterochromatin regions present in chromosomes 1, 9 and 16, and obtained a similar 

outcome (Figure S3A and B).  

Next we tested whether the clustering of chromocenters generally reflected the 

amount of protein that accumulated at these regions. Hence, we plotted the median 

of chromocenter number versus the average accumulation at chromocenters (Figure 

4A). Mutants falling onto an arbitrary line connecting the negative GFP alone control 

and the positive wild type MeCP2 control show an inverse correlation between 

binding to chromocenters and corresponding numbers of chromocenters, i.e. binding 

less is accompanied by more clustering. Interestingly, in the majority of the mutants 

neither a direct nor an inverse correlation between both parameters was found. In 

fact, several mutants were deficient in heterochromatin binding but only mildly 

affected in clustering of chromocenters and grouped to the left of the line (Figure 4A, 
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green) whereas the majority of mutants were mildly to non-affected in 

heterochromatin binding but disproportionately affected in clustering of 

chromocenters and grouped to the right of the line (Figure 4A, red). Interestingly, 

when we applied the same color code to label the residues in the MBD structure, the 

two subclasses nicely segregated onto two different surfaces of this domain (Figure 

4B). The latter indicated that, in addition to the residues known to make contact with 

the methylated cytosines indicated in blue (Figures 1C and 4), this domain could be 

further functionally subdivided into a surface affecting primordially heterochromatin 

association (in green) and a second surface involved in clustering chromatin (in red). 

Mutants in these different MBD subdomains could be predicted to have different 

binding kinetics in vivo. Hence, we performed in situ extraction as well as 

fluorescence photobleaching recovery experiments on selected mutants that were 

either not affected in binding and clustering of chromatin (A140V), or affected only in 

clustering (P101H) or in both functions (R133L). The R133L mutation resulted in 

higher extractability and a much faster FRAP recovery, probably reflecting disruption 

of binding to the methylated cytosines. A minimal level of 5mC seems to be required 

for efficient accumulation of MeCP2 at heterochromatin, as shown by the lack of 

chromocenter localization of a GFP-tagged MBD fusion in Dnmt1/3a/3b triple knock-

out cells 12. Our live-cell kinetic data indeed indicated that albeit the ability to 

accumulate at heterochromatin to a low extent, the R133L mutant MeCP2 interacted 

only very transiently and with low affinity. Very similar FRAP kinetics were recently 

reported for different mutation of this residue, R133C 13. Both substitutions had 

similar heterochromatin clustering potential (Figure 3) although the R133L had a 

somehow lower ability to accumulate at heterochromatin (Figure 2). The in vivo 

accumulation of this mutant at chromatin may be either due to its retaining low affinity 
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recognition of 5mC and/or binding to DNA or other heterochromatin-associated 

proteins. On the other extreme, the A140V mutant protein performed in both assays, 

in situ extraction and FRAP kinetics, as the wild type or even more stably bound to 

chromatin (Figure 5). Importantly, the P101H mutant, which accumulated as the wild 

type at heterochromatin was drastically impaired in clustering chromocenters, and 

had an intermediate FRAP kinetics and was also easier to extract from 

heterochromatin. The FRAP kinetics follow the same trend for the different mutants 

independently of whether the region photobleached included only chromocenters 

(Figure 5B; which measures mostly the contribution of heterochromatin-bound 

MeCP2) or half of the nucleus (Figure 5C; with a higher contribution of the 

nucleoplasmic MeCP2 fraction) or was measured in human cells (Figure S2C). 

Since the P101 is located far away from the 5mC interacting pocket, these data 

suggest that it is primordially involved in connecting chromatin fibers either through 

direct DNA interaction or, more likely, interactions with other chromatin proteins. All 

other substitutions of P101 to L, R, S and T affected heterochromatin clustering albeit 

to different extent. This residue is located in N-terminal part of the MBD and likely 

induces a sharp turn before the two opposing beta-sheets (β1 and β2, Figure 1). 

Interference with this rigid conformation may be more significant upon replacement 

with the not very flexible histidine and less with more malleable amino acids.  

In summary, our analysis of the in vivo chromocenter clustering ability of the different 

mutations clearly indicated that all mutants where this property was significantly 

disrupted (including P101H) mapped to this same surface of the MBD three-

dimensional structure and, importantly, these mutants were not concomitantly 

affected in chromatin binding. Such mutants would be able to bind to DNA quite well, 

as reflected by the chromatin accumulation data, but would be affected in binding to 
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other proteins present at chromatin and, therefore, could not induce chromocenter 

clustering resulting in faster binding dynamics at chromatin. Compared to other 

chromatin binders, the FRAP kinetics of wild type MeCP2 are much faster than the 

core histone components 14 but close to the kinetics of linker histone H1 15,16. Both 

MeCP2 and H1 compete for binding to nucleosomes in vitro 17 and bind to the linker 

DNA 18,19. Moreover, MeCP2 is able to condense chromatin in vitro at the same level 

as histone H1 and under physiological salt concentrations 20. These in vitro data 

suggest that MeCP2 can “crosslink” chromatin fibers together similar linker histone 

H1. We have previously shown that MeCP2 clusters chromatin in vivo 8 and our 

present data suggests that mutations occurring in Rett patients are defective 

precisely in this function. 

Our results and the results from literature 21 on FRAP from other chromatin proteins 

like HP1, show that it is highly mobile with a very fast recovery kinetics (Figure S3). 

The results together point in the direction that proteins that serve/work as chromatin 

compacters, have a stronger binding at the chromatin and thus have a slow recovery 

kinetics. We propose that proteins that lead to higher order chromatin organization 

should not only have a good binding at the chromocenters through multiple modes of 

interactions, but also should stay there for a longer time. This longer residence time 

might help them to make multiple higher order contacts and thus can serve as linkers 

for DNA or chromatin.  

Less stable MeCP2 heterochromatin binding and/or smaller heterochromatin 

domains within the nucleus could conceivably play a role in Rett syndrome etiology. 
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Materials and methods 

Expression plasmids 

Expression vectors encoding GFP-tagged fusions of human wild type or mutant 

MeCP2 cDNA cloned into the pEGFP-C1 vector were described before 9 as was 

GFP-HP1α 21. 

 

Cell culture, transfection and staining 

Pmi28 mouse myoblasts were cultured as described 23. Cells were plated on glass 

coverslips or multiwell dishes (ibidi µ dishes 8 well; Ibidi GmbH, Munich, Germany) 

prior to transfection for fixed cell or live cell experiments, respectively. Cells were 

transfected using TransFectinTM (BioRad, Hercules, CA) following the manufacturer’s 

protocol. Cultures were fixed and DNA stained as described 24. In short, cultures 

were rinsed in PBS and fixed in 3.7% formaldehyde in PBS. Nuclear DNA was 

counterstained using TOPRO-3 (Invitrogen, Carlsbad, CA), Hoechst 33258 or DAPI 

(4’ -6’-diamidino-2-phenylindol) and samples were mounted in vectashield antifading 

medium (Vector Laboratories, Burlingame, CA) or moviol. 

 

Microscopy and image analysis 

Chromocenter clustering induced by GFP-tagged MeCP2 and mutants was assessed 

by visual inspection of GFP and/or DNA signals using widefield epifluorescence 

microscopy with appropriate filter sets (Axiovert 200 microscope; 63x Plan 

apochromat NA1.4 oil lens, Zeiss, Jena) and counting chromocenters in 50-55 nuclei. 

Cumulative frequencies of chromocenter numbers were tested for statistical 

significance differences using a Kolmogoroff-Smirnoff test with Microsoft Excel 

software and plotted with Origin 7.5 software (Origin Lab Corp). 
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To assess the chromocenter binding ability, we collected confocal Z stacks (voxel 

size: 0.05 x 0.05 x 0.3 µm) of 10-15 cells expressing similar levels of the GFP fusion 

protein on either Zeiss LSM510Meta or Leica SP5 microscopes, using 63x/1.4NA oil 

objective and 405nm DPSS (for Hoechst 33258, DAPI), 488nm argon (for GFP) and 

633nm He-Ne (TOPRO-3) laser excitation. Care was taken in selecting the imaging 

conditions to avoid under and over exposed pixels, while keeping the imaging 

conditions constant. The heterochromatic foci were identified by staining with 

TOPRO-3, Hoechst 33258 or DAPI. Image analysis was done using ImageJ version 

1.38x (http://rsb.info.nih.gov/ij). The average mean intensity at the chromocenters 

versus the nucleoplasm was assessed by selecting four regions of equal size in the 

two compartments, calculating the mean fluorescent intensity in each compartment 

and then taking a ratio between both. The formula used to calculate the accumulation 

of MeCP2 and mutants at chromocenters for each construct was: 

Accumulation at chromocenter = average mean intensity at chromocenters / average 

mean intensity in nucleoplasm 

In situ extraction of GFP-tagged wildtype MeCP2, and MeCP2 bearing mutants was 

done by transfecting the cells plated on ibidi dishes with the respective construct. 

Cells were first washed with PBS containing 0.5mM MgCl2, 0.5mM CaCl2 and 

imaged. Then the solution was changed to PBS containing 0.5mM MgCl2, 0.5mM 

CaCl2 and 0.5% Triton X-100. Confocal Z series were recorded over time on a Zeiss 

LSM510Meta microscope, using 63x/1.4NA oil objective. The microscope was 

equipped with a microscope cage incubation chamber (Oko-lab, Ottaviano, Italy) and 

the temperature was maintained at 37oC. GFP was excited with the 488nm argon 

laser line. Confocal Z stacks were acquired with a frame size of 1024 x 1024 pixels 

(voxel size: 0.20 x 0.20 and 1.0µm), at 2 minutes time intervals for 14 minutes. 
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Quantitative evaluation was performed using ImageJ. The mean fluorescence 

intensities at the chromocenters for each cell and time point were calculated for PBS 

and PBS-Triton X-100. First, using ImageJ ‘adjust threshold’ plug-in the 

chromocenters were identified and then ‘create selection’ plug-in was used to assess 

the mean fluorescence intensity only at chromocenters. This procedure was repeated 

for each cell and time point. The whole data set for each cell was then normalized to 

the mean fluorescence intensities of the chromocenters before extraction with Triton 

X-100. The results were evaluated using Microsoft Excel and plotted using Origin 7.5 

software (Origin Lab Corp).  

 

Fluorescence recovery after photobleaching 

Live cell imaging and FRAP experiments were performed on a LSM510Meta confocal 

microscope (Zeiss) using a 63x/1.4NA Plan-Apochromat oil immersion objective. The 

microscope was maintained at 37oC with the help of an Oko-lab cage incubation 

chamber. Confocal image series were recorded with a frame size of 512 x 512 pixels, 

a pixel size of 60 nm, and at 2 sec time intervals. 488nm argon laser line (25 mW) 

was used at 100% transmission to bleach and at 0.05% transmission to record GFP-

tagged fluorophores over time, with the pinhole opened to 3 Airy units. Either a whole 

chromocenter or half of the nucleus was photobleached and 5-10 prebleach and 250-

400 postbleach frames were recorded for each time series. Quantitative evaluation 

was performed using ImageJ and Microsoft Excel. The time series was first corrected 

for translational movements using ‘stackreg’ plug-in from ImageJ and the analysis of 

the FRAP data was performed exactly as described 25. 



Agarwal et al. 

 16 

Figures 

 



Agarwal et al. 

 17 

 

Figure 1: Summary of frequency and localization of MeCP2 Rett mutations. 

(A) Mutation spectrum in Rett patients (IRSA http://mecp2.chw.edu.au/cgi-

bin/mecp2/search/printGraph.cgi#MS), with missense mutations shown in black and 

the others in grey color. Location of individual mutations is indicated on a schematic 

representation of the MeCP2 protein (numbers are amino acids coordinates). MBD 

stands for methyl CpG binding domain, TRD for transcription repression domain and 

NLS for nuclear localization signal. (B) shows a model of the MBD of MeCP2 (yellow) 

interacting with its target 5mC within the DNA double helix 6. Structural data was 

displayed and annotated using PyMOL software (http://pymol.sourceforge.net/). The 

DNA backbone is shown in white along with the methylated cytosines. The MBD of 

MeCP2 is displayed in yellow. The parts of the MBD that make contacts with the 

5mC on DNA are highlighted in blue in the structure on the left hand side and in the 

MeCP2 MBD sequence alignment shown below. (C) The five residues that directly 

interact with the two 5mC are shown in blue. The 21 mutations included in our study 

are listed below the corresponding wild type amino acid on MBD (pink). 
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Figure 2: Mutant MeCP2 proteins accumulate at chromocenters in vivo, albeit 

to very different extent. 

Representative overlay images of phase contrast and GFP fluorescence of cells 

expressing wild type MeCP2 and mutants, showing differential chromocenter 

accumulation ability. The dashed lines indicate the location of the nucleoli. The dot 

plot chart shows the fold accumulation at chromocenters of the 21 mutant proteins, 

the wild type MeCP2 and the EGFP tag alone as controls. All the mutants except 

R111G accumulate at chromocenters, but to very different extent. The yellow color 

highlights the mutants whose accumulation was significantly different (p≤ 0.05) from 

wild type. All mutants accumulated significantly different (p≤ 0.05) with respect to 

EGFP protein alone control (not shown). The table lists the average value of 
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accumulation of each protein at the chromocenters, along with their p value with 

respect to the wild type MeCP2. The experiment was repeated twice with 10-15 cells 

per mutant evaluated each time. 
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Figure 3: Rett mutant proteins are affected in their ability to cluster 

chromocenters. 

(A) The plot shows the percentage cumulative frequencies of chromocenter numbers 

in cells expressing GFP-tagged wild type MeCP2 versus untransfected cells and 
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EGFP transfected cells. (B) Cumulative frequencies of chromocenter numbers in 

cells expressing each of the 21 GFP-tagged MeCP2 mutants. (C) depicts the MeCP2 

Rett mutants that are either most affected (P101H), or less affected (A140V), as well 

as the extreme case of R111G that has lost its ability to bind chromatin, together with 

the controls (wild type MeCP2, EGFP alone and untransfected cells). The table lists 

the median number of chromocenters for each mutant along with the significance 

difference (p≤ 0.05, highlighted in yellow) of mutants with respect to wild type. All 

mutants except P101H and R111G had the median number of chromocenters 

significantly different (p≤ 0.05) with respect to untransfected cells (not shown). The 

experiment was repeated 2 times with 50 cells evaluated per mutant each time. 
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Figure 4: Correlation analysis of chromocenter clustering and accumulation at 

chromatin. 

(A) Accumulation at chromocenters (see Figure 2) and median of chromocenter 

number (see Figure 3) were plotted on the X and Y-axis respectively. The scatter plot 

neither indicates an overall direct nor an inverse correlation. The theoretical line 
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connecting the GFP alone and GFP-MeCP2 delineates the indirect relationship 

between binding to chromatin and chromocenter number (clustering). Mutants 

grouping above the line are color coded in red and the ones grouping below the line 

are in green. Mutants in residues directly interacting with 5mC are shown in blue (see 

Figure 1C). (B) Structure of the MBD (in yellow) of MeCP2 in complex with DNA (in 

white) was displayed as in Figure 1. The residues were given the corresponding color 

as in part A. The location of the green and red residues within the MBD structure 

showed a similar separation in two groups as on the scatter plot.  
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Figure 5: MeCP2 Rett mutant proteins show different kinetics in vivo. 

To assess the mobility and binding kinetics of wild type MeCP2 versus mutants, we 

performed biochemical in situ as well as fluorescence photobleaching recovery 

experiments. (A) In situ extraction kinetics for GFP-tagged proteins was performed by 

permeabilizing the cells on the microscope stage with Triton X-100 and measuring 

the decrease of protein at chromocenters over time. The experiment was repeated 

twice and 7-10 cells were analyzed each time, for each mutant. The line graph shows 

the extraction kinetics of the mutants over time. Error bars represent the standard 

error of mean and representative mid section images are shown on the right. Scale 

bar represents 10µm. (B) FRAP curves of GFP-tagged wild type and mutant MeCP2 

together with representative images before and after photobleaching. For FRAP 

analysis, either a whole chromocenter or half of the nucleus (marked in white) was 

photobleached. For each construct 15-20 cells were averaged and the mean curve 

as well as the standard error of the mean was calculated. Half times of recovery 

shown on the bar histograms were calculated from the mean curves and the error 

bars represent the standard error of mean. 
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Supplemental figures: 

 

Figure S1: MeCP2 mutants differ in their ability to accumulate at 

chromocenters and to induce their clustering.  

Representative confocal microscopy images of Pmi cells expressing GFP fusions to 
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wild type MeCP2 and each of the 21 MeCP2 Rett mutants used in this work. In the 

left panels, the phase contrast image is shown where the nucleus and nucleoli are 

seen. The middle panels depict the GFP fluorescence of a mid optical section and 

the right panels the overlay of both. Chromocenters were additionally visualized by 

counterstaining for DNA (data not shown). The ratio of protein enriched in 

heterochromatin versus nucleoplasm differs strongly between mutants (see also 

Figure 2), as does their ability to cluster the chromocenters (see also Figure 3). 

Furthermore, R111G mutant does not accumulate at chromocenters but rather at 

nucleoli, as can be seen by the overlay with the phase contrast image. 
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Figure S2: MeCP2 induces heterochromatin clustering in human diploid cells.  
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A) Human foreskin diploid fibroblasts (Bj-hTERT) were transfected with a plasmid 

encoding for GFP-tagged human MeCP2, fixed after 12h and immunostained with 

anti-MeCP2 and anti-GFP. The image shows one exemplary field including one 

transfected cell identified by direct GFP fluorescence as well as anti-GFP and anti-

MeCP2 antibodies staining. The second cell was not transfected and hence shows 

no GFP or anti-GFP signals. The lack of any signal with the MeCP2-specific antibody 

in the untransfected cells indicates that Bj-hTERT cells, similarly to Pmi cells, do not 

contain detectable levels of endogenous MeCP2. (B) The top panel depicts an 

ideogram of G-banded human chromosomes 

(www.pathology.washington.edu/galleries/cytogallery/main.php?file=human%20kary

otypes). Chromosomes 1, 9 and 16 contain the largest pericentric heterochromatin 

regions (marked in red), as compared to the other chromosomes, and were, thus, 

selected for our analysis of MeCP2-induced heterochromatin clustering. Cells were 

transfected with constructs coding for GFP-tagged wild type and mutant human 

MeCP2 and clustering of these heterochromatic regions analyzed by simultaneous 

hybridization with three DNA probes from the pericentric heterochromatin DNA of 

these three chromosomes. Cells expressing the GFP-tagged MeCP2 proteins were 

identified by immunostaining with anti-MeCP2 antibody and DNA was counterstained 

with DAPI. Confocal Z stacks of images from the GFP-MeCP2 signal, overall DNA 

signal and DNA FISH probes were then acquired. The three dimensional rendering of 

one such cell is shown where the contour of the nucleus is depicted by the white grid 

and the FISH signals of the three pericentric heterochromatin regions in red. The 

cumulative frequency % of the FISH signals counted in the presence of different 

MeCP2 mutants is shown together with the table listing the average number of 

chromosome signals and their p value with respect to the wild type MeCP2 (p≤ 0.05, 
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highlighted in yellow). Experiments were repeated twice with 30 cells evaluated each 

time per construct. Even with this extremely narrow dynamic range, between 3 and 6 

chromosome signals, a significant difference could be measured in the number of 

FISH signals, which follows the one found in the chromocenter clustering analysis in 

mouse cells. (C) FRAP and the corresponding kinetic data analysis on the MeCP2 

and mutants expressed in human Bj-hTERT cells. Half times of recovery were 

calculated from the mean curves and are shown in the bar chart. The error bars 

represent the standard error of mean. The experiment was repeated twice with 15-20 

cells evaluated each time per construct. 
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Figure S3: Comparison of the heterochromatin binding kinetics of MeCP2 Rett 

mutant proteins and HP1. 

FRAP curves of GFP-tagged wild type MeCP2, mutant MeCP2 and HP1α expressed 

in Pmi cells together with representative images before and after photobleaching of 

chromocenters (marked in white). For each construct 15-20 cells were averaged and 

the mean curve as well as the standard error of the mean was calculated. Half times 

were determined from the mean curves and are shown in the bar chart. The error 

bars represent the standard error of the mean. 
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Supplemental methods: 

Human cell culture and transfection 

The human foreskin fibroblast (Bj-hTERT) cell line (ATCC BJ-5ta) was derived by 

transfection of human foreskin fibroblasts with the pGRN145 hTERT expression 

plasmid and selection of stable immortalized cell clones 1. It is a diploid human cell 

line with a modal chromosome number of 46 that occurred in 90% of the cells 

counted and karyotypically normal X and Y sex chromosomes. 

Human Bj-hTERT fibroblasts were cultured in DMEM medium containing 10% FCS, 

glutamine and gentamicin. Cells were transfected using the Amaxa nucleofactor 

(Amaxa AG, Cologne, Germany) or TransFectinTM (BioRad, Hercules, CA) following 

the manufacturer’s protocols.  

 

ImmunoFISH 

For fluorescence in situ hybridization, the following DNA probes were used: repetitive 

specific human DNA probe pUC 1.77 2 for chromosome 1, alphoid DNA probe 

pMR9A for the centromeric region 9q12 of chromosome 9 and alphoid DNA probe 

pHUR-195 for the centromeric region 16q11.2 of chromosome 16. These DNA 

probes were labeled by standard nick translation with Cy5-dUTP (Amersham, 

Buckinghamshire, UK). The labeled DNA was further purified by ethanol-precipitation 

and the pellet resuspended in hybridization solution (70% formamide, 2xSSC, 10% 

dextran sulfate, pH 7.0). The probes were denatured at 80 °C for 5 minutes.  

For immunoFISH cells were fixed with 4% paraformaldehyde in PBS for 10 minutes 

and permeabilized with 0.25% Triton X-100 in PBS for another 10 minutes. Primary 

(rabbit polyclonal anti-MeCP2) and secondary (anti-rabbit IgG Alexa Fluor 568; 

Molecular probes, CA, USA) antibodies were diluted in PBS with 0.2% fish skin 
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gelatin and incubated sequentially for one hour each at room temperature. After 

immunostaining, the cells are post-fixed with 4% paraformaldehyde for 60 minutes 

followed by post-permeabilization with 0.5% Triton X-100 in PBS for 10 minutes, 0.1 

M HCl for 10 minutes and 20% glycerol for 4 minutes. Probes were added to the cells 

and sealed with rubber cement to decrease evaporation of the probe over night. They 

were then denatured simultaneously at 75 °C for 5 minutes and hybridized over night 

at 37 °C. Non-hybridized probe was washed off using 50% formamide in SSC at 45 

°C three times followed by two washes with 2xSSC. DNA was counterstained with 

DAPI and the cells were mounted using vectashield.  

MeCP2 expressing cells were identified by the positive staining with the anti-MeCP2 

antibody and complete Z stacks of images (voxel size: 80 x 80 x 200 nm) of the DAPI 

(excited at 405 nm) and Cy5 (excited at 633 nm) signals for whole DNA and 

chromosomes 1, 9 and 16 pericentric heterochromatin regions, respectively, were 

acquired on a Leica SP5 laser scanning microscope using a 63x/1.4NA oil objective.  

FISH signals were counted manually through these stacks. 3D rendering was done 

using UCSF chimera (www.cgl.ucsf.edu/chimera).  

 

 

Supplemental references: 

1. Bodnar, A.G. et al. Extension of life-span by introduction of telomerase into normal 

human cells. Science 279, 349-52 (1998). 

2. Cooke, H.J. & Hindley, J. Cloning of human satellite III DNA: different components 

are on different chromosomes. Nucleic Acids Res 6, 3177-97 (1979). 
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4. DISCUSSION 

In recent years, lot of research work has already been done on MeCP2 but still little is 

known about its role in chromatin reorganization during development and disease. In 

this study, using a combination of biochemical and microscopical techniques, I could 

show an interaction and interdependency between two major epigenetic factors, MeCP2 

and HP1. Furthermore, I demonstrate that MeCP2 plays an important role in 

determining higher order chromatin organization and, disruption of this function, takes 

place on MeCP2 mutants found in patients with a neurological disorder termed Rett 

syndrome. 

 

4.1. Chromatin clustering is induced by MeCP2 and not HP1 during differentiation 

Recently, our group has shown that the MBD domain of MeCP2 is capable of causing 

chromosome clustering (Brero et al., 2005). In the present work, I have dissected this 

chromocenter clustering property of MeCP2 in vivo, during differentiation and disease. 

Recently, it has been shown that MeCP2 binds to nucleosomes in a very similar manner 

as linker histone H1 (Ishibashi et al., 2008) and, accordingly, MeCP2 was able to 

displace linker H1 pre-bound to chromatin (Nan et al., 1997). When the chromatin 

compacting properties of MeCP2 are compared with linker histones like H1 and H5, 

MeCP2 appears to have a stronger effect. As shown in vitro (Georgel et al., 2003) and 

in vivo (Brero et al., 2005), MeCP2 forms highly compacted condensed structures, 

whereas linker histones are shown to form a relatively decondensed zigzag 

conformation of nucleosomes and linker DNA (Bednar et al., 1998). In fact, histone H1-

bound chromatin can reach an equivalent amount of compaction to MeCP2-bound 

chromatin but only at three times higher ionic strength (Hansen, 2002).  

We have recently shown that HP1 does not cause chromocenter clustering in vivo 

(Brero et al., 2005). Also, in this work I could show that HP1 alone cannot cause 

chromocenter clustering, and the latter only occurred in cells co-expressing an MBD 

family member (Agarwal et al., 2007). Furthermore, it has been shown that HP1α, does 

not have a similar binding mode to nucleosomal arrays as MeCP2 (Fan et al., 2004). 

MeCP2 has been shown to be capable of folding nucleosomal arrays (Georgel et al., 

2003) in vitro, whereas HP1α can only bind to folded nucleosomal arrays (Fan et al., 

2004). Hence, HP1α per se might only be able to induce local rearrangements of folded 

secondary chromatin structures, and does not seem to be able to cause the formation of 
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such structures themselves. The results of the kinetic FRAP analysis on HP1α versus 

MeCP2 in this work indicated that HP1 is far more mobile on chromatin than MeCP2. 

The latter likely reflects the multiple chromatin binding modes of MeCP2 (Chahrour et 

al., 2008; Cohen et al., 2008), recognizing methylated cytosines as well as DNA, which 

could allow and/or facilitate intra/inter-chromatin fiber connections resulting in clustering 

and compaction of chromatin. 

 

4.2. Chromatin clustering is affected by mutations in MeCP2 

Mutations in MeCP2 gene are found in 80% of Rett syndrome patients (Trappe et al., 

2001).The difference in phenotypic variability associated with different mutations on 

MeCP2 gene depends upon the pattern of X chromosome inactivation (XCI). In females, 

one of the two X chromosomes is active in each cell. This results in a mosaic situation, 

in terms of X chromosome gene expression (either maternal or paternal) and further 

complicates any gene therapy based approach. 

Several reports in the literature point to the fact that missense mutations are mostly 

present on the MBD domain of MeCP2. Since our data showed that this domain is 

necessary and sufficient to cause chromatin clustering (Brero et al., 2005), I 

investigated whether these mutations affected this novel function of MeCP2. To 

determine the significance of these missense mutations on the chromatin compaction 

ability of MeCP2, I examined this effect on a total of 21 MBD missense Rett mutations. 

Through several assays, I could show in the present work that mutations on the MBD 

domain of MeCP2 can indeed result in disruption of distinct functions of MeCP2 like 

accumulation and dynamics of protein at chromocenters, and chromocenter clustering. I 

could also overlay the results from our analysis as a whole on the structure of the MBD 

domain of MeCP2.  

I could show that P101H mutant protein revealed a significantly larger amount of 

chromocenter number as compared to wild type. Also, R111G mutant showed defect in 

chromocenter clustering ability and has been shown earlier to result in a complete loss 

of function of MeCP2 (Kudo et al., 2003) and, indeed, I could not detect any binding to 

heterochromatin. Replacement of proline with histidine at position 101 might result in 

large-scale changes in the protein structure, as proline provides a nick and rigidity at 

that position in the protein structure, whereas histidine being a flexible amino acid might 

prevent it. MeCP2 A140V mutant retained chromatin binding and clustering equivalent 
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to wild type. It has been shown that A140V mutation correlates with an almost normal 

clinical phenotype (Couvert et al., 2001; Orrico et al., 2000) and even males with this 

mutation can survive, being therefore a very mild mutation. 

The analysis of the accumulation of protein at pericentric heterochromatin indicated that 

R106W and R111G, though still able to bind at chromocenters, show the lowest 

accumulation ability. R106W has been shown to lie on the ß2 sheet (Wakefield et al., 

1999) and so has been predicted to strongly impair MBD function and inducing 

misfolding of MBD (Ballestar et al., 2000; Yusufzai and Wolffe, 2000). In addition to 

residue R111, residues R133 and S134 interact directly with the methylated cytosines. I 

tested three mutants of R133 residue, R133H accumulated better than wild type MeCP2, 

R133C accumulated less and R133L was the least able to accumulate, though all the 

three accumulated significantly different from wild type MeCP2. S134C mutant 

accumulated similarly to wild type MeCP2. R133 and S134 have been shown to be less 

critical for the MBD function than R111 (Kudo et al., 2003). K135E, E137G, T158A, 

T158M, Y120D, F155I showed intermediate impairment in chromatin binding.  

To determine whether the MeCP2 MBD mutations affected the kinetics of 

chromatin binding, I performed in vivo kinetic studies (in situ extraction and FRAP) on 

selected mutants, which were either not affected in binding and clustering of chromatin 

(A140V), or affected only in clustering (P101H) or in both functions (R133L). R133L 

mutation resulted in higher extractability and a much faster FRAP recovery. This could 

be explained if we take into consideration the predicted NMR solution structure of 

MeCP2 with methylated DNA (Ohki et al., 2001; Ohki et al., 1999; Wakefield et al., 

1999), indicating that this residue is involved in binding to the methylated cytosines. 

Furthermore, methyl cytosines seem to be required for efficient accumulation of MeCP2 

at heterochromatin, as shown by the lack of chromocenter localization of a GFP-tagged 

MBD fusion in Dnmt1/3a/3b triple knock-out cells (Tsumura et al., 2006). Our live-cell 

kinetic data indeed indicates that albeit able of accumulate at heterochromatin to a low 

extent, the R133L mutant MeCP2 interacts only transiently and with low affinity. The in 

vivo accumulation of this mutant to chromatin may be either due to retaining a low 

affinity recognition of methylcytosine and/or binding to DNA or other heterochromatin-

associated proteins. The results of kinetic data from P101H mutant highlight an 

intermediate ability to bind chromatin, whereas A140V mutant is quite similar to wild 

type MeCP2. In view of the position of the P101 residue in the MBD structure and the 

fact that this domain is not known to bind DNA (Nikitina et al., 2007b), I propose that this 
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surface of the MBD is likely involved in protein-protein interactions promoting 

connections between chromatin. My analysis of the in vivo chromocenter clustering 

ability of the different mutations clearly indicated that all mutants where this property 

was significantly disrupted (including P101H) mapped to this same surface of the MBD 

three-dimensional structure and, importantly, these mutants were not concomitantly 

affected in chromatin binding. Such mutants would be able to bind to DNA quite well, as 

is also clear from the chromatin accumulation data, but would be affected in binding to 

other proteins present at the chromatin and, therefore, could not induce chromocenter 

clustering resulting in faster binding dynamics at chromatin. Less stable MeCP2 

heterochromatin binding and/or smaller heterochromatin domains within the nucleus 

could conceivably play a role in Rett syndrome etiology. 

 

4.3. Modes of MeCP2 binding that lead to higher order chromatin structures 

Based on our results and the results from other groups, I hypothesize that there are at 

least three binding classes for MeCP2: (a) binding to methylated and unmethylated 

chromatin (b) binding to other chromatin proteins (c) binding to itself. 

 

4.3.1. Binding of MeCP2 to methylated or unmethylated chromatin 
There are several lines of evidence in the literature showing the binding of MeCP2 to 

DNA and chromatin. It has been shown that MeCP2 forms discrete complexes with 

nucleosomal DNA associating with methyl-CpGs exposed in the major groove via the 

methyl-CpG-binding domain (MBD). The interaction of MBD domain of MeCP2 to 

methylated DNA is due to the presence of five highly conserved residues that form a 

hydrophobic patch (Ohki et al., 2001). 

Furthermore, in vitro MeCP2 can bind to methylated as well as unmethylated DNA 

(Georgel et al., 2003). In addition to the MBD, the carboxyl-terminal segment of MeCP2 

facilitates binding both to naked DNA and to the nucleosome core (Chandler et al., 

1999).  

 
4.3.2. Binding of MeCP2 to chromatin proteins 

A connection between chromatin structure, DNA methylation and histone acetylation 

has been long known and discussed. MeCP2 could serve as an interconnecting 

element in this phenomenon. Evidence in that direction comes from the fact that, during 
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biochemical purifications of MeCP2, in both mammals and Xenopus, Sin3A was also 

co-purified (Jones et al., 1998; Nan et al., 1998), along with HDAC.  

MeCP2 has been shown to interact in addition with several proteins as shown earlier in 
Figure 6. In this study, I also found a novel interacting partner of MeCP2, HP1 (Agarwal 

et al., 2007) which is involved in transcriptional silencing.  

 

We have recent preliminary evidence indicating homo and heterodimerization between 

MBD protein family members (data not shown).  
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Figure 9. Model depicting different modes of MeCP2 binding and MeCP2 induced higher order 
chromatin structures. 

The model in Figure 9 highlights the different binding modes of MeCP2. Though no 

strict order of binding that can be predicted at this time, binding to methylated DNA 

could constitute a basic initial binding site for MeCP2. This is suggested by the lack of 
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heterochromatin association of the MBD domain of another family member MBD1 in the 

triple knockout ES cells for Dnmt1/a/3b (Tsumura et al., 2006). This basic binding of 

MBD proteins to methylated cytosines could be followed by binding of several other 

proteins to MeCP2 as well as the interaction between MeCP2 itself and other MBD 

protein family members. I suggest that the cooperation of all these binding modes, 

which individually may have low affinity, promotes ultimately stable association of 

MeCP2 at heterochromatin, as measured in the FRAP and in situ extraction 

experiments. This stable binding could facilitate connections within and between 

chromatin fibers and lead to a dynamic yet stable organization of heterochromatin 

domains with a modulating effect on the level of transcriptional noise. 
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5. OUTLOOK 

Building upon the results obtained in this work, several lines of investigation could be 

pursued. 

It would be interesting to elucidate the role of MeCP2, with special emphasis on the 

MBD domain in chromatin compaction in vitro. The goal of the project would be to know 

in detail, which part of the MBD domain is responsible for such an effect. This could be 

done by performing chromatin aggregation assays using recombinant purified MeCP2 

starting with the particular Rett mutants identified in this analysis. 

Another interesting set of parallel experiments would be to screen for interacting 

partners of MeCP2. This could be done in several ways: (a) yeast 2 hybrid approach (b) 

fluorescence 3 hybrid assay (c) mass spec analysis of MeCP2 co-precipitated proteins, 

followed by validation by GST pull down assays. This could be followed by comparing 

the proteins co-precipitating with wild type versus mutant MeCP2 thus would also allow 

to pinpoint which protein interaction(s) are relevant for chromatin clustering. 

During this work, I got several preliminary results indicating that MeCP2 interacts with 

itself and other members of the MBD family. A detailed analysis of these interactions 

should be performed together with a better mapping of the domains involved. In vivo co-

immunoprecipitation as well as in vitro pull-down assays together with deletion analysis 

should be performed as was done for the characterization of the HP1 interaction with 

MeCP2. In addition, the size of the MeCP2 containing complexes could be determined 

by gel filtration analysis of cell extracts as well as in vitro reconstituted complexes. 

Finally, it would be very interesting to elucidate the structure of the mutant proteins 

analyzed in this study, in particular, P101H, R111G, R133L, A140V etc. This, together 

with the identification of binding partners (DNA or proteins) affected by the particular 

Rett mutations, should help elucidating the mechanism of chromatin higher-order 

organization by MeCP2. 
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7. ANNEX 

7.1. Abbreviations 

5mC  5-methyl cytosine 

Brm  Brahma 

CBX  chromobox homolog 

CD  chromodomain 

CDKL5 cyclin dependent kinase like 5 

CoREST co repressor of repressor element RE-1 silencing transcription factor 

CSD  chromoshadow domain 

Dnmt   DNA methyl transferase 

FBP11 formin binding protein 11  

FRAP  Fluorescence recovery after photobleaching  

HAT  histone acetyl transferase 

HDAC  histone deacetylases 

HMGB1 high mobility group protein 1 

HMT  histone methyl transferase 

HP1  heterochromatin protein 1 

LANA  latency associated nuclear antigen  

MeCP2  Methyl CpG binding protein 2 

MBD1  methyl CpG binding protein 1 

MBD  methyl CpG binding domain 

N6mA  N6-methyladenine 

NLS  nuclear localization signal 

NMR  nuclear magnetic resonance 

NuRD  nucleosome remodeling and histone deacetylation 

PAC  P1-derived artificial chromosome 

PU.1  Ets family transcription factor  

RTT  Rett syndrome 

SAM  S-adenosyl-L-methionine 

SET domain  Su(var)3-9, Enhancer of Zeste, Trithorax domain 

TFIIB  transcription factor II B 

TRD  transcription repression domain 

UTR  untranslated region 
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XCI  X chromosome inactivation 

YB1  Y box binding protein 1 

 

Abbreviations listed in the publications are not mentioned here. 
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Abstract

Class II MHC molecules display peptides on the cell surface for the surveillance by CD4+ T cells. To ensure that these ligands
accurately reflect the content of the intracellular MHC loading compartment, a complex processing pathway has evolved
that delivers only stable peptide/MHC complexes to the surface. As additional safeguard, MHC molecules quickly acquire a
‘non-receptive’ state once they have lost their ligand. Here we show now that amino acid side chains of short peptides can
bypass these safety mechanisms by triggering the reversible ligand-exchange. The catalytic activity of dipeptides such as
Tyr-Arg was stereo-specific and could be enhanced by modifications addressing the conserved H-bond network near the P1
pocket of the MHC molecule. It affected both antigen-loading and ligand-release and strictly correlated with reported
anchor preferences of P1, the specific target site for the catalytic side chain of the dipeptide. The effect was evident also in
CD4+ T cell assays, where the allele-selective influence of the dipeptides translated into increased sensitivities of the
antigen-specific immune response. Molecular dynamic calculations support the hypothesis that occupation of P1 prevents
the ‘closure’ of the empty peptide binding site into the non-receptive state. During antigen-processing and -presentation P1
may therefore function as important ‘‘sensor’’ for peptide-load. While it regulates maturation and trafficking of the complex,
on the cell surface, short protein fragments present in blood or lymph could utilize this mechanism to alter the ligand
composition on antigen presenting cells in a catalytic way.
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Introduction

The endosomal route is considered to be the default pathway for

the loading of class II MHC molecules. Here the MHC molecule

encounters internalized proteins serving as antigen source inside

the cell in an acidic lysosomal-like compartment (MIIC) [1,2].

However, experiments with fixed cells or MHC expressing cells

lacking key components of the processing pathway indicate that

MHC loading can take place also directly on the cell surface. This

applies not only for optimally sized peptides but also for larger

polypeptide chains or even full-length proteins [3–5]. In particular

immature dendritic cells (DC) could utilize this pathway. These

DC contain a large fraction of ‘empty’ class II MHC molecules on

the cell surface, which may allow the direct capturing of antigens

from the extracellular space [6,7].

While for these cells cell-surface processing seems to represent a

major antigen-loading pathway, on other cells it could cause

irregular immune responses. Namely on mature DC or activated B

cells the ligands presented on the cell surface should accurately

reflect the peptide composition inside the MIIC compartment.

Presumably as safeguard, a mechanism has evolved that prevents

the ‘accidental’ loading of class II MHC molecules. MHC

molecules, once they have lost their ligand, rapidly convert into

a stable inactive state that is ‘non-receptive’ for free peptides [8,9].

Neither the receptive nor the non-receptive conformation has been

structurally defined yet, so that they are characterized solely by

their kinetic parameters.

While in principle the conversion between the two forms is

reversible, the equilibrium is largely shifted towards the non-

receptive conformation. As a consequence, cell surface loading is

usually very inefficient, which hinders the induction of productive

immune responses during peptide vaccinations. In the endosomal

processing pathway MHC-loading is facilitated by HLA-DM, a

chaperone stabilizing the ‘peptide receptive’ state [10,11]. In

previous studies we have shown that surprisingly also small organic

compounds can exhibit this effect [12,13]. Similarly to HLA-DM,

these ‘MHC-loading enhancers’ (MLE) stabilize a peptide

receptive state resulting in accelerated antigen-loading and ligand

exchange. Here we demonstrate that not only simple organic

chemicals but also amino acid side chains can mediate this effect.

In experiments with short dipeptides we could demonstrate that

they can provoke both ligand exchange and peptide loading when

targeted to the conserved P1 anchor pocket of the class II MHC

molecule. The presence of ‘peptide-MLE’ during T cell assays

therefore significantly improved the cell surface loading of antigen

presenting cells (APC) with peptide antigens, which directly
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translated into an increased sensitivity of antigen-specific T cell

responses.

Results

Studies with synthetic organic MHC ligand-exchange catalysts

pointed already to the P1-pocket as specific target site for ‘MHC-

loading enhancer’ (MLE) [12]. The pocket is located in the

binding groove close to the N-terminal side of the peptide ligand.

In the ligand-complex the pocket accommodates the side chain of

a key anchor residue of the peptide (Fig. 1A). It was therefore

assumed that the MLE-effect may also be achieved with small

natural-like compounds consisting of amino acids. In order to test

this assumption soluble HLA-DR1 molecules were incubated with

the high-affinity peptide ligand HA306-318 in the presence of

amino acids or very short peptides. While free amino acids did not

exhibit any effect (data not shown) the simple dipeptide Tyr-Arg

(YR) accelerated the MHC-loading with the HA306-318 peptide

in a dose-dependent way (Fig. 1B). No effect was observed with the

Ala-Arg (AR) dipeptide lacking the aromatic anchor side chain,

indicating that the replacement of tyrosine by alanine completely

abrogated the MLE-effect.

As illustrated in Fig. 1A the stability of the MHC/ligand

complex is maintained by an H-bond network formed with the

backbone of the peptide. A considerable number of these bonds is

formed in the immediate vicinity of the P1-pocket. To further

stabilize the dipeptide by maximizing the number of H-bonds,

acetyl- and amide-groups were introduced to the N- and C-termini

of the dipeptides. Computational docking of acetylated dipeptide

amide Ac-YR-NH2 to the P1-pocket of HLA-DR1 indicates that

as much as five of the conserved H-bonds can be formed with this

minimal peptide (coordinates of the docking is enclosed in the

supplemental PDB-file PDB_Coordinates S1). Compared to the

free dipeptide YR a more than 10 fold increase in the catalytic

activity was observed with Ac-YR-NH2 (Fig. 2A). A partial MLE-

effect was observed also with Ac-YR and YR-NH2, whereas Ac-

AR-NH2 was still completely inactive. To confirm the importance

of a natural peptide structure, a dipeptide analogue to Ac-YR-

NH2 was employed in which tyrosine was replaced by b-

homotyrosine (b3hY). The introduction of this amino acid

increased the distance between the side chains by an additional

CH2-group and resulted in a total loss of activity (Fig. 2B).

Likewise any replacement of the standard L-amino acids by the

respective D-enantiomer abrogated the catalytic activity. Also the

dipeptide Ac-ry-NH2 composed of D-amino acids in inverse

sequence did not show any effect, indicating a strict stereo-

specificity of the catalyst (Fig. 2C).

Steric requirements, H-bond usage and in particular the failure

of dipeptides lacking the aromatic side chain further supported the

assumption that the effect was mediated by the dimorphic P1

pocket. The pocket of HLA-DR1 (DRB1*0101) contains the

residue b86G, which results in a preference for aromatic and, to a

lower extent, for aliphatic anchor residues [14]. To determine

whether these preferences are reflected in the catalytic activity of

peptide-MLE, a collection of acetylated dipeptide amides was

tested in which the tyrosine residue of Ac-YR-NH2 was replaced

by one of the two other aromatic amino acids phenylalanine (F)

and tryptophan (W) and by the aliphatic amino acids leucine (L),

methionine (M), isoleucine (I), and valine (V). In line with

expectation, strongest increase was observed with the dipeptides

containing F, Y or W, while the dipeptides with aliphatic side

chains showed weaker activity (Fig. 2D). No enhancement was

detected with Ac-ER-NH2 where tyrosine was substituted by

glutamate (E) which belongs to the residues not fitting in the P1

pocket of HLA-DR1 [15].

The mean catalytic MLE-activity is summarized in Table 1. For

soluble HLA-DR1 (DRB1*0101) the catalytic rate enhancement

coefficient was determined to be 6.5 mM21, 3.7 mM21 and

3.5 mM21, for minimal peptide-MLE containing F, Y and W

Figure 1. Amino acid side chains of short peptide fragments can catalyze the formation of MHC/ligand complexes. a) Location of P1
and the H-bond network in class II MHC molecules. Left panel: top view on the peptide binding site of the class II MHC molecule HLA-DR1. Only the
a1- (blue ribbon) and the b1-domain of the MHC molecule (red ribbon) are depicted; position of P1 is indicated. The backbone of the peptide ligand
HA306-318 and the anchor side chain filling the P1 pocket are shown in yellow; MHC residues forming H-bonds with the backbone are labelled in
grey. Right panel: side view of a P1 pocket loaded with the tyrosine anchor side chain. Surface of the pocket is indicated in yellow; amino acid
residues forming this pocket are indicated; the peptide is shown in spacefill mode (green). Images are based on the crystal structure of HA306-318/
HLA-DR1 (PDB: 1DLH) [38]. b) The catalytic impact of dipeptide side chains on the formation of antigen-complexes. The influence of short peptides on
the complex formation-rate between HA306-318 and soluble HLA-DR1 was determined. The loading reaction was carried out in the presence of
titrated amounts of the dipeptides Tyr-Arg (YR, filled circle) or Ala-Arg (AR, open circle) or in the absence of these dipeptides (dashed line). Complex
formation was determined by ELISA and is expressed as relative enhancement in reference to the spontaneous complex formation in the absence of
any catalyst. The amount of catalytic peptide fragments (MLE concentration) is indicated on the x-axis.
doi:10.1371/journal.pone.0001814.g001
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respectively. Compared to Ac-FR-NH2, the dipeptides with

aliphatic MLE side chains exhibited only between 12% (L) and

4% (V) of the activity. Similar catalytic activity was also detected

for some unmodified tripeptides as well as for two peptides derived

from invariant chain (LRMK, LRMKLPK) [16]. As ‘Ii-key’ they

had been described to facilitate MHC-loading by targeting an

allosteric invariant chain binding site located outside the P1

pocket. Their activity, however, was not significantly higher than

that of the unmodified tripeptides and the combined use with the

more active peptide-MLE Ac-FR-NH2 did not show any

cooperativity (data not shown). Notably, no effect was observed

for the N-terminal fragment of the invariant chain octapeptide

(LRKPPKPV). Although the fragment was reported to facilitate

antigen-loading and catalyze the self-release of the invariant chain

peptide IC106-120 (CLIP) [17] at least in this experimental system

no catalytic effect was observed.

So far, the impact of peptide-MLE was determined only on the

loading of empty MHC molecules. To evaluate their influence on

complex dissociation soluble class II MHC molecules were

preloaded with the medium affine CLIP peptide (Fig. 3). Although

the peptide binds to HLA-DR1 with lower affinity than HA306-

318 there was virtually no spontaneous decay detectable (left

Figure 2. Structure/activity relationships of catalytic dipeptides. a) Role of H-bonds for the catalytic activity of dipeptides. Various H-bond
bridges proximal to the P1 pocket stabilize the ligand complex (compare Fig. 1a). N-terminal acetylation and C-terminal amidation was introduced to
the YR dipeptide to facilitate the utilization of this H-bond network by minimal peptide-MLE catalysts. The influence was demonstrated in loading
reactions with HA306-318 and sol. HLA-DR1 in the presence of titrated amounts of YR (filled circle), Ac-YR (open circle), YR-NH2 (open triangle), Ac-YR-
NH2 (open square) and as control Ac-AR-NH2 (open diamond). b) Impact of elongated side chain spacing. A dipeptide derivative was used in which
the side chain spacing was elongated a single CH2-group by using the L-b-homotyrosine (Ac-b3hYR-NH2; open circle) instead of tyrosine (Ac-YR-NH2;
filled circle). c) Influence of D-amino acids. Complex formation was carried out in the presence of titrated amounts of Ac-YR-NH2 (filled circle), Ac-ry-
NH2 (open circle), Ac-rY-NH2 (open triangle), Ac-Ry-NH2 (open square), Ac-yR-NH2 (open diamond), Ac-Yr-NH2 (open triangle up), Ac-yr-NH2 (open
hexagon). D-amino acids are indicated by small letters. d) Structural requirements of the catalytic anchor side chain. The P1 pocket of HLA-DR1
interacts preferably with bulky hydrophobic anchor side chains. To compare the catalytic activity with the known structural preferences of P1 the
complex formation of HA306-318/HLA-DR1 is shown for Ac-FR-NH2 (filled circle), Ac-WR-NH2 (filled triangle down), Ac-YR-NH2 (filled square), Ac-LR-
NH2 (open circle), Ac-MR-NH2 (open triangle down), Ac-IR-NH2 (open square), Ac-VR-NH2 (open diamond), Ac-ER-NH2 (open triangle up).
doi:10.1371/journal.pone.0001814.g002
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panel). The same applies also when the experiment was carried out

in the presence of dipeptide-MLE. The situation looked different

when HA306-318 peptide was added (right panel). In less than

2 h, 50% of the HLA-DR1/CLIP complex disappeared when Ac-

FR-NH2 was present during dissociation. Notably, in the absence

of catalyst more than 80% of the complex still remained intact

even after 64 h of incubation indicating that the dipeptide-MLE is

able to increase also the off-rate of peptide-ligands. In the presence

of Ac-YR-NH2 and Ac-LR-NH2 the half-life was shortened to

,4 h and ,10 h while Ac-AR-NH2 had only a very limited effect.

The reversible acceleration of both complex formation and

complex dissociation could therefore be correlated with the

anchor preference of the P1 pocket.

In order to formally demonstrate that the catalytic side chains of

peptide-MLE act through the P1 pocket, mutants of HLA-DR1 were

generated in which the glycine residue b86 at the floor of P1 was

replaced either by valine (b86V) or by tyrosine (ß86Y) (Fig. 4). In

HLA-DR, b86V represents the natural dimorphic alternate to

b86G. Occupation of b86 by valine produces a shallow hydrophobic

pocket that is able to accommodate aliphatic side chains but, in

contrast to b86G-pockets, is too small for bulky aromatic residues

[18]. The non-natural substitution b86Y has been shown to produce

MHC molecules that are highly receptive but contain a P1 pocket

blocked by the tyrosine residue [19]. Here, only those peptides can

bind where the binding does not depend on the P1 pocket.

Therefore, loading experiments were therefore carried out with

ABL908-922, a pentadecapeptide derived from the ABL kinase that

can form a complex with all three variants (Höpner et al. manuscript

in preparation) (Fig. 4, upper panels). In the absence of any peptide-

MLE, ABL908-922 binds equally strong to wt HLA-DR1 (b86G)

and HLA-DR1 (b86GRV). Due to the inherently increased

receptiveness of the mutant [19], it exhibits the highest spontaneous

on-rate with HLA-DR1 (b86GRY). Also here the addition of

peptide-MLE resulted in increased loading reactions (Fig. 4, lower

panel). With wt HLA-DR1 (b86G) the enhancement of ABL908-922

loading corresponded to the result obtained with HA306-318, in

which the aromatic dipeptides showed stronger enhancements than

the aliphatic Ac-LR-NH2 peptide. The pattern was reversed for

HLA-DR1 (b86GRV). In line with the anchor preferences of the

shallow P1 pocket, best enhancement was obtained with Ac-LR-

Table 1. Catalytic activity of short peptides on the loading of
soluble HLA-DR1 with HA306-318

Compound*
Catalytic Rate Enhancement**
[6103 M-1 ]

rel. cat.
Activity*** [%]

a) Minimal peptide-MLE

1 Ac-FR-NH2 6.5 +/2 1.2 100

2 Ac-YR-NH2 3.7 +/2 1.0 57

3 Ac-WR-NH2 3.5 +/2 0.9 54

4 Ac-LR-NH2 0.76 +/2 0.08 12

5 Ac-MR-NH2 0.52 +/2 0.00 8

6 Ac-IR-NH2 0.43 +/2 0.01 7

7 Ac-VR-NH2 0.25 +/2 0.02 4

8 Ac-ER-NH2 0.02 +/2 0.02 0

9 Ac-AR-NH2 0.00 +/2 0.00 0

b) Catalytic tripeptides

10 YFR 0.68 +/2 0.29 11

11 YKT 0.59 +/2 0.12 9

12 KYV 0.51 +/2 0.15 8

13 GYV 0.49 +/2 0.16 8

c) ‘Invariant Chain’-derived peptides

14 LRMKLPK 0.98 +/2 0.21 15

15 LRMK 0.53 +/2 0.15 8

16 LRKPPKPV 0.00 +/2 0.00 0

*‘Minimal peptide-MLE’ and ‘catalytic tripeptides’ are introduced in this study,
catalytic activity for ‘invariant chain derived peptides’ has been reported for
LRMK and LRMKLPK [16] and for LRKPPKPV [17].

**The ‘Catalytic Rate Enhancement’ coefficient (k) represents the relative
increase of the spontaneous loading rate (rspont) in the presence of the
catalytic peptide (Pcat). The total rate (rtot) can be calculated by (rtot = rspont+
k [Pcat] rspont).

***‘‘rel. cat. Activity’’ indicates the relative catalytic activity of peptide derivatives
and is expressed as percentage in reference to the catalytic rate
enhancement of Ac-FR-NH2.

doi:10.1371/journal.pone.0001814.t001

Figure 3. Catalytic dipeptides trigger reversible ligand exchange. To demonstrate that peptide-MLE can catalyze the reversible ligand
exchange, complex dissociation of CLIP/HLA-DR1 induced by the peptide-MLE was determined in the absence (left panel) or presence of 200 mg/ml
free HA306-318 (right panel). In this experiment 10 mM Ac-FR-NH2, (filled circle), Ac-YR-NH2 (filled triangle), Ac-LR-NH2 (open circle), Ac-AR-NH2 (open
triangle) or no catalysts (cross) was used. The percentage of CLIP/HLA-DR1 complex remaining after indicated time points was determined by ELISA.
doi:10.1371/journal.pone.0001814.g003
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NH2 while weaker amplification was detected with aromatic

dipeptides. No enhancement was observed with HLA-DR1

(b86GRY). Even a slight reduction was detected at the highest

dipeptide concentration used, while 4-chlorophenol (pCP), a simple

disubstituted benzene known to act independent of P1 [12,13], still

exhibited an MLE-effect.

Exposure of cells to synthetic organic MLE facilitated the antigen

loading directly on cell surface MHC molecules [12,13]. To

determine whether this applies also for peptide-MLE, 721.221 cells

expressing HLA-DR1-GFP fusion proteins (721.221-DRb1GFP)

were incubated in the absence or presence of Ac-FR-NH2 with

biotinylated HA306-318 peptide. After staining with fluorescence-

labelled streptavidin, imaging of the cells by confocal laser scanning

microscopy revealed a striking increase in the amount of peptide

bound to the cell surface in the presence of Ac-FR-NH2 (Fig. 5A).

While almost no HA306-318 peptide was detectable when the

loading was carried out in the absence of the dipeptide-MLE, the

addition of the catalyst resulted in a bright surface staining that

colocalized with the HLA-DR1-GFP fusion protein.

In a more detailed analysis the peptide loading of cells was

analyzed by FACS (Fig. 5B). For these experiments fibroblast cells

were used that do not express endogenous class II MHC molecules

but were transfected with full length versions of wt HLA-DR1

(b86G) and mutated HLA-DR1 (b86GRV). As in the previous

experiment the cells were incubated with biotinylated MHC-

binding peptide ABL908-922 in the absence or presence of titrated

amounts of catalytic dipeptides (Fig. 5B, upper panels). Quanti-

fication of peptide-loading by FACS revealed a similar pattern as

observed before with soluble MHC molecules (compare Fig. 4).

On fibroblasts expressing wt HLA-DR1 the strongest enhance-

ment was observed with aromatic dipeptides, while the aliphatic

Ac-LR-NH2 peptide showed the weakest effect. Similar effects

were also observed with bone-marrow derived dendritic cells

obtained from HLA-DR1 transgenic mice (data not shown). On

cells expressing the mutated b86GRV molecule, the aliphatic Ac-

LR-NH2 was more effective than the peptide-MLE with aromatic

side chains. Thus, also the enhancement cell surface loading

correlated with the allele-specific anchor preferences of P1.

Importantly, the increased loading efficiency translated directly

into improved CD4+ T cell responses (Fig. 5B, lower panels).

CD4+ T cell hybridoma specific for the ABL epitope (SaABL/G2)

showed the strongest response when they were stimulated with

fibroblast cells that had been loaded before in the presence of the

dipeptides. The pattern of enhancement reflected the catalytic

Figure 4. Allele selectivity of catalytic dipeptides. Recombinant soluble HLA-DR1 molecules were mutated inside the P1 pocket and used in
loading experiments with ABL908-922, a peptide able to bind to wt as well as to the mutated forms of HLA-DR1 (S. Höpner, unpublished). Upper
panels: the spontaneous loading of ABL908-922 is shown for wt HLA-DR1 (b86G), for HLA-DR1 (b86GRV) and HLA-DR1 (b86GRY). The formation of
ABL908-922/HLA-DR complex is expressed in counts per minute (cpm); dashed line indicates background signal. Lower panels: The allele-selective
effect of catalytic dipeptides is shown. The influence on HLA-DR loading is shown for Ac-FR-NH2 (filled circle), Ac-WR-NH2 (filled triangle down), Ac-
YR-NH2 (filled square) and Ac-LR-NH2 (open circle) and for p-chlorophenol (pCP; cross with dashed line), a simple aromatic MLE compound acting
independent of P1 [13]. 1.5 mg/ml ABL908-922 were used for wt HLA-DR1 and HLA-DR1 (b86GRV) and 0.2 mg/ml for HLA-DR1 (b86GRY). Complex
formation is expressed as relative enhancement in reference to the spontaneous complex formation in the absence of any catalyst. The loading was
determined by ELISA.
doi:10.1371/journal.pone.0001814.g004
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effect on antigen loading as it directly correlated with the allele-

specific P1-anchor preference. Aromatic dipeptides were most

efficient on wt HLA-DR1 (b86G) while the aliphatic Ac-LR-NH2

showed best stimulation with cells expressing the mutated HLA-

DR1 (b86GRV) with the shallow P1 pocket.

The influence of catalytic dipeptides on the CD4+ T cell

response was further studied in in vitro T cell assays in which T cells

and APC were exposed to free peptide antigens and peptide-MLE.

In these experiments HA306-318 was used as antigen to challenge

two different HLA-DR-restricted CD4+ T cells, the mouse T cell

hybridoma EvHA/X5 (Fig. 6A, upper panels) and the human T

cell line PD2 (Fig. 6A, lower panels). For both cell lines the

presence of peptide-MLE resulted in a drastic increase in the

sensitivity of the T cell response. Titration of the peptide-MLE at

suboptimal antigen dosage revealed maximal enhancement of the

T cell response at concentrations around 2–3 mM (left panels). At

these concentrations the dose response curves for the HA306-318

antigen were shifted up to 50-fold towards lower concentrations

(right panels). While a half-maximal response in the absence of

catalyst was detected at a concentration of 31 ng/ml for EvHA/

X5 and of 14 ng/ml for PD2, Ac-FR-NH2 lowered the threshold

to 0.65 ng/ml and 0.23 ng/ml, respectively. In line with the

previous data weaker effects were determined with Ac-LR-NH2.

Lastly, to confirm that peptide-MLE mediated enhancement

can be observed also with primary cells, lymph node cells from

HLA-DR1tg mice were challenged ex vivo in the absence or

presence of Ac-FR-NH2. The mice were primed either with

HA306-318 or with NY-ESO-1 89-101, a CD4+ T cell epitope

derived from the NY-ESO-1 protein associated with various solid

tumours [20]. After 12 days the antigen-specific ex vivo response

was determined by an IFN-c ELISPOT assay (Fig. 6B). In line

with the previous results, the catalytic dipeptide was found to

significantly increase the sensitivity of the assay. At concentrations

of 5 ng/ml HA306-318 (upper panel) and of 50 ng/ml NY-ESO-1

89-101 (lower panel) the number of spots representing single IFN-c
secreting cells was significantly higher when the Ac-FR-NH2 was

added. Thus, short peptides exhibiting MLE-like activity can

amplify immune responses also in primary cultures containing

‘natural’ CD4+ T cells and professional APC.

Discussion

Our experimental data show that short peptide fragments can

influence the ligand composition of class II MHC molecules in a

catalytic way. By placing an amino acid side chain into a defined

pocket of the MHC molecule they trigger ligand-exchange and

antigen-loading. Mutational analysis indicated already that the

occupation of pocket P1 is crucial for the catalytic effect of organic

MLE compounds [12]. As demonstrated here for the human

molecule HLA-DR1, a similar role could also be established for the

ligand exchange driven by short peptides. P1 is present in all MHC

class II molecules. It is located within the peptide binding site and

accommodates the side chain of a key-anchor residue of the peptide

ligand. While the location of the pocket is conserved, it contains

polymorphic residues that determine allele-specific preferences for

anchor residues. Since the same structural requirements also dictate

the interaction with ‘catalytic’ side chains of short peptides, they

exhibit their effect in an allele-selective way.

As shown before for simple organic compounds the MLE

mechanism is based on the stabilization of the peptide-receptive

Figure 5. Enhanced loading of cell surface MHC by peptide-MLE. a) Confocal laser scanning analysis of cell surface loading. 721.221-DRb1GFP
cells expressing a GFP-tagged HLA-DR1 molecule were incubated with biotinylated HA306-318 peptide in the absence or presence of Ac-FR-NH2.
After staining with streptavidin-Cy5 images were taken by confocal laser scanning microscopy. Scale bar represents 10 mm. b) Impact on APC loading
and T cell response. Fibroblast transfectants expressing either wt HLA-DR1 (left panels) or mutated HLA-DR1 (b86GRV; right panels) were incubated
with ABL908-922 in the presence of titrated amounts of Ac-FR-NH2 (filled circle), Ac-WR-NH2 (filled triangle), Ac-YR-NH2 (filled square), Ac-LR-NH2

(open circle) or in the absence of any peptide-MLE. Upper panels: Analysis of cell surface loading by FACS. Fibroblast cells were incubated with 12 mg/
ml biotinylated ABL908-922. After 4h peptide loading was determined by FACS and is expressed as geometrical mean (geo. mean). Lower panels:
Enhancement of the ABL908-922-specific T cell response. Fibroblast cells expressing wt HLA-DR1 or HLA-DR1 (b86GRV) were incubated for 4 h with
150 ng/ml or 300 ng/ml ABL908-922, washed and used to challenge SaABL1/G2, an ABL908-922 specific T cell hybridoma that recognizes the peptide
on both HLA-DR1 molecules. The response is expressed as IL-2 release; dashed lines represent the T cell response triggered in the absence of any MLE
compounds.
doi:10.1371/journal.pone.0001814.g005
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conformation [12]. Earlier studies showed already that the

substitution of residue b86G by tyrosine resulted in a ‘filled’ P1

pocket and produced an MHC molecule with elevated receptive-

ness [21]. P1 is located proximal to the binding site of HLA-DM

and binding studies suggested that HLA-DM interacts specifically

with the flexible empty hydrophobic P1-pocket [21]. While the

active conversion of a non-receptive molecule by HLA-DM has

recently been questioned [22], it is undisputed that the chaperone

interacts with a region proximal to P1 to stabilize the peptide

receptive conformation [10,11,23,24].

In a recent publication we introduced a model in which the

transition to the non-receptive state is directly correlated with

structural changes inside pocket P1. Experimental evidence was

taken from the observation that P1-targeting MLE compounds

prevent this transition [12]. The strict correlation of the catalytic

activity with the structural requirements of P1 introduced by this

study provides additional support to the hypothesis that the

stabilization of P1 prevents the transition into the non-receptive

state. A molecular dynamic (MD) simulation confirmed that the

pocket P1 is indeed quickly lost when the peptide ligand is stripped

off from the MHC molecule (Rupp et al. manuscript in

preparation) (Fig. 7). Calculations based on the coordinates of

the crystal structure of the HLA-DR1/HA306-318 complex

revealed that the most significant transitions were detected near

the P1 pocket. While these shifts resulted in a narrowing of the two

a-helices by more than 7Å (Fig. 7A), they also led to a complete

loss of the P1 pocket. In less than 15 ns the P1 cavity was filled

with side chains or removed by distortions (Fig. 7C,D). Notably,

this collapse was prevented when prior to the MD simulation the

Ac-FR-NH2 was docked into the P1 pocket (Fig. 7B).

Based on this model even the partial occupation of the binding site

by a very short peptide is sufficient to stabilize the receptive state as

long as it positions an anchor side chain inside the P1-pocket

(supplemental PDB file PDB_Coordinates S1). P1 therefore seems to

function as a sensor for the peptide load where occupation leads to a

stabilization of the ‘open’ conformation required to accommodate

the peptide ligand. Studies by other groups have already shown that

the loading status of P1 plays a crucial role as indicator in the

intracellular antigen-processing pathway. The interaction with

HLA-DM seems to depend on the loading state [21] and its catalytic

activity was reported to be mediated by bH81, a conserved residue

located on top of the P1 pocket [24].

While inside the cell the occupational state of P1 seems to

control the interaction with key-components of the processing

pathway, on the cell surface it may regulate the transition into the

non-receptive conformation. Here, it functions as trigger for a

safeguard mechanism that closes the binding site as soon as the

ligand is lost. In this study we showed that small peptide fragments

can by-pass this mechanism in a catalytic way. Particularly striking

is the effect on the ligand exchange. Peptide-MLE were able to

increase not only the loading of empty HLA-DR molecules but

also the dissociation of HLA-DR molecules preloaded with lower-

Figure 6. Amplification of the antigen-specific T cell response. a) Enhancement of the in vitro T cell response. The influence of catalytic peptides
on the antigen-specific CD4+ T cell response was tested with a mouse T cell hybridoma EvHA/X5 (upper panels) and a human T cell line PD2 (lower
panels). Both recognize the HA306-318 antigen in the context of HLA-DR1. The left panels show the influence of titrated amounts of Ac-FR-NH2 (filled
circle), Ac-YR-NH2 (filled triangle) or Ac-LR-NH2 (open circle) by EvHA/X5 and PD2 in the presence of 15 or 2 ng/ml HA306-318, respectively. The response
in the absence any catalyst is indicated as a dashed line. The right panels are showing the dose response curves of HA306-318 in the presence of 5 mM Ac-
FR-NH2 (filled circle) or Ac-LR-NH2 (open circle), 3 mM Ac-YR-NH2 (filled triangle) or in the absence of any peptide-MLE (cross). Dashed line indicates the
background. b) Enhancement of the ex vivo T cell response. Lymph node cells were isolated from HLA-DR1tg mice primed with HA306-318 peptide or NY-
ESO-1 89-101. The ex vivo response was determined by an IFN-c ELISPOT assay by challenging the cells with 5 ng/ml HA306-318 (upper panel) or 50 ng/ml
NY-ESO-1 89-101 (lower panel), respectively. The bars represent the number of spots detected in the absence (black bar) or presence of 2.5 mM Ac-FR-NH2

(grey bar). Each spot originates from a single IFN-c secreting cell; dashed line indicates the background signal.
doi:10.1371/journal.pone.0001814.g006
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affinity ligands in a reversible reaction. Both effects should account

for the increased antigen-loading of cell surface MHC molecules,

which translated directly into improved CD4+ T cell responses. As

molecular tool MLE compounds may therefore find applications in

experimental and therapeutic settings in which improved antigen

loading is desired. A particular suitable field may be peptide-based

tumour immune interventions, where the exposure of antigen to a

hostile proteolytic environment is extended by the limited access to

receptive MHC molecules on the surface of professional APC.

While the importance of CD4+ T cells for productive tumour

immune responses has just begun to be fully discovered [25] their

role in the induction of autoimmune responses has long been

acknowledged [26]. It is evident for instance in the strong genetic

link to class II MHC molecules and in the fact that experimental

autoimmune diseases can often be induced by the adoptive

transfer of auto-aggressive CD4+ T cells. In this respect

‘accidental’ loading of these cells with self-antigens by peptide-

MLE may therefore trigger unwanted auto-aggressive responses.

In vitro we have shown already that the presence of simple organic

MLE compounds can enhance encephalitogenic T cell responses

[12,13]. The same may also apply for colitis or celiac disease.

Intestinal dendritic cells are known to penetrate gut epithelia cells

[27] and expose their dendrites inside the gut lumen to extremely

high polypeptide concentrations originating from the diet or

commensal debris. Capture of soluble antigens by immature DC

from lymph or blood, on the other hand, also seems to be an

important mechanism for tolerance induction [28] and direct cell

surface loading has been discussed as an alternative processing

pathway of immature dendritic cells [6,7]. Natural protein

fragments present in blood or lymph acting as peptide-MLE

may therefore participate in this process by mediating the direct

transfer of antigens onto cell surface MHC molecules.

Materials and Methods

Compounds and reagents
The following peptides were used: IC106-120 (KMRMATPL-

LMQALPM; ‘CLIP’ peptide) [29], HA306-318 (PKYVKQNT-

LKLAT) [30], NY-ESO-1 89-101 (EFYLAMPFATPME) [20] and

human ABL 908-922 (KGKLSRLKPAPPPPP) (Hopner et al.,

Figure 7. Molecular dynamic (MD) calculation of ‘empty’ and peptide-MLE stabilized HLA-DR1. The coordinates of the MHC component
of the crystallized HLA-DR1/HA306-318 complex (1DHL) were used to carry out a 15 ns MD calculation with an ‘empty’ MHC molecule. a) Dynamic of
the empty MHC molecule. The floor composed of the b-plated sheats is depicted in magenta, the a-helices of the starting structure are shown in red,
a-helices of the structure obtained after 15 ns are shown in blue. The approximate position of P1 is indicated. While the dynamic was carried out with
all extracellular domains, only the binding site is shown (a1-, b1-domain). b) Dynamic of the peptide-MLE stabilized MHC molecule. The same MD
calculation was carried out as in Fig. 7a except that coordinates of an HLA-DR1 molecule were used, in which prior to the MD calculation the peptide-
MLE Ac-FR-NH2 was docked into the P1 pocket. c) P1 pocket in the peptide loaded MHC complex. The image shows a cross-section of the HLA-DR1/
HA306-318 complex. The surface of the MHC molecule is shown in yellow, the peptide ligand in red; position of the P1 pocket is indicated. d) Loss of
P1 in the empty MHC molecule. The same cross-section shown in Fig. 7c for the peptide-loaded MHC is shown here for the empty molecule obtained
after 15 ns of MD calculation. In this structure the P1 pocket can no longer be located.
doi:10.1371/journal.pone.0001814.g007
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unpublished). N-terminal biotinylation was introduced using two

6-amino hexanoic acid spacer units. Stock solutions of short

peptides (100 mM) were prepared with DMSO/PBS after

ultrasound sonication at the following DMSO concentrations:

YR, AR (0%); LRMK, YFR, GYV, Ac-AR-NH2, Ac-ry-NH2, Ac-

rY-NH2, Ac-Ry-NH2, Ac-yR-NH2, Ac-Yr-NH2 and Ac-b3hYR-

NH2 (10%); Ac-FR-NH2, Ac-YR-NH2, Ac-LR-NH2, Ac-ER-NH2

(15%); LPKPPKPV (20%); Ac-WR-NH2 (25%); Ac-VR-NH2, Ac-

MR-NH2, Ac-IR-NH2, Ac-RY-NH2 (100%). All peptides were

produced by EMC microcollections GmbH (Tübingen, Germany)

and analyzed by RP-HPLC (214 nm) and ESI-MS.

Antibodies and soluble HLA-DR1
Phycoerythrin- (PE) conjugated streptavidin was purchased from

Caltag, a-HLA-DR-PE (L243) was obtained from BD Biosciences.

Unlabelled a-HLA-DR (L243) and a-IFN-c (AN18.1724 and R4-

6A2) were purified from hybridoma supernatant by Prot.A and

Prot.G columns (GE Healthcare). R4-6A2 was labeled with NHS-

Biotin according to the manufactures recommendation (Pierce).

Soluble wt HLA-DR1 (DRA*0101, DRB1*0101) [31] was produced

in S2 insect cells as described [13]. Mutant forms of HLA-DR1 were

expressed in a baculovirus expression system. Briefly, DNA coding

for the extracellular domains of DRA*0101 and DR1B*0101 was

separately cloned into the transfer vector pFastbac 1 (Invitrogen).

Leucine zipper domains were added to the C-termini of the a- and b-

chain as described [32]. Site-directed mutagenesis of HLA-DR1 b-

chain was carried out using the QuickChange site-directed

mutagenesis kit (Stratagene). Recombinant viruses were generated

in S. frugiperda cells (Sf21). For expression of proteins, cells were co-

infected with viruses for the a- and b-chain.

Cells
The following class II expressing cell lines were used: L929

fibroblasts (ATCC) transfected with wt (DRB1*0101) or mutated

HLA-DR1 (HLA-DRB1*0101 b86V) [12], EBV-transformed B

cell 721.221 (ATCC) and HTR [33]. 721.221-DRb1GFP cells

were produced by stably transfecting 721.221 cells with a HLA-

DR ß-chain (DRB1*0101) C-terminally fused to EGFP (Falk et al.

unpublished). The following T cells were used: DRB1*0101-

restricted, HA306-318-specific mouse hybridoma line EvHA/X5

[12] and human CD4+ T cell line PD2 [33]; the ABL 908-922-

specific T cell hybridoma SaABL/G2 was generated after fusing a

CD4+ T cell line generated in HLA-DR1 tg mice [34] with BW

cells (Hopner et al., unpublished).

Peptide loading of soluble HLA-DR1 molecules
Loading experiments with soluble MHC molecules were carried

out as described [13]. Briefly, 100 nM HLA-DR1 was incubated

with 50 mg/ml of biotinylated HA306-318 peptide (PBS, pH 7.4,

37uC, 1 h). The amount of peptide/MHC complex formed was

determined by ELISA with the a-HLA-DR capture antibody (L243,

ATCC) and Eu3+-labelled streptavidin (DELFIA,Wallac) using a

Victor 3V reader (Perkin Elmer). Ligand exchange experiments were

carried out with preloaded HLA-DR1/CLIP complexes (1,5 mM

HLA-DR1, 50 mg/ml biotinylated CLIP, 18-20 h, pH 7.4, 5%

ethanol/PBS) diluted 1:15 and incubated with or without 200 mg/ml

HA peptide in presence and absence of 10 mM dipeptide [12]. All

experiments are carried out at 2 or 3 times.

Peptide loading of cell surface MHC molecules
Loading experiments were carried out as described [12]. Briefly,

16105 HLA-DR expressing cells/well were incubated with

biotinylated MHC-binding peptides in presence and absence of

catalytic dipeptides (4 h, 37uC, DMEM, 5% FCS, 96 well V-

bottom plates). For FACS analysis cells were stained with

streptavidin-PE and analyzed on a FACScalibur instrument (BD

Biosciences). Dead cells were excluded by propidium iodide

staining. Experiments were carried out twice.

Confocal laser scanning microscopy
Briefly, 16105 HLA-DR1 expressing cells (721.221-DRb1GFP)

per well were incubated with 20 mg/ml of biotinylated HA 306-

318 peptide in presence and absence of 2.5 mM Ac-FR-NH2 (4 h,

37uC, DMEM, 5% FCS, 96 well V-bottom plates). Cells were then

washed and were incubated on poly-L-lysine (sigma) coated plates

for 30 min. at 37uC in RPMI medium (Gibco), followed by a

15 min. 3.7% formaldehyde fixation. After washing cells were

stained with streptavidin-Cy5 (Amersham) and mounted with

vectashield (vector labs). Fixed cell microscopy was performed with

a Zeiss LSM510Meta confocal setup (636 phase contrast plan-

apochromat oil objective). Experiments were carried out twice.

T cell assays
T cell assays were carried out as described [13]. Briefly, 56104

HLA-DR expressing cells/well were incubated with MHC-binding

peptides in presence and absence of catalytic dipeptides (37uC,

DMEM, 5% FCS, 96 well round-bottom plates). In assays with

antigen-pulsed APC, cells were washed after 4 h before 56104 T

cells were added, in permanent exposure assays the T cells were

added directly without prior removal of the peptides. In experiments

with T cell hybridoma the culture supernatant was removed after

24 h and the T cell response was determined by measuring IL-2

release in a secondary assay with CTLL cells (ATCC) as described

previously [35]. In experiments with T cell lines, APC were radiated

with 60.7 Gy and 3H-thymidine was added after 48h and the

incorporation was determined using a 1450 Microbeta counter

(Wallac). Experiments were carried out twice.

Detection of ex vivo response by ELISPOT assay
HLA-DR1tg mice were primed with 5 mg HA306-318 or 10 mg

NY-ESO-1 89-101 in incomplete Freud’s adjuvant (Sigma)/50 mg

CpG OND 1826 (BioTez GmbH). On day 12, lymph node cells

were isolated and incubated in ELISPOT-plates (Multiscreen HTS

96 well Filteration plate; Millipore) coated with a-IFN-c (clone

AN18.1724). Cells were incubated at a density of 16106

splenocytes/well with indicated amounts of HA306-318 and Ac-

FR-NH2 peptide (20–40 h, 37uC, 5% CO2, RPMI 5% FCS).

Detection was carried out according to manufacturer’s recommen-

dation using the biotinylated a-IFN-c detection antibody (clone R4-

6A2), avidin–HRP enzyme conjugate (Sigma) and 3,3 diaminoben-

zidine tablets (Sigma). Spots were counted using ‘Immunospot’

reader (C.T.L Europe GmbH). Experiments were carried out twice.

Calculation of the ‘catalytic rate enhancement’
The ‘catalytic rate enhancement’ coefficient was determined in

loading assays with 100 nM soluble HLA-DR1 and 50 mg/ml

HA306-318 with titrated amounts of the catalytic peptide-MLE (1 h,

37uC, pH 7.4). A curve fit was carried out by a hyperbola regression

(f(x) = ax/(b+x)) using the Sigmaplot Version 9.0 software (Systat

Software Inc.) and the coefficient was determined by forming the

average of the starting slope (a/b) of 2–4 independent experiments.

Docking and ‘Molecular Dynamics’ calculation
The benzene ring of the phenylalanine residue and the

backbone of the Ac-FR-NH2 dipeptide were superimposed to

the residues Y308 and V309 of the HA306-318 peptide in the
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HA306-318/HLA-DR1 crystal structure 1DLH, followed by a

conformation search with the arginine side chain of the dipeptide

to find an optimal orientation. Subsequently, the complex

structure was minimized using the Tripos software (SYBYL 7.3,

Tripos Inc., St. Louis, USA) and the GROMACS force field [36].

For both, the empty MHC structure and the Ac-FR-NH2/MHC-

complex, a 15 ns molecular dynamic simulation in the GRO-

MACS force field was performed (Rupp et al., manuscript in

preparation). The simulations were done under physiological

conditions (0.9% NaCl, 310 K) after equilibration over a period of

500 ps using a positional restraint of 1000 kJmol21nm22. Frames

were stored every 5 ps, visualisation of trajectories and arrange-

ment of the figures were realised using VMD [37].

Supporting Information

PDB_Coordinates S1 The text file contains the calculated

coordinates of the complex Ac-FR-NH2/HLA-DR1 in PDB-file

format. For the docking of Ac-FR-NH2 the benzene ring of the

phenylalanine residue and the backbone of the dipeptide were

superimposed to the residue Y308 (located within the P1 pocket)

and V309 of the HA306-318 peptide in the HA-306-318/HLA-

DR1 crystal structure 1DLH. Subsequently, the complex was

minimized using Tripos and the GROMACS force field. Chain A:

HLA-DR1 a-chain (DRA*0101); chain B: HLA-DR1 b-chain

(DRB1*0101); chain C: Ac-FR-NH2

Found at: doi:10.1371/journal.pone.0001814.s001 (0.26 MB

TXT)
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